Denmark DKr. 65.00

CAD disk

For the first 1000 replies
Migrating to C++

Single-chip fm receiver

Oscillators for uhf

Capturing transients

CAD soffware for Maths
modelling

Bipolars or fets for audio?

ELECTRONIGS
on the ro, od

FROM THE MAKERS OF THE WORLDS BEST SELLING UNIVERSAL PROGRAMMING AND TESTING SYSTEM

* Ability to program 3 volt devicas.
* Calibration software to comply with ISO9000.
* Batch software for production programming.
* High quality 42 pin Textool zero insertion force sockets.
* Rugged metal housing and heavy duty screened cable.
* Ground control circuitry using relay switching.
* Protection circuitry to protect against wrong insertion of devices.
* Speed optimised range of programming algorithms.
* Supplied with MICROTEC disassemblers for Z8, 8085, 8048, 8051, 6809 \& 68HC11.
NOW ONLY £469

ORDERING INFORMATION

Expro-80 complete with interface card, cable, software and manual

only $£ 469$

Please add $\mathbf{f \&}$ carriage (by overnight courier) for UK orders, $\mathbf{£ 3 0}$ for export orders and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO. Official orders are welcome from Government bodies and local authorities.

> CITADEL PRODUCTS LTD DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Our stocked range of own manufactured and imported Sunshine products include:

* Super fast EPROM Erasers.
* 8Mbit EPROM Programmers:
ie: $\quad 1$ gang $£ 149$
4 gang $£ 229$
8 gang £399
* Batfery operated portable EPROM programmers.
* "In circuit" Emulators.
* Handy pocket IC testers.

The Sunshine Expro-80 Universal Programmer and Tester is the 42 pin version of the immensely popular Expro-60/PC-82. Following that success, the Expro-80 is a PC-based development tool designed to program and test more than 2000 ICs. The culmination of over 8 years production experience has resulted in perfecting this rugged, classically designed programmers' programmer.

Volume production has now enabled us to offer this powerful programmer at a very competitive price for a product of such high quality. The Expro-80 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the Expro-80 for their own use!

The Expro-80 can program E/EPROM, Serial PROM, BPROM, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX and MPU. It comes with a 42 pin DIP/SDIP socket capable of programming devices with 8 to 42 pins. It even supports EPROMs to 16 Mbit , the PIC16 series of MPUs and many many more without the need of an adaptor. Adding special adaptors, the Expro-80 can program devices up to 84 pins in DIP, PLCC, LCC, OFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS $40 / 45$ series, DRAM (even SIMM/SIP modules) and SRAM. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user. The Expro-80 can even check and identify unmarked devices.

The Expro-80's hardware circuits are composed of 42 set pin-driver circuits each with control of TTLI/O and "active pull up", D/A voltage output, ground, noise filter circuit and OSC crystal frequency.

New features include negative programming voltages, 3 volt programming ability, protective circuitry for ICs incorrectly inserted, calibration software to comply with ISO9000, new six layer PCB and voltage clamping to banish noise and spikes.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all types of PC. In addition, there is now the Link-P1 enabling the programmer to be driven through the printer port. Ideal for portables and PC's without expansion capability.

The pull-down menus of the software makes the Expro-80 one of the easiest and most userfriendly programmers available. A full library of file conversion utilities is supplied as standard.

Sunshine's team of over 20 engineers are continually developing the software, enabling the customer to immediately program newly released ICs.

Citadel, a 33 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

Electronic systems keep this car going in a straight line on ice at $50 \mathrm{~km} / \mathrm{h}$ - page 372.

CONTENTS

372 ELECTRONICS ON THE ROAD

Eric Russel looks at electronic systems that automotive manufacturers are planning for tomorrow's cars.

379 MODEL SOFTWARE FOR PROBLEM SOLVING

Maple \mathbf{V} is the latest version of a modelling package capable of solving equations analytically, and much more, explains Alan Brown

387 FETS VERSUS BJTS

How would bipolar transistors have been perceived by audio designers had they been invented after power mosfets asks Douglas Self?

391 DELAYED AUDIO SIGNALS

Ben Duncan argues that too few designers consider delays throughout the entire audio reproduction chain when they debate system performance.

396 MIGRATING TO C++
$\mathrm{C}++$ is much more than an extension of C, but Gerard Maloney warns that getting the best from it involves more than simply buying new software.

402 TRANSIENT STORAGE FOR ANALOGUE SCOPES

Capturing transients in digital form and displaying them on an analogue oscilloscope is much cheaper than buying a digital storage

410 LOW POWER SINGLE CHIP FM RECEIVER

Ed Baker describes an fm receiver based on a chip that saves power by automatically disconnecting the audio amp when not in use.

415 FREE DISC OFFER
Details of Smash - a mixed analogue/digital circuit design package free to the first 1000 readers.

418 OSCILLATING AT UHF
Ian Hickman discusses the often conflicting requirements of oscillators for uhf.

430 CIRCUIT ROUND UP

Eight circuit ideas, among them a crystal oven controller and a fast peak rectifier.

REGULARS

363 COMMENT
A sad foresight saga
NEWS
Polymer transistors and silicon coils.
RESEARCH NOTES
Lighter batteries, new life for sea cable.
424 CIRCUIT IDEAS
Mains fault monitor, 1.3 GHz prescaler.

434 LETTERS

UK mains changes, audio debate.
439 NEW PRODUCTS
Pick of the month - classified for convenience

Cover Illustration Hashim Akib

Solar winds cause electricity supply problems, but new research could help make them more predictable page 370.

Mathematical modelling software Maple V even produces animation, which can help provide an insight into temporal behaviour. - page 379.

Next month:

Douglas Self presents a completely new amplifier concept, Steve Webb describes a low-cost video digitiser, Cyril Bateman explains Internet and Jeff Macaulay describes the microreflex loudspeaker that we were unable to publish last month. JUNE ISSUE - ON SALE 25 May

MIXED-MODE SIMULATION. THE POWER OF VERSION 4.

Analog, Digital \& Mixed Circuits

Electronics Workbench ${ }^{*}$ Version 4 is a fully integrated schematic capture, simulator and graphical waveform generator. It is simple to mix analog and digital parts in any combination.

Design and Verify Circuits... Fast!

Electronics Workbench's simple, direct interface helps you build circuits in a fraction of the time. Try what if scenarios and fine tune your designs painlessly.

Electronics Workbench

More Power

Simulate bigger and more complex circuits. Faster. On average, Electronics Workbench Version 4 is more than 5 times faster than Version 3.

More Parts

Multiple parts bins contain over twice the components of Version 3.

More Models

Over 350 real worid analog and digital models are included free with Electronics Workbench. And, if you need more, an additional 2,000 models are available.

Incredibly Powerful. Incredibly Affordable.

If you need mixed-mode power at a price you can afford, take a look at this simulator and graphical waveform generator that mixes analog and digital with ease.

True mixed-mode simulation: Simultaneous AM transmission, digitization and pulse-code modulation of a signal.

With over 20,000 users world-wide, Electronics Workbench has already been tried, tested and accepted as an invaluable tool to design and verify analog and digital circuits. With Version 4 true mixed-mode simulation is now a reality with incredible simplicity.

Electronics Workbench ${ }^{\text {rM }}$

 The electronics lab in a computer ${ }^{\text {TM }}$
Order Now! Just £199* 44-(0)1203-233-216

RG Robinson Marshall (Europe) Ple

Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF Fax: 44 (0)1203 233-210
\section*{E-mail: rme@cityscape.co.uk}
Shipping charges UK £5.99. All prices are plus VAT. All trade marks are the property of their respective owners. Electronics. Workbench is a trademark of Interactive Image Technologies Ltd., Toronto, Canada.
- 30 Day money-back guarantee

EDITOR

Martin Eccles
0181-6523128

CONSULTANTS

Jonathan Campbell
Philip Darrington
Frank Ogden

DESIGN \&

PRODUCTION
Alan Kerr

EDITORIAL

ADMINISTRATION
Jackie Lowe
0181-6523614
E-MAIL ORDERS
jackie.lowe@rbp.co.uk
E-MAIL ENQUIRIES
martin.eccles@rbp.co.uk

ADVERTISEMENT

MANAGER
Richard Napier
0181-652 3620
DISPLAY SALES
EXECUTIVE
Malcolm Wells
0181-652 3620
ADVERTISING
PRODUCTION
Christina Budd
0181-652 8355
PUBLISHER
Mick Elliott
EDITORIAL FAX
0181-652 8956
CLASSIFIED FAX
0181-6528956
SUBSCRIPTION hOTLINE
01622721666
Quote ref INJ

SUBSCRIPTION

QUERIES
01444445566
NEWSTRADE
DISTRIBUTION
Martin Parr
01816528171
BACK ISSUES
Available at $£ 2.50$
ISSN 0959-8332

REED
REED
BUSBINESS
PUBLSHING

A sorry foresight saga

Academic scientists have always had a disproportionate influence on the UK government's attitude to technology. That could be one reason why we have such a tiny microelectronics industry in the UK.
Earlier this month, the ITEC (Information Technology and Electronics) panel of the Government's Foresight programme looking at the UK's technological future, decided to write off the UK semiconductor industry.
As with the Alvey catch-up technology programme of the 1980s, the ITEC panel was dominated by academic scientists. Of the 25 man panel, 11 are working academics at universities, others are of an academic bent working on the boundaries of academia, and industry and not one of the 25 is a career semiconductor man.
The panel's principal microelectronics recommendation - that the UK needs a microelectronics R\&D centre on the lines of the IMEC microelectronics research centre at the University of Leuven - will leave those people in the UK who struggle to make a living out of semiconductors, gasping for breath at its irrelevance.
The misdirection of government aid for the microelectronics industry has resulted in the UK having a chip industry made up mostly of design houses. These companies have world-class design skills - but they have nowhere in the UK to go to get leading-edge manufacturing services to turn their world-class designs into world-class products.
At a conference organised by the Federation of the Electronic Industry a couple of years back, delegates bemoaned the fact that there was no accessible, sympathetic British foundry facility where they could go for leading edge silicon - except for GEC Plessey Semiconductors (GPS). But now GPS has adopted a strategy of staying a year or two behind the leading technological edge, not even that exists.
But ITEC does not even purport to be aiming its microelectronics centre at helping the UK semiconductor industry - it is
intending it as a support facility for inwardly investing foreign semiconductor companies. In effect, ITEC does not see the UK semiconductor industry as worth support and does not regard an indigenous capability to manufacture first-class silicon as being of any importance.
Instead, the scientists of ITEC are directing the Government's thinking to other spheres how to use the rapidly accelerating power of computers and the Information Superhighway to deliver the UK's undoubted strength in media products to Britain and to the world.
This is proper work for scientists! Conceptual, theoretical, intellectual stuff on which papers can be written, conferences attended and jobs for more scientists created.
But will it deliver any useful, practical technology to help the many entrepreneurial UK design houses or encourage the start-up of new high tech businesses? As with Alvey and with all previous scientist-driven initiatives, one doubts it.

Electronics Worid + Wireless World is published monthly. By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$. Orders, payments and general correspondence to L333, Electronics World + Wireless Worid, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. T|x:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group.
Newstrade: Distributed by Marketforce (UK) Ltd, 247 Tottenham Court Road London W1P OAU 0171 261-5108. Subscriptions: Quadrant Subscription Services, Oakffeld House, Perrymount Road, Haywards Heath, Sussex RH16 House, Perrymount Road, Haywards Heath, Sussex RH16
3DH. Telephone 01444445566 . Please notify change of 3DH. Telephone 01444445566 . Please notity change of
address. Subscription rates 1 year (normal rate) £30 UK and £43 outside UK.
USA: $\$ 52.00$ alrmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42nd Street, NY 10117.

Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Bames, Reed Business Publishing Lid, 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080. T1× 23827.
USA malling agents: Mercury Airfreight International Lid Inc, 10(b) Englehard Ave, Aveneł NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to
above.
Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate, Carlisle. Cumbria, CA2 7NR
Typeset by Wace Publication Imaging 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT

Focus on polymer transistors

With an all-polymer fet, it is easiest to begin with the insulating layer. This needs to have high homogoneity and good dielectric properties. Such fets could prove very useful for flat-panel display and smart-card type applications.

At least five major electronics firms are developing products based on all-polymer transistors, amid claims that the technology could eclipse amorphous silicon in applications such as flat panel displays and smart cards by the end of the century.
Japanese giants Matsushita and Mitsubishi, US-based Motorola and IBM and European firm Philips are

working on all-polymer transistor systems. Matsushita and Mitsubishi have already published research papers on the subject, and Mitsubishi is rumoured to be very close to producing the world's first all-polymer-transistor based flat panel display type for laptops.
FLexible polymer transistors have been pioneered by a team of researchers at the CNRS centre in France, led by Francis Garnier. The team has been working on the devices for the last five years, but now the technology is being taken up by electronics giants worldwide.
The main advantage of polymer transistors over silicon ones is their flexibility, which may allow complete bending or rolling without affecting their electrical properties. They should also be cheap to make in volume, and the devices can be made transparent, suitable for windshield applications in planes and cars. "Organic semiconductors will be available at lower cost", insisted Garnier. "They can be applied with web printing techniques and this will open the field for cheap, flexible electronics".
At present, polymer transistors are slower, larger and have lower output current than silicon transistors but these characteristics are expected to be improved with further development. Garnier
expects the first commercial products, probabLy in the form of displays for domestic appliances, as soon as 1996 / 7 and for these lowend applications to open the way for large-area, low-cost polymer electronics systems.
Unlike earlier work, where only the substrate was made of polymer, the latest transistors also have polymer-based electrodes made from graphite-based ink.
Svetlana Josifovska
Electronics Weekly

Video on the radio

Engineers at Racal Radio have developed a video compression technique said to be efficient and robust enough to transmit pictures reliably over a radio link. The technique, designed for immediate application in military surveillance systems, can transmit a real-time video stream over a $25 \mathrm{kHz} 16 \mathrm{kbit} / \mathrm{s}$ radio link.
The compression algorithm used is a Racal-developed version of the lapped orthogonal transform, coupled to an error resistant entropy code. The combination is said to be able to recover from 20 percent data loss. For worse losses, rather than an image failure, there is a gradual degradation of the received image quality as the channel error rate increases.

Low cost route to silicon modelling

A s feature sizes continue to shrink and devices become more complicated, chip designers may have to resort to virtual reality techniques in which they can literally immerse themselves in a 3D simulation of a chip, according to a top researcher.
Interactions between electrons and the edge of devices have become more important in determining chip performance. These require complex equations to model the effects, which is why the key to 3D simulations will be the development of very fast, cheap parallel computers capable of
processing millions of equations. Stanford University researchers, working with scientists at IBM, claim they have developed special algorithms that boost the performance of low cost parallel computer systems without the need to build specialised parallel computer systems costing tens of millions of dollars. The researchers have demonstrated the ability to solve 1.5 million equations at a speed of 9.5Gflops using an IBM Powerparallel SP-2 computer.
Robert Dutton, professor of electrical engineering and chief scientist at Stanford University's

Center for Integrated Systems says that, "At these rates, 3D will take about the same time to run as current two-dimensional simulations".
The new algorithm has been incorporated into Pisces - a commercial program that simulates the behaviour of microscopic electronic elements in complex semiconductors.
Dutton said the algorithm could be ported to desktop workstations where it can speed up 2D chip modelling tasks. Stanford has said it will license its technology to other companies.

