## Exclusive $-20 \%$ discount on LCR meter



WORLD

## + WIRELESS WORLD

Denmark DKr. 65.00
Germany DM 15.00

June $1995 \quad £ 2.10$
ATJDIO
Е丂ऽcic
Tri-modal audio power Microreflex loudspeaker Audio power ICs exposed Researching via Internet New concept in $\mathrm{i} / \mathrm{c}$ control Generating waveforms


Versatile £220 i/o controller for £99


## PROGRAM 8 CHIPS IN THE TIME IT TAKES FOR ONE!

At $£ 645$ costing around half the price of slower gang programmers, the Speedmaster 8000 gang programmer uses a simple 2 button operation in stand-alone mode. PC operation gives comprehensive file handling and editing functions. Capable of gang and set programming it supports 32 pin EPROMs to 8 M with no adaptors required. Programming cycle times of only 23 seconds for 8 27C010's mean your throughput can now be faster than ever before.

## ROM/RAM EMULATOR PLUG IN CARDS

Using these expansion cards your programmer can run as if there's an EPROM or RAM plugged into the target socket. Available as 8 bit wide $128 \mathrm{k} \times 8$ as standard, upgradable to $512 k \times 8$, and 16 bit capable of emulating 40 pin EPROMs. They can emulate both 5 V and 3.3 V devices.

## PACKAGE ADAPTORS

A full range of package adaptors is available for non DIL devices and parts with more than 40 pins. Prices from $£ 65$.

DISTRIBUTORS
BENELUX: $\mathbf{+ 3 2 5 5 3 1 3 7 3 7 ; ~}$ CYPRUS: 02485378; DENMARK: 048141885; FINLAND: 070039000; FRANCE: 0139899622; GERMANY: 060827421615;
GREECE: 019020115;
ITALY: 0245784I; JAPAN: 053865501; NORWAY: 063840007; SINGAPORE: 04831691, SOUTH AFRICA: 0119741211/1521; SPAIN: 013270614 . USA: Distributors required.

FREE SOFTWARE UPGRADES! KEEP UP TO DATE WITH NEW DEVICES

Before you choose your programmer, check out the cost of ownership. While other manufacturers charge for every update or require expensive libraries and modules, ICE Technology programmers
support the whole range of devices at no extra charge*. And keeping up to date is FREE for life at no charge on our BBS service.
Just dial on: +44(0) 122676| I8।, and download the latest version.

Disk based upgrades are available free in the first year, and a small administration charge made for each subsequent disk. * for DIL up to 40 pins.

## AT LAST, AN AFFORDABLE 3V AND 5V UNIVERSAL PROGRAMMER!



The latest universal programmers from ICE Technology, the Micromaster LV and Speedmaster LV, now support programming and verification of 3.3 V devices, now you can test devices at their actual operating voltage.

They offer wider device support than ever before, the majority requiring no adaptor. They will operate from battery or mains power,

## FEATURES

- Widest ever device support including: EPROMs,
EEPROMs, Flash, SPROMs, BPROMS, PALs, MACH, MAX, MAPL, PEELs, EPLDs Microcontrollers, etc.
- High speed, programmes a PIC16C54 in 0.5 secs (Micromaster LV).
- Up to 84 pin device support with adaptors.
- Connects directly to parallel port - no PC cards needed
- Built in chiptester for 7400, 4000, DRAM, SRAM.
- Lightweight and operates from mains or battery.
- Optional 8 or 16 bit wide ROM/RAM emulator.
- Designed, built and supported in the UK.
- FREE software device support upgrades via bulletin board.
- Next day delivery.

CIRCLE NO. IOI ONREPLY CARD

## Speedmaster LV

Programmes 3 and 5 V devices including memory, programmable logic and 8748/51 series micros. Complete with parallel port cable, software, recharger and documentation.

## $£ 495$

## MicromasterLV

As above plus support for over 90 different micro controllers without adaptors, including PICs, 89C51, 87C751, MC68HC705, ST6, Z86 etc.

## £625

8 bit Emulator card
Expansion card containing 8 bit wide ROM RAM emulator, includes cable and software. $128 \mathrm{~K} \times 8$.

## 16 bit Emulator card

Expansion card containing 16 bit wide ROM RAM emulator, includes cable and software. $128 \mathrm{~K} \times 16$.


Call now to place your order, for more details or a free demo disk, or call our bulletin board to download the latest demo. Alternatively clip the coupon or circle the reply number.


Position: 2 ..................................
Company: ............ ....................
Address:

$\qquad$
$\qquad$
EWW JUN
All major credit cards accepted
(mastercin) V/SA AMERICCNY

## CONTENTS

## 462 TRIMODAL POWER AMP

Douglas Self's latest latest power amplifier design - probably unique - is capable of working in class $\mathrm{A}, \mathrm{AB}$ or B .

## 469 BIGGER BASS SMALLER BOX

Jeff Macaulay explains a method of extending bass loudspeaker response that doesn't involve a large enclosure.

## 477 DATA RATER - POWER ICS ON TRIAL

Ben Duncan analyses seven audio power amplifier ICs to see whether they match up to what their manufacturers claim.

## 483 TWO-CHIP VIDEO DIGITISER

A flash a-to-d converter and a ttl logic chip are all the ICs needed to digitise low-resolution - but moving - images from a composite-video source.


Can the Internet work for you? See page 488.

## 488 SURFING WITH INTENT

Its easier than you might think to use the Internet for research, as Cyril Bateman has been finding out

## 495 WHOSE HETERODYNE?

Tom O'Dell has been searching the archives trying to find out who really invented the heterodyne.

## 506 WAVEFORM GENERATION TRIO

Precision waveforms from cmos logic, current sink extends vco frequency range and running a programmable oscillator without a micro.

## 509 PLC ON A CHIP

A new approach to $i / o$ control is a chip that turns single-key commands from a pc into signals that drive stepper motors, control analogue converters, feed SPI bus, switch i/o and more.

## 513 ANTIALIASING WITH MIXED-MODE FILTERS

Eric Margan describes how the right combination of analogue and digital circuitry improves filter performance.

## REGULARS

451 COMMENT
Tired old cable
452 NEWS
Blue semiconductor lasers, silicon shortage scare, bendy superconductors.

## 457 RESEARCH NOTES

More punch for video games, much cheaper fibre, organic led advances, defuzzing images.

## 500 LETTERS

More fuel for the audio debate, Tesla and the transistor - was it invented or discovered?

## CIRCUIT IDEAS

Fluid-flow monitor, microphone preamplifier, half-duplex-to-RS232 converter.

## NEW PRODUCTS

Pick of the month - classified for convenience.

Two exclusive EW+WW reader offers 20\% discount on this LCR meter, page 487 , and a $£ 220$ designer's controller board for $£ 99$, page 509 onwards.

## Next month:

Heart-rate monitor, dual current mirror for faster audio power amplifiers, designing interface cards for the pc.
JULY ISSUE - ON SALE 29 JUNE


Cover illustration - Jamel Akib


Rather than relying on large enclosure dimensions, this design extends bass via electronic compensation - page 469.


IF YOU'VE GOT ONE OF THESE


## AND ONE OF THESE



DRIVE ALL OF THESE


## AND SENSE ALL OF THESE



## USING ONLY ONE OF THESE



AND NONE OF THIS

£300 TO JUST £30
TIMELY TECHNOLOGY LIMITED
TEL : 01536 791269. FAX : 01536790730
MILLBANK, KETTERING ROAD
LITTLE CRANSLEY, NORTHANTS NN14 1PJ

## KESTREL ELECTRONIC COMPONENTS LTD

is All items guaranteed to manufacturers' spec. if Many other items available.
'Exclusive of V.A.T. and post and package'

|  | $1+$ | $100+$ |  | $1+$ | $100+$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 27C64-15 | 2.00 | 1.45 | 628128LP-80 | 8.30 | 7.20 |
| 27C128-15 | 2.40 | 1.80 | 62256LP10 | 3.00 | 2.20 |
| 27C256-15 | 2.20 | 1.65 | 6264LP-10 | 2.10 | 1.40 |
| 27C512-15 | 2.20 | 1.65 | MM58274CN | 4.90 | 3.75 |
| 27C010-15 | 3.60 | 2.20 | ULN2003A | 0.43 | 0.25 |
| 27C020-15 | 6.00 | 3.99 | ULN2803A | 0.50 | 0.37 |
| 27C040-15 | 8.60 | 6.45 | MAX232 | 1.35 | 0.88 |
| 80C31-12 | 2.10 | 1.65 | 7406 | 0.35 | 0.23 |
| 8255AC-2 | 2.00 | 1.50 | 7407 | 0.35 | 0.23 |
| 8748H | 5.00 | 3.85 | 74HC244 | 0.35 | 0.24 |
| 8749H | 5.00 | 3.85 | 74HC245 | 0.35 | 0.24 |
| 75176BP | 1.35 | 0.85 | 74HC373 | 0.35 | 0.25 |
| 65C21P2 | 2.00 | 1.50 | 74HC374 | 0.32 | 0.25 |

$74 \mathrm{LS}, 74 \mathrm{HC}, 74 \mathrm{HCT}$ Series available Phone for full price list All memory prices are fluctuating daily, please phone to confirm prices
178 Brighton Road, Purley, Surrey CR8 4HA
Tel: 0181-668 7522. Fax: 0181-668 4190.
CIRCIE NO. 105 ON REPLYCARD


Industrial Spec Components and Systems 386SX-40 All-in-one CPU Board on PC half card from $£ 215$. Requires only display adapter and RAM to complete the core of a PC-compatible system. PC/104 or ISA bus expansion. PC/104 display adapter from f135. Desktop LCD mono VGA monitor with display adapter and passive backplane from $£ 499$. Please enquire for complete systems. Prices exclude VAT and carriage.
2c Chandos Road, Redland, Bristul BS6 GPE, UK Tel: 01179730435 Fax: 01179237295

## Tired old cable

## EDITOR

Martin Eccles
0181-652 3128

## CONSULTANTS

Jonathan Campbell
Philip Darrington
Frank Ogden

## DESIGN \&

PRODUCTION
Alan Kerr

## EDITORIAL

ADMINISTRATION
Jackie Lowe
0181-6523614
E-MAIL ORDERS
jackie.lowe@rbp.co.uk

## E-MAIL ENQUIRIES

martin.eccles@rbp.co.uk

## ADVERTISEMENT

## MANAGER

Richard Napier
0181-6523620
DISPLAY SALES
EXECUTIVE
Malcolm Wells
0181-652 3620

## ADVERTISING

## PRODUCTION

Christina Budd
0181-652 8355
PUBLISHER
Mick Elliott
EDITORIAL FAX
0181-6528956
CLASSIFIED FAX
0181-6528956

## SUBSCRIPTION

HOTLINE
01622721666
Quote ref INJ

## SUBSCRIPTION

QUERIES
01444445566
NEWSTRADE

## DISTRIBUTION

Martin Parr
01816528171
BACK ISSUES
Available at $£ 2.50$
ISSN 0959-8332

REED
RUSINESS
PUBLISHING

Why was cable described as 'Tired' by Wired magazine? Perhaps maps showing the coverage of the country by cable services give some clue. Penetration in the Cambridge area, for example, has the appearance of a monstrous spider with its body resting on the city and its legs trailing out into the surrounding countryside. Some key villages are missed out completely; others, with perhaps only one road connection, are served as they are on a straight line between Cambridge and another large town. The idea that today you telephone a person rather than a place seems to have lost something in the translation to cable.
While coverage is one issue, take up of services and churn rates (lapsed subscriptions) also cause concern. In the Cambridge area there are now 130,000 homes which could be connected to the cable network. So far 28,000 have taken television and 30,000 have taken telephone services. These figures fall short of those achieved by Bell Cablemedia who also operate in the East of England. They have take up of $22.3 \%$ for television and $25.7 \%$ for telephone and still Bell Cablemedia made a loss last year of over $\$ 25$ million.
Anne Campbell, who is Labour MP for Cambridge, said in a recent interview that she was "alarmed at the way that the cable companies are being allowed to 'cherry-pick' the lucrative urban areas, leaving large tracts of the rural countryside untouched by the information revolution". She feels that "We should be imitating the US, where some States have refused to allocate franchises unless the cable companies were prepared to cable up the lossmaking areas as well as the profitable ones".
A few years ago the idea of doing to BT what the US administration did to AT\&T seemed to make sense unfortunately the world has moved on.
Globalisation has happened and Europe has happened. BT is about the right size

# -...alarmed at the way that the cable <br> companies are being allowed to chermy-pick the lucrative urban areas, leaving large tracts of the rural 

 countryside untouched by the information revolution'for a regional operator if the European Telecoms market is taken as a whole. However, it is unlikely the UK government sees it this way. The EU sees it this way but is too afraid of upsetting anyone to knock the whole thing into shape - too many equipment suppliers on too many committees. The American model will not work in the UK alone - in America a local call costs only the connection charge - whether a call is 3 minutes or 24 hours it costs the same. The UK's local tariffs are based on a cost per minute which stunts the growth of on-line services. BT could provide US style local tariffs if it was allowed to provide services to subsidise them.
Cable companies may, eventually, provide the US model but perhaps for only a maximum of $70 \%$ of the population. Whether they make a profit in doing so or even in some cases survive remains to be seen. For some, the battle to wire the country with cable may end up being a switch too far.

Peter Kruger
The full interview with Ann Campbell quoted here is online and can be accessed on the World Wide Web at http://www.gold.ne//flames/=20-ed.

Electronics World + Wireless World is published monthly. By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$. Orders, payments and general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tlx:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group.
Newstrade: Distributed by Marketforce (UK) Ltd, 247 Tottenham Court Road London W1P OAU 0171 261-5108. Subscriptions: Quadrant Subscription Services, Oaklield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444445566 . Please notity change of address. Subscription rates 1 year (normal rate) $£ 30$ UK and £43 outside UK.
USA: $\$ 52.00$ airmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42nd Street, NY 10117.

Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Par's 75008. United States of America: Ray Barnes, Reed Business Publishing Lid; 205 E. 42 nd Street, NY 10117. Telephone (212) 867-2080. Tlx 23827.
USA mailing agents: Mercury Alfreight International Lid Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes 10 above.
PrInted by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate, Carlisle. Cumbria, CA2 7NR
Typeset by Wace Publication Imaging 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT
©Reed Business Publishing Ltd 1995 ISSN 09598332

# JVC announces D-VHS 

In conventional colour
projectors, bottom right, $r g b$ selection is done using colour filters inside the Icd panel. In the new Sharp projector, dichroic mirrors are used to separate the light into the three primary colours, eliminating the need for colour filters in the Icd panel. Will this bring down the cost of Icd projection systems?
|VC plans to launch a digital VHS ) system next year, for simple data stream recording and playback. It will not in itself produce pictures, but will have to be used in conjunction with other equipment to provide digital to analogue conversion. With encrypted broadcasts, such as DirecTV in the US, where it will first be marketed, the D-VHS VCR will record the compressed, encrypted data as received from the satellite, and play it back into the receiver at the same stage in the conversion process before the signal is decrypted, reexpanded and converted to analogue for feeding to a TV set.
D-VHS uses virtually the same head mechanism as existing VHS and vers will still be able to play and record analogue material, though there will be no cross-over between the two modes. D-VHS capacity will add about $£ 250$ to the price of


D-VHS video recorders will record compressed, encrypted data as received from the satellite, and play it back into the receiver at the same stage in the conversion process - before the signal is decrypted, re-expanded and converted to analogue for feeding to a tv set.
whatever type of ver it is built into.
JVC believes D-VHS has computer and multimedia applications, but mainly as a backup. "We are not trying to compete
with the disc format in multimedia disc has quick access, but tape has high capacity and low cost," said planning manager Kazuo Kohda.
Data capacity of a reusable E240-

## Single panel optical system

Video projectors have proved a boon to those needing a large screen display. Unfortunately, achieving a bright image has meant using a large and expensive system, while those without the space and cash have had to put up with viewing in a darkened room.

A new development from Sharp boosts light output of the compact and comparatively inexpensive single Icd panel projector. Incorporated in a recently launched projector unit, this technology involves a single-panel optical system featuring 'filter-less' technology. Instead of using a mosaic
of red, green and blue filters over the pixels to provide colour from a white light source as is the case with conventional panels, the single panel system employs three dichroic mirrors to first separate the light into its primary colours and these pass through clear pixels.
The dichroic mirrors selectively reflect and transmit the light: the first

length D-VHS cassette will be 44 gigabytes, compared with 10Gbyte on the proposed double-sided Toshiba DVD. The tape will be SVHS quality ferric oxide.
Three recording modes are proposed: Standard, giving seven hours of recording at $14.1 \mathrm{Mbit} / \mathrm{s}$, suitable for MPEG-2; HD at 3.5 hours with doubled bit rate, 28.2 $\mathrm{Mb} / \mathrm{s}$, and LP at $2 \mathrm{Mbit} / \mathrm{s}$ but with a recording time of 49 hours.
The LP mode, and the fact that DVHS can store up to six simultaneous data streams, without loss of time, provided they are multiplexed before reaching the recorder, is already attracting the attention of the security industry, where a tape that can handle six cctv cameras, and only has to be changed once every two days has obvious advantages.
Support for the format has come from Thomson,Hitachi, Matsushita and Philips, all of whom have made technical contributions, and LG (Goldstar), Mitsubishi, Samsung, Sanyo, Sharp, Sony, Toshiba and major tape manufacturers.
Peter Willis
reflects blue and transmits red and green to the second mirror which reflects the red and transmits the green to the third mirror which reflects it.
Angles of the individual mirrors relative to the 125 W metal halide light source ensures the reflected primaries pass only through the appropriate pixels in the lcd panel analogous to a shadow mask crt. A monolithic plano-convex microlens brings the light to a focus at the led layer and, having passed through the pixels, it goes to a fresnel lens and thence to the projection lens.
Gain in brightness achieved by this 'filter-less' technology is uncertain. Sharp claim it provides a four-fold increase over the preceding model. However, the nearest equivalent in their new range, the $X V-315 P$, which employs the same 3.6 in active matrix tft panel with 301,158 pixels. With filters, this unit gives a claimed luminance of 330lux at 30in screen size by comparison with 500lux at 40 in for the $X V-370 P$. The price premium is also uncertain: the $X V$ $315 P$ costs $£ 1800$, the XV-370P £2697, both including VAT - but the latter has more features. However, both share a 350 -line horizontal resolution.

## Telephone-line tv advances

Visideo compression and transmission technology must be available on a single chip costing less than $\$ 90$ for video over telephone lines to become a commercial reality, according to Motorola.
The company also believes it now has the technology to achieve this with the licensing of the discrete multi-tone modulation scheme, DMT, developed by specialist Californian designer Amarti Communications.

Amarti's DMT analogue line modulation scheme will be incorporated into a single chip transceiver for the asymmetrical digital subscriber line, ADSL, systems which operators like BT plan to use to deploy video-ondemand services operates over existing telephone lines.
Current ADSL systems, including those being evaluated by BT , support one-way video transmission to the subscriber using a $2 \mathrm{Mbit} / \mathrm{s}$ digital channel. Amarti claims that its DMT-based technology will support a $6 \mathrm{Mbit} / \mathrm{s}$ channel to the subscriber and a $640 \mathrm{kbit} / \mathrm{s}$ return channel to the exchange. As well as supporting multiple tv channel transmission, an integrated DMT transceiver could reduce the cost of ADSL hardware. Motorola, which plans to market its first DMT chips in 1996, has set a target price for the silicon of under $\$ 90$.
ADSL disproportionally limits the bandwidth of the telephone line between a narrow return channel and wideband subscriber channel. Its key advantage over alternative fixed band cable tv transmission schemes, such as quadrature amplitude modulation, QAM, is that the available line bandwidth is divided into a number of
subchannels.
DMT generates 256 subchannels at 4 kHz , each of which has be separately modulated with multiple carrier frequencies. A fast Fourier transform used to generate the 256 carrierless amplitude modulated and phase modulated subchannels. The compressed video data stream is divided between the subchannels

according to their available bandwidth, which can vary from 500 kHz to 1 MHz per subchannel due to the signal-noise performance of the copper pair cabling. As a result the digital capacity of the subchannel varies from one to 15 bits per symbol.
One possible drawback with DMT is the duplication of the dps functions across the 256 transmitters. But according to Amarti the FFT carrier generation is more efficient than the adaptive equalisation techniques used in fixed-band QAM transmission. The company suggests that its FFTbased ADSL design is five times less complex than a 200 tap equaliser needed to implement a 1.5Mbit/s QAM ADSL channel. Richard Wilson, Electronics Weekly

## Discrete multi-tone,

 DMT, modulation optimises line bandwidth by dividing the channel into 256 sub-channels.
## Catseyes gain intelligence <br> n innovation from Doncaster-based r\&d firm Astucia could save the

 European Union over $£ 2 \mathrm{bn}$, and more than 2500 lives per year, claims Martin Dicks, Astucia's managing director.The invention is a light-emitting catseye, named Intelligent Road Stud, IRS, that can warn drivers of impending dangers on the road. The IRS circuit consists of couple of microcontrollers, a solar cell and an array of sensors powered by daylight, car headlights or a battery.
Depending the danger the IRS will emit red, blue, orange or white light respectively. Dicks said the DoT is interested in evaluating the device.

## Silicon shortage scare

A nother shortage scare looks set to hit the electronics industry, with reports that demand for polycrystalline silicon is about to outstrip supply.

Concern about the supply of polycrystalline silicon - the raw material for monocrystalline ingot production - is growing as the continuing boom in chip sales spurs semiconductor manufacturers to step up demand for wafers.
According to reports last week in Japanese trade paper Japan Chemical Week, the world demand for polycrystalline silicon this year is estimated to be 13,500 tonnes whereas total production is unlikely to exceed 12,000 tonnes.

Ingo Reichel of wafer makers Freiberger Elektronikwerkstoffe, formerly the main wafer production operation for all of eastern Europe, said: We can see demand for polycrystal silicon rising and feel that there may not be enough on the market next year.
Polycrystalline silicon suppliers are reluctant to invest in new capacity as they were badly bitten in the silicon panic of ten years ago. Then they invested in new facilities to supply the expected surge in demand for 16 and 64kbit dynamic rams Unfortunately for them demand was entirely met by a three-fold increase in die yield on wafers.

The scare follows reports earlier this year that tantalum capacitors are in short supply, and last year's scare of a chip packaging shortage after a fire at the major resin supplier's factory. However, some observers suspect the shortage stories are a ploy designed to push up prices.
A source within the polycrystalline silicon supply industry said: "Polysilicon is not in such short supply that wafer manufacturers should worry." He went on to explain: "There is still room for process improvement and the major companies are expanding cautiously without discussing it."
Steve Bush, Electronics Weekly


A small UK r\&d firm has developed a flexible keypad technology which it believes could be used to make robust, complex keypads for as liftle as $£ 2$ in volume.
Binstead Designs, based in Nottingham, is now looking for a major electronics firm to licence the technology for mass production. Binstead's keypads can be made as thin as $100 \mu \mathrm{~m}$ or less and are flexible enough to be rolled up when not being used. They can be configured to trigger when a finger touches the keypad, or when a finger comes close to it. "It is sensitive enough to be used through double glazing," claims Ron Binstead, the company's founder.

The keypads are comprise a grid of $25 \mu \mathrm{~m}$ thick ceramiccoated wires, embedded in a thin transparent plastic sheet. The wires are thin enough to make them virtually invisible.

The keypad detects when an area is activated by measuring the change in capacitance induced in a wire when a finger comes close to it. Each wire is scanned in turn by making it the capacitance in an RC oscillator. When capacitance of a wire changes, so does the the oscillation frequency. By finding which horizontal and vertical wires have been triggered the system can pinpoint the position of the user's finger.

The keypad is controlled from a small interface box, whose output goes to the RS232 port of a computer.
"The secret is in the processing," Binstead says. The change in signal can be as low as one per cent, but with temperature changes there are massive variations in the background levels. We have clever software in the sensing circuit that takes out these variables."

Karl Schneider

## Bending superconductors around the corner?

U
S Government researchers claim to have created a breakthrough superconducting material that is flexible rather than brittle and can be used in a wide number of applications.
Scientists at the Los Alamos National Laboratory in New Mexico, described the new material at a meeting of the Materials Research Society in San Francisco recently.
They demonstrated a flexible metal and ceramic foil that they said can be made into wires with a huge current carrying capacity at liquid
nitrogen temperatures.
The superconductor is a ceramic material based on yttrium barium copper oxide deposited on a nickel tape to give it flexibility. Previous superconducting materials have been too brittle to form wires.
Dean Peterson, head of the Los Alamos National Laboratories' Superconductivity Center, said that the superconducting material can carry more than a million amperes per square centimetre compared with No 12 copper wire that carries $800 \mathrm{~A} / \mathrm{cm}^{2}$.

## Blue lasers get the green light

The US Advanced Research Projects Agency is funding e development of blue-light laser diodes by Philips subsidiary, Philips Laboratories and Cree Research.
ARPA has given a $\$ 4 \mathrm{~m}$ grant for a two year project to develop blue light laser diodes based on galliumnitride materials on silicon carbide wafers. One focus of the project will be to develop higher capacity optical data storage devices.
"In a systems market that is con-
stantly looking for ways to increase storage capacity, the blue laser is a significant missing link," said Neal Hunter, president of Cree Research.
Other firms are also trying to find ways to build blue laser diodes cheaply. Advanced Technology Materials is working with HewlettPackard to develop blue laser diodes, also using gallium nitride. Japanese firm Nichia Chemical Industries says it is already sampling blue laser diodes for about $\$ 30$.

## First distributor on the Net

SEI is the first European distributor to use Internet to make its product information available to customers across Europe. The company believes the Internet project will ultimately transform pan-European distribution. It will change how customers internationally do the ir business," said Wim Teunissen, a member of SEI's European managing board. A full system including on-line pricing and ordering will be available before the end of the year.

# Surplus always THE ORIGINAL SURPLUS WONDERLAND! <br> THIS MONTH'S SELECTION FROM OUR VAST EVER CHANGING STOCKS 

## LOW COST PC'S - ALL EXPANDABLE - ALL PC COMPATIBLE

## SPECIAL BUY

AT 286 40 Mb HD + 3Mb Ram


IMITED QUANTITY only of these 12 Mhz HI GRADE 286 systems designed for total reliability. The compact case houses ith motherdrive \& Integral 40Mb hard dilsk drlve to the tront Real lime clock ondition complete with enhanced keyboard, $640 \mathrm{k}+2 \mathrm{MD}$ RAM, OOS 4.01 and 90 DAY Full Guarantee. Aeady to Run : OO (E)

| Optional Fitted extras: VGA graphics car $1.4 \mathrm{Mb} 31 / 2^{*}$ floppy disk drive (inslead of 1.2 Mb ) NE2000 Ethernet (thick, thin or twisted) network card | $\begin{aligned} & \hline \varepsilon 29.00 \\ & \varepsilon 24.95 \\ & \varepsilon 49.00 \end{aligned}$ |
| :---: | :---: |
| FLOPPY DISK DRIVES $31 / 2^{\prime \prime}-8^{\prime \prime}$ |  |

at industry beating low prices! All units (unless stated) are BRAND NEW or removed from often brand new equipment and are luly yested, aligned and shipped to you with a 90 day yuarantee and operate from siandard voitages and are or
ize. All are IIM-PC compatible (II $3 / 2 / 2$ supported on you Mantsublshi MF355C-L. 1.4 Meg. Laptops only Mitsubishi MF355C-D. 1.4 Meg. Non laptop
BRAND NEW Mitsublshi MF501B 360K Data cable included in price. Shugart $8518^{\prime \prime}$ double sided refurbished \& tested Mitsubishl M2896-63-02U 8"DS slimline NEW

£24.95(B) £36.95(B)<br>£22.95 (B)<br>£22.95(B)

£195.00 (E)
£250.00 (E)
£2755.00(E)

## HARD DISK DRIVES

## End of line purchase scoopl Brand new NEC D2246 8" 85 Mbyte

 hi speed data transfer and access time, replaces Fuitsu equivalent$31 / 2^{\prime 2}$ FUJI FK-309-26 20 mb MFM I/F RFE
(or equiv) RFE
RODIME RO 3057 S 45 mb SCSI I/F (Mac \& Acorn)
MINISCRIBE 3
Refurb
CDC 94205.5140 mb HH MFM I/F RFE tested
899.00
$£ 59.95$
$£ 69.95$
$£ 89.00$
$£ 99.00$
$£ 49.95$
$£ 69.9$
$£ 6.9$
$\varepsilon 195.0$
$£ 16.9$

## THE AMAZING TELEBOX <br>  <br> TV SOUND $\&$ VIDEO TUNER!

The TELEBOX consists of an attractive fuily cased mains powered unit, coniaining all electronics ready to plug into a host of video moni
tors made by makers such as MICROVITEC, ATARI, SANYO SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD Etc. The composite vileo output will also plug directly into most video on the front panel allow reception of 8 filly funeable "off alr 1 HF
colour televislon channels. TELEBOX MB covers virtually all televi used by most cable TV UHF including the HYPERBAND as located on the rear panel for direct connection to most mak
monitor or deskitop video systems. For complete compatililityow level Hi Fl audio output are provided as standard. TELEBOX ST for composite video input type m amplifier and ${ }_{£ 37.50}^{£ 34.95}$ TELEBOX MB Multiband VHF-UHF-Cable- Hyperband tuner £65

## FANS \& BLOWERS

 MITSUBISHI MMF.09B120H $92 \times 25 \mathrm{~mm} 12 v \mathrm{DC} \quad £ 4.9510 / \mathrm{s} 42$ PANCAKE $12-3.592 \times 18 \mathrm{~mm} 12 \mathrm{~V}$ DC


## IC's -TRANSISTORS - DIODES

## 5,000,000 items EX STOCK

PC SCOOP
COMPLETE COLOUR SYSTEM ONLY $£ 99.00$

VIDEO MONITOR SPECIALS
One of the highest specification monitors you will ever see - At this price - Don't miss it!

 $\mathrm{NT}^{\mathrm{T}}$ Oitle used condition Oid Only $£ 139_{\text {(日 }}$ Init 8 Swivel Base $\varepsilon 8.00$ Leads sor IIM PC $£ 8.95$ (A) External Cables tor other computers $\&$ CALL
PHILIPS HCS35 (same style as CMB833) attractively styled $1^{\prime \prime}$ Colour monitor with boll. $\operatorname{CGB}$ and standard compositit 15.625 Knz vidoo inputs via SCART socket and separaie phono lacks. Will connect diract to Amiga and Atarl BBC computers. Ideal to all monitoring $/ \mathrm{sec}$ surity applications with direct connection to
most colour cameras. H High qually with many teaturas such as fron ncealed tlap contrils, VCR correction buttion etc. Good Use


Speclal Offer save £16.95-Order TELEBOX ST \& HCS35 together - giving you a quality colour TV \& AV ystem for Only $£ 122.50$ ( E )
 Good used conditlon. 90 day guarantee. PHILIPS HCS31 Ulitra compact 9" colour video monitior with stan dard composite 15.625 Khz video input via SCART socket, Ideal or all monitoring / security appications. Hilith quallty, ex-equipmen fully tested with h 90 day guarantee (possible minor screaen burrs)


20" $22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS
Superbly made UK manufacture. PIL all solld state colour monitors complete with composite video \& optlonal sound inputs. Attractive
 20"....£135 22".... $£ 155$ 26"....£185(F) DC POWER SUPPLIES
Virtually every type of power supply you can magine. Over

## SPECIAL INTEREST

## 2eta 3220-05 AO 4 pen HPGL RS232 last drum

## rlo $0-18$ vdc bench PSU. 30 amps . New

Fultsu M3041 600 LPM band printer
Andrews LARGE 3.1 m Sateilite Dish + mount RED TOP IR Heat seeking missile (not armed II) KNS EMC / Line interference tester NEW
Thurlby LA 160 B logic analyser
NTEL SBC 486/133SE Multibus 486 system. 8Mb Ram
GEC 1.5 kw 115 V 60 hz power source
Brush 2 Kw 400 Hz 3 phase frequency converter
Anton Pllar 75 kW 400 Hz 3 phase frequency converter
Newton Derby 70 KW 400 Hz 3 phase frequency co COMPONEDEX T1000 Portable TELEX tester NEW HP 7580A A1 8 pen HPGL high speed drum plotter Computar MCA1613APC 16 mm auto iris lerses 'C' mount


19" RACK CABINETS
Superb quality 6 foot 40 U Virtually New, Ultra Smart Less than Half Price! Top quality 19 "rack cabinets made. in UK by
Optlma Enclosures Ltd. Units feature desloner $m$ ored rerlic lockable front door full height lockable half louvered back door internal fixing struts, ready punched for any configuration of equipment mounting plus switched mains distribution strip make these
 only two side panels to stand singly or in bays

| OPT Rack 1 Complete with removable slde panels. | E335.00 (G) |
| :--- | :--- |
| OPT Rack 2 Rack, Less side panels | E225.00 (G) |

## 32U - High Quality - All steel cabinet

Made by Eurocraft Enclosures Ltd to the highest possible spec

$$
\begin{aligned}
& \text { rack features all stee construction with remoy } \\
& \text { side, front and back doors. Front and back doors an } \\
& \text { hinged for easy access and all are lockable with }
\end{aligned}
$$

inged for easy accesss and all are lockablo with
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$$
\text { pin Euro sockets and } 1 \times 13 \text { amp } 3 \text { pin switched }
$$

## tility socke

with top and side louvres. The top panel may be removed for fitting Integral fans to the sub plate etc. Other features include: fitted able / connector access etc. Supplied in excellent, slightly used Win

## Sold at LESS than a third of makers price !!

## A superb buy at only $£ 195.00$ (G)

## Over 1000 racks in all sizes $19{ }^{\prime \prime} 22^{\prime \prime} \& 24$ <br> 3 to 44 U. Available from stock !! Call with your requirements.

## TOUCH SCREEN SYSTEM

## MicroTouch - but sold at a price below cost II System consists of

 a flat translucent glass laminated panel measuring $29.5 \times 23.5 \mathrm{~cm}$ the board comes a standard serlal RS232 or TTL output. The outut continuously gives simple serial data containing positional X\& Y co-ordinates as to where a finger is touching the panel -as the fin-ger moves, the data instantly changes. The $X \& Y$ information is given at an Incredible matrix resolution of $1024 \times 1024$ positlons over the screen size II! So, no positlon, however small falls deteclon. A host of avaliable translation software enables direct conels, pointing devices, POS sysiems, controllers for the disabled or computer un-tralned etc etc Imagine using your finger in "Windows instead of a mouse I! (a driver is indeed available 1) The applice tlons for this amazing product are only $l \mathrm{~lm} / \mathrm{tad}$ by your ImaginaIonil Supplied as a complete system including Supply and Data at an incredible price of only:
£145.00 (B)

## LOW COST RAM \& CPU'S

## NTEL 'ABOVE' Memory Expansion Board. Full length PC-X

 and PC-AT compatible card with 2 Mbytes of memory on board. and above memory. Full data and driver dlsk supplled. In good and abovel memory. Full data and driver disk supplied. In good Windows compatible. Order as: ABOVE CARD 559.95 (A Half length 8 blt memory upgrade cards for PC AT XT expand in RAM above 640k DOS limit. Complete with data.Order as: XT RAM UG. 256 k . £32.95 or $512 \mathrm{k} £ 38.95$ (A1) SIMM OFEERS

## MB $\times 9$ SIMM 3 chip $80 \mathrm{~ns} £ 23.5070 \mathrm{n}$ <br> MB $\times 9$ SIMM 9 chip $80 \mathrm{~ns} £ 22.5070 \mathrm{~ns}$

4 MB 70ns 72 pin SIMM modul
SPECIALINTEL 486-DX33 CPU


## NO BREAK UNINTERRUPTIBLE PSU'S

## EMERSON ACCUCARO UPS, brand new 8 Bit half length PC

 compatible card for all IEM XT/AT compatibles. Card provides ply failure. The Accusaver software provided uses only 6k of base memond automatically copies all system, expanded and vide is returned the machine is returned to the exact status when the power falled II The unit features full self diagnostic £585 supplied brand new, with full, easy fitting instructions and
## Issue 13 of Display News now available - send large SAE - PACKED with bargains!



01816791888

# PROFESSSONAL SCHEMATIC CAPTUNE AND PCB SOFWARE FOR WNDOWS <br>  

At last, professional schematic and PCB design software for Microsoft Windows is available at prices that won't break the bank. CADPAK for Windows offers entry level schematic and PCB drafting whilst PROPAK for Windows adds netlist integration, multi-sheet schematics, highly effective autorouting,


Prices exclude postage ( $£ 5$ for UK) and VAT. All manufacturers trademarks acknowledged.

Call us today on 01756753440 or else fax 01756752857 for a demo pack - please state DOS or Windows as these products are available for both platforms.

## RESEARCH NOTES

Jonathan Campbell

## Fibre comms comes to the front door

Simple laser/fibre linking technology, a tenth the cost of current approaches but putting into a fibre more than se ven times the level of light than competing systems, has been developed by BT Laboratories, Martelsham (BTL). Advantage of the technique is that it overcomes the alignment problems which dog today's systems and make fibre links so expensive. With such a dramatic reduction in price down from $£ 100$ to perhaps $£ 10-$ the prospect of high speed fibre optics finding their way into individual homes has come several steps closer. For consumers that means huge increases in the volumes of data they will be able to access down the telephone line.
The reason fibre optic links are so costly now is that optically-efficient attachment of the semiconductor laser to the fibre is difficult. To work effectively, optical fibres must be aligned to within less than $I \mu \mathrm{~m}$. An offset of only $1.2 \mu \mathrm{~m}$ halves the amount of light that can be coupled into the fibre. Normally this requires
expensive active alignment, with each laser having to be turned on while the fibre is moved around in front of it to maximise the coupled light. Fixing the fibre in place then involves computer-controlled welding using a high power laser.
But BTL has redesigned the shape of the laser to incorporate of a taper allowing light to coupled directly to the cleaved fibre with efficiencies around $50 \%$. At the same time, a special cleaving technique allows the position of the laser active region relative to the edge of the chip to be known to $0.25 \mu \mathrm{~m}$.
The final task has been developing a micro-machined silicon mount to sit the laser on. This incorporated a silica stop, to which the laser is aligned simply by pushing it in until contact is made, and a precision etched V-groove in which the fibre may be glued.
Ian Lealman, part of the BTL team, says so far research samples have been tested and the search is on for a 'down-stream' comms company to develop the technology.


An assembled silicon optical bench. The semiconductor laser is the small gold rectangle in the middle of the bench.


## Organic leds: colour limits pushed aside

Researchers in Japan and Sweden Rhave pushed back the old colour limits on leds just a little further with announcement of an organic white light device that could glow as brightly as a fluorescent tube, and a polymer blend led that promises emission of any colour simply by adjusting the voltage.
Various multi-layer systems have been proposed before to obtain different colours. But white-light devices have always caused a problem because of the dearth of white fluorescent dyes.
Now Junji Kido, Masato Kimura and Katsutoshi Nagai at Yamagata University in Japan have used thin film technology to create a device that simultaneously emits blue, green and red wavelengths to produce bright white light (Multilayer white light-emitting organic electroluminescent device, Science,

267, pp.1332-1334).
Conventional leds comprise an emitter layer and a carrier transport layer. But doping the emitter layer with a different coloured fluorescent dye can produce light that is mix of the two emissions.
Carrier recombination can also be controlled so that emission takes place in two different layers. A hole-blocking layer inserted between the electron transport layer and hole transport layer, can force carrier recombination - and so light emission - to occur in both layers.
The Japanese white light led puts both methods to work.

Onto a hole-injecting indium-tin-oxide-coated glass substrate (ITO), are vacuum deposited a series of layers beginning with TPD (triphenyl-diamine derivative) showing emissions at $410-420 \mathrm{~nm}$, in the blue region. Next comes a $1,2,4$ -
triazole derivative layer that transports electrons but blocks holes; and this is followed by three layers of an electron-transporting aluminium complex (Alq) that emits at 520 nm , green. The middle Alq layer is also doped with nile red, emitting at 600 nm . Finally, a magnesium-silver alloy is used as the hole injecting electrode.

Applying dc voltage, with ITO positive, produces white light visible through the glass substrate.
The researchers report that luminance starts at around 6 V . improving up to a maximum of $2200 \mathrm{~cd} / \mathrm{m}^{2}$ at 16 V . Optimisation of structure and materials could lead to devices exceeding the $8000 \mathrm{~cd} / \mathrm{m}^{2}$ of fluorescent lamps.

Uses for such white light devices include lightweight applications such as aircraft or space shuttles. But they could be useful as backlights


Research in Sweden into polymer blends could enable any colour to be generated simply by changing the voltage.
for liquid crystal displays and, with suitable micropatterned colour filters, in full colour displays too. Another led advance aimed squarely at colour displays is a polymerblend device being developed by Magnus Berggren and colleagues in Sweden (Light-emitting diodes with variable colours form polymer blends, Nature, 372, pp.444-446).
His team's design strategy has been to control the geometry of a thiophene polymer main chain, producing a family of blends combining materials with different band gaps. Colours ranging from blue to near infra-red, with green, orange and red as intermediate steps can be produced, with intensity ratio of the peaks being determined by the voltage applied and stochiometry of the polymer blend.
So far, the precise mechanism for the phenomenon has not been positively established, but the
researchers say they can easily combine colours such as red and blue, green and red, orange and blue and expect soon to be able to combine red, green and blue.
When perfected, the simplicity of forming multi-colour screens with passive addressing of individual multi-colour pixels could make the technology irresistible to display engineers.

## Nanowires must still have a little flab

Scientists at Georgia Tech in the US and Universidad Autonoma de Madrid in Spain are warning researchers that there are limits to how small the wires can be made in miniaturised components. Those
sizes are still very small - electrical, mechanical and other properties of microscopic wires only change significantly as their width narrows to the nanoscale - less than ten atoms.
"Small is different", says Uzi Landman, director of Georgia Tech's Center for Computational Material Science.
The researchers found that under certain conditions, the ability of the nanowires to conduct electricity declines to the point that they resemble insulators. Conductance of such atomic-scale gold wires depends on their length, lateral dimensions, the state of atomic order and disorder and the elongation mechanism of the wires.
"If we are to reduce the size of microelectronics systems, connecting wires between elements of such devices must be reduced in size and therefore such quantisation patterns of conductance could start to appear," says Landman.
The combined experimental and theoretical investigations of electronic transport and mechanical elongation in ultra-thin metallic wires carried out by the scientists are the first to measure, in threedimensional wires at room temperature, a localisation phenomena previously seen only in one-dimensional "whiskers" at cryogenic temperatures.
The phenomena are expected to occur when the physical dimensions of the systems approach that of the electronic wavelength.

Aura Systems has developed a vest that vibrates in response to sounds from video games in an attempt to make the play more lifelike.

## Adding a spark to video games

/irtual reality may have brought added realism to computer combat games. But there is still


Picture Sega Soturn.
one aspect of life in silicon city that just doesn't ring true: where's the pain? Exchanging karate kicks with on-screen adversaries is only another empty experience without the physical jolt of heads cracking and ribs breaking.
Fortunately, El Segundo-based Aura Systems may have shown us the solution.

Aura has developed a special combat vest to be worn during game playing. It responds to sound, so that when, for example, a fist thuds into vital organs, the vest vibrates to give the player a stronger taste of the action. Unfortunately, some of the first kids to try out the new hardware were a little less than grateful,
plainly expecting more from a former defence company. One teenage tester commented disappointedly that it was hard to tell a punch from a cheering crowd.
So the race is still on to develop a computer peripheral that can convey to the compulsive electronic combat kid some of the real fun and excitement of going to war, whether it's with alien invaders or local bandanna-wearing street fighters.
Maybe $E W+W W$ readers could connect up something these desperate children really need. Though surely those reaching for their March issue and the article on Tesla coils have got completely the wrong idea. <br> \section*{\title{
Fe, Fi, Fo, Fom, Call <br> \section*{\title{
Fe, Fi, Fo, Fom, Call Ambar for Mitel Telecom
}} Ambar for Mitel Telecom
}}

High Speed Digital Solutions

PRIMARY RATE FRAMERS \& INTERFACES


SUPPORT DEVICES


## Analogue tine-niterfaces

## (1) Mitel <br> SEMICONDUCTOR

When Jack becomes a telecomms design engineer he won't have to climb a beanstalk or brave a giant to find the leading-edge telecom solutions he needs.
Ambar Components supplies and supports the broad range of Mitel Semiconductor telecom system solutions - from analogue switches to


ISDN interfaces, from DTMF receivers to high capacity switches, from industry standard to full custom devices.
Ambar Components has it all, and with the best application support service to boot! Be quicker and smarter than Jack and call 01844261144 today for a comprehensive Mitel Semiconductor information pack.

## 7 THAME PARK ROAD

THAME,
OXON OX9 3XD
TEL: 01844261144
FAX: 01844261789

# New leds promising for flat panel displays 

O
rganic leds demonstrating a 30 fold improvement in stability and significantly lower operating voltages - and so power consumption - have been developed by researchers at AT\&T Bell Laboratories in the US.
The improvements were achieved in a class of devices where an electron transporting layer (ET) is incorporated into the design to improves quantum efficiency by confining holes to the emissive layer and ensuring that both holes and electrons are generated. The ET layer also boosts power efficiency by aiding electron injection from the cathode.

What the Bell team has done (Science, Vol 267, pp.1969-1971) is to develop a new ET material that boosts power efficiency by almost a factor of 10 , producing devices that have a low turn-on voltage of 6 to 10 V , compared to 30 V normally. The figure is similar to that for devices without an ET layer, but of course with all the efficiency advantages of the layer retained. The researchers also established conclusively that the most important factor in determining diode stability is the electron transporter used.
Several new ET materials were investigated as part of the study and compared with conventional ET
layers. Best performance was achieved with a poly(aryl ether) layer and this compound was also able to pass as much as $3 \mathrm{~A} / \mathrm{cm}^{2}$ before failure.
All the leds were composed of the two thin layers of organic material PPV (poly( $p$-phenylenevinylene) and the polymeric ET layer sandwiched between indium tin oxide (ITO) and aluminium electrodes.
The scientists say the improvements demonstrate the strong promise of this type of device in indicators and flat panel displays etc.

PPV and the new organic ET layer sandwiched between ITO and aluminium electrodes. The device could be ideal for flat panel displays.

Defuzzing video still images by compensating for movement within a frame produces dramatic results.

## Video stills lose their fuzz

Many video enhancement techniques take account of motion that occurs between frames. But a new technique developed by workers at the University of Rochester, New York, and Eastman Kodak attempts to compensate for movements within a single frame.
Results are said to dramatically improve picture quality and allow single images from fast moving scenes to be output to a printer
without blurring. Such a facility is likely to become more important with the growing integration between tvs, videos and computer systems. The method should also reduce some of the drawbacks experienced in transferring film to tv, problems that are not discernible on a normal tv set but which could become apparent on hdtv.
Rochester postgrad Andrew Patti, who with a Kodak colleague has
filed four patents related to the technique, summarises how the process operates: " The one image you want is related to all the images before and after it. We extract that information and use it to clarify our image", he says.
The technique could also find application in forensics and satellite imaging; or anywhere there is need to generate a clear frame from a video.


present here my own contribution to global warming in the form of an improved Class-A amplifier that I believe is unique. It not only copes with load impedance dips by means of an unusually linear form of Class- AB , but will also operate as a 'blameless' Class-B engine. The power output in pure Class-A is 20 to 30 W into $8 \Omega$, depending on the exact supply rails chosen.
Initially, I simply intended to provide an updated version of the Class-A circuit published in reference 1 , in response to requests for a pcb for the Class-A amplifier designed with my methodology. I

> Douglas Self's latest audio power amplifier can be switched between ClassA/AB or Class-B to provide remarkable performance over a wide range of operating conditions. In Class-A, it operates with ultra-low distortion, but presented with a low-impedance load, it has recourse to an unusually linear $\boldsymbol{A B}$ configuration.

