SPECIALSUPPLEMENT-ULTRA HI-FI DESIGN

Windscreen Wiper Delay Unit

Space Shuttle Communications

Light Chaser Project

The competition don't like the sound of this at all.

For quite some time, other manufacturers have been trying to produce tape with the qualities of the Maxell UD-XL. At the same time, Maxell have been quietly perfecting an even better series.

The UD-XL I and UD-XL II tapes are designed to attain maximum performance at the ferric and chrome position on your tape deck. Whichever tape position you choose, Maxell can give you a better performance.
UD-XLITAPE, FORFERRIC(norm.)POSITION(120us)
UD-XL I offers an excellent sensitivity of 1 dB higher than even UD-XL. MOL performance is also 1 dB higher over the entire audio frequency spectrum. The result is a new standard in ferric tape, with wider dynamic range and less distortion than ever before.

How does the UD-XL I compare then, with ordinary low-noise tapes?

Sensitivity is higher by 2.5 dB , and MOL performance by as much as 6 dB .

Yet, for all this UD-XL I requires no special bias or equalization. Simply set your tape selector as you normally would at the ferric position - but there the comparison ends.

UD-XL II TAPE, FOR THE CHROME POSITION(70us)

UD-XL II tape is such a dramatic improvement on most other tape that can be used in this position, that comparison is really unfair.

For example, if you're familiar with conventional chromium-dioxide tape, you'll know of the associated problems of poor output uniformity plus low maximum output level and rather high distortion.

UD-XL II tape offers you excellent MOL, sensitivity, and an output improvement of more than 2 dB over the entire frequency range.

Maxell's unique 'Epitaxial' process gives you absolute sensitivity and stability, and no drop-out problems. What's more, the shells are moulded in diamond cut dies, and made to tolerances 5 times greater than the Philips standard. And, like all Maxell tapes, UD-XL II has the 5 -second cleaning leader.

In short, if you're recording in the chrome position, you can now achieve all the advantageswith none of the drawbacks.

A prospect we think you'll find very exciting even if the competition don't.

For details on all Maxell Recording Tape write to Maxell Advisory Service, P.O. Box 49, Kensington, N.S.W. 2033

Editorial: Les Bell
Publisher: Collyn Rivers

Cover: Electronic jewellery offers you the ideal opportunity to display your talents - see our LED Pendant project on page 33.

A Modern Magazines Publication - Recommended retail price only.

Registared for posting as a publication Category B

PROJECTS

552: LED Pendant. 33
319: Variwiper Mk II 40
Slow, slow, quick quick slow.
47
551: Light Chaser
605: Log/Exponential Converter 54
For synthesisers or instrumentation89
Low cost hard copy
FEATURES
Space Shuttle Communications 14 14
Orbiter doesn't carry a CB!
Sound 23
New machines for Merafine tapes
61
Ultra Fidelity - Design Principles
One man's view - and he should know 81
Review of technologies.
102
Digital Electronics by Experiment
NEWS \& INFORMATION
News Digest 5
Sound Briefs. 29
Print Out News 87
Communications News 109
Kits for ETI Projects 117
PCB's 118
Mini Mart 120
Propagation Predictions 126
Ideas for Experimenters 131
Reader Services 138
Index to Advertisers. 138
Book Reviews 127

Sometimes you want lots of proximity effect.

"The Mike With Guts'

E-V's New PL91 Dynamic Cardioid
Proximity effect. It's that husky bass boost a singer gets working close to the mike. It's just one of the things our new PL91 does better than other mikes Make a comparison test. We think you'll find that the PL91 provides greater gain before feedback than the mike you are using now. - or any competitive mike. You'll also find that our sophisticated shock mounting assures superior rejection of handling noise. And it's got all the tough-as-nalls ruggedness you expect from an Electro-Volce microphone.

Sometimes you don't.

'The Clean Mike'

E-V's New
PL6 Continuously Variable-D

Super Cardioid

Successor to the famed 664 ("The Buchanan Hammer'), our new PL6 minimizes proximity effect to deliver clear, crisp sound at any working distance. Frequency response, both on and off axis. is continuously smooth and uniform. Rear sound rejection capabillties are excellent The PL6 mike is the one mike for doing the most jobs best. The same professional performance as our famous RE serles at less than professional price

Elecho.Voice - gulton compory 174 Taren Pt. Road Taren Point,
Electro-Voice Australia Pty. Ltd.

NSW. 2229.
Tel. 525-8588
Telex AA26793

CARTRIDGES

 \& STYLICARRTRIDGS.
antrage ano styul price is.

CAMPBELLTOWN HI-FI

 107 Macquarie Ave,Campbelltown, NSW 2560 Open all day Saturday
Ph. (046) 25-6067

New books

Just a few of the thousands in stock. Call in or write. Prices subject to fluctuation - correct at time of goling to press. Mail orders by retum.

ARRL Handbook 1978 edition ASGB Handbook
Vol 1
$\$ 21.85$
Vol 2 . $\$ 18.90$
World Padio TV Handbook 1978 edition, complete guide to the World's broadcasting and TV sta-
tions .. $\$ 12.95$
World DX Guide - Companion to World Radio TV Handbook due July/Augusi - Reserve your copy now.

MMERICAN RADIO RELAY LEAGUE

A course in radio fundamentals
AARL Antenna Handbook
Electronics Data Book
FM and Repeater for the radio amateur Getting to know oscar from the ground up Hints and Kinks for the Radio Amateur, new Learning to work with Integrated Circults. Radio Amateur's License Manual
Radio Amateur's VHF Manual
Single Sideband for the Radio Amateur...
Solld State Design for the Radio Amateur
Special Communications Techniques for
Amateur.
Understanding Amateur Radio.
Coil Winding Calculator: L/C/F Calculator

RECENT POPULAR TITLES

Amateur Radio Theory Course - Ameco Australlan Radio Amateur Callbook 1977 Beam Antenna Handbook. Orr
Be Your Own Television Repalrman
Best of Byte Vol. 1
Best of Creative Computing Vol 1
Best of Creative Computing Vol 2
Building Hi-FI Speaker Systems
CMOS Cookbook. Lancaster
Cubical Quad Antennas, Orr
Ham \& CB Antenna Dimension Charts, Noll Installing TV \& FM Antennas, Sands....... $\$ 6.50$ Introduction to Mierocomputers
vol 0 - Beginners Book. Adam Osborne
Vol 1 - Basic Concepts, Adam Osborne $\$ 12.55$ Vol 2 - Some Real Producis, Adam Osborne. 321.55 8080 Programming for Logic Design. Adam Os
borne..Sil..0
Japanese Radio, Recorder Tape Player - Schematic
Low \& Medium Frequency Radio Scrap Book - Ham
Radlo Magazine ... $\$ 9.85$
Magazines - Byte: Interface Age: Kilobaud: Personal
Radio Handbook, Orr, New 20th edition
Reference Data for Radio Engineers.
emiconductor general-purpose replacements, a
Servicing Electronic Organs - Tab
73 Dipole \& Long wire Antennas, Noll
73 Vertical Beam \& Triangle Antennas, Noll TTL Cookbook, Lancaste
Transistor Substifution Handbook, 15th ed Tube Substilution Handbook, 20in ed

MAIL ORDERS BY RETURN
PLEASE ADD 9Oc per parcel postage (Vic) S1 70 per parcel interstate
TECHNICAL BOOK \& MAGAZINE CO 295-299 Swanston St. MELBOURNE 3000 Ph. 6633951

News Digest

Wind Turbine Test

The 200 kW experimental wind turbine generator at Clayton, New Mexico, has been inspected after its first six months of operation. Although the inspection revealed that most components are wearing normally, 3 small cracks and many loose rivets have been found in the blades. The NASA Lewis Research Centre, which manages the large wind turbine portion of the DOE, will conduct an inspection and analysis to determine the blades' wear and life potential.

Speak and Spell

Texas Instruments' new speech synthesizer has found a new application in teaching children commonly misspelt words. The unit asks a user to spell a word and after buttons are pressed in response, will tell the user whether or not the correct answer has been indicated.

New Oscilloscope Camera

A new, low price oscilloscope camera, the Model 7000, is now available from BWD Electronics Pty. Ltd.

The Model 7000 has been completely updated. It incorporates an improved shutter and lens, with eight speeds ranging from 1 second to $1 / 125$ second, and aperture control from f 3.5 down to f32. As well as hand-held operation, the new 7000 can be used for permanent mounting with the range of precision oscilloscope adaptors. According to BWD, this is the first time that a low priced camera has been available with a choice of mounting systems.

The new camera weighs less than 680 gms and is highly portable. It produces fully developed 83 mm x

$108 \mathrm{~mm}\left(3 \frac{1}{4} 1 \times 41 / 4^{\prime \prime}\right)$ quality prints with virtually no picture distortion in just 30 seconds, so it is quick and simple to check that all relevant data has been recorded. It needs no focussing, and the exposures can be accurately controlled to take account of the brightness of the display and type of CRT phosphor used. Once the initial settings have been determined, changes are seldom
necessary.

For further information please contact BWD Electronics Pty. Ltd., Miles Street, Mulgrave, Victoria, 3170 or P.O. Box 325, Springvale, Victoria, 3171.

BWD540 - New Data Sheet

A new comprehensive data sheet is available from BWD Electronics Pty. Ltd., which fully describes their DC-100MHz dual trace oscilloscope, the Model BWD 540.

The data sheet provides full details of the specification for the oscilloscope and illustrates details of the Line Selector Module, BWD 701, which can be fitted in conjunction with a battery pack, BWD BP3 making the whole unit a completely portable data base suitable for communications, video and computor applications.

The BWD 540 oscilloscope is claimed to combine laboratory accuracy and versatility with true field portability and is well suited to all forms of logic circuitry from DTL to ECL.

Further details from: BWD Electronics Pty. Ltd, Miles Street, Mulgrave, Vic 3170.

Cheap Holograms

Somewhere we've heard a rumour that the CSIRO National Measurement Lab has succeeded in producing full-colour, 3-D holograms using ordinary light bulbs. This technique eliminates the need for lasers, reducing the cost and reducing the associated safety requirements. We don't normally pass on rumours, but this one really had us baffled. Would anyone at CSIRO like to either confirm or deny it?

Melbourne Parts Supplier

A new electronics store has opened in
the North Melbourne subarb of Coburg, supplying a range of components, kits and hardware. Centrally located in the Coburg shopping centre, you can find Tasman Electronics at 12 Victoria St., Coburg, VIC.

Holographic Memories

Research by the Plessey research labs at Towcester in England points to 'photonics' as the successor to electronics as a data storage and retrieval medium. Chemical behaviour known as photochromism offers the prospect of a dense holographic memory which can be read, written and e rased like magnetic tape. Plessey hope to have a prototype by mid-1979.

Price of Progress

Sad tale of the month - seeking a way to make fuel to run his tractors, L . Crombie of Webster Minnesota designed a solar fuel-alcohol still made of ply. wood and thin plastic sheet. Trying to apply for a licence for his still, Crombie received a huge packet of materials which required that he be bonded, have an environmental study made, and once approved, would have tax and Treasury agents eyeing him up - the whole process taking about 2 years. Crombie went ahead and built his still, but then made the mistake of saying too much to the local sheriff's deputies.

No charges have been laid against Crombie yet.

Power Transistor

General Electric has developed a Darlington transistor capable of switching 400 V and 350 A in $1 \mu \mathrm{~s}$ with an external drive of only 0.1 A. Key to the new device is a new copper package/ new device is a
heatsink design.

TO JUDGE THE QUALITY OF OUR NEW MAGNETIC CARTRIDGES WE MADE USE OF THE MOST SOPHISTICATED MEASURING EQUIPMENT AVAILABLE.

WE WANT YOU TO DO LIKEWISE.

No matter how often we are praised by reviewers in curves and data, we know that for you it's not worth the paper it's printed on unless your ears agree.

For that reason each and every step on the way to our new line of magnetic cartridges was carefully monitored by the Ortofon "Golden Ear Panel". We believe that a good cartridge should produce perfect sound rather than convincing diagrams. And we trust you feel the same.

So, when choosing your new cartridge, trust your ear. You will inevitably end up with an Ortofon.

We're easy to find. Just listen.

New Catalogue

Electronic (Distributors), suppliers of electronic components and equipment, have just issued their 1978 Catalogue and Product Selection Guide. The catalogue lists a comprehensive range of products suitable for government and industry as well as providing quite a lot of product information to assist in the selection of the right component for specific applications.

Copies of the catalogue will be mailed free of charge by writing on a company or departmental letterhead to Electronic (Distributors), PO Box 33, Pendle Hill. NSW, 2145.

Low Distortion Function Generator

The New B \& K Precision Model 3010 Function Generator is claimed to offer convenient use and excellent waveform accuracy at a moderate price, Frequency coverage spans 0.1 Hz to 1 MHz in six ranges, with each range providing linear 100:1 frequency control.

Push-button range and function selection provides fast, error-free operation. The stable voltage-controlled oscillator (VCO) of the 3010 is varied on each range by the front panel frequency control, or the VCO external input. A 0 to 5.5 V ramp applied to the VCO external input will provide a $100: 1$ output frequency change. By applying such an input ramp, the 3010 can be used as a sweep generator for response measurements in audio and I-F circuits. When an audio signal is applied in place of a ramp, the 3010 will produce a direct FM output.

The 3010 features a variable DC offset control which provides up to $\pm 5 \mathrm{VDC}$ (into 600 ohm) combined with the selected audio output frequency. Engineering applications for this feature include evaluation of the effects of : DC bias on an AC circuit, an audio transformer approaching saturation and shifted operating points of a DC coupled amplifier. The DC offset function can even be used to simulate a DC power supply for the evaluation of power supply filter networks. When used in this manner, the 3010 output can be tuned to simulate the line frequency input of the "model" power supply.

For square-wave operation, the 3010 offers a fixed TTL output level and a variable amplitude output. Variable out. put square wave rise or fall time is 100 nanoseconds or less; TTL square wave rise/fall time is 25 nanoseconds or less. Square-wave symmetry at 100 kHz is a near-perfect 99%. In addition to response tests, the square-wave outputs are ideal for clock-pulse substitution in digital circuits.

The triangle-wave function is always useful when linearity tests are required. Small amounts of distortion indicated by non-linear changes in a waveform are easier to detect on a triangle wave than on other common waveforms. For that reason, triangle-wave linearity is a highly important specification. Again, the 3010 generates a near-perfect output by providing 99% triangle-wave linearity at 100 kHz .

As a sine-wave generator, the 3010 is conservatively rated at less than 1% distortion from 0.1 Hz to 100 kHz ; less than 0.5% is typical. Above 100 kHz , harmonics are supressed by over 30 dB at maximum output amplitude.

For further information contact Bruce McCarthy, Parameters Pty. Ltd., 68 Alexander St., Crows Nest NSW 2065.

Solar Panels

Soanar Electronics Pty. Ltd, is now a distributor for the Philips type BPX 47A Silicon Solar Panel. The panel consists of an array of interconnected solar cells that convert solar energy directly into usable electric power. Full sunlight is not essential for operation, as the solar cells continue to supply energy even under overcast conditions.

In optimum conditions a single solar panel will deliver 11 watts of power at 15.5 volts. Several panels can be connected together in series or parallel to provide the output required for a specific purpose.

Construction of the panel consists of

34 series-connected solar cells of 57 mm diameter moulded in transparent resin and sandwiched between two clear glass plates. An edge seal of silicon rubber framed with aluminium edging completes the assembly and prevents the ingress of dirt and moisture. Overall dimensions of the panel are $468 \times 365 \times$ 15 mm and the unit weighs a mere 2.4 kg.

The Solar panel is suitable for use under severe environmental conditions and conforms to the requirements of relevant IEC tests with respect to elevated and freezing temperatures, humidity, wind pressure, salt spray and blown sand. Thus it is ideally suited to charging batteries in boats, caravans and holiday homes or for power equipment in remote or isolated areas.

Soanar Electronics will be maintaining stocks of the BPX 47A Solar Panel at their branch and agents' stores in all states. Full technical specifications are available from Soanar Electronics Pty. Ltd., 30 Lexton Road, BOX HILL, VIC. 3128.

Two New X-Y Recorders

Parameters has announced the release to two new YEW X-Y Recorders Models 3036 and 3086. Both are designed for A4 size paper and the writing areas are $250 \mathrm{~mm} \times 180 \mathrm{~mm}$ and $250 \mathrm{~mm} \times$ 250 mm respectively.

Accuracy is maintained at $\pm 0.25 \%$ and the sensitivity is $5 \mathrm{uV} / \mathrm{cm}$. Optional input ranges include 19 ranges from $5 \mathrm{uV} / \mathrm{cm}$ to $5 \mathrm{~V} / \mathrm{cm}$ or for 13 ranges from $0.5 \mathrm{mV} / \mathrm{cm}$ to $5 \mathrm{~V} / \mathrm{cm}$. Both units are suitable for bench-top or rackmounting and are supplied with disposable felt-tip pen cartridges for high quality traces. Electrostatic paper holddown and "light spot" paper alignment is incorporated.

Built-in time base is standard with 3036 and optional on model 3086. For further information contact Bruce McCarthy, Parameters Pty. Ltd., 68 Alexander St., Crows Nest, NSW 2065.

fact: Shures up front with Maynard Ferguson... and backstage too!

The Performance

Maynard settles for nothing short of the finest . . . in his music, in his arrangements, in his creativity, in his road engagements, in his band. And in his microphones and sound system. That's why he insists on a Shure SM58 microphone. That's why engineer Tony Romano puts the sound together on Shure SR consoles.

The Sound
Maynard builds it from feelings, ideas, crescendos, rhythms, harmonics, and layers of raw sound.
Shure's professional SR sound equipment performs superbly even in Maynard's most demanding sets. It projects his trumpets to everyonewhatever the size or shape of the hundreds of clubs and halls he works. Take it from Maynard Shure performs. That's the up-front information. And the backstage story, too! Shure . . . the Sound of the Professionals.

Professional Microphones \& Sound Systems

THORNBURY 3071 Vic

Electronic Yoghourt

Yes, electronic yoghourt! The latest home yoghourt maker released by Rolmex Electro Inc. of Quebec, Canada, uses an electronic temperature controller instead of a conventional thermostat, to hold temperature constant to within 0.5 degrees. Because of this, it is claimed the Yogourmet completes incubation of yoghourt in 4 hours, 2 or 3 times faster than most conventional home yoghourt makers.

Latest From Polaroid

Not content with making extraordinarily simple-to-use cameras with instant results, Polaroid are now going one further by offering an auto-focassing camera. The SX-70 Sonar One Step uses a very sophisticated sonar technique, bouncing sound waves off the subject to obtain correct focus in all light levels, yet will retail for around $\$ 20$ more than the standard SX70 model. The same feature will also be added to the Pronto range.

Humidity Meter

An electronic version of the wet and dry bulb psychrometer has been designed by J. de Yong of the CSIRO Div. of Chemical Technology. The instrument has two temperature sensors, one dry and the other covered with a wet sleeve, and will measure atmospheric humidity to better than 0.5%.

Dickie's Anniversary Sale

Next month, October, marks the 10th anniversary of the creation of the Dick Smith empire (or kingdom, as it was then). Accordingly, and being the nice chap he is, Dick is holding a 10th anniversary sale, with a mini-catalogue in every copy of next month's ETI. So don't miss the October ETI or you'll miss out on some bargains!

Asean Trade Fair

A number of electronic manufacturers will be among the exhibitors at the first Asean Trade Fair which is being held in Sydney at the MLC Centre from October $23-28$. The Fair, which will involve all five Asean nations Indonesia, Malaysia, the Philippines, Singapore and Thailand - will include displays of FM two way, long range HF/SSB and clock radios, electronic and mechanical toys, cassette recorders, burglar alarms and colour TV sets.

Television and radio components from the Tanin Industrial Company in Thailand are also scheduled for display.

The fair is for trade visitors only, although part of two days - Thursday afternonn and evening and Saturday, the last day of the exhibition - will be
open to the general public. Invitations and catalogues have been sent to the trade but more are available on request. Simply ring 20622 and ask for Dick Fletcher, Asean Trade Fair, at the Department of Trade and Resources, or call into their offices at 181 Castlereagh Street.

PCB - Mounting Electrolytic

A new style of electrolytic capacitor that allows large capacitance values to be mounted directly onto a printed circuit board has just been introduced by Soanar Electronics Pty. Ltd.

Designated, 'Type RP' this capacitor is generally similar to the conventional can electrolytic except that the terminations consist of a three-wire configuration instead of the usual solder pins and securing lugs. Two of the wires provide the usual electrical connections of the capacitor while the third wire acts as an anchor to provide stability to the PCB mounting.

Soanar Electronics are stocking an initial range of values, at their head office, interstate branches and agents stores, comprising 2500 uF in 35 V , 63 V and 80 V DC WkG, and 5600 uF in 40 V DC WKG. This initial range will shortly be expanded to meet the total requirements of the local market.

Furhter details and technical specifications are available on application to Soanar Electronics Pty. Ltd., 30 Lexton Road, BOX HILL, VIC. 3128.

New Bankstown Store

Radcom Pty Ltd, who for the past $41 /$ years have specialised in the supply of military communications equipment, are opening a new component supply store at 105-109 Eldridge Rd, Bankstown. As well as a wide range of components, including the Silicon Valley range of semiconductors, the store will sell kits, test gear and instruments.

CB for UK?

A working party of the UK National Electronic Council has concluded that "A high quality form of citizens' band radio service should be introduced in the United Kingdom". The report, which was published in the May-June issue of National Electronics Review, recommends the use of either SSB or FM somewhere between :UU and 500

MHz . Curiously, the report recommends also that each sideband transceiver would have to be phase locked to the 200 kHz standard frequency transmission from Droitwich - a requirement which, to our minds, would be almost impossible on both technical and economic grounds, as the 200 kHz transmissions cannot be received satisfactorily in some parts of the country.
The report, by such a prestigious body as the NEC, allied with the mobile radio manufacturers' keen interest in CB (c.f. Philips in Australia) surely must mean that the Home Office cannot be so certain in their opposition to CB.

Teletext System Rivalry

The UK Post Office has not completely swept the field with its Teletext system, and in fact, there is now some fairly heavy political maneouvering going on in the electronic conference chambers of Europe. The problem is the French, who with characteristic Gallic tenacity, have set about developing their own Teletext/Viewdata system, called Antiope. This is not compatible with the UK Teletext system, but has the advantage of being able to handle the seven alphabet sets required for all European languages.

Rumours are rife that Antiope will be the Teletext system used at the Moscow Olympics in 1980, and this would be a major propaganda coup for the system.

Fortunately for the UK interests, Antiope is not yet available to the French public, whereas Viewdata and Teletext equipment has been sold to West Germany, the Netherlands and Australia; although the French are trying hard to show the Germans the disadvantages of Teletext, which cannot display accents such as umlauts without modification.

Incidentally, the Viewdata service provided by the UK Post Office is now officially known as Prestel.

Computer Courses

To coincide with the recently introduced range of Central Data 2650 microcomputer systems and kits, Rod Irving Electronics have announced that they will be running microprocessor courses in September. The courses will be oriented toward the hobbyist, ranging from basic understanding of microprocessors to a general understanding of systems, followed by using and programming the Central Data 2650 system. Course Details may be obtained from Rod Irving Electronics on (03) 4898131.

Finally. A dependable microcomputer board.

In performance. In quality. In availability. OEMs, educators, engineers, hobbyists, students, industrial users: Here's our Versatile Interface Module, a fully-assembled, tested and warranted microcomputer board thats a true single-board computer, complete with keyboard and display. All you do is provide a +5 V power supply and the Versatile Interface Module gives you the rest-and that includes fast delivery and superior quality.

Key features include:

- Hardware compatibility with KIM-1 (MOS Technology) products.
- Standard interfaces include audio cassette with remote control; both 8 bytes/second (KIM) and 185 bytes/second (Versatile Interface Module) cassette formats; TTY and RS232; system expansion bus; TV/ KB expansion board interface; four I/O buffers; and an oscilloscope single-line display.
- 28 double-function keypad with audio response.
- 4 K byte ROM resident SUPERMON monitor including over 30 standard monitor functions and user expandable.
- Three ROM/EPROM expansion sockets for up to 24 K bytes total program size.
- IK bytes 2114 static RAM, expandable to 4 K bytes on board and more off-board.
- 50 I/O lines expandable to 70.
- Single +5 V power requirements.
- Priced attractively in single unit quantities with OEM discounts available for larger quantities.

Synertek Systems Corporation.

To place your order now, contact:

AMPEC ENGINEERING CO. Pty. Lttu.

1 Wellington Street, Rozelle, NSW. 2039. Tel (02) 818-1166.

- Brisbane (07) 391-5136 © Melbourne (03) 569-6984 © Adelaide (08) 212-3111 •Perth (09) 328-3116

Also contact us for your requirements regarding:

- Microprocessor CPU's; 6502 available up to 3 MHz .
- 4K Static Rams ($1 \mathrm{Kx4}$); 2114 450ns.
- 8K Static Rams (1Kx8); 8108 available Jan. 1979.
- Peripheral Interface Adaptor; 6520 available up to 2 MHz .
- Asynchronous Communications Interiace Adapter; 6551 avaliable Nov. 1978
- Minl Floppy Disc Drives; MICROPOLIS: S100 and SBC80 bus compatable. 1, 2 and 4 disc systems available

Batteries Standard

The Standards Association of Australia has published a revised standard on Primary batteries, to supersede AS C387-1967, Dry primary cells and batteries. In this revision, only those batteries which are in common use in Australia and which are appropriate for inclusion in new designs, have been included. A battery designation system, based on the International Electrotechnical Commission system, has been specified and with the increasing use of this system, it is expected that consumers will soon see a reduction in the proliferation of different type numbers - all identifying the same battery. A further requirement in the standard is that, batteries are marked with a 'use by' date.

Design and construction requirements and performance criteria have been given in the revised standard. The tests specified are all intended to simulate, as closely as possible, several applications for which batteries are commonly used and include lighting, transistor radios, toys, calculators and watches. Copies of AS 2176 ($\$ 7.60$) may be obtained from the offices of the Association in the state capitals and Newcastle. Postage and handling 80 cents extra.

Electronics Trade Fair Tour

In conjuction with Astrid International Tours of Sydney, Mr. Steve Colman is organising a trip to visit 3 important
Electronics Shows in Japan, Korea and Taiwan.

During the tour Tour members will be able to visit, if they wish, the following exhibitions and trade fairs:

Japan Electronics Show
Japan Measuring Instruments Exhibition
Japan Analytical Instruments Show
JETRO Exhibition at Tokyo Trade Centre
Korea Electronics Show Korean Autumn Fair 1978
KOTRA Permanent Exhibition
Taiwan Electronics Trade Fair Taiwan Toys and Gifts Show
CETDC Exhibition in Taipei
Mr. Colman emphasised that while members will have the assistance of the various Government Export Councils and will have the opportunity to enjoy their help and in some cases hospitality, it will be an organised Tour only as far as travel and accomodation is concerned. It will be up to the individual member to decide which exhibition he wishes to visit and ample time will be available for independent negotiations, visits to manufacturers factories, etc.

The cost saving is quite considerable over individual travel costs. Not including meals the tour will cost $\$ 1420$ or $\$ 1590$ if single room is required, subject to more than 15 acceptances.

For further particulars contact Steve Colman (02) $498-1622$ who will be escorting the Group.

Schools Computer Fayre

The Computer Science Department at La Trobe University is organizing Victoria's (and in fact Australia's) first "Schools Computer Fayre". Pupils at all Victorian schools are invited to participate by submitting any work they have done which is related to computers. The Fayre will be held in October, on the La Trobe Campus.

The Fayre was conceived by Dr. Harvey Cohen as providing an opportunity for the display of computer projects, and to arouse interest in computing in Victorian schools. There will be prizes in a range of categories: these prizes have been donated by various firms concerned with computers, micro computers, and electronics.

Students are offered the following suggestions as to the sort of entries expected:

Hardware - a microprocessor-based control system

- a general-purpose microcomputer system
- a digital logic circuitry

Software - commercial program

- scientific program
- game-playing programs
- an original application

Other - animated flow diagram

- essay
- carton
- model built of computer scrap, etc. etc. etc.

Prizes will be given for the best entries; details will be announced later, but there will be at least one prize in each of the levels Form 1 and 2, Forms 3 and 4, and Forms 5 and 6. Some certification will be required that the entry is the work of the person or group submitting it; an entry fee of $\$ 1$ per entry will be charged.

The Fayre will be held at the end of October at La Trobe University, and all are invited to visit it, whether or not they have submitted entries.

For further information, write to Computer Fayre, Computer Science Department, La Trobe University, Bundoora, VIC. 3083.

Propagation Predictions

Once again, our propagation predictions seem to be ill-fated - this month, restrictions on computing time meant that the predictions could not be got to us on time, so they have had to be omitted for this month. Our apologies, and please bear with us - normal propagation will, hopefully, be resumed next month.

Radiation Supported Mirror

Oregon University Institute of Theoret-

 ical Science are proposing a mirror to reflect VHF and UHF transmissions, which would be held aloft at an altitude of 100 km by the radiation pressure of the 10 MW erp signal it was reflecting.
ETI/Unitrex Calculator Contest

The July contest obviously stumped almost all of you, as there were only a very few correct entries. The contest, you may remember, was to use the digit 4 , four times in an equation, and to do this six times over to make the equations equal all the digits from integers from 70 to 75 inclusive. John Nicholson, of Salisbury, NT, got the right answers (though several are possible): his answers are:
$70=44+4!+\sqrt{ } 4$
$71=$ Antilog $\sqrt{4}-($ Antilog $\sqrt{4} / 4)-4$
$72=44+4!+4$
$73=$ Antilog $\sqrt{ } 4-($ Antilog $\sqrt{ } / 4)-\sqrt{ } 4$
$74=4!+4!+4!+\sqrt{ } 4$
$75=$ Antilog $\sqrt{4}-[($ Antilog $4 /$
Antilog $\sqrt{ }$) $/ 4$]
To those of you who only got solutions for 72 and 74 , commiserations; we were finding it pretty tough going ourselves!

For this month's contest, we racked our brains to come up with a good puzzle that would be fun and challenging but found that we were better at solving the darn things than making them up! We've got a few old favourites in stock, but everyone must know the answers by now! So, this month, to make it easy for ourselves, we're running a 'Design A Contest' Contest, in which we want you to write in with ideas for brain-teasers suitable for use in the ETI/Unitrex Contest in future issues. They should be short, amusing, of reasonable difficulty and preferably of unique solution to make it easy to judge.

So this month, write your entry down, stuff it in an envelope and mail it to ETI/Unitrex Calculator Contest, Electronics Today, 15 Boundary St., Rushcutters Bay, NSW 2011. We will award a calculator for every puzzle used, and the closing date is Friday, October 6th.

Modern expertise and computer technology have created a fine piece of equipment.

Sole Australian agent

4 Dowling Street, Sydney 2001. Phone : 3582088.

ICS now present another kind of E.b.O.

Electronic Living@pportunities

The Electric Light Orchestra have a great sound. A sound which has won them numerous gold and platinum records, international acclaim and many thousands of dollars. But without the recording technicians - the electronics experts - ELO's talent would go unheard.

The booming pop music recording industry is just one example of how electronics is the very life source that powers virtually everything in our world today.

Qualifications in electronics are the passport to a whole world of fascinating jobs,.opportunities and even life styles.

Now you can take advantage of the amazing "electronic living opportunities" available everywhere today by training with International Correspondence Schools.

Home-tutoring the ICS way allows you to work at your own pace and in your own time. So you can gain qualifications vital to a successful career in electronics without losing valuable income while studying.

Act now. The first step is simple. Fill out the coupon and post it today.

In return you will receive the ICS Electronics Career folder. This gives you all the details of the many courses available - Communications and Broadcasting, Industrial Electronics, Computer Servicing, Audio/Radio Servicing, all of which are endorsed by the Television and Electronics Technicians Institute of Australia.

It will also outline the advantages of in-home study with ICS, plus the many opportunities electronic qualifications will bring you.

Even if you aren't into music or ELO, don't let the "electronic living opportunities" an ICS course offers pass you by for another second. Clip and post this coupon immediately.
International Correspondence Schools
400 Pacific Highway Crows Nest. NSW. 2065
$18-20$ Collins Street, Melbourne. VIC. 3000
125 Wakefield Street. Wellington. N.Z.
Please send me, without cost or obllgation, the
ICS career guidance kit for the course marked below
\square Electronics \square TV Servicing
Name
Address
276780

Electronic Living@pportunities

The Electric Light Orchestra have a great sound. A sound which has won them numerous gold and platinum records, international acclaim and many thousands of dollars. But without the recording technicians - the electronics experts - ELO's talent would go unheard.

The booming pop music recording industry is just one example of how electronics is the very life source that powers virtually everything in our world today.

Qualifications in electronics are the passport to a whole world of fascinating jobs..opportunities and even life styles.

Now you can take advantage of the amazing "electronic living opportunities" available everywhere today by training with International Correspondence Schools.

Home-tutoring the ICS way allows you to work at your own pace and in your own time. So you can gain qualifications vital to a successful career in electronics without losing valuable income while studying.

Act now. The first step is simple. Fill out the coupon and post it today.

In return you will receive the ICS Electronics Career folder. This gives you all the details of the many courses available - Communications and Broadcasting.
Industrial Electronics, Computer Servicing, Audio/Radio Servicing, all of which are endorsed by the Television and Electronics Technicians Institute of Australia.

It will also outline the advantages of in-home study with ICS, plus the many opportunities electronic qualifications will bring you.

Even if you aren't into music or ELO, don't let the "electronic living opportunities" an ICS course offers pass you by for another second. Clip and post this coupon immediately.

Shuttle
 communications

The successful operation of the Space Shuttle is dependent on a complex communications and navigation system. By Brian Dance.

THE SPACE SHUTTLE has been designed to carry out a very wide variety of missions, including the launching of international communications satellites, of space laboratories, etc. The Orbiter vehicle employed for the Shuttle contains complex communications systems; these systems have been carefully designed to provide all facilities required for the various missions with very little modification of the communications equipment for any particular mission.

The Orbiter vehicle carries up to 23 antennae for communications with ground stations, with detached payloads launched by the Orbiter, and with the Orbiter vehicle crew when they are carring out extra-vehicular activities. Information can be transmitted as voice or data signals using these antennae over a wide range of radio frequencies in the S-, Ku-, L-, C- and P-bands. The frequencies used for various purposes are listed on Table 1.

Ground Links

The S-band equipment in the Orbiter vehicle can communicate directly with the US ground station at White Sands, New Mexico or with other stations of the US Space Tracking and Data Network (STDN), the frequencies being somewhat over 2000 MHz . Two digitised phasemodulated links are available for this purpose, the four frequencies being shown in Table 1.

In addition, frequency modulated signals are transmitted from the Orbiter to the ground on an S-band carrier together with the frequency modulated data from the "Development Flight Instrumentation" (DFI) equipment carried aboard the Shuttle during its test flights.

During the Orbiter approach and landing phases of any mission, standard L-band TACAN units will be employed, as well as C -band radar altimeters and P . band analogue voice links for air traffic control. Voice communications for

extra-vehicular activities will also use the P-band.

Communications with the earth networks will also be available through the use of Tracking and Data Relay Satellites which will be placed in geosynchronous orbits 35800 km above the equator over the Atlantic and Pacific oceans. The Shuttle can employ S-band frequencies for communication with one of these satellites, but Ku-band frequencies can also be employed for wide bandwidth links capable of high data rate operation (Fig. 1).

The satellites can relay signals to and from the earth using Ku-band frequencies at data rates of up to about 2 megabits/second. The advantage of using relay satellites is that one or both of the satellites will be able to "see" both the orbiting Shuttle vehicle and also a particular ground station at least 95% of the time the Shuttle is in orbit. The satellite link carries the same kind of information as the direct S-band link,
but much higher data rates are possible. The information carried will include scientific and engineering data, command signals, digital voice transmissions, video signals and performance monitoring information.

Multichannel two-way communication between the Orbiter vehicle and either attached or detached payloads is also available using S-band frequencies. However, the Orbiter rendezvous radar and the microwave scan beam landing system operate in the Ku-band.

S-band Systems

A variety of voice, command signals and telemetered data can be sent to or from the Orbiter vehicle using S-band links. Phase modulated signals beamed directly at the Orbiter vehicle from the Space Tracking and Data Network stations or relayed by means of a satellite can be transmitted at two different data rates. In the high bit rate mode, two digital voice channels at 32 kilobits

include recorded voice, real time closed circuit television, main engine data, etc.

The Orbiter can transmit or relay a 2 kilobits per second command signal to attached or detached NASA payloads. Commands to free-flying payloads are sent at a one or two kilobaud rate by using a ternary frequency shift keyed (FSK) amplitude modulated signal. A 500 or 1000 Hz synchronisation signal is provided as the amplitude modulated signal.

Ku-band System

The Space Shuttle Orbiter vehicle will employ an integrated radar and communications Ku-band subsystem packaged in two sets of assemblies. One of these, Radar/Communications A, is carried aboard the Orbiter as standard equipment. It employs an antenna mounted on the starboard payload bay door and an electronics assembly. During the ascent of the Orbiter, the antenna is stowed in the space between the payload bay door panels and the clear volume of the payload bay.

Before the Shuttle can use the tracking and data relay satellites for communications work, it must first locate the satellites in space. When the vehicle first arrives in its orbit, the cargo bay doors are opened by the crew using a remote control system. The parabolic antenna moves into its operating position. The general location of the satellite is obtained from the Shuttle's computer and fed to the communications and radar subsystem. The
per second per channel and 8 kilobits per second of command data are interleaved into a 72 kilobits per second digital data stream.

The low bit rate consists of a single 24 kilobits per second digital voice channel together with 8 kilobits per second of command data. Transmissions via the relay satellite are convolutionally encoded.

Two bit rate modes are available for transmissions from the Orbiter directly to a ground station or via a satellite using phase modulation. The high bit rate mode accepts two digital voice channels at 32 kilobits per second per channel inter-leaved with 128 kilobits of telemetered information to form a 192 kilobits per second stream of digital information. Data from a payload can occupy up to 64 kilobits per second. When the low bit rate mode is being used, one channel of a digitised voice signal plus 64 kilobits per second of a telemetry signal can be inter-leaved for transmission.

The S-band frequency modulated signals from the Orbiter sent directly to ground can carry signals from the payload and Orbiter with a 4.5 MHz maximum bandwidth. The signals can

FUNCTION OR	ORBITER	ORBITER
SYSTEM	TRANSAIT	RECEIVE
STDN Communication, Phase Modulation - 1	2287.5 MHz	2106.4 MHz
STDN Communication, Phase Modulation - 2	2217.5 MHz	2041.9 MHz
STDN Communication, Frequency Modulation	2250.0 MHz	None
Development Flight Instrumentation	2205.0 MHz	None
NASA Payloads	2025.0 to	2202.5 to
	2120.0 MHz	2297.7 MHz
Separated payloads	1760.0 to	2202.5 to
	1843.0 MHz	2297.7 MHz
Extra-vehicular activity communications	296.8 MHz	259.7 MHz
Rendezvous radar	13.679 to	13.679 to
	13.887 GHz	13.887 GHz
Ku-band communications	15.0034 GHz	13.775 GHz
TACAN	1025 to	962 to
	1150 MHz	1213 MHz
Air traffic control, voice	296.8 MHz	259.7 MHz
Microwave scan beam landing system	Ku-band	Ku-band

IF THERE'S A BETTER WAYTOBUY COMPONENTS,IT'SA WELLKEPT SECRET!

The following is just part of a Telex we received recently: QTY 50 STORE UNIT EACH ZENER DIODE B2X70 30 VOLT

QTY 50 STORE UNIT EACH DIDDE BZY9GCVR
QTY 20 STORE UNIT EACH IN5359B
QTY 50 STORE UNIT RESISTOR 150 OHIA TR8 2%
QTY 20 STORE UNIT EACH IC P/NO CA3OIB
QTY 20 STORE UNIT EACH CANNON CONNECTOR 3 PIN MALE P/NO XLP-3-12
QTY 10 STORE UNIT CAN INSTANT FREEZE CORIPOUND
QTY 24 STORE UNIT EACH CAPACITOR 2OOOMFD IOOV
QTY 100 STORE UNIT EACH CAPACITOR 3.3. MFD 5OV TANTALUM

QTY 50 STORE UNIT EACH CAPACITOR 18 rifd 50 V TANTALUM

QTY 20 STORE UNIT EACH CAPACITOR IOMFD 50 V TANTALUUK
QTY 20 STORE UNIT EACH MINIBRIDGE PA4O RECTIFIER QTY 50 Store unit each mini plug 2.1 Mí hole

GTY 10 STORE UNIT EACH SILICON DIODE P/NO SSAN31
oty 10 STORE UNIT EACH SILICON DIODE P/NO S5AR31
GTY 10 STORE UNIT EACH DIODE SI2AR15
QTY 10 STORE UNIT ミACH ZIJDE S12AN15
QTY 3 STORE UNIT EACH DIODE IRC P/iNO SOIUI2OA
QTY 20 STORE UNIT EACH SCR GR 103 B
QTY 20 STORE UNIT EACH METAL CAN IC P/NO F7410: 7527
QTY 10 STORE UNIT EACH 9 CONTACT OCTAL VALVE HOLDER CERAAHIC SIMILAR TO PHILIPS B8-700-21

THIS TELEX IS FOR THE ATTENTION OF I.PURDIE
E゙LDIST A423343
CLIP THIS OUT YOU NEVER KNOW WHIEN YOU'LL BE NEF:DING US!!

Orders:(02)6366052 Office: (02)6366222 Telex: AA23343
Electronic (Distributors)

ELUSTRONICS
289 Latrobe St, Melbourne 3000. Ph (03) 602-3282

Melbourne's Electronic Centre

Owing to redevelopment of the area for the underground railway our Little Lonsdale Street Store will shortly be closing down. Rather than move the stock we have decided to clear it at the lowest prices ever.

- Carbon w, 1 watt and 2 watt resistors 1c ea.
- Disc Ceramic Capacitors........2c ea.
- Polyester Capacitors...............5c ea.
- Electrolytic Capacitors 5c to 20c ea.
- Diodes From \qquad .3c ea.
- Transformers...............From 20c ea.
- 3,000 Type Relays50c ea.
- Speakers.........................From \$1 ea.
- Transistors.....................From 5c ea.
- Tuning Gangs..............From 30c ea.
- Project Boxes..............From 30c ea.
- TV Stands-Chrome.............\$3.50 ea.
- Brand new desk telephones (similar P.M.G. Type) \qquad $\$ 15$ ea.
- Polystyrene Capacitors...........5c ea.
- Rotary and slide

PotentiometersFrom 10c ea.

- Trim Pots10c ea.
- 2 metre, 3 core Power Cords with 3 pin plug. \qquad 65 c ea.

Lots more at bargain prices. Available until sold out. So be early and get the pick of the bargains at our 297 Little Lonsdale Street Store.

