(c) Unique offer - component guide on CD rom

WORLD Germany DM 15.00 Greece Dra. 760 Holland Dfl. 14 Italy L. $\mathbf{7 3 0 0}$

Heart rate monifor
Signal Centre reviewed
Coaxial cable analyser Dual mirror for fuster audio
Modulating linearly Oscillator innovations

The contest design may be perfectly designed with the ULTIboard Challenger Lite a 32 bit Schematic Entry and PCB Layout Tool with a design capacity of 500 pins. This Version includes an internal gridless autorouter, that routes by nets, component or block.
Minimum Hardware requirements are: 80386 (SX), 2 Mb RAM and Colour VGA. No Purchase is required to enter the competition and all employees \& distributers of ULTImate Technology are excluded. For those who wish to purchase their own PCB Design System the 32 bit Challenger Lite is available on special offer for a limited period only.

Special Offer!

Challenger Lite $£ 150+£ 10$ Delivery and VAT

 Please order by Credit Card, Tel: 01734812030 or Send a Cheque for $£ 188$ to: ULTImate Technology Ltd. 2 Bacchus House, Calleva Park, Aldermaston. Berks RG7 4QWPlease fax of send back this form (one design per entrant only) to ULTImate Technology (UK) Ltd, 2 Bacchus House, Calleva Park, Aldermaston, Berkshire RG7 4QW England, Fax: 01734815323

Name

Address

Daytime Tel

Design Tool Used

Please send me a competition pack including: Net List on floppy disk and paper and design rules (minimum trace widths \& clearances, pad and via sizes) etc.

CONTENTS

549 I/O PROCESSING MADE EASY

Type Ascii commands on your PC and s witch lamps or sense level via a PIC.

552 DESIGNING PC EXPANSION

Dave Robinson discusses designing the glue logic needed to interface i/o with pc expansion slots.

558 FREQUENCY-COUNTING INTERFACE

A few logic gates interfaced to the printer port turn a pc into a frequency counter capable of reading to 25 MHz and beyond.

562 TECHNOLOGY LAG

Is hdtv new? When was cellular radio first mooted? Andy Emmerson has been finding out.

Want to acquire data on a pc and analyse it? See page 567.

567 SOFTWARE THAT PLAYS CARDS

Alan Brown has been acquiring data on Signal Centre.

571 DOUBLE MIRRORS REFLECT HIGHER SPEED

Bengt Olsson explains how boosting gain in a power amplifier's input pair reduces thd and increases speed.

575 COAXIAL CABLE TESTER

Designed for checking antennas and coaxial cable, Dmitry Malinovsky's meter provides direct display of reflection index.

580 WAVEFORM GENERATION TRIO

VCO exceeds 100 MHz , pll with variable phase shift, servo amplitude control.

584 TRIMODAL POWER

In this issue, Douglas Self presents the full three-mode power amplifier circuit. Includes details of pcb availability.

605 MONITORING

 HEARTBEATBaki Koyuncu describes a versatile yet economical circuit for monitoring the heart.

610 MODULATING LINEARLY

Ian Hickman looks at a way of reducing third-order intermodulation in rf modulator circuits.

REGULARS

539 COMMENT
Jobs for the boys
540 NEWS
Efficient solar cells, terahertz analyser, point-to-point satellite comms.

545 RESEARCH NOTES

Fully digital microphone, robotic ants, ignition solution.

594

LETTERS

EMI, mains change effects?
600 CIRCUIT IDEAS
Capacitance meter, zero-cross detector, crystal synchroniser.

615 NEW PRODUCTS

Pick of the month - classified
for convenience

Next month:

Active subwoofer design, GPS, 24 cm antenna.
AUGUST ISSUE - ON SALE 27 JULY

Cover illustration - Hashim Akih

Andy Emmerson has been looking at apparatus that was invented long before the world was ready for it. See page 562

SPECIAL OFFER -
 Component reference on CD ROM

Exclusively to $E W+W W$ readers, NN11 is offering its very first CD ROM component database for just £99. See page 557 .

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST EQUIPMENT DEALER

ALL PRICES PLUS VAT AND CARRIAGE • ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY
86 Bishopgate Street, Leeds LS I 4BB

Tel: (0||3)2435649 Fax:(0||3)242688 I

CIRCIE NO. IO 4 ON REPL Y CARD

Weller

De-Soldering Stations

Multi-function, electronically controlled rework station

Built in pump generates air and vacuum
Supplied with hot gas pencil for Surface Mount rework
\square ESD safe

- Full range of de-soldering and soldering tools available
Fast selection of alternative tool options

Components \& Systems from Iosis

Industrial Spec Components and Systems 386SX-40 All-in-one CPU Board on PC half card from $£ 215$. Requires only display adapter and RAM to complete the core of a PC-compatible system. PC/104 or ISA bus expansion. PC/104 display adapter from $£ 135$. Desktop LCD mono VGA monitor with display adapter and passive backplane from $£ 499$. Please enquire for complete systems. Prices exclude VAT and carriage.

2c Chandos Road, Redland, Bristol BS6 6PM, UK Tel: 01179730435 Fax: 01179237295

EDITOR

Martin Eccles
0181-6523128
CONSULTANTS
Jonathan Campbell
Philip Darrington
Frank Ogden
DESIGN \&
PRODUCTION
Alan Kerr

EDITORIAL

ADMINISTRATION
Jackie Lowe
0181-652 3614
E-MAIL ORDERS
jackie.lowe@rbp.co.uk
E-MAIL ENQUIRIES
martin.eccles@rbp.co.uk

ADVERTISEMENT

MANAGER
Richard Napier
0181-652 3620
DISPLAY SALES
EXECUTIVE
Malcolm Wells
0181-6523620
ADVERTISING
PRODUCTION
Christina Budd
0181-652 8355

PUBLISHER

Mick Elliott
EDITORIAL FAX
0181-6528956
CLASSIFIED FAX
0181-652 8956

SUBSCRIPTION

HOTLINE
01622721666
Quote ref INJ
SUBSCRIPTION
QUERIES
01444445566
NEWSTRADE
DISTRIBUTION
Martin Parr
01816528171
BACK ISSUES
Available at $£ 2.50$
ISSN 0959-8332

Jobs for the boys

Thenhe Government currently has the future of British broadcasting under review through the debate on the BBC's Royal Charter. Like Peacock and Annan before, the result will probably support the status quo and be of little significance to the average viewer.
It shouldn't be thus. Technology has placed all aspects of broadcasting into the melting pot. The old duopoly of BBC and IBA no longer exists yet both the Corporation and the successors to the IBA act as if it does.
Technology can send us programmes and services any way we want... via terrestrial broadcast, through satellite or by cable. Any house, any business, anywhere in the country could soon receive hundreds of broadcast quality tv channels when the digital satellites start flying early next year. Everyone from Lands End to John O'Groats will shortly be able to receive what they want, when they want - if the existing terrestrial broadcasters were prepared to embrace it.
NTL, the independent transmission company responsible for ITV terrestrial broadcasts, is currently banging on about the unfairness of allowing the BBC to retain its engineering and transmission service. It sees it as wrong to allow a public body to compete openly with private companies such as itself using public money. It says that either the BBC should run autonomously, with a specific prohibition on the selling of its engineering facilities externally, or that the BBC's engineering should be privatised to
compete openly with other suppliers.
We invite a plague on both their houses.
The BBC and NTL want to create digital broadcast systems using a terrestrial network. While we accept totally that digital transmission should give the nation's viewers unparalleled choice of viewing, and offer excellent retailing and setmaking opportunities, all new digital tv services should go on satellite.
From a technical point of view, there is absolutely no reason to run digital tv from land based transmitters. The new technology will provide so many extra channels that the one remaining argument for terrestrial tv regional programmes - completely loses significance. Satellite transponders cost far less than equivalent terrestrial networks yet the all-satellite option doesn't even enter discussion by the BBC or NTL.
Terrestrial television broadcasting occupies nearly half the available spectrum up to one gigahertz, a valuable and irreplaceable resource which could be freed up when analogue tv eventually closes down. Examples of the new applications for these frequencies include portable telephone and communications systems.
The NTL and BBC have a vested interest in maintaining terrestrial services. Satellite services make the organisations' terrestrial digital plans redundant. The Government should take this into account in submissions.

Frank Ogden.

Electronics World + Wireless World is published monthly. By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$ Orders, payments and general correspondence to L333,
Electronics World + WIreless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tlx:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group.
Newstrade: Distributed by Marketforce (UK) Ltd,
247 Tottenham Court Road London W1P OAU 0171 261-5108 Subscriptlons: Quadrant Subscription Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444 445566. Please notify change of address. Subscription rates 1 year (normal rate) £30 UK and 43 outside UK.
USA: \$52.00 airmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42 nd Street, NY 10117.

Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Lid, 205 E. 42 nd Street, NY 10117. Telephone (212) 867-2080. TIX 23827.
USA malling agents: Mercury Airfreight International Lid Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above
Printed by BPCC Magazines (Carlisle) Ltd, Newtown Tradlng Estate, Carlisle. Cumbria, CA2 7NR
Typeset by Wace Publication Imaging 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT
©Reed Business Publishing Lid 1995 ISSN 09598332

Sodarce ciciency 0005
 Semiconductor solar cells reduce

Energy diagram of conventional (left) and quantum well p-n junctions compared. Photons of lower energy are absorbed by the right hand junction even though both band gaps are the same.

What will we do when the oil runs out? No one knows yet, few people are thinking about it and fewer are doing anything about it. One man who is making his contribution is Dr Keith Barnham, Reader in Physics at Imperial College London. He and his colleagues, with a little help from industry, are working on ways to improve solar cell efficiency.

electricity by absorbing photons in, or near, a p-n junction. The photons create electron-hole pairs which, once they are established, drift across the junction under the influence of the electric field from the doping of the p and n type semiconductors, resulting in current flow in an external circuit. One of the features of sunlight that makes it so difficult to catch is that it has a spectrum. That is, it consists of light at a variety wavelengths, or, has photons of varying energies.
A 'normal' solar cell has a fixed band gap and can only usefully absorb photons of sufficient energy to boost electron-hole pairs across the semiconductor's band gap.
Photons with less energy than the band gap are not absorbed at all. Higher energy photons give the pairs far more energy than is required to push them across the band gap. Any superfluous energy above the band gap is wasted as heat when the pair fall back to the band gap level.
All this means that conventional solar cells absorb light at one wavelength very well, but less effectively over the range of wavelengths in the solar spectrum.
The choice of band gap becomes a compromise. A narrow band gap

Quantum wells are introduced into a $p-n$ junction by interspersing very thin layers of lower band gap semiconductor with the bulk material.
material will capture a lot of photons and will produce a lot of current. But the narrow gap means low cell voltage. The cell voltage can be increased by using a wider band gap, but less photons will be usefully absorbed, so the current will be lower. The most effective band gap is the one whose energy corresponds with that of the amplitude peak of the incident spectrum.
Dr Barnham's group has introduced thin layers of material, called

Terahertz analyser on the cards

Researchers at AT\&T's Bell Labs in the US have developed a one terahertz time domain spectroscopy tds - analyser that can be developed into a commercial product. The device can be used to measure the
chemical composition of organic materials and gasses and to x-ray integrated circuits.
Currently, analysers using tds techniques are bulky and expensive but Martin Nuss and Binbin Hu,

A tds map of a leaf, showing the reduction of water content over 48 hours. The leaf was visibly unchanged.

researchers at the Advanced Photonics Research Department at Bell Labs, are said to have a commercially viable device using compact lasers and advanced integrated circuits.
Tds is a technique for determining the absorption spectrum of a sample by sending an energy pulse of known shape through it and measuring the shape of the pulse after it has been distorted by the sample. Fourier analysis of the incident and resultant pulses reveal the absorption spectrum.
The absorption spectrum of materials at frequencies around one terahertz gives information about the water content of organic materials, the fat content of meat and the chemical composition of gases. Since metals are opaque and plastics transparent at 1 THz , the technique can also be used to x-ray integrated circuits.
quantum wells, into the semiconductor junction
These thin layers, only a few nanometers thick, are interspersed between layers of the native semiconductor and have a lower band gap.
Extremely thin layers of semiconductor behave differently than the same material in bulk. The distinct energy levels that electrons occupy theoretically are 'blurred' in mass material but exist in thin layers
Photons of insufficient energy to push pairs over the band gap of the host may still have sufficient energy to create useful pairs in the quantum well material.

The Imperial College group as shown that the electron-hole pairs last long enough, a few nanoseconds, to escape from the wells. They escape because thermal energy in the semiconductor is often enough to raise the energy in the electron or hole high enough to move it into the band gap of the adjoining native layer. It then drifts through this, falls into the next well and the process is repeated.
The native material can be chosen with a high band gap to give a high cell voltage, but the current remains high because a large number of photons are absorbed.

But there are problems. So far all the work has been done with expensive gallium arsenide (GaAs), rather than cheaper silicon. There are two related reasons for this. Silicon absorbs photons by a more complex, 'indirect', route that does not lend it
self to this kind of process. And quantum well technology in silicon is still in its infancy.

Dr Barnham said: "Our work is still in an early experimental stage. We have taken a simple, conventional solar cell material with a sunlight efficiency of eight percent and boosted it to 14 percent using quantum wells."
Although he realises that GaAs has cost limitations, Barnham said:
"GaAs has two advantages. It needs 100 times less material than silicon to absorb the same number of photons and its theoretical efficiency is higher than that of silicon." He also noted that the increasing demand for GaAs for optical computing and lasers is bringing the price down.

Quantum well solar cells have the potential to extract more usable energy from sunlight than conventional cells. This is because they can absorb a wide range of photons but retain a high cell voltage. They can only be made in gallium arsenide and aluminium gallium arsenide at this time but the concepts may transfer to silicon as silicon quantum well technology improves. Dr Barnham had a final word to about the potential efficiency of this kind of cell: "The very best conventional GaAs solar cells are 25 per cent efficient, the theoretical limit is about 30 per cent. Whether quantum wells will allow the GaAs to exceed this upper limit is open to question but they seem to be a better way to approach the maximum."

Generating short energy pulses at 1 THz has hitherto been difficult and expensive.
Nuss and Hu's analyser uses novel laser switched micro dipoles to transmit and detect the 1 THz , single cycle, measurement pulse. The primary source of energy and timing in the Bell Labs set-up is a self-modelocked Ti:sapphire laser. This type of laser inherently produces a stream of very short energy pulses. In this case the chosen laser produces a 100 fs pulse of 800 nm wavelength light at a repetition rate of 100 MHz .
The laser output is split into transmit and receive beams. The transmit beam is used to trigger a photoconductive switch in the centre of a microscopic dipole.

The dipole is a conductive line $50[? \mathrm{u}] \mathrm{m}$ long on a GaAs substrate. A bias voltage, between 10 and 100 V , is connected across the length of the line but current cannot flow due to a narrow gap in the middle. The laser pulse is directed at this gap and
generates electron-hole pairs that briefly connect the gap edges.
The resulting brief current flow causes the dipole to 'ring' and act as a transmitting antenna. The rf pulse that is generated is approximately 1 ps long with a spectrum centred at 1 THz . An 'optical' system, consisting of mirrors, focuses the spectral pulse onto the material under test. This pulse passes through (or is reflected by) the material which may be up to 1 mm thick, and is shaped by the material's time domain response.
A second mirror focuses the resultant distorted spectral pulse onto a second, detector, dipole. This dipole has to be very fast and has been fabricated using silicon on sapphire technology. The electrical (e) field of the distorted spectral pulse creates a bias voltage across the detector dipole. The field, and therefore the bias voltage, changes with time as the spectral pulse passes the dipole.
The receive part of the original 100 fs laser pulse is directed at the

Toshiba finds dvds ally

Time Warner says it will manufacture super density digital video discs (dvds) to be used by supporters of the Toshiba video disc standard to record and play digital films.
The company has formed a new subsidiary called Advanced Media Operations. The discs will be capable of storing as much as 270 minutes of mpeg-2 compressed digital video. The range of discs includes SD-5 with 5Gbytes storage capacity for digital films and multiple language soundtracks; SD-9, a double layer single-sided disc with 9Gbytes storage; SD-10, a double-sided disc with 5Gbytes storage on each side for double feature films or a digital movie plus a related video game; SD-R a recordable format with 3.2Gbytes storage on each side; and SD Rewriteable with 2.6 G bytes storage on each side.
Time Warner says that it has already produced more than 300,000 high density discs. The move is a further boost for the supporters of the Toshiba digital video disc standard which is competing with the Sony-Philips standard.

The digital video discs to be made by Time Warner can store 270 minutes of compressed digital video.
centre of the detector dipole. This laser pulse turns on the dipole briefly, converting the instantaneous efield derived bias voltage into a current pulse.
The whole process repeats at the 100 MHz rate and the average of the current pulses represents the e field of the spectral pulse as the receive laser pulse samples it.

Varying a delay in the second laser path (using a moving mirror) allows a complete profile of the distorted spectral pulse to be obtained.
Fourier analysis of the original and distorted spectral pulses allow the transmission (or reflection) characteristics of the material under test to be derived.
The experimental rig measures two feet square but Nuss suggests a purpose built TDS would be considerably smaller.
The Bell Labs team has shown that the cost and size of this kind of TDS can be reduced enough to make commercial exploitation possible.

Smallest, fastest 256Mbyte DRAM announced

BM, Siemens and Toshiba have Iclaimed success in the development of a fully-functional 256 Mbyte dynamic ram chip, the smallest and fastest yet developed.
The dynamic random access memory chip - less than half an inch
 in size - is the culmination of two and half years' research by leading scientists from the three companies at IBM's advanced Semiconductor Research and Development Centre in New York. A spokesman claimed that it was at least 13 per cent smaller and has an access time nearly twice as fast as any chip on the market. At the moment the chip is only available

Said to be the smallest and fastest yet developed, this 256Mbtye d-ram is a joint development by IBM, Siemens and Toshiba.
in sample quantities, and only for internal evaluation. No indication has been given as to when production quantities will be available.
D-rams are pervasive, fingernailsized silicon devices that store electronic data in all manner of
products ranging from mainframe computers to home appliances. A single 256 Mbyte d-ram can hold more than 25,000 pages of doublespaced typewritten text.
The smaller size and faster speed of the device will be required by the memory-hungry systems of the future such as high-definition digital video, multimedia pcs and telecommunications systems. For manufacturers and developers a smaller, faster chip means improved overall system performance and a reduced footprint for memory on printed circuit boards.
"This remarkable breakthrough in advanced research shows what can be achieved by a dedicated alliance of companies that brings leading-edge capabilities to a highly motivated program with clear aims," said Manaobu Ohyama, senior vice president of Toshiba and group executive of its semiconductor group. "The project and its achievements are clearly in the forefront of many international projects for advanced semiconductors."

Dr Michael J Attardo, general
manager of IBM's Microelectronics Division declared: "This is only the beginning. The best is yet to come."

The device uses 0.25 micron cmos process technology and is designed to support any proposed Joint Electron Device Engineering Council (JEDEC) standard for 256 Mbyte DRAMs.
Details of the performance and technology aspects of the chip will be presented at the 1995 Symposium on VLSI Technology, and at the 1995 Symposium on VLSI Circuits, both held in June in Kyoto, Japan.
The 256 Mbyte d-ram project is not the only area in which the three companies are willing to co-operate to share cost and expertise. IBM and Siemens currently work together in 16Mbyte d-ram manufacturing. IBM, Siemens and Toshiba are partners in 64Mbyte d-ram development, and a joint venture between IBM Japan and Toshiba manufactures advanced colour flat panel computer displays. Toshiba and Siemens have been collaborating in various semiconductor areas, including 1 Mbit dynamic rams, standard cells and gate arrays.

Personal point-to-point satellite comms
 transmissions to turn today's point-to-

Video-on-demand (vod) developer Online Media says it is involved in research which could lead to personalised point-to-point satellite communications services delivering $2 \mathrm{Mbit} / \mathrm{s}$ channels to the home within three years.
Online Media is working with parent company Olivetti on a technique to use highly directional spot beam satellite
multipoint satellite tv broadcasts into point-to-point services. The company is using Olivetti's satellite hardware joint venture with Hughes to adapt spot beam technology for interactive tv services. The return channel would be provided over a telephone line.

According to Online Media chief executive Malcom Bird, the cable TV
companies' window of opportunity for interactive tv is between three and five years. "Once the satellite boys can point-to-point download data they will knock the cable companies for six," he said.

Online Media's is currently conducting a vod trial with Cambridge Cable which have 200 users by the end of the year.
television broadcast community. The professional video storage market currently dominated by tape-based vers using the Betamax format - is worth $£ 30$ bn and is dominated by electronics giants such as Sony and Panasonic.

Farnell buys CPC

Components and spares distributor CPC has been sold to Farnell Electronics for $£ 30 \mathrm{~m}$. The company will be extending its product offerings and looking to expand into Europe, something it has been "looking at for quite some time", according to CPC managing director Chris Haworth. Famell Group chief executive Howard Poulson said the move into Europe will be "sooner rather than later". He takes over as chairman of CPC from outgoing founder Keith Duckett.

ENERGY BANK KT $1006^{6} \times 6^{\prime \prime}$ ov 100 mA panels, 100 diodes, connection details etc. $£ 69.95$ ref EF112. CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}$, 30 grams, 12 100 mA . auto electronic shutter, 3.6 mm F2 lens. CCIR, 512×492 pixels, video output is $1 \mathrm{vp} p$-p (75 ohm). Works directy into a
video Input on a iv or video. IR senstive. $£ 79.95$ ref EF 137 . IR LAMP KTT Sultable for the above camera enables the camera to be used in total darkness! $£ 5.99$ rel EF 138 .
PASTEL ACCOUNTS SOFTWARE, does everything for all sizes of businesses, Includes wordprocessor, report writer, windowing, networkable up to 10 stations, multiple cash books etc.
200 page comprehensive manual. 90 days free technical support ($0345-326009$ try before you buyl) Current retall price is $£ 129$, ours? just £29 ref EF134. SAVE £100III
MINIMICRO FANS $12 \mathrm{~V} 1.5^{\circ}$ sq just $£ 3.99$ each. Ref EF 199. C TTOH PRINTERS 80 col, 9 pin matrix, senal/parallel. NLo/draft 3 mith warranty, good condition, $\mathbf{E 4 9}$ ref EF133.
MICROSOFT TRACKBALL AND MOUSE Combined Unit with 4 buttons and trackball, PS2 type connector. Complete with storage bracket. Our price Just $£ 1 t .99$ ref EF 201.
REUSEABLE HEAT PACKS. Ideal for fishermen, outdoor enthusiasts eldenty or infirm, waming food, drinks etc, defrosting plpes etc. revseable up to 10 times, lasts for up to 8 hours per go, 1.44MB3.6" DISC DRNES Returns from a top PC manufactuer 1.4 they may need attention, bargain price $£ 8.50$ ea ref $E F 203$.
so
1.2MB6.25" DISC DRNES Agan returns somay needattention. bargain pricels $£ 8.50$ rel EF 204 . (1 ofeach $1.2+1,44 \mathrm{E} 14.99$ refef205 A4 DTP MONTORS Brand new, 300 DPI. Complete with diagram but no interface detals.(so you will have to work it outl) Bargain at just $£ 7.99$ oach!l!! Ref EF186 OPD MONTTORS 9^{4} mono monitor, fuly cased complete with rasterboard. switched mode psu etc. CGAATTLInput (15 way D), IEC
mains. $£ 15.99$ ref DEC23. Price including kito convert to composite mains. $£ 15.99$ ref DEC23. Price including kitto convert to composite monitor for CCTV use etc is $\sum 21.99$ rel DEC24.
12V 2AMP LAPTOP psu's $110 \times 55 \times 40 \mathrm{~mm}$ (includes standard IEC socket) and 2m lead with plug. 100-240v IP. $£ 8.99$ ref EF200. PCCONTROLLED 4 CHANNELTMER Contro (on/off times etc) up to 4 Hems ($8 A 240$ e each) with this kit. Complete with COMPL TTE PC 300 WATT UPS BYS
COMPLETE PC 300 WATT UPS SYSTEM Top of the range UPS system providing protection for your computer system and valuable sotware against mains pow er fluctuations and cuts. New
and boxed, UK made Provides up to 5 mins running time in the event of complete power faiture to allow you to run your system down carrectly. SALE PRICE Just E 149.00 .
RACAL MODEN BONANZA! 1 Racal MPS1223 1200/75 modem, telephone lead, mains lead, manual and comms software, the cheapest way omo the nett all this for Just $£ 13$ ref DEC13. HOW LOW ARE YOUR FLOPPIES? $3.5^{\circ}(1.44)$ unbranded. We have sold $100,000+$ so okl Pack of 50 E24.99 ref DEC 16 5 mw LASER POINTER. Supplied in kit tom, complete with power adjuster, $1-5 \mathrm{mw}$, and beam divergence adjuster. Runs on 2 AMA batieries. Procuces inn iod beam ldeal Ior level s, gun sig
experiments etc. Cheapest In the UKI just $£ 39.95$ ref DEC49
SHOP WOBBLERSISmall assemblles designed to take D size batterles and 'wobble' signs about in shops! £3.99 Ref SEP4P2.
RADIO PAGERSBrand new, UK made pocket pagers clearance RADIO PAGERSBrand new, UK made pocket pagers clearance price is Just $¢ 4.99$ each $100 \times 40 \times 15 \mathrm{~mm}$ packed with bitsl Ref SEP5.
BULL TENS UNTT Fully built and tested TENS (Transcutaneous Electrical Nerve Stimulation) unit, complete with electrodes and full instructions. TENS is used for the rellef of pain etc in up to 70% of
sufferers. Drug free pain relief, safe and easy to use. can be used in sufferers. Drug free pain relie, sate and easy to
conjunction with analgesics etc. $£ 49$ Ref TEN/1
COMPUTER RS232 TERMIMALS. (LIBERTMExcellent quality modem units,(like wyse $50, \mathrm{~s}$) 2xRS232, 20 function keys, 50 thro to 38,400 baud, menu driven port, screen, cursor, and keyboard setup menus (18 menu's). E29 REF NOV4.
OMRON TEMPERATURE CONTROLLERS (E6C2).Brand new controllers, adjustable from 0 deg C to +100 deg C using graduated dial, 2% accuracy, themocouple input, long life relay ouput 3 BA 240 v op comlacts. Pentect for exactly co
perature. Normal trade $£ 50+$. ours $£ 15$. Ref E5C2.
ELECTRIC MOTOR BONANZA! $110 \times 60 \mathrm{~mm}$.Brand new predsion, cap start (or spin to start), vinually silent and features a moving outer case that acts as a fy wheel. Because of their unusual
design we think that 2 of these in a tuoe with some homemade fan design we think that 2 ol these in a tube with some homemade fan
blades could form the basis for a wind tunnel etc. Clearance price is
in blades could form the basis for a wind tunnel etc. Clearance price is
fustE4 99 FORA PAIRI (note these will have to be wired in senies for JustE4 99 FOR A PAIRI (note
240v operation Ref NOV1.
MOTOR NO 2 BARGAIN $110 \times 90 \mathrm{~mm}$. Similar to the above motor but more suitable for mounting vertically (le turntable etc). Again you will have to wire 2 in series for 240 V use. Bargain pice is jusi $£ 4.99$ FOR A PANRII Rel NOV3.
OMRON ELECTRONIC INTERVAL TMERS
...."NEW LOW PRICES TO CLEARII
Minature adjustable timers, 4 pole olo output $3 A 240 \mathrm{~V}$,
HY1230S, 12 vDC adjustable from $0-30$ secs. $£ 4.99$ HY1210M, 12VDC adjustable from 0-10 mins. £4.99 HY1260M, 12 VDC adjustable from $0-60 \mathrm{mins}$. $£ 4.99$ HY2460M, 24VAC adjustable from 0-60 mins. $£ 2.99$ HY241S, 24VAC adjustable from 0-1 secs. $£ 2.99$ HY2460S, 24VAC adjustable from $0-60$ secs, $£ 2.99$ HY243H, 24vAC adjustable from 0-3 hours. $£ 2.99$ HY2401S, 240 V adjustable from $0-1$ secs. $£ 4.99$ HY2405S, 240 V adjustable from $0-5$ secs. $£ 4.99$
HY24060m, 240 V adjustable from $0-60$ mins. $£ 6.99$ HY24060m, 240 V adjustable from $0-60 \mathrm{mins}$. $£ 6.99$ PC PAL VGA TO TV CONVERTER Converts a colour TVinto a basic VGA screen. Complete with bull in psu, lead and s/ware. In kit form tor home assembly at $£ 3495$ rel EF54.
DRINKING BIRD Remember these? hook onto wine glass (supplied) and they drink, standup,drnk, standup ETCI \&4 each Ref EF1 EMERGENCY LIGHTING UNTT Complete Unit with 2 double bulb hoodilights, bullt in charger and auto switch. Fully cased, 6v 8AH
lead acid req'd. (secondhand) $£ 4$ ret MAGAP11
GUIDED MISSILE WIRE. 4.200 metre reet of ultra thin 4 core insulated cable, 28ibs breaking strain, less than 1 mm thicki Ideal
alams, intercoms, fishing, dolls house's etc $£ 14.99$ ret MAG15P5 ASTEC SWTCHED MODE PSU BM4 1012 Gives +5 (e) 3.75 A. +12@1.5A, -12@. $4 \mathrm{~A} .230 / 110$, cased, BM41012 £5.99 ret AUG6P3. AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre le ad fited with a clgar plug. 12v 2watt. 89.99 ea re1 AUG10P3. FLOPPY DISCS DSDD Top qually 5.25^{\prime} discs, these have been written to once and are unused. Pack of 20 Is $£ 4$ rel AUGAP1. ECLATRON FLASH TUBE AS used In police car fashing lights otc. full spec supplled, $60-100$ fashes a min. $£ 9.99$ ref APR10P5. 24V AC 96WATT Cased power supply. New. £13.99 ref APR14. MILTIARY SPEC GEIG ER COUNTERS Unused anstraightiom Her majesty's forces. £50 ref MAG 5OP3
OUTDOOR SOLAR PATH LIGHT Captures sunight during the day and automatically switches on a built in lamp at dusk. Complete day and automatically 5 witches on a built in lamp at dusk
with sealed lead acid battery etc $£ 19.99$ rel MAR20P1.
ALARM VERSION Of above Unit comes with built in aiarm and pir to deter intruders. Good value at just $£ 24.99$ rel MAR25P4
CA RETAKER VOLUMETRIC Alam. will cover the whole of the ground floor against forcred entry. Indudes mains power supply and Integral battery backup. Pow erlul Internal sounder, will take external bell if req'd. Retail $£ 150+$, ours? $£ 49.99$ ret MAR50P1
TELEPHONE CABLE White 6 core 100 m reel complete with a

MICRODRNE STRIPPERS Small cased tape dives ideal for strippling. lots of useful goodles including a smart case, and lots of components. £2 each rel JUN2P3. Box of 10 Just $£ 9.99$ rel E F 207. SOLAR POWER LAB SPECIA LYou get TWO $6^{\circ} \times 6^{\circ}$ 6v 130 mA solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or molor. Superto
vaiue kit just $£ 5.99$ REF: MAG6P8
vaue kit just 55.99 REF: MAG6P8
BUGGING TAPE RECORDER Small voice activated recorder, uses micro cassette complete with headphones. E 28.99 relM MAR29P1.
ULTRAMINIBUG MIC $6 \mathrm{~mm} \times 3.5$ mm made by AKG, 5 - 12 velectret condenser. Coste12 ea, Ours? Jus four for $£ 9.99$ REF MAG10P2. RGBICGAEGATTL COLOUR MONTTORS 12° in good condition. Back anodised metal case. £79 each REF JUN79
ANSWER PHONES Returns with 2 faults, we give you the bits for 1 fault, you have to find the otheryourself. BTResponse 200 's $£ 18$ ea REF
SWITCHED MODE PSU ex equip, $60 \mathrm{w}+5 \mathrm{~V}$ © $5 \mathrm{~A},-5 \mathrm{~V}$ e. 5 A , $+12 V$ Q $^{2 A}-12 V$ ® $^{5 A}$
E6.99 REF MAG7P1
PLUG IN PSU $9 V 200 \mathrm{~mA}$ DC $E 2.99$ each REF MAG3P9
PLUG IN ACORN PSU 19V AC $14 w$, E2.99 REF MAG3P 10
POWER SUPPLY futly cased with malns and ap leads 17 V DC 900 mA output. Bargalin price E5.99 ref MAG6P9
ACORN ARCH MEDES PSU +5 V © 4.4A on/oft sw uncased, selectable mains Input, $145 \times 100 \times 45 \mathrm{~mm}$ £7 REF MAG7P2
3v DC POWERSUPPLYStandard plug intype 150 ma 9 VDC with lead and $D C$ power plug. price for two is $£ 2.99$ reit AUG3P4.
AA NICAD PACK encapsulated pack of 8 AA nicad batteries (tagged) ex equip, $55 \times 32 \times 32 \mathrm{~mm}$. $£ 3$ a pack. REF MAG3P 11
13.8 V 1.9A psu cased with leads. Just 29.99 REF MAG10P3

PPC MODEM CARDS. These are high spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up urit complete
INFRA RED REMOTE CONTROLLERS Originally made for hl spec sateilite equipment but perfect for all sorts of remote control projects. Our dearance price is Just $£ 2$ REF: MAG2
200 WATT INVERTER Converts $10-15 \mathrm{~V}$ DC Into either 110 v or 240 v AC. Fully cased $115 \times 30 \times 156 \mathrm{~mm}$, complete with heavy duty power lead, dgar plug, AC outet socket.Auto overioad shutdown, auto shot circult shut down, auto input over voltage shutdown, auto input under vollage shut down (with audible alarm), auto temp controd. unit shuts down if overheated and sounds audible alam. Fused within 10\%. A well built unit at an keen price. Just $£ 64.99$ rel AuGG65, UNIVRSAL SPEED CONTROLLER KT Designed by us for the C5 motor but ok for any 12 v motor up to 30 A . Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MAG 17
MAINSCABLE Precut black 2 core 2 metre lengths ideal for repairs, projects etc. 50 metres for $£ 1.99$ ret AUG2P7.
COMPUTER COMMUNICATIONS PACK Kit comalns 100 m of 6 core cable, 100 cable clips, 2 line drivers with RS232 Interfaces and all connectors etc. Ideal low cost method of communicating and all connectors etc. Ideal low cost method of com
between PC's over long distance. Complete ktt $£ 8.99$.
ELECTRIC MOTOR KIT Comprehensive educational kit in cludes all you need to bulld an electric motor. $£ 9.99$ rel MAR10P4. VIEWDATA SYSTEMS made by Phillips, complete with Intemal 120075 modem, keyboard. psu etc RGB and composite outputs. menu diven, autodialler etc $£ 18$ each Rel EFs8
BOOMERANG High tech, patemed poly propyene, $34 \mathrm{~cm} w i n g$ span. Get out and get some exercise for $£ 4.99$ ret EFB3
AIR RIFLES.22 As usedby the Chinese army fortraling puposes, so there is a lot aboutl $£ 39.95$ Ref EF78. 500 pellets $£ 4.50$ ref EF80. PLUG IN POWER SUPPLYS Plugs in to 13A socket with output lead. three types available $9 v d c$ 150mA $£ 2$ ref EF 58 , 8 vac 200 mA £2.50 rel EF59. 6.5 vdc 500 mA £3 ref EF6
VIDEO SENDER UNTT. Transmits both audlo and video signals Trom either a videocamera, video rocorder, TV or Computer etc to any

bULL ELECTRICAI

TH1. 01223120500

H. 2412.3230%

Op. Prico is $£ 15$ REF: MAG 15 12V pSu is $£ 5$ extra REF: MAGSF2 "FM CORDLESS MICROPHONE Small hand held unit with a
500 ' range! 2 transmit power levels. Reqs PP3gv battery. Tuneable 500 ' range! 2 transmit power levels. Reqs PP3 9v b
to any FM receiver. Price is $£ 15$ REF: MAG15P1
LOW COST WALKIE TALKIES Pair of battery operated unts with a range or about 200. Idear for garden use or as an educational toy. Price is $£ 8$ a pair REF: MAG $8 P 12 \times$ PP 3 req'd.
-MINATURE RADIO TRANSCEIVERS A parir of walkie talkies with a range up to 2 kmin open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Including cases and earp'ces. $2 x$ PP3 req'd. $£ 30.00$ pr.REF: MAG 30 COMPOSTE VIDEO KTT. Converts composite videointo sepa rate H sync, V sync, and video. 12 V OC. $£ 8.00$ REF: MAGBP2.
LQ3600 PRIMTER ASSEMBLIES Made by Amstrad they are entre mechanical printer assemblies induding printhead. stepper
motors etc etc In fact everything bar the case and electronics. a good motors etc etc In fact everyhing bar the case and electronics. a good stripper! £5 REF: MAG5P3 or 2 for £8 REF: MAG8P3
LED PACK of 100 standard red 5 m leds $£ 5$ REF MAG5P4
UNIVERSAL PC POWER SUPPLY complete with fylyacs switch, fan etc. 200 w at $£ 20$ REF: MAG20P3 ($265 \times 155 \times 125 \mathrm{~mm}$).
GYROSCOP E ADout 3° high and an excellent educationalfoy for al gest Price with instruction booket £6 Ret EF 15
FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$, dive connecions 1mother boand comnecior. 150wam, 12 V fan, is Inlet and on/off switch. $£ 12$ Ref EF6.
VENUS FLYTRAP KTT Grow yourown camivorous plantwith this simple kt $£ 3$ ref EF34.
PC POWER SUPPLIES (returns) These are $140 \times 150 \times 90 \mathrm{~mm}$. 2 ps are $+12,-12,+5$ and -5 v . Buitt in 12 v fan. These are returns so they may well need reparingl $£ 3.50$ each ref EF42.
-FM TRANSMITTER KIT housed in a standard working 13A adapter! the Bug runs directy of the mains solasts foreverl why pay E700? or price is $£ 15$ REF: EF62 Transmits to any FM radio. (this is in kif form with full instructions.)
-FM BUG KIT New design with PCB embedded coil for extra tability. Works to any FM radio. 9v battery req'd. $£ 5$ REF: MAGSP5 FM BUG BUILT ANDTESTED superior design to kit. Supplied to detective agencies. $9 v$ battery req'd. $£ 14$ REF: MAG14
TALKING COINBOX STRIPPER onginally made to retail atE79 each, these units are designed to convert an ordinary phone into a payphone. The units have the locks missing and sometimes broken inges. However they can be adapted for theironglnal use or used for something else?? Price is just $£ 3$ REF: MAG 3 P 1
TOP QUALTTY SPEAKERS Made for HI FI televisions these are 10 watt $4 R$ Jap made 4^{4} round with large shilided magnets. Good quality. $£ 2$ each REF: MAG2P4 or 4 Ior $£ 6$ REF: MAGBP2
TWEETERS 2^{\prime} diameter good quality tweeter 140R (ok with the above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3P4 AT KEYBOARDS Made by Apricot these quality keyboards neer: Justa small mod to run on any AT, they work pertectly butyou will hav to put up with 1 or 2 foreign keycapst Price $£ 6$ REF: MAG6P3 DOS PACKS Microsoft version 3.3 or higher complete with aill manuais or price just E5 REF: MAGSPE Worth it just for the very comprehensive manuall 5.25° only.
GAS HOBS Brand new made by Opllmus, basic three burne sultable for small fat etc bargain price just $£ 29.95$ rel EF73. GAT AIR PISTOL PACK Complete with pistol, darts and pellets £12.95 Ref EF82 extra pellets (500) $£ 4.50$ ref EFBO
DOS PACK Mlcrosofiversion 6 with manual $£ 9993.5^{\prime}$ ref EF209 WINDOWS $3.13 .5^{\circ}$ with manual $£ 24.99$ tef EF210.
NOVELL NTEWARE LTTE (network s/ware) E24.99 ret EF211
PIR DETECTOR Made by famous UK alamm manufacturer these are in spec. long range internal units. t2v operation. Silight matks on case and unboxed (atthough brand new) E8 REF: MAGBP
MOBILE CAR PHON E \& 5.99 Well aimost complete in car phone excluding the box of electronies normally hidden under seat. Can be made tollluminate with $12 v$ also has builitinilg hisensor so display only illuminates when dark. Totally convinding! REF: MAG6P6
$6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL $12 v 155 \times 310 \mathrm{~mm}$ 130 mA . Bargain price just $£ 5.99$ ea REF MAG6P 12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.98$ ef MAGSP13 Ideal for experimentersi $30 \mathrm{mfor} £ 12.99$ ref MAG13P1 HEATSINKS (nnned) TO220, designed to mountverically on ap co $50 \times 40 \times 25 \mathrm{~mm}$ you can have a pack of 4 for $£ 1$ ref JUN1P1
STROBE LIGHT KTT Adjustable from 1 hz night up to 60 hz ! (eleceronic asssembly wt with full instructions) £16 fef EF28.
ROCK LIGHTS Unusual things these, two pieces of rock that glow when rubbed togethen belived to cause ran! $!3$ a pair Ref EF29. AMSTRA D GX4000 ga
NEW HIGH POWER LASERS
15 mW . Hellum n
$.63 \mathrm{um}, \mathrm{i} .15 \mathrm{um}, 3.39 \mathrm{um}$
(2 of them are infrared) 500:1 polariz er built in so good for hologra-
 ith EXTREME CAUTION AND QUALIFIED GUIDANCE.

WE BUY SURPLUS STOCK FOR CASH FREE CATALOGUE

1995100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE WITH ORDER.

PORTABLE RADIATION DETECTOR

WITH NEW COMPUTER INTERFACE £59
A Hand held personal Gamma and X Ray detec or. This unit contains two Geiger Tubes, has a $4 /$ audio visual indication. The unit detects hight energy electromagnetic quanta with an energy
from 30 K V to over 1.2 M eV and a measuring rom 30 K eV to over 1.2 M oV and a measuring

SPECIAL BUY

AT 286
40 Mb HD + 3Mb Ram
 LIMITED QUANTTTY Only of these 12 Mhz Hi GRADE 286 systems
 drive \& Integral 40 Mb hard dllsk drive to the front. Real time clock condition complete with enhanced keyboard, $640 \mathrm{k}+2 \mathrm{Mb}$ RAM DOS 4.01 and 90 DAY Full Guarantee. Ready to Run
Order as HIGADE 286 ONL
OI

Optlonal Fitted extras: VGA graphics card 1.4Mb $3 / 2$ NE2000 Ethernet (thick, thin or twisted) network card	
FLOPPY DISK DRIVES 3112"-8"	

51/4" from £22.95-31/2" from £24.95

 present prime product at industry beating low pricest All units (unless ment and are tully tested, aligned and shipped to you with a 90 day guarantee and operate trom standard voltages and are ofsize. All are 1 IM-PC compatible (it $3 / 2$ " supported on your P.
Sk: Panasonic JU363/4 720 k or equivalent
Milsubish MF355C-L. 1.4 Meg . Lapopos only
Teac FD-55GFR 1.2 Meg
BRAND NEW Mitsubishl MF501B 360K
Data cable included in price
Shugarn $800 / 8018^{*}$ SS Sifurbished 8 tested Shugar $851 \mathrm{~B}^{\text {" }}$ double sidided refurbished z lested

£24.95(B) ع36.95 B

£29.95 B
£22.95(B)

Dual 8 " drives with 2 mbyte capacity housed In a smart case with

HARD DISK DRIVES		
End of line purchase scoopl Brand new NEC D2246 8" 85 Mbyte of hard disk storage! Full industry standard SMD interiace. Ulira hi speed data transter and access time, replaces Fujitsu equivalentmodel. complete with manual. Only$£ 299.00(\mathrm{E})$		
3\%"		
31/2" RODIME RO30575 45mb SCSIIIF (Mac \& Acorr)		
5%. SEAGATE ST-238R 30 mb RLL I/ R Refurb		
CDC		

THE AMAZING TELEBOX

The TELEBOX consists of an attractive fully cased mains powered unit contiaining all elecironics ready to plug inlo a host of video moni SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD etc. The recorders, allowing reception of TV channels not normally receivable
on most television receivers " (TELEBOX MB). Push button controls
on the front panel allow reception of 8 fully tuneable 'off alr" UHF
colour television channels. TELEBOX MB covers virtually all television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. A composite video output is monitor or desktop computer video systems. For complete compati-
billty - even for monitors without sound - an integral 4 watt audi TELEBOX ST im level Hi Fi audio output are provided as standard. TELEBOX STL as ST but with integral speaker
TELEBOX MB Multiband VHF/UHF/Cable/Hyperband tuner
£37.50 For overseas PAL versions state 5.5 or 6 mhz sound specification.

FANS \& BLOWERS

MITSUBISHI MMF-D6D12DL 60x60x25 mm 12v DC £4.95 $10 / \mathrm{m} 42$ MITSUBISHI MMF-09B12DH $92 \times 92 \times 25 \mathrm{~mm} 12 v$ DC $£ 5.9510 / \mathrm{K} 5$ $\begin{array}{ll}\text { PANCAKE } 12-3.592 \times 92 \times 18 \mathrm{~mm} 12 \mathrm{v} \text { DC } & £ 7.9510 / £ 69 \\ \text { EX-EQUIP } 120 \times 38 \mathrm{~mm} \text { AC tans - tested specity } 110 \text { or } 240 \mathrm{~V} \text { £6.95 }\end{array}$ EX-EQUIP $80 \times 38 \mathrm{~mm}$ AC fans - tested specify 110 or $240 \mathrm{~V} \quad \mathbf{£ 5 . 9 5}$ VERO rack mount $1 \mathrm{X} \times 19^{\prime \prime}$ fan tray Specity 110 or $240 \mathrm{~V} £ 45.95$ (8)
IMHOF B26 1900 rack mnt $3 \mathrm{U} \times 19^{\prime \prime}$ Blower $110 / 240 \mathrm{VNEW} £ 79.95$

IC'S -TRANSISTORS - DIODES

 5,000,000 items EX STOCK
ssue 13 of Display News now available - send large SAE

PC SCOOP COMPLETE COLOUR SYSTEM ONLY £79.00

VIDEO MONITOR SPECIALS

One of the highest specification monitors you will ever see
At this price - Don't miss itl - At this price - Don't miss it!!

