30% discount - 16Hz frequency meter EEEEETRECTROONICS FUNCTION OF THE STREET OF THE

May 1995

£2.10

FREE CAD disk For the first 1000 replies

Migrating to C++

Single-chip fm receiver

Oscillators for uhf

Capturing transients

CAD software for Maths modelling

Bipolars or fets for audio?

ELECTRONICS on the read

FROM THE MAKERS OF THE WORLDS BEST SELLING UNIVERSAL PROGRAMMING AND TESTING SYSTEM

- Ability to program 3 volt devices.
- Calibration software to comply with 1509000
- Batch software for production programming.
- High quality 42 pin Textool zero insertion force sockets.
- Rugged metal housing and heavy duty screened cable.
- Ground control circuitry using relay switching.
- Protection circuitry to protect against wrong insertion of devices.
- Speed optimised range of programming algorithms.
- Supplied with MICROTEC disassemblers for Z8, 8085, 8048, 8051, 6809 & 68HC11.

NOW ONLY £469

- Programs PIC16 series without adaptor.
- Software supplied to write own test vectors for custom ICs and ASICs etc.
- One model covers the widest range of devices, at the lowest cost.
- Over 2000 different devices (including several hundred MPU's) supported.
- Tests and or identifies a wide range of logic devices
- High speed PC interface card designed for use with all types of PC.
- No need to tie up a slow parallel port.
- More Sunshine programmers sold worldwide than any other of its type.
- UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL.
- Two year free software update.
- Free demo disk with device list available.

ORDERING INFORMATION

Expro-80 complete with interface card, cable, software and manual

Please add £8 carriage (by overnight courier) for UK orders, £30 for export orders and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO, Official orders are welcome from Government bodies and local authorities.

CITADEL PRODUCTS LTD DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 0181 951 1848/9

EXPRO-80

Our stocked range of own manufactured and imported Sunshine products include:

- Super fast EPROM Erasers.
- 8Mbit EPROM Programmers:
 - ie: 1 gang £149
 - 4 gang £229
 - 8 gang £399
- Battery operated portable EPROM programmers.
- "In circuit" Emulators.
- Handy pocket IC testers.

The Sunshine Expro-80 Universal Programmer and Tester is the 42 pin version of the immensely popular Expro-60/PC-82. Following that success, the Expro-80 is a PC-based development tool designed to program and test more than 2000 ICs. The culmination of over 8 years production experience has resulted in perfecting this rugged, classically designed programmers' programmer

Volume production has now enabled us to offer this powerful programmer at a very competitive price for a product of such high quality. The Expro-80 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the Expro-80 for their own use!

The Expro-80 can program E/EPROM, Serial PROM, BPROM, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX and MPU. It comes with a 42 pin DIP/SDIP socket capable of programming devices with 8 to 42 pins. It even supports EPROMs to 16Mbit, the PIC16 series of MPUs and many many more without the need of an adaptor. Adding special adaptors, the Expro-80 can program devices up to 84 pins in DIP, PLCC, LCC, QFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS 40/45 series, DRAM (even SIMM/SIP modules) and SRAM. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALir, ABLE, CUPL etc. or by the user. The Expro-80 can even check and identify unmarked devices.

The Expro-80's hardware circuits are composed of 42 set pin-driver circuits each with control of TTL I/O and "active pull up", D/A voltage output, ground, noise filter circuit and OSC crystal frequency.

New features include negative programming voltages, 3 volt programming ability, protective circuitry for ICs incorrectly inserted, calibration software to comply with ISO9000, new six layer PCB and voltage clamping to banish noise and spikes.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all types of PC. In addition, there is now the Link-P1 enabling the programmer to be driven through the printer port. Ideal for portables and PC's without expansion capability.

The pull-down menus of the software makes the Expro-80 one of the easiest and most userfriendly programmers available. A full library of file conversion utilities is supplied as standard.

Sunshine's team of over 20 engineers are continually developing the software, enabling the customer to immediately program newly released ICs.

Citadel, a 33 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

Electronic systems keep this car going in a straight line on ice at 50km/h – page 372.

CONTENTS

372 ELECTRONICS ON THE ROAD

Eric Russel looks at electronic systems that automotive manufacturers are planning for tomorrow's cars.

379 MODEL SOFTWARE FOR PROBLEM SOLVING

Maple V is the latest version of a modelling package capable of solving equations analytically, and much more, explains Alan Brown.

387 FETS VERSUS BJTS

How would bipolar transistors have been perceived by audio designers had they been invented after power mosfets asks Douglas Self?

391 DELAYED AUDIO SIGNALS

Ben Duncan argues that too few designers consider delays throughout the entire audio reproduction chain when they debate system performance.

396 MIGRATING TO C++

C++ is much more than an extension of C, but Gerard Maloney warns that getting the best from it involves more than simply buying new software.

402 TRANSIENT STORAGE FOR ANALOGUE SCOPES

Capturing transients in digital form and displaying them on an analogue oscilloscope is much cheaper than buying a digital storage.

410 LOW POWER SINGLE CHIP FM RECEIVER

Ed Baker describes an fm receiver based on a chip that saves power by automatically disconnecting the audio amp when not in use.

415 FREE DISC OFFER Details of Smash – a mixed

analogue/digital circuit design package free to the first 1000 readers.

418 OSCILLATING AT UHF Ian Hickman discusses the often conflicting requirements of oscillators for uhf.

430 CIRCUIT ROUND UP Eight circuit ideas, among them a crystal oven controller and a fast peak rectifier.

REGULARS

- 363 COMMENT A sad foresight saga
- **364 NEWS** Polymer transistors and silicon coils.
- **368 RESEARCH NOTES** Lighter batteries, new life for sea cable.
- 424 CIRCUIT IDEAS Mains fault monitor, 1.3GHz prescaler.
- 434 LETTERS UK mains changes, audio debate.
- **439 NEW PRODUCTS** Pick of the month – classified for convenience .

Cover Illustration Hashim Akib

Solar winds cause electricity supply problems, but new research could help make them more predictable – page 370.

Mathematical modelling software Maple V even produces animation, which can help provide an insight into temporal behaviour. – page 379.

Next month:

Douglas Self presents a completely new amplifier concept, Steve Webb describes a low-cost video digitiser, Cyril Bateman explains Internet and Jeff Macaulay describes the microreflex loudspeaker that we were unable to publish last month. JUNE ISSUE – ON SALE 25 May

MIXED-MODE SIMULATION. THE POWER OF VERSION 4.

Analog, Digital & Mixed Circuits

Electronics Workbench[®] Version 4 is a fully integrated schematic capture, simulator and graphical waveform generator. It is simple to mix analog and digital parts in any combination.

Design and Verify Circuits... Fast!

Electronics Workbench's simple, direct interface helps you build circuits in a fraction of the time. Try 'what if' scenarios and fine tune your designs painlessly.

Electronics Workbench The electronics lab in a computer

0

0

- 0

More Power

Simulate bigger and more complex circuits. Faster. On average, Electronics Workbench Version 4 is more than 5 times faster than Version 3.

More Parts

Multiple parts bins contain over twice the components of Version 3.

More Models

Over 350 real world analog and digital models are included free with Electronics Workbench. And, if you need more, an additional 2,000 models are available.

Incredibly Powerful. Incredibly Affordable.

If you need mixed-mode power at a price you can afford, take a look at this simulator and graphical waveform generator that mixes analog and digital with ease.

New Version

4

ctronics Workbench

True mixed-mode simulation: Simultaneous AM transmission, digitization and pulse-code modulation of a signal.

Electronics WorkbenchTM The electronics lab in a computerTM Order Now! Just £199* 44-(0)1203-233-216 Rg Robinson Marshall (Europe) Plc

Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF Fax: 44 (0)1203 233-210 E-mail: rme@cityscape.co.uk

Shipping charges UK £5.99. All prices are plus VAT. All trade marks are the property of their respective owners. Electronics: Workbench is a trademark of Interactive Image Technologies Ltd., Toronto, Canada. * 30 Day money-back guarantee.

Australia: 2-5193933 • Brazil: 11453-5588 • Cyprus: 262-1068 • Denmark: 33-25-0017 • Finland: 0-297-5033 • France: 14908-9000 • Germany: 711-62-7740 • Greece: 1-5249981 Hungary: 1-215-0082 • India: 11-544-1343 • Israel: 3-647-5613 • Italy: 11-437-5549 • Japan: 3-3382-3136 • Malaysia: 3-774-2189 • Mexico: 5-396-3075 • Netherlands: 18031-7666 New Zealand: 9-267-1756 • Norway: 22-16-7045 • Portugal: 1-814-6609 • Singapore: 462-0006 • Slovenia: 61-317-830 • South Africa: 331-68309 • South Korea: 2-2-222-3431 Spain: 1-553-3234 • Sri Lanka: 1-86-5970 • Sweden: 8-740-5500 • Thailand: 66-2398-6952 • United Kingdom: 203-23-3216

VISA

EDITOR Martin Eccles 0181-652 3128

CONSULTANTS Jonathan Campbell Philip Darrington Frank Ogden

DESIGN & PRODUCTION Alan Kerr

EDITORIAL ADMINISTRATION Jackie Lowe 0181-652 3614

E-MAIL ORDERS jackie.lowe@rbp.co.uk

E-MAIL ENQUIRIES martin.eccles@rbp.co.uk

ADVERTISEMENT MANAGER Richard Napier 0181-652 3620

DISPLAY SALES EXECUTIVE Malcolm Wells 0181-652 3620

ADVERTISING PRODUCTION Christina Budd 0181-652 8355

PUBLISHER Mick Elliott

EDITORIAL FAX 0181-652 8956

CLASSIFIED FAX 0181-652 8956

SUBSCRIPTION HOTLINE 01622 721666 Ouote ref INI

SUBSCRIPTION QUERIES 01444 445566

NEWSTRADE DISTRIBUTION Martin Parr 0181 652 8171

BACK ISSUES Available at £2.50

ISSN 0959-8332

A sorry foresight saga

A cademic scientists have always had a disproportionate influence on the UK government's attitude to technology. That could be one reason why we have such a tiny microelectronics industry in the UK. Earlier this month, the ITEC (Information Technology and Electronics) panel of the Government's Foresight programme looking at the UK's technological future, decided to write off the UK semiconductor industry.

As with the Alvey catch-up technology programme of the 1980s, the ITEC panel was dominated by academic scientists. Of the 25 man panel, 11 are working academics at universities, others are of an academic bent working on the boundaries of academia, and industry and not one of the 25 is a career semiconductor man.

The panel's principal microelectronics recommendation – that the UK needs a microelectronics R&D centre on the lines of the IMEC microelectronics research centre at the University of Leuven – will leave those people in the UK who struggle to make a living out of semiconductors, gasping for breath at its irrelevance.

The misdirection of government aid for the microelectronics industry has resulted in the UK having a chip industry made up mostly of design houses. These companies have world-class design skills – but they have nowhere in the UK to go to get leading-edge manufacturing services to turn their world-class designs into world-class products.

At a conference organised by the Federation of the Electronic Industry a couple of years back, delegates bemoaned the fact that there was no accessible, sympathetic British foundry facility where they could go for leading edge silicon – except for GEC Plessey Semiconductors (GPS). But now GPS has adopted a strategy of staying a year or two behind the leading technological edge, not even that exists.

But ITEC does not even purport to be aiming its microelectronics centre at helping the UK semiconductor industry – it is intending it as a support facility for inwardly investing foreign semiconductor companies. In effect, ITEC does not see the UK semiconductor industry as worth support and does not regard an indigenous capability to manufacture first-class silicon as being of any importance.

Instead, the scientists of ITEC are directing the Government's thinking to other spheres – how to use the rapidly accelerating power of computers and the Information Superhighway to deliver the UK's undoubted strength in media products to Britain and to the world.

This is proper work for scientists! Conceptual, theoretical, intellectual stuff on which papers can be written, conferences attended and jobs for more scientists created.

But will it deliver any useful, practical technology to help the many entrepreneurial UK design houses or encourage the start-up of new high tech businesses? As with Alvey and with all previous scientist-driven initiatives, one doubts it.

David Manners

Electronics World + Wireless World is published monthly. By post, current issue £2.25, back issues (if available) £2.50. Orders, payments and general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tix:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group.

Newstrade: Distributed by Marketforce (UK) Ltd, 247 Tottenham Court Road London W1P 0AU 0171 261-5108. Subscriptions: Quadrant Subscription Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444 445566. Please notify change of address. Subscription rates 1 year (normal rate) £30 UK and £43 outside UK.

USA: \$52.00 alrmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42nd Street, NY 10117. Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080. Tix 23827.

USA mailing agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.

Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate, Carlisle. Cumbria, CA2 7NR

Typeset by Wace Publication Imaging 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT

©Reed Business Publishing Ltd 1995 ISSN 0959 8332

Focus on polymer transistors

With an all-polymer fet, it is easiest to begin with the insulating layer. This needs to have high homogoneity and good dielectric properties. Such fets could prove very useful for flat-panel display and smart-card type applications. At least five major electronics firms are developing products based on all-polymer transistors, amid claims that the technology could eclipse amorphous silicon in applications such as flat panel displays and smart cards by the end of the century.

Japanese giants Matsushita and Mitsubishi, US-based Motorola and IBM and European firm Philips are

working on all-polymer transistor systems. Matsushita and Mitsubishi have already published research papers on the subject, and Mitsubishi is rumoured to be very close to producing the world's first all-polymer-transistor based flat panel display type for laptops.

FLexible polymer transistors have been pioneered by a team of researchers at the CNRS centre in France, led by Francis Garnier. The team has been working on the devices for the last five years, but now the technology is being taken up by electronics giants worldwide.

The main advantage of polymer transistors over silicon ones is their flexibility, which may allow complete bending or rolling without affecting their electrical properties. They should also be cheap to make in volume, and the devices can be made transparent. suitable for windshield applications in planes and cars. "Organic semiconductors will be available at lower cost", insisted Garnier. "They can be applied with web printing techniques and this will open the field for cheap, flexible electronics".

At present, polymer transistors are slower, larger and have lower output current than silicon transistors but these characteristics are expected to be improved with further development. Garnier expects the first commercial products, probabLy in the form of displays for domestic appliances, as soon as 1996/7 and for these lowend applications to open the way for large-area, low-cost polymer electronics systems.

Unlike earlier work, where only the substrate was made of polymer, the latest transistors also have polymer-based electrodes made from graphite-based ink. Svetlana Josifovska Electronics Weekly

Video on the radio

Engineers at Racal Radio have developed a video compression technique said to be efficient and robust enough to transmit pictures reliably over a radio link. The technique, designed for immediate application in military surveillance systems, can transmit a real-time video stream over a 25kHz 16kbit/s radio link.

The compression algorithm used is a Racal-developed version of the lapped orthogonal transform, coupled to an error resistant entropy code. The combination is said to be able to recover from 20 percent data loss. For worse losses, rather than an image failure, there is a gradual degradation of the received image quality as the channel error rate increases.

Low cost route to silicon modelling

As feature sizes continue to shrink and devices become more complicated, chip designers may have to resort to virtual reality techniques in which they can literally immerse themselves in a 3D simulation of a chip, according to a top researcher.

Interactions between electrons and the edge of devices have become more important in determining chip performance. These require complex equations to model the effects, which is why the key to 3D simulations will be the development of very fast, cheap parallel computers capable of processing millions of equations.

Stanford University researchers, working with scientists at IBM, claim they have developed special algorithms that boost the performance of low cost parallel computer systems without the need to build specialised parallel computer systems costing tens of millions of dollars. The researchers have demonstrated the ability to solve 1.5 million equations at a speed of 9.5Gflops using an IBM Powerparallel SP-2 computer.

Robert Dutton, professor of electrical engineering and chief scientist at Stanford University's Center for Integrated Systems says that, "At these rates, 3D will take about the same time to run as current two-dimensional simulations".

The new algorithm has been incorporated into Pisces -acommercial program that simulates the behaviour of microscopic electronic elements in complex semiconductors.

Dutton said the algorithm could be ported to desktop workstations where it can speed up 2D chip modelling tasks. Stanford has said it will license its technology to other companies.

Philips/Sony fight back on high density CD

The chances of Philips and Sony conceding victory to Toshiba in the battle of high-density cd systems seem remote. Philips has been mounting a major information offensive in support of its system with demonstrations at CeBIT, the Audio Engineering Society convention in Paris and its home base, Philips Research Laboratories in Redhill.

Players using the single-sided dual-layer system will be on sale next year, Philips promises, whether the film industry supports it or not. Increasingly Philips/Sony are looking to the professional computer market – a potentially much larger user base – to back the system. "We do not believe this is a technology which is a mass market proposition that's just around the corner," said John Hawkins, world head of Philips Media Distribution, at Redhill.

The demonstrations revealed some aspects of capability, such as the dual-layer system which was first used on Laserdiscs as far back as 1977, but also showed the complexity of the agenda which Philips is now grappling with. Although it needs to counter the Toshiba double-sided system, Philips also wants to create some space for the development of CDi, assisted by existing MPEG 1 CD Video. Hence its insistence on the high initial cost of high-density which, it contends, will preclude mass sales to begin with.

MPEG 2 will require four times as much memory as MPEG 1, and far greater processing complexity, to say nothing of the HD drive and new laser and optics. All of these combined will push the price of

hardware up into the no-go area, well above £400.

Thus, initial uptake of high density technology is likely to be by the computer, rather than consumer, community, where increased storage capacity is always in demand. Only after start-up costs have been amortised in that market, so the Philips argument runs, will high-density become affordable enough to go mass-market.

Both proposed high-density standards can carry more than ten

times the current 650Mbyte capacity of CD-Rom. Philips/Sony will hold 7.4Gbyte in two layers; Toshiba, 10Gbyte, split between two sides. Both will use red laser technology with a wavelength of 635nm. Philips/Sony now promise backwards compatibility with existing formats. Apart from additional costs involved in accessing two sides of a disc, Toshiba has yet to work out where the label could be accommodated. **Peter Willis**

Silicon coils for even smarter cards

While smart cards may give the impression of being easy to use, they can give rise to problems, usually associated with the way they are made. The rigidity of the antenna coil, which is wrapped on a chip fixed on a flexible fixture like a plastic card, means that it is possible to break some of the connecting wires within the chip if the smart card is flexed.

Micro Sensys, a German-based radio identification specialist, has come up with a simple, low-cost way of building coils onto chips by growing them onto the silicon wafer, which avoids the traditional bonding processes. The monolithic microstructure employed is used in rf chips for contactless smart cards and other identification and access control applications. It integrates completely all of the analogue functions, a high-frequency rectifier, antenna coil and an EEPROM on a single chip.

In a conventional contactless smart card chip, the transceiver coil is applied using cmos metal layer technology. This method produces structures 1µm thick and below. These very thin layers introduce high surface resistance, inconsistent quality and inhibit the placement of active circuit elements (the logic gates, EEPROM and the transmitter) in the coil area. These drawbacks can be rectified by using thicker structures (around 100µm), produced by X-ray lithography, which although technically feasible is expensive.

Instead, Micro Sensys uses a modified straight wall bumping process. This process is normally used in tape-automated bonding for chips with many contacts (between 200 and 300). A single metal layer is applied to the silicon substrate in the form of 'bumps', leaving structures that look like tower-blocks behind. This is achieved by raising the metal layer higher than the silicon substrate; passivation-layer channels still run in between. The metal layer forms the coil between the bumps.

1Gbit DRAMs nearing production stage

S ony has combined two leading edge chip fabrication devices – one a quadrupole light source and the other a phase shift mask, to stretch optical lithography towards 0.18μ m feature fabrication. This is the feature size that will be needed to make the first generation of 1Gbit DRAMs in production quantities.

The surface of a wafer is not flat, but deviates up to 1μ m. The image of the production mask must be in focus for all 'altitudes' on the wafer surface, so the projection optics must have a minimum depth of field (DOF) of 1μ m.

The size of image that can be clearly focused onto the surface of the wafer is proportional to the wavelength of light used. For 0.35µm lithography (current stateof-the-art for production), speciallydeveloped krypton fluoride (KrF) excimer lasers are used that emit

PCs fuel demand for electronic components

ndustry analyst BIS Strategic Decisions reports that demand for electronic components continues to be fuelled by the booming markets for PCs, monitors and printers.

The BIS report, European Computer and Office Automation Equipment Production, expects the European computer market to be worth \$13.5billion this year, up \$3.3 billion since 1993. In 1993, \$7.4 billion (around 72 percent) was accounted for by components in desktop and portable computers.

1995 European market for computer and office automation equipment.

1995 European Component Market in Computer/OA Equipment

Total European Market in 1995 = US\$13.5 billion

Source: BIS Strategic Decisions

ultraviolet light at 248nm. For a given optical system, both the minimum image size and the depth of field are proportional to wavelength. These limitations restrict KrF lasers to feature sizes of 0.35µm.

Beyond the DOF, a circular spot projected on the wafer becomes a larger and larger circular blur. Sony has used a trick to reduce the effect of this problem by altering the characteristics of the laser beam.

Sony's modified optics split the laser beam in four, diverge the subbeams using a prism **array**, then recombine them, creating a quadrupole light source. This replaces the normal circular light source with four smaller overlapping image ones. In sharp focus, the image looks like four spots but outside the DOF the blurred image has more energy in the centre and looks much more like a 'normal' focused spot.

This technique raises the effective DOF more than two times, allowing the optics to be changed and trading the increased DOF for smaller feature size.

If a feature size of 0.28μ m is required, conventional illumination only gives a DOF of 0.77μ m. The new source gives a l.lµm DOF, suitable for production techniques of the near future.

The second feature Sony has incorporated is a phase shift mask. A normal mask has transmissive and non-transmissive regions. The sharp transitions between these regions result in diffraction patterns over the wafer surface around the image. Diffraction effects can be reduced by deliberately phase-shifting light by different amounts at different points in the mask.

There are some limitations to phase shift masks: not all image shapes can be made and there can be a strong secondary image net to the primary one. On their own, phase shift masks can improve image resolution, but the quadrupole light source can be optimised to suppress most of the secondary image. The new light source and mask together allow 0.22µm features with a lµm depth of field.

Sony has demonstrated that its combination technology can produce 0.22µm features and claims it can be developed to make first generation 0.18µm chips using optical lithography. **Steve Bush** *Electronics Weekly*

Low cost single-chip demodulator

A single chip digital tv demodulator based on the 64/256 QAM systems used in North America's Grand Alliance HDTV trials has been introduced by VLSI Technology. The quadrature amplitude modulation (QAM) system, which could also be the basis of European terrestrial digital tv transmissions, was developed by Californian developer Applied Signal Technology and integrated by VLSI Technology into its library of functional system blocks.

The quadrature down converter equaliser demodulator (QED) would be used in QAM cable tv set-top box receivers. It sits between the cable and the MPEG compression functions and extracts the digital video and audio data streams from the 64/256 QAM modulated signal on the cable tv network.

Operating at an IF of 43.75MHz, it supports symbol rates up to 5.4Mbaud and implements the Reed-Solomon forward error correction algorithm. The QAM protocol combines traditional amplitude modulation and quadrature phase shift keying (QPSK) to put the digitally coded tv signal on the carrier frequency.

An advantage of QAM is the relatively large number of phase and amplitude states, 64 and 256, used to represent the digital tv signal. As a result, QAM supports a high capacity data channel, equivalent to 40Mbit/s, by assigning 64 and 256 phase and amplitude states to represent the digital signal at 8 bits per symbol. The 40Mbit/s 256QAM digital channel can support up to five 8MHz PAL analogue tv signals or seven 6MHz US NTSC analogue television signals.

The QAM device is one of a number of chips VLSI is offering for low cost set-top box receiver designs. It is developing a separate QPSK demodulator with ComAtlas of France, and an MPEG-2 codec with US specialist, Mediamatics.

TOUCH SCREEN SYSTEM The ultimate in 'Touch Screen Technology' made by the experts -MicroTouch - but sold at a price below cost II System consists of a flat translucent glass laminated panel measuring 29.5 x 23.5 cm connected to a PCB with on board sophisticated electronics. From the board comes a standard serial RS232 or TTL output. The out-put continuously gives simple serial data containing positional X & Y co-ordinates as to where a finger is touching the panel - as the fin-ger moves, the data instantly changes. The X & Y information is given at an incredible matrix resolution of 1024 x 1024 positions over the screen size !!! So, no position, however small fails detec-tion. A host of available translation software enables direct con-netion to a PC for a myriad of applications including: control pan-els, pointing devices, POS systems, controllers for the disabled or computer un-trained et ecl tengine using your finger in 'Windows' instead of a mouse II (a driver is indeed available !) The applica-tions for this amazing product are only limited by your imagina-tion! Support Available price of only: *REE.Full Software Support Available : Fully Guaranteed* £145.00 (B)

INTEL 'ABOVE' Memory Expansion Board. Full length PC-XT and PC-AT compatible card with 2 Mbytes of memory on board. Card is fully selectable for Expanded or Extended (286 processor and above) memory. Full data and driver disk supplied. In good used condition fully tested and guaranteed. Windows compatible. Order as: ABOVE CARD **C59.95**(A1) Half length 8 bit memory upgrade cards for PC AT XT expands memory either 256k or 512k in 64k steps. May also be used to fill in RAM above 640k DOS limit. Complete with data. Order as: XT RAM UG. 256k, £32.95 or 512k £38.95 (A1) SIMM OFEFRS

SIMM OFFERS	
1 MB x 9 SIMM 9 chip 120ns only	£19.50 (A1)
1 MB x 9 SIMM 3 chip 80 ns £23.50 70ns	£26.00 (A1)
1 MB x 9 SIMM 9 chip 80 ns £22.50 70ns	£28.00 (A1)
4 MB 70ns 72 pin SIMM module only	£125.00 (A1)
SPECIAL INTEL 486-DX33 CPU	£79.99 (A1)

NO BREAK UNINTERRUPTIBLE PSU'S

367

EMERSON ACCUCARD UPS, brand new 8 Bit half length PC compatible card for all IBM XT/AT compatibles. Card provides DC power to all internal system components in the event of power sup-ply failure. The Accusaver software provided uses only 6k of base RAM and automatically copies all system, expanded and video memory to the hard disk in the event of loss of power. When power is returned the machine is returned to the exact status when the power failed II The unit features full self diagnostics on boot and is supplied brand new, with full, easy fitting instructions and manual. Normally £189.00 NOW! £69.00 or 2 for £120 (e)

CIRCLE NO. 105 ON REPLY CARD

 SPECIAL INTEREST

 Zeta 3220-05 A0 4 pen HPGL RS232 fast drum plotter

 SME MARKED STATE

 VG Electronics 1035 TELETEXT Decoding Margin Meter

 Andrews LARGE 3.1 m Satellite Dish + mount (For Voyager!)

 RED TOP IR Heat seeking missile (not armed I!)

 KNS EMC / Line interference tester NEW

 Thurby LA 1608 logic analyser

 INTEL SEC 486/13325 Multibus 486 system. 8Mb Ram

 GE C 1.5kw 115v 60hz power source

 Brush 2Kw 4000 Hz 3 phase frequency converter

 Anton Pillar 75 kW 400 Hz 3 phase frequency converter

 Newton Derby 70 KW 400 Hz 3 phase frequency converter

 Compolar Margin Meter

 Computer MCA1613APC 16mm auto inis lenses 'C' mount

 Sekonic SD 150H 18 channel digital Hybrid chart recorder

 Computer MCA1613APC 16mm auto inis lenses 'C' mount

 Sextem WID 0185AH 1K/va UPS system with batts NEW

 FANS & BLOWERS
 MITSUBISHI MMF-D6D12DL 60 x 25 mm 12v DC
 £4.95 10 / £42

 MITSUBISHI MMF-09B12DH 92 x 25 mm 12v DC
 £5.95 10 / £53

 PANCAKE 12-3,5 92 x 18 mm 12v DC
 £7.95 10 / £69

 EX-EQUIP 120 x 38mm AC fans - tested specify 110 or 240 v £6.95
 £5.95 (10 / £53)

 EX-EQUIP 80 x 38mm AC fans - tested specify 110 or 240 v £6.95
 £5.95 (10 / £53)

 VERO rack mount 1U x 19' fan tray specify 110 or 240 v £5.95 (6)
 IMHOF B26 1900 rack mnt 3U x 19' Blower 110/240v NEW £79.95

 Shipping on all fans (A). Blowers (B). 50,000 Fans Ex Stock CALL
 50.000 Fans Ex Stock CALL
 IC's -TRANSISTORS - DIODES OBSOLETE - SHORT SUPPLY - BULK 5,000,000 items EX STOCK

The TELEBOX consists of an attractive fully cased mains powered unit, containing all electronics ready to plug into a host of video moni-tors made by makers such as MICROVITEC, ATARI, SANYO, SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD etc. The composite video output will also plug directly into most video recorders, allowing reception of TV channels not normally receivable on most television receivers* (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable 'off air' UHF colour television channels. TELEBOX MB covers virtually all televi-sion frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. A composite video output is located on the rear panel for direct connection to most makes of monitor or desktop video systems. For complete compatibility - even for monitors without sound - an integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard. TELEBOX ST for composite video input type monitors E34.95

TELEBOX ST for composite video input type monitors £34.95 TELEBOX STL as ST but with integral speaker £37.50 TELEBOX MB Multiband VHF-UHF-Cable- Hyperband tuner £69.95 For overseas PAL versions state 5.5 or 6mbz sound specification. "For cable / hyperband reception Telebox MB should be connected to cable type service. Shipping code on all Teleboxes is (B)

25 YEARS

TV SOUND CHILLILL CARDON MELEBOX P & VIDEO TUNER! The TELEBOX consists of an attractive fully cased mains powered

Optional Fitted extras: VGA graphics card 1.4Mb 3½" floppy disk drive (instead of 1.2 Mb) NE2000 Ethernet (thick, thin or twisted) network card

no of line purchase scoop! Brand new NEC D2246 8	2 82 M
f hard disk storage! Full industry standard SMD inter	face.
i speed data transfer and access time, replaces Fujitsu	equiv
nodel. complete with manual. Only	£299
½" FUJI FK-309-26 20mb MFM I/F RFE	£59
1/2" CONNER CP3024 20 mb IDE I/F (or equiv)RFE	£69
1/2" CONNER CP3044 40mb IDE I/F (or equiv.)RFE	£89
1/2" RODIME RO3057S 45mb SCSI I/F (Mac & Acorn)	299
1/4" MINISCRIBE 3425 20mb MFM I/F (or equiv.) RFE	£49
1/ PEACATE OT 000D 00 mb DIL UC Defush	0.00

 5¼* SEAGATE ST-238R 30 mb RLL I/F Refurb
 £69.95(C)

 5¼* CDC 94205-51 40mb HH MFM I/F RFE tested
 £69.95(C)

 8* FUJITSU M2322K 160Mb SMD I/F RFE tested
 £195.00(E)

 Hard disc controllers for MFM, IDE, SCSI, RLL etc. from £16.95
 £16.95

PHILIPS HCS31 Ultra compact 9" colour video monitor with stan-dard composite 15.625 Khz video input via SCART socket. Ideal for all monitoring / security applications. High quality, ex-equipment fully tested with a 90 day guarantee (possible minor screen burns). In attractive square black plastic case measuring W10" x H10" x 13½" D. Mains powered Limited Quantity - Only £79.00 (D)

Superbly made UK manufacture. PIL all solid state colour monitors, complete with composite video & optional sound inputs. Attractive teak style case. Perfect for Schools, Shops, Disco, Clubs, etc.In EXCELLENT little used condition with full 90 day guarantee.

KME 10" high definition colour monitors. Nice tight 0.28" dot pitch for superb clarity and modern styling. Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Atari, Commodore Amiga, Acorn Archimedes & BBC. Measures only 13/2" x 12" x 11". Only £125 (E) Good used condition. 90 day guarantee. KME 10" as above for PC EGA standard £145.00 (E)

20" 22" and 26" AV SPECIALS

DC POWER SUPPLIES

£1950 £375 £470

£3750 £950 POA

£1200

£375 £1200

£850 POA POA

6250

£125

Virtually every type of power supply you can Imagine.Over 10,000 Power Supplies Ex Stoc Call for Info / list. Ex Stock

SPECIAL INTEREST

RESEARCH NOTES

Jonathan Campbell

Thin film cell packs a punch

Weight is so often a limiting factor in design of rechargeable batteries. But researchers at Tokyo University and Matsushita Electrical Industrial have announced development of a low cost solid state rechargeable battery that can store 50% more electrochemical energy in its electrodes than the best conventional technology available.

Key to performance of the new battery is an organic thin-film cathode. Organic materials have been proving particularly attractive to battery designers because they offer large theoretical energy storage capacity, combined with low weight and high strength.

The Tokyo cell is made up of a Dimercaptan (DMcT) and polyaniline (PAn) cathode with a lithium anode – compounds already known to have had a complementary effect on performance, though the precise chemistry of the reaction is not yet definitively agreed. However, cells fabricated along these lines have been reported before.

The advance made by the Japanese team has been to prepare a solution containing the electrode materials which can be printed or painted by conventional techniques. Not only does that make for easy manufacturing, but, importantly, it allows excellent molecular-level mixing of the DMcT and PAn, leading to much higher efficiencies than have been achieved before.

Gravimetric energy density of the composite cathode is reported to be >600Wh/kg cathode (Dimercaptanpolyaniline composite electrodes for lithium batteries with high energy density, N Oyama *et al* (*Nature*, 373, pp.598-600). This compares to a figure of 400Wh/kg for the cathode in one of best commercial lithium-ion cells. So energy density of the DMcT-PAn cathode is 1.5 times better.

No deterioration in capacity was observed in 30 cycles for the test cell, with the cathode charged at 4.5V and discharged at 0.1mA/cm² down to 2.25V. That compares with a loss of 15% in capacity by previous designs of this type of cathode.

At present the maximum useful current density looks to be 0.1mA/cm^2 – which is undeniably

small. But because the cathode is a film, a large electrode area can easily be obtained without weight penalty.

Expected applications will be in areas where weight rather than volume is the crucial factor, as high gravimetric density is offset by low physical density.

Deep conversations

Confidence in ultra-long-haul optical cable systems using cascaded erbium-doped fibre amplifiers has been boosted with news that Japanese workers have successfully made 5.3Gbit/s transmissions across 11,300km of installed submarine cable. This is the longest distance yet achieved using the technology. T Otyani *et al* (5.3Gbit/s 11,300km data transmission using actual submarine cables and repeaters, *Electronics Letters*, Vol 31, No 5, pp.380-381) from KDD Submarine Cable Systems, made use of two fibre pairs in a real cable 2850km long that had 48 repeaters and a repeater spacing of 60km. By joining the fibres together at their ends with optical attenuators, the researchers were able to create a 11,300km transmission line.

The long distance success of using a cable made up of dispersion-shifted optical fibres and erbium-doped amplifiers – designed to operate under the sea for at least 25 years – clearly demonstrates that the low-cost and high reliabilities of such a system

Exploiting the full potential of submarine cables already laid will be vital to the development of optical fibre comms.

Ultrasonics open up memory capacity

Development of a simple and convenient ultrasonic method for manufacturing very small cobalt particles – magnetic nanocluster – could have an immediate effect on high-density recording media.

The process, developed by Charles Gibson and Kathy Putzer at the University of Wisconsin (Syntheses and characterisation of anisometric cobalt nanoclusters, *Science*, 267, pp1338-1340) produces single magnetic domain particles with considerable shapeand magnetocrystalline anisotropy so that a preferred magnetic field orientation is adopted in the final product.

Relatively inexpensive reagents are used in the procedure and flocs of the suspended particles are stable for several days, so easing manufacturing flexibility.

The basis for the process is reduction of Co^{2+} with hydrazine. Low temperature reaction has been attempted before, but despite looking

thermodynamically possible, the reduction has not previously been successful.

Now Gibson's and Putzer's use of ultrasound to initiate the chemistry has made the reaction practical – and economical.

The result is the birth of a simple technique that could have immense importance for the manufacture of magnetic recording media and permanent magnets.

could be exploited in practice.

Other work currently going on is also helping to test the limits of undersea cables. For example, AT&T recently announced it had transmitted 10Gbit/s over a 2000km commercially installed undersea fibre-optic cable in the US. Normal operating limit for the cable was 2.5Gbit/s. AT&T achieved the increase through wavelength division multiplexing – the transmission of information on more than one wavelength of light on each fibre.

10Gbit+ transmission speeds greatly increase the capacity of

5.3Gbit/s

Optical Transmitter

Optical Receiver

Optical Attenuator

PN23

PPG

ED

undersea cable and AT&T says the test gives it the potential to upgrade installed fibre-optic communications systems without making adjustments to cable already sitting on the sea floor.

AT&T has already announced a proposal to build a 32,000km optical fibre ring around Africa, linking 40 countries. Practical architectures for such a project are still being considered though AT&T researchers say that experiment is demonstrating that such a largescale all-optical network having many high speed channels is certainly possible.

No 1

Submarine

Repeater

Submarine

Cable

No. 48

Submarine Repeater

Submarine

Cable

60km

Submarine

Cable

Submarine

Cable

Optical Attenuator

Optical Attenuator

11,300km is the longest distance yet for data transmission through commercial optical cable.

Getting the measure of solar wind

Ulysses on its mission to explore the heliosphere – the region of space dominated by the outward flowing solar wind. (Picture courtesy European Space Agency). Quite apart from giving rise to the haunting northern lights, the million-mile-per-hour charged particles that make up the solar wind can degrade communications, disrupt power transmission grids, and damage satellites. Yet scientists are still unable to predict with any certainty when such activity is going

to hit the earth. But data currently being processed from satellites belonging to the ISTP (International Solar Terrestrial Physics) programme could help change that.

ISTP involves coordinating experimentation aboard a number of space platforms, with different initiatives exploring key areas of geospace where the dynamics are controlled by Earth's magnetic field and its interaction with the solar wind.

For example Japan has been processing data from a satellite sitting in the magnetospheric tail formed by the solar wind as it rushes past the earth. Similarly, solar wind experiments (swe) aboard the 'Wind' satellite will measure properties of the solar stream before it reaches the Earth. Researchers are hopeful that Wind's location between the Earth and Sun could eventually give warning of magnetic storms.

Overall goal of the swe programme is to monitor how changes in the wind affect the environment around Earth, according to Alan J Lazarus, a senior research scientist in physics and head of the swe MIT team.

Since November, MIT's instruments have begun collecting samples of the charged particles that

make up the solar wind, and measuring their speed, density, and other properties. Scientists from Nasa, the University of New Hampshire, and Boston University are cooperating on the swe project and six more experiments on the satellite are focusing on other phenomena associated with the solar wind.

"There are efforts to return data in real time from this spacecraft, so we can report solar wind conditions to people who could be affected," says John T Steinberg, a research scientist at the Center for Space Research and also a member of the MIT team.

Ultimately, Wind will go into an orbit between the Earth and the Sun that will allow it to make continuous readings of the solar wind an hour before it reaches Earth.

The result would be that sensitive electronics on the spacecraft – which might otherwise be damaged – could be switched off. Varying magnetic fields can also have a serious effect on power grids, and have in the past caused massive power outages. One such incident occurred in Canada in 1989. With advance warning, power companies could make proper preparations for possible disruptions of their systems.

Way forward (or sideways) for robots?

Successfully negotiating our way around rooms full of furniture is a skill we learn as babies. For robots, the task is one some of them will never learn. But

researchers at the Korea Advanced Institute of Science and Technology (Kaist) hope their work could lead to fewer bruised robot shins in the future.

A robot's navigational problem is that whenever it moves in an uncertain environment towards a goal, avoidance behaviour and goal-seeking behaviour always conflict. Avoidance behaviour is used to seek the goal position, until obstacles loom, when avoidance takes precedence, and goal-seeking behaviour is used to seek the goal irrespective of obstacle location.

Hee Rak Beom and Hyung Suck Cho at Kaist have been using fuzzy logic to describe both behaviours and have been working to develop a robot control system that switches to the best strategy based on the robot's local environment (A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning, *IEEE* Trans on systems, man and cybernetics, 25, 3, pp.464-477).

Their Lcar robot has 26 ultrasonic sensors, stereo camera and sensors for dead reckoning.

Fuzzy logic is used to represent the mapping between the sensor input space and the mobile robot action space, with the correct mapping found by reinforcement learning.

So far the robot is managing to move around a 10 by 10m room packed full of obstacles towards its goal and is demonstrating an ability to adapt to unknown environments.

Importantly the small fuzzy-rulebase needed allows the method to be implemented in real time, while the reinforcement learning dispenses with the need to construct and tune the rule bases depending on the expert's knowledge.

Kaist's Lcar robot can switch between goal seeking behaviour and obstacle avoidance behaviour to negotiate obstacles in real time

For all your Power Distribution Olson offer a varied choice

FOUNTAYNE HOUSE, FOUNTAYNE RD., LONDON N15 4QL TEL: 0181-885 2884 FAX: 0181-885 2496

ELECTRONICS on the road

ore vehicles come onto the roads each year and manufacturers are doing more and more to make them safer. The accent is moving away from mechanical developments towards electronic detection and control, with anti-collision radars, anti-skid systems and better anti-lock braking.

Aerospace technology has come down to road level, but the new technology is driving itself. More devices mean more wiring, which leads to intelligent harnesses, in turn resulting in more electronics. The automotive designer has to drive hard to keep up.

Driving on black ice

To be in full control while driving fast on black ice must be the ultimate motoring experience and it is promised for UK drivers this year by Mercedes-Benz.

Electronics is the key to this and other recent advances in automotive design in a trend which will shortly see more electronics than mechanics on the family saloon. Eric Russell looks at innovations in electronic systems that automotive manufacturers are planning for the cars of tomorrow. Mercedes-Benz calls its system Electronic Stability Program. It brings together traction control, intelligent brakes and aerospace technology to detect a car's direction of travel. ESP prevents skidding by braking individual wheels to maintain the car's balance. Control signals to the brakes derive from a computer which compares steering wheel position with the car's direction of travel.

When under- or over-steer is detected, the appropriate brakes are momentarily applied and engine torque is reduced. This brings the car back on line. The driver may not notice the system operating but a dashboard indicator illuminates, providing a warning.

Key to the system is a yaw detector. Housed under the rear seat of a car it gives an output signal proportional to the rate of rotation about a vertical axis.

Fig. 1. A car travelling on ice at 45mile/h is kept steerable and stable by the new Electronic Stability Program from Mercedes-Benz.

Fig. 2. Such a vibrating-structure gyroscope may be being used for yaw detection in Mercedes' electronic vehicle stabiliser. Output of the gyroscope is dc and proportional to the rate of rotation.

This data, together with steering wheel angle, individual wheel speeds, brake pressure and sideways acceleration are compared in a computer with a database which contains all the parameters for optimum stability.

The ESP control unit is linked to engine, automatic transmission, brakes, accelerator and sensors through a Controller Area Network data bus. The accelerator is electronically linked to the engine management system, bringing the new Mercedes close to drive-by-wire. A variable resistor is rotated as the accelerator is depressed to give a much finer control than with mechanical linkage.

ESP was recently demonstrated on a frozen lake in Sweden, Fig. 1. While a standard car was virtually uncontrollable at 30mile/h, the ESP car was steerable and stable at 45mile/h. Mercedes points out that such systems cannot beat the laws of physics and in unintended confirmation, a test driver promptly ploughed his vehicle into a snow bank.

The system was scheduled to become standard equipment in Germany in March on the S600 coupe. The first cars for Britain are promised in the autumn – in time for our own snow. Details of the ESP system are not available, "Because the system is not yet in production," says a spokesman. But the key component, the yaw detector, could be similar to a unit produced by British Aerospace (Systems and Equipment) Ltd.

This is a solid state gyroscope using the piezo-electric principle and the coriolis effect. The sensing element is a cylinder of manmade ceramic, a lead zirconate titanate composite, which is electronically vibrated.

The coriolis effect refers to the distortion of an object's trajectory by the earth's rotation. The effect of the force can be seen when a person sits on a typist's chair holding a spinning bicycle wheel by the axle ends. If the person lifts their right hand, tilting the wheel, the chair will rotate towards the right.

A similar force can be generated when a vibrating object is rotated. In British Aerospace's Vibrating Structure Gyroscope

the piezo-electric block is excited in one axis and electric output is taken from another axis. Output is dc and proportional to the rate of rotation, Fig. 2.

The solid state construction makes the VSG more robust than conventional mechanical gyroscopes with no maintenance requirement and minimal start-up time, which can be as low as 300ms. It can operate off a standard car power rail, Fig. 3.

At Lotus Engineering, the Active Technology Group uses vibrating-structure gyroscopes in active suspension designs. The company's system measures the load at the tyre contact patch once a millisecond and reacts to changes so a constant load is maintained. The VSG indicates when a road wheel is about to drop into a depression or rise over a bump and a hydraulic actuator is extended or retracted to keep the car body level.

This system is used in Arnold Schwarzenegger's Hummer, High Mobility Modular Wheeled Vehicle, but the price precludes its use in more popular cars. The servo valve on the actuator is an aerospace type, with an appropriate price tag, but if this could

Is ABS effective?

Research has shown that ABS is not often used in practice. Few drivers press the brake pedal hard enough to lock the wheels. In accident situations which demand hard braking drivers react in two stages: firstly a slightly harder than normal press of the pedal; then a heavier press when the situation is fully realised. Research also showed that if drivers reacted half a second earlier half of collisions would be avoided.

be manufactured in volume then active suspension would be seen on more vehicles.

Advances in car control system

It is a development of ABS that forms part of Mercedes' ESP. A brake booster is activated when brakes need to be applied by the system and ABS prevents wheels locking up. When ABS is activated, brake fluid is taken out of the system, so reducing pressure on the brake

Fig. 3. Solid state construction makes the vibrating-structure gyroscope more robust than conventional mechanical types.

Fig. 4. Increasing microprocessor integration makes car electronics more reliable while improving compactness and maintainability.

*) User-specific bus systems for data communication for additional functions

Fig. 6. ABS pump, electric motor, valves and a pcb containing two processors are all housed in a 16 by 10 by 10cm module – the Teves Mk 20 ABS system.

mechanism, be it disc or drum type. In an open system the brake fluid is returned into the master cylinder. In a closed system the fluid stays local to the wheel.

By the year 2000 ABS will be standard equipment on passenger cars according to a prediction from the Economist's Intelligence Unit. With 30% of cars fitted now, a compound growth for the technology of 22% per year is expected.

Against this background Texas Instruments recently announced a new customised microcontroller chip, the cMCU370. It will start to appear in a new design of ABS module from ITT subsidiary Alfred Teves, which is using some half dozen electronic subcontractors worldwide to assemble the modules.

TI has developed the microcontroller from the TMS370 range of ICs. Sghaier Noury, TI's European Microcontroller Department Manager says: "It is part of a full product road map which includes many generations to come." The cMCU370 has been designed under TI's Prism design methodology which evolved from a successful relationship with Delco Electronics. The principle of Prism is to steadily increase the number of functions that a chip can perform and to increase the different signal types it can handle, while using technology that has already been developed and proven, Fig. 4.

The cMCU370 is an eight-bit device with a 16 bit version due next year and 32-bit architecture under development. At the launch of the new chip in Nice, TI also announced an agreement to supply ITT Automotive of Frankfurt with the product. The two companies have been co-operating for some six years using TI's knowledge of silicon and ITT's system experience. The cMCU370 will be built into ITT's latest ABS module, the Teves Mk 20.

Under the agreement TI is expected to ship more than eight million microcontroller systems annually by 1997 rising to ten million by the year 2000. The first vehicles equipped with ABS using the new microcontrollers will be unveiled in 1996.

Teves' Mk 20 ABS module houses the electric motor, ABS pump, valves and pcb in a compact 16 by 10 by 10cm housing, Figs 5, 6. The system incorporates anti-skid control and electronic brake force proportioning. At the core of the hydraulic/electronic system is a lightweight aluminium block integrating the motor, pump and valves. Magnetic coils actuate the valves so there is no direct connection between controller and valve.

The pump conveys the brake fluid bled off by the ABS valves back to the master reservoir so the integration into one block saves installation time for the vehicle manufacturer.

Two microprocessor chips are carried on the pcb, a 16-bit Intel 196 and the Texas *cMCU370* 8-bit processor. These work together in 'asymmetrical redundancy' and monitor each other. This provides a high level of safety and protects against a failure which would open all the ABS valves, leaving the vehicle with no brakes.

Hall Sensor 1

Hall Sensor 2

Evaluation Logic

Hall

Sensor

Magnet

Differential

Intel's chip processes the wheel speed and control algorithms. Complex mathematical formulae are written into the software, enabling the chip to calculate the best action to take from a given set of inputs. The TI chip simulates the calculations and then instructs the valve drivers. These are power semiconductors which replace the mechanical relays of previous designs and control current to the magnetic coils.

Within the pcb, the chips communicate via a serial data bus. This needs only three lines between each integrated circuit. The bits that make up each computer word are sent one after the other at a speed of two million bits per second. This communication system will link neatly into a vehicle's multiplexing harness whether the vehicle manufacturer has opted for CAN, ABUS, VAN, SCP or J1850 as the operating system.

Although both TI and ITT agree that multiplexing technology is both available and affordable, it awaits a change in outlook from the car manufacturers before being used regularly. There is also the consideration of higher after-care costs as a result of more complex systems.

The module could be a nucleus for the next project, a vehicle stability system. ITT Automotive anticipates its system arriving in the second half of the nineties.

