New Communications Section - for Hams, SWL's and CB'ers | 1 |
| :---: |$|$

UHF FREQUENCY
COUNTER PRONECT
Computerised Musical
Doorbell Project:
SpICLIAL

Pro. Series

RS-9900US. Two components for one reason: To outperform all other cassette decks.

Audio enthusiasts the world over have come to expect exciting innovations from Technics. The RS-9900US is one of them. Unlike other cassette decks it is a 'cassette system'- the separation of the sensitive amplifier electronics from the mechanical tape transport to obtain optimum performance from each.
Features in the transport unit include a closed loop, doublecapstan, 3 -motor drive to provide smooth tape travel and closest tape-to-head contact; pitch control of $\pm 5 \%$ and full IC logic control of all transport functions to ensure tape safety when switching modes. The true 3 -head system permits professional-type tape/ source monitoring.

Outstanding among the amplifier unit's many features is the fixed plus variable calibration controls for equalisation lines, and Dolby*: record and playback levels. Complate with peak reading meters of studio standards, Dolby* noise reduction circuitry and a builtin $400 \mathrm{~Hz} / 8 \mathrm{kHz}$ test oscillator for level calibration and head azimuth adjustments. An evaluation of the Technics RS-9900US capabilities will provide the answer to any contradictons about cassette equipment performance.

[^0]
P Technics

Editorial:	Les Bell
Publisher:	Collyn Rivers

A Modern Magazines Publication - Recomended retail price only.

Registered for posting as a publication Category B

PROJECTS

136: Linear Scale Capacitance Meter 11
Useful test instrument
Useful test instrument
33
33
Baluns, splitters, etc.
47
588: Theatrical Lighting Controller.
639: Musical Doorbell 58
Australian design!
85
140: 1 GHz Frequency Meter / Timer
High-performance test gear
17
Sound
Looks at the latest Hi-Fi
27
Pirated Recordings
Inside Information from Ultrasound 41
Print OutNew devices, boards, systems52
Digital Electronics by Experiment 73
Noting Down Music by Computer. 79
Self-resonance in Capacitors 80
Important in RF applications 8
NEWS \& INFORMATION
News Digest PCB's for projects 92
Sound Briefs. 21
Necklace Offer 24
Print Out News 52
Door Bell Offer 63
Mini Mart.
66
66
Data Sheet 67
Calculator Offer
Calculator Offer 95 95
Communications News 100
Ideas for Experimenters 107
Reader Services 114
Index to Advertisers. 114

AlGailable from most newsagents or directy from Hi-Fi Review 15-19-Boundary St, Rusficutters Bay. NSW 2011
Price $\$ 3,40$ (inct, postage \& packing).

Experiment in Theatre for Television. Armstrong Audio/Video Pty Limited has constructed a temporary television centre at the Open Stage Theatre in Melbourne to house one million dollars' worth of technical equipment used for the production of playwright Ray Lawler's "Doll" trilogy.

The television centre contains a video control room, lighting control room and dimmer board.

All of the videotape equipment in the video control room was supplied by Ampex Australia Pty. Ltd, including three VPR-I broadcast quality videotape recorders and this is the first time these recorders have been used in a major television production in Australia.

Up to three cameras were isolated to each of the Ampex VPR-1 recorders to give the producers greater flexibility when editing the final product. The three plays, "Kid Stakes", "Other Times" and "Summer of the Seventeenth Doll" were produced by the Melbourne Theatre Company and Armstrong Audio/Video for the Seven Network, and will be ready for transmission by late February.

New Eddystone boxes

Two additions have been made to the established range of Eddystone diecast boxes.

The model 9830P offers the advantages of volume with the minimum of height. Like the others, it has a close fitting flanged lid, secured by four countersunk screws.

The box is supplied unfinished, but the surface will accept any finish, including cellulose, with a minimum of
preparation. It has applications similar to the present range, but due to its dimensions it may be used as a handheld or pocket unit. Outside dimensions are $119.1 \times 93.6 \times 30.0 \mathrm{~mm}$.

Two water-resistant boxes have also been introduced. Features are as follows: Metric Taptite screws recessed into the lid of the box to provide a flat top surface. An earth connection facility is provided inside the box. Neoprene sealing ring. Corrosion Resistant to Industrial and Marine environments. Good surface. Finished stove enamelled, medium hammer Grey. Readily machined. Robust and rugged. Diecast in Aluminium Alloy to BS1490 LM6. Outside dimensions are: Model 9732 P $-125 \times 80 \times 45 \mathrm{~mm}$; Model 9920 P $220 \times 120 \times 66 \mathrm{~mm}$.

Further information from R.H. Cunningham Pty. Ltd., Melbourne 329. 329-9633 and all states.

Wireless Video Game

A new IC being developed by Intermetall GmbH , the West German division of ITT Semiconductors, is designed to operate with that company's ultrasonic or infrared remote control chips. The SAA1080 is designed to be built into the TV set, and will play up to tem games in colour.

Flat Colour CRT

RCA's David Sarnoff Research Centre, at Princeton, New Jersey, are developing a $76 \times 100 \mathrm{~cm}$ colour TV display about 50 mm thick. The device uses electron multipliers to create free electrons, which are then accelerated to strike the phosphor screen.

Lavalier Microphone

Sennheiser has now released a new, extremely small lavalier microphone with a frequency response of $50-$ $20,000 \mathrm{~Hz}$.
Identified as the MKE 10 , it is an omni-directional electret condenser microphone, and has flat frequency response characteristics and low sensitivity to vibrational pick up. For outdoor work it is fitted with built-in pop filter and windscreen, and an additional windscreen is available for severe conditions.

If used with equipment which lacks a powering facility, a battery adaptor, model MZA 10 , is available.
'Further details from Australian distributors R.H. Cunningham Pty. Ltd. (in your phone book).

LCD Projector

Liquid crystals seem to be finding their way into all kinds of devices these days, the latest being a large screen multicolour projection system for tactical displays, now being evaluated by the US Navy. The projector, which was developed by Hughes Aircraft, utilises a single liquid crystal light valve to provide 1,500 lumens on a 10 ft square screen. Reliability, often claimed to be a problem with LCDs, seems quite good MTBF of the device is 5,000 hours, and a prototype has operated reliably for 1,100 hours over a 17 month period with no degradation or failure.

Novice Licence - Victorian Test
In order to help all actual and prospective candidates for the Novice Amateur Licence, the Youth Radio Clubs Scheme (Victorian Division) will hold a Trial Novice Examination on Saturday April 15, 1978. The place of examination will be near the central area of Melbourne and will be easily accessible by public transport. Parking will be available.

The pass rate in the Official Exam has in the past been low, and the Trial E Exam is intended to improve the degree of preparation of candidates for the actual exam papers. A similar Trial Exam was held in 1977; amongst the Trial Exam candidates who then sat for the May Novice Exam, the pass rate was approximately twice the average Novice complete pass rate! Many of these candidates commented that they would not have passed the official exam if they had not first sat for the trial exam. Comments were also made on the beneficial effect of (A) decreased nerves (especially in Morse where this is a significant factor), and (B) specific preparation for many questions types.

A great deal of effort and time (including computer time) has gone into ensuring that the Trial Exam will be as similar as possible in all respects to the material and organisation of the Official Exam. Candidates' answer sheets will be returned when marked; since candidates
are also allowed to keep the question papers, this forms an invaluable aid in pinpointing weaknesses and consequently optimising study time. Results will be posted within a week of the exam. The Trial Novice Exam is unquestionably the best possible single form of preparation for the Novice Licence Examination.

Please help us by applying as soon as possible. The exam fee is $\$ 1.00$ (this is used to partially cover costs, the YRCS makes no profits), and should be sent with your application as a postal note or a cheque made out to the Youth Radio Clubs Scheme; please DON'T send cash. The fee should be included with a note containing your:

> Surname and initials
> Postal address (in full, including postcode)
> Telephone number (if none, write "nil")

Applications should be posted to:
YRCS Trial Novice Exam, 11 Vista Avenue, Kew, Vic. 3101.

It is important that applications are prompt, as there are a limited number of places which are expected to fill very quickly. Replies containing all other details of the exam will be posted one to two weeks before the exam.

TM 500 Oscillosc ope Plug-In
Tektronix, Inc. have added a new oscilloscope plug-in to the TM 500 family of modular test and measurement instruments. The 80 MHz , dualtrace SC 504 combines with a selection of pulse generators, counters and other TM 500 instruments to form versatile instrument configurations for measurements on digital equipment - all in one convenient package. In addition to compact packaging, this configuration offers a rear panel interface for interconnecting the various instruments. With a front panel control, the SC 504 can, for instance, be switched from displaying external signals to displaying the waveform input to its companion counter or the output from the pulse generator.

Specific performance capabilities of the SC 504 Oscilloscope include 5 mV / div sensitivity at 80 MHz ; calibrated sweep rates to $5 \mathrm{~ns} / \mathrm{div}$; a selection of channel 1, channel 2, al ternate, chopped, channel $1+$ channel 2 , channel $1-$ channel 2 , and $x-y$ display modes, z-axis input; and high writing speed. Auto, normal, and single-sweep trigger modes; a selection of AC, AC low frequency reject, AC high frequency reject, and DC trigger coupling; and a choice of channel 1 , channel 2 , line, external, or interface (TM 500 backplane) trigger sources provide great operational flexibility.

Further information from Tektronix Australia Pty. Ltd., 80 Waterloo Rd., North Ryde, 2113.

Analog-Digital Conversion Notes:

The first major updating of Analog Devices' highly successful Analog-Digital Conversion Handbook (1972) not only gives a new look at basic understanding and application of data conversion, but also includes two new chapters addressing the contemporary challenges of monolithic IC converter designs and interfacing with microprocessors and computers. Considerable coverage is also given to current designs, technologies, and production techniques employed in conversion circuits, including thin-film-on-CMOS, laser-wafer-trimming, $\mathrm{I}^{2} \mathrm{~L}$, and hybrids. The book is aimed at the engineer or scientist who now uses or is likely to use converters in his work. (ISBN: 0-916550-03-6). Write: Parameters Pty. Ltd., P.O. Box 480, Crows Nest NSW, 2065. Please include cheque for $\$ 10.00$ which includes packing and posting.

Random Access Video
Using the Video-Dex 2010 U-Matic users can now select instantaneously any spot required for presentation. In addition, the presentation begins on the first frame without the need for oldfashioned countdown. Both of these factors are vital for television stations, advertising agencies, universities or anyone needing a precise and professional presentation.

Professional Video Services Pty. Ltd. of 35-43 Clarence Street, Sydney, has announced the release in Australia of the Video-Dex 2010 random access controller for U-Matic videocassette machines. The Video-Dex 2010 keeps accurate track of tape location by generating storing and displaying precise numerical addresses for every point on the tape - with one second accuracy. This results in reduced search time and operator error.

A presenter can select any part of a videocassette to show. Once the selection has been placed in the Video-Dex, the presenter need not touch thé U-Matic machine, as the Video-Dex will search out that particular programme or programme segment and bring it up on the monitor and can even stop after the presentation if so programmed.

The U-Matic videocassette machine can even be in a different room since all the presenter needs is the Video-Dex 2010 control panel. All functions of the U-Matic can be controlled from the Video-Dex control panel including
freeze-frame, if the U-Matic is so equipped.

The Video-Dex does not interfere with the normal functions of the U-Matic machine. Demonstrations of Video-Dex can be arranged by contacting Professional Video Services on (02) 290
3359.

Tape Chip

A new IC from National, the LM1818, combines all the electrơnics required to build a tape deck except the bias oscillator. The chip carries two preamplifiers for record and playback, automatic level control circuitry, meter drive, and most importantly, record/ playback switching. 15 transistors are used to create a more flexible and reliable switching circuit than the mechanical types previously used. Samples are being shipped now, with production sceduled for June, at a US price around the dollar mark in volume.

12-Bit A/D Converter series

A series of integrated circuit 12 -bit analog-to-digital converters, which includes the industry's first A/D converter to guarantee no missing code operation over the full $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military/aerospace temperature range, has been introduced by the Microelectronics Division of Analog Devices. The new AD572 is packaged in an allmetal, hermetically-sealed, electrostatically and electromagnetically shielded dual-in-line package, and is available in " A ", " " B ", and " S " versions offering a range of temperature operation and performance characteristics for both industrial and military/aerospace requirements.

For further information contact Bruce McCarthy, Parameters Pry. Ltd., P.O. Box 480, Crows Nest, NSW, 2065 - Phone 439-3288.

Watch Battle

The U.S. digital watch market is still in turmoil as Timex and Texas Instruments lock horns. The latest round of price carbs has seen TI introduce LCD models at the $\$ 15$ mark, unveiled at the Las

Vegas Consumer Electronics Show, while Timex have lowered all their prices with their cheapest model at $\$ 24.95$. On the sidelines, both Fairchild and National Semiconductor are looking at moving back up in the market to more expensive models with increased value.

Dimmer Sensor

Siemens has introduced a new MOS IC which can replace rotary potentiometers used in light dimmer switches. By touching a sensor surface it is possible to vary the brightness of light bulbs and also to switch them on and off.

A PMOS depletion-type IC, S 566 B, has been used to design a dimmer switch without mechanical parts. There is ample room for the circuitry in conventional switch boxes and there is no need for wiring modifications.

To switch a lamp on or off the sensor must be touched briefly for about 60 ms to 400 ms . When a lamp is switched on, the last selected brightness level is restored. To make the lamp b righter or dimmer, the sensor must be touched for longer than 400 ms without interruption. If this is repeated, the direction

of brightness control is reversed. The time taken to go through the entire brightness range from dark to bright back to dark is about 7 seconds.

Any number of mechanical switches or sensors (consisting of a transistor and three resistors) can be connected to a special input of the 8 -pin MOS IC which is mounted in a dual in-line package.

For further information please contact Siemens Industries Limited, Melbourne, Sydney, Brisbane and Perth.

THE LOUDSPEAKER WITH A TOUGH ACT TO FOLLOW: JBL's NEW L4O.

For the past $21 / 2$ years, weve been making a two-way bookshelf loudspeaker called the L26. The critics loved it. The dealers loved it. The customers loved it. 250.000 times to be exact.

The smart thing to do would ve been to just keep cranking out those L26's for the next hundred years. Never change a winner, right? Not if youre JBL.

Meet JBL's brand new L40.

It's one of the best two-way loudspeakers you can buy Heres why:
The L40 has tremendous power handling capability. Don't let its size fool you It'll play right up there with loudspeakers rwice its size.

Every sound is clean and clear. Listen to the snap of a rimshot, the crash of a cymbal. Pure. Accurate. Perfectly defined. (If youd like the technical information on the L40, write us and weill send you an engineering staff report. Nothing fancy except the specs.)

Go listen to the L4O. And ask for it by its first name: IBL Youill be getting the same craftsmanship, the same components, the same sound heard in the very top recording studios in the world.

If youve been thinking about getting into high performance high fidelity, we know a great place to start: |BL's new $\mathbf{L 4 0}$ It's a whole lot of JBL for not a whole lot of money.

Ranked by the number of Top fifty albums they produced last year. seven of the ten leading recording stuctios in the world used |BL to record or mix their music. They used our sound to make theirs.

Source: Recording Institure of America

HARMAN AUSTRALIA PTY. LTD., 271 Harbord Road, BROOKVALE, N SW. 2100. Telephone: 9392922.

Telecom Appreved Recorder

Telecom has sanctioned the use of a modified version of a "National" cassette recorder, designated model No: RQ413 SP for use as an attachment to record telephone conversations. The modifications to the standard "National" recorder comply with Telecom specifications, and installation must be carried out by Telecom technicians. This involves the fitting of a signal box in the telephone circuit, in to which the recorder is plugged. It will record phone conversations at the press of a button, and may also be used as a conventional cassette unit, to replay standard tapes of conversations or music. Thus it can double as a dictating machine and a playback unit for information gathered on tape by people in the field.

Application for installation must be made on Telecom form TS72, which sets out the conditions under which it may be operated. The recommended retail price of the unit ready for installation is $\$ 170.00$ plus a Telecom installation charge to around $\$ 25.00$

The unit is available now from National dealers in all States.

ATDA Urges Comsat System

The Australian Telecommunications Development Association has come out in support of a national communications satellite system for Australia to augment existing communications systems.

This is contained in a submission by the association to the Australian Government Task Force which is inquiring into all aspects of a national satellite system.

The association has stressed in its submission that if the decision to go ahead with a satellite system was made a large proportion of it must be developed and built in Australia.
"The establishment of a national communications satellite provides the opportunity to build up our industry by allowing us to be involved to the maximum possible extent" the submission states. "This must not be another major project going to overseas sources. The Australian telecommunications industry was established to provide communications services for this country from local manufacture.
"Australia's future for manufacturing lies in the areas of high technology."

Digital Speech Interpolation

Research into telephone conversations has revealed that of any group of speakers, only about one third are actually talking at one time. New equipment being installed at ground stations as part of the International Time Division Multiple Access satellite communication system uses this principle to save satellite channels by monitoring telephone lines
and only allocating them a satellite channel wherr there is a speech signal present. The equipment incorporates five Texas Instruments TMS9900 16-bit microprocessors. The engineers who designed the system seem to have decided that the obvious alternative of asking callers not to pause for breath would not meet with widespread public not meet

ETI/Unitrex Calculator Contest

In the January issue we left our man in PNG held captive by a lying and a truthful guard in a hut with two doors, only one of which leads to freedom. He was allowed one question to help him decide which exit to take.
No doubt about it, if Shane Martin of Barraba, NSW was caught in that situation, he would escape easily. Shane wins this month's calculator for his answer: he would ask 'Which door would the other guard say is the door freedom?', and then exit by the opposite door to the one the guard indicates.
Our propagation expert, of course, being a propagation expert, calmly waited for a magnetic equatorial Sporadic-E opening, whereupon he whipped out his cunningly concealed 6 metre transceiver and made contact with a station in East Timor who relayed his message to Darwin, who relayed.... Anyway, to cut a long story short, now Shane has worked out the answer for us we can radio it back to our man, thus securing his release. I don't know, though, maybe we should let him stew for a while....
K. Wallace of Nord's Wharf, NSW asks: A cup of coffee and a cup of tea, both of equal volume, are placed on a table. A teaspoon of coffee is put into the teacup and stirred thoroughly. Then a teaspoon of the mixture from the teacup is put back into the coffee cup. Does the coffee now have more tea in it than the tea has coffee, or vice versa?
Seal an empty envelope, write your answer on the back of it, with your name and address, and send it to: Unitrex Calculator Contest (March), ETI Magazine, 15 Boundary St, Rushcutters Bay, NSW 2011. The closing date is 21 st April.

Errata

In the December issue 8080 Octal Monitor Program, a section of code was unfortunately omitted from page 95, between locations 234 and 250 of the second page. It is reproduced here with apologies to the many frustrated programmers who are out there, and thanks to the chap who brought it to our attention.

235.346003	AN: ${ }^{-1}$	
237.366250	OA1 260	FORM ASCII OIGIT 3 BITS
241.315362378	CALL PN\%.	paint fiast octal tigit
2445.175 245017	MOVAL	MOVE L TO ACCUMULATOR
246.012	QRAC	hotate rigmt. 3 times
247.017	R日C	

We were rather out of date with the addresses of the WIA divisional offices given in the January issue. The correct addresses are as follows: VIC - 412 Brunswick St, Fitzroy 3065; TAS - P.O. Box 1010, Launceston 7250 ;and ACT P.O. Box 46, Canberra City 2601.

DENON DIRECT DRIVE TURNTABLE sL-7D

SPECIFICATIONS

providing a direct drive system with the following features:-

STARTING TIME
2.1 seconds for 0 to $33-1 / 3$ r.p.m.
> - HIGH ROTATIONAL ACCURACY - LARGE DIAMETER TURNTABLE EQUIPPED WITH STROBOSCOPE - RUBBER \& FELT INSULATORS - INDEPENDENT CUEING LEVER - HIGH SENSITIVITY TONE ARM - WOW AND FLUTTER OF LESS THAN 0.04 PER CENT (WRMS) at 33-1/3 rpm

WOW AND FLUTTER: Less than 0.04% (WRMS) at 33-1/3 r.p.m.

SIGNAL TO NOISE RATIO: Over 60 dB .

The Professional Audio Brand

SPECIFICATIONS Residual Noise: Lower than $2 \mathrm{mV}(0.5 \mu \mathrm{~W})$ All silicon transistor stereo premain Damping Factor: More than 35
amplifier. Power Bandwidth: $20 \mathrm{~Hz}-45 \mathrm{kHz}(-3 \mathrm{~dB}$ at rated output)

SA-3900 AMPLIFIER

This integrated stereo unit has a rated output of 40 W +40 W both channels driven, and through the use of PNPNPN transistors a pure complementary circuit has been provided, permitting improvement in driver efficiency and power bandwidth.

ST-3900 AM-FM Tuner

The design of this receiver has been co-ordinated with that of the above integrated amplifier. and features include silic on IC chip, diode limiter, and three ceramic filter elements. Also provided is a muting circuit to minimise interstation noise.

SPECIFICATIONS

Solid State AM.FM Stereo Tuner
3-Integrated Circuit, 1-FET, 8-Transistor and 5-Diode. Power Requirement: AC 100, 120, 200, 220 $230 \sim 240$ volts changeable. $50 / 60 \mathrm{~Hz}$

Project 136

Lineur-Stule Cuparitance Meter

If you want to find out what values those odd capacitors are, then here's the instrument for you.

ONE OF THE HANDIEST instruments for an electronics hobbyist, or to have around an electronics workshop, is a capacitance meter. Every multimeter has a resistance scale - and it gets used quite often. But there is often a requirement for measuring capacitance, and few multimeters have a capacitance range.

For example, measuring the value of a variable capacitor used to temporarily 'trim' a filter or oscillator that is to be replaced by a set of fixed capacitors. Or a bagful of 'bargain' unmarked capacitors may have been obtained or the color code or numeral code has disappeared and the value of a component needs to be determined.

Once you have a capacitance meter, you suddenly find uses for it!

This capacitance meter provides a linear scale readout of the value of unknown capacitors generally to within 5% or as good as 2% depending on the accuracy of the meter used.

Range

The meter will measure capacitance values down to 5 pF and up to $1 \mu \mathrm{~F}$. Scale divisions on the model shown were at 2.5% intervals.

Five ranges are provided: 100 pF , $1 \mathrm{nF}, 10 \mathrm{nF}, 100 \mathrm{nF}$ and $1 \mu \mathrm{~F}$.

Different ranges can be provided by selecting different values for the range resistors R7 to R11. For example, five ranges from 47 pF to $0.47 \mu \mathrm{~F}$ could be included by changing R7 to 470 ohms, R8 to 4.7 k etc. The meter scale would have to be hand-calibrated in this case.

Construction

The construction is quite straightforward. The majority of the small components are mounted on the printed circuit board. The range resistors are mounted on the switch lugs as illustrated in the photographs.

All the range resistors, R7 to R11, and R12 are high tolerance 1% or 2% resistors accurately measured to be within the tolerance required. If only 5% or 10% accuracy of capacitance
value is required then standard 5% or 10\% tolerance resistors may be used, obviating the need for selecting them, or buying the expensive high tolerance types.

SPECIFICATION - ETI 136

Capacitance ranges	$100 \mathrm{pF}, 1 \mathrm{nF}, 10 \mathrm{nF}, 100 \mathrm{nF}, 1 \mu \mathrm{~F}$.
Accuracy	5% or better
(2\% possible with component selection)	
Calibration	by internal calibration capacitor
Power requirements	240 VAC or $2 \times 9 \mathrm{~V}$ No. 916 batteries

Project 136

The printed circuit board, meter, range switch, potentiometers, pilot light measurement terminals and on/off switch are all mounted on the front panel as illustrated.

The power supply is mounted on the back panel, as is the mains/battery switch. The batteries (if used) may be mounted inside the case. Overall case size is 180 mm wide by 95 mm deep by 128 mm high.

A small tagstrip is used to terminate the mains input and transformer leads and the rectifier components. Both the back panel and the front panel should be connected to the mains earth which is terminated on the tagstrip, the strip's earth tag being secured under one of the transformer mounting bolts.

The calibration capacitor is a high tolerance (2% or better) polystyrene or, better still a silver mica type. This component is mounted from the appropriate switch lug to a suitable ground lug mounted on the front panel.

The printed circuit board has PC stakes (or pins) soldered in all the positions marked on the component overlay.

Two of these (marked E and Cx on the PC artwork) are used to mount the PCB directly on the back of the "Cx" terminals, as illustrated in the photographs. This avoids increasing the circuit stray capacitance.

Little difficulty should be experienced if the component overlay is followed and the photographs are referred to during construction.

Note that alternative panel layout is possible if a standard type of panel meter is used rather than the edgewise meter shown in the photographs.

The front panel was hand-lettered with Letraset on the prototype. A Scotchcal type front panel could also be prepared if desired.

The CAL. potentiometer is a screw-driver-adjust type and was mounted with a fixing collet. Knob-twiddlers can cause havoc.

Using the Meter

Once the instrument has been tested and confirmed to be in working order, switch the range switch to the 100 pF position and turn the SET ZERO control so that the meter reads zero with no capacitor connected to the Cx terminals. Then switch to the CAL. position and adjust the CAL. potentiometer so that the meter reads full scale.

Now you are set to measure all those 'unknown' capacitors.

Any devices used to grip capacitors being measured, and plugged into the Cx terminals, will add stray capacitance and this will need to be compensated for by readjusting the zero set control.

Continued on page 14...

Note: A suitable edge meter is available from Ham Radio Suppliers 323 Elizabeth St, Melbourne 3000 (67-7329, 67-4286). They have been advertised at $\$ 3.00$ each (plus P \& P if ordered by mail). The particular meters are $0-1 \mathrm{~mA}$ movements calibrated $0-5$ ounces. The scale is easily removed and reversed to provide a blank scale which can be hand-calibrated (use a reg. voltage supply a good pot. and a mirror scale or digital meter to set the current points). This is best done with the meter mounted on the panel. Excellent accuracy can be obtained.

PARTS LIST - ETI 136

Resistors

Res	
R1	560k, \%W
R2	470 ohm. $1 / \mathrm{WW}$
R3, 6, 13	1k5. 1/2W
R5	10k, 1/2W
R7	1k, 1/2W. 2\%
R8	10k," " either use 2% tol.
R9	100 k " " $\begin{gathered}\text { resistors or selec- } \\ \text { ted } 5 \% \text { or } 10 \%\end{gathered}$
R10, 12	1 M "
R11	10M "
RV1	10k/A panel mounted, screw-
	driver adjusted
RV2	$500 \mathrm{ohm} / \mathrm{A}$ pot.
Capacitors	
C1	3n3, Philips polystyrene or silver mica
C2	10 nF greencap or ceramic
C3	1 nF Philips polystyrene
	(selected, 2\%) or silver mica, 2\%
C4	100 nF greencap
C5	100 nF greencap
C6	640 uF, 25 V electrolytic

Semiconductors

D1 EM401 or similar
S1 DPST or DPDT, 250 VAC rated min . toggle switch S2 SPDT or $1 / 2$-DPDT min, toggle switch
single pole, six-position OAK
$\begin{array}{ll}\text { S3 } & \begin{array}{l}\text { single po } \\ \text { switch } \\ \text { 2N } \\ \text { 2N2646 }\end{array}\end{array}$
$\begin{array}{ll}\text { Q1 } & \text { 2N2646 } \\ \text { O2 } & \text { BC107 or }\end{array}$
IC1 LMUivalent NE555 timer IC.
IC2 78L12 (preferred) or 7812 or LM340-T12

Miscellaneous
T1 PF2851 or M2851, 12.6 V C.T. @ 150 mA

Pilot $\quad 12 \mathrm{~V}, 20 \mathrm{~mA}$ bayonet lamp and holder. Transistor Co. model 754 or similar
M1 O. 1 mA meter, see text Sundries pk screws, wire, batteries, nuts, bolts, tagstrip, etc.

If you want to find out what values those odd capacitors are, then here's the instrument for you.

ONE OF THE HANDIEST instruments
for an electronics hobbyist, or to have around an electronics workshop, is a capacitance meter. Every multimeter has a resistance scale - and it gets used quite often. But there is often a requirement for measuring capacitance, and few multimeters have a capacitance range.

For example, measuring the value of a variable capacitor used to temporarily 'trim' a filter or oscillator that is to be replaced by a set of fixed capacitors. Or a bagful of 'bargain' unmarked capacitors may have been obtained or the color code or numeral code has. disappeared and the value of a component needs to be determined.

Once you have a capacitance meter, you suddenly find uses for itl

This capacitance meter provides a linear scale readout of the value of unknown capacitors generally to within 5% or as good as 2% depending on the accuracy of the meter used.

Range

The meter will measure capacitance values down to 5 pF and up to $1 \mu \mathrm{~F}$. Scale divisions on the model shown were at 2.5% intervals.

Five ranges are provided: 100 pF , $1 \mathrm{nF}, 10 \mathrm{nF}, 100 \mathrm{nF}$ and $1 \mu \mathrm{~F}$.

Different ranges can be provided by selecting different values for the range resistors R7 to R11. For example, five ranges from 47 pF to $0.47 \mu \mathrm{~F}$ could be included by changing R7 to 470 ohms, R8 to 4.7 k etc. The meter scale would have to be hand-calibrated in this case.

Construction

The construction is quite straightforward. The majority of the small components are mounted on the printed circuit board. The range resistors are mounted on the switch lugs as illustrated in the photographs.

All the range resistors, R7 to R11, and R12 are high tolerance 1% or 2% resistors accurately measured to be within the tolerance required. If only 5% or 10% accuracy of capacitance
value is required then standard 5% or 10% tolerance resistors may be used, obviating the need for selecting them, or buying the expensive high tolerance types.

SPECIFICATION - ETI 136

Capacitance ranges Accuracy

Calibration
Power requirements
$100 \mathrm{pF}, 1 \mathrm{nF}, 10 \mathrm{nF}, 100 \mathrm{nF}, 1 \mu \mathrm{~F}$. 5\% or better
(2% possible with component selection)
by internal calibration capacitor
240 VAC or $2 \times 9 \mathrm{~V}$ No. 916 batteries

Project 136

The printed circuit board, meter, range switch, potentiometers, pilot light measurement terminals and on/off switch are all mounted on the front panel as illustrated.

The power supply is mounted on the back panel, as is the mains/battery switch. The batteries (if used) may be mounted inside the case. Overall case size is 180 mm wide by 95 mm deep by 128 mm high.

A small tagstrip is used to terminate the mains input and transformer leads and the rectifier components. Both the back panel and the front panel should be connected to the mains earth which is terminated on the tagstrip, the strip's earth tag being secured under one of the transformer mounting bolts.

The calibration capacitor is a high tolerance (2% or better) polystyrene or, better still a silver mica type. This component is mounted from the appropriate switch lug to a suitable ground lug mounted on the front panel.

The printed circuit board has PC stakes (or pins) soldered in all the positions marked on the component overlay.

Two of these (marked E and Cx on the PC artwork) are used to mount the PCB directly on the back of the "Cx" terminals, as illustrated in the photographs. This avoids increasing the circuit stray c̣apacitance.

Little difficulty should be experienced if the component overlay is followed and the photographs are referred to during construction.

Note that alternative panel layout is possible if a standard type of panel meter is used rather than the edgewise meter shown in the photographs.

The front panel was hand-lettered with Letraset on the prototype. A Scotchcal type front panel could also be prepared if desired.

The CAL. potentiometer is a screw-driver-adjust type and was mounted with a fixing collet. Knob-twiddlers can cause havoc.

Using the Meter

Once the instrument has been tested and confirmed to be in working order, switch the range switch to the 100 pF position and turn the SET ZERO control so that the meter reads zero with no capacitor connected to the Cx terminals. Then switch to the CAL. position and adjust the CAL. potentiometer so that the meter reads full scale.

Now you are set to measure all those 'unknown' capacitors.

Any devices used to grip capacitors being measured, and plugged into the Cx terminals, will add stray capacitance and this will need to be compensated for by readjusting the zero set control.

Continued on page $14 \ldots$

Note: A suitable edge meter is available from Ham Radio Suppliers 323 Elizabeth St, Melbourne 3000 (67-7329, 67-4286). They have been advertised at $\$ 3.00$ each (plus P \& P if ordered by mail). The particular meters are $0-1 \mathrm{~mA}$ movements calibrated $0-5$ ounces. The scale is easily removed and reversed to provide a blank scale which can be hand-calibrated (use a reg. voltage supply a good pot. and a mirror scale or digital meter to set the current points). This is best done with the meter mounted on the panel. Excellent accuracy can be obtained.

PARTS LIST - ETI 136

Resistors	
R1	560k, \%/w
R2	470 ohm. $1 / \mathrm{WW}$
R3, 6, 13	$1 \mathrm{k5}$. $1 / \mathrm{W}$ W
R5	10k, 1/2W
R7	1k, 1/2W. 2\%
R8	10k," " either use 2% tol.
R9	100k" " resistors or selected 5% or 10%
R10, 12	1M " "
R11	10M " "
RV1	10k/A panel mounted, screwdriver adjusted
RV2	500 ohm/A pot.
Capacitors	
C1	3n3, Philips polystyrene or silver mica
C2	10nF greencap or ceramic
C3	1nF Philips polystyrene (selected, 2\%) or silver mica, 2\%
C4	100 nF greencap
C5	100 nF greencap
C6	$640 \mathrm{uF}, 25 \mathrm{~V}$ electrolytic
Semiconductors	
D1	EM401 or similar
S1	DPST or DPDT, 250 V AC ráted min. toggle switch
S2	SPDT or $1 / 2$-DPDT min, toggle switch
S3	single pole, six-position OAK switch
01	2N2646
02	BC 107 or $\mathrm{BC} 108,8 \mathrm{C} 109$ or equivalent
IC1	LM555 or NE555 timer IC.
	or LM340-T12

Miscellaneous

T1 PF2851 or M2851, 12.6 V C.T.@ 150 mA

Pilot $\quad 12 \mathrm{~V}, 20 \mathrm{~mA}$ bayonet lamp and holder.
Case Instrument case, Australian Transistor Co. model 754 or símilar
M1 O-1 mA meter, see text Sundries pk screws, wire, batteries, nuts, bolts, tagstrip, etc.

HOW IT WORKS - ETI 136

A unijunction transistor, Q1, is connected as a relaxation oscillator with a frequency determined by R1-C1. The frequency of oscillation in this instance is about 1 kHz .

Pulses of about $1 \mu \mathrm{~s}$ duration are produced across R4 each time the UJT "fires". The resistance between b2 and b1 of the UJT reduces to a low value each time the emitter conducts. Much of the charge stored in C 1 is "dumped" across R4 for the short duration that the c-b1 junction of Q1 conducts.

The narrow pulses across R4 drive the base of Q2 via R3, which serves as a base-current limiting resistor. The pulses cause Q2 to conduct for the same duration, that is, about $1 \mu \mathrm{~s}$, and negative-going pulses from the collector of Q2 drive the "TRIGGER" input of the 555 timer, IC1. This is connected to operate as a monostable in this circuit.

When IC1 receives a trigger pulse at pin 2 , the flip-flop is set, releasing the short circuit across Cx and driving the output, pin 3, high. The voltage across the capacitor then increases exponentially for a period that depends on the value of the unknown capacitance Cx . The period is determined according to the formula:

$$
t=1.1 \operatorname{RrCx}
$$

At the end of the period, the comparator resets the flip-flop which in turn discharges the unknown capacitor, Cx , and drives the output to its low state.

This cycle is repeated each time a negative-going trigger pulse appears at pin 2 of IC1.

Thus as the range resistor value (Rr) is fixed, the ON/OFF ratio of the output voltage will be determined by the value of Cx. The ON/OFF ratio is independent of
the relaxation oscillator frequency and trigger pulse duration.

The current measured through the 'load' resistor on the output (R6) of IC1 will thus be directly proportional to the value of the unknown capacitor Cx .

The meter, M1, measures the current through R6, the meter inertia 'averaging' the current.

As the voltage at the output pin swings between about $2 / 3 \mathrm{Vcc}$ and less than $1 / 3$ Vec in its 'high' and 'low' states respectively the DC offset is compensated for by returning the 'load' current through an offset voltage developed across VR2 via R13 from the supply rail.

