## Unique offer - Digifal-readout temperature sensor

## ELECTRONICS

# WORLD 

## + WIRELESS WORLD

Denmark DKr. 65.00 Germany DM 15.00 Greece Dra. 950 Holland Dfl. 14 Italy L. 8000

August 1995 £2.10

20 Hz active subwoofer

Getting more from RS232

PC engineering: signal analysis 24em antenna DSP demystified Analogue signal processing
Linsley-Hood comments on mosfets

RF oscilloscope probe using sm



PROGRAM 8
CHIPS IN THE TIME IT TAKES FOR ONE!
At $£ 645$ costing around half the price of slower gang programmers, the Speedmaster 8000 gang programmer uses a simple 2 button operation in stand-alone mode. PC operation gives comprehensive file handling and editing functions. Capable of gang and set programming it supports 32 pin EPROMs to 8 M with no adaptors required. Programming cycle times of only 23 seconds for 8 27C010's mean your throughput can now be faster than ever before.

## ROM/RAM EMULATOR PLUG IN CARDS

Using these expansion cards your programmer can run as if there's an EPROM or RAM plugged into the target socket. Available as 8 bit wide $128 \mathrm{k} \times 8$ as standard, upgradable to- $512 \mathrm{k} \times 8$, and 16 bit capable of emulating 40 pin EPROMs. They can emulate both 5 V and 3.3 V devices.

## PACKAGE ADAPTORS

A full range of package adaptors is available for non DIL devices and parts with more than 40 pins. Prices from 665 .

DISTRIBUTORS
BENELUX: +3255313737;
CYPRUS: 02485378;
DENMARK: 048141885;
FINLAND: 070039000;
FRANCE: 0139899622 ;
GERMANY: 060827421615;
GREECE: 019020115;
ITALY: 0245784।; JAPAN: 053865501;
NORWAY: 063840007 ;
SINGAPORE: 04831691;
SOUTH AFRICA: 011974121 I/I52I;
SPAIN: 013270614
USA: Distributors required.

## FREE SOFTWARE UPGRADES! - <br> KEEP UP TO DATE WITH NEW DEVICES

Before you choose your programmer, check out the cost of ownership. While other manufacturers charge for every update or require expensive libraries and modules, ICE Technology programmers
support the whole range of devices at no extra charge*. And keeping up to date is FREE for life at no charge on our BBS service.
Just dial on: $+44(0)$ 122676||81, and download the latest version.

Disk based upgrades are available free in the first year, and a small administration charge made for each subsequent disk.

* for DIL up to 40 pins.


# AT LAST, AN AFFORDABLE 3V AND 5V UNIVERSAL PROGRAMMER! 



T.he latest universal programmers from ICE Technology, the Micromaster LV and Speedmaster LV, now support programming and verification of 3.3V devices, now you can test devices at their actual operating voltage.

They offer wider device support than ever before, the majority requiring no adaptor. They will operate from battery or mains power,
making them flexible enough whatever your programming needs.
Not only that, as new devices come onto the market we give free software upgrades and the units' modular design, with easy upgrade path, protects your investment.

Available now and priced from $£ 495$ they are everything you'll need for programming, chiptesting and ROM emulation.

## F E A T URES

- Widest ever device support including: EPROMs, EEPROMs, Flash, SPROMs, BPROMS, PALs, MACH, MAX, MAPL, PEELs, EPLDs Microcontrollers, etc.
- High speed, programmes a PIC16C54 in 0.5 secs (Micromaster LV).
- Up to 84 pin device support with adaptors.
- Connects directly to parallel port - no PC cards needed
- Built in chiptester for 7400, 4000, DRAM, SRAM.
- Lightweight and operates from mains or battery.
- Optional 8 or 16 bit wide ROM/RAM emulator.
- Designed, built and supported in the UK.
- FREE software device support upgrades via bulletin board.
- Next day delivery.


## Speedmaster LV

Programmes 3 and 5 V devices including memory, programmable logic and 8748/51 series micros. Complete with parallel port cable, software, recharger and documentation.

## $£ 495$

## MicromasterLV

As above plus support for over 90 different micro controllers without adaptors, including PICs, 89C51, 87C751, MC68HC705, ST6, Z86 etc.

## 8 bit Emulator card

Expansion card containing 8 bit wide ROM RAM emulator, includes cable and software. $128 \mathrm{~K} \times 8$.

## £125

## 16 bit Emulator card

Expansion card containing 16 bit wide ROM RAM emulator, includes cable and software. $128 \mathrm{~K} \times 16$.
£625
£195

Call now to place your order, for more details or a free demo disk, or call our bulletin board to download the latest demo. Alternatively clip the coupon or circle the reply number.


All major credit cards accepted

## CONTENTS

## 636 FEEL THE BASS

Jeff Macaulay's 100W sub-woofer has a -3 dB point of 20 Hz , yet the box is small.

## 643 DISCRETE-TIME KEY TO DSP

Discrete-time linear systems explained using a practical approach, by Howard Hutchings.

## 656 AF ANALYSIS VIA THE PC

What started as a pc loudspeaker measurement tool is fast becoming a general-purpose If analysis suite.

## 659 SWITCHERS FOR THE MASSES

Using a public-domain design tool and chips designed for ease of use, almost anyone can design an smps.

## 664 FINDING GPS

Versatile modular GPS receiver available at a special price to $E W+W W$ readers - is suitable for fixed pc stations or portable navigation systems.

## 669130 MHz ACTIVE PROBE

SM devices are ideal for an $10 \times$ active rf scope probe due to their small size, but can they be easily prototyped?

## 671 GETTING MORE FROM RS232

Douglas Clarkson expands on RS232 covering a-to-d conversion through to a multi-drop comms link.

## 682 HARMONY IN THE BAND

A look at the Government's spectrum review by reporter Svetlana Josifovska.
684 EXPERT WITNESS
Audio expert John Linsley hood adds his experience to the mosfet v bjt case.

A special offer for John Linsley Hood's book 'The Art of Linear Electronics' appears on page 685.

## 687 TEMPERATURE BYTES

Temperature to a 9 bit serial word from one chip - a design kit for which is available to $\mathrm{EW}+\mathrm{WW}$ readers at a special price.

## 699 HIGH PERFORMANCE

 ANTENNA FOR 24CMWide beam, wide-band antenna design featuring useful gain, from John Cronk.

## REGULARS

## COMMENT

Jug wine or Chambertin

## 628 NEWS

Cordless camcorder, new i/o processor for pcs, Cash over the net, one-electron transistor, vhdl delay.

## 633 RESEARCH NOTES

Frog logging, morphing robot, camera on a chip, audio chip progress.


## 650 CIRCUIT IDEAS

Resonant back-up source, video amp and sync stripper, hf buffer, duplex link, $x$-point switch.

675 LETTERS
GPS vulnerability, bike lamps, powerlines, audio.

## 691 DESIGN BRIEF

Ian Hickman shows that analogue signal processing still has considerable life left iṇ it.

703 NEW PRODUCTS
Pick of the month - classified for convenience.

## Next month:

Top designer Walt Jung discusses working with single-rail op-amps, Ian Hegglun presents a high-performance audio power amplifier based on square-law techniques and Douglas Clarkson looks at isolated RS232 links.
SEPTEMBER ISSUE - ON SALE 31 AUGUST


Cover - Trevor Bailey


A GPS designers kit - that can form the basis of anything from a pc based GPS data analyser to a portable navigation aid - is one of this month's special reader offers, page 664.


Heat-in, bits out - a combined thermometer/thermostat chip operating from -55 to $125^{\circ} \mathrm{C}$. A designer's kit based on this chip is also the subject of a unique reader offer.

## "moving from schematic to layout could not be easier"

Electronics World \& Wireless World Jan 1995

PRO+ now with SPICE file export \& SpiceAge DDE Link!

# quickroute 3.0 

Integrated Schematic and PCB Design for Windows 3.1

## DESIGNER £99

*Schematic \& PCB Drawing *1/2 layer auto-router *Supports Windows printers/plotters *Full set of libraries *Clipboard support *Designer Special (manual on disk) also available.

## PRO £199

*Schematic \& PCB Design *Schematic Capture *integrated Rats-Nest Generation *1-8 layer Auto-router (faster than Designer) *Net-List Export *Supports Windows printers/plotters *CAD-CAM outputs.

## PRO+. £299

As the PRO but also includes *Advanced Schematic Capture (Busses, Power rails,etc) *Larger Schematic \& PCB Designs *Gerber file IMPORT for File Exchange *Extended libraries (CMOS,SMT,etc) *SPICE Export *SpiceAge DDE Link


Busses \& power rails handled using Global Nets on PRO +


Integrated Schematic \& PCB Design.
Quickroute Systems Ltd., 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, U.K.

## Tel/Fax 01614497101 <br> *Prices exclude P+P and V.A.T. *VISA/MasterCard Accepted *Network versions available. <br> FREE <br> Demo Pack Available.

## JPG Electronics

| High quality steppling motor kits (all including step- ping motors) Comatep' independent control of ptepping motors by PC Via the parallel port) with 2 motors and software. <br>  <br> Software support and 4 digical inputs kit......... $£ 27.00$ <br> Power intertace ${ }^{4} \mathrm{~A}$ kit <br> Stepper kit 4 (manual control) includes 200 atep <br> We ate pping motor and conerol circuit ............23.00 <br> We ate now storking a range of stepping motors and kits to drive them, please ask for the seepping motor data shet for full information. <br> Inveror toroidal transformers $225 \mathrm{VA} \quad 10.5-0-10.5$ <br> LeDrimary $0-260-285$ secondary <br> 7 peach <br> Yellow.............................................. 11 peach <br> Cable ties, ip eacht 55.95 per $1000, £ 49,50$ per 10,000 High quality photo resist copper clad epoxy glass <br> High quality photo resist copper clad epoxy glass boards <br> Rechargeable Batterics <br> AA ( $\mathrm{HP} \mathrm{P}^{7}$ ) 500 mAH <br> AA 500 mAH with solder <br> AA 700mAH <br>  <br> ${ }^{2} 43.60$ with solder <br> PPS $8.4 V 110 \mathrm{mAH}$ <br> 2.60 <br>  <br> ${ }_{\text {1/2AA }}^{\text {1/. }}$ with solder lags <br> Sub C with solder tags ... <br> AAA (HP16) 180mAH <br> ${ }^{1 / 3}$ AA with tags (Philips <br> Standard charger charges 4 AA cells in 5 hours or <br> ${ }_{\text {cell }}^{4 \mathrm{Cs} \text { or } \mathrm{Ds} \text { in }} 12-14$ hourt $+1 \times \mathrm{PPP}(1,2,3$ or 4 <br> cells may be charged at a time) .................95 <br> Ds in 5 hours. AAs, Cs and Ds muse be charged in 2 sor 4 s <br> Nickel Meal Hydryde AA cellis high capacicy with no memory. If charged at 100 ma and discharged at for high discharge rates) $\qquad$ ${ }_{53.75}$ <br> Special offers, please check for availability. <br> Stick of $442 \times 16 \mathrm{~mm}$ Nicad batueries $171 \times 16 \mathrm{~mm}$ dia with red \& black leads 4.8 v <br> Computer trade capacitors with wrew terment 58000 uf 60 v <br> 115 V AC 80 V DC motor $4 \times 22 \mathrm{~mm}$ shaft 50 mm dian x 60 long body (excluding the shaft) it has a replaceable thermal fuse and brushes <br> $£ 4.95$ cach ( $£ 5.95100+$ ) <br> 7 segment common anode led display 12 mm LM 337 k T03 case variable regulator ............ $£ 0.45$ $£ 1.95$ <br> Ga.As FET low leakage current S8873.... 1.42 .95 ( <br> BS250 P channel mosfer ( $£ 9.9510+, £ 7.95100+$ ) BC559 transistor f 3.95 per 100 | 74Lsos hexinvertor ..................... $£ 10.00$ per 100 SL.952 UHF Limiting amplifier LC 16 surface AM27S02 ${ }^{\text {mounting package with data shect } . . . . . . . . . ~} £ 1.95$ <br> CD4007UB1.25 each $90 \mathrm{P} 100++$ <br> $10 \mathrm{p} 100+(6 \mathrm{p} 1000++$ <br> Sinclair light gun terminated with a jack plug and PPS clip gives a signal when pointed at 50 Hz flickering light with output wave form chart <br> DC-DC converor Reliability model Vi2p5 12v in 5 v 200 ma out 300 V input to output Isolation with Hour counter used 7 digit 240 V AC 50 Hz ...... fI 1.45 QWERTY keyboard 58 key good quality swiches Airpax A82903-C lare stepping motor $14 v 7.5$ ' step or $£ 200.00$ for a box of 30 <br> Polyester capacitort box type 22.5 mm lead pitch <br>  <br> luf $50 \mathrm{p} . \ldots 100+10 \mathrm{p} . .1000+$ <br> 15 peach <br> 0.22 uf 250 v polyester axial leads................. 15 p each <br> Polypropylepe luf 400 vdc (Wima MKP10) <br> 27.5 mm pitch $52 \times 29 \times 17 \mathrm{~mm}$ case.... 75 p peach <br> Philipa 123 series solid aluminium axial leads- 33 uf <br> $10 \mathrm{v} \& 2.2 \mathrm{uf} 40 \mathrm{v}$.. $\qquad$ <br> Philips 108 series iong life 22 f f 63 v axial....30 ${ }^{30}$ p cach <br> Multilayer AVX ceramle capacitors all 5 mm pitch <br> $100 \mathrm{v} 100 \mathrm{pf}, 150 \mathrm{pf}, 220 \mathrm{pf}, 10,000 \mathrm{pf}(10 \mathrm{n}) \mathrm{n}) 1000+$ <br>  40 uf 37 Ovar motor start capacitor (dialecurol type <br> Solid carbon resistors very low inductance ideal for <br> RF circuits - 27 ohm $2 \mathrm{~W}, 68 \mathrm{ohm} 2 \mathrm{~W}_{15} \ldots . .25$ peach $^{\text {ecach }} 100+$ <br> We have a range of 0.25 w 0.5 w 1 w and 2 w solid P.C. 400 W PSU (Intel part $201035-001$ ) with standard motherboard and 5 disk drive connectort, fan and mains inlet/outlet connectors on back and switch on the side (top for tower case) dims $212 \times 149 \times 149 \mathrm{~mm}$ excluding swiuch $£ 26.00$ each <br> MX180 Digital mulumeter 17 ranges 1000 vdc 750 vac 2 Mohm 200 mA uransistor Hfe 9 v and <br>  <br>  Disk $40 \mathrm{p} \ldots 100+$ <br> Disk drive boxes for 5.25 disk drive with room for a power supply, light grey plastic, $67 \times 268 \times 247 \mathrm{mmm}$ Hand held ultrasonic remote control ........ 83.95 nals, will also work as a neon light ........ 20 p each $£ 7.50$ per 100 |
| :---: | :---: |
| All products advertised are new and unused unless otherwise stated. <br> Wide range of CMOS TTL 74HC 74F Linear Transistors kitn. Rechargenble batteries, capacitors, tools etc always in stock. Please add E 1.95 cowards plep. VAT included in ell pricea. |  |
| JPG Electromics, 276.278 Chatsworth Road, Chestẹrfield S40 2BH |  |

CIRCLE NO. 10.5 ON REPL I CARD

## SMART CARD READER/PROGRAMMER

On toard ISO 7816 Card Reader Socket (Videocrypt etc). Software runs on IBM/PC enabling the user to Read \& Write to ISO7816 and $2 / 3$ chip D2mac Satellite cards. Board also contains a PIC16C84 programmer. Ideal smart card deve lopment tool
Requiries external power $15-20 \mathrm{v}$ AC or CD@250 ma. (optional extra £6.50)
MICRO-ENGINE MCS80C31/51 Development board.
Tiny $72 \mathrm{~mm} \times 42 \mathrm{~mm}$ PCB contains socketed 44 pin CPU, turned pin Rom socket, 12 MHz work. Supplied with CIRCUIT \& MCS8051/52 development software prets or development

P1C ICE II* In Circuit Emulator for P1C16C54-55-56-57-71-84.
Replaces all 18 or 28 pin PICs. All ports Bi-directional, OSC2 output, RTCC input. On board A/D converter for PIC167C1. Supplied with PICDEV54 and PICDEV71 software, manual, connecting leads \& headers, ASM examples, and hardware circuit projects.

P1C 1CE STD In-Circuit Emulator for 18 pin PICs only no A/D
Plugs into the printer port, appears to the target system as a normal Pic device including eflected RTCC in/out. Runs in real time from the IBM PC changes made to File registe £69.95
P1C PROGRAMMER* Programs Pic16C54-55-56-56-71-84. Centronics port interface. Powerful editing software to Read, Write \& Copy Pic devices including data memory in Pic16C84. Top quality components used throughout including production ZIF socket. Now cludes a Text Editor/Assembler for all above PICs.
Requires external power $15-20 \mathrm{v}$ AC or $\mathrm{DC} @ 250 \mathrm{ma}$. (optional extra $£ 6.50$ )
MEGAPROM programmer, EPROMS, E2PROMS, and FLASH memories from 2k (2716) to 8 Meg (27CO80). Runs on IBM/PC via the centronics port using standard printer cable. $\begin{array}{ll}\text { Works on all PC compatibles, laptops, and note books. No special port requirements. Top } \\ \text { quality components used throughout including production ZIF socket } & \mathbf{8 9 9 . 9 5}\end{array}$ quality components used throughout including production ZIF socket
por (opionale
EPROM EMULATOR Works on ANY computer with centronics printer port. Data sent to the printer appears in the target board Eprom socket. Emulates from 1k to 32 k Byte (27C256) roms, board switchable. Very fast download. Works with or without our development software
DEVELOPMENT SOFTWARE.
Develop software on your IBM/PC for other Microprocessors, Controllers, Pic's etc Software has fully integrated Text Editor, Assembler, Disassembler, and Simulator. Code can be downloaded directly to our EPROM Emulator. All software supplied with sample ASM files, and user documentation manual
Available for the following:
MCS8051/52/552
MCS8048/49
19.95 each

P1C16C54/5/6/7
HD63/6809
P1C16C71/84
R6502
All hardware carries a 12 months parts and labour Guarantee. No Vat payable. Please add E 1.50 for Carriage.

Starred items also available from FARNELL (Leeds).
JOHN MORRISON DEPT WW 4 REIN GARDENS, TINGLEY, WEST YORKSHIRE WF3 1JR

TEL (or FAX) 01132537507

## Jug wine or Chambertin?

It was early June in Montreux. The Organisers of the 19th International Television Symposium and Technical Exhibition were holding a lakeside party to welcome the press. Hungry hacks were grabbing anything edible from passing trays of nibbles. At an exchange rate of less than 2 francs to the pound - and no provision made for helping visiting journalists to eat - free food was everyone's first priority.
Exhibition organiser Joe Flaherty stood up. Flaherty is Senior Vice President in charge of Technology at CBS Inc, and for ten years he has been the driving force in the USA behind HDTV and the digital tv Grand Alliance.
"Europe's DVB will be a digital version of MAC. It will be a disaster", Flaherty pronounced, "When, as is sure to happen, perhaps at the Olympics, broadcasters start transmitting in high definition, existing sets will go dark. You can't ever let sets go dark".

All round the area the press dropped food and grabbed notebooks.
Flaherty then explained his point. Europe's Digital Video Broadcasting standard, which will be frozen this September to allow a service launch in 1997, does not provide the same upgrade path from Standard Defintion to High Defintion that the Grand Aliance system offers. The SD digital receivers sold from Day One will not be able to receive an HD broadcast, and decode it as an SD signal. This, Flaherty repeated, will make DVD "a disaster".
"In the future Europe won't be able to receive high-definition pictures from the same transmission channels. And it won't be long before someone puts out HD programming. You can go on drinking jug. wine until you taste the Chambertin...".

As the word spread round Montreux of Flaherty's outburst, members of the DVB project, which is now backed by over 160 companies, were asked to comment, often in open seminars. The diversity of comment told its own story. As Henry Price, BBC Head of Engineering Information put it back in the UK.
"There is a huge amount of confusion over all this", NTL already provides the analogue transmitters used by the UK's commercial tv companies, and has offered to build the BBC's netowrk. Tony Gee, NTL's Marketing Manager for digital broadcasting, admitted that the issue of whether DVB receivers sold on Day One will later be able to decode HD programmes for display in SD is "a key question". But he was unsure of the answer. "My understanding is that the likelihood is no" says Gee, suggesting that broadcasters could simulcast the same programme in both HD and SD formats.

Richard Wiley, Chairman of the Federal Communication Commission's Advisory Committee on Advanced Television Service, boasted "In the US no set will ever be dark. We are making sure of that. The Grand Alliance handles both HD and SD transmissions perfectly. The cost of adding HD compatibility to an SD set is only marginal".

George Waters, Director of the Technical Division of the European Broadcasting Union, agreed with

Wiley's low cost estimate and added that "Joe was right to stimulate discussion. The US has approached this from the top down; Europe has approached this from the other way round because the project began with cable and satellite. There's a new awareness in Europe. We have to look at the situation again."
So why, if there is now doubt over the standard, is Europe rushing towards finalisation in September 1995? Why not wait another six months or even a year to sort out the issue of $\mathrm{HD} / \mathrm{SD}$ downwards compatibility? Who is driving the rush?
"The BBC", said George Waters, turning to look at Michael Starks, BBC Controller of Digital Feasibility. Starks looked sheepish, and remained silent.

Does the BBC really believe there will be rioting in the streets of London if it delays the start of digital tv broadcasting by six months? Does anyone in the electronics trade or general public really care about a six month delay, especially if it means Day One sets are futureproofed?

Starks listened to the questions and remained even more sheepishly silent. With the help of engineers from NTL and the BBC it has now been possible to piece the scenario together.
The DVB originally planned to specify a hierarchical system, but it was dropped for three reasons.
It puts up the cost of even the basic receiver, because it needs more memory. Also, if the broadcaster tries to guarantee good reception for portable tv sets, by adding a very robust signal with a low data rate, even high quality $S D$ receivers with roof aerials will lock onto the low resolution picture. And hierarchical coding is very inefficient. It wastes so much spectrum space, that the broadcaster might as well do as NTL's Tony Gee suggested at Montreux, and transmit the same programme twice over, once in standard definition and once in high definition.

But the Grand Alliance thinks it has licked all these problems.
Meanwhile the BBC favours a third option. Programmes will be shot in 1250 line definition, down-converted to 625 line signals and transmitted at high bit rate, probably $9 \mathrm{Mbit} / \mathrm{s}$, which is half the capacity of a uhf channel.
Adanced to sets will then artifically double the number of picture lines to simulate HDTV. However good the up-conversion this option still cuts Europe off from true 1250 line HDTV.
While everyone scurries around, giving different reasons for not doing what the Americans think they can do, Jim Norton, Chief Executive of the Radiocommunications Agency, warns that simulcasting SD and HD will be a no-no. But Norton also offers a neat and simple solution.
"The tv manufacturers should borrow an idea from the computer world, and provide every digital tv with an upgrade slot. That way owners can bolt on whatever upgrade circuits they need in the future".
Is it too late for the DVB group to write such a sensible approach option into its final standard? Barry Fox

Electronics World + Wireless Worid is published monthly. By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$. Orders, payments and general correspondence to L333,
Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tlx:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group.
Newstrade: Distributed by Marketforce (UK) Lid, 247 Tottenham Court Road London W1P OAU 0171 261-5108. Subscriptions: Quadrant Subscription Services, Oakfield Subscriptions: Quadrant Subscription Services, Oakitield
House, Perrymount Road, Haywards Heath, Sussex RH16 House, Perrymount Road, Haywards Heath, Sussex RH1
3DH. Telephone 01444445566 . Please notify change of address. Subscription rates 1 year (normal rate) £30 UK and £43 outside UK.
USA: $\$ 52.00$ airmail. Reed Business Publishing (USA),
Subscriptions office, 205 E. 42nd Street, NY 10117.

Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080. TIX 23827.
USA mailing agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate, Carlisle. Cumbria, CA2 7NR
Typeset by Wace Publication Imaging 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT

## Optical link makes camcorder cordless

H
itachi has launched a camcorder incorporating an optical link which is intended to make playback more convenient. The system comprises a camera with integral transmitter and a remote receiver with connections to a tv or ver.
A composite video signal is clamped, pre-emphasised then frequency modulated onto a 11.5-
13.5 MHz carrier; both stereo audio audio channels also undergo preemphasis and frequency modulation, onto carriers at 950 kHz and 550 kHz . The signals are combined and emitted by two infrared leds. In the receiver, the signal is sensed by a photo-diode and the process reversed after signal amplification.
Usable range of the link is 3 m , at


Transmitting and receiving systems of the camcorder one-way optical link. Both audio and video signals are transmitted.



As distance between the optical transmitter increases, so does noise. Past 3 m , the s:n ratio falls below 42dB and starts to become a problem.
which point the video signal-to-noise ratio is at a threshold 42 dB . The maximum capture angle is about $60^{\circ}$.

- Coincidentally, JVC Professional has launched a portable video presenter, also capable of optical linking. Its built-in ced camera is designed to provide the electronic equivalent of an overhead projector, so banishing cables is particularly apt. The principle is the same as the Hitachi optical link but with greater quality and range, and no audio is involved.


## New pc co-processor helps i/o keep up

$\mathrm{A}^{\mathrm{n}}$
n intelligent $\mathrm{i} / \mathrm{o}$ processor unveiled by Intel addresses more exacting applications demanded by present pc technologies such as x86 microprocessors and PCI local bus.
According to Elliot Garbus, Intel's technical marketing manager,

Embedded Systems division, the best example of this is the evolution of the pc architecture for use in application server systems: "This move to client/server architectures has put great strain on the i/o."
Moreover, advancements in i/o

To help i/o subsystems keep up with advances in $\times 86$ microprocessor performance, Intel is launching an intelligent i/o processor with dedicated PCI bus facilities.

technologies for net working and storage has also increased i/o demands. These include 100Mbit/s Ethernet and ATM; and for storage the Ultra-SCSI and 100Mbyte/s Fibre Channel standards.
Called the 9660 RP , the new device, device is based on the i960Jx core, which is rated at 31Mips (VAX) given a 33 MHz clock. It incorporates a 4 Kbyte instruction cache, and 2 Kbyte data cache.
The i/o processor is designed to offload the demands placed on the host processor, while offering $\mathrm{i} / \mathrm{o}$ expansion via a secondary PCl local bus. In addition to the core and PCI-to- PCI bridge, the 960 RP features two dma controllers, address translation units, pci bus arbitration logic, a memory controller and a $\mathrm{I}^{2} \mathrm{C}$ interface.
Intel plans to announce further $i 960$ core upgrades and produce other, more tailored product variants.
Roy Rubenstein
Electronics Weekly

## Cash transactions over Internet

U
K electronic purse company Mondex is believed to be squaring up to its European rival Europay to provide secure, chipbased financial transactions over the Internet.
Last week Europay joined Forces with technology giant IBM to develop a smart card based payment system for commercial transactions over the Internet.
This mirrors the plans of Mondex, led by NatWest Bank, Midland Bank and BT, which according to one industry source wants to provide its own electronic funds transfer services over the Internet.

Europay, which is backed by credit card firms Mastercard and Visa, is making the running and IBM has already devised an open payment protocol, named Internet Keyed Payment Protocol - iKP - that is fully compatible with leading operating systems such as Windows, $\mathrm{OS} / 2$, Macintosh and others.
It has proposed this protocol to the World Wide Web organisation and the Financial Services Technology Consortium in an effort to make it an industry standard.
Another contending protocol is Visa and Microsoft STT's, which needs a proprietary system to run.

In order to allow electronic commerce over the Internet, specially designed card-readers fitting to PCs or multimedia boxes, are already in development. "A range of devices are under development: multi-functional tvs, fax pcs and television set combinations and not just one device," said a Europay spokesperson.
According to Adrian Cannon, general manager of smart card and reader provider CP8 Transac UK "We are likely to join in an alliance as the banks are our customers." Svetlana Josifovska, Electronics Weekly

## Widescreen plus plus

The obvious advantage of a tv with a 16:9 Widescreen aspect ratio is that $4: 3$ ratio programmes i.e. standard tv pictures - can be expanded to fill the screen. Initially, PALplus condenses pictures to a letterbox across the middle of the screen. It does this by extracting information and encoding it in the black area to enable the full image to be reconstituted. But this as a result of this, a $4: 3$ aspect-ratio picture is only expandable by adding blank lines.
Now Philips is planning to overcome this with WideScreen Plus
tvs. A 16:9 letterbox image contains only 432 active lines by comparison with the 576 of a full picture. Hence expansion requires one extra line for every three received.
With WideScreen Plus this is achieved by interpolation. The incoming picture signal is digitised and stored, then processed to create lines composed of elements from existing lines. For example, A, B, and $C$ lines are written to screen as $\mathrm{A}, 2 / 3$ of $\mathrm{A}+1 / 3$ of $\mathrm{B}, \frac{2}{3}$ of $\mathrm{B}+1 / 3$ of $C$, and $C$. This returns the vertical resolution to near normal.
Unfortunately, the system does not
compensate for the loss of horizontal resolution - as PALplus does - but perhaps that is something for the future.
In the meantime WideScreen Plus will coexist with PALplus and enable standard letterbox programmes to be viewed with improved quality.

To partly compensate for the loss of one line in four when viewing standard images on Widescreen, an interpolator is used to spread useful information over all four lines.

## Neural net speeds up fingerprint matching

To catch a thief - or any other reoffending criminal - can take a matter of minutes with a little help from the UK-based DSP firm, Cambridge Neurodynamics Limited (CNL).
The company has developed a neural network Integrated Automatic Fingerprint Recognition System (IAFRS), that can match a ten fingerprint (tenprint) set to one from a total of a million stored in a central database.
The system comprises an encoder, image analyser and image matcher which are linked via a LAN. Once a tenprint has been scanned in, it is stored as a greyscale image in a $40: 1$ compressed format using C-Cube's $C L-550 J P E G$ device. In order to receive/transmit noise-free images from/to remote locations, CNL also executes its proprietary compression algorithms on the images. Techniques
such as the wavelet-based modified fast lapped transform encoding, and error resilient entropy coding are used. These avoid blocking artifacts that result from the compression, smoothing away image irregularities and spreading errors throughout the image.
The encoder/analyser is implemented as a board containing five 80 MHz Texas Instruments TMS320C50 DSP chips. The processor are linked in parallel, each executing a different part of CNL's algorithm. For a basic unit these processors can deliver peak processing speeds of. 600 Mips .

The unit extracts and encodes 16 of the most identifiable physical characteristics of the fingerprint. The unit uses a neural network to extract the statistics from a large scale image. Neural networks are used because they are seen as one of the best
methods of data analysis for poor quality inputs, which can be unclear, smudged or superimposed.
The matcher is based on the same processing board as the encoder, but runs a different algorithm to identify a kilobyte of information with one from a million-image library of fingerprint information. The matching of fingerprints can take 15 minutes on average, whilst the encoding takes approximately one minute per set.

The system, being scalable, can be expanded as required. Currently the IAFRS is being used by the South Yorkshire police, but its applications go beyond policing. It can be used in ballistics and DNA. matching (for which there is currently no extensive database), immigration and passport control, banking and social security applications.
Svetlana Josifovska
Electronics Weekly

# SEETRAX CAE RAINGER PGB DESIGY 

 WITH COOPER \& CHYAN ĀUTOROUTER
## RANGER2 + SPECCTRA £400.00

## RANGER \& SPECCTRA AUTOROUTER

Together giving the most cost effective PCB design system on the market TODAY ! SEETRAX'S ease of use combined with COOPER \& CHYAN'S renowned gridless autorouter, at an outstanding price.

R2 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet, HP-GL, Gerber, NC Drill, AutoCAD DXF
Demo Disk available at $£ 5.00$ +VAT

## RANGER2 £150

Upto 8 pages of schematic linked to artwork Gate \& pin swà̀ping - automatic báck annotation Copper flood fill, Power planes, Track necking, Curved tracks, Clearance checking, Simultaneous multi-layer auto-router

## RANGER2 UTILITIES £250

COOPER \& CHYAY SPECCTRA auto-router (SPI) Gerber-in viewer, AutoCAD DXF in \& out

## UPGRADE YOUR PCB PACKAGE TO RANGER2 £60

# TRADE IN YOUR EXISTING PACKAGE TODAY 

Seetrax CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hants, PO8 OSG Call 01705591037 or Fax 01705599036 + VAT \& P.P Al Trademarks Acknowledged

## RF MODULAR EQUIPMENT

tuned linear power amplifiers
Tuned to your specified frequency in the range $20-250 \mathrm{MHz}$.
TYPE 910510 mW input, I watt output....
TYPE 9106500 mW input, 10 watts output .................................................................................................
TYPE 91553 watts input, 30 watts output ............................................................... 545


## UHF TUNED LINEAR POWER AMPLIFIERS

Tuned to your specified frequency in the range $250-470 \mathrm{MHz}$.

TYPE 9124 2-3 watts input, 25 watts output .................................................................... 545
TYPE 91268 watts input, 50 watts output .............................................................. 1645
WIDEBAND LINEAR POWER AMPLIFIERS
TYPE 92461 watt output. 100KHz-175MHz. 13dB gain................................................. $£ 240$

TYPE 93061 watt output. 10MHz-1GHz. 15dB gain ................................................ $£ 360$
TYPE 92494 watts output. 100KHz-300MHz. 17dB gain.............................................. $£ 420$
TYPE 92474 watts output. 1-50MHz. 13dB gain............................................................. $£ 60$
TYPE 90514 watts output. 20-200MHz. 13dB gain....................................................... $£ 60$
TYPE 91764 watts output. $1-50 \mathrm{MHz}$. 26 dB gain.... . 4450



TYPE 917320 watts output. 1-50MHz. 17dB gain.......................................................650

TYPE 927140 watts output. 1-50MHz. 16dB gain....................................................... $£ 950$
TYPE 917240 watts output. 20-200MHz. 10dB gain.................................................... 950

Prices are ex-p\&p and ex-VAT.

NARROW AND BROADBAND GASFET LNA'S $5 \mathrm{MHz}-2 \mathrm{GHz}$

TYPE $90065-250 \mathrm{MHz}$. BW up $1040 \%$ of CF. Gain 10-40dB variable.

$50^{\circ}$ ohms. NF 0.6 dB .
. $£ 195$



TYPE 9303 As above with active stripline filter. BW $1 \%$ to $10 \%$ of CF ...................... $£ 295$

TYPE 9308 1-2GHz. NF 0.7 dB . Gain 20dB. 50 ohms.......................................... $£ 350$

TYPE 9305 As above with active stripline filter. BW 1\% to $10 \%$ of CF ...................... 395

TYPE 9035 Transient protected mains power supply for above preamps .................... 65

TYPE 9010 Masthead weatherproof unit for preamps..

.. £18
PHASE LOCK LOOP FREQUENCY CONVERTER

TYPE 9115 Up /down converter. $\mathrm{I} / \mathrm{p} \& \mathrm{o} / \mathrm{p}$ frequencies 20 MHz to 2 GHz . B/W up to
50 MHz . NF 0.7 dB . Gain 60 dB variable. $0 / \mathrm{p}$ up to $10 \mathrm{~mW},+10 \mathrm{dBm}$. AGC... ..... £750
PHASE LOCK SIGNAL SOURCES $20-2000 \mathrm{MHz}$
TYPE 8034 Freq. as specified in the range $20-250 \mathrm{MHz} .0 / \mathrm{p} 10 \mathrm{~mW}$. .....  $£ 250$
TYPE 9036 Freq. as spec. in the range $250-1000 \mathrm{MHz} .0 / \mathrm{p} 10 \mathrm{~mW}$ .....  $£ 350$
TYPE 9038 Freq. as spec. in the range $1-2 \mathrm{GHz}$. 10 mW . .....  $£ 420$
TYPE 9282 FM up to $\pm 75 \mathrm{KHz}$ max. Freq. as spec. in the range $30-2000 \mathrm{MHz}$. $0 / \mathrm{p} 10 \mathrm{~mW}$. .....  $£ 465$
WIDEBAND AMPLIFIERS
TYPE $9301100 \mathrm{KHz}-500 \mathrm{MHz}$. NF 2 dB at 500 MHz . Gain 30 dB .Output $12.5 \mathrm{dBm}, 10 \mathrm{~mW} .50$ ohms
£175
TYPE $930210 \mathrm{MHz}-1 \mathrm{GHz}$. NF 2 dB at 500 MHz . Gain 30 dB . Output 12.5 dBm , 18 mw . 50 ohms. .....  $£ 175$
TYPE 9008 Gasfet. 10MHz-2GHz. NF 2.5 dB at 1 GHz . Gain 10 dB . Output $18 \mathrm{dBm}, 65 \mathrm{~mW} .50 \mathrm{hms}$ ..... £175
TYPE 9009 Gasfet. $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 3.8 dB at 1 GHz . Gain 20 dB .
Output $20 \mathrm{dBm}, 100 \mathrm{~mW} .50$ ohms ..... £195

Prices are ex-p\&p and ex-VAT.

Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG, UK Tel: +4401303893631 Fax: +4401303893838

## One-electron transistor gets warmer

Hitachi's quest to build electronic circuits from structures that, use a single electron has taken a significant step forward. Researchers at its Cambridge lab, with Cambridge University, demonstrated a singleelectron transistor device working at 77 K rather than the 4.2 K . Professor Haroon Ahmed of Cambridge University, said: "When we next talk about developments it will be when we can demonstrate room temperature operation. We don't want these things to remain novelties but have exciting, real applications." The 77 K device is a thin metal wire on a silicon-dioxide substrate. The gold-palladium islands are the socalled Coulomb blockades letting
single electrons cross the gate. The islands have a "world record" diameter of 2 nm . But to get room temperature operation the dots would have to be five times smaller, said Ahmed. "The important thing is to reduce the capacitance of the Coulomb blockade by using different materials rather than making them much smaller." The group has also demonstrated an inverter at 4.2 K and is striving to build more complex logic primitives.

Researchers have demonstrated a single-electron transistor operating at

77 K rather than 4.2 K and work is underway towards a room-temperature version.


## VHDL model standard suffers further delay

Work in the IEEE group striving to specify analogue system modelling extensions to the VHDL digital design language has slowed to a crawl for the second time in 12 months. Finalised specifications of the 1076.1 extensions is now unlikely before the early next year, pushing ratification to at least end 1996.
Onlookers from the EDA industry and Asic user community are deeply frustrated with the latest delays. It was hoped, in September last year, that a language specification could have been released at the time of last week's Design Automation Conference.
Stan Krolikowski, senior member of the IEEE VHDL community, is disappointed. "It's really frustrating: we have all the concepts mapped out but there seems little progress in getting them implemented," he said.
"The mood of the working group
seems to be changing from democracy to mob rule with senior members seemingly unable to work together."
Krolikowski says the danger is that analogue extensions to the Verilog language - about to become an IEEE standard - will be available first, confusing potential users. "At this rate we'll have analogue Verilog out a long time before 1076.1, and that will really change the picture."
But Ernst Christen, vice chairman of the 1076.1 committee, defends progress saying the process is slowing down because it depends on volunteer work. "We have to let the volunteers catch up with the two of us being paid to develop the language. That's what makes the schedule unpredictable. But we absolutely have to have consensus because we are bound by the IEEE process and because the language has to survive without being
continually modified."
Christen says the current bottleneck is validation of the fledgling language and not design of the language itself. There are quite a lot of open issues such as frequency domain ac analysis - we haven't seen anything substantial there yet - but $75 \%$ of our investigations have reached their first drafts and $20 \%$ have produced results and been provisionally approved."
But in some areas arguments still rage about language semantics and syntax. "Language design is an art, not a science," said Christen. There are various ways of doing the same thing and it is the task of the language design committee to weigh the benefits of one approach over others. We have to consider if it is consistent with the main body of the existing digital language, whether it provides sufficient functionality and usability. It's not a black and white process."

## TDM optical net promises multi-Gbit/s performance

$A^{f}$
fibre-optic network transmitting multi-gigabit per second data using optical time division multiplexing has been demonstrated by researchers at BT laboratories.
The BT network avoids the bottleneck associated with converting optical signals to an electrical form at switching centres. Instead, long
distance transit traffic passes through switching centres in optical pulse form. By performing channel multiplexing and extraction processes at high speed using optical devices, much higher aggregate data rates can be attained, potentially as high as 100Gbit/s.
Andrew Ellis, senior professional in
networks research said: "The key advantage of this experiment is not the long distance capability or even the high capacity that can be achieved, but the ability to route traffic flexibly on demand without needing a lot of costly electronic switching."

## ANCHOR SURPLUS Ltd The Cattle Market Depot Nottingham NG2 3GY. UK <br> Tele: + 44 (0115) 986 4902/986 4041 Fax: + 44 (0115) 9864667



## Rohde \& Schwarz Model URY

Wide Range Milli Voltmeters 9 Khz to 2Ghz 50 Ohm Supplied in 'As New' Condition complete with 2 ' $N$ ' type Insertion Heads (10V\&100V) RF Probe and accessories, Protective Covers \& Leads, Fitted options TEEE 188 and DC Out £995.00

Gigatronics 7100 Synthesised Microwave Signal Generators
10 Mhz to 20 Ghz with Resolution to 1 Hz CWIAM/FM/PM -130 dbm to $>+10 \mathrm{dbM}$ Levelled Output with resolution to 0.01 db
4 Digital Sweep Modes and 5 Digital Power Sweep Modes. Internal \& External Modulation 10 Program Set-Ups Fitted IEEE488. Incl Protection Case, Leads, Manuals
£7950.00
Digital Frequency Counters - One Month Only Special Offers RACAL DANA 9000 Series - All fitted High Stability Reference Oscillator

Model 990410 Hz to 50 Mhz . 7 Digit LED Universal Counter Timer. NOW ONLY £50 Model 9914 10Hz to 200Mhz. 8 Digit LED. NOW ONLY £75 Model 991510 Hz to 520 Mhz . 8 Digit LED. NOW ONLY £95 Model 991610 Hz to 520 Mhz . 8 Digit LED. NOW ONLY £110 Model 991910 Hz to 1100 Mhz . 8 Digit LED. NOW ONLY £175

## FLUKE 77 Hand Held LCD Digital MultiMeters

Including Protection Case and Soft Carry Case, Leads, Probes, Manual
NOW ONLY £75.00 complete
Bruel \& Kjoer 2203 Precision Sound Level Meter. No Microphones ONE ONLY $£ 120$ Bruel \& Kjoer 2200 Precision Sound Level Meter with 1613 Octave Filter Set, 2 Extenders, No Microphones ONE ONLY £225

## MEGGER BR4 $\mathbf{2 5 0}$ volt Bridge Test Sets

Insulation, Murray and Varley Loop tests, Limited Quantity NOW ONLY £75 MEGGER Model 9A 500 volt Insulation Testers. Incl Case \& Leads NOW ONLY £65 NEC VISI-GRAPH Oscillograph 9 Channel, 10 mV to $10 \mathrm{~V} / \mathrm{cm}, 10 \mathrm{~cm} / \mathrm{Min}$ to $40 \mathrm{~cm} / \mathrm{Sec}$. Event Markers. Grid scale. Uses Standard UV Recording Paper ONE ONLY £750

MARCONI TF2603 RF Milli Voltmeters - to 1.5 Ghz incl Probe LAST FEW ONLY £75
PHILIPS 5519 TV Colour Bar/Pattern generators. RF \& Video Outputs ONLY £195 THANDAR TA2000 Logic Analyser, 100 Mhz on 8 Channels, 25 Mhz on 32 Channels $£ 100$ THANDAR TA2500 Logic Analyser, 100Mhz on 8 Channels, 25 Mhz on 64 Channels $£ 150$ (Note: We do not have Data Acquisition Pods for these Analysers)
RACAL $1 / 4^{\prime \prime}$ AUTO-STORE Cassettes for the AUTO-STORE Deck NEW, $£ 15$ each NAGRA IV-8J Reel-Reel Professional Tape Recorder, incl Cue Mic, 2 mic pre amps, leads Charger/Mains Pack, Cover, Excellent Condition ONE ONLY £595

OPEN SEVEN DAYS A WEEK Mon-Fri 9am-6pm Sat 8am-4pm Sun 10am-4pm NO APPOINTMENTŚ NEEDED. CALLERS ALWAYS WELCOME All Prices are Ex VAT \& Carriage
All items are Fully Tested with Verified Calibration and carry our Unique 30 Day Un-Conditional Warranty

## RESEARCH NOTES

Jonathan Campbell

## Simple electronics takes a leap

Application of relatively simple electronics is being credited with helping discover previously unknown populations of frogs. Ecologist Michael Dorcas, working with his electrical-engineer father Eugene have built a 'frog-logger' using a tape-recorder that automatically turns on and off at particular times and uses a voice clock to audibly time stamp the start of each sampling interval.
In what is described as a dramatic "success" for the device, a breeding population of barking tree-frogs has been discovered where the species was previously represented by a single road-killed specimen despite 19 years of field work. Other extensive monitoring work is being carried out with colleagues at the Ecology Laboratory, operated by

University of Georgia.
One problem remains with the 'frog-logger': you have to sort through a lot of tapes to find the right croak. So Dorcas is now working with Ontario Hydro Technologies to perfect computer software that can identify animal vocalisations, making it much easier for scientists to analyse their data.
Fortunately, frogs are easier to analyse than birds, say, because their are fewer species and their calls are less variable. That is fortunate, because scientists believe that monitoring the diversity and relative abundance of frogs and toads could serve as an overall indicator of the entire environment.

Frog dying to be logged.


## Morphing robot with the amorphous role

The concept of a robot that can change its form in response to its environment has been the basis for everything from a hit children's cartoon series to the blockbuster film Terminator II. But a robot system built up from interlocking body blocks that can slide over each other could be the start of a shape changing reality.
The interlocking-cube idea has been proposed by Joe Michael of London. He has just patented a design of cube with a mechanism that push out and retract wedges from all its faces. The wedges lock into place in other cubes
and a complete structure can be built up like a series of Lego bricks.
But the clever part has been to design a mechanism to allow the cubes to move over each other. Michael uses a gear wheel to engage with the serrated edge of a wedge when it is place, enabling the wedge and hence the block - to be moved.
Obviously movement is only possible when locking wedges perpendicular to the direction of intended movement are disengaged. But Michael says that the design will enable the blocks to move while
holding tools etc.
The first working prototype has yet to be built and so most of the practical problems remain to be faced. But Michael is supremely optimistic at present, proposing his design as suitable for use in microsurgery, using nanorobots, up to massive machines to be used for bridge building.

Whatever the actual potential, the attraction of a robot able to flow itself through a keyhole and then reform itself in a room has obvious attraction - to film makers if no-one else.

## Sliding cube

 structure could allow a robot to slip in and out of almost any where.

## Induction loopy

Odd electromagnetic effects surface every so often, prompting scientists to review induction theory and re-examine Faraday's law. Now apparent generation of a positive emf as well as back emf in experiments on a motor operated by an $L C R$ circuit are

Ide's motor is designed to make use of the force of attraction between a current-carrying coil and a movable magnetic core. That attraction, resulting from a capacitor discharge, is converted to a rotary motion, and unconsumed magnetic energy is recycled as electrical energy by


How inductance of
the electromagnet relates to
displacement of the core from the elecrtromagnet. Rate of change of the inductance depends on the magnetic fields and is greater in the attracting mode.
causing physicists to scratch their heads once more.
The effect has come to light as a result of work by Osamu Ide to develop a motor operated by discharge of a capacitor in an $L C R$ circuit ("Increased voltage phenomenon in a resonance circuit of unconventional magnetic configuration, J App Phys, Vol 11, pp. 6015-6020).

recharging the capacitor
But what Ide has noted, is that the capacitor recharge voltage depends on the precise configuration of the system, so that under a certain magnetic configuration, it is bigger than normal theory expects.
The construction of Ide's motor is unusual, but relatively
straightforward. He starts with a basic $L C R$ circuit, with a silicon controlled
rectifier (scr) used as a switch so that instead of the usual voltage and current oscillations, a negative charge is retained in the capacitor after discharge. The scr automatically turns off after the half-cycle current, recharging the capacitor to a recharge voltage which is smaller than the initial voltage due to resistance loss in the circuit.

Ide has then replaced the inductance with two pairs of electromagnets, which form the stator around a rotor having two ferromagnetic cores. The magnetic fields attract the cores, producing motion, but as the core approaches the magnets, combined inductance increases and the magnetic flux moves, affecting the discharge current and recharge voltage.
The total recharge voltage should decrease because the system produces mechanical output as the core moves, but Ide found an increase in the average current and recharge voltage when the magnetic field in the electromagnets was opposing, ie $\mathrm{N}-\mathrm{S}: \mathrm{S}-\mathrm{N}$ ).
His explanation is that his motor demonstrates that two types of emf (actually suggested by other workers 50 years a go) - motional emf caused by cutting of the magnetic flux and induced emf caused by Faraday's laws - are independently at work.
In Ide's motor the two emfs have a contradicting effect, with the motional emf having a positive effect on the recharge voltage.

## Silicon technology will catch sun-spot flares

S
ilicon processing techniques developed from microchip manufacture are being exploited by Sandia National Laboratories to make telescope imaging grids with features up to 100 times smaller than possible using traditional manufacture.
Liga - a German acronym for lithography, plating and molding - is being used at Sandia to create moulds for electroplating deep structures made of metal, or for casting ceramics, plastics or other polymers.
The telescope will be used on a Nasa mission to image the sun's solar flares, tracking particles that burst in a sudden release of power from areas where sun spots arise. Neither gamma nor neutron rays produced by these solar outbursts have been imaged before.
Using liga, the telescope will be less than half the length initially anticipated, measuring overall less than 2 m long. The smaller size allows it to be launched on the cheaper spacecraft Pegasus. Orbiting almost 400 miles above Earth, the telescope will capture images through a series of 12 mesh grids and detectors. As the telescope rotates through space, it will provide a three-
dimensional view of radiation from solar flares, in a manner similar to a pinhole camera. Proof-of-concept grids have already been electroplated at Sandia, and the next step is to produce perfect, large-area structures, and assemble and characterise flight instruments.
Other Sandia liga projects include a disk drive suspension arm for IBM and a high-performance stepping motor that involves creating a large nickel-iron alloy part with fine resolution teeth.