Philips/Sony fight back on high density CD

The chances of Philips and Sony conceding victory to Toshiba in the battle of high-density cd systems seem remote. Philips has been mounting a major information offensive in support of its system with demonstrations at CeBIT, the Audio Engineering Society convention in Paris and its home base, Philips Research Laboratories in Redhill.
Players using the single-sided dual-layer system will be on sale next year, Philips promises, whether the film industry supports it or not. Increasingly Philips/Sony are looking to the professional computer market - a potentially much larger user base - to back the system. "We do not believe this is a technology which is a mass market proposition that's just around the corner," said John Hawkins, world head of Philips Media Distribution, at Redhill.
The demonstrations revealed some aspects of capability, such as the dual-layer system which was first used on Laserdiscs as far back as 1977, but also showed the complexity of the agenda which Philips is now grappling with. Although it needs to counter the Toshiba double-sided system, Philips also wants to create some space for the development of CDi , assisted by existing MPEG I CD Video. Hence its insistence on the high initial cost of high-density which, it contends, will preclude mass sales to begin with
MPEG 2 will require four times as much memory as MPEG 1, and far greater processing complexity, to say nothing of the HD drive and new laser and optics. All of these combined will push the price of

Dual layer construction of Philips high-density CD system, whose complexity indicates initial take-up by the computer, not consumer, industry. Light beams will need to be focused separately on the two layers; each layers offers different read-out characteristics.

hardware up into the no-go area, well above $£ 400$.
Thus, initial uptake of high density technology is likely to be by the computer, rather than consumer, community, where increased storage capacity is always in demand. Only after start-up costs have been amortised in that market, so the Philips argument runs, will high-density become affordable enough to go mass-market.
Both proposed high-density standards can carry more than ten
times the current 650Mbyte capacity of CD-Rom. Philips/Sony will hold 7.4 Gbyte in two layers; Toshiba, 10 Gbyte , split between two sides. Both will use red laser technology with a wavelength of 635 nm . Philips/Sony now promise backwards compatibility with existing formats. Apart from additional costs involved in accessing two sides of a disc, Toshiba has yet to work out where the label could be accommodated. Peter Willis

Silicon coils for even smarter cards

W
hile smart cards may give the impression of being easy to use, they can give rise to problems, usually associated with the way they are made. The rigidity of the antenna coil, which is wrapped on a chip fixed on a flexible fixture like a plastic card, means that it is possible to break some of the connecting wires within the chip if the smart card is flexed.
Micro Sensys, a German-based radio identification specialist, has come up with a simple, low-cost way of building coils onto chips by growing them onto the silicon wafer, which avoids the traditional bonding processes. The monolithic
microstructure employed is used in rf chips for contactless smart cards and other identification and access control applications. It integrates completely all of the analogue functions, a high-frequency rectifier, antenna coil and an EEPROM on a single chip.
In a conventional contactless smart card chip, the transceiver coil is applied using cmos metal layer technology. This method produces structures $1 \mu \mathrm{~m}$ thick and below. These very thin layers introduce high surface resistance, inconsistent quality and inhibit the placement of active circuit elements (the logic gates, EEPROM and
the transmitter) in the coil area. These drawbacks can be rectified by using thicker structures (around $100 \mu \mathrm{~m}$), produced by X-ray lithography, which although technically feasible is expensive.
Instead, Micro Sensys uses a modified straight wall bumping process. This process is normally used in tape-automated bonding for chips with many contacts (between 200 and 300). A single metal layer is applied to the silicon substrate in the form of 'bumps', leaving structures that look like tower-blocks behind. This is achieved by raising the metal layer higher than the silicon substrate; passivation-layer channels still run in between. The metal layer forms the coil between the bumps.

1Gbit DRAMs nearing production stage

S
ony has combined two leading edge chip fabrication devices one a quadrupole light source and the other a phase shift mask, to stretch optical lithography towards $0.18 \mu \mathrm{~m}$ feature fabrication. This is the feature size that will be needed to make the first generation of 1Gbit DRAMs in production quantities.
The surface of a wafer is not flat, but deviates up to $1 \mu \mathrm{~m}$. The image of the production mask must be in focus for all 'altitudes' on the wafer surface, so the projection optics must have a minimum depth of field (DOF) of $1 \mu \mathrm{~m}$.
The size of image that can be clearly focused onto the surface of the wafer is proportional to the wavelength of light used. For $0.35 \mu \mathrm{~m}$ lithography (current state-of-the-art for production), speciallydeveloped krypton fluoride (KrF) excimer lasers are used that emit

PCs fuel demand for electronic components

ndustry analyst BIS Strategic Decisions reports that demand for electronic components continues to be fuelled by the booming markets for PCs, monitors and printers.
The BIS report, European Computer and Office Automation Equipment Production, expects the European computer market to be worth $\$ 13.5$ billion this year, up $\$ 3.3$ billion since 1993. In 1993, $\$ 7.4$ billion (around 72 percent) was accounted for by components in desktop and portable computers.

1995 European market for computer and office automation equipment.
ultraviolet light at 248 nm . For a given optical system, both the minimum image size and the depth of field are proportional to wavelength. These limitations restrict KrF lasers to feature sizes of $0.35 \mu \mathrm{~m}$.
Beyond the DOF, a circular spot projected on the wafer becomes a larger and larger circular blur. Sony has used a trick to reduce the effect of this problem by altering the characteristics of the laser beam.
Sony's modified optics split the laser beam in four, diverge the subbeams using a prism array, then recombine them, creating a quadrupole light source. This replaces the normal circular light source with four smaller overlapping image ones. In sharp focus, the image looks like four spots but outside the DOF the blurred image has more energy in the centre and looks much more like a 'normal' focused spot.
This technique raises the effective DOF more than two times, allowing the optics to be changed and trading the increased DOF for smaller feature size.
If a feature size of 0.28 um is required, conventional illumination only gives a DOF of $0.77 \mu \mathrm{~m}$. The
new source gives a l. $1 \mu \mathrm{~m}$ DOF, suitable for production techniques of the near future.
The second feature Sony has incorporated is a phase shift mask. A normal mask has transmissive and non-transmissive regions. The sharp transitions between these regions result in diffraction patterns over the wafer surface around the image. Diffraction effects can be reduced by deliberately phase-shifting light by different amounts at different points in the mask.
There are some limitations to phase shift masks: not all image shapes can be made and there can be a strong secondary image net to the primary one. On their own, phase shift masks can improve image resolution, but the quadrupole light source can be optimised to suppress most of the secondary image. The new light source and mask together allow $0.22 \mu \mathrm{~m}$ features with a $1 \mu \mathrm{~m}$ depth of field.
Sony has demonstrated that its combination technology can produce $0.22 \mu \mathrm{~m}$ features and claims it can be developed to make first generation $0.18 \mu \mathrm{~m}$ chips using optical lithography.
Steve Bush
Electronics Weekly

Low cost single-chip demodulator

Asingle chip digital tv demodulator based on the 64/256 QAM systems used in North America's Grand Alliance HDTV trials has been introduced by VLSI Technology. The quadrature amplitude modulation (QAM) system, which could also be the basis of European terrestrial digital tv transmissions, was developed by Californian developer Applied Signal Technology and integrated by VLSI Technology into its library of functional system blocks.
The quadrature down converter equaliser demodulator (QED) would be used in QAM cable ty set-top box receivers. It sits between the cable and the MPEG compression functions and extracts the digital video and audio data streams from the 64/256 QAM modulated signal on the cable tv network.
Operating at an IF of 43.75 MHz , it supports symbol rates up to 5.4Mbaud and implements the ReedSolomon forward error correction
algorithm. The QAM protocol combines traditional amplitude modulation and quadrature phase shift keying (QPSK) to put the digitally coded tv signal on the carrier frequency.
An advantage of QAM is the relatively large number of phase and amplitude states, 64 and 256 , used to represent the digital tv signal. As a result, QAM supports a high capacity data channel, equivalent to $40 \mathrm{Mbit} / \mathrm{s}$, by assigning 64 and 256 phase and amplitude states to represent the digital signal at 8 bits per symbol. The $40 \mathrm{Mbit} / \mathrm{s} 256$ QAM digital channel can support up to five 8 MHz PAL analogue tv signals or seven 6 MHz US NTSC analogue television signals.
The QAM device is one of a number of chips VLSI is offering for low cost set-top box receiver designs. It is developing a separate QPSK demodulator with ComAtlas of France, and an MPEG-2 codec with US specialist, Mediamatics.

SPECIAL BUY

AT 286 40 Mb HD + 3Mb Ram
 LIMITED QUANTTTY only of these 12 Mhz HI GRADE 286 systems
 with battery backup is provided as standard. Supplied in good used
condition complete with enhanced keyboard. $640 \mathrm{k}+2 \mathrm{Mb}$ RAM, DOS 4.01 and 90 DAY Full Guarantee. Ready to Run!
Order as HIGRADE 286 ONL

Optional Fitted extras: VGA graphics card 1.4Mb $3 / 2 /$ " floppy disk drive (intead of 1.2 Mb) NE2000 Ethernel (thick, thin or twisted) network card	$\begin{aligned} & \hline £ 29.00 \\ & \varepsilon 24.95 \\ & \Sigma 49.00 \\ & \hline \end{aligned}$

5¼" from £22.95-3½" from £24.95

PC SCOOP
complete COLOUR SYSTEM ONLY $£ 99.00$
\square

19" RACK CABINETS

Superb quality 6 foot 40 U Virtually New, Ultra Smart Less than Half Price! Optima esigner, sosures Lid. Units feature and removable loble half louvered back door stres, ready punched for any ready mortion of equipment mounting plus switched mains distribution strip make these ver sold. Racks may be stacked side by side and therefore require verall dimensions are: $771 / 2^{\prime \prime} \mathrm{H} \times 321 / 2^{\prime \prime} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$. Order as: verall dimensions are: $771 / 2^{*} \mathrm{H} \times 321 / 2^{-1} \mathrm{D} \times 22^{*} \mathrm{~W}$. Order as:
OPT Rack 1 Complete with removable side panels. $\quad \mathrm{E335.0}$ (G) 32U - High Quality - All steel cabinet VIDEO MONITOR SPECIALS One of the highest specification monitors you will ever see At this price - Don't miss it!! Suppied in EXCELLENT Iitle used Mondition. Only $£ 139_{(E)}$ Tllu \& Swivel Base $£ 8.00$ Leads for 18 MPC
External Cables tor other computers $\&$ CALL 8.95 (A)

PHILIPS HCS35
5 (same style as CM8833) a
with both RGB and standard
ractively styled $14^{\prime \prime}$ Khz video inputs via SCART socket and separate phono jacks Integral audio power amp and speaker for all audio visual uses
Will connect direct to Amiga and Atari BBC computers. Ideal to all monltoring / security applications with direct connection to ancealed flap controls, VCR correction button etc. Good used Dimensions: W14" $\times H 12^{3 / 4^{4}} \times 15^{1 / 2} 2^{\prime} \mathrm{D}$.

Special Offer save £16.95-Order TELEBOX ST \& HCS35 together - giving you a quality colour TV \& AV system for Only E122.50 (E)
KME 10" high definition colour monitors. Nice tight $0.28^{\prime \prime}$ dot pitch for superb clarity and modern styling. Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Atari, Commodore Amiga, Acorn Archimedes \& BBC. Measures only $1311^{\prime \prime} \times 12^{\prime \prime} \times 11^{\prime \prime}$. Only $£ 125$ (E) Good used condition. 90 day guarantee.

Good used condition. 90 day quarantee.
KME $10^{\prime \prime}$ as above for PC EGA standard $£ 145.00$ (E) PHILIPS HCS31 Ulitra compact 9 " colour video monitor with stan for all monitoring / security applicatlons. High quality ex-equipmen fully tested with a 90 day guarantee (possible minor screen burns)
$20^{\prime \prime} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS
Superbly made UK manufacture. PIL all solid state colour monitors complete with composite videe 2 optional sound inpuis. Attractive解

20"....£135 22"....£155 26"....£185 (F)

 DC POWER SUPPLIESVirtually every type of power supply youcan magine: Over
10,000 powersuplles Ex Stock

SPECIAL INTEREST	
Zeta 3220 -05 A0 4 pen HPGL RS232 tast drum plotter	
VDA - Viceo Dis	
Trio 0.18	
Fuilisu M304	
VG Electr	
EMC/ $/$ Ine interfere	
INTEL LSC 486 /133SE Multibus 486 system. 8 Mb Ram	1200
1.5kw	
Anton Pillar 75 kW 400 Hz 3	
COMPONEDEX T 1000 Portable TEL	250
D 1	5
HP 7580 AAA A 8 pen HPGL high speed drum plotiter,	55
ward PAT 2000 dual voltage computerised PAT les	

[^0]\qquad

Optional Fitted extras: 640k RAM 2nd floppy drive, specify $51 / 4^{\prime \prime} 360 \mathrm{k}$ or $31 / 2^{\prime \prime} 720 \mathrm{k}$ Above prices for PC99 offer ONLY.	$\begin{aligned} & \hline £ 29.00 \\ & £ 29.95 \end{aligned}$

$£ 24.95(B)$
$£ 36.95(B)$
$£ 29.95(B)$
$£ 22.95(B)$$31 / 22^{\prime \prime}$ Panasonic JU363/4 720K or equivalent" Mitsubishi MF355C-D. 1.4 Meg. Non laptop" BRAND NEW Mitsubishi MF501B 360KShugart 800/801 8" SS refurbished \& testedShugart 851 8" double sided refurbished \& testedMitsubishi M2894-63 8" double sided NEW
Mitsubishi M2896-63-02U 8" DS slimline NEW
ع195.00(E)Dual $8^{\prime \prime}$ drives with 2 mbyte capacity housed incase with
£499.00(F)
HARD DISK DRIVES
85 Mbyte
8ce. Ultra
hard disk storage! Full industry standard SMD interface. Ultra
$1 / 2 "$ FUJI FK-309-26 20 mb MFM I/F RFE

THE AMAZING TELEBOX

	$\begin{aligned} & \text { TV SOUND } \\ & \text { \& VIDEO } \\ & \text { TUNER! } \end{aligned}$

The TELEBOX consists of an attractive fully cased mains powered
unlt, containing all electronics ready to plug into a host of video moni-tors made by makers such as MICROVITEC, ATARI, SANYO,
SONY, COMMODORE, PHLIIS, TATUNG, AMSTADD etc. The
tirncomposite video output will also plug directly into most video
recorders, allowing reception of TV channels nol normally recelvable
used by most cable TV operators. A composite video output is
monitor or desktop video systems. For complete compatibility - even
for monitors without sound - an integral 4 watt audio amplfier and
TELEBOX ST tor composite vide input type mo £34.95
ع37.50 TELEBOX STL as ST but with integral spaaker
FANS \& BLOWERS
$\begin{array}{lll}\text { MITSUBISHi MMF-09B12DH } 92 \times 25 \mathrm{~mm} 12 \mathrm{VDC} & £ 4.9510 / £ 42 \\ £ 5.9510 / £ 53\end{array}$PANCAKE 12-3.592×18 mm 12vDClC's -TRANSISTORS - DIODES
5,000,000 items EX STOCK
Issue 13 of \mathcal{D} isplay News now available - send large

Thin film cell packs a punch

Weight is so often a limiting factor in design of rechargeable batteries. But researchers at Tokyo University and Matsushita Electrical Industrial have announced development of a low cost solid state rechargeable battery that can store 50% more electrochemical energy in its electrodes than the best conventional technology available.
Key to performance of the new battery is an organic thin-film cathode. Organic materials have been proving particularly attractive to battery designers because they offer large theoretical energy storage capacity, combined with low weight and high strength.
The Tokyo cell is made up of a Dimercaptan (DMcT) and polyaniline (PAn) cathode with a lithium anode - compounds already known to have had a complementary effect on performance, though the precise chemistry of the reaction is not yet definitively agreed. However, cells fabricated along these lines have been reported before.
The advance made by the Japanese team has been to prepare a solution containing the electrode materials which can be printed or painted by conventional techniques. Not only does that make for easy manufacturing, but, importantly, it allows excellent molecular-level mixing of the DMcT and PAn, leading to much higher efficiencies than have been achieved before.
Gravimetric energy density of the composite cathode is reported to be $>600 \mathrm{~Wh} / \mathrm{kg}$ cathode (Dimercaptanpolyaniline composite electrodes for lithium batteries with high energy density, N Oyama et al (Nature, 373, pp.598-600). This compares to a figure of $400 \mathrm{~Wh} / \mathrm{kg}$ for the cathode in one of best commercial lithium-ion cells. So energy density of the DMcT-PAn cathode is 1.5 times better.
No deterioration in capacity was observed in 30 cycles for the test
cell, with the cathode charged at 4.5 V and discharged at $0.1 \mathrm{~mA} / \mathrm{cm}^{2}$ down to 2.25 V . That compares with a loss of 15% in capacity by previous designs of this type of cathode.

