INTEPNATIONAL
 - TV Game Gun Circuit

- Computer Terminal (final oetalls)
-GSR
Monitor
fow 3 Fiofeedback

How to getinto CB Radio AUSTRALA VOL. 1 NO. 2
ANTENNAS

* Product Survey * Theory
* Practical Advice PLUS MUGH MORE

$$
\begin{aligned}
& \text { FREFE } \\
& \text { NSID }
\end{aligned}
$$

WERVOUS TENSHON?

learn to relax with biofeedback!

Our Tuners

Our new range of tuners is built with the same attention to detail to afford more listener satisfaction. We weren't satisfied with the general market standard, and it was only by doing a complete re-appraisal of the two main tuner functions that today we can offer you the best in AM/FM. Each tuner is built to deliver entire state-of-the-art high fidelity performance, and tuning accuracy, to afford you stable and errorless station selection JT-V7l tuner (to match JA.S7l amp.) Sensitivity - 1.8 microvolt (IHF); Signal to noise ratio 75 dB ; Selectivity - 75 dB . Also available: JT-V31 (to match JA-S11 and JA-S31).

the right choice

Our Amplifiers

Today's sound requirements demand high power at low distortion. And the new JVC lineup is no disappointment in this respect. Featuring extremely high quality transient response, very large plus-minus dual power supplies, large capacitors and large transformers, and the exclusive JVC tripple-power-protection. RMS output power - min. 80 w . per channel; THD - less than 0.1\%; Signal to noise ratio 100 dB ; Power band width - 10 Hz to 100 kHz . Also available: JA-Sll (30 watts RMS per channel) and JA-S31 (40 watts RMS per channel)

A MODERN MAGAZINES PUBLICATION
MARCH 1977, Vol. 7 No. 3.

Editorial

Steve Braidwood
Publisher
Collyn Rivers

> Electronics Today International is Australian owned and produced. It is published both in Australia and Britain and is the fastest growing electronics magazine in each country.

SPECIAL OFFER Full Scientific Calculator for \$15.75.

DISCLAIMER

Whilst every effort has been made to ensure that all constructional projects referred to in this edition will operate as indicated efficiently and properly and that all necessary components to manufacture the same will be available no responsibility whatsoever is accepted in respect of the failure for any reason at all of the project to operate effectively or at all whether due to any fault in design or otherwise and no responsibility is accepted for the failure to obtain any component parts in respect of any such project. Further no responsibility is accepted in respect of any injury or damage caused by any fault in the design of any such project as aforesaid.

COVER: Could this be you? Do you suffer from tension? Many people have learned how to reduce tension using biofeedback so why not build up our GSR project and see if you can learn the secret . . . see page 46.
*Recommanded retall price only

PRDJECTS

GSR METER 46
The most popular biofeedback unit
SELECTA-GAME, GUN \& MODIFICATIONS 54
Information for bullders of our video game
AM TUNER 61
Project Electronics' transistor radio
TACHOMETER 66
Another Project Electronics design
VDU, PART 3 81
Final details for our terminal
FEATURES
RESISTOR CODES. 16
Roger Harrison's current installment in the Components Series
TV FRONT-END \& IF STRIP. 27
The second part in our TV Circuits series
DATA SHEET. 38
The 723, positive or negative voltage regulator
PRINT-OUT 71
Kevin Barnes looks at wire wrapping and the computer scene
NEWS \& INFORMATION
News 4
Ideas for Experimenters 93
Calculator contest 13
Special Offer 25
Kits for Projects 57
Mini-Mart 101
Alvertisers Index 102
Readers' Services. 102
FREE INSIDE - our New Magazine, CB AUSTRALIA

MICROVISION

The pocket TV - the Sinclair Microvision - with its 2 inch screen, has taken twelve years and a $£ 500,000$ investment to develop. It is powered by a re-chargeable batteries and, being a multi-standard receiver, operating on all VHF/UHF wavebands, picks up TV transmissions anywhere in the world.

The bulk of the circuitry is achieved in five bipolar integrated circuits, which feature a small external component count plus overall low power consumption. A total of 300 transistors are used.

The picture tube uses electrostatic deflection of the electron beam, plus a very low power heater (15 seconds
warm-up), both of which help to reduce power consumption.
Launched in London on 10th January, 1977, by the British company Sinclair Radionics, the Microvision will be available in the UK during February.

Just 4 inches wide, 6 inches long, $11 / 2$ inches deep and weighing only $261 / 2 \mathrm{oz}$, it is priced at $£ 175$. (A\$280 approx.).

According to Managing Director, Clive Sinclair, 36 , the pocket TV, which runs off re-chargeable batteries, is the perfect source of information for the travelling businessman. It can be used in a car or train and is expected to become the major export earner for the Company, who are already the UK's largest manufacturers of electronic calculators.

Top: Main body case; front with tuning dial and button selectors.
Centre: Tuner board; video/IF deflector board; power deflector board with tube. Bottom: Rear panel; audio board.

DIGEST

Cosmic Jive

Music from space won't be just a David Bowie fantasy if the American Muzak Corp. go ahead with their plans to distribute background music to commercial and industrial buildings across the US. Tests have already been carried out using. a geostationary satellite and receive stations will need a four-foot dish antenna if the scheme goes ahead.

Home Pinball

More news of the consumer amusement industry in the US - when we are getting excited about the prospect of microprocessor-controlled video games arriving in Australia hopefully by next Christmas, the Americans now have microprocessor-controlled home pinball games. The machines are virtually identical in looks, sound and feel to the commercial machines in our arcades and snack-bars. Bally Manufacturing Corporation are selling one machine for US $\$ 900$ that even plays songs to the loser. For about the same price Allied Leisure have machines designed to be played sitting down, machines which double as coffee tables when not in use! Both companies use the microcomputer not only for playing the game but also in a diagnostic mode - the machine's display tells the user where the fault is.

Sydney Computer Club

The Sydney Computer Club, MEG (Micro-computer Enthusiasts Group), decided at the February meeting that in future there will be two meetings per month, one for beginners and one for systems-owners.

The meetings are scheduled for the first (systems-owners) and third (beginners) Mondays each month. They will be held at the WIA Hall, Atchison Street, Crows Nest starting at 8 pm.

Digital Fast Fourier Transform Processor

Britain's Mullard Research Laboratories have developed a digital fast Fourier transform processor capable of spectrum analysis for a small radar unit. Ten watts of FMCW radar could provide the small boat owner with radar coverage up 40 km . The arithmetic units and CCD shift registers needed for the system are still under development (by other companies).

ETI's London staff have seen the 'pocket TV' and are very enthusiasticabout the design. They say the picture is 'not the best we've seen' but before we comment we would like to get a set in our Sydney office.

No doubt this will not be the last we hear of the pocket TV.

Mr. Sinclair started business on his own at the age of 21 , making radio and amplifier kits sold via mail order. Ten years later, his company moved into the present headquarters in a converted mill at St. Ives, Cambs, prior to launching its first calculator, the 'Executive', which earned the Company $£ 21 / 2$ million in export revenue.

Since then, the Company has become the UK's leading calculator manufacturer, has won numerous design and export awards and expanded its range of products to include a digital watch and a series of electronic instruments.

For information contact -
Sinclair Radionics Limited, London Road, St. Ives Hurtingdon,
Cambs PE 17 4HJ UK.

11020121110

This series formed the Unitrex calculator contest in our January issue - readers were invited to submit the next three numbers in the series. We know of two possible solutions based on general formulae: $6,6,6$ and 70,320,957.

The first supposes the series to be the number six written in different number systems: 110 is to a base of two, 20 is with a base of three, 12 with a base of four, 11 with a base of five and so on.

The other solution uses the formula:
$17 n^{4}-245 n^{3}+1291 n^{2}-2953 n+2550$

```
                        6
```

Then as n takes the values $1,2,3,4,5$, the series starts $110,20,12,11,10$, and when n is $6,7,8$, the series continues 70,320 , 957. Only three readers sent in this solution: Mr A. Thomas of Hobart, Mr D.H. Gapp of Somerton Park, SA, and Mr H. Moors of Bendigo, Vic.

The winner was the sender of the first correct entry picked at random - and that was R.H. Williams of Brisbane.

Uncompromised stereo/quadriphony -Undeniably Shure.

The new Shure M24H Cartrtidge offers audiophiles the best of both worlds: It is the only cartridge on the market that does not comprise stereo reproduction to add discreet quadriphonic capability. It eliminates the need to change cartridges every time you change record formats! This remarkable performance is achieved at only 1 to $11 / 2$ grams tracking force -comparable to that of the most expensive conventional stereo cartridges. Other M24H features Include the lowest effective stylus mass (0.39 mg) in quadriphony, a hyperbolic stylus tip design, an exclusive "Dynetic ${ }^{*}$ X" exotic high-energy magnetic assembly, and a rising trequency response in the supersonic carrier band frequencies that is optimized for both stereo and quadriphonic re-creation. If you are considering adding CD-4 capability, but intend to continue playing your stereo library, this is the ONE cartridge for you.

Distributed in Australia by
AUDIO ENGINEERS PTY. LTD.
342 Kent Street, Sydney. Write for catalogue.

AUDIO ENGINEERS (Vic.)
2A Hill Street,
THORNBURY. 3071. Vic.

AUDIO ENGINEERS (Qld.)
57 Castlemaine Street, MILTON. 4064. ald.

[^0]
"Letis make it at your place".

DYNACO DYNAKITS have an international reputation for value-formoney high fidelity quality in performance and musical excellence.
If you want giant results and savings too, "LETS MAKE IT AT YOUR PLACE" with DYNACO DYNAKITS.

- Pat 4 Preamplifierं Pat 5 Preamplifier - Stereo 80 - Stereo 150 - Stereo 400 Power Amplifiers • AF6 AM/FM Tuner• FM5 FM Tuner • QD. 1 Quadaptor

dunact dynakit

NEWS DIGEST

REWORK STATIONS

The latest development in the range of Royston electronics rework stations is the Model RE800. Basically, this station is designed to facilitate the desoldering and removal of an original circuit component, and the insertion and resoldering of a replacement, without degrading the original equipment.
The RE800 provides separate low voltage desoldering tool and soldering tool, both of which have electronic feedback temperature control. Also included is a line voltage, van-type vacuum/pressure pump which provides vacuum or pressure through the desoldering tool. This permits either suction or hot-air jet reflow soldering.
Where adequate controlled-temperature soldering facilities already exist, desoldering-only stations are available in two forms. The RE820 is the desoldering-only version of the RE800 described above, with the vacuum/pressure pump. The RE720 performs a similar function, but uses a vacuum transducer and footswitch-operated solenoid valve, for connection to 100 psi shop (pressure line) air supplies.

Full details of these and other rework stations are available from Royston Electronics, 22 Firth St., Doncaster, Vic, 3073.

MOTOROLA'S NEW HOBBY COMPUTER

The M6800 evaluation kit MKII comes complete with keyboard and display and cassette interface - it is a complete computer except for power supply, which need only give a single 5 V .
The keyboard enables you to enter data using hexadecimal numbers, to load data from a cassette, to unload memory onto cassette, to set and clear up to five breakpoints, to examine and change memory, to display and change registers, to calculate relative offset, to trace one instruction, to go to user's program, to proceed from a breakpoint, or to abort user's program.
The ROM and RAM are expand able from the initial 6830 J -Bug monitor and 256 bytes of user memory. The kit is available from Motorola for less than $\$ 300$, including tax. Read the details in next month's Print-Out.

NS MPU COURSES

NS Electronics are now running courses in Bayswater, Vic., and Brookvale, NSW, to introduce microprocessors to electronics engineers. General tuition is given at two levels, fundamental and advanced, and there are courses dealing specifically with the SC/MP or the IMP-16/PACE processors. The courses cost $\$ 395$ and NS recommend enrolling at least a month before the course to avoid disappointment. Some of the coures have already been held. Here are the details of remaining courses: Microprocessor Fundamentals (not really about microprocessors specifically, more about microcomputers in general), Melbourne March 7 to 11; SC/MP Applications (not a beginners course) Sydney April 18 to 22; Advanced Programming (using IMP-16 and PACE) Melbourne May 30 to June 3.

Further information from Melbourne Microprocessor Training Centre, N.S. Electronics Pty, Lid. Cnr Stud Road \& Mountain Hwy, Bayswater, Victoria, 3153. Telephone (03) 729-6333

Sydney Microprocessor Training Centre, N.S. Electronics Pty. Ltd, 2-4 William Street, Brook vale, NSW, 2100. Telephone (02) 93-0481.

The corporate office of Philips Industries Holdings Limited has moved to North Sydney. The new head office is located in Blue Street, North Sydnev, telephone
922.0181 .

Plug in, Hook up Plug in, Hook up
+5 volts, ground, and a teletype,... and you're in business!
Here is a short list of features.

- 1 K BYTES ROM (PIPBUG EDITOR

AND LOADER) BOARD EXPANDABLE TO 2 K BYTES ROM/PROM

- 512 BYTES RAM (2112B - 256×4

STATIC NMOS RAMS) BOARD
EXPANDABLE TO 1 K BYTES OF RAM

- ON BOARD TTL CLOCK
- TWO - 8 BIT PARALLEL B1/D1 I/O PORTS
- RS232/TTY SERIAL I/O PORT
- CONNECTOR

SUPPLIED - AVAILABLE PREASSEMBLED AND TESTED - 2650 PC1500 OR IN KIT FORM - 2650 KT9500 Ask your local Philips stockist to show you the 2650 PC1500 Adaptable Board Computer Prototyping Card, and get an easy start in Microprocessors.
PHILIPS ELECTRONIC
COMPONENTS \& MATERIALS,
P.O. Box 50, Lane Cove, 2066.

Sydney 42 1261, 420361,
Melbourne 6990300, Brisbane 2274822 , Adelaide 2234022, Perth 654199.

Electronic
Components
and Materials

PHILIPS

HARD HAT Mobile Antenna

SCALAR Distributors have just released their latest innovation in low profile mobile antennas. The "Hard Hat" is a high impact plastic dome virtually immune to damage.

The (2.5 inch high 10 inch diameter) antenna which is based on a loop radiator mounted over a ground plane has a gain approaching that of a $1 / 1 /$ wave whip antenna. The bandwidth is in excess of 20 MHz (with 2 to 1 VSWR). The range of frequencies is between the $450-512 \mathrm{MHz}$ band.
The "Hard Hat" comes with 15 ft length of RG58/u cable and a PL529 plug connector plus mounting hardware. The antenna can be mounted on any flat surface (metal or non-metal as it incorporates its own ground plane) and fastened by sheet metal screws through eyelets. A gasket, included with hardware, with double sided adhesive ensures a watertight seal.
The unit's advantages are is it's to be used where low-profile is needed or where possible damage could occur to whip antennas.
Also available through SCALAR is a new vertical radiator marine antenna consisting of 23 -foot 2 section of white fibreglass. The antenna is suitable for small to medium size craft using the H.F. Band (CB). Its power rating is 1000 watt and frequency range is 2.22 MHz . A coupler is required but no porcelain isulators are needed.

MONOLITHIC FET-INPUT INSTRUMENTATION AMPLIFIERS

National Semiconductor has designed the world's first series of monolithic JFET-input instrumentation amplifiers, utilizing its "BI-FET" process. Known as the LF52 series, these devices offer the combined advantages of high input impedance and com-

DAVID J REID (NZ) LTD

This new advertiser in ETI has just set up operations in Newtown. The company specialises in supplying components to industry and kits to home builders. The company was established over 25 years ago by David J Reid as an electronic component importing company servicing NZ manufacturers. Now David J Reid (NZ) Lid claims to be the largest electronic component company in New Zealand with a multi-million dollar sales turnover. The Company has five manufacturing plants, nine branches nation wide and employs over 300 people.

FIBRE OPTIC ROAD SIGNALS

Rank Optics is supplying 122 fibre optic road signals for the Drecht Tunnel in Holland.
This is one of the largest commitments to fibre optic traffic sign technology made by a European government. Britain has also utilized fibre optic signals on 8 major road systems.
The signals are to be placed on the approaches to the Drecht Tunnel below the river Onde Maas near Dordecht. There will be for tunnels each containing two lanes. Completion of the tunnel is expected later this year.
Seven primary messages are programed for the tunnel signs, although their display capability is sixteen different messages. Intergrated with the signs are automatic message monitors and a standby facility.
The signals will be manufactured in Leeds (UK) by Rank Optics.

25,000 home computers in 1977

A study just completed in America predicts US sales of 25,000 computers for home use in 1977. The average growth rate from 1976 to 1981 is predicted to be 33 percent per year. Almost two-thirds of this year's sales are expected to be from hobby shops.
mon mode rejection, along with extremely low bias currents, at a low cost.
"What the 709 did for op amps, the LF 152 will do for instrumentation amplifiers" claimed Ed Schoell, Applications Engineer at NS Electronics in Melbourne.
For further information please contact NS Electronics on, Melbourne 729-6333; Sydney 93-0481; Adelaide 46-3929; Brisbane 36-5061; Perth 25-5722; Hobart 44-1337; Auckland 49-1281.

GI'S new game

General Instrument have announced three new families of TV games which allow manufacturers to make 38 different types of video game 'contest'. These include volleyball, tank warfare, and a road race. Some of the games are made up from dedicated chips and add-on option chips, others use cartridgeprogrammable microprocessor systems. It will not be until late this year until all the range of ICs is available.

MULTIMETER

High accuracy on 52 measuring ranges - all selected with a single switch - is the main feature of the Unigor $3 n$ multimeter. Other features are frequency response up to 100 kHz and built-in current transformer which makes possible the separate measurement of superimposed dc ano ac components.

The push-button polarityreversal switch of the Unigor $3 n$ simplifies the testing of semiconductors.

The Unigor $3 n$ multimeter is manufactured by Goerz in Austria and is available in Australia from Kent Instruments (Australia) Pty. Ltd. 70-78 Box Road (P.O. Box 333), Caringbah, NSW. 2229.

The SSR-1 Receiver provides precision tuning over the short wave spectrum of 0.5 to 30 MHz with capability of reception of $a-m$ (amplitude modulated), cw (continuous wave) and ssb (upper and lower single side band) signals.
A synthesized/drift-cancelling 1st mixer injection system giving thirty tunable ranges from 0.5 to 30 MHz is derived from a single 10 MHz crystal oscillator providing frequency stability necessary for ssb operation.
A stable low frequency VFO tunes each of the 30 one -MHz ranges with a dial accuracy of better than 5 kHz which is sufficient to locate and identify a station whose frequency is known.
Separate detectors (product and diode) are used to provide for best performance whether listening to ssb or a-m signals. Narrow band selectivity for ssb and wide band selectivity for a-m reception is provided.
A manual tuned preselector provides for maximum sensitivity and maximum interference rejection.
Solid state circuitry throughout allows efficient operation from built-in ac power supply internal batteries or external 12 V -dc source.

FRONT PANEL CONTROLS

MHz : Sets the MHz range of the received frequency. This control tunes the smaller inner dial (1) and is adjusted for the center of the desired MHz range.

Signal Meter: Indicates relative of input signal level.
Pre-selector: Adjust receiver if tuned circuits for proper reception of signal. This control is tuned for maximum signal or noise at the selected frequency.

Communications Receiver

- Synthesized
- General Coverage
- Low Cost - around \$290
- Selectable Sidebands
- All Solid State
- Built-in Ac Power Supply
- Excellent Performance

Frequency Display: Indicates tuned frequency.
The inner dial indicates MHz range and the outer dial indicates kHz reading. As an example 5.750 MHz .
kHz : Tunes the kHz range of the receiver. This control turns the large outer dial (2) and is adjusted for the proper frequency as displayed on the graduations. This dial has a graduated scale from 000 to 1000 and is read as 0 to 1000 kHz or .000 to 1.000 MHz .

Clarify: Provides ultra fine frequency adjustment (approximately 3 kHz range). This control is used primarily on ssb and cw signals for setting the pitch or sound accurately after the station has been roughly tuned in. It should be in the center position before any tuning is commenced.

Mode: Selects mode of reception. A-m (amplitude modulation), usb (upper single side band) and Isb (lower single side band). Cw (continuous wave) may be recelved on either usb or Isb position. The mode selector selects the proper detector (product detector for ssb and diode detector for $\mathrm{a}-\mathrm{m}$ and $\mathrm{i}-\mathrm{f}$ selectivity filter.

Band: Selects the proper range of received frequency.
Off-Volume: Turns radio on and off and adjusts audlo output level.

Phone Jack: For ear phone reception or external speaker (8 ohms). Insertion of jack disconnects internal speaker.

Pllot Lamp Switch: On ac operation the pilot lamps are always lighted. The pilot lamps are normally extinguished on battery operation to conserve battery life. Pushing this momentary action switch turns on the pilot lamps.

Bullt-in Telescoping Antenna: The SSR-1 has such sensitivity that it operates near maximum practical limilts. For optimum results, the receiver should be connected to an external antenna.

BACK PANEL CONTROLS

Record, External Battery, Mute Jack, Antenna Terminal Strip, Antenna Attenuator, Fuse.

Available from selected retailers or the Australian distributors:

Win a Calculator

This month's problem was submitted by Gordon Dodd of Jannali, NSW.

A calculating female

Horace was an incurable gambler with yet another "infallible" system. His wife Harriet was not impressed and insisted that before starting, he must place $\$ 5,506$ in a special reserve. The system was to place a bet on the first horse; a bet on the second one; the sum of the two bets on the third; the sum of the 2 nd and 3 rd on the 4 th and so on. Somehow, Horace was much better at punting than at mathematics, so when Harriet asked how the system was working after he placed his sixteenth bet, Horace produced his electronic calculator set to three decimal places. He divided the 16 th bet by the 15 th bet, then added the $\$ 5,506$ in reserve. As Horace puzzled over the result, Harriet, standing at the opposite side of the table, read the answer alphabetically. "Just what I thought, you waster!" was her response.

To find out what Harriet read, make
the first two bets any amounts you choose, then follow Horace's system not forgetting to add the reserve.

To enter the contest answer the follow. ing questions on the back of an empty envelope -
(1) What did Harriet read?
(2) That this holds whatever Horace's first bets were was explained nearly 800 years ago by a famous Italian mathematician . . what is his name?
(3) A 19th Century French scientist linked the work of the Italian mathematician to various natural phenomena (sunflower heads, leaf buds on a stem, the genealogy of a male bee, snails shells, etc) .. . what is the name of this scientist?

Send the entry to Unitrex calculator contest (March), ETI Magazine, 15 Boundary Street, Rushcutters Bay, NSW 2011, to arrive no later than April 2nd, 1977. The winner will be the sender of the first correct entry randomly picked after that date.

ERRATA

See page 83 for details of errors in the VDU project.

OPEN SATURDAY MORNINGS

Electronics Training
 We're looking for people 17 to 34 to train in the

 highly specialized field of electronics. Training covers communications, computer principles, radar and many other areas associated with avionics. After training, you will earn $\$ 9964$ p.a. and be ellgible for many other benefits. If after completing your initial service you decide to leave, you'll be set up for a career in this highly specialized field.To join our team, you must be an Australian Gitizen or meet our nationality requirements, and have good passes in Maths and Science or Physics. Contact the Air Force Careers Officer for more details. Write to Box XYZ in your State Capital or phone Adelaide 2232891, Brisbane 31 1031, Townsville 713191, Hobart 347007. Melbourne 613731, Perth 22 4355, Sydney 2121011, Newcastle 25476 and Canberra 476530.

Air Force

No. 1 rated

Please note price reductions despite devaluation.

In US by "Consumer Report"

Thoroughly recommended in Australia by a major electronics publication. Electronic Concepts Pty. Ltd. is proud to introduce the exclusive Corvus 500.
Wth MOSTEK• single chip technology, the new Corvus 500 is the first non-Hewlett-
Packard calculator with Reverse Polish
Notation. 10 addressable memories, 4 level roll down stack to be introduced. If you compare the Corvus 500 feature by feature with the HP 45, you will find striking
simllarities. There are also some important differences.
-MOSTEK is one of America's advanced LSI (Large Scale Integration) chip manufacturers.

Corvus H

Your problem is solved the way it is written, left to right sequence, eliminating restructuring, unnecessary keystrokes, and the handicap of having to write down intermediate solutions. And all information is at your disposal - just roll the stack (R) to any internediate information desired. You arrive at your solution faster, more simply and, therefore, more accurately.
Perhaps at this point we should address ourselves to the controversy between algebraic entry and RPN. One question we must ask is why proponents of algebraic entry always use an example of sum of products and never an example of product of sums $(2+3) \times(4+5)=$
Algebraic $2+3=\mathrm{MS} 5+4=\mathrm{XMR}=$ TOTAL 12 keystrokes (SR51, add 2 more keystrokes)
RPN: 2 Enter $3+4$ Enter $5+x$
TOTAL 9 keystrokes 2. THE CORVUS 500 and HP- 45 HAVE 10 ADDRESSABLE MEMORY REGISTERS, 4 LEVEL OPERATIONAL STACK, and a "LAST X" REGISTER (10 th Mem. Reg). With 10 addressable memories, you have access to more entries, or intermediate solutions; less remembering, or writing down. YOU have to do. And less chance for error. The stack design also permits X and Y register exchange, and roll-down to any entry to the display for review or other operation. The "last x " register permits error correction or multiple operations when a function is performed, the last input argument of the calculation is automatically stored in the "last

Yes! l'd like to try the Corvus 500 for 7 days CASH payment: Cheque or money order enclosed. $\$ 79.95$ plus $\$ 2.50$ postage.
NAME
.
ADDRESS
POST CODE

[^1]$x^{\prime \prime}$ register, which can be quickly recalled to correct an error, or to perform another operation using the same number.
3. DIRECT HYPERBOLIC and HYPERBOLIC RECTANGULAR to POLAR and INVERSE. For those of you electronic and computer science engineers who require access to this specialised application, the Corvus 500 solves "your' problems.
4. A WORD ABOUT CORVUS 50012 DIGIT DISPLAY AND ACCURACY. Finally you have displayed 12 digit accuracy in business format and $10+2$ in scientific notation. LED is manufactured by Hewlett Packard.
FOR THE FIRST TIME you can raise the number 10 to 199 th power or calculate Factorial (x) of up to 120 . Unbelievable! 5. DIRECT FROM AND TO METRIC CONVERSION SAVES VALUABLE KEYSTROKES
WHAT ABOUT CONSTRUCTION? With so many features, the next most obvious question must be in regard to the quality of the unit itself. We are proud to report the Corvus 500 to be double injected moulded, with "tactile" feedback keyboard. The compact, contoured case is $5 \frac{1}{2 / 2}$. long by $3^{\prime \prime}$ wide by $11 / 4$ " high and weighs lust 8 oz.
The COMPLETE CORVUS 500 for $\$ 79.95$ includes:

- Rechargeable and replaceable Nickel

Cadmium batteries Optional 3AA batteries.

- Adaptor/Charger.
- Owner's Handbook.
- Soft carrying case.

The Corvus 500 is warranted by the manufacturer against defects in materials and workmanship for one year from date of delivery.
For those of you who have the HP- 21 or 45 or any other advanced calculator on order, aren't you glad you still have the opportunity to take advantage for the release of the. Corvus 500 for $\$ 79.95$ Hury! Order yours today.
AN INUITATION:
Electronic Concepts is proud to offer this exciting Corvus 500 as well as other Mostek based calculators and digital watches as exclusive importer of Corvus Brand products forAustralia.
You, our discerning reader will no doubt recognise the tremendousprice/ performance value on offer. By malling the order coupon today we can assure you of early dellivery and should you not be satisfied, you may retum the unit to us with full money back guarantee within seven (7) days.
Ot better, convince yourself of the real quality and value of our Corvus range, just visito our conveniently located showroom in
Cambridge House, Clarence Street, Just behind Wynyard ext (York Street), or phone
02-29-3755 for more information.
Other Corvus models on offer:
Corvus 600 FInanclal Genlus $\$ 69.95$
Corvus 615 Business
Statisticlan
$\$ 19.95$

Corus Digital Watches - but more
about these in our next advertisement.

New from Altec... elegant in design ... outstanding

SPEAKER COMPONENTS
LOW FREOUENCY. MIO FREQUENCY

HIGH FREQUENCY:
NOMINAL IMPEDANCE: CROSSOVER FREOUENCY: ENCLOSURE TYPE: FREQUENCY RESPONSE:
OPERATIONAL POWER RANGE:
Recommended for use with amplifiers between these levels FINISH:

GRILLE:

DIMENSIONS:

WEIGMT:

MODEL DNE MODEL THREE

MODEL FIVE

MODEL SEVEN
$12^{\prime \prime}$ bass driver $61 / 2^{\prime \prime}$ trame cone drever
4" trame cone oriver
8 onms
$850 \mathrm{~Hz}, 8 \mathrm{kHz}$
Vented
45 Hz to 20 kHz

MOOEL NINE
$12^{\prime \prime}$ bass ofiver 61/2" trame cone driver
5 " frame cone driver
B ohms
$800 \mathrm{~Hz}, 7 \mathrm{kHz}$
Vented
40 Hz to 20 kHz Choice of grille colours on selected models.

[^2]410 KENT STREET SYDNEY ph: 29-2743

Resistor codes

Abstract

Roger Harrison continues his series on passive components with the last article on resistors. This part looks at the various codes that have been used to mark resistors with their values and characteristics.

THE VALUE AND TOLERANCE, and other pertinent characteristics, of

- resistors may be marked on the body of the component in one of three ways. Viz:
(1) By marking directly on the body.
(2) By using a standard colour code - coloured bands or dots, etc, read in sequence.
(3) By using an appropriate typographic code, consisting of letters and numerals arranged according to a convention.

Which method is used depends on the type and physical size of the component to a large extent and also according to the manufacturer's preterence. The larger components, such as power resistors (particularly wirewound types), usually have the value, tolerance and wattage rating marked directly on the body. Most common low power resistors, from 0.05 W to 2 W , use the standard resistor colour code. Some manufacturers use a typographic code on their resistors, physical size allowing (usually radial-lead types having wattage ratings between 0.25 W and 10 W). The special resistors (PTC, NTC thermistors and Varistors) also may be marked with a colour code or typographic code to indicate their value and characteristics.

The Standard Colour Code and Markings

The common axial-lead, composition and film-type resistors are marked with a series of coloured bands, as shown in Figure 1, which are read according to the standard colour code table in Table 1. The standard E24 (5\%), E12 (10\%) and E6 (20\%) series components are marked with either three or four bands. Components below 10 ohms in the E6 series may have only two bands indicating the value. Resistor values in the E48 (2%) and E96 (1\%) series are marked with five bands.

The bands are located on the component towards one end. If the resistor is oriented with that end towards the left, the bands are read from left to
right as shown. The extreme left (or first) band colour indicates the value of the first digit of the component value; the next, or second, band indicates the second digit of the value and so on. If the bands are not clearly oriented towards one end of the resistor it is best sorted out by trying to locate the tolerance band first. As the most commonly used resistors these days are either E12 or E24 series, the tolerance band is either silver or gold respectively. If still in doubt - resort to an ohmmeter.

The body colour of modern resistors is also used to indicate the resistor type.

Carbon film resistors have a very light tan body, and carbon composition resistors have a medium tan body somewhat darker than the carbon film body colour. Metal film resistors have a brown body colour - quite distinguishable from composition resistors and metal-glazed film resistors have a light blue body colour.

High stability resistors (E48, E96, E192 series) are distinguished by salmon-pink 5th band or body colour. For those who have difficulty remembering the resistor colour code, Table 2 lists the most commonly used values in the E12 series, between $4 R 7$ and $2 M 2$.

$\pm 5 \%, \pm 10 \%, \pm 20 \%$ Tol. Units

Fig. 1. The Standard Resistor colour code marking.

			ABLE 1	
	STA	ARD R	ISTOR COL	CODE
	COLOUR	$\begin{aligned} & \text { DIGIT } \\ & \text { VALUE } \end{aligned}$	MULTIPLIER (No. of zeroes)	$\begin{gathered} \text { TOLERANCE } \\ \pm \% \end{gathered}$
	BLACK	0	1	
	BROWN		${ }_{10}^{10}$	1
	RED ORANGE	2	${ }^{10} 0^{2}$ or or 100	
	YELLOW	4	10^{4} or 10k	
	GREEN	5	10^{5} or 100k	
	BLUE	6	106 or 1 M	
	GREY	8	10^{8} or 100 M	
	WHITE	9	10^{9} or 1000 M	
	GOLD	-	0.1 or 10^{-1}	10
	SILVER	-	0.01 or 10^{-2}	20
	- High Stability (grade 1) resistors ard distinguished by a salmon-pink fifth ring or body colour.			

Old-Style Resistors

Prior to the standardisation of the banded system of resistor marking, resistors were colour coded with their value and tolerance by either one of two systems. These were the "Body-EndDot" and the "Body-End-Band" systems, which are illustrated in Figure 2 (a) and. (b) respectively. The body colour represents the first digit of the resistor value, the end colour the second digit, the dot or band colour, the multiplier. The tolerance was indicated by a coloured spot which partially covered the end of the resistor opposite the 'end' colour or a band much narrower than the 'end' colour. In the body-end-dot system, the dot was generally located midway along the body. In the body-end-band system the band was generally located closer to the 'end' colour. Omission of the tolerance colour indicated a tolerance of $\pm 20 \%$.

Some other manufacturers indicate the component value and tolerance by a series of dots or small bands which do not completely encircle the resistor body. This system of marking is commonly used on radial-lead and upright mounting styles of resistor from some manufacturers (particularly the Britishbased Erie Co, and some Japanese firms); these are illustrated in Figure 2 (c). With the upright mounting style of resistor, the colour code is located towards the upper end of the body. The colour closest to the upper end indicates the first digit of the value; the next colour down, the second digit and so on.

(a) The "Boay-End-Dot" system of resistor marking common on many older resistors.

(b) The "Body-End-Band" system also used on many older resistors.

Direct Marking

This style of marking a resistor is commonly used on power resistors (usually from 2 W), wirewound and precision resistors. It usually includes a manufacturer's code indicating the type of resistor perhaps including a date code indicating when the component was manufactured. Figure 3 illustrates a $1 \mathrm{k}, \pm 5 \%$, 2 W resistor.

Fig. 3. Resistor with characteristics and value marked directly on the body.

Typographic Codes and Markings

Resistors may be marked with a combination of letters and figures to indicate the value, and tolerance. Alternatively a combination of direct marking and typographic code may be employed.

The typographic codes used are illustrated in Figure 4. A series of three letters, R, k, M, are used to indicate multipliers of $\times 1, \times 1000$ and $\times 1000000$. The significant figures of the value are indicated directly with figures, the position of the multiplier indicating the decimal point. For example:-

4 R 7	$=4.7$ ohms
330 R	$=330$ ohms
5 k 6	$=5.6 \mathrm{k}(5600$ ohms)
68 K	$=68 \mathrm{k}(68,000$ ohms)
1 M 8	$=1.8 \mathrm{M}(1.8$ megohms)
22 M	$=22 \mathrm{M}$ (22 megohms)

The tolerance is indicated by one of five letters (see Figure 4) which immediately follow the value code on components which are marked completely with a typographic code. Some examples of the complete code are as follows:

$$
\begin{aligned}
2 \mathrm{k} 2 \mathrm{~F} & =2.2 \mathrm{k}, \pm 1 \% \\
120 \mathrm{kG} & =120 \mathrm{k}, \pm 2 \% \\
2 \mathrm{M} 2 \mathrm{~J} & =2.2 \mathrm{M}, \pm 5 \% \\
150 \mathrm{RK} & =150 \mathrm{ohm}, \pm 10 \% \\
6 R 8 \mathrm{M} & =6.8 \text { ohm } \pm 20 \%
\end{aligned}
$$

Fig. 4. Typographic codes used on resistors.

MULTIPLIER
TOLERANCE
$R=\times 1$
$K=\times 1000$
$M=\times 1000000$
$K=\times 1000$
$M=x 1000000$
$F= \pm 1 \%$
$\mathrm{G}= \pm 2 \%$
$J= \pm 5 \%$
$K= \pm 10 \%$
$M= \pm 20 \%$
-Position of the multiplier indicates the position of the decimal point in the value.

THERMISTOR MARKING CODES

Thermistors may be marked with a colour code or a typographic code, or may have no markings at alll The manner in which they are marked depends largely on their construction and the preference of the manufacturer NTC thermistors may be marked with either a colour code or typographic code (or not at all) but PTC thermistors are marked with a typographic code only - when they are marked!

Whatever marking is employed, the resistance value at $25^{\circ} \mathrm{C}\left(\mathrm{R}_{25}\right)$, and its tolerance at that temperature (if included) are generally the basic characteristics indicated. Other parameters (such as the B value) may be indicated when a typographic code is employed. The manufacturer's data should be consulted for the complete thermistor characteristics.

Colour Coded NTC Thermistors

Two basic methods of colour coding NTC thermistors are used, illustrated in Figure 5. The value of R_{25} is found by reference to the standard resistor colour code table. The tolerance is sometimes omitted. The marking method illustrated on the left in Figure 5 distinguishes NTC thermistors from varistors (see Figure 8).

Fig. 5. Colour code systems used on NTC thermistors. The resistance value at $25^{\circ} \mathrm{C}$ $\left(R_{25}\right)$ is found by reference to the standard resistor colour code table.

Typographic Coded NTC Thermistors

The typographic code occasionally employed on NTC thermistor's is illustrated in Figure 6. This code is from the American EIA system of component designation. The tolerance range of NTC thermistors extends from $\pm 5 \%$ to $\pm 40 \%$ and two extra letters are added to the standard typographic tolerance code. The temperature constant B, is also indicated with the typographic code and reference to the manufacturer's data for the basic parameters is not necessary. However, if the dissipation, wattage rating, etc, are needed then the manufacturer's data will need to be consulted.

The typographic code consists of a prefix which may be 'ERT' to indicate and NTC thermistor or simply NTC. The value and characteristics may follow immediately or a manufacturer's code may precede it (usually indicating component type). However, the characteristics are always the last group.

PTC Thermistor Marking Codes
The typographic code that may be used on PTC thermistors is from the EIA system code, illustrated in Figure 7. The prefix ERP indicates that the component is a PTC thermistor. The suffix is divided into three portions. The first consists of a letter and a numeral indicating the prime characteristic of the component. If it is an A-type PTC thermistor the temperature coefficient is indicated, as shown in the accompanying table. If it is a B-type, which changes resistance abruptly at a specified temperature (the 'switching' temperature), then the switching temperature is indicated as shown in the Table.

The tolerance and the resistance at $25^{\circ} \mathrm{C}\left(R_{25}\right)$ follow, and are read off in the same way as for NTC thermistors see Figure 6.

PTC thermistors are often not marked, but their packaging may contain the above typographic code along with a manufacturer's component code.

Varistor Marking Codes

Both colour and typographic codes are used to mark varistors. As they are voltage dependent devices, the voltage value and its tolerance are given. The colour code that is used on ZNR and SiC varistors is illustrated in Figure 8. The value and tolerance is found from the standard colour code table (see section on Component Marking Codes). The tolerance is the first band on these components when held with the colour bands at the left as illustrated. Just to confuse matters, some manufacturers use the 1 st, 2 nd and 3 rd digit bands to indicate the last three digits of their type number!

Text continues on page $21 \ldots$

Fig. 6. Typographic code used on NTC thermistors (from EIA system standard). The first two figures of the value are the two significant figures of resistance at $25^{\circ} \mathrm{C}\left(\dot{R}_{25}\right)$, the third figure indicates the number of following zeroes (i.e. the multiplier). If value below ten ohms, the decimal point is indicated by R (i.e. $1.5=1$ R5).