Zero-setting is accomplished by making VR2 variable. A calibration control is provided by making a portion of the 'load' resistance variable - VR1 here.

Project 136

... from page 12
However, this will only have to be done on the 100 pF and 1000 pF ranges as the added capacitance will be negligible on the higher ranges.

Meters

An edgewise-mounted panel meter was used in the prototype for several reasons. Firstly, we had one! Secondly, a scale nearly 50 cm long allowed us to calibrate the meter at very close intervals - 2.5% here, and still give accurate
readout. Thirdly, the edge meter used little panel space, giving it a clean, uncluttered appearance.

A 0-1 mA meter was used as it has a convenient scale. If you use a range with full-scale values of 47 pF to $0.47 \mu \mathrm{~F}$ a $500 \mu \mathrm{~A}$ FSD meter will have to be used.

The zero-set potentiometef, VR2, provides a small voltage offset as the output, pin 3, or IC1 does not go to zero volts and it also compensates for the effect of the small stray capacitance
in the construction.
A calibration position is-provided on the range switch for the sake of convenience. The original model did not have this refinement but we soon added it when we found out how useful it was! it also helps to maintain accuracy as a 'standard' capacitor does not have to be kept external to the instrument for this purpose - we kept losing ours until we put it in the circuitl

SECURED IN SIMILAR
MANNER.
NOTES:
() 4 HOLES, 10 mm DIA.
1 HOLE, 6 mm DIA.
(2 HOLES, 8 mm DIA.
4 HOLES, 2 mm DIA.
dコ／LでヨV

WHAT must cois In out.

Ortofon professional cutter head type DSS 732 in action.

Latest from Ortofon is the M 20 Super-a unique magnetic stereo cartridge, based on our exclusive world-patented Variable Magnetic Shunt (VMS) principle.

When it comes to perfection in recorded sound the principle is as simple as this:

What goes in must come out.
Which means that the response from the groove of your favourite record should be as close as posisible to the sound of the original master tape.

With this in mind, we at Ortofon concentrate our activities in two areas only: the production of sophisticated cutting equipment for making master records-and the manufacture of the finest pick-up cartridges to play the dises which they produce.

Most of the major record companies use Ortofon cutters. And because it is only natural that the manufacturer who knows most about making the records should also know most about playing them, our cartridges for many years have been the choice of professionals and discerning music lovers throughout the world.

Ortofon do not make turntables, amplifiers or loudspeakers. We put all our experience into developing advanced products to cover the two most critical sectors in sound reproduction: the cutting and the playback of records.

For us accuracy in sound is more than just a slogan.
It's our reason for being in business.

Arm/Cartridge Interface

It seems obvious that most of the new crop of moving-coil cartridges are capable of delivering very fine performance when correctly fitted to a suitable arm. The interesting thing here is that the ultra-low mass syndrome is no longer prevalent and that manufacturers of both arms and cartridges have come to grips with the idea that a moving-coil cartridge, by virtue of its low compliance, needs at least a medium mass arm (say 15 gm or so effective mass less cartridge) to avoid serious resonance problems in the low frequency band. The mass will obviously have a stabilising effect on the pickup system enabling the stylus to follow the groove modulations without the entire pickup system attempting to trace very low frequencies. Our own experiments so far indicate that arms such as the Formula 4, whilst providing first class conditions for high-compliance cartridges, do give low-frequency problems with items like the Denon DL103, the Ortofon MC20 and our regular Decca 6E.

Of course, low effective mass is most needed in the vertical plane to avoid loss of contact between stylus and groove on warped and rippled record surfaced, whilst stability (by virtue of mass) is most needed in the lateral plane, since bass modulations on records are almost invariably lateral with minimal vertical elements. One solution to the conflicting demands of low vertical mass and high horizontal mass is the excellent Dynavector (Onlife) arm which must currently take the cake for innovative and practical design. This arm is based on a massive pedestal which also enables it to be used free-standing (i.e. not secured to the turntable) and the main carrying arm, also very massive, pivots only in the horizontal plane. This main arm supports an offset sub arm which, whilst of adequate rigidity and total mass relative to its size, has very low effective vertical mass. The sub arm, which carries the headshell and, beyond its pivot (which allows only vertical motion) a very small counterweight, is unlikely to allow series resonances to develop in the audible band. The only possible penalties arising from the use of the short sub arm are, first, that greater distortion due to vertical tracking angle changes is likely by comparison with arms having longer effective length in the vertical plane - although this is probably of less consequence than the mistracking distortion resulting from a high-mass arm playing a warped record; and secondly, the pivots for the sub arm must be very carefully made and maintained, for friction so close to the stylus would obviously have greater influence than the same amount of friction in a longer arm.

So far, we've heard a Dynavector 20B in this unusual look. ing arm and can only confirm that the cartridge gives a distinct performance improvement thus used. After our initial, rather disappointing acquaintance with the 20B, as used in JH and SME arms, we were, of course, agreeably surprised. But it doesn't end there. Read on for more news on the 20B.

Cartridge/Amplifier Interface

The 20B has displayed certain problems with the majority of preamps, resulting in noticeable bass-shyness and a rather prominent high treble brightness. These effects are due to modification of the 20B's frequency response by reactive components in the equalisation section of the preamp.

To overcome this problem, Modular Electronics, P.O. Box 245, Narrabeen, NSW, 2101, has introdyced a 'black box'
(it's actually grey hammer finish but we'll let that pass) based on a first stage buffer amp interfacing with the cartridge, a precise RIAA equalisation stage, and then a further buffer amplifier which feeds direct to the line-level inputs of the majority of preamps. (The aux. input will normally be used). Used with the 'black box', the 20B sounds vastly improved, giving a very detailed and beautifully balanced result. One thing in favour of the 20 B is its first class tracking performance, which has made it a cartridge well worth considering in any event.

Modular Electronics can also supply equalisation cards suitable for the Decca 6E (at lastl) and the next subject for treatment is the Garrott P77, which we wouldn't have thought needed much doing to it to judge from our experience. The P77, fitted with a Weinz stylus, a parabolic type from W. Germany, looks like being a big favourite and if its performance can be even further improved using the Modular Electronics unit, a lot of listeners will be very happy indeed. The 'black box' can be ordered direct from Modular Electronics and expected RRP is $\$ 149$.

Jordan-Watts Flagon

The Jordan-Watts Flagon loudspeaker, using a single JordanWatts drive unit module (we shall describe this in greater detail in the next issue) is based on a ceramic enclosure which looks like a traditional wine flagon. The drive-unit, a full-range device with a metal diaphragm, is sealed into the enclosure and covered at the front with a rather garish grille made of wooden strips glued to a gauze backing. A lead-out cable is provided for input connection.

- Continued overleaf

EMBTMAD

The inside of the enclosure appears to be stuffed with foam plastic, and the cork stopper is hollow in the middle to provide reflex loading. The speaker system combines a number of important desiderata - a non-resonant enclosure material, for example, of irregular shape. Most people refuse to take the Flagons seriously, which is a pity since for size they sound exceptionally good, the main drawback being a lack of genuine bass output (which one would expect anyway from a compact loudspeaker) and a deep nasal colouration giving certain male speakers the effect that they have mild sinusitis. Even so, we
found the sound very satisfying indeed, with a dramatic impression of perspective and wide dynamics, first class definition, extremely stable stereo imaging and good coherency of complex sounds.

Well, we can live with the colouration which was by no means unpleasant, for the other qualities of the samples illustrated very clearly the benefits of a really good single-diaphragm full range drive unit. We're sure we haven't heard the last of Jordan-Watts and look forward to hearing others in the range - samples are to hand but as yet we've not had the opportunity to set them up.

Spectrum Planning Plea

INCREASING PUBLIC DEMAND for high quality stereo FM radio broadcasts is underlining the appalling state of frequency allocation in Australia. In a situation where a major television channel has been allocated a frequency hardly suitable for TV transmissions (channel 0); where TV transmissions occupy part of the spectrum used overseas for FM radio; where communications for air traffic control use frequencies different to those employed internationally (thus necessitating duplicate radio equipment for aircraft flying into Australia from overseas), it is clear that effective long term planning is overdue.

Even though some of the decisions contributing to this woeful situation could, under prevailing circumstances, have been justified at the times they were made, other decisions such as the UHF/FM radio idea, mooted by major industrial interests and fortunately scotched before UHF sound broadcasting was forced upon us - have definitely been against the public interest and are now causing enormous problems to the authorities and broadcasting licensees involved. This is the view of Grahame Wilson, spokesperson for the Public Broadcasting Association of Australia.

Mr. Wilson discussed the situation with us at some length and pointed out that, with the Geneva World Administrative Radio Conference taking place in 1979, an enquuiry into radio frequency spectrum management in Australia was immediately necessary for the formulation of future broadcasting policy. The enquiry should:

- review the demands for radio services
- review recent technical developments which might alter the use of the radio spectrum
- recommend long term policies on radio spectrum use
- show how long and short.term use of the radio spectrum can be balanced
- declare what research could help make better use of the radio spectrum
- consider the implications of the International Telecommunications Union's policy
- consider the immediate needs of Australian radio broadcasters and
- determine the role in spectrum planning of the Post and Telecommunications Department.
Mr. Wilson believes such an enquiry, resulting in concrete proposals and actions for sorting out Australia's broadcasting mess, could save Australia from the sort of problem referred to by McLean in his 1975 report - 'The non-standard use in Australia of the Band $88-108 \mathrm{MHz}$ has given rise to a large part of the problem on which we have been called in to make

recommendations. The introduction of FM (sound broadcasting) into the UHF band would also be contrary to international practice and could consequently give rise to similar embarrassment in the future'.

The result of the McLean report was introduction of experimental broadcasts in Sydney. Melbourne and Brisbane, later giving way in Sydney to a full stereo service on 92.1 MHz by $2 \mathrm{MBS}-\mathrm{FM}$.

Political Plaything

We asked Mr. Wilson whether yet another enquiry into broadcasting was likely to return any successful result, and he informed us that this particular enquiry was essential to avoid embarrassment for Australia at the 1979 WAR conference. The main problem seemed to be that no rigid policy for future planning was currently available and this was the real cause for concern. Mr Wilson pointed out that broadcasting as a whole was really a political plaything, with very few people seeming to realise the tremendous importance of proper management and planning. He urged the introduction, as soon as practicable, of UHF TV broadcasting, ideal for Australian conditions where terrain and community virtually dictated use of local broadcasting stations rather than fewer VHF stations covering wide service areas. And with a large number of domestic TV receivers now equipped with UHF tuners, such a changeover would seem to be a logical move, especially in regions where existing VHF services (channels 3, 4 and 5) overlapped internationally used FM sound broadcast frequencies.

This particular problem arose from a request in 1961 to increase the number of VHF TV channels from 10 to 13 , and in response to this the Huxley Committee recommended direct departures from the ITU (International Telecommunications Union) preferred usages of spectrum space.

Other TV channels cause other problems. Channel 5A was placed in an international satellite and space research band, currently still in use. Part of Channel 0 falls into the amateur radio band ($50-54 \mathrm{MHz}$) preferred for ITU region 3, which includes Australia. This particular channel is technically barely suitable for TV broadcasting! Another unusual feature of the Australian allocation is the existence of a space, $6 / 7$ ths of a TV channel wide, left between channels 9 and 10 for use by domestic aviation.

In a press release drawn up for the Public Broadcasting Association of Australia, Mr. Wilson attributes these anomalies to the need for quick, high powered penetration of television services. The cost is now being felt with the development in Australia of FM radio some 25 years behind the rest of the world.

Timetable

The extreme difficulty being experienced in allocating FM services now needs to be emphasised, says Mr. Wilson. It is time for a definite timetable for overall frequency spectrum management reform to be drawn up. The effect of changing frequency allocations in the FM band will be felt by all UHF and VHF spectrum users, not only television services. The radio spectrum, if properly managed, will provide ample space (Washington DC has over 40 FM services in the $88-108 \mathrm{MHz}$ band!) for everyone; broadcasters, communicators and the general public. There should be clear separation between user bodies and the allocating authority. The latter should be charged with looking at the entire radio spectrum, with clear instructions for forward planning and evaluation of competing uses on the basis of cost/benefit analysis.

Had this been carried out in the 1950's and 1960's it is possible we might not have gone directly to UHF TV as a solution to our needs, as was done in the UK for the introduction of colour television - no VHF colour telecasts were made and VHF monochrome receivers are no longer available, the simultaneous VHF mono broadcasts gradually being phased out. Thus the present difficulties caused by our nonstandard use of the VHF band might never have occurred.

Mr. Wilson emphasised that the time to introduce planning policies was now, for the situation, left to the compromise now being advocated to enable establishment of a small number (up to seven in Sydney) of new FM radio stations, would certainly not improve. Apart from anything else, concrete proposals for more efficient use of the radio spectrum would save Australia from acute embarrassment at the 1979 WAR conference - to say nothing of the improvement and increase of all broadcast services for the community as a whole.

Further details and background information can be obtained from the Public Broadcasting Association of Australia, P.O. Box 578, North Sydney, NSW 2060.

TO HI-FI ENTHUSIASTS, Shure Brothers of the USA is best known for its range of pickup cartridges and its association with the specialist British pickup-arm maker, SME.

But in the recording and broadcasting field, Shure is known mainly for its microphones and other products aimed at the professional user.

Among the electronic components produced by the company is an equalisation analysis system, consisting basically of a 'black box' model M615, fitted with a random noise generator for use as a signal source, the unit also being provided with a LED indicator system for measuring relative level in each of ten octave bands. Auxiliary to this unit is model ES615 analyser microphone, featuring a response tailored specifically for use with the M615.

The purpose of the system is to analyse the overall frequency response of an auditorium and to optimise, using an anti-
feedback filter system or octave equaliser, the frequency frequency response of a public address or sound reproducing facility within it. Whilst the system has potential to give useful measurements of a hi-fi system in a domestic setting, our experience with this and other systems leads us to believe that a compensated frequency response in such a listening situation does not always give improved subjective performance. There are several possible explanations here, and one of these is the influence of the ordinary living room on audio frequencies due to its small size. Compensating for the severely undulating bass response in smaller rooms is the chief problem, particularly since response varies dramatically in different parts of the room - as listeners of wide-response hi-fi systems will be aware. Thus a response might feasibly be improved, actually and subjectively, for a very small listening area but can easily degrade performance elsewhere.

PRODUCTS AVAILABLE AS LISTED:

Semi-conductors, potentiometers, resistors, capacitors, aluminium and plastic project boxes. Project kit boards, amateur and CB radio plus accessories. Test equipment, vero board, transformers, knobs, wire, radio/TV antennae, speakers, turntables. In fact just about everything electronic.
CALL IN AND CHECK OUR LOW LOW PRICES

289 LATROBE ST, MELBOURNE. Ph (03) 6631785

MAIL ORDERS AVAILABLE TOO

Regardless of the problems of performing subjectively acceptable equalisation, and the foregoing is not to say that PA equalisation is necessarily a simple process, Shure appears to have done everything possible to ensure rapid and effective use of graphic - or more correctly, octave - equalisers in a sound system. We received samples of the complete equalisation analyser, complete with microphone and all accessories, neatly and safely contained in a tough lightweight suitcase type carrying case. We also received Shure's SR107 mono octave equaliser which had been sent for assessment by Hi-Fi Review magazine.

Different operating procedures are employed for P.A. work and hi-fi system analysis. But the fundamental procedure is the same. Basically the idea is to equalise the system using an octave equaliser while reducing the range of the 'hi-lo' envelope, this being defined by the appropriate rotary control on the analyser front panel, and indication of response peaks or dips using the LED indicators. By reducing the size of the envelope by degrees, it is possible to identify very rapidly where response deviations occur and to take appropriate action with the octave equaliser.

There's no doubt the system is very effective indeed. We were able to equalise our hi-fi system in less than three or four minutes after a little practice, and that involved treatment of each stereo channel individually.

The equipment was a joy to use - including Shure's SR107 equaliser whose rotary controls were, to us, easier to operate than the slider normally found on such equipment. Sliders, in our view, are only useful in applications where several controls are likely to be manipulated at the same time and where instant indication of their position is necessary. Mixing desk faders are the obvious application.

We won't go into great details of the equipment. Excellent descriptive material is available from Shure. We will say that it is extremely flexible and is usefully provided with both XLR and standard tip-and-sleeve jack connectors for interface with just about any installation.

No doubt more accurate equalisation would be available using a third-octave system but this would obviously be more complex, both in design and operation. Shure's octave system provides a very effective and economical answer to the problem it solves and its portability offers great convenience. We can imagine any number of useful possibilities for the system and anyone who is professionally involved in sound reproduction should at least check it out.

SOUND BRIEFS

Meridian

Audio Technica | Designed by Lecson originators Alan Boothroyd and Bob Stuart, the Meridian range |
| :--- |
| consists of an amplifier based on 'black box' type units with minimal controls. A |
| loudspeaker system has also been introduced. |

Completely new Audio Technica ranges, including cartridges and headphones, are
in production and should soon be freely available.
Latest Decca problem to be solved is incorrect lateral balance of most production
samples. Solution involves enlarging the headshell plug grubscrew hole at the front
end of the aluminium tube to a slot enabling the headshell to be twisted to give

correct alignment. \quad| Presumably based on bucket-brigade electronic time delay circuitry similar to that |
| :--- |
| used in the SAE 5000 impulse noise reduction unit, Garrard's new box of tricks has |
| been released in the U.K. and should soon be available here. |

Modern expertise and computer technology have created a fine piece of equipment.

Ultimately It's Marantz.

 GoForlt.
Now, professional 3-head monitoring in a cassette deck.

Up to now you had to choose between a cassette deck for convenience. Or, reel-to-reel for professional recording features. Now have it both ways in the Marantz 5030 cassette deck.

Here's how:
The Marantz 5030 has separate record and playback heads...the same as reel-to-reel. This gives you an instant check of the quality of your recording as you record. And, like some of the most expensive reel-to-reel decks, the record and playback heads on the Model 5030 are super-hard perm-alloy-a long-lasting metal alloy that gives better frequency response and signal to noise ratio than Ferrite material.

For precise azimuth alignment, both the playback/monitoring and record heads are set side-by-side within a single metal enclosure. They can't go out of tracking alignment.
Complementing this outstanding "headtechnology" is Full-Process Dolby* Noise Reduction Circuitry. It not only functions during record and playback ...but during monitoring as well.
What drives the tape past the heads is every bit as important as the heads themselves. For this reason the Model 5030 has a DC-Servo

Motor System. The steadiest, most accurate tapetransport method. Speed accuracy is superb, with Wow and Flutter below 0.08% (WRMS).

To adapt the Model 5030 to any of the three most popular tape formulations, press one of the three buttons marked "Tape EQ and BIAS." There are settings for standard Ferric-Oxide, Chromium Dioxide (CrO_{2}) or Ferri-Chrome (FeCr) tape.

With Mic/Line Mixing, two sources can be recorded at the same time, combining line and microphone inputs. The Master Gain Control lets you increase or decrease the overall volume of the total mix.

What else could we pack into a front load cassette deck?
More features. Like a 3 -digit tape counter with memory function. Viscous Damped Verti-cal-load Cassette Door. Switchable Peak Limiter. Fast-response LED Peak Indicators. $3^{\prime \prime}$ Extendedrange Professional VU Meters. Locking Pause Control for momentary shut-off in record or play... and Total Shut-off in all modes when the tape ends.

And, of course, the unbeatable Marantz 5030 is front loading. Easy to stack or fit on a shelf. The styling is clean and bold. The sound is the truest recreation of what was put on tape. If you want the best-then do what you really want to do-go for it. Go for Marantz.

颂TDK Magnetic

Send us your coupon NOW!

Necklace Offer!

VERY many people suffer from so-called 'stiff shoulders' or 'stiff necks'. It is generally believed that these unpleasant symptoms are caused by mental or bodily stress but the exact cause is not apparently really known.

The TDK Electronics Corporation have produced a magnetic necklace which they state has proven effective in relieving such symptoms for a very high proportion of sufferers.

The Japanese Government's Ministry of Health and Welfare has given its approval (NO. 51B-614) to this necklace and we have read four fully documented reports from independent authorities (such as the University of Tokyo's Medical Faculty) to support TDK's statements.

The necklaces are made in two basic forms. Goldplated 430 mm long and rhodium-plated 560 mm long - these, TDK suggest, would suit men or women. respectively. Both are sold at the same price.

The necklaces contain extremely powerful rare earth cobalt magnets which were originally developed for the NASA space programme. The magnets are permanent. Necklaces are supplied complete with two connecting rings, one hook and one length of chain as spares.

TDK advise users to wear the necklace in direct contact with the skin. It should be worn continuously including whilst asleep, removing it only whilst taking a shower or bath.

Most people find it effective after two to three days.
The TDK magnetic necklace is handled in Australia by the Caldor Corporation and they have made arrangements for our readers to obtain either type at the same price - $\$ 49.95$ including postage and packing.

Necklaces should be ordered via this magazine using the form (or replica thereof) published on this page.

Please make cheques payable to 'Necklace offer' and send $\mathrm{C} /$ - Hi-Fi Review, 15 Boundary St, Rushcutters Bay NSW, 2011.

Please allow at least three to four weeks for delivery - there really are mail delays - particularly of parcels!

Thousands of people have used these necklaces and claimed they have experienced relieve of 'stiffness'. Nevertheless we would like to make it absolutely clear that all papers published so far show that the devices vary in their effect from one person to another and that in some cases they have no effect at all. There is no totally tangible scientific evidence to support or refute any claims or statements made although research is continuing worldwide. Therefore as no claims can currently be substantiated (and of course no claims are made by us or Caldor) the ultimate decision and experience must be yours.

Nevertheless, the necklaces are made by TDK and that must mean something.

Manufactured by,

Electronics Today International

 4600 and 3600

 4600 and 3600

 SYNTHESIZERS

 SYNTHESIZERS}

NOW FOR SOMETHING MORE AMBITIOUS!

Here are full plans for building two full-scale electronic music synthesizers.

Many thousands of these remarkable units have been built world-wide since the series of constructional articles started in Electronics Today late in 1973.

Since then, the two units have gained a reputation as being among the most flexible and versatile of electronic instruments available.
They have been built as school and university group projects, by recording studios, professional
musicians, university music departments and as home hobby projects.

Here, the complete series has been reprinted in a completely corrected and up-dated form.

The book is available in a limited edition of 2000 copies only.

ENSURE YOUR COPY NOW!

Send \$12.50 to Electronics Today International, 15 Boundary Street, Rushcutters Bay NSW, 2011.

The problems of PIRATED RECORDING

How record manufacturers are planning to beat the bootleggers. By Roger Harrison.

IT WAS ONLY a few years ago that pirate or 'bootleg' versions of Bob Dylan's Basement Tapes and Pink Floyd's Dark Side of the Moon, sold like the proverbial hotcakes, along with a host of others.

These recordings blatantly advertised the fact that they were pirated, and thus of illegal origin - transgressing not only performer's rights but also copyright. Many people were attracted to pirate recordings for there seemed to be something rather exciting about owning a recording which the artist did no1 approve. Often, the pirate recording: contained material not released on genuine recordings, or were of concert performances which often differ markedly from studio performances. Quality was almost inevitably low-fil

Through a combination of circumstances, these bootleg recordings gradually disappeared from the market. Groups employed stewards to hunt through audiences looking for tape recorders, legal prosecutions were brought against bootleg distributors etc. Finally, high prices for low-fi killed the market.

Recently, however, the pirates have changed tack and are presenting recordings that are either made to mimic legitmate releases on well known labels or to appear like legitimate competition. For example, a recording stolen from EMI may either be packaged to look like an EMI recording, or packaged in a sleeve with an authentic-sounding company label, but not that of an authorised EMI trader. In neither case does the

The problems of PIRATED RECORDING

artist, EMI or anyone else (save the bootlegger and his outlets) receive any reward.

Those recordings that mimic legitimate releases are usually a straight, undoctored copy of the original, with slightly reduced fidelity. When released on a phony label, often the recording is altered in the transfer to disguise its origin, usually by dubbing applause or extra instruments onto the copy.

The problem arises here in that both these techniques are far harder to detect and prove as bootleg than the previous methods. The British Phonographic Industry (the UK recording industry trade association) have taken numerous court actions, with some success, resulting from pure detective work.

SELF-DESTRUCT

However, the final solution to professional piracy relics on technological aids. This can be achieved by either making the physical act of illegitimate copying technically impossible, or to make the technical detection of such copying unambiguous. Unfortunately, despite considerable efforts, little real practical headway has yet been made in .either of these directions.

If record companies had their way, each disc or pre-recorded tape released and sold to the public, would selfdestruct, refuse to play or produce unacceptable sounds if copying was attempted.

To date, anti-copy remains an im. possible dream. Inventors still tackle the problem, the cash rewards for a workable system would be enormous. Inevitably, one red-herring scheme keeps being re-invented.

Back in 1967/68, the Beatles' Electronics Company, Apple, leaked a story about three patent applications on a new anti-copy system. Any attempt at recording a disc pressed according to this system would result in a high-pitched whistle they claimed. The idea attracted a certain amount of attention, but, in time, the patent applications were allowed to die, along with the publicity and Apple Electronics disintegrated.

Although details of the idea remain a secret, the system probably involved recording an ultrasonic carrier frequency on the disc. Thus, at any attempt to put the disc material on tape the carrier on the disc would beat with the tape recorder's ultrasonic bias signal
and impress an audible signal on the tape.

In this way, two inaudible frequencies are combined to produce an audible frequency which destroys the recording attempt.

A little thought shows the snags in the system. To produce an audible beat with the very high bias frequency used on tape recorders (around 70 kHz or higher) requires that a similar signal be recorded on the disc. The studio cutting machine won't cut it, the factory pressing machines won't press it and the would-be-recordist's cartridge wouldn't reproduce it.

It is also easily filtered out at any stage of the production chain, either intentionally or otherwise, with no loss of quality, because the carrier signal is inaudible anyway. Different tape recorders have widely different bias frequencies which also defeats the system.

The drawbacks are enough to discourage further reinvention of this system and doubtless account for the demise of the Apple patents.

There is another daunting aspect to anti-copy systems. It is likely that if anyone does devise a system that will prevent the copying of a disc or tape onto existing tape recording machines, the recorder manufactures will soon devise a defeat button or circuit to make copying possible again.

WATERMARKS

Anti-copy systems appear defeated for the moment. However, the concept of an indelible watermark on the recorded sound appears somewhat less fanciful.

As with anti-copy, watermark systems have gone through numerous futile reinventions. The aim is to record an inaudible identification signal along with the recorded sound. The watermark signal is inaudible to the listener when the disc or tape is played on conventional equipment, but it can be identified or decoded by special equipment.

Ultrasonic (high frequency) and infrasonic (very low frequency) watermarks have similar limitations to the anti-copy schemes. For this reason, it is essential to adopt a sledge-hammer approach to prove the origin of copied material. One such attempt, by Capital Radio (UK) who recently broadcast some previously unpublished Beatles tapes, involved putting a loud station
ident ('194') over the recording every few seconds. Thus, if ever a bootleg recording is issued, its origin will be audibly stamped all over itl With the station ident so loudly intrusive there would likely be little incentive anyway.

In recent years, EMI's proposed system for identifying the source of a recording has often been discussed in the popular press. But there is much confusion over just what it is that EMI have succeeded in doing to curb piracy.

Briefly, the system involves putting a digital code on the recorded material at a very low level which can be recognised by specially designed decoding machines. It is extremely difficult to evaluate and thus prevents forging or replication of the code.

Unfortunately, the EMI system is usable only to prove that a recording did not originate from EMI. In the case of mimic recordings, which would look like a genuine EMI release, the lack of any EMI watermark code would be good grounds to believe that the recording did not come from EMI. But courts do noţ like negative proof where the absence of something is regarded as positively proving something else. There is also the argument that unless all EMI plants around the world were using the system at the time, and there were no old stocks of unwatermarked tapes, then it is unreasonable to say that just because a tape has no watermark that it is not from EMI. Then again, why shouldn't an EMI watermarked tape find its way into pirate hands?

NOTCHES

There is another approach which a number of recording companies are seriously considering. This is the Audicom system invented by Murray Crosby.

It was originally intended for collating automatically the number of times a commercial was transmitted on a radio or TV station, for accounting and statistical purposes.

The system works like this: At a frequency around 2.3 kHz , a tight notch filter with a very narrow bandwidth (around 100 Hz) bites a small chunk out of the audio spectrum. At the same time a binary code watermark signal is modulated onto an audio frequency subcarrier of the corresponding frequency and bandwidth so that it fits neatly into the window left by the notch filter. The amplitude of the subcarrier frequency is varied so that it tracks the audio level of the surrounding programme. In this way, the coded identification signal is always submerged by the programme, but it is still recognisable by a decoder tuned to the

narrow band notch frequency and designed to interpret the digital information modulated on the subcarrier.

Sound like a. great system for discs and tapes. However, several difficulties arise. If, for instance, the coded subcarrier is at such a low level, might it not be lost in noise after transmission or the copying process? This is one area which EMI, RIAA and others are investigating. Even if they get results, we are not likely to read. or hear about it. Because, if the system is adopted, it would not be prudent for the record companies to indicate the level at which noise destroys the code.

One set of technical specifications indicates that when the programme audio level is zero, the subcarrier coded signal will be 55 dB below the peak level the carrier would be at peak audio programme level. When the programme audio is at peak level then the audio subcarrier in the notch will be 40 dB
below the programme level. Thus, the subcarrier is always submerged by the programme but would still be detectable by a decoder tuned to the narrow band notch frequency so that the digital watermark code is recognisable by the digital decoder.

The encoding system is illustrated in figure 1. The notch and coded subcarrier are switched in at intervals according to the periods of the timers. As the frequency and position of the notch and the code on the subcarrier can be programmed by the encoder operator, only a decoder set up to recognise that code could detect its presence. The system is applicable to broadcasting, tapes and records.

Does the 100 Hz notch missing from the audible frequency spectrum affect the sound? Experiments have shown that, in fact, such a notch will largely go unnoticed. This leads to the possibility of just using a notch to watermark a recording.

A 12 dB dip in the mid-band frequency range, between 2 kHz and 4 kHz , can be introduced intermittently with surprisingly little audible effect. While a notch of higher or lower frequency may be relatively inaudible while consistently maintained, any attempt at intermittent notching outside the $2-4 \mathrm{kHz}$ range produces highly offensive sounds.

Below 2 kHz a notch intrudes into the fundamental frequencies of musical notes from many instruments. Above 4 kHz intermittent notching results in modulation of high frequency background noise and intrudes into the upper harmonic range of musical tones.

By careful selection of where a notch is introduced into a recording, its presence can be made unobtrusive. It thus seems likely that a notch 'filled' with a coded carrier like the Crosby system could be placed on a recording without the listener being aware of its presence.

The presence of a notch in a recording can be simply detected with a spectrum analyser. A notch filled with a code requires a decoder to identify the origin of the recording.

The placing of a notch, or code-filled notch, on a recording would need to be dictated by the characteristics of the material recorded, in order that the presence of the watermark is masked. The notch characteristics may need tailoring to suit the programme material. Any system of indiscriminate notching would produce audible effects on the material and thus would be rejected by hi -fi listeners.

There is no reason why the characteristics of the notch introduced on any commercial recording should not depend solely on the nature of that recording, with regard to location, frequency and duration. Provided the recording company accurately logs the position of the coding windows it will have no future difficulties in detecting the coding. This in itself would prove a deterrent to pirates.

When illegitimately copying a recording, the pirate will be faced with the knowledge that interspersed with the material will be a notch of unknown frequency and bandwidth, at unknown locations on the recording, including an indentification signal which can be positively identified by the owner of the copyright. Secondly, even if you know where the notch is, it is well-nigh impossible to repair.

Such a situation allows the copyright owner to point, albeit electronically, to a watermark in the sound on an illegitimate recording and thereby identify, positively, its source.

HARKSOUND a new name in turntables! looks suspiciously like the celebrated C©C doesn't it?

in fact it is!

CEC, Australia's top-selling range of imported turntables, * will now be known as HARKSOUND. But don't despair . . . nothing's changed but the name.

Still the same five year warranty, still the same proven performance, and when you consider that CEC are Japan's oldest and most experienced turntable manufacturer, you know you're buying the best.

The HARKSOUND range by CEC offers everything you want and need for noise-free. Hi-Fidelity performance, plus operational ease and there's a turntable for everyone

HARKSOUND

CAS
 Features~
 - 400,000 Sold in 1977
 - Made in Australia
 - Screwed (not welded) body
 - Jamproof floating mechanism
 - Quality ferric oxide tape

hripf Rastrs
\$2.99 ${ }^{\text {melus }}$
$\begin{array}{lll} \mathrm{C} 60 \text { min. }^{\$ 1.69} \\ \mathrm{C90} \text { min } & \$ 1.99 \\ \hline \end{array}$
Hi Energiy $\begin{aligned} & \mathrm{C} 46_{\text {min }} \$ 1.19 \mathrm{C} 90^{\text {min }} \mathbf{\$} \mathbf{\$ 1 . 6 9} \\ & \mathrm{C} 60_{\text {min }} \$ 1.39 \mathrm{Cl}_{\text {min }} \$ 1.99 \end{aligned}$
BONUSOFFER BUY 530 OR MORE WORTH OF OUR PRODUCTS AND FREE ONEGFACK

MAIL ORDER TO:

Dindy, P.O. Box 555. Tweed
Heads. N.S.W.. 2485. Ph. (075) 364629.
Allow 2 weeks for delivery by IPEC.
YEP! DINDYS DONE IT AGAIN!
Name:
Street Address:

TYPE	SIZE QUANTITY PRICES					TOTALS
IPEC DELIVERYAND INSURANCE						
TOTAL						

\qquad
Bankcard
I enclose

—P, code:_

Cheque, P/Order or Bankcard to the value of S

WOW'S You can be a part of che microcomputer revolutiont

Build a microprocessor controlled 24 tune door chime...

Dick Smith brings you the Chroma-Chime - an outstanding example of tomorrow's micro-computer technology.
Now YOU can be among the first enthusiasts in the world to build your own computerised musical door chime. And you'll vote it one of the most incredible inventions you've ever seen!

Pre-programmed into the Texas Instruments TMS-1000 microcomputer chip are 24 of the world's favourite and best known tunes. You set two knobs and - fantastic - when visitors press the bell button at your door they are greeted with the melodic notes of the tune you've selected.
Just imagine how astonished (and flattered) your visitors will be! Complete kit: Build the Chroma-Chime in about 3 hours! One of the best things about having the Chroma-Chime in your home is that you can tell all your amazed callers that you built it yourself. The kit has been carefully prepared so that practically anyone capable of neat soldering can build it with complete success. The profusely illustrated instruction manual contains step-by-step construction details together with a fault-finding guide, circuit description, installation details and operating instructions. It would be hard to go wrong!

Cat K-2020

HERE IS THE CHROMA-CHIME'S AMAZING REPERTOIRE:

* Westminster Chimes * Greensleeves * Maryland * Oranges and Lemons * Twinkle Twinkle Little Star *
* Mendelssohn's Wedding March * Sailor's Hornpipe * Cookhouse Door * Colonel Bogie * Beethoven's 9th *
* William Telf Overture * Soldier's Chorus * Beethoven's 'Fate Knocking' * Bach * Mozart * Lorelei *
* Great Gate of Kiev * Oh Come, All Ye Faithful * God Save the Queen * Rule Brittania * Land of Hope \& Glory * The Stars \& Stripes * The Marseillaise * Deutschland Uber Alles *

COMES WITH FREE 28 PAGE CONSTRUCTION MANUAL AND GUIDE.

SPECIAL NO-OBLIGATION 7 DAY INSPECTION

See the Chroma-Chime demonstrated at any Dick Smith store. Take advantage of our special 7 day no-obligation inspection offer: inspect the Chroma-Chime kit for up to 7 days, and if for any reason you do not wish to build it, return it in the original condition and it its original packaging and we will refund you the price of the kit!

DICK SMITH ELECTRONICS

UHF LOC-PERIODIE AITEEIIIIP Part2

By Roger Harrison, VK2ZTB, who still swears (SWR's?) the prototype hasn't fallen down yet!