More intelligence for ABS

Sensing the rotation of road wheels is a basic requirement of an ABS system and Siemens offers two sensor types – inductive and active. A toothed wheel is central to both systems. In the inductive version a magnet is fixed close to the wheel so as each tooth passes, the magnetic field is disturbed. These variations induce a current in a coil round the magnet Fig. 7. Active speed sensor contains a highly sensitive inductive sensor combined with differential Hall IC to measure speeds almost down to zero. Output can be used for traction control, ABS and for driver information such as speed indication.

Magnet Coil

Ð

Gear Wheel

Inductive

Sensor m

1++

Fig. 8. One of the problems with ABS is that often, drivers only press the brake pedal hard enough to invoke ABS when it's too late. Lucas' new brake assistance system senses when the brake is pressed more rapidly than usual, and applies the brakes harder than would be the case if the pedal were depressed normally.

Fig. 9. Elements of a single-point sensing airbag electronic unit, courtesy Siemens. The system needs its own power supply in case the battery becomes disconnected due to the impact and there are multiple firing loops to cover for partial faults.

Fig. 10. Lucas's Advanced Prototype Vehicle, a Peugeot 605 turbo diesel, has completely integrated systems, controlled from a central processor via CANbus. EPIC is electronically programmed injection control and CMS is the clutch-management system.

Fig. 11. With CANbus, cable harness requirements are greatly reduced since many switching and control signals can be multiplexed down one low-power bus. Conventional cabling for automatic windows, speakers, locking and mirror positioning means a lot of cabling between car and door, so this is one area where multiplexing is particularly attractive.

giving a sine wave output with each positive peak corresponding to a tooth on the wheel.

The active version, Fig. 7, uses a differential Hall sensor comprising two Hall switches and evaluation logic to provide a square wave output. In both systems the ABS computer counts the pulses and compares the result with time to provide an indication of road speed for the dashboard speedo and an indication of wheel lock to the ABS system.

Wheel bearing manufacturers are now producing intelligent bearings with on-board sensors and signal conditioning which reduces the effects of interference on the signal before it reaches the computer.

Grau's ABS system does not operate below 10km/h. This means that a stationary vehicle being held on a slope by the foot brake does not creep forward because the ABS system has detected an apparent wheel lock situation and reduces brake pressure.

To provide this extra margin needed to get round the drawbacks outlined in the ABS panel, Lucas is developing intelligent brakes. In an emergency, while the pedal may not be fully depressed, it is moved more quickly than normal. This can be detected and the signal used to operate an electronically controlled brake booster to apply the maximum servo force, Fig. 8. The controller compares pedal movements with the previous pattern of driver behaviour to assess an emergency situation. Operating the brake booster to its maximum invokes ABS, bringing the car to rest in the shortest possible distance.

This system could also work in conjunction with anti-collision radar, where microwaves or infra-red transmissions detect objects in front of a vehicle. The intelligence calculates when the distance is unsafe and, when intelligent cruise control is activated, reduces engine speed. Alternatively, the system can simply apply the brakes.

These electronic aids help when cars are well loaded with passengers or goods. The driver takes time to appreciate that longer braking is required in any given situation and may not have the space to stop in time. Intelligent brakes have an input from load sensors and the calculation includes the amount of load being carried.

Once all these functions are combined with a central computer, the brake holding system could also end hill start traumas.

Lucas's system has been developed within the Prometheus project. This concluded last year with a major demonstration of many new technologies at the Transport Research Laboratory. Prometheus – Programme for a European Traffic with Highest Efficiency and Unprecedented Safety – was a five year European initiative to develop automotive technology to a near-production state.

When it's too late for ABS

All these systems use electronics to help prevent accidents. When one does occur, the current spotlight is on airbags to protect the occupants. Basically, an accelerometer triggers the airbag inflation valve during abnormal deceleration. While a crash takes several seconds to complete, airbags react in milliseconds. Practically there are many considerations which demand that airbag systems are computer controlled, Fig. 9.

The system needs its own power supply in case the car battery becomes disconnected. This amounts to energy storage for a matter of seconds but the storage system needs topping up, measuring and checking.

The whole system must be self-checking on start-up with an output to warning lamps for system failure. Multiple firing loops provide redundancy in case of a single failure. A safing sensor disarms the system during safe situations, so while the accelerometer looks for crash signals, the safing sensor looks for noncrash signals. Seat belt status and passenger presence may be monitored and there could be a communications interface for external diagnostic testing.

Besides the physical considerations, the software has to be rugged. Like ABS, airbags are safety critical – causing danger when they fail or operate unexpectedly. Software has to reflect this. In conjunction with the British Standards Institute and others, the Society of Motor Manufacturers and Traders has just issued guidelines for the software that will be used increasingly on vehicles.

Linking it all together

Connecting all these systems is the car wiring harness. On a Mondeo there's 1.5km of wiring. It takes two people to lift the harness on some American models. In addition, harnesses can be a problem when many switches are mounted in doors and arm rests.

The simple version of dedicated point-topoint wiring is a two-wire ring main carrying serial information and a ring main carrying power. Operating an instrument switch sends an address followed by an instruction. All devices on the network listen to the address and the unit which recognises an address as its own will then act on the next set of pulses and operate as required.

The traditional way of providing a device with an address is a bit switch. The device compares the address pulses with the bit switch setting and enables the device when the two coincide.

A specification called Controller Area Network, CANbus, has been developed by Bosch for networking in automotive applications and this has been recognised by the International Standards Organisation. CAN protocol uses a multi-master, contention based bus configuration for transferring communication objects between nodes on the network. Multiple access raises the problem of collisions of data on the network. This is resolved in CAN by sensing a carrier denoting the network is carrying traffic.

A communication object consists of an identifier plus control data segments. The control segment contains all the information needed to transfer the message while the data segment contains up to eight bytes. Devices on the vehicle will only respond if their acceptance filter decides to receive a message. At each node the message identifier will have been set up in that controller's ram, Fig. 10.

The protocol can distinguish between permanent hardware failure and occasional soft errors. Defective nodes are switched off the bus, implementing a fail-safe procedure. To ensure robustness CAN uses non-return-tozero bit coding. Ones and zeroes are indicated by a change in state, not the state itself. This produces fewer electromagnetic emissions at higher transfer rates than pulse width modulation or Manchester coding, which combine data and clock pulses.

One company manufacturing CAN control chips is NEC. Its $\mu PD72005$ is a 52-pin flat package offering bi-directional two wire serial comms and two eight-bit i/o ports. Message memory space is 160 bytes and maximum data length is eight bytes – all of which highlights the relatively simple nature of car electronics compared with PCs.

Maximum transmission speed is 1Mbit/s. There are comprehensive error checking options including cyclic redundancy checking with a 15-bit crc generation polynomial, **Fig. 11.** The chip has been designed to fit into a large number of different networking configurations and the data book on it runs to some 96 pages.

Intel's CAN controller is the 44-pin 82527 fabricated in CHMOS III technology. Indicative of the harsh automotive environment, the 82527 copes with an ambient temperature range of -40 to $+125^{\circ}$ C.

In Russelsheim, Germany, Vauxhall says its car fitted with ISOTEC – Intelligent Safety and Orientation Technology – is currently being tested for reliability and suitability, before production sign-off. ISOTEC is a new research vehicle based on the recently launched Omega. On-board equipment includes distance radar, fog sensing, a night driving camera, and the latest navigation and guidance systems. Vauxhall says these are near-production electronic systems.

Distance measuring radar is connected to brakes, throttle and automatic transmission. The radar head is located behind the front bumper and detects other vehicles up to 140 metres ahead. Drivers can preselect a speed at which to travel and the distance radar will modify that according to the proximity of other vehicles. The required speed-is selected on the indicator lever and a lamp in the speedometer indicates that speed.

When the Omega is too close to the vehicle in front, the distance controller first closes the throttle then applies the brakes. If the car reaches maximum automatic deceleration, an audible warning alerts the driver. Once the situation is stabilised the Omega automatically accelerates up to the preselected speed under guidance of the cruise control system.

Sensing obstacles by temperature

Infra-red is the technology used in the fog sensor. A beam of IR light from a black box mounted on top of the dashboard is reflected back by moisture droplets in the fog. The unit estimates the range of visibility, calculates a recommended speed and displays the figure on an led display once visibility falls below 200m. The fog sensor could be connected to the car's cruise control adjusting speed to visibility automatically.

An infra-red camera, located in the radiator grille of the Omega, records images of objects emitting heat. This applies to virtually all objects and the image is built up by making the screen brighter where more heat is being emitted. Should two objects be at the same temperature they will merge in the same way that similar tones merge in a conventional photograph, particularly when the scene is not well lit.

With infra-red systems it is possible to overlay the infra-red image with another taken by a conventional camera with light amplification. Combining the two technologies means that merged objects on one system will be separated on the other system. General Motors is assessing infra-red cameras in several highway patrol police cars in America at the moment.

Infra-red is also used on the ISOTEC to receive route navigation information. A sensor positioned behind the rear-view mirror picks up infra-red light from beacons at the side of the road. Vauxhall is using the Euro-Scout system. The driver programmes in the destination and direction symbols appear on the special dashboard information display during the journey.

In the case of collision avoidance, the computer in the distance measuring radar will have a choice of reducing speed by closing the throttle, operating the brake or selecting another ratio in the automatic gearbox. Its chosen course of action will depend on road speed and closing speed as the vehicles approach each other. This means a continuous set of calculations to cause least disturbance to the car's occupants and to keep the car stable.

Electronics are pervading cars in other areas that are near to production: automatic gearboxes and clutches, automatic lane keeping, speed limiters, side impact detection for airbag systems, blind spot detection systems, electronic deadlocks, solid state tachographs and electronic dashboard displays. This is in addition to navigation systems, route guidance, traffic warning systems, electronic tolling, satellite telephones and road side displays. Plus the electronics in 'red-light' cameras and automatic number-plate reading. Not forgetting in-car entertainment with a serial link between the cd holder and player in the boot and the dashboard radio. And the smart cards in your wallet, and the black box 'flight recorder' available from Mannesmann Kienzle. No wonder we need electronic pacemakers.

lwatsu SS5416A "Synchroscope" 40MHz, 2 Trace, 2 Time Base £245 Gould OS4000 10MHz Digital Storage Scope, 2 Trace £325

HP1741A 100MHz Storage Scopes, 2 Trace, 2 Time Base Only £299

DIGITAL COUNTERS 25% OFF THESE PRICES FOR MAY '95 ONLY

Racal Dana 9904 Universal Counter Timer, 30MHz, 7 Digit LED £75 Racal Dana 9835 Universal Counter Timer, 30MHz, 6 Digit £50 Racal Dana 9838 Universal Counter Timer, 45MHz, 6 Digit £60 Racal Dana 9900 Universal Counter Timer, 30MHz, 6 Digit, Auto Range £75 Racal Dana 9913 200MHz, 8 Digit LED £95 Sabtronics 8000 100MHz, 8 Digit LED £95 Fluke 7620A Universal Counter Timer, 125NHz, 8 Digit LED £85 Racal Dana 9914 200MHz, 8 Digit LED £125 Racal Dana 9915 600MHz, 8 Digit LED £150 Racal Dana 9916 600MHz, 8 Digit LED £150 Systron Donner 6244A 512MHz, 8 Digit LED £150

Racal Dana 9015/11A Micro Computing Counter, 100MHz, 9 Digit + LED £250 HP 5334A Micro Computing Counter, 100MHz, 9 Digit + Math £275 Systron Donner 6054B 20MHz-24GHz, opt 13+18, 11 Digit LED £1050

A SELECTION OF OTHER INSTRUMENTS ON SPECIAL OFFER THIS MONTH ONLY

Marconi TF2603 RF Millivoltmeters, 1.5GHz, incl. Probe, Only £75 Solartron 7060 Systems Voltmeter, 6.5 Digit, IEEE, Only £195

HP8660C + 86632A + 86603A 1Hz-2600MHz Signal Generator, AM/FM, Excellent Condition, One Only £2250

Marconi TF2300B, AM/FM Mod. Meters, 1200MHz £95 Marconi TF2120 Waveform Gens 0.001Hz-100KHz, Sine-Sq-Tri £195 Marconi TF893B Audio Power Meters £50 Racal Dana 9056/9058 Selective RF Analysers, 100MHz, Only £60

Tritec Fase III Fusion Splicer + HSO II Heat Shrink Oven Optical Fibre Splice Kit incl ALL accessories £1325

> IRD Mechanalysis 350M, Complete Set £145 IRD Mechanalysis 308, Complete Set £95

NOW OPEN SEVEN DAYS A WEEK Monday to Friday: 9.00 am to 6.00 pm Saturday: 8.00 am to 4.00 pm SUNDAY: 10.00 am to 4.00 pm

All prices are ex VAT & carriage.

ALL ITEMS ARE TESTED WITH VERIFIED CALIBRATION AND COME WITH OUR UNIQUE 30 DAY DAY UNCONDITIONAL WARRANTY

Model software for problem solving

Allen Brown has been assessing the latest upgrade of a powerful modelling package capable – among other things – of solving equations analytically.

The low cost of powerful pcs hosting 486 or Pentium microprocessors, combined with highly visual graphics facilities, makes them very attractive tools for modelling applications. To match the performance of the pc, the engineer now has a variety of software modelling packages to choose from and one that merits consideration is *Maple V* from MathSoft of Massachusetts.

Now issued as Release 3, *Maple V* has over 2500 predefined operations and library functions, evokable as commands from the keyboard. These include such options as polynomial factorisation, equation solving, indefinite integrations and matrix manipulations. The package is capable of performing symbolic, numerical and graphical processing. In fact the 3D plotting is spectacular, and fast. *Maple* will work within dos or Windows although to access the full graphing features of the product a super-vga monitor, preferably with a graphics accelerator, is needed.

Maple V comprises three components: the kernel, the library and the interface. The kernel is the mathematical engine behind *Maple V*'s calculations. This is a compact, highly optimised set of routines written and compiled in the C programming language, and performs the large part of the basic computations done by the system.

Most of *Maple V*'s built-in procedures are written in the product's own programming language. Code written in *Maple V* is not compiled, but interpreted as it is read or entered, allowing users to create their own *Maple V* procedures interactively within the program. The interface is *Maple V*'s eyes to the world and defines, to a large extent, how the user interacts with the commands and procedures. In effect *Maple V* makes the whole discipline of mathematics more accessible for general usage such as engineering applications.

The method of entering instructions is by means of directly keying in commands. These commands form part of the native extensive command language. For example, to construct a sine function ranging from $-\pi$ to $+\pi$, you would enter on the prompt symbol (>),

> f(x) := (sin(2*Pi*x), x=-Pi..Pi);

Maple would respond by writing,

> $f(x) := (\sin(2\pi x), x = -\pi ... \pi i);$

All further operations on this function would refer direct-

> readlib(laplace) ;

proc(expr,t,s) ... end

> dif1 := L11*diff(i1(t), t\$1) + L12*diff(i2(t), t\$1) + R11*i1(t) = E , L22*diff(i2(t), t\$1
>) + L12*diff(i1(t), t\$1) + R22*i2(t) = 0 : fns := { l1(t),i2(t) } ;

 $fns := \{i2(t), i1(t)\}$

> dsolve({dif1, i1(0) = 0, i2(0) = 0 }, fns);

$$i2(t) = \frac{i2(t) = \frac{i2(t)^{\frac{563}{112^2 - Li1122}}}{\frac{562}{64}} + \frac{562}{62} e \frac{L12}{2} e^{\frac{562}{112^2 - Li1122}}}{\frac{562}{64}} + \frac{562}{64} e \frac{L12}{64} e^{\frac{562}{112^2 - Li1122}}}{\frac{562}{64}} + \frac{562}{64} e \frac{L12}{64} e^{\frac{562}{112^2 - Li1122}} + \frac{562}{64} e^{\frac{562}{112^2 - Li1122}} e^{\frac{562}{11122}} e^{\frac{562}{11122}} e^{\frac{562}{112^2 - Li1122}} e^{\frac{562}{112^2 - Li1122}} e^{\frac{562}{11122}} e$$

Listing 1. Maple also produces analytical solutions to differential equations. This example shows the solution from a model of a simple transformer.

K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB

Telephone: 0181-900 2329 Fax: 0181-903 6126 OPEN Monday to Saturday. Times: Mon-Fri 9.00-5.30 Sat 9.00-2.00

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 30,000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES

Please send £1 P&P and VAT at 17.5%. Govt, Colleges, etc. Orders accepted. Please allow 7 days for delivery. Prices quoted are subject to stock availability and may be changed without notice. TV and video parts sold are replacement parts.

Access & Visa Card accepted

WE STOCK TV AND VIDEO SPARES, JAPANESE TRANSISTORS AND TDA SERIES. PLEASE RING US FOR FURTHER INFORMATION.

		D.																	D.I.
Part	Price	Part	Price	Part	Price	Part	Price	Part	Price	Part	Price	Part	Price	Part	Price	Part	Price	Part	Price
AAY32 AC107	9p 40p	BD265 8D267	45p 45p	BFY90 BLY48	45p 85p	MJ2501 MJ2955	100p 55p	2N2102 2N2218A	50p 24p	7815 7818	25p 25p	TIC236D 12A/400V	85p	AN315 AN316	210p 350p	BA6209 BA6304	85p 120p	LA4110 LA4120	120p 270p
AC125 AC126	30p 30p	BD269 BD278	45p 50p	BR100 BR103	14p 37p	MJ3000 MJ3001	100p 100p	2N2219 2N2221	24p 23p	7824 7905	25p 25p	TIC246D 16A/400V	105p	AN360 AN362	100p 140p	BA6305 BA6410	140p 220p	LA4140 LA4160	60p 100p
AC128K	40p	BD314	100p	BSS74	33p	MJE29A MJE30A	30p 30p	2N2222 2N2369	23p 15p	7906	30p 30p	11C253D 20A/400V	190p	AN366 AN610	150p 160p	BA6993	250p 150p	LA4182	180p 300p
AC176	22p	BD317 BD331	150p	BT100A BT106	70p	MJE350	80p	2N2646	40p	7915	30p	25A/400V	209h	AN3821K	600p	BA7004 BA7007	200p	LA4200	130p
ACY19 AD149	48p 60p	BD332 BD361	40p 60p	BT109 BT119	90p	MP8112 MPSA05	45p	2N2905 2N2906	20p	7924	30p 24p	THYRIST	ORS	AN3990K AN3991K	300p	BA7021 BA7022	180p 350p	LA4260	230p 300p
AF125 AF139	50p 30p	BD362 BD370	60p 30p	BT146 BTY79	99p 140p	MPSA06 MPSA13	15p 15p	2N2907 2N3019	18p 28p	78L08 78L12	24p 24p	2N5061 0.8A/60V	20p	AN5025 AN5033	250p 400p	BA7751LS BA7752	5 150p 250p	LA4270 LA4420	300p 140p
AF239 BB105B	30p 18p	BD371 BD410	30p 50p	BU105 BU108	80p 100p	MPSA20 MPSA42	15p 15p	2N3053 2N3054	18p 40p	78L15 78L18	24p 24p	TIC116C 8A/300V	59p	AN5132 AN5150	250p 400p	BA7755 BA7767A	150p S 155p	LA4422 LA4430	130p 130p
BB205B BC107	24p 8p	BD433 BD434	28p 30p	BU109 BU110	80p 90p	MPSA43 MPSA70	15p 15p	2N3055 2N3055H	38p 50p	78L24 79L05	24p 35p	TIC116D 8A/400V	70p	AN5151 AN5215	600p 100p	CA3011 CA3048	110p 190p	LA4440 LA4445	150p 150p
BC109 BC109C	8p	BD435 BD436 BD437	30p	BU124 BU126	60p	MPSA92 MPSA93	20p 20p	2N3442 2N3702	9p	79L08 79L12	35p 35p	12A/400V	/5p	AN 5255 AN 5262	175p	CA3052 CA3054	95p	LA4460	120p 120p
BC140 BC142	20p 20p	BD438 BD439	36p 40p	BU180 BU184	100p	MR856 OC28	36p 350p	2N3704 2N3705	9p 9p	LM309K	100p	12A/600V	28p	AN 5352 AN 5352	600p	CA3088E	200p	LA4505	220p
BC143 BC147	20p 8p	BD440 BD441	40p 40p	BU204 BU205	65p 70p	OC29 OC35	250p 350p	2N3706 2N3707	9p 9p	LM323K 78H08KC	350p 800p	4A/400V BR103	37p	AN5421 AN5429	150p 420p	CA30900 CA3130S	250p 100p	LA4510 LA4520	100p 170p
BC149 BC159	8p 8p	BD533 BD534	50p 38p	BU206 BU208	100p 70p	OC36 OC45	250p 50p	2N3710 2N3711	12p 12p	79H12KC 79HGKC	700p 800p	BR303 BT106	85p 180p	AN5512 AN5515	100p 160p	CA3134E CA3140E	280p 38p	LA4550 LA4555	200p 120p
BC171 BC171	30p 10p	BD535 BD536	38p 38p	BU208A BU208AT	200p	R2008B	180p	2N3771 2N3772	85p 90p	LEDs		17088	100p 200p	AN5520 AN5521	550p 100p	CA3160 CA3189E	85p 230p	LA4570 LA5112	130p 200p
BC172 BC177 BC178	14p	BD538 BD643	40p 50p	BU209 BU225	90p	S2000A3	175p	2N3799	18p	3mm BED	50	17127 15/80H	200p 200p	AN5613	200p 200p	CA3193E CA3260E	170p	LA5523	150p 300p
BC179 BC182	14p 7p	BD645 BD647	50p 50p	BU226 BU312	120p 90p	S2055A S2055AF	175p 200p	2N3903 2N3906	11p	YELLOW	8p 8p	15/85R SG264	230p 800p	AN5620 AN5622	250p 275p	CX108 CX136	950p 600p	LA7011 LA7033	220p 400p
BC182L BC183	7p 7p	BD649 BD675	50p 40p	BU325 BU326A	55p 75p	S2530A S2800M	100p 72p	2N4031 2N4401	25p 12p	5mm RED	5p	SG613	1500p	AN5625 AN5712	400p 180p	CX139A CX141	750p 750p	LA7042 LA7046	280p 300p
BC183L BC184	7p 7p	BD676 BD677	40p 38p	BU406 BU406D	60p 85p	TIP29 TIP29A	15p 22p	2N4403 2N5061	12p 20p	GREEN	8p 8p	COMPUT	ER ICs	AN5722 AN5730	140p 160p	CX145 CX1508	725p 325p	LA7224 LA7505	150p 250p
BC212 BC212	7p 7p 7n	BD679 BD680	40p	BU407D	55p 75p	TIP29E	25p 40p	2N5088 2N5192	20p 50p	RECTANO	ULAR	ZBOACPU	100p	AN5732 AN5753	120p	CX175 CX187	325p 825p	LA7507	250p 200p
BC213 BC213L	7p 7p	BD681 BD682	45p 45p	BU408D BU409	75p	TIP30C	25p 25p	2N5245 2N5294	45p 30p	LEDs 5mm × 2.5	mm	280ASIO-1	1 210p	AN 5790 AN 5791	240p 225p	CX867	575p	LA7800	90p
BC214 BC214L	7p 7p	8D705 BD707	50p	BU426A BU500	70p 100p	TIP31C TIP32	27p 24p	2N5296 2N5448	30p 12p	RED YELLOW	5p 8p	75107 75110	65p 75p	AN5836 AN5900	450p 130p	CX877 HA1125	300p 120p	LA7802 LA7806	300p 260p
BC237 BC238	7p 7p	BD709 BD711	50p 50p	BU505 BU505D	90p 90p	TIP32A TIP32C	21p 28p	2N6107 2N6292	40p 40p	GREEN	8p	75113 75122	100p 110p	AN6135 AN6247	120p 200p	HA1197 HA1199	130p 130p	LA7808 LA7820	250p 100p
BC300 BC301	20p	BD736 BD826	50p	BU505DF BU506	90p 100p	TIP33 TIP33C	50p 60p	2N6385 2N6403	120p 160p		s	75154	100p 700p	AN6270 AN6300	400p 600p	HA1319 HA1338	200p 300p	LA7823 LA7910	200p 150p
BC302 BC303	20p 20p 20p	BD839 BD897	55p 50p	BU506DF	120p	TIP34C	60p	RECTIFIE	R	4N37	58p	75183	95p 95p	AN6320 AN6332	180p	HA1339A HA1377	120p	LC7131	260p
BC304 BC327	25p 7p	BD899 BD977	50p 50p	BU508AF BU508D	95p 75p	TIP36C TIP41A	65p 20p	BY127	8p	RRIDGE	400	2114 2532	150p 200p	AN6341 AN6344	200p 440p	HA1389 HA1392	210p 120p	LC7137 LF347	450p 110p
BC328 BC337	7p 7p	BDX33 BDX65	60p 80p	BU508DF BU508V	115p 110p	TIP41C TIP42A	22p 20p	BY133 BY164	8p 40p	RECTIFIE	RS	2716 2732	100p 200p	AN6350 AN6359	610p 500p	HA1394 HA1397	170p 200p	LF353 LF355	48p 60p
BC338 BC441 BC446	28p	BDW93 BDW94	50p	BU526	75p	TIP42C TIP47	40p	BY179 BY184 BY206	35p 32p	1A/50V	16p	2732A 2764	220p 150p	AN6360 AN6362	320p 400p	HA1398 HA11219	240p 280p	LF357 LF398	300p
BC477 BC516	18p 22p	BDY92 BF137	100p 35p	BU546 BU608	125p 120p	TIP50 TIP51	60p 80p	BY207 BY227	9p 19p	1A/100V W02	19p	27128	150p	AN6387 AN6884	480p	HA11225 HA11235	130p	LM311 LM319	35p
BC537 BC546	25p 8p	BF167 BF181	30p 18p	BU626 BU705	120p 130p	TIP52 TIP54	80p 85p	BY228 BY298	28p 15p	1A/200V W04	21p	27512 4116	300p 40p	AN7105 AN7110	170p 75p	HA11251 HA11423	190p 140p	LM324 LM335Z	30p 120p
BC547 BC548	8p 8p	BF183 BF195	20p 7p	BU706DF BU706F	175p 150p	TIP105	65p	BY299 BY448	18p 20p	1A/400V W06	23p	4164-15	80p 90p	AN7114 AN7115	120p 110p	HA11724 HA12002	650p 220p	LM339 LM348	35p 50p
BC550 BC556	8p 8p	BF200 BF225	16p 30p	BU806 BU807	70p	TIP110	40p	BYX55/600 BYX70/500) 25p	W08	28p	41256-12	100p	AN7120	100p	HA12003	180p	LM380	80p
8C557 BC558	7p 8p	BF240 BF245	16p 25p	BU902 BU903	110p 110p	TIP112 TIP112H	35p 50p	OA47 OA91	10p 10p	BR81D 2A/100V	33p	41464-12 6116	150p 80p	AN7140 AN7145	170p 195p	HA13001 HA13002	110p 200p	LM382 LM386	130p 60p
BC559 BC560	8p 8p	BF254 BF255	15p 12p	BU920 BU922	100p 110p	TIP115 TIP116	30p 30p	OA202 IN4001	10p 3p	BR82D 2A/200V	33p	6264-10 62256-12	210p 300p	AN 7146 AN 7154	210p 180p	HA13006 HA13007	400p 400p	LM387 LM393	100p 45p
BC639 BC640	20p 20p	BF250 BF257 BF259	18p	BU2508A	130p	TIP120	30p 37p	IN4002 IN4003	3p 3p	2A/400V	3/p	65C02	360p 930p	AN7156 AN7168	200p	HA13108 HA13412	350p	LM431 LM710	50p 45p
BCY33 BCY34	200p 200p	BF262 BF270	25p	BU2508D BU2508D	130p	TIP122 TIP125	30p 30p	IN4005 IN4006	3p 3p	2A/600V BR88D	43p	6800 6802	210p 220p	AN7222 AN7254	75p	HA17524	250p	LM741DI	L 18p
BCY70 BCY71	16p 16p	8F273 BF311	15p 21p	BU2520A BU2520D	225p 225p	TIP126 TIP127	40p 35p	IN4007 IN4148	4p 2p	2A/800V BR32	43p	680 36808	500p 500p	AN7256 AN7310	250p 60p	ICL7660 KA2102	240p 150p	LM747 LM1889	55p 300p
BCY72 BD115 BD124R	16p 30p	BF336 BF337	20p 20p	BU2525A	325p 200p	TIP130 TIP131	30p 30p	IN5400 IN5401	9p 8p	2A/200V BR34	43p	6809 6810	500p 150p	AN7311 AN7410	90p 150p	KA2130 KA2206	150p 150p	LM1894N	200p 40p
BD131 BD132	25p 25p	BF362 BF367	30p 13p	BUT12 BUT56A	80p 75p	TIP141	65p 75p	IN5403	8p 8p	BR36 2A/600V	44p	6821 6840	130p 290p	AY3-1270 AY3-1350	800p 450p	KA2210 KA2210	230p 80p	LM3914 LM3915	160p
BD133 BD135	50p 20p	BF371 BF421	17p 18p	BU18 BU18AF	80p 80p	TIP145 TIP146	50p 70p	IN5405 IN5406	11p 12p	BR62 6A/200V	80p	6845 6850	200p 90p	AY3-8910 AY3-8912	360p 400p	KA2213 KA2214	130p 150p	LM3916 L200	270p 200p
BD136 BD137 BD139	20p 20p	BF422 BF423	21p 25p	BUX10 BUX11	150p 200p	TIP147	80p 90p	IN5407 IN5408	12p 12p	BR64 6A/400V	72p	8085A 8086	300p 500p	BA301 BA311	55p 80p	KA2261 KA2263	100p	M491BB1 M494B1	500p 700p
BD139 BD140	20p 20p	BF458 BF462	19p 50p	BUX20 BUX21	350p 450p	TIP2955	42p	RGP30 SKE4E2/06	25p 16p 60p	25A/100V BR252	165p	8156	300p	BA333 BA401	80p	KA2284 KA2401	100p	M50117P	500p
BD144 BD157	90p 38p	BF471 BF472	28p 28p	BUX22 BUX37	450p 220p	TIPL760 TIPL763A	100p 200p	SKE4F2/08 SKE4F2/10	80p 100p	25A/200V BR254	185p	8226 8250	240p 750p	BA402 BA511	50p 145p	KA2412 KA2912	350p 125p	M50784 M50786	300p 500p
BD166 BD175	30p 30p	BF479 BF494	30p 16p	BUX40 BUX41	210p 200p	TIPL791A TIS61	80p 15p	SR2M	60 p	25A/400V BR256	200p	8251 8253	200p 160p	BA514 BA516	160p 150p	KA2914A LA1130	300p 240p	M50790 M51161	600p 300p
BD179 BD181	30p 32p	BF595 BF596	16p	BUX47A	200p 220p	TIS93	20p	I.C. SOCK	ETS 50	25A/600V BR258	240p	825/	220p 3400p	BA524 BA524	100p 240p	LA1150 LA1185	150p 150p	M51381P M51387P	800p
BD182 BD184	60p 60p	BF615 BF617	30p 30p	BUXB0 BUX84	180p 50p	ZTX108 ZTX109	11p 12p	14PIN 16PIN	6p 7p	BR351 35V/100V	185p	8283 8284	400p	BA527 BA532	95p	LA1210	140p	M51848 M54523P	150p 200p
BD187 BD201	30p 33p	BF760 BF763	40p 40p	BUX85 BUX86	50p 30p	ZTX212 ZTX300	20p 10p	18PIN 20PIN	10p 12p	BR352 35V/200V	200p	8287 8288	260p 650p	BA534 BA536	220p 150p	LA1230 LA1364	130p 200p	M54563P M58484	200p 500p
BD202 BD203	38p 42p	BF870 BF871	22p 22p	BUX87 BUX98A	50p 350p	ZTX301 ZTX302	16p 10p 20p	22PIN 24PIN	13p 14p	BR354 35V/400V	220p	8748 8755	700p 800p	BA546 BA612	160p 120p	LA1365 LA1368	120p 220p	M51516 M51518	260p 200p
BD222 BD225	31p 31p	BF961 BF964	35p 38p	BUY71 BUZ11	200p 250p	ZTX304 ZTX320	10p 20p	40PIN	18p	35V/600V	230p	8T28	95p 110p	BA658 BA658	350p	LA1385 LA2000	150p 270p	MB3712 MB3713 MB3714	130p
BD232 BD233	31p 30p	BFR90 BFR91	85p 99p	BUZ71 BUZ80	75p 200p	2TX501 2TX502	13p 10p	ZENERS		35V/800V BY164		LINEAR IC	s	BA685 BA1310	400p	LA2200	190p 120p	M83715 MB3722	250p 280p
BD234 BD235	32p 28p	BFT43 BFX29	30p 20p	BY44B BYT11	20p 25p	ZTX504	18p 25p 26p	400 mWatt 2V7 to 39V	ts 5p	1.5A/100V BY176	40p	AN203 AN210	210p 165p	BA1320 BA1330	75p 120p	LA3210 LA3300	65p 140p	MB3730 MB3731	160p 220p
BD236 BD237 BD238	30p 21p 24p	BFX84 BFX85 BFX87	20p 20p	IRF630	28p 150p	2N697 2N698	22p 40p	1.3 Watts 2V7 to 39V	9p	1.5A/800V	40p	AN214Q AN228	170p 280p	BA1360 BA4403 BA5101	160p 220p	LA3301 LA3361	110p 100p	MB3756 MB3759 MB9710	160p 200p
BD239 BD240	30p 40p	BFX88 BFX89	15p 60p	J300 MJ900	50p 200p	2N78 2N914 2N930	22p 28p	VOLTAGE		TRIACS	60p	AN252 AN259 AN262	250p	BA5101 BA5102 BA5204	140p	LA4030	180p	MC1455 MC1496	45p
BD241A BD243A	40p 50p	BFY50 BFY51	14 p 14 p	MJ1000 MJ1001	200p 200p	2N1131 2N1132	28p 28p	7805	25p	4A/400V TIC225D	69p	AN271 AN274	230p 250p	BA5402 BA5406	180p	LA4032 LA4051	140p 160p	MC3401 NE555	45p 20p
BD244 BD245	50p 50p	BFY52 BFY56	14p 25p	MJ10012 MJ15003	300p 250p	2N1613 2N1711	24p 24p	7806 7808	25p 25p	6A/400V TIC226D	68p	AN301 AN303	330p 250p	BA5408 BA6104	180p 250p	LA4100 LA4101	85p 80p	NE556 NE558	40p 80p
BD240A	SUP	BF164	25p	IVIJ 15004	300p	2111893	30p	/812	25p	8AV400V	1	AN304	360p	BA6208	175p	LA4102	100p	NE565	110p

TRANSIGTORS

CIRCLE NO. 108 ON REPLY CARD

PC ENGINEERING

ly to f(x). For example if a plot was required then you would enter,

> plot(f(x));

The software responds by creating a 2D plot, autoscaled from $-\pi$ to $+\pi$. Alternatively by ending each line with a colon (:), you can effectively cascade a list of operations which are executed once the end semicolon (;) is reached.

All operations and functions are accessed in this way. However I must stress that the learning curve is quite steep. Owing to the low-level nature of *Maple V*'s command language, it is **unf**orgiving and will require a fair amount of time and patience to master its rigid syntax.

Symbolic processing

It has often been said how useful it would be if computers could solve equations analytically, performing differentiations and integrations. Well, this software is able to perform just that. No matter how complex the equation, *Maple V* will find a solution – of sorts. It is very effective at expanding expressions, Fig. 1, and generating series terms, or for that matter factorising expressions.

With a package like this, one wonders why it is necessary to learn integration and differentiation techniques when the pc can find the answer in a fraction of the time. No more looking up tables to perform Laplace transforms and their inverse; *Maple V* performs these operations quite comfortably. However on occasions the answers do not agree with tabulated versions and it is difficult to know if there is an error or just an ambiguity. As expected, *Maple V* also performs numerical evaluations of equations and is particularly strong on the numerical evaluation of integrals and series.

Procedures

Maple V allows procedures to be created. These comprise a sequence of instructions. Like any other programming language, *Maple V*'s procedures incorporate conditionals, loops and exit loop conditions. The syntax is not too dissimilar to that of programming language Pascal.

An example of *Maple V* procedure is shown in Fig. 2. It calculates the transfer functions of different order low pass Chebychev filters. The iterative procedure shown for calculating the Chebychev coefficients from the recurrence relation is,

$$T_{n+1}(x) = 2 \times T_n(x) - T_{n-1}(x)$$

with starting conditions $T_0(0) = 1$ and $T_1(x) = x$. Although the procedures can be quite powerful they do have quite a steep learning curve associated with them and the syntax is very precise. However there are thousands of functions in the *Maple V* libraries which can be used within the procedure framework.

Solving differential equations

Maple \tilde{V} is quite effective for solving differential equations of any order. It will also solve coupled differential equations analytically, however the answer may appear to be somewhat unwieldy as illustrated in Fig. 3 which is a printout of the solution of circuit with mutual conductance – whoever said that transformer design was simple?

In line 2 *dif1* defines the coupled equations and line 3 performs the evaluation with the boundary conditions (no initial current in either the primary or secondary). Although not an immediately useful solution it does illustrate the analytical capability of *Maple V*. However by attaching numbers to the L, R and E values, numerical solutions will be produced. *Maple V* does not like nonlinear coupled differential equations to solve, in fact in several instances it refuses to do any

>	expand((x+a)^7);
	$a^{7} + 7 a^{6} x + 21 a^{5} x^{2} + 35 a^{4} x^{3} + 35 a^{3} x^{4} + 21 a^{2} x^{5} + 7 a x^{6} + x^{7}$
>	# Maple V solving sets of equations,
>	solve({x+y=b, a*x-2/3*y = k}, {x,y});
	$\left\{ y = 3 \frac{a b - k}{3 a + 2}, x = \frac{3 k + 2 b}{3 a + 2} \right\}$
>	# Finding solutions to polynomial expressions,
>	fsolve(23*x^5+105*x^4-10*x^2+17*x, x, complex);
	0, -4.536168981,6371813185, .3040664543 – .4040619058 <i>I</i> , .3040664543 + .4040619058 <i>I</i>
>	# Some integrals do not readily yield to solution,
>	int(exp(x^3), x) ;
	$\int e^{(x^3)} dx$

Old hacks at differential equations will know that there are several ways of solving them and *Maple V* offers the user the choice of a solution method. Electronics engineers would probably opt for using the Laplace Transform method for finding a solution and this is requested by augmenting the dsolve instruction by,

dsolve(diff_eq, y(x), method=laplace) ;

Although Maple V seems to tackle linear differential equations quite well, like a number of other maths software packages, nonlinear maths usually proves to be a little too testing and solutions are not always provided.

2D graphics

An essential aspect of any mathematical modelling package is its ability to generate graphs. These days such a task is no big deal as most numerical software can generate 2D graphs. An example of the 2D output from *Maple V* is shown in Fig. 2, displaying the Chebychev filter transfer functions with their characteristic ripples in the pass band. It is relatively easy to overlay several plots on the same graph and the scaling is performed automatically. Fig. 1. Maple V is very effective at expanding expressions and generating series. In fact it performs many of the operations that an engineering student toils for hours over.

Fig. 2. Modelling performance of a Chebychev analogue filter is easy with Maple V. As seen in this example, increasing the number of poles improves the rolloff of the filter.

CIRCLE NO. 110 ON REPLY CARD

PC ENGINEERING

Provisions are available for plotting in cylindrical coordinates and performing contour plots. It would however be helpful if more control could be exercised on the plotting features, axis definition and labelling for example as it is likely that you will require a printing of 2D plots.

3D graphics

Features for performing the now commonplace function of 3D plotting are available in *Maple V*. But one of the extraordinary features of *Maple V* is its ability to plot in a variety of coordinate systems – spherical coordinates for example. This allows true solid modelling to be realised. For example, the complex mode structures in graded index optical fibres can be represented pictorially. They involve a lot of unfriendly

System requirements

A realistic minimum is, 33MHz 486-pc SVGA monitor Graphics accelerator, 256 colours 8Mbyte ram 10Mbyte hard disc space, excluding virtual memory Laser printer Windows 3.1

Source

Adept Scientific Micro Systems Ltd 6 Business Centre West Avenue One Letchworth. Telephone: 0462-480055 Fax: 0462-480213 Cost £660 offer ex vat & carriage. Bessel functions, however with Maple V they can become somewhat more accessible and easier to work with.

There is an impressive range of 3D plotting features but it does require a push of the imagination to realise their usage. The 3D surfaces also have a variety of colour shading as can be seen from the example given in Fig. 4; although pretty to look at, it is not terribly useful.

However if there was a need to model the 200MHz pulse propagation along pcb tracking, then *Maple V* could be used to determine the 3D impedance profiles along the length of the tracking (including reflections). Being able to visualise solutions such as these must be one of the main benefits of using modelling packages like *Maple V*.

Conclusion

There are very few areas of engineering where Maple V would not prove useful. Although the package is very powerful and undoubtedly applicable to a variety of modelling purposes a word of caution must be expressed.

New users must be prepared to spend a lot of time learning how to use the package proficiently. It will probably be several hours before they will be in a position to apply *Maple V*. A number of manuals are provided to help the learning process, including the Reference Manual and a Tutorial Introduction.

The Tutorial presents many examples, which are necessary for a package with such rigid syntax rules. Working through these manuals is an absolute must. There is also a well-designed screen-based tutorial which should prove helpful to the new user. Also available for *Maple V* are a number of text books written by third parties. It is certainly pleasing to know that if you have a pc on which you want to perform complex mathematical operations, *Maple V* will certainly put it through its paces and uses all of its memory and calculating power.

A complete design entry tool for Windows that gives you all the power you need. The 30+ different netlist outputs allow you to work with a variety of systems for PLD/FPGA programming, simulation, analysis & PCB layout. It will even directly read OrCAD schematics & libraries.

Dolphin Integration, SMASH. A multi-level, mixed signal simulator. Allows simulation of analogue, digital and mixed signal circuits at a user-selectable level of abstraction - from simple SPICE libraries to full behavioural modelling.

Premier EDA Solutions Ltd. 133 Cardiff Road, Reading, Berkshire. RG1 8ES. Telephone: 01734 574 444. Facsimile: 01734 599 519. Or see Protel in the CAD/CAM/CAE forum on CompuServe.

CIRCLE NO. 113 ON REPLY CARD

82022

ZI

ER O N -SU

Why Wait for Windows EDA

Best rf article '95

Following the success of 1994's Writers Award, *Electronics World* and Hewlett-Packard are launching a new scheme to run from January to December 1995.

Only articles which have an element of rf design will be eligible for consideration by the judging panel. It is hoped that this year's award will focus writer interest on rf engineering in line with the growing importance of radio frequency systems to an increasingly cordless world.

The aim of the award scheme is to locate freelance authors who can bring applied electronics design alive for other people.

Qualifying topics might include direct digital synthesis, microstrip design, application engineering for commercially available rf ICs and modules, receiver design, PLL, frequency generation and rf measurement, wideband circuit design, spread spectrum systems, microstrip and planer aerials... The list will hopefully be endless.

All articles accepted for publication will be paid for – in the region of several hundred pounds for a typical design feature.

Win a £4000 programmable signal generator from Hewlett-Packard

> The prize for the coming year's award is a £4000 Hewlett-Packard HP8647A 1GHz programmable signal generator. It features HPIB interface, solid state programmable attenuator and built in AM-FM modulation capability.

For further details about our quest for the best, call or write to: Martin Eccles, Editor, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS Tel 081-652 3128

PIC 16/17Cxx DEVELOPMENT TOOLS

High Specification PIC Tools from PARALLAX

ClearView In-Circuit Emulators

20-MHz in-circuit debugging for PIC 16C5x/64/71/84/.. Set breakpoints, step through code, modify registers. Friendly DOS and Windows software.

From £399 (separate units for

"5x" and "xx" PICs)

PIC Programmer Pack

Programmer for PIC16C5x/64/71/84/.. Documentation on disk. User supplied cables and power supply.

Just £89

MILFORD INSTRUMENTS

NEW BASIC STAMPS

Two **NEW** BASIC Stamp Controllers offering even more flexibility to Industry, Education and the Hobbyist. Both run Parallax "PBASIC" with familiar BASIC commands plus serial I/O, pulse measurement and button debounce. The BS2-IC includes additional support for LCDs, keypad, DTMF encoding/decoding, X-10 transmit and external time clocks. The BASIC Stamp programming package at 566 contains aditor software

The BASIC Stamp programming package at £66 contains editor software, cables, manual and extensive application notes; everything you need to program Stamps using your PC.

All prices exclude VAT and £3 shipping per order. For further details on any of these products please 'phone for our new colour catalogue.

Milford House, 120 High Street, SOUTH MILFORD, Leeds LS25 5AQ Telephone 01977-683665 (24 hour) 01977-681465 (Fax)

Fets versus bits the linearity competition

"Had bipolar transistors been invented before power mosfets, they would have been heralded as a major step forward in components for power amplification," suggests Douglas Self.

There has been much debate recently as to whether power fets or bipolar junction transistors (bjts) are superior in power amplifier output stages. Reference 1 is a good example. It has often been asserted that power fets are more linear than bjts, usually in tones that suggest that only the truly benighted are unaware of this.

In audio electronics it is a good rule of thumb that if an apparent fact is repeated times without number, but also without any supporting data, it needs to be looked at very carefully indeed. I therefore present my own view of the situation here, in the hope that the resulting heat may generate some light.

I suggest that it is now well-established that power fets, when used in conventional Class-B output stages, are a good deal less linear than bjts.² Gain deviations around the crossover region are far more severe for fets than the relatively modest wobbles of correctly biased bjts, and the shape of the fet gain-plot is inherently jagged, due to the way in which two square-law devices overlap.

The incremental gain range of a simple fet output stage is 0.84 to 0.79, range 0.05, and this is actually much greater than for the bipolar stages in Reference 2; the emitter-follower stage gives 0.965 to 0.972 into 8Ω , with a range of 0.007, and the complementary feedback pair gives 0.967 to 0.970 with a range of 0.003. The smaller ranges of gain-variation are reflected in the much lower thd figures when PSpice data is subjected to Fourier analysis.

However, the most important difference may be that the bipolar gain variations are gentle wobbles, while all fet plots seem to have abrupt changes. These are much harder to linearise with negative feedback that must decline with rising frequency. The basically exponential I_c/V_{be} characteristics of two bjts approach much more closely the ideal of conjugate mathematical functions, – ie always adding up to 1. This is the root cause of the much lower crossover distortion.

Close-up examination of the way in which the two types of device begin conducting as their input voltages increase shows that fets move abruptly into the square-law part of their characteristic, while the exponential behaviour of bipolar devices actually gives a much slower and smoother start to conduction.

Similarly, recent work^{*} shows that less conventional approaches, such as the commoncollector/common-emitter configuration of Bengt Olsson, also suffer from the non-conjugate nature of fets. They also show sharp changes in gain. Gevel³ shows that this holds for both versions of the stage proposed by Olsson, using both N and P-channel drivers. There are always sharp gain-changes.

Class A stage

It occurred to me that the idea that fets are more linear was based not on Class-B poweramplifier applications, but on the behaviour of a single device in Class-A. You might argue that the roughly square-law nature of a fet's I_d/V_{gs} law is intuitively more 'linear' than the exponential I_c/V_{be} law of a bjt, but it is difficult to know quite how to define 'linear' in this context. Certainly a square-law device will generate predominantly low-order harmonics, but this says nothing about the relative amounts produced.

In truth the bjt/fet contest is a comparison between apples and aardvarks, the main problem being is that the raw transconductance (g_m) of a bjt is far higher than for any power fet. **Figure 1** illustrates the conceptual test circuit; both a TO3 bjt *MJ802* and an *IRF240*

Fig. 1. Linearity test circuit. Voltage V_{offset} adds 3V to the dc level applied to the fet gate, purely to keep the current curves helpfully adjacent on a graph.

power fet have an increasing dc voltage, V_{in} , applied to their base/gate, and the resulting collector and drain currents from PSpice simulation are plotted in Fig. 2.

Voltage V_{offset} is used to increase the voltage applied to fet M_1 by 3.0V because nothing much happens below a V_{gs} of 4V, and it is helpful to have the curves on roughly the same axis. Curve A, for the bjt, goes almost vertically skywards, as a result of its far higher g_{m} . To make the comparison meaningful, a small amount of local negative feedback is added to Q_1 by R_e . As this emitter degeneration is increased from 0.01 to 0.1 Ω , the I_c curves become closer in slope to the I_d curve.

Because of the curved nature of the fet I_d plot, it is not possible to pick an R_e value that allows very close gm equivalence; a value of 0.1Ω was chosen for R_e , this being a reasonable approximation; see Curve B. However, the important point is that I think no-one could argue that the fet I_d characteristic is more linear than Curve B.

This is made clearer by Fig. 3, which directly plots transconductance against input voltage. There is no question that fet transconductance increases in a beautifully linear

* The subject of an article by Douglas to be published in *EW+WW* in the near future – Ed.

AUDIO DESIGN

Fig. 2. Graph of l_c and l_d for the bjt and the FET. Curve A shows Ic for the bjt alone, while Curve B is the result for $R_e=100m\Omega$. The curved line is the l_d result for a power fet without any degeneration.

Fig. 3. Graph of transconductance versus input voltage for bjt and fet. The near-horizontal lines are bjt g_m for various R_E values.

manner- but this 'linearity' is what results in a square-law I_d increase. The near-constant g_m lines for the bjt are a much more promising basis for the design of a linear amplifier.

To forestall any objections that this comparison is nonsense because a bjt is a currentoperated device, I add here a small reminder that this is untrue. The bjt is a voltage operated device, and the base current that flows is merely an inconvenient side-effect of the collector current induced by said base voltage. This is why beta varies more than most bjt parameters; the base current is an unavoidable error rather than the basis of transistor operation.