De-soldering problems?

The new Weller power vacuum desoldering station for printed circuit board repair. Famous Weller closed loop temperature control protects sensitive components while soldering or desoldering. See-through solder collector is easy to clean or replace. Non-burnable cord sets afford safety and longer life. Low voltage tool inputs give added safety margins. High impact resistant tool handles and stainless steel barrels mean longer tool usage.
Other members of The Cooper Group include Crescent, manufacturers of top quality electronic pliers; Lufkin, measuring equipment; Nicholson, precision files; and Xcelite, professional hand tools.
Whatever your requirements, you can choose Cooper products with confidence.

Keep up the good work with a Cooper tool.

The Cooper Group

CRESCENT•LUFKIN•NICHOLSON•WELLER•XCELITE

The Cooper Tool Group Limited, Nurigong Street. P.O. Box 366, Albury, NSW 2640. Telephone: 215511, Telex: 56995.

Why the cannon on your 1812 Overture sounds more like a popgun.

A rather unfortunate situation occurs during a recording session.

Because the dynamic range of most recording equipment doesn't equal the dynamic range of live performances, the loudest sounds end up being very much compressed, while the softer sounds have to be lifted above tape noise.

So no matter how good your equipment is, it will never ever give a true performance.

Introducing dbx.

Fortunately for the home hi-fi buff there's now an extremely effective solution available.

The dbx 117.
Basically it's a dynamic range enhancer that works on the signal's voltage level without changing the frequency response. (Unlike other systems that are designed merely to
filter out high frequencies.)
And attached to any good system it will noticeably increase the entire dynamic range of any signal put into it. While at the same time reducing surface noise.

So now your softs become even softer. While your louds, especially your crescendo's, become much more dramatic when they finally reach the top.

Consequently giving the recorded performance both more body and definition
dbx will also improve the sound of your older records. So there's less need for you to have to replace them. (The dbx 117 will also help reduce hiss from FM broadcasts as well as your tapes.)

In fact should you desire to test the dbx before purchase, we then
suggest you contact one of our dealers listed opposite and politely ask him to play you a copy of the 1812 Overture.

Should you still have a few reservations then all we have to say is that perhaps the 1812 Overture was recorded featuring a popgun.

Or your ears aren't as good as you thought they were.
$d b x$

Where to hear the 1812 Overture with cannon, not corks.

N.S.W.

SYDNEY CITY
Douglas Hi Fí.
D.ME. Hi Fi.

Kent Hi Fi.
EASTERN SUBURBS
Woolloomooloo - Convoy Sound
NORTH SHORE
Chatswood-Autel Systems
Crows Nest-Allied Hi Fi.
Gladesville-Hi Fi Hit
Chatswood-Milversons. Brookvale-Riverina Hi Fi.
WESTERN SUBURBS
Fairfield-Bing Lee Electronics.
Summer Hill-Fidela Suund.
Parramatta \& Westfield-Grammophone Shop
Parramatta-Milversons.
Parramatta \& Bankstown-Miranda Hi Fi.
Concord-Sonata Music.
SOUTH
St. Peters-Dyña Stereo
Miranda Fair-Miranda Hi Fi.
LIVERPOOL: Miranda Hi Fi.
WOLLONGONG : Sonata Hi Fi
GOSFORD: Miranda Hi Fi.
NEWCASTLE: Ron Chapman Hi Fi
Newcastle Hi Fi.
MAITLAND: Hunter Valley Electronics
TAREE: Godwins Hi Fi.
LISMORE: Lismore Hi Fi.
A.C.T

Pacific Stereo Duratone Hi Fi
VICTORIA:
MELBOURNE CITY
Douglas Trading
Nat. Sound
Allens Music
Southern Sound.
Instrol Hi Fi .
MELBOURNE SUBURBS
Hawthorn - Tivoli Hi Fi
Nth. Caulfield-Soundcraftsman
Moorabbin-Southern Sound.
Mordialloc-Mordialloc Hi Fi.
Denman Audio.

Belmont-Belmont Stereo.
Warnambool-A. G Smith

QUEENSLAND:

BRISBANE CITY
Reg Mills Stereo
Tel Air Electronics.
Stereo Supplies.

BRISBANE SUBURBS

Redcliffe-Hi Fi Sales (Q'ld.) Piy. Lid.
Ashgrove-Living Sound Centre.
Tingalpa-Todd Hi Fi.
Ipswich-lpswich Hi Fi

SOUTH AUSTRALIA:

ADELAIDE CITY
Allans Music
Hi Fi Acoustics.
Challenge Hi Fi
ADELAIDE SUBURBS
Blackwood-Blackwood Sound.
St. Peters-Sound Dynamics.

TASMANIA:

HOBART
Quantum.
United Electronics
SUBURBS
Burnie-Audio Services
WEST. AUSTRALIA:
PERTH
Alberts Hi Fi.
Leslie Leonards
Audio Centre.
Japan Hi Fi.
Or write to Auriema (A/asia) Pty. Ltd. P.O. Box 604, Brookvale, N.S.W. 2100

Telephone 9391900

Common Code (indicates PTC)

Fig. 7. Typographic code used on PTC thermistors (from EIA system standard). The value and tolerance are read off as for the iypographic code used on NTC thermistors.

Ceramic Diode (Variatite) Varistors

These devices have an asymmetric voltage characteristic and it is the value of the forward voltage that is of interest. They are generally made to a specified forward voltage and a colour code is used to indicate the value as illustrated in Figure 9. A single colour spot is used, and it is applied to the cathode side of the device.

ZNR Varistor Typographic Code

The typographic code used on ZNR varistors is usually arranged in one of two ways, as indicated in Figure 10. The disc-shaped varistors are generally marked in the manner illustrated, the ZNR marking directly indicating the type of component. This is followed by a single letter indicating the voltage tolerance followed by the voltage value. A $220 \mathrm{~V}, \pm 15 \%$ varistor is illustrated.

The cylindrical body style of varistor is generally marked according to the EIA system standard, as illustrated on the right in Figure 10. This code gives a more complete specification of the component's characteristics. The wat-

Fig. 8. Colour code used on some varistors. The tolerance refers to the voltage tolerance, and is found from the standard colour code table. The 1st and 2nd digits indicate the two significant figures of the voltage, the third digit indicating the number of following zeroes (i.e. the multiplier); the values being read from the standard colour code table. Some manufacturers indicate the last three digits of their type number. Very confusing!
tage rating and shape may sometimes be omitted. Reading this sort of code on any component can be confusing - it is best to first identify the component by the prefix and then read the code groups commencing from the right. The voltage value is always indicated last but watch it again ... the manufacturer

Fig. 9. Colour code used on Ceramic Diode (variatite) varistors. These have an asymmetric voltage characteristic and the colour code, indicating the rated forward voltage, is marked on the cathode.
may attach a suffix for his own purposel It is usually a single letter and thus the voltage value group is easily recognised.

Silicon Carbide (SiC) Varistor Marking

These varistors are also generally marked using the EIA system code, in a similar manner to ZNR varistors. The two basic marking styles are illustrated in Figure 11. The common code signifying a SiC varistor, ERV , prefix is invariably marked on both disc and
cylindrical-shaped components, the discshaped varistors generally having an abbreviated code indicating only the voltage value and measuring current. The cylindrical-shaped varistors have the more complete code marked on the component body, as illustrated on the right in Figure 10. The wattage rating, measuring current, voltage value and voltage tolerance are the characteristics indicated. Note that the wattage rating code differs' from that for ZNR varistors in that only a single figure is used to indicate components having a wattage rating of 1 W and 2 W respectively.

E12 SERIES RESISTOR COLOUR CODE

OHMS	BAND 1	BAND 2	BAND 3
4.7	yellow	violet	none
5.6	green	blue	none
6.8	blue	grey	none
8.2	grey	red	none
10	brown	black	black
12	brown	red	black
15	brown	green	black
18	brown	grey	black
22	red	red	black
27	red	violet	black
33	orange	orange	black
39	orange	white	black
47	yellow	violet	black
56	green	blue	black
68	blue	grey	black
82	grey	red	black
100	brown	black	brown
120	brown	red	brown
150	brown	green	brown
180	brown	grey	brown
220	red	red	brown
270	red	violet	brown
330	orange	orange	brown
390	orange	white	brown
470	yellow	violet	brown
560	green	blue	brown
680	blue	grey	brown
820	grey	red	brown
1k	brown	black	red
1 k 2	brown	red	red
1 k 5	brown	green	red
1 k 8	brown	grey	red
2k2	red	red	red
2k7	red	violet	red
3 k 3	orange	orange	red
3 k 9	orange	white	red
4 k 7	yellow	violet	red
5k6	green	blue	red
6k8	blue	grey	red
8k2	grev	red	red
10k	brown	black	orange
12k	brown	red	orange
15k	brown	green	orange
18k	brown	grey	orange
22k	red	red	orange
27k	red	violet	orange
33k	orange	orange	orange
39k	orange	white	orange
47k	yellow	violet	orange
56k	green	blue	orange
68k	blue	grey	orange
82k	grey	red	orange
100k	brown	black	yellow
120k	brown	red	yellow
150k	brown	green	yellow
180k	brown	grey	yellow
220k	red	red	yellow
270k	red	violet	yellow
330k	orange	orange	yellow
390k	orange	white	yellow
470k	yellow	violet	yellow
560k	green	blue	yellow
680k	blue	grey	yellow
820k	grey	red	yellow
1 M	brown	black	green
1M2	brown	red	green
$1 \mathrm{M5}$	brown	green	green
$1 \mathrm{M8}$	brown	grey	green
2M2	red	red	green

Fig. 10. Tvpographic code combinations used on common (ZNR) varistors. The more complete form is shown on the right. It mav be abbreviated however as indicated on the left. The current value is sometimes included as well, the wattage rating is usually onlv included where the more complete form of the EIA code is used.

WATTAGE
$01=0.1$ watts
$02=0.2$ watts $-1=100 \mathrm{mADC}$
watts $\quad 2=10 \mathrm{mADC}$
$3=1 \mathrm{mADC}$
$08=0.8$ watts
$10=1.0$ watts
$15=1.5$ watts
$20=2.0$ watts

Fig. 11. Typographic code combinations used on Silicon Carbide (SiC) varistors. The complete form of the code is illustrated on the right. It is also used in an abbreviated form, as Illustrated on the left, only the voltage value and current being indicated, although the tolerance is sometimes also included.

We've launched a Total Electronic Service

like you've never

That's not iust another idle boast but a real fact. At Davred Electronics we have thousands of different components ranging from kitsets through to semiconductors to suit any requirement whether your an electronics enthusiast hobbist, designer, or fully fledged technician. Our manager Des Bain has had years of electronic experience and like us believes in carrying an in depth range that varies from metric bolts and nuts, TV aerial hardware tools, silicon braid to electronic kitsets, speakers, panel meters, semiconductors, capacitors and
seen before
many many electronic orientated products.
The Davred service has
 been specially designed to be second to none and whether you call and collect where we offer "pick your own facilities" or write to our mail order department you will be guaranteed fast efficient service. Next time you require electronic components make sure you try this new breed of service.

Instant Success-the NEW Stanton Gyropoise' turntable

Look at all these quality features, many of them exclusively ours!

1. Gyropoise ${ }^{\text {© }}$-frictionless magnetic suspension of the platter.
2. Die cast aluminum T-Bar for sturdy structure.
3. 2-Speed changer for 33 rpm and 45 rpm playback.
4. 24-Pole synchronous high torque motor.
5. Belt drive for noiseless operation.
6. $12^{\prime \prime}$ die cast machined high polish aluminum platter.
7. Unipoise ${ }^{\circ}$-single point tone arm suspension.
8. Anti-skate control adaptable to all types of styli.
9. Magnetic hold bar for tone arm convenience.
10. Stylus force slide (range 0-4 grams).
11. Stanton state-ot-the-art stereo or discrete cartridge.
12. Viscous damped cueing control for featherlight lowering of stylus.
13. Handsome walnut veneer base (comes complete with dust cover).

ADDITIONAL FEATURES:

14. Comes equipped with low capacitance cables
15. Wow and Flutter - $\leq .07 \%$ din 45507 weighted
16. Rumble $-\leq-60 \mathrm{~dB}$ din 45539 weighted

It's the important exclusive features that make the difference. Only Stanton Turntables have Gyropoise ${ }^{*}$, the patented frictionless magnetic suspension bearing-thus the platter makes no vertical contact with the body of the structure. This isolation eliminates vertical rumble.

Only Stanton Turntables have Unipoise ${ }^{*}$, the patented single point tone arm suspension. The arm is supported by a single pivot for both lateral and vertical movement.

Only Stanton Turntables come equipped with a state-of-the-

Bollom view shows simplicity of design. art Stanton cartridge, either the 681 Triple-E calibrated to the tone arm for stereo playback, or the magnificent 780/4DQ for discrete.
See your franchised Stanton dealer for a demonstration of this great new product. STaNTOn MADE IN U.S.A.

Special Offer!

Electronics Today has arranged for Unitrex Pty Ltd to offer our readers a very fine full-scientific calculator at the very low price of $\$ 15.75$ (plus $\$ 3.00$ postage and packing). Battery, value 85 cents is included in this price. Seven hundred and fifty only of these calculators have been reserved for our readers. From previous experience we expect all stock to be sold within three weeks of publication of this issue so if you're seeking a scientific calculator of this quality please rush your order to us as soon as possible.

WARRANTY

Ninety days --parts and labour. Please return faulty units to Unitrex Pty Ltd, 105 Queen St, Melbourne, 3000 not Electronics Today.

FUII SEIENTIFIG CAICUILITOR -check these functions!

introduction

The UC55 Scientific Calculator handles the 4 basic algebraic functions (addition, subtraction, multiplication, and division), as well as 11 scientific functions plus a memory that eases progress through complex multiple-operation problems.

Entry numbers, or results, can be displayed in either 8 digit floating decimal point format, or in scientific notation.

SPECIFICATIONS AND

 FEATURES- A.C. or Battery Operation
- Algebraic logic
- Scientific notation - enter numbers or calculate results from 1099 to 10-99
- Convert key changes between floating point notation and scientific notation
- 5 Function, full accumulating memory: $\mathrm{M}+, \mathrm{M}-, \mathrm{MR}, \mathrm{MC}, \mathrm{X} \longmapsto \mathrm{M}_{1}$
- Transcendental functions: Sin, Cos, $\operatorname{Tan}, \operatorname{Sin}^{-1}, \operatorname{Cos}^{-1}, \operatorname{Tan}^{-1}$, Lnx, ex
- Trig functions calculated in radians or degrees
- x and $1 / x$ functions
- π key
- Capability to calculate and $\mathrm{v} \sqrt{ } \mathrm{x}$ and x^{Y}
- Chain calculations
- Automatic power on clear
- Trailing zero suppression
- Automatic constant
- MOS/LSI solid state circuitry for durability and dependability
- Size: $25 \mathrm{~mm} \times 75 \mathrm{~mm} \times 130 \mathrm{~mm}$
- Weight (with battery): approx. 170 grms.

Calculator offer
Electronics Today 15 Boundary St, Rushcutters Bay, NSW 2011

ORDER FORM
Please forward Unitrex UC55 scientific calculators at $\$ 15.75$ plus $\$ 3.00$ each postage and packing.

Name
Address . Post Code

All units will be sent from Unitrex by certified mall. Please allow at least 30 days for delivery. We regret we cannot accept company purchase arders.

DISTRIBUTORS for the Electronic Industry

J. A. SEVERN

ELECTRONIC ENTHUSIASTS EMPORIUM

RADIO DESPATCH SERVICE

BRYAN CATT INDUSTRIES

NORTH: J. A. Severn, P.O. Box 47, Epping, 2121; 869-1058
SOUTH: Bryan Catt Ind., 105 Miranda Road South, Miranda (near Motor Registry). 524-4425. Telex AA27266
EAST: Radio Despatch Service, 869 George Street, Sydney. 211-0191
WEST: Electronic Enthusiasts Emporium, Post Office Arcade, Joyce Street, Pendle Hill. 636-6222

The largest off-the shelf range of quality brand-name electronic components.

Semi-Conductors
Delco
E.D!.

General Electric
Intermetall
1.T.T.

National
N.E.C.

Philips
Sanyo
Signetics
Solid State Scientlfte
Texas Instruments

Passive Conductors
A.E.E.

Bournes
Clarostat
Eina
I.T T. Capacitors
I.T.T. Thermistors

Philips (Elcoma)
R.C.A.

Soanar
Sprague

Electro-Mechanical and Hardware
Acme
Alco
Augat
Cannon
Delso Heatsinks
1.T.T. Dlecast Boxes
I.T.T. Fans \& Blowers

Dica I.C. Accessories
I.E.E.

Jean Renaud
Jean R.
National Relays
Pomona Accessories
Roton Fans \& Blowers
Switcheraft Connectors Thermalloy Heatsinks

Trade enquiries only to:

Instant Component Service

Elluricruils
nnel number, remote control, digital
. but not for the beginner.
the clock input to IC11 will be held
high, inhibiting scaling. In other words
the channel counter automatically stops
on each of the preset channels.
The channel change control is a lary changeover swie switch
which toggles the no-bounce switch
IC1/1, IC1/2 whose output is NANDed
with a remote channel change signal
which may be any low going edge. The
output of IC1/3 is differentiated by
R4, C 1 and then inverted by IC $1 / 4$ to
 about $1 \mu \mathrm{~s}$. Assuming that the counter is already stopped on a preset channel, this pulse appears initially as a negative
 increases the scaler count by one. AsGJI 10 Ind 2no aut 'auueyo zasad e of

1018
tnoqe jo 介ournbat e ie Eu!uunt

ange switch. IC5 also triggers the

 inhibit the afc action for a brief period following a channel change. The FET Q2 acts in the variable resistance mode

is essentially one of full-wave rectification and is far more linear than the demodulation.
The demodulator is followed by a video amplifier and a noise blanking circuit to minimize white spot interference. The resultant demodulated video information is available from pin 9 at low impedance. The dc level at this pin is 6 V and the video output has negative going sync. with an amplitude of $3 \vee$ peak to peak. The video bandwidth of the TCA 270 is typically

 criminator tuned circuit L10, C33 via capacitors C27, C30, C31, C32. This coupling is bypassed by the sound if sұuәләл чग!чм 6Zว pue 8 วЈ ' 67 deı
 carrier. L10 and associated components form a frequency sensitive phase shift network, the resultant voltage between
 St! se Z u!d ze ןeub!s әuł wort əseyd ui frequency changes. The afc discrimin--oad ןeubis indano op e soonpoad tole पכ!чм әכuәдә!t!p әseyd s!cł of ןeuo!fiod is amplified and presented as a bi-
directional current output at pin 11.

ponents by C36 and converted to a
oltage output swinging between 0 V and 12 V by R18, R21 and RV2 whic adjusts the afc centre reference. The afc output is buffered by Q1 and passes to the afc input of the tuner control

 pulse applied capacatively to pin 7 of the TCA 270 . In this circuit 40 V negative line fly pack pulses are assumed available from the deflection circuitry, and these are differentiated by C21, R11 and applied to pin 7 giving a gating waveform which goes 5 V negative for a
jacent channel sound trap (L5) and (97) deд әэиеи!шодчэ ןаииечэ диәэe! pe as well as the bandpass network ($\mathrm{L} 2, \mathrm{~L} 3$) At this stage the if signal is amplified by the gain controlled integrated circuit video amplifier IC1 which has a doubly tuned output stage. Specific$\angle 7$ dewiofsued indino ayt iot suo! je are given in Table 1 and are similar to but it was found necessary resistively
to damp the primary and secondary

 circuit IC1 provides a typical power gain of about 50 dB at 45 MHz and the agc voltage applied to pin 5 gives a gain variation of at least 60 dB for a voltage
 if signal is capacitively coupled to the input stage of IC2 which is TCA $270^{2.4}$) integrated synchronous demodulator with reference generation by filtering ine the circuit, includes a video amplifier with interference noise suppression, a peak level agc detector with drivers for npn tuner and if con-
 Two video outputs of opposite polarity are provided.
-uos s! 87 !!os 犭uez paunt junys \forall

 loaded Q value of L 8 is something of a penin sanien y
 using a tuning capacitance of 33 pF together with the TCA 270 damping resistance of about 6 k gives satis-
 nected across pins 14 and 15 giving a
 which may be varied in phase by ad-
 half cycles of if are passed. The process
ranges over the full range of tuning
voltages(1). The afc action may be defeated simply by closing SW2 which shorts the afc component of the tuning voltage to ground without interfering action of SW2 is duplicated electronically by Q2, the afc muting FET. IF Circuits: The band switching and tuning voltage inputs to the tuner
module have been described above. The agc input voltage is routed by diode switching (D1, 2) to either the vhf or oscillator is activated. The mixer supply osciliator is activated. The mixer supp
voltage is choke decoupled from the

The if signal emerges from pin 8 of the tuner module and passes through the required channel sound trap (L1), the

Fig. 3. The channel-selection
matrix, lead-through pins join u!ol suld ч6пализ-peal 'xusew 8
0
0
0
0
0
5
5
0
0
0
0
0
0 This layout programmes
channels $0,1,8,10,21,35$,
57 and 69 . Positioning of and units can be clearly seen.

signal increase occurs, Q 2 is turned on resulting in a rapid charge of C 38 , while if a sudden fall of signal level ensues C38 is rapidly discharged through D5, Zd1
 is a basic long time constant on the if agc line, large signal fluctuations, due for example to a passing aircraft, may

The composite video output from IC2 is applied to a pair of decoupled emitter followers separated by the
range 5 V (bottoming of pin 5 and at maxim resistance. Under normal conditions the charging time constant of C 38 is determined by R16 C38, $\simeq 0.1$ sec while the discharge through D5 and Zd1, has a time constant limited essentially by the current sinking capabilities of pin 5 of 1 C2. These arranged that adequate field frequency filtering results. However if a large

The output from pin 4 is applied via the resistive dividers R13-R3,4 to the tuner module giving the required minimum value of about +2.5 V when the forward drop across D1, 2 is considered. tuner gain and bottoming of the current output at pin 4.

The output from pin 5 is processed by Q2 and associated components and period equal to and coincident with the ine sync. period. This gating enables the received line sync. peak amplitude to be measured and used as an indicator of signal strength. This then controls the separate if and rf agc current drain outputs available from pins 5 and 4 respectively. The agc peak detector requires an integrating capacitor connected from pin 6 to ground and in this circuit C23 removes the line rate components and D4 and associated com-

Strip

 RV2 are the miniature Piher types
 -t!pow әшоs 'əqе!!eле дәбuo! ou әле ication of other types will be necessary
to fit the available holes. Once again pasead aq plnous s!!oj lie doł sonis sau! and locked with small rubber strips to
When both boards have been com-

 spıeoq OMI aчl $\ddagger 0$ squamar!nbas әъew!

 a complete receiver. At switch on the

$=$
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4

aligned with the aid of a sweep gen-
 jection point available through a hole in its cover and this should be used for most adjustments. A sufficient align-

 emitter of C3:

$\stackrel{\dot{\sim}}{\sim}$
spacing do-it-yourself connectors marketed by McMurdo. It should be noted that the seven segment LED in-
non-component side of the board, pre-
ferably in IC sockets. This is to facilitate
installations where the board is to be

 should be linked with lead throughs.. On the layout shown, the programmed
 tuning potentiometers being so marked
on the upper side of the board. Any 66 여 0 wos spauuey (8 ol dn) 1ayło عวın6!y pue 'asınos to uasoù aq pinos shows how this is done. All resistors
 types and the 741 IC's should be the mini DIP type. The tuning potentio-
meters are $1.25^{\prime \prime} 20$-turn trimpots.
The if board is also double sided and positives of both sides of this board
 ponent overlay is in Figure 5. When
 mounting lug should be clipped off andThe coil damping resistors for L7 should be included inside the can, as of course
sound trap L11, and low impedance outputs are available from the emitter of Q4. Transistor 05 and associated cor use with noise gated TBA240B(5) synd integrated circuit, and may be omitted
not required. off from the emitter of Q3 and passes through the Murata 5.5 MHz ceramic filter SFC 5.5 mA which sees an effective impedance of 330Ω at both input and output: The resultant 5.5 MHz subconventional LM: 3965 fm demodulator and the resultant audio output is deemphasised by
level by the dc volume control at pin 6.
This control can be gated off by in. This control can be gated off by in-
putting a mute signal to Q6.

CONSTRUCTIONAL AND

The tuner control board is con-
board, actual size positives of the two
sides are not shown.
Figure 4. In/out connections on the
board are designed around the $0.2^{\prime \prime}$ -

REFERENCES

1. "The New Colour Television Chassis - 4KA SEries" (A.W.A. Thorn) (Most comments refer to the English T.C.E. 4000 Export version which is described in detail in this leaflet) 2. Philips Data Handbook - SemiPart 5 - Linear Integrated Circuits, March 1975.
. Motorola Semiconductor Data Library, Vol. 6, Ser. A, Linear Integrated Circuits. (See dats sheets for MC 1330P, MC 1350P).
2. Mullard Linear Integrated Circuits Application Note TP 1356
"Television Front End Using

Integrated Circuit TCA 270 Synchronous Demodulator". P. Bissmire 1973.
5. Kriesler Colour Television Technical Advisory Service Manual 59-1 - also
used in Philips K9-A chassis.
of course necessary for remote control, even when an antilog potentiometer is used there is some cramming of the minimized by various shunt resistor -uou e u! Sz!nsal s! पl inq 'suo!deu!quos
 әчł bu!sn $\ddagger 0$ әวuənbasuos $102 \mu!p$ e s! popular LM3065 sound demodulator chip, and it is felt that some of the more recent. chips should not exhibit
this characteristic.

ACKNOWLEDGMENTS

'uopuaH 'SdIרIHd to uosdwis ir 1 W
yueut of ∂x !! Pinom sıoułne aul awos 6u!pinoid sof pue sazunt dej!ce^ - I JW sa!sas $\ddagger u!1 d a s$ SdliliHd aut 10 also be thanked for managing to provide several very difficult components in the face of adversity.
s! s!प7 प6noulf joıluos awnjon op a

Full detalts nbout ANTI-STATIC and ALL
ELECTROLUBE PRODUCTS available lrom Australlan Agenis

RICHADD FOOT (AUSTRALLA) FTY. LTO
63 HUNE SIREET CROWS NEST. N S.W. 2065. Telephone: 43.0326

Culboder mkll COLOUR ORGAN

 "WMARES ANV RKIT only

 "WMARES ANV RKIT only}

Cat K-3140

YOU CAN BUILD THIS KIT EVEN IF YOU'VE

 NEVER SEEN A RESISTOR IN YOUR LIFE!With the EXCLUSIVE Dick Smith Musicolor 111 construction manual, you get step-by-step details of what to do, when to do it and what not to do! Even how to solder, and what the components look like! Check it out at a Dick Smith store or dealer today!

The Musicolor 111 - a kaleidoscope of colorl It simply connects to your speaker terminals to convert your music into an exciting, rhythmic display of light - but does not affect your music or amplifier in any way! You can use just about any incandescent bulb (eg, Paraflood or festoon lighting) up to a total of 2400 watts - thats a lot of light!
Also available - a special 'short form ${ }^{\prime}$ kit containing all the electronics \& controls, but no box or front panel, etc. Ideal for building into lightshow boxes, etc. Further information in the instruction manual! Cat K-3141 \$32.50

DICK SMITH ELECTRONICS GROUP

HEAO OFFICE: Phone 4395311 . Telex AA20036. Cable 'Oiksmit' Sydney MAIL OROERS: P.O. Box 747, Crows Nest, N.S.W. 2065
N.S.W. BRANCHES: GORE HILL-162 Pacific Hwy, 4395311

SVONEV- 125 Vork St, 291126 BANKSTOWN-361 Hume Hwy., 7096600
INTERSTATE BRANCHES: QLD-166 Logan Rd., Buranda 3916233 VIC-656 Bridge Rd., Richmond 421614

DICK SMITH DEALERS:
Sound Components - Tamworth NSW 661363 The Record Centre - Griffith NSW 621577 Armidale Electronics - Armidale NSW 724955 Hunts Electronics - Toowoomba OLD 326944
Electronics Hobby Centre - Palm Beach OLD 341248
Aero Electronics - Hobart TAS 348232
Altronics. - Perth WA 281599
A ECooling - Elizaboth Sth, SA 2552249
Veneman \& WYatt - Stuart Pk, NT 813491 Dealer prices may be higher due to transport costs

- 80 dB rumble

ㅁ.04\% wow and flutter

- continuously variable speed range through a servo controlled d.c. motor...
\square push-button selection of $78,45,331 / 3$ r.p.m.

does this make the ultimate turntable?

FOns gives you that and more.

Available with base and cover; or complete with base, cover and S.M.E. 3009 arm and Stanton 681eee cartridge.
P.S. If this isn't the ultimate turntable, we'd like to know why.

* Measurements taken from authoritative U.S "F.M. Guide" May 1976.

W. H. K. COLOR VIDEO GAME

This 4 color Video Game has a lot of improved features: 3 preselectable ball speeds with a further control for automatic speed increment. This feature was designed to glve more skill to the game in that, as players become more adept at hitting the ball, the ball speed increases making it more difficult to hit. Each player has vertical and horizontal movement (Joy-Stick-Control). Scoring is indicated by a two digit score displayed in the relevant players color in the upper half of the screen (left score red, right score blue). The score is displayed only during the time that the ball is out of play.

TENNIS

The Game is designed to simulate playing methods and rules of table tennis as closly as possible. The display con-
sists of a rectangular court with dotted centré line in white on a background of green. The left player is red and the right player blue. To win the game 21 points must be reached with a clear margin of 2 points. If $\mathbf{2 0 - 2 0}$ is reached then a deuce circuitry operates. This causes the serve to alternate every point instead of every 5 points. The winner will be the first player to gain a 2 point advantage.
In Football the normal player 'bats' are free to move to any position on the court including the opponents half. Since no points target are set in Football or the Hockey the game is won by the number of goals scored in a given preset time.
For more details on this new W.H.K. Color Video Game send S.A.E. marked WHK CVG.

CLEARANCE SALE

WE NEED SPACE TO MANUFACTURE OUR ADVANCED COLOR VIDEO GAMES all goods are brand new (Signetics, Siemens, Mostek, Intersil etc.)

Please Note: No Backorders or Returis accepted on these Specials. Minimum Order $\$ 10.00$. Goods are available ex stock (until sold out) between 9 am to 5 pm including Saturdays or can be forwarded per Carrier on a Freight collect basis.
SPEAKERS 75 Ohm, $100 \mathrm{~mW} ~ \$ 0.65$
per $10 \$ 5.60$
per $100 \$ 50.00$
per $1000 \$ 460.00$
$9 \mathrm{~V}, 200 \mathrm{~mA}$ DC POWER PACK with 12 ft cable, ideal for transistor radio, calculators etc.
$\$ 4.20$
per $10 \$ 39.00$
per $100 \$ 350.00$
TRANSFORMERS 240 V to $12.6 \mathrm{~V}, 1 \mathrm{~A}$
$\$ 2.10$
per $10 \$ 19.00$
per $100 \$ 170.00$
per $1000 \$ 1,500.00$
SIEMENS RELAYS (mixed, low voltage type per $10 \$ 3.00$
per $100 \$ 25.00$
SIEMENS RECTIFIERS incl. Bridge
per $10 \$ 2.00$ WESTON 10 Turn POTENTIOMETERS (precision types) mixed Values
per $10 \$ 4.00$
2N 3055 , 115 W POWER T'RANSISTOR
$\$ 0.80$
per $10 \$ 6.00$
per $50 \$ 25.00$
NATIONAL LM 309K, VOLTAGE REGULATORS $\$ 1.40$
per $10 \$ 12.00$
per $100 \$ 100.00$
SIEMENS POLYESTER CAPACITORS mixed values to 1.5 uF and up to 400 V per $25 \$ 1.75$
per $100 \$ 5.00$
TANTALIUM CAPACITORS mixed values per $10 \$ 1.50$
per $100 \$ 12.00$
per $1000 \$ 100.00$
10 MHz CRYSTALS
$\$ 6.20$
per $10 \$ 55.00$ per $100 \$ 450.00$
1 MHz CRYSTALS
REED RELAY INSERTS
$400 \mathrm{~V}, 6 \mathrm{~A}$. TRIACS (made in Germany) 28 PIN SOCKETS
VARIABLE VOLTAGE AUTO-TRANSFORMEERS
0-250V, Bench Types, 2A
4A
8A per $10 \$ 1.50$
ea. $\$ 1.20$
$\$ 0.60$

$\$ 20.00$

 $\$ 36.00$$\$ 52.00$
$\$ 102.00$

WELLER INSTANT DUAL HEAT SOLDERING GUN $240 \mathrm{~V}, 100$ \& 140 W
$\$ 18.50$
WELLER temperature controlled Soldering Iron Model TCP-1, 24V operation $\$ 24.00$ WELLER SOLDERING IRON TIPS PT SERIES $\$ 1.85$ FIBER OPTIC BUNDLES (mounted) for FIBER OPTIC LAMPS approx. $1 \cdot 2$ " long, more than 2000 Fibres $\$ 4.50$ FIBER OPTIC KITS $\$ 3.50$ THERMAFILM (polyester film coated with cholesteric liquid crystal) changes color with temperature sq/ft $\$ 2.00$ research report "CHOLESTERIC LIQUID CRYSTALS" reduced from $\$ 50.00$ to
$\$ 12.00$
SOUND ACTIVATED SWITCHES (SCR with Transistor, Pot. Microphone etc $\$ 3.00$ AMERICAN CONSTRUCTION PLANS
Pocket Laser, Motor Speed Controll, Super Power Con.tinuous Beam Laser, Laser Pistol, See In Dark, Laser Rifle, Portable Strobe, Portable X-Ray Machine, Baby Tesla Coil, Giant Tesla Coil, Bug \& Insect Attractants, Vertical Windmill, Metal Detectors, Police Radar Trap Detector, Electronic Tachometer, Thief Proof Auto Burgular Alarm, Super-Powerful Strobe Flasher, Magneto Hydro Dynamic Generator, Capacitor Discharge Ignition, Draft Detector, Hydrogen Generators, Cloud Chámber, Geiger counter, Voice Scrambler, Lie Detector, Alpha Beta Brain Wave Analyzer, Heart Beat Monitor, Spark-Gap Transmitter, Seismograph, Electronic Air Purifier, Gas Detector, High Frequency Translator, Wind Generator INFO, Solar Therm, Solar Furnace, Tracking Transmitter, Ultra Sonic Intrusion Alarm, Infr-Red Activated Alarm System, Smoke \& Fire Detector, FM Broadcast Transmitter, $\$ 7.50$ per 5 sets of Plans (your selection)

We have approx. 60,000 prime Integrated CIrcuits in stock (Siemens, Signetics, Mostek, Intersil etc.) at predevaluation Prices. Send S.A.E. for Price List. For the Experimenter we have approx. 100 faulty Calculators, incl. LED, Liquid Crystal Display,and Florescent Displays, all have quality keyboards Desk Top Calcutaors $\$ 4.00$ ea.

One Mits ALTAIR 8800 Computer with one $4 k$ dynamic Memory, one Ik static Memory, one Serial Interface Board. all assembled with Manuals but without Microprocessor IC (all brand new)

Bargain at $\$ 600.00$

Hras furticu
What speaker desiqner Michael C.Phillips has to say on the Coles 4001 supertweeter

TRAN FOR GOLOUR TELEVIION SERVIGING IN YOUR SPARETIME

-that's where the money is!

Stott's course is totally comprehensive - and includes both sophisticated electronic equipment and project materials you need to gain a thorough understanding of servicing techniques.
Divided into three self-contained sections, the course covers
Part 1 - Introduction to Electronics, (theory and practice)
Part 2 - Monochrome Television Receivers
Part 3-Colour Television, including processing circuitry, service
techniques, fault tracing and trouble shooting techniques.
Like all Stott's courses, you work with your own instructor who is an expert in this exciting and rewarding field, at your own pace, in your own home. If you are a beginner. Stott's will teach you everything you need to know concerning television principles and receiver circuitry If you are already working in the field, or have completed some studies in electronics, you may be eligible to enter the course at an advanced stage. Whether your aim is to enter the TV service industry or whether you wish to
gain a thorough understanding of television theory and servicing as an aid to sales experience, this is the course which will help you make it! Other electronics courses offered by Stott's include: Radio for Amateurs - Amateur Operator's Certificate.

For full information mail this coupon loday:

Stotts
 TECHNICAL CORRESPONOENCE COLLEGE The name to trust in corresoondence education

Please send me without obligation. full details ol the following courses.
Stoll s underiake that no saies counsellor will call
Mr Mrs. Miss
Age

> Address Posicade.

[^3] 383 George Street, Sydney, 2000. Tel: 292445889 St. George's Terrace, Perth, 6000. Tel: 225481 1 290 Adelaide Street, Brisbane, 4000 . Tel: 311627 P.0. Box 3396, Singapore 1

EII data sheet 723, Universal Voltage Regulator

723 Universal Voltage Regulator

The 723 is a positive or negative voltage regulator designed to deliver load currents to 150 mA . The output current can be increased to several amps using one or more external pass transistors. The output voltage is adjustable from 2 to 37 V . Short-circuit protection is adjustable.

Graph 1 Maximum load current as a function of input-output voltage differential.

10. OUTPUT Current imai

Graph 2 - Load regulation characteristics without current limiting.

10. DUTPUT CUAREMT (mA).

Graph 3 … Current limiting characteristics.

ELECTRICAL CHARACTERISTICS

Unless otherwise noted: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {in }}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}=5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{mAdc}$, $\mathrm{r}_{\mathrm{sC}}=0, \mathrm{C} 1=100 \mathrm{pf}, \mathrm{C}_{\mathrm{ref}}=0$ and divider impedance as seen by the error amplifier $\leqslant 10 \mathrm{k} \Omega$ connected as shown in Figure 1 , Tlow $=0^{\circ} \mathrm{C}$, $\mathrm{T}_{\text {high }}=+75^{\circ} \mathrm{C}$.

	MC1723C				
Characteristics	Symbol*	Min	Typ	Max	Unit
Input Voltage Range	$V_{\text {in }}$	9.5	-	40	Vdc
Output Voltage Range	Vo	2.0	-	37	Vdc
Reference Voltage	$V_{\text {ref }}$	6.80	7.15	7.50	$V \mathrm{dc}$
Average Temperature Coefficient of Output Voltage ($T_{\text {low }}<T_{A}<T_{\text {high }}$)	TCV_{0}	-	0.003	0.015	\% ${ }^{\circ} \mathrm{C}$
Line Regulation	Regin				\% V_{0}
$\left(T_{A}=+25^{\circ} \mathrm{C}\right) \quad 12 \mathrm{~V}<\mathrm{V}_{\text {in }}<15 \mathrm{~V}$		-	0.01	0.1	
$12 \mathrm{~V}<\mathrm{v}_{\text {in }}<40 \mathrm{~V}$		-	0.1	0.5	
		-	-	0.3	
Load Regulation (1.0 mA L < 50 ma)	Regioad				\% O_{0}
$T_{A}=+25^{\circ} \mathrm{C}$		-	0.03	0.2	
$\mathrm{T}_{\text {low }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {high }}$		-	-	0.6	
Ripple Rejection ($f=50 \mathrm{~Hz}$ to 10 kHz)	RejR				dB
$\mathrm{C}_{\text {ref }}=0$		-	74	-	
$\mathrm{Cref}_{\text {r }}=5.0 \mu \mathrm{~F}$		-	86		
Short Circuit Current Limit $\left(r_{s c}=10 \Omega\right.$, $v_{O}=01$	Isc	-	65	-	.Adc

$V_{m}=V_{0}$ inputgutput voltage ivoltsi

Graph 4 Load regulation as a function of input-output voltage differential.