Balun Construction

THE BALUN TRANSFORMER consists of a trifilar winding on a ferrite balun core, Neosid type 1050/2/F14. Alternatively, a similar core could be stripped from a standard 4-1 TV balun and rewound. Construction is relatively noncritical, and details are illustrated in Fig. Fig. 7.

The winding wire is any convenient small-gauge hookup wire, preferably in three different colours to identify the different strands and assist construction. Alternatively, ordinary enamelled copper wire, about 22 gauge to 28 gauge B \& S, would be satisfactory, although the three separate wires would have to be identified in some way, for example, by knotting wire ' b ' once at each end, and wire ' c ' twice at each end.

The three wires need to be about 150 mm long and should be lightly twisted together before commencing the winding. Wind $61 / 2$ turns through the two holes, around the outside of the balun core as illustrated in Figure 7.

WINDING BALUN

The wound core is then glued to a small square of matrix board, about 25 mm long per side, using a small amount of five-minute epoxy or one of the 'super' glues. The windings are terminated to two pins on either side of the board, as illustrated in Figure 7. Two lengths of hookup wire should be soldered to the 'balanced' terminals, sufficient to reach from the mounting point of the balun to the feedpoint of dipole 10. A short length of coax, terminated in a Belling-Lee line socket, is then attached to the 'unbalanced' terminals as indicated.

The balun assembly can be conveniently 'potted', using five-minute epoxy, to weatherproof it.

Mount the balun on the antenna boom, near or underneath, dipole 10 , and connect the two 'balanced' connection leads to the feedpoint of dipole 10. Tape the assembly to the boom using weatherproof tape or plastic ties. Even string could be used, or the assembly glued in position using some more five-minute epoxy.

An alternative balun system would be to use standard 4-1 TV baluns. These perform a 300 ohm to 75 ohm transformation. With the type of construction employed, they can be used for a balanced-to-balanced or a balanced-to-unbalanced transformation.

circuit

Fig. 7. Construction of 1:1 balun transformer.

UHF LOG-PERIODIL
 AITEIIIA

Splitters

To run two different receivers from a common antenna a device called a splitter is necessary. The two receivers cannot simply be connected in parallel as they will interact with each other, apart from causing an impedance mismatch with the antenna feedline.

Two different kinds of splitters can be constructed - the resistive type and the transformer type. Alternatively, a suitable splitter may be purchased. As they are wideband devices they are suited for operation over the entire range from 40 MHz to 250 MHz .

300 OHM SYSTEM SPLITTER

Fig. 8. al Circuit of 75 ohm resistive splitter.
b) Layout of 75 ohm resistive splitter.
c) Circuit of 300 ohm resistive splitter.
d) Layout of 300 ohm resistive splitter.

If using these baluns, connect the 75 ohm side to the feedpoint of dipole 10 and run ordinary 300 ohm ribbon to your receiver installations from the 300 ohm balun connections. Be sure to take all the required precautions necessary with this sort of feedline installation as for TV feeder, to prevent signal 'suckout' by nearby metal structures and by line imbalance.

Resistive Splitters

Two resistive-type splitters are illustrated in Fig. 8. That on the left is for unbalanced, 75 ohm coaxial cable feedline systems; the one on the right is for 300 ohm systems. Both of these splitters are compromise solutions and are only recommended for TV \& FM receiver installations in strong signal areas. If you are after
$D X$, then the loss these splitters introduce will reduce receiver sensitivity.

Either type may be constructed on a small square or rectangular aluminium plate. Size is unimportant providing the feedline connectors are mounted reasonably close together so that the lead-length of the resistors and interconnections is kept short. Solder all connections.

Note that any terminal may be used as an input and the other two terminals may be used as the outputs.

When the splitter construction is completed, it can be mounted in a convenient place such as a cutout in a wall, shelf, or equipment cabinet.

Transformer Splitter

The best splitter is a transformer-type as it introduces a minimal loss, and can be constructed in a similar way to the balun previously described.

Commence by winding three wires on a Neosid balun core type 1050/2/F 14 as illustrated in Fig. 7 and wind on $61 / 2$ turns, trifilar as described for the balun. The connections and construction are as illustrated in Fig. 9.

Once the transformer is completed, secure the windings, if necessary, with a small application of super glue. Then glue the transformer to a small scrap of plain phenolic board or matrix board. This assembly is glued to a small aluminium panel on which are mounted three Belling-Lee sockets as illustrated in Fig. 9. Carefully separate and identify the three leads at each end of the transformer windings and connect them as shown. Carefully solder all joints.

When the construction of the splitter is complete it can be mounted as described for the resistive splitters.

Feedline Systems

There are two alternatives for your feedline system: a 75 ohm coaxial cable system, or a 300 ohm twin-line system.

The coaxial cable system is recommended for a number of reasons: the coax may be run anywhere convenient as it is unaffected by wall material, metal objects and power cords. Most VHF receivers, TV sets and FM tuners these days have a coax connector antenna fitting to suit, and no interference can be picked up on the coax feedline as it is effectively shielded.

A 300 ohm twin-line feeder has the advantage of being inexpensive, but it must be correctly installed with standoff supports and twists in the line to aid in maintaining 'balance'. It cannot be run as conveniently as coax, and noise and multi-path signals may be picked up on the feeder.

The required use of baluns and splitters in the system is illustrated in Fig. 10 for both systems. The 75 ohm coaxial cable system is illustrated on the left and the 300 ohm twin-line system on the right.

The coax required depends on the exact details of your installation. If a short run of coax is possible then a 6.5 mm diameter cable such as RG59 (variously designated as RG59/U or RG59/CU etc.), which is a 75 ohm characteristic cable, is suitable. If this cannot be obtained, then 50 ohm cable such as RG58 may be substituted, although a slight mismatch will result. The effect will be unnoticeable on a VHF or FM receiver but slight 'ringing' may be apparent on high contrast areas on a TV picture. This may not be visible at normal viewing distances.

For maximum sensitivity on reception or if you have to run the feedline more than 15-20 metres, then a low loss 75 ohm cable is recommended, such as type ET13M or PT13M with black, weatherproof outer jacket. It is made by Cablemakers Australia and is about 10 mm diameter. There is a version of
this type of cable with a grey plastic outer sheath. This is meant for community antenna installations, such as in flats and units, and the sheath deteriorates rapidly when exposed to the weather.

If you wish to use a 300 ohm feeder system, any of the commonly available TV ribbon feeders should suffice, depending on your requirements. Solid dielectric type is adequate in strong signal areas and is the least expensive. If you want the maximum in sensitivity a low-loss type should be installed. There are various versions of low-loss 300 ohm feeder. Some types are similar to the solid dielectric type and simply have cutouts in the dielectric. 'Open wire' types have small spacers supporting the two wires at intervals. Another type has a continuous dielectric of foam material encased in a thin plastic 'shell'.

Fig. 9. a) Circuit of transformer-type splitter. b) Construction of transformer-type splitter.

Antenna Performance

The beamwidth of the antenna is about 50° (between the -3 dB points). There were no discernable sidelobes in the forward direction which reduces problems with multi-path signals on FM and TV reception which are the cause of distortion on FM stereo and ghosting on TV signals.

The gain of the antenna is around eight to nine dB and the front to back ratio (rejection of signals behind the antenna) around 30 dB .

The broad beamwidth allows reception over a wide range of angles in the forward direction, very handy when the DX starts pouring in from all over the place as it saves a great deal of rotating the antenna. If you are
using it for TV/FM reception the beamwidth should prove adequate for most capital city locations. However, if you live in the Balmain-Leichhardt-Annandale-Glebe area of Sydney as I do, you may think that you will have problems with a fixed antenna. The TV transmitters are to the north (Gore Hill area) and 2MBS-FM is to move to the AMP building site in the city, to the east. However, their 'technical rep.' assures me that their 10 kW transmitter will put such a strong signal into those areas that an antenna will not be necessary!

Installed at a height of roughly six metres above ground level, the antenna gave a good account of itself. Admittedly, as far as the local TV and

FM transmitters are concerned I live in a strong signal area, although we have in the past suffered from ghosting on TV signals from the south. The good front-to-back ratio improved this problem considerably.

Listening to a variety of VHF signals with a general coverage VHF receiver produced good strong signals on the aircraft frequencies from Bankstown light aircraft aerodrome - much as expected. Quite readable signals from as far away as Wollongong were also copied. Video and sound from channel 0 in Wagga were audible, sometimes at quite good strength, in Sydney on the $60-250 \mathrm{MHz}$ model!

Fig. 10. Feedline and splitter systems installation. conducted by a leading independent audio-testing laboratory prove it.*
The tests show that the ADC XLM-MKII cartridge causes no perceivable wear until after 60 plays. Industry sources estimate the "life of a record" (the average number of times a record is played) to be 40 to 50 plays.

Other cartridge manufacturers may talk about less record wear, but ADC has proven no wear over the

The reason for this is our unique patented design. It's patent \#3294405.

We call it the "induced magnet" cartridge. a heavy magnet is part of the moving system.

The ADC XLM-MKII is different, because our engineers found a way to detach the magnet and reposition it above the stylus, so the stylus applies less pressure against the groove.

Less pressure means less wear.
The fact is, of all the leading brands, ADC cartridges have the lowest mass moving system you can buy. That means better sound and superior performance.

The XLM frequency response is exceptionally flat, from 15 Hz to 24 KHz $\pm 1.5 \mathrm{~dB}$. And for the ultimate in stereo reproduction, it has a minimum of 28 dB of channel separation.

Think about it. In the long run you'll probably spend more on your record collection than you will on your whole stereo system. So it makes sense to buy a cartridge
with proof that it makes your records sound better and helps them
to live longer. The ADC low mass cartridge. to live longer. The ADC low mass cartridge.

Unbelievable.

THE PROOF:

This is a photomicrograph of a 20 kHz record groove that has never been played before.

This is a photomicrograph of a similar 20 kHz record groove played 75 times with an ADC XI.M-MKII cartridge. Âs you can see there is no difference.

ADC
XLM-MK

SHURE
V-15-III

STANTON 681-EEE

The way to get the most accurate reproduction of sound is to lower the total effective mass of the moving parts of the stylus. And that's exactly what our engineers did. In fact, of all the leading brands, ADC cartridges have the lowest mass moving system you can buy.

INDUCED MAGNET EDIDIA
MAGNET UTUUITIU

* CBS Technology Center Project 1108: Record Wear Test Program. Performed for Audio Dynamics Corporation. December 1976.

ONLY 145 IN STOCK: BE QUICK AT THIS PRICE!

SPECIAL 'COMPUTER' SEMICONDUCTORS

Z.9202	MM5740AAF Encoder	$\$ 27.50$
Z.9206	2513 Character Generator	$\$ 12.50$
Z.9302	2102 Random Access Memory	$\$ 4.50$
Z.9304	2112 Memory (suits Miniscamp)	$\$ 6.50$
Z.9306	2114 Memory (4k - suits M'scamp)	$\$ 14.50$
Z.9308	MM-5204 Prog. E-Prom	$\$ 19.75$
Z.4804	4N28 Opto Coupler	$\$ 1.50$

STOP PRESS! Wire-wrapping tools now in stock! Yes, these incredible little tools are now in. Save your IC - no heat, no stray voltages from
irons. Wire wrapping is secure, makes perfect contacts. Cat T-3650 \$4.50
Wire-wrap wire to suit: 5 m pack, suits above tool. Cat $\mathrm{W}-4018 \ldots 0.65$

BUILD THE EXCITING NEW E.A. VIDEO DISPLAY TERMINAL PROJECT:

By simple combination of the following kits with a microprocessor, the hobbyist can build up a complete microcomputer system which will mate with a normal TV receiver or video monitor for display.
VIDEO DISPLAY UNIT (known as a TV typewriter) Basic video display board from Elect. Aust. Feb '78, complete with double sided, plated-through hole PCB, all ICs and components but not including 4.3 MHz xtal (not a necessity)
Cat K-3460
$\$ 97.50$
Optional 4.3MHz crystal Cat K-6026 \qquad
VIDEO MODULATOR KIT
This kit allows the Video display unit to be used with any standard TV receiver through the antenna terminals.
Cat K 3462

ASCII KEYBOARD ENCODER

The ASCII keyboard encoder project from EA, March '78 This kit is complete with all components, including power supply and transformers, but not including the UART IC.
For use with our computer keyboard (see below)
Cat. K-3464
$\$ 39.50$
UARTIC
S1883/MM5303N/TMS6011 UART (universal asynchronous receiver transmitter) IC for above encoder if required. Cat 2-9204
. $\$ 5.90$

SPECIAL PARTS FOR ABOVE KITS:

Cat H-8336 Video Display Unit PCB only $\$ 32.50$
Cat $\mathrm{H}-8337$ Video Modulator PCB onlv \$1.20
Cat H-8338 ASCII Encoder PCB only \$4.50
Cat H-3130 Keyboard Console Metalwork, complete with marviplate lid..
$\$ 24.50$
Cat X-1180 63 key computer keyboard, individual key contacts gold plated. NOTE: This is NOT a kit, keyboard fully assembled
. $\$ 55.00$

'GETTING INTO MICROPROCESSORS'

By Jim Rowe, Editor of Electronics Australia magazine. If
you want to get into microprocessors \& minicomputers, you
need this bookl Cat. B-2350 $\$ 4.50$

COMPUTER BACKGAMMON

Futuretronics have done it again．The World＇s first microprocessor based Backgammon game is here right now．It＇s you against the computer．A sophisticated，totally computerized Backgam－ mon game，utilizing a Motorola 6800 micro－ processor with 2 K ROM and 6K RAM，designed for excitement and ease of play．It will defeat the average player more often than not，and compete evenly with experts．When you play against the computer，each move is displayed and recorded electronically．The position of every piece on the board can be verified at any time and since the dice are＂rolled＂electronically at random，each game is different．

The computer plays an aggressive offensive game，but will change its strategy depending on how you choose to play．Running game，block and hit，back game，it know them all，and plays them all well．Playing against the computer is a true measurement of skill．If you are a beginner it is a remarkable learning instrument．This beauti－ fully finished，top－quality product complete with its own carrying case is available now．for $\$ 299.00$ delivered free anywhere in Australia．

COMPUTER CHESS

It＇s you against the computer．
The first microprocessor based chess game， using an 8080A C．P．U．It utilizes and 8224 clock generator／driver， 8228 system controller， 512 8 －bit bytes of random access memory，that stores the position of the chess pieces，and a 16，384－bit read only memory．Software contains such ele－ ments as the rules of chess，the relative impor－ tance of the pieces，allowable moves and strategies．The micro computer plays by the book，working on the weighed value of the pieces，and completely scanning the board for the best available move each time．It plays ag－ gressively，tries to control the centre of the board， and，if it＇s in trouble，will try for a stalemate．
The keyboard can be used to verify the position of each chess piece at any time during the game．

User selectable 3 levels of difficulty，choice of black or white pieces．New shipment just arrived， new low price $\$ 345.00$ delivered free anywhere in Au－ stralia．

1 Dailas Crt，Hughesdale 3166，ViC．
Phones：（03） $823732-(03) 579297$

Please send Gammonmaster．I enclose $\$ 299.00$

Please send Chess Challenger．I enclose $\$ 345.00$

Please send both games．I enclose $\$ 599.00$
\qquad
ADDRESS
STATE

Inside

information from

Ultrasonic sound is being used increasingly in medical diagnosis. By Dr P. N. T. Wells, Bristol General Hospital.

THE importance of ultrasonic diagnostic methods lies in the fundmental differences between them and other techniques such as radiology and radioisotope scanning. The symptoms of some diseases, and of natural conditions such as pregnancy, are best investigated by ultrasound. It maps out anatomical cross-sections, measures the performance of the heart and the flow of blood, and identifies many kinds of abnormality, including several types of cancer, all without encroaching into the body in any way.

Twenty-five years ago, doctors seeking to investigate the structures of the body had no alternative to X-rays. Injections of substances to give better contrast were often necessary to obtain information about soft tissues. Nowadays, ultrasonic methods have replaced radiology in helping to solve many clinical problems: doctors depend on ultrasonic diagnosis, and patients demand this kind of investigation. The procedures are rapid and painless and nothing enters the body other than ultrasound waves. Unlike ionizing radiations, ultrasound at diagnostic exposure levels seems to be harmless.

Basic Principles

Most diagnostic applications of ultrasound depend on the reflection of ultrasonic waves at surfaces between tissue structures which differ in their so-called characteristic impedance. The characteristic impedance of a material is equal to the product of its density and the velocity of ultrasound within it. The densities of soft tissues, about 10^{3} $\mathrm{kg} \mathrm{m}^{-3}$ (kilograms per cubic metre), and the velocities of ultrasound within them, about $1500 \mathrm{~m} \mathrm{~s}^{-1}$ (metres per second), are similar to those for water. When an ultrasqnic wave strikes the boundary between tissues that differ in characteristic impedance, a proportion of the energy in the wave is reflected in much the same way that light is reflected when it meets a change in reflectivity at a surface.

Basic arrangement of the A-scope system, in use in this instance to show the mid-line structures of the brain in their relative position half way between the sides of the skull, as indicated by symmetry of the deflections of the cathode-ray tube trace. Asymmetrical spacing of the deflections may mean that disease has brought about a physical change such as a tumour on one side of the brain. The swept-gain generator gradually increases the receiver amplification over each sweep of the time base to compensate for the attentuation of the deeper echoes by intervening tissues.

Inside infarmation from

ultrusound

The characteristic impedances of soft tissues are similar, so the echoes from their boundaries are very small. For example, only about 0.5 per cent of the energy striking the boundary between kidney and fat is reflected. Such echoes are largh enough to be detected by a sensitive receiver. But almost all the energy crosses the boundary and is available for reflection by deeper structures.

Much larger reflections occur at boundaries between soft tissues and either bone or gas, because of large differences in characteristic impedance. These large reflections restrict the use of ultrasound in medical diagnosis. Moreover, it is necessary to exclude air from between the probe and the patient. This may be done either by examining through a water bath or through a film of oil smeared on the patient's skin.

Resolution

Ultrasonic echo-ranging techniques depend on the measurement of the time interval between the transmission of a brief pulse of energy and the reception of its echo, just as in radar. In any imaging system, whether using light, ultrasound or any other kind of radiation, the resolution is limited by the wavelength of the radiation. It is for this reason that ultrasound, as opposed to sound, is used in medical diagnosis. We need to visualize structures of only a few millimetres in size, so that wavelength has to be around a millimetre or less. In soft tissues, it is about 1.5 1.5 mm at a frequency of 1 MHz and proportionately less at higher frequencies. The highest audible frequency, about 20 kHz , has a wavelength of 75 mm . In principle, the performance might appear likely likely to improve as the frequency is increased. But ultrasound is attenuated as it travels through tissues and the rate of attentuation also increases with the frequency, so we have to compromise between better resolution and reduced penetration.

Pulse-Echo Techniques

In an ultrasonic instrument for diagnosis, a probe containing a piezoelectric transducer converts electrical signal into ultrasound waves for transmission into the patient. It does the opposite for echoes.

The simplest type of ultrasonic pulseecho diagnostic system is called the Ascope. (See Fig. 1). The clock triggers the transmitter, which feeds a brief

Time-position recording system based on the B-scope display, shown in use for echocardiography. The fibre-optic face plate of the cathode-ray tube collects enough light to produce a selfdeveloping trace on ultra-violet recording paper.

Two-dimensional scanner and B-scope display system studying a foetus. The time-base generators are driven by electrical outputs from a series of resolvers that measure the position of the ultrasonic beam as it moves across the patient. Horlzontal and vertical time-bases combine to deflect the spot in such a way that its movement across the display corresponds to the movement of the beam. Echoes received as the probe moves over the patient produce a cross-sectional image in a plane corresponding to that of the scan. In this example, the image is built up on the screen of an electronic storage tube for direct viewing.
pulse with a large amplitude to the transducer. Echoes return to the probe from those reflecting surfaces inside the patient that lie along the ultrasonic beam. Electrical signals from the echoes are amplified by the receiver and applied to the vertical deflection plates of the cathod-ray tube; the time-base generator, which is triggered into operation by the clock at the instant the ultrasonic pulse is transmitted by the probe, is connected to the
horizontal deflection plates to drive the spot on the display at constant speed from left to right. In this way the beam sweeping across the display is deflected vertically at intervals along the horizontal axis, corresponding, in distance from the start of the sweep, to echo-producing surfaces at various distances along the ultrasonic beam. A special circuit in the receiver increases the amplification of the deeper echoes to compensate for their attentuation by

A two-dimensional scan (right) reveals twins at about 25 weeks of pregnancy. The placenta on the anterior wall of the u terus is clearly defined while the abdomens of the twins, identified in the explanatory diagram, appear in section.
intervening tissues. The clock operates at a repetition rate fast enough to give a flicker-free trace on the display.

The A-scope has clinical applications in neurology, ophthalmology and internal medicine. It allows the depths of echo-producing surfaces to be measured, and the characteristics of echoes from within structures to be studied.

Echoes from moving structures, such as the valves of the heart, oscillate in position along the horizontal axis, or time base, of the display. In cardiology particularly, patterns of movement can give diagnostic information. They can be studied by making recordings with the aid of a B-scope display (see Fig 2).

The Doppler effect occurs when a wave is reflected from a moving surface, giving an upward or down ward 'shift' in frequency as in (b) and (c).

In the B-scope, the time-base sweep is normally invisible, but it is brightened by returning echoes to produce spots of light on the display in places where, on an A-scope, there would be deflections of the beam. The positions of the spots of light correspond to echoproducing structures in the patient, and the pattern of their movements can be permanently recorded.

Cross-Sectional Images

The B-scope forms the basis of another display method, the two-dimensional ultrasonic scanner (see Fig. 3). The
ultrasonic probe, instead of being held in the hand, is mounted on a scanner. It can be moved to any position in a twodimensional plane. In this way it is possible to arrange for the beam to pass through structures lying in a chosen plane within the patient, while the position of the probe and the direction of the beam are measured continuously by 'resolvers' mounted in the scanner. The electrical signals from the resolvers control two time-base generators, driving the vertical and horizontal beam deflection plates of a cathode-ray tube. The direction and position of the ultrasonic beam across the patient controls the position of the cathode-ray beam showing up on the display, related to the positions of the echo-producing surface.

A cross-sectional image of the surfaces can be built up photographically by a camera with an open shutter that records the bright spots on the display while the patient is being scanned. The echo information can also be stored electronically.

Two-dimensional scanners in which the probe is moved in contact with the patient produce individual images in scanning times of about 10 seconds, Images can be produced at a much faster rate by moving the probe mechanically. Images in rapid succession allow physiological movements to be studied; their main importance is in cardiological diagnosis. But although these rapid mechanical scanners produce so-called real-time images, they lack flexibility. This difficulty can be overcome by using ultrasonic probes containing many separate transducer elements, operated

One use of the Doppler 'shift' is to monitor the foetal heart. The echoes usually fall in the range of audible frequencies.

Inside information from ultrusound

separately or in groups, which can produce ultrasonic scans made up of parallel lines or of lines arranged in a fan shape, at frame rates of tens per second.

As well as making it possible to study rapidly moving structures, real-time scanners can also be used to explore large volumes of anatomy in a short time. A doctor using one can examine a patient in about a quarter of the time it takes with a 'conventional' twodimensional scanner.

The frequency of an ultrasonic wave reflected from a stationary structure is equal to that of the incident wave. If the beam is reflected by a surface which is moving towards the ultrasonic source, the reflected wave is compressed into a shorter space. This means that the wavelength is reduced. It shows as an upward 'shift' in its frequency. Reflection by a surface moving away from the source gives a downward shift. This phenomenon, the well-known interactions between ultrasound and

Doppler effect, conveniently gives shift frequencies that fall in the audible range when ultrasound is reflected by moving structures in the body such as heart valves or flowing blood. A simple instrument based on this makes it possible to detect the movement of the foetal heart. Similar instruments to measure blood flow allow peripheral arterial disease to be assessed.

Because Doppler shifted signals are received only from structures that move, two-dimensional maps of them can be built up by using a Doppler probe to scan the patient. In this way the distribution of blood vessels close to the surface can be studied. Such information may be obviate the need for -X-ray angiography, which is a dangerous and expensive procedure.

It can also be combined with other information about structure position obtained by the pulse-echo method, making it possible to map out blood vessels within the body and measure the rate of blood flow at the same time.

Work being done to improve the performance of the instruments now in use includes basic studies on the bilogical materials, the development of
real-time scanners and investigations of techniques for displaying the information. The ultrasonic signals from different tissues may be characteristic of the tissues themselves and in some circumstances it may be possible to identify them. Improved techniques include colour-coding to demonstrate various tissue characteristics, and storing ultrasonic data in a three-dimensional matrix so that any two-dimensional plane can be selected for display. Analysis of Doppler signals from blood flow is another promising field; it may soon be possible to assess the effect of drugs on the cardiovascular system.

The clinical value of ultrasonic techniques has already been proved, but their spread into general, everyday service will depend on the development of instruments that are simple to use. These, paradoxically, may be more complicated than the ones we already have. It will also mean training doctors and technicians to obtain and interpret results. But it is clear that ultrasonic diagnosis is, in many instances, the best and most economical way of getting the information essential to proper care of the patient.

4148 CHANNEL AUDIO MIXER

- 8 input channels each with linear fader, input attenuation switch, bass, treble, echo send and pan controls. High and low impedance PMG inputs.
- 2 output channels with 5 stage equalisation on each channel, VU meters, overload led, master pan, echo and volume controls.
- Black anodised front panel with yellow lettering. Vinyl covered cabinet.
COMPLETE KIT $\$ 254.00$ plus $\$ 5.00$ Froight.

485 STEREO GRAPHIC EQUALISER

- This superb equaliser offers 10 octave-centred linear controls for each channel; level match control, in-out switch and tape monitor switch.
- The performance of this unit is equal to some of the best available.
COMPLETE KIT \$105.00 PLUS \$2.50 Freight.
Send stamped addressed envelope for specification sheet or \$1.00 for complete construction manual.

NOBODYCAN BEAT FAIRCHILD AT THE NUMBERS GAME.

Fairchild's Optoelectronics Division builds more LED digits than anybody else. Bigger digits than anybody else. Brighter digits than anybody else. And we can even fit more character
size in a smaller package than anybody else. In short, we know digits.

Our digits are available with pins or as PC board mounted stackables. And, you get a choice of common anode or common cathode varieties.

Our digits also come in the widest selection of colors available. Red. Super Red. Orange. Green.

A WORD ABOUT DIGIT TECHNOLOGY.

Our patented light pipe construction yields the industry's most efficient LED display.
The result: A bigger, brighter digit. Lower cost. Lower voltage requirement. A way to outspec your competition.

LET THERE BE UGMT.

Whatever your digital display need - industrial, consumer or automotive, you should light up our switchboard first. Because with high volume production of digits, LED lamps, phototransistors, couplers, arrays and LED dice, nobody has more experience or better technology than Fairchild.

Contact your nearest Fairchild distributor

NSW: George Brown, 5195855 Amtron Tyree, 6989666
VIC: Browntronics, 4193992
Amtron Tyree, 2887099 Warburton Franki, 6994999
WA: Warburton Franki, 657000
SA: Protronics, 514713
QLD: Warburton Franki, 527255

Who Else?

How to get the sound of a whole new hi-fi system for around 53:5

Are you sure of the quality of your loudspeakers? Most people can't afford top quality speakers at first. So they upgrade the speakers later. If you're at that stage, you will know you're not going to do it for less than \$200-\$300 - not meaningfully. We offer an alternative.
The Elcoma kit below gives you two Philips dome tweeters, cross-over capacitors and complete instructions to extend the frequency response of your existing speakers to 20 kHz and beyond, (For non-technical readers, that is well beyond the range of normal human hearing).
And they do it with excellent transient response and low distortion. (That means the highs are crisp and clear without grating).
The dome construction disperses the high sounds naturally all round the room - not in a narrow beam like a flashlight. (Ordinary tweeters can do that).
You can work this miracle on your stereo system in about ten minutes. For around $\$ 35$. Why not try it before you write a cheque for \$300?

DH_{H}

PHILIPS ELECTRONIC COMPONENTS AND MATERIALS
Sydney 4270888 • Melbourne 6990300

- Brisbane 442471 • Adelaide 2234022 • Perth 2774199

Electronic Components and Materials

THEATRILRL LIGHTIIIE controller

Pt. 4 Final Details

THIS MONTH WE FINALISE the series on dimmers with the mechanical description of the control desk. Although the mechanical drawings of the rack are too large and complex to reproduce here, and some parts, like the 20A edge connector, are specially made, we have made arrangements with Nebula Electronics Pty. Ltd. to supply these items. If the dimmer modules are not required to be connected through sockets, the total cost can be reduced by connecting directly to the modules and mounting them in a box. In the 20A unit the heavy wires, should be bolted on to the appropriate pads to ensure contact to both sides of the board.

One modification we have made to the control desk is the addition of a black-out switch which allows all lights to be blacked out without moving the master control. This is simply done by switching the supply voltage on the master potentiometers from the 8 V supply as set by RV3 to 0 V . RV3 should be adjusted such that with one master at maximum, the second at minimum and one individual control at maximum that its output voltage should be +10 volts.

With the dimmer module the trim potentiometer has to be adjusted so that the output pulse from IC7 occurs at the very end of each half cycle as shown in Fig. 3 (page 69, Dec 77). This is easiest set using an oscilloscope although an approximate setting can be made without one.

If the dimmer is connected up to a reasonably heavy load and adjusted for about $1 / 3$ level it will probably be found that with RV3 at one end the light level is not stable and tends to flash. This is caused by the sync pulse occuring after the end of the half cycle and the trigger pulses from the previous half cycle triggering the next. The trim potentiometer RV3 should be turned back about $1 / 2$ turn from the position at which this effect stops.

When adjusting the maximum and minimum levels the minimum should be adjusted first. Note that the control potentiometer must be slightly up off zero to get any light and minimum should be adjusted at this point. The maximum should be adjusted with both the master and individual control at maximum and set to the point where the light level is just starting to drop.

Project 588

Theatrital Lighting Controller

Mehula Electronics Pty. Ltd.

$\begin{array}{lllllllllll}\text { MASTER } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

Fig. 1. The front panel artwork for the 10 way control desk. Full
size is $440 \mathrm{~mm} \times 250 \mathrm{~mm}$.

Fig. 3. The control desk box dimensions.

NOTES:

- 2 MOLES 6.4 mm DIA.

O 4 HOLES 3.5 mm DIA. 22 SLOTS $66 \mathrm{~mm} \times 3 \mathrm{~mm}$ MATERIAL: 1.6 mm ALUM.
Fig. 2. The mechanical dimensions for the front panel.

NOTES
2 HOLES 19 mm DIA.
O 56 MOL ES 3.5 mm DIA. 22 SLOTS $66 \mathrm{~mm} \times 3 \mathrm{~mm}$ MATERIAL: 1 mm STEEL, PLATED
Fig. 5. The potentiometer support panel.

THEATRICAL LIGHT DIMMER

The following components for these dimmers are available
from Nebula Electronics, 15 Boundary St
Rushcutters Bay 2011.
BTW41-400 TRIAC
10A or 20 A choke
$\$ 9.50$
20 A Amptrap fuse
$\$ 10.50$
20 A Amptrap fuse clips
$\$ 2.50$
Philips 4322-020-36630
S 0.80
20 A PCB
$\$ 0.65$
20 A PCB
$\$ 13.00$
10A PCB $\$ 11.00$
10 A Module (complete kit) $\quad \$ 60.00$
20 A Module (complete kit) $\$ 69.00$
$\begin{array}{ll}10 \text { Way control desk } & \$ 125.00 \\ 20 \text { Way control desk } & \$ 195.00\end{array}$
20 Way control desk $\$ 195.00$
Prices of other components available
on request.
Add 15% sales tax, 5% postage
NEBULA ELECTRONICS PTY LTO.
15 BOUNDARY STREET
RUSHCUTTERS BAY 2011
ph. 335850

TA

SOROC 10120 TERMIMAL
a Capable low
COST. APPROACH TO REMOTE VIDEO DISPLAY TERMINALS
$\$ 975.00$
Assembled

THE PROM SETTER
WRITE and READ EPROM
1702A-2708-2716
5204-6834
Plugs Directly into your ALTAIR/IMSAI Computer - Includes Main Module Board and External EPROM Socket Unir
The EPROM Socket Unt is connecte to the Computer through a 25 Pln Connector

- Programming is accomplished by the Computer
- Just Read in the Program to be Written on the EPROM into your Processor and let the Computer do the rest
- Use Socket Unit to Read EPROM's Contents-into your Computer
- Software included
- No Extemal Power Supplies. Your Computer does

It all

- Doubles as an Eight Bit Paralleil 1/O
- Manual included

THE PROM SETTER
KIT
$\$ 210.00$
ASSEMBLED
\$375.00
JADE PARALLEL/SERIAL INTERFACE KIT
\$124.95 KIT
S-100
Interfaces with RS232
intertaces or 1 Kansas City cassette
interface.
Serial interfaces are crystal controlled Selectable baud rates.
Cassette works up to 1200 baud.
1 parallel port.

JADE VIDEO INTERFACE KIT FEATURES
S. 100 Bus Compatible
$\$ 89.95$
32 or 64 Characters per line
16 lines
Graphics (128×48 matrix)
Parallel \& Compositive video
On board low-power memory
Powerful software included for
quisor, home, EOL, Scroll Graphics/
Character, etc.
Upper case lower case \& Greek
Black-on-white \& white-on-black

MOTHER BOARD

13 SLOT MOTHER BOARD w/front S-100 DESIGN
full ground plane on one side RC NETWORK TERMINATION ON EVERY LINE EXCEPT PWR \& GRD KLUGE AREA
STRONG $1 / 8^{\prime \prime}$ THICK DOUBLE SIDED BOARD
BARE BOARD $\$ 35.00$
KIT $\quad \$ 85.00$
PERSCI DISK DRIVE FOR S. 100

COMPLETE

Info 2000 S- 100 DISK SYSTEM (includes dual drive, power supply, case, intelligent controller, adapter, cables, and disk monitor on EPṘOM)
$\$ 2,650.00$
COMPLETE TDL SOFTWARE
PKG. FOR DISK
$\$ 195.00$

MICROCOMPUTER

1978 CATALOG NOW AVAILABLE

8 K STATIC RAM BOARD

ASSEMBLED AND TESTED

250ns. 450ns.

* Will work with no front panel
* full documentation
* FULLY BUFFERED
* S100 DESIGN
* ADEOUATELY BYPASSED
* Low power schotiky support ic s

250ns.
 KT
 450ns.
 \$169.95
 \$129.95
 BARE BOARD
 \$25.00
 W/SCHEMATIC

ADAPT YOUR MOTOROLA 6800 SY8TEM TO OUR S. 100 OK RAM BOARD.

KIT PRICE \$12.95

S-100

mamantan S-100 comarate JADE $\mathbf{Z 8 0}$
-with PROVISIONS for
KIT
ONBOARO 2708 and POWER ON JUMP
\$135.00 EA. ${ }^{\text {comzz }}$
\$149.95 EA.
(4MHZ)
bare board \$35.00 JADE 8080A KIT \$100.00 KIT bare board \$35.00

TU-I

VIDEO INTERFACE

You will want to know about the TV-1 Video to Televisior Interface Kit.
No need to buy a separate Video Monitor if you already own a TV set. Just connect the TV. 1 between your system video oulput and the TV set antenna terminals - that's all there is to it - 10 convert your TV set to a Video Monitor, and at a much lower cost! PRICE $\$ 8.95$

$1 \rightarrow$

1 D 〕

Computer Products
5351 WEST 144th STREET LAWNDALE, CALIFORNIA 90260 (213) 679.3313

Discounts availabie at OEM quantites. All prices above ato quoted in US SF.0.8. Lawndale, Cait USA. To expeciate shigments please include interna fionai monoy order or bankers check payabio against any USA bant in USS, or affiliated creotit cards of Bank America or Master Charge weicome (inctude card No., expiration date and signature), Add 10 percent of total order for postage. For orders less than $\$ 10$ add $\$ 1.50$ service charge.

:Vithai ALABMS

WE STOCK:

Alarm Modules, Electronic Eves, Photo Sensitive Cells, Micro waves, Ultra Sonics, Gas/Heat/Smoke. Sensors, Sirens, Bells, Pressure Mats, Door Monitors, Car/Caravan/Home/Office Hold Up Factory Alarms, Key Switches, Reed Switches, Relays, Shock Recorders, Aluminium Tape. You Name It. We Have It.