The PSpice simulation shown was checked against manufacturers' curves for the devices,

and the agreement was very good – almost unnervingly so. It therefore seems reasonable to rely on simulator output for these kind of studies; it is certainly infinitely quicker than doing the real measurements. In addition, the comprehensive power-fet component libraries that are part of PSpice allow the testing to be generalised over a huge number of component types without you needing to buy them.

To conclude, I think it is probably irrelevant to simply compare a naked bjt with a naked fet. Perhaps the vital point is that a bipolar device has much more raw transconductance gain to begin with, and this can be handily converted into better linearity by local feedback, ie adding a little emitter degeneration. If the transconductance is thus brought down roughly to fet levels, the bipolar has far superior large-signal linearity. I must admit to a sneaking feeling that if practical power bjts had come along after fets, they would have been seized upon with glee as a major step forward in power amplification.

References

- 1. Hawtin, V., Letters, *EW+WW* Dec 1994, p.1037.
- Self D., 'Distortion In Power Amplifiers', Part 4, *EW+WW*, Nov 1993, pp 932-934.
 Gevel M., Private Communication, Jan 1995.

TOROIDAL TRANSFORMERS

High Quality

In addition to our standard range we will be pleased to quote for your special requirements.

PRICE LIST

Low Prices

		Quantity Price Excluding VAT & Carriage						
VA	Mail Order	2+	10+	25+	50+	100+		
15	14.59	10.21	7.69	5.69	5.52	5.35		
30	16.04	11.23	8.45	6.25	6.06	5.89		
50	17.83	12.48	9.40	9.95	6.74	6.53		
60	18.02	12.61	9.49	7.02	6.82	6.61		
80	17.98	12.60	9.49	7.02	6.81	6.60		
100	21.07	14.74	11.11	8.21	7.96	7.72		
120	21.54	15.08	11.35	8,39	8.15	7.89		
150	25.98	18.19	13.70	10.12	9.82	9.53		
160	23.83	16.68	12.56	9.28	9.00	8.73		
225	30.10	21.07	15.87	11.73	11.39	11.04		
300	34.32	24.02	18.09	13.38	12.98	12.58		
400	46.19	32.32	24.35	17.99	17.47	16.94		
500	50.48	35.34	26.61	19.67	19.09	18.51		
625	53.09	41.36	31.14	23.02	21.24	20.57		
750	58.39	44.23	33.30	24.62	23.89	23.17		
1000	78.80	55.16	41.54	30.70	29.80	28.89		
1200	82.45	57.72	43.46	32.12	31.17	30.23		
1500	105.10	73.63	55.40	40.94	39.74	38.53		
2000	114.45	96.13	72.39	53.51	51.93	50.36		
2500	163.04	114.13	85.94	63.51	61.64	59.79		

These prices are for 240volt primary and two equal secondaries with 8" colour coded fly leads.

Each transformer is supplied with a mounting kit (steel dish washer pads, nut and bolt)

Mail order prices include vat and postage.

Please do not hesitate to telephone or write with your particular requirements.

Airlink Sales Co 16 Knight Street, Sawbridgeworth, Herts CM21 9AT Tel: 01279 600139 Fax: 01279 726379 CIRCLE NO. 117 ON REPLY CARD

Allow 7 days for delivery

and display information. Control or read instruments or speak to other computers, 5000 bytes/sec. Built in ROM includes 46 separate commands. Interface to HP-1L, HP-1B, RS232C, GPIO or series 80. Includes connection cables

SPECIAL OFFER Buy 2 Kits For £59.00

£5 + £2 Carriage (Carriage FREE If ordered with above).

INTERCONNECTIONS LTD Unit 41, InShops, Wellington Centre, Aldershot, Hants GU11 5DB Tel: (01252) 341900 Fax: (01293) 822786

CIRCLE NO. 118 ON REPLY CARD

"moving from schematic to layout could not be easier"

Electronics World & Wireless World Jan 1995

0

.

a

E

80

Integrated Schematic and PCB **Design for Windows 3.1**

DESIGNER £99

*Schematic & PCB Drawing *1/2 layer auto-router *Supports Windows printers/plotters *Full set of libraries *Clipboard support *Designer Special (manual on disk) also available.

*Schematic & PCB Design *Schematic Capture *Integrated Rats-Nest Generation *1-8 layer Auto-router (faster than Designer) *Net-List Export *Supports Windows printers/plotters *CAD-CAM outputs.

£299

As the PRO but also includes *Advanced Schematic Capture (Busses, Power rails, etc) *Larger Schematic & PCB Designs *Gerber file IMPORT for File Exchange *Extended libraries including Surface Mount, CMOS, etc.

Busses & power rails handled using Global Nets on PRO+

Integrated Schematic & PCB Design.

POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, U.K. Tel/Fax 0161 449 7101

CIRCLE NO. 119 ON REPLY CARD *Prices exclude P+P and V.A.T. *VISA/MasterCard Accepted *Network versions available.

389

Electronic Designs Right First Time?

CIRCLE NO. 120 ON REPLY CARD

Active and Passive Filter Design - FILTECH -

Affordable Electronics CAD

LAYAN: Electromagnetic Layout Simulator. Links to EASY-PC Pro' XM and ANALYSER III Pro'.		£495.00
EASY- PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR.	From	£195.00
PULSAR: Digital Circuit Simulator	From	£98.00
ANALYSER III: Linear Analogue Circuit Simulator	From	£98.00
Z-MATCH for Windows: Smith Chart based problem solving program for R.F. Engineers		£245.00
FILTECH: Active and Passive Filter design		£145.00
FILTECH Professional: Enhanced Filter Design Program including Elliptic Filters (up to 12th order)		£245.00
EASY-PC: Entry level PCB and Schematic CAD		£98.00
Technical Support FREE for life! Prices exclude F	P&P and	VAT.
Special discount schemes for advection		

Special discount schemes for education
Number One Systems

Ref: WW, Harding Way, St. Ives,

Huntingdon, Cambs. PE17 4WR, UK.

For Full Information Please Write, Phone or Fax

Tel: +44 (0) 1480 461778

Fax: +44 (0) 1480 494042

Number One Systems FILTECH Professional Filter Design Synthesiser Configuration Specify Parameters View !Tools FIHelp Quit File:ELLIPTIC.NET Model: Band Pass Type: Passive X-Scale: Lin. 7th Drder Elliptic Filter Gain (dB) -0.03 ------10.000 -20.000 -30.000 -40,000 -50.000 -60.000 -70.000 00H 7,10H Frequency (Hz) NHz U.Pass; 7,100 Attn: 60.0 dB 7.20 6.9DH 7.00 7.100 MHz KL.Stop: 6.950 HHz L.Pass: 7.000 HHz Zsource: 50.0 0 Zload: 50.0 0 >U.Stop: 7.150 MHz Ripple: 1.0 dB Zsource: 50.0 A From only £145! Visa, Delta, Switch, MasterCard and American Express welcome

If you need Valves/Tubes or RF Power Transistors e.t.c. ...then try us!

We have vast stocks, widespread sources and 33 years specialist experience in meeting our customers requirements.

Tuned to the needs of the Professional User

Chelmer Valve Company, 130 New London Road, Chelmsford, Essex CM2 0RG, England

244-01245-355296/265865 Fax: 44-01245-490064 CIRCLE NO. 121 ON REPLY CARD

the new **CRICKLEWOOD** Electronics Very Interesting CATALOGUE ASTRONOMICAL RANGE AT DOWN TO EARTH PRICES TRANSISTORS+ICs+SEMICONDUCTORS **RESISTORS+CAPACITORS+INDUCTORS** . SURVEILLANCE+SECRECY+SECURITY PLUGS+SOCKETS+LEADS+CONNECTS TV & VIDEO SPARES (inc Video Heads) HIFI+DISCO+HIFI GADGETS+SPEAKERS **AUDIOPHILE COMPONENTS (inc Capacitors)** IN CAR AUDIO+SPEAKERS (inc Bass tubes) COMPUTER ACCESSORIES+BOARDS **TOOLS+TEST EQUIPMENT+BENCHWARE** & much much much more (over 10.000 lines). SEND TODAY FOR THE VERY INTERESTING CATALOGUE Pay by PO, Cheque, Credit Card or tape Coins to Paper Please send me copies of the 1995 Cricklewood Catalogue. I enclose £2.50 per copy (UK & Europe). £5.00 overseas Name..... Address. Please Charge my Credit Card:no..... Cricklewood Electronics Ltd, 40-42 Cricklewood Broadway London NW2 3ET Tel 0181 450 0995 Fax 0181 208 1441

CIRCLE NO. 122 ON REPLY CARD

Delayec audio signals

Too many audio designs are deeply flawed in the bass, says Ben Duncan, recalling recent work of Douglas Self and Edward Cherry. Here Duncan uses simulation to explain the reasons and ramifications for

the entire audio chain.

Pendence of the quality of reproduced sound on the number of components through which it is passed still seems to be doubted by some commentators¹. But how many have actually bothered to examine exactly what happens to a given signal between the mic terminals – via multitrack recording process and recording media - and its emergence from a domestic power amplifier?

A realistic record-to-reproduction path could include six gain stages with dc blocking in input and feedback paths; three high pass (-12 and -18dB/octave) filters; and 52 other dc blocking capacitors, Fig. 1. In a typical consumer grade path, capacitor values for assorted random $f_{3L}s$ ($\omega_{low}/2\pi$) will be centered around 4-6Hz, and up to 16Hz. In fact this is a specification that is becoming increasingly prevalent even in supposedly professional equipment.

Analysing the frequency responses of 50 of these paths, Fig. 2, at different points shows the gain stages, high pass filters and buffers to range from -3dB, at from below 3Hz, up to 63Hz in the worst case. Uncorrected response at the end of the chain is -3dB at 45-200Hz.

This doesn't mean that bass is absent by so much: it is

Fig. 1. Over 70 cascaded RC high-pass elements model a complete (electronic portion of an) audio record-to-reproduction path. Capacitor tolerances are engaged to simulate random equipment combinations, as well as tolerance, temperature and drift variables. compensated for during the recording production process. But compensatory equalisation means the real path experiences even more phase corruption.

The figures nonetheless suggest the kind of roll-off commensurate with the delay and waveform distortion existing.

Delay problems can be appreciated by examining the contribution of a solo gain stage, Fig. 3. Just this one type of stage clearly exhibits more delay than the 52 buffers (otherwise the sum would exceed the upper plots in Fig. 3).

The effect of this aurally significant delay is mistiming of

Fig. 2. Unequalised frequency responses of a possible complete consumer-grade audio reproduction path (upper panel, blue plots). Upper panel red plots, and blue and red lower panel plots, show typical responses of constituent gain stages, high-pass filters and buffers. Each Monte Carlo run represents myriad design differences, as nearly all audio chains are made from effectively random equipment assemblies. There are no standards for f_{3L}. Y axis is decibels.

AUDIO

Fig. 3. Group delay vs frequency, individual and total, for a complete, consumer -grade reproduction path. Note the convergence on linearity only at extreme frequencies. Y-axis is milliseconds of delay.

> Fig. 4. The BDR method: like Fig.

2, but with 100

times less signal

delay. Note Y-

axis scale

change.

 Filtro Cop IU

 Tite Bindows Print Options

 AC Analysis

 AC Analysis

 AC Analysis

 AC Analysis

 So.com

 10

 20.000

 Lincer Distribution

 Blas: total Path Delay

 10.000

 Blas: total stage contribution

 0

 Blas: total Path Delay

 10.000

 Blas: total stage contribution

 0

 Blas: total stage contribution

 0

 Hicro Cap (U

 Tile Vindous Print Options

 AC Scope Honte Carlo

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 61/00

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.000

 500.0000

 Hicro Cap IV

 File Vindous Print Options

 Transient Scope Monte Carlo

 Site Vindous Print Options

 The o

Fig. 7. Phase disaster at path output. With consumer values, the phase response of the whole path is truly non-linear, and the rate of phase shift changes at hundreds of degrees every few Hz around 40Hz. In the lower panel, the phase change rate (enlarged x30) isn't even linear by 1kHz. Note also the wild singleton – a disparate of excess phase. Y-axis is degrees.

Fig. 8. Attaining global phase linearity. With bdr, the rate of change of phase is far, far less at the end of a full audio reproduction chain. In the lower panel, even x30 enlargement fails to reveal any visible curvature above 100Hz.

the music – here as much as 43ms at 40Hz – while the higher harmonics of a note at this frequency can have periods many times shorter than this.

Clearly, the music is playing out of step with itself, and any RC components that add hp filtration will compound this delay. The real test of a design is to measure delay after passing a signal through seventy (of Douglas Self's 'blameless') power amplifiers – with appropriate interstage attenuation.

Distortion suffered by wideband audio waveforms (10Hz to 20-100kHz, Fig. 3) resulting from this delay is horrific: 'smeared' is a fair description.

Phase compensation suggested by Cherry² ought to help, but will it? Compensation must be in use in not just one stage, but throughout a fair fraction of – if not all – the audio chain. Plainly this would prove unworkable as each stage's inevitable xdB of subsonic gain would accumulate, soon eating up headroom. Also, any compensatory equalisation circuit would require further critically-toleranced *RC* parts, and its own phase relations and tolerance deviations would destroy Cherry's compensation's benefits.

The problems of the consumer approach are self-inflicted. To demonstrate what would happen if the bdr (see panel, **BDR** vs Cherry and Self) approach were used throughout the audio path, the capacitor values can simply be increased by $\times 167$.

Fig. 5. Complete consumer path again. A pulse goes down the chain, with just five Monte Carlo runs for clarity. The emerging wave should not seem 'suitable for its intended purpose'. Fortunately, music productions only occasionally comprise such waveforms and 'data corruption' to the ears may be less fundamental than it appears to the eyes. Y-axis is volts.

Fig. 6. Keeping the pulse. How bdr handles a pulse – something that looks very like the input pulse emerges at the output (lowermost). Effect on group delay is to make it 100 times smaller, Fig. 4 and contribution of the solo gain stage also ranges higher.

So what would be the fate of a simple positive pulse as it passes through the chain, Fig. 5? After the 57th high-pass function, the edge reduces to something like a damped oscillation. But using the bdr method, Fig. 6, although the final output may be a little tilted, at least it's recognisable and quite faithful.

Similarly, phase linearity for the consumer path is a disaster at all frequencies below 1kHz, Fig. 7, with the rate of change of phase per hertz accelerating. This can be compared with the bdr method, Fig. 8, which demonstrates an almost text book model of phase linearity. No significant curvature is visible above 100Hz.

Ironically, without the expense of hindreds of volts of lf headroom extension, Cherry's phase compensation scheme can in practice only be used once or twice. It is only in this almost phase-linear environment that it would have significant objective effect. Yet, in ordinary signal chains the effect would readily be heard as an improvement. But the same phase correction of just one stage in 60+ would be nearly invisible in any objective measurement of the whole chain due to phase jitter.

References

- 1. D Self, "Unacceptable Terms" , *Letters, EW* + *WW*, Feb 1995.
- 2. E Cherry, "Ironing out distortion", EW + WW, Jan '95.
- 3. B Duncan, "Spirit of Bass", EW + WW, Feb '94.
- 4. D Self, "High speed audio power", EW + WW, Sept '94.
 5. D Jensen, "High Frequency phase response specifications useful or misleading?", 81st AES convention, Nov '86, reprinted with corrections by Jensen transformers, 1988.

Ben vs Self and Cherry: simulated contest

Ben Duncan wonders if he's the only designer left who really cares about the effects of phase and group delay on bass response.

Simulation of the Ben Duncan Research (bdr) simple and low-compromise approach to low frequency reproduction accuracy³ can quickly provide a straightforward picture of phase and group delay, audio aspects of which are evidently still only foggily understood by some. Simulation also allows the design to be compared with those of Douglas Self⁴ and Edward Cherry².

First step is to enter the three circuits into *MicroCap IV* to compare different approaches to low frequency reproduction (Fig. I). In the bdr approach, topology is minimal and f_{3L} (alias $\omega_{low}/2\pi$) is made extremely low, typically <0.1Hz.

The "consumer grade" version of the same topology, has lean hp capacitors to save pennies (eg Self⁴, though to be fair, far worse examples are extant) and f_{3L} is typically 3-10Hz. In this and the bdr circuit, the main resistive arm values have been scaled to be identical to those specified by Cherry so like is being compared with like.

In practice, I would use a 1000μ F – not 3300μ F – lower arm capacitor, and scale the associated *R* values by a factor of three. In Cherry's circuit, extra parts have been introduced, apparently to compensate for having used too lean a principal elcap value in the first place. One practical problem with Cherry's method is that an exact ratio of three between electrolytics requires some messy paralleling when only E3 series values (10, 22, 47, 100 μ F etc) are available, as is often the case.

Plotting If frequency response and phase using conventional log frequency scale (Fig. II, upper panel) for the three circuits does not give meaningfully view of phase behaviour for reproduction errors. In *MicroCap*, while simultaneously plotting by frequency, the scale for the phase data can be set to linear with OHz ('dc') as the origin, Fig. III. This will remove the delay⁵ independent of frequency,

Fig. II. Frequency responses (upper panel) of the three contrasted circuits all provide negligible roll-off in the audio band >20Hz, but with true, frequency dependent phase shift visible for a change (lower panel), the consumer/Self circuitry commits phase crime well within the ear's most sensitive domain.

Fig. I. Three bass response approaches compared. Centre is Prof Cherry's "phase compensation" scheme. Note ac test source (left) drives all three. Measurements are referred to node labels; nodal numbering in MicroCap is automatic and transparent. Left and right circuits vary only in their elcap size. The Harris HA5221 IC model parameters are Level 1 for speed, and have been over tweaked but these factors have no appreciable effect on simulation accuracy or validity in our strictly If arena.

AUDIO

Fig. III. MicroCap's ac analysis prolog screen. Note the frequency range origin is set at 1mHz, not quite dc but near enough, to speed up plotting. Also, the the decibel and phase plots are set logarithmically and linearly, respectively. Y-axis is milliseconds of delay.

Fig. IV. Square wave responses compared. Upper panel shows all three. Lower panel magnifies the positive pedestal and abstracts it in time too, to clarify the differences between the Cherry (convex) and bdr (nearlinear) methods. Y-axis is volts.

> Fig. V. Mass frequency responses. Upper graph covers half the amplitude of the lower. The Monte Carlo linear run shows what could occur in a real population. Y-axis is decibels.

Fig. VI. Cherry's phase disaster: A Monte Carlo run showing true phase response after Jensen, in a production population. Note linear frequency scale. The vertical step just discernible in the origin of the upper plot is because frequency was set to begin at 0.1Hz rather than OHz. This speeds the run. Y-axis is degrees.

Fig. VII. Effect on the two square waves shown in the lower panel of Fig. IV when capacitor values are stepped over real world tolerances. The lower set of plots shows how – with most variations – Cherry's method fails to achieve the flat top that is its goal. The bdr method is clearly much less sensitive to part tolerance, though with more than 20 plots (a limit imposed for visual clarity) a few 'wild' plots will occur. Y-axis is volts.

Fig. VIII. Three signal delay patterns. Group delay is plotted with the 'Gd' operator. For clarity with the three, smaller, scales and because smooth Gd plotting demands slower runs than phase or amplitude, the number of Monte Carlo runs has been reduced from 60 to 30.

revealing true phase linearity so that a straight line on this linear scale, whether sloping or level, indicates absence of waveform distortion. Anything bending is slurring the signal with respect to frequency.

Using this technique, both the Cherry and bdr methods can be seen to have (Fig. II, lower panel) audio band, to 20Hz, true phase linearity well within 1°. But the consumer approach shows almost 4.5° of tilt at 42Hz – the lowest fundamental from a bass guitar.

Cherry is certainly more linear at sub-sonic frequencies than bdr, and that would improve the accuracy of say, an earthquake or explosion (for hi-fi video entertainment). But we must ask: "Is it really worth it?"

Square-wave responses, Fig. IV, show a major tilt in the consumer approach, while a 20 times magnification is needed to see that the BDR method tilts more than Cherry's and the slope is almost linear. A sign of Cherry's phase compensation can be seen in the slightly convex curvature, whereas the consumer tilt is concave.

The lower arm dc blocking capacitor is inevitably electrolytic – Douglas Self agrees¹ – even if for sonic reasons a far smaller valued polypropylene capacitor is shunted
across. Scaling *R* up and *C* down is just not practical on grounds of noise, microphony and increased electrostatic/EMI sensitivity³.

Electrolytic tolerances may have improved greatly over the years, but they are still commonly as poor as $\pm 30\%$ and most are $\pm 20\%$ at best. Electrolytics also have the poorest temperature coefficients of any capacitor type. Typically the value will change from that at switch on by at least $\pm 10\%$, and possibly to over 50%, after the unit's internal temperature has risen by 35°C. Equally, faradic value could drift by 25% with time.

Taking the midpoints of these, we have 25% + 30% + 25%. So in real use the two elcap values on which Cherry's scheme depends may realistically and independently vary by $\pm 80\%$ (ie from $\times 0.2$ to $\times 1.8$). To reflect this, all capacitors definition statements for the simulation (Fig. 1) have been appended with LOT=80%. For clarity, resistor values are assumed to be invariant.

Re-running the simulations with Monte Carlo analysis, using linear distribution, shows the effect of real world capacitative value variation.

Amplitude response variation across 60 units for bdr (Fig. V) shows no peak, nor any aberration above 0.1dB in the audio band.

But Cherry's scheme shows that the response and damping (Q) varies all over (so badly that the scale is halved to see just a bit of it) and the variation infects frequencies considerably above 20Hz.

In the worst-case true phase error at 20Hz, Fig. VI, bdr varies just 1.8° between +0.2 and +2°. Yet Cherry's scheme varies over 16° from at least +8° to -8° . Worse, the phase error varies by more than $\pm 0.75^\circ$ at 200Hz, a far more critical and phase-sensitive midrange frequency.

Looking again at the square wave response, even with only 20 Monte Carlo runs, Fig. VII, bdr shows only mild changes while Cherry already varies wildly. In fact Cherry's response – completely different from the slight tilt intended – makes it most dubious where anything but individually-selected oven-mounted electrolytics, measured and calibrated monthly, are available.

Finally, we should consider group delay. Plotted against logarithmic frequency, this displays frequency-dependent signal delay directly.

At first sight, delay varies almost linearly with frequency using all three schemes, **Fig. VIII**. However, both Cherry and the consumer method exhibit plots that are non-monotonic: try a ruler against them.

What matters most though, is the excess absolute delay. The consumer scheme is worst, with the largest delay (in only 30 random production units remember) being nearly 400µs. With Cherry, the worst delay at 80Hz is below a quarter of this, 70µs. Again, bdr is best, with barely 10µs. For an 80Hz partial to be lagging 70 or 300µs behind the mid-range may not sound much, and even those with critical ears will not easily hear this difference. But, clearly, few audio designers have ever thought through the entire-path ramifications.

LOW COST DEVELOPMENT SYSTEM

ECAL comprises a versatile relocatable assembler with integral editor which runs about ten times faster than typical assemblers. Support includes 4, 8, 16 & 32 bit

processor families including 75X, 6502, 6809, 68HC05/11, 8031/51, H8-300, 78K, PICs, ST6 & Z80/180, 68000, 80C196, H8-500 & Z280.

ECAL is either available for a single processor family or all families.

Single processor version £295 Multiprocessor version.... £395

> Overseas distributors required

OEMA Ltd., 7 & 7A Brook Lane, Warsash, Southampton S031 9FH Tel: 01489 571300 Fax: 01489 885853

can support all processors. Facilities include windows for the inspection or change of registers or memory. You can even watch your program executing at source level!

Download time is about two seconds!

Pods can be daisy-chained for 16/32 bit systems.

Applications include software development, hardware debug, test and, finally, teaching about microcontrollers in education.

ECAL emulator £475

Quantity discounts of up to 50% make ECAL software ideal for education.

CIRCLE NO. 123 ON REPLY CARD

Object-oriented design has been heralded as offering radical benefits in the software development cycle. However, without adequate appreciation and management of the process, the gains expected may materialise, as Gerard Maloney explains.

n theory if not in practice, software development has traditionally been based on 'structured' design methods, which emphasise the procedures by which a solution is achieved. But the ever increasing size and complexity of software systems, not to mention the demands in areas such as graphical interfaces, cad/cam, artificial intelligence and distributed systems, has increasingly highlighted the inadequacies of this approach. As a result, alternative design methods are coming increasingly to the fore.

Of these alternative methods the 'object oriented' approach is the one currently gaining ground across a wide diversity of applications. Here, we will outline the underlying philosophy of object-oriented programming, looking in particular at what has become the dominant programming language for implementing such designs - C++.

Programming with objects in mind

Object oriented design has as its basis a key shift in emphasis away from concentrating on how a task is achieved to identifying the key abstractions within an application. It also takes into account how these abstractions interact with one another.

From this basis it is hoped to model a more effective and intuitive solution to the task at hand. Coupled with this shift in emphasis is a movement away from the 'top-down' approach to the development cycle, to an approach whereby the development cycle is seen as an iterative process. Each phase in the cycle is reviewed, as the design evolves to fulfil its final requirement.

Figures 1 & 2 outline the change in emphasis. For a great number of engineers Fig. 2 only sets out precisely how they currently approach their development work. Within an organisation however, the change from a structured to an object oriented approach requires a review of the overall management

Gerard Moloney is MD of October Developments, 0181 968 3586.

Fig. 1. In the traditional structured design cycle, progress is linear.

Fig. 2. Object oriented design cycle involves an iterative approach throughout the design cvcle.

of technical projects in order to implement the changeover effectively.

The use of object-oriented design has gathered apace over the past ten years, to the point where it now looks set to become the dominant design methodology within the software industry. This has no doubt been aided immeasurably by the emergence of C++ as a commercially available and mature language. Although not the 'purest' of object oriented languages, C++ has evolved to directly support the paradigm, while maintaining its roots in C

Of itself, object oriented design is not a panacea for bad design. Likewise its adoption will not be effective unless project team structures and management practices change to

Software Implementation:

Sine, Square, Triangle, Ramp

A range of waveform types.

Processes:

Waveforms

Applications Domain:

Acquisition, Filtering, Output

Arrays, filter types, output drivers.

Fig. 3. Mapping abstractions. Object-oriented design allows 'types' to be created. These map directly into the application's. domain.

The language requires a more fluid and evolutionary approach to design, and the extent to which its introduction benefits companies is largely dependent upon the recognition of this fact. Used correctly, object oriented techniques implemented in an appropriate language, will result in designs that map directly onto the applications domain, enabling increased software re-use, ease of maintenance and an evolutionary approach to future development.

Object oriented design – key concepts To be effective any design methodology requires tools that support it directly. In this case these are the 'object oriented programming languages', a wide range of which are available. However, in order to be able to

model and organise abstractions effectively, which concepts and mechanisms ought these languages support?

In his book 'Object Oriented Design with Applications', Grady Booch outlines the concepts which are fundamental to what he terms 'the object model'. These are direct support for abstraction, encapsulation, hierarchy and modularity. To these ought to be added support for parameterised types, which have the potential of adding significantly to software

SOFTWARE

re-use. Secondary properties which he outlines as desirable are strong 'typing', and support for concurrency and object persistence. A brief outline of each of these concepts is given below.

(i) Abstraction: in order to support abstraction a language must allow for the creation of user defined types which map directly onto concepts within the application domain. In a signal-processing application you might need to create waveform and filter types; in a graphics library, matrix and transformation types. Figure 3 illustrates the concept.

(ii) Encapsulation: any abstraction can be said to have two major attributes: its structure and its behaviour. Within software this translates to a representation and an associated set of functions (procedures/methods). Generally, the functionality is of interest; the representation/implementation should not be accessible except through a strictly defined set of functions implementing the interface to the user.

In effect the representation should be 'encapsulated'. Figure 4 illustrates how encapsulation might be achieved for a type representing a sinewave.

(iii) Hierarchy: within object oriented software, creating hierarchies of user types is of prime importance. The base of the hierarchy provides generalisation with further specialisation provided by the lower layers. Support for hierarchical types allows for designs that are highly intuitive and efficient, and provides a basis for further evolution. Figure 5 is an example of a partial hierarchy for geometric transformations.

(iv) Modularity: any complex system needs to be modular. Within object-oriented systems, modularity exists to keep related abstractions together.

Modularity exists at a number of levels; libraries provide re-usable collections of domain specific abstractions, source files provide modularity at the application level while encapsulation provides modularity at the abstraction level.

(v) Parameterised types: often, structures and functions are required that can be used across a range of types. As an example, consider matrices. The structure of a matrix and its operations have a generality across a range of algebraic structures. The ability to capture this type of generality is a powerful aid to extended re-use.

(vi) Typing: static type checking can ensure errors are caught at compile time, and it can introduce a strong discipline into programming. Not all object oriented languages support static typing, but in most instances the benefits far outweigh the perceived loss in flexibility.

(vii) Concurrency and persistence: support for concurrent processes is not inherent within object oriented languages. However a process itself can be viewed as an abstraction and therefore concurrency can be implemented. Likewise the need for objects which exist over extensive periods of time – as in database and distributed systems – can easily be supported at the abstraction level.

Having outlined these concepts I will now look specifically at language support for these within C++.

Objects and C++

C++ was developed as a general purpose programming language which would directly support object-oriented programming in an efficient and straightforward manner. By guaranteeing that C++ would maintain C's inherent low-level strength and by maintaining a high level of compatibility with C, C++ has been in a unique position as developers looked to adopt object oriented methods.

In his work 'The Design and Evolution of C++', Bjarne Stroustrup says that in his view, C had successfully addressed the 'computational' aspects of a language. In developing C++, one criteria was to maintain this, while dealing effectively with the 'organisational' aspects.

A further criteria was to remove the necessity for the unsafe practices used widely in C, such as casts and the proliferation of pre-processor directives and global data.

Object oriented development support Within C++, there are various structures, included to aid object-oriented development.

(i) **Classes:** Within C++, a 'class' is the fundamental mechanism by which user defined types are implemented and they receive almost identical support within the language as the built in types such as 'int', 'char' etc.

Classes not only represent the abstractions within the application, but within the class 'encapsulation' is enforced. A class defines a scope, and is the fundamental organisational component in C++. Below is a simple sinewave class showing the separation of the representation from the interface to it.

```
class sinewave{
    //the representation
    float frequency;
    float amplitude;
public:
    //the interface to the representation.
    sinewave(float x,float y){frequency=x;amplitude=y;}
    ~sinewave();
    //other appropriate functionality.
```

};

C++ allows for different levels of access to be defined and very efficient and intuitive interfaces can be built, given features which allow for in-line code and the defining of operators on a class specific basis.

A user of a sinewave class requires only the interface to use the class, and application specific class libraries are the toolsets to be used by application developers.

Whatever their type, waveforms share a great deal in common and are thus able to use a great deal of generic code. With an appropriate class library, C++ enables the following to be written:

complexwave1=sine1+square3+ramp5+sine7; complexwave2=(mybandpass)(complexwave1);

Not only is this semantically clear but it is as

The representation Waveform parameters The user Interface

Provides access to the representation for initialising and subsequent processing

Fig. 4. Example of encapsulation. The representation and the interface parallel two major attributes of an abstraction – its structure and its behaviour.

Fig. 5. A matrix hierarchy supporting geometric transformations. The root matrix provides generic behaviour while the derived classes provide for specific functionality.

Fig. 6. Example of simple hierarchy structure for waveform generation.

(ii) **Derived classes:** Given an application, generally hierarchies of related types exist. Below is a hierarchy of waveform types, with the 'base' of the hierarchy being the 'waveform' class and the 'derived' classes being 'sine', 'square' etc, **Fig. 6**.

Hierarchies allow related types to share common functionality and to be viewed in many instances as objects of their common base class. Below the sinewave class has been derived from a waveform class allowing a large measure of its functionality to be expressed in terms of its base class.

class sinewave : public waveform{
 //representation in base class.

//common to all wavetypes.

public:

sinewave(float x,float y):waveform(x,y,){
//only need sinewave specific functions.
//otherwise view as a generic waveform.
};

SOFTWARE

Requirements: general lists of employees accounts waveforms in a complex wave Solution:

a list type that can hold any type for which a list makes sense

Fig. 7. Parameterised types allow for the creation of generic classes and functions.

efficient if not more so than code written in C. Hierarchies, therefore have a crucial role to play in organisational terms and introduce a high degree of code re-use.

(iii) Templates: Whereas hierarchy supports re-use through derivation, templates support re-use through parameterised types. Thus you define a class or function to provide services across a range of types which may not necessarily be related to one another. Figure 7 illustrates the general requirement and solution.

Initially, they arose from the requirement to provide a library of container classes which is a fundamental requirement within most development environments. Assume we need lists; but lists of what exactly? How is it possible to provide for the lists that may be needed in the future? Templates fulfil this requirement, below we look at the outline of a matrix template:

```
template <class T> class matrix{
    int col;
    int row;
public:
    matrix(int x,int y){col=x;row=y;}
    ~matrix();
    //other matrix stuff
};
```

A developer can now declare matrices of any type;

matrix <int> intmatrix(2,2);
matrix <complex> complexmatrice(5,3);

and given that those types are available matrix algebra can be applied to them. Likewise at a future date matrix algebra could be applied to as yet unspecified types.

Used together with derivation the potential for re-use and the impact on program organisation are enormous. Taking as a case in point, in our matrix example we can derive from matrix and apply templates to a specific type of matrix. I may perhaps wish to optimise for geometric transformations which are derived from a matrix and are able to take a variety of types as their parameters.

Together, classes, the related subjects of hierarchies, and templates, form the basis of support for object oriented techniques within C++. Also incorporated within the class concept are features to encourage semantically meaningful syntax, the efficient creation and deletion of objects and the minimisation of global data and pre-processor directives. In addition, there is the introduction of static typing, which is equally applicable to stand-alone functions. Static typing enforces compile-time checking of arguments, and can go a long way to eliminating run-time errors. It is to be recommended in almost all cases.

Finally, modularity is supported in C++ by the use of libraries and separate source and header files. Organisation is in terms of abstractions, related abstractions reside in the same files and are interfaced through their header files, Fig. 8.

Application specific libraries can then be generated from these files and made available for general use. With a good library of classes that map well onto the application's domain it should not generally be necessary to access the source code in order to use or add further speciality.

In summary

Without a doubt C++ is rapidly becoming the language of choice in many areas, and given its excellent support for object oriented programming coupled with its association with C it looks set to be a major development language in all spheres.

What is often overlooked, however, is that C++ also addresses those areas in which C is deficient. Features such as static typing, class specific dynamic memory allocation, static class members, exception handling are radical improvements when viewed from a software engineering perspective.

C++ also supports mixed-language development with a simple linkage model, allowing previous software investment to be fully used. Given these advantages there is a strong case both commercially and technically for companies to considering C++ seriously as the basis for their future software development.

However, while the benefits to be gained by adopting an object oriented approach to development – whether C++ based or otherwise – can be enormous; unfortunately without an adequate understanding of the issues involved, these benefits may not be achieved.

With no informed strategy for the adoption of C++, the net result within organisations will be disenchantment amongst development staff, and a discrediting of the whole process. Such a strategy should deal directly with the change in emphasis that the philosophy requires. It should set out a program in which object oriented design methods and programming are introduced over a period of time at both a project and individual level. Given such a strategy the resultant impact on design and implementation are indeed significant.

Fig. 8. Organisation using header files.

//App.cpp
#include "waveform.h"
//two header files for accessing
 waveform and processing stuff
#include "process.h"
//the application accesses required
functions via header files
sine sinel(1000,1.125);

Further reading

Grady Booch, 'Object Oriented Design with Applications', Benjamin Cummings. Bjarne Stroustrup, 'The Design and Evolution of C++', Addison Wesley. The C++ Programming Language, Addison Wesley.

SAVE £15

For this month only, save £15.00 when ordering the Interfacing with C software disk. Simply mention 'C – special offer' when you send your order.

INTERFACING WITH C

A disk containing all the example listings used in this book is available, Please specify size required

HOWARD HUTCHINGS

f you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.

The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, fourier and many other applications, with not a soldering iron in sight.

To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An apendix provides a 'getting started' introduction to the running of the many programs scattered throughout the book.

This is a practical guide to real-time programming. The programs having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

Credit card orders accepted by phone. Call 0181 652 3614. Please supply _ copies of INTERFACING WITH C **Price £14.95** Please supply _____ _ copies of Disk containing all the example listings £29.96

Remittance enclosed £

Interfacing with C can be obtained from Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Cheques should be made payable to Reed Business Publishing Group Ltd

Please debit my credit card as follows: Access/Master Barclay/Visa Amex Diners

Credit Card No.

Exp date

NAME (Please print) _

ADDRESS

POST CODE

DATE TELE

SIGNATURE

VAT NO.