Graph 5. Standby current drain as a function of input voltage.

Graph 6 - Output impedance as function of frequency.

RESISTOR VALUES ($k \Omega$) FOR POSITIVE OUTPUT VOLTAGES

POSITIVE OUTPUT VOLTAGE	APPLICABLE FIGURES	FIXED OUTPUT ± 5 percent		OUTPUT ADJUSTABLE ± 10 percent		
		\mathbf{R}_{1}	R_{2}	R_{1}	P_{1}	R_{2}
+3.0	$\begin{aligned} & 1,5,6,7 . \\ & (4)^{2} \end{aligned}$	4.12	3.01	1.8	0.5	1.2
+3.6	$\begin{aligned} & 1,5,6,7 . \\ & (4) \end{aligned}$	3.57	3.65	1.5	0.5	1.5
+5.0	$\begin{aligned} & 1,5,6,7 \\ & (4) \end{aligned}$	2.15	4.99	. 75	0.5	2.2
+6.0	$1,5,6,7$ (4)	1.15	6.04	0.5	0.5	2.7
+9.0	$\frac{2,4,(5,6,}{7)}$	1.87	7.15	. 75	1.0	2.7
+12	$\begin{aligned} & 2,4,(5,6, \\ & 7) \end{aligned}$	4.87	7.15	2.0	1.0	3.0
+15	$\frac{2,4,(5,6,}{7)}$	7.87	7.15	3.3	1.0	3.0
+28	$2,4,15,6$	21.0	7.15	5.6	1.0	2.0

ETI data sheet

723, Universal Regulator

RESISTOR VALUES ($k \Omega$) FOR NEGATIVE OUTPUT VOLTAGES.

NEGATIVE OUTPUT VOLTAGE

FIXED OUTPUT
$\pm 5 \%$

\mathbf{R}_{1}	\mathbf{R}_{2}	\mathbf{R}_{1}	\mathbf{P}_{1}	$\mathbf{R}_{\mathbf{2}}$
3.57	2.43	1.2	0.5	.75
3.48	5.36	1.2	0.5	2.0
3.57	8.45	1.2	0.5	3.3
3.65	11.5	1.2	0.5	4.3
3.57	24.3	1.2	0.5	10

See Figs. 3 and 8 for negarive voltage regulation circuits

TYPICAL PERFORMANCE
Regulated Output Voltage 15 V Line Regulation ($\left.\Delta \mathrm{V}_{\mathrm{w}}=3 \mathrm{~V}\right) 1.5 \mathrm{mV}$ Load Regulation ($\Delta \mathrm{I}_{\mathrm{l}}=50 \mathrm{~mA}$) 4.5 mV
Note: $R_{1}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$ for minimum temperature drift.
R) may be oliminased for minimum component count.

Fig. 2. Basic high voltage regulator $\left(V_{o u t}=7\right.$ to 37 Volts).

typical performance
Regulated Output Voltege +15 V
Line Regulation $\left(\Delta V_{i m}=3 \mathrm{~V}\right) 1.5 \mathrm{mV}$ Load Regulation $(\Delta I L=1 \mathrm{~A}) \quad 15 \mathrm{mV}$

Fig. 4. Positive voltage regulator (External NPN Pass Transistor).

TYPICAL PERFORMANCE
Regulated Output Voltage $\quad+5 \mathrm{~V}$ Líne Rogulation ($\Delta V \mathrm{VIN}_{\mathrm{N}}=3 \mathrm{~V}$) 0.5 mV Load Regulation ($\Delta 1 \mathrm{~L}=10 \mathrm{~mA}) \quad 1 \mathrm{mV}$ Current Llmit Knee

Fig. 6. Foldback current limiting.

Fig. 7. Positive switching regulator.

TYPICAL PERFORMANCE
Regulated Output Voltage $\quad-15 \mathrm{~V}$ Line Regulation ($\Delta \mathrm{V} / \mathrm{N}=20 \mathrm{~V}$) 8 mV Load Resulation $(\Delta \mid h=2 A)$

For

 transistors you can depend on
General purpose

Switching RF
FET's
Power Photo Transmitting

Fig. 8. Negative switching regulator.

The Technical Equalizer

The primary function of the MXR StereoGraphic Equalizer is to provide precise compensation for aural tone quality discrepancies that may be caused by room acoustics, speaker inadequacies, or program source quality.
The MXR Equalizer is a 2 -channel frequency equalizer that offers 10 bands of discrete adjustment on each channel.
Nominal centre frequencies are: 31 hz , $62 \mathrm{hz}, 125 \mathrm{hz}, 250 \mathrm{hz}, 500 \mathrm{hz}, 1 \mathrm{khz}, 2 \mathrm{khz}$, $4 \mathrm{khz}, 8 \mathrm{khz}$ and 16 khz . Each of these octave bands may be cut or boosted independently to plus or minus 12 decibels by using the slide controls. The MXR StereoGraphic Equalizer features a bypass switch which enables the user to switch the equalization in and out of the signal path for instant sound comparison. The unit has an internal power supply and is designed to work into output loads of 600 ohms or higher. These input and output characteristics make the MXR StereoGraphic Equalizer compatible with any stereo Hi-Fi equipment.

The Creative Equalizer

Become creative with the MXR
StereoGraphic Equalizer whether you want to decrease the "boomy" mid-bass sounds or increase the deep-bass sounds, decrease nasality, harshness or shrillness or move the sound source closer or further away, it's all at the touch of a slide control. Tailor your playback to suit any number of variables and develop the mood you want to hear. The MXR StereoGraphic Equalizer is compact, stylish and handsomely packaged in brushed aluminium with walnut side panels. Its design and circuitry will complement any modern $\mathrm{Hi}-\mathrm{Fi}$ system.
At MXR, we combine engineering excellence and creativity to provide you with superior products.

Creative Technology! The MXR StereoGraphic Equalizer

DIRECT CURRENT OUTPUT POWER POINT ADAPTORS TYPE "PPA"

* For connecting to 240 V 50 Hz mains
supply.
* Manufactured to comply with Australian Standard C 126.

PLUGS DIRECTLY INTO A POWER POINT
This range has been designed to provide filtered, unregulated D.C. suitable as battery replacements for small solid state equipment such as radio receivers, tape players, calculators, etc. with ${ }^{\text {a }}$ power requirement not exceed.
The voits multiplied by amps) output numbers designate the voltage output at 300 Ma . However, the characteristics illustrated by the graph be made uo to 500 Ma and 15 Volts within the above power limits.

Manufactured by:
FERGUSON TRANSFORMERS P/L
Head Office: 331 High Street,
Chatswood, NSW 2067.
Phone (02) 407-0261 - Tclex: MA25728
"So how does it all sound? In brief, fantastic! In more detail, the outstanding feature is a complete lack of strain with even the most crashing crescendos coming over easily ... particularly outstanding was the bass which can be characterised as having notable clarity, probably due to an almost total lack of confusing boom"'

- Popular Hi-Fi, 1975.
"The first impression one gets when listening to the MA3 is one of physical presence, and this quality seems to be independent of the closeness of the recording. This may be attributable to the exceptional smoothness of its mid-range unit, together with the use of a very analytical tweeter". - Hi-Fi and Audio, May 1975.

MONTOA AUDIO
MAB
The best sounding speaker you can buy at any p, acta! They cost \$1249:50\% a pairs

Sole Australian Distributors:

KIT-SETS AUST. PTY. LTD.

(RECEIVER AND MANAGER APPOINTED)
DISTRIBUTORS OF ELECTRONIC COMPONENTS, KITS \& HI-FI

KITSETS (AUST.) PTY. LTD. ARE ALIVE AND WELL!! and residing at 657
Pittwater Road, Dee Why and 293 St. Paul's Terrace, Brisbane.
We now have in stock a full range of Philips speaker components and speaker kits.
A good selection of multimeters, soldering irons, solder, plugs and sockets, jiffy boxes, transformers, CMOS I.C.'s and of course a complete selection of Electronic Components.
NEWLY ARRIVED stocks of Steintron speakers at unbeatable prices from $\$ 145.00$ for $8^{\prime \prime}$ three-way speaker system.

Phone
 BRISBANE 528-391
 SYDNEY 982-7500

BUILD THIS RECHARGEABLE CALCULATOR
 including separate,tailored desk set

"ORDER BY COUPON OR COME TO OUR SHOWROOM NOW

220 Park St., South Melbourne Telephone 6994999

400 other kits Call and collect your free 96 page catalogue

FUN TO BUILD \& SUPERB QUALITY Build this Heathkit battery-operated portable calculator. Comes with separate battery charger plus tailored executive desk set with built-in charger, ninte pad and Schaeffer pen. Complete assembly instructions included. Check the functions. Nickel-cadmium batteries give five to eight hours' use between charges. Unit can be left connected to desk set charge for indefinite operation. 8 digit capacity. 4 arithmetic functions. Full floating decimal. Constant key. Negative answer indicator. Battery saver circuitry. Low battery indicator. And best of all - the calculator you build yourself is the calculator you service yourself!

[^4]
At last. Dynavector. A moving coil cartridge that doesn't need a transformer and won't cost you the earth.

It's often said that the cartridge and the speakers are the most essential elements in any hi-fi system. What you put in between is of secondary importance. The aim, always, is linear performance across the audible frequency spectrum And here's a little number that makes it infinitely more achievable - the Dynavector moving coil cartridge

The concept of moving coil cartridges is by no means new. Many a mature audiophile will remember them as being "the best" in the good old days of valve amplifiers. Dynavector is entirely new in what is unquestionably the most significant area of development in moving coil cartridges; the elimination of the need for a step-up transformer. Dynavector output is 2 mV at $1 \mathrm{kHz}, 5 \mathrm{~cm} / \mathrm{sec}$ and is fed directly to the magnetic cartridge inputs of amplifiers. This high output value is made possible by the development, through Onlife Research (Dynavector's Japanese manufacturer), of a winding device that enables an extra thin (0115 mm in diameter) copper alloy wire to be wound 200 times
into a single coil
The black dot in the box at left is the actual size of the coil former used around which two separate coils are wound at right angles to each other. A further benefit of
this micro coil technoloov this micro coil technology is Dynavector's low inductance, rendering it insensitive to load impedence.

\square| into a single coil |
| :--- |
| The black dot in the box
 at left is the actual size of | - around which two

\qquad

Dynavector ran. 20

But what does Dunavector give you in the sound department? We borrow from $\mathbf{H i}-\mathbf{F i}$ Answers, August 1976 where Dynavector (called Ulitimo in the UK) was appraised

Zfstening tests on the cartridge told us what we could do with our theories Immediately noticeable was the deep rich bass character, a gain claimed to be the consequence of the moving coil design The top end possessed a sweet, silky quality and the bass uras well controlled and extended"

Dynavector also gives you an indication of what it will do before you use it Each cartridge is individually performance recorded as a final process of manufacture, and is packaged with its very own B \& K frequency response graph A photoreduction of a typical graph can be seen below.

Dynavector uses the Shibata diamond stylus with an option of either a tapered aluminium or rigid beryllium cantilever models 20 A and 20 B respectively. The Shibata
 diamond stylus shape permits greater surface contact with the groove, which not only provides CD-4 capability but reduces record wear. The illustration above is a detailed impression of the degree of surface contact the Shibata stylus provides.
Sa, it's up to you Take in a Dyravector versus moving magnet cartridge demonstration at one of the better hi-fi dealers in your area Or write to Sonab (enclosing a stamped self-addressed envelope) for a copy of the Dymavector colour brochure. But if you possibly can, HEAR the Dynavector difference. It's really quite amazing

Distributed by Sonab of Sweden Pty Ltd 13 Rickard Road, Narrabeen North N.S.W. 2101 Telephone: 913-2455

Project 546

G5R monlitor

Learn to reduce tension levels with ETI's galvanic skin response meter. Design by Barry Wilkinson - editorial by Jan Vernon.

THE BEST WAY TO START EXPERimenting with biofeedback is to use a galvanic skin response monitor, a device which measures changes in skin resistance. In September 1976, we published an article which covered the background and theory of biofeedback and we discussed the various types of biofeedback instruments which are available. The GSR monitor is the most simple to use, the electrodes can be simply attached to the fingers with Velco straps and the technique of using the machine can be quickly learned.

Skin resistance changes with changes of emotional state. When tension increases, the skin resistance falls - when tension decreases there is an increase in skin resistance. (Some biofeedback instruction manuals speak in terms of conductivity rather than resistance and state measurements in mhos, and the meter we use gives a positive deflection for decreasing resistance.)

The connection between skin resistance and tension is not fully understood. Tension affects sweat glands and with the changes in the sweat glands there is a change in the membrane permeability of the skin and this change in permeability is the major cause of changes in electrical activity.

Almost a century ago, a scientist named M. Ch. Fere discovered the resistance of the skin to a small electric current changed in response to aroused emotions. This information has since been used in various ways; one obvious example is the polygraph, or lie detector, which responds to the tension generated when a person is lying.

It was not until 1961 that Dr. J. Kamiya, whilst conducting a series of

experiments with brain waves, found that with feedback his subjects developed the ability to produce 'Alpha waves' at will.

Dr. Kamiya's experiments created considerable interest and started investigations into whether other bodily functions could be brought under conscious control. Since that time it has been demonstrated that with feedback it is possible for people to control heart beat, blood pressure and temperature - all previously considered to be automatic bodily functions mostly beyond conscious control.

Of course it should be stated that various mystics and yogis have previousIy demonstrated this type of ability but the fascination of biofeedback is the speed and ease with which this type of control can be learned.

Biofeedback has exciting medical possibilities. GSR machines are being used by therapists for the treatment of many disorders related to tension. The average person will find a GSR machine mainly useful for relaxation training. With the GSR machine it is possible to recognise tension and learn how to decrease tension levels. This type of training is so effective that the machine quickly becomes unnecessary.

However not everyone suffers from tension. The biofeedback machine can be a fascinating toy to play with.
Discovering that you can bring an internal bodily function under conscious control with the same ease that you can twitch your nose is most interesting. And of course you can then perfect this ability just as you perfect your ability at a game like tennis. For many people this is reason enough to build this machine.

What you do with it once you have built it

The ETI GSR monitor has an on/off switch, a sensitivity control and fine and coarse level controls. The machine also has a connection for headphones.

To start relaxation training, you'll need a comfortable chair, low lighting and no distractions. Taking any type of drug can interfere with your ability to relax. This applies to alcohol and cigarettes. Attach the electrodes to the fleshy part of the first two fingers on one hand - firm but not too tight (the non-dominant hand is recommended). Set the sensitivity control to minimum and the 'fine' level control to mid-range. Turn the volume control to minimum. Now you have to set the level with the
'coarse' level control (when the sensitivity is set low the 'fine' level control need not be used). Start with the 'coarse' control at full anticlockwise and turn it up until the meter needle starts to move. Carefully set the needle to mid-range. Now the instrument is set-up in its minimum sensitivity position.

Having mastered setting up with minimum sensitivity try to set the GSR monitor with the sensitivity set halfway. It will require delicate adjustment of the 'coarse' level control. Now the effect of the 'fine' level control can be seen. This control enables you to set the level on a high sensitivity setting.

Although the GSR machine measures minute changes in skin resistance, the level of skin resistance varies considerably from person to person so a wide range of settings is provided.

Now turn up the volume and observe that the meter reading is accompanied by a medium pitched tone. (A convention has developed to link highpitched tone with tension increase and low pitched tone with a decrease in tension. I Now you relax and bring the tone down and the needle back to zero.

How? Basically you are supposed to find this out for yourself. After watching the needle for some time you will notice it move up or down. Something has happened to cause a change in your skin resistance. You would be barely aware of what had caused the change but aware enough to try to reproduce the effect. Eventually your awareness grows and so does your ability to control your tension. Many people find that relaxation of the stomach muscles makes the difference. It varies from person to person.

There are several relaxation techniques which work very well. One method is to tense all the muscles of the body as hard as possible, hold them tense for several seconds then very deliberately relax all muscles. There are several books and cassettes available which describe relaxation techniques. The techniques work. The biofeedback machine makes it possible to monitor progress.

As you relax, the needle on the meter and the audible tone will decrease. When the needle reaches zero, reset it again towards the fsd end of the scale and repeat the procedure.

Twenty minutes is the recommended time for a training session. After about one or two weeks of daily relaxation training, it should be possible to produce the same level of relaxation with. out using the machine and the machine can simply be used occasionally as a reference.

ESR MONITOR

Fig. 1. Circuit diagram of the GSR monitor.

Fig. 2. Component overlay and interconnection diagram.

PARTS LIST ETI 546

Resistors all $1 / 2 \mathrm{~W} 5 \%$	
R1	2 k 2
R2	10 k
R3	100 k
R4	47 k
R5	2 k 2
R6	10 k
R7	2 k 2
R8,9	100 k
R10-R12	10 k
R13	22 ohms
Potentiometers	
RV1	1 M log
RV2	47 klin
RV3	1 M log
RV4	500 ohm lin
Capacitors	
C1	$1 \mu 16 \mathrm{~V}$ electro
C2	68 p ceramic
C3	10 n polyester
C4	$100 \mu 16 \mathrm{~V}$ electro
C5	$10 \mu 16 \mathrm{~V}$ electro
C6	68 n polyester

Semiconductors

D1-D6	Diodes 1 N914
Q1,2	Transistors BC559
Q3	Transistors BC549
IC1	Integrated Circuit CA3130
IC2	Integrated Circuit NE555

Miscellaneous

PC board ETI 546
Meter 1 mA FSD
Zippy Box $196 \times 113 \times 60$
Two phone jacks
Four knobs
Small speaker
Six AA battery holder
Pickup probes

How It Works - ETI 546

This project measures the skin resistance and displays it on a meter. An audio tone gives an aural indication of the meter reading. The meter operates in reverse sense to a usual resistance meter: low resistance gives full scale (or high tone) and high resistance gives zero (or low tone). Skin resistance can vary over a large range but the variations studied in biofeedback experiments are small so an offset is needed.

Transistor Q 1 acts as a constant current source - the actual value can be varied over a large range by RV1 and over a limited range by RV2. These act as the coarse and fine level controls. This current is passed via R2 to the probes. The voltage developed across the probes is proportional to the skin resistance and is fed to the input of IC1. This amplifies the signal with reference to 0.6 V (drop across D 3) and the gain is variable by RV3.

The second IC is an NE555 oscillator where Q2 provides a constant current (about $60 \mu \mathrm{~A}$) to the capacitor C3. When the voltage on C 3 reaches $6 \vee$ the 1 C detects th is and shorts pin 7 to ground, discharging C3 via R11. This continues until the voltage reaches $3 \vee$ at which point the short on pin 7 is released allowing C3 to recharge. The output of the oscillator is connected to a speaker via the volume potentiometer RV4 and the meter via C6 and the diodes D5-6.

We vary the frequency of the oscillator and the meter reading by robbing some of the current supplied by Q 2 into Q 3 . In this way the frequency can be lowered and actually stopped. Transistor O 2 is controlled by IC1 completing the connection between the probes and the output.

Construction

Construction is not critical although we recommend you use the pc board as it makes things easier. Before soldering the components made sure they are orientated correctly. External wiring can be done with the aid of the overlay. wiring diagram.

Probes

Probe construction and electrical contact is not nearly as critical as with
most other biofeedback machines.
Commercial GSR machines use a pad of soft steel wool which is held firmly onto the finger by a short length of Velcro strap (Band-Aids work fine!). However, any method ensuring a firm contact between probe leads and the fleshy part of the finger will do. One method which works very well is to bind tinned copper wire around a guitar finger pick (or solder to a steel pick). Two probe connections are of course required - one for each of the first two fingers.

BATTERY ELIMINATORS POWER

- PORTABLE RADIOS
- CASSETTE PLAYERS
- ELECTRONIC CALCULATORS FLUORESCENT LANTERNS - ELECTRIC TOYS, ETC.

AT NEGLIBLE

RADIO HOUSE

PTY. LTD.

306-308 PITT ST. \& 760 GEORGE ST.
P.O. BOX A108 SYD. SOUTH, 2000

NEED SOMETHING BUT DON'T KNOW WHERE TO BUY IT?
 THEN COME AND TRY RADIO HOUSE PTY LTD

A+RSOANAR ELECTRONICS GROUP
SALES OFFICES VICTORIA: 890669
30 Lexton Road, Box Hill,Vic.. 3128 S. AUST.: 516981
Australia. Telex:32286.
OUEENSLAND: 525421
W. AUST.: 815500

Is your VIDEO GAME sending you BATTY?

 RECTIFY IT AT RAMSGATE

C/MOS
 $$
\begin{aligned} & 400 \\ & 40 \\ & 40 \end{aligned}
$$
 CB747 (P\&P \$2.50)
 with Delta Tune, ANL Switch, PA Facility, 5 Watts Input, 23 Channels.

 ST 12
 (P\&P \$2.50) \$84
 with Tuning Meter, ANL Switch, Backlighted Dial, 23 Channels. 3 Watts Input.
 (Warning: A License is required for all transmitting equipment).
 Full range of antennas \& accessories also available.

DON'T MISS THIS!

Radio Control Components
Famous Servo mechanisms from U.S.A. with Mitsumi 5 pole motor \& Bourn's feedback pot. Ready to assemble. just add amplifier.
These powerful
fully contained units will suit circuitry of recently published projects.

\$13

Dual Axis control sticks for R/C transrnitters.
$\$ 22.00$ incl. pots.
29 MHZ R/C CRYSTALS Now in slock $\$ 11.50$ pair COMPLETE CONVERSIONS $\$ 22.00$ (add $\$ 2.50 \mathrm{P} \& \mathrm{P}$)

PLUS

 SERVO I.C.'s Texas instruments SN 28604To suit above servos I.C. $\$ 3.75$ ea. Complete servo amp. kit ready to assemble with instructions. $\$ 9.75$ ea.

AND

many other items pots, switches, knobs, plugs. Sockets, transformers, just about everything!

OR RUSH REMITTANCE FOR OUR RAPID MAIL ORDER SERVICE

P.O. Box 38, Ramsgate, 2217

Shop 13, 191 Ramsgate Road, Ramsgate. Phone (02) 529-7438
(Cnr. Alfred St. Behind Commonwealth Bank)
8.30 - 5.30 Mon-Fri.
$8.30-8.00$ Thurs.
Eliminate erratic bat movement by replacing with our low noise

Rotary Hot Moulded Pots

$\$ 4.50$ ea.

(2 M S Linear In stock, other values available at short notice)

ELECTROCRAFT PTY. LTD. 106A Hampden Rd. Artarmon, 2064
 Phone 411-2989

Distributors of Belling Lee, Channel Master, Ecraft, Hills, HI. O. Lab Gear, Kingray, Matchmaster. Largest Television range of aerial equipment in Sydney.
TELEVISION AERIALS, DISTRIBUTION AMPLIFIERS, EQUIPMENT AND ACCESSORIES WHOLESALE, TRADE AND RETAIL SUPPLIED.

```
ECRAFT
Neosid Buan is / 300 uncased
OS A.B Outside aerial balun (w O S A. \(B\) Outside aerial balun (water proof) 6 SB 6ti Balun Fly Lead
PS B Plug and Termunal Balun
P S B Plug and Termunal Balun
275 r S 2 -way 75 ohm Transt
275 Y S 2 -way 75 ohm Transformer Splitter 3. 75 T, S 3-way 75 ohm Transformer Splitter
```



``` 5751 S 5 way 750 hm Transiormer Spliter 3 3T 7 -way 300 ohm Spluter box 4. 3 T 2 way 300 ohm Splitier bor Aujustable Low Band Altenuator Ch 2 10 diameter degaussing coil Coamal Plugs \begin{tabular}{lr}
10 diameter degaussing coil & 24.00 \\
Coanial Plugs & 46 c \\
All & \\
\hline Types of Coaxial & \\
\hline
\end{tabular} All Types of Coaxial Cable in Stock from 30c Per Yard.
TELEVISION AERIALS FOR COLOUR
```



``` \(\$ 76.30\)
```

Price $\$ 0.65$ 3.81 3.65 2.53
6.74 6.74
8.41 8.41
8.94 8.94
12.66
4.48 4.48
5.86 5.86
7.12 7.12
5.33 -

HILLS THE NEW TELRAY RANGE All Ausiralia V.M.F. Channels \& F.M

6el Tl1	\$21.47
8el TL2	\$29.52
9el TL3	\$35.97
llel TL4	\$43.67
HILLS AERIALS	
2010 Airways	\$56.26
CA16 Phased Array	\$44.36
Exira Gain Lits els for CA 16	\$ 5.01
8 el 215	\$24.42
HILLS AMPLIFIERS	
05/26 Distt 26 dB gain	\$67.10
D4/16 Dist: 16 dB gain	\$59.37
MH2/75 Mast Head 20dB gain	
75 omm	\$72.44
MH1/300 Mast Head 20dB	
gain 300 ohm	\$54.90
FM AERIALS	
Hills 2EL FMI	\$ 9.39
HILLS $3 E L 353$	\$12.98
Hills 3EL FM3	\$18.27
HIO Cl	\$18.75
HI.Q Gutter clip	\$12.70
Matchmaster G2FM	\$19.25
Austenna FM3F	\$21.95

27 MHz high quality transceivers. Range up to 20 miles, 5 watts output. Switched PA suitable for dash mounting. Model G.M.E. 2756 Ch's (Post Office Approved) $\$ 156.00$ Model G.M.E. C555 23 Ch's
$\$ 163.00$

LAB GEAR AMPLIFIERS	
VHF	Price
Mast head 22 dB 75 ohm	\$72.43
CM 6014/DA 20 dB	60.25
CM 6034/DA 4 outlers 8 dB each	54.90
CM 6036 / DA VHF 30dB UHF	
28dB	B4.63
Televerta (VHF io UHF	
frequency converter)	67.48
KINGRAY AMPLIFIERS	
D15/500 m/V	
D30/500 m/v	57.95
D40,600 m/V	79.30
D1211500 m/V	67.10
MH 20 mast Head 300.75 ohm	64.63

TELESCOPIC MASTS

20fi 18 g stee in $\$ 19.30$
 $\begin{array}{lll}30 \mathrm{fl} & 1 \mathrm{OH} \text { sections } \\ 40 \mathrm{fl} \\ \text { must be guyed }\end{array}$

CDE AR. 22 Rotator $\$ 79.00$
Stolle Aerial Rotator with Thrust Bearing for heavier rigs \$115.56

ALL TYPES OF HARDWARE IN STOCK
Wall Brackets, Chimney Mounts, J Brackets, Guy
Rings \& Guy Wure. Masts from 8 ft to 50 ft.

CB ACCESSORIES DICK has the best!

NEW SHIPMENT JUST ARRIV:D

Receives $26.535-27.610 \mathrm{MHz}$, converts it to normal AM band. Extremely simple installation; can also be used with other radios with correct fittings. 12V DC. Also supplied with additional crystals to cover up to 27.880 MHz marine frequency. Cat. D-3829
\$33.00
PLUGS
Use your normal car radio antenna for CB transmission! No-one can tell you've got a CB with this fantastic eliminator. Very easy installation, SWR less than 1.5:1 Complete with instructions \& fittings. Cat D-5516 .

PL259 Plug: as used in almost all CB radio equipment-sturdy construction; easy connection. Cat P-2310

BASES

$|$| e |
| :---: |
| $\$ 1.45$ |
| $\$ 0.50$ |

Reducing adaptor: necessary if you wish to use RG58U or sim. small dia. co-ax with the above plug. Cat P-2360 $\$ 0.50$

Increase the sensitiviry of your rig! RF signaliser amplifies weak signals, lets you pick up stations like never before. Or lets you cut back very strong local stations and so avoid overload. Variable from -20 dB to +15dB. Cat D-3828 \$47.50

Gutta grippa: Sturdy, non corroding alloy. Very easy to fit. Cat D-4625 .. $\$ 8.50$

ALWAYS IN STOCK

 Tremendous range of all CB accessories, test gear, Cable joiner: most cables are made with $2 \times$ PL259 plugs. To join them, use one of these double ended joining sockets. Cat P-2380.. \$1.20 antennas, base supplies, plugs \& sockets, cords, erc etc eic. . . and RIGS.

For D-4615, 4623 \& 4625. WHITE FLASH
Right angle adaptor. PL259 plug
one end, then right angle bend, then SO239 socket. Handy where Cat D-4624 $\$ 8.00$ space behind a rig is limited. Cat P-2382 \$2.85

Dummy load: Perfect 52 ohm match, inside a PL259 plug. 5 W rating, ideal for CB transceivers. Cat D-7022 $\$ 2.50$

Antenna Lead Assembly
3.5 m co-ax, with fittings. PL259 plug supplied.

Magnet Base: Incredibly powerful magnet; fits D-4615 antenna. NyIon gasket stops scratches. Cat D-4623 $\$ 11.50$

HELICAL ANTENNA Brand new, exclusive to Dick Smith, the 'knight of the road' helical antenna. Includes base, lead-in, PL259 plug. Value! Cat D-4076 .. \$29.00

Mounts without holes! Boot or bonnet lip mounting with simple clamp attachment. Or you can mount it with a hole in the middle of the roof for optimum propagation characteristics. Base loaded, stainless steel whip. Cat D-4450.
. $\$ 27.50$
Base loaded stainless steel whip includes PL259 plug in base to accept a number of bases (magnetic, etc) Rod adjusts for precise SWR. Cycolac base. Cat D-4615 fits D-4623 base \$11.50

Centre loaded mini-mobiles: Mannetic base (as illus) or gutter gripper. Just 550 mm high, easily adjustable for SWR minimum. Easy to store to prevent vandalism (or pinchingl) Cat D-4412 (Mag base) \$22.50 Cat D. 4411 (Gutter gripper) .. $\$ 19.50$

How to get into CB Radio AUSTRALIA Editorial:

Steve Braidwood, BSc (Hons), VK2BSY Roger Harrison, VK2ZTB

Advertising:

Sydney
Bob Taylor Geoff Petchler Tel 33-4282
Melbourne
Tom Bray
Poppe Davis
Tel 51-9836
Publisher:

Collyn Rivers

This, the second issue of CB Australia, has been edited and produced by the staff of Electronics Today. It is presented free within the March 1977 issue of Electronics Today, and will also be available at the (recommended) price of 60 cents from all newsagents.

CB Australia is published by Modern Magazines (Holdings) Ltd, 15 Boundary Street, Rushcutters Bay, NSW 2011. It is printed by Wilke \& Co, Browns Rd, Clayton, Victoria. Issues within Electronics Today are distributed by ACP. other issues by Gordon \& Gotch.

> A MODERN MAGAZINES PUBLICATION
> 15 Boundary Street, Rushcutters Bay. NSW 2011

COVER: 'THE EYEBALL'

One of the pleasures of CBing is the eyeball. Take this young couple, they first met a couple of weeks ago on channel 8 and then again they QSOed the other day. He said how about an eyeball, she agreed and they lived happily everafter.

ROBIISON CALLS CO

The Minister for P \& T, Mr Eric Robinson, Kas released the Department's report on CB - and it's a document well worth reading. Submissions from individuals and groups are called for, so now's your chance to be heard. Copies of the report are obtainable from local Australian Government Publications offices.

The CB report suggests a number of alternatives ranging from the introduction of a scheme along the lines of the old US 23 channel system to an exclusive (and unique!) UHF service. It is argued that UHF sets would cost about the same as top of the line 23 channel 27 MHz SSB units and that the local electronics industry would thereby gain a much-needed boost. Bears thinking about . . .

There are numerous ways that a CB service could be envisaged -many equally as good, or better than those discussed in the P \& T report.

The time to examine ideas is now. Read the P \& T report, have a think about your ideas and write a submission. Then, screw it up and discard it. Think about it again, then make a submission.

Remember, there really is no all-fired, best way to have a CB service. There are many alternatives, dogmatism on the subject is bad news.

CONTENTS

News 4
CB Antennas 6
Are You a SWR Galah? 10
Antenna Positioning 12
Antenna Mounting and Fixtures 15
ANTENNA SURVEY 20
Suppliers Index 26

The Cheapest and Best CB Antenna

The antenna on this Moke cost nothing to make, the cable and connector for the transceiver, however, are worth a buck or so. The antenna was made by one of the editors of CB Australia and it took five minutes to manufacture and erect. Another couple of minutes and I had it SWRed - and how! A beautifull. 05 to 1 (which, we explain elsewhere in this issue, is not worth striving for, but if you can get it without trying it does make you feel good).

All it took was ten feet of wood - in this case seven feet of surplus quadrant plus a three-foot cane, held together with plastic tape. This was wedged in the battery compartment of the moke and secured with two pieces of string (attached to the hood frame). The antenna itself was made

from eight and a half feet of hook-up wire soldered at one end to a stiff piece of steel wire and at the other to the inner conductor of the short piece of coax. This wire was then sellotaped to the wood so that the short steel spike cleared the top of the cane by a few inches. The screen of the coax was connected to the car chassis via a large screw (conveniently located by Leyland) and the assembly and installation was complete.

Trimming the length of the radiator was simple - I used an SWR bridge and a pair of side-cutters. The antenna then worked magnificently - bringing in good reports from any station I could hear (using a 4 W AM rig) and in Sydney it was .pulling in stacks of traffic on all channels. I compared the antenna to a couple of commercially available types, one base loaded and one centre loaded, and the difference was staggering. From the chockablock band using the quarter wave I was lucky to hear anything on many bands and only locals on others using the loaded antennas.

Not that I am trying to say that loaded antennas don't work well - on big vehicles, especially where they are mounted atop a large ground-plane of metal, they work well. But the Moke doesn't have any suitable metal planes and it is very low (the highest flat area is the bonnet) and it is with this type of vehicle that the benefits of a full quarter-wave vertical are best seen.

You should be able to pick out the guys in the photograph. These were added as an extra precaution before setting out on a long trip one weekend. And after driving to Victoria and back the antenna was still working perfectly (it did come in handy along the way, as those readers living near the Princes Highway will testify).

And the guys make the the antenna stand out more and bring it to the notice of the public that I have a 27 MHz station in my car.

xssusssusussus

Bendigo Bust

In the midst of what seemed to be a peaceful period as far as RIs seizing CB gear is concerned, we received an unhappy report from a couple of our readers in Bendigo, Vic. The secretary of the Bendigo District Radio Club, Arthur Robins, and one of the club members, John Carr, both had their radio equipment confiscated and the report says Mr Carr lost a battery charger and three tapes of Abba!

Cinema CB

Paramount are now filming a full-length feature film in the United States, and the film is called 'Citizens Band'. It stars Candy Clark and Paul Le Mat and it is said to be a love-story with CBers as the characters.

112

Correction

In the transceiver survey in CBA Nol we credited the Midland 13-698 1 W hand-held transceiver with Call Tone facility. This should have been attributed to the Contact CT10 and not to the Midland unit.

r2

Citizens Amateur Radio Committee

CARC is a new CB lobby group which has prepared a submission for the P \& T Department in which they suggest that those people who are using CB for hobby purposes should be incorporated into the Amateur Radio licensing structure. Virtually anyone who is using CB for any other purpose can get a licence under the current system. The CARC report suggests a fourth class of amateur licence be established. CARC have a petition with several pages of signatures, among them some notable surprises (the best being Bill Payne and the Crests).

ur

Send Us More Information

That applies to all of you. If you are selling CB gear and didn't get into our survey in the last issue send us details of what you've got ... we're planning to do another survey in a couple of months.

If you are just a CB hobbyist then send us large photographs of any interesting activities going on in your area, send details of your CB club, any ideas you have or any questions you want us to find the answers to, etc.

Citizens' Band in Australia

Now in your local government publications office is the report of the enquiry into $C B$ which has been made by the Postal and Telecommunications Department. It sells for $\$ 1.50$ and makes interesting reading for any CB fanatic.

The report invites further submissions so read it carefully and discuss it with your friends (it'll give you something interesting to talk about on the air) and then write in with your view.

XENON
WORLD IMPORTS

Import Agems
Box 33 Warradale S.A. 5046. (08) 296-1033

WANER CB777

This must be the most popular set on todays market . . . We were almost out of stock (see Advt. E.T.I. Feb.). LUCK IS WITH US, WE OBTAINED AN ADDITIONAL UNSCHEDULED DELIVERY OF 200 units and a warning that because of heavy commitments in the U.S.A. the Manufacturers will not be able to supply again until May 77.

Now in Stock at: ERN SMITH PTY. LTD., SA., Dick Smith, Mitcham SA, Cheshers Lid, Pt. Lincoln SA, Toyo Tires Lid, Pt. Pirie, SA, Coast Wide Sales, Burnie TAS.

MAIL ORDERS - Sorry NO C.O.D. Add $\$ 3$ P\&P - Orders Despatching Daily - Cheques Returned if again a Sellout New Zealand orders accepted, Holding 25 in reserve for you.

T.V. Game Chips AY38500 in stock. COMING SOON... SIDEWINDER CB RADIOS AND GEMTRONICS SSB. CB's. Trade enquiries welcome

Roger Harrison discusses radiation pattern, standing wave ratio, polarization, radiation angle and gain to give a basic idea of the operation of an antenna. Many people do not realize the importance of an antenna as the most critical component between transmitter and receiver.

THE MOST IMPORTANT COMponent in any transceiver installation is the antenna system. The power available from 27 MHz transceivers is quite low, around $600-700 \mathrm{~mW}$ for most hand-held transceivers and generally 3 W to 4 W for most AM mobiles and base stations, and thus a lot of reliance is placed on the antenna system for best communications and coverage.

In this article I will discuss a little of the theory of antennas ii order to help you understand something of how they work, as well as what various terms mean - so that you know a little about them when you run into them in theliterature and in advertising, etc, apart from the fact that a lot of rubbish is often expounded by 'instant experts', general know-alls and salesmen.

Waves and Wavelength

An antenna radiates and receives electromagnetic energy, radio waves, This energy is carried to and from the transceiver via a cable called the feedline. Antennas have the same basic characteristics for both transmission and reception.

You can get some idea of radio waves radiating out from an antenna by analogy with waves created on the surface of water when a stone is dropped into the water. The waves of water travel outwards, expanding in rings. The further the waves are from where the stone was dropped, the weaker the waves. The radio waves radiated by an antenna are strong near the antenna and weaker at further distances from it.

If the waves created on the surface of the water, by the dropped stone, meet a wall they bounce off it - are reflected - and travel in different directions, some radiating across the path of the other waves causing 'peaks' and 'nulls' in the height of the waves. A similar thing happens with radio waves. Reflection from objects causes peaks and nulls in signal strength at certain posi-
tions. This effect is particularly notice able when the transceiver is mobile.

When you look at the waves in the water you can see that they have a peak and a trough followed by another peak, etc. The distance from one peak to another (or one trough to another) is called the wavelength. In the same way. radio waves have wavelength. The wavelength is related to the frequency transmitted or received. The wavelength of a radio signal on a frequency of 10 MHz is 30 metres. The wavelength of a 30 MHz signal is 10 metres. Thus, as the frequency increases, the wavelength decreases. Signals on, or close to, 27 MHz have a wavelength of about 11 metres.