$2 \Omega$ is severely curtailed, as it must be with only one output pair, and this kind of load is not advisable.
In short, the amplifier allows a choice between being firstly very linear all the time - blameless Class-B - and secondly ultra-linear most of the time - Class-A - with occasional excursions into Class-AB.
The amplifier's $A B$ mode is still extremely linear by current standards, though inherently it can never be as good as prop-erly-handled Class-B, and nothing like as good as A. Since there are three possible classes of operation I have decided to call the design a Trimodal power amplifier. It is impossible to be sure that you have read all the literature on an area of tech-
nology; however, to the best of my knowledge this is the first ever Trimodal amplifier.

As I said earlier, designing a low-distortion Class-A amplifier is in general a good deal simpler than the same exercise for Class-B. All the difficulties of arranging the best possible crossover between the output devices disappear. Because of this it is hard to define exactly what 'blameless' means for a Class-A amplifier.

In Class-B the situation is quite different, and 'blameless' has a very specific meaning; when each of the eight or more distortion mechanisms has been minimised in effect, there always remains the crossover distortion inherent in Class-B. There appears to be no way to reduce it without departing radically from what might be called the generic Lin amplifier configuration. Therefore the 'blameless' state appears to represent some sort of theoretical limit for Class-B, but not for Class-A.

However, Class-B considerations cannot be ignored, even in a design intended to be Class-A only, because if the amplifier does find itself driving a lower load impedance than expected, it will move into Class-AB. In this case, all the additional Class- B requirements are just as significant as for a Class- B design proper. Class- AB can never give distortion as low as optimally-biased Class-B, but it can be made comparable if the extra distortion mechanisms are correctly handled.

My correspondence has made it abundantly clear that $E W$ readers are not going to be satisfied with anything less than state-of-the-art linearity, and so the amplifier described here uses the complementary-feedback-pair type of output stage, which has the lowest distortion due to the local feedback loops enclosing the output devices. It also has the advantage of better output efficiency than the emitter-follower version, and inherently superior quiescent current stability. It will shortly be seen that these are both important for this design.
Half-serious thought was given to labelling the Class-A mode 'distortionless' as the thd is completely unmeasurable across most of the audio band. However, detectable distortion products do exist above 10 kHz , so sadly, I abandoned this provocative idea.

Before putting cursor to CAD, it seemed appropriate to take another look at the Class-A design, to see if it could be inched a few steps nearer perfection. The result is a slight improvement in efficiency, and a 2 dB improvement in noise performance. In addition the expected range of output dc offset has been reduced from $\pm 50 \mathrm{mV}$ to $\pm 15 \mathrm{mV}$, still without any adjustment.

## The power and the glory

The amplifier is $4 \Omega$ capable in both $A / A B$ and $B$ operating modes, though it is the nature of things that the distortion performance is not quite so good. All solid-state amplifiers without qualification, as far as I am aware - are much happier with an $8 \Omega$ load, both in terms of linearity and efficiency; loudspeaker designers please note.

With a $4 \Omega$ load, Class-B operation gives better thd than Class $-\mathrm{A} / \mathrm{AB}$, because the latter will always be in AB mode, and therefore generating extra output stage distortion through gm-doubling. This should really be called gain-deficit-halving, but somehow I don't see this term catching on. These not entirely obvious relationships are summarised on the right.
Figure 1 attempts to show diagrammatically just how power, load resistance, and operating mode are related. The rails have been set to $\pm 20 \mathrm{~V}$, which just allows 20 W into $8 \Omega$ in Class-A. The curves are lines of constant power, ie $V \times I$ in the load, the upper horizontal line represents maximum volt-


Fig. 1. Relationships between load, mode, and power output. The intersection between the sloping load resistance lines and the ultimate limits of voltage-clipping and SOAR protection define which of the curved constant-power lines is reached. In $A / A B$ mode, the operating point must be to the left of the vertical push-pull currentlimit line for true Class-A.
age output, allowing for $V_{\text {ce(sat })^{s}}$, and the sloping line on the right is the SOAR protection locus; the output can never move outside this area in either mode. The intersection between the load resistance lines sloping up from the origin and the ultimate limits of voltage-clip and SOAR protection define which of the curved constant-power lines is reached.
In $\mathrm{A} / \mathrm{AB}$ mode, the operating point must be left of the vertical push-pull current-limit line (at 3A, ie twice the quiescent current) for Class-A. If we move along one of the impedance lines, when we pass to the right of the push-pull limit the output devices will begin turning off for part of the cycle; this is the AB operation zone. In Class- B mode, the 3 A line has no significance and the amplifier remains in optimal Class-B until clipping or SOAR limiting occurs. Note that the diagram axes represent instantaneous power in the load, but the curves show sine-wave rms power, and that is the reason for the apparent factor-of-two discrepancy between them.

## Health and efficiency

Concern for efficiency in Class-A may seem paradoxical, but one way of looking at it is that Class-A watts are precious things, wrought in great heat and dissipation, and so for a given quiescent power it makes sense to ensure that the amplifier approaches its limited theoretical efficiency as closely as possible. I was confirmed in this course by reading

| Load | Mode | Distortion | Dissipation |
| :--- | :--- | :--- | :--- |
| $8 \Omega$ | A/AB | very low | high |
| $4 \Omega$ | AAB | high | high |
| $8 \Omega$ | B | low | low |
| $4 \Omega$ | B | medium | medium |

Note that in the context of this sort of amplifier, 'high' means about $0.002 \%$ thd at 1 kHz and $0.01 \%$ at 10 kHz .


Fig. 2. Basic current feedback output stage, equally suited to operating Class B, AB and $A$, depending the magnitude of $\mathrm{V}_{\text {bias. }}$. The emitter resistors $\mathrm{R}_{e}$ may be from 0.1 to $0.47 \Omega$.


Fig. 3. PSpice simulation showing how positive clipping occurs in the current feedback output. A higher sub-rail for the voltage amplifier cannot increase the output swing, as the limit is set by the minimum driver $\mathrm{V}_{\mathrm{ce}}$ and not the voltage amplifier output swing.
of another recent design ${ }^{2}$ which seems to throw efficiency to the winds by using a hybrid bjt/fet cascode output stage. The voltage losses inherent in this arrangement demand $\pm 50 \mathrm{~V}$ rails and sixfold output devices for a 100W Class-A capability; such rail voltages would give 156 W from a $100 \%$ efficient amplifier.
Voltage efficiency of a power amplifier is the fraction of the supply-rail voltage which can actually be delivered as peak-to-peak voltage swing into a specified load; efficiency is invariably less into $4 \Omega$ due to the greater resistive voltage drops with increased current.
The Class-B amplifier I described in reference 3 has a voltage efficiency of $91.7 \%$ for positive swings, and $92.5 \%$ for negative, into $8 \Omega$. Amplifiers are not in general completely symmetrical, and so two figures need to be quoted; alternatively the lower of the two can be given as this defines the maximum undistorted sine-wave. These figures above are for an emitter-follower output stage, and a complementary-feedback pair output does better, the positive and negative efficiencies being $94.0 \%$ and $94.7 \%$ respectively.
The emitter follower version gives a lower output swing because it has two more $V_{\text {be }}$ drops in series to be accommodated between the supply rails; the complementary-feedback pair is always more voltage-efficient, and so selecting it over the emitter follower for the current Class-A design is the first step in maximising efficiency.
Figure 2 shows the basic complementary-feedback pair output stage, together with its two biasing elements. In ClassA the quiescent current is rigidly controlled by negative-feedback; this is possible because in Class-A the total voltage across both emitter resistors $R_{\mathrm{e}}$ is constant throughout the cycle. In Class-B this is not the case, and we must rely on 'thermal feedback' from the output stage, though to be strictly accurate this is not 'feedback' at all, but a kind of feedforward.
It is a big advantage of the complementary-feedback pair configuration that quiescent current, $I_{\mathrm{q}}$ depends only on driver temperature, and this is important in the Class-B mode, where true feedback control of quiescent current is not possible. This has special force if low-value emitter resistors such as $0.1 \Omega$, are chosen, rather than the more usual $0.22 \Omega$; the motivation for doing this will soon become clear.

Voltage efficiency for the quasi-complementary Class-A circuit of reference 1 into $8 \Omega$ is $89.8 \%$ positive and $92.2 \%$ negative. Converting this to the complementary-feedback pair output stage increases this to $92.9 \%$ positive and $93.6 \%$ negative. Note that a Class- $\mathrm{A} / /_{\mathrm{q}}$ of 1.5 A is assumed throughout; this allows 31 W into $8 \Omega$ in push-pull, if the supply rails are adequately high. However the assumption that loudspeaker impedance never drops below $8 \Omega$ is distinctly doubtful, to put it mildly, and so as before this design allows for full Class-A output voltage swing into loads down to $6 \Omega$.
So how else can we improve efficiency? The addition of extra and higher supply rails for the small-signal section of the amplifier surprisingly does not give a significant increase in output; examination of Fig. 3 shows why. In this region of operation, the output device $\mathrm{Tr}_{7}$ base is at a virtually constant 880 mV below the positive rail, and as $\mathrm{Tr}_{6}$ driver base rises it passes this level, and keeps going up; clipping has not yet occurred.
The driver emitter follows the driver base up, until the voltage difference between this emitter and the output base, ie the driver $V_{\text {ce }}$, becomes too small to allow further conduction; this choke point is indicated by the arrows A-A. At this point
the driver base is forced to level off, although it is still about 500 mV below the level of the positive rail. Note also how the voltage between the positive rail and $\operatorname{Tr}_{5}$ emitter collapses. Thus a higher rail will give no extra voltage swing, which I must admit came as something of a surprise. Higher sub-rails for small-signal sections only come into their own in fet amplifiers, where the high $V_{\mathrm{gs}}$ for fet conduction ( 5 V or more) makes their use almost mandatory.
Efficiency figures given so far are all greater for negative rather than positive voltage swings. The approach to the rail for negative clipping is slightly closer because there is no equivalent to the 0.6 V bias established across $R_{13}$; however this advantage is absorbed by the need to lose a little voltage in the $R C$ filtering of the negative supply to the current-mirror and voltage amplifier stage. This filtering is essential if really good ripple/hum performance is to be obtained. ${ }^{3}$
In the quest for efficiency, an obvious variable is the value of the output emitter resistors $R_{\mathrm{e}}$. The performance of the current-regulator described, especially when combined with a complementary-feedback pair output stage, is more than good enough to allow these resistors to be reduced while retaining first-class $I_{\mathrm{q}}$ stability. I took $0.1 \Omega$ as the lowest practicable value, and even this is comparable with pcb track resistance, so some care in the exact details of physical layout is essential; in particular the emitter resistors must be treated as four-terminal components to exclude unwanted voltage drops in the tracks leading to the resistor pads.
If $R_{\mathrm{e}}$ is reduced from $0.22 \Omega$ to $0.1 \Omega$ then voltage efficiency improves from $92.9 \% / 93.6 \%$, to $94.2 \% / 95.0 \%$. Is this improvement worth having? Well, the voltage-limited power output into $8 \Omega$ is increased from 31.2 to 32.2 W with $\pm 24 \mathrm{~V}$ rails, at absolutely zero cost, but it would be idle to pretend that the resulting increase in sound-pressure level is highly significant. It does however provide the philosophical satisfaction that as much Class-A power as possible is being produced for a given dissipation; a delicate pleasure.
The linearity of the complementary-feedback pair output stage in Class-A is very slightly worse with $0.1 \Omega$ emitter resistors, though the difference is small and only detectable open-loop; the simulated thd of an output stage alone (for 20 V pk-pk in $8 \Omega$ ) is only increased from $0.0027 \%$ to $0.0029 \%$ This is probably due simply to the slightly lower total resistance seen by the output stage.
However, at the same time, reducing the emitter resistors to $0.1 \Omega$ provides much lower distortion when the amplifier runs out of Class-A; it halves the size of the step gain changes inherent in Class-AB, and so effectively reduces distortion into $4 \Omega$ loads.
Figures $\mathbf{4 \& 5}$ are output linearity simulations; the measured results from a real and 'blameless' Trimodal amplifier are shown in Fig. 6, where it can be clearly seen that thd has been halved by this simple change. To the best of my knowledge this is a new result; my conclusion is that if you must work in Class-AB, keep the emitter resistors as low as possible, to minimise the gain changes.
Having considered the linearity of Class-A and $A B$, we must not neglect what effect this radical Re change has on Class-B linearity. The answer is, not very much, but there is a slight reduction in thd, Fig. 7, where crossover distortion seems to be slightly higher with $R_{\mathrm{e}}$ at $0.2 \Omega$ than for either 0.1 or $0.4 \Omega$. Whether this is a consistent effect - for comple-mentary-feedback pair stages anyway - remains to be seen.
The detailed mechanisms of bias control and mode-switching are described in the second part of this article.


Fig. 4. Complementary feedback pair output stage linearity with $\mathrm{R}_{\mathrm{e}}$ set at $0.22 \Omega$. Upper trace is Class- $A$ into $8 \Omega$, lower is Class- $A B$ operation into $4 \Omega$, showing step changes in gain of 0.024 units.


Fig. 5. Current feedback output linearity with $\mathrm{R}_{\mathrm{e}}$ set at $0.1 \Omega$, re-biased to keep Iq at 1.5A. There is slightly poorer linearity in the flat-topped Class-A region than for an $\mathrm{R}_{\mathrm{e}}$ of $0.22 \Omega$, but the $4 \Omega A B$ steps are halved in size at .012 units. Note that both gains are now closer to unity; same scale as Fig. 4.


Fig. 6. Proving that emitter resistor value really matters in Class-AB. Output was $20 W$ in $4 \Omega$, so amplifier was leaving Class-A for about $50 \%$ of the time. Changing emitter resistors from 0.2 to $0.1 \Omega$ halves the distortion. Current $\mathrm{I}_{q}$ is 1.5 A for both cases.


Fig. 7. Proving that emitter resistors matter much less in Class-B. Output was 20W in $8 \Omega$, with optimal bias. Interestingly, the bias does NOT need adjusting as the value of $\mathrm{R}_{\mathrm{e}}$ changes. Bandwidth 80 kHz .

impedance is
$13 \mathrm{k} \Omega$.

## Improving noise performance

In a power amplifier, noise performance is not an irrelevance. ${ }^{4}$ It is well worth examining just how good it can be. As in most amplifiers, noise is set here by a combination of the active devices at the input and the surrounding resistances.
Operating conditions of the input transistors themselves are set by the demands of linearity and slew-rate, and there is little freedom of design here; however the collector currents are already high enough to give near-optimal noise figures with the low source impedances - a few hundred ohms - that we have here, so this is not too great a problem. Also remember that noise figure is a weak function of $I_{c}$, so minor tweaking makes no detectable difference. We certainly have the choice
of input device type; there are many more possibilities now that we have relatively low rail voltages. Noise performance is, however, closely bound up with source impedance, and we need to define this before device selection.
Looking therefore to the passives, there are several resistances generating Johnson noise in the input, and the only way to reduce this noise is to reduce them in value. The obvious candidates are input stage degeneration resistors $R_{2,3}$ and $R_{9}$, which determines the output impedance of the negativefeedback network. There is also another unseen component; the source resistance of the preamplifier or whatever upstream.
Even if this equipment were miraculously noise-free, its output resistance would still generate Johnson noise. If the preamplifier had, say, a $20 \mathrm{k} \Omega$ volume pot at its output - not a good idea, as this gives a poor gain structure and cable dependent hf losses, but that is another story ${ }^{5}$ - then the source resistance could be a maximum of $5 \mathrm{k} \Omega$, which would almost certainly generate enough Johnson Noise to dominate the power-amplifier's noise behaviour. However, there is nothing that power-amp designers can do about this, so we must content ourselves with minimising the noise-generating resistances we do have control over.
The presence of input degeneration resistors $R_{2,3}$ is the price we pay for linearising the input stage by running it at a high current, and then bringing its transconductance down to a useable value by adding linearising local negative feedback. These resistors cannot be reduced, for if the hf negative-feedback factor is then to remain constant, $C_{\mathrm{dom}}$ would have to be proportionally increased, with a consequent reduction in slew rate. Used with the original negative feedback network, these resistors degrade the noise performance by 1.7 dB . Like all the other noise measurements given here, this figure assumes a $50 \Omega$ external source resistance.
If we cannot alter the input degeneration resistors, then the only course left is the reduction of the feedback network impedance, and this sets off a whole train of consequences. If $R_{8}$ is reduced to $2.2 \mathrm{k} \Omega$, then $R_{9}$ becomes $110 \Omega$, and this reduces noise output from -93.5 dBu to -95.4 dBu . Note that if $R_{2,3}$ were not present, the respective figures would be -95.2 and -98.2 dBu . However, $R_{1}$ must also be reduced to $2.2 \mathrm{k} \Omega$ to maintain dc balance, and this is too low an input impedance for direct connection to the outside world.
If we accept that the basic amplifier will have a low input impedance, there are two ways to deal with it. The simplest is to decide that a balanced line input is essential; this puts an opamp stage before the amplifier proper, buffers the low input impedance, and can provide a fixed source impedance to allow the high and low-frequency bandwidths to be properly defined by an $R C$ network using non-electrolytic capacitors. The common practice of slapping an $R C$ network on an unbuffered amplifier input must be roundly condemned as the source impedance is unknown, and so therefore is the roll-off point. A major stumbling block for subjectivist reviewing, one would have thought.
The other approach is to have a low resistance dc path at the input but maintain a high ac impedance; in other words to use the fine old practice of input bootstrapping. Now this requires a low-impedance unity-gain-with-respect-to-input point to drive the bootstrap capacitor, and the only one available is at the amplifier inverting input, ie the base of $\mathrm{Tr}_{3}$. While this node has historically been used for the purpose of input bootstrapping ${ }^{6}$ it has only been done with simple circuitry employing very low feedback factors.
There is good reason to fear that any monkey business with the feedback point, at $T r_{r_{3}}$ 's base, will add shunt capacitance, creating a feedback pole that will degrade hf stability. There is also the awkward question of what will happen if the input is left open-circuit..
Figure 8 shows how the input can be safely bootstrapped.

The total dc resistance of $R_{1}$ and $R_{\text {boot }}$ equals $R_{8}$, and their centre point is driven by $C_{\text {boot }}$. Connecting $C_{\text {boot }}$ directly to the feedback point did not produce gross instability, but it did seem to increase susceptibility to sporadic parasitic oscillation. Resistor $R_{\text {iso }}$ was added to isolate the feedback point from stray capacitance: this seemed to effect a complete cure.
The input could be left open-circuit without any apparent ill-effects, though this is not exactly good practice if loudspeakers are connected. A value for $R_{\text {iso }}$ of $220 \Omega$ increases the input impedance to $7.5 \mathrm{k} \Omega$, and $100 \Omega$ raises it to $13.3 \mathrm{k} \Omega$, safely above the $10 \mathrm{k} \Omega$ standard value for a bridging impedance. Despite successful tests, I must admit to a few lingering doubts about the high-frequency stability of this approach, and it might be as well to consider it as experimental until more experience is gained.
Another consequence of a low-impedance negative feedback network is the need for feedback capacitor $C_{2}$ to be proportionally increased to maintain the low-frequency response, and prevent capacitor distortion from causing a rise in thd at low frequencies; it is the latter constraint that determines the value. This is a separate distortion mechanism from the seven previously considered, and I think deserves the title Distortion 8. This criterion gives a value of $1000 \mu \mathrm{~F}$, which necessitates a low rated voltage such as 6.3 V if the component is to be of reasonable size. As a result, $C_{2}$ now needs protective shunt diodes in both directions, because if the amplifier fails it may saturate in either direction.
Close examination of the distortion residual shows that the onset of conduction of back-to-back diodes will cause a minor increase in thd at 10 Hz , from less than $0.001 \%$ to $0.002 \%$, even at the low power of $20 \mathrm{~W} / 8 \Omega$. It is not my practice to tolerate such gross non-linearity, and therefore four diodes are used in the final circuit. and this eliminates the dis-
tortion effect, Fig. 8. It could be argued that a possible reverse-bias of 1.2 V does not protect $C_{2}$ very well, but at least there will be no explosion.
We can now consider alternative input devices to the MPSAS6, which was never intended as a low-noise device. Several high-beta low-noise types such as 2SA970 give an improvement of about 1.8 dB with the low-impedance negative feedback network. Specialised low- $R_{\mathrm{b}}$ devices like 2 SB 737 give little further advantage - possibly 0.1 dB - and it is probably better to go for one of the high-beta types; the reason why will soon emerge.
It could be argued that the complications of a lowimpedance negative feedback network are a high price to pay for a noise reduction of some 2 dB ; however, there is a countervailing advantage, for the above negative feedback network modification significantly improves the output dc offset performance. The second and final part of this article shows how, and also gives full details of the mode-switching and bias control systems, and the performance of the complete amplifier.

## References

1. Self, D., Distortion In Power Amplifiers, Parr 8, Electronics World \& Wireless World, March ’1994, p. 225.
2. Thagard, N"Build a 100 W Class-A Mono Amp." Audio, Jan 1995, p. 43.
3. Self, D., Distortion In Power Amplifiers Part 7 Electronics World \& Wireless World, Feb 1994, p. 137.
4. Self, D., Distortion In Power Amplifiers, Part 2, Electronics World \& Wireless World, Sept '93, p. 736.
5. Self, D., A Precision Preamplifier, Wireless World, Oct 1983, p. 31.
6. Mullard Ltd, Transistor Audio \& Radio Circuits, pub. Mullard Ltd. 1972. second edn. pl22 etc.

## RF EQUIPMENT UP TO 2 GHz

| EVISION TRANSMISSION MODUL |  |  |  |
| :---: | :---: | :---: | :---: |
| TYPE 9169 VOLTAGE TUNABLE TN MODULATOR. Bands I or III or IV or V. $0 / \mathrm{p} 50 \mathrm{~mW}$. |  |  |  |
| 4.5 or 5.5 or 6 MHz sound channel. 12V. + supply ........................................... 5395 |  |  |  |
| TYPE 9170 As above. Output $1 / 2$ watt |  |  |  |
| TYPE 9269 PLL TV EXCITER. Single channel. Bands I, III, IV or V. 0/p 10 mW .......... $£$ |  |  |  |
| TYPE 9115B PLL TN TRANSPOSER. Up to 10 adjacent channels in bands I, III, IV or |  |  |  |
|  |  |  |  |
| TELEVISION LINEAR POWER AMPLIFIERS |  |  |  |
| Tuned to your specified channel in bands I, III, IV or V |  |  |  |
| TYPE 925210 mW input, 500 mW output |  |  |  |
| TYPE 925450 mW input, 2 watts output. |  |  |  |
| TYPE 9259500 mW input, 3 watts output. |  |  |  |
| TYPE 9263 2-3 watts input, 12 watts output |  |  |  |
| TYPE 93643 watts input, 22-25 watts output |  |  |  |
| TYPE 926610 watts input, 50 watts output. Integral forced air cooling \& output |  |  |  |
| transistor protection..................................................................... |  |  |  |
| TYPE 936750 watts i/p, 150 Wo o p. Integral forced air cooling \& o/p transistor protection. |  |  |  |
| COMPLETE 19" RACK MOUNTING TRANSMITTERS \& TRANSPOSERS |  |  |  |
| Studio, satellite or RF input. Single channel. Bands I, III, IV or V. PAL system B, G, H or I. Automatic output protection circuitry. Integral forced air cooling \& mains power supply. Front panel power meter |  |  |  |
|  |  |  |  |
| TRANSMITTERS | TRANSPOSERS | OUTPUT P |  |
| 9505 | 9605 | 5 watts | £2,650 |
| 9510 | 9610 | 10 watts | £2,950 |
| 9515 | 9615 | 15 watts | £3,250 |
| 9530 | 9630 | 30 watts | £3,980 |
| 9550 | 9650 | 50 watts | £4,950 |
| 95150 | 96150 | 150 watts | £9,950 |TYPE 9169 VOLTAGE TUNABLE TN MODULATOR. Bands I or III or IV or V. $0 / \mathrm{p} 50 \mathrm{~mW}$.

tre 970 As aty s. ..... 395
TYPE 9269 PLL TN EXCITER. Single channel. Bands I , ill, IV or V. O/P 10 mW .......... E 75V. $0 / \mathrm{p} 10 \mathrm{~mW}$c75
mear poweramplifiers
TYPE 925210 mW input, 500 mW output ..... £390TYPE 9259500 mW input, 3 watts output
TYPE 9263 2-3 watts input, 12 watts output .....  1700TYPE 926610 watts input, 50 watts output. Integral forced air cooling \& outputransistor protection£2110TYPE 936750 watts i/p, 150 Wo o/p. Integral forced air cooling \& o/p transistorprotection$£ 4345$Studio, satellite or RF input. Single channel. Bands I, III, IV or V. PAL system B, GH or I. Automatic output protection circuitry. Integral forced air cooling \& mains powersupply. Front panel power meter

Prices are ex-p\&p and ex-VAT

## NARROW AND BROADBAND GASFET LNA's 5MHz-2GHz

TYPE $90065-250 \mathrm{MHz}$. BW up to $40 \%$ of CF. Gain $10-40 \mathrm{~dB}$ variable.
50 ohms. NF 0.6 dB .....  195
TYPE 9304 250-1000MHz. NF 0.7dB. Gain 25dB. 50 ohms ..... £250
TYPE 9303 As above with active stripline filter. BW 1\% to $10 \%$ of CF .....  $£ 295$
TYPE 9308 1-2GHz. NF 0.7 dB . Gain 20dB. 50 ohms ..... £350
TYPE 9305 As above with active stripline filter. BN 1\% to 10\% of CF ..... £395
TYPE 9035 Transient protected mains power supply for above preamps. .....  $£ 65$
TYPE 9010 Masthead weatherproof unit for preamps. ..... £18
PHASE LOCK LOOP FREQUENCY CONVERTER
TYPE 9115 Up /down converter. $\mathrm{I} / \mathrm{p} \& \mathrm{o} / \mathrm{p}$ frequencies 20 MHz to 2 GHz . BW up to
50 MHz . NF 0.7 dB . Gain 60dB variable. $0 / \mathrm{p}$ up to $10 \mathrm{~mW}+10 \mathrm{dBm}$. AGC ..... £750
PHASE LOCK SIGNAL SOURCES 20-2000 MHz
TYPE 8034 Freq. as specified in the range $20-250 \mathrm{MHz} .0 / \mathrm{p} 10 \mathrm{~mW}$ ..... £250
TYPE 9036 Freq. as spec. in the range $250-1000 \mathrm{MHz}$. $0 / \mathrm{p} 10 \mathrm{~mW}$ ..... £350
TYPE 9038 Freq. as spec. in the range $1-2 \mathrm{GHz} .10 \mathrm{~mW}$ ..... £420
TYPE 9282 FM up to $\pm 75 \mathrm{KHz}$ max. Freq. as spec. in the range $30-2000 \mathrm{MHz}$. 0/p 10 mW ..... £ 465
WIDEBAND AMPLIFIERS
TYPE $9301100 \mathrm{KHz}-500 \mathrm{MHz}$. NF 2 dB at 500 MHz . Gain 30 dB .Output $12.5 \mathrm{dBm}, 18 \mathrm{~mW} .50$ ohms£. 175
TYPE $930210 \mathrm{MHz}-1 \mathrm{GHz}$. NF 2dB at ..... w. 50ohms. 175TYPE 9008 Gasfet. $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 2.5 dB at 1 GHz . Gain 10 dBOutput $18 \mathrm{dBm}, 65 \mathrm{~mW}$. 50 ohms£175
TYPE 9009 Gasfet. 10MHz-2GHz. NF 3.8 dB at 1 GHz . Gain 20 dB .Output $20 \mathrm{dBm}, 100 \mathrm{~mW} .50$ ohms.£195

## RESEARCH COMMUNICATIONS LTD



## REGULATORS

LM332K 5V 3 A A PLASTII,
LM323K 5V 3A METAL....
LM323K SL 3AMET

7812 METAL 12 V 1 A .
9005/1215/24
CA3085 TO99 variable reg
UC3524AN SWITCHING REGS

## CRYSTAL OSCILLATORS

2M45763M6864 5MO 5M76 5M144 7M000 7M37288M000 12MOOO
 $44 \mathrm{M} 444444 \mathrm{M} 90048 \mathrm{MOOOO64MOOO} 1 \mathrm{MCOOO} 1 \mathrm{M} 84324 \mathrm{MOOO} 10 \mathrm{M} 000$ 84M0.........

## CRYSTALS

48M056 10M368 17M6256 18M432 25M000 28M4694 31 M4696 10002142 4M000 4M19304 4M433619 4M608 4M9152 5M000 5M0688 6M000 2M 4000 M000 8M488 9M8304 10M240 10M245 10M70000 11M00 16 M 588 BM 00013 M 270 14M000 14M381818 15MO00 16 MO 00 $34 \mathrm{M} 3683 \mathrm{M} 75525 \mathrm{M} 0002 \mathrm{M} 30021 \mathrm{MB55} 22 \mathrm{M} 18424 \mathrm{MO} 00$ 36 M81875 36M 8312536 M 84375 38M900 49M504 54M19166 4M 741657 M75833 60M000 69M545 69M550 BN 26M995 RD27M045 OR27M095 YW27M145 GN27M195 BL27M245
tRANSISTORS
MPSA92
N2907A...
Ull spec.................................. $£ 4 / 100 £ 30 / 1000$ BC557, BC238C, BC308B
2N3819 FETS $\qquad$ $\begin{array}{r}1 / 30 £ 3.50 / 1 / 00 \\ \hline 1 / 1584 / 100\end{array}$

## POWER TRANSISTORS

OCPOWER FETIRF9531 1 AA 60 V

SE9301 100V 1DA DARL SIM TII
BUZ31 POWER FETTO-220 500 P 12.5 A

## TEXTOOL ZIF SOCKETS

 COUPUING SUPPLIED WIN $2 / E 1.50$

## MISCELLANEOUS

2 VOLT 920 Ahr LEAD ACID CELLS, UNUSED, UNFILLED $188^{*}$ HIGH TUBULARPLATE CONSTRUCTION, FORDEEP CYCLE, HIGH AVAILABLE. PHONE FOR PRICING ALSO AVAILABLE FILLED \& CHARGED
UM6116M.21 surface mitter LED55C $80 B$ PIO 7000 available $£ 1$ each, cty, orice

MINIATURE FERRITE MAGNETS $4 \times 4 \times 3 \mathrm{~mm}$
TLO71 LO NOISE OP AMP
TL071 LO NOIS
—............ 5 for $£ 1$
4000 2 2v SPRAGUE 36D .................................................. 50 (£2)
12 Way dil SW 10 FF 63 V X7 PHILIPS SURFACE MOUNT 100 K
available.......................................................
£3 for £1

AVAILABLE $+5 \mathrm{~V} 5 \mathrm{~A},+12 \mathrm{~V} 2 \mathrm{~A}, 12 \mathrm{~V} 500 \mathrm{~mA}$ FLOATING
220R 2.5W WIREWOUND RESISTOR GOK AVAILABLE
CMOS 555 TIMERS
L9.95 (£2)
CMOS 555 TIMERS
2/3 AA LITHIUM cells as used in compact cameras. ITHIUM CELL $1 / 2$ AA SIZE

EUROCARD 28-SLOT BACK PLANE 96/96-WAY... PROTONIC 24 VARIBUS* $16.7^{\prime \prime} \times 5^{\prime \prime}$ FIBREGLASS EUROCARD 96-WAY EXTENDER BOARD $290 \times 100 \mathrm{~mm}$
DIN 4161296 -WAY AB/C SOCKET PCB RIGHT
ANGLE.
DIN 41612 96-WA ABBIC SOCKET WIRE WRAP PINS ........ $£ 1.30$ DIN 1612 WAY ABC SOCKET WIRE WRAP PINS ... $£ 1.30$ NIN 1612 64-WAY AC SOCKET WIRE WRAP PINS DIN 41612 64-WAY AB SOCKET WIRE WRAP (2-ROW BOD

## BT PLUG + LEAD.

MIN. TOGGLE SWITCH 1 POLE C/O PCB type
CD MODULE sim M018 beds 150 to 250V AC for di.......5/E1 $0 \times 2$ characters $182 \times 35 \times 13 \mathrm{~mm}$... 6-32 UNC 5/16 POZI PAN SCREWS ................................... $1 / 1100$ PUSH SWITCH CHANGEOVER ...................................25/100 RS232 SERIAL CABLE D25 WAY MALE CONNECTORS 25 FEET LONG, 15 PINS WIRED BRAID + FOIL SCREENS INMAC LISTRENS AMERICAN 2/3 PINCHASSIS SOCKET INMAC LIST PRICE £30 WIRE ENDED FUSES 0.25 A
NEW ULTRASONIC TRANSDUCERS 32 kHz OWEAFUL SMALL CYLINDRICAL MAGNETS NC 50OHM SCREENED CHASSIS SOCKET D.1.L. SWITCHES 10-WAY E1 8-WAY 80p 4/5/6-WAY... 80VOLT 1WATT ZENERS also 12 V \& 75 V MIN GLASS NEONS
 STC 47WBost.
geover looks like RS 355-741 marked MINIATURE CO-AX FREE PLUG RS 456 -071

400 MEGOHM THICK FILM RESISTORS STRAIN GAUGES 40 ohm Foil type polyester backed balco grid ELECTRET MICROPHONE INSERT ..................2/21 Linear Hall effect IC Micro Switch no 613 SS4 sim RS 304-267
HALL EFFECTIC UGS3040 + magnet
1 pole 12 -way rotary switch
AUDIOICS LM380 LM $386 . . .$.
555 TIMERS $£ 1741$ OF AMP
555 TIMERS $£ 1741$ OP AA
COAX PLUGS nICe ones ..............
COAX BACK TO BACK JOINER
INDUCTOR $20 \mu \mathrm{H} 1.5 \mathrm{~A}$
$1.25^{\prime \prime}$ PANEL FUSEHOLDERS
12 V 1.2 W small wie lamps fit most modern cars. STEREO CASSETTE HEAD
MONO CASS. HEAD $£ 1$ ERASE HEAD.
THERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$.. THERMAL FUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C} 240 \mathrm{~V}$ 15A TRANSISTOR MOUTING PADSTO-5/T0....................... 5/E1 TO-3 TRANSISTOR COVERS PCB PINS FIT 0.1" VERO T0-220 micas + bushes $\qquad$ Large heat shrink sleeving pac EC chassis plug filter 10A POTS SHORT SPINDLES $2 K 5$ 10K 25 K 1M 2M5 40 k U/S TRANSDUCERS EX-EOPT NO DATA M335Z 10 MV /degree C... BNC TO 4 MM BINDING POST SIM RS $455-961$ MIN PCB POWER RELAYS 10.5 V RS Col ga contacts 1 pole BANDOLIERED COMPONENTS ASSORTED Rs, CS, ZENERS LCD MODULE 16 CHAR. X 1 LINE (SIMILAR TO HITACHI LM10)..
OPI1264A 10kV OPTO ISOLATOR ........... $£ 1.35$ ea $100+\Sigma 1$ ea
'LOVE STORY' CLOCKWORK MUSICAL BOX MECHANISM MADE BY SANKYO.
Telephone cable clips with hardened pins ............................... $500 / \varepsilon 2$ $10,000 \mathrm{uF} 16 \mathrm{~V}$ PCB TYPE 30 mm DIA 31 mm EC CHASSIS FUSED PLUG B
2A CERAMIC FUSE $1.25^{\prime \prime}$ QB
......... 21E1

NE564.
P8749H USED WIPED
TLO84.
IR2432 SHARP 12 LED VU BAR GRAPH DRIVER

DIODES AND RECTIFIERS
A115M 3A 600 V FAST RECOVERY DIODE
1 N4148
1N4004 SD4 1A 300V
1 N5451 3A 100V...
BA158 1 A 400 V fast recovery........................
BY254 800 V 3A...
BY255 1300 V 3A......
1A GOOV BRIDGE RECTIFIER
4A 100V BRIDGE
6A 100V BRIDGE
6A 100 V BRIDGE.
10 A 200 V BRIDGE
10A 200V BRIDGE.......
25A 200 V BRIDGE 2

25A 4002 BR LNE 2A 200V BRIDGE REC
$2 K B P 02$
BY297
SCRS
PULSE TRANSFORMERS $1 \%+1$ MEU21 PROG UNJUNCTION
TRIACS .................................. DIACS 4/£1
NEC TRIAC ACOBF BA G00V TO220.
TXAL 2258 A 500 V 5 mA GATE..............
BTA 08-400 ISO TAB 400V 5mA GATE
TRAL2230D 30A 400V ISOLATED STUD...............................................


## CONNECTORS

D25 IDC PLUG OR SOCKET.
34-way card edge IDCCONNECTOR
CENTRONICS 36 WAY IDC PLUG.
CENTRONICS 36 WAY IDC SKT....
BEC TO CENTRONLCS PRINTEALEAD 1.5M.
CENTRONICS 36 WAY PLUG SOLDER TYPE
USED CENTRONICS 36W PLUG+SK
14 WAY IDC BLOCK HEADERSKT
PHOTO DEVICES
HI BRIGHTNESS LEDS COX24 RED .........
TIL81 PHOTO TRANSISTOR
TII 38 INFRA RED LED
4N25, OP 12252 OPTO ISOLATOR
PHOTO DIODE 50P.
MEL12 (PHOTO DARLINGTON BASE IVC)
LED's RED 3 or $5 \mathrm{~mm} 12 / \mathrm{E}_{1} 1$.
LED's GREEN OR YELLOW 10 C
FLASHING RED LED 5 mm 50 p
 $10 / \& 1$
$100 / \& 3$ .. $8 / \varepsilon 1$ ${ }_{\substack{681 \\ 681}}^{681}$ IGSPEED MEDIUM AREA PHOTODIODE RS651-995 £10ea

## STC NTC BEAD THERMISTORS

G22220R, G13 1K, G23 2K, G24 20K, G54 50K, G25 200K, RES $20^{\circ} \mathrm{C}$ DIRECTLY HEATED TYPE................................................. ${ }^{1}$ ea A13 DIRECTLY HEATED BEAD THERMISTO....................................................... 1 k es. Wien Bridge Oscillator

## CERMET MULTI TURN PRESETS $3 / 4$ "

10R 20R 100 R 200 R 250 R 500 R 2 K 2 K 2 2K5 5K 10K 47K 50 K 100 K
200 K 500 K 2 M .

## IC SOCKETS

 £1 per TUBE
£2 per TUBE 32-WAY TURNED PIN SKTS -.... 3 for E 1

## SIMM SOCKET FOR $2 \times 30$ way SIMMS

... $\Sigma 1$

## POLYESTER/POLYCARB CAPS

## $330 \mathrm{NF} 10 \% 250 \mathrm{~V}$ AC X 2 RATED PHILIPS TYPE 330

$10 \mathrm{~N} / \mathrm{I}_{\mathrm{N}} / 22 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{~N} / 66 \mathrm{n} 10 \mathrm{~mm} \mathrm{rad}$
100 n 250 V radial 10 mm .
100 n 600 V Spraçue axial $10 / \mathrm{c} 1$.
$2 \mu 2160 \mathrm{~V}$ ad $22 \mathrm{~mm} 2 \mu 2100 \mathrm{~V}$
$2 \mu 2160 \mathrm{~V}$ rad $22 \mathrm{~mm}, 2 \mu 2100 \mathrm{~V}$ rad 15 mm
$10 \mathrm{~N} 33 \mathrm{n} / 47 \mathrm{n} 250 \mathrm{~V}$ AC x rated 15 mm
10 n 33 N 47 n 250 V AC X rated
$1 \mu 0100 \mathrm{~V}$ rad $15 \mathrm{~mm}, 1 \mu 022 \mathrm{~mm}$ rad.
$0.22 \mu 250 \mathrm{~V}$ AC X2 RATING
$20 / 51$ 100/20

RF BITS
SAW FILTERS SW662/SW661 PLESSEY SIGNAL TECHNOLOGY
 ASTEC UM1233 UHF VIDEO MODULATORS (NO SOUND) 1250
STOCK MTOCK ............................................................................. DC4229F1/F2..

100/E3.50

ALL TRIMMERS .........................
YELLOW 5.65pF RED 10-110pF GREY 5.25pF
SMALL MULLARD 2 to 22 pF .... GRE 5 -25pF
 CERAMIC FILTERS 4 M5/6M 9 M 1 10M7
FEEU THRU' CERAMIC CAPS 1000pF....

(BFY51 TRANSISTOR CAN SIZE)
2N2222 METAL
2N2369A.
MONOLITHIC CERAMIC CAPACITORS

100 n 50 V 2.5 mm or 5 mm .
100/86
100 n ax short leads
100 n ax long leads ...................
100 n 50 V dil package 0.3" rad 100/E5
100 n 50 V dil package $0.3^{\prime \prime}$ rad ............................................................ 100/88
QUARTZ HALOGEN LAMPS
12V 50watt LAMP TYPE M31
6V 50watt
§1 ea HOLDERS 60p ea

## TEL. 01279-505543 <br> FAX. 01279-757656 PO BOX 634 <br> BISHOPS STORTFORD HERTFORDSHIRE CM232RX

KEYTRONICS

SEND \&1 STAMPS FOR CURRENT IC+SEMI STOCK LIST - ALSO AVAILABLE ON
MAIL ORDER ONLY
MIN. CASH ORDER $£ 5.00$. OFFICIAL ORDERS WELCOME
UNIVERSITIES/COLLEGES/SCHOOLS/GOVT. DEPARTMENTS
P\&P AS SHOWN IN BRACKETS (HEAVYITEMS) OTHERWISE 95p
ADD 17½\% VAT TO TOTAL
ELECTRONIC COMPONENTS BOUGHT FOR CASH

## Bigger bass smailer box

Seventy years after its invention, the loudspeaker is still the weakest link in the audio chain. In particular, the bass response is usually severely compromised; the bottom two octaves are a special problem. It is hard to see why the audio fraternity places so much emphasis on reducing distortion levels in power amplifiers and yet ignores the gross errors inherent in speakers.
Typically, $99 \%$ of the carefully cultivated signal delivered to a speaker heats the voice coil, the remaining $0.1 \%$ being mangled by the phase shifts and amplitude variations imposed by loudspeaker and associated crossover. What emerges from the speaker is a distorted version of the driving signal, no matter how perfect the input may be.
At the risk of being lynched by irate audiophiles and engineers, I must point out that the laws of physics dictate that a flat-response audio system cannot be produced simply by driving speaker systems from flat-response amplifiers! With current speaker systems, the only way to produce a system with a flat frequency response is to use amplifiers with a non-linear response.

An ideal speaker would behave as a pure piston, regardless of the signal frequency. No such animal exists. Practical speaker units have a cone with mass which resonates with the compliance of the surround to produce a fundamental resonance. Below this resonance, the response falls away rapidly, while above it pure piston operation is maintained over a restricted band of frequencies before the response starts to roll off again.

## Designing an enclosure

At frequencies where the speaker's diameter is less than a wavelength of the sound emitted, antiphase waves from the rear of the cone diffract around it to cancel out the wanted radiation from the front.
This is the reason why some kind of enclosure has to be used, the simplest method being to mount the speaker in a sealed enclosure. Unfortunately, the enclosed air possesses stiffness which adds to that of the speaker surround and raises the resonant frequency, which is obviously undesirable as well as unavoidable. To get an extended low-frequency response one has to enlarge the enclosure. An alternative would be to use a

> Considering the speaker as part of the electronics leads to a tailored amplifier frequency responise, extended bass and relatively small size as Jeff Macaulai demonstrates with his Micnoreflex' full-range loudspeaker design.


## AUDIO DESIGN



Fig.2. Enclosure construction, using medium-density chiphoard and lots of glue, not to mention a flowerpot.

Cutting list:
Panel A :- 2 pieces $512 \times 152 \times 15 \mathrm{~mm}$
Panel B :- 2 pleces $512 \times 305 \times 15 \mathrm{~mm}$
Panel C :- 2 pieces $275 \times 150 \times 15 \mathrm{~mm}$
Vent :- see text
Pod :- standard 6in dia. terra cotta flower pot
All dimensions in mm unless otherwise stated
speaker with a lower free air resonant frequency, but the efficiency of a speaker is proportional to the cube of that frequency.

Alternatively, there is the reflex enclosure, in which a duct is cut into the enclosure. The mass of air in the duct and the compliance of the air in the enclosure form a mechanical tuned circuit which is excited by the cone's rear radiation. Duct output is out of phase with the rear radiation from the cone and in phase with the wanted output from the front. Hence, over a restricted range of frequencies, the duct or vent augments the bass output from the speaker.

Below the enclosure resonance, the radiation
from the vent moves out of phase with the speaker and in consequence the extreme bass output falls off more rapidly than that from a sealed box. The transient response of the system is therefore poorer. On the plus side, though, the resonant frequency of the speaker is hardly raised from its free air value, leading to lower distortion.
A further advantage of reflex operation is that the cone excursion for a given output is greatly reduced at and near the enclosure resonance. This is because the speaker 'sees' the high mechanical impedance of the enclosure's resonant circuit.
Owing to the pioneering work of Theile ${ }^{1}$,
extended by Small ${ }^{2}$, it is a simple matter to design a good reflex speaker, although design is constrained by the characteristics of the bass units available. Again, a greatly extended lowfrequency response is usually only obtainable at the expense of a large enclosure.
This state of affairs dictates that nearly all available speaker systems of a reasonable size exhibit a tendency to have little or no useable output below 60 Hz , thereby losing almost two octaves of the audio band. What can be done?
There is a widespread belief that real bass cannot be generated in small boxes. However, as my neighbours will testify, this is not the case. It is simply that such performance is impossible using the techniques already described. However, several solutions have been devised, the best known probably being motional feedback, in which a small transducer is attached to the speaker cone and the resulting signal fed back into the driving amplifier's feedback loop. This is used both to correct the low frequency roll-off and reduce harmonic distortion. A good example of this technique is shown in reference 3 .
Another method, used in this design, is the 6th-order reflex speaker system in which the low-frequency response is extended by the use of an underdamped high-pass filter, commonly in the form of an op-amp circuit between preamplifier and power amps. According to Keele, the response can be extended by half an octave in exchange for 3 dB less maximum drive signal ${ }^{4}$. Other variations on the theme can be found, for example, sub-resonant speaker systems after Linkwitz ${ }^{5}$ and Harcourt ${ }^{6}$.
What really limits the bass extension of a driver is the volume of air that can be shifted a direct function of cone area and peak-to-
peak excursion limits. So long as the unit can be equalised to a flat response, the cabinet dimensions can be kept small without affecting the overall response. As the response curves of both sealed and reflex cabinets can now be accurately calculated, we are in a position to extend the low-frequency response of small speaker systems. All that is required is to sacrifice the sacred cow of flat-response electronics.
In reality, using filter techniques to flatten system response is both simple and inexpensive. Intellectually, it is no stranger than equalising the response of a magnetic pickup cartridge. It does, however, require a leap in thinking from the current piecemeal approach to designing a system to a more holistic view in which the acoustic performance is incorporated into the electronic design process. From such an approach comes the realisation of overall system responses that are simply impossible to achieve by purely mechanical means.

## Choosing drivers

Designing a speaker system is the simultaneous solution of several, often mutually entangled problems. At best, the individual responses of the drivers used resemble asymmetrical band-pass filters, with unwanted resonances thrown in for good measure. These responses need to be modified and harnessed so that the system response resembles a band-pass filter with a flat response across the audio frequency range.


Fig.3. Power supply board. All the electronic part of the speaker is in a plastic box mounted on the cabinet, input being at line level from the radio or cd player, with no further amplification.

From the wide choice of possible drivers for the system, I chose Audax units for their consistent Theile/Small parameters. The HT210FO bass and HT13OFO were designed to be used together, as is evidenced by their closely matched reference efficiencies. They are also supplied in pairs, computer matched to within $<0.3 \mathrm{~dB}$, so that gain matching between them is unnecessary.
One of the design aims was a smooth treble
response and accurate integration of driver responses. After trying several tweeters, including titanium and hard-dome types, I chose the Morel MDT29, a soft-dome unit with an excellent, smooth and resonance-free response combined with an equally smooth low-frequency roll-off. It is also a robust ferro fluid-cooled unit capable of high power handling on transients.
It is now well established that a wide stereo


Due to the electronic bass-driver compensation, this full-range loudspeaker has a -3 dB point of $\mathbf{2 5 H z}$.
Response is $\pm 3 \mathrm{~dB}$ over the whole 25 Hz to 20 kHz range while power handling of the bass unit is 70 W continuous.