## Space camera ...that doesn't take up any

Adevice claimed to be much smaller and cheaper than current state-of-the-art electronic imaging systems but comparable in performance is being developed by Nasa as part of its space program.
The camera on a chip is a considerable leap beyond current charge-coupled devices, according to Eric Fossum, leader of the team who developed the active pixel sensor at Nasa's

Jet Propulsion Laboratory (JPL), Pasadena
JPL has so far signed a technology cooperation agreement with AT\&T Bell Laboratories, while several other companies are said to be seeking licensing agreements to commercialise the technology.
Up to now, ccds have been used mostly in video camcorders and space-craft, and have led to relatively low-cost, compact imaging systems compared to Vidicons and other tube technology. CCD technology has also advanced as the microelectronics industry has improved its quality and fabrication techniques. But ccd devices with a million pixels, or picture elements, are still expensive to make, costing about $\$ 1000$ per million pixels in low-volume applications.
Active pixel sensors, by contrast, are made with main-stream cmos microelectronics technology which can reduce the cost to under $\$ 200$ per million pixels.
The active pixel sensor developed at JPL for space applications is designed to use less power and has lower susceptibility to radiation damage in space.

## Solid progress to portable audio

Are you concerned that the mechanical component of current audio technology is limiting your insport audio activity? Do you find you are frustrated with the limited choice (?) of tape and cd formats? Then a prototype solid state audio system being developed by researchers at NEC could be just for you.
The basis of the system, which the Japanese team is calling silicon audio, is a semiconductor memory card equipped to store compressed audio data ("The Silicon audio: an audiodata compression and storage system with a semiconductor memory card," IEEE Transactions on Consumer Electronics, Vol 41, No 1, pp.186194).

Advantages seem to be that there is no need for any mechanics; unlike tape, random access is possible, while
unlike cd, users can re-record. A general purpose dsp and specially-designed gate array chip, is used for decoding data on the card and the system will both play-back and record.
For audio compression, the designers propose using the mpeg/audio layer II algorithm, handling a 20 kHz bandwidth.
Length of recording time is obviously a function of the size of memory card available and the employed bit-rate. In the prototype work, encoding is being carried out at $96 \mathrm{kbps} / \mathrm{ch}$, giving a reasonable compromise between recording capacity and sound quality.
So far the developers have built a play-back machine able to store 12 min of music on a 16 Mbyte card. But their eventual aim is 60 min
recordings, which they say is well within the capability of fast evolving card memory technology.
Silicon audio is being proposed as a complete portable multimedia system spanning teaching, guides, news and books, and integrating sound, speech, text, still pictures and even images.
However, the current close links between technology progress and fashion have not been missed by the researchers either. In parallel with detailed electronic development, the team has been trying out a variety of packaging colours and graphics to attract the eye of potential consumers. Only when that is finalised, will we be able strap on our new toy and go "jogging, skiing, biking and even roller-blading", while we listen to something other than our own laboured breathing.


## Hot GaAs technology gets a cooler

Widespread application of gallium arsenide devices in portable telephones phones is testament to their low noise amplification characteristics advantages that are expected to see GaAs use spread to high speed switching networks and digital logic. But difficulties in removing the heat generated in GaAs power amplifier chips has so far led to compromises in design which have impacted on yield.
But work at Motorola looks to have gone some way to solving that problem, by shrinking the heat transfer path from the hot zones in the active area of the device
to the heat sink, and bypassing the bulk of the GaAs itself. ("A novel active area bumped flip chip technology for convergent heat transfer from GaAs power devices, Debabrata Gupta, IEEE Transactions on Components, Packaging and Manufacturing technology - Part A, Vol 18, No 1, pp.82-86).
The technique relies on plating bumps of gold onto the active area of a flip chip device. Bumped amplifier flip chips bonded to aluminium nitride substrates can dissipate heat fluxes up to $300 \mathrm{~W} / \mathrm{cm}^{2}$ with an acceptable rise in junction temperature.


Profiled bumps could be the answer to heat dissipation problems in GaAs power amplifiers.

AUDIO Feel the bass

> With this active 100W sub-woofer design featuring a -3dB point of $\mathbf{2 0 H z}$ - Jeff Macaulay once more demonstrates how inadequacies in loudspeaker cabinet systems can be compensated for electronically.

Although the quality of audio electronics has now advanced to a state of near perfection, loudspeaker systems have not kept pace. The main problem is still the reproduction of bass - especially in domestic surroundings. Large speaker systems are not usually practical, but bass reproduction requires large enclosures, when conventional design techniques are applied.
Historically, most of the effort in speaker design has been expended on understanding how drivers

and enclosures interact to produce predictable results. Generations of engineers have contributed to this work, culminating in the Theile-Small model, which now forms the basis of low frequency speaker design.
Briefly, the model compares the response of the speaker system to that of a high-pass filter. This enables the response to be accurately predicted. In fact the response curve of an unmounted speaker or one mounted in a sealed box is that of a second order high-pass filter in the bass. This response shape is dictated by the fundamental bass resonance, possessed by all speakers, between the cone mass and speaker surround compliance.
Although a driver may have a desirably low resonant frequency when measured in free air, mounting it in a sealed enclosure raises the resonant frequency because of the added stiffness of the enclosed air. Unfortunately some kind of enclosure is necessary because the radiation from the front of the cone is in antiphase with that from the rear. Consequently, because of the long wavelengths of bass sounds the two outputs diffract around the driver and cancel each other out, a kind of acoustic short circuit occurs.
Below the resonant frequency, response rolls off rapidly, reaching an ultimate slope of $12 \mathrm{~dB} /$ octave. An obvious thought is to make the resonant frequency in free air lower to reduce the cut-off frequency in the enclosure. Unfortunately the efficiency of a speaker is proportional to the cube of its resonant frequency. Although you can trade off efficiency and bandwidth, the benefits are limited. The result is that most domestic speaker systems are limited to a -3 dB point of 70 Hz or more. At least an octave of bass is lost.

## Driving amplifier

There is a parallel train of thought which seeks to modify the behaviour of a speaker system by altering the response of the driving amplifier. Three main areas of research have been pursued.

Motional feedback. Probably the most well known is motional feedback. Here a transducer is fitted to the speaker cone and the information obtained is used to control the cone in a classic feedback circuit. This technique has many advantages. The distortion and lack of bandwidth of a small box can be overcome. On the down-side, the system can be easily overdriven by bass transients and requires special transducers and electronics.

Damping. Another way of controlling the cone is based on the idea of damping. Power amps are designed with a zero-impedance output to control the speaker cone. The idea is that speaker resonance can be damped out by connecting a zero impedance source of signals. Unfortunately the voice coil resistance is always in series with the resonant sound radiation circuit.
Figure 1 shows the equivalent electrical circuit of a speaker mounted in a sealed box. Here the various reactive elements combine to produce a parallel tuned circuit. Resonance of these elements produce the well known rise in impedance at the speaker's fundamental resonance.

If these elements were to be fed directly from a zero-impedance source, the bass resonance would be completely suppressed. Although voice coil resistance cannot be physically removed from the circuit, an amplifier's output impedance can be made negative to cancel it. When this is done the speaker resonance is completely suppressed and the cone motion becomes independent of frequency.

The result is that the sound pressure level,


Equivalent circuit to speaker in
sealed enclosure.
$L M=B^{2} L^{2} \cdot \frac{C_{S} C_{B}}{C_{S}+C_{B}}$
Where $C_{S}=$ cone suspension compliance
$C_{B}=$ compliance of enclosed air in box

| $C_{C}=$ | $\frac{M_{a}}{B^{2} L^{2}} \quad$ Where $M a=$ mass of air load on |
| ---: | :--- |
| $R_{A}=\frac{B^{2} L^{2}}{\pi A} \quad$Where $\pi A=$ radiation resistance <br> applied to speaker |  |
| $E=B L U$ where |  |
|  | $B=$ magnetic flux density |
| $L=$ voice coil length |  |
| $V=$ velocity of voice coil |  |

Fig. 1. Parallel tuned circuit - the equivalent electrical circuit of a speaker mounted in a sealed box.

## A new filter configuration for audio

A standard second-order filter response can be simulated with a second-order bandpass filter and an integrator.
The bandpass filter needs to have the same centre frequency and Q as the second-order filter, or speaker response to be simulated. The flat response audio signal is fed first through the bandpass filter then an integrator. A second-order high-pass response is obtained.
If the integrator is replaced with a differentiator, a second-order low-pass response is obtained. To simulate a reverse speaker response, all that is required is to replace the bandpass filter with a band-reject type of the same turnover frequency and Q .
A practical difficulty with such a circuit is insertion loss, but it avoids the use of high-gain circuits in the equaliser. As the gain of a high-pass filter at dc is zero, an infinite-gain amplifier would be needed to obtain full equalisation. In practice, this is not necessary since each halving of input frequency brings a fourfold increase in cone excursion to maintain the same sound pressure levels.
Obviously this soon gets out of hand and at sub audio frequencies, excursion requirements will eventually exceed the displacement limits of the speaker.


Synthesising a second-order high-pass filter from a differentiator and bandpass filter. For equalisation purposes, an inverse response can be generated by combining a bandstop filter and integrator.
spl, measured in front of the driver, increases at a steady $6 \mathrm{~dB} /$ octave for a constant drive signal amplitude. In other words, the speaker acts as a differentiator. This is exactly how a perfect massless piston would behave - if such a device could be built. Furthermore, near perfect transient response is obtained and because the non linear compliance of the speaker surround is controlled this results in a considerable reduction of distortion.
All that is required to obtain a flat response from the speaker is to integrate the input signal. It is a sobering thought that if perfect speakers were available, our power amplifiers would have to become power integrators to drive them. In fact the only reason that loudspeakers have a flat response is that the bass resonance tilts the response downward by 6 dB /octave above the resonant frequency.
As with motional feedback systems, special amplifiers with positive current feedback are necessary. To be effective, the speaker inductance also has to be cancelled if new unwanted resonant peaks are to be avoided. One
advantage over the motional feedback system is that the speakers are stock items. No special features are required.

Equalisation. Although it is true to say that equalisation is used as an adjunct to both motional feedback and damping systems, it can also be used on its own. The main difficulty is that although Theile-Small software can predict the roll-off curve of any speaker system, suitable equalisers are rare.

## Sixth-order alignment

Although equalised speakers are not in general use, the sixth-order alignment has gained acceptance. This speaker system is a reflex type using a vent to provide bass boost. The system is adjusted for an over-damped response curve which is then boosted back to flatness by an auxiliary under-damped second order high-pass filter as Figure. 2 shows. Not only can the system extend lower into the bass region, but the subaudio noise limiting the system's excursion ability is rejected.

$f \Rightarrow$
Fig. 2. Sixth-order alignment. System response is extended by an external filter.

Equalised speakers have most of the advantages of the other systems described. Transient response is improved because this is simply a function of the rate of roll-off imposed by the system. Provided that sensible limits are observed, the extension in bass response can be as great.
Unfortunately, the total harmonic distortion of the system is not improved. However this is no great advantage since it has been shown that $40 \%$ of second harmonic distortion below 80 Hz is inaudible on programme material. Modern drivers tend to produce far less odd harmonic distortion than older models. These facts, taken together, indicate that sub-resonant operation works well - a fact borne out by experience.

## Circuit details

Electronics textbooks are full of circuitry to produce the classical filter configurations. But a reversed second-order response is not amongst them. The only filter that I know of that can simulate this response is the Linkwitz filter.
Unfortunately this filter tends to be component critical, and as often as not, components have to be selected by experimentation - a time consuming process. I find this unsatisfactory, so I have developed a new type of filter. The key to understanding this new circuit is that the standard second-order filter response can be simulated with a second-order bandpass filter and an integrator, see panel.
A practical filter of this type is shown in Fig. 3. Since band-reject filters tend to have awkward component values, I have used a multi-ple-feedback bandpass filter, or mfb. Bandreject response is produced by subtracting the bandpass response from the input signal in $\mathrm{A}_{2}$. Since the mfb filter is inverting this can be done with a shunt feedback amplifier without fear of unwanted signal interaction. The integrator function is performed by shunting the feedback resistor. Although sealed box systems can be very effective when operated in sub-resonant mode, greater efficiency would be a distinct advantage.
The Microreflex system described in an earlier article' is efficient and has excellent bass performance for its size. It makes use of the


Fig. 3. Amplifier $A_{1}$, with $R_{1}, R_{2}, C_{1}$ and $C_{2}$, forms a bandpass filter with the same turnover frequency and $Q$ as the speaker system. The required bandstop response is obtained by subtracting the bandpass from the input by $A_{2}$. Capacitor $C_{3}$ and $R_{6}$ produce an integrator response to produce equalisation.

reflex principle but in a grossly undersized box. Such a system exhibits a roll-off characteristic closely resembling those of a closed box. This means that it is easy to equalise.
To understand the Microreflex enclosure requires some understanding of standard reflex types. In a reflex enclosure, rear radiation from the cone is used to reinforce the output from the front. As discussed earlier, radiation from the front of a speaker cone is in antiphase with that from the rear.
For rear energy to be useful, some method has to be found to phase invert the rear sound. In a reflex enclosure this is done by making the enclosed air resonate at a fixed frequency by means of a vent. The mass of the air in the vent resonates with the compliance of the air within the enclosure. It forms a mechanical tuned circuit which is excited by the rear of the cone.
Above the enclosure resonance, the vent's radiation is in phase with the front of the cone. Below the resonance the vent and cone radiation move out of phase producing a rapid bass roll-off. The system operates as a fourth-order high-pass filter.
At very low frequencies, the cone is unloaded by the air in the enclosure and thus large sub audio cone fluctuations can occur, unless suitable filtering is applied. The advantages of a reflex system over a sealed box are also applicable in the Microreflex system. Primarily the speaker's resonant frequency is virtually unchanged by reflex loading, leading to lower distortion at bass frequencies. Secondly the excited enclosure resonance acts as a heavy acoustic load reducing both cone excursion and distortion.
Most importantly however is the increased efficiency it provides relative to a sealed enclosure. Unfortunately it is a waste of time trying to extend the bass response of a properly designed reflex enclosure below its cutoff frequency. All that happens is that the cone moves further but the antiphase vent output cancels any improvement.
To take advantage of the reflex system, the enclosure has to be redesigned. It so happens that when the enclosure is made small enough the natural fourth order filter roll-off characteristic changes to a second order roll-off, just like a sealed enclosure.
Active equalisation is used in the sixth-order speaker system discussed earlier. Enclosure resonance is lowered and the overall response is then boosted flat again. Before equalisation is applied, the response of the system resembles an over damped fourth-order filter. To obtain a flat response the enclosure has to be carefully matched to the driver. Although sixth-order systems are usually smaller and produce deeper bass, the design still requires set enclosure volumes and driver parameters.
When the enclosure size is too small, as in the Microreflex, the response becomes that of a second-order filter. This yields response curves that are far from flat. However this is not a limitation. The equalisation applies a drive signal that corrects both the amplitude and phase of the natural response, rendering
the system response flat.
Small reflex enclosures have a useful characteristic. That is, that the second-order rolloff extends to below the enclosure resonance. Investigation reveals that the enclosure resonance's $Q$ has been reduced, leading to lower phase shift, and the vent output supplements the driver down to and below the enclosure resonance. This is important because it allows bass to be extended towards the sub-audio region. Provided that the excursion limit of the cone is observed, the performance of the system can be predicted with the standard TheileSmall model.

This article describes a small-sized active subwoofer with a -3 dB point extending down to 20 Hz . Computer simulation, and testing show that the system is thermally limited within its working range.

## Subwoofer systems

To be effective, a subwoofer needs to shift a large volume of air at low frequencies. Two approaches are possible. Either a large diameter driver can be used, or several smaller units operating in phase. High efficiency is also helpful to offset the amount of equalisation required. Large speakers with the right qualities are hard to find so four 8 in $P F 81 H R$ types are used.
Speaker size is dictated by the need to reflex the enclosure to a suitably low frequency. A $1.5 \mathrm{ft}^{3}$ enclosure was chosen, tuned to 40 Hz . By wiring the drivers in series/parallel, Fig.4, an $8 \Omega$ impedance was obtained with a reference efficiency of $97 \mathrm{~dB} / \mathrm{W}$. The resulting raw frequency response of the system was predictably dire closely resembling a closed box system with a Q of 1.3 and a resonant frequency of 124 Hz .

Examination of the alignment shows that the vent and driver are still operating in phase down to below 20 Hz . The vent provides several decibels more in the deep bass than the


Fig. 4. Wiring the drivers in series/parallel results in an overall impedance of $8 \Omega$ from four $8 \Omega$ drivers. Pairs of drivers are driven in antiphase and mounted face-to-face.
same system operated as a sealed box. Moreover the system is capable of providing 95 dB spl at 1 m at 30 Hz . Further examination of the large signal characteristics showed that the system was thermally limited, rather than displacement limited, to 20 Hz .

With correct equalisation, the bass response can be rendered flat. Auxiliary bass filtering below 20 Hz ensures that the displacement limits imposed by the drivers are not exceeded. Although the vent resonance reduces distortion from the speakers at low frequencies they are used in push-pull pairs. This effectively eliminates even-order distortion from the system.

## Integration into an existing system

The other interfacing problem posed by subwoofer systems is integrating it into an existing set-up. Having solved this problem several times, I have found some useful practical guidelines.

Imposing a low-frequency crossover between the subwoofer and existing speakers is counter productive. To prevent any problems with the stereo image the subwoofer's range should not exceed 120 Hz . At these frequencies the existing speakers will be already beginning to roll off with unpredictable amplitude and phase shifts. Add to this equally unpredictable resonant modes in the listening room and you have a problem that virtually defies analysis.
The best solution that I have found is to leave the existing speakers alone and make the subwoofer roll-off variable. A low $Q$ second order low pass filter is the best. With a little adjustment seamless integration of the system is possible.
The power rating of the system is 100 W continuous. With four drivers there is a choice as to the impedance chosen. By wiring these in series/parallel I kept this at $8 \Omega$ to provide standard loading. However it is not strictly

$A=305 \times 584 \times 15 \mathrm{~mm} \times 2$ $B=305 \times 584 \times 15 \mathrm{~mm} \times 2$ $C=305 \times 222 \times 15 \mathrm{~mm} \times 1$ $D=305 \times 275 \times 15 \mathrm{~mm} \times 1$ $E=412 \times 305 \times 15 \mathrm{~mm} \times 1$

Fig. 6. Enclosure details. Two drivers, face-to-face, mount in each aperture. Prototype was from 15 mm sheiving, but 18 mm medium density fibreboard is recommended.
 -


| Frequency <br> (Hz) | Relative <br> response <br> (dB) | Max power <br> input (W) | Max infinite <br> baffle response <br> (dB) |
| :--- | :--- | :--- | :--- |
| 5 | -74.59 | 49.37 | 38.95 |
| 10 | -49.16 | 39.66 | 63.43 |
| 15 | -33.90 | 35.64 | 78.22 |
| 20 | -25.80 | 71.03 | 89.32 |
| 25 | -22.00 | 100 | 94.60 |
| 30 | -19.31 | 100 | 97.29 |
| 35 | -16.97 | 100 | 99.63 |
| 40 | -14.84 | 100 | 101.76 |
| 45 | -12.86 | 100 | 103.74 |
| 50 | -11.02 | 100 | 105.58 |
| 55 | -9.31 | 100 | 107.29 |
| 60 | -7.72 | 100 | 108.88 |
| 65 | -6.24 | 100 | 110.36 |
| 70 | -4.87 | 100 | 111.73 |
| 75 | -3.62 | 100 | 112.98 |
| 80 | -2.50 | 100 | 114.10 |
| 90 | -0.65 | 100 | 115.96 |
| 100 | 0.66 | 100 | 117.26 |
| 120 | 1.85 | 100 | 118.45 |
| 150 | 1.95 | 100 | 118.52 |
| 200 | 1.31 | 100 | 117.91 |

Bass units - special offer
Semiconductor Supplies International is offering sets of four PF81HR bass units needed for the subwoofer at the special price of $£ 42.77$ - exclusively to $E W+W W$ readers mentioning this article. This price is fully inclusive of vat and UK next-day delivery. Normally, the set would retail at $£ 55.27$ fully inclusive.
Send postal order or cheque to Semiconductor Supplies International at Dawson House, 128 Carshalton Road, Sutton, Surrey SM1 4TW, or ring or fax with credit card details, tel 0181643 1127, fax 0181643 3937. Note that SSI's part number for these speakers is LO31.
necessary to use 100 W drive. In practice any amplifier which can deliver 30W or more is suitable. In a domestic environment, using more than a few watts input will not impress the neighbours.

## The complete circuit

The whole circuit, Fig. 5 is built around two quad $T L 074$ op-amps. Right and left channels are passively mixed via resistors $R_{1,2}$ across the level potentiometer $V R_{\mathrm{l}}$. It makes sense to obtain the input from the right and left speaker outlets of your main amplifier. This way the sub woofer correctly tracks the system output.
The signal is first buffered by $A_{1}$ before being fed to the high-pass filter built around $A_{2}$. Component values chosen for this circuit establish the -3 dB point at 20 Hz . This heavily attenuates out-of-band sub-audio signals. Without the filter these may have sufficient amplitude to push the drivers beyond their excursion limits. Not having the cones aimlessly pumping in and out allows the cone excursion to be more usefully employed, producing bass.

From $A_{2}$ 's output, the signal feeds the response equalisation circuitry built around $A_{3}$ and $A_{4}$. Op-amp $A_{3}$ forms a band-pass filter with the same tumover frequency and $Q$ as the system. Output of the bandpass filter is subtracted from the input signal to produce a bandstop filter.

Because $A_{3}$ inverts, $A_{4}$ acts as a differential amplifier. Resistors $R_{89}$, together with $C_{5}$, integrate the signal. This produces accurate equalisation, flattening the system's response.

Final equalisation is provided by a variable low-pass filter, built around $A_{5}$. This strips off out of band signals . Potentiometer $V R_{2}-\mathrm{a}$ dual ganged type - makes this stage's cut-off frequency continuously variable between 40 and 120 Hz . The Q of the filter is set at 0.5 for the best transient response within the subwoofer's passband.
Although the subwoofer gives a good account of itself when driven from a lowpower amp a reasonably substantial power input is required to drive it to its limit. A 100 W amp was required and this was produced by using a pair of ILP HY60 modules in bridge mode.
To use the amps in this way requires a phase splitting circuit, $A_{6}$ and $A_{7}$. Input signals are fed into $A_{6}$ 's non inverting input. As this is wired as a buffer, the output signal is applied across $R_{13}$. Op-amp $A_{7}$ is wired as a shuntfeedback amp. With $R_{13}$ and $R_{14}$ having equal values, $A_{7}$ output is equal to $A_{6}$ but shifted through $180^{\circ}$. The circuit is powered by a standard $\pm 15 \mathrm{~V}$ power supply using 7815 and 7915 regulators.

## Enclosure details

An ideal material for the enclosure is 18 mm medium density fibreboard, mdf, Fig. 6. The material is not too critical, but ensure that the internal volume is kept constant if you use material of a different thickness. The enclosure must be completely airtight.
I implemented the tuning vent by forming a partition within the cabinet and an undersized top panel. Although the vent is rectangular, it
operates as a circular type of equivalent area.
The speakers are mounted in two pairs. One pair with the magnets external to the case, the other pair conventionally. Its also important to ensure that the drivers make an airtight seal to the case. With the rear mounted pair they can be simply screwed up against their gaskets.

Both the front pair and rear pair are wired in series. Both pairs are then connected in parallel for an $8 \Omega$ load. The rear pair of speakers are wired out of phase with the front pair to give push pull operation.

A neat and airtight way of taking the connections through the case is to use M5 screws fitted with solder tags. The electronics can be mounted inside the enclosure if need be. A rather neater result is obtained if the circuitry is mounted in an ABS case which is then screwed onto the rear panel.
This last method gives easy access to the electronics without having to rip apart the case. It also makes the task of keeping the enclosure airtight easier.

Finally I would commend this design to those of you who yearn for a decent bass response, but who are unwilling to give house room to large enclosures. Everyone who has heard the sub-woofer has been favourably impressed.

## Reference

1. Macaulay, J., Bigger bass - smaller box, $E W+W W$, June 1995, pp469-475.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK
HP New Colour Spectrum Analysers
HP141T +8552 B IF $+8553 \mathrm{BRF}-1 \mathrm{KHz}-110 \mathrm{MC} / \mathrm{s}-\mathrm{E} 700$.
$\mathrm{HP141T}+8552 \mathrm{~B}$ IF $+8554 \mathrm{BRF}-100 \mathrm{KHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 900$
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{~B}$ IF $+8556 \mathrm{ARF}-20 \mathrm{~Hz}-300 \mathrm{KHz}-\mathrm{S} 700$
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{BIF}+8556 \mathrm{ARF}-20 \mathrm{~Hz}-300 \mathrm{KHz}-£ 700$.
Special Offer just in from MOD Oty 40 HP8555A RF Units $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}$.
HP141T+8552B IF + 8555A $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}-£ 1200$.
HP ANZ Units Available separately - Now Colours - Tested
HP141T Mainframe - 1350 .
HP85528 IF - $£ 300$.
HP8553B RF 1 KHz to $110 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 200$.
HP85548 RF 100 KHz to $1250 \mathrm{Mc} / \mathrm{s}$ - f 500.
HP8555A RF $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHzS - EB 00.
HP8556A RF 20 Hz to $300 \mathrm{KHzS}-£ 250$.
HP8443A Tracking Generator Counter $100 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-£ 300$.
HP8443A Tracking Generator Counter $100 \mathrm{KHz}-110$
HP8445B Tracking Preselector DC to $18 \mathrm{GHz}-£ 350$.
HP3580A $5 \mathrm{~Hz}-50 \mathrm{KHz}$ ANZ $-\mathbb{7} 50-£ 1000$.
HP3582A .02 Hz to $25.6 \mathrm{KHz}-\mathrm{E} 2 \mathrm{k}$.
HP8568A $100 \mathrm{~Hz}-1500 \mathrm{Mc} / \mathrm{s}$ ANZ -f 6 k.
HP8569B $10 \mathrm{Mc} / \mathrm{s}-22 \mathrm{GHz}$ ANZ- E 6 k .
HP Mixers are available for the above ANZ's to 40 GHz
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2-$ £4k-£4.2k.
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2+3-£ 4.5 \mathrm{k}$.
TEK 492P-50KHz-21 GHz Opt $1+2+3-£ 5 k$
TEK 494 AP $1 \mathrm{KC} / \mathrm{S}-21 \mathrm{GHz}-\mathrm{E} 7 \mathrm{~K}$
TEK $496 \mathrm{P} ~$
$1 \mathrm{KHz}-1.8 \mathrm{GHz}-$ E4k
TEK $5 L 4 \mathrm{~N}$ O-100K Hz - f 400 .
TEK $7 \mathrm{LL}+\mathrm{L1}-20 \mathrm{~Hz}-5 \mathrm{Mc} / \mathrm{s}-£ 700$.
TEK 7 L5 + L3-Opt 25 Tracking Gen - E 900.
TEK 7 L $12-100 \mathrm{KHz} z-1800 \mathrm{MC} / \mathrm{s}-\mathrm{f} 1000$.
TEK $7 \mathrm{~L} 18-1.5-60 \mathrm{GHzs}-\mathrm{f} 1500$
TEK $7 \mathrm{~L} 18-1.5-60 \mathrm{GHzs}-£ 1500$.
TEK 491 10Mc/s-12.4GHzs-40GHzs - E750. 12.4 Ghzs-40Ghzs with Mixers.
Systron Donner 763 Spectrum ANZ +4745 B Preselector
Systranit Case HP8673D Signal Generator . 05-26.5GHz- 20 k
Systron Donner $1618 B$ Microwave AM FM Synthesizer $50 \mathrm{Mc} / \mathrm{s}$ 2-18GHzs R\&S SWP Sweep Generator Synthesizer AM FM 4-2500Mc/s - $£ 3.5 \mathrm{k}$.
ADRET 3310 A FX Synthesizer $300 \mathrm{~Hz}-60 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 600$.
HP8640A Signal Generators - $1024 \mathrm{Mc} / \mathrm{s}$ - AM FM - $\mathrm{EB00}$.
HP3717A 70Mc/s Modulator - Demodulator - f 500 .
HP8651A RF Oscillator $22 \mathrm{KC} / \mathrm{S}-22 \mathrm{Mc} / \mathrm{s}$.
HP5316B Universal Counter A+B.
HP6002A Power Unit 0-5V 0-10A 200W.
HP6825A Bipolar Power Supply Amplifier.
HP461A-465A-467A Amplifiers.
HP81519A Optical Receiver DC-400 Mc/s.
HP Plotters 7470A 7475 .
HP Plotters 7470A-7475A.
HP3770A Amplitude Delay Distortion ANZ.
HP3770B Telephone Line Analyser.
HP59401A Bus System
HP6260B Power Unit 0-10V 0-100 Amps.
HP3782A Error Detector.
HP3781A Pattern Generstor.
HP3730A + 3737A Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$.
HP Microwave Amps 491-492-493-494-495-1GHz-12.4GHz - $£ 250$.
HP105B Quartz Oscillator - $£ 400$.
HP5087A Distribution Amplifier.
HP6034A System Power Supply 0 -60V O-10A-200W - 500 .
HP6131C Digital Voltage Source $+-100 \mathrm{~V} 1 / 2 \mathrm{Amp}$.
HP4275A Multi Frequency L.C.R. Meter
HP3779A Primary Multiplex Analyser.
HP3779C Primary Multiplex Analyser.
HP8150A Optical Signal Source.
HP1630G Logic Analyser.
HP5335A Universal Counter $A+B+C$.
HP59501B Isolated Power Supply Programmer.
HP8901A Modulation Meter AM - FM - also 8901B.
HP5370A Universal Time Interval Counter.
Marconi TF $2370-30 \mathrm{~Hz}-110 \mathrm{Mc} / \mathrm{s} 750 \mathrm{HM}$ Output 12 BNC Sockets + Resistor for 500 HM MOD with Marconi MOD Shest supplied- $\mathbf{6} 650$.
Marconi TF2370 $30 \mathrm{~Hz}-110 \mathrm{Mc} / \mathrm{s} 50$ ohm Output - $\mathbf{~} 750$,
Marconi TF2370 as above but late type - $£ 850$.
Marconi TF2370 as above but late type Brown Case - $\mathbf{£ 1 0 0 0}$
Marconi TF2374 Zero Loss Probe - $£ 200$.
Marconi TF2440 Microwave Counter -20GHz - $£ 1500$.
Marconi TF2442 Microwave Counter - 26.5 GHz - $\mathbf{f} 2 \mathrm{k}$.
Marconi TF2305 Modulation Meter- $\mathbf{5 2 . 3 \mathrm { k }}$.
Recal/Dans 2101 Microwave Counter -10 Hz -20GHz- $\mathbf{2} 2 \mathrm{k}$,
Racal/Dana 1250-1261 Universal Switch Controller + 200Mc/s PI Cards.
Raca//Dana 9303 True RMS Levelmeter + Head - £450. IFFE - $£ 500$.
TEK 1240 Logic Analyser - $£ 400$.
TEK FG5010 Programmable Function Generator 20Mc/s - f 600 .
TEK2465A $350 \mathrm{Mc} / \mathrm{s}$ Oscilloscope - $£ 2.5 \mathrm{k}$ + probes - $\mathbf{~ 1} 150$ each.
TEK CT-5 High Current Transformer Probe - $£ 250$.
TEK J16 Digital Photometer + J6523-2 Luminance Probe - £300.
TEK J16 Digital Photometer + J 6503 Luminance Probe - $£ 250$.
RLUKK 5102 ABA AC-DC Calibrator $-£ 4 \mathrm{k}$.
FLUK
FLUKE 1120 A IEEE - 488 Translator - f 250 .
Tinsley Standard Cell Battery $5644 \mathrm{~B}-\mathrm{f500}$.
Tinsley Transportable Voltage Reference- $£ 500$.
FLUKE Y5020 Current Shunt- $£ 150$.
HP8080A MF + 8091A 1GHz Rate Generator + 8092A Delay Generator + Two 8093A iGHz Amps HP800A
$+15400 A-8800$.
HP54200A Digitizing Oscilloscope
HP11729B Carrier Nolse Test Set. $01-18 \mathrm{GHz}$ - LEF - $£ 2000$.
HP3311A Function Generator - £300.
Marconi TF2008 - AM-FM signal generator - also sweeper - $10 \mathrm{Kc} / \mathrm{s}-510 \mathrm{Mc} / \mathrm{s}$ - from E 250 tested to $£ 400$ as new with manual - probe kit in wooden carrying box.
HP Frequency comb generator type $8406-£ 400$. HP Frequency comb generator type $8406-£ 400$.
HP Sweep Oscillators type $8690 \mathrm{~A} \& \mathrm{~B}+$ plug-ins from $10 \mathrm{Mc} /$ s to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R.. HP Network Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{£} 500-£ 1000$. HP Amplifier type $8447 \mathrm{~A}-1.400 \mathrm{Mc} / \mathrm{s} £ 200$ - HP8447A Dual - $£ 300$.
HP Frequency Counter type 5340A - 18GHz $£ 1000$ - rear output $£ 800$.
HP 8410 - A - B - C Network Analyzer $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and
displays used in this set-up -8411a - 8412-8413-8414-8418-8740-8741-8742-8743-8746-8650. From $£ 1000$.
Racal/Dans 9301A - 9302 RF Millivolimeter - $1.5-2 \mathrm{GHz}-£ 250-£ 400$
Marconi RCL Bridge type TF2700- $£ 150$.
Marconi/Saunders Signal Sources type - 6058B - 6070A - 6055A - 6059A - 6057A - 6056 $\mathrm{f} 250 \cdot \mathbf{6} 350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi TF1245 Circuit Magnification meter + 1246 \& 1247 Oscillators - $£ 100-£ 300$.
Marconi microwave 6600 A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ $40 \mathrm{GHz}-£ 1000$ or PI only $£ 600$. MF only $£ 250$.

- $\mathbf{f}$

ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EOUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITING AND RECEIVING EQUIPMENT ETC.
Johns Radio, Whitethall Works, 84 Whitehall Road East, Birkenshaw, Bradtord BDI1 2ER. Tel. No: (01214) 684007 . Fax: 651160

# BULL CLEAROUT SALE 

WIRELESS VIDEO BUG KIT Transmits video and audio signals from a minature CCTV camera (included) to any standard television! All the components including a PP3 battery will fit into a cigarette packet with the lens requiring a hole about 3 mm diameter. Supplied with telescopic aerial but a piece of wire about $4^{*}$ long will still give a range of up to 100 metres. A single PP3 will probably give less than 1 hours operating time. £99 REF EP79. (probably not licensabiel)
GOT AN EXPENSNE BIKE? You need one of our bottle alarms, they look like a standard water bottle, but open the top, insert a key to activate a motion sensor alarm built inside. Fits all standard bottle carriers, supplied with two keys. SALE PRICE $£ 7.99$ REF SA32
GOT AN EXPENSNE ANYTHING? You need one of our cased vibration alarms, keyswitch operated, fully cased just fit it to anything from videos to caravans, provides a years protection from 1 PP3 battery, and protect itt UK made. SALE PRICE $£ 4.99$ REF SA33
DAMAGED ANSWER PHONES These are probably beyond repair so they are just£4.99 each. Mainly response 200 machines. REF SA3O.
COMMODORE GAMES CONSOLES Just a fewof these left to clear at $£ 5$ ref SA31. Condition unknown.
COMPUTER DISC CLEAROUT We are left with a lot of software packs that need clearing so we are selling at disc value ontyl 50 discs for $£ 4$, thats just 8 p eachll (our choice of discs) SALE PRICE 54 ref EP66
IBM PS2 MODEL 1502 CASE ANO POWER SUPPLY Complete with fan etc and 200 watt power supply. SALE PRICE $£ 9.95$ ref EP67
DELL PC POWER SUPPLIES 145 watt, $+5,-5,+12,-12$, $150 \times 150 \times 85 \mathrm{~mm}$ complete with switch, flylead s andIEC socket SALE PRICE $£ 9.99$ ref EP55
1.44 DISC DRNES Standard PC 3.5" drives but returns so they will need attention SALE PRICE $£ 4.99$ ref EP68
1.2 DISC DRIVES Standard $5.25^{\circ}$ drives but returns so they will need attention SALE PRICE $£ 4.99$ ref EP69
PP3 NICADS New and unused but some storage marks. SALEPRICE E4.99 ref EP52
SOLAR PANELS $3 v$ output with two flyleads, $100 \times 60 \mathrm{~mm}$ pack of 10 SALE PRICE $£ 6.99$ ref EP56
DELL PC POWER SUPPLIES (Customer returns) Standard PC psu's complete with fly leads, case and fan, pack of two psus SALE PRICE $£ 5$ FOR TWOIl ref EP61
GAS HOBS AND OVENS Brand new gas appliances, perfect for small flats etc. Basic 3 burner hob SALE PRICE £24.99 ref EP72. Basic small built in oven SALE PRICEE 79 ref EP73
BITS AND BOBS We have a quantity of cased modems, multiplexers etc different specs but ideal strippers. SALE PRICE $£ 4$ each ref EP63
RED EYE SECURTY PROTECTOR 1,000 watt outdoor PIR switch SALE PRICE $£ 9.99$ ref EP57
 dilodes, connection details etc. $£ 69,95$ ref EF112.
CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams, 12 v 100 mA . auto electronic shutter, 3.6 mm F2 lens, CCIR, $512 \times 492$ pixels, video output is 1 v p-p $(75 \mathrm{ohm})$. Works directly into a scart or video input on a twor video. IR sensitive. $£ 79.95$ ref EF137.
IR LAMP KIT Suitable for the above camera enables the camera to be used in total darkness! £5.99 ref EF138. PASTEL ACCOUNTS SOFTWARE, does everything for all sizes of busine sses, includes wordprocessor, report writer, windowing, networkable up to 10 stations, multiple cash books etc. 200 page comprehensive manual. 90 days free technical support (0345-325009 try before you buyl) Currentretall price is $£ 129$, SALE PRICE $£ 9.95$ ref SA12. SAVE $£ 120!1!$
MINI MICRO FANS $12 \mathrm{~V} 1.5^{\prime \prime}$ sq SALE PRICE $£ 2$. Ref SA13.
C TOH PRINTERS $80 \mathrm{col}, 9$ pin matrix, serial/parallel, NLO/draft, 3 mth warranty, good condition, SALE PRICE $£ 39$ ref SA14.
REUSEABLE HEAT PACKS. Ideal for fishermen, outdoor enthusiasts elderly orinfirm, warming food, drinks etc, deffosting pipes etc.reuseable up to 10 times, lasts for up to 8 hours per go, 2,000wh energy, gets up to 90 degC. SALE PRICE $£ 9.95$ REF SA29
A4 DTP MONTTORS Brend new, 300 OPI. Complote with diagram but no interface details. (so you will have to work it out!) Bargain at just $£ 7.99$ orachillt Rof EF185
12V 2A MP LAPTOP psu's $110 \times 55 \times 40 \mathrm{~mm}$ (includes standard IEC socket) and 2 m lead with plug. $100-240 \mathrm{VIP}$. SALEPRICE E6.99 REF SA 15.
PC CONTROLLED 4 CHANNEL TIMER Control (onvoff times etc) up to 4 items ( 8 A 240 veach ) with this kit. Complete with Software, relays, PCB etc. £25.99 Ref 95/28
COMPLETE PC 300 WATT UPS SYSTEM TOp of the range UPS system providing protection for your computer system and va luable software against mains power fluctuations and cuts. New and boxed. UK made Provides up to 5 mins running time in the event of complete power failure to allow you to run your sy stem down correctly. SALE PRICE Just £89.00. SOLAR PATH LIGHTS Low energy walkights powered by th sunl builtin PIR so they work when you walk past. Includes solar panel \& rechargeable bat. SALEPRICE £19.9REF EP62

BIG BROTHER PSU Cased PSU, ©v 2 A output.
$2 \mathrm{mopplead}, 1.5 \mathrm{~m}$ input lead, UK made,220v. SALE PRICE ع4.99 REF EP7
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA 7 We have collated 140 busness manuals that give you information on setting up different businesses, you peruse these at your lelsure using the text editor on your PC. Also included is a certificate enabling
you to reproduce the manuals as much as you llkel SALE PRICE E14 REF EP74
RACAL MODEM BONANZAI 1 Racal MPS 1223120075 modem, telephone lead, mains lead, manual and comms software, the cheapest way onto the netl all this for just $£ 13$ ref DEC13.
HOW LOW ARE YOUR FLOPPIES? $3.5^{" ~(1.44)}$ unbranded. We have sold $100,000+$ so okl Pack of $50 £ 24.99$ ref DEC16
6 mw LASER POINTER. Supplied in kit form, complete with power adjuster, 1.5 mw , and beam divergence adjuster. Runs on 2 AAA batteries. Produces thin red beam id eal for levels, gun sights, experiments etc. Cheapest in the UKI just $£ 39.95$ ref DEC49
RADIO PAGERSBrand new, UK made pocket pagers clearance price is just $£ 4.99$ each $100 \times 40 \times 15 \mathrm{~mm}$ packed with bits! Ref SEP5.
BULL TENS UNIT Fully built and tested TENS (Transcutaneous Electrical Nerve Stimulation) unit, complete with electrodes and full instructions. TENS is used for the relief of pain etc in up to $70 \%$ of sufferers. Drug ffue pain relief, safe and easyto use, can be used in conjunction with analgesics etc. £49 Ref TEN/1
COMPUTER RS232 TERMINALS. (LIBERTY)Excellent quality modern units, (like wyse 50, s) $2 \times$ RS232, 20 function keys, 50 thro to 38,400 baud, menu driven port, screen, cursor, and keyboard setup menus ( 18 menu's). $£ 29$ REF NOV4. PC PAL VGA TOTV CONVERTER Converts a colour TV into a basic VGA screen. Complete with built in psu, lead and s/ware., Ideal for laptops or a cheap upgrade.Supplied in kit form for home assembly. SALE PRICE £25 REF SA34
EMERGENCY LIGHTING UNT Complete unit with 2 double bulb floodights, builh in charger and auto switch. Fully cased. $6 \vee 8$ BHH lead acid req'd. (secondhand) £4 ref MAG4P11. SWINGFIRE GUIDED MISSILE WIRE. 4,200 metre reel of ultra thin 4 core insulated cable, 281 bs breaking strain, less than 1 mm thick! Ideal alarms, intercoms, fishing, dolis house's etc. SALE PRICE $£ 13.99$ ref EP51
ELECTRIC CAR WINDOW DE-ICERS Complete with cable, plug etc SALE PRICE JUST $£ 4.99$ REF SA 28
ASTEC SWTCHED MODE PSU BM4 1012 Gives +5 @ 3.75A, +12@1.5A,-12@.4A. 230/110, cased, BM41012.£5.99 ref AUG6P3.
AUTO SUNCHA RGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a cigar plug. 12v 2watt. SALE and 3 metre lead fitted
PRICE $£ 8.99$ REF SA 25.
TOP QUALITY CENTRIFUGAL MAINS MOTORS SALE PRICE2 FOR JUST $£ 2.60$ REF SA 38
ECLATRON FLASH TUBE As used in police car flashing lights etc, full spec supplied, 60-100 flashes a min. SALE PRICE $£ 6.99$ REF SA 15 .
24v AC 96WATT Cased power supply. New. SALE PRICE JUST $£ 9.99$ REF SA40
MILITARY SPEC GEIGER COUNTERS Unused anstraightfrom Her majesty's forces. SALE PRICE £44 REF SA16
MICRODRIVE STRIPPERS Small cased tape drives ideal for stripping, lots of useful goodies including a smart case, and lots of components. SALEPRICE JUST $£ 4.99$ FOR FIVEREF SA26
SOLAR POWER LAB SPECIAL You get TWO $6 " \times 6$ " 6 v 130 mA solar colls, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Superb value kit SALE PRICE JUST £4.99 REF SA27 RGB/CGA/EGATTTL COLOUR MONITORS $12{ }^{\prime \prime}$ in good condition. Back anodised metal case. SALE PRICE £49 REF SA 16
SWTTCHEDMODE PSU ex equip, 60w+5v@5A, $5 \mathrm{v} @$. 5 A , $+12 \mathrm{~V} @ 2 \mathrm{~A} .-12 \mathrm{VQ}$. 5 A 120/220vcased $245 \times 88 \times 55 \mathrm{~mm}$ IECinput +12v@2A.-12VQ.5A 120/220
socket £6. 99 REF MAG7P1
PLUG IN ACORN PSU 19V AC 14 w , $£ 2.99$ REF MAG3P10 POWER SUPPLY fully cased with mains and o/p leads 17 v DC 900 mA output. Bargain price $£ 5.99$ ref MAG6P9
-some of our producte may be unlicensable in the us
BULL ELECTRICAL


MAH.ORDER TEMMS \& \&




ACORN ARCHIMEDES PSU +5 V @
4.4 A . on offisw uncased, selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ SALE PRICE $£ 4.99$ REF SA 1
13.8V 1.9A psu cased with leads. Just £9.99 REF MAG10P3 PPC MODEM CARDS. These are high spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance price is $£ 5$ REF: MAG5P1 200 WATT INVERT ER Converts $10-15 \mathrm{vDC}$ into either 110 v or 240 VAC . Fully cased $115 \times 36 \times 156 \mathrm{~mm}$, complete with heavy duty power lead, cigar plug, $A C$ outlet socket.Auto overload shutdown, auto short clrcuit shut down, auto input over voltage shutdown, auto input under voltage shut down (with audible alarm), auto temp control, unit shuts down if overheated and sounds audiblealarm. Fused reversed polarity protected. output frequency within $2 \%$, voltage within $10 \%$. A well built unit at an keen price. Just $£ 64.99$ ref AUG65.
UNIVERSAL SPEED CONTROLLER KIT Designed by us for the C5 motor but ok for any 12v motor up to 30A. Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MAG17
COMPUTER COMMUNICATIONS PACK Kit contains 100 m of 6 core cable, 100 cable clips, 2 line drivers with RS232 interfaces
and all connectors etc. Ideallow cost method of communicating between PC's over a long distance. Complete kit £8.99.
ELECTRIC MOTOR KIT Comprehensive educational kit includes all you need to build an electric motor. $£ 9.99$ ref MAR10P4.
VIEWDATA SYSTEMS made by Phillips, complete with intemal 120075 modem, keyboard, psu etc RGB and composite outputs, menu driven, autodialler etc. SALE PRICE £12.99 REF SA18
AIR RIFLES . 22 As used by the Chinese army for training puposes, so there is a lot about! $£ 39.95$ Ref EF78. 500 pellets £4.50 ref EF80.
PLUG IN POWER SUTPLY SALE FROM $£ 1.60$ F,.ggs in to 13A socket with output lead. three types available, 9ydc $150 \mathrm{~mA} £ 1.50$ ref SA $19, .9 \mathrm{vdc} 200 \mathrm{~mA} £ 2.00$ ref SA20, 6.5 vdc $500 \mathrm{~mA} £ 2$ ref SA 2
VIDEO SENDER UNTT. Transmits both audio and video signals from either a video camera, video recorder, TV or Computer etc to any standard TV set in a $100^{\circ}$ rangel (tune TV to a spare channel) 12 vDC op Price is $£ 15$ REF: MAG15 12 V psu is $£ 5$ extra REF: MAG5P2
*FM CORDLESS MICROPHONE Small hand held unt with a 500 ' range! 2 transmit power levels. Reqs PP3 9 v battery. Tuneable to any FM receiver. Price is $£ 15$ REF: MAG 15P1 *MINATURE RADIO TRANSCENERS A palr of walkie talkjes with a range up to 2 km in open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Including cases and earp'ces. $2 \times P P 3$ req'd. £30.00 pr.REF: MAG30
FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}, 4$ drive connectors 1 mother board connector. 150watt, 12 vfan , iec inlet and on/off switch. SALEPRICE $£ 7.99$ REF SA 22
*FM TRA NSMITTER KIT housed in a standard working 13A adapter!! the bug runs directly off the mains so lasts foreven why pay $£ 700$ ? or price is $£ 15$ REF: EF62 Transmits to any FM radio. (this is in kit form with full instructions.)
"FM BUG BUILT AND TESTED superior design to kit. Supplied to detective agencies. 9v battery req'd. £14 REF: MAG14
TALKING COINBOX STRIPPER COMPLETE WITH COINSLOT MECHA NISMS originally made to retail at $£ 79$ each, these units are designed to convert an ordinary phone into a payphone. The units have the locks missing and sometimes broken hinges. However they can be adapted for their original use or used for something else? SALE PRICE JUST £2.50 REF SA23
GAT AIR PISTOL PACK Complete with pistol, darts and pellets $£ 12.95$ Ref EF82 extra pellets ( 500 ) $£ 4.50$ ref EF80. 6"X12" AMORP HOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130 ma . SALE PRICE £4.99 REF SA24.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAG5P13 idealfor experimenters 130 m for $£ 12.99$ ref MAG13P1

WE BUY SURPLUS STOCK FOR CASH FREE CATALOGUE

## 1995100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE WITH ORDER.

## PORTABLE RADIATION DETECIOR

WITH NEW COMPUTER INTERFACE £59 A Hand held personal Gamma and $X$ Ray detector. This unit contalns two Geiger Tubes, has a 4 diglt LCD display with a Piezo speaker, giving an audio visual indication. The unlt detects high energy electromagnetic quanta with an energy from 30 K eV to over 1.2 M eV and a measuring

# Discrete-time key to $d s p$ 


#### Abstract

Real-time digital signal processing calls for an understanding of the principles of discrete-time linear systems. Howard Hutchings explains the theory, and then offers a practical way to try out the results.