The number of waves that occur in a period of one second is called the frequency. The waves repeat themselves over and over, and are thus called cyclés. One complete wave is one cycle. But, frequency is referred to by the term hertz in honour of Heinrich Hertz, one of the pioneers of radio science. One cycle per second is referred to as one hertz, fifty cycles per second is referred to as fifty hertz. In writing this down, hertz is abbreviated to ' Hz '. Thus, fifty hertz is written 50 Hz . Higher frequencies are referred to by the terms 'kilohertz' meaning one thousand hertz, and 'megahertz' meaning one million hertz. Thus, 3000 Hz is called three kilohertz or written 3 kHz . Similarly, 7000000 Hz is called seven megahertz and written 7 MHz . It may sometimes be referred to as 7000 kHz .

A group of frequencies having specified upper and lower frequency limits is referred to as a band. A number of different channels may be specified within the band, each is on a separate frequency, but all are within the specified frequency band. Thus we have the 27 MHz band and there are a number of channels in this band, each on a different frequency. The American citizen's band extends from 26.96 MHz to 27.41 MHz 。

BASIC ANTENNA CHARACTERISTICS

Radiation

For the sort of short range communications required by 27 MHz band users, an antenna that radiates and receives signals towards all directions of the horizon, providing general coverage, is desirable; radiating or receiving little energy from directions generally overhead or below. This is referred to as omnidirectional radiation and antennas that provide this sort of pattern are called omnidirectional antennas. The radiation pattern can be imagined as a sort of doughnut shape, with the antenna at the centre, as illustrated in Figure 2(a). The strongest signals are received or radiated from a range of directions more or less at right angles to the line of the antenna, weakest straight up and down, in line with the axis of the antenna.

If you imagine looking straight down on top of the antenna, the directions in which it best radiates will appear as a circle, as shown in Figure 2(b). If you imagine looking directly at the antenna from the side, from any direction, the directions and strength of its radiation would appear as in Figure 2(c).

The patterns illustrated in Figure 2 are termed radiation patterns. The radiation pattern of an antenna describes its radiation characteristics and two antennas can be compared for certain applications by comparing their radiation patterns.

In practical situations, most antennas work in close proximity to the ground or require a groundplane, a system of radial elements at the antenna base or a large area of metal such as a vehicle body, in order to work properly. For practical antennas, the radiation pattern, when looking from the side (as in Figure 2(c)) will be more like that in Figure 3. This is referred to as the vertical radiation pattern (as it is in the vertical plane). If you look down on
 best radiation from the antenna the stronger the signal transmitted to or received from the horizon. Of course, the signal strength does not vary a great deal over a range of angles above and below the direction specified, but it decreases very rapidly as he angle gets very close to ground and very high angles.

Polarization

Radio waves are polarized according to the manner in which they are radiated. A whip antenna, commonly used in CB installations, radiates vertically polarized radio waves. For the reason that whip antennas and other simple types have omnidirectional radiation, vertical polarization is commonly used for CB. The TV stations in Australian capital cities, and many country stations, have horizontally polarized antennas radiating their transmission. TV receiver antennas to pick up these signals are consequently horizontally polarized. Some country TV stations radiate waves that are vertically polarized and viewers in their service area have vertically polarized antennas.

Gain

Some antennas are designed so that they receive and radiate signals over a narrower range of angles than that shown in Figure 3, the signal decreasing in strength more rapidly at higher angles particularly. Generally, the radiation angle is lowered as well.

The effect of this is to put more of
lar direction you looked at the antenna. Sometimes antenna gain is referred to a dipole - which radiates as illustrated in Figure 2. A dipole is a practical antenna and allows gain to be actually measured directly.

The gain of antenna is expressed in decibels - a convenient way of comparing quantities on a logarithmic scale. A power gain of two times is equal to three decibels - written 3 dB . If a station you were listening to doubled his power output, you would only be just able to discern this. Quadrupling the power gives a gain of 6 dB - which is generally considered a worthvhile increase. However, antenna gain generally results in somewhat improved coverage, particularly if gain antennas are used at each end of a communications path. Gain antennas generally give a worth while improvement in communications largely because they have a low radiation angle, rather than because they provide actual power gain.

Antenna Length

An antenna is most efficient when its length has some definite relationship to the wavelength of the radio signal being
Fig. 2 (a). How an omnidirectional antenna radiates and receives signals. The doughnut shape represents the directions and signal strength in which the antenna best radiates or receives; strongest in all directions at right angles to the antenna, weakest from directions straight up or down.

Fig. 2 (b). Looking down on top of the antenna, it is seen that it radiates equally in all directions in the plane of this page.

Fig. 2 (c). Looking at th antenna from the side, from any direction, the radiation is best straight out from the antenna, decreasing in directions up or down from this.
your signal power where you want it, as well as providing a similar improvement on received signals. Such antennas are said to have gain. The gain must be referred to something and it is usually to a theoretical antenna called an isotropic antenna, or simply referred to isotropic. This is an imaginary antenna that radiates equally in all directions the radiation pattern would represent a sphere, a circle no matter which particutransmitted or received. For practical reasons, especially with simple whip antennas and other types used on CB, most antennas are $1 / 4$ or $1 / 2$ wavelength long. One antenna that provides gain and a low radiation angle is the $5 / 8$ wave vertical.

Antennas which have this definite relationship between their length and the wavelength of the transmitted or received signal are called resonant antennas.

The physical length of the antennas is actually a little shorter than its required electrical length (i.e.: $1 / 4$ wave, $1 / 2$ wave etc). A half wavelength at 27 MHz is 5.56 metres, a quarter wave. length is 2.78 metres. A half or quarter wave antenna for 27 MHz may be actually $5 \%-7 \%$ shorter than this due to factors in the construction which necessitate shortening the antenna so that it resonates at 27 MHz .

A quarter wave whip for $27 \mathrm{MHz}_{2}$ is quite large - $259 \mathrm{~cm}\left(102^{\prime \prime}\right)$ and may be inconvenient. For this reason, mobile whips are often electrically 'loaded' which results in a physically shorter antenna that is still resonant. The most common form of loading is a coil placed as part of the antenna, usually either at the base, somewhere near the middle or at the top of the antenna element. Typical examples are illustrated in Figure 4. The length of loaded antennas depends on the amount of loading used and their intended application. Generally they are between 90 cm and 112 cm long for those intended for mounting on

Fig. 3. Typical radiation pattern of a practical antenna working near ground or against a ground plane.
the body of a vehicle or boat. Those intended for mounting on a vehicle roof or gutter-grip types are much shorter - usually around 45 cm long.

Loaded antennas are not as efficient as full-sized resonant antennas of the same type, the top loaded and centreloaded types are generally the most efficient. The shorter a loaded antennas - the more loading used - the less efficient it is compared to a full-sized antenna.

Antenna Impedance
 and Matching

The connection point of antenna is called the feedpoint and its electrical characteristic is called its impedance. The impedanace is measured in units called ohms.

The feedline and transceiver antenna connection also have a characteristic impedance and manufacturers have generally standardised on a value for this impedance of ' 50 ohms'. This is often quoted in specifications and literature relating to antennas, feedlines, etc. Most manufactufers construct their antennas so that the feedpoint impedance is 50 ohms and thus matches the characteristic impedance of the feedline and transceiver antenna terminal.

The problem can be thought of by analogy to connecting garden hoses together. Connecting a large diameter hose to one of a smaller diameter impedes the flow of water. Connecting hoses of the same diameter together ensures maximum flow of water. With hoses, matching the diameters achieves maximum water flow. With antennas and feedlines etc, matching the impedances achieves maximum power flow.

If the antenna feedpoint impedance is not 50 ohms the antenna does not accept all the power flowing from the transmitter. The unused power is reflected back towards the transmitter. Think back to the waves on water. If those waves impinge upon a soft sponge (like a bath sponge for example), all the wave energy is absorbed by the
sponge - it absorbs all of the transmitted energy. If the soft sponge is replaced by a much firmer sponge only some of the wave energy is absorbed, that part not absorbed being reflected.

When an impedance mismatch occurs with the antenna, RF (radio frequency) waves will flow in the feedline in both directions simultaneously. The outgoing (or forward) waves to the antenna react with the reflected waves and stationary peaks and nulls of the RF power
occur in the feedline. These are referrea to as standing waves. The peaks produce higher than normal voltages in the feedline which can damage the transmitter power output transistor under certain circumstances. If the voltage at the standing wave peaks is compared to the voltage at the nulls a measurement of the mismatch is obtained and is called the standing wave ruttio or SWR. The lower the SWR, the better the match to the antenna. Instruments are available to measure SWR. They can be connected in the feedline between the transceiver and antenna and indicate on a meter.

A lot of rubbish is promulgated about SWR and the importance of having a low SWR. Certainly, any power reflected is not radiated - and you lose it. But, it takes a big mismatch to lose a significant amount of power, very low SWR values are fine, but chasing the ultimate $(1: 1)$ is like trying to extract gold from seawater - it's not worth the effort. (There is about one gram of gold per 250 million litres of seawater - go get your gold diggers!)

Have a look at Table 1 and stop worrying. Obviously an SWR of $1.5: 1$ is

Fig. 4. Typical examples of bottom loader, centre-loaded and top load whip antennas. The loading coil is placed in the antenna element to physically shorten the antenna while maintain its electrical length.
perfectly acceptable. You only lose 4\% of your power and the voltage peaks generated in the feedline are not likely to cause trouble with your transmitter. At SWR s around $2: 1$ and above the voltage peaks are likely to cause trouble, even though many transceivers are protected against such eventualities it is not a good idea to tempt fate.

If you tell someone you have an SWR of 1.1:1 (why you would want to do that I don't know, but let's just say you do ...) and he tries to go one better and says he's got an SWR of 1.05:1 11 mean, it sounds real, doesn't it?) then you go back and tell him to stick the extra 0.15% of his power back up his antenna socket - that'll even things up!

Some antennas require a matching device at the feedpoint and this is often included as an integral part of the antenna.

As antennas are installed under a wide variety of circumstances, particularly mobile whips etc, it is often necessary to 'tune' the antenna to get best performance. This usually involves a simple adjustment of the length of the antenna - most manufacturers supply adjustable details. This is discussed in a little more detail later.

THE FEEDLINE

This has been mentioned briefly in the article on installation. Let's have a closer look.

The standard type of feedline used is coaxial cable. Have a look at Figure 5. Coaxial cable consists of a centre conductor of copper for stranded copper wire), which is flexible, surrounded by a plastic insulating material.

TABLE 1

It is almost impossible to have a perfectly matched antenna system and a standing wave ratio of $1: 1$ is virtually impossible. Anyone who claims an SWR of $1: 1$ for his antenna is either Superman or a liar. And we all know Superman only exists in comics! Here's what happens to your transmitter power for various standing wave ratios - plus comments.
$\left.\begin{array}{lll}\text { SWR } & \begin{array}{l}\text { PERCENTAGE POWER } \\ \text { INTO ANTENNA }\end{array} & \begin{array}{l}\text { COMMENTS }\end{array} \\ 1: 1 & 100 \% & \begin{array}{l}\text { Perfection! But, remember what I said } \\ \text { above. } \\ \text { Octasionally achieved, Don't bother to }\end{array} \\ 1.05: 1 & 99.93 \% & \begin{array}{l}\text { attempt any improvement. } \\ \text { Some well-tuned mobile antennas and } \\ \text { often base station anternas achieve this } \\ \text { Lots of well-tuned and properly } \\ \text { installed antennas make this. If you get }\end{array} \\ \text { it - be happyI } \\ \text { This sort of SWR is pretty common - } \\ \text { and really quite satisfactory. If you get } \\ \text { it - greatI } \\ \text { Encountered more often than you think. } \\ \text { No cause for alarm. Get it down a bit }\end{array}\right\}$

A typical SWR bridge. Similar units are available at most retail outlets. Note on the right hand side the Forward and Reflected switch. When set on the Forward mode you adjust the sensitivity control (for different power inputs) to give full scale deflection. Then, still transmitting, switch to the Reflected position and read the Standing Wave Ratio.

Over this is a woven wire braid which serves as the other conductor, called the outer conductor, which completely encloses the insulation and centre conductor. A plastic sleeve encloses the whole cable to keep out moisture etc which affects the efficiency of the cable.

There are two common types of coaxial cable, in different diameters, to meet the majority of requirements.

These are designated RG58 and RG8. The smaller diameter cable, RG58, is used in the majority of mobile and marine installations. It is 6.7 mm in diameter and several types of connector are available that can accept this cable. Owing to its small diameter it is very flexible and can be run in small diameter tubes, along corners and in grooves etc which makes for ease of installation.

The other type, RG8, is about twice the diameter - about 13 mm - and is best used where very long runs of cable are necessary, as less power is lost than in the thinner RG58 cable. RG8 is also much more robust than RG58, if somewhat less flexible, and is suited also to installations where the feedline may have to survive some wear and tear.

Fig. 5. Coaxial cable. The most common feedline. The two common types are RG58 (6 mm dia) and RG8 (13 mm dia).

Are You on SWR Golal?

Score five points for a yes, one for a no, and ten for a don't know ...
Q1 Does SWR stand for short-wave radio?
Q2 One-to-one is a two-way conversation, one-point-five-to-one Q3 is the same but with a breaker on the side. Right?
Q3 Do you give your SWR number before your call-sign?
Q4 Have you ever spoken of SWR on the air? (Double your score on this one)
Q5 If you are speaking to a CBer who says he's running five watts into a helical with an SWR of one-point-two do you go back with your power, your antenna and your SWR?
Q6 If your contact says his SWR is 'two' do you make a note not to speak to him again?
Q7 Do you think CBers who don't understand SWR should not be allowed on the band?
Q8 If your SWR is 1.5 to 1 this means that only two-thirds of the transmitter power is being radiated effectively. Right?
Q9 The other third of your power in Q8 is radiated locally and causes TVI, so if you have a high SWR you should not operate near houses, right?
Q10 Have you ever had a QSO in which you discussed nothing but technical topics lafter the usual rat-bagging about the twenty the handle, and the possibility of an eyeball)?

HOW TO EVALUATE YOUR SCORE ...
If ' S ' is your total score, substitute in the following formula: Your Standard Galah Ratio is $S \pm 11$
to one!

CB 2 WAY RADIO
 PLUS: Cobra S.S.B.

SEIKI 23 CHANNEL

THIS MONTH'S SPECIAL ONLY \$119 with aerial.
Excellent Specificaxaons 0.5 UVfor $14 \mathrm{Db} \mathrm{S} / \mathrm{N}$

Panther 23 Channel S.S.B.
Universe 23 Channel S.S.B.
Gemtronics 332223 Channel S.S.B.
Clarion Raider 23 Channel AM
Shigma 23 Channel AM
Pony Marine 6 Channel Finetone Marine 6 Channel Surveyor Marine Hand Held
See our great range of aerials \& accessories.
P.A. - S \& PWR Meter - Squelch - Local Dist. Switch

Huge range of aerlals at
Incredibly low prices.

WHY TAKE A CHANCE WITH RADAR. . .
THIS MONTH'S SPECIAL Snooper ONLY $\$ 105.00$

Less 5 percent discount to all ETI readers

The Microwave Receiver tuned to the Police Radar Band.

'CONTACT'MOBILE SSB.AM

 New stocks have just arrived of our beefed up version. Now puts 6.5 watts AM into aerial. Fully synthesized. 23 Ch AM plus upper and lower sideband. Dual conversion AM power and S meter. P.A. facility, xtal lattice filter. For Novice or Ham use. 12 volt operation.\$239 P\&P \$4.00

'XTAL'SSB•AM 25 WATT RE.R:

XTAL is still one of the top names in the U.S. so no one but Tokai is qualified to make their S.S.B. Transceiver for them. Specs are identiand remote volume control fitted to hand features are R.F. gain control use only. $\$ 309$ p.p. $\$ 4$.
 scanner

'XTAL' 23 CHANNEL AM 5 WATT

This high quallty 23 channel A.M. Transceiver features a two channe scanner. Both channels are sampled at half second intervals. Automaperformance A. incoming slgnal. This is a most sophisticated high of class with some very usefuld appeal to the novice who wants a touch novice or amateur licence holders. 199 p.p. fi novice or amateur licence holders. \$199 p.p. \$4.

seaseltoner/ CB BLACKBOX -USES EXISTIWG CAR AERIAL!

This is every novice"s dream device. Thieves can no longer detect your C. B. because you have no tell tale C.B. aerial. No extra holes to drill either. With our 'BLACK BOX' Aerial Matcher you can operate your C. B. using the existing car aerial. S.W.R. of 1 to 1 possible with suitable car antenna. Scan your C.B. channels while listening to your car radio. Go straight Into transmit without a worry. Firted in minutes, L.E.D. signal indicator also acts as S.W.R. meter. (O wing to H mited supplies this unit is not available through our wholesale division yet). $\$ 35$
p.p. $\$ 2$.

CONTACT'BASE SSE.AM

Back again for Feb. delivery 'THE CONTACT' AM-SSB Base Station. 240 volt or 12 v operation. Large R.F. \& S. Meter. also gives S.W.R. A.M. blanker. Dual conversion 7 I.F. T.s and 6 I.F. stages. Delta tune sensitivity. .5UV @ 6 dB . Sixe $33^{\prime \prime} \times 24.5^{\prime \prime} \times 13.5^{\prime \prime}$. Weight $73 / 4 \mathrm{KG}$. Designed for Novice or Ham operation. \$299 P\&P \$5.00

TOKAI SSB.AM 25 WATT P.E.R.

TOKAI'S NEW TC1001 has also gone for more power. The SSB section now delivers 25W P.E.P. The price is commensurate with the quality. Full metal case. 96 semiconductors including F.E.T's. Triple AM and dual SSB conversion. P.A. facility. Power and S meter. Delta tune on AM. Noise blanker. This one is loaded with features. For the discriminating Novice or Ham. Porta pak available makes it into portable. PORTA PAK $\$ 69$ incl. aerial. MOBILE $\$ 289$. P\&P $\$ 4.00$

KRACO 23 CHANNEL AM 5 WATT

SPECIAL BUY LIMITED QUANTITY
This exciting American style CB Transceiver is loaded with features. Apart from its smart black all metal cabinet it has a functional and attractive chrome control panel surround. Heavy duty control knobs with finger grips. Positive push button controls for automatic noise limiter. Public address. A most useful map lite is also incorporated. lliuminated channel indicator, variable squelch etc. 29 semiconductors plus I.C. dual conversion. FOR NOVICE OR HAM USE

PRICE $\$ 149.00$ P\&P $\$ 3.00$

CB ANTENNA positionnc

Where you mount your antenna has a big effect on how well your signal gets out in various directions. Roger Harrison explains the significance of the common set-ups.

A range of different antennas are made for mobile, marine and fixed station installations, each having their own particular advantages and disadvantages.
Making a wise selection of your antenna is part of good planning for your installation and it pays to consider a number of factors before purchasing your antenna. Compromises are almost inevitable, particularly in mobile installations, but it's not too difficult to make a choice once you have assessed your situation.

In mobile and marine situations the rule of thumb is: the biggest antenna mounted in the highest position. Now that can be a tall order (Oh dear - those puns keep slipping in) Overhead clearance needs to be taken into account, especially with car and truck installations. Here's where you have to start making compromises. An inefficient antenna mounted high on a vehicle may be better than a full-sized whip mounted low. The position of a short, loaded whip may make up for its deficiencies, even though a larger whip should perform better - but you may not be able to mount the larger whip in the best position. Then again, you may not wish to drill holes in your vehicle or boat, etc and a different style of mounting is called for.

Let's have a look at a few pointers on where to mount antennas, what is the effect of different positions on a vehicle to the radiation pattern of the antenna, things to avoid etc.

Pointers on Antenna Mounting

Base or fixed station antennas are best mounted high and clear of any nearby structures or trees where possible. Don't
take this to extremes though. If the base antenna is mounted too high and far from the transceiver a very long feedline is necessary. This usually means that some power will be lost in the coax to the antenna, thus losing any advantage you may have gained. A feedline run more than 30 or 40 metres is not really desirable unless it is quite unavoidable. Where possible, a base station antenna should be mounted somewhere between 5 and 15 metres above the average terrain within a radius of 1 km . See Figure 1. Use R68 coax where long feedline runs are necessary.

Mounting an antenna on a car, or similar vehicle, can alter the radiation pattern you would normally expect
mounted antenna, so make some assessment of the clearance you are going to need. Some antenna mounts have a 'lay-down' or 'flip-over' action allowing the use of a larger whip - depending on the mount itself. Loaded whips suitable for roof mounting range in size from about 50 cm to about 110 cm long $\left(20^{\prime \prime}-44^{\prime \prime}\right)$.

The most obvious problem you're likely to encounter is getting into your own garage, carport, etc. If it's too low to accommodate a short, loaded whip then either a lay-down type mount will be necessary or another mounting position will have to be considered. You could park in the street!

Some antennas are sufficiently

Fig. 1. A good rule for base or fixed station antennas is to mount them about $5 \mathbf{- 1 5 m}$ above the surrounding terrain within a radius of 1 km . (Picture courtesy of Handic).
from an antenna, depending on just where you mount it. There are about seven basic ways you can mount a whip on a car - each produces a different radiation pattern.

Centre-roof mounting results in a somewhat egg-shaped radiation pattern, as shown in Figure 2., but it's about the closest you can get to omnidirectional radiation in this situation. Overhead clearance is a problem, as with any roof-
flexible to be pulled down and held in a rain gutter clip.

Mounting an antenna in the centreroof of your vehicle can be done in a variety of ways. Through-the-body mounts require a hole to be drilled. If you don't mind doing this to your vehicle then it is probably about the allround best way to do it. This style of mount can be obtained in two basic forms under-side fastening and top-
side fastening. You'll have to shop around for the latter as the underside mounting seems to be the one most readily available. A variety of mounts obtainable on the market are discussed later. Another method of centre-roof mounting is to mount the antenna base on a ski-bar or roof rack. A distorted radiation pattern may result but this may only be slight, depending on how far above the roof the ski-bar or roof rack projects on its own mounting. Generally speaking, this can be an adequate compromise.

Fig. 2. Mounting the antenna in the centre of your car roof produces about the best radiation partern - but, overhead clearance is a problem. Good transmission front and rear is obtained with some reduction off to the sides.

Mounting the antenna on the vehicle rain gutter gets it high and in the clear but the radiation pattern is angled across the opposite side of the vehicle as illustrated in Figure 3. Good reception forward and backward is still achieved, as with centre-roof mounting, but it is biased toward the opposite side of the vehicle, reduced signals being experienced off the same side as the antenna is mounted.

Overhead clearance is still a consideration, the same goes for guttermounted antennas as for centre-roof mounts. Lay down or flip-over mounts are available - as discussed later. Clipon gutter-grip mounts are available also enabling you to unclip the antenna to garage your car, or whatever, but they cannot support a very large whip.

The radiation patter of trunk mounted antennas favours the forward direction. Positioning the antenna on the centre-line of the vehicle gives quite an acceptable radiation pattern as illustrated in Figure 4. Good signals are obtained off to the sides but response to the rear is degraded. If the antenna is positioned to one side the radiation pattern is skewed diagonally across the car as illustrated in Figure 5. A magnet-

Fig. 3. Gutter mounting places the antenna high up but distorts the radiation pattern. Good transmission and reception front and rear is still obtained with good signals across opposite side of vehicle, somewhat reduced on same side as antenna.

Fig. 4. A trunk mounted antenna positioned on the centre-line of the vehicle produces a radiation pattern that favours the forward direction. Good signals are obtained off to both sides.
mount whip placed centre rear-deck is a good performer if it can't be put on the roof.

Trunk mounting enables a larger, and possibly more efficient whip to be used, apart from reducing the overhead clearance problem. If you have little or no overhead clearance problem a base loaded 2.6 m whip-may be mounted on the trunk lip, usually giving an excellent account of itself. A light-weight, flexible whip is recommended in these circumstances.

Cowl-mounted antennas are often convenient as they are simple to mount, robust, can be fitted in an existing carradio antenna hole and allow the larger whips to be used. Mounting the antenna on one of the front cowls results in a radiation pattern that favours the rear directions, diagonally across the vehicle, as illustrated in Figure 6. Placing the antenna on one of the rear cowls puts
the best radiation forward, again diagonally across the car, similar to Figure 5.

Fig. 5. A trunk mounted antenna positioned to one side angles the radiation pattern diagonally across the car in the forward direction.

Fig. 6. An antenna mounted on the forward cowl puts most signal across your left shoulder but has advantages in convenience apart from allowing larger whips to be used.

If you favour a long whip, a bumper mount is probably the best. The most popular position for bumper mounted antennas is on the rear bumper as they tend to be distraction on the front of a vehicle. Although positioning the antenna on the centre line of the car is possible it restricts access to the boot, or engine if you have a rear engine machine! Generally they are placed towards one side, resulting in a radiation pattern that places the signal forward, diagonally across the car, similar to. Figure 5 or Figure 7. Bumper mounted antennas are unfortunately exposed to damage from other people's bumpers.

Mirror-mounted antennas give similar results to gutter mounted antennas. They are handy on trucks or other vehicles that have projecting wing

CB ANTENNA POSITIONING

mirrors. A particular style of base mount is available to suit this method of mounting.

When positioning an antenna on the side of a vebicle don't place it too far down so that the bottom portion of the whip etc is close to a mass of metal as this adversely affects the operation of the antenna, severely reducing its efficiency. This should also be remembered with bumper-mounted antennas as proximity to the body or fenders of the car can have the same effects. If mounting a whip on the rear deck or cowl of a car, position it away from the roof supports for the same reasons. A bumper-mounted whip on the rear of a Land Rover or a station wagon is not a very good idea. A large portion of the whip will be in close
proximity to the body mass of the vehicle, reducing its efficiency. That is why you often see such vehicles with a bumper-mounted whip at the front.

On boats, mounting a whip with portion of it in close proximity to a metal mast is not a good idea for the same reasons just outlined. Position the antenna, as far as is possible, away from mast guy wires as well.

All-wooden or fibreglass boats do not provide a "ground plane", which is automatically provided by the metal body of land vehicles, which is necessary for the proper working of many antennas. Some sort of ground plane may be constructed but as whips are available especially for applications such as this it is hardly worth going to the trouble.

Fig. 7. Mounting the antenna on a rear cowl puts the best signal forward, diagonally across the car.

Answers all the questions. The complete user's guide to CB RADIO. Gives effective operating procedures, C.B Language, Codes and Slang. How to communicate for fun, highway information, how to help others and get help tion, instructions and tips. How to select and install antennas. Covers the whole lot. 192 Pages! You can give this book a big 10-4. Price at shop $\$ 6.25$. Posted $\$ 8.25$. Mall order specialists. Tell them GREENY sent you!
FOUR WHEEL DRIVES
304 Middleborough Road, Blackburn South, Vic. 3130. Phone 89-0509.

ANTENMA MOUNTS AND FIXTURES

Mounting a mobile antenna can be a straightforward business, but if you want something special - a big anténna, a removeable or relocatable antenna - then there is a range of special fittings available.

A WHOLE RANGE OF ANTENNA mounting fixtures are available to suit the widely varying circumstances that are encountered in mounting antennas. Most of the range are for mounting on vehicles and I will deal with these in this article. Fixtures for mounting base station antennas are another subject altogether.

Mounting fixtures can be divided into two casic categories: those that are mounted through a hole and those that are attached to a fixture on the vehicle (which sort of leaves magnetic mounts somewhere out on their own, but I'll get on to them later).

Mounting fixtures that attach through a hole include the simple 'universal' mount and swivel mounts. Those that attach to vehicle fixtures include gutter mounts, trunk or boot mounts, rack and mirror mounts and bumper mounts.

Mounting fixtures may come as part of an antenna assembly or may be obtained separately. Many fixtures are supplied with a length of coax and a PL259 plug.

The Universal Mount

This basically consists of a strong, insulating plastic cone which mounts through a hole in the vehicle body. The fastening also provides a connection to the vehicle body (which acts as a ground plane for the antenna) and a coaxial cable connection, the outer conductor connecting to the vehicle body via the fastening and the centre conductor to the antenna element. A threaded bolt is usually provided on the top of the cone insulator to accept the base of the whip. A gasket provides a watertight seal between the insulator and the vehicle body.

A typical mounting fixture of this type is marketed in Australia by Scalar, it costs around $\$ 5$ through distributors.

They are widely used for mounting VHF whips on taxis.

The universal mount is generally secured by several screws underneath but may also be obtained in a style that is secured from the top. This is convenient as it saves working in tight spaces, such as beneath car fenders. However, you'll have to shop around for the top-secured type.

The Swivel Ball Mount

These mounts are secured via several body holes and consist of a split stainless steel or chrome-plated ball which accepts the antenna and is insulated from the body of the vehicle. It allows the antenna to be laid flat or swivelled into any convenient position. A typical mount with hardware is illustrated in Figure 8. The feedline cable is attached from beneath. The cost ranges from about $\$ 8$ to $\$ 25$, depending on material and size. The expensive ones are usually stainless steel.

The big advantage of swivel mounts is that they can be mounted on a horizontal, vertical or angled surface. They are great for boats as well as land

Fig. 8. Swivel ball mount and hardware. This type of mount allows a large whlp to be laid down to obtain clearance, for garaging a vehicle or whatever. They can be mounted on horizontal, vertical or angled surfaces.

Gutter Mounts

Gutter mounts come in two basic styles - screw-on and clip-on. The screw-on types are secured with two small screws and are more-or-less a permanent fixture. This style generally has a pivot arrangement so that the antenna may be angled to stand vertically, as the attachment to the rain gutter of the vehicle is often at an inconvenient angle. A typical screw-on gutter grip is illustrated in Figure 10 . They cost around $\$ 8$ to $\$ 15$. They are made to fit either an insulated bolt assembly which accepts the antenna base, or more usually, a type S0239 socket.

The screw-on gutter-grip can generally accept a larger whip than the clipon type, but neither will support the longer loaded whips. Generally whips suitable for gutter mounting are around 45 cm to 55 cm long, and are usually centre-loaded types. Base loaded types are not recommended because of the greater strain they place on the mount. Screw-on gutter-mounts are also available in a style that allows the antenna to be folded down - see Figure 9.

Fig. 9. The Flip over or 'quick flip' style of gutter mount allows the antenia to be laid over for garaging or head clearance without requiring removal of the antenna.

Screw-on style mount

Fig. 10. Gutter mount fixtures come in two basic styles; screwon and clip-on. They are quick and easy to mount and require no holes. Either type allows quick and easy removal of the antenna.
The clip-on style of gutter-mount is also illustrated in Figure 10. This style allows the antenna to be mounted or detached quickly and conveniently. With the screw-on mount the antenna itself can be detached, leaving the mount and feedline in place.

The clip-on mounts are generally supplied as part of an antenna assembly. but they can be obtained separately. An S0239 socket is fitted to accept the antenna base which is usually fashioned as a PL259 plug. Clip-on mounts are obtainable from distributors for approximately $\$ 5$ to $\$ 8$.

The feedline from a gutter-mount is usually taken part way down the rain
gutter and through the door at a point where it won't be squeezed too much (some protection being afforded by the rubber door gasket) to avoid damage to the coax.

The particular advantage of gutter mounts is that they are very easy to fit to a vehicle. Note, though, that the vehicle must have metallic rain gutters. The clip-on types require a spot of bare metal to make an electrical connection to the vehicle body (which is required to act as a ground-plane). Chrome strips along the rain gutter may not provide a good connection.

Not all rain gutters can support a gutter-mounted antenna. It is wise to check this point before buying. Another point to watch is that not all rain gutters are the same depth. Be careful when mounting screw-on types that clearance is sufficient for the door to open.

Trunk Mounts

These come in two types: trunk-lid mounting and trunk-groove mounting (also known as a trunk-lip mount). The trunk-lid mount slips over the edge of the lid and is secured with a couple of small screws. The coax feedline is passed into the boot and squeezed between the lid and the rubber gasket. It is necessary to chose a position for the mount such that the antenna doesn't foul the vehicle roof when the
boot lid is raised. It is also a good idea to bond the boot lid to the body of the vehicle with a length of flexible braid (obtainable from most equipment suppliers or from some auto accessory shops) to ensure that the lid is part of the general ground-plane formed by the vehicle.

Trunk-lip or groove mounts attach to the recessed groove surrounding the trunk opening and are secured either by several screws or by a clamp arrange. ment that requires no holes. These mounts are particularly suited to hatchback vehicles and those having little clearance between the open lid and the rear window. Both the screw-on and clamp-on (no hole) types are illustrated in Figure 11. The coax is passed in the boot and squeezed between the lid and the rubber gasket, as for the trunk-lid mount. Some pass the cable through the bracket, affording extra protection against damage.

Most screw-on types of trunk-lip mount have an adjustable bracket enabling the antenna to be tilted so that it can be repositioned when the boot lid is raised.

With either type of mount ensure that a good contact to bare metal is obtained with the mounting or securing arrangement.

Trunk mounts can accept loaded whips up to a length of 120 cm and you should expect to pay around $\$ 20$ to $\$ 25$ for the mount.

Rack or Ski-Bar Mounts

These consists of a simple screw-clamp that can be attached to tubing or or square-section material. They generally fit onto anything up to a maximum size of about 20 mm diameter or square section. They are usually supplied with a length of coax with a PL259 connector attached. A typical example of this type of mount is shown in Figure 12.

The coax is taken into the vehicle in a similar fashion to that of a guttergrip mount. The wing-nut should contact bare metal which is in good electrical contact with the body of the car. The advantages of this type of mount are its simplicity and cheapness.

Fig. 12. A luggage rack or ski-bar mount. These are inexpensive, simple and quick to install. They are also suitable for wing-mirror mounts.

Mirror-Mounts

These are similar to the rack-mount. Details are illustrated in Figure 13. They consist of a simple, robust, clamp arrangement that can be attached to a vertical or horizontal bar that supports a wing mirror. The coax feedline is routed in the same manner a for a gutter-grip. The clamp should contact bare metal. The mirror struts should be well bonded to the vehicle frame with 'co-phased' antennas (also called 'dualtrucker' antennas; covered later).

As for the rack-mount, mirrormounts are inexpensive and quick to install. Snap-in base fixtures to accept a whip can be used with these mounts so that the whip may be attached or taken off quickly and easily. These mounts are usually sold complete with coax and PL259 connector attached.

Magnet-Mounts

Probably the simplest, fastest way to mount an antenna. Requires no tools, just pop it on! You can mount the antenna anywhere you like. The antenna can be placed so that you get the radiation pattern you want.

Magnet-mounts are best suited to loaded whips or helical antennas and can accept whips as long as 120 cm . However, they only stick to steel or ferrous metal surfaces, fibreglass and aluminium and are a dead loss! They work quite well on vinyl covered metal roofs, however.

Magnet-mounts consist of a circular ferro-nickel magnet with a fitting on the top to accept a whip and a thin gasket underneath to prevent scratching of the surface it is placed on. An integral coax cable feedline enters at the side of the base, and a length of coax (about 3 metres long) terminated in a PL259 connector is normally supplied. The whole assembly (less whip) costs in the vicinity of $\$ 25$.

As there is no electrical connection to the vehicle body a magnet-mount antenna is generally not as efficient as other types, especially those that mount through a hole in the body.

The coax may be taken into the vehicle in the same manner as for guttergrip types.

Holding power depends largely on the length of the whip used, the thickness of paint on the mounting surface vinyl covered car roofs particularly reduce holding power.

A magnet-mount should not be placed on a wet metal surface, particularly if it is painted or vinyl covered, as the water also reduces the holding power.

Fig. 13. Mirror-mounts consist of a simple, robust clamp arrangement that attaches to the tubing struts of wing mirrors.

Fig. 14. Magnet base mounts are the fastest and easiest mounting arrangement available.

Bumper Mounts

These are normally used with very long whips. They consist of a base that accepts the antenna fitting which is held on to the vehicle bumper by dual chains or metal straps. See Figure 15. They can be awkward to fit to the small bumpers on old small cars. There is a slight disadvantage with bumper mounting in that the base of the antenna is low so the lower portion of the antenna runs fairly close to the vehicle body, possibly impairing the efficiency.

However, a full-sized quarter-wave whip (almost 3 metres longl) can be mounted in this way, and such an antenna generally gives better performance over loaded whips mounted up on the vehicle body. Long whips have the disadvantage that they literally 'whip' around somewhat, especially at speed. Quick-disconnect fittings can be bought to allow quick mounting and detachment of the antenna.

Bumper mounts range in price from about $\$ 8$ to $\$ 18$, excluding extras such as spring or quick-connect fittings. If a long whip is to be mounted on a bumper mount a heavy-duty shock spring should be used to add some flexibility (to avoid undue strain on the whip itself).

The bumper should be electrically bonded to the body of the vehicle for reasons outlined previously. The coax may be taken through the trunk, squeezed between the lid and the rubber gasket. Alternatively, it may be passed through a hole in the adjacent body panel.

Van Mounts

This sort of fitting mounts on a vertical metal panel such as on the side or front wall of a caravan or van cabin. It consists of a plate that can be screwed on to the required surface, with a right-angle bend on which mounts the antenna fixture - see Figure 16. The latter is made so that the antenna may be laid over from vertical to horizontal for overhead clearance or vehicle garaging.

SPECIALISTS AND CONSULTANTS

Citizens Band Two-Way Radio Communication Systems.

Manufacturers of
"The Helical Antenna"
DISTRIBUTORS OF ALL CB PRODUCTS
TRADE ENQUIRIES WEL COME
EQUIPMENT AVAILABLE

15 Watt Sideband 23 channel 5 Watt AM 23 channel 5 Watt AM 6 channel

TEST GEAR

SWR Meters, Power Meter Power Supplies

ANTENNA

DX-1B - 5ft Helical Antenna
DX-3B - 40" Helical Antenna
DX1S - 6ft Helical Antenna
DX-9 , 8ft Marine Antenna (with matching unit \& cable)
BASE STATION ANTENNA

Representatives in all States.
Further information and list of distributors:

277 Victoria Road, Marrickville, N.S.W. Phone 560-7693-39.1395
Postal Address: P.O. Box 166, Randwick, N.S.W. 2031

ANTEMMA MOUNTS
AND FIXTURES

Fig. 15. Bumper mounts attach the whip to the vehicle bumper with dual chains or meral , bands. The mount on the left exposes the antenna to damage.

Fig. 16. Van mounting fixture. These screw to a vertical panel or a van or caravan. The antenna mount can be laid over 90°, from vertical to horizontal, for overhead clearance or garaging.

Loaded whips or helicals up to 120 cm are best suited to this type of fitting.

Cowl Mounts

These are like the ordinary $A M$ broadcast antenna fittings. They are often supplied as part of a combination antenna assembly (for $A M / F M / C B$) or with motor driven/retractable antennas. An existing car radio antenna may be replaced with one of these CB antenna assemblies.

Miscellaneous Fittings and Accessories

Mention has already been made of springs. These are mounted at the base of the antenna, directly on the mount. They are available in a range of sizes from light-duty to heavy-duty. They prevent your whip from being siped off if you accidentally run under something with insufficient clearance. They add

Fig. 17. Heavy duty shock spring adds flexibility to antenna and absorbs shocks if the antenna accidentally strikes something.
flexibility also, avoiding possible damage to the whip or mount when travelling at speed. A typical heavy-duty spring is illustrated in Figure 17. Springs add some height to your antenna so it will be necessary to retune the system to account for the extra length. Antenna manufacturers usually provide an antenna tuning guide. If you don't feel confident to do it yourself then have it done by a technician.