Phone 663-1785

EUISTRONICS
WHERE JUST ABOUT EVERYTHING ELECTRONIC COSTS YOU LESS!

Ultimately It's Marantz. GoForlit.

Now, professional 3-head monitoring in a cassette deck.

Up to now you had to choose between a cassette deck for convenience. Or, reel-to-reel for professional recording features. Now have it both ways in the Marantz 5030 cassette deck.

Here's how:
The Marantz 5030 has separate record and playback heads... the same as reel-to-reel. This gives you an instant check of the quality of your recording as you record. And, like some of the most expensive reel-to-reel decks, the record and playback heads on the Model 5030 are super-hard permalloy - a long-lasting metal alloy that gives better frequency response and signal to noise ratio than Ferrite material.
For precise azimuth alignment, both the playback/monitoring and record heads are set side-by-side within a single metal enclosure. They can't go out of tracking alignment.

Complementing this outstanding "headtechnology" is Full-Process Dol by* Noise Reduction Circuitry. It not only functions during record and playback... but during monitoring as well.
What drives the tape past the heads is every bit as important as the heads themselves. For this reason the Model 5030 has a DC-Servo

Motor System. The steadiest, most accurate tapetransport method. Speed accuracy is superb, with Wow and Flutter below 0.08% (WRMS).

To adapt the Model 5030 to any of the three most popular tape formulations, press one of the three buttons marked "Tape EQ and BIAS." There are settings for standard Ferric-Oxide, Chromium Dioxide (CrO_{2}) or Ferri-Chrome (FeCr) tape.

With Mic/Line Mixing, two sources can be recorded at the same time, combining line and microphone inputs. The Master Gain Control lets you increase or decrease the overall volume of the total mix.

What else could we pack into a front load cassette deck?

More features. Like a 3-digit tape counter with memory function. Viscous Damped Verti-cal-load Cassette Door. Switchable Peak Limiter. Fast-response LED Peak Indicators. $3^{\prime \prime}$ Extendedrange Professional VU Meters. Locking Pause Control for momentary shut-off in record or play... and Total Shut-off in all modes when the tape ends.

And, of course, the unbeatable Marantz 5030 is front loading. Easy to stack or fit on a shelf. The styling is clean and bold. The sound is the truest recreation of what was put on tape. If you want the best - then do what you really want to do-go for it. Go for Marantz.

We sound better.

Just for the record

Marcia Hines tapes with Ampex

The artistry . . . the atmosphere . . . the true and brilliant sounds of the musician ... In professional recording studios throughout the world the tape used for the original "master" is Ampex. When you've made it with the professionals you'll accept nothing less.

7 Ampex Australia Pty Limited.
44 Carlotta Street, Artarmon. Phone (02) 4394077
541 King Street, West Melbourne 3003 Phone (03) 3290388

...and off the record

Marcia Hines still tapes with Ampex

The tape specified on experience by today's top recording engineers is equally at home with our uncompromising artists. And Ampex guarantee this impeccable performance -in studio quality cassettes and tapes from selected hi-fi stores.
If it's worth taping it's worth Ampex.
AMPEX the professionals

SOTUATp
 New Recorders for Melafine Tapes

IN OUR AUGUST issue we forecast that new recorders would soon become available which are suitable for the recently announced Metafine tape which is essentially based on metallic iron particles instead of the normal oxide mixture. Our forecast proved very true, since the well-known Norwegian based manufacturer Tandberg announced a whole new series of recorders in August, some of which are suitable for the new type of tape. The new recorders are not specifically designed for use with the new tapes, but can be used with all types of tape currently available and any types which are likely to become available for a long time to come. Indeed, these recorders have been specifically designed so that they will not become outdated by any normal developments in tape technology.

Tandberg is the first recorder manufacturer to announce recorders suitable for use with the new iron particle tapes, but many other manufacturers are working on the design of suitable equipment and more announcements can be expected soon. It will also be interesting to see how other tape manufacturers will respond to the new development from 3M tapes.

Fundamentals

Let us first consider the fundamental reasons why new types of recorder are required for use with the iron particle tapes. Present recorders (when set for 'chrome' playback with a 70 microsecond equalisation) are quite suitable for replaying cassettes containing the iron particle tape and will provide an improved performance over that obtainable from conventional tapes using the same equipment.

Unfortunately our existing recording equipment will not enable us to obtain an optimum performance from the new tapes when used to record material. The new tapes require a stronger magnetic field to be applied across the recording head gap in order to record material on them satisfactorily and a stronger erasing field is also required to erase material from iron particle tapes. The bias current levels required for optimum performance are also different from those required for use with conventional tapes.

In case readers are becoming worried by now, we will mention that there is no possibility of their existing collection of tapes being unsuitable for replay on any new recorders designed for iron particle tapes. Obviously one can obtain the improved performance only from the new tapes, but one will be able to obtain the same quality of reproduction from one's older tapes as one has obtained in the past.

The new iron particle tapes will first be marketed as cassettes, since it is here that performance is most critical However, it is expected that they will soon also be available in the reel-to-reel form, as video tapes and as tapes suitable for

computer and data storage purposes. The new tape can provide improved performance at conventional tape speeds, but it also offers the possibility of considerably lower tape speed with out any deterioration in quality.

Tape differences

The magnetic properties of a tape are not simple, but two quantities are of vital importance in assessing the practical performance of a tape. One of these is the saturation flux density which, in everyday language, is a measure of how strongly the tape can be magnetised. It is given the symbol B_{m}. If one attempts to magnetise a tape above this level, severe distortion is the inevitable result. If one employs a tape with a high value of B_{m}, one will be able to obtain a relatively large output signal from it on replay and one may therefore expect that the signal-to-noise ratio will be improved if other factors are unchanged.

The other important property of a tape is its coercivity, H_{c}. This is a measure of how strong a field is required to record on the tape concerned, but it can also be employed as a measure of how well the tape retains the recorded material. A high coercivity tape will require a high signal current through the recording head, but once this signal is satisfactorily recorded, it will not easily be lost.

During the past fifteen years or so there has been a definite

Specs with a purpose! Sansuil's new amplifiers

$$
\begin{aligned}
& n=-2=-2 \\
& y=2=-2 y+5=
\end{aligned}
$$

Sansui's all-new integrated amplifiers have absolutely astounding specifications. Compare them with any others in their class, and Sansui comes out far ahead. But what really makes Sansui's new amplifiers so superior is that all these great specs have a single purpose - outstanding sound quality.

Take response speed, for example. Your amplifier doesn't move, but it does respond. The more rapid its response, the cleaner and the more accurate the sound. That's why the AU-717. for example, features an advanced DC power amplifier design. Sansui's DC amplifier eliminates all capacitors in the signal path and even in NFB loop so amplification is direct without coloration and phase delay. Response is astoundingly rapid - the proof is in the ultra-high ($60 \mathrm{v} / \mu \mathrm{sec}$.) slew rate and ultra-rapid rise time ($1.4 \mu \mathrm{sec}$).

But Sansui didn't strive for such outstanding specs just to be able to print impressive figures. On the contrary, Sansui research showed that to achieve accurate reproduction and reduce signal loss, light-ning-fast response was essential.

In addition, special circuits were incorporated to achieve new levels in stamping out TIM (transient in ter-modulation distortion), a type

SLEW RATE \& RISE TIME

of distortion that is now receiving high priority. Still another important benefit of Sansui's DC amplifier is the ultra-wide frequency response from zero (DC) to $200,000 \mathrm{~Hz}$.

The final result is music with a purity and clarity that must be heard to be believed. All the dimensions of
complex musical sounds - the wide dynamic range, the sudden pulsive. signals, the nuances of barely perceptible but critical overtones in the ultrahigh frequencies - all these are now crystal clear, all are proof of Sansui's new levels in superior sound quality. Impressive power is 85 RMS watts per channel, $20-20 \mathrm{k} \mathrm{Hz}$, and total harmonic distortion at rated output is 0.015%. That means it can be considered non-existent as far as the human ear is concerned.

Keep in mind that though the AU-717 is special, it's not special for Sansui. Each and every amplifier on the left-hand page embodies the same Sansui commitment to outstanding sound quality. All controls have been carefully thought out and designed for their specific purposes. Sansui has no place for gadgets and gimmicks in its dedication to the ultimate in hi-fi.

The AU. 517 and ACl .317 also feature the same DC power amplification as the AU-717. and offer 65 and 50 RMS watts respectively. The $\mathrm{A}(\mathrm{I}-217$ and $\mathrm{AU}-117$ offer 30 and 20 RMS watts respectively, but are not to be under-rated. In fact, they represent exceptional values in low distortion and true hi-fi performance.

Sansui for specs with a purpose - outstanding musical quality.

trend towards the use of tapes of higher B_{m} and H_{c} values, largely in order to obtain improved signal-to-noise ratios. The introduction of cassette recorders greatly stimulated this trend to tapes of higher B_{m} and H_{c} values, since there is no possibility of obtaining a better performance by increasing the tape speed or increasing the track width in such recorders.

At high signal frequencies the signal-to-noise ratio is determined mainly by the value of H_{c}, whereas at lower frequencies it is more dependent on the value of B_{m}. Ihe earliest cassette tapes had H_{c} values of around 250 oersted, but this was gradually increased to around 350 oersted. A big breakthrough came with the chromium dioxide tapes which have H_{c} values of over 500 oersted, but the new Metafine iron particle tapes have an H_{c} of about 1000 oersted.

Similarly the saturation flux density, Bm_{m} of the new tapes is considerably higher than that of currently available tapes. Conventional tapes have a B_{m} value of around 0.1 to 0.15 weber/square metre, whereas the iron particle tape has a value of about 0.34 weber/square metre.

Another feature of the new iron particle tape is that the coating thickness of the magnetic film on the base material is only $3.8 \mu \mathrm{~m}$ in contrast to the more usual $5 \mu \mathrm{~m}$ of conventional cassette tapes.

Therefore one may summarise the problem by stating that the new tapes will require recording equipment which can impress a strong signal upon them and which can generate an adequate erasing field to wipe off all previously recorded material.

Actilinear Systems

Tandberg have used the name 'Actilinear' for their new recorders, since they employ active components in the recording process which results in greater linearity. In order to understand how this type of circuitry differs from that of conventional recorders, we must first consider conventional recorders and their limitations.

The recording amplifier of a conventional system contains an equalisation circuit so that the overall record/playback frequency response is flat. As shown in Fig. 1, the output of this recording amplifier is a voltage which drives a signal current through the resistor \mathbf{R} and through the recording head. The bias oscillator also feeds a current at the bias frequency of some 90 kHz to the recording head.

It should be noted that the network connecting the recording amplifier to the head in Fig. 1 contains only a single passive component, namely the resistor R. However, the Tandberg Actilinear recording system (Fig. 2) employs a recording amplifier transconductance converter (containing active components) between the output of the recording equalisation amplifier and the recording head network.

The full circuit of a conventional passive recording system

Fig. 1. A block diagram of a conventional recording system.

Flg. 2. A block diagram of the new Actilinèar recording system.
is shown in Fig. 3 and the Tandberg Actilinear circuit in Fig. 4. In the latter circuit, the C2 and R4 network provides the correct equalisation at low frequencies, whilst equalisation at the middle and high frequencies is provided by the components L1, C1, R2 and R3. Adjustment of the trimming capacitor CT provides a method of adjusting the system for the correct signal level for the particular type of tape in use.

The transconductance module shown within the dashed lines has two main purposes. It converts the signal voltage from the potentiometer R_{5} into a signal current which is fed to the recording head to produce the signal on the tape. This stage also provides electrical buffering between the oscillator and the output of the recording amplifier so that the oscillator voltages do not enter the recording amplifier and cause interfering tones.

The transconductance module employs two transistors, Q1 and Q2 with Q2 acting as the collector load of Q1. The transistors are complementary types (that is, an npn and a pnp pair). Each transistor passes a current of about 10 mA , the voltage at the junction of their collectors being about +12 V under quiescent conditions. This voltage can swing from +2 V to +22 V when a signal is applied.

The output impedance of the transconductance module is some 5 kilohms, but as the recording head impedance is far less than this (only about 200 ohms at 5 kHz), the circuit acts as a current source. In other words, a constant voltage applied at the input produces a constant current through the recording head; this is why it is known as a transconductance module.

The capacitor C12 prevents any appreciable oscillator voltage from finding its way back into the recording amplifier. The filter circuit in the output section can reach the transistors of this module. This filter, comprising L2, C14, C15 and C16, reduces the bias oscillator voltage from its value of about 20 V at the recording head to less than 0.1 V at C 13 .

Apart from the better rejection of the oscillator signal, the Tandberg Actilinear system is a much better system for providing signal and bias currents to the new high coercivity iron particle tapes.

Fig. 3. A practical circuit of a conventional recording system.
Actilinear recorder and Metafine tape. Perhaps this is the point of perfection in signal-to-noise ratio?

The new recorders

Tandberg have just introduced two recorders with their Actilinear system. The TCD 340A is a cassette deck with three heads (separate record and replay heads) and three motors. The new model resembles its predecessor, the TCD 330, and is equipped with 4 Dolby B processors, the Tandberg developed equalised peak reading meters for precise control of record and playback, multiplex filter and a pneumatically damped cassette compartment for the highest grade of cassette recording. The Anciliniar system used in this recorder replaces the well-known Tandberg crossed-field heads used in their current range of recorders.

Tandberg claim that the TCD 340A has a signal processing capacity of more than 20 dB above the level of any cassette tape equipment currently available. Recording head azimuth adjustment is available for the manual adjustment of the angle of the tape-to-head contact so as to assure the best possible frequency response with any of the recommended high quality cassettes. Although some recorders employ two-in-one combined record replay heads, Tandberg rejected this solution and

Fig. 5. Improvement obtained using the Actilinear system.

TODAY MORETHAN EVER ARSPEAKS THE TRUTH

The hottest new name in the speaker
Because we've been busy making a few changes. But we haven't forgot what made us famous. Quality Performance, loud and clean. Yes, we've broadened the AR line. Now it includes 8 models designed to retail from about $\$ 100$ to about $\$ 1250$.

Yes, we've improved AR powerhandling capacity with an important innovation. The liquid-cooled speaker. All our high-range drivers for ' $78-79$ will use magnetic fluid (it costs nearly $\$ 3000$ per gallon) to position and cool voice coils.

Yes, we've refined logos, cabinet styling and several other neat little touches.
We've even up-graded distribution Henceforth you'll find AR'only in quality high-fidelity stores.

What hasn't changed is AR quality and quality control. And that's the reason every AR speaker system is covered by the most impressive warranty on construction and performance of any major speaker.

For information and "specs" pick up our new catalogue from your high fidelity dealer or write to us at the address below

Acoustic Research Australia

P.O. Box 21 - 7 Ford St.,

Greenacre. NSW. 2190
Phone: 642-3458
adopted completely separate heads because they felt this is the only way to eliminate bias interference and tape tracking problems associated with such combined head systems.

On the mechanical side, the TCD 340A employs a dual capstan closed loop drive system for optimum tape handling precision and stability, whilst it eliminates uneven tape speed and sudden jumps that are often caused by poor quality cassettes.

The synchronous drive motor is designed for minimum speed deviations together with minimum effect of temperature and mains voltage on the tape speed. Two separate servocontrolled DC motors take care of the wind and rewind functions.

The TCD 340A employs electronic logic control throughout. It is thought that this is ideal for rendering the equipment safe and fool-proof in normal operation and for safeguarding both the tape and the machine. An optional remote control is available which can be pre-set with a separate radio tuner for unattended record or playback operations.

The frequency response is 30 Hz to 20 kHz . The production specification is for 0.12% wow WRMA for recording and playback (0.08% Japanese industrial standard). Signal-to-noise ratio is better than 65 dB IECA.

TD 20A Reel-to-reel

The Tandberg TD 20A is a reel-to-reel recorder using the Actilinear process which can accept $10 \frac{1}{2}$ inch reels of tape. Front panel bias adjustment and optional radio infra-red remote control are incorporated into this instrument. This recorder employs a 4 motor drive system, including a phaselocked brushless Hall Effect synchronous motor combined with drive belt which prevents the transmission of unwanted, mechanically induced irregularities in the tape motion.

The TD 20A is equipped with separate power supplies for the operational and for the audio functions in order to eliminate thermal component stress and to isolate the audio chain from electrical disturbances. It incorporates PROM (electronic brain) speed regulation combined with triac controlled direct drive spooling motors for proper tape tensioning and minimum mechanical wear and tear. The fourth motor engages the pinch roller/tape guidance mechanism to ensure more precise tape tracking and head-totape contact.

The TD 20A is available in half track and one quarter track versions. A high speed version is provided with 15 inches per second and $71 / 2$ inches per second tape speeds whilst a low speed version has $71 / 2$ and $31 / 4$ inches per second tape speeds.

Tandberg have also just released a TCD 320 cassette recorder (without the Actilinear recording system) and four new high quality radio receivers.

PCM Now

Sony USA is now distributing the first batch of its pulse-code modulated audio units - which enable the company's Betamax video-cassette recorders (or any other similar device) to be used to record and play back audio material.

The device can record 12 bits of data on each channel and is expandable to 16 bits per channel, corresponging to 1.7 million bits per second.
Sony claim a dynamic range of $85-95 \mathrm{~dB}$ - about 20 to 30 dB greater than the best present analogue techniques. Frequency response is claimed to be 0 to 20 kHz plus or minus 0.25 dB with THD of less than 0.03% across the whole range.

Price in the USA is US $\$ 4000$ which is going to limit sales for a bit but Sony are confident the system will have many professional and semi-professional applications.

A newly formed 'UK company is planning to market a range of super-quality prerecorded cassettes - claimed to be the tape equivalent of direct-cut discs.

Only the very best quality tape will be used and the recordings will be made directly from master recordings on a 'one-to-one' basis rather than by the multiple process normally used. We understand that the cassettes should sell for around £8.00 (about A\$12.80). More details hopefully next month.

Philips has developed a range of belt-drive tumtables in which the actual turntable speed itself is sensed and used to control motor speed.

The feedback loop servo system thus compensates for external influences such as changes in tracking force, drag from 'dust bugs' etc, as well as varying mains voltage and frequency, and changes in humidity or temperature.

Philips claim that their new machines achieve the performance levels of directdrive units without incurring what Philips claim are their disadvantages.

Motorola in Geneva have developed an IC which replaces the four dual potentiometers normally required to control volume, balance, bass and treble in stereo receivers. The chip enables gain to be controlled over a range of 84 dB using de signals from $0-6$ volts.

At present the chip is primarily suited to car radios but a hi-fi version is currently being developed.

A number of readers have asked for the dates of the forthcoming All-Japan Audio Fair.

It's from October 6 through October 11 at the Tokyo International Fairgrounds in Harumi (Tokyo).

Amajorindependent research company proved that the ADC XL.MMIKII incurred no perceivable record wear over the life of your records!
Since then ADC's massive research programme has created a new state-of-the art, top of the line model-the ZL.MAliptic-designed for ultimate stereo performance combined with the concept of zero record wear.
Greatly reduced tip mass
The ZL.M has a tiny nude diamond with a $\cdot 004^{\prime \prime} \mathrm{x} \cdot 008^{\prime \prime}$ rectangular shank.
This achieves more lateral strength than the fashionable 006 " square shank, plus a 10% reduction in mass.
The diamond is mounted on a new tapered stylus, which again ieduces mass.
In fact, the ZL.M has only half the tip mass of the famous ADCXLMMkI

Less mass by patent

The patented ADC Induced Magnet system, where the magnet is suspended over the moving stylus arm instead of being attached to it, inherently means less mass for the record groove to move. This, coupled with major innovations in the pivot block stylus suspension (which have solved deficiencies in the old system), has resulted in greatly improved frequency response characteristics.

New low-wear ALIPTIC shape

The ZLM has a new tip shape that combines the advantages of the elliptical and Shibata shapes, while eliminating their disadvantages.

It is basically elliptical (.0003" x $00007^{\prime \prime}$), but its bottom radius has been modified to extend the vertical bearing surface on the groove wall by 100%.
Large enough to greatly reduce record wear, while still small enough to prevent dirt particles being reproduced. This new shape is called ALIPTIC.TM

The best polish available

We decided it was worth the extra cost to get the ultimate polish for the ZL.M.
The method involves a cam action to shape and polish evenly while forming the elliptical surfaces simultaneously with the other radil. This Pathe-Marconi method is expensive, but the result makes another important contribution towards reducing record wear.

Spatial sound

You'll notice a distinct difference in sound quality. Words such as 'open,' 'spatial,' 'uncoloured' and 'true' spring to mind. Individual instruments are easily identified, and there's no hint of listening fatigue.

That's strictly for the competition with its peakier response.

The new ZLM Aliptic

The culmination of all ADC's research has resulted in the newZLMAliptic.
Its specifications below are some of the most impressive around, and with each cartridge you receive an individual, signed, frequency response testimonial.
Certain ZLMs fall within a range of $\pm^{1} / 2 \mathrm{db} 10 \mathrm{~Hz}$ to 20 kHz and $\pm 1 \mathrm{~dB}$ out to 26 kHz .
These rare cartridges are called ZLM Select and are only available on special order.
The best cartridge we've ever made
The ZLM is without doubt the best cartridge we've ever made, but it's well worth taking a closer look at the new ADC XL.M III which incorporates all of the reduced mass accomplishments of the ZLM, but with a tiny elliptical diamond. This also includes an individual specification.
Complementing the range, we have the new fourcartridge QLMMk III series, incorporating our new design criteria and exciting innovations like the Diasa (diamond + sapphire) elliptical tip.
ZLM Aliptic specifications

Diamondtip	Nude Aliptic
Tracking force	
Frequency response	10 Hz to $20 \mathrm{kHz} \pm 1 \mathrm{~d}$
	20 kHz to $26 \mathrm{kHz} \mathrm{Il}^{11 / 2 d B}$
Output	1.0 mV per $\mathrm{cm} / \mathrm{sec}$
Output balance	IdB max. diff
Channel separation	$30 \mathrm{~dB} \mathrm{at} 1 \mathrm{kHz} / 20 \mathrm{~dB}$ at 10 kHz
Inductance	580 mH
Resistance	820 Ohms
Load resistance	$47,000 \mathrm{Ohms}$
Loed capacitance	275 pF
Cartridge weight	5.75 grams
Accessories	Stylus brush, screwdriver, all mounting hardware and signed frequency response curve

Please write for
ourillustrated
brochure.

The new ZLM Aliptic' cartridge. The difference between playing your records and wearing your records.

Audio Dynamics Corporation,
A Division of BSR (A'asia) Pty. Ltd., Anne Street, St. Mary's, NSW 2760.

See \mathcal{E} hear ADC Products at

Sydney City and Metropolitan Area
Douglas Hi Fi
338 George St, SYDNEY 2000
Phone 2333922
Russin Hi FI
256 Liverpool Rd., ASHFIELD 2131
Phone 7992421. John Russin.
Leisure Sound
871 Pacific Highway, CHATSWOOD 2067
Phone 4114944 Alex Haindi
387 George St. SYDNEY 2000
Phone 291364 Andres Goldfinch
Buyers World (NSW) Pty. Ltd.,
Shop 7, Lindfield Arcade,
Lindfield Ave., LINDFIELD 2070
Phone 4672500 . Rob Simpson.
Warringah Hi Fi,
Shop 5, Bungan St., MONA VALE 2103
Phone 9975313. A. Preston.
Riverina Hi Fi
549 Pittwater Road,
BROOKVALE. 2100
Phone 9382663 . Nich Barovsky.
NSW Country
Springwood Hi Fi
170 Macquarie Rd., SPRINGWOOD 2777.
Phone (047) 513091 . L Johnston.
Wroth HI FI,
63 George St. (PO Box 452)
BATHURST 2795
Phone 316313 . Michael Wroth.
Scotty Wallace Pty. Led.,
113 Rankin St., FORBES 2871.
Phone 522300. Scott Wallace.
Hi Fi Gallery
(C/-P.O.), Tamworth Centrepoint.
374-388 Peel St., TAMWORTH 2340
Phone 662474. L. Taylor.
John Roworth Television Services,
11 White St., TAMWORTH 2340
Phone 664664. J. Roworth.
Taree Photographics
Graphic House, 105 Victoria St.
(P.O. Box 295) TAREE 2430

Phone 52 1488. M. Small.
ACT Dutatone Hi Fi Pty. Ltd.,
3A Botany St, PHILLP 2606
Phone 82 1388. M/s Fay Cull.
VIC Douglas Hi Fi
202 Bourke St. MELBOURNE 3000
Phone 6632211
QLD Brisbane Agencies Audio Centre.
72 Wickham St, FORTTTUDE VALLEY 4006
Phone 2683167. G. Eldund.
Ipswich Hi FI Centre,
61 Limestone St. IPSWICH 4305
Phone 2815485. Robert Smallwood.
Sight and Sound Investments,
Shop 8, Shaws Arcade.
TOWNSVLLE 4810
Phone 715618. Stephen Shaw.
SA Soundynamics Hi Fi Centre,
129 Payneham Rd., ST. PETERS 5069
Phone 42 1237. Peter Hazelwood.
Instrol,
54 Flinders St, ADELADDE 5000 Phone 2237622
WA Hub Record \& Hi Fi Centre, Gillmore Ave., CALISTA 6267
Phone 99:256. R. Takes.
Alber's Hi Fi.
542 Albany Highway,
VICTORIA PARK 6100
Phone 621188
396 Murray St., PERTH 6000
Phone 3224409
288 Hay St. East, PERTH 6000
Phone: 252699
Leslie Leonard $\mathrm{Hi} \mathrm{Fi}_{\text {, }}$
Shop U8 City Arcade,
Upper Hay St., PERTH 6000
Phone 224304
TAS Quantam Sound Centre,
194 Liverpool St.
(P.O. Box 1788) HOBART 7000.

Phone 343051. R. MacFie.

NESSEL LOUDSPEAKERS

 PROFESSIONAL SERIES

Rugged cast aluminium

$271 / 2^{\prime \prime}$ W $\times 7^{\prime \prime}$ High $\times 19^{\prime \prime}$ deep. 90° lip horn
Throat adaptors for screw-on $13 / 8^{\prime \prime}$ and $1^{\prime \prime}$ entry.
$500 \mathrm{c} / \mathrm{s}$ crossover

Range of speakers

Model:

SL1201: $12^{\prime \prime} 4^{\prime \prime}$ coil, 100W, Guitar Bass PA, $8 \mathrm{~kg}, 80 \mathrm{c} / \mathrm{s}$.
SL1502: $15^{\prime \prime} 4^{\prime \prime}$ coil, 150 W , Guitar Bass PA, $9 \mathrm{~kg}, 55 \mathrm{c} / \mathrm{s}$.
SL1403: $15^{\prime \prime} 4^{\prime \prime}$ coil, 200W, Bass PA, 14 $\mathrm{kg}, 70 \mathrm{c} / \mathrm{s}$.
SL1803: $18^{\prime \prime} 4^{\prime \prime}$ coil, 200W, Bass, 14 kg , $50 \mathrm{c} / \mathrm{s}$.

TRADE ENQUIRIES WELCOME

Avallable from

NESSEL AUDIO
9 Nellbern Rd,
Moorabbin East, Vic. 3189
Ph (03) 959510

ELECTRONIC SUPPLIES
$\$ 18$ Huntingdale Rd, Huntingdale. VIc. 3166. Cnr. of Hume St. Phone 543-4826.
Open Fil night till 9pm \& Sat morn.
WE STOCK A LARGE RANGE OF ARLEC QUALITY PRODUCTS

- DMM10 digital multimeter.
- Case to suit above available. 200H, YF370 \& MF15A analog meters. - AC/DC adaptors PS 393 \& PS 369. PCI instrument cases. Talisman 12 V battery chargers - 100 amp jumper leads. Light dimmers \& night tights - Suppressor kits.

SOANAR, PHILIPS, SIGNETICS COMPONENTS \& SEMICONDUCTORS

- Elna capacitors. - Full range of electronic hardware. Resistors, diodes \& rectifiers. - CB Antennas - $\$ 7.50$ each. Potentiometers, audio leads.

STOCKISTS OF ZEPHYR PRODUCTS

- RCF \& Primo microphones. Plessey speakers. Matrix boards. - LPS- 1 lubricant. JBL, KEF, RCF, ALTEC, GAUSS, FOSTEX. Audio \& HI-Fi equipment. Auditec modules. - PCB pins \& Cirkit. Goldring cartridges. Garrard tumtables.
- TDK C90 cassettes, Forward \& Ralmar. - Zippy instrument cases. - Sound Barrier car equipment. Eveready batteries. Hills TV accessories. - PVC Insulation tape. - Motorola semiconductors. Hook-up wire \& cables. Adcola soldering trons. - Trio and $\mathrm{B} \& \mathrm{~K}$ test equipment. - PCB board at low prices.

Mail order for country areas

VESCO ELECTRONICS

suppllers to the electronlc Industry, government and educatlonal departments and the hobbylst. Prompt and friendly service is our alm.

PROFESSIONAL On location: Stanton is there where TGIF (Thank God, It's Friday) is filmed.

Go to the Club called Osko's in the Los Angeles Area. Revel in the sound around you, supplied to Osko's by Sound Unlimited Systems, Inc., a prime packager of Disco systems. They have supplied 90 systems to Stationary facilities and 60 to Mobile operations.

Sound Unlimited swears by Stanton's 500AL because they have used it for many years until Stanton came out with the 680 EL . Now they use this model exclusively in all of their installations, and endorse it without reservation.

Whether your usage includes recording, broadcasting, archives, Disco or home entertainment, your choice should be the overwhelming choice of the Professionals in every field ... Stanton Cartridges.
P.S. "Thank God It's Friday" has turned out to be a dynamite film starring Disco Star, Donna Summer.

And remember, you can't get the best out of your Stanton Cartridge unless you use a genuine Stanton Stylus.

LED

 PenduntWANTING TO IMPRESS upon one's partner that electronics is not a boring useless occupation, has inspired many an electronic engineer to build egg-timers and liquid overflow indicators, etc. for their loved ones.

However, such devices, appreciated though they may be, cannot usefully be exhibited at parties and pubs to achieve maximum admiration. An obvious solution is electronic jewellery.

Before LEDs became commonly available it was possible to build illumin ated jewellery using miniature catheter bulbs. But the current drain still involved the inelegant strapping-on of bulky power supplies and concealed switches.

Nowadays, by using LEDs and CMOS 'chips', it is possible to build a piece of self-contained jewellery that doesn't even need an on/off switch.
Electronic jewellery may take virtually any form that the designer seeks - the main limitation being availability of miniature resistors which are often hard to find in this country.

The example shown was in fact built using $1 / 8$ th watt resistors obtained from the UK. IRH manufacture a range of 1/4 watt resistors which are marketed via A \& R-Soanar and only minor changes are needed to the mechanical details shown to accomodate these.

The operation is as follows. Upon touching the contact plates the sevensegment LED flashes between the two sections of the design for about eight seconds and then switches off again.

The pendant is not limited to letters that the seven segment display can handle. There is nothing to stop the reader from hard-wiring LEDs into dot patterns of any desired form.
(The prototype shown here was designed to flash the initials BJ).

Project 552

Mechanical Construction

Because one of the design aims was to keep the width to a minimum a common pc board design is impracticable. Therefore the components are hard wired and we do mean hard wired.

The front panel is cut from 16 SWG aluminium with a window for the sevensegment display and two holes below, with sufficient clearance for the heads of 8BA cheesehead screws, filed smooth. The red perspex window and the 8BA screws are fixed to the front panel using epoxy resin. Then the front is sanded down and polished. The epoxy insulates the contacts from the aluminium and also provides mechanical anchorage.

Electronic Construction

When the front facia is finished, the electronics can be mounted with super glue or epoxy resin (having first centralised the display over the window).

Great care must be taken to prevent shorts. Tinned copper wire and PTFE sleeving to suit, was used to hard wire the circuit as in the wiring diagram. Small pieces of tin plate were stuck down with double sided sticky pads for the battery contacts.

The sticky pads serve a dual purpose. They insulate the contacts from the front panel and also provide the tension to ensure good electrical contact.

Fig. 1 a is the monostable and astable multivibrator which is the basic circuit. Fig. 10 and ic show alternative circuits for $B J$ and AL respectively.

HOW IT WORKS - ETI 552

The prototype was designed with the initials BJ in mind, which was very convenient as the segments b, c, d and e remain on the the monostable period and segments a, f and g flash at 1 Hz to complete the letter B (Fig. 1 a, b).

To illustrate the technique involved in obtaining different combinations of letters, a further circuit (Fig. 1 c) was designed to accommodate the letters A,L. This requires a further transistor Q3 and resistors R9 and R10 to give an inverse function. This circuit will be described in detail.

Under quiescent conditions no measurable current is drawn. When the touch plates are joined by a finger, inverter 1 discharges $\mathbf{C 1}$, this point X goes high for about 8 seconds, as Cl -charges down. Then, via inverter $4, Q 1$ turns on and lights LED segments e and f. These remain on for the monostable period.

The output from the astable (gates 2 and 3) is initially low after the beginning of the monostable period, so that Q2 is switched on. This lights segments $\mathrm{a}, \mathrm{b}, \mathrm{g}$ and c, but Q3 is switched off via Q2, so that segment d is off. Thus the letter A is formed.

When the astable changes over $\mathbf{Q} 2$ is switched off, turning Q3 on, and lighting segment d . Thus with segments e and f on, the letter L is lit up.

Resistors 7, 8, 11 and 12 are chosen so that all segments have the same current and thus the same-intensity. In this case about 2 mA per segment forms a compromise between battery drain and visibility.

The batteries are Mallory MS76H 1.5 volt cells and in the prototype a life of two months was typical, with approx two minutes usage a day.

PARTS LIST - ETI 552

Finishing It Off

When all the wiring is complete the battery compartments need to be constructed. Make up two tubes of the same external diameter as the batteries from cellophane or plastic and position them on the facia over the battery contacts, then pour quick-set epoxy around the tubes. When the epoxy has set remove the tubes and you have two battery compartments.

Make up another cellophane or plastic tube about 37 mm in diameter. Place this around the finished electronics and battery compartments and pour more clear cast over to cover everything to the depth of the battery compartments. When this has set a thin sheet of aluminium can be screwed down with countersunk self-tappers. (This sheet forms the common connector for the two cells).

Additional components for the circuit shown in Fig. 1 (c)
R9...... . . . 470R

R10........ 4k7
R11.......... 220R
R12. 120R
Q3 BC214

Miscellaneous

Piece aluminium 14 B\&S 50 mm square, piece red perspex $21 \mathrm{~mm} \times 12 \mathrm{~mm}$, epoxy resin, 2 off 6 BA brass cheese. head bolts, 19 B\&S tin plate, 28 B\&S tinned copper wire, PTFE sleeving, 2 off Mallory MS76M cells.

LED Pendant as seen from rear after potting. note battery compartments.

Presentation

Having built the device, and given it to your loved one, all that remains is for you to reap your just rewards, preferably in dimly lit surroundings where the pulsating red glow will hopefully produce the desired effectl

Note

This project could have been made much smaller by using a flat pack version of the 4011 and miniature hearing aid type transistors, and $1 / 20$ th watt resistors. This would reduce the size to almost the display and battery dimensions. But by using commonly available components a respectable size has been achieved.

Component layout,
shown at twice times life size.

ELECTROCRAFT

COMPLETE RANGE OF

TV \& FM AERIALS

- Hills Channelmaster. Matchmaster 2010 Airways

- 2158 Element yagi high gain $\$ 25.29$
- EFC. 1 75-ohm city anti ghost $\$ 32.55$
- EFC. 275 -ohm Outer city $\$ 42.96$
- EFC. 3 75-ohm Fringe area good anti ghost high gain .. $\$ 62.51$
- EFC. 4 75-ohm Outer fringe...................... $\$ 78.64$
- Channel master complete range crossfires efc
- 3111 Coloray

CB RECEIVERS ELECTROPHONE

- AM CB512
.$\$ 72.50$
- AM CB530 :. $\$ 84.00$
- SSB CB550
- SSB Base station . $\$ 197.00$
- President Grant SSB 23 ch. with 18c..... $\$ 248.00$
only
- 1 only slightly marked

Mod kit 2

- $\$ 220.00$
-
- Rotators CDE. AR22XL $\$ 124.00$
- Build your own CB power supply. Black Vinyl case $\$ 3.50$ holes drilled for Ferguson transformer 240 V to 18V60VA $\$ 8.95$ Regulator $13.8 \mathrm{~V} 2.2 \mathrm{amp} \$ 2.94$. Circult supplied.

SWR \& POWER METER
Model ME-11X is SWR and Power Meter with Direcfional Coupler incorporated. For SWR measurement it uses the Directional Coupler, comparing the power supplied to and reflected from the antenna, and this is indicated on the SWR meter. For power measurement, the power meter indicates the travelling wave power detected by the Directional Coupler and list frequency range is determinee by the figure of Variable Resistor which is for sensitivity adjustment. Specifications: Maxium handling power, 100 W . SWR indication, $1: 1$ to 3:1. Frequency range, 3.5 to 150 MHz . PRICE: $\$ 16.20$.

ELECTROCRAFT PTY. LTD, 68 Whiting Street, Artarmon. NSW. 2064. Tel: (02) 438-3266

PIEO TWEEIER FROM USA

Frequency Response: 3.8 to 28 KC . No Crossover needed. 35 V RMS (100W 4 ohm system).
As used by major musical instrument manufacturers.

LARGE DISCOUNT FOR QUANTITY

WRITE or Phone for re-an catalogue.
HOLDEN WASP INTERNATIONAL
PO Box 532, MARRICKVILLE. 2204. Phone 560-3488.

CONTINENTAL SPECIALTIES CORPORATION

듴․ MAX-100
 100 MHz 8 -digit counter

- 20 Hz to 100 MHz (guaranteed)

Accuracy: ± 1 count + Time base error.

- Input impedance: 1 M ohm shunted by 56 pF .
- 0.6 " high LED display, lead-zero blanking.
- Battery operated with low battery indicator.
- Size: $4.5 \times 14.2 \times 19.7 \mathrm{~cm}$.
- Weight: 680 gm with battery

GENERAL ELECTRONIC SERVICES PTY. LTD.
99 Alexander Street, Crows Nest, NSW. 2065 Phone: 439-2488, 439-2399. Cables: SERVO SYDNEY.
Telex: 25486 A/B' SERVO.

Adelaide: 42-6651
Canberra: 95-9138, 82-3581
Brisbane: 277-4311
Melbourne: 598-9207
Newcastle: 69-1625 Perth: 325-5722

SOBKEXGMAMIB.

If you want the highest return for your instrument dollar, take a look at the unmatched value of an electrically configurable TM500 test and measurement system from Tektronix.
Not only do you get Tektronix bluechip performance and reliability, but also the convenience and versatility of a plug-in instrumentation, at a very reasonable cost.
If your applications are diversified, TM500 gives you the power to configure literally thousands of plug-in combinations, all mechanically compatible in your choice of TM500 mainframes.
There are nearly 40 different plug-ins to choose from, in eight major categories:
DMMs Oscilloscopes Counters Logic Analyzer Generators Word Recognizers Amplifiers Power Supplies
A single mainframe accommodates up to six plug-ins. Switching your system around from one application to another is just a matter of a simple stock exchange. Slip one plug-in out, slide another one in.

TM500 system is a wise investment. You can update your system or add on new performance capabilities to your initial TM500 system without buying another mainframe. Since all plug-ins are powered through the mainframe, you won't be paying for an unnecessary power supply component with every new instrument you buy.

TM500 go-anywhere mainframes come in six different versions for benchtop, rackmount, rollcart or on-the-road engineering.
Another long-term advantage is, as new standards are set in electronics, new instruments will be added to the TM500 family like our 40 MHz funciton generator with \log sweep, phase lock, AM and FM capabilities and a long list of added dividends.

Your investment is further protected by Tektronix Longterm Product Support Program and worldwide over-the-counter service.

So, if you're in the market for accurate, reliable instrumentation, take stock of what TM500 has to offer. In convenience, versatility and economical performance, TM500 pays big dividends.

> TM 500
> Designed for Configurability

Write for full technical details and prices to
Tektronix Australia Pty. Ltd., 80 Waterloo Rd., North Ryde.
N.S.W. 2113
or phone Sydney 8887066 ,
Melbourne 818 0594, Brisbane 31 2896, Adelaide 223 2811, Perth 3254198.

STILL SUFFERING?

There's plenty of cold weather left yet - and that first cold shock of the morning can well ruin your whole dayl
Why put up with that icy shock?
A Dick Smith Warmed Toilet Seat
will start your day (and end it) to run and plugs into any p/point.

WOT'S NEW?

Handy size plastic project case

ESPECIALLY SUITABLE FOR

DIGITAL READOUTS -
CLOCKS, TACHOS, METERS, ETC.
Yesl A compact plastic case ideal for all of those digital readout projects. Front of case is red perspex backed by a false front to support readouts. There is also room for a couple of pots or switches. The rear panel comes out too, revealing PCB supports to make simple PCB mounting. A truly versat ile little case which comes complete with mounting bracket as shown.

WATC: THIS SPACE

AND FIND OUT WHAT YOU MISSED! Each month, all of our stores feature an outstanding special which is actually BELOW COST! All you have to do is pop into your nearest store to find out what it is. N.B. - Specials are STRICTLY 'while in-store stocks last'. Don't miss out LAST MONTH:

A TE22D AUDIO SIGNAL GENERATOR FOR \$49.70 NORMALLY $\$ 95.00$

saving

WHAT'S THIS MONTH'S SPECIAL? CALL IN AND FIND OUT YOURSELF!

Cat
X-2000

SPECIAL!

FIBRECLASS PCB from s^{00} per sq ft!

IOEAL FOR ALL PROJECT
SIZE 13" $\times 14^{\prime \prime}(1.26 \mathrm{sq} \mathrm{ft})$
NORMAL PRICE OVER $\$ 6.00$ each!
SPECIAL \$1.50

10 or more $\$ 1.26$

BUY A YEAR'S SUPPLY NOW
ANO SAVE A FORTUNEI
GET WITH A FEW FRIENDS: BUY IN BULK

TEST CLIPS
 for meters, etc

For hands-free measuring . Two styles, both with spring action and hooked end. Wires insert easily-positive connection. Small: Cat W-4580 75c (or 50c each for 10 or more) from 50°

4 or 10 SPST rocker switches mounted in a DIL. package - ideal for PCB mounting. Use for preprogramming, for changing circuit constants on boards, etc.

fromí1.70

14way: Cat S. 1604 .. \$1. 85 (ar $\$ 1.70$ for 10 or more) 10-way: Cat S-1610 .. \$2.95 (or \$2.65 for 10 or more)

NEW!
DIGITAL WATCH KIT
It's cheap enough to be a toy for the kids (Christmas is closell bu it's far from a toy - it's a full function digital electronle watch kit. KIt? All you do is put a couple of modules in place and snap the back shut! But this electronic mas piece (which soid for around
S50 only 12 months or so
agol shows date, day \& seconds as
well as hours
\& minutes.
Real value! includes strap, batt.