's in CGA, E
MMODORE
ES and APP
text switching
ion. Full 90 da Only £139
Tilt \& SWivel Base 88.00 Leads tor IBMPC $\mathbb{E 8 . 9 5}$ (A)
External Cables for other computers $£$ CALL
llais
colour monitor with both RGB and standard composilie 15.625 Kh2 video inputs va SCART socket and separate phono lacks. Integral audio power amp and speaker ior all audio visual uses.
Will connect direct to Amlga ann Atari $B B C$ compulers. ICeal tor all monitoring / securthy yapplications with dilrect cornection to
most colour cameras. High quality with many features such a most colour cameras. High quality yith many fatures such as
front concealed flap controls. VCR correctlon ubtion etc. Good

Only $£ 99{ }_{(\mathrm{E})}$

HCS35 together - giving you a quality colour TV \& AV
system for Only $£ 122.50$ (E)

PHILLPS HCS31 Ulitrac compact g" colour video monitor with stan-
dard composite 15.625 Khz video input via SCART sockel. Ideal

20" 22 " and $26^{\prime \prime}$ AV SPECIALS
 complete with compositie video \& optional sound inpuuts. Attractive lakk style case Perfect for Schoois, Shoss, Disco, Cliubs, elc.
EXCELLENT itite used condition with tull

20"....£135 22"....£155 26"....£185(F)

DC POWER SUPPLIES

Virtually every type of power

supply you can imaglne. Over

SPECIAL INTEREST

Comp FA 445 ELKC 16 mm auto iris lenses 'C' mount Seaward PAT 2000 dual voltage computerised PAT tester INTEL SBC $486 / 133$ SE Multibus 486 system. 8Mb Ram Zeta 3220-05 A0 4 pen HPGL RS232 fasi drum plotter
MOTOROLA VME Bus Boards \& Components SAE / CAL Trio 0-18 vdc linear, metered 30 amp bench PSU. New Fujlisu M3041600 LPM band printer
VG Electronics 1035 TELETEXT Decoding Margin Meter KNS EMC LA He ing 3.1 m Satellite Dish +
Thuriby LA 160 B logic analyser \qquad

GEC 1.5 kw 115 v 60 hz power source

Brush $2 K w 400 \mathrm{~Hz} 3$ phase frequency converter
Anton Pillar 75 kW 400 Hz 3 phase frequency converter Newton Derby 70 KW 400 Hz 3 phase frequency conver £PO COMPONEDEX T1000 Portable TELEX tester NEW Sekonlc SD 150 H 18 channel digital Hybrid chart recorder $£ 1995$

Superb quality 6 foot 400 Virtually New, Ultra Smart Less than Half Price! Top quality 19 " rack cabinets made in UK by
Optlma
nclosures
Lid. Unlis feat fer Optima Enclosures Lid. Units teature
designer, smoked acrylic lockable ront door and louvered removable side panels. adjustable internal fixing struts, ready punched plus ready mounted of equipment mounting socket switched mains distribution strip make have ever sold. Racks may be stacked side by side and therefore Overall dimensions are: $771 / 2^{\prime \prime} H \times 321 / 2^{4} \mathrm{~B} \times 22^{\prime \prime} \mathrm{W}$. Order ovable side panels. £335.00 (G) 32U - High Quality - All steel RakCab

Made by Eurocraft Enclosures Lid to the highest possible spec side, front and back doors. Front and back doors hinged for easy access and all are lockable with
five secure 5 lever barrel locks. The front door

panel, yet remain unobirusive. internally he rack
features tul slotited reinforced vericical ixing men
bers to take the heaviast of lyal rack equip
(extras availabe) are pre punched for slindard
cage nuts. A mains distribution panel internal-
pin Euro sockets and 1×13 amp 3 pin switched
uttllty socket. Overall ventilation is provided
fully louvered back dooor and double skinned top section of integ and fans to the sub plate etc. Other features include: fifited cable / and heor revelers, prepunched utility panel at lower rear for cable 1 connector access etc. Supplied in exceilent, slighty used
condition with keys. Colour Royal blue External dilmensions

Sold at LESS than a third of makers price!! A superb buy at only $£ 195.00$ (G)

Over 1000 racks in all sizes $19^{\prime \prime} 22^{\prime \prime} \& 24^{\prime \prime}$ 3 to 44 U . Available from stock !! Call with your requirements.
 TOUCH SCREEN SYSTEM

nate in 'Touch Screen Technology' made by the experts

 a flat translucent glass laminated panel measuringa flat translucent glass la
a standard serial RS232 or TL output which continuously give
where a finger is touching the panel - as the finger moves, the data instantly changes. The $X \& Y$ information is given at an Incredible matrix resolutlon of 1024×1024 positions over the entire screen nection to a PC for a myriad of applications including: control pancomputer un-trained etc etc. Imagine using your finger with appllcations instead of a mouse !! (a diver is in only llmited by your Impinatlon/l Complete system including Controller, Power Syply and Data supplied at an Incredible price of only: $\quad \mathbf{f 1 4 5 . 0 0}$ (8)
Full Microtouch Software Support Pack

LOW COST RAM \& CPU'S

NTEL. 'ABOVE' Memory Expanslon Board. Full length PC-X Card is fully selectable ford Expanded or Extended (286 processor and above) memory. Full data and driver disks supplied. RFE
 memory either 256 k or 512 k in 64 k steps. May also be used to fill Order as: XT RAM UG. $256 \mathbf{k}$. $£ 32.95$ or $512 \mathrm{k} £ 38.95$ (A1) 1 MB $\times 9$ SIMM 9 chip $\frac{\text { SIMM }}{120 \mathrm{~ns}}$ SPECIALS
$1 \mathrm{MB} \times 9$ SIMM 9 chip 120 ns
$1 \mathrm{MB} \times 9$ SIMM 3 chip $80 \mathrm{~ns} £ 23.50$
$1 \mathrm{MB} \times 9$ SIMM 9 chip $80 \mathrm{~ns} £ 22.50$

ELAL OFFER - INIEL 486-DX33 CPU

PHILIPS - LOW COST PRINTEAS

A masterpece of engineering, the PHILIPS model NMS 1436 fully

 featured MUL TMODE matrix printer packs a host of teatures into unit weighing just over 4 Kg and measuring only $40 \times 12 \times 28 \mathrm{Cm}$ accepts upto $9.5^{\prime \prime}$ sprocket ted paper and adjusts down to handlethe smallest labels. The 9 needie head produces Near Letter Quality in a host of fonts and type sizes and in draft mode 'whizzes' along at 120 characters per second! Many other features include mos
European character sets, IBM, EPSON, MSX \& Prestel emulations. Good used condition, IBM Cable £6.95

Only $£ 49.95$ (в)

ALL MAIL \& OFFICES
Open Mon-Fri 9.00-5:30
Dept Ww 32 Biggin Way
Dept ww. 32 Biggin Way Upper Norwood
LONDON SE19 3XF FREE On Ilne Database fo on $15,000+$ stock items
COMING SOON II

RESEARCH NOTES

Jonathan Campbell

Analogue mics begin to sound a little creaky

|n the increasingly digital domain of I modern audio recording, the tried and tested microphone still stands out as an obvious link to our past. But a new digital design could break that link forever, enabling microphones to deliver digital output directly to mixing desks.
Conventionally, analogue microphones produce an output, proportional to incident sound pressure, which is converted to digital form for processing. But they can suffer noise, which a digital design should not. They also have outputs that are not so easy to filter and they can not be directly linked to digital recording systems.
Now F A Ghelmansarai, a Umist researcher in the Department of Electrical Engineering \& Electronics, looks to have overcome those shortcomings with a design incorporating several innovative ideas.
In Ghelmansarai's mic ("Digital optical microphone and digital transducer, IEE Proc Circuits Devices Syst, Vol 142, No 2, pp.135-139), a diode laser beam is directed through an optical scanner onto a photoconductive detector. The detector is designed to deliver a number of pulses, depending on the movement of the beam, and so
provides a direct measure of the microphone membrane deflection. Pulses are converted to logic pulses and counted, to produce a representation of the amplitude of sound pressure in binary.
Key to operation is design of the interdigital photoconductive detector (idpc) itself. In it, two metallic electrodes are deposited as a series of separated interlocking fingers onto the surface of a conducting layer of InGaAs.
The electrodes are connected to a power supply, and conductivity of the semiconductor is greater when a conducting section is illuminated than when a non-conducting aluminium section is illuminated. So scanning the laser beam over the structure generates a series of pulses, which can be converted to logic pulses. In this way the design provides a precise indication of the position of the laser beam on the detector, generating a digital audio output.
Successful operation has only been made possible through simultaneous development of a novel method of scanning the detector - making use of a multi-reflecting scanner - a beam expander and a lens to scan the idpc without calling for any analogue driving voltage while also magnifying

Robotic ants on the march

They're small, identical, hard workers and operate cooperatively in a group for the benefit of their community. But these insects don't have six legs and antennas, but rather rubber tracks and electronic sensors. Robot ants are here, crawling (still rather chaotically) out of the labs at MIT in Massachusetts, and Virginia Polytechnic, Virginia.
MIT's James McLurkin, a senior in electrical engineering and computer science there, has been concentrating on building colonies of robots using micro-robots developed as a basis for a remote-controlled colon surgery.
His robots are guided away from objects they hit and toward illumination sources by antennae and light sensors, and also have mandibles
powered by a third motor to pick up bits of "food" - so far they have been feeding on quarter-inch balls of crumpled brass. Each has a pair of tiny treads powered by a battery and two motors taken from vibrating beepers.

McLurkin and colleagues have built six robot ants up to now, eventually aiming to have 21 , which would be the largest robot community in the world.
The goal is to have the robots behave cooperatively like an ant colony, seeking food and communicating with each other about where to find it. They do this with the aid of infrared transmitters and receivers. If one robot finds food, it sends out the message "I found food;"

the angular movement of the membrane.
Using a 20 V dc bias voltage and charge amplifier producing $250 \mathrm{mV} / \mathrm{pC}$, Ghelmansarai says a tenbit microphone can provide a sensitivity of $0.09 \mathrm{mV} / \mathrm{nm}$ and a bandwidth of 5 MHz .
The principle of the idpc could also be applied to a digital transducer.

Laser beam from the optical scanner generates pulses as it moves across the photoconductive detector

MIT's Mclurkin is looking to create the largest robot ant colony in the world. The CIA is watching carefully.

Multiple robotic ants could be used as the basis for a flexible handling system.

First attempts at a
Virginia robot that can crawl in and out from under loads.
others in the vicinity respond by heading toward the sender and signalling "I found a robot that found food," eventually spreading the word to the entire group. The robots also
check once a second for the proximity of other ants to help avoid collisions. In practice, the robots tend to get confused if they receive signals from more than four other robots at once. It's impossible to get robots to act exactly like ants because of the sophistication of ant behaviour, and because "nature solves a lot of problems differently from the way people think they should be solved," says McLurkin.
However, his task is made easier by the fact that individuals (either real ants or robots) can fail and yet the group as a whole can still succeed.
Potential applications for the MIT ants include groups of disposable micro-robots to inspect pipes in nuclear power plants, while the CIA is also said to be interested in equipping the micro-robots with cameras and microphones for staking out buildings.
John Bay at Bradley Department of Electrical Engineering, Virginia Polytechnic, has been working with much bigger ants. His aim is to develop an "army ant" approach to flexible handling problems, with small identical robots working together to move materials.
Unlike conventional handling solutions, his ants can deal with nonstandard containers, and will handle loads heavier and more costly than themselves.
Bay and his team have been
concentrating on design of the robots themselves, with the main aim to produce a robot with a low profile able to crawl in and out from under a load ("Design of the army-ant cooperative lifting robot", IEEE Rohotics \& Automation, pp.36-43).
Sensors include infrared monitors for beacon-/direction-finding and obstacle detection, ultrasonic for range finding, and a whisker contact for collision detection.
Materials handling use requires that the ants must be able to detect the range and direction to a stationary beacon attached to a payload and must also be able to locate each other. In use they must be able to work together perhaps in a hierarchy of leaders and followers, to lift and move a load. They must also be able to share the load equally amongst themselves.
Robots so far constructed are costing $£ 2000$ in materials (plus a huge amount of goodwill from student teams). That could still add up to a sizeable sum for a complete robot ant handling system, but Bay points out that the ants can be acquired in a modular fashion, with each robot contributing to the overall solution, but with the system still operating if an individual unit fails.

Presumably the CIA is at this moment planning how it can use these ants too, to put the skids under Fidel

Getting (a lot) more out of optical storage

Optical disk system hardware manufacturers are already facing up to do battle with competing technologies looking to squeeze the latest Shwarznegger or Demi Moore

onto digital video. The problem is that Arnie's bulging biceps can soak up anything up to 5Gbytes of capacity, stretching to the limit current optical disk storage techniques. But two electrical engineers from the University of California have proposed a system that can double at a stroke the current capacity limits, on a single side of an optical disk, and can offer much higher capacities in the future.

Storing 5Gbytes of video is already possible - just. Philips-Sony technology can compress it onto a 3.7Gbyte disk; or a 5 Gbyte disk system is being developed by Matsushita-Toshiba and others, in alliance with major film studios.

But S Homa and AE Wilner are proposing a technology (Electronics Letters, Vol 31, No 8, pp.621-623) that offers 9.7 Gbytes as a starting figure, with far higher levels possible in the future.

The technique depends on combining two separate methods for reading and storing data - a multilayer method that allows data to be
stored and read in three-dimensions in the disk, and wavelengthmultiplexing where each layer contains different data channels accessible using different wavelengths.
Use of a multi-wavelength source allows the various channels to be read from the same location in the same layer, with the wavelength dependent reflected signal being spatially separated and recovered by a detector.
Other layers are read by the same wavelength source, by mechanically translating the lens up and down to focus the source on each layer in turn.

Using this technique, a six wavelength source and six layer disk could store anything up to 40 Gbytes if the laser spot size were small enough and channel separation large enough.

But even with a 25 nm channel separation and a $2 \mu \mathrm{~m}$ spot size a total capacity of 9.7 Gbyte has been achieved, a figure that will be improved upon with optimised manufacturing techniques, say the researchers.

Spark of genius?

utomotive engineers have long been searching for a simple technique to enable continuous monitoring of combustion parameters inside a petrol engine. Now H Zhao and N Collings, at the University of Cambridge, and T Ma of Ford Motor Company, seem to have come up with a simple answer: use the spark plug itself as the probe.
In fact, using the spark to find out more about what is happening inside the engine is not in itself new. Previous workers have used the spark plug to detect engine knock and even to investigate plug fouling. But where the new system differs is that it needs no expensive and unreliable high voltage diodes. Instead it builds on the recent appearance of one-coil-perplug ignition systems, with circuitry integrated into the secondary winding of an ignition coil ('Engine performance monitoring by means of the spark plug', Proc Instn Mech Engrs, Vol 209, pp.143-146).
Inside a conventional engine, the spark plug ionisation current can be broken down into two stages. Stage 1 reflects the performance of the plug itself in terms of plug fouling, prespark ignition and spark plug voltage/resistance. An earlier team has already shown that the leakage current prior to spark is inversely proportional to the plug leakage resistance and so indicates any spark plug fouling. Any leakage peaks before sparking also identify preignition, while the spark voltage spike, slope and duration can be used to provide information on spark plug
gaps, open plug wires, shorted coils and other problems.
But it is stage 2 of the cycle that the researchers have now been concentrating on, where the ionic current flowing relates to the combustion processes. In the new system, the positive end of the secondary winding is connected to a $1 \mu \mathrm{~F}$ capacitor in parallel to a $1 \mathrm{M} \Omega$ resistor and an isolated 370 V transient suppresser - a combination that puts +400 V bias across the spark plug.
Ionic current flowing through the plug is then measured as a voltage appearing across a resistor, with a 4.7V zener diode in parallel to limit output voltage in the range -4.7 to 0.7 V .

As the researchers point out, because the ionisation detection circuit is on the secondary winding, greater sensitivity can be obtained than by using the primary windings. More importantly, high voltage diodes are not necessary.
Testing the system using a singlecylinder engine with a pressure transducer mounted in it, enabled pressure and spark plug ionisation signals (spi) to be compared directly.
Results show a very good correlation between pressure and spi, suggesting the system would be a reliable and cheap way to detect knock. Similarly, tests showed that the maximum values of spi showed good indication of engine cyclic variations.
Plainly the system provides a practical way to enable spark plug monitoring to be applied directly to a

lonisation current can reveal a surprising amount about the workings of a car engine.

Spark plug ionisation probe built into the secondary winding on a one-coil-per plug ignition system.
one-coil-per-plug system without any engine modification or mapping.
If car makers were to make full use of the system's potential, this simple approach could be used to supply information on everything from misfiring and pre-spark ignition to changes in overall combustion performance.
Not bad for a spark of an idea.

LF noise is a real problem - sometimes

Complaints about low frequency environmental noise repeatedly surface (some in the letters column of $E W+W W)$. But frequently complainants are frustrated that they are not taken seriously. Whether that situation will improve following a study carried out by the Building Research Establishment and Sound Research Laboratories is not clear. In most instances no noise was detected: in the few others it is mains hum. But in one case...
Some 500 people a year complain about low level noise. In the vast majority of instances, according to John Sargent of the BRE ('A study of environmental low frequency noise', Acoustics Bulletin), no sound can be measured.
In fact of the 31 cases investigated in detail as part of the study there were only three where noise could be detected. In
two, the noise was consistent with the 100 Hz noise emitted by electrical substations.
But in the other there was a narrow band of measured noise centred on 104 Hz , which, though low level, was audible. Sargent reports the noise was still present when the local electricity board switched off the nearby sub station. The noise was not audible or detectable outside the house, yet no-one could identify its source.
In another seven cases there was some evidence to suggest that a low level of noise may occasionally have been present.
Part of the difficulty with low frequency noise is that the extent of the problem is dependent on the perception of the individual. Mostly, the study, speculates, the problem is down to tinnitus or hypersensitivity to all sounds.

In one case a husband and wife both
complained of hearing low frequency noise, a noise that was subsequently measured in a particular room in their house.
But it became apparent that the woman was also able to register the sound in a sound-proof room, while her husband could not.
The conclusion was that the she had tinnitus, but that her drawing attention to the noise had sensitised her husband so that he began to experience the real noise. Amazingly this complex state of events was not unique in the study, says Sargent.
The survey advises that investigators looking into If noise complaints should be armed with a frequency analyser, operable in real time with a narrow $1 / 24$ th octave bandwidth. If they don't find anything, any "opinions about the complainants hearing should be avoided".

TOROIDAL TRANSFORMERS

High Quality
Low Prices

In addition to our standard range we will be pleased to quote
for your special requirements.
PRICE LIST

		Quantity Price Excluding VAT \& Carriage					
VA	Mail Order	$2+$	$10+$	$25+$	$50+$	$100+$	
15	14.59	10.21	7.69	5.69	5.52	5.35	
30	16.04	11.23	8.45	6.25	6.06	5.89	
50	17.83	12.48	9.40	9.95	6.74	6.53	
60	18.02	12.61	9.49	7.02	6.82	6.61	
80	17.98	12.60	9.49	7.02	6.81	6.60	
100	21.07	14.74	11.11	8.21	7.96	7.72	
120	21.54	15.08	11.35	8.39	8.15	7.89	
150	25.98	18.19	13.70	10.12	9.82	9.53	
160	23.83	16.68	12.56	9.28	9.00	8.73	
225	30.10	21.07	15.87	11.73	11.39	11.04	
300	34.32	24.02	18.09	13.38	12.98	12.58	
400	46.19	32.32	24.35	17.99	17.47	16.94	
500	50.48	35.34	26.61	19.67	19.09	18.51	
625	53.09	41.36	31.14	23.02	21.24	20.57	
750	58.39	44.23	33.30	24.62	23.89	23.17	
1000	78.80	55.16	41.54	30.70	29.80	28.89	
1200	82.45	57.72	43.46	32.12	31.17	30.23	
1500	105.10	73.63	55.40	40.94	39.74	38.53	
2000	114.45	96.13	72.39	53.51	51.93	50.36	
2500	163.04	114.13	85.94	63.51	61.64	59.79	

These prices are for 240volt primary and two equal secondaries with $8^{\prime \prime}$ colour coded fly leads.
Each transformer is supplied with a mounting kit (steel dish washer pads, nut and bolt)
Mail order prices include vat and postage.
Please do not hesitate to telephone or write with your particular requirements.

An Airlink Sales Co
 16 Knight Street, Sawbridgeworth, Herts CM21 9AT
 Tel: 01279600139 Fax: 01279726379

(IRCIE NO. II\% ONREPIY CARD

‘OFF-AIR’ FREQUENCY STANDARD

Variants from £195+уат

- Provides $10 \mathrm{MHz}, 5 \mathrm{MHz}$ \& 1 MHz
* Use it for calliorating equipment th
- Phase locks to DROITWICH (rub

Uutput frequencies -
traceable to NPL
WiCH (rubidium controlled and

- For ADDED Value
controlied and traceable to OP - Fre to ALLOUIS (cesium
- British designed and Ervitish manulactured
- Options avaitable incluce enhanced receiver, sine wave
outputs and 13 MHz output for GSM. Prices on application $10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$
Short term stability - better than $1 \times 10^{-8}(1 \mathrm{sec})$ typical-4×10 $0^{-9}(1 \mathrm{sec})$ Long term - tends to $2 \times 10^{-12}(1000 \mathrm{sec})$ Call for 'OHf.Ar' Standard list

TEST EQUIPMENT

We are well known for our quality, new and used Test Equipment. Our list is extensive, the following will give some idea of our range and prices:

TIME 4045 Precision $m V$ source TIME 2OO3N DCV PoVCal, 0-10V, null, etc TIME 2004 DC Volt standard 0.005% HP1340AX.Ydisplays EV. EV4020A NTSC VIscope LEADER LG396 NTSC pattern generator PHILIPS 5509 PAL pattern generator PHILIPS PM 5716 pulse generator PHILIPS PM5134 function generator
£95 FEEDBACK SSO603 1 MHz sine/square oscillator $\$ 125$ £249 FEEOBACK DPM609 10Hz-100Hz phase meter §125 £945 TEKTRONIX 221560 MHz dual trace, dual delay T/B $£ 450$ £95 TEKTRONIX 2455 300MHZ 4 tace, dual delay TBB £1950 £395 MARCON TF2370 100 MH 2 spectrum analyser $£ 995$ £395 ADRET 740A0.1MHz-1.2GHz sig. gen. AMFWPM £1450 £195 DRAKE MN2700 ATUPSU
£495 VIGILANT SR510 10KHz-30MHz, ANCWISSB, PLL $£ 750$ £1495 VIGILANT SR532 10KHz-30MHZ, ANCW/SSB, PLL $£ 1250$

Call for Equipment list

SPECIAL OFFER

We have obtained an IMTEC 300 film/aperture card reader/printer which has had very little use. Output on plain paper from paper trays, sizes A5 to A3, including the ' B ' sizes, and variable. This is high quality
equipment, serlous offers are invited.

HALCYON ELECTRONICS

423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR
SHOP HOURS 9-5.30 MON-SAT. TEL 0181-542 6383. FAX 0181-542 0340

HEWLETT PACKARD HP71B

As easy to use as a calculator but as powerful as a computer

BARCODE READER
Smart wand
Automatically recognises and decodes all major bar-code standards.

A powerful set of basic functions, statements and operators - over 230 in all - many larger computers don't have a set of basic instructions in this complete. - Advanced statistics functions enabling computations on up to 15 independent variables.

- Recursive subprograms and user defined functions.
An advanced internal file system for storing programs and data - the HP71 has continuous memory - when you turn the computer off it retains programs and data. - A keyboard that can be easily customised for your specific application.
- HP-1L Interface pre-installed to create a system that can print, plot, store, retrieve and display information. Control or read instruments or speak to other computers, 5000 bytes $/ \mathrm{sec}$. Built in ROM includes 46 separate commands. Interface to HP-II HP-1B, RS232C, GPIO or series 80.
Includes connection cables.

These are second user systems ex DHSS are fully tested and working but have no programming (THAT IS UP TO YOU) HP71B
Bar-code Reader

AC Power Supply ACPower Supply | E12,95 |
| :--- | :--- | ACPow batteries normally) Limited quantiay (Limited quantitles) Unknown Program Memory Modules. \qquad Limited quantities)

Complete kit of HIP71B, Bar-code Reader (Prices include VAT - delivery $£ 3.00$) (Currently selling in USA for US\$500) Allow 7 days for delivery

SPECIAL OFFER

Buy 2 Kits For $£ 59.00$

Other products at give-away prices

Numeric keypad for 'AT' computer
$£ 5+£ 2$ Carriage (Carriage FREE it ordered with above).

INTERCONNECTIONS LTD

Unit 51, InShops, Wellington Centre, Aldershot, Hants GU11 5D B
Tel: (01252) 341900 Fix: (01293) 822786

SMART CARD READER/PROGRAMMER
On board ISO 7816 Card Reader Socket (Videocrypt etc). Soft ware runs on IBM/PC enabling the user to Read \& Write to ISO7816 and $2 / 3$ chip D2mac Satellite cards. Board also contains a PIC16C84 programmer. Ideal smart card development tool Requiries external power 15-20v AC or CD @250 ma. (optional extra £6.50)
MICRO-ENGINE MCS80C31/51 Development board.
Tiny $72 \mathrm{~mm} \times 42 \mathrm{~mm}$ PCB contains socketed 44 pin CPU, turned pin Rom socket, 12 MHz xtal and ports 1.3 output on IDC connector. Ideal for stand alone projects or development
work. Supplied with CIRCUIT \& MCS8051/52 development software

PIC ICE II* In Circuit Emulator for PIC16C54-55-56-57-71-84.
Replaces all 18 or 28 pin PICs. All ports Bi-directional, OSC2 output, RTCC input. On board A/D converter for PIC167C1. Supplied with PICDEV54 and PICDEV7I software, manual, connecting leads \& headers, ASM examples, and hardware circuit projects

PIC ICE STD In-Circuit Emulator for 18 pin PICs only no A/D.
Plugs into the printer port, appears to the target system as a normal Pic device including eflected on target. Supplied in real time from the IBM PC changes made to File registers (1)

PIC PROGRAMMER ${ }^{*}$ Programs Pic 16C54-55-56-56-71-84. Centronics port interface Powerful editing soft ware to Read, Write \& Copy Pic devices including data memory in ic16C84. Top quality components used throughout including production ZIF socket. Now cludes a Text Editor/A
Requires external power I5-20v AC or DC @250ma. (optional extra £6.50).
MEGAPROM programmer, EPROMS, E2PROMS, and FLASH memories from 2k (2716) o $8 \mathrm{Meg}(27 \mathrm{C} 080)$. Runs on IBM/PC via the centronics port using standard printer cable. Works on all PC Compatibles, laptops, and notebooks. No special por requirements. Top quality components used throughout including production ZIF socket
Requires external power supply 18-25v AC or DC @250ma. (optional exira £6.50).
EPROM EMULATOR Works on ANY computer with centronics printer port. Data sent to the printer appears in the target board Eprom socket. Emulates from 1 k to 32 k Byte (27 C 256) roms, board switchable. Very fast download. Works with or without our
Development software.
DEVELOPMENT SOFTWARE.
Develop software on your IBM/PC for other Microprocessors, Controllers, Pic's etc. Software has fully integrated Text Editor, Assembler, Disassembler, and Simulator. Code can be downloaded directly to our EPROM Emulator. All software supplied with sample ASM files, and user documentation manual.
Available for the following:-
MCS8851/52/552
PIC16C54/5/6/7
MCS8048/49
f19.95 each
HD63/6809
PIC16C71/84
£1. 50 for Carriage
Starred items also available from FARNELL (Leeds).
CREDIT CARD ORDERS SAME DAY DESPATCH
JOHN MORRISON DEPT WW
4 REIN GARDENS, TINGLEY, WEST YORKSHIRE WF3 1JR TEL (or FAX) 01132537507

I/O processing

> Hamid Mustafa's i/o interface simplifies sensing and load switching by using a PIC microcontroller to respond to brief Ascii commands keyed in on a pc or terminal. Hamid's simple terminal emulator is also useful as a general-purpose RS232 receiver and generator.

made easy

My universal i / o processor is based on the Microchip PIC16C55 single-chip computer. It provides eight inputs and eight outputs.
The interface is driven from any RS232 device capable of sending and receiving Ascii characters. This can be an Ascii terminal or a pc comms port.
I designed the circuit to provide digital i/o capabilities via a Psion Organiser. This i/o was
used to monitor the frequency and time of the day that a conveyor was stopped and re-started by operators on a production line. The i/o processor provides the status of three stop and two start buttons while the Psion organinser time stamps the event.
In another application the interface operates pneumatic cylinders to separate and apply labels to envelopes, printed by a label printer. The printer is driven by a pc via the parallel

Commands from the keyboard are translated into i/o functions.
Output commands:
$\mathrm{O}=\mathrm{A} 3$ sets the output port to byte A316
$\mathrm{O} 2=1$ turns output 2 on, $\mathrm{O} 2=0$ turns output 2 off
$\mathrm{O} 2=1$ toggles output 2
Input commands:
$O_{x}=1$ and $O_{x}=1$ where x is $0-7.1=$? ? gets the input port status in ascii hexadecimal form, e.g. 5 F in ascii
$14=$? gets the status of input 4 , e.g. 1 in ascii

Fig. 1. PIC
microcontroller and serial buffers produce a versatile i/o interface. Controlling relays, lamps and mains loads is achieved by simply buffering the micros' output and typing Ascii characters on a keyboard. Sensing switch contacts is even easier.

PC INTERFACING

port, and the pneumatic solenoids are switched by the i / o processor via a serial port. This arrangement eliminates the need for i / o boards plugged into the pc when eight inputs and eight outputs are sufficient and speed is not critical.
Input and output commands are received by the i/o processor receives via the serial port, interfaced as shown in Fig. 1. Commands are made up of four Ascii characters. For example $\mathrm{O}=5 \mathrm{~A}$ will put $5 \mathrm{~A}_{16}\left(01011010_{2}\right)$ on the output port, while $\mathrm{O}=00$ will switch off all eight outputs. Input commands grab the status of the input port. For example, I=?? returns two Ascii hexadecimal characters such as $E 4_{16}$ (11100100_{2}). Commands may be in upper, or lower case, see Commands panel.
Communications parameters are fixed at 9600 baud, 7 data bits, no parity 2 stop bits, no handshake. The i/o processor is fast enough to work without the need for hardware handshake. At 9600 baud, a character is sent in 1 ms . Therefore response time of the processor is 4 ms . If inputs are to be checked and outputs updated, the update will take $8 \mathrm{~ms}, 4$ to read inputs and 4 to write outputs, plus processing time by the host.
The total time should be less than 10 ms . To keep the speed as high as possible, no acknowledgement is returned to the host from the i / o processor. All the work is done by the PII6C55 microprocessor. The processor acts only on valid commands, and recovers auto-
matically when a valid sequence is detected, therefore no reset button is needed. Any errors in transmission or invalid command sequence will switch on the error led. The error led will go off when a valid character is received.
RS232 receive and transmit signals are converted to ttl level by the MAX232, which needs a single 5 V supply. All inputs and outputs are ttl or 5 V c-mos compatible. To drive outputs at a higher voltage, one of the driver circuits may be used, Fig. 2.

Inputs may be via opto isolators, volt-free contacts, or voltage sources connected to input terminals through current limiting resistors, Fig. 3.
The i/o processor can be controlled by any device capable of sending and receiving ascii characters in RS232 format at $9600,7, \mathrm{~N}, 2$. To send output commands from a pc, at the dos prompt, type mode coml $9600, e, 7,2$ and press enter. Then type copy con coml and press enter. Next type one of the i/o processor output commands, eg $o=5 a$, then press function key F6 followed by the enter key. As a result $5 \mathrm{~A}_{16}$ will be written to the outputs. Function key F6 terminates the dos copy command.
The C program below can be used to communicate with the i/o processor. It sets COM1 parameters to $9600,7, \mathrm{~N}, 2$ and sends anything typed to the serial port, and displays anything received from the serial port.
When used with a pc with nine-pin serial

Object code for the PIC universal RS232 i/o processor.
: 080000000C09000505250C00000600660CFF00072A : 08000800006808000 C0E0A0E0C1D0A0E002B02EBF5 : 080010000A0F080000300C47009006030A230C4131 : 08001800009006030A250C3A009006030A230C30D0 : 08002000009006030 A2505030800040308000C30B5 : 0800280000B00C0A009007030A300C0700B008006B : 0800300008000 COA 009007030 A 370 C 0701 F 00 C 308 F : 0800380001 F 0080000300 C 61009006030 A 4105033 E :080040000800040308000C07002A0425090C0329FA : 0800480007030A4C05250A4D0425090C02EAOA4754 :080050000525090C090C080009000A5705450C0C80 : 08005800002407050A5906050A5B090A06050A591C
: 08006000090A090A0C07002A0403060505030328F0 : 08006800090C02EA0A64040303280C4F01880643C2 : 080070000 AAB0C6F018807430A780C2000A80AAB7A : 080078000 C 49018806430 AABOC69018807430A83CF : 080080000C2000A80AAB0C3D018806430A990C2104 : 08008800018806430A990C3F018806430A99020831 :08009000093A06030A950C2000A80208091206037B : 080098000A5604450208002002A40C100DE0018459 : 0800A00007430A590C4F018C06430AB20C49018CDC : 0800A80006430B130A5604450C0C002402080020DA : 0800B00002A40A590C3D018D06430ABB0C3D018E82 : 0800B80006430AD80A56020E091206030A56020E11 :0800C000003009270210002E020F091206030A5603 : 0800C800020F003009270210002F020E0030040337 : 0800D0000370037003700370020F011000260A57B3 :0800D8000C38008D06030A560C30008D07030A56B3 : 0800 E 0000 C 30018 F 06430 AECOC 31018 F 06430 AECO 1 : 0800E8000C21018F07430A560C3000AD02ADOC30D5 :0800F000018F06430B090C31018F06430B000503F2 : 0800F8000070037000ED07430AF9021001A60A57C9 :0801000005030070037000ED07430B02021001268F : 080108000A5704030CFF0030037000ED07430B0C8B :08011000021001660A570C3D018D06430B1C0C3D7D : 08011800018E06430B3B0A560C3F018E07430A56DD : 080120000C3F018F07430A560207003100300403E1 : 0801280003300330033003300COF0170093102102B : 0801300000290943021100300COF01700931021037 :08013800002909430A570C3F018F07430A560C3820 :08014000008D06030A560C30008D07030A560C3052 : 0801480000 AD02AD02070031033102EDOB4C060396 : 070150000B530C300B540C31002909430A579C
:0101FF000A54A1
: 00000001 FF

Fig. 2. All inputs and outputs are ttl or 5 V c-mos compatible. To drive outputs at a higher voltage, one of these driver circuits may be used.

Simple terminal emulation program written in Turbo C. It sets up COM1 for $9600,7, N, 2$,sends typed characters to COM1 and displays received characters.
\#include <bios. $\mathrm{h}>$
\#include <stdio.h>
\#include <conio.h>
\#define DATA_READY 0x100
\#define ESC ' x 1 b ’
\#define SETTINGS ($0 x e 0|0 \times 02| 0 \times 00 \mid 0 \times 04$) $\quad / / 9600,7, \mathrm{~N}, 2$
void main(void)
int char_in, key, status;
bioscom(0, SETTINGS, 0);
printf("TERMINAL EMULATION AT 9600, 7, N, 2. [ESC] to exit ...vn");
while (1) \{
// Loop forever
status $=\operatorname{bioscom}(3,0,0)$;
if (status \& DATA_READY) $\quad / /$ Check for character in
if ((char_in = bioscom $(2,0,0) \& 0 \times 7 \mathrm{~F})!=0$)
putch(char_in);
// Display it
if (kbhit())
// Any key pressed?
if $(($ key $=\operatorname{getch}())=$ ESC $)$ exit();
bioscom(1, key, 0);
I
1

Software and programming services
Assembly-language listings for the RS232 universal i/o processor can be obtained on a pc formatted disk by sending $£ 11.50$ including postage and vat to $E W+W W$ Editorial, Quadrant House, The Quadrant, Sulton, Surrey SM2 5AS. Please make cheques payable to Reed Business Publishing and mark your envelope 'RS232 processor'. Don't forget to include your address.

Hamid is supplying programmed PIC controllers for $£ 12$ each fully inclusive. Send a postal order or cheque payable to Hamid Mustafa at Rosslare Strand, Co. Wexford, Ireland.
connector, link pins 7-8 and 4-6, connect pin 3 (Tx) to pin 13 of $M A X 232$, pin 2 (Rx) to pin 14 of MAX232 and pin 5 to ground.
If the pc has a 25 -pin serial connector, link pins 4-5, 6-20, and connect pin 2 (Tx) to pin 13 of MAX232, pin 3 (Rx) to pin 14 of $M A X 232$, and pin 7 to ground.

Fig. 3. Inputs may be via opto isolators, galvanically-isolated contacts, or voltage sources connected to input terminals through current limiting resistors.

Finally an upgradeable PCB CAD system to sult any budget ... Board Copture
BoardCapture - Schematic Capture

- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-tine annotation

35

- Integrated on-the-fly library editor
- Context sensitive oditing
- Extensive component-based power control

BoardMoker

BoardMaker1 - Entry level
 - PCB and schematic drafting

- Easy and intuitive to use
- Surface mount support
- 90,45 and curved track comners
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMaker1 plus
- Full nellist support - OrCad, Schema, Tango, Cadstar
- Full Design Rule Checking - mechanical \& electrical
- Top down modification from the schematic
- Component senumber with back annotation
- Report generator-Database ASCll, BOM

Board Router

BoardRouter - Gridless autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing Output drivers - Included as standard
- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec, Roland \& Houston
- Photoplotters - All Gerber 3×00 and 4×00
- Excellon NC Drill / Annotated drill drawings (BM2)

Contact Tsien for further information on Tel 01354695959 Fax 01354695957

tsien

PC INTERFACING

Designing
 pc expansion

Dave Robinson runs through the steps needed to design a programmable-logic based interface for controlling i/o via a pc expansion slot.

Here, I outline how to design a general purpose segment of a board, concentrating on the way the unit interfaces into the ISA bus. The interesting bit of the circuit design - turning the control signals into useful i/o - I leave to you.

When designing add on boards, you have two options for interfacing them - memory mapping or i/o mapping. Memory mapping makes the board appear as a segment of system memory. With some processors, such as the Motorola 68 series, this is the only option available.

While memory mapping is fine when you have total control of how the memory resource is distributed - as in the case of designing an embedded system - it is more difficult to accomplish safely in a computing system like the pc. If the software you are running expects to find memory in locations that you have allocated to your function card, then all kinds of problems can occur. My advice is, unless you have a good reason for using memory mapping in this context - don't do it.
Input/output mapping is the recommended method of interfacing to function cards. Whenever an i/o instruction is issued by the pc processor chip, it places a l6bit address on the address bus. This may be qualified by the i/o read signal going active if the cpu wants the peripheral to supply the data. Alternatively, if the processor is giving data to the peripheral then the processor activates the i / o write signal.
The peripheral must monitor both the address and i / o control lines continuously. If it recognises that the transaction is aimed at it - i.e. it recognises its own address - then it must respond. The pc has a number

Power precautions

Modern pcs are equipped with large power supplies, capable of supplying 20A or more at 5 V . Wiring a short circuit between a power line and ground, or even a solder splash across the power lines, could cause a catastrophic failure.
Chances are the wire you use to connect your circuitry is going to have a greater current carrying capacity than the pc traces on the mother board. The result will almost certainly be a pc-track burn out, and your pc may well be ruined. Similarly, polarised capacitors have a nasty habit of catching fire when inserted back to front.
However, if you follow this tried and tested procedure, such problems are highly unlikely.

Fig. 1.
Programmer's model of a pc interface card helps visualisation of the card's functions when writing the control software.
of i/o mapped peripherals built into the mother board, such as RS232 interfaces; dma controllers and printer ports. To allow the system to differentiate between these internal peripherals and peripherals plugged into the ISA bus, IBM defined the following protocol.

If an i / o instruction is issued by the cpu that has the tenth address bit, A_{9}, set to a zero then no card on the ISA bus may claim it. When low, Ag specifies that the peripheral being addressed is mounted on the motherboard, and not to any add-in peripheral. Conversely if an i/o instruction is issued with A_{9} high then it is aimed at an add-on card plugged into the expansion facilities.
In Table 1, the first row indicates the state of the address bus whenever an internal peripheral is accessed. The second indicates that a peripheral card in an ISA slot is expected to respond. Normally address bits A_{10} upward are unused, while A_{0-8} define the card and its register.
It is necessary to be able to uniquely define your function board from any other plugged into the ISA bus. Failure to do so results in bus contention - reading from or writing to two cards at once - and the computer will probably behave unpredictably.
To avoided contention, it is good practice to provide your function card with a modifiable address. I almost always define address lines A_{5} 8 to be the board identification address. The address that the board responds to can then be determined by a set of four switches or links.
Address lines A_{0-4} provide local identification of up to 32 registers on the card. If this isn't enough then the upper address lines A_{10-15} can be called into action.

Board specification

The example described comprises of an 8 bit i / o-mapped peripheral consisting of nothing more than an 8 bit input first in first out memory, fifo, and a similar output fifo. Whether you are building a data acquisition system or a communication controller, all you need to do is connect any

Table 1. First row indicates state of the address bus when an internal peripheral is accessed. Second indicates that a peripheral card in an ISA slot is expected to respond.

| A15 | A14 | A13 | A12 | A11 | A10 | A9 | A8 | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| x | x | x | x | x | x | 0 | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ |
| x | x | x | x | x | x | 1 | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ |

input into one fifo and to extract any output from the other.
In order to explain how to handle interrupts, I will design the board so that the fifos will create an interrupt when they are half full. To help explain how to control a direct-memory-access, dma, channel, I will construct the system so that data can be deposited into, or extracted from the fifos under dma control.
Interrupt and dma channels will be software selectable at initialisation, and the interrupt operation will be configured to be optional. Data can also be extracted/deposited into the fifos by either dma or via straight forward i / o instructions. The i / o address of the board will be selected by means of four switches for the reasons mentioned earlier.
Now define what the board is going to look like with respect to the software, i.e. specifying the user interface, Fig. 1. This diagram shows that the programmer has access to six registers. In my design they are either read only or write only. You may prefer to use read back registers. If you do, you will not be able to use the same address for read and write only registers in the way that I have.
The address is specified in terms of an offset. This is because at this stage, the address that will be assigned to the board is not usually defined. Suppose the DIP switches are used to select address $0 \times 300_{16}$. Writing to i / o port $0 \times 300_{16}$ will deposit a value into the command register. Similarly reading i/o port $0 \times 300_{16}$ will result in the board status being read. Reading port $0 \times 301_{16}$ will pop a value from the input fifo. Writing to the same address pushes a value into the output fifo.
One of the two remaining registers holds the channel that the board is to use when operating under interrupt mode. The other holds information regarding which dma channel the input and output channels will use when operating in direct memory access mode. Note that these cannot share an address since they are both write only.
Having allocated the addresses to the overall functional registers, contents of the individual registers must defined, Table 2.

Reset 1 is an active low signal. Writing a zero to it causes contents of the input fifo to be dumped, even though they have not been read by the pc. You must write a one back into this position in order that your circuitry can start to deposit data into the fifo.

Reset 2 is active low. Writing a zero to this position causes contents of the output fifo to be dumped, even though they have not been read by your circuitry. You must write a one back into this position so that the pc can start to deposit data into the FIFO.

Intr 1 is an active-high interrupt enable for the input signal. If a zero is written into this location then no interrupt will be given when the input fifo reaches half full. If a one is written, then the interrupt will be presented to the pc. on the software selected channel.

Intr 2 is the same as Intr 1, except that it operates on the output fifo.
Intr 3 allows the board to monitor the state of the pc dma controllers terminal count. If the pc has either received the required number of bytes or transmitted the required number of byte, then it activates the terminal count signal. If Intr 3 is set to zero nothing happens; if it is set to l then the board will produce an interrupt.

Note that all three sources of interrupt activate the same selected interrupt line. It is the job of the interrupt handler to identify which situation caused the interrupt by reading the status register.

DMA 1 is an active high signal that activates a dma request on the situation where space is available in the output fifo. If DMA 1 is set to zero nothing happens, if it is set to one then the board will produce an dma request.

Seven of the eight bits in this register have now been allocated. If your application needs more bits - for example you may have an input multiplexer that needs setting, or a programmable gain amplifier that needs to be configured - then all you have to do is include another command register, by modifying the programmer's model.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused	DMA 2	DMA 1	Intr 3	Intr 2	Intr 1	Reset 2	Reset
Table 3. Status register bit functions.							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T.C. 2	T.C. 1	Full 2	Halfíl	Empty 2	Full 1	Halffull 1	Empty

Status register requirements

Table 3 shows bit functions of the status register.
Empty 1 is an active low flag indicating that there is no data in the input fifo. If this bit read a 1 on interrogating this register it indicates that the fifo contains at least one byte of data.

Halffull 1 is an active low signal that indicates that the input fifo is full to half or more of its capacity.

Full 1 is an active low signal that indicates that the input fifo has been filled to capacity. This situation should be avoided, as it could mean that data has been actually lost.
The next three bits are identical flags belonging to the output fifo.
TC 1 reflects the state of the pc terminal count state, corresponding to the input fifo. It goes to a logic one when the pc has received all of the data that it is expecting from the input fifo.

TC 2 reflects the state of the pc terminal count state, corresponding to the output fifo. It goes to a logic one when the pc has transmitted all of the data that it is expecting from the input fifo.

Note that the TC signals are generated by the dma controller in this case by logically combining the TC signal from the ISA bus together with the relevant dma acknowledge signal.

The status register has three primary purposes, these are:-
Enables the board to be used without interrupts or dma.

- Allows the interrupt handler to recognise the interrupt source.
- The interrupt handler reading this port causes the board to remove its interrupt request.

The first option allows the board to be used in an entirely software polled mode. The control program can be written so that all interrupts and dma transfers are disabled by writing the required bit pattern into the control register. The software then sits in a software loop reading the status register. If the empty flag on the input fifo goes inactive (i.e. there is data available), then the software reads it. Similarly if the full flag on the output fifo goes inactive then it is safe to put data in the fifo.

The second and third option are tied in with the way that the ISA bus implements its interrupt control. Whenever a ISA bus peripheral requires servicing, it pulls its interrupt line active. However there is no mechanism to indicate that the interrupt is being serviced, so it is essential that the hardware designer includes some software mechanism that can be instigated from the interrupt handler that will remove the inter-

Implementing command and status registers is simply a matter of connecting L.S series ICs to the data bus and applying enables.

PC INTERFACING

Fig. 3. State-machine structure adopted for the. Binary numbers within the circles represent the state variables

Table 4. Interrupt-select register bits. This register allows the programmer to select the desired interrupt channel via software.

Bit 2	Bit 1	Bit 0	Int.ch. selected
0	0	0	None
0	0	1	None
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Table 5. DMA select register functions. This register allows software selection of the required DMA channel.

Bit 3	Bit 2	Bit	Bit	O DMA channel
x	x	0	0	None
x	x	0	1	Channel 1
x	x	1	0	Channel 2
x	x	1	1	Channel 3
0	0	x	x	None
0	1	x	x	Channel 1
1	0	x	x	Chanel 2
$\mathbf{1}$	1	x	x	Channel 3

the only way of achieving dma channel selection.
Many boards accomplish the same task by using either a hardware DIP switch or link option to route the required dma channel. Both methods work superbly; you must decide whether mechanical setting or software selection is the better option for your application, Table 5.

At this stage, you have control of the dma channels required for both the input and output fifos. These are totally independent. However there are two things to note. You cannot use channel 0 , as this is used by the pc in connection with ram refreshing. Indeed although the dma acknowledge signal is distributed to the ISA bus, the corresponding request line is not accessible. Consequently selecting that channel is equivalent to disabling the dma transfer via the command register - the preferred method.
Secondly, you cannot use the same channel on both the input and output fifo simultaneously. The dma controller is configured to transfer a given number of bytes in a specified direction, so cannot be used to read and write.

When allocating dma channels it is up to you to select a vacant channel that is not being used by any other of your hardware in your system.

Designing decoding logic

Design of the board decoding logic is the first step. At the top level, the

Signals to the edge connector are as follows.