DO IT YOURSELF PRE-WIRED SYSTEMS EASYINSTALLATION

PORTABLE ALARMS

Microwave Systems concealed in $\mathrm{Hi}-\mathrm{Fi}$ Speaker Enclosures or Desk Units, Mains Operated, Fully Automatic, Self-Resetting with battery standby.

Send 80c in Stamps for Illustrated Catalogue.
N.S.W. AGENT FOR NIDAC SOLID STATE SECURITY SYSTEMS

WHOLESALE SECURITY FROM
PiOTECTOB
i.C.ALATMS
119.121 Pittwater Rd, MANLY N.S.W. 2095 PH: 977-6433

More on 28, 28000
Zilog have released more information on the Z 8 single chip microcomputer. Featuring 130 instruction combinations (against the Z80's 158), the Z8 runs at 4 MHz and packs 144 registers, four 8 -bit I/O ports, 2 Kbytes of ROM and 128 bytes of RAM onto the chip, as well as two counter/timers, four handshaking lines, and a UART (not two pins attached to the accumulator, but a genuine UART). The $\mathrm{Z8}$ can also address another 62 Kbytes externally. How it gets all that I / O, control, address and data signals through 40 pins is a mystery yet to be revealed.

The Z8000 16-bit microprocessor lies at the top end of the market. Addressing up to 8 Mbytes directly, the Z 8000 can be teamed up with a matching memory management chip which will provide relocation and memory protection. Its 418 instructions include 16 -bit multiply and divide, as well as powerful string manipulation functions. All 16 -bit registers can be used as accumulators, and all but one can be index registers. Among its other tricks is the ability to handle 32 -bit words, plus all the usual trap and interrupt handling. Since the Z8000 is bus-compatible with the $\mathbf{Z 8}$, it can use that micro as a general-purpose peripheral controller. No pricing info yet, but l'll bet a lot of computer hobbyists are preparing to hock themselves to the eyeballs!

32K EPROMs Emerge

Texas Instruments have started sampling 32 K EPROMs in a 24 -pin package, type number 2532 , and have sparked off a debate in the industry regarding standard pinouts. Intel are apparently proceeding with a different pinout on their 2732 , although both were on the JEDEC committee to standardise 32 K EPROM pinouts. Intel claim their pinout is more compatible with upcoming microprocessors. We ll just have to wait and see which part becomes the industry standard. Early indications are that it will be the TI part.
 interest to readers of this column. Their high speed paper tape reader is of the 'pull-through-and-run' variety, which interfaces to an 8 -bit parallel port. Supplied with 8080 or 6800 software, the tape reader uses available light shining through the tape holes to drive a sensor array. Correct operation is monitored by 4 status LEDs and interfacing is through a flat cable and plug which are supplied with the unit. Kit price is $\$ 75.00$ and assembled it's $\$ 95.00$, post free in Australia. Handy when dealing with people who supply software on paper tape, whereas you use CUTS.

The other new goody from S M Electronics is their Number Cruncher

Kit, which puts a National Semiconductor MM57109 Number Cruncher IC onto a PCB along with the necessary interface electronics to get it to work with a micro. The kit is supplied complete with an Application Note and Data Notes, so that the user knows how to use it, and assembly looks darn near fool-proof. The edge connector is a 24 pin type, which fits no computer bus that we've ever heard of, but it should work with most processors with only slight modifications, if any. So if you want to do some decimal arithmetic, here's the board you want.

CRT Controller IC

Fifth away from the start in the great CRT controller race, National Semiconductor is powering up the straight with the DP8350, now being sampled to customers in the US and Europe. According to National, the device is unique in having an on-chip crystalcontrolled clock oscillator and on-chip character generator.

iCOM Attache

iCOM, a division of Pertec Computer Corp., who own MITS (remember MITS?), have announced a new desktop personal computer. The Attache looks remarkably like a Sol built into a fibreglass attache case, and is S 100 based. More details as soon as we get them.

COMPUTER CLUB DIRECTORY

Sydney: Microcomputer Enthusiasts Group, P.O. Box 3, St. Leonards, 2065. Meets at WIA Hall, 14. Atchison St., St. Leonards on the 1st and 3rd Mondays of the month. Melbourne: Microcomputer Club of Melbourne, meets at the Model Railways Hall, opposite Glen Iris Railway Station on the third Saturday of the month at $2 \mathrm{p} . \mathrm{m}$.
Canberra: MICSIG, P.O. Box 118 , Mawson, ACT 2607 or contact Peter Harris on 72 2237. Meets at Building 9 of CCAE, 2nd Tuesday of month at 7.30 p.m.
Newcastle: contact Peter Moylan, Dept. of Electrical Engineering, University of Newcastle, NSW 2308. (049) 68-5256 (work), (049) 523267 (home).
Brisbane: contact Norman Wilson, VK4NP, P.O. Box 81, Albion, Queensland, 4010. Tel. 2621351. New England: New England Computer Club, c/- Union, University of New England, Armidale, NSW 2351. (New club; not restricted to students) Auckland: Auckland Computer Club, P.O. Box 27206, Auckland, N.Z.

Computer clubs are an excellent way of meeting people with the same interests and discovering the kind of problems they've encountered in getting systems 'on the air'. In addition, some clubs run hardware and software courses, and may own some equipment for the use of members. Try one - you'll like it!

If your club is not listed here, please drop us a line, and we'll list you. The same applies if you are interested in starting a club in your area. Also, if established clubs know their programme of forthcoming events, we can publicise them.

Radio Shack TRS-80

Probably the big news this month as far as Print Out is concerned is the Australian release of the Radio Shack TRS-80 microcomputer, which will be marketed through Tandy stores. We'll be bringing you a full, in-depth report in the next issue (we'll also have some good stuff on PET 2001), but meanwhile, here's some info on TRS-80, based on initial impressions after a few days' use.

Better than we expected. The TRS-80 isn't a hobby computer, (although an S100 adapter will be available later in the year), it's a home computer, and so is quite docile and tame. The 4 K BASIC supplied in ROM is surprisingly powerful (this may be due to the compactness of Z-80 code) and includes a pretty full complement of BASIC commands, functions and statements. String handling is a bit weak, with only two string variables, A and $\mathrm{B} \$$ (just enough to hold two names for a game). In addition, I'm darned if I can get 'IF A\$= 'YES' THEN 50' - type statements to work!

On the other hand, it does have DATA statements, GOSUB, ON N GOTO, PRINT AT, TAB, INT, ABS, RND, a bunch of relational operation and logical operators. A number of graphic statements are also included to set or reset a graphics location on the screen or to test its status (on or off). All in all, it's quite good for 4 K BASIC, though it doesn't offer the same facilities as more advanced BASIC's, obviously.

The User's Manual seems pretty good, written in a light, humorous style. If you already know BASIC, it's a bit difficult to be patient with all the short examples, though. Anyway, a full report of what we discovered will follow next month. In the meantime, for anyone who's already got a TRS- 80 and is looking for a user's group, try sending a self-addressed envelope and IRC (International Reply Coupon) to: R Gordon Lloyd, 7554 Southgate Road, Fayetteville, NC 28304, USA, who is (we hear) forming a group in the US. Don't know of anyone in Australia yet, perhaps will let us know if something's brewing?

Book Reviews

This month we look at two books and a magazine, which were supplied by Computerland, 55 Clarence St, Sydney. So if you want to buy them, now you know where to go.

Your Home Computer, by James White, Dymax, \$9.95. This book is aimed at the computer tyro - the person who knows nothing about home computers, but has seen one and is very curious, perhaps even wanting to buy one already. After reading Your Home Computer, even the most sceptical will be converted - it's the kind of book that's filled with infectious enthusiasm.

The approach the book takes is almost totally non-technical, although it does discuss microprocesoors in considerable detail and introduces terms like RAM and ROM before really intrducing the home computer proper. The hardware describer is mainly oriented to the American market, but is discussed in general terms, and many of the units are now available in Australia.

There is very little on the subject of software, but there are plenty of other books on the subject, and in any case, a computer is a necessity when learning programming, whereas most readers of this book will not yet own one.

The book really comes alive for me towards the end, where Mr. White starts to discuss various applications for home computers, including games, fine arts, education, amateur radio, robots, electric trains, financial record keeping, stock market analysis, home environmept control and many more. Once you've got your computer, and are wondering what to do with it, this is just the kind of stimulus that will make you a computer user, and not a computer builder.

The book finishes with lists of useful (US) addresses, including periodicals, clubs and computer stores. If you are titillated by home computing, but not yet galvanised into action, this is the book to do it. Highly recommended for the beginner.

Instant Freeze-dried Computer Programming in BASIC, by Jerald R. Brown, Dymax. Subtitled: For the Hobbyist, Student, ot Compleat Novice. Learn the NEW streamlined ALTAIR style BASIC used in personal computers and the similar DEC BASIC PLUS.
Well, you've bought your computer, some RAM, tape interface, terminal and now you've got a BASIC interpreter. Where do you go from here? This book

provides the answer, in the form of an 'active participation' workbook, which will take you from scratch right up to subscripted variables, arrays and subroutines with no pain.

The style of this book is virtually. indescribable, a kind of Whole Earth/ Cole's Funny Picture Book / People's Computer Company / What to Do After You Hit Return mixture. This is used to good effect with all kind os crazy graphics which exhort the reader to 'READ' when he should read, and 'DO IT' when he should attempt an example. And do it he must - this book is designed to be used with a computer. There are lots of little program examples to try out.

Most BASICs come with a manual, and some are very good for beginners, but if you haven't got a manual, or it's not very good, or you're just interested, Instant BASIC gives good value.
Calculators/Computers Magazine, edited by Don Inman, Dymax, $\$ 4.50$ per copy. Dedicated to the application of calculators and computers in the classroom, this magazine is aimed mainly at teachers, although a large proportion of it is suitable for duplication and distribution to classes. The style is rather like 'Instant BASIC', with lots of graphic designs and large arrows saying 'COPY ME'. Amongst the articles in Vol 1 , No. 2 are ones on classroom computer games, introducing calculators to junior school classes, Simpson's rule on a hand calculator, the computer game UPS, BASIC subscripted variables, teaching using computers and PET.

Although the slant is mainly to education, Calculators/Computers is well worth having for the computer games alone. Teachers and educators just can't afford to be without it.

No computer magazine gives you more applications than we do! Games. Puzzles. Sports simulations. CAI. Computer art. Artificial intelligence. Needlepoint. Music and speech synthesis. Investment analysis. You name it. We've got it. And that's just the beginning!

Whatever your access to computer power-home computer kit, mini, time-sharing terminal-Creative Computing is on your wavelength. Whatever your computer application-recreation, education, business, household management, even building control-Creotive Computing speaks your language.

Read through pages of thoroughly documented programs with complete listings and sample runs. All made eas y for you to use. Learn about everything from new software to microprocessors to new uses for home computers. And all in simple, understandable terms. And there'sstillmore. CreativeComputing discusses creative programming techniques like sort

IF YOU'RENOT SUBSCRIBINGTO creative compatiré YOLPRENOT GETTINOTHEMOST OUTOF YOUREOMPUTER.

algorithms, shuffling and string manipulation to make your own programming easier and more efficient.

We can even save you time and money. Our extensive resource section is filled with all kinds of facts plus evaluations of hundreds of items. Including microcomputers, terminals, peripherals, software packages, periodicals, booklets and dealers. We also give you no-nonsense equipment profiles to help you decide which computer is best for you-before you spend money on one that isn't.

We've got fiction too. From the best authors in the field, like Asimov, Pohl and Clarke. Plus timely reviews of computer books, vendor manuals and government pamphlets. And so much more!
Isn't it about time you subscribed to Creative Computing? It's
the smart way to get the most out of your computer.
Complete thiscoupon and mail ittoday. Orforfast response, call our tollfree hot line.
1800) 631.8112. (1n New Jersey call (201) 540-0445).

Please supply for with the following subscriptions
Magazine it 1 Year Subscription *Air Mall

creative

GOIRpubIrd

GOIRpatind	12 issues	\$46.00
Byte	12 issues	\$46.00
Or Dobbs	10 issues	\$21.00
Interface Age	- 12 issues	\$45.00
P.P.C.	or more	\$18.00
Corsonal		
ROM	12 issues	
Calculators	$\square 12$ issues	- \$45.00

* Due to constant delays relative to ocean freights, and keeping in mind the fast moving developments in the microindustry we decided to alrfrelght all magazines to offer you fastest possible service. NW 2000. Phone: 29-3753
- CHEQUFMONEY ORDER ENCLOSEDCHARGE MY BANKCARD
TOTAL REMITTANCE $\$$

BANKCARD

Ace. No
Expiry Date
Signature.

State
ELECEZONIC CONCEPES PEY LED computer land

Showroom \& Offices Ground Floor 55 Clarence St, SYDNEY NSW 2000

Extra M6800 Instructions

This useful hint was sent to us by David Craig of Holland Park, Brisbane. All you 6800 users out there can have hours of fun trying these out!

The Motorola M6800 provides 72 executable instructions. These require 197 different op-codes when all the allowable addressing modes for each instruction are taken into account. To provide this number of op-codes the 6800 uses an 8 -bit word length which can specify two to the eighth (i.e. 256) op-codes. Motorola's literature says that only 197 are valid, and that the other 59 are 'unimplemented'. But are they?

The answer to this question is a definite no! It appears that only four of the 59 op-codes that Motorola does not define are actually invalid. The other 55 are executed quite happily by the 6800 and produce well defined results. 26 of these op-codes simply provide alternative codes for already defined operations. The remaining 29 provide operations which have not been defined by Motorola. Some of these extra instructions which are available
are potentially quite useful.
In particular, a number of additional test instructions form a useful supplememt to the Bit Test and Test Zero or Minus instructions of the 6800. For example, the op-code 45 which performs a test logical right shift of the A accumulator can be used to test whether the contents of A are odd or even by examining the carry bit (C) after executing the test instruction. The test instructions perform the operation on the data in the nominated registers and alter the condition codes accordingly, but leave the original registers unchanged.

The op-codes 14 and 1A which provide the logical AND and OR respectively of accumulators A and B should also prove useful.

It is doubtful that most of the other extra instructions are particularly useful, though in certain circumstances they could find use in saving an instruction or two. The group of op-codes 87, C7, $8 \mathrm{~F}, \mathrm{CF}, 3 \mathrm{~A}$ would require extreme care in their use because of their somewhat odd results.

For the benefit of 6800 users the 55 'unimplemented' op-codes and their definitions are listed below. All the opcodes are in hexadecimal.
A. Actual invalid op-codes: 3C, 3D, DD. 9 D - stops processor operation, reset required to regain control.
B. Alternative op-codes for existing defined operations:.
NOP $00,02,03,04,05,38,4 \mathrm{E}, 5 \mathrm{E}$
DAA 18
TBA 1E
BCS 21
COMA 42
COMB 52
COM 62 (Indexed), 72 (Extended)
NEG 61 (Indexed), 71 (Extended)
LSR 65 (Indexed), 75 (Extended)
CPX EC (Indexed), DC (Direct), CC (Immediate),
FC (Extended)
BSR CD
JSR ED (Indexed), FD (Extended)
C. Additional executable op-codes:

Op Code	Addressing mode	Boolean/Arith Operation	Cond. Code Reg.					
			H	I	N	2	V	C
3A	Implied	$\begin{aligned} & (S P+2)-8 \\ & (S P+3)-A \\ & (S P+4)-x_{H} \\ & (S P+5)-x_{L}^{H} \\ & (S P+6)-P C_{H} \\ & (S P+7)-P C_{L}^{H} \\ & (S P)+1-S P \end{aligned}$	-	-	-	-	-	-

Op Code	Addressing Mode	Boolean/Arith Operation	Cond. Code Reg.			
			H	1	N^{-2}	V\|c
Test ops						
15	Implied	A. 8	-	-	± 1	R
41	Implied	00-A	-	-	* \ddagger	(1) (2)
51	Implied	D0-8	-	-	$1 \pm$	(1) 2
45	Implied	A $0 \rightarrow \square 11100 \rightarrow \square$	-	-	R 1	(3)
55	Implied		-	-	R 1	(3)

NOTE: Condition code symbols

* Test and set if true, cleared otherwise

Not affected

R Reset always
S Set always
1 Set if result $=10000000$
2 Set if result $==00000000$
3 Set equal to result of N+C after shift has occured
4 Set if operand $=10000000$ before execution
5 Set if operand $=00000000$ before execution

* Condition code result differs from simllar existing operation

Op Code	Addressing Mode	Boolesn/Arith Operation	Cond. Code Reg.					
			H	1	N	2	v	C
Logic Ops								
94	Implied	$A . B \rightarrow A$	-	-	*	\pm	R	-
9 A	1 mplied	$A+B \rightarrow A(0 R)$	6.	-	4	\pm	R	*
15	1 mplied	$B-A$	-	-	5	t	R	S
Arith Ops								
12,13	Implied	$A-8-9-A$	-	-	\pm	\pm	\pm	\%
83	Immediate							
93	Oirect	P $A-M-1-A$	-	-	む	\pm	\pm	*
A3	Index							
83	Extended							
C3	1 mmediate							
D3	Direct	$B-M-1-8$	-	-	\pm	\pm	\pm	\pm
E 3	Index							
F3	Extended							
10	Implied	$A+B \rightarrow A$	-	-	*	\pm	\pm	1
1 C	Implied	$A+B+1-A$	-	-	1	\pm	+	-
. 48	Implied	$A-1 \rightarrow A$	-	-	5	\pm	(4)	(5)
58	Implled	$8-1 \rightarrow B$	-	-	\pm	\pm	(4)	(5)
68	Index	M-1-m	-	-	\%	1	(4)	(5)
78	Extended							
mige Ops								
87	Implied	$\begin{aligned} & A \rightarrow(P C)+2 \\ & (P C)+3 \rightarrow P C \end{aligned}$	-	-	\pm	\pm	R	-
c7	1 mplig d	$\begin{aligned} & \theta-(P C)+2 \\ & (P C)+3 \rightarrow P C \end{aligned}$	-	-	\pm	1	R	-
85	Implied	$\begin{aligned} & S P_{H}-(P C)+2 \\ & S P_{1}-(P C)+3 \\ & (P E)+4-P C \end{aligned}$	-	-	\pm	\pm	R	-
CF	Implied	$\begin{aligned} & x_{H}-(P C)+2 \\ & x_{L}-(P C)+3 \\ & (P C)+4-P C \end{aligned}$	-	-	1	\pm	R	-

Project 639

[omputerised

Every home should have one - so make it a good one, say T. Long and T. Wooller of Applied Technology.

THE ADVENT of the microprocessor is more than just a remarkable technological achievement, it is destinea to impact all our lives in the very near future. Instead of large, incredibly expensive computer installations these remarkable devices offer complex computing power at a low cost that is still diminishing.

This article shows how a microprocessor can be used as the basis of a relatively simple device such as a musical doorbell. The finished product is elegantly simple, yet costs little more than the current top-of-the-range electromechanical doorbell on the market today.

From a functional point of view, the doorbell consists of a PCB containing a SC/MP microprocessor, preprogrammed 512 byte ROM, a TTL quad gate package, a handful of resistors, capacitors and transistors and a speaker and battery pack which attach to the back of the board.

The doorbell is programmed to play eight tunes which are selected with various push-buttons and one wire link on the PCB.

The tunes are:
Waltzing Matilda
Greensleeves
Can Can
Rule Britannia
Trumpet Voluntary
Twinkle Twinkle Little Star
Colonel Bogey March
Computer Music

Basic Design Approach

The ETI Microprocessor Doorbell has been designed to demonstrate how effectively a microprocessor can carry out even the most simple tasks. In this

HOW IT WORKS - ETI 639

When a pushbutton is pressed the 74LS00 gate tests which sense inputs of the SC/MP chip are activated. Simultaneously the operation of the pushbutton initialises the SC/MP chip and program execution starts from location 0001 . This action also applies temporary power to the SC/MP and the ROM.

The first step carried out by the SC/MP is to set the output at the SERIAL OUT (SOUT) pin to high, which in turn ensures that powes remains on when the pushbutton is released.

Next the SC/MP tests the SENSE A and SENSE B inputs and decides which tune has been selected. At this point the tune is played.

On completion of the tune the SC/MP sets the SERIAL OUT pin low and turns the battery supply off. If the pushbutton is still pressed the tune will start again.

Refer to the complete circuit diagram for an indication of how the actual operation is achieved. For those software oriented types the program listing on page 60 could be analysed as a flow chart with assembly listings or suitable description for the machine code.

PARTS LIST - ETI 639

Semiconductors

IC1....... . ISP8A/600 (SC/MP II)
IC2 82 S 115 PRDM (pre-
programmed)
IC3 74LSO0
D1-D4 1N4148
Q1 BD 136
02,3 BC548
Q4 BD139

Miscellaneous

PCB. ETI 639
LS1 8 ohm speaker 10 solder pins, 6 V battery, battery connector, picture frame for mounting.

Fig. 1. Speaker Mounting on rear of PCB.

Fig. 3. Component overlay.

08, $C 4,01,01,19,06,1 \mathrm{C}, 1 \mathrm{C}, 1 \mathrm{C}, 1 \mathrm{C}, 01,1 \mathrm{C}, 1 \mathrm{C}, 1 \mathrm{C}, 1 \mathrm{C}, 1 \mathrm{C}$, $08,58, D 4,07,01, C 4,58,32,40,98,0 \mathrm{D}, \mathrm{C6}, 01, E 4, F F, 9 \mathrm{C}$,

FA, 40, F4, FF, 02, 01, 90, F0, C2, 01, 35, C2, 00, 98, 12, E4, FF, 98, D0, C4, 07, 07, C4, 00, 8F, 00, C2, 00, F4, FF, 02, 9C,

FB, 07, C2, 00, F4, FF, 02, 9C, FB, 35, F4, FF, 02, 98, 03, 35, $90, \mathrm{D9}, \mathrm{C}, ~ 02,8 \mathrm{~F}, 10,90, \mathrm{D}, 44,4 \mathrm{~F}, 44,4 \mathrm{~F}, 2 \mathrm{C}, 77,2 \mathrm{C}, 77$.
$27,85,27,85,2 \mathrm{C}, \mathrm{EC}, 32,69,32,69,35,64,35,64,3 \mathrm{C}, 59$, 3C, 59, 44, 9D, FF, 35, 64, 2C, EC, 27, 85, 22, E1, 20, 50, 22,
$96,27,00,2 F, 70,3 C, 85, F F, 3 C, A F, 35,94,3 C, 16,35,19$, $2 F, A 6,2 C, 3 B, 2 F, 6 F, 35,63,3 C, 58,35,63,2 F, 6 F, 35,31$,

Fig. 4. This object code listing of the doonbell program will enable owners of SC/MP based microcomputers to generate tunes. This program is not the same as the one in the PROM as the address lines to the PROM are swapped about.
case the microcomputer is designed to select and play any one of eight tunes; it controls the actual program sequence, turns the battery supply off after every tune and mathematically determines the pitch and duration of each note. The output is monophonic and consists of a square wave driven into a speaker. The actual program and the tunes played are contained in a separate ROM, and other tunes could readily be programmed by selecting a different ROM.

Assembly

Assembly of the doorbell is very straightforward. To minimise costs no sockets are provided and the microprocessor and ROM solder directly into the PCB.

Refer to the PCB overlay drawing and study the location of every component before starting assembly. Start with the resistors and capacitors. Nextinsert the diodes, watchingcarefully that the cathode ends of the diodes are correctly oriented.

Now mount the microprocessor, ROM and TTL gate as well as each of the transistors. Take the usual precautions not to overheat individual joints. Note that the microprocessor is fully protected internally and is not nearly as prone to damage as CMOS (but it should be handled carefully just in case!).

Next solder PC pins as indicated for the loudspeaker, battery and pushbutton connections. Now glue the loudspeaker to the rear of the PCB, using epoxy or similar glue. Solder the leads to the correct pins on the PCB.

Recheck the wiring thoroughly and connect the power to the board (taking care to avoid reverse polarity). Now short one of the pushbutton terminals and a tune should be played. Adjust RV1 to give the desired pitch and your doorbell is ready for use.

3C, 2C, 35, 63, 50, 32, 00, 07, 50, 43, FF, 2C, 77, 35, 64, 00, 81, 35, 64, 32, 69, 2C, 77, 19, C6, 00, 28, 19, C6, 00, 28, 20,

00, FF, 3C, 59, 3C, 43, 3C, 17, 3C, 59, 48, 4B, 2C, 77, 2C, 59, $2 \mathrm{C}, 1 \mathrm{E}, 2 \mathrm{~F}, 6 \mathrm{~F}, 35,64,3 \mathrm{C}, 59,3 \mathrm{C}, 43,3 \mathrm{C}, 17,35,64,3 \mathrm{C}, 43$,

3C, $17,3 \mathrm{C}, 59,44,3 \mathrm{~B}, 48,13,50,66$, FF, $27, \mathrm{C} 6,27,43,24$, $48,24,8 \mathrm{~F}, 27,43,24,48,27,43,2 \mathrm{C}, 3 \mathrm{C}, 32,35,35, \mathrm{C}, 20$,
$9 F, 24,8 F, 27,22,32,1 B, 24,24,2 C, 1 E, 20,60,24,48,27$, 85, 2C, 77, 32, 3C, 32, B1, FF, 2C, 3C, 2C, 3B, 27, 22, 20, 28,

22, 26, 27, 22, 1C, 5A, 1C, 5A, 1C, 2D, 19, 32, 22, 26, 20, 28, $27,43,27,43,27,22,20,28,22,26,27,22,2 \mathrm{C}, 54, \mathrm{FF}, \mathrm{FE}$,

80, 01, 08, 02, 08, 03, 08, 04, 08, 05, 08, 06, 08, 07, 08, 08, $08,09,08,0 A, 08,08,08,0 C, 08,0 D, 08,0 E, 08,0 F, 08,10$,
$08,11,08,12,08,13,08,14,08,15,08,16,08,17,08,18$, $08,19,08,1 \mathrm{~A}, 08,18,08,1 \mathrm{C}, 08,1 \mathrm{D}, 08,1 \mathrm{E}, 08,1 \mathrm{~F}, 08,20$,
$08,21,08,22,08,23,08,24,08,25,08,26,08,27,08,28$, $08,29,08,2 A, 08,2 B, 08,2 C, 08,2 D, 08,2 E, 08,2 F, 08,30$,
$08,31,08,32,08,33,08,34,08,35,08,36,08,37,08,38$, $08,39,08,3 \mathrm{~A}, 08,3 \mathrm{~B}, 08,3 \mathrm{C}, 08,3 \mathrm{D}, 08,3 \mathrm{E}, 08,3 \mathrm{~F}, 08,40$,
$08,41,08,42,08,43,08,44,08,45,08,46,08,47,08,48$, $08,49,08,4 \mathrm{~A}, 08,4 \mathrm{~B}, 08,4 \mathrm{C}, 08,4 \mathrm{D}, 08,4 \mathrm{E}, 08,4 \mathrm{~F}, 08,50$
$08,51,08,52,08,53,08,54,08,55,08,56,08,57,08,58$, $08,59,08,5 A, 08,5 B, 08,5 \mathrm{C}, 08,5 \mathrm{E}, 08,5 \mathrm{E}, 08,5 \mathrm{~F}, 08, \mathrm{FF}$.

NEW MODEL, 3-30 MHz Bi-LINEAR AMPLIFIER
 HF-3-100L2
 Frequency Range $3-30 \mathrm{MHz}$
 Input Power: 10 W Nom, 5-20 W PEP range
 Output Power: 100 W Nom $\pm 1 / 2 \mathrm{~dB}$ across band 200-250W PEP output
 input impedance: 50Ω nom, adjustable to match exciter range under 21 across band
 Output Impedance: 50Ω nom, up to $3: 1$ VSWR acceptable with Ilttle degradation Current Drain: 16A nom. 20 A supply recommended at 13.6 VDC
 Power Supply: 13.6 VDC recommended for best results, 11.14 VDC acceptable positive or negative ground
 Pre-amp: 18 dB nom. gain across entire HF band, 15 dB typ at $50 \mathrm{MHz}, 3-4 \mathrm{~dB} \mathrm{NF}$ Size: $191 \times 16.5 \times 8.9 \mathrm{~cm}$ wt $11 / 2 \mathrm{~kg}$
 DEALERS ENQUIRIES WELCOME
 SOLE AUSTRALIAN DISTRIBUTORS FOR SCS LINE OF LINEAR AMPLIFIERS

 EMOMR Electranics

 EMOMR Electranics
 PHONE 2124815
 P.O. BOX K21,
 HAYMARKET, N.S.W. 2000

I® IU 1 GROW I IT
 ON STACKABLE 4K RAM/ROM PLANES

RAM PLANES
4 K Bytes using 32 2102s PCB
\$15.75,
KIT 450 nS
$\$ 89.30$
EXPANDABLE 16K MOTHER BOARD

- All buffering and control for 1 to 4 RAM/ROM planes - MEMORY PLANES stack on sockets
- Configurable to any $8 K$ boundary
\$15.75, \$34.90 \$15.75, \$34.90

ROM PLANES

4 K bytes using 4 2708s PCB \mid KIT (no 2708s)
(Prices inc. tax and P\&P in Australia)

- Interfaces to 6800, 8080/ 85, 2650, SC/MP etc.
- Edge connector 43×2 way $0.156^{\prime \prime}$ with Motorola system connections.

KIT - $\$ 49.20$
Pennywise Peripherals

19 Suemar St., Mulgrave, Vic 3170.
Phone (03) 5460308

FRONT PANEL Moffith petpeper	NUMBER CRUNCHER MM57109 Number Cruncher connector will sult 8080,6800 SCAMP, atc., will perform floter ations under sottware control	BACKPLANE BOARDS	U.V. EPROM ERASER WIII erase up to 4 Eproms at time in 30 mins. 240 V operation $\$ 47.50$
			SINGLE STEP CONTROL
Slaned for 8080 but will sult	PAPER TAPE READER		for 8080 sh button slingie stap mode.
A ${ }^{\text {a }}$			Auto. step low speed (Varlable speed) mode. Interrupt facility.
		Sbards together even alifferent	
		ara with	KıTICE
			\$23.00 \| ${ }^{\text {P }}$ (33.00
STANDARD PANEL $\$ 7500$	Manual operatlon, self conta	ICE \$24.50	
		GOLD PLATED SOCKETS	ALL PARTS POST FREE
WITH REE DISPLAY \$105.00	ashake looic status.	To sult 8080 \& ${ }^{8} 680043$ way double sideca $\$ 9.50$ or $5 / \$ 45.00$	digtal tacho, stop watches, tran ign. system, burglar alarm etc.
		S. M. ELECTRONICS	
\$95.00 \$125.00		3109. Box 19, Doncaster East,	10 Stafford Crt, Doncaster East, 109. 103) 842-3950 (03) 842 -3950

This year, for electronics buffs at least, the old fashioned mechanical doorbell is out of style. With microprocessor prices hitting an all-time low, it is economically feasible to have a microprocessor doing nothing but playing tunes whenever visitors press the buttonl

Well, ETI and Applied Technology, have gotten together and done it. Here's the first microprocessor-based musical doorbell project to be published in any magazine world-widel True, other musical doorbells are available, but nothing quite like this one. For instance, you can write your own tunes and program a PROM to play them - with other designs using mask-programmed ROM this is not possible.

If you share a flat, as many of our readers do, then everyone can have their own tune!

Since not everyone has a PROM programmer, and to make it easy to get all the bits together so you can start building, we have arranged for Applied Technology to supply complete kits of parts for the doorbell. These will be available to ETI readers at the special price of $\$ 39.50+\$ 2.50$ for packaging and certified post anywhere in Australia. Allow three weeks for delivery.

ETI DOORBELL OFFER

Please make cheques payable to 'Doorbell Offer', and send orders to
Doorbell Offer, ETI Magazine, 15 Boundary Street, Rushcutters Bay. N.S.W. 2011.

```
NAME.
ADDRESS
                                POST CODE
    I enclose cheque/postal order for . . for . Musical Doorbells.
```


NESSEL AUDIO

NEW NESSEL PROFESSIONAL SERIES 15 LOUDSPEAKER

Voice coil diameter $4^{\prime \prime}$ Magnet structure weight 9 kilos Cone resonance 55 Hz Power handling 150 Watts This speaker is suitable for musical amplifying systems, PA, sound reinforcement, discos etc.
trade enduiries welcome
Avallable from
NESSEL AUDIO
9 Nellbern Rd,
Moorabbln East, Vic. 3189
Ph (03) 959510
design and produce your own PRINTED CIRCUIT BOARDS

MAGAZINE PROJECT PRINTED CIRCUIT BOARDS

FEBRUARY 1978	EA. 78 C 2 EA.78AF2 ET1.487A ETI.487B ETI. 483	Cassette Deck Actlve Fliter Spectrum Analyser Spectrum Analyser Level Meter	$\begin{aligned} & \$ 3.65 \\ & \$ 3.50 \\ & \$ 4.75 \\ & \$ 4.75 \\ & \$ 2.60 \end{aligned}$
JANUARY 1978	$\begin{aligned} & \text { EA. } 77 \text { TH12 } \\ & \text { EA. } 77 \mathrm{CB} 12 \\ & \text { EA. } 78 \mathrm{CFI} \\ & \text { EA. } 77 \mathrm{UP} 6 \mathrm{~A} \\ & \text { ETi.637 } \\ & \text { ETI.806 } \end{aligned}$	Thermometer C.B. Selective Calling Cross Fader Nicad Memory Cassette Interface Skeet Game	$\begin{aligned} & \$ 2.50 \\ & \$ 2.50 \\ & \$ 2.50 \\ & \$ 3.50 \\ & \$ 2.50 \\ & \$ 3.00 \end{aligned}$
DECEMBER 1977	77PM12 77UP11 ETI.450A ETI.450B	Poker Machine Microprocessor Tester Audio Delay Line Audio Delay LIne	$\begin{aligned} & \$ 4.25 \\ & \$ 8.50 \\ & \$ 2.50 \\ & \$ 2.50 \end{aligned}$
NOVEMBER 1977	$\begin{aligned} & \text { 77MX11 } \\ & 775 C 11 \\ & 77 P S 11 \\ & 77 T S 9 \\ & \text { ETI.245 } \\ & \text { ETI.486 } \end{aligned}$	Mixer Electronic Scanner $5 \mathrm{v} / 10 \mathrm{~A}$ Power Supply Test Tone Generator white Line Follower Howl Stabllizer	$\begin{aligned} & \$ 2.50 \\ & \$ 3.25 \\ & \$ 2.50 \\ & \$ 3.00 \\ & \$ 2.00 \\ & \$ 3.00 \end{aligned}$
OCTOBER 1977	$\begin{aligned} & \text { ETI. } 586 \\ & \text { ETI. } 135 \end{aligned}$	Shutter Timer Digltal Panel Meter	$\begin{aligned} & \$ 2.50 \\ & \$ 2.50 \end{aligned}$
SEPTEMBER 1977	$\begin{aligned} & \text { EADVM } \\ & \text { EA+10 } \\ & \text { ETI713 } \\ & \text { ET15855R } \\ & \text { ETI5855T } \end{aligned}$	Mini DVM Trafficator Repeater Add on FM Tuner Metronome Ultrasonic Recelver Ultrasonic Transmitter	$\begin{aligned} & \$ 2.50 \\ & \$ 2.50 \\ & \$ 3.25 \\ & \$ 2.00 \\ & \$ 2.00 \\ & \$ 2.00 \end{aligned}$
AUGUST 1977	$\begin{aligned} & \text { EA77AL/8 } \\ & \text { EA77QBET } \\ & \text { ET1583 } \\ & \text { ETI134 } \\ & \text { ETI603 } \end{aligned}$	Headlight Switch Test Generator Gas Alarm True RMS Voltmeter Sequencer	$\begin{aligned} & \$ 2.50 \\ & \$ 3.00 \\ & \$ 2.50 \\ & \$ 2.50 \\ & \$ 2.50 \end{aligned}$
JULY 1977	$\begin{aligned} & \text { EA7787 } \\ & \text { EAT7D7 } \\ & \text { EAT7DLT7 } \\ & \text { EAT7TTY7 } \\ & \text { ET1484 } \\ & \text { ET1517 } \\ & \text { ET1582A } \end{aligned}$	Burglar Alarm Dwell Meter Digltal Logic Tralner RTTY Regenerator Compander Rev. Counter Home Alarm Home Alarm	$\begin{array}{r} \$ 2.50 \\ \$ 2.00 \\ \$ 10.00 \\ \$ 2.50 \\ \$ 3.50 \\ \$ 3.00 \\ \$ 3.50 \\ \$ 2.50 \end{array}$
JUNE 1977	$\begin{aligned} & \text { EA77E05 } \\ & \text { EA77UP6 } \\ & \text { ET1485 } \\ & \text { ET1581 } \\ & \text { ET15477 } \\ & \text { ETI481M } \end{aligned}$	MOS Keyer SC/MP Memory Equaliser Dual Supply Bell Extender CB, Power Supply Mlxer	$\begin{aligned} & \$ 3.00 \\ & \$ 2.50 \\ & \$ 3.00 \\ & \$ 2.00 \\ & \$ 2.50 \\ & \$ 2.50 \\ & \$ 2.50 \end{aligned}$
MAY 1977	$\begin{aligned} & \text { EA77PRE5 } \\ & \text { EAT7TT76 } \\ & \text { EAT7UP5 } \\ & \text { ETIS49A } \\ & \text { ET1584 } \\ & \text { ET1481 } \\ & \text { ET444 } \end{aligned}$	CB. Preamp RTT7 Modulator Miniscamp Metal Locator Strobe Power Supply 5 w Stereo Amp.	$\begin{aligned} & \$ 2.00 \\ & \$ 2.50 \\ & \$ 5.00 \\ & \$ 2.50 \\ & \$ 2.50 \\ & \$ 6.00 \\ & \$ 1.00 \end{aligned}$
APRIL 1977	77TT4 77 CC 4 ETII33 ETI631-2	Transistor Tester Cassette Interface Phase Meter Keyboard Encoder	$\begin{aligned} & \$ 2.00 \\ & \$ 2.50 \\ & \$ 2.50 \\ & \$ 3.50 \end{aligned}$

We stock a complete range of PCB from E.A. and E.T.I. from 1976 and new project boards are avaliable as soon as each magazine is publlshed.