At present the maximum useful current density looks to be $0.1 \mathrm{~mA} / \mathrm{cm}^{2}-$ which is undeniably
small. But because the cathode is a film, a large electrode area can easily be obtained without weight penalty.

Expected applications will be in areas where weight rather than volume is the crucial factor, as high gravimetric density is offset by low physical density.

Deep conversations

Confidence in ultra-long-haul optical cable systems using cascaded erbium-doped fibre amplifiers has been boosted with news that Japanese workers have successfully made 5.3Gbit/s transmissions across $11,300 \mathrm{~km}$ of installed submarine cable. This is the longest distance yet achieved using the technology. T Otyani et al ($5.3 \mathrm{Gbit} / \mathrm{s} 11,300 \mathrm{~km}$ data transmission using actual submarine cables and repeaters, Electronics Letters, Vol 31, No 5, pp.380-381) from KDD Submarine Cable

Systems, made use of two fibre pairs in a real cable 2850 km long that had 48 repeaters and a repeater spacing of 60 km . By joining the fibres together at their ends with optical attenuators, the researchers were able to create a $11,300 \mathrm{~km}$ transmission line.
The long distance success of using a cable made up of dispersion-shifted optical fibres and erbium-doped amplifiers - designed to operate under the sea for at least 25 years clearly demonstrates that the low-cost and high reliabilities of such a system

Exploiting the full potential of submarine cables already laid will be vital to the development of optical fibre comms.

Ultrasonics open up memory capacity

Development of a simple and convenient ultrasonic method for manufacturing very small cobalt particles - magnetic nanocluster - could have an immediate effect on high-density recording media.
The process, developed by Charles Gibson and Kathy Putzer at the University of Wisconsin (Syntheses and characterisation of anisometric cobalt nanoclusters, Science, 267, pp1338-1340) produces single magnetic domain
particles with considerable shapeand magnetocrystalline anisotropy so that a preferred magnetic field orientation is adopted in the final product.
Relatively inexpensive reagents are used in the procedure and flocs of the suspended particles are stable for several days, so easing manufacturing flexibility.
The basis for the process is reduction of Co^{2+} with hydrazine. Low temperature reaction has been attempted before, but
despite looking thermodynamically possible, the reduction has not previously been successful.
Now Gibson's and Putzer's use of ultrasound to initiate the chemistry has made the reaction practical - and economical.
The result is the birth of a simple technique that could have immense importance for the manufacture of magnetic recording media and permanent magnets.
could be exploited in practice.
Other work currently going on is also helping to test the limits of undersea cables. For example, AT\&T recently announced it had transmitted $10 \mathrm{Gbit} / \mathrm{s}$ over a 2000 km commercially installed undersea fibre-optic cable in the US. Normal operating limit for the cable was $2.5 \mathrm{Gbit} / \mathrm{s}$. AT\&T achieved the increase through wavelength division multiplexing - the transmission of information on more than one wavelength of light on each fibre.

10Gbit+ transmission speeds greatly increase the capacity of
undersea cable and AT\&T says the test gives it the potential to upgrade installed fibre-optic communications systems without making adjustments to cable already sitting on the sea floor.
AT\&T has already announced a proposal to build a $32,000 \mathrm{~km}$ optical fibre ring around Africa, linking 40 countries. Practical architectures for such a project are still being considered though AT\&T researchers say that experiment is demonstrating that such a largescale all-optical network having many high speed channels is certainly possible.

Continental drift: fibre optic technology is moving to make such projects as the $32,000 \mathrm{~km}$ ring around Africa a reality.

[^1]
Getting the measure of solar wind
 to hit the earth. But data currently

Ulysses on its mission to explore the heliosphere - the region of space dominated by the outward flowing solar wind. (Picture courtesy European Space Agency).

Quite apart from giving rise to the haunting northern lights, the million-mile-per-hour charged particles that make up the solar wind can degrade communications, disrupt power transmission grids, and damage satellites. Yet scientists are still unable to predict with any certainty when such activity is going
being processed from satellites belonging to the ISTP (International Solar Terrestrial Physics) programme could help change that.
ISTP involves coordinating experimentation aboard a number of space platforms, with different initiatives exploring key areas of geospace where the dynamics are controlled by Earth's magnetic field and its interaction with the solar wind.
For example Japan has been processing data from a satellite sitting in the magnetospheric tail formed by the solar wind as it rushes past the earth. Similarly, solar wind experiments (swe) aboard the 'Wind' satellite will measure properties of the solar stream before it reaches the Earth. Researchers are hopeful that Wind's location between the Earth and Sun could eventually give warning of magnetic storms.
Overall goal of the swe programme is to monitor how changes in the wind affect the environment around Earth, according to Alan J Lazarus, a senior research scientist in physics and head of the swe MIT team.
Since November, MIT's instruments have begun collecting samples of the charged particles that
make up the solar wind, and measuring their speed, density, and other properties. Scientists from Nasa, the University of New Hampshire, and Boston University are cooperating on the swe project and six more experiments on the satellite are focusing on other phenomena associated with the solar wind.
"There are efforts to return data in real time from this spacecraft, so we can report solar wind conditions to people who could be affected," says John T Steinberg, a research scientist at the Center for Space Research and also a member of the MIT team.
Ultimately, Wind will go into an orbit between the Earth and the Sun that will allow it to make continuous readings of the solar wind an hour before it reaches Earth.
The result would be that sensitive electronics on the spacecraft which might otherwise be damaged - could be switched off. Varying magnetic fields can also have a serious effect on power grids, and have in the past caused massive power outages. One such incident occurred in Canada in 1989. With advance warning, power companies could make proper preparations for possible disruptions of their systems.

Way forward (or sideways) for robots?

Successfully negotiating our way Saround rooms full of furniture is a skill we learn as babies. For robots, the task is one some of them will never learn. But

researchers at the Korea Advanced Institute of Science and Technology (Kaist) hope their work could lead to fewer bruised robot shins in the future.
A robot's navigational problem is that whenever it moves in an uncertain environment towards a goal, avoidance behaviour and goal-seeking behaviour always conflict. Avoidance behaviour is used to seek the goal position, until obstacles loom, when avoidance takes precedence, and goal-seeking behaviour is used to seek the goal irrespective of obstacle location.
Hee Rak Beom and Hyung Suck Cho at Kaist have been using fuzzy logic to describe both behaviours and have been working to develop a robot control system that switches to the best strategy based on the robot's local environment (A sensor-based navigation for a mobile robot using fuzzy logic and
reinforcement learning, IEEE Trans on systems, man and cybernetics, 25, 3, pp.464-477).
Their Lcar robot has 26 ultrasonic sensors, stereo camera and sensors for dead reckoning.
Fuzzy logic is used to represent the mapping between the sensor input space and the mobile robot action space, with the correct mapping found by reinforcement learning
So far the robot is managing to move around a 10 by 10 m room packed full of obstacles towards its goal and is demonstrating an ability to adapt to unknown environments.
Importantly the small fuzzy-rulebase needed allows the method to be implemented in real time, while the reinforcement learning dispenses with the need to construct and tune the rule bases depending on the expert's knowledge.

ELECTRONICS on the road

More vehicles come onto the roads each year and manufacturers are doing more and more to make them safer. The accent is moving away from mechanical developments towards electronic detection and control, with anti-collision radars, anti-skid systems and better anti-lock braking.
Aerospace technology has come down to road level, but the new technology is driving itself. More devices mean more wiring, which leads to intelligent harnesses, in turn resulting in more electronics. The automotive designer has to drive hard to keep up.

Driving on black ice

To be in full control while driving fast on black ice must be the ultimate motoring experience and it is promised for UK drivers this year by Mercedes-Benz. Electronics is the key to this and other recent advances in automotive design in a trend which will shortly see more electronics than mechanics on the family saloon.

> Eric Russell looks at innovations in electronic systems that automotive manufacturers are planning for the cars of fomorrow.

Mercedes-Benz calls its system Electronic Stability Program. It brings together traction control, intelligent brakes and aerospace technology to detect a car's direction of travel. ESP prevents skidding by braking individual wheels to maintain the car's balance. Control signals to the brakes derive from a computer which compares steering wheel position with the car's direction of travel.
When under- or over-steer is detected, the appropriate brakes are momentarily applied and engine torque is reduced. This brings the car back on line. The driver may not notice the system operating but a dashboard indicator illuminates, providing a warning.
Key to the system is a yaw detector. Housed under the rear seat of a car it gives an output signal proportional to the rate of rotation about a vertical axis.

Fig. 1. A car travelling on ice at $45 \mathrm{mile} / \mathrm{h}$ is kept steerable and stable by the new Electronic Stability Program from Mercedes-Benz.

Fig. 2. Such a vibrating-structure gyroscope may be being used for yaw detection in Mercedes' electronic vehicle stabiliser. Output of the gyroscope is dc and proportional to the rate of rotation.

This data, together with steering wheel angle, individual wheel speeds, brake pressure and sideways acceleration are compared in a computer with a database which contains all the parameters for optimum stability.
The ESP control unit is linked to engine, automatic transmission, brakes, accelerator and sensors through a Controller Area Network data bus. The accelerator is electronically linked to the engine management system, bringing the new Mercedes close to drive-by-wire. A variable resistor is rotated as the accelerator is depressed to give a much finer control than with mechanical linkage.
ESP was recently demonstrated on a frozen lake in Sweden, Fig. 1. While a standard car was virtually uncontrollable at $30 \mathrm{mile} / \mathrm{h}$, the ESP car was steerable and stable at $45 \mathrm{mile} / \mathrm{h}$. Mercedes points out that such systems cannot beat the laws of physics and in unintended confirmation, a test driver promptly ploughed his vehicle into a snow bank.
The system was scheduled to become standard equipment in Germany in March on the S600 coupe. The first cars for Britain are promised in the autumn - in time for our own snow. Details of the ESP system are not available, "Because the system is not yet in production," says a spokesman. But the key component, the yaw detector, could be similar to a unit produced by British Aerospace (Systems and Equipment) Ltd.
This is a solid state gyroscope using the piezo-electric principle and the coriolis effect. The sensing element is a cylinder of manmade ceramic, a lead zirconate titanate composite, which is electronically vibrated.
The coriolis effect refers to the distortion of an object's trajectory by the earth's rotation. The effect of the force can be seen when a person sits on a typist's chair holding a spinning bicycle wheel by the axle ends. If the person lifts their right hand, tilting the wheel, the chair will rotate towards the right.
A similar force can be generated when a vibrating object is rotated. In British Aerospace's Vibrating Structure Gyroscope
the piezo-electric block is excited in one axis and electric output is taken from another axis. Output is dc and proportional to the rate of rotation, Fig. 2.
The solid state construction makes the VSG more robust than conventional mechanical gyroscopes with no maintenance requirement and minimal start-up time, which can be as low as 300 ms . It can operate off a standard car power rail, Fig. 3.
At Lotus Engineering, the Active Technology Group uses vibrating-structure gyroscopes in active suspension designs. The company's system measures the load at the tyre contact patch once a millisecond and reacts to changes so a constant load is maintained. The VSG indicates when a road wheel is about to drop into a depression or rise over a bump and a hydraulic actuator is extended or retracted to keep the car body level.
This system is used in Amold Schwarzenegger's Hummer, High Mobility Modular Wheeled Vehicle, but the price precludes its use in more popular cars. The servo valve on the actuator is an aerospace type, with an appropriate price tag, but if this could

Is ABS effective?

Research has shown that ABS is not often used in practice. Few drivers press the brake pedal hard enough to lock the wheels. In accident situations which demand hard braking drivers react in two stages: firstly a slightly harder than normal press of the pedal; then a heavier press when the situation is fully realised. Research also showed that if drivers reacted half a second earlier half of collisions would be avoided.
be manufactured in volume then active suspension would be seen on more vehicles.

Advances in car control system

It is a development of $A B S$ that forms part of Mercedes' ESP. A brake booster is activated when brakes need to be applied by the system and ABS prevents wheels locking up. When ABS is activated, brake fluid is taken out of the system, so reducing pressure on the brake

Fig. 3. Solid state construction makes the vibrating-structure gyroscope more robust than conventional mechanical types.

Fig. 4. Increasing microprocessor integration makes car electronics more reliable while improving compactness and maintainability.

Fig. 5. In ITT's Teves Mk 20 ABS module, two processors - one of them 16 bits - work together, monitoring each other to eliminate the chance of a total loss of braking.