Qu:ck-connect fittings are available to fit on most antenna mounts to enable the antenna to be mounted or detached quickly. They generally consist-of pushon type of socket that mates with the antenna fitting.

Whip clips that attach to the vehicle rain gutter and hole the tip of a bentdown whip are very handy for per-manently-mounted whips. The whip can be bent down and secured by the clip for garaging or for overhead clearance.

TANDY

Your "Intercom" to the Outside... Realistic CB!

*Prices subject to change due to devaluation.

Realistic TRC.99C Sensitive receiver with Automatic noise limiter and gain control. Operate on batteries or use 12VDC from your car. Fitted with batteries and crystals for one channel.
PREARISTIC 6 channel Walkie Talkie 5 watts input

$$
0-95^{\text {ea }}
$$

Realistic TRC. 200. Loaded with power and features. The side panels couple your body to the antenna for extended range. Has fine funing to pick up off frequency stations. Fitted with batteries and crystals for one channel.

Twin trucker. Dual C.B. antenna 42 95 Gives superior coverage, stronger signal pattern ahead and behind. Stainless steel adjustable tip rods.

Boot mount

 C.B. antenna$$
5 \longdiv { 9 5 }
$$

1.11 m (44") Stainless steel whip. Mounts on boot without drilling.

there's a tandy electronics store near you:

Roger Harrison looks at the antennas available in Australia and gives some guide to prices and suppliers. Undoubtedly there are many more antennas available - here we publish only those that we received data on.

Fig. 1. Loaded antennas require adjustment after installation. The antenna tlp above the loading coil is held in by a small screw.

Fig. 2. The set screw is loosened and the antenna tip moved only $3 . \mathrm{mm}$ to 5 mm , then check the SWR.

MOBILE ANTENNAS

PROBABLY THE WIDEST RANGE OF ANTENNA TYPES and styles are made for mobile application. Many come complete with mount, spring and coaxial cable. Alternatively, you can buy just the whip itself and separately obtain the other fixtures. Naturally, you can't mount a full size quarter wave whip on a gutter grip mount. It would be equally as silly to mount a 50 cm centre-loaded whip on a bumper mount.

Loaded whips require adjustment after installation, the antenna tip is moved up or down slightly and the SWR checked until a minimum is obtained. The antenna tip is usually set in the top of the loading coil with a small set screw, as shown in Figure 1. Loosening this allows the tip to be moved up or down until you find the optimum length. Move the antenna tip only 3 mm to 5 mm at a time. Tighten the set screw each time and check SWR reading. An acceptable minimum SWR reading would be 1.5:1 to 1.8:1. Try and get better if possible. If you can't achieve these figures look for troubles with connections or the mounting.

Quarter Wave Whips

These are generally 2.59 or 2.74 metres in length. Most come complete with a base spring and a mount. The whip itself is either fibreglass (with a wire through the centre) or stainless steel, the fibreglass whip being somewhat lighter weight.
Fibreglass whips have the advantage of being super flexible but they 'detune' as they move around, and they move arounda fair amount at speed. Stainless steel whips are considerably more robust, and more stable on a moving vehicle.

A fibreglass whip by itself may cost between $\$ 17$ and $\$ 24$, whereas the stainless steel whip by itself may cost between $\$ 10$ and $\$ 18$. A ball mount and spring may set you back another $\$ 17$ to $\$ 25$, depending on the size and durability of the spring and the particular swivel ball mount. These items have been discussed in the previous section.

A fibreglass whip complete with ball mount and spring will cost in the vicinity of $\$ 20-\$ 25$ (Thunderstick and Superstick, from Bail Electronic Services, for example) or maybe as much as $\$ 35$. The Tandy body mount antenna No. 21-1094 comes
somewhere in between this at around $\$ 28$. This one consists of a 2.59 m stainless steel whip and includes a swivel ball mount and chrome-plated steel spring.

Plastic gutter clips to hold down the antenna tip to improve overhead clearance are available for around $\$ 2.50$.

With antennas there's no doubt that "biggest is best", so if you can fit one of these whips don't bother reading any further.

Base-loaded Whips

These are generally intended for mounting on the vehicle body with a 'universal' type of mounting. Often the mounting is integral with the antenna assembly.

The length varies from 103 cm for the shortest type, up to 125 cm . They can be obtained by themselves to fit a variety of bases or as a complete, ready-to-mount assembly with base, coax etc. Some include a small steel spring at the top of the loading coil on which the whip top mounts.

A single whip may cost around $\$ 12$ to $\$ 15$, such as the No. D-4615 from Dick Smith. A magnet base may set you back between $\$ 12$ and $\$ 25$, or a universal mount as little as $\$ 5$. They have to have compatable fittings though.

Complete assemblies cost somewhere between \$28 and \$42 and all include some style of body mount and are complete with a length of coax terminated in a PL. 259 connector. The largest, 125 cm long, is made by Handic and comes from M \& K Communications. Peter Shalley has one at 117 cm long which includes a body mount and 'quick grip' fitting which the antenna snaps into for easy mounting and removal; price about $\$ 30$, including spring and coax. Similar base-loaded whips are available from Dick Smith and Tandy, but are slightly shorter -111 cm . The Dick Smith No. D-4450 is $\$ 27.50$ and the Tandy No. 21-908 is $\$ 35$. The latter features a trunk lid mount. Tandy also have a shorter base-loaded whip only 106 cm long with a similar trunk lid mount for only $\$ 30$ which does not include coax. A 103 cm whip suitable for a screw-on gutter-mount is available from Vicom for about $\$ 28$ for the whip and spring, the gutter mount fo suit for about \$20.

The shortest base-loaded whip available is only 51 cm long. Surprisingly, there are two models - for different applications. The two I spotted come from Peter Shalley. One is a down type meant for a gutter-grip mount and sells for about $\$ 48$. The whip snap-locks in automatically when raised. The whip and loading coil assembly may be removed for stowing. The other 51 cm base-loaded whip is for slipping over hand held transceiver telescopic whip assemblies, with the integral antenna closed down. It sells for around $\$ 15$.

Centre-loaded Whips

Centre-loaded whips are the smallest and the cheapest mobile whips available. They range in size from 43 cm up to 55 cm and are generally suited for gutter mounting, low profile roof mounting or small, tight pockets. As they are very small, don't expect big things from them. Prices range from around $\$ 20$ (for the longer ones!) up to $\$ 42$ (for the shortest!).

So much for the gloom and doom; there are several whips of respectable size marketed. Peter Shalley has a centre.loaded, trunk-lid mounted fibreglass whip that is all of 123 cm long rivalling the longest bottom loaded whips. Priced around $\$ 30$. MS Components have a 110 cm gutter mount type for about $\$ 20$, including mount, coax and connector.

Typical of the longer short whips are the two 55 cm models from Dick Smith; the D-4411 is a gutter-mount type and includes a clip-on gutter-mount and costs around $\$ 20$; the D-4412 is a magnetic base centre-loaded whip - see M \& K for price.

Peter Shalley has a 51 cm centre-loaded whip that includes a body mount and features a 'quick-grip' fitting for easy removal and mounting of the antenna - similar to the base loaded whip sold by him. The assembly goes for around $\$ 20$ complete.

If 50 cm isn't enough headroom then either the 46 cm whip from Tandy (No. 21-909) or the 43 cm Cal-Com whip from Command Auto Accessories should suit you. The Tandy centre-loaded whip includes a stainless steel spring at the bottom of the whip, gutter clamp mount and three metres of coax for around $\$ 25$. The Cal-Com whip is similar, featuring a very sturdy gutter clamp mount and sells at around $\$ 32$.

Dual Truck or Co-Phased Whips

This type of antenna assembly consists usually of two centreloaded whips about 120 cm to 130 cm long and these are intended for mirror mounting either side of the cabin of a large vehicle. They are connected together by a special coaxial cable 'phasing harness'. The result is a reinforcement of the signal forward and backward resulting in a figure- 8 radiation pattern as shown in the illustration. To work correctly, the two antennas need to be separated by at least 2.4 to 2.75 metres. They may be spaced cldser together but the effectiveness is lost. The advantage of having a radiation pattern such as this is fairly obvious for highway travelling, as most contacts desired will be ahead or behind.

Owing to the special nature of this type of antenna they are normally sold complete with all coaxial cables, mirror mounts and connectors. They are available from at least three local suppliers: Vicom have one at $\$ 42$, Tandy have a model (No. 21-942) for about $\$ 43$ and a Cal-Com model (No. 9805) is available from Command Auto Accessories for about $\$ 45$.

Top-loaded Whips

These antennas are pretty rare on the Australian market at the moment, the only one we could find (why does everybody want to hide their antennas?) is from Handic, distributed by M \& K Communications. This is a 125 cm long whip and
includes a 'universal' type of mount with a swivel base that allows the whip to be adjusted in all directions. It can be adjusted after installation, as with the other types of loaded whips, to tune the antenna for lowest SWR. The assembly is designated type MA-1 and 2.65 m of coax terminated in a PL-259 connector is included. Price from M \& K.

Helical Whips

These consist of a fibreglass whip with a length of wire wound in a helix from the base to the tip of the whip (puns, yes poetry, no!). They can be thought of as a loaded whip with the loading coil spread out over the length of the whip! They range in length generally from about 102 cm to 160 cm . The helical whips can be obtained alone for about $\$ 20$ and can then be mounted with a universal mount or one of the trunk mounts. A suitable universal mount will set you back about $\$ 5$ to $\$ 10$. The Dick Smith helical whip D-4141, made by Mobile One, is pretty representative and is suitable for mounting on a universal Scalar base. The whole assembly will set you back $\$ 25$, cable and connectors extra.

The 'White Flash' (??) helical, also from Dick Smith (No. D-4076) is a complete assembly that includes whip, Scalar universal mount, coax and connector for \$29. MS Components have a 152 cm helical available for $\$ 22$, including the base (universal mount).

Mobile One, a local manufacturer and distributor, stock a 102 cm helical, the DX-38, a 152 cm helical, DX-1B and a big 183 cm helical - the DX-1S. Price on application.

Helical whips are renowned for their efficiency - being second only to a well-mounted, quarter wave whip.

Combination CB-AM/FM Antennas

These resemble an ordinary car radio antenna and mount with a similar cowl mount. They are meant to either replace an existing car radio antenna or to be used as a combination antenna instead. The cowl mount usually requires a 24 mm hole and adaptors are available to fit holes up to 32 mm diameter. They are available with either a telescopic whip or a detachable whip. A 'dividing harness' is included with leads for the car radio and transceiver. They are often known as 'disguise' antennas for obvious reasons.

Peter Shalley has a CB-Am combination antenna with a 117 cm telescopic whip that collapses down to 78 cm . The complete assembly including coupling divider and cables sells for around \$35.

Cal-Com have a CB-AM/FM combination or disguise antenna (No. 9813) which fits the standard radio cowl mount hole. It includes a tapered whip, 122 cm long, that is detachable along with the divjder wiring harness and connectors. It is available from Command Auto Accessories for around \$54.

Naturally, an antenna such as this is somewhat of a compromise. It can't off the same performance as a proper 27 MHz whip, but is at the same time satisfactory - while having the advantage of being useful for two vehicle appliances.

Dividing harnesses designed to match a 27 MHz transceiver to a standard car radio antenna as well as provide a connection for the car radio antenna input are also available, but these will be discussed in a later article on accessories.

MARINE ANTENNAS

Most mobile antennas can be used in marine applications on metal-hull boats or where a 'ground plane' - large area of metal etc, is available. However, fibreglass construction boats are very popular and no ground plane - essential for the correct operation of most mobile antennas - exists. The same is apparent with wooden vessels also. You can of course make

your own ground plane - but that's really the subject for a construction article.

A number of special antennas are produced to meet this situation. In general they consist of a quarter-wave or wave whip fed at the bottom. A special feeding and matching system is employed. Often the feeding system incorporates a loading coil and a shortened half-wave antenna is used. The whip or antenna element itself is generally about 2.4 to 2.6 metres long in this case rather than 5.5 m for a full-sized half wave antenna.

The Scalar CB-13 is typical of marine antennas designed especially foruse with fibreglass boats. It comes complete with a separate loading coil and tuning box. The 2.6 m whip is mounted on an adjustable mount that allows the antenna to be laid over. Complete assembly from Dick Smith costs around \$60.

Bail Electronics Services have a 2.7 m marine whip which requires no ground plane, selling at $\$ 76$. They also have a shorter one, only 1.5 m long, no ground plane required, selling for $\$ 40$.

Handic, from M \& K Communications, have a 2.4 m marine antenna that also required no ground plane. It has a black anodised aluminium whip mounted on a swivel mount, allowing the antenna to be adjusted in all angles. It comes complete with 3.65 m of coax. Price from M \& K.

Handic also have a masthead mount that accepts their range of base antennas. It consists of a 50 cm tube of anodized aluminium, 38 cm diameter.

BASE ANTENNAS

There are three basic types of base station antennas: Half-Wave Verticals, Ground Planes and $5 / 8$-Wave Verticals.

Base station installations lend themselves to the use of large size antennas with gain. Omnidirectional coverage is desirable and so vertical polarization is commonly employed.

Half-Wave verticals are inevitably fed at the bottom (endfed or bottom fed) as this is obviously the simplest mechanical method with an antenna of this type. There are two common ways of feeding a half-wave vertical: A tuned circuit at the base of the antenna has the coax tapped up the inductance, as illustrated in Figure 14 (a). This may actually be part of the structure. The tuning is generally factory pre-set by the manufacturer and should not need adjustment. The second method (Figure 14 [b]) employs a single turn helical coil with an integral capacitor tuning adjustment, the coax being tapped on to the helical coil. This type is generally known as a 'Ringo' from a proprietry name. (The term Ringo is derived of course from the single turn helical coil.)

Ground plane antennas consist of a quarter wave vertical rod with horizontal radial ground plane elements at the base of the rod. The coax inner conductor connects to the base of the vertical rod and the outer conductor connects to the ground plane elements. They are mechanically simple antennas and generally inexpensive. Sometimes, the radial elements, instead of being horizontal, are 'drooped' down. This improves the impedance match, ensuring a low SWR.
$5 / 8$-Wave verticals are similar to the ground plane with the important exception that the vertical radiating element is $5 / 8$ wave long (about 6 m). This results in gain over a standard ground plane antenna and the half-wave vertical. Comparisons of the different vertical plane radiation pattern is shown in Figure 15. Figure 14 compares their general characteristics.

Half-Wave Verticals

These are getting rather large at 5.5 m and are usually provided with a mount that is designed to clamp to the top of a

Fig. 15. Comparison of vertical plane radiation patterns of the three types of base station antenna. The $5 / 8$-Wave antenna provides highest gain through its narrower pattern and lower radiation angle.

pipe or pole support with U -bolts. Prices range from $\$ 37$ for the 'Million V1' from Bail Electronics Services, to $\$ 85$ for the Dick Smith model (D-4427).

Bail Electronic Services also have a 'Silver Rod' half-wave vertical for $\$ 40$. Tandy have a model that features hexagonal loops at the antenna tip claimed to dissipate static. It also features a moisture resistant matching transformer and allaluminium elements. The Tandy No. 21-902 will set you back about $\$ 45$.

Peter Shalley has a bottom fed half-wave vertical similar to that shown in the illustration. Designated the type GPV it features a DC grounded matching system that is claimed to lower residual noise level and improve the signal to noise ratio when receiving. The complete antenna costs around \$79. Dick Smith has a similar type, No. D-4427 for $\$ 85$.

There are not many of the 'Ringo' style of bottom fed half-wave verticals (also illustrated) on the Australian market as yet. One model is put out by Handic, the BH-94; Bail Electronic Services also have a model, type CR-1, which sells for \$47.

Ground Plane Antennas

These come in two basic styles - one having three radials, the other four. Both are illustrated here. The vertical element and radials are 275 cm long. The D-4430 from Dick Smith is listed as an economy model and sells for $\$ 32.50$. It only has three ground plane radials. This is not necessarily a disadvantage although the engineering text books tell us that four radials are better. Most types are terminated in an SO-239 socket which accepts the PL- 259 plug.

Bail Electronics services list an economy model, type GPGP for around $\$ 27$. They also list a model with a helical vertical element, the HOPE 10GP, for $\$ 70$.

The Tandy No 21-901 is also an economical model at around $\$ 25$.

Peter Shalley has a 27 MHz ground plane, type 36 , featuring all-aluminium construction with heat treated radials and elements. This one also features drooping radials for best impedance match. Costs about $\$ 60$.

Handic list a model, type BH-84, also. Check M\&K Communications.

5/8 Wave Antennas

These provide the best gain of the types available, as explained previously, and consist of a 6.04 metre long vertical radiator with 2.75 m ground plane radials at the base. They are really an extension of the ground plane antenna. They are usually terminated in an SO-239 socket and U-bolt mast clamps are included.

Like the Ringos, there aren't many to be found on the Australian market. Tandy list one, No. 21-1133, for around the $\$ 50$ mark. Bail Electronics Services have another, type CLR-2, for \$53.
N.B.: This survey is not meant to be exhaustive. Lack of cooperation from retailers prevents that. However, virtually all the different types of antennas for 27 MHz that are available have been described and many illustrated. Those mentioned in the survey, and prices, features, etc, are fairly representative of the local market. It should give you a reasonable idea of what you're in for when selecting an antenna.
*Prices may be higher by $15 \%-20 \%$ due to revaluation of $\$ A$.

CB AUSTRALIA, VOI. 1, No. 2
 "why mess with "backyard" brands when you can buy quality "Midland" at no extra cost?"

FAMOUS 'SANYO' HAND HELD 6 CH RIG. $5 W$, CB OR MARINE USE. RUGGED DESIGN. $\$ 7950$

OUR CHEAPEST WAY TO GET ON THE AIR - QUALITY 'ASAHI' AM RIG ONLY $\$ 99.50$

MIDLAND 13-854 6 CHANNEL 5 WATT CB TRANSCEIVER

FOR A COMPLETE RANGE OF 27 MHz CB \& MARINE RADIO \& ACCESSORIES - CALL IN TO YOUR NEAREST DICK SMITH STORE OR DEALER (SHOWN AT RIGHT)

DICK SMITH ELECTRONICS

HEAD OFFICE \& MAIL ORDERS: PO Box 747, Crows Nest. NSW. 2065. Phone: 439-5311; Telex AA20036; Cables 'DIKSMIT' Sydney

ESTABLISHED FOR THE PAST 35 YEARS FOR

ALL YOUR REQUIREMENTS

STILL ON TOP
 ELECTRONIC UNITS

- DECADE COUNTING UNITS TO 1 Hz - WIDE BAND AMPLIFIER FOR your counter 1 MV sensitivity, band width 1.250 MHz .

DEVOTED EXCLUSIVELY TO THE MANUFACTURE OF PIEZO ELECTRIC CRYSTALS

Contractors to Federal \& State Government Departments.

"All Types of Mountings"
REPRESENTATIVES -
NSW Hose \& Equipment Co. Pty Ltd, 11 Salisbury St., Botany, 2019 Phone 666-8144
S.A. Rogers Electronics P.O. Box 3, Modbury North, S.A. Phone: 42-6666

QLD Fred Hoe \& Sons Pty Lid, 246 Evans Road, Salisbury North, Brisbane, Phone: 47-4311
W.A. Communication Systems, 32 Rudlock Road, Morley 6062 Phone 76-2566
TAS
Dilmond Instruments, P.O. Box 219, Bellerive, Hobart, Tas. Phone: 479-077.
Send stamped addressed envelope for now catalogue or quote for your requirements.
BRIGHT STAR CRYSTALS P/L. 35 EILEEN ROAD, CLAYTON, VICTORIA, 546-5076

ADVERTISERS INDEX

DICK SMITH 2, 25
XENON WORLD IMPORTS 5
NEW ELECTRONIC 10
PETER SHALLEY 11
TELEVIEW 14
FOUR WHEEL DRIVES. 14
MOBILE ONE 18
TANDY. 19
BRIGHTSTAR CRYSTALS 26
STRATO 27
M.S. COMPONENTS 28

SUPPLIERS

These are suppliers who stock stock $C B$ equipment some of which is listed in the market survey, some supplied the information included in the listings. Some of the firms listed here have distributors in other areas and states, too numerous to mention. Omissions are not deliberate - but you should advertise your presencé a little more boldly.

ACE RADIO
AERO ELECTRONICS
AURIEMA
BATL ELECTRONIC SERVICES
BRIGHT STAR CRYSTALS
COMMAND AUTO ACCESSORIES
DEITCH BROS.
DICK SMITH ELECTRONICS

EDGE ELECTRIX
ELECTRONIC AGENCIES
FOUR WHEEL DRIVES
HACO
HAM RADIO SUPPLIERS
HOSE \& EQUIPMENT
INTAG MARKETING
LAFAYETTE ELECTRONICS M\&K COMMUNICATIONS
MS COMPONENTS
MOBILE ONE
NEW ELECTRONIC
PETER SHALLEY
RADIO DESPATCH SERVICE RADIO HOUSE PTY. LTD.

RADIO PARTS
 SIDEBAND ELECTRONICS SALES STRATO COMMUNICATIONS TANDY
 CHS TAYLOR WAREHOUSES TELEVIEW
 UNITREX
 VICOM
 WILLIS TRADING
 XENON WORLD IMPORTS

136 Victoria Rd, MARRICKVILLE 2004 NSW
Shop 13, 191 Ramsgate Road, RAMSGATE NSW
PO Box 604, BROOKVALE, 210060 Shannon St., BOX HILL NORTH 312935 Eileen Rd., CLAYTON11 Salisbury St. BOTANY11 Salisbury St., BOTANY 2019VIC
VIC70 Oxford St., SYDNEY 2010NSW
162 Pacific Highway. GORE HILL NSW
125 York Street, SYDNEY 2000 NSW
361 Hume Highway, BANKSTOWN NSW
166 Logan Road, Buranda, BRISBANE QLD
656 Bridge Road, RICHMOND VIC
and many distributors throughout Australia 31 Burwood Road, BURWOOD 2134 NSW
117-115 Parramatta Rd, Concord NSW.
304 Middlebrough Rd., BLACKBURN SOUTH VICPO Box 49, KENSINGTON, 2033
NSW323 Elizabeth Street, MELBOURNE 3000
11 Salisbury St, BOTANY 2019 VIC
42 Grantham St., WEST BRUNSWICK34 Sydenham Rd., MARRICKVILLE94 St Kilda Rd., ST. KILDA 3182
NSW
VICNSW
561 Pittwater Rd., BROOKVALE 2100 NSW
Redfern Street, REDFERN NSW
227 Victoria Rd., MARRICKVILLE NSW
57A The Centre, SEVEN HILLS 2147 NSW
554 Pacific Highway, KILLARA 2071 NSW869 George Street, SYDNEY 2000
306-308 Pitt Street, SYDNEY 2000 NSW
760 George Street, SYDNEY 2000 NSW
NSW562 Spencer St., WEST MELBOURNE 3003
23 Kurri St., LOFTUS 2232 VIC
25 Wentworth St., PARRAMATTA 2150 NSW
throughout Australia falmost)
169 Johnson St., COL LINGWOOD 3066 VIC
218 Chapel Street, PRAHAN 3181 VIC
414 Collins St., MELBOURNE 3000 VIC
139 Auburn Rd., AUBURN 3123 VIC
23 Whiting St., ARTARMON 2064 NSW
429 Murray St., PERTH 6000 WA
P.O. Box 33, WARRADALE 5046

606 CB

3 in 1 combination

In dash mount CB Transceiver, also has AM/FM stereo cassette player: wood grain/matt black finish. Package deal available with disguised electric antenna.

UNIVERSE SSB/AM

Acclaimed by U.S. truckers as being in the top bracket of rugged, reliable units.

Our tech. consultants can best advise the unit for you, mail orders welcome.
Trading in communications equipment since 1960

STRATO COMMUNICATIONS PTY. LTD.

MAIN OFFICE \& SHOWROOM
25 WENTWORTH STREET, PARRAMATTA. 2150
PHONE: 635-3370, 635-9856, 635-5569
TELEX: 24573.
Thursday night \& Saturday morning trading. Shop Ph. 635-3370

IIS Components

164-166 Redfern St, Redfern. P.O. Box 156, Redfern, NSW 2016. Ph: 69-5922 or 69-6912.

Be prepared with

SIDEWINDER 2

A slightly more sophisticated version of the Sidewinder 1. Has the same features of the above unit but has the addition of a Delta Tune plus/minus 1 kHz . Complete with Microphone and Lead \& Mounting hardware

SIDEWINDER 1

The ideal unit for the amateur C.B'er. Very rugged and fully guaranteed. Comes complete with Microphone \& lead. Features: SIP-RF Meter - PA-CB Switch - Squelch control - Indicator lamp On-Air, receiver - Built in Automatic noise limiter - Volume, on/off. Complete with mounting hardware.

All above units have a sensitivity of 0.5 uV
ACCESSORIES - ANTENNAS

100-R
100-R Trunk
Mount.
Overall length:
$431 / 2^{\prime \prime}$. Cable:
RG58U.52S
Type. Freq:
26.8.27.4
inciues coax
cable with
PL-259 plug \&
Allen keys.

100-P

100-P Trunk
Mount.
Overall length : 26". Cablén Type. Frea: $26.8-27.4 \mathrm{MHz}$ Includes coax cable with PL-259 plug \& Allen keys.

100-GM
100-GM Gutter Mount. Overall length RG58U-52Si Type. Freq. $26.8-27.4 \mathrm{MHz}$ includes coax cable with PL- 259 plug \& Allen keys.

SIDEWINDER 3

The best of the range. Has the following features: SIP-RF meter - PA-CB Switch - Squelch control Indicator Lamp on-air, receiver - Automatic noise limiter on-off - Delta tune - RF gain control Microphone gain control - Volume on-off. Complete with Microphone \& Lead and mounting hardware.
ALL ABOVESENT YOU MUST HOLD A LICENCE
POST $\$ 3.50$ PER
UNIT. TO OPERATE THESE RIGS

RF SIGNALIZER
(Mono-Hand All-Mode Type (AM.SSB.)
CBW1
5' Fibreglass Whip Antenna (Also avaliable yellow, green)
\$22
C/W base

- This Signalizer has a wide GAIN.ATT range which can be chariged in one operation.
- The RF SIGNALIZER: Can be changed from GAIN +15 dB to ATT -15 dB by

MAGNAVOX MV-50 CABINET KIT $\$ 69.00$
per pair + freight The top and bottom, both sides and back, are factory assembled there is little else left to do other than staining or olling. The innerbond, speaker grille cloth material
and vent tube is included. Cabinet wt. 30 lbs.

MAGNAVOX MV-50 SPEAKER KIT 10-40, 6-25, $2 x \times J 3$, 1 crossover system.

$\$ 79.95$

P\&PNSW $\$ 3.00, V, Q_{1}$ SA. T. $\$ 3.95$, WA $\$ 5.40$ Individual MV-50 components are avallable.

10.40	$\$ 25.95$	P\&P $\$ 2.50$
6.25	$\$ 17.00$	P\&P $\$ 2.00$
$\times 13$	$\$ 9.00$	P\&P $\$ 1.40$
Cross-over	$\$ 22.95$	$P \& P \$ 1.00$

136 Victoria Road, Marrickville, NSW 2024 Ph. 51-3845

WESTON 5 WATT C-B TRANSCEIVER

Great boat or moblle rig. Auto nolse limiter, squelch, A.G.C. over-mod. limiter. Low pass filter for bandwidth. Specs. T'mltter. Crystal locked, 5 watts input to RF stage. Freq. coverage, any 11 channels in 27 MHz band. Recelver. crystal locked, double supernet. 6.5 MC and $455^{\circ} \mathrm{Kc} 1$ is $3^{\prime \prime}$ speaker, dynamic mic. 50 ohm antenna. 20 t'slstors 8 diodes. 12 VOC operation Sensitlvity, 0.5 UV 10 dB S6n. Size $61 / 2^{\prime \prime} \times 21 / 2^{\prime \prime} \times 7^{3 / 4^{\prime \prime}}$. Wt. $41 / 2 \mathrm{lbs}$.

$\xrightarrow{\text { 1) }}$

GARRARD
 MODEL 82

$\$ 57.00$ P\&P NSW $\$ 2.50$ interstate $\$ 3.50$
A superb 3 speed transcription changer/player auto/ manual operation. 4 pole magnetically shleided syn. motor. Reslliently mounted, Counterbalanced. Elegant tone arm with sllde-in cartridqe carrler callbrated. Antiskate, 265 mm ($10^{\left.1 / 2^{2 \prime}\right)}$ aluminlum platter. Cue and pause control. Cartridge tilting lever. Magnetic cartrldge diamond stylus, Size $375 \times 335 \times 170 \mathrm{~mm}\left(143 / 4^{\prime \prime} \times 13^{1 / 4^{\prime \prime}}\right.$ $\left.\times 614^{\prime \prime}\right) 4.5 \mathrm{~kg}$ (10ibs).

9 BAND PORTABLE RADIO

Battery - 240V AC Solid State
Special Features Push button band selector. Sliding volume, tone, squelch controls. Time zone dial. World map. 2 telescopic antennas. Twin speaker.
FIne Tuning Band 1: 535 . FIne Tuning Band 1: 5351600 kHz . ${ }^{2}$ M Marine 1.5 . 4 MHz. 3: SW1 HAM 4-6 MHz 4: SW2 6-12 MHz. 5: Police $\begin{array}{ll}30-50 \\ \mathrm{MHz} & \text { 6: FM 88-108 }\end{array}$ MHz. 7: VHF Aircraft 108 145 MHz 8: VHF2 Pollice 162.5 MHz .

SUPER SPECIAL \$52.95
P\&PNSW $\$ 1.50$ Interstate $\$ 3.00$

Available Ex-Stock

- CB Aerials for Marine, Mobile, Base Station Walkie-Talkles - Communication Recelvers - Transcelvers Accessories.

$38 \mathrm{~cm} / 15^{\prime \prime}$ E-Tone

 Loudspeaker by AWA 100 Watts RMSFor Bass Gultar, Organ, Guitar. 5.1 cm Voice Coll Dia. 6.1 kg Magnet, Frea. Response, 40-5000 Hz . Wt. 9.5 kg .

ONL.Y $\$ 117.00$ plus freight.

SUPER CLOCK FROM TECHNIPARTS

New from National

MA1010A

* Same as Popular MA1002B except with $.84^{\prime \prime}$ Digits
- 50/60HZ Operation
* Price $\$ 23.50$ Post Free
* Transformer JT197 \$6.50 Post Free

TECHNIPARTS LOW COST CRYSTAL TIMEBASE KIT

* Using National MM5369 3.58 MHZ to 60HZ Divider
* Includes PCB, Crystal, Divider, Trimmer etc.
* PCB has allowance for $\div 6$ and $\div 10$ Counters also TTL buffered output = $3 \mathrm{I} \mathrm{C}^{\prime} \mathrm{S}$.
* Great to use with Clock Modules, Timers etc.
* Power Supply 3-15VDC

PRICE: $\$ 6.75$ Post Free
$1 \mathrm{HZ}+10 \mathrm{HZ}+$ TTL Out Option $\$ 3.20$ extra

NATIONAL MA1003 CAR CLOCK MODULE

* 12VDC operation
* Maintains Timekeeping Down to 5VDC
* Display Blanking with Ignition off Draws 5MA.
* Draws 100MA with Ignition on.
* Just add 3 switches + DC 12V.
* On board 2 MHZ crystal.

PRICE $\$ 32.00$ Post Free.

Project 804

selectr came

> Many readers have asked us to design a gun project for the Selecta-Game. However this is not economically worthwhile if designed to our standards. Here we look at a commercially-available gun and give sufficient details for the experimenter to build up a similar unit.

SINCE PUBLICATION OF THE TV game project in November 1976 many thousands have been built by our readers. Many of these people have asked us to publish the rifle circuit for use with this unit. The trouble with designing a rifle or gun is that it involves mechanical work and optics. Also the quantity of light obtainable from the TV screen is very small and the dif. ferential between being on-target and off is very small.

We had therefore decided not to publish a rifle project but then Dick Smith gave us a plastic gun which included a pickup transistor and a lens.

What we have presented here is the gun and the circuit used in a commercial unit and it does work. Its limitations are that it will work only over a short range (about 1 metre) and the sensitivity control is extremely sensitive. Due to these limitations we decided not to present this as a complete project as we normally do but we are just printing the circuit to allow you to decide on your own means of construction.

If better optics are used longer range and less critical adjustment should result.

Modifications

The control pots on the Selecta-Game wear out quickly in continuous use unless wire-wound types are used. How. ever, wire-wound pots of the correct value are not readily available, so we

have designed a circuit which will allow 10 k pots (which are easily obtained) to be used. This involves modifying the game to add two transistors, two diodes and four resistors.

Some of the ICs do not like to
operate on 6 V and as the batteries do not last long this has proven troublesome. Therefore we suggest you use a 9 V battery (or $6 \times 1.5 \mathrm{~V}$ cells). This may change the internal adjustment slightly, necessitating re-alignment.

Fig 1. Circuit diagram of the gun.

PARTS LIST TV GUN	
Resistors all $1 / 2 \mathrm{~W} 5 \%$	
R1	39 k
R2	68 k
R3	39 k
R4-R7	68 k
R8	10 k
R9	470 k
R10	1 M
RV1 Po	10 k lin rotary
Capacitors	
C1	100 n polyester
C2	1 nO -
C3	100 n ${ }^{\text {n }}$
C4	$4 \mu 716 \mathrm{~V}$ electro
C5	100 n polyester
Semiconductors	
Q1	MEL 12*
Q2,3	BC548
D1-D3	1 N914
1 C 1	4001 (CMOS)
* Q1 is part of gun.	

Fig 2. Modified circuit to allow wirewound potentiometers to be used.

- Trading Hours - 12.00-6 pm Mon-Fri. 8.30-1 pm Sat. Mail Orders - P.O. Box 1005 Burwood North 2134 Post \& Pack - Add 15\% up to $\$ 25$ order value. 10% over. Minimum Order Value - $\$ 5.00 \mathrm{C} .0 . \mathrm{D}$.'s Send $\$ 3.00$ pre-paid Prices \& Availability - O.K. as at 9/2/77.

KITS FOR ETI PROJE(TS

We get many enquiries from readers wanting to know where they can get kits for the projects we publish. The list below indicates the suppliers we know about and the kits they do.

Any companies who want to be included in this list should phone Steve Braidwood on 33-4282.
Key to companies:
A Applied Technology Pty. Ltd. of Hornsby, NSW.
C Amateur Communications Advancements, PO Box 57, Rozelle, NSW.
D. Dick Smith Pty. Ltd. of Crows Nest, NSW.
E E.D. \& E. Sales, Victoria.
J Jaycar Pty. Ltd. of Haymarket, NSW.
L Delsound Pty. Queensland.
N Nebula Electronics Pty. Ltd. of Rushcutters Bay, NSW.
O Appollo Video Games of Hornsby, NSW.
P Pre-Pak Electronics of Croydon, NSW.

PROJECT ELECTRONICS

ETI 043
Two-Tone Doorbell.
ETI 061
ETI 064
ETI 066

TEST EQUIPMENT

ETI 101	Logic Power Supply
ETI 102	Audio Signal Generator ... E, D
ETI 103	Logic Probe E
ETI 107	Widerange Voltmeter
ETI 108	Decade Resistance Box
ETI 109	Digital Frequency Meter
ETI 111	IC Power Supply
ETI 112	Audio Attenuator.
ETI 113	7-Input Thermocouple Meter .P, E
ETI 116	Impedance Meter E
ETI 117	Digital Voltmeter E, A
ETI 118	Simple Frequency Counter E, A
ETI 119	5 V Switching Regulator supply. E
ETI 120	Logic Probe L, E
ETI 121	Logic Pulser L, E
ETI 122	Logic Tester E
ETI 123	CMOS Tester
ETI 124	Tone Burst Generator E
ETI 128	Audio Millivoltmeter L, E
ETI 129	RF Signal Generator L, E
ETI 131	General Purpose power
ETI 132	Supply Power Supply E, N

SIMPLE PROJECTS

ETI 206
ETI 218
ETI 219
ETI 220
ETI 222
ETI 232
ETI 234
ETI 236
ETI 239

MOTORISTS' PROJECTS

ETI 301 ETI 302 ETI 303 Brake-light Warning. ETI 309 Battery Charger ETI 312 CDI Electronic Ignitio
ETI 313

Car Alarm

AUDIO PROJECTS
 ETI 403
 ETI 406 Guitar Sound Un
 ETI 407 Bass A 408 R
 ETI 410 Super Stereo.
 ETI 412 Music Calibrator.
 Amp w. P,L,E,J,D
 ETI 413×200 Watt Bridge AmpE
 ETI 414
 ETI 416 ETI 417
 ETI 419
 ETI 420 E
 ETI 422
 ETI 422B
 Stage Mixer 25 Watt Amplifier.
 Amp Overload Indicator
 Guitar Amp Pre-Amp. SQ Decoder
 P,E, E
 International Stereo Amp L, E. $\frac{\mathrm{E}}{\mathrm{D}}$ Booster Amp 50 Watt Powe
 Add-on Decoder Amp
 Spring Reverberation Unit:
 Rumble Fitter
 Graphic Equaliser \quad, \quad,
 Microphone Line Active Crossover
 Crossover Amp
 Audio Level Meter
 Simple 25 Watt Amp
 Audio Nolse Generator Compressor-Expander
 Compressor-Expa
 Five Wat Preamp.
 Audio Limiter
 Phaser
 Balanced Mic Preamp
 $50 \mathrm{~W}, 100 \mathrm{~W}$ Power Aimp
 Preamp Module
 Preamp Module.

 MISCELLANEOUS
 | ETI 502 | Emergency Flasher $\ldots \ldots .$. | |
| :--- | :--- | :--- |
| ETI 503 | Burglar Alarm | $\ldots .$. |
| ETI | 05 | Strobe |
| ETI | 06 | Infra-Red Alarm. |

ETII 509 ETI 512 ETI 514 ETI 515 ETI 518 ETI 522 ETI 523 ETI 525 ETI 526
ETI 527

ETI 528 ETI 529 ETI 533 ETI 534 ETI 539 ETI 540 ETI 541
ETI 543
ETI 544

ELECTRONIC MUSIC

ETI 601
4600
3600
ETI 602
Synthesiser.
Mini Organ. : E A J

ELECTRONIC GAMES

CASH-MORE ‘SOUNDOUT-DISCO 77’
 LEADERS thROUGHOUT AUSTRALIA FOR QUALITY

SOUND - DISCOTEQUE - LIGHTING SALES - HIRE - SERVICE - INSTALLATION

Free Demonstrations - Quotations - Brochures - Showroom - Offices
149-151 Georges River Road, Croydon Park, NSW 2133 Telephone Sydney 798-6782 798-5647

LIGHTING

- Dimmer racks - remote control desks
- Patt $23-23 \mathrm{~N}-60-793-765$
- Parcan sealed beam units
- Colourgram 44 dimmers cross fade duo fade, etc.
- Strobolight controllers control of 3 or 5 strobes - Superfreeze flash II strobes
- Mini strobes
- Maxi strobes
- 10 meter ropelights 4 sep. colours R.B.G.Y.
- SAC 4 chaser W/auto-sound (sound to light chasers)
- Pluto Zeromatics (auto sound to light seq.) - Auto trilights
- Reflector panel 15 designs
- Spare lamps for all projectors, etc.
- 8 colours - coloured 100 watt lamps - UN lamps complete or separate

New equipment arriving March '77.