BISHOPS GRAPHICS HOBBY PACKS

(with full instructions)

BLACK TAPES:
CCT201 20yd rolls
$\$ 1.55$
Specify width $.031^{\prime \prime}, .050^{\prime \prime}, .062^{\prime \prime}$
.080", . $100^{\prime \prime}, .125^{\prime \prime \prime}, .150^{\prime \prime \prime}, .200^{\prime \prime}$
DONUT PADS: (all with $.031^{\prime \prime}$ hole)
CCD216 88 pads .08" O.D.
CCD101 88 pads . $10^{\prime \prime}$ O.D.
CCD102 125 pads . $125^{\prime \prime}$ O.D.
CCD103 125 pads . $150^{\prime \prime}$ O.D.
CCD138 125 pads : $187^{\prime \prime}$ O.D.
CCD139 125 pads .200" O.D.
CCD141 125 pads . $250^{\prime \prime}$ O.D.
DUAL IN LINE:
CCD6014 16 only 14 pin
CCD6004 only 16 pin
ARTWORK FILM:
(.10" dropout grid)

CC1489 $81 / 2 \times 11^{\prime \prime}$ sheet
$\$.54$
CC1476 17"' $\times 11^{\prime \prime}$ sheet
$\$ 1.05$
RISTON COATED LAMINATE
SINGLE SIDED
$10^{\prime \prime} \times 12^{\prime \prime}$
$6^{\prime \prime} \times 10^{\prime \prime}$
$\$ 8.91$
$6^{\prime \prime} \times 10^{\prime \prime}$
$5^{\prime \prime} \times 6^{\prime \prime}$
$\$ 4.46$
$\$ 2.23$
DOUBLE SIDED

$10^{\prime \prime} \times 12^{\prime \prime}$	$\$ 11.28$
$6^{\prime \prime} \times 10^{\prime \prime}$	$\$ 5.65$
$5^{\prime \prime} \times 6^{\prime \prime}$	$\$ 2.82$

"RISTON" DEVELOPER:
500 ml
$\$ 1.09$
"SCOTCHCAL" EXPOSURE FILM 8007:

$10^{\prime \prime \prime} \times 12^{\prime \prime \prime}$ sheet	$\$ 2.50$
$10^{\prime \prime} \times 12^{\prime \prime}$ pack of 10 sheets	$\$ 20.00$
8500 developer 100 ml	$\$.80$

PROTO BOARDS

(48 hour service)
We have on hand stocks of precoated laminate. You supply $1: 1$ artwork or negative and we will have a single or double sided prototype ready in 48 hours or less. Please write for details.

POSTAL ADDRESS P.O. Box 355, Hornsby, 2077
Uanmcard
Welcome here
SHOWROOM
109-111 Hunter St., Hornsby 2077
(9-5 Monday to Sat)

ECONOMY POWER SUPPLY

Ideal for microprocessors, this kit supplies +5 v / $10 \mathrm{~A},+12 \mathrm{v} / 1 \mathrm{~A},-12 \mathrm{v} / 1 \mathrm{~A}$ fully regulated (S100 users can use the $+8 \mathrm{v} . \pm 16 \mathrm{v}$ unregulated outputs as well) and optional overvoltage protection can be fitted. This comprises of transformer, bridge rectifier and all diodes, filter capacitors, PCB. regulators and full assembly instructions. Can be readily adapted to fit any metal work.
$\$ 49.50$ KIT EPS. 100
Package and Post $\$ 3.50$

LOW COST V.D.U.

As described in E.A. February, this compact V.D.U. is an ideal peripheral for microprocessor systems.

- 32 characters/line. 16 lines.
- parallel ASCII (TTL) input.
- video output.
- 1 K on board memory.
- Automatic scrolling, carriage return, line feed.
- screen clear facility.
- uses low power TTL and MOS devices.
- requires $+5 v$ at 800 M.A. $-12 v$ at 30 M.A.
- Plated through hole PCB.
- supplied with full instructions and trouble shooting guide and X tal.

$$
\$ 99.50
$$

LOW COST V.D.U. Pack and Postage $\$ 2.50$

TRISTATE LOGIC PROBE

This very simple device works with TTL circuits and TTL compatible levels from microprocessors and identifies LOW LOGIC STATE

HIGH LOGIC STATE.
FLOATING OR HI Z INPUT. EXCESSIVE OR INSUFFICIENT VCC.

Also doubles as a pulse injector!
Kit consists of PCB, IC's, LEDS, RESISTORS/ CAPACITORS and full instructions.

$\$ 2.50$ post free OR

FREE with any order over $\$ 20.00$ (offer expires April 15, 1978).

SC/MP ON S100 CARD

Interested in expanding your Miniscamp to a more useful system? This handy PCB. makes it possible to connect the SC/MP (N or P Channel) to the hobby standard S100 buss. Has provision for Xtal clock and full buffering of the chip, and of course on-card regulators. Board is top quality fibre glass tin plated with hard gold S100 edge fingers.

S100/SCMP BOARD
$\$ 19.50 \begin{array}{r}\text { S } 100 / \text { SCMP BOARD } \\ \text { Pack }\end{array}$

S100 MOTHER BOARD

This 8 slot S100 Mother Board will greatly simplify construction of your S100 system. Has provision for power distribution and bypass capacitors. Also accepts 16 PIN DIL connections to adapt to other systems.

S100 MOTHER BOARD

$\$ 22.50$
Pack and Postage \$1.00

Winimat

We'll print your 24 words (maximum) totally free of charge. Copy must be with us by the 7 th of the month preceding the month of issue. Please, please write or pre ferably type your adverts clearly, using BLOCK LETTERS.

-CONDITIONS
 Name and address plus phone number (if required) must be included within the 24 words allowed.
 Reasonable abbreviations, such as 25 Wrms, count as one word.
 Private adverts only will be accepted. Please let us know if you
 find a commercial enterprise using this service.
 Every effort will be made to publish all adverts received however, no responsibility for so doing is accepted or implied.
 Adverts must relate to electronics or audio - general adverts cannot be accepted.

PLEASE USE BLOCK LETTERS			

For Sale: Half Price. ETI, EA, PW, PE, EE, (Magazine). Write to Dan Hackett, 7-Massey St, Rossmoyne, WA 6155. Any price accepted.

Sell: Hewlett Packard counter, all valves, 100 $\mathrm{kHz}_{\mathbf{c}}$ crystal oven, cooling fan, large size $18 \times$ 17×10 (in), ideal computer system home. \$30 Ph, 3372317 Sydney.

IBM Selectric typewriter with I/O interface $\$ 150.5^{\prime \prime}$ CRT monitor $\$ 50$. Paper tape reader mechanics only $\$ 15$. All suit microprocessor. Sydney 4192839.

Miniscamp microprocessor power supply and frame included. Full documentation. Ideal for learner or as an extra controller $\$ 100$. Phone (02). 4397270 after 4 pm weekdays.

2650 computer, fully buffered, 4 K RAM, number cruncher board, with power supply. I/O board, graphics board and vector display, software. \$600. A. Peek, 10 Gale St, Woolwich, $2110 .(02) 891450$.

Sell two Auditec 100 W RMS power amplifiers with mains transformer capacitors. Never used $\$ 110$ or offer. J. Barbour, Brisbane. (07) 229 2650, 10 - 6 pm.

Wanted: Mother board for microprocessor (e.g. PDP-11 Unibus) or good quality edge connectors. Contact Steven Cornelius, Main Road, Rokeby 7019, Tasmania or phone (002) 478893.

Sell: Playmaster Stereo Cassette deck. Complete except R/P head and chassis. PCB assembled but not tested, $\$ 75$ o.n.o. A. Burgess, 130 Brackenbury St, Warrandyte, 3113.

Canadian QSL swap club, new members welcome. Please write to C.Q.S.C., Box 251, Plympton, SA 5038 for membership form.

Sell Trio 75 mm oscilloscope, $10 \mathrm{mV} / \mathrm{div}$, $D C-5 \mathrm{MHz}$, very good condition, $\$ 110$. With test leads, handbook. Richard Samuel, Melbourne 96 5773, leave message.

Wanted: Student requires reasonably cheap
oscilloscope for hobby and experimental work for matriculation physics. Grant Reynolds, 33 Hartington St, Glenroy, Victoria 3046.

Wanted, backcopies ETI Oct, Nov, 76, Sept 75, EA Aug, May 77. Valve transformer, A \& R 2624 or equivalent. J. Philp, 50 Quay St, Brisbane 4000.

Sell: 2650 KT9500 ass. and tested, ETI 632 VDU, plus other items. 4986950 after 6 pm.

Electronic Technician Certificate Students (Stage 1, SA) Physics-Genzer, Younger; in new condition for sale. $\$ 17.50$. Mike Springett, Ph (08) 356.5010.

Sell: 'Australian Official Radio Service Manual', 1938 and 1947, \$3 ea. 'Radio Diagram and IF Index' 1948, \$1. All plus postage. Meissner, 262 Pickering St, Gaythorne, 4051. Ph. (07) 355-3443.

Wanted: Constructional plans fori 27.29 MHz 4-8 channel digital proportional radio control system, 1 mile range, for standard servos. G. Solomon, (02) 7472603.

Repertory Theatre Company needs used electronic dimmer set, not necessarily working. Write with price and particulars. R. Horstman, 25 leichhart St, Toowoomba, 4350 Old.

Wanted: Practical Electronies, Oct 71 in good condition. Will pay $\$ 2.00$. S. Campbell, 25 Buckmaster Dr., Mill Park, Vic. Ph. 404 2331.

Decca 'London' cartridge. Little used since overhaul by makers. $\$ 35$ or reasonable offer. Aldridge, 12 Marcel St, Heatley, Townsville. Ph. 732937.

For Sale: complete CB to Novice amateur licence conversion course - theory, questions, morse tapes. $\$ 15.00$ posted. D. Wilson, VK2NMW, 63 Superior Av, Seven Hills 2147.

Amateur Radio Novice Course in Sydney at Hornsby. Discover the real thing. Contact Barry White on (02) 4871428.

Experienced programmer available for APL or BASIC. Terms are negotiable. Send requirements to David Newall, 36 Gladstone Road, Prospect, SA 5082 or phone (08) 44 9303 (AH)

SELL. High class CDI. Constant O/P with 5-24 V I/P. Fully encapsulated. Provision for adjusting timing. Enquiries: G. Younghusband, P.O. Box 191, Laverton, VIC 3028. Ph 3991568

Wanted: circuit diagram 'for the 'Atar' Star Wars game. R. Dyball, 39 Greenhills Ave, 'Noodberry, 2322. Ph (049) 662869.

Zeners 1000 BZX 75C IV4 \$30. 200 WZ22V \$10 Pr. Spkrs. Plessey/Philips 3 way X-over unused, cost $\$ 250$, sell $\$ 100$. Buck ley; 53 Merino Cresc., Airds, 2650. (046) 257175

Wanted: Practical Electronics, Oct 76, Nov 76, Dec 76, Jan 77, Feb 77. Peter Anderson, P.O. Box 209, Lakes Entrance, VIC 3909.

Texas Instruments SR52 224 -step programmable calculator with magnetic card storage for sale $\$ 175$. Tony McGed, P.O. Box 14, Gloucester 2422. Ph 460 (work).

> send your ad to ETI MiniMart, Modern Magazines, 15 Boundary Street, Rushcutters Bay, NSW 2011.

Gill data sheet

NLS 4944 UNIVERSAL LED NATIONAL

THE NSL4944 IS A simple two-lead device normally used as an AC or DC indicator wheh can also be used as a rectifier and constant current source at the same time in associated circuitry. Further, most of the regulating circuitry is not in series with the LED. This allows the complete regulated LED to operate at only about 300 mV more than a standard red LED. Thus the NSL4944 operates on half the voltage needed by previously available regulated or resistor LEDs. The device is rated for a maximum of 18 V forward and reverse.

These characteristics provide several advantages. Unloaded TTL gates provide enough voltage, in either high or low states, to directly drive the universal indicator. Size and weight can be saved in instruments with a number of indicator lights by reducing the size of filter capacitors or voltage regulators. The NSL4944 can operate on unfiltered DC or at somewhat reduced intensity on 3 to 12 VAC . Since the IC within the regulated LED blocks reverse voltage, the device can be used as a low voltage rectifier or polarity indicator

Equivalent Circuit

FIGURE 1. Équivalent Circuit

The LED and its current source, as illustrated in Fig. 1, both fit within a standard LED package. The typical operating voltages shown allow the device to operate with lower supplies and take up less room than an LED and resistor.

Features

Schematic

Figure 2 shows how some of the operating features of the device are achieved. The rectifying characteristic occurs because the only input to the device passes through the IC's PNP emitters. These have a high reverse voltage in standard linear processing The voltage reference and compari-

FIGURE 2 Schematic Diagram.
son amplifier operate from the same low voltage that the LED does. The big PNP transistor which passes both $\mathrm{I}_{\text {LEO }}$ and $I_{\text {ref }}$ can be operated almost in saturation since the comparison amplifier can pull the PNP base down to only one volt from common.

Unfiltered AC

Power and parts count is minimized by powering the indicator from a low voltage transformer winding as shown in Fig. 3. This method. however, provides only half intensity light, but the apparent visual decrease is not as great. Some flicker occurs if the observer moves his head rapidly. The supply of Fig. 4 will provide up to 87% of maximum light output. The bulk of a filter capacitor is still not needed, and at 12 VAC in, flicker will be almost imperceptible since the LED "off" periods will be less than a

FIGURE 4. Unfiltered DC Power
millisecond. In both situations, the indicator may be switched a number of ways, including bipolar transistors, since only DC can pass through the indicator.

Full Intensity

As shown in Fig. 5, full intensity and zero possible flicker are achieved by minimal DC filtering. The small capacitor shown operates with 10 V p-p ripple and only about 8 V average DC, while the constant current drain characteristics of the NSL 4944 allow

FIGURE 5. Minimizing DC Filtering
only a few percent change in light intensity. If a system or instrument with a regulated supply has a number of LED indicators, regulator size and dissipation can be minimized by powering the regulated LEDs from the unregulated voltage.

Reduced Intensity

The low operating voltage and constant current characteristics make the regulated LED an ideal status indicator for digital circuitry. An interesting fact to keep in mind is that
full regulator current is not needed to light the LED. If, for example, only 8 mA is available (from a voltage of 1.6 to 1.9 V) the LED will light at a somewhat reduced intensity. The regulator will be switched full on instead of current limiting . . . but in such a situation it doesn't matter.

TTL Drive

Any circuit capable of supplying 10 to 20 mA and a voltage swing of at least $1 . V$ can switch the NSL4944 from an off to an on state Fig 6a, b. Within $25^{\circ} \mathrm{C}$ of room temperature, an input voltage of 1.3 V will produce litzle or no light, and 2.3 V will produce 70% to 90% of full output. However, with a small signal change. the pre-existing biases must be correct. The output swing of a TTL stage goes much closer to ground than to the 5 V supply.

FIGURE 6. TTL Indicators
Therefore, Fig. 6-C requires a 3.5 V supply for the indicators to have complete off-on switching

Replacing FETs

In many circuits or small instruments the need for a constant current source or current limiter arises. FETs can generally only be used as low current sources, so for 10 mA or more parts. If an indicator or pilot light is also needed, the regulated LED may be a very economical source of the needed constant current

The examples below illustrate all three characteristics of the NSL4944. it is a combined rectifier, constant current source, and pilot light.

FIGURE 7.

Shortproof Circuit

A current source can also be a current limiter. Fig. 8 shows an NSL4944 put in the collector of an emitter follower such as might be used in a pre-amp or mike mixer cable driver.

FIGURE 8. Current Limiting end Short Protection
Normally voltage across the LED is only 2 V , allowing almost full supply-to-supply swing of the emitter follower output. In comparison a limiting resistor would either greatly increase output impedance, or severely limit output swing. However, if the output cable is accidentally. shorted, only a little more than the rated current of the LED will flow. Output transistor dissipation actually decreases under emitter short conditions.

Delay Tactics

Logically, a constant current source is helpful in designing time delay circuits. If the circuit of Fig. 9 were built with a resistor, the timing period would only be half the amount shown, and timing would vary over 50% with the supply variations shown.

Instead, the current regulated LED is still drawing within 10% of full

FIGURE 9. Six Secand Time Delay
current when the relay reaches its 11 \checkmark pull-in voltage. The 14 to 18 V supply variation will produce only about a 3% timing variation, a considerable improvement. Variations due to temperature and electrolytic capacitor tolerances will remain however.

A number of LEDs can "share" a single constant current LED. Further, any of the ordinary LEDs can be turned on and off by a shunting switch without affecting operation of any of the others.

Active Loads

The lamp-driver Schmitt of Fig 10 illustrates a still further use of the NSL4944's constant current source. Substituting a current source for the collector resistor increases the useful voltage gain of Q_{1}. Further, almost fúll base current remains available to Q_{2}, even when supplying 12 V output, which would not be possible using a resistor. When the lamp and Q_{2} are off, most of the LED current flows in

FIGURE 10. Usa as Active Load
the 100 R resistor, thus determining the circuit's switching or trip point of 2 V .

With Q_{1} saturated, Q_{2} still provides a volt to the bulb, contributing some preheating and reducing the bulb's starting current surge. On, Q_{2} provides the bulb with 12 V due to the minimum voltage drop in the constant current LED. The 6 k 8 feedback resistor sets hysteresis at a measured 50 mV at the input. This can be varied without having to change the rest of the circuit. 10 k provides almost " 0 " hysteresis (undesirable and unstable) while 2 k sets a hysteresis of 0.5 V .

Geetronics todty

ELECTRONICS IT'S EASY

 Vol 1/2/3.Volumes 1 \& 2 now reprinted as a second edition!

Vol 1. The first 12 parts of this very successful series produced as a 100 page book. This volume takes the reader from an introduction to electronics through to operational amplifiers Vol 2. The 'middle-third' of the series introduces the reader to more sophisticated techniques, and includes power supplies, waveforms, filters and logic systems. Vol 3. The final volume covers digital displays and systems, computers, transmission systems. instrumentation and the control of power.
$\$ 3.00$ per volume plus 40 cents per volume post and packing (60 cents post and packing total if two or three volumes ordered at the same time.)

AUDIO EXPANDER COMPRESSOR. 50-100 WATT AMPLIFIER MODULES. AUDIO LIMITER. SELECTA-GAME. AUDIO PHASER. ETLMMMI TOP PROJETE VOL. 4 tamarimis bufy $98 \cdot 00$ Cleriry ALARM. TRAIN CONTROLLER. ACTIVE ANTENNA. GSR MONITOR. DYNAMIC NOISE FILTER. SELECTA-GAME, 'SCOPE TEST YOUR CAR. TEMPERATURE METER. UNIVERSAL TIMER. KITS FOR ETI PROJECTS. 50-100 WATT AMPLIFIER MODULES. GENERAL PURPOSE POWER SUPPLY. AUDIO IIMITER TFMDFRATIIREAIARM

TOP PROJECTS Vol 4
Available from newsagents or directly from Electronics Today International. Published in June 1977. Contains Audio Expander/Compressor, 50-100 watt Amp Modules, Stereo Amplifier, Dynamic Noise Filter, Audio Phaser, Audio Limiter, TV Game, Swimming Pool Alarm, Temperature Alarm. Active Antenna, GSR Monitor, Universal Timer, Mini-Organ, GP Power Supply. Temperature Meter, Train Controller, Car 'Scope Testing $\$ 3.00$ plus 40 cents post and packing.

International 3600 and 4600 Synthesizers

TEST GEAR

Metering and power supply projects.
Available from newsagents or directly from Electronics Today International. Published in June 1977. Contains Audio Level Meter, Impedance Meter, Audio Millivoltmeter, Simple Frequency Counter, Phase Meter, Temperature Meter, Audio Signal Generator, Audio Noise Generator, Tone Burst Generator, Cross Hatch/Dot Generator, RF Signal Generator, Marker Generator, Logic Probe, Logic Pulser, Logic Tester, Simple CMOS Tester, Transistor Tester, Linear IC Tester, IC Power Supply, Dual Power Supply, Basic Power Supply, Experimenter's Power Supply, Switching Regulator Supply, Decade Resistance Box, Oscilloscope Calibrator, Dual Beam Adaptor, Silent A-B Switch, Audio Attenuator, Universal Timer. $\$ 3.00$ plus 40 cents post and packing.

TOP PROJECTS Vol 3
Available from newsagents or directly from Electronics Today International.
Published in October 1976. Contains FM Tuner, 25 Watt Amplifier, Active Crossover, Crossover Amplifier, Booster Amplifier, 50 Watt Power Module, 400 Speaker System, Audio' Noise Generator, Crosshatch/Dot Generator, ETI Utiliboard, Linear IC Tester, Dual Beam Adaptor, Impedance Meter, Tone Burst Generator, Digital Display, Digital Voltmeter,

Frequency Counter, Logic Probe, Logic Pulser, Switching Regulator Supply, Nickel Cadmium Battery Charger, Radar Intruder Alarm, Intruder Alarm, Colour Organ, Car Alarm, Transistor Connections. $\$ 2.50$ plus 40 cents postage and packing.

We regret that due to heavy demand, Top Projects Vols 1 and

 2 are no tonger avallable.[^1]
ELECTROCRAFT PTY LTD

106 A HAMPDEN RD. ARTARMON 2064

TELEVISION AERIAL AND DISTRIBUTION EQUIPMENT CB RADIOS. AERIALS \& ACCESSORIES

TELEVISION
MECRAFT DISTRIBUTION AMPLIFIERS AND AMPLIFIER SPLITTERS
5 NEN Medium and high gain distribution amplifiers suitable for all applications with 1, 2, 3 and 4 outputs suitable for small home unit, showroom or household type installations.
TYPE 1.75 DI has one output. 16 db gain with low N/F $\$ 45.50$
WHILE TYPE 4.75 T19 has 4 outputs 19 db of gain with low N/F
\$61.84

ANTENNAS

A COMPLETE RANGE OF TV \& FM AERIALS. HILLS CHANNEL MASTER. MATCHMASTER \& HI.O.
HILLS S....
CA16 - High gain phase array 45.94 215.2710 - 8 element yagi 25.29
2010.2710 - Airways screened co-linear
58.26

EFC 1 - 75 for colour low gain $\quad 36.00$ FC2 - 75 for colour medium gain 56.96 EFC 3-75 for colour high gain $\quad \mathbf{7 5 . 5 0}$
CHANNEL MASTER
3110 - 2 element coloray 27.96 3111-6 element super coloray 41.98 HI.Q.LOG PERIODICS
8 element \& 10 elements $\$ 39.00$ (Excellent back to front ratio).
ACCESSORIES: Outlet plates. Transformer splitters. Attenuators, filters, plugs. sockets for 75 ohm $\times 300 \mathrm{ohm}$ applications.

AERIAL HARDWARE: Wall brackets chimney mounts, U brackets, guy wire, guy rings. masts from 8 ft to 50 ft .

$$
\{S P E C I A L S
$$

DEGAUSSING COILS complete with power cord plug and push button switch \$14.00. Ready for use
CB EQUIPMENT
$1 / 4$ WAVE SPIRAL TUNED BASE STATION AERIAL
Omnidirectional (top view) radiation pattern with excellent ground wave and sky wave characteristics. Ideal for "Point to Point" \& "Skip" communications. Sturdy plated base bracket. 4 telescopic radials and vertical radiator. Spiral tuning stub at base for quick and easy tuning. SWR of 1.11 possible. Aerial comes complete with SO 239 socket, U bolt and saddle and derailed insiruction sheet. \$37.75*

DELIVERY ARRANGED IN SYDNEY AREA
FOR ORDERS OVER $\$ 10.00$

Clearance sale of all our CB Radio stock to make way for new shipment
COBRA $21 \times$ TRANSCEIVERS, COBRA 19M TRANSCEIVERS, PRESIDENT "GRANT" AM/SSB.
MOBILE AERIALS: Royce, Belling Lee Gilco (heavy dury) topix. ACCESSORIES: Plugs, sockets, jumper leads. coaxial cable SWR Meters, etc. ALL TYPES OF CABLE: in stock. coaxial: twin, $300,75,850$. From 30 cents per metre.

COMPONENTS

FERGUSON TRANSFORMERS hN N

240 V to 18 V 60VA (Low profile) 58.95° 240 V to 18 V 20VA (Low profite) 56.55°. 240 V to 18 V .0 18V 5A (PC Type) 54.56° PLUG TYPE POWER PACKS
240 V to 18 V DC. Full wave rectification 470LF Filter capacitor: cMW 1 metre lead \& 3.5 mm plug $\$ 5.50^{\circ}$

METAL BOXES
$\mathrm{L}=200 \mathrm{~mm}$. $\mathrm{W}=135 \mathrm{~mm} . \mathrm{H}=70 \mathrm{~mm}$ Black vinyl covered. suitable for CB Power supply. etc.. ideal project hox $\$ 3.50^{\text {. }}$

- RECOMMENDED RETAIL PRICE (NSW)

DELSound BRISBANE 1 Wickham Terrace, Brisbane. Also 35 Logan Road, Woollongabba Queensland Distributors for Swann Electronics (ex Murdo)

CONTROL KNOBS.
SCREW FIX

INSULATED TERMINALS TERMINAL PLUGS

TP1 \& TP2

P12 (2 mm) THROUGH PLUG
45c
P14 $(4 \mathrm{~mm})$ TOP BANANA PLUG 15 c
22 c

I.C. TEST CLIPS

JACK PLUGS

P2, MONO 6.3 mm TOUGH MOULDED COVER50c ASSORTED COLOURS
P5, MONO METAL 3.5 mm .
40c
SEP3 MONO METAL COVER.
JACK SOCKETS (NyIon)
S1-MONO, CHASSIS INSULATED
S3-STEREO, CHASSIS INSULATED.
.35c
S5-MONO, CHASSIS METAL FACIA NUT 67 C

MAIL ORDERS \& TRADE

 ENQUIRIES WELCOME STOCKS AS OF $1 / 10 / 77$
ALL PRICES PLUS 10% POST \& PACK

CBS \& ACCESSORIES

PRICE LIST FOR CLIFF KNOBS

K1 Black/Grey	28 c
K1 Black/Grey Chrome Top	34 c
K1 Black/Grey Coloured Anodised Top.	34 c
K2 Black/Grey Chrome Top	40c
K2 Black/Grey Plain	290
K2 BlackGGrey Coloured Anodised Top.	48c
K3 Black/Grey	28c
K4 Black/Grey	29c
K5 Black/Grey	49c
K5 Black/Grey Marker Lin	54c
K6 Black/Grey.	54 c
K6 BlackGrey Marker Dot	56c
K6 Black/Grey Skirt 0-10	76 c
K7 Black/Grey	54 c
K7 Black/Grey Marker Line	56c
K8 Black/Grey	$48 \mathrm{c}$

AUSTRALIA'S SEMICONDUCTOR SPECIALIST ANNOUNCES

silic (4) valley mail order division

P.O. Box 898 Crows Nest ,NSW 2065

This new mail order division of Silicon Valley offers a full range of semiconductor products with off the shelf availability. The range consists of over 2500 line items of semiconductor products from the industry leaders. Motorola, Harris, Texas Instruments, AMI, Precision Monolithics,

Sprague, Solid State Scientific, Unitrode, Signetics, and many more. Through Cema Electronics, Silicon Valley is able to offer prime products, fully warranted, fully specified of current production and backed by comprehensive data including handbooks, specification sheets and application notes.

$$
\begin{aligned}
& \text { silic(1) N valley } \\
& \text { mail order division }
\end{aligned}
$$

PO. Box 898 Crows Nest, N.S.W. 2065. Telephone: 024392965 division of Cema Electronics.

A compact highly accurate Multimeter for the Scientist, Technician, Tradesman, Electrician and Advanced Hobbyist. - SIMPLE 2 SWITCH OPERATION - EASY READ DIGITAL DISPLAY - 1% ACCURACY

Features:

- Large $3 / 8$ " (9.5 mm) LED Numerals
- Automatic Decimal Point
- 3 Digit 0-999 Display
- Instantaneous Non-flashing Readout
- Zero Locked
- 7 MEGOHM Input Impedance.
- 12 Separate Measuring Ranges
- Over-range Indication
- Overload Protected
- 1% Accuracy

DESIGNED \& MANUFACTURED IN AUSTRALIA BY

Supplied complete with:

- RECHARGEABLE NI CAD BATTERIES
- SEC APPROVED PLUG-IN ADAPTOR/CHARGER
- CONNECTOR LEAD FOR CHARGING FROM AUTO BATTERY

- TEST PRODS

- OPERATING INSTRUGTIONS
- 12 MONTH GUARANTEE

SEE THEM AT YOUR LOCAL ELECTRONICS STORE
OR THE A + R ELECTRONICS BRANCH IN YOUR STATE.

ARLEC
QUALITY PRODUCTS

A+R Electronics

A MEMBER OF THE A+R-SOANAR ELECTRONICS GROUP

Digitul Electronics By Experiment

IAN SINCLAIR'S NEW SERIES IS DESIGNED TO IMPART THEORETICAL KNOWLEDGE THROUGH SIMPLE PRACTICAL EXPERIMENTS

MANY EXPERIENCED Constructors with several acres of transistor circuits behind them still fight a little shy of using digital integrated circuits. The reasons for this are not difficult to see. Most of the transistor circuits with which an experimenter learns his trade are fairly simple and show rather well how a transistor works, giving a feeling of confidence to the user.

The many excellent projects using digital integrated circuits which have been published do not give any such help to the constructor, however. They may be comparatively easy to build on a prepared PCB, they may even be reasonably easy to understand, but they do not give the constructor the experience which enables him to design confidently with ICs.

This series is intended to remedy that deficiency, so that the reader will gain a firm grasp of the principles of digital IC behaviour, how they work, and also a considerable amount of "hands-on" experience on a board designed to make experimenting with digital ICs particularly easy. We shall confine ourselves to the smaller scale ICs so that nothing as involved as a microprocessor will be used - the components however are chosen so that they give a good range of experience with some useful devices.

One and none

We can assume that any reader of ETI will already have some knowledge of what digital circuits are about, but perhaps a very brief reminder may be of some use. Digital ICs are made up from transistor circuits of very high gain, designed to run with inputs and outputs which take up one of two states which we call 1 and 0 . In most applications, 0 will mean a voltage very near to earth potential, and 1 near to the full supply
rail.
The ICs we shall use in this course will be from the well-known TTL series, developed by Texas, and also available from several other manufacturers. There are several reasons for this: the devices are readily available at very low prices, advertised in ETI and they are much less easily damaged electrically than the alternative CMOS.

0/C Inputs

When an input of a TTL gate is left open-circuit it automatically reverts to a " 1 ". The reason for this is that the input to TTL gates is to one emitter of a multiple-emitter transistor whose base is connected through a limiting resistor to the $+5 \vee$ line. Leaving an input o/c means that the emitter terminal will take up the same voltage as the base terminal. This cannot be done when CMOS devices are used.

Fig.1. The method of attaching components to the Blob Boards. The 'leg' can be simply bent to one side and then soldered 'blobed' over the lead to hold it. Since the boards are tinned, and the leg ought to be, a sound joint is usually obtained.

For our course on digital electronics we shall need seven digital ICs and one "jumbo" display, a full inventory of semiconductors being shown in Table 1, and in addition we shall also need a few other assorted components. Where a 5 V supply is not available, a stabiliser can be included on the board, so that the experiments can be carried out using a car battery or any DC supply in the 6 V to 12 V range. Note that the current taken will be up to 350 mA .

Breadboard

The heart of the whole project is the circuit board on which the ICs and all other components can be mounted. This is one of the series of "Blob Boards" advertised in ETI - in this case the ZB-8-IC. Blob Boards consist of wide strips of tinned copper on the usual insulating board, and their main feature is that components are mounted on the same side of the board as the strips.

This, of course, is not a new principle in digital IC construction, since this method has been used for some time where digital ICs are mounted on double-sided boards.

The ZB-8-IC as its name suggests, has mounting pads for eight ICs, including the display which we have specified. The suggested layout for the ICs is shown in Fig. 3, where we can see that the top left hand corner houses the 7414 Schmitt inverter, and the 7400 Nand gate; the top right hand corner has the two $7476 \mathrm{~J}-\mathrm{K}$ flip-flops. At the bottom left hand corner, we have a 7494 shift register and the 7490 decade counter. The bottom right hand corner contains the 7447 BCD- 7 segment decoder-driver and the display. All of the ICs have conventional DIL fourteen or sixteen pin bases, but the display has a base which is an eighteen pin type

Digital Electronits By Esperiment

Fig. 2. Above: This is the track pattern for the ZB-B-IC used in this series. Note the wire links which need to be made in order more easily facilitate application.
Fig. 3. Below: Components in place on the board. Note that unlike our usual overlays, the tracks are on the SAME side as the components.

with several pins omitted, so that this will just fit the pads on the board. The spacing between the lines of pins ($0.6^{\prime \prime}$) is a little on the large side compared to the other ICs, but with care it can be accommodated. In the circuits which we are using we shall not normally need the decimal point on the display, but its connection may as well be made just in case.

Before any experiments are started then, it is advisable to solder all the ICs and the display on to the board, so that this does not have to be done when it becomes cluttered by other components. Since each circuit mounts on to pads which are isolated unless other connections are made, no harm is done by leaving an IC soldered on to the board.

It is for this reason, incidentally, that it is not-desirable to use CMOS circuits in such a project, since the protection diodes built into CMOS ICs will operate only when the power supplies are connected.

In the prototype, the lines running round the edge of the Blob-board were used for supplies, the outer line taken as the positive 5 V line, and the inner as earth. It is quite convenient also if the shorter lines running across the board between each pair of IC pads are also used as 1 and 0 lines as well. The vertical lines at the centre of the board may also be used. If a regulated 5 V supply is available for operating the board then little else needs to be done other than connecting the power pack to the lines at the edge of the board.