Fig. 6. ABS pump, electric motor, valves and a pcb containing two processors are all housed in a 16 by 10 by 10 cm module - the Teves Mk 20 ABS system.
mechanism, be it disc or drum type. In an open system the brake fluid is returned into the master cylinder. In a closed system the fluid stays local to the wheel.
By the year 2000 ABS will be standard equipment on passenger cars according to a prediction from the Economist's Intelligence Unit. With 30% of cars fitted now, a compound growth for the technology of 22% per year is expected.
Against this background Texas Instruments recently announced a new customised microcontroller chip, the cMCU370. It will start to appear in a new design of ABS module from ITT subsidiary Alfred Teves, which is using some half dozen electronic subcontractors worldwide to assemble the modules.
TI has developed the microcontroller from the TMS370 range of ICs. Sghaier Noury, Tr's European Microcontroller Department Manager says: "It is part of a full product road map which includes many generations to come." The cMCU370 has been designed under TI's Prism design methodology which evolved from a successful relationship with Delco Electronics. The principle of Prism is to steadily increase the number of functions that a chip can perform and to increase the different signal types it can handle, while using technology that has already been developed and proven, Fig. 4.
The cMCU370 is an eight-bit device with a 16 bit version due next year and 32 -bit architecture under development. At the launch of the new chip in Nice, TI also announced an agreement to supply ITT Automotive of Frankfurt with the product. The two companies have been co-operating for some six years using TI's knowledge of silicon and ITT's system experience. The cMCU370 will be built into ITT's latest ABS module, the Teves Mk 20.
Under the agreement TI is expected to ship more than eight million microcontroller systems annually by 1997 rising to ten million by the year 2000. The first vehicles equipped with ABS using the new microcontrollers will be unveiled in 1996.
Teves' Mk 20 ABS module houses the electric motor, ABS pump, valves and pcb in a compact 16 by 10 by 10 cm housing, Figs 5, 6. The system incorporates anti-skid control and electronic brake force proportioning. At the core of the hydraulic/electronic system is a lightweight aluminium block integrating the motor, pump and valves. Magnetic coils actuate the valves so there is no direct connection between controller and valve.
The pump conveys the brake fluid bled off by the ABS valves back to the master reservoir so the integration into one block saves installation time for the vehicle manufacturer.

Two microprocessor chips are carried on the pcb, a 16 -bit Intel 196 and the Texas cMCU370 8 -bit processor. These work together in 'asymmetrical redundancy' and monitor each other. This provides a high level of safety and protects against a failure which would open all the ABS valves, leaving the vehicle with no brakes.

Intel's chip processes the wheel speed and control algorithms. Complex mathematical formulae are written into the software, enabling the chip to calculate the best action to take from a given set of inputs. The TI chip simulates the calculations and then instructs the valve drivers. These are power semiconductors which replace the mechanical relays of previous designs and control current to the magnetic coils.
Within the pcb, the chips communicate via a serial data bus. This needs only three lines between each integrated circuit. The bits that make up each computer word are sent one after the other at a speed of two million bits per second. This communication system will link neatly into a vehicle's multiplexing harness whether the vehicle manufacturer has opted for CAN, ABUS, VAN, SCP or J1850 as the operating system.
Although both TI and ITT agree that multiplexing technology is both available and affordable, it awaits a change in outlook from the car manufacturers before being used regularly. There is also the consideration of higher after-care costs as a result of more complex systems.
The module could be a nucleus for the next project, a vehicle stability system. ITT Automotive anticipates its system arriving in the second half of the nineties.

More intelligence for ABS

Sensing the rotation of road wheels is a basic requirement of an ABS system and Siemens offers two sensor types - inductive and active. A toothed wheel is central to both systems. In the inductive version a magnet is fixed close to the wheel so as each tooth passes, the magnetic field is disturbed. These variations induce a current in a coil round the magnet

Fig. 7. Active speed sensor contains a highly sensitive inductive sensor combined with differential Hall IC to measure speeds almost down to zero. Output can be used for traction control, ABS and for driver information such as speed indication.

Fig. 8. One of the problems with ABS is that often, drivers only press the brake pedal hard enough to invoke ABS when it's too late. Lucas' new brake assistance system senses when the brake is pressed more rapidly than usual, and applies the brakes harder than would be the case if the pedal were depressed normally.

Fig. 9. Elements of a single-point sensing airbag electronic unit, courtesy Siemens. The system needs its own power supply in case the battery becomes disconnected due to the impact and there are multiple firing loops to cover for partial faults.

Fig. 10. Lucas's Advanced Prototype Vehicle, a Peugeot 605 turbo diesel, has completely integrated systems, controlled from a central processor via CANbus. EPIC is electronically programmed injection control and CMS is the clutch-management system.

Fig. 11. With CANbus, cable harness requirements are greatly reduced since many switching and control signals can be multiplexed down one low-power bus. Conventional cabling for automatic windows, speakers, locking and mirror positioning means a lot of cabling between car and door, so this is one area where multiplexing is particularly attractive.
giving a sine wave output with each positive peak corresponding to a tooth on the wheel.
The active version, Fig. 7, uses a differential Hall sensor comprising two Hall switches and evaluation logic to provide a square wave output. In both systems the ABS computer counts the pulses and compares the result with time to provide an indication of road speed for the dashboard speedo and an indication of wheel lock to the ABS system.
Wheel bearing manufacturers are now producing intelligent bearings with on-board sensors and signal conditioning which reduces the effects of interference on the signal before it reaches the computer.
Grau's ABS system does not operate below $10 \mathrm{~km} / \mathrm{h}$. This means that a stationary vehicle being held on a slope by the foot brake does not creep forward because the ABS system has detected an apparent wheel lock situation and reduces brake pressure.
To provide this extra margin needed to get round the drawbacks outlined in the ABS panel, Lucas is developing intelligent brakes. In an emergency, while the pedal may not be fully depressed, it is moved more quickly than normal. This can be detected and the signal used to operate an electronically controlled brake booster to apply the maximum servo force, Fig. 8. The controller compares pedal movements with the previous pattern of driver behaviour to assess an emergency situation. Operating the brake booster to its maximum invokes ABS, bringing the car to rest in the shortest possible distance.
This system could also work in conjunction with anti-collision radar, where microwaves or infra-red transmissions detect objects in front of a vehicle. The intelligence calculates when the distance is unsafe and, when intelligent cruise control is activated, reduces engine speed. Alternatively, the system can simply apply the brakes.
These electronic aids help when cars are well loaded with passengers or goods. The driver takes time to appreciate that longer braking is required in any given situation and may not have the space to stop in time. Intelligent brakes have an input from load sensors and the calculation includes the amount of load being carried.
Once all these functions are combined with a central computer, the brake holding system could also end hill start traumas.
Lucas's system has been developed within the Prometheus project. This concluded last year with a major demonstration of many new technologies at the Transport Research Laboratory. Prometheus - Programme for a European Traffic with Highest Efficiency and Unprecedented Safety - was a five year European initiative to develop automotive technology to a near-production state.

When it's too late for ABS

All these systems use electronics to help prevent accidents. When one does occur, the current spotlight is on airbags to protect the occu-
pants. Basically, an accelerometer triggers the airbag inflation valve during abnormal deceleration. While a crash takes several seconds to complete, airbags react in milliseconds. Practically there are many considerations which demand that airbag systems are computer controlled, Fig. 9.
The system needs its own power supply in case the car battery becomes disconnected. This amounts to energy storage for a matter of seconds but the storage system needs topping up, measuring and checking.
The whole system must be self-checking on start-up with an output to warning lamps for system failure. Multiple firing loops provide redundancy in case of a single failure. A safing sensor disarms the system during safe situations, so while the accelerometer looks for crash signals, the safing sensor looks for noncrash signals. Seat belt status and passenger presence may be monitored and there could be a communications interface for external diagnostic testing.

Besides the physical considerations, the software has to be rugged. Like ABS, airbags are safety critical - causing danger when they fail or operate unexpectedly. Software has to reflect this. In conjunction with the British Standards Institute and others, the Society of Motor Manufacturers and Traders has just issued guidelines for the software that will be used increasingly on vehicles.

Linking it all together

Connecting all these systems is the car wiring harness. On a Mondeo there's 1.5 km of wiring. It takes two people to lift the harness on some American models. In addition, harnesses can be a problem when many switches are mounted in doors and arm rests.

The simple version of dedicated point-topoint wiring is a two-wire ring main carrying serial information and a ring main carrying power. Operating an instrument switch sends an address followed by an instruction. All devices on the network listen to the address and the unit which recognises an address as its own will then act on the next set of pulses and operate as required.
The traditional way of providing a device with an address is a bit switch. The device compares the address pulses with the bit switch setting and enables the device when the two coincide.

A specification called Controller Area Network, CANbus, has been developed by Bosch for networking in automotive applications and this has been recognised by the International Standards Organisation. CAN protocol uses a multi-master, contention based bus configuration for transferring communication objects between nodes on the network. Multiple access raises the problem of collisions of data on the network. This is resolved in CAN by sensing a carrier denoting the network is carrying traffic.
A communication object consists of an identifier plus control data segments. The control
segment contains all the information needed to transfer the message while the data segment contains up to eight bytes. Devices on the vehicle will only respond if their acceptance filter decides to receive a message. At each node the message identifier will have been set up in that controller's ram, Fig. 10.
The protocol can distinguish between permanent hardware failure and occasional soft errors. Defective nodes are switched off the bus, implementing a fail-safe procedure. To ensure robustness CAN uses non-return-tozero bit coding. Ones and zeroes are indicated by a change in state, not the state itself. This produces fewer electromagnetic emissions at higher transfer rates than pulse width modulation or Manchester coding, which combine data and clock pulses.
One company manufacturing CAN control chips is NEC. Its μ PD72005 is a 52-pin flat package offering bi-directional two wire serial comms and two eight-bit i/o ports. Message memory space is 160 bytes and maximum data length is eight bytes - all of which highlights the relatively simple nature of car electronics compared with PCs.
Maximum transmission speed is $1 \mathrm{Mbit} / \mathrm{s}$. There are comprehensive error checking options including cyclic redundancy checking with a 15 -bit crc generation polynomial, Fig. 11. The chip has been designed to fit into a large number of different networking configurations and the data book on it runs to some 96 pages.
Intel's CAN controller is the 44-pin 82527 fabricated in CHMOS III technology. Indicative of the harsh automotive environment, the 82527 copes with an ambient temperature range of -40 to $+125^{\circ} \mathrm{C}$.
In Russelsheim, Germany, Vauxhall says its car fitted with ISOTEC - Intelligent Safety and Orientation Technology - is currently being tested for reliability and suitability, before production sign-off. ISOTEC is a new research vehicle based on the recently launched Omega. On-board equipment includes distance radar, fog sensing, a night driving camera, and the latest navigation and guidance systems. Vauxhall says these are near-production electronic systems.
Distance measuring radar is connected to brakes, throttle and automatic transmission. The radar head is located behind the front bumper and detects other vehicles up to 140 metres ahead. Drivers can preselect a speed at which to travel and the distance radar will modify that according to the proximity of other vehicles. The required speed-is selected on the indicator lever and a lamp in the speedometer indicates that speed.
When the Omega is too close to the vehicle in front, the distance controller first closes the throttle then applies the brakes. If the car reaches maximum automatic deceleration, an audible warning alerts the driver. Once the situation is stabilised the Omega automatically accelerates up to the preselected speed under guidance of the cruise control system.

Sensing obstacles by temperature

Infra-red is the technology used in the fog sensor. A beam of IR light from a black box mounted on top of the dashboard is reflected back by moisture droplets in the fog. The unit estimates the range of visibility, calculates a recommended speed and displays the figure on an led display once visibility falls below 200 m . The fog sensor could be connected to the car's cruise control adjusting speed to visibility automatically.

An infra-red camera, located in the radiator grille of the Omega, records images of objects emitting heat. This applies to virtually all objects and the image is built up by making the screen brighter where more heat is being emitted. Should two objects be at the same temperature they will merge in the same way that similar tones merge in a conventional photograph, particularly when the scene is not well lit.

With infra-red systems it is possible to overlay the infra-red image with another taken by a conventional camera with light amplification. Combining the two technologies means that merged objects on one system will be separated on the other system. General Motors is assessing infra-red cameras in several highway patrol police cars in America at the moment.

Infra-red is also used on the ISOTEC to receive route navigation information. A sensor positioned behind the rear-view mirror picks up infra-red light from beacons at the side of the road. Vauxhall is using the Euro-Scout system. The driver programmes in the destination and direction symbols appear on the special dashboard information display during the journey.
In the case of collision avoidance, the computer in the distance measuring radar will have a choice of reducing speed by closing the throttle, operating the brake or selecting another ratio in the automatic gearbox. Its chosen course of action will depend on road speed and closing speed as the vehicles approach each other. This means a continuous set of calculations to cause least disturbance to the car's occupants and to keep the car stable.
Electronics are pervading cars in other areas that are near to production: automatic gearboxes and clutches, automatic lane keeping, speed limiters, side impact detection for airbag systems, blind spot detection systems, electronic deadlocks, solid state tachographs and electronic dashboard displays. This is in addition to navigation systems, route guidance, traffic warning systems, electronic tolling, satellite telephones and road side displays. Plus the electronics in 'red-light' cameras and automatic number-plate reading. Not forgetting in-car entertainment with a serial link between the cd holder and player in the boot and the dashboard radio. And the smart cards in your wallet, and the black box 'flight recorder' available from Mannesmann Kienzle. No wonder we need electronic pacemakers.

ANCHOR SURPLUS LTD THE CATTLE MARKET NOTTINGHAM NG2 3GY TEL: +44 (0115) 9864902/9864041 FAX: + 44 (0115) 9864667 OSCILLOSCOPE and

DIGITAL COUNTER SPECIAL OFFERS
Iwatsu SS5416A "Synchroscope" 40MHz, 2 Trace, 2 Time Base $£ 245$
Gould OS4000 10MHz Digital Storage Scope, 2 Trace $£ 325$

HP1741A 100MHz Storage Scopes, 2 Trace, 2 Time Base Only £299
DIGITAL COUNTERS 25\% OFF THESE PRICES FOR MAY '95 ONLY
Racal Dana 9904 Universal Counter Timer, $30 \mathrm{MHz}, 7$ Digit LED $£ 75$
Racal Dana 9835 Universal Counter Timer, $30 \mathrm{MHz}, 6$ Digit $£ 50$
Racal Dana 9838 Universal Counter Timer, $45 \mathrm{MHz}, 6$ Digit $£ 60$ Racal Dana 9900 Universal Counter Timer, 30 MHz , 6 Digit, Auto Range $\mathbf{£ 7 5}$

Racal Dana 9913 200MHz, 8 Digit LED $£ 95$
Sabtronics $\mathbf{8 0 0 0} 100 \mathrm{MHz}$, 8 Digit LED $£ 95$
Fluke 7620A Universal Counter Timer, 125NHz, 8 Digit LED $£ 85$
Racal Dana 9914 200MHz, 8 Digit LED $£ 125$
Racal Dana 9915 600MHz, 8 Digit LED $£ 150$
Racal Dana 9916 600MHz, 8 Digit LED £195
Systron Donner 6244A 512MHz, 8 Digit LED $£ 150$
Racal Dana 9015/11A Micro Computing Counter, 100MHz, 9 Digit + LED $£ 250$
HP 5334A Micro Computing Counter, 100 MHz , 9 Digit + Math $£ 275$
Systron Donner 6054B 20MHz-24GHz, opt 13+18, 11 Digit LED $£ 1050$

A SELECTION OF OTHER INSTRUMENTS ON SPECIAL OFFER THIS MONTH ONLY
Marconi TF2603 RF Millivoltmeters, 1.5 GHz , incl. Probe, Only $\mathbf{£} 75$
Solartron 7060 Systems Voltmeter, 6.5 Digit, IEEE, Only $£ 195$

HP8660C $+86632 \mathrm{~A}+86603 \mathrm{~A} 1 \mathrm{~Hz}-2600 \mathrm{MHz}$ Signal Generator, AM/FM,
Excellent Condition, One Only $£ 2250$

Marconi TF2300B, AM/FM Mod. Meters, $1200 \mathrm{MHz} £ 95$
Marconi TF2120 Waveform Gens $0.001 \mathrm{~Hz}-100 \mathrm{KHz}$, Sine-Sq-Tri $£ 195$
Marconi TF893B Audio Power Meters $£ 50$
Racal Dana 9056/9058 Selective RF Analysers, 100 MHz , Only $£ 60$
Tritec Fase III Fusion Splicer + HSO II Heat Shrink Oven Optical Fibre Splice Kit incl ALL accessories $£ 1325$

IRD Mechanalysis 350M, Complete Set $£ 145$
IRD Mechanalysis 308, Complete Set $£ 95$

NOW OPEN SEVEN DAYS A WEEK

Monday to Friday: 9.00 am to 6.00 pm Saturday: 8.00 am to 4.00 pm SUNDAY: 10.00 am to 4.00 pm
All prices are ex VAT \& carriage.
ALL ITEMS ARE TESTED WITH VERIFIED CALIBRATION AND COME
WITH OUR UNIQUE 30 DAY DAY UNCONDITIONAL WARRANTY

Model soffware for problem solving

Allen Brown has been assessing the latest upgrade of a powerful modelling package capable - among other things - of solving equations analytically.