Interfacing to a pc and real-time programming undoubtedly call for engineering ingenuity.
But successful real-time digital signal processing requires something more - an understanding of the principles of discrete-time linear systems.
The fundamental mechanism of sampled data manipulation is time-domain convolution, or z -domain multiplication. These particular topics are well-understood and have been extensively documented, typically with the assistance of mathematics.
But with only a small investment of time it is possible to demonstrate the principles of dsp in action in a dramatic way.
The approach is to use a pc to examine the time- and spectral-performance of a sampled sinusoid detailed as a rational $z$-function, to be subsequently developed as a particular case of a general discrete-time linear system.
Convolution is not needed as any real-time numerical manipulation uses recursive methods, while engineering design and performance of the discrete-time linear system is introduced using the $z$-transform of a sampled sinusoid.
As a result there is no requirement for synchronised data transfer between the a-to-d and numerical processor, and engineering principles are not compromised.
Equi-spaced samples generated by the sinusoidal digital generator are written to the real world via an 8 -bit d-to-a, while the resonant frequency can be adjusted by selective scaling.
Advantage of the method is that it demonstrates several concepts in a visual way, using a worked example. Sampled time-domain performance is visualised on an oscilloscope, and the frequency-domain behaviour of poles is visualised on the z -plane and displayed using computer graphics. Other topics discussed include discrete Fourier transforms, the audible and visible effects of aliasing in time and frequency, unit-pulse response of an IIR sys-
tem, and the real-time realisation of a pc-based digital filter programmed using $C$.

## Digital oscillator

First step is to examine how to use a numerical system to generate sine waves, exploiting a real-time pc-based digital oscillator, interfaced to the real world through an 8-bit d-to-a converter.
Typically, such a system would compute the required output samples ahead of time and store them in a wave-form look-up table to speed up the process of real-time wave-form generation. But rather than follow such a welltrodden path, we are going to look at a recursive real-time realisation that is more relevant to the characteristics of a discrete-time linear system.
It is developed from the z -transform of a sampled sinusoid:

$$
H(z)=\frac{z \sin \Omega_{0}}{z^{2}-2 z \cos \Omega_{0}+1}
$$

To understand the behaviour of this transform detailed as a linear system, we should first undertake a brief review of the properties of linear systems, and then follow this with a discussion of discrete summation to assist the notion of open-and closed-forms. Then, the effects of the sampling process can be considered, and real-time performance demonstrated visually and audibly using computermanaged instruction.

## Frequency preservation

Many signal processors do not possess memory. Frequently the purpose is simply that of signal amplification $(A>1)$ or attenuation ( $A$ $<1$ ). The output signal should be a faithful reproduction of the input, represented by the scalar product: $y(t)=A x(t)$. Impulse response $h(t)$ of such linear systems would ideally consist of a single weighted impulse $h(t)=A \delta(t)$ (Fig. 1a).
Instantaneous output of this system is an

Fig. 1.
Consideration of the impulse response of the spectral performance, from a time-domain perspective, improves understanding of the effect of memory on
frequency-domain filtering.
1a. Memory less system characterised by a single scaled impulse.
1b. System with memory,
characterised by a
time-extended impulse response.
attenuated version of the input, and does not depend on past or future inputs.
Practical analogue systems seldom meet this requirement. Typically, capacitance, inductance and resistance modify the intended response at certain frequencies. A testament to the frequency-domain performance is inferred by examination of the characteristic of the time-domain impulse response. System parameters such as cut-off frequency, $Q$-factor and undamped natural frequency can all be determined directly from the historical record contained in the impulse response. A firstorder response is detailed in Fig. 1b.
All linear signal processors exhibit frequency preservation so that no new frequencies are generated within the system. Any signal represented in terms of its component frequencies will be processed in a very simple way, with only the amplitude and phase of individual components being modified.
This is a key factor in relation to amplitude scaling and time delay - the parameters of a discrete-time linear system.

Filtering - a time domain perspective Selectively manipulating input data, or filtering the signal in such a way that certain frequencies are especially favoured, requires memory. Numerous practical examples of analogue systems exhibiting this effect can be found in the technological world around us. For example, in a simple first-order system, a mercury-in-glass thermometer retains a history of the input step-function, long after the stimulus has been removed. More evocatively, striking a cathedral bell - a highly resonant second-order system with a $Q$-factor typically of the order of 1000 s - will give rise to a prolonged response, audible long after the impulse has been removed.
Unwanted second-order effects in the passband of video amplifiers also give rise to ringing, an undesirable, but clearly visible effect.
Time-domain convolution and frequencydomain filtering can be thought of as complementary perspectives of the same processing operation. Here we will see how it can be
desirable to present the characteristics of a linear system as a frequency-selective filter, specified either by the frequency response, transfer function, or by the impulse response. Although convolution is a significant concept in many diverse scientific fields, the convolution integral plays a mainly theoretical role in analogue linear system theory. Discrete convolution is inherently practical. The convolution sum is frequently a direct realisation of a linear discrete-time system. It is the natural mechanism for describing the performance of processing devices operating on sampled signals, whether such systems are purpose-built electronic circuits or real-time programs implemented on a digital computer.

## Open and closed discrete summation

The two principal types of digital filter algorithm are non-recursive, described by a finite impulse response (FIR), or recursive, characterised by an infinite impulse response (IIR).
A non-recursive filter calculates the current value of the output by combining the present value of the input, with scaled past values of

## Practical advice

Aim of this article is to develop a timedomain perspective on frequency-domain filtering, with the practical result being a computer-based account of the real-time performance of a digital resonator.
Engineering design and performance of the discrete-time linear system is introduced using the z-transform of a sampled sinusoid. This avoids the need for synchronised data transfer between the a-to-d and numerical processor - but not at the expense of engineering principles.
Equi-spaced samples generated by the sinusoidal digital generator are written to the real world via an 8 -bit d-to-a and the resonant frequency is adjusted by selective scaling.

Principles can be developed into applications using computer-managed instruction.

There is no need to attempt any Fourier analysis or pole-zero plotting. The software will do it all for you.
the input.
But in a recursive filter, the current output depends on the present input together with combinations of scaled values of previous outputs and inputs.

Computational economy in real-time signal processing frequently involves minimising the number of calculations per sample, often by expressing the algorithm in closed form.
The sum of the infinite geometric series can illustrate the technique. In the equation $S=\Sigma 1+r+r^{2}+r^{3}+\ldots$ we could simply summate all the terms on the right-hand side of the equal sign, and infer the sum as a limiting process. But, providing that $|\mathrm{r}|<1-$ a condition that applies to all the closed forms we are going to meet - the calculation can be simplified by taking advantage of the enumeration:

$$
\frac{1}{1-r}=\sum 1+r+r^{2}+r^{3} \ldots
$$

This is an example of a discrete summation formula, where the left-hand side of the expression is said to be a closed form of the sum. Expressions of this form are so common in dealing with sampled-data sequences that we introduce a new symbol $\mathrm{z}^{-1}$ to represent unit time delays (for reasons that will become apparent in a later section).
Consider the sampled-data sequence $u(n)=$ $1,1,1,1 \ldots$
To model delays algebraically, $U(z)$ can be expressed as a power series in $\mathrm{z}^{-1}$ as $U(z)=1$ $+z^{-1}+z^{-2}+z^{-3}+\ldots$
Each sample in the sequence can be clearly identified and its appropriate position in time identified. In this case $r=z^{-1}$ so the series may be summed as:
$U(z)=\frac{1}{1-z^{-1}}=\sum 1+z^{-1}+z^{-2}+z^{-3} \ldots$
Multiplying numerator and denominator by $z$ gives:

$$
U(z)=\frac{z}{z-1}
$$

Physically, this may be clarified as the closed form of the sampled unit-step, the first sample occurring at $n=0$.
How to use delay operator $z^{-1}$ may be be made clearer by analysing the sequence $u_{1}(n)$, describing the sampled unit step delayed by one sampling interval, so that $u_{i}(n)=0,1,1,1$, 1 ... The sampled data sequence may be modelled as $U_{1}(z)=z^{-1}+z^{-2}+z^{-3}+z^{-4} \ldots$ and summed as:

$$
U_{1}(z)=\frac{z^{-1}}{1-z^{-1}}=z^{-1} U(z)
$$

If the sequence is delayed by one sampling interval, then its closed form (or transform) is multiplied by $z^{-1}$. The delay property of $z^{-1}$ can be expressed as a formal operation which fulfils the following requirements.

- Each numerical sample must be identified in some way, by reference to its particular time frame;
- Multiplication by $z^{-1}$ should represent a time
delay of one sampling interval - moving a sample value from one time frame to the next. In general the $z$-transform of the sample $x(n-k)$ is $X(z) z^{-k}$.


## Sampling complex exponentials

The $k$ th sample value of a sampled sinusoid can be written as $f(k)=A \sin (\omega k+\phi)$, where $k$ is an integer. The signal is characterised by three parameters: amplitude of the sine wave $A$, angular frequency $\omega$, and angular starting point of the cycle in relation to the origin $\phi$.
Euler's formula is a convenient way to describe $F(k)$ as the real part of a complex exponential $F(k)=\operatorname{Real}\left\{A \mathrm{e}^{(j \omega k+\phi)}\right\}$.
The continuous phasor Acan be interpreted as a point that moves around the circumference of a circle of radius $A$ in the complex plane. Sine wave $F(k)$ is basically one-dimensional, and can be modelled as the projection of the point on the Y -axis, rather than its position in two dimensional space.

A digital phasor can be visualised as the process of sampling a continuously varying phasor, represented by $\exp (j \omega r)$, at equallyspaced time intervals, represented by $t=k T$. Behaviour of a complex digital phasor sampling various signals is shown in Fig. 2.

## Programs listings

The three $C$ listings of programs referred to in the article, and written by Howard Hutchings, show dsp theory in action. For a hard copy of these listings, send an sae marked dsp to $E W+W W$ 's editorial offices (address on Comment page).

A disk containing the $C$ program code is also available - for $£ 10$ to cover the cost of disc, copying, postage and packaging from the same address.

Or we can include the three listings, free, on the Interfacing with $C$ listings disk, obtainable from $E W+W W$ for $£ 15$.

Listing 1: encourages the user to enter the parameter $f_{\text {cyclid }} / f_{\text {sample }}$. The associated complex conjugate pole-pair is plotted on the circumference of the unit circle with the assistance of the computer graphics. The parameter input from the keyboard controls the frequency of the digital oscillator, the output of which is made available via the Blue Chip data acquisition card ACM-44, using an 8-bit d-to-a

## (AD7226).

Base address is identified in the program.
Listing 2: provides a graphical representation of the amplitude and phase response of the rational function $H(z)$. To avoid exceeding the dynamic range of the monitor graphics the maximum value is normalised to unity. For best visual results, it is recommended that a sampling frequency of 640 be selected. This maximises the horizontal, relative

## frequency axis.

Listing 3: requests the user to specify a sampling frequency $F_{5}$, and an increment $\Delta f$ in Hz . The program then prints the amplitude ratio and phase angle at frequency intervals of $\Delta$ fover the range 0 to $F_{s} / 2$.

All the programs are written in Microsoft C, version 5.1.

Fig. 2a. Complex digital phasor, and the projection of the real part, a digital sinusoid, onto the vertical axis labelled F(k)
2b. Complex digital phasor of frequency zero radians per sample interval (dc sampling).
2c. Complex digital phasor of frequency $\pi$ radians per sample, sampling at Nyquist frequency.
2d. Complex digital phasor of frequency $(\pi+\delta)$ radians persample interval; aliasing due to undersampling.


Sampling is analogous to the stroboscopic effect noticeable in motion picture films of rotating objects, such as stage-coach wheels. Cine film consists of a series of still pictures captured at 24 frames a second. When the film is projected we interpret any displacement from one frame to the next as motion.
If you take a picture of a wheel with a spoke, in the 12 o'clock position and rotating clockwise, and then another a 24th of a second later, the wheel will have rotated and the spoke may well be in the 11 o'clock position. Another 24th of a second the spoke will point to 10 o'clock and so on. Our brain wrongly concludes that the wheel is travelling anticlockwise.

A negative frequency means that the phasor is rotating in the clockwise rather than the counter-clockwise direction. Beware, by interpreting the sine wave as a projection on the Y axis, the image will rise and fall sinusoidally, exactly the same whether the wheel is turning clockwise or anti-clockwise.
To visualise the performance, and limitations, of the sampling process, imagine a white rotating disc with a black dot painted near the rim, illuminated by a stroboscope.

The revolving dot represents the fixed frequency phasor, while the sequence of illuminated dot positions represents the discrete-time sampled data. If the dot moves slightly more than $180^{\circ}$ between flashes, it will appear to be moving backwards at a rate slightly less than one-half a revolution per flash; what is more, the dot will never appear to be rotating more than $\pi$ radians per flash.

Our conclusion must be that to represent the speed of revolution uniquely, we must sample at least twice per period of rotation.

## Sampled sinusoid

In the z-plane, the frequency-selective performance is characterised by the complex conjugate pole-pair, on the circumference of the unit circle, together with a single zero at the origin.

Location of the poles of this digital resonator, given by the characteristic equation $z^{2}$ $-2 z \cos \Omega_{0}+1=0$, will determine the frequency of oscillation.
Clearly, by varying $\Omega_{0}$, the linear system can be made to resonate in the range dc to half the sampling frequency.

Frequency of oscillation is related to the sampling frequency by,

$$
\frac{\Omega_{0}}{2 \pi}=\frac{f_{\text {fexdic }}}{f_{\text {sempis }}}
$$

The consequence of varying this parameter,

(b)


Fig. 3a. The pole-zero diagram of the sinusoid, visualised with the assistance of Listing 1. The frequency of the processed output is 434.78 Hz using a pc clocked at 25 MHz .
3b. Oscillogram of the $d$-to-a output. $\Omega_{0}=\pi / 4$ radians. Sensitivity 1 V per division, time-base $0.5 \mathrm{~ms} /$ division.
3c. The pole-zero diagram of the sampled sinusoid, visualised with Listing 1. The frequency of the processed output is 434.78 Hz .

3d. Spectral response of the sinusoidal output, obtained with the assistance of Listing 2, demonstrates the unique, single-frequency performance of a second-order system characterised by an infinite $Q$-factor.
and the effect on spectral and time-domain performance is detailed in Fig. 3, which shows time and spectral response at $f_{0}=0.125 f_{\mathrm{s}}\left(45^{\circ}\right)$.
First, notice how in the time-domain, $\Omega_{0}$ corresponds to a sinusoid with eight samples per period. It is interpreted as the required frequency in fractions of the sampling frequency, so that the angular displacement $\Omega_{0}$ is $f_{\text {cyclic }} / f_{\text {sample }}$ multiplied by $2 \pi$.

Secondly, the frequency-domain model would ide ally consist of a single ordinate, the spectral response of a sinusoid.
Computer-based software written in $C$ provides a useful opportunity to investigate the performance of the variable frequency, dis-crete-time, linear system. On converting from transforms to sequences, the relationship between the input and output samples, (Fig. 4) may be expressed by the recurrence relationship
$y(n)=2 \cos \Omega_{0} y(n-1)-y(n-2)+\sin \Omega_{0} x(n-1)$
The unit-pulse response of this resonator is eternal, and once stimulated, the processed output will continue indefinitely with no further inputs. Of course, the position of the oscillator's complex poles, precisely located on the circumference of the unit circle will characterise a conditionally-stable system. For this reason, the multiplier coefficients are carefully declared in floating point format, with six digits of precision.

## Practical implications

Practical implications of time-domain sampling and the effect on frequency-domain performance are important considerations in realtime numerical signal processing. Mathematical details are well-understood and have been extensively documented by many authors. But a more contemporary approach is to employ a practical pc -based investigation of the sampling theorem and to explore the relationship with sampled-data models or $z$-transforms.
To demonstrate the stroboscopic effects of sampling, an interesting computer-based study is to vary the location of the system poles, and to monitor the sampled-data output of the d-to-a, using an oscilloscope. An audio power amplifier and loudspeaker connected following d-to-a conversion, produces an audible output. With the amplifier connected to the output, List 1 (see note at end of article) is run.
The designed output frequency is varied by changing the location of the system poles. On passing through the Nyquist frequency two tones, sounding the same, are obtained. Clearly, the Nyquist frequency "mirrors" the
unique wanted signal and unwanted alias.
Performance of a sampled-data system, which visualises the dynamic position of the system poles plotted on the $z$-plane, together with the audible, variable frequency output, detailed in the panel entitled 'Poles and zeros in action'.
When the software is run the computerbased text will initially outline a statement of the problem, before interactively encouraging the user to enter parameter $\Omega_{0}$ to control the frequency of oscillation.
Output from the digital oscillator is available through an 8 -bit d-to-a.

Computer graphics display the unit circle drawn in the $z$-plane and indicate the position of the selected poles

## Principles into applications

To develop a more realistic understanding of the properties of sampled data, we should formulate the $z$-transform more rigorously.

Expressed simply, the $z$-transform formulates a set of sequences or a difference equation into an algebraic structure, allowing much of the manipulation to be carried out according to a few very simple rules. To design and analyse numerical signal processing systems successfully we must understand the rules.
Stated formally the $z$-transform of a sequence $x(n)$ is given by:

$$
X(z)=\sum_{n=0}^{\infty} x(n) z^{-m}
$$

Conceptually, the transform may be visualised as a power series in $z^{-1}$, with coefficients equal to successive samples of the signal $x(n)$ :

$$
X(z)=\frac{X(0)}{z^{( }}+\frac{X(1)}{z^{n}}+\frac{X(2)}{z^{2}}+\ldots
$$

This expansion is a refined perspective of the more primitive embodiment of $z^{-1}$ as the unitdelay operator. Interestingly, any digital transfer function can be expressed as a rational function (a ratio of polynomials) in $z^{-1}$ :

Rational $z$-functions of this form figure prominently in the analytical description of sam-pled-data systems - consult any table of $z$ transforms for details.

Previous use of the operator $z^{-1}$ to model time delays placed no restriction on the shape of the time shifted waveform. Evidently the complex variable $s=a+j \omega$ in the expression $\exp (s T)$ took care of this.

We will concentrate on how a digital filter will process sine waves. Relaxing the original

[n] Fig. 4. System diagram of a digital resonator. The frequency of oscillation is controlled by the parameter $\Omega_{0}$.

Fig. 5. Testing for linearity. An input signal formed by the weighted components $a f_{1}(t)+b f_{1}(t-T)$ will generate the proportional output $a f_{2}(t)+b f_{2}(t-T)$, without need to reanalyse the response.


Fig. 6. Scaling in the $x$ domain. To evaluate the z-transform of $a^{n} f(n)$, trace the top right-hand path giving $F(z)$ followed by substitution $z=\mathrm{za}^{-1}$. Or follow the lefthad path to obtain $a^{n} f(n)$ and then perform the transformation. Both routes are equivalent.





## Poles and zeros in action

To generate a variable-frequency sampled-output, the digital oscillator is designed using the $z$ transform of a sampled sinewave

$$
H(z)=\frac{\sin \Omega_{0} z^{-1}}{1-2 \cos \Omega_{0} z^{-1}+z^{-2}}
$$

Behaviour of this transform detailed as a linear system is easier to understand if we consider how the general digital function $H(z)$ can be expressed as the ratio of two polynomials, of the general form
$H(z)=\frac{Y(z)}{X(z)}=\frac{a_{0}+a_{1} z^{-1}+a_{2} z^{-2}+\ldots+a_{M} z^{-M}}{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\ldots+b_{N} z^{-N}}$
By inspection, the coefficients of the sinusoidal generator are given by $a_{1}=\sin \Omega_{0}, b_{0}=1, b_{1}=$ $-2 \cos \Omega_{0}$ and $b_{2}=1$.
The numerator and denominator polynomials can always be factorised to give the pole-zero plot. Characteristics of a particular data sequence are specified by the roots of the two polynomials - numerator $N(z)$ and denominator $D(z)$ typically plotted on an Argand diagram. A unit circle is generally drawn to indicate all values of $z$ for which $|z|$ $=1$.
Poles and zeros can be plotted graphically, and for a sampled-data system the unit circle is a reference from which the frequency response of the filter can be measured geometrically.
Coordinates of the upper, unit semi-circle, traced out in an anti-clockwise fashion represent frequencies from dc to half the sampling frequency; the operating range. To represent frequencies from half the sampling frequency to the sampling frequency, the 'walk' around the circumference of the unit circle is continued. The amplitude ratio is determined by the position of the poles and zeros, relative to the circumference of the unit circle.
A pole close to the circle will cause a peak, a zero a dip in the spectral response; the closer they are to the unit circle the more extreme is their effect. Thus, the complex poles of the sinusoidal generator detailed previously will model a second-order system characterised by an infinite Q -factor.

The term zero can be misleading. Located at the origin of the z-plane $(0,0)$ a zero represents a time advance of one sampling interval, this will modify the phase response only. Any radial displacement towards the unit circle progressively increases the attenuation, until, upon reaching the circumference the attenuation is a maximum and the amplitude ratio is zero.
The frequency of oscillation is controlled by the parameter $\Omega_{0}$.
definition of $s$ and discarding the exponent $a$, (by making $a=0$ ) means that $z$ may be viewed as a phasor defined by $z=\exp (j \omega T)$. Of course a complex signal or system will be composed of several frequencies and may be represented as the sum, or superposition, of many such phasors. This model fits naturally with the signal processing characteristics of linear systems.
Any signal represented in terms of its component frequencies will be processed by the linear system in a very simple way. Only the amplitude and phase will be modified.
But how can we be certain a system is linear? To test for linearity we must apply the principle of superposition (Fig. 5). An input signal formed by the weighted components $a f_{1}(t)+b f_{1}(t-T)$ will generate the proportional output $a f_{2}(t)+b f_{2}(t-T)$ without need to re-analyse the response.

## Z-transforms in time and frequency

 Magnitude and phase of the frequency response of the general sampled-data system $H(z)$ can be determined by replacing $z$ by phasor $\exp (j \omega T)$. Employing this substitution, $\mathrm{H}(\exp (j \omega T))$ may be regarded as a complex number, which characterises the frequencyselective properties of the rational transform in terms of the amplitude ratio and phase angle over the range of interestViewed as a sinusoidal signal processor the transfer function of the transform may be expressed as:
$H\left(e^{j \omega T}\right)=\frac{a_{0}+a_{1} e^{-j \omega T}+a_{2} e^{-j 2 \omega T}+\ldots+a_{M} e^{-j M \omega T}}{b_{0}+b_{1} e^{-j \omega T}+b_{2} e^{-j 2 \omega T}+\ldots+b_{N} e^{-j N \omega T}}$
Rational $z$-transforms play a central role in the development of sampled-data systems. A relatively modest table of transforms will now be selectively explored using pencil-and-paper analysis assisted by computer managed instruction. Program Lists 2 and 3 are available to demonstrate this.
There is considerable merit in developing the $z$-transform of the decaying exponential signal from first principles, as a foundation from which to obtain other commonly used transforms and to develop a real comprehension of pole-zero models - a delicate topic that must be thoroughly mastered and understood.

Example 1. $x(n)=\cos \left(n \Omega_{o}\right)$ for $n \geq 0$ : Consider how the sinusoidal response normally associated with complex poles can be usefully developed from the decaying exponential $x(t)=\mathrm{e}^{-\mathrm{al}}$.
Using Euler's formula, it follows that the periodic function $x(t)=A \cos (\omega t)$ can be expressed in complex exponential form as:

$$
A \cos n \Omega_{0}=A \frac{\left(e^{m \alpha_{0}}+e^{-m a_{0}}\right)}{2}
$$

## Converting 10 z - transforms:

$$
\begin{aligned}
X(z) & =\frac{A}{2}\left(\frac{z}{z-e^{j \pi \alpha_{n}}}+\frac{z}{z-e^{-m m_{0}}}\right) \\
& =A \frac{1-\cos \Omega_{0} z^{-1}}{1-2 \cos \Omega_{0} z^{-1}+z^{-2}}
\end{aligned}
$$



Fig. 7. Variations in the spectral response of $H(z)$, obtained by varying the radial position of the poles, graphically demonstrate how the $Q$-factor or sharpness of the peak in the amplitude ratio is related to the positions of poles relative to the unit circle. Values are $\Omega_{0}=\pi / 3, a=0.9$. The numerical response demonstrates performance for $\boldsymbol{F}_{s}=1000 \mathrm{~Hz}, \delta f=25 \mathrm{~Hz}$.

Evidently, the concept of complex poles has arisen as a natural consequence of the $z$-transform of the cosine function. Not surprisingly the characteristics of under-damped secondorder systems and frequency selective filters can be effectively developed from complex pole-zero models.
To investigate the frequency domain properties of this transform, the software can be used (Listings 2 and 3 ) to vary parameter $\Omega_{0}$ over the range $-\pi \leq \Omega_{0} \leq \pi$.

Example 2. $h(n)=a^{\prime \prime} \sin \left(n \Omega_{(0)}\right)$ : Let us investigate the damped sinusoidal sequence $h(n)=$ $\mathrm{a}^{n} \sin \left(n \Omega_{0}\right)$.
Clearly the $z$-transform has been developed from the time-domain multiplication of the sequences $f(n)=a^{\mathrm{n}}$ and $g(n)=\sin \left(n \Omega_{0}\right)$, or equivalently the frequency-domain convolution of $F(z)$ and $G(z)$.
The tedious algebra associated with this operation is avoided by taking advantage of the multiplication by $a^{\text {n }}$ property of $z$-transforms, to demonstrate scaling in the $z$-domain
(Fig. 6). The effect on the poles will be a radial displacement along the same frequency vector (Fig. 6b).
(To examine the effects of varying the parameter $a$, for a particular value of $\Omega_{0}$, (say $\Omega_{0}=\pi / 3$ ), Listing 2 could be be run, using for example, $0.6,0.9$ as values of $a$. The spectral response is shown in Fig. 7.
For a numerical response of the amplitude ratio and phase angle then Listing 3 can be run.

## References

Oppenheim A V and Schafer R W. (1975), Digital Signal Processing. Prentice Hall. Gabel R A and Roberts R A. (1987), Signals and Linear Systems. John Wiley.
Lynn P A. (1989), An Introduction to the Analysis and Processing of Signals. Macmillan. (Third edition).
Chamberlin H. (1977), A Sampling of Techniques for Computer Performance of Music. Byte, Vol. 2, No. 9
Ziemer R. E. Tranter W. H. \& Fannin D. R. (1989), Signals and Systems Continuous and Discrete. Macmillan.

# Best rf article '95 

Following the success of 1994's Writers Award, Electronics World and Hewlett-Packard are launching a new scheme to run from January to December 1995.
Only articles which have an element of rf design will be eligible for consideration by the judging panel. It is hoped that this year's award will focus writer interest on rf engineering in line with the growing importance of radio frequency systems to an increasingly cordless world.
The aim of the award scheme is to locate freelance authors who can bring applied electronics design alive for other people.
Qualifying topics might include direct digital synthesis, microstrip design, application engineering for commercially available if ICs and modules, receiver design, PLL, frequency generation and rf measurement, wideband circuit design, spread spectrum systems, microstrip and planer aerials... The list will hopefully be endless.
All articles accepted for publication will be paid for - in the region of several hundred pounds for a typical design feature.

## Win a $£ 4000$ programmable signal generator from Hewlett-Packard



Do you have an original circuit idea for publication? We are giving $£ 100$ cash for the month's top design. Additional authors will receive $£ 25$ cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

## Backup source using resonant inverter

Cor equipment that can tolerate nonsinusoidal ac supplies, this source of backup power is simple and efficient. Its efficiency arises from its use of an $R L C$ resonator driving output transistors from saturation to cut-off, a further benefit of this arrangement being that the circuit is less sensitive to transformer performance than the more common Class-A push-pull inverter. Capacitive loads do introduce losses.

A 555 oscillates at 1 kHz and feeds the resonator circuit $R_{4.5}, L_{1}, C_{1}, V R_{1}, R_{2}$, in combination with the input loading of the transistors, which are protected against reverse breakdown by diodes. If mains power fails, the normally open contacts of $\mathrm{RL}_{\mathrm{A}}$, supplied by a step-down transformer and bridge rectifier diode pack, close and enable the inverter. Voltage from the bridge rectifier also maintains a charge on the battery pack
through the diode and current limiter $R_{3}$. Diodes $D_{5,6}$ remove spikes at the output; $V R_{1}$ varies resonator frequency to match the output load; and $V R_{2}$ determines maximum power for a given load.
Sode-shinni N Rumala
Federal University of Technology
Minna
Niger State
Nigeria


Simple and efficient inverter provides a backup source for waveform-tolerant equipment and maintains a charge on the battery pack.

## YOU COULD BE USING A IGHz SPECTRUM ANALYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $£ 100$ monthly star author's fee, together with $£ 25$ for all other ideas published.
Our judging criteria are ingenuity and originality in the use of modern components - with simplicity particularly valued.


## Video amplifier with sync stripper and dc restore




#### Abstract

One of the benfits of this circuit is that by stripping off the sync from a video signal and digitising only the active information, better use is made of the a-to-d converter's resolution.


This circuit transmits $220 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth, video signals while stripping off the sync pulse and performing dc restoration. It is configured for a typical video cable driver application feeding a double-terminated $75 \Omega$ load. The HFAll03, $I C_{3}$, is configured for a gain of +2 to ensure unity gain overall.

## Stripping sync

Sync is often combined with one or more of the red, green, and blue video signals in component video distribution amplifiers. This is done to decrease the number of input and output channels required. Also, as the video signals exit the switching network, the sync pulse must often be removed.
Other applications benefiting from sync removal are video digitising circuits and hdtv systems. Consider a typical IV peak-to-peak rgb video signal with a -300 mV sync pulse and +700 mV video data. By stripping off the unwanted sync pulse and digitising only the active video, designers can use the full dynamic range of the a-to-d converter for the +700 mV video data. This results in a $30 \%$ increase in resolution using the same a-to-d converter.
The HFAll03 video op amp is specially designed to perform sync stripping. Its open emitter n-p-n output forms an emitterfollower with the load resistor, and passes the active video signal while virtually eliminating the negative sync pulse.

Residual sync of the HFAl103, defined as the remainder of the original -300 mV sync pulse, referenced to ground, is only 8 mV at the cable output.
A particular advantage of sync stripping with the HFA1103 is the resultant largerby 0.7 V - output voltage swing, compared to simply using a wideband video op-amp with an external emitter follower.
Because the HFAllO3 contains no active pull-down, output linearity degrades as the signal approaches zero volts. To deal with this a $6.8 \mathrm{k} \Omega$ pull up resistor, $R_{8}$, and a $75 \Omega$ pull-down resistor, $R_{10}$, on the output ensure a fixed positive voltage offset, in this case +50 mV . This offset was arbitrarily chosen as a good compromise between linearity near the dc level and minimum residual sync. Increasing $R_{8}$ decreases residual sync, at the expense of linearity. Conversely, decreasing $R_{8}$ decreases linearity error, but increases residual sync.

## Dc restoration

Another common video function is dc restoration, used when ac coupled signals have lost their dc reference and must have it reset line-by-line in order to retain brightness information.
The circuit accomplishes dc restoration using a CA5260 dual op amp ( $/ C_{\text {la }, \mathrm{b}}$ ) coupled with a sample-and-hold circuit based on the 74 HC 4053 switch $/ C_{2}$ ). Vin, consisting of the input video signal and a dc offset $\left(V_{\mathrm{dc}}\right)$, is connected to the non-
inverting input of the HFAl/O3 $\left(I C_{3}\right)$. The HFAll 103 is configured in a gain of +2 , which would result in an output of $2 \times V_{\text {in }}=\left(2 \times v i d e o+2 \times V_{\text {dc }}\right)$, were it not for the dc-restore circuit.
$\mathrm{V}_{\text {in }}$ also travels through half of the dual CA5260 amplifier to the sample-and-hold circuit, where the $0.1 \mu \mathrm{~F}$ capacitor $\left(C_{1}\right)$ is the hold capacitor. (The sample-and-hold control is triggered by a back-porch pulse from a sync separator or by horizontal video blanking) This dc signal is then amplified by a gain of +2 by the second op amp ( $I C_{\mathrm{lb}}$ ). The gain of +2 is required because the dc offset is input to the HFAllO3's inverting input, which provides only a gain of -1 . Thus $2 \times V \mathrm{dc}$ is summed into the inverting input of the HFAI103 and is subtracted from the output signal.
Because the output impedance of $I C_{\mathrm{lb}}$ is high, and would affect the gain at the noninverting input of the $H F A l 103$, a $47 \mu \mathrm{~F}$ capacitor $\left(C_{2}\right)$ is used to provide an ac ground and to maintain good high-frequency gain accuracy.
A potentiometer $\left(R_{3}\right)$ is used prior to $I C_{1 \mathrm{~b}}$ to null out any offset voltage contributed by the dc-restore circuitry.
The resulting output is a 220 MHz , dc restored video signal in which the sync pulse has been stripped to a residual level of no more than 8 mV .
Jeff Lies, Chris Henningsen and Mike Press Harris Semiconductor Melbourne, USA

## Water leak detector/stop valve

A:s a means of avoiding total disaster in the presence of unlooked-for quantities of flood water, this very simple circuit gives early warning and is extendable to turn the water off, given that an electrically operated valve is installed.
If water bridges the two SCR electrodes the device conducts and continues to do so until reset, sounding the buzzer. The SCR drives relay 1, which in turn drives another relay capable of operating the solenoid water valve.

## Shin'ichiro Asai

Research Centre of Denkikagaku Kogyo KK
Tokyo operate an electrical stop valve.


## $R / 2 R$ analogue-to-digital converter

TThis 4 -bit a-to-d converter tracks the input and was originally meant to drive the mouse input of an Amiga. It is easily extended to eight bits or more.
Under the control of the op-amp, which drives the 'direction' pin, the 191 up/down counter counts until the $R / 2 R$ ladder output on the non-inverting op-amp input equals the analogue input, at which point the counter state represents the digital equivalent of the input.
If another 191 is to be added, connect pin 13 of the new one to pin 4 of the existing counter, point A on the ladder going to $Q_{3}$ of the new one.

## John Henningsen

Copenhagen
Denmark


Up/down counter tracks analogue input to give a 4-bit a-to-d converter, convertible to give more bits.

## Process monitor

Accepting an input of $0-5 \mathrm{Vdc}$, this circuit monitors an industrial process and provides out-of-limits alarms. Input goes to the two comparators, which have their references set high and low respectively and adjusted by $R_{2}$ and $R_{6}$. If the input reaches either of the two reference voltages, one of the comparator outputs goes low and a led is illuminated, the low at either comparator output causing the buzzer driver to trigger the audio alarm. In normal conditions, while the input stays between the two input
reference voltages, the buzzer driver output is low and the "normal" led illuminated
Input voltage is displayed by the digital panel meter, which is switchable to show the set limits, the calibration method being to set the inputs at half-scale and to adjust $R_{17,19,21}$ to make the dpm indicate halfscale.
P Bhanu Prasad and R S Mahajan
Central Electronics Engineering
Research Institute
Pilani


## Hf buffer with zero-offset

A high-frequency, low-impedance Adrive to a fet switch uses an emitter follower, the dc offset being removed by feedback.
At switch-on, the transistor is off and the integrator output ramps in a positive direction, but slowly, given the $1 \mu \mathrm{~F}$ and $1 \mathrm{M} \Omega$ timing components. Feedback to the transistor base turns it on, its emitter rising towards the 0 V on pin 3 of the integrator. When settled, the integrator output is enough to maintain conduction in the transistor, its emitter being at 0 V , except for a possible slight offset caused by the input offset voltage of the opamp. The LF35/ has an adjustment to remove this offset.
With the components shown, the circuit buffers frequencies up to 40 MHz . G W Väth
University of Natal
Durban
With no offset to cause a pedestal in a following fet switch and no unity-gain opamp buffer, this clamped emitter follower buffers 40 MHz signals.


## Cross-point switch controller stores input

C
ross-point switch AD75019 from Analog Devices keeps switching data in a shift register formed from dynamic memory and requires input to be at a minimum $20 \mathrm{~kb} / \mathrm{s}$. This circuit idea allows the device to be used in the presence of interrupts.
A main processor uses a PIC 16 C84 as a local controller, providing 36 bytes for 256 bits to control the 256 switches in the array and 4 byte extra for other purposes. Either a serial or parallel interface to the main processor is possible; in this case, an 8-bit parallel port was used for speed. An onboard 64-byte eeprom will hold two sets of switch data for frequently used configurations.
Data to the $A D 75019$ is clocked serially into a 256 -bit register, as $\mathrm{S}_{\text {in }}$ goes high, and control starts with the Y15/X15 cross point, going down to Y15/X0, proceeding to Y14 and finishing with Y0/X0. Data is latched into the device as PCK is pulsed low, where it remains while power is applied.
From the main processor, data is four bits for the X address, four for Y , one to indicate required switch status and four for the command.
We implemented six commands:
RESET to clear the ram image and update the cross-point switch to all open;

SETSW to set the ram image for switch $\mathrm{X}, \mathrm{Y}$ open or closed and then to update the cross-point;
SAVE-A saves the current ram image to eeprom area A;
RECALL-A recalls the ram image and updates the cross point;
SAVE-B saves the current ram image to eeprom area B;
$R E C A L L-B$ recalls ram image and updates the cross point.
At an 8 MHz clock rate, update takes 1.2 ms
Michael J V Watson
Basingstoke
Hampshire
 AD75019 cross-point switch allows control by a main processor which is unable to comply with the minimum $20 \mathrm{~kb} / \mathrm{s}$ transfer rate.

## Single-wire, duplex communications link

This two-way link could hardly be simpler. It carries bi-directional signal simultaneously, as in a telephone link, the household earth being used for the return path.
Conflict is avoided by making channel A drive the voltage source and channel $B$ the current source.
Andrew M Wilkes
Wokingham
Berkshire

## Very simple circuit provides

 simultaneous two-way communication, using one wire. If noise is a problem, coaxial cable will improve performance.

## Video image inserter



U
sing an eprom, this circuit inserts a message at a user-definable point on the screen. Oscillator $I C_{1,2}$ provides 4 MHz pulses outside the horizontal sync pulse. These pulses clock counter $I C_{3}$ and registers $I C_{6,7}$. Write and shift signals for the registers are provided by parts of $I C_{2,3,8}$.
Adderss-selection for the eprom is carried
out by $I C_{3,4}$. Via address lines $\mathrm{A}_{0-4}$, the rom can store $32 \times 8$ horizontal points and 16 lines vertically via $\mathrm{A}_{5-8}$. Address bit $\mathrm{A}_{9,10}$ can be used to select one of four pictures.
Pins 3-6 of counter $I C_{4}$, driving part of $I C_{8}$, are used to determine the position of the picture on the screen. Inserting inverters between these ICs exchanges the position of
the picture.
Output of the circuit connects to the video input. The horizontal and vertical sync pulses must be at ttl levels.
Vasily Fyodorov
Leo Tolstoy
Russia

## Subtracting currents

hen it is simpler to regard signals as currents, rather than voltages, in signal processing, two current conveyors can be used to produce the difference function.
Input $I_{\mathrm{A}}$ is inverted in $I C_{1}$ and added to $I_{\mathrm{B}}$ at the X input of $I C_{2}$ to give $I_{\mathrm{B}}-I_{\mathrm{A}}$, the output then being $-\left(I_{\mathrm{B}}-I_{\mathrm{A}}\right)$ or $I_{\mathrm{A}}-I_{\mathrm{B}}$. A bonus is the comparatively wide bandwidth of current conveyors.

## L Szymanski

Stamford Lincolnshire


# MIXED-MODE SIMULATION. THE POWER OF VERSION 4. 

## Analog, Digital \& Mixed Circuits

Electronics Workbench ${ }^{*}$ Version 4 is a fully integrated schematic capture, simulator and graphical waveform generator. It is simple to mix analog and digital parts in any combination.

## Design and Verify

 Circuits... Fast! Electronics Workbench's simple, direct interface helps you build circuits in a fraction of the time. Try what if' scenarios and fine tune your designs painlessly.Electronics Workbench The electronics lab in a computer


## More Power

Simulate bigger and more complex circuits. Faster. On average, Electronics Workbench Version 4 is more than 5 times faster than Version 3.

## More Parts

Multiple parts bins contain over twice the components of Version 3.

## More Models

Over 350 real world analog and digital models are included free with Electronics Workbench. And, if you need more, an additional 2,000 models are available.

## Incredibly Powerful. Incredibly Affordable.

If you need mixed-mode power at a price you can afford, take a look at this simulator and graphical waveform generator that mixes analog and digital with ease.


True mixed-mode simulation: Simultaneous AM transmission, digitization and pulse-code modulation of a signal.

With over 20,000 users world-wide, Electronics Workbench has already been tried, tested and accepted as an invaluable tool to design and verify analog and digital circuits. With Version 4 true mixed-mode simulation is now a reality with incredible simplicity.

## Electronics Workbench ${ }^{\text {TM }}$

The electronics lab in a computer ${ }^{\text {TM }}$

## Order Now! Just £199* 44-(0) $12033-233-216$

RG Robinson Marshall (Europe) Plc

Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF<br>Fax: 44 (0)1203 233-210<br>\section*{E-mail: rme@cityscape.co.uk}<br>Shipping charges UK 55.99. All prices are plus VAT All trade marks are the property of their respective owners. Electronics Workbench is a trademark of Interactive Image Technologies Ltd., Toronto, Canada.<br>- 30 Day money-back guarantee.



## analysis via the pc

> A relatively low-cost virtual instrument originally intended for loudspeaker analysis has now expanded into a comprehensive If measurement suite. Richard Lee has been looking at how this analyser - Clio performs.

With virtual instruments - i.e. instrumentation simulated on a pc screen - signal generation and analysis are carried out by hardware, under the control of user-friendly software. So far, virtual instrumentation has been expensive, but low-cost systems are starting to appear.
Clio - from Italian recording studio equipment manufacturer Audiomatica - offers several virtual audio instruments in one, at a basic price of $£ 799$. It was originally designed for loudspeaker system engineers, but has expanded into a suite of instruments with a wide number of other uses involving audio frequencies.
Although Clio's software will not run under Windows, it does have a mouse controlled graphical user interface. Combined with a laptop, it forms a portable measuring system needing only a power amplifier for on site loudspeaker or room acoustics measurements. No additional amplifier is required for impedance measurements, or testing electrical or electronic circuits.
Virtual instruments included are a swept-


Fig. 1. The generator/voltmeter front panel window allows input/output conditions to be set and then dropped down over most instrument displays. The Clio board has two inputs and two outputs, but current software commons both outputs but uses only one input. Being able to use both sets independently would simplify stereo testing.

sine frequency response analyser, $10 \mathrm{~Hz}-20 \mathrm{kHz}$ storage oscilloscope with 20 kHz bandwidth and a fast Fourier transform, FFT, analyser. Spectrum analysis to 20 kHz is possible, and the system can measure total harmonic distortion, ac millivolts, Vrms, dBV, dBm and dB relative, fast and slow reading. Sensitivity is up to +30 dBV and down to -40 dBV . An $L C$ meter is also built in.
The signal generator is programmable and comes with a library of signals including sine waves, with a claimed thd of $0.015 \%$, pink noise, white noise, square waves and pulsed sine waves, Fig. 1.
For acoustic measurements, the Clio board includes a preamp with switchable dc phantom powering and microphone sensitivity calibration. The optional microphone plugs straight into the board's input. Instruments dedicated to sound measurements include a third-octave real-time analyser, rta, with internal pink noise source and A -weighted sound level meter, Fig. 2. Also for acoustics engineers is the $R T 60$ analyser, which carries out room reverberation time measurements.
Maximum length sequence, mls, timedomain measurement and FFT analysis allows loudspeaker frequency/phase responses to be measured in-situ. This avoids the need for a

## Requirements

PC compatible with an 8/16bit ISA slot.
286 processor or higher
Ega display
640 KB of ram or more.
two-channel FFT analyser because the mls is a recognised signal. Reflections from surfaces can be removed by post-measurement truncation of the time-domain signal, Fig. 3.

Additionally, mls allows 3D sound amplitude/frequency versus time 'waterfall' plots to be generated, and energy time curves which show how sound decays over time, Fig. 4.
Clio uses two direct memory access channels, dma, one for signal generation and the other for data acquisition. The board also makes use of three i/o lines. This might be restrictive if your pc already has a few occupied slots. Clio uses the same dma and i/o as $D R A L A B S$ maximum length sequence signal analyser, so if your pc will run mlssa it should run Clio.
The mls measuring system samples at 51.2, 12.8 and 3.2 kHz . Set to 51.2 kHz for a 20 kHz bandwidth, it is very fast and displays do not autoscale irritatingly. If set to 3.2 kHz sampling frequency, it will measure down to 0.125 Hz .

## Filing data

Clio will export frequency responses to hard disk for use with cad loudspeaker design packages such as Leap and Calsod. Ascii timedomain files cannot be exported, but Audiomatica can supply a Pascal structure describing the file format needed to do this.
Swept sine-wave measurements comprise tone-bursts at discrete frequencies, with interpolation to create smooth curves, Fig. 5. Connecting input to output produced an overall response flatness within 0.5 dB . Frequency response files may be loaded as a reference and new measurements displayed as a difference curve. This is ideal for comparing production items to standards. Files can also be imported from outside the sine wave environment, displayed and post processed. Curves for instance, can be averaged.
Another facility takes the measured in-box sound pressure level, spl, and simulates an outside-of-the box spl. Text files can be edited to splice two separate sets of readings, for example mls mid-to-high response and nearfield low-frequency response, to give a complete anechoic frequency response.
Theile/Small loudspeaker characterisation is automatic, very quick and simple. The analyser hunts for the impedance curve resonance peak and half points to an accuracy of $1 / 24$ octave, a worst case frequency error of $2.9 \%$. Accuracy of Theile/Small parameters was found to be about as good as you can get without measuring the $B L$ factor directly.
Hardware in the Clio package includes measuring cables and a half-length pc card holding

Fig. 4. This waterfall plot was taken in room. These plots can help pinpoint sources of colourations in loudspeakers caused by energy storage and reflections.


Fig. 2. Clio rta plot. The internal pseudo-random pink noise is very accurately distributed in frequency. Because its energy content is known, the analyser doesn't have to wait as long to average at low frequencies - thus making it faster than a normal real time analyser using ordinary random pink noise


Fig. 3. Clio m/s loudspeaker measurement taken in an anechoic room but truncated to 100 ms . As with any truncated measurement, this results in losing low-frequency information, (the longer the sample time, Ts, the better the low-frequency performance), but it does allow the room to be taken out of the measurement frame completely. Indeed, a truncated response excluding reflections is more anechoic down to the $1 /$ Ts frequency ( 100 Hz in this case) than the usual swept measurement in even the best chambers. In room one could expect anechoic accuracy down to 250 Hz or so. Setting the time 'window' is particularly easy and the display shows the $1 / T_{s}$ frequency.


Fig. 5. Loudspeaker sine-wave response measured with Clio in an anechoic room (compare to Fig. 3 mls plot taken with same loudspeaker). The previous ten curves can be stored and shown as overlays, the oldest being erased for each new acquisition.
signal processing circuits and 16 -bit sigmadelta a-to-d and d-to-a converters for performing analogue i/o.

## Listening in

At an extra $£ 150$, the optional 8 mm diameter microphone is an electret capsule. It comes with no curve but it does have a specification window. Tested in Celestion's anechoic room with a known loudspeaker against a B\&K microphone, the frequency response was found to be flat except for a slight rise at high frequencies of about +1 dB from $5 \mathrm{kHz}-15 \mathrm{kHz}$. Sensitivity as measured via a B \& K calibrator was probably within 0.5 dB . This is typical of a good, electret insert.
The storage oscilloscope worked well, with excellent triggering. At some settings, where the screen is frequently updated, mouse operation became jerky due to the fact that the pointer cannot move while the screen is updating. This is easily overcome by using hot-keys to operate the buttons.
Testing the FFT spectrum analyser with the internal sine oscillator at 1 kHz , Clio's thd meter measured down to a minimum reading of $0.01 \%$ - slightly better than the claimed $0.015 \%$ thd of the generator alone, Fig. 6. All one can be certain of from these tests is that the thd and FFT analyser easily meet their respective specifications. With intelligent use of input sensitivity and FFT scaling, Clio provides a handy check on distortion spectra and noise in electronic circuits.

## Overview

Clio is an easy to operate, fast, user-friendly package, combining several instruments geared to acoustic and electronic testing at audio frequencies. From a speaker engineer's viewpoint, it is ideal for use as a professional design and development tool, and could even find its way from the laboratory to the factory floor as an inexpensive and easy to operate on-line tester.
Acoustics and speaker installation engineers will find the real-time spectrum and $R T 60$ analysers invaluable.
Electronic engineers should find the electronics measurements equally useful, especially considering that here is a complete work bench all in one package - and well suited to companies on a tight budget.

Fig. 6. Distortion spectra of Clio generator looped into input and set at $-3 \mathrm{dBm}(-5.25 \mathrm{dBV})$, showing second and third harmonic both at $83 d B$ down on the fundamental. The thd meter reads $0.01 \%$. Drop the input lower and the thd
reading rises. Level can rise to $+1.5 \mathrm{dBm}(-0.77 \mathrm{dBV})$ with change to spectra but thd reading stays at $0.01 \%$. Distortion spectra could be bettered by $10 d B$ or so by using an external low-distortion oscillator carefully set in level and frequency, with windowing, indicating that most distortion is from the internal sine generator. Though clearly meeting its specification, with 16 bits available, distortion could possibly be bettered. Muting the generator (input set to -40 dBV ) produced a noise floor of around -105dBV - not at all bad


Switchers

# for the masses 

## Highly-integrated chips and easy-touse software bring designing a switch-mode psu within the reach of all electronics engineers - as Al Kelsch and Wanda Garrett show.

*Al Kelsch Wanda Garrett are with National Semiconductor Corp. in Santa Clara, CA
n many applications, on-board dc-dc conversion sometimes called point-of-load conversion - is desirable and practical. National Semiconductor's Simple Switcher power converter family concept was created to occupy a position between complex, design-intensive circuitry of a fully-custom switching converter, and the simplicity of plug-in power conversion modules.
Advantages are lower cost, compared to modules, and reduced design expense relative to discrete solutions.
This article reviews the principles and viewpoint which led to the the Simple Switcher converter family, and highlights ease-of-use aspects of the concept.
Henry David Thoreau, the iconoclastic American writer of the nineteenth century, stated the case for simplicity in 1846 while searching for truth at Walden Pond:


Fig. 1. Even though early switch-mode ICs integrated a fair number of control functions, power supplies incorporating them were still complex in design and component hungry.