Solder side		Access	Panel		
				Component slde	
		Sig.type	Sig.type		
B1	Gnd	Power	Output	110 chck	A1
B2	RESET	Input	1/0	D7	A2
B3	' +5 V '	Power	1/0	D6	A3
B4	lra2	Output	1/0	D5	A4
B5	${ }^{\prime}-5{ }^{\prime}$	Power	1/0	D4	A5
B6	Drq2	Output	1/0	D3	A6
B7	- 12 V	Power	1/0	D2	A7
B8	Reserved		1/0	D1	A8
B9	'+12V'	Power	1/0	D0	A9
B10	Gnd	Power	Output	10 chrdy	A10
B11	IMemw	Input	Input	AEN	A11
B12	Memr	Input	Input	A19	A12
813	IIOw	Input	Input	A18	A13
B14	IIOr	Input	Input	A17	A14
B15	IDAck3	Input	Input	A16	A15
B16	Drq3	Output	Input	A15	A16
B17	IDAck1	Input	Input	A14	A17
B18	Drq1	Output	Input	A13	A18
819	IDAcko	Input	Input	A12	A19
B20	Clock	Input	Input	A11	A20
B21	1 rq 7	Output	Input	A10	A21
B22	Irq6	Output	Input	A9	A22
B23	Irq5	Output	Input	A8	A23
B24	Irq4	Output	Input	A7	A24
B25	trq3	Output	Input	A6	A25
B26	!DAck2	Input	Input	A5	A26
B27	T/C	Input	Input	A4	A27
B28	Ale	Input	Input	A3	A28
B29	' +5 V '	Power	Input	A2	A29
B30	Osc	Input	Input	A1	A30
B31	Gnd	Power	Input	A0	A31

decoder is simply a logic block which takes in the address bus from A_{0-9} and the two i / o strobes !IORd and !IOWr. It also requires the four address switch inputs which change the allocated board address; and vitally important is the signal AEN which is provided on the ISA bus. This signal becomes active during a dma cycle, as does the i/o strobes
During this phase however the address on the address bus relates to the memory location in which the data to/from the i / o board is to be deposited. Hence decoding during this phase can lead to problems. The decoder must be disabled while the AEN signal is active.
The simplest way to implement the decoder is via an epld. This way the complete decoder can be implemented on one chip. An AMD MACH1IO costing around $£ 8$ is suitable; Electromail supplies these, together with the Palasm software needed to compile the Boolean equations, and also offers a programming service.
Software is shown in List 1. Just a few words of explanation are needed. Signals beginning with a lower case ' n ' are active low signals. the forward slash (() is a logical inversion, the asterisk $\left({ }^{*}\right)$ is equivalent to an 'AND' gate, and the plus (+) is the logical OR operator. If you don't have access to the relevant epld programmers, or want to do it using standard ttl or cmos chips, converting the equations into a circuit diagram is relatively trivial Make sure that your gate delays do not become excessive.

Command register design

Designing the command register is easy. All you need is an octal latch, connected directly to the ISA data bus. One of the 74 HC 574 or HCT574 type will suffice here, as there is no real timing problem.
Output enable of the chip should be tied active, Fig. 2, as there is never any situation where the command register needs to be tristated off. The command register enable signal can be used directly as the chip clock signal. The device clocks on a low-to-high transition, which will occur as the !IOWr signal from the ISA bus deactivates. The chip itself has a zero hold time so the timing pans out correctly.

Status-register considerations

The status register can be implemented as simply as the command register, using just one chip. However this time use a 74×573 transparent octal latch.
Outputs of the chip connect to the ISA bus data lines, and both the latch enable and the tri-state control are connected directly to the status latch enable signal. Normally in an un enabled state the output of the latch will be in a high impedance state, but the latches themselves will be 'transparent'.
Immediately after status register is accessed the inputs get latched. This ensures that the outputs remain stable during the duration of the read process, and that outputs of the latch get enabled onto the data bus allowing the pc to read the status of the board. Once the access is over the latch resumes its high impedance transparent mode again waiting for the next access.

Interrupt controller design

From a hardware point of view, handling interrupts is slightly odd especially if you are used to designing much closer to your cpu.
The first thing you will notice when scanning down the signals on the ISA bus connector is the absence of any form of interrupt acknowledge signal. Within the interrupt handler, the software must access an i/o port that the interrupting board will recognise as an 'interrupt acknowledge'. In response, the hardware removes the interrupt request.
In this example, one obvious choice is to use the status register read for this purpose. Because we have several sources of potential interrupt coming from our board, the interrupt handler will need to know which is the active source(s). It does this by interrogating the status register.
So arranging this read to also be interpreted as the interrupt acknowledge we can substantially increase the efficiency of our board and its associated interrupt handler.
There is a slight complication with this design example, that may not be present with any future board you may be designing. Consider that during the interrupt latency period - which could be many milliseconds if you are running under Windows - the fifo receives a very fast burst of data, virtually filling it up. As soon as the software exits the interrupt

TITLE ISA Board decoding PAL
PATTERN DCODE1
PATTERN DC
REVISION 0.0
REVISION 0.0
AUTHOR Dave Robinson
COMPANY
DATE 03/05/95
CHIP_dcode1 MACH1 10

PIN	1	Gnd	
PIN	2	A0	;INPUT
PIN	3	A1	;INPUT
PIN	4	A2	;INPUT
PIN	5	A3	;INPUT
PIN	6	A4	;INPUT
PIN	7	A5	;INPUT
PIN	8	A6	;INPUT
PIN	9	A7	;INPUT
PIN	10	A8	;INPUT
PIN	11	A9	;INPUT
PIN	12	Gnd	;
PIN	13	NC	;
PIN	14	Switch0	;INPUT
PIN	15	Switch1	;INPUT
PIN	16	Switch2	;INPUT
PIN	17	Switch3	;INPUT
PIN	18	AEN	;iNPUT
PIN	19	nlord	;INPUT
PIN	20	nlowr	;INPUT
PIN	21	NC	;
PIN	22	Vcc	;
PIN	23	Gnd	
PIN	24	nComEn	;OUTPUT
PIN	25	nStatEn	;OUTPUT
PIN	26	nPOPEn	;OUTPUT
PIN	27	nPUSHEn	; OUTPUT
PIN	28	nintrEn	:OUTPUT
PIN	29	nDMAEn	:OUTPUT
PIN	34	Gnd	
PIN	36	nISME	;OUTPUT
PIN	40	Dummyo	;OUTPUT
PIN	41	Dummy 1	;OUTPUT
PIN	42	Dummy2	;OUTPUT
PIN	43	Dummy 3	;OUTPUT
PIN	44	Vcc	

Thls PLD provides the main decode logic for use with the demonstration ISA board. It takes in from ;the ISA BUS the address signals AO \rightarrow A9 and logically combines them with a valid IORd and ;IIOWr signal to form the correct enable signals.
; The decoding is done in two stages. First the address bits A5 -> A8 are compared with the switch isettings to insure that the i/o instruction is targeted at this board. (Note that the comparison ;generates some intermediate logic values called Dummyi. These are never used on the outside of the ;PLD but do not represent spare capacity). An address match during a valid $1 / 0$ instruction leads to ;the generation of an active low 'ISME' signal. Subsequent decoding takes the valid ISME signal, and ;combines this with the lower parts of the address $A 0 \rightarrow A 4$ and the data direction, obtained from ; 110 Rd and !IOWr to form the active; low register enable signals

- BQUATIONS Boolean Equation Segment -_

EQUATIONS
Checks it A5 and Switch0 are both equal
Dummy $=\quad$ S
+1 Switch0 \%A5 ;A
Dummy $=$ Switch1 ${ }^{*}$ A6 ;Address and switch both high
$+/$ Switch 1 \%/A6 ;Address and switch both low
: Checks if $A 7$ and Switch2 are both equal
Dummy2 $=$ Switch2* A7 ;Address and switch both high

+ /Switch2 ${ }^{*}$ A7 ;Address and switch both low
:Checks if $A 8$ and Switch3 are both equal
Dummy $=$ Switch ${ }^{*}$ A8 $\quad ;$ Address and switch both high
+/Switch3 ${ }^{\circ} /$ A8 ;Address and switch both low
:Now forms the board address recognition signal nISME
InISME =A9 ;Must be high for valid ISA transter

A9 ; ${ }^{\text {a }}$	for valid ISA transfer
- Dummyo	;Switch0 matches A5
* Dummy1	;Switch1 matches A6
- Dummy2	;Switch2 matches A7
* Dummy3	;Switch3 matches A8
(/nIORd+/nIOWr)	;Valid IO Instruction recognised
IAEN	DMA transfe

Now forms the individual enable sianals
:1) Command reglster Enable at offset 8000 write only
InComEn = ISME

- IA4*/A3*/A2*/A1*/AO :OHfset 8000

This board recognised
ISA bus supplying data
:2) Status register Enable at offset 8000 read only
InStatEn $=$ /nISME $/ \mathrm{A} 4^{*} / \mathrm{A} 3^{*} / \mathrm{A} 2^{*} / \mathrm{A} 1^{*} / \mathrm{AO} 0 \quad$;Offset 8000

* InIORd
; ISA bus requesting data
i3) Push data Into the output fifo at offset 8001 write only
InPUSHEn = /nISME \quad This board recognised
* $/$ A4*/A3*/A2"/A1* A0 ;Offset 8001
* Inlowr

4) Pop data from the output fifo at offset 2001 read only
/nPOPEn $=/$ IISME \quad This board recognised

- inlord

InIORd
ister Enable at oftset $\& 002$ write only
5) Interrupt selection register Enable at oftset 8002 write only

InIntrEn = $\begin{aligned} & \text { InISME } \\ & \text { */A4*/A3*/A2* } \mathbf{A 1}^{*} / \text { A0 } \\ & \text { "Offset } 8002\end{aligned}$
*/nlOWr
6) DMA selection register Enable at offset \& \quad nISME write only \quad This board recognised /nDMAEn $=\begin{gathered}\text { /nISME } \\ * / A 4^{*} / A 3^{*} / A 2^{*} A 1 * \\ *\end{gathered} \quad$;This board

* Inlowr
;ISA bus supplying data

PC INTERFACING

;This PAL provides all of the interrupt control logic for use with ;demonstration ISA BUS board. It takes the signals D0 \rightarrow D2 from ;the ISA BUS, and the decode signals nStatEn and nintrEn from the ;decoding PLD (DCODE 1). The terminal count slgnals TC1 and TC2 are ;generated by the DMA controller, whilst the half full flags are obtained ;from the fifo's. The interrupt enables are obtained from the command ;register.
;The PLD registers the three data bits on the rising edge of nintrEn ; when these bits contain the required interrupt request pin to be used. ;It generates the interrupt pending flag whenever any of the interrupting ;states are true and enabled.
;It provides a simple four state state machine to handle the interrupt
;request generation as described in the text.
;All unselected interrupt channels are tristated off.
EQUATIONS

: Generate interrupt request signals

Intreq7 $=\operatorname{lntSe} 2$ * $\operatorname{IntSel1}$ * $\operatorname{IntSel0}$ * A */B Intreq7.trst = IntSel2 * IntSel1 * IntSel0
Intreq6 $=\ln$ Sel2 $*$ intSel1 */intSel0 ${ }^{*} A * / B$
Intreq6.trst = IntSel2* IntSel1 */IntSel0
Intreq5 $=\operatorname{IntSel2}$ *IntSel1 * IntSel0 * A */B
Intreq5.trst $=$ IntSel2 */IntSel1 * IntSel0
Intreq4 $=$ IntSel2 */IntSel1 */IntSel0 * $A * B$
Intreq4.trst $=\operatorname{IntSel} 2 * / I n t S e l 1$ */IntSel0
Intreq3 $=/ \operatorname{IntSel2}$ * IntSel1 * IntSel0 * A */B
Intreq3.trst =/IntSel2 * IntSel1 * IntSel0
Intreq2 $=/$ intSel2 * intSel1 */IntSel0 * A * $/ B$
Intreq2.trst =/IntSel2 * IntSel1 */IntSel0
handler, it would receive another interrupt. Bear in mind that the he fifo is still more than half full. The pc would essentially become interrupt bound, spending all its time dealing with the interrupts being sent to it.
To overcome this potential problem it can be arranged that reading the status register effectively turns off the interrupt-enable signals within the command register. After receiving confirmation that the first interrupt from the board is recognised, the interrupts from the board are automatically disabled and need re-enabling to resume.
This is a problem with many solutions. You could, for example, arrange the status read enable signal to clear the actual command register bits corresponding to the interrupt enables. However this requires a more complex command register structure than the one previously described, as not all of the command register positions need to be cleared. This is a viable solution, but the one that I have adopted makes use of a state machine structure, shown in Fig. 3.
Binary numbers within the circles represent the state variables, and as we have four states we need two of them. Note that they are grey coded - as opposed to being binary. As a result, only one bit is altered from each state to the next. This avoids the problem of any timing glitches. The interrupt request signal is obtained simply by forming the logic signal A*/B. Immediately after a valid interrupting event has occurred the interrupt request occurs. Then when the status register is read, the interrupt request is removed. It remains inactive until the software firstly disables the interrupt enables, and then reestablishes them.
As with the decoder, you can either build the interrupt controller from discrete ttl or programmable logic. The device I have chosen is the PALCE26V12 from AMD. This is a stretched body PAL22V10, in which the controller logic fits comfortably. Should you have trouble obtaining it, then the logic equations can easily be transferred into one of the smaller MACH devices. The only thing to be wary of when using the 26 V 12 is the odd pin positions that the manufacturers have placed the power rails. (V_{cc} on pin 7, Gnd on pin 21).
Listing 2 is the design specification for the interrupt controller pal. An important aspect to note in this design is the Intreqi.trst signals. These control whether the interrupt request lines which connect directly onto the ISA BUS are operational, viz if the channel has been selected, then the driver for that request line is enabled, all others are tristated off. If you are not using interrupts then selecting channel 0 or channel 1 will ensure that all interrupt request lines are in a safe state.

DMA controller design

DMA on the pc ISA bus is slightly idiosyncratic. However its use for transferring data from an ISA peripheral device to pc memory at high speed can sometimes be invaluable. The protocol is as follows. The peripheral requires access to the pc memory - either to extract or deposit data. It does this by enabling the relevant dma request signal.
When the processor has relinquished control of the bus the peripheral receives the following indication:-

- /DACKi goes active
- AEN goes active
- /IORd or /IOWr goes active depending on data-flow direction.

Note that the address on the address bus is that of the memory location within the pe memory that is being serviced. It bears no relationship to any i / o port number on the i / o card requesting the service.
As soon as the peripheral recognises that the /DACKi matches the request line it has activated it can remove the request line. If the ISA bus is sourcing the data, then the peripheral must latch the data bus with the rising edge of / IOWr
If the ISA bus is receiving data, the peripheral tristate drivers must be enabled via /IORd. If your software has been set up to transfer a fixed size record from the peripheral, then the dma controller tells the peripheral that the transfer is complete by activating the terminal count signal.
Note that there is only one terminal count signal shared amongst all dma channels. You tell that it is 'yours' by qualifying it with the /DACKi signal. Also, there is no direct connection between the terminal count signal and the cpu in the pc. It is therefore the responsibility of the ISA bus board designer to essentially take the correctly qualified terminal count signal, and cause a processor interrupt.

CD rom offer - A vast electronic component sourcing database for just £99*

NN11 is offering the first issue of the RE:SOURCE componentsourcing CD to $E W+W W$ readers as an exclusive introductory offer for just $£ \mathbf{£ 9}$ excluding VAT. Normally, the only way to obtain the RE:SOURCE CD is to take out a year's subscription at $£ 395$ plus VAT.
Additionally, readers taking up the introductory offer can obtain a discount of $\mathbf{2 0 \%}$ should they decide to subscribe to RE-SOURCE. As a further bonus, the first ten orders will receive a free RE:SOURCE CD desk clock as shown in the photograph. Simply fill in the coupon right.

[^0]Anyone involved in specifying or sourcing electronic components will be only too aware of the amount of time spent in searching through paper catalogues to find the right item from the most cost effective source.
Comprising a huge and ever-expanding database of electronic components and technical specifications across the fields of Active and passive components - RE:SOURCE carries technical data from over 65 of the world's leading manufacturers and thousands of entries from UK based suppliers.
The RE:SOURCE CD-ROM provides the ability to source technical data, supplier listings and current prices within seconds. Product features include the ability to search on approved parts and/or preferred suppliers, search on limited component specification, build shopping lists and generate orders. In addition, you can view footprints, access trade directory and of course the obligatory diary/calendar and calculator.
A Supplier Trade Directory is also included, which gives access to an extensive A-Z listing of over 200 product categories sub categories and provides full supplier contact information for each listing from over 500 UK suppliers.
Operating under Windows, the product is
designed to offer a familiar environment with an intuitive interface, coupled to a rapid method of interrogation.

NN eleven Digital publishers of catalogues, directories and multi-media applications. NN 11 is at 11 Warwick Street, Daventry, Northamptonshire NN11 4AJ. Tel: 01327 311353, fax: 01327705669.

> To receive your copy of the RE:SOURCE CD Rom, send your cheques to NN eleven at 11 Warwick Street Daventry Northants NNI 1 4AJ

Name

Address

Postcode
Telephone
Cheques payable to NN Eleven please.

Frequency counting interface

On its own, even a fast pc or microprocessor is not fast enough to measure frequencies much outside the audio range. Interfacing a few ttl ics combined with a little software however increases the frequency measuring range to 25 MHz and beyond, as Tony Fisher explains.

This frequency counter add on suits almost any type of computer or microcontroller. The prototype incorporates readily available and inexpensive ttl and requires only three input and three output signals to the computer or controller. Using 74LS series tt , the minimum guaranteed operating frequency is 25 MHz , but my prototype worked up to at least 30 MHz - the top of the short wave band.
A 16-stage divider produces a maximum output frequency of around 460 Hz at an input of 30 MHz . This 460 Hz output can easily monitored by the computer. A pulse with a precise duration is needed to gate the input signal to the counter. Because of unknown quantities, such as interrupt timings and memory wait states, the computer cannot produce such a pulse.
The solution is to use the computer to generate a gate of the approximate duration and to

Fig. 1. Block circuitry needed for counting frequency via a pc or microcontroller. Although this configuration works, clocking the result out serially takes a long time.
synchronise it to a crystal controlled clock of 1 kHz to give a possible gate duration of any multiple of a millisecond.
Another requirement was to keep the number of i / p pins used to a minimum so a novel method of reading the 16 bit counter was required. This was easily resolved by adding a single OR gate, Fig. 1.
Gate timing is derived from the crystal oscillator. Its frequency is divided down to 1 kHz so the gate period can be any multiple of 1 ms . The 1 kHz clock feeds an input pin of the computer for monitoring.
To produce a precise 1 ms pulse the computer waits for the 1 kHz input to go from low to high and then sets the latch-in high within the next millisecond. This is then latched on the next positive transition of the 1 kHz clock. After the positive transition the latch-in is set low and synchronised with the next positive transition of the clock. A pulse with a width of any multiple of 1 ms can be produced by counting a number of positive transitions of the clock before setting the latch-in low.
The frequency to be measured is passed through by the and gate and the input to the or gate is set low during the counting phase. The lower 16 bits of the frequency is counted by hardware counters while the higher bits are kept in the computer by detecting the high to low transitions of the most significant bit of the hardware counter.
Once counting has finished, the 16 bits of the hardware counter have to be read out and reset to zero ready for the next count. This is done by taking the clock input high and low repeatedly until the most significant bit of the counter changes from high to low. The contents of the counter are then 65536 minus the number of clocks provided by the clock input.

This has the side-effect of resetting the counter to zero. For example if the counter contained I then 65535 pulses would be required on the clock input before the most-significant bit of the counter goes from high to low so the counter must have contained $65536-65535$. A count of zero would require 65536 clock pulses. However I was felt that clocking up to 65536 times would take too long so the counter is split into two eight-bit stages. Each half can be read out independently so the number of clocks required is reduced from 65536 to 512, Fig. 2.
Frequency is easily determined by,

$$
f(\text { in hertz })=\frac{\text { counter } \times 1000}{\text { gate time }(\text { in milliseconds })}
$$

Any frequency offset or other adjustment can be done at this stage in software, making the system versatile.

Circuitry

All the ICs are 74LS types, Fig. 3. In theory, the ttl parts limit the frequency to 25 MHz , but in practice the circuit worked up to 30 MHz . By replacing $I C_{1,2}$ with faster components higher speeds may be achievable.
Component choice for the circuit was based on what was to hand so a reduction in component count may be possible.

Software

On reset both clock inputs are set high and the latch-in set low. The computer then waits for the clock to go from low to high. This ensures that any counting has stopped.

Contents of the counters are read back and the result discarded, this is to reset the counters so that the first frequency read is not

Fig. 4. Analogue imput conditioning circuitry of the

List 1. C-like pseudo code for controlling the frequency counter interface via a pc, processor or controller.

```
/* this takes the gate period as a parameter and repeatedly
reads frequencies */
void counter(int gate)
{
/* stop counting */
clock_lo = HIGH;
clock_hi = HIGH;
latch_in = LOW;
/* wait for stop counting to take effect */
while (clock == HIGH); /* do nothing */
while (clock == Low); /* do nothing */
/* clear contents of counter */
junk = readback_count();
while (1==1) /* do forever */
    {
    software_count = 0; /* counter bits above 16 = 0 */
        gate_remain = gate; /* number of 1 ms periods remaining */
        last_count_out_hi = count_out_hi;
        last_clock = clock;
        do
            /* part to control gate timing */
            if (last_clock == LOW && clock == HIGH)
            f
                if (gate_remain > 0)
                    latch_in = HIGH;
                else
                    latch_in = LOW;
                gate_remain = gate_remain - 1;
                }
            last_clock = clock;
```


Fig. 5. Interfacing the counter to the pe needs only two gate ICs. If the counter is read by a microcontroller, the interface is even simpler since these ICs are only needed to cope with the bidirectional signals.
dependent on how the counters powered up.
Operation can be summarised by the C -like pseudo-code of List 1.

Interfacing

The analogue front end is standard, Fig. 4. To interface the meter to my pc , I used an 8 -bit parallel i/o port with separate read and write signals. As you need separate input and output lines, the circuit in Fig. 5 is required. If you use a microcontroller with dedicated i/o pins, such as the PIC165x or 8032 , then interfacing can be simply done by dedicating three inputs and three outputs.
/* part to monitor counter output */
/* if a low to high transition of the counter output then increment the software clock */ if (last_count_out_hi $==$ LOW \&\& count_out_hi $==$ HIGH) software_count = software_count + 1;
last_count_out_hi = count_out_hi;
\}
while (gate_remain $>=0$);
/* combine hardware and software counts */
readback = readback_count | (software_count \ll 16);
/* now printout the readback or do something with it */
\}
int readback_count(void)
clock_hi = LOW;
clock_lo = LOW;
/* read back low 8 bits */
count_lo = 0
last_count_out_10 = count_out_lo;
do
clock_lo = HIGH
finish = last_count_out_lo == LOW \&\& count_out_10 == HIGH;
if (!finish)
clock_10 = LOW;
count_lo = count_lo + 1;
last_count_out_10 = count_out_lo;
\}
while (!finish)
/* read back high 8 bits */
count_hi = 0;
last_count_out_hi = count_out_hi;
do
clock_hi = HIGH
finish = last_count_out_hi == LOW \&\& count_out_hi == HIGH;
if (!finish)
clock_hi = LOW;
count_hi = count_hi + 1;
last_count_out_hi = count_out_hi;
\}
while (!finish);

```
/* make a 16 bit result from two 8 bits */
return (count_hi<<8) | count_lo:
```


8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF Tel: 01203650702 Fax: 01203650773

Mobile: 0860400683

(Premises slituated close to Eastern-by-psss in Coventry with essy
 Gould $4035-20 \mathrm{MHz}$ digital storag Gould $4050-35 \mathrm{MHz}$ digital storage
Gould $5110-100 \mathrm{MHz}$ intelligent oscilloscope... Gould $5110-100 \mathrm{MHz}$ intelligent oscilloscope
Hewlett Packara 1707A, 1707 A - 75 MHz dual ch Hewlett Packard 1740A, 1741A. $1744 \mathrm{~A}, 100 \mathrm{MHZ}$
Hewlett Packard $54201 \mathrm{~A}-300 \mathrm{MHz}$ digitring Hewlett Packard $54504 \mathrm{~A}-400 \mathrm{MHz}$ digigitizng . A nem Hitach V-212-2001H2 dual trace
Hitechi V-422-40MHz dual ch.
 Priillps $3315-60 \mathrm{MHz}$ D.S.O.
Totronix $468-100 \mathrm{MHz}$ D. S. O
Tektronix $2213-60 \mathrm{MHz}$ Tektronix $468-100 \mathrm{MHz}$ D.S. O .
Tekkronix $2213-6 \mathrm{MHz}$ dual ch.
Tektronl $2225-60 \mathrm{MHz}$ dual ch. Tekkonlx $2215-60 \mathrm{MHz}$ dual ch.
Tektronix $2220-60 \mathrm{MHz}$ digital
Tektronal $2225-50 \mathrm{MHz}$ dual trace Tektronix $2225-50 \mathrm{MHz}$ dual trace
Teltronk
$2235-100 \mathrm{MHz}$ dual ch. (porlabie) Teltronix $2235-100 \mathrm{MHz}$ dual ch. (poriabie)
Tektronlx $2335-100 \mathrm{MHz}$ dual ch. (portabie)
Tektronlx $2465 \mathrm{~A}-35 \mathrm{MH}$ Tektronl $\times 2465 \mathrm{~A}-350 \mathrm{MHz} 4 \mathrm{ch}$.
Tektron $\times 46446-100 \mathrm{MH}$.

Philips PM3296- 350 MHz dual channel......................
Hewlett Packara $54501 \mathrm{~A}-100 \mathrm{M} H z$ OIgitising -4 channel

TELNET

(IKCIE NO. IIHON REPI Y (ARI)

Best rf article '95

Following the success of 1994's Writers Award, Electronics World and Hewlett-Packard are launching a new scheme to run from January to December 1995.
Only articles which have an element of rf design will be eligible for consideration by the judging panel. It is hoped that this year's award will focus writer interest on rf engineering in line with the growing importance of radio frequency systems to an increasingly cordless world.
The aim of the award scheme is to locate freelance authors who can bring applied electronics design alive for other people.
Qualifying topics might include direct digital synthesis, microstrip design, application engineering for commercially available rf ICs and modules, receiver design, PLL, frequency generation and rf measurement, wideband circuit design, spread spectrum systems, microstrip and planer aerials... The list will hopefully be endless.
All articles accepted for publication will be paid for - in the region of several hundred pounds for a typical design feature.

Win a $£ 4000$ programmable signal generator from Hewlett-Packard

The prize for the coming year's award is a £4000 Hewlett-Packard HP8647A 1 GHz programmable signal generator. It features HPIB interface, solid state programmable attenuator and built in AM-FM modulation capability.

For further details about our quest for the best, call or write fo:
Martin Eccles, Edifor, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Tel 081-652 3128

Technology

> Not all of today's electronic wizardry is as new as we think - an anomalous factor called technology lag often comes into play. Andrew Emmerson has been combing the archives with some prophetic results.
 wires could be laid underground, or suspended overhead, communicating by branch wires with private dwellings, country houses, shops, manufactories etc., etc.,

uniting them through the main cable with a central office where wires could be connected as desired establishing direct communication between any two places in the city.
Such a plan as this, though impracticable at the present moment will, I firmly believe, be the outcome of the introduction of the telephone to the public. Not only so, but I believe, in the future, wires will unite the head offices of the Telephone Company in different cities, and a man in one part of the country may communicate by word of mouth with another in a distant place.
I am aware that such ideas may appear to you Utopian... Believing, however, as I do that such a scheme will be the ultimate result of the telephone to the public, I will impress upon you all the advisability of keeping this end in view, that all present arrangements of the telephone may be eventually realised in this grand system." These words are now

"HDTV saw its first serious exploitation fifty years ago..."

sufficiently well known to become almost a cliche but when they were first uttered they must have sounded fanciful in the extreme. They were spoken in 1878 by Alexander Graham Bell some two years after he had invented the telephone.
Conventional wisdom of course knew better. After all back in 1865 the Boston Post had written solemnly: "Well-informed people know it is impossible to transmit the voice over wires. Even if it were, it would be of no practical value." A memo attributed to the Western Union telegraph company in 1877 took an equally prosaic attitude. "This 'telephone' has too many shortcomings to be seriously consid-

Poserphones are not new. This Motorola 'HandieTalkie for Industrial Use' was the business back in November 1948.

Five years before the HandieTalkie, the original Walkie Talkie was introduced - a much more cumbersome affair weighing 35 pounds.
ered as a means of communication. The device is inherently of no value to us." A similar opinion is said to have been given by someone in the British Post Office.
There is no doubt, however, that competent engineers were not afraid of forecasting their view of the future; in November 1911, A.A. Campbell Swinton, addressing the Röntgen Society in London, proposed a fully electronic television system and back in 1897 an electrical engineer by the name of Ayrton addressed the Imperial Institute in London as follows. 'There is no doubt that the day will come, maybe when you and I are forgotten, when copper wires, gutta-percha coverings, and iron sheathings will be relegated to the Museum of Antiquities. Then, when a person wants to telegraph to a friend, he knows not where, he will call an electromagnetic voice, which will be heard loud by him who has the electromagnetic ear, but will be silent to everyone else. He will call "Where are you?" and the reply will come, "I am at the bottom of the coal- mine" or "Crossing the Andes" or "In the middle of the Pacific"; or perhaps no reply will come at all, and he may then conclude that his friend is dead.'
This is all excellent stuff but it is, we must also concede, highly speculative. It is also ancient history - what about the miracles of today, such as the cellphone, high-definition television and digital techniques for interleaving several programmes on the same TV channel?
Remarkably, they are not as new as you might think and they all developed from practical work - not fanciful postulating - carried out during the second world war. That they are only reaching commercial exploitation some forty or fifty years later can be put down to technology lag.
Let's take the cellphone first: all the basic technologies were in place by the end of the war, even the concept of frequency re-use. Here is a quote from a British book of 1946, 'The Miracle of Wireless' by Miles Henslow.

Maybe it will sound a far-fetched idea today, but the time is surely approaching when everyone will be able to carry about with him a small radio telephone. War-time development of apparatus to work on very short wavelengths has opened up many entrancing possibilities. Hundred of thousands of 'radio-telephone channels' can be used over short distances without interference; and the installation of a network of automatic telephone exchanges might well be utilized for handling the calls from a multitude of pedestrian or automobile telephone subscribers, to sort them out and pass them by line - or by radio link - to main exchanges. Certainly it is but a matter of time before the railway traveller is able to pick up the phone and dial his office or his home.
Indeed, but a matter of time - just a little under fifty years to be precise. But what were those war-time developments? Mobile radio was by no means new then: already in 1939 three vhf bands in the vicinity of 100 MHz had been allocated by the Home Office to the police and fire services and tests had proved that 'two-way radiotelephone service of a good standard and reliability' was possible in built-up areas. The mobile equipment was extremely bulky and in no way a 'personal phone'; even the Walkie-Talkie portable fm two-way radio introduced by Motorola for US forces in 1943 was a hefty back-pack affair weighing 35 lb . But there was a much more portable two-way radio operating on uhf frequencies (450 MHz) known as S-Phone.
Developed in 1941 by Capt. Bert Lane and Major Hobday, both of Royal Signals, S-Phone became standard operational equipment in 138 and 161 Squadrons of the RAF
for covert air-to-ground communication. A similar short-range radio was developed in 1944 by the Americans for OSS agents working in Germany under the cover-name JoanEleanor; this set worked on 260 MHz . Highlydirectional vhf beam antenna systems were also developed for gun-laying radar and other purposes, so it can be argued that the key elements of the technology required for cellular radio were in place by 1946. The only elements missing were the finance and commercial pressure to turn concept into reality.
The same applies to the concept of multichannel digital television - or something very
> "euphoria for cellular radio, multi-channel television and highdefinition pictures at the end of the war was fated to subside..."

close to it. This, as far as I can trace, was first revealed in print the same year, 1946. The author was Kenneth Ullyett in the long defunct publication Courier, a sort of allBritish version of Reader's Digest. Just read this.
Radio experts have been disclosing the secrets of frequency modulation broadcasting, but this system is already out-dated by a new British discovery... The BBC Television section is very enthusiastic because the pulse sys-

HISTORY

Campbell Swinton had already devised all the elements of electronic television in 1911, only the technology to realise his project was missing.
> "Well-informed people know it is impossible to transmit the voice over wires..."

tem offers a very special advantage to television. Sight and vision can be broadcast on the same wavelength. In fact, a choice of television programmes, both sight and sound, could be put out on the same wave-length lane, leaving receiver pulse selectors to sort them out.
In his article Ullyett describes both pulse width and pulse time modulation and put his money on pulse time. He had witnessed tests, he said, which showed it was possible to get better sound definition and tonal quality by varying the timing of the pulses rather than their shape. Today we would call the technique pulse-position modulation and the alternative pulse width system which he refers to had recently been exploited during the war to best advantage in the Wireless Set No. 10, a somewhat prosaic designation that in fact conceals a fully mobile multi-channel radiotelephone system operating on a 6 GHz carrier.
Entirely British in design and conception, this was undoubtedly the world's first multichannel communication system and was yet another engineering achievement that helped 'save our bacon' in those dark days half a cen-

More than fifty years ago Britain successfully exploited the Wireless Set 10 - an eightchannel microwave radio systems for secure communication in the battlefield; at the end of the war the same technique was proposed for broadcasting multi-channel to the home. Here we see the mobile equipment of the Ten Set as a tower carrying dishes is raised. Photo courtesy Chris Hilton.

tury ago. The 'Ten Set' as it is also known used pulse-width modulation and after early trials in 1942 was first used to link the Isle of Wight to Cherbourg, just after D-Day. Subsequently it provided vital speech links, within the advancing forces and back to the War Office in London. It was flexible and secure, whilst there is no evidence that the Germans even knew of its existence, let alone that they succeeded in intercepting it.
Ullyett described the pulse system as being equally valid for sound broadcasting as for television although he conceded it would not see the light of day in the immediate future. 'The present position is that all radio manufacturers in Britain are committed for at least 18 months to a programme of over 60 per cent for export, and they could not possibly make home receivers for the pulse system.'
High-definition television, that is with more than 1000 lines, also saw its first serious
> "digital television was revealed in print in
> 1946..."

exploitation fifty years ago as part of war efforts.
In Paris the Compagnie Française de Telévision maintained development work on television throughout the period of German occupation, producing a 1050 -line system, described by an Allied Combined Intelligence Objectives Committee report compiled in October 1944.
A demonstration of a 1050 -line system was seen on a cathode ray tube of 15 in diameter. The picture was extremely good, definition and contrast were very good, even up to the corners of the picture. At a distance of eight feet the quality was comparable with that of an ordinary cinema. During the demonstration, films and a live scene from the studio were shown on both the 450 and the 1050-line systems. The improvement in the increase in entertainment value of the 1050 -line picture was most marked. The same type of iconoscope [camera tube] was used in the 1050 and 450-line systems.
The report continues that although the 1050 line transmissions are well ahead, they were not yet ready to be put into service and that if television started again in the next two years, it would surely start with the 450 -line transmissions. History proved the author of the report entirely right.
Whereas the French were devising high definition television for broadcast entertainment
purposes, the Germans had a different purpose in mind. In mid-1940 Fernseh technical experts developed and demonstrated a complete 1029-line television system, the purpose of which was said to be transmitting maps for military purposes.
Employing a slide-scanner as pickup device the apparatus gave exceptional results, exceeding 16 mm film in resolution. Despite this apparent success, the authorities were apparently unconvinced of the system's strategic value and given its need for 15 MHz transmission bandwidth, it is difficult to see how these pictures could have been transmitted with security over long distances.
What became of this work in France and Germany? In the latter case, not a lot. After the war German researchers remaining in the Russian Zone were spirited off to Leningrad, whilst the two installations which had been moved out into Sudetenland (then a part of Germany and now in the Czech Republic) to avoid Allied bombardment formed the nucleus of Czechoslovakia's television development scheme. In the western zones of

Germany the Allies initially prohibited any further research into television and thus any momentum was lost. In any case it was now considered that 625 lines were a more practical compromise for entertainment television.
That was not the thinking in France, however, and television was a field in which France intended to excel in the new era of peace. Again, however, a compromise was called for since their 1050 -line system would occupy too much bandwidth over the air. So by 1948 an 819 -line system, demonstrably superior to the existing British, American and new German systems, was devised and this remained in use for nearly 40 years. As well as demonstrating Gallic achievement, there was a notion that the unique 819 -line system would discourage foreign manufacturers from entering the French market, a strategy that no longer succeeded when Sony and other Far Eastern manufacturers brought out transistor portable sets which included the 819 -line standard in the late 1960s.
What lessons can be learned from each of these demonstrations of premature technical
achievement? Certainly that given the correct environment and resources, the timescale for new development can be compressed considerably, and the pride in achievement and the enthusiasm to take this further are hard to suppress at the time.
Technical virtuosity is of little value, however, if there is no commercial market for it and no means to apply it to mass production. For this reason it was sadly inevitable that the euphoria for cellular radio, multi-channel television and high definition pictures at the end of the war was fated to subside and not surprising that fifty years on we are only now really starting to enjoy the benefits of those predictions.
For technology to create a mass market it must offer something the broad public both desires and can afford, and back in 1946 most people's minds were on matters more prosaic than advanced home entertainment or convenience in communication. In those days even a normal telephone in the home was a luxury, whilst television was exclusively for the welloff. Times change.

PIC DEVELOPMENT TOOLS

NEW BASIC STAMPS

High Specification PIC Tools from PARALLAX
ClearView In-Circuif Emulafors

True real-time hardware emulation using genuine "Bond-out" chips.
Speeds up to 20 MHz
PIC16C5x/64/71/74/84
Dos \& Windows Environment
From $\mathbf{£ 5 9}$ separate units for " 5 x " and "xx" PICs)

PIC Programmer Pack
Programmer for
PIC16C5x/64/71/84/.
Extensive manuals on disk
User supplied cables and power supply.
Just $£ 89$

PIC 16Cxx Programmer	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet			ZIF, SOIC, SSOP
BackDraft 17	\bullet		\bullet						\bullet		PLCC
ClearView '5x		\bullet	\bullet	\bullet	\bullet					20	
ClearView 'xx		\bullet	\bullet	\bullet		\bullet	\bullet	\bullet		20	

Stamp-sized Computer Modules Run BASIC

BSI-IC 81/0
100 line capacity: $4-\mathrm{MHz}$ Clock
$\varepsilon 29$

BS2-IC 161/0
600 line capacity: $20-\mathrm{MHz}$ Clock $£ 49$

Two NEW BASIC Stamp Controllers offering even more flexibility to Industry, Education and the Hobbyist. Both run Parallax "PBASIC" with familiar BASIC commands plus serial I/O, pulse measurement and button debounce. The BS2-IC includes additional support for LCDs, keypad, DTMF encoding/decoding, X - 10 transmit and external time clocks.
The BASIC Stamp programming package at $£ 66$ contains editor software, cables, manual and extensive application notes; everything you need to program and re-program Stamps using your PC.

Typical
Application

All prices exclude VAT and $£ 3$ shipping per order.
For further details on any of these products please 'phone tor our new colour catalogue.

Milford House, 120 High Street,
SOUTH MILFORD, Leeds LS25 5AQ
Telephone 01977-683665 (24 hour) 01977-681465 (Fax)

GRANDATA LTD

K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 0181-900 2329 Fax: 0181-903 6126 OPEN Monday to Saturday.

Please send $£ 1$ P\&P and VAT at 17.5%. Govt, Colleges, etc. Orders accepted. Please allow 7 days for delivery. Prices quoted are subject to stock availability and may be changed without notice. TV and video parts sold are replacement parts. Access \& Visa Card accepted
Times: Mon-Fri 9.00-5.30 Sat 9.00-2.00
WE STOCK TV AND VIDEO SPARES, JAPANESE TRANSISTORS AND
TDA SERIES. PLEASE RING US FOR FURTHER INFORMATION.

TRANSISTORS

Software

Abstract

Software can help get the most out of data-acquisition expansion cards. Signal Centre can help more than most, says Allen Brown

Data acquisition and processing used to be the preserve of engineering and physical science laboratories. Now pcs are routinely found in biology, chemistry and even psychology departments, with many machines dedicated to data acquisition applications.
Converting a pc into a data acquisition platform is simply a matter of inserting a suitable card, with analogue and i / o facilities. But software is needed to drive the card too, and this is where packages such as Signal Centre come in, automatically recognising the expansion card and providing all the processing features likely to be needed.
Signal Centre, version 2 from Computer Park Software - a British company for a change - runs under Microsoft Windows and can be used either for data acquisition, or as control software as it has the ability to output digital i/o and analogue signals.
No programming skills are called for since everything is performed using dialogue boxes, and the user should feel at home with familiar 'viewports' such as an oscilloscope, chart recorder, meter, led display, rotary control, thermometer and other display and control items.
The heart of Signal Centre is a large 'processor' library containing all the operations and functions likely to be needed. Each processor (or range of processors) is used to feed information into the display items.
Designing a system is intrinsically quite straightforward, with the user working backwards from the final display.
For example, to show an oscilloscope displaying a square wave contaminated by noise (Fig. 1), the first step is to generate an oscilloscope by clicking on the appropriate icon. Clicking on the scope brings up a dialogue box that allows the multisig add processor to be included and generates another dialogue box, enabling an input to the adder to be selected. This in turn generates a processor dialogue box, so that square wave generator can be selected from a list.
Once that dialogue box is closed a second input can be

chosen. The processor list again appears and this time White Noise is chosen.
When all the dialogue boxes are closed, a noise-contaminated square wave appears on the oscilloscope screen, Fig. 2. Various parameters can be adjusted for each processor before it is accepted.
Initially the procedure appears somewhat awkward, but after a little practice it becomes surprisingly easy to generate and customise a design layout. However, real proficiency only comes through practice, as operation of the software is far from intuitive.

Expansion card drivers

A large range of device drivers is supplied for the popular analogue i/o cards, and this is an attractive feature. Drivers are included for the Amplicon PC range, ComputerBoard's CIO range and for Datel and IOTech expansion cards.
Many cards have multiple analogue channels. When the driver for the input card is selected the card can be configured, via its dialogue box, for the appropriate mode. So, with an eight-input analogue card the user can show all eight input channels on the chart recorder viewport (Fig. 3). Adjustments

Fig. 1. To construct a design in Signal Centre, the user works backwards through a series of dialogue boxes. Each processor has a dialogue box aftached to it and the user connfigures it by changing the settings in the box.
can also be made to the gain and sampling frequency of the channels by choosing appropriate options in the dialogue box.
Configuring an analogue i/o card in this way, with little fuss, is very effective and is one of the best selling points of the package. Signals from the i / o cards are then available to any processor the user selects.

Fig. 2. A design completed, the oscilloscope viewport can be used to show output signels. In this case we see a noise-contaminated square waveform, the schematic of the processors and conpections needed for its construction.

Fig. 3. One of the most useful viewports, the chart recorder, can be linked directly to an analegue' i/o.expansion card to give real-time signal monitoring.

Fig. 1. Several viewports can be useful for monitoring a small scale system. Each viewport canihave ronditional settings attached to it.

Viewport visualisation

Visual aspects of Signal Centre are handled by viewports. Some serve only as quantitative devices - the thermometer and bulb for example - and various voltage thresholds can be set to give different colour displays (Fig. 4). If the pc has a sound card, audio (voice) outputs can be triggered when threshold or condition events occur.
When monitoring small-scale industrial processes these viewports and the audio waming features could prove to be quite useful. Should a record of the data displayed by each viewport be needed, a disk file can be attached to store the data for future analysis. Or real-time statistics can be performed on the data by constructing an array of processors from the processor library.

Controlling events

'Events' are important to Signal Centre and act in a similar way to interrupts. They are evoked once certain conditions are satisfied.
Typical events include buttons in a button-box viewport, pressing keys on the keyboard, threshold values from viewport thermometers and checkers (conditional comparisons). Determining these conditions is accomplished by means of more processors.
Events can also be triggered sequentially by using a timer, with each event added to an event list and evoked when the appropriate time has lapsed - so events can be scheduled at predetermined times.
Once they have been added to the event list with their respective start and reset times the sequence is started with the play button from the menu bar.
Fast-forward, rewind, pause and the all-important stop button are a nice idea if you want to automate a sequence of measurements and control outputs over a long time - certainly quite appealing in a laboratory environment for long-duration testing.

Processors

The impressive number of processors within the library is accessed by a drop-down menu Simple examples range from a moving average (Fig. 5) to curve fitting following input data (Fig. 6).
Polynomials up to order twenty can be demonstrated. But computational time starts to become noticeable for high order curve fitting, even on a fast $486-\mathrm{PC}$.
A viewport for dealing with image allows pictures to be imported to improve the layout of a display. Appearance of images can be conditionally controlled with a suitable processor - which looks like a good idea for reminding the user pictorially of the origin of signals.

User manuals

Signal Centre's four manuals - Reference, Guide to Processors, User Guide and Guide to Drivers - are we.l laid out with a pleasing presentation. But certain asspéc are acutely lacking, and the Guide to Processors is of questionable value in several respects. For example, it provides a discussion on all the processors but fails to explain how many of the processors can be used. Consequently several processors appear quite enigmatic in operation. Lack of examples illustrating processor application is also very irritating.
The Reference manual describes overall operation of the software in general terms, with particular attention focused on the viewports. But what is really needed in the User's manual are tutorials and actual examples showing how to use the processors.
Many Signal Centre operations are not intuitive and their operation is far from obvious, and some new users simply will not have the time to learn by trial and error.

Minimum system requirements
 486-DX PC

SVGA colour monitor
8Mbyte ram
10 Mbyte hard disk
Recognised analogue i/o expansion card

Availability

Computer Park Software, Broughton Grange, Headlands, Kettering, Northants NN15 6XA. Tel: 01536417955 Fax: 01536417466 . Prices, professional version $£ 795$,
standard £295. Multi-user and educational discounts are available.

But the tool is only suitable for small images. Moving a large memory image takes several seconds and is unacceptable in practice. So caution must be exercised when using this feature.
A variety of other data sources (and destinations) can be accessed by using the dynamic data exchange (dde) processors.

Spectral analysis

Discrete Fourier transform (dft) and fast Fourier transform (fft) processors are available in the library (Fig. 7).
Spectral outputs are displayed on an oscilloscope viewport. At first this can be rather confusing as the \mathbf{X} axis is displayed as time (seconds). In a messy procedure, it is left to the user to make all the necessary changes to display frequency. .

As potential users of the software are likely to place a high importance on frequency measurements, future versions could really do with a separate spectrum analyser viewport.
Another puzzling oversight is the default number of input data points into the dft or fft processors - not 512 or 256 or even 128 but only one!

Needless to say nothing happens when you first use these processors unless you spot the appropriate data button. Even the reference manual does not caution against using the default value.
Window functions to profile the data before using the dft or fft processors are also lacking. But, with these reservations, on the whole the package is pretty good.
Once you have acquired the technique of working backwards from display to source, you should be able construct a design for data acquisition within a couple of hours. The manufacturers must be complimented on the ease of configuring the i / o cards, and this must be a major selling point for the package.

Cubic Curve: $y=a a+b b \cdot x+c c \cdot x^{2}+d d . x^{3}$

Simulated Noisy Signal

Regression Fitted Cubic Equation
Fig. 6. Curve fitting can be performed and polynomials up to order 20 can be used. But processing time is much extended as the order is increased

Fig. 7. The spectrum (bottom trace) you would expect from a square wave (top frace) after a fast Fourier transform.

Visual impact of the software is good and the instant access of the viewports is attractive.
For small scale control applications Signal Centre would probably serve quite adequately, provided real-time advanced signal processing techniques are not required.
Overall, for data acquisition, storage and display purposes
Signal Centre is easy to use and is highly recommended. ■

Programming Solutions

Multi-Device Programmer

- EPROMs, E2PROMs, Flash EPROMs, Serial E2PROMs, PLDs, GALs, PEELs, EPLDs, MACHs \& WSI PSDs Micros - Intel, Microchip, Motorola, Zilog
- Fast programming algorithms.
- Connects direct to pc printer port.
- Simple full colour software.
- No expensive adapters.

Universal Programmer

- Uses standard pc printer port works with notebook and handbook pc's
- Pin driver expansion can drive up to 256 pins.
- Supports over 2000 IC's - 3 and 5 volt devices.

EPROMs, E²PROMs, Bipolars, Flash, Serial EPROMs over 150 microcontrollers, WSI/Philips PSDs, PLDs, EPLDs, PEELs, PALs, GALs, FPGAs including MACH, MAX, MAPL \& Xilinx parts

- Universal DIL (up to 48 pins), PLCC and gang PACs
- Powerful full colour menu driven software.
- Approved by AMD, TI, NatSemi, etc...
- Tests TTL, CMOS and SRAM devices (including SIMMS)

Eprom Programmer

EPROMs, E2PROMs, Flash and $8748 / 51$ micros.