The low cost of powerful pcs hosting 486 or Pentium microprocessors, combined with highly visual graphics facilities, makes them very attractive tools for modelling applications. To match the performance of the pc, the engineer now has a variety of software modelling packages to choose from and one that merits consideration is Maple V from MathSoft of Massachusetts.

Now issued as Release 3, Maple V has over 2500 predefined operations and library functions, evokable as commands from the keyboard. These include such options as polynomial factorisation, equation solving, indefinite integrations and matrix manipulations. The package is capable of performing symbolic, numerical and graphical processing. In fact the 3D plotting is spectacular, and fast. Maple will work within dos or Windows although to access the full graphing features of the product a super-vga monitor, preferably with a graphics accelerator, is needed.
Maple V comprises three components: the kernel, the library and the interface. The kernel is the mathematical engine behind Maple V's calculations. This is a compact, highly optimised set of routines written and compiled in the C programming language, and performs the large part of the basic computations done by the system.
Most of Maple V's built-in procedures are written in the product's own programming language. Code written in Maple V is not compiled, but interpreted as it is read or entered, allowing users to create their own Maple V procedures interactively within the program. The interface is Maple V 's eyes to the world and defines, to a large extent, how the user interacts with the commands and procedures. In effect Maple V makes the whole discipline of mathematics more accessible for general usage such as engineering applications.
The method of entering instructions is by means of directly keying in commands. These commands form part of the native extensive command language. For example, to construct a sine function ranging from $-\pi$ to $+\pi$, you would enter on the prompt symbol ($>$),

$$
>\quad f(x):=\left(\sin \left(2 * \mathrm{Pi}^{*} \mathrm{x}\right), \mathrm{x}=-\mathrm{Pi} . . \mathrm{Pi}\right)
$$

Maple would respond by writing,

$$
>\quad \mathrm{f}(\mathrm{x}):=(\sin (2 \pi \mathrm{x}), \mathrm{x}=-\pi . \pi \mathrm{i}) ;
$$

All further operations on this function would refer direct-

```
> readlib(laplace) ;
    proc(expr,t,s) ... end
> dif1 := L11*diff(i1(t), t$1) + L12*diff(i2(t), t$1) + R11*i1(t) = E , L22*diff(i2(t), t$1
> )+L12*diff(i1(t), t$1) +R2\mp@subsup{2}{}{*}\textrm{i}2(t)=0:fns:={11(t),i2(t)};
        fns:={i2(t), i1 (t)}
> dsolve({dif1, i1(0)=0,i2(0)=0},fns );
ii2(t)=
    -%2 eLI2 e ( 
        produces analytical
        solutions to differential
        equations. This
        example shows the
        solution from a model
        of a simple
        transformer.
```

-LII R22 RII L22 $\left.+\frac{1}{2} R I I^{2} L 22^{2}\right) \% 2 \mathrm{e} L 1 / L 22$
$\left.\mathrm{e}^{\left(11 \frac{\% \cdot 3 t}{L I 2^{2}-L I I L 2 z}\right.}\right) /(\% 4 \sqrt{\% 1})-\left(-2 R I / R 22 L / 2^{2}\right.$
$-\frac{1}{2} L 1 I^{2} R 22^{2}+\frac{1}{2} \sqrt{\% 1} R 22 L 1 I-\frac{1}{2} \sqrt{\% 1} R 1 / L 22$

+ LUI R22R\|L22- $\frac{1}{2} R\left\|\|^{2} L 22^{2}\right) \% 2 \mathrm{e} L 12^{2}$
$\mathrm{e}^{\left(\frac{1 / 2}{L L 2^{2}-L I I L 22}\right)} /(\% 4 \sqrt{\% 1})+\% 2 \mathrm{e}\left(-2 L 12^{2} R 22 \sqrt{\%}\right.$
- R1IL22 $\sqrt{\% 1}+L 1 / R 22 L 22 \sqrt{\% 1}$
+ 4 R1] R22 L12 2^{2} L22-2 L11 R22 R1/ L22 ${ }^{2}$
$\left.+L 1 I^{2} R 22^{2} L 22+R 1 J^{2} L 22^{3}\right) \mathrm{e}^{\left(1 / 2 \frac{R 21}{L I z^{2}-L 1 / L 22}\right)}$ LIIRII
$L 22 / \% 4^{2}-\% 2$ e $L 12^{2}\left(-2 L / 2^{2} R 22 \sqrt{\% 1}\right.$
$-R 11 L 22^{2} \sqrt{\% 1}+L 1 / R 22 L 22 \sqrt{\% 1}$
+ 4 R11 R22 L12 ${ }^{2}$ L22-2 L11 R22 R11 L22 ${ }^{2}$
$\left.+L 1 I^{2} R 22^{2} L 22+R K I^{2} L 22^{3}\right) \mathrm{e}^{\left(1 / 2 \frac{\% / 21}{L / 2^{2}-L I L L 22}\right)} R 1 / / \% 4^{2}$
$\{/(\% 3 \% 2)\}$
$\% 1:=4 R 1 / R 22 L 12^{2}-2 L 1 / R 22 R 1 / L 22+L / I^{2} R 22^{2}$
$+R 1 J^{2} L 22^{2}$
$\% 2:=L 1 / R 22+R 1 / L 22-\sqrt{\% 1}$
$\% 3:=L 1 / R 22+R 1 / L 22+\sqrt{\% 1}$
$\% 4:=-\sqrt{\% 1}$ R22LII $-\sqrt{\% 1}$ RUI L22 + RII ${ }^{2} L 22^{2}$
+4 RII R22L12 2 - 2 LII R22RII L22 $+L 1 I^{2} R 22^{2}$

GRANDATA LTD
K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 0181-900 2329 Fax: 0181-903 6126 OPEN Monday to Saturday Times: Mon-Fri 9.00-5.30 Sat 9.00-2.00
Please send £1 P\&P and VAT at 17.5\%. Govt, Colleges, etc.
Orders accepted. Please allow 7 days for delivery. Prices quoted are subject to stock availability and may be changed without notice. TV and video parts sold are replacement parts.
Access \& Visa Card accepted
WE STOCK TV AND VIDEO SPARES, JAPANESE TRANSISTORS AND TDA SERIES. PLEASE RING US FOR FURTHER INFORMATION.
TRANSISTORS

ly to $f(x)$. For example if a plot was required then you would enter,

$$
>\quad \operatorname{plot}(\mathrm{f}(\mathrm{x})) ;
$$

The software responds by creating a 2D plot, autoscaled from $-\pi$ to $+\pi$. Alternatively by ending each line with a colon (:), you can effectively cascade a list of operations which are executed once the end semicolon $(;)$ is reached.
All operations and functions are accessed in this way. However I must stress that the learning curve is quite steep. Owing to the low-level nature of Maple V 's command language, it is unforgiving and will require a fair amount of time and patience to master its rigid syntax.

Symbolic processing

It has often been said how useful it would be if computers could solve equations analytically, performing differentiations and integrations. Well, this software is able to perform just that. No matter how complex the equation, Maple V will find a solution - of sorts. It is very effective at expanding expressions, Fig. 1, and generating series terms, or for that matter factorising expressions.
With a package like this, one wonders why it is necessary to learn integration and differentiation techniques when the pc can find the answer in a fraction of the time. No more looking up tables to perform Laplace transforms and their inverse; Maple V performs these operations quite comfortably. However on occasions the answers do not agree with tabulated versions and it is difficult to know if there is an error or just an ambiguity. As expected, Maple V also performs numerical evaluations of equations and is particularly strong on the numerical evaluation of integrals and series.

Procedures

Maple V allows procedures to be created. These comprise a sequence of instructions. Like any other programming language, Maple V 's procedures incorporate conditionals, loops and exit loop conditions. The syntax is not too dissimilar to that of programming language Pascal.
An example of Maple V procedure is shown in Fig. 2. It calculates the transfer functions of different order low pass Chebychev filters. The iterative procedure shown for calculating the Chebychev coefficients from the recurrence relation is,

$$
T_{n+1}(x)=2 \times T_{n}(x)-T_{n-1}(x)
$$

with starting conditions $\mathrm{T}_{0}(0)=1$ and $\mathrm{T}_{1}(\mathrm{x})=\mathrm{x}$. Although the procedures can be quite powerful they do have quite a steep learning curve associated with them and the syntax is very precise. However there are thousands of functions in the Maple V libraries which can be used within the procedure framework.

Solving differential equations

Maple V is quite effective for solving differential equations of any order. It will also solve coupled differential equations analytically, however the answer may appear to be somewhat unwieldy as illustrated in Fig. 3 which is a printout of the solution of circuit with mutual conductance - whoever said that transformer design was simple?
In line 2 difl defines the coupled equations and line 3 performs the evaluation with the boundary conditions (no initial current in either the primary or secondary). Although not an immediately useful solution it does illustrate the analytical capability of Maple V. However by attaching numbers to the L, R and E values, numerical solutions will be produced. Maple V does not like nonlinear coupled differential equations to solve, in fact in several instances it refuses to do any

$>$ \# An example of Maple V performing a series expansion.
$>$ expand $\left((x+a)^{\wedge} 7\right)$;

$$
a^{7}+7 a^{6} x+21 a^{5} x^{2}+35 a^{4} x^{3}+35 a^{3} x^{4}+21 a^{2} x^{5}+7 a x^{6}+x^{7}
$$

$>$ \# Maple V solving sets of equations,
$>$ solve $\left(\left\{x+y=b, a^{*} x-2 / 3^{*} y=k\right\},\{x, y\}\right)$;

$$
\left\{y=3 \frac{a b-k}{3 a+2}, x=\frac{3 k+2 b}{3 a+2}\right\}
$$

> Finding solutions to polynomial expressions,
$>$ fsolve $\left(23^{*} x^{\wedge} 5+105^{\star} x^{\wedge} 4-10^{*} x^{\wedge} 2+17^{*} x, x\right.$, complex);
$0,-4.536168981,-.6371813185, .3040664543-.4040619058 I$, $.3040664543+.4040619058$ I
> \# Some integrals do not readily yield to solution,
$>\operatorname{int}\left(\exp \left(x^{\wedge} 3\right), x\right)$;

processing on them.
Old hacks at differential equations will know that there are several ways of solving them and Maple V offers the user the choice of a solution method. Electronics engineers would probably opt for using the Laplace Transform method for finding a solution and this is requested by augmenting the dsolve instruction by,
dsolve(diff_eq, $\mathrm{y}(\mathrm{x})$, method=laplace) ;
Although Maple V seems to tackle linear differential equations quite well, like a number of other maths software packages, nonlinear maths usually proves to be a little too testing and solutions are not always provided.

2D graphics

An essential aspect of any mathematical modelling package is its ability to generate graphs. These days such a task is no big deal as most numerical software can generate 2D graphs. An example of the 2D output from Maple V is shown in Fig. 2, displaying the Chebychev filter transfer functions with their characteristic ripples in the pass band. It is relatively easy to overlay several plots on the same graph and the scaling is performed automatically.

Fig. 1. Maple V is very effective at expanding expressions and generating series. In fact it performs many of the operations
that an engineering student toils for hours over.

Fig. 2. Modelling performance of a Chebychev analogue filter is easy with Maple V. As seen in this example, increasing the number of poles improves the rolloff of the filter.

Board Captare

BoardCapture - Schematic Capture

- Direct netist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

BoordMaker
BoardMaker1 - Entry level

- PCB and schematic drâtung
- Easy and intuitive to use
- Surface mount support
: 90,45 and curved track comers
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMaker1 plus
- Full netlist support - OrCad, Schema, Tango, CadStar
- Full Design Rule Checking: mechanical \& electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCII, BOM
- Thermal power plane support with full DRC

BoardRouter - Gridless autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec, Roland \& Houston
- Photoplotters - All Gerber 3X00 and 4X00
- Excellion NC Drill / Annotated drill drawings (BM2)

Contact Tsien for further
information on
Tel 01354695959
Fax 01354695957

Tsien (UK) Lud Aylesby House Wenny foad Chateris Cambridge PEts aft

CIRCLE NO. 109 ON REPLY CARD

DEVELOPMENT AND PRODUCTION SOLUTIONS

- Gang Programmers
- Development Programmers
- Universal Cross Assembler
- Package Converters
- Development Tools
- Emulator Pods + Adapters

$35\left[\begin{array}{l}5 \\ 0 \\ 0 \\ 0\end{array}\right.$

IRELAND GERMANY 1-2800395 NORWAY 089/4602071 TALY 0702.17890 FRANCE 0292103554 SWEDEN 169301379 Also from
emelation tecinology inc.

Park Road Centre, Malmesbury, Wiltshire SN1 6 OBX UK Tel: 01666825146 Fax: 01666825141
e/mail100447.1124@compuserve.com

Provisions are available for plotting in cylindrical coordinates and performing contour plots. It would however be helpful if more control could be exercised on the plotting features, axis definition and labelling for example as it is likely that you will require a printing of 2 D plots.

3D graphics

Features for performing the now commonplace function of 3D plotting are available in Maple V. But one of the extraordinary features of Maple V is its ability to plot in a variety of coordinate systems - spherical coordinates for example. This allows true solid modelling to be realised. For example, the complex mode structures in graded index optical fibres can be represented pictorially. They involve a lot of unfriendly

System requirements

A realistic minimum is,
$33 \mathrm{MHz} 486-\mathrm{pc}$
SVGA monitor
Graphics accelerator, 256 colours
8Mbyte ram
10 Mbyte hard disc space, excluding virtual
memory
Laser printer
Windows 3.1

Source

Adept Scientific Micro Systems Ltd
6 Business Centre West
Avenue One
Letchworth.
Telephone: 0462-480055
Fax: 0462-480213
Cost $£ 660$ offer ex vat \& carriage.