## AUDIO DESIGN

image requires good horizontal sound dispersion. This requires a narrow enclosure, and to obtain the minimum front baffle dimensions, the bass driver is mounted on the side of the enclosure. This does not cause problems because, below 100 Hz , the bass driver's response is omnidirectional.
The mid-range driver needs its own enclosure. In three-way designs, it is common practice to mount this sub-enclosure within the main enclosure and, after a lot of headscratching, I chose a common-or-garden 6 in diameter terracotta flower pot. Although the choice may seem strange, the non-parallel
shape ensures that, within the mid driver's range, standing waves cannot occur within the sub-enclosure. This is the major cause of coloration in most enclosures and its removal tightens the sound considerably.
Mounted in this way, the HT13OFO's bass resonance is raised from 48 Hz to 144 Hz , with a consequent increase in $Q$ from 0.25 to approximately 0.73 , the natural choice for the crossover point between the mid-range and bass drivers. Rolling off the bass unit at this frequency also ensures that the cabinet is acoustically small. That is to say, the wavelengths of the sound radiated by the driver are
much longer than the largest enclosure dimension. In consequence, standing waves cannot be generated within it.

## Crossover considerations

Designed in this way, the system is without standing-wave problems and needs no esoteric construction technique. A further advantage of this crossover point is that the peak output power in musical and speech signals occur around this point. Since both drivers are radiating, peak levels are some 6 dB greater than
continued over page

## Active crossover

In a conventional passive crossover, the designer alters the $Q$ of the network by varying the ratios of the reactive components, bearing in mind the - hopefully - resistive load presented by the speaker. In practice, this is hard to achieve because of reactive effects in the drivers.
In contrast, active crossovers are easily fabricated without recourse to inductors and are independent of driver loading. Although several possible filter configurations exist, the most suitable for active crossovers are the Sallen and Key types, in particular the 'equal-component' and 'unity-gain' variations, shown in Fig. A1.
Standard op-amps are used for the active elements and a large variety of types are available; the TLO series, used in this design, are well tried and tested and recommended for development work. In the unity-gain circuit, the op-amp is wired as a buffer. Component values for the high-pass version can be determined by the following equations.

1. Choose a convenient value for $C$, then:
$R_{2}=a /\left(1.257 \times 10^{-6} f_{0} C\right.$.
2. $R_{1}=1 /\left(3.142 \times 10^{-6} a f_{0} O\right.$, where $a$ is $1 / Q$ and $C$ is expressed in $\mu \mathrm{F}$.

For the low-pass version:
3. Choose a convenient value for $R$, then: $C_{1}=a /\left(12.57 f_{0} R\right)$.
4. $C_{2}=1 /\left(3.142 \mathrm{a} f_{0} R\right)$.

In the equal component filter:
5. $f=159155 / R C$, where $R$ is expressed in ohms and $C$ in $\mu F$.

This equation holds true for both high and low-pass filters. The $Q$ of the filter is set by the voltage gain of the circuit, set by the ratio of $R_{3}$ and $R_{4} . R_{3}$ should be $(3-(1 / Q+1)) R_{4}$.
Higher order filters are obtained by cascading 2 nd-order filters; the $Q$ of a cascaded pair is equal to the product of the $Q s$ of each section. Figure A1 shows the effect of $Q$ on the response shape of a 2 nd-order filter, in this case a high-pass type; the response of low-pass filters is a mirror image. Underdamped filters of $Q>0.7$ show a peak in the passband, while overdamped filters with $Q<0.7$ do not.
Filters with a $Q$ of 0.7 are Butterworth types, which possess the flattest passband response combined with no peak. However, it can be shown that best transient response is obtained with a $Q$ of 0.5 , regardless of filter order; hence the popularity of crossovers with this $Q$. The standard LinkwitzRiley crossover uses a 4 th-order filter for both high and low-pass sections. A further advantage of the 4 th-order filter is that the phase difference between sections is zero.


## Best rf article '95

Following the success of 1994's Writers Award, Electronics World and Hewlett-Packard are launching a new scheme to run from January to December 1995.
Only articles which have an element of rf design will be eligible for consideration by the judging panel. It is hoped that this year's award will focus writer interest on rf engineering in line with the growing importance of radio frequency systems to an increasingly cordless world.
The aim of the award scheme is to locate freelance authors who can bring applied electronics design alive for other people.
Qualifying topics might include direct digital synthesis, microstrip design, application engineering for commercially available rf ICs and modules, receiver design, PLL, frequency generation and rf measurement, wideband circuit design, spread spectrum systems, microstrip and planer aerials... The list will hopefully be endless.
All articles accepted for publication will be paid for - in the region of several hundred pounds for a typical design feature.

# Win a £4000 progranmmotle signal <br> generator from Hewlett-Packard 



The prize for the coming year's award is a £4000 Hewlett-Packard HP8647A 1GHz programmable signal generator. It features HPIB interface, solid state programmable attenuator and built in AM-FM modulation capability.

For further details about our quest for the best, call or write to:<br>Martin Eccles, Edifor, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS<br>Tel 081-652 3128

| Components |  |
| :--- | :--- |
| $R_{1 / / 18 / 20127-30}$ | 10 k |
| $R_{2}$ | 330 k |
| $R_{3-6}$ | 11 k |
| $R_{9}$ | 22 k |
| $R_{10}$ | 91 k |
| $R_{11 / 12}$ | 180 k |
| $R_{13}$ | 15 k |
| $R_{14}$ | 8.2 k |
| $R_{15-18 / 25 / 26}$ | 82 k |
| $R_{19}$ | 12 k |
| $R_{21}$ | 33 k |
| $R_{21 / 23}$ | 270 k |
| $R_{24}$ | 130 k |
| $R_{31-36}$ | 100 |
| $V R_{1}$ | 47 k, log pot |
| $C_{1-6 / 9 / 10}$ | 100 nF |
| $C_{7 / / 8}$ | 4.7 nF |
| $C_{11-1417 / 18}$ | 2.2 nF |
| $C_{15 / 16}$ | 1 nF |
| $C_{19 / 20}$ | $3300 \mu \mathrm{FF}, 35 \mathrm{~V}$ |
| $C_{26 / 27}$ | 100 nF, ceram disc |
| $C_{28-33}$ | $100 \mathrm{FF}, 25 \mathrm{~V}$ |
| $C_{1-3}$ | $T L O 74$ |
| $I_{4}$ | 7812 |
| $I_{5}$ | 7912 |
| $A_{13}$ | $H Y 60$ modules - see text |
| $D_{1-4}$ | 1 N 4002 |
| $T_{1}$ | $22-0-22,80 \mathrm{VA}$ toroidal |

could be supplied by a single driver.
At the high end, the MDT29s have their fundamental 'bass' resonance at 900 Hz . These units possess the frequency response of a high-pass filter which, since $Q$ is 0.5 , is critically damped. To obtain the best transient response from the system as a whole, pay careful attention to the crossover. Of the available alternatives, the best is the 4th-order Linkwitz-Riley filter, which ensures the minimum overlap between driver outputs, maintains in-phase operation and is critically damped for best transient response. Cascading two 2 nd-order sections forms the 4 th-order filter; in the case of the mid-range and tweeter, one of these sections is the mechanical rolloffs imposed by the mid-range enclosure and tweeter roll-offs.
In most multiway speaker systems, the crossover frequency between the mid-range and tweeter is set too high, caused by fears over the power handling of modern-day 25 mm tweeters. The result is that the midrange driver has to respond at frequencies above its piston range, where 'cone break-up' can occur; sections of the cone resonate, producing a rough response. Obviously, this is to be avoided and one cure is to lower the crossover frequency.
With the cone tweeters used in the 'fifties and early 'sixties, crossover was usually done at as low a frequency as possible. Modern dome tweeters are not so robust, although their response is considerably better, but it is still perfectly possible to run a dome tweeter down to its fundamental resonant frequency, provided that the rate of roll-off is sufficiently fast
to avoid overload by low frequencies. A sealed dome tweeter acts as a 2nd-order highpass filter. The MDT29 resonates at 900 Hz , where the average power contained in a musical signal is about 10 dB down on the peak, which occurs about 120 Hz . By feeding the tweeter from a 2 nd-order high-pass filter, the power required is reduced by a further 6 dB . This is well within the rating of the unit and no overloading occurs.
A further advantage of using a lower crossover, around the 1 kHz point, is that the critical upper mid-range band, 1 to 5 kHz , is handled by a unit with low moving mass, ensuring superior transient response. Phase anomalies due to the usual $2-3 \mathrm{kHz}$ crossover are also reduced.

## Electronics

I intended the speakers to be used directly from the line outputs of a pre-amp or cd player, the entire audio system consisting of just the signal source and the speakers, and decided that the easiest way to achieve this is to mount all the electronics within the enclosure. To avoid reinventing the wheel, I used ILP HY60 amplifier modules, which provide a wide frequency range, low distortion and noise levels, and integral heat sinking. Of course, if you have three stereo amplifiers already these can be pressed into service, fed by the active filter, but anyone who does this must take responsibility for equalising signal levels etc. themselves.
With only five connections apiece, wiring is reduced to manageable levels. I built the equalisation and crossover electronics on a

## Extending small-speaker bass

A myth has grown up about the supposed inability of small speaker systems to produce bass in large quantities. Probably the best way of dispelling this myth is to examine the behaviour of a small speaker radiating bass in a domestic environment.
At low frequencies we want our speaker to operate as a piston. Its maximum output is determined by the volume of air that can be displaced which, in turn, is determined by the maximum cone excursion. For the typical small driver, the maximum undistorted excursion is 6 mm pk-pk.
Sound pressure level, measured at 1 m in free-space conditions, is determined from the formula

$$
p=-86+40 \log _{10} f+40 \log _{10} d+20 \log _{10} a_{p p}
$$

where $p$ is the spl measured at $1 \mathrm{~m}, a_{\mathrm{pp}}$ is the peak to peak excursion and $d$ is the diameter of the driver, app and $d$ being expressed in millimetres. To take the case of a 30 Hz input and $6 \mathrm{~mm} \mathrm{a}_{\mathrm{pp}}$, a 200 mm diameter driver will generate an spl of 80 dB - hardly impressive. However, in practice, at very low frequencies, both woofer channels radiate in phase, so we can add 6 B to the figure to give an spl of 86 dB .

This calculated value assumes free space radiation in a sealed box. Making use of floor and wall reflections by putting the drivers within a wavelength of the floor and wall, 5.74 m at 30 Hz , will add another 6 dB to the spl, giving a very respectable 92 dB spl. Again, in practice there will also be
reinforcement from ceiling side and rear walls adding to the spl generated.
As is indicated in the equation, the lower in frequency you go the less spl you get for a given excursion; the converse is also true. Since very few recordings, with the possible exception of organ works, generate full power at these low frequencies, this is the worst case. Maximum sound-pressure level increases at 12 dB /octave up to the limit set by the available electrical power.
The second misconception regarding speaker behaviour at low frequencies is that an enormous amount of power is required. In fact, above resonance, for every halving of frequency with a given drive voltage, cone excursion will increase fourfold. Below resonance the cone excursion levels off and to compensate the drive voltage must rise proportionally. This means increased gain at low frequencies with a consequent increase in power supplied. In practice, it is very seldom that the amplifier runs out of steam. What tends to happen is that the cone excursion exceeds prudent limits on overload unless care is taken.
With a reflex enclosure, the situation is similar, although complicated by both the sound contribution of the port and the reactive loading of the cone. Generally, the same arguments apply, but the available spl can be some 6 dB higher in the deep bass.

By whatever means bass extension is produced, the clinching argument for it is that, without it, unacceptable errors of 20 dB or more have to tolerated.
piece of stripboard; using the well known TL074 quad op-amp allows the whole circuit to be constructed with three chips per channel.

## Circuit details

Figure 1 shows that line-level inputs are applied to the volume control $V R_{1}$ and thence to the buffer amplifier built around $A_{1}$. From here the signal is fed three ways.
Amplifier $A_{2}$ is configured as a high-pass filter with a turnover frequency of 28 Hz and a $Q$ of 2.82 , primarily to provide bass equalisation for the woofer. Bass loading is 6 th-order and the bass enclosure is tuned to a low frequency, 35 Hz , which produces an overdamped 4thorder filter response. Low-frequency boost applied by $A_{2}$ levels the response, ensuring a -3 dB point for the system at 32 Hz . Reflex cabinets are not loaded acoustically at subsonic frequencies and, with conventional systems, driver excursion is wasted by subsonic disturbances. A sharp filter roll-off ensures that subsonic frequencies are sufficiently attenuated to avoid overload. Attempts to push the response down below this frequency result in excursion limit problems.
Crossover between the bass and mid-range drivers is handled by $A_{3}$ and $A_{4}$, which form a 4th-order, low-pass filter from two 2nd-order sections. $Q$ of the final filter is 0.5 , the condition of critical damping combining the best transient response with rapid stop-band attenuation.

Characteristics of the mid-range enclosure dictate the choice of crossover point. The midrange driver, mounted in its ceramic pod, rolls off at the bass end at 144 Hz , producing much the same response as a 2 nd-order filter with a turnover frequency of 144 Hz and a $Q$ of 0.73 . On its own, the high $Q$ of this resonance would give rise to an undesirable peak just above the resonant frequency. To tame the response the drive signal goes through a highpass filter, $A_{7}$, which has the same turnover frequency but a $Q$ of 0.68 . Resulting acoustic output is the required 4th-order high-pass crossover response.
To avoid cone breakup effects in the HT130F0, the crossover between this and the MDT29 is set at as low a frequency possible. Since the MDT29 has a high-pass acoustic response centred at 900 Hz and with a $Q$ of 0.5 , this is the natural frequency to choose. To provide the required 4th-order response, the tweeter is driven from the output of $A_{12}$, which is wired as a 2nd-order, high-pass filter with a $Q$ of 1 . Mid-range output is rolled off at 900 Hz by the 4 th-order filter comprising $A_{8}$ and $A_{9}$.
Because the driver's acoustic centres are in different planes, time delay using all-pass filters is needed to compensate. (This apparent contradiction in terms is applied to circuits which provide a flat frequency response but a fixed time delay.)
Two of these filters are used in the circuit. The first, built around $\mathrm{A}_{6}$ compensates for the time delay between the woofer and mid-range units. This is equivalent to, a $-24^{\circ}$ phase shift
at 144 Hz . The second compensates for the time delay between mid range and tweeter. Here a -50 mm offset is compensated for by A11 and the associated circuitry.
Finally, the tweeter has a 1 dB higher sensitivity than the HT130F0 and this is compensated for by the gain of $A_{10}$.

## Implementing the Microreflex

Because my woodworking skills end at butt joints, I kept the enclosure, shown in Fig. 2, very simple. I used standard 15 mm thick medium-density chipboard, which is available from local hardware stores in a variety of finishes. Unless you have an extensive range of woodworking tools and enjoy using them it is best to go to a store where you can get the panels cut accurately to size. I realise there are constructors who would rather use a different type or thickness of timber for this project; this is not a problem provided that the internal volume of the cabinet is kept at 19 litres. Whatever timber you choose, accuracy is very important. Flat-pack cabinets for this project are available from Wilmslow Audio.
To make it easy to access the electronics and to keep the enclosure airtight, amplifiers, filter and power supply were mounted in an ABS box, 220 by 150 by 60 mm , on the outside of the rear panel. ABS is an extremely easy material to work with and the necessary holes can easily be made. Connection to the drivers is by six M5 by 40 mm -long screws fitted into the rear of the speaker enclosure; electrical connections are taken via solder tags. These screws also hold the electronic package in place on the rear panel, 'piggy-back' fashion.
Construction proper begins with the front baffle. This has to take both the HT130FO and the MDT29 as well as the mid-range pod. Mark out the apertures for both the drivers on the inside surface. However do not drill the mounting holes yet. This is important, particularly in the case of HT130FO. The T bolts provided are not used because they would foul the ceramic pod; instead, both the drivers are secured by 12 mm long No 6 self-tapping screws. Before cutting the wood, position the pod over the HT130F0 aperture and draw around it. Roughen the panel's surface where the pod's rim is to be attached to provide a key. At this stage cut out the apertures for the HT130FO and the tweeter; position both drivers and mark out the mounting holes using the drivers as templates.
Drill pilot holes to a depth of 10 mm with a 3 mm drill but, before mounting the units, mount the pod using Araldite Rapid spread around the roughened surface; mix enough to ensure a gap-free bond. Position the pod centrally and place a weight on the top while it dries. An hour or so will allow handling.
It seems to be unnecessary to use absorbent materials in the pod. Absorbents are good at soaking up high frequency signals but are useless at low to medium frequencies; they are definitely not required in the bass enclosure, where adding any quantity will prevent proper operation. After much experimentation, I
decided not to use any, since I couldn't hear any difference with or without. It is, however, vital to ensure that there are no air gaps around the pod.
Solder the speaker leads to the drivers, remembering to observe polarity and fit the drivers into position using the self-tapping screws. Feed the leads to the HT130FO through the small hole in the bottom of the pod, leaving a loop of wire in the pod to facilitate easy removal of the driver. Lastly, apply filler to the hole and allow it to dry.
Cut the vent aperture on the rear baffle with a 2 in hole cutter, which will produce a slightly oversized hole. Wrap a couple of layers of masking tape round the 225 mm length of pipe to take up the excess. The aim is a tight-fitting vent.
The rest of the cabinet construction is straightforward. Use butt joints and plenty of glue to obtain an airtight case, except for the vent.

## Aftermath

After all the work involved, is it worth it? Definitely. The stereo imaging of this system is excellent and the absence of standing waves improves the detail rendition of the system. Using the drivers substantially within their piston regions and the sharp roll-offs of the crossover contribute to seamless driver integration. The extra bass octave delivered allows music to reproduced with the correct weight and authority.
In short, I have listened to the speakers for nearly a year now and have had no urge to change them for any others, regardless of price.

## References

1. A N Theile, Loudspeakers in vented boxes, parts 1 and 2, IAES, Vol. 19, May-June 1971. 2. R H Small, Vented-box loudspeaker systems, parts 1 to 4, JAES, Vol. 21, 1973.
2. Dde Greef and J Vandewege, Acceleration feedback loudspeaker, Wireless World, September 1981.
3. D B Keele, A new set of 6th-order vented-box loudspeaker system alignments, JAES, Vol. 23. September 1981.
4. S J Link witz, Loudspeaker system design, Wireless World, May, June and December, 1978. 6. R I Harcourt, An acoustically small loudspeaker, Wireless World, October 1980.
5. J P Macaulay, Big bass,small box, Electronics World+Wireless World, February 1994.

ENERGY BANK KT $1006^{\circ} \times 6^{\prime \prime} 6 \mathrm{~V} 100 \mathrm{~mA}$ panels, 100 diodes, connection details etc. $\mathbf{\varepsilon} 69.95$ ref EF 112 . CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}$. 30 grams, 12V 100 mA . auto electronic shutter, 3.6 mm F2 lens, CCIR, $512 \times 492$ plxels, video output is iv p-p ( 75 ohm). Works directyy into a scart or video input on a N or video. IR senstive. $£ 79.95$ ref EF137.
IR LAMP KIT Sutable for the above camera enables the camera to be used in total darknessl $£ 5.99$ rof EF 138 .
PASTEL ACCOUNTS SOFTWARE, does everything for all slzes of businesses. Inctudes wordprocessor, report writer, windowing, networkable up to 10 stations, multiple cash books etc. 200 page comprehensive manual. 90 days free technical support,
( $0345-326009$ try before you buyl) Current retall price is $£ 129$, ours? just £29 ref EF134. SAVE £100lil
MINI MICRO FANS $12 \mathrm{~V} 1.5^{\circ}$ sq just $£ 3.99$ each. Ref EF199. C TOOH PRINTERS 80 cal, 9 pin matifix, serial/parallel. NLQ/draft. 3 mith warranty, good condition, $£ 49$ ref EF133.
MICROSOFT TRACKBALL AND MOUSE Combned Unit with 4 buttons and trackball, PS2 type connector. Complete with storage bracket. Our price just $£ 11.99$ ref EF 201
REUSEABLE HEAT PACKS. Ideal for fishermen, outdoor enthusiasts elderty or infim, wamming tood, drinks etc, deffrosing plpes etc. reuseable up to 10 times, lasts for up to 8 hours per go,
2,000wh energy, gets up to 90 degC. Pricels $£ 12$ ref EF129. rp $£ 37!$ 2,000 Wh energy, gets up to 90 degC. Price $1 \mathrm{~s} £ 12$ ref EF 129 . rp $£ 371$
$1.44 \mathrm{MB} \mathrm{3} 3.5^{-2}$ DISC DRNES Returns from a top PC manufactuer so they may need attention, bargain price $£ 8.50$ ea ref EF203. 1.2MB 5.25" DISC DRNES Again returns so may need attenfon. bargain price is $£ 8.50$ ref FF 204 . (1 ofeach $1.2+1.44 £ 14.99$ ref ef205 A4 DTP MONTTORS Brand new, 300 DPI. Complete with diagram but no interface detaiks. (so you will have to work it outl) Bargain at just $£ 7.99$ eachlll! Ref EF185 OPD MONTORS $9^{\circ}$ mono monitor, fully cased complete with raster board, switched mode psuetc. CGATTLL Input ( 15 way D), IEC mains. £15.99 ref DEC 23. Price including kit to convert to composite monitor for CCTV use etc Is $£ 21.99$ ret DEC24.
12V 2AMP LAPTOP psu's $110 \times 55 \times 40 \mathrm{~mm}$ (includes standard 12V 2AMP LA LTOP psu's $110 \times 55 \times 40 \mathrm{~mm}$ (includes standard
IEC socket) and 2 m lead with plug. $100-240 \mathrm{~V}$ (P. $£ 8.99$ ref EF200. IEC sockel) and im lead with plug. $100-240 \mathrm{~V}$ IP. $£ 8.99$ ref EF200.
PC CONTROLLED4 CHANHELTMER Control (onot times etc) up to 4 thems ( 88240 V each) with this kit. Complete with Software, relays. PCB etc. $£ 25.99$ Rel $95 / 26$
COMPLETE PC 300 WATT UPS SYSTEM Top of the range UPS system providing protection for your computer system and valuable sotware against mains power fuctuations and cuts. New
and boxed, UK made Provides up to 5 mins running time in the event and boxed. UK made Provides up to 5 mins sunning time int he event
of complete power failure to allow you to run your system down correcty. SALE PRICE Just $£ 119,00$.
RACAL MODEM BONANZAI 1 Racal MPS1223 120075 modem, telephone lead, mains lead, manual and comms sotware, moden, telephone lead, mains laad, manual and comms solwa
the cheapest way onto the nett all this for just $£ 13$ ref $D E C 13$.
HOW LOW ARE YOUR FLOPPIES? 3.5' (1.44) unbranded. We have sold $100,000+$ so ok! Pack of 50 £24.99 ref DEC 16 5 mw LASER POINTER Supplied in kit form, complete with power adjuster, $1-5 \mathrm{mw}$, and beam divergence adjuster. Runs on 2 AAA batteries. Produces thin red beam ideal for levels, gun sights. experiments etc. Cheapest in the UKI just $£ 39.95$ ret DEC49 SHOP WOBBLERSISmall assembles designed to take D size batteries and 'wobble' signs about in shops $1 € 3.99$ Ref SEP4P2. RADIO PAG ERSBrand new. UK made pocket pagers ciearance price is just $£ 4.99$ each $100 \times 40 \times 15 \mathrm{~mm}$ packed with bits! Ref SEP5. BULL TENS UNT Fully built and tested TENS (Transcutaneous Elecrical Nene Stimulation) unit, complete with electrodes and full Instructions. TENS is used for the relief of pain etc in up to $70 \%$ of
sufferers. Drug free pain relief, safe and easy to use. can be used in surferers. Drug free pain relier, saie and easy to
conjunction with analgesics etc. E49 Ret TEN/1
COMPUTER RS232 TERMINALS. (LIBERTY)Excellent quality modern units, (thke wyse 50,s) 2xRS232, 20 function keys, 50 quality modern units,(the wyse 50.s) 2 RRS222, 20 functon keys, , 0
thro to 38,400 baud, menu driven pon, screen, cursor, and keyboard thro to 38,400 baud, menu driven port, screeen,
setup menus ( 18 menu's). £29 REF NOV4.
OMRON TEMPERATURE CONTROLLERS (E5C2).Brand new controilers. adjustable from 0 deg C to +100 deg C using graduated dial, $2 \%$ accuracy, themoccuple input, long life relay ouput, 3 AA 240 v op contacts. Perfect for exacty controling a tem-
perature, Normai trade $£ 50+$, ours $£ 15$. Ref ESC 2 . ELECTRIC MOTOR BONANZA1 $110 \times 60 \mathrm{~mm}$.Brand new predsion, cap stant (or spin to start), virtually silent and features a
moving outer case that acts as a fly wheel. Because of their unusual moving outer case that acts as a fiy wheel. Because of their unusual design we think that 2 of these in a tube with some homemade fan
blades could form the basis for a wind funnel etc. Clearance price is blaces could form the basis sol a wind tunnel etc. Clearance price is
just 4 . 99 FOR A PARI (note these will have to be wired in series for JustE4.99 FOR A PARI (not
240v operation Rel NOV1.
MOTOR NO 2 BARGAIN $110 \times 90 \mathrm{~mm}$.Similar to the above motor but more suitable for mounting verically (ie tumtable etc). motor but more suitabe for mouning verticaly (ie tumtable etc).
Again you will have to wire 2 in series for 240 v use. Bargaln prlce is Just $£ 4.99$ FOR A PAIRil Ref NOV3.
OMRON ELECTRONIC INTERVAL TMERS.
(0a-NEW LOW PRICES TO GLEARH!
minature adjustable timers, 4 pole o/o output 3 A 240 V , HY1230S, 12 vDC adjustable from $0-30$ secs $£ 4.99$ HY1210M, 12 VOC adjustable from $0-10$ mins. $£ 4.99$ HY1260M, 12 VDC adjustable from $0-60$ mins. $£ 4.99$ HY2460M, 24VAC adjustable from $0-60$ mins. $£ 2.99$ HY241S, 24 vAC adjustable from $0-1$ secs. $£ 2.99$
HY2460S, 24VAC adjustable from $0-60$ secs, $£ 2.99$ HY243H, 24 VAC adjustable from $0-3$ hours. $£ 2.99$ HY2401S, 240 V adjustable from $0-1$ secs. $£ 4.99$ HY2405S, 240 V adjustable from $0-5$ secs. $£ 4.99$
HY24060m, 240 V adjustable from $0-60$ mins. $£ 6.99$ HY24060m. 240 adjustable from $0-60$ mins. $£ 6.99$
PC PAL VGA TO TVCONVERTER Converts a colour TVinto a basic VGA screen. Complete with built In psu, lead and siware. a basic VGA Acreen. Complete with buir in psu, lead and sumare.
E49.95, Ideal for laptops or a cheap upgrade. Wealso can supply this in kit form for home assembly at $£ 34.95$ ret EF54.
DRINKING BIRD Remember these? hook onio wine glass (supplied) and they drink, standup, drink,standup ETCI $£ 4$ each Ret EFT EMERGENCY LIGHTING UNTT Complete unit with 2 double
lead acld req'd. (secondhand) EA rel MAGAP11 reel of ulira thin 4 core alarms. Intercoms, ithhing, dolls house's etc. E14 99 ral MAG15P5 ASTEC SWITCHED MODE PSU BMA 1012 GIves +5 Q 3.75 A, +12Q1.5A. -12Q.4A. 230/110, cased, BM41012 $£ 5.99$ retAUG6P3. AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with dlode and 3 metre lead fitted with a cigar plug. 12v 2watt. $\mathbf{E 9 . 9 9}$ ea ref AUG10P3. FLOPPY DISCS DSDD Top quallity $5.25^{\prime \prime}$ discs, these have been written 10 once and are unused. Pack of 20 is $£ 4$ rel AUGAP1.
ECLATRON FLASH TUBE As used In pollce car flashing ilghts etc, tull spec supplied, $60-100$ flashes a min. $£ 9.99$ ref APR 10P5. 24v AC 96 WATT Cased power supply. New. £13.99 ret APR14. MILTARY SPEC GEIG ER COUNTERS Unu sed anstralghtrom Her majesty's forces. $£ 50$ ref MAG 50P3
OUTDOOR SOLAR PATH LIGHT Captures sunligh during the day and automatically ywitches on a bullt in lamp at dusk. Complete with sealed lead actd battery etc $£ 19.99$ rel MAR2OP1.
ALARM VERSION of above unit comes with built in alarm and pir to deter intruders. Good value at just £24.99 ref MAR25P4. CARETAKER VOLUMETRIC Alarm, will cover the whole of the ground floor against forcred entry, Indudes mains power supply and integral battery backup. Powerful internal sounder, wilf
bell if req'd. Retail $£ 150+$, ours $₹ 499.99$ rel MAR50P1.
TELEPHONE CABLE White 6 core 100 m reet complete with pack of 100 dilps. Ideal 'phone extns etc. $£ 7.99$ ref MAR8P3 MICRODRNE STRIPPERS Small cased tape drives ideal for stripping, lots of useful goodies including a smart case, and lots of components. E2 each ref JUN2P3. Box of 10 Just E9.99 ref EF207. SOLAR POWER LAB SPECIALYou get TWO $66^{\circ} \times 6^{\circ}$ 6v 130 mA solar cells, 4LED's, wire, Buzzer, switch plus 1 relay or motor.Supert value kit fust E5.99 REF: MAG6P8
BUGGING TAPE RECORDER Small voice acivated recorder, uses micro cassethe complete with headp hones. $£ 28.99$ re1 MAR29P1. ULTRAMINIBUG MIC $6 m m \times 3.5 m m$ made by AKG. 5 - 12 velectret condenser. Cost $£ 12$ ea, Ours? Just four for $£ 9.99$ REF MAG10P2. RGBICGA/EGATTL COLOUR MONTORS 12' In good condition. Back anodised metal case. £79 each REF JUN79 ANSWER PHONES Returns with 2 laults, we give you the bits for 1 faut, you have to find the other yourself. BTResponse 200 's $£ 18$ ea REF MAG18P1. PSU 55 ref MAG5P12.
SWITCHED MODE PSU ex equlp, 60w +5 V © 5 A . -5 V @. 5 A , $+12 v \times 2 A,-12 v e .5 A 120 \mathrm{mOv}$ cased $245 \times 88 \times 55 \mathrm{~mm}$ IECinput socket E6.99 REF MAG7P1
PLUG IN PSU $9 V 200 \mathrm{~mA}$ DC $£ 2.99$ each REF MAG3P9
PLUG IN ACORN PSU 19V AC 14w, E2.99 REF MAG3P 10 POWER SUPPLY fuly cased with mains and op leads $17 v$ DC 900 mA ourput. Bargain price $£ 5.99$ ret MAG6P9
ACORN ARCH MEDES PSU +5 V Q 4.4 A on/off sw uncased, selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ € 7 REF MAG7P2 9v DC POWER SUPPLY Standard plug in type 150 ma 9v DC whh lead and DC power plug. price for two is $£ 2.99$ rel AUG3P4. AA NICAD PACK encapsulated pack of 8 AA nicad batteries (tagged) ex equip, $55 \times 32 \times 32 \mathrm{~mm}$. $£ 3$ a pack. REF MAG3P 11 13.8V 1.9A psu cased with leads. Just $£ 9.99$ REF MAG10P3 PPC MODEM CARDS. These are high spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance price is $£ 5$ REF: MAG5P1 INFRA RED REMOTE CONTROLLERS Originally made for hi spec satellite equipment but perfect for all sorts of remote control projects. Our dearance price Is just $£ 2$ REF: MAG2
200 WATT INVERTER Converts $10-15 \mathrm{~V}$ DC into either 110 v or $240 \mathrm{v} A C$. Fully cased $115 \times 36 \times 156 \mathrm{~mm}$, complete with heavy duty power lead, cigar plug, AC outtet socket. Auto overload shutcown,
auto shorl circuit shut down, auto input over voltage shutdown, auto auto shor circuit shut down, auto input over voltage shutdown, auto
input undervoltage shut down (with audible alarm), autotemp control, unit shuts down if overheated and sounds audible alarm. Fused reversed polanity protected ouput frequency within $2 \%$, voltage
within $10 \%$. A well buit unitatan keen price. Just $£ 64.99$ retaug65. UNNERSAL SPEED CONTROLLER KTT Designed by us for the C5 motor but ok for any 12 v motor up to 30 A . Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MAG 17 MAINSCABLE Precut black 2 core 2 metre lengths ideal for repairs, projects etc. 50 metres for $£ 1.99$ ret AUG2P7. repairs, projects eic. 5 COMPUTER COMMUNICATIONS PACK Kit contains 100 m
COM of 6 core cable, 100 cable clips, 2 line drivers with RS232 Interfaces and all connectors etc. Ideal tow cost method of communicating between PC's or a iong distance. Complete kit £8.99
ELECTRIC MOTOR KTT Comprehensive educational kit includes all you need to bulld an electric motor. $£ 9.99$ ref MAR10P4.
VIEWDATA SYSTEMS made by Phllips, complete with intemal 120075 modem, keyboard, psu etc RGB and composite outputs, menu drven, autodialler etc. £18 each Ret EF88.
BOOMERANG HIgh tech, patented poly propy ene, $34 \mathrm{~cm} w / \mathrm{ng}$ span. Get out and get some exercise for $£ 4.99$ ref EF83
AIR RIFLES. 22 As used by the Chinese amy fortralning puposes, so there Is a lot aboull $£ 39.95$ Ref EF78. 500 pellets $£ 4.50$ rel EF80. PLUG IN POWER SUPPLYS Plugs in 10 13A socket with output lead. three types available. 9vdc $150 \mathrm{~mA} £ 2$ rel EF58, 9vdc 200 mA $£ 2.50$ ret EF59, $6.5 \mathrm{Vdc} 500 \mathrm{~mA} £ 3$ ref EF61.
VIDEO SENDER UNTT. Transmlts both audio and video signals


## bULL ELECTRICAI




 Whative

4M, $01273 \Sigma 23000$ FAX 01273323071

Op. PHtce is $£ 15$ REF: MAG15 12 V psuls $£ 5$ extra REF: MAGSP2 *FM CORDLESS MICROP HONE Small hand heid Unif with a 500 'rangel 2 transmit power levels. Reqs PP3 9 v battery. Tuneable to any FM recelver. Price is E15 REF: MAG15P1
LOW COST WALKIE TALKIES Palr of battery operated units wlth a range of about 200. Ideal for garden use or as an educational toy. Price is $£ 8$ a pair REF: MAG BP1 $2 \times$ PP3 req'd.
-MIN ATURE RADIO TRANSCENERS A pair of walkie talkles with a range up to 2 kmin open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$, Induding cases and earp'ces. $2 \times P$ P3 req'd. $£ 30.00$ pr.REF: MAG30 COMPOSTTE VIDEO KIT. Converts composite videointo separate $H$ sync, $V$ sync, and video. 12v DC. $£ 8.00$ REF: MAGBP2. LQ3600 PRINTER ASSEMBLIES Made by Amstrad they are entre mechancal prtiter assemblles including prtithead, stepper motors etc ete In fact everytinling bar the case and electronics. a good motors etcetc in fact eveythling bar the case and electron
stripper $£ 5$ REF: MAGSP3 or 2 for $£ 8$ REF: MAGBP3
LED PACK of 100 standard red 5 m leds $£ 5$ REF MAG5PA UNNERSAL PC POWER SUPPLY complete with nyleads, switch, tan etc. 200 at $£ 20$ REF: MAG20P3 ( $265 \times 155 \times 125 \mathrm{~mm}$ ). GYROSCOPE About 3 h high and an excellenteducational toy for all ages! Price with inst ruction booklet £6 Ret EF 15 .
FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$, 4 dive connectors 1 mother board connector. 150watt, 12v fan, lec Inlet and onfoff switch. $£ 12$ Ref EF6.
VENUS FLYTRAP KT Grow yourow namivorous plant with this simple bot £3 ree EF34.
PC POWER SUPPLIES (returns) These are $140 \times 150 \times 90 \mathrm{~mm}$. of ps are $+12,-12+5$ and $-5 v$. Built in 12 v tan. These are returns so they may well need repaing! $£ 3.50$ each ref EF42
-FM TRANSM TTER KIT housed In a standard working 13A adapter!! the bug runs directly off the mains so lasts forever why pay E700? or price is E15 REF: EF62 Transmhts to any FM radio. (this Is In kit form with full Instructions.)
-FM BUG KTT New design with PCB embedded coil for extra stability. Works to any FM radio. $9 v$ battery req"d. $£ 5$ REF: MAGSP5 - FM BUG BUILT ANDTESTED superior design tokit. Supplied to detectve agencies. 9v battery req'd. £14 REF: MAG14
TALKING COINBOX STRIPPER Rorginally made to retail at 779 each, these units are designed to convert an ordinary phone into a payphone. The units have the locks missing and sometimes broken
hinges. However they can be adapted for their original useor used for hinges. However they can be adaptedfor their origi
something else? Price is just $£ 3$ REF: MAG3P1
TOP QUALTTY SP EAKERS Made for HIFI televisions these are 10 watt $4 R$ Jap made 4 . round with large shielded magnets
quality. $£ 2$ each REF: MAG2P4 or 4 for $£ 6$ REF: MAG $B 2$. quality. £2 each REF: MAG2P4 or 4 for $£ 6$ REF: MAG 6 P2 TWEETERS 2 diameter good quallty tweeter 140 (ok with the
above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3P4 AT KEYBOARDS Made by Apricot these quality keyboards need just a small mod to run on any AT, they work perfecty butyou will have just a smal wod to r 2 foreign keycaps! Price $£ 6$ REF: MAG6P3 DOS PACKS Microsoft verslon 3.3 or higher complete with all manyais or rice just E5 REF: MAG5P8 Worth it just for the very
comprehensive manuall 5.25 only.
GAS HOBS Brand new made by Optmus, basic three bumer
sutable for smal flat etc bargain price iusi $£ 29.95$ ret EF73. sutable for small flat elc bargain price just £29.95 ref EF73. $£ 12.95$ Ref EF82 extra pellets ( 500 ) $£ 4.50$ ref EF80.
DOS PACK Microsoft version 6 with manual $£ 9.99$ 3.5" rel EF209 WIN DOWS $3.13 .5^{\circ}$ with manual £24.99 ref EF210.
NOVELL NTEWARE LTTE (network sware) $£ 24.99$ ref EF211. PIR DETECTOR Made by lamous UK alam manufacturer these are hl spec, long range internal untrs. 12v operation. Slight marks on
case and unboxed (although brand new) $£ 8$ REF: MAG8P5 case and unboxed (although brand new) £8 REF: MAG8P5
MOBILECARPHONE $\mathbf{E} 5.99$ Wellalmost! complete in carphone excluding the box of electronics normally hidden under seat Can be made tolliumin ate with 12 als a has buitt in ligh sensor sodisplay only illuminates when dark Totally convindng! REF: MAGGP6
$6^{-\times 1} \times 12^{-2}$ AMORPHOUS SOLAR PANEL $12 v 155 \times 310 \mathrm{~mm}$ 130 mA . Bargain price just $£ 5.99$ ea REF MAG6P12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ret MAC5P 13ideal for experimenters! 30 m for $£ 12.99$ ret MAG13P1 HEATSINKS (inned) TO220, designed to mount vertically on apch $50 \times 40 \times 25 \mathrm{~mm}$ you can have a pack of 4 for $£ 1$ ref JUN1P11.
STROBE LIGHT KT Adustable from 1 hz night up to 60 h . (electronic asssembly kit with full instructions) $£ 16$ ret EF28.
ROCK LIGHTS Unusual things these, two pieces of rock that glow when rubbed togethen betived to cause rain!£3 a parr Ref EF29. AMSTRAD GX4000 games machines, returns, untested, sold as

## NEW HIGH POWER LASERS

15 mW , Hellium ne
$.63 \mathrm{um}, 1.15 \mathrm{um} .3 .39 \mathrm{um}$
(2 of them are infrared) 500:1 polarizer buitt in so good for holography. Supplied complete with mains power supply. $790 \times 65 \mathrm{~mm}$. Use NEW SALE PRIGE TO CLEAR JUST $2249+$ VAT

## WE BUY SURPLUS STOCK FOR CASH <br> FREECATALOGUE

## 1995100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE WITH ORDER.

PORTABLE RADIATION DETECTOR

WITH NEW COMPUTER INTERFACE $£ 59$
A Hand held personal Gamma and X Ray detector. This unit contains two Geiger Tubes, has a 4 , digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy
from 30 K eV to over 1.2 M eV and a measuring,

# Data power ICs on trial 

 rater:How do the "new" devices stack up against older ones previously reviewed ${ }^{1}$, with each other and with a "benchmark" LMI2?
In every case, the advertised slew rates are a poor relation in comparison to the $300 \mathrm{~V} / \mu \mathrm{s}$ from modern mosfet topologies; or even the $50 \mathrm{~V} / \mu \mathrm{s}$ from the common Lin topology with Self's improvement ${ }^{2}$. This may not matter if all portal rf filtration is good and you avoid certain classes of music ${ }^{3}$
All of the circuits (Figs 1, $2 \& 4$ to 7 ) except PA42 (Fig. 7) show some benefit from using a regulated (or just strongly ripple-filtered) psu. In every case, the effects are strongest below 1 kHz - but only because the psu noise spectrum is itself strongest from 50 Hz to 500 Hz .
Recently published psr improvement techniques ${ }^{4}$ are of scant use here, but might be useful later, if such ideas are incorporated into future integrated circuits.
Several measurements show distinct 30 Hz features that cannot be ac power harmonics and appear to be the artefacts of thermal distortion.
The high quality audio claim for the Boomer ics (4860/61) does not appear justifiable as \%thd is always over $0.1 \%$, worst of all in the mid-band. However, the spectra show dominant 2 nd and 3rd, and all harmonics at levels no worse than several of the previously tested devices ${ }^{1}$.

The remaining ics seem to be on a par with the best of the previous contest. But when compared to the purest discrete and part-discrete designs, PA42 (at least with lateral mosfets) is the only ic here with performance that comes close, if the absolute level and structure of the harmonics is anything to go by.
Protection against death by adverse loading and output abuse is important whatever the ic cost, and even though music drive is usually benign. The LM3875 and 3886 have the most comprehensive and believable all round soa/adverse load protection I have seen in any ic ${ }^{5}$. They and the Boomers and LM12 are also thermally protected. The LMI2 also shuts down if the supply exceeds 60 V but is under 80 V . But all seven ics can be killed by marginally excess supply volts. The PA42 is well protected against output abuse by proven,
minimum mosfet techniques. PA45's one-slope protection solely averts over-current into a resistive load. Without added protection, a prolonged bad phase angle (such as driving bass-heavy music into a difficult speaker) might destroy it ${ }_{t}$

## Noise performance

The LM486I with input shorted, (Fig. 9) shows quite high, ragged noise despite the quiet regulated supply and the output being loaded with $16 \Omega$. Connecting a $100 \mathrm{n}+5 \mathrm{R}$ zobel to the output greatly reduces noise, especiaily
 above 200 Hz . An unregulated supply - lightly loaded so it has only 7 mV ripple - does not improve matters and a +5 V pc supply could be far noisier. A large reservoir and correct supply noding will help. The rf oscillation in the absence of an output zobel naturally increases the unregulated noise plot greatly.
These noise plots were initially disputed by NSC, as they could not be corroborated. But retesting demonstrated that the noise is correct for the conditions. The excess at lf, particularly at 50 and 100 Hz is caused solely by the 5 m of unshielded test load cabling.


[^0]Devices on test: 0.5W LM4860 Boomer, 1W LM4861 Boomer and the 40W LM12 (reference) from NSC; 40W LM3875 Overture and 50W LM3886 Overture, NSC; 2kW PA42 and 200W PA45, Apex.


Fig. 2. The 4860 and 61 Boomer ics are supplied ready connected. Note the inverting gain configuration of $\times 1$ (Ri/Rf), with the working gain of +6 dB being achieved by the bridged output. To make the ics if stable from 24 in of lab supply cabling, a $100 \mu \mathrm{~F}$ capacitor was needed across the supply pins. A standard zobel network ( $100 n+5 R$ ) was also deployed to quell rf oscillation appearing when the test load was opened, leaving just the AP's analyser loading the output. Parviz Ghaffaripour, NSC's audio design manager suggested a 1 k resistive termination would suffice.


Fig. 3. National's LM12 - a 40 W device with a quoted $0.01 \%$ thd at full power.


In effect, the balanced output, while rejecting rail noise, is unusually emi sensitive. The voltage dip on load demonstrates that $Z_{\mathrm{o}}$ is quite high, about $0.5 \Omega$, giving a damping factor of 20. This may frustrate bass performance into the better miniature speaker designs.
LM12, tested with supply ripple at 6 mV p-p and 20 mV $(+10 \mathrm{~dB})$ shows a noise increase of at least 5 dB below 500 Hz (Fig. 10). The LM3886's noise is lower than the LM12 at hf and slightly higher where it matters most, in the mid-band (Fig. 11). The high 50 Hz spike may be ameliorated by refined layout and optimised shielding. PSR is generally better than LM12.
When the PA42 is used alone, as an high voltage op-amp, its performance is exemplary (Fig. 12). Noise is uniformly low across the spectrum, particularly the low sensitivity to $50 / 75 / 150 \mathrm{~Hz}$ magnetic field frequencies and no special precautions needed to be taken. Similarly, the PA45 shows a strong 50 Hz sensitivity but commendably low noise $(-140 \mathrm{dBr})$ at the $\mathrm{mid} / \mathrm{high}$ frequencies where it matters most (Fig. 13). Degradation that occurs by using an unregulated supply indicates limited psr and a high sensitivity to magnetic fields - though a large hum spike at -125 dBr is probably not so audible as it appears.

## Total harmonic distortion and power

Power (right hand axis) and \%thd (left hand axis) were plotted for each device.
With a regulated supply, thd of $L M 4860$ shows only small differences between 8 and $16 \Omega$ loads (Fig. 14), at 0.5 dB below clip. but more than halves with the same loads at -5.5 dB below clip. The 16 kHz spike suggests some emi susceptibility to the pc's vdu, 0.7 m away.
Power is confirmed at about 800 mW and 300 mW into $8 \Omega$, at the two test levels.
Using an unregulated supply, (Fig. 15) \%thd figures are about $3-6 \mathrm{~dB}$ greater, particularly at li. A dynamic \%thd plot shows that the \%thd baseline is higher when the supply is unregulated (cf Fig. 9). The poor psr is unusual for a bridged output and is not caused by load cable pickup.
For LM12, just below clip, \%thd is passable (Fig. 16). But a rise below 50 Hz could be thermal distortion or lf-triggered rf instability.
Mid-band output delivery during the \%thd plot is confirmed at about +27.5 dBu , alias 42 W into $8 \Omega$. Dynamically, $\%$ THD at 1 kHz changes threefold in the top

## Data sheet warnings

- All the power ic makers are guilty of overstating the quality of their slew limits. Today, when even vfb op amps and even audio amps are slewing at $350 \mathrm{~V} / \mu \mathrm{s}$ and more, designating a slew limit of under $20 \mathrm{~V} / \mu \mathrm{s}$ "fast" raises my eyebrows.
- Other than the Apex ics (which are not power specified), there isn't the rail voltage leeway that discrete component power amplifier designers are used to. Due to the over-focus on power output figures, the ics have power output specifications that are only available close to the part's limits. Attaining these powers proves dicey without supply regulation or over-voltage protection. Also, the max supply specification for LM12, 3875 and 3886 is literally dangerous, being quoted higher without signal - hardly a valid test condition. Even when LM3875 is operated below its maximum realistic rail rating of $\pm 42 \mathrm{~V}$, and is mounted on the generous heat sink used, it can't deliver a continuous test signal cleanly into $8 \Omega$ until the supply is set at or below $\pm 35 \mathrm{~V}$, a
consequence of the Spike soa protection working properly.
- The Boomer data clearly states that no (output) zobel is needed, apparently as the design team expect amplifiers will always be used with an adjacent, permanently connected speaker. How can they be so sure?BD
gently from 200 Hz , the residue at this point being highly angular.
As one of few major differences between the LM3886 and LM12 circuits is the output devices and their heat transfer values, thermally induced cross-over distortion is a reasonable hypothesis - though the repeated 30 Hz spike seen also on the LM12's response begs explanation.
Dynamic \%THD behaviour was similar to LMI2.
\%thd for the PA42's solo is good below 1 kHz , and quite passable at 20 kHz (Fig. 18) - provided the current limit is set generously enough to suit the load; Near vertical take-off at 14 kHz indicates how a $680 \Omega \mathrm{CL}$ resistor can make the ic proof against continuing shorting with dc but also starves the output at $<8 \mathrm{~mA}$, the load being just $100 \mathrm{k} \Omega$ and 1 nF of analyser plus cable capacitance.
Setting $C L$ to $30 \Omega$, a value chosen for driving the external mosfets, produces no vertical take off, but an intermediate value would be needed to provide some abuse protection, at


Fig. 5. LM3875's lineage is apparent after reviewing the LM12. Most changes are details around vas. The related LM3886 is almost identical in the lower half, but above the input pair are nested long tailed pairs and sources, and output monitoring, all added for protective muting purposes.