ONLY

£595 Fast programming algorithms. Simple colour menu operation.

```
EMULATORS • SIMULATORS - COMPILERS • ASSEMBLERS
PROGRAMMERS • 8051 8085 Z8 68020 77C82 80C552
320C25 68HC11 6301 6502 87C751 65816 Z80 6809
    PIC }7720\mathrm{ MIPS etc.
```

Prices exclude VAT \& Delivery

Scherngite Cayburre

- Easy to Use Graphical Interface.

O Netlist, Parts List \& ERC reports.

- Hierarchical Design.

O Extensive component/model libraries.

- Advanced Property Management.
- Seamless integration with simulation and PCB design.

DRCIB DOSign
O Multi-Layer and SMT support.
O Unlimited Design Capacity.
O Full DRC and Connectivity Checking.
O Advanced Multi-Strategy Autorouting.
O Output to printers, plotters, Postscript, Gerber, DXF and DTP bitmaps.
O Gerber View and Import capability.

STMRUTEKHOT

O Non-Linear \& Linear Analogue Simulation.
O Event driven Digital Simulation with modelling language.

- Partitioned simulation of large designs with multiple analogue \& digital section:s.
- Graphs displayed directly on the schematic.
Write, phone or fax for your free demo disk, or ask about our full evaluation kit.
 53-55 Main St, Grassington, N Yorks, BD23 5AA Tel: 01756753440 Fax: 01756752857

Proteus software is for PC 386 compatibles and runs under MS-DOS. Prices start from $£ 475$ ex VAT; full system costs $£ 1495$. Call for information about our budget, educational \& Windows products. All manufacturers' trademarks acknowledged.

DOUBLE MIRRORS REFLECTHIGHERSPEED

> Boosting the gain of a power amplifier's long-tail pair can reduce distortion, increase speed. But will gain boosting cause instability? Not necessarily says Bengt Olsson.
nput stages of most power amplifiers are long-tailed pair, Fig. 1. They have a high output impedance, and are loaded by Miller capacitor C_{3}, via the dotted line.
A frequent problem is that the open loop gain is too small to produce enough negative feedback*. As a result, thd is increased.
This current mirror booster replàces an extra stage. It acts as a buffer amplifier, preventing loading of the long-tail pair and supplying plenty of current to the next stage, Tr $_{9}$. The high gain increases output slew-rate and gainbandwidth product, reduces intermodulation and thd, and increases power bandwidth.
The circuit was first applied to my 'supersymmetrical' mosfet amplifier, but it is also applicable to bipolar voltage amplifier transistors, since Tr^{\prime}, can be a bipolar device.

Design details

A typical long-tail pair has a current mirror $\operatorname{Tr}_{5,6}, R_{5,6}$, which assures that i_{1} and i_{2} are equal and in opposite phase. Adding $T_{r_{7}}$ and R_{7} produces another output current i, which may be N times higher than i (since $R_{5} / R_{7}=N$). The output voltage of T_{6} has low output impedance - approximately equal to R_{6} - and is able to drive both $T r_{5}$ and $T r_{7}$ since gate current of Tr_{7} is small.
The same voltage appearing on the three

Fig. 1. Implementing dual current mirrors. Placing the dual mirror amplifier before the second voltage amplifying stage and making use of the existing current mirror boosts output current. This is a true current source since Tr_{7} is a current generator and Tr_{8} has a very high impedence driver.

transistors $\mathrm{Tr}_{5}{ }^{-7}$ produces more current in Tr_{7} since R_{7} is smaller than R_{5} by a factor of N. This means that T_{7} works as a current booster without phase delay and with a high output impedance.
Adding Tr_{8} provides a complementary current in opposite phase to that of Tr_{7}. At low slew-rate, Tr_{8} works in a linear mode around the idling current of T_{7}. If the feedback signal tries to turn T_{8} off, it also starts to turn $T r_{7}$ on, pulling current negatively.
If T_{8} sees a positive signal, it again has the idling current of Tr_{7} as a high impedance source, but is also free to supply current. It will eventually be limited in some way. When limiting takes place, $T r_{7}$ current falls to zero. Transistor Tr_{8} now conducts twice the idling current - in Class A - and can supply even more. This only takes place if maximum signal output slew-rate is exceeded, and never with ordinary program material.
Note that T_{8} normally conducts almost constant current, supplied by Tr_{7}. Gain of the long-tail pair is thus extremely high, resulting in very low thd. This is true for increasing current modulation in Tr_{8}, caused by increasing frequency. This is true until current amplitude in $T r_{8}$ reaches the steady-state current in $T r_{7}$, which still is held almost constant. Output current is the difference between the currents in $T r_{8}$ and T_{7}, each being driven in its own way.
Output slew rate now reaches 50% of its maximum value, which may give a power bandwidth of, say, 50 kHz . With further increasing frequency, still in Class A, the current may be twice this value. Current in either $T r_{7}$ or $T r_{8}$ on the other hand switches to zero as the signal approaches typically 100 kHz at full amplitude.
The high current is justifiable if large gatecapacitance mosfets are used, or if maximum usable current in the capacitance C_{2} can not normally be obtained from the long tail pair. This may be for example because the pair would need to supply too much Δi_{1} current,

[^1]
SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

HP Now Colour Spectrum Analysers
HP $141 \mathrm{~T}+8552 \mathrm{~B}$ F $+85538 \mathrm{RF}-1 \mathrm{KHz}-110 \mathrm{Me} / \mathrm{s}-£ 700$
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{BIF}+85548 \mathrm{RF}-100 \mathrm{KHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 900$
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{BIF}+8556 \mathrm{~A} \mathrm{RF}-20 \mathrm{~Hz}-300 \mathrm{KHz}-\mathrm{E} 700$.
Special Offer just In from MOD Oty 40 HP 8555 FAF Units $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}$
HP $141 \mathrm{~T}+8552 \mathrm{~B}$ IF $+8555 \mathrm{~A} 10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}-\mathrm{£} 1200$.
HP ANZ Units Available separately - New Colours - Tested
HP141T Mainframe - $£ 350-8552 \mathrm{BIF}-£ 300$
HP8553B RF 1 KHz to $110 \mathrm{Mc} / \mathrm{s}-£ 200$
HP8554B RF 100 KHz to $1250 \mathrm{Mc} / \mathrm{s}-£ 400$
HP8555A RF $10 \mathrm{Mc} / \mathrm{s}$ to $18 \mathrm{GHzS}-\mathrm{E} 800$.
HP8556A RF 20 Hz to $300 \mathrm{KHzS}-£ 250$.
HP8443A Tracking Generator Counter $100 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-£ 300$
HP8445B Tracking Preselector DC to $18 \mathrm{GHz}-£ 350$.
HP3580A $5 \mathrm{~Hz}_{2}-50 \mathrm{KHz}$ ANZ-E750- $\mathbf{~ H P} 1000$.
HP3582A .02 Hz to $25.6 \mathrm{KHz}-£ 2 \mathrm{k}$.
HP8568A $100 \mathrm{~Hz}-1500 \mathrm{Mc} / \mathrm{s}$ ANZ - E 6 k
HP Mixers are available for the above ANZ's to 40 GHz
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2-£ 4 \mathrm{k}-£ 4.2 \mathrm{k}$
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz} \mathrm{Opt} 1+2+3-£ 4.5 \mathrm{k}$.
TEK $492 \mathrm{P}-50 \mathrm{KHz}-21 \mathrm{GHz}$ Opt $1+2+3-\mathrm{f} 5 \mathrm{k}$.
TEK 494AP $1 \mathrm{KC/S}-21 \mathrm{GHz}-\mathrm{E7}$
TEK $496 \mathrm{P} 1 \mathrm{KHz}-1.8 \mathrm{GHz}-\mathrm{E} 4 \mathrm{k}$.
TEK 5 L 4 N O $-100 \mathrm{KHz}-\mathrm{f} 400$
TEK $5 L 4 \mathrm{~N}+100 \mathrm{KHz}-\mathrm{f} 400$.
TEK $7 L 5+\mathrm{L1}-20 \mathrm{~Hz}-5 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 700$.
TEK LLS + L1-20Hz-5MC/s - E700.
TEK 7 LL + L3-Opt 25 Tracking Gen - $\mathbf{~} 900$.
TEK 7L12-100KHz-1800 M $/ \mathrm{s}-\mathrm{f} 1000$.
TEK 7L18-1.5-60GHzs - £1500
TEK 491 10Mc/s-12.4GHzs-40GHzs - E750. 12.4Ghzs-40Ghzs with Mixers.
Tektronix Mixers are available for above ANZ to 60GHzs
Systron Donner 763 Spectrum ANZ + 4745B Preselector . $01-18 \mathrm{GHz}+$ Two Mixers $18-40 \mathrm{GHz}$ in Transit Case-£3k.
MP8673D Signal Generator .05-26.5GHz - £20k.
Systran Donner 1618 M Microwave AM FM Synethesizer $50 \mathrm{Mc} / \mathrm{s}$ 2-18GHzs R\&S SWP Sweep
Generator Synthesizer AM FM 4-2500 Mc/s - £3.5k.
ADRET 3310 A FX Synthesizer $300 \mathrm{~Hz}-60 \mathrm{Mc} / \mathrm{s}$ - $£ 600$.
MP8640A SIgnal Generators - $1024 \mathrm{Mc} / \mathrm{s}$ - AM FM - E 800.
MP3717A $70 \mathrm{Mc} / \mathrm{s}$ Modulator - Demodulator - $£ 500$.
HP8651A RF Oscillator $22 \mathrm{KC} / \mathrm{S}-22 \mathrm{Mc} / \mathrm{s}$
HP5316B Universal Counter A+B..
HP6002A Power Unit 0-5V O-10A 200W
MP8447A Amplifier. $40 \mathrm{Mc} / \mathrm{s}$ - Also Dual Opt 001
MP6825A Bipolar Power Supply Amplifier.
MP81519A Optical Receiver DC
HP Plotters 7470A-7475A.
HP3770A Amplitude Delay Distortion ANZ.
HP3770B Telephone Line Analyser
HP8182A Data Analyser.
HP59401A Bus System Analyse
HP6260B Power Unit 0-10V 0-100 Amps.
HP3782A Error Detector,
HP3781A Pattern Generator
HP3730A +3737A Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$
HP Microwave Amps 491-492-493-494-495-1GHz-12.4GHz - £250
HP105B Quartz Oscillator - £400.
HP5087A Distribution Amplifier
HP6034A System Power Supply 0-60V 0-10A-200W - 5500.
HP6131C Digital Voltage Source $-100 \mathrm{~V} 1 / 2$ Amp.
HP3779A Primary Multiplex Analyser.
HP3779C Primary Multiplex Analyser.
HP8150A Optical Signal Source.
HP1630G Loglc Analyser.
HP5316A Universal Counter A+B.
HP5335A Universal Counter A+B+C.
HP59501B Isolated Power Supply Programmer.
HP9901A Modulation Meter AM - FM.
HP5370A Universal Time Interval Counter.
Marconi mith Marconi TF $237030 \mathrm{~Hz}-110 \mathrm{Mc} / \mathrm{s} 5000 \mathrm{HM}$

Marconl TF2370 as above but late type Brown Case - $£ 1000$.
Marconi TF2374 Zero Loss Probe - $£ 200$.
Marconi TF2440 Microwave Counter - 20GHz - $£ 1500$
Marconi TF2442 Microwave Counter - 26.5
Marconi
Raca/Dana 2101 M Microwave Counter $-10 \mathrm{~Hz}-20 \mathrm{GHz}-£ 2 \mathrm{k}$.
Racal/Dana 1250-1261 Universal Switch Controller $+200 \mathrm{Mc} / \mathrm{s}$ PI Cards.
Racal/Dana 9303 True RMS Levelmeter+Head - $£ 450$.
TEKA6902A also A69028 Isolator - $£ 300-£ 400$.
TEK 1240 Logic Analyser - £400.
TEK FG5010 Programmable Function Generator 20Mc/s - E600
TEK2465A 350Mc/s Oscilloscope CW 2 Probes - $£ 2.2 \mathrm{k}$.
TEK J16 Digital Photometer +56523 -2
TEK J16 Digital Photometer + J6523-2 Luminance Probe - f 300 .
ROTEK 320 Callbrator +350 High Current Adaptor AC-DC - 5500
FLUKE 5102 BAC AC Calibrator - £4k
FLUKE 1120 A IEEE-488 Translator - $£ 250$.
Tinsley Standard Cell Batrery $56448-£ 500$
Tinsley Standard Cell Battery 56448 - $£ 500$.
Tinsley Transportable Voltage Reference - $£ 50$
Tinsley Transportable Voltage Refere
FLUKE Y5020 Current Shunt - $£ 150$.
FLUKE Y5020 Current Shunt - $£ 150$.
HP745A $+746 A$ AC Calibrator $-£ 600$.
HP8080A MF + 8091A 1GHz Rate Generator + 8092A Delay Generator + Two 8093A 1GHz Amps +15400 A - f 800
HP54200A Digitizing Oscilloscope.
HP11729B Carrier Noise Test Set.01-18GHz-£.25k
HP3311A Function Generator - $£ 300$.
Marconi TF2008 - AM-FM signal generator - also sweeper - 10Kc/s - 510 Mc/s - from E250 tested to $£ 400$ as new with manual - probe kit in
HP Frequency comb generator type $8406-£ 400$.
HP Vector Voltmeter type $8405 A-£ 400$ new colour
HP Sweep Oscillators tyoe 8690 A \& B + plug-ins from $10 \mathrm{Mc} /$ s to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R. HP Network Analyzer type 8407A + 8412A + 8501A - 100 Kc/s - $110 \mathrm{Mc} / \mathrm{s}-£ 500-£ 1000$. HP Amplifier type $8447 \mathrm{~A}-1400 \mathrm{Mc} / \mathrm{s} £ 200$ - HP8447A Dual - $£ 300$. HP Frequency Counter type 5340A - 18GHz $£ 1000$ - rear output $£ 800$
HP 8410 - A - B - C Network Analyzer $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus mast other units and
displays used in this set-up -8411a-8412-8413-8414-8418-8740-8741-8742-8743-
8746-8650. From £1000.
Racal/Dana 9301A - 9302 RF Millivoltmeter $-1.5 \cdot 2 \mathrm{GHz}-£ 250-£ 400$.
Marconi RCL Bridge type TF2700-f150
Marconi/Saunders Signal Sources type - 6058B-6070A -6055A - 6059A - 6057A - 6056 -£250-£350. $400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi TF1245 Circuit Magnification meter + 1246 \& 1247 Oscillators - $£ 100-£ 300$
Marconi microwave 6600A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ Marconi

2331A-200 ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AYALLABILTY OR PRICE CHANGE VAT AMD CARRIAGE ETTRA ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALYES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradiord BOI12ER. Tel. No: (012741|68407. Fax: 651160

Fig. 2. Gain versus frequency for the dual current mirror. Curve A is closed-loop gain, typically 20x, while B is open-loop gain for a typical bipolar-transistor power amplifier. Curve C shows open-loop gain with a dual current booster.
Note that a higher gain-bandwidth product reduces the so-called tim-spike and improves the THD in general - especially at the sensitive lower frequencies. Curve A must cut the open loop curves B or C at less than $12 \mathrm{~dB} /$ octave ($<180^{\circ}$) for stability. A minor pole, f_{2}, is in reality unavoidable. It reduces stability. In the super-symmetrical design, f_{2} is generated at the output stage, but it is relatively easily dealt with. Note that the selection of C_{2} is critical - a fact that every designer has experienced.
resulting in high thd $-a$ frequent problem.
Push-pull action is advantageous since idling Class-A current is only 50% of the peak current. More current in C_{3} means faster output slew-rate and other benefits relating to thd etc. as indicated above.

$6 \mathrm{~dB} /$ octave roll-off down to 10 Hz

As a bonus, with T_{8} a mosfet, the gain-bandwidth product will increase at all frequencies, down to a few hertz. In this case, local gain between the non-inverting input and Tr_{8} is more than 10^{5}. This will not cause oscillation, since the roll-off is $6 \mathrm{~dB} / o \mathrm{ct}$, but it will render thd at frequencies under 1 kHz insignificant.
Transistor Tr_{8} could also be bipoplar. Any small $200 \mathrm{MHz} f_{t}$ device will do. Bipolar types have a smaller input capacitance than the 2N7000 mosfet. Even so, the mosfet performs well when used as a source follower. Loading on i_{1} is around 10 pF . This comprises feedback capacitance of the $2 N 7000$ in a groundeddrain configuration of 5 pF , plus the input capacitance reduced by the source-follower efficiency. It is difficult to measure any difference between the bjt and the mosfet, except at low frequencies, due to the number of zeros in the thd figure.

Gain improvers

This circuit is an example of a gain improver - a device, which increases the gain towards the low frequency end, without lowering the gain-bandwidth product.

It is a popular misconception that any increase of absolute gain has to be acompanied by an increase of the compensating capacitor C_{3}.
The key to this design is that increasing the gain avoids increasing C_{3} and in turn reducing the gain-bandwidth product \dagger. The problem is to maximize gain-bandwidth product, without causing oscillation.

One way to improve gain is to use a current source as a collector load followed by another high input impedance mosfet, as in node 1 of Fig. 1. Bootstrapping and emitter followers can also improve gain.

These techniques for improving the gain of a stage can avoid additional stages of amplification. Any new stage introduces an additional 90° phase shift, increasing the chance of oscillation.
Ideally, there should only be one gain stage - the long-tail pair - and it should never be necessary to have more than two.

In this way, phase shift stays 180° or lower, allowing a high gain-bandwidth product since the minor poles are high in frequency.

[^2]
The new schematic capture program Geswin (GESECA for Windows ${ }^{T M}$) adds more than a pretty face to SpiceAge. Upgrade for $£ 100+$ VAT*

- Geswin DDE links with SpiceAge to provide instant circuit editing. Because this link enables SpiceAge to retain all its simulation settings, the schematic (produced by Geswin) is uncluttered so that you can create clean drawings that may be clipboarded into your other Windows applications.
- You can clipboard sections of your netlist from SpiceAge back into Geswin's attribute Inspector if
 you wish to use patches of existing circuits.
- Geswin has inherited GESECA's speed and ease of use. You will find it's best-loved "bucket of bits" components' store waiting for your instant use from a special self-replenishing window.
- The SpiceAge component library has been expanded and re-drawn into "stubbies". The new symbols allow more components to fit within a given screen area without compromising clarity.
- Multiple windows allow you to scratch pad your designs (simulating as you work) and clipboard them into a fair copy window.
- File compatible with GESECA: schematics and components from GESECA may be read.
- Comprehensive HELP provides reference material; tutorial style manual reassures you of your own intuition.
- Geswin automatically invokes (or switches to) SpiceAge; you can also invoke Geswin from SpiceAge.

Please contact Those Engineers Ltd, 31 Birkbeck Road,
LONDON NW7 4BP.
Tel 0181-906 0155, FAX 0181-906 0969.
*upgrade price from GESECA; $\mathbf{f} 295$ + VAT new

COMPUTERICS

SM900 NEW AMD EQUIVALENT
MC6802 PROCESSOR
AM27CO20-125L1 SURFACE ES TMSUNT EPROM USEDWIPED P8271 BBCDSCCON 2817A-20 (2K $\times 8$ C EEPROM
D41256C-15 256kx1 PULS P8749H MICRO
MK48Z02-20 ZERO POWER RAM EQUIV 6116 LP
UEWED 41256 -15
BBC VIDEO ULA
3051 MICRO
8×4164 SIP MODULE NEW
FLOPPY DISC CONTHOLLEA CHIPS 1772
D06384-8
$c 2100 /[1$
$E 2100 / E 1$
2732-45 USED
100/E1.60
7C512 USED
14 EX EOPT 50P 41
GR281 NON VOLATILE RAM EQUIV 6116 ... ©S
7126 31/2 DIGIT LCO DRIVER CHIP...
USED TMS2532JL........... $\mathbf{E 2 5 0} 2708$ USED
88000-10 PROCESSOR

REGULATORS

CRYSTAL OSCILLATORS
2M4576 3M6864 5MO 5M 76 6M144 7MOCO 7M3728 8M000 12M000
14M3181 17M6256 16M257 18M000 25M175 27M0 27M036 28M 322 32M 000 33M 3330 35M4 481640 M 44M4444 44M900 48M000 64MOCO 1M000 1M8432 4MO00 10M000 84MO........
CRYSTALS
4 MO 256 10M368 17M6256 18M432 25 M 00028 M 4694 31M4696 2MO00 2M4576 2M77 ЗMOO ЗM2768 ЗM579545 ЗM58564 ЗM 93216 M 12 M 00013 M 000 13M 27014 M 00014 M 381818 15MO00 16 M 000 6M5888 17M000 20M000 21M300 21M855 22M1184 24M000 56M1875 36M83425 36M94375 38M900 49M504 54M19166 4M7416 57M75833 60M000 69M545 69M550 BN 26M995 2225.

TRANSISTORS

C107 BCY70 PREFORMED LEADS
BC557, BC238C, ВС 308 B
4100 ع30/1000 2N3819 FETS short leads.....

P POWER FET IRF9531 8A 60 V .
N POWER FET IRF531 8 BA 60 V ...
2SC1520 sim BF259.... E1 100/E22

TEXTOOL ZIF SOCKETS
 2/81.50

MISCELLANEOUS
$2^{\prime \prime} \times 7^{\prime \prime}$, WEIGHT 48Kg each, RUBBERISED CASE, GAULTLETED TUBULAR PLATE CONSTRUCTION, FOR DEEP CYCLE, HIGH CHARGED

UM61 16 M -2L suface mount 1000 avail NY65 OPTO ISOL 3000 available.

OPTO ICS also avalable TLP550 TLP666GF 68 way PLCC SKT 1500 available 100 wa PLCC SKT 100 available. \qquad 1250 pF POSTAGE STAMP COMPRESSION TRIMMER. XLS93C54P-3 serial Eprom 10,700 available....... E1,600/hot, $225 / 100$, LM324 (Ouad 741) MINIATURE FERRITE MAGNETS $4 \times 4 \times 3 \mathrm{~mm}$ TLO7 1 LO NOISE OP AMP. TL081 OP AMP 47000w 25 v SPRAGUE 36D 12 way dil sw 10NF 63V X7R PHILIPS SURFACE MOUNT 100K avallable SWITCHED MOOE PSU 40 WATT UNCASED OTY. AVAILABLE +5 $5 A_{1}+12 \mathrm{~V} 2 \mathrm{~A}, 12 \mathrm{~V} 500 \mathrm{~mA}$ FLOATING 220R 2.5W WIAEWOUND RESISTOA 60 K AVAILABLE CMOS 555 TIMERS. \qquad 2/3 AA LITHIUM cells as used in compact cameras. ICM7126CPL CMOS $31 / 2$ DIGIT LCD DRIVER CHIP LITHIUM CELL $1 / 2$ AA SIZE. PASSIVE INFRA RED SENSOR CHIP + MIRROR + CIRCUIT 2 F2 EUROCARD 28 -SLOT BACK PLANE $96 / 96$-WAY "PROTONIC 24 VARIBUS" $16.7 \times 5^{*}$ FIBREGLASS MULTILAYER PTH PCB EUROCARD 96 -WAY EXTENDER BOARD \qquad $290 \times 100 \mathrm{~mm}$ DIN 41612 96-WAY ABIC SOCKET PCB RIGHT ANGLE DIN 4161296 -WAY ABBC SOCKET WIRE WRAP PINS \qquad DIN 41612 64-WAY ACC SOCKET WIRE WRAP PINS. \qquad DIN 4161264 WAY AC PLUG PCB AiGHT ANGLE. DIN 41612 64-WAY AB SOCKET WIRE WRAP (2-ROW BODY) BT PLUG+LEAD MIN. TOGGLE SWITCH I POLE do PCB type LCD MODULE sim. LM018 but needs 150 to 250 V AC for display 40×2 characters $182 \times 35 \times 13 \mathrm{~mm}$. 6-32 UNC 5/16 POZI PAN SCREWS.. \qquad NUTS. \qquad E1/25/1	

 PUSH SWITCH CHANGEOVEA
RS232 SERIAL CABLE D25 WAY MALE CONNECTORS
.....2/1 25 FEET LONG, 15 PINS WIRED BRAID + FOIL SCREENS ($\mathbf{(1 . 3 0 \text {) }) ~}$
 WIRE ENDED FUSES $0.25 A$ NEW ULTRASONIC TRANSDUCERS 32 kHz . BNC 500 HM SCREENED CHASSIS SOCKET BNC 500HM SCREENED CHASSIS SOCKET. D.IL SWITCHES 10 -WAY E1 8 -WAY 80 p 4/5/6-WAY.. 180VOLT 1WATT ZENERS also 12 V \& 75 V
MIN GLASSNEONS..............................
 47WBost

PCB WITH 2N2646 UNIJUNCTION WITH 12 V 4-POLE RELAY 400 MEGOHM THICK FILM RESISTORS.

$$
\begin{aligned}
& 400 \text { MEGOHM THICK FILM RESISTORS... } \\
& \text { STRAN GAUGES } 40 \text { ohm Foil lype polyester backed baico grid } \\
& \text { alloy ... }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Linear Hall etfect IC Micro Switch no } 613 \text { SS4 Sim RS } 304-267 \\
& \text { HALL EFFECT IC UGS } 3040+\text { maonet. }
\end{aligned}
$$

```
l pole 12 way totary Swten.
```

ZN414 AM RADIO CHIP
COAX PLUGS nice ones...............
COAX BACK TO BACK JOINER
INDUCTOA 2O 2 HAC 1.5 A
1.25' PANEL FUSEHOLDERS
12 V 1.2 W small w/e lamps fit most modern ce
STEREO CASSETTE HEAD.....................
MONO CASS. HEAD $£ 1$ ERASE HEAD
THERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$....
THERMAL FUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C} 240 \mathrm{~V} 15$
THERMAL FUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C} 240 \mathrm{~V} 15 \mathrm{~A}$.
TRANSISTOR MOUNTING PADS TO-5TO-18 $£ / 101 / 1$
TO-3 TRANSISTOR COVERS... $10 / 1$
TO-220 micas + bushes ... 10/50p $100 / \mathrm{c}$

IEC chassis plug filter $10 \mathrm{~A}$.
POTS SHORT SPINDLES $2 K 510 \mathrm{~K} 25 \mathrm{~K} 1 \mathrm{M} 2 \mathrm{M} 5$
40 k U/S TRANSDUCERS EX-EOPT NO DATA
LM234Z CONST. CURAENT
MIN PCB POWER RELAYS 10.5V COIL 6A CONRS BANDOLIEREDCOMPONENTS ASSORTED Rs, Cs, ZENERS LCD MODULE 16 CHAR. X 1 LINE (SIMILAR TO HITACHI LM10)... £5 OPI1264A 10 kV OPTO ISOLATOR................ $£ 1.35$ en $100+\Sigma 1$ eo
 MADE BY SANKYO.

EC CHASSIS FUSED PLUG B-LEE L2728
 IECCHASSIS FUSED PER

BARGRAPH DISPLAY 8 RED LEDS

NE567

PE5649HUSEO WIPEO
IR2432 SHARP 12 LED VU BAR GRAPH DRIVE

DIODES AND RECTIFIERS


```
BY255 1300V 3A.
A, MR751.
1A GOOV BRIDGE RECTIFIER
4A 100V BRIDGE.
6A 100V BRIDGE
10A 2OOV BAIDGE.
25A 200 V BRIDGE E2.
\.....................- 10\Sigma18
2KBPO2 IN LINE 2A 200V BRIDGE REC ...........................10/E22
BY297 LINE 2A 200V BRIDGE REC
M/E1
```

SCRS
PULSE TRANSFORMERS $1: 1+1$...25

MEU21 PROG. UNIJUNCTION..
. $3 / \mathrm{E}$
TRIACS
DIACS 4/\&

BTA OB-400 1 IOO TAB AOOV 5 TA GATE.
TRIAC 1A B00V TLC381T 16k AVAILABLE 5 FOR $£ 1$ £ $15 / 100$
CONNECTORS
D25 IOC PLUG OR SOCKET..................................
c1. 1.25
CENTRONICS 36 WAY IDC SKT
BBC TO CENTAONICS PRINTER LEAD 1.5 M
CENTRONICS 36 WAY PLUG SOLDER TYP
USED CENTRONICS 36W PLUG + SKT
14 WAY IOC BLOCK HEADER SKT.
PHOTO DEVICES
HI BRIGHTNESS LEDS COX24 RED
SLOTTED OPTO-SWITCH OPCOA OPB815
TILS1 PHOTO TRANSISTOR.
TIL38 INFRA RED LED
4N25, OP12252 OPTO ISOLATOR
PHOTO DIODE 50P

LED's RED 3 or 5 mm 12 c ((NASE)
LED'S GREEN OR YELLOW $10 / \mathrm{F} 1$
FLASHING RED LED 5 mm 50 P
HIGH SPEED MEDIUM AREA PHOTODIODE RS651-995

STC NTC BEAD THERMISTORS

G22 220R, G13 1K, G23 2K, G24 20K, G54 50K, G25 200K, RES $20^{\circ} \mathrm{C}$

 DIRECTL Y HEATED TYPE................................... E 1 ea FS228W NTC BEAD INSIDE END OF $1^{\prime \prime}$ GLASS PROBE RES $20^{\circ} \mathrm{C}$A13 DIRECTL Y MEATED BEAD THERMISTOR ik res Ideal lor 11 e audio Wien Bridge Oscillator

CERMET MULTI TURN PRESETS $3 / 4$

10R 20R 100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K

IC SOCKETS

14/16/18/20/24/28/40-WAY DIL SKTS.	per TUBE
8-WAY DIL SKITS.. $£ 2$ per TUB	
32-WAY TURNED PIN SKTS.. 3 for	
MM SOCKET FOR 2×30-way SIM	

POLYESTER/POLYCARB CAPS

$100 \mathrm{n}, 220 \mathrm{n} 63 \mathrm{~V} 5 \mathrm{~mm}$. $20 / \mathrm{c} 1100$

$100 \mathrm{n}, 220 \mathrm{n} 63 \mathrm{~V} 5 \mathrm{~mm} . ~ 20 / \Sigma 1 ~ 100 / £ 3 ~$
$10 \mathrm{~N} 15 \mathrm{n} 22 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} 66 \mathrm{n} 10 \mathrm{~mm}$ rad $100 / £ 3.50$

100 n 600 V Sprague axial 00. 6 (51)
$2 \mu 2160 \mathrm{~V}$ rad $22 \mathrm{~mm}, 2 \mu 2100 \mathrm{~V}$ rad $15 \mathrm{~mm} .$. 100/E10
$1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC 50p as
$0.22 \mu 250 \mathrm{~V}$ AC X2 RATING 4/E1

RF BITS

SAW FILTERS SW662SW661 PLESSEY SIGNAL TECHNOLOGY FX3286 FERRITE RING ID 5 mm OD 10 mm ... ASTEC UM1233 UHF VIDEO MODULATORS (NO SOUND) 1250 \& 12 MTOCK .. 1.50 MARCONI MICROWAVE DIODES TYPES DC2929, DC2962. §1 EA XTALFILTERS 21M4 55M0 .. E1 En ALL TRIMMERS.
YELLOW 5-65 PF RED 10-1100F GREY 5 -25
3 FOR 50p E10/100 SMALL MULLARD 2 to 22pF......... 80p ea
60pea CERAMMC FILTERS 4M5/6M9M 10M 1 FEED THRU CERAMIC CAPS 1000 pF

5 VOLT TELEDYNE RELAYS 2 PO
BN2222 TRANSISTOR CAN SIZE)
P2N2222A PLASTIC..
2N2369A.
. $5 / \mathrm{E} 1$
MONOLITHIC CERAMIC CAPACITORS

100 n 50 2.5mm or 5 mm .. $100 / \mathrm{I}^{1}$

100 n 50 V dil package 0.3^{*} rad ..
$1 \mu \mathrm{~F} 50 \mathrm{v} 5 \mathrm{~mm} . . .$.
QUARTZ HALOGEN LAMPS
12V 50wan LAMP TYPE M312..................... 51 e8 HOLDERS 60p ee V 5 wath.
NEW BITS
XENON STROBE TUBE
E1.60 - NEW

TEL. 01279-505543
FAX. 01279-757656
PO BOX 634 BISHOPS STORTFORD
HERTFORDSHIRE CM 232 RX

Although less complicated than some reflectometers, this experimental instrument by Dmitry Malinovsky provides a digital indication of reflection index, from which vswr and power loss are easily obtained.

Fig. 1. Block diagram of reflectometer coaxial-cable tester, working in the $40-225 \mathrm{MHz}$ frequency range. The instrument will measure a reflection coefficient of 0.06 to within $\pm 10 \%$.

In time, even well designed coaxial signal distribution systems can need maintenance. The instrument described is an experimental cable tester that has been used under real conditions when installing and maintaining private cable tv networks.
As its block diagram in Fig. 1 shows, it consists of an hf oscillator, broadband amplifier, directional coupler and reflectometer, forming an 'active' reflectometer with its own oscillator and working into 75Ω. It is smoothly tunable in three bands $-40-70 \mathrm{MHz}, 70-125 \mathrm{MHz}$ and $125-225 \mathrm{MHz}$ - to ensure the overlapping of the tv bands I and III, the cable tv band, the $144-146 \mathrm{MHz}$ amateur band and the communications frequencies. Amplifier output at 15 mW goes to the directional coupler, which detects and separates the forward and reflected signals and feeds the results to the reflection index meter to give a digital indication of the ratio $V_{\text {ref }} / V_{\text {for }}$.

Oscillator

Figure 2 shows that the hf oscillator section consists of separate circuits for each band, using three $J 309$ jfets, each Varicap-tuned oscillator covering one band. Diodes $D_{4,5}$ in the jfet gates help to stabilise the oscillator output amplitude at about 0.6 Vpk - pk ; there is no need for a diode in the highest-frequency oscillator since its output does not exceed 0.6 V . Potentiometer P_{1} tunes all the oscillators and is calibrated in frequency to within about

5%. Non-working oscillators are switched off to save power.

Directional coupler

Output from the wide-band amplifier goes to the input of the directional coupler, the circuit of which I 'borrowed' from Ref. 1 and modernised slightly to simplify the design. Coupling coefficient in my version is -10 dB ; 1 know from experience that one should choose the largest possible signal level at the input of the directional coupler and use the maximum coupling coefficient, so that signals proportional to forward and reflected waves are fed to the measuring detectors at maximum possible amplitude.
Semiconductor diodes work well as linear detectors when the hf signal amplitude is greater than $100-200 \mathrm{mV}$ for germanium diodes and more than $200-400 \mathrm{mV}$ for silicon types. If the directional coupler is connected to a matched feeder, the amplitude of the reflected wave can be less than 5% or 10% of the forward wave amplitude. Taking into account the -20 dB gain of the directional coupler, one can see that when the signal level in the feeder is 2 Vpk -pk and the reflection index is equal to 0.1 (a well matched feeder), there is 0.2 Vpk -pk at the 'forward' coupler output and $0.02 \mathrm{Vpk}-\mathrm{pk}$ at the "reflected wave" output.
It is not easy to detect such signals linearly and the use of the usual diode detectors will lead to errors of up to 50% and perhaps more; the -10 dB coupling coefficient and the use of logarithmic-amplifier detectors give an accuracy of better than $\pm 5 \% \%$. I used germanium diodes, selected in pairs; methods of diode selection are described in the appendix.

Detection

Two 741 op-amps are used as logarithmic amplifiers, the type having a moderate thermal drift. Both are balanced by potentiometers P_{2} and P_{3} to obtain zero voltage at the their outputs with no hf input and potentiometers $R_{\text {adj }}$ trim for best detection linearity, particularly when working with hf inputs in the range $30-800 \mathrm{mVpk}-\mathrm{pk}$. It turned out to be possible to measure a reflection coefficient of 0.06 to

Fig. 2. Three frequency bands covered by three separate oscillators. Analogue-to digital converter acts as analogue voltage divider with digital output, since output n is proportional to $V_{\text {in }} N_{\text {ref }}$

an accuracy of about 10%.
An ICL7107 a-to-d converter fulfils two functions: it divides the two analogue signals, by virtue of the fact that the reference voltage is varied, and indicates the result in digital form; it helps to simplify this part of the circuit immeasurably and the accuracy of the ratio meter itself is better than 0.1% - negligible in comparison with the accuracy of the rest of the circuit.
Only two digits are used for the indication of tenths and hundredths of the value of the reflection coefficient; the thousandths are more or less irrelevant, bearing in mind the overall accuracy, and the indication of the permanent "zero" is an extravagance from the power point of view. Optimum display is in the form ".XX", the decimal point being a power-on indicator.

Selecting diodes

I use an ordinary analogue ohmmeter for this. When measuring resistances in the sub-bands 1,10 and $100 \mathrm{k} \Omega$, the currents flowing differ according to the logarithmic law. Every selected diode is connected to the ohmmeter and its forward resistance in three sub-bands is measured. Two diodes are considered to have been selected in a pair if their forward resistances coincide in three points (in the three sub-bands) to within 5%. Usually, two pairs with the necessary accuracy can be selected from 20-30 diodes.

Fig. 3. Power supply giving four outputs from one 9 V input. Logic circuitry forms a batterymanagement arrangement.

Power supply

This is rather complicated because it is intended for a portable device demanding several supply voltages. I calculated on the use of six AA-cells in the tester. Figure 3 shows the circuitry of the power supply with a 555 timer working as a multivibrator to drive the voltage converter to give -5 V for the op-amps and a-to-d converter, regulated by the LM79LO5ACZ; it also drives the voltage doubler to provide, via the LM78LO5 fixed voltage regulator, +1 OV for the varicaps and opamps. A positive 5 V for the ICL7107 comes straight from the battery via an LM78LO5 fixed regulator. Clock signals for the ICL7107 also come from the 555 oscillator.
Multivibrator $I C_{1.2}$ and $I C_{1.3}$ constitute a battery-management circuit; when battery voltage falls below 6.5 V , the multivibrator starts up and the display flashes at about 1 Hz . To extend battery life, display power comes from the brightness regulator, which is pulsewidth modulator $I C_{2.1} / I C_{2.4}$.
An additional power economiser is the 'indicate/continuous' switch which, in the indicate position, turns on the power amplifier and indicators only during measurements, reducing power consumption between activities; it can be blocked by switching to 'continuous'.

Coupler details

Figure 4 shows the construction of the directional coupler, which consists of a pc board with a microstrip line and three current transformers wound on ferrite cores with an outside diameter of 7 mm , inside diameter 4 mm and 2 mm thick; permeability is 400 . One can use any cores of a suitable size and permeability from 400 to 1500 .
Each transformer has a six-tum secondary of 0.2 mm solid, Teflon-insulated conductor (it is easier to solder), all three cores being wound in the same direction. Transformer Tr_{2} in Fig. 2 is held in the gap of the microstrip line, with its contacts up, by a staple that represents the

Fig. 4. Both sides of the directional coupler built on a stripline, part of the main board. Close adherence to this layout is advised.

Reflection

index	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
VSWR	1.10	1.2	1.5	1.9	2.3	3.0	4.0	5.7	9.0	19	∞
Power losses, \% \ll	1	4	9	16	25	36	49	64	81	100	

The kind of losses caused by mismatching the transmission line with the source load.
primary coil of Tr_{2}. Transformers Tr_{3} and Tr_{4} are soldered with their contacts down - one contact to the staple and microstrip line and the other to ground.
Resistors R_{1} and R_{2}, both $75 \Omega, 1 / 8 \mathrm{~W}$, are pushed through the cores of the transformers $T r_{3}$ and $T r_{4}$ and soldered to ground at one end and to the corresponding contact of the Tr_{2} at the other. Leads of resistors and transformers should be cut as short as possible. Diodes D_{1-1} and D_{2-1} should have their anode ends soldered close up to resistors R_{1} and R_{2} and the contacts of $T r_{2}$. Capacitors C_{1} and C_{2}, are used as mounting contacts, soldered to ground

Fig. 5. Ways of using cable tester, checking coaxial cable, top, and an antenna, bottom.
by loading the tester output with 75Ω and watching the direct voltage on $T P_{1}$. Frequency response is adjustable by trimming capacitor C_{f}, but a little unevenness up to about 3 dB in all bands is quite admissible.

Applying the tester

Figure 5 shows methods of connecting the tester for checking coaxial cable line and antenna. The only universal rule is: when checking any hf devices, one should make the connection between tester and tested as short as possible.

Reference

1. R.Lewallen. A Simple and Accurate QRP Directional Wattmeter. QST, February 1990, pp.19-23.

Processing the results

When a signal propagates in a transmission line there can be three cases:
(a) the impedance of the signal source is equal to the characteristic impedance of the transmission line (W, and the line is loaded by a resistance $R=W$. This is the matched mode and signals in the transmission line propagate only from the signal source to the load;
(b) impedance of the signal source is equal to the characteristic impedance of the transmission line, but the line is broken or shorted at the end. In this case, standing waves are formed in the line;
(c) impedance of the signal source is not equal to the characteristic impedance of the transmission line or the line is loaded by an impedance $Z \neq W,(Z=r+j x)$. This is a mixedwave mode, in which the line simultaneously carries signal that propagates from the source to the load and that from load to source.
How well the signal source matches with the line or the line with the load is characterised by the voltage standing wave ratio (vswr), which is the ratio of characteristic impedance to load impedance (or the signal source impedance): vswr $=R \mathcal{W}$ when R is more than W or vswr $=W / R$ when W is more than R.
With a device that can measure the amplitudes of the forward wave (propagating from signal source to the load)
and of the reflected wave (propagating from the load to the source), you can measure the so-called reflection index:

$$
\Gamma=V_{\mathrm{ref}} / V_{\mathrm{fwd}}=|R-W V /|R+W|,
$$

there being a simple correlation between / and vswr:
$\Gamma=(v s w r-1) /(v s w r+1)$ or $v s w r=(1+\Gamma / 1-\Gamma$. Knowing reflection index or vswr, one always can define the power gain when the signal propagating in an unmatched transmission line
$M=4 /(2+v s w r+1 / v s w r)$ in absolute units or $M=\log (4 /(2+v s w r+1 / v s w r))$ in decibels.

When power losses arise, the line resistance is irrelevant - it can be equal to zero but the losses can make up 100% of the signal power if the matching is wrong. The table shows the kind of losses caused by mismatching the transmission line with the source or the load.
The application of the transmission line dictates what matching we can consider satisfactory. For vhf-fm broadcast transmitters, a vswr of up to 1.2 is usually permissible and it is undesirable to have a vswr of more than 1.5-2 in tv receiving antennae. A mismatch in long tv coaxial lines causes not only energy losses but also a very unpleasant double or ghost image that can be seen when light objects are on a dark background.

DEVELOPMENT AND PRODUCTION SOLUTIONS

The schematic drawing module of CADPAK, ISIS Illustrator, enables you to create circuit diagrams like the ones in the magazines.

- Runs under Windows 3.1 making full use of Windows features such as on-line help.
- Full control of appearance including line widths, fill styles, fonts, colours.
- Automatic wire routing \& dot placement.
- Fully automatic annotator.
- Complete with device and comprehensive package libraries for both through hole and SMT parts.
- Advanced route editing allows deletion or modificatlon of any section of track.
- Gerber, Excellon and DXF outputs as well as output via Windows drivers. Also includes Gerber viewer.
- Exports diagrams to other applications via the clipboard.
- CADPAK is also available for DOS.

CADPAK FOR WINDOWS

Call or fax us today for a demo pack. Please state whether you would like a DOS or Windows pack.

Prices exclude postage ($£ 5$ for UK) and VAT. ISIS ILLUSTRATOR and ARES for Windows are also available separately. All manufacturers trademarks acknowledged

Waveform generation trio - II

Oscillators based on saw filters: handy 4046 circuit that varies phase shift; and low distortion high-level output from a fundamental crystal oscillator. Three circuits demonstrate how simple ideas can produce useful effects. From EDN magazine.

High-frequency vcos top 100 MHz

Surface-acoustic-wave (saw) filters are available from US, European and Japanese manufacturers in an increasing range of frequencies and styles. They permit the direct implementation of vhf and uhf highstability oscillators without the doublers or triplers needed with crystals, and with a wider pulling range.
VCOs that use saw filters have higher operating frequencies and higher pull ranges than circuits using crystal oscillators.
Two examples (see circuits) show how practical realisations of saw-filter-based vcos can have different operating frequencies - 140 and 181 MHz - because of that fact that two types of saw filters are available. The first circuit uses a saw filter that has 180° of phase shift, while the second has a phase shift of 0°. Both circuits draw about 20 mA and operate from a 5 V supply. Operating frequency is solely dependent on the saw filter's pass-band centre frequency, which can be higher than 1000 MHz .

The saw filters have a pull range near 500 ppm when the BBY31 varactor diode's control voltage $V_{\text {control }}$ varies by 4V. Typical pk-pk voltage of the circuits when driving a 50Ω load is 600 mV , and the spectrum of the output signals is such that all the harmonics are below 25 dB with respect to the carrier. Variation with temperature when the circuits run in the free-running mode is 100 ppm - a typical value for saw filters.
Crystal oscillators tend to be more stable over their operational frequency range than saw-based oscillators. But that range is limited compared with the range of sawbased oscillators. SAW filters are available with centre frequencies starting at 120 MHz .

Component cost of both circuits, without the saw filter, is about $£ 0.80$ with the saw filters costing about $£ 20$. Di Paolo Franco Ericsson Fatme
Rome Italy

Offset varies pll's phase shift

Deliberately introducing a dc offset into the error-signal path of a phase-locked loop (pll), allows phase shift to be added between the input reference and the feedback signal driving the phase detector.
This circuit has a phase-shift range of $\pm 160^{\circ}$ over a reference-signal range of $1-10 \mathrm{kHz}$: if the signals applied to pins 3 and 14 of the CD4046 are both divided by 2^{N} first, the available phase-shift range becomes 2^{N} times 320°. Because the loop uses an integrator, once set, the phase shift remains constant over the entire frequency range.
The positive-edge-triggered frequency/phase detector inside the CD4046B compares the frequency and phase of the input reference signal with the feedback signal from the 74 HCl 193 counter. Since this phase detector is edgetriggered, the duty cycle of the reference can be arbitrary.
$I C_{1 \mathrm{~A}}$ level shifts the three-state output of the phase detector. When in lock, if the positive edge of the reference leads the positive edge of the feedback signal, the output of $I C_{1 \mathrm{~A}}$ swings to its lower rail for the time interval between the two edges.
The output then returns to 2.5 V until the next positive edge of the reference occurs.

If the positive edge of the reference lags the positive edge of the feedback, $I C_{1 \mathrm{~A}}$ output remains at the upper rail for the time interval between the two edges. It then returns to 2.5 V until the next positive edge of the feedback occurs.

Using the quad $L M C 660 C$ cmos op-amp for $I C_{1 \mathrm{~A}}$ permits dynamic-loop, error-voltage variations over almost the entire range of 0 to 5 V . Adjusting the $20 \mathrm{k} \Omega$ potentiometer causes the phase shift to change because the average voltage of the pulses at the output of $I C_{1 \mathrm{~A}}$ must change to maintain the constant-feedback-forced value of 2.5 V at the inverting input of $I C_{1 \mathrm{~B}}$. A unity-dc-gain lead network stabilises the loop.
Output of the vco is divided by 16 before applying it to the phase-detector input.
Donald G Stefani
LeRoy
New York

Introduction of dc offset into feedback of the pll allows the phase-shift between its inputs and output to be varied by $\pm 160^{\circ}$.