Fig.4. The lavout for the digital TTL series. This is looking down at the device from above. Usually, but NOT always power is applied to pin 14 and pin 7 is earthed.
Fig.5. Bottom: Positioning the ICs onto Blob-Board pads. Make shure the legs line up.

Regulation

If a regulated supply is not available, however a regulator can be constructed, either on a separate board, or onto the Blob-board itself. A 7805 monolithic regulator IC, with $10 \mu \mathrm{~F}$ tantalum capacitors from input to ground and output to ground, can easily be mounted on the centre tracks J, K, and N (with N as input).

It is extremely important that TTL circuits should not be operated at voltages above 5.25 V AT ANY TIME, since the inputs to TTL circuits are to the emitters of transistors, with the bases connected to the positive supply. If the inputs to the emitters are earthed, too much current will flow in the baseemitter junctions, though if all the inputs are earthed, over-voltage is much less likely to cause damage.

Led about the board

Above and below each mounting pad

```
Note: Only the essential basic components
are listed here. For various additional
suggested experiments, additional resistors
and capacitors will be needed; these
values will be critical.
SEMICONDUCTORS
1\timesSN7414N
1\timesSN7400N
2\timesSN7476N
1 x SN7494N
1\times SN7490N
1\timesSN7447N
1\times747 Display
```


Fig.6. Identifing LED connections has caused many a paralysed moment of doubt - look for the flat bit, if there's one present then your problems are over.
there are several short pads, usually three horizontal and two vertical, and
these are very useful for mounting components such as LEDs, which are used to indicate the state (0 or 1) of any output. Note that on most LEDs there is a flat portion of the plastic case near the leadout wires which indicates which leadout wire is the cathode. Since we are using the LEDs to light on.a " 1 " state, the cathode of each LED is connected to earth, and the anode through a limiting resistor to the IC output. This resistor value is higher than we would normally use, but suits this application, as we do not want the LEDS to draw too much current from the IC outputs. When we come to use the display, we shall also use darge value limiting resistors.

With all the ICs mounted in place, we are ready to start our work on Digital Electronics By Experiment, with the first set of experiments in next month's issue.

BOARD

1 ZB-8-1C Blob-Board
For a few applications in later parts of this series, a silicon NPN transistor may be used as an alternative to some long stretches of wiring (10 connect a reset terminal on a counter). For this application, any working small signal type is suitable.

COMMUNICATION DEVICES present

 THE

 THE

 SABTRONICS

 SABTRONICS 31/2 DIGIT DM M

 31/2 DIGIT DM M}
$1 \times 0.1 u F$
$1 \times 1.0 \mathrm{uF}$
$1 \times 10 \mathrm{uF}$
$1 \times 100 \mathrm{~F}$
$1 \times 680 \%$ F
$1 \times 1000 \mathrm{uF}$
All the above 10 V working, or more.
$10 \times 470 R$ resistors, 0.125 W or more
6 Miniature push-button switches. 5 metres of single-core wire.

MAD MA SCHOOLS

 Xal sel type tunina condenser complete with $95 c$

Mono Xtal Cartridge

 Stereo Ceramic
 \$3.95 ea.

$.2 \mathrm{~mm}{ }^{2}(6 \times 0.2 \mathrm{~mm})$ Parfect to have on hand around the workshop. Comes in red, Black. Green, Yellow, Blue,Orange, Grey, White 51. per 15 metres

Variable Capacitor

> C1604 140 F Suttable for VHF, and communications quip. Low tolerance. \$1.95 ea.

Dwell Meter

 Kitset $\quad \$ 6.60$Complete kit less meter and case. Save on service costs and keep your car in good tune. Set ignition points accurately with this easy-to-assemble kit. Meter required is 1 mA Kit featured in EA July ' 77.

We regret that all these offers must end 30th April 1978.

GUTTERGRIP R/T TEChNical data:

lasting bead in non-ferrous matenals for lasing beauty. All metals chrome plated. Model CA2/RT for VHF $\begin{gathered}\text { Spare pars including replacement cobles } \\ \text { readiv avaiable }\end{gathered}$ operation $\$ 6.25$ Frequency range approx. 80 mHz - 180 mHz V.S.W.R. -80 mHz 1.1: t

175 mHz . less than 1.1:1

Iniect audio signals into circuits for fault finding. Also trace audio signats. The perfect kitset for the beginner. Kit comes complete except for 2 penlight cells. Comprehensive building instructions are supplied.

Plugs and Sockets

7c ea. 9c ea.
Suitable power supplies, etc. 4 and 5 pin .

P4 or $5 \quad$ S4 or 5
8c ea. 9c ea.

P12 2 pinplug
d.i.n.

3 pin d.l.n. plugs and metal chassis sockets

P14 30c ea
S14 30c ea.

PHONO PLUGS
P22 Metal phono plug.
Matches socket boll Matches socket below.
Only 6c ea.

Twin Socket 45c

DAVRED ELECTRONICS PTY. LTD.
104-106 King Street Newtown Sydney Australia P.O. Box 317 Newtown, N.S.W. 2042. THE NEW BREED IN ELECTRONICS SERVICE

Telephone 516-3544

Potentiometers

Without switch
25K Log All
250K Log
500 K Log
1 meg Log
2 meg Log
5 K Lin
25 K Lin
500 KLin
2 meg Lin
With switch
5K Log LOOK
25 KLog ONLY
50K Log
$500 \mathrm{~K} \log$ 65c ea

Dual without switch
50K Lin
100K Lin
250K Lin
500K Lin 50K Log 100K Log 2540k Log 500 K Log

Slider Pots

10 K Lin Single 25 K Lin Single 100k Lin Single 250k Lin Single 500 K Lin Single 1OK Log Single $25 K \log$ Single 100K Log Single

ONLY 50c ea. a
$75 c$ ea.

20 Pin iC sockets
Top quality blue 28 pin sockets
Bury in bulk now while stocks last. 55cea.
-
$\$ 6.60$
RECORD CLEANER CLOTHS
Clean, crisp sound can only come from a clean record. Choose a Davred cleaning cloth for fully effective dusi removal.
85c ea.. Volume onquiries welcome

28 pin d.i.l.

DAVRED ELECTRONICS PTY. LTD.
104-106 King Street Newtown Sydney Australia P.O. Box 317 Newtown, N.S.W. 2042. THE NEW BREED IN ELECTRONICS SERVICE

by computer

Abstract

Literal transcription by a computer of a performance in standard musical notation. By P.Mars, Robert Gordon's Institute of Technology, Aberdeen.

REPRODUCING A MUSICAL SCORE

 automatically is not a new idea. The first version of an automated piano, in the form of a pianista, was introduced more than a hundred years ago. Later developments include the well-known pianola and the piano camera. Our own research stemmed from an interest in modern jazz piano.There is a tremendous scarcity of original, accurate transcriptions of such music. Many jazz pianists have had no classical training in music, and even those who have cannot spare the time for the tedious work of transcribing. But the keyboards of the piano and organ are ideally suited to the computer. It is a reasonably simple matter to arrange that every time a note is struck it is recorded, and to monitor accurately the times when they are struck. All the information can be recorded in the binary form of 1 and 0 , that is, the language of the digital computer. Information can be monitored during a performance by using an automatic transcription unit and storing it in digital form on a cassette recorder. It can then be processed by computer to produce a transcript, in musical notation, of the original keyboard performance.

The transcription unit samples the entire keyboard at a rate of, for example, 20 times/second throughout the performance and the information on pitch and timing of notes, after some manipulation, is recorded. No audio frequency needs to be recorded; all that is wanted is digital information, so it does not matter if the piano is out of tune or even if a dummy keyboard is used.

It is quite simple to connect the automatic transcription unit and cassette recorder to any keyboard device, but although direct electrical connections can be made to electronic organs and pianos, optical transducers are needed to convert the key movements of ordinary pianos.

During a performance any notes struck by mistake are, of course, transcribed, for the print-out is not governed by any law of musical tonality. Difficulty might arise in drawing the lines between the bars of the music because the musician seldom sticks exactly to a strict enough tempo to follow a particular crotchets/minute count, so the bar lines may be incorrectly placed. However, if the performer does stay within the constraint and tolerance of a specific count, the computer can draw bar lines quite simply. Unfortunately, for some practical applications such as transcribing avant garde jazz, timing within a piece modulates and may have random variations.

A further disadvantage of the system is that it offers little or no discrimination between which hand plays which note or set of notes. All note tails are drawn upwards and no distinction is made between lower and upper hand in the print-out. For similar reasons, no rests are drawn; it is impossible, for a particular piece, to ascertain individual voicings. Rests must be added by the composer after the automatic transcription has been made. No expression marks are incorporated automatically. either, because modelling musical

Transcription of Chopin's 'Prelude in C minor', opus 28, No. 20.
expression mathematically poses an unsolved problem; all expression marks must be added later by the composer. The system allows a key to be specified but many compositions involve changes in key and it is not practical to account for them 'on-line', during performance. This information must be added later, 'off-line'.

In spite of these limitations, the machine gives a completely literal transcription in terms of note pitch and time, making the system attractive as a potential labour-saving device for musicians.

We intend to add to the system in the near future, to permit the original transcription to be edited with the aid of a conventional visual display unit. The composer will be able to insert expression marks, rests and so on automatically.

Fast

Recent work in conjunction with the well-known jazz pianist Oscar Peterson has shown that the transcription system can cope with the fastest of jazz improvisations. It is a relatively simple matter to play back original transcriptions under remote computer control, and thereby provide an audio check on their validity. It is also possible to include semi-automatic composition. For example, given a standard popular tune, the computer can be organised to play the standard left-hand chord sequence and generate jazz improvisation, superimposed on the original chord sequences. For any chord, notes that obey the standard harmonic laws can be randomly selected for improvisation. Every improvisation so produced is original and the composer can simply select the most attractive; the automatic transcription system then produces a conventional music-notation output.

Although the system was originally developed to solve problems associated with jazz piano, it can obviously be applied to all forms of keyboard music.

Self-resonance in capacitors

Roger Harrison has been plotting again - this time it's self-resonant
frequency versus lead length of ceramic capacitors!

THE LEADS AND CONSTRUCTION of all capacitors form an inductance which is effectively in series with the capacitance of the component. The combined effect forms a series resonant tuned circuit, the frequency of which (the self-resonant frequency) is mainly dependant on the length of the connecting leads, the construction of the capacitor and the way it is mounted.
The impedance of an ideal capacitor
decreases with increasing frequency. But in a real capacitor the series inductance of the leads and construction causes the impedance of the capacitor to increase above the self-resonant frequency. Within a range of 0.7 to 1.4 times this frequency the impedance will be equal to, or better than, the reactance of the pure capacitance.
One can make use of this characteristic in bypass applications by using a

capacitor of appropriate value and lead length so that its series resonant frequency is at, or close to, the frequency in use. Series resonant bypasses do a better job.
Alternatively, when selecting a bypass capacitor, always ensure that, for the value chosen, its series resonant frequency is above the highest frequency likely to be encountered in the circuit. This ensures that the impedance is always low over the frequency range of interest.
There are other ways in which the series resonance of a capacitor can be utilized. A pi-network, as is frequently used in the output stages of transmitters; is shown in Fig. 1. The output capacitor, C2, will have a value that depends on the frequency and the input/output impedances. The leads of this capacitor can be cut to length before installation so that the series resonant frequency of the capacitor falls on the second harmonic transmitter frequency. Thus it acts as a trap of very low impedance at this frequency.
If the second and third harmonics are to be suppressed, two capacitors may be connected in parallel (their added values to equal the value of C2), and resonated at the frequencies of the two harmonics. Other frequencies (such as spurious mixing products) may be suppressed in the same fashion provided each frequency is sufficiently separated.
In interstage coupling applications, the coupling capacitor may be resonated to the frequency used. Mounting a bypass capacitor flat against a groundplane (i.e. metal chassis or printed circuit board ground plane) increases its series resonant frequency by about $5 \%-10 \%$. Adding 2 mm or 3 mm wide copper strips along the length of the wire leads of a capacitor can increase its series resonant frequency by $30 \%-40 \%$.
The series resonant frequency of a capacitor may be measured by soldering

TABLE 1. SERIES RESONANT FREQUENCIES OF VARIOUS CAPACITOR STYLES

Value	Style \& Size
100 pF	Hi-K disc ceramic, 5 mm dia
100 pF	NPO disc ceramic, 20 mm dia
100 pF	NPO tubular ceramic, $20 \times 3 \mathrm{~mm}$
100 pF	Stacked mica
470 pF	Lo K disc ceramic, 5 mm dia.
470 pF	Hi-K disc ceramic, 7 mm dia.
680 pF	Hi-K disc ceramic, 5 mm dia.
1000 pF	Hi-K disc ceramic, 5 mm dia.
1000 pF	Hi-K disc ceramic, 20 mm dia.
1000 pF	Plastic Film 'Greencap'
4.7 nF	Hi-K disc ceramic, 7 mm dia.
4.7 nF	Hi-K disc ceramic, 'Red cap', 5 mm
4.7 nF	Plastic Film 'Greencap'
$.01 \mu \mathrm{~F}$	Hi-K tubular ceramic, $10 \times 3 \mathrm{~mm}$
$.01 \mu \mathrm{~F}$	Hi-K disc ceramic, 10 mm dia.
$.01 \mu \mathrm{~F}$	Hi-K disc ceramic 'Redcap', 5 mm
$.01 \mu \mathrm{~F}$	Plastic Film 'Greencap'
1000 pF	Resin-sealed Button Mica, 10 mm dia.
1000 pF	Gold-sealed Button Mica, 10 mm dia.
1000 pF	Solder-in Ceramic Feed through
1000 pF	Screw-mount ceramic Feed through
$.082 \mu \mathrm{~F}$	Resin-sealed Button Mica, 10 mm

Lead Lengths \& Resonant Frequencies

25 mm	20 mm	12 mm	5 mm	1 mm	Bandwidth
80 MHz	-	135 MHz	165 MHz	200 MHz	Broad
75 MHz	-	105 MHz	130 MHz	-	Narrow
69 MHz	-	99 MHz	122 MHz	-	Narrow
60 MHz	-	95 MHz	120 MHz	-	Narrow
-	-	65 MHz	80 MHz	140 MHz	Narrow
40 MHz	-	60 MHz	-	-	Broad
-	40 MHz	53 MHz	74 MHz	92 MHz	Narrow
34 MHz	37 MHz	45 MHz	58 MHz	84 MHz	Narrow
25 MHz	-	35 MHz	46 MHz	-	Sharp
28 MHz	31 MHz	39 MHz	50 MHz	65 MHz	Sharp to Broad
-	-	18 MHz	22 MHz	-	Broad
18 MHz	21 MHz	25 MHz	33 MHz	-	Sharp to Broad
13 MHz	15 MHz	18 MHz	26 MHz	-	Sharp
8 MHz	-	19 MHz	14 MHz	-	Broad
-	-	13 MHz	15 MHz	-	Broad
10.3 MHz	11.7 MHz	16 MHz	21 MHz	34 MHz	Sharp to Broad
9.3 MHz	10.8 MHz	13.5 MHz	18 MHz	22 MHz	Sharp to Broad
-	-	-	500 MHz	-	Broad
-	-	-	800 MHz	-	Broad
-	-	-	400 MHz	-	Broad
-	-	-	250 MHz	-	Broad
-	-	-	100 MHz	-	Narrow

the leads to a relatively large copper plate or piece of p.c. board, as shown in Fig.2, and finding the resonance with a grid-dip meter (gate-dip meter, or base-dip meter for modern instruments).
Table 1 lists the series resonant frequencies of a variety of values, styles and sizes of capacitors. The lead lengths noted are the lengths of each lead (refer Fig.2), the disc ceramic is obviously a
good choice for bypass applications into the middle VHF region. For applications to 60 MHz or so the common, plastic film 'greencap' is quite good along with various styles of ceramic capacitors. For stringent applications in the VHF-UHF region or for effective bypassing over wide bandwidths, the button mica capacitor or ceramic feedthroughs are necessary.

Button ceramics exhibit similar characteristics. Note the high self-resonant frequency of the $0.082 \mu \mathrm{~F}$ button mica.
The self-resonant frequency of disc ceramics is dependent largely on its diameter and lead length. The graph in Fig. 3 illustrates this for a variety of disc ceramics and a stacked mica capacitor for comparison.

Fig. 3. Self-resonant frequency versus lead length for various diameter ceramic disc capacitors lafter J. Bork, 'A note on the self-resonance of ceramic capacitors; proc. I. R. E. (Aust) May 1957).

SHOP AT MELBOURNE'S BRIGHTEST ELECTRONIGS OUTLET...

499 HIGH ST., NORTHCOTE, VIC. 3070, PHONE (03) 489-8131 OR WRITE ANO OROER TO US AT P.O. BOX 135, NORTHCOTE, 3070, VIC.
SUPER SPECIAL 10555 TIMERS FOR S4.00

$\begin{array}{ll}\text { 1oz. Copper F/glass Lam } & \\ 8^{\prime \prime} \times 2^{\prime \prime} & 0.85 \\ 6^{\prime \prime} \times 3^{\prime \prime} & 1.00 \\ 6^{\prime \prime} \times 4^{\prime \prime} & 1.20 \\ 8^{\prime \prime} \times 4^{\prime \prime} & 1,50\end{array}$

ZENERS

$400 \mathrm{~mW} 5 \%$ E24 Values 3 V to 33 V

RESISTORS

I.R.H. Metal Glaze G.L.P. or G.L. $1 / 2$ Watt 2.20 HM to 1MEG 3 cents each or 2.5 cents for 100 plus.

CB REGULATOR UA78CB 13.8 V at $2 \mathrm{~A} \quad \$ 2.60$

${ }^{\text {BC107 }}$	TRA	TRANSISTORS	
	. 18	PN3565	. 20
	. 18	PN3566	
${ }^{\text {BC }}$ BC109	. 18	PN3568	20
- ${ }^{\text {BC5547 }}$. 20	MJ2955	1.60
	. 20	2N3055	. 85
BC548 BC549	. 20	FT3055	. 80
- ${ }^{\text {BC549 }}$. 60	TIP318	. 75
80140$8 F 180$. 60	TIP328	. 75
	. 60		
OPTOELECTRONICS			
FND 35	, 375		1.30
FND 500	.5"	c.c.	1.40
RED LE			. 22
GREEN	Led		.35 .40

ELECTROLYTICS			
4.7uF	25 V	РCB	. 07
10 FF	25 V	PCB	. 08
10uF	50 V	PCB	. 09
22 uF	16 V	PCB	. 07
22 uF	35 V	PCB	. 09
33uF	16 V	PCB	. 08
33uF	50 V	PCB	. 10
47uF	16 V	PCB	. 09
47uF	35 V	PCB	. 11
100 uF	10 V	PCB	. 10
100uF	16 V	PCB	. 11
220uF	25 V	PCB	. 14
470 uF	16 V	PCB	. 16
1000uF	25 V	PCB	. 36
2500uF	50 V	Axial	1.85
TANTALUMS			
1uF 35V	. 18	2.2uF 35 V	. 20
4.7uF25V	. 22	10 uF 16 V	. 20
15uF 16 V	. 27	22 FF 16 V	. 30

POTENTIOMETERS

.25 watt rotary carbon single gang, Log or Lin. $1 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 250 \mathrm{~K}, 500 \mathrm{~K}$, 1 M .
5 K Lin Slide Pot
CERAMICS
320 pF to 0015 F
uF
E12 Values.
INCLUDE 2OC POSTAGE FOR FREE
CATALOGUE
.20
00
0.65教
watt rotary carbon single gang, Log or Lin.
pF

PRICES CURRENT TILL 31/4/78

BUILD A WORKING DPM IN $1 / 2$ HOUR WITH THESE COMPLETE EVALUATION KITS

Test these new parts for yourself with Intersil's low cost prototyping kits, complete with A/D converter, and LCD display (for the 7106) or LED display (for the 7107). Kits provide all materials, including PC board, for a functioning panel meter.

ICL7106EV (LCD) $\$ 29.95 \quad$ ICL7107EV (LED) $\$ 24.95$

SANKEN Series \$1-1000G amplifiers are self-contained power hybrio amp-
liflers designed for HI-Fi, stereo, musical Instruments, public address sy lems and other audio soplications The amplifiers have quasi-comple mentary class 8 outpul. The circuit high reliability and passivatet! chip power transistors with excellent sec. ondary breakdown strangth. Builh-in current limiting is provided for si. can be operated from. single or solit supply.
SI-1010G (10W outpui) $\$ 6.90$ S1-1020G (20W oupput) $\$ 13.95$ Socket for above SI.1030G (30W output) $\$ 19.00$ SI-1030G (30W output) $\$ 19.00$ Sl-1050G (50W outpur) $\$ 27.80$
Socket for ebove

Panǐa POWER AMPLIFIERS

- Multi-purpose linear amplifiers for comercial and industrial applications.
- Less than 0.5% harmonic distortion at full power
- $1 / 2 \mathrm{~dB}$ responce from 20 to $100,000 \mathrm{~Hz}$.
- Single or split (dual) power supply.
- Rugged, compact and lightweight packages
- Built-in current limiting for SI-1030G, SI-1050G and efficient heat radiating construction

TYPICAL CONNECTIONS SI-1050G WITH SPLIT SUPPLY

$1 / 4$ WATT 5\% CARBON FILM RESISTOR KIT

COMPLETE WITH STORAGE BIN Each KIT contains 20 each of 42 different values of KW Carbon Film Resistors from 68 ohm to 4.7 megohm

Order P/N RS-14-25
$\$ 24.90$

(A)

ANCRONA CORP
P.O. Box 2208ET, Culver City, CA 90230 USA Phone (213) 641-4064
All prices quoted in US Dollars. Minimum order $\$ 10.00$ Please add postage to cover method of shipping desired. To expedite shipments, please include international money order or bankers' check payable against any USA bank in US \$.

The Heavy-Duty Test Hook. Ideal for connections to large leads, terminals and lugs. Conductor and Hook are equivalent in current carrying capacity to 14 AWG wire $1.064^{\circ} \mathrm{Dia}$. 1.65 mm Dia.). Spring-loaded and heavily insulated to a single contact point to assure true readings.
Construction: One-Piece Nickel Silver Conductor and Hook. Made for test connections over diameters up to .125" (3.175 $\mathrm{mm})$. Durable Heat and Chemical Resistant Nylon Body and Plunger. Stainless Steel Compression Coil Spring provides approximately 40 ounces $(1244 \mathrm{Grams})$ contact pressure. Colors: Red, Black. Specify color when ordering. For Test Leads, see page 20.
For Coaxial Test Cables, see pages 30,32, 34 and 37.
Field Serviceable. To connect or replace leads, pull straight out on plunger until it slips free of body. Strip lead wire $3 / 4^{\prime \prime}$ $(19 \mathrm{~mm})$, feed wire through plunger and wrap around terminal as shown in Fig. 1. Solder. Cut off excess wire at solder point.

GENERAL ELECTRONIC SERVICES 99 Alexander Street, Crows Nest Telephone 439-2488.

[^2]
DICK SMITH FOR YAESU The professional amateur rises. If you see a lower price, ask iu one question: Where's the stock? Dick has $\$ 100,000$ worth of Yaesu NOW!

The radio of tomorrow today! The FT-901D It's got to be the ham's dream. Full HF band coverage in all modes (yes, even FM) with the rugged 6146 finals this is the top-of-the-line rig for the ham who wants the ultimate. Built-in 240 V supply, DC-DC converter optional. A really outstanding piece of gear!

Compare: and be surprised! The YC- 500 S 500 MHz counter is extraordinary value for money. We can't find a comparable instrument under $\$ 700.00$. . High sensitivity, with power choice of 240 V OR 12 VI Versatile? It's more than that! Ideal for the 432 MHz operator. ideal also for servicemen.

s380 L L W S EVEN LESS without S/TAX!

Calling all mobiles ...
Or those who would like to be! Here's the new Yaesu FT-227R 2 metre FM, with 800 channels. Compare with other 2 metre rigs and be surprised - the 227R is way in front (see EA March '78). Comes with microphone and mounting hardware, is ready to go on simplex, repeater (\& rev) or new tone repeaters. Superbl

SAVE AROUND \$1000 by buying the FRG-7 That's right - you could spend well over $\$ 1000$ dollars on a receiver with similar performance to the FRG-7 - and you'd waste $\$ 1000$. High sensitivity, high stability - the Wadley Loop circuitry gives you top performance. 0.5 to 30 MHz reception, 12 V or 240 V powered.

SEE THE ALL-NEW 1978 ELECTRONIC ENTHUSIASTS CATALOGUE - FREE IN APRIL ELECTRONICS AUSTRALIA.

YAESU-MUSEN PRICE LIST

Remember! All these prices include the latest Japanese cost increases - and we have the stock in our stores NOW. Don't be fooled by adverts which promise the earth but can't deliver the goods!

D-2546 FL-2100B Linear Amp $\$ 540.00$ D-2850 FRG-7 comm. receiver $\$ 350.00$ D-2854 FT-901D HF transc. \$1275.00 D-2856 DC-DC conv. for 901 D-2860 FT-101E HF transc. D-2862 YO-100 mon. 'scope D-2866 FT-7 HF mobile trans. D-2870 FT-301 HF s/s trans. D-2872 Power supp. for 301 D-2880 FT-301S HF transc. D-2882 YO-301 mon. 'scope D-2884 FL-110 linear amp D-2890 FT-227R $2 m$ transc. D-2892 YC-500S dig. counter

We are proud to announce that the superb range of Hy-gain amateur band antennas are now back ...

TH6DXX

Top of the range - a 6 element tri-band beam for 20,15 \& 10. Gives a mighty 8.7 dB gain. 7.3 m boom length.

Cat D-4308 \qquad
\qquad
\qquad $\$ 320.00$

TH3 Mk 3

Compact 3 element tribander gives 8 dB gain from 3 elements. Weight is only 16.3 kg , boom length 4.3 metres.

Cat D-4306
$\$ 249.00$
TH3 JR
Superb little (?) antenna- it's the baby of the range but lacks nothing in performance. 8 dB gain, 3 element. 3.7 metre boom with 4.4 metre turning radius.
Cat D-4303 \qquad . $\$ 199.00$
18AVT/WB
Vertical trap for 80 through 10 metres, 7.6 metres high. Rugged construction. Sure it costs $\$ 10$ more than the $4 B T V$ but you get 80 metres on the 18AVT!
Cat D-4301
$\$ 125.00$

SUPER SPECIAL!

A-5BON MULTIBAND HF RECEIVE \& TRANSMIT ANTENNA

Here's your chance to save! The A-5BON was selling for $\$ 51.00$. Look againl Now you save $\$ 11.50$ on this deluxe antenna. it comes complete with instructions, nuts \& bolts, plus aluminium antenna wire -sure you need a lot of room for this sort of antenna - but look at the performance! ONLY A FEW LEFT AT THIS PRICE!

ICHz FREQUEILY meter - timer

 Pt. 1 Circuit Details

 Pt. 1 Circuit Details}

Lab-quality instrument offers superb performance and features at low cost.

OF THE VARIOUS QUANTITIES encountered in electronics (such as charge, voltage, current, frequency), perhaps the easiest to measure accurately is frequency. Various types of frequency-measuring equipment exist, ranging up from the simple absorption wavemeter (every ham should have one) to sophisticated multi-counter instruments which use microprocessors to calculate the measured frequency.

The earliest really accurate instruments were of the heterodyne type (such as the BC221), in which finely calibrated oscillator was tuned to zerobeat with the incoming signal. Many of these devices are still in use. In the late fifties and early sixties came the first 'digital' counters appeared, based on Dekatron tubes, which are cunning decade counter and display valves.

Integrated circuits and LED have now made possible compact, portable counters that can be held in the palm of the hand, and these can easily be built by the hobbyist. What we haven't seen however, is a design for use at UHF, where $C B$ and mobile radio, are appearing, or which offered versatile measurement of time or period.

With these thoughts in mind, we set out to do a design study, and came up with a lab-quality instrument which should be very reasonably priced. The design is based mainly on TTL with some CMOS and ECL. We rejected LSI MOS and CMOS devices for various reasons. Although this increases board size and power consumption, the gain in simplicity of layout and troubleshooting, as well as leading zero suppression, is well worth-while.

SPECIFICATIONS ETI - 140

Modes of operation
Range
Frequency
High frequency
Period
Time
Resolution
Frequency
High frequency
Period
Time
Display
Sensitivity
Normal input
High frequency input
Time inputs
Input impedance
Normal input
High frequency input
Time input
Maximum input voltages
Normal input
High frequency input
Timing inputs
Crystal frequency
nominal
actual
Stability and accuracy Frequency

Period and time

Frequency, period and time
$10 \mathrm{~Hz}-50 \mathrm{MHz}$
$50 \mathrm{MHz}-1 \mathrm{GHz}$ *
$0.1 \mu \mathrm{~s}-10$ sec.
$1 \mu \mathrm{~s}-100 \mathrm{sec}$.

1 Hz
10 Hz
$0.1 \mu \mathrm{~s}$
$1 \mu \mathrm{~s}$
8 digit LED, leading edge blanking
20 mV
20 mV
$0 \vee$ to $+3 \vee$ level shift
1 Meg // 15pF
≈ 75 ohms
$>10 k$
70 V ac, $\mp 100 \mathrm{~V} \mathrm{dc}$
200 mV ac, $\mp 50 \mathrm{~V} \mathrm{dc}$
$\mp 100 \mathrm{~V}$ dc
4000 kHz
3999.995 kHz

Depends on crystal used and initial adjustment. Oven used keeps temperature within $2^{\circ} \mathrm{C}$.
approx -0.000125%

* The upper limit of the prescaler has not been checked due to the lack of a signal source but both the preamplifier (OM335) and the divider ICs are specified up to 1 GHz .

Project 140

Design Feature

When considering this instrument initially we looked at ways to reduce both cost and component count of the unit. Our initial design of the counter section used TTL for the first two stages and CMOS for the rest. It then called for four 8 bit shift registers to take the information from the counters, latch it, and provide the multiplexing for the display. Multiplexing reduces the power consumption of the displays for the same light output and the total network would have saved 10-11 packages. However the PCB layout beat us unless a plated through board is used which would have cancelled any cost saving. The increased difficulty of fault-finding, even with fewer components, also weighed against this approach.

The counter in the LSD position has to operate at over 50 MHz . The only way to obtain this performance was to make our own divide by 10 using 74 S 74 dual D type flip flops as the 74 LS 90 is only specified to 32 MHz (although one sample we had worked at 60 MHz) and the 74S90 is no faster.

The network of 74S74's should give $60-70 \mathrm{MHz}$ minimum clock rate.

Preamplifiers which can work from almost dc to $50+\mathrm{MHz}$ involving a Schmitt trigger always prove troublesome and this one was no exception. We originally dc coupled it throughout using matched FETs and a differential pair to give the correct level for the 9585 IC. This proved to have too much gain to be stable and the design shown here was the final result. Originally we used three diodes to limit the output voltage to $+2 v$ in the ECL-TTL translator but replacing it with a resistor-diode not only made it cheaper but increased the frequency response by 50% and improved stability.

Operation

The frequency and period modes are commonly known and do not require much explanation. The only extra control provided over the normal sensitivity control, is the dc shift. When measuring the frequency or period of a pulse waveform where the pulse is narrow in relation to the repetation rate, triggering problems can arise. This is due to noise pulses being counted as the average voltage is almost zero. However by using the dc shift the signal can be lifted above (or below) zero and the problem eliminated. For maximum sensitivity on normal ac signals the dc shift must be adjusted back to zero.

With the time mode intervals from $1 \mu \mathrm{~s}$ to 100 sec can be measured using

pulses or level changes, into the respective sockets. A voltage change from 0 V to 3 V (or +3 V to 0 V) is all that is necessary although up to $\mp 100 \mathrm{~V}$ can be used. For accurate timing the pulse should have a rise time of less than $1 \mu \mathrm{~s}$. For measuring single pulses, both inputs can be paralleled and starting and finishing on opposite edges. If it is a repetitive pulse chain the unit will time the first pulse after the release of the reset button.

Calibration and Testing

To calibrate the unit a known frequency is needed so that CVI can be adjusted to give the correct reading. Alternatively a radio receiver can be used tuned to the PMG 12 MHz time transmission, VNG, and the 4 MHz crystal beat against it (take a wire from pin 11 of IC30, wrap it around the radio aerial and adjust for zero beat. This sets the crystal to exactly 4 MHz . However this is not the exact frequency needed (life wasn't meant...). Now feed the 4 MHz into the input and record the result. It should be about $3,999,995 \mathrm{~Hz}$ which is about 0.000125% low. Now measure the frequency of another crystal (or extremely stable) oscillator, record the reading and then adjust CVI to give a reading 0.000125% higher (or whatever error your unit requires). As this low reading is due to the time required for the strobe-reset pulses it is independent of the crystal frequency and adjusting CVI will not affect the reading when the counter is used to measure its own internal frequency.

Adjustment of the crystal trimmer should not be done until it is warm (allow 10 minutes) and the oven should be fixed into the chassis to prevent movement of the leads which can affect the frequency slightly. If CVI does not have enough range the parallel capacitor should be varied.

The period mode should be checked for operation. With the time mode the display can be reset by the push button and timing can be started by shorting out the start socket and stopped with the stop socket. Starting and stopping can also be performed by switching the polarity switches from negative to positive edge triggering. It should not be possible to restart the counter before the display has been reset.

Fig. 1. The circuit diagram of the oven circuit

Fig. 2. Waveform dlagrams showing the relationships of the strobe-reser pulses. They are, from the top down.

The output of IC37/1, pin 13
The 'strobe' pulse, i.e. the collector of Q2
The input to 1 C37/2, pin 10
The reset pulse on pin 5 of $/ C 37 / 2$
The vertical scale is 2 V /division while the horizantal is 200 ns /division. It can be seen that between the strobe pulse and the reset pulse there is a delay of about 50 ns .

The following pins are not shown on the circuit diagrams but are connected as shown below. Pins in the third *column are used as interconnections or are unused inputs terminated to some output.

	To +5 V	To OV	$*$
IC1	$4,10,14$	7	
IC2	$4,10,14$	7	
IC3	5		$4,6,7,10$
IC4	5	13	
IC5	5	$4,6,10$	13
IC6	5	$4,6,10$	13
IC7	5	$4,6,10$	13
IC8	5	$4,6,10$	13
IC9	5	$4,6,7,10$	13
IC10	5	$4,6,7,10$	13

IC10 5 12
IC11 5
IC12
5
IC13 5
IC1
IC
IC16
IC17 5
IC18 3,5,16
IC19

```
                                3,16
```

 12
 12
 12
 8
 8
12
12
12
12

	To +5V	To OV	$*$
IC20	3,16	8	
IC21	3,16	8	
IC21	3,16	8	
IC22	3,16	8	
IC23	3,16	8	
IC24	3,16	8	
IC25	3,16	5,8	
IC26	14	7	8
IC27	5	8,9	
IC28	14	$2,3,6,7,10$	
IC29	14	7	
IC30	14	7	
IC31	$2,4,6,7,10$	11	
IC32	16	$1,7,8,9,15$	
IC33	16	$1,8,9$	$1,2,3$
IC34	14	7	
IC35	16	$1,7,8,9$	
IC36	14	7	
IC37	$2,3,11,16$	8	
IC38	14	7	$1,2,5,6$
IC39	14	7	
IC40	5,14	$6,7,8$	
IC41	14	7	
IC42		$2,3,5,6$	

Fig. 3. The circuit dlagram of the power supply

 strobe pulse, stopping any further pulses, and reset by the 'C' output of IC35/2. This IC (IC35/2) is reset by the strobe pulse and the "C' output does not occur for
400 ms giving a maximum reading rate of 2.5 per second. The reset pulse is not involved in this process and occurs every 10 clock pulses of the input.