Table I. DC converters compared.*

| Parameter | LM352-based | Module | Simple switcher |
| :---: | :---: | :---: | :---: |
|  | 1A,5V converte | r1A, 5V converter | design |
| \# of components | 16 | 1 | 5 |
| Design time | months | minutes | <l hour |
| Parts inventory | high | lowest | low |
| Parts price | \$2.10 | \$9.00-\$13.00 | \$3.50 |
| Labour | high | lowest | medium |
| Efficiency | 80\% | 65\% | 80\% |
| Offerings | one device, many designs | broad line | broad line |

[^0]"Simplicity, simplicity, simplicity!, I say, let your affairs be as two or three, and not a hundred or a thousand."
William of Occam, the Medieval English philosopher, dealt with the subject of simplicity in the metaphysical realm before expiring in 1349 . He is best remembered for what has become known as Occam's Razor. William's famous razor says that if more than one theory is advanced to explain the same set of facts, the theory that is overall the simplest and needs the fewest assumptions is the true one.
Occam's Razor applies to integrated circuits, too. If two integrated circuits do basically the same job, the one that is overall the simpler and requires the least design time and external aids is the superior product.

In the not-too-distant past, it was common to design a voltage regulator as a part of designing the end equipment. Whether it was a simple zener diode regulator or a real series voltage regulator, on-board voltage stability was considered to be a part of equipment design. This all changed with the advent of the first three-terminal linear regulator - the LM109.
From the time these devices were available, equipment designers everywhere ceased designing the regulator part of their circuits from the transistor level. They found themselves free to spend more of their engineering energy on the performance of the equipment or chassis itself.
Prior to 1978, the task of efficiently converting a dc voltage to another dc voltage using switching techniques was done with discrete transistors, diodes and passive components. At that time, there were two possibilities open to electronic equipment designers that had made the decision to enjoy the benefits of switchers - namely smaller size and increased efficiency. They either made use of an inhouse power supply design capability, or opted for off-the-shelf dc/dc converters.
The first integrated circuit for switching power conversion - the SG3524 - was introduced by Silicon General in 1978. This type of design was very complex, compared to a linear voltage-conversion solution, Fig. 1. However, it did represent an advance compared to bottom-up discrete switching designs.
At the same time, an industry for solving the complexity problem associated with switchers was emerging. The on-board conversion of one voltage to another, such as +24 V to +5 V , could be accom-


Fig. 2. Allowing designers to reap the benefits of switch-mode power supplies without incurring all of the associated design time and cost penalties, standard modules have become a viable alternative to discrete circuitry.
plished in minutes by the decision to purchase a self-contained dc-todc converter in the form of a potted module or hybrid assembly, Fig. 2.
Opposite ends of the on-board dc/dc converter spectrum in the early 1980s were represented by the self-contained power component on the one hand, and the LM3524-based IC design on the other. These are compared in the left-hand columns of Table 1.
Thoreau's simplicity of viewpoint, William's logical efficiency, and the need for a counterpart to the three-terminal linear regulator came together in 1985 to spark an idea for a new class of on-board dc/dc converters. This five-terminal integrated switching converter became known at its introduction as the Simple Switcher. This new class of converter took up a position between the one component $\$ 10.00$ solution and the 16 -component $\$ 2.25$ solution, with a five-component $\$ 3.50$ solution. This intermediate market approach is compared to the competing solutions in the fourth column of Table 1.
There were four elements in the creation of an intermediate position of switching converters that appealed to non-expert digital and microprocessor equipment designer; the sum of these became the 'simple' family approach. First, the 16 component dc/dc converter had to be reduced to the absolute minimum number of components possible in the context of an IC solution. Second, the procuring of the non-IC components had to be straightforward, foolproof, and well-supported. Thirdly, any design that was required had to be ultra-simple and had to be supported with friendly software. Finally, the overall convener performance had to be guaranteed with system-level specifications.

## Reduced component count

Table 2 summarises the system decisions that led to the paucity of external components seen in the Simple Switcher type converter.
Bringing the 1 A transistor on board eliminated three external components. On-board trimming to standard voltages such as $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and 12 V eliminates two components. Fixing the frequency at a standard value of 52 kHz eliminates a capacitor. Fixing the current limit internally and offering a range of current values, such as $0.5 \mathrm{~A}, 1 \mathrm{~A}$, and 3 A eliminated a current-sense resistor. Eliminating a Bode compensating network in favour of on-board compensation reduces the count by two more. Removing a resistive level setting network in the feedback path
eliminated two more components. In this manner, a sixteen-component design becomes a five-component converter, Fig. 3.
The five-lead minimum design converter uses two electrolytic capacitors, one inductor, one Schottky diode and one integrated circuit. The design value of the on-off switch - something not actually offered in the 16 -component design - dictated its inclusion as the fifth active pin

## Readily available components

The four non-IC external components that remained also had to be relatively free of the fear factor when viewed by non-expert designers, with regard to the design and the actual procuring of parts.
Aluminum electrolytic capacitors were specified for the input and output capacitors. These are readily available and popular. The Schottky is slightly more challenging, but these devices are likewise readily available and easily specified.
By far the most important challenge in guaranteeing ease of use was designing and procuring the power inductor or transformer that is at the heart of switching converters.
Here the fear factor plays a dominant role. Gauss, B-H curves, magnetising inductance, core materials, custom magnetics - all of these words and the practices associated with them have the potential to affect design time and difficulty level.
To remedy this, we took several actions. First, the design procedure had to be simple and unambiguous; second, there had to be pre-specified, industry standard inductors, suitable to the converter application. Third, the standard inductors had to be supported by magnetics vendors that could offer stocked values and instant support.
Calculating an inductance value is just the start of the problem. Given simple assumptions, the calculation is straightforward. The challenge was to reduce the solution space for all combinations of input/output voltages and load currents, to a small number of well-defined inductors.
Figure 4 illustrates the type of mapping needed to fully define converter solution space in terms that are meaningful to inductor manufacturers. The vertical axis on the graph turns out to be calibratable in E-T, or the volt-second product needed for full specification of the inductor in magnetic terms.
Knowing maximum load current, and E-T values as dictated by input and output voltages, the solution space is divided up into standard inductance regions. These are then specified in inductor terms. This lead to a well-specified series of inductors that covered the converter solution space.
With this set of basic inductor specifications, we then approached several magnetics manufacturers that had the capability and interest to
Table 2. Comparison of external components required for typical 1 A step-down switching regulator design.

## Function

1A o/p current
$V_{\text {out }}$ setting
fosc
Current limit
Compensation
$V_{\text {ret }}$ level
Net component
reduction

LM3524-based Simple Switcher design design
Transistor, 2 Rs On-board >1.3A transistor
2 Rs Internally-set, fixed output voltage options
Internal, 52 kHz
Internal, fixed (several options) internal
Internal
17

From


Fig. 3. Freely available design software and a switch-mode designed for ease of use and low component count should make the switch-mode technology accessible to far larger variety of circuit designers.


## Customising the design

Although a successful power supply design can be generated by using the default or standard options in the program, there are opportunities for customisation. Alterations can be made to a design that has been previously saved, or during the design of a new regulator.
It is a good idea to have a 'baseline' design to start from, using the default choices for components. Modifying the inductor selection For the buck and boost converters, the standard inductor selection is based on an assumption that the inductor ripple current will be $30 \%$ of the average inductor current at fill load. This gives continuous operation, striking a balance between jnductor size and output power capability.
Output power is for a given regulator is limited by the average inductor current; inductor ripple current is determined by the inductor value, the input and output voltages, and the switching frequency; the sum of the average and ripple inductor currents is limited by the regulator IC current limit threshold, as the IC must conduct this peak current when its switch is on.
For low output power applications, the inductor can afford to have a greater ripple current since its average current is low. This allows its value to be lower than the normal standard value that would be chosen automatically. As the inductor selection is made immediately after the input parameters are entered, you can take the option to not take the standard default inductor. The user can then customise the inductor selection by either entering the desired inductor ripple current or a desired inductor value, and the remaining components will be chosen accordingly.
If the choice of inductor value or current causes the peak current to exceed the limit available from the regulator IC, an error message instructs the user to make another choice between lower current or greater inductance.
When the choice is accepted, the user should check the peak switch current, shown in the middle column on-screen, to see how close it is to the current limit of the regulator IC chosen for the final circuit.
The output capacitor value and ESR can be modified after the preliminary calculations and component choices have been made. Recommended ranges for those values are given in the 'limit values' column. These ranges assure the stability of the regulator, and a reasonable limit for output ripple voltages. Modifying databases used or component selection 'Switchers Made Simple' selects the recommended components from a set of databases associated with the program. These are Ascii files, containing component values, characteristics and ratings, and vendors' part numbers for components including the output capacitors, inductors, and diodes. The user can extend the databases to include other components, if they are specified for use in switching regulators.
The database format is shown in a header for each file. In addition, the header also contains the strategy for component selection, for example which parameter is looked for first.


Fig. 4. With the Simple Switcher concept, choosing an inductor is simplified by focussing on a range of readily available standard parts.

## Standard inductors and sources.

| Inductor <br> code | Inductor <br> value |  | Pulse Eng. Renco |  |
| :--- | :--- | :--- | :--- | :--- |
| L150 | $150 \mu \mathrm{H}$ | $415-0953$ | PE53113 | RL1954 |
| L220 | $220 \mu \mathrm{H}$ | $415-0922$ | PE52626 | RL1953 |
| L330 | $330 \mu \mathrm{H}$ | $415-0926$ | PE52627 | RL1952 |

support this effort at standardisation. This level of interdependence had not been attempted before between the semiconductor and the magnetics industry.
When choosing inductor suppliers, we attempted to offer a range of styles and prices from the stick inductor, to the popular toroids, to low-EMI pot cores. Once on-board, the magnetics industry has done a fine job of supporting first-time converter designers. This included no custom charges - or any talk of charges - stocking of all values, overnight response and attractive prices.

Create new or recall old design? (N/O)
This program supports four types of power supplies.
Boost:
Used to step up the input voltage, e.g. $\mathrm{Vin}=5 \mathrm{~V}$, Vout $=12 \mathrm{~V}$
Flyback:
Used for multiple output voltages, positive or negative, with the possibility of isolation. Both step up and step down are possible. High output voltages are achievable. A transformer is needed instead of an inductor.
E.g. $\operatorname{Vin}=5 \mathrm{~V}$, Vout1 $=15 \mathrm{~V}, \mathrm{Vout2}=-15 \mathrm{~V}$, or

Vin $=5 \mathrm{~V}$, Vout1 $=15 \mathrm{~V}$, Vout2 $=12 \mathrm{~V}$, or
Vin $=20 \mathrm{~V}$, Vout $=100 \mathrm{~V}$
Buck: Used for stepping down a voltage, e.g. Vin $=10 \mathrm{~V}$, Vout $=5 \mathrm{~V}$
Buck-Boost:
Used for generating a negative voltage from a positive one without isolation, e.g. Vin $=5 \mathrm{~V}$, Vout $=-5 \mathrm{~V}$
For HELP, press <F1> now.


Fig. 6. Regulator design summary screen from the Switchers Made Simple design tool.

Fig. 5. Sample help screen from the Switchers Made Simple design package.

## Guaranteed system specifications

Another key aspect of creating successful dc/dc converter designs involved the use of system specifications. Hence, the ICs in the Simple Switcher family include guaranteed system specifications when used with the external components recommended by NS. The basic parameter guaranteed for the overall converter is $V_{\text {out }}$ - the output voltage. As a system specification, $V_{\text {out }}$ is guaranteed over a full range of load, line, and temperature variations.

## Ease of design

To convince first-time designers and analogue non-experts that a realisable dc-to-dc converter could be designed efficiently, a simple step-by-step procedure was needed. Also, the design procedure had to be executable either manually, or using a pc with the aid of an expert system provided by National.
For the manual designs we created a one page, three step procedure for the selection of the capacitors, the catch diode, and the inductor. Sources for each of these were provided in the data sheets, together with the corresponding vendor part numbers.
The second support method, aimed specifically at terminal-based designers, was the software called 'Switchers Made Simple.' This is a software tool, designed from the viewpoint of the user, that creates dc/dc converter designs using the Simple Switcher integrated circuits and standard external components. The software runs under dos and is free so sharing is encouraged.
The following section explains the use of the 'Switchers Made Simple' software in designing onboard dc/dc power converters. The current version is 3.3, and supports all available Simple Switcher products and their voltage options - including 3.3 V for the step-down and inverting regulators.


Fig. 7. Switch-mode power supply example incorporating the LM2574 simple Switcher demonstrates how few external components the device needs.

Fig. 8. Parts list for design example, Fig. 7.

## BUCK CONVERTER

## Component List

Circuit Parameters

| Vinmin : | 8.00 V |
| :--- | :--- |
| Vinmnx : | 30.00 V |
| Tamax : | 40.00 C |
| Tamin : | 0.00 C |
| Vout : | 5.00 V |
| Hmax : | 0.30 |
| Diode : | Schottky |

Misc calculated information
Mode : Continuous
Peak switch current : 0.40 A. ESRmax : 0.15 Ohms ESRmin : 75.17 mOhms Vripple : 50.34 mV
Crossover Freq : 7.43 kHz
Phase margin : 31.15 Deg

Cout : $330.00 \mu \mathrm{~F}$
ESR: 0.10 Ohm
$V$ max : 20.00 V
678D337M020CG4D : Sprague
Cin : $22.00 \mu \mathrm{~F}$
$V \max : 43.00 \mathrm{~V}$
L: $470.00 \mu \mathrm{H}$
415-0927 : AIE
PE-5311C : Pulse
RL1951 : Renco
D1: 1.00 A
Vmax : 40.00 V
1N5819 : Motorola
MBR140P : Motorola 11DQ04
U1
L2574N-5 : National Semiconductor

## Beginning the design

The only information a novice power supply designer may have on which to base a design may be the system parameters - input voltage range, output voltage desired, load current range, and ambient operating temperature range. This is the way a linear regulator or module is specified. This is also the way a Simple Switcher design is started.
On the first screen of 'Switchers Made Simple,' Fig. 5, following the introductory screens, the user is prompted for regulator type from a choice of step-up, step-down, invert, or multiple-output. If, at this point, the user wants more information, a help file is available via the Fl key.
Once the regulator type is chosen, a screen appears on which the system parameters are entered. Pressing the 'end' key, after entering the parameters, begins the process of doing calculations and choosing components for the circuit.

## Component selection

The software asks the user if the standard inductor selection is to be made, and if this is confirmed the software makes calculations for limit values. The results of these calculations are shown in the middle column of the screen. They include values used to select the components used in the final circuit, such as minimum inductor value, peak switch current, and values for the output capacitor and its equivalent series resistance, esr, range.
Recommended component values are then immediately shown in the right-hand column of the screen, and include all external components needed in the design apart from the regulator IC. The user is then given the opportunity to modify the component values.
When the user is satisfied with the component choices, the frequency response of the circuit is estimated, and a window displays the circuit bandwidth, 'crossover', and its phase margin Fig. 6.

## Thermal calculations

The next step in the design is to determine how much - if any - heat sinking will be needed to keep the internal temperature of the regulator IC within its ratings during its operation over the specified temperature range. The user is asked if thermal calculations are to be done. If so the user is asked to choose the package type from a list of regulator IC packages that fit the application.
If a dual-in-line or surface-mount package is chosen, the pc-board copper will be used for heat sinking, so the user is requested to enter the thickness and type of copper that will be used. The software calculates the minimum copper area required to provide any necessary heat sinking, and allows the user to enter the actual board area that will be used. Finally, the internal junction temperature of the IC and its thermal resistance are displayed in a window.
The design is now finished. The user is given an option to modify the input parameters. If this option is not taken, the user may save the file for further reference. The user can view the schematic on-screen Fig. 7, as well as the listing of calculation results and recommended circuit components by part number, Fig. 8.
Both the schematic and parts list can be then printed, on either an Epson-compatible dot-matrix or an HP-compatible laser printer. As a last step, the user may return to the beginning of the program to do another design, or end the program.
In most cases, the power supply design can be done in a matter of a few minutes, from specifying the circuit parameters all the way to the final schematic and parts list. This simplicity and speed of design has made the Simple Switchers the choice of many novices and power supply designers alike. In addition, 'Switchers Made Simple' offers experienced power supply designers the flexibility to customise the design, as described in the panel.

## Summary

The 'Simple' approach to on-card dc/dc power conversion has taken up its market position between plug-in, pre-manufactured modules, and complex multi-component IC-based converters. Simple Switcher power converters provide a solution that has five or seven total components guarantees overall converter performance, and is well supported by readily available components and design software.

## STABILIZER 5

In any public address system where microphones and loudspeakers are in the same vicinity, acoustic feedback (howlround) occurs if the amplification exceeds a critical value. By shitting the audio spectrum fed to the speakers by a few Hertz, the tendency to howl at room resonance frequencies is destroyed and increased gain is available before the onset of feedback.
$\star$ Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz} \star$ Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz}$ * Stereo Variable Emphasis Limiter 3 * 10 -Outlet Audio Distribution Amplifier $4 \star$ PPM10 In-vision PPM and chart recorder * Twin Twin PPM Rack and Box Units $\star$ PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN $-50 /+6 \mathrm{~dB}$ drives and movements $\star$ Broadcast Stereo Coders * Stereo Disc Amplifiers *Peak Deviation. Meter for FM broadcasting SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh GU6 7BG Telephone: 01483275997 Fax: 276477

## HEWLETT PACKARD HP71B

As easy to use as a calculator but as powerful as a computer

BARCODE READER
Smart wand

- Automatically recognises and decodes all major bar-code standards.

A powerful set of basic functions, statements and operators - over 230 in all - many larger computers don't have a set of basic instructions in this complete. - Advanced statistics functions enabling computations on up to 15 independent variables.

- Recursive subprograms and user defined functions.
- An advanced internal file system for storing programs and data - the HP71 has continuous memory - when you turn the computer off it retains programs and data.
- A keyboard that can be easily customised for your specific application.
- HP-1L. Interface pre-installed to create a system that can print, plot, store, retrieve and display information. Control or read instruments or speak to other computers, 5000 bytes $/ \mathrm{sec}$. Built in ROM includes 46 separate commands. Interface to HP-1L, HP-1B, RS232C, GPIO or series 80 . Includes connection cables.

These are second user systems ex DHSS are fully tested and working but have no programming (THAT IS UP TO YOU) HP71B
Bar-code Reader
AC Power Supply
(Works from batteries normally)
Keyboard Overlay
(Limited quantities)
Unknown Program
Unknown Program
Memory Modules.
(Limited quantities)
Complete kit of HP71
Complete kit of HP71B, Bar-code Reader and power supply
(Prices include VAT - delivery $£ 3.00$ ) (Currently selling in USA for US\$500) Allow 7 days for delivery

## SPECIAL OFFER

Buy 2 Kits For $£ 59.00$

## Other products at give-away prices

Numeric keypad for 'AT' computer
$£ 5+£ 2$ Carriage (Carriage FREE if ordered with above).

# COMPONENTS FOR GLOBAL POSITIONING SYSTEMS 

## Fastest GPS Recelver

Rapid fime to first flic, HMEA modes and low power consumption are standard features of Rockwell's new MicroTracker LP. Other key tratures पinclude direct differential mpots


## PCMCIA GPS Receiver

Rockwell's astounding NavCard jintegrates y GPS receiver athd a removable antenna inte a single PCMCIA card, Free Windows applievition demo code is included on request

## GPS in 10 minutes

Rockwell development wits include everything you need to receive GPS sigialis the moment you gpen the box. Choose eilher MicroTractker LP or NavCard versions, all connectiors and sottware
 supplied.

Differential made easy
The Naistal XR5Mi $1 \mathrm{t}^{\mathrm{m} / \mathrm{s}}$ a 12 criannel base station recoiker which outpuls RTCM spart SC104 differential corrections for input to remote GPS receivers such as Rockwolits MicroTracker LP or NavCard.

## Antennas in stock

TDC slocks the widest range of GPS antennas for yehicle mounting, marine and airborne utes, as well as active and surveying versions for specialist applications: We supply all cables and conjectoots too


TDC is a franchised distributor Ior Rockwell, Navetar and Miciropulses.


## NAVIGATION

## Finding GPS



> GPS chip sets are still difficult to obtain and use, but there is now a versatile modular receiver system priced under £400. Simon Taylor* describes how this module is applied.

*Simon is an applications engineer with TDC

Much has been written about Global Positioning Systems - GPS - but until now there has been little scope for experimentation with the technology.
Many hand-held GPS devices are available, but few of these have any output or control inputs apart from the standard Icd and keypad. If you wish to create a vehicle location system for example, you will need to get position information from the device over a serial port or similar.
This article describes the construction of a GPS receiver which provides its information over a standard serial RS232 port suitable for input into a pc or other processors, such as a microcontroller
As its core, the system uses GPS receiver module from Rockwell Telecommunications called the MicroTracker LP. Rockwell is the company contracted by the US Department of Defense to build the current block of GPS satellites, and has made GPS receivers since the positioning system's inception.
The first readily available receiver module - the NavCore V - became available in 1990 and was fairly power-hungry requiring about 1.7 W in operation. This module was replaced by the MicroTracker in 1992, which reduced the size and power requirements dramatically, and latterly the MicroTracker LP in 1994.
MicroTracker LP needs only a single 5V supply, and consumes about 900 mW , which can be further reduced under software control. The module can supply power to active antennas, but these are not normally needed, as the device has an extremely 'hot' rf front end.
Before continuing with the facilities of this module, it is worthwhile considering some of the relevant parameters in the construction of a GPS receiver.

## Time-to-first-fix (ttff)

When a GPS receiver is switched on, it will not be receiving any satellites. At any time, there will be a maximum of twelve satellites in view, out of the full operational constellation of twenty-four. In practice about eight or nine are in the visible sky.
The receiver needs to lock-on to a satellite, and will start to search for other satellites which are in the sky at the same time.

There are many ways in which this can be done. First, a random selection can be made, from any of the twenty-four satellites.


Fig. 1. Circuit diagram of the GPS receiver serial interface board and its power supply.

However, if the receiver 'knows' which satellites should be in the sky at that moment, then the search process is much simplified, and hence much quicker.

Periodically, the satellites download an 'almanac' to the receiver, describing their orbital characteristics. This almanac goes out of date, but while still fresh, it is of use. So, if the receiver knows its approximate position within 100 km will not make much difference - and the approximate time, then ttff can be reduced.
Most receivers will not have moved geographically very much while switched off, if at all, and it is usually relatively simple to incorporate a real-time clock into the system.
MicroTracker LP incorporates a real-time clock, and retains its last position in eeprom, so the ttff is quoted as about 30 s . When the receiver is completely un-initialised, for example as they are when supplied from the factory, a 'cold start' algorithm can be enabled.

## Note for Psion Organiser users

Software allowing the Psion Organiser II to read NMEA data from the Rockwell GPS receiver is available.

In default mode, the Psion display shows latitude, longitude, height in metres, speed in mile/h, heading, horizontal dilution of precision (an accuracy figure), time and differential indicator.

The differential indicator shows 'Diff' when differential corrections are being used by the receiver. MicroTracker LP accepts RTCM-104 corrections directly into an auxiliary serial port and the number of satellites being received.
Key options are :
EXE selects odometer mode, this replaces the height display with an 'odometer' showing the distance covered since the program started. Distances up to half a mile are displayed in feet.
SPACE Display NGR (National Grid Reference). This displays NGR, then waits for a key press before continuing.
DEL Quits program.
Example display with odometer mode, differential corrections applied;

```
N51\circ16.441' 359.3
W00103.916'37.8
1.67 Diff 13:07:49
\(h d o p=0.78\)
Sats 04
```

In this display, 359.3 refers to the heading, 37.8 to speed in mile/h, and 1.67 is the odometer reading. The latter is replaced by a height display in the default mode.

## Exclusive EW+WW reader discount

A complete designer's pack is available from TDC at a discount exclusive to EW +WW readers. The kit includes the Evaluation board, MicroTracker LP receiver, Magnetic mount antenna, mains power unit, serial cable, batteries, technical manual and software. Its price - which includes a seat on one of the GPS seminars - is $£ 379.00$ exc. VAT and postage. Normally, the combined elements of package would retail at $£ 465.14$. All elements of the kit are available individually at special prices to readers quoting this article.
The complete system is tested for GPS reception before despatch. Please add carriage at $£ 12.50$ (TNT next day), and VAT to the total.
Please send a cheque/PO or Credit Card details (VISA/Mastercard) to Telecom Design Communications Ltd, Connect House, Stroudley Road, Basingstoke, RG24 0UG.
Tel 01256332800 , fax 332810.

Fig. 2. Screen shot of Binary mode reader program. PC software for this is included in designer's pack. It convert GPS receiver output into user-friendly display form. Note that display includes OSGB coordinates, bottom left.


Fig. 3. Screen shot of industry standard NMEA reader program, also included in kit. Displays GPS information on a pc but also shows positions of satellites in the sky and a tracking display showing a history of your position.


This will normally find a position within about seven minutes.

## Numbers of satellites required

Only one satellite is needed in order to receive accurate time. All of the satellites transmit UTC (Universal Time Co-ordinated) which is almost identical to GMT.
To compute a position, four satellites are required initially. This gives a position in three planes - X, Y, Z or latitude/longitude/height - but thereafter only three are required to give what is called 2D navigation comprising latitude/longitude only).

## Antennae \& rf characteristics

GPS signals are transmitted on 1574.42 MHz , All of the satellites transmit their data on the same carrier frequency. Sophisticated techniques are used to identify individual satellites from the combined signal, hence the need for a search strategy as described above.
The signal is available to the whole of the world for free use without licensing, so there is no restriction to the use of the information. But the position information is degraded by the US DoD so as to not be useful for military purposes. The accuracy is quoted as better than 100 m for $95 \%$ of the time, but again has been found to be much better in practice.
The signal is right-hand circularly polarised to avoid distortions and errors due to reflections from buildings etc., but this frequency does of course require a fairly sophisticated antenna. Such antennas are commercially available, and can be obtained from around thirty pounds. It is not advisable to construct an antenna as the signals being dealt with are at very low levels, and adequate performance can be difficult to realise.

## Receiver details

There are two connector options on the Microtracker receiver board. First is the zero-insertion-force connector, which has historically been the preferred type. However, with lower volume manufacture now possible for these systems, the 0.1 in connector is becoming more popular due to its cost, popularity and availability.
Connections of interest are on the 0.1 in connector are:

GND power supply
5 V power supply
BAT1 backup supply for internal ram, which contains up-to-the-minute satellite information, improving ttff.
BAT2 backup supply for the receiver's internal real-time-clock, again, to improve ttff.
TXD data output is at ttl levels and must be level via an RS232 buffer shifted before connection to an RS232 device.

Fig. 3. Photograph of the GPS receiver interfaced to a PSION organiser also shows NMEA reader, and the Micropulse antenna.

## Hardware detail

GPS is suited to mobile use. Generally, the only exceptions to this rule are timing applications where the $1 \mu \mathrm{~s}$ accuracy of the GPS receivers is exploited.
Taking the example of a car, then the most convenient power source is likely to be the car battery, which has a very wide range of possible voltages. These extend from around 11 V up to 17 V in the event of a fault.
Another example of mobile use is in a portable system, where independent batteries are desirable. As with all portable systems, battery life versus weight is the main concern. Nickel-cadmium batteries are desirable, and it


RXD data input, again at ttl level.
NMEA/BIN selection for data format output

## Data formats to and fro

Information on data formats is of interest to those of you who wish to develop your own software applications for the receiver, but it is possible to obtain position information using software packages readily available from me and on CompuServe.
There are two data formats handled by the receiver. The first is the proprietary 'binary' mode, which consists of a number of defined messages which allow the user to initialise and read data from the receiver.

Binary-mode messages are 'packetised' with a message header, information fields and a checksum. In this way, it is easy to detect if a message has been corrupted, and should be discarded. Data being sent to the receiver is similarly 'packetised'.
The second data format is the universally recognised National Maritime Electronics Association (NMEA) message. This message format is compatible to many marine display systems, but more importantly, outputs data in an ASCII form, which can be easily read using a terminal program.
Writing software to take this data from a serial port, and display in whichever form the user requires, is straightforward.
is useful to be able to charge these while operating the device from a car.
MicroTracker requires a regulated power supply of five volts, and active antennas may require twelve volts - again regulated - although some will operate on only five volts.
The circuit shown has two efficient power converters to provide both the five and twelve volt requirements from a wide input supply. Battery charging with charge \& lowbattery indication are also provided. A dualcolour led flashes once a second while the GPS system is running. It flashes green while the battery level is sufficient, and red when the battery becomes depleted. A red led indicates charge going to the cells.
Using six 700 mAh 'AA' size cells, there is enough operating power to supply the MicroTracker LP for about five hours, and to provide backup to the rtc and ram while the device is switched off. If backup is only required for short times, then a $0.1 \mu \mathrm{~F}$ capacitor can retain this data for about an hour.

If the operating specification is different, then various other types of battery can be used to suit the application. Power requirements can be reduced by enabling power save modes where a reading is provided only once every five seconds rather than the usual one second update rate.
MicroTracker's serial interface is at ttl levels, so the circuit also includes RS232 level conversion to allow connection to an external computer. A second serial port is included to cater for differential GPS corrections to be input to the receiver to improve the accuracy of the receiver to sub- 10 m . The primary serial port is in the standard 9-pin format.
The module will bolt to the pcb using standoff pillars. Either connector type can be used, but if the zif socket is used, then an additional connection cable is required.
A PCMCIA version of the MicroTracker is available, called the NavCard, which provides the same functionality, but in a ready-to use PCMCIA format compatible with modern notebook computers. This card does not include NMEA data formats.

## Software

If an existing NMEA reader program is being used, then provided that NMEA mode is selected, this should present few problems.
I suggested that in order to confirm correct operation of the device, you should use proven software. The binary mode reader illustrated is such a program. Running under Windows, the program displays position, altitude, heading and speed of the vehicle.
A bonus is that conversion of latitude/longitude to OSGB National Grid References is performed by the program. It is available on


## Complete system for reading and presenting

 GPS data. The GPS antenna, Microtracker and pc software providing the two displays shown in this article are all part of the desgner's kit.CompuServe, or from me at the address mentioned below. I have also developed an NMEA reader for the Psion organiser II, operating through the serial interface.

The author can be contacted at TDC's address, mentioned in the special-offer panel, or via E-mail
100043.104@compuserve.com.

TRANSISTORS + ICS + SEMICONDUCTORS

\& RESISTORS +CAPACITORS+INDUCTORS W SURVEILLANCE+SECRECY+SECURITY
PLUGS+SOCKETS+LEADS+CONNECTORS
TV \& VIDEO SPARES (INC. VIDEO HEADS)
HIFI+DISCO+HIFI GADGETS+SPEAKERS
AUDIOPHILE COMPONENTS (inc capacitors)
IN CAR AUDIO+SPEAKERS (inc bass tubes)
COMPUTER ACCESORIES+BOARDS

* TOOLS+TEST EQUIPMENT+BENCHWARE
\& much much more (over 10,000 lines). send today for the very interesting catalogue.
Pay by PO, cheque, credit card or tape coins to paper.
Please send me. $\qquad$ ...copies of the 1995 Cricklewood Catalogue. I enclose £2.50 per copy (UK \& Europe) E5 overseas.
Name
Address

Please charge my credit card. No.
Expiry Date.
Tel. No.
EWW



## NEW EQUIPMENT



black star epurment (PSP all units E5)



OSCILLOSCOPE PRBBES Swictrabie $\times 1 \times 10$ (PLP E3)
Used Equipment-GUARANTEED. Manuals supplled If possible. This is a VERY SMALL SAMPI E OF STOCK. SAE or Telephone for lists. Please check availability before ordering. CARRIAGE all units £16. VAT to be added to Total of Goods and Carriage.
STEWART of READING
VISA
110 WYKEHAM ROAD, READING, BERKS RG6 1PL
Telephone: (01734) 268041. Fax: (01734) 351696 Callers Welcome 9am-5.30pm Monday to Friday (until 8pm Thursday)


## Data Acquisition for your PC

CIRCLE NO. 115 ONREPI Y CARD
 Pico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.
Hardware and software are supplied together as a package - no more worries about incompatibility or complex set-up procedures. Unlike traditional 'plug in' data acquisition cards, they simply plug into the PC's parallel or serial port, making them ideal for use with portable PC's.
Call for your Guide on 'Virtual Instrumentation'.


# 130 MHz active probe 

With a gain of 10 and flat to 130 MHz this oscilloscope probe is a useful tool. Nick Wheeler has achieved this performance using surfacemount devices. He's also found an easy way of implementing the design.

Conventional passive probes, usable at even a few megahertz, have to have a compensated divider - usually $\times 10-$ to minimise the effect of the lead capacitance. This division is sometimes inconvenient as it lowers sensitivity to typically $20 \mathrm{mV} /$ div.
Much worse, however, is the effect of mismatch, resulting in a pulse of the form of the lower trace in Fig. 1 being transformed by multiple reflections into that of the upper trace. The lower trace was produced by transmitting from a $50 \Omega$ source down a $50 \Omega$ cable to a $50 \Omega$ termination immediately adjacent to the oscilloscope terminal.
This probe, Fig. 2, has a gain of ten, flat to 130 MHz and an output impedance of $50 \Omega$. Its input impedance determined primarily by stray capacitance of 5 pF . Note that this is half that of a conventional probe. The $100 \mathrm{k} \Omega$ resistor simply ensures a dc reference for the fet's $G_{1}$.


Fig. 1. Multiple reflections caused by a typical probe feeding a 100 MHz oscilloscope, upper trace, are almost entirely absent in when the active probe is used, lower trace, in a matched $50 \Omega 2$ system.

## SMD prototyping on a shoestring

Although this circuit operates to 130 MHz , standard doublesided glass-reinforced pcb can be used.
Clean both sides and coat with an etch resistant coating. Engineer's blue works well since it is designed to be scribed with fine lines.
Scribe a 0.2 -by- 0.2 in grid on one side and etch below $50^{\circ} \mathrm{C}$. This grid will take most 2,3 and four-terminal smd
parts, with one lead per land. Many other devices can be incorporated by removing a small amount of copper locally.
Where a ground connection is needed, drill a 1 mm hole in the centre of the land and solder through.
Assuming 1.6 mm glass-reinforced pcb material, each land has about 3 pF relative to the ground plane. This can be lowered by removing copper from the ground plane behind the land, but carrying this too far may impair the grounding.


## INSTRUMENTATION

The CF739 GaAs fet, from Siemens, has a transconductance of about 30 and is specified up to 2 GHz . Drain load is $100 \Omega$ in parallel with the $50 \Omega$ input impedance of the MAR 6 silicon mmic, from Minicircuits. This yields unity gain. The mmic has a gain of 20 dB at 100 MHz and 19 dB at 500 MHz . Thus voltage gain is close to 10 down to a few megahertz, at which point the 10 nF coupling capacitors become significant.
The fact that this probe has gain is useful in many cases, but it begins to distort signals above 10 mV pk -pk and the fet will be at risk of damage at more than three times this level. By trading off some of the gain, various forms of frequency compensated front end protection can be applied. This needs to be done experimentally, as the very small capacitances involved depend on layout detail.

## Application

Because the MAR 6 mmic has to be capacitively coupled, this circuit will not work down to dc. But lower frequencies can be dealt with using ordinary probes. This circuit

is intended for examining low-level rf signals and can be used with an input capacitor as small as 1 pF . This forms a capacitive divider leading to a gain of about two - still useful.
A suitable type coaxial cable for linking to the oscilloscope is semi-rigid RG 402.

Fig. 2. Surface-mount components are ideal for an rf oscilloscope probe since they allow a physically small design with short connection distances.

Finally an upgradeable PCB CAD system to suit any budget ...
Board Captare
BoardCapture - Schematic Capture

- Direct netist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility ( 50 operations)
: Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation trom BoardMaker2


BoardMaker
BoardMaker1 - Entry level

- PCB and schematic dratting
- Easy and Intuitive to use
- Surface mount support
- 90, 45 and curved track comers
- Ground plane fill
- Copper highlight and clearance chocking

BoardMaker2 - Advanced level

- All the features of BoardMakert plus
- Full nellist support - OrCad, Schema, Tango, CadStar
- Full Dosign Rule Checking - mechanical \& electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCII, 80 M - Thermal power plane support with full DRC



## BoardRouter - Gridless autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard
Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript

- Penplotters - HP, Graphtec, Roland \& Houston
- Photoplotters - Aill Gerber $3 \times 00$ and $4 \times 00$
- Excelion NC Drill / Annotated drill drawings (BM2)


Contact Tsien for further
information on
Tel 01354695959
Fax 01354695957


Thien (UK) Lid Aylesby House Wenny Foad Chatheris Cambridge PEI6 5 UT

# Getting more from 

 Douglas Clarkson builds upwards from a simple RS232 interface for accessing an a-to-d converter through to a multi-drop RS232 communication link.|ncreasing use is being made of serial RS232 links to control equipment and read data remotely. Devices such as the Harris H17159A device allow a-to-d conversion to be undertaken with control and data transfer taking place on a single RS232 port. This opens up a range of interesting interface possibilities.
Resolution of the device is $51 / 2$ binary-coded decimal digits. It is capable of typically eight conversions a second at full resolution and offset compensation, or 60 conversions per second at $4^{1} / 2$ digits resolution without compensation. The device cannot be considered fast, but it does have the significant advantages of being relatively easy to use and of providing high-precision data capture.
By altering the device's conversion mode,

Table 1. Control word logic of the IM6402. A wide range of data bits, parity and stop bits are catered for including the specific 8 data, even parity requirement of the 7159.

| Contr | word |  |  |  | Data | Parity | Stop |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CL2 | CLS1 | PI | EPE | SBS | bits | bits | bits |
| L | L | L | L | L | 5 | Odd | 1 |
| L | L | L | L | H | 5 | Odd | 1.5 |
| L | L | L | H | L | 5 | Even | 1 |
| L | L | L | H | H | 5 | Even | 1.5 |
| L | L | H | x | L | 5 | Disable | 1 |
| L | L | H | x | H | 5 | Disable | 1.5 |
| L | H | L | L | L | 6 | Odd |  |
| L | H | L | L | H | 6 | Odd | 2 |
| L | H | L | H | L | 6 | Even | 1 |
| L | H | L | H | H | 6 | Even | 2 |
| L | H | H | x | L | 6 | Disable | 1 |
| L | H | H | x | H | 6 | Disable | 2 |
| H | L | L | L | L | 7 | Odd | 1 |
| H | L | L | L | H | 7 | Odd | 2 |
| H | L | L | H | L | 7 | Even | 1 |
| H | L | L | H | H | 7 | Even | 2 |
| H | L | H | x | L | 7 | Disable | 1 |
| H | L | H | x | H | 7 | Disable | 2 |
| H | H | L | L | L | 8 | Odd | 1 |
| H | H | L | L | H | 8 | Odd | 2 |
| H | H | L | H | L | 8 | Even | 1 |
| H | H | L | H | H | 8 | Even | 2 |
| H | H | H | $x$ | L | 8 | Disable | 1 |
| H | H | H | x | H | 8 | Disable | 2 |
| $\mathrm{x}=$ Don | 't care |  |  |  |  |  |  |

its speed can be increased without compromising accuracy. This allows a series of measurements to be taken on a channel with an error-only value followed by a series of uncompensated values and ending with another error value. Normally the error value is constant and can be subtracted from the uncompensated value.
Such a system is ideal as an environmental monitoring station for example, measuring temperature, wind speed, light level and ultraviolet levels. It could also be used with load-cells to develop medium scale sensitivity weighing balances.
Various options are available for data capture. Serial mode 2 allows separate HI7159As to be addressed independently, Fig. 1. In this mode, four separate analogue channels require four HI7159As. Since the device costs around $£ 20$, implementing a large number of channels in this way becomes very expensive.
Accessing devices in
serial-mode 2 is also slower since part of the serial traffic on the connected system is needed for addressing specific devices. Under mode 2, the total number of HI -719/s that can be connected together is 32 .
An alternative way of increasing the number of analogue channels is to use standard analogue multiplexing. The single serial link can still be used to control multiplexing. Using four lines for addressing allows the system to accommodate up to 16 separate analogue channels. Having programmable gain in the circuit design is also useful.

## Transmitting and receiving

Basically, the IM6402 converts serial ttl logic data to parallel and vice-versa via two separate 8 bit data ports, Fig. 2. While the device can be configured for a range of data bit, parity type and stop bit combinations, in this application it simply has to be configured for compatibility with the HI7159A. The format is eight data bits, even parity and one stop bit.
Table 1 is a summary of the control word logic of the IM6402 uart and indicates the full range of data bits, parity and stop bit permutations available.


Fig. 1. Serial-mode 2 allows several 51/2-digit HI7159 a-to-d converters to be addressed independently.

## PC ENGINEERING



Fig. 2. Conveniently, the 6402 uart has separate eight bit input and output ports.

Table 2: Bit rates and corresponding receive frequency clock of the IM6402

| Bit rate | Clock (Hz) |
| :--- | :--- |
| $300^{*}$ | 4800 |
| 600 | 9600 |
| $1200^{*}$ | 19200 |
| 2400 | 38400 |
| 4800 | 76800 |
| $9600^{*}$ | 153600 |

* indicates frequencies appropriate for HI 7159.

Table 3. Truth table of the DG508A.

| $\mathbf{A}_{2}$ | $A_{1}$ | $A_{0}$ | EN | Switch |
| :--- | :--- | :--- | :--- | :--- |
| x | x | x | 0 | none |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 2 |
| 0 | 1 | 0 | 1 | 3 |
| 0 | 1 | 1 | 1 | 4 |
| 1 | 0 | 0 | 1 | 5 |
| 1 | 0 | 1 | 1 | 6 |
| 1 | 1 | 0 | 1 | 7 |
| 1 | 1 | 1 | 1 | 8 |

Serial data signal levels for the IM6402 are ttl compatible. A device such as the NMC232 is needed to translate the logic levels. This device also provides isolation between the $\pm 12 \mathrm{~V}$ RS232 and ttl levels.

## Clocking requirements

While the uart is accepting serial data, the receive clock frequency is 16 times the bit rate. Table 2 outlines the appropriate clock frequencies used with commonly occurring bit rates.
Options such as 1200 baud and 9600 baud are readily available from programmable clock oscillators with a base frequency of


Fig. 3. One-of-eight switching is provided by this eight-way analogue multiplexer.

Listing 1. Simple routine outlining how to control the HI7159A/IM7402 combination via a pc.
REM the set of opening DECLARE statements are reserved
REM for the PDQCOMM library routines
DECLARE SUB openCom Action\$)
DECLARE SUB ComPrint (Work\$)
DECLARE SUB CloseCom ()
DECLARE FUNCTION COMInput\$ (Nchar\%)
DECLARE FUNCTION COMLOC:
5 CLS: REM clear screen
REM open serial port one at 1200 baud, even parity
10 CALL OpenCom("COM1: 1200, E, 8, 1,RB128,NON")
REM and one stop bit
REM request value of analogue channel to be selected
REM the multiplexer chip use only three active
REM address lines
15 PRINT "INPUT CHANNEL VALUE TO BE READ O to 7"
INPUT CVAL
REM define line on IM7402 to be used for latching data
$B O F=64:$ REM LATCH ENABLE VALUE connected to B6 on HI7159AA
CALL Comprint (CHR\$ (128 + CVAL + BOF))
REM have activated latch to control analogue multiplexer
FOR JJ $=1$ TO 100: NEXT JJ REM delay
CALL Comprint (CHR\$(128 + cval))
REM have disabled latch but analogue data being read
REM by multiplexer device
REM proceed to read data, provide options for choice of
REM command byte values all single - not continuous
REM $14=51 / 2$ compensated
REM $12=51 / 2$ uncompensated
REM $6=41 / 2$ compensated
REM $4=41 / 2$ uncompensated
REM 2 = error only
REM error only is used when wish to do fast uncompensated
REM conversions
20 PRINT "input command byte": INPUT sb
40 CALL ComPrint (CHR\$(sb))
REM now send request byte to check for completion of conversion 50 CALL ComPrint (CHR\$(13))
REM wait until data available from conversion
65 GOSUB 500: REM WAIT FOR LOC(1) TO SHOW CHARACTER
a\$ = Cominput\$ (ComLoc\%)
80 IF ASC (a\$) < 64 THEN GOTO 50
REM request another status byte to check if conversion complete
REM data now available: request data byte
REM SEND REQUEST FOR FIRST DIGIT PAIR
100 CALL Comprint (CHR\$(1))
GOSUB 500: REM WAIT FOR LOC(1) TO SHOW data available
D1\$ = ComInput\$ (ComLoc\%)
REM reading second digit pair
200 CALL ComPrint (CHR\$(5))
GOSUB 500
D2\$ = ComInput (Comioc\%)
320 REM READING THIRD DIGIT PAIR
310 CALL COmPrint (CHR\$(9))
330 GOSUB 500
$340 \mathrm{D} 3 \$=$ ComInput $\$(\mathrm{ComLoc}$ \% )
350 REM now work out value of conversion
$360 \mathrm{b0}=\mathrm{ASC}(\mathrm{D} 1 \$)$ AND 15
$370 \mathrm{bl}=($ ASC $(\mathrm{D} 1 \$)$ AND 240$) / 16$
$380 \mathrm{~b} 2=\mathrm{ASC}(\mathrm{D} 2 \$)$ AND 15
$390 \mathrm{~b} 3=(\mathrm{ASC}(\mathrm{D} 2 \$)$ AND 240)/16
$400 \mathrm{~b} 4=\mathrm{ASC}(\mathrm{D} 3 \$)$ AND 15
$410 \mathrm{~b} 5=(\mathrm{ASC}(\mathrm{D} 3 \$)$ AND 48) / 16
420 ovr $=($ ASC $(D 3 \$)$ AND 64) / $64:$ REM overrange
$430 \mathrm{pol}=(\mathrm{ASC}(\mathrm{D} 3 \$)$ AND 128) / 128: REM polarity
440 vlu $=b 0+(b 1 * 10)+(b 2 * 100)$
vlu $=v 1 u+(b 3 * 1000)+(b 4 * 10000)+(b 5 * 100000)$
if pol=0 then vlu $=-v l u$
442 if ovr=1 then print OVERRANGE: goto 15
445 PRINT USING "\#\#\#\#\#\#\#";value = ", vlu
460 GOTO 15
500 REM SUBROUTINE TO WAIT UNTIL DATA IN receive buffer
510 DO
520 LOOP WHILE COMLOC\% $=0$
530 Nchar\% $=$ ComLoc\%
540 RETURN


768 kHz . For most systems, 1200 baud is a good compromise.
While it is always cheaper to use specific crystals and divide counters such as the 4020 cmos device, it is usually quicker to buy off-the-shelf programmable oscillators.

## Controlling the IM6402

Since the HI7159A is a slow device, data throughput will not be improved by using lowlevel language for control. An appropriate
high-level language which can set the serial port on a pc to read eight data bits, even parity is required. This specific format cannot be driven by stand alone MicroSoft QuickBasic. Routines from the PDQCOMM library have to be linked to make this format an option (available from Grey Matter).
The minor complication of requiring to link routine to another library within the QuickBasic environment is more than offset by the ease of programming provided by the
language. The interpretive mode of QuickBasic, however, is lost. Use of PDQCOMM, is straightforward. A simple batch file can be constructed to compile and link in a single line instruction.
Where the HI7159A shares the same serial input as the IM6402 there is a potential problem. Sending a byte to the 6402 in order, for example, to control an analogue multiplexer, may cause the 7159 A to latch up.
Where more than one serial port is available, the function of data logging and logic control can be separated. Most pcs which run Windows, however, will require a port for the mouse. Provided that the most significant data bit of command bytes sent to the IM6402 is set, the 7159 will tend to ignore such input. This effectively leaves seven bits to control an analogue multiplexer and other posible circuitry. Thus any control data sent will be ignored by the 7159.
There are many devices which can be used for the analogue multiplexing. Figure 3 indicates the pin out of the DG508A and Table 3 the relevant truth table.
A latch as in Fig. 4 may be added to free the control line for other functions. Switch $\mathrm{S}_{1}$ selects the bit rate of the 7159 . Voltage $\mathrm{V}_{\text {refl }}$ is derived from standard 1.2 V reference diode. Master reset on the uart is normally low but can be reset high on power up if required. At the output of op-amp $/ C_{5}$, potentiometer $\mathrm{VR}_{1}$ scales the 7159 input voltage to $\pm 2 \mathrm{~V}$. Programmable crystal oscillator $I C_{3}$ has its bit rate set by links $L_{1-3}$ as indicated in Table 4 in order to drive the receive clock at 16 times the bit rate.
There is also the option of implementing variable gain, programmed via data communicated to the $I M 6402$. With three digital lines being used for the analogue multiplexer, three lines can be used to drive programmable gain. A programmable gain amplifier suitable for such applications is the PGA205AP.

Listing 1 is an example of using the system for data capture. It demonstrates how an analogue channel is selected via a multiplexer, and shows how a command byte is sent to activate the a-to-d converter. The pc then checks for end of conversion and polls the HI7159A for the conversion data, which is held in three separate bytes of data. Subsequently, this data is reconstructed into a signed integer format for processing by the pc.

## Multiplexing serial data

It is possible to use the 6402 for multiplexing

Table 4. Pin configurations for 768 kHz programmable oscillator for 1200 and 9600 baud.

| $\mathbf{P}_{\mathbf{1}}$ | $\mathbf{P}_{\mathbf{2}}$ | $\mathbf{P}_{\mathbf{3}}$ | $\mathbf{P}_{\mathbf{4}}$ | $\mathbf{P}_{\mathbf{5}}$ | $\mathbf{P}_{\mathbf{6}}$ | $\boldsymbol{t}_{\text {clock }}$ | $\div$ | bit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\left(L_{1}\right)$ |  | $\left(L_{\mathbf{2}}\right)$ |  | $\left(L_{\mathbf{3}}\right)$ |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 1 | 19200 | 40 | 1200 |
| 1 | 0 | 1 | 0 | 0 | 0 | 153600 | 5 | 9600 |

Note, 1 represents logic high.