SPARE BATTERIES Pack of 2 ultra-high reliability silver oxide batteries.
Cat S-3295 \$1.95
HARD BOILED EGGS
Forgive the punl But our egg insulators are certainly hard. High quality, high insulation, in two styles for all loads. Small egg: Cat D. 5300 80c each (or 50c each for 10 or more)
Large egg: Cat D-5302 $\$ 1.20$ ea.
(or 99c each for 10 or more)

Cat.
K-3455

Build a 200 Meg DFM.

It's one of the handiest pieces of test gear to have in the workshop, the shack, the laboratory - a digital frequency meter.

200 MHz Version: Add a 95 Hg 0 IC (Cat $2-5360$) Now reduced to only $\$ 12.50$ (save $\$ 4.00!$)
Now you can build your own 200 MHz DFM for just over $\$ 100$. In fact, if you only need 40 MHz , (and many people don't need more) the kit is less than $\$ 100$. And if you want to Increase it to 200 MHz in the future, that's easy - just add a 95H90 pre-scaler IC.
This is the all-new Electronics Australia design (August/September issues) and features exclusive Dick Smith front panel. You'll find it hard to beat our kit - it comes with explicit instructions and a 'Sorry Dick it Doesn't Work' coupon.

CUSTOMERS PLEASE NOTE:

Our ads are often so successful that the stores run out of advertised lines within a few days. Or, in some cases, a last minute hitch may develop a wharf strike may hold up goods, a parcel may go astray, a flu epidemic may hit our warehouse What we're trying to say is that SOMETIMES the lines shown on these pages may not be available in the stores when you go in. Please don't blame the shop staff: they're as helpless as we are! So if you're about to drive across town or across the state to pick up a certain line, play it sate PLEASE PHONE THE STORE FIRST - they'll be able to tell you if what you want is in stock!

Our transformers solve your voltage problems.
 Need 'strange' voltage combinations for
 You probably thought our multi-tap transformers just gave the valtages shown on them. Wrong! Our transformers give a huge number of combinations of voltages. It's just a matter of picking the taps you need. So even if your voltage requirements are 'strange', you can probably get them from a Dick Smith multi-tap transformer. M. 2155 nominally 15 V @ 1 A with taps at $6.3 \mathrm{~V}, 7.5 \mathrm{~V}, 8.5 \mathrm{~V}, 9.5 \mathrm{~V}, 12.6 \mathrm{~V}, 15 \mathrm{~V}$ Gives the following combinations: $1.0 \mathrm{~V}, 1.2 \mathrm{~V}, 2.0 \mathrm{~V}, 2.2 \mathrm{~V}, 2.4 \mathrm{~V}, 3.1 \mathrm{~V}, 3.2 \mathrm{~V}, 3.5 \mathrm{~V}, 4.1 \mathrm{~V}, 5.1 \mathrm{~V}, 5.5 \mathrm{~V}, 6.3 \mathrm{~V}, 7.5 \mathrm{~V}$ M. 6672 nominally $30 \mathrm{~V} @ 1 \mathrm{~A}$ with taps at $15 \mathrm{~V}, 17.5 \mathrm{~V}, 20 \mathrm{~V}, 24 \mathrm{~V}, 27.5 \mathrm{~V}, 30 \mathrm{~V}$. Gives the following combinations: $2.5 \mathrm{~V}, 3.5 \mathrm{~V}, 4.0 \mathrm{~V}, 5.0 \mathrm{~V}, 6.0 \mathrm{~V}, 6.5 \mathrm{~V}, 7.5 \mathrm{~V}, 9.0 \mathrm{~V}, 10.0 \mathrm{~V}, 12.5 \mathrm{~V}, 15.0 \mathrm{~V}, 17.5 \mathrm{~V}$ $\mathrm{M}-6978$ nominally $15 \mathrm{~V} @ 2 \mathrm{~A}$ with taps at $6.3 \mathrm{~V}, 7.5 \mathrm{~V}, 9 \mathrm{~V}, 10.5 \mathrm{~V}, 12.6 \mathrm{~V}, 15 \mathrm{~V}$

 SEPARATE PARTS:PC Board (only)
Cat H 8354 Cat H 8354
Cat R. 1980
Ca
Knobs to suit slides sider pot
Cat $\mathrm{H} \cdot 3 \mathrm{H}_{4}$
FET INPUT AC-DC VOLTMETER (See Septeniber E.A.) Not produced as aspecial kit - all parts available ex stock: PC Board only-.................... Cat $\mathrm{H} \cdot 8353$ Fabricate your own meter scale using the Scotchcal process:
B005 black Scotch al photo-senstive aluminium.. Cat H-5694 CA. 3140 FET op-amp Cat 2.5417

DIGITAL DIAL (See September E.T.I.)
Not produced as a special kit - most parts available ex slock.
PC Buards:
ETI 550
ETI 550 8619 .
ETI 591 AVB \{suil special Dick Smith LT-303 7 segment displays
ETI 591C (suits yellow H/P 5082.7663 displays) Cat H-8618 ICM1 7217 A up d down counter IC Cot 2.5416.
5082.7663 yellow 10.9 mm 7 segment display ... Cat $2-4160$ LT-303 red 7.6 mm 7 segment display Cot Z-4103. LIGHT SHOW CONTROLLER
Not produced in kit form - most components normal stock.
UPGRAOED $40 / 200 \mathrm{MHz}$ FREO COUNTER (See August E.A.) Same style as previous kit, but new circuitry means it is easier to build, set up and is more sensitive. Basic counter is 40 MHF Complete kir for 40 MHz , inc, instructions. Cat K-3437... $\$ 99.50$ $95 \mathrm{H90} \mathrm{HC}$ to ortend range to 200 MHz ... Cat 2.5360 .. $\$ 9.2 .50$ SEPARATE PARTS:
PC Boards (sel of iwo top quality boards) Cat $\mathrm{H} \cdot \mathrm{B345}$ MC-10116L IC (triple difterential amplifiet) Cat $2-5415$ MM 5369M IC (oscillator - divider)
${ }^{7} 4$ C926 IC (4 digit counter)
3.579545 MHz crystal (new $2.5414{ }^{-1}$

LT-303 7 segment display 2.4103
K. K.6031- $\$ 12.00$

PHOTO TACHOME TER (See August E.A.)
Although we do not produce full kit lor this project. all parts ate normal
stock lines at all of our stores.
PCB (only) Cat H .8352 51.80

NEW 10 GAME TV GAME KIT (Soe July E.A.
Complete kit, including instructions Cat K. 3491 .. $\$ 49.50$ SEPARATE PARTS:

UP/OOWN PRESE TTABLE COUNTER (See E T.I. July)
Noos full kil Special parts Cet 7.5416
Special PC baards to swit the Oich Smith 241037 segment displays.

STUNT MOTORCYCLE TV GAME (See E.T.I. June)
full kit, including instructions Cat K-3474 .. $\$ 29.50$
SEPARATE PARTS:
PCB (only)

SHOPS OPEN SAM to 5.30 PM
(Soturdoy SAM 12 moun) BRISBANE $1 / 2$ Hour corlor.
ANY TERMS DEFEREO ARE TO APPROVED APPLICANTS ONLY Miny Ines avalable tron the
Dich Sonth Electronics Centues

GRACE BROS

DICK SMITH ELECTRONICS

SYDNEY 125 York Street, SYONE Y. Ph. 29.1126 147 Hume Hwy, CHULLORA, Ph, 642.8922 162 Pacific Hwy, GORE HILL. Ph, 439.5311 30 Grose Street, PARRAMATTA. Ph. 683.1133

MEL BOURNE 399 Lansdale Street, MEL $80 \cup$ RNE, Ph. 67.9834 656 Bridge Road, RICHMOND. Ph. 42.1614 ADELAIDE 203 Wright Street, ADELAIDE. Ph, 212-1962

MAJOR DICK SMITH DEALERS:

Overland Communications

 Trilogy Elect. Supplies Sound Components Sound ComHitel Hi Fi
Don House Electronics DGE Sales
M\&W Electronics Double Diamond Greg McCartney
Rivercom
Brian Bambach Elect.

11/53 Wollongong St. Fyshwick ACT. Plt 80.4377 52 Princes Hwy, Wollongong NSW, Pi 83.1213 78 Brisbane St, Tamworth, NSW. Ph 66. 1363 145 Queen St, St Marys. NSW. PII 623-4442 2 Merriwa St, Gordon NSW. Pl, 498-1398 44 Brown St, Newcas ile NSW. Ph 69. 1222 48 McNamara St, Orange NSW. Ph 62-6491 18 Russel St, Goulburn NSW. Ph 21.5440 99 Fitzmaurice St, Wagga NSW. P1, 21.3044 9 Copeland St, Wagaa NSW. Pn 21-2125 68 William St, Gosford, NSW. Ph 24.7246

GCG Communications The Elect. Holdiy Cimitre Premer Sound Summer Electrorics Aero Electronics Tasmanian Hi Fi Devon Electronics A.E.Cooling Hurchesson's Communic Altronics
BP Electronics

385 Mulgrave Rd. Cairns OLD. Ph 54-1035 1168 Gold Coast Hwy, Palm Beach OLD. Ph 34-1248 239 Musgrave St, Rockhampton QLD. Pi1 27.4004 97 Mirchell St, Bendigo, VIC. Ph 43.1977 123A Bathurst St, Hobart TAS, Ph 34.8232 87A Brisbane St, Launceston. TAS. Ph 31.5815 45 Ashlsurner St, Devonport TAS. Ph 24.4216. Town Centre, Peoples St Bidg, Elizabeth SA. Ph 255.9196 5 Elizabeth St, Mr Gamber, SA. Plı 25.6404
105 Surling St Perth WA. Ph 328.1599
11 Duke St, Albany WA. Pli 41-2681.

Uari Wiper Ink2

This pulsed windscreen wiping circuit can be used on cars fitted with most types of modern wiper motors.

WHEN OPERATING IN heavy rain windscreen wipers often have difficulty providing adequate visibility However, during light rain or mist all that is necessary is an occasional sweep of the blades at intervals of a few seconds.

Turning them on and off repeatedly takes the driver's concentration off the road, and his hands off the wheel. increasing the risk of an accident. Alternatively, if the wipers are kept working all the time in such conditions the blades tend to scrape on dry glass, wearing out the rubber inserts, your nerves, and worse still, the screen itself.

The answer is obvious; have the wipers operate intermittently at a duration which can be varied to suit the conditions.

This project is an updated version of the popular ETI 301 Vari-Wiper which appeared in the May 71 edition.

Figure 1 shows the circuit of a modern wiper assembly. Dynamic
braking is achieved by applying a short across the armature, by a cam-actuated change-over switch synchronised with the wiper blades. When the wipers are switched off, the change-over switch shorts out the motor armature via the main wiper ON/OFF switch.

The circuit of fig. 2 is suitable for use with negative earth cars fitted with permanent magnet motors. Some early model cars are fitted with wound field coil motors and are not suitable for use with this circuit (more about them later).

Some types of permanent magnet wiper motors, especially those on British cars, have a fifth wire extended to the wiper switch. These motors are designed to operate independently of an earth to allow for their use on either positive or negative earth vehicles. The circuit of fig. 2 can also be used with these motors provided they are fitted to a negative earth car. However, some
more expensive imported cars have wiper motors which are reversed in the parking sequence to lower the blades below the bottom of the windscreen when not in use. The Vari-Wiper unit described cannot be used with these wipers.

Before installing the Vari-Wiper unit make sure that you have one of the types of permanent magnet wiper motors described. If necessary remove the cover of the motor and identify the wire to the centre contact of the camoperated switch.

Normal Wiper Operation

Conventional operation of the wipers is obtained by using the vehicle wiper switch in the normal way. Figure 2 shows the sliding contacts of this switch in the correct position for each function. Note that in the off position the switch shorts lead B to lead C. In the SLOW position the short is removed and an earth is extended to B, while in the FAST position the earth is removed from B and extended to A. For single speed wipers slide contact A will be omitted.

Fig. 1. Circuit of modern wiper motor assembly. Dynamic braking is achieved by applying a short across the armature.

HOW IT WORKS - ETI 319

The timing circuit is energized by operating switch SW1, which is part of switch/potentiometer RV1. This switch applies power to the unijunction/SCR circuit via the still-closed parking switch contacts.

Capacitor C1 charges via RV1 and R1, at a rate determined by the setting of RV1, until the unijunction 'fires', producing a positive going pulse which triggers the SCR into conduction. Resistor R4 ensures that the SCR latches on, thus energizing relay RL1.

Relay contacts RLI (1) now changeover, removing the short circuit from the motor armature before energizing the motor by extending an earth via the nowclosed relay contacts.

As the motor gathers speed, the associated cam-actuated switch changes over, removing power from the timing circuit (causing the relay to drop out) and extending an earth to the wiper motor via wiper switch contacts B and C, the now deenergized relay contacts, and the camactuated switch.

The wipers continue their sweep across the screen, but on their return the camactuated switch cuts in just before the end of the sweep. This removes power from the wiper motor and places a short circuit across the armature.

Operation of the ETI319A unit is similar except the motor, which does not require dynamic braking, can be driven directly from the SCR, saving the cost of a relay. Note that either D1 or D2 become redundant depending on the polarity of the vehicle.

Fig. 2. The ETI3198 Vari-Wiper circuit using relav output for use with permanent magnet motors.

Fig.3. Simplified ETI 319A Vari-Wiper for use with wound field coil motors. The right circuit is for use with negative arth vehicles, and the left for positive earth. Both share the same PCB.

Fig. 5. Component overlays. Note that the same PCB is used for both earth polarities on the ETI 319A.

Delayed Operation

When delayed operation is required, the upper switch is left in the OFF position and the timing circuit energised by operating SW1 which is part of the switch/potentiometer RV1.

After a time which is set by the position of RV1 ($0.5-25$ secs.) the relay contacts RL1 (1) change over, removing the short circuit from the motor armature before energising the motor by extending an earth via the now closed relay contacts.

As the motor gathers speed the associated cam-operated switch changes over, removing power from the timing circuit (causing the relay to drop out), and extending an earth to the wiper motor via the wiper switch contacts B and C, the now de-energised relay contacts, and the cam-activated switch.

The wipers continue their sweep across the screen, but on their return the cam-operated switch cuts in just before the end of the sweep. This removes power from the wiper motor and places a short across the armature. The motor is thus dynamically braked and remains stationary until the next relay closure from the timing circuit. When this arrives the sequence is repeated.

Wound Field Coil Motors

Because wound field coil motors do not
use dynamic braking, the Vari-Wiper can be made without a relay. Figure 3 shows the simplified Vari-Wiper circuit and its connections to either a positive or negative earth vehicle. The same printed circuit is used for both arrangements. Operation is similar to the previously described unit, having an earth extended through the SCR to start the motor.

Construction

Assemble and solder all components on the printed circuit board as shown in fig. 5. Do not bend the lugs of the SCR too close to its case and ensure all semiconductors are the right way round.

To connect the unit to the wiper motor circuit, the existing lead from the centre pole of the wiper motor changeover switch to the wiper ON/OFF switch (shown in dotted lines in fig. 2), should be broken at points X and Y and these leads taken to the normally closed contacts on the relay. Ensure that point X goes to the fixed contact and point Y to the moving one.

The potentiometer should be connected to the unit with just enough wire to allow the printed circuit to be mounted in a convenient position under the dash. The potentiometer can be mounted through a 10 mm hole drilled in the facia panel or by attaching it to a bracket mounted in a convenient place.

PARTS LIST - ETI 319 Relay Output Unit
Resistors all 1/4W 5\%

Potentiometer
Potentiometer
RV1 1M switch por
Capacitor
C1.......... $22 \mu 16$ V electro
Semiconductors

PCB ETI 319B
Nylon terminal strip

SCR Output Unit

All components identical, except:

Potentiometers forindustrio] and consumer electronics.

CARBON-CERMETPTRIMMERS•PRESETS•ROTARY SIIDE-STANDARD•MINIAIURE AND WIRZWOUND AVAILABLE EX STOCK IN ALL STATES
SOENER

SOMER Electronics Pty Ltd A MEMBER OF THE A+R-SOANAR ELECTRONICS GROUP

30-32 Lexton Road,Box Hill,Vic, 3128,Australia. Telex:32286.

WE HAVE arranged with Mike Pratt of S M Electronics for him to offer ETI readers a complete kit of parts for this project at the special price of $\$ 29.95$ plus $\$ 2.00$ for packing and certified postage.

The kit includes all components necessary to build the project, including a metal case which has a rectangular hole in the front for the LED display.

To order, complete the coupon below, and send it, with a cheque for the appropriate amount, to: Tacho Offer, Electronics Today International, 15 Boundary Street, Rushcutters Bay, NSW 2011. Cheques should be made payable to 'Tacho Offer'. Please allow 4-6 weeks for delivery.

Send to: Tacho Offer, Electronics Today International, 15 Boundary Street, Rushcutters Bay, NSW 2011.

Please forward ETI 318 Tacho kits at \$29.95 each plus \$2.00 each certified postage and packing.

I enclose herewith cheque/postal order total
Please make cheques, etc., payable to 'Tacho Offer'.
\qquad
Address
Postcode
Offer closes 29 September, 1978 and is open to Australian residents only. Apologies to our overseas readers.

Thasey
 There's now 120 Tandy Stores \& Deaters in Australia, but it there's not one close to where you live Mail orders tos Tondy Eloctrontes P.0. Box 229, Aydalmers, 2116
 Mintmum order accepted 2.50 -ADO SHIPPING \& PACKING $5 \times$. Aydalmare, 2116 Wend $1.50 \cdot 15.00$ to 49.99 send $2.50 \cdot 50.00$ to 99.93 send $5.00 \cdot 100.00$ and over send 8.00
 Tandy Expands Your Listening Horizons

5-Band Communication Receiver for a World of Listening Enjoyment!

150.400 kHz Longwave $535-1600 \mathrm{kHz}$ AM Band 1.5-4.5 MHz Shortwave 4.5-13 MHz Shortwave 13.30 MHz Ham and CB

Covers 5 Action Bands, Including All CB Channels AM and SSB

Realistic $\mathrm{DX} \cdot 160$. Hear marine, aviation, weather and more on longwave. Tune in shortwave programmes and news from major cities around the globe. Get Hams and CB operators, WWV time signals, standard AM. A product detector and variable BFO bring SSB and CW receptlon, too. Eleven front panel controls, including electrical bandspread tuning and calibrated logging scale. With FET's in all critical stages. Zener stabilisation, noise limiting in IF and audlo stages. Illuminated " S " meter. Headphone jack plus instruction manual. For 240 VAC or 12 VDC neg. gnd.
20.152

Patrolman CB-8 149^{95}

- Betfery Condition/Signal Stiength Motor - Precision Fine Tuning on All 8end's - Tunes: UMF, VHF.HI, VHF air, VHF.Low, C8 Shoriwavo, AM/FM
Tunes all CB channels, foreign broadcasis, pollce, planes, trains -more. Has 10.1 cm speaker, squelch on CBNHF/UHF, dial light, tone control, automatlc AC.tobattery switching, FM.AFC, 'Y/" headphone jack, telescoping antennas, jack Requires 6^{\prime} ' C^{\prime} ' batteries. With AC cord. 12.763

Patrolman CB-6 119^{95}

Tunes VMF.LO, VMF.MI,UHF,CB,AM,FM -Automatic AC-lo-Eattory Switching -All-Bend Fine Tuninge Squelen Control

Hear CB channels, police and lire calls, trains, trucks and aircratt, plus AMIFM. Features org 10.1 cm speaker $1 / 4^{\prime \prime}$ neadphone lack. AFC on FM, dlal light button, lelescoping UHF and FM/CBNHF swivel-mount antennas and external antenna jack. AC cord
Requires $4{ }^{\circ} \mathrm{C}$ " Datteries.
12.761

BUILD Your OWM MIN-COMPUTER \& SAVE!

A COMPLETE SYSTEM FOR JUST

Here it is - the first system that enables you to break into the big time without spending big money! You don't have to know about computers to start - just imagine the astounded looks on your friends' faces when you tell them 'I built it myself!" When you've built the system you can play games with your computer right away using the special EA/Signetics disc. Then, when you've gained some programming experience, you can use your computer for an incredible variety of tasks. A similar builtup system would cost well over $\$ 800$ - think of the money you'll save by building it yourself. It's easy with a Dick Smith kit!

Components marked \dagger below are required to build the system shown in this block diagram. They make a total of only $\$ 369.20$!

2650 MINI-COMPUTER (See E.A. May'78)

Fantastic new 2650 Mini Computer. Complete kit includes all electronic parts, PC board and power supply plus case, Marviplate lid and deluxe brushed aluminium front panel.
Complete kit for above: Cat K-3447...
SEPARATE PARTS
PCB (78 up 5) fibreglass: Cat H-8341......................... $\$ 5.00$
2650 microprocessor chip: Cat Z-9201 $\$ 28.50$
2608/CNO035 pip bug 8k ROM: CatZ-9309............... $\$ 19.75$
2114 ROM chip: Cat Z.9306... $\$ 14.50$
VIDEO DISPLAY UNIT (See E.A. Feb \& May'78)
Incredibly low cost Video Display Unit uses your own TV set
as the monitor.
Basic Video Display Kit: CatK-3460.
........................... $\$ 97.50 \dagger$
Video Modulator Kit for above: Cat K-3462 . $\$ 4.50 \dagger$
ASCII Keyboard Encoder kit for above: Cat K 3464 ... $\$ 39.50 \dagger$
SEPARATE PARTS
UART IC (S1883/MM5303N/TMS6011: Cat Z-9204. \$5.90†
Keyboard Console Metalwork: Cat H-3130 \qquad $\$ 24.50 \dagger$
Keyboard (fully assembled) Cat X-1180... \qquad
CASSETTE TAPES
AC/DC cassette recorder ideal for this system.
Cassette recorder Cat A-4092.. \$39.95
Cassette tapes: C60 LN Cat C-3350 $\$ 1.50$
C90 LN Cat.C-3352.
$\$ 2.00$

CASSETTE INTERFACE

Enables your cassette recorder or record player to interface with mini-computers such as the 2650. Kit includes PC board and all components except power transformer. The complete PC board assembly will fit inside your 2650 mini-computer case, the 2650's transformer providing the AC power. We believe this kit to be the best available on the market to suit the 2650 system.
Complete kit (as above) Cat K-3465..
$\$ 24.50$ +
PCB only (Cat H-8331).. .
\$3. 75

SOFTWARE RECORDING

This is a $33 \cdot 1 / 3 \mathrm{rpm}$ recording of useful 2650 system software. Use it on your record player or dub onto a cassette and use it in your cassette interface system. Then you can program the 2650 for new programs and games. It contains 22 programs you can run.
Record Cat B-6300.
.$\$ 2.80$ †

PAPER TAPE READER KIT

See page 33 of our new catalogue for full details. Ideal for use with the 2650 mini-computer. Kit includes all electronic components, handsome black anodised aluminium case, ribbon interface cable and complete assembly and interface instructions, schematics and software. Tape Reader Cat K-3466.
.$\$ 95.00$

Project 551

LICHT ChASER

Low cost, simple design handles up to 1000 W per channel and can be expanded if required.

A LIGHT CHASER is a mechanical, or in this case, electronic, gadget which controls three or more sets of lights arranged in a chain. These are flashed on, one at a time in sequence, to create an illusion of movement. Such devices can be seen at fairgrounds, on advertising signs and in shop windows. Here is a design that is simple and cheap to build, and suitable for any of these applications.

Design Features

We have seen many designs for light chasers ranging from three relays switched sequentially by a motor and cam follower contacts to elaborate phase control circuits. We chose to steer for a happy medium retaining features like easily adjustable rate and zero crossing switching but still being simple and cheap to build.

To reduce cost, we decided against using an isolation transformer. Because of this, the entire circuit is at mains potential and should therefore be treated with due respect. By using a series capacitor which costs about $\$ 1.50$, we save a power transformer ($\$ 4.50$) and three pulse transformers (about $\$ 2.00$ each), resulting in a $\$ 9-\$ 10$ saving.

ET1 551 Light Chaser

 $\underbrace{\text { Powter }}$

The unit can be expanded beyond three channels if desired by moving the feset line of IC4 (pin 15) from the fourth output to the $(n+1)$ th, where n is the desired number of channels. The sequence in which the pins on IC4 go high is $3,2,4,7,10,1,5,6,9$ and 11 . Therefore for a 6 channel unit pin 5 will be connected to pin 15. The output stage consisting of the NAND gate, transistors,
capacitor and triac will of course have to be duplicated for each additional channel.

The unit as described is suitable for about 1000 W per channel but if additional heatsinks are used this could be raised to the 15 A limit of the triacs or, if different triacs are used (e.g. the BTW 41-400) even higher currents can be handled.

Project 551

HOW IT WORKS - ETI 551

A light chaser consists of three or more ac switches which are turned on, one at a time, in sequence. To make this explanation simpler, we have separated the circuit into several sections.

Power Supply

The 240 Vac is reduced to the 12 Vdc required to operate the control circuitry by the use of a series capacitor $\mathbf{C 1}$, the diodes D1 and D2, the smoothing capacitor C 2 , and is then regulated by zener diode ZD1.

Synchronization Generator

The input to $\mathrm{IC} 1 / 1$ is connected to the 240 Vac supply via the 1 M resistor R1. The value of this resistor, combined with the effects of the protection diodes inside the IC, prevent damage to the IC. The output of this device is a 50 Hz square wave which is synchronized with the mains. IC1/2 is used to invert this square wave and then the RC networks R5/C4 and R6/C5 are used to generate negative pulses on the two inputs of IC $2 / 1$ on each zero crossing of the 50 Hz signal - i.e. 100 pulses per second. The width of these pulses is about 0.6 ms .

High Frequency Oscillator

This is formed by IC1/3 and IC1/4, and runs at about 80 kHz . Its output is gated with the synchronizing pulses by IC2/2; this results in 600μ s long bursts of 80 kHz at the start of each half cycle.

Low Frequency Oscillator

This is formed by IC $2 / 3$ and IC2/4 and its frequency is variable by RV1 from 1 Hz to 10 Hz . We have used this form of oscillator in preference to that used for the high frequency oscillator to prevent reverse biasing the tantalum capacitor.

Counter

This is IC4 which is normally a divide-byten counter with ten decoded outputs which go high in sequence. By connecting the fourth output back to the reset, a divide-by-three is formed. This IC is clocked by the low frequency oscillator.

Driver \& Output Stages

There are three identical output stages consisting of a two input NAND gate, a two transistor buffer, a series capacitor and a triac. The function of the gate is to direct the high frequency tone bursts onto the appropriate triac gate. The counter IC4 selects the required gate.

General

The use of a short tone burst at the start of each half cycle is intended to minimise RFI as the triac can only switch on at this point. This does, however, limit its use to incandescent loads. For use on fluorescent loads C4 and C5 can be increased to 10 n .

The fact that we have not used an isolation transformer reduces the cost, but it does mean that the complete circuit must be considered live! We did not use a fuse in the prototype, but one can be used if required in the active input lead. Ensure that the fuse used will protect the triac.

WARNING

The circuit described here does not use an isolation transformer and therefore all sections of the circuit must be considered dangerous.

If the unit does not work when switched on, disconnect the mains and then, using a separate dc power supply, apply 10 V across C2. Now add a 50 Hz ac signal of $12-32 \mathrm{~V}$ onto the normal active-neutral input. In this way the control circuitry can be safely checked up to the triacs.

The pc board should be assembled with the aid of the overlay in fig. 2. Ensure that the diodes, capacitors and transistors are oriented correctly. The transistors shown on the overlay are Philips types and can be identified by the fact that the base lead is bent so that the three leads form a triangle. If the three leads are in line the transistors should be inserted facing in the opposite direction.

The CMOS ICs should be inserted last ensuring that the pins are not handled more than necessary and that pins 7 and 14 (the power supply rails) are soldered first.

The heatsinks and the triacs used depends on the intended load. We used about 2500 square mm of aluminum on each triac, and found this to be satisfactory for about 1000 W per channel. The tabs of the triacs are live and separate heatsinks, insulated from earth, should be used or the triacs should be insulated from the heatsink.

We mounted our prototype into a simple folded aluminium box, with an external rate potentiometer and three 3 -pin sockets. If an external potentiometer is not required a trim potentiometer can be mounted on the board. To adjust this potentiometer an insulated trimming tool must be used. The unit can be wired according to fig. 2 taking care with insulation as many points are at 240 V .

Get both price and performance

Make a detailed price/performance companison and you'll find that these DMMs come out on top. Only these models give you bench-top features like four digits and auto ranging plus the kind of price that used to be reserved for field service instruments. Not that the PM 2517 isn't ideal for field service.

Dimensions are compact, construction rugged It also has an ergonomic layout, choice of LED or LCD readouts and all the professional features listed below. In other words, we invite you to make a detailed comparison because there really isn't one.

Full 4-digit displays: give higher resolutions than $31 / 2$ digits. We also give you a parameter readout.

Small but sturdy: no cheap plastic cases or sloppy controls.

Ergonomic design: works in any position. Works without fuss or fumble. On auto it also works automatically. True RMS: instead of average. The only true way to measure AC signals other than sinewaves without stopping and thinking.
High resolution and accuracy: due to the combination of four full digits and high sensitivity ranges.
Current to 10 A : as volts go down, currents go up. for same output. So 10 A should be a must, not an option.

Overload

protection: almost the only way to damage this DMM is accidentally on purpose.

DMMs for labs, service and workshops

Tempera
 tures too:

this low-cost option is a virtual must for trouble-shooting.
Data hold: a big Philips plus. Touch the test point, push the ring on the probe and the measurement data is "frozen" until you can turn round and read it . This option is a must for tricky service situations.

Meets International

Standards: you name them and the PM 2517 meets them. But what else would you expect? And of course we also make analogs.
For more detalls contact: Philips Electronlc Systems Scientific and Industrial Equipment. P.O. Box 119, North Ryde, NSW 2113. Ph: Sydney 8888222 or Melbourne 6990300

Test \& Measuring Instruments

SOME OF AUSTRALIA'S LOWEST COMPONENT PRICES\qquad SPECIALS - KEEP US IN NEXT OROER			
		(ener diode	

INCREDIBLE!

A superbly designed 9 band receiver. Sensitivity, selectivity, (the VEF radios will easily separate the proposed 9 kHz B/C station separation) stability, image rejection, and sound quality are all superior to any comparably priced radio. More than that, VEF reliability is legendary and the construction quality incomparably better hence our 3 year guarantee.

- 279-283 Latrobe St, Melboume. 3000. Ph. 602-3533.
- 91 Goulbum St, Sydney, 2000. Ph. 212-3576.

EIECTROIMPEX

 AUSTRALIA PTY. LTD.Normally \$89, this is a special \$69 offer extended to ETI readers.
(Optional AC unit \$4 extra.)

- Shops A11 \& 12, Local Point Arc, Cnr Brunswlek \& Wlekham Sts, Fortitude Valley. 4006. Ph. 52-2909.

Importers of

 Quallty Electronic Equipment Complete HIRE SALES - DESIGN service to the entertainment industry.OFFICE and SHOWROOMS
2388 Gold Coast Highway,
Mermaid Beach. Qld. 4218.
Phone (075) 38-3331.

DJ S77 STEREO DISCOMIXER

Automatic voice overide \bullet tape-in, tape-out 2 microphone in $\theta 2 x$ turntables in © T.T. start buttons $\boldsymbol{\text { s }}$ slave out 2 year guarantee.
Avallable separate or in console C/W turntables and 200 watt power amp built-in. Mono or stereo. Size (mixer only) $17 \mathrm{~cm} \times$ $86.5 \mathrm{~cm} \times 9 \mathrm{~cm}$. Weight 4.5 kg .

LITO 250 PROEESSIONAL EFFECTS PROJECTOR

- New 250 W Quartz lodine Effects proiector for use with effects from spectacular Lightomation range - Lens system totally enclosed to eliminate iloht spill - Cool, quiet operation, high efficiency tangential air blower - Used free-standing or suspended with' adjustable handle e Supplied as "Main-Frame Unit" with 50 mm lens, $60,85 \& 100 \mathrm{~mm}$ avail. 14 attachments available - changed by slide-in rotator system - wide selection of cassettes \& $6^{\prime \prime}$ Effect Wheels "Mains voltage selector gives range of 6 input voltages.
- STROBES - SOUND TO LIGNT UNITS - DRY ICE FOG MACHINES - ROPELITES • LIGNTING STANDS - BEACONS - JBL SPEAKEAS \& CABINETS - Brochures avallable on request.

Great British Sound Achievements

The BRITISH company Goldring has an enviable reputation for world famous stereo magnetic cartridges and replacement styli

SOUNDRING DISTRIEUTORS

Write for further detalls
Trade Enquilies Welcome

1/514 MILLER ST,
CAMMERAY, 2062
P.O. BOX 154, CAMMERAY, 2062

TEL (02) 92-1990

temperature stabilized LOG-EKPOMENTIRL cOIUERTER

This converter can be set up for either logarithmic or exponential operation and incorporates a neat heater circuit for temperature stability.

IN THE CONVENTIONAL musical scale, consecutive notes are not separated by the same frequency, but by the same ratio - the twelfth root of two. This is quite acceptable for most musical instrument manufacturers, except that in electronic music equipment it is easier to make oscillators which have an accurately linear frequency/control voltage characteristic. The keyboards of most music synthesizers give an output voltage of 1 V for each octave on the keyboard. This can easily be generated by a set of equal resistors between the contacts on each key and a voltage applied to each end (normally 5 V). However this means the oscillator is required to have an exponential frequency/control voltage response.

This is where the trouble usually starts. An exponential converter is normally used which relies for its operation on the relationship between current and voltage in a silicon diode or transistor. However unless temperature stabilisation is used the oscillator will not stay in tune for very long. With this unit the transistor used is heated to around $55^{\circ} \mathrm{C}$ and stabilised at this temperature, eliminating the problem of thermal drift.

In the instrumentation field a lot of functions are displayed in dBs which are a logarithmic measurement. As this unit can be connected in either exp or log modes it is useful for this purpose also.

Construction

As the unit will normally be used with some other equipment, we have not described any mechanical housing. The only difference between the assembly of this board and any other is the oven and the connections to the transistor array package. The oven is made out of two pieces of polystyrene about 55×35 $\times 12 \mathrm{~mm}$. The outside of the oven should

Photo showing the complete unit with the top of the oven removed to show
IC5. Note that link 1 is made out of a couple of pins from an old valve socket.
be covered with aluminium foil to help reduce heat loss. The aluminium itself should be covered with a layer of adhesive tape where the leads can touch. A piece of thick paper should be used between the ovenand the pcb to insulate the tracks.

The centre of the oven should be hollowed slightly to hold the IC (bend the leads out straight as shown in the photo); a hot soldering iron is the easiest method. Do not remove more than necessary. Now solder a 40 mm length of thin copper wire (a single strand of a multistrand cable is best) to each pin, then with the base of the oven in position, sit the IC in the oven and connect the leads to the appropriate
holes. If a small amount of epoxy cement is placed under the oven it will stay in position. Now fit the top of the oven and secure with a piece of adhesive tape until it has been checked out. It finally can be cemented with epoxy adhesive.

The potentiometer values chosen are a compromise between ease of adjustment and the ability to compensate different transistors. If the potentiometer does not have enough range then the series resistor will have to be varied. We have specified 2% resistors throughout to obtain a better temperature coefficient than is possible with conventional 5% resistors. It will not help to select out of normal 5% types.

SPECIFICATION - ETI 605

Transfer functions exponential log.	Vout $=0.15625 \times 2$ Vin Useful dynamic range
Oven temperature $=\operatorname{Ln}(V$ in $/ 0.15625) / \operatorname{Ln} 2$ Warm up time approx $.55^{\circ} \mathrm{C}$ Power supply about 2 minutes Coctaves	∓ 10 to ∓ 15 volts

$V_{\text {out }}=0.15625 \times 2^{V \text { in }}$
V out $=\operatorname{Ln}\left(V_{\text {in }} / 0.15625\right) / \operatorname{Ln} 2$
50 dB or 8 octaves
approx. $55^{\circ} \mathrm{C}$
∓ 10 to ∓ 15 volts

Fig. 1a. The circuit diagram of the converter section. Note that although only one channel is shown here that there are two identical units on the pcb. The component numbers used on the second channel are the missing even numbers, ie R12 is the same as R11.

HOW IT WORKS - ETI 605

This unit relies on the fact that the collector current of a transistor is exponentially related to the base voltage.

In the log mode the collector of the transistor is linked back to the input of IC1. In this way the collector current is proportional to the input voltage and therefore the voltage on its emitter is logarithmically related to the input voltage. This voltage is then amplified and level shifted by IC3 to give the desired output.

In the exponential mode the 10 k resistor R9 is linked back to the input of IC1 and the voltage on the emitter of the transistor is proportional to the input voltage; the collector current is exponentially related to the input voltage. This current is converted to a voltage by IC3.

All this works well provided the transistor is at a constant temperature. Compensation can be made by using other junctions and thermistors, however even the self-heating effect of the transistors can affect linearity. The translstors we have used are part of a transistor array IC which has three individual NPN transistors and a differential pair. We heat the chip up by dissipating heat in the differential pair while measuring the base-mitter voltage of one of the individual transistors. IC8 is used to compare this voltage to one set by the divider R25, 26, 27 and RV7. The base-emitter voltage is normally about 0.67 V at $20^{\circ} \mathrm{C}$ and drops about 2.2 mV per degree above this temperature. IC8 then stabilises the chip temperature to about $35^{\circ} \mathrm{C}$ above the temperature at which it was initially calibrated. As it warms up the current in the transistors will fall and when hot the voltage drop across R31 will be low enough that the LED will extinguish. The transistor array is housed in a polystyrene housing to conserve heat.

Fig. 1b. The power supply section which supplies the stable ₹ 7 volts needed for the bias and adjustment controls.

Fig. 1c. The oven circuitry.

Calibration

The equipment needed comprises an accurate digital voltmeter and a variable power supply with a fine voltage control. The +7 V rail can be used for this with a multi-turn potentiometer.

Oven Control

1. Before switching on, remove link 2 and fit link 1.
2. Switch on and monitor the voltage on the output of IC8 (pin 6).
3. Adjust RV7 until the voltage is about -5 V . The potentiometer is sensitive in this area but the actual voltage is not critical.
4. Remove link 1 and fit link 2. The LED should now come on for about two minutes before slowly going out. This indicates that the oven is stable. Calibration of Log Mode
5. Set $0 V$ on the input.
6. Monitor the voltage on the junction of R7 and R9.
7. Adjust RV1 to give a negative voltage on this point. Now adjust RV1 slowly until the voltage just switches positive.
8. Set 0.15625 V on the input.
9. Adjust RV5 to give $0 \vee$ output.
10. Set 5.00 V on the input.
11. Adjust RV3 to give 5.00 V output. 8. Set 1.25 V on the input and check the output voltage. It should be 3.00 V . If it is higher go back to step 4 except adjust RV5 to give -0.010 V and use RV1 to bring it back to zero. Continue with step 6,7 and 8 . If the output voltage at 1.25 V input is less than 3.00 V adjust RV5 to give +0.010 V instead of -0.010 V .

Continue until all three points are correct.

Calibration of Exponential Mode

1. Place a link between the junction of $R 7$ and R9, and 0 V .
2. Adjust RV5 to give $0,00 \mathrm{~V}$ output. Remove the link.
3. With 0.00 V input, adjust RV1 to give 0.15625 V output.
4. With 5.00 V input, adjust RV3E to give +5.00 volts output.
5. Check output voltage with 3.00 V input. It should be 1.25 V .
6. If high repeat steps $1-5$ except adjust RV5 to give about +10 mV

output. If low, repeat steps $1-5$ except adjust RV5 to give about -10 mV output.
7. Continue adjustmentuntil all readings are correct.

CALIBRATION TABLE

\[

\]

Fig. 3. This table shows the relationship between the input and output In the exponential mode A is the input with B the output while in the log mode B is the input and A the output.

Central Data Get into computing the economical, expandable way

FEATURES:

- Signetics 2650 microprocessor based -
- All processor signals buffered for TTL fan out of 10
* Supervisor programme in 1k of PROM
* 730 bytes of RAM available to the user
* Provision for $3 k$ of additional PROM on the board
- Cassette Interface on the board using $1200 / 2400 \mathrm{~Hz}$ Kansas City standard
* Composite Video output with $\mathbf{1 6}$ lines of 80 characters

Central Data dynamic RAM boards are available with $16 \mathrm{k}, 24 \mathrm{k}$, or 32 k bytes of memory.

Central Data software includes an Assembler/Editor and an 8 k BASIC tape. A Debugger, 12 k BASIC and Assembly Language Package is coming soon.

Other hardware now available and on the way includes Central Data Computer Mainframe with Power Supply, ASCII keyboard with solid-state low-profile keyswitches and +5 volt operation and Floppy Disc controller with one, two or three drives.

The Central Data System Board CDYSBDA facilitates the writing of programmes in Hexademical with only the addition of a TV monitor, ASCII Keyboard and power supply.

The System Board can be expanded by connecting the S-100 Board CDS100BDA. This allows you to plug in any S-100 static memory board with an access time of less than 500ns or the Central Data dynamic RAM boards CDXXKBDA.

For general and specific information:
TECNICO ELECTRONICS

Premier Sireet, Marrickville, N.S.W. 2204. Tel. 550411.

2 High Sireet, Northcote,
Vic. 3070. Tel. 4899322.

16K STATIC RAM USES LATEST GENERATION 2114 1Kx4 STATIC RAMS

- Completely static operation.
- Single +5 volt supply, low power.
- Add 1 K bytes with only 2 ICs.
- Motorola Exorcisor Bus as on MEK6800D2 Kit.
- Control logic compatible with M6800, 8080/85, 2650, SC/MP etc.
- Each 8K block switch addressable.
- Quality PCB with plated through holes and solder resist, Edge connector 43×2 way 0.156"

PP Pennywise Peripherals
 19 Suemar St, Mulgrave, Vic. 3170. Ph (03) 546-0308.

AUDIO \& DESIGN RECORDING (ADR) UK.
Signal processing equipment now in use at EMI studios, ALBERTS studios, ABC and many other top studios, radio and television stations.

VOCAL STRESSER F769XR

'Total Voice and Instrument Control' compressor, limiter, expander/gate, De-Esser, 4 band sweep equaliser. $\$ 1374$ plus 15 percent sales tax.
COMPEX LIMITER F760XRS.
2 channel compressor, seperate limiter, expander/gate with stereo link switch. $\$ 1529$ plus 15 percent sales tax.