Bessel functions, however with Maple V they can become somewhat more accessible and easier to work with.
There is an impressive range of 3D plotting features but it does require a push of the imagination to realise their usage. The 3D surfaces also have a variety of colour shading as can be seen from the example given in Fig. 4; although pretty to look at, it is not terribly useful.
However if there was a need to model the 200 MHz pulse propagation along pcb tracking, then Maple V could be used to determine the 3D impedance profiles along the length of the tracking (including reflections). Being able to visualise solutions such as these must be one of the main benefits of using modelling packages like Maple V.

Conclusion

There are very few areas of engineering where Maple V would not prove useful. Although the package is very powerful and undoubtedly applicable to a variety of modelling purposes a word of caution must be expressed.
New users must be prepared to spend a lot of time leaming how to use the package proficiently. It will probably be several hours before they will be in a position to apply Maple V. A number of manuals are provided to help the learning process, including the Reference Manual and a Tutorial Introduction.
The Tutorial presents many examples, which are necessary for a package with such rigid syntax rules. Working through these manuals is an absolute must. There is also a welldesigned screen-based tutorial which should prove helpful to the new user. Also available for Maple V are a number of text books written by third parties. It is certainly pleasing to know that if you have a pc on which you want to perform complex mathematical operations, Maple V will certainly put it through its paces and uses all of its memory and calculating power.

Fig. 4. 3D plot generation with Maple V can produce some fascinating solid modelling. Animation can also be added to the modelling to give an insight into temporal behaviour.

SEE THIS $£ 50^{\circ}$

Interactive development,
EMBEDDED
easy to learn with
CONTROL
ready-made libraries.
COMPUTER

IN ACTION ON

Graphics display and keypad
STAND E33 AT
interfaces, 35 parallel and
NEC BIRMINGHAM
2 serial input/outputs,
C \& I EXHIBITION non-volatile memory etc. etc.

Triangle Digital Services Ltd

 Tel 0181-539 0285Fax 0181-558 8110

Microsoft Windows compatible. Connects to PC via serial port. RISC microcontroller design, with full RDS decoding of PI, PS, PTY, TP, TA, AF, EON, RT and CT.
Indirect synchronisation of the PC to the Rugby MSF time standard.
Synthesised tuning in 10 KHz steps. Low noise dual gate MOSFET front end, with triple 10.7 MHz ceramic filters. Signal strength with resolution 0.5 dB . Frequency spectrum of 87.6 to 108.8 MHz can be printed out as hard copy. Class AB output stage, to drive Line, Sound Card or Loudspeakers. Requires minimum of $386 / 25 \mathrm{MHz}$ (rec. $486 / 33 \mathrm{MHz}$) with 4 Mbytes ram, 1Mbyte hard disk, running Windows 3.1

Mictogen eiectooncs $\begin{aligned} & \text { Please add } 44.50 \mathrm{p} \mathrm{\& D} \\ & \text { Zero rated for } V A T\end{aligned}$
43 Salisbury Ro SM5 3HA Tel/Fax 01816478238

Zero rated for VAT Please make cheques payable to: Microgen Electronics Full specification avallable on request.

Premier
 EDA Solutions
 Desktop EDA for Windows
 First class solutions for electronic design automation

< Protel Technology, Advanced PCB. A full-featured, intuitive PCB design system, with support for all common PCB technologies from simple single-sided to complex multi-layer SMT designs. Advanced PCB also allows loading of PADS, PCAD, DXF \& Gerber data.

Cooper \& Chyan Technology, SPECCTRA.
Utilising powerful shape based algorithms, SPECCTRA 's innovative rules-driven approach allows precise control. With optional modules allowing design for manufacture, fast circuit and interactive trace shove. SPECCTRA is leading the field of PCB autorouting. ∇

A Protel Technology, Advanced Schematic. A complete design entry tool for Windows that gives you all the power you need. The $30+$ different netlist outputs allow you to work with a variety of systems for PLD/FPGA programming, simulation, analysis \& PCB layout. It will even directly read OrCAD schematics \& libraries.

Dolphin Integration, SMASH.
A multi-level, mixed signal simulator. Allows simulation of analogue, digital and mixed signal circuits at a user-selectable level of abstraction - from simple SPICE libraries to full behavioural modelling

Premier EDA Solutions Ltd. 133 Cardiff Road, Reading, Berkshire. RG1 8ES.
Telephone: 01734574 444. Facsimile: 01734599519.
Or see Protel in the CAD/CAM/CAE forum on CompuServe.

Best rf article '95

Following the success of 1994's Writers Award, Electronics World and Hewlett-Packard are launching a new scheme to run from January to December 1995.
Only articles which have an element of rf design will be eligible for consideration by the judging panel. It is hoped that this year's award will focus writer interest on rf engineering in line with the growing importance of radio frequency systems to an increasingly cordless world.
The aim of the award scheme is to locate freelance authors who can bring applied electronics design alive for other people.
Qualifying topics might include direct digital synthesis, microstrip design, application engineering for commercially available if ICs and modules, receiver design, PLL, frequency generation and rf measurement, wideband circuit design, spread spectrum systems, microstrip and planer aerials... The list will hopefully be endless.
All articles accepted for publication will be paid for - in the region of several hundred pounds for a typical design feature.

Win a £4000 programmable signal generator from Hewlett-Packard

The prize for the coming year's award is a £4000 Hewlett-Packard HP8647A 1 GHz programmable signal generator. It features HPIB interface, solid state programmable attenuator and built in AM-FM modulation capability.

> For further defails about our quest for the best, call or write fo:
> Martin Eccles, Edifor, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
> Tel 081-652 3128

It will be... PRECISELY!

It's common knowledge that the average PC Clock is not the most accurate time-keeping device. Until the DC-76 Atomic Controlled Clock!

Now your PC can be accurate to \pm one second in a million years. Synchronised to the atomic clock at Frankfurt Germany within a radius of 2,500 Km. Choose between serial/game-port versions. Software for Windows and DOS is standard. Drivers for Novel, OS/2, Warp, LAN Server, LINUX and SCO UNIX are optional. Installation is as easy as connecting a new mouse!

The DC-76 is complete, consisting of, receiver, connecting cable with software and user manual.

It's only available from ON-TIME SYSTEMS and fully supported right here in the UK! Call now to place your order! VISA and MasterCard accepted.
ON-TIME SYSTEMS - Unit CE, Morth Corner Turners Hill Road, Pound Hill. West Sussex RH10 7SL Tel: 01293886820 Fax: 01293886821 Barnes Elliott Limited, Trading as ON-TME SYSTEMS

COMPONENTS \& Systems from Iosis

20525

Industrial Spec Components and Systems 386SX-40 All-in-one CPU Board on PC half card from £2/5. Requires only display adapter and RAM to complete the core of a PC-compatible system. PC/104 or ISA bus expansion. PC/104 display adapter from $£ / 35$. Desktop LCD mono VGA monitor with display adapter and passive backplane from $£ 499$. Please enquire for complete systems. Prices exclude VAT and carriage.
2c Chandos Road, Redland, Bristol BS6 6PE, UK Tel: 01179730435 Fax: 01179237295

CIRCLE NO. 115 ON REPIY CARD

PIC 16/17Gxx DEVELOPMENT TOOLS

NEW BASIC STAMPS

High Specification PIC Tools from PARALLAX
ClearView In-Circuit Emulators
$20-\mathrm{MHz}$ in-circuit debugging for PIC
 16C5x/64/71/84/.
Set breakpoints, step through code, modify registers.
Friendly DOS and Windows software.
From $£ 39$ (separate units for " $5 x$ " and " $x x$ " PICs)

PIC Programmer Pack

Programmer for
PIC16C5x/64/71/84/.
Documentation on disk.
User supplied cables and power supply.

Just $£ 89$

Stamp-sized Computer Modules Run BASIC

100 line capacity: $4-\mathrm{MHz}$ Clock
£20

161/O 600 line capacity: $20-\mathrm{MHz}$ Clock £49

Two NEW BASIC Stamp Controllers offering even more flexibility to Industry, Education and the Hobbyist. Both run Parallax "PBASIC" with familiar BASIC commands plus serial I/O, pulse measurement and button debounce. The BS2-IC includes additional support for LCDs, keypad, DTMF encoding/decoding, X-10 transmit and external time clocks.
The BASIC Stamp programming package at £66 contains editor software, cables, manual and extensive application notes; everything you need to program Stamps using your PC.

All prices exclude VAT and $£ 3$ shipping per order. For further details on any of these products please 'phone for our new colour catalogue.

Milford House, 120 High Street,
SOUTH MILFORD, Leeds LS25 5AQ
Telephone 01977-683665 (24 hour) 01977-681465 (Fax)

Abstract

"Had bipolar transistors been invented before power mosfets, they would have been heralded as a major step forward in components for power amplification," suggests Douglas Self.

There has been much debate recently as to whether power fets or bipolar junction transistors (bjts) are superior in power amplifier output stages. Reference 1 is a good example. It has often been asserted that power fets are more linear than bjts, usually in tones that suggest that only the truly benighted are unaware of this.
In audio electronics it is a good rule of thumb that if an apparent fact is repeated times without number, but also without any supporting data, it needs to be looked at very carefully indeed. I therefore present my own view of the situation here, in the hope that the resulting heat may generate some light.
I suggest that it is now well-established that power fets, when used in conventional ClassB output stages, are a good deal less linear than bjts. ${ }^{2}$ Gain deviations around the crossover region are far more severe for fets than the relatively modest wobbles of correctly biased bjts, and the shape of the fet gain-plot is inherently jagged, due to the way in which two square-law devices overlap.
The incremental gain range of a simple fet output stage is 0.84 to 0.79 , range 0.05 , and this is actually much greater than for the bipolar stages in Reference 2; the emitter-follower stage gives 0.965 to 0.972 into 8Ω, with a range of 0.007 , and the complementary feedback pair gives 0.967 to 0.970 with a range of 0.003 . The smaller ranges of gain-variation are reflected in the much lower thd figures when

PSpice data is subjected to Fourier analysis. However, the most important difference may be that the bipolar gain variations are gentle wobbles, while all fet plots seem to have abrupt changes. These are much harder to linearise with negative feedback that must decline with rising frequency. The basically exponential $/ I_{c} / V_{\text {be }}$ characteristics of two bjts approach much more closely the ideal of conjugate mathematical functions, - ie always adding up to 1 . This is the root cause of the much lower crossover distortion.

Close-up examination of the way in which the two types of device begin conducting as their input voltages increase shows that fets move abruptly into the square-law part of their characteristic, while the exponential behaviour of bipolar devices actually gives a much slower and smoother start to conduction.

Similarly, recent work ${ }^{*}$ shows that less conventional approaches, such as the common-collector/common-emitter configuration of Bengt Olsson, also suffer from the non-conjugate nature of fets. They also show sharp changes in gain. Gevel ${ }^{3}$ shows that this holds for both versions of the stage proposed by Olsson, using both N and P -channel drivers. There are always sharp gain-changes.

Class A stage

It occurred to me that the idea that fets are more linear was based not on Class-B poweramplifier applications, but on the behaviour of a single device in Class-A. You might argue that the roughly square-law nature of a fet's $I_{\mathrm{d}} / V_{\mathrm{gs}}$ law is intuitively more 'linear' than the exponential $I_{\mathrm{c}} / V_{\mathrm{be}}$ law of a bjt, but it is difficult to know quite how to define 'linear' in this context. Certainly a square-law device will generate predominantly low-order harmonics, but this says nothing about the relative amounts produced.

In truth the bjt/fet contest is a comparison between apples and aardvarks, the main problem being is that the raw transconductance $\left(g_{\mathrm{m}}\right)$ of a bjt is far higher than for any power fet. Figure 1 illustrates the conceptual test circuit; both a TO3 bjt MJ802 and an IRF240

Fig. 1. Linearity test circuit. Voltage $\mathrm{V}_{\text {offset }}$ adds $3 V$ to the dc level applied to the fet gate, purely to keep the current curves helpfully adjacent on a graph.
power fet have an increasing dc voltage, $V_{\text {in }}$, applied to their base/gate, and the resulting collector and drain currents from PSpice simulation are plotted in Fig. 2.
Voltage $V_{\text {offset }}$ is used to increase the voltage applied to fet M_{1} by 3.0 V because nothing much happens below a V_{gs} of 4 V , and it is helpful to have the curves on roughly the same axis. Curve A, for the bjt, goes almost vertically skywards, as a result of its far higher g_{m}. To make the comparison meaningful, a small amount of local negative feedback is added to $Q_{\text {। }}$ by R_{e}. As this emitter degeneration is increased from 0.01 to 0.1Ω, the I_{c} curves become closer in slope to the I_{d} curve.
Because of the curved nature of the fet I_{d} plot, it is not possible to pick an R_{e} value that allows very close gm equivalence; a value of 0.1Ω was chosen for R_{e}, this being a reasonable approximation; see Curve B. However, the important point is that I think no-one could argue that the fet I_{d} characteristic is more linear than Curve B.
This is made clearer by Fig. 3, which directly plots transconductance against input voltage. There is no question that fet transconductance increases in a beautifully linear

[^2]

Fig. 2. Graph of I_{c} and I_{d} for the bjt and the FET. Curve A shows Ic for the bit alone, while Curve B is the result for $R_{e}=100 \mathrm{~m} \Omega$. The curved line is the I_{d} result for a power fet without any degeneration.

Fig. 3. Graph of transconductance versus input voltage for bit and fet. The near-horizontal lines are bjt g_{m} for various R_{E} values.

Left are curves for a bipolar complementary feedback pair, crossover region $\pm 2 \mathrm{~V}, V_{b j a s}$ as a parameter. Fourth curve up provides good optimal setting - compare with curves on the right, for a fet source follower crossover region with $\pm 15 \mathrm{~V}$ range.
manner- but this 'linearity' is what results in a square-law I_{d} increase. The near-constant g_{m} lines for the bjt are a much more promising basis for the design of a linear amplifier.
To forestall any objections that this comparison is nonsense because a bjt is a currentoperated device, I add here a small reminder that this is untrue. The bjt is a voltage operated device, and the base current that flows is merely an inconvenient side-effect of the collector current induced by said base voltage. This is why beta varies more than most bjt parameters; the base current is an unavoidable error rather than the basis of transistor operation.
The PSpice simulation shown was checked against manufacturers' curves for the devices,
and the agreement was very good - almost unnervingly so. It therefore seems reasonable to rely on simulator output for these kind of studies; it is certainly infinitely quicker than doing the real measurements. In addition, the comprehensive power-fet component libraries that are part of PSpice allow the testing to be generalised over a huge number of component types without you needing to buy them.
To conclude, I think it is probably irrelevant to simply compare a naked bjt with a naked fet. Perhaps the vital point is that a bipolar device has much more raw transconductance gain to begin with, and this can be handily converted into better linearity by local feedback, ie adding a little emitter degeneration.

If the transconductance is thus brought down roughly to fet levels, the bipolar has far superior large-signal linearity. I must admit to a sneaking feeling that if practical power bjts had come along after fets, they would have been seized upon with glee as a major step forward in power amplification.