Table 5. Serial-line switching truth table, implemented using the the IM6402 with analogue switches.

| Ascii value | $\mathbf{B}_{7}$ | $\mathbf{B}_{6}$ | $\mathbf{B}_{5}$ | $\mathbf{B}_{\mathbf{4}}$ | $\mathbf{B}_{\mathbf{3}}$ | Mode |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $128-184$ | 1 | 0 | $\mathbf{x}$ | $\mathbf{x}$ | x | local HI7159AA mode |
| 192 | 1 | 1 | 0 | 0 | 0 | serial device 1 |
| 200 | 1 | 1 | 0 | 0 | 1 | serial d device 2 |
| 208 | 1 | 1 | 0 | 1 | 0 | serial device 3 |
| 216 | 1 | 1 | 0 | 1 | 1 | serial device 4 |
| 224 | 1 | 1 | 1 | 0 | 0 | serial device 5 |
| 232 | 1 | 1 | 1 | 0 | 1 | serial device 6 |
| 240 | 1 | 1 | 1 | 1 | 0 | serial device 7 |
| 248 | 1 | 1 | 1 | 1 | 1 | serial device 8 |



Fig. 5. Eight-way RS232 communications switch controlled by the 6402 in conjunction with a latch for addressing. Each ADG508A switch unit selects a specific transmit, receive or ground line. The system can also read data from the HI7159A using a separate set of analogue switches - dual spdt - controlled via a single logic line.

RS232 serial lines. Where, for example, one serial port is available at a central pc , and a link to a specific peripheral such as a data logger or laboratory intrument is needed, it is possible to select one from several serial devices by use of additional interfacing to the 6402 .
Where serial devices are being connected across only three wires - transmit, receive and ground - a standard analogue switch such as a DG508A powered at $\pm 15 \mathrm{~V}$ will be able to switch RS 232 signals between $\pm 12 \mathrm{~V}$.
Figure 5 shows how three $D G 508 A$ devices are applied to select specific serial devices. Each of the three is selected via a common address bus, applied via a latch. Additionally, the 7159 can be selected by including switches $S_{1}$ and $S_{2}$. These may be a dual single-pole, double-throw switch such as the $D G 419 D J$.
It is common for serial equipment used for data logging to be relatively intelligent, and able to communicate data in response to 'wake-up' control characters. In this way, a sequence of data capture can consist of selecting a device, sending a serial control character or characters, receiving a data string, closing the link and repeating with another channel.

When high, line $B_{7}$ activates the latch. Line $B_{6}$ when high enables extemal serial links 1 to 8 with the addresing of the latch. This is set by $B_{3-5}$, which control the address lines of the three DG508A analogue switches.

Table 5 shows the type of control made possible by this arrangement.


## GPS vulnerability

Statements made in the letter 'False position on GPS', EW \& WW March 1995, should be treated with caution. Information presented at the ICAO Communications and Operations Division meeting in March this year, based on work performed by the UK and supported by several states, highlighted the vulnerability of C/A code GPS receivers to interference.
I would also refer your readers test data published in the Institute of Navigation Proceedings, Vol 40 p249, Autumn 1993, and at several ION and Royal Institute of Navigation conferences that confirm such a conclusion.

DRA and NATS have tested a wide range of commercially available C/A code receivers, including Navstar's XRS and equipments certified to the FAA's technical service order TSO-129.
The results do not support Mr Leisten's claims of high immunity to interference. In fact all C/A code receivers tested were jammed at a power level between - 130 dBW and -120 dBW at the receiver rf input.
The result have been confirmed during in-flight tests. They indicate a discrepancy of some 60 dB between the experimental data and the power levels quoted in your column. It is however very easy to become misled by the mathematics of the spectrum despreading that occurs in a GPS receiver.
Typical receiver noise temperatures of 290 K produce a noise power of $-203.9 \mathrm{dBW} / \mathrm{Hz}$ or -137 dBW in the C/A code receiver bandwidth. However, as the signal level is some 20 dB below the noise level in the predetection bandwidth, it is not until the code has been removed in the correlator-despreader that a positive $\mathrm{s} / \mathrm{n}$ ratio is achieved.
The theoretical maximum carrier to noise ratio, c/no, with a minimum guaranteed GPS satellite signal power of -160 dBW , above a $5^{\circ}$ elevation angle, is 43.9 dB . In practice the satellites, to every receiver manufacturers delight, are running 4 dB hotter than specified with the result that acquisition and tracking appear considerably better than specified.
To ensure the tracking loops remain locked a signal level (c/no) of approximately $30 \mathrm{~dB} / \mathrm{Hz}$ is required in the carrier loop and
$22 \mathrm{~dB} / \mathrm{Hz}$ in the code loop. Noise levels that prevent tracking are therefore $-160-30$, or $-190 \mathrm{dBW} / \mathrm{Hz}$ for carrier and $-160-22$, or $-182 \mathrm{dBW} / \mathrm{Hz}$ for code.
The correlator C/A code despreading process provides a gain against interference of $63 \mathrm{~dB} / \mathrm{Hz}$. Noise powers in the receivers predetection bandwidth that significantly degraded the tracking loops measurements are therefore $-127 \mathrm{dBW} / \mathrm{Hz}$ for the carrier and $-119 \mathrm{dBW} / \mathrm{Hz}$ for the code. Generally the carrier loop has a 5 or 6 Hz bandwidth resulting in an interference power at the receiver rf input of $-133 \mathrm{dBW}-\mathrm{A}$ value that agrees well with experimental data. The problem with the use of GPS for precision approach is that all current methods use some form of carrier phase tracking. To accurately track carrier phase and to be sure that cycle slips do not occur a significantly higher signal to noise ratio in the carrier loop is required.
The US RTCA committee studying the problem are specifying -150 dBW as the limit for inband noise. It should be noted that this power is below the thermal noise level. RTCA have set this interference power limit due to the sidebands that exist in the C/A code's correlation function and the resultant degradation of 10 or more decibels in the despreading gain; a 1 mW source of inband power could therefore cause interference at 40 km .
The problem of the use of pseudolites highlights the interference problem. If power levels and geographic positioning are nor carefully organised they will jam the intended recipient receiver.
The situation is not significantly different for Glonass receivers. Architectures published by some receiver developers would be equally if not more susceptible to interference due to their wide predetection bandwidth.
In comparison ILS, and particularly MLS, have significantly higher immunity to interference, although there are concerns over interference into the ILS localiser from fm broadcasts. However at the ICAO (COM/OPS 95) meeting the problem of interference into GPS was identified as a major issue and one that must be solved for the
system to achieve the integrity, availability and continuity for use in precision approach and landing operations.
The problem of interference and GPS will be the subject of a workshop held by the Royal Institute of Navigation, 12/13th October in London.
P Nisner, R Farnworth
National Air Traffic Control
Services
J/R Owen
DRA Farnborough

## On your bike, Steve

Steve Bush, in the July 1995 letters column, writes about the need for better bicycle dynamos. The standard cycle dynamo is not in fact a dynamo at all, but an alternator. To make it operate over a wide speed range, it is not deliberately made lossy (although they are not fabulously efficient), but is a constant current machine. For any given load resistance there is a knee above which increased speed gives little increase in output. The standard set uses a $6 \mathrm{~V}, 100 \mathrm{~mA}$ bulb


Efficient red leds would be a better alternative for rear bicycle lamps but using anything other than an incandescent lamp is currently illegal.
at the rear, and a 6 V 400 mA or 500 mA bulb at the front, connected in parallel. The dynamo output is 500 mA . This is why failure of the front bulb, or the connection to it, always causes the back bulb to blow, since the entire output of the dynamo then finds its way to the rear bulb.
Increased output power from the dynamo is entirely possible. If 12 V bulbs are used instead, the power delivered is doubled, but this has the disadvantage that the knee voltage is reached at twice the speed. At low speeds the performance is worse, since the bulb filaments are not at full temperature and their resistance is low.
I have had a number or rear bulb

## Early transistor response

I read Dr Wylie's letter in the June issue with interest, and totally agree that the history and preservation of early PC transistors is an orphan subject deserving serious attention.
Over the years, I have made an effor to preserve these devices when I find them, so that they now form a small part of my vintage electronic glassware collection.
The most interesting device I have is an early STC PC transistor in the AVO Book (qv) outline 20 form with a paper label 'LS737-crystal triode', which I believe dates from 1950-53 when experimental devices were made under Bell license.
Others include the GET1, Mullard OC50 and infamous unbranded red, yellow and green spot devices in small rectangular aluminium cases. Performance of these devices was, I recall, at best erratic. I suspect that the production spread was such that the colour coding was given in final test. I think the unbranded devices may have been out of specification devices from AEI, who used a similar package although AEI is not listed by AVO as PC type makers.
It's not easy to identify early PC devices, especially if they have failed. I often use the AVO International Transistor Data Manual, which was published early enough to list most of the production PC transistors, together with their manufacturers and clear outlines to help identification. My copy is a third edition, about 1962, (but not dated) for use with the AVO Transistor Tester. Early editions (up to No 6) of the Wireless World Valve Data book also have some PC device listings. Anthony Hopwood
Upton-on-Severn
Worcestershire

TRANSISTORS

| Part | Price | Part | Price | Part | Price | Part | Price | Part Price | Part Price | Part Price | Part | Price | Part | Price | Part | Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AAY32 | $9 p$ | BD265 | 45p | BFY90 | 45p | MJ2501 | 100p | 2N2102 50p | 7815 25p | 85p | AN315 | 210p | BA6209 | 85p | Lastio | 120p |
| AC107 | 40 p | BD267 | 45p | BLY48 | p | MJ2955 | 55p | 2N2218A $\quad 24 \mathrm{p}$ | $\begin{array}{ll}7818 & 25 p\end{array}$ | 12A400V | AN316 | 350 | BA6304 | 1200 | LA4120 | 2700 |
| AC125 AC126 | 30 p 30 p | BD269 | 45p | BR100 | ${ }_{37}^{14 p}$ | M 33000 $M J 3001$ | 1000 | $\begin{array}{ll}\text { 2N2219 } & \text { 24p } \\ \text { 2N2221 }\end{array}$ | $\begin{array}{ll}7824 & 25 p \\ 7905 & 250\end{array}$ | TIC246D 105p | AN360 | ${ }^{100 p}$ | ${ }_{\text {BA6 }}{ }_{\text {BA6410 }}$ | 140 p 2200 | LA4140 | 60 p 1000 |
| AC127 | 30 p | 8D311 | 100p | BR303 | 85p | M JE29A | 30p | 2N2222 23p | 7906 | TIC253D 190p | AN366 | 150p | BA6411 | 250 p | LA4182 | 180 p |
| AC128K | 40 p | ${ }^{8 D} 314$ | 100p | BSS74 | 33 p | MJE30A | 30 p | $2 \mathrm{~N} 2369 \quad 15 \mathrm{p}$ | 7908 30p | 20A400V | AN610 | 160p | 846993 | 150p | LA4190 | 300p |
| ${ }_{\text {ACli }}{ }_{\text {ACl }}{ }^{\text {ACl }}$ | 42p | 8D315 | 150p | BSX20 | 15p | MJE340 | ${ }^{250}$ | 2N2484 2N2646 | $\begin{array}{ll}7912 & 30 \mathrm{p} \\ 7915\end{array}$ | TIC263D 205p | AN3312 | 3500 | BA7001 | 1500 | La4i92 | 140 p |
| ACY18 | ${ }_{48 p}$ | BD331 | 1500 | ${ }^{\text {BT106 }}$ | 180p | MJE520 | $80 p$ $30 p$ | 2N2646 2N2904 | $\begin{array}{ll}7915 & 30 p \\ 7918 & 30 p\end{array}$ |  | AN3821K | ${ }_{6000} 6$ | BA7004 | ${ }_{2000}^{200}$ | LA4200 | 130 p 120 p |
| ACY19 | $48 p$ | BD332 | 40 p | BT109 | 90p | MP8112 | 45p | 2 N 2905 20p | 7924 30p |  | AN3990K | 300p | BA7021 | 1800 | LA4260 | 230 p |
| AD149 | 60 p | 8D361 | 60 p | BT119 | 100p | MPSA05 | 15p | 2 N 2906 18p | $78 \mathrm{LO5}$ 24p | thyaistors | AN3991K | 400 p | 8A7022 | 350 p | LA4261 | 300 p |
| Af125 | 50 p | ${ }^{\text {BD362 }}$ | 60 p | BT146 | 99p | MPSA06 | 15 p | ${ }^{2 N} 2907$ 18p | 78L08 24p | 2N5061 20p | AN5025 | 250p | BA7751LS | 150p | L44270 | 300 p |
| Af139 | 30p | 8D370 | 30 p | BTV79 | 140p | MPSA13 | 15 p | 2N3019 28p | ${ }^{78 L 12}$ 24p | $0.84 / 60 \mathrm{~V}$ | AN5033 | 400 p | BA7752 | 250 p | La4420 | 140p |
| AF239 | 30 p | BD371 | 30p | BU105 | ${ }^{80 p}$ | MPSA20 | $15 p$ | 2N3053 18p | 78 l | TIC116C 59p | AN5132 | 250 p | BA7755 | $150{ }^{\circ}$ | LA4422 | 130 p |
| 88105B B8205B | $18 p$ $24 p$ | $8 D 410$ $8 D 433$ | 50p | BU108 | $100 p$ 80p | MPSA42 | ${ }_{15 p}^{15 p}$ |  | 7818  <br> $78 L 24$ 240 <br> 10  | 8A300V ${ }^{\text {TIC116D }}$ | AN5150 | 400 p | BA7767AS | 155 p | LA4430 | ${ }^{130} \mathrm{p}^{\text {a }}$ |
| BC107 | 8 p | BD434 | 30 p | BU110 | 90p | MPSA70 | 15p | 2N3055H $\quad 50 \mathrm{p}$ | 79L05 ${ }^{7512}$ | 8 A 400 V - | AN5215 | ${ }^{600 p}$ | CA3048 | 110 p 190 p | LA4445 | 150 p 150 p |
| BC108 | 8 p | BD435 | $31 p$ | BU111 | 100p | MPSA92 | 20p | 2N3442 85p | 79L08 35p | TIC126D 75p | AN5256 | 150p | CA3052 | 1900 | LA4460 | 1200 |
| BC109 | 8 p | ${ }^{\text {BD436 }}$ | 30 p | BU124 | 60 p | MPSA93 | 20 p | ${ }^{2 N 3702} 90$ | 79 L 12 35p | 12A/400V | AN5262. | 175p | CA3054 | 95p | LA4461 | 120p |
| BC109C | ${ }^{10} \mathrm{p}$ | BD437 | ${ }^{28 p}$ | BU126 | $65 p$ | MR510 | 35 p | 2 N 3703 O | 79L15 35p | TIC126M 90p | AN5265 | 80p | CA3085 | 135p | LA4500 | 200p |
| BC140 | 20 p | BD438 | 36 p | BU180 | 100p | MR856 | 36p | 2N3704 9p | LM309K 100p | 12 A 600 | AN5352 | 600 p | CA3088E | 200 p | LA4505 | 220 p |
| ${ }_{\text {BC142 }}^{8 C 143}$ | ${ }^{20 p}$ | BD439 | 40 p | ${ }^{818184}$ | ${ }^{1000}$ | OC28 | 350 | 2 N 3705 9p | LM317T 100p | C106D 28p | AN5411 | 450 p | CA3089E | 150 p | LA4508 | 200 p |
| BC147 | ${ }_{8 p}$ | BD441 | 40 p | BU205 | 70 p | OC35 | 350 |  |  | ${ }^{\text {4AP400 }}$ | AN5421 | 150p | CA30900 | 2500 | La4510 | 100 p |
| BC149 | 8 p | BD533 | $50{ }^{\text {p }}$ | BU206 | 100p | OC36 | 250 p | 2N3710 12p | 79H12KC 700p | BR303 85p | AN5512 | 100p | CA3134E | 280 p | LA4550 | 200 p |
| BC159 | 8 p | BD534 | ${ }^{38} \mathrm{p}$ | BU208 | 70p | OC45 | 50p | 2N3711 12p | 79HGKC 800p | BT106 180p | AN5515 | 160p | CA3140E | 38p | LA4555 | 120p |
| ${ }_{8} \mathrm{BC160}$ | ${ }^{30 p}$ | BD535 | 38p | BU208A | 75p | OC200 | 180p | 2N3771 85p |  | BT119 100p | AN5520 | 550 | CA3160 | 85p | LA4570 | 1300 |
| ${ }_{8 C 172}$ | ${ }^{10 p}$ | - | 38 p $40 p$ | BU208AT | ${ }^{200 p}$ | R20088 R20108 | 100p | 2N3772  <br> 2N3773 100p <br> 100  | LEDs | 17088 | AN5521 | 100p | CA3189E | 2300 | LA5112 | 200 p |
| $8 \mathrm{BC17}$ | 14p | BD538 | 40 p | BU209 | 90p | S2000A3 | 175p | 2N3799 18p | 3 mm | 17127 200p | AN5613 | 200 p | CA3260E | 1700 | LA5527 | 150 p |
| $8 \mathrm{BC178}$ | 14p | BD643 | 50 p | BU225 | 120p | S2000AF | 175p | 2N3819 29p | RED 5p | $15 / 80 \mathrm{H}$ 230p | AN5615 | 300 p | CA3290E | 150 p | La5700 | 300 p |
| $8 \mathrm{BC179}$ | 14 p | ${ }^{80645}$ | 50 p | BU226 | 120 | S2055A | 175p | 2N3903 11p | YELLOW 8p | 15/65R 230p | AN5620 | 250p | Cx108 | 950p | LA7011 | 220p |
| 8C182 | $7 \mathrm{7p}$ | BD647 | 50 p 50 | BU312 | 95p | S2055AF | 200p | 2N3906 ${ }^{\text {2N }} 0$ | GREEN 8p |  | AN5622 | 275 | ${ }^{\text {cx136 }}$ | 600 p | La7033 | 400 p |
| BC182L 8 BC 183 | $7 \mathrm{7p}$ | -8D649 | 50p | BU325 | 55p | S2530A S2800 | 100p | $\begin{array}{ll}\text { 2N4031 } \\ \text { 2N4401 } & \text { 25p } \\ & 12 p\end{array}$ |  | SG613 1500p | AN5625 | ${ }^{4800}$ | ${ }_{\text {CX1 }}{ }^{\text {Cx141 }}$ | 750 p | LA7042 | 280p |
| BC183L | 7 p | BD676 | 40 p | BU406 | 60p | TIP29 | 15p | 2N4403 12p. | YELLOW 8p | COMPUTERICS | AN5722 | 140p | CX145 | 725 | LA7224 | 150 p |
| 8C184 | 7 p | 80677 | ${ }^{38} \mathrm{p}$ | Bu406D | $85 p$ | TIP29A | 22p | 2 N 5061 20p | GREEN 8p | COMPUTERICS | AN5730 | 160p | CX150日 | 325p | LA7505 | 250p |
| BC184L | $7 p$ | BD678 | 40 p | BU407 | 55p | T1P29C | 25 p | $2 \mathrm{~N} 5088{ }^{\text {20 }}$ |  | Z80ACPU 100p | AN5732 | 120p | cx175 | 325 p | LA7507 | 250p |
| - | $7 \mathrm{7p}$ | BD679 BD680 | 40 p | BU407D | ${ }_{60 p}^{750}$ | ${ }_{\text {TIP3 }}^{\text {T1P }}$ | ${ }^{40} \mathrm{p}$ | $\begin{array}{lr}\text { 2N5192 } & 50 \mathrm{p} \\ 2 \mathrm{~N} 5241 \\ 500 \mathrm{p}\end{array}$ | rectangul | 280ADMA 200p | AN5753 | 1300 | CX187 | ${ }^{825}$ | LA7520 | 200 p |
| 8 BC 213 | 7 p | BD689 | 45 p | BU408D | ${ }_{75 p}$ | TPP30C | 25p | $\begin{array}{ll}\text { 2N5245 } & 500 \\ \text { N5245 }\end{array}$ | LEDs | $\begin{array}{ll}\text { 280ASIO-1 } & 210 p\end{array}$ | AN57930 | 240p | cx804A CX867 | 775p | LA76200 | ${ }_{900 \mathrm{p}}$ |
| $8 \mathrm{BC213L}$ | 7 p | ${ }^{\text {BD682 }}$ | 45p | BU409 | 85 p | TIP31A | ${ }^{22} \mathrm{p}$ | ${ }^{2 N 5294} 30 \mathrm{p}$ | $5 \mathrm{~mm} \times 2.5 \mathrm{~mm}$ | Z80ASIO-2 210p | AN5791 | 225p | CX868 | $525 p$ | LA7801 | 100p |
| $8 \mathrm{BC214}$ | 7 p | ${ }^{80705}$ | 50 p | BU426A | 70p | TIP31C | 27p | 2 N 529630 p | RED 5p | 75107 65p | AN5836 | 450 p | CX877 | 300p | LA7802 | 300p |
| ${ }^{\text {BC214L }}$ | $7 \mathrm{7p}$ | BD707 | 50 p | BU500 | ${ }^{100 p}$ | T1P32 | 24p | 2N5448 ${ }^{2}$ | YELLOW 8p | 75110 75p | AN5900 | 130 p | HA1125 | 120 p | LA7806 | 260 p |
| BC233 BC238 | 70 | 8D709 | 50 p | 8U505 | 90p | TIP32A | 21 p |  | GREEN 8p | 75113 100p | AN6135 | 120p | HA1197 | 130 p | LA7808 | 250p |
| 8C239 | 7 p | 8D736 | 50p. | BU505DF | 90p | TIP33 | 50 p | 2N6385 120p |  | 75154 100p | AN6270 | 200p | HA1199 HA1319 | ${ }_{2} 1300 \mathrm{p}$ | LA7820 | 100p |
| 8C300 | ${ }^{20} \mathrm{p}$ | BD826 | 50 p | BU506 | 100p | TIP33C | ${ }^{60 p}$ | 2N6403 160p | OPOUPLERS | 75162 700p | AN6300 | 600 p | HA1338 | 300p | LA7910 | 150p |
| 8 BC 301 | ${ }_{20 \mathrm{p}}^{20 \mathrm{p}}$ | ${ }^{\text {BD828 }}$ | 50 p | BU506D | 70p | TIP34 | 50 p |  |  | 75182 95p | AN6306 | 380 p | HA1339A | 350 p | LA7940 | 200 p |
| BC303 | 20 p | BD897 | 50 p | BU508A | 700 | TIP35C | 65 | AECTIFIER | 4N37 58 p <br> 4N38 68 p | $\begin{array}{ll}75183 & \text { 95p } \\ 75195\end{array}$ | AN6320 | ${ }_{320 \mathrm{p}}$ | HA137 ${ }^{\text {HA1388 }}$ | 120 p | LC7131 | 260 p |
| BC304 | $25 p$ | BD899 | 50p | BU508AF | 95p | TIP36C | 65p | DIODES |  | 2114 150p | AN6341 | 200 p | HA1389 | 2100 | LC7137 | 450 p |
| ${ }^{81} 823$ | 7 p | BD977 | 50 p | BU508D | 75p | TIP4AA | ${ }^{20 p}$ | $8 \mathrm{BY127}$ 8p |  | 2532 200p | AN6344 | 440 p | HA1392 | 120p | LF347 | 110p |
| BC328 | 7 p | BDx33 | ${ }^{60} \mathrm{p}$ | BU508DF | 115 | TIP41C | 22 p |  | brictifiers | 2716 100p | AN6350 | ${ }^{610}$ | HA1394 | 170 p | LF353 | 48p |
| BC337 | 7 p | BDX65 | 80 p | BU508V | 110 p | TIP42A | ${ }^{20 p}$ | ${ }^{\text {BY164 }}$ - ${ }^{\text {40p }}$ |  | 2732 200p | AN6359 | 500 p | HA1397 | 200 p | LF355 | 60p |
| BC338 BC441 | 7 p | BDW24 | ${ }^{55}$ | BU508VF | ${ }_{75}^{100 p}$ | ${ }_{\text {T1P42C }}$ | 22 p | BY179 35p | W005 16p | 2732 A 220p | AN6360 | 320 p | HA1398 | 240 p | LF357 | 70p |
| BC44 BC4s6 | ${ }^{28 p}$ | EDW93 | 50p | BU526 | 70p 100 p | ${ }_{\text {T1P48 }}^{\text {T1P47 }}$ | 40 p | BY184 BY206 | 1A/5 | $\begin{array}{ll}2764 & \text { 270p } \\ \text { 27C64 }\end{array}$ | AN6362 | 400 | HA11219 | 280 p | LF398 | 300 p |
| BC477 | 18 p | EDY92 | 100p | BU546 | 125p | TIP50 | 60p | 8Y207 9p | 1AM100V 18p | ${ }_{27128}^{27}$ | ${ }^{\text {A AN6387 }}$ | 350p | HA11221 | 180 | LM311 | 35p |
| BC516 | ${ }^{22 p}$ | 8F 137 | 35 p | BU608 | 120p | TIP51 | 80 p | BY227 19p | W02 19p | 27256-25 150p | AN6884 | 200p | HA11235 | 120 p | LM319 | $165 p$ |
| 8C537 | 25p | BF167 | 30 p | BU626 | 120p | TIP52 | 80 p | 8Y228 28p | 1A/200 | 27512 300p | AN7105 | 170p | HA11251 | 190p | LM324 | 30p |
| BC546 BC547 | $8 \mathrm{8p}$ | BF181 | 18 p | BU705 | 130 p | TIP54 | 85 p | ${ }^{\text {BY298 }}$ - 150 | W04 21p | 4116 40p | AN7110 | 75p | HA11423 | 140 p | LM3357 | 120p |
| BC548 | $8 \mathrm{8p}$ | ${ }_{\text {BF }}{ }_{\text {BF } 195}$ | ${ }^{20 p}$ |  | 175 p 150 | TiP105 | ${ }_{65 p}^{65 p}$ | BY299 180 <br> BY448  <br> 100  | W06 ${ }^{\text {1A400V }}$ | $\begin{array}{ll}4164.15 & 80 p \\ 4164.12 & 900\end{array}$ | AN7114 | ${ }^{120 p}$ | HA11724 | ${ }^{6200}$ | LM3 | 35 p 50 |
| BC549 | 8 p | BF199 | 8 p | BU801 | 70p | TIP107 | 65p | BYX10 15p | 1A/600V 23p | 41256-15 80p | AN7116 | 90p | HA12003 | 250 p | LM358 | 45p |
| $8 \mathrm{BC550}$ | 8 p | BF200 | ${ }^{16} \mathrm{p}$ | BU806 | 70p | TIP110 | 40 p | BYX55/600 25p | W08 28p | 41256-12 100p | AN7120 | 100p | HA12005 | 180p | LM380 | 80p |
| $8 \mathrm{BC556}$ | 8 p | BF225 | 30 p | BU807 | 60 p | TIP111 | 40 p | BYX70/500 | 1A/B00V | 41256.10 110p | AN7130 | 75p | HA12017 | 100p | LM381 | 150p |
| ${ }^{\text {BC557 }}$ | 7 p | BF240 | 16 p | BU902 | ${ }^{110}$ | ${ }_{\text {TIP112 }}$ | ${ }^{35 p}$ | OA47 10p | BR81D 33p | $41464-12$ 150p | AN7140 | 1790 | HA13001 | 110 p | LM382 | 130 p |
| ${ }_{\text {BC559 }}$ | ${ }_{8 p}$ | BF254 | ${ }_{15} 5$ | BU920 | 100p | TIP115 | 30p | OA202 10p | 2A100V 33p BRE2D | $\begin{array}{ll}\text { 6116 } & \\ 6264-10 & 210 p\end{array}$ | AN7145 | $195 p$ $210 p$ | HA13002 HA13006 | 200 p 400 p | LM386 | ${ }_{\text {60p }}^{600}$ |
| BC560 | 8 pp | BF255 | 12 p | BU922 | 110 p | TPP16 | 30p | IN4001 3p | 2A/200V 33p | 62256-12 300p | AN7154 | 180p | HA13007 | 400 p | LM393 | ${ }_{45}$ |
| ${ }_{8}^{\text {BC637 }}$ | ${ }_{200}^{200}$ | -8F256 | ${ }^{18 p}$ | BU930 | 130 p 1300 | T1P117 | 30p | IN4002 3p | 3884 D | 6502A 360p | AN7156 | 240 p | HA13108 | 350 p | LM431 | 50 p |
| ${ }_{\text {BC640 }}$ | 20 p | BF259 | 18 p | BU2508AF | 130 p 10 | TIP121 | 37 p | N4003 | 2A/400V BR86D |  | AN7168 | ${ }^{200 p}$ | HA13412 HA13432 | 600 p 400 p | LM710 | 45p |
| $\mathrm{BCY}^{\text {P3 }}$ | 2000 | BF262 | ${ }^{25 p}$ | BU2508D | 130 p | TiP122 | 30 p | 1 N 4005 3p | 2A/600V | 5800 210p | AN7222 | 75 | HA17524 | 250 p | LM741DIL | 18p |
| BCY BCY7 | ${ }^{200 p}$ | BF270 | $18 p$ $15 p$ | BU2508DF | 150 205 | TIP125 | ${ }^{30 p}$ | IN4006 N4007 | ${ }^{\text {BR888D }}$ 2A800V $43 p$ | ${ }_{6802}^{6802}$ | AN7254 | 150p | ICL7106 | 650 p | LM741MET | 45 p |
| BCY71 | 16 p | BF311 | 210 | BU2520DF | 2250 | TIP127 | ${ }^{45 p}$ | N44078 | ${ }_{8 R 32}^{2 A 800 V ~ 43 p ~}$ | $\begin{array}{ll}{ }^{680} & 508 \\ 36808 & 500 p\end{array}$ | AN7256 | $250 p$ $60 p$ | ICL7660 | ${ }_{250} 240 \mathrm{p}$ | LM747 | $55 p$ 300 p |
| BCY72 | 16p | ${ }^{8 F 3} 36$ | 20 p | BU2525AF | 325p | TIP130 | 30 p | IN5400 9p | 2AR200V | 6809 500p | AN7311 | 90p | KA2130 | 150p | LM1894N | 200 p |
| 8D115 | 30 p 50 p | 8F337 | ${ }_{20 \mathrm{p}}^{20}$ | BUH515 | $200 p$ 550 | T1P131 | 30 p | IN5401 8p | BR34 | 6810 150p | AN7410 | 150 | Ka2206 | 150 | LM3900 | 40 p |
| BD131 | ${ }_{25}{ }^{\text {p }}$ | BF362 | ${ }_{30}{ }^{20 p}$ | BUT12 | 55p | TIP141 | $30 p$ $65 p$ | $\begin{array}{ll}\text { N5402 } \\ \text { N } 5403 & 8 p \\ \text { N }\end{array}$ | ${ }_{\text {BR36 }}$ 2A400V 44p | $\begin{array}{ll}6818 & 380 \mathrm{p} \\ 6827 & 130 \mathrm{p}\end{array}$ | AY3-1015 | 290p | KA2209 | 1250 2300 | LM3909 | ${ }^{100 p}$ |
| BD132 | 25p | BF367 | 13p | BUT56A | 75p | TIP142 | 75p | IN5404 8p | 2A/600V | 6840 290p | AY3.1350 | 450 p | KA2212 | 80 p | LM3915 | 1600 |
| 8D133 | ${ }_{20 \mathrm{p}}^{50 \mathrm{p}}$ | 8F371 | 178 | BU18 ${ }^{\text {BU18AF }}$ | ${ }_{800}^{80 p}$ | TIP145 | 50p | IN5405 11p | BR62 80p | 6845 200p | AY3-8910 | 360 p | KA2213 | 130 p | LM3916 | $270 p$ |
| ${ }_{\text {BDI }}$ | ${ }_{20 p}^{20 p}$ | ${ }_{\text {BF }}$ | ${ }_{21 p}^{18 p}$ | - ${ }^{\text {BU18AF }}$ | 80p | TiP146 | 70p | (N5406 | ${ }_{\text {BR64 }}^{5 A 200 V} 72 \mathrm{p}$ | $\begin{array}{lr}6850 \\ 8085 A & 30 \mathrm{P} \\ & 300 \mathrm{p}\end{array}$ | (ey3-8912 | 400p | KA2214 | 150 p 1000 | L2001831 | 200 p 500 p |
| $8 \mathrm{BD137}$ | ${ }^{20} \mathrm{p}$ | BF423 | $25 p$ | BUx11 | 200 p | TP150 | $90 p$ | IN5408 12p | 6A/400V | 8086 500p | BA311 | ${ }_{80}$ | KA2263 | 100 p | M49481 | 700 p |
| BD138 | 20 p | BF455 | 12 p | Bux12 | 150p | TIP157 | 60 p | RGP15 25p | 8R251 150p | 8088 430p | BA313 | 60 p | KA2264 | 100 p | M50115P | 320 p |
| BD139 BD140 | ${ }_{20 p}^{20 p}$ | ${ }^{\text {BF458 }}$ | $19 p$ 50 | BUX20 | 350p | TIP2955 | ${ }_{42 \mathrm{p}}^{42 \mathrm{p}}$ | $\begin{array}{ll}\text { RGP30 } & \text { 16p } \\ \text { SKE4F2/06 } \\ \text { 60p }\end{array}$ | 25A/100V 165p | $\begin{array}{ll}8156 & 300 p \\ 8224 & 2400\end{array}$ | ba333 | ${ }_{60 p}^{80 p}$ | KA2284 | 100 p | M50117P | $500 p$ $525 p$ |
| BD144 | 90 p | BF471 | 28 p | BUx22 | 450 p | TIPL760 | $100 p$ | SKE4F208 80p | $25 \mathrm{~A} / 200 \mathrm{~V}$ | 8226 240p | BA402 | 50 p | KA2412 | 350 p | M50784 | 300 p |
| BD157 | 38 p | BF472 | ${ }^{28 p}$ | Bux37 | 220 p | TIPL763A | 200p | SKE4F2\% 100 P | BR254 185p | 8250 750p | ba511 | 145p | KA2912 | $125 p$ | M50786 | 500 p |
| BD166 BD175 | 30 p | ${ }^{\text {BF }} \mathrm{F} 479$ | 30 p | BUX40 | 210 p | TIPL791A | ${ }^{80} \mathrm{p}^{15}$ | SR2M 60p | 25A400V | $8251 \quad 200 p$ | ${ }_{8}{ }^{\text {BA514 }}$ | 160 p | KA2914A | 300 p | M50790 | 600 p |
| BD177 | 30 p | BF495 | 16 p | BUX42 | 2000 | TIS90 | 15p |  | 25A5600V 200 p | $\begin{array}{ll}8253 & \text { 160p } \\ 8257 & 220 p\end{array}$ | bA516 | 150 p 1000 | LA1130 LA1150 | 240 p | M51161 | 300 p |
| 8 BD 179 | 32 p | ${ }^{\text {BF595 }}$ | 16 p | BUX47a | 220p | TIS93 | 20 p | I.C. SOCKETS | 8R258 240p | 8271 3400p | BA524 | 240p | LA1185 | 150p | M51387P | 800 p |
| BD181 | 45p | ${ }^{85596}$ | ${ }^{16 p}$ | BUX48A | 1500 | 2TX107 | $11 p$ | 8 PIN 5p | ${ }^{25 A 1800 V}$ | 8279 270p | BA526 | 180p | L41201 | 75p | M51544 | 150p |
| ${ }_{\text {BD184 }}$ | ${ }_{60 p}^{60 p}$ | - ${ }_{\text {BF6617 }}$ | 30 p | ${ }^{\text {BU }}$ B $\times 84$ | 180p | 2ix108 | 11 p <br> 12 p | 14PIN 16 PIN | BR351 $35 \mathrm{~V} / 100 \mathrm{~V}$ | $\begin{array}{ll}8283 & 400 \mathrm{p} \\ 8284 & 440 \mathrm{p}\end{array}$ | BA527 | 95p 1000 | LA1210 | $\begin{array}{r}1400 \\ 80 \\ \hline\end{array}$ | M51848 ${ }_{\text {M54523P }}$ | 150 p 200 p |
| BD187 | 30p | BF760 | 40 p | Bux85 | 50p | ZIX212 | 20 p | $18 \mathrm{PIN} \quad 10 \mathrm{P}$ | BR352 200p | 8287 260p | BA534 | 2200 | La1230 | 1300 | M54563P | 200 p |
| 8D201 | 33p | 87763 | 40 p | BUX86 | ${ }^{30 p}$ | 2TX300 | 10 p | $20 \mathrm{PIN} \quad 12 \mathrm{p}$ | $35 \mathrm{~V} / 200 \mathrm{~V}$ | 8288 650p | BA536 | 150p | LA1364 | 200p | M58484 | 500 p |
| BD202 BD203 | 38p | BF870 BF871 | ${ }_{22 \mathrm{p}}^{22}$ | BUX87 | 50 p 3500 | Z ${ }^{\text {Z }} \times 1 \times 301$ | 16 p 10 p | $\begin{array}{ll}\text { 22FIN } & 13 p \\ 24 \mathrm{PIN} & 14 \mathrm{p}\end{array}$ | BR354 220 p $35 \mathrm{~V} / 400 \mathrm{~V}$ | 8748 700 p <br> 8755 800 p | BA546 | 160 p | LA1365 | 1200 | M51516 | 260 p |
| 8D204 | 42 p | BF960 | 38 p | BUY69A | 200 p | 2TX303 | 20p | $28 \mathrm{PIN} \quad 16 \mathrm{p}$ | ${ }_{\text {BR356 }}$ 230p | 8726 $95 p$ <br> 120  | BA656 | 110 p | LA1385 | 170p | M83712 | ${ }_{140}$ |
| 8D222 | 31p | -8F961 | 35 p 38 p | BUY71 | 250p | TTX304 | ${ }_{20}^{10 p}$ | 40PIN 18p | $35 \mathrm{~V} / 60$ | $8 \mathrm{t} 28 \quad 110 \mathrm{p}$ | BA658 | 350 p | La2000 | 150 p | M83713 | 130 p |
| BD232 | 31 p | BFR90 | 85p | BUZ71 | 75p | ZTX $\times 501$ | 13 p |  | BRV5800V 260p |  | BA684 BA685 | ${ }^{400}{ }^{400}$ | LA2200 | ${ }_{190 \mathrm{p}}^{270 \mathrm{p}}$ | M83714 M 8715 | 270 p 250 p |
| BD233 | 30p | BFR91 | 99p | BUZ80 | 200p | 2TX502 | ${ }_{18 p}^{10 p}$ | ZENERS | BY164 | Unearics | BA1310 | 160p | L43160 | 120p | M83722 | 280 p |
| BD234 BD235 | 32 p <br> 28 | BFT43 BFX29 | ${ }_{20 \mathrm{p}}^{30}$ | BY448 | ${ }_{25 p}^{20 p}$ | ZTX504 | 25 p | 400 mWatts 5 | 1.5A100V 40p | AN203 210p | 8A1320 | 75p | L-3210 | 65p | M83730 | 160 p |
| BD235 BD236 | ${ }_{30} 28$ | ${ }^{\text {BFF }} 84$ | 20 p | C106D | 28p | 2 N 696 | $26 p$ | 2V7 1039 lo | 8Y476 ${ }_{\text {1.5A800V }}$ | $\begin{array}{ll}\text { AN210 } & 165 p \\ \text { AN2140 } & 1700\end{array}$ | 8A1330 | 120 | LA3300 | 140 p | M83731 | 220 p |
| BD237 | $21 p$ | BFX85 | 20 p | IRF630 | 150p | 2N697 | ${ }_{40 \mathrm{p}}^{22}$ | 2V7 to 39V 9p |  | AN228 280p | BA4403 | 220p | LA3361 | 100 p | M83759 | 200 p |
| 8D238 | 24 p 300 | BFX87 | 15p | ${ }^{J 174}$ | $38 p$ 50 50 | $2 N 78$ | 22 p |  | triacs | AN252 150 p | 8A5101 | 350 | LA3375 | 300 p | M88719 | 360 p |
| BD239 BD240 | ${ }^{30 p}$ | BFX88 <br> BFX <br> 8 | 15p | J300 | 50p 200 | 2N914 2N930 | ${ }^{28 p}$ | Voltage | TYC2060 60p | $\begin{array}{ll}\text { AN259 } & \\ \text { AN262 } & \\ \text { A }\end{array}$ | ${ }^{\text {BAS }}$ B202 | ${ }^{1400}$ | La4030 | ${ }_{1400}^{180 p}$ | MC1455 | $45 p$ $65 p$ |
| 8D241A | 40 p | BFY50 | 14 p | MJ1000 | 200 p | ${ }^{2} \mathrm{~N} 1131$ | 18p | hegulatcrs | 4 N 400 V 60p | AN222 AN 271 | BA5402 | 200p | LA4032 | ${ }_{1400}$ | MC3401 | 65p |
| ${ }^{\text {BD2 }}$ 834A | 50 p | BFY51 | 14 p | M 1001 | 200p | 2 N 1132 | 28 p | $7805 \quad 25 p$ | TIC225D 69p | AN274 250 p | BA5406 | 180p | La4051 | 160p | NE555 | 20p |
| BD245 | 50p | ${ }_{\text {BFY }}$ | ${ }_{25 p}$ | MJ15003 | 300 p 250p | (1) | ${ }_{24 \mathrm{p}}^{24 \mathrm{p}}$ | $\begin{array}{ll}7806 & 25 p \\ 7808 & 25 p \\ 781\end{array}$ | T1C2260 68p | $\begin{array}{ll}\text { AN301 } & 330 \mathrm{p} \\ \text { AN303 } & 250 \mathrm{p}\end{array}$ | ${ }^{\text {BAFS6108. }}$ | ${ }^{180 p}$ | La4100 | ${ }_{80 \mathrm{p}}^{85}$ | NE556 | ${ }_{80}^{40 \mathrm{p}}$ |
| B0246A | 50p | BFY64 | 25p | MJ15004 | 300p | 2N1893 | 30 p | 7812 25p | 8 N 400 V | AN304 360 p | BA6208 | 175p | LA4102 | 100p | NE565 | 110 p |

failures in my time, and eventually got so exasperated with this that I put leds in the rear. The enclosed circuit shows what I installed. Unlike many of the pulsing battery powered led rear lamps seen on the roads these days, the light output from this circuit is visibly constant. Four leds are used in an inverse series-parallel arrangement so that two of the leds are illuminated on each half cycle of the dynamo output. Each limb includes one led with a narrow viewing angle, to project plenty of light backwards, and another with arwide viewing angle, to spread light in all directions. In practice this works well. The 8 mm ultrabright GaAIAs leds used (RS 577-718 and 577-730) have peak efficiencies at low currents, so pulsing has no advantage in terms of average light output.
The back-to-back 8.2 V zeners do not normally conduct, but protect the circuit if the front bulb blows. Two 5 W devices are well able to absorb the entire 500 mA output from the dynamo, clamping the voltage to about 9 V , and the led circuit will tolerate this, though perhaps not for very long periods. Since putting the circuit in I have had a real front-bulb failure, and the rear lamp was undamaged.
In normal use the circuit consumes about 30 mA - only a third of the 100 mA of a standard bulb, and is every bit as bright. At about $£ 1$ each, the leds are not cheap, but were well worth it, in my view. More leds could be used - twelve leds would consume no more power than a standard rear bulb, and produce considerably more light. Led manufacturers are understandably very keen to get device efficiencies up and prices down so they will eventually supersede incandescent bulbs in motor vehicle rear lamps. When this happens, we can expect further improvements.
Unfortunately leds are not yet an option at the front. My own experience is that halogen bulbs are adequate. These are far more efficient than ordinary bulbs, and produce enough light to make road markings and signs visible in dark country lanes. As a means of being seen by other road users, I think they suffice.
In fairness, I should point out that leds are not legal in rear lights, because they are not incandescent. Silly, but true, especially since they are superior and more reliable. Prosecution for the offence of having leds at the back is not, however to be expected. I conclude that this is because in York - one of the country's foremost cycle cities -
only about half of the cycles about at night have lights at all, and the police never seem too bothered.

## Alan Robinson

York

## Thoughts in tandem

I believe that Steve Bush's need for a small efficient dynamo may be satisfied by utilising a small shunt wound electric motor and adapting it to generate current by constructing an electronic regulator to feed the field coil. By experimenting with the device to understand the characteristics of the motor, a fairly efficient dynamo may be built. There should be sufficient residual magnetism in the iron of the device to cause it to self excite.
It may be necessary to polarise the device by running it as a motor from a power supply with the field in parallel with the armature to ensure that it charges with the correct polarity.
All of the car type alternators are constructed as three-phase machines with slip-ring feeds to the rotor for the exciting current. This type of machine would be a good model to copy if one had the machining facilities. Details may be found in
most of the Haynes car maintenance manuals, the one for the Land Rover series II I remember as being particularly good on alternators.
It may be possible to find a small device from a piece of war surplus equipment, such as the Bendix Bomb Sight computer that was available from war surplus stores, (showing my age eh?). Devices such as a magsyns or selsyns could probably adapted to work as Steve requires.
There is one other alternative, details of which he may find in a copy of Haynes Motorcycle Maintenance manual for the Honda $400 / 4$, circa 1974 to 78 , which had a form of variable-reluctance alternator with electronic control. From this he will perhaps be able to design smaller vr machine.
There is another idea, which may prove too wasteful in input energy terms. There are many small permanent-magnet motors available these days. They are often used for electronic seat movements in cars. Such a motor would give a fairly large output, but regulation would have to be a crude zener diode. It may be possible however to arrange a mechanical magnetic shunt to prevent too much energy being
absorbed from the bicycle wheel.
My final suggestion is to adopt and adapt a scheme that was prevalent in my 'teens, from a company called Miller, if my memory serves me well. This had a small container strapped to the down tube. It held some dry batteries which took over the lighting when the bike was stationary.
By adapting the scheme to incorporate a set of nickel-cadmium cells, or circular lead-acid cells, and rectifying the existing bike dynamo output Steve could charge his battery at all times while the cycle was moving, have good lighting, and, in case he didn't get enough daylight cycling during the winter, he could unplug the battery pack and trickle charge it. Cell size could be calculated for optimum depending on journey length, charge rate, etc.

## Nic Houslip

Dallas Semiconductor Corp Ltd Birmingham

## Power-line reaction

In the May 1995 issue, a letter from Roger Coghill claimed that a review published by the IEE, in June 1994, on the possible biological effects of low-frequency electric fields was

## My heart skipped a beat

I read with interest and concern the article entitled Monitoring Heartbeat in the July 1995 issue.
I note your comment concerning the mains adaptor having to comply with medical safety requirements However, I am concerned that there is no apparent isolation from ground at the patient probe inputs.
Under certain single-fault conditions, circulating (low-frequency, typically 50 Hz ) currents can be present, causing possible fibrillation risk or undesirable muscle stimulation to occur.
There are specific medical equipment safety standards that mandate the maximum permissible leakage currents allowed to flow between the probes. These standards are under the group for Electromedical Equipment and are designated IEC 601-1 for general safety with a further Part 2 standard specifically applying to ECG related equipment.
Michael Brett
Watford
Hertfordshire

## Finger on the pulse

It may be worth pointing out that the instrumentation amplifier in Baki Koyunku's heart rate monitor ( $E W+W W$, July 95, pp605-7) is probably redundant in his configuration.
Firstly, an "instrumentation' configuration can provide a very high input impedance. However, the $1 \mathrm{M} \Omega$ input resistors prevent this feature from being used.
Secondly, the configuration can provide a very high common-mode rejection ratio. However, an elementary analysis will confirm that this is only possible if the first stage has a high gain and the
second stage has a very low common-mode rejection ratio. This is because the common-mode gain of the first stage is unity so the circuit relies on a high differential-mode gain, and good rejection of the common-mode component from the first stage.
Koyunku's circuit features a first stage differential gain of only three, which is not good enough. His second stage is bizarre, featuring a different gain and frequency response from the positive and negative inputs. There is absolutely no chance of achieving anything approaching common-mode rejection especially as his gain control resistor (I think this what it is) affects the gain paths differently.
Readers implementing this circuit will do much better to transfer the gain to the first stage, where it can still be adjusted by varying the single 'central' resistor. Unfortunately, no component references were given in the circuit, so my description necessarily vague.
The second stage should be a unity gain differential buffer with $0.1 \%$ resistors, and with capacitors across both the feedback resistor and the resistor from the positive op-amp input to ground.
Ideally, the input potential dividers should be altered too. As it is they serve to introduce a common-mode component, or, if you like, they cause common mode interference to generate a differential mode
component. Don't forget to allow provision for the bias currents.

These modifications will turn the circuit into an instrumentation-quality amplifier which it quite clearly is not at the moment. A better option may be to use one of the cheap instrumentation amplifier ICs now on the market.
David Gibson
Microsystem Solutions
Leeds

## LETTERS

'propagandist material masquerading as science'. He also claimed that the composition of our working committee was heavily weighted with power-utility-related personnel and that we refused to disclose the references on which the report was based.
The IEE has been aware of the public's concern about the possible harmful effects of electromagnetic fields for a number of years. In November 1992 we set up a Working Party, comprising both IEE members and others with relevant expertise in the field to monitor relevant scientific literature. The Working Party has a balanced membership, with only one member from the power-utility-related industry and includes an eminent epidemiologist involved in leukemia research. The literature was retrieved by searches of three major databases and an abstract of each paper was obtained.
When Mr Coghill approached the Institution, for a list of references, he was informed that, because of the contractual arrangements under which they were obtained, we could not supply him with photocopies of the abstracts. Since he had informed us he required the references to carry out his own research, Mr Coghill was provided with details of the databases interrogated, by the IEE, and the search criteria used. We also offered to conduct computer searches, on a commercial basis, for him from the same databases, using the identical search criteria and over the same time period.
These searches would have provided him with identical information that the IEE Working Party considered. The IEE Working Party has continued to monitor
relevant scientific literature and there has been no reason to change the conclusions reached in June 1994 that the studies show no firm evidence of biological effects of low-level, low-frequency electromagnetic fields.
J. C. Williams, Chief Executive The Institution of Electrical Engineers
London

## Anti-aliasing filter rework

In my article on antialiasing filters in the June issue, an error escaped me in the preparation of the frequency response graphs: the curves labelled $A_{\mathrm{n}}$ and $D_{\mathrm{n}}$ were named $A_{\mathrm{x}}$ and $D_{\mathrm{x}}$ in the captions, the index ' $x$ ' indicating their relation to the mixed-mode response $M_{x}$.
I would also like to thank $\mathbf{M r}$. Self for his comments on my letter ('Lend a golden ear', May '95). I must add that by those examples I was not offering proof, but rather asking questions. Yes, it is difficult to accept that some people have extraordinary abilities of perception. But in the case of my colleague, those resistor values were the only difference I could find, using a simple $31 / 2$-digit dmm, an HP oscillator and a Tektronix 475 'scope).
Of course, it is possible that I was fooled. But I also remember reading about a woman being held in a psychiatric clinic for 14 years because she was 'hearing voices', and then, before starting a therapy with new medication, she was sent to a routine audiometry check where it was found out that her lowfrequency hearing threshold was
about 4 Hz . Hopefully, claiming of being able to hear something that others don't will not put anyone under medical surveillance, but the present trend worries me.
I agree that too many vendors take advantage of the situation. But how come we engineers struggle for every milliohm in the amplifier output impedance? Is it only for stability reasons?
Regarding the communication failure, even we engineers sometimes can not hear ourselves shouting. I believe I have shown (in $E W+W W$, July 1987) one possible way in which 'the unmeasurable avoids to be inaudible'.
For a moment let's put aside the actual phase-switching audibility threshold - which in my opinion is much lower than the crossover spikes audibility threshold. The trouble is that when we use a constant amplitude signal source and take the amplifier input-output signal difference, we intentionally compensate the amplifier phase shift to single out crossover spikes.
When the signal amplitude is lowered, the crossover spikes fade in the noise. The remaining phase error is interpreted as some residual distortion, more easily so if there are other distortion mechanisms in the circuit. However, if the phase is not correctly compensated, a relatively large phase error will appear along with the crossover spikes when the signal level is raised.
I have made this error myself on countless occasions. Interestingly, there was nobody to comment on this. Instead, there are only negative comments on the amplifier model used, despite my clear statement that the model was simply a simulation of a typical popular amplifier.