If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change. 399

		-
	Field Electric Ltd.	
	Tel: 01438-353781 Fax: 01438 359397	
	Mobile: 0836-640328/0860-213370	
The world's largest producer of BIOS	Unit 2, Marymead Workshops, Willows Link Stevenage Herts SG2 84B	
American Megatrends Inc. produces	Conrac 7211 C19EK 18" BGBV/ideo inord broadcast TEK" D10 o'scope mainframe	£95
American Wegatiends Inc., produces	quality monitors 240 VAC £100 Brow 101 PC/Add brack transfer and the second state analysis system 101 ECC 201 PC/Add brack transfer and the second state analysis system 101	£295
a complete range of nardware too?	Earoo 16 HGeV video input broadcast quality monitors TEK: 067 0508 00. 50 ohm amplitude cal. £85 TEK: 146 NTSC test signal gen.	£95 £475
	9° 24 VDC input colour VGA chassis (enclosed). No TEK: 7S11 sampling unit mods: Direct VGA 15 pin point £39 C/P £10 TEK: 453 o'scope 50MHz dual beam fr	£180 £200
FOR 480, PEINTIONI, P5, P540	360/720K 5.25" TEAC BBC compat. disk drives £9.50 C/P £3.50 Philips PM 81 54 6 per plotter IEEE 488	£145 £280
Viotnerboards EISA-VLB-PCI	High quality 750HM video cable 100 metre+ reel £22.00 C/P £6.00 Calcomp 81 8 pen plotter (digitising)	£400
PCI SCSI RAID Controllers	Sony 9" colour monitor Trinitron super fine pitch model & TM 1000ub Cased with data for BGB 650 Wandel & Golterman LDE-2 measureing set for	2000
• MULTIMEDIA – TeleCom Adapters	Intel flash memory cards 1 Mb to 4Mb from £80 group delay & attenuation: receiver 1 Wayne-Kerr 022D video oscillator	£150 £95
SCSI & Graphics Adapters	HP 7475A, RS232C/CCITT V-22 graphics/CAD pro: Spectra brightness spot meter 1514-UB	£140 £125
PCMCIA Adapters & Software	HP 427A voltmeter £145 Bio-Tec inst: Model 501 Field and meter	£125
Diagnostics Hard & Software	HP 7959s HP 431C power meter cable and head \$195 HP 431C power meter cable and head \$195 HP 431C power meter cable and head	£140
	HP X532B frequency meter £165 Singer Gertsch phase angle voltmeter c/w 400Hz HP 1740A 100MHz oscilloscope dual chn; with 3rd module	£125
Best of all, did you know that	chn <u>£300</u> Paratronics inc System 5000 PI-540 logic analyze HP 1332 X-Y display with options 215/300/315/570/	er £190
we have an office right here	631 £150 Optimation inc Model AC125 calibrator	£90 £85
in the U.K. to serve you.	HP 10013A probe £24.50 C/P £3.50 . Systron Donner pulse gen: 100C	£95
Call us for more information!	HP 415E SWR meter £150 EP Interowave swept oscillator 574-17-12.4GHz	£250
	HP 9872A 4 pen plotter £225 Hydrostatic stability indicator H HP 3550B test set £275 Hughes Model 639 scan conversion memory H	£425 £300
The first 500 callers get a FREE copy of	HP 3551A transmission test set £725 Philips PM 8940 isolation ampletc HP 1610B Logic State Analyzer with Pods £135 Wayne Kerr VHF admittance bridge B801	£85 £85
AMIDiag 4.5 (trial) for evaluation!	HP 1611A Logic State Analyzer £125 DLI delay gen: DG100	£80
American Megatrends Intl. Limited	TEK: 7CT1N curve tracer plug in \$450 Bromma LKB 2210 recorder 1-channel	£60
Unit C5. Worth Corner, Turners Hill Road	TEK: swept frequency converter 015-0107-00 £59 General Radio 1433-H decade resistor	£135
Pound Hill Crawley, West Sussex RH107SL	TEK: 7D12 A/D converter plug in £150 Borg-Warner SWR Ind: M401 TEK: 455 o'scope 50MHz delay £310 Honeywell 1806A Visicorder	£95
Tal. 01102 001100	TEK: TM504 mainframe £125 Barr & Stroud Argon Ion 5W laser system with PS TEK: 184 time mark generator £95 Dye laser etc £°	SU/
Tel: 01293 002200 American	PLEASE ADD 17.5% VAT. TO ORDER: RING FOR C/P PRICES NOT SHOWN	N:
Fax: 01293 886550 Megatrends	OFFICIAL ORDERS AND OVERSEAS ENQUIRIES WELCOME	
CIRCLE NO. 124 ON REPLY CARD	CIRCLE NO. 125 ON REPLY CARD	
M S. R DAD	IO (IEEDS)	
Ma D RAD	IO (LELDS)	
THE NORTH'S LEADING USED	TEST EQUIPMENT DEALER	
HP3581A 15hz-50khz Wave analyser. (750 HP1743A 100mhz Delta time measureme HP3581C 15hz-50khz Selective voltmeter. (650 HP180 50mhz 2 channel scope	ents	
BOONTON 112 Oxin-100khz Audio analyser 210000 BOONTON 112 Oxin-100khz Audio analyser 2100 TEKTRONIX 432 Somhz 2 channel dei BRUEL & KJAER 2033 Ihz-20khz Audio analyser 2250 COULD D 2508 [Somy 2 channel stora	layed sweep	
HP140T/85528/85548 100khz-1250mhz 468538 unit)	(200 BIRD 8343 Tenuline 100 watt 6db attenuator	
HP141T/85528/8555A 10mbz-18gbz + (85538 unit). 21700 PHILIPS PH3217 50mbz With X1 X10 p	ep	
MARCONI TF2370 3012-110mlz Spectrum analyser	erp	
HARC DNI TF2370 30h-110mh titest version 750 (2000) PHILIPS PM3204 30mh2 4 channel delay MARC DNI TF2370 30h-120mh2 titest version (2000) PHILIPS PM3205 30mh2 0jralal torage HP I82T /8558B 100hx-1500mh2 Spectrum analyser 2000 TEST EQUIPMENT HP8410/8414 A0.1-12 diph Network analyser 21200 TEST EQUIPMENT HP8410/8414 A0.1-12 diph Network ANALYSER ANALYSE	sep (300 BIRD 8132 Coaxial 500 watt 30db attenuator. (200 yed sweep (300 BIRD 8132 Coaxial 2000 watt 30db attenuator. (500 probes/manual (as new) (275 FARNELL R8 (1030/35 Electronic load. (495 ed sweep (450 FARNELL R8 (1030/35 Electronic load. (495 scope (450 FARNELL R8 1030/35 Electronic load. (495 scope (450 FARNELL T0P5 3D Triple output digital power supply (455 renerator (1750 SVETEME VIDEO LIE2/ULSC consort. (400 VETEME VIDEO LIE2/ULSC Consort. (400 SVETEME VIDEO LIE2/ULSC consort. (400	
HARCONI TF3370 Jolg Iomin Jpect wersion 100 MARCONI TF3370 Jolg Iomin Jpect wersion 100 MARCONI TF3370 Jolg Iomin Jpect wersion 20000 MARCONI TF3370 Jolg Iomin Jpect wersion 20000 MARCONI TF3370 Jolg Iomin Jpect wersion 20000 MARCONI TF3370 Jolg ISOmin Stear wersion 20000 MARCONI TF3370 Jolg ISOmin Stear wersion 20000 MP810/85180 Jolg ISOmin Stear wersion 20000 MP8410/85180 Jolg ISOmin Stear wersion 20000 MP8410/8614A 0.1-12 dpt: Network analyser .1200 H98616A 1 Sgnz 4 Sgnz Generator 4195 H98616A 1 Sgnz 4 Sgnz Generator 4195 H98616A 1 Sgnz 4 Sgnz Generator 4195	etc (200 BIRD 8125 Coaxial 500 watt 30db attenuator. (200 etc (200 BIRD 8125 Coaxial 2000 watt 30db attenuator. (500 probes/manual (as new) (2175 FARNELL RB (030/35 Electronic load. (495 probes/manual (as new) (2175 FARNELL RB (030/35 Electronic load. (495 probes/manual (as new) (2175 FARNELL RB (030/35 Electronic load. (495 is cope (450 FARNELL RB (030/35 Electronic load. (495 is cope (450 FARNELL RB (030/35 Electronic load. (495 is cope (450 FARNELL RB (030/35 Electronic load. (495 is cope (450 FARNELL TOPS 3D Triple output digital power supply (225 is cope (1500 TEKTRONIX 318 Somba: 16 channel logic analyser (400 vectorscope (225 vectorscope. (1000 vectorscope (405 Vectorscope. (1000	
HARCONI TF2370 30% I Joint Justicum analyser 2000 PHILIPS PM3245 30mk 2 (channel delays) HARCONI TF2370 30% I Joint Justicum analyser 2000 PHILIPS PM3205 33mk 2 Digual storage HP 8471/85588 100/bit 7520700 Figst 2000 FILIPS PM3205 33mk 2 Digual storage HP 8410/8014 A0 01-1 2 dpk Network subyser C1000 TEST EQUIPMENT SIGNAL GENERATORS C1200 TEXTRONIX 1141/SPG11/TSG11 Pail HP8616A 1 Bgtz-4 5ght Generator 2100 TEXTRONIX 2642 50mkz Current prob HP8607B 10%-100mkz Puis generator 2200 TEXTRONIX 7408 15mgh Uses to prob HP8607B 10%-100mkz Puis generator 2250 TEXTRONIX 7408 108 Lingh Uses to prob HP8607B 00%-100mkz Puis generator 2500 TEXTRONIX 7408 10700 Lingh Uses to prob	sep	
HARC DNI TF2370 30h I John bits tenden 30hr 2000 PHILIPS PM3205 30hr I Somha tick tenden 30hr HARC DNI TF2370 30hr I Somha with frequency convercer 2000 PHILIPS PM3205 33hr I Somha torsge HP 8127 85588 100kbr I Somha Spectrum analyser 2000 TEST EQUPMENT HP 8107 8014 A.O.I - 2 4ph: Network analyser 2000 TEST EQUPMENT SIGNAL GENERATORS 4ph: Network analyser 2000 HP 8058 0.3hr JOhn Pulse generator 2000 TEKTRONIX 521A Pal sectorxops . HP 8058 0.3hr John Pulse generator 2000 TEKTRONIX F0015 High oitage sompare . HP 8058 0.3hr John Pulse generator 2000 TEKTRONIX F0015 High oitage sompare . HP 8020 C Sweeper maniframe (as new) 2000 SYSTEMS VIDEO 2340 Component vid PM8202 C Sweeper maniframe (as new) HP 8018A Sorial data generator 2050 PHILLIPS PM3209 Pai TV patterm generr HP 8018A Sorial data generator 2050 PHILLIPS PM3209 Pai TV patterm generr HP 8018A Sorial data generator 2050 PHILLIPS PM3209 Contain corrent/oid	sep	
HARC ONI IT F2370 30hr110mb titest enable. 2000 PHILIPS PM3244 50mb 4 channel delay. HARC ONI IT F2370 30hr120mb with frequency converce. 2000 PHILIPS PM3205 35mb 20gral storage HP 8171/85588 100hb - 1500mb 5pectrum analyser 2000 TEST EQUPMENT TEST EQUPMENT HP 8107841 A0 0.1-2 dph Network analyser .6100 TEST EQUPMENT TEST EQUPMENT HP 81081 A0 1.1-2 dph Network analyser .6100 TEST EQUPMENT TEST EQUPMENT HP 8058 0.3hr.2 dpm 1 Abb 20 frequencies .6100 TEST EQUPMENT TEST EQUPMENT HP 80058 0.3hr.2 dpm 1 Abb 20 frequencies .6100 TEKTRONIX S21 A Pal vectorscept. .6100 HP 80058 0.3hr.2 dpm 1 Abb 20 frequencies .6100 TEKTRONIX Pal S High olicage scope .6100 HP 80058 0.3hr.2 dpm 1 Abb 20 frequencies .6100 TEKTRONIX Pal S High olicage scope .6100 HP 80102 0 Abb 20 mb 20 frequencies .6100 .6100 frequencies .6100 .6100 frequencies HP 80102 0 Abb 20 mb 20 frequencies .6100 .6100 frequencies .6100 .6100 frequencies HP 80102 0 Abb 20 mb 20 frequencies .6100 .61000 frequencies .61000 .61000 frequ	sep C100 BIRD 832 Coasial 500 watt 30db attenuator C200 grote sweep C100 BIRD 832 Coasial 2000 watt 30db attenuator C500 probes manual (as new) C100 FARNELL TYRE 1000-nbt True RP5 sampling & meter (as new). C100 is toppe C500 FARNELL TYRE 1000-nbt True RP5 sampling & meter (as new). C100 is toppe C500 FARNELL TYRE 1000-nbt True RP5 sampling & meter (as new). C100 is generator C1750 TEXTRONIX S18 Sombt 16 channel logic analyser. (anov). C100 generator C1750 SYSTEMS VIDEO 1152/1155 Compact 19 waveform molitor + probe C125 WANDEL & COLTERMAN PS519 Long long samplers. (c100 probe C125 RADIOMETER TRBI NLC Component comparator. (c150 storm C125 NARDA 769/6 150 watt obb attenuators. (c150 reg calibrator C250 NARDA 30045/20 37/87-8 3/97 20db Directoral coupler 10db 20db or 3ddb (100 tage: calibrator C450 NARDA 30045/20 37/87-8 3/97 20db Directoral coupler (c100, 2004 or 3ddb (200 cicclibrator C450 NARDA 30045/20 37/87-8 3/97 20db Directoral coupler 10db 20db or 3ddb (200 cicclibrator C450 NARDA 30045/20 37/87-8 3/97 20db Directoral coupl	
HARCONI TF2370 30hr110mh: direct version	sep C100 BIRD 8132 Coasial 500 watt 30b attenuator. C200 get sweep	
HARC ONI TF2370 30h 100min. Instant email. 2000 PHILIPS PM3243 50hz 42 50hz 4 channel delay. HARC ONI TF2370 30h 120min. Instant email. 2000 PHILIPS PM3205 33hz 20gial storage HP 841785588 100hz - 1500mit Spectrum analyser 2000 Canadiant Can	sep	
HARCONI TF2370 30h-110mh direst emain. 2000 PHILIPS PM3204 30mh 2 (channel delay). HARCONI TF2370 30h-110mh direst emain. 2000 PHILIPS PM3205 30mh 2 (channel delay). HP 81278558B 100hrs - 150mh 2 spectrum analyser 2000 Canadian 2 (channel delay). HP 81278558B 100hrs - 150mh 2 spectrum analyser 2000 Canadian 2 (channel delay). SIGNAL CENERATORS (channel delay). Canadian 2 (channel delay). HP 8610614 A0 (-1 - 2 (channel delay). Canadian 2 (channel delay). Canadian 2 (channel delay). HP 86106 (Channel delay). Canadian 2 (channel delay). Canadian 2 (channel delay). HP 86206 (Channel delay). Canadian 2 (channel delay). Canadian 2 (channel delay). HP 86206 (Channel delay). Canadian 2 (channel delay). Canadian 2 (channel delay). HP 86206 (Channel delay). Canadian 2 (channel delay). Canadian 2 (channel delay). HP 86206 (Channel delay). Canadian 2 (channel delay). Canadian 2 (channel delay). HP 86206 (Channel delay channel delay (channel delay). Canadian 2 (channel delay). Canadian 2 (channel delay). HP 86206 (Channel delay channel delay (channel delay). Canadian 2 (channel delay). Canadian 2 (channel delay). HP 86306 (Channel delay channel delay (channel delay). Canadian 2 (channel delay). Canadian 2 (channel delay). HP 86306 (Channel delay (channel delay (chan	sep	
HARCONI TF2370 30hr1 10mh. titrst emain. 2000 PHILIPS PM3244 50mh2 4 channel delay. HARCONI TF2370 30hr1 20mhz with frequency convercer. 2000 PHILIPS PM3205 33mhz Digital torage HP 817/8558B 100hr1 500mhz Spectrum analyser 2000 TEST EQUPMENT HP 8107/8514 A 0.1-1 2 dph Network analyser 2000 TEST EQUPMENT HP 8107 (8814 A 0.1-1 2 dph Network analyser 2000 TEST EQUPMENT HP 8107 (8614 A 0.1-1 2 dph Network analyser 2000 TEST EQUPMENT HP 8055 B 0.3hr.2 20mhz Dies generator 2000 TEKTRONIX S11A Pal ectorscept. HP 8051 B 0hr.2 10mhz Puise generator 2000 TEKTRONIX P4015 High olizage scope HP 80420 C Sweeper maniframe (a new). 2000 SYSTEMS VIDEO 1300 Component val HP 80420 C Sweeper maniframe (a new). 2000 SYSTEMS VIDEO 2100 Component val HP 80420 C Sweeper maniframe (a new). 2000 SYSTEMS VIDEO 2100 Component val HP 80420 C Sweeper maniframe (a new). 2000 SYSTEMS VIDEO 2100 Component val HP 80420 C Sweeper maniframe (a new). 2000 SYSTEMS VIDEO 2100 Component val HP 80420 A Comb person 2000 SYSTEMS VIDEO 2100 Component val HP 80420 A Comb person 2000 SYSTEMS VIDEO 2100 Component val HP 80420 A Comb person 2000 SYSTEMS VIDEO 2100 Component val HP 80420 A	sep	
HARCONI TF2370 30hr100mh: direct emain. 2000 PHILIPS PM3244 50mh2 4 channel delay. HARCONI TF2370 30hr120mh2 with frequency convercer. 2000 PHILIPS PM3305 30mh2 0grait storage HP 817785588 100hr1500mh2 Spectrum analyser 2000 TEST EQUPENT TEST EQUPENT HP 81078614 A0.01-2 dph Network analyser 2000 TEST EQUPENT TEST EQUPENT SIGNAL CENERATORS 6120 TEST EQUPENT TEST EQUPENT HP8610681 A. Bghd-3 5gh Generator 2000 TEST EQUPENT TEXTRONIX S21A Pal vectorxops . HP86106 Son 3br.20mh2 bits generator 2000 TEXTRONIX Pall S high origa scope . Distance . HP86106 Son 3br.20mh2 bits generator 2000 TEXTRONIX Pall S high origa scope . PhillLIPS PM309 Pal TV pattern generator. HP86406 Comb generator 2030 FLUKE 3030 Prog constant current/volume . PhilLLIPS PM309 Pal TV pattern generator. HP3335A 10hr.2 Inits synthesizer/level generator (5/124/135/600 Distor . FLUKE 1303 Frequency comparison. HP3335A 20hr.4 Inits Synthesizer/level generator (5/124/135/600 GAY PHILLIPS PM3124 A Uniter generator. Cloba and I HP3324 A Uniter generator. HP3336A 10hr.2 Inits Synthesizer/level generator (5/124/135/600 GAY PHILLIPS PM3124 A Uniter generator. Cloba and I HP3324 A Uniter generator. </th <th>sep C100 BIRD 832 Coastal 500 watt 30b attenuator C200 gets weep C100 BIRD 832 Coastal 2000 watt 30b attenuator C500 professmanul (as new) C450 FARNELL TYR8 100c-astal 2000 matt 30b attenuator C500 professmanul (as new) C450 FARNELL TYR8 100c-brow True RPS unroleng & meter (as new). C380 FARNELL TYR8 100c-brow True RPS unroleng & meter (as new). C380 professmanul (as new) C450 FARNELL L30 BT 0-30v Jamp Dual power supply C455 igenerator C1750 TST File South Carbon True RPS unroleng & meter (as new). C380 FARNELL L30 BT 0-30v Jamp Dual power supply C450 be C125 WAYNE KERR CT496 LCR Inserte Duttery portable C400 C400 be C125 WAYNE KERR CT496 LCR Inserte Duttery portable C400 C400 be C125 WAYNE KERR CT496 LCR Dutter Math PSS I 9 Level generator C450 NARDA 769/6 150 watt 60b attenuators C400 attor C125 WARDA 300 1450 104 1050 matt 60b attenuators C450 NARDA 300 140 104 1070hr. 106b Directional coapler 10db 20db or 30db (1000 math 15 math 29th Automatic modulation meter. C4150 C450 NARDA 300 140 107 hr. 106b Directional coapler (1000 20db or 3</th> <th></th>	sep C100 BIRD 832 Coastal 500 watt 30b attenuator C200 gets weep C100 BIRD 832 Coastal 2000 watt 30b attenuator C500 professmanul (as new) C450 FARNELL TYR8 100c-astal 2000 matt 30b attenuator C500 professmanul (as new) C450 FARNELL TYR8 100c-brow True RPS unroleng & meter (as new). C380 FARNELL TYR8 100c-brow True RPS unroleng & meter (as new). C380 professmanul (as new) C450 FARNELL L30 BT 0-30v Jamp Dual power supply C455 igenerator C1750 TST File South Carbon True RPS unroleng & meter (as new). C380 FARNELL L30 BT 0-30v Jamp Dual power supply C450 be C125 WAYNE KERR CT496 LCR Inserte Duttery portable C400 C400 be C125 WAYNE KERR CT496 LCR Inserte Duttery portable C400 C400 be C125 WAYNE KERR CT496 LCR Dutter Math PSS I 9 Level generator C450 NARDA 769/6 150 watt 60b attenuators C400 attor C125 WARDA 300 1450 104 1050 matt 60b attenuators C450 NARDA 300 140 104 1070hr. 106b Directional coapler 10db 20db or 30db (1000 math 15 math 29th Automatic modulation meter. C4150 C450 NARDA 300 140 107 hr. 106b Directional coapler (1000 20db or 3	
HARCONI TF2370 30hr100mb direct emain. 2000 PHILIPS PM3244 50mb 4 channel delay. HARCONI TF2370 30hr100mb tybectrum analyser. 2000 PHILIPS PM3205 30mb 2/gital torage HP 817/85588 100hb -1500mb 5/gectrum analyser. 2000 TEST EQUPENT HP 8107 801 4 A 0.1-2 dph Network analyser. 2000 TEST EQUPENT SIGNAL CENERATORS 1200 TEST EQUPENT TEST EQUPENT HP 80058 0 3hr.20mb 1 Algo - 25 fbr Generator. 2000 TEST EQUPENT TEST EQUPENT HP 80058 0 3hr.20mb 1 Algo - 25 fbr Generator. 2000 TEST EQUPENT TEST EQUPENT HP 80058 0 3hr.20mb 1 Algo - 25 fbr Generator. 2000 TEST EQUPENT TEST EQUPENT HP 80058 0 3hr.20mb 1 Algo - 25 fbr Generator. 2000 TEST EQUPENT TEST EQUPENT HP 80058 0 3hr.20mb 1 Algo - 25 fbr Syncape 2000 TEST EQUPENT TEST EQUPENT HP 80058 0 3hr.20mb 1 Algo - 25 fbr Syncape 2000 TEST EQUPENT TEST EQUENCAL ALGO - 25 fbr Syncape HP 80058 0 3hr.20mb 1 Algo - 25 fbr Syncape 2000 TEST EQUENCAL ALGO - 25 fbr Syncape TEST EQUENCAL ALGO - 25 fbr Syncape HP 80050 1 Ohr 20mb 2 fbr Syncape 2000 TEST EQUENCAL ALGO - 25 fbr Syncape TEST EQUENCAL ALGO - 25 fbr Syncape HP 80050 1 Ohr 20mb 2 fbr Syncape 2000 TEST EQUENCAL ALGO - 25 fbr Syncape TEST EQUENCAL ALGO - 25 fbr Synca	sep	
HARCONI TF2370 30hr100mh. thist enable. 2000 PHILIPS PM3244 S0mb.2 (channel delay) HARCONI TF2370 30hr100mh. spectrum analyser 2000 PHILIPS PM3205 Simb.2 Digital torage HP 817/8558B 100hr1500mhz Spectrum analyser 2000 TEST EQUPHENT TEST EQUPHENT SIGNAL CENERATORS (1200 TEST EQUPHENT TEST EQUPHENT HP8610814 A0 01-12 dph Network analyser (1200 TEST EQUPHENT TEST EQUPHENT HP86108 (al. 18 pta-5 gbm Concretor (230 TEST EQUPHENT TEST EQUPHENT HP86108 (al. 18 pta-5 gbm Concretor (250 TEKTRONIX S11A Pal ectorxcops. (200 HP8620C Sweeper maniframe (as new) (200 SYSTEMS VDEC 0 340 Component val FWB018A Serial data generator (230 HP3335A 10hr2 limb Synthester/Level generator (230 FULKE 3308 Prog constant current/vol FULKE 18 (ALART 2420 Prog Con FULKE 3308 Prog Constant Current/vol FU	sep	
HARC ONI IT F2370 30hr 100mb. direct remain 720 2000 PHILUPS PM3204 30mb. 2 dename detays converce. HP 817 / 8558 100hr 150mb. Spectrum analyser (2000) FILUPS PM3204 30mb. 2 dename detays converce. SIGNAL CENERATORS (1200) TEST EQUPMENT TEST EQUPMENT HP 810 / 8041 40.01-12 dph. Network analyser (1200) TEST EQUPMENT TEST EQUPMENT HP 80058 0.3hr.2 dpin 140/seg convertion. (200) TEST EQUPMENT TEST EQUPMENT HP 8016 0.01 / 2010	sep_ Cloo BilRD 832 Coastial 500 watt 30db attenuator Cloo probes manual (as new) Clos FARNELL TYRE 100b attenuator Clos probes manual (as new) Clos FARNELL TYRE 100b attenuator Clos probes manual (as new) Clos FARNELL TYRE 100b attenuator Clos probes manual (as new) Clos FARNELL TYRE 100b attenuator Clos is cope Clos FARNELL TYRE 100b attenuator Clos is cope Clos FARNELL TYRE 100b attenuator Clos igenerator Clos SYSTERS VIDEO 1152/115S Compact 1W waveform molitor + Clos probe Clos SYSTERS VIDEO 1152/115S Compact 1W waveform molitor + Clos probe Clos RADIOMETER TRBI I RLC Component comparator Clos generator Clos NARDA 304/630mb 250mb 250mb Clos Clos Clos stor Clos NARDA 304/630mb 250mb 250mb Clos Clos Clos Clos stor Clos NARDA 304/82/03 7/87/83 3/82 204 Directional complem Clos Clos Clos stor Clo	
HARCONI TF2370 30hr110mh: direst emain. 2000 PHILIPS PM3204 30mk 2 detaul storage HP 81778558B 100hr150mh: spectrum analyser 2000 PHILIPS PM3305 33mk 20gail storage HP 81778558B 100hr150mh: Spectrum analyser 2000 TEST EQUPENT SIGNAL CENERATORS (1200 HP 80058 0.3hr.2.30mk 20gail storage (1200 HP 8016841A 0.1-12 dph: Network analyser (1200 HP 80168 0.3hr.2.30mk 20gail storage (1201 HP 80168 0.3hr.2.30mk 20gail storage (1202 HP 80168 0.3hr.2.30mk 20gail storage (1200 HP 80168 0.3hr.2.30mk 20gail storage (1201 HP 80168 0.3hr.2.30mk 20gail storage (1201 HP 80168 0.3hr.2.30mk 20gail storage	sep Cloo BIRD 832 Coastal 500 watt 30b attenuator Cloo 961 weep Cloo FARNELL TYRE 100mb True RMS surging & meetr (a new). Cloo 97 description Cloo FARNELL TYRE 100mb True RMS surging & meetr (a new). Cloo 97 description Cloo FARNELL TYRE 100mb True RMS surging & meetr (a new). Cloo 97 description Cloo FARNELL TYRE 100mb True RMS surging & meetr (a new). Cloo 97 description Cloo FARNELL L30 BT 0-30v Tamp Dual power supply Cloo 98 description Cloo SYSTEMS VIDEO 1152/1155 Compact 1% waveform molitor + Cloo 98 description Cloo SYSTEMS VIDEO 1152/1155 Compact 1% waveform molitor + Cloo 98 description Cloo SYSTEMS VIDEO 1152/1155 Compact 1% waveform molitor + Cloo 98 description Cloo SYSTEMS VIDEO 1152/1155 Compact 1% waveform molitor + Cloo 98 description Cloo SYSTEMS VIDEO 1152/1155 Compact 1% waveform molitor + Cloo 98 description Cloo State 178 dos/ms 30mb 10mb 10mb Tresumers (conter - Cloo 99 description Cloo State 178 dos/ms 30mb 10mb Tresumers (counter - Cloo	
HARCONI TF2370 30hr100mh: direct emain. 2000 PHILIPS PM3204 30mk 2 detaul storage HP 81276 30hr100mh: direct emain. 2000 PHILIPS PM3204 30mk 2 detaul storage HP 8127785588 100hkz-1500mhz Spectrum analyser 2000 TEST EQUPMENT HP 81078614 A0 01-12 dph Network subjeer 2000 TEST EQUPMENT HP 80058 0 3hr.2 30mk 2 Spectrum analyser 2000 TEST EQUPMENT HP 80058 0 3hr.2 30mk 2 Spectrum analyser 2000 TEST EQUPMENT HP 80058 0 3hr.2 30mk 2 Milling and Spectrum analyser 2000 TEST EQUPMENT HP 80058 0 3hr.2 30mk 2 Spectrum analyser 2000 TEST EQUPMENT HP 80058 0 3hr.2 30mk 2 Spectrum analyser 2000 TEST EQUPMENT HP 80058 0 3hr.2 30mk 2 Spectrum analyser 2000 TEST EQUPMENT HP 80058 0 3hr.2 30mk 2 Spectrum analyser 2000 TEST EQUPMENT HP 80058 0 3hr.2 30mk 3 Spectrum analyser 2000 TEST EQUPMENT HP 80058 0 3hr.2 30mk 3 Spectrum analyser 2000 TEST EQUPMENT HP 80058 0 3hr.2 30mk 3 Spectrum analyser 2000 TEST EQUPMENT HP 80058 0 3hr.2 30mk 3 Spectrum analyser 2000 TEST EQUPMENT HP 80058 0 3hr.2 30mk 3 Spectrum analyser 2000 TEST EQ	sep Cloo BIRD 832 Coastal 300 watt 30b attenuator Cloo 961 weep Cloo BIRD 832 Coastal 300 watt 30b attenuator Cloo 961 weep Cloo FARNELL TYR8 100 watt 30b attenuator Cloo 970 weep Cloo FARNELL TYR8 100 watt 30b attenuator Cloo 970 weep Cloo FARNELL TYR8 100 watt 30b attenuator Cloo 970 weep Cloo FARNELL L30 BT 0-30 vanp Dual power supply Cloo 1 generator Cloo SY STERS VIDEO 1152/1155 Compact 19 waveform moltor 4 Cloo 980 weep Cloo SY STERS VIDEO 1152/1155 Compact 19 waveform moltor 4 Cloo 980 weep Cloo SY STERS VIDEO 1152/1155 Compact 19 waveform moltor 4 Cloo 980 weep Cloo SY STERS VIDEO 1152/1155 Compact 19 waveform moltor 4 Cloo 980 weep Cloo SY STERS VIDEO 1152/1155 Compact 19 waveform moltor 4 Cloo 980 weep Cloo WATNE KERR TYR8 JANK 200 SOUT FRMAN PSS 19 Level generator Cloo 980 weep Cloo WANDEL & ContremAn N PSS 19 Level generator Cloo 980 weep Cloo	
HARCONI TF2370 30hr100mh: direct emain. 2000 PHILIPS PM3244 S0mb; 4 channel deity: HARCONI TF2370 30hr100mh; spectrum analyser (2000) PHILIPS PM3305 Simb; Digital torage HP 812785588 100hz; 1500mh; Spectrum analyser (2000) TEST EQUPENT SIGNAL CENERATORS (2000) TEST EQUPENT TEST EQUPENT HP 81078614 A0 (-1) 24ph; Network analyser (2000) TEST EQUPENT TEST EQUPENT HP 80058 0 3hz; 23mb; Cenerator (200) TEST EQUPENT TEST EQUPENT HP 80058 0 3hz; 23mb; Cenerator (200) TEST EQUPENT TEST EQUPENT HP 80058 0 3hz; 23mb; Cenerator (200) TEST EQUPENT TEST EQUPENT HP 80058 0 3hz; 23mb; Cenerator (200) TEST EQUIPENT TEST EQUIPENT HP 80058 0 3hz; 23mb;	Sep Cloc BIRD 832 Coastal 300 watt 30b attenuator Clock 961 weep Clock	
HARCONI TF2370 30hr1 10mh. thist emails. 2000 PHILIPS PM3244 S0mb.2 4 channel delay. HP 81778558B 100hr1 500mh.2 Spectrum analyser 2000 C1000 HP 81078614 A 0.1-1 2 dph. Network analyser C1000 SIGNAL CENERATORS EST EQUIPMENT HP 801681 A 0.1-1 2 dph. Network analyser C1000 HP 801681 A 0.1-1 2 dph. Network analyser C1000 HP 80168 0.3hz.2 dmh.2 dpi. Network analyser C1000 </th <th>sep</th> <th></th>	sep	
HARCONI TF2370 30hr100mh. thist emails. 2000 PHILIPS PM3244 S0mb.4 (channel delay. HP 81778558B 100hr1500mh.5 Spectrum analyser 2000 FILIPS PM3205 Simb. Digital torage HP 81778558B 100hr1500mh.5 Spectrum analyser 2000 TEST EQUPENT TEST EQUPENT SIGNAL CENERATORS (1200 TEST EQUPENT TEST EQUPENT HP 80505 0.3hr.2.30mhr 2 bits generator 2000 TEST EQUPENT TEST EQUPENT HP 806105 C Sweeper maniform (a la new) 2000 TEXTRONIX F 8015 High - oilage scope FILIPS PM3205 Simb. Corrent prob HP 80630 C Sweeper maniform (a la new) 2000 TEXTRONIX F 8015 High - oilage scope PHILLIPS PM309 Pai TV pattern gener corder HP 80630 C Sweeper maniform (a la new) 2000 FILIKE SIMB Program correct allorator FILIKE SIMB Program correct allorator HP 8050 A Comb generator 2030 FILIKE SIMB Program correct allorator FILIKE SIMB Program correct allorator HP 81364 O Into: 21mix Synthester/Level generator (5075 ohm) 6550 FILIKE SIMB Program correct allorator HP 81364 O Into: 21mix Synthester/Level generator 2550 GAY MILLANO Fast transeent embolic HP 81364 O Into: 21mix Synthester/Level generator 2550 GAY MILLANO Fast transeent embolic HP 81364 O Into: 210m	sep	

All 278834 Scope. (450 All 278834 Scope. (470) HARCONI 6590/9710 (0mt-20ghz. (470) HARCONI 640/6421 (0mt-124ghz. (470) HARCONI 640/6421 (0mt)-124ghz. (470) HARCONI 5710 (10mt) High output RC oscillators MARCONI 7F1101 High output RC oscillators MARCONI 7F1101 High output RC oscillators

86 Bishopgate Street, Leeds LS I 4BB Tel: (0113) 2435649 Fax: (0113) 2426881 _____60 ____65 ____65 ____645 ____645

SOFT INDEX ON DISK

A computerised index of Electronics World+Wireless World magazine is now available. It covers the five years 1990 to 1994 volumes 96 to 100 - and contains over 1400 references to feature articles, circuit ideas and applications, with a synopsis for each. The software is easy to use and very quick. It runs on any IBM or compatible PC with 512K ram and a hard disk. Each disk is scanned before shipping with the current version of Dr Solomon's Anti-Virus Toolkit.

For the UK, the five year index is priced at £20. Please specify 5¹/₄ or 3¹/₂ in format. This price includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC overseas orders.

Photo copies from back issues of EW+WW are available at 50p per page plus VAT (in EC) and a flat postage charge of 50p (UK), £1 (rest of EC), and £2 (rest of world). For enquiries about photo copies send an sae to Video Interface Products.

Please allow up to 28 days for delivery. Cheques should be made payable to Video Interface Products, not EW&WW or Reed Business Publishing.

Please post your request to Video Interface Products Ltd, 1 Vineries Close, Cheltenham GL53 0NU, UK.

Unique EW+WW reader offer

30% discount on TTI's PFM1300 1.3GHz frequency meter

5Hz to 1.3GHz hand-held frequency/period meter for just £85.76, fully inclusive – almost a third lower than the normal price of £134.55.

Input B, 20MHz-1.3GHz

Abs. maximum i/p voltage

Impedance

Sensitivity

Input A/B limits

With a resolution of 0.0001 mHz, the professional PFM1300 hand-held frequency meter from Thurlby Thandar measures from 5Hz to 1.3GHz with very high sensitivity at all frequencies.

This battery-powered instrument also features a reciprocal counting technique providing superior accuracy, and a pushto-measure function with auto power down. Readings to eight digits are shown on a large eight-digit display and the meter incorporates a full range of annunciators.

Measurement – range A Frequency range Resolution Accuracy	5-25MHz 10 ⁻⁷ Hz to 10Hz ±1 digit + timebase error	Detailed specifications available – send s.a.e. marked Meter Details to EW+WW, Room L330 Quadrant House,The Quadrant, Sutton, Surrey SM2 5AS.	The PFM1300 – the hand-held frequency meter with bench-top performance.
Measurement – range B Frequency range Resolution Accuracy	20MHz-1.3GHz 1Hz to 1kHz ±1 digit + timebase error	Fully-inclusive price UK £85.76 Europe £90.4 payable to Reed Business Publishing Group L	4 Rest of world* £97.46 Cheques td please, and posted to address above Total
Period Frequency range Resolution Accuracy	5-25MHz 10 ⁻⁷ ns to 1µs ±1 digit + timebase error	Card Holders Address	
Note: resolution depends of frequency.	on measurement time and input	Credit Card name, no	
Input A, 5Hz-25MHz Impedance Sensitivity to 20MHz	1MΩ/25pF sine, 15mV rms, 10Hz	Expiry dateTel: SignedDa "We regret that this offer is not open to readers in N	nte

50Ω

to 1 3GHz

10mV rms, 20MHz to

700MHz, 50mV rms

250V dc, 250V rms

50Hz to 400Hz i/ps A,B,

1V rms >1MHz i/p A, 1V rms 20MHz to 1.3GHz for i/p B.

Iransient storage for ANALOGUE SCOPES

Rather than tie up an expensive dso looking for infrequent transients, Ken Deevy, Dan Sheehan and Mike Byrne* show how to use a low-cost, dedicated transient recorder with an ordinary analogue oscilloscope or XY plotter.

*Ken Deevy, Dan Sheehan and Mike Byrne are with Analog Devices Inc. This article first appeared in *EDN*. ne of the difficulties in capturing single-shot events is the speed at which the transient recorder circuit responds once the input signal has crossed a predetermined trigger point. If the recorder circuit responds too slowly, it can miss fast transients altogether.

To capture fast events accurately, you need a high-speed ato-d converter and a wide-bandwidth track/hold amplifier. For example, an eight-bit a-to-d converter having a lµs conversion time can capture lµs transients only when not preceded by a track/hold amplifier. With a 100kHz track/hold amplifier, the converter can recover 6µs-wide 5V transients. To simplify fault detection or to take corrective measures, a transient recorder must be able to capture pre-transient information, which you can use to discover timing relationships between the transient and another waveform. Additionally, the recorder should be able to react to both positive and negative transients.

Another important criterion is cost. There is little point in replacing one expensive instrument with another. Figure 1 shows that two counters, IC_1 and IC_2 , determine where the circuit stores pre-transient and transient data, also clocking out data to the oscilloscope or X-Y plotter. You can use the

fast clock input, CLK IN₁, for the clock source in record mode or when displaying stored data on an oscilloscope. A slower clock input, CLK IN₂, is for use when printing data on an X-Y plotter.

Switch S_1 selects the two basic modes: record and playback, IC_{18a} and IC_{18b} providing debouncing. With the MODE output of IC_{13d} low, one input of both IC_{15d} and IC_{14d} is low, so the clock inputs of IC_{9a} and IC_{9b} are disabled, ensuring that the 1Q and 2Q outputs of IC_{9a} and IC_{9b} are high. Besides disabling the chip-select inputs of the d-to-a converter, CSA and CSB, the circuit disables the output enable signals of IC_3 , IC_4 and IC_5 , the HM6264 memory chip, ensuring that the playback portion of the transient recorder is turned off.

Input CLK IN₁ serves as the clock source for the counters via IC_{18c} , IC_{14b} , IC_{15a} and IC_{15c} . While the MODE signal is low, CLK is the clock input for both counters and provides the RD\ (convert) signal for the AD7821 a-to-d converter, IC_6 . At the same time, IC_6 's CS\ input is active, ensuring that the device is selected. After a reset from S₃ initialises the circuit, counter 2 begins counting. Monostable IC_{17} and IC_{23b} hold the reset (CLR) input of counter 1 high from power-up, keeping it in reset until the circuit detects a transient.

Connecting pin 7 of the *AD7821*, labelled Mode, to ground, sets the operating sequence in which, when the CLK signal toggles its RD\ input, the a-to-d converter executes continuous conversions of the input signal, V_{in} . (This Mode pin is in no way connected with the mode signal in the circuit dia-

gram.) Counter 2 provides the memory addresses for the a-to-d conversion results. Data transfers from the digital outputs of IC_6 to IC_5 employ the INT\ output of IC_6 to drive the WE\ input of IC_5 .

The circuit automatically loads the first conversion result after reset into location 0 of memory and the second into location 1. After transferring the result of the 4096th conversion to memory location 4095, the counter resets and stores the next conversion result in location 0. Memory always, therefore, contains the most recent 4096 samples of the input waveform.

Fast transients

Input signal V_{in} goes directly to two *TL311* comparators and the analogue input of the a-to-d converter. Comparator IC_{19} detects positive transients and IC_{20} negative ones, threshold levels being adjusted by R_5 and R_6 . Wiring the outputs of the comparators together ensures that they produce a rising edge to the clock input of IC_8 when either a negative or a positive transient occurs.

Once the circuit detects a rising edge at pin 11 of IC_8 , it illuminates a led, D_1 . At the same time, it releases counter 1 from its reset condition by taking RS₁ low and both counters clock as a-to-d conversions continue, counter 2 counting up from the value it held before the transient was detected. Memory locations determined by the output of counter 2 store the transient data while overwriting the oldest 2048 samples of pre-transient data already stored in memory.

May 1995 ELECTRONICS WORLD + WIRELESS WORLD

Transient recording

A transient recorder or burst-mode event sampler consists of a highspeed a-to-d converter, a wide-band track/hold amplifier, and an antialiasing filter. The a-to-d converter needs a sampling rate of at least twice the bandwidth to satisfy the Nyquist criterion, although at this rate the filter needs an infinite roll-off rate to avoid aliasing effects. With three times oversampling, the roll-off requirement drops to 50dB/octave in an eight-bit system and oversampling at a ratio of 10:1 requires a filter roll-off of only about 16dB/octave.

High-speed, sampling a-to-d converter chips often include track/hold amplifiers on the same chip; the *AD7821* is an example of this trend, combining a 100kHz track/hold amplifier with a 1Msample/s, eight-bit a-to-d converter. Because the a-to-d conversion rate is ten times the input bandwidth, there is no need for a complex antialiasing filter; indeed, if the input signal exhibits only a low-power spectral content at and above 500kHz, no filter is needed at all.

The *AD7821* uses a half-flash conversion technique to perform an eight-bit conversion in 660ns which, with the requirement of a 350ns signal-acquisition period between conversions, results in a maximum acquisition rate of 1Msamples/s. It accepts either single or dual supplies for unipolar or bipolar inputs.

Figure A1 is a block diagram of a transient recorder, showing the minimum hardware needed to build a high-speed transient recorder with playback. For simplicity, the design uses a clock with an even mark/space ratio, which limits the acquisition rate to 660ksamples/s rather than the a-to-d converter's 1Msample/s maximum rate, the oversampling ratio now being 6.6:1. A memory chip stores the digitised data for later playback on an X-Y plotter or oscilloscope, via a dual, 12-bit d-to-a converter and a quad op-amp. Half the samples are pre-transient information and the other half transient data.

Counter 1 counts off the 2048 clock states that correspond with the samples.

Because the output of IC_{16b} is always high in the record mode, when counter 1 reaches 2047, all inputs to IC_{10} and IC_{11} are high and the outputs of both ics go low. As a result, the output of IC_{12a} goes high, causing the output of IC_{14a} to go low via IC_{13a} and IC_{12b} , this DIS REC CLK signal gating off CLK IN₁ from the rest of the circuit in IC_{14b} . The output of IC_{18c} ensures that the CLK signal is held low, stopping both counters and the a-to-d converter.

At the end of the transient-record cycle, the memory will contain 4096 samples of the input waveform. Half of these samples are transient data, the other half representing pretransient information. Whatever value is in counter 2 will be the last memory location for the transient data and the next memory location will hold the first of the 2048 words of pre-

Fig. 2. Recorder presents results on either an analogue oscilloscope (a) or on a plotter, as at (b). Pre-transient information occupies the first half of the trace, the second half being the data after the trigger.

transient data; when playback mode starts, the first output from the counter will correspond to the memory location of the first pre-transient sample. To alter the ratio of transient to pre-transient samples, simply alter the connections from counter 1 to IC_{10} and IC_{11} .

To convert the input waveform to stored data accurately, you must pay close attention to the circuit. Use a precision reference, IC_{21} , to generate 5V and -5V references for the V_{ref} + and V_{ref} - inputs of the a-to-d converter. Make sure that these reference voltages are properly decoupled, along with the V_{DD} and V_{SS} lines of the a-to-d converter. Connect the GND pin of IC_6 to the star ground of the system, ie the point in the circuit at which you connect the analogue and digital grounds. Make sure that the conductor between the a-to-d converter and the star ground is as wide as circuit board layout constraints allow. Further, ensure that the WR\RDY line is pulled high via R_{19} to avoid noise pickup on this pin.

Playing back captured signals

Information is retained as long the power remains on or until you depress the reset button. Select play-back mode with S_1 . This takes the MODE\ signal low, activates the WR\ input to IC_7 , and deselects IC_6 by taking its CS\ high. Display the transient on either an analogue oscilloscope or an X-Y plotter, depending on the position of S_2 . Make sure to select the oscilloscope or the plotter before starting playback.

For the oscilloscope display, the clock source for the circuit is the same as in the record mode. If you use a plotter for playback, the clock frequency is much lower and is applied via the CLK IN₂ input. CLK, from either CLK IN₁ or CLK IN₂, passes through gates IC_{15d} and IC_{14d} because the MODE signal is high. IC_{9a} and IC_{9b} generate the CSA\ and CSB\ pulses for IC_7 from this CLK signal.

Monostable IC_{9a} drives the CSA input of IC_7 as well as providing the enable signals for IC_3 and IC_4 . In playback mode, counter I resets and starts counting from 0 to 4095, its output being the digital input code to DAC A of IC_7 , which drives the X axis of either the oscilloscope or the plotter. dto-a converter A produces a unipolar output range from 0 to 5 V, with a resolution of 4096 steps.

Output of IC_{9b} drives the CSB\ input of IC_7 and also sets the logic level on the output-enable line of IC_5 , OE, to latch the data from memory into DAC B, which drives the Y axis of the oscilloscope or plotter. Use of dual supplies allows DAC B to be set for a bipolar output range to reconstruct both positive and negative transients.

Counter 2 starts its count from the point at which it stopped at the end of the record mode; the first memory output word to IC_7 is the oldest sample in memory. Scanning then proceeds through the 2048 samples of pre-transient information and the 2048 samples of transient information. Output of. each sample from memory to the Y axis, via DAC B, corresponds to the output of a count value from counter 1 to the X axis via DAC A. In this way, the circuit reconstructs the pretransient and transient waveforms.

For oscilloscope display of waveforms, place S_2 in the 'oscilloscope' position. Doing so locks out CLK IN₂ from the rest of the circuit but allows CLK IN₁ to operate as clock signal for the circuit. Unlike the operation of plotter display, where counter 1 runs through once and then stops, CLK runs continuously. CNT FIN does go high when counter 1 reaches a count of 4095 but, because the output of IC_{14c} is high, the DIS PLOT CLK signal does not go low. Figure 2(a) shows a typical oscilloscope waveform display.

Switching S_2 to 'plotter' locks out the CLK IN₁ input from the rest of the circuit and permits CLK IN₂ to generate the clock signal for the circuit. IC_{16b} , IC_{10} , IC_{11} and IC_{12a} generate a high CNT FIN signal function, as in record mode, but this time IC_{10} and IC_{11} go low when counter 1 reaches a count of 4095. IC_{13a} goes low and, because the output of

DIGITAL DESIGN

 IC_{14c} is already low, the DIS PLOT CLK signal goes low, turning off CLK IN₂ at IC_{18c} and holding the CLK signal high. Figure **2(b)** shows a captured transient displayed using a plotter as the display method.

Record-mode timing and clock waveforms

Figure 3 shows the logic relationships for the record mode, when MODE (not shown) is low and the DIS REC CLK signal is high. Signal RS₂ goes high when the recorder receives a reset command via S_3 , resetting counter 2. The next falling edge of the CLK signal clocks out an address for IC_5 from counter 2 and initiates a conversion. Within 700ns, the INT\ signal of IC_6 goes low, activating the WE\ input of IC_5 . The rising edge of CLK resets the INT\ line 50ns later.

When the circuit detects a transient, TRANS REC goes high, causing the RS_1 line to go low and releasing counter 1 from its reset state, the next falling edge of CLK clocking out the contents of counter 1. When the output from counter I reaches 2047, CNT FIN goes high and causes the DIS REC CLK signal to go low, shutting off the CLK signal.

Since, in record mode, the a-to-d converter needs a CLKlow time of 750ns to convert and latch the data into IC_5 , the 50:50 mark/space ratio of the clock signal limits clock frequency to 660kHz. However, the CLK-high time can be as short as 350ns, the time required between conversions by the AD7821. Therefore, if the input to CLK IN₁ has a low time of 750ns and a high time of 350ns, the circuit can make one conversion every 1100ns – equivalent to approximately 900ksample/s.

Record-mode timings

Figure 4 shows waveform timing during playback to an oscilloscope. MODE, the WE\ input of IC_5 , and the DIS REC CLK signal are high and, with S₁ in the playback mode, RS₁ goes high, resetting counter 1. CLK generates a CSA\ signal for IC_7 on its rising edge and a CSB\ signal on its falling edge. Data from counter 1 is clocked out on the falling edge of the CLK signal and the rising edge of CSA\ updates the X axis; the falling edge of OE\ outputs stored data from memory and the rising edge of CSB\ updates the Y axis. CLK runs continuously when the circuit is in oscilloscope play-back mode.

Figure 4(b) shows circuit operation for play-back on a plotter. Once again, MODE, the WE\ input of IC_5 , and the DIS REC CLK signals are high. The circuit generates CSA\ and CSB\ to update the X and Y axes. Compared with oscilloscope play-back, the difference in the circuit's operation is that when the output count from counter 1 reaches 4095 and the CNT FIN signal goes high, the DIS PLOT CLK signal goes low, forcing the CLK signal into a high state.

Sampling in burst-mode

Burst-mode event sampling places requirements on an a-to-d converter similar to those for transient recording. In burstmode sampling, the recorder looks at the input waveform infrequently, but when it does, it must acquire a large number of samples in a short time. With slower microprocessors or microcontrollers, timing constraints impose a much lower throughput than the a-to-d converter can deliver.

Timing limitations in a burst-mode sampler are reduced by using a direct-memory-access, dma, controller to initiate a-to-d conversions and transfer conversion data to memory, allowing the a-to-d converter to run at or near its maximum sample rate and permitting high oversampling ratios and the acquisition of short transients.

Building a burst-mode sampler is relatively easy with the popular 8052 microcontroller, shown in the circuit diagram of Fig. 5. Although the 8052 does not support hardware dma, it does support what is termed 'fake dma'. However, the response time to dma requests is much slower than is possi-

ble with microcontrollers that support genuine dma.

Memory chip IC_3 , an HM6264P, stores the control program for IC_1 , of which the first part is the initialisation routine. This routine, **Listing 1**, sets up the sense of the DACKO line of the 8237 dma controller, IC_2 , to be active high and loads the starting data address into it for the first conversion results. Microcontroller IC_1 initialises the counting register to control the number of conversions before IC_2 returns control to IC_1 . The program must also set up IC_1 for 'fake dma'.

After running the initialisation program, IC_2 is ready to take control when requested to do so. Although IC_2 has four

Listing 1. Initialisation routine for the burst-mode sampler.

	Ŷ				
10	XBY (8008R)	=	80H		:SETS DACK SENSE ACTIVE HIGH
20	XBY (800FH)	-	0EH		:CLEARS DREQ0 MASK REGISTER
30	XBY (800BH)	=	94H		:SETS MODE REGISTER
40	XBY (800CH)	=	00H		:CLEARS FIRST/LAST FLIP-FLOP
					: (ONLY NEEDED IF 8237 IS
					:NOT RESET BETWEEN DMA REQUESTS)
50	XBY (8000H)	=	00н		:LOADS LOWER BYTE OF STARTING DATA
					:ADDRESS TO BASE AND CURRENT ADDRESS
60	XBY (8000H)	=	08H		:LOADS HIGHER BYTE OF STARTING DATA
					:ADDRESS TO BASE AND CURENT ADDRESS
70	X8Y(8001H)	=	00H		:LOADS LOWER BYTE OF COUNTING NUMBER
					: TO COUNT REGISTER
80	XBY (8001H)	=	02H		:LOADS HIGHER BYTE OF COUNTING NUMBER
					:TO COUNT REGISTER
90	DBY(38) =	DB	Y (38)	.0R.02H	
100	IE = IE.OR	. 8	1 H		
110	GOTO 10				

interrupt-request lines, this circuit uses only one, DREQ0. An external command signal drives this interrupt line high, telling IC_2 to take control of the circuit and start the a-to-d converter sampling the input waveform.

When IC_2 receives the DREQ0 request, its HRQ line goes high and IC_{14c} output, which drives the INTO\ line of IC_1 low, which takes the INTO\ line of IC_1 low, its P1.6 line low and the output of IC_{14a} high, selecting inputs of IC_7 , IC_8 , IC_9 and IC_{10} . When the output of IC_{14a} goes high, it shuts off IC_1 's address and data lines from the rest of the circuit and deselects the output's address decoder, IC_{13} . The inverted P1.6 line also feeds the HLDA input of IC_2 , acknowledging IC_2 's request for control, IC_2 then taking control of the address and data bus and sampling of the input waveform.

To reduce pin count, IC_2 multiplexes the eight higher-order address bits on the data lines, an external device being needed to latch these address bits. Address strobe signal, ADSTB, takes AEN high to switch the OC\line of IC_6 low; ADSTB drives the C input of IC_6 to latch the higher address lines to the outputs of IC_6 . The inverted AEN line also drives one input of IC_{16d} , the other input of this gate being fed by the decoded output of IC_{13} , Y0. Therefore, because both IC_2 and IC_1 must be able to access IC_3 , either a high on AEN or a low on the decoder output selects it.

Acknowledge line DACK0 goes high at about the same time that ADSTB latches the address and drives one input of

DIGITAL DESIGN

 IC_{15a} , this and IC_{15b} ensuring that the CS\ line of IC_4 goes low only when an input/output read operation of IC_2 occurs. IC_{15c} provides the correct polarity for the RD\ input and equalises the delay paths for the CS\ and RD\ lines, ensuring that the circuit obeys the CS\-to-RD\ setup time.

Once IC_4 receives a CS\signal, it acknowledges receipt of the signal by bringing its RDY line low, placing the controller, IC_2 , into a wait state for as long as its RDY input is low. When the device completes a conversion, the RDY line goes high, releasing IC_2 from its wait state; pull-up resistor R_2 takes account of IC_4 's open-drain RDY output.

When the circuit releases IC_2 from its wait state, data from IC_4 is valid and the address lines of IC_2 determine where data

Fig. 6. 'Fake dma', used because the 8052 does not support true dma, allows rapid data transfer to memory.

loads into memory. Controller IC_2 performs all of these operations automatically because a memory write accompanies each input/output read. Depending on the value loaded into the counting register, IC_2 will continue to issue read commands to IC_4 until the circuit completes the required number of conversions, automatically incrementing the memory address after every write operation.

Multiplexer IC_{12} accommodates eight input channels, selected by the three highest and three lowest address lines of IC_2 , gated through IC_{16a} , IC_{16b} and IC_{16c} . If the three upper lines are all at 1, IC_4 will convert each channel in sequence and the conversion results will be stored in consecutive memory locations. For example, if the first conversion takes place on the channel 1 input voltage, V_{in1} and the result is stored in location M of IC_3 , the next conversion will take place on V_{in2} and the result will be stored in location M+1. If the three uppermost address bits are set to 011_{16} , the circuit will sequence through channels 1 to 4 only.

Ready or not

The RDY line of IC_4 drives the WR\ input of IC_{12} , loading the address for the next channel to be converted into the multiplexer. If there is only one input channel to convert, remove IC_{16a} , IC_{16b} and IC_{16c} and drive the $A_{0.2}$ inputs of IC_{12} directly from the three uppermost address lines. With this arrangement, the program chooses the input channel.

Microcontroller IC_1 selects the device it talks to using a 1-of-8 address decoder, IC_{13} , the outputs of which provide signals for IC_{12} 's write line and chip-select inputs of IC_3 and IC_2 . One of the outputs also gates read line P3.7 and the P3.6 outputs from the controller to drive the IOW\ and IOR\ inputs of IC_2 .

Three upper address lines of IC_1 select the required device, the lower address lines being multiplexed with the data lines in a similar manner to those of IC_2 . Decoder IC_{10} demultiplexes the lower eight address lines, the microcontroller's ALE signal latching them in IC_{11} ; tri-state buffers, IC_2 , IC_8 and IC_{10} isolate the microcontroller outputs from the address bus when IC_2 takes control, since it cannot place its address and data buses into a high-impedance state when IC_2 takes control of the circuit. IC_9 also acts as a buffer, but is bidirectional because the microcontroller must read data from

DIGITAL DESIGN

Fig. 7. Requirements of an antialiasing filter depend on the degree of oversampling. Since 10 times oversampling allows three octaves for roll-off, and since an 8-bit a-to-d converter needs 48dB of attenuation, a threepole filter giving 18dB/octave will suffice.

and write data to memory.

The microcontroller uses a 10MHz input-clock frequency, a 74HCT74 counter (IC_{19}) dividing this frequency to form the clock input to IC_2 . As the standard 8237 operates from a 3MHz maximum clock frequency, you can divide the 10MHz clock by four to give an acquisition rate of 608ksample/s. A faster version of the 8237, the 8237-5, operates from a 5MHz input clock, allowing you to divide the clock frequency by two and enabling the circuit to take 812ksample/s. If IC_1 were used on its own to control the sampling of the input waveform, the best acquisition rate would be approximately 100ksample/s.

The entire circuit operates from 15V and 5V supplies. If there is no 5V supply in your system, add a regulator to generate 5V. In addition, use a precision 5V reference (IC_5) for the a-to-d converter, allowing an input range of 0-5V. To obtain accurate conversion results, obey the usual guide lines regarding decoupling and grounding in both the circuits described.

Slow and medium speed microprocessors that support direct memory access requests can be used in this circuit to provide a much faster dma response than that of the 8052's 'fake dma'. Because microprocessors that support genuine dma will tri-state their address and data lines during a dma transfer, you can eliminate the tri-state driver chips.

Oversampling and antialiasing

In the spectrum of a periodically sampled waveform, the spectrum of the (unsampled) input signal repeats around harmonics of the sampling frequency. Any frequency contained in the input signal is repeated above and below each harmonic of the sampling frequency. Therefore, in the spectrum of the sampled signal, the band between 0 and f_{in} (the input spectrum) appears, among other places, between f_s - f_{in} and f_s , where f_s is the sampling frequency.

DESIGNER'S COMPANION DESIGNER'S COMPANION Charges Serve for Deoper Traver Charges DESIGNER'S COMPANION DES Although you may be under the impression that the inputsignal bandwidth is 100kHz, if the sampling frequency is 1Msample/s, a signal at 991kHz in the input spectrum would

EDN Designer's Companion is available by postal application to room L333 EW+WW, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS. Please make cheques out to Reed Business Publishing Group Ltd. Credit card orders accepted by 'phone on 0181 652 3614. 254pp hardback ISBN 0 7506 1721 7 Price £25.00+£2.50 UK postage, £5 Europe, £8 worldwide. appear as a 9kHz alias component in the spectrum of the sampled signal.

An antialiasing filter removes or at least attenuates any noise or spurious signals that could be aliased back into the bandwidth of interest. **Figure 7** shows the frequency response of such a filter for a generalised a-to-d converter. Determine the filter roll-off by drawing a straight line between the highest signal frequency of interest, f_{in} , and the stop-band attenuation frequency, f_s - f_{in} . As the ratio of f_s to f_{in} increases (that is, as the oversampling ratio increases) the slope of the line decreases.

In an eight-bit system. an ideal a-to-d converter's signal-to-noise ratio (s:n) is slightly greater than 256:1 or 48dB. To prevent noise limiting the system performance, the ratio of the input signal-to-noise ratio should exceed the approximate 48dB limit imposed by the converter. Here, the signal is the peak-to-peak value of the signal within the band of interest, and the noise is the square root of the sum of the squares of the amplitudes of all the frequency components outside that band.

Attenuation required for signals outside the band of interest depends on the application and the expected magnitude of the out-of-band signals. In most cases, the magnitude of these signals is much lower than that of the desired signal.

Usually, eight-bit systems require 50dB of attenuation for signals that can be aliased into the band of interest. Even if 50dB is not the desired number, the following calculations show the kind of reduction in antialiasing filter requirements brought about by oversampling. With $2\times$ oversampling, i.e. with $f=2f_{in}$, f_s and f_{in} are at the same point and the filter has to have infinite roll-off to attenuate signals at f_s - f_{in} . With $f_s=3f_{in}$, (3× oversampling), the filter's attenuation must drop from 0dB at f_{in} to 50dB at $2f_{in}$. In other words, the slope of the attenuation vs frequency curve must be 50dB/octave; the filter (if it has a Butterworth characteristic) must have more than eight poles.