'SCAMP' Units

ADT (automatic double tracking) flanging, reverb, etc \$933 S01 comp/lim, F300 exp/gate, S03 sweep Eq, S07 octave Eq, S05, S06 dynamic noise filters, $\$ 381$ plus 15 percent sales tax.
Agents for: Calrec studio mics, Shure mics, JBL and ATC speakers, Ampex recorders, JPS power amps and other professional products. Repairs and service to electronic equipment.

AUDIO \& RECORDING AUSTRALIA PTY. LTD. 20 Morgala Drive, Holden Hill. SA. 5088.
Phone (08) 261-1383
INTERSTATE AGENTS REQUIRED

EPROM ERASER

Erase up to 4 Eproms at once. 240 volt. Size: $3 \times 4 \times 8$. Assembled and tested. Aluminium anodlsed case.
$\$ 47.50$
plus \$2 P\&P.

DIGITAL TACHO

KIT
$\$ 36$ post free
\$48
assembled \& tested

ETI 318 PROJECT KIT
See July ' 78 ETI for full details. Complete kit includes pre-punched case. All kits in stock.

New! 16K PROM BOARD
 Kit 2780's \$115 plus \$2 P\&P. See Sept EA for details.

S100 WIRE WRAP BOARD, \$24.50
S100 BACKPLANE BOARD,
Double-sided, 8 -slot, $\$ 24.50$. S100 EXTENDER BOARD KIT, $\$ 24.50$

ELECTRONICS
MELBOURNE

10 Stafford Crt., Doncaster East. Victoria. 3109.
Box 19, Doncaster East. 3109. Ph (03) 842-3950.
Built \& tested prices and tax free prices on application.

masibest Buys

 $3^{3}=$ silic (4) valley SEMICONDUCTOR PRODUCTS are now available at MAD MAL'S electronic ShOP OVER 2,000 DIFFERENT SEMICONDUCTORS, INCL. IC'S, SEND MAL A 9 " $\times 4^{\circ}$ ENVELOPE FOR PRICE LISTS 3 TRAN SISTOR AM RADIO Twe
 NTV.3102 Eht Trans. Ti) \$ 0.50 ,

MUSICOLOUR MKIII COLOUR ORGAN KIT

 SUPER CARTRIDGES

A NTEREO
 Telescopic Aerial
 6-I2V MOTOR. for cassentiesurs chR $\$ 3.50$
 U-BERUT POWER
 ZGRA 1 A OUT

HI-FI STEREO SYSTEM KIT 3W +5W RMPLFYG Volume, Bass, Treble
Controis.
Spin din Solphoy

New: 0 S PUST MAD!
O PHILIPS AM
UF.AH MADIO TUNER
SWDULE UF.AII

 HITMOTARY WAFER FTh - - Lire 3 ietar $\mathrm{H}_{6}^{6.5 \mathrm{~mm}}$ STERFO 10eth ox 80cterti ICC 3.5 m SOCKETS

NEW, Drauxe STEREO
HIHONFS < SANE 335% NO
ON ALPAP

MASTERSLAVE ENTLHCOM
SETS Instal
Punta $25=$ VORTEX stiteo CASSETTE

 - all pocts 1 Ond BOLTS
 MAD BOL'S BAN ZA *

KRAZY Semiconductor
Aut se tuive ent PRICES $\boldsymbol{\pi}$
7400 20 $2 N 3053$ 35 $74012042 N 3643$ 304iM 7441 2N4250 $40 \& A$ $\begin{array}{llll}7473 & 70 & B C 337 & 255 \\ 7490 & 704 & B C 338 & 25 \%\end{array}$ IRG0 600 PIV 2538 ReCt. 75 INS404 400 PIV 4 A Rect. 55 VJI48 100 PIV IOA Bridge $\$ 3.75$ MDA 3504400 PIV 35A Bridge $\$ 4.13$ C1220 400V 8A SCR 1.34 SC1460 400V 10A Triac $\$ 2.20$ MPF 102 fet 75. MPFIOS 4 fet 751

Various STEES JUST
60 ASST SELF-TAPPERS OE
60 ASST HEX. NUTS S
100 ASST SCREWS SN
120 ASST WASHERS
200 ASST HAROWARE PACK
12 POT-NUTS AND WASHERS

INSTRUMENK CASE

P.O. Box 188, COOGEE. NSW. 2034

FOR PROMPT MAIL ORDER SERVICE!

PRogrammable calculators:

TI-59 - \$247.00| TI-57 \$74.00 TI-58 - \$109.00| TI-55 - \$53.00 PROFESSIONAL RANGE: SR-40 Scientific, S28. T1. 30SP Student Math Kid, S20. MBA-Business, Financial \& Programmability, s76. T1-MM, Mongy Manager, $\$ 21$. T1-BA. Business Analyst, $\$ 33^{\prime}$. PC-100A, Thermal Peinter, $\$ 213$.
BMC-LCD-8W Pocket Calculator, with clock \& alarmsee May EII, \$48. BMC-LCD-8M Bilfold, s23. BMC1212P0 12 digit display and printer, $\$ 125$.

STOP PRIESI

The new SINCLAIR Enterprise Programmable!

Real computing power, in a value-for-money package. The Enterprise Programmable is the latest in the long line of Sinclair 'firsts'. Il's a invo-generation calculator, and the most sophisticated yet. Whth a 79 -step, keyboard entry, programming faclity, it meets the neens of the user who wants real computer capability without complex operafing sequences, a crowded keyboard, or a hetty price-fag. The Enterprise Programmable has almost untimiter possibilties in ail kinds of flelds - statistics, physics, onginerring. ceometry and trigonometry, slatics, dynamics, and more. A com pirehensive program llorary. With evary Enterprise Pengramma ble, there are 3 volumes covering 316 ready-10-use programs Select the program you need, and read the programming sequence keying each step as you go, from the diagram provided. The clear step-by-sted instructions then show you how to enter the data you want to process. When you're ready, press 'Run - and the answer is shown on the bright, angled display. Each program is printed on a separate detachable sheet - no need to carry the whole fibrary with you everywhere you go. LUbrany contents. VOLUME 1-GENERAL. FINANCE, AND STATISTICS. 92 programs Conversions, Time, Games, Discounts and Mark-ups, Interest Mortgage, Business methods, Statistics, Ouality Control, VOLUME 2-MATHEMATICS. 114 programs - Algebra, Analysis, Number theory, Calculus, Geometry, Trigonometry. Veclors, Matrices and determinants VOLUME 3-PHYSICS, ENGINEERING AND ELECTRONICS 110 programs - Statics and Dynamics, fluld TRONiCS. Plo prog Optics, Electromechanies, Structures, Elec mechanics, Relaivity. Opics, Eleciromechanics, Electrodynamies, Electrostatics. Unbeatable Sinclair vatue. The Enterprise Programmable package includes an AC mains adaptor - to prolong the bamtery life, a carrying case a 3 -volume program library, a felt-ito pen, manganese alkaline battery, and a comprehensive instruction manUal, which shows you how to use the programs supplied, or how to write your own programs. Take a closer look at the Enterprtse Programmable, and see what we mean when we say 'true computing power

Exclusive Sinclair 12 month guarantee!

Also available: The SINCLAIR DM235 - Lab model DMM.

NOTE: To all calculator prices add 15 percent ST - if apolicable. P\&P - Int. $\$ 3$, NSW $\$ 2$ (up to $\$ 50$ value) Int $\$ 4$ NSW $\$ 3$ (up to $\$ 100$ value). Goods valued over $\$ 100$ delivered by courier - freight paid by receiver.

Ultra-Fidelity -design principles

> Audio amplifier design has come a long way since the introduction of semiconductors into hi-fi. Stan Curtis, who has been responsible for such excellent examples of the art as the Cambridge Audio and the Lecson, explains here the black arts of ultra hi-fi design.

CAREFUL listening tests have shown that while an amplifier that measures badly is unlikely to sound good one that measures well cannot be guaranteed to sound good. Thus it is apparent that the traditional measurements of power distortion and frequency response need supplementing by new and more powerful laboratory tests. Such tests should more closely relate to the conditions prevailing when the amplifier is driving realistic loads and using music signals rather than sine-waves, which of course represent only one special case.

Balancing Act

The first such test was popularised by Peter Walker of Quad. It is a simple nulting system which attempts to cancel the input and output signals of an amplifier. With full cancellation whatever remains must be distortion, i.e. signals added to or subtracted from the original. The ideal or perfect amplifier will produce no residual at the output of the nulling circuit.

In practical terms the balaricing of this circuit is very difficult if a significant degree of accuracy is required. Thermal drifts can aggravate the problem and generally it is
difficult to set up for more than one amplifier type as usually the whole phase-balance network needs to be recalculated and readjusted each time. However this simple circuit is useful for showing just how often amplifiers are clipping the signal in the course of a piece of music and how frequently some amplifiers slew-rate limit the signal.

However, with such high current capability it is essential that the amplifiers have speaker muting to prevent switch-on "thumps" (or more accurately, earthquakes) and dc offset protection to protect the loudspeakers from the effects of 20 amps of pure dc!

Offsetting Long Tails!

Dc offset has been a major problem with many dc coupled amplifiers (i.e. those having no output capacitor). The offset voltage measured across the output terminals should not be any more than $\pm 50 \mathrm{mV}$. Once this voltage starts to rise the loudspeaker is subjected to a dc bias which moves the coil out of the central position. This in turn causes the coil to heat up and the power-handling capability of the loudspeaker to be restricted.

Eventually (and often sooner) the loudspeaker will blow.

Many amplifiers have an offset voltage that is acceptable when the amplifier is first switched on but which starts to increase as the amplifier heats up. Such amplifiers are subject to thermal drift and this drift is normally due to a component mismatch in the circuit. The conventional amplifier, with a long-tailed pair at the input, is "theoretically" free of thermal drift as these will be automatically compensated for by the DC feedback.

However, this is on the assumption that the first two transistors (or FETs), forming the long-tailed pair, are perfectly matched.

The input offset voltage (upon which the output offset voltage is dependent) is related to the base-emitter voltage $V_{B E}$ of each transistor.

$$
\text { e.g. } V_{O S}=V_{B E 1}-V_{B E 2}
$$

This difference can be made almost insignificant by using
ation of local de feedback that occurs when emitter resistors are fitted. In this case;

$$
V_{O S}=V_{B E 1}-V_{B E 2}+I_{E 1} R_{e 1}-I_{E 2} R_{e 2}
$$

and so by adjusting the balance between $R_{e 1}$ and $R_{e 2}$ with a trimpot a balance can be achieved.

Emitter Resistance

Note that $R_{e}=R_{E}+r_{e}$ is the total external emitter resis. tance and r_{e} is the transistor dynamic emitter resistance. Thus it can be seen that in the earlier typical example of a stage without emitter resistors, an imbalance of r_{e} and r_{e} will cause a worsening of the offset voltage. More importantly it can reduce the common mode rejection of the stage.

Of course the presence of emitter resistors also lowers the ac gain of the stage. For reasons to be discussed later this is not such a bad thing. This gain can be recovered by using bypass capacitors.

a dual-transistor or a monolithic integrated-circuit differential stage where matching is provided by the simultaneous adjacent fabrication of the two transistors. With discrete transistors, however, a close match is unlikely.

Similarly unbalanced output loading or mismatch of the collector resistors also increases the offset voltage. These mismatches also worsen the linearity (and hence the distortion) of this stage. Thus well designed amplifiers usually use 1% tolerance resistors in these positions and adopt balanced circuitry throughout.

The offset voltage is considerably reduced by the applic-

Clip-on Off Set

Another situation where abnormal dc offset voltages occur is following a clipping overload. When many amplifiers are driven into clipping, the dc voltage of output rises towards one of the HT lines and then when the signal comes out of clipping the amplifier takes a finite time loften several seconds) to recover with the output dc voltage often oscillating between a positive and negative voltage before finally settling back to its nominal zero. Of course, when the amplifier is driven into clipping the normal negative feedback system ceases to control the amplifier.

Ultra-Fidelity Amplifiers -design principles

Thus the de instability is indicative of poor low frequency stability in the amplifier, Some of the worst (but not all) amplifiers in this respect, have separate ac and dc feedback loops and so have big electrolytic capacitors (decoupling the ac loop) which take time to charge and discharge.

The old Cambridge P100 amplifier had this problem and the effect on the reproduction of a loud bass note can be imagined. Regrettably many amplifiers still suffer from this problem.

Quite often some amplifiers go unstable without their owners becoming aware of the problem. Sometimes the oscillation may be moderate in level and at a very high frequency; the only symptom being that the amplifier seems to run hotter and next-door's electric drill causes more TV interference than before!

Compensation Phase

To know why some amplifiers are potentially unstable it is necessary to understand the principles of phase compensation. Much of the low distortion characteristics of amplifiers is achieved through negative feedback. If the phase shift around the feedback loop reaches 360 at any frequency at which the loop gain (i.e. the overall amplifier gain) is unity the result is a self-sustaining oscillation at that frequency.

The phase-inversion to provide negative feedback produces a stabilizing 180 (eg. "out of phase") phase shift, but an additional 180 can be developed in the amplifier.

The phase shift developed through an amplifier is the combined phase shift of its several stages, and it usually develops 180 at higher frequencies. To ensure frequency stability under feedback conditions, phase compensation reduces the amplifier gain at those frequencies for which phase shift is high and it reduces high frequency phase shift by accepting a greater phase shift at low frequencies. This is

In the case shown in the diagram (unconditional stability) the openloop response of the amplifier is stabilised by rolling it off at a slow $20 \mathrm{~dB} /$ decade slope with a single pole at 1 kHz . This ampliffer would be stable with any amount of resistive feedback. However it will be seen that at higher audio frequencies the amount of feedback available reduces and so the distortion of the amplifier will increase. For this reason many amplifiers are of the "marginally stable" type.

Differential pair with variable emitter resistances balanced by variation of the potentiometer.

In this circuit the input offset voltage is related to the base-emitter voltage of this transistor.

Recovering lost gain by use of bypass capacitors across the emitter resistances.

Effect of a sine wave of varying amplitude as signal upon the dc offset voltage at the outpur.
accomplished by adding response poles and zeros in the form of resistor-capacitor networks (real or inherent in the transistors) in the amplifier circuitry.

Equally important, to the owner of an expensive pair of loudspeakers, is the problem of high-frequency instability. These days very few high quality amplifiers are so unstable that they break into oscillation. However, quite a few respected units are on the edge of instability and so can potentially become unstable following a shift in operating conditions or of output loading.

Sum Theory

The author used another technique at Cambridge to investigate the changes in amplifier performance that are dependent upon the loudspeaker load. The two channels of a stereo amplifier are driven in mono but one channel is converted to become non-inverting. The outputs of both

SIMPLIFIEO TEST SYSTEM

In this case the amplifier has a fast roll-off which allows an improved closed loop performance at higher frequencies but without careful compensation they are not stable under all conditions of feedback. Once the phase shift reaches 180° the amplifier will become unstable so it can be seen that our example is only marginally stable.
channels are summed and the resulting signal is monitored. Theoretically both channels should transmit the signal in the same way and (for a given circuit design) any distortion, time aberrations etc. should be the same for both channels. It is often quite possible to balance the two channels (driving 8 ohm resistive loads) so that the residual is inaudible. However when one 8 ohm load is replaced by a real "live" loudspeaker the residual betrays problems caused by the new load. In a refined form the test works well and reveals two interesting things;
i) the two channels of average amplifiers are rarely identical
ii) some amplifiers work better in the inverting mode than in the non-inverting.

IM High

The conventional IM test uses an LF (50 Hz) and an HF $(7 \mathrm{kHz})$ tone in a 4 to 1 ratio and then measures the sumtotal of the sideband (e.g. distortion) components. This is of

Using one channel as an inverting amplifier to monitor distortion
produced by the design. produced by the design.

Intermodulation distortion testing using three frequencies.

Ultra-Fidelity Amplifiers -design principles

little practical value unless the amplifier is particularly nonlinear.

The HF IM test uses two tones of, say, 15000 Hz and 15100 Hz and the resulting side-bands are viewed on a spectrum analyser. The frequencies can be altered to suit whatever simulation that is desired, e.g. two sopranos trying to sing the same note.

By repeating the tests at different levels it can be seen that many amplifiers have a performance which varies appreciably with signal level, and the test results correlate very well in identifying amplifiers with an aggressive "top end".
which the computer can use to correct the data during the subsequent error analysis.

Once a series of measurements have been made in the course of playing a passage of music the resultant data can be subjected to a series of Fourier and coherence analytical calculations. Put simply, this means that any difference between the input and output signals can be described in a form that is useful to the engineer and related to the structure of the music signal at that instant. Unfortunately this test shows that, as yet, no perfect amplifier exists - each type of amplifier circuit produces its own particular types of "transient error".

Noiseband testing with a spectrum analvser, the sidebands produced by the amp are clearly visible.

Dynamically Noisy

The second test is similar but attempts to measure the, amplifiers' performance under more varying "dynamic" conditions. A white noise source has a harmonic and amplitude structure which is variable and random and thus provides a better simulation of a music signal than does a sine-wave. The noise signal is passed through a bandpass filter to define its frequency response. The bandwidth and centre-frequency can be altered to suit the investigation as can the overall operating level. The output of the amplifier is fed to a spectrum analyser where the out of band components can be studied. Again this test is very useful for studying the effects of different loudspeaker loads but more significantly for subjecting the amplifier to random momentory "clipping" overloads.

A Channel and A Log

Possibly the most complex type of testing in use is a form of input and output signal comparison used by Analog Engineering Associates of the USA and, in a simplified form, by Mission Electronics in the UK.

AEA have developed a transient distortion measurement system that uses a music as a test signal to evaluate circuit performance under dynamic conditions. This system consists of a dual channel analogue to digital converter which is designed to have a resolution of 1 part in 65,536 or 0.0015%.

One channel of this is used to sample the input music signal whilst the second channel samples the output signal via a precision attenuator. The digitally encoded output of the convertors is fed to a computer memory system for later analysis. Instead of trying to compensate for the amplifier's phase and frequency response with a passive circuit (as in the earlier simple nulling circuit) a frequency sweep is made through the amplifier to generate a "transfer function"

Analog Engineering's transient intermodulation distortion measurement system, used in Britain by Mission Electronics.

A study of the circuit of a conventional V - I protection circuit will show that as the protection transistors turn on they become a 'non-linear resistor' across the bases of output transistors Q3 and Q4 and as such create unpleasant distortion. One solution tried by some companies was to slug the bases of O1 and O2 with a capacitor to provide a time delay to prevent the protection operating except during a sustained short-
circuit.

Above: Effect of adding an extra pole at the output of an unconditionally stable amplifier, such as might be added by a complex crossover network. Below: Same condition applied to marginally stable type. Phase shift now borders on 180°, i.e. oscillation.

> In this protection circuit the FET starts to turn-on when full-power
> is delivered into a 2 ohm load. The main advantage over a con-
> ventional protection circuit is that the limiting is "soft" (i.e. very
> graduall and thus audibly acceptable and secondly that the
> distortion is much lower - and still only about 0.1% at limiting.

Ultra-Fidelity Amplifiers -design principles

Cincuit diagram showing a typical circuit which would prove to be prone to dc instability when in use. Note that separate paths exist for ac and dc feedback.

Ever wondered what this circuit in the output of an amplifier is for? Wonder no more - it's to aid the output stage in handling a capacitive loading by partially cancelling the effect.

Out of The Rut

A few years ago power-amplifier design had settled into a satisfying rut. In the UK the Quad 303 and the Cambridge P-Series had achieved very satisfactory performance figures and they were generally considered to be good amplifiers. In the USA the Crown DC300 has achieved an almost theoretically perfect specification and was hailed as "State of the Art".

However, the first crack to appear was caused by new loudspeaker designs. Some had very demanding impedance curves which in some cases presented a two ohm load to the amplifier. Such a low value of load (almost a short circuit to some minds!) operated protection circuits in many amplifiers, limiting the current to protect the output transistors.

The operation of these caused a very unpleasant "clipping" sound in some cases and even stranger "clicks" and "bangs" in others. Thus alerted it became apparent to some designers that conventional protection circuits were turning partly-on quite frequently in the course of a piece of music and so giving a sort of premature clipping action.

Without any doubt the best results are achieved when the output stage is devoid of any protection at all. The output stage should be designed to deliver all the current a load demands without limiting. Consider the reproduction of a bass drum. If the amplifier starts to limit the start of the "thump" the sound pressure will collapse and the bass-drum will appear to have no body and thus sound unrealistic.

The output-stage should ideally be able to sink the full energy of the power-supply until its regulation causes the current to limit progressively. So in a good amplifier design the output-stage and the power-supply must be designed as a single item and not as separate circuits. Several amplifiers are designed like this. The Lecson AP3 Mk II, the BGW models 500 and 750, and the Mission Power Amplifier. The Lecson AP3/11 can, for instance, deliver nearly 20 amps to the load before the mains fuse blows and the BGW model 750 even more.

If the amplifier now has to drive a capacitive load eg.
electrostatic speakers, or complex crossover networks; another pole is added at the output.

In the case of the unconditionally stable amplifier the only ill-effect will be some "ringing" in the closed loop step response - but in the case of the marginally stable amplifier it may go completely unstable. The most popular "belt and braces" solution to this problem is to fit a resistor-inductor network at the output to "cancel-out" the effect of the capacitive loading.

It is interesting to note that some marginally stable amplifiers omit those components as most speaker cables have sufficient resistance and inductance. However, some of the new "Super-Cables" (Litz and Lucas, etc) have a very low resistance and almost no inductance but some capacitance - and their use with certain amplifiers has caused instability, with the amplifier (or speakers) eventually blowing-up!

Which Parameters Matter?

For many years it has been usual to specify and compare amplifiers through their ability to handle a continuous (steady state) sine-wave signal. Thus such a signal is used to measure power-output, frequency response, harmonic distortion, crosstalk, input overload capability, intermodulation distortion, damping factor, and gain! Unfortunately many engineers and Hi Fi pundits still believe that such information is ALL that is necessary to quantify an amplifiers performance and to compare it with others. Not sol

Steady-state sine-wave testing can tell only part of the story and can often be misleading. Music contains complex wave forms with a spectral content of greater than eight octaves and dynamic ranges of up to 100 dB . Yet such complexity is readily understood by the human brain which, in mastering the subtleties of spoken language, has evolved the ability of extraordinary auditory sensory perception. The music signal, as with all audio signals, can be considered in terms of two variable qualities - the frequency domain, and the time domain.

The frequency domain has monopolised engineers' thought Continued on p.73. . .

DAVID REID ELECTRONICS LIMITED

P.O. BOX 317, NEWTON, SYDNEY, NSW 2042, 104-106 KING ST. PHONE 5196361

NEON INDICATORS

EARPIECES FOR ALL REQUIREMENTS

FO-R/OL

FQ-c/QL
FO-C/ZL
FO-R/ZL C-Conical head All ill 9.5 240 VOLT 80c

It's the LASER
TORCH/ALARM
At last you can be safe at night. The Laser torch/alarm power an ear-piercing alarm porer an ear-plercing aarnings of danger when out walking or just to summon a neighbour's help when needed. Many molesters' attempts could be thwarted by the scarey sound, especially when thrown out of reach. If they try to stop if the victim can run for help. At night the high pilched sound can be heard for a great distance. Ask 10 have it demonstrated at an electronic centre or send paymen wh the order form on Page 54 . Remember - our money. Only $\$ 2.45$

TO-220 dissipator lets the semiconductor function as a
free standing assem-
Spring loaded, vibration free.

30 c

H308 H31O SF2 TO5, ROATO18 10 mm D,TO5 6 mm D, TO5 15 mm dia. 8 mm dia. 13 mm square 19 mm square $\times 5 \mathrm{~mm} \mathrm{D} . \times 10 \mathrm{mmD}$ $70 \mathrm{C} \quad 80 \mathrm{C} 30 \mathrm{c} \quad 75 \mathrm{c}$

113 mm
 wide
 $\times 30 \mathrm{~mm}$ hlgh

Ideal for
mounting semiconductors
required to dissipate large amounts
dissipation. Flanges on base allow for
mountling on any position, for natural or
forced cooling. Supplied undrilled.
${ }_{6} \cdot$

$\$ 3.00$ $\$ 3.75$

KIT 39 build your own power supply
Muill voltage 1 amp regulated power supply
This electronic Kitset is designed to provide 6 alfernatives swliched voltages with a current rating of 1.0 amp . Voltages are 3.0 , any other preferred voltage within this range. The unit is short cirany other preferred voltage within this range. The unit is short c
Cuit proof against short period malfunctions. Regullion: $\mathrm{h} 21 / 2 \%$ with main's variation of 10%. ONLS 527.50
Ripple Voltage: Maximum 5 mv at 1 . amp rating.
Current Umiting at approximately 2.0 amps. Aproximate dimensions of the unit $116 \times 105 \times 105 \mathrm{~mm}$

H5A 8 ohm
standard with 2.5 mm plug. For pockel radios fitted with 2.5 mm mm sockels. 50c 46 Crystal. Migh impedence for crystal sets. $\$ 1.00$ H7 1000 ohm. Ideal lor monitoring high test equipinent. $\$ 2.00$

Potentiometers

wos Log 5K, 10K, 50K, 100K, 500K.
SEPT ONLY 45 c ea.
wos Lin 1k. 5K, 10K, 50K, 100K 250K, 500k, 1 meg.

SEPT ONLY

45 c ea. QUAD POTS
4 channel, 100K Linear Quad Pot. Comes complete with knob. Measures 49 mm square. Ideal for radio control, quad boxes. etc.

THE NEW ERA OF

PRECISE ELECTRONIC MEASUREMENT DM 10

FEATURES

- Instant Readout
- Automatic Over Range Indicator
- Overload Protection
- Zero Locked

Instantaneous Readout with no

HEY OZ! HAVE YOU SEEN OUR NEW SUPER SMOOTH DAVID REID ELECTRONICS 1978 CATALOGUE? WRITE FOR IT NOW
for so long - even the most complex music signal can be represented by a Fourier analysis.

This mathematical equation lists separately each frequency making up the signal, (together with its phase and amplitude). However, a Fourier analysis is only complete in the case of simple waveforms, with more complex waveforms it becomes only a convenient approximation.

To make a Fourier analysis of a signal the components of that signal have to be analysed over a period of time such that complete cycles of the lowest frequency can occur. Thus we take consideration of the time domain.

Where steady-state signals are concerned the time domain is not normally considered, as the signal is of a continuous unchanging nature between any two periods. If the "time window". during which the signal is Fourier analysed, is reduced progressively it becomes apparent that an accurate spectral analysis becomes less possible. It can then be seen that the important characteristics of the signal are amplitude and rate of change. In other words its envelope.

What Do We Want?

What is required is the amplification of an audio waveform in such a way that the ear can detect no degradation.

Let us consider ways in which such degradation can occur. The waveform envelope can be distorted by amplitude changes of any component or by changes in the phase relationship of the component harmonics.

Experimental work has established that changes in the relative amplitudes of the harmonic structure of the waveform are readily detectable.

Other work has shown that the qualitative characteristics of a complex sound depend upon the phase relationships of the component harmonics. It would seem that as a phase difference must be interpreted as a time delay between the component parts of the signal, then a sufficient phase shift in a system must eventually become audible as these component parts are moved in respect to each other in time. In practice large phase shifts are very audible and indeed telephone lines are often phase and delay corrected to render speech intelligible. However, establishing an acceptable degree of phase shift is extremely difficult.

Following the arrival of "linear phase" loudspeakers great controversy has raged over whether phase shifts affect sound quality. A study of the experimental work performed to date shows that

1. It seems to be very difficult to replicate someone else's experiment.
2. It seems, on balance, that where recurrent waveforms (steady state) such as sine-waves (and instruments producing a "continuous" although decaying tone) are concerned; then quite large phase shifts, between the extremes of the frequency band, have no identifiable effect on sound quality. However, a phase non-linerarity on the leading edge of a true transient appears to be audibly more perceptible, particularly on speech and percussive sounds.

Bandwidth and TID

Transient signals cause many problems of which phase linearity is but one. Other problems include; instability and ringing, clipping, slew-rate limiting, and transient intermodulation distortion.

Transient intermodulation distortion (TID or TIM) is much in vogue but is often misunderstood. TID most
commonly occurs when an amplifier, with overall negative feedback over several stages, is driven by a large enough signal whose frequency (or equivalent rise time) is above the open loop bandwidth of that amplifier.

Because the feedback loop is fed from the output of the amplifier, there is no effective feedback until signal current flows at the output, i.e. during the open-loop rise time of the amplifier.

Very large signals occurring in the intermediate stages of the amplifier oause those stages to distort or even to clip. With some amplifiers this clipping can cause the stage to latch-up for a time until the operating conditions restabilise. Thus not only is the leading edge of the signal severely distorted - in some cases it is removed completely.

TID is therefore a form of overloading that is dependent upon both amplitude and time. It is audibly (but at a higher signal level) similar to cross-over distortion, as both effects cause phase and amplitude modulation of the signal due to momentary change in gain. (Remember that at the crossover point zero, there is no current flow in the output stage and hence no feedback current and so the amplifier is momentarily open-loop.)

Circuit diagram of a tvoical amplifier circuit which employs lag compensation techniques - provided by C.

Lead compensation: components R and C provide the time constant.

Ultra-Fidelity Amplifiers -design principles

Making Big Bands

TID can be avoided by designing an amplifier whose openloop bandwidth is greater than the highest frequency of the input signal. The maximum bandwidth can then be defined at the input by a passive RC filter. Thus if we decide upon a maximum signal bandwidth of 20 kHz than our filter will limit the signal waveform rise-time to $\mathrm{T}=0.35$.

$$
\begin{aligned}
& \mathrm{T}=\frac{0.35}{20 \mathrm{kHz}} \\
& \text { i.e. } \quad 17.5 \mu \mathrm{~s} .
\end{aligned}
$$

Third method of avoiding TID. Each stage in the design has a wider bandwidth than the preceding one.

This amplifier design has a limited open loop bandwidth and the THD will rise with frequency.

Contrast this with the graph above. The bandwidth here is much wider, resulting in a more linear THD response.
Our amplifier's open-loop bandwidth should be designed to be, say, 23 kHz , giving it an open-loop rise-time of $15 \mu \mathrm{~s}$ and freedom from TID. If however, in the interests of a good specification, and possibly better reproduction, we decide upon a close-loop bandwidth of 100 kHz (i.e. a rise time of $3.5 \mu \mathrm{~s}$) then our amplifier will need an open-loop bandwidth of greater than 100 kHz to maintain freedom from TID. In a power amplifier such performance is not easy to obtain. Fast power transistors are notoriously easy to blow-up and are expensive. The common form of lag compensation (used where the open-loop bandwidth is restricted) has to be replaced by lead compensation:-

Another technique is an extension of the first in that the
preceeding stage of the power-amplifier is designed to have a lower open-loop band width than the next.

Important or Not?

Many people now consider that TID is unimportant or even that it doesn't exist. This is partly because it is very difficult to measure and only readily visible (in the laboratory) in the "clipping" state. To reach this stage with most amplifiers (but not TID - free designs) there is a requirement for either fast rise-time or higher signal levels or both, - conditions that are unlikely to occur in practice. However, a large degree of non-linearity and hence bad intermodulation will still occur with more realisable input signals. Although this cannot be measured yet (how do you measure say, 5\% IM over a period of 5 milliseconds?) it can be predicted mathematically and, just as important, heard. Amplifiers free of TID have a very "open" quality with accuracy of depth.

An amplifier designed with a wide open-loop bandwidth, for low TID, often has other more tangible benefits. The high frequency THD is usually no higher than at the mid-point; in stark contrast to more traditional designs. This is because gain is still available at high frequencies for negative feedback. Such amplifiers also usually have much higher slew-rate.

Slew

Slew-rate defines the speed with which the amplifier can deliver output voltage to the load. For example, if an amplifier has a maximum output of 100 volts p / p and a rise-time of $100 \mu \mathrm{~s}$, then the amplifier, if it were perfect, should have an output of about 80 volts after $10 \mu \mathrm{~s}$ in response to a suitable square wave input. In other words the output voltage would have risen at the rate of $8 \mathrm{~V} / \mu \mathrm{s}$. However, amplifiers do not generally respond to large changes as fast as their small signal characteristics predict, for circuit and transistor capacitances can be charged only as fast as their driving circuits allow.

In its simplest form the slew-rate of an amplifier defines how fast the output voltage can change for large signal conditions, and it is normally quoted in volts per micro second. The maximum slew-rate of an amplifier is usually limited by the slowest stage in its circuit.

That stage will have an operating current T (as set in the design) and a capacitance C (usually a frequency compensation capacitor)

$$
\text { Slew } \cdot \text { Rate }=\frac{T}{C}
$$

Thus if a transistor stage has a standing current of $100 \mu \mathrm{~A}$ and is compensated by a 43 pF capacitor then its slew-rate will be

$$
\begin{aligned}
& \frac{100}{33} \\
& \text { i.e. } 3 \vee / \mu \mathrm{s}
\end{aligned}
$$

Depending upon the design some circuits have a different slew-rate depending upon whether their output is negativegoing or positive-going. Slew limiting also defines the fullpower bandwidth; a figure more commonly quoted by manufacturers.

$$
\begin{array}{cl}
f p= & S R\left(10^{6}\right)
\end{array} \quad E \text { op = peak output swing in volts } .
$$

Thus in a 100 watt (into 8 ohms) amplifier having fullpower bandwidth of 20 kHz the required minimum slew-

rate would be about $5 \mathrm{~V} / \mu \mathrm{s}$. This is, however, the absolute minimum figure and experience suggests that such an amplifier would have a hard, gritty high-frequency sound. Such an amplifier should have a slew-rate greater than $20 \mathrm{~V} / \mu \mathrm{s}$ to be certain of avoiding the increase in distortion caused by the gradual onset of slew-limiting.

Unfortunately the higher the power output of the amplifier the greater the required slew-rate as more volts swing at the output in the same period of time and so as our 100 W amp needs $20 \mathrm{~V} / \mu \mathrm{s}$ an otherwise identical 50 W amp needs $14 \mathrm{~V} / \mu \mathrm{s}$ and a 20 W amp needs only $9 \mathrm{~V} / \mu \mathrm{s}$. But these forms of distortion tend to give subtle audible effects compared to the most common amplifier problem - that of clipping.

Clipping

Clipping occurs when an amplifier is overloaded by high level signal peaks. Such peaks occur frequently in much music material and so the manner in which the amplifier clips determines its audibility. A soft, clipping effect where the distortion rises gradually (typical of valve amplifier circuits) is audibly preferable to the hard clipping typical of transistor circuits.

Worse still, some amplifiers tend to suffer saturation effects on clipping and take a time to recover; thus artificially extending the length of time the signal is clipped. The use of overall negative feedback to reduce distortion unfortunately makes things worse. Overall feedback effectively linearises the clipping - the distortion changes from 0.01% (say) to 10%, and quite suddenly too.

Design Procedure

We have covered just a few of the requirements a designer must consider when working upon the design of poweramplifiers. There are many more to be considered to even
rough out a design specification before the circuit hardware is considered. The following sequence is mandatory:

1. What parameters are important to prevent audible degradation of the signal?
2. Detail a performance specification that meets the requirements of (1).
3. Decide upon the circuit technology necessary; Bipolar: MOSFET; Valve; Class A; Class B; Switching; etc; etc.
4. Undertake a development programme to produce a prototype.

A comparison of the limiting characteristics - in general - of both transistor and valve amplifier types. There is a body of opinion which holds these curves to be the whole truth as to why valve amplifiers are preferred by manv musicians.

At this point the designer has to accept that it's a real world and that his performance specification cannot be achieved in a way that is acceptable to accountants, salesmen, customers, customer's wives or whoever else is around. Trade-offs are necessary and much of the "art" is in deciding which defects and degradations are more acceptable than others.

As an illustration of the changes in design approach over the years we will briefly illustrate three designs for which the author has been responsible:

1. Cambridge Audio P60 (P80)
2. Lecson AP3 Mk II
3. Mission Electronics Voltage Amplifier

Ultra-Fidelity Amplifiers -design principles

Illustrating the load line conditions for output stages.

The P60 is capable of good mid-band performance (THD 0.01% at 1 kHz is 30 W) but its high frequency distortion is poor because of the limited open-loop bandwidth. Generally this amplifier performs well at low and moderate levels but at high levels its sound quality becomes hard and aggressive. Some improvements to this circuit can be quite simply made as follows:

1. A resistor is inserted between Q 10 collector and the negative rail to give better balance between Q 8 and Q 10 .
2. A cascade transistor is fitted to $\mathbf{Q 1 3}$ collector to reduce "early effect" distortion due to the collector-base capacitance of Q13.
3. An emitter resistor is fitted to Q13 to provide local negative feedback.

The Lecson AP3 Mk II incorporates much of the thinking in this article and is representative of the latest types of high performance amplifiers. It is a directly-coupled Class B design using a fully complementary output stage of series connected transistors and gives a power output of around 150 watts per channel.

The New Mission Voltage Amplifier represents an attempt to produce an amplifier that performs well irrespective of load. The circuits cannot be described at this stage as they are the subject of patent applications. However, a brief description will illustrate the philosophy behind the design.

The casing contains two completely separate mono amplifiers, each with its own power supply. A separate module carries the dc-voltage offset protection circuits; the delay switched-on circuits; and the thermal protection

Showing how some of the improvements mentioned can be added to the P60 basic design.

Full circuir diagram of the Cambridge P60 power amplifier design.

HOW IT WORKS-Cambridge P60

The P60 power amplifier is of a conventional design but with care being taken to optimise each stage. Q8 and Q10 form a long-tailed pair with Q9 as their emitter current source. Q8 and Q10 must be very closely matched for minimumDCoffset and for maximum common-mode rejection to avoid H. T. ripple appearing at the output. The next stage is the Q13 voltage amplifier which is loaded by a current source (Q12) instead of the more common "bootstrap. ped" resistors. Note that Q13 is buffered
from the long-tail pair by an emitter follower (Q11) to prevent any loading of that stage worsening the distortion characteristics.

Capacitor C33 gives lag compensation which defines the dominant pole of the amplifiers. The open-loop bandwidth is quite high (for this type of circuit) at 12 kHz but none the less this amplifier is prone to TID effects. The protection circuit is very unusual in that the output is limited by an FET (Q7), Q19 and Q20 each form conven-
tional V-I summing circuits which monitor the loading on the output stage.
If either Q19 or Q20 turns-on, the gate of the FET Q7 (normally biased-off by R54 to the negative HT) is biased positive and it starts to turn-on. It then acts as a potential divider with R52 and thus attenuates the audio signal. This protection only turns on at the equivalent of 50 W into 2 Ohms load and when it turns on it only adds moderate distortion (0.2% typically) as distinct from clipping.
circuits. Particular attention has been paid in the design to achieving:

1. Low distortion with a very low order of overall feedback
2. Wide open-loop bandwidth with an excellent slewing rate
3. Minimum time and phase distortion
4. A high transient power capability with virtual freedom from clipping effects.

The output stages have a very high current capability but have no protection circuits, the output transistors being designed to sink the full energy of the power-supply into the load. A patented form of voltage feed to this stage gives the amplifier a short term power delivery capability of about 600 watts (compared to the rated 150 watts 8 ohms). This represents a 6 dB increase in power availability over the rated figure. The voltage amplifing stages are designed to clip softly and this combined with the low-overall feedback gives overload characteristics similar to those of an equivalent valve amplifier.

Conclusion

This feature has discussed just some aspects of modern audio amplifier design. At present much attention is still given to whether an amplifier is designed around bipolar transistors, FETs, valves, or switching transistors. However designers are beginning to appreciate that the major stumbling block is not designing a circuit using any of these technologies but in deciding upon what is the performance specification required that will give faithful reproduction of the sound source. Until this problem is solved there will continue to be an element of uncertainty in amplifier design.

The Mission Amplifier referred to in this article is due for release very soon now, and we will be taking a closer and more detailed look at this design - results as soon as possible in ETI.

Full circuit diagram for the Lecson AP3 power amplifier design, producing around 150 W .

HOW IT WORKS-Lecson AP3

Transistors Q1 and Q2 form a long-tailed pair differential amplifier with Q3 as the emitter current source. Local feedback is applied in the form of emitter resistors R5 and R6. The base of Q2, instead of being grounded, is connected to a potential divider RV1 which permits the DC offset at the output to be set to zero. The input signal to Q1 is passed through a low-pass filter (R1, C2) which sets the bandwidth to 22 kHz (i.e. below the open loop band width for no TID effects). The bi-phase outputs of the long-tail pair feed a second differential amplifier Q5 and Q7. Transistor Q5 has a constant current load (Q8) whilst is terminated by a current mirror (Q9 and Q10). Transistor Q10 will always deliver the same current as transistor Q9 hence the term "Current Mirror" and the excellent symmetry and balance this stage achieves. Functionally, however, Q10 can be considered as an active load whilst Q7 is a voltage amplifier from whose collector the drive to the output stage is taken. Note that Q5 and Q7 both have local emitter feedback (R17, R24) and that both are buffered from the long-tail pair (Q4 and Q6 emitter followers).

Transistors Q12, Q13, Q16 and Q17 each form conventional Darlington emitter follower stages. Each stage is series connected to a further power transistor (Q14, Q15 and Q18, Q19 respectively) which is permanently biased ON. Their emitter potentials are determined by the ratio of the base potential dividers. This ratio was chosen such that Q13 and Q15 each has half the supply rail across them.
The whole amplifier is in the inverting mode with overall shunt feedback through R4 and C3.

This amplifier is quite fast having an open-loop bandwidth of about 27 kHz . The circuit is stable without the usual compensation capacitors within the loop. THD is low being typically (at 100 W into 8 Ohms) 0.004% at 1 kHz and 0.02% at 10 kHz . The HF distortion can be further improved by selection of transistor Q7 for a device with a low cullector-base capacitance.

No conventional protection circuits are used as extremely high power transistors are fitted and these can survive a short-circuit condition in the time taken for the power supply to shut down.

Not in age,for our origins go back further than that, but in Transformer Voltage Taps.

Yes 21 Voltage Taps!

Just think of the advantages offered by a single transformer that provides a choice of 21 different output voltages including 3 centre tapped configurations.
FOR EXAMPLE: TRANSFORMER No. 2155A VOLTAGES AVAILABLE
1.0, 1.2 2.0, 2.2, 2.4, 3.1, 3.2, 3.5, 4.1, 5.1, 5.5, $6.3,7.5,8.5,8.7,9.5,12.6,15.0$ Volts 2.0 V CT, 12.6 V CT, 15 V CT

But that's not all!

With 5 such transformers in our range there is a choice of output currents as well.

And just in the way of a bonus!

We are able to offer these new transformers for a price considerably lower than comparable single tapped units while still maintaining the high standards of quality for which we are renowned.

Like to know more?

Just ring your local Arlec branch.