Fig. 6. Inside the PA42 driver ic, all is mos. Input protection zeners prevent excess Vgs. The source biasing is shown as an unspecified (and possibly noisy?) zener. Note the output is really at pin 7, which is linked to pin 10 via a protective, current sensing resistor.
 robust audio performance. The Exicon ECF output mosfets, also recently introduced, are of UK design Semelab. This circuit gave the cleanest results in the

## AUDIO DESIGN



Fig. 8. PA45. A mixture of mosfets and bjts. It differs from the PA42 by naturally having larger die area output mosfets (Tr7,17), more elaborate protection (Tr2,5,9,14, etc), and more biasing and clamping zeners.
least above 20 Hz . The dynamic plot showed that both 1 kHz and $10 \mathrm{kHz} \%$ thd hardly varied in the 18 dB below clipping.

With lateral mosfets added, and $C L$ set at $30 \Omega$ (a safe value when driving one pair of lateral mosfets) the PA42's \%thd is hardly changed (Fig. 19). \%thd reduces only minutely when the biasing (for one output pair) is increased from 40 mA to 75 mA , and is only slightly lower into $16 \Omega$.

Noise (not shown) is very similar to Fig 16, and a 7 dB increase in ripple has no effect except at 100 and 200 Hz , where noise increases by some 7 dB .

The PA45's \%thd is impressive when unloaded (Fig. 20), at $\pm 63 \mathrm{~V}$ and $1 \mathrm{~dB}<\mathrm{clip}$, with a notch in the residue decreasing markedly as the supply increases past $\pm 60 \mathrm{~V}$. Alas, the highest current limit $R$ value (OR17) that still assures short protection (5A) is not able to handle continuous drive into $8 \Omega$ at these voltages $(56 \mathrm{Vpk} / 8=7 \mathrm{~A})$ - at least without a fatter heat transfer bracket. Loaded percentage thd is more acceptable when drive is -11 dB below clip, $16 \Omega$, rather than $-1 \mathrm{~dB}<\mathrm{clip}$. An lf rise is assumed to be a thermal distortion artefact.

The power plots show about 120 W wrt $8 \Omega$ when loaded with $16 \Omega$, hence really 60 W .

Noise performance: Figs 9 to 13 show noise spectra with shorted inputs, with differing power supplies and amounts of ripple used to demonstrate spot psr. Except for Fig. 9, each graph has a 40 dB window. The AP's residue is -135 dB fiat across the band with the test set-up environment.


Fig. 9. Output noise spectra, showing effects of rf instability and poor psu rejection for LM4861: upper with input shorted and regulated psu, middle, with 100n+5R zobel added, lowermost, using an unregulated supply. The excess at If particularly is caused solely by the 5 m of unshielded test load cabling.


Fig. 10: Noise spectra of LM12. The two plots are with an unregulated supply, but in one plot supply ripple is increased from $6 \mathrm{mV} p-p$ to $20 \mathrm{mV}(+10 \mathrm{~dB})$ by resistive loading. There is an increase of at least 5 dB below 500 Hz .


Fig. 11. The LM3886's noise is lower than the LM12 at hf and slightly higher in the mid-band. Powering is from an unregulated supply,: $A$ is 5 mV ripple voltage and $B$ is 15 mV pk-pk.

Fig. 12. Exemplary noise performance of the PA42.

Fig. 13: PA45 noise spectra. A strong 50 Hz sensitivity but commendably low noise ( -140 dBr ) at the mid/high frequencies. Upper plot shows the degradation with the unregulated supply having 30 mV pk-pk ripple (at least 30 dB worse) and set at $\pm 63 \mathrm{~V}$.

Percentage thd and power bandwidth: Figs 14 to 20 show \%thd vs frequency and also the power into $8 \Omega$ (right hand side) at just below clip, and at some lower output.
Analyser bandwidth is 80 kHz , so the 20 kHz sum truncates above the 4 th harmonic. Several plots demonstrate hikes at If that are most easily explained as thermal distortion. Others demonstrate clear differences as supply ripple changes on one or both rails, demonstrating that psrr is a real issue too.


Fig. 14. LM4860 with regulated supply. A (8S2) and B (16ת) show small differences at $0.5 d B$ below clip. $C$ and $D$ show how \%thd more than halves with the same respective loads at $5.5 d B$ below clip. Power curves $E$ and $F, G$ and $H$ respectively confirm about 800 mW and 300 mW into 83 , at the two test levels. Retesting demonstrated that thd was not influenced by noise pickup susceptibility in the load cabling.


Fig. 15. Unregulated supply and LM4860. All-round \%THD figures are about 3 to $6 d B$ greater.


Fig. 16: LM12's \% thd is passable at below $0.06 \%, 20 \mathrm{kHz}$ into $8 \Omega$ just below clip but shows a rise below 50 Hz . Lower curve shows $16 \Omega$ response. The upper pair of curves confirm a midband output delivery during the \%thd plot of about +27.5 dBu .




Fig. 17: Compared to LM12, the LM3886's \%thd is better at hf, at 20 kHz into $8 \Omega$. Thermally induced cross-over distortion could be causing problems.

Fig. 18. PA42 \%thd is satisfactory though the current limit must suit the load. Curves $A$ show result of a $680 \Omega \mathrm{CL}$ resistor; and curve $B$ shows $C L$ set to 303. A $\pm 61 \mathrm{~V}$ unregulated supply was used. Residue was mostly quite angular, and increasingly complex above 2 kHz . $\mathrm{A}(F)$ and $B(F)$ show frequency response.

Fig. 19: PA42 with lateral mosfets added, and $C L$ set to $30 \Omega$ : \% THD is hardly changed. It reduces only minutely when the biasing (for one output pair) is increased from 40 mA (A) to 75 mA (B). (C) shows only slightly lower \%THD into $16 \Omega$.

Fig. 20. PA45's impressive \% THD when unloaded (lower plot, A) at $\pm 63 \mathrm{v}$ and $1 d B$ < clip. Upper \%thd plot (B) shows drive into $16 \Omega-1 d B<$ clip. Middle curve (C) shows a more acceptable result when drive is $-11 d B$ below clip. Power bandwidth is plotted on the right.

Spectral behaviour: These plots show harmonic spectral behaviour -1dB below onset of clip (judged from spikes in the thd residue), then at the lower level more typical of most listening levels, together with some examples of supply regulation effects. Each graph has a 100 dB window. All dBs are referred to the fundamental.

Fig. 21:
LM4861
spectra 1dB below clip into $8 \Omega$.

Fig. 22. Fatiguing sonics suggested by 4861's spectra at 18 dB below clip.

Fig. 23: LM4860 spectra possibly as a resulf of a faulty IC.

Fig. 25. 25dB below clip, the noise floor has increased, and harmonics above it have changed.

Fig. 26. The LM3875's spectra just below clip are similar to LM12.










Fig. 24. At onset of clip, most of the LM12 products are just below 100 dB .

Fig. 27: At $-25 d B$
below clip, LM3875 spectra are very like LM12 under similar conditions.
LM3886
performance was also similar, but more like the LM12 at high levels, while at -25 dB down, the 3rd, 5th and 7th are stronger and replace the 4th and 6th. This small but possibly crucial difference may result from the VCA type elements used for muting.

Fig. 28: Just below clip, spectra of PA42 and added mos output stage is ragged but nearly all below

Fig. 29. At
$-26 d B$ below clip the only
PA42
harmonic
readable is a
tiny amount of second.

Fig. 30. 0.5dB below clip with +51 V rails, and a $16 \Omega$, the PA45 mainly makes odd harmonics which will be very prominent by ear.

Fig. 31: PA45 with $16 \Omega$ load, but at -25dB below clip with $\pm 31 \mathrm{~V}$ rails. Odd harmonics still dominate the evens.

Fig. 32. PA45 with $\pm 62 \mathrm{~V}$ rails, other conditions the same as Fig. 31, all the harmonics are reduced excellent sonics should be the result be the


Given a pc of reasonable performance, it is possible to grab 25 frames a second of standard composite video frame using little more than a flash converter and LPT port D connector. Steve Webb explains how most of the image reconstruction work is done via software.

Commercially available video digitisers are an expensive luxury, with most models costing upward of two hundred pounds. For experimenters, and applications such as shape recognition, this may be offputting. This article describes how anyone with a 286 or better can capture video on a shoe string.
Performance of the digitiser is not brilliant. But on the other hand, useful results are possible, Fig. 1, and the cost makes the circuit ideal for applications such as counting cars or intruder detection. The design was conceived to provide a simple means for experimenting with computer vision.
A key design criterion was minimum hardware, in order to keep costs down and to allow the interface to be easily removed. This lead to a circuit based on the PC LPT printer port. The port is pushed to its limit, but the results are rewarding.


Fig. 2. With little more than a CA3306 a-to-d converter, it is possible to capture video signals for displaying or processing on a pc. Although low in resolution, images captured can be used for recognition.


Fig. 3. Video digitiser prototype plugs directly into the printer port.


Fig. 4. Representation of a monochrome composite video signal. The digitiser captures the whole signal and it is up to the software to separate the syncs.

Fig. 5. Digitised video is made available in the status register at port base address plus 1. This is the bit structure.

lution. Power is derived from the eight port data output lines leading to a very compact dongle-sized design.
Software is arranged to synchronise to the video signal and then grab one complete frame of data. Due to the relatively low port bandwidth, only 40 or 50 samples are taken for each video line. Post processing, during the interlace period, converts three sampled lines into one display line. Additionally digital filtering is used to make the results more acceptable. The whole process is repeated giving a real-time display rate of up to 25 frames per second.

## Electrical design

Figure 2 is the full interface schematic showing how the design revolving around a CA3306 six-bit flash a-to-d converter. Power supply is derived from the eight port data out-


Fig, 6 Flowchart for digitiser software
diode combination. Thus the tips of the video synchronising pulses are referenced to ground, and in a suitable form for the data converter. Decoupling is provided by $0.1 \mu \mathrm{~F}$ capacitors as shown.
In practice, the port is the limiting factor, so I decided to make the a-to-d converter free run and provide samples asynchronously to the pc processor. A simple clock is generated by the 74 HCl 14 schmitt inverter, and set to an arbitrary 7 MHz
The clock was chosen to be greater than the bus sampling rate to help reduce patterning. On my pc, port read times of around $1.2 \mu \mathrm{~s}$ per sample were typical, but this is likely be machine specific.
There are only five input data lines available for reading via the status register. These would normally indicate PAPER OUT, DEVICE ERROR, etc, but in this application they are connected to the five most significant bits of the data converter. In this way the whole video signal - sync pulses and all, is digitised to a five-bit resolution.
The decision to digitise rather than extract the sync pulse will make sense once you have studied section. It should be noted that the most-significant bit connected to DEVICE BUSY is inverted by the port circuitry so the software takes this into account. Using one of the spare inverters to correct this situation, was unsuccessful due to gate delay.
There is little more to the hardware, other than what has been described here. Prototypes have been built in the small gender-changer sized boxes as part of a DB25 connector. It is possible to do this with Vero-board although some unconventional construction techniques and patience are required as it can take some time, Fig. 3.

## Analysis of digitised signals

A typical monochrome video signal is IV pkpk with the top $70 \%$ representing the grey level where white is 1 V and black is 0.3 V The blacker than black sync pulses are below 0.3 V , Fig. 4.

For the 625 line system, a complete image is
formed by two interlaced frames each of 312.5 lines. A longer frame sync pulse is at the start of each frame. The whole video signal is digitised by the circuit to five bits resolution, so allowing 21 effective grey levels to be represented. It is up to the software to detect and synchronise to the sync pulses in order to display a stable picture.
The digitised signal is made available via the status register. This is port base address plus 1 , or $378_{16}+1$ on most computers, an address obtainable via the bios, Fig. 5. As stated, bit seven is inverted by the port hardware, so this needs to be accounted for.

## Software

The software reads a packet of data from the port and then post processes it during the interlace frame. In effect, this gives 312 lines each of around 53 samples including sync pulses. Obviously such an aspect ratio is undesirable, but it is the post processing that makes the scheme viable.

In order to read the port and process data at an appropriate rate, it is necessary to use assembler. ' C ' has been used for higher level set-up where speed is not critical. The simplest way of explaining the digitiser software is to start with a flow-chart, Fig. 6.
The port is initialised by outputting $\mathrm{FF}_{16}$ to the Data register at address $378_{16}$, so setting all data lines high for the interface psu. Correct operation is indicated by the led.
Suitable sized arrays are allocated for sampled data and a workspace. The screen mode is set to vga mode $0 \times 13$ ( $320 \times 200256$ colours) by a dos call $0 \times 10$. The 21 level grey scale is also generated as required.

Once initialised, the port is read repeatedly until the start of a sync pulse is detected. Reading continues until the software is sure that a frame sync has been detected. A complete frame's worth of data is sampled immediately after the sync. pulse end.
Disabling system interrupts ensures the processor gives undivided attention to the port using the efficient REP INSB instruction, Fig. 7.
Due to the low port bandwidth, no information should be discarded, despite the elongated aspect ratio. The chosen algorithm involves taking the first pixel from three successive lines and depositing them, in order, to the workspace. This is repeated for the second pixels and so-on, Fig. 8.
Additionally pixels from the current frame are averaged with those of the previous to reduce 'twinkle' noise. Samples from successive lines are staggered relative to each other either to the left or the right, the trick being to decide which way. Suggestions on how to improve the scheme would be welcome.
Interleaved data contains striations that are a natural product of the process. To make a picture more acceptable it is recommended that some form of low-pass filtering is implemented. In practice the picture will have comparably good vertical resolution compared to the horizontal, so you will find that a simple $3 \times 1$ average is more than adequate. A $3 \times 3$ average tends to defocus the image. A $3 \times 3$

Fig. 7. Simplified source code for driving the low-cost video grabber via LPT1.


## PC INTERFACING

median filter has been performed with good results, but is computationally intensive for real-time applications. Results of simple filtering are shown in Fig. 9.
Code execution will obviously be processor related. In the interests of brevity and under-
standing, the source given in this article is not the full assembly language program I have developed. Nevertheless, frame rates of 10 Hz will be realised with a typical set-up. It is possible with optimisation and assembler to reach 25 Hz on a 486 DX 33 with filtering. In the pro- asm (

## dec $b x$

 jz no_syncin al, dx
xor al, 128
shr al. 3
cmp al, SYNCLVL
jnl vsloopl
dec ah
jnz vsloop2

```
//Sync found
```

/ No sync found
//Get 5 Bits
//Hardware inverts MSB so change it back
//Move bits down giving a number from 0-31
//Keep sampling until sync detected check it's here for 10 loops
vsloop3
asm !
dec $b x$
jz no_sync //No sync found yet
in al, dx
in al, $d x$
xor al, 12
shr al, 3
cmp al, SYNCLV
cmp al, SYNCLV
jle vsloop3
\} vdone:
asm \{
les di,grab
mov cx,GRABSIZE
cld
rep insb
sti
ret
return 1;
no_sync:
return 0 ;
\}
//Routine to interleave grabbed frame //
void Interleave()
int $x, y, l, i=0, b, s \_l i n e=0, p o s$;
for ( $y=0 ; y<M A X L I N E S ; y^{++}$)
for ( $1=0 ; 1<=2 ; 1++$ )
//3 source lines per one display

## pos=s line +1 ;

while $\left(\left(\left(\right.\right.\right.$ grab $\left.\left.(i++)^{\wedge} 128\right) \gg 3\right)>$ SYNCLVL $)$;
//Search for start of sync while $\left(\left(\left(\right.\right.\right.$ grab $\left.\left.[i++)^{\wedge} 128\right) \gg 3\right)<=$ SYNCLVL $) ;$ //search for end of sync for $(x=0 ; x<L I N E L E N G T H ; x+=3$ )
f
$\mathrm{b}=\left(\left(\left(\mathrm{grab}[\mathrm{i}++]^{\wedge} 128\right) \gg 3\right)+\right.$ interleave $[$ pos $\left.]\right) \gg 1$;
//Average current with
//previous sample
interleave $[p o s]=b$; pos+=3;
s_line+=LINELENGTH;
//Increment by one line
\}
\}
//Display routine
void Display()
vol
int $b, x, y, i=0, j=0$;
for ( $y=0 ; y<M A X L I N E S ; ~ y++$ )
for

```
for ( }\textrm{x}=0\mathrm{ ; ; x<LINELENGTH; x++)
\(b=i n t e r l e a v e[i]\);
```

//No Eiltering
//b=(interleave[i-LINELENGTH]
//+interleave [i-LINELENGTH-1]
$/ /+i n t e r l e a v e[i-L I N E L E N G T H+1]$
//+interleave[i]
//+interleave[i-1]
$/ /+$ interleave $[i+1]$
//+interleave[ $i+$ IINELENGTH]
//+interleave [ $i+$ LINELENGTH-1]
//+interleave (i+LINELENGTH+1\})/9
// uncomment above for $3 \times 3$ filtering
//b=(interleave[i]
//+interleave [i+1]
//+interleave[i-1])/3;
// uncomment above for $3 \times 1$ filtering
i++;
video $[j++]=b ;$
//Put on screen
$j+=320$-LINELENGTH;
//Increment by one line
gram, the choice of the constants GRABSIZE and LINELENGTH may have to be adjusted for faster/slower ports.
The design is a basis for a very cheap computer imaging system. Results may be limited, but will certainly allow experimentation with different enhancement and filtering techniques. An interesting application for the digitiser could be as an intelligent trigger for a security system video recorder. Colour capture is another possibility, by taking three successive red, green and blue frames.
More detailed assembler source code, including a simple movement tracking program, is available from the author. Send cheque for $£ 12.50$ UK or $£ 15.00$ overseas to, S.M. Webb, Selborne, Station Road, Clive, Shrewsbury, Shropshire SY4 3LD. A 3.5in disk will be dispatched, unless otherwise requested. Allow 28 days for delivery. Suggestions for improvements or optimisations are welcome.

Please direct all enquiries regarding this software, accompanied by an sae please, to Steve Webb at the above address - Ed.


Fig. 8. Technique of interleaving sampled data. Samples from successive lines are staggered relative to each other, to the left or to the right. The trick is to finding out which


#### Abstract

direction the stagger is. Raw data




A computerised index of Electronics World+Wireless World magazine is now available. It covers the five years 1990 to 1994 volumes 96 to 100 - and contains over 1400 references to feature articles, circuit ideas and applications, with a synopsis for each. The software is easy to use and very quick. It runs on any IBM or compatible PC with 512 K ram and a hard disk. Each disk is scanned before shipping with the current version of Dr Solomon's Anti-Virus Toolkit.
For the UK, the five year index is priced at $£ 20$. Please specify $51 / 4$ or $3^{1} / 2$ in format. This price includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders.
Photo copies from back issues of $E W+W W$ are available at 50 p per page plus VAT (in EC) and a flat postage charge of 50 p (UK), $£ 1$ (rest of EC ), and $£ 2$ (rest of world). For enquiries about photo copies send an sae to Video Interface Products.
Please allow up to 28 days for delivery. Cheques should be made payable to Video Interface Products, not EW\&WW or Reed Business Publishing.
Please post your request to Video Interface Products Ltd, 1 Vineries Close, Cheltenham GL53 ONU, UK.

## Unique EW+WW

 reader offer20\% discount on TTI's TC200A digital LCR meter

| Capacitance |  |  |
| :---: | :---: | :---: |
| Range | Resolution | Accuracy |
| 200pF | 0.1 pF | $1 \% \pm 1$ dig. |
| 2 nF | 1pF | $1 \% \pm 1$ dig. |
| 20 nF | 10pF | $1 \% \pm 1$ dig. |
| 200nF | 100pF | $1 \% \pm 1$ dig. |
| $2 \mu \mathrm{~F}$ | 1nF | $1 \% \pm 1$ dig. |
| 20MF | 10 nF | $1 \% \pm 1$ dig. |
| $200 \mu \mathrm{~F}$ | 100nF | $1 \% \pm 1$ dig. |
| 2 mF | $1 \mu \mathrm{~F}$ | $2 \% \pm 10$ dig. |
| 20 mF | 10¢F | $2 \% \pm 10$ dig. |
| Inductance |  |  |
| Range | Resolution | Accuracy |
| 200 $\mathrm{H}^{\text {H }}$ | $0.1 \mu \mathrm{H}$ | $2 \% \pm 2$ dig. |
| 2 mH | $1 \mu \mathrm{H}$ | $1 \% \pm 2$ dig. |
| 20 mH | $10 \mu \mathrm{H}$ | $1 \% \pm 2$ dig. |
| 200 mH | $100 \mu \mathrm{H}$ | $1 \% \pm 2$ dig. |
| 2 H | 1 mH | $2 \% \pm 2$ dig. |
| 20 H | 10 mH | $2 \% \pm 2$ dig. |
| 200 H | 100 mH | $3 \% \pm 2$ dig. |
| Resistance |  |  |
| Range | Resolution | Accuracy |
| 29 | 1 ms \% | $1 \% \pm 5$ dig. |
| 20s? | 10 ms ? | $1 \% \pm 2$ dig. |
| 200, | 100 ms 2 | $1 \% \pm 2 \mathrm{dig}$. |
| 2ks | 192 | $1 \% \pm 2$ dig. |
| 20ks2 | 10¢2 | 1\% $\pm 2$ dig. |
| 200ks | 100s2 | $1 \% \pm 2$ dig. |
| 2Ms2 | 1 k ¢ 2 | $2 \% \pm 2$ dig. |
| 20MS2 | 10ks2 | $2 \% \pm 2$ dig. |

Measure $0.1 \mu \mathrm{H}$ to 200 H inductance, 100 fF to 20 mF capacitance and $1 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega$ on one hand-held meter for the fully inclusive price of $£ 99.99^{*}$.
Thurlby Thandar's TC200A hand-held LCR meter is a precision instrument featuring nine capacitance ranges, eight reslstance ranges and seven inductance ranges. In addition to the standard LCR functions, the TC200A is also capable of displaying dissipation factors in the range 0 to 1.999 for both capacitance and inductance.

Measuring 177 by 88 by 40 mm , the pocket slzed TC200A weighs just 400 g . It has 3.5 -digit high-contrast display with 0.5 in high characters and runs from a single, standard 9 V battery. The meter is also designed to provide a fast measurement response time.


UK only price. The normal UK price of this meter, including vat, would be £123.23, assuming $£ 5$ postage and packing.

Detailed specifitations available - send s.a.e. marked LCR Meter Details to EW+WW, Room L330 Quadrant House,The Quadrant, Sutton, Surrey SM2 5AS.

The TC200A LCR meter is a hand-held precision instrument featuring nine capacitance ranges eight resistance ranges and seven Inductance ranges.

[^1]

# s <br> <br> U <br> <br> U <br> Wit 

ith a modern computer and a telephone line, the world's largest reference library is available 24 hours a day. This library - the Internet - resides on a large number of computer systems, in nearly every country in the world, and is available almost for free.
If it is the world's largest, just how big is it ? In England, for public reference, we have the Science Reference Library and the Patent Office, at Holborn in London. Both house large collections of books and papers going back over many years. Imagine this information, indexed in computer searchable format, accessible by telephone, then multiply the amount of information a thousand fold.
For me as a consultant, losing the Norwich Library and sub-Patent Office by fire last autumn was a disaster. My nearest public reference altematives are a three hour journey away. So I decided to find out whether the Internet would provide an alternative source.

Reading the various specialist computer magazines, and the two most recommended books, left me with the impression this was not so. It seemed the Internet had three main uses - sending E mail, obtaining shareware programs and participating in newsgroups. ${ }^{1,2}$
Encouraged by last autumn's price reductions for modems however, I decided to find out for myself. I bought a Zoom 14.4X modem and installed the easy to use and excellent communications software included with $O S / 2$ Warp in the Bonus Pack - free.
I found that the Internet was not only the largest library, but was also easily accessible. What then is Internet? It is the name for a group of world-wide information resources, located in universities, technical colleges, schools, public libraries, businesses, government offices, patent offices. These resources, or their indexes, are stored on computer systems, linked by networks.
Amazingly, no one owns or controls Internet


Fig. 1. IBM New York World Wide Web home page. The starting point of our journey. Click on third menu item to access reference files submenu. Central bar shows present location, bottom shows moving to.


Fig. 2. Still at IBM New York, second click on fourth menu item, to access Reference Desk at 'peg.cwis.uci.edu' University California, Irvine College.


Fig. 3. Now at 'peg.cwis.uci.edu'. Third click, on sixth menu item to change host computer. University of California, Irvine College.


Fig. 4. Now at Carl UnCover Libraries'. Gopher computer. Fourth click on second menu, seamlessly starts 'Telnet' session.
and by and large the services are available for the cost of the telephone call to the service provider used. Each resource e.g. at a university, is created, controlled, and managed for use on the campus by their own staff. Much of the information is supplied voluntarily.
Obviously, in order for each computer to communicate, an operating-system indepen-
dent 'protocol' has been devised. This, supervised by the National Science Foundation, is perhaps the only controlled aspect of the Intemet. ${ }^{3}$
When visualising a network, most people assume that there is one central controlling server computer, implying a 'big-brother' supervising and controlling access. So why
does no one control Intemet?
Very simple. The 'Internet' has no central server. It is organised like a 'peer-to-peer' network, computers both giving and receiving outside access. Each has a unique address. Data is sorted and passed on to its destination. Public access to the Internet requires the services of a 'service' provider, acting either as a

## COMMUNICATIONS



Fig. 5. Telnet' program started transparently on local computer, for user. Telnet permits access to the remote computer as though seated at Carl UnCover. This is the Welcome screen viewed on the local computer. Menu item 1 is for public access to browse, free of charge, the 6 million articles held. Search tools are provided, on-line, to search by titles, authors and text body of articles. Having identified the required article, it might be available locally. Alternatively requested articles can be sent by fax for nominal charges.


Fig. 6. The 'road map log' of World-Wide Web computers visited. As a result of simply clicking on four menu items. No other actions were required of the user. The Web automatically inputs the necessary addresses. Note that the Unix directory is accessed automatically.


Fig. 7. Screen showing file-transfer program, FTP, downloading files. Upper screen shows directories of local computer, lower shows shows files to be transferred to provide full WAIS searches by local computer. Host is wais.com (WAIS Inc) - a Unix system.


Fig. 8. Down-load WAIS searche software in use. Result of first-stage search of 620 computers, lists of servers holding files related to the 'tell me about query "electronic capacitor"'. Additional searches of a selection of servers are needed to get to file level.
'poste-restante' mailbox or telephone switchboard.
One's costs are the telephone calls to this service provider and the providers charges. Two levels of connectivity are commonly available:

- BBS 'dial-up' is generally restricted to E-mail, a number of news groups, file transfers, and Telnet. Access is indirect, the BBS computer intercepting all data, for subsequent retransmission both to and from the Net.
- SLIP/PPP 'dial-in' provides direct access to all Intemet services. The 'provider' acts as a switch-board connecting your computer directly to the Internet. All data is handled in both directions in real time. Local use of the graphical browser called the World-Wide Web is used to access sources. This level of service is essential for any serious scientific reference searching. ${ }^{4}$


## Origins of the Internet

In 1969 the US military needed to connect four computers in such a way as to maintain a level of service assuming one or more computers or links, were damaged. It was to be known as the Darpanet. With time, the name changed to Arpanet as more computers were added.
With the number of University sites connected by the early ' 80 s, this network had grown to such extent it was decided to segregate military and research systems. In 1984, the National Scientific Foundation NSFNet was established to link together five supercomputer centres, each located at a university, making the information contained accessible to any desiring US educational facility that needed it.
This access was later broadened to include other countries, allies of the USA. By 1990, the Internet had begun, and access was opened up to anyone having the means to connect. From a beginning with some 5000 users it has grown to the present estimate of over 30 million.
While Unix was dominant initially, with this level of expansion all operating systems are now included across some 62 countries.

## Hypertext and World-Wide Web

The idea of hypertext is not particularly new. Hypertext is data that contains links to other relevant data. The World-Wide Web concept was developed at the CERN research centre, Switzerland, to disseminate information.
In 1980, Tim Berners-Lee devised Enquire Within - a program for his own use, designed to facilitate insertion and cross-referencing of data links in technical reports. These basic ideas expanded in 1991 into a text based access system on Unix for the Internet. This became the Mosaic graphical user interface for Unix in February 1993, and was subsequently translated for all other platforms.
In the present day World-Wide Web, clicking on hypertext highlighted keywords takes one directly to the next link. This happens regardless of changes in host computer, country or even communication methods. All are transparent to the user, Fig. 1.
As an example, you want to transfer a file to your computer. The Web link will dial the required host computer, $\log$ in to the file-transfer service FTP, commence FTP on your computer and download the file for you. All of this is autonomous - even if the host is running Unix and the receiving computer is running Windows, OS/2, System7, or whatever. ${ }^{5}$ Photo sequence Figs 1-4 demonstrates this.

## Internet service providers

While Internet can be accessed in many ways, for Scientific reference, two methods only are considered. The preferred 'dial-in' route requires a minimum of computer skills. Access through a BBS is generally more restricting, and can require memorising a number of Unix commands to perform searches. Note the Unix directory structure, involving a forward slash as opposed to the backslash used in dos, Figs 6,7.
Some popular national providers, taken from the Paola Kathuria list, Feb. 95 are,

Dial-in providers (SLIP/PPP)
Atlas, $£ 12$ /month and $£ 25$ start up fee BBC, $£ 12 /$ month and $£ 25 / 35$ start-up Cityscape, $£ 180 /$ year and $£ 50$ start-up fee
Demon, $£ 10 /$ month, unlimited time, no hourly charge, software less refined, $£ 12.50$ start-up fee.
Direct, $£ 10 /$ month, unlimited time provide your own software.
IBMnet, $£ 10$ /month to $3 \mathrm{~h} /$ month, then $£ 3$ subsequent, super software free with OS/2Warp, 1st month/3h free, no start-up fee. BBS providers
CompuServe, $£ 6.65 /$ month and $£ 3.20 / \mathrm{h} \mathrm{CIX}, £ 6.25 / \mathrm{m}$ to 1 h 45 min ( 2 h 36 min offpeak) then $£ 0.06$ ( $£ 0.04$ off peak) per minute, $£ 25$ start-up fee.
DELPHI, $£ 10 /$ month to 4 h, then $£ 4 / \mathrm{h}$, 1 st 5 h free, no start-up fee.

## How do I join Internet?

Given a suitable computer, for example a pc running Windows, OS/2 Warp, Macintosh System 7, Archimedes Risc-OS, etc. and a modem are the only essentials.
Examine your intended use. Most facsimile machines work at 9600 baud. Many BBS now work at 28,800baud. Most UK Internet providers work at 14,400 baud but depending on 'traffic' the 'Internet' connection can be slower.
If running Windows, unless your computer uses a 16550 A serial chip, your system can limit the actual run rate. OS/2 Warp accesses the serial port more efficiently than does Windows. It provides a 5Kbyte receive buffer, better interrupt handling, resulting in faster serial data transfer (see the modem panel).
Choose a service provider, tell the provider your credit card details for billing service charges, install the software and $\log$ on (see the providers panel)

## Bit rates in practice

Accessing a UK bulletin board at 14,400baud using Zmodem protocol, data transfers at around 100 K byte per minute. With the same hardware, Internet achieves around 60 to 100 K byte per minute.
One aspect that confused me initially was the relationship between the Modem's claimed data rate and the computer serial port transfer rate. This is a setting required to install most communications software. As a rule of thumb, with a 9,600baud modem, set 9,600 bps rate. With a 14,400 baud modem set to three or four times this rate, $57,600 \mathrm{bit} / \mathrm{s}$ for example, or as fast as the system will accept in practise.

## Data transfer

All Internet transfers make use of the Transmission Control Protocol/Internet Protocol, TCP/IP, which started life as the UNIX networking standard. As a protocol for networking it has spread into conventional networks. During 1992, an open standard for TCP/IP under Windows was defined, now known as Winsock. Today versions exist for most operating systems.
Using the system is like sending a letter, one page at a time in individually addressed envelopes. One page is a maximum of 1500 bytes of data, addressed to the receiving computer. Pages can arrive out of sequence and must be sorted by the receiving computer. Any garbled pages are automatically resent, transparently to the operator, who sees a record of the reception in bytes.

## What can be found on the Internet?

Basically data of any form can be found on the Internet. This may be correspondence, program files, databases, graphics, audio, video in fact anything which can be stored or processed in a computer. In addition, there are over 7000 news groups.
Internet has many libraries. One of these, the Carl Corporation, has a system called Uncover, which can be freely searched. Any required document can be faxed to you for a

## Modems

Typical serial port performance of pc compatible computers running Windows is shown in the following table,
Modem data transfers may be limited by the uart pc combination.

| Processor | Uart | Speed in bit/s |
| :--- | :--- | :--- |
| 386 SX | $8250 / 16450$ | 19,200 |
| 386 SX | 16550 A | 38,400 |
| 386 DX | $8250 / 16450$ | 19,200 |
| 386 DX | 16550 A | 57,600 |
| 486 (all) | $8250 / 16450$ | 38,400 |
| 486 (all) | 16550 A | 115,200 |

Source - Windows International, Dec. 1993 p. 208.
Modem choice to access the Internet using World-Wide Web browsers is basically a choice between 14400 baud as a minimum, or faster. Depending on the uart in your computer, you might have to buy an internal modem with a 16550 A chip built in, or a high-speed serial interface for external modems. Modern modems have built in hardware compression, hence to minimise initial and online costs, the computer uart must output data fast enough to use this.
Typical modem prices

| Modem  <br> baud Max. serial-port | Typ. price <br> bit rate | (BABT app.) |
| :--- | :--- | :--- |
| 9,600 | $19,200 \mathrm{bits}$ | $£ 90$ |
| 14,400 | $57,600 \mathrm{bit}$ | $£ 135$ |
| 28,800 | $115,200 \mathrm{bit}$ s | $£ 200$ |

Modems are labelled with many ${ }^{\prime} V^{\prime}$ claims, however simply base your choice on a fax-modem with the desired bit rate. By and large all other functions follow suit.
nominal charge. This data-base presently holds some 20,000 Journal Titles - mainly scientific - spanning 1988 to date. In total this represents some 6 million articles.
Searching can take many forms:

- by journal, title and contents page
- by authors of articles
- by keywords within the article
- by article title or summary.

See Fig. 5.

## Searching for resources

Certain specialist computers are called servers since by acting as a librarian, searching records and pointing you in the right direction, they 'serve' the 'Internet' to you. Each maintains very large databases routinely updated by accessing each data computer's files. These servers are dedicated to perform specific searches.

Archie. Many computers allow the public to $\log$ on anonymously, read their directories, and download files. Some estimates suggest over 1000 such computers now exist, housing
over 2.5 million files, some 50 gigabytes in total. Selecting one computer at random cannot be expected to locate a specific filename. A group at McGill University has created a program for tracking each computer's content. On request, it lists computer addresses where the file can be accessed. This search tool, restricted to single word searches, is Archie. If the filename is unknown, the files' descrip-tive-field indexes can be searched.

Gopher. In 1991 the University of Minnesota developed a menu based search system to 'Go For' information. The college team was the Golden Gophers and the name Gopher stuck. The resulting information base on some 5000 servers, is known as Gopherspace.
Gopher is multipurpose: it provides access to information changes, Gopher servers or performs transactions in response to your menu choices and search requests.

Veronica. To search Gopherspace, a variation of Archie, developed at the University of Nevada and called 'Veronica', allows multiple word-search strings with Boolean controls. It assumes implicit 'and' unless otherwise instructed. To search a specific Gopher only, another variation called Jughead was developed. Fortunately this name doesn't appear in menus; it is implied by, for example ${ }^{6}$, ‘Search

Gopher Menus at the University of Minnesota'.

Wais. The final search tool is of a much different form. Its name, Wais, is pronounced Ways, for Wide-Area information service. This tool grew out of a project from three companies - Apple, Thinking Machines and Dow Jones. It performs a full document search. In response to keywords, Wais searches all text, recording occurrences of specified keywords in each article, and normalising this 'score' such that the document with most hits rates 1000 . It then presents you with a list of higher scoring documents. This can be highly beneficial when searching for topical references, but since 'Wais' is not context sensitive it can also provide some high scoring irrelevancies. At present Wais is the ultimate 'tell me about xxx ' tool, freely available, Figs 7,8 .

Having identified and located the file, the actual transfer is performed by a program called file-transfer protocol, FTP. In December 1994, FTP accounted for $31 \%$ of total Internet activity, Fig. 7.3

## World-Wide Web

While not in itself a search tool, the WorldWide Web, is the glue that holds together all these resources. Using menus and hypertext
links, the front end Unix graphical browser Mosaic, now ported to Windows, Macintosh machines, etc., resulted in the recent radical explosion in Internet accesses.
In December 1994, the World-Wide Web was the second largest activity, accounting for $16 \%$ of all data transmitted. In all this represents some 3,314Gbytes out of a total activity of 20,743Gbytes. ${ }^{3}$ See Figs 1-6.

## References.

1. Hahn \& Stout, The Internet Complete Reference, Osborne McGraw-Hill
2. Ed Krol, The Whole Internet, O'Reilly \& Associates Inc.
3. NSF Statistics, gvu.center.nsf.statistics 4. WWW - Frequently asked questions, http://sunsite.unc.edu/boutell/faq/ 5. FTP - Frequently asked questions, comp.sources.wanted
4. Veronica - How to compose queries, gopher://veronica.scs.unr.edu

## Useful documents

CICNets Electronic Journal Archives gopher.cicnet/00/e-serials/readme Hytelnet database of publicly accessible sites, ftp.usask.ca/pub/hytelnet/pc/latest JANET - OPACS in the UK, nic.funet.fi/pub/doc/library Library resources on Internet, dia.ucop.edu/pub/internet/libcat guide Paola Kathuria UK access providers, ftp.demon.co.uk/pub/archives/

# Join the 'Virtual Instrument'Revolution 

Pico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.



# Electronic Designs Right First Time? 

## NEW! - LAYAN - Affordable

 Electromagnetic Simulation

For less than $£ 1000$ !

Affordable Electronics CAD
LAYAN: NEW Electromagnetic Layout Simulator.
Links to EASY-PC Pro' XM and ANALYSER III Pro'.
$£ 495.00$
EASY-PC Professional: Schematic Capture and
PCB CAD. Links to ANALYSER III and PULSAR.

| PULSAR: Digital Circuit Simulator | From $\mathbf{£ 9 8 . 0 0}$ |
| :--- | :--- |

ANALYSER III: Linear Analogue Circuit Simulator

From $£ 98.00$

| Z-MATCH for Windows: Smith Chart based problem | £245.00 |
| :--- | :--- |
| solving program for R.F. Engineers |  |

FILTECH: Active and Passive Filter design
From $£ 145.00$
£145.00
program for small/medium sized businesses
$£ 98.00$
Technical Support FREE for life! Prices exclude P\&P and VAT.
Special discount schemes for education

## Number One Systems

Ref: WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.
For Full Information Please Write, Phone or Fax.
Tel: +44 (0) 1480461778
Fax: +44 (0) 1480494042

## CIRCLE NO. 116 ON REPLY CARD



## Field Electric Ltd.

Tel: 01438-353781 Fax:01438 359397 Mobile: 0836-640328/0860-213370 Unit 2, Marymead Workshops, Willows Link, Stevenage, Herts, SG2 8AB

| Conrac 7211 C19EK. $18{ }^{\text {c }}$ RGENVIdeo input broadcast |  | TEK: D10 o'scope manlrame |  |
| :---: | :---: | :---: | :---: |
| quality monitors 240 VAC | $\varepsilon 100$ | TEK: DAS9100 digtal analysis system | 5 |
|  |  | TEK: 067050800.50 ohm amplitude cal. | 95 |
|  | $\underbrace{}_{\text {E85 }}$ | TEK: TS 11 sampling unt |  |
| 3601720k 5.25" TEAC BBC compat. disk drives |  | TEK: 453 O 'scope 50MHz dual be | £200 |
| High quality 750 HM video cable 100 metre+ reel |  | Hacaa 835 Universal counter | $\Sigma 145$ |
|  |  | Prilips PM 81546 pen plorter IEEE | 80 |
|  |  | Calcomp 818 pen plotere (digitising) | 00 |
| Sony 9 colour monitor Trintron super fine pich |  | Marconl inst = multiplex tester 2830 | $£ 600$ |
| model KTM 1000ub Cased with data for RGB | a for RGB | Wandel \& Gotherman LDE-2 measurenng set for |  |
| Intel llash memory cards 1 Mb to 4 Mb from |  | group delay \& a atenuation: recerver | 0 |
| Test equipment: please ring for $C / P$ details HP 7475A, RS232C/CCITT V. 22 graphics/CAD pro |  | Wayne-Ker 022D video oscillator | 5 |
|  |  | Muirhead K-126A decade oscillator | 40 |
| Ploter A3/A4 IEEE 488 | £150 | Spectra brighness spot meter 1514-UB | 25 |
| HP 427 A voltmeter | ¢145 | Blo. Tec inst: Model 501 | £125 |
| HP 7959s |  | Greibach Inst. ACDC microamp meter | c35 |
| HP 431C power meter cable a | £ 195 | Prrelli Focum multiport repeater 5709 | $£ 140$ |
| HP 1332 X-Y display min oplions 215/300/315/570/ |  | Singer Gensch phase angle |  |
|  |  |  |  |
| HP 6930 sweep oscillator 4 -8 GHz | ¢95 | Paratronics inc System 5000 Pl. 540 logic analyzer |  |
| HP 10013 A probe | PE3.50 |  |  |
| HP 331A distorion an | 50 | Optimation inc Model AC125 calibrat |  |
| HP 415E SWR meter | ¢195 | Cairec ZN1232 Desk PSU | ¢85 |
| HP 9872A 4 pen plotier | £225 | Systron Donner puise gen: 100 C | ¢95 |
| HP 35508 test set | £275 | EH microwave swepl osciliator 574-1 7-12.4GH |  |
| HP 3551A transmission test set | 5 |  | 50 |
| HP 16108 Logic State Analyzer with Pods | $\mathrm{h}^{\text {Pods }}$ E135 | Hydrostaic stability Indicator | 5 |
| HP 1611 A Logic State Analyzer | $\underline{1} 25$ | Hughes Model 639 scan Conversion mer | £300 |
| SONY 1.44Mb 3.5"FİDisk Dives | E5.00 | Philips PM 8940 isolation amp etc | 85 |
| TEK: 7A 15 A amp plug in | £175 | Wayne Kerr VHF admiltance bridge | 85 |
| TEK: TCTIN cunve tracer plug in | E450 | OL delay gen: OG 100 | 80 |
| TEK: 067.502 standard ampltude calibrator | calibrator | Marconi TF 2602 dith: DC voitmeter | 65 |
| TEK: swept trequency converter 015-0107-00 | 5-0107-00 E59 | Bromma LKE 2210 recorder 1 -chann | 60 |
| TEK: 7DI 12 AD converter plug in | $\underline{150}$ | Fluke 893A AC-OC difl votmeter | £250 |
| TEK: TM504 mainframe | $¢ 125$ | General Radio 1433-H decade resistor | 5 |
| TEK: 184 time mark generator | 295 | Borg. Wamer SWA Ind: M401 | 120 |
| DATA 10 29A Universal Programmer c/with | mer c/with | Honeywell 1806A Visicorder | 95 |
| Unipak 2 | ¢225 | Barr \& Stroud Argon lon 5WI |  |
|  |  | Dyela | [1250 |

DATA I/O Romulator Data I/O Ram-Pak
595 Dye laser etc
51250
PLEASE ADD 17.5\% VAT. TO ORDER: RING FOR C/P PRICES NOT SHOWN OFFICIAL ORDERS AND OVERSEAS ENQUIRIES WELCOME

## SMART CARD READER/PROGRAMMER

On board ISO 7816 Card Reader Socket (Videocrypt etc). Software runs on IBM/PC enabling the user to Read \& Write to ISO7816 and $2 / 3$ chip D2mac Satellite cards. Board also contains a PIC16C84 programmer. Ideal smart card de velopment tool Requiries external power $15-20 \mathrm{v}$ AC or CD @250 ma. (optional extra $£ 6.50$ )
MICRO-ENGINE MCS80C31/51 Development board.
Tiny $72 \mathrm{~mm} \times 42 \mathrm{~mm}$ PCB contains socketed 44 pin CPU, turned pin Rom socket, 12 MHz xtal and pors I. 3 output on IDC connector. Ideal for stand alone projects or development work. Supplied with CIRCLIIT \& MCS805 I/52 development sofiware
PIC ICE II* In Circuit Emulator for PIC16C54-55-56-57-71-84.
Replaces all 18 or 28 pin PICs. All ports Bi-directional, OSC2 outpu1. RTCC input. On board A/D converter for PIC167C1. Supplied with PICDEV54 and PICDEV71 software manual. connecting leads \& headers. ASM examples. and hardware circuit projects. ${ }^{\mathbf{E 1 5 9}}$. 59.95

PIC ICE STD In-Circuit Emulator for 18 pin PICs only no A/D.
Plugs into the printer port. appears to the target system as a normal Pic device including OLC2 and RTCC in/out. Runs in real time from the IBM PC changes made to File registers reflected on targe1. Supplied with Development software PicDev 54-57 and PicDev 71/84 869.9

PIC PROGRAMMER* Programs Pic16C54-55-56-56-71-84. Centronics port interface. Powerful editing software to Read, Write \& Copy Pic devices including data memory in Pic 16C84. Top quality components used throughout including production ZIF socke1. Now includes a Text Editor/Assembler for all above PIC
Requires external power 15-20v AC or DC @250ma. (optional extra $£ 6.50$ ).
MEGAPROM programmer. EPROMS, E2PROMS, and FLASH memories from 2k (2716) to $8 \mathrm{Meg}(27 \mathrm{C} 080$ ). Runs on IBM/PC via the centronics port using standard printer cable. Works on all PC compatibles, laptops, and notetooks. No special port requirements. Top
quality components used throughout including production ZIF socket quality components used throughout including production ZIF socket
Requires external power supply $18-25 \mathrm{~V}$ AC or DC@250ma. (optional extra $£ 6.50$ ).
EPROM EMULATOR Works on ANY computer with centronics printer port. Data sent to the printer appears in the target board Eprom socket. Emulates from 1 k to 32 k Byte 27C256) roms. buard switchable. Very fast download. Works with or without our DEVELOPMENT SOFTWARE.
Develop software on your IBM/PC for other Microprocessors, Controllers. Pic's etc. Software has fully inegrated Texi Editor. Assembler. Disassembler, and Simulator. Code can be downloaded directly to our EPROM Emulator. All software supplied with sample ASM files, and user documentation manual.