With $10\times$ oversampling, there are three octaves for the attenuation to drop from 0 to 50dB; the required slope is a little more than 16dB/octave and a three-pole Butterworth filter will do the job.

This analysis of the antialiasing filter holds true regardless of the type of a-to-d converter that follows the filter. No matter what the conversion technique, oversampling reduces the antialiasing filter requirements. Oversampling also reduces the converter noise within the signal bandwidth because it spreads the quantisation noise over a wider bandwidth. Oversampling has recently gained considerable popularity in connection with sigma-delta a-to-d converters. In the case of these converters, the advantages of oversampling are much greater than with successive-approximation or flash converters because noise shaping produces dramatic improvements in noise performance as the oversampling ratio increases.

However, the relationship between antialiasing-filter performance and oversampling is exactly the same for an oversampled sigma-delta modulator as for half-flash or successive-approximation alternatives; sigma-delta and half-flash a-to-d converters with the same oversampling ratio place the same demands on the antialiasing filter.

Pipelining or averaging inherent in sigma-delta converters is a disadvantage of the sigma-delta process for transient recording. Because of the pipelining, a step change requires a significant time (the settling time of the converter's digital filter) to ripple through to the output. Therefore, there is a delay before a sigma-delta converter produces an output that represents an input change. Between the time the input changes and the sigma-delta converter's output reflects the change, the a-to-d converter's output does not accurately represent the converter's input. Such performance is not appropriate for transient recorders of the type discussed here.

Programming Solutions

Multi-Device Programmer

- ◆ EPROMs, E²PROMs, Flash EPROMs, Serial E²PROMs, PLDs, GALs, PEELs, EPLDs, MACHs & WSI PSDs Micros - Intel, Microchip, Motorola, Zilog
- Fast programming algorithms.
- Connects direct to pc printer port.
- Simple full colour software.
- No expensive adapters.

Universal Programmer

Uses standard pc printer port works with notebook and handbook pc's

- Supports over 2000 IC's 3 and 5 volt devices EPROMs, E²PROMs, Bipolars, Flash, Serial EPROMs over 150 microcontrollers, WSI/Philips PSDs, PLDs, EPLDs, PEELs, PALs, GALs, FPGAs including MACH, MAX, MAPL & Xilinx parts
- Universal DIL (up to 48 pins), PLCC and gang PACs
- Powerful full colour menu driven software. ٠
- Approved by AMD, TI, NatSemi, etc... ٠
- Tests TTL, CMOS and SRAM devices (including SIMMS)

Eprom Programmer

ONLY

EPROMs, E²PROMs, Flash and 8748/51 micros. Fast programming algorithms. Simple colour menu operation.

EMULATORS • SIMULATORS • COMPILERS • ASSEMBLERS PROGRAMMERS • 8051 8085 Z8 68020 77C82 80C552 320C25 68HC11 6301 6502 87C751 65816 Z80 6809

PIC 7720 MIPS etc.

3

2 Field End • Arkley • Barnet • Herts • EN5 3EZ • England
Telephone +44 (0)181 441 3890 Fax +44 (0)181 441 1843
CIRCLE NO. 127 ON REPLY CARD

LOW POWER single-chip fm receiver

With fm receivers designed for batterypowered equipment, disconnecting the audio amplifier from the supply when it is not in use saves power and eliminates unnecessary audio hiss. Ed Baker describes an fm receiver ic designed to disconnect its own audio power stage.

> Fig.1. Schematic of the ULN3883A fm receiver ic shows the three subsections – converter, If demodulator and audio amplifier.

his article describes how to apply the ULN3883A, a low-power, narrowband fm receiver ic providing the second converter, second IF demodulator and audio amplifier circuitry for communications and scanning receivers.

The device offers a number of advantages over other types of narrowband frequencymodulated receiver circuits, particularly for cordless telephones and other battery-operated receivers. Most such units operate in a mode in which the receiver is muted by removal of the audio input to the amplifier driving the loudspeaker, while still leaving this amplifier drawing a considerable current. This current can often be many times greater than that drawn by the rest of the receiver.

A more sensible way to mute the receiver is to disconnect the audio amplifier from its power supply so that it draws little or no current. This not only improves battery life (or intervals between charging), but also removes what can be a very annoying hiss from the loudspeaker.

This is exactly what is achieved in the ULN3883A. During normal operation, with no input present, the ic draws up to 15mA. Once the mute is operated, this drops to typically 3mA, drawn by the rest of the circuit: i.e. the

mixer, IF amplifier, detector and filter amplifier. This current reduction extends battery life considerably, depending on the operate-standby ratio of the equipment. In an extreme case, where a receiver spends 95% of its life in standby mode, battery life would be increased by a factor of ten.

Functional description

The device, which contains a number of distinct on-chip functions, **Fig. 1**, was originally designed for use as the second IF stage of a dual-conversion superheterodyne receiver with a first IF of 10.7MHz and a second IF of 455kHz. The high performance of the input circuitry, which exceeded its designer's expectations, also allows it to be used as a single conversion receiver for frequencies up to the low end of the vhf band. A typical application of the device in this role is the cordless telephone receiver shown in **Fig. 2**. Functions included in the ULN3883A are as follows:

Double balanced mixer. The active mixer, because of its nature, has an extremely high rejection of both input and oscillator frequency feedthrough, as well as reduced local-oscillator re-radiation. The circuit also exhibits a very wide dynamic range; in excess of 80dB. Since the input circuitry is internally biased,

an input coupling capacitor is required for the purposes of dc blocking. However, its smallsignal impedance equates to a $3k\Omega$ resistor in parallel with a 20pF capacitor. The input ground is separate from the rest of the ic circuitry, and is connected to pin 9. It should be connected via the shortest possible path to the input-circuit grounding. The small-signal output impedance is approximated by a $100k\Omega$ resistor in parallel with a 3pF capacitor, and it has an output drive capability of about 400µA. For correct operation, a dc path to the positive supply rail is required. Converse transconductance is typically 600µmho; however, if required, the mixer can be disabled and used as an amplifier by connecting pins 12 and 13 together. Under these circumstances, the transconductance is typically 1.4mmho.

Oscillator. This circuit is configured as a standard Clapp oscillator, and the base pin 13 and emitter, pin 12, are brought out of the ic for connection to the external circuitry. This can be either a crystal, shown in Fig. 3a or an *LC* circuit for instances where a tuneable circuit is required (Fig. 3b).

Since the transistor is a pnp type, the bottom end of the coil must go to the positive rail, unless a capacitor is connected between pin 13 and the tuned circuit. If required, the oscillator can be disabled by leaving pin 12 open circuit and injecting an external oscillator signal into pin 13.

In the circuit shown in Fig. 2, a crystal oscillator operating in a third-overtone mode is used. The base input circuitry exhibits a stray Fig.3. Two possible oscillator configurations: (a) crystal for fixed frequency operation; (b) tuneable LC circuit. An external oscillator can also be used, see text.

> requirements. Although there is internal biasing, an external resistor of between 0 and $10k\Omega$ has to be used for correct balance of the IF amplifier.

+V_{cc}

10

11 14 16 15 17 5

ULN3883A

The amplifier has a response of -3dB at about 1.5MHz, and rolls off at 6dB per octave above this. The 3dB limiting sensitivity is $13\mu V$ at 455kHz.

Noise-blanking fm detector. The squarewave output of 570mV from the IF amplifier

capacitance of about 7pF, and has to be taken into account when designing the external oscillator circuitry.

IF amplifier. Pin 15, which is the input stage, is internally biased by a $2k\Omega$ resistor connected to pin 14. However, an external resistor is normally used to give good impedance matching with the rest of the circuitry. In the example shown in Fig. 2, a $1.8k\Omega$ resistor is used to accommodate the *CFU455* filter

Table 1. Performance of receiver Flg. 2.

maximum sensitivity	1µV I
quieting sensitivity	3.6µ\
imiting sensitivity	<1µV
apparent peak separation at 1mV input	12kH
overload capacity	3000
am rejection (m=30%)	
at 100µV input	41dB
at 1mV input	38dB
distortion at 2.5kHz deviation	4%
adjacent channel rejection at +30kHz	76dB

µV for a signal to noise ratio of 12-20dB .6μV at 3dB .1μV 2kHz .000mV 1dB

AUDIO

Fig.4. The noise-amplifier can be configured in a number of ways, the most common being the highpass filter.

Fig.5,6. Improvements on noise factor and sensitivity of the receiver can be achieved using a jfet or a double gated mosfet in the rf input stage. is fed into the detector output via an on-chip 10pF capacitor. This is brought out to pin 17, and connected to an external tuned circuit which is tuned to the IF frequency. The signal level on this pin should have a minimum level of 100mV rms for correct detector operation. The component connected to this pin is determined as follows:

$$V_{17} = V_1 Q_1 [10 \text{pF}/(10 \text{pF}+C)]$$

$$R_1 = Q_0 C [Q_1/9Q_0 - Q_1)]$$

where

 V_1 =140mV rms C=detector tuning capacitance Q_1 =loaded Q of detector coil

 Q_0 =unloaded Q of detector coil R_1 =damping resistor across tuned circuit.

The output circuit of the detector is an emitter of 400Ω output impedance. Since some of the IF signal is still present, care needs to be taken with the circuit layout so that the circuitry connected to pin 18 does not associate with the components connected to pin 16.

Audio amplifier. The stage gain of the power amplifier is typically 35dB, and is designed to drive either a 4Ω or an 8Ω loudspeaker. With a supply voltage of 5V, it is capable of an output of 260mW at a third-harmonic distortion of 10%.

The output-circuit coupling capacitor should be selected to give the desired IF response and to reduce power consumption caused by unwanted IF drive to the loudspeaker. To ensure optimum stability, the ground side of the speaker return should be connected as close as possible to pin 3: the amplifier (and main) ground connection.

Noise amplifier. This is an inverting amplifier with an open-loop gain of 53dB at 4kHz, and requires a feedback resistor between the

input and output (pins 6 and 7) to reduce the gain to a more practical level.

The amplifier can be configured as a lowpass filter, a bandpass filter or a highpass filter, the last being the most commonly used in applications of this type (Fig. 4). All capacitors used should be of a high-Q variety such as polystyrene or polycarbonate; if ceramics are used, the filter will not perform to the required specifications.

Muting switch. The input circuit is a $22k\Omega$ resistor in series with the base of a transistor whose emitter is connected to ground. As expected, the threshold is the same as the forward bias point of a transistor (around 600mV). Since all muting functions are on the chip, this stage has no output pin.

Applications

The application shown in Fig. 2 is by no means definitive. Improvements in this design can be made by changing the rf input stage to a jfet (Fig. 5), a dual-gate mosfet (Fig. 6) or even a gaAsfet. Since receiver sensitivity is determined by the selection of this stage, a device must be chosen to give a noise factor and gain which presents sufficient input to give full limiting (8µV) and enough sensitivity for a reasonable signal to noise ratio with the signal being received. The market abounds with suitable alternatives to those given (e.g. U310, BF800, BF981, 3SK51, 3N200, 3N140 etc.). Depending on which is chosen, the component values will have to be modified to suit the transistor selected.

The ceramic filter connected to L_4 determines the degree of rejection of image signals and so should have a good out-of-band rejection characteristic, while the filter connected to IFT₁ determines the overall receiver bandwidth and adjacent channel rejection. The first filter could be replaced by a saw filter, and the second by a crystal filter, if improved performance is required.

The circuit shown in Fig. 2 has an audio filter which tailors the audio for speech reception in series with the af amplifier. If this is not required for reasons of cost or fidelity, it can be omitted, and a simpler circuit using a $50k\Omega$ volume control can be used.

As shown in Fig. 2, the ULN3883A is used with (a) a crystal oscillator using the onboard circuitry; (b) a tuned LC oscillator, again using the onboard circuitry; or (c) either of the above using an external oscillator or a synthesiser. If option (c) is required, a signal with an amplitude of 500mV is required at pin 13 of the ULN3883A.

The device is, of course, not limited to acting as a single superheterodyne receiver. As indicated, it can also act as the second mixer/oscillator and IF amplifier in either a fixed capacity or as a tuneable If with a broadband front-end circuit. This practice is very common in vhf and uhf receivers where it is difficult and expensive to manufacture stable oscillators or synthesisers. SMALL SELECTION ONLY LISTED – EXPORT TRADE AND QUANTITY DISCOUNTS – RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

NEW LOW PRICE – NEW COLOUR HP141T SPECTRUM ANALYSERS TESTED

HP141T + 8552A or B IF - 8553B RF - 1kHz - 110Mc/s -A IF £600 or B IF - £700.

HP141T + 8552A or B IF - 8554B RF - 100kHz - 1250Mc/s - A IF £800 or B IF - £900.

HP141T + 8552A or B IF - 8555A RF - 10Mc/s - 18GHz A IF £1400 or B IF - £1600. The mixer in this unit costs £1000, we test every one for correct gain before despatch.

HP141T + 8552A or B IF - 8556A RF - 20Hz - 300kHz -A IF £600 or B IF - £700.

HP ANZ UNITS AVAILABLE SEPARATELY NEW COLOUR – TESTED

HP141T Mainframe - £350 - 8552A IF - £200 - 8552B IF - £300 - 8553B RF - 1kHz - 110Mc/s - £200 - 8554B RF – 100kHz – 1250Mc/s – £400. 8555A RF – 10Mc/s 18GHz – £1000. 8556A RF – 20HZ – 300KHZ – £250.

HP8443A Tracking Generator Counter - 100kHz -110Mc/s-£300-£400.

HP8445B Tracking Pre-selector DC - 18GHz - £400-£600 or HP8445A – £250.

HP8444A Tracking Generator – £750 – 1300Mc/s. HP8444A Opt 059 Tracking Generator – £1000 – 1500Mc/s.

SPECIAL OFFER – 14 ONLY HP140T (NON-STORAGE)

Mainframe Plus 8552A IF Plug-In Plus 8556A RF Plug-In 20Hz – 300kHz Plus 8553B RF Plug-In 1kHz – 110Mc/s. Tested with instructions - £700.

Marconi TF2008 - AM-FM signal generator - also sweeper - 10Kc/s - 510Mc/s - from £250 - tested

Thome: S. Testee with manual probe with instituctions – 1700. Marconi TF2008 – AM-FM signal generator - also sweeper – 10Kc/s – 510Mc/s – from £250 – tested to \$200 as new with manual – probe kit in wooden carrying box. MP Yeetor Voltmeter type 8405A – £400 to £600 – old or new colour. MP Sweep Oscillators type 8590 A & H plug-ins from 10Mc/s to 18GHz also 18-40GHz P.O.R. HP Amplifter type 8474 – 1400Mc/s (200 – HP8447F, 1-1300Mc/s – £500 – £1000. HP Amplifter type 8474 – 1400Mc/s (200 – HP8447F, 1-1300Mc/s – £400 – 8741 – 8742 – 8743 – 8743 – 8740 – 8741 – 8742 – 8743 – 8740 – 8741 – 8742 – 8743 – 8746 – 8600. Read/Dana 9301A – 9302 RF Milivolimeter – 15-2GHz – £250-£400. Read/Dana 9301A – 9302 RF Milivolimeter – 15-2GHz – £250-£400. Read/Dana 9301A – 9302 RF Milivolimeter – 15-2GHz – £250-£400. Racal/Dana 9301A – 9302 RF Milivolimeter – 15-2GHz – £250-£400. Racal/Dana 9301A – 9302 RF Milivolimeter + 1245 & 1247 Oscillators – £100-£300. Marconi 78aunders 3915M – 9916 – 9917 – 9921 – £150 to £450, Fitted X standards. Racal/Dana Modulation Meter type 9009 – 8Mc/s – 1.5GHz – £250. Marconi 17245 Circuit Magnification meter + 1245 & 1247 Oscillators – £100-£300. Marconi distortion meter type F7231 – £150, TF231A – 200. Marconi distortion meter type F7231 – £150, TF231A – 200. Tektronix Mainframes – 7603 – £6304 – 7653 – 7604 – 7864 – 7904 – TM511 – 7D10 – 7512 – 51 – 52 – 56 – S52 – 9G506 – S5604 – S6504 – S504 – S500 – S6504 – S504 – S500 – S6504 – S504 – S650 – S6504 – S6504 – S6504 – S6504 – S550 – S6504 – S504 – S500 – S650 – S554 – S52 –

hada 1991 - 1992 - 1980 - 1300/05 Columers - 1300-1300. Tek 2445 150M/25 oscilloscope - E1400. Fluke 80K-40 High voltage probe in case - BN - £100. Racal Recorders - Store 4 - 40 - 7 - 14 channels in stock - £250 - £500. Racal Store Horse Recorder & control - £400-£750 Tested. EIP 545 microwave18GHz counter - £1200. Fluke 355A AC ref standard - 400Hz - £200. Fluke 355A AC ref standard - 400Hz - £200. Schlumberger 5229 Oscilloscope - 500Mc/s - £500. Solartron 1170 FX response ANZ - LED dislay - £280. Wiltron 610D Sweep Generator + 61084D Pl - 1 Mc/s - 1500Mc/s - £500. Time Electronics 9814 Voltage calibrator - £750. Time Electronics 9814 Voltage calibrator - £750. Time Electronics 2004 D.C. voltage standard - £1000. HP 8693B Sweep TYIG oscillator.01 - 4GHz - £200. Schlumberger 1250 Frequency response ANZ - £2500. Dummy Loads & power att up to 2.5 kilowatts FX up to 18GHz - microwave parts new and ex equipt - relays - attenuators - switches - waveguides - Yigs - SMA - APC7 plugs - adaptors, etc.

B&K Items in stock - ask for list.

W&G Items in stock – ask for list. Power Supplies Heavy duty + bench in stock – Farnell – HP – Weir – Thurlby – Racal etc. Ask for list.

ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILITY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA ITEMS MARKED TESTED HAVE 30 DAY WARRANTY, WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No: (01274) 684007. Fax: 651160

CIRCLE NO. 130 ON REPLY CARD

CADPAK & PROPAK for Windows

PROFESSIONAL SCHEMATIC CAPTURE AND PCB SOFTWARE FOR WINDOWS

At last, professional schematic and PCB design software for Microsoft Windows is available at prices that won't break the bank. CADPAK for Windows offers entry level schematic and PCB drafting whilst PROPAK for Windows adds netlist integration, multi-sheet schematics, highly effective autorouting, power plane generation and much more.

ISIS Illustrator

ISIS Illustrator was the first schematic drawing package for Windows and it's still the best. Illustrator's editing features will enable you to create circuit diagrams as attractive as the ones in the magazines.

- Runs under Windows 3.1.
- Full control of drawing appearance including line widths, fill styles, fonts, colours and more.
- Automatic wire routing and dot placement.
- Fully automatic annotator.
- Comes complete with component libraries; edit your own parts directly on the drawing.
- Full set of 2D drawing primitives + symbol library for logos etc.
- Exports diagrams to other applications via the clipboard.

LOW PRICES!

CADPAK for Windows	£149
CADPAK for DOS	£79
PROPAK for Windows	£495
PROPAK for DOS	£395

T

Prices exclude postage (£5 for UK) and VAT. All manufacturers trademarks acknowledged.

n

0

ARES for Windows

ARES for Windows provides all the functionality you need to create top quality PCB layouts under Microsoft's GUI. Combining the best of our DOS based PCB layout technology with the best of Windows, this package is our most powerful and easy to use PCB design tool to date.

- True 32 bit application under Windows 3.1.
- Advanced route editing allows modification or deletion of any section of a track.
- Unlimited number of named pad/track styles.
- Comprehensive package library for both through hole and SMT parts.
- Full imperial & metric support including all dialogue forms.
- Gerber, Excellon and DXF outputs as well as output via Windows drivers. Also includes Gerber viewer.
- Multi-strategy autorouter gives high completion rates; power plane generator creates ground planes with ease.

Call us today on 01756 753440 or else fax 01756 752857 for a demo pack - please state DOS or Windows as these products are available for both platforms. CIRCLE NO. 131 ON REPLY CARD

53-55 Main St. Grassington, N. Yorks. BD23 5AA

Smash – simulation via

Smash – the subject of this month's free disk offer – is a multi-level, mixed-mode simulator running under Windows and featuring true behavioural modelling.

The simple example, starting on the right, demonstrates the possible analyses in *Smash*. As it may be the first example you will try, it is kept simple, being purely analogue and using only primitives. However, it demonstrates features like parameter sweeping and Monte Carlo analysis. It is a simple *RC* network, the demonstration files for which are on the evaluation disk. The disk is a fully-working version of *Smash*, limited only to 25 analogue and 50 digital nodes.

Notes on behavioural modelling

Behavioural modelling is a term you have probably heard a number of times. The fact is that most often, people talk about behavioural modelling as soon as the model is not a low-level primitive – a transistor or gate.

This is particularly true where analogue simulation is concerned. Some people even consider, or want you to believe, that a G device (i.e. Spice-device) is a behavioural model. But genuine behavioural modelling goes far beyond this.

The designation behavioural has long been reserved for a design method that describes parts of your systemvia a high-level programming language. Behavioural means that you describe the way a component works, without presuming the way it is actually implemented. The purpose of the method can be to make an architectural study of a system at early stages of the design, before implementation has been fully decided. Or you can use it simply to increase the speed of a simulation – a few lines of code can easily replace thousands of transistors or gates.

There is nothing wrong with using a different term (behavioural) for differentiating things which do not readily map to anything physical, like a G-device, a Laplace-defined block, or a non-linear equation. But you should be aware that behavioural modelling may have more than one meaning.

In Smash, you can use Laplace-defined blocks and nonlinear conditional equations. But the true power of the software comes from its capacity to mix genuine behavioural models – both analogue and digital – with primitives. As the Smash HDL is based on the popular C language, you can use variables, complex control structures – loops, etc – and all the features available in a high-level programming language.

Since these models are compiled, not interpreted, they are highly efficient and you can simulate complete systems, ics and/or pcbs, that you would not be able to simulate with any other tool.

A: This is a simple RC circuit used to demonstrate some of Smash's features.

B: These three windows are the netlist, pattern and operating point files for the simple RC circuit. These files are contained on the evaluation disk in the 'eval' folder (example continued over)...

Free CAD software offer

The full version of the Smash multi-level, mixed-mode simulator costs £1500. The first 1000 EW+WW readers sending in the coupon opposite this page can obtain a size-limited but otherwise fully functional evaluation version of Smash free of charge.

Smash and schematic entry

There is no proprietary schematic entry in *Smash*. Instead it interfaces at the netlist level with commercial schematic entry packages. Basically any schematic entry program with a Spice netlist output can be used with *Smash*.

Some packages are tightly integrated with *Smash*, with libraries available etc. Among these are *DesignWorks* from Capilano Computing, *ECS/Synario* from Data I/O, and *Opus 4.2.2* from Cadence. The *DesignWorks* and *ECS/Synario* libraries for *Smash* are contained on the evaluation floppy.

C: Analysing the circuit for transients is simply a matter of selecting the transient parameters under the Analysis menu and running the routine.

D: Small-signal analysis is equally simple. Note that running this analysis does not result in the previous transient analysis window being lost. Waveform processing – zooming, measuring etc – is available, even when a simulation is running, through the commands under the Waveforms menu. You may add new signals in the window with the Add analogue signals item. A dialog box displays a list of available signals. Simply double-click the name of the signals you want to view.

E: In Monte Carlo analyses component values are varied at random, according to specified statistical distributions and tolerances. Also, the analyses are re-run a number of times. In this way, you can simulate how off-the-shelf component tolerances affect the circuit's response.

F: An example of running the transient analysis routine for a mixed analogue and digital circuit. In this case, Smash has to deal with both analogue voltages and logic levels. Whenever a node connects to both analogue and digital components, it becomes an interface node.

- * Schematic capture linked to PCB
- * Parts and wiring list entry *.Outline (footprint) library editor
- * Manual board layout
- * Full design rule checker

10 A 0 0 4.4

- * Back annotation (linked to schematic) * * *
- Power, memory and signal autorouter £50

SETTRAX/ ---

All systems upward compatible. Trade-in deals available.

Call Sectrax CAE for further information/demo packs. Fax 01705 599036 Tel 01705 591037

Seetrax CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hampshire, PO8 0SG

All trademarks acknowledged

All the features of Ranger1 plus * Gate & pin swapping (linked to schematic)

- * Track highlighting
- * Auto track necking
- * Copper flood fill "
- * Power planes (heat-relief & anti-pads)
- Rip-up & retry autorouter

Ranger3 £3500

All the features of Ranger2 plus * UNIX or DOS versions * 1 Micron resolution and angles to 1/10th degree * Hierarchical or flat schematic Unlimited design size * Any-shaped pad . * Split power planes * Optional on-line DRC 100% rip-up & retry, push & shove autorouter Outputs to:

6.000

- 8/9 mid 24 pin dot-matrix printers * HP Desk/Laser Jet, Canon BJet, Postscript (R3 only)
- * HP-GL, Houston Instruments plotters
- * Gerber photoplotters,
- * NC Drill Excellon, Sieb & Meyer AutoCAD DXF
- CIRCLE NO. 134 ON REPLY CARD

Oscillating AT

Two basic circuit configurations are responsible for most oscillator designs working at frequencies up to the uhf range. Ian Hickman describes the often conflicting requirements of uhf oscillators – including a disadvantage of the emitter-follower now put to good use. Scillators for frequencies to uhf and beyond have been built using all sorts of active devices, from valves onwards. Most of them use three terminal active devices, often connected to a simple tuned circuit in one of two basic ways, which were enumerated for my benefit as a student by an older colleague of many years experience with the aid of a sketch which I call O'Connor's Universal Oscillator Circuit, Fig. 1. It is drawn in an unconventional way to emphasise the following points.

For the circuit to function as an oscillator, Z_2 and Z_3 must be reactances of the same sign – both inductances or both capacitances – while Z_1 must be of the opposite sign. With this proviso, the diagram shows that, relative to the cathode (emitter, source), the voltages at the other two electrodes are in antiphase.

No earth connection is shown, since in principle the circuit could be provided with the necessary power supplies via ideal rf chokes of infinite reactance at the operating frequency, and a, g or k earthed as convenient, or the whole circuit left floating.

If Z_1 is an inductor with capacitors at Z_2 , Z_3 , the circuit is a Colpitts oscillator, whilst if a tapped inductor forms Z_2 and Z_3 with Z_1 being a capacitor then the circuit is a Hartley oscillator. One way or another, all three electrodes

Fig. 1. O'Connor's universal oscillator circuit. Z_1 is a reactance of one sign while Z_2 and Z_3 are both of the other. For 'valve' read n-p-n bipolar, n-channel fet, hemt etc, as appropriate.

of the active device must be connected to the tuned circuit.

Many other circuit arrangements are possible, some using more than one active device, a variety being shown in Fig. 2. However, at uhf a circuit using a single device, connected as in Fig. 1, often proves best because additional phase shifts associated with a second active device or parasitics associated with coupled windings introduce additional complexities into the design process, effects that would be smaller or negligible at vhf or hf.

Colpitts oscillator

As a basis of a signal generator, an oscillator with a wide tuning range is required. While at one time this would have been tuned by a precision mechanical variable capacitor, in a more modern application varactor tuning will usually be employed, permitting accurate frequency control by means of a phase-lock loop. With a possible application in view, I experimented with what might be regarded as a Colpitts oscillator, if you draw in the transistor's internal base/emitter capacitance to go with the 3.3pF external collector/emitter capacitance as Z_2 and Z_3 , Fig. 3(a).

In a wide-range oscillator, one needs to be able to vary its frequency over a wide range at will, but then instantly have its frequency as stable as a rock once one has set it to a particular desired frequency. To start with, it pays at the outset to design the oscillator circuit to have very stable dc conditions, ensured in Fig. 3(a) by the supply regulator, and by the base bias chain with its low source resistance at dc, which is moreover well decoupled at rf. As first constructed, the oscillator covered from under 400MHz to over 600MHz, but was modified as shown for the intended purpose to cover well over 200MHz centred on 400MHz.

This is shown in Fig. 3(b). The oscillator was tuned back and forth across its range during the six-second exposure required by the

home-made oscilloscope camera, which does duty also for my spectrum analyser. There is a general slope in level of several decibels across the tuning range. But the superimposed ripples are due to the connection to the spectrum analyser. This effect was demonstrated by doubling the length of coaxial cable used for the connection, which gave twice as many ripples. Clearly, the analyser's input impedance isn't exactly 50Ω on the most sensitive range used; switching in 10dB at the input attenuator largely removed the ripples.

Base-current phase shift

It is a convenient fiction that, in commoncathode, emitter or source mode, an active device is an inverting amplifier, i.e. that the voltages at the other two electrodes are in antiphase. This is true in the case of valves up to fairly high frequencies, since the velocity of electrons *in vacuo* is a good deal faster than minority carriers in silicon. But in a transistor, phase shifts start to show up even in high-frequency devices at a much lower frequency, as is illustrated in Fig. 4.

Figure 4(a) shows the relation between the currents in the three electrodes of a transistor at dc, and recaps on the relation between the current gains α and β . The latter is often also called α' or h_{FE} . Figure 4(b) shows how even a small phase shift in the collector current can result in a phase shift in the base current which is much larger, and moreover in the opposite direction.

In the simplified treatment given here, any phase shifts suffered by the base or collector currents after they part company, due to 'transmission line delay' in different regions of the bulk of the semiconductor, are assumed to be negligible.

The higher the dc value of β , i.e. the more nearly the magnitude of the collector current equals that of the emitter, the smaller the phase shift in the collector current needed to give a 45° advance to the base current. For an audio-frequency transistor such as the *BC109* with its typical β of 300 and f_T of 300MHz, this occurs at around 1MHz. At higher frequencies, the base current can lead the emitter current by not far off 90°.

An emitter follower is an extremely useful and widely used circuit, acting as a buffer and permitting a high-impedance source to drive a lower-impedance load. But the circuit has an unfortunate tendency to oscillate, particularly if the load is a bit capacitive. The phase advance suffered by the base current is the culprit.

Fig. 2. A variety of oscillator circuits, some more suited to lower frequencies, reproduced from Newnes Practical RF Handbook published by Butterworth Heinemann.

RF DESIGN

ic ie

(b)

Fig. 4(a). Relationship at dc between current in the electrodes of a transistor, common-base gain, and the common-emitter gain β or α . Even a small phase lag in the collector current (with respect to the emitter current), shown in (b), results in a much larger phase advance in the base current; if the load on an emitter follower is capacitive, so that the emitter current leads the emitter voltage, the base current will lead the base voltage by an angle well in excess of 90°, as in (c), resulting in a negative resistance component at the

(c)

 $\sim V_e = V_b$ approx.

This is illustrated in Fig. 4(c). Here an important assumption is made: the mutual conductance of the device is high (its output impedance low compared to the impedance of the load connected to the emitter) so that, to a first approximation, the voltage at the emitter equals that at the base.

As the emitter current is leading the base voltage by up to 90°, with a purely capacitive load, and the base current substantially leading the emitter current, it follows that the base current leads the base voltage by well over 90°. The input impedance consists of a negative resistive component in parallel with a capacitance

This effect has been used as the basis of a microwave oscillator design producing over 100mW output at 2GHz¹. It can equally well be used at uhf, and Fig. 5 shows just such an application. The reactance of 18pF at 345MHz is 25 Ω , doubtless effectively reduced somewhat by the inductance of the leads even though these were kept as short as possible, so the emitter circuit load is almost purely capacitive. The capacitance tuning the inductor consisted only of the capacitive component of device input impedance, and device and circuit strays.

If the circuit of Fig. 5(a) is compared with that of Fig. 3, it will be seen to be almost identical. In both cases, the collector is connected to the opposite end of the tuned circuit from the base, while a capacitor is connected from the emitter to the collector end of the tuned circuit. Thus in fact most oscillators operating at vhf or above and using a single active device are likely to be found on analysis to be negative resistance oscillators.

Depending on the Q of the tuned circuit (and that in Fig. 5(a) was certainly not very high), the noise performance or short term stability of such an oscillator can be good, though of course the medium and long term stability will be poor unless the oscillator is used as a voltage-controlled oscillator in a phase-lock loop.

Figure 5(b) shows the output of the Fig. 5(a) circuit, the centre frequency being 345MHz and the horizontal scale 5kHz/division. Analyser bandwidth was set to 1kHz and a great many sweeps occurred during the six second exposure needed to record the background and graticule.

Some noise modulation is evident but the overall shape is not so very different from that of the analyser's 1kHz filter. However, towards the end of the exposure the oscillator

Fig. 5. Uhf oscillator at (a) uses the negative input resistance effect, tuning capacitance consisting of the capacitive component of base circuit input impedance plus device and circuit strays. Inductor L is three turns (spaced one wire width) of 16swg tinned-copper wire, on 5mm internal diameter with a 3.75mm ferrite slug. At (b) is the output from the loosely coupled, single-turn winding, centre frequency 345MHz, 5kHz/div. horizontal, 10dB/div. vertical, ref. level –10dBm, IF bandwidth 1kHz, video filter off.

took it into its head to start wandering up in frequency; a stability of 1kHz in an open-loop uhf oscillator could be achieved, but only with a more sophisticated circuit, using a high-Qcavity resonator for example.

Line stabilisation

Another arrangement providing improved frequency stability without resorting to a phaselocked loop is the line-stabilised oscillator. Using a line consisting of 150cm of 50Ω miniature coaxial cable, believed to have a velocity ratio of around 0.66, with its far end shorted, the Fig. 5(a) was modified to work in this mode. A tuning capacitor was added to enable the tank circuit to be tuned to a frequency at which the emitter load looked capacitive. It oscillated at 235MHz, at which frequency the length of the line would be just over one and three quarter wavelengths, i.e. capacitive.

Clearly there are other frequencies, both higher and lower, at which the line looked capacitive, for example where the line length is $5/4\lambda$, $9/4\lambda$, $11/4\lambda$ etc, and the tuned circuit is used to pick out one of these as the operating frequency. If the tank circuit Q is high and the regeneration only just sufficient to ensure oscillation, then only one of these modes can be sustained. If the tank Q is lower and the negative resistance much lower than necessary to sustain oscillation, the circuit can oscillate in several modes at once.

This was the case when the collector supply was the same as in Fig. 5(a). Reducing collector voltage until it equalled the base voltage, as shown in Fig. 6(a), prevented oscillation in several modes simultaneously. With a constant tail current generator or rf choke/resistor combination in place of the $10k\Omega$ resistor to -12V, the oscillator circuit would work happily on a supply of a volt or two

Output from the loosely coupled winding was as in Fig. 6(b), where the span is 0-1000MHz and the fundamental at 235MHz is visible, together with the second, third and fourth harmonics. Figure 6(c) zooms in on the fundamental, at 5kHz per division horizontal. At the selected video filter bandwidth, a single sweep took six seconds and at 60dB down, the

RF DESIGN

response is 15kHz wide, which is more or less identical to the analyser's 1kHz filter specification.

Of course, a length of coaxial cable does not make for a very convenient line stabilised oscillator. Even if semi-rigid, solid-outer coaxial were used, the stability of the oscillator with temperature would not be wonderful. But line stabilisaton is now very attractive and competitive, in the form of surface acoustic wave resonators.

Owing to the extremely slow propagation speed of acoustic waves in lithium niobate – slow at least compared with the speed of light – a compact package can contain a line length of many wavelengths. Such devices are used at uhf in lieu of crystals, where tight frequency control is required. An example is the range of 418MHz telemetry modules featured in Ref. 2.

Connecting a negative resistance across a tuned circuit results in an oscillator, and the negative resistance need not imply a three terminal device. Many years ago a two terminal device – the tunnel diode – was a popular means of making uhf oscillators. This was at a time when transistors with adequate performance were not available, or at best very expensive.

Now that transistors with more than adequate performance are common and cheap, the tunnel diode uhf oscillator has taken a back seat. But negative resistance two terminal oscillator circuits are still used at microwave frequencies, in the form of the Gunn diode oscillator.

References

1. Partha and Krishnakumar. Oscillator design employs common-collector bipolars. *Microwaves and RF*, October, 1994 pp. 88-92

92. 2. Hickman I. Low power radio links, *EW+WW*, February 1993, pp. 140-144.

8 CAVANS WAY,	TELNET	Lyons PG73N/PG75/PG2B/PG Pulse generator from £225
BINLEY INDUSTRIAL ESTATE.		Marconi 2019 – AM/FM sig. gen. 1040MHz
COVENTRY CV2 2SE	Datalab DL 1080 - Programmable Transient Recorder	Marconi 2337A Automatic dist. meter
COVENTRI CV3 23F	Dynapert TP20 - Intelliplace tape peel tester, Immaculate condition	Marconl 2356 20MHz level oscillator
Tel: 01203 650702	Data I/O MODEL 29B (with 12 firthwas) + look pack \$995	Marconi 2432A 500MHz digital freq, meter
Fax: 01203 650773	E.I.P. 331 18GHz frequency counter	Marconi 2830 Multiplex tester
TE NET Mobile: 0860 400682	Farnell 2081 R/F Power meter	Marconi 893B A/F power meter
MODIE. 0000 400003	Ferrograph RTS2 Audio test set with ATU1	Multicore "Vapourette" bench top vapour phase SMD soldering machine
(Premises situated close to Eastern-by-pass in Coventry with easy	Fluke 5101A - Calibrator AC/DC	(new and unused) (£1100+ new)
access to mit, mo, mao, maz, mas and mos)	Fluke 5101B – Calibrator AC/DC	Philips PM 5190 LF synthesizer w/th GPIB
OSCILLOSCOPES	Fluke 720A - Kelvin - Varley Voltage Divider£450	Philips 5390 1GHz signal gen£1250
Gould OS4000, OS4200, OS4100, OS1000B	Fluke 750A – Reference Divider	Philips PM 5716 Pulse generator high freq. mos
Gould 4035 – 20MHz digital storage	Gould K100D – 100MHz Logic Analyser with PODS	Phoenix 5500A - telecomms analyser with various interface options
Gould 4050 - 35MHz digital storage	Hewlett Packard 436A Power meter + 8481A sensor	Racal 9301A True RMS R/F millivoltmeter
Gould 5110 – 100MHz intelligent oscilloscope	Hewlett Packard 3325A – 21MHz synthesiser/function gen	Racal Dana 1992 - 1300MHz frequency counter opts 4B+55
Hewlett Packard 1740A, 1741A, 1744A, 100MHz dual ch. from £350	Hewlett Packard 3438A Digital multimeter	Racal Dana 3100 40–130MHz synthesiser
Hewlett Packard 54201A - 300MHz digitizing	Hewlett Packard 3490A Digital multimeter	Racal Dana 5002 Wideband level meter
Hewlett Packard 54504 – 400MHz digitizing (As new)	Hewlett Packard 3586A - Selective level meter	Racal Dana 9000 Microprocessing limer/count 52MHz £250
Hitachi V-212 - 20MHz dual trace	£1500	Racal Dana 9081 Synth. sig. gen, 520MHz
Nicolet 3091 - Low freg D.S.O. £1100	Hewlett Packard 3711A/3712A/3791B/3793B Microwave link analyser	Racal Dana 9084 Synth. sig. gen. 104MHz
Philips 3315 - 60MHz D.S.O	Hewlett Packard 3760/3761 Data gen + error detector each \$300	Racal Dana 9242D Programmable PSU 25V-2A
Tektronix 468 – 100MHz D.S.O	Hewlett Packard 3762/3763 Data gen + error detector	Racal Dana 9246 S Programmable PSU 25V-10A
Tektronix 2213 – 60MHz dual ch	Hewlett Packard 3764A Opt.002 - Digital Trans. Analyser	Racal Dana 9303 True RMS/RF level meter
Tektronix 2220 – 60MHz digital storage	Hewlett Packard 3777A Channel selector	Racal Dana 9341 LCR databridge
Tektronix 2225 - 50MHz dual trace	Hewlett Packard 5150A Thermal printer	Racal Dana 9500 Universal timer/counter 100MHz
Tektronix 2235 – 100MHz dual ch. (portable)	Hewiett Packard 5316A - Universal counter HPIB £550	Racal Dana 9921 3GHz frequency counter
Tektronix 2465A – 350MHz 4 ch	Hewlett Packard 5316B – Universal counter HPIB	Ronde & Schwarz EM36/11 Digital Q meter
Tektronix 464/466 - 100MHz, storage	001/003/004/005	Rohde & Schwarz SCUD Radio code test set
Tektronix 465/465B - 100MHz dual ch. from £350	Hewlett Packard 59501 B HP IB isolated O/A power supply programmer	Rotek 3980A - AC/DC Precision Calibrator with Rolek 350A High Current
Tektronix 7313, 7603, 7613, 7623, 7633, 100MHz 4 ch	Hewlett Packard 6181C D.C. current source £150	Adaptor
Tektronix 7834 with 7842, 7880, 7885 - Plug-ins (Storage 400MHz)	newet rackard of the biol carent source	Schlumberger SI 4040 – Stabilock, high accuracy 1 GHz radio test set
Tektronix 7904 - 500MHzfrom £850	Hewlett Packard 6261B Power supply 20V-50A	Schlumberger 4923 – Radio Code Test Set £1750
Teleguipment D68 - 50MHz dual ch	DISCOUNT FOR QUANTITIES	Schlumberger 2720 – 1250MHz Freq. Counter
3244, 3261, 3262 (2ch + 4 ch) from £125 to £350		Systems Video 1258 Waveform analyser + 1255 vector monitor + 1407
Phillps PM3295A - 400MHz dual channel	Hewlett Packard 6453A - Power supply 15V-200A	differential phase & gain module + 1270 remote control panel £2250
Phillps PM3296 - 350MHz dual channel	Hewlett Packard 8005B Pulse generator	Systron Donner 5054B or D - 18GHz or 24GHz Freq. Counter
Uther scopes available too	Hewlett Packard 8011A Pulse gen. 0.1Hz - 20MHz	Tektronix DA59100 Senes Logic Analyser
SPECTRUM ANALYSERS	Hewlett Packard 8152A - optical average power meter	Tektronix 577 Curve Tracer with Fixtures
Hewlett Packard 3580A – 5Hz – 50KHz	Hewlett Packard 8443A Tracking cen/counter with 1EEE \$300/\$400	Tektronix - Plug-ins - Many available such as PG508, FG504, SC504,
Hewiett Packard 182T with 8559A (10MHz – 21GHz) C2250	Hewlett Packard 8620C Sweep oscillator mainframe	SWOUS, SU SUZ BIC.
Marconi 2370 - 110MHz	Hewlett Packard 8750A Storage normaliser	Time 9814 Voltage calibrator. £750
Marconi 2371 - 30Hz-200MHz	Hewlett Packard 86578 - Synthesised Sig. Gen. (2060MHz)	Watanabe WTR211 3 pen plotter
Honde & Schwarz – SWOB 5 Polyskop 0.1 – 1300MHz	Hewlett Packard 3488 - HP-IB switch and control unit	Weller D900 Desoldering station
Alltech 727 – 22 4GHz	Hewlett Packard 8684A - 5.4GHz to 12.5GHz Sig Gen	Wiltron 352 Low freq, differential input phase meter
Alitech 70727 - Tracking Generator for 727 (10KHz- 12.4GHz)	Hewlett Packard 3785A - Itter Generator + Receiver	Willron 560 Scalar Nerwork analyser
Texscan AL51A – 1GHz	Hewlett Packard 6632A - System Power Supply (HPIB)	MANY MORE ITEMS AVAILABLE - SEND
Tektronix /L14 with 7603 – Mainframe (1.8GHz)	Hewlett Packard 5340A – 18GHz Frequency Counter	
Tektronix 7L18 with 7603 mainframe (18GHz) 2950	Hewlett Packard 5356A - 18GHz Frequency Converter Head	LANGE S.A.E. FOR LIST OF EQUIPMENT ALL
Polrad 641-1 10MHz - 18GHz	Hewlett Packard 432A – Power Meter (with 478A Sensor)	EQUIPMENT IS USED - WITH 30 DATS
Hewlett Packard 35601A - Spectrum Analyser Interface	from £750	GUARANTEE, PLEASE CHECK FOR AVAILABILITY
MISCELLANEOUS	International Light - IL 1700 research radiometer with Erythemal sensor	BEFORE ORDERING – CARRIAGE
Anritsu MG642A Pulse pattern generator	head£1250	& VAT TO BE ADDED TO ALL GOODS
Dananune 323 True MMS Voltmeter	Leader LCH745G - LCH Meter	
	CIRCLE NO. 136 ON REPLY CARD	
	Chiefer to the of the effective	
		and the second

BROADCAST MONITOR JPG Electronics

 High quality stepping motor kits (all including stepping motors) Camstep independent control of 2 stepping motors by CV (Va the patillel port) Readmont. Software with the software motor and s **RECEIVER 2** SU952 UHF Limiting amplifier LC 16 surface mounting package with data sheet 19.95 AM27502 £1.25 each 1900 100+3 CD40070B 100 100 (6) 100+3 Sinchai high gun animated with a jack plug and flickering light with output wave form char flickering light with output wave form char BC-DC convertor Reliability model V12P3 120 in 30 200ma out 300V input to output Isolation with data 15.95 Seach or pack of 10 E39.50 Hour counter used 7 digit 210V AC.2011z £1.15 QWERTY ketbaart 38 key gund quality with hes new 82005-C large stepping union 117.75 step Nickel Metal Hydrydd AA cens ngu sapasty 23.50 memory: 1000mA11 25.50 1200mA14 25.75 Special offers, please check for availability. Sick of 4 42x16mm Nicad batteries 171x16mm dia with red & black leads 4.8% 25.95 Computer grade capacitors with screw terminals 57000mG60v 24.22mm shaft 50mm dia x 60 long body (escluding the shaft) in has a repla-ceable thermaf fuse and brusies 2000-05.2000 45.95 (100+) 21.2000 45.95 (100+) 21211951195119500 excluding with a 2000 data 12100 data 121000 data 12100 d 00 long body (excluding the shaft) it has a repla-ceable thermal fuse and brushes E4.95 each (£3.95 100+) 7 segment common anode leid (shaft) (2000) 1.05 for the shaft of the shaft of the shaft (£4.100+) GaAs FET lost leakage current S8873 ... £12.5 (shaft) BS220 P channel mosfer (£9.95 10+.25.95 (shaft)) BS220 P channel mosfer (£9.95 (shaft)) BS220 P cha All products advertised are new and unused unless otherwise stated. Wide range of CMOS TL 74HC 74F Linear Transistors kits. Rechargeable batteries, capacitors, tools ete always in stock. Please add £1,95 towards p&p. VAT included in all prices. JPG Electronics, 276-278 Chatsworth Road, Chesterfield S40 2BH Access/Visa (01246) 211202 Fax: 550959 Callers welcome CIRCLE NO. 138 ON REPLY CARD ELECTRONICS WORLD+WIRELESS WORLD May 1995

150kHz-30MHz 12 150 2. 8 8 8 M

We have taken the synthesised all mode FRG8800 communications receiver and made over 30 modifications to provide a receiver for rebroadcast purposes or checking transmitter performance as well as being suited to communications use and news gathering from international short wave stations.

The modifications include four additional circuit boards providing *Rechargeable memory and clock back-up *Balanced Audio line output *Reduced AM distortion *Buffered IF output for monitoring transmitted modulation envelope on an oscilloscope *Mains safety improvements

The receiver is available in free standing or rack mounting form and all the original microprocessor features are retained. The new AM system achieves exceptionally low distortion: THD, 200Hz-6kHz at 90% modulation -44dB, 0.6% (originally -20dB, 10%).

*Advanced Active Aerial 4kHz-30MHz *PPM10 in-vision PPM and chart recorder *Twin Twin PPM Rack and Box Units *Stabilizers and Fixed Shift Circuit Boards for howl reduction *10 Outlet Distribution Amplifier 4 *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifiers *Peak Deviation Meter *PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/ +6dB drives and movements *Broadcast Stereo Coders.

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh Surrey GU6 7BG

Telephone: 01483 275997 Fax: 276477

422

Reference books to buy

For Audio Engineers

- Comprehensive over 600 pages
- Written by leading authorities from the audio world
- Easy to read, compiled for maximum accessibility
- **Concise and authoritative Covers topics from noise** measurement to studio installation

Subjects include

Recording, microphones and loudspeakers

Digital audio techniques

Basic audio principles

Acoustics and **psychoacoustics**

Audio and television studios and their facilities

Radio and telephony

Invaluable reference work for anyone involved with audio from broadcast consultant to serious enthusiast. Audio **Engineer's Reference Book is** written by an international team of experts and edited by Michael Talbot-Smith previously a trainer of audio engineers at BBC Wood Norton and now a freelance audio consultant and technical writer.

Please supply me _____ copies of the Audio Engineer's Reference Book, (ISBN 0 7506 0386 0)

Fully-inclusive price - UK £62.50, Europe £68, Worldwide £78. Please add vat at local rate where applicable.

Please supply me copies of the TV & Video Engineer's Reference Book, (ISBN 0 7506 1953 8)

Fully-inclusive price - UK £42.50, Europe £48.00, Worldwide £58.00, Please add vat at local rate where applicable.

Remittance enclosed £

Cheques should be made payable to Reed Business Publishing Group Ltd

Please return to: Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please debit my credit card as follows: Access/Master Barclay/Visa Amex Diners

Credit Card No. ____

Exp date

NAME (Please print)

ADDRESS

	ADEO.
WEST	3
	K G HANSEN

- Over sixty chapters on the latest techniques in video and television
- Up to date reference on EMC requirements, DBS and HDTV
- Easy-to-use reference, eminently suitable for students
- Topics range from materials and construction to medical and defence applications of television.