What do we call them?
ARLEC
MULTI-TAP TRANSFORMERS

A+R ELECTRONICS PTY. LTD.
 a member of the a ta.soanah electronics ghoup

30 Lexton Road. Box Hill.Vic. 3128 . Australifa
Telex:32286.

SALES OFFICES PHONES VICTORIA: 89066
N.S.W.: 780281 S. AUST.: 516981 QUEENSLAND: 525421

SEMCON MICROCOMPUTERS PTY. LTD.
ATTENTION

MOTOROLA D2
If you want a functional, expandable system, you need 8K BYTE, STATIC MEMORY CARD
Australian Designed and Built

- Fast Access 350 ns Chips (2102LF)
- Low Cursent - 1.3 Amps
- Motorola Bus Compatible
- Write Protect
- Parity Generation/Checking available
- Professional Finish
- Plated through Holes
- $\$ 275$ assembled board
- $\$ 219$ in kit form
- 298 Assembled with Parity
* \$110 for 8k kit without rams - Built Boards Guaranteed 12 months

CARD CAGE/BACKPLANE:

- Designed for Motorola Cards
- Anodised Aluminium chassis
- Sturdy Construction
- Tin Plated Backplane
- Accomodates 8 cards
$\$ 74.00$
EDGE CONNECTORS -
$43 \times 2 \times 0.156^{\circ} \$ 8.50$ each
Eight for $\$ 59.00$
S100 Connectors $\$ 8.50$

SHOWROOM: 1 Chilvers Road, Thornleigh, NSW 2120 MAIL ORDER: PO Box 61, Pennant Hills, NSW 2120. PHONE: 848-0800. Add 15 percent sales tax. P\&P $\$ 1.50$

Here they are - from the small HX8-2 way to the big HX15-3 way loudspeaker system. If you've ever heard from them, you'll know you've listened to the result of superb craftsmanship in the science of sound

Model	Power	Frequency Range	Price Per Pair Kitform	Price Per Poir Assembled	Do-lt-Yourself You Save Per Pair
HX8-2W	20W RMS	$20 \mathrm{~Hz}-15 \mathrm{kHz}$	$\$ 155.00$	$\$ 195.00$	$\$ 40.00$
$\mathrm{HX10}-3 \mathrm{~W}$	20W RMS	$20 \mathrm{~Hz}-20 \mathrm{kHz}$	$\$ 210.00$	$\$ 275.00$	$\$ 65.00$
$\mathrm{HX12}-3 \mathrm{~W}$	35 W RMS	$20 \mathrm{~Hz}-22 \mathrm{kHz}$	$\$ 255.00$	$\$ 345.00$	$\$ 90.00$
$\mathrm{HX12-3WA}$	45 W RMS	$20 \mathrm{~Hz}-21 \mathrm{kHz}$	$\$ 235.00$	$\$ 345.00$	$\$ 110.00$
$\mathrm{HX15-3W}$	70 W RMS	$18 \mathrm{~Hz}-40 \mathrm{kHz}$	$\$ 365.00$	$\$ 465.00$	$\$ 100.00$

MAIL ORDER: NSW Country \& Interstate - Freight extra.
For further technical information and your nearest dealer contact Harmonix Acoustix on (02) 519-5127 or write to 29 Vincent St, Marrickville. 2204.

DEALERS - the list grows.

- HARMONIX speaker kits now available from:
- HI-FI CITY, 269 Elizabeth St, Sydney. 235-8401
- IN ELECTRONICS, Haberfield. 79-9331
- HI-FI JUNCTION, Bondi Junction. 389-4000
- TERRY'S SOUND LOUNGE, Bowral.

SUPER SPECIALS

BD $139-50 \mathrm{c}$ ea MJ2955 - 80c
BD 140 - 50c ea
2N3055 - 75c
BC 547/8/9 - 15c ea. T03 Mounting Kits - 5c ea
20555 Timers for \$5 20741 Op Amps for \$5

XLP-3-91
XLP-3-12
XLP-3-3i
\times XLR-LNE-11c
XLR-LNE-32
Weller cordless soldering iron kit model WC1000KW - includes bat teries. splder, 4 interchangeable tips battery charger and instructions for only $\$ 29.50$.

74LS191	1.20
74LS192	1.20
74LS193	1.20
74LS194	1.20
74LS195	.1.20
74LS196	1.20
74LS221	1.20
74LS253	. 1.85
74LS279	65
74LS365	80
74LS367	80
74LS368	

CMOS

4072	40
4073	40
4074	40
4076	1.85
4077	40
4078	40
4081	40
4082	. 40
4510	1.50
4511	1.50
4518	1.50
4520	1.45
4528	1.20
4555	1.20
14553	7.50
14584	1.25
74.000	40
74 CO 2.	40
$74 \mathrm{C04}$	40
$74 \mathrm{C08}$	40
74 C 10	. 40
74 C 14	1.90
$74 \mathrm{C48}$	2.55
74 C 73.	1.20
74 C 75.	1.20
74 C 76.	1.35
$74 \mathrm{C90}$.	2.25
$74 \mathrm{C93}$	2.25
74 C 175	1.85
74 C 192	2.25
74 C 193	2.25

LINEAR

VOLTAGE REGS.

FND507 CIA 1.70
FND $357 \mathrm{C} / \mathrm{C}$
1.40

FND $500 \mathrm{C} / \mathrm{C}$
1.40
.1 .50

Red LED..
Green LED Yellow LED.

DIODES

IN4148
$. .6 c-5 c / 100$
N4004
IN5625 5A 400V45c

I.C. SOCKETS

8 PIN DIL..
14 PIN DIL
16 PIN DIL
.25
30

Also in stock Multimeters, relays, veroboard, solder, solderwick, soldering irons, transformers. All components brand new by top companies. Prices current till end of October.

ROD IRVING ELECTRONICS

Shop 499, High Street, Northcote. Vic. 3070. Ph (03) 489-8131. Open Mon-Thurs 8 am - 5.30 pm, Fri $8 \mathrm{am}-7 \mathrm{pm}$. Sat 9 am - 1 pm . Mail Orders: PO Box 135, Northcote. Vic.3070. Minimum 75c post and pack. Send 30 c stamp for free condensed catalogue.

DISPLAY5
 the state of the urt

Dramatic developments are currently underway in both analogue and digital displays - ETI's special correspondent Associate Professor Peter Sydenham describes the present state of the art.

DURING the past few years digital displays have often been specified for applications where their analogue equivalents would have been more suitable. Now though, common sense is beginning to prevail. Analogue displays are gradually regaining ground as it becomes clear that they are more suitable for trend and other dynamic observations. Nevertheless many of today's analogue displays use digital techniques internally.

Rotating pointers, bar-graphs and similar analogue visual effects are now being developed for use in the automotive industry. Large-scale production prototype systems are already undergoing trials in cars. From this area of development it is logical to expect these new forms of analogue display to find their way into other applications. Now that most of the development has been completed the costs should be low. The consequence is that they will be introduced very rapidly into general use.

CHOICE OF DISPLAY

Choosing a display can be quite a task because many options exist.

Factors of key importance relate to the appearance of the display as seen by the user, reliability, ease of servicing, and power consumption.

Of particular importance is the 'price to use ${ }^{\text {. This can greatly exceed the cost }}$ price because of the costs of power supply, mounting, wiring, and possible connectors. It is also important that at least two sources of supply are available.

Another factor to consider is the special characteristics of a display. Each has some good and some bad characteristics. For example a liquid crystal display is fine where ambient light exists but needs auxilliary illumination in low light conditions. LED's on the other hand are best seen in the dark they need to be very bright to be seen in full sunlight.

It is also important to assess if the device is really fully developed. Many

Fig. 2. Comparison of the display technologies now in vogue.

		Optimum Number of Bits	
Tungsten Filaments		1.20	
Light Emitting Diodes	LED	1.30	
Cathode Ray Tubes	CRT	$10 \mathrm{~K} \cdot 250 \mathrm{~K}$	
Gas Discharge (Plasma Panels)		$30-5 \mathrm{~K}$	
AC or DC Electroluminescence	DCEL	30.3 K	
Liquid Crystal Display	LCD	5.200	
Electrochromic (liquid or solid)		5.200	
Electrophoretic		5.200	
Vacuum Flourescent	VAC.FL.	10.100	

new products reach the marketplace before they have been fully tested. Today a new solid-state product can be realised and marketed in a matter of a year but it is not possible to test it for the whole of that time. The tens of thousands of hours life that may be postulated by the manufacturer is often merely conjecture. Liquid crystal displays were one example. No user wants to be part of a test programme ... especially if he's paying for the privilege. New is not necessarily best!

The main display contenders are currently LED's, gas discharge tubes, cathode ray tubes, liquid crystals, and the fast-emerging electroluminescent panels.

The time-honoured filament lamps continue and need no further comment except to say that they are being replaced in small power displays by the more up-to-date devices.

LEDS

LED's emerged first as single element light sources of rather low brightness and in red only. Today they are available in brighter forms and of many different optical styles providing diffusing effects, wider angles of viewing and generally greater utility. Present day technology can provide 50 um square elements of which 300-600 may be integrated into a matrix. Such LEDs are available with light output sufficient for aircraft instrumentation

Fig. 3. Comparison of the cost per bit of the various display options.
(10 ${ }^{5}$ Lux) and can be made to full MIL specifications including operation over a temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

They are available in colours ranging from red (the most common and cheapest) through yellow, green, orange and violet. Blue LEDs have been made but appear to lack a large enough market to enable them to be produced at a commerically attractive price.

The reliability of LED's is variously claimed to be from 10^{4} to 10^{9} hours. There is a suggestion (based on evidence from large-scale users) that price wars have tempted makers to reduce reliability. Reject rates as high as 20% are said to be experienced by some buyers.

LED's are fast operating: typical rise times are 10.50 ns . They are offered in pcb packages, in larger metal packages suitable for sealing and in more-expensive-still ceramic packages.

The ready ease with which they can be assembled into lines, circles, matrices and other graphical forms enables them to be used in analogue displays.

LED's are not necessarily the best choice for all displays. Figure 2 compares various displays on the basis of the optimum number of bits for each alternative. It can be seen that LEDs are restricted to applications where the type of display requires only a small number of bits. Electroluminescent panels (discussed below) are more suitable where the application calls for the use of many bits.

Another factor is the cost per bit to manufacture. Figure 3 compares this variable for the various types of displays. The LED does not compare well for applications requiring over 100 bits. On this basis the CRT is way ahead. As yet
it is not even remotely matched by any solid-state technique. The CRT's main drawback is that it is bulky and fragile compared with most other types of display.

GAS DISCHARGE TUBES

Gas discharge tubes were the first displays that could reasonably be regarded as versatile. Many older readers will recollect the Dekatron counter tubes of the 1950's in which 'dots' moved circumferentially in a scale of ten. A later development incorporated grids placed behind one another in a single glass envelope in what was generally called the Nixie tube. Their main dis-

Fig. 4. Construction of dot-matrix gas-discharge display unit.

Gas discharge tubes are still, and will remain, a strong contender in the choice of a display. Figure 2 illustrates this well.

CATHODE RAY TUBES

A CRT screen of good quality and having a good linear scanning system can accomodate a display of 1000 by 1000 elements. The full range of colours is available as well as an intensity scale having perhaps 200 levels. Cost per element is very low but size and fragility go against the CRT in many applications. Eventually, as matrix manufacturing methods become more developed, the CRT's thin flat digital equivalent will become a serious rival. At present (1978) though the CRT has no rivals for displays requiring large numbers of bits.

LIQUID CRYSTAL DISPLAYS

In many ways LCD's got off to a start less worthy than they deserved. Reliability was variable: many failed rapidly whilst others did very well. Failure of an individual display within a batch could vary from almost immediate through to years.

The second generation of LCD's has shown itself to be very much better if made by more controlled procedures and with better materials. Figures such as 90000 hours to reach a 2% cumulative failure have been claimed for twistednematic LCD displays.

A key factor has been the realisation that a non-zero dc cell level rapidly degraded the cell. That restriction was originally controlled by the use of ac bias but now zero level dc working has been devised.

Initial commercial incentive came from watch manufacturers, but now researchers are seeking ways of building much larger panels - 150 mm square for example. Such large sizes pose manufacturing problems for the glass enclosing the LCD material must be flat to within a mere 10 um .

Manufacturing methods are constantly being improved. The glass front

Fig. 6. On-vehicle electroluminescent display dash panel (Smiths Industries).
seal has been greatly changed . . . that was a cause of many premature failures. Purer LCD material and improved stability with temperature and humidity have also improved.

Matrix units are being investigated but, as with all such units, connecting problems remain. Some LCD's currently being released have shift registers integrated onto the display. This trend may become common practice, for the user does not wish to connect any more than the minimum of leads from the drive circuits to the display.

In general LCD manufacturers suggest that their products are best suited for applications requiring a portable display. The current LCD's are certainly much better than the first generation and their low power consumption gives them a firm place in the display range.

ELECTROLUMINESCENT DISPLAY PANELS

Electroluminescent devices are basically just a layer of special paint between two pieces of glass.

Fig. 5. Schematic of a dcel electroluminescent display panel.

Two basic groups exists . . ac working (called acel) and dc working (called dcel). Each uses zinc sulphide, manganese-doped phosphors which radiate a yellow-orange light at 585 nm wavelength. The ac cells operate in a capacitive mode, the dc units in a resistive mode. Figure 5 shows the schematic of a dcel unit.

Manufacturing processes are mainly vacuum deposition using photolithographic procedures for masking. This method offers great prospects for the future. The British Post Office for example is considering 1250 character displays for phone call costing. Smiths Industries have vehicle instrument panels in pilot scale production. (Figure 6 shows a recent panel of this type).

As always, addressing the display is a problem. Multiplexing methods have been used to reduce lead counts from 257 (for a 256 unit) down to only 32. The displays can be used in a continuous mode or they can be pulsed. Pulse durations of around 0.5% duty cycle are typical using 5-15 microsecond pulses.

Around 120 volts is needed to drive the display present day units require 50 mW per character. A prototype unit using CMOS circuitry consumes only two watts for a 480 character display.

This information was compiled from lectures delivered at an Institution of Electrical Engineers day meeting held in London in January 1978. No full Proceedings were published but the five speakers would be able to provide further information if contacted. Details can be obtained from the Conference Secretary, IEE, Savoy Place, London. Smiths Industries kindly provided most of the illustrations used here.

WIDEST RANGE OF COMPONENTS RETAIL/MAIL ORDER SERVICE

AUGUST 15-Applied Technology has become a franchised dealer for the rapidly expanding range of SILICON VALLEY components.
The move is a reciprocal one whereby Applied Technology will distribute the full range of devices available from Silicon Valley and in return Silicon Valley will shortly offer key microprocessor products from Applied Technology. Now read on for more hot news.

MICROPROCESSORS		
8080A \$15.75 S	\$15.75 SC/MP II	16.7
$6800 \quad 19.50$	$19.50 \quad 280$	
$2650 \quad 26.50$	26.50	
SUPPORT DEVICES		
8228 system controller/bus driver 16.50		
3881280 parallel l/O controller 15.50		
6810128 byte RAM 5.75		
6820 P1A ${ }^{\circ}$. 13.75		
6860600 bps modem 13.75		
8 8797/98 bus drivers ${ }^{1.95}$		
DM8554 quad switch debouncer 2.25		
ETC		
2513 character generator (upper case) 5.75		
1602 UART 5740 keyboard encoder 19.75		
$2114 \mathrm{IK} \times 4$ static RAM $\ldots14 .25$		
MICROPROCESSOR CRYSTALS		
$1 \mathrm{Mc} / \mathrm{s} \ldots . . . \$ 7.9510 \mathrm{Mc} / \mathrm{s}$. . . $\$ 7.95$		
$2 \mathrm{Mc} / \mathrm{s} \cdot7 .9512$		
$4 \mathrm{Mc} / \mathrm{s} \ldots . .7 .9518$		
$4.43 \mathrm{Mc} / \mathrm{s}$. . 4.2520		
$5 \mathrm{Mc} / \mathrm{s}$. . . . 7.95		
SOCKETS		
8 pin solder . . 0.25	er . . 0.2522 pin solder	0.80
14 pin solder . . 0.30	er . 0.3024 pin solder	0.80
16 pin solder . 0.35	er . 0.3528 pin solder	0.95
18 pin solder . . 0.45	er . . 0.4540 pin solder	1.00

2650 SOFTWARE

2650 Programming Course: Written by David Brown this Introductory course is ldeal for beginners with this exciting micro. The course explains in detall the operation of PIPBUG monit or and machine language programs and gives easily
understood program examples ..
T.C.T. BASIC: Now avallable this powerful $4 K$ interpreter written for any 2650 with PIPBUG coresident. Instructions include: RUN, LIST, SIZE, NEW. DRINP, GOTO, GOSUB, RETURN, IF, FIX, DO... UNTIL, FOR. © Cassette tape and INPUT, STOP. Requires a minimum system with SK RAN. Cassette.. $\$ 29.50$ full user manual
GAMESPAK 1: A fascinating collection of computer games for the 2650 includ Ing: ASTROTREK, TARGET SHOOT, NIM, MASTERMIND GUESSING GAME, Ing: ASTROTREK, SIMPLE TEXT EDITOR, ROTATE, POKER MACHINE, CHOMP, HANGMAN. Cassette with full instructions
GAMES PAK 2: More fun with games such as: FUNNY FARM RACES, SOIITAIRE BIORYTHM RUSSIAN ROULETTE, LUNAR LANDER GRAPHIC HANGMAN, MODIFIED MASTERMIND. Cassette with rules and insturctions
UTILITV PAK 1: A useful set of routines to assist serious users to develop their own programs qulckly. Tape includes: BLOCK MOVE, BLOCK SEARCH, LIST, DISSASSEMBLER, REASSEMBLER LIST AND LOAD, \$12.50 BINARY LOAD. Cars ing has been established for those 2650 USERS GROUP: A strong users group has been establisned for of the serlous users of the 2650. Membership fee covers comprenensive istings orded rapidly expanding software base as well as an update mailng service. Prinal costs. cassettes of programs are also available to registered members at no......................... 2650 Membership fee

POST \& PACK. COMPONENTS $\$ 2.00$
POSTAL ADDRESS: P.O. Box 355, Hornsby, 2077.
SHOWROOM: 109-111 Hunter St., Hornsby 2077
(9-5 Monday to Sat.)
PHONE 4764758 - 4763759
PRICES SUBJECT TO CHANGE AFTER SEPT. 30 th, 1978

16K RAM

Z-80A 4 MHz fast - no wait states. If you have a slower CPU now, this board will loaf along and it WON'T be obsolete when you upgrade!

450 nsec. chips- $\$ 399$

Fully static is best - Texas Instruments TMS 4044 chips - no clocks - no refresh - DMA compatible
Easy on your power supply - 8 V at 1.7A nominal
Each 4k block addressable to any 4k slot, separately protected by DIP switches, and supplied through its own regulator. Jumpers to customize to any known S-100 system.
First quality factory parts - fully socketed and buffered - quality plated-through PCB with gold plated edge fingers, silk screened and masked both sides - busbars for lower noise

GUARANTEED FOR ONE FULL YEAR
COMING SOON
Centaur 2000 disc based S-100 business system.
Post, pacining and insurance included in price - add 15 per cent sales tax. Dealer Inquiries invited - generous discounts avallable.
 WINNELLIE, N.T. 5789.

Just some of the books from the biggest range of radio and electronics books In Australia. If the book you require is not listed below, It can be ordered from us.

NEW - NEW - NEW Latest editions of some of the most popular books on the subject:
Just in - Now A.R.R.L. Handbook 1978 Edition.
512 .95
512 .95
Just in - World Radio TV Handbook 1978.
512 .95
512 .95
A.S.G.B. Handbook (New Edition) Volume 1 \$21.85
A.S.G.B. Handbook (Now Edition) Volume 2
$\$ 18.90$
Reference Data for Radio Engineers (New Ed $\$ 40.50$
Radio Handbook (William Orr) 20th Edition $\$ 26.50$
How to Build Proximity Deteciors and Metal Locators (John Porter Shieids) $\$ 6.35$
An Introduction to Microcomputers - Volume 1 - Basic Concepts (Adam 0An Introduction to Microcomputers - Volume 2 - (New Eniargec Edition)- Some Rea! Products (Adam Osborne)
6800 programming for Logic Design (Adam Osborne) $\$ 21.55$
8080 Programming for Logic Design (Adam Osborna) $\$ 12.55$
Woather Satelite Handbook $\$ 12.55$
VHF Antonna Handbook 57.80
The 73 Test Equipment Library - Volume 1 - Component Testers $\$ 7.80$
The 73 Test Equipment Library - Volume 2 - Audlo Frequency Testers 57.80
The 73 Test Equipment Library - Volume 3 - Radio Frequency Testers $\$ 7.80$

. $\$ 7.80$The 73 Test Equipment Librany - Volume 4 - IC Test Equipment.
111 Digital and Linear IC Projects (Don Tuine)57.80
Unique IC OP-AMP Applications (Walter C. Jung). $\$ 7.00$ITL Cop-AMP ookbook (Waiter C. Jung)TIL Cookbook (Lancaster)TV Typewriter Cookbook (LancasierRTL Cookbook (Lancaster)CMOS Cookbook (Lancaster) 1st Eotion 1977Active Fitter Cookbook (Lancaster).iC Timer Cookbook (Jung)Transistor Specifications Manual - 8th EditionTransistor Substitution Handbook - Now EditionInternational Transistor Seiector (T. D. Towers)
Master Tube Substinution Handboon (Tab Books)
Ausiralian Electrical Wiring Thoory and Practice (Patheoridge \& Willians)
Electronic Compononts and Materials (Philips).. $\$ 3.75$
American Radio Relay League Publicatlons:
Hints and Kinks for the Radio Amateur
The Radio Amateur's VHF Manual
A.R.R.L. Antenna Handoook.
The Radio Amateur's License Manu
The Radio Amateur's License Ma
A Course in Radio Fundamentals
Speciaizeo Communications Techniques for the Radio Amateur
FM 8 Repeater for the Aadio Amateur.
Single Sideband for the Radio Amateur
Ham Radio Operating Guide
Electronics Data Book
Solid State Dosign for the Radio Amateur
Learning to Work with Imeograted Circuits.
Getting to Know Oscar from the Ground Up
$\$ 13.50$
. $\$ 7.20$

Mlcrocomputers/Microprocessors Books:
Programming Microprocessors (M. W. McMurran) ...
Mieroprocessors: Technology. Architeecure and ADolications (Danie R M............. $\$ 9.75$
Mieroprocessors (Electronics Book Series) Hardcover (Daniel R. McGlynn).... $\$ 18.80$
Microprocessors (Electronics Book Series) Hardover.
and Application (Hiliburn \& Julion) Hardware, Sottware
Minicomputer Systoms: Sinuerure
Microcomputer Primer (Wancture implomentation and Application (G. Wotuman) Mnicomputers for Enor (Wante of Pardee)
How to Buy and Use Minicomputers and 1 -(G. Korn)

Microprocessing/Microprogramming Handbook (8. Ward)
Handbook (B. Ward)
Howard W. Sams Publicatlons:
TV Servicing Guide - Arranged by Trouble Symploms
(Lestie D. Deane \& Cavin C. Young, Jr.).
transistor Furtar Ampifitier Handbook (Jack Darr).
$\$ 6.50$
ransistor Fundamentals - A Programmed Learning Course Volume I-................. \$10.20
and Circult Prindiples (Robent J. Brte) .. 57.25
Transistor Fundamentals - A Programmed Learning Course Volume 2 - Basic Transistor
(Circuits Charles Pike)
Transistor Fundamentals - A Programmed Learning Course Volume 3 - Electronic
Equipmemt Circuits (Martin Gerston)
Equipment Circuins (Martin Gersten) ...
Special Circuits (Lowis Schwertzer \& Reginald H. Peniston) Vorume 4 - Digital and
Other TItIes:
Colour Television Theory (Hutson)
The Oscilloscope (G. Zwick).
Radio Valve (G. 2wick) .. $\$ 10.00$
MOS Digital IC's (G, Flynn)
MOS Dipital IC's (G. Flynn)
58.25

Wind/Solar Eneroy - For Radio Communications and Low Power Electronic/Eiectric
Applications (E. Noll)
Applications (E. Noil)
Sound Systern Enginoering (Don \& Carolyn Davis)
$\begin{array}{r}\mathrm{c} \\ \mathbf{8} \\ \mathbf{\$ 1 0 . 7 5} \\ \mathbf{\$ 2 6} \\ \hline\end{array}$
Servicing with the Oscilloscope - 2nd Edition (Gordon J. King …..................... $\$ 26.95$
Slow Scan Television Handbook (Miller \& Ta (Gart)
73 Dipoie and Long-Wire Antennas (Edward Ma Noli)

For Mall Orders please add: $\$ 1.10$ Local $\$ 1.75$ Intersiat... $\$ 6.75$
 McGILL'S AUTHORISED NEWSAGENCY PTY. LTD.
 187 Elizabeth Street, Melboume. Phone: 60-1475-6-7

Prices Sublect to Ateration

The CENTRAL DATA 2650 is designed for you.

 Get into microprocessors with this fully expandable system. Buy in kit form or assembled, the choice is yours. But before purchasing a system, check our range below.The Central Data 2650 Computer Board system has been carefully designed and built with you in mind. We've also software and memory to 90 with the 2650 so that you'll have a complete system. You deserve quality equipment, and we've built it for you. Take a look at the 2650 board features and see for yourself.

- a 2650 microprocessor
- an 80 character by 16 line dlsplay
- a 300 Baud cassette interface
- a powerful $1 K$ Supervisor Program
- Two parallel input ports and one bit settable output port
- 2048 bytes of read-write memory for the video display and your programs - expands to S-100 bus - low price of $\$ 356.40$

The 2650 board comes assembled, tested and ready to plug in. The price includes a Signetics 2650 Microprocessor Manual and a Computer System Manual from Central Data. We offer the Editor/Assembler and 8 K Basic software packages for the 2650 system, and our S-100 24K memory board allows full expansion of the system (16K and 32K memory boards are also available). Each software package costs only $\$ 30$. The 24 K memory board is $\$ 480.00$. All software comes with a cassette tape and a program listing.
With all these features you can't afford to
pass up the Central Data 2650 system.
PLEASE BANKCARD MY ORDER.
My Bankcard No. is
My signature Is:

PLEASE SEND ME THE FOLLOWING PRODUCT LINES:

A. 2650 Computer Board System Assembled $\$ 356.40$	
B. S100 Extender Board $\$ 133.65$
C. 16 K R.A.M. Board...	. 358.00
D. 24K R.A.M. Board	480.00
E. 32 K R.A.M. Board.	600.00
F. Floppy Disc with Twin Drives	1278.00
KITS	
A. 2650 Computer Board System 248.00	
B. S100 Bus Extander Kit	118.85
SOFTwARE	
A. Editor/Assembler	
B. 8K Basic ... 30.00	
C. De Bug ...30. 30.00	
E. Exsembly Language Pack (inc. De Bug)45.4.4	
PARTS	
A. 2650 I/C Chip ${ }^{\text {a }}$	
B. 3624-4 Standard Prooram	23.04
C. 3624-4 Unprogrammedt....................... 19.50	
D. 2650 Computer System Circuit Board15. 15.00	
E. S100 Circuit Board .. 54.00	
F. S100 Cables...	40.00
G. Keyboard 1 ASCII Central Data	
H. Keyboard 2 ... 138.00	
I. Xtal 14.192640 for above	53.00
	12.03

356.40
C. 16 K R.A.M. Board 133.65
. 24 R.A.M. Board 480.00
F. Floppy Disc with Twin Drives .. 600.00
kirs
248.00
B. S100 Bus Extander Kit.. 118.85

SOFrware

A. EX Basic

Do Bug
D. Assembly Language Pack (inc. De Bug) ..

Ext
8. 3624-4 Standard Program -...23.04
C. 3624-4 Unprogrammed .. 15.00
E. S100 Circuit Berd Circuit Board .. 54.00
F. S100 Cuble Board 40.00
G. Keyboard 1 ASClI Central Data
138.00
H. Koyboard 2
53.00
12.03

ROD IRVING ELECTRONICS

Shop 499, High Street, Northcote. Vic. 3070. Ph (03) 489-8131. Open Mon-Thurs 8 am - 5.30 pm, Fri
$8 \mathrm{am}-7$ pm. Sat 9 am -1 pm. Mail Orders: PO Box 135, Northcote. Vic. 3070 .
Send SAE for free condensed catalogue.

Project 641

5100 PRIIITER

Our most ambitious project yet for the computer hobbyist - low cost hard copy!

WHILE THE COST of the large-scale integrated electronics built into computers has dropped, that of the mechanical peripheral devices has not followed this trend. Most printers cost several hundreds, if not thousands, of dollars, so when Philips showed us a new mechanism which costs around \$70 we were more than interested.

You rarely get something for nothing and this printer is no exception - it cannot do everything more sophist:cated types can. It uses a 60 mm wide paper which allows 32 characters per line, and the paper is a special metallized type. However it is still a very useful printer, especially for the hobbyist who doesn't have a grand to spare.

Design Features

As we seem to have standardised on the S100 bus this was the obvious choice for mechanical construction and electrical interfacing. Philips do offer an interface for the printer; however it requires the computer to be dedicated to it during the print cycle. The computer has to present and hold each character in sequence as requested by the printer. This involves a fairly lengthy program (124 steps for the MEK6800D2) as well as tying up the processor.

We therefore chose a different approach using a dedicated memory on the interface to store the characters which can be entered at any speed (up to approximately $5 \mu \mathrm{~s}$ apart) until either 128 characters (the limit of the memory) or a carriage return has been transmitted. At this point the print cycle starts and no further action is required from the processor. We initially tested the unit using only a keyboard, entering data manually with the carriage return initiating printing.

SPECIFICATION - ETI 641

Print format	7×5 dot matrix
Number of different characters	127
Number of characters per line	32
Printing speed	2 lines per second
Character height	2.4 mm
Interface format	S100 bus compatible
Data entry time	$5 \mu \mathrm{~s}$ per character
Character storage capability	128
Power supply	+16 V @ 100 mA
motor stopped	+8 V @ 350 mA
	-16 V @ 80 mA
	+16 V @ 200 mA
motor running	$+8 \mathrm{~V} @ 350 \mathrm{~mA}$
	$-16 \mathrm{~V} @ 180 \mathrm{~mA}$
Printer mechanism	EUY-10E023LE
	Philips)
Paper	EUY

Project 641

Fig. 1a. The circuit diagram of the pickup coil and reed switch buffer.

Fig. 1d. The motor drive interface.

Fig. 16. The -24 volt power supply.

Fig. 1c. The circuit of the head drive. Although only one channel is shown there are 7 identical circuits.

Fig. 1e. The main power supply.

SOUT - 450

Fig. 1f. The main logic diagram.

Fig. 1g. The circuit of the auxillary memory which can be used
to store some of your software.

Pre-programmed EPROMs containing the standard character set listed in this article are available from Romtech Pty Ltd, P.O. Box 446, Campbelltown 2560 for $\$ 15.00$ including sales tax $+\$ 2.00$ for postage and packing.

The printed circuit board patterns for this project were too large to fit in the magazine, so, as for the ETI 640 VDU, they will be available from us on receipt of a large stamped self-addressed envelope. The address to write to is Printer PCBs, Electronics Today, 15 Boundary Street, Rushcutters Bay, NSW 2011.

HOW IT WORKS - ETI 641

Before starting an explanation of the electronics we will give a description of the printer used. It has a 24 Vde motor which drives both the paper feed and the head drive. The head is simply a set of seven fine contacts arranged in a vertical line and is moved across the paper from left to right. The 'paper' is metallized with a thin coating of aluminium, and by applying a voltage pulse between one of the head contacts and the paper the metallization is burnt off at that point. By applying pulses to each of the seven heads in the correct sequence as the head moves across the paper characters and words can be formed in a 5×7 dot matrix. The pulse required is -24 V for $240-480 \mu \mathrm{~s}$ with a peak current of around 3 A per head.

At the end of the left to right scan of the head it returns quickly to the left while advancing the paper feed. The head is lifted off the paper on the return pass.

Also in the printer mechanism is a toothed wheel and pickup coil which gives an ac output of about 1 V which is used to synchronise the printing, and a reed switch which closes on the left to right passage of the print head. This is used to indicate the start of the line when printing.

The Electronics

The circuit is designed to operate on the S100 bus, and a proportion of the electronics forms an interface to the bus. The principle of operation of the unit is to present the data representing the first character to an 1/O port along with the S100 timing signals to tell the printer circuitry to accept the character, and then repeat this process for up to 128 characters. No characters are printed until 128 characters have been output to the printer or until it recognises a carriage return. Printing starts immediately either of these events occurs and during printing a busy signal is available on the $1 / 0$ port as no data can be entered while printing is in progress.

The $\mathbf{S 1 0 0}$ bus has available +8 V and $\pm 16 \mathrm{~V}$ unregulated dc supplies, and from these we derive, using three-terminal regulators, both positive and negative 5 V and 12 V supplies. Also required for the printer is -24 V , and we derive this from the $\pm 16 \mathrm{~V}$ supply using a diode pump type circuit. This consists of ICl/4 which is connected as a square wave oscillator running at 400 Hz . Its output drives the transistor buffer stage Q22 - Q25 the output of which is a square wave of 32 V p-p. The capacitors C7 and C8, and the diodes D2 and D3 rectify this to give a
negative voltage which if not limited would reach -30 V . However $\mathrm{ICl} / 3$ acts as a comparator and when the voltage on pin 6 drops below 0 V , which represents a voltage of -23.5 V , its output will go high, disabling IC1/4. This effectively regulates the -24 V supply.

Before we can print any data we must first store it. The data is presented to IC7 on the Data Out lines, then if the address presented to IC9 and IC10 is correct along with pin 10 (IC2) being high and a high pulse on pin 3 (IC14), the monostable IC2/2 is triggered. This produces a 500 ns wide pulse which enables the three-state buffer IC7, allowing the data to be written into the RAM IC8. At the end of this pulse, a second monostable ($1 \mathrm{Cl} 1 / 3$) is triggered (about $5 \mu \mathrm{~s}$) and during this time the contents of the EPROM are examined. If the character just written into the RAM is not a carriage return, pin 9 of that IC (IC9) will remain high. At the end of this $5 \mu \mathrm{~s}$ period, the address counter IC 13 is incremented. The next character can now be entered.

If a carriage return is entered pin 9 of IC5 will go low during this $5 \mu \mathrm{~s}$ wide pulse. This forces pin 10 of $\mathrm{IC11}$ high resetting the address counter IC 13 and clocking the flipflop $\mathrm{ICl} 2 / 2$. If a carriage return is not detected but the 128 th character has been entered pin 13 of 1 Cl 3 will go low and this, via C9, will cause a positive pulse on the output of $\mathrm{IC11/1}$ as well as causing the flipflop IC12/2 to be togeled.

Toggling this flipflop the first time causes pin 15 to go high and 14 low. This disables the monostable via IC14/2, and starts the motor. This is controlled by Q16 - Q19; if point K is low Q16 and Q18 will turn on hard applying 24 V to the motor. When point K goes high, Q17 and Q19 will turn on, shorting out the motor and stopping it quickly.

Also reset by the carriage return is IC. $2 / 1$, and a ' 0 ' will be applied to pins 1 and 2 of IC 3 which holds IC4 reset. Once the motor starts, pulses are generated by the pickup coil. The output of the coil is filtered by $\mathrm{R} 1,2$ and $\mathrm{Cl}, 2$ to remove any high frequency interference and is then buffered by $\mathrm{ICl} / 1$ which is connected as a schmitt trigger. The output of 1 C1/1 is used to clock the monostable IC2/1 which generates the 350μ s wide pulse used for printing.

The reed switch is also filtered by R5,6 and $\mathrm{C} 3,4$ to remove contact bounce and noise, before being buffered by $\mathrm{IC} 1 / 2$ which is also connected as a schmitt
trigger. The output of this IC is high from the start of the printing line until the start of the head return.

Once the print stroke has commenced the closing of the reed switch toggles the flipflop $1 \mathrm{Cl} 2 / 1$, allowing IC4 to be clocked. IC4 then scans the 3 least significant address lines of IC5 ; on each successive clock pulse the EPROM is interrogated for $350 \mu \mathrm{~s}$. The outputs from the EPROM are used to drive the print head circuitry.

After seven clock pulses $1 \mathrm{C} 3 / 2$ detects this and resets IC4 back to zero so forming a divide by seven circuit. This pulse also clocks the RAM address counter IC13 to the next step. In this way, the RAM tells the EPROM what character it wants.

If a carriage return is detected the outputs of IC11/1 and IC11/2 will both go high, resetting IC12/1 preventing any further clocking of IC4. It also resets IC13 and clocks IC1 $2 / 2$ back to its original state where pin 14 is high and pin 15 low.

This allows data to be again entered, but as the reed switch is still closed the motor will continue to run due to the action of IC $6 / 2,3$ until the reed opens. If more than 32 characters were entered before the carriage return, after the first 32 characters have been printed pin 11 of IC1 3 will go low and the mono formed by C10/R59 causes IC12/1 to be reset, stopping IC4 from being clocked. IC12/2 however is not affected and the motor will continue to run, even after the reed switch opens. The printer then starts a second print stroke and the re-closing of the reed switch clocks IC12/I allowing printing to continue.

The print head requires a negative 24 V pulse of $240-480 \mu \mathrm{~s}$ width with a peak current of about 3 A (for only $10 \mu \mathrm{~s}$) while the metallization is evaporated. The drive consists of seven identical circuits each with an interface transistor and a drive darlington transistor. One additional transistor is used (Q1) to disable the print head while the EPROM is active during the write mode.

The carrlage return detection is performed by the EPROM as part of its programming. As there are only seven heads but eight bits in the memory, the least significant bit is always programmed as ' 1 ' except for the carriage return character. While the CR character Ψ is programmed in the EPROM it cannot be accessed on this printer.

The auxiliary EPROMs use a standard address decoding and buffering circuit and do not require explanation.

Printer

Pin No.

Reed switch Pickup coil Coil-reed common Motor - V Head common NC Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7

PARTS LIST - ETI 641

Resistors	all $1 / 2 \mathrm{~W}, 5 \%$
R1,2	10k
R3 .	1k
R4	100k
R5-R8.	10k
R9 47 k
R10...	. 82 k
R11,12.	10k
R13-R19	. 4708
R20-R26	. 1 k 5
R27-R33	. 10k
R34-R36	. numbers not used
R37-R41	. k 5
R42...	. 1 k
R43. .	10k
R44....	. 47 k
R45.	. 1k
R46. . .	100k
R47-R50	. 10k
R51-R55	. 1k5
R56....	. 1k
R57. . .	. 10k
R58,59 .	. 100k
R60. 1k
R61. . .	. 100k
R62. 10k
R63. . . .	, 1k
R64. . .	. 100k
R65. 1k

$\begin{array}{r} R 66-R 73 \\ \cdot R 74-R 78 \end{array}$	$\begin{aligned} & 10 k \\ & 10 k \end{aligned}$
Capacitors	
C1-C6	10n polyester
C7.	$100 \mu 25 \mathrm{~V}$ electro
C8.	$220 \mu 35 \mathrm{~V}$ electro
C9-C13	100p ceramic
C14,15	$10 \mu 25 \mathrm{~V}$ electro
C16-C22	. $33 \mu 16 \mathrm{~V}$ tantalum

Semiconductors	
IC1	L
IC2	74LS123 du
1 C 3	4023 three input NAND
1 C 4	.4520 dual $\div 16$
IC5	2708 8K EPROM
IC6	. 4001 two input NOR
1 C 7	. 81 LS97 octal buffer
$1 \mathrm{C8}$	6810128×8 RAM
IC9,10	74 LS85 comparitor
IC11	4011 two input NAND
IC12	4027 dual JK flipflop
IC13	. 4520 dual $\div 16$
IC14	$74 \mathrm{LS10}$ three input NAN
IC15	$74 \mathrm{LS0} 2$ two input NOR
IC16	7812 positive 12 V reg.
1 C 17	7912 negative 12 V reg.
IC18	. . 7805 positive 5 V reg.

IC19 7905 negative 5 V reg.

- IC20,21 ... 2708 8K EPROM
. IC22.... 74LSOO two input NAND
- IC23.24 . . 74 7S85 comparator
- IC25 81 LS97 octal buffer
$\mathrm{Q} 1-\mathrm{Q8} \ldots . . \mathrm{BC558}$
$\mathrm{Q} 9-\mathrm{Q} 15 \ldots . . \mathrm{BD675}$
$\mathrm{Q} 16 \ldots \mathrm{BC548}$

Q16. BC548
Q17...... BC558
Q18....... BD140
Q19...... BD139
Q20. BC548
Q21....... BC558
Q22...... BD140
Q23....... BD 139
Q24...... 2N3643
D1 1N914
D2,3 1N4001
Miscellaneous
PC board ETI 641
Mosaic printer EUY-10E023LE
Four 24 pin sockets
One 16 pin socket and header
Two 8 pole DIP switches
One 15 pin 0.156 inch edge connector

- These components are not required if the additional memory is not needed.

Construction

As this is an economical printer, it was decided that the expense of a throughhole plated pcb was not warranted. This means that a lot of components are soldered on both sides of the board preventing the use of sockets except for the EPROMs and the 6810 RAM.

The board can be assembled with the aid of the overlay in fig. 2. If the additional EPROMs are not required these ICs and the associated components can be deleted. None of the components in this area are used as feedthroughs for the printer electronics. In the printer circuitry there are two links in the 0 V rail and three more leading to the edge connector. If the additional EPROMs are used all the address and data lines are linked to the edge connector as it was not possible (without a platedthrough board) to use copper tracks. We used thin enamelled wire of the type where the enamel will melt on soldering for all these links. The numbers on the pcb next to these points indicate the pins on the edge connector to which they are to be linked. Note that the connector is numbered $1-50$ on the component side and $51-100$ on the copper side.

Connection to the printer is made via a 16 pin IC socket using a piece of ribbon cable and a 16 pin DIP header.

Fig. 3. The timing chart for the printer.

Project 641

This method simplifies the software required and only ties up the processor long enough for it to output data at its own rate.

As we had some space left over on the card we decided to make provision for two additional 2708 EPROMs and their associated decoding/buffering. These are completely independent of the printer logic and can be used to store any software the user wishes. We do use another 2708 as the character generator as we were unable to find a suitable commercial device at a reasonable price. As this EPROM has 1024 locations, using eight bytes per character, we can have 128 characters. We therefore chose the full upper and lower case font with some Greek and mathematical symbols thrown in for good measure. As we are limited to a 5×7 dot matrix character some of the lower case characters are a bit strange the ones with tails normally below the line) but are still quite legible.

Using the Printer

The ETI 641 Printer has been designed to interface most easily to $\$ 100$-based computer systems, although it can be used with other bus structures, or even no bus at all. If it is plugged into an S100 system, the printer appears to the system to be a single I / O port. To print, the processor simply writes a string of characters in sequence to the output port, terminating with a CR character, whereupon the printer will itself initiate the print cycle, freeing the processor from any housekeeping.