DISCO'S \& ACCESSORIES

- Professlonal discotheque portable units.
- Series IIIA stereo (2×170 watt).
- Series III stereo (2×170 watt)
- Series III mono (170 watt)
- Series IV mono (170 watt)
- Mlrror balls $12^{\prime \prime}-18$
- Rotators
- Dry Ice fog machines
- Solar 100B-250 projects
- Colour wheels 6
- Colour cassette $3^{\prime \prime}$ wheels
- Prisms, rotators, etc.
- Kodak carousel slide projectors
- 81 various slides for carousel
- Jingle machines
- Microphones - Shure \& AKG
- Mic stands
- Slave amplifiers
- H/H P.A. Amplifiers
- H/H guitar amplifiers
- Fender amplifier, etc.
- Speakers, etc.

IT'S NEW FROM 'SOUNDOUT'

Series IIIA Stereo

 - Loudness SWI - 2×170 watt inbullt rug. ged amplifiers. - Plus all facilities of series III stereo.
-Fibreglass housing -
red \& white

- New cue lights.
- Garard 12558 belt drive ttables.

SO WHAT IS THIS RISTON PROCESS FOR MAKING PRINTED CIRCUIT BOARDS?

RISTON is a dry, photosensitive polymer film that has been developed and patented by Du Pont.
A film of RISYON is laminated to blank copper-clad board along with a protective layer of transparent Mylar. A negative of the required printed circuit board pattern is placed over the pre-coated board and then exposed to a source of ultraviolet light such as sunlight, UV lamp or UV fluorescent tubes. The Riston polymerises (hardens) where it is exposed, and made insoluble to the developer.
Following exposure, the protective Mylar film is removed and the board placed in a bath of proprietry developer. This dissolves the Riston where it was not exposed (i.e.: under the opaque areas of the negative). Following development, any necessary retouching may be done (very rase- unless negative is fautly) and then the board may be etched. The Riston is totally impervious to any of the etching techniques. Once the board is etched, the hardened Riston may be removed from the tracks by placing the board In a bath of propreitry stipper or stipping with common acetone.
Riston is a dry film and the p.c. board blanks are supplied already coated in a light-tight wrapping. Riston-coated boards may be handled breifly in low, indirect llghting or with complete safety under yellow 'sate' light.
Processes involving liquid photo-resists require much more preparation and skill or experience to produce good results.

- Get Into this great way of making your own P.C. Boards NOWI Get professional results wath minimal skifl and effort. Suitabla for both hobproiessional resulis with minimal siall and erofessional users. Send S.A.E. for introductory leaflet and catalogue/price list.
- We sell a range of stock slzes of pre-coated single and double-sided boards as woll as chemicals and etchant. Elther of our two 'stand ard' packs will get you started.

HOBBYPACK

For hoobyiss/beginners; contains:

- One standard Board Pack of Litre Developer One standard $80 a r d$ Pack of Litro Develop
o 500 ml Stripper 0500 gm Etchant o instructions $\$ 13.95$

CIRTEK
 P.O. B0× 57 ,
 ROZELLE, 2039

(sent freight collect; packed weight about 4 kg).

Liquid resists generally require a longer exposure time than Riston. Getting proper exposure with an unevenly coated board is tantamount to magic with liquid resists!
Riston is quite tolerant of imperfect technique (providing you err on the side of overexposure). Hrotessional results are readily achieved with minimal skill. Riston is a uniform coating with controlled characteristics and large latitutde In exposure and development stages.
The Riston process saves time and reduces wastage - saving money. The pre-coated board is ready to expose; no mixing of solutions, coating, baking or post-baking - and no cleaning the board. The Mylar cover sheet protects the pre-coated board during handling. Riston is dyed red so that Inspection of the developed board is easily made. The proprietry developer and stripper (Du Pont products) are bio-degradable, and may be disposed of after use by diluting and treatina them as ordinary effluent. One litre of developer will develop approximately $9 \mathrm{~m} \mathrm{sq}(10 \mathrm{ft} . \mathrm{sq}$) of single-sided Riston coated board. Half a litre of stripper will strip about the same area of exposed board. The developer may be stored under refrigeration for more than 12 months without deterioration. Riston pre-coated boards may be stored for a similar period.

LABORATORY PACK

For labs, prototype production, ate., conlain: - Five $200 \times 250 \mathrm{~mm}$ S. S. Boards o 1 Litre Developer - 500 ml Stripper 0500 pm Etchant o Instructions.

\$21.75

(sent freight collect; packed weight about 5 kg)

PENXANT HILLS. 2120

"SPECIALS" ORDERED

CB

23 Channel Mobile Transceiver (SR-76)
Our main claim to fame which very few of our competitors can boast about is that we will order "special parts" in for you, (provided they meet our suppliers minimum requirements) which are not normally stocked by other firms such as ours.
Just send us a letter explaining your requirements and we will furnish you with availability and price as soon as practicable (about two days).

But remember, you can still purchase all your "easy to get" goodies from us at very, very reasonable rates.

[^5]
ONLY \$83

This machine for this glve away price has got to be the best CB deal in Sydney. Just read these features - but remember - a limited quantlty only availabio. This unit is a compact. all-transistorised, 23 channel AM Cltizens Band Transceiver. This model. Decause of its low current drain, is Ideally suited for mobile operation from IVV negative or positive ground DC power source. The receiver has a sensitive superhelerod yne circult with IC power amp featuring: Dual conversion. low noise RF stage, adjustable squelch, automatic noise limiting, S meter, ceramic fliter, external jack plus internal speaker, and Instantaneous selection of any of the 23 erystal conirol led channels. The transmititer final is a conservatively rated high gain RF power transistor.
Specfications: General: 23 erystal controlled channels size $5^{\prime \prime}$ (W) $\times 17 /^{\prime \prime}$ (H) $\times 7 \mathrm{y}_{4}{ }^{\prime \prime}$ (D), weight 2.5 lbs . Antenna impedance 50 ohms. Power 13.8 V DC (Negative or Positive Ground).
Recelver Specs: Frequency Range 26.965 MHz to 27.255 MHz , sensitivity I uV at $6 \mathrm{dBS} \mathrm{S} / \mathrm{N}$, Selectivity 60 dB band wid th 20 kHz . Spurious rejection 60 dB min . Squelch range adjustable from 1 uV to 1000 uV . Automatic Noise Limiter, Ist i.F frequency 0.6 minz cenie requency. 2nd i.F. Frequenc ${ }^{4} 55 \mathrm{kHz}$.
3 diam:
Transmitter Specs: Frequency Range 26.965 MHz to 27.255 MHz . Output Power 3 watts into 50 ohms with 13.8 V DC power supply, Frequency Tolerance 0.005 percent $\left(-30^{\circ} \mathrm{C}\right.$ to $+65^{\circ} \mathrm{C}$) Modulation Capability more than 80 . Spurious and Harmonles Suppression - 50 dB minimum.
Model SR-76 Shlgma Transceivers only $\$ 83$.

STANDEY!
FOR MY BRAND NEW 1977
CATALOGUE WITH HUNDREDS OF
NEW LINES - IN MAY ELECTRONICS
AUST. DON'T MISS OUT. ORDER
YOUR COPY NOW.

PROFESSIONAL GEAR AT AMATEUR PRICES!

NOW
$\$ 300$
Reduced $\$ 45$

The famous Drake SSR-1 Wadley Loop receiver offers coverage from broadcast to 10 merres in 30 runeable ranges. Dial accuracy is within 5 k Hz ; receiver is a
triple conversion circuil ($45 \mathrm{MHz}, 2-3 \mathrm{MHz}, 455 \mathrm{kHz}$) with 0.3 UV serisitivity. 3 way power, 240 V , exs 12 V or internal batteries. An ideal professional receiver!
 YE5! IT WILL PICK UP CERS TOO

EXPERIMENTERS

 DRILL SPEEDCONTROL KIT

Simple dig. clock

RADIO DIRECTION FINDER

WITH LW AM CB FM \& VMF TOO! It's an incredibly versatite little receiver -
Ir's much more than thatl A very accurate ir's much more than that A very accurate
direction flinder which works on beacons AM broadcast stations (Hans Tholstrup and EOUIVALENT
use it, think how handy one of
these would be as an emergency tack-up in a plarve, boast, etc.
Very easy to usel cat 0.2820 . S
 UNIVERSAL
Speaker Kit N.S.W. Branches: GORE HILL-162 Porik Mighwoy, 4395311. DICK SMIIH ELECTRONICS GROUP

SYDNEY- 125 Yock St., 291126 . BANKSTOWN - 361 Hume Hwy. 7096600 Interstate Brant alD. - 166 logen Rd. Buronde. 3916233.

SHOP MOUAS

Iw postal chances

$\$ 25$	$\$ 49.99$
$\$ 50$	$\$ 90$

SPITFYRE I-D-I*

NEW PRICE WILL BE WELL OVER $\$ 22.001$
Hf10: - Inductive dischange innition (not just another COI)

simple am Tuner

project electronics

Abstract

One of the most exciting projects for the beginner to build is a broadcast-band receiver. If you have already built the ETI 061 amplifier then you are half-way there.

THIS SIMPLE YET VERY effective AM radio receiver is intended to be used in conjunction with our ETi 061 amplifier - published in this Project Electronics series in October 1976. The radio may also be connected to any existing hi-fi amplifier or system.

Unlike most simple radios, this unit has its own inbuilt antenna. This consists of a ferrite rod approx 6 mm in diameter and between 100 mm and 200 mm in length.

To make the antenna simply wind about 75 turns of 26 SWG insulated wire neatly around one end of the rod. Secure the ends of the winding with sticky tape.

The tuning range covered depends on the value of the tuning capacitor and the number of turns wound around the ferrite rod. Most tuning capacitors adjust from $0-415 \mathrm{pF}$ and our coil was wound to suit one of these. Tuning capacitors adjustable from $0-180 \mathrm{pF}$ are also in common use and if you use one of these simply wind on about 30% more turns.

To raise the highest tuneable frequency simply remove turns. As an interesting experiment why not wind on more turns than you know you need (start with 100 or so) and then remove five turns at a time to see what happens.

We have added an optional feedback circuit to this radio. This circuit increases the radio's ability to separate stations that are close together in frequency. It also increases the amplification of the circuit.

In many areas this part of the circuit will not really be required - it can be

omitted at first and then added if the radio will not adequately separate stations.

The components concerned are:Resistor R1.
Potentiometer RV2

Capacitor C3

T2 - two turn coil on ferrite rod.
If the feedback circuit is not used simply omit the above components. If it is used T2 should be made by twisting a couple of turns of wire around the ferrite antenna rod at the opposite end from the main coil.

General construction is straightforward as long as the layouts shown here are used. The unit should be
assembled on Veroboard or pc boards - it is not advisable to try to build it using tag strips or other methods.

When housing the finished project do remember that radio waves won't readily pass through metal - so make the enclosure out of wood - or use a suitable plastic case.

Potentiometer RV1 is an 'RF gain' control. Both this and the feedback control potentiometer (RV2) should be turned up until slight distortion is heard - and then backed off a little bit. In practice it will usually be found that RV2 will not need resetting once the initial optimum point has been found.

The output from the receiver appears

Fig 1. Circult diagram of the tuner.

How It Works - ETI 062

The antenna coil and the tuning capacitor form a resonant circuit which has a low impedance all frequencies except that of the station that is to be received, thus the antenna picks up all signals but only the particular signal required will appear at the gate of Q1.

Transistor Q1 is a 'field effect transistor'. Field effect transistors (often abbreviated to FETs) have a very high input impedance. The one used here is connected as a 'source follower' the voltage at the source follows the voltage at the gate except that the source voltage is about two volts dc higher. The purpose of this FET is to act as a buffer between the antenna coil and the rest of the circuit.

Transistor Q2 is used simply to remove any load from Q1 - necessary to prevent Q1 oscillating. The voltage gain of the circuit is unity up to the emitter of Q 2 .

Transistor Q3 amplifies the signal from Q 2 and, due to the bias point chosen plus the action of capacitor C5, acts as a detector (it rectifies the signal). This has the effect of blocking the radio-frequency signal - the signal passed on to the next stage is an audio waveform which corresponds to the audio signal fed in to the transmitter at the radio station.

The signal at this point is still quite small so transistor Q 4 provides additional amplification.

To avoid the cost and complexity of automatic gain control we have instead included a manual RF gain control.

A small portion of the signal from O 2 is fed back to the antenna via C 1 and the two turn coil. This increases receiver sensitivity. The radio will oscillate if RV2 is turned up too high maximum sensitivity occurs just before oscillation.
across the point marked 'audio output' and the 0 V line. A screened lead and suitable jack plug should be connected to these points so that the radio signals may be fed into the ETI 061 amplifier - or your home hi-fi system.

A volume control may be added by connecting the output of the radio to
the amplifier via a potentiometer (anything between 10 k and 50 k wil! do).

Battery voltage is not critical - the radio will work well from any voltage from about 9 V to about 15 V .

This is an essentially simple circuit and if built as shown should work first

PARTS LIST ETI 062

R1.	Resistor	4 k 7	$1 / 2 W$	5\%
R2		120 ohms	s"	"
R3	"	560 k	-	"
R4	"	47 k	"	"
R5	"	5k6	"	"
R6	"	68 k	"	"
R7	"	10 k	"	"
R8	"	3k3	-	-
RV1	Potentiometer			
RV2	..	$\begin{aligned} & 1 k \\ & 22 k \end{aligned}$		rotary rotary

C1	Capacitor	$100 n$	disc ceramic
C2,3		1n0	ceramic
C4	"	1μ	$16 \checkmark$ electro
C5	"	4 n 7	polyester
C6		1μ	16 V electro
C7	"	4 n 7	polyester
C8	"	470μ	16 V electro
01	Transistor	2N545	
02		BC557	558 or 559
Q3,4	"	BC547	548 or 549
CV1	Variabl	capacit 0-41	$\begin{aligned} & \text { or } 0.180 \text { or } \\ & 5 p \end{aligned}$
Aerial PC bo	$d \text { d ETI } 062$		

time. If the unit does not work check all connections, particularly transistor connections, check that the tuning capacitor's moving vane is not shorting to the fixed vanes. If the feedback circuit does not seem to work - reverse the two-turn coil on the ferrite rod.

Fig 3. Printed circuit board layout for the tuner. Full size $90 \mathrm{~mm} \times 50 \mathrm{~mm}$.

Fig 2. Component overlay using the PCB.

Fig 4. Component overlay for the Veroboard version. Note the two links required.

 TECHNDLOGY ETI 632 VIDEO DISPLAY TERMINAL

Now available: complete terminal described in March ETI. This is an ideal project for home computer builders as it offers long term flexibility. Start with a keyboard operated TV typewriter and later convert it to a computer controlled graphics terminal as well.
Now with a BUILT IN MODULATOR as well as direct VIDEO for maximum convenience. Modulator will operate orr any unmodified TV by developing a signal at the aerial inputs.
We supply this project as a set of individual component kits - each complete with all components, PCB and Molar connectors. You can build it on a board by board basis or attack it as a complete project. Our full service and technical support is available (see below).
PACK 1 632 A, B CONTROL LOGIC $\$ 29.50$ PACK 2632 C CHARACTER GENERATOR $\$ 29.50$ $\begin{array}{llll}\text { PACK } 3 & 632 \mathrm{M} & 1 \mathrm{~K} \times 8 \mathrm{MEMORY} & \$ 3.50 \\ \text { PACK } 4 & 632 \mathrm{BB} & \text { MOTHERBOARD }\end{array}$
PACK 4632 BB MOTHERBOARD lincludes Moler pins hookup wire for all modules but not power supply components $\$ 20.00$

PACK 5632 PS POWER SUPPLY (for Motherboard) $\$ 5.25$

PACK 6632 U SERIAL INTERFACE $\$ 21.75$
PACK 7633 SYNC GENERATOR (now with built in modulator and direct videol

"BABY" 2650 SYSTEM

(EA MARCH 1977)
By special arrangement with Philips Elcoma we can now offer this simplest and lowest cost way of getting to know the 2650 Microprocessor. The kit comes complete with all components (including sockets for all 1C's) and extensive documentation.
As an exclusive service we include our own notes on programming the 2650 together with programs for you to run. We also supply technical applications notes detailing how vour "baby" system can be expanded to include more RAM and fully buffered parallel I/O parts.
Our full technical support service applies.
SPECIAL OFFER
EA 2650 KIT \$75.00*
(packaging \& certified post
$\$ 2.50$ extra)

SCMPIO:
 LOW COST I/O FOR SC/MP

The SCMPIO kit now provides SC/MP INTROKIT (or "BABY" 2650) users with a low cost input/output capability. This is a great kit if you don't have ready access to a teletype or VDU. It is an ideal teaching aid, learning and development tool for hobbyists, professors, students and electronics entrepreneurs at all levels.
The SCMPIO can be readily expanded to include keyboard control, HEX output display, paper tape loaders and even computer output control units.

SCMPIO KIT \$49.50
(plus $\$ 3.50$ post pack \& insurance)
SC/MP INTROKIT WITH SCMPIO \$139.50
(plus $\$ 3.50$ post pack \& insurance)

TECHNICAL SUPPORT \& WARRANTY SERVICE

All Applied Technology HOBBY KITS are covered by our exclusive 90 day warranty against faulty components and packaging (full details with each kit).
Yet another exclusive is the full technical support service. If you are unable to make your HOBBY KIT operational, help is just a letter away. If you do have to return any KIT for factory attention, it will be repaired for a nominal service fee.
We regret we are unable to service kits purchased from other retailers. All kits are on display at our Factory Showroom.

Personal callers welcome - Weekdays 9-5.30
Saturdays $8.30-5.00$

STI APPLEO ANPLOGY PTY. LTO.

 ELECTRONIC COMPONENTS

 ELECTRONIC COMPONENTS

 BY POET

 BY POET}

PRINTED CIRCUIT BOARDS

All boards top quality fibreglass etched and drilled. Items marked D are double sided.

ETI PROJECT KITS

Save time, save money, save hassels. Kits include all components as detailed in magazine parts list (except where noted) and also a top quality fibreglass PCB etched and drilled ready for assembly.
482 A Preamplifier Module $\quad \$ 17.50$
482 B Tone Control 18.50
480/50 W 50 W Power Amp
17.50
(Heatsink \$4.00 Extra)
480/50 W 100 W Power Amp
19.75
(Heatsink $\$ 4.00$ extra)
480 PS Power Supply
17.50
(Transformer PF 3577 \$18.75)
633 VDU Synch Generator
13.75

632 VOU $1 \mathrm{~K} \times 8$ Memory Card 32.50 631 VDU Keyboard Encoder 29.50
(Keyboard subject to availablity $\$ 49.50$)
066 Temperature Alarm (no battery or loudspeaker)
3.20

449 Balanced Microphone Amplifier $\quad 4.75$
061 Simple Amplifier (No loudspeaker) 5.50 064 Intercom(use your own loudspeakers)6.50 044 Two Tone Doorbell (no loudspeaker)4.00 043 Heads or Tails
3.50

068 Led Dice

711 B Single Relay Remote Control (Relays 3.50 each extra) 711 C Double Relay Remote Control (Relays 3.50 each extra) 711 R Receiver (27 MC Xtal Xtra) 711 DR Remote Control Decoder
711 AR Remote Control Transmitt
11.75 19.75
(does not include switches, box aerial 22.50 544 Heartrate Monitor 15.00 (does not include meter on box)
haser 10.7
(does not include case or footswitch)
602 Mini Organ
25.00

446 Audio Limiter $\quad 8.75$
533 Digital Display (12V operation) 19.50
543 Double Dice
15.75 (add your own case)
445 General Purpose Preamp
5.00

We expect to stock PCB Project Kits for all ETI Projects and the more popular EA Projects. Please ask for a quotation.

FREE WALL CHART

ELECTRONIC COMPONENT SELECTOR GUIDE
An invaluable aid for the electronic enthuiast. We have produced this Wall Poster so that you can select at a glance from our extensive range of components.

TTL - CMOS - OPTO ELECTRONICS LINEAR - TRANSISTORS - DIODES LOW POWER SHOTTKY TTL -
MICROPROCESSOR COMPONENTS -
RESISTORS - POTENTIOMETERS -
CAPACITORS - SWITCHES - PROTYPE
EQUIPMENT - IC SOCKETS - PROJECT
KITS - WIRE WRAPPINGS.
Free with all mail orders or send $40 c$ to cover postage.

SOCKETS

Low Profile Tin
Wire Wrap

8 PIN	.40	
14	.45	
16	.50	
18	.55	
22	.90	
24	.95	
28	1.35	
40	1.65	
25 PIN STRIP	1.20	

WIRE WRAP WIRE

$30 \not$ Kynar Wire in 50^{\prime} spools
$\$ 3.25$
Specify colour
White-Yellow--green-red-blue-black

WIRE WRAP
 HAND TOOL

Hobby Wrap 30韩s ideal for the home constructor. Solid metal construction precision made. Suits 30 \# wire
WRAPS - STRIPS - UNWRAPS
Full instructions with each tool
$\$ 7.80$

TRANSISTORS

BC107/547	.25	2N3055	1.00
BC108/548	.25	2N6577	2.50
BC109/549	.25	2N3442	3.50
BC177/557	.25	40411	3.50
BC178/558	.25	2N3638	.45
BC179/559	.25	PN3643	.50
BC639	.60	2N3644	.45
BC640	.60	2N4220	1.20
BD137	.85	MPF102	.70
BD138	.85	2N5459	.75
BD139	.90	2N5461	.85
BD140	.90	2N5485	.90
BF180	1.24	2N6027	1.30
MU10	.65	2N2646	1.50
MJ2955	1.70	MPSA12	.80
MPF131	1.20	MPSA14	.90

LINEAR INTEGRATED

These useful circuit elements have come a long way since the original 709 was developed.

| 301 | .75 | 381 | 2.40 | 565 | 2.35 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

307	.85	382	2.40	566	2.50

$\begin{array}{llllll}308 & 1.95 & 386 & 1.95 & 567 & 3.80\end{array}$
$\begin{array}{llllll}324 & 2.85 & 536 & 3.95 & 709 & .75\end{array}$
$\begin{array}{rrrrrr}339 & 3.20 & 540 & 3.50 & 741 & .60 \\ 349 & 2.25 & 555 & 70 & \text { VAA } 170 & 3.00\end{array}$
$\begin{array}{llllll}389 & 2.25 & 556 & 1.80 & \text { VAA180 } & 3.00\end{array}$

OPTO ELECTRONIC

50235 mm RED LED (Diffused) with mitg Clip
LD41A 6mm RED LED with Clip
而 $\quad .30$
LD55A 6 mm YELLOW LED with Clip .40
LO241 Infrared LED 2.50
LD461 Miniature RED LED PC Mounting
.45
MEL12 Photo Darlington Transistor 1.50
NCT200 2000 V Isolation OPTO Coupler 1.60 NSN71 $0.3^{\prime \prime}$ Common Anode Display 2.50 NSN74 0.3" Common Cathode Display 2.60 NSN73 $0.3^{\prime \prime} \pm 1$ Format Display 2.60
NSN61 $0.6^{\prime \prime}$ Common Andore Display 3.50
NSN64 0.6" Common Cathode Display 3.50
FND500 0.5" Common Anode
2.50

Minimum Order $\$ 5.00$
Please add .75c towards Post \& Packing

QTS TECHNOLOGY
 TECHNOLQGY.

THE ELECTRONIC MAILBOX
P.O. BOX 355 HORNSBY 2077 PHONE 4764758

тасно

project electronics

Car tachometer circuits are generally complex and expensive devices. But here's one that can be put together for only a few dollars!

UNTIL TEN OR SO YEARS AGO,

 car tacho's were cumbersome mechanical devices usually driven via a flexible cable from skew gearing attached to the shaft of the vehicle's dynamo - or sometimes via the distributor shaft.The advent of transistor technology changed all this and since then almost all car tacho's are electronically operated.

The basic principle is much the same for all electronic tacho's an electrical signal taken from the low tension side of the distributor is converted into a voltage proportionate to engine rpm and this voltage is displayed on a meter calibrated accordingly.

Most car tacho's are complex and expensive devices - but here's one with a differencel It is simple yet extremely effective. Its simplicity is due to our using one single integrated circuit rather than the more conventional multiplicity of individual transistors.

The unit will operate on both positive and negative earth vehicles and will also operate successfully and without modification with most types of electronic ignition systems as well as the more common electro-mechanical systems.

Construction

As there are so few components, construction is very simple and straightforward. Do make sure though that the 555 IC is soldered in the right way round - ditto the two diodes. Compare your work against our layout drawing as a final check.

Any type of meter that has one milliamp full scale deflection can be used. This is a very common type of instrument and you should be able to obtain

one new or secondhand with no difficulty. Ideally you should choose one that has 180° or 280° movement but these tend to be rather expensive. The meter size should be chosen to suit your proposed housing.

When the meter has been assembled connect it to the vehicle's battery and connect the input to the contact breaker side of the coil. The only satisfactory way to calibrate the unit is to persuade a friendly garage to connect up their own tacho at the same time and compare readings - or to check the unit on another car already fitted with a tacho. If you do it the latter way bear in mind that if yours is a four cylinder car then you must check using another four cylinder car, etc.

Another but slightly less satisfactory way of calibrating is to ascertain, from the vehicle's specification, the engine
speed per thousand rpm in top gear and calibrate accordingly.

Potentiometer RV2 is used to adjust calibration - the value specified provides a range of adjustment suitable for virtually all vehicles. The adjustment is, however, rather coarse. If the tacho is to be exclusively on one vehicle it is possible to reduce the value of RV2 to 25 k or lower. If this is done it will probably be necessary to increase the value of R4 accordingly.

Before making the final calibration adjust RV1 to eliminate any false triggering - check at all engine speeds. This unit may be used with either positive or negative earth vehicles - simply connect the battery leads as shown. Note however that this unit cannot be used with 6 volt systems - so for those owners of early model VWs and BMWs we're sorry but....

Fig. 1. Circuit diagram of the tacho.

Fig. 2. Printed circuit layout. Full size $50 \mathrm{~mm} \times 50 \mathrm{~mm}$.

How It Works - ETI 081

The 555 timer IC is used as a monostable which, in effect, converts the signal pulse from the breaker points to a single positive pulse the width of which is determined by the value of $R 4+R V 2$ and C2. The mathematical formula is $T=1.1 \times R \times C$ where $R=R 4+R V 2$ (the section of RV2 in use) and $C=5.6 \times 10^{-9}$ (Farads), and $T=$ pulse length in seconds.

Resistors R2 and R3 set a voltage of about 4 volts at pin 7 of CC . The IC is triggered if this voltage is reduced to less than approx 2.7 volts ($1 / 3$ of supply voltage) and this occurs due to the voltage swing when the breaker points open.

An adjustment potentiometer RV'1 enables the input level to be set to avoid false triggering.

Zener diode ZD1 and the 180 ohm resistor stabilize the unit against voltage variations.

PARTS LIST ETI 081

R1	Resistor	15 k	1/2W 5%		
R2-R4		10 k			
R5	"	5k6	" "		
R6	"	180 ohms	"		
RV1	Trim Potentiometer		$\begin{aligned} & 1 \mathrm{k} \\ & 50 \mathrm{k} \end{aligned}$		
RV2					
C1	Capacitor	1 nO polyester			
C2		5 n 6 polyester			
C3		$100 \mu 10 \mathrm{~V}$ electro			
D1	Diode Zener	1N914			
2D1					
IC1					

PC Board ETI 081
Meter 1 mA FSD

Fig. 3. Component overlay of the PCB version. TO POINTS

Fig. 4. The underside of the Veroboard showing the breaks in the tracks (circles) and the solder joints (dots).

Fig. 5. Component overlay for the Veroboard version.
mscomponenty
(Electronics) Pty. Ltd.

TRADING HOURS

MON-TUES-WED \& FRI: $9 \mathrm{am}-5.30 \mathrm{pm}$. THURS: $9 \mathrm{am}-7 \mathrm{pm}$ SAT: 9am-12 noon. C.O.D.s: Please add $\$ 2.40$ to posting fee. NO ORDERS UNDER $\$ 4.00$ accepted. For replies please send S.A.E. Post and Packing 50 C where not included in price. ALL ORDÉRS AND CORRESPONDENCE

THE GREAT NAME FOR ELECTRONIC
164-166 REDFERN ST., REDFERN, P.O. BOX 156 REDFERN,

COMPONENTS IN AUSTRALIA
N.S.W: 2016 TEL: 69-5922 or 69-6912

What's more they are Complete with electromagnetic shield and serles inductor. Dimensions: Overall length 70 mm . Diamoter: 35 mm . Solndle Length:
M.S.C.'S PRICE: $\mathbf{\$ 2 . 2 5}$ POSTFREE
MSC217 Pri: 240 or 254VAC
Sec: 64 \& 6.5 V at $1 \mathrm{amp} . \$ 4.00$ each.
MSC218 Spec's as above but at
$1.5 \mathrm{amp} . \$ 4.75$ each.

MSC235 Pri: 230/240 \&
254 VAC Sec: 64 V \& 6.3 V at $400 \mathrm{~mA} \$ 4.00$ each.

MSC232 Pri: 240 or 254 VAC Sec: 50 V CT $\& 6.3 \mathrm{~V}$ at 250 mA $\$ 3.50$ each

MSC222 Pri: 240 or 125 VAC Sec: 26 V CT \& 5.9 V at 20 mA $\$ 2.00$ each

MSC203 Pri: 240 or 254VAC
$\mathrm{Sec}: 36 \mathrm{~V}$ CT $\& 6.3 \mathrm{~V}$ at 250 mA \$3,00 each

MSC225 'C' Core transformer Pri: 240 \& 254VAC Sec: 36 V \& 5.3 V at 1 amp . $\$ 6.00$ each

MGE 03050 Pri: 240VAC Sec: 117 V at 300 mA plus 5.7 V and 20 V at 3 amp . $\$ 7.00$ each

MGE03046 Pri: 120 or 240 VAC
$\mathrm{Sec}: 34 \mathrm{~V}$ at $50 \mathrm{~mA} \$ 2.50$ each
MGE51573 Audio Transformer
$515 \Omega-3.2 \Omega$
$\$ 1.25$ each. p\&p 75 c ea.

DATA SHEET SUPPLIED WITH EACH TRANSFORMER
Post \& Packing rates: MSC218-225. NSW \$1.15. VIC, OLD \& TAS \$2.25. N.T. \$2.75 N.Z. \$3.00 W.A. \$2.75

MSC217-235-232-203. NSW $\$ 1.00$ VIC QLD \& TAS \$2.00 N.T. \$1.75 N.Z. \$2.50 W.A. \$2.25

MSC222-MGE03046 \& 04028. NSW $\$ 1.00$ VIC, OLD \& TAS. $\$ 1.50$. W.A. \& N.T. $\$ 1.50$ N,Z. $\$ 2.00$
MGE03050. NSW $\$ 2.00$ VIC, OLD \& TAS \$2.75. W.A. \& N.T. \$3.25. N.Z. \$3.75.

CPECIAL \geqslant New Componen

 offers at belowore-devaluation pre-devaluation prices
ONLY M.S.C. CAN GIVE YOU THE BENEFIT OF THEIR BULK-BUYING AND SAVING YOU \$'S ON THESE SPECIALS. 'RODAN' Digltal Indicator Tubes. Type GR-211. Cold cathode dis play. In-line 9-0 Side viewing $170-200 \mathrm{~V}$ supply. $\$ 2 \mathrm{ea}$.
20 Assorted Potentiometers, Lin \& Log. Only $\$ 2.50$. P \& P $\$ 1.50$
200 Assorted $1 / 4$ to 3watt Resistors. All values 5 \& 10\% Only $\$ 2.00$ P\&P 50c.
50 Assorted Electrolytic Capacitors. All useful values Only $\$ 5.00$ P\&P $\$ 1.00$
50 Assorted Polyester Capacitors. \$2.00 P\&P \$1.00.
50 Assorted Disc ceramic Capa citors. \$1.50 P\&P 50c
DPDT See-Saw Switches. On/off/ on momentary with white button. 3 amp 250 V . 50 c each or 5 for $\$ 2.25$ P\&P 20 c ea.
MICRO-SWITCH.
plunger SPST MGA-100P pin each or 5 for $\$ 2.00$ P\&P 20c ea. DUAL PUSH-BUTTON SWITCH Reclprocal type DPDT. 250V 6 A $\$ 1.00$ each or 5 for $\$ 4.50$. P \& P 20 c each.
SUB-MINIATURE PRECISION POTS bY COPAL. PC. MOUNT. ING. 500Ω Vertical or Horizontal or $1 \mathrm{k} \Omega$ Vertical. 50 c each or 5 assorted for $\$ 2.00$. P\& \& 20 c each. CRYSTAL MICROPHONES. CM-CM-72. Chrome with separate tand. Only $\$ 2.25$ to clear. P\&P $\$ 1$ MINIATURE 20 turn PRECISION TRIMPOTS. PCB mounting. MADE by RELIANCE U.K. In the following values only; $20 \Omega-25 \Omega-50 \Omega=$ $100 \Omega-200 \bar{\Omega}-25 \bar{\Omega} \Omega \quad 2 k \bar{\Omega}$ $5 k \Omega-20 k \Omega-25 k \Omega-1 \mathrm{M} \Omega$ $-1 \mathrm{k} \Omega-10 \mathrm{k} \Omega$ \& $15 \mathrm{k} \Omega$ Only 85 c each to clear. P\&P 20 c each. POWER RHEOSTATS by MALLORY. Only in the follow. ing values: $2.5 \mathrm{k} \Omega 50$ watts $\&$ $4 \Omega 50$ watts ONLY $\$ 6.00$ each P\&P $\$ 1.50 .500 \Omega 25$ watts $\$ 5.00$. P\&P $\$ 1.00$.
TOROIDAL CORES. TMC TYpe 107763. Ext. dia. $27 / 8^{\circ \prime} \times 7 / 8^{\prime \prime}$ deep. Int. dia. 1 3/8" approx. 2 for \$1.00 P\&P \$1
4 pin Me MURDO moulded Plugs \& Sockets with rubber shroud. Useful for Speaker systems etc. 2 pair for 60c P\&P30c

SPECIAL PURCHASE EGEN (UK) WIRE-WOUND TRIMMING POTENTIOMETERS (Design Council Award 1976)
The potentiometer consists of a single layer o resistance wire wound on an insulated former and housed in an open plastic mouldling. Extremely compact with integral knob. Suitable for Electrical \& Electronic circuits for occasional current and Voltage adjustments. Ratlings: at 40 deg. C 4 watts; at 70 deg. C2.4 watts. Dim: 20° $19 \times 22 \mathrm{~mm}$. Only in the following values ... 100 -220Ω -
$470 \Omega-1 \mathrm{~K} \Omega$ ONLY 50 c each or the 4 for $\$ 1.75$. Please add appropriate POST

SCOOP PURCHASE
OF DIGITAL CLOCK
MECHANISM'S
All new and unused ... fully imparted. Complete MINUTES \& SECONOS, Clearly visible figures of $5 / 16^{\prime \prime}$ Ht. Also Incorporated are two remote micro-switehes for setting Alarms, Radio's or
Televislon elc. With 240 V Motor. AMAZiNG VALUE AT $\$ 10.25$ each. P\&P $\$ 1.25$

UNIQUE STOCK-TAKING UNINUE STOCK-TAKING CLEARANCE OF BELL \& GOSSETT U.S.A. MOTORIZED OIL-LESS AIR COMPRESSORS

LAST FEW TO CLEAR
ALMOST $2 / 3$ rd's off Normal Selling price

Model No: SYC 10-1. Displacement CFM at 1725 rpm . 1.9 up to 75 PSIG continuous operatIng pressure - 90 PSIG intermittent. 240 VAC \% H.P. Motor. ONLY $\$ 65$ each Sent Freight Forward 'COMET'
Madel No: BLC Displace. ment CFM at 1725 rpm 1.43 single stage. Operating pressure to 90 PSIG to 110 PSIG intermittent. 240 VAC 1/6th H.P. Motor. ONLY $\$ 50$ each Sent Freight Forward 'COMET

ALL NEW \& IN MANUFACTURERS CARTONS P.S. THE ABOVE COMP ESSORS ARE LESS AIR TANKS

COMPUTER BITS

A DIVISION OF AUTOMATION STATHAM PTY. LTD.

SATURDAY

ASSEMBLER

SERVICE

Most Saturdays we have our IMSAI 8080 running and hobbyists who have purchased equipment from us are welcome to use our facilities to edit and assemble their programmes - Just ring first to see if we're in, or make an appointment earlier in the week.

47 Birch Street,
Phone (02) 7094144
BANKSTOWN N.S.W. 2200
Telex AA26770

For AWG 30, . $025^{\prime \prime}$ ($0,63 \mathrm{~mm}$) sq. post, "MODIFIED" wrap, positive indexing, anti-overwrapping device

AMPEC ENGINEERING CO.
42 The Strand, Croydon, NSW. 2132. Ph. (02) 747-2731. Available From: RADIO DESPATCH SERVICE 869 George St., Sydney. NSW. Ph. (02) 211-0191. - Melb. 602-1885 © Adel. 223-6261 © Bris. 391-5136.

EA VIDEO BALL GAME 76 V G5 AND ETI 804 and all other Video Games using AY-3-8500 IC
When you see your Video Game in colour with green playing field, red and blue men, yellow boundaries and score, and white ball, you have your game in a new dimension. FULL ASSEMBLY AND CONVERSION INSTRUCTIONS MAKE THIS KIT EASY. APPOLLO COLOUR CONVERTER $\$ 34.50 \mathrm{incl}$. P\&P

IMPROVED RIFLE KIT FOR ETI 804 and other games using AY-3-8500 IC.
Includes all hardware and gun to play the other two games available trom this IC. APPOLLO RIFLE KIT \$25.00 incl. P\&P.

APPOLLO VIDEO GAME-Using the GI AY-3-8500 IC makes tremendous fun for the whole family.

- Separate hand controls
- On screen auto scoring
- Selectable bat size
- Selectable angles
- Fully defined side lines \& net
- Colour conversion \& rifle kit available as extras.
- Individual serve buttons
- Selectable ball speed
- T.V. Speaker Sound . . . modulated
- Includes brushed and printed anodised front panel with cut outs pre-punched.
FULL ASSEMBLY INSTRUCTIONS MAKE THIS EASY
BLACK \& WHITE $\$ 52.50$ COLOUR $\$ 82.50$ incl. P\&P

APPOLLO
VIDEO GAMES
P.O. BOX 301, HORNSBY 2077
(A division of
Paramount Colour Eng. Pty. Ltd.) Name
Factory \& Service Dept.
99 Smith St., Summer Hill 2130
Ph. 7985823 - 4764105
I enclose \$

Address

For \square Appollo Video Game B\&W
Appollo Video Game Colour
Appollo Rifle Kit
\square Appollo Colour Converter

ETI's COMPUTER SECTION

FROM THE EDITOR'S CONSOLE looks at wire-wrapping .Page 71
 MICROBIOLOGY look at the 8080 .Page 74
 BACK PAGE has News, Bits leftover and new releases . Page 77

NEXT MONTH IN PRINT-OUT we put together Motorola's new D2 evaluation kit, a microcomputer that comes with its own terminal. Then we check out JBUG, the new monitor program designed especially for the D2. Twice the size of the old monitor MIKBUG, JBUG includes special routines to save your programs on a low cost audio cassette recorder as well as other new features.