Possible solution for isolating Self's amplifier's input bootstrapping from its feedback.

It remains to be seen if the described switching phase modulation mechanism is really the cause for the majority of 'scarce definition' marks in subjective evaluations. But engineers keep talking about distortion, so in the mind of inexperienced amplifier buyers, if there is anything audible, it must presumably be 'distortion'.
I have yet to meet a 'subjectivist' who sticks to a Heisenberg acoustic uncertainty principle, which states that even the presence of a single listener modifies the sound field obviously true, but equally obviously nonsense.
Finally, I would like to offer Mr. Self a possible solution for isolating the input bootstrapping from the feedback in his recent design, in the form of the diagram shown.
Erik Margan
Ljubljana
Slovenia

## Mosfets, BJTs and power amps

I have been following Doug Self's articles on power amplifier design and the subsequent flurry of


A2u 300 mm Rackmount Enclosure for $£ 28.51$

* Seperate Internal Frame and Chassis
* External Cover Panels
* Removable. Front and Rear Control Paneis
* Free Standing or Rackmount
$1 \mathrm{u} \times 300 \mathrm{~mm}$ depth $£ 26.20$
$2 \mathrm{u} \times 300 \mathrm{~mm}$ depth $£ 28.51$
$3 u \times 300 \mathrm{~mm}$ depth $£ 31 . .24$
prices exclude vat and carriage
Manufacturers for the Electronics Industry
For some of the lowest prices in the UK
Dene Industrial Park, Kingstone, Herefordshire, HR2 9NP Tel: 01981251484 Fax: 01981250187
correspondence discussing power amplifier design philosophy. As a commercial designer, I am surprised that so much of the debate appears to revolve around the inherent linearity - or non-linearity - of bipolar junction transistors versus fets. More significant, when considering the design options, is relative price; with a mosfet output device costing pounds rather the pence a bjt commands - even in relatively large quantities.
Further, mosfets have the disadvantage of a finite, and relatively large, on resistance which wastes power and necessitates paralleled devices in order to drive low impedance speakers. These considerations affect 'watts per dollar' calculations considerably and probably account for the relative dearth of commercial mosfet amplifiers more than considerations of inherent device linearity.
But it is not wholly for commercial reasons that the fet is under attack; I do not subscribe to the current swing in intellectual fashion against mosfet amplifiers simply because of their inherent poor crossover distortion characteristics within a Class-B circuit. The mosfet is still worthy of consideration from any engineer designing an audio power amplifier because they possess a number of highly attractive attributes.
I can wholeheartedly confirm Mr Self's empirical observations that the open-loop, transfer-characteristic ' of the crossover region in a mosfet amplifier is less 'tidy' than the corresponding region in a bjt amplifier when the latter is adjusted for optimum bias. This indicates that fets must be used in an amplifier designed to have adequate, and controlled, open-loop gain to accommodate a relatively high feedback factor. Fashion - and that's all it is - dictates that this is prima facie 'a bad thing'. But the same is true of a bjt amplifier because, while it is true that it is possible to trim a junction transistor output-stage to possess a linear crossover region, real-life operating conditions - and the thermal time-lag in temperature compensation - mean that the bias often departs from the optimal value for the output stage's given operating conditions. Add to this the mosfet characteristics of constant gain-bandwidth product and inherent protection against thermal runaway and secondary breakdown and it is still possible to justify the fet's place in power amplifier design. One exception is perhaps where cost is an overwhelming factor.
Richard Brice
Electric Perception Ltd


## Could germanium perform?

I have been following Douglas Self's excellent series on power amplifier design, and the following correspondence with great interest.
One point intrigues me: Mr. Self has made several comparisons between various output topology and devices, bipolar and mosfet - I was wondering how well germanium performs in the same tests. By comparing the $I_{d} / V_{\text {be }}$ curves of silicon and germanium, intuition suggests that the same dips in the output gain curve will be present, but that the slope of the dip will be less steep, suggesting that a smaller bandwidth of gain/feedback stage would be necessary to achieve the same thd performance.
Or I may be entirely wrong.

## Ian Benton

I/keston
Derbyshire

## Final hearing...

In his letter ("Slewing from reality", Letters, pp.500-501) Douglas Self denies that music can involve transient hf levels as high as the loudest bass passages, But in this he is himself slewing dangerously outside his field of competence.
He appears to be misusing data on music's spectral composition. This is based on rms, or long-term $L_{\text {aeq }}$ measurements and is free from information on slew demands.

Conversely, my comments stem from colleagues who are world class producers of music. I doubt Self has any primary experience of quantifying hf levels of a rock band. The experiment with a supermarketgrade keyboard cuts no ice.
Even the inferred response out to 16 kHz enables full level treble seven times higher than the 2.2 kHz above which he claims "large" signals do not occur in music.
In fact synthesisers can have far higher sample rates than 44 kHz , and analogue synthesisers (which may be digital in their controls) can also have edges extending way above audio. In both instance, increasing use of on-stage mic splitters enables hf edges to be preserved.
I should like to address, in turn, the errors Self alleges in my translation of his circuit. 1. The vas "flush-out" resistor ( $1 \mathrm{k} \Omega$ ) is not altogether missing. In MicroCap, there is a minimum conductance setting across active device terminals, used to aid convergence. So "re-flush" is always there, just hidden inside the transistor, though admittedly too
high in value.
Yet if Self had tried simulation, he'd have seen that stepping the flush-out between $1 \mathrm{M} \Omega$ and $1 \mathrm{k} \Omega$ has no effect on the negative slewing, and only a small tidying-up effect on the positive pedestal.
2. Self is adamant that fast signals can never assault an amplifier - here he claims my $100 \mathrm{~V} / \mu \mathrm{s}$ test signal is too slow! But faster attack has little effect on the slew limit of his topology, and as excess test signal speed also increases the time for a given simulation accuracy, it wasn't necessary.
3. The cvas cs base resistor is different precisely because some value stepping was tried, and it had scant effect.
4. Self mentions that all the transistors have been changed, skillfully drawing attention away from the fact that, unlike his own simulations, the transistor model data I have used is shown in its entirety.
Moreover, I ensured that the Selfdefined slew-critical bjt parameters are amongst the highest available, So either the poor negative slew performance is true (and his simulation accuracy is questionable); or the circuit schematic is extraordinarily sensitive to transistor parameters.
His comment on portal filtering has not been thought through either. All decent audio sources have source impedances below $1000 \Omega$ unless they are the passive preamps or valve preamps used solely by the audiophiles. In such cases, all that will happen with correctly scaled $R C$ filtering is that hf will be rolled off prematurely. This will not degrade \%thd - apparently the only parameter that matters.
Turning to harmonics, I have made it clear how real sonic issues may be addressed without added parts or presets, but solely through careful design. The resulting values have been very different to those Self believes are perfect. Where is the scientific evidence that supports his assertion that vanishingly low \%thd (anything below $0.01 \%$ ) has any predictable beneficial effect on sonic quality?
Self's low distortion figures may deserve an A plus for analogue electronics, but real audio professionals award them $D$ minus. The "much increased dc offset" is a non-problem if considered earlier in the design process.
On another topic, I note Self admits that mosfets can have low distortion. In fact he is highlighting the nonsense of trying to compare chalk with cheese. After 17 years of
waging war on experienced operators in professional audio on these pages, it is time for Douglas to lay down his weapons.
As for the other correspondents, I thank them for their input. But Mr Davis cannot have carefully read my words. I certainly did not say that capacitor mics were not used 20 years ago. Rather, it takes 'classical' music combined with dynamic microphones and other less hfresponsive technology to explain why Baxandall could go unchallenged for so long.
I take Davis' word on the theoretical limits of certain classic cutting equipment. But the fact remains that ultrasonic signals have been measured at the replay end.
I agree with Mr van den Geve] that vhf \%thd sweeps may be used to show slew limiting. On the other hand, steep rises that look like slewing can also be caused by several other mechanisms, and amplifiers can burn out when tested in this way.
The DIM301100 test is rather more sensitive than thd, though such measurements will not reveal the impulse time domain information shown in my slew simulations.

Van den Gevel has also ignored my other points, about the reality of rf contamination for example.

Assuming an rf free-environment, Self's asymmetric $40-50 \mathrm{~V} / \mu$ s is fine for his putative 20W amplifier. But if you need 1020W (not so outrageous when rescaled in V , and account taken of fidelity-aiding stuff such as 6 dB of head-room and listener space greater than shoe-boxsized) $50 \mathrm{~V} \mu \mathrm{~s}$ may prove most painful and ultimately ear-
damaging.
Ben Duncan
Tattershall
Lincoln

## Chain letter

Following the Self-Duncan debate and I must admit I declare on Self's side - how refreshing to read Jeff Macaulay's comments about "the carefully cultivated signal...being mangled..." and "What emerges...is a distorted version of the driving signal, no matter how perfect the input may be."
How about some articles on the whole audio chain to put amplifier performance into its proper
perspective?
Mark Plews
Herrsching
Germany

# Reference books to buy 

 For Audio Engineers

- Comprehensive - over 600 pages

Written by leading authorities from the audio world

- Easy to read, compiled for maximum accessibility
- Concise and authoritative
- Covers topics from noise measurement to studio installation


## Subjects include

Recording, microphones and loudspeakers

Digital audio techniques Basic audio principles

Acoustics and psychoacoustics

Audio and television studios and their facilities

Radio and telephony

Invaluable reference work for anyone involved with audio from broadcast consultant to serious enthusiast. Audio Engineer's Reference Book is written by an international team of experts and edited by Michael Talbot-Smith previously a trainer of audio engineers af BBC Wood Norton and now a freelance audio consultant and technical writer.

## For TV \& Video Engineers



- Over sixty chopters on the latest techniques in video and television
- Up to date reference on EMC requirements, DBS and HDTV
- Easy-fo-use reference, eminently suitable for students
- Topics range from materials and construction to medical and defence applications of television.


## Subjects include

Fundamentals of colour TV
TV sfudios
High definition TV
Satellite broadcasting
Distribution of broadband signals

TV receiver servicing
Video and audio recording and playback

Telefext

The TV \& Video Engineer's Reference Book will be of immense value to anyone involved with modern tv \& video techniques - in particular broadcast engineers. The new format makes it an excellent reference for students. Edited by KG Jackson and GB Townsend from contributions written by acknowledged international experts.

Please supply me $\qquad$ copies of the Audio Engineer's Reference Book, (ISBN 0750603860 )
Fully-inclusive price - UK $£ 62.50$, Europe $£ 68$, Worldwide £78. Please add vat at local rate where applicable.

Please supply me $\qquad$ copies of the TV \& Video Engineer's Reference Book, (ISBN 075061953 8)
Fully-inclusive price - UK $£ 42.50$, Europe $£ 48.00$, Worldwide $£ 58.00$, Please add vat at local rate where applicable.

Remittance enclosed $£$ $\qquad$
Cheques should be made payable to Reed Business Publishing Group Ltd
Please return to: Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Please debir my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. $\qquad$
Exp date
NAME (Please print) $\qquad$
ADDRESS $\qquad$

## POST CODE

$\qquad$
DATE $\qquad$ TEL $\qquad$

## SIGNATURE

## VAT RATES

6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3\% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)

## VAT NO.

$\qquad$
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Pleose delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Business purchase: Please send me the book listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below. Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund.

# INTERFACING WITH C 



HOWARD HUTCHINGS
f you have followed our series on the use of the $C$ programming language, then you will recognise its value to the practising engineer.
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An apendix provides a 'getting started' introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming. The programs having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

Please supply $\qquad$ copies of
INTERFACING WITH C
Please supply $\qquad$ copies of
Disk containing all the example listings $£ 15.00$
Remittance enclosed $£$ $\qquad$

Interfacing with $\mathbf{C}$ can be obtained from Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Cheques should be made payable to
Reed Business Publishing Group Ltd
Please debir my credir card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. $\qquad$
Exp date
NAME (Please print)
ADDRESS $\qquad$
$\qquad$
$\qquad$

POST CODE $\qquad$
DATE $\qquad$ TELE $\qquad$

SIGNATURE
VAT NO $\qquad$
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.

# Harmony 7 in the <br> band 

> Svetlana Josifovska has been looking at the government's recent spectrum review intended to prepare the way for the introduction of Europe-wide services.
and mobile radio and other radiocommunications services, and advanced technologies such as T-DAB - terrestrial digital audio broadcasting - are increasing at an incredible rate. One of the effects of these advances is increased pressure for more radio spectrum.
Since the radio spectrum is a limited resource, a logical progression is to reorganise existing services and reallocate frequencies. But, although this may appear simple at first glance, it is actually a delicate game of strategies and tactics. The parties involved - a mixture of government, military and civil authorities - always request more, rather than less, of the radio spectrum.
Stage 3 Radio Spectrum Review committee was set up in July 1992 by the Board of Trade President Michael Heseltine. Last month it came up with a a synopsis that covers arguably one of the most crowded, and hence contentionus, parts of the radio spectrum - the $28-470 \mathrm{MHz}$ range.
"The Review Committee made 28 recommendations, 24 of which have been accepted by the

Government without reservation. The remaining four are accepted in principle. The recommendations cover both defence and civil use of the Review spectrum and a number of them have already been acted upon," said Heseltine.
Within this frequency range there are allocations that belong to the broadcasting industry and the mobile industry including land, aeronautical, maritime and satellite. These are also space research and operations in the range, that still belong mainly to the MoD. Users of this spectrum range from broadcasters and the government to utilities and emergency-services operators and the civil mobile radio community.
The Stage 3 review of the radio spectrum in the $28-470 \mathrm{MHz}$ range completes the government sponsored independent reviews of the radio spectrum over the range 28 MHz to 30 GHz . The ranges below 28 MHz and above 30 GHz are subject to internal audits and the results of these are expected to be published later in the year.

More releases between 225 and 400 MHz Amongst the agreed requirements was the role of the MoD in this radio spectrum and its release of more frequencies for civil use. Although the MoD has already released the 225 MHz to 230 MHz band for T-DAB, it was recommended that it should seek, through NATO, the release of some of the 225 MHz to 400 MHz frequency band for civil systems in the UK, particularly the $380-399.9 \mathrm{MHz}$ band in its entirety. Access to two 5 MHz sections in the 380 MHz to 400 MHz band by 1997 has already been agreed by NATO/ARFA for use by the emergency services and the rest of the spectrum's release is still under review.
"Part of an existing defence frequency band has already been released for a new digital radio broadcasting service for the UK. Further defence spectrum has been released in cooperation with NATO to provide the emergency services with an opportunity to develop a new radio system. This in turn will also assist with the resolution of the long standing continental radio interference problems in the UHF frequency bands in England and Wales," said Heseltine.
These frequencies are of significant importance because it is in line with the CEPT agreement for emergency services to be harmonized across Europe. According to government estimates the emergency services will begin to take up use of this band in 1998 and complete the changeover by the year 2003.
The committee is urging the MoD to adopt a
leading role within NATO, through the process of specifying new equipment and through more economical spectrum management, towards a reduction in the total bandwidth required.
The government is also paying more attention to the introduction of T-DAB, by arranging an EU meeting in July to discuss the subject. It encourages broadcasters wishing to use T-DAB to start a service soon. All vhf sound broadcasting should be contained within Band II $(88 \mathrm{MHz}$ to 108 MHz$)$ as soon as possible should the introduction of such service prove feasible.

## Improvements to mobile services

On the subject of land mobile services, the government has agreed to a programme of improvements to ensure better management of these services' radio spectrum, which will ultimately benefit users.
The programme would consist of improved methods of frequency assignment, efficient procedures for systematic analysis of licensing data and monitoring results, and efficient spread of frequency spectrum between exclusive Private Mobile Radio (PMR) and shared PMR. The Radiocommunications Agency (RA) has been recommended to oversee the implementation of these improvements and coordinate some areas of planning with the mobile industry. Inclusive of PMR, the other two areas are Common Base Station (CBS)
and Public Access Mobile Radio (PAMR) services.
The RA will also take care of the policies and strategic plans for the future use and allocation of the spectrum to meet the needs of the private and public sectors. It will make sure that operators use the given radio spectrum to the best national advantage. This responsibility the RA may share with the MoD, an option which is currently under review.
The RA will also look into deregulating low-power PMR services for indoor use, for example in the area of short-range business radio.
Other aspects of the spectrum that have been included in the review are the arrival of new technologies and the allocation of frequencies to them. One such example is the emerging Digital Short Range Radio (DSRR) and 5 KHz narrow-band land mobile radio.
But amongst the important points that have been covered in the committee's proposal and the government's response, is the role of the UK in Europe and the economical benefits it may gain.
"Today's response and the progress which will be made in implementing the recommendations is a further example of the steps we are taking to improve the efficiency of spectrum management and usage in the UK to promote competition and choice for the benefit of all users of the radio spectrum," said Heseltine.

Amongst the examples for a UK lead within the European community is its lead in the talks with NATO, to release some of the frequency ranges for civil use, and its supporting role in harmonizing services with the rest of Europe. These include the emergency services synchronization in the uhf $380-400 \mathrm{MHz}$ band, that was recommended by CEPT and which is expected by 1997, and the vhf band for publicsector spectrum requirements for PMR.
Harmonization with Europe of the spectrum use and equipment characteristics is seen as being essential for the UK. The government takes into account that harmonisation does not necessarily always yield efficient use of the radio spectrum, but it will ensure the limiting of allocations where it is essential for Europewide capabilities or for border coordination.
These issues have been addressed before in the consultative document, The Future Management of the Radio Spectrum.
"Some of the Review Committee's recommendations addressed spectrum management issues which were also the subject of the Consultative Document on the Future Management of the Radio Spectrum. Therefore it was decided to delay the completion of the Government's response to the Stage 3 Review until after consideration of the submissions to the consultative document," said Heseltine.

## TELFORD ELECTRONICS



AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE
Postage and packing must be added. Please phone for price. VAT @ $171 / 2 \%$ to be added to all orders. Please send large SAE for details.

# Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6DJ Tel: 01952605451 Fax: 01952677978 

# EXPERT WITNESS 

## Audio expert John Linsley-Hood rarely enters such debates, but the claims in favour of the bit over mosfets have challenged his decades of experience.

0n several occasions - most recently in the May 1995 issue - Douglas Self has claimed that bipolar junction transistors, bjts, are more linear than power mosfets as audio amplifier output stage devices.

I am reluctant to accept this assertion, since if it were true it would overturn the whole of my experience - in respect of the comparative performance of these devices in audio power amplifiers - over the 20 -odd years since the commercial introduction of power mosfets. I feel that the progress of audio design requires that this claim be contested.
There are of course, many other reasons -
better hf performance, greater stability, greater robustness and inherent freedom from thermal run-away - which have encouraged a number of manufacturers of audio amplifiers to use mosfets rather than bjts as the output stage devices in their top range designs. But the question which Self raises is that of their intrinsic linearity as an output push-pull pair. This is a quality which I feel can be related by means of measurements - to the residual harmonic distortion characteristics of audio amplifiers incorporating one or other of these alternative devices in its output stage.
Some years ago, I was asked by a well



Fig. 2. Output emitter-follower/source-follower configurations used in the test circuits.
known semiconductor manufacturer to explore the use of their recently introduced insulated gate bipolar transistors, igbts, as output-stage devices for audio amplifiers. It appeared that igbts should combine the practical advantages of both bjts and mosfets. To this end, I designed and built a group of audio amplifiers. These used the basic voltage amplifier layout of Fig. 1 as a gain block. The various output devices were inserted into these gain blocks, in the positions shown as square boxes, using the various emitter or source-follower configurations of Fig. 2.
Performance of these amplifiers, operated from a pair of $\pm 50 \mathrm{~V}$ stabilised dc power supplies, is shown in Fig. 3. Measurements were made at a frequency of 1 kHz with an $8 \Omega$ water-cooled load at power output levels up to the onset of clipping.
In all cases quiescent current of the outputstage devices was adjusted on test to give the lowest harmonic distortion figure for the amplifier. It was noted that this adjustment was less critical with the mosfets than with either the bjt or the igbt devices.
Subsequently, we found that the test oscillator used in these measurements had a residual harmonic distortion at the 1 kHz test frequency, of $0.003 \%$. This was mainly third harmonic, so, in reality, all of these measurements had tended somewhat to exaggerate the
true residual distortion figure of all of the amplifiers. Nevertheless, the superiority of the mosfet based design is evident in this comparison in which the only variable was the choice of output stage devices.
The reasons for this difference in linearity between the alternative output stage devices are complex. I suspect that two main factors make the negative feedback loop in mosfet amplifiers more effective than in bipolar equivalents. One is the nature of the frequency distribution of the distortion components due to the discontinuity of the transfer characteristics of the output push-pull output pair. The other is the relatively lower internal phase shifts of mosfets.
Whatever the reasons for performance differences, it is clear that they are not adequately revealed by a Spice type computer simulation of the output-pair transfer characteristics. As such, this type of measurement fails to meet Self's own criterion that 'if an apparent fact is repeated many times without number... it deserves to be looked at very carefully indeed'.

## Further reading

For those of you interested in fuller details of the circuitry used in these experiments, see Toshiba Application Note X3504, March 1991.



## The Art of Linear Electronics - 10\% $E W+W W$ reader discount

While stocks last, Electronics World \& Wireless World is offering John Linsley-Hood's book 'The Art of Linear Electronics' at the $10 \%$ discount price of $£ 15.29$ - instead of the normal retail price of $£ 16.99$.
'The Art of Linear Electronics' order - ISBN
0750608604 - contains electronic component symbols and circuit drawings; passive components; active components based on thermionic emission; active components based on semiconductors; practical semiconductor components; dc and low-frequency amplifiers; feedback, negative and positive; frequency response; modifying circuits and filters; audio amplifiers; low-frequency oscillators and waveform generators; tuned circuits; high-frequency amplifiers/oscillators; radio receiver circuitry; power supplies; noise and hum; test instruments and measurements.

This practical 340pp handbook gives a complete working knowledge of the basics and technology of linear electronics - with application examples in such fields as audio, radio instrumentation and television.

Send your order with a cheque made payable to Reed Business Publishing Group Ltd, to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

## LOW COST PC'S - ALL EXPANDABLE - ALL PC COMPATIBLE

## PC SCOOP

## COMPLETE

 COLOUR SYSTEM ONLY $£ 79.00$

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## FLOPPY DISK DRIVES $31 / 2^{\prime \prime}-8^{\prime \prime}$

51/4" from £22.95-31/2" from £24.95
Massive purchases of standard $51 / 4$ and $31 / 2$ drives enables us to
present prime product at industry beating low prices! All units (unless ment and are fully tested, guarantee and operate from standard voltages and are
size. All are l日M-PC compatible (if $3 / 2 / 2$ supported on you
31/2" Panasonic JU363/4 720 K or equivalent ${ }^{£ 24.95(\mathrm{~B})}$
$3 / 2^{\prime}$ Mitsubishi MF355C-0. 1.4 Meg. Non laptop

Data cable included in price
Shugart $80018018^{\prime \prime} S S$ S Shugart 8518 " double sided refurbished \& tested Mitsubishi M2894-63 8" double sided NEW
Mitsubishi M2896-63-02U 8 " OS slimline NEW
Dual $8^{\prime \prime}$ drives with 2 mete capacity housed in a ma85.00(E)

## HARD DISK DRIVES

| End of ilne purchase scoopl Brand new NEC D224 of hard disk storage! Full industry standard SMD Int hi speed data transler and access time, replaces Fujl model. complete with manual. Only | 8" 85 Mbyte face. Ultra equivalent £299.00(E) |
| :---: | :---: |
| $31 / 2$ " FUJI FK-309-26 $20 \mathrm{mb} \mathrm{MFM} \mathrm{I/F}$ | E59.95 (C) |
|  |  |
| 31/20 CONNER CP3044 40 mb IDE IFF (or equiv.) | ¢89.00 |
| 31/2" RODI | 899.00 (C) |
| $51 / 4{ }^{\text {a }}$ MINISCRIBE 342520 mb MFM 1/F (or equiv.) | E49.95 ( |
| 5 |  |
|  |  |
|  |  |

## THE AMAZING TELEBOX



The TELEBOX consists of an attractive fully cased mains powered unit, containing ail electronles ready to plug into a host of video mont
Iors made by makers such as MICAOVITEC, ATARI, SANYO,
SONY, COMMODORE, PHILPS. TATUNG, AMSTRAD SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD esc. The
composite video output will also plug directly into most video on most television receivers' (TELEBOX MB). Push button controls colour television channels. TELEBOX MB covers virtually all televi-

sion frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. A composite video output is monitor or deskitop computer video systems. For complete compatiamplifier and low level Hi Fi audio output are provided as standard. | TELEBOX STL as ST but with integral speaker | $£ 34.95$ |
| :--- | :--- | :--- |
| TELEBOX | $£ 37.50$ | TELEBOX MB Multiband VHF/UHF/Cable/Hyperband tuner £69.95

## FANS \& BLOWERS

MITSUBISHI MMF-D6D12DL $60 \times 60 \times 25 \mathrm{~mm} 12 v$ DC $£ 4.9510 / \mathrm{m} 42$ PANCAKE $12-3.592 \times 92 \times 18 \mathrm{~mm} 12 \mathrm{v}$ DC
 Shipping on all fans (A). Blowers (B) 50,000 Fans Ex Stock CALL
IC's -TRANSISTORS - DIODES 5,000,000 items EX STOCK


## VIDEO MONITOR SPECIALS

One of the highest specification
t monitors you will ever see At this price - Don't miss it!!

$\qquad$ Order as MITS-SVGA Only $£ 139_{(E)}$
Ilt \& Swivel Base $£ 8.00$ Leads for IBM PC $\mathbf{8 8 . 9 5}$ (A)
External Cables for other computers \& CALL
PHILIPS HCS35 (same style as CM8833) attractively styled $14^{\prime \prime}$ Colour monitor with both RGB and standard composite 15.625 Khz video inputs va SCART socket and separate phono jacks. Will connect direct to Amlga and Atarl BBC computers. Ideal for all monltoring / securlty applications with direct connection to most colour cameras. High quality with many features such as used condition - fully tested with a 90 day guarantee
 Measures only $131^{\prime \prime} \times 12^{\prime \prime} \times 11^{\prime \prime}$. Only $£ 125$ (E)
Good used condition. 90 day guarantee.
KME $10^{\prime \prime}$ as above for PC EGA standard $£ 145.00$ (E)
PHILIPS HCS31 Ulira compact 9" colour video monitor whth standard composlte 15.625 Khz vldeo input via SCART socket. Ideal for all monitoring / security applications. High quality, ex-equipmen In attractive square black plastic case measuring W10" $\times \mathrm{H} 10$
$131 / 2^{\prime \prime}$. Mains powered Umited Quantity - Only $£ 79.00$ (D) 20" $22^{\prime \prime}$ and 26" AV SPECIALS
Superbly made UK manuiacture. PIL all solid state colour monitors complete with composite video \& optional sound inputs. Attractive teak style case. Perlect for Schools. Shops, Disco, Clubs,
EXCELLENT Iltle used condition with full 90 day guarantee.

## 20"....£135 22"....£155 26"....£185

## DC POWER SUPPLIES

## supply you can imagine. Over

## SPECIAL INTEREST

## MITS. \& FA3445ETKL $14^{\prime \prime}$ industrial spec SVGA monitors

 Seaward PAT 2000 dual voltage computerised PAT tester INTEL SBC 486/133SE Multibus 486 system. 8Mb RamZeta 3220-05 A0 4 pen HPGL RS232 fast drum plotter MOTOROLA VM
rio 0-18 vdc linear metered 30 amp bench PSU New ujitsu M3041 600 LPM band printer
VG Electronics 1035 TELETEXT Decoding Margin Meter
Andrews LARGE 3.1 m Satellite Dish + mount (For Veyager KNS EMC / Line interference tester NEW
Thurlby LA 160 B logic analyser
GEC 1.5 kw 115 v 60 hz power source
Brush 2 KW 400 Hz 3 phase frequency converter
Anton plilar 75 kW 400 Hz 3 phase frequency converter Nowton Derby 70 KW 400 Hz 3 phase frequency con
COMPONEDEX T1000 Portable TELEX tester NEW Sekonlc SD 150 H 18 channel digital Hybrid chart re


## Superb quality 6 foot 40U

 Virtually New, Ultra Smart Less than Half Price! Top quality $19^{\circ}$ rack cabinets made in UK byOptlma Enclosures Ltd. Units feature Optima Enclosures Ltd. Units feature full helght lockable half louvered back doo adjustable internal fixing struts, ready punched plus ready mounted integral 12 way 13 ang socket switched mains distribution strip make have ever sold. Racks may be stacked side by side versatlle we equire only two side panels to stand singly or in multiple bays

$$
\text { OPT Rack } 1 \text { Complete with removable }
$$

$$
335.00(G)
$$

32U - High Quality - All steel RakCab Made by Eurocraft Enclosures Lid to the highest possible spec side, front and back
hinged for easy ive secure 5 lever barrea locks.
designer
panel, yet remain unobtrusive. Internally the rack eatures full slotted reintorced vertical fixing mem(extras available) are pre punched for standard


#### Abstract

pin Euro 0 the bo


utility socket. Ove $1 \times 13$ amp 3 pintilation is provided
fully louvered back door and double skinned top section with top and side louvres. The top panel may be removed for fitting castors and floor levelers, prepunched utility panel at lower rear for cable / connector access etc. Supplied in excellent, slightly used

Sold at LESS than a third of makers price I/ A superb buy at only $£ 195.00$ (G) Over 1000 racks in all sizes $19^{\prime \prime} 22^{\prime \prime} \& 24^{\prime \prime}$ 3 to 44 U. Available from stock !! Call with your requirements.

## TOUCH SCREEN SYSTEM

The ultimate in 'Touch Screen Technology' made by the experts MlcroTouch - but sold at a price below cost II System consists of connected to an electronic controller PCB. The controller produces a standard serial RS232
shere serial data containing positional X \& Y co-ordinates as to instantly changes. The $X \& Y$ information is given at an Incredlble matrix resolution of $1024 \times 1024$ positions over'the entire screen size |! A host of avallable translation software enables direct con nection to a PC for a myriad of applications including: control pancomputer un-trained etc etc. Imagine using your finger with appllcations for this amazing product are only limited by your maginatlonll Complate systom including Controller Power and Data supplied at an incredlble price of only: $£ 145.00$ (日)
Full MICROTOUCH Software Support Pack

## LOW COST RAM \& CPU'S

NTEL 'ABOVE' Memory Expansion Board. Full length PC-X and PC-AT compatible card with 2 Mbytes of memory on board and above) memory. Full data and driver disks supplled. RFE Fully tested and guaranteed. Windows compatible. $\begin{aligned} & \text { Order as: ABOVE CARO } \\ & \text { O }\end{aligned}$ Hall length 8 bit memory upgrade cards for PC AT XT expandis memory either 256 k or 1 Yk SIMM SPECIALS



## PHILIPS - LOW COST PRINTERS

A masterpiece of engineering, the PHILIPS model NMS 1436 fully featured MUL TIMODE ma
unit weighing just over 4 Kg
Fully Epson compatible
accepts upto 9.5 sprocket fed paper and ad the smallest labels. The 9 needie head produces Near Letter Quality in a host of fonts and type sizes and in draft mode 'whizzes' along at 120 characters per second! Many other features include most
European character sets, iBM, EPSON, MSX \& Prestel emulations.

Only £49.95

## Issue 13 of Display News now available - send large SAE - PACKED with bargains!



VISA.
$\delta$
established
$\qquad$

NEN DISTEL© FREE On line Database info on $15,000+$ stock items! info on $15,000+$ stock items
COMING SOON !!


ALL MAIL \& OFFICES Open Mon-Fri 9.00-5:30
Dept WW. 32 Biggin Way Upper Norwood
ONDON SE19 3XF

## Tomperature to Ohit serial words from one chip

# Temperature bytes 

> Reading temperature into a digital system means a thermal sensor, signal conditioning and a-to-d conversion. There is now an eight-pin chip that incorporates all this - together with parallel-to-serial conversion and three thermal alarm outputs.

Even given an IC that produces a voltage that directly indicates temperature, you would need to add at least an a-to-d converter in order to interface the temperature signal to a digital processing system. Simplifying the process of reading temperature into digital systems, Dallas Semiconductor has devised an eight-pin chip that not only outputs a 9bit serial stream representing temperature, but also provides three temperature threshold switches. These switches are user programmable via non-volatile ram.
The device measures temperatures from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ in $0.5^{\circ} \mathrm{C}$ increments, which is the equivalent of $-67^{\circ} \mathrm{F}$ to $257^{\circ} \mathrm{F}$ in $0.9^{\circ} \mathrm{F}$ increments. Conversion time, from a temperature reading to output of a digital word is 1 s and data is read from/written via a three-wire serial interface comprising clock, data $\mathrm{i} / \mathrm{o}$ and reset lines.
Although highly integrated, the DS1620 is designed for ease of use and requires no external components.

Converting temperature to bytes
Temperature readings from the DS1620 represent the temperature of the actual device so no external temperature sensor is needed. Having three thermal alarm outputs, the chip can also act as a thermostat.

Table 1. Relationship between
temperature and the DS1620 $2^{\prime}$ s
complement output stream.

| Temp | Output | Output ${ }_{16}$ |
| :--- | :--- | :--- |
| $+125^{\circ} \mathrm{C}$ | 011111010 | O0FA |
| $+25^{\circ} \mathrm{C}$ | 000110010 | 0032 |
| $1 / 2^{\circ} \mathrm{C}$ | 000000001 | 0001 |
| $0^{\circ} \mathrm{C}$ | 000000000 | 0000 |
| $-1 / 2^{\circ} \mathrm{C}$ | 111111111 | 01 FF |
| $-25^{\circ} \mathrm{C}$ | 111001110 | 01 CE |
| $-55^{\circ} \mathrm{C}$ | 110010010 | 0192 |

Temperature $T_{\text {high }}$ is driven driven high if the device's temperature is greater than or equal to a user-defined temperature TH. Similarly, $T_{\text {low }}$ is driven high if the device temperature is less than or equal to userdefined temperature TL. Pin $T_{\text {com }}$ is driven high when the temperature exceeds TH and stays high until the temperature falls below that of TL.
User-defined temperature settings are stored in nonvolatile memory, so parts can be programmed prior to insertion in a system, as well as used in stand alone applications, i.e. without a cpu. Temperature settings and temperature readings are all communicated to/from the DS1620 over a simple three-wire interface.

## Reading temperature

The DS1620 measures temperatures using an on board proprietary temperature measurement technique. Temperature readings are provided in a 9bit, two's complement format. Table 1 describes the exact relationship of output data to measured temperature.
Data is transmitted serially through the 3wire serial interface, lsb first. The chip can measure temperature over the range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ}$ in $0.5^{\circ} \mathrm{C}$ increments. For conversion to fahrenheit, a lookup table or conversion factor is needed.
Since data is transmitted over the 3 -wire bus lsb first, temperature data can be written to/read from the device as either a 9 bit word, taking /RST low after the ninth bit (msb), or

## SENSORS

as two transfers of 8 bit words, with the most significant seven bits being ignored or set to zero, as illustrated in Table 1. After the msb, the device outputs zeros.
Note that temperature is represented in terms of a $1 / 2^{\circ} \mathrm{C}$, the least-significant bit yielding the following 9-bit format:

$$
\mathrm{msb} \quad \mathrm{lsb}
$$

$\times \times \times \times \times \times \times 1 \quad 11001110$

## Applying the thermostat

Three thermally triggered outputs, $T_{\text {high }} T_{\text {low }}$ and $T_{\text {com }}$ are provided to allow the device to be used as a thermostat, Fig. 1. When the temperature meets or exceeds the value stored in the high temperature trip register, output $T_{\text {high }}$ goes active high and remains active until the measured temperature becomes less than the stored value in the high-temperature register, TH.
The $T_{\text {high }}$ output can be used to indicate that a high-temperature tolerance boundary has been met or exceeded. Altematively, as part of a closed loop system, it can be used to activate
a cooling system and to deactivate it when the system temperature returns to tolerance.
Output $T_{\text {low }}$ functions similarly to the $T_{\text {high }}$ output. When the DSI620's measured temperature equals or falls below the value stored in the low-temperature register, output $T_{\text {low }}$ becomes active, Fig. 2. It remains active until the temperature becomes greater than the value stored in the low-temperature register, TL . The $T_{\text {low }}$ output can be used to indicate that a low temperature tolerance boundary has been met or exceeded, or as part of a closedloop system, can be used to activate a heating system and deactivate it when the system temperature returns to tolerance.
Output $T_{\text {com }}$ goes high when the measured temperature meets or exceeds TH , and stays high until the temperature equals or falls below TL. In this way, any amount of hysteresis can be obtained.

## Operation and control

The DSI620 must have temperature settings resident in the TH and TL registers for thermostatic operation. A configuration/status reg-


Fig. 1. DS1620 acting as a digitally programmable thermostat. Programming temperature thresholds is a one-off operation since the device incorporates non-volatile memory. Either a 2N7000 or ZVN2106A - both available from Zetex - is suitable for the fan-driving mosfet.


Fig. 2. Output $\mathrm{T}_{\text {com }}$ adds flexibility. It furns on when temperature exceeds the value set in register TH and stays on until until temperature falls below that of $T L$.

## DS1620 command set

Read temperature $\left[\mathrm{AA}_{16}\right]$ This command reads the contents of the register containing the last temperature conversion result. The next nine clock cycles output the contents of this register.

Write TH [01 ${ }_{16}$ ] This command writes to the TH temperature-high register. After issuing this command, the next nine clock cycles clock in the 9bit temperature limit, setting the threshold for operation of the $T_{\text {high }}$ output.

Write TL [02 ${ }_{16}$ ] This command writes to the temperature-low register. After issuing this command, the next nine clock cycles clock in the 9 -bit temperature limit which will set the threshold for operation of the $T_{\text {low }}$ output.

Read TH [ $A 1_{16}$ ] This command reads the temperature-high register. After issuing this command, the next nine clock cycles clock,out the 9 bit temperature limit which sets the threshold for operation of the $T_{\text {high }}$ output.

Read TL [A2 ${ }_{16}$ ] This command reads the value of the TL register. After issuing this command, the next nine clock cycles clock out the 9 bit temperature limit which sets the threshold for operation of the TL output.

Start conversion [ $\mathrm{EE}_{16}$ ] This command begins a temperature conversion. No further data is required. In one-shot mode the temperature conversion will be performed, after which the chip remains idle. In continuous mode, this command initiates continuous conversions.

Stop conversion [22 ${ }_{16}$ ] This command stops temperature conversion. No further data is required. This command may be used to halt a DS1620 in continuous conversion mode. After issuing this command the current temperature measurement will be completed and then the device will remain idle until a start conversion command is issued to resume continuous operation.

Write config $\left[0 \mathrm{C}_{16}\right]$ This command writes to the configuration register. After issuing this command the next eight clock cycles clock in the value of the configuration register.

Read config $\left[\mathrm{AC}_{16}\right]$ This command reads the value in the configuration register. After issuing this command the next eight clock cycles output the value of the configuration register.

Table 2. Pin functions of the DS1620 thermometer thermostat.

| Pin | Symbol | Description |
| :---: | :---: | :---: |
| 1 | DQ | Data input/output for 3-wire communication port. |
| 2 | CLK/CONV | Clock input for 3 -wire communication port. When the DS1620 is used in a stand-alone application with no 3 -wire port, this pin can be used as a convert pin. Temperature conversion will in on the falling edge of /CONV. |
| 3 | RST |  |
| 4 | GND | Ground pin. |
| 5 | TCOM | High/low combination trigger. Goes high when temperature exceeds TH; resets low when temperature falls below TL. |
| 6 | TLOW | Low temperature trigger. Goes high when temperature falls below TL. |
| 7 | THIGH | High temperature trigger. Goes high when temperature exceeds TH . |
| 8 | VDD | Supply voltage, 5 V input. |

ister is also used to determine the method of operation that the DSI 620 will use in a particular application as well as indicating the status of the temperature conversion operation.

The configuration register is defined as follows:

| Configuration/status register bits |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CONE THF | TLF | $x$ | $x$ | $\times$ | CPU | 1SHOT |

## where,

x = Don't care
DONE = Conversion done bit.
$1=$ conversion complete, $0=$ conversion in progress.
THF $=$ Temperature high flag. This bit is set to 1 when the temperature is greater than or equal to the value of TH . It will remain 1 until reset by writing writing 0 into this location or by removing power from the device. This feature provides a method of determining if the device has ever been subjected to temperatures above TH while power has been applied.
TLF $=$ Temperature low flag. This bit is set to 1 when the temperature is less than or equal to the value of TL. It remains 1 until reset by writing 0 into this location, or by removing power from the device. This feature provides a method of determining if the device has ever been subjected to temperatures below TL while power has been applied.
$\mathrm{CPU} \quad=\mathrm{CPU}$ use bit. If $\mathrm{CPU}=0$, the CLK/CONV pin acts as a conversion start control, when /RST is low. If CPU is 1 , the DS1620 will be used with a CPU communicating to it over the wire port, and the operation of the CLK/CONV pin is as a normal clock in concert with DQ and /RST.

1SHOT = One-shot mode. If ISHOT is 1 , the device performs one temperature conversion upon reception of the start convert protocol. If $1 S H O T$ is 0 , the


Fig. 3. Programmable via a simple three-wire interface, the DS1620 registers are used to set temperature thresholds and set the operating mode. Programming is non-volatile so the device can act as a stand-alone controller.

device continuously performs temperature conversion

For typical thermostat operation, the DS1620 operates in continuous mode. However, for applications where only one reading is needed at certain times, and to conserve power, one-shot mode may be used.
Note that thermostat outputs $T_{\text {high }}, T_{\text {low }}$ and $T_{\text {com }}$ remain in the state they were in after the last valid temperature conversion cycle when operating in one-shot mode.

## Stand-alone measurements

In applications where the DS1620 is used as a simple thermostat, no cpu is required. Since the temperature limits are non-volatile, the device can be programmed prior to insertion in the system.
To facilitate operation without a cpu , the CLK/CONV pin, pin 3, can be use to initiate conversions. Note that the CPU bit must be set to 0 in the configuration register to use this mode, Fig. 3.
To use the CLK/CONV pin to initiate conversions, /RST must be low and CLK/CONV must be high. If CLK/CONV is driven low and then brought high in less that 10 ms , one temperature conversion will be performed, after which the device returns to idle mode.
If CLK/CONV is driven low and remains low, continuous conversions will take place until CLK/CONV is brought high again. With the CPU bit set to 0 , CLK/CONV overrides the 1 -shot bit if it is equal to 1 . This means that even if the part is set for one-shot mode, driving CLK/CONV low will initiate conversions.

## Communicating over three wires

The three-wire bus comprises three signals, namely the reset line /RST, clock CLK, and data signal $D Q$, Table 2. All data transfers are initiated by driving the reset input high. Driving this input low terminates communication.

A clock cycle is a sequence of a falling edge followed by a rising edge. For data inputs, the data must be valid during the rising edge of a clock cycle. Data bits are output on the falling edge of the clock, and remain valid through the rising edge.

When reading data from the DS1620, the DQ pin goes to a high-impedance, state while the clock is high. Taking /RST low terminates any communication and causes the DQ pin to go to a high impedance state.
Data over the three-wire interface is communicated lsb first. The command set for the wire interface, as shown in the panel, is as follows; only these protocols should be written to the device, as writing other protocols may result in permanent damage to the part.

Other chips in the Dallas thermal management range include a two-wire thermometer and thermostat, a two-wire thermometer with memory and a one-wire digital thermometer. Battery temperature managers and battery identification chips providing time/temperature histograms are also available.


## Direct-to-digital sensing

Direct-to-digital temperature sensors measure temperature through the use of an on-board Dallas proprietary temperature measurement technique.
Each temperature sensor measures temperature by counting the number of clock cycles that an oscillator with a low temperature coefficient goes through during a gate period. This period is determined by a high temperature coefficient oscillator The counter is preset with a base count that corresponds to $-55^{\circ} \mathrm{C}$. If the counter reaches zero before the gate period end, the temperature register - also preset to $-55^{\circ} \mathrm{C}-$ is incremented, indicating that the temperature is higher than $-55^{\circ} \mathrm{C}$.
At the same time, the counter is preset with a value determined by the slope accumulator circuitry. This circuitry is needed to compensate for the parabolic behaviour of the oscillators over temperature. The counter is then clocked again until it reaches zero. If the gate period is still not finished, this process repeats.
The slope accumulator is used to compensate for the nonlinear behaviour of the oscillators over temperature, yielding a high resolution temperature measurement. This is done by changing the number of counts necessary for the counter to go through for each incremental degree in temperature. To obtain the desired resolution, therefore, both the value of the counter and the number of counts per ${ }^{\circ} \mathrm{C}$ - the value of the slope accumulator - at a given temperature must be known.

## DS1620 designer's kit - exclusive EW+WW reader special offer <br> Dallas Semiconductor produces a designer's evaluation kit - the DS1620K - comprising software, the

 DS1620 chip and a programming evaluation board that plugs into the pc's printer port. Normally priced at $£ 52.88$, this kit is being offered to $\mathrm{EW}+\mathrm{WW}$ readers at the special price of $£ 37.50$.The user-friendly software allows the chip to be programmed and read via the pc printer port from an evaluation board including lead and D-type plug.
Send coupon to Dallas Semiconductor Corporation, Unit 26, West Midlands Freeport, Birmingham B26 3QD. Tel. 0121782 2959, fax 0121782 2156. Details of Dallas's range of thermal management range will also be sent with the kit. Dispatch should be prompt, but please allow 28 days for delivery.

## Name

Address*

## Postcode

Tel.

## Tick for Mastercard $\square$ or Visa $\square$

Card No _ . . . . . . . . . . . _ _ _ Expiry date _ _ / _ _ Or Sterling postal order/cheque payable to Dallas Semiconductor Corp. Ltd please. *Note: when ordering by card, above address must be that of the cardholder.

> While digital signal processing will do almost anything, lan Hickman points out that the analogue kind has considerable life left in it and has definite advantages - not least that of lower cost.


Digital signal processing can be as powerful as one wants, or as one's skill in writing algorithms permits, at a price. But very often, analogue circuitry will accomplish any necessary signal processing.
By using analogue signal processing, you avoid the use of adcs and dacs, dsp chips, memory - and the expense of writing algorithms, achieving a much lower power budget. Eliminating clock signals can also be a benefit where small signals are being handled in a physically small enclosure. Analogue signalprocessing techniques come in a wider range than many people realise, and this article illustrates some of them.

## Bounding, limiting and clipping

It is often necessary to limit the maximum excursion of a signal, for example when it contains large interference spikes, or when the lower amplitude parts of it need to be amplified for more detailed measurements.
Figure 1 (a) shows the traditional way of doing this. If $R_{\mathrm{s}}$ is the slope resistance of the


Fig. 1. Circuit providing symmetrical limiting in an inverting amplifier at (a), while at (b) two circuits provide separately adjustable positive and negative limiting levels - though the inverting version is not recommended. Transistors in (c) provide very effective limiting in an inverting circuit.
zener diode and the bridge diodes, the gain of the inverting op-amp falls from $R_{2} / R_{1}$ to $R_{\mathrm{s}} / R_{1}$ whenever the output tries to exceed $\pm\left(V_{\mathrm{z}}+2 V_{\mathrm{s}}\right)$, where $V_{\mathrm{z}}$ is the breakdown voltage of the zener diode and $V_{\mathrm{s}}$ is the forward volt-
age of the bridge diodes. For large signals, the gain falls almost to zero, or minus infinity decibels.
Disadvantages of the circuit are possible loss of bandwidth. This is due to capacitance associated with the bridge circuit shunting $R_{2}$, and the fact that the positive and negative limits are not easily and separately adjustable.
Figure 1(b) shows a simple non-inverting circuit with separately adjustable positive and negative breakpoints $V_{\text {limt }}$ and $V_{\text {lim-, }}$, and a distinctly more complicated inverting version.
The inverting version is not recommended for fast signals, since in the overdriven condition the op-amp is left open-loop. This means that its output will fly off and hit one or other of the supply rails. Recovery of a conventional op-amp from overdrive is a relatively slow process, limiting the bandwidth of the circuit. If you can live with this, it is simpler to go for a larger gain and simply let limiting occur at the rail voltage.
Transistors provide effective limiting in an inverting circuit, providing the output swing keeps within the reverse $V_{\text {be }}$ ratings of the devices. As Fig. 1 (c) shows, breakpoints are separately adjustable.
Another example of limiting is shown in Fig. 2(a) - a circuit designed to measure the settling time of an op-amp, by using a 'false sum node'. This needs low-capacitance Schottky diodes, with their low forward voltage drop, to enable the $1 \%$ settling time to be measured.
In the case of a fast op-amp, the capacitive loading of a conventional $\times 10$ divider probe on the false sum node may limit measurement accuracy, so it is best to use an active probe. Measurement depends critically upon the flatness of the top and bottom of the test squarewave; for measurements of settling time to the $0.1 \%$ or $0.01 \%$ level, more sophisticated limiting arrangements are called for ${ }^{1}$.
If you need a wideband amplifier with symmetrical limiting, the Linear Technology LTIl94, with its $35 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth, provides a simple and convenient solution, Fig. 2(b). This ingenious device ${ }^{2}$ provides a limiting level adjustable by means of a control voltage $V_{\mathrm{c}}$ in the range -5 V to -1 V , with no requirement for any additional components whatever.
An additional advantage of this device is that the gain-defining negative-feedback loop
is completed via a second long-tailed pair in parallel with the input pair. This means that the inverting and non-inverting inputs are effectively floating and both present a high input impedance.
Diodes in the circuit of Fig. I(b) protect the op-amp input circuit, whereas some of the others only limit the output swing. Where a circuit needs protection against really large inputs, use the arrangement of Fig. 2(c); for large positive inputs, $D_{1}$ is reverse-biased,

(b)


Fig. 2. Diode limiting (a) used in a circuit to measure the settling time of an op-amp. At (b) the LT1194 wideband op-amp circuit with voltage controlled symmetrical clipping level. Reproduced by courtesy of Linear Technology Corporation. Simple bounding circuit in (c) protects following stages from mains inputs.