During the print cycle, however, the printer is unable to accept any characters, and signals this fact to the CPU by pulling bit 7 of the input port low for the duration of the print cycle (though this only appears when the input port is addressed). The printer driver routine should therefore check the status of the printer from this port before writing to it.

A general purpose printer driver which incorporates this feature is shown in Table 2. The calling program passes the starting address of the text to be output in the HL register pair, and the routine will then output all the text from there until it encounters an EOT character $(0040,04 \mathrm{H})$. When it finds an EOT, the routine substitutes a CR and outputs it to the printer to start the print cycle.

Table 1

000:020

000:030

-000:040

000:050 000:060 000:070 000:100 $000: 110$
$000: 120$ 000:130 000:140 $000: 150$
$000: 160$ 000:170 000:200 $000: 210$
$000: 220$ 000:230 000:240 000:250
000:260
000:270
000:300
$000: 310$
$000: 320$
$000: 330$
$000: 340$
000:350
$\rightarrow \quad 000: 350$
000:370 001:000
! 001:010 001:020
001:030 001:040 001:050 001:060 001:100
$001: 110$
$001: 120$
$001: 1120$
$001: 130$
003:140
001:160
001:160
001:170
$001: 200$
$001: 210$
001:210
001:220
$001: 230$
$001: 240$
$001: 240$
$001: 250$

001:260

$001: 270$
$001: 300$
$001: 310$
$001: 320$
$001: 320$
$001: 330$
$\quad 001: 340$
$<\quad 001: 350$
$=\quad 001: 350$
$>\quad 001: 360$
$?$

377363355355363355377377 © 377377201155155223377377 A 377163155201277177377377 A 377163155201277177377377 в 377223155155163377377377 C 377377343325325377377377 C 377203155155155203377377 377377343375373377377377 F 3773353533673733753773777 F 377377201367367217377377 H 377337301373367317377377 377357301337301337377377 J 377175071105155175377377 K 377347333001333347377377 L 376316366000366316376376 M 377363355373355363377377 N 377315261277261315377377 O 377315261277261315377377 O
377377363355355363377377 P 377377377355371375377377 377377365331325355377377 R
377377333335325363377377 S 377377333335326363377377 S 377377237157157237377377 T 377377267147127267377377 U 377333333213333333377377 V 377357357253357357377377 W 377267157267333267377377 X 377367373001177177377377 Y 377373375203177277377377 Z 377377377001377377377377 [377357307253357357377377
377357357253307357377377 1) 377357357253307357377377) 377357337203337357377377 377357367203367357377377 377377377377377377377377 , 377377377015377377377377 a 377377037377037377377377 b 377327001327001327377377 c 377333253001253267377377 d 377073067357331271377377 e 377363215145233365377377 f 377377337277177377377377 377377307273175377377377 h 377377175273307377377377 $37732735720335732737737 \%$
377357357203357357377377 377357357203357357377377 377377375363377377377377 । 377357357357357357377377 m
377377377371377377377377 $277373367357377377377377 n$
n
n 377377203175175203377377 377377275001375377377377 q 377275171165155235377377 377173175135055163377377 377347327267001367377377 377033135135135143377377 377303255155155363377377 377177161157137077377377 377223155155155223377377 w 377237155155153207377377 x 377377377311377377377377 y 377377375311377377377377 2 377367327273175377377377 377367327273175377377377
377327327327327377377 377377175273327357377377 377277177145137277377377

002:000
002:010
002:020
002:030
002:040
002:050
002:060
002:070
002:100
002:110
002:120
002:130
002:140
002:150
002:160
002:170
002:200
002:210
002:220
002:230
002:240
002:250
002:260
002:270
002:300
002:310
002:320
002:330
002:340
002:350
002:360
002:370
003:000
003:010
003:020
003:030
003:040
003:050
003:060
003:070
003:100
003:110
003:120
003:130
003:140 003:150 003:160 003:170 003:170 003:200 003:210 003:220 003:230 003:240 003:250 003: 260 003:270 003:300 003:310 003:320 003:330 003:340 003:350 003:360 003:370

377203175105125207377377
377201157157157201377377
377001155155155223377377
377203176175175273377377
377203176175176273377377
377001175175175203377377
377001155155155175377377
377001157157157177377377
377203175175155141377377
377001357367357001377377
377377175001175377377377
377373175175003177377377
377001357327273175377377 377001375375375375377377 377001277317277001377377 377001337357367001377377 377203175175175203377377 377001157157157237377377 377203175165173205377377 377001157147153235377377 377235155155155163377377 377177177001177177377377 377003375375375003377377 377007373375373007377377 377003375343375003377377 377071327357327071377377 377077337341337077377377 377171165155135075377377 377377001175175377377377 377277337357367373377377 377377175175001377377377 377337277177277337377377 377375375375375375377377
377377177277337377377377 377373325325325341377377 377001355355355363377377 377377343336335335377377 377363355355355001377377 377377343325325347377377 377377357201157277377377 377377357327325343377377 377377001357357361377377 377377355241375377377377 377377377375243377377377 377377001367353335377377 377377175001375377377377 377341337347337341377377 377377341337337341377377 377377343335335343377377 377377301327327357377377 377367327327301375377377 377377301357337337377377 377357325325325373377377 377377337203335377377377 377303375375301375377377 377307373375373307377377 377303375363375303377377 377335353367353335377377 377377317367365303377377 377335331325315335377377 377357357223175175377377 377377377021377377377377 377175175223357357377377 377357337357367357377377 377125253125253125377377

The printer input and output ports, although separate, share the same address, which can be set up on the 8 -bit DIL switch SW1. In our example, the printer is set up for $1 / 0$ address $0310(19 \mathrm{H})$. Although, the routine given is assembled at 001:0000 $(0100 \mathrm{H})$,
it can easily be reassembled to any other address. Be sure when trying out the program, to initialise the Stack Pointer, as otherwise, the routine will return to 377:3770 and 'gallop off into the wide blue yonder', possibly self-destructing for good measure.

Table 2

001:000	333	031		PRINT	IN	PRINTER
001:002	376	177			CPI	1770
001:004	312	000	001		JZ	PRINT
001:007	176				MOV	A, M
001:010	043				INX	H
001:011	376	004			CPI	0040
001:013	312	023	001		JZ	END
001:016	323	031			OUT	PRINTER
001:020	303	000	001		JMP	PRINT
001:023	076	015		END	MVI	A,015Q
001:025	323	031			OUT	PRINTER
001:027	311				RET	

CHECK STATUS
BIT 7 ZERO?
LOOP IF YES
FETCH CHAR
NEXT CHAR
EOT?
END IF YES
OUTPUT CHAR
ROUND AGAIN
LOAD CR
PRINT CR
BACK TO CALLING
ROUTINE

This general-purpose printer driver routine will output a character string until it comes to an EOT character, when it will output a CR to begin the print cycle. Beware if reassembling this program that your assembler can differentiate between the labels PRINT and PRINTER - it may be wise to choose alrernative labels.

Another common trick used to indicate the end of message text is to set the most significant bit of the last character - as this is 7-bit ASCII it will not affect the printer or the CPU. However, the printer driver should recognise this and insert a CR, otherwise nothing will be printed.

The two EPROM sockets are addressed as a contiguous 2 K block of memory - they cannot be split apart. Consequently only 5 bits of address information have to be set on SW2 one more bit selects which 2708 is addressed, and the final 10 bits are decoded inside the 2708's.

NE
 WIE A. IA N o THE ELECTRONICS CENTRE - NOW OPEN - 179 HOBSON ST,

AUCKLAND The one-stop components shop

Stockists of: RESISTORS CAPACITORS DIODES taAnsistors CMOS
TTL LINEAR PLUS PLUS - too many to lis a
\qquad

SWITCHES POTENTIOMETERS
POWER SUPPLIES
AERIALS
MULTIMETERS SOLERING IRONS aC SOCKETS

CASES \& CABINETS CABLE \& WIRE SPEAKERS KNOBS TRANSFORMERS WIRE WRAP TOOLS

Tank Battle with GI AY-3-8710.
Chips available, AY-3-8500, AY-3-8550, $\langle A Y-3-8710$ etc.
PLUS A HUGE RANGE OF KITS. O

MUSICOLOUR - Colour Organ - let there be9ight in your music.

RADAR DETECTORS

 Super Orbit, built-up and kitsets.To: ORBIT ELECTRONICS LTD., PO Box 7176, Wellesley Street, AUCKLAND,

ABSOLUTELY ESSENTIAL FOR A MICROCOMPUTER IS 5. GOOD SOFTWARE

1. Technico's MIGHTY MONITOR
speed of your terminal, and includes input and output XOP's provides a breakpoint facility with a special debugging aid, enablinxtended OPerations). As well as the usual Copy, Alter, Dump, Load and Go commands, it encountered a speciffled number of times. It also provides commands for programmingters and memory to be displayed whenever the breakpoint has been performing hexadecimal arithmetic. It is supplied with fully documented source listings. 2708 EPROMs (which takes place on the T-9900-SS board) and for
2. The Instant Input Assembler (IIA)
of the T-9900-SS board to become PROMs as part of the T-6K-SS board, or as part of the T-4.5K-SEK Expansion Kit which upgrades the T-1.5K-SS configuration operands of the TMS 9900 microprocessor. Being located In onboard PROM ther is no standard Assembler features, except labels. It accepts input from the ferminal and is no loading, no delay - the IIA is always instantly available. It offers most As it can be used to patch programmes, the $\| A$ is also useful in conjunction wimmediately transiates it into machine code. No need to edit and punch tape. documentation and source listing.
3. The Editor/Assembler/LInking Loader (EAL)

Available on paper tape or digital cassette tape. Tak
character-oriented editor which allows inserting, replacing or also produces relocatable code. It allows external definition and ring text. All forward references are resolved in the listing. The Assembler is relocatable and conditional assembly (a feature useful for option selection). 4. Technico's SUPER BASIC Compiler/Interpreter

Ask us to send you our Product Catalogue, which tells you how SUPER BASIC performs.
(T-9900-SS prices start at $\$ 465$ unassembled and $\$ 575$ assembled deaf to offer you. Warning: It costs more than some 8 -bil systems on the market

NOTE: All the above software, and T9916 CPU and memory boards and chassls, are currently available from stock.

I.M.P.A.C.T. LTD

P.O. Box 177, Petersham, NSW. 2049 (560-7603)

74S188	3.00	8214	8.95
1702A	4.50	8224	3.25
MM5314	3.00	8228	6.00
MM5316	3.50	8251	8.50
$2102-1$	1.45	8255	10.50
$2102 \mathrm{~L}-1$	1.75	8 T13	1.50
2114	9.50	8 T23	1.50
TR1602B	3.95	$8 T 24$	2.00
TMS 4044.	9.95	$8 T 97$	1.00
		$2107 B-4$	4.95
8080	8.95	2708	9.50
8212	2.95	Z80 PIO	8.50

$$
\begin{array}{r}
7889 \text { Clairemont Mesa Blvd., San Diego, CA } 92111 \text { U.S.A. }
\end{array}
$$

News from studio elearimias

HOW about th

MOVING COIL HEADAMP
GAIN: 31 dB
NOISE: less than - 144 dBA
PRICE: $\$ 50.70$ ea
INCL. TAX

PHONO EQUALIZER GAIN: 34 dB RIAA (NEW): $\pm 0.5 \mathrm{~dB}$ NOISE: -125 dBV u.w. PRICE: $\$ 58.50$ eа INCL. TAX

AUDIO OP-AMP
GAIN: UNITY to 60 dB NOISE: - 125 dBV u.w. BANDWIDTH: 80 kHz OUTPUT: + $18 \mathrm{dBV} / 600$ ohms PRICE: $\$ 35.10$ ea INCL. TAX

We can also supply most other professional audio components. studin aleatronias in 3 BURWOOD ROAD, BURWOOD NORTH. 2134. AUSTRALIA. PHONE: (02) 747-5686
Cable: STUDIOTRON, SYDNEY.

FANTASTIC OFFER
 DIGITAL WATCH KIT

5 functions, hour/minute/second/date/month. Good quality leather band. 6 month guarantee on mechanism. Order now for next shipment.

INTRODUCTORY MAIL ORDER OFFER $\$ 11.50$ plus $\$ 1.00 \mathrm{p}$ \& p .

KIT BITS

110 Rosemead Rd, HORNSBY. NSW. 2077. Ph (02) 476-3975 Trade enquiries welcome

Performance features at a price you can affordand fully backed by Tektronix

Only Telequipment offers you:

TEKTRONIX GUARANTEE

The Telequipment family of oscilloscopes is fully guaranteed by Tektronix, the world's leading oscilloscope manufacturer.

PERFORMANCE FEATURES YOU NEED AT A PRICE YOU CAN AFFORD

Model D61a Designed for portability and easy operation, the D61a is a dual trace 10 MHz scope. For easy, accurate viewing, the D6 1a features automatic triggering and bright stable waveforms on an $8 \times 10 \mathrm{~cm}$ display.

Model D83 A plug-in oscilloscope with a big display. The D83 sets high standards of performance, versatility and value. Plug-in options include 50 MHz dual trace at $5 \mathrm{mV} /$ div., single or delayed sweep and high gain differential.

Model D32 When you demand an extremely portable scope, the D32 is ideal. Battery or ac line operated, this 10 MHz dual trace scope weighs only 10 lbs . An optional shoulder strap or attache carrying case can be used to take your scope into the field.

IDEAL FOR MANY APPLICATIONS
If you're servicing pocket calculators,
T.V., radio, microwave ovens, alarm systems or dozens of other consumer products, Telequipment scopes can do the job for you. Easy viewing and operating make Telequipment ideal for classroom use too.

TELEQUIPMENT

 THE CHOICE FOR YOU Performance features at a price you can afford, plus full backing by Tektronix make Telequipment a wise choice when you're looking for low-cost oscilloscopes.

Tektronix
CONMIT TED TO EXCELLENCE

For more information about Telequipment oscilloscopes, contact Tektronix Australia Pty. Ltd., 80 Waterloo Road, North Ryde 2113. Sydney 888 7066, Melbourne 8180594 , Brisbane 312896,
Adelaide 2232811 Perth 3254198.

DIIITAL ELECTROMILS BY EKPERIMEIT purt7

Continuing our series on TTL digital logic - this month decade counters.

THE 7490 DECADE COUNTER is a single-chip counter containing four flip-flops and various gates, which are arranged so that frequency division and decimal counting can be carried out. To make the counter more versatile, one flip-flop is separately connected so that it càn be independently used as a scale-of-two counter, and the remaining three flip-flops are gates so that they act as a scale-of-five. The two sections of the counter can be connected together in different ways, either as a divide-by-ten circuit, or as a decimal counter with BCD outputs.

Twos Into Tens

BCD - meaning Binary-Coded-Decimal - is a form of binary code which is particularly useful if decimal numbers have to be displayed. In a BCD count, each figure of a decimal number is represented by its binary equivalent, so that the number 85 (decimal) becomes 10000101 , binary B and binary 5. Although more convenient, because each BCD counter can then drive a display unit, this form is longer than a pure binary number (binary 85 $=1010101$, only seven figures), and BCD numbers are not so simple to add and subtract as pure binary numbers.

BCD in Practice

Connect the power supplies to the 7490 with pin 10 to earth and pin 5 to +5 V . Pins 2 and 7 should also be earthed for most of the experimental work in this section, although we may use pin 2 later for resetting to zero. Now connect LEDs and their limiting resistors, using the spare pads on the board, to Qa on pin 12 and Od on pin 11. Connect the clock pulse from the slow oscillator to input A (pin 14) and by watching the clock LED and the LED connected to $\operatorname{pin} 12\left(\mathrm{Qa}_{\mathrm{a}}\right)$, note the action of this section of the counter.

Switch off, transfer the clock pulse input to input B on pin 1, and switch on again, watching the clock LED and the Od LED on pin 11. Note that the counter will operate only if the
reset pins, each pair being inputs to an AND gate which operates the reset. Pins 2 and 3 are the reset to zero pins, and earthing either of them enables the counter. If both are allowed to float to logic 1, or are taken to logic 1, the counter resets to zero. Pins 6 and 7 also act through an AND gate, but with both high the reset is to BCD 9 (1001) rather than to zero.

To use the 7490 as a frequency divider (Fig. 2), we connect Od (pin 11) to INa (pin 14) and take the clock pulse to INb (pin 1). The output will appear at Oa , on pin 12, and the state of this output is monitored by an LED already. Connect up the clock pulse from the slow oscillator on the board, and by counting pulses, confirm that the correct division ratio is being obtained.

For a BCD count, the connections must be changed around (Fig. 3). We now need LED indicators on the Qb (pin 9) and Oc (pin 8) outputs as well as on Qa (pin 12) and Od (pin 11), and the cross-connections are different, with Oa connected to input B and the clock input taken to input A on pin 14. Label the LEDs as A, B, C, and D, and switch on, noting the values at each stage of the count. Use a de-bounced switch as a clock supply if the oscillator is too fast to follow. Note that in the circuit of Fig. 3 a reset switch has been used; because we are using push-tomake switches, an inverter must be used as shown.

Because the 7490 is on a single chip it may be more convenient to adapt it for counts of less than 10, rather than use separate flip-flops. This is made easier by the arrangement of the reset lines, connected through AND gates. Ignoring the reset-to-nine pins, we can arrange for pin 2 to be driven by a gate whose output must be zero during the count, rising to 1 at the end of the count. Pin 3 must be kept high, or the count will not be interrupted.

Try the circuit of Fig. 4 - can you work out what the count figure will be? Connect up and try the circuit out.

Fig 1. Pinout of 7490 Decade counter.

Fig 2. Connections for frequency division by ten - note that the symbol does not show the true pin positions.

Displays

Though several other forms of display exist, the most convenient type for use with TTL circuits is the seven-segment LED display. The type used for this board, the Jumbo DL747 is one of the largest displays of this type available at the time of writing, and has been selected from the point of view of easy reading at a distance. If any other type is substituted, care will have to be taken with the pin connections, since there are several pinout standards for this type of display.

As the name suggests, the sevensegment display consists of seven LEDs made in one chip in the arrangement of a figure-of-eight, as shown in Fig. 5. The letters allocated to the strips are also shown (fortunately these are standardised).

Looking at the arrangement of the segments, we can draw up a table of the segments that will have to be activated (ON) for each number we want to display. Fig. 6. shows such a table for the numbers 0 to 9 , and also some of the other characters which can be obtained. We now have to translate th is ON/OFF table into terms of logic 1 and 0 .

The next step depends on the type of display that is being used - common cathode or common anode. As the name suggests, the common cathode display has all of the LED cathodes connected together to logic 0 , and each anode must be taken to logic 1 to be illuminated. To prevent excessive current flowing - because the normal forward voltage across the LED is less than the +5 V of the logic circuits we must wire a limiting resistor in the connection to each anode. We cannot use one single resistor in the cathode lead, as this would cause the brightness of the display to alter according to the number of segments lit.

The other possibility is to connect the anodes of the LEDs together and take the cathodes out to separate pins. In this common-anode type of display. the segments will be lit when their respective cathodes are at logic zero, and once again limiting resistors must be used between each cathode and the TTL driving stage.

The type of display specified for this board is a common anode type, with several of the pins on the display connected to the common anode. Only one of these pins need be connected to the 5 V line.

Decoders

To obtain a decimal readout from the BCD output of the 7490 counter, a decoder stage, is needed with the truth table shown in Fig. 7.

Fig 3. Connections for BCD counting, with reset switch. The reset pin must be kept at logic zero for counting, and taken to logic 1 for reset, so that an inverter must be used along with the push-button switch.

Nember/ Cherection	\cdots	b	c	d	-	1	9
0	\times	\times	\times	\times	\pm	\%	-
1		\times	\times	-	-	-	-
2	\times	\times	-	x	\times	-	\times
3	*	\times	4	\times	-	-	\times
4	-	\times	\times	-	-	K	\times
5	\times	-.	\times	\times	-	\times	\times
6	-	$=$	\times	*	\cdots	\times	\times
7	\times	\times	\times	-	-	-	-
8	*	${ }^{*}$	\times	\times	*	\times	x
9	\times	π	\times	-	-	K	\times
[10)	\times	-	-	-	*	\times	-
J111)	\times	*	\times	*	-	-	-
$4(12)$	-	\times	-	-	-	\times	\times
ᄃ(13)	*	\times	-	*	-	\times	\times
E(14)	$=$	-	π	\times	*	*	\times
Blank (15)	-	-	-	-	-	-	-

Fig 6 Truth table for figure and character displays.

Fig 7 Truth table for a commonanode display, figures only.

Fig 8. Pinout of the 7447 BCD to 7 -segment decoder-driver.

Fig 9. Connection of the 7447 to the display not that the arrangement on the board is as neat ás the drawing would suggest!

The type used here is the 7447 BCD-to-seven segment decoder/driver, which has output stages of transistor collectors with no loads. In this way, the combination of LED and limiting resistor acts as load for the collectors of the output transistors in the 7447 .

Care should be taken that the outputs of a 7447 are never connected directly to the +5 V line, as excessive currents could flow if the decoder were operated.

In use, the segment output pins of the 7447 are connected through the limiting resistors to the segment pins of the display. The values of the limiting resistors used will determine the brightness of the display. For the 7447 display we can use 150 R resistors, but 470 R resistors have been specified on our board to ensure long life and to cut down current consumption. If other displays are used, 470R should also be suitable - in general the small displays need less current, and so larger values of limiting resistors should be used than with larger displays. If a common cathode display, such as the MAN-3 types, had been used, the 7448 decoder would have been needed.

Now connect up the display and the decoder on your board, noting the connection diagram of Fig. 9. In the prototype boards, the very small resistors used for limiting could be passed under the body of the display, so avoiding long paths around it. The +5 V supply is taken to pin 16 of the 7447, and earth is taken to pin 8. The outputs of the 7447, all on the side facing the display, and marked on the circuit diagram with small letters, are taken through the 470R limiters to the correspondingly lettered pins of the display. The inputs indicated by the capital letters A, B, C and D on pins 1,2,7 and 6 of the 7447 are for the BCD input from a 7490 and should be connected to the appropriate O outputs from the 7490 counter.

Testing and Blanking

Note that pin 3 of the 7447 is labelled "lamp test". Taking this pin to logic 0 illuminates all segments of the display irrespective of what stage the count has reached, and is a useful check on the operation of the display. For example, an operator can check that a steady display of 8 is not just 3 with two segments faulty.

Pins 4 and 5 on the 7447 are for blanking, used mainly when the display is one of a set, to suppress zeros occurring before the first significant figures and after the last one. When pin 4 is low, the display is blanked out, though counting is unaffected.

If you are involved in scientific, electronic or business pursuits, microprocessors are becoming a v:ay of life and a dominant factor in your success or failure. The EE-3401/ET-3400 course and trainer is a low cost and effective key with which you can easily learn microprocessor theory and techniques. EE-3401 uses proven programmed learning techniques to teach programming, interfacing and much more. The ET. 3400 Trainer provides the ideal platform for experimentation and later, your own prototyping and design. This is a learning package you cannot afford to miss.

(1) Learn Microprocessor Operation, Application and Interfacing

Covers microprocessor basics, computer arithmetic, programming, interfocing and much more
Using Heath's proven self-instruction techniques, EE-3401 adopts a three phase approach to gulde you, step-by-step, through the com. plexitles and power of machine language programming, hardware $1 / \mathrm{O}$ interfacing and microprocessor theory and design applicatlons. Element I, presented in 8 lessons, utilizes concise self-study texts to cover: Number systems and codes, micro-computer basics. computer arithmetic, introduction to programming, the 6800 microprocessor (part I), the 6800 microprocessor (part II). interfacing the microprocessor, (part I), and interfacing the microprocessor (part II).
Colourful audio and visual presentations are combined in element II's six lessons to further enhance your knowledge of such subjects as programming, designing with microprocessors and semiconductor memories. Phase 111 of EE. 3401 provides 19 informative experiments through which valuable "hands-on" experlence is gained. The ET. 3400 Trainer is utilized and experiments are divided into program. ming and interfacing applications. Experiments cover program branches, address decoding, arithmetic and logic instructions and much more.
EE. 3401 comes complete with 62 electronic components including ICS, RAMs, op-amps and a varlety of other microprocessor oriented devices. No additional components are necessary to carry out the experiments provided with this program.
Course EE. 3401
$\$ 137.00$

icroprocessor Course and Computer Trainer

(2) Microprocessor trainer for experimentation and design

Use with Course EE- 3401 for an up-to-date computer education
Functioning as a miniature digltal computer, the ET. 3400 Microprocessor Trainer has been designed to compliment your EE. 3401 Microprocessor Course and provide an ideal platform upon which you may easily and enjoyably expand your knowledge of microprocessor programming and Interfacing techniques. In ad. dition, the ET. 3400 provides you with plenty of breadboarding capability for experimentation, prototyping and system design.
The ET. 3400 is based on the popular 6800 microprocessor and key feafures include: 1. A built-in 1k ROM monitor program for controlling unit operation. 2. Six digit hexadecimal 7-segment LED display for address and data readout. 3. 17.key hexadecimal keyboard for entering programs, data and control of the unit. 4.256 bytes of random access memory (RAM), expandable 10512 bytes. 5 . Breadboarding socket for prototyping, interfacing and memory circults. 6. Elght buffered binary LEDs for display of breadboard logic states. 7. Eight SPST DIP switches for binary input to breadboarded circuits. $8 .+5,+12$ and +12 VDC power supply outputs. 9. All microprocessor address, data, and controt busses buffered and terminated on the front panel for ease of connectlon to prototyped circuits. 10. Provision for a 40 .pin external connector for extending memory and I/O capability.
Trainer ET-3400.
$\$ 313.00$

ORDER BY COUPON NOW OR COME TO OUR SHOWROOM
Please rush me the Heathkit of my choice. My cheque for \$ is enclosed plus $\$ 2.50$ for package and post.

\square Course EE - $3401 \quad$ Course ET - 3400

\qquad
\qquad

Send to: W. F. Heathkit Centre

220 Park St., South Melb. 3205. Phone: 699-4999

silic (T) N valley adds 2,000 plus passive components to its alreadyextensive range

Silicon Valley has added an extensive range of Philips resistors and capacitors to its on-the-shelf stock. The addition of these passive components to Silicon Valley's already wide range of electronic components
Silicon Valley now has more than 7,000 active and passive components with off-the-shelf availability

silic \odot N valley

SYDNEY:

Silicon Valley, 23 Chandos Street, St. Leonards.
Tel: (02) 4392965
BRISBANE:
Silicon Valley, 22 Ross Street, Newstead
MELBOURNE:
Silicon Valley, 380 Bridge Road, Richmond.
Tel: (03) 4294780
ADELAIDE:
Silicon Valley, 170 Sturt Street, Adelaide. Tel: (08) 514080
NEW ZEALAND:
Silicon Valley, 7-9 Kirk Street, Grey Lynn, Auckland,
Tel: 761169
means Silicon Valley can now supply all the major requirements for most electronic projects, hobbyist applications, one-off bench test experiments and the needs of industry requiring one-off products for design research and development.

Soldering printed circuits?

From your electronic parts supplier or enquire from ADCOLA PRODUCTS
Melbourne, 848 3777. Sydney, 7095293.
Brisbane, $440131 . \quad$ Adelaide, 426655.
Hobart, 34 2233. Launceston, 312511.
Perth, 3815500.

The Duotemp protects circuits and components at a cost far lower than soldering tools with automatic temperature control. - Correct soldering temperature for printed circuits.

- Fast heat-up and heat recovery.
- Power boost for long sequences or heavy joints.

THE PUSH BUTTON...

The Duotemp soldering tool will idle all day on half-wave $A C$ without overheating. A touch of the button converts it to full wave, instantly doubling the thermal capacity.

STEREO

LB0-552
5" Horizontal, Dual Trace/ Dual Chan. Oscilloscope WIth simuttaneous left/right WAVEFORM DISPLAY
A solid state achievement that makkes audio testing, on-line quality control and general purpose measurements easier than ever. Features a horizontal dual trace/dual channel format that lets you view two independent signals simut taneously and side-by-side on a bright CRT display. Perfect for inspecting and aligning the most sophisticated stereo equipment, the LBO-552 also provides a single channel input for conventional readout. Sensitivity is $20 \mathrm{mVp}-\mathrm{p} / \mathrm{cm}$: Vert. B^{\prime} width is DC or 2 Hz to 2.5 MHz . Sweep speeds are from $10 \mathrm{~Hz}_{2}$ to 100 KHz in 4 ranges with input impedance $1 \mathrm{M} \Omega$ shunted by 40 pF .
$250 \mathrm{~mm} \mathrm{~h} \times 180 \mathrm{w} \times 380 \mathrm{~d}: 6.5 \mathrm{~kg}$.

LMV.186A
Dual Chan./ Dual Pointer AC Millivolt Meter
Check stereo signal quality. especially where a big difference exists in iwo points. This instrument uses identical switches and amplifiers in each channel to operate without crosstalk effects. Measuring range is $100 \mu \mathrm{~V}$ to $300 \mathrm{~V}, 12$ steps. It has two d8 scales: an easy-toread meter face; 2 scale readings; built-in dual amplifier output. Accuracy is $\pm 2 \%$ full scale $(1 \mathrm{KHz})$. Channels operate individually, or in common at ch. $\mathbf{2}$ Scale calibration reads effective values. With input cable $240 \mathrm{~V} / 50 \mathrm{~Hz}$.
$150 \mathrm{~mm} \mathrm{~h} \times 200 \mathrm{w} \times 250 \mathrm{~d}: 3.5 \mathrm{~kg}$.

IF WE CAN'T BEAT THE OPPOSITION PRICE, WE WILL TRY TO MATCH IT . . . IF WE DON'T STOCK IT, WE WILL TRY TO GET IT FOR YOU

- SPECIALS IN TOP QUALITY COMPONENTS

Motorola 2N3055 75c
Motorola MJ2955 90c
Philips 5558 P.I.C. 50c
Philips 7418 P.I.C. 45c
Resistors 1/3 W. 4c
10 Way Rainbow Cable. 65c metre
16 Way Rainbow Cable. $\$ 1.00$ metre
6-Piece Jewelers Screwdriver Kit. $\$ 2.25$

Sound Hire - DJ and party for all occasions.
ald distributor for:
RCA Semiconductors and Swan Electronic Components.

complete clectronic supplies

Wholesale, trade and mail orders welcome. Add 10\% post and pack. Stocks and prices valid at 16.6.'78.

Jaycar New Audio Kits and Components

AUDIO SPECTRUM ANALYSER

The 489 Analyser can be used in conjunction with a Graphic Equaliser to accurately equalise systems for room acoustics.
Features:

- Ten octave spaced displays
- LED readout in 3 dB steps.
- Inout sensitivity control.
- Inbuilt pink noise generator.

Complete kit includes matched LEDs, polarised plastic display, complete metalwork, etc.

This rugged, compact amplifier is ideal for PA, disco, foldback or guitar amp use. 2-input Preamp with tone controls or 10-way Equaliser can be bullt Into the same cabinet.

Features:

- Robust construction.
- Handles for portability.
- Cannon mains input, quick connect speaker terminals. - Attractive flnish in light grey.

Complete kIt ONLY $\$ 105$ plus $\$ 3.50$ freight.
2-input Preamp with front panel $\$ 25$.
10-way Equaliser with front panel \$43.
ONLY \$142 plus \$3 freight.

100 WATT POWER SLAVE

FCC propose 900 MHz PC band.

The FCC is considering establishing a new Personal Communications (PC) band in the United States around the 900 MHz region.

The proposed band would be at least 10 MHz wide and could be divided into 400 FM channels at 25 kHz spacing. If and when established, it would not replace the existing US 27 MHz CB band but would operate in addition to that service.

A legal conversion?

Johnson's Viking 352D 23 channel sideband rig was a very popular set in its heyday. If you own one and omitted/ forgot/didn't bother to get it licensed before January 31 this year did you know that you could get a fully type approved 18 channel conversion done by Mike Skovron Agencies. And only $\$ 35$ too! That not only makes you legal - but you can resell the rig later too!

If you actually managed to license your 352D, and you want to go to 18 channels - remember you get two channels not on the 23 channel rigs, then you can have an 18 channel switch fitted for a mere $\$ 25$.

The type-approved conversion must be done by the Mike Skovron Agencies crew at 5 Curlewis St, Bondi Junction NSW (phone 30-4334). You 'll get a rig to match the specs of the 4740.18 and a proper type-approval label pop-rivetted on the back! Do it, and feel good.
antennas, the UHF 'gain' mobile antennas and the UHF collinear base antennas (6 dB omni-gain), are all not on mate'!

Good grief, any 27 MHz antenna offering 'substantial' real gain - like 10 dBi - is almost impossible to fit in the standard suburban real estate and restricting UHF users to nothing bigger than a 30 cm dipole antenna is ludicrous! If excessive TVI is feared, then it's not going to come from the use of 'gain' antennas. Linears and 'garbage' rigs are the trouble makers.

Among the concessions included in the draft are: up to five transceivers allowed per licensee; other persons (limited to family, employees and club associates) allowed to operate a licensee's. rig; dedication of channels five on HF and UHF for emergency calling and traveller's assistance; no antenna height restrictions other than State - local government or Department of Transport requirements; no more ' 32 km rule' - which allows skip working within the geographical boundaries of Australia; introduction of 'notice of violation' system etc.

The full text of the new RB14 appears in the August issue of CB Australia.

Classy Wattmeter

In their 'classic' tradition, CPI present the WM7000 wattmeter - a comprehensive transmission performance test instrument. The WM7000 will read peak
or average power on three scales: 20, 200 and 1000 watts as well as VSWR over the frequency range from 1.8 to 30 MHz . It features a 30 dB coupler and a large, easy to read meter face.

For more information, contact Communications Power Inc, at P.O. Box 246, Double Bay 2028 or phone (02) 36-3703.

A Hi-fi CB Rig?

You might think their timing is wrong, you might wonder what the hell they're doing getting into the CB market, but Pioneer are determined that they have a winner with their first CB rig.

Called the GT-202, Pioneer's latest equipment release is an AM -only mobile rig specifically designed for under-dash mounting and features a unique slidelock, theft-preventing mounting bracket.

Styling of the GT- 202 follows on from Pioneer's long expertise in other consumer electronics markets - hi-fi and tape recorders ect. It is undoubtedly the smallest rig on the market at present as it measures a tine 150 mm wide by 50 mm high by 198 mm deep.

Technically it features a PLL frequency synthesizer, LED digital readout and a proper noise blanker unusual on AM-only rigs. A dimmer push-button is provided to dim the LED display and S/RF meter light for night time use.

The GT-202 will be available through Pioneer stores throughout Australia and selected retailers later.

Amazing! Fact! Shock release - draft RB14!

The long-awaited draft RB14 was finally released for (more or less) public consumption around 21 July. The NCRA has a few weeks preview and have already submitted a 'commentary' more a rebuff really.

There are quite a few improvements over the first RB14 (still 'in force', even though it's not worth a pinch of goatsh). There are also a few things that won't curry much favour around the traps included in the draft. CB Australia's June issue front-page story foreshadowed most of the major changes.

However, while the P \& T draftees have removed the original restrictions on antenna heights etc they have introduced a new 'rule' that disallows the use of antennas having more gain than a half-wave dipole. This is not going to be well received by a large body of CBers and the CB industry alike. Instantly, such antennas as $5 / 8$ groundplane base

VLF $10-500 \mathrm{KHz}$ with 3.6 MHz IF 432 MHz with 28 MHz IF 144 MHz with 28 MHz IF 1296 MHz with 28 MHz IF 432 MHz with 144 MHz IF

$\$ 89.00$

$\$ 59.00$ $\$ 59.00$ $\$ 70.00$ $\$ 59.00$

CEAR

ANTENNAS
The famous NDR505 professional receiver with all options $\$ 2999.00$. Other receivers from $\$ 350$ to $\$ 20,000$. Give us a call today and tell us your requirements!

PRE-AMPS

The UP-3 Preamplifier covers $2-30 \mathrm{MHz}$ with a gain of 15 dB in four switchable bands. This great little unit can improve sensitivity, selectivity and signal to noise ratio of your favourite receiver. Price $\$ 41.00$.

Listener-3 3-30 MHz dipole kit	$\$ 49.00$
Listener-1 wire antenna kit	$\$ 22.00$
GDX-1 Discone $80-480 \mathrm{MHz}$ Tx \& Rx	$\$ 84.00$
SCAN-X Discone (Receive only) $65-530 \mathrm{MHz}$	$\$ 35.00$

VICOM 747 AIRCRAFT RECEIVER

* 16 CHANNELS
- SCAN OR MANUAL
* AC/DC OPERATION
* 4 CRYSTALS SUPPLIED

AND OUR PRICE ONLY $\$ 199.00$

ICOM IC-701

HF transcelver
The NEW IC-701 features: - Solldstate - RF speech processor - 100 W continuous on all bands, all modes - USB, LSB, CW, CW-N, RTTY operation - Double balanced Schottky Diode Mixer used in boty RX/TX • Dual built-In digital VFO - Price includes mic

ICOM IC-211 785.00 2 m transceiver

Features: - 144 to 148 MHz coverage - Modes: SSB, CW, FM - LSI snythesizer PLL • 4-digit LED readout - Pulse-type noise blanker • VOX, antivox - Semi-break-in CW - Built-in SWR bridge - CW monitor and morel computer compat.

ACCESSORIES .HY-GAIN DAIWA .ANTENNAS . ROTATORS .PROCESSORS .MORSE KEYS
HK 702 deluxe key with marble base $\$ 39.00$ HK708 economy key $\$ 21.00$ HK 706 operator's key MK 701 manipulator (side swiper) EK $103 Z$ electronic Keyer Palomar IC Keyer
$\$ 25.00$
$\$ 43.00$ $\$ 169.00$ $\$ 149.00$

ANTENNA CHANGE-OVER RELAYS (DAIWA)
CX-2L 1.8 thru $170 \mathrm{MHz}, 100 \mathrm{w}$ pep \max
$\$ 48.00$ CX-2H 1.8 thru $450 \mathrm{MHz}, 200 \mathrm{w}$ pep max $\$ 69.00$
2M BEAMS
$5 \mathrm{Y} / 2 \mathrm{M}$ Jaybeam, 7.8 dBd , length $1.6 \mathrm{M}, 5 \mathrm{el}$
$\$ 39.00$
$8 \mathrm{Y} / 2 \mathrm{M}$ Jay beam, 9.5 dBd , length 2.8 M , 8el
$\$ 47.00$
$10 \mathrm{Y} / 2 \mathrm{M}$ Jay beam, 11.4 dBd , length $4.4 \mathrm{M}, 10 \mathrm{el}$ $\$ 79.00$
NEW FROM DAIWA, QUALITY ANTENNA ROTATORS COMPLETE WITH 240 VAC CONTROL BOX:
Model DR7500S medium duty
Model DR7600S heavy duty
Model DR7600S heavy duty
$\$ 259.00$

68 Eastern Road			
SOUTH MELBOURNE		VIC 3205	
PH (03)	699.6700	Telex AA30566	
Perth	446.3232	Sydney	681.3544
Adelaide	43.7981	Brisbane	38.4480
Gold Coast	32.2644	Hobart	43.6337
Canberra	82.3581	Melbourne 836.8635	

68 Eastern Road
SOUTH MELBOURNE VIC 3205

Reyco antenna traps

Scalar Industries have recently been appointed sole Australian distributors for the Reyco range of multibrand trap antenna coils.

Designated type KW40, the coils are rated at 2 kW PEP (min.), weigh only about 180 grams and measure a compact 46 mm diameter by 140 mm long. They are encased in a waterproof coating for protection from the effects of the weather

Construction of the coils is such that high Q values are achieved using aluminium wire wound on a threaded polystyrene former with an in tegral resonating capacitor.

A multi-band dipole can be readily constructed using the KW40 trap coils; complete details are available from Scalar Industries, 18 Shelley Ave, Kilsyth Vic., 3137, (03) 725-9677. They also have agencies in Sydney and Brisbane.

Combination counter/generator

An unusual test bench instrument was recently brought to our attention by GFS Electronics Imports. This is a combination frequency counter and RF signal generator manufactured by Mizuho. Designated DX555D, this compact little instrument features a generator coverage from 400 kHz to 30 MHz and a five-digit (switchable to seven digits) LED readout frequency counter that will read up to 220 MHz .

It measures only $160 \times 58 \times 215 \mathrm{~mm}$ and operates from the 240 Vac mains. For further information, contact GFS Electronics Imports at 15 McKeon Rd, Mitcham, Vic, (03) 873-3939.

Daiwa Coax Relays

Vicom have recently released a range of coaxial antenna changeover relays from the Japanese Daiwa Corporation.

Two models are available for different powers and frequency ranges. The first is rated at 100 W PEP and covers 1.8 MHz through 170 MHz ; the second being rated at 200 W PEP covers from 1.8 to 450 MHz . Both feature extremely low insertion loss, 50 ohm impedance across the frequency range and operation from $10-15$ volts DC.

For further information contact Vicom P/L, 68 Eastern Rd, South Melbourne 3205. 103) 699-6700.

Wadley-loop receiver from Standard

Standard Radio Company of Japan have produced a general coverage receiver using the now-common Wadley-loop technique for the front end, providing coverage from 500 kHz to 30 MHz in 1 MHz -wide bands.

Designated the type C-6500, it provides a dial readout down to 5 kHz and will resolve AM, SSB and CW signals. It may be operated from an internal battery supply (which requires eight cells), a 12 Vdc external supply, or the ac mains.

A large illuminated S-meter is featured on the receiver's front panel and an internal speaker is included. The C-6500 is currently available for around $\$ 300$ from GFS Electronic Imports of 15 McKeon Rd, Mitcham Vic, (03) 873-3939.

The 5A/0 battle

Most readers will be aware of the amateur fraternity's opposition to the allocation of channels 5 A and 0 for 'special broadcasting' purposes and the proliferation of ch. 5A stations being proposed, particularly a high powered station for Mt Dundas in Victoria.

Committees under the auspices of the state Divisions of the WIA have been formed in all states, but a special technical committee was formed in Victoria to draft a submission for presentation to the Minister for Post and Telecommunications, Mr Tony Staley.

Mr Staley requested the submission be presented directly to him, with a copy to the P \& T Department, early in August. However, it is likely that we will have to wait until after the budget session of Parliament before we'll hear any news.

Keep your fingers crossed.

US Antenna case won

John L. Schroeder, a Californian amateur accused of committing a criminal misdemeanour by violating a local zoning ordinance which restricted the height of radio and television antennas, has won a three-year long court battle against the California State courts, who were pressing for this conviction.

The California Supreme Court refused to review the case indicating that State courts do not have jurisdiction over radio interference cases. The Supreme Court decision means that the US Federal Government, through the FCC, has complete jurisdiction over "radio transmission, including assignment of frequencies and interference phenomena, and therefore State courts do not have jurisdiction to consider interference cases."