References

1. Hawtin, V., Letters, EW+WW Dec 1994, p. 1037.
2. Self D., 'Distortion In Power Amplifiers', Part 4, EW +WW, Nov 1993, pp 932-934. 3. Gevel M., Private Communication, Jan 1995

TOROIDAL TRANSFORMERS

High Quality
Low Prices
In addition to our standard range we will be pleased to quote for your special requirements

PRICE LIST

		Quantity Price Excluding VAT \& Carriage					
VA	Mail Order	$2+$	$10+$	$25+$	$50+$	$100+$	
15	14.59	10.21	7.69	5.69	5.52	5.35	
30	16.04	11.23	8.45	6.25	6.06	5.89	
50	17.83	12.48	9.40	9.95	6.74	6.53	
60	18.02	12.61	9.49	7.02	6.82	6.61	
80	17.98	12.60	9.49	7.02	6.81	6.60	
100	21.07	14.74	11.11	8.21	7.96	7.72	
120	21.54	15.08	11.35	8.39	8.15	7.89	
150	25.98	18.19	13.70	10.12	9.82	9.53	
160	23.83	16.68	12.56	9.28	9.00	8.73	
225	30.10	21.07	15.87	11.73	11.39	11.04	
300	34.32	24.02	18.09	13.38	12.98	12.58	
400	46.19	32.32	24.35	17.99	17.47	16.94	
500	50.48	35.34	26.61	19.67	19.09	18.51	
625	53.09	41.36	31.14	23.02	21.24	20.57	
750	58.39	44.23	33.30	24.62	23.89	23.17	
1000	78.80	55.16	41.54	30.70	29.80	28.89	
1200	82.45	57.72	43.46	32.12	31.17	30.23	
1500	105.10	73.63	55.40	40.94	39.74	38.53	
2000	114.45	96.13	72.39	53.51	51.93	50.36	
2500	163.04	114.13	85.94	63.51	61.64	59.79	

These prices are for 240 volt primary and two equal secondaries with $8^{\prime \prime}$ colour coded fly leads.
Each transformer is supplied with a mounting kit (steel dish washer pads, nut and bolt)
Mail order prices include vat and postage
Please do not hesitate to telephone or write with your particular requirements.

> Angman Airlink Sales Co

16 Knight Street, Sawbridgeworth, Herts CM21 9AT
Tel: 01279600139 Fax: 01279726379
CIRCLE NO. 117 ON REPLY CARD

HEWLETT PACKARD HP71B

Other products at give-away prices
Numeric keypad for 'AT' computer
$£ 5+£ 2$ Carriage (Carriage FREE if ordered with above)
INTERCONNECTIONS LTD
Unit 41, InShops, Wellington Centre, Aldershot, Hants GU11 5DB Tel: (01252) 341900 Fax: (01293) 822786

CIRCIE NO. 118 ON REPLYCARD

"moving from schematic to layout could not be easier"

Electronics World \& Wireless World Jan 1995

NEW

Extended Library
Pack Just £39.00!

DESIGNER $£ 99$
*Schematic \& PCB Drawing *1/2 layer auto-router *Supports Windows printers/plotters *Full set of libraries *Clipboard support *Designer Special (manual on disk) also available.

PRO

£199
*Schematic \& PCB Design *Schematic Capture *Integrated Rats-Nest Generation *1-8 layer Auto-router (faster than Designer) *Net-List Export *Supports Windows printers/plotters *CAD-CAM outputs.

PRO + £299

As the PRO but also includes *Advanced Schematic Capture (Busses,Power rails,etc) *Larger Schematic \& PCB Designs *Gerber file IMPORT for File Exchange *Extended libraries including Surface Mount, CMOS, etc.

Busses \& power rails handled using Global Nets on PRO+

Integrated Schematic \& PCB Design.
POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, U.K.

Tel/Fax 01614497101

CIRCIE NO. 119 ON REPLY CARD
*Prices exclude P+P and V.A.T. *VISA/MasterCard Accepted *Network versions available.

FREE
Demo
Pack
Available.

Electronic Designs Right First Time?

Active and Passive Filter Design - FILTECH -

From only £145!
Visa, Delta, Switch, MasterCard and American Express welcome

Affordable Electronics CAD

LAYAN: Electromagnetic Layout Simulator. Links to EASY-PC Pro' XM and ANALYSER III Pro'.	$£ 495.00$	
EASY- PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR.	From	
PULSAR: Digital Circuit Simulator	From	
ANALYSER III: Linear Analogue Circuit Simulator	From	
Z-MATCH for Windows: Smith Chart based problem solving program for R.F. Engineers	$\mathbf{£ 2 4 5 . 0 0}$	
FILTECH: Active and Passive Filter design	$£ 145.00$	
FILTECH Professional: Enhanced Filter Design Program including Elliptic Fiters (up to 12th order)	$£ \mathbf{£ 2 4 5 . 0 0}$	
EASY- PC: Entry level PCB and Schematic CAD	$\mathbf{£ 9 8 . 0 0}$	
Technical Support FREE for life! Prices exclude P\&P and VAT.		
Special discount schemes for education		

Number One Systems

Ref: WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK. For Full Information Please Write, Phone or Fax Tel: +44 (0) 1480461778 Fax: +44(0) 1480494042

If you need Valves/Tubes or RF Power Transistors e.t.c. .. then try us! We have vast stocks, widespread sources and 33 years specialist experience in meeting our customers requirements.

Tuned to the needs of the Professional User
Chelmer Valve Company, 130 New London Road, Chelmsford, Essex CM2 ORG, England区o44-01245-355296/265865 Fax: 44-01245-490064 CIRCLI NO. 121 ON REPLY CARD
the new
CRICKLEWOODElectronics Verfy limterestimg CATALOGUE

ASTRONOMICAL RANGE AT

 DOWN TO EARTH PRICES- TRANSISTORS+ICs+SEMICONDUCTORS
- RESISTORS+CAPACITORS+INDUCTORS
- SURVEILLANCE+SECRECY+SECURITY
- PLUGS+SOCKETS+LEADS+CONNECTS
- TV \& VIDEO SPARES (inc Video Heads)
- HIFI+DISCO+HIFI GADGETS+SPEAKERS
- AUDIOPHILE COMPONENTS (inc Capacitors)
- IN CAR AUDIO+SPEAKERS (inc Bass tubes)
- COMPUTER ACCESSORIES+BOARDS
- TOOLS+TEST EQUIPMENT+BENCHWARE \& much much much more (over 10,000 lines). SEND TODAY FOR THE VERY INTERESTING CATALOGUE Pay by PO, Cheque, Credit Card or tape Coins to Paper Please send mecopies of the 1995 Cricklewood Catalogue. I enclose $£ 2.50$ per copy (UK \& Europe). $£ 5.00$ overseas Name..
\qquad
\qquad
\qquad
Please Charge my Credit Cardino. \qquad
Expiry Date..........................Tel no..W W
Cricklewood Electronics Ltd, 40-42 Cricklewood Broadway
London NW2 3ET Tel 01814500995 Fax 01812081441

$\underset{\text { audio signals }}{\text { Delayec }}$

Too many audio designs are deeply flawed in the bass, says Ben Duncan, recalling recent work of

Douglas Self and Edward Cherry. Here Duncan uses simulation to explain the reasons and ramifications for the entire audio chain.

Dependence of the quality of reproduced sound on the number of components through which it is passed still seems to be doubted by some commentators ${ }^{1}$. But how many have actually bothered to examine exactly what happens to a given signal between the mic terminals via multitrack recording process and recording media - and its emergence from a domestic power amplifier?
A realistic record-to-reproduction path could include six gain stages with dc blocking in input and feedback paths; three high pass (-12 and $-18 \mathrm{~dB} /$ octave) filters; and 52 other dc blocking capacitors, Fig. 1. In a typical consumer grade path, capacitor values for assorted random $f_{3 \mathrm{~L}} \mathrm{~s}\left(\omega_{\text {low }} / 2 \pi\right)$ will be centered around $4-6 \mathrm{~Hz}$, and up to 16 Hz . In fact this is a specification that is becoming increasingly prevalent even in supposedly professional equipment.
Analysing the frequency responses of 50 of these paths, Fig. 2, at different points shows the gain stages, high pass filters and buffers to range from -3 dB , at from below 3 Hz , up to 63 Hz in the worst case. Uncorrected response at the end of the chain is -3 dB at $45-200 \mathrm{~Hz}$.
This doesn't mean that bass is absent by so much: it is
Fig. 1. Over 70 cascaded RC high-pass elements model a complete (electronic portion of an) audio record-to-reproduction path. Capacitor tolerances are engaged to simulate random equipment combinations, as well as tolerance, temperature and drift variables.
compensated for during the recoraing proauction process. But compensatory equalisation means the real path experiences even more phase corruption.
The figures nonetheless suggest the kind of roll-off commensurate with the delay and waveform distortion existing.
Delay problems can be appreciated by examining the contribution of a solo gain stage, Fig. 3. Just this one type of stage clearly exhibits more delay than the 52 buffers (otherwise the sum would exceed the upper plots in Fig. 3).
The effect of this aurally significant delay is mistiming of

Fig. 2. Unequalised frequency responses of a possible complete consumer-grade audio reproduction path (upper panel, blue plots). Upper panel red plots, and blue and red lower panel plots, show typical responses of constituent gain stages, high-pass filters and buffers. Each Monte Carlo run represents myriad design differences, as nearly all audio chains are made from effectively random equipment assemblies. There are no standards for $\mathrm{f}_{31} . Y$ axis is decibels.

AUDIO

Fig. 3. Group delay vs frequency, individual and total, for a complete, consumer -grade reproduction path. Note the convergence on linearity only at extreme frequencies. Y-axis is milliseconds of delay.

Fig. 4. The $B D R$ method: like Fig. 2, but with 100 times less signal delay. Note Y axis scale change.

Fig. 5. Complete consumer path again. A pulse goes down the chain, with just five Monte Carlo runs for clarity. The emerging wave should not seem 'suitable for its intended purpose'. Fortunately, music productions only occasionally comprise such waveforms and 'data corruption' to the ears may be less fundamental than it appears to the eyes. \boldsymbol{Y}-axis is volts.

Fig. 6. Keeping the pulse. How bdr handles a pulse something that looks very like the input pulse emerges at the output (lowermost).

Fig. 7. Phase disaster at path output. With consumer values, the phase response of the whole path is truly non-linear, and the rate of phase shift changes at hundreds of degrees every few Hz around 40 Hz . In the lower panel, the phase change rate (enlarged x30) isn't even linear by $\mathbf{1 k H z}$. Note also the wild singleton - a disparate of excess phase. Y-axis is degrees.

Fig. 8. Attaining global phase linearity. With bdr, the rate of change of phase is far, far less at the end of a full audio reproduction chain. In the lower panel, even $\times 30$ enlargement fails to reveal any visible curvature above 100 Hz .
the music - here as much as 43 ms at 40 Hz - while the higher harmonics of a note at this frequency can have periods many times shorter than this.

Clearly, the music is playing out of step with itself, and any $R C$ components that add hp filtration will compound this delay. The real test of a design is to measure delay after passing a signal through seventy (of Douglas Self's 'blameless') power amplifiers - with appropriate interstage attenuation.

Distortion suffered by wideband audio waveforms $(10 \mathrm{~Hz}$ to $20-100 \mathrm{kHz}$, Fig. 3) resulting from this delay is horrific: 'smeared' is a fair description.

Phase compensation suggested by Cherry ${ }^{2}$ ought to help, but will it? Compensation must be in use in not just one stage, but throughout a fair fraction of - if not all - the audio chain. Plainly this would prove unworkable as each stage's inevitable xdB of subsonic gain would accumulate, soon eating up headroom. Also, any compensatory equalisation circuit would require further critically-toleranced $R C$ parts, and its own phase relations and tolerance deviations would destroy Cherry's compensation's benefits.

The problems of the consumer approach are self-inflicted. To demonstrate what would happen if the bdr (see panel, BDR vs Cherry and Self) approach were used throughout the audio path, the capacitor values can simply be increased by $\times 167$.

Effect on group delay is to make it 100 times smaller, Fig. 4 and contribution of the solo gain stage also ranges higher.
So what would be the fate of a simple positive pulse as it passes through the chain, Fig. 5? After the 57th high-pass function, the edge reduces to something like a damped oscillation. But using the bdr method, Fig. 6, although the final output may be a little tilted, at least it's recognisable and quite faithful.
Similarly, phase linearity for the consumer path is a disaster at all frequencies below 1 kHz, Fig. 7 , with the rate of change of phase per hertz accelerating. This can be compared with the bdr method, Fig. 8, which demonstrates an almost text book model of phase linearity. No significant curvature is visible above 100 Hz
Ironically, without the expense of hindreds of volts of If headroom extension, Cherry's phase compensation scheme
can in practice only be used once or twice. It is only in this almost phase-linear environment that it would have significant objective effect. Yet, in ordinary signal chains the effect would readily be heard as an improvement. But the same phase correction of just one stage in $60+$ would be nearly invisible in any objective measurement of the whole chain due to phase jitter.

References

1. D Self, "Unacceptable Terms" , Letters, EW + WW, Feb 1995.
2. E Cherry, "Ironing out distortion", EW + WW, Jan '95.
3. 8 Duncan, "Spirit of Bass", EW + WW, Feb '94.
4. D Self, "High speed audio power", EW + WW, Sept '94.
5. D Jensen, "High Frequency phase response specifications useful or misleading?', 81 st AES convention, Nov '86, reprinted with corrections by Jensen transformers, 1988.

Ben vs Self and Cherry: simulated contest

Ben Duncan wonders if he's the only designer left who really cares about the effects of phase and group delay on bass response.

Simulation of the Ben Duncan Research (bdr) simple and low-compromise approach to low frequency reproduction accuracy ${ }^{3}$ can quickly provide a straightforward picture of phase and group delay, audio aspects of which are evidently still only foggily understood by some. Simulation also allows the design to be compared with those of Douglas Self ${ }^{4}$ and Edward Cherry ${ }^{2}$.
First step is to enter the three circuits into MicroCap $I V$ to compare different approaches to low frequency reproduction (Fig. I). In the bdr approach, topology is minimal and $f_{3 L}$ (alias $\omega_{\text {ow }} / 2 \pi$) is made extremely low, typically $<0.1 \mathrm{~Hz}$.
The "consumer grade" version of the same topology, has lean hp capacitors to save pennies (eg Self ${ }^{4}$, though to be fair, far worse examples are extant) and f_{31} is typically $3-10 \mathrm{~Hz}$. In this and the bdr circuit, the main resistive arm values have been scaled to be identical to those specified by Cherry so like is being compared with like.

In practice, I would use a $1000 \mu \mathrm{~F}$ - not $3300 \mu \mathrm{~F}$ - lower arm capacitor, and scale the associated R values by a factor of three. In Cherry's circuit, extra parts have been introduced, apparently to compensate for having used too lean a principal elcap value in the first place. One practical problem
with Cherry's method is that an exact ratio of three between electrolytics requires some messy paralleling when only E3 series values $(10,22,47,100 \mu \mathrm{Fetc})$ are available, as is often the case.