Servo loop controls oscillator amplitude

It may not provide the ultimate in low noise crystal oscillator design, but we can design a circuit that offers sufficient output level (combined with a good waveform having a low harmonic content) to drive a double balanced mixer directly. Crystal drive level may be set to optimise either long term or short term stability, as required,
The high-performance, fundamental-mode crystal oscillator uses an agc amplifier and a crystal to form a very-narrow-band filter at the crystal's series-resonant frequency. Phase noise and jitter are reasonably low because the design places the crystal between two lowimpedance points of the CLC520 agc amplifier $I C_{1}$. The oscillator can drive a 50Ω load easily and has a wellcontrolled output impedance, while the design exhibits low distortion and is adaptable to a variety of fundamentalmode crystals.
Unlike most oscillators, which use limiting to set the
amplitude, this design uses a servo loop to control amplitude. D_{1} and C_{I} are the key components of a clamping circuit that produces an average voltage proportional to the $\mathrm{pk}-\mathrm{pk}$ oscillator amplitude. The larger the amplitude, the more positive the dc component.
The $L F 356\left(I C_{2}\right)$ is as an integrator that compares the dc signal against the reference voltage of D_{2}. If the oscillator's amplitude is too high, the integrator's output voltage drops, as does the gain of $I C_{1}$ and the loop gain of the oscillator.
When the loop gain drops below unity, the oscillator output amplitude begins to drop until it reaches the desired amplitude of the loop. If the amplitude is too low, the integrator output voltage increases, increasing the loop gain and increasing the amplitude to the desired value of the loop.
When the oscillator amplitude is stable, the average

Unlike most oscillators, which use limiting to set the amplitude, this 10 MHz oscillator uses a servo loop to control amplitude. Six steps are necessary to tailor the design to individual requirements.

current flowing into the integrator capacitor $\left(C_{2}\right)$ is zero. The average current through R_{3} is equal in magnitude and opposite in sign to the current flowing through R_{4} (assuming that bias currents for $I C_{2}$ are negligible) and the oscillator loop gain is exactly equal to one.

A levelling loop, not circuit limiting, sets the amplitude of this oscillator design, so distortion is low. The amount of distortion is mostly set by $/ C_{1}$ and as its band-width (typically 140 MHz for large signals) is approximately four to five times higher than the highest oscillation frequency of most fundamental mode AT-cut crystals, the effect of $I C_{\mid}$band-width is negligible.
Design of the oscillator requires six major steps.
First step is to determine the range of equivalent series resistance for the crystal. - it should be consistent with the distribution of crystals to be used. If the range is to be tuned, the equivalent resistance of the crystal and tuning network at the new series-resonant frequency should be found.
In the case of a crystal and a tuning capacitor in series, the highest overall series resistance exists at the lowest tuning capacitance and highest crystal series resistance.

Second step is to choose the output amplitude. To determine the output voltage at pin 10 of $I C_{1}, \mathrm{dBm}$ should be converted to watts using $P_{\text {oul }}=10^{(0.1 d B m-3)}$ where $P_{\text {our }}$ is the power delivered to the load in watts, and dBm is the power delivered to the load in dBm . RMS voltage delivered to the load is $V_{\text {OL }}=\left(R_{\text {load }} \times P_{\text {out }}\right)^{0.5}$. For a doubly terminated load, the equation is,

$$
V_{\text {opamp }}=2 \times V_{\text {oL }}=\left(4 R_{\text {load }} \times P_{\text {out }}\right)^{0.5}
$$

where $V_{\text {opamp }}$ is in volts rms.
Third step is to select the crystal drive level. Drive levels should be 1 to $20 \mu \mathrm{~W}$ for good long-term stability, or between 100 and $500 \mu \mathrm{~W}$ for good short-term stability.
Equivalent series resistance of the crystal affects the drive level, so the drive level must be reasonable for all expected values of the resistance.
One way to start is to choose the maximum crystal drive level ($D_{\text {max }}$) and see if the minimum drive level is acceptable using:

$$
D_{\min }=D_{\max }\left(\frac{R_{\mathrm{s}(\max)}}{R_{\mathrm{s}(\min)}}\right)\left[\frac{R_{\mathrm{s}(\min)}+3}{R_{\mathrm{s}(\max)}+3}\right]^{2}
$$

where $R_{\mathrm{s}(\max)}$ and $R_{\mathrm{s}(\min)}$ are the maximum and minimum series resistances, respectively. If this calculated value of
$D_{\min }$ is acceptable, whether or not $/ C_{1}$ can deliver $D_{\text {max }}$ needs to be determined.
IC C_{1} will be most limited at the minimum series resistance, as $D_{\text {limit }}=\left(0.9113 \times 10^{-6}\right) R_{\text {stmin) }}$, where $D_{\text {limit }}$ is the maximum drive available from $I C_{1}$ in W , and $R_{5(\min)}$ is the minimum crystal series resistance in ohms.
If $D_{\text {limit }}$ is greater than $D_{\text {max }}, I C_{1}$ can deliver the targeted maximum drive level. If not, substitute $D_{\text {limit }}$ in place of $D_{\text {max }}$ in the above equation for $D_{\text {min }}$ to determine the lowest drive that will occur.
$D_{\text {limit }}$ and the new $D_{\min }$ set the new drive-level range.
Step four is to set the forward gain of the oscillator.
Input voltage to $I C_{1}$ pin 3 must be determined at the maximum series resistance as follows (with $D_{\text {min }}$ in W and $V_{\text {in }}$ in $V \mathrm{rms}$):

$$
V_{\mathrm{in}}=\left(R_{\mathrm{s}(\text { max })}+3\right)\left(\frac{D_{\text {min }}}{R_{\mathrm{s}(\text { max })}}\right)^{0.5}
$$

The equation accounts for the crystal's loading of the buffers of $I C_{1}$ (pins four and five). Now the voltage gain of I C_{1} at the highest series resistance and highest gain-control voltage (A_{\vee}) can be determined:

$$
A_{V}=\frac{V_{\mathrm{op} \mathrm{amp}}}{V_{\mathrm{in}}}
$$

To achieve this gain, set R_{F} as:

$$
R_{F}=\frac{A_{v}\left(R_{s(\max)}+3\right)}{1.85}
$$

In general, the value of R_{F} should be between 1 and $2 \mathrm{k} \Omega$.
Somewhat higher values are acceptable if the oscillator is running below 10 MHz . If R_{F} needs to be lower than $1 \mathrm{k} \Omega$, refer to the data sheet for the output-amplifier loopgain reduction techniques for $I C_{1}$:
The penultimate step is to calculate values of the feedback network R_{1} and R_{2}. To keep the noise low at $I C_{1}$ input and provide reasonable resistor values, $R_{\mathrm{I}} \geq 10 \Omega$ and $\leq 1 \mathrm{k} \Omega$.
Loss in the network should be set equal to $B=1 / A_{\mathrm{v}}$, which means that $R_{2}=R_{I}\left(A_{v}-1\right)$.
The sixth and final step requires setting up the levelling loop. Average voltage from the clamping circuit is (where V_{pk} is the peak output voltage of $I C_{l}$, and V_{D} is the forward voltage drop for D_{1}):

$$
V_{\mathrm{DC}}=V_{\mathrm{pk}}-V_{\mathrm{d}}=1.414 V_{\mathrm{op} \mathrm{amp}}-V_{\mathrm{D}} .
$$

Six steps to servo amplitude control

1. The crystal has a measured equivalent series resistance of approximately 7.3Ω. Range of R_{S} is $5-25 \Omega$.
2. Output-power requirement is 7 dBm into 50Ω so that the oscillator can drive a double-balanced mixer directly. The requirement translates into an output voltage at the op-amp of approximately 1 V rms.
3. For a 5Ω minimum equivalent series resistance, $I C_{1}$ limits crystal drive level to $4.56 \mu \mathrm{~W}$. At R_{S} of 25Ω, the drive level falls to $1.86 \mu \mathrm{~W}$. These numbers produce good long-term stability. 4. Input voltage at $/ C_{1}$ pin 3 is 7.64 mV rms. Voltage gain is 131 , so R_{F} must equal $1.98 \mathrm{k} \Omega$ (use $2 \mathrm{k} \Omega$).
4. R_{1} is set to 10Ω, so R_{2} must equal $1301 \mathrm{k} \Omega$.
5. Assuming a forward drop of 0.4 V for D_{1} yields approximately 1 V dc from the clamping circuit. R_{3} must then be approximately $8.3 \mathrm{k} \Omega$ (use $8.2 \mathrm{k} \Omega$). C_{1} is set to $0.1 \mu \mathrm{~F}$ because this design is for 10 MHz oscillator.

Once the amplitude of the oscillator is stable, the current flowing through R_{3} and R_{4} must cancel at C_{2}. For this condition to be met,

$$
R_{4}=R_{3}\left(\frac{V_{\mathrm{D} 2}}{V_{\mathrm{DC}}}\right)
$$

where $V_{\mathrm{D} 2}$ is the zener voltage of D_{2}. To ensure stability of the amplitude-control loop, C_{2} should be made equal to $0.01 \times F$, where C_{2} is in $\mu \mathrm{F}$ and F is in MHz .

Thomas P Hack

Comlinear Corp
Fort Collins, US

EDN Designer's Companion is available by postal application to room L333 EW+WW, Quadrant House, The Quadrant, Sutton, Surrey, SM2.5AS.

Please make cheques out to Reed Business Publishing Group Ltd. Credit card orders accepted by 'phone on 01816523614. 254pp hardback ISBN 0750617217 Price $£ 25.00+£ 2.50$ UK postage, $£ 5$ Europe, £8 worldwide.

DESIGNER'S COMPANION

A NEW FORCE IN LOW COST PORTABLE PROGRAMMERS

The L5000 can program or emulate either a single 8 bit eprom, a pair of 8 bit proms or a 40 pin - 16 bit - eprom.
YOU GET MORE WITH THE L5000
\star Approved algorithms, as used in our gang programmers, for eproms \& flash.
\star Programs up to 2 M devices in one pass. Ram expandable to 8 M bits.
\star Settings for numerous micros from Hitachi, NEC and Toshiba.
\star Use stand-alone or with a PC using bidirectional RS232, or Centronics ports. No internal card needed for portable PCs.
\star Batch file facility for repetitive operations.
\star Full set programming facilities including editing in words or bytes.
\star Optional facilities to program 40 pin eproms and/or 8751 micros.
\star Emulation of either a single 8 bit eprom, a 16 bit pair of 8 bit eproms or a single 40 pin eprom. You can even emulate ram.

The L5000 already caters for tomorrow's devices. For example, the 2 M user ram is twice the size normally found in most small programmers and it can be expanded to 8 M bits for the largest 32 pin devices. Adequate ram saves multiple downloads and the need to program in blocks. The L5000 also has additional hardware to support sector protect/unprotect on flash devices such as 29F010/040.

LLOYD RESEARCH LTD.,
7 \& 7A Brook Lane,
Warsash,
Southampton SO31 9FH.

Enquiries and credit card orders:
Tel: +44 (0) 1489574040
Fax: +44(0) 1489885853

AUDIO DESIGN

 power

The same components that dominate amplifier noise performance also determine the output dc offset; if R_{9} is reduced to minimise the source resistance seen by Tr_{3}, then the value of R_{8} is scaled to preserve the same closed-loop gain, and this reduces the voltage drops caused by input transistor base currents.
My previous amplifier designs assumed that a $\pm 50 \mathrm{mV}$ out-

Douglas Self has

 already shown how the low-impedance negative feedback network integrated into his trimodal amp reduces noise. Here he demonstrates how low-Z nfb improves output dc offset performance too. He also details the amplifier's modeswitching and bias control systems and looks at overall performance. put dc offset is acceptable. This allowed dc trimming, offset servos, etc to be gratefully dispensed with. However, it is not in my nature to leave well enough alone, and it could be argued that $\pm 50 \mathrm{mV}$ is on the high side for a top-flight amplifier. For this reason, I have reduced this range as much as possible without resorting to a servo; the required changes were already made when impedance of the feedback network was reduced to minimise Johnson noise. There were details on this in last month's issue.With the usual range of component values, the dc offset is determined not so much by input transistor $V_{\text {be }}$ mismatch, which tends to be only 5 mV or so, but more by a second mechanism-imbalance in beta. This causes imbalance of base currents, I_{b}, drawn thorough input bias resistor R_{1} and feedback resistor R_{8}. Cancellation of the voltage-drops across these components is therefore compromised.
A third source of dc offset is non-ideal matching of input degeneration resistors $R_{2,3}$. Here they are 100Ω, with 300 mV dropped across each, so two 1% components at opposite ends of their tolerance bands could give a maximum offset of 6 mV . In practice, it is unlikely that the error from this source will exceed 2 mV .

There are several ways to reduce dc offset. Firstly, a Class-A amplifier with a single output pair must be run from modest ht rails, so the requirement for high $-V_{\text {ce }}$ input transistors is relaxed. This allows higher beta devices to be used, directly reducing I_{b}. The 2 SA970 devices used in this design have a beta range of 350 to 700 , compared with 100 or less for MPSA06/56. Note the pinout is not the same.
In the first half of this article, we reduced the impedance of
the feedback network by a factor of 4.5 , and the offset component due to I_{b} imbalance is reduced by the same ratio. We might therefore hope to keep the dc output offset for the improved amplifier to within $\pm 15 \mathrm{mV}$ without trimming or servos. Using high-beta input devices, the I_{b} errors did not exceed $\pm 15 \mathrm{mV}$ for ten sample pairs - not all from the same batch - and only three pairs exceeded $\pm 10 \mathrm{mV}$. Errors in I_{b} are now reduced to the same order of magnitude as $V_{b e}$ mismatches, and so no great improvement can be expected from further reduction of circuit resistances. Drift over time was measured at less than 1 mV , and this seems to be entirely a function of temperature equality in the input pair.

Figure 1 shows the ideal dc conditions in a perfectly-balanced input stage, assuming a B of 400 , compared with a set of real voltages and currents from the prototype amplifier. In the latter case, there is a typical partial cancellation of offsets from the three different mechanisms, resulting in a creditable output offset of -2.6 mV .

Biasing for three modes

Figure 2 shows a simplified rendering of the Trimodal biasing system; the full version appears in Fig. 3. The voltage between points A and B is determined by one of two controller systems, only one of which can be in command at a time. Since both are basically shunt voltage regulators sitting between A and B , the result is that the lowest voltage wins. The novel Class-A current-controller introduced in the original article ${ }^{1}$ is used here adapted for 0.1Ω emitter resistors, mainly by reducing the reference voltage to 300 mV , which gives a quiescent current $\left(I_{q}\right)$ of 1.5 A when established across the total emitter resistance of 0.2Ω.
In parallel with the current-controller is the $V_{\text {be }}$-multiplier $T r_{13}$. In Class-B mode, the current-controller is disabled, and critical biasing for minimal crossover distortion is provided in the usual way by adjusting preset $P r_{1}$ to set the voltage across $T r_{13}$. In Class-A/AB mode, the voltage $T r_{13}$ attempts to establish is increased (by shorting out $P r_{1}$) to a value greater than that required for Class-A. The current-controller therefore takes charge of the voltage between X and Y, and unless it fails $T r_{13}$ does not conduct. Points A B X Y are the same circuit nodes as in reference 1 .

Class A/AB mode

In Class-A/AB mode, the current-controller, comprising $T r_{14,15,16}$ in Fig. 2, is active and Tr_{13} is off, as Tr_{20} has short-
ed out Pr_{1}. Transistors $\operatorname{Tr}_{15,16}$ form a simple differential amplifier that compares the reference voltage across R_{31} with the $V_{\text {bias }}$ voltage across output emitter resistors R_{16} and R_{17}; as explained in reference 1 , for Class-A this voltage remains constant despite delivery of current into the load. If the voltage across $R_{16,17}$ tends to rise, then $T r_{16}$ conducts more, turning Tr_{14} more on and reducing the voltage between A and B . $\operatorname{Tr}_{14,15,16}$ all move up and down with the amplifier output, and so a tail current-source $T r_{17}$ is used.
I am aware that the current-controller is more complex than the simple $V_{\text {be-multiplier used in most Class-B designs. }}$ There is an obvious risk that an assembly error could cause a massive current that would prompt the output devices to lay down their lives to save the rail fuses. The tail-source $T r_{17}$ is particularly vulnerable because any fault that extinguishes the tail current removes the drive to $T r_{14}$, the controller is disabled, and the current in the output stage will be very large. In Fig. 2 the $V_{\text {be }}$-multiplier T_{13} acts as a safety-circuit which limits $V_{\text {bias }}$ to about 600 mV rather than the normal 300 mV , even if the current-controller is completely non-functional and $T r_{14}$ fully off. This gives a 'quiescent' of 3 A , and I can testify this is a survivable experience for the output devices in the short-term; however they may eventually fail from overheating if the condition is allowed to persist.
There are important points about the current-controller. The entire tail-current for the error-amplifier, determined by $\boldsymbol{T r}_{17}$, is syphoned off from the voltage amplifier stage current source Tr_{5}. This must be taken into account when ensuring that the upper output half gets enough drive current.
There must be enough tail current available to turn on Tr_{14}, remembering that most of $T r_{16}$ collector-current flows through R_{15}, to keep the pair roughly balanced. If you feel moved to alter the voltage-amplifier stage current, remember also that the base current for driver $T r_{6}$ is higher in Class-A than Class-B, so the positive slew-rate is slightly reduced in going from Class-B to A.
I must admit that the details of the voltage reference were rather glossed over in reference 1 , because space was running out fast. The original amplifier shown last month used a National $L M 385 / 1.2$, its output voltage fixed at 1.223 V nominal; this was reduced to approx 0.6 V by a $1 \mathrm{k} \Omega / \mathrm{k} \Omega$ divider.
The circuit also worked well with $V_{\text {ref }}$ provided by a silicon diode, 0.6 V being an appropriate bias voltage drop across two 0.22Ω output emitter resistors. This is simple, and retains the immunity of I_{q} to heatsink and output device temperatures, but it does sacrifice the total immunity to ambient temperature that a band-gap reference gives.
The LM385/1.2 is the lowest voltage band-gap reference commonly available; however, the voltages shown in Fig. 2 reveal a difficulty with the new lower $V_{\text {bias }}$ value and the complementary feedback pair stage; points A \& Y are now only 960 mV apart, which does not give the reference room to work in if powered from node A, as in the original circuit.
The solution is to power the reference from the positive rail, via $R_{42,43}$. The midpoint of these two resistors is bootstrapped from the amplifier output rail by C_{5}, keeping the voltage across R_{43} effectively constant. Alternatively, a cur-rent-source could be used, but this might reduce positive headroom. Since there is no longer a strict upper limit on the reference voltage, a more easily obtainable 2.56 V device could be used providing R_{30} is suitably increased to $5 \mathrm{k} \Omega$ to maintain $V_{\text {ref }}$ at 300 mV across R_{31}.
In practice, stability of I_{q} is very good, staying within 1% for long periods. The most obvious limitation on stability is differential heating of $T_{15,16}$ due to the main heatsink. Transistor $T r_{14}$ should also be sited with this in mind, as heating it will increase its beta and slightly imbalance $\operatorname{Tr}_{15,16}$.

Class-B mode

In Class-B mode, the current-controller is disabled, by turn-

Fig. 1. A close look at input stage balance. Circuit conditions shown here are a real example. Ideal conditions for $B=400$ are shown in brackets. All voltages measured to ground.

Fig. 2. Simplified current-controller in action, showing typical dc voltages in class-A. Points A, B, X and Y are the same as in the original class- A article. The grey panel on the left is the $V_{b e}$ multiplier, Class- B biasing and Class-A safefy. circuit. Panel in the middle is the Class-A current regulator. Voltage over points A, B is 1.5 V while over X, Y, i.e. $V_{\text {bias }}$ there is 300 mV .

Fig. 3. Complete circuit diagram of class-A amplifier, including the optional bootstrapping components, R_{47} and C_{15}.
ing off tail-source Tr_{17} so Tr_{14} is firmly off, and critical biasing for minimal crossover distortion is provided as usual by $V_{\text {be }}$-multiplier Tr_{13}. With 0.1Ω emitter resistors $V_{\text {bias }}$ (between X and Y) is approx 10 mV . I would emphasise that in Class-B this design, if constructed correctly, will be as 'blameless' as a purpose-built Class-B amplifier. No compromises have been made in adding the mode-switching.
As in the previous Class-B design, the addition of R_{14} to the V_{be}-multiplier compensates against drift of the voltage amplfier stage current-source T_{r}. To make an old but muchneglected point, the preset potentiometer should always be in the bottom arm of the $V_{\text {be }}$ divider $R_{10,11}$, because when presets fail it is usually by the wiper going open; in the bottom arm this gives minimum bias voltage, but in the upper arm it would give maximum.
In Class-B, temperature compensation for changes in driver dissipation remains vital. Thermal runaway with the complementary feedback pair is most unlikely, but accurate qui-

No warm up

Audio magazines often state that semiconductor amplifiers sound better after hours of warm-up. If this is true - in most cased it almost certainly isn't - the admission represents truly spectacular design incompetence. Accusations of this type are applied with particular venom to class-A designs, because it is obvious that the large heat sinks required take time to reach final temperature. So it is important to record that in class-A operation this design stabilises its electrical operating conditions in less than a second, giving the full intended performance.
No "warm-up time" beyond this is required.
Obviously the heat sinks take time to reach thermal equilibrium. But as already described, measures have been taken to ensure that component temperature has no significant effect on operating conditions or performance.
escent setting is the only away to minimise cross-over distortion. Tr_{13} is therefore mounted on the same small heatsink as driver Tr_{6}. This is often called thermal feedback, but it is no such thing as $T r_{13}$ in no way controls the temperature of $T r_{6}$; 'thermal feedforward' would be a more accurate term.

Switching modes

The dual nature of the biasing system means Class-A/ClassB switching is easily implemented, as in Fig. 3. A Class-A amplifier is an uneasy companion in hot weather, and so I was unable to resist the temptation to sub-title the mode switch 'Summer/Winter', by analogy with a car air intake.
Switchover is dc-controlled, as it is not desirable to have more signal than necessary running around inside the box, possibly compromising interchannel crosstalk. In ClassA/AB mode, S_{1} is closed, so $T r_{17}$ is biased normally by $D_{5,6}$, and $T r_{20}$ is held on via R_{33}, shorting out preset $P r_{1}$ and setting Tr_{13} to safety mode, maintaining a maximum $V_{\text {bias }}$ limit of 600 mV . For Class-B, S_{1} is opened, turning off Tr_{17} and therefore $\operatorname{Tr}_{15,16}$ and Tr_{14}. Transistor Tr_{20} also ceases to conduct, protected against reverse-bias by D_{9}, and reduces the voltage set by $\boldsymbol{T r}_{13}$ to a suitable level for Class-B. The two control pins of a stereo amplifier can be connected together, and the switching performed with a single-pole switch, without interaction or increased crosstalk.
Mode-switching affects the current flowing in the output devices, but the output voltage is controlled by the global feedback loop, and switching is completely silent in operation. The mode is switchable while the amplifier is handling audio, allowing some interesting ' A / B ' listening tests.
It may be questioned why it is necessary to explicitly disable the current-controller in Class-B; T_{13} is establishing a lower voltage than the current-controller which latter subsystem will therefore turn Tr_{14} off as it strives futilely to increase $V_{\text {bias }}$. This is true for 8Ω loads, but 4Ω impedances increase the currents flowing in $R_{16,17}$ so they are transient-

Supplying power

Regulated supplies are quite unnecessary, and are virtually certain to do more harm than a good unregulated power supply (Fig. 4)
The supply must be designed for continuous operation at maximum current, so the bridge rectifier should be properly heat-sunk, and careful
consideration given to the ripplecurrent ratings of the reservoirs. This is one reason why reservoir capacitance has been doubled to $20,000 \mu \mathrm{~F}$ per rail: the ripple voltage is halved, improving voltage efficiency as it is the ripple troughs that determine clipping onset. But the ripple current, although unchanged in total value, is now split between two components. (The
capacitance was not increased to reduce ripple injection. This is dealt with far more efficiently and economically by making amplifier psrr high ${ }^{3}$.)
Do not omit the secondary fuses. Even in these modern times rectifiers do fail, and transformers are horribly expensive...

ly greater than the Class-A I_{q}, and the controller will therefore intermittently take control in an attempt to reduce the average current to 1.5 A . Disabling the controller by turning off T_{17} via R_{44} prevents this.

Test mode

If the Class-A controller is enabled, but preset $P r_{1}$ is left in circuit, (eg by shorting Tr_{20} base-emitter) we have a test mode which allows suitably cautious testing; current I_{q} is zero with the preset fully down, as Tr_{13} over-rides the cur-rent-controller, but increases steadily as $P r_{1}$ is advanced, until it suddenly locks at the desired quiescent current. If the current-controller is faulty then I_{q} continues to increase to the defined maximum of 3A.

Thermal design

Class-A amplifiers are hot almost by definition, and careful thermal design is needed if they are to be reliable, and not take the varnish off the Sheraton. Since the internal dissipation of the amplifier is maximal with no signal, simply turning on the prototype and leaving it to idle for several hours will give an excellent idea of worst-case component temperatures. In Class-B the power dissipation is very pro-gramme-dependant, and estimates of actual device temperatures in realistic use are notoriously difficult.
Table 1 shows the output power available in the various modes, with typical transformer regulation, etc; the output mode diagram in Part 1, Fig. 1, showed exactly how the

Table 1. Power capabilityof the trimodal power amplifier.				
	W	W	W	Distortion
Load resistance	8Ω	6Ω	4Ω	
Class A	20	27	15	low
Class AB	n/a	n/a	39	high
Class B	21	28	39	medium

Fig. 5. Distortion plot of the Audio Precision oscillator/analyser combination alone, for measurement bandwidths of $500,80,30$ and 22 kHz . The saw-feeth below 1 kHz are artefacts. The residual appears to be pure noise.

Fig. 6. Distortion in class-B (summer) mode. Distortion into 4Ω is always worse. Power was 20 W in 8Ω and 40 W in 4Ω, bandwidth 80 kHz .

AUDIO DESIGN

Fig. 7. Distortion in class-A/AB (winter) mode, same power and bandwidth. The amplifier is in $A B$ mode for the 4Ω case, and so distortion is higher than for class-BS. At 80 kHz bandwidth, the class-A plot below 10 kHz merely shows the noise floor.

AUDIO PRECISION POURANP THD+N(\%) vs FREQ(Hz)

Fig. 8. Distortion in class-A only (20W/88) for varying measurement bandwidths. The lower bandwidths ignore hf distortion, but give a much clearer view of the excellent linearity below 10 kHz .

Table 2. Temperature considerations.

amplifier changes mode from A to AB with decreasing load resistance. Remember that in this context 'high distortion' means 0.002% at 1 kHz . This diagram was produced in the analysis section of PSpice simply by typing in equations, and without actually simulating anything at all.
The most important thermal decision is the size of the heatsink; it is going to be expensive, so there is a powerful incentive to make it no bigger than necessary. I have ruled out fan cooling as it tends to make concern for ultra-low electrical noise look rather foolish; let us rather spend the cost of the fan on extra cooling fins and convect in ghostly silence. The exact thermal design calculations are simple but tedious, with many parameters to enter; the perfect job for a spreadsheet. The final answer is the margin between the predicted junction temperatures and the rated maximum.

Once power output and impedance range is decided, the heatsink thermal resistance to ambient is the main variable to
manipulate; and this is a compromise between coolness and cost, for high junction temperatures always reduce semiconductor reliability, Table 2.
This shows that the transistor junctions will be $80^{\circ} \mathrm{C}$ above ambient, ie at around $100^{\circ} \mathrm{C}$; the rated junction maximum is $200^{\circ} \mathrm{C}$, but it isn't wise to get anywhere close to this very real limit. Note the Case-Sink thermal washers are made from high-efficiency material. Standard versions have a slightly higher thermal resistance.
The heatsinks used in the prototype had a thermal resistance of $0.65^{\circ} \mathrm{C} / \mathrm{W}$ per channel. This is a substantial piece of metal, and is expensive.

The complete circuit

The complete Class-A amplifier is shown in Fig. 3, complete with optional input bootstrapping but omitting any balancedline input amplifier or gain control. The circuitry may look a little complex at first, but we have only added four low-cos transistors to realise a high-accuracy Class-A quiescent controller, and one more to implement mode-switching. Since the biasing system has been described above, only the remaining amplifier subsystems are dealt with here.
The input stage follows my design methodology in running at a high tail current to maximise transconductance, and then linearising it by adding input degeneration resistors $R_{2,3}$ These reduce the final transconductance to a suitable level Current-mirror $\operatorname{Tr}_{10,11}$ forces the collector currents of the two input devices $T r_{2,3}$ to be equal, balancing the input stage to prevent the generation of second-harmonic distortion. The mirror is degenerated by $R_{6,7}$ to eliminate the effects of $V_{\text {be }}$ mismatches in $\operatorname{Tr}_{10,11}$.
With some misgivings I added the input network R_{9}, C_{15}, which is definitely not intended to define the system bandwidth, unless fed from a buffer stage; with practical values the hf rolloff could vary widely with the source impedance driving the amplifier. It is intended rather to give the possibility of dealing with rf interference without having to cut tracks. Resistor R_{9} could be increased for bandwidth definition if the source impedance is known, fixed, and taken into account when choosing R_{9}; bear in mind that any value over 47Ω will measurably degrade the noise performance. The values given roll off above 150 MHz to keep out uhf.
As a result of insights gained while studying the slewing behaviour of the generic/Lin configuration, I have increased the input-stage tail current from 4 to 6 mA , and increased the voltage amplifier stage standing current from 6 to 10 mA over the original circuit. This increases the maximum positive and negative slew rates from the basic $+21,-48 \mathrm{~V} / \mu$ s of reference 4 to $+37,-52 \mathrm{~V} / \mu \mathrm{s}$; as described elsewhere ${ }^{2}$ this amplifier architecture is always assymetrical in slew rate. One reason is feedthrough in the voltage amplifier current source; in the original circuit an unexpected slew-rate limit was set by fast edges coupling through the current source c-b capacitance to reduce the bias voltage during positive slewing. This effect is minimised here by using the negative-feedback type of current source bias generator, with voltage amplifier collector current chosen as the controlled variable.
Transistor Tr_{21} senses the voltage across R_{13}, and if it attempts to exceed $V_{\text {be }}$, turns on further to pull up the bases of T_{1} and $T r_{5}$. Capacitor C_{11} filters the dc supply to this circuit and prevents ripple injection from the positive rail. Capacitor C_{14}, with R_{5}, provides decoupling. Increasing input tail-current also mildly improves input-stage linearity, as it raises the basic transistor g_{m} and allows $R_{2,3}$ to apply more local feedback.
The voltage amplifier stage is linearised by beta-enhancing stage $T r_{12}$, which increases the amount of local feedback through Miller dominant-pole capacitor C_{3}, often referred to as $C_{\text {dom. }}$. Resistor R_{36} has been increased to $2.2 \mathrm{k} \Omega$ to minimise power dissipation, as there seems to be no significant
effect on linearity or slewing. Do not, however, attempt to omit it altogether, or linearity will be affected and slewing much compromised.
As described in reference 3, the simplest way to prevent ripple from entering the voltage amplifier via the negative rail is old-fashioned $R C$ decoupling, with a small R and a big C. We have some 200 mV in hand (see Part 1) in the negative direction, compared with the positive, and expending this as the voltage-drop through the $R C$ decoupling will give symmetrical clipping. R_{37} and C_{12} perform this function; the low rail voltages in this design allow the $1000 \mu \mathrm{~F}$ capacitor C_{12} to be a fairly compact component.
The output stage is of the complementary feedback pair, or CFP, type. As described in Part 1, this gives the best linearity and quiescent stability, due to the two local negative feedback loops around driver and output device. Quiescent stability is particularly important with $R_{16,17}$ as low as 0.1Ω, and this low value would probably be rather dicey in a double emitter-follower output stage.
Voltage efficiency of the copmplementary feedback pair is also higher than the emitter follower version. Resistor $R_{25,26}$ define a suitable quiescent collector current for the drivers $T_{6,8}$, and pull charge carriers from the output device bases when they are turning off. The lower driver is now a BD136; this has a higher f_{T} than the MJE350, and seems to be more immune to odd parasitics at negative clipping.
The new lower values for the output emitter resistors $R_{16,17}$ halve the distortion in Class-AB. This is equally effective when in Class-A with too low a load impedance, or in Class-B but with I_{q} maladjusted too high. It is now true in the latter case that too much I_{q} really is better than too little - but not much better, and $A B$ still comes a poor third in linearity to Classes A and B.
Safe operating area protection is given by the networks around $\boldsymbol{T r}_{18,19}$. This is a single-slope safe operating area system that is simpler than two-slope safe area, and therefore somewhat less efficient in terms of snuggling the limiting

An adaptive trimodal design?

One interesting extension of the ideas presented here is the adaptive trimodal amplifier. This would switch into class-B on detecting device or heat-sink over-temperature, and would be a unique example of an amplifier that changed mode to suit the operating conditions.
Thermal protection would need to be latching as flipping from classA to class-B every few minutes would subject the output devices to unnecessary thermal cycling.
characteristic up to the true safe operating area of the output transistor. However, in this application, with low rail voltages, maximum utilisation of the transistor safe area is not really an issue; the important thing is to observe maximum junction temperatures in the A / AB mode.

Fig. 9. Direct comparison of classes A and $B(20 \mathrm{~W} / 8 \Omega)$ at 30 kHz bandwidth. The hf rise for B is due to the inability of negative feedback that falls with frequency to linearise the high-order crossover distortion in the output stage..

Trimodal power amplifier PCBs

"Performance of a properlydesigned class-A amplifier challenges even the ability of an Audio

 Precision measurement system."Printed circuit boards for Douglas Self's Trimodal audio power amplifier - detailed in the June and July issues of $E W+W W$ - are available exclusively via $E W+W W$. This amplifier can be switched between Class $A / A B$ and Class B to provide remarkable performance over a wide range of operating conditions. In Class A it delivers up to $27 W$ with ultra-low distortion. But presented with a low impedance, the amplifier has recourse to an unusually linear $A B$ configuration.
Designed by Gareth Connor and supplied with a 12 page manual, the silk-screened boards are supplied in pairs at $£ 49.48$ per pair, fully inclusive of VAT and UK or overseas postage. Send a postal order or cheque payable to Reed Business Publishing to Trimodal Power, EW+WW, room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS, together with your address. Alternatively e-mail your address, creditcard number, credit-card type (i.e. Access/Visa) and the card's expiry date to jackie.lowe@rbp.co.uk or fax the same details on 01816528956.

Distortion of the Trimodal power amplifier in its class-A mode at 20 W into 8Ω.

The global negative-feedback factor is 32 dB at 20 kHz , and this should give a good margin of safety against Nyquist-type oscillation. Global negative feedback increases at $6 \mathrm{~dB} /$ octave with decreasing frequency to a plateau of around 64 dB , the comer being at a rather ill-defined 300 Hz ; this is then maintained down to 10 Hz . It is fortunate that magnitude and frequency here are non-critical, as they depend on transistor beta and other doubtful parameters.

Performance

The performance of a properly-designed Class-A amplifier challenges the ability of even the Audio Precision measurement system. To give some perspective on this, Fig. 5 shows the distortion of the AP oscillator driving the analyser section directly for various bandwidths. There appear to be internal mode changes at 2 kHz and 20 kHz , causing step increases in oscillator distortion content; these are just visible in the thd plots for Class-A mode.
Figure 6 shows Class-B distortion for 20W into 8 and 4Ω; while Fig. 7 shows the same in Class-A/AB.
I would like to acknowledge the invaluable help and encouragement of Gareth Connor. Credit goes to him for the tricky task of pcb layout - and not me, as previous adverts have implied.

References

1. Self, D, "Distortion In Power Amplifiers; Part 8" Electronics World \& Wireless World, March 94, p 225
2. Self, D, "High Speed Audio Power", Electronics World \& Wireless World, Sept 1994, p760.
3. Self, D, "Off the Rails" Electronics World \& Wireless World, March 1995, p 201.
4. Self, D, "Distortion In Power Amplifiers; Part 7." Electronics World \& Wireless World, Feb 1994, p 139.

Notes on part 1

Regrettably, a couple of errors crept into the original article on Class-A". On page 229, second column: " $\mathrm{Tr}_{15,16}$ then compares the reference voltage with that at point Y " should read "at point X". On page 229, third column: "This comes to the same thing as maintaining a constant $V_{\text {bias }}$ across $T r_{5} "$ should read "across Tr_{13} ". This is nobody's fault but mine, and I humbly apologise as it cannot have made understanding the current-controller action any easier. D.S.

Electronic Designs Right First Time?

NEW! - LAYAN - Affordable Electromagnetic Simulation

For less than $£ 1000$!

Affordable Electronics CAD

LAYAN: NEW Electromagnetic Layout Simulator. Links to EASY-PC Pro' XM and ANALYSER III Pro'.	£495.00
EASY-PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR	From £195.00
PULSAR: Digital Circuit Simulator	From 1988.100
ANALYSER III: Linear Analogue Circuit Simulator	From 698.00
Z-MATCH for Windows: Smith Chart based problem solving program for R.F. Engineers	£246.00
FILTECH: Active and Passive Fitter design	From 1.146.00
STOCKIT: NEW, Comprehensive stock control program for small / medium sized businesses	£145.00
EASY- PC: Entry level PCB and Schematic CAD	$\underline{88.00}$
Technical Support FREE for life! Prices exclude P\&P and VAT.	
Special discount schemes for education	

Number One Systems

Ref: WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.
For Full Information Please Write, Phone or Fax. Tel: +44 (0) 1480461778 Fax: +44 (0) 1480494042

SUBSCRIPTION ORDER FORM "The E1 A Week Specitilifier"

Name:
Job title:
Company name:
Address:

Postcode:

Country:
Tel No:
All subscribers to ERT are covered by our Full Money Back Guarantee. You can cancel your subscription at anytime, for whatever reason and we will refund you the value of all unmailed issues. No questions asked.
Please return to ERT, Reed Business Publishing Limited, FREEPSST RCC2619, Haynards Heath, West Sussex RHI6 3 BR. VO SAAMP REQURED

SAVE 25\% - SUBSCRIBE TODAY

Please enter my subscription to ERT for: (please tick as appropriate) $\square £ 70 £ 52$ UK \& Eire \square £ $\quad £ 71.25 / \$ 127.50$ Overseas Airmail

3 WAYS TO PAY

1. I enclose a cheque/money order made payable to ERT for $£$ \qquad 2. Please charge my Mastercard/Access/Nisa/Diners Club/American Express (please underline appropriate card) for the sum of $£$

Card Number: $\square \square \square$ Card expiry date:

Signature:
Date:
3. Please invoice me/my company for $£$ Purchase order number: Company VAT registration number: \qquad

[^3]
Reference books to buy

For Audio Engineers

- Comprehensive - over 600 pages
- Written by leading authorities from the audio world
- Easy to read, compiled for maximum accessibility
- Concise and authoritative
- Covers topics from noise measurement to studio installation

Subjects include
 Recording, microphones and loudspeakers
 Digital audio techniques Basic audio principles
 Acoustics and psychoacoustics
 Audio and television studios and their facilities Radio and telephony

Invaluable reference work for anyone involved with audio from broadcast consultant to serious enthusiast. Audio Engineer's Reference Book is written by an international team of experts and edited by Michael Talbot-Smith previously a trainer of audio engineers at BBC Wood Norton and now a freelance audio consultant and technical writer.

For TV \& Video Engineers

- Over sixty chapters on the latest techniques in video and relevision
- Up to date reference on EMC requirements, DBS and HDTV
- Easy-to-use reference, eminently suitable for students
- Topics range from materials and construction to medical and defence applications of television.

Subjects include

Fundamentals of colour TV
rV studios
High definition TV
Satellite broadcasting
Distribution of broadband signals
TV receiver servicing
Video and audio recording and playback
Teletext

The TV \& Video Engineer's Reference Book will be of immense value to anyone involved with modern tv \& video techniques - in particular broadcast engineers. The new format makes it an excellent reference for students. Edited by KG Jackson and GB Townsend from contributions written by acknowledged international experts.

Please supply me \qquad copies of the
Audio Engineer's Reference Book, (ISBN 075060386 0)
Fully-inclusive price - UK $£ 62.50$, Europe $£ 68$, Worldwide £78. Please add vat at local rate where applicable.

Please supply me \qquad copies of the
TV \& Video Engineer's Reference Book, (ISBN 075061953 8)
Fully-inclusive price - UK $£ 42.50$, Europe $£ 48.00$, Worldwide $£ 58.00$, Please add vat at local rate where applicable.

Remittance enclosed $£$ \qquad
Cheques should be made payable to Reed Business Publishing Group Ltd
Please return to: Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. \qquad
Exp date
NAME (Please print) \qquad
ADDRESS
\qquad
\qquad

POST CODE

\qquad
DATE \qquad TEL

SIGNATURE

VAT RATES

6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4% Italy, 3% Luxembourg, 6% Netherlands, 5% Portugal, 3% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPIY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)

VATNO. \qquad
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to receive further details about books, juurnals and information services.

Business purchase: Please send me the book listed with an invoice I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below. Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund.

JPG Electronics

KESTREL

 ELECTRONIC COMPONENTS LTDit All items guaranteed to manufacturers' spec. \leftrightarrow Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	$100+$
27C64-15	2.00	1.45	628128LP-85	8.30	7.20
27C128-15	2.40	1.80	62256LP10	3.00	2.20
27C256-15	2.20	1.65	6264LP-10	2.10	1.40
27C512-15	2.20	1.65	MM58274CN	4.90	3.75
27C010-15	3.60	2.20	ULN2003A	0.43	0.25
27C020-15	6.00	3.99	7805	0.32	0.25
27C040-15	8.60	6.45	MAX232	1.35	0.88
80C31-12	2.10	1.65	7406	0.35	0.23
8255AC-2	2.00	1.50	7407	0.35	0.23
Z80A CPU	1.80	1.00	74HC244	0.35	0.24
LM386N-3	0.50	0.35	74HC245	0.35	0.24
75176BP	1.35	0.85	74HC373	0.35	0.25
65w PLCC skt	0.90	0.70	74HC374	0.32	0.25

74LS, 74HC, 74HCT Series available
Phone for full price list
All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road,

Purley, Surrey CR8 4HA
Tel: 0181-668 7522. Fax: 0181-668 4190.

CIRCIE NO. I2B ON REPI Y CARD

		A		S		Cs			
PHONE		DISTR	UTO	S OF EL	CTR	NIC VALV			FAX
0181684		TUBE	SE	ICONDU	TOR	ANDI.C.		018	1684
1166	1	YO ROA	D	ROYDO	N	URREY	CR0	2QP	3056
	O	EXPR	M	ORD	ER	ON	OC	TEMS	
	\& p	E186	2.75	PY500a	4.80	68A7	5.00	6SK7	0
${ }^{2} 231$	5.00	E91	3.00				1.50		
${ }^{\text {CB331 }}$	${ }_{51250}$	E995	2.00	PY801	1.50	${ }^{6886} 6$	2.58	${ }^{6553}$	50
	1.50	Elis09	12.50	20063-10	1200	${ }^{6888}$	${ }_{2}^{2.20}$		${ }_{1} 1.50$
E88CC	8.50	EM34	15.00	acve3 3-20	15.00	6807a	3.50	6vigh	1.25
E180F	3.50	EM81	400	00v06-10	17.50	68R7	6.00	6x4	3.00
E810f	22.00	Em84	400	OVO3-12	10.50	68R88	4.00	6x561	2.50
${ }^{\text {EabC80 }}$	2.00	EM87	4.00	U19	11.00	6857	6.00	1247)	3.00
E891	1.50	EM91 Mull	7.50	UABCBQ	1.50	68W6	4.50	12.47	3.00
Eb880	1.50	EY51	250	UBC41	400	68W7	1.50	12487	3.50
E8f89	1.50	EY86	1.15	UBF89	51.50	6826	2.50	122X7A	100
$\mathrm{ElP3}^{681}$	1500	Er88	1.75	UCH42	4.00	${ }^{664}$	2.00	12846	2.50
Ecc33	${ }^{1.50}$	E280	3.50	UCH81	2.50	${ }^{6} 66$	5.00		250
EcC35	1.50	E281	3.50	ucl182	200	$6 \mathrm{CB68}$	3.00	128H7A GE	6.50
ECC81	3.00	GY501	3.00	ucl183	300	${ }^{60066 A}$	500	12877aGE	700
ECC82	300	6732 Muli	8.50	UF89	4.00	$6 \mathrm{CLi6}$	3.75		15.00
Ecc83	350	6233	5.00	U. 41	12.00	6661	1.50	${ }^{12 H 67712647}$	650
ECCB5	3.50	623465	7.50	U. 84	3.50	${ }^{6} \mathrm{CH} 6$	6.00	30F1/2	1.50
ECC88	6.00	${ }_{6} 631$	5.00	UY41	1.10	6c\%a	8.00	3019	2.50
Ecc91	2.00	${ }^{161}$	10.00	Ur85	2.25	606	9.00	3008(PR)	110.00
ECF80	1.50	KT66	10.00	ve1053/30	2.50	600565	11.50		70.00
ECH35	3.50	к188	1500	vR150/30	2.50	60068	12.50	805	50.00
ECH42	3.50	N78	900	2759	25.00	6648	3.50	807	5.75
ECH81	3.00	ON2	2.70	28030	25.00	6EH5	1.85	811a	18.50
Eci 80	1.50	${ }^{082}$	2.70	2021	3.50	666	3.50	${ }_{812 A}$	65.00
EC182	3.00	CCO_{3}	2.50	${ }^{3828}$	15.00	6507	67.50	813	27.50
ECL83	3.00	${ }^{003}$	2.50	${ }^{4 C \times 250085}$		6GK6	4.00	833A	85.00
$E_{\text {ECLI86 Mu }}$	3.50	PCCF80	2.00	5R4GY	6.00	545	3.00	866A	25.00
ECL1800	25.00	${ }^{\text {PCCF82 }}$	1.50	${ }^{3} 446$	5.25	6H56	4.95	872A	20.00
E[374	${ }^{3.50}$	${ }^{\text {PCC886 }}$	2.50	5 S 46	4.00	$6{ }^{6} 5$	${ }^{3} .00$	${ }^{931 /}$	25.00
EF39	275	PCF800	2.50	${ }_{57367}$	2.50	${ }^{616}$	3.00	2050A GE	10.00
${ }^{\text {E }}$ 40	5.00	PCF802	2.50	523	4.00		4.00	5751	6.00
E94	350	PCA82	2.00	5246	2.50	${ }^{\text {bibba }}$ GE	19.00	5763	10.00
Ef12	4.50	PCL183	3.00	6АН6	400	6Iffc	20.00	5814 A	5.00
Er90	1.50	PCL184	2.00	6aks	1.50	${ }_{\text {biSSC C GE }}$	17.50	5842	12.00
E885	1.50	PCL185	2.50	6 Al5	1.00	6к66T	3.00	6080	1.50
${ }^{\text {Ef86 }}$	750	${ }_{\text {PCLI } 86}$	${ }_{2}^{2} 250$	${ }_{\text {GAMS }}$	2.00		400		1500
Ef91	200		250 680	6ANS	${ }^{5} 5.50$	${ }_{6} 6168$	4	${ }^{\text {5550A GE }}$	${ }^{20.00}$
${ }_{\text {cher }}^{6183}$	2.00	${ }_{\text {Prese }}$	${ }_{25}^{6.00}$	${ }^{\text {baxisa }}$	${ }_{3} 2.35$	${ }_{6}^{666}$	${ }_{1250}$		00
${ }_{\text {EFFP4 }}$	2.00	${ }_{\text {P181 }}$	${ }_{1.15}^{258}$	$66{ }^{6} 5$	2500	$6166 C$ Siemers	1750	7027ack	${ }^{7} 1750$
E132	2.50	${ }_{\text {P182 }}$	1.50	6as6	3.50		12.50		12,00
${ }^{163}$	10.00	${ }^{\text {P183 }}$	2.50	6as76	9.50		350	${ }^{7360}$	25.00
${ }_{\text {Ein }}$ Ei3 Siemers	800	P184	2.00	6476	200	6106	20.00	7581A	1s,00
E 136	400	P1504	2.50	6auscr	5.00		4.00	${ }^{7586}$	15.00
E14	350	PL508	5.50	6 All 6	2.50		12.00	${ }^{7887}$	23.00
	25.00	P1509P1519	6.00	6AW8A	4.00	6547	3.00	7868	
¢1881	225	Pr8]	1.50	$\begin{aligned} & 6878 \\ & 688 \end{aligned}$	1.50		$\begin{aligned} & 300 \\ & 250 \\ & 3.00 \end{aligned}$	Prices conect when	
${ }_{\text {E184 }}^{\text {E184 Mull }}$		${ }_{\text {Pr88 }}$							
OPEN TO CALLERS MON-FRI 9AM-4PM, CLOSED SATURDAY OVER 6,000 TYPES AVAILABLE FROM STOCK. OBSOLETE ITEMS A SPECIALITY. QUOTATIONS FOR ANY TYPES NOT LISTED. TERMS: CWO/VISA/ACCESS. POST \& PACKING: 1-3 VALVES $£ 2.00$, 4-6 VALVES £3.00. ADD 17.5\% VAT TO TOTAL INC. P\&P.									