Fig. 3. Diode breakpoint circuit (a), providing increasing gain with increasing output voltage. Transistor breakpoint circuit in (b), provides decreasing gain with increasing output voltage. Circuit at (c) gives sharp, temperature independent breakpoints and (d) an output voltage proportional to the logarithm of input voltage or current.
(a)


(b)

(c)


while for large negative inputs $D_{2}$ is reversebiased, the output voltage being limited to about $\pm 5 \mathrm{~V}$.

Given suitable reverse voltage ratings for $D_{1,2}$ and a large enough dissipation rating for $R_{1}$, the arrangement will protect any following circuitry from connection - accidental or otherwise - to 230 Vac . In the linear range, for inputs between +5 V and $-5 \mathrm{~V}, V_{0}$ follows $V_{\mathrm{i}}$.

If $R_{1}$ were only equal to $R_{2} / 2$, it could only just succeed in raising the output to +5 V . This would leave no spare current to charge the inevitable stray capacitance up rapidly. A lower value avoids a poor frequency response, albeit increasing the dissipation in $R_{1}$ for large negative input voltages.
If the circuit is turned upside down and the diodes all reversed, an n-channel mosfet with a 600 V drain voltage rating, operating as a constant-current generator, can be substituted for $R_{1}$; the dissipation in this 'active $R_{1}$ ' with a large input voltage is only proportional to the input voltage $v_{\mathrm{in}}$, not to $v_{\mathrm{in}}$ squared.

## Breakpoints and non-linear gain

While Figure 1(a) illustrates an extreme example of a circuit with non-linear gain, there is often a requirement for the gain of a circuit to vary over a range of finite values as the output level varies, rather than suddenly falling to zero. Figure 3(a) shows a circuit that provides increasing gain as the input increases in the negative direction. This is because initially, the $R_{1}, R_{2}$ networks are in parallel with $R_{\mathrm{B}}$, their effect being successively removed as each breakpoint is exceeded.
In Fig. 3(b), gain decreases as the output voltage exceeds each successive breakpoint, additional feedback resistors being added in parallel with $R_{\mathrm{B}}$. With reversed diodes or $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors and negative breakpoint voltages, operation is extended to negative-going outputs for both circuits. Both types of breakpoint may be used together to give more com-

Fig. 5(a). This slew-rate limiter is an improvement on the leaky integrator of Fig. 4, providing a constant maximum slewrate limit, regardless of the signal amplitude. Set for the fastest slewrate (wiper of $R_{4}$ at $A_{1}$ 's output) and with the largest signal it can handle linearly, (b) shows that the circuit rapidly settles exponentially. With the same input, but $R_{4}$ 's wiper now at the junction with $R_{5}$, (c) shows the circuit settling with a
linear ramp, topped off with a slower exponential tail.

Fig. 4(a) 'Leaky integrator' forms a simple slew-rate limiting circuit (i), and a functionally identical circuit at (ii). Adding adjustable gain in the second op-amp stage (iii) provides a variable slew-rate limit, as illustrated in (b). As the gain in the second stage is increased, the required voltage excursion across the capacitance is reduced. This is equivalent to reducing its capacitance, increasing the slew rate shown at (c). This arrangement is effectively a linear amplifier with a high frequency roll-off. Consequently, for a fixed setting of the potentiometer, increasing signal amplitude results in increased slew rate. The circuit can set any desired limit to the maximum slew rate of the largest signal but, as the signal gets smaller, so does the slew rate. (d) This limiter circuit can be used to define the maximum size signal input to the slewrate limiter.

(b)

TIME BASE $=1 \mathrm{~ms}$
CHIVIDV $=02 \mathrm{~V}$
$\mathrm{CHI} \mathrm{VONV}=0.2 \mathrm{~V}$
$\mathrm{CH2} \mathrm{VDIV}=0.2 \mathrm{~V}$

(c)


TIME BASE $=500 \mu \mathrm{~S}$
CH1 VIDN $=10 \mathrm{~V}$
$\mathrm{CH1} \mathrm{VIDV}=10 \mathrm{~V}$
$\mathrm{CH} 2 \mathrm{VDIV}=0.5 \mathrm{~V}$
CH2 VDIV = O.5V



Fig. 6(a) This circuit is a true slew-rate limiter. Output in (b) follows the sinewave input from the peak (where the slope $d V / d t$ is zero) up to the preset slew-rate limit. Thereafter, the set slew rate applies until the loop is again closed, where the output rejoins the ideal waveform, just before the next peak. As the amplitude of a squarewave input in (c) decreases, the slew rate remains constant. Unlike the circuits of Figs 4 and 5, for any given slew-rate limit setting, the slew rate at (d) remains constant until the output rejoins the input squarewave. During the slewrate limited section of the output waveform in (e), the amplifier is open loop. Thus the ota inverting input (point A) during this period is not a virtual earth.

## plicated shaping ${ }^{3}$.

Circuits Figs 3(a) and (b) provide a gentle transition from one slope to the next, extending over a range of around 100 mV or so, as the diodes or base/emitter junctions move from cut-off to conducting. Despite some consequent variation in breakpoint with temperature, this rounding is often beneficial.
Where sharply defined breakpoints free from temperature variations are needed, use the circuit of Fig. 3(c). Here, the diode drops are all within the loop and do not affect circuit performance. When this circuit first appeared, the use of one op-amp per breakpoint was considered almost profligate, but high-performance quad op-amps are now commonplace components.
With jfets, either as elements in feedback networks, or to vary the control voltage of a voltage-controlled amplifier, you can achieve smoothly varying gain without discrete breakpoints. Figure 3 (d) is an example of a smoothly varying function of a very specific nature. It exploits the law governing p-n junctions to provide an output voltage proportional to the logarithm of the input voltage or current over a wide range - up to nine decades with suitable devices.
An op-amp with high open-loop gain is needed to keep the base/collector voltage close to zero, or collector leakage current ruins the $\log$. law at the lowest input levels. Parasitic parameters of the transistor cause the circuit to become very slow at very low input levels.

## Slew-rate limiting

Circuits for limiting slew rate prevent the rate of change of a signal exceeding some design maximum - whatever the amplitude of the signal. This is often necessary in electronically controlled mechanical systems with large inertia to prevent excessive forces being applied to moving parts.
A 'leaky integrator' can form a simple slew-
rate limiting circuit, as shown in Fig. 4(a). Here, circuit (ii) is obviously functionally identical to that in (i). In both cases, the slew rate is limited by feedback via the capacitor.
If now a degree of gain is incorporated in the second op-amp stage, as in (iii), full output swing is obtained with only a reduced swing appearing across the capacitor. This is equivalent to reducing the value of the capacitor, changing the frequency at which the stage's frequency response starts to roll off, without changing the low-frequency gain.
So varying the amount of gain in the second op-amp stage provides a variable slew-rate limit, as illustrated in Fig. 4(b). This is simply a linear amplifier with a high-frequency rolloff. Consequently, for a fixed setting of the potentiometer, increasing signal amplitude results in increased slew rate. Thus the circuit can set any desired limit to the maximum slew rate of the largest signal, but as the signal gets smaller, so does the slew rate; see Fig. 4(c).
Set the largest signal input by means of a limiter, such as that shown in Fig. 4(d); this provides unity gain for small signals but if the potentiometer is set midway, maximum output swing will be limited to half the op-amp's rail-to-rail capability and progressively less as the wiper of the potentiometer approaches ground.
If the integrator of Fig. 4(a) is placed second instead of first and a few other changes made, an improved slew-rate limiter results; see Fig. 5(a). To understand how the circuit works, imagine that the wiper of the potiometer is at the top of its travel. Now, $R_{2,3}$ are in parallel, defining the gain of $A_{1}$ as $\times 18$, inverting.
Figure $5(\mathrm{~b})$ shows the output of $\mathrm{A}_{1}$, upper trace, and of $\mathrm{A}_{2}$, lower trace, when a 300 Hz squarewave is applied, of just sufficient amplitude to provide the maximum outut swing of which $\mathrm{A}_{1}$ is capable. Initially, $\mathrm{A}_{1}$ works as an inverting amplifier, because the voltage across $C$ cannot change instantaneously. So the neg-ative-going edge of the input causes the posi-

(e)
tive output at $A_{1}$, which in turn is applied via $R_{6}$ to the integrator, making its output slew negatively.
The circuit settles with $\mathrm{A}_{1}$ output at zero, otherwise the integrator output would still be changing, and with the output voltage and $A_{1}$ 's non-inverting input at almost the input voltage. Output voltage $\nu_{0}$ is given by
$v_{\text {in }} R /(R+10 \mathrm{k} \Omega)$, where $R$ is $\mathrm{A}_{1}$ 's effective feedback resistor - in this case, $R_{2}$ and $R_{3}$ in parallel. As Fig. 5(b) shows, the output settles exponentially to the peak value of the squarewave input.
When the wiper of $R_{4}$ is wound down to the $R_{5}$ end of its travel, the action is very different and is illustrated in Fig. 5(c). Now, only one twentieth of $\mathrm{A}_{1}$ 's output is applied to $R_{3}$, whose effective value as a feedback resistor is therefore not $220 \mathrm{k} \Omega$, but $4.4 \mathrm{M} \Omega$. In conjunction with $R_{2}$, this gives a demanded $\mathrm{A}_{1}$ gain of $\times 81$.
With the same input amplitude as before, $\mathrm{A}_{1}$ is now heavily overdriven and, moreover, the voltage driving the integrator stage is also reduced to one twentieth. So $A_{1}$ remains overdriven while the integrator output slews at a constant rate. It does this until voltage at $\mathrm{A}_{1}$ ' s non-inverting input is so near that at its inverting input that $A_{1}$ re-enters the linear range. Thereafter, the circuit settles exponentially as in (b), but on a longer time constant - so long, in fact, that in (c) at this frequency and amplitude the output never quite reaches the peak value before the next edge of the squarewave.
Whatever the frequency, amplitude or waveshape of the input, the slew rate set by the position of $R_{4}$ is never exceeded. As long as $\mathrm{A}_{1}$ is overdriven, the first part of the settling will be at the maximum slew rate - however small the input signal. This is a big advance on the Fig. 4, but the exponential tail to the settling time, visible in Fig. 5(c), remains a disadvantage.
A substantial improvement in this respect, at the cost of a reduced range of slew-rate adjustment, is obtained by connecting a $1 \mathrm{M} \Omega$ resistor between the output of $\mathrm{A}_{1}$ and the inverting input of $\mathrm{A}_{2}$. Although this speeds up the exponential end of the setting tail, it can never be entirely eliminated. An ideal slew-rate limiter would at all times slew at the same rate as the input signal, or at the maximum rate, whichever was the lower.
Figure 6(a) shows the circuit of such a true slew-rate limiter. You can see in 6 (b) how the output follows the sinewave input from the peak - where the slope $\mathrm{d} v / \mathrm{d} t$ is zero - up to the preset slew-rate limit. Thereafter, the set slew rate applies until the loop is again closed. At this point the output rejoins the ideal waveform, just before the next peak.
If either the frequency or the amplitude is reduced (decreasing the maximum slew rate of the signal) or the control voltage $V_{c}$ is increased (increasing the ota's maximum transconductance), the sinewave is undistorted. On the other hand, if the amplitude or frequency are sufficiently increased (or $V_{c}$ reduced) the sinewave is permanently in slewrate limit - it becomes a triangular wave.
Figure 6(c) shows how, as the amplitude of a squarewave input decreases, the slew rate remains constant - unlike the effect of the circuit of Fig. 4. Also, the slew rate remains constant until the output rejoins the input squarewave, as in Fig. 6(d). During the slew-rate limited section of the output waveform, the amplifier is open-loop and the ota inverting



Fig. 7(a). Howland current pump provides an accurate, linear, bipolar, voltage-controlled current source. Non-inverting integrator at (b) is arranged as a linear timebase circuit.
input is not a virtual earth during this period, exhibiting the waveform shown in Fig. 6(e). Note the pull-down resistor at the operational transconductance amplifier's Darlington output buffer stage. This is recommended if using the LM13600, since the internal biasing of the buffer in this ota is varied in sympathy with the control voltage $V_{c}$ : the LM13700, with its fixed buffer current, might be a better choice in this application.

## Integrating and differentiating

Basic op-amp circuits for integrating and differentiating are so well known that I won't spend any time on them here. But the Howland current pump ${ }^{4}$ in Fig. 7(a) is perhaps a circuit that deserves to be better known. It is a voltage-controlled current generator with (ideally) infinite output impedance, and causes a current $\left(V_{2}-V_{1}\right) / R_{1}$ to flow in a load.
If the load is a capacitor and $V_{1}$ is tied to ground, then the circuit forms an integrator. As such, it possesses two advantages over the more usual op-amp integrator: firstly, it is a non-inverting integrator, and secondly, one end of the integrator capacitor is grounded. Figure 7(b) shows a linear ramp or timebase generator based on the circuit of Ref. 3.
Some of the circuit techniques mentioned earlier can usefully be combined with integrators and differentiators. For instance, if a band-limited signal is differentiated, clipped and then integrated, the result is slew-rate limited. If, instead of clipping, the differentiated signal is slew-rate limited and then integrated, then its second derivative $\mathrm{d}^{2} v / \mathrm{dt}^{2}$ is limited. $\quad$

## References

1. Methods for measuring op-amp settling time.

AN10-1, July 1985, reproduced in the 1990
Linear Applications Handbook from Linear Technology Corporation.
2. Hickman, I., Four op-amp inputs are better than two. $E W+W W$, pp399-401, May, 1992, reproduced in the Analog Circuits Cookbook, Butterworth-Heinemann, 1995, ISBN No. 07506 20021.
3. Hickman, I. Add on a spectrum analyser. $E W+W W$, pp982-989, December, 1993, also in the Analog Circuits Cookbook.
4. Pease, R A. Improve circuit performance with a 1-op-amp current pump. EDN, January, 201983, pp85-90.



## Radio Engineer's Pocket Book

by John Davies, 240pp, hardback Order - ISBN 0750617381 Price $£ 12.99$

Contains: Propagation; decibel scale; transmission lines; antennas; resonant circuits; oscillators; piezo-electric devices; bandwidth requirements and modulation; frequency planning; radio equipment; Microwave comms; information privacy and encryption; multiplexing; speech digitisation and synthesis; vhf and uhf mobile communication; signalling; channel occupancy, trunking; mobile systems; base station management; instruments; batteries; satellite comms; connectors and interfaces; broadcasting; abbreviations and symbols; tables and data; glossary.

Covers all aspects of radio and communications engineering from very low frequencies to microwaves, with particular emphasis on mobile communications. Wave principles and the decibel scale, instrumentation and power supplies, equipment types and encryption methods, connectors and interfaces, are all included in this book.

## Audio Recording and Reproduction

Michael Talbot-Smith, 204pp, paperback
Order - 0750619171
Price £12.99
Contains: Physics of sound waves; hearing; basic acoustics; microphones; loudspeakers; public address; stereo; simple mixing equipment; recorders; introduction to digital audio; music and sound effects; miscellaneous data.

This book gives a simple and straightforward approach to audio techniques, detalling technical and practical information for those with no specific training in the subject.

## Circuit Designer's Companion

by T Williams, 320pp, paperback Order - 075061756 X Price $£ 15.99$

Contains: grounding and wiring; printed circuits; passive components; active components; linear integrated circuits; digital circuits; power supplies; electromagnetic compatibility.

Valued by linear and digital designers alike, this guide explains and outlines solutions that take into account the imperfect behaviour of real components, interconnections and circuits.

## Servicing Personal Computers

by Michael Tooley, 304pp, hardback Order - ISBN 0750617578 Price $£ 25.00$

Contains: Microcomputer systems; test equipment; fault diagnosis; tape and disk drives; printers and monitors; servicing IBM pc compatibles and 68000 -based computers.

This completely rewritten fourth edition still covers the whole range of microcomputer equipment but now also Includes a guide to developments and trends such as the new generation of diagnostic software code included - and applications such as serial communication, and memory and hard disk management.


## Newnes Audio and Hi-Fi Handbook

by lan Sinclair, 656pp, hardback Order - ISBN 075060932 X Price $\mathbf{£}^{\mathbf{4}} \mathbf{0 . 0 0}$

Contains: Sound waves and acoustics; studio acoustics; microphones; sound synthesis; introduction to digital principles; compact disc technology; other digital systems - DAT, NICAM, DCC, MD analogue tape recording; nolse reduction systems; LP records; disc reproduction; tuners and radio receivers; preamps and inputs; voltage amplifiers/controls; loudspeakers and enclosures; Headphones; public address; in-car audio; Interconnections; the future.

Covers a wide perspective of highquality sound reproduction, including reproduction under adverse circumstances, from less conventional sources and with regard to the whole technology from studio to ear.

## TV \& Video Engineer's Reference Book

by Boris Townsend, 876 pp , paperback Order - ISBN 0750619538 Price $£ 40.00$

Contains: Materials; components and construction; colour tv fundamentals; broadcast transmission; distributing broadband; DBS; tv studios; mobile and portable equipment; tv sound; to receivers; servicing tvs; video recorders; teletext etc; HDTV; other applications of tv; performance measurements.

Covers information on every aspect of modern broadcast technology. Of value to all practicing engineers and managers involved with broadcast, cable and satellite services.

Masts, Antennas and Service Planning
by Geoff Wiskin, 256pp, hardback Order - ISBN 0240513363 Price $£ 49.50$

Contalns: Antennas; antenna support structures; service planning.

Covers all aspects of information conveyance via radio-wave transmission. Invaluable to anyone planning for broadcast and mobileradio coverage, or designing, installing and maintaining antenna systems.

## Operational Amplifiers

by Jiri Dostal, 400 pp , hardback Order - 0750693177 Price $£ 40.00$

Contents: The operational amplifier; basic concepts; operational amplifier parameters; operational amplifier properties; the operational circuit; the ideal operational circuit; analysis of the real operational circuit; static and dynamic errors in the frequency domain; dynamic errors in the time domain; input and output impedances;

offset; noise; stability; good laboratory practices.

Presents an extensive treatment of apptications and a practically oriented, unified theory of operational circuits. Provides the reader with practical knowledge necessary to select and use operational amplifier devices.

## Servicing Video Cassette Recorders

by Steve Beeching, 250pp, hardback Order - ISBN 0750609354 Price $£ 25.00$

Contains: Vcr systems; azimuth tilt; Frequency modulation; servo mechanisms; colour systems; systems control; long play; VHS-C \& camcorders; a-v sockets.

Written for students and people involved with vor servicing, this book is an invaluable guide and reference covering all aspects of modern vcrs. Contains new material on basic magnetic theory to C\&G 224

## Principles of Transistor Circuits

by S W Amos, 384pp, paperback
Order - 0750619996
Price $£ 17.99$
Contalns: Semiconductors and junction diodes; basic principles of transistors; common-base and common-gate amplifiers; commonemitter and common-source amplifiers; common-collector and common-drain amplifiers; bias and dc stabilisation; small-signal af amplifiers; large-signal af amplifiers; dc and pulse amplifiers; if and if amplifiers; sinusoidal oscillators; modulators, demodulators, mixers and receivers; pulse generators; sawtooth generators; digital circuits; further applications of transistors and other semiconductor devices.

This seminal work has now been presented in a clear new format and completely updated to include the latest equipment such as laser diodes, Trapatt diodes, optocouplers and GaAs transistors, and the most recent line output stages and switchmode power supplies.

## Logic Designer's Handbook

by Andrew Parr, 488pp, paperback Order - 0750605359
Price $£ 30.00$
Contains: Simplified data on a comparative basis of ttl and cmos ics; storage devices; logic circuits; timers; counters; drivers; interface clrcuits; logic gates; definitions of ic characteristics; event driven logic; communication and highways; analogue interfacing; practical considerations; summaries by function of all relevant circuits; indlvidual pin-out diagrams.

Easy-to-read, but nonetheless thorough, this book on digital circuits is for use by students and engineers, and is a readily accessible source of data on devices in the ttl and cmos families.

## The Art of Digital Audio

John Watkinson, 490pp, hardback Order - 0240513207 Price £49.50

Contains: Why digital?; conversion; AES/EBU; digital audio coding and processing; digital compact cassette (DCC); advanced digital audio processing; digital audio interconnects; digital recording and channel coding; error correction; rotary head recorders; stationary head recorders; NAGRA and data reduction; Digital Audio Broadcasting (DAB); the compact disc/mini disc.

New edition, completely updated to include all the latest developments, including DCC, the mini disc and digital audio broadcasting.

## Microphone

## Engineering

Handbook
by Michael Gayford, 384pp, hardback
Order - 0750611995
Price $\mathbf{8 6 5 . 0 0}$
Contains: Microphone techniques; precision microphones; optical microphones; high quality if microphones and systems; radio microphones and ir systems; microphone testling; ribbon microphones; microphone preamplifiers; stereo microphones; microphone standards.

Comprehensive and authoritative book for engineers, technicians, students and anyone eise concerned with the design and use of microphones.

## MIDI Systems and Control <br> by Francis Rumsey, 256pp, paperback <br> Order - 0240513703 <br> Price 19.95

Contains: Introduction to principles and terminology; synchronisation and external machine contro; common implementations; systems control sequences and operating systems; implementation of midi with peripheral devices; practical systems designs.

Second edition is updated and enlarged to take MIDI evolution into account. More examples of real implementations, more diagrams and the whole book has been rewritten to include a far greater practical element, to complement its existing technical strengths. Several completely new sections and complete chapters have been added including a new opening chapter as an introduction to principles and terminology; MIDI timecode; librarians and editors.

## Loudspeaker and

 Headphone Handbookby John Borwick, 224pp, hardback Order - 0240513711 Price $£ 35.00$

Contains: This book brings together in a single volume every aspect of loudspeaker and headphone theory and practice in sufficient depth to equip students and practitioners alike with a solid working knowledge of the subject. A comprehensive technical reference on the theory and practice of loudspeaker and headphone performance, design and operation.

## The Art of Linear Electronics

by John L Hood, 400pp, paperback Order - 0750608684
Price 16.99
Contains: Electronic component symbols and circuit drawings; passive components; active components based on thermionic emission; active components based on semiconductors; practical semi-conductor components; dc and low frequency amplifiers; feedback negative and positive; frequency response; modifying circuits and filters; audio amplifiers; low frequency oscillators and waveform generators; tuned circults; high frequency amplifiers/oscillators; radio receiver circultry; power supplies; noise and hum; test instruments and measurements.

This practical handbook gives a complete working knowledge of the basics and technology of linear electronics - with application examples in such fields as audio, radio, instrumentation and television.

## Servicing Audio and Hi-Fi Equipment

by Nick Beer, 304pp, hardback Order - 0750621176 Price $£ 25.00$

Contalns: Introduction; tools and test equipment; radio receivers; amplifiers; power supply circuits; portable audio; cassette deck mechanics; cassette electronics; turntables; system control; motors and servo circuits; compact disc; mini disc; digital audio tape; digital compact cassette; speakers, headphones and microphones; repair, addresses.

As a bench-side companion and guide, this work has no equal. Its purpose is to ease and speed up the processes of fault diagnosis, repair and testing of all classes of home audio equipment: receivers, amplifiers, recorders and playback machines.

## EMC for Product Designers

by Tim Williams, 304pp, hardback Order - ISBN 0750612649 Prlce $£ 25.00$

Contains: What is EMC? standards; EMC measurements; interference coupling mechanisms; circuits; layout and grounding; interfaces; filtering and shielding.

## EMC <br> FOR

PRODUCT DESIGNERS


'This book is likely to become essential reading for those designing electronic products for the European market,' according to New Electronics. Widely regarded as the standard text on EMC, providing all the information needed to meet requirements of the EMC Directive.

## Build Your Own PC

by lan Sinclair, 256pp, paperback Order - ISBN 0750620064 Price 16.95

Contains: Assembly from scratch mainly for masochists; fundamentals and buying guide; case, motherboard and keyboard; disk-drive details; improvers and modifiers for graphics and i/o; DOS operation and hints; Windows; connecting printers; glossary.

Covers Building your own pc from scratch or from modules. Written at a level suitable for beginners and those with experience of computers or electronics. In addition, this work provides a useful guide for anyone wanting to save money by upgrading their pc themselves.

## Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following titles:

| Qry | Title or ISBN | Price |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

Please add $£ 2.50$ UK Postage, $£ 5.00$ Europe $£ 7.50$ Rest of World Total

Name
Address

Post code
Telephone
Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to Reed Business Publishing Credit card no Card expiry date Signed



## 20525

Industrial Spec Components and Systems 386SX-40 All-in-one CPU Board on PC half card from $£ 215$. Requires only display adapter and RAM to complete the core of a PC-compatible system. PC/104 or ISA bus expansion. PC/IO4 display adapter from $£ / 35$. Desktop LCD mono VGA monitor with display adapter and passive backplane from $£ 499$. Please enquire for complete systems. Prices exclude VAT and carriage.


CROSS DEVELOPMENT SOFTWARE TOOLS FOR THE PC 8051 C ASSEMBLY - SIMULATION

FULLY SUPPORTED
QUALITY SOFTWARE
$>8051 \mathrm{C}$ Compiler (DOS)
An optimising C compiler with full support for floating point arithmetic, interrupts, embedded assembler, linking and relocation, IEEE695 debug output. Includes a complete relocatable cross assembler.

Price: $£ 349.00$
$>8051$ Cross Assembler (DOS)
Available in two variants: absolute and relocatable. The relocatable assembler allows you to flexibly link and locate your program into 8051 address space and generates IEEE695 debug output for symbolic information (ideal for use with our simulator). The absolute assembler is easy to use and creates final 8051 code from a single assembler source file.

Prices: Relocatable $£ 169.00$, Absolute $£ 99.00$
$>8051$ Simulator (Microsoft Windows) Watch your program run on your PC. Set breakpoints, single step, trace, watch and modify memory and SFR's. Generate interrupts, run the timers, serial port and parallel ports. All without a single piece of 8051 hardware. Works with any 8051 assembler or compiler that generates Intel hex, OMF51, IEEE695 or binary output. Uses debug information in OMF51 and IEEE695 files to create a symbolic disassembly of your program.

Price: $£ 148.00$
Further information from:
(prices exclude VAT and delivery) CROSSWARE PRODUCTS
St John's Innovation Centre, Cowley Road, Cambridge, CB4 4WS , UK Tel: +44 (0) 1223 421263, Fax: +44 (0) 1223421006 BBS: +44 (0) 1223421207 (8-N-1), Internet: sales@crossware.com

# High-performance 



## Unable to find a 24 cm antenna combining

 the features of wide beam, wide bandwidth and useful gain, John Cronk set about designing his own.This antenna design has fewer critical dimensions then most other configurations, and can be easily customised. It comprises a lightweight parabolic shaped plane reflector which is illuminated with a horizontally polarised dipole and reflector feed. Size of the reflector suggested is about the minimum worthwhile for 1.3 GHz operation.

## Design considerations

Both electrical and mechanical factors have to


Fig. 2. Horizontal test pattern of the 24 cm parabolic antenna. Frequency 1255 MHz , swr 1:1.2 and power 1W.
be considered when deciding on the reflector size and shape. One aspect taken into account in this design was to keep the structure light, and small enough to move around in a family car. The feed boom is removable for transportation. If two wing nuts are used on the mast clamp, it is possible to assemble the antenna in about half a minute and without tools, Fig. 1.
The distance of 20 in from the reflector to the focus was chosen mainly for mechanical reasons. It was arrived at through the use of full size drawings. Performance tests on the antenna show the choice to be acceptable.
The reflector should be formed as accurately as possible, but departures from the mean shape of up to one-tenth of a wavelength are generally tolerable. This is 2.3 cm at 1.3 GHz an easily achievable tolerance.
Mesh for the reflector can be seen as a large number of reflecting elements spaced one-thirtieth of a wavelength over most of the reflector surface and one-sixtieth of a wavelength in the area of the overlap at the centre. No figure for actual reflectivity is available. Wind resistance is considerably less for this material than for expanded aluminium mesh.

## Test conditions

Gain of the antenna comes from concentrating the radiation in the vertical plane. Claims for antenna gain are notoriously controversial. My antenna was tested in a coastal car park with the sea behind at 1 W transmitter power.
The receiving station was about 2.4 km inland and used a multi-element yagi antenna combined with a commercial receiver with an $S$-meter driven from the automatic gain control line. The S-meter was calibrated using external attenuators in the antenna feeder. During the tests, the attenuators were also used to extend the dynamic range of the receiving system.
The centre of the test antenna was about 2.4 m above ground and the mast was equipped with a scale marked with $15^{\circ}$ divisions. A dipole antenna was used to establish the 0 dBd reference. The horizontal radiation pattern of the test aerial, Fig. 2, was remarkably smooth compared to those of several other aerials tested. An honest attempt to obtain an accurate


Featuring wide beam, wide bandwidth and useful gain, the 24 cm antenna is easily disassembled for transportation.
gain figure yielded a result of 15 dBd (power $\times 31.6$ ) or, say, 17 dBi . The degree of experimental error was not determined.

## Feed design

Wide bandwidth was necessary so that the antenna could be used over as much of the 1.3 GHz band as possible. This use includes amateur television.
The feed design satisfies the requirement through the use of few tuned elements and the type of balun chosen. The dipole element is large in diameter relative to the operating wavelength, the size being chosen to bring the centre impedance close to $50 \Omega$.
Dipole to reflector spacing is approximately 0.2 of a wavelength but the actual distance can be varied to allow fine adjustment of the feed impedance. Length of the dipole elements can


Fig. 3. Antenna's parabola profile can be calculated then plotted, but it can also be drawn without resorting to mathematics by using a pin and string.
be trimmed so that the dipole becomes resonant at the design centre frequency, providing a resistive match at the frequency
The centre frequency chosen for the antenna is 1.255 GHz . Bandwidth of the feed impedance is further increased by making the balun slightly longer than a quarter wavelength electrically. This adds inductive shunt reactance at frequencies below the centre frequency of the design and capacitive shunt reactance at higher frequencies. In this way, it is possible to extend the matching over a wider bandwidth.

## Constructional notes

Both imperial and metric dimensions are used in the following description, as the materials used are produced variously in both size units.
A full-size drawing of the parabola profile is needed. Several methods of doing this are shown in handbooks. The beauty of the string and pin method described here is that it requires no mathematics, Fig. 3.
First draw line $A B$, and then at its centre draw line PFX, at right angles to AB. Next either draw line XY parallel to $A B$, or use a long rule or tape parallel to AB , this must be marked off with regular divisions - $\mathrm{X}_{1}, \mathrm{X}_{2}$ etc:

Now fix one end of a piece of string at point F using a pin. Take the string around another pin at $P_{1}$, and then up to point $X_{1}$, and mark this length with a knot. Now plot the curve by moving the knot to $\mathrm{X}_{2}$, and keeping the string at right angles to $X Y$, prick a mark at $P_{2}$, and so on, until half the curve is marked out. Repeat for the other half of the curve. Draw a line smoothly rough the pin pricks to show the shape of the reflector surface.
This graphical method illustrates the action of the reflector. If XY is a wavefront, the length of string show lines of constant phase to the focus.
Next the reflector former has to be shaped to fit the drawn profile, Fig. 4. The former uses 60 in of $1 / 2$ in square aluminium tube stock, as commonly used for tv yagi antenna booms.
Use a simple bending machine as shown in Fig. 5 to avoid crumpling. This consists of a block of hardwood, cut in two by a curved cut with a radius slightly less than the curve at the centre of the required profile. A small scrap of plywood tacked to the underside of one of the two pieces will help to keep things in line.
Shaping of the former is carried out by making a sandwich of the blocks and the tubing in the jaws of a vice. Starting from the centre, squeeze the former gently to shape, moving the metal along an inch or so at a time. When correctly shaped, it can be used to mark out the 18 swg aluminium centre support.
Rigidity of the former can be considerably improved by shaping the straight edges round a suitable mandrel of, say, half-inch diameter rod, with a mallet to produce a rolled edge.

A 3-by-2ft sheet of wire mesh called Handy Mesh was obtained from a local hardware store to provide the material for the reflector surface: The mesh consists of half-inch squares formed by 22 swg tinned wire. The sheet was cut in half along its length and the pieces overlapped to form a strip 60 inches long. The overlapped section was strengthened by binding some of the coincident wires with 22swg tinned copper wire, then soldering.
A small, off-centre hole will be required to clear the boom, as shown in the drawing. The mesh is fixed to the square tube former by


Fig. 4. Reflector detail. Mesh is a commercially-available type comprising half-inch.squares formed from 22SWG tinned wire.


Fig. 5. To avoid having the tube crumple during curve shaping, it is advisable to make yourself a bending fixture.


Fig. 6. Plan of antenna boom with feed dipole and reflector. The boom is electrical conduit with a removable lid.
gripping between a strip of three-quarter inch wide 22 swg aluminium, with four BA size self tapping screws or one eighth inch pop-rivets.

## Feed boom details

Dimensions and construction of the feed boom and elements are shown in Fig. 6. The boom is an 80 cm length of 1.5 cm square plastic electrical conduit. This conduit has a press-on capping and is a tight fit in the tv-type square boom mast clamp.
The elements were made from 6 mm diameter aluminium tubes, the dipole connections being made with special aluminium solder. Thin-walled brass or copper tube could also be used. The small plug in the centre of the dipole keeps the halves under control during assembly. Each element is held in place with epoxy resin filler. This same material is used to weatherproof the end of the co-axial cable.
The balun uses a length of common 32 strand of 0.0076 in PVC-covered flex, joined between the outer and inner of the co-axial feeder cable. To obtain maximum bandwidth, the length of 64 mm was arrived at experimentally.
Finishing touches can include replacing the U-bolt clamp fixing nuts with wing nuts, weather-proofing the ends of the square tubes with plastic plugs and varnishing overall.

## Toroidal Transformers

Large standard range approved to EN60742
Large and small production runs catered for


#### Abstract

filil Custom designs from 10VA to 3 kVA


 Medical designs to IEC601/BS5724 \& UL544 Fuifil 100\% Final test approved to ISO 9003 All transformers manufactured at UK factory Designs to most international standards 70 V or 100 V Line \& low noise audio designs Rapid quotation, design and prototype service Centre potted \& fully potted versions available
## Antrim Transformers Ltd

ver Qua/. Sales Department, 30 Bramley Avenue $\infty$ Antrim Canterbury, Kent, CTI 3XW, England T//ROU Tel: 01227450810 Fax: 01227764609

CIRCIE NO. 123 ON REPLY CARD
‘OFF-AIR' FREQUENCY STANDARD


## TEST EQUIPMENT

We are well known for our quality, new and used Test Equipment. Our list is extensive, the following will give some idea of our range and prices:

## TIME 404S Precision mV source

IME 2OOSN DCV PoUCal, O-10V, null, etc TIME 2000 DC Vot standard $0.005 \%$ TRACOR 890 A 60KHZ 7 75 kHz tracking Rx
 FLUKE 8600 A .3 digit led, adddVV.VI KEITH LEY 197 A .5 digit ted, acdid to 1 kV
ADVANCE VM78 ac imV to 300V up AOVANCE VM78 ac 1 mV to 300 V , up to 1 MHz
MARCON TF 2600 B video vm 300V, 10 10MHz MARCON TF2163 DC 1016 GHz attenuator E.V. EV4020A NTSC V/scope LEADER LG396 NTSC pattem generator PHILIPS 5509 PAL patem generator PHILIPS PM5716 pulse generator PHILIPSPM5134 tunction generator MARCONI TF2700 universal LCR bridge AVO CZ457/5 component comparator PHILIPS 8833 Mk 2 RBG, comp, sound Call or Equipment list

| $¢ 95$ | FEEDBACK SS0603 1 MHz sineisquare oscillator | £125 |
| :---: | :---: | :---: |
| 5249 | FEEOBACK DPM609 10Hz-100k Hz phase meter | ¢125 |
| $¢ 945$ | TEKTRONIX 221560 MHz dual tirace, dual deatay T/8 | £450 |
| ¢95 | TEKTRONIX 2455300 MHz 4 trace, dual delay T/B | 11950 |
| £149 | GOULD OS3000A 40 MHz dual trace, dual delay T/B | 5249 |
| ¢59 | HITACHI V222 20MHz dual trace, TV ting | $\underline{249}$ |
| ¢149 | MARCONI TF2370 100 MHz spectrum analyser | £995 |
| ¢25 | ADRET 740A 0.1MHz-1.2GHz sig. gen. AM/FM/PM | £1450 |
| E75 | FLUKE 931B AC rms/diflerential volmeter, $0-1 \mathrm{kV}$ ac | $¢ 95$ |
| £195 | BRYANS BS2722 pen $10 \mathrm{~cm} / \mathrm{min}$ to $10 \mathrm{~mm} / \mathrm{hs}$ | $¢ 95$ |
| £395 | GOULD 24006 pen $5 \mathrm{~mm} / \mathrm{sec}$ to $200 \mathrm{~mm} / \mathrm{min}$ | \{125 |
| §395 | VIGILANT SR5 32 10KHz-30MHz, AMCWISSB, PLL | £1250 |
| ¢195 | VIGILANT SR510 10KHz-30MHz, AMCW/SSB, PLL | E750 |
| ¢495 | EDDYSTONE EC10 150kHz 1030 MHz , AMCWISSB | £125 |
| โ1495 | RACAL RA17 0.5 to 30MHz AMCW/SSB/NL | §149 |
| £195 | DRAKE MN2700 ATUIPSU | ¢380 |
| $¢ 95$ | DIGITAL LNO3 Serial Laser Printer | $¢ 249$ |
| ¢99 | DIGITAL Microvax II9 VT2 20 lerminals, Hubs, SW £POA |  |

## SPECIAL OFFER

We have obtained an IMTEC 300 film/aperture card reader/printer which nas had very little use. Output on plain paper from paper trays, sizes $A 5$ to $A 3$, Including the ' $B$ ' sizes, and variable. This is high quality equipment, serious offers are invited.

[^1]
## LOW COST DEVELOPMENT SYSTEM

ECAL comprises a versatile relocatable assembler with integral editor which runs about ten times faster than typical assemblers. Support includes 4, 8, 16 \& 32 bit processor families including 75X, 6502, 6809, 68HC05/11, 8031/51, H8-300, 78K, PICs, ST6 \& Z80/180, 68000, 80C196, H8500 \& Z280.

ECAL is either available for a single processor family or all families.

Single processor version $£ 295$ Multiprocessor version.... £395

## Overseas distributors required

## OEMA Ltd.,

7 \& 7A Brook Lane,
Warsash,
Southampton S031 9FH
Tel: 01489571300
Fax: 01489885853


The PC based ECAL hardware emulator is fully integrated with the assembler. Connection is made to the target through the eprom socket so a single pod can support all processors. Facilities include windows for the inspection or change of registers or memory. You can even watch your program executing at source level!

Download time is about two seconds!

Pods can be daisy-chained for 16/32 bit systems.

Applications include software development, hardware debug, test and, finally, teaching about microcontrollers in education.

ECAL emulator
£475

Quantity discounts of up to $50 \%$ make ECAR software icleal for education.

## Electronic Designs Right First Time?

## Schematic Design



Create your schematics quickly and efficiently using EASY-PC Professional Areas of the circuit can be highlighted on screen and simulated automatically using PULSAR, ANALYSER III and Z-MATCH our simulation and design programs.

## Digital and Analogue Simulation



Modify the configuration and change component values until the required performance is achieved.

## PCB Design



The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic. And with LAYAN the Parasitic effects of the PCB can be included in the Analogue Simulation

| Affordable Electronics CAD |  |  |
| :---: | :---: | :---: |
| EASY-PC: Entry level PCB and Sch. CAD. | \$195.00 | $\underline{888.00}$ |
| EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR. | \$375.00 | £195.00 |
| PULSAR: Digital Circult Simulator <br> ~ 1500 gate capacity. | \$195.00 | £98.00 |
| ANALYSER III: Linear Analogue Circuit Simulator ~ 130 node capability | \$ 195.00 | £98.00 |
| LAYAN: New Electro-magnetic layout Simulator. Include board parasitics in your Analogue simulations. | \$950.00 | ¢495.00 |
| Z-MATCH for Windows: Windows based Smith-Chart program for RF Engineers. | \$475.00 | £245.00 |
| FILTECH: Active and Passive Filter Design | \$275.00 | £145.00 |
| We operate a no penalty upgrade policy. Technical support is FREE FOR LIFE. Special prices for Education | US\$ prices include Post and Packing | Sterling Prices exclude P\&P and VAT. |

## Number One Systems

Ref WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK. For Full Information Please Write, Phone or Fax. Tel: +44 (0) 1480461778 Fax: +44 (0) 1480494042

## When Performance is more important than size:-

 two new re-programmable BASIC Stamp Computers.BS1-IC
$81 / O$ lines up to 100 program lines 2,000 lines/sec Comms to 2400 baud E29 single price


352-IC 161/O lines
up to 600 program lines
10,000 lines/sec Comms to 9600 baud
£49 single price

Programming package £66
Milford Instruments Tel 01977683665 Fax 01977681465

## NEW PRODUCTS CLASSIFIED

Please quote "Electronics World + Wireless World" when seeking further information


## A-to-d and d-to-a converters

Low-power, low-cost a-to-d. Analog's AD876 joins the range of lower-power anatogue-to-digital converters, delivering a 20 Ms ample/s conversion rate at a cost of $\$ 9.95$ in quantity. It possesses a differential track-and-hold amplifier to eliminate the need for an external buffer and digital error correction allows immediate sampling without the need for internal calibration. Power is 160 mW at 5 V . Analog Devices Ltd. Tel, 01932 266000; tax, 01932 247401.

## Discrete active devices

Power mosfets. Two 30V SOIC power mosfets from Siliconix, the

Low-leakage diodes. Precision diodes by Zetex in the FLLD200 series of dual devices feature reverse currents of up to $800 \%$ better than standard types Three models are available: the FLLD263 common-anode type; the 258 common-cathode version and the seriesconnected 261. Leakage currents are of the order of $3-5 \mathrm{nA} 100 \mathrm{~V}$, with a typical diffusion capacitance of 0.9 pF at 1V. Average rectified forward current is 250 mA . Zetex plc. Tel., 0161-627 5105; fax, 0161. 6275467.

Si44 10DY and Si4435DY, possess half the on resistance of any other on the market, says the company. 4410 is an $n$-channel device giving $13.5 \mathrm{~m} \Omega$ at 10 V gate voltage and 20 ms at 4.5 V , while the 4435 has $20 \mathrm{~m} \Omega$ at 10 V and $35 \mathrm{~m} \Omega$ at 4.5 V . Both use the company's Trench technique to provide transistor densities of 12 million cells per square inch Sillconix/Temic Marketing. Tel., 01344 485757; fax, 01344427371

## Digital signal <br> processors

Silicon delay lines. Data Delay Devices all-silicon delay lines, in SOIC or 14 -pin dips, offer five and ten equally spaced taps and give delays from 5 ns to 500 ns . Operating frequency is 100 MHz and ground bounce is sald to be low. The devices are compatible with ttl and cmos. BFI IBEXSA Electronics Ltd. Tel., 01622 882467; fax, 01622882469.

## Linear integrated circuits

Dual amplifiers. Current-mode dual amplifiers by Elantec, the EL2280 and EL2270 operate from 3 V or 12 V ( $\pm 1.5 \mathrm{~V}, \pm 6 \mathrm{~V}$ ) supplies at low power and with good video performance. Bandwidth at -3 dB is 250 MHz $(70 \mathrm{MHz})$, supply current $3 \mathrm{~mA}(1 \mathrm{~mA})$, and slew rate is $1200 \mathrm{v} / \mathrm{\mu s}(800 \mathrm{~V} / \mu \mathrm{s})$ and differential phase and galn of $0.05^{\circ}\left(0.15^{\circ}\right)$ and $0.05 \% ~(0.15 \%)$. Elantec. Tel., 0171-482 4596; tax, 0171-267 1026.

Video op-amp. Having a 300 MHz bandwidth at a 1 mA supply current from 5V, the AD8011 op-amp by Analog Devices is for use in the processing of high-speed video,

giving 0.1 dB gain flatness up to $25 \mathrm{MHz}, 0.02 \%$ differential gain and $0.06^{\circ}$ differential phase error. Worstcase thd is -62 dB at 20 MHz into $150 \Omega$ and the amplifier slews at $3500 \mathrm{~V} / \mu \mathrm{s}$, settling to within $0.1 \%$ in 25ns. Analog Devices Ltd. Tel, 01932 266000; fax, 01932247401.

## Memory chips

1Mbit synchronous srams. Since the $\mu$ PD431232LGF-A8 1Mbit synchronous static ram has a data access time from the clock of 8 ns , it is suitable for use with 66 MHz processors and, being organised as 32 by 32 , will form a 256 K cache memory using two devices. These devices have a burst counter and produce either an interleaved addressing sequence to suit the Intel Pentium PE54C and 8046 processors or a linear sequence for MIPS types. NEC Electronics (UK) Ltd. Tel., 01908 691133; fax, 01908670290.

PCMCIA memory cards. Centon sram cards are available with storage capacities from 64 Kb to 2 Mb , with or without attribute and in flash memory, in $5 \mathrm{~V} / 5 \mathrm{~V}$ or $5 \mathrm{~V} / 12 \mathrm{~V}$ versions, from 256 Kb to 32 Mb capacity. Also available are ATA flash, Ethernet and fax/modem cards. METL. Tel., 01844 278781; fax, 01844278746.

## Microprocessors and controllers

Filter/codec. MT9160 is a 5 V filter/codec from Mitel that has handset transducer interfaces and programmable sidetone path, with digital gain control, anti-aliasing filters and reference and blas voltage sources. It supports both A-law and $\mu$-law requirements and offers programmable CCITT (G.711)/signmagnitude coding. There is a differential interface to handset transducers, including a $300 \Omega$ receiver driver. Register access is via a serial microport compatible with standard microcontrollers. Mitel Semiconductor. Tel., 01291 430000; fax, 01291436389.
$0.9 \mu$ PICs. Microchip has two new PIC risc cpus in a $0.9 \mu \mathrm{~nm}$ process. PIC16C58A has 2048 by 12byte of program storage and 73 by 8byte of sram for data. With $12 \mathrm{i} / \mathrm{o}$ lines individually direction controlled and three timers, the device is fully compatible with other versions. It works on 2.5-5.5V and draws under 2 mA . PIC16C54A replaces the C54 and is suitable for lithium battery

Fastest' a-to-d. Claimed by its makers, Signal Processing Technology, to have the industry's highest sampling rate at 1 GHz , the 8 -bit SPT7760 is a full parallel flash design giving a bandwidth of over 900 MHz . Because of the wide bandwidth and input
capacitance of only 15 pF , external track/hold amplifiers are unnecessary in most applications. A proprietary decoding method reduces metastable error to under 11 sb of the Gray code output. Each of the 256 comparators has its own input preamplifier to act as a buffer and to stabilise the capacitance with input voltage range and with frequency. The device is thereby easier to drive than previous designs. All clock inputs, controls and data outputs are ECL-compatible. Signal Processing Technology Tel. (USA), 001719 2300; fax, 0017192370.
power. Hawke Components Ltd. Tel., 01256880800 ; fax, 01256880325.

## Mixed-signal ICs

Logic power Interface. Devices in Tl's Power+Array family drive threephase, dc and stepper motors directly from 5 V logic-level input. Current ratings are $0.75-1$ Achannel at up to 60 V , and there are low-side and highside drivers and bridges. Polar Electronics. Tel., 01525 377093; tax, 01525378367.

## PASSIVE

## Passive components

Resistor networks. Thick-film resistor networks from BI Technologies are meant mainly for use in inrush limitation, snubber circuits and ups equipment. Four standard types, BPC$3 / 5 / 7 / 10$, are rated at $3,5,7$ and 10W, resistance range being $1 \Omega$ to $200 \mathrm{k} \Omega$ at tolerances between $\pm 0.5 \%$ and $\pm 10 \%$. Operating voltages are 300 Vac and 500 V dc and the networks can handle peak currents of twenty times rated current for 8 ms . Temperature coefficient is $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. BI Technologies Ltd. Tel., 01384 442393; fax, 01384440252.


Encoder interfaces. MBM
Electrodynamics is
producing custom interfaces
for its range of shaft
encoders and scanning
motors, thereby presenting the user with a 'ready-towear' output at a lower cost than usual. MBM
Electrodynamics. Tel., 01273 413981 ; fax, 01273425256.

## Connectors and cabling

Board/board connectors. On a 2 mm pitch, Robinson Nugent Pak-2 board-to-board connectors have pins designed for through-hole or surfacemounting, vertical and right-angle, in 4-100 ways; optional flanges accommodate various mounting requirements. A variety of stacking possibilitles is offered. Robinson Nugent (Europe) Ltd. Tel., 01256 842626; fax, 01256842673.

Cut flat cable. Sumitomo flat cable is now available cut to length in 1 mm and 0.5 mm pitch in 100 mm and 150 mm lengths in short runs at the price normally associated with long production runs, with a next-day delivery. Stripping and reinforcement can be done to order and mating FFC connectors from either JAE or Molex fitted. Flint Distrlbution. Tel., 01530 510333; fax, 01530510275.