Time Measurement
Separate inputs are used for time measurement with both start and stop inputs available. These inputs are buffered
by IC39 with both true and complementary outputs available.

 latches open so the counter information is

 This control is performed by the D type
flip flops IC40/1 and IC40/2, after being flip flops IC40/1 and IC40/2, after being
gated by IC41/3 and IC41/4. If the Q

 set to a ' 0 ' on Q , and ICA0/2 to a ' 1 ' on Q ,
disabling IC31. This also puts a high on the

 reset pulse to occur resetting the counters
(and display) to zero.

 the Q output on the positive transition of ing will start. This also puts a ' 1 ' on the D input of IC $40 / 2$ and if a positive transition occurs on pin 11 (clock) the Q will go to a ' 1 ' and the Q to ' 0 ', which will
stop the counting. Triggering the stop input before the start will have no effect
 further action will occur until reset by the

stop dividing (this is used in the time
mode). This 1 MHz output is then divided
\qquad This IC is a dual divide by 16 counter with the AND gate IC34/1 resetting the first half (IC33/1) upon reaching decimal 10 and

 pulse is disabled and the counter will
divide by its normal 16. This change in

 by 100 is done by IC37 to give the final
timebase periods of 1 s and 1.6 s. Frequency-Period control logic. In the frequency mode the output of the-

 1.6 sec) time base is coupled to the

 while a pulse is still rippling through the
The output of this mono has to be buffered by Q_{2} as the input of the latches is equal to 32 LS TTL loads (about 15 mA).
This transistor causes a propagation delay

 250 ns wide pulse. This is the reset pulse. The process of frequency measurement is
therefore to reset the counters, clock the therefore to reset the counters, clock the
counters at the input frequency, after 1 sec

 immediately reset the counters and start

[^3] the two inputs Q 9 and Q13 are used to disable one of the inputs. Wint bout is
transistors off the prescaler output is
 leaving
transistors are on the prescaler is opertransistors are on the prescaler is oper-
ational but the dc shift on pie 16 of IC42 forces the output (pin 7) high, effectively disabling the input.
Counter Section

 on the circuit diagram.

 ${ }_{5}^{5}$
0
0
0
0
0

 blanked, leaving only the right hand digit on with no input signal To reduce the load on the 5 V regulator the displays are
supplied from thie unregulated supply.

 The sections to make the explanation A. Input preamplifier.
 to low impedance unity gain buffer荡 excessive input voltages damaging the unit. Amplification is provided by IC42 which is an ECL triple differential line
 and IC42/2 of around 50 . The inputs of 8
0
0
0
0 7.
0
0
0
0
5
0
0
0
0
0
0
0
0
0鿊 The better triggering on pulse ty pe inputs.
The third section of IC42 is used as a

 needed to drive the TTL logic which llows.
Trans

 they are to remain constant current supplies! With 33 mA from Q10, the

appropriate edge.
Power Supply Four voltages are required for the unit: +5 unregulated for the displays (to save power
 for the prescaler and -5 volt for the preamplifier. A separate +5 volt regulator to prevent any feed back via transients in The regulators are standard 3 terminal
regulators with the ∓ 8 volt supply simply fullwave rectified. The +26 V for the 18 V regulator is voltage tripled. from IC31 is gated into the count input via IC28/2 and IC28/3. The output of the preamp, after being divided by ten in IC27 then controls the strobe-reset monostables
via IC36/2 and IC36/3. The result is that we count the number of one μs pulses in the time taken for 10 cycles of the input frequency. This gives the period of one cycle to 0.1μ accuracy. Problems with
flickering occur when updating a display flickering occur when updating a display more often than about $1 / 5 \mathrm{sec}$, especially
7 segment displays, as the eye cannot follow 7 segment displays, as the eye cannot follow
the change. This can be shown that if the display is alternating between 100 and 99
the result could appear as 188 which is a
\qquad uo potunour si ' $L 8$ y pur 98 y पlim suope the crystal body to act as a heater. Also on
the crystal body is the thermistor TH1 the crystal body is the thermistor TH1 Q3 to stabilize the temperature at about Q3 to stabilize the temperature at about
$70^{\circ} \mathrm{C}$. The crystal is mounted in a polystyrene box to provide the thermal
insulation required
The output of the oscillator is buffered by IC30/ 3 before being divided by four by the JK flip flop IC31. If the JK inputs of
IC31/1 are taken low the flip flop will

[^4]Frescaler
For frequencies above 50 MHz , a prescaler is used with an amplifier IC43 providing about 26 dB gain to frequencies up to about 1 GHz and IC44 and IC45 each dividing the signal by four to give a total division by 16. To compensate for this odd division the timebase is changed from 1 sec to 1.6 sec when the prescaler is used.
As these dividers are ECL (what else at 1 GHz !) a similar translater is used (Q11). To prevent interference between

Fig. 6. The circuit diagram of the display logic

茳

Fig. 7. The front panel artwork. Full size $320 \mathrm{~mm} \times 55 \mathrm{~mm}$

$\bullet \bullet \bullet \bullet A M A T E U R ~ C O M M U N C A T I O N S \bullet \bullet \bullet \bullet \bullet \bullet$

FACT Symposium

Future Amateur Communications Techniques is the title of a symposium to be held in Sydney over the weekend of 20-21 May, this year.

The Symposium is being organised by the NSW VHF \& TV Group but the topics to be covered by the symposium will not be limited to the world above 50 MHz .

A variety of papers will be presented covering the following topics: SSB on 1296 MHz , Modern ATV techniques, Solid State Power Amplifiers, Advances in Repeater Techniques, Sunspot Cycle 21, using Anomolous Propagation for HF \& VHF DX, Microprocessors and Amateur Applications, Phase III Oscar and Beyond, Advances in Transceiver Techniques etc.

There may be some last minute changes or additions to these topics but the range of subjects covered will be maintained.

In addition to the presentation of papers a number of 'workshops' are being organised where you can get your eyeballs onto 'state of the art' equipment and question the people who built it in close detail.

Papers and workshops will be presented by amateurs who are acknowledged leaders in their field and many well-known amateur personalities will be confronting the audience.

The FACT Symposium has been modelled on the very successful FAMPARC Seminar held in Melbourne late November last year.

This Symposium promises to be the Amateur Radio event of 1978 -don't miss it.

You can ensure your place by sending a $\$ 10$ deposit right now to the FACT Symposium Organiser, c/o WIA, 14 Atchison Street, Crows Nest 2065. Cheques or money orders should be made out to the ' FACT Symposium Account'.

High Power VHF V-FETS

The communications Transistor Corporation has recently released a range of three V-FET devices for solid state VHF power amplifier applications characterised for operation at either 80 or 175 MHz .

Designated the BF25-35, BF50-35 and BF100-35, the devices can deliver 25,50 and 100 W respectively of continuous-wave power. The three

V-FETS provide a maximum gain of 10 dB at 175 MHz and source to drain breakdown voltage is more than 65 volts. Typical on-resistance for the 100 W BF $100-35$ is quoted as less than one ohm for a drain current of 10 amps .

The 'new wave' of solid state power amps will undoubtedly use V-FETS which are more rugged than comparable bipolar devices as well as simplifying circuit design. The new FETS do not experience thermal runaway or breakdown and are more tolerant of load mismatch than bipolar devices. They rival bipolars in linearity as well, having similar third-order distortion figures and better higher-order figures by a factor of $5-10 \mathrm{~dB}$ owing to the FET's law-type' transfer characteristics.

Smack, drool and all that, but what about the price?

CTC indicate that preliminary prices fc: 1-24 are as follows: for the BF25$35, \$ 37.50$ (US); for the BF50-35, $\$ 48.50$ (US) and for the big one, the $100-35, \$ 76.50$ (US).

New Stripline Substrate

The 3 M Company has recently announced a new substrate material for microstrip printed circuit applications.

It is called Epsilam-10 and consists of a ceramic-filled Teflon material. It has the electrical properties of aluminium oxide (used with microstripline circuitry in UHR IC's) but it can be cut with a razor blade or shears and can be etched like any other printed circuit material.

Halving Voice Bandwidth

The December 1977 issue of QST published a rather exciting article on a new system of modulation which halves the bandwidth of voice transnuissions.

Titled 'A New Era in Voice Communications' and written by Richard Harris (Assistant Professor, Electrical Engineering, University of Stockton, California) and Judy Gorski (Editorial Supervisor, QST), the article explains the principle of 'Narrow Band Voice Modulation' and detailshow amateur radio was involved in both the development and the first practical tests of the NBVM system.

Basically, the system works by taking advantage of the characteristics of speech. Consonants carry the bulk of speech identity and vowels and consonants are produced serially - one after the other, in time. Electronic circuitry emphasizes and 'folds' the consonants into blank spaces not occupied by vowels as you speak. The vowels and consonants do not interfere on transmission as they do not occur at the same time.

It is the folding action that accomplishes the saving in spectrum space.

First practical tests were carried out between Tom Lott, VE2AGF/W6 in San Mateo California and Clarence (Smithy)Smith, KH6BFF in Honolulu, Hawaii, in May last year.

$\bullet \bullet \bullet \bullet \bullet \bullet$ SWL COMMUNCATIONS ••••••

Compiled by Peter Bunn, on behalf of the Australian Radio DX Club (ARDXC)

Holland

Radio Nederland's schedule, effective until May, shows the following broadcasts aired at convenient times for reception in Australia: 0730-0820 GMT on $9770 \mathrm{kHz}, 0730-0920 \mathrm{GMT}$ on 9715 kHz , both these programmes beamed via the Bonaire relay station. 2030-2120 GMT 21640 and 17810 kHz (via Bonaire), 15220 kHz (via Lopik), and on 11730 and 11740 kHz (via the Madagascar relay station).

Florida transmissions of WYFR.

The religious broadcaster, Your Family Radio (WYFR), has provided details of transmissions via their new transmitters at Okeechobee in Florida. The station advises that reception reports of these Florida programmes are needed, and will be verified by a distinctive QSL card from the one issued for reports of their older transmitter site at Scituate in Massachuisetts. Florida broadcasts in English until the end of April will be: On $17865 \mathrm{kHz}: 1605 \cdot 1700$ GMT, $1800-$ 2100 GMT. On $17845 \mathrm{kHz}: 1700-1900$ GMT, and on Sundays only 1230-1551 GMT. On $15440 \mathrm{kHz}: 1700-1900 \mathrm{GMT}$. On $11815 \mathrm{kHz}: 2100-2300 \mathrm{GMT}$.

Swaziland.

Trans World Radio at Manzini advises of its current broadcasts on the 16 metre band. These services may be heard until the end of April on the following schedule: On 17775 kHz : 1445-1500 in Lingala, 1500-1545 in French, 1915-1930 Lingala, and 1930-2015 in French. All programmes may be heard daily. Trans World Radio Manzini has plans to build two new 100 kilowatt transmitters to expand its coverage area to include South Asia and North and West Africa. At present, programming is beamed primarily for reception in Southern Africa.

African signals.

The Voice of Kenya has recently put a new transmitter into operation. The Swahili language service is now carried on 4933 kHz , and offers good reception in Australia from fade-in at about 1500 GMT, through until sign off at 2013 GMT. Swahili news was carried at 2000 GMT.

Voice of Zimbaliwe.
This programme, broadcast via the More DX notes on page $101 \ldots$ facilities of Radio Mozambique at Maputo, is currently audible in Australia on 4855 kHz at 1800 GMT . An English station identification for Radio Mozambique is given at sign on, followed by the Voice of Zimbabwe programme in English. The Portuguese language programming of Radio Mozambique continues at 1816 GMT with musical selections.

The Australian Radio DX Club is a nonprofit body, with headquarters in Melbourne. For further information on shortwave radio, and on the activities of the ARDXC, please write to the Ceneral Secretary, ARDXC, P.O. Box 67, Highett, 3190 , Victoria, enclosing a 20 c stamp.

TRANS WORLD RADIO

P. O. BOX CC. AGANA, GUAM 96910

YOUR STATION FOR INSPIRATION

"For God so loved the world, that he gave his only begotten Son, that whosoever believeth in him should not perish, but have everlasting life."

John 3:16 (Kings James Version of the Bible)

KITSS FOR ETII PROJECTS

We get many enquiries from readers wanting to know where they can get kits for the projects we publish. The list below indicates the suppliers we know about and the kits they do.

Any companies who want to be included in this list should phone LES BELL on 33-4282.
Key to companies:
A Applied Technology Pty. Ltd. 109. 111 Hunter St, Hornsby. 2077. NSW.
C Amateur Communications Advancements, PO Box 57, Rozelle, NSW.
D Dick Smith Pty. Ltd. of Crows Nest, NSW. (see Ads. for address).
E E.D. \& E. Sales, Victoria.
J Jaycar Pty. Ltd. 405 Sussex St., Sydney 2000.
L Delsound Pty. 1 Wickham Terrace. Queensland.
M Mode Electronics. PO Box 365, Mascot 2020.
N Nebula Electronics Pty. Ltd. 15 19 Boundary St., Rushcutters Bay 2011. NSW.

O Appollo Video Games of Hornsby, NSW.
P Pre-Pac Electronics. 718 Parramatta Rd., Croydon NSW 2132.
s BKX Electronics Supply Service. 179 Victoria St., Kings Cross. NSW 2011.

T Townsville Electronics Centre. 281E Charters Towers Rd,
Risinq Sun Arcade, Hermit Park. 4812

PROJECT ELECTRONICS

ETI 04	Continuity Tester.
ETI 043	Heads or Tails DATS
ETI 044	Two-Tone Doorbell. DATS
ETI 045	500 Second TimerDS
ETI 047	Morse Practice Set DS
ETI 048	Buzz Board
ETI 061	Simple Amplifier DATS
ETI 06	Simple Amplifier TunerD
ETI 06	Electronic Bongo's D
ETI 064	Intercom.............. ${ }^{\text {a }}$
ETI 065	Electronic Siren.........DS
ETI 066	Temperature Alarm.....ADTS
ETI 067	Singing Moisture Meter. DS
ETI 068	Led Dice A DS
ETI 072	2-Octave Organ DS

2-Octave Organ

MOTORISTS' PROJECTS

ETI 301 Vari-Wiper \ldots. ET
ETI 302 Tacho Dweil \ldots.
ETI 303 Brake-light Warning.

ETI 312 CDI Electronic Iqnition P, ET

AUDIO PROJECTS

ETI 40
Guitar Sound Unit
ETII 406 One Transistor ReceiverET

ETI 413100 Watt Guitar
Amp P.L.E.J.DT
ETI $413 \quad$ x 200 Watt Bridge Amp $\quad \cdots$ SE
$\begin{array}{ll}\text { ETI } 414 & \text { Master Mixer } \\ \text { ETI } 414 & \text { Stage Mixer }\end{array}$
25 Watt Amplifier.
Amp Overload Indicator
Guitar Amp Pre-Amp. . . P.E.DT
ETI 419
ETI 420
Er Four-channel Amplifier ... L,
ETI ${ }^{420 E}$ SQ Decoder Int iernational Stereo Amp S L, E.
$\begin{array}{ll}\text { ETI } \\ \text { ETI } & 422 \mathrm{~B} \\ \text { International Stereo Amp S L.E.D } \\ \text { Boorer Amp }\end{array}$
$\begin{array}{ll}\text { ETI } 422 \mathrm{~B} & \text { Booster Amp } \\ \text { ETI } & \text { 50 Watt Power Module }\end{array}$
ETI 423 Addon Decoder Amp 424 Sprig Reverberation Unit : SL,
ETI 425 Integrated Audio System.....E

ETI 430 Graphic Equaliser. Microphone Line Amp
Active Crossover
Crossover Amp. .
Audio Level Meter.
ETI 440 Simple 25 Watt Amp
ETI 441 Audio Noise Generator.
Five Watt Stereo
$\begin{array}{ll}\text { ETI } 444 & \text { Five Wa } \\ \text { ETI } 445 & \text { Preamp }\end{array}$
ETI 435

ETI 444
ETI 445
-
ETI 446 ETi 449 ETI 480 ETI 480P
ETI 482A
ETI 482 B
ETI 480
Audio Limiter
Phaser
Balanced Mic Preamp.
50 W. 100 W Power Amp
Power Supply \qquad
Preamp Module
Tone Controller
Graphic EqualizerA
ETI 480 50W, 100W Power Amp . .A.D.B

MISCELLANEOUS

$\begin{array}{ll}\text { ETI } 502 & \text { Emergency FlasherE } \\ \text { ETI } 503 & \text { Burglar Alarm }\end{array}$

ETI 505 Strobe 506 Intra-R ed Alarm.
D
ETI 509 50-Day Timer
ETI 512 Photographic. Timer. ${ }^{\text {ETI }} 5$
ETI 513 Tape Slide/Synchroniser.... E
ETI 515 Sound Operated.
. \mathbf{E}
ETI 515 Flash Unit -
. \mathbf{E}
ETI 518 Light Beam AlarmET
ETI 525 Drill Speed Controller $\ldots . .$. . E
ETI 526 Printimer. Touch Control Light
ETI 528 Home Burglar Alarm
ETI 529 Electronic Poker Machine : P.ET
ETI 533 Digital Display. L.E.AS
$\begin{array}{ll}\text { ETI } 534 \\ \text { ETI } 539 & \text { Calculator Stopwatch..... A, D } \\ \text { Souch Switch }\end{array}$
ETI 539 Touch Switch.
ETI 540 Universal Timer.
$\begin{array}{ll}\text { ETI } 541 & \text { Train Contro } \\ \text { ETI } 543 & \text { Double Dice }\end{array}$
ETI 544 Heartrate Monitor.
ETI 528 Home Burglar AlarmMS
ETI 583 Gas Alarm M

ELECTRONIC MUSIC

ETI 601

4600	Synthesiser.
3600	Synthesiser.
ETI 602	Mini Organ.......E, ${ }^{\text {, D }}$

COMPUTER PROJECTS

$\begin{array}{ll}\text { ETI } 630 & \text { Hex Display } \\ \text { ETI } 631 & \text { VDUKeyboard Encoder. . . A } \\ \text { ETI } 632 & \text { VDU } k \times 8 \text { Memory Card }\end{array}$
$\begin{array}{ll}\text { ETI } 632 & \text { VDU } 1 k \times 8 \text { Memory Card ... A } \\ \text { ETI } 633 & \text { VDU Sync Generator A }\end{array}$

RADIO PROJECTS

$\begin{array}{ll}\text { ETI } 701 & \text { TV Masthead Amplifier } \\ \text { ETI } 702 & \text { Radar Intruder Alarm }\end{array}$. E, D
ETI 703 Antenna Matching UnitE
ETI 704 Crosshatch/Dot
ETI 706 Generator Marker Generator L,A,D,ES
ETI 707 Modern Solid State
ETI 708 Active Antenina

ETI 711B Single Relay Remote Control . .
ETI 711C Double Relay Remote
Control.
ETI 711R Receiver Control Transmitter
ETI 711ARRemote Control Transmitte
ETI 711DR Remote Control Decoder FM Tuner $^{\text {ETI }}$. A
ETI 780 Novice Transmitter.

ELECTRONIC GAMES

ETI 804 Selecta-Game O, A,DS

Scienulifia Halculatur Breainhrought. peran A sliminine pocker scienifilic calculator packed with fealures - with a Revolutionary 1200 houn bartien.

THE LATEST TECHNOLOGY

Goodbye old-fashioned red and green display calculators. Your time has come and gone. No doubt many of you have watched those old faithful servants use up hundreds of dollars worth of batteries - right before your eyes. Imagine what you could have done with all that money!

Use your calculator to work out how much money you save with a 1200 hour battery scientific, compared with the oldfashioned type. It's easy! On an average the red and green display calculators give 4 to 5 hours of continuous battery life at an average battery cost of 50 c per set. That's really extravagant, isn't it?

INTRODUCING THE
 UNITREX LCD 8SC

Now you can trade up to the slimline Unitrex LCD 8SC Scientific, for much less than you would expect to pay for a calculator packed with all the scientific features you are sure to need.

FEATURES

- 8 digir liquid LCD display. 5 digit mantissa with sign 2 digit exponent with sign. 35 key operation with
2 mode select switches.
Calculator range 10.103
to 10103.
Full scienvific funcrions. Degree -radiant -grad switch for trigonometric functions.
Statistical funcrion

- Long life batery operation. Over 1200 hours

2 levels of parentheses anc many. many extra features
How many of you have wondered where all the spare change went, when you wanted that new bicycle, stereo, CB radio or home computer; paying the battery bill on your old calculator would be a good bet.

Some say the old red and greerr display calculators were just like having another mouth to feed in the family. In the course of an academic year, a battery bill in excess of $\$ 200$ would not be all that surprising. Just calculate the average cost of a battery, say 50 c , by the average life, say 5 continuous hours, by how long you use it. Most schools and students have better
things to do with their dollars than buy batteries for their hungry calculators.

That's where the people at Unitrex come in.

THE NEW SCIENTIFIC TECHNOLOGY SAVES YOU MONEY ON A BETTER CALCULATOR

The experts at Unitrex have developed a pocket size, liquid crystal display scientific calculator (FEM type), thin, good looking, light on batteries, that's always sure to perform when you need it most.

But until May 31st, we will even pay you $\$ 7.00$ as a trade-in to take your old calculator away. (It doesn't have to be a scientific).
Just pack up your old calculator, with its instruction book (if possible) and send it to us, postage paid of course, together with your cheque for $\$ 39.95$ ($\$ 37.95$, for Unitrex Scientific and $\$ 2.00$ for postage and handling) and we'll send you your Unitrex LCD 8SC 1200 hour battery Scientific.

If you do not have a calculator to trade in please send $\$ 46.95$ ($\$ 44.95$ for the LCD 8SC and $\$ 2.00$ postage and handling.) Thank-you.

If you can provide a valid sales tax certificate the prices are $\$ 35.00$ and $\$ 42.82$ (including $\$ 2.00$ postage and handling) respectively.

The warranty on these units is 90 days labour and 12 months for all parts.

Please make cheques/postal notes etc. payable to 'Unitrex Offer' and send orders to the address below.

Make cheques etc. payable to 'Unitrex Offer' and send orders C/- 'Unitrex Offer', Electronics Today Int.
15 Boundary Street,
RUSHCUTTERS BAY, N.S.W. 2011.
Name
Address

POST CODE
I enclose cheque/postal order for . together with my trade-in unit.

OR
I enclase cheque/postal order for as full price.

Making negatives

This method can be used to copy ETI artwork from October 1977 on only. The film used is Scotchal 8007 which is UV sensitive and can be used under normal subdued light.

Cut a piece of film a little larger than the pc board and expose it to UV light through the page of the magazine. The non emulsion side should be in contact with the page. This surface can be detected by picking it up by one corner and it will curl towards this surface. Exposures of about 20 minutes are normally necessary.

The film can now be developed by placing it emulsion side up on a table, pouring some Scotchal 8500 developer on the surface and rubbing it with a clean tissue.

> Sinclair 31/2 Digit Multimeter Batt. oper. 1 mV and 1 NA resolution. Resistance to 20 meg. 1% accuracy. Small, portable, completely assem. In case. 1 yr.
guarantee. Best value ever!
$\$ 59.95$

> Not a Cheap Clock KIt $\$ 14.95$ Includes everuthing except case. 2-PC boards. 6-50" LED Displays. 5314 clock chip, transtormer, all components and full instructions. Same clock kit with $.80^{\circ}$ displays.
> $\$ 21.95$

Digital Temperature Meter KIt

 Indoor and ouldoor. Automatically switches back and forth. Beautiful. 50°LED reacouts LED readouts. Nothing like it avallable.
Needs no additional pans for complete Needs operation. Will measure -100° to
full oper $+200{ }^{\circ} \mathrm{F}$ alr or liquid. Very accurate.
s 39.95
complete instructions.

Clock Calendar Kit $\$ 19.95$ CT7015 direct drive chip displays date and time on . $6^{\text {" }}$ LEDS wilh AM-PM indicator. Alarm/doze feature Includes buzzer. Complete with all parts. Dower supply
and instructions, less case

1977 IC Update Master

Manual

Final 1977 closeout $\$ 15.00$ while they last. 1978 Master avalable late Jan. 1978 \$30.00. Complete IC data selector, 1234 Po. master ref. gurde, 17,000 cross references. Free update for 197. . Domestic

TERMS: $\$ 5.00 \mathrm{~min}$. order U.S. Funds, BankAmericard and Master Charge accepted. Shipping charges will be added on charge cards.

60 Hz Crystal TIme Base Kit $\$ 4.75$ Converts digital clocks from AC line trequency to crystal time oase. Outstanoing accuracy. Kit Includes: PC board. MM5369, crystal, resistors.

New Cosmac Super "ELF RCA CMOS expandable microcomputer w/HEX keypad input and video output for wraphics. Just turn on and start loading graphics. Just turn on and start loading
your program using the resident monitor your program using the resident monitor
on ROM. Pushbutton selection of all four CPU modes. LED indicators of current CPU mode and four CPU states. SIngle step op. for program debug. Bulti in pwr. supply, 256 Bytes of RAM, audio amp. \& spkr. Detalled assy. man. w/PC board \& all parts, fully socketed. Comp Kit \$106.95 High address display option 8.95; Low adoress dilsplay option 9.95 Custom hardwood cab.; drilled front panel 19.75 Nicad Battery Backup Kit w/all parts 4.95 Fully wired and tested in cablnet $151.70 \quad 1802$ soltware xehng.

RCA Cosmac VIP Kit 275.00 Video computer with games and graphics.

Paratronics 100A Logic
Analyzer Kit \$199.00
Converts an oscllloscope Into a digital lester and analyzer. Trace computer prooram flow. monitor Trouble shoot all dipital. SMOS and MOS
TMCes, etc. tamiles. 128 bit truth table (8 by 16 bits). Complete with case, pants and instructs. Model 10 Trloger Expander Kit expands Model 100A to 24 bits $\$ 229.00$. Model
150 Bus Grabber kit $\mathbf{S 3 6 9 . 0 0}$ a one board logic analyzer for $\mathrm{S}-100$ bus applications. Instant access to 56 S. 100 bus signals. Complete kit with all parts and
instructs.

2.5 MHz Frequency Counter Kit Complete kit less case $\quad \mathbf{\$ 3 7 . 5 0}$ 30 MHz Frequency Counter	Kit Complete kit less case $\quad \$ 47.75$

Stopwatch Kit

$\$ 26.95$ Full six digit battery operated. $2-5$ volts.
3.2768 MHz crystal 3.2768 MHz crystal accuracy. Times to 59 min., 59 sec., $991 / 100 \mathrm{sec}$. Times std.,
split and Taytor. 7205 chlp , all composplit and Taytor. 7205 chlp . all compo-
nents minus case. Full Instruc. White or

Original Cosmac "ELF"	kit
All pars and instructs.	$\$ 89.50$
Board only	14.95

Video Modulator Kit $\$ 9.95$ Convert your TV set into a high quality Convert your TV set into a high quality
monitor without affecting normal usage. monitor without artecting normal usa black plexiglass case. $\quad \$ 5.00$

Auto Clock Kit $\$ 15.95$

 OC clock with $4-50^{m}$ displays. Uses National MA. 1012 module witn alarm timebase PC boards. Fully regulared comp. instructs. Add $\$ 3.95$ for beautiful dark. oray case Best value anywhereFREE: Send for your copy of our NEW 1978 QUEST CATALOG. Include three International Postal Reply Coupon

4A Mr. iG\&?

NOW YOU CAN ADD EXTRA
Profit, Volume, Traffic TO YOUR ESTABLISHED RETAIL
STORE ANO GET THE BEST OF BOTH WORLOS!

Our Authorised Sates Centre programme is a proven way to increase retall sales and profits.
Choose the famous Tandy products you want to add to your tine-and keep your own identity! It you have a successful store (hardware, furniture. appliance, jewellery, photo, chemist, etc.) in a lown of under 20,000 contact us NOW. A
minimum investment covering inventory and start-up costs can begin a rewarding association with Tandy, a leader in home entertainment and electronics!
FOR DETAILEO INFORMATION WRITE OR CALL TAMDY AUTHORISEO SALES CEMTRE
280 VICTORIARD, RYOALMERE, 2116 TORIA RO, RYOALM
PHONE: $638-6633$
TaNDI

Electronics is where it's all happening ...if you're into it you've got it made!

It's the world's fastest growing industry... with new discoveries...new products every day. And, every day, there are more jobs...bigger salaries...better opportunities...for people who are trained.

You can be part of this boom now by training with International Correspondence Schools. Learn to design, build, install, test, control and maintain modern electronic equipment...from your own colour TV or hi-fi set to a digital computer.

Your career opportunities are limitless...in broadcasting, industry, the military, aerospace programs, medical science and communications. With your enthusiasm and ICS tuition, a well paid job and a secure future in electronics is well within your grasp.

How do I get into it? ICS have put together a FREE Electronics Career Folder. It tells you all about the many courses open to you including Communications and Broadcasting, Industrial Electronics, Computer Servicing and Audio/Radio Servicing...courses endorsed by the Television and Electronics Technicians Institute of Australia. Post the coupon and the career folder will be on its way to you without obligation. Don't wait another minute...progress won't. The big developments in electronics are happening now and the demand for skilled people is growing all the time.

Special Colour TV repair course.

 Colour TV is booming all over Australia, beyond the expectations of all the manufacturers, resulting in a shortage of qualified people to fill the service gap.You could make a successful career in this growing field with the help of the ICS School of TV Servicing. You can benefit by this course - all you need is the enthusiasm to learn and enjoy rewarding work.

Your ICS course could be a start of an exciting new career or you can use your new-found knowledge to earn extra money in your spare time.

This special course is endorsed by the Television and Electronics Technicians Institute of Australia.

Send the coupon today. It could be the first step in an exciting new future for you.

Find out how you can be where it's all happening - in Electronics. Fill in the coupon and post today!

ICS Home Study ...your passport to success in life!

DISTRIBUTORS for the Electronic Industry

ARE YOU AWARE??

THAT WE HAVE PROBABLY THE LARGEST RANGE IN AUSTRALIA OF TOP-BRAND, QUALITY PRODUCTS AT CURRENT MARKET PRICES WITH OFF-THE-SHELF AVAILABILITY.

Semi-Conductors	Passive Components
Delco	Bournes
E.D.I.	EIna
General Electric	Erie
Intermetall	I.T.T. Capacitors
I.T.T.	I.T.T. Thermistors
National Semiconductor	Philips (Elcoma)
N.E.C.	R.C.A.
Philips	Soanar
Sanyo	Sprague
Signetics	
Solitron	ANNOUNCEMENT
Texas Instruments	ARISBANE BRANCH
A.M.D.	NOW OPEN
Intersil	Monolittice Memories
	Phone 44 6667

Electro-Mechanical and Hardware
Alco
Cannon
Delco Heatsinks
I.T.T. Diecast Boxes
I.T.T. Fans \& Blowers
Dica I.C. Accessories
I.E.E.
I.T.T. Relays
Jean Renaud
J.A.E.
National Relays
Pomona Accessories
Rotron Fans
Switchcraft Connectors
Thermalloy Heatsinks
T.I. I.C. Accessories
Weller Soldering Erous
G.E. Rechargeable Batteries

Trade enquiries to:

/nstant Component Service

P.O. Box 2, Arncliffe. N.S.W. 2205. Ph (02) 597-1444 Adelaide 267-2393. Melbourne 95-9566. Sydney 597-1444

Instant
 Component Service

DISTRIBUTORS:-

NORTH.
J. A. SEVERN
P.O. Box 47

Epping 2121
869-1058

SOUTH.
 BRYAN CATT INDUSTRIES.

105 Miranda Road South, (Near Motor Registry) Miranda.
Phone: 524-4425
Telex AA27266
EAST.
RADIO DESPATCH SERVICE.
869 George Street,
Sydney, N.S.W. 2000
Phone: 211-0191

WEST.
 ELECTRONIC (DISTRIBUTORS)

(A Division of Electronic Enthusiasts Emporium). 2-3 Post Office Arcade, Joyce St., Pendle Hill, N.S.W. 2145. Phone 636-5222

NEWCASTLE: DIGITRONICS

186 Parry Street, Newcastle West, 2302 Phone: (049) 614991

ADVISORY

 SERVICE AND SPARE PARTS SUPPLIED TO TRADEFull Service facilities for all communications equipment. CB radio, Stereo, and HiFi etc

Service facilities for trade and public

419-3342

39 Vere St, Collingwood 3066

predictions

Ionospheric Predictions for the month of April

THESE PREDICTION GRAPHS have been prepared courtesy of Amateur Communications Advancements from predictions supplied by the Ionospheric Prediction Service Division of the Department of Science.

The graphs indicate the maximum usable frequency (MUF) on HF circuits between various centres in Australia and selected points overseas.

For less than 50% of the days of the month the highest frequencies propagated will be at least as high as the uppermost curve. Between 50% and 90% of the days of the month the MUF will be at least as high as the curve beneath the upper curve. The absorption limiting frequency (ALF), which affects the lowest frequencies that will be propagated, is indicated by the lower curves on the graphs.

Time is given in Universal Coordinated Time (UTC) along the horizontal axis.
Frequency is given in 1 MHz increments up the side of the graphs from 2 MHz to 40 MHz . Where the MUF exceeds the upper limit of the graph, six metre propagation is indicated, so VHF enthusiasts take note.

Note that areas adjacent to the points given for each prediction chart will experience similar propagation. For example, Canberra and SW NSW amateurs and SWLs mav use the Sydney-Tokyo chart as a guide to working surrounding Asian areas such as Korea, Hong Kong and the nearby island chains. The Sydney-Ft. Collins chart may be used to indicate propagation to central and south USA.

MELB-FT COLLINS LENGTH 14143 KMS

SYDNEY-TOKYO LENGTH 7822 KMS

SYDNEY-HONOLULU LENGTH 8203 KMS

ADELAIDE-TOKYO
LENGTH 7853 KMS

MELB'NE-HONOLULU LENGTH 8879 KMS

ADEL-HONOLULU LENGTH 9206 KMS

PERTH-FT COLLINS LENGTH 16257 KMS

BRISBANE-TOKYO LENGTH 7156 KMS

ADEL-FT COLLINS LENGTH 14502 KMS

BRIS-HONOLULU LENGTH 7610 KMS

TOWNSVILLE-TOKYO LENGTH 6144 KMS

PERTH-HONOLULU LENGTH 10967 KMS

BRIS-FT COLLINS LENGTH 12902 KMS

T'VILLE-HONOLULU LENGTH 7558 KMS

SYDNEY-FT COLLINS
LENGTH 13434 KMS

TOWNS-FT COLLINS
LENGTH 12873 KMS

MELBOURNE-TOKYO LENGTH 8190 KMS

PERTH-TOKYO
LENGTH 7922 KMS

SWL COMMUNCATIONS

DX news from Sri Lanka.
"Radio Monitors Intemational" is a 15 minute DX programme broadcast each Sunday in the Overseas Service of the Sri Lanka Broadcasting Corporation. The programme consists of three segments: a station profile, a report on a technical topic, and DX Digest in which listeners reports are acknowledged. Radio Monitors Intemational is prepared in India by the host, Adrian Peterson, and reception reports will be welcomed at the programme address, Box 15, Poona, India. All correct reports are acknowledged by a fully detailed verification card. Times to hear the programme are: 1100 GMT on $17850 \mathrm{kHz}, 15120 \mathrm{kHz}$ and 11835 kHz .

1900 GMT on $17850,15115,11870$, 9720 and 7190 kHz .0315 GMT on 15425 and 9720 kHz .

Norway broadcasts.

Radio Norway's schedule current until May shows the following transmissions at convenient times for listeners here in Australia $0700-0830$ GMT to Australia and New Zealand on 11850 kHz , and to the Far East on 11895 and 15135 kHz . 1900-2030 GMT to the Pacific on 9610 kHz . $0500-0630$ GMT to the Pacific on 9645 kHz . All Radio Norway's programmes are in the Norwegian language; except for the last half-hour of the Sunday broadcast, when an English language segment is aired.

CBNEWS
Kemtronics rigs and accessories
Lawrence and Hansen, claimed to be Australia's biggest electronic. electrical and instrument retailers/wholesalers, have introduced a range of CB rigs and accessories under their Kemtronic brand name.

The transceiver line begins with the CB500 economy AM rig.

This little 18 channel rig has the minimum of controls plus an $S / R F$ meter and features a mic which plugs into the front panel.

Top of the Kemtronics line is the SSB1000, an 18 channel SSB/AM rig with an RF gain control, ANL and NB circuitry, and a large S / RF meter. The mic also plugs into the front panel.

The accessory line includes a range of three SWR/Field-strength meters.

The smallest (model $30-100$) is a simple hand-held meter that measures only SWR and field strength on any frequency between 1.5 MHz and 150 MHz .

Next in line is the $30-102$ model, a fairly conventional SWR meter that can also be used to measure power and field strength over the same frequency range.