FROM THE EDITOR'S CONSOLE.

Ever been in the situation where you have a fantastic piece of gear you want to build but don't have a suitable pc board to build it on, and can't get one.
And the thought of having to work out a pc board layout yourself just turns you off. Or maybe you don't have the facilities for laying out your own boards or making them. Another turnoff is the high cost of one-off commercially-made boards.

This is a problem now being faced by more and more hobbyists who are beginning to use some of the new LSI chips now available. These devices, of which the microprocessor is an example, have from 16 to 40 pins, so by the time there are more than five or six chips in a circuit the number of interconnections has become quite large, and unmanagerable.

Traditionally the electronics technician and hobbyist has used the age-old process of soldering to make these
interconnections and with the popularity of this method it is not surprising that the average technician has developed great skill. Many other methods have been devised and tried (some such methods have been crimping, screwing and welting, etc.) but none have come close to soldering.

However, the situation is changing now that LSI digital electronics is within the reach of all enthusiasts. A feature of digital electronics is the uniformity of packaging and the high density of

ADVERTISERS - for details of rates phone Bob Taylor on 33-4282

c/o ETI, Modern Magazines,
 15 Boundary St,

Rushcutters Bay NSW 2011.

terminals per device. In fact devices may be packed so close together on pc boards, and require so many interconnections that the printed circuit techniques demands multi-layer boards. These boards are too expensive and difficult for the hobbyist to obtain, so many are turning to wire wrapping as an alternative.

Wire wrapping is a process in which an insulated wire is stripped for a short distance at each end and twisted around a sharp-cornered terminal. By careful choice of wire and the method of twisting, it is possible to form a lowresistance, corrosion-free, longlife connection.

The choice of wire type and size is, very- important for successful wire wrapping. First the conductor must be solid (single strand), otherwise mechanical stability and contact reliability is lost. Secondly the conductor must meet certain elasticity requirements. A brittle conductor for example, would break under the considerable flexing and straining experienced during a wrap.

Fortunately copper has the required characteristics and the user may choose from bare copper, tin-plated copper or silver plated copper wire. Popular wire insulation includes Kynar and other PVC types. The most popular thickness for wire carrying current levels associated with digital signals is $26-30$ gauge (AWG).

For those who would like to know more about wire wrap techniques there are some short notes on the following pages that will be of practical use

An example of wire-wrapping in practice. The small photo shows the front view of a 6800 microcomputer operator front panel. The large photo is the back view showing how the front panel was put together. The board holding the sockets is a piece of Veroboard that happened to have a suitable edge connector.

The disadvantage with wire wrapping is the need for special IC sockets. They are twice as expensive as ordinary sockets and increase the volume occupied by assembly. Not evident in this photo is the squareness of the socket's pins or their sharp corners. The pins come gold plated or tin plated, with the gold type more expensive.

An example of a low cost hand wrapping tool, the Hobby-Wrap 30. The barrel on the right hand side is used to wrap a connection and the barrel on the left hand side to unwrap the connection. This is useful when a wiring error has to be corrected or a modification made to the design. The small plate in the middle of the handle is for wire stripping and will give nick free results on 30 gauge wire, if used correctly.

It is often necessary to connect several IC pins to one bus, for example the Data Bus. One way to do this is to create a chain of point-to-point wraps, the method shown in the photo is recommended. Here wires have the same wrap level at each end.

In the long run this method minimises the propagation of changes should a modification be required. An alternative method of modifying the wiring is to cut the old wire with a pair of sidecutters, as close to the pin as possible and then put in a new wire.

Continued on page 75 ...

The internal operation of

 a microprocessor.THIS MONTH IN MICROBIOLOGY we focus on the very popular 8080. The 8080 is a complete 8 bit microprocessor designed for use as the central processor unit in a general purpose digital computer. It is fabricated on a single LSI chip using n-channel silicon gate mos technology. The 8080 is best thought of as a computer system minus memory and $1 / O$.

Most of the control circuits and all the data manipulating circuits are on the 8080 chip. However, an external clock generator is required and this usually takes the form of a two phase crystal oscillator. To understand the 8080 with some detail you will have to become quite familiar with the internal layout
shown in Fig. 1. But for now we will try for a general understanding and leave a more detailed explanation till next month.

When power is initially applied to the 8080 the processor begins operating immediately. As power comes up, however, the contents of the internal registers are subject to random factors and cannot be specified. For this reason it is necessary to apply a RESET signal to the 8080. This initializes one of the special registers called the program counter and forces its contents to 0000. The program counter is a 16 -bit register and its contents represents the address of the memory location being accessed for the next program instructions.

After each instruction is executed the program counter is incremented by one and the process repeats itself. Since the program counter is initialized to 0000 by the Reset signal, memory location 0000 will be the memory location accessed for the first instruction. The 8080 does this by outputing the contents of the Program Counter onto the 16 bit address bus and at the same time the Timing and Control section outputs control signals telling the memory that a memory read operation is occurring.

When memory receives the control signals it interprets the number on the address bus as an address and uses it to fetch the contents of the specified

Fig. 1. A functional block diagram of the internal workings of the 8080 . The arrows on the single and double lines show the direction of signal flow. The single black lines are control signals and the double lines are parallel data paths of 8 or 16 signals. The numbers in brackets nepresent the number of bits in that register. Arrows that point to or come from nowhere are pins on the IC that connect to other ICs.
memory location. The contents are then placed on the 8 bit data bus and sent back to the 8080 where they are buffered by the Data Bus Buffer and loaded into the instruction register. Here they remain while the 8080 control circuits decode and execute the instruction. This first part of an instruction execution is common to all instructions and is called the Fetch Cycle.

The remaining part depends on what is the instruction. Different instructions will be decoded differently to do different operations. This second part of the instruction cycle is often referred to as the execute cycle.

After each instruction is loaded into the instruction register it must be executed. This is done by the control circuits inside the 8080. Each one of the two hundred odd instructions will cause a unique set of control signals to be generated. These control signals will manipulate the working registers of the 8080 to perfom the required instruction.

Some instructions are executed in a way that is completely internal to the 8080 while others involve memory and 1/O parts. One such instruction involving only internal circuits is the 'MOV A, B ' which loads into register A the value currently held in register B. An example of the other type of instruction is the 'OUT 2A'. This instruction is used to transfer the contents of the A register to some external I/O device, for example a printer. To do this, once the fetch cycle is completed,
the 8080 first accesses memory again to find out what is the address of the I/O. Having found this out, the 8080 sends the address out on the 16 bit address bus, the contents of the A register out on the data bus, and special control signals to turn memory off and inform the appropriate I/O to take note of the contents of the data bus. Once finished the 8080 goes into the fetch cycle of the next instruction.

Figure 1 is a block diagram of the internal organisation of the 8080 . Note there are three distinct functional areas, the Register Array on the right hand side of Figure 1, the Instruction Register and Control Logic in the centre and the Arithmetic and Logic Unit on the left hand side.

The Register Array consists of six 16 bit static registers. Three of these are organised into six 8 bit general purpose registers and are called B, C. D, E. H and L. These registers may be addressed individually or in pairs for 16 bit operation. It is the contents of these registers that are manipulated by the programmer to achieve his end result.

The Program Counter and Stack Pointer are registers that can also be manipulated by the programmer. The program counter functions as described above while the stack pointer holds the address of a part of memory used as temporary storage by the 8080 . It is often necessary to save the contents of the registers when the mpu is executing one part of the program and has to jump to another part for a short time. for example, when it calls a subroutine to find a random number. In all, the
stack allows the easy temporary storage of the contents of the program counter, flags, accumulator and all six general purpose registers.

The ALU section performs the arithmetic, logic and shift/rotate operations called for by different instructions. Associated with the ALU is an 8 bit accumulator, an 8 bit temporary register and a 5 bit flag register. The Accumulator in the ALU section is called the A register by the programmer.

Consider an instruction that calls for adding the contents of register B to register A (the Accumulator). First the contents of the Accumulator would be latched into the Accumulator Latch and its output made available to the ALU. Meanwhile the contents of the B register would be sent via the multiplexer and the internal data bus to be loaded into the Temporary Register. The output of the Temporary Register goes to the other input of the ALU. This means the ALU now has the contents of the Accumulator and register B as inputs. These it adds together and outputs onto the internal data bus. The contents of the bus is now loaded into the Accumulator, thus the register B has been added to the register A (the Accumulator).

Had the operation in the ALU resulted in a carry, an output equal to zero, a sign or parity change then the corresponding bit in the Flag flip flop would have changed.

Next month we look at the instruction set in order to find out and understand what the 8080 allows the programmer to do.

.. Continued from page 73

Example of a less than adequate attempted wrap.

On the right is an example of the impatient wrap, called so because of your impatience to see the results. It is caused by physically lifting the wrap-
ping tool off the post as it is turned. Instead slight downward pressure gives better results. Should such a wrap occur, you will have to remove the wire from the post and rewrap the connection. On the left we have an example of the 'wrat's nest' wrap. It is a jumbled mess of layers of wire over a previously wrapped layer. Power operated wrapping tools have a spring loaded mechanism which allows retraction of the bit within the sleeve. The photo shows the result should this mechanism jam and not work. If this happens consistently removing the bit and cleaning it may fix the problem.
If you are using a hand tool then the problem is a heavy hand, that is, too much downward pressure applied. Ease up on the pressure and try again.

The most common mistake in wire
wrapping is to wire to the wrong pin. From the back all the pins look alike and you have the added burden of turning the numbering sequence back the front. A way around this problem is to lay a piece of white adhesive tape down the centre of the socket and to label the pins with their numbers and IC identification number. Don't use the IC type number because you might have other ICs of the same type in the design.

FOUR EASY STEPS IN WIRE-WRAPPING

The first step in a successful wrap is to strip the insulation from the end of the wire. The length of the insulation removed translates directly into the number of turns on the completed wrap. A length of 25 mm for 30 AWG wire is a good starting point that can be modified with experience. Considerable care must be taken to ensure that the method of stripping does not nick the wire. The wire experiences considerable flexing and strain during the wrapping process and could break off if nicked. If this happens later, and you are unaware that it has, then you have a possible fault that could take hours to find and remedy.

The wrapping tool is now placed over the wrapping post and the post inserted into the centre hole. The wrapping tool should slide smoothly over the post and any friction encountered should be investigated. During this operation action is needed to prevent the wire from slipping out of the barrel, a gentle bend that brings the wire parallel to the wrapping tool is usually sufficient.

Once stripped, the wire is inserted into the wrapping tool bit. The centre of the bit has an alignment hole which fits over the wire wrap post. To one side of the alignment hole is a smaller hole, it is this hole that takes the wire. The wire should be inserted as far as the start of the insulation.

> The next step is to complete the wrap by rotating the wrapping tool on the wrapping post. This rotation causes the wire to be pulled out of the small hole and so wrap itself around the post. For low contact resistance and good mechanical strength the wire must wrap tightly around the post. For this to happen the force applied to rotating the tool should be smooth and continuous. A right handed person will find this is best done by using clockwise rotation. Note also that the free end of wire will have to be secured to prevent the insulated section of wire from trying to follow the tool around the post.

If all goes well, the finished wrap will look like this. The wrapping action begins at the bottom with a single turn of insulated wire followed by successive layers of stripped wire. As a rule of thumb, eight turns of bared wire is sufficient for good mechanical strength and low contact resistance. Using less than seven turns for 30 gauze wire compromises the integrity of the wrap. Although not evident in the
drawing the first wrap should be as close to the socket as possible, (i.e., away from the end of the post that the wrapping tool fits over), this allows for more than one wrap per post. The single turn of insulated wire adds mechanical stability as well as less chance of electrical shorts to the wrap. Such a wrap is called a modified wrap; without the extra turn it is called a regular wrap.

THE BACK PAGE

ELMEASCO Instruments Pty Ltd annaunce their of the new model 168-D Microprocessor Analyser. The 168-D allows the user to capture data from a microprocessor system at up to a rate of 10 MHz . The data is stored in the 256 word memory for later examination. This means the user can observe software program execution within the system in realtime, and in the context of the hard-wired logic that surrounds the microprocessor.

For further information contact Elmeasco Instruments on 02736 2888.

NEW IMPROVED SC/MP

Samples are now available of a new N-channel MOS version of the "SC/MP" 8-bit single-chip microprocessor that is twice as fast and which uses only one-fourth as much power as the P-channel version. As well the "SC/MP-II" chip needs only a single source of +5 volts for operation, an improvement over the first model which required a +5 volt and a -7 volt supply.

The "SC/MP-II" is fully compatible with its predecessor in terms of pin configuration, object code, and software, and with

For those who like to wire wrap in style Ampec Engineering Co have just the instrument. It's the new Hobby Wrap model BW630 battery-operated wire wrapping tool. Powered by torch batteries the BW630 provides the muscle to produce wrap after wrap. To quickly test its performance the front panel shown on page 72 was produced and it performed beautifully.

The BW630 weighs only 11 ounces and comes with a built-in sleeve and bit. For more details contact Ampec Engineering at 42 The Strand, Croydon, NSW 2132, or phone 027472731.

COMPUTER SEXISM

A computer in the USSR did all right by male mathematicians but began giving trouble when a woman tried operating it. Both male chauvinist pigs and women will be disappointed to learn that the reason was not that the lady's input was unacceptable to the computer because of its alleged feminine illogic or that the computer became overheated at the sight of her beauty, but rather that her dress was made of synthetic fiber producing an electric field that affected the computer.

....
Two new definitions!
Punched card: A short piece of 80 channel paper tape.

Program: The footprints of hundreds of bugs. Once the bugs are eliminated, the program is whats left.
slight modifications to the crystal frequencies, it will be compatible with all of the "SC/MP" support equipment.

For further information contact NS Electronics Pty. Ltd. on Melbourne 729-6333 and Auckland 49-1282.

DOES YOUR CAR NEED A BUS DRIVER?

In what is being called the largest single semiconductor buy in history the giant American auto manufacturer, General Motors has named Motorola Semiconductors as the principal supplier of microcomputer chips for their range of automobiles,
According to industry sources, by 1980 . Motorola could be shipping between 2 million and 6 million sets of microcomputer
devices per year to General Motors. With each set expected to be seven to nine chips, the income per annum to Motorola could exceed $\$ 100$ million.

Under the agreement Motorola is to furnish General Motors subsidiary, Delco Electronics, with the LSI semiconductor design and processing technology needed to build complex MOS devices. This will allow Delco to become a second source once it puts up the 25,000 square-foot MOS facility it has announced it plans to build.

Motorolas selection as supplier was apparently helped by the experience General Motors gained with its current Tripmaster program. This is a dashboard mounted information system based on a microcomputer. Built around the 6800 family it is being offered as an option in this years cadillac Seville.

YOUR WRREHOUSE OF CDMPONENTS

CEMR DISTRIBUTORS PTY. LTD.

SYDNEY
21 Chandos Sireet.
Crows Nest N.S.W. 2065
Tele: 439-4655

MELBOURNE
208 Whitehorse Road,
Blackburn, Victoria,
3130. Tele: $877-5311$

TRFNEISTORS

Small Signal - TO.5; TO.18; TO. 92
Silicon Power - Plastic and Metal complimentary pairs 2 Amp through 20 Amp - including Darlingtons.
Field Effect - N and P Channel J FETS and MOS FETS.

DIORES

1 Amp - 3 Amp - 6 Amp Rectifiers 500 m Watt - 1 Watt - 5 Watt Zener Diodes.
BRIDGE RECTIFIERS -1 Amp -2 Amp and the Super MDA 3500, 35 Amp

THYRISTORS

SCR: 800 m Amp MCR103; 4 Amp C106; 8 Amp C122; 35 Amp C228
TRIAC: 4 Amp SC141; 10 Amp SC146; 35 Amp SC260

DICITRLI.C.'s

Standard and Low Power Schottky TTC. CMOS - 4000 Series from-four major suppliers.
Microprocessors -6800-2650 - 6100 and 6502
Memory - NMOS and CMOS Shift Registers, RAM and ROM

LINERRI.C.'s

Operational Amplifiers
Voltage Regulators
Interface
D/A - A/D Converters
All these parts at competitive prices from all the leading manufacturers.

MOTOROLA

PHILIPS

8OLID STATE SCIENTIFIC INC.

signtites

Oh Mararis

You are personally invited to play and hear our keyboard instruments.
Weekdays, Saturdays or by special appointment.

(3) EMONA NOW IN CITY!

 Room 208, 661 George St., Sydney. Phone: 212-4815 - C.B.C. Bank Bldg., Haymarket and at 21 Judge St., Randwick. Phone: 399-9061.OUR SCIENTIFIC CALCULATORS

The famous ELCON's: - SCIENTIFIC - STATISTIC (10 memory, rechargeable battery \& adaptor), SC6010 - $\$ 43.00$

- SCIENTIFIC SC44F (rechargeable battery \& adaptor) - $\$ 38.00$. - PANASONIC - SCIEN TIFIC JE8401U - \$25.00. adaptor optional $\$ 6.00$

CS-6010
To above prices add 15% S.T. if applicable (P\&P Inter. \$3.00, NSW \$2.00).
WARRANTY 12 MONTHS

AM/FM DIGITAL CLOCK RADIOS

CR-102 is a $12 / 24$ hour completely electronic digital clock AM/FM radio solid state (MOS/LSI circuitry) with green tube display. Freg. range: $A M=530-1650 \mathrm{kHz}, F M=86-108 \mathrm{Mhz}$. Wake up to music or bird-sound alarm. It can be used as a stop watch. Sliding tone, volume, alarm \& brightness controls. Sleep \& snooze button. AC power interruption indicator.
WARRANTY - 90 DAYS

AGAIN AVAILABLE

- EMONA E-4, all eiectronic AM/FM stereo dig, clock-radio $\$ 79.95$ (P\&P Int. \$4.50. NSW \$3.50).
- EMONA E-2, all eiectronic AM/FM dig. clock-radlo $\$ 49.95$ (P8P int. $\$ 4.00$, NSW $\$ 2.50$) WRITE, PHONE OR CALL INI

WIRE-WRAPPING

A COMPLETE IN-HOUSE CAPABILITY

- Accurate Wire-Wrapping
- Thorough Error Checking
- Engineering Support
- Complete Satisfaction

WIREWRAPPING SERVICES PTY. LTD.
27 BUCKLEY STREET, MARRICKVILLE, NSW 2204
Phones: Sales Division 51-4896; Programming and Production 51-7007, 51-5388

UIDED

COMPUTER TERMIHAL PROJECTS

DIISPLY unir

This final part of our VDU project gives details of the UART board and the mother board. When used with an encoded keyboard this project will communicate with computers designed for use with a teletype.

THIS MONTH WE COMPLETE THE description of the VDU project with details of the UART board (Universal Asynchronous Receiver Transmitter) and the mother board. To save a little cost the power supply has been relocated onto the mother board. Sockets are provided for the keyboard, the editing keyboard and a socket which allows a computer to directly interface with the memory. This is useful for games and similar applications as it allows the complete memory to be changed or rewritten at high speed (about 1 ms) where it would take up to

100 s via the serial input.
While the UART board is described for this project it can be used separately as all the programmable functions of the S1883 are available. We also have provided both TTL and opto coupler inputs and outputs (serial) and provided two 555 clocks for different baud rates. The 4800 Hz output is used for the 300 baud rate and also for a cassette interface which we may publish later.

The power supply has been changed slightly to include a -12 V IC regulator as it was found that the simple zener supply was not suitable for both the

ROM and the UART. The resistor in the 5 V line to the editing keyboard has also been included.

While we do not intend at this stage to publish a modulator we believe some ready-made ones will be available through the trade. If you wish to build your own then the modulator out of the TV game project (ETI 804) can be adapted. An effect of using a modulator is to remove some of the sharpness of the characters and you will find that the vertical sections of the characters will not be as bright as the horizontal sections.

Fig 1. Circuit diagram of the UART board.

Fig 2. Circuit diagram of the modified power supply as fitted to the mother board.

How It Works ETI 632

UART BOARD

Most of the work is done by the main IC S1883. It takes the parallel output of the keyboard, and converts it to serial form. This is then transmitted either as a TTL level signal or via an opto coupler to the processor. The output of the processor comes in via the TTL or the opto coupler input in serial form and the main IC then converts this back into parallel form so the VDU can handle it.

The IC needs an external clock at 16 times the baud rate (or 1760 Hz for 110 baud and 4800 Hz for 300 baud). If only one speed is required one of the 555 s can be deleted.

The IC can be programmed to give various formats. It is conventional to use a start bit, seven character bits,
an even parity bit and two stop bits for 110 baud and the same format with only one stop bit for 300 baud.

The IC can operate up to 10,000 baud if necessary, the only change required is in the timing components around the 555 .

We used two oscillators for the 110 and 300 baud, al though we could have simply switched the timing network, because the 4800 Hz can be used for a cassette interface module (we may publish one later).

On switch-on capacitor C 1 gives a positive pulse on the reset input. For a more detailed list of the pin connections to the UART is given in Table 1.

Mother Board

We moved the power supply onto the mother board as it simplifies const-
ruction and also we found a better -12 V regulator was needed to supply both the UART and the ROM. Also a 470 ohm resistor is needed in the positive lead to the editing keys.

A socket is provided for those who want to interface to the memory directly and the 10 address lines, 8 data lines, the read/write input and a VDU enable line are provided. Bidirectional bus translators are required for the data lines while tristate buffers are needed for the address and R/W inputs. A low to the enable input disables the VDU control of memory while a low on the R/W puts the memory in the write mode. The bus translators should be organised such that both control systems are not enabled at the one time.

Construction

Assemble the UART board with the aid of the overlay. The links shown solid should be installed and the dotted links should be used only where a " 0 " is required for the desired format. If you use the VDU at $110 / 300$ baud use links at RDE, SWE, NDB1, and NPB. This gives a start bit, seven ASCII bits and a parity bit. In our prototype we switched NSB externally as we used 1 stop bit for 300 baud and two for 110 baud. There are internal pull-up resistors on the inputs and any not linked to ground will assume a " 1 " state.

When assembling the mother board start with the links as some of them are close to the connector strips. Remember that there is a resistor between the 632B and 632A boards. While there may
appear to be a lot of links, it still is a lot easier than hardwiring the boards.

When installing the sockets, plug in the appropriate board and ensure it is vertical before soldering. Note that on all the boards the component side is away from the power supply components. The power supply can now be assembled.

The output of the keyboard should be terminated in the correct plug, the connections for which can be worked out from the mother board overlay. The editing keys are similarly connected. All the editing keys, except New Page and Full Page, switch to +5 V (via R2) with the NP and FP connecting to 0 V . We did not provide a socket for the baud rate switch although individual connectors can be used on to suitable pins in the mother board.

ERRATA VDU FEB. '77

Parts List ETI 632 A

IC4 should be 4051
IC5 should be 74123
IC6-7 should be 74LS367
Interconnections page 77
V7-C18 (Not V9-C18)
C2-B4 (not C2-B3)
C3-B3-B25 (not C3-B4-A26)
B15 - A22 (not B15-A23)
B21 - A23 (not B21 - A22)
+5 V - C9 (not C8)
OV - C8 (not C7)
Add
$-12 \mathrm{~V}-\mathrm{C} 7$
M2-B25
Testing page 74
Also connect -12 V

The Ultimate!

Nothing can compare

The Ultimate in Stereo

${ }^{\text {The }}$ R/S/NG
 CTC-702
 "DUAL"
 SYSTEM

This unit will play your STEREO CASSETTES and CARTRIDGES (8 track)

Note - no adaptor necessary
RECEIVE AM RADIO and FM (Stereo and mono)

Other Refinements:

- Reliable Electronic Auto Eject Sysțem. - On/OH F/F System.
- Separate Vol, Tone, Bal. Contre's.

Separate Dial \& Function Lights.

- Simple U/Dash Mounting (Adjustable)

10 Watt Output (Real Clean Power)

- Stereo/Mono Switch.
o Metal/Lather Finish Of Outer Case.
The RISING CTC-702 is European design, made in Japan from the highest quality components.
Comes with a solid gold 6 month parts and labour guarantee.
(Note: Every unit is tested before söld).
A1 service back up by Rising Electronics (12 years experience).

Buy direct from RISING ELECTRONICS (Send this ad. for free P/P) or ask your local dealer to obtain one for you.
ONLY \$245.

RISING ELECTRONICS

4 Wewak PI., Allambie Hts. Sydney, 2100. Ph: 93-2922

Trade Enq. Welcome

Project 632

$$
\begin{aligned}
& \text { Now at the } \\
& \text { same price! }
\end{aligned}
$$

Now you can enjoy the benefits of Memorex Chromium Dioxide cassettes for no extra cost!

As a special offer Memorex
$\mathrm{CrO}_{2} \mathrm{C} 90$ cassettes are available for the same price as $\mathrm{MrX}_{2} \mathrm{C} 90$ cassettes.

Buy now and save $\$ 2.00$ a cassette on R.R.P.
Available wherever good tapes are sold.

Try Memorex CrO_{2} Cassettes for - Better frequency response.

- Less distortion of high frequencies.
- Lower head wear compared to some cobalt modified iron oxides.
- Cleaner heads and pressure rollers.
- Less Modulation Noise.

MEMOREX

- has NiCose ext

MEMOREX

Chromiúm dioxide casselte 80 minutes An advanced casselte for specially designed equipment.

Whenyou dance around the room can you hear all the music?

Some very heady stuff is bandied about when it comes to discussing the pro's and cons of various speakers.

All of it rather wonderful of course, but invariably there's one small catch
Unless you stand practically right in front the sound you get will never be all that clearly defined

This of course brings us to our speakers. The Epicure Tens.

Not only can you hear them in just about any part of the room, but you can hear, very clearly, every instrument that's meant to be heard. Simply because they give near hernispherical dispersion.

You'll also find lower distortion in the midrange, especially noticeable with voices. (Due to a balanced, low-mass voice coil
assembly which is centred perfectly and automatically by the use of a unique spaceage, ferro-fluidic liquid.)

While the concave air spring tweeter produces nearly hemispherical dispersion across most of the audible range.

The Epicure Tens also contain a rather unique low-mass woofer

This gives a smoother, more accurate bass, enabling you to hear the individual bass instruments, and not just the bass.

In fact so proud are we of our speakers, we even go so far as to give them a ten year warranty.

And that's an awful lot of dancing around any room.
EPICURE

While you listen to the music you can dance around our room.
N.S.W.

SYDNEY CITY
Homesound, George St
EASTERN SUBURBS
Woolloomooloo-Convoy Sound
WESTERN SUBURBS
Parramatta-Riverina Hi-Fi Concord-Sonata $\mathrm{Hi}-\mathrm{Fi}$.
SOUTH
Roselands-Miranda $\mathrm{Hi}-\mathrm{Fi}$ Mıranda Fair-Miranda Hi-Fi Hurstville-Jock Leate.
LIVERPOOL: Miranda Hi-Fi
GOSFORD : Miranda Hi-Fi
SPRINGWOOD: Springwood Hi-Fi NEWCASTLE: Newcastle Hi-Fi. HUNTER VALLEY: Hunter Valley Electronics
TAREE: Godwins Hi-Fi WOLLONGONG : Sonata Hi-Fi. ORANGE: Anno's Hi-Fi A.C.T. Pacific Stereo.

VICTORIA

MELBOURNE CITY
Image Audio
Southern Sound Allans Music.
MELBOURNE SUBURBS
St. Kilda-Denman Audio
Hawthorne-Tivoli $\mathrm{Hi}-\mathrm{Fi}$.
Nth Caulfield-The Soundcraftsman
Mordialloc-Mordialloc Hi-Fi.
Moorabbin-Southern Sound
Warnambool-A. G. Smith

QUEENSLAND:

BRISBANE CITY
Reg Mills Stereo.
BRISBANE SUBURBS
Ashgrove-Living Sound
Maryborough-Keller Electronics. Tingalpa-Todds Hi-Fi.

SOUTH AUSTRALIA

ADELAIDE CITY
Allans Music. Hi-Fi Acoustics.
ADELAIDE SUBURBS
St. Peters-Sound Dynamics.

WEST. AUSTRALIA

PERTH CITY
Musgraves Clef Music
PERTH SUBURBS
Nedlands-Audio Distributors.
Mosman Park - Audio Distributors

TASMANIA

BURNIE: James Loughran Audio Services.
LAUNCESTON: Wills \& Co
EPICURE
Or write to Auriema (A/asia) Pty. Ltd., P.O. Box 604, Brookvale, N.S.W., 2100. Telephone 939.1900

AUR21

PARTS LIST ETI 632U

Resistors all $1 / 2$ W 5%	
R1	100 ohms
R2	10 k
R3,4	180 ohms
R5	10 k
R6	100 k
R7	10 k
R8	100 k
R9	10 k
RV1	multiturn trim 50 k
RV2	multiturn trim 50 k

Capacitors

C1-C3 $10 \mu 16 \mathrm{~V}$ electro C4 6 n8 polyester
C5 $\quad 10 \mathrm{n}$ polyester
C6 $2 n 2$ polyester
C7 $\quad 10 \mathrm{n}$ polyester

Semiconductors

D1-D3	Diode	1N914
Q1	Transistor	BC549
IC1	Integrated Circuit	S1883
IC2,3	Integrated Circuit	1L74
IC4	Integrated Circuit	7400
IC5,6	Integrated Circuit	NE555

Miscellaneous

PC board ETI 632 U
Utilux socket A2145A (28 pins)

PARTS LIST MOTHER BOARD including Power Supply

```
R2 Resistor 470 ohms 1/W 5%
C1 Capacitor 1000 \mu 16 V electro
C2 Capacitor 220\mu 25 V electro
C3 Capacitor 1000 \mu 16 V electro
C5,6 Capacitor 100\mu 25 V electro
1C1 Integrated Circuit LM309 K
IC2 Integrated Circuit LM320 T-12
```

Heat sink DSE 3400 or similar PC board ETI 632
184 pins of Utilux A2402 connector

- Note: R1, and C4 were used in the original power supply and are not used or have been changed. We therefore have not reused these numbers.

Project 632

Using with a processor

On some processors a line-feed is outputted along with the carriagereturn and it is not possible to change this. As the VDU has an automatic LF with CR a double line space results. This can be overcome by breaking the track to pins 3 and 4 on the socket on the ETI632 B board.

Also remember when writing prog, rams that the display can only accept 64 characters and will not decode the full 256 permutations of an eightbit word.

PIN CONNECTION TO UART

PIN	LABEL	CONNECTION
1	$V_{S S}$	+5 \vee +5\%
2	$V_{\text {GG }}$	$-12 \vee \pm 5 \%$
3	$V_{\text {DD }}$	0 V
4	RDE	RDI-RD8 Tristate if "1"
5	RD8	
6	RD7	
7	RD6	
8	RD5 ${ }^{\text {P }}$	Parallel data
9	RD4	outputs
10	RD3	
11	RD2	
12	RD1	
13	RPE	"1 ${ }^{\text {" }}$ indicates parity error
14	RFE	"1" indicates framing error
15	ROR	" 1 " indicates second character without reseting ODA
16	SWE	"1" Tristates ODA, ROR, RFE, RPE and TBMT
17	RCP	Receiver clock puise $-16 \times$ Baud rate
18	$\overline{R D A}$	" 0 " input resets ODA
19	ODA	" 1 " indicates character received
20	RSI	Serial input
21	RESET	"1" resets all internal registers
22	TBMT	" 1 " indicates new character can be accepted
23	TDS	"1-0-1" pulse starts transmission
24	TEOC	" 1 " indicates no character is being transmitted
25	TSO	serial output
26	DB1	
27	DB2	1
28	DB3	
29	DB4	Parallel data
30	D85	inputs
31.	D86	
32	DB7	
33	DB8	
34	CS control	strobe "1" loads POE, NDBI, NDB2, NPB and NSB
35	NPB	" 0 " gives parity. " 1 " is no parity
36	NSB	
37	NDB2	These set the number of character and st
38	NDB1	See Table 1 ld
39	POE	"0" gives odd parity, "1." gives even parity
40	TCP	Transmitter clock pulse $-16 \times$ Baud rate.

TABLE 1

NSB	NDB2	NDB1	Character Bits	Stop Bits
0	0	0	5	1
0	0	1	6	1
0	1	0	7	1
0	1	1	8	1
1	0	0	5	1.5
1	0	1	6	2
1	1	0	7	2
1	1	1	8	2

SPECIFICATION ETI 632, VDU

Display
Memory
Display format
Baud rates
Output
Power consumption
Writing mode
Edit keys

Duplex
Data Outputs

64 ASC11 character set
1024 characters
32 characters/line
25 lines on screen
Any two up to 10,000
Video
About 5 W
Always on bottom line
Line moves up on LF
Clear all

Back Space

Forward Space
Roll up (line feed)
Roll down
New page (puts memory location zero on bottom line)
Top of page (puts memory location zero at top of screen)
Full or half
Opto coupled outputs $(20 \mathrm{~mA})$
TTL Outputs
Direct access to memory by processor if required

PCB MASTERS FOR THE VDU PROJECT

In this article we have not published the pcb design for the mother board. Last month we also decided not to publish the design for some of the VDU pcbs.
Printed circuit boards will be commercially available for this project but if you wish to make your own the negatives are available from the company who designed the project. Send $\$ 25$ to Nebula Electronics, Ryrie House, 15 Boundary Street, Rushcutters Bay, NSW 2011, for a complete set.

Sunkea

HYBRID AMPLIFIERS for electronic cross-overs, stereo, public address and other audio applications.

Models: S1-1010G, S1-1020G
S1-1030G, S1-1050G
ELECTRICAL CHARACTERISTICS

Characterstic	5110106	S1 10205,
Maxitium ims Powes	SOW	20w
Outpuy Load	8 alom	8 oloms
Suppiv Voltige	34 V or 117V	46 V or 23 V
Absolute Max. Supply		
Vottagr	45 V or 122.5 V	55 V or $\cdot 25 \mathrm{~V}$
Supply Curreenl (ave)	0.50A	0.12 A
Protective fustrig	1A Ourek Blow	1A Ourch Btom
Harmonic Ontortion at		
Full Oupput	a.5\% max	0.5\% max.
Marimum Input Voltage (pp)	10 V	10 V
Voltage Gain full Freedhack		
$\left(P_{0}=1 W\right)$	30 dB typ.	30 de typ
Characterstic	S1 10306	51 10506
Maximuan rms Poswet	30W	S0w
Output Load	8 ahms	8 ohms
Supply Voltage	Sav or '27V	66 V or 33 V
Atsolute Max. Supply		
Voltege	60 V or 30 V	B0V or 10 V
Supply Current (ave.)	0.864	1.1A
Proteclive Fusung	1.5A Ouick Blow	za Ourck Alow
Harmonic Distortion at		
Full 0 utput	0.5\% max	05\% max
Manumum Input Voftage fopl	10V	10V
Voltage Gatn Full Feedback $\left\|P_{0}=1 W\right\|$	30dE Iyp	30 dB Ivp

AUTOTRONICS PTY.LTD.

47 Anzac Ave., Engadine, 2233 (02) 520-9442.

QLD: Fred Hoe \& Sons, Brisbane. Techniparts, Brisbane. E.D.A. Delsound, Brisbane. Lighting \& Electrical, Brisbane. Haralds Electronics, Rockhampton. Audiotronics Brisbane.
N.S.W.: George Brown \& Co., Sydney. PrePak Electronics, Sydney. M.S. Components, Sydney, Radio Despatch Service, Sydney. G.B.L. Sound Systems, Newcastle.

VIC: J.E.S. Electronic Components, Melbourne. J.H. McGrath, Melbourne. Radio Parts, Melbourne. Lanthur Electronics, Nth. Balwyn.
S. AUST: K. D. Fisher \& Co., Adelaide.
W. AUST: Continuous Music Systeins, Perth. Willis Trading Co., Perth. Atkins Carlisle Lid., Perth. B.P. Electronics, Albany.

Management

Delivery (as many as you want) is no problem.
So if the other guy's line is busy, you might give us a call.

```
M,S.Electronics Pty. Ltd. 
```


National Semiconductor

The latest Lafayette 27 MHz trancievers whose versatility, reliability and performance are famous world wide with 100,000's in constant use. Lafayettes two-ways offer ruggedness and compact size making them ideal for use in industry, farm, sports and marine applications
sports $/($,

Ideas for experimenters

These pages are intended primarily as a source of ideas. As far as reasonably possible all material has been checked for feasibility, component availability etc, but the circuits have not necessarily been built and tested in our laboratory. Because of the nature of the information in this section we cannot enter into any correspondence about any of the circuits, nor can we produce constructional details.
Elecironics Today is always seeking material for these pages. All published material is paid for - generally at a rate of $\$ 5$ to $\$ 7$ per item.

Assist that zener

The simple zener shunt of diagram (1) may not handle sufficient current if the zener available is of low wattage.

A power transistor will do most of the work for the zener in circuit (2).

The output voltage is increased by 0.7 V but it is stabilisation rather than exact voltage which is often required.

4:1 Balun

This is a ribbon balun suitable for a $4: 1$ impedance match. It will operate over a limited frequency range and has been tried on 2 and 11 metres. On 11 metres a quarter wavelength was found to operate satisfactorily. On 2 metres the quarter wavelength was found to be fairly critical in length, so the half
wavelength was used.
Length is calculated from $C=n \lambda$ and $V P=0.88, \lambda=c / n=3 \times 10^{8} / f(\mathrm{~Hz})$ therefore a half wave length would be $\lambda / 2 \times 88 / 100$.
Velocity of propagation can be calculated using an antenna noise bridge, al though for most TV ribbon the figure lies between 0.83 to 0.88 .

E E E

ELECTRONIC ENTHUSIASTS EMPORIUM
Shops 2 \& 3 Post Office Arcade, Pendle Hill, NSW.
P.O. Box 33, Pendle Hill, NSW. 2145. (02) 636-6222 9-5 Mon-Frid. Sat. 12 noon.