Subjects include Fundamentals of colour TV

TV studios

For TV & Video Engineers

High definition TV

Satellite broadcasting

Distribution of broadband signals

TV receiver servicing

Video and audio recording and playback

Teletext

The TV & Video Engineer's Reference Book will be of immense value to anyone involved with modern tv & video techniques – in particular broadcast engineers. The new format makes it an excellent reference for students. Edited by KG Jackson and GB **Townsend from contributions** written by acknowledged international experts.

Credit card orders accepted by 'phone. Call 0181 652 3614

POST CODE DATE_____TEL___

SIGNATURE

VAT RATES

6% Belgium, 25% Denmark, 5.5% France, 7% Germany, 4% Greece, 4% Italy, 3% Luxembourg, 6% Netherlands, 5% Portugal, 3% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)

VAT NO.

If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change. Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Business purchase: Please send me the book listed with an invoice. will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below. Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund

423

CIRCUIT IDEAS

SEND YOUR CIRCUIT IDEAS TO THE EDITOR, ELECTRONICS WORLD, QUADRANT HOUSE, THE QUADRANT, SUTTON, SURREY SM2 5AS

Do you have an original circuit idea for publication? We are giving $\pounds 100$ cash for the month's top design. Additional authors will receive $\pounds 25$ cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

All-in-one mains monitor

All the components of this monitor will monitor will a complete indicator of the health of a mains supply, showing the presence of spikes, over/under voltage or voltage fluctuations and containing a mains noise filter.

Filter. Removes the 50Hz waveform to reveal the presence of noise and harmonics, heard on a speaker, and spikes indicated by a bicolour led, which shows by its predominant colur whether the spikes are positive or negative. Adjust the $22k\Omega$ pot. in the filter for least light from the led. Spike detector. Spikes on the rectified filter output trigger the SCR and sound the buzzer for just under 1s, until current is established through the SCR. Triggering occurs when household appliances switch on and off and the $2.2k\Omega$ pot. should be adjusted so that the circuit does not trigger when the monitor is switched on. Do not use a sensitive SCR.

Over/under voltage. Normally, the led flashes at around 6Hz, this frequency doubling for a +10% mains voltage change and stopping for a -10% variation. Choose

the correct zener for the relevant mains voltage.

Mains fluctuations. Significant variations in mains voltage modulate the red led heavily, from full on to off, independently of average mains voltage.

Bear in mind that the circuit is connected to the mains and that the large capacitors will probably stay charged for some time. **D** Di Mario Milan

YOU COULD BE USING A IGHz SPECTRUM ANALYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.

Covering the frequency range 400kHz to over 1GHz with a logarithmic display range of 70dB ± 1.5 dB, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.

Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our £100 monthly star author's fee, together with £25 for all other ideas published.

Our judging criteria are ingenuity and originality in the use of modern components - with simplicity particularly valued.

Thermally stable current source

This thermally stable current source features very high dynamic impedance, high output voltage swing and wide bandwidth.

In the connection shown, the op-amps maintain the same voltage drop across R_{ref} as across the reference diode, so that the output curent is precisely determined. Opamp OP₂ sinks bias current, which has therefore almost no effect on I_{ref} .

Highest instantaneous output voltage is given by the highest value of Rbias consistent with there being enough bias current to operate the diode, while the lowest R_{bias} value is determined by the maximum power from OP₂. Output current and reference voltage determine the value of $R_{\rm ref}$.

 $R_{ref.}$ With values given, a 24V supply and 1mA output, a 2.2k Ω R_{bias} gives 50mW of power in OP₂; R_{ref} gives the 1mA output when used with a Plessey ZN458B reference diode and the minimum diode current gives a 17V output swing.

Since both op-amps act as buffers, it is unnecessary to use high-performance types, although improvements would be seen. As it is, the circuit works well over the audio range with any op-amp and diode. Andrea Scozzari Livorno Italy

Current source provides very high thermal stability. Output current is determined by value of R_{ref} and diode voltage.

Positive start for 555 oscillator

Using a 555 as an astable oscillator in a digital delay circuit entails holding the reset pin low until the oscillator is required to start. Normally, this causes the timing capacitor to discharge completely via the timing resistor, so that the first charge is longer than succeeding ones at $1.1(R_a+R_b)C$ instead of $0.69(R_a+R_b)C$.

To avoid the effect, the capacitor must be held at $V_{cc}/3$ when the oscillator is stopped, by means of the p-n-p transistor controlled by the run/stop signal, R_c being $2R_b$. Mike Aldington Gillingham Kent

Circuit prevents total discharge of timing capacitor in 555 astable oscillator when oscillator stops, ensuring time of first mark period same as subsequent cycles.

Prescaler functions to 1.3GHz

Using two ICs, a 74LS90 and a TFK U665B two-modulus (960/1024) divider, the circuit divides frequencies up to 1.3GHz by 1000.

A logic level on the 665B's mod input, pin 6, determines which modulus is used – logic zero gives 1024 and one, 960. Pulses from the QA output of the 74LS90 decade divider form the sequence 00000111 to give 5 at 1024 and 3 at 960 (5×1024+3×960=8000 input pulses for eight output pulses, or 8000/8=1000).

Biquinary connection of the 74LS90 allows forced resetting to 9, when its natural output is 7, by the connection of its reset-9 inputs to QA and QB. One's first thought, that a shift register might perform the function, is not valid, since glitches and noise have a tendency to cause errors.

For connection to a long output lead, use the prescaled output on pin 7. Stefano Pigozzo Belluno Italy

20Hz-20MHz function generator with duty-cycle adjust

Giving a 2V pk-pk output, the Maxim MAX038 is a 20Hz-20MHz function generator providing sine, square and triangle waveforms with an adjustable duty cycle on squares and triangles of 15%-85%.

Logic levels on A_0 and A_1 pins select the output waveform; position 1 of Sw1 gives sine, 2 square and 3 triangle. Output frequency depends on current into I_{in} , set by $R_{4,6}$ and the 2.5V reference voltage output, and the values of C_{1-6} on the C_{osc} pin, selected by Sw_2 to give six 10:1 ranges.

Varying the voltage on the DADJ pin between -2.3V and +2.3V by R₂ varies duty cycle from 15% to 85% when square and triangle waves are in operation. **Yongping Xia** Torrance California USA

Flexible function generator uses MAX038 to provide sine, square or triangle waveforms over a very wide frequency range and with adjustable duty cycle.

SMART CARD READER/PROGRAMMER THE clock for your computer On board ISO 7816 Card Reader Socket (Videocrypt etc). Software runs on IBM/PC enabling the user to read & write to card. Board also contains a PIC16C84 programme £59.95 Ideal smart card development tool Requiries external power 15-20v AC or CD @250 ma. (optional extra £6.50) MICRO-ENGINE MCS80C31/51 Development board Tiny 72mm x 42mm PCB contains socketed 44 pin CPU, turned pin rom socket, 12 MHz xtal and ports 1, 3 output on IDC connector. Ideal for stand alone projects or development work. Supplied with CIRCUIT & MCS8051/52 development software £49.95 AMDAT PIC ICE II⁹ In Circuit Emulator for PICI6C54-55-56-57-71-84. Replaces all 18 or 28 pin PICs. All ports Bi-directional, OSC2 output. RTCC input. On board A/D converter for PICI67C1. Supplied with PICDEV54 and PICDEV71 software. manual, connecting leads & headers, ASM examples, and hardware circuit projects. 1.44- O UNTA LOCA . ADC 60 MSE DCF £159.95 PIC ICE STD In-Circuit Emulator for 18 pin PICs only no A/D. Plugs into the printer port, appears to the target system as a normal Pic device including OSC2 and RTCC in/out. Runs in real time from the IBM PC changes made to File registers reflected on target. Supplied with Development software PicDev 54-57 and PicDev 71/84 The ADC-60 brings the accuracy of a time standard to your computer. It provides a data source which can be used by £69.95 any system which has a serial port such as a PC, MAC or PIC PROGRAMMER* Programs Pic16C54-55-56-56-71-84. Centronics port interface. Powerful editing software to read, write & copy Pic devices including data memory in Pic16C84. Top quality components used throughout including production ZIF socket. Now includes a Text Editor/Assembler for all above PICs. Requires external power 15-20v AC or DC @250ma. (optional extra £6.50). mainframe. The ADC-60 offers improved reliability by using \$79.95 both the British MSF and German DCF time standards. If one of the signals cannot be received the other source will MEGAPROM programmer. EPROMS, E2PROMS, and FLASH memories from 2k (2716) to 8 Meg (27C080). Runs on IBM/PC via the centronics port using standard printer cable. Works on all PC compatibles. Iaptops, and notebooks. No special port requirements. Top quality components used throughout including production 2LF socket **299.9** Requires external power supply 18-25v AC or DC @250ma. (optional extra £6.50). automatically be used. £99.95 Other ADC-60 Features include: LCD display showing current time and date together EPROM EMULATOR Works on ANY computer with centronics printer port. Data sent to the printer appears in the target board Eprom socket. Emulates from 1k to 23k Byte (27C256) roms, board switchable. Very fast download. Works with or without our with the lock status of the unit. Development software. £59.95 Provides GMT or Local time outputs together with the DEVELOPMENT SOFTWARE. Develop software on your IBM/PC for other Microprocessors. Controllers, Pic's etc. Software has fully integrated Text Editor, Assembler, Disassembler, and Simulator. Code can be downloaded directly to our EPROM Emulator. All software supplied with sample ASM files, and user documentation manual. date Serial output in ASCII or BCD format Includes 2 software packages, the first is a TSR which Available for the following: £19.95 each runs under DOS, the second runs as a minimised MCS8051/52/552 MCS8048/49 PIC16C71/84 R6502 HD63/6809 PIC16C54/5/6/7 window in Microsoft Windows All hardware carries a 12 months parts and labour Guarantee. No Vat payable. Please add £1.50 for Carriage Contact us today for further information on this superb Starred items also available from FARNELL (Leeds). product CREDIT CARD ORDERS SAME DAY DESPATCH **JOHN MORRISON DEPT WW** 4 Northville Road, Northville **4 REIN GARDENS, TINGLEY,** AMDA⁻ **Bristol BS7 0RG WEST YORKSHIRE WF3 1JR** VISA Tel: 01179 699352 Fax: 01179 872228 TEL (or FAX) 01132 537507 CIRCLE NO. 139 ON REPLY CARD CIRCLE NO. 140 ON REPLY CARD

The new schematic capture program Geswin (GESECA for WindowsTM) adds more than a pretty face to SpiceAge. Upgrade for £100+VAT*

- Geswin DDE links with SpiceAge to provide instant circuit editing. Because this link enables SpiceAge to retain all its simulation settings, the schematic (produced by Geswin) is uncluttered so that you can create clean drawings that may be clipboarded into your other Windows applications.
- You can clipboard sections of your netlist from SpiceAge back into Geswin's attribute Inspector if you wish to use patches of existing circuits.
- Geswin has inherited GESECA's speed and ease of use. You will find it's best-loved "bucket of bits" components' store waiting for your instant use from a special self-replenishing window.
- The SpiceAge component library has been expanded and re-drawn into "stubbies". The new symbols allow more components to fit within a given screen area without compromising clarity.
- Multiple windows allow you to scratch pad your designs (simulating as you work) and clipboard them into a fair copy window.
- File compatible with GESECA: schematics and components from GESECA may be read.
- Comprehensive HELP provides reference material; tutorial style manual reassures you of your own intuition.
- Geswin automatically invokes (or switches to) SpiceAge; you can also invoke Geswin from SpiceAge.

Please contact Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP.

Tel 0181-906 0155, FAX 0181-906 0969. *upgrade price from *GESECA*; £295 + VAT new

Elle Edit View Draw Iools Window Deip

CIRCLE NO. 141 ON REPLY CARD

*(11)33 *(11)33 • 1 Can-

K-K 4-[

Bistable switch

Providing a bistable output that reverses after a set time in each state, this switch continues in the same state after a loss of power.

Digitally controlled potentiometer $IC_1 - a$ *Xicor X9C103P*, for example – and comparator IC_{2a} are the basic elements, IC_1 wiper moving its complete travel when 100 pulses are applied; the values of the potentiometer and $R_{11,12}$ determine the full-scale output voltage. As the hunredth pulse arrives, the potentiometer output voltage to the comparator exceeds the reference voltage from the zener, the output changes state and the potentiometer changes the direction of travel.

To ensure that the chip-select line of the potentiometer is low after the power supply has settled and high before it falls below the 4.5V lowest working voltage of IC₁, IC_{2b} controls this input to the potentiometer. A **J Stephenson** Seaford East Sussex

Bistable circuit changes output state after a given number of pulses are applied to the input, retaining its setting after power is removed.

Simultaneous sawtooth, square and triangle waves from a vco

Avoltage-controlled oscillator producing square and triangular waves was described by Horowitz and Hill in *The Art of Electronics*, published by Cambridge University Press. *CA3160E* op-amps $IC_{1,2}$ form the oscillator, supplied from a 5-12V rail and generating triangular and square waves at A and B respectively.

A third *CA1360E* operates as either a follower or as an inverter, depending on whether the mosfet conducts or is cut off. If the input to *IC*₃ is taken from the triangle wave and the mosfet drive comes from the square wave output, output C is a replica of the rising ramp of the sawtooth, followed by an inverted version of the falling ramp, the result being a sawtooth. Input voltage $V_{\text{control}} \leq 2(V^+ - 1.5V)$, so that $f=150V_{\text{control}}/V^+$. *I szymanski* Stamford Lincolnshire

MONO VGA MONITORS

Some with slight screen burns but OK at £19.95 Ref EF40 and some without burns at £29.95 Ref EF39.

A4 DTP MONITORS Brand new, 300 DPI. Complete with diagram but no interface details.(so you will have to work it out!) Bargain at Just £12.99 each!!!! OPD MONITORS 9" mono monitor, fully cased complete with raster board, switched mode psu etc. CGA/TTL input (15way D), IEC mains. £15.99 ref DEC23. Price including kit to convert to composite monitor for CCTV use etc is £21.99 ref DEC24

The set of the set of

COMPLETE PC 300 WATT UPS SYSTEM Top of the range UPS system providing protection for your computer system and valuable software againstimainspower fluctuations and cuts. New and boxed, UK made Provides up to 5 mins running time in the event of completepower failure to allow you to run your system down correctly. SALE PRICE just £119.00.

RACAL MODEM BONANZAI 1 Racal MPS1223 1200/75 modem, telephone lead, mains lead, manual and comms software, the cheapest way onto the net! all this for just £13 ref DEC13.

HOW LOW ARE YOUR FLOPPIES? 3.5" (1.44) unbranded. We have sold 100,000+ so okl Pack of 50 £24.99 ref DEC16 BRITISH TELECOMM MULTIMETERS SA9083 These are

returns' so they may have faults but look ok. Complete with new leads and leather case, Price for two meters & 1 case is £10 ref DEC89. **Smw LASER POINTER.** Supplied in kit form, complete with power adjuster, 1-5mw, and beam divergence adjuster. Runs on 2 AAA batteries. Produces thin red beam ideal for levels, gun sights, expedments etc. Cheapest in the UKI just £39.95 ref DEC49

SHOP WOBBLERSISmall assemblies designed to take D size batteries and wobble cardboard model signs about in shop windows! £3.99 Ref SEP4P2.

RADIO PAGERSBrand new, UK made pocket pagers dearance price is just 24.99 each 100x40x 15mm packed with bits IRef SEP5. BULL TENS UNIT Fully built and tested TENS (Transcutaneous Electrical Nerve Stimulation) unit, complete with electrodes and full instructions. TENS is used for the relief of pain etc in up to 70% of sufferers. Drug free pain relief, safe and easy to use, can be used in conjunction with analgesics etc. £49 Ref TEN/1

COMPUTER RS232 TERMINALS. (LIBERTY)Excellent quality modem units,(like wyse 50,s) 2xRS232, 20 function keys, 50 thro to 38,400 baud, menu driven port, screen, cursor, and keyboard setup menus (18 menu's). £29 REF NOV4.

OMRONTEMPERATURE CONTROLLERS (E5C2).Brand new controllers, adjustable from -50 deg C to +1,200 deg C using graduated dial, 2% accuracy, thermocouple input, longlife relay output 3A 240v o/p contacts. Perfect for exactly controlling a temperature, Normal trade £50+, ours £15. Ref E5C2.

ELECTRIC MOTOR BONANZA! 110x60mm.Brand new predsion, cap start (or spin to start), virtually silent and features a moving outer case that acts as a fly wheel. Because of their unusual design we think that 2 of these in a tube with some homemade fan blades could form the basis for a wind tunnel etc. Clearance price Is just £4,99 FOR A PAIR! (note-these will have to be wired in series for 240v operation Ref NOV1.

MOTOR NO 2 BARGAIN 110x90mm. Similar to the above motorbut more suitable for mounting vertically (ie turntable etc). Again you will have to wire 2 in series for 240v use. Bargain price is just £4.99 FOR A PARRI Ref NOV3.

OMRON ELECTRONIC INTERVAL TIMERS.

Minature adjustable timers, 4 pole c/o output 3A 240v, HY1230S, 12vDC adjustable from 0-30 secs. £9.99 HY1210M, 12vDC adjustable from 0-10 mins. £9.99 HY2460M, 12vDC adjustable from 0-60 mins. £9.99 HY2460M, 24vAC adjustable from 0-60 mins. £9.99 HY2460S, 24vAC adjustable from 0-1 secs. £9.99 HY2460S, 24vAC adjustable from 0-3 hours. £8.99 HY2405S, 240vAC adjustable from 0-3 hours. £8.99 HY2405S, 240v adjustable from 0-1 secs. £9.99 HY2405S, 240v adjustable from 0-5 secs. £9.99 HY2405C, 240v adjustable from 0-60 mins. £12.99 PC PAL VGA TO TV CONVERTER converts a colour TV into a basic VGA screen. Complete with built in psu, lead and sware. £49.95. Ideal forlaptops or a cheap upgrade. We also can supply this in kit tom frome assembly at £34.95 ref EF54.

DRINKING BIRD Remember these? hook onto wine glass (supplied) and they drink, standup,drink, standup ETCIE4 each Ref EF1 EM ERGENCY LIGHTING UNIT Complete unit with 2 double buib floodlights, built in charger and auto switch. Fully cased. 6v 8AH lead acid reqid. (secondhand) £4 ref MAGAP11.

GUIDED MISSILE WIRE. 4,200 metre reel of ultra thin 4 core Insulated cable, 28lbs breaking strain, less than 1mm thick! Ideal alarms, intercoms, fishing, dolls house's etc. £14.99 ref MAG15P5 300v PANELM ETER 70X60X50MM, AC, 90 degree scale. Good quality meter. £5.99 ref MAG 6P14. Ideal for monitoring mains etc.

ASTEC SWITCHED MODE PSU BM41012 Gives +5 @ 3.75A, +12@1.5A,-12@.4A.230/110, cased, BM41012 £5.99 ref AUG6P3. TORRODIAL TX 30-0:30 480VA, Perfect for Mosfet amplifiers etc. 120mm dia 55mm thick £18.99 ref APR19.

AUTO SUNCHARGER 155x300mm solar panel with diode and 3metrelead fitted with a dgar plug. 12v 2watt. £9.99ea ref AUG10P3. FLOPPY DISCS DSDD Top quality 5.25° discs, these have been written to once and are unused. Pack of 20 is £4 ref AUG4P1.

ECLATRON FLASH TUBE As used in police car flashing lights etc, full spec supplied, 60-100 flashes a min. £9.99 ref APR10P5. 24v AC 96WATT Cased power supply. New. £13.99 ref APR14.

MILITARY SPEC GEIGER COUNTERS Unused anstraightfrom Her majesty's forces. £50 ref MAG 50P3. STETHOSCOPE Fully functioning stethoscope, ideal for listering

to hearts, pipes, motors etc. £6 ref MAR6P6.

OUTDOOR SOLAR PATH LIGHT Captures sunlight during

the day and automatically switches on a built in lamp at dusk. Complete with sealed lead acid battery etc £19.99 ref MAR20P1.

ALARM VERSION Of above unit comes with built in alarm and pir to deter intruders. Good value at just £24.99 ref MAR25P4.

CARETAKER VOLUMETRIC Alarm, will cover the whole of the ground floor against forcred entry. Includes mains power supply and integral battery backup. Powerful internal sounder, will take external bell if regd. Retail £150+, ours? £49.99 ref MAR50P1.

TELEPHONE CABLE White 6 core 100m reel complete with a pack of 100 dips. Ideal 'phone extns etc. £7.99 ref MAR8P3. MICRODRIVE STRIPPER Small cased tape drives ideal for

stripping, lots of useful goodies including a smart case, and lots of components. £2 each ref JUN2P3. SOLAR POWER LAB SPECIAL You get TWO 6*x6* 6v 130mA

solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Superb value kit just £5.99 REF: MAG6P8

SOLID STATE RELAYS Will switch 25A mains. Input 3.5-26v DC 57x43x21mm with terminal screws £3.99 REF MAG4P 10

BUGGING TAPE RECORDER Small voice activated recorder, uses microcassette complete with headphones. £28.99 ref MAR29P1. ULTRAMINI BUG MIC 6mmX3.5mm made by AKG,5-12velectret condenser. Cost £12 ea, Ours? just four for £9.99 REF MAG10P2. RGB/CGA/EGA/TL COLOUR MONITORS 12* In good condition. Back anodised metal case. £79 each REF JUN79

ANSWER PHONES Returns with 2 faults, we give you the bits for 1 fault, you have to find the other yourself. BT Response 200's£18 ea REF MAG18P1. PSU £5 ref MAG5P12.

SWITCHED MODE PSU ex equip, 60w +5v @5A, -5v@.5A, +12v@2A,-12v@.5A 120/220v cased 245x88x55mm IECinput socket £6.99 REF MAG7P1

PLUG IN PSU 9V 200mA DC £2.99 each REF MAG3P9

PLUG IN ACORN PSU 19v AC 14w , £2.99 REF MAG3P 10 POWER SUPPLY fully cased with mains and o/p leads 17v DC Griffma output. Bargain price £5.99 ref MAG6P9

ACORN ARCHIMEDES PSU +5v @ 4.4A. on/off sw uncased, selectable mains input, 145x100x45mm £7 REF MAG7P2 GEIGER COUNTER KIT Low cost professional twin tube, com-

plete with PCB and components. Now only £19 REF AUG 19. 9v DC POWER SUPPLY Standard plug in type 150m a 9v DC with

lead and DC power plug, price for two is £2,99 ref AUG3P4. AA NICAD PACK encapsulated pack of 8 AA nicad batteries (tagged) ex equip, 55x32x32mm, £3 a pack. REF MAG3P11

13.8V 1.9A psu cased with leads. Just £9.99 REF MAG10P3 PPCMODEM CARDS. These are high spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Caerance price is £5 REF: MAG5P1

INFRA RED REMOTE CONTROLLERS Originally made for hi spec satellite equipment but perfect for all sorts of remote control projects. Our clearance price is just £2 REF: MAG2

200 WATT INVERTER Converts 10-15v DC into either 110v or 240v AC, Fully cased 115x36x156mm, complete with heavy duty power lead, cigar plug, AC outlet socket Auto overload shutdown, auto input overvoltage shutdown. Auto input overvoltage shutdown, auto input overvoltage shutdown, auto input overvoltage within 10%. A extremely well built unit at an excellent price. Just £64.99 ref AUG65.

UNIVERSAL SPEED CONTROLLER KIT Designed by us for the C5 motor but ok for any 12v motor up to 30A Complete with PCB etc. A heat sink may be required. £17.00 REF: MAG17

MAINSCABLEP recut black 2 core 2 metre lengths ideal for repairs, projects etc. 50 metres for £1.99 ref AUG2P7.

COMPUTER COMMUNICATIONS PACK Kit contains 100m of 6 core cable, 100 cable clips, 2 line drivers with RS232 Interfaces and all connectors etc. Ideal low cost method of communicating between PC's over a long distance. Complete kit £8.99.

MINICYCLOPS PIR 52x62x40mm runs on PP3 battery complete with shrill sounder. Cheap protection at only £5.99 ref MAR6P4. ELECTRIC MOTOR KIT Comprehensive educational kit Includes

all you need to build an electric motor. £9.99 ref MAR10P4. VIEW DATA SYSTEMS made by Phillips, complete with Internal

1200/75 modem, keyboard, psu etc RGB and composite outputs, menu driven, autodialler etc. £18 each Ref EF88.

BOOMERANG High tech, patented poly propylene, 34cm wing span. Get out and get some exercise for £4.99 ref EF83 AIR RIFLES.22As used by the Chinese army for training puposes,

So there is a lot about £39.95 Ref EF78. 500 pellets £4.50 ref EF80. **PEANUT TREE** Complete kit to grow your own peanutsi full Instructions supplied.£3 Ref EF45.

PLUG IN POWER SUPPLYS Plugs in to 13A socket with output lead, three types available, 9vdc 150mA £2 ref EF58, 9vdc 200mA £2.50 ref EF59, 6.5vdc 500mA £3 ref EF61.

VIDEO SENDER UNIT. Transmits both audio and video signals from either a video camera, video recorder, TV or Computer etc to any standard TV set in a 100' rangel (tune TV to a spare channe) 12v DC op. Price Is £15 REF: MAG15 12v psu is £5 extra REF: MAG5P2 "FM CORDLESS MICROPHONE Small hand held unit with a

*FM CORDLESS MICROPHONE Small hand held unit with a 500'rangel 2 transmit power levels. Reqs PP39v battery. Tuneable to any FM receiver. Price is £15 REF. MAG15P1 LOW COST WALKIE TALKIES Pair of battery operated units

with a range of about 200°. Ideal for garden use or as an educational toy. Price is £8 a pair REF: MAG 8P1 2 x PP3 reg'd. *MINATURE RADIO TRANSCEIVERS A pair of walkie talkies

EASE ALLOW 7 - 10 DAYS FOR DELIVERY TELEPHONE ORDERS WELCOME TEL: 01273 203500

FAX: 01273 323077

with a range of up to 2 km in open country. Units measure 22:52x155mm. Including cases and earpices. 2xPP3 red (LS0.00 pr. REF: MAG30 COMPOSITE VIDEO KIT. Converts composite video into separate H sync, V sync, and video. 12v DC. £8.00 REF: MAG8P2.

LQ3500 PRINTER ASSEMBLIES Made by Amstrad they are entire mechanical printer assemblies including printhead, stepper motors etc etc in fact everything bar the case and electronics, a good stippert £5 REF: MAG5P3 or 2 for £8 REF: MAG8P3

LED PACK of 100 standard red 5m leds £5 REF MAG5P4

UNIVERSAL PC POWER SUPPLY complete with flyleads, switch, fan etc. Two types available 150w at £15 REF:MAG15P2 (23x23x/23mm) and 200w at £20 REF: MAG20P3 (23x23x23mm) GYROSCOPE About 3* high and an excellent educational toy for all ages! Price with Instruction booklet £6 Ref EF15.

FUTURE PC POWER SUPPLIES These are 295x135x60mm, 4 drive connectors 1 mother board connector. 150watt, 12v fan, iec

Inlet and on/off switch. £12 Ref EF6. VENUS FLY TRAP KIT Grow your own carn/vorous plant with this simple kit £3 ref EF34.

PC POWER SUPPLIES (returns) These are 140x150x90mm, o/ ps are +12,-12,+5 and -5v. Built In 12v fan. These are returns so they may well need repaining! £3.50 each ref EF42.

•FM TRANSMITTER KIT housed in a standard working 13A adapteril the bug runs directly off the mains so lasts foreverl why pay £700? or price is £15 REF: EF62 Transmits to any FM radio. (this Is in kitform with full instructions.)

*FM BUG KIT New design with PCB embedded coil for extra stability. Works to any FM radio. 9v battery req'd. £5 REF: MAG5P5

*FM BUG BUILT AND TESTED superior design to kit. Supplied to detective agencies. 9v battery reg/d. £14 REF: MAG14

TALKING COINBOX STRIPPER originally made to retail at £79 each, these units are designed to convert an ordinary phone Into a payphone. The units have the locks missing and sometimes broken hinges. However they can be adapted for their ordiginal use or used for something else?? Price is just £3 REF: MAG3P1

TOP QUALITY SPEAKERS Made for HI FI televisions these are 10 watt 4R Jap made 4* round with large shielded magnets. Good quality. £2 each REF: MAG2P4 or 4 for £6 REF: MAG6P2

TWEETERS 2° diameter good quality tweeter 140R (ok with the above speaker) 2 for £2 REF: MAG2P5 or 4 for £3 REF: MAG3P4 AT KEY BOARDS Made by Apricot these quality keyboards need just a small mod for uno nan AT, they work perfectly but you will have to put up with 1 or 2 foreign keycaps! Price £6 REF: MAG6P3

HEADPHONES Ex Virgin Attantic. 8 pairs for £2 REF: MAG2P8 DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price just £5 REF: MAG5P8 Worth it just for the very comprehensive manual 5.25° only.

GAS HOBS Brand new made by Optimus, basic three burner suitable for small flat etc bargain price just £29.95 ref EF73. GAT AIR PISTOL PACK Complete with pistol, darts and pellets

GAT AIR PISTOL PACK Complete with pistol, darts and pellet £12.95 Ref EF82 extra pellets (500) £4.50 ref EF80. CHRISTMAS TREE KIT Start growing it now! £3 ref EF53.

DOS PACK Microsoft version 5 Original software but no manuals hence only £5.99. 3.5" only.

PIR DETECTOR Made by famous UK alarm manufacturer these are hi spec, long range internal units. 12v operation, Slight marks on case and unboxed (although brand new) £8 REF: MAG8P5

MOBILE CARPHONE £6.99 Well almost complete in carphone excluding the box of electronics normally hidden under seat. Can be made to illuminate with 12 v also has built in light sensors o display only illuminates when dark. Totally convincing! REF: MAG6P6

ALARM BEACONS Zenon strobe made to mount on an external bell box but could be used for caravans etc. 12v operation. Just connect up and it flashes regularly) £5 REF: MAG5P11

6"X12" AMORPHOUS SOLAR PANEL 12v 155x310mm 130mA. Bargain price just £5.99 ea REF MAG6P12.

FIBRE OPTIC CABLE BUMPER PACK 10 metres for £4.99 ref MAG5P 13 ideal for experimentersi 30 m for £12.99 ref MAG13P 1 HEATSINKS (finned) TO220, designed tomount vertically on a pcb 50x40x25mm you can have a pack of 4 for £1 ref JUN1P11.

STROBE LIGHT KIT Adjustable from 1 hz right up to 60hzl (electronic asssembly kit with full instructions) £16 ref EF28.

ROCK LIGHTS Unusual things these, two pieces of rock that glow when rubbed together! belived to cause rain!£3 a pair Ref EF29.

NEW HIGH POWER LASERS

15mW, Heilum neon, 3 switchable wavelengths.63um, 1.15um, 3.39um (2ofthem areInfrared) 500'1 polarizer built in so good for holography. Supplied complete with mains power supply.790x65mm. Use with EXTREME CAUTION AND QUALIFIED GUIDANCE: £349+Vat.

WE BUY SURPLUS STOCK FOR CASH

FREE CATALOGUE

1995 100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE WITH ORDER.

PORTABLE RADIATION DETECTOR

WITH NEW COMPUTER INTERFACE.

£59.00

A Hand held personal Gamma and X Ray detector. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30K eV to over 1.2M eV and a measuring range of 5-9999 UR/h or 10-99990 Nr/h. Supplied complete with handbook.Ref. NOV 18.

CIRCLE NO. 142 ON REPLY CARD

Circuit round-up Contributed by designer John Burnill, this

Contributed by designer John Burnill, this collection of circuit ideas covers a variety of applications.

Meter response equaliser

Pointer movement of dc milliammeters exhibits a second order response to changing current. This can be equalised by the circuit shown, speeding up the response typically by a factor of ten. Response time is limited by the low-pass filter on the input, which is there to prevent the subsequent circuitry clipping on full scale steps in amplitude.

Values shown are for a typical $200\mu A/1k\Omega$ 'VU' meter. Resistor R_3 adjusts the Q. This is independent of R_1 which adjusts the corner frequency.

These equations give the corner frequency and the Q. Resistor R_4 is assumed equal to R_5 .

$$f = \frac{1}{2\pi C \sqrt{R_1 R_2}}$$
$$O = \frac{R_3}{R_3}$$

$$Q = \frac{1}{2\pi f R_1 R_2}$$

Fast full-wave peak rectifier

This full wave peak rectifier is fast due to the fact that none of the op-amps saturate. The circuit is accurate to 1dB to 300kHz using *TL081s*. Attack time is limited by the limited output current of the op-amps. Decay time is set by the 4.7M Ω resistor. Taking this resistor to the negative supply rail gives approximately linear decay against time.

Video-signal processing

Two ideas related to each other in that they concern the processing of video signals. First is a precision dc restorer. Basic circuits using a diode can mangle the sync enough to cause loss of frame sync on some receivers. The circuit shown here solves the

problem. Resistor R_1 controls the 'attack' time and R_2 the tilt.

The second circuit is a very simple clamp with more than adequate performance. Clamping time is determined by the time constant R_2/C_1 . Resistor R_1 is to offset the input current of the output op-amp to minimise drift on the clamped wave form. The input amplifier is a *EL2020* because when the clamp is switched on it must drive a 100Ω load.

CIRCUIT IDEAS

Oven for crystal stabilisation

A circuit to use as a heater for temperature stabilisation of a Crystal. Base emitter junction voltage of the heater transistor is sampled as a measure of device temperature while collector current is held constant. Resistor R_1 provides reference current. The opamp is the sample-and-hold and loop error amplifier. A reference voltage is applied to the non-inverting input to set the temperature.

The heater transistor used is a LM395. This device is overload and overtemperature protected, making temperature adjustment idiot proof. For best performance the crystal to transistor thermal resistance should be minimised and the thermal resistances from the two to ambient maximised. Power supplies are $\pm 8V$. Sample timing is not critical. A 1ms period and 0.2ms sample width are fine.

Narrow and wide-range voltagecontrolled oscillators

Two more related ideas. A voltage controlled crystal oscillator designed to maximise the pulling range of a parallel crystal. The two diodes decrease the rf voltage across the varicap.

Capacitor C_1 sets the centre frequency. This is done using the final layout to compensate for circuit strays. There is no need for a trimmer if all the crystals are cut to the same load capacitance. Pulling range is about ± 50 Hz for a typical 2MHz crystal.

A simple wide-range vco is shown in the second diagram. The diodes decrease the rf voltage across the varicap and have the added benefit of making the output waveform symmetrical.

Output is low impedance. Range for this circuit is 1MHz-3.5MHz for a voltage swing of 1-29V on the varicap. The arrangement is easily scalable.

Simple I²C interface for pcs

This is a way of interfacing an IBM pc compatible to the I^2C bus. The software is too lengthy to be given here. Port 379_{16} is used to read data in. The relevant output must be off (port $37A_{16}$ set low). Port $37A_{16}$ is for outputting data. Note there is polarity inversion.

Both SDA and SCL lines need $1k\Omega$ pull up resistors at the receive end if the bus is to be used at full speed over reasonable length connections.

Integrator with no signal inversion

Radio Engineer's Pocket Book

by John Davies, 240pp, hardback Order – ISBN 0 7506 1738 1 Price £12.99

Contains: Propagation; decibel scale; transmission lines; antennas; resonant circuits; oscillators; piezo-electric devices; bandwidth requirements and modulation; frequency planning; radio equipment; Microwave comms; information privacy and encryption; multiplexing; speech digitisation and synthesls; vhf and uhf mobile communication; signalling; channel occupancy, trunking; mobile systems; base station management; instruments; batteries; satellite comms; connectors and interfaces; broadcasting; abbreviations and symbols; tables and data; glossary.

Covers all aspects of radio and communications engineering from very low frequencles to microwaves, with particular emphasis on mobile communications. Wave principles and the decibel scale, instrumentation and power supplies, equipment types and encryption methods, connectors and interfaces, are all included in this book.

Audio Recording and Reproduction

Michael Talbot-Smith, 204pp, paperback Order – 0 7506 1917 1 Price £12.99

Contains: Physics of sound waves; hearing; basic acoustics; microphones; loudspeakers; public address; stereo; simple mixing equipment; recorders; introduction to digital audio; music and sound effects; miscellaneous data.

This book gives a simple and straightforward approach to audio techniques, detalling technical and practical Information for those with no specific training in the subject.

Circuit Designer's Companion

BOOKS TO BUY BOOKS TO BUY BOOKS

by T Williams, 320pp, paperback Order – 0 7506 1756 X Price £15.99

Contains: grounding and wiring; printed circuits; passive components; active components; linear integrated circuits; digital circuits; power supplies; electromagnetic compatibility.

Valued by linear and digital designers alike, this guide explains and outlines solutions that take into account the imperfect behaviour of real components, interconnections and circuits.

Servicing Personal Computers

by Michael Tooley, 304pp, hardback Order – ISBN 0 7506 1757 8 Price £25.00

Contains: Microcomputer systems; test equipment; fault diagnosis; tape and disk drives; printers and monitors; servicing IBM pc compatibles and 68000-based computers.

This completely rewritten fourth edition still covers the whole range of microcomputer equipment but now also **includes a guide to developments and trends** such as the new generation of diagnostic software – code Included – and applications such as serial communication, and memory and hard disk management.

Newnes Audio and Hi-Fi Handbook

by Ian Sinclair, 656pp, hardback Order – ISBN 0 7506 0932 X Price £40.00

Contains: Sound waves and acoustics; studio acoustics; microphones; sound synthesis; introduction to digital principles; compact disc technology; other digital systems – DAT, NICAM, DCC, MD – analogue tape recording; noise reduction systems; LP records; disc reproduction; tuners and radio receivers; preamps and inputs; voltage amplifiers/controls; loudspeakers and enclosures; Headphones; public address; in-car audio; interconnections; the future. Covers a wide perspective of highquality sound reproduction, including reproduction under adverse circumstances, from less conventional sources and with regard to the whole technology from studio to ear.

TV & Video Engineer's Reference Book

by Boris Townsend, 876pp, paperback Order – ISBN 0 7506 1953 8 Price £40.00

Contains: Materials; components and construction; colour tv fundamentals; broadcast transmission; distributing broadband; DBS; tv studios; mobile and portable equipment; tv sound; tv receivers; servicing tvs; video recorders; teletext etc; HDTV; other applications of tv; performance measurements.

Covers information on every aspect of modern broadcast technology. Of value to all practicing engineers and managers involved with broadcast, cable and satellite services.

Masts, Antennas and Service Planning

by Geoff Wiskin, 256pp, hardback Order – ISBN 0 240 51336 3 Price £49.50

Contains: Antennas; antenna support structures; service planning.

Covers all aspects of Information conveyance via radio-wave transmission. Invaluable to anyone planning for broadcast and mobileradio coverage, or designing, installing and maIntaining antenna systems.

Operational Amplifiers

by Jiri Dostal, 400pp, hardback Order – 0 7506 9317 7 Price £40.00

Contents: The operational amplifier; basic concepts; operational amplifier parameters; operational amplifier properties; the operational circuit; the ideal operational circuit; analysis of the real operational circuit; static and dynamic errors in the frequency domain; dynamic errors in the time domain; input and output impedances;

offset; noise; stability; good laboratory practices.

Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits. Provides the reader with practical knowledge necessary to select and use operational amplifier devices.

Servicing Video Cassette Recorders

by Steve Beeching, 250pp, hardback Order – ISBN 0 7506 0935 4 Price £25.00

Contains: Vcr systems; azimuth tilt;,Frequency modulation; servo mechanisms; colour systems; systems control; long play; VHS-C & camcorders; a-v sockets.

Written for students and people involved with vcr servicing, this book Is an invaluable guide and reference covering all aspects of modern vcrs. Contains new material on basic magnetic theory to C&G 224

Principles of Transistor Circuits

by S W Amos, 384pp, paperback Order – 0 7506 1999 6 Price £17.99

Contains: Semiconductors and junction diodes; basic principles of transistors: common-base and common-gate amplifiers; commonemitter and common-source amplifiers; common-collector and common-drain amplifiers; bias and dc stabilisation; small-signal af amplifiers; large-signal af amplifiers; dc and pulse amplifiers; rf and if amplifiers; sinusoidal oscillators; modulators, demodulators, mixers and receivers; pulse generators; sawtooth generators; digital circuits; further applications of transistors and other semiconductor devices.

This seminal work has now been presented in a clear new format and completely updated to include the latest equipment such as laser diodes, Trapatt diodes, optocouplers and GaAs transistors, and the most recent line output stages and switchmode power supplies.

Logic Designer's Handbook

by Andrew Parr, 488pp, paperback Order – 0 7506 0535 9 Price £30.00

Contains: Simplified data on a comparative basis of ttl and cmos ics; storage devices; logic circuits; timers; counters; drivers; interface circuits; logic gates; definitions of ic characteristics; event driven logic; communication and highways; analogue interfacing; practical considerations; summaries by function of all relevant circuits; Individual pin-out diagrams.

Easy-to-read, but nonetheless thorough, this book on digital circuits is for use by students and engineers, and is a readily accessible source of data on devices in the ttl and croos families.

The Art of Digital Audio

John Watkinson, 490pp, hardback Order – 0 240 51320 7 Price £49.50

Contains: Why digital?; conversion; AES/EBU; digital audio coding and processing; digital compact cassette (DCC); advanced digital audio interconnects; digital audio interconnects; digital recording and channel coding; error correction; rotary head recorders; stationary head recorders; NAGRA and data reduction; Digital Audio Broadcasting (DAB); the compact disc/mini disc.

New edition, completely updated to include all the latest developments, including DCC, the mini disc and digital audio broadcasting.

Microphone Engineering Handbook

by Michael Gayford, 384pp, hardback Order – 0 7506 1199 5 Price £65.00

Contains: Microphone techniques; precision microphones; optical microphones; high quality rf microphones and systems; radio microphones and ir systems; microphone testing; ribbon microphones; microphone preamplifiers; stereo microphones; microphone standards.

Comprehensive and authoritative book for engineers, technicians, students and anyone else concerned with the design and use of microphones.

MIDI Systems and Control

by Francis Rumsey, 256pp, paperback Order – 0 240 51370 3 Price 19.95

Contains: Introduction to principles and terminology; synchronisation and external machine control; common implementations; systems control sequences and operating systems; implementation of midi with peripheral devices; practical systems designs. Second edition is updated and enlarged to take MIDI evolution into account. More examples of real implementations, more diagrams and the whole book has been rewritten to include a far greater practical element, to complement its existing technical strengths. Several completely new sections and complete chapters have been added including a new opening chapter as an introduction to principles and terminology; MIDI timecode; librarians and editors.

Loudspeaker and Headphone

Handbook

BOOK

by John Borwick, 224pp, hardback Order – 0 240 51371 1 Price £35.00

Contains: This book brings together in a single volume every aspect of loudspeaker and headphone theory and practice in sufficient depth to equip students and practitioners alike with a solid working knowledge of the subject. A comprehensive technical reference on the theory and practice of loudspeaker and headphone performance, design and operation.

The Art of Linear Electronics

by John L Hood, 400pp, paperback Order – 0 7506 0868 4 Price £16.99

Contains: Electronic component symbols and circuit drawings; passive components; active components based on thermionic emission; active components based on semiconductors; practical semi-conductor components; dc and low frequency amplifiers; feedback negative and positive; frequency response; modifying circuits and filters; audio amplifiers; low frequency oscillators and waveform generators; tuned circuits; high frequency. amplifiers/oscillators; radio receiver circuitry; power supplies; noise and hum; test instruments and measurements.

This practical handbook gives a complete working knowledge of the basics and technology of linear electronics – with application examples in such fields as audio, radio, instrumentation and television.

Servicing Audio and Hi-Fi Equipment

by Nick Beer, 304pp, hardback Order – 0 7506 2117 6 Price £25 .00

Contains: Introduction; tools and test equipment; radio receivers; amplifiers; power supply circuits; portable audio; cassette deck mechanics; cassette electronics; turntables; system control; motors and servo circuits; compact disc; mini disc; digital audio tape; digital compact cassette; speakers, headphones and microphones; repair, addresses.

As a bench-side companion and guide, this work has no equal. Its purpose is to ease and speed up the processes of fault diagnosis, repair and testing of all classes of home audio equipment: receivers, amplifiers, recorders and playback machines.

EMC for Product

Designers

by Tim Williams, 304pp, hardback Order – ISBN 0 7506 1264 9 Price £25.00

Contains: What is EMC? standards; EMC measurements; interference coupling mechanisms; circuits; layout and grounding; interfaces; filtering and shielding.

'This book is likely to become essential reading for those designing electronic products for the European market,' according to *New Electronics*. Widely regarded as the standard text on EMC, providing all the information needed to meet requirements of the EMC Directive.

Build Your Own PC

by lan Sinclair, 256pp, paperback Order – ISBN 0 7506 2006 4 Price 16.95

Contains: Assembly from scratch – mainly for masochists; fundamentals and buying guide; case, motherboard and keyboard; disk-drive details; improvers and modifiers for graphics and i/o; DOS operation and hints; Windows; connecting printers; glossary.

Covers Building your own pc from scratch or from modules. Written at a level suitable for beginners and those with experience of computers or electronics. In addition, this work provides a useful guide for anyone wanting to save money by upgrading their pc themselves.

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following titles:		Name		
Qty Title or ISBN	Price	Address		
		Post code Telephone		
		Method of payment (please circle)		
		Access/Mastercard/Visa/Cheque/PO		
		Cheques should be made payable to Reed Business Publishing		
Please add £2.50 UK Postage, £5.00 Europe £7.50 Rest o	f World	Credit card no		
Total		Card expiry date Signed		

LETTERS

Letters to "Electronics World + Wireless World" Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

UK mains change – any effects?

Kettles, toasters, electric ovens and any piece of domestic electrical equipment with an ac motor – even if it has a power stabiliser for its dc electronics – all have reduced power following the normalisation of Britain with the European Union's electrical standards body Cenelec, based in Brussels.

Electricity boards can take advantage of the new rules to supply more consumers from a single generator. This, rather than any change in hardware, reduces average supply from 240V to 230V.

The 8.2 per cent associated average decrease in power was too subtle to be obvious to everyone, but hundreds of complaints have been reported.

On the individual scale, last minute rushers have found themselves missing buses and trains in the morning after a slightly delayed breakfast.

These complaints may soon be forgotten as people adjust to get up a few minutes earlier, but the attempted cover-up was quite a remarkable piece of work. A Sunday tabloid editor was successfully fobbed off by

IEE 'nonsense'

Many people working in the field of bioelectromagnetics research have been shocked and angered at the review published last year by the UK Institution of Electrical Engineers. The organisation published a similar study in 1991, I believe, which noone took very seriously.

The latest conclusions are that there are no effects, either hazardous or beneficial, from weak elf em fields. This is not only an absolute nonsense but contradicts many thousands of cellular live animals and epidemiological studies. In my view it is simply propogandist material masquerading as science.

The IEE refuses to disclose the references on which it claims to rely. A look at the composition of its working committees shows that they are heavily weighted with power-utility-related personnel. Roger Coghill Gwent

an electricity board public relations spokesperson.

Only when a sackful of irate letters arrived at the tabloid's London office after the paper's editor wrote about his search for 'loose wires' or 'crumbs' in his kettle and toaster, were experts consulted as the media began to wonder whether January's regulations change could really be to blame.

Confusion has arisen over the difference in the changes in volts and power. Power is simply volts squared and divided by resistance. The latter varies with temperature, but this is usually negligible over the 4.2 per cent reduction in volts. Thus, the mains electric power has been reduced by around 8 per cent.

Concerns over hospital life-support systems, word processors and computers, and video recorders slowing down are mainly unfounded. All use regulated dc power from an in-built mains ac converter.

Old fashioned electric clocks are of course unaffected, because the alternating frequency of the generators, still 50 hertz, keeps them on time. Mains electronic clocks using crystal oscillators again have a power regulator which compensates easily for the reduction.

We may also be able to turn the oven up easily, but we can hardly take some windings off the coils of our electric motors, or reduce the electrical resistance of our kettles.

So vacuuming, boiling for tea or coffee, toasting, and lawn mowing will just have to take longer. At least, until manufacturers reduce the resistance of their products by 8.2 per cent, so that they deliver the same average power and speed of work as their specifications state, and until consumers buy the new appliances. *Nigel Cook* Addlestone

Surrey

Learning while earning

Andrew Ainger's leader 'Training Dinosaurs' in EW+WW March '95 expressed an interesting idea, but can he offer any clues as to how the idea of learning on the job might be work in practice? H. Martinson Newcastle

FACTORY PLANNER - Uses Harning Load Towers

ESC: Exit, F1: Help, P: Print, ENTER: Dotails, +++ to Heve Cell-based factory: horizontal axis indicates manufacturing cells while the vertical axis gives overall load on the cells. 'Depth' axis is the time.

Andrew replies:

An example of human-centred technology – technology that enables staff to learn while they earn – is as follows.

Consider a very common industrial problem, that of planning what each machine has to do within a manufacturing organisation. For a manufacturer to remain competitive it has to remain profitable. To remain profitable the business has to maximise use of factory resources.

In the past this Manufacturing Resource Planning (MRP) was achieved by what has been termed MRPII computer systems. These systems attempted to plan out what each machine in the factory does, and when and how it does it. In theory, this approach works. In practice it may work well in companies where the products are relatively simple, but in the vast majority of cases, MRPII schedules are unrealistic, unreliable and – as many a manufacturing manager knows – often a work of fiction.

This is not really surprising as it only takes one small deviation from the plan to upset the rest of the downstream factory. It is rather like planning your car journey from Lands End to John O'Groats and telling your aunt, who lives in Birmingham, when she should put the kettle on for your cup of tea.