It features a large meter with an easily read scale.

Top of the Kemtronics meter line is the $30-103$ which measures $S W R$, power and field strength and also includes an antenna tuning unit. The $30-103$ is obviously intended for base station use.

Two microphones, a noise-reducing type and a unidirectional type, are included in the accessory range along with an extension speaker.

The Kemtronics basic 18ch AM rig, the CB500 (top) and combination SWR/FS) power meter and antenna tuner, model 30.103 (bortom).

An interesting item in the Kemtronlc accessory range is a mobile noise suppressor kit, model $36-106$ which includes power lead filters for the transceiver, ignition coil points, suppressor capacitor, generator/altemator suppressor etc.

The range of Kemtronic's antennas includes the usual centre-loaded magnet base, magnet base rubber duck and bottom-loaded trunk lip mount antennas.

Also included àre two helical whips.
The model $33-103$ is 1.3 metres long and has a slug tuning adjustment on the tip - no more chopping bits off - oops, too fat - catastrophes!

The model $33-114$ is a 1.5 metre helical with a short adjustable whipsection on the top for adjusting the SWR. No cutting problems with this one either.

Also worth mention is the model 33-112 antenna. This is a fibreglass, top-loaded whip - the type claimed to give the best performance of all loaded mobile whips.

- It has a short adjustable whip on top for tuning the antenna to the lowest SWR.

A range of antenna mounting accessories is also available along with coax cables and an anti-theft transceiver locking bracket.

Further enquiries, brochures etc available from Lawrence and Hanson's head office at 142 Dorcas St , South Melbourne, 3205 (697-1599).

Philips UHF CB release in March

Philips will release their UHF CB, the FM320, late in March. It is expected to be on sale early April in Victoria and NSW and later that month in the other states.

The long awaited UHF FM rig features 40 channels, digital LED readout, automatic channel stepping and small size. It will come with a six month warranty and is expected to retail at around $\$ 330$.

Hy-gain
 Bankrupt

We leamed shortly before going to press that Hy-Gain in the United States have filed for bankruptcy.

Despite obtaining extended finance late last year following a disastrous (US)24 million loss over the 1976-77 financial year, Hy-Gain have been unable to make headway with their CB product lines.

Hy-Gain Supported E.F. Johnson's bid to have the U.S. International Trade Commission put import restrictions on Japanese manufactured CB transceivers they claimed were severely affecting market prices in America.

Hy-Gain were represented in Australia by O.B.C. International Marketing P / L who were placed in the hands of a receiver late last year: O.B.C. were a division of the Luxor corporation. Executives from O.B.C. have declined to comment.

It has been reported that the collapse of Hy-Gain in the U.S. and their agent here will affect the supply of spare parts for Hy-Gain equipment. However, thís is only likely to be significant in the long term. Apparently there are sufficient stocks to supply needs for the immediate to medium-term future.

Amtronics International have taken over the Hy-Gain agency from O.B.C. International Marketing here in Australia.

The latest preamp base mic from Turner the Expander.

The Expander

The 'Expander 500 ' is Turner's newest pre-amplified base station microphone. It features separate volume and tone controls, built-in meter for reading both audio input and bettery condition and includes a six-wire cable making the Expander 500 compatible with all transceivers.

Compression circuitry compensates for varying mouth-to-mike distance and speech characteristics and reduces overmodulation distortion.

The sliding volume control adjusts the audio input for full modulation. The tone slider control adjusts the basstreble balance for maximum speech clarity.

A push-to-test button shows battery condition on the dual-function meter.

The microphone head tilts for operator comfort.

For further enquiries, contact Communications Power Inc., on (02) 357-2022 or (02) 36-3703.

THE WORLD LEADERS IN VHF

 NOW BRING YOU THE ULTIMATE

ICDM'S DIGITAL ALL SDLID STATE HF TRANSCEIVER

VICOM now brings you the latest in solid-state technology - the IC701 transceiver. Features as standard (and NOT optional): Built-in twin VFOs, wide and narrow cw filters, variable output power, digital readout. Frequency control is LSI based with 100 Hz steps via an optically coupled VFO. Frequency coverage of the transceiver is from 1,8 thru 10 MHz covering the slx Amateur bands (27 MHz band is not included nor has any provision been made for adding it!). The receiver has a number of interesting features including double balanced Shottky diode mixers in a triple conversion super. het with continuous bandwidth control. The features just go on-and-on! Give us a call now for full specifications and the ICOM catalog.

* All Solid State, even the finals.
* 100W Continuous Duty on All Bands, All Modes.
* All Bands $1.8 \sim 30 \mathrm{MHz}$.
* USB, LSB CW, CW-N(Narrow), RTTY.
* Double Balanced Schottky Diode Mixer used in both receive/transmit.
* Dual built-in individual Digital VFO's offer split frequency operation.
* ICOM's unique Pass Band Tune.
* VOX, Semi break in CW, RIT, AGC, Noise Blanker.
* Built-in Speech Processor.
* Full Metering.
* Extremely compaci.

* Digital readout and all filters built in.
* Built in DC power supply.
* Optional AC power supply/speaker.
* Full line of accessories to come.

The IC-701, the one you've waited for, the ULTIMATE

Adelaide:	43.7981
Canberra:	82.3581
Perth:	446.3232
Brisbane:	38.4480
Gold Coast:	32.2644
Melbourne:	813.2355

80 COL CARD PRINTER/PUNCHES 7/9 TRACK TAPE DRIVES
132 COL. DRUM PRINTERS
POWER SUPPLIES, DISK DRIVES,
 ETC.

COMPONENTS, CAPACITORS, RESISTORS, ETC.

DISCO LIGHTING SYSTEMS $\&$ CONSOLES P.A. BINS
 AMP ETC MADE TO ORDER
 YOUR DESIGN OR OURS PLEASE WRITE FOR QUOTE

All orders forwarded by road transport payable on delivery

ALL CHEQUES \& MONEY ORDERS TO AUDIO SPECTRUM
cudio
 DEEPDENE 3103
ph (03) 80. 1074 or (03) 488821

TRADE ENQUIRIES WELCOME

P\&P FREE LOW POWER, 650 ns ACCESS TIME

BRAND NEW,
FULLY GUARANTEEDI

- AILMAN ELECTRONICS

P.O.Box 536 Lane Cove

PH: (02) 498-3405 A.H.

Buying components can be great fun, especially when you only want 16 IC's from one manufacturer and 10 from another and a few 10W resistors and a couple of connectors and Purchasing is too busy to write out 6 fiddly little orders and then the relay supplier reckons you're joking when you say you need one in a hurry and he only takes orders in hundreds and then while you're wo ndering how the hell you're going to get the circuit together, you're thumbing through Electronics Today and you see this advert for a crowd that can supply all the parts and aren't put off by the quantities - large or small and are small enough to care and they've even given you their telex number and they might just be the people to call and.... phew!
clip this out you never know when you'll be ndimang us!.

Orders:(02)6366052 Office: (02)6366222 Telex: AA23343

Electronic (Distributors)

Ideas for experimenters

These pages are intended primarily as a source of ideas. As far as reasonably possible all material has been checked for feasibility, component availability etc, but the circuits have not necessarily been built and tested in our laboratory. Because of the nature of the information in this section we cannot enter into any correspondence about any of the circuits, nor can we produce constructional details.
 Electronics Today is always seeking material for these pages. All published material is paid for - generally at a rate of $\$ 5$ to $\$ 7$ per item.

A perfect....

As any orchestral player knows, a source of 440 Hz , perfect or standard A is essential if he is to be in tune. On many occasions a piano will not be available - hence this circuit.

In the following a standard crystal at 32.768 kHz is used to stabilise an oscillator. This frequency is then
divided by 149 and doubled to give 439.8 Hz , an error of only 0.05% ! !

To enable a division of 149 to be obtained, a dual AND gate is used. The first gate detects the 149th pulse, and the second resets the binary counter on the 150 th pulse.

The resulting 30us pulse may be fed to a suitable amplifier.

Bite Detector

Since there are many fishermen in the country, there must be many, who like myself, try to combine their hobby with electronics.

This circuit is for a simple bit detector, and construction of such a unit represents a considerable saving over the buying of a commercial instrument, while at the same time offering many additional advantages.

In operation, a piece of silver foil is folded over the line, and placed between the LED and the LDR. When a fish pulls on the line, the foil will jump up, and light will shine on the LDR, causing the resistance to go low, firing the SCR. Even if the foil drops again, due to its latching action, the SCR will remain on. WD1 will now emit a loud note, and the unijunction transistor, Q 1 , acts as a relaxation oscillator making LP1 flash (the rate of flashing being dependant on the setting of RV2). SW 1 is the on/ off reset switch.

The setting of RV1 will depend on the amount of light reaching the LDR under quiescent conditions. The circuit is, if anything, too sensitive and in strong winds or heavy currents, additional weighting of the line may be necessary, in this case lead foil should be used.

WD1 and LP1 may be taken from the unit via an extension lead, and kept by the anglers tent or sleeping bag. The

ESTABLISHED FOR THE PAST 35 YEARS FOR

 REQUIREMENTS
STILL ON TOP ELECTRONIC UNITS

- DECADE COUNTING UNITS TO 1 Hz • WIDE BAND AMPLIFIER FOR your counter 1 MV sensitivity. band width 1.250 MHz .

DEVOTED EXCLUSIVELY TO THE MANUFACTURE OF PIEZO ELECTRIC CRYSTALS

Contractors to Federal \& State Government Departments.

"All Types of Mountings"
REPRESENTATIVES -
NSW
Hose \& Equipment Co.
Piy Ltd,
11 Salisbury St.,
Botany, 2019
Phone 666-8144
S.A. Rogers Electronics P.O. Box 3.

Modbury North, S.A.
Phone: 42-6666
QLD Fred Hoe \& Sons Piy Lid, 246 Evans Road,
Salisbury North, Brisbane. Phone: 47-4311
W.A. Communication Systems, 32 Rudlock Road, Morley 6062 Phone 76-2566
TAS. Dilmond Instruments, P.O. Box 219, Bellerive, Hobart, Tas. Phone: 479-077

Send stamped addressed envelope for new catalogue or quote for your requirements.
BRIGHT STAR CRYSTALS P/L. 35 EILEEN ROAD, CLAYTON, VICTORIA, 546-5076

DIRECT FROM USA
 motorola ‘PIEZO’ SUPER HORN has all the features!

Needs no crossi-over network. Frequency response $4.000-30.000 \mathrm{~Hz} \quad 3 \mathrm{~dB}$ patented momentum drive principle. No voice coils or magnets. High internal Impedance. Adapts to any system. High acoustic output. Many can be connected in series to form an array-increased output. Power handling capacity 25 volts RMS.

4 OHMS 100 WATTS

Trade Enquiries Invited

 As used by many major musical equipment manufacturers. Available through your local Hi-Fi, Electronic component or Music shop or direct

Sole Australian importer
Victorian Distributor;
ZEPHYR PRODUCT'S ZEPHYR PRODUCT'S
70 Batesford Road 70 Batesford Road
Chadstone VIC 314 Tel. 568-2922

FREEDMAN ELECTRONICS PTY LTD.

South Australian Distributor BOB'S SOUND SYSTEMS 37 Angas Street Adelalde, SA

THE SPEAKER KIT SPECIALIST
A.W.A. Coral

- 12SAI - iosal - 8SAI -6SAI
- 12SA5
- 10SA5
- 8 SA5
- i2Sa7
- 10SA7
- 8 SA7

Plessey

Foster
$\begin{array}{lll}-3016 & 12^{\circ} & 3 w a y \\ -3003 & 12^{\circ} & 3 w a y\end{array}$

- 2503 10". 3way - 2510 10" 3way 2010 8" 3way
- 2006 . $8^{\prime \prime} \quad 2$ way

30W RMS
25W RMS
18W RMS
15W RMS
30W RMS
Improved 25W RMS 18W RMS
40W RMS
Dome Seriés 30w RMS
20W RMS

40W RMS
40W RMS
40W RMS
30W RMS
20W RMS
$12 W$ RMS
\star HUGE SAVI
on PHILIPS KITS

HURRY -
LIMITED STOCKS

NOTE: THESE ARE GENUINE SPECIALS
THERE ARE SOME SLIGHT MARKS ON SOME CABINETS BUT BE QUICK

Ideas for experimenters

. . from page 107
unit may be built onto a rod rest and should be fully waterproofed.

The device has other applications; it may be used as a burglar alarm with a "trip wire" type detector, or perhaps
even as a device to tell you when the cat has come in!

WD1 should be the type of device that draws a continuous current once energised.

Hazard Warning Flasher

Hazard warning lights can be a life-saver in motor vehicles. But the high cost of commercial units prevents some people from fitting them. The circuit I have devised is both simple and inexpensive to install.

A flasher unit is used to operate the left hand indicators. At each flash a current of 5 mA is supplied to the base of Q1, switching it on. The emitter now goes high switching on Q2 which connects the right hand indicators. If more lamps are to be lit (i.e. when a
trailer is being towed) a more powerful flasher unit is required. As Q2 carries the full current of the right hand indicators (3.5A to 5.25 A) it must be mounted on a suitably large heatsink. This can be achieved by fitting the circuit in an alluminium case $4^{\prime \prime} \times 3^{\prime \prime} \times$ $11 / 4^{\prime \prime}$ and mounting Q2 directly using a mica shim and rubber bushes to isolate it from earth. The flasher unit should be mounted on the outside of the case for ease of replacement.

The circuit shown is for negative earth, but is easily adapted for positive earth vehicles.

NPN-PNP Indicator

The first 2 inverters IC1a and IC1b form a multivibrator rurining at approximately 2 kHz . The next two inverters buffer the multivibrator outputs, which then go to the collector and emitter of the transistor under test.

The signal applied to the base of the transistor is always in phase with the collector so the transistor, whether PNP of NPN, will always be turned fully on every half curle

When a NPN transistor is being tested the collector will always be near OV and when a PNP transistor is being tested the emitter will always be near OV.

The last two inverters detect which terminal is held at OV and drive the appropriate LED via the current limiting resistors R4 and R5.

The six inverters needed are all contained in a single IC package - the SN7404.

UNIQUE ELECTRONICS SECURITY CO. P/L. 682-3325

- A new shop catering for the hobbyist, CB'er and for the trade.
- We specialise in: Components Kits Technical Books Burglar alarm equip. CB Club needs.
- We have a range of data books for your use - or purchase your own copy.
- We stock a full range of security equipment Installation companies check our prices.
- If you are having technical problems with your equipment
drop in and have a chat, perhaps we can help you.
- If you don't see what you want displayed, please ask us, we can probably obtain it for you.
- MAIL ORDERS WELCOME SEND YOUR ORDER TO P.O. BOX 402, PARRAMATTA, 2150
- trade sales welcome
\mid

383 MERRYLANDS ROAD, (CNR. BURNETT STREET) MERRYLANDS, N.S.W. 2160 682-3325

Blob
 Board for
 Digital Electronics by Experiment

YOUR NEAREST BLOB DEALER? THAT'S EASY. WRITE TO:

BLOB BOARD ASSOCIATES
P.O. Box 23, SURREY HILLS, VIC. 3127. or RING (03) 89-1019.

Mr. Blob says "The Technique of Inserting components on one side of a board and soldering on the other is done for reasons which are now completely out of date; Namely this technique was established originally because heavy and bulky components were used. This no longer applies and has big disadvantages, the circuit is impossible to follow unless the board is continually turned over to inspect each side, its difficult to work on both sides of the board and soldering basically needs three hands. A common fault is 10 mount both leadout wires on the same tract.
Blob-Boards give you the modern, low cost, easy to bulld circuits. Blob - Boards are roller tinned circuit boards on which each roller tinned copper track is identified by the letter and or number system. Simply tin the end of the component, butt the component lead against the roller tinned track, apply a blob of solder and the component is blobbed into place. All construction is from one side, component location could not be simpler, soldering is much easier, sub-circuits can be tested, then assembled together, the plain side of the Blob-Board is free and so the Blob-Board can be mounted flush on case walls And they can be re-used simply apply a soldering iron to the Blob and remove the component. ${ }^{\text {' }}$

Now start Digital Electronics by Experiment.

No need to lose your way round a circuit board that needs a layout drawing -Blob-Boards make construction easy. Blob-Boards have numbered tracks that make layout drawing out of date, the tinning ensures easy soldering, and the tracks don't strip off when you unsolder components. Blobbing components on to the tracks (no holes, no drilling) makes layout easy to follow. Use the 8-IC board for 'Digital Electronics by Experiment' in this issue, but remember that we have 'A Blob for every job"

gauss loudspeakers are now available in Australia

DEALERS:

VIC: Zephyr Prods., Sam Music, Dynasound, Dane Amp Sales. NSW: Farrell Music.
QLD: Brisbane Music Factory. Trade enquiries to IMPORTRONICS, (03)317 7977.

Ideas for experimenters

Stereo Balance PAeter

One of the more irritating aspects of owning a stereo system is the need to keep both channels in balance. What often sounds right when adjusting the controls turns out wrong when resuming one's normal listening position.

This circuit offers a solution to this problem provided that one's equipment is fitted with a stereo/mono mode switch.

IC1, a 741 op amp, is used as a differential amplifier. L and R signals are taken from across the speaker terminals. D1 and D2 rectify these
and the resulting dc voltages are applied to the inputs of the IC.

The output voltage from the IC1, is applied to the LED's D3 and D6 via the current limiting resistors R7 and R8, and the diodes D4 and D5.

These latter components allow the LED's to extinguish at extremes of the IC's voltage swings.

To use the indicator, switch the amplifier into the mono mode and adjust the balance control until both LED's are equally illuminated. The amplifier can now be switched back into stereo mode and will be found to be in perfect balance.

Contact Debounce

The circuit described below can be used to provide contact debounce, or can be used as a dual retriggerable monostable.

With SW1 in the off position, pin 5 is low, and holds pin 9 high - the same as the input. When the switch closes, pin 6 goes low causing the
monostable to start timing. Pin 5 goes high allowing pin 9 to go low. As the monostable is retriggerable, any contact bounce only extends the timing period.

When the timing period is complete, pin 5 remains high, due to pin 6 being held low by the switch. Releasing the switch allows pin 5 to go low which triggers the second monostable. Pin 9 now goes high and remains high after the timing period as pin 8 is being held low. Any bounces during this period merely retriggers the first monostable. For this reason, to ensure correct operation, the period of the second monostable must be twice that of the first.

The period of the bounce suppression is the timing period of the first monostable, and is given by:
T (seconds) $=0.693 \times R \times C$.

ELECTRONIC
DISPOSALS
297 Little Lonsdale St., Melbourne, 3000 Phone 663-1785
AWA Solid State TV Tuners $\$ 7.50 \mathrm{ea}$. AWA Thorn Valve TV Tuners $\$ 5.00$ ea. EHT Stick Rectifiers
$13 \mathrm{KV}, 18 \mathrm{KV}, 20 \mathrm{KV} \quad 75 \mathrm{c}$ еа.
Plessey $8^{\prime \prime} 10 \mathrm{~W} 8 \Omega$ or $15 \Omega \$ 6.50$ ea; $4^{\prime \prime} 8 \Omega \quad \$ 1.50$ ea. Many other types in stock.
12 V DC5 Ω Solenoids $\$ 2.00$ ea.
12V AC Min. Relays 5 Amp. $\$ 1.50$ ea.
Slide Pots. 20 K to 3 meg . Singles 35 c ea.
Dual 60c ea.
Resistors. Most values k to 1 Watt. 3 c ea. Carbon Pots. Most values 30 c ea. Duals 60 c ea.
resistors 100 mixed $\$ 1.50$
Skeleton Preset Pots $100 \Omega 2$ to 3 meg. 8c ea. Green Caps . 001 to . 022 uF 5 c ea. .033 to .22 uF 15c ea. . 47 to .68uF 20c ea.
Polystyrene Capacitors. Many Types 5c ea.
Disc Ceramics. Large Range. 5 c ea.
Disc Ceramic capacitors 100 mixed
\$2.00.
Polyester Capacitors. Large Range. Up to 1.5uF 250 v 10 c to 25 c ea.

New Desk Telephones - Grey. $\$ 15.00$ ea. Polyester Capacitors 6.8uF and 3.3uF 60 c ea. 2.2 uF 40 c ea. Tantalum Capacitors. Good range 15c ea.
BC. 107 Transistors 10c ea.
OA636 600V 2 A Fast Recovery Silicon Diodes - TV Type 25c ea.
Dual $100 \Omega 3 W$ Wire Wound Pots. \$1.25 ea.
S.C.R. BT 100 A 300 V 2 AMP 60 c ea.

Triacs. 2 AMP 400 V 60 c ea.
$2 \mathrm{~N} 3055,90 \mathrm{c}$ еа. AD149, $\$ 1.00$ ea. AY8110, 80c еа. DC912, $\$ 1.00$ еа. AY8139 and 9139, 45c ea. IN914 diodes 10 c ea. 5 amp AC panel meters $\$ 3.50$ ea. 2500 uF 35 V P/T electrolytics, 60 c ea. 2200 uF 25 V P/T electrolytics, 40 c ea. Aluminium and plastic instrument boxes and ARLEC multimeters NOW IN STOCK.
Spkrs MAGNAVOX $5^{\prime \prime} \times 3^{\prime \prime}$ 8ohm \$1.50 ea.
Belt drive T/T kits 240 V AC motor with speed change. $12^{\prime \prime}$ cast alloy platter, rubber mat, bearing, spindle and belt, \$25.00 ea.
CTS $10^{\prime \prime}$ woofers Mod10W14P 8 ohm 50 W continuous power, $30-2000 \mathrm{~Hz}$. Air suspension foam cone surround, 1502 ALNICO V magnet. $\$ 19.50$ ea.
Silicon bridge rectifiers, 400V, 1.5A, 85 c ea.
Balance meters $35 \mathrm{Mm} \times 15 \mathrm{Mm}, \$ 2.00$ ea. A\&R 240 V ac primary, 115 V secondary at 95 Vamps, $\$ 7.50$ ea.
Phone enquiries and personal shopping only.
Also in stock - large range of electrolytic capacitors - wire wound resistors - swirches - panel meters - transistors - diodes - plugs - sockets - edge connectors - vero board - transformers - chokes. We could go on and on, so call in and browse around and check our low. low prices.

7 DIGIT FREQUENCY METER KIT

COMPLETE KITS $20 \mathrm{MHz} \$ 82.00$ $200 \mathrm{MHz} \$ 89.50$ ASSEMBLED UNITS 20 MHz \$122.00 $200 \mathrm{MHz} \$ 129.50$

Electronics Australia' March 1977 design High Stability Crystal (30 P.P.M. $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$) in cold-welded HC18/U holder. ALL high quality components (National, Fairchild, etc.) Fibreglass P.C. Boards with component overlay 'Polaroid' front panel. L.E.D. readouts, 'BNC' socket standard - 'UHF' socket optional. Pre-drilled aluminium chassis with black 'Marviplate' cover.
240 volt operation - provision for 12 Volt operation. Instructions ins cluded.
Postage N.S.W. \$2. Interstate \$4. Registration \$2, "Comet" - Sydney \$2 insured. 'T.N.T.' Air-road courier, insured $\$ 6$ anywhere in Australia.
Separate components (post free) Crystal $\$ 8,95 \mathrm{H} 90$ prescaler $\$ 9.50$.

Please Note: The prices shown in December ETI were a misprint.
J.R. COMPONENTS
P.O. Box 128, Eastwood, N.S.W. 2122 Ph: (02) 853976.

TRANSFORMERS

12 or 24 Volt Range: Primaries $220-240$ volts						Ref.	Amps	Wt.Gms.	Secondary Taps	\$
Ref.	Amps		Wt.	Secondary	\$	112	0.5	623	$0.12 \cdot 15-20-24.30$	5.00
No.	12v	24v	Gms.	Windings		79	1	737	0.12-15-20-24.30	6.25
242	300MA	150MA	198	0.12 V at $150 \mathrm{MA} \times 2$	2.50	3	2	1361	$0 \cdot 12 \cdot 15 \cdot 20-24.30$	8.50
111	0.5	0.25	283	0.12 V at $0.25 \mathrm{~A} \times 2$	3.25	21	4	2600	0.12-15.20-24.30	10.50
213	1.0	0.5	425	0.12 V at $0.5 \mathrm{~A} \times 2$	4.00	89	10	5670	0.12-15.20-24.30	21.75
71	2	1	793	0.12 V at $1 \mathrm{~A} \times 2$	6.00	50 Volt Range: Primaries 220.240 volts				
18	4	2	1020	0.12 V at $2 \mathrm{~A} \times 2$	7.50	Voltage obtainable: $6,7,8,10,14,15,17,19,21,25,31,33,40$.				
70	6	3	1538	0.12 V at $3 \mathrm{~A} \times 2$	9.50					
108	8	4	2268	0.12 V at $4 \mathrm{~A} \times 2$	12.50	Ref.	Amps	Wt.	Secondary Taps	S
116	12	6	2722	$0-12 \mathrm{~V}$ at $6 \mathrm{~A} \times 2$	14.00	102	0.5	737	0.19-25.33.40.50 V	7.00
115	20	10	5300	$0-12 \mathrm{~V}$ at 10A $\times 2$	20.75	103	4	1304	$0 \cdot 19.25 .33 \cdot 40.50 \mathrm{~V}$	8.00
						104	2	2495	0.19.25-33.40.50 V	10.50
15/30 Volt Range: Primary 220-240 volts: Secondary						105	3	3176	0.19-25.33-40.50 V	12.50
Windings $0.12 \cdot 15 \mathrm{v}$ at 5 amps, $0.5 \cdot 9 \cdot 15 \mathrm{v}$ at 5 amps . Voltages						106	4	4100	$0 \cdot 19.25-33.40 .50 \mathrm{~V}$	15.00
obtainable: $3,4,5,6,8,9,10,12,15,18,20,24,30$, or $12-0.12$ or 15-0-15.						107	Q	5444	$0.19 .25-33.40 .50 \mathrm{~V}$	22.00
						60 Volt Range: Primaries $220-240$ volts Voltages obtainable: $6,8,10,12,16,18,20,24,30,36,40,48,60$				
or it										
	15v	30 v	gms.			Ref.	Amps	W2	Secondary Taps	S
51	10	5	3120	0-12.15, 0-5.9.15	15.00	124	0.5	737	$0.24 .30-40.48 .60 \mathrm{~V}$	6.50
30 Volt Range: Primaries 220.240 yolts						126	1	1361	0-24.30-40-48-60 V	8.00
						127	2	2495	$0-24.30 \cdot 40-48.60 \mathrm{~V}$	10.50
Voltages ob talnable $3,4,5,6,8,9,10,12,15,18,20,24,30$, or$12-0-12$ or $15-0-15$.						125	3	4083	0.24 .30 .40 .48 .60 V	15.50
						40	5	5670	$0.24 .30-40.48 .60 \mathrm{~V}$	21.00

Miniature transformers with screens: Primaries $220-240$ volts				
Ref.	MA	Wt. Gms	Volts	\$
238	200	85	3.03	2.50
212	1A 1A	595	0.60 .6	5.50
13	100	113	9.0.9	2.50
236	330, 330	198	0.9, 0.9	2.50
207	500, 500	566	0.8.9, 0.8.9	5.25
205	500,600	1077	0-15-20, 0-15-20	6.00
214	300, 300	623	$0.20,0.20$	4.00
221	700 (DC)	737	20.12-0012.20	6.50
206	IA 1A	1304	0.15-27, 0.15-27	9.00
203	500,500	822	0-15-27, 0-15-27	8.50
204	1A 1A	1417	0-15-27, 0-15-27	12.00
All transformers continuously rated vacuum varnish impregnated, and guaranteed. Prices do not Include postage or packing. Assess postage to your address using your welghts given and add 10% of postage rate for packing. Unless quoting sales tax number add 15% to order cost.	All transformers continuously rated vacuum varnish impregnated, and guaranteed. Prices do not Include postage or packing. Assess postage to your address using your welghts given and add 10% of postage rate for packing. Unless quoting sales tax number add 15% to order cost.			

Q. . DOUGLAS TRANSFORMERS, DEPT. MO, BOX 23, COORANBONG, N.S.W. 2265.

READERS' LETTERS

No charge for replies but a foolscap-size stamped addressed enverope must be enclosed. Project queries can only be answered if related to item as published. We cannot assist if project is modified nor if components are otherwise than specified.
We regret we cannot answer readers' enquiries by telephone.

SUBSCRIPTIONS AND BACK ISSUES

ETI subscriptions cost $\$ 17.00$ per vear (inc. postage) within Australia. Cost elsewhere is $\$ 17.65$ (inc. postage - surface mail). Airmail rates on application.
Back issues cost $\$ 1.25$ (Sept. onwards) each plus post and packing.
We can supply only the following issues.
1976: Nov., Dec.
1977: All issues except Jan, Feb, March.
Photostats are available of any article ever published in ETI. We charge a flat \$1.00 regardless of page quantity from any one issue of ETI. Thus if the article is in three issues the cost is $\$ 3.00$ Send onders to address below.
Binders $\$ 4.50$ plus 80 c post NSW, $\$ 1.70$ other States.

COPYRIGHT

The contents of Electronics Today International and associated publications is fully protected by the Commonwealth Copyright Act (1968).
Copyright extends to all written material, photographs, drawings, circuit diagrams and printed circuit boards. Although any form of reproduction is a breach of copyright, we are not concerned about individuals constructing projects for their own private use, nor by pop groups (for example) constructing one or more items for use in connection with their performances.
Commercial organisations should note that ho project or part project described in Electronics Today International or associated publications may be offered for sale, or sold, in substantially or fully assembled form, unless a licence has been specifically obtained so to do from the publishers, Modern Magazines (Holdings) Ltd or from the copyright holders.

LIABILITY

Whilst every effort has been made to ensure that all constructional projects referred to in this edition will operate as indicated efficiently and properly and that all necessary components to manufacture the same will be available, no responsibility whatsoever is accepted in respect of the fallure for any reason at all of the project to operate effectively or at all whether due to any fault in design or otherwise and no responsibility is accepted for the failure to obtain any component parts in respect of any such project. Further, no responsibility is accepted in respect of any injury or damage caused by any fault in the design of any such project as aforesaid.

A MODERN MAGAZINES PUBLICATION

Managing Director:
Secretary:
Publisher:

PRODUCTION

Art Director:
Assembly:
Production Manager:
Subscriptions \& Circulation:
Project Design:
Acoustical Consultants:

Arnold Quick
Charles O'Leary
Collyn Riyers

Jim Hattersley
Eric Osojnik
Roy Leaght
John Oxenford
Nebula Electronics
Louis A Challis \& Assoc.

ADVERTISING

[^5]
Advertisers: Index:

Auto Statham 110
A \& R Sonar. 83
Applied Technology 64-65
Auriema 23
Audio Engineers. 15
AWA
110
110
Blob Board Assoc -
Brigh
BSR.
37
Computer Components. 78
CEMA 71
Convoy, A 22
Dynetics 105
Davred 76-77
Delsound. 70 44

Dick Smith

Dick Smith
Dindy. 31
Electronic Disposals 111
Edge Electrix 108
EEE. 106
Elektromart 99
Electrocraft 70
Electronic Concepts 55
Electronic Agencies. 40
Ellistronics 20
Educal 4
Freedman 108
Futertronics 39
Fairchild 38
General Electronic Services
$8,16,30$
$8,16,30$
Harman OBC
Hagemeyer IFC, IBC
Int. Elect. Unlimited 113
Importronics. 110
Inst. Component Serv 98, 99
Inter. Corres. School 97
I.C's Unlimited 61
I.M.P.A.C.T. 51
J.R. Components 112
Jade. 50, 57
Jaycar 26
Mailman 105
Nessel Audio 63
PDK 105
Page Digital 104
Protector Alarm. 104
Pennywise Peripherals 62
Philips 46
Quest 96
Road Runner 99
Rod Irving. 82
Ron Chapman 78
Sovereign City 106
Scalar. 104
S.M. Electronics 62
Semcon. 51
Tandy 96
Unique Elect. Sec. 109
Vicom 103

The competition don't like the sound of this at all.

For quite some time, other manufacturers have been trying to produce tape with the qualities of the Maxell UD-XL. At the same time, Maxell have been quietly perfecting an even better series.

The UD-XL I and UD-XL II tapes are designed to attain maximum performance at the ferric and chrome position on your tape deck. Whichever tape position you choose, Maxell can give you a better performance.
UD-XLITAPE, FORFERRIC(norm.)POSITION(120us)
UD-XL I offers an excellent sensitivity of 1 dB hisher than even UD-XL. MOL performance is also 1 dB higher over the entire audio frequency spectrum. The result is a new standard in ferric tape, with wider dynamic range and less distortion than ever before.

How does the UD-XL I compare then, with ordinary low-noise tapes?

Sensitivity is higher by 2.5 dB , and MOL performance by as much as 6 dB .

Yet, for all this UD-XLI requires no special bias or equalization. Simply set your tape selector as you normally would at the ferric position - but there the comparison ends.

UD-XLIITAPE, FOR THE CHROME POSITION (70us)

UD-XL II tape is such a dramatic improvement on most other tape that can be used in this position, that comparison is really unfair.

For example, if you're familiar with conventional chromium-dioxide tape, you'll know of the associated problems of head wear, poor output uniformity and relatively high price - plus low maximum output level and rather high distortion.

UD-XL II tape offers you excellent MOL, sensitivity, and an output improvement of more than 2 dB over the entire frequency range.

Maxell's unique 'Epitaxial' process gives you absolute sensitivity and stability, and no drop-out problems. What's more, the shells are moulded in diamond cut dies, and made to tolerances 5 times greater than the Philips standard. And, like all Maxell tapes, UD-XL II has the unique 5 -second cleaning leader.

In short, if you're recording in the chrome position, you can now achieve all the advantages with none of the drawbacks.

A prospect we think you'll find very exciting even if the competition don't.

What's the real advantage of owning malching stereo components?

Matched stereo components are not simply components that are designed to look alike. Instead they are matched to deliver the right kind of balanced performance that will bring out their 'very' best musicality under all conditions of use. The real advantage of owning matched stereo components is the way they work together in the areas of critical performance, such as input/output power levels, distortion and signal to noise ratio. The way they deliver what we at JVC like to call The Musical Truth.

The Musical Truth is something special in sound. It's an indication that your records sound as good in your listening room as they did when they were cut in the studio, or your tapes just as good as the original sound or music you recorded. Only superior components . . . matched to handle the fine nuances of music cân create pure Hi -Fi entertainment for your enjoyment. That's why if you're serious about music, you'll want matched components . . . just like these JVC units we've pictured here.

The JL-A40 direct- selling JVC knobless receiver line. drive turntable is You can stack it with the receiver, a beauty in its co-ordinate the design of your own way, what system, operate everything from with automatic. the front. It features a wide 30operation for $16,000 \mathrm{~Hz}$ (čhrome, typical) fre-armcut/shut-off, a quency response and a high beautifully realistic price,low 0.03% wow/flutter \& high $70 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio. The KD-S200 II stereo cassette tape deck matches the best-

The JR-S300 II FM/AM stereo receiver gives you dependablè power output (50W RMS per channel, THD 0.1%), advanced tuner circuitry (usable sensitivity 10.8 dBf) and the unique JVC five tonezone S.E.A. Graphic Equalizer.

JVC Hi-Fi Components beautifully matched for your entertainment!

[^0]: - Under licence from Dolby Laboratories Inc.

[^1]: HOW TO ORDER
 Top Projects Vols. 3 and 4, the Electronics It's Easy series and the Test Gear book are available from most newsagents or directly from ETI.
 The Synthesizer book is available only from us and a limited number of specialist suppliers - it is not sold by newsagents.
 Send orders to Electronics Today International
 15 Boundary Street
 Rushcutters Bay
 NSW 2011

[^2]: Adelaide
 Brisbane
 Melbourne
 Brisbane
 Newcastle
 Canberra
 Perth

[^3]:

[^4]: transistors would saturate, reducing the
 response to a few MHz .

[^5]: Electronics Today International is published by Modern Magazines (Holdings) Ltd, 15 Boundary St., Rushcutters Bay NSW 2011. It is printed (in 1978) by Wilke \& Co., Browns Rd, Clayzon, Victoria and distributed by Australian Consolidated Press.