- Available for the following:-
£1.50 for Carriage WEST YORKSHIRE WF3 1JR

TEL (or FAX) 01132537507


Watt's steam engine? Baird's television? Bardeen, Brattain and Shockley's transistor? The truth is that all advances in technology really depend on multiple contributions and previous research. With this in mind Tom O'Dell surveys the archives to find where the real credit belongs for the birth of the heterodyne.

Heterodyning, mixing a weak incoming signal with a local oscillator to produce an intermediate fre quency, is taken for granted today. The front ends of nearly all radio television and radar receivers exploit it and it as also been applied to optical comms receivers. According to the Oxford English Dictionary, John ErskineMurray coined the word heterodyne to describe "one of the most interesting of Professor Fessenden's many inventions". He was referring to an electrodynamic telephone receiver that R A Fessenden (1866-1932) patented in 1913.
Certainly, the original patent specification ${ }^{1}$ does describe the idea of producing a beat-frequency. But despite what Fessenden claimed (see Fessenden's heterodyne), it is unlikely that his device ever worked at radio frequencies.
Instead, the first successful heterodyne system to be used in wireless telegraphy appears to have been developed in Germany by Rudolf Goldschmidt.

## Sound-wheel rectification

Rudolf Goldschmidt graduated as an engineer in 1900 and joined AEG's engineering laboratories, first in Berlin and later in Prague. In 1907 he left industry to become a lecturer at the Technical University in Darmstadt, and it was from there, in 1909, that his most important invention was patented as the Goldschmidt high-frequency alternator.
Goldschmidt alternators were used as transmitters for the German wireless telegraphy service between Germany and the USA, set up in late 1913. The machine at Tuckerton, New Jersey, had an output of 120 kW at 50 kHz , while the Eilvese transmitter, near Hannover, had a power of 150 kW . During the first months of the Great War, after the British had cut German transatlantic submarine cables, this link became vital: the US did not join the War until April 1917.
In Goldschmidt's system, the cw signal from an aerial is connected to an $L C$ input circuit tuned to signal frequency, $f_{\mathrm{s}}$. A tap on the tuning inductor takes the signal on to the tonrad
(sound-wheel), which is a commutator of $N$ segments driven at an angular velocity $2 f_{0} / N$. $f_{0}$ corresponds to the local oscillator frequency. Goldschmidt's tonrad had 800 segments ${ }^{2}$ and was driven at 3750 rpm .
The tonrad connects headphones to the radio frequency source for only half the time, at frequency $f_{0}$. If $f_{0}$ is made identical to $f_{s}$, then the incoming signal undergoes synchronous rectification. Under these conditions, no audible

sound would be produced in the high-impedance headphones because the mean current flowing would be a constant .
If the tonrad is now slowed down slightly, the current flowing in the headphones will have a mean value that varies at the beat-note frequency, $f_{\mathrm{s}}-f_{0}$. In the original system this frequency was 1 kHz , at which the human ear is most sensitive. The high-impedance resonant-reed type headphones could then be tuned for maximum sensitivity at the beat-note frequency.
Synchronous detection and heterodyning is very familiar to us today, with bilateral switches operating at up to several MHz and available as cheap integrated circuits in cmos technology. But in 1913 all this kind of signal switching had to be done mechanically.
However, mechanical rectifiers were well established in power engineering at that time, providing low voltage dc supplies for battery charging and electroplating. No other rectifier had such a low voltage drop across it during conduction.
Goldschmidt was a power engineer and, doubtless, would
have considered his tonrad to be an extension, to radio frequencies, of the well-established technique of mechanical rectification. Although it was a first-class piece of mechanical design, the tonrad did not introduce any really new ideas, and no application was made for a patent .
His high-frequency alternator, on the other hands, was a radically new step forward and was patented in several countries.

## Voyage of discovery

About one year after the Goldschmidt system began working traffic between the USA and Germany, a completely different kind of 'heterodyne' circuit began to appear in the literature. In it, the input circuit is tuned to signal frequency, $f_{\mathrm{s}}$, and a local oscillator, at frequency $f_{0}$, is coupled into the diode circuit and is of sufficient strength to turn the diode on hard during alternate half cycles. Effectively, this is Rudolf Goldschmidt's tonrad realised electronically. A potentially fast diode switch has replaced the slow mechanical one,

## Fessenden's heterodyne

In his patents ${ }^{1}$ Fessenden gave no design detail on the electrodynamic headphones needed for his heterodyne system. But in the text he describes them - and represents them in his circuits - as two simple coils.

One coil was to be mounted on the headphone diaphragm cone, and the other to be fixed close to the first. Fessenden's reasoning was that the force between the two coils would be proportional to the product of the two currents, $i_{1}$ and $i_{2}$, flowing in the two coils. If $i_{1}$ were made the rf signal current from the aerial, and $i_{2}$ was obtained from the local oscillator, a multiplicative mixer would result as far as the force on the cone was concerned, and a beat note at the difference frequency would be produced as audio output.

By making the cone couple into a Helmholtz resonator and tuning the resonator to the beat note, Fessenden imagined excellent results would be obtained with a powerful local oscillator. He, and Hogan3, wrote of an "amplification" of the small signal $i_{1}$ by the local oscillator current $i_{2}$ because audio output would depend on the product $i_{1} i_{2}$.

But the argument collapses when practical design ideas are introduced into the problem.

The best geometry would be two really thin, flat, pancake-style coils, separated by as small a distance as possible. The force between two such coils is:

$$
F_{1}=\pi \mu_{0} i_{1} i_{2} N_{1} N_{2}(r / a)
$$

where $N_{1}$ and $N_{2}$ are the number of turns on each coil, $a$ is the width of the coils and $r$ is their mean radius.
In a conventional moving coil headphone that uses a permanent magnet, the moving coil again has $N_{1}$ turns and carries current $i_{1}$. The magnetic field around the moving coil, $B_{0}$, is now constant instead of varying at the local oscillator frequency and is provided by the permanent magnet. Signal current in this second case must be the rectified if signal current and carry only the low frequency modulation on this rf. Force on the cone is now

$$
F_{2}=2 \pi r r_{1} N_{1} B_{0}
$$

Comparing $F_{1}$ and $F_{2}$ shows that the 'amplification" claimed by Fessenden and Hogan could just as easily be claimed for the permanent magnet design. The constant magnetic field, $H_{0}$, is producing the same multiplying effect as $i_{2}$.
The designs can be compared by making the above equations for $F_{1}$ and $F_{2}$ equal to one
another and solving for $i_{2}, i_{1} N_{1}$ may be cancelled out because it is going to be about the same in both designs, even though impedances, current levels and frequencies will be quite different.
In the two-coil design, $i_{1}$ is the microamp level aerial current, and $N_{1}$ must be small because of the high frequency. In the permanent magnet set-up, $i_{1}$ is the nanoamp level crystal detector current, but $N_{1}$ may be several thousand turns.

The result is:

$$
i_{2}=2 B_{0} \mathrm{a} / \mu_{-0} N_{2}
$$

and this shows how large local oscillator current $i_{2}$ must be to make Fessenden's design as useful as the conventional moving coil headphone.
$B_{0}$ could be made as high as 1 Tesla, and a 10 mm , accommodating 100 turns of $100 \mu \mathrm{~m}$ wire. Such a winding would not have too high an inductance, but the above equation shows that $i_{2}$ would have to be over 150A if the same order of audio output were to be obtained from both Fessenden and conventional designs.
Hardly surprising then that Fessenden's heterodyne never saw wide application.
To have 150A of if current so close to one's ear - even if the associated cooling problems could be solved - is not a good idea.


Fig. A. Sectional view of Fessenden's heterodyne headphone.


Fig. B. Conventional moving coil headphone.
opening up the high-frequency and microwave applications that are now so familiar.
In 1913, JL Hogan published a paper ${ }^{3}$ mainly concerned with Fessenden's electrodynamic telephone idea but briefly mentioning the diode mixer in connection with some tests that had been made on behalf of his employers, The National Electric Signalling Co of Pittsburgh, Pennsylvania, during a voyage across the Atlantic.
That was the voyage of the USS Salem ${ }^{4}$, which sailed from Philadelphia on February 15, 1913, for Gibraltar. On board were National Electric Signalling personnel and Navy radio specialists. Their purpose was to test new receiving equipment, working with two transmitters - a Federal Telegraph 35 kW arc and an NES 100 kW rotary spark - installed on the military reservation at Arlington, Virginia. The three receivers on board the Salem were a Fessenden heterodyne from NES, a Wireless Speciality Apparatus Co crystal receiver and a 'tikker' receiver from Federal.
Tests were to be made as the Salem crossed the Atlantic and, when she arrived at the British base in Gibraltar, arrangements had been made with the Royal Navy for experiments to be continued using the very large aerials that were available there on shore.

As part of the deal with the British, the US Navy had agreed to allow a Royal Naval Officer to board the Salem once she arrived at Gibraltar and work alongside the Americans during March 8-11, 1913. The officer concerned was Captain Willis, RN from HMS Vernon, Portsmouth, which at that time was a major Royal Navy r\&d establishment.
Captain Willis' report ${ }^{4}$ concentrated on what he called "the heterodyne". But from his account of the apparatus, this clearly was not the Fessenden heterodyne. Instead, he describes a local oscillator loosely coupled to "the usual crystallite receiving circuit".
The local oscillator - a pretty fearsome arrangement 'placed as far as possible' from the receiving circuits - was almost certainly the one belonging to Fessenden's heterodyne system. Captain Willis describes it as an "apparatus... to produce undamped continuous oscillations by means of the electric arc in a hydrocarbon atmosphere". DC power input to this arc was over 100 W .

But what appears to have happened on the Salem as she crossed the Atlantic was that the operators found experimentally that the Wireless Speciality Apparatus crystal receiver worked far better when Fessenden's heterodyne system was working at the same time. What Willis was actually seeing was the birth of the local oscillator/crystal receiver combination that later began to find its way into the literature.

The suggestion that the experts on the Salem were engaging in much more general research than merely testing for the best commercial receiver is supported by the fact that Captain Willis tells us that the local oscillator and crystal receiver combination was being tested with signals coming from the Federal arc transmitter at Arlington.
This is very strange. It meant a combination of all three private radio companies' equipment was being used in the trials, when the goal was to select only one system for use by the US Navy. The Federal arc transmitter was supposed to be heard with the Federal tikker receiver, while the NES spark transmitter surely belonged with the NES version of the Fessenden heterodyne.
Another clue that things were still very much in a state of development on board the Salem is Captain Willis' surprise at the way the local oscillator/crystal receiver combination had to be operated. There was "no doubt", he wrote, that the local oscillator "should have been completely enclosed in an earthed metal case". But when he witnessed the experimen-


tal work, the local oscillator was placed as far as possible from the receiving circuits and the operator who wore the headphones was unable to make any adjustments to the local oscillator, relying on a "signal to an additional man to do this for him". The arrangement is surely not the kind of set-up expected during a demonstration to a potential customer.
Later, British copies of the American local oscillator design gave very good results used with crystal detectors in a heterodyne system. But the excessive local oscillator power was a problem. The solution, according to the 1914 report from HMS Vernon, was to mount the local oscillator outside the radio cabin "which is lead lined in modern ships".
By 1915 the availability of valves resolved such difficulties and low power local oscillators could be made more easily. In any case, by then the working of the heterodyne system was beginning to be better understood.

## How does it work?

Fessenden's two patents ${ }^{1}$ on his heterodyne, assigned to the NES Co, were made final and published on January 14, 1913, just a few weeks before the USS Salem sailed. The patents made no mention of crystal diodes being used as heterodyne mixer devices. The conclusion must be that NES did not intend to use the crystal diode as a mixer because this would have exposed this new and unpatented idea to potential customers, to rivals and to the Royal Navy.
There is evidence that Hogan made experiments with crystal diode mixers just before the Salem sailed because he filed a patent application with his colleague, J W Lee, on November 16, 1912. In this he described the idea of two signals together - incoming signal and local oscillator signal and their sum with a crystal or electrolytic detector. Lee and Hogan did not hurry to make this patent final, however, and it was not published ${ }^{6}$ until June, 1915.
Even as late as that, Lee and Hogan did not understand how the heterodyne worked. They wrote: "It is well known in acoustics that the amplitude of the beats [resulting when


Synchronous rectification with the tonrad running at angular velocity $w=2 f_{s} / N$

## Headphone

current produced when
the tonrad is slowed down slightly to run at angular velocity $w<$ $2 f_{f}$ N. Current in the headphones now has a mean value that varies at the beat-note frequency at which the ear is most sensitive.
two notes are added together] may be considerably greater than the amplitude of one of the component waves... We have frequently obtained amplifications of as much as ten times in current and correspondingly as much as a hundred times in energy".
Their conclusion is, of course, nonsense. Only a multiplicative mixer can produce effects of this kind. Adding and rectifying can, at best, produce a beat of the same amplitude as the weakest input signal.
But the results of these early experiments should not be discounted today as "nothing but a bit of rf bias". The use of bias on crystal detectors to take the detector onto the most sensitive point of its characteristic was well established at the time, as Stanley's well-known Text book on wireless telephony ${ }^{7}$ published in 1914 shows. USS Salem's crystal receiver would have had an adjustable dc bias for this very purpose.
The correct explanation for the remarkable improvement in sensitivity discovered by these early workers in radio when using the local oscillator/crystal detector combination has already been mentioned: electronic switching.
By using the detector diode at high forward current, instead of at the nanoamp levels normally found in a crystal receiver, Hogan and his US Navy colleagues removed the enormous power loss that was normally associated with simple crystal detectors. A much greater fraction of the received power could now be passed on to the headphones, translated by the heterodyne technique from rf to audio.
It took several years for this to be understood. Visualising the simple heterodyne as an example of electronic switching seems first to have occurred to LB Turner in $1921^{8}$.

Other authors of the time attempted to explain the action of the diode mixer by using a square law model for its forward characteristic9, 10,11 , an approach that continued for some time and can still be found in some student texts ${ }^{12}$.

## References

1. Fessenden, R.A., US Pats. 1050441 and 1050728.
2. Mayer, E.E., 'The Goldschmidt system of radio telegraphy,' Proc. IRE, 2, 69-108, 1914.
3. Hogan, O.L., 'The heterodyne receiving system, and notes on the recent Arlington-Salem tests', Proc. IRE, 1, 75-103, 1913. 4. Howeth, L.S., History of communications-electronics in the United States Navy, (Washington, DC, 1963) pp. 183-4.
4. Annual Report of Torpedo School, W/T Appendix, 1913, (Public Record Office, kew, PRO: ADM 189/33) pp. 31-3. 6. Lee, W., and Hogan, O.L., US Pat. 1141717.
5. Stanley, R., Text-book on wireless telegraphy, (London, 1914) pp. 222-4.
6. Turner, L.B., Wireless telegraphy and telephony, (Cambridge, 1921) pp. 116-20.
7. Liebowitz, B., 'The theory of heterodyne reception', Proc. IRE 3, pp. 185-204, 1915
8. Howe, G.W.O., 'The amplification obtainable by the heterodyne method of reception', Proc. IRE, 6, 275-84, 1918. 11. Appleton, E.V., and Taylor, M., 'On optimum heterodyne reception', Proc.IRE, 12, 277-93, 1924.
9. Smith, R.O., and Dorf, R.C., Circuits, devices and systems, (New York, 1992) pp. 587-8.


Used Equipment - GUARANTEED. Manuals supplled If pessible. This is a VERY SMALL SAMPLE OF. STOCK: SAE or Telephone for lists. Please check availability before ordering. CARRIAGE all units $£ 16$. VAT to be added to Total of Goods and Carriage.

## STEWART of READING

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

## NEW LOW PRICE - NEW COLOUR HP141T SPECTRUM ANALYSERS <br> TESTED

HP 141T + 8552A or BIF-8553B RF - $1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-$ A IF $£ 600$ or B IF - $£ 700$.
HP141T +8552 A or B IF - 8554B RF -100 kHz $1250 \mathrm{Mc} / \mathrm{s}-\mathrm{A}$ IF $£ 800$ or B IF - $£ 900$.
HP 141T +8552 A or B IF -8555 A RF $-10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}$ - A IF $£ 1400$ or B IF - $£ 1600$. The mixer in this unit costs $£ 1000$, we test every one for correct gain before despatch.
HP141T + 8552A or B IF - 8556A RF $-20 \mathrm{~Hz}-300 \mathrm{kHz}-$ A IF $£ 600$ or B IF - $£ 700$.

## HP ANZ UNITS

## available separately NEW COLOUR - TESTED

HP141T Mainframe - $£ 350-8552$ A IF - $£ 200-8552$ B IF-£300-8553B RF-1kHz-110Mc/s-£200-8554B RF $-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 400.8555 \mathrm{~A} \mathrm{RF}-10 \mathrm{Mc} / \mathrm{s}-$ 18GHz-£1000. 8556A RF - $20 \mathrm{HZ}-300 \mathrm{KHZ}$ - £250.
HP8443A Tracking Generator Counter - 100kHz $110 \mathrm{Mc} / \mathrm{s}$ - $£ 300-£ 400$.
HP8445B Tracking Pre-selector DC $-18 \mathrm{GHz}-£ 400$ £600 or HP8445A - £250.
HP8444A Tracking Generator - $£ 750-1300 \mathrm{Mc} / \mathrm{s}$.
HP8444A Opt 059 Tracking Generator - $11000-1500 \mathrm{Mc} / \mathrm{s}$.

## SPECIAL OFFER - 14 ONLY HP140T (NON-STORAGE)

Mainframe Plus 8552A IF Plug-In Plus 8556A RF PlugIn $20 \mathrm{~Hz}-300 \mathrm{kHz}$ Plus 8553 B RF Plug-In 1 kHz $110 \mathrm{Mc} / \mathrm{s}$. Tested with instructions $-£ 700$.

[^2] ITEMS MARKEO TESTED HAVE 30 day warranty. wanted: IEST EQuIPment-Valves-plugs and sockets-Syncros-transmitting and recelving equipment etc.
Johns Radio, Whitehall Works, 84 Whitehall Raod East, Birkenshaw, Bradford BD11 2ER. Tel. No: (01274) 684007 . Fax: 651160

Letters to "Electronics World + Wireless World" Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS,

## Dynamic cut... <br> As a recording engineer and

 designer I follow the subjectivist/objectivist audio battle with interest, with some sympathy for both camps.However, in his article on slew rates (April $E W+W W$ ) Ben Duncan shoots himself in the foot by overstating his case; where on Earth does he get the idea that 20 years ago classical recordings were made with dynamic mics? As far back as 1959 I was using Neumann M49 and U47 condenser mics as well as AKG C12s and Telefunken M25/s all of which are still used by many classical engineers today. The Ampex 300 valve tape machine had a record/replay response extending beyond 20 kHz (the test tape stopped at 20k) while 20 years ago Ortofon offered a disc cutting head and amplifier set (G0741; DSS 731) with a range of $10 \mathrm{~Hz}-25 \mathrm{kHz}$

In the next breath he states that on direct cut vinyl discs information can extend to 200 kHz . I have to say that no cutterhead has been designed with such a range; the Ortofon above has the widest range of a production head. In any case, the polishing facets of the cutting stylus would erase any signal with the curvature of a 200 kHz wavelength at any reproducible level.

## S W Davis

Wembley

## ...heading for change...

Ironically, Ben Duncan's article ('Simulated attack on slew rates', $E W+W W$ April 1995, p. 303) shows exactly why the slew rates of audio amplifiers are of limited relevarice. According to Mr Duncan, a very unpleasant distortion can begin when an amplifier's slew limit is approached by a factor of two, or even ten. An amplifier with a $12 \mathrm{~V} / \mathrm{\mu s}$ slew rate which does not generate substantial sub-slewing or soft TIM up to half its slew rate must be superior to an amplifier with $50 \mathrm{~V} / \mu \mathrm{s}$ slew.rate which already generates substantial TIM at a tenth of its slew rate.
Hence, applying a test signal whose rate of change is equal to the worst rate of change expected and measuring the distortion generated
under these conditions, gives far more useful information than a slew rate measurement. The simplest usable test is a thd test with a fullamplitude sine wave of sufficiently high frequency ${ }^{\dagger}$. Douglas Self's amplifiers perform quite well under these tests, as the graphs in his 'Distortion in power amplifiers' series show.
Marcel van de Gevel
Haarlem,
The Netherlands
$\dagger$. Robert R.Cordell, "A fully in-band multitone test for transient
intermodulation distortion", Journal of the Audio Engineering Society, vol 29, no 9, September 1981, pp578-586.

## ... slewing from reality <br> Doug Self comments on Ben

 Duncan's article, Simulated attack on slew rates (April 1995). I read Duncan's essay at selfrebuttal with mounting alarm as it veered further and further from reality: I suppose I should be flattered that my work has received so much attention, but I'm not sure that disseminating Duncan's material, which is neither accurate nor constructive, has done audio much of a service.Duncan's first contention seems to be that hf levels in music are higher than conventional wisdon suggests. Facts are facts. It is wrong to suggest that hf levels in music, live or otherwise, are anywhere near those at the bass end; if they were, it would simply be intolerable tó listen to. As for using an Iron Maiden gig as an audio reference - words fail me.
It is fallacious to say that the rise of digital keyboards has brought about a significant increase in the hf content of musical material. Digital keyboards, being digital, have reconstruction filters after their d-to-a converters, and usually internal sampling frequencies lower than 44 kHz cd standard.
As a believer in reason and experiment rather than blind dogma, I hooked up my Roland $U 20$ keyboard to a spectrum analyser to check the ultrasonic output. Apart from a -80 dBm spur at 27 kHz , presumably the sampling frequency, the output was commendably clean, with nothing above the -90 dBm rf noise floor. No manipulation of the controls or programming could
produce any output above 27 kHz , which did not come as a total surprise. A moment's thought shows that in fact you are much more likely to gel ultrasonics from real instruments which have no inherent bandwidth limitations; but with the possible exception of dog whistles, ultrasonic output is likely to be low.
No input of filtering was used in my simulations or real measurements, because the aim is to measure the slew-rate of the amplifier alone. The upper bandwidth limit of an audio system must be defined somewhere and I must admit I thought this was too obvious to need further repelition. As I have explained several times before, it cannot be done properly by just slapping an $R C$ network on the amplifier input unless you know that it will be driven from a defined source impedance.
I am afraid Duncan's slew-rate simulations of my circuitry are completely worthless because:

1) The VAS beta-enhancer emitter resistor has been omitted from Fig. 4. This component is essential to pull charge carriers out of the base of the VAS transistor and therefore has a major effect on slewing behaviour.
2) The test signal is already slewrate limited before it reaches the amplifier. Mine is not.
3) The top output emitter resistor is the wrong value, though this mistake may not affect slewing much.
4) For reasons we can only guess at, all the transistors have been changed for different types. Since slew behaviour depends on the magnitude of currents, transistor beta may affect it significantly. For comparative purposes, this change alone renders the results meaningless

After this, to be told that the simulated circuit 'precisely follows' the one that I published can only be described as hilarious. In view of all the discrepancies there seems no point in quibbling about the numerical results, but the long settling tails on Duncan's outputs are definitely erroneous, and do not exist either in competent simulation or real life. I suppose the probable cause is overloading of some internal circuit node.
I think Duncan may be under the impression that I am advocating the generic/Lin configuration as the best
possible for all parameters under all circumstances. This is not and has never been the case. However, the generic circuit is unquestionably the basis for $95 \%$ or more of the amplifiers that have ever been built, and so is the obvious place to start enquiries into amplifier design.

Unexpectedly, my investigations into the linearity of this architecture revealed that it was capable of much lower distortion than is normally believed possible, such as $0.0015 \%$ at 1 kHz , while still using safe and modest amounts of negative feedback. There is still no deep-laid secret to this, (unlike Duncan's preferred circuitry) but it does require a clear appreciation of the various distortion mechanisms, and a knowledge of the cheap and simple ways in which they can be minimised. It is perfectly possible, and even likely, as my writings have already said, that faster slewing can result from different amplifier configurations.

Having disposed of this not-sobracing shower of destructive but fallacious criticism, I thought we would at least find out the superior but secret circuit methods that Duncan has trailed before us for so long. I was astonished to see that the relevant circuitry was concealed in an op-amp sub-circuit in his simulation, and only described as a "discrete op-amp".
It strikes me that to continue to protest that you know a better way, and then after everything refuse to reveal it, can only invite ridicule.
The diatribe on differential amplifiers is also deeply depressing. Duncan does not choose to disclose the details of the circuit he is simulating, but the quantity of highorder harmonics seems to indicate that there is an output stage present generating crossover distortion. As far as I can follow it, his contention seems to be that a carefully-tuned amount of input-pair imbalance allows some harmonics of the crossover distortion to be manipulated in amplitude by partial cancellation.
This sort of tuning appears to introduce another trim control, which will be deeply unwelcome on production lines, and also assumes that the quiescent current is exactly set and exactly maintained to ensure that the output stage generates
precisely the right amount of each harmonic. This does not appear to me to be the way forward.
A more serious objection is that an unbalanced pair generates substantial second-harmonic distortion, going up at 12 dB /octave with frequency. Whatever may be happening at 1 kHz , I suggest that thd at 20 kHz will increase to diabolical levels. Another problem with an unbalanced input pair is much increased dc offset.
There is no evidence that the relative levels of harmonics have a complicated and subtle effect on the perception of distortion, though there has occasionally been speculation that the rate of fall of harmonics or the balance between odd and even has some kind of special significance
These delicate cancellations completely miss the point; the whole aim of reducing distortion to sub$0.001 \%$ levels is to ensure that it is below the level at which anyone rational could claim it to be audible. The seamy details of its character can then be blissfully ignored, instead of agonising over whether it is better or worse to have the 7th harmonic above the 9 th on a wet Tuesday with the wind in the NE.
There is a lot more I could say, but I don't think it's necessary.

## ...and as for delays

Readers of last month's $E W+W W$ will have noticed that Ben Duncan appears to have given up technical writing and now only produces wholly negative knocking copy Why he should feel it is appropriate to wage some sort of personal vendetta is a mystery to me.
I wish to state forcibly that his last article (Delayed Audio Signals) is a piece of misrepresentation.
Throughout it, reference is made to a circuit fragment which is attributed to me. However, in scaling the component values, he has seen fit to alter the $R C$ time-constant I used in the reference he quotes.
My original values were 10 k for the upper feedback arm, $500 \Omega$ for the lower and $220 \mu \mathrm{~F}$ for the capacitor. This gives a -3 dB point at 1.4 Hz , which is appropriate for avoiding capacitor distortion at low frequencies. The altered values ( $6.66 \mathrm{k}, 333 \Omega, 150 \mu \mathrm{~F}$ ) give a roll-off at 3.2 Hz - over an octave higher.

Since the whole article is based on the values of these components, this alteration renders most of it null and void in the same way as in his previous hatchet job on slew rates. Since the alterations are aimed at making Duncan's case good, I find it difficult to accept that they were made by mistake and have to consider the possibility that this is a deliberate piece of
misrepresentation.
Douglas Self

## Ben Duncan replies:

I am surprised that Douglas is upset.

Although my work has been criticised and even described as 'putative' in his series of articles, I have praised in print what I have found to be good (a substantial proportion) and, in my most recent piece, tried hard in the limited space to set matters in perspective.

Even if I have accidentally misrepresented his RC values (easily done when scaling three circuits back and forth), the octave they are out by is a negligible misrepresentation in the scheme of bass delay. In Self's circuit in $E W+W W$, Sept. 1994 (p.761), there are two HP filters, both -3 dB at about 1.5 Hz , which largely cancels the minute misrepresentation of which I am accused.

As my whole article is based on HP filtration in the total audio path and how it stacks up, I cannot see that the tiny differences being argued over affect my conclusions.

## Self on Hawtin

In his latest letter, Mr Hawtin seems to be trying to establish that an amplifier with fets in can have low distortion. Of course this is true and was never in dispute. What I have said is that for a given amplifier architecture, fets would always distort more than the equivalent circuit using bipolars.

I really can't see how this can be disputed; the $V_{g J} / I_{d}$ law of fets. compels the crossover distortion to be much worse than for bipolars in any straightforward output stage. This does not mean that it is not possible to add complications that make the overall performance good; an example of this is Robert Cordell's design ${ }^{1}$ which includes extensive error-correction circuitry in the output stage to linearise the fets. By the way, his output stage gain plors look much like mine, sharp corner's and all.
In the selected data given, (which I do not accept is a representative statistical sample) I assume that 'hybrid' means bipolar drivers combined with fet output devices. The purpose of this is of course to make the power fets behave more like power bipolars. As I have previously written $n^{2,3}$, the hybrid combination is a good deal better than fets alone, though nothing like as good as the purely bipolar equivalent. because the sharp gain changes that always seem to appear in fet outputs still persist.
One difficulty with the secondhand test reports that are referred to is that no test conditions are given; measurement bandwidth can make a major difference to the numerical results. In particular, the figure of $0.0002 \%$ needs a good deal of explanation, because this would be below the noise floor of even a quiet amplifier, and impossible to measure with any thd equipment I have ever come across.

I have no intention of commenting on the rest of the examples given; without details of the circuitry a raw thd figure teaches us nothing.
I find it unrewarding to reiterate the basics of electronic theory in EW+WW, particularly to those who seem to have no interest in learning it. If Mr Hawtin has difficulty in disentangling bandwidth and slew rate then any elementary textbook would put him straight.

It is true that as frequency is increased and an amplifier goes into slew-limiling, the outpur waveform will become triangular, and eventually its rms level will fall by $3 d B$; to call this "bandwidth" would be madness; apart from anything else it would be level-dependent. The word has a precisely defined meaning which is not going to change just because Mr Hawtin wishes to use it in an idiosyncratic way. A linear system may have a bandwidth limit, but it cannot exhibit a slew-rate limit because this is a non-linear effect. The distinction is fundamental, and surely not beyond the grasp of someone who feels qualified to lecture us all on amplifier design.

Mr Hawtin's appreciation of fet outputs is also in error. Bipolar transistor beta certainly varies with collector current, though as I explained at some length [in 3] (which I can only assume Mr Hawtin has never read), beta variations only affect linearity significantly for loads up to $4 \Omega$. Whatever the load resistance, the stage remains an order of magnirude more linear than its fet equivalent. I have simulated and measured it. Has Mr Hawtin done either?

Mr Hawtin's thoughts on bipolar output stages might be more valuable if he appreciated that they do not have a gain of $100 x$; unity gain is almost universal, for very good reasons. Similarly, the $\mathrm{V}_{g s} / \mathrm{I}_{d}$ law is not very linear, and repetition will not make it so. This claim will be ruthlessly explored in a future article. You have been warned...

Likewise, relentless repetition will not make all transistor amplifiers rolloff at 15 kHz . They just don't. I have a production-line making bipolar power amps that are flat to $0 . I d B$ at 20 kHz . And, just for the record, the first hi-fi mag I opened roday reviewed a bipolar amplifier that was -0.5 dB at 220 kHz .

Can we stop this now, please? I really do have better things to do. References

1. R Cordell 'MOSFET Power Amp with Eтог Correction', JAES Jan/Feb 1984. 2. D Self 'Sound MOSFET Design', $E W+W W$ Sept 1990, p760.
2. D Self 'Distortion In Power

Amplifiers' Part 5, EW+WW Nov 1993, p934.
...and to Erik Margan (Follow the leader, letters, EW+WW, April 1995)

## Self questioning

First I wish to congratulate Mr Self on his design procedure. I followed the series and subsequent debate with high interest. I am not a technician, and I think that Mr Self was didactic enough for me to follow his basic ideas.
Some minor queries, however, did arise. Why has Mr Self not


Combined buffer/cascode amp.
used a cfp input stage in his final design? Would using MAT02/03s here be an improvement?
In the voltage amplifier, why not combine the cascoding and buffering to get the best of both worlds? (Figs 4d,f) My
suggestion is shown in the diagram.
Good linearity is claimed for 'ring-emitter' power transistors. Would there be any benefit from using, say, the 2SAI095 and
2SC2565 in his design?
Referring to 'Distortion off the rails', why not use a separate supply for the input and voltage amplifier stages, and/or stabilisation?
These questions may sound naive, but then $I$ am a psychiatrist, not an electronics engineer. Thank you for your splendid work - it has helped my understanding.
Simon Rambert
Bern, Germany

Mr Margan says that Subjectivism has been around long enough, without much concrete progress. I think it would be truer to say that it has been around more than long enough, without making any progress at all; if anyone feels that they have made genuine headway in comprehending how the unmeasurable avoids being inaudible, then they are keeping awfully quiet about it.

Talking of progress, just how much should we expect when dealing with a 'subject' that claims to be so ineffably subtle as subjective audio, and which has been around about twenty years?

A comparison may be instructive. At the end of the last century, atoms
were still regarded as the indestructible billiard-balls of Dalton; then in 1896 Becquerel discovered that radioactivity existed. This was certainly a subtle phenomenon, undetectable by human senses, and it was also a radical one because it revolutionised classical physics.
In the succeeding twenty years, physicists discovered alpha and beta emission, showed that atoms were composed of a flimsy electron shell with a massive mucleus, measured the energy levels within that nucleus, and went off to demonstrate the transmission of elements through nuclear decay - from scratch.
This is an impressive record; in the case of Subjectivism, however, two decades of hand-waving seem to have brought no progress at all, and this gives a strong indication that the effects 'studied' do not in most cases exist...
I also differ mildly on the diagnosis; Mr Margan feels that the phenomenon of subjectivism is a consequence of failure of communication between two groups of people. I would say that there are three groups of people here: engineers, subjectivists and musicians. This is an obvious simplification, with overlap between the categories, but perhaps it is nearer the truth.

While the attitudes of engineers and Subjectivists have been examined at interminable length in these pages, I find musicians (and I accept that is a broad category) have a distinct approach of their own. A musician is interested in the sound, by which he means the sound of a dominant seventh versus a flattened fifth, or pwm versus fm in the oscillator of a digital
synthesiser. He doesn't mean the doubtful perceptibility of $0.01 \%$ of crossover distortion, nor indeed the undoubred inaudibility of rhodium permanganate speaker cables. He is talking of differences that are audible to - and measurable by everyone, if they care to measure the thd of a fuzz-box or a skilfully overdriven valve guitar amp.
Obviously we can't do without the engineers; and we can't do without the musicians. However, the remaining group seems less immediately useful.

As for Mr Margan's examples of audio perception, I am afraid I must decline to believe the first one. The resistor values he gives produce a level mismatch of 0.025 dB , and this is at least fifty times better than the accepted capabilities of human hearing. As for being able to detect this difference after a delay of several minutes, I just can't see it.

The other twa scenarios show that human hearing warks OK, but who said it didn't? The sound of a functionally-challenged automotive wheel bearing is not hard to identify,
and a relatively simple dsp system could do it - acoustic signature analysis by computer is not a new idea, though no-one would pretend that the algorithms mimic human perception.
The Subjectivist/reality debate has had a long run but ultimately it is sterile because we are usually arguing about non-existent things.

## Slewing the bandwidth

I congratulate Ivor Brown on getting to grips with the somewhat enigmatic networks usually found on the outputs of power amplifiers ('Between Amplifier and Speaker' Feb. 1995).
I was particularly glad to see him emphasise that the damped ringing that is almost universally seen during capacitive loading tests is due to the output inductor resonating with the load capacitance. It has nothing to do with amplifier stability as such. The ringing is usually around 40 kHz or so, and this is much too slow to be laid at the door of a normally compensated amp.
If a power amp is deliberately provoked, by shorting the output inductor and applying a capacitive load, the worst values are usually around 100 nF , rather than the $2 \mu \mathrm{~F}$ intended to roughly simulate an electrostatic speaker. The oscillation is usually around $100-200 \mathrm{kHz}$. If allowed to persist, this can be destructive of the output transistors. In this case there is no such thing as 'nicely damped ringing' because damped oscillation at 200 kHz means you are one bare step away from disaster.

I felt less enthusiastic about one statement that Mr Brown made; "Most importantly, open-loop band width of the amplifier must cover the whole audio frequency range." I can see no reason why this needs to be the case, and I suspect it is true of very few amplifiers indeed. In my view, the lesser condition that "There must be an adequate negative-feedback factor over at least the audio range" might be nearer the truth.

As I have written in the past, an open-loop bandwidth of 10 Hz may appear to be intolerably sluggish, but once the negative-feedback is applied, the bandwidth is extended in the time-honoured maniner.

As recent letters have shown, some confusion still exists between - open-loop bandwidth and slew rate, - although in truth these parameters have very little to do with each other. In the typical amplifier they are determined by different mechanisms occurring in different parts of the circuit, and can to a. . large degree be altered independently. It is easy to find op-amps where a 1 Hz open-loop
bandwidth coexists happily with a $15 \mathrm{~V} / \mu \mathrm{s}$ slew rate. One example is the OP237.
In view of the conceptual difficulties that always seem to arise in discussions on negative feedback, I wonder if Mr Brown would be prepared to expand on, and clarify, the statement I have quoted? Douglas Self
London

## Ivor replies:

Thank you to Douglas Self for his comments. I must plead guilty to having been careless in my choice of words. To say that the open-loop bandwidth of audio power amplifiers must cover the whole audio frequency range is incorrect. I should have written that it should cover the whole range, but I do not think this simple change will satisfy,
I offer three reasons for my opinion. Note that I have used the word opinion. As explained below, the relevance of many points in the design of audio systems to subjective assessment of musical performance is not fully understood.
Compare the analytical performance of laboratory instruments with that of the human ear and brain. We respond to two pressure waveforms that may contain components from many sources.

Analysis reveals the components that come from the individual sources. With monophonic
reproduction this is reduced to one waveform, yet we are able to detect the individual instruments in an orchestra. Laboratory equipment does not begin to approach such a level of performance. We do not know which features of an amplifier may be critical to prevent our analytical ability being impaired by the existence of electronic devices in the signal path.
Negative feedback is used in amplifiers to obtain a more linear system, which is generally accepted as a desirable feature. It seems sensible to maximise this advantage at all audio frequencies.

The most common method of assessing amplifier performance is to use steady-state sinusoidal inputs. Music is not a steady-state signal, and while such assessments are useful they have limited value. Consider two feedback systems with closed-loop gains of 100; one includes an amplifier with open-loop $g$ ain of 1000 and the other amplifier's gain is 10,000 . The table shows the signal levels at various places in the circuits for 10 V output.

| Open-loop gain | 1000 | 10,000 |
| :--- | :--- | :--- |
| Output signal | 10 V | 10 V |
| System input signal | 100 mV | 100 mV |
| Feedback signal | 90 mV | 99 mV |
| Net amplifier input | 10 mV | 1 mV |

Feedback voltage is subtracted from
the system input to give the net input to the amplifier. Consider an extreme case where the input is a fast transient and limited open-loop bandwidth prevents the feedback signal from immediately following the system input. For a short time the lower gain amplifier has a net input some ten times the normal; the higher gain one ten times that.
This momentary large input must cause an increase in the distortion products produced in the amplifier, with more produced in the higher gain amplifier. A large short-term signal will not appear if the open loop bandwidth of the amplifier is of the same order as the bandwidth of the input signal to the system. This requirement becomes more critical as the ratio of closed-loop to openloop gain is reduced. The extreme case described is hardly likely to be found in practice, but it serves to illustrate the principle.

Finally, the fet amplifier described in the April 1990 issue started as an exercise to design a power amplifier with what seemed to be all the right features, including wide open-loop bandwidth. Communications from readers and others who have built the design have, without exception, been favourable, In particular, comments have been made about clarity, definition and separation of sources within the stereo source.
I agree with Douglas that slewrate should not be a problem in a reasonably-designed amplifier. Slew-rate and bandwidth are not directly related, although low figures of each tend to go together.

The fascination of audio circuits is that laboratory measurements are not the final arbiter of performance. One day this may not be the situation and it may be established what is, and what is not, important. Until then I consider that wide openloop bandwidth should be regarded as desirable in audio amplifiers.

## Ivor Brown

Uxbridge, Middlesex

## Increasing momentum

Re R Lerwill's letter ( $E W+W W$ Apr 95) on the uncompensated increase in momentum of cathode rays, the problem does not arise if, instead of mass being regarded as a scalar quantity, it is regarded as a vector quantity. This is counter-intuitive, but not absurd when one considers the ways in which mass may be measured. If it is measured as a body's resistance to force, then the force is a vector and so must be the resistance. If it is measured as the source of gravitational attraction, then this, although exerted in all directions when measured, must be associated with one in particular.
Lerwill's accelerated electrons
may offer increased resistance to an accelerating or retarding force in the direction of their high speed, but perhaps they offer only their standard resistance in a direction at right angles. It should be possible to test this in a particle accelerator.
K A. Stagg,
Waterlooville, Hants

## Quad speed reduced

The article by Guruprasanna and Lanka Kumar in $E W+W W$, March 1995, Quad speed RS232, contains several interesting ideas but the suggested implementation is flawed because the issue of discontinuous phase-shift at the symbol boundaries has been completely ignored (at least within the published text).
While the system described does indeed reduce the baud rate required, it fails to achieve the underlying objective, which is a reduction in the bandwidth needed to carry the signal.
Studying figure 4 shows that if any of the phase signals 0 to 7 (which all end at a high level after 8 cycles of the main clock) is followed by a symbol encoded by phase 9 (which is low after main clock period 8 but goes high at the end of clock period 9), a very narrow negative pulse is transmitted. This pulse is only half as wide as one bitperiod of the original data stream, so is more likely to suffer comuption due to noise than the original data would have been, had it been transmitted at the 'raw' bit-rate.
In other words, the bandwidth required on the RS-232 link has been doubled, rather than reduced by a factor of four as desired. This is the opposite of what the authors of the article intended to achieve, illustrating that when extending concepts from modulation theory down to baseband, one must be careful not to get caught out.
That the frequency content of the datastream can be reduced at the
expense of allowing data transitions to occur during a larger number of more tightly defined time windows is an interesting idea. Practically, it would require a more subtle coding scheme than that shown.
Duncan Learmonth
Chelmsford, Essex

## Making the point

Many of your readers will know that the transistor was discovered by Bardeen and Brattain of Bell Laboratories in late 1947. I use the word 'discovered' rather than 'invented' because the device which they accidentally created, the pointcontact transistor, was nothing like what they were looking for! Working junction transistors, which is what Schockley, the Bell Labs theorist, was really seeking, were made some four years later.
Bell's point-contact technology was licensed to many commercial firms, and millions of point-contact transistors were made although operation of the device was very poorly understood in theoretical terms, and its production employed a highly empirical technique: 'forming'.
It involved fusing the point contacts to the germanium die using current pulses. The resulting structure, usually of pnp polarity, had a common-base current gain ('alpha') considerably more than I!
While the majority of pointcontact transistors were made in the USA, a number were made in England by the General Electric Company, Mullard, and Standard Telephones and Cables. Many of them were experimental types which were only offered to government laboratories such as Harwell, but a number ultimately became commercially available. A few devices were also made in France and Germany
In the USA some types were sold by Bell Laboratories and its commercial arm, the Western Electric Company. Many small companies also sprang into the new
market, some destined to become giants, such as Texas Instruments. Today, the very existence of the point-contact transistor is known only to historians, and it is lucky to rate even a sentence in general electronics textbooks. Few specimens survive, and the demise of the electronic 'junk shop' makes them even harder to find.

As well as the point contact transistor, I am interested in the development of the semiconductor industry, in the UK and Europe in particular, from 1947 up to about 1960. If any $E W+W W$ readers have interesting information or anecdotes from that period, data books or sheets, circuit cards or early semiconductor devices (particularly point-contact transistors), I would like to hear from them. All letters will be acknowledged.
Dr. Andrew Wylie
Purley, Surrey

## Safe discharge

In my circuit idea, Safe NiCd battery pack discharger, in the April issue, an error has crept into the text at some point. The final sentence should read ... 'To take any number of cells up to a maximum of 12 , the zener voltage should be $2 / 3$ the final terminal voltage and discharge cumnt adjusted by $R 2$ to $0.5 \mathrm{~A}^{\prime}$. Bill Hume
Newmilns, Ayrshire

## Tesla driven

Re the article I recently wrote on Tesla Coils, please note that the voltage equation I included is not valid for pulse-driven coils. The correct equation observes conservation of energy and is :

$$
\begin{aligned}
& V_{0}<=V_{c p} \times \sqrt{\frac{C_{p}}{C_{s}}} \\
& \left(\text { or } \sqrt{\frac{L_{s}}{L_{p}}} \text { or } \sqrt{\frac{Z_{s}}{Z_{p}}}\right)
\end{aligned}
$$

For this ideal to be reached,
secondary loading must be minimal. It is also obvious that a lot of power is needed to reach voltages much higher than half a million or so, even if the Q of a coil reached 300 (most coils would get between 150 and 250). An analysis of the system shows that with a pulse repetition frequency of 100 Hz (number of mains half-cycles/s), the energy has dissipated by the next capacitor discharge. The spark gap sets primary capacitor voltage and also capacitor energy storage. Maximum voltage must therefore depend on the amount of energy available to charge the secondary capacitance from each primary capacitor charge. In practice, spark formation would prevent this ideal being reached.
The coupling constant recommended ensured that voltage peaks (caused by impedances reflected from secondary to primary and vice versa) would not occur too far down the coil, overstressing secondary insulation. The height at which a peak will occur may be crudely described as:

$$
h_{(\mathrm{pk})}=h_{\mathrm{sec}} \times(1-\mathrm{k})
$$

where k is the coupling constant
Running a coil with a well regulated transformer (e.g. a microwave transformer) will necessitate current limiting effective at 50 Hz (the rf chokes are quite ineffective at mains frequency). The example coil used a high leakage inductance C -core demonstration transformer made by German firm, Leybolds.
Limiting means that the simple sparkgap arrangement shown in the article shorts the transformer when it fires. A better arrangement would alternate between charging the primary capacitor and discharging into the coil, eliminating the need for any current limiting.
M./. Watts,

Wellington, New Zealand.

## Reference

"Q", K.L. Smith pp51-53, EW\&WW, July 1986.


A 2 u 300 mm Rackmount Enclosure for $£ 28.51$ * Seperate Internal Frame and Chassis * External Cover Panels * Removable Front and Rear Control Panel * Free Standing or Rackmount $1 \mathrm{u} \times 300 \mathrm{~mm}$ depth £26.20 $2 \mathrm{u} \times 300 \mathrm{~mm}$ depth $£ 28.51$
$3 \mathrm{u} \times 300 \mathrm{~mm}$ depth $£ 31.24$ CIRCLE NO. I22 ON REPLI CARD paices exclude vat and carbiage
Manufacturers for the Electronics Industry For some of the lowest prices in the UK Dene Industrial Park, Kingstone, Herefordshire, HR2 9NP Tel: 01981251484 Fax: 01981250187

Other standard products:
Small Free Standing Enclosures Consoles and Cabinets.
Other services:
C.N.C punching on control
panels.
Powder Coating
screen Printing
Design service for your special requirements.

# Reference books to buy 

## For Audio Engineers



## Subjects include

 Recording, microphones and loudspeakers Digital audio techniques Basic audio principles Acoustics and psychoacousticsAudio and television studios and their facilities Radio and telephony

- Comprehensive - over 600 pages
- Written by leading authorities from the audio world
- Easy to read, compiled for maximum accessibility
- Concise and authoritative
- Covers topics from noise measurement to studio installation

Invaluable reference work for anyone involved with audio from broadcast consultant to serious enthusiast. Audio Engineer's Reference Book is written by an international team of experts and edited by Michael Talbot-Smith previously a trainer of audio ongineers at BBC Wood Norton and now a freelance audio consultant and technical writer.

## For TV \& Video Engineers



- Over sixty chapters on the latest techniques in video and television
- Up to date reference on EMC requirements, DBS and HDTV
- Easy-to-use reference, eminently suirable for students
- Topics range from materials and construction to medical and defence applications of television.


## Subjects include

Fundamentals of colour TV

## TV studios

High definition TV
Satellite broadcasting
Distribution of broadband signals
TV receiver servicing
Video and cudio recording and playback
Teletext

The TV \& Video Engineer's Reference Book will be of immense value to anyone involved with modern iv \& video techniques - in particular broadcast engineers. The new format makes it an excellent reference for students.
Edited by KG Jackson and GB Townsend from contributions written by acknowledged international experts.