RADIO MODEM

* MPT1329 licence exempt.
* Range up to 20 km in free space or 1 km in buildings.
* Half duplex asynchronous transmission at 4800/ 9600 bits/sec.
* Serial interface with baud rates of 1200, 2400, 4800 and 9600.
* 4K of buffer memory.
\star Predictor/corrector error checking.
\star Automatic repeater mode to extend range.
* Station addressable.
* Analogue and digital interfaces.
* Low power battery operation.

Warwick Industrial Electronics Ltd The Manor Aston Flamville Leicestershire Tel: 01455233616

Letters to "Electronics World + Wireless World" Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Emi still not understood

Laptop computers plunge planes into mid-air danger! In April the Sunday Times published a front page article with the above title suggesting that electromagnetic interference from personal computers and other electronic equipment used by passengers could interfere with the control and navigation equipment of modern aircraft. I think the issues raised warrant public debate.
I am a physicist and throughout my career have been involved with issues in the reliability of digital hardware and software. In the late 1970s I was working with CAM Consultants on the reliability of fast computer hardware. At that time we realised that interference problems generally know as electromagnetic compatibility (emc) - were very poorly understood.
We were concerned that digital systems were finding increasing use in real time control applications where they would be vulnerable to catastrophic, though infrequent, failure. We were able to lay down guidelines which were propagated through our seminars and which, to some extent, helped to improve the situation.
Sadly, as emc standards were drawn up by bodies such as the Federal Communication Commission (and later incorporated into European emc standards), they failed to incorporate the sound principles we had developed and indeed are based on misconceptions of the nature of electromagnetic interference. A number of issues now arise:

1. The standards bodies need to explain why there is a need to ban computers etc from aircraft when they are compliant with the published standards designed to ensure compatibility.
2. The aircraft manufacturers should explain why we should have any confidence in the integrity of aircrafi control systems which can be so easily affected. As an aside: how much electromagnetic energy is released by a thunderstorm and how can we be sure that the control and navigation systems are immune to this emi 'explosion' when they are clearly susceptible to the electronic
'whispers' emanating from in-cabin passenger equipment?
3. Will the CAA and other relevant government bodies please reassure us that they have given due consideration to the possible exposure to terrorist attack resulting from such vulnerable electronic systems?
Finally, if we can be sure that incabin passenger equipment is the source of the interference we must not make the mistake of simply banning it. Rather, we need to understand the problems and design reliable real-time systems. So, let us have some properly refereed tests carried out (on the ground!) to see whether the interference sources can be confirmed.
Dr David S Walton
Tyne and Wear

The right to ask questions

Reading your May Letters page, I was very pleased to see a missive from Ivor Catt. He comments on censorship, "publishable" material and other suppressed theories. He is, of course, right; as he always was. Way back when, in the real Wireless World, he outlined conundrums and puzzles which sat me back on my haunches, as he was clearly right and his thinking and reasoning was obviously on the right track. Questioning my night school tutors, I was never given answers, but told to read my text books; I never got reasoning a-la-Catt.
We now face a situation in the UK electronics industry which mimics textiles; the era of mass production is rapidly progressing to mainland China and will leave the West behind with only a waste disposal problem. Software experts are all well and good, but if you don't make 'something to sell, that the people want' you'll starve; and you can't eat microchips or software. Service industry is all well and good while someone is actually making the base product; but you can't service 'nowt'.
Your leader spells out a vision of a flagging, failing and faltering UK semiconductor industry; you are only just touching the truth with such comments. The real, live situation is a mass production

False assumption on mains changes?

Nigel Cook (Letters, May) has considered the problem caused by the Cenelec harmonisation document HD 472 S 1 : 1988 from the point of view of an engineer. As a result he has made a false assumption with regard to the power supplied to consumers of mains electricity.
In fact the reduction of the low voltage electricity supply from a nominal 240 V to a nominal 230 V in this county has been carried out solely by legislators. Such people can change voltage without changing transformer taps or reducing delivered power. The Electricity Supply (Amendment) (No 2) Regulations 1994 [SI 1994 No 3021] alter the low voltage supply tolerances set in the Electricity SuppLy Regulations 1988. Previously the permitted 240V supply variation was plus or minus six per cent; now the 230 V supply variations are plus ten per cent or minus six per cent. It will be noticed that ten per cent on 230 V is the same as six per cent on 240 V
Plus ca change, plus ca meme chose (as they say in Bruxelles).
Guy Selby-Lowndes
Billingshurst, West Sussex

...or not?

Nigel Cook's letter in the $E W+W W$, May, rightly points out some of the domestic consequences of reducing standard mains voltage from nominal 240 V to 230 V . However, the effects are more significant than he suggests. At the moment the supply may vary some seven per cent up and down from nominal 240 V giving a voltage range between 223 and 256. A shift to 230 V nominal will give a range of 214 to 246 .
I monitor the mains voltage here continuously, and find that it stays in the narrow band of 235 to 242 . This has not always been so. Some years ago we found 240 V light bulbs lasted only a few days, because the voltage seemed always over 250 . The MEB put a voltage recorder on our domestic supply for a week. This showed a minimum of 250 and a maximum of 285 !

The problem was caused by domestic users in this rural area taking less electric power for heating and cooking by changing to 1 pg and oilfired systems, which dramatically reduced the voltage drop on the overhead 240 V supply system. Needless to say, the local distribution transformer tappings were quickly altered.

Although 230 V is the new Euro-standard, inspection will show that many pieces of imported equipment like fridge and freezer compressors are already wound to 220 V to cut copper costs. I'm told by service engineers that most of the motors they replace are 220 V types where the wattage effect of the extra 20 V causes early burnout in hot summer weather.
The only short term consumer benefit I can see from lowering the voltage will be the increased life of incandescent lamps (albeit at reduced emission) - a drop of 10 per cent in voltage doubles filament life - that is until the 240 V bulb becomes a thing of the past in the rush to save tungsten...Time to stock up!

Anthony Hopwood

Worcestershire
industry on its knees, facing a challenge from labour exploitable nations worldwide. Useless, disconnected and unprofitable 'academics' supply the government with information. From that they generate decisions to propagate the future. Such bombastic, "jobs-for-the
boys' jerrymandering and fake wage generation can only bleed dry the industry that feeds them.
Ivor, for god's sake, start writing letters to $E W+W W$ again; I miss your openness and frankness. Peter Thornton G6NGR Oldham, Lancashire

The right to provide answers

At the risk of being still further misinterpreted, I would like to clarify a central point that appears to have been overlooked in discussions concerning the Establishment's 'suppression' of non-orthodox ideas and theories.
It is simply this: orthodox science is not, and does not claim to be 'Right' with a capital R. To paraphrase Arthur C Clarke, the universe is not only stranger than we imagine, it is probably stranger than we can imagine, and the best that we can do is to formulate workable approximations to reality (whatever it may be).
Pete Davies
Birmingham

Newtonian trap

I fear that Mr Lerwill ($E W+W W$, April) has fallen into the well-worn trap that catches out so many of us from time to time - that of trying to apply Newtonian thinking to a nonNewtonian situation.
Newton's second law is in essence the law of conservation of momentum. Only in the situation where one assumes, as Newton does, that mass is invariant does this result in the velocity remaining unchanged. Thus to assume as Mr Lerwill has done that the velocity remaining unchanged is directly contrary to what he says about the electron.

In order to obey the conservation of momentum, as the mass increases, the velocity has to decrease - as the text-books say it does. Perhaps they could have
explained it better.
Alan Watson
Mallorca, Spain

Absence of proof

Mr Wheeler's response in your May issue to the question I posed in your April issue seems to have missed the point on several counts.
No scientific laws are provable; there are only those which we have been unable to disprove. While it would be unproductive to question the validity of well-established laws in familiar circumstances, when any new circumstance arises which might have implications for the assumptions behind the workings of a law, its validity in these new circumstances cannot be inferred by its demonstrated reliability in the old circumstances. It has to be tested.
Mr Wheeler does not say which particular laws he thinks my proposition would violate, but I am assuming they are Newton's laws of motion. Central to Newton's laws of motion is the concept of the conservation of mass. Newton
defines force both as rate of change of momentum and as mass times acceleration. These two quantities are only the same if mass is assumed to be constant. This assumption has been called into question by Relativity. In fact anyone who has studied and accepted Special Relativity will know that Newton's equations of motion can only be an approximation, valid when relative velocities are low
Contrary to what he says, the effect described would not be very small compared to others occurring at the same time. Even in the oscilloscope set-up I described, it would amount to several per cent of the electron's upwards momentum. The reason the measurable effect is so small is because the electron's momentum is so small to start with
There may be a flaw in my proposition, but I am sure it is not the one described. To start with, the question I am posing concerns all bodies with a velocity in a y axis that are accelerated along an x axis. They do not have to be charged. I am only suggesting the use of charged particles like electrons because it is easy to accelerate them to the required velocities and so be able to carry out experiments. It should in any case be clear that electrodynamic effects cannot balance the relativistic increase in upwards momentum because momentum depends on the mass of the charged particle whereas electrodynamic forces do not.
Finally, may I point out that while I am interested in theoretical views on this subject, the purpose of my letter was to ask whether any experimental work had been or could be applied to this question. R Lerwill
Castle Mills, Chirk Clwyd

Hostile elements

In answer to your correspondent Nicolas Holliman ($E W+W W$, May, p 435). Yes, it's not surprising that "some components such as LEDs corroded and broke down after being exposed to the elements for a period of five weeks", especially after being left by a busy London road and in quite a lot of rain.

Seriously though, acid rain or no, the outside world is exceedingly hostile to the proper working of electronic apparatus, a fact first forcibly brought home through the failure of equipment in harsh climates during the Second World War. The subject has received extensive attention since then, as a trawl through the INSPEC/IEE abstracts would show.

Outside installations need to be fully encased in suitable enclosures, with gaskets on lids and windows, ' O ' rings and rubber boots on switches and with suitable splashproof or waterproof
connectors. Water will even find a way into good enclosures by diffusion and through atmospheric pressure change, and reserves of 'drierite' or other proprietary drying agent may be obligatory. As a last resort, pressurising with dry nitrogen or total 'potting' in suitable compounds may offer a solution. On an everyday level, the use of generous clearances including airspace insulation and PTFE 'standoffs' help with high-impedance signals, as do insulating lacquers. Batteries can pose problems in sealed containers, releasing corrosive gasses which cause havoc with contacts - they are best isolated in separate compartments.
Temperature is of vital importance - will the casework be white or black? Will it need to be shaded from the sun? Battery performance is drastically affected, particularly at low temperatures - will extra capacitive decoupling help with pulsed loads? Will individual temperature coefficients balance out, add, or multiply to cause disaster? Semiconductor gain is badly reduced at low temperatures. Many years ago, my father found that his pukka electrocardiograph would not work in the morning after being left in the boot of the car over a cold winter night.
What else can go wrong? Watch out for large slugs walking over the photovoltaics. Oh yes, and piles of bird droppings. I think I prefer the acid rain.
Dr TCH Going
Southend

Looking to build a better dynamo

I am a keen cyclist and have spent some time trying to make a decent dynamo-based lighting system. Dynamos that you can buy over the counter are designed to produce 3 W into a 12Ω load over a wide speed range and are, unfortunately, good at this. Why unfortunately? Well, 3W is enough to give you a bright front or rear light but not both. I have found, through experience, that 5 6 W at the front and $2-3 \mathrm{~W}$ at the back reduces the occurrence of those "I didn't see you" incidents to reasonable limits. The other thing about bikes dynamos is that output is regulated by making them lossy. This makes them inefficient - hard work - at high speed. Is there a way to extract more power? Do you know of another type of small electrical machine that I could use as a generator? I can design and build any number of electrical circuits, but could write all I know about electromagnetic machines on a postage stamp.
Steve Bush
Epsom

Regarding mosfets

Reading recent articles it seems opinions are divided on the verdict on mosfets. Here are some of the characteristics of mosfets:
The obvious disadvantage is the linearity compared to bipolar transistors. However, there are mosfets that feature linearity as good as conventional bjt ${ }_{1}$. The Hitachi $2 S K 213$, although not suitable for output stages, makes very good driver stages due to its good linearity, bandwidth and high V_{ds}. Price also seems to be a drawback. (Pity I haven't got the $V_{\mathrm{gs}}-I_{\mathrm{d}}$ curves). The main advantage of mosfets must be the negative temperature coefficient. If used at drain currents above the Q point, there is no need to apply thermal coupling or feedback. This reduces complications involved in designing a suitable bias network.
Output impedance for mosfets will be $1 / g_{m}$ if used as source followers. This means there is no need to drive the output stage with a low impedance. Usually input stages and drive stages give output impedance around $2 \mathrm{k} \Omega$ or higher. As most output devices have low g_{m}, around 40, the open loop output impedance would be too high to control the speaker. Using mosfets avoids this problem - this only needs concern when designing zero global feedback amplifiers.
In Japan there are people who prefer the sound of mosfets used in the output stages. Such people acknowledge the linearity problem and such like, but still prefer the 'mosfet sound'. This is pretty much up to individuals and is purely subjective.

If you look at the recent Technics hi-fi brochures, they state that mosfets are used for driving the bipolar output stages. They claim to combine the linearity of the mosfets with the current capacity of the bpt. If this is true, they must be using very good mosfets indeed - maybe the $2 S K 213$ mentioned above.

Why doesn't Mr Self use J-fets for the input stage? By using J-fets instead of transistors, the input capacitor can be removed. There are various devices, such as the 2 SK117 which offer very low noise and high enough gain. How about trying current feedback amplifiers? The current feedback amplifier is supposed to offer constant bandwidth regardless of gain/feedback levels. Also, if you look through Hi-fi World magazine, it offers a pair of very linear output bipolar transistors. Apparently these were designed for audio purposes and out perform anything on the market.

From the hi-fi magazines I have been reading for five years in the UK, Japan and the US it seems that the type of distortion is very
important. They say that even order harmonics are benign, whereas the odd ones may add a shrillness and sharpness to the sound. There are large numbers of people who support the sound of valve amps. The better sounding ones seem to employ single-ended output stages and do not use a differential input stage. Push/pull operation and differential amplifiers, if used correctly, cancel second order harmonics, but double third order harmonics. This may be the reason why so many modern transistor amplifiers sound sharp and shrill compared to the valve counterparts. Modem valve amps can sustain the full $20-20 \mathrm{kHz}$, so bandwidth is probably not the reason for the valve smoothness
During a two hour session at a hifi shop with two friends, 1 could only detect small differences between three amplifiers. The three are competently designed; which raises the question of what caused the differences in sound. Is it due to the three amplifiers having different capabilities, or was I hearing the differences in the
amplifier/loudspeaker interface? Output impedance and the ability to drive low impedance differ from one amp to another, independent of distortion levels. Surely these affect the amplifier/speaker interface more than the distortion content?
I admire the articles written by Mr Self. The designs do not use exotic and expensive devices that are hard to source. They are all sound engineering practices not always pursued by manufacturers. Please keep up the good work.
Koji Kiyokawa
Derby

Douglas Self replies

I thank Mr Kiyokawa for his kind comments. Since he raises many points I hope he will not mind if I only answer a selected few of them.
I do not see why the negative temperature coefficient of $V_{g s} / I_{d}$ in mosfers should be an advantage; it may give more security against thermal runaway, but this really should not be a problem in modern times. The use of silicon bits, particularly in the CFP output configuration, makes thermal runaway virtually impossible in a comperently designed amplifier
My understanding is that a typical mosfet only has a negative temperature coefficient at reasonably high drain currents, and at low currents it goes positive Since the positive coefficient onty manifests itself at these low currents,thermal runaway is still guarded against, but surely this variable-sign coefficient must make thermal compensation of the biasing extremely difficult?
Perhaps the point here is that a bjt
output stage has not only a consistent temperature coefficient, but also a very well-defined and clearly visible bias which gives minimal crossover distortion. A fet output stage has much more latitude in bias simply because there is no such optimal point - just a range of varying shapes of crossover nonlinearity. No bias value is obviously right. This means that there is no point in worrying over getting the thermal compensation exact.
I feel there is every need to drive an output stage from a reasonably low impedance, so the non-linear input impedance of the output stage does not cause distorrion in the previous stage (Distortion 4 on my list). In the case of bjts it is the base currents that cause the trouble with fets it seems to be the large and signal-dependent gate-input capacitances
There may well be individuals that prefer 'the mosfet sound', if such a thing really exists, as there are those who clam to prefer 'the valve sound' or the 1922 directly-heated triode sound. The latter two are perhaps explicable, as second-harmonic distortion has been claimed to make things sound nicer, but it is hard to see the subjective attraction in crossover distortion; I would have thought that the 'mosfet sound' could only manifest itself in this way. I have always considered that audible crossover distortion was about the worst fault an amplifier could suffer from.
Single-ended stages tend to be inefficient, non-linear, and generally bad news. If generating lots of second harmonic distortion is felt to be a good thing, why not do it at low-level, (with a diode or two) where the exercise is going to be much cheaper? Personally I have no use for an amplifier that generates audible distortion of any kind.
I do accept that the nature of harmonic distortion can be important if it is audible, and that, for example, second harmonic is benign compared with third. However, to extrapolate from that and say that high-order even harmonics are more acceptable than high-order odd harmonics is very questionable; and this is of course the sort of distortion that amplifier crossover non-linearities generate. There has also been speculation that the exact rate at which the various types of harmonic fall off with increasing frequency has a complex significance beyond the generally accepted rule that higher order is worse. The only harmonic-weighting scheme that has received anything like acceptance is the n^{2} approach, which says that the third harmonic is $9 / 4$ times worse than the second, and that the fourth is $16 / 9$ times worse than the third, and so on, presumably until ow hearing gives out. This is hard to reconcile with
the statement that high-order even harmonics are always nicer than high-order odd harmonics, and shows that this is one area that really could benefit from a good deal more psychoacoustical research.
However, my design approach is to avoid these questions altogether. Rather than worry about the nature of the distortion, I have aimed to reduce it in total amplitude to such an extent that no matter what its composition is, it cannot plausibly be said to be audible. This approach may be thought to lack finesse or sonic correctness, but it is difficult to deny its effectiveness in making an accurate amplifier.

Impossible curves

In the May issue of $E W+W W$ (p387) Mr Self suggests "that it is an established fact that mosfets...are a good deal less linear than bjts". His proof: the "wingspread" curves of his ref 2.
I do not know where these curves originate, but one thing is clear: they do not agree with presently known physical reality. Maybe they are the result of some technical blunder, perhaps from a less than perfect PSpice macro.
Evidence for my claim is provided by Mr Self's own Fig. 3. The curve ' g_{m} ' shows a remarkable linearity up to: $V_{\mathrm{g}}=3 \mathrm{~V}$ and $I_{\mathrm{d}}=10 \mathrm{~A}$. Thus, the mosfet has a square-law characteristic, say $I_{\mathrm{d}}=K_{1}\left(\Delta V_{g}\right)^{2}$ giving

$$
g_{m}=\frac{d I_{d}}{d V_{g}}=2 k_{l} x \Delta V_{g}
$$

Consequently the square-law for that transistor is accurate to 10 A ! Note that in Fig. 3 the g_{m} curve is ever increasing, with no down-fall The is typical for all kinds of fets.
The Fig. 13 curves reflect the gain of the output stage, which is $\mathrm{g}_{\mathrm{m}} \times R_{\text {load }}$ (slightly reduced by emitter degeneration). Then it is impossible for these curves to have the shape they are supposed to have in Fig. 13. A peak in the middle, with dips on both sides, cannot be in agreement with g_{m} from Fig. 3. Qualitatively speaking, g_{m} is proportional to the wingspread gain, (see above) and g_{m} shows no dip.
Fig. 13 is definitely non-existent as described. A better argument for the superiority of the bjt is needed.
Again, Mr Self has given a clue to the real wing-shape. It is a horizontal line, flanked by tilted straight lines, as jotted down by me. Directions: for a mosfet pair, draw the two g_{m} curves from Fig. 3, one reversed, with overlap equal to bias voltage, and you will find the "curvilinear" straight cross-over characteristic with constant g_{m}. This curve is by no means as complicated as the wingspread, but it has the advantage of being in agreement with reality.

Top - linear g_{m} curves have constant cross-over gain. Source output impedance is linear, equal to $1 /\left(g_{m 1}+g_{m 2}\right)$ in this range, corresponding to the 'Curvilinear' characteristic in the second digram. The single mosfet gain increase (the wings) is also linear.
Bottom - mosfet characteristics are the integral of those above. Current is shared between Tr $_{1,2}$ in a way that produces linear output current.

A consequence of this is that there is no "best linearity" bias. The linear cross-over range is ever increasing with the bias current. Choosing a specific idling current is a matter of taste, where distortion can be traded for power dissipation, up to Class A.
But there is more to it, which I discovered when I was developing a set of design formulae for mosfet amplifiers. I calculate distortion products with a current sources - a natural way to drive the high impedance gates. Surprisingly enough the non-linear square-law area produced less distortion than did the linear cross-over - just the opposite of what one would expect. This, rather natural, property will have an impact on the ideas in mosfet design. The current driver will produce a very high gain, approaching infinity at low frequencies and makes a very low distortion level possible, which is confirmed by tests.
Regarding my super-symmetric design, I will not make any comments. It has to prove itself on its own merits. I just want to state, that in this design, like in any mosfet amplifier, the g_{m} change is entirely dependent on the amount of bias used. My amplifier is a pure embodiment of a typical mosfet stage, since the transistors are identical square-law types, which are directly acting on the output, with no load feedback (direct drive).
I think we ought to discuss amplifier design in a more unbiased way, and 1 invite Mr Self to do this, which most likely will forward the audio science
Bengt G Olsson
Saltsjo-Boo, Sweden

Douglas Self replies

Readers may perhaps know that I have written an article analysing Mr Olsson's allegedly "supersymmerric" output stage, which will hopefully be appearing later this year, and I don't really want to anticipate this by discussing it in detail at this stage. Suffice it to say that my wingspread diagrams seem to match those of Robert Cordell, and I think they are correct. You can certainly get a nice flat centresection if the bias is sufficiently advanced, but this is because you are now running in class A in that part of the plot.

My point is that the bjt output stage not only has about ten times better general linearity, but an obvious position of optimal Class-B bias that can be clearly seen to minimise the crossover distortion in the thd residual. However, in a Class- B or $A B$ fet amplifier there is no such minimum, and as Mr Olsson says "choosing a specific idling current is a matter of taste"; this is not an approach that has much appeal to me.
I have several points of disagreement with other parts of the letter, but these are all fully dealt with in my article, and so I would ask readers to be patient until it appears.

more mosfets

With reference to Douglas Self's recent article in your magazine Fets versus bjts, May - I would like to point out that some of his statements about the characteristics of power mosfets seem to contradict various manufacturers' data books.

Douglas Self acquired his results by using computer simulation of electronic devices. In one of his figures (Fig 3, page 388) he shows the forward transconductance of a fet and states that "there is no question that fet transconductance increases in a beautifully linear manner". And, in accordance with this statement, the graph shows a perfectly linear relationship between g_{m} and $V_{\text {GS }}$. So much so that one becomes suspicious whether this perfect linearity is only an assumption of the program modelling the device. And in fact, if we examine the transfer characteristics of power mosfets, we see a very different picture.

Measured $I_{\mathrm{D}}\left(V_{\mathrm{GS}}\right)$ and $g_{\mathrm{m}}\left(V_{\mathrm{GS}}\right)$ Characteristics of an IRF 530 mosfet The three regions on the transfer

characteristic curve of a power mosfet [1].This Figure shows the typical $I_{\mathrm{D}}-V_{\mathrm{GS}}$ and $g_{\mathrm{m}}-V_{\mathrm{GS}}$ relationship of a power mosfet. Here I would refer to [1], which discusses the transfer characteristics of power mosfets in detail. The book distinguishes between three major regions on the characteristics of power mosfets. Region A to B is the sub-threshold region, where the relationship between V_{GS} and I_{D} is exponential. Region B to C is where the well-known square-law relationship is valid. The book states: "One can see that the transconductance increases linearly with V_{GS} in the square-law region, but then levels off to a constant value in the velocity saturated region" (Region C to D). In addition, it should be noted that above a certain drain current the transconductance droops off again. Douglas Self's graphs do not show region C to D at all. Nor do they show the behaviour in the initial sub-threshold region, where the $V_{G S}$ $-I_{\mathrm{D}}$ relationship also does not follow the square-law.

Data books from other manufacturers seem to confirm the validity of the above described model. For example, [2] contains the forward transconductance characteristic of several hundred power mosfets and none of them seem to have a "beautifully linear" $g_{\mathrm{m}}-V_{\mathrm{GS}}$ relationship.

Furthermore, Douglas Self writes: "the PSpice simulation shown was checked against manufacturers' curves for the devices, and the agreement was very good - almost unnervingly so". I wonder if any physical device is really capable of showing such perfect square-law characteristics as Douglas Self's IRF 240 - the majority of them seem to follow a much more complicated relationsluip.
Laszlo Gaspar
Nottingham Trent University

References:

1. MOSPOWER Applications

Handbook. Siliconix Ltd, 1984.
(ISBN 0-9305 19-00-0), p 3-3.
2. PowerMOS Transistors. Philips Semiconductors
(Data Book SC13), 1991.

Douglas Self Replies

As Mi Gaspar says, I did indeed check the simulation ourpur against manufacturers' published data, and found very good correspondence: in this case the source was Harris Semiconductors. I thought it not unreasonable to assume that the manufacturer knew how his own devices worked. In particular, the manufacturer's graphs for $\mathrm{I}_{\text {drain }}$ versus Vgs look very much like ny Fig. 2 up to 20A, which is actually just outside the contimuous current maximum rating for the real device.

For the record, the PSpice simulation model here is a Level-4 bsim model that includes body effect, transverse-field mohility degradation, and velocity saturation sensitivity, and is widely accepted as accurate enough for use when millions of dollars of IC investment are hased on the outcome. However, I do not claim to be an expert on simulator fet models, and so I had better leave it there.

The real question is: would acceptance of Mr Gaspar's alternative gm curve make the fet look more linear than the bjr? As far as I can see it makes it less linear if anything, and so I stand by my conclusion that a bjt - with a little emitter degeneration to bring down its g_{m} to fer levels - will always be the more linear device.

Feedback on feedforward

I would like to thank Mr Self for his appreciation and comments on my recent article on a feed-forward error-correction audio power amplifier technique ${ }^{1}$.
I am grateful to him for his constructive criticism which gives me the opportunity to provide some additional considerations to the content of my paper.
Mr Self is right in noting that the practical circuitry ends up being more complex than conventional amplifiers. This, on the other hand, was clearly stated in my paper (see paragraph "Feed-forward more promising?"), although the very aim of my work was to demonstrate that the improvement achievable from this technique can be worth the extra circuit complexity and cost. However, the main point to stress is that 'feed-forward' is not proposed as an alternative to 'feedback'. On the contrary, it is intended to be applied to audio power amplifiers as a complement to feedback in order to achieve - when required - levels of distortion probably unattainable with feedback only, mainly in class B/AB amplifiers.
As for the main power amplifier circuit configuration (Fig 8 in the article), it is not to be considered my suggested choice for a true low distortion feed-forward amplifier.

I agree with Mr Self that better results in terms of distortion can be achieved by using, for instance, some of the techniques and suggestions given by himself in his comprehensive series of articles about distortion in power amplifiers ${ }^{2}$, and others proposed by E M Cherry in well known articles and recently in $E W+W W^{3}$.

However, it has to be pointed out that the demonstration prototypes were conceived and assembled
(1988-1991) with the aim to prove -
first of all to myself - the
effectiveness and viability of the feed-forward error correction technique in a wide range of both different output stage bias current and load conditions.
Therefore I decided to make use of a class B power amplifier configuration capable of providing good phase margin and overall stability over the whole output voltage/current range and on the following conditions:

- output stage bias current setting range: from 0 mA to 300 mA - load impedance ($R / / C$) range: (2 to 10) $\Omega / /(0$ to 2$) \mu \mathrm{F}$.

Fig. 8 has the above characteristics and was chosen for this purpose.

However, some degree of frequency over-compensation turned out to be needed to reach the goal. As a result, C_{0} was set to 100 pF , leading to a distortion performance of the main amplifier which is not excellent, as properly noted by Mr Self, especially at high frequency.

Lower distortion can be achieved by the same configuration via optimised frequency compensation ($C_{0}=60 \mathrm{pF}$) for a fixed output stage total bias currently of about 300 mA and a load impedance of 8Ω in parallel with no more than $0.33 \mu \mathrm{~F}$, and, eventually, incorporating suggestions from E M Cherry ${ }^{3}$
This would lead to a complete feed-forward amplifier with proportionally lower distortion than 0.004% at 20 kHz , as reported in the article - actually 10 to 20 dB better.
Providing an optimised feedforward amplifier design was not the aim of my paper, but I have been working on such a task.
I would also like to provide some explanation for why a cascoded jfet input stage was used in the schematic of Fig. 8 instead of a standard bjt stage, despite the worse matching characteristics of jfet pairs.
Apart from the results provided by R R Cordell in his well known article ${ }^{4}$, and by other authors, which prove the benefits associated with jfet input stages, as well as of mosfet output stages, there is one more reason why I have a tendency to employ a differential jfet input stage in some amplifiers: it eliminates the distortion induced by non-linearities in the base current of bjts due to the following causes:

- β dependence on the operating conditions of transistors (I_{c} and V_{ce}) - the Early effect.

Bipolar transistor base-current induced distortion is often overlooked, while, in my opinion, it can constitute an important source of distortion in amplifiers (it should be considered a root cause of distortion to be added to the seven examined by Mr Self ${ }^{2}$. This is mainly true when bjts are operated at relatively low emitter current densities, for which β variations are usually larger, and when the dynamic

Fig. 1. Slightly modified version of the audio power amplifier presented in Self's introductory article.

variations of the collector or current are a large fraction of the bias current. Both the above conditions normally apply to standard bipolar input stages.
There are effective techniques to counteract this kind of distortion. Among them:

- the use of low impedance level both in the input signal sources and in the feedback network, or the use of buffers in front of $T r_{1}$ and $T r_{2}$. - the reduction of the input stage transconductance $g_{\mathrm{m}}\left(\mathrm{g}_{\mathrm{m}} \mathrm{V}_{\mathrm{T}} / \mathrm{I}_{\mathrm{EE}}\right.$ in Fig. 1, where $V_{\mathrm{T}}=25 \mathrm{mV} @ 290 \mathrm{~K}$ is the thermal voltage).
- use of appropriate bias current compensation, mainly in ICs. - the use of specifically designed differential bjt input stages ${ }^{5}$; - the use of a differential jfet cascoded input stage (eventually boot-sirapped to reduce the Early

effect-induced distortion).
To the best of my knowledge, the influence of input stage bias current on amplifier distortion was dealt with and worked out to any extent in only a few works ${ }^{5,6}$.
The influence of the base current non-linearities on the closed loop voltage gain A_{Cl} of the amplifier, can be evaluated by determining its sensitivity to the incremental current gain $A_{\mathrm{C}}=\Delta V_{0} / \Delta J_{\mathrm{b}}$,
Its formal expression is

$$
S_{A_{t}}^{A_{i}}=\frac{A_{c}}{A_{t}} x \frac{\partial A_{c}^{c}}{\partial A_{t}},
$$

Referring to Fig. 1, which represents a slightly modified version of Fig. 2 of Self's introductory article ${ }^{1}$, the source of V_{1} is supposed to have zero internal impedance, so we can ignore the effects due to $I_{b 1}$ and take into account in our analysis $T r_{2}$ base current I_{b} only.
Assume the following: $\Delta V_{\mathrm{b}} / \Delta L_{0} / 2 \beta$, $A_{V}=\Delta V_{0} d \Delta\left(V_{1}-V_{2}\right)=f_{T} / f=g_{m} /\left(2 \pi f C_{0}\right)$. This is a good approximation for an amplifier with a dominant pole (f_{T} is the unity gain frequency), and $A_{C}=A_{v} \beta / g_{\mathrm{m}}$. The above sensitivity can then be calculated as,

$$
S_{A_{c}}^{A_{i}}=\frac{f}{f_{T}} \times \frac{g_{m} R_{2}}{\beta\left(1+R_{1} / R_{2}\right)}=\frac{2 \pi f C_{0} R_{2}}{\beta\left(1+R_{1} / R_{2}\right)}
$$

Let us consider, as an example, the following case: $\beta=200$, $C_{0}=100 \mathrm{pF}, R_{1}=0.5 \mathrm{k} \Omega$ and $R_{2}=10 \mathrm{k} \Omega$.
For $f=20 \mathrm{kHz}$ the sensitivity of A_{cl} to the amplifier incremental current gain variation turns out to be 6.10^{-4}. This means that-a change of 10% in

Fig. 2. Operating outside the feedback loop of the main power amplifier, true feed-forward offers designers the possibility confining distortion to unmeasurable levels.
β will produce a corresponding variation in A_{cl} of 0.006%.
If we now inspect the circuit of Fig. 1, where T_{1} and T_{2} are normally biased at a low current density ($I_{\mathrm{EE}}=1-2 \mathrm{~mA}$), we see that I_{0} is mainly used to drive the compensation capacitance C_{0}. That means that at the upper side of the audio frequency range, where the ratio $\Delta I_{\mathrm{o}} I_{\mathrm{EE}}$ can be as high as 0.5 even in well designed amplifiers, you can expect β variations higher than 10%, depending on the bjt types used. As a consequence, higher values of deviation from linearity can be expected.

The amplifier deviation from linearity discussed so far does not translate directly into figures of the thd of the same amount.
Nevertheless it throws some light on the importance of base currentinduced distortion in bjt input stages, and accounts for the benefits of using j-fets (preferably cascoded and boot-strapped).
As for the input-injected technique, I think that Mr Self refers to the techniques which were first proposed by Klaassen ${ }^{7}$ and Hawksford ${ }^{8}$, and subsequently applied by Cordel ${ }^{14}$ to correct the distortion of the output stage of class AB power amplifiers. I think that these techniques can really prove effective in reducing the distortion in feedback amplifiers. However, both entail the incorporation of additional negative and/or positive feedback loops - to be carefully balanced. This could lead again to the well known limitation of feedback, namely dynamic instability problems.
True feed-forward techniques, on the other hand, do not suffer from such problems, because they operate outside the feedback loop of the main power amplifier. This fact offers the designer the possibility of an iterative application, as shown in Fig. 2, for confining distortion below measurable level. Distortion reduction ranging from 50 to 70 dB could be theoretically attained by a two step iteration, even for distortion components a high as 1 MHz . Similar results are theoretically possible with feedback only, yet almost insurmountable stability problems, I think, have to be faced and worked out.
Finally, the remaining problem to be clarified, in order to understand the real potentiality of the proposed feed-forward technique, is the order of magnitude of the lowest achievable residual distortion (ie with $V_{\mathrm{e}} \geq 0$ at the input of the auxiliary amplifier) due to cross ; modulation between the main and the auxiliary amplifiers under high load current conditions.
Personally I am convinced that this residual distortion should be less than 0.0001% in the full audio frequency range. This conviction is
based on the following
considerations. Referring to the figure in the box 'Magnetic flux concellation' of my article ${ }^{1}$, consider the maximum output peak current $I_{\mathrm{p}}=V_{\mathrm{p}} / R_{0}$, which is flowing into the secondary winding of the transformer, while V_{2} is coerced to zero by feedback. The auxiliary amplifier, in order to neutralise the flux in the transformer has to force a current $I_{\mathrm{p}}=I_{\mathrm{p}} / n$ into the primary winding and, consequently, produce an output-voltage $V_{1}=R I_{\mathrm{p}} / n$, where $n=N_{1} / N_{2}$. Practical values are $R=5 \Omega$ and $n=30$, so we can expect values of V_{1} less than $1.6 \mathrm{~V}_{\text {peak }}$ for $I_{\mathrm{p}}<10 \mathrm{~A}$.
Now consider that amplifier A_{2} is operated in class A and drives an equivalent load equal to $R_{\text {eq }}=R_{0} n^{2}$ in parallel with the primary inductance L_{1}. In the prototypes $L_{1}=400 \mathrm{mH}$ and $n=30$, so that $R_{\text {eq }} \geqslant 1.8 \mathrm{k} \Omega$ for $R_{0}>2 \Omega$ which is high enough to allow low distortion operation. Problems can only arise at very low frequency, where the reactance of L_{1} is as low as 50Ω at 20 Hz . However, the available open loop gain of the auxiliary amplifier is so high at low frequency that driving L_{1} without producing distortion should not represent a major task. Therefore, even assuming a conservative distortion component $V_{1 d}$ not better than $0.1 \% V_{\text {I }}(=1.6 \mathrm{mV}$ peak in the above worst case conditions), this would entail a distortion voltage at the secondary winding $V_{2 d}$ equal to $V_{1 \mathrm{~d}} / n=0.05 \mathrm{~m} V_{\text {peak. }}$. This value, if compared with a corresponding peak output voltage $V_{0 \text { peak }}=40 \mathrm{~V}$ across a 4Ω load, yields a peak distortion of about 0.000125%.

Giovanni Stochino

Italy

References:

1. G Stochino 'Audio Design Leaps Forward?', EW+WW Oct 1994, p818-827.
2. D Self 'Distortion in Power Amplifiers', EW+WW Aug 1993, p630-634, and following articles.
3. E M Cherry 'Ironing out

Distortion', EW+WW Jan 1995, p14-20.
4. R R Cordell "A MOSFET Power Amplifier with Error Correction' JAES Jan/Feb 1984, p2-17.
5. G Stochino 'Low Distortion Amplifier for Instrumentation',
Electronic Engineering May 1983, p35-37.
6. W H Gross 'Source Resistance

Induced Distortion in Op Amps',
Linear Technologies Design Note 84 July 1994.
7. K B Klaassen, R J De Kok and J C L Van Pepppen 'Amplifier Systems with Quasi Feed-forward control', Electronics Letters Aug 1975 Vol 11, p400-401.
8. M J Hawksford 'Distortion Correction in Audio Power Amplifiers', JAES Jan/Feb 1981, p27-30.

RDS for Windows

High quality FM Tuner with full RDS decoding

MicroTuner T950CE
Broadcast quality design, suitable for monitoring transmitted RDS data. Interfaces with PC serial port(RS232C). Decodes PI, PS, PTY, TP, TA, AF, EON, RT and CT
Specification: RISC microcontroller design. Crystal synthesised, 10 KHz tuning steps.

Low noise MOSFET front end. Frequency spectrum of 87.6 to 108.8 MHz can be printed out as hard copy. Extensively filtered signal and supply lines. Internally regulated 12 v supply input. Supplied with the latest V2.0 windows operating software Hardware: Fully screened, low profile, diecast aluminium enclosure ($120 \times 200 \times 30 \mathrm{~mm}$). Software: Requires minimum of $386 / 33 \mathrm{MHz} / 4 \mathrm{Mbytes}$ ram, running Windows 3.1 or later
Microgen
ELECTRONICS
Call for full specification and Demonstration Disk 43 Salisbury Road, Carshalton, Surrey SM5 3HA Tel/Fax 01816478238

10 OUTLET DISTRIBUTION

 AMPLIFIER

A compact mains powered unit with one balanced input and ten AC and DC isolated floating line outputs.

- Exemplary RF breakthrough specifications giving trouble-free operation in close proximity to radio telephones and links.
Excellent figures for noise, THD, static and dynamic IMD.
- Any desired number of outlets may be provided at microphone level to suit certain video and audio recorders used at press conferences.
- Meets IEC65-2, BS415 safety.
*Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz}$ *PPM10 in-vision PPM and chart recorder "Twin Twin PPM Rack and Box Units *Stabilizers and Fixed Shift Circuit Boards for howl reduction *Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$ *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifier *Peak Deviation Meter *PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/ +6 dB drives and movements *Broadcast Stereo Coders.

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG
Telephone: 01483-275997 Fax: 276477

Do you have an original circuit idea for publication? We are giving $£ 100$ cash for the month's top design. Additional authors will receive $£ 25$ cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

Capacitance meter for a DMM

In conjunction with a voltmeter, this circuit gives a direct reading of capacitance. Two of the four gates in a 4093 Schmitt Nand form an oscillator and buffer, the frequency being set by the $50 \mathrm{k} \Omega$ trimmer. Output goes to gate 4 , one of whose inputs is inverted and delayed by the unknown component by time proportional to its value. At the output of gate 4 , normally high, a nega-tive-going pulse with a width proportional to the capacitance appears, the duty cycle of the output and, therefore, the average voltage indicating the value of capacitance.
To calibrate, set the dvm to its 2 V range and remove C_{x}, adjusting the $10 \mathrm{k} \Omega$ trimmer for a zero reading (a very narrow pulse is present in this condition due to the inherent delay of gate 3). Connect a known capacitor in the C_{x} position, set the frequency switch and adjust the $50 \mathrm{k} \Omega$ trimmer for the correct value.

Single-chip capacitance meter measures values in the $p \mathrm{~F}-\mu \mathrm{F}$ range.

Range is from a few picofarads to several microfarads. Supply voltage stability is required for accuracy and the oscillator capacitors must be exactly in the ratio 1:10:100:1000.
Rae Perälä
Helsinki
Finland

Zero-crossing detector copes with varying line voltage

Most power-line zero-crossing detectors show phase shift if mains voltage is not constant. For synchronising an audio tape-recorder to the mains, I needed a zero crossing-pulse that was independent of any mains voltage fluctuations and distortion.
This circuit is stable, even for line dips up to 150 V . During the half-wave capacitor C_{1} is charged to voltage V_{d}. Output of the op-amp is high. Momentarily before zero-
crossing takes place, C_{1} starts to discharge through $R_{1,2}$.
After time $T=C_{1}\left(R_{1}+R_{2}\right), V_{\mathrm{d}}$ falls below the voltage of pin 2 of the LM358. Now the output swings down and creates a base current pulse, through R_{6} and C_{2} for the pnp transistor.
Width of the output pulse is determined by R_{6} and C_{2}. Values shown produce a $50 \mu \mathrm{~s}$ pulse. Diodes $D_{1,2}$ should be located close
together so that they will have the same temperature. This avoids thermal drift of the zero-crossing pulse.
Ernst Schmid
Munich
Germany

YOU COULD BE USING A 1 GHz SPECTRUM ANALYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $£ 100$ monthly star author's fee, together with $£ 25$ for all other ideas published.
Our judging criteria are ingenuity and originality in the use of modern components - with simplicity particularly valued.

Synchronising a crystal oscillator

t is possible to synchronise a crystal oscillator - in phase - to an amplitude modulated signal near to its resonant frequency. The IC doubles frequency of the incoming modulated signal. This is then injected into the crystal oscillator to provide synchronisation drive.
I use the oscillator output in a further circuit, not shown here, to demodulate the signal using another LM1496 doublebalanced modulator. With a 600 mV 21.4 MHz peak-to-peak drive to the oscillator from the doubler, the circuit provides a lock-in range of $\pm 500 \mathrm{~Hz}$. This proved useful for demodulating both DSBSC and AM digital signals - provided that their carrier frequencies didn't drift beyond the lock range of the oscillator.

The output from the oscillator is taken by sampling the crystal current
to reduce the harmonic content

The inherent frequency stability of the crystal-controlled oscillator enables it to be locked easily by adjustment of C_{1}.
Colin Bamforth
Altrincham
Cheshire

Simple current transmitter for thermometry

Temperature measurement often requires remote reading indication, the sensor output being transmitted in the form of a 4 20 mA current. Commercial current
transmitters can be expensive; this circuit is simple and costs much less.

An LM391/ IC contains a $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ voltage source, a 6.8 V reference and an

Current transmitter provides remote reading of temperature simply, at low cost and at $\pm 1^{\circ} \mathrm{C}$ accuracy in the $-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ range.
accessible op-amp; with the addition of a few passives and one transistor, the circuit becomes a temperature-controlled current source.
Resistor R_{1} in series with the parallel combination of R_{a} and R_{b}, and $R_{2,3}$ set the current gain to give a 16 mA span for temperatures between $-20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}, R_{5}$ allowing zero setting with negligible effect on sensitivity. Resistor R_{L}, at the indicator end of the line, converts the current to voltage, any differences between the two grounds having no effect on the reading while $T r_{1}$ is conducting.
A 24 V supply and R_{4} limit supply current to ImA to minimise local heating; in still air, the circuit takes a few minutes to respond to changes. Accuracy after a single-point calibration is around $\pm 1^{\circ} \mathrm{C}$. Vittorio Ferrari University of Brescia
Brescia
Italy

Bipolar programmable capacitor

D
evelopment of an idea by Dunn* produces a digitally programmable positive/negative capacitor.
Originally as shown in Fig.1, the circuit becomes the arrangement of Fig.2, in which R_{v} is replaced by a fixed R_{1} and R_{f} by the active resistor circuit composed of the operational transconductance amplifier. For example, R_{1} is $25 \mathrm{k} \Omega$ and

Original programmable capacitor.
R_{2}, the OTA resistance $1 / g_{\mathrm{m}}$, is variable between 50Ω and $50 \mathrm{k} \Omega$. Capacitance is found from,
$C_{\mathrm{T}}=C\left[1-\left(R_{1} / R_{1}+R_{2}\right)\right]=-C\left(R_{1} / R_{2}\right)$ and C_{T} is inversely proportional to R_{2}. The conductance of the OTA is
$g_{\mathrm{m}}=I_{\mathrm{B}} / 2 V_{\mathrm{T}}$, in which V_{T} is the thermal voltage of 25 mV , and $C_{\mathrm{T}}=-C\left(I_{\mathrm{b}} / 2 V_{\mathrm{T}}\right) R_{1}$. Total negative capacitance is therefore controllable by I_{B}. If digital programming is

New digitally programmable featuring positive or negative capacitance.
required, a d-to-a converter adjusts the OTA tranconductance and therefore the capacitance. Adding a positive capacitor in parallel with the circuit produces a digitally programmed positive/negative capacitor.
A R Al-Ali and M T Abuelma'atti
Dhahran
Saudi Arabia

Reference

Dunn. Electronic Design. December 5, 1991

Linear/non-linear amplifier

A control voltage determines whether this amplifier operates in a linear manner with a gain of about R / R_{f} or in a non-linear mode with open-loop gain.
If Vref is greater than Vin, the comparator OA2 switches the mosfet off and the circuit is non-linear; a smaller Vref turns the mosfet on, whereupon the amplifier receives feedback and is linear. Changing the input polarities of OA_{2} reverses the effect of $V_{\text {ref }}$.
K N Sunil Kumar
Visakhapatnam
India

Amplifier behaves as a high-gain, non-linear circuit or as a lower-gain, linear type, depending on control voltage.