In modern manufacturing organisations there is now a move towards Cell-Based manufacture. This is rather like splitting the Lands End to John O'Groats journey into sections. In many ways this can be regarded as a way of remedying the planning problem via an organisational solution. There can be no doubt that cell-based manufacturing, with its added flexibility, has proved to be an extremely effective and profitable way of manufacturing products.

Traditional IT planning systems are trying to catch up and match this flexibility. However it is not only the IT systems that have to be flexible but also – and more importantly – the people.

For people to remain flexible they have to welcome change; in order to welcome change they have to gain new knowledge. Human Centred Systems appear to be the only solution to this problem.

Rather than presenting data to the manufacturing personnel, the human-centred way is to provide them with information.

The diagram depicts a cell-based factory: the horizontal axis indicates manufacturing cells while the vertical axis gives the overall load on the cells. The 'depth' axis gives the time, divided into periods, which may be shifts, days or weeks for example. Using this diagram and the information it embraces, three learning opportunities emerge:

• First and most obviously, this view (map) of the factory enables the state of the factory to be judged at a glance, production hot spots identified and appropriate action initiated.

• Trends can be identified extremely quickly. For example, depending upon the work load and the factory's capacity, 'waves of colour' can be seen to ripple over the surface of the factory. These trends can alert the system operator to situations that have been hitherto undetected in traditional print-outs.

• Output of this particular planning system enables the 'sensitivity' of the factory to certain orders to be 'felt', just as the driver of a car can feel the difference when driving over different road surfaces. Over time the sensitivity to certain orders and the 'feel' of the factory can give advanced warning to the humancentred IT system operators when a particularly awkward product mix is being contemplated.

This type of diagram adds credence to the saying that 'a picture is worth a thousand words'. It is these types of IT systems that enable users to assimilate and build knowledge while they work – a true learning earning environment. It is not easy to design IT systems that can be used in this human-centred way, but it is possible. The mindset of the design engineers concerned has to be woken up to this new design philosophy.

Bear in mind that although you cannot design human-centred technology you can design the opposite. Although the logic of this statement is initially surprising, it becomes quite straightforward when you consider that we cannot design a perfectly safe car but we can certainly design an unsafe one.

It is only by designing technology that can be used in a human-centred way – as will a true Human Centred System – that continued incremental learning can take place. By this I mean that the car may be designed with safety in mind, but it is the way it is driven that is most important.

The challenge is to design IT systems that can be used in a human-centred way, enabling people to learn while they earn. It is only through continued learning that organisations can continue to change, flex and survive. Engineers should take note. A new and powerful design philosophy has emerged, and if we fail to embrace it the 'future' may fail to embrace us. Andrew Ainger Human Centred Systems Windsor

Beyond TV Sat 2

Reg Williamson's complaint (Letters, March '95) of arbitrary cessation of TV Sat and its 16station service might cause a perceptive person to ask what are German listeners doing about it? The answer must be that they, like me, are retuning to the lower powered Kopernicus transmission and receiving the same service – albeit with the odd flip if anything other than a very large dish is used. At my latitude, one metre is recommended, but an 80cm dish combined with an Inb made for the telecom band, is acceptable for my purpose, which is recording the audio on digital tape.

When the Kopernicus service ends, we will have to pay for digital audio satellite transmissions. But it will still be cheaper than buying cds, and preferable to Classic FM and its relentless commercials – not to mention Radio 3 fm, which varies from grand ole opry to children's hour, with cricket in the summer to induce total somnolence. *Hugh Haines Sunderland*

Roadside oxide

In a recent photovoltaics installation used for a display by the environmental group Common Ground, some components such as leds corroded and broke down after being exposed to the elements for a period of five weeks.

Can any of you say whether this is normal, or caused by adverse conditions such as acid rain? The installation was near a busy London road and quite a lot of rain fell during the five weeks.

Since we are planning a similar installation to coincide with the end of 1995, we would like to learn from this, especially if it involves a mistake on our part. Nicolas Holliman London

Cheap talk

I saw an article in Computing and Control Engineering Journal October 1994 about a development that could lead to entirely free electronic mail – once the equipment has been bought.

The problem with Internet is that it requires the use of the telephone system, which can never be free. However most broadcasting is free. Although some countries like the UK charge a licence fee, this is only to pay for the government station, in our case the BBC. The commercial channels are all free, as are foreign stations receivable here.

Although it sounds far-fetched, this freedom of broadcasting can be transferred to two way

communication. The secret is that every node is a transmitter and receiver of very low range, and the system relies on each

node being able to send its message to the next node and so on. In addition, the message contains directional information, so nodes that are in the wrong direction can refuse it.

Unknown rectifier materials

I know of no electrolytic rectifiers using the electrode combinations mentioned by 'unsigned' (*Letters*, February) being used as radio detectors. However, electrolytic rectifiers using similar electrodes were used with accumulator chargers and were described in 1920s radio books. So far, I have been unable to discover whether they evolved before or after Fessenden discovered the barretter, or the evolution of the crystal detector.

In 1935, when a schoolboy experimenter, I employed four electrolytic rectifiers in a bridge circuit to trickle charge 6V accumulators. Unfortunately I have long since lost my records but I seem to remember experimenting with aluminium/lead and aluminium/iron electrodes. Large jam jars served as cells and the electrolyte was ammonium phosphate.

'Unsigned' explains that with iron/zinc alloy electrodes, an insulating film develops on the alloy electrodes but this disappears when current flows from iron to alloy. Presumably the same applies to my electrolytic rectifiers.

On the other hand, rectification with the barretter seems to depend more on the movement of ions.

Nonetheless, I would like to experiment with the electrode combinations mentioned by 'Unsigned' and would be most grateful for any further information.

George Pickworth Kettering

Hisses and glows from the past

George Pickworth's recent articles, *Detection before the diode*, and the unsigned letter from Middlesex in the February 1995 issue brought back memories of some seventy years ago.

In the very early days of domestic radio I had gradually acquired enough 12V lead-acid accumulator blocks to give me 120V ht. We lived out of town and I used to carry these on my bicycle to my grandmother's cellar where 220V dc was available.

Later on, electricity reached our house – ac of course – so I was able to recharge them at home when I'd made a rectifier. This was a chain of ten or twelve tiny sample jan jars with electrodes of aluminium strip and carbon rods from exhausted 4.5V batteries, in a solution of ammonium phosphate.

One could buy ammonium phosphate, sold as fertiliser, from the seed shop. These cells made a peculiar hissing noise and in the dark you could see a pulsating glow on the aluminium strips. I don't know what the reverse current was but it may have been good for the health of the battery. All this information must have come from *Wireless World* – happy days.

I was given a coherer some years ago and it still works. Put in series with a 1V cell and an AVO on the 3V range there was no visible deflection. Flicking 230V ac mains across a 4μ F capacitor at a distance of 15cm gave an immediate deflection of several milliamps. A very light tap to the coherer and it immediately returned to its non-conducting state ready for the next burst of rf energy. *Ralph Wesr*

Villereal, France

The system will not work in areas of low population density, but as humanity is fairly well concentrated in small areas of the planet most people should have access.

The article describes a wireless local area network. That is to say the network is limited to a particular business or other grouping of computers. However there is no reason why such networks shouldn't communicate with each other using a radio version of the Internet. The article also says that wireless lans would meet type approval so as to be licence free, as they are low power transmissions.

Initially the existing telephonebased Internet would be used to connect wireless lans that were out of range of each other, but as more and more are installed they would be able to communicate with each other directly and the use of the telephone Internet would fall. John de Rivaz Truro

What conspiracy?

In a letter to WW, Nov. '81, JL Linsley Hood writes that "censorship has been effective throughout my own professional career...". He lists nine authors who could not have been published anywhere but in Wireless World.

As Pete Davis (EW+WW Dec. '94) asserts, there is usually no conspiracy to suppress heretical

views. There is no need of one. except in some specific instances, because as Charles McCutcheon wrote in the New Scientist (itself a notorious suppressor, but not as bad as Nature) on 29 April 1976, p225, "An evolved conspiracy" suffices. For example, I ran into a discussion in the interval at the Royal Institution seminar to celebrate the centenary of the Michaelson-Morley experiment. An American who was setting up an international conference on relativity discussed with one of the lecturers whether ether buffs should be suppressed at that conference. He

also asked the lecturer how Harold Aspden should be dealt with. They concluded that if Ether believers kept to Establishment mathematics, they should be allowed to put their case.

The American told me he regarded heresy in science much as he regarded heresy in religion. More generally, suppression in science results from fear that a new idea will disrupt the normal, calm progression of academic career progress and research funding.

Suppression is the norm rather than the exception. Even Maddox, editor of *Nature*, now says he is worried¹. With his track record, that is mindblowing. Scientists have successfully resorted to false authorship and false addresses to get into *Nature*.

The most interesting and most destructive aspect is the pandemic suppression of advances relating to the AIDS epidemic. Other experts, whose names I can supply, specialise in the allied subject of fraud in science. Stewart and Feder lead this field.

My first publication on suppression in science was 'The Rise and Fall of Bodies of Knowledge', published in *The Information Scientist* No 12 (4) Dec. 1978, pp. 137-144, where I discuss some of the cases of suppression which litter science. My article was re-published in my book 'Electromagnetic Theory vol 1' 1979, p. 117. All of the content of that book is suppressed, including the point that I raised at the Michaelson-Morley centenary seminar, asking about the apparent paradox in their experiment that although Michaelson-Morley predate wave/particle dualism, both wave and particle have to be assumed at different stages in the experiment to suppress anomalies.

Sine waves - another turn

I see from the March issue of EW+WW, p. 215, that Ian Hickman has kindly accepted my challenge for an explanation of how sinewaves appear across an LC circuit from an applied step function of voltage.

In his case he prefers to use a very short and theoretically extremely high pulse of voltage from a generator with an extremely high internal resistance. He then proceeds with some high powered computer analysis and calculations which I do not understand at all. In fact, Ian admits that he may well be "simply solving the differential equations by stealth".

I agree, of course, that the terminal voltage across an inductor is proportional to the rate of change of magnetic flux linkage, and therefore current, within it. I also agree that the current through a capacitor is proportional to the rate of change of electric flux, ϕ_C , within it. This is in turn proportional to the rate of change, q_C , across it. We may need to know, though, more about the Ether before we can fully explain these fluxes.

In the meantime however we can simply write the following equations. Voltage across inductor L is:

"Apart from the initiation waveform, which is non-linear and has a discontinuity, this waveform is explained by the mathematical analysis shown."

$$V_L = L \frac{d\phi_L}{dt} \equiv L \frac{di_L}{dt}$$

where ϕ_L is flux in the inductor, i_L is inductor current, d/dt is rate of change. Voltage across capacitor *C* is:

$$V_{C} = \frac{q_{C}}{C}$$

so,
$$\frac{dq_{C}}{dt} = C\frac{dV_{C}}{dt} + C\frac{d\phi_{C}}{dt} \equiv i_{C}$$

where ϕ_C is electric flux within the capacitor, and is proportional to the amount of charge, q_C , on it.

From these equations you can produce a second order differential equation whose solution is a sine function. I have discovered though that at the initiation of the oscillation, the rising voltage across the capacitance is nonlinear since a small proportion of the initial voltage step appears across the capacitor before the sine oscillation gets underway. This seems to suggest that the capacitor also must contain some inductance which initiates the sine oscillation, then proceeding by the fall of voltage across the inductor which produces back emf to charge the capacitor.

Textbooks such as 'An Introduction to Electronics' by Dennis F Shaw, p 18, say though that initial voltage across the capacitor is zero, but I have found this not to be the case.

I conclude that simple mathematical analysis as outlined above gives the only explanation we can have at present for the waveforms produced. The exception is the initiation waveform across the capacitor, which is non-linear, containing a discontinuity. **Peter Dawe** Oxford

lan replies:

On Mr Dawe's own analysis, there cannot be an instantaneous voltage step across an ideal capacitor, unless, that is, an infinite current flows – which was precisely the case with the delta function in Ref. 1. If Mr Dawe really seems to see an 'instantaneous' voltage step across the capacitor in his circuit, there is a limited number of possible explanations: i) the capacitor possesses significant series loss (possible, but unlikely, ii) The capacitor possesses significant inductance (as Mr Dawe himself suggests; was it a capacitor rated for pulse operation?), iii) The rise in voltage was not really instantaneous or, iv) There is a measurement error (it was not clear how Mr Dawe was measuring the voltage across the capacitor, which – from the diagrams – had neither end grounded.)

Analysis of the operation of his circuit is complicated by the fact that his 'step function' recurred, with alternating polarity, every 5ms; i.e. it was actually a 100Hz squarewave, while the resonant frequency of the tuned circuit to which it was applied was observed to be only some thirty times higher (approximately), with an unspecified Q. Furthermore, far from being instantaneous, the rise time of the 'step function' from zero to +4V was 50µs – around one sixth of the period of the tuned circuit's natural frequency.

A solution of the circuit's response to the given stimulation is straightforward, but could not be undertaken without exact values for the complex impedances of the components used. For example, the iron cored inductor doubtless had significant iron and copper loss in addition to its self capacitance. (The values of L and C – 0.0016μ F and 5H – which Mr Dawe gives do not tally even approximately with his observed natural frequency of around 3kHz). The observed voltage step across the capacitor is probably due to the division of the applied step between the said 0.0016μ F capacitor and the self capacitance of the inductor.

As the stimulus is a simple recurrent waveform, the circuit could be analysed in either the time or frequency domain though of course both analyses could give the same result. However, one important point is perhaps made clear more easily by consideration in the frequency domain. The squarewave drive signal will have significant harmonics up to the resonant frequency of the tuned circuit. If the tuned circuit has a high Q and resonates exactly at one of these harmonics, there will be no phase changes in the damped oscillatory response, only magnitude changes. However, slight mistuning either side of the harmonic can result in dramatic changes in the response, as was illustrated with actual measurements in Ref. 2. If, on the other hand, the circuit Q is so low that the response to one edge of the squarewave dies away completely before arrival of the next, then analysis of the effect of an isolated quasi-step function with a finite rise-time would give the complete solution. Either way, there is no need to invoke unknown effects of the Ether to explain the observed results.

 Hickman, I, Sinewaves step by step, EW+WW March 1995, p. 215.
 Hickman, I, Integrated creativity, EW+WW Jan. 1992, pp. 40-42. It appears to me that for the experiment to have any value, the light must act as particles during its travel, because parallel waves would interfere with each other and ruin the experiment; but it has to act as waves on arrival in order to determine transit time difference by interference fringes. In the Michaelson-Morley centenary seminar, speaker Professor Kilminster said, "That has never been mentioned before". It has never been mentioned since – being suppressed for good reason.

To raise such questions, and there are many, is cheating, like making your pawn move as a combination of knight and bishop in a chess match. Science today is the manipulation of pre-agreed axioms and old knowledge; nothing more. Further, the request for more detailed statements of the axioms, as in my case with Michaelson-Morley, is resisted to the death. Today's science resembles the religious service, which should not be interrupted by the raising of theological questions.

My work on wafer-scale integration, described in Wireless World July 1981, was always rejected for publication by all learned journals, even though it attracted £16m of funding including government funding - and became a widely praised product in the field. Of course, its suppression reduced the threat that it would upset the research funding being received in their universities by journal referees for their own approaches to WSI. In spite of my track record, my new WSI invention, EW+WW March 1989, for which I have worldwide patents, cannot be published in any learned journal.

In a letter in Wireless World, January 1983, I wrote that during 25 years of work, I have never succeeded in publishing any of my work on e-m theory in any British learned journal. This ban now extends to 35 years. However, Davis should particularly think about the refusal of the Establishment, when approached, to clarify the classical theory they are defending. Professor M Pepper FRS and his boss Professor A Howie FRS, head of Cavendish Laboratories, disagree with each other² as to where the negative charge comes from in the Catt Anomaly, EW+WW Sep '87. They refuse either to discuss it with us or with each other, or to say that the matter is of no importance.

Not only are new theories ignored and suppressed. We also find that the Establishment is nonchalant about its contradictory versions of old theory. See also the co existing, hopelessly contradictory, versions of a TEM wave pointed out in 'The Heaviside Theory', WW July '79, which has been totally ignored. Ivor Catt St Albans 1 Maddox says that suppression is increasing. "The epoch making paper by Francis Crick and James Watson outlining the structure of DNA, which appeared in *Nature* in 1953, would 'probably not be publishable today', Mr Maddox Iaments..." – *Daily Telegraph*, I May '89, p. 18.

2 Howie says it comes from the west. Pepper says that (since electrons would have to travel at the speed of light) it cannot come from the west, and must come from the south. Until this is resolved, we do not have a classical theory. Before it can exist, a theory has to be stated

Lend a golden ear

I followed Doug Self's series – and the debate that followed – with interest. As some of the statements expressed by readers that do not share Mr. Self's approach to amplifier design appeared to me at best biased, it is not surprising that Mr Self has lost his patience in the Feb. '95 letters column. True, the subjectivists' arguments have been around long enough, without much concrete progress, but could it be that engineers and the 'golden eared' are simply not speaking the same language?

To illustrate, one of my grammar school colleagues, who later became a professional musician, was able to detect signal level differences of a fraction of a decibel consistently, even if the changed level was presented to him after several minutes of silence. His ability was discovered accidentally. One of my stereo amplifiers had a $20.9k\Omega$ resistor on one input and a 22.3kΩ on the other while the preamp output impedance was $|k\Omega\rangle$, and he noticed a difference in output levels between channels. No need to mention, he was able to detect absolute pitch, too.

Six years ago I owned an Alfa Romeo Sprint Veloce which developed a rattling sound in its engine. It turned out to be a loose screw on the air filter cover, but the mechanic noticed a hissing above 3000rev/min. Two days later I returned to him with a broken main bearing.

We are able to identify a familiar voice on the 'phone almost immediately, in spite of the badly distorted and band-limited signal, even if we have not heard the voice for many years.

Most of us will readily accept these impressive examples of performance of the ear-brain combination as a normal every-day experience. But when it comes to hi-fi equipment, our opinions change. When discussing amplifier and

When discussing amplifier and speaker performance with musicians, I have often experienced that when I was talking of amplifier bandwidth, I had in mind the standard half-power definition, while they were referring to the frequency at which the phase is shifted by no more than a few degrees. When they were talking of clarity and presence, they were referring to being able to pin-point a sound source on the stereo image, while I was suspecting excessive 3 to 5kHz lift. When we were discussing transient performance, I was referring to the rise-time and overshoot of the response to a square-wave input, while they were referring to the attacking part of the complex waveform envelope which in most cases implied many waveform periods.

I'm certainly not advocating that audio engineers should rely on their ears only. But we should try to adopt the attribute of lawyers and doctors and listen carefully to what other people are saying before making a judgement. Indeed, we know the limitations of our instrumentation and we struggle hard to eliminate systematic errors when making sensitive measurements, so why not treat other people as sensitive instruments – albeit somewhat strange, sometimes urreliable ones?

Of course, the 'golden eared' must willingly accept being treated like instruments if they continue to seek credibility. *Erik Margan*

Ljubljana Slovenia

Supplies for audio

I read with great interest the article 'Distortion off the rails' by D. Self in the March issue. While certainly not questioning Douglas' undoubted skills in audio amplifier design, may I draw attention to Douglas' statement, "I assume that any rail filtering arrangements will work with constant or increasing effectiveness as frequency increases; this is clearly true for resistor-capacitor filtering.

Taking as a base for availability the Farnell catalogue, data from Philips' 1994 Data Handbook, and assuming an axial capacitor of 100μ F at 40V or more, as in Douglas' Figs 2&3, then the Philips 021 and 031 styles will have a self inductance of 40-50nH and an esr of some 0.55 to 1.2 Ω at 10kHz, depending on exact choice. Also 47 μ F at 63V, depending on case size, can exhibit inductance up to 85nH.

Similar values of radial styles have less inductance, say 25nH. From Philips' data curves, these types have a self resonant frequency of around 20-50kHz. Above this they become totally inductive. Also at 100Hz, a typical esr of $1.25-2.5\Omega$ must be expected.

As Douglas states, the amplifier internal loop gains will be reducing at frequencies when the capacitor starts to become inductive. My two questions for Douglas are: what effect would a capacitor having 100μ F, 50nH, 1Ω , as a series *LCR*, have on amplifier performance at 10kHz and above with regard to the simulation curves of Figs 2 & 3? Secondly, what effect would an esr of 2.5 Ω , as a series *CR*, have on modelling or measurements at 100Hz? *Cyril Bateman*

Cyril Bateman Acle Norfolk

Douglas replies:

Mr Bateman is of course completely correct in pointing out that capacitors have parasitic inductance and esr, and that this is ignored in my article, which used only pure capacitance in the simulations However, a technical article is not a legal document; you cannot enumerate all the ifs and buts, and exceptions and caveats, without the prose becoming as uninformative as it would be unreadable. In this case, some of the concepts involved are not wholly straightforward (eg the change of reference in the voltage amplifier), and adding a further layer of complication simply to make the components more realistic would not have been a good idea.

The other point is that parasitic inductance, esr, etc, seem to make no difference in practice; ordinary electrolytics do the job very well. Ripple and signal voltages on the rails do not reach up into the rf regions, and even if they did, the series inductance of the supply conductors combined with the hf rail decoupling would reduce it. The only credible source of rf is commutation spikes in the bridge rectifier, and these need to be dealt with at source by the usual snubbing network.

Reflection on deflection

With reference to the piece 'Cathode-ray conundrum' in the April issue letters column, the proposition goes against provable laws of physics. The effect described is of very small magnitude in relation to the others occurring at the same time - a potent source of error. The flaw in Lerwill's proposition is that an electron beam which has been deflected off the precise axis of the acceleration system will have an effect in one or both of the orthogonal axes. There will be an electrostatic or electromagnetic interaction with the acceleration system, amounting exactly to the reaction which seems to have escaped - just too small to measure. NPE Wheeler Sutton,

Surrey

'OFF-AIR' FREQUENCY STANDARD

Variants from

£195+VAT

Output frequencies – 10MHz, 5MHz, 1MHz Short term stability – better than 1×10^{-8} (1 sec) Typical – 4×10^{-9} (1 sec)

Call for 'Off-Air' Standard list

Long term - tends to 2x10⁻¹² (1000 sec)

- Provides 10MHz, 5MHz & 1MHz
- Use it for calibrating equipment that relies on quartz crystals, TCXOs, VXCOs, oven crystals
 Phase locks to DROITWICH (rubidium controlled and
- traceable to NPL) * For ADDED VALUE also phase locks to ALLOUIS (cesium controlled and traceable to OP - French eq to NPL)
- British designed and British manufactured
 Options available include enhanced receiver, sine wave outputs and 13MHz output for GSM. Prices on application

TEST EQUIPMENT

We are well known for our quality, new and used Test Equipment. Our list is extensive, the following will give some idea of our range and prices:

TIME 404S Precision mV source	£95	PHILIPS 5716 pulse generator	£495
TIME 2003N DCV Pot/Cal, 0-10V, null, etc	£249	FEEDBACK DPM609 10Hz-100Hz phase meter	£125
TIME 2004 DC Volt standard 0.005%	£945	FEEDBACK SSO603 1MHz sine/square oscillator	£125
HP134CA X-Y displays	£95	TEKTRONIC 2465 300MHz 4 trace, dual delay T/B	£1950
E.V. EV4020A NTSC V/scope	£395	TEKTRONIC 2215 60MHz dual trace, dual delay T/B	£450
LEADER LG398 NTSC pattern generator	£395	MARCONI TF2370 100MHz spectrum analyser	£995
PHILIPS 5509 PAL pattern generator	£195	DRAKE MN2700 ATU PSU	£380
PHILIPS 5519 PAL pattern generator	£295	ADRET 740A 0.1MHz-1.2GHz sig. gen. AM/FM PM	£1450
PHILIPS PM5134 function generator	£1495	Call for Equipro	nent list

ONE ONLY OFFER

One only, mint condition VIDEO/COMPUTER PROJECTOR as used in AV theatres, and similar large screen or wall projection applications. Can be ceiling or bench mounted. This is a very high quality instrument, new price upwards of £10k, serious offers only.

HALCYON ELECTRONICS 423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 0181-542 6383. FAX 0181-542 0340

CIRCLE NO. 143 ON REPLY CARD

KESTREL ELECTRONIC COMPONENTS LTD

All items guaranteed to manufacturers' spec. ☆ Many other items available.

'Exclusive of V.A.T. and post and package'

	1+	100+		1+	100+
27C64-15	2.00	1.45	628128LP-80	8.30	7.20
27C128-15	2.40	1.80	62256LP10	3.00	2.20
27C256-15	2.20	1.65	6264LP-10	2.10	1.40
27C512-15	2.20	1.65	MM58274CN	4.90	3.75
27C010-15	3.60	2.20	ULN2003A	0.43	0.25
27C020-15	6.00	3.99	LM555	0.30	0.18
27C040-15	8.60	6.45	MAX232	1.35	0.88
80C31-12	2.10	1.65	7406	0.35	0.23
80C32	3.00	2.40	7407	0.35	0.23
80C85ARS	2.90	2.30	74HCT244	0.35	0.27
8255AC-2	2.00	1.50	74HCT245	0.35	0.27
D8748H	4.30	3.35	74HCT373	0.35	0.26
D8749H	4.40	3.45	74HCT374	0.32	0.26

74LS, 74HC, 74HCT Series available Phone for full price list All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road, Purley, Surrey CR8 4HA Tel: 0181-668 7522. Fax: 0181-668 4190.

CIRCLE NO. 144 ON REPLY CARD

ELFORD ELECTRONICS

VISA

HP 8750A Storage Normalizer	E350	Marcon TF2438 520MH2 Universal counter/timer	£250	Racal MF Receiver RA329B consisting of RA217D receiver and MA323 FSK loudspeaker	
HP 8553B Spectrum Analyzer plug-in 110MHz	£200	Marconi TF 2016 AM FM 10Hz-110MHz Sig. generator	£170	terminating unit, Frequency range 1-30MHz, All mode reception	£275
HP 8556A Spectrum Analyzer plug-in 300KHz	£200	Racal 9301A RF Millivolt meter 10KHz-510MHz	£225	Harris automatic antenna coupler 1.6-30MHz	£500
MP 59313A A/D convertor	£250	Racal MA1720 Drive unit	£500	Bird 43 Thrukne watt meter	£100
HP 11683A Range Calibrator	£250	Racal 9082 synthesized signal generator 1 5-520MHz	£480	Rhode & Schwatz 0-2000MHz UHF attenuator 50phm 0-140d8	£175
MP 87098 Synchronizer	£200	Racal Dana 9932 instrument interface	£120	Tektrony 454 150MWz Dual trace scope	C1150
HP 3406A Broadband sampling voltmeter	£150	Racal Dana 9915M frequency meter 10Hz-520MHz (fitted FX Standard)	£125	Tektrony 453 100MWz Dual trae scope	6150
HP 5150A Thermal ponter	£150	Racal Dana 9904 universal counter/timer 5/04Hz	£100	Taktroniv 475 200MW7 Dalay swaan (us) trace	6450
NP 3400A RMS Voltmeter 10MHz	£115	Pacal Dana 9300 RMS unitmeter	£250	Tektrony 465 100MHz Belay swee dual trace	£375
HP 489A Microwave amplifier 1-2GHz	. £275	Racal Dana 5001 diartal multimeter	£250	Tektrony 77154 COMM delay sweet dusi trace	£163
NP 491C Microwave amplifier 2-4GHz	. £275	Pacal Dana 202 Ionic state analyzer	6300	Telepony 7954 day 7511 plug in/7111 fitted with \$1 campling heads 1042	£1000
HP 4204A Oscillator 10Hz-1MHz	£150	Pacal Dana 205 logic state analyzer	£300	Tectman 402 conterm analysis 50kHz 190Hz	CAEOD
HP 8443A Tracking Generator/counter	£400	Pacal Dana 4900 Digit State of angel		Tektrolik 432 Spectrull allaryset 306/12-100/12	C 760
NP 8755 Sweep amplitude analyzer c/w heads	£750	Pagal Dana 9000 Lighter voluncier	£100	Centrals 2128 15400 Dral Anno 2000	C130
HP Spectrum analyzer 1827 main frame c/w 85588 plug-in 100KHz-1.5GHz c/w HP 8750A		Recal Data 9014 I/IE Economy emister 1047 2004Us (Etted EV standard)	£100	Crotech 3131 13mm2 Dual trace scope	£123
Storage normalizer	£2,000	Racal Dana 9919 (INF Frequency counter 10Hz 500Mitz (Rited EV standard)	5200	bouid US2 JUA 10MHZ UGal trace scope	
HP1740A 100MHz Dual trace/storage scope	£325	Racal Dana 3316 Unit requercy counter 1002-300mm2 (litted FA standard)		Gould US255 Jown? Uval trace scope	
HP1741A 100MHz Dual trace/storage scope	£340	Racal Dana 1992 Universal counter 1.3GHz		Gould DS300 20MHz Dual trace scope	£175
HP1742A 100MHz Dual trace/storage scope	£350	Kacal 9104 XF power meter		Gould DS3500 60MHz Dual trace scope	£200
MP180A 100MHz Duai trace scope	£175	Racal instrumentation recorder store /US	£500	Gouid 053680 100MHz Dual trace scope	£275
HP1201B 500KHz Dual trace scope	£125	Philips PM7632 SWR meter	£175	Gouid J3B 10Hz-100KHz LF Oscillator	£150
HP5004A Signature Analyser	£200	Philips PM 7841 power meter		SE LABS 111 18MHz Duai trace scope	£85
HP37708 Telephone line analyser	£400	Philips PM5132 function generator 0.1Hz-2MHz NEW	£350	Telequipment D1011R 10MHz Duai trace scope	£75
HP8405A Vector voltmeter 1MHz-1000MHz	€250	Philips PM3055 50MHz Dual trace scope	£600	Teleguipment DM63 50MHz 4 trace storage scope	£150
NP419C DC null voltmeter	£150	Philips PM3262 100MHz Qual trace scope	£250	Telequipment D67 25MHz Dual trace scope	£75
HP435A power meter C/w HP848TA	£750	Philips PM5715 Pulse Generator 1Hz-50MHz	£750	Telequipment DM64 10MHz Oual trace scope	£75
HP43ZA power meter c/w HP478A	£280	Philips PM5508 Colour TV pattern generator	£200	Trio C\$1566A 20MHz Dual trace scope	£150
HP432A C/W HP486 26.5-40GHz waveguide	£500	Philips PM5519 Colour TV pattern generator	E450	CDU150 35MHz delay timebase scope	£95
HP6290B DC PSU 0-320V/0-0.1A	£75	Philips SWR meter PM7842	£200	Kemo phase meter DP1 ,	£95
RP6291A CD PSU 0-40V/0.5A	£100	Famell P.S.U. TSV70 Mk11 0-35V/0-10A+70V/0-5A	£250	Siemens 7K84303 Wattmeter	£300
HP6111A CD PSU 0-20V/0-1A	£70	Wayne Kerr auto balance universal B642	£200	Radiometer AFM3B mod. meter	£300
HP3591A Selective voltmeter	£125	Wayne Kerr universal bridge 6224	£200	Aplab 8559 500VA variable frequency convertor	£800
HP33868 Selective level meter	£800	Wayne Kerr component meter B424/N resistance/capacitance/inductance	£195	Avo RM215-F/L insulation resistance and breakdown tester	£250
NP3342A Microwaye irequency counter 18642	1400	Norma precision wattmeter D4155	£350	Pegelmesser 200Hz-620KHz model 02155	£500
HP 3300A / OWHILI IFINET COUNTER	1100	Norma multi function meter D4135A	£300	Fluke 90008 Duritel multimater	645
HP3303A TTUUMPL COURTER	. 1/3	Norma Model 05155 AC-Power analyser		Time CD Millingh out course Medal (OA) one DC surrent course Medal 605	C250
HPRODAD Signal generator Lokalis Consuls	1400	EIP 575 source locking microwave counter opt, 02,04 10Hz-18GHz	£1,650	tarre dia miniyon poi source model 4044 diw po current source model 503	C1000
Margoni TEGICS UNE -Margarete DC 1011-	L 130	Systron Donner 6054B microwave counter 20Hz-18GHz	£650	Ragra i instrumentation tape recorder	& 1200
Marcolli 1721035 Unit diteriuator DC-1072	. 1100	Thandar TA2160 20MHz logic state analyzer	£275	Datron Tub IA Autocal digital multi meter True KMS AC/Current	E/00
Marcon 12102 Step alteridation out-10102 - 20080	CICE	Schlumberger 7055 microprocessor volt meter	£250	Datron 1051 Multifunction meter	£65
Marcon TE201C4 AM/EM signal generator 10KUs 120MUs	2103	Schlumberger A200 Digital volimeter	£50	Datron 1055 DC Voltmeter	£65
Marcolli Inzulia Aminin Sigilal geletatul Tunna - Izumna	2103	Schlumherger 4220 Digital voltmeter	£50	Datron 1030A RMS Voltmeter	£65
Marcon 1F2700 Universal bridge (battery op.)	. 1123	Schlumberger 7055 Micromocessor voltmeter	£250	Datron 1030 RMS Voltmeter	£65
Marcoll 172000 AM TH Signal generator 10km2+570MH2	£JUU	Wawatek 20MHz sween modulation/generative time 193	£250	Leader LCR Bridge LCR resistance/capacitance/inductance D, Q measuring range 9V oper	ration
Marconi crenal course 60504 12 190Nz c/w lawling amp 6507	£215	Wavetek Model 3000 Ser generativ 1.520MHz	£300		£150
Marconi signal source 60598 8.12 SOlt che levelling amp 6597	6215	Wavetek Sween generativ Model 164 30MHz	£300	Haven temperature calibrator QTB5 or/water bath	£500
Marchon TE2303 EM/AM Mod motor	6295	Padition sunthesized \$1001 158Ws 20MHz all motos	£500	Haven thermocal is, thermocouple simulator/calibrator	600
Marcon TE2504 Electronic voltmater	E45	Dadrigon DSDD Brand New /hack left MC	£300	Ann 8 Mb 5 + 6 che case leads prods etc. (che cal cert NPL)	mm CB5
Marconi TE2431 2006Hz Digital fragmance mater	£150	Dedrifterion VI C/I E for summit use with Revail New Submannes'	C 250	fun CTISD value texter the value data hank	C15
marcone to zero i zoominz nikitat nedneuch tiletei	. 2130	Reonusion FLEPREF (IN CONTENT use with Royal Navy Submannes)		ATU UTTOU VANYE IESIEL UW VANYE UAIA DOUR	

AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE

Postage and packing must be added. Please phone for price. VAT @ 171/2% to be added to all orders. Please send large SAE for details.

Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6DJ Tel: 01952 605451 Fax: 01952 677978

CIRCLE NO. 145 ON REPLY CARD

Please quote "Electronics World + Wireless World" when seeking further information

Discrete active devices

Little mosfets. Meant for use on PCMCIA cards, Micrel's *MIC94030/1 TinyFETs* boast the lowest on resistance for their size, at 1 Ω and 3.3V, and are contained in SOT-143 packages, being only a quarter of the size of current 8-pin SOIC mosfets. *MIC94030* is a basic 4-lead p-channel device, while the *MIC94031* has an internal gate pull-up resistor to turn the device off when driven by tri-state or open-drain logic. Solid State Supplies Ltd. Tel., 01892 836836; fax, 01892 837837.

Digital signal processors

NEC's µPD7701X family of generalpurpose dsp chips has a new member with larger memory, the 3V

Microprocessors and controllers

Miniature controller. Z World's newest C-programmable miniature controller is the Little Genius, with 26 i/o lines, intended for the OEM market for control and data acquisition use, although it also works as a core module interfacing with user-designed boards. Having 14 digital inputs and 12 digital outputs, seven of which handle high currents, and both RS232 and RS485, it is well suited to use in networked controllers. Features include an eeprom, battery-backed ram and real-time clock, programmable timers, a 9MHz processor clock, a watchdog timer and power-failinterrupt and an expansion port to the Z-World *PLCBus*, which allows the connection of a d-to-a converter or other boards such as the prototyping board on offer. If not in use for expansion, the bus will take eight more cmos inputs. The C development system for both dos and windows has many function libraries and program samples in source code. Greening Technology Ltd. Tel., 0116 2796500; tax, 0116 2796501.

μPD77018, which handles up to 250 million operations per second. Memory is 256 by 32 bit instruction ram and 24K by 32 bit rom, data memory consisting of two blocks of 3K by 16 bit ram and two blocks of 12K by 16 bit rom. The device has a 30ns instruction cycle time, a threestage pipeline architecture and its instruction set enables eight operations to be performed in parallel. Development tools available operate through a workbench under Windows. NEC Electronics (UK) Ltd. Tel., 01908 691133; fax, 01908 670290.

Floating-point DSP. TI's latest digital processor, the *TMS320C32*, allows the use of floating-point techniques used for research and development in commercial products to eliminate the usual switch to fixed-point working for commercial use. It is available in 40MHz, 50MHz and 60MHz versions and uses new memory management and data packing features to allow the flexible use of 8-blt, 16-bit and 3-bit memory architecture. There is also a two-channel dma co-processor for data movement. SR Communications (Texas Instruments). Tel., 0181 692 7575; fax, 0181 692 8057.

Logic

3.3V logic devices. Quality Semiconductor announces seven 3.3V, 8bit logic elements, the *FCT3244* buffer/line driver, *FCT3245* transceiver, *FCT3373* buffered latch, *CT3240* inverting buffer, *FCT3540* flow-through inverting buffer, *FCT3541* flow-through buffer and *FCT3573* flow-through latch. They are all function and pin compatible with existing 5V devices and will accept 5V inputs while the outputs are at 3.3V. Speed is compatible with Bicmos and power consumption with cmos. Quality Semiconductor, Inc. Tel., 01420 563333; fax, 01420 561142

Memory chips

Low-voltage serial eeprom. New from Holtek of Taiwan, via Hero Electronics, is the *HT93LC46* 1Kbit serial eeprom, to which one can write to at 2.7V and read from at 2V. Operating current is 2mA and maximum standby 2µA. Data is retained for ten years. Hero Electronics Ltd. Tel., 01525 405015; fax, 01525 402383.

Mixed-signal ICs

Energy measurement. A range of five ICs from the South African firm of

SAMES are for single and three phase ac power or energy measurement over a 60dB range, meeting the requirements of IEC 521/1036 for Class 1 ac watt-hour meters. They are protected against overvoltage and use shunt resistors or current transformers for current sensing, a voltage reference being built in. Output is either digital or analogue in form. Ginsbury (UK) Ltd. Tel., 01634 290903; fax, 01634 290904.

Optical devices

Laser measurement. Matsushita's *LM200* analogue laser is immune to surface irregularities and colour changes. This is because of its use of fight feedback and triangulation range measurement to minimise analogue output error. An aspherical glass lens provides good linearity combined with low temperature drift. The measurement range is ±3mm or ±6mm while resolution is 1µm. Matsushita Automation Controls Ltd. Tel., 01908 231555; fax, 01908

Fibre pigtailed laser diodes. A series of diode laser assemblies designed to couple laser radiation into single and multi mode fibres is available from Melles Griot. Both visible and infrared diodes are used, the >700nm infra-red types being over 55% efficient and the <700nm visible diodes better than 30% efficient. Powers from 0.5mW to 30mW are offered. The housing is stainless steel and has a 1m length of fibre with a cleaved end, ST, FC and SC connectors being used. Melles Griot Ltd. Tel., 01223 420071; fax, 01223 425310.

Programmable logic arrays

Fast 128-cell device. AMD has brought out what it claims to be the fastest 128-macrocell complex programmable logic device, the MACH231. This is one of the new Performance Plus family of 7.5ns complex plds. The addition of power-down macrocells means that each macrocell can be configured into a low-power mode. Additionally, input/outputs and inputs have a latching facility to avoid the long pull-up times associated with resistors. Advanced Micro Devices (UK) Ltd. Tel., 01483 740440; fax, 01483 756196.

Oscillators

3.3V crystal oscillator. Q-Tech has a range of military-grade crystal clock oscillators, believed to be the first 3.3V types to operate over a -55° C to 125° C temperature range while preserving ±100ppm stability. Output is at logic level Into 15pF with transient times of 3ns. Many package styles are available. Wavelength Electronics Ltd. Tel., 01843 602869; fax, 01843 862276.

Passive components

Low-voltage tantalum. Low-voltage Series surface-mounted tantalum capacitors by AVX are rated at 2-10V and are meant for use in products needing 1.5-5V supplies. Packaging Is of 1.2mm profile. AVX Ltd. Tel., 01252 770000; fax, 01252 770001.

Audio products

Audio codec. Crystal Semiconductor announces the *CS4225*, a multichannel audio codec for automotive and surround-sound application, which replaces three stereo data

Please quote "Electronics World + Wireless World" when seeking further information

converters, three volume-control ICs, an input multiplexer, a 12-bit a-to-d converter and numerous passive components, not to mention affording a reduction slze over conventional equipment of around 90%. An onboard phase-locked loop generates clock pulses to reduce EMI. Crystal Semiconductor Corporation. Tel., (USA) 00 512 442 7555; fax, 00 512 445 7581.

Connectors and cabling

Board/board connector. Wieland pluggable board-to-board connector with 2-16 ways on a 5.08mm pitch is rated at 250V to VDE 0110 GR C and 10A. The female socket can be

Communications equipment

Two-chip GSM set. Two ICs from VLSI, the VP22002 kernel processor and VP22020 vocoder carry out all necessary baseband signal processing for a Global System for Mobile Communications (GSM) system, from speech vocoding to the radio system modular interface. The kernel processor contains the type-approved GSM blocks channel coder, equaliser, GSMK modulator and timing generator and VLSI's Functional System Block techniques including a 32bit asynchronous response mode (ARM) microcontroller, operating at one instruction per clock cycle to give a processing power of 13Mips. Development tools are supplied. Operating at 13kbit/s, the vocoder provides fully asynchronous coding and decoding, having two asynchronous data ports and a host processor interface. The analogue front end has two lownoise input preamplifiers and a second microphone and speaker interface give hands-free operation. VLSI Technology Ltd. Tel., 01908 667595; fax, 01908 670027

mounted vertically or at right angles to provide connection for daughter boards. Wieland Electric Ltd. Tel., 01483 31213; fax, 01483 505029.

PCMCIA SM connectors. Methode MCFK Types I, II and III surfacemounting connector frame kits snap together without the assistance of glue or any other fixative. The connectors have stainless-steel covering, UL94V0 rating and electrical grounding via spring tabs. Surtech Interconnection Ltd. Tel., 01256 51221; fax, 01256 471180.

Bendy coax. From Belden comes Conformable Coax, an alternative to semi-rigid coaxial cable that can be hand manipulated into curves with radii down to 3.18mm, retaining its shape when formed. There are two types of microwave cable, 1671A RG-405 type of 0.085in outside diameter and 1673A (RG-402) of 0.138in od, both with 50 Ω impedance. Type 1672A is for video at 75 Ω , having an od of 0.087in. Cables can be flexed many times without damage. Belden UK Ltd. Tel., 01483 726818; fax, 01483 7271569

IDC connector.

Insulation-displacement connector blocks used by *Mod-Tap* in voice and data equipment are now available to network users. The blocks are designed for pcb mounting and can be used in wall sockets or patch panels. Termination tools are offered, but standard tools can be used. Blocks take two-pair and four-pair combinations and are in blue/orange, green/brown or in custom colour codes. MOD-TAP Ltd. Tel., 01703 701919; fax, 01703 704063.

Displays

Tft colour lcds. Ginsbury's GE10 and GE14 10in and 14in thin-film transistor colour lc displays are said to give a stable image with no flicker. They may be driven by a dedicated graphics card for best quality or by an internal analogue card to emulate crt monitors. As an option, a capacitive touch screen can be fitted. RS232

and Windows mouse emulation is standard. A robust polystyrene enclosure suits industrial use and can be fully IP65 sealed on request. Ginsbury (UK) Ltd. Tel., 01634 290903; fax, 01634 290904

Filters

Programmable video filter Raytheon's RC6601 is an integrated continuous-time filter, fully programmable for video filtering, antialiasing, comms filtering and hdtv use. In addition, it costs about half as much as analogue filter alternatives. Cut-off frequency is voltage-variable in the 1 to 10MHz range and the device is phase-corrected to 0.2°; differential gain is 0.25%. It meets CCIR601 for NTSC and Pal signals, providing ±0.25dB pass-band ripple to 5.5MHz, with a -40dB pass-band starting at 8MHz. Ambar Components Ltd. Tel., 01844 261144; fax, 01844 261789

Rf filters. Filters in the *BTF* range from BLP Components are for use in the protection of telephone networks, being flexible to accommodate future requirements, conforming to MIL-STD-220A and usable in all Tempest-rated networks as well as low-current control circuitry and audio lines. Configurations include two, four and ten line stand-alone forms and ten-line modules to fit 50, 100 and 200 line cabinets. They are in steel cases and are provided with idc connectors. BLP Components Ltd. Tel., 01638 665161; fax, 01638 660718.

Hardware

Control knobs. Attractive knobs in Slfam's *Trio* range are made using a technique whereby three shots of material are injected into the mould, providing a more versatile design and the opportunity for more detailed colour-coding. Material is nylon, with a matt body and contrasting gloss pointer. Two 11mm-diameter versions are made, with and without a nut cover, taking shafts up to 6mm diameter. The three-shot facility is

Waveform generator. Taking the form of a pc expansion board, the Scensys *PCI-311/2* occupy one slot and perform the functions of a standalone generator but rather more conveniently. Output from each channel is 12Vpk-pk into 50Ω from 12bit a-to-d converters with update rates to 50Msample/s to 0.01% frequency tolerance. A 99-segment segment of which holding one waveform, allows the creation of irregular shapes such as video test patterns and encoded communications signals using *BenchTop* or BenchCom software importing them from maths programs or from an Scientific & Engineering Systems Ltd. Tel., 01296 397676; fax, 01296 397878.

also offered to customers needing custom-designed knobs, for which designs can be accepted in electronic form. Sifam Ltd. Tel., 01803 613822; fax, 01803 613926.

Instrumentation

Function generators, First members of Vann Draper's H6000 series of function generators are the H6000 and H6001, which produce sine, square, triangle, pulse and sawtooth outputs in the frequency ranges 0.1Hz-10MHz (H6000) and 0.2Hz-20MHz, prices being £149/199. Both allow external frequency control for modulation, sweep and pulse modulation. Outputs are ttl and 50Ω, with 600 as an option, controlled by switched attenuator and a continuous control. Thd is under 1% and triangular wave linearity better than 99%, Vann Draper Electronics Ltd. Tel., 0116 2813091; fax, 0116 2570893

Please quote "Electronics World + Wireless World" when seeking further information

CPC – components. A new circa 1600-page catalogue from CPC – a company said to be UK's leading specialist spares distributor – is now available. Products carried Include batteries, cables, capacitors, connectors, power supplies and semiconductors. This A4 publication also features industrial and office equipment, and, of course, a multitude of spares for consumer, office and industrial electronic equipment. CPC plc, Tel., 01772 654455, fax 01772 654466.

LECTRONIC COMPONENTS CATALOGUE

Digital video analyser. Rohde & Schwarz's Video Component Analyser is a video analyser and waveform monitor in one case, and said to be the first wholly digital instrument of its kind. Measurement of analogue television waveform monitors is combined with new functions to allow monitoring of digital encoding and signal transmission, detecting errors in transmission, showing bit errors and checking sync. frame. Features include the numeric dump function to allow video signals to be shown at bit level. Rohde & Schwarz UK Ltd. Tel., 01252 811377; fax, 01252 811447.

MIDI-Scope. Artistic Licence has the MIDI-Scope, a hand-held analyser for the Musical Instrument Digital Interface. When used as a receiver, the lcd screen shows data either in hex or as command icons, while received data can be stored for later analysis or re-transmission. The transmitter is used to regenerate received data or to transmit up to eight programmable messages. Other functions include cable testing, oscilloscope triggering and an RS485 output boost to drive long cables. Artistic Licence (UK) Ltd. Tel. and fax, 0181 863 4515.

Cable simulator. Designed to simulate the effect of up to 500m of coaxial cable on serial digital signals, Faraday's *Cable Clone* is a hand-held unit, requiring no other equipment, that is simply connected in the cable. By means of eight switches, the effective cable length is increased in 5m steps until the signal deteriorates to an unacceptable point. The length of cable inserted indicates the margin. *Cable Clones* simulate amplitude and differential group delay of coax. with the SMPTE 267 360Mbits serial signal from 5MHz to 360MHz. Faraday Technology Ltd. Tel., 01782 661501; fax, 01782 630101.

Comms test set. H-P's *HP 8920B* communications test set has more than 22 functions to measure the performance of radio telephone equipment, including signal generator, modulation analyser, power meter. audio sources, digital oscilloscope, sinad meter, frequency meter and, as an option, a spectrum analyser with tracking generator. Measurement programmes are stored on a PCMCIA card. Hewlett-Packard Ltd. Tel., 01344 366666; fax, 01344 362269.

Nanovolt/micro-ohm meter, HP 34420A by Hewlett-Packard is a lownoise nanovolt-microhmmeter offering 7.5-digit resolution, 2ppm, 24-hour dc voltage accuracy and selectable filtering. There is a two-channel programmable scanner for ratio and difference measurement, and built-in conversion routines to display thermocouple, thermistor and rtd readings directly in degrees, resolved to 0.001°C. Features include scaling and statistics functions, 1024-reading memory, chart recorder analogue input, RS-232 and HP-IB interfaces and both SCPI and Keithley 181 programming languages. Hewlett-Packard Ltd. Tel., 01344 366666; fax, 01344 362269.