Trade and Export Enquiries Welcome

OUR RANGE COVERS ONE OF THE BIGGEST SELECTIONS IN AUSTRALIA

CA3012									
CA3012 CA3013	50	$\begin{aligned} & \text { CO } 4052 \\ & \text { CD4053 } \end{aligned}$	$\begin{aligned} & 2.40 \\ & 2.40 \end{aligned}$	LM349N	4.50	SL4370	3.60	09601	
CA3018	3.50	CD4066	1.60	LM358N	3.20 4.95	SL440 SL442	1.90	O NSN71	2.90
CA3023		C04068	55	LM371N		SL447	2.90	NSN74	2.90
CA3028A	2.60	CD4069	65	LM372H	7.50	SL449	1.60	11c90	
CA3035		CD4070	55	LM372N	4.50	SL620C	9.50	951490	18.50 14.50
CA3046	1 M3046	C04071	55	LM373N	4.70	Sl621C	9.50	2102-2	14.75
Ca3053	2m304	C04075	68	LM374N	4.90	SL623C	17.40	- 2513 N	17.50
CA3059		CD4076	3.60	LM375N	4.90	SL610C		S1883	
CA3060		CD4078	. 60	LM377N	3.50	SL612C		S50242	15.00
CA3079		C04081	60	LM379	7.50	SL613C		MA1002	13.50
CA3080		CD4082	60	LM381N	$\begin{array}{r} 2.75 \\ 30 \end{array}$	SL622C		$7805 C P$	2.90
CA3081		C04085	1.75	CM382N	3.20	SL624C	8.80	-7824CP	
CA3082		C04086	1.75	LM387N	2.75	SL630C		7.400	48
CA3083		C04093	1.90	LM395K	6.90	St640	10.60	7401	48
CA3086	LM3086	C04502			- 1.20		. 60	7402	48
CA3089\%	2.90	C04503		LM555 ${ }^{\text {d }}$	+ 2.20	SL6456	12.60	7.403	48
CA30900	6.90	CD4510	3.30	LM556N		SL680C		7.404	48
CA3091		C04511	3.50	IMS62B	2.95	SL9018	3.90	7405	48
CA3120E		CO4514	6.75	LM565N	3.50	SL9178	6.50	7406	1.09
CA3123		CD4515	6.75	LM 5666 CN	$\begin{array}{r}3.50 \\ \hline 2.50 \\ \hline\end{array}$	SL1310	1.60	7407	1.09
CA3127E		C04516	3.20	[M567CN	2.50 3.50	St3046	1.20	7408	1.09
CA3128E		CD4518	2.90	LM709N	3.50	Sprosis	8.60	7409	48
CA30910		CD4519	1.40	LM710CN	125	SP	12.	7410	48
ca3l30T	2.25	CD4520	2.60	LMP10CH	1.25	TAA300	90	7411	54
CA3140T	2.25	C04528	1.90	LM723H	170	tbas70	2.90	7413	1.15
CA3600		CD4539	2.10	LM723N	125	THA810	. 90	7414	70
CD 4000	55	CD. 4555	1.90	LM725N	5.90	T81750	4.90	7416	00
C04001	55	C04556	1.90	LM733CH	4.60	TBI7SOA	3.90	7417	1.15
CD4002	55	CD4720	12.60	LM733N	2.50	tcazeoa	2.25		48
C04006	2.30	C04724	3.95	[M741CH	1.20	tcaszoa	4.90	7422	1.95
C04047	. 55	CO40097	1.90	LM741CN	75	TCA580	6.50	7426	95
CO4008	2.35	CO40098	1.90	LM747CH	5.30	TCA730	6.90	7427	6
CO4009	1.90	CO40174	3.00	[M747CN	2.50	TCA740	6.80	7430	4
C04010	1.90	CO40175	3.00	(M748CN	1.20	TDA1005	5.80	7432	48
CD	55	C040192	3.00	LM1303N	2.60	UAA170	3.25	7437	. 66
CO4012	55	CO4O194	3.00	LH1310N	- 3.50	UaA180	3.25	7438	90
CO4013	90	C040195	3.00	LM1458N	2.50	UA723C	M723	7440	48
C04014	2.40	QM8097		LM1488N	6.90				. 48
C04015	2.40	DM		(M1489 ${ }^{\text {N }}$	5.75	U1N2208	3.80	741	2.80
C04016	90	HEF see	CD	LM1496N	1.90	ULN2209	2.45	742	2.20
C04017	2.40	LH0070		LM1808N	390		2.45	744	2.20
C04018	2.50	LM114H	4.90	LM3028	CA3028	74COO	2.45	7446	2.10
C04019	1.40	LM301aN	1.95	LM3046	- 3	,	55	7447	2.20
C04020	2.60	[M301CN	95	[M3086	3.75	7c02	80	7448	2.40
CO4021	2.40	LM3044	3.80	LM3900	1.75	$74 \mathrm{Cl}{ }^{\text {a }}$	80	3450	48
CO4022	2.30	LM305AH	3.80	LM3905	3.90	74C10	65	745	
CO4023	55	LM307N	-1.60	(M3909	3.90	74 Cl 14	2.80	7453	48
CO4024	1.80	LM308H	3.50	MCT035P	2.95	74.20	75	7454	48
CD 4025	55	LM308V	2.20	MC1312P	5.50	$74 \mathrm{CB5}$	75	7460	48
C04026	3.20	LM309\%	2.60	MC1314P	8.50	74.86	2.00	7470	85
C04027	1. 10	LM310H	4.90	MC1315P	8. 14.00	74.690	2.50	7472	. 75
C04028	1.95	LM310N	3.90	MC1350p	1.90	74.154	5.70	7473	80
C04029	2.75	LM311A	3.60	MC1351P	1.90	${ }^{74 C 160}$	3.60	7474	95
CO4030	1.00	LM311H	7.50	MC1454	5.40	74.162	4.50	7475	1.35
CO4031	4.90	[M312H	6.60	MC1358	LM1458	${ }_{4}^{4} \mathrm{Cl}_{6}{ }^{4}$	3.68	7476	90
C04035	2.50	LM317K	6.90	MCI468L	6.50	74 c90		7480	1.60
CO4037		LM318N	5.90	MC1488	(M1488	74090	1.95	7482	2.30
CO4040	2.75	LM319H	9.20	MC1496K	2.75	${ }_{80} 745$	16.70	7483	2.30
CO4041	2.75	LM319N	6.90	MC1590G	6.75	MISC	2.20	7485	2.95
C04042	2.00	LM320K	6.90	MC14553	12.50			7.486	85
C04043	2.40	LM3201	4.50	MC1648P	4.90	GL4484	. 50	7489	4.50
C04044	2.40	LM322N	4.50	MCH044P	490	GL4 583	1.80	7490	. 90
CD4045	3.90	LM323K	7.90	OM802	3.20	GL325	9	7491	1.90
CO4046	3.90	LM324N	4.50	SAJIt 10	2.50	AL4484	30	7492	1.20
C04047	2.00	LM325N	4.50	SAK140	2.50		35	7493	1.20
CJ4048		LM326H	90	SD3050 E	. 30	RLS023	. 35	7494	2.20
C04049	. 95	LM339N	3.70	SO306DE	. 50	FNO357	3.50	7495	1.65
CO4050	. 95	Lm340K	4.95		2.70	${ }^{\text {coso }}$	3.50	7496	2.15
CO4051	2.25	LM340T	2.70	SL425A	2.70 1.80	9001 $\$ 368$.	1.80 3.85	74100	3.65
				Slatsa	1.80		3.85	74107	. 95
SEMACONOS		BC548	. 55						
AC125	1.80	8C549C	. 55	$\text { MPr } 103$	85	2N3053	1.20	2N5485	MPF 106
AC126	1.80	8C559	. 55	MPFF104	1.10	2N3055	1.70	2N5591	MRF603
AC127	1.80	8C639	1.20	MPF105	1.65	2N3564	. 65	2N6027	135
${ }_{\text {ACl2 }}$	1.80	BC640	120	MPF 106	1.15	2N3565	55	2N6084	
AC132	1.50	80131	1.20	MPF121	1.60	2N3566	95	- 4102	
AC187	1.50	80132	1.60	MRF603	6.90	2N3568	95	- 0447	80
AC188	1.50	8D139	1.20	TIP31C	1.20	2N3569	50	OASO	35
A0149	2.60	8 P 40	1.20	TIP32C	1.30	2N3638	55	0 O991	35
AD161/62	4.50	80237	1.80	TIP120	3.20	2N3638A	60	5082-2800	3.20
${ }^{\text {A S322 }}$	18	B0238	1.80	TP125	3.30	2N3642	55		
AS367		BDA37 BD438	2.80	7P142		2 N 3643	. 55		
ASY17	2.65	${ }_{8 F 173}$	2.80	TP147		2N3694	. 65	40440	2N3731
BC107	. 35	BF 180	1.25	1122955	1.70	2N3731	5.95	40637A	2.85
BC108	35	BF 194	. 85	1 P 3055	1.70	2N3819	1.35	40573	1.95
BC109	35	BF200	1.30	T8801	2N4037	2N3866	2.75	40822	
BC177	40	BFY50	1.20	2N301	1.20 $2 N 869$	2N4037	1.25	40841	1.90
BC178	40	BFY51	1.50	2N706A	12869 120	2N4299	. 65	88×6	75
8 Cl 179	40	8P×25	4.90	2N918 ${ }^{\text {N }}$	1.60	2N4355	65	88×70	1.50
$8{ }^{8} 182$		8SX19	. 75	2N2222A	1.20	2N43S6	65	$82 Y 93$	1.60
8 C 127	. 50	BU126	3.85	2N2646	2.50	2N4360	95	B2Y91	12.50
B6327	. 55	MFE131	1.95	2N2869	2.70	2N5245	75	PA40	12.50
8C337	. 55	MJ802	8.902	2N2904A	1.70	2N5457	MPFi03	Pago	5.85
BC429		M 32955	2.60	2N2905	1.20	2N5458	MPF103	ME112	6.50
BC547	.55 N	MJ4502	8.90	2N2919	1.20	2N5459	MPFFIOS	FCOszo	1.40 1.90

Ideas for experimenters

Low cost logic probe cum pulse catcher

When working on digital equipment it is very often desirable to know the state of various points of the circuit. Usually an oscilloscope is used, however a very short duration pulse is usually hard to see unless the scope is a sophisticated wide-bandwidth type.

This logic probe has its own readout which illuminates a LED indicating whether the point tested is a logical "0" or "1".

It also indicates the presence of a
high speed pulse, whether positive or negative going, (SW1 selects the polarity). This LED will also indicate a pulse train.

An inexpensive TTL Hex inverter is used. Power is derived from the five volt supply to the circuit being tested.

Having connected the earth and +5 V leads a simple check is to connect the probe tip to the 5 V supply and then to earth. The " 1 " and " 0 " LEDs should light in turn.

Unusual multivibrator

This device uses 3 gates of the 7400 TTL IC. Gates 1 and 2 together with associated components form a simple astable multivibrator. The output is fed directly to gate 3 which acts as the output stage. If the output is taken to a transducer as shown above, its
impedance should normally be 85 ohms or higher. But depending on the characteristics of the IC used, even 8 ohm earpieces can be driven. The prototype circuit was used as a tone generator for use in editing tapes and for separating recorded items on tape.

ELECTRONIC DISPOSALS

297 Little Lonsdale St., Melbourne, 3000 Phone 663-1785

Lafayette 10W Stereo
Amplifiers
Lafayette AM/FM Tuners
$\$ 65.00$ ea.
Garrard Model 82 Auto
Turntables $\$ 62.50$ ea.
Pioneer Direct Drive Turntable
Motors
AWA Solid State TV Tuners $\$ 7.50$ ea.
AWA Thorn Valve TV Tuners $\$ 5.00$ ea.
EHT Stick Rectifiers
$13 \mathrm{KV}, 18 \mathrm{KV}, 20 \mathrm{KV}$
75 c еа.
Speakers Pioneer $122^{\prime \prime} 40 \mathrm{~W} 8 \Omega \$ 30.00$ ea.

Plessey $8^{\prime \prime} 10 \mathrm{~W} 8 \Omega$ or $15 \Omega \$ 6.50$ ea; $8^{\prime \prime} \times 4^{\prime \prime} 8 \Omega 6 \mathrm{~W} \$ 4.00$ ea; $4^{\prime \prime} 8 \Omega \$ 1.50$ ea; M.S.P. 4" 15Ω Tweeters $\$ 3.50$ ea. Many other types in stock.

12 V DC5 Ω Solenoids	$\$ 2.00$ ea.
12 VAC Min. Relays 5 Amp.	$\$ 1.50$ ea.

Slide Pots. 20K to 3 meg . Singles, 25 c ea. Dual, 50c ea.
Resistors. Most values $1 /$ to 1 Watt. 3 cea . Carbon Pots. Most values 30c ea. Duals 60c ea.
Skeleton Preset Pots 100Ω to 3 meg .8 c ea. Green Caps .001 to .022uF 5c ea. .033 to .22 uF 10 c ea. . 47 to .68 uF 15 c ea.
Polystyrene Capacitors. Many Types 5 c ва.
Disc Ceramics. Large Range. 5c ea.
Polyester Capacitors. Large Range. Up to 1.5 uF 250 V 10 c to 25 c ea.

New Desk Telephones - Grey. $\$ 15.00$ ea. Wall Phones, New - Beige $\$ 20.00$ ea.
Polyester Capacitors 6.8uF and 3.3uF 60 c ea. 2.2 uF 40 c ea. Tantalum Capacitors. Good range 15 cea .
BC. 107 and 109 Transistors 10c ea.
0A636 1000V 2A Fast Recovery Silicon Diodes - TV Type 25 cea .
Dual $100 \Omega 3 W$ Wire Wound Pots. $\$ 1.25$ ва.
S.C.R. BT100A 300V 2AMP 60c ea.

Triacs. 2AMP 400 V 60 cea .
Also in stock - large range of electrolytic capacitors - wire wound resistors - switches - panel meters - transistors - diodes - plugs - sockets - edge connectors - vero board - transformers - chokes. We could go on and on, so call in and browse around and check our low, low prices.

Delux AM 23 channel Iransceiver with N.B. Features RF gain control. AF gain. switchable automatic Noise Limiter/Noise Blanker, and Modulation/On Air indlcator.

GTX-3325
Delux SSB/AM 23 channei transcelver featuring built-in Range Boost Modulation, FET RF amplifier for high receiver sensitivity. Noise Blanker, RF gain control and large S-meter. 15 watts PEP SSB, 5 watts AM.

In-Dash combination. AM 23 Channel 27 MHz 5 watt transceiver/AM BC receiver/FM MPx receiver/stereo cassette player. Switch on the 606CB's unique Stand-By control while you play your favourite cassettes or

In-Dash mounted 6 channel 27 MHz 5 watt transceiver/AM broadcast/FM broadcast plus scanning. Features Tx. Scan and $R x$ indicators. Scan control allowing the set to monitor all $6-27 \mathrm{MHz}$ channels while you are listening to your favourite programme.

606CB

The Ulitimate Communications/ Entertainment Centre.

listen to regular AM or FM Stereo broadcasts. The 606 CB vill then monitor 27 MHz for you, interupt your programme for 27 MHz transmissions. and resume programme play afterwards.

[^6]90 day warranty. Prices and specifications on application. Dealer enquiries invited.
Note all transmitting Equipment Requires a Licence

3 ELECTRONIC 60 Shannon SI., Box Mill North, Vic., 3129. Phone 892213

 SERVICES
NEVER TO BE REPEATED

SPECIAL CLEARANCE OF STOCK - WHILE IT LASTS

DIGITRONICS

186 PARRY STREET, NEWCASTLE WEST, NSW 2302 PHONE (049) 69-204Q

Electronics Today International

4600 and 3600 SYNTHESIZERS

Complete plans for the Electronics Today International 4600 Synthesizer and the 3600 Synthesizer will soon be available in book form. Many hundreds of these remarkable synthesizers have been built since the series of construction articles started in the October 1973 issue of Electronics Today.
Now the articles have been re-printed in a completely corrected and up-dated form.
The International Synthesizers have gained a reputation as being among the most flexible and ver-
satile of electronic instruments available.
They have been built by recording studios, professional musicians, university music departments and as hobby projects.

This book is available now as a limited edition of 2000 copies only.

Ensure your copy now!

Ensure your copy now. Send $\$ 12.50$ to Electronics Today, 15 Boundary Street, Rushcutters Bay, 2011.

Study in a classroom with only one student.

The great way to learn.

We all tend to think of learning as something done in a classroom. With a teacher at a blackboard. And many students competing for his attention. Because this is the way we learnt at school.
But experience has shown that the value of this kind of teaching decreases as we get older. Beca use each of us learns best at our own pace.

In a big class, you are tied to the average pace. It may be too fast or too slow. And you don't always have the chance to ask your questions - or get the answers you want.

ICS offers you the great way to learn: supervised independent study. A program of learning that is supervised by your tutor, a person expert in the field you have chosen. And your study is independent of any other student - so you don't compete for attention.

Every course offered by ICS has been constructed in sections. You begin at the beginning, and work your way steadily. through more and more complex material

At every step of the way, you test yourself to be sure you have absorbed the subject. At regular intervals, you complete test papers which your tutor grades and returns to you with his comments. These tests are an integral part of your learning progress. And they ask you not only what you have learnt, but also how you can apply what you have learnt. You move on to the next section only when you, and your tutor, are satisfied you have completely understood the previous section. Your tutor guides you all the time.

In the years since ICS was founded, almost 9 million men and women have received tuition, in hundreds of different subjects.

They come to ICS simply because, like you, they had a desire for knowledge in a specific field of endeavour. Some wanted to increase their ability to earn money. Others wanted to achie ve greater job satisfaction, or a better understanding of subjects away from their regular line of work

You.

Read through the list of courses offered by ICS. Select the one that interests you, then mail the coupon below. We will send you a FREE career guide that explains what ICS will teach you, and how ICS will teach you.
International Correspondence Schools, 400 Pacific Highway, Crows Nest, 2065.
Advertising and Public Accountancy Relations
Adverising Institute of Public Relataions Copywriting Adverising Layout and illustration
HotelMotel Management HoteVMotel Management Restaurant and Catering Manazement Financial Management for Hotels and Motels Club Management
Hote Morfl ()wners

Institute of Chartered
Secrel afies and Administrators-A.C.I.S. Dextee
Commercial Education Society of Austr ahia Associate Degree
Practical Accounting Practical Accounting
CES Bookkeeping and Office Practice Certufu ale Costing Ekementary Bookkeeping Colour TV Servicing Technician TV Service Technician TV Principles TV Engineering

Building and Architecture Building Contracior
Building Sciences Quantity Surveyor Building Supervisor Clerk of Works Architectural Assistant Carpentry and Joinery Basc. Building
Plumber
Builder's
Builder's Draftsman 'and Plan
Drawing
Carpenter
Computer
Programming and Data Processing
Dita Procestammung and General Computer
Programming
Computer Systems Analysis Cotol Programming Computer Servicing Speciabist Institution of Fire Engineers Membership Graduateship

\section*{Writing All Media P

 }Professional Writing Freelance loumalsm Short Story Writing Scripl Writing - TV.
Filun
. Kadio. Filum. Copywrining
Technical Writ Technical Writing Art Commercial An Recreational Art Watercokous and O_{al} Painting Cartooning
showcard and Sign
Production
Basic Ar
Basic Ant
atercolour Painting
Showcard and Ticket-writing Sign Painting and Designing Advertising Layout and lllustration

Secretarial

Pitmasis Stenography Grexg Stenogr aphy Clerk-Typist
Gregg Shorthand with Speed Building Cregs Speed Butidin Pitman's Shorthand Elementary Bookkeeping Typewriting
Interior Decoratinu Interior Decuration Program
Photokraphy Photography Program
Creative Leisure
Creative Le
Dressmakung
Dressmaking and Pattern
Curting
Typew rituge Typew riting
Electronics
Electronics Technician Audio. Radio and H / Fi Sound Systems Specialist
Comumunications Broadcasting Specialist Electronic Computer Servicing Specialist Industrial Electronics Specubist
Electronic Instrumentation and Control Systems Electronc Technology Electronics Maintenance Rado-Electronic Telemetry Electric Motor Repair and Serviking
Sules and Marketing Australian Marketing Institute Diploma Sales Representative Sales Management Retail Merchandising Manakement

Air Conditloning and Refrigeration
Air Conditioning and
Rerrigeration Technology Brasik Air Condertionitionung Refrigeration Technolony Commercial and Domestic Refrigeration and Air Conditioning Servicing Domestic Appliance and Refrigeration Servicing Air Conditioning Technology Air Conditioning for Automobiles
Business Management Institute of Business Administ ration Diploma in Management
Commercial Education
Sorlety of Australia -
Diploma in Manazemen
Diploma in Manazement
ndustrial Managenent Indust ral Managentent
Works Management Personnel Managemen
Office Management Small Business Owners Moderm Marketing
Management
Moderm Management
Stores Supervision
Purchasing and Supply Management
lub Management
Automotive Servicing
Automotive Mechanic
institute of Automotive
Mechankal Engineers
Member \& Associate
Member $\&$ Associate
Member
Queensland ' A ' Grade Motor
Queensland 'B' Grade Motor
Mechanic
Senior Motor Mechanic or

- A' Grade Certificate of

Victorian Automobile
Chamber of Commerce
Basic Motor Engineering
Automaic ${ }^{\text {Sp }}$
Automotilie Engine Tunce up
Automobile Eiectrician
Do-It-Yourself Servicing
Panel Beating and Spray
Painting
Diesel Mechanic
Alr Conditioning for
Automobiles
Automobiles
Civil and Structural Engineering Civil Enkineenny
Surve ying and Mappin Surveying and Mapping
Basce Structural and
Concrete Enyineering Bask Stnuctural Ensineering
Overseer of Works Overseer of Wor

Mechanical
 Engineering

Mechanizal Engineering
Works Managermen
Horks Management
Hydraulic and Pheumath
Power
Boller Insp
Boiler Attendant
Complete Steam
Electrical Engineering Basic Electrical Finkineering Electnc Motor Repars and Servicing
Industrial Ele
Industrial Electrician
Electrical Mechanic
Drafting
Drafting
Mechanical Drawing and
Tool Desikn
Electrical and Electronic
Drafting
Structural and Architectural Drafting for
Brafting for Air Conditioning Drawing

This hist is correct at the time of submission for publicution,

This new feature is our response to the many requests we get from readers who want explanation or information on topics they read about in the magazine. If you have a question please send it to Please Explain, ETI Magazine, 15 Boundary Street, Rushcutters Bay, NSW. 2011.

CB Skip

Listening to the CB band I hear people talking of 'working skip' and 'when the skip comes in'. I gather this is something to do with long distance communications, but what does it really mean?
F.K., Parramatta

Normal communications on the 27 MHz band result from a 'groundwave' propagation, there is a direct straight-line link between the transmitting antenna and the receiving antenna.
'Skip' propagation occurs when rather than a straight link connecting the two antennas, the radio wave from the transmitter travels up to the ionosphere and is then reflected back to earth (to the receiving station). A simple diagram illustrates how the communication distance is much greater with 'skip'.

On 27 MHz radio waves are not always reflected back to earth. There are many factors influencing propagation, mainly tied in with the ultraviolet emissions from the sun. Ultraviolet light seems to ionise the reflective layers, but the sun's emissions of UV depend on the sunsport cycle, which is currently at a low. This means skip will slowly increase in the next five years (as we approach the next maximum).

The day/night changes in the ionosphere are noticeable, too. After the sun goes down the ionospheric layers
become less reflective and skip communication is not possible. As you go higher in frequency it becomes harder to communicate by skip, and the maximum useable frequency varies from hour to hour and week to week, etc. These days it is usually not possible to communicate by skip on frequencies as high as 27 MHz .

Ground-wave propagation follows a straight line from one antenna (the transmitter) to another (the receiver).

"Skip" occurs when the radio waves bounce off the ionosphere and return to earth.

STAR DELTA

CO. PTY. LIMITED incorporating P. A. HENDERSON \& CO. TRANSFORMER MANUFACTURERS

* SINGLE \& 3 PHASE TRANSFORMERS TO 20 KVA .
* MOTOR STARTING AUTOTRANSFORMERS TO 600 H.P.
* neutral reactors

8 EAST STREET, GRANVILLE, N.S.W. 2142 P.O. BOX 31
 Telephone: 637-7870, 637-8184

'COWPER'

Cabinets and chassis for all projects featured in this magazine are available from

COWPER SHEETMETAL \& ENGINEERING

CASES
PANELS

- CHASSIS

BOXES
GENERAL SHEET METAL WORK FOR THE ELECTRONICS INDUSTRY

- WELDING
- PRESS CAPACITY TO 75 TONS

11 Cowper Street, Granville, N.S.W. 2142

Plıne 637-8736

Winivart

We'll print your 24 words (maximum) totally free of charge. Copy must be with us by the 7th of the month preceding the month of issue. Please, please write or preferably type your adverts clearly, using BLOCK LETTERS.

If, like many of our readers, you'd prefer not to cut up your copy of ETI, just make a copy of the relevant part of this page. Please make it the same size as the original - and write your copy using BLOCK LETTERS.
> send your ad to ETI MiniMart, Modern Magazines, 15 Boundary Street, Rushcutters Bay, NSW 2011.

SELL ETI 701 Masthead Amplifier assembled $\$ 20.00$, also two 8° speakers $16 \mathrm{wrms} 80 h \mathrm{~m}$ full-range In attractive, woodgrain Boxes, $18^{\prime \prime} \mathrm{BY} 30^{\prime \prime} \$ 25.00$ each. Phone (042) 961667 NSW.
SELL BWD 539C dual beam CRO. As new 12 months old, includes probes $\$ 480$. Allan Stewart, 28 Erwin St Tamworth 2340.
SALE: Sanyo Cassette Recorder \$15, mini cassette recorder $\$ 12$ (motor broken). Phone Peter Ringwood, 959929 after 7.00 pm . 3 Vancouver Street, Red Hill 2603 Canberra.
ETI440 amplifier $25 w+25 w$ Rms. Applied technology kit assembled \& tested $\$ 80$. R. Baillie, 27 Russell Ave, Wahroonga 2076. Phone (02) 487-1657.

FOR SALE Capacitors assorted values and prices write to Dan Hackett, 7 Massey Street Rossmoyne 6155, Western Australia.
WANTED to Buy operating manual for Vinten Vantage transceiver 10w FM type MTR19B Peter Wilkins 13 Wattle TCE Plympton Park SA 5038 .
SALE: Nine antique moving iron ammeters from 50AFSD to 600 AFSD manufact. In approx 1920 , in food working order. Only AFSD manufact. in approx $\mathbf{\$ 3 9 . 0 0}$ each. Geoff Weller (02) $456-1220$.

WANTED to Buy. Eddystone 990R receiver. Details of price and condition to R. Steedman 89 Slip Rd. Paynesville (051566517) after 7 pm postcode $\mathbf{3 8 8 0}$.

R210 Army receiver 2.0 to 16.0 MHz . Good working order; long and accurate tuning scale ; including 240 V power supply $\$ 70$. Ring Brisbane 2849694 evening.

ELECTRIC Piano, Hillwood not working good for keyboard and components $\$ 175$. Write J. Komarmy RMB37 Ntharm Rd. via componemts S $\$$

SELL: Thorn 3226 four track reel to reel excellent cond. $\$ 40$ ono. Phone Melb 5985679 A.H.
FOR SALE Pioneer CTF2121 front loading cassette deck $\$ 200$ meluding freight contact Glenn Block 19 Forfar Rd. Hamlyn Heights Geelong 3215, Vic. 052-784884.

SELL 4 Size AA 1.25 V rechargeable nickel cadmium batteries, 5.8 V 150 ma . Charger unused as new all for $\$ 16.50$. Contact S . Cooper, Boz 359 Millicent 5280 SA.

WANTED complete Vortex cassette mechanism or complete PM144 ortex cassette deck. Kit or assembled going or not. D. Chalker Unlon College St. Lucla 4067. 371-1300.

WANTED: Copy of top projects volume one good condltion any reasonable price paid George McAuliffe 33 , Norseman Avenue, Westbourne Park, South Australia, 5041. (08) 71-0005.

FOR SALE AWA cartridge car player and realistic cartridge and phono amp $\$ 40.00$ each. Crighton 327 Hume St., Toowoomba 4350.

SELL Relays (Ex-PMG) adlake mercury $\$ 5$ ($13 / \mathrm{kg}$). Polarised 4148A $\$ 3(3 / 4 k g) .4600$ type $\$ 1$ (300 g). Add postage VK4AZ 13 Herbert Street Proserpine, Queensland 4800.
NEW Electronic organ, plano keyboard 61 note $\$ 65.00$, keyboard contact assembly 49 note $\$ 40.00$ details write Mr. J. Wicks 1040 Heatherton Road Noble Park 3174.

CONDITIONS

Name and address plus phone number (if required) must be included within the 24 words allowed.
Reasonable abbreviations, such as 25 Wrms, count as one word. Private adverts only will be accepted. Please let us know if you find a commercial enterprise using this service.
Every effort will be made to publish all adverts received however, no responsibility for so doing is accepted or implied.

Note: These advertisements are not corrected before typesetting and are not proofread either. Please type your copy exactly as you want it printed.

PLEASE USE BLOCK LETTERS			

eleatronics tody
 ganvices
 ADVERTIG ERS INDEX

READERS'LETTERS

We make no charge for replying to readers' letters, however readers mus enclose a foolscap-size stamped addressed envelope if a reply is required. Queries concerning projects can only be answered if the queries relate to the project as published. We cannot assist readers who have modified or wish to modify a project in any way, nor those who have used components other than those specified.
We regret that we cannot answer readers' queries by telephone.

SUBSCRIPTION'S

Electronics Today International can be obtained directly from the publishers for $\$ 14.00$ per vear (including postage) within Australia.
The cost for countries outside Australia is $\$ 14.65$ including postage (surface mail). Airmail rates will be quoted on application.

BACK ISSUES

Our subscriptions dept can supply most back issues of ETI for the twelve months preceding the date of this current issue. Some earlier issues are also available.
The price of back copies is currently $\$ 1.00$, plus 40 cents postage and packing. Please address orders to Subscriptions Dept, Electronics Today, 15 Boundary St, Rushcutters Bay, NSW 2011.
Photostats of any article ever published in ETI càn be obtained from our subscription dept (address above).

BINDERS

Binders to hold 12 issues of ETI are available from our subscription dept (address above). Price is $\$ 4.50$ (plus 80 cents postage NŞW \& ACT - or $\$ 1.50$ all other States)

COPYRIGHT

The contents of Electronics Today International and associated publications is fully protected by international copyright under the terms of the Common wealth Copyright Act (1968).
Copyright extends to all written material, photographs, drawings, circuit diagrams and printed circuit boards reproduced in our various publications. Although any form of reproduction is technically a breach of copyright, in practice we are not concerned about private individuals constructing one or more projects for their own private use, nor by pop groups (for example) constructing one or more items for use in connection with their performances.
Commercial organisations should note however that no project or part project described in Electronics Today International or associated publications mạy be offered for sale, or sold, in substantially or fully assembled form, unless a licence has been specifically obtained so to do from the publishers, Modern Magazines (Holdings) Lid or from the copyright holders

A MODERN MAGAZINES PUBLICATION

Publisher
Managing Director
Secretary
Subscriptions \& Circulation Manager
Collyn Rivers
Arnold Quick
Charles O'Leary
John Oxenford

AdVERTISING

Sydney: Bob Taylor (Advertising Manager), Geoff Petschler (NSW Manager), 15 Boundary St., Rushcutters Bay, 2011. Tel 33-4282. Telex: AA27243 (MODMAGS). Melbourne: Tom Bray, Poppe Davis, Suite 24, 553 St. Kilda Rd, Melbourne. Tel 51-9836. Brisbane: David Wood, 11-14 Buchanan St, West End, Brisbane. Tel 44-3485. Adelaide: Ad Media Group, 68 North Terrace, Kent Town 5067. 42-4858. Perth: Aubrey Barker, 38 Mounts Bay Rd, Tel 22-3184. Tokyo: Genzo Uchida, Bancho Medla Service, 15 Sanyeicho, Shintuku-Ku, Tokyo 160. London: Electronics Today International, 25-27 Oxford Street, Lońdon W1R 2NT. Tel (01) 434-1781./2.

PRODUCTION

Production Manager
Art- Director
Artist
Bob Izzard
Acoustical Consultants: Louis A. Challis \& Associates, Projer Maree Stanley
Acoustical Consultants: Louis A. Challis \& Associates. Project Design: Nebula Electronics
Electronics Today International is published by Modern Magazines (Holdings)
Ltd, 15 Boundary St, Rushcutters Bay, NSW 2011. It is printed (in 1977) by Wilkie \& Co., Browns Road, Clayton, Vic and didstributed by Australian Consolidated Press.
*Recommended price only. Copyright.
A \& R Transformer 50
N.S. Electronics 90,91
Ace Radio 53
Aero Electronics 51
Ampec Engineering 69
Applied Technology 64,65
Audio Engineers.
Auriema 20,21,86,87
Automation Statham 69
Autotronics 92
Bail Electronics 96
Bay Road Electronics 69
BWD Electronic 58
Cashmore Sound 58
CEMA 78
Cirtek. 59
Convoy 7
Cooper Tool Group 19
Davred Electronics 23
Dick Smith 34,60
Diggerman 97
Digital Electronics 80
Dígitronics 96
Director of Recruiting 13
Electrocraft 52
Electronic Agencles 56
Electronic Concepts 14
Electronic Disposals 95
Electronic Enthusiasts Emporium 94
Elmeasco 12
Emona 80
Farrell 79
Ferguson Trans. 43
General Electronic Services 93
Haco 2,103
Harman 8
Hudson Bay 92
Instant Component Service. 26
Int. Corr. School 98
International Dynamics 37
Inter, Elect. Unlimited 100
Jaycar 52
Kent $\mathrm{Hi}-\mathrm{Fi}$ 15
Kitsets: 44
Lafayette 92
Leroya. 24,35,43,85
Logan Brae 97
M.S. Components. 68
Music Distillery
42
42
Nationwide 59
Paramount (Appollo) 70
Philips. 10.39,41 104
Pioneer
Pioneer
Protector Alarm 92
Radio Despatch 13
Radio House
50
50
Richard Foot 33
Rising Electronics 84
Sonab 45
Star Delta 99
Stotts College 37
Techniparts 53
Tektronix 94
W.H.K 36
Warburton Frankl 44
Wire Wrapping Services 80
CB Australia
Bright Star 26
Dick Smith IFC 25
Four Whee Drives. 14
M.S. Components. 28
Moblle One 18
New Electronic 10
Peter Shalley 11
Strato Communications. 27
Tandy 19
Teleview
Xenon Imports 5

Introducing the revolutionary UD-XL EPITAXIAL cassette

Developed by MAXELL this completely new EPITAXIAL magnetic material combines the advantages of the two materials (gammahematite and cobalt-ferrite): the high sensitivity and reliable output of the gamma-hematite in the low and mid-frequency ranges and the excellent performance of the cobalt-ferrite in the high-frequency range. The result is excellent high-frequency response plus wide dynamic range over the entire audio frequency spectrum.
Compared to chrome tape, sensitivity has been improved by more than 3.5 dB . Because EPITAXIAL is non-abrasive, it extends to the life of the head. Consequently, the UD-XL delivers smooth, distortion-free performance during live recording with high input. When using UD-XL it is recommended that tape selector be in the NDRMAL position.

Fidelity is also ensured by a precision-manufactured cassette shell with a special anti-jamming rib that provides smooth tape travel and helps eliminate wow and flutter.

Another good idea of the UD-XL cassette is a replaceable self-index label. Simply peel off the old label and put on a new one when you change the recording contents. No more mess on the label.

maxell.

Magnetic material arructure
Convantional magnetic perticia
 EPITAXIAL megnetic perticto

Dimensional 1 atio $\% / \mathrm{b}=10-11$

Some slightly lesser decks for a lot less bucks.

Not everyone is going to rush out and buy the highest priced deck on the market becausie nöt everyone needs it. Or wants it. Pioneer knows where you're at.
For those who want to match the best cassette deck available to their present system and budget, we are pleased to announce the return of the "basic" cassette deck. Basically outstanding in tonal quality, basically designed for mechanical precision and basically' priced for good value While front access design makes them, easy to use, advanced Pioneer
features make them great to listen to
Just as'an example, in the CT-F8080 a DC servomotor ptovides accurate record/play speed. A second motor for tast-forward and rewifid. As a result, wow / flutter is within $\pm 017 \%$. The long life Ferrite Solid head and Dolby* noise reduction system join to reduce tape noise and deliver excellent high frequency feproducfion. Solenoid operated controls are user enginéered for convenience and advanced equalizer circuitry accommodates any type of tape commercially av ailable today.

CT-Fa080	Gersetto Pothion venien	David syatem	Conlrol camatlon Solenoid	Trape Surector		Sigual/Noine Adyo	Fraquency fieremite
Cक्\%\%\%			Solenoid	Indepencent BIMS, EC	within 0.i) (BIN)	Dony offlises bolsy ON: 6348 (normal tape ared	$\begin{aligned} & 20-15,00 \mathrm{CHz} \\ & 30-13,000 \mathrm{Nz}(\geq 3 a \mathrm{~B}) \end{aligned}$
cramerser	vorneal	1 molor 3 anem	mecimical Mechanieai	Indepondent Bus, E 0 foutomatic efromothe e-locto	$\begin{aligned} & \text { Wubin } 0.8 \% \% \\ & \text { (DiN) } \end{aligned}$	Dolly OFF: 52de Dolly on: 62de inormal tepo ave 31 Hz)	$10-14,000 \mathrm{AB}$ $40-13.000 \mathrm{~Hz}(\pm 3 \mathrm{~dB})$
-100es	vor		Mechanical	Independen pias. 60 feutomatic shroms. 1apo selector)	$\ln 0.0$	0ol jorrixys Dolsy ON: 62da frem wal tepe oven $3 t \mathrm{~Hz}$	$\begin{aligned} & 30-14,060 \mathrm{~Hz} \\ & 40-13,000 \mathrm{HE}(\pm 3 \mathrm{~dB}) \end{aligned}$

. Dolby is the trademark of Dolby Laboratones. Inc
Pioneer Electronics Australia Pity, Lid 178-184 Boundary Road. Braeside, Victoria 3195 Phone: 90-9011. Sydney $93-0246$, Brisbane 52.8231. Adelaide 433379 , Perth 76-7776.

(1) PIoneer

leads the world in sound.

[^0]: VICTORIA: Allans Music (Aust) Lid. 630451 Encel Electronics Piy. Lid. 423761 Instrol Mi.Fi (Vic) Piy. Ltd. 675831 Southern Sound 677869 Southern Sound, Moorabbin 977245 Tivoli Hi-Fi 812872 Shop 6332846 Instrol Hi-Fi Pyy. Lid. 2901399 Milverson Ply Lid. Chatswood 4122122 Milvers.W.: Convoy Sound W'Loo showroom 3572444 Convoy Sound City showroom 291364 The Gramophone Wests (Burwood) Piy, Lid. 7474444 Arrow Electronics Ply. Lid 298580 位 4122122 Milverson Piy. Lid. Parramatta 6353588 Riverina Hi-Fi 938 2663/4 United Radio Distributors P/L 2323718 360080 Premler Sound Rockhampton 282701 TASMANIA: Bel Canto 342008 WESTERN AUSTRALIA: Audio Lid. 5796399 Pitman's Radio \& T.V. Wagga 252155 QUEENSLAND: John Gipps Sound Sound Spectrum 2232181 Blackwood Sound Centre 2781281 Decibel 611865 Allans Musi 1 AUSTRALIA: Audio Distributors 315455 A.C.T.: Pacific Stereo 950695 Ouratone 82 1388 SOUTH AUSTRALIA:

[^1]: Ground floor, Cambridge House,
 52-58 Clarence St., Sydney NSW 2000.
 (02) 29 3753-4.5

[^2]:

[^3]: 159 Flinders Lane, Melbourne, 3000. Tel: 63558366 King Willlam St., Kent Town, S.A., 5067. Tel: 425798

[^4]:

[^5]: DELIVERY CHARGES - No minimum charge. $\$ 0-\$ 53 / 450 c, \$ 5.01-\$ 15.003 / 4 \$ 1.00$, $\$ 15.01-\$ 25=\$ 1.50, \$ 25.01-\$ 50=\$ 2, \$ 50.01-\$ 100=\$ 3, \$ 101$ or more $=\$ 4-$ all above charges are by post. All heavy ltems will be sent "Freight-On" through Comet. No packing charges. For C.O.D. please send $\$ 3$ deposit. Please send an extra 1% of order value if insurance is required.

[^6]: Also available from BAILS - a large range of Antennas and Accessories.