John Schroeder, who had the support of the Personal Communications Foundation in his battle through the courts, had claimed that the ordinance which limited antenna heights also violated the US Constitution.

The PCF backed him on this, saying that operation of an amateur radio station was clearly an exercise of freedom of speech! However, none of the courts petitioned, including the Supreme Court, agreed with this. They did say that had the ordinance restricted antenna heights only for interference reasons it would have been invalid, but that there were other justifications for restricting height, including safety and aesthetic considerations.

Two precedents have emerged from this case: Only the US Federal Government has the right to deal with such matters as TVI and frequency assignments; and restrictions imposed by State and local government authorities can only be imposed for other than radio interference reasons.

Antenna Coupler

Frequency range 6 amateur bands from 1.8 to 29.7 MHz Input Impedance 50 ohms
Output impedance 50 to 500 ohms, unbalanced Through power 200 Watts maximum
Wattmeter
Type.....................................Through-line wattmeter
Frequency range:
Measurable RF power. Kinds of RF power Impedance Accuracy
1.8 to 29.7 MHz

Up to 20/200 Watts, switched Forward \& reflected power, switched 50 ohms Better than $/-10$ percent of full sacle

The SP-820 has built-in selectable tone fitters to attenuate high and/or low frequencies. You can switch between 2 different receiver sources. Headphones may also be used in conjunction with the filter network.

TRIO-KENWOOD (AUSTRALIA) PTY. LTD.
30 Whiting Street, Artarmon, Sydney. NSW. Australia 2064. Tel: (02) 439-4322.

Interstate Distributors:

VIC: Vicom Imports Pty Ltd (03) 699-6700
OLD: Mitchell Radlo Co (07) 57-6830
WA: Willis Trading Co. (09) 321-7600
TAS: Advance Electronics (003) 31-5688
NT: R.J. Klose (089) 81-8704
Did you know Kenwood are to release a new solid state 30W PEP HF Mobile Transceiver with full 10 M coverage, digital display and nolse blanker in OCTOBER - watch for further details.

SWL COMMUNCATONS
 Compiled by Peter Bunn, on hehalf of the Australian Radio DX Club (ARDXC).

The Australian Radio DX Club is a nonprofit body with headquarters in Melbourne. For further information on shortwave radio, and on the activities of the ARDXC, please write to the General Secretary, PO Box 67, Highett, Vic. 3190, enclosing a 30c. stamp for return postage.

BBC Fare Eastern Relay Station On The Move

The BBC is currently in the process of transferring its Far Eastern Relay transmitters from Tebrau in penninsular Malaysia to a site at Kranji in nearby Singapore. Adrian Peterson, Director of Adventist World Radio in Asia, recently paid a visit to the new Kranji shortwave relay base, and provides the following report:

Kranki is located on the northern edge of the island of Singapore, just 14 miles from the older station at Tebrau. When Kranji becomes fully operational, the Tebrau station will be phased out.

The BBC estate at Kranji contains just 4 acres, but into this compact area the construction engineers have erected a comprehensive antenna system and a large two story transmitter building. This building is constructed on cement piles because of swampy location. There are 17 self-supporting masts from which are strung 18 antennas. These antennas are slewable and reversible and are of various designs, some being unique to BBC , broadcasting. They are intended for coverage of the BBC's several target areas in Asia.

Inside the main transmitter building is the transmitter hall, and the switching room for programmes. Four transmitters, each of 250 kilowatts, have been installed at Kranji, and two of these are currently operational. When the station is fully commissioned, there will be 4 transmitters of 250 kilowatts and 4 of 100 kilowatts, all of these transmitters having been originally located at the old site at Tebrau. Two of the older units of 100 kilowatts located at Tebrau will not be transferred to Kranji.

At present, off-air programs for the BBC Far Eastern Relay Station are received at Pongol on the south-west edge of Singapore island. The receiving antenna is actually located in the edge of the sea. Programs are sent by microwave link to Tebrau, where they are split for Kranji on shortwave and for Tanglin (on the edge of Singapore city) for FM broadcasting.

The first two shortwave transmitters at Kranji were switched into regular service on February 1st 1978. The trans fer of transmitters from Tebrau is expected to be completed by late 1979 , when the Malaysian relay site is expected to leave the air.

Many test broadcasts have been made from BBC Kranji, and these have been either test tones or broadcasts of the regular World Service or Asian language programs as carried by BBC 「ebrau. Frequencies used have all been channels allocated to the Tebrau transmitters.

The schedule for the Kranji transmitters is not available, however their schedule up until September 3 was as follows: $6010 \mathrm{kHz} 2200-2315,6050$ kHz 1215-1645, $6080 \mathrm{kHz} 2315-0045$, $6195 \mathrm{kHz} 0900-1830,7180 \mathrm{kHz} 2200-$ 0045 and $0930-1830,9725 \mathrm{kHz} 0930$ $1245,11710 \mathrm{kHz} 0015-0045,11865$ kHz 2200 -2230.

DX On The Air

Radio station HCJB in Quito, Ecuador, has a weekly program for shortwave enthusiasts known as "DX Party Line" heard between 0900 and 0930 each Thursday. A new feature of the program is "South Pacific Report" presented once a month by Robert Hanner of the Australian Radio DX Club. Robert will feature comment and discussions of recent DXing activity and developments in Australia and the Pacific region. The next South Pacific Report is expected to be aired on DX Party Line of either Thursday September 21 or 28. Frequencies to tune to are: 11900,9745 ro 6130 kHz .

The Australian Radio DX Club now presents a "Pacific DX Report" over the

DX session heard on the Sri Lanka Broadcasting Corporation in Colombo. Aired monthly, this is also hosted by Robert Hanner, and the first segment went to air on September 4 during "Radio Monitors International" heard on Mondays at 1115 on frequencies of 11835,15120 and 17850 kHz . Best reception in Australia is on 11835 kHz .

Latin American Round-up

The Colombian station, La Vox de la Selva at Florencia, which operates on 6170 kHz , gives excellent reception between 0700 and 1000 when operating to a 24 hour schedule. This station is one of the Caracol network stations, and many Caracol announcements may be heard during programming.

Radio Mineria, at La Oroya, is a seldom heard Peruvian station which is currently audible on 6145 kHz , with popular songs noted between 1120 and 1200. The station usually identifies itself after each musical selection. Programmes are of course all in Spanish.

Further to our summary of Brasilian stations last issue, one Brasilian outlet giving unusually good reception at present is Radio Continental at Rio de Janeiro on 6195 kHz . Sign-on time for Radio Continental is generally 0900 , and the station remains audible until 1000.

All times are given in Greenwich Mean Time (GMT) and you should add 10 hours to calculate Australian Eastern Standard Time.

SERVICEMEN

/nstant Component Service

DISTRIBUTORS:-
NORTH.
J. A. SEVERN
P.O. Box 47

Epping 2121
869-1058
EAST.
RADIO DESPATCH SERVICE.
869 George Street,
Sydney, N.S.W. 2000
Phone: 211-0191
NEWCASTLE. DIGITRONICS
186 Parry Street, Newcastle West, 2302 Phone: (049) 614991
BRISBANE. NOW OPEN AT
Cnr Montague Road \& Victoria Street, West End. Qld. 4101. Phone: 44-6667 RON BURR

Colour and Monochrome. Also Cassettes and Transistor Radios.

Colour TV

Patchett's: Colour TV with Part Ref to PAL System.

```
Send for your brochure:-
J.R. PUBLICATIONS
P.0. Box }2
CHESTER HILL
2162
```

or call:
53 Stanley St. Peakhurst N.S.W. Aust. Phone 536295
or:
VITAL BOOKS LTD.
P.O. Box 8601

Simon Street AUCKLAND N.Z.

CANBERRA ELECTRONIC COMPONENTS PTY. LTD.

29 Woolongong St, Fyshwick. ACT. 2609. Phone 95-6811, 95-9138. Telex 62468.

DISTRIBUTORS for the Electronic Industry

ARE YOU AWARE??

THAT WE HAVE PROBABLY THE LARGEST RANGE IN AUSTRALIA OF TOP-BRAND, QUALITY PRODUCTS AT CURRENT MARKET PRICES WITH OFF-THE-SHELF AVAILABILITY.

A professional iron with adjustable temperature wattage and tip size...

For the technician involved in high reliability soldering and desoldering who finds different jobs call for a different iron specification. With the scope TC60 240 V 60 W variable temperature iron.

HITS FOR ETI PROJECTS

We get many enquiries from readers wanting to know where they can get kits for the projects we publish. The list below indicates the suppliers we know about and the kits they do.

Any companies who want to be included in this list should phone LES BELL on 33-4282.
Key to companies:
A Applied Technology Pty. Ltd. 109. 111 Hunter St, Hornsby. 2077. NSW.
C Amateur Communications Advancements, PO Box 57, Rozelle, NSW.
D Dick Smith Pty. Lid. of Crows Nest, NSW. (see Ads. for address).
E All Electric Components (formerly ED \& E Sales). 118 Lonsdale Street, Melbourne, Victoria, 3000.
J Jaycar Pty. Ltd. 405 Sussex St., Sydney 2000.
L Delsound Pty. 1 Wickhám Terrace. Queensland.
M Mode Electronics. PO Box 365, Mascot 2020.
N Nebula Electronics Pty. Ltd. 15 19 Boundary St., Rushcutters Bay 2011. NSW.

P Pre-Pac Electronics. 718 Parramatta Rd., Croydon NSW 2132.

T Townsville Electronics Centre. 281E Charters Towers Rd, Risina Sun Arcade, Hermit Park. 4812

PROJECT ELECTRONICS

ETI 041	Continuity Tester. DS
ETI 043	Heads or Tails DATSE
ETI 044	Two-Tone Doorbell. ... DATSE
ET1045	500 Second Timer DS
ETI 047	Morse Practice Set
ETI 048	Buzz Board DS
ET1 061	Simple Amplifier DATS
ETI 062	Simple Amplifier Tuner . . DSE
ETI 063	Electronic Bongo's DS
ETI 064	Intercom. ATS
ETI 065	Electronic Siren. DS
ETI 066	Temperature Alarm... ADTSE:
ETI 067	Singing Moisture Meter. . . . DS
ETI 068	Led Dice ADSE
ETI 072	2-Octave Organ DS
ETI 081	Tachometer E

TEST EQUIPMENT

ETI 102	Audio Sirnal Generator . E.DS
ETI 105	Lab Power Supply E
ETI 107	Widerange Voltmeter E
ETI 108	Decade Resistance Box.....ES
ET1 109	Digital Frequency Meter E
ETI 111	IC Power SupplyES
ETI 112	Audio Attenuator. ES
ETI 113	7-Input Thermocouple Meter P, E ,
ETI 116	Impedance Meter ES
ETI 117	Digítal Voltmeter E, AS
ETI 118	Simple Frequencv Counter E,AS
ETI 119	5V Switching Regulator supply ETS
ETI 120	Logic Probe L, ES
ETI 121	Logic Pulser L.ES
ETI 122	Loglc Tester ES
ETI 123	CMOS TesterES
ETI 124	Tone Burst Generator ES
ETI 128	Audlo Millivoltmeter L.ES
ETI 129	RF Signal GeneratorL.ES
ETI 130	Temperature Meter E
ETI 131	General Purpose power supply
ETI 132	Power SupplyNSE
ETI 133	Phase Meter E
ETI 134	True RMS Voltmeter......E
SIMPL	PROJECTS
ETI 206	Metronome T
ET1 218	Monophonic Organ ET
ET1 219	Siren ET
ETI 220	Siren ET
ETI 222	Transistor Tester ETS
ETI 234	Simple Intercom T
ETI 236	Code Practice OscillatorE
2T1239	Breakdown Beacon........E
ETI 240	High Powered Emergency Masher

MOTORISTS' PROJECTS

ET1 301	\checkmark
ETI 302	Tacho Dwell ET
ET1 303	Brake-light Warn
ET1 305	Car Alarm
ETI 309	Battery Charger P, E
ETI 312	CDI Electronic Ignition ... P, ET
ETI 313	Car Alarm E
ET1 316	Transistor Assisted Ignition
ETI 317	Rev. Monitor
AUDIO PROJECTS	
ET1 401	Audio Mixer FET Four Inpu
ETI 406	One Transistor Receiver
ETI 408	Spring Reverb. Uni
ETI 410	Sudir Stereo
ETI 413	100 Watt Guitar Amp \qquad P.L, J, DT
ETt 413	x 200 Watt Bridge Amp ... S E
ETI 414	Master Mixer. E, J
ET1 416	25 Watt Amplifier
ETI 417	Amp Overload Indicator
ETI 419	Guitar Amp Pre-Amo . . P.E.DT
ETI 420	Four-channel Amplifier . . . L.E
ETI 420E	SQ Decoder
ET1 422	International Stereo Amp SL.D
ETI 422B	Booster Amp
ET1 422	50 Watt Power Module
ETI 423	Add-on Decoder Amp
ETI 424	Spring Reverberation Unit . SL, E
ETI 425	Integrated Audio Sys
ETI 426	Rumble Fiter.
ET1 427	Graphic Equaliser . . . S L.E.J
ETI 429	Simple Stere Amplifier
ET1 433	Active Crossover
ETI 435	Crossover Amp
ETI 438	Audio Level Meter
ETI 440	Simple 25 Watt Amp
ETI 441	Audio Noise Generator
ETI 443	Compressor-Expander
ETI 444	Five Watt Stereo
ETI 445	Preamp J J,E,D
$\begin{aligned} & \text { ETI } 446 \\ & \text { ETI } 447 \end{aligned}$	Audio Limit

ET1 449	Balanced Mic Preamp 50 W. 100 W Power Amp
ETI 480P ${ }^{\text {P }}$	Power Supply DAT
ETI 481	12 V to 40 V DC Inverter
ET1 482A	Preamp Module
ETI 482B	Tone Controller AE
ETI 484	Compressor Expander E
ET1 485	Graphic Equalizer JSE
ET1 480	50w, 100W Power Amp . . A DBE
MISCELLANEOUS	
ET1 502	Emerrency Flasher
ETI 503	Burglar Alarm ET
ET1 505	Strabe L.E.D
ETI 506	Infra-Red Alarm. s. .E
ETI 509	50-Day Timer E
ETI 512	Photographic Timer.
ETI 513	Tape Sllde/Synchronis
ETI 514	Flash Unit
ET1 515	Sound Operat Flash Unit
	Light operated.
ETI 518	Light Beam Alarm
ETI 525	Drill Speed Controller
ETI 528	Home Burglar Alarm P.ET MS
ET1 529	Electronic Poker Machine
ETI 532	Photimer E
ET1 533	Digital Display. L.E.AS
ETI 534	Calculator Stopwatch. . . . A, D
ET1 539	Touch Switch E
ETI 540	Universal Timer ES
ETI 541	Train Controller ET
ETI 543	Double Dicer A
ETI 544	Heartrate Monitor. AE
ETI 546	GSR Meter
ET1 547	Telephone Bell Extender . . . E
ETI 548	Photographic Strobe E
ETI 549	Induction Balance
ET1 581	Dual Power Supply E
ETI 582	House Alarm. E
ETI 583	Gas Alarm ME
ETI 586	Shutter Speed Timer E

ELECTRONIC MUSIC

ETI 601 Synthesiser.
4600

COMPUTER PROJECTS

ET1 630 Hex Display VDU Keyboard Encoder
ETI 632 VDU $1 \mathrm{k} \times 8$ Memory Card \ldots AE
ETI 633 VDU Sync Generator.....AE

RADIO PROJECTS

$\begin{array}{ll}\text { ETI } 702 & \text { Radar intruder Alarm } \\ \text { ETI } & \text { Antenna Matching Unit }\end{array} \ldots . .$.
ETI 706 Generator Marker Generator
ETI 707 Modern Solid State
L,A,D,ES
ETI 708 Converters
ET1 708 Active Antenna
ET1 710 R 2 metre Booster
ETI 711 B Single Relay Remote Controi AE
ETI 711C Double Relay Remote
ETI 711R Receiver
ET1 711AR Remote Control Transmitter
ETI T11DR Remote Control Decoder
ETI 712 CB Power Supply.
ETI 740 FM Tuner
ETI 780 Novice Transmitier

ELECTRONIC GAMES

ETI 804 Selecta-Game
O,A,DS

Using ETI PCB Artwork

This method can be used to make negatives of ETI artwork from October 1977 on, provided the reverse of the page is printed in blue. The film used is Scotchcal 8007 which is UV sen. sitive and can be used under normal subdued light.

Cut a piece of film a little larger than the PC board and expose it to UV Iight through the magazine page. The non emulsion side should be in contact with the page. This surface can be detected by picking the film up by one corner - it will curl towards the emulsion side. Exposures of about 20 minutes are normally necessary.

The film can now be developed by placing it emulsion side up on a table, pouring some Scotchcal 8500 developer on the surface and rubbing it with a clean tissue.

Further information on Scotchcal and PCB manufacture can be found in the September and December 1977 issues of ETI. Please note also, that occasionally pressure on space may unfortunately prohibit the printing of blue type behind all PCB's, in which case the reader must resort to more conventional photographic techniques for PCB manufacture.

The printed circuit board for the ETI 641 S100 Printer is a double sided, $125 \times$ 250 mm (approx) board, and is too big to reproduce here. However, printed circuit board drawings for the ETI 641 are available from us on receipt of a large, stamped, self-addressed envelope. Write to: ETI 641 PCB, Electronics Today International, 15 Boundary Street, Rushcutters Bay, NSW 2011.

Winimert
We'll print your 24 words (maximum) totally free of charge. Copy must be with us by the 7th of the month preceding the month of issue. Please, please write or pre ferably type your adverts clearly, using BLOCK LETTERS.

-CONDITIONS

Name ana address plus phone number (if required) must be included within the 24 words allowed.
Reasonable abbreviations, such as 25 Wrms, count as one word.
Private adverts only will be accepted. Please let us know if you find a commercial enterprise using this service.
Every effort will be made to publish all adverts received however, no responsibility for so doing is accepted or implied.

Adverts must relate to electronics or audio - general adverts cannot be accepted.

ANTENNAS RECEIVERS TRANSMITTERS METERS CB. HAM BOOKS MAGAZINES PWR-SUPPS PWR-TRANS MANY MISC ITEMS SEND LARGE S.A.E. FOR LISTS. J. SILVESTER 9 GOODWOOD DRIVE, SPRINGVALE 3171 PHONE AH 5463940.

KYOKUTO 10SXRII INCL. 2 MOBILE ANTENNAS 2 MTR. 1000 CHANNELS TRANSCEIVER PERFECT CONDITION \$220 TEL. (02) 6363162.

SELL TELETYPE M15 PAGE PAGE PRINTER WITH KBD. 110^{*} AC MOTOR, 5 UNIT CODE 50 BAUD OPERATION. RTTY OR MICROPROCESSORS. $\$ 70$ MLB 700.1563.

HAVE ALMOST 200 PRACTICAL AND EVERYDAY ELECTRONICS BOOKS FOR SALE OR SWAP F.A. BRYER, BOX 68 RYE G.P.O., RYE, VIC. 3941. PH. (059) 853634.

SSTV WOLMD BOARD FULLY POPULATED WITH BACK SPACE AND $\times 2$ HEIGHT BOARDS PLUS FULL DOCUMENTATION S95. G.N. CHAPMAN, 70 CLIFF ROAD, EPPING. NSW. 2121.

SELL ETI632 VDU FULLY BUILT \& FUNCTIONAL. USE AS AN OUTPUT FOR YOUR EVALUATION KIT. \$100 O.N.). RING MARCUS 888-3563 AFTER 5PM NTH RYDE NSW.

PAY $\$ 5$ COPY ETI JAN - JUNE 75, AUG 76, EA FEB 77. R. HUNTER BOX 350 CAIRNS 4870. PH 542-385.

TECHNICO 9900 BOARD COMPUTER, AS REVIEWED IN ETI WOULD COST NEW \$700, SELL \$450. GILES PUCKETT, (02) 89-3605 A.H.

FOR SALE. ETI 632 VDU AND KEYBOARD, BUILT \& WORKING, SUITABLE FOR USE WITH ANY COMPUTER. \$200 (ONO) PHONE ROSS BALDICK (02) 419-3918 AFTER 4 PM

YAESU FT-301D TRANSCEIVER WITH MATCHING DELUXE FP.301D POWER SUPPLY, \$1200. FV-301, REMOTE VFO, \$125. FT-221R \$600. YC. 221 DIGITAL DISPLAY, \$85. FL-2100B, \$525. VL3AVE. (03) 379.1213.

ETI 4500 SYNTH. PARTLY ASSEMBLED INCLUDING KEYBOARD, PATCHBOARD, FRONT PANEL ETC. PLUS MANY ASSTD COMPONENTS MUST SELL. BEST OFFER (02) 44.7421 AFTER HOURS.

BOOMERANG TAPE RECORDING CLUB WELCOMES NEW MEMBERS. BI-MONTHLY MAGAZINE. SOUND EFFECTS LIBRARY. ROUND ROBINS. C.B. FULL DETAILS P.O. BOX 118, WELLINGTON, N.S.W. 2820

POWER SUPPLIES: -90 v TO +30 v AT 1 A . $\$ 25 .-14 v \&+10 v,+20 v$ AT 5A. $\$ 35 .+5 v$ 8 e 5 v AT 50A $\$ 45$. 24 MALOUF ST. CANLEY HEIGHTS. PH. 6044137

RESISTORS: 2000 OF THE LITTLE DEVILS. $1 / 4$ WATT. ASSORTED VALUES. \$20 OR OFFER. RING CAM MCLEAN 6044137. 24 MALOUF ST., CANLEY HEIGHTS 2166.

THE RECORDING SOCIETY OF AUSTRALIA MEETS MONTHLY FOR DEMONSTRATIONS, LIFE RECORDINGS ETC. FOR FURTHER INFORMATION OR SYLLABUS RING OR WRITE TO DON PATRICK, 36 ARGYLE ST., MACLEOD, 3085. PHONE (03) 459.1717

SELL TELEQUIPMENT SCOPES (1) D43 DUAL BEAM WITH 4 PLUG-IN AMPLIFIERS 15 MHZ 1 mV \$150. (2) S32A 10 MHZ 100 $m V \$ 75$. MANUALS INCLUDED. SYDNEY 449.5885

FOR SALE: BWD 539C CRO. SERIAL NO. 32879 \$400 ONO. JOHN (062) 47.0491 CANBERRA.

WANTED CKT OR MANUAL FOR TELE QUIPMENT SCOPE TYPE D43 WITH A TYPE AMPS. A CORK, 16 COOK STREET, UNANDERRA. 2526.

UNIDEN 2020 Mk 2. 3 MONTHS OLD. AS NEW. INC MATCHING SPEAKER BOX \$800. ALSO UNIDEN 2020 Mk 1 VERY GOOD COND $\$ 550$ PHONE BERT 67.9834 OR AH 758.4086.

DIGITAL LOGIC COURSE, COMPLETE. COST \$82. AS NEW, \$60, ONO. PHONE 82.5591 (AH).

WANTED: TWO PLUG-INS FOR SOLAR

TRON CD1400 CRO - 15 MHZ OR HIGHER BANDWIDTH - DEQUINCEY, BOX 132. BAIRNSDALE, 3875. RING (051) 52.4380 .

HELP! MELBOURNE MICROCOMPUTER CLUB BADLY NEEDS CIRCUIT DETAILS OF "OUOTRON" TICKER-TAPE TERMINALS AND CONTROL UNITS, IEXMELBOURNE STOCK EXCHANGE) PLEASE PHONE (03) 615.4521 (BH)

SALE - ROCKWELL 920 DESK CAL. CULATOR, 1000 PROGRAM STEPS, 100 DATA REGISTERS, PRINTOUT, MAGNETIC CARDS STORE PROGRAMS/DA TA, MATHS AND STATISTICS PROGRAMS INCLUDED. \$1400. PH. (02) 639.7447.

AUSTRALIAN RADIO DX CLUB, FOR SW AND MN DXERS. MONTHLY MAGAZINE PUBLISHED. WRITE FOR DETAILS. WITH 30c STAMP. TO PO BOX 67. HIGHETT, VIC. 3190.

BABY 2650 IK RAM POWER SUPPLY $\$ 80$ EA. VDU MODULATOR UART KEYBOARD POWER SUPPLY ENCODER $\$ 200$ HULLS (02) 449.5715, 19 COMENARRA PARKWAY TURRAMURRA, SYDNEY 2074.

SELL ETONE SPEAKERS $\$ 200$ OR NEAR FOR FOUR "246" SPEAKERS IN TWO LARGE BAFFLES. TOTAL 320 WATTS FOR QUALITY CONCERT WORK ETC. PHONE (02) 7977514 CROYDON.

SELL REVOX A78 STEREO AMPLIFIER 80 WRMS $\$ 260$. LENCO L85 TURNTABLE ELECTRONIC STOP AND ARMLIFT $\$ 180$. BOTH AS NEW COMPLETE WITH SCHEMATICS, MANUALS AND ORIGINAL PACK. INGS. H. BUFF (02) 9222666 O.H.

BEGINNER REQUIRES COMPUTER OR EVALUATION KIT IN/OUT DEVICES AND DATA REASONABLE PRICE RAY EVANS PO BOX 36 ILUKA 2460. PH. (066) 466173.
> send your ad to ETI MiniMart, Modern Magazines, 15 Boundary Street, Rushcutters Bay, NSW 2011.

Dual Fifteen Band Equalizer Thirty-One Band Equalizer

MXR is proud to present two additions to our Professional Products Group-the Dual Fifteen Band Equalizer and the Thirty-One Band Equalizer.
The Dual Fifteen Band Equalizer is a professional, twochannel frequency equalizer offering 15 bands of discreet adjustment per channel. Each of the bands, spaced at $2 / 3$ octave intervals, has a range of -12 to +12 decibels and can be independently adjusted using the slide controls. In addition, each channel has its own level control slider.
The Thirty-One Band Equalizer is a professional, single channel graphic equalizer providing precise control over thirty one discreet frequency bands spaced at $1 / 3$ octave intervals. Like the Dual Fifteen Band Equalizer, each band has a range of -12 to +12 decibels. In addition, there is a broadband level control to provide optimum dynamic range and ease of operation.
Due to their advanced design and high quality construction, both units are reliable, versatile instruments, that can be utilized in a wide variety of situations. Adjustments can be made in the basic tonal characteristics of any instrument to suit one's taste or needs. Specific portions of program material may be accented or diminished. A room can be "tuned" by adjusting for tonal discrepancies caused by room acoustics. Compensation for inadequacies in microphones, speakers, or even hearing is easily accomplished.

The Dual Fifteen Band and Thirty-One Band Equalizers are graphic units in that their response is illustrated on the front control panel. The outline of the frequency response curve is reflected in the positions of the slide controls. This visual representation facilitates duplication of the desired effects. Both units can be easily mounted in any standard EIA 19" rack for studio installation, or in the optional road case for portable use.
As with every MXR product, the Dual Fifteen Band Equalizer and the Thirty-One Band Equalizer are designed and manufactured with all of the care and attention given to our products used around the world in recording studios and musical performances.

Distributed by:

The Music Distillery, 503 Pittwater Road, Brookvale. NSW. 938-4095 938-2372

End noise and cross-talk with our exclusive Noiseguard ${ }^{\text {w }}$ system

Capaclty: 20 positions for edge connectors.
Edge Connectors: S-100 type, 25" spacing.
Shlelding: Every signal fully shielded by both interconnected ground lines.
Termination: Active termination of each line. Termination network includes LM201 op amp, 2N3904. 2N3906, TIP29 and TIP30 transistors, 2.4 volts, 180 ohms.

The Wünder Buss ${ }^{\text {" }}$

A product of Morrow's Micro-Stuff for

COMPUTER BITS

A DIVISION OF AUTOMATION STATHAM PTY. LTD.

47 Birch Street, BANKSTOWN
N.S.W. 2200

Phone (02) 709-4144
Telex AA26770
electronics today BIIORS

HOLDS
12 COPIES
OF ETI

Protect and file your back issues of Eiectronlcs Today with these attractive binders. Price $\$ 4.50$ plus postage and packing (90 C NSW, $\$ 2.00$ other states)

Write enclosing chequelpostal note/money order to:
SUBSCRIPTION DEPARTMENT,
ELECTRONICS TODAY INTERNATIONAL
3rd Floar, 15 Boundary Street.
Rushcutters Bay, NSW. 2011.

BUILD YOUR OWN

BIG SCREEN COLOUR TV

YOU ASKED FOR IT

THE NEW SUPER SCREEN.

The SELF-CONTAINED internal TV that will utilize any transistor portable TV 112° to 19") ... requires only 2×4 feet of floor space, fits neatly against any wall, and lends its beauty to the decor of any room.

Takes 10 to 15 hours to build. wood and TV not included.
Γ

- Sporting ovants are an experience as exciting as being there.
- Movies are seen the way they were meant to be seen
Can be used with video tape playback equipment.

We have received enquiries for a big screen TV that would:

- urilise any portable TV as an image source be a beautiful piece of furniture - require a minimum of floor space.
NOW - XENON IS HAPPY TO ANNOUNCE THE NEW SUPER SCREEN.
Designed for the do-it-yourself enthusiast who wishes to have the enjoyment and excitement of a professional Big Screen TV. but refuses to pay the $\$ 4.000$ that most manufacturers charge for this luxury

FACTS

Lens and front surface mirror supplied are the same iype used by Big Screen TV major manufacturers.

CONTENTS OF PACKAGE DEAL:

1 Super Screen 30° by 40° approx
1 Super Lens
1 Front Surface Mirror $8^{\circ \prime} \times 10^{\circ}$
1 Silver Float Mirror $14 \frac{1}{2 \prime} \times 20$

EXTRAS AVAILABLE:
1 Sharp 14* portable modified for above and video output. \$515.
1 Akal 3hr Video Recorder \$1.250
1 S M Virtas) Recrerder Color 5660
1 S M Virton) Recerrder Color S660

1 SUPER SCREEN PACKAGE KIT at $\$ 299$

Please send me

Also

Name Address
import Agents
XENON WORLD IMPORTS, Box 33, Warradale, SA. 5047.

BADIO RABHE

VOLTAGE REGULATORS
LM300H TOS Voitage Reoulator
LM304H TOS Neoative Reoulator LM305H TO5 Voltage Regulator LM309H TO5 5 Volt Regulator LM309K T03 5 Voll Reguiator LM3171 TO220 3 Torminal Adjustabl LM317K TOS
LM317K TO3 3 Terminal Aojustable Regulator 4.59 LM3201 TO220 Neg. 1 Amp Regulators, 5, 6,

ESTABLISHED OVER 35 YRS . . . NOW CARRYING IN EXCESS OF 12,000 LINES

LM320K T03 Neo. 1 Amp Regulators $5,6,8,1$ LM323K TO3 Pos. 3 Amp - 5 Voin Regulator 7. LM340T TO220 Pos. 1 Amp Regulators 5, 6, 8. 15, 18, 24 volt.
LM340K 103 Pos
LM340K TO3 Pos, 1 Amp Rogulators 5, 6, 8 .
LM723CH TO5 Voltape Regulator
LM723CN 14 PIn Dii Voltage Regulator71
Prices Include sales tax
OPERATIONAL
AMPLIFIERS/BUFFERS
LHOOA2CH TO5 bw cost FET Op Amp LM301H TO5 Op AmD
LM301A 8 pin dil OD Am
LM302H TOS Voltage Follower
LM3077 TO5 Op Amp
LM307N 8 pin dill Op Amp
LM308N 8 pin dil Op Amp
LM318N 8 pin dill op Amp
LM324N 14 pin dil low power quad Op Amp LM343H TO5 high vottage Op Amp....
LM348N 14 pin dil ouad 741 Op Amp
LM348N 14 pin dil quad 741 Op Amp
349N 14 pin dill wide-band decompensated qua
741 Op Amp.
LM358N 8 pin oil low power dual Op Amp.
LM709CH TO5 operational amplifier
LM709CN 8 pin dill Op Amp
LM741CH 705 operational amplifier
LM741CN 8 pin oill Op Amp
LM747CN 14 pin olll dual OD Amp.
LN1458N 14 pin dual Op Amp
LM3900N 14 pin dill quad amp.
LM4250H TO5 Programmable Op Amp

DOMINION PRO SERIES HIGH QUALITY REGULATED POWER SUPPLIES

11 to 16 volts adjustable. Ideal where long continuous use and excellent rogulation are required. All supplies are totally short-circuit proot.
NG3 3.5 amps - $\$ 49.00$ Including tax. For CB hobbyists, oxperimenters, school, otc. Input 240 AC, Output 111016 V 0 C , Rogulation $0-3.5 \mathrm{~A} 20 \mathrm{mV}$ $4 y_{2}$ deep $\times 6^{6}$ high. Weight approx 5 lb .
MG7 6 amps - $\$ 57.00$ including tax. High powe single side band CB radios, service bench repairs 2 -way radio base supplies. Input 240 V AC, Output 11 to 16 V DC, Regulation $0-6 \mathrm{~A} 30 \mathrm{mV}$. Ripple at 6 amps- 4 mV . Dimensions: $5^{\prime \prime}$ wide $\times 5 y_{4} 6^{\prime \prime}$ deep $\times 6^{\prime \prime}$ high. Weight approx 810.
WG12 12 amps - $\$ 115.00$ including tar. Heavy duty model. dead for operating high power linear amps, hybrid 2 .way radios, eic. Input 240 V AC Output 11 to 16 V DC, Repulation $0-12 \mathrm{~A} 10 \mathrm{mV}$ Ripple at $12 \mathrm{amps}-1.5 \mathrm{mV}$. Dimensions: $10^{\circ "}$ wide x $5 \mathrm{~V}_{4}^{\prime \prime}$ deep $\times 6^{\prime \prime}$ high. Weight approx if 1 t .
Monufactured by Radio Parts Group. Trade en quifiles welcome.

MULTIMETERS

TMK VF4

Specifications:- Sensitivity 2 K s Nolt DC, $2 \mathrm{~K} \Omega$ Nolt AC: DC Voltage. 0.25 V $2.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1000 \mathrm{~V}$; AC Voltage: 10 V 250 MA 10 A . Resistance $\mathrm{xi}, 10, \times 100, \mathrm{MA}$ ($6,60,600,6 \mathrm{~K}$ Centre Scale): Capaciance: 500 wi 10 1 u ((In two Rances); : Dapabets: - 15 to pr 32 dB (in four Ranges); Dimensions: $145 \times 95 \times 45$ mm . \$21.27 Inciuding tax.

TMK TP5SN

20K Nolt DC, BK Specifications:-Sensitivity $5 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}$? 500 V 1000V. AC Voltage: 10 V $50 \mathrm{~V}, 250 \mathrm{~V}, 500 \mathrm{~V}, 1000 \mathrm{~V}$; DC Current: 0.50 wA $5 \mathrm{MA}, 50 \mathrm{MA}, 500 \mathrm{MA}:$ Pasistance: $\times 1, \times 10, \times 100$, x1K ($60,600,6 \mathrm{~K}, 60 \mathrm{~K}$ Centre Scalo); Capitance: to plus 36 dB : Dimensions: $135 \times 95 \times 40 \mathrm{~mm}$. 10 plus 3608 , Dimen
$\$ 25.18$ including tar

TMK200

LN370N 14 pin dil AGC/Squelch amp
LM371H TOS Imtegrated RFIIF amp.
LM372H T05 AM IF strip.
LM373H TO5 AM/FM/SS8
LM373H TO5 AM/FM/SS8 iF AMP/detector M374H TOS AM/FM/SSB IF video detector
LM375N 14 pin dil osciliator and butier with M377N 14 out
LM377N 14 pin dil dual 2 watt audio amp
LM378N 14 pin dill dual 4 watt audio amp
LM379S 14 pin in line dual 6 watt audio amp LM380N 14 pin oll audio Dower amp LM381N 14 pin oh dual preamp LM3BIAN LM382N 14 pin dill low noise dual preamp. LM384N 14 pin dill 5 watt audlo power amp LM386N 8 pin dillow voltage audlo power amp LM387N 8 pin dil dual preamp.
LM1303N 14 pin dil stwatt audio power ampl
LM1304N 14 pin dil FM mutiplex steroo dem

ularor2.04
LM3065N 14 pin dil terision sound system 1.61
LM 3065 N .14 pin dil tolovision sound systom 1.61
FLUKE 8020A
Specificattous:- Sensitivity: $34 / 2$ Digh Liquid Crystal Display (10 Meg all ranges); Dimenstons; $180 \times$ $86 \times 45 \mathrm{~mm}$; Power Requiroment: 9 Volt Battery e.0. 216 Eveready (further Information available upon request). $\$ 205.28$ including sales tax
 $6.6 \mathrm{~V}, 6 \mathrm{~V}, 30 \mathrm{~V}, 120 \mathrm{~V}, 600 \mathrm{~V}, 1200 \mathrm{~V} ;$ AC Voltage $6 \mathrm{~V}, 30 \mathrm{~V}, 120 \mathrm{~V}, 600 \mathrm{~V}, 1200 \mathrm{~V}$; DC Current: 0.06 MA $6 \mathrm{MA}, 60 \mathrm{MA}, 600 \mathrm{MA}$: Rosistance: $0.10 \mathrm{~K} \Omega$, 0.2 is Decibeis: -20 to plus 630 B; Dimensions: $130 \times 90 \times 35 \mathrm{~mm}$.

TMK500

Specifications:-Sensitivity

30 K 』 Noil DC, 13 Kr Noit AC: DC Votrage: 0.25 V
 rage: 0 Urrent: . 05 M MA, $5 \mathrm{SMA} 50 \mathrm{MA} 500 \mathrm{MA}, 12 \mathrm{~A}:$ Short Tost: Internal 8uzzer. Decibels: -20 to plus 560 dB : Test: intirnal $80 z 2$ er. Decibois:
Dimensions: $160 \times 85 \times 70 \mathrm{~mm}$
$\$ 41.22$ Including tax.
NEW "SOLDER-EATER" DESOLDERING BRAID (1.8 m) in cassefte package. For standard PCB - Part No.
213. For minlature PCB - Part No. 214. $\$ 1.60$

SINCLAIR PDM35

Spechications:- Sensitivity: 34% Dioin LED Display (10 Mog Input DC); DC Voltage: 1 MV to 1000 V (Four Ranges); AC Voltage: IV to 500 V (40 Hz 5 kHz); DC Current 1 MA to 200 MA (Six Ranges) Resistance: 1 \& to 20 Meg \& (Five Ranges); Dmensions: $153 \times 76 \times 39 \mathrm{~mm}$; Power; 9 volt Battory
(e.g. 216 Eveready). $\$ 61.89$ Including sales tax

LIFE PANEL METERS

Hanges available: $0.50 \mathrm{uA}, 50-0.50 \mathrm{uA}, 0-100 \mathrm{uA}$ $100-0-100 u \mathrm{~A}, 0-200 \mathrm{uA}, 0-500 \mathrm{uA}, 0-1 \mathrm{~mA}, 0-5 \mathrm{~mA}$ $0-10 \mathrm{~mA}, 0-100 \mathrm{~mA}, 0-500 \mathrm{~mA}, 0-1 \mathrm{~A}, 0-5 \mathrm{~m}, 0-15 \mathrm{~A}$, $0-15 \mathrm{~V}, 0-50 \mathrm{~V}, 0 \mathrm{C}$, Plus $0-300 \mathrm{~V}$ AC. All one price $\$ 7.36$ ea. incl. sales tax

VT2 SERIES
Ranges avallable: $0-50 \mathrm{uA}, 50-0-50 \mathrm{uA}, 0-100 \mathrm{uA}$, 100-0-100uA, $0-200 \mathrm{uA}, 0-500 \mathrm{uA}, 0-1 \mathrm{~mA}, 0-5 \mathrm{~mA}$ $0-10 \mathrm{~mA}, 0-100 \mathrm{~mA}, 0-500 \mathrm{~mA}, 0-1 \mathrm{~A}, 0-5 A, 0-15 A$ $0.15 \mathrm{~V}, 0-50 \mathrm{~V}$ DC. All ane price $\$ 6.90 \mathrm{ea}$. incl. sales 0.15
tax.

VT3 SERIES:
Ranges avaliable: $50-0-50 \mathrm{uA}, 100-0-100 \mathrm{uA}$. $0-200 \mathrm{uA}, 0-5 \mathrm{~mA}, 0-10 \mathrm{~mA}, 0-100 \mathrm{~mA}, 0-500 \mathrm{~mA}$, $0-14$, DC Plus 0.300 V AC. All one price $\$ 6.44$ ea. ind. sales tax.
VT4 \$ERIES
Ranges available: $0-50 \mathrm{uA}, 50-0.50 \mathrm{uA}, 0-100 \mathrm{uA}$, $100-0-100 \mathrm{uA}, 0-200 \mathrm{uA}, 0-500 \mathrm{uA}, 0-1 \mathrm{~mA}, 0-5 \mathrm{~mA}$, $0-100 \mathrm{~mA}, 0-500 \mathrm{~mA}, 0-1 \mathrm{~A}, 0-5 \mathrm{~A}, 0-50 \mathrm{~V}$ DC Plus $0-300 \mathrm{~V}$ AC. All one price $\$ 5.98 \mathrm{ea}$. Incl , sales tax
Dimensional Diagrams

NOW MAKE METAL LABELS IN MINUTES THAN 3c PER SQ. INCH!