Direct recording oscilloscope. Gould's DataSYS 765 dr oscilloscope

Conductive greases. Two types of grease from Planned Products of Santa Cruz not only lubricate and protect against moisture, but provide electrical and thermal conduction to drain away static and provide grounding and to dissipate heat. *Circuit Works Conductive Grease* 7100 for low-to-medium loads and speeds is a silicone grease containing silver for greatest conductivity, giving a typical resistivity of <0.010cm and high thermal conductivity. It is stable over the -57 to 252°C temperature range. Unworked and worked penetrations are 210 and 250, with steel-on-steel wear of 1.5mm. The 7200 Carbon Conductive Grease has <30 cm resistivity, with penetrations of 335 and 338, wear measuring 2mm. Both types are chemically inert, thermally stable and non-flammable. Intertronics Ltd. Tel., 01865 842842; fax, 01865 842172.

has a 500Mbyte hard-disk drive and handles direct data recording to disk at up to 250Kbyte/s with no dead time. Recordings can also be made to paper or recalled from disk to paper. As a 150MHz digital storage oscilloscope, the instrument offers 100Msample/s single-shot acquisition on four channels. Although the 765 captures glitches down to 10ns, the storage provided allows recording for a period of 230 days, recordings being displayed as though on a paper roll, but with more control. Gould Instrument Systems Ltd. Tel., 0181 500 1000; fax, 0181 501 0116.

Literature

SM oscillators. Surface-mounted crystals and oscillators by *M-tron* are now obtainable in the UK and are described in a new 40-page catalogue containing details of, among many other devices, crystals for use in extreme environments and oscillators for use as clock generators and in military application. Semi-Dice (UK) Ltd. Tel., 01494 488353; fax, 01494 771396.

RS Components. In its new catalogue, RS Components introduces over 200 new potentiometers from makers including Bourns, Meggit Piher and Spectrol. From Bourns, a 6mm, 0.5W pot. for machine adjustment and with a multiwire wiper; by Meggit Piher, a series of 10mm, 150mW and 12mm, 200mW units with plug-in spindles and top or side adjusted edge wheels as options; and 12mm cermet pots by Spectrol rated at 1W and offering ±100ppm/°C temperature coefficient, RS Components Ltd. Tel., 01536 201234; fax, 01536 405678.

Batterles. Batteries by Univercell are described in a new loose-leaf brochure. The company, formed by a group of managers from Ever Ready, manufactures layer cell zinc-carbon types, NiCd, special packs using various types of cell and memoryprotection NiCd batteries. It also undertakes packaging to order. Univercell Battery Company Ltd. Tel., 01952 580505; tax, 01952 680075.

Loughborough Sound Images. In

Modular switches. Lever switches in the Swiss SwissTac range of modular types are now obtainable in the UK. Virtually all elements of the switches are interchangeable, contacts at the rear remaining in the same plane when switches are block mounted. Since contacts can be removed from the switch, it is possible to carry out the wiring as a separate process. Switches are available in five sizes from 18mm diameter to 24mm square, in grey or black, the actuators being black or chromed. EAO-Highland Electronics Ltd. Tel., 01444 236000; fax, 01444 236641.

132 pages, LSI provides details of a comprehensive range of digital signalprocessing hardware and software support for VMEbus, PCbus and SBus, and a product guide to equipment for industrial image processing and video multimedia. Loughborough Sound Images Ltd. Tel., 01509 634300; fax, 01509 634333.

Blue Micro. Blue Micro is IBM's representative company, dealing only in IBM products. On offer is the company's 20-page publication giving brief details of, for example, the *Blue Lightning 486* 32-bit microprocessor, the *Power PC* 64-bit and 32-bit risc processors and the *403GA* 32-bit risc embedded controller. Also covered are peripheral chips and sets, MPEG-2 decoding, memory and PCMCIA products. Free from Blue Micro Electronics. Tel., 01604 603310; fax, 01604 603320.

Materials

Insulation for semiconductors. Thermaflex tube by Warth is in a flexible plastic material designed to fit round semiconductor packages to allow them to meet higher flash test requirements while retaining good thermal performance. A 0.5mm wall takes most standard packages and grips the device for assembly. Tubes come in two sizes: 25mm long by

Please quote "Electronics World + Wireless World" when seeking further information

10mm wide for TO-220 packages and 30mm long by 13mm wide for TO-218/3P/247 and SOT-93. Catalogues and samples available. Warth International Ltd. Tel., 01342 315044; fax, 01342 312969.

Power supplies

Power-factor correction. XP has provided power-factor correction on its ZX series 350/550W power supplies to meet the requirements of EN61000-3-2 and EN55022 without increasing unit size, so that they can replace uncorrected supplies with no mechanical redesign. The psus are universal-input types covering the 2V-60V range of outputs. XP plc. Tel., 01734 845515; fax, 01734 843423.

Radio communications products

Vhf transmitter/exciter. SU 125 from Rohde and Schwarz is said to be the first true vhf transmitter/exciter. as opposed to those that are simply modulators, with driver stages and add-ons. This contains in one case the stereo coder, modulator, rf amplifier, deviation meter, transmitter control and monitor, the latter two facilities allowing the unit to be combined with any fm amplifier. The microprocessor would then monitor. protect and control the amplifiers and exciter. Inputs include af and auxiliaries such as RDS and interfaces for remote control. It is usable as a stand-alone 20W transmitter or can be used with an R&S 600W vhf amplifier. Rohde & Schwarz UK Ltd. Tel., 01252 811377; fax, 01252 811447.

Data converter interface. SMT225 is a size 2 TRAM board (TRAnsputer Module in parallel processing systems) by Sundance that combines 12-bit d-to-a and a-to-d converters with a 25MHz transputer to provide a versatile interface for control. It is half the size of alternatives and about onethird the price. Sundance Multiprocessor Technology Ltd. Tel., 01494 431203; fax, 01494 726363.

Protection devices

3V transient protection. Protek's SOT/SMDB series of silicon avalanche transient voltage suppressors are expressly designed for 3V/3.3V use at up to 500W, protecting one or four unidirectional lines, being packaged in SOT-23 or SO-8 respectively. Theoretical response times are 8µs and 20µs. Hunter Electronic Components. Tel., 01628 75911; fax, 01628 75611.

Switches and relays

Power reed relays. *S series* vacuum reed relays made by Kilovac Corp. are high-voltage, high-power types for use at rf and with a mechanical life of 50 million operations. Voltage ratings are up to 10kV at 5A continuous, and the contacts switch 500W loads. Standard coils are 5V, 12V and 24V. LRE Relays + Electronics Ltd. Tel., 01962 734433; fax, 01962 734685.

Slow relay. With turn-on and turn-off times of 8.5ms and 4.1ms, Matsushita's *Soft-on/off PhotoMos* solid-state relay reduces the transients that occur when switching reactive or incandescent filament loads, thereby protecting itself and associated components; no other forms of transient protection are needed. Contacts handle 4A at 80V. Matsushita Automation Controls Ltd. Tel., 01908 231555; fax, 01908 231599.

Hf relays. *RK* and *RG* relays by Matsushita exhibit an insertion loss of 0.3dB at 900MHz and use only 200mW, or less when the optional latched type is driven by pulses. Contacts are single or double changeover and the footprint is 20.2mm by 11.2mm. Matsushita Automation Controls Ltd. Tel., 01908 231555; fax, 01908 231599.

Transducers and sensors

Low-pressure sensor. Higher sensitivity than is common, 100mV for 1lb/in² compared with around 50mV, is offered by IC Sensors' new boardmounted, temperature-compensated device in TO-8 or HIT packaging. Two ranges cover 0-0.03lb/in² and 0-1lb/in². Linearity (best fit straight line) is around 0.01% of span. Eurosensor. Tel., 0171 405 6060; fax, 0171 405 2040.

Vision systems

PCI-bus Image capture. Image Technologies has the *IC-PCI* highspeed board offering 'plug-and-play' facility for image acquisition on the PCIbus, direct-memory access being provided. Transfer rate is up to 80Mbyte/s directly to a PCI VGA card and acquisition rate to local memory up to 40Mbyte/s. DataCell. Tel., 01628 415415; fax, 01628 415400.

Computer board-level products

Single-board computer. Motorola's 68360 processor with on-board Ethernet and the 68060 make Syntel's SYN-SBC5 single-board computer suited to both communications and control applications. It has a processing speed of 60Mips and possesses up to 32Mbyte of dram, 16Mbyte of flash eprom and 2Mbyte of sram. There is a PCMCIA interface, a SCSI interface and an on-board 32-bit graphics controller supporting lcds, electrolumInescent and crt displays. Syntel Microsystems. Tel., 01484 535101/2/3; fax, 01484 519363.

PC Instrument control. National Instruments offers the *PC/104-GPIB*, an IEEE488 interface board for embedded pcs with *PC/104* expansion. It is compatible with NI's *AT-GPIB/TNT* plug-in interface and uses the *HS488* mode for GPIB transfers to 1.6Mbyte/s, enabling an embedded pc with the *PC/104-GPIB* to control, monitor and communicate with GPIB-based instruments. National Instruments UK, Tel., 01635 523545; fax, 01635 523154.

Computer systems

Single-chip PC core logic. NEC and **Future Technology Devices** collaborated to produce the FTD 82C4591, a single-chip device containing the core logic of a 386/486 pc-compatible embedded control system with bus speeds to 66MHz. It has ISA and VL-bus interfaces with programmable speed and only needs standard buffers for the ISA address lines. The device connects directly to an sram-based, direct mapped, bank interleaved cache, supporting writeback and through modes. Sunrise Electronics Ltd. Tel., 01908 263999; fax, 01908 263003.

PC-AT-compatible board. Arcom has a new PC-compatible singleboard computer, the VSCIM486DX, using the 100MHz 486DX4 processor. A full VMEbus interface is complemented by ports to the SCIM mezzanine local expansion bus, the Signal Conditioning Scheme (SCIM), STEbus and two memory expansion buses. It can be provided with 68Mbyte of dram, 256Kbyte of cache sram, 128Kbyte of battery-backed ram dual-ported to STEbus and an accelerated SVGA graphics controller with 1Mbyte of ram; the chip incorporates a 32-bit maths

co-processor. Since the board runs dos and windows, software such as *LabView* is accessible. Arcom Control Systems Ltd. Tel., 01223 411200; fax, 01223 410457.

Industrial workstations. H-P's HP9000 workstations are based on the company's PA-RISC processors running at up to 100MHz and supporting H-P's version of UNIX, HP-UX. Models 745i/50 and 745i/100 are the basic types with four EISA slots and 50MHz or 100MHz PA-RISC processors, while 747i/50 and 747i/100 have six VME slots and two EISA slots. XP plc. Tel., 01734 845515; fax, 01734 843423.

Data communications

Digital packet radio. PackNet-2 by the Swedish company Radius is a vhf/uhf packet radio for remote control telemetry and data transfer, providing a link between the components of computer networks and control systems. Radio transceiver, microprocessor control and modern are combined in one box and a built-in repeater or external repeaters allow for extension of a network. PackNet-2 offers both serial and parallel connection, a full RS-232-C interface being provided. Radius Telecommunications (UK) Ltd. Tel., 01256 469460; fax 01256 842362

Multimedia

Installation diagnostics. Developed to assist those installing or upgrading pcs with multimedia hardware, Eurosoft's *CD-Check Diagnostic Disk* tests the installation and operation of cd drives, memory, sound cards and

Media accelerators. BtV MediaStream by Brooktree is first in a family of products combining hardware and software to allow a pc to take full advantage of the facilities offered by multimedia offerings. It is a three-chip set enabling dos games-compatible audio or digital sound, 1280 by 1024 graphics and 30frame/s television-quality, full-motion video windows. BtV MediaStream is intended for use with add-on cards, 486 VL local-bus systems and the new PCI-based Pentium pcs, either on cards or on the motherboard. An important feature is the provision to output all-digital audio directly to consumer equipment with digital ports, such as DAT and cd players. The system produces high-quality graphics even when multiple windows run and good video lip-sync. at 30frame/s. It also supports standards such as the **Microsoft MCI and DCI** extensions under Windows and Microsoft's Plug-and-Play. Brooktree Ltd. Tel., 01252 811358; fax, 01252 811505

display, supplying a report on the results. It checks all system components to the Multimedia PC Council (MPC) standards. Eurosoft (UK) Ltd. Tel., 01202 297315; fax, 01202 558280.

Programming hardware

In-circuit programmer. In-circuit, board-level programming becomes necessary in military or other critical applications when ICs must be programmed after assembly, to ensure nothing happens to the data during soldering. Stag has produced the ICP 9000 board-level programming system which reduces the need for extensive mechanical work in interfacing to the board and for complicated software where the board contains ICs other than eproms. With the ICP 9000, the only interface needed is a removable interface adaptor and the software can be written much more easily, by a technician, using a purposedesigned high-level language, so that boards not designed to accept ICP are able to benefit. A library of definition files further reduces the programming needed and facilitates the writing of programs for future requirements. The time taken for the process is said to be reduced from weeks to hours. Stag Programmers Ltd. Tel., 01707 332148; fax, 01707 371503

Software

Interconnection analysis. IPA 510 Interconnect Parameter Analyser by Tektronix is an expansion of the earlier IPA 310. In essence, it models and verifies the interconnections of semiconductor devices on boards and even from the chip to the pins of packages. The system consists of a time-domain reflectometry oscilloscope and associated software. IPA 510 will extract and verify Spice models, perform tdr and td transmission and execute network analysis, presenting true impedance diagrams of purely passive interconnections from zero to 12.5GHz and modelling energy through dissipation or coupling to effects on adjacent traces on the board. Interfaces for Contec-Spice and P-Spice are available and, since the system links measurement and Spice simulation, Spice models can be developed by extracting models from overlay of time-domain results. The oscilloscope used is an 11801B and the software runs under Windows. Tektronix UK Ltd. Tel., 01628 486000; fax, 01628 474799.

Development tools. TNT Embedded ToolSuite by Phar Lap is a set of tools, running under dos or Windows, for the development of 32-bit embedded systems based on the Intel 386/486 family. It supports 32-bit C and C++ compilers from Borland, Microsoft and MetaWare. Facilities include the TNT embedded kernel, *Visual System* Bullder, a 32-bit linker/locator, embedded cross-debugging, C and C++ run-time libraries and a floatingpoint emulation library. Phar Lap Software Inc. Tel., 00 617 876-2972; fax, 00 617 661 1510.

Ice debugger for Windows. Nohau has introduced a Windows-based in-circuit emulator debugger for the 8051 emulator. The debugger uses an unlimited number of windows instead of the common single one, displaying data in up to 12 different forms simultaneously. In this way, the user can view at the same time C source code, disassembled code, data. assembler with comments and more. The debugger comes either as a package with the emulator or as a software update for existing users Nohau UK Ltd. Tel., 01962 733140; fax, 01962 735408.

Fm noise analysis. The fm noise simulation package by Phasor Design includes the facility to determine bit error rate in digital communications systems from carrier-to-noise ratio and the ssb phase noise of oscillators, fm deviation, emphasis and noise weighting being included. It carries out numerical integration in the frequency domain to obtain s:n ratio, numerical summation of the amplitude distribution giving error probability to one bit. The package runs on a pc with a gui, and data files of system characteristics such as phase noise and de-emphasis are included or can be written by the user. Phasor Design. Tel., 01858 432148; fax, 01858 432109.

Instrument-to-program translator. SoftwareWedge takes serial input data from measuring instruments fitted with RS-332, parses it and filters it to suit any application program running on a pc, as though the data were being typed in. In the other direction, keyboard and program instructions to the remote instruments are also translated into the correct form. Dos and Windows versions are available, the Windows version also supporting OS/2, NT and DDE. Kyle Data Service Ltd. Tel., 01292 311169; fax, 10292 318005.

Bare-board tester. FIXpert is a windows-based package to make drill patterns and test programs for the testing of unpopulated printed-circuit boards to design data. Since the 'known good board' approach is not used, the possibility of a fault being perpetuated is avoided. Drill files and their test programs are automatically produced and the whole process of creating the test routine from input to production of files and test program takes under an hour. Dense boards are 100% tested in two passes and double-sided boards are tested for side-to-side connectivity. Circuitest Ltd. Tel., 01903 218086; fax, 01903 218689.

FREE TO SUBSCRIBERS Electronics World offers you the chance to advertise **ABSOLUTELY FREE OF CHARGE!**

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this **free** offer applies to private subscribers only. Your ad will be placed in the first available issue.

This offer applies to private sales of electrical and electronic equipment only. Trade advertisers should call **Malcolm Wells on 0181-652 3620**

All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

		Alexandra and

Please send your completed forms to:

Free Classified Offer: Electronics World, L329, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

COMPUTER ICS TMS 9900NL-40 PULLS £20 ea S900 NEW AMD EQUIVALENT £30 ea TMS 9901NL-40 PULLS £20 ea MC6802 PPOCESSOR 5 AM27C020-125L1 SURFACE MOUNT EPROM USED/WIPED. £1.50 MM16450 UART CHIP £5 ea MA27C020-125L1 SURFACE MOUNT EPROM USED/WIPED. £1.50 MM16450 UART CHIP £20 ea S0031 KWC Xx8) EEPROM Gex eqpt. £2 2817A-20 (2x8) EEPROM Gex eqpt. £2 D41256C-15 256Kt1 PULLS. 9 FOR £5 S0C31 MICRO. £2 P8749H MICRO. £2 D6751-8 NEW £10 MK48202-20 ZERO POWER RAM EQUIV 6116LP £4 VISED 4164-15. £1 USED 4164-15. £1 USED 4164-15. £1 D6051 MICRO. £1.25 B4 4164 SIP MODULE NEW. £8 B051 MICRO. £1.25 B4 4164 SIP MODULE NEW. £8 B051 MICRO. £1.25 B4 4164 SIP MODULE NEW. £8 B4 519 POCOLER CHIPS 1771. £16 <t **COMPUTER ICS** PLOFPT DISCOUNTOCLER OWN OT ALL B8000-B PROCESSOR NEW HD6384-8 ALL USED EPROMS ERASED AND BLANK CHECKED 2716-45 USED 2722-45 USED 2724-45 USED 2724-45 USED 2726-56-30 USED 27C256-30 USED 2702 PROM EX EOPT 264-15 8k STATIC RAM 2804 SIO-0 2726 3/2 DIGIT LOD DRIVER CHIP 2816 A-30 HOUSE MARKED USED TMS2532JL £2.50 USED TMS2532JL £2.50 2708 USED HM6167U-8 68000-10 PROCESSOR 8255-5 3140 CMRS (BCA 5114) £6 £5 \$2 100/£1 £2 100/£1.60 £2 100/£1.60 £3.50 55 70p £2 £2 55 £1.25 £2 ea 52 65p \$65p \$65p

REGULATORS

LM338K	£6
LM323K 5V 3A PLASTIC	£3
LM323K 5V 3A METAL	£3
78H12ASC 12V 5A	£5
LM317H T05 CAN	£1
LM317T PLASTIC TO220 variable	£1
LM317 METAL	£2.20
7812 METAL 12V 1A	£1
7805/12/15/24	
7905/12/15/24	
CA3085 TO99 variable reg.	2/£1
78HGASC+79HGASC REGULATORS	£30 ea
LM123 ST93 5V 3A TO3 REGS	£3 ea
UC3524AN SWITCHING REGULATOR IC	60p

CRYSTAL OSCILLATORS

2M4576 3M6864 5MO 5M76 6M144 7M000 7M3728 8M	00012M000
14M3181 17M6256 16M257 18M000 20M000 23M587 2	4M000
25M175 27M0 27M036 28M322 32M000 33M3330 35M	481640M000
44M4444 44M900 48M000 64M000 1M000 1M8432 4M	000 10M000
16M000 18M432000 19M0500 20M0500 38M10000 56P	4609276M1
B4M0.	£1.50 (

COVETALS

CHISIALS
4M0256 10M368 17M6256 18M432 25M000 28M4694 31M4696 48M000 55M500 111M80 112M80 114M318 114M80 1M0 1M8432 2M000 2M4576 2M77 3M00 3M2768 3M579545 3M58564 3M93216 4M000 4M19304 4M433619 4M608 4M9152 5M000 5M0688 6M0000
6M400 8M000 8M488 9M8304 10M240 10M245 10M70000 11M000 12M000 13M000 13M270 14M000 14M381818 15M000 16M000 16M5888 17M000 20M000 21M300 21M855 22M1184 24M000
34A/368 36M /5625 36M /68/5 36M /81/2 36M /93/5 36M80625 36M81875 36M83125 36M84375 38M900 49M504 54M19166 54M7416 57M75833 60M000 69M545 69M550 BN 26M995 BD27M045 0B72M095 YW27M145 GN27M195 BL27M245
3M225£1 ea TRANSISTORS
MPSA92 10/£1 2N2907A 10/£1 BC477, BC488 10/£1 BC477, BC488 10/£1
full spec. £1 £4/100 £30/1000 BC557, BC238C, BC308B £1/30 £3.50/100 2N3819 FETS short leads 4/£1 2N2907 PLASTIC CROPPED £1/15 £4/100
POWER TRANSISTORS
OC29 £1.35 ea P POWER FET IRF9531 8A 60V 3£1 N POWER FET IRF531 8A 60V 2£1 2SC1520 sim BF259 3£1 100/£22 TIP 141/2 £1 ea TIP 112/42B 2£1 SE9301 100/12D VIDA DARL SIM TIP121 2£1
PLASTIC 3055 OR 2955 equiv 50p. 100/£35 BUZ31 POWER FET TO-220 200V 12.5A. 2/£1
1EXTUOL 2IF SOCKETS 28 PIN USED 23 40 PIN NEW £10 SINGLE IN LINE 32 WAY CAN BE GANGED FOR USE WITH ANY DUAL IN LINE DEVICES COUPLING SUPPLIED 2/£1.50
MISCELLANEOUS 2 VOLT 920 Ahr LEAD ACID CELLS, UNUSED, UNFILLED 18" HIGH

12" × 7", WEIGHT 48Kg each, RUBBERISED CASE, GA	ULTLETED
TUBULAR PLATE CONSTRUCTION, FOR DEEP CYCL	E, HIGH
CURRENT USE, MADE FOR BRITISH NAVY, 800 CELL	S
AVAILABLE, PHONE FOR PRICING ALSO AVAILABLE	FILLED &
CHARGED	
Narrow angle infra red emitter LEDSSC	2/6

larrow angle infra red emitter LED55C	1
IM6116M-2L surface mount 1000 available	11
80B PIO 7000 available £1 each, gty, price 30/50	p
NY65 OPTO ISOL 3000 available	p.
PTO ICS also available TLP550 TLP666GF	
8 way PLCC SKT 1500 available	;h
00 wa PLCC SKT 100 available £1.50 eac	h.
250pF POSTAGE STAMP COMPRESSION TRIMMER £	11
LS93C54P-3 senal Eprom 10,700 available £1,600/lot. £25/100, £1/	/3
M324 (Quad 741) 4/5	1

KEYTRONICS TEL. 01279-505543 FAX. 01279-757656 P O BOX 634 BISHOPS STORTFORD HERTFORDSHIRE CM23 2RX

ALPSMOT	E FERRITE MAGNETS 4x4x3mm ORISED DUAL 47K LOG pots with spindle	, works on
6v-12v		£1.50 ea
TL081 OP A	AMP.	4 for £1
47000u 25v 12 way dil si	V SPRAGUE 36D	£3.50 (£2) £3 for £1
10NF 63V X	K7R PHILIPS SURFACE MOUNT 100K	£30/4000
SWITCHED	MODE PSU 40 WATT UNCASED OTY.	
AVAILABLE	E +5v 5A, +12V 2A, 12V 500mA FLOATIN	£9.95 (£2)
220R 2.5W	WIREWOUND RESISTOR 60K AVAILAB	LE £50/1000
CMOS 555	TIMERS	2/£1
2/3 AA LITH ICM7126CF	PL CMOS 31/2 DIGIT LCD DRIVER CHIP .	£2ea
LITHIUM C	ELL 1/2 AA SIZE	2 FOR £1 CIRCUIT
EUROOM E		£2 ea
"PROTONI	IC 24 VARIBUS" 16.7"×5" FIBREGLASS	125 ea
MULTILAY	ER PTH PCB	£10 ea
290×100m		
ANGLE	96-WAT AVB/C SUCKET PCB RIGHT	£1.30
DIN 41612 DIN 41612	96-WAY A/B/C SOCKET WIRE WRAP PII 64-WAY A/C SOCKET WIRE WRAP PINS	NS £1.30
DIN 41612	64-WAY A/C PLUG PCB RIGHT ANGLE.	£1
DIN 43012		£1
BT PLUG+ MIN. TOGO	LEAD. GLE SWITCH 1 POLE c/o PCB type	
LCD MODU	ULE sim. LM018 but needs 150 to 250V AC	for display
6-32 UNC 5	5/16 POZI PAN SCREWS	£1/100
PUSH SWI	ITCH CHANGEOVER	. £1.25/100
RS232 SEP	RIAL CABLE D25 WAY MALE CONNECT	DRS
25 FEET LO	ONG, 15 PINS WIRED BRAID + FOIL SCI	REENS
AMERICAN	N 2/3 PIN CHASSIS SOCKET	PRICE £30
WIRE END	DED FUSES 0.25A	30/£1 £2/pr
POWERFU	JL SMALL CYLINDRICAL MAGNETS	
SMALL MIC	CROWAVE DIODES AE1 OC1026A	2/£1
D.I.L. SWIT 180VOLT 1	TCHES 10-WAY £1 8-WAY 80p 4/5/6-WA 1WATT ZENERS also 12V & 75V	/ 80p
MIN GLAS	S NEONS	10/£1
STC 47WB	Bost	£1 ea
MINIATUR	IE CO-AX FREE PLUG RS 456-071 IE CO-AX PCB SKT RS 456-093	
PCB WITH	2N2646 UNIJUNCTION WITH 12V 4-POI	E RELAY
400 MEGO	HM THICK FILM RESISTORS	
alloy	AUGES 40 ohm Foil type polyester backed	ea 10+ £1
ELECTRET	T MICROPHONE INSERT	2/£1
	£2.50	100+ £1.50
1 pole 12-w	vay rotary switch	
AUDIO ICS 555 TIMER	S £1 741 OP AMP	£1 ea
ZN414 AM COAX PLU	RADIO CHIP	80p
COAX BAC	CK TO BACK JOINERS	3/£1
1.25" PANE	EL FUSEHOLDERS	3/£1
STEREO C	Small w/e lamps fit most modern cars CASSETTE HEAD	
MONO CA	SS. HEAD £1 ERASE HEAD	50p
THERMAL	FUSES 220°C/121°C 240V 15A	
TO-3 TRAN	NSISTOR COVERS	£3/1000
PCB PINS	FIT 0.1" VERO	200/£1
TO-3 micas	s + bushes	15/£1
Large heat IEC chassis	shrink sleeving pack is plug filter 10A	
POTS SHO	ORT SPINDLES 2K5 10K 25K 1M 2M5	
LM335Z 10	DMV/degree C	£1/5/
LM234Z CO BNC TO 4M	MM BINDING POST SIM RS 455-961	
MIN PCB F	POWER RELAYS 10.5v COIL 6A CONTAC	TS 1 pole
BANDOLIE	ERED COMPONENTS ASSORTED Rs. C	s, ZENERS
LCD MODI	ULE 16 CHAR. X 1 LINE (SIMILAR TO HIT	£5/1000 ACHI
LM10)		100+ 51 63
LOVE STO	ORY' CLOCKWORK MUSICAL BOX MEC	HANISM
MADE BY	SANKYO	£1 ea
10,000uF 1	16V PCB TYPE 30mm DIAx31mm	2/£1
2A CERAN	MIC FUSED PLUG B-LEE L2728	
46 WAY ID	C RIBBON CABLE 100 FOOT REEL	E5+CARR
IEC CHAS		3/01
ASTEC MC	SIS FUSED PLUG B-LEE L2/28	3V 2, 1
T T T T T T T T T	ODULATOR VIDEO + SOUND UM1287 PH DISPLAY 8 RED LEDS	£2.25 £1.50
NES67 PH	ISIS FUSED PLUG B-LEE L2/28 ODULATOR VIDEO + SOUND UM1287 PH DISPLAY 8 RED LEDS IASE LOCKED LOOP	£2.25 £1.50 2/£1
NE567 PH NE564 P8749H US	SIS F OSED FLUE 2728 OULATOR VIDEO + SOUND UM1287 PH DISPLAY 8 RED LEDS MASE LOCKED LOOP SED WIPED	£2.25 £1.50 2/£1 £1 £1

DIODES AND RECTIFIERS	
1N5407 3A 1000V	
10/E1 10/E1 BA158 1A 400V fast recovery	
BY255 1300V 3A	
1A 600V BRIDGE RECTIFIER 44 1 4A 100V BRIDGE 3/C1 6A 100V BRIDGE 2/C1	
10A 200V BRIDGE	
2KBP02 IN LINE 2A 200V BRIDGE REC	
PULSE TRANSFORMERS 1:1+1	5
MEU21 PROG. UNIJUNCTION 3/£1 TRIACS	
NEC TRIAC ACO8F 8A 600V TO220)
TRAL230D 30A 400V ISOLATED STUD)
CONNECTORS D25 IDC PLUG OR SOCKET	
34-way card edge IDCCONNECTOR (disk drive type)	5
BBC TO CENTRONICS PRINTER LEAD 1.5M	-
USED CENTRONICS 36W PLUG+SKT	5
HI BRIGHTNESS LEDS COX24 RED	
2N5777	1
AN25, OPTO ISOLATOR	2
MEL12 (PHOTO DARLINGTON BASE rvc) 500 LED's RED 3 or 5mm 12/21	5
FLASHING RED LED 5mm 50p. 100/£40 HIGH SPEED MEDIUM AREA PHOTODIODE RS651-995. £10 ez)
STC NTC BEAD THERMISTORS G22 220R, G13 1K, G23 2K, G24 20K, G54 50K, G25 200K, RES 20°C	
FS22BW NTC BEAD INSIDE END OF 1" GLASS PROBE RES 20"C 200R	a
A13 DIRECTLY HEATED BEAD THERMISTOR 1k res. ideal for audio Wien Bridge Oscillator	a
CERMEI MULTITURN PRESETS %4" 10R 20R 100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 200K 500K 2M 500 2K 2K2 2K5 5K 10K 47K 50K 100K	a
	-
8-WAY DIL SKITS	1
POLYESTER/POLYCARB CAPS 330nF 10% 250V AC X2 RATED PHILIPS TYPE 330	0
100n, 220n 63V 5mm. 20/£1 100/£ 10/15n/22n/33n/47n/66n 10mm rad. 100/£3,5 100n 260/k radial 40mm 100/£3,5	3
100n 600V Sprague axial 10/£1 100/£6 (£1 2µ2 160V rad 22mm, 2µ2 100V rad 15mm)
10/03/04/1/200V AC X rated 15mm	a 6
0.22µ 250V AC X2 RATING	1
HE BITS SAW FILTERS SW662/SW661 PLESSEY SIGNAL TECHNOLOGY	
5/53.5MH2	1
STOCK £1.50 MARCONI MICROWAVE DIODES TYPES DC2929, DC2962, DC4239E1/#2	0
XTAL FILTERS 21M4 55M0 £2 ei ALL TRIMMERS 3 for 50	p
VIOLET	0
TRANSISTORS 2N4427, 2N3866. 80p et CERAMIC FILTERS 4M5/6M/3M/10M7 60p et FEFD THEIL CERAMIC CAPS 10000F 60p et	a
SL610	5
(BF T51 THANSIS TOH CAN SIZE) 2N2222 METAL 5/2 P2N2222A PLASTIC 10/2	1
2N2369A	1
MONOLITHIC CERAMIC CAPACITORS	0
100n 50V 2.5mm or 5mm	5
100n 50V dll package 0.3" rad	8
QUARTZ HALOGEN LAMPS 12V 50watt LAMP TYPE M312	a
6V 50watt£	1

SEND £1 STAMPS FOR CURRENT IC+SEMI STOCK LIST – ALSO AVAILABLE ON 3½° FLOPPY DISK MAIL ORDER ONLY MIN. CASH ORDER 55.00. OFFICIAL ORDERS WELCOME UNIVERSITIES/COLLEGES/SCHOOLS/GOVT. DEPARTMENTS MIN. ACCOUNT ORDER 101.00 P&P AS SHOWN IN BRACKETS (HEAVY ITEMS) OTHERWISE 95p ADD 171/2% VAT TO TOTAL ELECTRONIC COMPONENTS BOUGHT FOR CASH

CLASSIFIED

TEL 0181 652 3620

FAX 0181 652 8956

RECRUITMENT

ADVERTISEMENT AGENT REQUIRED

THE RADIO SOCIETY OF GREAT BRITAIN seeks to appoint an independent advertisement agent to handle the advertising space in its publications, principally the magazine Radio Communication.

Radio Communication is the UK's leading title targeting the licensed radio amateur. Published monthly and circulated to 31,000 members, it is a 100-page, A4 colour production carrying on average 30% of content as display and classified advertising pages.

Applications are sought solely from prospective agents with relevant experience and capability. It will be a significant advantage to be the holder of a current amateur radio licence or to have a practical knowledge of electronics terminology. This is not an opportunity to learn on the job!

The agency responsibilities will include:

- 1 Marketing of the space to the trade and agencies.
- 2 Production work, technical copy writing, layout and typography for trade setting or with own DTP system.
- 3 Page make-up, proofing, classifieds and setting-house liaison.
- Administration of orders, schedules, charging out (via RSGB). 4
- 5 Provision of professional advice to the Society and an impartial complaints service to members and advertisers.

The agent will act independently on all routine matters but will be contracted as an agent in law. Remuneration will be by commission only. Applications will be considered from established professionals and those with the experience who may choose to take this opportunity to open a new and suitably financed venture.

Applications should be made in writing with an outline of relevant professional experience and supporting facilities. Total confidentiality will be observed. Marking your letter 'CONFIDENTIAL' please write to the General Manager at:

Radio Society of Great Britain

Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE

ELECTRONICS VALVES & SEMICONDUCTORS

Phone for a most courteous quotation

We are one of the largest stockists of valves etc. in the U.K.

COLOMOR **ELECTRONICS LTD** 170 Goldhawk Road, London W128HJ England. Tel: 0181 743 0899 Fax: 0181 749 3934

DISTRIBUTORS WANTED

DISTRIBUTOR **INQUIRIES INVITED** Small, expanding manufacturer of PC-based test and measuring instrumentation wants aggressive distributors in UK and Germany.

Allison Technology Corporation 8343 Carvel, Houston, TX 77036 U.S.A. Tel: 713-777 0401 Fax: 713-777-4746

DESIGN SERVICES

Software Design: High and Low Level. Hardware Design: Analogue, Digital, Micro and Embedded. PCB, Schematic and Production Drawings Prototyping and Feasibility services.

Archimedes Custom Equipment: Tel 0974 282670

ARTICLES WANTED

WE WANT TO BUY !!

IN VIEW OF THE EXREMELY **RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH** MATERIALS AND WOULD **APPRECIATE A TELEPHONE** CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. **TELEPHONE** 081-445-2713/0749 FAX 081-445-5702.

WANTED

High-end Test Equipment, only brand names as Hewlett-Packard. Tektronix, Rhode & Schwarz, Marconi etc. Top prices paid. Please send or fax your offer to:

HTB ELEKTRONIK Alter Apeler Weg 5,

27619 Schiffdorf, West Germany TEL: 01049 4706 7044 FAX: 01049 4706 7049

BBC COMPUTERS and/or software needed by Nanhurst School and chil-dren's hospital. Please donate unwanted kit. Ring Douglas Hainline on 0483 275121

WANTED

High-end Test, Communication & Computer Equipment. Top prices paid. Please send or fax your offer to: Steigerwald GmbH Neusserstrasse 9, 80807 Munich South Germany Tel: 01049 89 3615833 Fax: 01049 89 3615899

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. M&BRADIO M& B RADIO 86 Bishopgate Street, Leeds LS1 4BB Tel: 0532 435649 Fax: 0532 426881 9956

PURCHASE FOR CASH

SURPLUS - OBSOLETE - REDUNDANT - EXCESS stocks of electronic, electrical components/accessories, part processed and/or finished products. Please submit preliminary information or lists for immediate response to:

K.B. COMPONENTS, 21 Playle Chase, Gt Totham, Maldon, Essex CM9 8UT Telephone 0621-893204. Facsimile 0621-893180

CLASSIFIED

TEL 0181 652 3620

FAX 0181 652 8956

VISA

ARTICLES FOR SALE

Cooke International SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. *ALWAYS AVAILABLE*

ORIGINAL SERVICE MANUALS FOR SALE COPIES ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME, SEND LARGE "A3" S.A.E. + 50P POSTAGE FOR LISTS OF EQUIPMENT AND MANUALS.

ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS SHIPPING ARRANGED

OPEN MONDAY-FRIDAY 9AM-5PM

Cooke International

ELECTRONIC TEST & MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB

Tel: (+44) 01243 545111/2

Fax: (+44) 01243 542457

EQUIPMENT & ACCESSORIES PURCHASED CIRCLE NO. 147 ON REPLY CARD TURN YOUR SURPLUS TRANSISTORS, ICS ETC, INTO CASH Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. *Contact:* COLES-HARDING & CO, Unit 58, Gueens Road, Wisbech, Cambs. PE13 2PQ ESTABLISHED OVER 15 YEARS Buyers of Surplus Inventory Tel: 01945 584188 Fax: 01945 475216

TO ADVERTISE HERE PLEASE CALL MALCOLM WELLS ON 0181 652 3620

FREE CLASSIFIED

WANTED: SOUJET-Russian "spy" radio. Clandestine sets, all eras. Offer, swap or cash. 028RO R. Otterstad, Hosterkobvej 10, DK-3460 Birkerod. E-mail: Danmec Q iNET.UNI-C. DK.

MAINS POWER conditioner, 1250w type RS208-361, unused, mint, £200 ono. Buyer collects or carrier. Phone Rasik 0438 748711, evenings only.

WANTED: PRE-WAR TELEVISION. Jac Janssen, Hogeham 117D, NL-5104 JD Dongen, Netherlands. Tel: 01031 1623 18158; Fax (office): 01031 13 624664.

WANTED: User books and commercial software for the Osborne 01 computer, will also consider buying a second machine. Andrew Emmerson, 71 Falcutt, Way, Northampton NN2 8PH. Tel: 01604-844130.

SALE OR SWOP for 486PC, HP8405A, 1MH-1GHz vector voltmeter complete with 11570A kit. Offers Pericom Graphics Terminal £50 ono. Tel: 0767 680268.

SUPERMAG, patented magnetic antenna equipped with 2.5m mini-lowloss cable for best electrical and mechanical performance. Carant AntennAB, Sweden. Tel: +46 87680365 Fax: +46 87920677. PCB ASSEMBLY frames (radio spares), small £20, large £25. Please telephone 01705 818034 (Portsmouth).

WANTED Operating manual for Boonton Radio 260A QMeter. Debrabandere Ommegangstr 14, 9690 Kluisbergen, Belgium 00-32-55-388968.

WANTED: 178 Tektronix plug-in for 577 tracer and IC test fixtures manuals. Sagnard, 47 Rue de la Procession, 75015, Paris. Tel/fax: 33 14056 30 24.

COLLECTION OF "WIRELESS WORLD" 1936-1979. Interested? Please contact: 0181-946-9449.

1.5KW HARMER SIMMONS switchmode power supply. 198V-264V A.C. I/P 52-58V 28A O/P, with manual. As new £60. J. Jeffery 0171-873-2735.

WANTED. WWII R1155. Any condition or any parts. Could collect, reasonable price as retired. Search attics, cellars. Lawdham, London 0171 352 4174.

INDEX TO ADVERTISERS

	PAGE		PAGE
Airlink Sales Co.	389	Kestral Electronic Components	438
Amdat	427	Keytronics	444
AMI	400	Lab Center	414
Anchor Surplus Ltd	378	Langrex Supplies Ltd	409
Barnes Elliott Ltd	386	M & B Radio (Leeds)	400
BK Electronics	417	Microgen Electronics	384
Bull Electrical	429	MOR Electronics	380
		MQF Electionics	302
Chelmer Valve Co.	390	Number One Systems	390
Citadel Products Ltd	IFC	OEMA	396
Cricklewood Electronics	390	Olson Electronics Ltd	371
Crossware Products	409	Powerware	389
Dataman	BC	Premier EDA Solutions	384
Display Electronics Ltd	367	Ralfe Electronics	448
Display Diotromos Eta	507	Robinson Marshall (Europe) Ltd	362
Field Electric Ltd	400	Seetrax Ltd	417
Grandata Ltd	380	Smart Communications	409
	500	Stewart of Reading	417
Halcyon Electronics	438	Surrey Electronics	422
Interconnections	389	Telford Electronics	438
IOSIS	386	Telnet	422
	500	Those Engineers Ltd	427
John Morrison (MICROS)	427	Triangle Digital Services	384
Johns Radio	413	Isien Ltd	382
JPG Electronics	422	Ultimate Technology Ltd	IBC

446

CONTRACT VACANCIES

RF Design ATE Engineer Senior RF Eng RF Engineer RF Design RF Design Antenna Technician Test Engineer RF Design Approvals Test Software Engineer Microstrip antenna techniques Design/development FM modulation, CCT to 3GHz Mobile comms Mobile comms To 500MHz Ideally Royal Signals trained 458MHz, SMT dense Amps to 1GHz UHF private mobile radio C, mobile comms

BCO524 Oxon Berkshire **BCO476** Hants SCO389 Hants **BCO401** Cambs **BCO478** Berks **BCO534** Hants **BCO534** Hants BCO541 Cambs **BCO535** Wilts SCO405 Surrey **BCO527**

ALL CONTRACTORS PAID WEEKLY BY BACS

PERMANENT VACANCIES

RF Design Engineer Microwave Engineer Test Engineer System Test Engineer Snr Design Engineer Digital VLSI Design RF IC Design Analogue IF Design Product Systems Des Circuit des (1GHz), telecomms MICs/RF antennas RF PCB fault-find mobile comms GSM/DCS systems HF/EHF GSM, PCN, VHDL, ASICS Filters, low noise/IF amps High level modelling, BICMOS Hardware systems design, GSM

£30k	Various	BP0251
£27k	M4 corridor	BPO307
£17k	Hants	BP0224
Eneg	M4 corridor	BP0287
Eneg	M4 corridor	BP0204
Ineg	Wilts	SP0268
Eneg	Wilts	SP0268
lneg	Wilts	SP0268
ineg	Hants	SP0281

CALL TO DISCUSS OTHER PERMANENT OPPORTUNITIES

Latest Vacancies on Internet; http://www.cityscape./co.uk/users/cI87/index.html.

92 Broadway Bracknell Berks RG12 1AR Tel: 01344 489489 Fax: 01344 489505 E.Mail: cl87@cityscape.co.uk

161 Bitterne Road West Southampton Hants SO18 1BH Tel: 01703 229094 Fax: 01703 220326

Offices in London, Brussels, Manchester, Birmingham, Bracknell, Stevenage, Southampton, Crawley

Established 1977.

FRES MEMBER.

Managing Director: Roger Howard C. Eng. M.I.E.E.

CIRCLE NO. 148 ON REPLY CARD

ELECTRON

Contact Malcolm Wells on 0181-652 3620

A regular advertising feature enabling readers to obtain more information on companies' products or services.

The system 2000 is an ideal programmer for the production environment. Fast programming results in high throughput and rigorous verification leads to improved quality control. Single key functions and checks against misoperation facilitates its use by unskilled staff.

MOP ELECTRONICS LTD. Tel: 0666 825146 Fax: 0666 825141 CIRCLE NO. 149 ON REPLY CARD

NATIONAL INSTRUMENTS **1995 CATALOGUE**

The 1995 National Instruments catalogue describes more than 900 software and hardware products. Engineers and scientists can use these to develop integrated instrumentation systems for test and measurement process monitoring and control, using industry-standard personal computers and workstations.

NATIONAL INSTRUMENTS FOR FURTHER **INFORMATION CALL** 01635 523545

CIRCLE NO. 150 ON REPLY CARD

OLSON ELECTRONICS LIMITED is

a leading manufacturer in the field of

1995 MASTER PRODUCT CATALOGUE NOW OUT! Test and instrument control solutions. Test and instrument control solutions. 48 pages of full description and technical data on our own range of solutions to your PC and PS2 interfacing problems; IEEE488 (GPIB) * DIO * Timer/Counters * RS232 * RS422/485 * AD * DIA * plus Opto Isolated versions. New Parallel/Serial RS232, Opto Dual RS232, Motion Control, Converter and Repeater for 1995! Converter and Repeater for 1995! Converter and Repeater for 1995! ISO 9001 Quality guarantee & UK design and manufacture & 36 month no-quibble warranty & Telephone hotline support & Competitive pricing on the page & Intelligent solutions — friendly service & BRAIN BOXES Unit 3f Wavertree Boulevard South

Wavertree Technology Park Liverpool L7 9PH CIRCLE NO. 151 ON REPLY CARD can be bought direct from OLSON.

Olson Electronics Limited Tel: 081 885 2884 Fax: 081 885 2496

CIRCLE NO. 152 ON REPLY CARD

FROM CONCEPT TO ARTWORK

Your design ideas are quickly captured using the ULTIcap schematic design Tool. ULTIcap uses REAL-TIME checks to prevent logic errors. Schematic editing is painless; simply click your start and end points and ULTIcap automatically wires them for you. ULTIcap's auto snap to pin and auto junction features ensure your netlist is complete, thereby relieving you of tedious netlist checking.

ULTIshell, the integrated user interface, makes sure all your design information is transferred correctly from ULTIcap to ULTIboard. Good manual placement tools are vital to the progress of your design, therefore ULTIboard gives you a powerful suite of REAL-TIME functions such as, FORCE VECTORS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout

> Now you can quickly route your critical tracks. ULTIboard's REAL-TIME DESIGN RULE CHECK will not allow you to make illegal connections or violate your design rules. ULTIboard's powerful TRACE SHOVE, and REROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vias and surface mount designs are fully supported.

> > If you need partial ground planes, then with the Dos extended board systems you can automatically create copper polygons simply by drawing the outline. The polygon is then filled with copper of the desired net, all correct pins are connected to the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTIboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, or the whole board. ULTIboard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.

ULTIboard's backannotation automatically updates your ULTIcap schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate pen / photo plots, dot matrix/laser or postscript prints and custom drill files.

CIRCLE NO. 102 ON REPLY CARD

ULTIboard PCB Design/ULTIcap Schematic Design Systems are available in low-cost DOS versions, fully compatible with and upgradable to the 16 and 32 bit DOS-extended and UNIX versions, featuring unlimited design capacity.

iii

special bundle deals rowers call now to The best by design

(AP)

ELIFTI

FITI FFFF#10000

S4'S VITAL STATISTICS:

- Totally handheld programmer/emulator
- Fast approved programming algorithms; eq. program and verify: National 27C512 in 16 seconds AMD 29F010 in only 90 seconds
- EPROMs to 8Mbit, 5v, 1/2v and BOOT-**BLOCK FLASH, EEPROMs and PEROMs**
- Three year parts and labour guarantee
- Free next day delivery (UK only)
- 30 day trial available (UK only)
- Full 24 byte on-screen editor
- Continuous programming whilst charging (nonstop operation)
- Moulded designer case feels as good as it looks
- Rubberised colour-coded full travel keypad
- Big, easy-view 80 character supertwist LCD
- Optional modules available to program PICs, 8751, 16-bit EPROMs, Toshiba 4-bit, **Hitachi H8**
- Optional sockets for programming and emulating PLCC devices

S4's 32 pin ZIF socket programs a huge library of 8 & 16bit EPROMs, **EEPROMs, FLASH, PICs and other** popular microcontrollers using manufacturers approved algorithms. Our free and easily updatable device library enables users to always have the latest software installed. During our sixteen years of designing and selling innovative and fast programming solutions to industry, Dataman has never charged for software updates or technical support.

Built in emulation enables you to see your code running before committing yourself to an EPROM. Load your program from an EPROM or download

code from your PC into S4's memory. Plug S4's emulation lead into the target

system, press the emulation key and run the system. Changes can be made using S4's powerful editor, and you can re-run the code to test and confirm changes. When the code is proved to be working, it can then be programmed to a fresh ROM.

The S4 package comes complete with mains charger, emulation leads, organiser-style instruction manual, PC software and a three year guarantee. S4 is always available off the shelf and we ship worldwide on a daily basis. Call now for delivery tomorrow!

CIRCLE NO. 103 ON REPLY CARD

guarantee 30 day trial 4Mbit upgrade £39 plus VAT

FREE software upgrades for life

Actual size: 186 x 111 x 46mm Weight: 515g

FREE emulation leads

EPLIT GHUFF EMUL

GEEK WEIL GWAP

FILL EVA EDIT

FREE custom terminal software

Bona-fide UK customers can try S4 for thirty days without risk. 18,000 satisfied users worldwide can't be wrong!

Station Road, Maiden Newton Dorset, DT2 0AE, UK, Tel: 01300 320719 Fax: 01300 321012 Telex: 418442 BBS: 01300 321095 Modem: V.34/V.FC/V.32bis

22 Lake Beauty Drive, Suite 101 Orlando, FL 32806, USA Tel: (407) 649-3335 Fax: (407) 649-3310 BBS: (407) 649-3159 24hr Modem V32bis/16.8K HST

IV