2 mm jumper socket. At the same height above board as a typical IC package, $3 \mathrm{M} / \mathrm{s} 2 \mathrm{~mm}$ jumper socket for reconfiguring boards offers an alternative to dill switches and possesses the advantage of easy access for testing. 3M United Kingdom plc. Tel., 01344 858000; fax, 01344858758.

## Displays

Active-matrix module. Citizen has its first active-matrix video module, which uses a new two-mask TFT technique and a four-level drive. It is based on the use of higher-threshold pixels, which are thereby unaffected

## Production

## equipment

Electric screwdrivers. Eliza 20 V Electric screwdrivers made by Atlas Copco have a patented mechanical clutch for enhanced accuracy. Screws from 1.2 mm 4 mm can be tightened to torques of $0.05-3.4 \mathrm{Nm}$ and the tools have a very light trigger and reverse switch. Accessories include pistol-grip attachments, vacuum pickup adaptors, a scribe and various insert bits. Hunter AP, Tel., 01934 876028; fax, 01934876928.

by stray signal from nearby lines or pixels. Additionally, the small size of the diodes allows a 480 by 230 resolution in the 3in diagonal module, with a contrast ratio of 200:1 and a 40 ms response time. Citizen Europe Ltd. Tel., 01753584111 ; fax, 01753 582442.

## Filters

Control-line filters. BLP Components's SCF range of if filters are designed to protect lines controlling fire and intruder alarms, emergency lighting, elevator controls and the like. They conform to MIL-STD-220A and are suited to Tempestrated equipment. Both ac and dc verslons handle up to 2 A and come with two, four or ten-line stand-alone form and 10 -line modules for cabinet mounting. BLP Components Lid. Tel., 01638665161 ; fax, 01638660718.

## Hardware

Bobbins. BFI IBEXSA has a range of SMD, EFD, EP, RM and EE coil bobbins and bases for high-volume production. As well as custom designs, the bobbins are available in a low-profile range in vertical and horizontal form. Materials are Amoco LVP, Sumitomo LCP and phenolic, all UL approved. BFI IBEXSA Electronics Ltd. Tel., 01622 882467; fax, 01622 882469.

## Instrumentation

ESD generator. A low-cost electrostatic discharge generator, the pOT from picoQ Corporation, tests equipment for immunity to esd and emi. It produces a controlled air discharge through direct contact, needing no ground wire, power source, internal contact-mode relay or polarity switch. E-field and H -field probes are available and the instrument is calibrated to a broadband or human-body model. Lyons Instruments Ltd. Tel., 01992 768888; fax, 01992788000.

Tv spectrum analyser. Mainly for television work, the U4341 spectrum analyser in the R\&S Advantest range is light and portable and yet highty sensitlve, having a built-in demodulator to allow programmes to be shown on the tft screen. Level and frequency measurements may be made, selection beling by stored channel frequency, which can be edited for more channels at up to 2.2 GHz . Two slots take PCMCIA cards to store data and settings. All national television standards are supported. Rohde \& Schwarz UK Lid. Tel., 01252811377 ; fax, 01252 811447.

Electrostatic fieldmeter. Hand-E-
Stat Is an instrument made by the Dutch company Simco to measure the potentials associated with static charges. It is a pocket-sized instrument, offering sample and hold modes, with a light-ranging method of achieving repeatable results. Its case is conductive and there is a ground


Energy conservation.
Schuter's power management module switches off a pc's monitor when it Is idle, bringing it back to life if the mouse moves or someone touches the keyboard. It is a snap-in mounting inlevoutlet plug and socket with the necessary conirol circuitry and Is meant to offer energy saving when large numbers of pcs in an organisation are normally left running all day, being used infrequently.
Radiatron Components Ltd. Tel., 01784439393 ; fax, 01784 477333.
clip. Autoranging covers $\pm 20 \mathrm{kV}$ at a distance of 2.5 cm and, as well as the digital display, an analogue output is provided. Accurate measurements can be made in areas using air ionisation. Simco (Nederland) BV Tel., 00315730 88333; fax, 0031 573057319.

Lcd panel meter. Needing no external power supply, bypass capacitors or trimmers, the DMS -30LCD-4/20S panel meter by Datel is powered by a $4-20 \mathrm{~mA}$ current loop and measures 2.2 in by 0.93 in, with a 0.4 in high display. An eight-position dip switch selects range, offset and decimal point placing, no jumpers being needed. Datel (UK) Ltd. Tel., 01256880444 ; fax, 01256880706.

## Interfaces

GPIB controller/analyser. Two interface boards from National turn existing National interface boards, the AT-GPIB/TNT and the PCMCIA-GPIB card, into GPIB analysers, controlling GPIB instruments as well as sorting. out difficulties such as addressing inconsistency, protocol violation and others. AT-GPIB/TNT + and PCMCIAGPIB+ also capture HS488 activity. National Instruments UK. Tel., 01635 572400; fax, 01635523154.

Infrared data link. Conforming to the Infrared Data Association (IrDA) serla infrared comms standard, H-P's

HSDL-1000 provides a link effective up to 1 m for communication between mobile computers and devices. It works at 870 nm and $115.2 \mathrm{~kb} /$ s over $\pm 15^{\circ}$, the package consisting of a led and detector, led driver, photodiode transimpedance amplifier, comparator and bias network. Communication is effective in 10 klux of sunlight and up to 1 klux of incandescent or fluorescent lighting. Hewlett-Packard Ltd. Tel., 01344 366666; fax, 01344 362269.

Sample-rate converter. Analog's AD1893 SamplePort is a-16-bit stereo asynchronous sample-rate converter that accepts a digital input sample stream at an arbitrary or varying rate and outputs the stream at the user's chosen rate, thereby also minimising the effect of clock jitter. It is based on the AD1890, but also offers an oscillator, single $3-5 \mathrm{~V}$ operation, a power-down mode and right-justified serial interface format. Thd $+n$ is 96 dB minimum, as the dynamic range with a $0-20 \mathrm{kHz},-60 \mathrm{~dB}$ input. Analog Devices Ltd. Tel., 01932 266000; fax, 01932247401

## Literature

Power mosfets. Several kilograms of paper In the form of International Rectifier's Hexfet deslgner's manual is available free. In 2500 pages, the book contains product data and application notes on the use of Hexfet power mosfets. Solid State Supplies Ltd. Tel., 01892836836 ; fax, 01892 837837.

Keyboard. Model G81-3100 keyboard by Cherry is described in a new brochure. This unit is complete with a magnetic card reader, which will read all the data on all popular cards, and/or a bar decoder that is compatible with common reading devices. Cherry Electrical Products Ltd. Tel., 01582763100 ; fax, 01582 768883.

## Materials

Stickier sticky labels. New from 3M is a pressure-sensitive labelling material that sticks to virtually anything, including the 'difficult' plastics and powder-coated finish. Both ScotchMark 7871/2 have a polyester face, 7871 in gloss and 7872 in matt platinum, and both are printable by thermal transfer. 3 M United Kingdom plc. Tel., 01344 858000; fax 01344858758.

## Navigation systems

Range of GPS. Navstar Systems has a range of global positioning system equipment, being the only British maker of course acquisition GPS receivers with particular experience in professional and defence work. Telecom Design Communications announces that it has concluded an alliance with Navstar. The range includes 2 m -resolution, 12 -channel differential base stations, six-channel receivers, post-processing software and remote surveying/logging software. Telecom Design

Communications Ltd. Tel., 01256 332800; fax, 01256332810.

Small, low-power GPS receiver Power-saving facilities in the Rockwell MicroTracker LP five-channel receiver engine will, according to TDC, double battery life. More complete integration has reduced component count from earlier Rockwell designs, but compatibility is retained. The board measures about 2in by 3in and delivers differential GPS accuracy to within 5 m most of the time, with a time to first fix of 30 s from a warm

> Mini-otdr. Tektronix's TekRanger TFS3031 is miniature optical time- domain reflectometer capable of both single-mode and multi-mode testing of optical-fibre cable in the one instrument. A feature to recommend the instrument for field work is IntelliTrace. which adjusts parameters such as pulse width and number of averages as the instrument automatically analyses a fibre link, thereby measuring small and closely spaced events accurately even over long distances. Since the dead zone is smaller than in previous instruments, events down to 5 m and up to 100 m are testable, results being displayed on a large, backlit Ic display. Up to 200 waveforms may be stored and recalled for comparison or analysis and an optional hard disk can be used for archiving and documentation. A power management system is included, battery life being eight hours. Tektronix UK Ltd. Tel., 01628 486000; fax, 01628474799


start. CityTracker software facilitates use on the move in cities with steadier tracking than before. Although the receiver is optimised for static work, it is able to work at altitudes up to $40,000 \mathrm{ft}$ under 4 g acceleration. Telecom Design Communications Ltd Tel., $01256332800 ;$ fax 01256 332810

## Power supplies

Multi-output smps. A range of very low-cost convection-cooled power units by Coutant Lambda, the SW series includes $30 \mathrm{~W}, 40 \mathrm{~W}, 65 \mathrm{~W}$ and 100 W models having one to four outputs from 5 V to 24 V . The units meet UL, CSA and IEC requirements. Coutant Lambda Ltd. Tel., 01271865656 ; fax, 01271864894.

Small dc-to-dc converters. From Datel, the XWR series of $5 W$ converters are in 1 in by 1 in by 0.45 in metal cases and conform to the pinout used by much larger types. They are designed for use in systems with distributed supplies, where the converter can be placed at the load to reduce losses, poor regulation and slow transient response. Outputs are $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V unipolar or bipolar and the inputs handle $18-36 \mathrm{~V}$ or $36-72 \mathrm{~V}$. Protection is provided. Datel (UK) Ltd. Tel., 01256 880444; fax, 01256880706.

Apd supplies. Gardners has a new type of dc-to-dc converter, the GR84907, designed to provide variable high-voltage supplies for avalanche photo diodes used in wideband digital optical communication receivers, as an alternative to the use of fixed supplies and high-value resistors. Output ( $20 \mathrm{~V}-100 \mathrm{Vdc}$ at 0 - 1.6 mA ) is isolated and contains only 50 mV ripple and noise, voltage being regulated by a control voltage. There is no internal stabilising feedback, since the unit is designed for system use with an external loop, although closed-loop models can be supplied. Gardners Lid. Tel., 01202482284 ; fax, 01202470805.

UPS batteries. SmartCell XR battery packs for Vero's 3kVA and 5kVA Matrix ups range reduce cost of ownership, since they replace four of the earlier modules, one XR unit giving 45 minutes hold-up time at 3 kVA at only $60 \%$ of the cost. The units are in 11 U high 19in rack modules. Computer monitoring in each SmartCell tests its condition and indicates the need for replacement to the front panel and to the monitor software, also providing a log of periodic checks made by the processor and an accurate indication of run time when the battery is in use. Vero Electronics Ltd. Tel., 01703 266300; fax, 01703265126.

## Production test equipment

Transformer tester. Voltech's
AT3600 is a comprehensive autornatic tester for transformers and other wound components. It is fully programmable to allow an all-in-one test, providing all the functions that normally require up to seven individual instruments, all results being presented either in a single test report or as a simple pass/fail indication. The measuring process is of a closed-loop nature for accuracy, giving a basic $0.2 \%$ accuracy on winding resistance from $1 \mathrm{~m} \Omega$ to $100 \mathrm{k} \Omega$, turns ratio $10^{4}-10^{-4}$ and inductance $100 \mathrm{nH}-100 \mathrm{kH}$. Windowsbased software is supplied to carry out 21 tests, with a further 16 to come later in the year, for which the software is to be supplied free. The user simply enters a schematic diagram of the transformer, creates a 'virtual fixture' by connecting its pins to any of the unit's nodes and selects the tests to be run from menus.
Fixtures can be made from kits or built by Voltech. Voltech Instruments Ltd. tel., 01235861173 ; fax, 01235 861174.

Pcb test. CITS200 is a bench-top printed board tester by Polar which verifies the characteristic impedance of tracks, including balanced-line connections using time-domain reflectometry to single-ended or differential measurements. A graphical user interface makes for easy operation and flexibility. A standard pc is linked to a two-channel test system that automates all impedance tests, set-up being carried out by a Windows-based package. In operation, the test file is selected by the operator, who positions the probe and presses a switch. Next the tests are carried out in succession with prompts to the operator to reposition the probe as needed. Results are processed to give a graphical view of impedance, printed and saved to disk. Polar Instruments Ltd. Tel., 01481 53081; fax, 0148152476.

## Switches and relays

3GHz minlature relay. Teledyne's RF300/303 series of ultraminiature relays provide $\pm 0.1 \mathrm{~dB}$ of signal repeatability over the 0-3GHz frequency range. They are meant for low-level if and dc switching in attenuators, tuning, filters, etc., in which the features of wide bandwidth, good shielding and grounding and high control-to-signal isolation are required. These relays are in TO- 5 cans. Teledyne Electronic Technologies. Tel., 0181-571 9596; fax, 0181-5719637.

Resettable cut-outs. Bi-metallic, resettable cut-outs by Steatite protect against over-temperatures. Ratings are 4A, 6.3A and 10A, the 4A type being BEAB-approved to CO652 and particularly suitable for use in wound components. Contacts are normally closed and are rated at 250 Vac at 50 Hz . Accuracy of the cut-off is within $\pm 5^{\circ} \mathrm{C}$. Steatite Power Ltd. Tel., 0181778 6611; fax, 0181-778 7722.

Timer switch. Amerace announces the 48 mm DIN Agastat Electronic
Timer, designed for a standard 48 mm
panel cut-out and to be rail-socket or panel mounted. It has up to eight user-selected timing modes, six timing ranges from 0.1 s to 10 h at a repeat accuracy of $\pm 0.5 \% \pm 10 \mathrm{~ms}$. All models have 10A dpdt contacts. Amerace Ltd. Tel., 01635 49191; fax, 01635521641.

Reed switch. Switching 250 Vac at 1A, Gentech's GR19 miniature reed switch has Dimet contacts to give it a life of 100,000 operations. It is available with sensitivities of 20-50AT, an initial contact resistance of 20 ms , insulation resistance of $10^{12} \Omega$ and a withstand of 700 Vdc . Under extreme conditions, the GR19 handles 5A at 20 Vdc for a short time. Gentech International Ltd. Tel., 01465 713581; fax, 01465714974.

Thin, high-voltage relays.
Matsushita's photo-MOS optically coupled relays control a $400 \mathrm{~V}, 130 \mathrm{~mA}$ load from a 5 mA led Input, but are only 2 mm high off the board. Two models of this type, the AQV212S and $A Q V 214 S$ have on resistances of $0.83 \Omega$ and $30 \Omega$ respectively with leakage current of 100 pA at 400 V , the led drawing 5 mA and dropping 1.14 V . The 212 is for load voltages to 60 V at 0.35 A , the 214 for 400 V at 0.1 A , both being normally open. In a larger package standing 3.4 mm high, the AQV212A and AQV214A are identical components. Model AQV614A has one normally open and one normally closed contact in the 3.4 mm package. Flint Distribution. Tel., 01530 510333; fax, 01530510275.

Rotary switches. New features on the Grayhill range of rotary switches are a spring return facility for applications such as 'hold-to-test', and isolated positions in which the shaft must be pulled before rotation to provide a standby or emergency position. To maintain contact in the 'hold' positions, a rotary force must be held, the switch returning to its normal detent position when the force is released. Models having up to six decks are available, with up to six poles per deck. Ratings are 200 mA 1A. EAO-Highland Electronics Ltd. Tel., 01444 236000; fax, 01444 236641.

Signal re-routeing on a pcb. Lattice Semiconductor's ispGDS is a programmable dlgital switch IC that allows signals to be re-routed on a pc board under software control, eliminating jumpers, dil switches and
added bits of wire. Control is by a four-wire, 5 V serial interface. Micro Call Ltd. Tel., 01844 261939; fax, 01844261678.

## Transducers and sensors

Optical-fibre sensor. From
Honeywell comes the HPX series of sensors, which the company claims is in the slimmest ( 10 by 28 by 60 mm ) package available. There are three models for use in paper and object sensing, in machinery to detect jams and to count, in electronic gear to count small components and in pharmaceuticals to count pills. Units have a three-turn pot. to adjust sensitivity and an alarm is given if the device needs cleaning. Honeywell Ltd. Tel., 01344826000 ; fax, 01344 826240.

Custom load cells. CorinTech can now supply thick-film load cells to customers' specification, using techniques developed at the University of Southampton. Piezoresistive thick-film resistors on one-piece metal substrates provide robustness and low cost and the tribeam design exhibits linear and repeatable output and invulnerability to eccentric loads. CorinTech Ltd. Tel., 01425 655655; fax, 01425 652756.

Displacement controller. D1 displacement indicators by Control Transducers connect directly to linear sensors to act as a 3.5 -digit readout and to pass signal to a pc.
Transducers may be rectilinear potentiometers, amplified sensors or current-loop transmitters and the D1 provides the sensor's power supply. Readout is supplied in the required units, with specified set-points and type of signal output. Control Transducers. Tel., 01234 217704; fax, 01234217083.

Liquid gas level. Control Transducers's NGTT gas level sensor reduces the problems of adapting natural gas to power machines by providing an accurate method of determining the level of liquid in the tank. A constant-resistance pressure gauge is also used to measure temperature, both quantities being needed to calculate level. Output is supplied directly to an analogue or digital voltmeter. Control Transducers. Tel., 01234 217704; fax, 01234 217083.

## Vision systems

Digital video encoder. IBM has announced the first chip to compress or encode the data to transmit and store digital video, frame by frame. MPEG-2 I-Frame Encoder, the 'IFrame' referring to the intermittent frame used in high-speed compression and decompression, and an enhanced version of the MPEG-2 Decoder for the pc and television consumer market. Blue Micro Electronics. Tel., 01604 603310; fax, 01604603320.

Video disk recorder. H-P's HP 4:2:2 VDR now has double its previous capacity -24 minutes. The instrument is for workstation use in computer graphics and animation; the new specification allows a half-hour tv programme - the bit between the ads. - to be recorded to a hard-disk array for playback, with digital audio. There is a full set of Ethernet commands for file transfer and a SCSI set. The unit is supported by major animation and graphics developers. Hewlett-Packard Ltd. Tel., 01344 366666; fax, 01344 362269.

Windows data acquisition. Windspeed soltware from Windmill provides notebook computers with the facility to $\log$ and display data. The package runs under Windows, continuously logging data to disk and charting it in real time so that users can remove and save parts of the record in a choice of formals. Since notebooks do not often possess expansion slots, Windspeed uses Microlink data acquisition hardware that connect to a COM port on the computer or to a PCMCIA network adaptor. The system will stream analogue data to a hard disk at 700sample/s via the COM port or at 36,000 sample/s through Ethernet. Hardware is configured from the software by means of set-up files from a library saved by the user. Different channels may be sampled at different intervals within one scan or some channels may be sampled every scan and others every mith scan. Windmill Software Lid. Tel., 0161-833 2782; fax, 0161-833 2190.


# COMPUTER 

## Computer board-level products

PC-104 modules. Pro-Active Control has a range of microprocessor minimodules based on the PC-104 for the embedded-systems market. The units run dos software and only need dos and interfaces to work. Top of the range is PAC-486, based on a Cyrix Cx 486 SLC2 50 MHz processor and including 2 Mbyte of dram, with a 4Mbyte option, battery-backed sram up to 512 K , clock/timer, serial and parallel ports, keyboard i/o, disk support and power management. Secondly, there is the PAC-86, which uses the Chips \& Technologies 8680 A pc chip running at 14 MHz . This is an 8 -bit PC XT computer with full i/o facilities and PCMCIA support, full CGA graphics with crt/lcd drive, 1 Mbyte mapped dram, 512 Kbyte sram, 512 Kbyte eprom, an RS-232 port and a PCMCIA slot.
The third module is the PAC V-25, using the NEC V-25 chip to make one of the lowest-cost pc-compatible processor modules available,
optimised for embedded applications. Pro-Active Control Ltd. Tel., 01223 300801 ; fax, 01223300979.

Optical bus expansion. $P C X-797$ is an expansion kit by Fairchild to allow additional ISAbus slots to be linked to a pc using an optical-fibre link. The kit has two cards: a master for the pc and a slave for the remotes passive backplane, with up to 100 m of optical fibre between the two. Multiple cards can be used to obtain hundreds of i/o slots for a standard pc. Data throughput is $1.6 \mathrm{Mb} / \mathrm{s}$ and the $96 \mathrm{Mb} / \mathrm{s}$ optical transmission avoids bus timing problems. Fairchild Ltd. Tel., 01703 559090; fax, 017035559100.

68030 VME card. Syntel's new 68030-based card, the SYN-VME203, is a 3 U single-board computer for the VMEbus offering good power economy. Facilities on board include a 68882 float co-processor, 1 Mbyte or 4 Mbyte of 32 -bit-wide dram and up to 1 Mbyte of eprom. Two RS232 asynchronous serial channels are available with one 16 -bit interrupt timer and there is a watchdog timer. The dram subsystem supports fast 16 -byte cache burst filling and cacheing is included for all VMEbus
operations. Both 8 -bit and 16 -bit VMEbus transfers are carried out Auto bus sizing converts 24 -bit and 32 -bit cpu operations to consecutive 8 -bit and 16 -bit transfers. Syntel Microsystems. Tel., 01484 535101/2/3; fax, 01484519363

## Data acquisition

PC measurement modules. Kyle Data Services offers the MM-232 family of data acquisition modules for computers with RS-232 ports. Units for the measurement of voltage, frequency, digital signals and events are currently available, each with four input channels, two further digital inputs and two digital outputs. Speciai software is not need and all modules are easily accessible from Basic, Pascal, C and other languages. Modules either plug directly to a 25 -pin port or may be remote; they are powered either by the RS-232 line or by external supply. Kyle Data Service Ltd. Tel., 01292 311169; fax, 01292318005.

## Software

Signature analysis. Since 'compatible' ics from different
manufacturers can possess marginally differing signature analyses, the technique sometimes produces invalid results. Polar instruments can now offer AVR, which is Advanced Vendor Recognition, to detect the slight differences automatically, avoiding unnecessary fault repair. Polar Instruments Ltd. Tel., 01481 53081; fax, 0148152476.

Applicatlon generator. Visual Designer application generator software from Intelligent Instrumentation now supports the Keithley DAS 16 family of boards, giving access to any analogue or digital i/o functions from the boards including dma, counter and rategenerator functions. The software is Windows-based and allows people to develop application software by drawing block diagrams, with no programming. Virtual sliders, switches and instrument panels appear on screen and control the application. Intelligent Instrumentation. Tel., 01923 896989; fax 01923896671 .


AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE Postage and packing must be added. Please phone for price. VAT @ $171 / 2 \%$ to be added to all orders. Please send large SAE for details. Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6 DJ Tel: 01952605451 Fax: 01952677978


## KESTREL ELECTRONIC COMPONENTS LTD

ش All items guaranteed to manufacturers' spec.
\& Many other items available.
'Exclusive of V.A.T. and post and package'

|  | $1+$ | $100+$ |  | $1+$ | $100+$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 27C64-15 | 2.00 | 1.45 | 628128LP-85 | 8.30 | 7.20 |
| 27C128-15 | 2.40 | 1.80 | 62256LP10 | 3.00 | 2.60 |
| 27C256-15 | 2.20 | 1.70 | 6264LP-10 | 2.10 | 1.45 |
| 27C512-15 | 2.20 | 1.70 | MM58274CN | 4.90 | 3.75 |
| 27C010-15 | 3.60 | 2.30 | ULN2003A | 0.43 | 0.30 |
| 27C020-15 | 6.00 | 3.99 | 7805 | 0.32 | 0.25 |
| 27C040-15 | 8.60 | 6.45 | MAX232 | 1.35 | 0.88 |
| 80C31-12 | 2.10 | 1.65 | 7406 | 0.35 | 0.23 |
| 8255AC-2 | 2.00 | 1.50 | 7407 | 0.35 | 0.23 |
| Z80A CPU | 1.80 | 1.00 | 74HC244 | 0.35 | 0.24 |
| LM386N-3 | 0.50 | 0.35 | 74HC245 | 0.35 | 0.24 |
| 75176BP | 1.35 | 0.85 | 74HC373 | 0.35 | 0.25 |
| 68w PLCC skt | 0.90 | 0.70 | 74HC374 | 0.32 | 0.25 |

74LS, 74HC, 74HCT Series available Phone for full price list All memory prices are fluctuating daily, please phone to confirm prices

# 178 Brighton Road, Purley, Surrey CR8 4HA 

 Tel: 0181-668 7522. Fax: 0181-668 4190.CIRCIE NO. 131 ONREPLYCARD

〔
8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF Tel: 01203650702 Fax: 01203650773
Moblle: 0860400683
(Premisos siluated close to Eastern-by-pass in Coventry with aasy
access access to M1, M6, M40, M42, M45 and M69)

|  | MISCELLANEOUS |
| :---: | :---: |
| Tel: 01203650702 | se pattern generator MS voltmeter |
| ] Fax: 01203650773 |  |
|  | er, immaculate condition |
|  |  |
| (Premises situated close to Eastern-by-pass in Coventry with oasy access to M1, M6, M40, M42, M45 and M69) |  |
|  |  |
| OSCILOSCOPES | Farnell TSV70 Mkll - Power Supply ( $70 \mathrm{~V}-5 \mathrm{~A}$ or $35 \mathrm{~V}-10 \mathrm{~A}$ ) Ferrograph RTS2 Audio test set with ATU1 $\qquad$ |
| Gould OS4000, OS4200, OS4100, 0 |  |
|  |  |
|  | Fluke 5220A-Trarsconductance Ampliter (20A)...................3000 |
| Gould $4050-35 \mathrm{MHHz}$ digital storage |  |
|  |  |
|  |  |
| Howlett Packard 1740A, 1741A, 1744A, 100 MHz dual ch |  |
| Hewletr Packarar 54201A-30004 Hz dighting. |  |
|  |  |
| Hilach Y-212-20MHz dual trace | (in |
| Nicolet 3091 - Low Heq D.S. 0 | Hewlett Packard 3702日/3705A3710A3716A Microwave innk analyser |
| Texironix 468-100MHZ D.S.O |  |
| Tektron\|x 2213 -60 MHz dual in | Hewlett Packard 371143712A37918/37938 Microwave link analyser |
| Teitron $1 \times 2215-60 \mathrm{MHz}$ dual ${ }^{\text {chem }}$ | tt Packard 3760/3761 Data gen + error detector ............each E 300 |
|  | Hewlett Packard 3762/3763 Data gen + error detector .............each $\mathbf{5 3 5 0}$ Hewlett Packard 3764A Opt. 002 - Dlgitial Trans. Analyser …......... 250 |
| Tokitron $1 \times 2235-100 \mathrm{MHz}$ dual ch. (por |  |
|  | Hewlett Packard 377/A Channel selectior |
|  | Hewlet Packard 3779A/3779C Primary multi. analyser............ $600 / \mathrm{E} .1000$ |
|  |  |
|  | Wet Packard 5316A - Universal counter HPIB .................... 5750 |
| Terkron\|x $7313,7603,7613,762$ | Hewlett Packard 5385A - Frequency counter 1GHZ (HP18) with Opts 001/003/004/005 |
| Tekrron\|x 7834 with $7842,7880,7885$-Plug-Ins (Siorage 400 Mhy |  |
|  | programmer |
|  |  |
| Phillips 3206, $3211,3212,3217,3226,3240,3243$, <br> 3244, 3261, 3262 (2ch +4 ch.) <br> from $£ 125$ to $£ 350$ | Hewlett Packard 6181 C O.C. currem source........................... $E 150$ |
|  |  |
|  | Hewlett Packarct 26618 Power supply 20V-50A ................ 5500 discount for quantities |
|  |  |
|  | Hewlett Packard 7402 Recorder with 17401A $\times 2$ plug-ins. Hewlett Packard 80058 Pulse generator. <br> Hewlett Packard 8011A Pulse gen. $0.1 \mathrm{~Hz}-20 \mathrm{MHz}$ <br> Howlett Packard 8152A - optical average power meter |
| SPECTRUM ANALYSEI |  |
|  |  |
|  |  |
|  |  |
| Hewwetf Packard 1827 mith 85594 ( $10 \mathrm{MHz}-21 \mathrm{GHz}$ ) ......................335 |  |
|  | ${ }_{0}$ |
|  |  |
| Schumberger 1 |  |
|  | 86 |
| Generator lo 727 (10KHz-12.4GIZ) |  |
|  |  |
| Tekiron\|x 7 L 14 whth 7603 -Mantrame (1.8GHz)..................... 22000 |  |
| Tettronlx 71 |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## TELNET



TEL 01816523620
FAX 01816528956

## ARTICLES WANTED

## FREE CLASSIFIED

# W A N T E D! ! <br> Top prices paid for your test equipment made by HEWLETT-PACKARD, MARCONI, FLUKE, TEKTRONIX, BOONTON, ROHDE \& SCHWARZ etc. <br> From Europe's No. 1 Test Equipment Leader <br> ROSENKRANZ-ELEKTRONIK, AXEL ROSENKRANZ GROSS GERAUER WEG 55, 64295 DARMSTADT/GERMANY Phone: 0049-6151-3998-0 Fax: 0049-6151-3998-18 

## CONTACT US NOW!

You are looking for test equipment? More than 10,000 units in stock for immediate delivery. Call or fax for our new 100 page catalogue
** WHAT WE DONT HAVE YOU DON'T NEED **

TEKTRONIX MODULES 7A26, 7A18, 7B85, 7B80, 7B50A: Fully tested. Sensible offers please. Ian Stirling, Cottaracre Star. Fife KY7 6LA. 01592757384
WANTED: pre-war television. Jac Janssen, Hogeham 117D, NL-5104JD Dongen, Netherlands. Tel: (eves) 010311623 18158. Fax (office): 01031 13624664
WANTED: TEKTRONIX Plug in module, Type A A501 Distortion analyser. Also SG505 oscillator. Phone: G. E. Gillard 01159846116.
WANTED: Agent/spy radio sets. All periods. SOE/SAS/SSTR-SOVJET etc. German W.W. 2 radios. OZ8RO. R. Outrstad, Høsterkøbvej 10, DK-3460 Birkerød. Denmark. Tel: 42815205.

WANTED: TUBE for Solartron CD1400 oscilloscope, type SE5/2A. Poole 01202602722.
FOR SALE: Dranetz phase meter, 2 Hz $-700 \mathrm{KHz}, 0.01$ degrees resolution, good for filters, crossovers etc. $£ 350$ ono. Tel: Mike 01483487189 (eves)
SALE OR SWOP for CD-Rom drive. Perkin Elmer, infra-red spect potometer, infragraph H1200, working. Phone 01273553505.
FOR SALE: EWWW 1980 to 1994, Offers. Phone: Tony - 0127666155 evenings.
WANTED: pre-war television. Jac Janssen, Hogeham 117D. NL-5104JD Dongen, Netherlands. Tel: 010311623 18158. Fax (office): 0103113624664. Thanks!

## nop vatu no causinur wit REPRINTS

Multiple copies of your articles and advertisements published in this magazine make ideal promotional material for sales literature, exhibition handouts, direct mail, new product launches, distributor promotions, Public Relations etc.
You can add your own artwork and copy, utilise the front cover of this magazine, include your list of distributors, and/or your latest advertisement/s. Reasonably priced reprints can be tailor-made to your own specific requirements or simply reprinted in their original form. (Minimum order number 250)
For a FREE quotation please telephone Jan Crowther now on: 0181-652 8229 or fax: 0181-652 3978 Reprint Services, Reed Business Publishing,
Room 1006, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS, England

## INDEX TO ADVERTISERS

|  | $P A G E$ |  | $P A G E$ |
| :--- | ---: | :--- | :--- |
| Anchor Supplies | 632 | MB Radio (Leeds) | 698 |
| Antrim Transformers Ltd | 698 | Millford Instruments |  |
| Bull Electrical | 642 | Number One Systems |  |
| Cricklewood Electronics | 668 | OEMA Ltd |  |
| Crossware Products | 701 | 702 |  |
| Dataman | OBC | Pico Technology |  |
| Display Electronics Ltd | 686 | Quickroute Systems Ltd | 702 |
| ERT | IBC | Ralfe Electronics |  |
| Field Electric Ltd | 708 | Research Communications | 601 |
| Grandata Ltd | 676 | Robinson Marshall (Europe) Ltd |  |
| Halcyon Electrics | 698 | Seetrax Ltd |  |
| ICE Technology Ltd | IFC | Stewart of Reading |  |
| Interconnections | 663 | Surrey Electronics |  |
| IOSIS | 701 | System Enclosures |  |
| John Morrison (Micros) | 626 | TDC | 626 |
| Johns Radio | 641 | Telford Electronics |  |
| JPG Electronics | 626 | Telnet | 612 |
| Kestral Electronic Components | 708 | Tsien Ltd |  |

# CLASSIFIED 

| AN5521 | 1.35 | STK4352 | 6.20 | STRD6008 | 10.00 | TEA2026C | 4.50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AN5732 | 1.40 | STK4372 | 5.65 | TA7227 | 1.85 | TEA5170 | 1.40 |
| AN6327 | 9.85 | STK4803 | 7.05 | TA7271 | 2.50 | TUA2000-4 | 4.25 |
| AN6677 | 8.50 | STK4843 | 7.05 | TA7280 | 2.25 | U8848 | 2.35 |
| 8A5114 | 1.55 | STK5315 | 5.85 | TA7281 | 2.20 | U46068 | 5.50 |
| 8A6218 | 1.85 | STK5332 | 1.80 | TA7698 | 5.00 | UAA1008 | 3.00 |
| BA6219 | 1.20 | STK5338 | 3.25 | TA8200 | 3.50 | UPC1178 | 1.05 |
| HA11423 | 1.65 | STK5361 | 4.15 | TA8210 | 3.00 | UPC1182H | 5.15 |
| HA13119 | 2.50 | STK5372 | 2.85 | TA8214 | 3.00 | UPC1278H | 2.20 |
| K46210 | 4.99 | STK5372H | 4.15 | TA8215 | 3.00 | UPC1420 | 4.50 |
| LA3220 | 0.60 | STK5412 | 3.75 | TA8205 | 3.95 | UPD1937 | 3.00 |
| LA4183 | 1.35 | STK5471 | 3.85 | TA8659 | 13.00 | 25A814 | 0.71 |
| LA4445 | 1.90 | STK5490 | 4.95 | TA75339 | 0.75 | 25A839 | 1.40 |
| LA4495 | 1.40 | STK6732 | 14.00 | TDA1908A | 2.00 | 25 A1062 | 1.00 |
| LA4588 | 2.55 | STK7226 | 7.50 | TDA2170 | 3.00 | BU426A | 1.10 |
| LA7835 | 2.35 | STK7308 | 4.05 | tDA2270 | 2.50 | BU500 | 2.45 |
| LB1416 | 2.25 | STK7348 | 4.05 | TDA3562A-TFK | 3.25 | BU506D | 1.50 |
| LM301 | 0.25 | STK7356 | 4.75 | TDA3562A-SG | 3.00 | 8U508A(PHIL) | 0.80 |
| LM317T | 1.50 | STK7404 | 6.50 | TDA3645 | 8.00 | 8U508AF(PHI) | 1.00 |
| M4918BI | 4.75 | STK73410 | 5.15 | TDA3650 | 8.99 | BU508DF(PHI) | 1.25 |
| M4948BI | 6.75 | STK73410/2 | 5.95 | TDA3850 | 18.99 | BU806A | 1.40 |
| M51393 | 5.95 | STK73605 | 4.50 | TDA4400 | 1.75 | BU807 | 0.85 |
| M58655 | 3.30 | STR441 | 14.75 | TDA4505A | 4.10 | BU908 | 1.15 |
| M83730 | 1.70 | STR451 | 25.00 | TDA45058 | 4.10 | BU932 | 1.50 |
| M83756 | 8.00 | STR3125 | 5.50 | TDA4505E | 4.00 | BUK444/500 | 2.15 |
| STK078 | 6.00 | STR4211 | 5.50 | TDA4505M | 6.80 | BUK454/600 | 1.95 |
| STK435 | 4.00 | STR4090 | 11.15 | TDA4505K | 6.15 | BUT11A | 0.70 |
| STK461 | 6.00 | STR20005 | 5.00 | TDA4660 | 4.50 | BUT1 1 AFIPHI) | 1.20 |
| STK2250 | 7.45 | STR40090 | 4.00 | TDA4950 | 1.40 | BUT11F | 1.20 |
| STK4121/2 | 7.00 | STR50103A | 3.85 | TDA5660P | 2.50 | BUT12A | 1.10 |
| STK4141/2 | 5.50 | STR54041 | 3.75 | TDA7072 | 3.99 | 8UT12AF | 1.10 |
| STK4142/2 | 6.50 | STR58041 | 3.75 | TDA8370 | 14.00 | BUT56A | 0.80 |
| STK4162/2 | 6.25 | STR80001 | 6.00 | TDA8405 | 8.00 | BUT76A | 1.05 |
| STK4171/2 | 8.10 | STR1706 | 4.75 | TDA8732 | 5.95 | BUV48C | 3.10 |
| STK4191/2 | 8.50 | STRD1806 | 4.50 | TEA2018A | 1.50 | BUW13 | 1.50 |
|  | When you have been let down by the rest come and try us for fast friendly service. <br> Ask for our full, comprehensive catalogue, FREE OF CHARGE |  |  |  |  |  |  |

ARTICLES FOR SALE

##  <br> OPERATING \& SERVICE MANUALS



CONTACT

## Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: (+44)01243545111/2 Fax: (+44)01243542457

## RECRUTIWENT

## Are you a keen electronics graduate?

Leading electronics publication needs an enthusiastic editorial assistant. No experience needed. Hard work but rewarding - a unique opportunity to learn about magazine publishing with Britain's best.

Based in Sutton, Surrey Ring 01816528638 for more details.

# ADVERTISERS PLEASE NOTE 

For all your future enquiries on advertising rates

## Please contact Malcolm Wells on

## Tel: 0181-6523620 Fax: 0181-652 8956

# CLASSIFIED 

## ARTICLES FOR SALE



## Cooke International SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. ALWAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE COPIES ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME, SEND FOR LISTS OF EQUIPMENT AND MANUALS.

ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS SHIPPING ARRANGED

OPEN MONDAY-FRIDAY 9AM-5PM

## Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB

Tel: (+44) $01243545111 / 2$
Fax: $(+44) 01243542457$
EQUIPMENT \& ACCESSORIES PURCHASED
CIRCLE NO. 13.5 ON REPI Y CARD

## TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.
Langrex Supplies Limited
1, Mayo Road, Croydon,
Surrey CR0 2QP TEL:
0181-684 1166 FAX:
0181-684 3056

## VALVES

## ELECTRONICS VALVES \& SEMICONDUCTORS

Phone for a most courteous quotation

We are one of the largest stockists of valves etc, in the U.K.

COLOMOR
ELECTRONICS LTD
170 Goldhawk Road, London W12 8HJ England.
Tel: 01817430899 Fax: 01817493934

## WE WANT TO BUY !!

> IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 081-445-2713/0749 FAX 081-445-5702.

## VALVES WANTED

FOR CASH: KT88, PX4, PX25 £45; DA100 £75; EL34, FL37 £10; ECC81/ CV4024, CV4003, CV4004, ECC83 £3. Valves must be Mullard/GEC, West European to achieve the price. Ask for our free wanted list. Prompt \& courteous service. Visitors by appointment only (we are a very busy Export Warehouse). Billington Export Ltd, Tel: 01403784961 Fax: 01403783519

## WANTED

High-end Test Equipment, only brand names as Hewlett-Packard, Tektronix, Rhode \& Schwarz, Marconi etc. Top prices paid. Please send or fax your offer to: ETB ELEKTRONIK

Alter Apeler Weg 5 , 27619 Schiffdorf, West Germany TEL: 0104947067044 FAX: 0104947067049

## TO ADVERTISE

 HERE PLEASE CALL MALCOLM WELLS ON01816523620

 HP141T 18GHz System (85528, 8555A) HP $3580 \mathrm{~A} 5 \mathrm{~Hz}-50 \mathrm{kHz}$ audio trequency spectrum analyser HP3582A audio frequency itl analyser dual. channel HP8557A 350 MHz (00101 0175 ) (requires maintrame) HP8559A 21 GHz spec an in 853 A digital mainframe HPIB HP8568A high-specitication 1.5 GHz spectum analyser MARCON 2386100 Hz 266.5 GHz (n) 1 Hz stepsf) TEKTRONIX 49221 GHz spectrum radyser
MARCONIINSTRUMENTS


2019 snithesized AMFM signal generator 80 KHz - 1040 W. Hz
2305 modulation analyser $50 \mathrm{KHz}-2.3 \mathrm{GHz}$ 2828A28229 digital simulatorianalyser 2955 mobile radio test set ALL SOLD 2388 spectrum analyser, superbs spectication, $100 \mathrm{~Hz}-26.5 \mathrm{GHz}$ $6460 / 6421$ power meter \& sensor $10 \mathrm{MHz} \cdot 12.4 \mathrm{GHz}$ 605X-series signal sources, all il r range 6500 amplitude analyser $c / w 206514$ waveguide delectors 6960 microwave power meter with $69 t 0$ power sensor 10MHz-20GHZ OA2805A pom regenerator test set
TF2910/4 non-linear distotion (wheo) lest set
TF2910 TV Inteval timer

| TEST EQUIPMENT |  |  |
| :--- | :--- | :--- |

## 

$\star \star$ HP8673D Synthesized Signal Generator $\star \star$ $50 \mathrm{MHz}-26 \mathrm{GHz}$ full HPIB control. $\mathrm{E}^{9999}$.
$\star \star$ Schlumberger Stabilock 4015 Communications $\star \star$ Test Set $£ 4000$
$\star \star$ Marconi 2386 Spectrum Analyser $\star \star$ $100 \mathrm{~Hz}-26.5 \mathrm{GHz}$, Hi-specification. $£ 10000$.

| 000 | KIKUSUI 8520 trequency lesponse analyser 20 Hz -200K Hz | £750 |
| :---: | :---: | :---: |
| £15000 | NARDA bidiriectional coaxial coupler 1-46Hz | £250 |
| £350 | RACAL-DANA 1992 trequency counter 1.3GHz IEEE option | £600 |
| £500 | SCHLUMBERGER 1230 trequency Pesponse anal yser | £3000 |
|  | SCHLUMBERGER 4040 cormmuricatons test set, mary oxions nowued | ¢5000 |
| £2500 | SYSTRON. OONNER 60548 frequency counter 20H2-24GHz GPIB | £1250 |
| £1000 |  | E50ea |
| ¢750 | TEKTRONXX transistor curve tracer type 577 with standard test fixture | $£ 1500$ |
|  |  | 1750 |
| ¢500 | UHER repor 4200 portable tape recorder | ¢250 |
| £250 | WAYNE KERR SR268 source \& delector | £350 |

16408 serial data analyser 334 A disisorion meter

3400 A voltmeter, analogue $10 \mathrm{~Hz}-10 \mathrm{MHz}$
3580A audio trequency spectrum analyser
3581C selective votmeler
3585A seiective level mete
3762A 3763 A data generatorlerror detector, pair
$4140 B$ pAmeter, DC voltage source
415E swr meter
4275A muti-trequency lcr meter
432NR486A uWave power meter waveguide 26 -40GHz 435B microwave power meter (analogue) (requires sensor) 436A microwave power meter ciw 848tA deeector HPIB opt 4951C protoool analyser with 18179A pod 5335 A 200 MHz trequency counter wops $20 \& 40$ 6012 A power supply 0.60 V 0 - 50 A 1000 W 6033A system power supply 0.20V 0.30 A 6038 A system power supply $0-60 \mathrm{~V} 0-10 \mathrm{~A}$ 6253 A dual power supply 0.20 V 0.1 A wice 64438 power supply 0 -120V 0-2.5A 6825 A bipolar power supplylamplifier $-20 \mathrm{~V} 10+20 \mathrm{~V}, 0-1 \mathrm{~A}$ 8011A puise generator $0.1 \mathrm{~Hz}-20 \mathrm{MHz}$ 816A stofted line 1.8-18GHz with carriage 899 C and 447 B 8444A ruacklng generator whin opioion 059 8505A 500KHz-1.3GHz RF network analyser 867tA synthesized signal generatoo $2 \cdot 6.6 \mathrm{GHz}$ 8568A spectrum analyser 100Hz-1.5GHz 86568 synthesized signal generator 0.1 .990 MHZ AMFM 8901A modulation analyser with option 02010 AO Bsbadic, Spectruninetmork analysers. B5Scinhs poratable analysers. Plesses call us it you have hight.end capital endipmen being undef. -vtisised.
PLEASE NOTE: ALL OUR EQUIPMENT IS NOW OPERATION-VERFICATION IESTED BEFORE DESPATCH BY INDEPENDENTLABORATORY We would be pleased to handle all grades of calioration or NAMAS certification by same laboratory at cost price. All items covered by our 90 -day parts and labour guarantee and 7 -day 'Right to Refuse' (money back) warranty.

# ELECTRONIC UPDATE 

Contact Malcolm Wells on 0181-652 3620


## I DON'T BELIEVE IT!

This new 264 page Guide to SMDs now includes 64 pages of SM Connector Systems from AMP, JAE, Molex, Hirose, Oxley, Cinch and Sumitomo and mainly from stock as well. Not only that but it's bulging with new SMDs from over 30 franchises which now include Panasonic. What an incredibly useful publication.

I had better ring
01530510333 for my copy
before they run out!
CIRCLE NO. IB7 ON REPI YCARD


## 1995 MASTER PRODUCT

CATALOGUE NOW OUT!
Test and instrument control solutions. 48 pages of full description and technical data on our own range of solutions to your data on our own range of solutions 10 your
PC PS2 interfacing problems; IEEE488 (GPIB) * DIO *Timer/Counters * RS232 * RS422/485 *A/D * D/A * plus Opto Isolated versions. New Parallel/Serial RS232, Opto Dual RS232, Motion Control, Converter and Repeater for 1995 ! Converter and Repeater for
ISO 9001 Quality guarantee UK design and manufacture 36 month no-quibble warranty Telephone hotline support $d$
Competitive pricing on the page $\checkmark$ Intelligent solutions - friendly service BRAIN BOXES
Unif 3f Wavertree Boulevard South Liverpool L7 9PF
Tel: 01512202500 Fax: 01512520446
(IRCII NO. 138 ON REPLI (ARI)

A regular advertising feature enabling readers to obtain more information on companies' products or services.


## VXI - EASY-TO-USE INSTRUMENTATION

Four page, colour brochure designed to teach users about VXI plug \& play technology. Explains how standard frameworks, instrument drivers, soft front panels, and technical support can help end users build multivendor, VXIbus-based instrumentation systems. Gives information on the VXI plug \& play vendor members, guiding principles, and how end-users can join the Alliance User Group.

NATIONAL INSTRUMENTS FOR FURTHER INFORMATION CALL 01635523545

CIRCIENO. I.39ON REPIY CARD


## DATA ACQUISITION \& CONTROL FOR PCs

Bede Technology provide a wide range of products for PCXXT/AT Compatibles:
$\star$ Plug-in Data Acquisition and Control Cards and Software.

* Industrial PCs and Single Board Computers. - Parallel/Serial Interfaces.

Products offer: *Excellent Quality *Three Year Warranty "Made in the UK "Free Technical Support For a free catalogue and demo disks call (0191) 4280353 or fax (0191) 4282904.



3. Please invoice me/my company for $£$ Purchase order number:

Company VAT registration number: $\qquad$
$\square \quad$ Please tick here if you do not wish to receive direct mail from other companies. CIRCIENO. 102 ON REPIY CARD

Here's why:
Totally handheld programmer/emulator manufactured in the UK
Fast approved programming algorithms; eg program and verify: National 27 C512 in 16 seconds, AMD 29 F010 in only 90 seconds
EPROMS to $16 \mathrm{Mbit}, 5 \mathrm{v}, 12 \mathrm{v}$ and BOOT-BLOCK
FLASH, EEPROMS and PEROMS
Three year parts and labour guarantee
Full 24 byte on-screen editor
Continuous programming whilst charging (nonstop operation)
Designer case - feels as good as it looks
Big, easy-view 80 character supertwist LCD
Optional modules available to program PIC (all 16/17 series), 8751, 16-bit EPROMs, MROM-EPROM, 16-bit FLASH, Toshiba 4-bit, Hitachi H8, SERIAL EEPROMS
Optional sockets for programming and emulating PLCC devices

FREE software upgrades for life


FREE emulation leads $\qquad$
FREE Windows and DOS software

S4's 32 pin ZIF socket programs a huge library of 8 and 16 -bit EPROMs, EEPROMS, FLASH, PICs and other popular microcontrollers using manufacturers approved algorithms.
Dataman never charge for updates or technical support, a vital factor in determining a cost-effective programing solution for the years ahead. Upgrading your S4's device library couldn't be simpler. As well as our high speed bulletin boards, we also offer full Internet access to our Home Page which contains all the fatest software as well as hints and tips.
Built-in emulation enables you to see your code before commiting yourself to an EPROM.

Load your program from an EPROM or download code from your PC into S4's memory. Plug S4's emulation lead into the target system, press the emulation key and run the system. Changes can be made using S4's powerful editor, and you can re-run the code to test and confirm changes. When the code is proved to be working, it can then be programmed to a fresh ROM.
The S4 Package comes complete with mains charger, emulation leads, organiser-style instruction manual, Windows and DOS terminal software and a three year guarantee. S4 is always available off the shelf and we ship worldwide on a daily basis. Call now for delivery tomorrow.

Bona-fide UK customers can try 54 for thirty days without risk.
24,000 engineers worldwide can't be wrong!


Dataman Programmers Ltd Station Road, Maiden Newton, Dorset DT2 OAE, UK Tet: 01300320719 Fax: 01300321012 Telex: 418442 BBS: 01300321095 Modem: V.34/V.FC/V.32bis
22 Lake Beauty Drive, Suite 101 Orlando, FL 32806, USA Tel: (407) 649-3335 Fax: (407) 649-3310 BES: (407) 649-3159 24hr Modem: V.34/V.FC/V.32bis

Via the Internet: Home Page: http://www.dataman.com FTP access: ftp.dataman.com Email: sales@dataman.com


[^0]:    *source National Semiconductor.

[^1]:    HALCYON ELECTRONICS VSA
    423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 0181-542 6383. FAX 0181-542 0340