Here's all you need: "SCOTCHCAL" Brand PhoteSensitive Motal Label... your blueprint machine or a carbon arc lamp. . . . and about 15 minutes per process. That's all in takes. No camera. No darkroom. No developing tanks. This system is at least 4 times faster than any other in-plant process. You get 6 mm aluminlum nameplates, dial laces schamatics, Instrument panels, any, prototype of dermanent metal labels - right 1
INTRODUCTORY KIT. 8002 KM .
Coniains: I sheet of each of Metal/Plastic/8007 Film, I litre 8500 developer, 1 can 3900 Gloss Claar, 1 ML3 Appilcator Block 1 box ML4 Devaloper/Pads, I Sensitivity Guide, Full instruc tions. $\$ 52.90$ incl. sales tax.
METAL LABEL:
(all prices Include sales tax) 8001 RED: $250 x$ 300 mm 10 sheet pack, $\$ 35.65 .300 \times 600 \mathrm{~mm} 5$ sheet pack, $\$ 41.40 .600 \times 900 \mathrm{~mm} 3$ sheet pack $\$ 67.85,600 \times 1200 \mathrm{~mm} 2$ sheet pack, $\$ 59.80$ 8005 8LACK: $250 \times 300 \mathrm{~mm} 10$ sheet pack. 900 mm 3 sheet pack sheet pack, $\$ 41.40 .600 \mathrm{x}$有 10 sheel pack, $\$ 59.80$. 300 mm 10 sheet pack, $\$ 35.65 .300 \times 600 \mathrm{~mm} 5$ sheet pack, 641.600 mm pack mm 2 sheet pack, \$59.80 PLASTIC LABEL:
(all prices Include sales tax) 8011 RED/WHITE: 250 $\Varangle 300 \mathrm{~mm} 10$ sheet pack, $\$ 35.65 .300 \times 600 \mathrm{~mm} 5$ sheet pack, $\$ 41,40.600 \times 900 \mathrm{~mm} 3$ sheet pack, $\$ 67.85 .600 \times 1200 \mathrm{~mm} 2$ sheet pack, $\$ 59.80$. 8012 8LACKITRAMSPARENT: $250 \times 300 \mathrm{~mm} 10$ Sheet pack, $\$ 45.65 .300 \times 600 \mathrm{~mm} 5$ sheet pack, 1200 mm ? sheet 1200 mm 2 sheet pack, $\$ 59.80$. B013 BLACK/ YELLOW: $250 \times 300 \mathrm{~mm} 10$ sheel pack. $\$ 35.65$. $300 \times 600 \mathrm{~mm} 5$ sheet pack, $\$ 41.40$. $600 \times$ 900 mm 3 sheet pack, $\$ 67.85,600 \times 1200 \mathrm{~mm} 2$ Sheot pack, $\$ 59.80$. 2015 BLACKWHHITE: $250 \times$ 300 mm 10 sheet pack, $\$ 35.65 .300 \times 600 \mathrm{~mm} 5$ $\$ 67.85 .600 \times 1200 \mathrm{~mm} 2$ sheet pack, $\$ 59.80$. $\$ 07.85$. $600 \times 1200 \mathrm{~mm} 2$ sheet pack, $\$ 59.80$ $\$ 35.65 .300 \times 600 \mathrm{~mm} 5$ sheet pack $\$ 49.40 .600 \mathrm{x}$ 900 mm 3 sheet pack $\$ 67.85 .600 \times 1200 \mathrm{~mm} 2$ sheet pack $\$ 59.80$. 8018 GREEN/WHITE: $250 x$ 300 mm 10 sheel pack, $\$ 35.65$. $300 \times 600 \mathrm{~mm} 5$ sheet pack, $\$ 41.40,600 \times 900 \mathrm{~mm} 3$ sheet pack, $\$ 67.85 .6600 \times 1200 \mathrm{~mm} 2$ sheet pack, $\$ 59.80$ EXPOSURE FILM:
(all prices Include sales lax) $8007: 250 \times 300 \mathrm{~mm}$ 10 sheet pack, $\$ 21.28 .300 \times 600 \mathrm{~mm} 5$ sheet pack, $\$ 26.45 .600 \times 900 \mathrm{~mm} 3$ sheet pack, $\$ 36.80$ ACCESSORY ITEMS:
(all prices include sales tax) 8500 Developer: litre, $\$ 4.60$ ea. ML 3 Applitator 8 locks: $\$ 4.60$ ea MLA Developer Pads: 100 sheat roll, $\$ 4.03$ per roll 3900 Gloss Clear Coat Aarosoli $368 \mathrm{grm}, \$ 6.90$ aa. 3930 Matte Clear Coat Aerosol: 368 grm, S6.90 ea. 8019 Protective Overlay Film: $10^{\prime \prime} x$ $12^{\prime \prime} .10$ sheets, $\$ 12.08,12^{\prime \prime} \times 24^{\prime \prime}, 5$ sheels
$\$ 14.38^{\prime} .10 \mathrm{~S} .0$. Sensitivity Guide: $\$ 7.48$ ea. P.A. $\$ 14.38 .10$ S. Q. Sonsitivity Guide:
1 Squeagee Apollcator: 40 c ea. Further Information avaliable on request. Mote: Metal \& Plastic Label and Exposure Film In $600 \times 900 \mathrm{~mm}$ and $600 \times 1200 \mathrm{~mm}$ sizes will be avallable in single sheets at a later date.

Trade enquiries welcome

To: Radio Parts Group, 562 Spencer St., West Malbourne. (03) 329.7888.
Please send me

1 am enclosing cheque \square money order \square
or please debit my Bankcard - Number
$\$ 5$ minimum order plus $\$ 1$ P\&P. Orders in excess of $\$ 25$ freigh free in Aust. Outside Aust. freight on. Write for our comprehensive Semi-conductor price list.
Signature
Name...
Address

Contents

ALARMS

Comprehensive Burgiar Alarm
SCR Alarms
Car Radio Protector
Fire Alarm, Simple

AMPLIFIERS \&
 PREAMPLIFIERS

Non-Inverting Amplifier
AC Amplifier
AC Amplifire, Simple
Voltage Follower
Flexible Response
Hi Z. Hi Gain Amplifier
Voltage Controlled Amplifier
Recording Pickup
Direct Coupled Power CMOS Power Booster
Photocell Amplifiers
12 Volt PA System Class A Amplifier Clipper Preamp
Headphone Amplifier
Op-Amp Circuits, Standard
SIGNAL PROCESSORS
Track and Hold Circuit Track and Hold, Simple ADSR Envelope Shaper Frequency Doubler Frequency to Voltage Converter Frequency Meter, Analogue Digltal to Analogue Convertor Schmitt Trigger, Without Hysteresis Schmitt Trigger, Simple Pulse Lengthener, Optlcal

SIGNAL GENERATORS

Square Wave, Low Frequency Square Wave Generator Monostable Multlvibrator Triangular Waveform Generator Marker Generator
Voltage and Frequency Calibrator VCO, Simple
Voltage Controlled Oscillator Sine Wave Osclllator
Tone Burst Generator
Thermistor Oscillator
Theremin
Exponential Waveform Generator

FILTERS

Loudness Control Rumble Filter, Switchable VCF, Cheap
CMOS Filters
Voltage Contralled Filter
Tone Control, Active
Tone Control Circuit

SPECIAL EFFECTS

Organ, Simple
Warbling Alarm

Guitar Synthesiser Gultar Fuzz
Drum Simulating Fishcaller, Transistorised

MIXERS

Audlo Mixer
Basic Mixer
Switched Mixer

DETECTORS \& COMPARATORS

Low Battery Warning Battery Voltage Monltor Recording Level Meter Comparator Volimeter Voltage Comparator True RMS Detector Positive Peak Detector True RMS Convertor Temperature Sensor, Differentlal Schmitt, 555

INDICATORS
Temperature Sensor, Remote Warmth Indicator
Warning Flasher
Transistorised Flasher Blown Fuse Indicator
Novel Indicators
Neon Tube Flasher

SWITCHING

Stereo Input Selector Stereo Switch, Simple Logic Touch Switch Stereo Only
Input Selector, Sequencing Audio Switch
Touch Switch, Thermo LED Changeover Circuit OR Gate, SCR
AND Gate, SCR 4016 DPDT Swltch Beam Splitter, Oscilloscope Twilight Switch, Auromatic

SEQUENCE \& TIMING

Time Delay Switch
Snooze Delay Unit
Timer, 1-12 Minutes
Code Swltch
Timing Circuit
Combinatlon Lock
Flexible Timer

POWER CONTROL

Impulse Power
Half-Wave Control
Improved Half-Wave
Zero Switching
Triac Lamp Flasher

Trlac Slave Controller Light Show, Simple DC Lamp intensity Train Speed Control Temperature Controller

POWER SUPPLIES

Current Source, Drift Free
Constant Current, High Voltage
Output Voltage, Adjustment High Voltage, Varlable Regulator Switched Output
Dual PSU
Mabile Power Supply
Converting Single to Dual
Op-Amp Supply
Low Ripple PSU
Zener Assistance
Crowbar, Simple
Low Voltage, Short Protection
Low Ripple at Low Current 30 Volt Regulators Standard Configurations

TEST

FET Testing, Static
Diode Tester
Ammeter, Wide Range
Millivolimeter, Audio DC Probe, 100000 Megohm Measuring RMS with a DVM Logic Indicator, Audible Transformer-Inductor Tester Pulse Catcher Probe
JFET Test, Quick

DIGITAL

Data Selector, Two Way
7 Segment improvement 3 Chip Die
Hex to 7 Segment
Binary Calculator
TTL Kever
ASCll Kevboard
Counter-Display Module
Clock Generator, Multiphase WIndicator
Self.Clear
LED Counter
AUTOMOBILE
Fuel Gauge, Digital
Immobilisation, Automoblle

MISCELLANEA
Emergency Lights Digital Thermometer SCR One Shot
SCR Multivibrator
Meter Amplifier
Night Light, Automatic
Telephone Circuit
Headphone Adaptor
Rising Edge Trigger
Position Transducer, Digital
Temperature Stabilized Relay
CRYSTAL OSCILLATORS
LF-VHF, Various

SPEAKER CROSSOVERS
 Computer Aided Design

BATTERIES

Characteristics and Composition
CONVERSION TABLES
Hex-Decimal-Hex
Decimal-Hex-Octal-Binary
LOGIC DATA
CMOS-TTL Comparison
TTL Functions
CMOS Functions
Truth Tables, Logic Boolean Algebra, Laws CMOS Pinouts
TTL Pinouts
MPU Glossary

MISCELLANEOUS DATA

Transistor Characteristics
FET Characteristics
Diode Characteristics Semiconductor Packages
Problems?
Colour Codes
Component Codes
Preferred Values
Please note: the Circuits Books are intended as "ideas directories' - they are not meant for the beginner.

For the discerning amateur, novice or short-wave listener.

Manufacturer's Technical Data

- Electronic band changing with digital frequency display.
- Full MF/HF coverage from 250 kHz to 29.9 MHz.
- FET front end and "Wadley Loop" heterodyne oscillator for rock-solid stabillty.
- SSB, AM volce as well as CW
- Frequency readout gives resolution to 1 kHz . - Stabillity within 500 Hz during any $30-$ minute period after warm up.
- Sensitivity - SSB/CW better than 0.7 UV for $\mathrm{S} / \mathrm{N}, 10 \mathrm{~dB}$ AM - better than 2 uV for $\mathrm{S} / \mathrm{N} 10 \mathrm{~dB}$ (400 Hz 30 percent modulation).
- Selectivity-SSB/CW 1.5 kHz at $-6 \mathrm{~dB}, 4 \mathrm{kHz}$ at -50 dB AM -3 kHz at $-6 \mathrm{~dB}, 7 \mathrm{kHz}$ at -50 dB . - Speaker (built-in) impedance 4 ohms, audlo output 2 watts.
- Size $360(\mathrm{~W}) \times 125(\mathrm{H}) \times 295$ (D) mm - Simple modification permits DC operation from 13.5 V to 15 V at 1.3 A .

Specs subject to change.

PRICE AVAILABLE ON APPLICATION

Yaesu, the leader in quality communications equipment proudly introduce the FRG-7000: a high performance general coverage receiver for the discriminating shortwave listener. Explore the wondertul world of radio - hear short wave, broadcast stations, amateurs, ships, aircraft and morse code from stations all over the globe. The FRG-7000 provides an introduction into many aspects of electronics and communications. You can tune into the morse practice transmisslons and broadcasts conducted by the Wireless Institute of Australia; the Radio Amateur representative Society in Australia. The FRG-7000 is a set you would be proud to have in your lounge or your den - a set to sult any decor.
Remomber, BAIL have been the authorised agent for the YAESU MUSEN CO LTD since 1963. Experience gathered over these years, and a lifelong participation in electronics, places us in a superior position to handle warranty, after-sales-service and advice on the wide range of Yaesu amateur radio equipment. Avoid unauthorised handlers of equipment as it generally results in the supply of non-export 110 V sets with 2 -core $A C$ power cables, instruction manuals printed in Japanese, lack of service, etc. Consult us for advice on your requirements in the field of short-wave listening and amateur radio. For further information call or write to the amateur radio specialists.

Australlan YAESU agents since 1963 oubtedly be of benefit, but would suggest that any TI-58 or -59 owning reader of ETI is probably at a much more advanced level than this book. Our review copy was supplied by McGill's Authorised Newsagency of 187-193 Elizabeth Street, Melbourne 3000.

Now.Two 3-way
 40 watt speakers with nine tonal choices Save about 550 per hour while you assemble them

Even if you didn't know them by number, you probably heard about the Philips AD12K12 MK11 Speaker Kits.

Because they are now a no. 1 best-seller.
And here is the compact AD8K30, 8 " 3 -way compact system, with fine electronic and acoustic components ($1^{\prime \prime}$ domed tweeters, $5^{\prime \prime}$ mid-range, super $8^{\prime \prime}$ bass drivers). Brilliant clean sound, with a frequency response closely following the ideal Bruel \& Kjaer curve for hi-fi equipment measured in an actual listening room, using the "Third Octave Pink Noise Method".

Plus 9 combination tonal choices to adjust to the acoustics of your own listening-room.

You can assemble the AD8K30's in about two hours. You will get a professional result and save about $\$ 100$ per pair over a comparable system.
Phone or send coupon now for full details of this and all our kits.

PHILIPS ELECTRONIC COMPONENTS AND MATERIALS

KITS for KIDS!

Project kits for the beginner

Completely safe - battery operated* - no mains connection

A. Electric organ	. $\$ 5.60$	H. Electron	\$4.50	O. Electronic metronome $\$ 4.50$
B. Electronic flasher	. $\$ 4.50$	I. Photo Electric switch	. $\$ 4.50$	P. Ammeter/voltmeter $\$ 4.50$
C. Electronic sound switch	. $\$ 4.50$	J. Electronic singing bird	. $\$ 4.50$	Q. Electronic Timer $\$ 4.50$
D. Electronic touch switch.	. $\$ 4.50$	K. Morse code practice set	. $\$ 4.90$	R. Electronic mosquito repeller $\$ 4.50$
E. Electronic decision maker	. $\$ 4.50$	L. Electronic siren..........	. $\$ 4.50$	S. Electronic police car siren............ $\$ 4.90$
F. Electronic sleeping bell.	. $\$ 4.50$	M. Electronic water purity tester	. $\$ 4.50$	T. Electronic fan and colour wheel $\$ 4.50$
G. Electronic magic touch	. $\$ 4.50$	N. Transistor radio.	. $\$ 4.50$	

See July or August '78 ETI for full details.
*Batteries not Included

KIT BITS DEALERS:

NSW:
Alled Communleatlons, 2 LockInvar Place, Mornsby.
Kurri Electronics, Kurri Kurri
Unlque Electronlcs, 383 Merrylands Rd, Merrylands.
Manly Toy World, Shop 5, 74 The Corso, Manly.
Lloyds Hobby Centre, 24 Railway Ave, Liverpool.

Custom Cömmunlcaflons, Orchardfield St Lennore.
C.B. Centre, The Corso, Manly.

Red Ballon Toy World, 192 Barru Ave, Griffith.
The Toy Box, Florence Si, Mornsby.
In Electronles \& Co, 84 Ramsey St, Haberfield.
Bladen Brooke Electronlcs, 111 Bridge St, West
Tamworth.
Sale by Junk, 282 The Entrance Rd, Erina.

OLD. DISTRIBUTOR:

Mitchell Radlo Co, 59 Albion St. Albion.
STH. AUST. DISTRIBUTOR:
Internatlonal Communlcations Syatema, 77 Dale St, Port Adelaide.
TASMANIAN DISTRIBUTOR:
Tasmanlan HI-Fl Co, 87A Brisbane St, Launceston.

```
To: KIT BITS, 110 Rosemead Rd, Hornsby, NSW. 2077
Please send me Kit/s
I enclose Cheque/postal note for \$.
``` \(\qquad\)
``` plus 50c p\&p.
NAME
``` \(\qquad\)
```

ADDRESS

# Ideas for experimenters 

These pages are intended primarily as a source of ideas. As far as reasonably possible all material has been checked for feasibility, component availability etc, but the circuits have not necessarily been built and tested in our laboratory. Because of the nature of the information in this section we cannot enter into any correspondence about any of the circuits, nor can we produce constructional details.
Electronics Today is always seeking material for these pages. All published material is paid for - generally at a rate of $\$ 5$ to $\$ 7$ per item.


## Electronic Switch

This circuit provides remote switching of up to eight loads, and uses only two switches for selection. One switch is used to select the load to be controlled, the second controls whether the load is energised or not. If the state of one of the loads needs to be changed, SW1 is depressed until the number of the load appears on the 7 -segment display. The decimal point then indicates whether or not the load is energised. To change the state of the load, SW2 is depressed (pressing SW2 again will change the load's state again).

The circuit is based on a 7442,1 of 8 multiplexer and a 7490 binary counter. When SW1 is closed, the Schmitt trigger IC1 will oscillate and clock the 4 -bit counter. This drives the 7 -segment decoder and the 1 of 8 multiplexer. The outputs from the multiplexer are inverted and fed to the J.K flip-flops. When SW2 is pressed and released, a pulse will occur at the collector of Q10. The pulse will clock the selected flip-flop and activate or deactivate the relevant relay driver transistor (01-8).

EASTERN
ELECTRONIC
COMPONENTS
35 Mahoneys Road,
Forest Hill. 3131.
Telephone 878-7876.

## A NEW SUPPLIER OF ELECTRONIC COMPONENTS IN THE EASTERN SUBURBS

HERE ARE A FEW EXAMPLES OF OUR WIDE RANGE

LINEAR I.C.s

LM 555	$0-40$	LM 741	$0-45$
LM 301	$0-45$	LM 380	$1-32$
LM3900	$0-80$	7805	$1-20$
TTL I.C.S			
7401	$0-31$	7402	$0-32$
7408	$0-32$	7420	$0-32$
7492	$0-81$	7493	$0-81$
CMOS I.C.			
4000	$0-32$	4011	$0-32$
4024	$0-70$	4068	$0-32$
TRANSISTORS		$0-19$	
BC547, 548,549		$0-30$	
BC107, 108,109		$0-10$	
2N 3638 SPECIAL $\ldots .$.			


		$20-00$
2708	EPROM	$1-75$
2102	RAM	19.80
2513	ROM	$3-00$
93427	PROM	$14-95$
3850	F8 CPU	12.95
3853	F8 SMI	
THIS MONTH'S SPECIALS		
7400	O.16	
FND 357	7-SEGMENT	$0-22$
BC208	$0-10$	7815

OTHER ITEMS INCLUDE
RESISTORS $1 / 4,1 / 2,1 \& 5$ Watt CAPACITORS disc, electro, tags and greencaps.
R.F. CHOKES $3.3 \mu \mathrm{H}-800 \mu \mathrm{H}$

SWITCHES and HARDWARE MICROPROCESSORS including 6800, SC/MP, PACE, 2650, F8, 6100.
CHARTPACK PCB ARTWORK PRINTED CIRCUIT BOARDS for ETI and EA projects.

All of the above prices include sales tax.

Quantity discounts available Mail orders catered for. Pack and post 50 cents.

## S100 PRODUCTS

LOGOS I BK STATIC RAM

- Selectable Memory Protec * Totally Buttered Battery Back-up - Address on 1 K boundary - Requires no front panel

ASSEMBLED \& TESTED
$\begin{array}{ll}\text { 250ns. } & 199.95 \\ 450 \mathrm{~ns} . & 179.95\end{array}$
KIT
250ns 149.95
125.95

Bare PC Board w/Dala
Now over 1 year successful fietd experience "Special Ofter" Buy (4) 8K 450ns. Kits \$117.00

IMS 16K STATIC RA蕄 - Memory

* Address 16K
- Use with or w/o front pane
* Power 2.1 amps typ

ASSEMBLEO \& TESTEO ONLY

S-100 32K STATIC RAM

* Address 32K Boundary
* No wat states on 2 MHz
- Fully Butlered
- Phantom can be added
- $2114 / T M S 4045$ or 9135 ASSEMBLED \& TESTED 250ns. $\$ 849.00$
450 ns. $\$ 799.00$ Bare PC Board w/Data
SPECIAL OFFER: Kit without Memory only $\$ 99.95$. And
2114 Memory for $\$ 160.00$ per 8 K


## PARATRONICS LOGIC

ANALYZER KIT
MOOEL 100
Trigger Expander of digital system!
Baseplate
Model 10 Manual

## DC HAYES DATA COMMUNI- <br> CATIONS ADAPTER

- Telephone/TwX \$. 100 compatible
- Bell 103 treq. Originate

Assembled \& Tested
Bare PC Board w/data
z-80/z-80A CPU BOARD Q On board 2708
Power on jump

* 2708 includer (450ns.)
* completely sockeled Assembied and tested Bare PC Board
- For 4MHz Soeed Add $\$ 15.00$

TDL COMPATIBLE 2-80 CPU - Compatibie to TDL. $\star$ Can be ubgraded
software 8 hardware for 4 MHz operation Assembled and tested
Kit
Bare PC Board
$\$ 199.95$
$\$ 139.95$

BYTE USER BK EPRO年 BOARD
Assembled \& Tested
Kit
Bare Pc Board
Special Otter
NOTE: $2708-6$ only $\$ 5.95$

## TRS 80 UPGRADE KIT

16K Memory with Jumpers and
(Specity Level $I$ or Level ii)
APPLE II 16 K UPGRADE KIT

TARBELL FLOPPY INTERFACE

* Jumper Selectable * Persci.Shug Assembled and tested .......... $\$ 269.95$ $\begin{array}{ll}\text { Bare PC' Board } & \$ 179.95 \\ & \$ 39.95\end{array}$
NOTE: For CPM Add $\$ 70.00$
Documentation Add $\$ 20.00$

PET TO S-100 ADAPTER   Allows Pet to be intertaced to popular S-100 Bus.	$8$
Kit Assembled	$\begin{aligned} & \$ 189.95 \\ & \$ 269.95 \end{aligned}$
For Low Cost 8 Slot your Pet only.	$\begin{aligned} & \text { xpand } \\ & \ldots . .{ }^{2} 149.95 \mathrm{Kit} \end{aligned}$

SICRODESIGN MR-16 2716 EPROW BOARD (MR. 8 Also Available

* Individual Prom Address
* Uses Low cost 16K TI EPROMS
- Optional ikRAM Phantom control

Assembled and Tested

Assem
Kin

174.95
99.50

## DATABOOKS A MANUALS <br> 



> 8888828888882889

MODULES PROTO BOARDS


- 1720 Int 13

	AMI EVK 200 Kit - . . . . . . . . . . . . . . 249.9
\$235.00	-AMI EVK 300 Assembled ........ 275.00
495.00	EVK Kluge Board . . . . . . . . . . . . . . 95.00
175.00	EVK 16K Byte Ram Board ......... 75.00
75.00	EVK 6 Slot Motherboard .......... 35.00
99.00	EVK Extender Board ............ 45.00
250.00	EVK Solid frame Chassis ......... 129.00
36.00	EVK Connectors ................ 6.50
250.00	AMI 6800 Proto Rom ............ 30.00
375.00	AMI 6800 Micro Assembler Rom ... 30.00
295.00	6800 Tiny Basic Paper Tape ...... 20.00
225.00	6800 Tiny Basic Eprom .......... 125.00
60.00 395.00	ZILOG COMPATIBLE BOARDS
395.00	2-80 CPU ........................ 395.00
5.95	ZDC Disc Controlier .............. 395.00
99.00	MEM 16/65K Memory . ............ 595.00

6800 ostamen noanos
2. Same Day Shipment

All prepaid orders with cashiers SUPPORT DEVICES mICROPROCESSORS STATIC RAM NEADQUARTERS
SUA




P. O. BOX 17329 Irvine, California 92713 New Phone (714) 558-8813

## Ideas for experimenters



Fig. 1. Block diagram of the 'Spirograph':

## Electronic 'Spirograph'

The circuit will generate 'Spirograph' patterns on a conventional oscilloscope. The circuit consists of two sinewave generators followed by allpass filters which we use to phase shift the input signals by $90^{\circ}$. Applying a sinewave to the $y$ input gives a circular trace. If a second set of $\sin$ and $\cos$ signals are mixed in, a 'Spirograph' pattern is obtained. A block diagram of the system is shown in Fig. 1.

RV1 is a balance control which varies the contribution of each oscillator to the pattern without affecting the size, so that once set up there is no need to re-adjust the gain controls on the oscilliscope. This type of control can only be used if the oscillators have a low impedance output.

SW1 is a reversing switch which has the effect of turning the pattern inside out.

An existing sinewave oscillator can of course be used and the 50 Hz mains could be employed (attenuated to about $2 \vee$ RMS from a low voltage transformer secondary) as the fixed oscillator. However flickering is a problem with lower frequencies (complex patterns requiring four or more cycles to complete will flicker at about 10 Hz using the mains frequency as an oscillator. I found 150 Hz to be a good compromise (higher frequencies require more critical tuning).

The allpass filter is recommended for phase splitting as it has a unity gain for all frequencies and settings of RV5.

First connect the $y$ input of the scope to the output of an oscillator and adjust RV2 until a two volt RMS sinewave is obtained, repeat for second


Fig. $2(a)$. Suitable oscillator for the 'Spirograph'.
oscillator. Then connect up the x and y inputs as shown in Fig. 1, turn the balance control to one end so as to look. at the output of the fixed oscillator then adjust the 100 k pot until a circle


Fig. 2(b). Arrangement to give fine control of the frequency of the oscillator shown in Fig. 2(a). For 150 Hz fixed frequency use Rf1 $=R f 2=10 \mathrm{k}$.


## DeC-IT and BLOB-IT

S-DeC. No simpler way of learning circuit construction.
S-DeC. No quicker way of getting a circuit working.
S-DeC. Simply plug components in, no soldering.
S-Dec. Try, test, prove circult working.
5D Blob-Board. Transfer your working circuit, component by component, to the 5D Blob-Board.
50 Blob-Board. No cutting or drilling of contact rails.
Low, LOW price.
*FREE 5D BLOB-BOARD with every S-DeC while this offer lasts.
-S-DeC plus control panel plus 9 Project instruction book plus Free 5D Blob-Board, \$8.12.
5D Blob-Boards, pack of 3 with complete instructions, \$3.75.
Avallable from all good component stockists.

## The Valveless world

has been postponed indefinitely. Until then we'll continue to serve you with the most extensive range of electron tubes. If you're looking for an electron tube or a semi-conductor you will find it at:

## Adrian Michell's TELEVISION REPACEMENTS

Rear 139 Unlon Road, Surrey HIlls, Vic. 3127. Ph. 89-1019

Your nearest Blob dealer?
That's easy - write to:
BLOB BOARD ASSOCIATES
P.O. Box 23, Surrey Hills,
vic. 3127 or Ring (03) 89-1010.

## COMPUTER INTERFACES \& PERIPHERALS

## APPLE II SERIAL I/O INTERFACE *

Part no. 2
Baud rate is continuously adjustable from 0 to 30,000 • Plugs into any peripheral connector - Low current drain. RS. 232 input and output $\bullet$ On board switch selectable 5 to 8 data bits, 1 or 2 stop bits, and parity or no parity either odd or even - Jumper setectable address. SOFTWARE - Input and Oulput routine from monitor or BASIC to teletype or other serial printer. - Program for using an Apple il for a video or an intelligent terminal. Also can output in correspondence code to interface with some selectrics. Board only $-\$ 15.00$; with parts $-\$ 42.00$; assembled and tested $-\$ 62.00$.

## MODEM *

Part no. 109

- Type 103 - Full or half duplex - Works up to 300 baud - Originate or Answer - No coils, only low cost components - TTL input and output-serial of Connect 8 ohm speaker

and crystal mic. directly to board - Uses XR FSK demodulator - Requires +5 volts - Board $\$ 7.60$; with parts $\$ 27.50$


## DC POWER SUPPLY*

Part no. 6085

- Board supplies a regulated +5 volts at 3 amps., $+12,-12$, and -5 volts at 1 amp . Power required is 8 volts $A C$ at 3 amps , and 24 volts AC C.T. at 1.5 amps. Board only $\$ 12.50$; with parts excluding transformers $\$ 42.50$



## TAPE INTERFACE *

Part no. 111

- Play and record Kansas City Standard tapes. Converts a low cost tape recorder to a digital recorder - Works up to 1200 baud - Digital in and out are TTL-serial • Output of board connects to mic. in of recorder - Earphone of
 recorder connects to input on board - No coils Requires +5 volls, low power drain - Board $\$ 7.60$; with parts $\$ 27.50$


## T.V. TYPEWRITER

Part no. 106

- Stand alone TVT
- 32 char/line, 16 lines, modifications for 64 char/line included - Parallel ASCII (TTL) input Video output - 1 K on board memory Output for computer controlled curser - Auto scroll -
Non-destructive curser - Curser inputs: up, down, left, right, home, EOL, EOS - Scroll up, down - Requires +5 volts at 1.5 amps , and -12 volts at $30 \mathrm{~mA} \bullet$ All 7400 , TTL chips • Char. gen. 2513 - Upper case only • Board only $\$ 39.00$; with parts $\$ 145.00$


Part no. 112

- Tape Interface Direct Memory Access - Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate. and direct connections for inputs and outputs to a dightal recorder at any baud rate. $\bullet$ S-100 bus compatible - Board only $\$ 35.00$; with parts $\$ 110.00$


## UART \& BAUD RATE GENERATOR*

Part no. 101

- Converts serial to parallel and parallel to serial - Low cost on board baud rate generator $\bullet$ Baud rates: 110, 150, 300, 600, 1200, and 2400 - Low power drain +5 volts and -12 volts required
- TTL compatible - All characters contain a start bit. 5 to 8 data bits, 1 or 2 stop bits, and either odd or even parily. - All connections go to a 44 pin gold plated edge connector - Board only $\$ 12.00$; with parts $\$ 35.00$ with connector add $\$ 3.00$


## 8K STATIC

 RAMPart no. 300

- 8 K Altair bus memory Uses 2102 Static memory chips • Memory protect - Gold contacts - Wait states - On board regulator $\bullet$ S-100 bus compatible $\bullet$ Vector input option - TRI state buffered - Board only $\$ 22.50$; with parts $\$ 160.00$


## RF MODULATOR*

## Part no. 107

- Converts video to AM modulated RF, Channels 2 or 3. So powerful almost no tuning is required. On board regulated power supply makes this ex-
 tremely stable. Rated very
 highly in Doctor Dobbs' Journal hinde Recommended 5 volts DC • Board $\$ 7.60$ is 12 volts AC C.T., or +5 volts DC $\bullet$ Board $\$ 7.60$; with parts $\$ 13.50$


## RS 232/TTY* INTERFACE

Part no. 600

- Converts RS-232 to 20 mA current loop, and 20 mA current 100 p to RS-232 - Two separate circuits - Requires +12 and -12 volts - Board only $\$ 4.50$. with parts $\$ 7.00$



## RS 232/TTL* INTERFACE

Part no. 232 - Converts TTL to RS-232, and converts RS-232 to TTL - Two separate circults
 - Requires -12 and +12 volts

- All connections go to a 10 pin gold plated edge connector - Board only $\$ 4.50$; with parts $\$ 7.00$ with connector add $\$ 2.00$


## ELECTRONIC SYSTEMS

Dept. E,
P.C. Box 21638, San Jose, CA. USA 95151

## Ideas for experimenters



Fig. 3. Phase shifter circuit for use in the
'Spirograph' circuit.


Fig. 4. PSU for 'Spirograph':
is obtained (with suitable $x$ and $y$ gains). Now put the balance control in the middle and adjust the frequency controls until a stable pattern is produced. SW1 and RV1 the balance control can be used to alter the nature
of the pattern without affecting its overall size, stability or symmetry. Adjust RV5, the phase control (following the variable oscillator) for symmetry. - Have fun!


## Simple Dual Power Supply

This circuit offers a cheap and simple way of obtaining a split power supply (for Op-amps etc.), utilising the quasicomplementary output stage of the popular LM380 audio power IC.

The device is internally biased so that with no input the output is held midway between the supply rails.

R1, which should be initially set to mid-travel, is used to nullify any inbalance in the output. Regulation of Yout depends upon the circuit feeding
the LM380, but the positive and negative outputs will track accurately irrespective of input regulation and unbalanced loads.

The free-air dissipation is a little over 1 watt, and so extra cooling may be required. The device is fully protected and will go into thermal shutdown if its rated dissipation is exceeded, current limiting occurs if the output current exceeds 1 A3.

The input voltage should not exceed 20 V .


## for electronic units and all types of mounting...



- Decade Counting Units to 1 Hz .
- Wide Band Amplifier for your counter, 1 MV sensitivity, band width $1-250 \mathrm{MHz}$.

Manufacturers of
PIEZO ELECTRIC CRYSTALS
Contractors to Federal and State
Government Departments.
REPRESENTATIAVES:
NSW: Hose \& Equipment Co. P/L. 11 Salisbury St, Botany. 2019. Ph 666-8144.
SA: Rogers Electronics,
65 Magill Rd, Stepney. 5069.
Ph (08) 42-6666.
OLD: Fred Hoe \& Sons P/L,
246 Evans Rd, Salisbury North. Brisbane. Ph 277-4311.
WA: Westest Electronics.
71 Jean St, Hamilton Hill. 6161.
(Mail only) Ph (09) 337-6393.
TAS: Dilmond Instruments, PO Box 219 , Bellerive. Hobart. Ph 479-47-9077.

Send SAE for new catalogue or quote for your requirements.

## Bright Star Grystals:

PO Box 42. Springvale.
Ph (03) 546-5076 Telex AA36004.

## EDUCAL KIT SPECIALISTS DIGITAL AM-FM CLOCK RADIO KIT



## MODEL EDUCAL DCR-77

Why pay $\$ 30.00$ for just a clock in an instrument case? Only an extra \$7.00 gives you an AM-FM radio plus a moulded plastic case as sold in Europe. (We get English version).

## FEATURES

- ½" LED DISPLAY
- AM-FM RADIO
- ALARM
- SLEEP SETTING
- SNOOZE SETTING
- 500 mW OUTPUT
- COMMERCIALCASE

The kit contalns one case, transformer, mains cord, ${ }^{3}$ PC Boards, 13 iranslstors, , clock module, 10 dlodes,' 9 IF colls, 8 other colls, 47 capacitors, 51 reslstors, speaker, knobs, connectors, wire, ote.

## Clearance Sale While Stock Last! ONLY \$29.00 plus $\$ 3.00$ P\&P.

We are trying to obtain the AM-FM modules pre-aligned for youl

## ONLY EDUCAL HAS THE DCR-77

# EDUCAL 

AM-FM STEREO TUNER KIT


FEATURES

- PRE-ALIGNED FM MODULES (3)
- MONO /STEREO
- LOCALLY PRODUCED NOTIMPORTED
- 4 PRE-SET STATIONS ON FM
- FUll RANGE MANUAL

TUNING AM-FM

- 75 or $300 \Omega$ INPUT
- A.F.C.
- stereo beacon
- PROFESSIONAL FINISH

SPECIFICATIONS
TUNING 88-108MHz BANDWIDTH 300 KHz
I.F. 10.7 MHz
I.F. REJECTION 65 dB

IMAGE SUPRESSION 40dB
A.M. REJECTION 40dB

CHANNEL SEPARATION
38 dB (min.)
DIMENSIONS
$13.75^{\prime \prime} \times 10.5^{\prime \prime}$
$\times 4.25^{\prime \prime}$
NOTE ALL KITS EX STOCK SENT RETURN MAIL, MAIL ORDERS BOX No.182, CARLTON SOUTH, VIC. 3053.


## Avallable from:

McGRATHS QUANTUM ELECTRONICS Lt. Lonsdale St, Melbourne. Vic.

## GEORGE HAWTHORN

968 High St, Armadale. Vic.

Cir Liverpool \& Harrington Streets, Hobart. Tas.

## AQUARIAN SOUNDS

Canberra. ACT.


## eleatronices taday

## READERS' LETTERS

No charge for replies but a foolscap-size stamped addressed envelope must be enclosed. Project queries can only be answered if related to item as published. We cannot assist if project is modified nor if components are otherwise than specified.
We regret we cannot answer readers' enquiries by telephone.

## SUBSCRIPTIONS AND BACK ISSUES

ETI subscriptions cost $\$ 17.00$ per year (inc. postage) within Australia. Cost elsewhere is $\$ 17.65$ (inc. postage - surface mail). Airmail rates on application
Back issues cost $\$ 1.25$ each olus 45 cents post and packing
We can supply only the following issues.
1976: Nov., Dec.
1977: All issues except Jan, Feb, March.
1978: All issues.
Photostats are available of any article ever published in ETI. We charge a flat $\$ 1.00$ regardless of page quantity from any one issue of ETI. Thus if the article is in three issues the cost is $\$ 3.00$ Send orders to address below.
Binders $\$ 4.50$ plus 90 c post NSW, $\$ 2.00$ other States
Microfiche editions of this publication are available by annual subscription from Microsystems Pty Ltd, PO Box 188, North Sydney, NSW. 2060.
COPYRIGHT
The contents of Electronics Today International and associated publications is fully protected by the Commonwealth Copyright Act (1968).
Copyright extends to all written material, photographs, drawings, circuit diagrams and printed circuit boards. Although any form of reproduction is a breach of copyright, we are not concerned about individuals constructing projects for their own private use, nor by pop groups (for example) constructing one or more items for use in connection with their performances.
Commercial organisations should note that no project or part project described in Electronics Today International or assoclated publications may be offered for sale, or sold, in substantially or fully assembled form, unless a licence has been specifically obtained so to do from the publishers, Modern Magazines (Holdings) Ltd or from the copyright holders.

## LIABILITY

Whilst every effort has been made to ensure that all constructional projects referred to in this edition will operate as indicated efficiently and properly and that all necessary components to manufacture the same will be available, no responsibility whatsoever accepted in respect of the failure for any reason at all of the project to operate effectively or at all whether due to any fault in design or otherwise and no responsibility is accepted for the failure to obtain any component parts in respect of any such project. Further, no responsibility is accepted in respect of any injury or damage caused by any fault in the design of any such project as aforesaid.

## A MODERN MAGAZINES PUBLICATION

Secretary:
Publisher:
PRODUCTION
Art Director:
Assembly:
Production Manager:
Subscriptions \& Circulation:
Project Design:
Acoustical Consultants:

## ADVERTISING

## Sydney: Modern Magazines

Bob Tayior (Manager), Geoff Petschler (NSW Manager), 15 Boundary St., Rushcutters Bay 2011. Tel: 33-4282.

Melbourne: Modern Magazines
Tom Bray (Manager), Poppe Davis, Suite 24, 553 St.
Kilda Rd, Melbourne.
Tel: 51-9836.
Brisbane: Modern Magazines
Geoff Horne, 60 Montanus Drive, Bellbowrie, Qld. 4070.
Tel: 2026229.
Adelaide:
Modern Magazines
Tony James, 16 Montrose
Ave, Netherby. 5062.
Tel: 794740.

Perth: Aubrey Barker, 133 St. George's Terrace, Perth. 6000. Tel: 3223184.
Hobart:
Tokyo: . Lincone, 23 Lord St Sandy Bay. Tasmania. 7005.
Genzo Uchida, Bancho Media Service, 15 Sanyeicho, Shintuku-Ku, Tokyo 160.
London: Electronics Today International, 25-27 Oxford St, London, WIR 1RF. Tel: 01-434-1781/2.
U.S.A.: Elmatex International, PO Box 34607. Los Angeles, CA. 90034. Tel: (213) 8218581 . Telex: 181059 (Elmatexint USA)

[^0]
## ADVERTISERS INDEX

## A \& R Sonar

Adcola
43, 78
Advanced Computer Products
Ampec Engineering
Ampex
Applied Technology
Audlo \& Recording Aust
Audio Engineers
Automation Statham
Ball Electronics
Blob Board Assoc
Bright Star Crystals
BSR
Campbelltown Hi Fi
Cema
Centaur Industries
Convor
David Reid Electronics
Delsound
Dick Smith
Diggerman Electronics . . . . .. 38-39, 46
Eastern Electronic Components ... 131
Educal
EEE
Electroimpex
Electrocraft
Electronic Systom
Electro-Voice Aust
Ellistronics
Emona
ETI-Binders
ETI-Circuits No. 2
ETI-Specials
ETI-Tacho Offer
General Electronic Services
Hagemever
Harman Aust
Harmonix Acoustix
Holden Wasp Industries
IC's Unlimited
Impact
Instant Component Service
Inter Corespen 114, 115
Jade Correspondence Schools
Jaycar
JR Publications
Just Asia/Xennon
Kit Bits Aust
Kit Bits
McGills Newsagency
Music Distillery
Natlonal Panasonic (Aust)
Nessel Audio
Non-Linear Systems
Orbit Electronics
Parameters
Pennywise Perlpherals
Philips Elcoma
Phillps Industries
Pre-Pak
Radio Parts Group
Rave Electronics
$R \& D$ Electronics
Rank Aust
Rank Aust
Rod Irving Electronics
Rothmans
Scope Laps
Semeon
SM Electronics
Soundring Distributors
Studio Electronics
Superscope
Tapers

Vesco Electronics
Vicom
$24-25$

Warburton Franki
Wedderspoon
28

# FILLOUTTHISCOUPON AND WE 30 New waysto enjor H-FI 



## JVC have just released 30 new Hi-Fi products. And how many companies in this magazine can make that statement?

It's worthy to note that these new JVC Hi-Fi Products are not just a design or cosmetic change, but are the culmination of years of research and development. Resulting in innovations and performance features such as:- Quartz locked turntables with uncanny accuracy: Receivers/Amplifiers, some with built in SEA Graphic Equaliser and DC, class A/B amplification. Cassette decks with the revolutionary Spectro Peak Indicators; Computer designed speaker systems; Separate but matching components designed to compliment one another, perfectly. In fact, the finest JVC audio range ever produced.


Altogether you'll find out what's available and new in terms of JVCHi-Fi enjoyment.

And all this know-how is yours... merely for the asking.

Just fill out this coupon and we'll fill you in...
Name.
$\qquad$

$\square$ Casselte Decks	$\square$ Speakers
$\square$ Amplifiers	$\square$ Turntables
$\square$ Matching Systems	$\square$ Receivers
	wT51/78



Technics Isolated loop: Probably the most sophisticated tape transport everinvented!

Technics tape decks have long enjoyed an enviable reputation for innovations and high performance reliability. Now we present the RS-1500US open reel deck, the culmination of all our tape deck technology.
Featured is what we believe to be the most sophisticated tape transport system ever inventedthe 'Isolated Lobp'. This is produced by two pinch rollers acting upon a single super-large, direct-drive capstan, thus isolating the loop portion of the tape from influences such as the take-up or supply reels. The result is that tape speed and tension are more accurately controlled: wow and flutter rating being $0.018 \%$ (WRMS), $\pm 0.035 \%$ (DIN) at $35 \mathrm{~cm} / \mathrm{s}$.

The list of innovative features in addition to the 'Isolated Loop' includes direct-drive reel motors; aluminium diecast chassis; multivibrator pitch control; tape tension control; electrobrake; separate microphone and recording amplifiers; plug-in type head assembly and 3 -way bias and equalization selectors.
The RS-1500US open reel deck is just one of the new Pro. Series from Technics. Reliable as they are precise.


[^0]:    Electronics Today International is published by Modern Magazines (Holdings) Ltd, 15 Boundary St., Rushcutters Bay, NSW 2011. It is printed (in 1978) by Wilke \& Co., Browns Rd, Clayton, Victoria and distributed by Australian Consolidated Press.