Please supply me $\qquad$ copies of the Audio Engineer's Reference Book, (ISBN 075060386 o)
Fully-inclusive price - UK $£ 62.50$, Europe $£ 68$, Worldwide
£78. Please add vat at local rate where applicable.
Please supply me $\qquad$ copies of the TV \& Video Engineer's Reference Book, (ISBN 075061953 8)
Fully-inclusive price - UK $£ 42.50$, Europe $£ 48.00$,
Worldwide $£ 58.00$, Please add vat at local rate where applicable.

Remittance enclosed $£$ $\qquad$
Cheques should be made payable to Reed Business. Publishing Group Ltd
Please return to: Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. $\qquad$
Exp date
NAME (Please print) $\qquad$
ADDRESS $\qquad$

POST CODE $\qquad$
DATE $\qquad$ TEL $\qquad$

## SIGNATURE

## VAT RATES

6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6\% Netherlonds, 5\% Portugal, $3 \%$ Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)

VAT NO.
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Business purchase: Please send me the book listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterheod and have signed the form below. Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund.

# A disk containing all the example listings used in this book is available, Please specify size required 

If you have followed our series on the use of the $\mathbf{C}$ programming language, then you will recognise its value to the practising engineer.
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An apendix provides a 'getting started' introduction to the running of the many programs scattered throughout the book. This is a practical guide to real-time programming. The programs having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

Please supply $\quad$ copies of INTERFACING WITH C

Price $£ 14.95$
Please supply $\qquad$ copies of Disk containing all the example listings $£ 29.96$

Remittance enclosed $£$ $\qquad$

Interfacing with C can be obtained from Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Cheques should be made payable to
Reed Business Publishing Group Ltd
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. $\qquad$
Exp date
NAME (Please print) $\qquad$
ADDRESS $\qquad$
$\qquad$
$\qquad$
POST CODE $\qquad$
DATE $\qquad$ TELE $\qquad$

SIGNATURE
VATNO.
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.

## Three extra circuif ideas from EDN's Designer's Companion.



## Precision waveforms from cmos logic

EDN Designer's
Companion is
available by postal
application to room
1333 EW +WW,
Quadrant House,
The Quadrant,
Sulton, Surrey, SM2
5 AS.
Please make cheques out to Reed Business
Publishing Group
Lid.
Credit card orders accepted by 'phone on 01816523614.
254pp hardback
ISBN 0750617217
Price $£ 25.00+£ 2.50$
UK postage, 55
Europe, $£ 8$
worldwide.

This circuit generates three different waveforms having frequencies less than IHz : triangle waves, positive ramps, and negative ramps. At very low output frequencies, stability of the circuit's input frequencies almost completely determines the output waveform's linearity.
Gate $\mathrm{IC}_{3}$, exclusive-or logic, beats input frequency $f_{\text {in }}$ against reference frequency $f_{\text {REF }}$, thus producing a train of pulses whose periods increase gradually until the frequency sources are completely out of phase. Then, the pulses' periods decrease until the sources are again in phase. Flipflops $I C_{1 \mathrm{~A}}$ and $I C_{1 \mathrm{~B}}$ produce $50 \%$ duty cycle inputs for exclusive-or gate $/ C_{3}$.
The op-amp and its surrounding components form a third-order, low-pass filter, whose $f_{\mathrm{c}}$ is 1 kHz . This filter averages the output of pulse buffer $/ C_{4}$ to produce a triangle waveform having a peak amplitude of $V_{\mathrm{cc}}$ and a frequency of $\left|f_{\mathrm{IN}^{\prime}}-f_{\mathrm{REF}}\right| \div 2$. Be sure to select low-dielectric-
absorption capacitors for the filter circuit.
Ramps are generated by the circuit in a similar manner, except that the phase comparator of the set-reset flip-flop, formed by $I C_{2 \mathrm{~A}}$ and $I C_{2 \mathrm{~B}}$, replaces the exclusive-or gate. The phase comparator sets on every other negative transition of $f_{\text {IN }}$ and subsequently resets on every other negative transition of $f_{\text {REF }}$. If $f_{\text {IN }}$ 's frequency is greater than that of $f_{\mathrm{REF}}$, then the width of the Q output pulse of $I C_{2 \mathrm{~B}}$ will gradually increase. This increase produces a positive-going ramp at the circuit's output. If frequency of $f_{\text {IN }}$ is less than $f_{\text {REF }}$, the output will be a negative-going ramp. Note that the filter's step response controls the ramp's reset time. Selecting a frequency greater than 100 kHz for $f_{\mathrm{IN}}$ and $f_{\text {REF }}$ attenuates the pulse's ripple. This relaxes the reset-time restrictions.

## Michael A Wyatt

Honeywell SSO, Clearwater, FL


## Current sink widens vco frequency range

Output frequency span of the familiar $H C 4046$ voltagecontrolled oscillator, vco, is about one decade, and the device exhibits fairly good linearity over an input voltage range of 1 to 4.75 V .
This circuit widens this frequency span to three decades. It replaces the single frequency-determining resistor from pin 11 to ground with a precision voltage-controlled current sink comprising an LM358 op-amp and transistor $T r_{1}$. The current sink overcomes the limitations of the integrated current sources normally responsible for charging and discharging the timing capacitor.
A fixed level of 2.5 V is applied to the vco input at pin 9 . Because the voltage on pin 11 cannot exceed 2V, the current sink must operate below this level. To meet this requirement, resistors $R_{1}$ and $R_{2}$ divide the input signal


The current-sink circuit lengthens the frequency span of the standard circuit from about one decade to three decades.
before it reaches the current sink's input.
The graph compares the frequency-versus-voltage characteristics of the standard circuit with those of the new circuit. By using the voltage-controlled current sink, the linear tuning range spans three decades.
At the low-frequency end, output phase noise is quite noticeable because the current sink operates at very low current levels. When the loop is locked to a clean reference, the feedback reduces this noise. A better way to remove this output phase noise is to operate the vco near its maximum frequency and then divide the output digitally. This technique reduces the phase noise by the amount of the division.

## Antonio Tagliavini

Applicazioni Digitali e Analogiche, Bologna, Italy


By substituting a voltage-controlled current sink for the standard circuit's fixed 10ks resistor (a), the circuit in (b) extends the HC4046 vco's frequency range.

## Programmable oscillator runs without a micro

Using a clever scheme adaptable to other programmable devices, this circuit allows you to operate the ML2035 programmable sinewave generator, $I C_{3}$, without a controlling microprocessor.
A 74 HC 4060 counter, $I C_{1}$, provides the sinewave
Counter $/ C_{1}$, first clocks in an 8-bit programming code via shift register IC $\mathbf{2}_{2}$, subsequently clocking sine-wave generator IC3

generator's clock and a gating pulse to shift register $I C_{2}$. When $I C_{1}$ 's $\mathrm{Q}_{5}$ output, on pin 5, goes high, $I C_{2}$ begins shifting eight hard-wired bits into the sine-wave generator to program it. After $I C_{2}$ shifts the eight bits, $\mathrm{Q}_{5}$ goes low, enabling normal operation. The circuit can produce both 50 and 60 Hz outputs from an NTSC colour-burst crystal operating at 3.579545 MHz . The table lists binary codes for other crystal frequencies. The sine-wave generator's output exhibits a maximum of $0.5 \%$ thd.

## Jon Klein

Micro Linear, San Jose, CA

## Shift-register values and frequency errors for

 standard crystal values.| frrystal |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (MHz) | $f_{\text {out }}$ | $\mathrm{D}_{10}$ | $\mathrm{D}_{16}$ | ABCD | EFGH | Error |
| 4.00 | 50 | 105 | 69 | 1001 | 0110 | $0.14 \%$ |
| 4.00 | 60 | 126 | $7 E$ | 1000 | 0001 | $0.14 \%$ |
| 4.194304 | 50 | 100 | 64 | 1001 | 1011 | $0 \%$ |
| 4.194304 | 60 | 120 | 78 | 1000 | 0111 | $0 \%$ |
| 6.00 | 50 | 70 | 46 | 1011 | 1001 | $0.14 \%$ |
| 6.00 | 60 | 84 | 54 | 1010 | 1011 | $0.14 \%$ |
| 8.00 | 50 | 52 | 34 | 1100 | 1011 | $-0.82 \%$ |
| 8.00 | 60 | 63 | $3 F$ | 1100 | 0000 | $0.14 \%$ |

High Specification PIC Tools from PARALLAX

## ClearView In-Circui\& Emulafors


$20-\mathrm{MHz}$ in-circuit debugging for PIC 16C5x/64/71/84/.
Set breakpoints, step through code, modify registers.
Friendly DOS and Windows software.
From 39 (separate units for " $5 x$ " and " $x$ " P(Cs)

## PIC Programmer Pack

Programmer for
PIC16C5x/64/71/84/.
Documentation on disk.
User supplied cables and power supply.

## Just $£ 89$



## MILFORD INSTRUMENHS

Stamp-sized Computer Modules Run BASIC

$81 / 0$
100 line capacity: $4-\mathrm{MHz}$ Clock
$f 29$
Two NEW BASIC Stamp Controllers offering even more flexibility to Industry, Education and the Hobbyist. Both run Parallax "PBASIC" with familiar BASIC commands plus serial I/O, pulse measurement and button debounce. The BS2-IC includes additional support for LCDs, keypad, DTMF encoding/decoding, X-10 transmit and external time clocks.
The BASIC Stamp programming package at £66 contains editor software, cables, manual and extensive application notes; everything you need to program Stamps using your PC.


All prices exclude VAT and $£ 3$ shipping per order.
For further details on any of these products please 'phone for our new colour catalogue.

Milford House, 120 High Street,
SOUTH MILFORD, Leeds LS25 5AQ
Telephone 01977-683665 (24 hour) 01977-681465 (Fax)

## the new

CRICKLEWOODElectronics Verry limteresting CATALOGUE

## ASTRONOMICAL RANGE AT DOWN TO EARTH PRICES

- TRANSISTORS+ICs+SEMICONDUCTORS
- RESISTORS+CAPACITORS+INDUCTORS
- SURVEILLANCE+SECRECY+SECURITY
- PLUGS+SOCKETS+LEADS+CONNECTS
- TV \& VIDEO SPARES (inc Video Heads)
- HIFI+DISCO+HIFI GADGETS+SPEAKERS
- AUDIOPHILE COMPONENTS (inc Capacitors)
- IN CAR AUDIO+SPEAKERS (inc Bass tubes)
- COMPUTER ACCESSORIES+BOARDS
- TOOLS+TEST EQUIPMENT+BENCHWARE \& much much much more (over 10,000 lines). SEND TODAY FOR THE VERY INTERESTING CATALOGUE Pay by PO, Cheque, Credit Card or tape Coins to Paper Please send me ......copies of the 1995 Cricklewood Catalogue. I enclose $£ 2.50$ per copy (UK \& Europe). $£ 5.00$ overseas
Name.
Address.
$\qquad$
$\qquad$
Please Charge my Credit Card.no.
Expiry Date........................Tel no... WW
Cricklewood Electronics Ltd, 40-42 Cricklewood Broadway London NW2 3ET Tel 01814500995 Fax 01812081441


## HEWLETT PACKARD HP71B

As easy, to use as a calculator but as


BARCODE READER Smart wand Automatically recognises and decodes all major bar-code standards.

- A powerful set of basic functions, statements and operators - over 230 in all - many larger computers don't have a se of basic instructions in this complete. - Advanced statistics functions enabling computations on up to 15 independent variables.
- Recursive subprograms and user defined functions.
- An advanced internal file system for storing programs and data - the HP71 has continuous memory - when you turn the computer off it retains programs and data.
- A keyboard that can be easily customised for your specific application.
- HP-1L Interface pre-installed to create a system that can print, plot, store, retrieve and display information. Control or read instruments or speak to other computers, 5000 bytes $/ \mathrm{sec}$. Built in ROM includes 46 separate commands. Interface to HP-1L, HP-1B, RS232C, GP1O or series 80 Includes connection cables.

These are second user systems ex DHSS are fully tested and working but have no programming (THAT IS UPTO YOU) HP71B
Bar-code Reader
AC PowerSupply (Works from batteries normali........... $\mathbf{E 4 . 9 5}$ Keyboard Overlay (Limited quantities) Unknown Program Memory Modules. (Limited quantities)
Complete kit of HP71B, Bar-code Reader
 (Prices include VAT - delivery $£ 3.00$ ) (Currently selling in USA for US $\$ 500$ ) Allow 7 days for delivery

## SPECIAL OFFER

Buy 2 Kits For $£ 59.00$

Other products at give-away prices
Numeric keypad for 'AT' computer
$£ 5+£ 2$ Carriage (Carriage FREE if ordered with above).
INTERCONNECTIONS LTD
Unit 51, InShops, Wellington Centre, Aldershot, Hants GU11 5DB Tel: (01252) 341900 Fax: (01293) 822786

## PLGorair

One chip - programmable in simple language via a pc serial link - interfaces both analogue and digital i/o subsystems.

There are two main drawbacks to designing a microcontroller into a control application. One is the need to learn a high or low-level language in order to program the device. The other is finding a means of getting the code from the platform it was written on into the controller.
A new controller from Timely Technology the ITC232•A - is intended to overcome both these problems, in addtion to being highly integrated. According to the device's distributors, it can reduce the implementation of

many stanmdrad programmable logic controller applications from days to hours.
Programming is carried out via a simple serial link to a PC running a low-cost termi-nal-comms package. As you will see from the panel, the ITC232 is programmed via simple, user-friendly, commands since the chip has its own key-stroke to machine-code translator.
Although the device can be programmed for wide variety of control tasks, a number of fully worked specific applications have already been developed. In addition to the three applications outlined in this article, there are notes describing how to analyse active filters, control remotely via modem and implement an optical fibre link. Further notes discuss error processing, pulse-data handling, multiple addressing, frequency counting and data conversion. Figure 1 gives you an idea of the device's level of integration.
The device only has 40 pins, most of which are dedicated to $\mathrm{i} / \mathrm{o}$. But should the number of i/o lines be a restriction, additional control functions can easily be added via the device's SPI bus, for which there is already a wide varioety of compatile i/o chips.

## Keystrokes - not compilers

Commands to the controller are typed at the command prompt of any terminal program, or stored in batch files to be sent to the board when needed. Complex command structures can be achieved without software via 'dial-up scripting utilities' found in most terminal and communications packages.
Many of you will find that you already have such a package, even if you have never used it. Most of them offer commands including decrement, getstring, if, jump, string monitor and search.
The scripting utility in PFS:WindowWorks offers all of these features, and more within its terminal program, for around $£ 60$. Others are more sophisticated, but all of them should save you a lot of time and money in getting complex applications up and running quickly without resorting to compilers and debuggers.


Fig. 2. Three of these stepper motor drive circuit can be connected to the controller simultaneously via ports $A, B$ and $C$. Maximum permissible motor rail, i.e. + $V$ motor, is 48 V .

Software writers should not feel left out, however, as many comms utilities like Delrina Wincomm Pro (also around £60), offer 'C' within their Scripting Utility, which may be more to their liking. Your routines will simply batch up ascii keystrokes, then transmit, monitor and process as required.

## Triple stepper motor control

It is possible to be rotating up to three stepper motors within an hour of connecting the board to COM1. This capability is depicted in slow motion by a software simulator supplied with each evaluation board. The simulator is supplemented by a tutorial on stepper motor basics, including monophase, biphase and half-stepping modes.
By simply typing SAL100 at the prompt on your pc , for example, you will turn the stepper motor on port A 100 steps to the left. The chip takes care of all housekeeping, including the provision of automatic and programmable last-pulse braking.
A power driver and current controller like the $L 298$ and $L 297$ respectively, are all that you will need to complete your hardware design. Such a design, one port of which is outlined in Fig. 2, is covered in detail in an existing application note.
The digital $i / 0$ ports are arranged as three eight bit ports whose pins are individually programmable as inputs or outputs and each capable of sinking 25 mA . This makes them just as suitable for controlling relays and leds as reading the status of switches, counters and encoders. These pins and ports can be written to as easily as read - with single keystrokes. Typing PWA254 on your keyboard for example, will write the decimal value 254 to Port
A. Binary and hexadecimal values can be read or written just as easily.
The board can be programmed and left to run as a stand-alone reactive controller, configured to raise an alarm if conditions change beyond its ability to suppress them. However, some applications may demand that a host pc is alerted. This too has been accommodated in the chip design via two interrupts which send a single ascii identification back to the host via the three-wire RS232 command interface, at 300 to 115,200 baud.

Flexible, interrupt driven, pwm
The chip has a pulse-width modulation output on pin 35. Properties of this function are also detailed in the software simulator. Frequency limits are 10 Hz and 10 kHz and the duty-cycle range is 0 to $100 \%$ in $1 \%$ intervals.
The pwm signal is interrupt driven; that is the ITC232 can do other things while the pwm is on, except that when the stepper motor is on; in this case the pwm remains high or pulled low while stepping takes place.
At the simulator prompt, typing W1000 followed by the enter key causes an audible 1 kHz tone, produced by the simulator. In addition, you will see an 'oscilloscope' on the screen. Alt-S toggles the sound while Alt-O turns the scope on and off.
The default duty cycle is $\mathbf{5 0 \%}$ and a mes-


Fig. 3. Being highly integrated, and having 25 mA output drivers, the 40 pin ITC232-A controller has a multitude of uses. This evaluation board takes care of serial communications with the pc and offers ten analogue channels, 24 digital i/o lines, interrupts and pwm outpurt.
sage $\mathrm{f}=00999$ is returned by the ITC232. This is the actual frequency resulting from rounding errors and crystal resolution.
Three main uses for this feature are:

- Generating an analogue voltage by integration with an $R C$ network.
- Varying the speed of a dc motor.
- Producing a given number of pulses by feeding the pwm pin output to an interrupt request pin and counting the lows or highs received by the computer.


## Reading resistance or capacitance

Time constant of a series $R C$ network can be read directly by the $I T C 232$. One end of the resistor connects to $V_{\mathrm{CC}}$, and one end of the capacitor to ground. Pins PC. 0 to PC. 3 connect to the junction between the capacitor and the resistor.
Command $<\mathrm{R}>$, for resistance, is sent to the device, followed by a <0> or $<1>$ or $<2>$ or $<3>$ for each bit, and finally the eneter key. The controller pin is turned into an output and brought low, discharging the capacitor. Next, the pin is turned back into an input and the time to reach the low to high transition is smapled and sent back to the terminal as a value in the range $0-32767$. Units are arbitrary. Should the value be larger than 32767, a time out error is returned.
Further application notes explain how you might read the conductance of a solution, as well as measure various sources of capacitance

## Control command summary

These are the single-key commands needed to control the ITC i/o control processor. Items within <> symbols are mandatory while items within \{\} are optional.
$\angle B>n$ sets serial bit rate to $n$, which is between 300 and 115200 baud. < $\mathrm{H}>$ calls the help function.
Interrupts: on interrupts, L or H is sent to terminal.
<OFF> returns DISCONNECTING ASCII(\#7) > and makes PA. 0 an input (to hang up the phone). Only available if in phone mode (baud pin is low and IRQL asserted before a command is received after reset or power-up).
$<P>$ ort $<C>$ onfigure $\langle A>$ or $\langle B>$ or $\langle C>\{B, \%, D, H, \$\}<$ value> sends value to the port specified.
$\langle P\rangle\langle C\rangle\langle S\rangle$ erial <R>ead or $\langle W\rangle$ rite or $\langle A\rangle\{B, \%, D, H, \$\}<V>$ alue configures serial i/o. PCSO disables the serial port.
$\langle\mathrm{P}\rangle\langle\mathrm{C}\rangle\langle\mathrm{A}\rangle,\langle\mathrm{B}\rangle$ or $\langle\mathrm{C}\rangle$ or $\langle\mathrm{S}\rangle\langle$ ? $\rangle\{\mathrm{B}, \%, \mathrm{D}, \mathrm{H}$ or $\$\}$ Returns the port configuration.
$\langle\mathrm{P}\rangle\langle\mathrm{R}\rangle\langle\mathrm{A}\rangle$ or $\langle\mathrm{B}\rangle$ or $\langle\mathrm{C}\rangle$ or $\langle\mathrm{D}\rangle$ or $\langle\mathrm{S}\rangle\{\mathrm{B}, \%, \mathrm{D}, \mathrm{H}, \$\}$ Reading PS sends previously written value out the PD1/SP_TX pin using the Read configuration.
$\langle P\rangle\langle W\rangle\langle A\rangle$ or $\langle B\rangle$ or $\langle C\rangle$ or $\langle S\rangle\{B, \%, D, H, \$\}$ <value>.
$<$ RESET $>$ is equivalent to a hardware reset.
$<R><0>$ or $<1>$ or $<2>$ or $<3>$ reads resistance on port C pins 0-3.
$<W>$ followed by $H$ or $L$ sets the pwm line high or low. Decimal suffix between 10 and 10000 Hz instead of H or L determines pwm frequency. Duty cycle is $1: 1$ unless the frequency is followed by an integer between 0 and 100 .
<W> <?> returns the last <W> width command.
<S> <E> <A> or <B> or <C> <M>onophasic or <B>iphasic or <H>alf step <Speed> <;> <Stop delay> initiates the stepper procedure on $A, B$ or $C$ ports. <Speed> is in steps/s (10-4000). <Stop delay> is in steps (0-255).
<S>tepper <D>isable <A> or <B> or <C>
<S>tepper <?> \{B or \% or D or H or $\$$ | or <S>tepper <E>nable <? $>$ (B or \% or D or H or $\$$ | returns the configuration, the active steppers and the last value written to each active stepper in the requested format.
<S>tep <A> or <B> or <C> <L>eft or <R>ight <Number of steps> makes the motor step.
<@> repeats the last command.

## Special offer - stand-alone i/o board for $£ 99$

## ITC232 - a new concept in i/o control that adds a versatile and easily programmable logic i/o controller to your pc or terminal.

The i/o232 evaluation board described in this article has a normal list price of $£ 195$. For a period limited to 7 July 1995, $E W+W W$ readers can obtain this board at the special launch price of $£ 99$. In addition, the chip is being offered at the special price of $£ 19.99$ as opposed to the usual price of $£ 29$. Prices exclude VAT and postage and packing at $£ 2.50$.

Each board is supplied with applications notes, software simulator, manuals and diagrams, power supply and an RS232 COM1 cable.

The ITC232 incorporates an on chip keyboard to machinecode transalator, which makes programming easy. Via a ready-implemented RS232 links, the i/o232 can connect your application to windows in minutes rather than weeks. Standard routines and simple in-built keystroke-to-machinecode software shortens design cycles, resulting in cost savings.

## Technical features

- Serial command and control interface, 300 to 115,200 baud
- 10 channels of analogue i/o
- 24 digital i/o individually configurable as input or output and organised as three ports.
- Pulse-width modulated output 10 to $10,000 \mathrm{p} / \mathrm{s}, 0$ to $100 \%$ duty cycle in $1 \%$ steps.
- 3 stepper-motor outputs, 10 to 4000 steps per second, monophasic, biphasic and half step
- 2 edge sensitive interrupts, IRQL and IRQH.
- Direct reading of capacitance and resistance
- On board help and error files
- 50 mA power consumption.


## Order form

Please send me: I/O232 evaluation
board including ITC232 chip at $£ 99.00$ £
ITC232 chip at £19.99 £
Postage and packing $£ 2.50$
VAT $£$
Total £

I enclose a cheque $\square$ Debit my Access $\square$ Visa card
Card number
Expiry
Please send this order to Timely Technology Ltd at Millbank, Kettering Road, Little Cransley, Northamptonshire NN14 1PJ. This offer excludes the USA.


## CIRCLENO. 126 ON REPLY CARD

## New Analog \& Mixed Mode Simulation

# Easy To Use, Full Systems from $£ 450$ to $£ 2300$ 

## Professional Level

ICAP/4, The Virtual Clrcuit Design Lab, is a complete circuit design system. It features schematic entry, interactive analog and mixed mode simulation, extensive device libraries, and powerful data processing, all integrated in one easy to use environment. With ICAP/4 you can simulate all types of designs including Power, ASIC, RF Mixed Mode, Control Systems, and Mixed Technologies

- Interactive SPICE 3F based Simulator (AC, DC, Transient, Temperature, Noise Distortion, Fourier, Monte Carlo, and Sensitivity (AC/ DC) analyses)
- Native Mixed Mode - Includes 12 state Digital Loglc SImulator
- Interactive Parameter Sweeping and Measurements
- Real TIme Cross Probing Directly on the Schematic
- Over 6000+ Models Available including Spectal RF and Vendor Librarles
- Multiple Platform Support - Windows (32s), Windows NT on the PC, Digital Alpha \& MIPS, DOS, Macintosh, and Power PC
Or Entry Level
- SPICE 3F based simulator (AC, DC, Transient, Temperature, Operating point)
- UNLIMITED CIRCUIT SIZE
- Over 500 device models
- Separate upgrades avallable, when you need them, for Schematic Entry, Models Library, Spice Englne \& Graphical Post-processor
- Windows 8 WIndows NT
and both with
- Integrated Schematic Entry
- High Performance 32-bit Simulator
- Real Time Waveform Display
- Third Party Support - Works with all popular schematic entry systems

The Future is interactive!

Ist Class, Free UK technical suppori


Call or write for free information and eval SW: Technology Sources Ltd - Falmouth Avenue -
Newmarket - Suffolk CB8 OLZ
Ph: 01638-561460 Fax: 01638-561721

> The features of both analogue and digital filters have been used together to improve the bandwidth of samplers. Erik Margan illustrates by example the improvements to be obtained by treating the combination as a single filter.

# Antialiasing with mixed-mode filters 

Analogue and digital filtering in combination can be used in sampling systems to improve system bandwidth, while retaining high out-of-band signal and noise rejection for effective antialiasing, without the need to increase the sampling frequency. Alternatively, less complicated, lower order filters can be used for attaining the same performance. A method of optimising the filter requirements is discussed.
As an example, suppose the input signal is to be sampled to 12-bit accuracy with a sampling frequency of 2 MHz . In this case, frequencies above the Nyquist frequency ( 1 MHz ) should be attenuated by at least $2^{12}$, or about 72 dB . Assume also that constraints such as amplifier bandwidth and phase margin, component tolerances, layout parasitics, thermal effects, etc, limit the filter design to a 6th-order type.
Normally, Chebyshev or elliptic (Cauer) filter types are used for effective antialiasing, since these provide sharp cutoff and the procedure described here is not required. However, for a perfect transient performance or to preserve a high degree of phase coherence in complex signals, the filter must be of the linear-phase type, leading to a Bessel-type filter ${ }^{2}$, an all-pole equi-ripple phase filter ( $\pm 0.05^{\circ}$ ) or other filter types that can be compensated via phase equalisers.
The use of phase equalisers is limited to band-pass filters, since it is difficult to match the filter phase in wide bandwidth. Bessel filters have a smooth knee in the frequency domain, which makes them a poor choice for anti-aliasing applications. On the other hand, in contrast to the equi-ripple phase types, they can be built from a cascade of relatively low-Q sections, which makes them relatively insensitive to component tolerances. Most importantly, their time-domain performance is ideal.
Although a Bessel filter will be used in the example, calculating the stop-band asymptote of a 6th order Butterworth filter that satisfies the no-alias requirement gives a simple relation from which the required system asymptotes can easily be calculated. The frequency $f_{\mathrm{A}}$ at which the $n$th order Butterworth system reaches the required attenuation $A$ can be calculated from,

$$
\begin{equation*}
f_{A}=10^{-\frac{\log _{10}\left(A^{2}-1\right)}{2 n}} \tag{1}
\end{equation*}
$$

Equation 1 assumes a normalised system, with its -3 dB cut-off frequency $f_{\mathrm{C}}=1$ and the response at zero frequency

$A_{0}=1$. Taking $A=2^{12}$ and $n=6$ results in $f_{\mathrm{A}}=4$.
Now calculate the 6th-order Bessel system polynomial coefficients (see the Bessel panel), divide them by " $V d_{0}$ to normalise the system to have the same stop-band asymptote as the Butterworth filter and extract the polynomial roots ${ }^{3}$ to get the poles.
Since $f_{\mathrm{A}}$ must be equal to the Nyquist frequency, denormalise the system by taking the inverse value of $f_{\mathrm{A}}$, which gives the Butterworth bandwidth relative to the Nyquist frequency $f_{\mathrm{Nyq}}$, equal to 250 kHz . The poles of the Bessel filter must also be divided by $f_{\mathrm{A}}$, resulting in a -3 dB bandwidth of 144 kHz . This is the reference figure for the analogue-only antialiasing filter. If this figure is not high enough and if the choice of the analogue-to-digital converter limits the maximum sampling frequency, use mixed-mode filtering to expand the system bandwidth.

## Analogue/digital filters

The idea of using mixed-mode filtering comes from the fact that the total system frequency response is a simple multiplication of the analogue and digital filter frequency responses. Transforming the digital $z$-domain response is trans-

Fig. 1. Mixed-mode filter bandwidth improvement.
Frequency scale normalised to the Nyquist frequency ( 0.5 of the sampling frequency).
Attenuation scale normalised to the system gain at dc. Dotted curve $\mathrm{A}_{o}$ is the response of the original 6th-order analogue-only filter, reaching the 12 -bit a-to-d converter resolution limit of $-72 d B$ at the Nyquist frequency. If the analogue filter bandwidth is moved upward ( $\mathrm{A}_{x}$ ), so that the converter resolution limit will be reached at $1.8 \mathrm{~T}_{\text {Nyq }}$ the dark-shaded part area from $\mathrm{f}_{\text {Nrq }}$ to $1.87_{\text {Nyq }}$ will generate an alias spectrum from $\mathrm{f}_{\mathrm{N}_{\mathrm{yq}}}$ to $0.13 \mathrm{~F}_{\mathrm{Nyq}}$ (lightshaded). The alias spectrum envelope, flipped about the frequency axis, determines the minimum required attenuation dashed line $\mathbf{R}_{q}$ of the digital filter $\mathrm{D}_{v}$ which would make the alias spectrum envelope equal to the a-to-d converter resolution limit. The resulting mixed-mode filter response $M_{x}$ will have its -3dB cut-off frequency 1.468 times higher than $\mathrm{A}_{\boldsymbol{g}}$.

Fig. 2. Time-domain representation of the mixed-mode filter performance. Convolving the analogue filter step response with the digital filter impulse response gives the perfect step response with a rise time shorter than the analogue-only filter.

Fig. 3. Example of mixed-mode filtering, using zeros with analogue filter. Zeros are at 1.5,2.0 and 4.0 times $f_{N y k}$. Analogue/digital filter can be now moved up
by 2.37 , while still resulting in a relatively narrow alias spectrum and giving total bandwidth improvement of nearly 1.6.

Fig. 4. Time-domain performance of the Fig. 3 mixed-mode filter, using zeros and poles in the analogue section. Note better rise-time of the mixedmode step response.



formed into its $s$-domain equivalent gives,

$$
H(s)=A(s) \times D(s)
$$

(2)

That is also true for the reverse case (i.e. a system formed from a digital filter, a d-to-a converter and analogue filter). In the time-domain, Eq. 2 becomes the convolution integral of


Fig. 5. Time-delay (phase vs frequency derivative) of all-pole mixed-mode filter is constant up to a frequency more than double that of analogue-only filter.
the analogue signal with the digital filter impulse response and convolution is exactly the process performed by digital filtering, the digital filter coefficients representing the sampled equivalent of the impulse response ${ }^{3}$
However, as is well known from analogue filters, cascading two separately optimised filters reduces the total system bandwidth more than one would like. It is thus better to use a single filter system but of higher order. Since the limit is a 6th-order analogue filter, calculate a 10 th-order filter, assign six of its poles to the analogue part and the remaining four to the digital part. A higher order filter has a steeper stop-band and so its bandwidth can be higher while still satisfying the antialiasing condition, but how much higher is not yet known. Figure 1 shows the optimisation criterion.
Dotted curve $A_{0}$ is the 6th-order analogue-only reference system, shown along with its pass-band and stop-band asymptotes. $A_{\mathrm{x}}$ and $D_{\mathrm{x}}$ are the analogue and digital part of the mixed-mode filter $M_{\mathrm{x}}$, which is a 10 th-order Bessel filter. Of its ten poles (arranged as five complex-conjugate pairs), six of them, in three pairs, have been assigned to the analogue filter $A_{\mathrm{x}}$ and the remaining four in two pairs to $D_{\mathrm{x}}$.
Since $A_{\mathrm{x}}$ is of the same order as $A_{\mathrm{o}}$, its stop-band slope is the same as the reference, allowing easy calculation of the effect of increasing its bandwidth. In Fig. 1, it has been increased by 1.87 and the line-shaded frequency band between the Nyquist frequency $f_{\mathrm{Nyq}}$ and $1.87 f_{\mathrm{Nyq}}$ will, when sampled, be reflected into the dot-shaded alias spectrum between $f_{\mathrm{Nyq}}$ and $(2-1.87) f_{\mathrm{Nyq}}$. The difference, in dB , between the a-to-d converter resolution level and the alias spectral envelope gives the minimum required attenuation (shown as the dashed line $R_{\mathrm{q}}$ ) that the digital filter must have to suppress the alias spectrum below the ADC resolution level.
From Fig. 1, one could conclude that optimal performance is reached whenever the mixed-mode response reaches the a-to-d converter resolution level at the Nyquist frequency, but be warned that this will not be so in the majority of cases. Instead, the optimum is achieved by iteration - first, shift upward the analogue and digital frequency responses (the poles multiplied by a factor between I and 2), then calculate the alias spectral envelope, take the difference between the a-to-d converter resolution level and the alias envelope and finally compare it to the frequency response of the digital filter. If the filter is much below the required level, repeat the process; if it is above the required level, multiply the poles by

## ‘OFF-AIR’ FREQUENCY STANDARD



Variants from £195 + va

- Provides 10 MHz .5 MHz \& 1 MHz

Use it for calibrating equipment that relles on quartz crystais.
Phase, VXCOs, oven crystals
traceabie to NPL)
For ADDED VALUE also hase lo
controlled and traceable to OP - French eq to NPL)

- British designed and British manufactured

Optors aviable include nanced

Output trequencies hon term stability - bette than $1 \times 10^{-8}(1 \mathrm{sec})$ Typical $-4 \times 10^{-9}(1 \mathrm{sec})$ Long term - tends 10
$2 \times 10^{-12}(1000 \mathrm{sec})$ Call for 'OH-Arr'Standara list

## TEST EQUIPMENT

We are well known for our quality, new and used Test Equipment. Our list is extensive, the following will give some idea of our range and prices:

TIME 404 S Precision mV source
TIME 2003NDCV PoVCal, 0.10 V , null, etc TIME 2004 DC Volt standard $0.005 \%$ HP1340A X-Y displays E.V. EV4020ANTSC VISCope LEADER LG396 NTSC pattern generator PHiLIPS 5509 PAL pattern generator PHILIPS PM 5716 pulse generator PHILIPS PM5134 tunction generator
£95 FEEDBACK SSO603 1 MHz sine:square oscillator $£ 125$ £249 FEEDBACK DPM609 10Hz-100Hz phase meter $£ 125$ £945 TEKTRONIX 221560 MHz dual trace, dual delay $T / B$ §450 £95 TEKTRONIX 2455 300MHz 4 trace, dual delay T/B $£ 1950$ £395 MARCONI TF2370 100MHz spectrum analyser £995 £395 ADRET 740 A 0.1 MHz -1.2GHz sig. gen. AMFMPM $£ 1450$ £195 DRAKEMN2700 ATUPSU £495 VIGILANT SA510 10 KHz -30MHz, AM CWISSB, PLL $£ 750$ £1495 VIGILANT SR532 10KHz-30MHz, AM CW/SSB, PLL £1250

Call for Equipment lis

## SPECIAL OFFER

We have obtained an IMTEC 300 film/aperture card reader/printer which has had very little use. Output on plain paper from paper trays, sizes A5 to A3, including the ' $B$ ' sizes, and variable. This is high quality equipment, serious offers are invited.

## HALCYON ELECTRONICS

423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 0181-542 6383. FAX 0181-542 0340

## Toroidal Transformers

## (4i4) <br> Large standard range approved to EN60742

Large and small production runs catered for
Custom designs from 10 VA to 3 kVA
Medical designs to IEC601/BS5724 \& UL544
100\% Final test approved to ISO 9003
All transformers manufactured at UK factory
Designs to most international standards
70 V or 100 V Line \& low noise audio designs
Rapid quotation, design and prototype service Centre potted \& fully potted versions available

## Antrim Transformers Ltd

Antrim<br>Sales Department, 30 Bramley Avenue Canterbury, Kent, CTI 3XW, England<br>T// Roun Tel: 01227450810 Fax: 01227764609

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF
Tel: 0.1203650702 Fax: 01203650773
Mobile: 0860400683

## (Premises situated close to Easlern-by-pass in Coventry with eas

access to $\mathrm{M} 1, \mathrm{M} 6, \mathrm{M} 40$, M42, M45 and M69)

| OSCILLOSCOPES |  |
| :---: | :---: |
| Gould OS4000, OS4200, OS4100, OS10008 | from £125 |
| Goutd OS $3000-40 \mathrm{MHz}$, dual ch. | 5250 |
| Gould 4035 - 20 MHz digital storage | £600 |
| Gould $4050-35 \mathrm{MHz}$ digital storage | 1750 |
| Gould $5110-100 \mathrm{MHz}$ inteiligent oscilloscooe | ¢950 |
| Hewlett Packard 1707A, 17078-75MHz dual ch. | from 275 |
| Mewlett Packsrd 1740A, 1741A. 1744A, 100MHz dual ch. | from $£ 350$ |
| Hewiett Packard 54201A - 300M Hz digtizing | ¢1750 |
| Hewlett Packard 54504-400 MHz digitizing (As new). | ¢3500 |
| Hitachiv-212-20MHz dual trace. | £175 |
| Hitachiv - $422-40 \mathrm{MHz}$ dual ch | £300 |
| Nicolel 3091 - Low treq D.S.O. | 51100 |
| Pmlips 3315-60MHz D.S.O. |  |
| Tektronlx $468-100 \mathrm{MHz} \mathrm{D.S.O}$ | E800 |
| Tehtronix $2213-60 \mathrm{MHz}$ dual ch. | £425 |
| Tektronlx $2215-60 \mathrm{MHz}$ dual ch | £450 |
| Tektron $\times 2220-60 \mathrm{MHz}$ digital storage | ¢995 |
| Tektronix $2225-50 \mathrm{MHz}$ dual trace | £450 |
| Tehtronix $2235-100 \mathrm{MHz}$ dual ch. (portable) | ¢800 |
| Tektronix $2335-100 \mathrm{MHz}$ dualch. (porlable) | ¢750 |
| Tektronix 2465A - 350 MHz 4 ch . | £2950 |
| Tektronlx $464 / 466-100 \mathrm{MHz}$, storage | from ¢350 |
| Tekitronix 465/4658-100MHz dualch. | from E350 |
| Tektronix $7313,7603,7613,7623,7633,100 \mathrm{MHz} 4 \mathrm{c}$ | from £300 |
| Tektronlx $7704-250 \mathrm{MHz} 4 \mathrm{ch}$ | from 6650 |
| Tektrondx 7834 with 7842, 7880, 7885 - Plug-Ins (Storage 400MHz). | OMHz)........ 51500 |
| Tektronix 7904-500MHz..................................................... | ....trom $£ 850$ |
| Teiequipment D68-50MHz dual ch. |  |
| Prillps 3206, 3211, 3212, 3217, 3226, 3240, 3243, trom ¢ |  |
|  |  |
| Pbilips PM 3295A - 400MHz dual channel... | E1950 |
| Philips PM3296-350MHz dual channel | c1800 |
| Other scopes available too |  |
| SPECTRUM ANALYSERS |  |

Hewlett Packard $3580 \mathrm{~A}-5 \mathrm{~Hz}-50 \mathrm{KHz}$...............
Kewlett Packard 3582A - 25 KHz analyser, dual channe
Marconi 2370-110MHz
Marconl $2371-30 \mathrm{~Hz}-200 \mathrm{MHz}$.
Hohde \& Schwarz - SWO8 5 PolyskoD $0.1-1300 \mathrm{MHz}$
Achlumberger 1250- $727-22.4 \mathrm{GHz}$
Athech 70727 - Trading Generato for 727 ( $10 \mathrm{KHz} \cdot 12.4 \mathrm{GHz}$ )
Tektronix 7 L14 wlth 7503 - Maintrame ( 1.8 GHz )
Tektronlx 7 L 12 with 7603 mainframe ( 1.8 GHz )
Poirad $641-110 \mathrm{MHz}-18 \mathrm{GHz}$
Hewlett Packard 35601A - Spectrum Analyser Interfac
Baliantine 323 True RMS voltmeter

## TELNET

Datalab DL 1080 - Programmable Translent Recorder .................. \& ynapert TP20 - Intelliplace tape peel tester, Immaculate condition Data I 0 MODEL 298 (with 12 tixtures) + logic pack. E.I.P. 331 18GHz frequency coun

Farnell TSV70 MkI - Power Supply ( $70 \mathrm{~V}-5 \mathrm{~A}$ or $35 \mathrm{~V}-10 \mathrm{~A}$ ) Ferrograph RTS2 Audio test set with ATU1
Fluke 5101A - Calibrator AC/DC
Fluke 5101 B - Calibrator ACDC
Fluke 5220 A - Transconductance Amplitier (20A)
Fluke 720A - Kelvin - Varley Voltage Divider.
Fluke 750A - Aeference Dvider...
Heiden 1107 - $30 v-10$ A Progra
Heiden $1107-30 v-10 \mathrm{AP}$ Programmable power supply (IEEE).
Gould $\mathrm{K} 1000-100 \mathrm{MH}$ )
Gould $1000-100 \mathrm{MHz}$ Logic Analyser with PODS...
Hewlett Packard 4335 . Power meter +8481 A sensor.
Hewlett Packard
Hewlett Packard $3325 A$ - 21 MHz syninesiserfunction gen
Hewlet
Howlett Packard 3437A System voltmeter.
Hewlett Packard 3438A Digital multimeter
Hewlett Packard 3490A Digitai multimeter.

## Hewlett Packard 3711/3712A/37918/37938 Microwave link

Hewlett Packard 3760/3761 Data gen + error detector
Hewlett Packard 376/3763
Hewiet Packard 37623763 Data 9 + + error detector ...
Hewwett Packerd 3764A Ot. 002 - Digttal Trans. Analyse
Hewlett Packard 3777 A Channel selector.
Hewlett Packard 3779A/3779C Primary multi. analyser .......................
Hewlett Packard 5150A Thermal printer
Hewlett Packard 5316A - Universal cou
PPP


Hewlet Packerd 5385A - Frequency counter 1 GHz (HP1B) with Opts
$001 / 003 / 004 / 005$
er supply programme
Hewlen Packara 62518 Powe suply

Hewlett Packard 6453A - Power supply 15V-200A
Hewlett Packard 7402 Recorder with 1740 IA $\times 2$ plug-ins
Hewlett Packard 8005 B Pulse generato
Hewlett Packard 8011A Pulse gen. 0.1 Hz-20MHz.
Hewlett Packard 81588 - optical average power meter

Hewlett Packard 8443A Tracking gen/counter with IEEE $\quad$ [300/ $\mathbf{H} 400$
Hewlen
Hewlett Packard 8750A Storage normator mainframe.
Hewlett Packard 86578 - Synt normaliser...
He wlett Packard 86578 - Synthesised Sig. Gen. ( 2060 MHz )
He wlett Packard 3456A Digital voltmeter
Hewlett Packard 8684A - 5.4 GHZ to 12.5 GHz Sig Gen
Hewlett Packard 3785A - Itter Generator + Receiver.
Hewlett Packard 6632A - System Power Supply (HPIB).
 Hewlett Packard 5340A - 18GHz Frequency Counter..
Hewlett Packard 5356A - 18GHz Frequency Converter Hewlett Packard 432A - Power Meter (with 478A Sensor).... Hewlett Packard 435A or B - Power Meter (with 8481A 8484
international Light -IL 1700 research radiometer with Ery...... rom $£ 750$ Leader LCA745G - LCA Meter


MANY MORE ITEMS AVAILABLE - SEND
LARGE S.A.E. FOR LIST OF EQUIPMENT ALL EOUIPMENT IS USED - WITH 30 DAYS
GUARANTEE. PLEASE CHECK FOR AVAILABILITY BEFORE ORDERING-CARRIAGE


Fig. 6. Two-pole, voltage-controlled filter example. Cascade of three such sections needed for the six-pole example of Figs 1 and 2. This is a classic Sallen-Key
configuration in which the resistors have been replaced by
transconductance amplifier's $g_{m}$ and each $g_{m}$-C pair buffered. Buffer op-amps ACFB must be of the wideband type (i.e., with current feedback) to prevent parasitic transfer function zeros. $Q$ and frequency of each two-pole section must be adjusted separately, in accordance to the poles selected. Resistive dividers of 4.7 kS 2 and $47 \Omega$ keep the OTAs in the linear range and prevent slew-rate limiting for large signals.
a factor lower than I and test the result again.
From the shape of the alias spectral envelope it is clear that there is no point in making the digital filter of high order. Likewise, it is advantageous to choose the poles having smaller imaginary part for the digital filter, since this results in a smoother response and consequently greater bandwidth improvement factor. In this example, the mixed-mode system has its -3 dB cut-off frequency at 211.5 kHz , which is 1.468 times the all-analogue filter bandwidth.
Splitting the filter poles between the analogue and digital part may also be taken into consideration; designers of systems that must operate in real time will look for the pole selection that gives the digital filter a more symmetrical impulse response - every other complex-conjugate pole pair is assigned to the digital filter. This property of symmetry can then be exploited to reduce the required filter coefficients (and consequently the number of multiplications) by half, speeding-up the digital filtering process.
On the other hand, when the available analogue gain-bandwidth product is critical, the designer may prefer to assign the poles with the lower imaginary part to the analogue filter, but at some expense to the bandwidth improvement.
Figure 2 shows the time-domain behavior of the same filters used to produce Fig. 1, with the time scale normalised to the sampling period and the markers on the curves corresponding to actual samples. Analogue step response, with its notable overshoot, convolved with the digital impulse response gives a perfect step response with a rise time shorter than that of the analogue-only filter (the dotted curve).
From Fig. 1 it is also obvious that all-pole filters can not achieve a bandwidth improvement greater than about 1.5,

## Aliasing

In theory, the bandwidth of the sampling system is equal to the Nyquist frequency, which is one-half of the a-to-d converter's sampling frequency. In practice, however, correct waveform spectrum can be found only if the input signal frequencies above the Nyquist frequency are attenuated to levels lower than the a-to-d converter resolution, to avoid 'aliasing' (if the signal contains discrete frequency components above the Nyquist frequency, or broadband noise). This is known in literature as the Shannon's sampling theorem (see Further Reading).