Amplified autobias

$W^{\text {hile similar in principle to automatic }}$ valve bias using a decoupled resistor, this bias loop for a low-frequency mosfet oscillator provides gain in the loop and a low reference voltage at the base/emitter junction of Tr_{2}. Increase in current through R_{4} causes $T r_{2}$ to take more current and pull down the junction of $R_{1,2}$, the mosfet gate.
Oscillator transistor T_{1} operates stably
and efficiently with the tank connected as shown at a frequency of 1.1 kHz and with an output of 58 V pk-pk on a 24 V supply. Voltage waveform at $T r_{1}$ drain is as would be expected from a Class C circuit: rounded during cut-off and flat during conduction. However, the tuned circuit provides a relatively clean output current waveform. With a turns ratio of $10: 1$, oscillation starts when
the supply is around 7.5 V , and the amplitude of the output current waveform is proportional to supply voltage.
As the diagram shows, at 24 V supply, supply current I_{dc} is about one sixteenth of the oscillation current I_{pp}. Mount the transistors close together for best dc stability.

CJD Catto

Cambridge

Gain in the source bias loop provides stable operation and efficiency in this low-frequency power oscillator.

Remote monitor for private exchange lines

Telephone conversations can be heard on an fm receiver via this simple transmitter. The circuit comprises a Colpitts

oscillator, based on 2 N 5179 or BF200, that derives its power from the telephone line.
A 100Ω resistor stops the circuit interfering with the telephone line. Performance is low and the range is about five to ten metres, but no antenna is required.
Diodes D_{1-4} form a bridge rectifier to produce a varying dc voltage according to audio signal on the line. Oscillation is at the resonant frequency of L_{1}, C_{2} and C_{3} which should be 92 to 95 MHz .
It may be necessary to increase or decrease the inductance of L_{1} slightly to bring the frequency of oscillation in the range of fm receiver. This may be done by squeezing the turns of L_{1} closer or pulling them apart.

Raj Krishna Gorkhali

Asian Commercial Enterprises, Nepal

Electronic attenuator

A
lthough $2-3 \mathrm{~V}$ zener diodes make inefficient voltage stabilisers, they can work well as attenuators.
In the circuit shown, attenuation is from 6 dB to 58 dB as control voltage varies from 2.7 V to 7.5 V , with a zener current between
$42 \mu \mathrm{~A}$ to 77 mA . If the control voltage is to exceed 7.5 V , a current-limiting resistor is needed.
D Di Mario
Milan
Italy

Zener attenuator controls signals of up to 100 kHz over a 50 dB range. Injecting signal at mid-point of two zeners reduces distortion.

Single-chip voltage-to-frequency converter

O
ffering an input range of a few Hz to 2 kHz , this v-to-f converter uses a single IC, the CD4060 cmos 14-bit binary counter.
An internal oscillator in the 4060 takes a signal from the Q_{9} binary output, which switches the oscillator on and off. Input signals are differentiated by $R_{1} C_{1}$ to allow a very narrow reset pulse to start the oscillator, so that there is only one pulse from Q_{8} during an input signal period.
If the width of the pulse on Q_{8} is t_{1} and the input signal period $1 /$ in , the duty cycle of the Q_{8} pulse is t_{i}, a supply of 5 V giving an output voltage of $5 t_{f_{\text {in }}} V$, and since t_{1} is constant, output is proportional to frequency. Resistor R_{2} adjusts the span; $1 \mathrm{~V} / \mathrm{kHz}$ is obtainable.
Yongping Xia
Torrance
California
USA

ANCHOR SURPLUS Ltd The Cattle Market Depot Nottingham NG2 3GY. UK
 Tele: + 44 (0115) 986 4902/986 4041 Fax: + 44 (0115) 9864667

PYE UNICAM SP1900 Atomic Absorption Spectrophotometer, Good Condition. One Only Available at this Special Price $\mathbf{£ 1 5 0 0}$

TADEKA RIKEN TR4132 Spectrum Analyser. One Only. Modern, Twin Digital Readouts, $100 \mathrm{KHZ}-1000 \mathrm{MHz}+£ 950$

NAGRA 'T' Twin Capstan Instrumentation Recorders 4 Track, 8 Speed, Excellent Condition, Selection £475

Siemens P2030 Bit Error Measuring Set + Printer to 140 Mbit/sec, Multi Protocol, One Only £525

Tecussel P60 Digital Ph Meters, Cased, Probe, Selection £75
OSCILLOSCOPES
Many More Available. Phone for Availability
TEK 466, 100MHz Analog Storage, Twin Trace, Twin Timebase, Selection £395
TEK 468 100MHz Digital Storage, X-Y Cursors, Twin Trace, Twin Timebase, Selection $\mathbf{£ 7 2 5}$

HP 54200A Digitising Oscilloscope, HPIB Fitted 200Msamples/sec, Menu driven, Multi Cursors, Excellent Condition, One Only £1.475

HP54502A Digitising Oscilloscope, HPIB Fitted 400Msamples/sec, Menu Driven, Multi Cursors, Excellent Condition, One Only £3600

Digital Multimeters

More Available. Phone for Availability
FLUKE 77 Hand Helds, Incl Cases \& Probes Only $£ 75$
HP3456A 6.5 digit Systems Voltmeter, 100nv resolution 300 samples/sec, HPIB, 0.0001% accuracy $£ 695$

HP3478A 5.5 Digit LCD, HPIB, Non-Vol Memories £695

OPEN SEVEN DAYS A WEEK
Mon-Fri 9am-6pm Sat 8am-4pm Sun 10am-4pm NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME

All Prices are Ex VAT \& Carriage All items are Fully Tested with Verified Calibration and carry our Unique 30 Day Un-Conditional Warranty

Monitoring

> Worried about your heart? Baki Koyuncu* brings you a cheap monitor that puts an ecg in your pocket.

*Baki Koyuncu is in the Elec Eng Dept, King Fahd University, Dhahran, Saudi Arabia.

Many heart rate monitors on the market today are able to display heart pulse rates. Unfortunately they are not cheap. But it is possible to design an inexpensive monitor that can be as efficient as any of the commercial monitor units, with a PC interface that allows heart rhythm wave-forms to be stored and later analysed.
The system consists (Fig. 1) of a pair of probes and their differential amplifier, filters to clear the received probe signals and a fre-quency-to-voltage converter to convert the pulse rate frequency to a dc voltage. For displaying heart pulse rates, an Icd unit and its interface ic is also used.

Circuit description

Two pressure-sensitive miniature circular

transducers are used as probes. One probe is attached to the upper part of the chest on the left hand side, and the other to the lower part. Each probe is placed in a circular adhesive contact pad, with electrical contact to the skin maximised by a jelly lubricant placed between the skin and the probe contact surface.
Both probes are connected to an instrumentation amplifier formed around three ics, $/ C_{1_{1}}$, $I C_{2}$ and $I C_{3}$ (Figs. 2a and 2b). Probe one is also connected to an astable oscillator - the test signal generator - through spdt switch $S W$.
Amplification of the heart-beat signals is through the instrumentation amplifier circuit which also inhibits the noise picked up by the probes. All amplifiers are biased by +4.5 V .
Amplified output signal of $I C_{3}$ is passed to capacitor filter LMF 10 , the first half of which is configured as a notch filter to attenuate 50 Hz mains. Other frequencies are amplified by around a factor of ten.
Second half of the filter is configured as a low pass circuit, enabling frequencies below 50 Hz to be used because of the low frequency of heart-beat signals. The filter's signal frequency mode is adjusted for 50 Hz operation with an external 5 kHz astable oscillator built around a 555 .
Following LMF10, a variable gain amplifier is formed by $/ C_{5}$, to vary the signal gain between 10 and 500 .
Two series diodes and a $1 \mu \mathrm{~F}$ capacitor rectify the incoming signal and feed it to comparator circuit, $I C_{6}$. Every time the heart beat signal is above the +4.5 V reference voltage at $I C_{6}$ input, the comparator output goes high corresponding to a heart beat, and a led is included at $/ C_{6}$ output to display the beats.
Individual pulse lengths vary from patient to patient at different heart beats so a monostable 4538 is used as a pulse shaper. Its effect is to act as a pulse-length standardiser and produce equal pulse lengths for every patient.
Output from $I C_{6}$ triggers the 4538 and makes its output go high for a fixed duration set by IM and 100 nF . The monostable is not retriggered again during this period..

Equal length pulses at the 4538 output are applied to an LM2917 frequency-to-voltage converter which rums the input pulse rates into a dc voltage. This is fed to lcd driver 7126, a digital panel meter $I C$, to decode the de voltage from the $L M 2917$ into an equivalent digital output format to drive a 3.5 digit led.
The dc voltage representing the heart pulse is compared to a reference voltage of IV at the +ref pin of 7126, producing a calibration factor of 1 mV input voltage/digit increment. Digital panel meter IC contains an internal clk generator with its frequency subdivided by internal counters to produce a signal sampling rate of one sample per 2 s .

Heart rate uniformity

Patient's pulse rates are numerically displayed by the Icd in terms of pulse beats per minute and each pulse beat also triggers a plus symbol on the Icd, monitoring the uniformity of the heart rate.
On/off state of the plus symbol is determined by phase of the signal applied to it, a signal generated by X-or gating the 4538 output and the Icd's backplane clk When 4538 output is high, the X -or gate inverts its output signal phase with respect to the lcd's backplane clk and turns on the symbol.
An additional low-frequency square-wave oscillator test circuit is built around a 555 to check operation of the heart rate monitor (Fig. 2 a). Oscillation frequency is preset between 20pulses and 200pulses $/ \mathrm{min}$, and the oscillator output is applied to $/ C_{1}$ input through spdt switch $S W$, instead of probe one.
In this mode, the signal is only amplified through the $I C_{1}$ path, the other path through IC_{2} being held at reference level of +4.5 V . The test circuit is used to check the led readout against the pulse rate of the test circuit. A match between the oscillator generated pulse rate and the led read out verifies correct operation of the circuit.
Operation is from a $V_{\mathrm{cc}}=9 \mathrm{~V}$ supply provided by a 9 V battery with a 20 mA supply current, making the monitor portable, though a mains adaptor can be used instead*.

PC interface

To observe the heart rhythm wave forms and compare them with the standard ecg wave forms, we use a PC interface. DC output voltage of the $I C_{5}$ amplifier is interfaced to an a-to-d channel of a data acquisition card using an opto-isolator circuit (Fig. 2b). The opto-isolator provides the computer with further noise isolation from the system, and the DT2801 card from Data Translation is placed into one of the PC i/o ports.
Output voltage from $I C_{5}$ is converted into digital form by a 12 bit a-to-d converter on the card and stored in a data file in ascii form in PC memory.
Lotus 123 can make use of this file to display heart rhythm wave forms on the PC.

Measured pulse widths with the heart rate monitor are around 0.85 s , producing a nominal pulse rate of 71 beats $/ \mathrm{min}$.
Comparing heart rhythm wave-forms, Fig. 3, with those taken via ecg devices shows that the periodicity and shape of the heart rhythm wave forms are the same for both ecg recordings and the heart monitor.

References

1. RS Catalogue, June 1993.
2. Moris Mano, Digital Design, Prentice Hall. 3. Sedra and Smith, Microelectronic Circuits, HRW Saunders, International Edition.
*In this application, any mains adaptor used must meet the medical safety requirements apropriate to your country - Ed.

Fig. 3. Sample heart rhythms from the heart rate monitor.

(a)

(b)

(c)

RADIO ENGIEER'S

Radio Engineer's Pocket Book

by John Davies, 240pp, hardback Order - ISBN 0750617381 Price $\mathbf{\Sigma 1 2 . 9 9}$

Contains: Propagation; decibel scale; transmission lines; antennas; resonant circuits; oscillators; plezo-electric devices; bandwidth requirements and modulation; frequency planning; radio equipment; Microwave comms; information privacy and encryption; multiplexing; speech digitisation and synthesis; vhf and uhf mobile communication; signalling; channel occupancy, trunking; mobile systems; base station management; instruments; batteries; satellite comms; connectors and interiaces; broadcasting; abbreviations and symbols; tables and data; glossary.

Covers all aspects of radio and communications engineering from very low frequencies to microwaves, with particular emphasis on mobile communications. Wave principles and the decibel scale, instrumentation and power supplies, equipment types and encryption methods, connectors and interfaces, are all included in this book.

Audio Recording and Reproduction

Michael Talbot-Smith, 204pp, paperback
Order - 0750619171
Price £12.99
Contains: Physics of sound waves; hearing; basic acoustics; microphones; loudspeakers; public address; stereo; simple mixing equipment; recorders; introduction to digital audio; music and sound effects; miscellaneous data

This book gives a simple and straightforward approach to audio techniques, detaillng technical and practical information for those with no specific training in the subject.

Circuit Designer's Companion

by T Williams, 320pp, paperback Order - 075061756 X
Price £15.99
Contains: grounding and wiring; printed circuits; passive components; active components; linear integrated circuits; digital circuits; power supplies; electromagnetic compatibility.

Valued by linear and digital designers alike, this guide explains and outlines solutions that take into account the imperfect behaviour of real components, interconnections and circuits.

Servicing Personal Computers

by Michael Tooley, 304pp, hardback Order - ISBN 0750617578 Price $£ 25.00$

Contains: Mlcrocomputer systems; test equipment; fault diagnosis; tape and disk drives; printers and monitors; servicing IBM pc compatibles and 68000 -based computers.

This completely rewritten fourth edition still covers the whole range of microcomputer equipment but now also includes a guide to developments and trends such as the new generation of diagnostic software code included - and applications such as serial communication, and memory and hard disk management..

Newnes Audio and Hi-Fi Handbook

by lan Sinclair, 656pp, hardback Order - ISBN 075060932 X Price $£ 40.00$

Contains: Sound waves and acoustics; studio acoustics; microphones; sound synthesis; introduction to digital principles; compact disc technology; other digita systems - DAT, NICAM, DCC, MD analogue tape recording; noise reduction systems; LP records; disc reproduction; tuners and radio receivers; preamps and inputs; voltage amplifiers/controls; loudspeakers and enclosures; Headphones; public address; in-car audio; interconnections; the future.

Covers a wide perspective of highquality sound reproduction, Including reproduction under adverse circumstances, from less conventional sources and with regard to the whole technology from studio to ear.

TV \& Video Engineer's Reference Book

by Boris Townsend, 876 pp , paperback Order - ISBN 0750619538 Price $£ 40.00$

Contains: Materials; components and construction; colour tv fundamentals; broadcast transmission; distributing broadband; DBS; tv studios; mobile and portable equipment; tv sound; tv receivers; servicing tvs; video recorders; teletext etc; HDTV; other applications of tv; pefformance measurements.

Covers information on every aspect of modern broadcast technology. Of value to all practicing engineers and managers involved with broadcast, cable and satellite services.

Masts, Antennas and Service Planning

by Geoff Wiskin, 256pp, hardback Order - ISBN 0240513363 Price $£ 49.50$

Contains: Antennas; antenna support structures; service planning.

Covers all aspects of information conveyance via radio-wave transmission. Invaluable to anyone planning for broadcast and mobileradio coverage, or designing, installing and maintaining antenna systems.

Operational Amplifiers

by Jiri Dostal, 400pp, hardback Order - 0750693177
Price $£ 40.00$
Contents: The operational amplifier; basic concepts; operational amplifier parameters; operational amplifier properties; the operational circuit; the ideal operational circuit; analysis of the real operational circuit; static and dynamic errors in the frequency domain; dynamic errors in the time domain; input and output impedances;

offset; noise; stability; good laboraton' practices.

Presents an extensive treatment of applicatlons and a practically oriented, unified theory of operational circuits. Provides the reader with practical knowledge necessary to select and use operational amplifier devices.

Servicing Video Cassette Recorders

by Steve Beeching, 250pp, hardback Order - ISBN 0750609354 Price $£ 25.00$

Contains: Ver systems; azimuth tilt;,Frequency modulation; servo mechanisms; colour systems; systems control; long play; VHS-C \& camcorders; a-v sockets.

Written for students and people Involved with ver servicing, this book is an invaluable guide and reference covering all aspects of modern vcrs. Contains new material on basic magnetic theory to C\&G 224

Principles of Transistor Circuits

by S W Amos, 384pp, paperback
Order - 0750619996
Price $£ 17.99$
Contains: Semiconductors and junction diodes; basic principles of transistors; common-base and common-gate amplifiers; commonemitter and common-source ampliflers; common-collector and common-drain amplifiers; bias and dc stabilisation; small-signal af amplifiers; large-signal af amplifiers; dc and pulse amplifiers; rf and if amplifiers; sinusoidal oscillators; modulators, demodulators, mixers and receivers; pulse generators; sawtooth generators; digital circuits; further applications of transistors and other semiconductor devices.

This seminal work has now been presented in a clear new format and completely updated to include the latest equipment such as laser diodes, Trapatt diodes, optocouplers and GaAs transistors, and the most recent line output stages and switchmode power supplies.

Logic Designer's Handbook

by Andrew Parr, 488pp, paperback Order - 0750605359 Price $£ 30.00$

Contains: Simplified data on a comparative basis of ttl and cmos ics; storage devices; logic circuits; timers; counters; drivers; interface circuits; logic gates; definitions of ic characteristics; event driven logic; communication and highways; analogue interfacing; practical considerations; summaries by function of all relevant circuits; individual pin-out diagrams.

Easy-to-read, but nonetheless thorough, this book on digital circuits is for use by students and engineers, and is a readily accessible source of data on devices in the tt and cmos families.

The Art of Digital Audio

John Watkinson, 490pp, hardback Order - 0240513207 Price $£ 49.50$

Contains: Why digital?; conversion; AES/EBU; digital audio coding and processing; digital compact cassette (DCC); advanced digital audio processing; digital audio interconnects; digital recording and channel coding; error correction; rotary head recorders; stationary head recorders; NAGRA and data reduction; Digital Audio Broadcasting (DAB); the compact disc/mini disc.

New edition, completely updated to include all the latest developments, including DCC, the mini disc and digital audio broadcasting.

Microphone

Engineering
Handbook
by Michael Gayford, 384pp, hardback
Order - 0750611995
Price $£ 65.00$
Contains: Microphone techniques; precision microphones; optical microphones; high quality if microphones and systems; radio microphones and ir systems; microphone testing; ribbon microphones; microphone preamplifiers; stereo microphones; microphone standards.

Comprehensive and authoritative book for engineers, techniclans, students and anyone else concerned with the design and use of microphones.

MIDI Systems and
 Control

by Francis Rumsey, 256pp,
paperback
Order - 0240513703
Price 19.95
Contains: Introduction to principles and terminology; synchronisation and external machine control; common implementations; systems control sequences and operating systems; implementation of midi with peripheral devices; practical systems designs.

Second edition is updated and enlarged to take MIDI evolution into account. More examples of real implementations, more diagrams and the whole book has been rewritten to include a far greater practical element, to complement its existing technical strengths. Several completely new sections and complete chapters have been added including a new opening chapter as an introduction to principles and terminology; MIDI timecode; librarians and editors.

Loudspeaker and Headphone Handbook

by John Borwick, 224pp, hardback Order - 0240513711 Price $£ 35.00$

Contains: This book brings together in a single volume every aspect of loudspeaker and headphone theory and practice in sufficient depth to equip students and practitioners alike with a solid working knowledge of the subject. A comprehensive technical reference on the theory and practice of loudspeaker and headphone performance, design and operation.

The Art of Linear Electronics

by John L Hood, 400pp, paperback Order - 0750608684
Price $£ 16.99$
Contains: Electronic component symbols and circuit drawings; passive components; active components based on thermionic emission; active components based on semiconductors; practical semi-conductor components; dc and low frequency amplifiers; feedback negative and positive; frequency response; modifying circuits and filters; audio amplifiers; low frequency oscillators and waveform generators; tuned circuits; high frequency amplifiers/oscillators; radio receiver circuitry; power supplies; noise and hum; test instruments and measurements.

This practical handbook gives a complete working knowledge of the basics and technology of linear electronics - with application examples in such fields as audio, radio, instrumentation and television

Servicing Audio and Hi-Fi Equipment

by Nick Beer, 304pp, hardback Order - 0750621176 Price $£ 25.00$

Contains: Introduction; tools and test equipment; radio receivers; amplifiers; power supply circuits; portable audio; cassette deck mechanics; cassette electronics; turntables; system control; motors and servo circuits; compact disc; mini disc; digltal audio tape; digital compact cassette; speakers, headphones and microphones; repair, addresses.

As a bench-side companion and guide, this work has no equal. Its purpose is to ease and speed up the processes of fault diagnosis, repair and testing of all classes of home audio equipment: receivers, amplifiers, recorders and playback machines.

EMC for Product

Designers

by Tim Williams, 304pp, hardback Order - ISBN 0750612649 Price $£ 25.00$

Contains: What is EMC? standards; EMC measurements; interference coupling mechanisms; circuits; layout and grounding; interfaces; filtering and shielding.

EMCPOR
PRODUCT DESIGNERS

'This book is likely to become essential reading for those designing electronic products for the European market,' according to New Electronics. Widely regarded as the standard text on EMC, providing all the information needed to meet requirements of the EMC Directive.

Build Your Own PC

by lan Sinclair, 256pp, paperback Order - ISBN 0750620064 Price 16.95

Contains: Assembly from scratch mainly for masochists; fundamentals and buying guide; case, motherboard and keyboard; disk-drive details; improvers and modifiers for graphics and i / o; DOS operation and hints; Windows; connecting printers; glossary.

Covers Building your own pc from scratch or from modules. Written at a level suitable for beginners and those with experience of computers or electronics. In addition, this work provides a useful guide for anyone wanting to save money by upgrading their pc themselves.

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sution, Surrey, SM2 5AS

Please supply the following titles:

Qty	Title or ISBN	Price

Please add $£ 2.50$ UK Postage, $£ 5.00$ Europe $£ 7.50$ Rest of World
Total

Name
Address

Post code
Telephone
Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to Reed Business Publishing Credit card no

Card expiry date
Signed

Modulating linearly

Due to crowding in the radio spectrum, it is vital to reduce third-order intermodulation in rf modulators to an absolute minimum. Ian Hickman looks at a technique that promises significant benefits in terms of linearising modulation.

Receiving a given radio signal may be commercially important. It may even be a matter of life and death. But the ether is a crowded place, and a weak signal - even though it be in an otherwise unoccupied channel - may be drowned by the spillover of energy from a higher powered transmission in an adjacent channel. This is particularly the case on the crowded hf bands. There have been persistent rumours of an impending tightening of the specifications for the level of transmitter third order intermodulation products. Since I drafted an amendment to these, incorporated in the current issue of CCIR Recommendation 326, time has passed but the rumours persist.
In an hf ssb transmitter, it is likely to be the transmitter power amplifier output stage that is principally responsible for third order - and possibly even higher odd-order - intermodu-
lation products. But problems can also arise in the modulator stage, especially if poorly designed, while for test and measurement purposes, as clean a test signal as possible is desirable.
This reminded me of an article published

Fig. 1a). Spectra of the two oscillators used to provide the two-tone test signal. Span $0-5 \mathrm{kHz}$, resolution bandwidth 10 Hz , post detector smoothing off, reference level (top of screen) +10 dBV , noise floor -90 dBref . b) 50Ω resistive combining pad providing 10 dB aftenuation from each input to the output and 14 dB isolation between inputs when terminated in 50s. (Nearest E24 values used.)
c) Using the combining pad (unterminated), a third order intermod is visible at 800 Hz , as well as sum and difference products. Spectrum analyser settings as a).

many years ago, concerning the linearisation of an active double balanced modulator, using op-amps. I failed to find it so I am unable to quote the reference, but the scheme is certainly attractive and well worth another look.
Since it was the principle of the scheme that was of interest, I decided to investigate it at very low frequencies. This would enable the investigation to be undertaken without needing careful and eleborate construction to avoid problems with parasitics.
To provide a two-tone test signal to the modulator, two video oscillators were used, one set to 1 kHz and the other to 1.2 kHz . Each was separately connected into a 5 Hz to 50 kHz spectrum analyser and its spectrum stored, both traces being shown in Fig. 1a). The two tones just reach up to the reference level (top of screen) which is at +10 dBV . At the left of the display, adjacent to the 0 Hz marker, low levels of 50,150 and 250 Hz can be seen, being odd multiples of the mains frequency and doubtless due to stray field from a mains transformer.
Also visible are 100 Hz sidebands either side of each tone, at about 70 dB down. Unfortunately the scale does not show up because the HP3580A used does not feature graticule illumination, and I have not yet added this facility to the camera. The second harmonic of each tone at 2 kHz and 2.4 kHz is also visible at over 60 dB down, while higher harmonics are lower still.

Fig. 2a). Combining the two tones at a virtual earth point provides near perfect isolation between sources, as the spectrum analysis, b), shows. Settings as Fig. 1a). Generator outputs reduced to ca. +7 dBm in 50Ω, to give 0 dBV unloaded.

When testing a modulator, it is obviously essential that the two-tone test signal is itself free of intermodulation products. This is not as straightforward as it sounds, requiring isolation between the outputs. The 50Ω outputs of the two video oscillators were therefore combined using a special resistive pad designed for this purpose, Fig. 1b). It is basically a three-port 6 dB resistive combiner with an extra 4 dB pad in series with two of the ports. Thus the attenuation from each input to the output is 10 dB , while the isolation (attenuation) between inputs is 14 dB .

The two tones were combined using this pad and the output connected to the spectrum analyser, Fig, 1c). Due to the attenuation of the pad, the two tones are now 10 dB down on the reference level. The spectrum analyser's sensitivity is unchanged, and all the other products are similarly 10 dB lower. It is of course not permissible to increase the analyser's sensitivity to set the two tones back to the reference level. Their combined value when in phase - their PEP, or peak envelope power is 6 dB greater than either tone alone. This is enough to cause intermodulation products within the analyser itself, due to overload.
Isolation between the oscillators is evidently insufficient, as a number of products are visible. These include the difference frequency, visible as an additional 200 Hz line at the left of the trace between the 150 Hz and 250 Hz lines of Fig. 1a), and the sum frequency at 2200 Hz , between the two second harmonics.
More importantly, there is a third order intermodulation product at 200 Hz below the 1 kHz tone. Third-order intermods usually come in pairs, but there is only the barest hint of a product at 200 Hz above the 1.2 kHz tone. The reason may be that the output of each oscillator, feeding back into the output circuit of the other, is producing upper and lower

Fig. 3a). National's LM1496 double-balanced modulator internal circuit diagram. b) LM1496 connected as a double balanced modulator, with a two-tone test signal applied, modulating the 1 mA standing current in Tr_{5} and Tr_{6} by $\pm 90 \%$.
c) Resultant output spectrum, showing the (largely) suppressed carrier at centre screen, the two tones in the upper sideband with third order intermods either side, and a similar picture in the lower sideband. Thirdorder intermodulation products at 20.8 kHz and 21.4 kHz are 44 dB down on either tone, i.e. 50 dB down on PEP (and similarly in the lower sideband). Centre frequency 20 kHz , span 5 kHz , resolution bandwidth 10 Hz , post detector smoothing off.

Fig. 4a). Modulator circuit with additional linearising opamps.
third order intermodulations, with the phasing such that they add on the lower side but cancel on the upper.
In search of a better arrangement, the special combining pad was removed and the output level of each oscillator reduced by 10 dB to compensate. The two tones were then added at a virtual earth point, as in Fig. 2a). This resulted in the two tones appearing at the same level as in Fig. 1c). However there were no third order intermodulations visible above the noise floor of 80 dB below either tone, 86 dB below PEP, Fig. 2b).
With a clean two-tone test signal avaiable, it was time to look at the performance of an active double balanced modulator. The one chosen was the popular and widely secondsourced LM1496, Fig. 3a). Standing current through each of the signal input transistors $T r_{5,6}$ is set by the associated current sources $T r_{7,8}$.
The standing currents are modified by signal current through the gain defining resistor, which is connected between pins 2 and 3 . The current through this resistor will of course be zero when when the differential signal voltage between pins 1 and 4 is zero. Standing currents through $\operatorname{Tr}_{7,8}$ mirror the current injected into Tr_{9} via the bias terminal.
Current through Tr_{5} is steered by the switching cell $T r_{1-4}$ to the positive or negative output at the same time as that through T_{6} is steered to the negative output or the positive output, by the carrier input. Thus if the currents in Tr_{5} and $T r_{6}$ are equal, the current in the positive output is independent of the instantaneous polarity of the carrier, and similarly for the negative output: i.e. both outputs are balanced as far as the carrier is concerned. With signal present, when current through Tr_{5} increases and that through Tr $_{6}$ decreases, if current appears at the positive output in phase with the carrier, or in antiphase when the current through Tr_{6} exceeds that through Tr_{5}. The situation at the negative output is the exact reverse. However, the baseband signal itself does not appear at either output. The circuit is thus also balanced as far as the signal is concerned, or 'double balanced'.
I connected the mixer as in Fig. 3b). This is

4b) With the same input signal level as in Fig: 3, the third order intermods are now about 65dB down on PEP and the fifth order barely discernable. Spectrum analyser settings as in Fig. 3c).

4c) With both tones increased in level by $3 d B$, the signal input is overloaded by about 2 dB , and a mass of higher order products appear.
generally similar to the published typical application circuit, but using $\pm 12 \mathrm{~V}$ supplies instead of +12 V and -8 V . I applied a 20 kHz squarewave of $\pm 1.5 \mathrm{~V}$ peak to the carrier input.
Since switching stages Tr_{1-4} have no emitter degeneration resistors, a small swing of 100 mV or so is enough to switch the current from one path to the other. The 10% to 90% rise and fall times of the 3 V pk -pk squarewave carrier were just $1.5 \mu \mathrm{~s}$. As a result, the effective switching time was less than 100 ns , or very small indeed compared to the period of the carrier.
A high degree of linearity at the signal port is ensured by the comparatively large value of
resistance between pins 2 and 3 , namely $1 \mathrm{k} \Omega$. Very much greater sensitivity to the input at the signal port is possible by reducing the value of this resistor, but only at the expense of linearity, as discussed in the panel.
The signal was applied to pin 1 only, pin 4 being grounded, i.e. as an unbalanced input. But the effect is almost exactly the same as using a balanced drive, in view of the nearperfect current-source 'long tails' supplying $T_{r_{5-6}}$ emitters. Similarly, an unbalanced drive was used for the carrier input.
As the voltage swing at the signal input modulates the two tail currents nearer and nearer to $\pm 100 \%$ of their standing value, sshaped or third-order distortion will eventually set in, regardless of the value of the gaindefining resistor between pins 2 and 3. Third-harmonic distortion of the signal current fed to the switching section $\boldsymbol{T r}_{1-4}$ results. This appears not only as third-harmonic distortion of the two tones. It also appears as third-order intermodulation products either side of the two tones, in exactly the same way as in an audio frequency amplifier.
These products are at frequencies $2 f_{1}-f_{2}$ and 2. $f_{2}-f_{1}$, in the present case 800 Hz and 1400 Hz . However, rather than appearing at baseband as in an audio amplifier, here the intermodulations are translated along with the two tones to the upper and lower sideband outputs of the mixer.
I applied one of the mixer-circuit outputs to the input of the spectrum analyser, as in Fig. 3 b), the resultant spectrum being as in Fig. 3 c). It shows the largely suppressed carrier at centre screen, the two tones in the upper sideband with third order intermods either side, and a similar picture in the lower sideband.
Each of the two tone inputs to the mixer was -10 dBV , and the third order intermod products were 50dB down on PEP (44B down on either tone). Fifth order products at 600 Hz and 1600 Hz above and below the carrier are also just visible.
With 1 mA tail current in each of $T r_{5}$ and $T r_{6}$, the maximum possible linear current modulation is $\pm 1 \mathrm{~mA}$, via the gain-defining resistor R_{e}. This corresponds approximately to $2 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ at the signal input. With two tones at -10 dBv , the peak envelope voltage is $\pm 0.88 \mathrm{~V}$, or barely 1 dB below that theoretical maximum! Clearly, the high value of gain defining resistor is very effective at linearising the modulation.
A reduction in the drive level, so that the signal was not just 1 dB below overload level, but $3 \mathrm{~dB}, 6 \mathrm{~dB}$ or more below, would improve the linearity, driving the intermods even further below PEP But the noise level remains unchanged. As a result, the circuit's dynamic range would be reduced. However, a substantial reduction in intermod levels is possible without reducing the input signal level at all, by using op-amps to linearise the transconductance of the $T r_{5,6}$ pair.
The arrangement is simplicity itself, Fig. 4a). Connected as unity gain followers, the two opamps drive the bases of $\boldsymbol{T r}_{5}$ and $\boldsymbol{T r}_{6}$ so as to force the voltages at their emitters to

Linearity issues

Long-tailed pair Tr5,6 in Fig. 3 operates very linearly, provided the signal input swing is not too large. This is due to the emitter degeneration provided by the gain setting resistor R_{e}. But the transistors themselves contribute some additional resistance, dependent on the emitter current. When a grounded-emitter transistor is driven from a very high impedance source, i.e. a constant current generator, the collector current is determined principally by the base current and the device's current gain. When driven from a very low impedance source however (a constant voltage generator), a different model is appropriate. Often, a very simple model, such as shown at a) in Fig. 5, suffices to give an understanding of how a circuit works, and of its limitations.
The diagram shows a transistor with infinite mutual conductance, g_{m}, so that as far as small changes of signal voltage are concerned, its internal emitter vol tage follows exactly the base voltage. But between this notional internal emitter and the outside world, there is a resistance r_{e} The value of this resistor depends on the emitter current and hence also on the sig-nal-voltage.
Resistance r_{e} is inversely proportional to emitter current. In fact at room temperature the value of the resistance is given by,

$$
r_{\mathrm{e}}=25 / /_{\mathrm{e}} \Omega
$$

where I_{e} is in milliamps.
Imagine that the transistor is biased so that the standing dc is 1 mA . When a $\pm 250 \mu \mathrm{~V}$ ac signal is applied to the base, the current swing will be al most exactly $\pm 10 \mu \mathrm{~A}$.
But not quite. For when the emitter current rises to $1.01 \mathrm{~mA}, r_{e}$ will fall to $25 / 1.01 \Omega$, and likewise will rise by 1% when the current falls to 0.99 mA . So the increase in current at the positive peak will be slightly greater than the decrease at the negative peak.

Fig. 5a) Simple model of a transistor driven from a constant voltage source. b) In a long-tailed pair with ideal 'tails', the increase in current through one transistor must exactly match the decrease through the other.
c) Additional resistance R_{E} between the emitters linearises the stage, permitting a much larger percentage current swing for a given acceptable degree of distortion, at the expense of needing a much larger voltage swing at the input (reduced stage gain).

The disparity becomes greater as the fractional modulation of the emitter current is increased. This leads to significant second harmonic distortion unless some measure, such as negative feedback is used to control it.
In a balanced circuit, such as b) in the Figure, the internal emitter resistance r_{e} of each transistor must be added to any external resistance R_{E} connected between the transistors. With constant tail currents as shown, as the current through one transistor increases, that through the other must fall by the same amount.
If the current through $7 r_{5}$ decreases by 10% its r_{e} will rise to $25 / 0.9$, which is 27.78Ω while the r_{e} of Tr_{6} will fall to 22.72Ω. Thus the effective emitter to
emitter resistance is $\left(R_{\mathrm{E}}+50.5\right) \Omega$.
This differs from $\left(R_{\mathrm{E}}+50\right) \Omega$, the value when both emitter currents are 1 mA , by only 10% even if R_{E} is 0 , and a mere 0.05% if R_{E} is $1 \mathrm{k} \Omega$. If the current variation is not $\pm 1 \%$ but, say, $\pm 90 \%$, then even when R_{E} is $1 \mathrm{k} \Omega$, significant peak crushing (third-harmonic distortion) will result, due to the variation of the effective emitter-emitter resistance. For when the current through one transistor doubles to 2 mA , its r_{e} drops only to 12.5Ω, whereas for the other, when l_{e} falls to $0 \mathrm{~mA}, r_{e}$ rises to infinity. The effect of different values of emitter-emitter resistance R_{E} in linearising the mutual conductance $g[\mathrm{~m}]$ of a long-tailed pair is illustrated in c) in the Figure.
equal the signal input at the op-amp noninverting inputs.
Falling differential transconductance of the $T r_{5,6}$ pair as one or other nears cutoff is within the loop feedback, and thus largely overcome. This is shown in Fig. 4b), where the analyser settings are as those in Fig. 3c). Now, the third order intermods are 65 dB down on PEP, even with the input within IdB of overload.
With both tones increased by 3 dB , the signal input circuit is overdriven and a mass of oddorder intermod products of higher orders appear, Figure 4c). Thus the linearisation
allows the circuit to operate in an extremely linear manner, right up to just below the theoretical overload point. And although, for convenience, the results presented here were obtained when operating the LM1496 at very low frequencies, the scheme doubtless operates at much higher frequencies.
Data book typical performance curves for the $L M 1496$ show its performance to 50 MHz and beyond. Op-amps are now available with gain-bandwidth products of many hundreds of megahertz. As a result, it should be easy to implement the linearisation scheme at, say, 10.7 MHz , or even higher frequencies. This
would provide a super-linear modulator for test and measurement purposes, or for use in transmitters of exceptional linearity, using perhaps class A output stages.

"moving from schematic to layout could not be easier"

Electronics World \& Wireless World Jan 1995

PRO + now

 with SPICE file export \& SpiceAge DDE Link!
quickroute 3.0

Integrated Schematic and PCB
Design for Windows 3.1

DESIGNER £99

*Schematic \& PCB Drawing *1/2 layer auto-router *Supports Windows printers/plotters *Full set of libraries *Clipboard support *Designer Special (manual on disk) also available.

PRO £199

*Schematic \& PCB Design *Schematic Capture *Integrated Rats-Nest Generation *1-8 layer Auto-router (faster than Designer) *Net-List Export *Supports Windows printers/plotters *CAD-CAM outputs.

PRO+

£299

As the PRO but also includes *Advanced Schematic Capture (Busses,Power rails,etc) *Larger Schematic \& PCB Designs *Gerber file IMPORT for File Exchange *Extended libraries (CMOS,SMT,etc) *SPICE Export *SpiceAge DDE Link

Busses \& power rails handled using Global Nets on PRO+

Integrated Schematic \& PCB Design.

POWERware, 14 Ley Lane, Marple Bridge,

 Stockport, SK6 5DD, U.K.
Tel/Fax 01614497101

*Prices exclude P+P and V.A.T. *VISAMasterCard Accepted *Network versions available.

CIRCIE NO. 137 ON REPLY CARD

TRANSISTORS + ICS + SEMICONDUCTORS

RESISTORS +CAPACITORS+INDUCTORS
SURVEILLANCE+SECRECY+SECURITY
PLUGS+SOCKETS+LEADS+CONNECTORS
TV \& VIDEO SPARES (INC. VIDEO HEADS)
HIFI+DISCO+HIFI GADGETS+SPEAKERS

- AUDIOPHILE COMPONENTS (inc capacitors)

IN CAR AUDIO+SPEAKERS (inc bass tubes)

- COMPUTER ACCESORIES+BOARDS

TOOLS+TEST EQUIPMENT+BENCHWARE
\& much much more (over 10,000 lines).
send today for the very interesting catalogue.
Pay by PO, cheque, credit card or tape coins to paper.

[^4]
NEW PRODUCTS CLASSIFED

Please quote "Electronics World + Wireless World" when seeking further information

A-to-d and d-to-a converters

Serial-output a-to-d. Harris has the HI5816 12-bit, sampling a-to-d converter with serial output, which takes only 3.5 mA from 5 V and allows direct digital input to microcontroller serial ports. Conversion time is $20 \mu \mathrm{~s}$ and sampling rate $50 \mathrm{ksample} / \mathrm{s}$. Data is output either as the conversion proceeds or when it is completed, the mode being pin-selected. The in-built th amplifier has a 1 MHz bandwidth. Harris Semiconductor UK. Tel., 01276 686886; fax, 01276682323.

Dual delta-sigma a-to-d. Crystal's CS5504 is a dual-channel delta-sigma converter allowing perfect differential non-linearity with no missing codes to 20 bits, with fast, on-chip calibration circuitry. It samples at up to 200 sample/s and both 50 Hz and 60 Hz noise is rejected by built-in filtering. There is no need for the usual external integrating capacitor and control logic and the device uses

Microprocessors and controllers

Fastest Pentlum. Intel has introduced a new verslon of the Pentium processor, which is in $3.3 \mathrm{~V}, 0.35 \mu \mathrm{~m}$ cmos/bipolar technology, operates at 120 MHz , gives 140 SPECint92 and 103 SPECfp92 and is now avallable. Die size is about half that of earlier $0.6 \mu \mathrm{~m}, 75,90$ and 100 MHz Pentiums. Intel Corporation UK Lid. Tel., 01793 696000; fax, 01793430763.

a cheap crystal as used in watches as the clock. The family includes single, dual and four-channel versions, all with direct interfacing to low-power microcontrollers, since these devices operate with supplies down to 3.3 V . Crystal Semiconductor Corporation. Tel., (USA) 00512442 7555; fax, 00 5124457581.
'Fastest' a-to-d. Made by Signal Processing Technologies, the SPT7760 is a full parallel flash converter with a guaranteed sample rate of $1000 \mathrm{Msample} / \mathrm{s}$ and an analogue bandwidth of 900 MHz . Input capacitance is 15 pF , stabilised by the inclusion of 256 buffiers, and output is In Gray code. Single-ended 5.2 V is needed. Ambar Cascom Ltd. Tel., 01296 434141; fax, 0129629670.

Little a-to-d. Said by Analog Devices to be the smallest 12-bit a-to-d converter to give $100 \mathrm{ksample} / \mathrm{s}$ from one 2.7-5.5V supply, the $A D 7896$ is in an 8 -pin SOIC or minl-dip. Input range matches the supply voltage and consumption from $3 V$ is 9 mW or $15 \mu \mathrm{~W}$ in power-down, which is automatically timed to occur after a conversion and 6 ns before the next one. Track-and-hold and a serial interface are on-chip. Analog Devices Ltd. Tel, 01932 266000; fax, 01932 247401.

Discrete active devices

Uhf silicon fet. MHW916 from Motorola is a laterally diffused mosfet designed for European extended GSM base-station use, working in the $925-960 \mathrm{MHz}$ range. It operates from 26 V and takes 15.5 dBm of rf input, giving a gain of 26.5 dB minimum, harmonics being 35 dBc down. Input and output are both 50Ω. Motorola Inc. Tel., 01908 614614; fax, 01908 618650.

240 V mosfet. Zetex's ZVP4424G SOT223 mosfet has a maximum on resistance of 12Ω at 100 mA and 2 V maximum $V_{G S}$. Rise and fall times are 8 ns and 20 ns at a 100 mA drain current and the device controis a continuous 480 mA drain current pulsed to 1A. Input capacitance is 100pF. Zetex plc. Tel., 0161-627 5105; fax, 0161-6275467.

Low-voltage mosfets. Four power mosfets from Siliconix, in the company's TSSOP Lite Foot family turn on fully on 4.5 V and operate down to 2.5 V . The Si6xxxDQ series includes a single n-channel device, double n-channel and p-channel
types and a complementary version, breakdown for n-channel devices being 20 V and 12 V for the p -channe! types, with a $35 \mathrm{~m} \Omega$ on resistance in the single n -channel unit $(100 \mathrm{~m} \Omega$ for the dual p -channel type).
Siliconix/Temic Marketing. Tel., 01344 485757; fax, 01344427371.

Digital signal
 processors

DSP56002 evaluator. Motorola offers an evaluation module for the DSP56002 24-bit audio dsp chip. The EVM, combined with 32 Kword of onboard sram and a stereo codec, carries out a range of audio processing algorithms. It comes with the DSP5600 X cross-assembler and debug software running under dos. Macro Group. Tel., 01628 604383; fax, 01628 666873/668071.

Linear integrated

 circuitsRail-to-rall op-amp. Linear's LT1366 dual precision op-amp offers rail-torail input and output, input voltage offset of $150 \mu \vee$ and input bias current of 10 nA over the whole input range. Common-mode rejection is 90 dB and loop gain 10^{6} into $2 \mathrm{k} \Omega$. Linear Technology (UK) Ltd. Tel., 01276 677676; fax, 0127664851.

Optical devices

Coaxial 1550 nm laser. NEC says its NDL7701P is the first 1550 nm distributed-feedback laser to go into a coaxial package. It and the 1350 nm equivalent, the 7601 P , use NEC's multiple-quantum well laser diode, the dfb technique exhibiting very narrow spectra for long transmission distance. Output is 5 mW and the devices are suitable for external modulation at up to 10Gbits. NEC Electronics (UK) Ltd. Tel., 01908 691133; fax, 01908 670290.

SM GaAs mmics. Anglia is handling the Samsung SMP range of plasticpackaged, low-cost, gallium arsenide, monolithic microwave ics, Including a $0-8 \mathrm{GHz}$ voltage-variable attenuator ($30 \mathrm{~dB} / 1 \mathrm{GHz}$), the SMP 10008-1; the SMP 10008-2 two-stage type giving 35 dB at 1 GHz ; a $1.8-3 \mathrm{GHz}$ low-noise amplifier, the SMP 22203 with a typical noise figure of 2.2 dB ; the SMP $112061.8-6 \mathrm{GHz}$ medium-
power/driver amplifier; and the SMP13203 low-noise amplifier offering 2.5 dB noise flgure and 15.5 dB gain at 2.4GHz. Anglia Microwaves Ltd. Tel., 01277630000 ; fax, 01277631111.

Mixed-signal ICs

Conferencing. Mitel's MT8924 provides conference call capability in digital switching systems, allowing up to ten independent conferences of three parties or one of thity parties to be set up using a 32 pcm voice channel supporting 2.048, 1.536 and $1.544 \mathrm{Mb} / \mathrm{s}$ data rates. It converts pcm a-law or μ-law data to linear form, processes it and reconverts the result to companded form, sending it to the

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World + Wireless World" when seeking further information
pcm output port. There is programmable noise suppression and individual channel gain. Mitel
Semiconductor. Tel., 01291 430000; fax, 01291436389.

Fast, low-noise plls. MB1516A and MB1517A from Fujitsu operate at 1.1 GHz and 2 GHz for GSM and DECT mobile work. Both have a pulse-swallow function to form a fast dual-modulus prescaler with selectable $64 / 65$ and $128 / 129$ ratios. In DECT tests, spurious noise levels are 72 dB and phase noise $80 \mathrm{dBc} / \mathrm{Hz}$. Power needed is 6.5 mA and 14 mA respectively from single 3 V supplies. Fujitsu Microelectronics Ltd. Tel., 0162876100 ; fax, 01628781484

Pll for 'phones. Murata's HFQ351/361 series of miniature pll modules for E-AMPS and E-TACS radiophones are surface-mounted devices containing a low-pass filter, microstrip line resonator vco and a pll They work on 3 V and take a maximum of 18 mA , providing an $\mathrm{s}: n$ ratio of over 45dB and carrier:noise of 72dB. Murata Electronics (UK) Ltd Tel., 01252811666 ; fax, 01252 811777.

Cameras

Video imaging terminal. Harris's high-definition Compact Video Imaging Terminal weighs 12tb, is battery-powered and captures colour and monochrome images from analogue cameras, still and live video cameras and digital cameras, including the Associated Press NC2000 and Kodak's DCS 420 series, as well as images from infrared and radar sensors. Results are stored, manipulated, annotated compressed and transmitted on hf, vhf or uhf channels, satellite links or landlines. There is a built-in 4in screen and an internal memory is enough to store 20 images, with room for a removable memory card. Harris Corporation. Tel., 001716 244-5830

PASSIVE

Passive components

Thin-film capacitor. In values of 0.1 pF to 24 pF at between 50 V and $100 \mathrm{~V}, \mathrm{AVX}$'s ACCU-P range of thinfilm $\mathrm{n} /$ /microwave capacitors are now available in 0603 size packages Cover and substrate are alumina rather than glass for improved thermal matching, smaller size or better current handling. AVX Ltd. Tel., 01252770000 ; fax, 01252770001.

SM carbon trimmer. Murata's POZ3 series of surface-mounted trimmer potentiometers are constructed in two parts to give lower cost and better reliability. Special plating provides good solderability and the substrate used prevents flux wicking. Resistance range is $200 \Omega-2 \mathrm{M} \Omega$ at 0.1W. Murata Electronics (UK) Ltd. Tel., 01252811666 ; fax, 01252 811777.

Connectors and cabling

Smart-card connector. Made by Jin Kwang, the JCR series of smant-card reader connectors have dual tension points to ensure stable card insertion and are designed to avoid damage to

Low-power smps. LCS25 from Gardners is a 25 W switchedmode power supply possessing a range of industry approvals and interchangeable with many existing units; it has standard pinout and fixing centres on single. double and treble output units, the range covering several combinations of $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V in seven open-frame or cased models accepting 85265 V ac or $12 \mathrm{~V}, 24 \mathrm{~V}$ or 48 V dc at the input. Gardners Ltd. Tel. 01202 482284; fax, 01202 470805.

the pcb when the housing cover is opened. They are available with eight or sixteen gold-plated contacts and can be supplied with blade or seaied detection options. Pedoka Ltd. Tel., 01462422433 ; fax, 01462422233.

Insulated BNCs. Multi-Contact has the HCK range of insulated BNC connector accessories, including test eads, connectors and adaptors for a range of hi needs in both male and female form in red, black or blue. The connectors are designed to handle 1 kV to earth, with a maximum of 500 V between inner and outer. Attachment to the lead is by solder or crimping. Multi-Contact UK Ltd. Tel., 01908 265544; fax, 01908262080.

PC card connectors. Light-weight connectors from Fujitsu, the FCN560 H series, conform to both JEIDA and types I, II and III PCMCIA standards and are meant for completely automatic assembly. The ejector mechanism is assembled separately to allow the connector to be mounted using a pick and place machine. Special pins and solderable flanges prevent subsequent mounting stress and movement during soldering. Fujitsu Microelectronics td. Tel., 01628 76100; fax, 01628 781484.

Crystals

Sm crystals. CMX 5000 crystals by C-MAC cover the $10-250 \mathrm{MHz}$ frequency range, with fundamentals up to 100 MHz using a plasma etching technique and overtones above that. From $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$, stability is $\pm 5 \mathrm{ppm} ; \pm 50 \mathrm{ppm}$ in the $-55^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ range. Surface-mounted packages are in ceramic and have an overall height of 2.7 mm . C-MAC Quantz Crystals Ltd. Tel., 01279 626626 ; fax, 01279454825.

Eight-led packages. New in Dialight's Series 567 circuit board indicator range is a two-level type containing two rows of four rectangular-window leds in yellow, green and other combinations in UL94V-0 black housings. Dialight. Tel., 01638 662317; fax, 01638 560455.

Printers and controllers

Thermal printers. Static head thermal printer mechanisms and interface boards by Panasonic are quiet and fast and are meant for use in instrumentation and data terminals. Six models in the EPL 1100 range use paper 60 , 80 and 112 mm wide at print speeds of eight and 16 lines/second, the number of dots being in the 448-832 per line, depending on width, or up to 80 characters per line. They all handle graphics and can be fitted with an end-ofo paper sensor. Able Systems Ltd. Tel., 01606 48621; fax, 0160644903.

Colour vga Icd. LDH102T-10 is an active-matrix Icd module by FPD, which is a joint Philips, Thomson, Sagem and Merck concern, that provides vga resolution on a 10.4 in diagonal screen. With its 24 -bit driver there are 16.7 million colours and performance is applicable to multimedia computing on notebook types. Although pixel drive is by way of diodes, rather than by transistors, drive electronics for titt displays are compatible and the smaller diodes allow more light to pass to give brighter presentation. Philips Components. Tel., 003140 722790; tax, 003140724547

Filters

Card-based filter system. Multichannel electronic filters systems by Kemo take the form of cards, assembled in cases to users requirements and allowing a wide range of frequency, gain and characteristic to be configured. The $21 S T$ range, which is manually switched, offers filters from the simple fourth-order, 15:1 cut-off adjustment type to the 2555:1 cut-off model with a choice of four, six or eight poles. In the computer-controlled 21CC range of units, choices are one or two channels per card, differential input, jumper-selected gain and gain/offset
trim. Verslons with programmable gain and adjustable frequency are available. Kemo Ltd. Tel., 0181658 3838; fax, 01816584084

Instrumentation

Bright panel meters. DMS-30PC-RL panel meters made by Datel use the newest, brightest, 0.56 in red leds and take a mere 10 mA from 5 V . They are said to be readable from 20 tt. The internal a-to-d converter is an autozero type, accurate to within ± 1 count. Three standard ranges are $\pm 200 \mathrm{mV}, \pm 2 \mathrm{~V}$ and $\pm 20 \mathrm{~V}$, all having $1 G \Omega$ input impedance, protected to $\pm 250 \mathrm{~V}$, with autopolarity and overrange indication. Datel (UK) Ltd. Tel., 01256880444 ; fax, 01256880706.

Satellite terminal tester. Racal's 6121 is said to be the world's first commercial test set for satellite mobile terminals and is meant for maintenance, servicing and production test of mobiles for geostationary satellites Optus, AMSC, TMI, Inmarsat- M and mini M, and the future low-earth orbit types such as Iridium and Globalstar. Tests carried out include call setup, call termination, voice loopback, data, facsimile, logon, acquisition and transmission disable, with a number of transmitter tests. Racal Instruments Ltd. Tel., 01734 669969; fax, 01734262121.

40 GHz signal generator. Extending the coverage of the R\&S SME and SMT range of signal generators is the SMP 0440 GHz instrument, which is available with am, fm, phase, ask and isk modulation, with an optional internal pulse generator. Frequency coverage is $2 \mathrm{GHz}-40 \mathrm{GHz}$, with the low end starting at 10 MHz as an option, to 0.1 Hz resolution. There is also frequency and level sweep and a list mode for fast frequency hopping. Rohde \& Schwarz UK Ltd. Tel., 01252 811377; fax, 01252811447.

Fibre tester. Using time-domain reflectometry, a new version of Tektronix's Fibremaster, the TFP2AFM resolves faults in optical fibres at 850 nm and 1310 nm down to less than 20 cm , with a very short dead zone. The instrument supports two optical modules with four wavelengths, allowing exact configuration without damage to the modules. Both multi-mode lans and slingle-mode wans can be tested, results being produced in hard copy and on floppy disk. Tektronix UK Ltd. Tel., 01628 486000; fax, 01628 474799.

Digital clampmeter. DL 235 is a clamp meter combining conventional operation with dmm versatllity. It gives 4-digit readout of true rms current to 1000 Apk , with an analogue display for transient capture and frequency measurement. Accuracy is 2% at 400 A from 0.5 Hz to 10 kHz . Its features include detection and measurement of harmonics in neutral currents, alternating and direct voltage and resistance and continuity, a display hold facility assisting in difficult conditions. Di-loG

Instruments. Tel., 01942 222657; fax, 01942227735.

Sound-level meter. B\&K's Type 2236 sound-level meter is intended for use in measurements concerned with the Noise at Work legislation, containing no more than is necessary for this work. It measures noise levels and can be upgraded by built-in octave filters for frequency analysis to allow remedial measures to be determined. The instrument has standard international parameters for industrial noise measurement, and is provided with a serial interface to down-load results to a pc. Bruel \&

Sm.rf connectors. An nf connector for 50 S 2 application, the Hirose JAE CV10 has a 3 GHz bandwidth with vswr of $1: 3$ and measures 3 mm oflithe board with the right-angle plug inserted. Other versions are available: the S.F2-R-SMT is a 50Ω type on tape for automated production, offering a vswr of 1.2 at 2 GHz with a profile of 4.7 mm after mating. Flint
Distribution. Tel., 01530
510333; fax, 01530510275.

Kjaer (UK) Ltd. Tel., 0181954 2366; fax, 01819549504.

Literature

Enclosures. Vero's full range of plastic and metal enclosures and accessories is described in a new colour catalogue, with guides based on printed-board sizes and templates to help cost and specification of modifications that may be needed. Vero Electronics Ltd. Tel., 01703 266300; fax, 01703265126

Esd. Baystat make bags to protect components against the effects of efectrostatic discharge and now offer a free booklet on esd, its assoclated problems and how to prevent it. Teknis Ltd. Tel., 01823 481248; fax, 01823481120.

Production equipment

Pcb miller. If you have a pc, you can mill printed-circuit boards using the German LPKF system, the Protomat. For around half the cost of some other systems, the package includes board design software and connects directly to the pc. Bed size is 420 by 375 mm and repetition accuracy $\pm 0.02 \mathrm{~mm}$. All standard materials can be handled, both single and double sided. Tracks CAD Systems Ltd. Tel., 01344 55046; fax, 01344860547.

Spectrum analysers. Intended, in the main, for the communications industry, the FSE range of spectrum analysers by R\&S covers the $20 \mathrm{~Hz}-7 \mathrm{GHz}$ range and could therefore be sald to be universal in application. Speed is one of its claims to fame: it carries out 25 sweeps/s and synchronised tuning at sweep times of 5 ms provide accuracy at every display point. Gap sweep and a resolution of $200 \mathrm{~ns} /$ division for time domain analysis allow simultaneous measurement of pulse rise and fall times at high resolution. A phase noise of around $-128 \mathrm{dBc} / \mathrm{Hz}$ at 10 kHz eliminates the need for extra phase nolse testing. Test functions include elght different markers, adjacent-channel power and occupied bandwidth measurement and a selectableresolution counter. Hard and soft keys make for ease of operation, as does the large colour monitor, and output is provided for a range of printers and plotters and all Windows file formats. Rohde \& Schwarz UK Lid. Tel., 01252 811377; fax, 01252 811447.

Power supplies

Fast-response regulator. Linear's LT1585 4.6A, 3-5V linear regulator is claimed to have the best combination of low drop-out and fast transient response. Input is a maximum of 7 V and fixed and adjustable versions are made. Thermal limiting is provided. Micro Call Ltd. Tel., 01844 261939; fax, 01844261678.

Intelligent smps. Vero has a 300 W single-voltage version of the ISIPower switched-mode power supply, which is said to be the first 19-in rack pluggable psu to have an intelligent controller to allow programming, control and interrogation from a standard pc by way of an RS-232 link. Its 800 kHz converter is over 80% efficient and the unit is in a 6 U by 8 HP module. Outputs currently

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World + Wireless World" when seeking further information
available are $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$ and 24 V , with autoranging input from 115 V ac to 230 V ac. Vero Electronics Ltd. Tel., 01489 780078; fax, 01489780798

Three-output dc-to-dc converters. Interpoint's MHF family of mil. spec. dc converters now includes the MHF $+28515 T$, which provides both $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}(\pm 12 \mathrm{~V}$ from the 285127 outputs at a total power of 15 W . The units are in the same package as the single and dual models, which measures 1.45 by 1.12 by 0.325 in . Normal operation is obtained for inputs of $16-48 \mathrm{~V}$, coping with 80 V surges without damage. Output noise is 30 mV pk . Interpoint UK Ltd. Tel., 01252815511 ; fax, 01252815577.

Low-voltage converter. Operating from power supplied by alkaline, lithium, nickel-metal-hydride or nickelcadmium battery packs, Micro Linear's ML4863 converter chip still works when battery voltage is down to 3.15 V for a $5 \mathrm{~V} \pm 3 \%$ output, so extending by up to 10% the time available to the user of a notebook. In addition to the 5 V output, the device produces 3.3 V and 12 V for lcds. A 200 kHz switching frequency reduces the size of the output transformer. Ambar Components Ltd. Tel., 01844 261144; fax, 01844261789.

Power for 3 V micros. Micrel's MIC29150/MIC29300 series of 3 V and 3.6 V supplies provide up to $1.5 \mathrm{~A} / 3 \mathrm{~A}$, with a full-load drop-out of under 300 mV . They are protected against overcurrent, reversed polarity and leads, over temperature and transients and have logic-level on/off control or an error flag to signify dropout. Hawke Components Ltd. Tel., 01256880800 ; fax, 01256880325

Radlo communications products

Receiver protection. Broadband limiters by Anglia in the ACLM-4553 series conslst of pin diode limiters and passive hybrid circuits in a 50Ω line structure, and are meant for use In radar, communications and ecm They come in either stripline or coaxial mountings in eight models, the whole series covering 500 MHz 18 GHz , at a peak input-power capability of 100 W (1-2W continuous). An internal dc return is provided to minimise vswr. Anglia Microwaves Ltd. Tel., 01277630000 ; fax, 01277 631111.

Protection devices

$\mathrm{S}-\mathrm{m}$ fuses. SupraFuse by Schurter is a range of miniature surface-mounted fuses that are laser-trimmed from metal-clad foil to allow special ratings in addition to a standard range, coverage being $63 \mathrm{~mA}-6.3 \mathrm{~A}$. Main areas of usage are transient suppression, interface protection and conventional overcurrent protection. Packages measure 2.6 by 4.5 by 1.9 mm . Radiatron Components Ltd. Tel., 01784439393 ; fax, 01784 477333.

Transducers and

sensors

Absolute shaft encoder. Model $A D$ encoder by Control Transducers is a non-contacting device able to network up to 15 encoders on one six-wire telephone cable in a 330 m cable run interfaced to an RS-232 port, the interface being included. Models available have 2-65536 codes/rev. at up to 115.2 kbaud with 9 or 12 bit accuracy. Maximum shaft speed is $10,000 \mathrm{rev} / \mathrm{min}$. Being an absolute encoder, rather than the incremental type, means that it always shows the correct position and needs no home pulse. Control Transducers. Tel., 01234217704 ; fax, 01234217083.

Pressure transmitter. From HBM, the P19 pressure transmitter is robust both mechanically and electrically, having a welded steel diaphragm contained in a stainless steel case and an emc specification of $10 \mathrm{~V} / \mathrm{m}$ to IEC803-2. Full-scale ranges of 10-500bar are available and there are twenty different connectlon threads to ease the problems of installation into existing equipment. HBM United Kingdom Ltd. Tel., 0181-420 7170; fax, 0181-420 7336.

Silicon accelerometer. Known, for some inscrutable reason, as 'Yoda', IC Sensors's Model 3255 is a dualchip device incorporating a sllicon accelerometer die in the same case as the signal-conditioning asic. The device was originally meant for use in $\pm 50 \mathrm{~g}$ automotive airbag activation and is now available for general use. Sensitivity is $\pm 40 \mathrm{mV} / \mathrm{g}$ about 2.5 V dc and response extends to zero frequency. Shocks and vibration up to 2000 g do not degrade performance. Eurosensor. Tel., 0171405 6060; fax, 01714052040.

Vislon systems

Scan converter. Astrodesign's SC2020 scan converter converts computer graphics to television format for use with video recorders, projectors and monitors in real time. It automatically synchronises to horizontal scan rates from 15 kHz to 80 kHz and includes the hdtv frequency. Features include pan and zoom facilities, NTSC and PAL output, RS-232 control for remote operation and programming and Y, R-Y, B-Y, Y/C and Betacam output. Ginsbury (UK) Ltd. Tel., 01634 290903; fax, 01634290904.

Computer board-level products

Single-board computer. A 386/486 board from Blue Chip, the Apex II, conforms to the new A5 board size standard. It is suited to a variety of embedded and Industrial applications, provlding processing, video and peripheral control on a single 5 V board. processors from a 386DX40 to a 486DX4 can be specified and standard 72 -pin simms give a

maximum of 32Mbyte, with solid-state disk memory by way of 1 Mbyte of flash memory, with sockets allowing more flash and sram to be added. The board supports 640 by 480 pixel Icds and 1024 by 768 on crts. There is one ISA slot for pc AT cards and two serial ports, a controller providing 24 lines of programmable digital i/o. A watchdog timer and real-time clock are backed by a 3.7 V lithium battery, with external battery input provided. Blue Chip Technology. Tel., 01244 520222; fax, 01244531043.

STEbus I/o. Arcom has an STEbus board with memory-backed a-to-d and d-to-a i/o, controlled by a 16 -bit processor. It is supported by 32 Kbyte of ram dual-ported to the bus and is capable of continuous data handling at sample rates to 9 kHz . There are eight multiplexed, differential a-to-d channels and two 12-bit d-to-a outputs, 12 16-bit timers, three interrupt sources and two byte-wide latches to give ttl output. The Analog Devices SP2105 dsp is programmed to control a-to-d trigger, memory storage and memory arbitration. Arcom Control Systems Lid. Tel., 01223411200 ; fax, 01223410457.

Multi-function card. In the form of a short card with a D-type connector, Blue Chip's ADC-44d provides a $p C$ with a combination of input, output and conversion functions. Sixteen analogue inputs with selectable ranges from $\pm 50 \mathrm{mV}$ to $\pm 10 \mathrm{~V}$ can be used singly or doubled up to give a-to-d conversion to 12 bits at $3 \mu \mathrm{~s}$. Programmable gain is $1-100$. Four analogue voltage or current-loop ouiputs are available and there are 24 programmable digital input/output lines at ttl level. Analogue conversions are programmable under i/o control, interrupt control or by dma. Blue Chip Technology. Tel., 01244 520222; fax, 01244531043.
$\mathrm{PC} / 104$ modules. Cards to the PC/104 standard by Advantech are PC-compatible and connect straight to an AT-bus. Those available include cpu core modules, PCMCIA controllers, super i/o modules, Ethernet controllers, solid-state disk modules, flat-panel/vga types and data converters. Fairchild Ltd. Tel., 01703559090 ; fax, 017035559100.

Signal processing Signal Centre v.2, which runs under Windows, is a data acquisition and analysis program providing DDE link to other software, sound for verbal commands and warnings anld process control. Signals are monitored, created, recorde \downarrow, displayed and processed without programming and dita is saved in ASCII with automatic time and date to provide a record. Presentation is in the form of virtual instruments with all the relevant controls and indicators, including oscilloscope displays, all under the user's control; several displays can be used with mouse switching between them. There is a state machine interface for control applications with digital and analog output for motor or servo control. Discrete Foupier transforms and FFTs are incorporated and inputs for range of thermocouples, while processing includes statistics, integration, differentiation, Ilnearisation and signal generation. The package ha; been designed in co-operation with Amplicon Liveline with Amplicon's boards in mind. Amplicon Liveline Ltd. Tel., 0800525335 (free); fax, 01273 570215.

Computer systems

Industrial PC. Panecon-PC by Contec is a PC/AT in which is combined a 10 -In touch-panel display, programmable membrane switches and i/o expansion slots in one panelmounted unit. Tft, lcd, el and stn colour displays are available and the silicon disk emulates a floppy drive to run dos, Windows and other operating systems. There are eight full-size expansion slots, six of them free. The processor is a $33 / 66 \mathrm{MHz} 486 \mathrm{DX} 2$, with 64 Mbyte of dram. 256 Kbyte cache, a 1.44Mbyte disk and two hard disk bays. Gothic Crellon Ltd. Tel., 01734776161 ; fax, 01734776095.

Data communications

Ir ic for IrDA. Conforming to the new Infra-red Data Association standard for cordless, $2400 \mathrm{~b} / \mathrm{s}-115.2 \mathrm{~kb} / \mathrm{s}$ communication between laptops, notebooks, desk-tops and all the other tops, Crystal Semiconductor's CS8130 multi-standard IR chip handles communications between equipment from different manufacturers. It connects to a standard uart, output being to standard led and pin diodes. An evaluation kit is on offer. Sequoia Technology Ltd. Tel., 01734 258000; fax, 01734258020.

Mass storage systems

PCMCIA disk drive. A 260 Mbyte hard disk drive on a type III PCMCIA card allows data transfer between mobile and desk-top computers and to remove sensitive data for security, which is further enhanced by means of a two-level password. To increase battery life, the card automatically goes into idle mode if no access request is present. It is compatible with either PCMCIA-ATA or with 68 -pin ATA (IDE) interfaces, configuring itself to the relevant type. Premier Electronics Ltd. Tel., 01922 700261; fax, 01922787422.

Software

Emc guidance. Although it is less than a year to the effective start of the

European Directive on
Electromagnetic Compatibility, it appears that some manufacturers are unclear about its exact-requirements. With this in mind, Seaward has produced Expert Consultant, a Windows-based package that gives the required standards for any product and offers a guide on how to achieve them, showing how to effect countermeasures in a design. Emc tests defined by the program can then be carried out by the manufacturer if required as a prellminary to full compliance certification. All necessary paperwork is produced by the software, which runs on a 386SX or higher with Dos 5 and Windows 3.1, with an 800 by 60 -pixel graphics card and 10 Mbyte or more of hard disk space. An update service keeps the program current. Seaward Electronic Ltd. Tel., 0191586 3511; fax, 0191 5860227.

Fpga design. Actel's Designer Series 3.0 is a set of tools to simplify the design of field-programmable gate arrays, while maintaining performance. It uses a graphical user interface and is, says Actel, very easy to learn. The tools produce fully deterministic fpga designs to meet timing requirements in one pass, in contrast to other software that requires multiple iterations; the DirectTime option allows specification of the design frequency and timing of important signals, the program then ensuring that the specification is met

A spreadsheet-type timing analyser shows performance results, which can be compared with those specified, taking into account temperature and voltage. PinEdit shows an fpga package graphically and allows signals to be placed on selected plns. All versions of Windows after 3.1 are supported. Actẹl Europe Ltd. Tel., 01256 29209; fax, 0125655420.

Pcb design. Now in the pcb design market, MicroSim announce two packages: PCBoards for Windows and PCBoards with Autorouter for Windows, both currently being offered at low prices as an introduction. There is no limit to the number of devices the packages or number of pins or layers that the packages can cope with, and even basic features of board design, such as board size, shape or number of layers, can be changed at any time. In many other respects, the software is equivalent to many other professional programs. MicroSim Corporation. Tel., 001714 770-3022; fax, 001714 455-0554

Data acquisition. Version 4.6.1 of National's NI-DAQ driver software for the company's pc-based data acquisition equipment is available. Running under dos or Windows, the software allows users of E series boards to perform equivalent time sampling on boards with analogue trigger, change sampling rates without reprogramming delays and execute
new counter-timer operations. It also works with any card and socket services software at v2.0 or higher. Upgrade from older versions is offered free and the package is included with the company's boards. National Instruments UK. Tel., 01635 523545; fax, 01635523154.

System modelling. SB Technology's ModelMaker for Windows is a mathematical modelling program simulating experiments and both event-driven and continuous processes in life sciences, engineering and commerce. Although it is said to be easy to use, it offers powerful tools for analysis, including optimisation, confidence intervals, minimisation, sensitivity and stochastic analysis. The package contains tutorials and examples. Models are built up using a screen diagram. Cherwell Scientific Publishing Ltd. Tel., 01865 784800; fax, 01865784801.

> Where would you be without your business magazine?

Toroidal Transformers

Large standard range approved to EN60742
Large and small production runs catered for Thenil Custom designs from 10 VA to 3 kVA Medical designs to IEC601/BS5724 \& UL544

100\% Final test approved to ISO 9003
All transformers manufactured at UK factory
Designs to most international standards
70 V or 100 V Line $\&$ low noise audio designs
Rapid quotation, design and prototype service
Centre potted \& fully potted versions available

Antrim Transformers Ltd

Sales Department, 30 Bramley Avenue Canterbury, Kent, CT1 3XW, England

Tel: 01227450810 Fax: 01227764609

SEETRAX CAE RANGER PCB DESIGM WITH COOPER \& CHYAN AUTOROUTER

RANGER3 - DOS	$£ 2500$
	- Windows\MT
$£ 2900$	

Hierarchical or flat schematic linked to artwork. Unlimited design size 1 mícron resolution Any shaped pad, definable outline library Pin, gate \& outline swapping - auto back annotation Split power planes, switchable on - line DRC

COOPER \& CHYAN SPECCTRA

autorouter (SP2)
Inputs: OrCAD, Cadstar
PCAD, AutoCAD DXF
Outputs: Postscript, Windows bit map
R2 \& R3 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet, HP-GL, Gerber,

RANGER2 £150

Upto 8 pages of schematic linked to artwork Gate \& pin swapping - automatic back annotation Copper flood fill, Power planes, Track necking, Curved tracks, Clearance checking, Simultaneous multi-layer auto-router

RANGER2 UTILITIES £250

COOPER \& CHYAY SPECCTRA auto-router (SPI) Gerber-in viewer, AutoCAD DXF in \& out

UPGRADE YOUR PCB PACKAGE TO RANGER2 £60

NC Drill AutoCAD DXF

TRADE IN YOUR EXISTING PACKAGE TODAY

Seetrax CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hants, PO8 OS Call 01705591037 or Fax 01705599036

(e)
Matinam
为
(ex
urose
arsom
AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE Postage and packing must be added. Please phone for price. VAT @ $171 / 2 \%$ to be added to all orders. Please send large SAE for details.
Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6DJ Tel: 01952605451 Fax: 01952677978

CLASSIFIED

ARTICLES WANTED

FREE C ClASSIFIED

WA NT ED! !

Top prices paid for your test equipment made by HEWLETT -PACKARD, MARCONL, FLUKE, TEKTRONIX, BOONTON, ROHDE \& SCHWARZ etc.

From Europe's No. 1 Test Equipment Leader
ROSENKRANZ-ELEKTRONIK, AXIL ROSENKRANZ GROSS GERAUER WEG 55, 64295 DARMSTADT/GERMANY Phone: 0049-6151-3998-0 Fax: 0049-6151-3998-18

CONTACT US NOW!
You are looking for test equipment? More than 10,000 units in stock for immediate delivery. Call or fax for our new 100 page catalogue today
** WHAT WE DUNT HAVE YOU DON’T NEED **

TEKTRONIX MODULES 7A26, 7A18, 7B85, 7B80, 7B50A: Fully rested. Sensible offers please. Ian Stirling, Cottaracre Star. Fife KY7 6LA. 01592757384.

WANTED: prewar television. Jas Jansen, Hogeham 117D, NL-5104JD Dongen, Netherlands. Tel: (eves) 010311623 18158. Fax (office): 01031 13624664.

WANTED: TEKTRONIX Plug in moduse, Type AA 501 Distortion analyser Also SG505 oscillator. Phone: G. E. Willard 01159846116.
WANTED: Agent/spy radio sets. All periods. SOE/SAS/SSTR-SOVJET etc. German W.W. 2 radios. OZ8RO. R Otterstad, Høsterkøbvej 10, DK-3460 Birkerød, Denmark. Tel: 42815205.

WANTED: TUBE for Solartron CD1400 oscilloscope, type SE5/2A. Poole 01202 (02722.
FOR SALE: Dranetz phase meter, 2 Hz $-700 \mathrm{KHz}, 0.01$ degrees resolution, good for filters, crossovers etc. $£ 350$ ono. Tel: Mike 01483487189 (eves)
SALE OR SWOP for CD-Rom drive. 'Parkin Elmer, infra-red spect polometer, infragraph H1200, working. Phone 01273553505.
FOR SALE: EWWW 1980 to 1994 Offers. Phone: Tony - 0127666155 evenings.
WANTED: prewar television. Jas Jansen, Hogeham 117D, NL-5104JD Dongen, Netherlands. Tel: 010311623 18158. Fax (office): 0103113624664 Thanks!

ADD VALUE AND CREDIBILITY WITH REPRINTS

Abstract

Multiple copies of your articles and advertisements published in this magazine make ideal promotional material for sales literature, exhibition handouts, direct mail, new product launches, distributor promotions, Public Relations etc.

You can add your own artwork and copy, utilise the front cover of this magazine, include your list of distributors, and/or your latest advertisement/s. Reasonably priced reprints can be tailor-made to your own specific requirements or simply reprinted in their original form. (Minimum order number 250)

For a FREE quotation please telephone Jan Crowther now on: 0181-652 8229 or fax: 0181-652 3978 Reprint Services, Reed Business Publishing,
Room 1006, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS, England

INDEX TO ADVERTISERS

	$P A G E$		$P A G E$
Airline Sales	548	MB	538
Anchor Supplies	604	M\&D	578
Antrim Transformers Ltd	619	Microgen	
Bull Electrical	544	Milford Instruments	599
Cirkit Distribution Ltd	538	MQP Electronics	565
Cricklewood Electronics	614	Number One Systems	578
Dataman	CBC	Powerware	590
Display Electronics Ltd	544	Ralfe Electronics	614
Field Electric Ltd	614	Robinson Marshall (Europe) Ltd	624
Grandata Ltd	566	Seetrax Ltd	IRC
Halcyon Electrics	548	Smart Communications	620
Inter Connections	548	Stewart of Reading	570
ISIS	538	Surrey Electronics	599
John Morrison (Micros)	548	Telford Electronics	599
Johns Radio	572	Telnet	620
JPG Electronics	593	Those Engineers Ltd	560
Kestrel Electrical Components	593	Triangle Digital Sources	573
Keytronics	574	Tsien Ltd	599
Lab Center	576,579	Ultimate Technology Ltd	551
Langrex Supplies Ltd	593	Warwick Industrial \& Electrical	IFC
Lloyd Research	583	Warwick	593

CLASSIFIED

RECRUITMENT

Are you a keen electronics graduate?

Leading electronics publication needs an enthusiastic editorial assistant.

No experience needed. Hard work but rewarding - a unique opportunity to learn about magazine publishing with Britain's best.

Based in Sutton, Surrey Ring 01816528638 for more details.

DISTRRBUTORS

- ANS522		STKK352		${ }_{\text {STAR270 }}^{\text {STR }}$	${ }^{10.00}$	TEAO2obc	4.50
${ }_{\text {AN6327 }}$		STK4803	7.05	TA7271	2.50	TuA 20000.4	4.25
${ }^{\text {AN6577 }}$		STK4843		${ }_{\text {TA }}$	${ }_{2}^{22}$	U8448	2.35 55 50
		STK5315		TA7698	2.20 5.00	UAG6068	${ }_{3.00}^{5.50}$
		STK5338		TAAz20		UPC1118	1.00 $\substack{1.05 \\ 515}$
${ }_{\text {H }}^{\text {HA1171123 }}$		STK53561	${ }_{2}^{2.15}$	${ }_{\text {TAAB214 }}^{\text {TA }}$		UPCC1228	5.15 2.20
KA6210	4.99	${ }_{\text {STK5372H }}$		${ }_{\text {TAA2215 }}$	3.300	UPCC1420	4.50
(23220		STK5412		${ }_{\text {TA8659 }}^{\text {TAP205 }}$	- ${ }_{13.00}^{3.95}$	${ }_{\text {250B14 }}$	${ }^{3.710}$
4445	1.90	STK5490		tAF5339	0.75	${ }^{25 A B 39}$	1.40
La4as	${ }_{2} 1.55$	STK7226	${ }_{7}^{14.50}$	TDA ${ }^{\text {Til17 }}$	2.00 300	${ }^{2541062}$	${ }_{1}^{1.10}$
Lente		STK7308		TDA ${ }_{\text {TDA3562 }}$	${ }_{3}^{2} 250$	8U500	2.45 1.50
'ı339	-2.25	STKr356	8.75		3.00 8.00	Su5080\|PHI)	0.80
		Sk73ato		${ }_{\text {TTA }}$		(e)	${ }^{1.25}$
м99988		STK73410/2		тDA3850	18.99	BubiobA	1.40
		STR44?		TDAA4505A			5
M83730		stras	${ }_{25.00}$	T0Aas55B	4.10	вบ932	
		STR3125 STRA211		Toas ${ }^{\text {TOAS5ESE }}$	${ }_{6}^{4.80}$		2.15
STK435	4.00	STRAO90	11.15	TDA4505k	6.15	butila	0.70
${ }_{\text {STK4661 }}^{\text {STK2250 }}$		STR20005		Tidasbio	${ }_{4}^{4.40}$	BUT11AF	$\stackrel{1}{120}$
(itcken	$\underset{\substack{7.50 \\ 5.50}}{\text { c. }}$		3.05 3.75 3.7505		$\underset{\substack{2.50 \\ 3 \\ \hline \\ \hline 09 \\ \hline}}{ }$		1.10
STK414/2/2		STh56041		${ }_{\text {TDAB }}$	- 14.90	BuIb6a	${ }^{1.190}$
STK4162/2				${ }_{\text {TJAAB73 }}$			1.05 3.10
(STRO1806		TEA2018A		${ }_{\text {BUW13 }}$	0°
When you have been let down by the rest come and try us for fast friendly service. Ask for our full, comprehensive catalogue, FREE OF CHARGE							
Please phone us for the types not listed. Please add 60 p post $\&$ packing and then add 17.5% VAT to the total. Callers by appointment only.							
J.J. COMPONENTS							
63 THE CHASE, EDGWARE							
MIDDX. HA8 5DN, ENGLAND							
Hotline No: 081-381 1700/081.9524641							
fax orderline ONLY: 08003184 General Fax: 081-381 1700							

ARTICLES WANTED

PURCHASE FOR CASH

SURPLUS - OBSOLETE - REDUNDANT - EXCESS stocks of electronic, electrical components/accessories, part processed and/or finished products. Plese submit preliminary information or lists for immediate response to:
K.B. COMPONENTS, 21 Playle Chase, Gt Totham, Maldon, Essex CM9 8UT
Telephone 01621-893204. Facsimile 01621-893180.

ARTICLES FOR SALE

Used Test 8
Measurement Equipment
We buy and sell and service
For further information phone: 081-813 9946.
Fax: 081-574 2339
Mobile: 0374759984

SERICES

DESIGN SERVICES

Software Design: High and Low Level. Hardware Design: Analogue, Digital, Micro and Embedded.
PCB, Schematic and Production Drawings. Prototyping and Feasibility services.

Archimedes Custom
Equipment: Tel 0974282670

No PLOTTER?

View, print or paste HP plotter files produced via CAD systems, scopes or received via modem etc. on your PC with this handy Windows utility. Contact: P. Handscomb at SILICON VALE SOFTWARE 147 Manchester Road, Stockport SK4 1NL Phone/Fax 01614801451

RF DESIGN CONSULTANCY

\square Design and Development
waterbeach electronicsltd
\square Technical Advice
34 Providence Way. Waterbeach Cambridge CB5 9 OI
\square CAD
Tel: 0223862550 Fax: 0223440853

ADVERTISERS PLEASE NOTE

For all your future enquiries on advertising rates

> Please contact Malcolm Wells on

Tel: 0181-6523620
Fax: 0181-6528956

CLASSIFIED

ARTICLES FOR SALE

\square

Cooke International SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. ALWA YS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE COPIES ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME, SEND LARGE "A3" S.A.E. + 50P POSTAGE FOR LISTS OF EQUIPMENT AND MANUALS.

ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS

SHIPPING ARRANGED
OPEN MONDAY-FRIDAY 9AM-5PM
Cooke International
ELECTRCNIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: $(+44) 01243545111 / 2$
Fax: $(+44) 01243542457$
EQUIPMENT \& ACCESSORIES PURCHASED
CIRCIE NO. 1H3 ON REPL Y CARD

TURN YOUR SURPLUS TRANSISTORS, ICS ETC, INTO CASH Immediate settlement We also welcome the opportunity to quote for complete factory clearance. Contact:
COLES-HARDING \& CO, Unit 58 , Queens Road, Wisbech, Cambs. PE13 2PO ESTABLISHED OVER 15 YEARS Buyers of Surplus Inventory Tel: 01945584188 Fax: 01945475216

HAMEG 203-6 Scope used only few hours. $£ 300$. Also Philips SBC530, Portable Scope, new. Tel: 01702522929

> TO ADVERTISE here please call MALCOLM WELLS ON 01816523620 $f_{5} 5+U_{A 1}$

VALVES

ELECTRONICS VALVES \& SEMICONDUCTORS

Phone for a most courteous quotation

We are one of the largest stockists of valves etc, in the U.K.

COLOMOR

 ELECTRONICS LTD 170 Goldhawk Road, London W12 8HJ England.Tel: 01817430899 Fax: 01817493934

WE WANT TO BUY !!
> IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE o81-445-2713/0749 FAX 081-445-5702.

VALVES WANTED

FOR CASH: KT88, PX4, PX25 £45; DA100 £75; EL34, FL37 £10; ECC81/ CV4024, CV4003, CV4004, ECC83 £3. Valves must be Mullard/GEC, West European to achieve the price. Ask for our free wanted list. Prompt \& courteous service. Visitors by appointment only (we are a very busy Export Warehouse).
Billington Export Ltd,
Tel: 01403784961 Fax: 01403783519

WANTED

High-end Test, Communication \& Computer Equipment. Top prices paid. Please send or fax your offer to: Steigerwald GmbH Neusserstrasse 9, 80807 Munich South Germany Tel: 01049893615833 Fax: 01049893615899

High-end Test Equipment, only brand names as Hewlett-Packard, Tektronix, Rhode \& Schwarz, Marconi etc. Top prices paid. Please send or fax your offer to:

HITB ELEKTRONIK

Alter Apeler Weg 5
27619 Schiffdorf, West Germany TEL: 0104947067044
FAX: 0104947067049

36 EASTCOTE LANE, S. HARROW, MIDDLESEX HA2 $80 B$

TEL: 0181-422 3593. FAX: 0181-423 4009

IFR MODEL A-7550 GG'Hz porable with intuilh tracking gen \& IEEE OPS $£ 5$ HP144T 18GHz system (85528, 8555A)
HP3580A 5 Hz - 50 KHz audio requency spectrum analyser HP3582A aubiot trequency fll analyser dual-channel HPS557A 350MHz (op 01 750) (requires mantrame) HP8559A 21 GHz spee an in 853A digital mainframe HPIB HP8568A high-speccicication 1.5 GHz spectrum analyser MARCONI 2386 100Hz-26.56Hz (in IHz steps!) TEKTHONIX $49221 G H z$ spectrum analyser

1640B serial data analyser 334 A distortion meter 3325 A function generataor 3400 A voltmeter, analogue $10 \mathrm{~Hz}-10 \mathrm{MHz}$ 3456 A digital multimeter
3580A audio frequency spectrum analyser 3551C selective volmeter
3586A selective level meter
3762 A 3763 A data generator/error detector, pair 4140 B A Ameter, DC voltage source
415E swr meter
4275A multi-frequency icr meter
432A/R486A uWave powermeter waveguide $26-40 \mathrm{GHz}$ 4358 microwave power meter (analogue) (requires sensor) 436A microwave power meter cw 8481 A detector HPIB op 4951C protocol analyser with 18179A pod 5335A 200MM Hz tequency counter w ops $20 \& 40$ 6012A power supply $0-60 \mathrm{~V} 0-50 \mathrm{~A} 1000 \mathrm{~W}$ 6033 A system power supply 0.20 V 0.30 A 6038A system power supply $0-60 \mathrm{~V} 0-10 \mathrm{~A}$ 6253A dual power supply 0-20Vo. 1 A iwice 6443B power supply 0-120V 0-2.5A
6825 A bipolar power supply/amplifier -20 V to $+20 \mathrm{~V}, 0-1 \mathrm{~A}$ 8011A pulse generator $0.1 \mathrm{~Hz}-20 \mathrm{MHz}$
816 A stotled line $1.8-18 \mathrm{GHz}$ with carriage 809 C and 447 B 8444A tracking generator with option 059 $8505 \mathrm{~A} 500 \mathrm{KHz}-1.3 \mathrm{GHz}$ RF network analyser 8671A synthesized signal generator $2-6 \cdot 26 \mathrm{~Hz}$ 8568A spectrum analyser $100 \mathrm{~Hz} z-1.5 \mathrm{GHz}$ 8656 B synthesized signal generator $0.1 \cdot 990 \mathrm{MHz}$ AMFM 8901A modulation analyser with option 02010 analusers 0500100 potatie analysers Plezse call is it po equipment being under utblised
PLEASE NOTE: ALL OUR EQUIPMENT IS NOW OPERATION-VERIFICATION TESTED BEFORE DESPATCH BY INDEPENDENT LABORATORY We would be pleased to handle all grades of calibration or NAMAS certification by same laboratory at cost price. All items covered by our 90-day parts and labour guarantee and 7-day 'Right to Refuse' (money back) warranty.

ELECTRONIC UPDATE

Contact Malcolm Wells on 0181-652 3620

A regular advertising feature enabling readers to obtain more information on companies' products or services.

The system 2000 is an ideal programmer for the production environment. Fast programming results in high throughput and rigorous verification leads to improved quality control. Single key functions and checks against misoperation facilitates its use by unskilled staff.

MQP ELECTRONICS LTD. Tel: 0666825146
Fax: 0666825141
CIRCIE NO. $1+5$ ONREPLYCARD

Four page, colour brochure designed to teach users about VXI plug \& play technology. Explains how standard frameworks, instrument drivers, soft front panels, and technical support can help end users build multivendor, VXIbus-based instrumentation systems. Gives information on the VXI plug \& play vendor members, guiding principles, and how end-users can join the Alliance User Group.

NATIONAL INSTRUMENTS FOR FURTHER INFORMATION

CALL 01635523545
CIRCIE NO. 1+6 ON REPLY CARD

1995 MASTER PRODUCT CATALOGUE NOW OUT!

Test and instrument control solutions. 48 pages of full description and technical data on our own range of solutions to your PC and PS2 interfacing problems; IEEE488 [GPIB] * DIO * Timer/Counters * RS232 * RS422/485 * A/D * D/A * plus Opto Isolated versions. New Parallel/Serial RS232, Opto Dual RS232, Motion Control. Converter and Repeater for 1995!
SO 9001 Quality guarantee \downarrow
UK design and manufacture \checkmark
36 month no-quibble warranty \checkmark
Telephone hotline support \downarrow
Competitive pricing on the page Intelligent solutions - friendly service \downarrow BRAIN BOXES
Unit 3f Wavertree Boulevard South
Wavertree Technology Park
Liverpool L7 9PF
CIRCLE NO. It7 ON REPLY CARD

OLSON ELECTRONICS LIMITED is a leading manufacturer in the field of mains distribution panels of every shape and size to suit a variety of needs. For use in Broadcasting, Computing, Data Communications, Defence, Education, Finance, Health etc. All panels are manufactured to BS5733. BRITISH AMERICAN, FRENCH, GERMAN CEE22/IEC and many other sockets. Most countries catered for
All panels are available ex-stock and can be bought direct from OLSON.

Olson Electronics Limited Tel: 0818852884
Fax: 0818852496

MIXED-MODE SIMULATION. THE POWER OF VERSION 4.

Analog, Digital \& Mixed Circuits

Electronics Workbench ${ }^{\text {® }}$ Version 4 is a fully integrated schematic capture, simulator and graphical waveform generator. It is simple to mix analog and digital parts in any combination.

Design and Verify

 Circuits... Fast! Electronics Workbench's simple, direct interface helps you build circuits in a fraction of the time. Try what if' scenarios and fine tune your designs painlessly. Veasion 4 Wlectronics Veasion 4 Wlectronics version 4Electronics
Workbench
The electronics lab in compuler

More Power

Simulate bigger and more complex circuits. Faster. On average, Electronics Workbench Version 4 is more than 5 times faster than Version 3

More Parts

Multiple parts bins contain over twice the components of Version 3.

More Models

Over 350 real workd analog and digital models are included free with Electronics Workbench. And, if you need more, an additional 2,000 models are available.

Incredibly Powerful. Incredibly Affordable.

If you need mixed-mode power at a price you can afford, take a look at this simulator and graphical waveform generator that mixes analog and digital with ease.

True mixect-mode simulation: Simultaneous AM transmission, digitization and pulse-code modulation of a signal.

With over 20,000 users world-wide, Electronics Workbench has already been tried, tested and accepted as an invaluable tool to design and verify analog and digital circuits. With Version 4 true mixed-mode simulation is now a reality with incredible simplicity.

Electronics Workbench ${ }^{\text {TM }}$

 The electronics lab in a computer ${ }^{\text {TM }}$
Order Now! Just £199* 44-(0)1203-233-216

RY Robinson Marshall (Europe) Plc

Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF Fax: 44 (0)1203 233-210
E-mail:.rme@cityscape.co.uk
Shipping charges UK $\mathbf{2}^{5} .99$. All prices are plus Vat. All trade marks are the property of their respective owners. Electronics Workbench is a trademark of Interactive Image Technologies Ldd., Toronto, Canada.
- 30 Day money-back guarantee

S4 The best $\begin{aligned} & \text { by design! }\end{aligned}$

S4'S VITAL STATISTICS:

- Totally handheid programmer/emulator
- Fast approved programming algorithms; eg. program and verify:
National 27C512 in 16 seconds AMD 29F010 in only 90 seconds
- EPROMs to 8Mbit, 5v, 12v and BOOTBLOCK FLASH, EEPROMs and PEROMs
- Three year parts and labour guarantee
- Free next day delivery (UK only)
- 30 day trial available (UK only)
- Full 24 byte on-screen editor
- Continuous programming whilst charging (nonstop operation)
- Moulded designer case - feels as good as it looks
- Rubberised colour-coded full travel keypad
- Big, easy-view 80 character supertwist LCD
- Optional modules available to program PICs, 8751, 16-bit EPROMs, Toshiba 4-bit, Hitachi H8
Optional sockets for programming and emulating PLCC devices

S4's 32 pin ZIF socket programs a huge library of 8 \& 16bit EPROMs, EEPROMs, FLASH, PICs and other popular microcontrollers using manufacturers approved algorithms. Our free and easily updatable device library enables users to always have the latest software installed. During our sixteen years of designing and selling innovative and fast programming solutions to industry, Dataman has never charged for software updates or technical support.
Built in emulation enables you to see your code running before committing yourself to an EPROM. Load your program from an EPROM or download
code from your PC into S4's memory. Plug S4's emulation lead into the target system, press the emulation key and run the system. Changes can be made using S4's powerful editor, and you can re-run the code to test and confirm changes. When the code is proved to be working, it can then be programmed to a fresh ROM.
The S4 package comes complete with mains charger, emulation leads, organiser-style instruction manual, PC software and a three year guarantee. S4 is always available off the shelf and we ship worldwide on a daily basis. Call now for delivery tomorrow!

Bona-fide UK customers can try S4 for thirty days without risk. 18,000 satisfied users worldwide can't be wrong!

D-小Tndn

 Dataman Programmers Ltd Modem V32bis/16.8K HST
[^0]: *Price excludes VAT. Offer does not apply to North America.

[^1]: *Above approx. 1 kHz , open loop gain of the amplifier is half of $g_{\mathrm{m}} / \omega C_{3}$, where g_{m} is transconductance of T_{1} in series with R_{1} and $\omega=2 f$. Increasing the g_{m} of the long-tail pair would help, but may involve much higher current in the input transistors, of the order of $10-20 \mathrm{~mA}$ - an impossible solution.

[^2]: \dagger I assure readers concerned about intermodulation caused by high feedback that it is possible to use unlimited amounts of feedback without the slightest risk for tim - provided that the feedback is properly implemented. The common notion of tim has as much substance as other popular myths. It would be interesting to discuss these questions sometime in this paper.

[^3]: \square Please tick here if you do not wish to receive direct mail from other companies.

[^4]: Please send me.
 ..copies of the 1995 Cricklewood Catalogue.
 I enclose $£ 2.50$ per copy (UK \& Europe) $£ 5$ overseas.
 Name
 Address

 Please charge my credit card. No.
 Expiry Date.
 Tel. No.
 EWW

 Cricklewood Electronics Ltd, 40-42 Cricklewood Broadway,
 London NW2 3ET. Tel: 0181-450 0995 Fax: 0181-208 1441