Aliasing can be best understood if the reader remembers the scene from Western movies, where the wheels of the stage coach seem to be rotating backwards, while the horses are running wild to escape from the desperados behind. What is perceived, is as if the wheels rotate with a frequency equal to the difference between the frequency at which the pictures were taken and the actual wheel rotation frequency.
A wheel, rotating at exactly the same frequency (or its integer multiple or submultiple) as the picture rate, would be perceived as stationary (remember the stroboscope effect). This is the same as if an a-to-d converter is sampling a signal of a frequency equal to its sampling frequency - such a signal can not be distinguished from a d.c. level. Likewise, a signal with a frequency slightly lower than the sampling frequency, could not be distinguished from a low frequency, equal to the difference of the two.
since this would require the analogue filter asymptote to approach the sampling frequency at the a-to-d converter resolution level, extending the alias spectrum towards dc, where it would be hard to eliminate. If the analogue filter is designed to have some stop-band zeros at the sampling frequency and its first few multiples, a greater bandwidth improvement will be possible. One such case is shown in Fig. 3 and Fig. 4, where a six-pole, six-zero analogue filter is combined with an eight-pole equivalent digital filter. Zeros are at 1.5,2.0 and 4.0 times $f_{\mathrm{Nyq}}$, which were not chosen for optimum pass-to-stop band transition, but for narrowing the alias band
While the bandwidth improvement in both cases may seem small, it will be appreciated by those who use spectrum analysis daily. It must be noted that the resulting improvement in phase linearity is even greater than in bandwidth, since the additional extension comes from the use of a higher order filter. Figure 5 shows how the all-pole, mixed-mode system time-delay, i.e. the phase vs frequency derivative,

$$
t_{D}=\frac{d \varphi}{d \varpi}
$$

remains constant up to a frequency more than double that in the analogue-only filter.
If the a-to-d converter system is to be used with different sampling frequencies, the digital filter part can be left unchanged, but the analogue filter must be frequency-shifted accordingly; transconductance operational amplifiers used for frequency control offer the best way of doing this ${ }^{4}$. Figure 6 shows an example of a two-pole filter section, with separately adjustable frequency and $\mathbf{Q}$.
Voltage at the base of $Q_{2}$ of about $\pm 50 \mathrm{mV}$ dc sets the $Q$ (the imaginary components of the pole pair) and the control voltage at the base of $Q_{3}$ (ranging from $V_{\mathrm{CC}}-0.7 \mathrm{~V}$ to about +0.7 V ) sets the frequency; the magnitude of the pole pair the ratio of the imaginary to the real component remains unchanged. A cascade of three such sections is needed for the six-pole analogue filter, each section being adjusted separately and the adjustments remaining in fixed proportions as the frequency control voltage is changed. A simpler, but less flexible, solution is to make all the transconductances equal and select the values of capacitors as required by the poles.
I built my experimental filter using RCA CA 3080 operational transconductance apmlifiers and Comlinear CLC 400 current-feedback devices. However, the Linear Technology $L T 1228^{5}$, which is a single-chip OTA with current feedback, is the natural choice. Transfer function of the filter in Fig. 6 is,

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{g_{m 1} g_{m 2} /\left(k^{2} C_{1} C_{2}\right)}{s^{2}+s g_{m 1} /\left(k C_{1}\right)+g_{m 1} g_{m 2} /\left(k^{2} C_{1} C_{2}\right)} \tag{3}
\end{equation*}
$$

where $k$ is the attenuation of the OTA input resistive divider ( $1 / 101$ ), and $g_{\mathrm{m}}$ is the OTA transconductance, set by the bias currents from the collectors of $Q_{1}$ and $Q_{2}$. Comparing Eq. 3 with the general two-pole transfer function

$$
\begin{align*}
H(s) & =\frac{p_{1} p_{2}}{\left(s-p_{1}\right)\left(s-p^{2}\right)} \\
& =\frac{p_{1} p_{2}}{s^{2}+s\left(-p_{1}-p^{2}\right)+p_{1} p_{2}} \tag{4}
\end{align*}
$$

and normalising $g_{\mathrm{m} 1}=g_{\mathrm{m} 2}=1$ produces,

$$
C_{1}=\frac{1}{k\left(-p_{1}-p_{2}\right)}
$$

and

$$
\begin{equation*}
C_{2}=\frac{1}{k^{2} p_{1} p_{2} C_{1}} \tag{5}
\end{equation*}
$$

# The new schematic capture program Geswin (GESECA for Windows ${ }^{T M}$ ) adds more than a pretty face to SpiceAge. Upgrade for $£ \mathbf{1 0 0 + V A T *}$ 

- Geswin DDE links with SpiceAge to provide instant circuit editing. Because this link enables SpiceAge to retain all its simulation settings, the schematic (produced by Geswin) is uncluttered so that you can create clean drawings that may be clipboarded into your other Windows applications.
- You can clipboard sections of your netlist from SpiceAge back into Geswin's attribute Inspector if you wish to use patches of existing circuits.
- Geswin has inherited GESECA's speed and ease of use. You will find it's best-loved "bucket of bits" components' store waiting for your instant use from a special self-replenishing window.
- The SpiceAge component library has been expanded and re-drawn into "stubbies". The new symbols allow more components to fit within a given screen area without compromising clarity.
- Multiple windows allow you to scratch pad your designs (simulating as you work) and clipboard them into a fair copy window.
- File compatible with GESECA: schematics and components from GESECA may be read.
- Comprehensive HELP provides reference material; tutorial style manual reassures you of your own intuition.
- Geswin automatically invokes (or switches tol SpiceAge; you can also invoke Geswin from SpiceAge.

Please contact Those Engineers Ltd, 31 Birkbeck Road,
LONDON NW7 4BP.
Tel 0181-906 0155, FAX 0181-906 0969.
*upgrade price from GESECA; $£ 295$ + VAT new


## LOW COST DEVELOPMENT SYSTEM

ECAL comprises a versatile relocatable assembler with integral editor which runs about ten times faster than typical assemblers. Support includes 4, 8, 16 \& 32 bit processor families including 75X, 6502, 6809, 68HC05/11, 8031/51, H8-300, 78K, PICs, ST6 \& Z80/180, 68000, 80C196, H8$500 \&$ Z280.

ECAL is either available for a single processor family or all families.

Single processor version $£ 295$ Multiprocessor version.... £395

## Overseas

 distributors required OEMA Ltd.,7 di 7A Brook Lane,
Warsash,
Southampton S031 9FH
Tel: 01489571300
Fax: 01489885853


The PC based ECAL hardware emulator is fully integrated with the assembler. Connection is made to the target through the eprom socket so a single pod can support all processors. Facilities include windows for the inspection or change of registers or memory. You can even watch your program executing at source level!

Download time is about two seconds!
Pods can be daisy-chained for 16/32 bit systems.

Applications include software development, hardware debug, test and, finally, teaching about microcontrollers in education.

ECAL emulator $\qquad$ $£ 475$

Quantity discounts of up to $50 \%$ make ECAL software ideal for education.

Table 1. Poles used in the example of Fig. 1 and 2.

| Analogue-only <br> system | Mixed-mode system <br> Analogue | Digital |
| :--- | :--- | :--- |
| $-0.1346 \pm 0.2494 i$ | $-0.3886 \pm 0.1534 i$ | $-0.4066 \pm 0.0510 i$ |
| $-0.1999 \pm 0.1405 i$ | $-0.2870 \pm 0.3657 i$ | $-0.3506 \pm 0.2576 i$ |
| $-0.2273 \pm 0.0464 i$ | $-0.1826 \pm 0.4836 i$ | -0.350 |

Alternatively, normalising $C_{1}=C_{2}=1$ produces,

$$
g_{m 1}=k\left(-p_{1}-p_{2}\right)
$$

and

$$
\begin{equation*}
g_{m 2}=\frac{k^{2} p_{1} p_{2}}{g_{m 1}} \tag{6}
\end{equation*}
$$

Poles $p_{1}$ and $p_{2}$ are the suitable complex-conjugate pair of the mixed-mode filter poles.

## Bessel filters

Bessel filters ${ }^{2}$ are optimum in the sense that all the derivatives of the envelope (group) delay response are zero at origin, which results in a maximally flat envelope delay. This means that all the relevant frequencies pass through the system with equal time delay, resulting in a transient response with a minimal overshoot. In the complex frequency plane, a system with pure time delay may be represented by

$$
\begin{equation*}
H(s)=\mathrm{e}^{-s T} \tag{7}
\end{equation*}
$$

First, normalise this by making $T=1$; then expand $e^{-s}$ as a polynomial. However, if this is done using the Taylor series expression for $e^{x}$ and if the polynomial degree exceeds 4 , the resulting polynomial would not be of the Hurwitz type, since some of the poles would be in the right-half of the complex plane, making the system unstable. But there is another expression for $e^{-s}$ that we can use:

$$
\begin{equation*}
e^{-s}=\frac{1}{\sinh s+\cosh s}=\frac{1 / \sinh s}{1+\cosh s / \sinh s} \tag{8}
\end{equation*}
$$

The series for hyperbolic sine function has even powers of $s$ and the hyperbolic cosine odd powers of $s$. When these polynomials are divided using long division, the poles of the resulting polynomial meet the stability requirement. Expressing this as a partial fraction expansion truncated at the $n$th fraction gives an $n$ th-order Bessel system. This can be expressed as

$$
\begin{equation*}
H(s)=\frac{d_{o}}{B_{n}(s)} \tag{9}
\end{equation*}
$$

where

$$
B_{n}(s)=\sum_{k=0}^{n} d_{k} s^{k}
$$

$B n(s)$ is an $n$th order Bessel polynomial which, for different $n$, satisfies the relations,

$$
\begin{align*}
& B_{0}(s)=1 \\
& B_{1}(s)=s+1 \\
& B_{n}(s)=(2 n-1) B_{n-1}(s)+s^{2} B_{n-2}(s) \tag{10}
\end{align*}
$$

The coefficients $d_{k}$ of the resulting polynomial can be calculated as,

$$
\begin{equation*}
d_{k}=\frac{(2 n-k)!}{\left.2^{(n-k)} k!(n-k)!\right)}, \text { for } k=0,1,2 \ldots n \tag{11}
\end{equation*}
$$

Roots of $B_{\mathrm{n}}(s)$ are the poles of $H(s)$. Calculated in this way, the system is normalised to a time-delay of 1 for any $n$, which results in a bandwidth increasing with $n$. In these calculations, a different normalisation is used: the asymptote of the filter stop-band is made equal to that of the Butterworth
filter of equal order, by dividing the polynomial coefficients $d_{k}$ by ${ }^{n} \sqrt{ } d_{0}$.
Bessel filter poles are found in the left-half of the complex plane, on a family of ellipses with one focus at the origin $0+0 i$ and the other on the positive part of the real axis. Table 1 shows the poles used in the example of Fig. 1 and Fig. 2. These values are given relative to the Nyquist frequency - to get the true values, multiply them by $I \mathrm{MHz}$.

## Filter response calculation

In the frequency domain:

$$
\begin{equation*}
H(s)=\frac{\prod_{i=1}^{n}\left(-p_{i}\right)}{\prod_{i=1}^{n}\left(s-p_{j}\right)} \frac{\prod_{j=1}^{m}(s-z j)}{\prod_{j=1}^{m}(-z j)} \tag{12}
\end{equation*}
$$

where $s=j \omega$ and $p_{\mathrm{i}}$ are the poles and $z_{\mathrm{j}}$ are the zeros (if any). Magnitude in decibels is

$$
\begin{equation*}
M(\omega)=20 \log _{10} \sqrt{H(j \omega) \cdot H(-j \omega)} \tag{13}
\end{equation*}
$$

In the time domain, calculate the residue of each pole and sum the residues at each time point to get the impulse response. For the step response, each residue is multiplied by $1 / s$ the Laplace transform of the input unit-step. The residue of the $k$ th pole can be calculated as,

$$
\begin{equation*}
R_{k}(t)=\lim _{s \rightarrow p_{k}}\left(s-p_{k}\right) \cdot \frac{\prod_{i=1}^{n}\left(-p_{i}\right)}{\prod_{i=1}^{n}\left(s-p_{i}\right)} \cdot \frac{\prod_{j=1}^{m}\left(s-z_{j}\right)}{\prod_{j=1}^{m}\left(-z_{j}\right)} \cdot e^{p_{k^{t}}} \tag{14}
\end{equation*}
$$

Terms ( $s-p_{k}$ ) cancel for $i=k$ before limiting. Next, make $s=p_{\mathrm{k}}$, without using the limiting process. By doing so, the general applicability of Eq. 14 is lost - it does not hold for systems containing coincident poles, but for all optimised system families the result is still valid. The time $t$ can be chosen to start from 0 up to any desired time, in sampling period increments. Then:

$$
\begin{equation*}
f(t)=\sum_{k=1}^{n} R_{k}(t) \tag{15}
\end{equation*}
$$

## In summary

From all this, one can see that mixed-mode (analogue plus digital) linear-phase filtering can be used effectively to extend the usable spectral bandwidth of sampled signals by about $50 \%$ and the phase coherence by more than $100 \%$, while keeping the signal spectral resolution, the sampling frequency and the number of samples unchanged.

## Further reading

1. Shannon, CE. Collected papers. IEEE Press, Cat.No.: PC 0331.
2. Thomson, WE. Networks With Maximally-Flat Delay. Wireless Engineer, vol. 29, October 1952, pp.256-263.
3. Oppenheim, AV and Schafer, RW. Digital Signal Processing. Prentice-Hall, 1975.
4. Azadet, K. Linear-phase, continuous-time video filters based on a mixed analogue/digital structure. ECCTD '93-Circuit Theory and Design, pp.73-78. Elsevier Sci. Publ.
5. Hickman, I. Versatile twin amplifier has many uses. Electronics World +Wireless World, December 1993, pp.1044-1048.

# Programming Solutions Universal Programmer <br> - Uses standard pc printer port <br> <br> ONLY 

 <br> <br> ONLY}

works with notebook and handbook pc's

- Pin driver expansion can drive up to 256 pins.
- Supports over 2000 IC's - 3 and 5 volt devices. EPROMs, E²PROMs, Bipolars, Flash, Serial EPROMs over 150 microcontrollers, WSI/Philips PSDs, PLDs, EPLDs, PEELs, PALs, GALs, FPGAs including MACH, MAX, MAPL \& Xilinx parts
- Universal DIL (up to 48 pins), PLCC and gang PACs
- Powerful full colour menu driven software.
- Approved by AMD, TI, NatSemi, etc...
- Tests TTL, CMOS and SRAM devices (including SIMMS)


## Eprom Programmer

EPROMs, E²PROMs, Flash and 8748/51 micros.
Fast programming algorithms. Simple colour menu operation.

- Fast programming algorithms.
- Connects direct to pc printer port.
- Simple full colour software.
- No expensive adapters.

Finally an upgradeable PCB CAD system to suif any budget ...


## BoardCapture - Schematic Capture

- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility ( 50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Extensive componeni-based annotation from BoardMaker2


BoardMaker
BoardMaker1 - Entry level

- PCB and schematic dratting
- Easy and intuitive to use Surface mount support
- Surrace mount support
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMaker1 plus
- Full netlist support - OrCad, Schema, Tango, CadStar
- Full Design Rule Checking - mechanical \& electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCII, BOM

Thermal power plane support with full DRC
Board Router
BoardRouter - Gridless autorouter Simultaneous multi-layer routing

- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP Graphtec, Roland \& Houston
- Photoplotters. All Gerber $3 \times 00$ and $4 \times 00$
- Excellon NC Drill / Annotated drill drawings (BM2)

Contact Tsien for further information on
Tel 01354695959
Fax 01354695957


## CIRCUIT IDEAS

Do you have an original circuit idea for publication? We are giving $£ 100$ cash for the month's top design. Additional authors will receive $£ 25$ cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

## W <br>  <br> First published in the March 1995 issue, this meter is the latest design to win the Thurlby Thandar 1 GHz spectrum analyser defailed on the right.

## Vhf meter is accurate to 0.1 dB

M
ixer-type Schottky diodes can detect rf signals between around -35 dBm and 20 dBm . Response flatness is good to about 1 GHz with a cheap BA481 and better with higher fre-quency-response types; a general-purpose Schotky measures higher powers in a $50 \Omega$ system but with a reduced frequency response.
Since the diode output is temperature-variant and somewhat variable between batches, the circuit shown uses two matched detectors, the second one fed with a 1 kHz sinewave, adjusted in amplitude by the error amplifier circuit until the outputs are balanced. A chopper composed of four IN4I49 diodes provides the 1 kHz square, which is then formed into a sinewave by the op-amp, and also provides a dc level proportional to the ampli-
tude. This is a measure of the rf input level and is read, in this case, on a moving-coil meter calibrated in decibels, though it could easily be digitised. Ranges of 10 dB are selected in the 1 kHz drive to cover the 55 dB dynamic range, and the error integrator capacitors are switched to provide the relevant time constant. The circuit is inherently linear.
The $10 \mathrm{k} \Omega$ multi-turn pot zeroes the meter. Additional diodes on the meter cope with reverse drive if the integrator is zeroed too low, since the chopper provides only forward drive to the meter. On the integrator output, the $4.7 \mathrm{k} \Omega$ pot sets maximum meter current. Accuracy to several hundred MHz is about 0.1 dB , without the need for stable supplies. Capacitors marked C should be of the same type to match temperature coefficients. PD Brooking
Ryde, Isle of Wight


# YOU COULD BE USING A GHz SPECTRUM ANALYSER ADAPTOR! 

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent Instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $£ 100$ monthly star author's fee, together with $£ 25$ for all other ideas published.
Our judging criteria are ingenuity and originality in the use of modern components - with simplicity particularly valued.


## Half-duplex-toRS232 converter

Connecting a half-duplex line to a fullduplex RS232 port requires a decision on whether the half-duplex goes to the TD transmit line or the receive line RD.
A truth table for such a converter is constructed as follows. When TD is at logic 1 , it is either at rest, 'marking' or transmitting a 1 data bit. If it is in the first state, data might be passing from the halfduplex line to the port and the half-duplex should go to RD. If it is transmitting, RD will be marking at logic 1 and the halfduplex line should go to either RD or TD.

| TD | RD | Half-duplex |
| :--- | :--- | :--- |
| 0 | 1 | TD |
| 1 | $1 /$ data | RD |

As the table shows, TD is usable to control

## Calming a digital display

$A^{2}$nnoying $\pm 1$ jitter in a numeric display can be reduced considerably by allowing only 0 and 5 to show when the input is under or over 5 , but this still leaves the jitter when the input is between 9 and 0 or 4 and 5 .
In the arrangement shown, a hysteresis of four counts switches the display to read 5 when the input is greater than 7 and, in the reverse direction, 0 when input is less than 3 .
The flip-flop allows clocking of strobed displays and the switch allows ' 0 ' to be permanently displayed.
Des Keppel

## Ballon

County Carlow, Ireland
switching. The MAX202CPE converts and inverts RS232 levels to ttl levels; the pullup/down resistors are internal and are shown to illustrate the requirement. For $\mathbf{t l}$
compatibility, the $4066 B$ is run from 5 V . Bill Geake
University of Edinburgh
Royal Infirmary of Edinburgh



# High-voltage, frequency-controlled Maxwell bridge 

| nternational Rectifier's IR2151 is a bridge driver consisting of an oscillator, with external timing components, and mosfet output. It is used here to drive a Maxwell bridge to measure inductance in the $L_{\mathrm{x}}$ position at a variable frequency and at voltages up to 600 V ; as a metal detector, it will monitor changes in the value of the inductance when it is brought near a ferromagnetic object.
Frequency is determined by the value of $R$ and lies in the kilohertz range. Maxwell bridges are used in the measurement of magnetic permeability at various frequencies, a process in which the power mosfet output can be an advantage.
Kamil Kraus
Rokycany
Czechoslovak Republic


Oscillator with mosfet output power drives a Maxwell bridge, not only for inductance and permeability measurement, but also to function as a metal detector.

## Fluid-flow monitor with current-loop output

Athough zener diodes are linked in the mind with stability, those having a zener voltage of 5.6 V and above do show a positive temperature coefficient; the BZX79 8.2V zener, for example, has a $4.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ coefficient which is linear over a $30^{\circ} \mathrm{C}$ temperature span. Power dissipation in the device causes selfheating, which makes it difficult to use as a thermometer but, used as a 'hot-wire' anemometer, the effect is useful. Fluid flow across the zener removes heat and its temperature falls, while dissipation is constant due to the reasonably constant breakdown voltage
In this circuit, two zeners each have a current-limiting resistor $R_{1,2}$, with different values to give different power dissipation in each zener. The one with low dissipation loses all its heat to the fluid at low flow rates, so that its temperature is about the same as that of the fluid; the other takes a higher current, so that a faster flow is needed to remove heat. At high flow rates, both temperatures are the same, but at lower rates, the high-dissipation zener warms and the difference in voltages is sensed by the op-amp. Since the devices are in the flow, response is rapid.
For a remote indication, the op-amp is
made to drive a $4-20 \mathrm{~mA}$ current source, provided by $T r_{1}$. Trimmer $R V_{1}$ provides offset adjustment and $R V_{2}$ adjusts gain. Component values in the circuit shown are for air through an 8 mm orifice, flowing at
around $2 \mathrm{~m} / \mathrm{s}$, both zeners being laid across the orifice.
P Harley
Newcastle-upon-Tyne
Tyne and Wear


Temperature coefficient of zener diodes - normally a disadvantage - is used here to provide fluid-flow sensing. Output is a $\mathbf{4 - 2 0 m A}$ current loop.

## Programmable stepper-motor pulse generator

As an alternative to previous circuits for programming the number of pulses for a stepper motor, this is rather simpler.
Outputs of a 12 -stage binary counter $I C_{2}$ are taken to the outputs of twelve noninverting buffers, $/ C_{1,3}$, via resistors $R_{1-12}$; inputs to the buffers determine the count and, therefore, the number of pulses at the output. Gates 1,2 form an RS flip-flop and gates 3,4 an And gate.
A start signal sets the flip-flop, which in turn resets the counter, which starts to count. While the counter outputs differ from the gate outputs, current flows in one or more of the resistors $R_{1-12}$, this current flowing to ground via the $V_{\mathrm{ss}}$ terminals of the counter and buffers and the base of $T r_{1}$, maintaining saturation of $\operatorname{Tr}_{1}$. As counter and buffer outputs equalise, the current stops, $T r_{1}$ cuts off and the RS flip-flop resets. This closes the And gate and stops clock pulses at the output.
MS Nagaraj
ISRO Satellite Centre
Bangalore
India


Pulse generator provides predetermined number of pulses to a stepper motor driver, the circuit using only four ICs.

## Stable microphone preamplifier

In audio equipment preamplifiers, low Inoise must often be combined with variable gain. Low-noise op-amps do not,
in general, suit low-impedance inputs such as a dynamic microphone and it is therefore common to use either input


Simple but effective stable and low-noise preamplifier for dynamic microphones.
transformers or low-noise transistors in a feedback loop, an arrangement which can produce instability with large variations in gain setting.
By-passing the input differential pair of the 748 , as shown, removes potential instability and the transistor is selected for a low noise characteristic when driven from a $200 \Omega$ source, its collector current being adjustable for the same reason. The circuit is remarkable for its low noise, stability and low distortion, in spite of the fairly basic nature of the circuit and the use of the general-purpose op-amp. Resistor $R_{2}$ adjusts the circuit for symmetry.
Michal Dolezal
Ostrava
Czechoslovak Republic

## Electronic lamp flasher

Replacing the usual bimetallic-strip switch in lamp flashers, this circuit only uses power when the lamp flashes and can be used for high-side and low-side switching.
One gate of the Schmitt Nand operates as a 1 Hz free-running multivibrator and the other three in parallel as a buffer to switch the BUZII power mosfet. Zener 1 isolates the circuit from transients.
At power up, circuit states are such that the mosfet is off and $C_{1}$ is charging via $D_{1}$,
$R_{2}$ and the lamp. During this time, $C_{2}$ charges through $R_{1}$, eventually toggling the multivibrator, switching the mosfet on and lighting the lamp. Power for the IC is supplied all this time by the charged $C_{1}$.
Capacitor $C_{2}$ is now discharging through $R_{1}$; the reverse process takes place, the mosfet goes off, allowing $C_{1}$ to charge up again and the cycle repeats.

## NK Goodman

Hastings
East Sussex


Two-terminal bimetal flasher replacement, usable in both high-side and low-side application and using no permanent supply. IC $C_{1}$ is a cmos device.


High side driver


## Adjustable output-resistance amplifier

ine-driving amplifiers conventionally Lrequire a series output resistor to pad the resistance which, if the amplifier output impedance is low, causes half the output to be lost and power dissipated. This circuit
synthesises the required impedance without these drawbacks.
With the input shorted to ground, a test current $i_{1}$ forced into the op-amp output flows in one of the power-supply lines,

where it is sensed by one of the left-hand current mirrors, depending on its sign. It is then inverted by the relevant right-hand current mirror and forced in $R_{1}$, where it causes a voltage drop $v_{t}=i_{1} R_{1}$ to be developed. Since, due to feedback round the op-amp, $v_{\mathrm{t}}=v_{1}$, the output resistance is

$$
R_{0}=v_{\mathrm{t}} / i_{\mathrm{l}}=R_{1}
$$

The impedance is not exact because of the realistic current-mirror gain, but trimming $R_{1}$ corrects the error. Dan Stiurca
lasi
Romania

Line driver has the required output impedance without loss of amplitude, without an excess of power dissipation and with a rail-to-rail swing.

## JPG Electronics



CIRCLE NO. 135 ON REPLY CARD

## STABILIZER 5



In any public address system where microphones and loudspeakers are in the same vicinity, acoustic feedback (howlround) occurs if the amplification exceeds a critical value. By shifting the audio spectrum fed to the speakers by a few Hertz, the tendency to howl at room resonance frequencies is destroyed and increased gain is available before the onset of feedback.
$\star$ Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$ * Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz}$ * Stereo Variable Emphasis Limiter $3 \star 10$-Outlet Audio Distribution Amplifier $4 \star$ PPM10 In-vision PPM and chart recorder * Twin Twin PPM Rack and Box Units $\star$ PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN $-50 /+6 \mathrm{~dB}$ drives and movements * Broadcast Stereo Coders $\star$ Stereo Disc Amplifiers » Peak Deviation Meter for FM broadcasting

## SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh GU6 7BG Telephone: 01483275997 Fax: 276477

## "moving from schematic to layout could not be easier"

Electronics World \& Wireless World Jan 1995
NEW
Extended
Library
Pack Just
£39.00!

## DESIGNER £99

*Schematic \& PCB Drawing *1/2 layer auto-router *Supports Windows printers/plotters *Full set of libraries *Clipboard support *Designer Special (manual on disk) also available.

## PRO £199

*Schematic \& PCB Design *Schematic Capture *Integrated Rats-Nest Generation *1-8 layer Auto-router (faster than Designer) *Net-List Export *Supports Windows printers/plotters *CAD-CAM outputs.

## PRO + £299

As the PRO but also includes *Advanced Schematic Capture (Busses,Power rails,etc) *Larger Schematic \& PCB Designs *Gerber file IMPORT for File Exchange *Extended libraries including Surface Mount, CMOS, etc.


Busses \& power rails handled using Global Nets on PRO+


Integrated Schematic \& PCB Design.

## POWERware, 14 Ley Lane, Marple Bridge, <br> Stockport, SK6 5DD, U.K. <br> Tel/Fax 01614497101

*Prices exclude P+P and V.A.T. *VISA/MasterCard Accepted *Network versions available.

FREE
Demo
Pack

# SEETRAX CAE RANGER pCb dESIGM WITH COOPER \& CHYAN AUTOROUTER 

## RANGER2 + SPECCTRA £400.00

RANGER \& SPECCTRA AUTOROUTER Together giving the most cost effective PCB design system on the market TODAY! SEETRAX'S ease of use combined with COOPER \& CHYAN'S renowned gridless autorouter, at an outstanding price.

R2 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet, HP-GL, Gerber, NC Drill, AutoCAD DXF Demo Disk available at £5.00 +VAT

## RANGER2 £150

Upto 8 pages of schematic linked to artwork Gate \& pin swapping - automatic back annotation Copper flood fill, Power planes, Track necking, Curved tracks, Clearance checking, Simultaneous multi-layer auto-router

## RANGER2 UTILITIES $£ 250$

COOPER \& CHYAY SPECCTRA auto-router (SPI)
Gerber-in viewer, AutoCAD DXF in \& out

## TRADE IN YOUR EXISTING PACKAGE TODAY

Seetrax CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hants, PO8 OSG Call 01705591037 or Fax 01705599036

+ VAT \& P.P
All Trademarks Acknowledged
CIRCIE NO 138 ON REPLY CARD


## TELFORD ELECTRONICS

|  | OSCILLOSCOPES |
| :---: | :---: |
|  | Gout OS250A ISMHz Dual Irace - |
|  | SE Lats 111 l8MH2 Cual Trace |
|  |  |
|  | Telequipment DM63 50Whr 4 Trace strage |
|  | Trio CS1566a 20 MHz Oud Trace |
|  | Cosser COU150 35MHz Dual Trace |
|  | HP1440A 100MHz Dual Traces sto age _-_ _ _ |
|  | HP180A + 18014 + 18214504tr - |
|  | HP1442A 100MHz Duad Tracestorage |
|  | Tektronik 453 loutz Cual Trase - f150 |
|  |  |
|  |  |
|  | $34 \mathrm{cw} 7426 \times 2+78924 \times 2.2004+12$ |
|  | OTMER SCOPES AYALUBLE |
|  | SIGMAL GEMERATORS |
|  | HP66548 10-520414 |
|  | HP8654A 10-520 M Mz |
|  |  |
|  | HP6616A 1.8-4.5Ch4 sipnal pererator - 5400 |
|  | Marconi TF2015 AMPM LOMHP 520MH2 |
|  | Marconi $\mathrm{T} 2016 \mathrm{AMFM} 10 \mathrm{Hr}-110 \mathrm{MHz}$ |
|  |  |
|  | Racal 93B1 520 MHHz syntresived |
|  | Racal 9082 l.5-52004th Symthested. ....-. |
|  | Wavetek 3000 1-520 Whz |
|  | Wavetek 193 smeed modulation 20 $\mathrm{MHz}^{\text {andm }}$ |
|  | Wavetek 16430 MHR Sweeo Renerato - |
|  | IF OSCILATORS |
|  | 138 10 Hz -100whr sinespquare wave meltered very low distation .__ $£ 150$ |
|  |  |
|  | HP32008 Vif Prallatar |
|  | HP6518 Test Oxcilator - .-. . $£ 125$ |
|  | HP2034 Yanable phase If generator - - $125^{\text {a }}$ |
|  |  |
|  | Rattord LDOM Lon distorion Oscliator - |
|  |  |
|  | Gichal Specialites 20WHy pulself gereitior Tpe: 8201 GPIB ...- |
|  | Ptorlios PW5132 function generato 0. $1 \mathrm{lt-2m4t}$ NS NWW |
|  | Philiss PM5715 puise genetator |
|  | Adret Ippe: 2230 |
|  | Rnode \& Schmar Type. SuFz |
|  | POWER SUPPLIES |
|  | пrell ISV70 MK2 0-70Y5A 0-350V\%-104 |
|  | Fameil 5770 M12 0-70V/SA0-35VO-10A |
|  | 6111AOC $0-20 \mathrm{O} 0-14$ |
|  | HP6291A0C 0.40 V 0.5 A - |
|  | HP62618 0-204 0-504 |
|  | HP6002 O-50V 0-108 200\% - EP0A |
|  | HP62098 OC $0-320 \mathrm{O} 0-0.14 \times$ - |
|  | Lambda LPD422A FM regulated: DC 0.40V1A 2 |
|  | diden Type 1100 160-16V O-20 - |
|  | RRIOUS SWICH MODE POWER SUPPIIS L HT TRNUSFDRMERS IH STOCK - PLEESE PHONE |



AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE Postage and packing must be added. Please phone for price. VAT @ $171 / 2 \%$ to be added to all orders. Please send large SAE for details. Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6DJ Tel: 01952605451 Fax: 01952677978

# NEW PRODUCTS CLASSIFIED 

Please quote "Electronics World + Wireless World" when seeking further information

## Memory chips

Synchronous flash simms. New memory modules from Smart Modular Technologies allow operation with zero wait states at frequencies to 33 MHz , using a clock signal to work synchronously, outperforming asynchronous simms and at least equalling dram simms. An on-board chip arranges the optional active reset control so that the simm always powers up in the right state during hot insertion. Since there is no standard pinout for these devices, they use the arrangement for asynchronous types, slightly modified to affect only read. Smart Modular Technologies. Tel., 01604 497735; fax, 01604497739

## Mixed-signal ICs

Pwm stepper controller/driver.
Three multi-chip modules by Allegro, the SLA7024M/26M/29M are pwm controller/drivers for two-phase unipolar stepper motors. Each uses four nmos fets for the driver output and, in most cases, external heat sinks are not needed; in case they are, the SLA7026M has an
electrically isolated power tab to transfer heat. Inputs are compatible with 5 V logic and micro output. Allegro
MicroSystems Inc. Tel., 01932 253355; fax, 01932246622.

## Microprocessors and controllers

16-bit, 3 V controller.
Microcontrollers in NEC's 78 K 4 family carry out $16 \times 16$ multiplications in under $1.2 \mu \mathrm{~s}$. They are single-chip devices, four versions having no rom, with 128 K rom in mask, one-time programmable and uv erasable. Integrated peripherals include uarts, high-drive parallel and pwm outputs and a timer unit for stepper-motor control as well as data conversion. Of the $64 \mathrm{i} / \mathrm{o}$ lines, 24 sink up to 8 mA and eight transistor drive outputs will source 5 mA . Source code is compatible with that used in the company's 78 KO and 78 K 3 devices. NEC Electronics (UK) Ltd. Tel., 01908 691133; fax, 01908670290.

8-blt, 5mips. Microchip's PIC16C73 field-programmable, risc-based microcontroller has 4096 words of one-time-programmable program memory, a low-power, 5-channel, 8 -bit a-to-d converter and operates at up to 5 mips . Its Harvard-architecture risc processor has a 200 ns cycle time and peripherals include a timer subsystem. I/o functions include a synchronous serial port supporting SPI or $I^{2} \mathrm{C} /$ Access bus protocols, a $5 \mathrm{Mb} / \mathrm{s}$ usart with a baud-rate generator, two 80 kHz pwm outputs and a 16 -bit capture/compare feature The device takes less than $15 \mu \mathrm{~A}$ from 3 V at 32 kHz and under $1 \mu \mathrm{~A}$ when asleep. Arizona Microchip Technology Ltd. Tel., 01628 851077; fax, 01628 850259.

CTV micro. Toshiba has a new member of the TLCS-870 family of 8 -bit microcontrollers: the


TMP87PM36N one-timeprogrammable device for colour television receivers and other consumer products; it is programmable by means of a standard eprom programmer and otp adaptor. Features include a four-channel, 6-bit a-to-d converter for afc, an $\mathrm{I}^{2} \mathrm{C}$ bus with multimaster control, pwm outputs to give 7 or 14-bit resolutlon and a remote preprocessor. An on-screen display function provides 128 -character, 24 column by 12 -line output with variable positioning. Operating speed is over 8 MHz in the voltage range $2.7 \mathrm{~V}-5.5 \mathrm{~V}$. Toshiba Electronics (UK) Ltd. Tel., 01276 694600; fax, 01276691583.

Shrinking micro. NEC's V53A microprocessor continues its microscopic tendencies with a further reduction in size from $20 \mathrm{~mm}^{2}$, itself a reduction from $28 \mathrm{~mm}^{2}$, to $14 \mathrm{~mm}^{2}$, with a height of 1 mm . Everything else remains the same in the chip, which is used for cpu-intensive work like number-crunching and data sorting and now, probably, for cellphones. Package is a 120 -pin TQFP with a pin pitch of 0.4 mm . NEC Electronics (UK) Ltd. Tel., 01908691133 ; fax, 01908 670290.

68040-based multiprocessor. BVM offers the RAMnet sotware package to enable 16 68040-based BVME4000 cpus to be used on one 32 -bit backplane, each being able to use all installed memory, which amounts to 512Mbyte if all cpus have the maximum 32Mbyte. Operating system is OS-9. One of the cpus acts as system controller and another looks after i/o capture, signal conditioning and data processing; others can be committed to other functions such as disk control. Since RAMnet is compatible with common real-time comms protocols, the system becomes a super-processor interfacing with other remote systems. BVM Ltd. Tel., 01489783589 ; fax, 01489780144.

## Optical devices

Bi-colour led. Dialight's 5551-3508 is a flush-mounted two-colour led, providing red and yellow or a mixture to give green. It is in a three-lead, inline package, the 3 mm flat-topped led having a viewing angle of $\pm 50^{\circ}$. Luminous intensity is 4 mcd at 20 mA . Dialight. Tel., 01638 662317; fax, 01638560455.

Oscillators
VCXOs. Voltage-controlled crystal oscllators in IQD's IQVCXO-173


PCMCIA oscillat or. With a height of under 1.3 mm and a footprint of less than $35 \mathrm{~mm}^{2}$, Statek's CxO-m crystal oscillator is designed for use in PCMCIA cards, working from 3 V or 5 V . Frequency range is 1.25 70 MHz , stability is $\pm 100 \mathrm{ppm}$ between $-40^{\circ} \mathrm{C}$ and $85^{\circ}$ and calibration tolerance options $\pm 0.01 \%, \pm 0.1 \%$ and $\pm 1 \%$. Tighter specification are available. Advanced Crystal Technology. Tel., 01635 528520; fax, 01635 528443.
range are designed for use in phaselocked loops working at frequencies in the $1-45 \mathrm{MHz}$ range. Pulling is a minimum of $\pm 100 \mathrm{ppm}$ for a voltage swing of 4 V around 2.5 V . Power required is 40 mA from 5 V and the output of the 14 -pin dil devices is compatible with hcmos/is/til devices. IQD Ltd. Tel., 01460 74433; fax, 0146072578.

Stepper dilver. From NanotecElectronic, the IMT 901, is a driver IC for bipolar, constantcurrent stepper motors. Supply is $12-40 \mathrm{~V} \mathrm{dc}$ and phase current is settable using fixed resistors up to 2.5 A phase. Switching allows full, half, quarter and eighth-step stepping to give quasi-sinusoida output, with automatic current boosting in the hall-step mode to give about $15 \%$ more power. The 56 mm diameter, 50 mm high package contains the driver, optional oscillator for low and high frequency, motor connector and screened 14 -lead cable for power and data. NanotecElectronic GmbH. Tel., 0049 8121 79992; fax, 00498121 79991.

## Digital signal processors

Plxel processors. Using fieldprogrammable gate arrays for flexibility, Sundance has produced configurable, high-performance pixel processors, SMT308/9, these first two in the family being meant for use with the TI TMS320C40 general-purpose dsp, conforming to the TM-40 board module standard. They can be configured to carry out low-level video operations, leaving higher-level functions to dsp software. The processors boost the throughput of the C40 by 'an order of magnitude', since a few gate delays take up much less time than software instructions. SMT308 digital video board is for highresolution digital cameras to identify areas of interest in the frame, so that data rates to the video processor are reduced. SMT309 is a run-length encoder for use as a co-processor to the C40, settable upper and lower limits cutting out unwanted data for a higher processor operating speed. Sundance Multiprocessor
Technology Ltd. Tel., 01494
431203; fax, 01494726363.

## Programmable logic

 arrays40,000 -gate fpga. From AT\&T comes the ATT2C 40 field-programmable gate array containing 40,000 gates and claimed to be the highest-density fpga on the market. It is a $0.5 \mu \mathrm{~m}$, three-level metal device, avallable in two speeds having logic cell delays of 5.1 ns or 3.8 ns , the latter exhibiting a clock-to-output delay of under 11.3 ns , a setup time of under 5 ns and a zero hold time. In total, 900 programmable logic cells are combined with 3600 registers and 480 user i/os. Up to 57,600bit of user ram and rom are available. Packages include pqfps with 208, 240, 304 and 428 pins and a 428 -pin ceramic pga type. AT\&T Microelectronics. Tel., 01734324299 ; fax, 01734328148.

## COMPUTER

## Data acquisition

16 channels for audio and telecomms. LSI has a 16 -channel data acquisition board for use in fast processing of audio signals in test equipment, audio compression and telecomms. Carrier board $D B V / D M C B$ fitted with up to four AM/D16QS daughter modules provides 16, 50 kHz , 16 -bit-wide channels, data channels being mapped into the system processor memory. The carrier board complies with dBeX32 and can be daisy-chained with up to four other i/o boards. Loughborough Sound Images Ltd. Tel., 01509 634300 ; fax, 01509634333.

## Data communications

 Voice/data multiplexer. SwitchIT is a voice and data switching multiplexer by ML Electro-Optics that integrates voice, fax data and lan traffic to be transmitted on one digital line, the voice switching feature allowing a high-quality, multi-site, private voice network to use 64 Kb circuits instead of 256 Kb or more. SwitchIT operatesWaveform analysis. ACRAVIew is a software package to enable the analysis of waveforms from Yokogawa's range of oscillographic recorders. Waveforms can be examined and analysed, manipulated, converted to other file formats such as Ascii or Lolus 1-2-3, presented as colour graphics, formats including $X / Y$, multiframe, overlap and trend, or as digital data. Up to 32 channels can be handled simultaneously. Martron Instruments Ltd. Tel., 01494 459200; fax, 01494 $-535002$.

on leased-line, dial-up and frame relay services. M L. Electro-Optics Lid. Tel., 0161627 1100; fax, 0161678 0124.

## Computer boardlevel products

 16/32-bit controller. CMS's Micro-Midget is a $16 / 32$-bit microcontroller for use in 'intelligent' control systems, using an advanced, real-time operating system supporting high-level languages including C. It has up to 22 digital l/o lines, configurable for input or output, a single serial port operating at 38400 baud and driving RS232/485, and two 16 -bit timer counters. Its peripheral expansion bus is usable with 68000 -compatible devices, 8051 or $I^{2} \mathrm{C}$ bus peripherals. Cambridge Microprocessor Systems Lid. Tel., 01371 875644; fax, 01371876077.Thermal modelling. Flomerics announces a thermal modelling service based on its thermal management soitware package, Flotherm, the new service being intended for small companies who need to use the process infrequently to find the cooling needs of a new piece of equipment at the design stage. Simulations produced by Flotherm predict the radiative, convective and conductive heat transfer characteristics in a system or component and highlight hot spols, showing air flow, temperature and pressure in the system. Possible problens shown by the simulation are discussed by the customer and modelling team, who will advise on solutions. Ftotherm models come on disk and allow customers to use their own computers to rotate and analyse the simulation, or can be supplled as animated video recordings. Flomerics Ltd. Tel., 0181 9418810; fax, 0181 9418730.


## Passive components

Encapsulated transformers.
Clairtronic introduces, in its 1995 brochure, a new family of transformers working on the Eurovoltage 230V. Types include thermally protected low-profile units and inherently short-circuit-proof miniature models. All use flameretardant materials to UL94VO and can be used in products to meet EN60950. Claltronic Ltd. Tel., 01753 692022; fax, 01753535096.

SM capacitor arrays. Surfacemounted capacitor arrays in the MNA series by Rohm contain two or four components in standard 0805 or 1206 packages, taking up to $45 \%$ less space than discrete SM devices. Dielectrics are COG, X7R and Y5V and the capacitors come in values from 11 pF to 680 nF . Convex terminations allow inspection of the mounting. Flint Distribution. Tel., 01530510333 ; fax, 01530510275.

## Connectors and cabling

Pcb terminal blocks. Bulgin pcbmounted terminal blocks are available in two-piece pluggable form or as a single-piece fixed type. They incorporate a rising-cage pressureclamping feature for low contact resistance and reliability, in which clamps compress the wires and serrations form a gas-tight interface. Bodies are in UL94V-O rated polyamide and contacts in tin-plated phosphor bronze. Ratings for the connectors, in 2 to 24 -way form, are 15 A at 250 Vac for the pluggable type and 210 A at 250 Vac for the fixed variety. Gothic Crellon Ltd. Tel., 01734788878 ; fax, 01734776095.

## Crystals

Ceramic resonators. Coaxial ceramic resonators by Siemens Matsushita are made in standard and miniature versions and are all based on a quarter-wavelength design in high-permittivity material. Frequency coverage is $450 \mathrm{MHz}-3.5 \mathrm{GHz}$ for the standard type, with Q between 250 and 400; the miniature models, which measure 16 by 4 by 4 mm , cover $500 \mathrm{MHz}-4.5 \mathrm{GHz}$ at Qs of $200-350$. Quantelec Ltd. Tel., 01993 776488; fax, 01993705415.

## Filters

Mains filters. Power filters in Schaffner's FN402 series are available in both pcb and chassismounting form in ratings from 0.5 A to 6.5 A ac at line voltages to 250 V , package size being 28 by 48 mm , 16.5 mm off the board. Filters comply with American and European satety standards and they are suitable for use in equipment meeting IEC950, with versions available for medical use. Leakage current is $2 \mu \mathrm{~A}$ maximum. Schaffner EMC Ltd. Tel. 01734770070 ; fax, 01734792969.


## Hardware

Fan trays. Intelligent fan trays, as opposed to the dumb kind, are made by Vero to fit into the top of IMRAK 19-in racks without reducing space available to equipment. They have four dc fans, an autoranging, universal power supply and a control unit, which uses a thermistor to activate the fans if temperature exceeds $35^{\circ} \mathrm{C}$, increasing power until it reaches $55^{\circ} \mathrm{C}$. If a fan falls or is blocked, the others speed up, an alarm alarms and an indicator indicates, while a ttl signal initiates a controlled shut-down. Vero Electronics Ltd. Tel., 01703 266300; fax, 01703265126.

## Screened enclosures.

Measurements on Vero's 3/4U caseframes in the KM6-EC range show excellent attenuation of both $E$ and H fields. With no additional

State detector for inductors. Offered by Jensen is the MagProbe, a completely passive device that indicates whether a solenoid, motor, reed relay or virtually any other component containing a coil is energised or not, with no connection or physical contact. One benefit of this is that equipment might not need to be shut down for test, and another is that there is no magnet present to inflict physical damage on the equipment. Mag-Probe is available in standard and highsensitivity versions, one of them working in almost any case, with either ac or dc. Operation is simplesput the tip of the detector near the coil or a shatt, whereupon a led on the other end lights up if the coil is energised. Jensen's 1995 catalogue has a full description and is now available free. Jensen Tools Tel., 0800833246 (free); fax, 01604785573.
screening, the units exhibit H field attenuation of over 30 dB from 10 kHz to 10 MHz and more than 90 dB in the E field at 1 MHz down to 40 dB at 100 MHz . Fitting beryllium copper fingers round the edges of front and rear apertures improved the performance to 60 dB at 100 kHz in the $H$ field and in the E field over 100 dB at 1 MHz . Vero Electronics Ltd. Tel. 01703266300 ; fax, 01703265126.

Hand-held enclosures. Veronex high-impact polystyrene enclosures come in four plan sizes ( 90 by 50 by 16 mm to 190 by 100 by 60 mm ) and five heights and are finished internally with nickel acrylic paint to give attenuations of 110 dB at 200 MHz and 45 dB at 1 GHz . Belt clips and feet are available. Vero Electronics Ltd. Tel., 01703266300 ; fax, 01703265126.

Burn-in IC sockets. Yamaichi introduces IC51, a family of IC sockets for test and burn-in, accommodating Ics with pin pitches from 1.27 mm to 0.5 mm with a parallel clamping device to eliminate strain on the pins. Over 10,000 variants handle most types of package, including custom types. Temperature range is $-55^{\circ} \mathrm{C}$ to $170^{\circ} \mathrm{C}$. Radiatron
Components Lid. Tel., 01784 439393; fax, 01784477333.

Equipment enclosures. Cases for equipment used in a wide range of industries are made by Manitron Enclosures in steel, stainless steel, aluminium, polycarbonate and ABS, with interference screening and silkscreen printing if required. Options include machining, painting, anodising, plating and engraving and there is a range of accessories. Speclally made enclosures can be made in steel and aluminium.
Manitron Enclosures Ltd. Tel., 01270 764171; fax, 01270763160.

## Instrumentation

Earth tester. Avo's DET6D is an automatic, three-terminal earth tester for outdoor use. It checks for excessive current and voltage spike resistances and noise to eliminate false results and presents readings on a large Icd. In two automatic ranges, the instrument measures from $100 \mathrm{~m} \Omega$

## Analogue oscilloscopes.

Tektronix's TekBench family of instruments is a collection of oscilloscopes, counters, multimeters, power supplies etc. for use in training, production and servicing, the two newest members of which are the TAS 200 series 20 MHz and 50 MHz , dual-channel, analogue oscilloscopes having broad similarities to the TDS family. A 'user interface' approach to operation is replaced by knobs and switches, although there is on-screen indication of control settings. A useful feature is automatic $50 \%$-level triggering to eliminate trigger adjustment. Tektronix UK Ltd. Tel., 01628 486000; fax, 01628474799.
to $2 \mathrm{k} \Omega$. Spike kits for use with two or three terminal, complete with cables, cable winders and clips, are offered. Avo International Ltd. Tel., 01304 202620; fax, 01304207342.

Frequency standard. FS 700 frequency standard from Stanford Research Systems uses Loran signals, transmitted for navigation and traceable to caesium clocks, to give a long-term stabllity of 1 part in $10^{12}$. FS 700 uses timing data from the signals to lock Its own oscillator to provide a 10 MHz output in the form of a ttlcompatible signal adjustable in frequency between 0.01 Hz and 10 MHz in a $1: 2.5: 5$ sequence. Thurlby Thandar Instruments Ltd. Tel., 01480 412451; fax, 01480450409.

Oscilloscope isolation amplifier. Vann Draper's H5001 single-channel isolation amplifier allows oscilloscopes to look at equipment such as motor controls, switchedmode power supplies and power semiconductor circuitry without the need to remove the instrument's eath connection. It employs optical and transformer techniques to handle signals up to $2 k V$ from earth, using standard oscilloscope probes. Plastics are used in the casing and controls of the amplifier and emi and

## NEW PRODUCTS CLASSIFIED

Please quote "Electronics World + Wireless World" when seeking further information
rfi protection is provided. Vann Drape Electronics Ltd. Tel., 0116 2813091; fax, 01162570893

Temperature controller. Brainchild announces the BTC-404 1/4DIN analogue temperature controller, which works with J or K thermocouples to cover the $0-1200^{\circ} \mathrm{C}$ range. Proportional or on-off control outputs are offered, to an accuracy of $\pm 1 \%$ of span, the on-off control coming from a 10 A relay. Alternatively, a pulsed voltage output drives a solid-state relay, or there is a 4-20mA linear loop or a $0-10 \mathrm{~V}$ linear output. Indication is by led digital readout and the unit occupies only 53 mm behind the panel. Brainchild Temperature Controllers Ltd. Tel., 01903216514 ; fax, 01903219662.

Go/no-go tester for GSM. CTD 52 by Rohde \& Schwarz carries out rapid testing on GSM mobiles, offering all the characteristics of a GSM base station. On one keystroke, it will indicate pass or fail on selectable rif

## Cameras

Oem ced. Sony has produced the NDP-408YE, a low-cost, monochrome, cod camera in board form, designed for conferencing, cashpoints and machine vision. It measures 40 by 40 by 26.5 mm and gives a resolution of 380 tv lines from a 500 by 582 pixel format, with automatic exposure control and a 0.02 s to $10 \mu \mathrm{~s}$ shutter speed. Power needed is 120 mA at 12 Vdc ; minimum sensitivity 0.3lux; and composite video output 1 V pk-pk into 7582. Standard lens has a 3.6 mm focal length, although other types are available. Sony Computer Peripherals \& Components. Tel., 01932816000 ; fax, 01932 817001.
channels, measuring power and sensitivity and carrying out an echo test to verify the mobile's operation. It should appeal to retailers, who are enabled to perform fast checks on celliphones to determine whether the mobile is at fault or malfunction is due to another cause. Rohde \& Schwarz UK Ltd. Tel., 01252 811377; fax, 01252811447.

Energy monitorlng. Seltek's UPM6000 portable energy monitor, which is supplied with software, has a $80-260 \mathrm{~V}$ AV input range, is usable with three-wire or four-wire systems and reads $V, A, V A R, k W, P F, H z$, kVArh and $\mathrm{min} /$ max values; it also gives harmonic analysis up to the 25th for voltage and current. Software allows 12 channels to be configured with simultaneous voltage and current harmonics and up to 30 trend graphs of any of the measured parameters can be displayed on a pc. Seltek Instruments Ltd. Tel., 01920 871094; fax, 01920871853.

## Literature

Livingston Hire. For 1995, Livingston is computerised. Its catalogue, that is. It is free, comes on disk, runs under Windows and asks the relevant questions to lead one to the very instrument for the job in hand; there is even an order form to fill in and print out. Provided you can answer the questions honestly and not say that the job will be done by next Tuesday, when the rented instrument will probably be gathering dust for at least three months before the job starts, the Decision maker will tell you whether renting or buying is a better bet. Call free on 0800886000 . Livingston Hire Ltd. Tel., 0181943 5151; fax, 0181 9776431

Enclosure catalogue. Vero offers a 68 -page technical catalogue on IMRAK 400 wall-mounted enclosures and IMRAK 1400 screened, freestanding racks and cabinets, together
with all the bits and pieces such as chassis supports, panels and other accessories. Also in the catalogue are descriptions of pre-configured telecomms wirling closets and racks, patch panels, cable management products and specialised products for use with optical fibres. Vero Electronics Ltd. Tel., 01703 266300; fax, 01703265126.

Tools and test gear. A new 66-page catalogue from Jensen of Phoenix, Arizona, has tools and test gear for work with all types of electronic equipment, including telephones, lans and computers. Tools range from tweezers to power tools and comprehensive toolkits and test gear from people such as Fluke, Tektronix Wavetek and Microtest, ranging from pocket test meters to digital storage oscilloscopes. Free from Jensen Tools. Tel., 0800833246 (free); fax, 01604785573.

## Materials

Static-shielding bag. 3M's Model 2750 re-usable shielding bag consists of stainless steel microfibres suspended in 7 mil of antistatic LDPE which, although much thicker than the common metallised gossamer layers, is more transparent. The bags are effective in relative humidities up to $10 \%$ and retain their properties for up to five years. 3M United Kingdom plc. Tel., 01344 858000; fax, 01344 858758.

Printers and controllers Printer sharing. Swiss firm Rotronic has introduced their ICE printersharing switchers through Interconnections Ltd, recently taken over. Four models allow either printer sharing between two or four computers or computer sharing between two or four printers. Switching is either manual or by a tsr program, which scans the system for requests after eight inactive seconds. Power comes from the computer Interconnections Lid. Tel., 01293 822781; fax, 01293822786

Thermal line printers. Two new battery-powered printers by Fujitsu, the FTP-623/633, are for paper widths of 2 in and 3 in respectively, both being powered by $\mathrm{NiCd}, \mathrm{Ni}-\mathrm{MH}$ or lithiumion packs at voltages between 4.2 V and 8.5 V . The thermal line dot system, said to be an improvement on the wire dot type, allows printing speeds to 480 dotlines/s with a density of $8 \mathrm{dot} / \mathrm{mm}$. They are available as mechanisms or complete with interface board or with microcontroller and gate array for complete driver control. Fujitsu Microelectronics Ltd. Tel., 01628 76100 ; fax, 01628781484

## Production equipment

 Programming in production. Data I/O has introduced an automated handling and programming equipment for production runs. The ProMaster 7500 uses two of the company's AutoSite programmers in an automatic handler, the whole turning out tested, sorted and laser-marked devices in both surface-mounting andTime-code receiver. Temic U4224B and U4221B bipolar, straight-through time-code receivers are intended for use in radio-controlled clocks, receiving the time-code data from the National Phystcal Laboratory at Rugby. Data produced by the receiver can be used as a real-time clock for cordless equipment such as portable telephones, camcorders and equipment for navigation and security.
Signals from the 50 kW NPL transmitter are at 60 kHz and are binary-coded decimal in form to give time, date and year(!) information. U4224B accepts $1.2-5.25 \mathrm{~V}$ at $30 \mu \mathrm{~A}(1 \mu \mathrm{~A}$ asleep) and a setup time of 2 s , while U4221B takes $2.4-5.5 \mathrm{~V}$ at $40 \mu \mathrm{~A}(0.2 \mu \mathrm{~A})$ and sels up in 2.5s. Macro Group. Tel., 01628 604383; fax, 01628 666873/668071.
dil packages with up to 84 pins. Pick-and-place heads in the handler can rotate devices, so that work goes on without regard to orientation. Data I/O Ltd. Tel., 01734 440011; fax, 01734 448700.

Plastics assembly. Miniprobe by Kelly Ultrasonics is a lightweight, ultrasonic plastics assembly tool for use in swaging, staking and welding. It looks a little like a small soldering iron and, since the tool itself is not heated, heating of the workpiece is very localised, the operation and cooling being so fast that little thermal energy is transferred. Welwyn Tool Co. Ltd. Tel., 01707 331111; fax, 01707372175.

## Power supplies

Ac voltage stabiliser. An automatic ac voltage stabiliser, the Gardners AVSU, smooths out extended voltage fluctuations and brown-outs in the mains supply. It copes with inputs up to $20 \%$ down on nominals of 220 V or 110 V , automatically selected, and provides over-voltage suppression and rfi filtering. Rated power of 2 kVA can be taken from either the 220 V or 110 V outputs, which are both present, or shared between them. Further units offer ratings of $500 \mathrm{VA}, 1 \mathrm{kVA}$ and 4 kVA . Gardners Ltd. Tel., 01202 482284; fax, 01202470805.

Battery monitor. Opalport Electronics offers a software-based battery monitor, the BA319 in a 3U 19in rack, which observes the current health and predicted behaviour of up to 400 cells, with an option up to 700 . It presents a detailed review of every aspect of cell performance and prospects for the future. Opalport Electronics Ltd. Tel., 01249758161 ; fax, 01249750626.

Wide range - two sizes. Instead of the usual afterthought approach to psu design, in which the space left available is invariably far too small, the method adopted in the Vicor
range is to offer over 11,000 different combinations of ac/dc input and dc output in only two sizes of baseplatecooled psu $-25-100 \mathrm{~W}$ in 58 by 61 by 13 mm and $50-200 \mathrm{~W}$ in 117 by 61 by 13 mm . Requirement changes can be coped with by simply using a different module or trimming the output for smaller changes. XP plc. Tel., 01734 841010; fax, 01734843423.

High-power converter. HPDU4O by Gardners is a $5 \mathrm{~V}, 8 \mathrm{~A}$, low-profile dc-to-dc converter for mounting in a standard Euro-rack or similar enclosure. A typical use, says Gardners, would be as a standby to maintain power to a bank of memory cards during maintenance work, in which case any dc input from batteries to $24 \mathrm{~V} / 48 \mathrm{~V} / 72 \mathrm{~V}$ dc supplies and rectified ac can be used, without too much emphasis placed on stability of the ac. Non-polarised input terminals avoid disaster from reversed connections. Shielding and filtering against ri at both ends is provided. Gardners Ltd. Tel., 01202 482284; fax, 01202470805.

European power supply. EAO Highland's new EcoPower psu is, the company believes, the first to carry the European EMC mark, CE. It is an industrial unit, producing $24 \mathrm{~V}, 5 \mathrm{Adc}$ from a $115-230 \mathrm{~V} 50 \mathrm{~Hz}$ ac lightningprotected input and also a safety extra low voltage (selv) output. The unit functions as mains filter, meeting

Class B specifications on if interference. EAO-Highland Electronics Ltd. Tel., 01444 236000; fax, 01444236641

## Radio communications products

Power amplifiers. ENI announces the introduction of the Models 604L/607L rf broadband power amplifiers covering the frequency ranges $500 \mathrm{kHz}-1 \mathrm{GHz}$ and $800 \mathrm{kHz}-$ 1 GHz respectively, producing linear outputs of 4 W and 7 W . Any load vswr from open-circuit to short-circuit is acceptable without damage and the units meet the usual ri/emi standards Holaday Industries. Tel., 01628 478155; fax, 01628476871.

QSPK demodulator. TDA8040 and TDA8041 from Philips form a twochip, fully integrated demodulator for quadrature phase-shift keyed signals used in digital video broadcast and digital telephony and performs all analogue and digital functions. The 8040 demodulator takes if up to 150 MHz and outputs I and $Q$ signals, which are then digitised in the 8041 controller to recover symbol clock and decode the symbols, obtain afc and agc. Phase error is less than $0.5^{\circ}$. Only a tank circuit for the vco and a pair of varicaps are needed externally, an on-chip voltage stabiliser being provided. Philips

Semiconductors (Eindhoven). Tel., 00 3140722091 ; fax, 003140724825.

## Switches and relays

Power switches. From BLP
Components, the Series 32
Powerpulse relay, designed to meet BS3676 Part 1 on lighting
requirements and now confirmed in its suitability for use with fluorescent lighting up to 30A, part of the testing being equivalent to switching a 5 ft tube 50,000 times. The switch handles relative humidity to $95 \%$, temperatures to over $70^{\circ} \mathrm{C}$ and voltage to 758 V ac. BLP Components Ltd. Tel., 01638665161 ; fax, 01638 660718.

Black keyboard. Model 1800 Black Magic by Cherry is a 19 -in keyboard in the 'in' colours for computing equipment, black and grey, joining the standard 19 -in model 3000. It is intended for banks and checkouts, or anywhere where size is important, and can be mounted in a 19-in rack. Models with 101 or 102 keys are available. Cherry Electrical Products Ltd. Tel., 01582763100 ; fax, 01582 768883.

Sealed keypads. Silicone-rubber, sealed keypads in the Series 84LS range by Grayhill are but 9.07 mm thick overall and come in 12-key and 16 -key versions. Contact resistance is $10 \Omega$ maximum and is compatible with
mos, tt and dtl circuitry. A choice of matrix or single-pole/common-bus circuits is on offer and shielding is optional. EAO-Highland Electronics Ltd. Tel., 01444 236000; fax, 01444 236641.

## Transducers and <br> sensors

Control-shaft encoder. For the accurate adjustment of medical and measuring equipment, Panasonic's optical encoders offer extremely long life and small size, having a height of 8 mm . The encoders simply push onto the shaft, one version being provided with 31 leds to indicate position. The devices provide 40 pulses per revolution and operate from 5V. Panasonic Industrial (Europe) Ltd. Tel., 01344853827 ; fax, 01344 853803.

Tilt sensors. Absolute inclinometers by Control Transducers in the $A-I D$ range use optical encoders with a unique, rather than incremental code. From one to 15 encoders may be networked on a slx-wire cable at distances of 330 m , to an RS-232 port, for which an interface is provided From 2 to 65536 codes per revolution are available with 9 -bit or 12 -bit accuracy over $360^{\circ}$ at rates from 38.4 to 115.2 kbaud . Control Transducers. Tel., $01234217704 ;$ fax, 01234 217083.

## DATA RATE Continued from page 482

## Spectral behaviour

LM4861's spectra into $8 \Omega$ are the highest (Fig. 21). The second harmonic dominates numerically as might be expected from the thd residue. There are plenty of high level, high order harmonics too, but at least the evens dominate.
Spectra for the 4861 at 18 dB below clip is quite different (Fig. 22). The second harmonic has not reduced in proportion though the higher harmonics have increased - suggesting fatiguing sonics.
Unfortunately, the LM4860 spectra demonstrated an unexplained noise problem (Fig. 23): a faulty ic is assumed, although \%thd is within spec. Only one sample was provided and a replacement was not available in time, but the spectral pattern is recognisably as $L M 4861$.
At the onset of clip, most of the LM12 products are just below 100 dB (Fig. 24) - note the dominant third harmonic, while 25 dB below clip (Fig. 25), the noise floor has increased. Harmonics poking above the averaged noise are just 2nd, 3rd, 4th and 6th - not unpleasant. Harmonics do not change outside the certainty limits ( $\pm 2.5 \mathrm{~dB}$ ) when ripple is considerably raised from about 15 mV to 350 mV by resistive upstream rail loading
LM3875 spectra just below clip are similar (Fig. 26), yet not quite like LM12: the high order even harmonics are consistently slightly higher. At -25 dB below clip, the spectra (Fig. 27) are very like LM12 under the similar conditions. LM3886 performance was also very similar, but more like the LM12 at high levels, while at -25 dB down, the 3 rd , 5 th and 7th are stronger and replace the 4th and 6th. This small but possibly crucial difference is conceivably a consequence of the VCA type elements employed for muting.
At just below clip, the spectra of the PA42 and added mos
output stage is ragged though nearly all below -90 dBr (Fig. 28). But at 26 dB down, affecting most listening, the only harmonic readable above the averaged noise floor is a tiny amount of second (Fig. 29).
I suggest this amplifier will sound very natural when used with efficient loudspeakers. 800 mV of ripple was provoked and had no effect, demonstrating solid psr from the harmonic perspective.
However, the PA45 mainly makes odd harmonics (Fig. 30). Worse, the high harmonics are almost level with the low order ones and will be very prominent by ear. At -25 dB below clip, while cleaner, odd harmonics still dominate the evens.

With the supply raised to +62 V for the PA45 (still $20 \%$ below maximum) all the harmonics are reduced (Fig. 31) and the higher harmonics are particularly suppressed. Under these conditions, excellent sonics should result.
Moral: Those who believe mosfets have high \%thd may be using them wrongly.

## References

1. B. Duncan, Spectrally Challenged, $E W+W W$, Oct 93. 2. D. Self, High Speed Audio Power, EW + WW, Sept 94. 3. B. Duncan, Simulated attack on slew, $E W+W W$, April 1995.
2. D. Self, Distortion off the Rails, $E W+W W$, March 95. 5. J. DeCelles, Audio Amps utilising Spike protection, Nat Semi, AN 898, Oct. 93.

## Acknowledgment

The author would like to acknowledge the assistance given by Audio Synthesis.

## ARIICIE WANTIED

## W A N T E D! !

Top prices paid for your test equipment made by HEWLETT-PACKARD, MARCON, FLUKE, TEKTRONIX, BOONTON, ROHDE \& SCHWARZ etc.

From Europe's No. 1 Test Equipment Leader
ROSENKRANZ-ELEKTRONIK, AXEL ROSENKRANZ GROSS GERAUER WEG 55, 64295 DARMSTADT/GERMANY

Phone: 0049-6151-3998-0 Fax: 0049-6151-3998-18

## CONTACT US NOW!

You are looking for test equipment? More than 10,000 units in stock for immediate delivery. Call or fax for our new 100 page catalogue

- today -
** WHAT WE DON'T HAVE YOU DON"T NEED **


## FREE CLASSIFIED

SALE OR SWOP for CD-Rom drive Perkin Elmer, infra-red spect potometer, infragraph H 1200 , working. Phone 01273553505.

WANTED: pre-war television. Jac Janssen, Hogeham 117D, NL-5104JD Dongen, Netherlands. Tel: (eves) 010311623 18158. Fax (office): 01031 13624664.

TEKTRONIX MODULES 7A26, 7A18, 7B85, 7B80, 7B50A: Fully tested. Sensible offers please. Ian Stirling, Cottaracre Star. Fife KY7 6LA. ${ }^{\text {ing, }} 01592757384$.

WANTED: TUBE for Solartron CD1400 oscilloscope, type SES/2A Poole 01202602722.

FOR SALE: Dranetz phase meter, 2 Hz $700 \mathrm{KHz}, 0.01$ degrees resolution, good for filters, crossovers etc. $£ 350$ ono. Tel: Mike 01483487189 (eves).

WANTED: TEKTRONIX Plug in module, Type AA501 Distortion analyser. Also SG505 oscillator. Phone: G. E. Gillard 01159846116.

[^3]
## ADD VALUE AND CREDIBILITY WITH REPRINTS

Multiple copies of your articles and advertisements published in this magazine make ideal promotional material for sales literature, exhibition handouts, direct mail, new product launches, distributor promotions, Public Relations etc.
You can add your own artwork and copy, utilise the front cover of this magazine, include your list of distributors, and/or your latest advertisement/s. Reasonably priced reprints can be tailor-made to your own specific requirements or simply reprinted in their original form. (Minimum order number 250)

For a FREE quotation please telephone Jan Crowther now on: 0181-652 8229 or fax: 0181-652 3978 Reprint Services, Reed Business Publishing,
Room 1006, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS, England

## INDEX TO ADVERTISERS

| Ambar Components | 459 |
| :--- | :---: |
| Antrim Transformers Ltd | 515 |
| BK Electronics | 498 |
| Bull Electrical | 476 |
| Cricklewood Electronics | 508 |
| Dataman | BC |
| Display Electronics Ltd | 455 |
| Field Electric Ltd | 494 |
| Grandata Ltd | 493 |
| Halcyon Electronics | 515 |
| ICE Technology Ltd | IFC |
| Interconnections | 508 |
| IOSIS | 450 |
| John Morrison (Micros) | 494 |
| Johns Radio | 499 |
| JPG Electronics | 525 |
| Kestral Electronic Components | 450 |
| Keytronics | 468 |
| Lab Center | 456 |M \& B Radio (Leeds)

512
Millford Instruments ..... 508
Number One Systems ..... 494
OEMA ..... 517
Olson Electronics Ltd ..... 461
PICO Technology ..... 492
Powerware ..... 525
Ralfe Electronics ..... 536
Research Communications ..... 467
Seetrax Ltd ..... 526
Smart Communications ..... IBC/519
Stewart of Reading ..... 498
Surrey Electronics ..... 425
System Enclosures ..... 503
Technology Sources Ltd ..... 512
Telford Electronics ..... 526
Telnet ..... 515
Those Engineers Ltd ..... 517
Timely Technology Ltd ..... 450Tsien Ltd519PAGE

# CLASSIFIED 

## RECRUITMENT

## IC DESIGN ENGINEERS

M4 Corridor

Challenging Career Opportunlties

Attractive
Salary and Beneflts Package

## MAJOR US SEMICONDUCTOR MANUFACTURER

This world leading company has enjoyed success throughout its 30 year history and is currently experiencing another period of sustained growth. A focused approach and commitment to technical innovation are the cornerstones of this company's philosophy throughout the world. Its core competencies in standard linear and system IC technology are to be further developed in the recruitment of three individuals into the UK Design Centre:

## SENIOR IC DESIGN

Operating as part of a dedicated design team, you will take a leading role in developing application specific solutions to process high speed data streams for the computer peripheral and datacom market places. Qualified to degree level in an electronics related discipline, applications are invited from.talented digital IC designers with at least 3-5 years' design experience.

## ANALOG IC DESIGN <br> You will contribute significantly to the further development of a market leading data conversion product range. Applications are particularly welcome from candidates with an appreciation of Sigma-Delta and successive approximation conversion techniques. You should be recently qualified to MSc level in Microelectronics or have at least 1 year's experience in IC design.

## DIGITAL IC DESIGN

Developing application specific products for the computer peripheral and datacom market places, this role will provide an excellent opportunity for an engineer with at least 1 year's IC design experience or for a recent MSc graduate in Microelectronics. Whilst attitude and aptitude are more important than experience, an understanding of the techniques for processing high speed data streams would be beneficial.

This is an organisation where people really matter, and as such, successful candidates can expect to receive excellent salary and benefits packages.
To find out more about these opportunities and to apply in total confidence, please telcphone Andy Clarke on 01273 480088 this week or next up until 7.30 pm or write to him at the address/fax no. below quoting ref. no. 40581.
ERC House, 32/33 North Street, Lewes, East Sussex BN7 2PQ United Kingdom
Telephone: ( 01273 ) 480088 Fax: (01273) 480808 Int Code ( +44 1273)
INTERNATIONAL TECHNOLOGY RECRUITMENT

## TEST and MFASUREMENH

- Spectrum Analysers
- Signal Generators
- Tele/Datacomms Test
- Power Meters
- Radio Test Sets
- Oscilloscopes
- Frequency Counters
- DMMS
- Power Supplies
- Network Anclysers
- Modulation Meters
- Logic Anclysers
- Mains Analysers
- Sound \& Vibration
- Analytical
- Environmental
- Computers


## Engineers $\_>$

## Middlesex

Make the move to technical sales

$$
\begin{gathered}
\hline £ 17 \mathrm{k}-£ 21 \mathrm{k} \\
\text { PACKAGE }
\end{gathered}
$$

Are you looking for an employment opportunity which rewards you for your considerable test and measurement technical skills? Do you have experience of several of the products listed?
Our client is looking for an outward going, motivated engineer to work in their internal sales department dealing directly with test and measurement sales opportunities and managing them through to sale.

Comprehensive sales training will be afforded to the successful candidate, complementing your existing technical abilities and providing all the skills necessary to succeed in their business.

This responsible role with Europe's market leader offers a competitive salary and benefits package together with excellent long term career prospects. If you are ready to step up into a challenging sales position working in a close knit friendly team then contact Stephen Lewis at the address below.

## Precision Consultants

The Electronics \& Broadcast Recruitment Specialists Britannia House Leagrave Road Luton LU3 1RJ Tel 0158236500

Fax 0158238500

## THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

Lae

## LECTURER IN COMMUNICATION SYSTEMS

## Department of Electrical and Communication Engineering

Vacancies exist in the field of Communication Systems. The successful applicants will be required to teach at undergraduate level, especially on communication theory and modern systems, and to carry out research in a communication field of local relevance. Applicants should offer research and teaching expertise in at least two or more of the following: Signal processing, data communications, computing, satellite communications, radar, microwaves, optical systems and propagation, though consideration will be given to those in areas of radio wave propagation. Teaching is to be done at degree level in Electronics and Communications.
The Department has a longstanding programme of research into the effects of tropical rainfall on propagation from satellites at millimetre wavelengths, supported by INTELSAT and the local PTC. Single site and diversity measurements of downlink power are underway and proposals for radar measurements of the vertical and horizontal distribution of rain are planned. Possibilities exist for research in other areas of Electronics and Communications.
For further information contact Mr L Watai, Acting Head, Department of Electrical and Communication Engineering (tel. +675 434701; fax +675 457209).
SALARY (per annum): Lecturer I K30,212-K32,393; Lecturer II K33,458 - K35,836. (Level of appointment will depend upon qualifications and experience.)
Initial contract period is normally for three years but shorter periods can be negotiated. Other benefits include a gratuity of $30 \%$ in the first year, $35 \%$ in the second year and $40 \%$ in the third year taxed at $35 \%$; support for approved research; appointment and repatriation fares; leave fares for the staff member and family after 18 months of service; settling-in and settling-out allowances; six weeks' paid leave per year; education fares and assistance towards school fees; free housing. Salary protection plan and medical benefit schemes are available. Staff members are also permitted to earn from consultancy up to $50 \%$ of earnings annually.
Detailed applications (two copies) with curriculum vitae and names and addresses, fax/phone numbers of three referees and an indication of the earliest availability to take up the appointment should be received by: The Registrar, PNG University of Technology, Private Mail Bag, LAE, Papua New Guinea by 15 June 1995. Applicants resident in the United Kingdom should also send one copy to Appointments (43884), Association of Commonwealth Universities, 36 Gordon Square, London WC1H 0PF (tel. 01713878572 ext. 206; fax 0171813 3055; email appts.acu@ucl.ac.uk) from whom further information may be obtained.

## ARTICLES WANTED

## PURCHASE FOR CASH

SURPLUS - OBSOLETE - REDUNDANT - EXCESS stocks of electronic, electrical components/accessories, part processed and/or finished products. Plese submit preliminary information or lists for immediate response to:

## K.B. COMPONENTS, 21 Playle Chase, Gt Totham, <br> Maldon, Essex CM9 8UT

Telephone 01621.893204. Facsimile 01621-893180.

## ADVERTISING MANAGER REQUIRED

THE RADIO SOCIETY OF GREAT BRITAIN seeks to appoint a fulltime Advertising Manager, to be based at its Potters Bar Headquarters, to handle the advertising space in its publications, principally the magazine Radio Communication.

Radio Communication is the UK's leading title targeting the licensed radio amateur. Published monthly and circulated to 31,000 members, itis a 100-page, A4 colour production carrying on average $30 \%$ of content as display and classified advertising pages.

Applications are sought from those with relevant experience and capability. It will be a significant advantage to be the holder of a current amateur radio licence or to have a practical knowledge of electronics terminology. This is not an opportunity to learn on the job! Responsibilities will include:
1 Marketing of the space to the trade and agencies.
2 Production work, technical copy writing, layout and typography for trade setting or with an in-house DTP system.
3 Page make-up, proofing, classifieds and setting-house liaison.
4 Administration of orders, schedules and management of accounts.
5 Provision of professional advice to the Society and an impartial complaints service to members and advertisers.
Remuneration will be by a combination of salary and commission. Applications will be considered from established professionals and those with relevant experience.

Applications should be made in writing with an outline of relevant professional experience. Total confidentiality will be observed. Marking your letter 'CONFIDENTIAL' please write to the General Manager at:

Radio Society of Great Britain
Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE

## VALVES

ARTICLES WANTED

## ELECTRONICS VALVES \& SEMICONDUCTORS

Phone for a most courteous quotation

We are one of the largest stockists of valves etc, in the U.K.

> COLOMOR ELECTRONICS LTD
> 170 Goldhawk Road, London W12 8HJ England.
> Tel: 01817430899
> Fax: 01817493934

## WANTED

High-end Test Equipment, only brand names as Hewlett-Packard, Tektronix, Rhode \& Schwarz Marconi etc. Top prices paid. Please send or fax your offer to: HTB ELEKTRONIK

Alter Apeler Weg 5 , 27619 Schiffdorf, West Germany

TEL: 0104947067044
FAX: 0104947067049

## WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity.

Prompt service arid cash.
M \& B RADIO
86 Bishopgate Street
Leeds LS1 4BB
Tel: 01132435649
Fax: 01132426881

# CLASSIFIED 

## ARTICLES FOR SALE

## ARTICLES WANIED

## 0

 VSA Cooke International SUPPLIER OF QUALITY USED TEST INSTRUMENTSANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. ALWAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE COPIES ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME, SEND LARGE "A3" S.A.E. + 50P POSTAGE FOR LISTS OF EQUIPMENT AND MANUALS.

ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS SHIPPING ARRANGED

OPEN MONDAY-FRIDAY 9AM-5PM

## Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: $(+44) 01243545111 / 2 \quad$ Fax: $(+44) 01243542457$
EQUIPMENT \& ACCESSORIES PURCHASED
CIRCLE NO. IHI ON REPLY CARD

## WE WANT TO BUY !!

IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 081-445-2713/0749 FAX 081-445-5702.

## RECRUITMENT

## Analogue Design Engineer

BSS leads the world in innovative audio signal processing. We sell to the Live market, Broadcasters, Recording Studios and Installers in every part of the world. We set ourselves high standards, and we usually beat them.
Due to our continued success and growth, a vacancy has arisen in our R\&D department for an Analogue Design Engineer to help us to continue developing world class products. You will be surrounded by a small team of specialists in a busy but friendly environment.
You will have at least 3 years' professional experience in analogue design techniques, and a passion for audio electronics. An appreciation of power amplifiers, digital electronics and DSP techniques would be an advantage. An attractive salary package will be offered commensurate with experience.
Please write to: Sarah Lyon, BSS Audio Ltd, Linkside House, Summit Road, Potters Bar, Hertfordshire, EN6 3JB.


MANTED
High-end Test, Communication \& Computer Equipment. Top prices paid. Please send or fax your offer to: Steigerwald GmbH Meusserstrasse 9, 80807 Munich South Germany Tel: 01049893615833
Fax: 01049893615899

## ARTICLES FOR SALE

TURN YOUR SURPLUS TRANSISTORS, ICS ETC, INTO CASH Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact:
COLES-HARDING \& CO, Unit 58,
Queens Road, Wisbech, Cambs. PE13 2PQ
ESTABLISHED OVER 15 YEARS
Buyers of Surplus Inventory
Tel: 01945584188 Fax: 01945475216

[^4]


HODELA-7550 1 GHz portable with innulit tracking gen \& IEEE ops $£ 5000$ HP141T 18GHz system (85528. 8555A)
HP 3580 A 5 Hz - 50 KHz aufio trequency spectum analyser HP3582A audio trequency fift analyser analyser dual-channel HP8559A 21GH2 spec an in 853AA digital maintrame HPIB HP8568A high-spectication 1.5 GHz spectum analyser HP85668 (genuine " 8 ") top-ol- the-range in abocatory analysers.
£2000 Price . . dont ask
HP8593A portahle spectium analyser lo 22GHz IEEE TEKTRONY 4921 GH SPecinma $£ 1500$ MARCONINSTRUMENTS


| TEST EQUIPMENT |  |
| :---: | :---: |
| ANRISU ME518A portabie error rale test sel | ¢2000 |
| BRUEL \& KJAER 2511 vibraion meter (fies set 1621 filter) | £2000 |
| BRUEL \& KJAER 2317 portabie level recorder | £1500 |
| BRUEL \& KJAER 2635 charge amplifer | ¢950 |
| BRUEL \& KJAER 2318 graphics printer | ¢750 |
| BRUEL \& KJAER 2308 analogue $X$-Y pen recorder | ¢750 |
| DATRON 1065 digital multimeler | ¢500 |
| FARNELL 2081/100 RF power meter to 100W \& 1GHz | ¢250 |
| FLUKE PM97 scopemeter | ¢500 |
| FOTEK M 200 fibre optic led power meter \& lest source | £250 |
|  | 1550 |
|  | $\underline{550}$ |



2019 symthesied ANFM sgnal generator $80 \mathrm{KHz}-1040 \mathrm{MHz}$
2305 modulation anayser $50 \mathrm{KHz}-2.3 \mathrm{GHz}$ 2828A2829 dightal simulatorfanalyser 2955 mobile rado test set ALL SOLD 2955 as above with sensitive receiver inbuith $605 X$-series sqgal sources, all in range 64606421 power meter \& sensor 10 MHz 12.4 GHz


$$
\text { spectrum analyser...................................£7,500 } \star
$$

- ralfe electronics $0_{1}{ }_{1}^{\text {oxdolossisiona }}$ Tem
*     * HP 8753 B 3GHz vector network analyser * * with time domain option 0.10 ... $\qquad$ £15,000
* HP8568A hi-specification 1.5 GHz
c2000 $£ 3750$ £1000

|  | KIK | 2750 |
| :---: | :---: | :---: |
| £3000 | RACAL. DANA 1992 fequency counter 1.3GHz IEEE option | 660 |
| ¢ 4250 | SCHLUMBERGER 1250 fequency response analyser | £3000 |
| ¢500 | SCHLUMBERGER 4040 cormmunications lest set, many ootions incude | §5000 |
| £350 | SYSTRON-DONNER 60548 frequency counter $20 \mathrm{~Hz}-24 \mathrm{GHz}$ GPIB | £1250 |
| ¢2500 | TEKTRONX P6303 o scope probes NEW 250N-2 $\times 1 \times 10$ with readour pin | [50ea |
| £750 | TEKTRONIX translstor cune tracer type 576 \& 577 ea | £1500 |
|  | TEKTRONIX PG502 250NH2 puse generato (requires TM-senes mantame) | 675 |
| ¢500 | UHER report 4200 portable tape recorder | £25 |
| $¢ 250$ | WAYNE KERR SR268 source \& detector |  |

## $£ 500$

## 415E swr meter

4275A multi-lrequency kcr meter
432AR486A uWave power mer waveguide $26-40 \mathrm{GHz}$ 436 A microwave power meter cw 8481 A detector HPIB op 5335A 200NHz frequency counter wops 20 \& 40
5370 B universal lime-interval counter 6012 A power supply $0-60 \mathrm{~V} 0-50 \mathrm{~A} 1000 \mathrm{~W}$ 6033 A system dower supply $0-20 \mathrm{~V} 0-30 \mathrm{~A}$ 6038A system power supply 0-60V 0.10 A 6253A dual power supply O-20V O-1A wice 64438 power supply $0.120 \mathrm{~V} 0-2.5 \mathrm{~A}$ 6825 A bpolar power supplyamplitier -20 V to $+20 \mathrm{~V} \cdot 0 \cdot 1 \mathrm{~A}$ 8011A puise generator 0.1 Hz -20MHz
8116A 50MHz pulse generator
846A slotled line $1.8-18 \mathrm{GHz}$ with carriage 809 C and 4478 8444A tracking generator with ootion 059 $8505 \mathrm{~A} 500 \mathrm{KHz}-1.3 \mathrm{GHz}$ AF network analyser 8671A synthesized signal generator $2 \cdot 6 \cdot 2 \mathrm{GHz}$ 8672 A synthesized signal generator $2 \cdot 18 \mathrm{GHz}$
 unalpsers. 5580 in 23 portabie amalysers. Please call ws it mou mave might-end capital equipment being under-vilised

PIEAENOTE: ALL OUR EQUIPMENTIS NOW OPERATION-VERIFICATION TESTED BEFORE DESPATCH BY INDEPENDENT LABORATORY

ALL PRICES SUBNECT TO ADDITIONAL VAT AND CARRIAGE

# ELECTRONIC UPDATE 

Contact Malcolm Wells on
$0181-6523620$
A regular advertising feature enabling readers to obtain more information on companies' products or services.

The system 2000 is an ideal programmer for the production environment. Fast programming results in high throughput and rigorous verification leads to improved quality control. Single key functions and checks against misoperation facilitates its use by unskilled staff.
MQP ELECTRONICS LTD.
Tel: 0666825146
Fax: 0666825141
CIRCIE NO. IH3 ON REPLY CARD


## NATIONAL INSTRUMENTS 1995 CATALOGUE

The 1995 National Instruments catalogue describes more than 900 software and hardware products. Engineers and scientists can use these to develop integrated instrumentation systems for test and measurement process monitoring and control, using industry-standard personal computers and workstations.

NATIONAL INSTRUMENTS FOR FURTHER
INFORMATION CALL
01635523545
CIRCLENO. IHHONRFPLY(ARD)


## 1995 MASTER PRODUCT

## CATALOGUE NOW OUT!

Test and instrument control solutions. 48 pages of full description and technical data on our own range of solutions to your PC and PS2 interfacing problems: IEEE488 (GPIB) * DIO * Timer/Counters *RS232 * RS422/485 * A/D * D/A * plus Opto Isolated versions. New Parallel/Serial RS232. Opto Dual RS232. Motion Control. Converter and Repeater for 1995 ISO 9001 Quality guarantee. UK design and manufacture 36 month no-quibble warranty Telephone hotline support
Competitive pricing on the page $\checkmark$ Intelligent solutions 8 friendly service $\downarrow$ BRAIN BOXES
Unif $3 f$ Wavertree Boule vard South
Wavertree Technology Park Liverpool L7 9PF
Tel: 01512202500 Fax: 01512520446
CIRCLE NO. IA5 ON REPIY CARD


OLSON ELECTRONICS LIMITED is a leading manufacturer in the field of mains distribution panels of every shape and size to suit a variety of needs. For use in Broadcasting, Computing, Data Communications, Defence, Education, Finance, Health etc. All panels are manufactured to BS5733. BRITISH AMERICAN, FRENCH, GERMAN CEE22/IEC and many other sockets. Most countries catered for.

All panels are available ex-stock and can be bought direct from OLSON.

Olson Electronics Limited
Tel: 0818852884
Fax: 0818852496

# Programming Solutions SMART Communications offer the best range of low cost programmers for your every need. 

 Unrivalled device support includes the latest MACH, pLSI, MAPL, PIC, WSI, Atmel, Xilinx and Intel parts.

ALL-07 Universal Programmer
Pin driver expansion can drive up to 256 pins.
Supports over 2000 IC's - 3 and 5 volt devices.
EPROMs, E²PROMs, Bipolars, Flash, Serial EPROMs up to 16 Mbits parts, over 150 Microcontrollers and PLDs, EPLDs, PEELs, PALs, GALs, FPGAs etc...
Universal DIL (up to 48 pins), PLCC and gang PACs

- significantly reduces the number of adapters required.

Powerful full colour menu system.
Connects to the pc printer port with its own power supply.
Latest programming algorithms.
Tests TTL, CMOS and SRAM devices

- even identifies unknown parts.

Approved by AMD for their range of programmable logic.
$£ 595$

## EMP-20 Multi-Device Programmer

EPROMs, E2PROMs, Flash, Serial EPROMs to 16 Mbits. PLDs, GALs, PEELs, WSI PSDs. Intel, Microchip, Motorola and Zilog Microcontrollers. Fast programming algorithms.
£325

## Erasers \& pin convertors

 AT-701 - Chiprase Ultra-violet eraser. Very compact 16 chip capacity Built in timer £95
## Pin convertors

from DIL to
PLCC, SOP, SOIC etc... from $£ 50$


## PB-10 Programmer

Low cost programmer. EPROMs, E2PROMs, Flash and 8748/8751. Fast programming algorithms. Simple but powerful menu driven software.
£139
SMART Communications have a full range of dedicated programmers for the Microchip PIC range of microcontrollers - both single and gang for DIL and SOIC variants.

We also supply a wide range of development tools - Assemblers, Compilers, Simulators and Emulators - for a wide range of microprocessors, especially the Microchip range.

Our ROM emulators start at just $£ 99$.

54

## S4'S VITAL STATISTICS:

- Totally handheld programmer/emulator
- Fast approved programming algorithms; eg. program and verify: National 27C512 in 16 seconds AMD 29F010 in only 90 secondsEPROMs to $8 \mathrm{Mbit}, 5 \mathrm{v}, 12 \mathrm{v}$ and BOOTBLOCK FLASH, EEPROMs and PEROMsThree year parts and labour guaranteeFree next day delivery (UK only)30 day trial available (UK only)Full 24 byte on-screen editorContinuous programming whilst charging (nonstop operation)
- Moulded designer case - feels as good as it looks
- Rubberised colour-coded full travel keypadBig, easy-view 80 character supertwist LCDOptional modules available to program PICs, 8751, 16-bit EPROMs, Toshiba 4-bit, Hitachi H8
- Optional sockets for programming and emulating PLCC devices

S4's 32 pin ZIF socket programs a huge library of 8 \& 16bit EPROMs, EEPROMs, FLASH, PICs and other popular microcontrollers using manufacturers approved algorithms. Our free and easily updatable device library enables users to always have the latest software installed. During our sixteen years of designing and selling innovative and fast programming solutions to industry, Dataman has never charged for software updates or technical support.
Built in emulation enables you to see your code running before committing yourself to an EPROM. Load your program from an EPROM or download
code from your PC into S4's memory. Plug S4's emulation lead into the target system, press the emulation key and run the system. Changes can be made using S4's powerful editor, and you can re-run the code to test and confirm changes. When the code is proved to be working, it can then be programmed to a fresh ROM. The S4 package comes complete with mains charger, emulation leads, organiser-style instruction manual, PC software and a three year guarantee. S4 is always available off the shelf and we ship worldwide on a daily basis. Call now for delivery tomorrow!

Bona-fide UK customers can try 54 for thirty days without risk. 18,000 satisfied users worldwide can't be wrong!


## Dataman Programmers Ltd

Station Road, Maiden Newton Dorset, DT2 OAE, UK.
Tel: 01300320719 Fax: 01300321012 Telex: 418442 BBS: 01300321095 Modem: V.34/N.FCN.32bis
22 Lake Beauty Drive, Sulte 101 Orlando, FL 32806, USA Tel: (407) 649-3335 Fax: (407) 649-3310 BBS: (407) 649-3159 24hr Modem V32bls/16.8K HST


[^0]:    *: Assumes worst likely worst case ie. signal present \& over temperature.

    - not stated by maker
    () = estimated in lieu.

    That just two makers are represented wasn't for lack of trying. One range of power ICs were excluded, because after having identified high levels of crossover distortion, the maker held that music use was not suggested. A European maker had an interesting data sheet, but no silicon. One Japanese maker didn't respond; one didn't sell its ICs in Europe; one no longer made audio ICs.

[^1]:    Fully-inclusive price UK £99, Europe $£ 104$, rest of world excluding USA £109. Cheques payable to Reed Business Publishing Group Lid please, and posted to EW+WW, Room L330 Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. A probe specially designed for measuring sur-face-mount component is available. Please add $£ 29.38$ to your order if you require this probe.

    Total $\mathbf{E}$
    Name
    $\qquad$
    Card Holders Address

    |  |
    | :--- |

    Signed
    Date

[^2]:    Marconi TF2008 - AM-FM signal generator - also sweeper - 10K//s - $510 \mathrm{Md/s}$ - from $£ 250$ - tested to $£ 400$ as new with manual - probe kit in wooden carrying box
    to $£ 400$ as new with manual - probe kitit in wooden
    HP Frequency comb generator type $8406-£ 400$.
    HP Frequency comb generato tye 8406 - $£ 400$.
    HP Vector Voltmeter type 84054 - $£ 400$ to $£ 600$ - old or new colour.
    HP Sweep Oscillators type $8690 \mathrm{~A} \& 8 \mathrm{~B}+$ plug-ins from 10 MCls to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R. HP Network Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{~K} \mathrm{e} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500-\mathrm{f} 1000$. HP Amplifier type 8447A-1-400 MC/s $£ 200$ - HP P447F. 1-1300 MC/s $£ 400$.
    HP Frequency Counter type 5340A-18GHz E 1000 - rear output E 800 .
    HP 8410 - $\mathrm{A}-\mathrm{B}-\mathrm{C}$ Network Analyzer $110 \mathrm{Mc/s}$ to 12 GHz or 18 GHz - plus most other units and displays used in this set-up - 8411a-8412-8413-8414-8418-8740-8741-8742-8743-8746-8650. From E1000.
    Racal/Dana 9301A- 9302 RF Millivoltmeter - $1.5-2 \mathrm{GHz}-\mathrm{E} 250-\mathrm{E} 400$
    Racal/Dana Count 9915 M - 9916 - 9917 - 9921 - E 150 to $£ 450$. Fitted FX standards.
    Raca/Dans Modulation Meter type 9009
    Marconi RCL Bridge type TF2700- $£ 150$.
     C250-E350. $400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
    Marconi TF1245 Circuit Magnification meter + $1246 \& 1247$ Oscillators - $£ 100 \cdot £ 300$.
    Marconi microwave 6600A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ 40 GHz - $£ 1000$ or Pl only E 600 . MF oniy E250.
    Marconi distortion meter type TF2331- $£ 150$. TF2331A - 200.
    Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1 -S2-S6-S52-PG506 - SC504-SG502-SG503-SG504 - DC503 -DC508-DD501 -WR501-DM501A-FG501A-TG501-PG502-DC505A -FG504-7B80 + 85-7B92A
    Gould J3B test oscillator + manual - E 2000
    Tektro nix Mainframes - 7603 - 7623A - 7613-7704A - 7844-7904 - TM501 - TM503 - TM506 -
    7904-7834-7104-7623-7633.
    Alltech 757 Spectrum Analyser - 00122 GHz - Digital storage + readout - $£ 2000$
    Marconi 6155 A Signal Source - 1 to 2 GHz -LED readout - $£ 400$.
    Barr \& Stroud Variable filter EF3 0.1 Hz - $100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - f 150.
    Marconi TF2163S attenuator - 1GHz. £200.
    Farnell power unit H60/50- E 400 tested. $\mathrm{H} 60 / 25$ - E 250 .
    Racal/Dana 9300 RMS voltmeter - $£ 250$.
    HP 8750 storage normalizer - $£ 400$ with
    HP 8750 A storage normalizer - $E 400$ with lead + S.A or N.A Interface.
    Marconi TF2330- or TF2330A wave analysers - $£ 100-5150$.
    Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 500$.
    Racal/Dana signol generator $9082 \mathrm{H}-1.5-520 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 600$
    Tektronix - $7 \mathrm{~S} 14-7$ T11-7S11-7S12-51
    Marconi mod meters type TF2304-E250.
    HP 5065 A rubidrum vapour FX standard- $\mathbf{E 2 . 5 k}$.
    Systron Donner counter iype $6054 \mathrm{~B}-20 \mathrm{Mc/s}-24 \mathrm{GHz}$ - LED readout - $£ 1 \mathrm{k}$.
    Racal/Dana 9083 signal source - two tone - $£ 250$
    Systron Donner - signal generator 1702 - synthesized to 1 GHz - AM/FM - £ 600 .
    Tektronix TM515 mainframe + TM5006 mainframe- $£ 450$ - $\mathbf{E 8 5 0}$.
    Rhodes \& Schwartz power signal generator SLRD-280-2750 Mc/s-E250-£600.
    BaH Etratom rubidrum standard PT 256 BE -FRKL - E 1000 .
    Farnall electronic load type RB $1030-35-\mathrm{f} 350$.
    Racal/Dana counters - 9904 - $9905-9906-9915-9916-9917-9921-50 \mathrm{MC} / \mathrm{s}-3 \mathrm{GHz}-\mathbf{f 1 0 0}$ E 450 - all fitted with FX standards.
    P485A

[^3]:    FOR SALE: EWWW 1980 to 1994 Offers. Phone: Tony - 0127666155 evenings.

[^4]:    HAMEG 203-6 Scope used only few hours. £300. Also Philips SBC530, Portable Scope, new. Tel: 01702522929