Plotting If frequency response and phase using conventional log frequency scale (Fig. II, upper panel) for the three circuits does not give meaningfully view of phase behaviour for reproduction errors. In MicroCap, while simultaneously plotting by frequency, the scale for the phase data can be set to linear with 0 Hz ('dc') as the origin, Fig. III. This will remove the delay ${ }^{5}$ independent of frequency,

Fig. II. Frequency responses (upper panel) of the three contrasted circuits all provide negligible roll-off in the audio band $>20 \mathrm{~Hz}$, but with true, frequency dependent phase shift visible for a change (lower panel), the consumer/Self circuitry commits phase crime well within the ear's most sensitive domain.

Fig. I. Three bass response approaches compared. Centre is Prof Cherry's "phase compensation" scheme. Note ac test source (left) drives all three. Measurements are referred to node labels; nodal numbering in MicroCap is automatic and transparent. Left and right circuits vary only in their elcap size. The Harris HA5221 IC model parameters are Level 1 for speed, and have been over tweaked but these factors have no appreciable effect on simulation accuracy or validity in our strictly If arena.

Fig. III. MicroCap's ac analysis prolog screen. Note the frequency range origin is set at 1 mHz , not quite dc but near enough, to speed up plotting. Also, the the decibel and phase plots are set logarithmically and linearly, respectively. Y -axis is milliseconds of delay.

Fig. IV. Square wave responses compared. Upper panel shows all three. Lower panel magnifies the positive pedestal and abstracts it in time too, to clarify the differences between the Cherry (convex) and bdr (nearlinear) methods. \boldsymbol{Y}-axis is volts.

Fig. V. Mass frequency responses.
Upper graph covers half the amplitude of the lower. The Monte Carlo linear run shows what could occur in a real population. Y-axis is decibels.

Fig. VI. Cherry's phase disaster: A Monte Carlo run showing true phase response after Jensen, in a production population. Note linear frequency scale. The vertical step just discernible in the origin of the upper plot is because frequency was set to begin at 0.1 Hz rather than OHz . This speeds the run. Y-axis is degrees.

Fig. VII. Effect on the two square waves shown in the lower panel of Fig. IV when capacitor values are stepped over real world tolerances. The lower set of plots shows how - with most variations - Cherry's method fails to achieve the flat top that is its goal. The bdr method is clearly much less sensitive to part tolerance, though with more than 20 plots (a limit imposed for visual clarity) a few 'wild' plots will occur. Y-axis is volts.

Fig. VIII. Three signal delay patterns. Group delay is plotted with the 'Gd' operator. For clarity with the three, smaller, scales and because smooth Gd plotting demands slower runs than phase or amplitude, the number of Monte Carlo runs has been reduced from 60 to 30 .
revealing true phase linearity so that a straight line on this linear scale, whether sloping or level, indicates absence of waveform distortion. Anything bending is slurring the signal with respect to frequency.
Using this technique, both the Cherry and bdr methods can be seen to have (Fig. II, lower panel) audio band, to 20 Hz , true phase linearity well within 1°. But the consumer approach shows almost 4.5° of tilt at 42 Hz - the lowest fundamental from a bass guitar.

Cherry is certainly more linear at sub-sonic frequencies than bdr, and that would improve the accuracy of say, an earthquake or explosion (for hi-fi video entertainment). But we must ask: "Is it really worth it?"
Square-wave responses, Fig. IV, show a major tilt in the consumer approach, while a 20 times magnification is needed to see that the BDR method tilts more than Cherry's and the slope is almost linear. A sign of Cherry's phase compensation can be seen in the slightly convex curvature, whereas the consumer tilt is concave.

The lower arm dc blocking capacitor is inevitably electrolytic - Douglas Self agrees ${ }^{1}$ - even if for sonic reasons a far smaller valued polypropylene capacitor is shunted
across. Scaling R up and C down is just not practical on grounds of noise, microphony and increased electrostatic/EMI sensitivity ${ }^{3}$.
Electrolytic tolerances may have improved greatly over the years, but they are still commonly as poor as $\pm 30 \%$ and most are $\pm 20 \%$ at best. Electrolytics also have the poorest temperature coefficients of any capacitor type. Typically the value will change from that at switch on by at least $+10 \%$, and possibly to over 50%, after the unit's internal temperature has risen by $35^{\circ} \mathrm{C}$. Equally, faradic value could drift by 25% with time.
Taking the midpoints of these, we have $25 \%+30 \%+25 \%$. So in real use the two elcap values on which Cherry's scheme depends may realistically and independently vary by $\pm 80 \%$ (ie from $\times 0.2$ to $\times 1.8$). To reflect this, all capacitors definition statements for the simulation (Fig. I) have been appended with LOT $=80 \%$. For clarity, resistor values are assumed to be invariant.

Re-running the simulations with Monte Carlo analysis, using linear distribution, shows the effect of real world capacitative value variation.

Amplitude response variation across 60 units for bdr (Fig. V) shows no peak, nor any aberration above 0.1 dB in the audio band.

But Cherry's scheme shows that the response and damping (Q) varies all over (so badly that the scale is halved to see just a bit of it) and the variation infects frequencies considerably above 20 Hz .

In the worst-case true phase error at 20 Hz , Fig. VI, bdr varies just 1.8° between +0.2 and $+2^{\circ}$. Yet Cherry's scheme varies over 16° from at least $+8^{\circ}$ to -8°. Worse, the phase error varies by more than $\pm 0.75^{\circ}$ at 200 Hz , a far more critical and phase-sensitive midrange frequency.
Looking again at the square wave response, even with only 20 Monte Carlo runs, Fig. VII, bdr shows only mild changes while Cherry already varies wildly. In fact Cherry's response - completely different from the slight tilt intended - makes it most dubious where anything but individually-selected ovenmounted electrolytics, measured and calibrated monthly, are available.

Finally, we should consider group delay. Plotted against logarithmic frequency, this displays frequency-dependent signal delay directly.

At first sight, delay varies almost linearly with frequency using all three schemes, Fig. VIII. However, both Cherry and the consumer method exhibit plots that are non-monotonic: try a ruler against them.
What matters most though, is the excess absolute delay. The consumer scheme is worst, with the largest delay (in only 30 random production units remember) being nearly $400 \mu \mathrm{~s}$. With Cherry, the worst delay at 80 Hz is below a quarter of this, $70 \mu \mathrm{~s}$. Again, bdr is best, with barely $10 \mu \mathrm{~s}$. For an 80 Hz partial to be lagging 70 or $300 \mu \mathrm{~s}$ behind the mid-range may not sound much, and even those with critical ears will not easily hear this difference. But, clearly, few audio designers have ever thought through the entire-path ramifications.

LOW COST DEVELOPMENT SYSTEM

ECAL comprises a versatile relocatable assembler with integral editor which runs about ten times faster than typical assemblers. Support includes 4, 8, 16 \& 32 bit processor families including 75X, 6502, 6809, 68HC05/11, 8031/51, H8-300, 78K, PICs, ST6 \& Z80/180, 68000, 80C196, H8$500 \&$ Z280.

ECAL is either available for a single processor family or all families.

Single processor version $£ 295$ Multiprocessor version.... £395
Overseas
distributors
required
(1) SMA Htalay

7 \& 7A Brook Lane,
Warsash,
Southampton S031 9FH
Tel: 01489571300
Fax: 01489885853

The PC based ECAL hardware emulator is fully integrated with the assembler. Connection is made to the target through the eprom socket so a single pod can support all processors. Facilities include windows for the inspection or change of registers or memory. You can even watch your program executing at source level!

Download time is about two seconds!

Pods can be daisy-chained for 16/32 bit systems.
Applications include software development, hardware debug, test and, finally, teaching about microcontrollers in education.

ECAL emulator
$£ 475$
Quantity discounts of up to 50% make ECAL software ideal for education.

SOFTWARE

Object-oriented design has been heralded as offering radical benefits in the software development cycle. However, without adequate appreciation and management of the process, the gains expected may materialise, as Gerard Maloney explains.

In theory if not in practice, software development has traditionally been based on 'structured' design methods, which emphasise the procedures by which a solution is achieved. But the ever increasing size and complexity of software systems, not to mention the demands in areas such as graphical interfaces, cad/cam, artificial intelligence and distributed systems, has increasingly highlighted the inadequacies of this approach. As a result, alternative design methods are coming increasingly to the fore.
Of these alternative methods the 'object oriented' approach is the one currently gaining ground across a wide diversity of applications. Here, we will outline the underlying philosophy of object-oriented programming, looking in particular at what has become the dominant programming language for implementing such designs - $\mathrm{C}++$.

Programming with objects in mind

Object oriented design has as its basis a key shift in emphasis away from concentrating on how a task is achieved to identifying the key abstractions within an application. It also takes into account how these abstractions interact with one another.
From this basis it is hoped to model a more effective and intuitive solution to the task at hand. Coupled with this shift in emphasis is a movement away from the 'top-down' approach to the development cycle, to an approach whereby the development cycle is seen as an iterative process. Each phase in the cycle is reviewed, as the design evolves to fulfil its final requirement.
Figures 1 \& 2 outline the change in emphasis. For a great number of engineers Fig. 2 only sets out precisely how they currently approach their development work. Within an organisation however, the change from a structured to an object oriented approach requires a review of the overall management

[^3]

Fig. 1. In the traditional structured design cycle, progress is linear.

Fig. 2. Object oriented design cycle involves an iterative approach throughout the design cycle.
of technical projects in order to implement the changeover effectively.
The use of object-oriented design has gathered apace over the past ten years, to the point where it now looks set to become the dominant design methodology within the software industry. This has no doubt been aided immeasurably by the emergence of $\mathrm{C}++$ as a commercially available and mature language. Although not the 'purest' of object oriented languages, C++ has evolved to directly support the paradigm, while maintaining its roots in C.
Of itself, object oriented design is not a panacea for bad design. Likewise its adoption will not be effective unless project team structures and management practices change to
enable its correct implementation.
The language requires a more fluid and evolutionary approach to design, and the extent to which its introduction benefits companies is largely dependent upon the recognition of this fact. Used correctly, object oriented techniques implemented in an appropriate language, will result in designs that map directly onto the applications domain, enabling increased software re-use, ease of maintenance and an evolutionary approach to future development.

Object oriented design - key concepts To be effective any design methodology requires tools that support it directly. In this case these are the 'object oriented programming languages', a wide range of which are available. However, in order to be able to model and organise abstractions effectively, which concepts and mechanisms ought these languages support?
In his book 'Object Oriented Design with Applications', Grady Booch outlines the concepts which are fundamental to what he terms 'the object model'. These are direct support for abstraction, encapsulation, hierarchy and modularity. To these ought to be added support for parameterised types, which have the potential of adding significantly to software

Applications Domain:
Waveforms:
Sine, Square, Triangle, Ramp
Processes: Acquisition, Filtering, Output Arrays, filter types, output drivers.

Fig. 3. Mapping abstractions. Object-oriented design allows 'types' to be created. These map directly into the application's. domain.
re-use. Secondary properties which he outlines as desirable are strong 'typing', and support for concurrency and object persistence. A brief outline of each of these concepts is given below.
(i) Abstraction: in order to support abstraction a language must allow for the creation of user defined types which map directly onto concepts within the application domain. In a signal-processing application you might need to create waveform and filter types; in a graphics library, matrix and transformation types. Figure 3 illustrates the concept.
(ii) Encapsulation: any abstraction can be said to have two major attributes: its structure and its behaviour. Within software this translates to a representation and an associated set of functions (procedures/methods). Generally, the functionality is of interest; the representation/implementation should not be accessible except through a strictly defined set of functions implementing the interface to the user.
In effect the representation should be 'encapsulated'. Figure 4 illustrates how encapsulation might be achieved for a type representing a sinewave.
(iii) Hierarchy: within object oriented software, creating hierarchies of user types is of prime importance. The base of the hierarchy provides generalisation with further specialisation provided by the lower layers. Support for hierarchical types allows for designs that are highly intuitive and efficient, and provides a basis for further evolution. Figure 5 is an example of a partial hierarchy for geometric transformations.
(iv) Modularity: any complex system needs to be modular. Within object-oriented systems, modularity exists to keep related abstractions together.
Modularity exists at a number of levels; libraries provide re-usable collections of domain specific abstractions, source files provide modularity at the application level while encapsulation provides modularity at the abstraction level.
(v) Parameterised types: often, structures and functions are required that can be used across a range of types. As an example, consider matrices. The structure of a matrix and its operations have a generality across a range of algebraic structures. The ability to capture this type of generality is a powerful aid to extended re-use.
(vi) Typing: static type checking can ensure errors are caught at compile time, and it can introduce a strong discipline into programming. Not all object oriented languages support static typing, but in most instances the benefits far outweigh the perceived loss in flexibility.
(vii) Concurrency and persistence: support for concurrent processes is not inherent with-
in object oriented languages. However a process itself can be viewed as an abstraction and therefore concurrency can be implemented. Likewise the need for objects which exist over extensive periods of time - as in database and distributed systems - can easily be supported at the abstraction level.

Having outlined these concepts I will now look specifically at language support for these within C++.

Objects and C_{++}

$\mathrm{C}++$ was developed as a general purpose programming language which would directly support object-oriented programming in an efficient and straightforward manner. By guaranteeing that $\mathrm{C}++$ would maintain C 's inherent low-level strength and by maintaining a high level of compatibility with $\mathrm{C}, \mathrm{C}++$ has been in a unique position as developers looked to adopt object oriented methods.
In his work 'The Design and Evolution of C++', Bjarne Stroustrup says that in his view, C had successfully addressed the 'computational' aspects of a language. In developing $\mathrm{C}++$, one criteria was to maintain this, while dealing effectively with the 'organisational' aspects.
A further criteria was to remove the necessity for the unsafe practices used widely in C, such as casts and the proliferation of pre-processor directives and global data.

Object oriented development support

 Within C++, there are various structures, included to aid object-oriented development.(i) Classes: Within $\mathrm{C}++$, a 'class' is the fundamental mechanism by which user defined types are implemented and they receive almost identical support within the language as the built in types such as 'int', 'char' etc.
Classes not only represent the abstractions within the application, but within the class 'encapsulation' is enforced. A class defines a scope, and is the fundamental organisational component in $\mathrm{C}++$. Below is a simple sinewave class showing the separation of the representation from the interface to it.

```
class sinewave{
    //the representation
    float frequency;
    float amplitude;
```

public:
//the interface to the representation.
sinewave (float x,float y) \{frequency=x; amplitude=y; \}
~sinewave ();
//other appropriate functionality.
):

C++ allows for different levels of access to be defined and very efficient and intuitive interfaces can be built, given features which allow for in-line code and the defining of operators on a class specific basis.
A user of a sinewave class requires only the interface to use the class, and application specific class libraries are the toolsets to be used by application developers.
public:
/lthe interface to the representation.
~sinewave () ;
//other appropriate functionality.
):

The representation Waveform parameters

The user Interface
Provides access to the representation for initialising and subsequent processing

Fig. 4. Example of encapsulation. The representation and the interface parallel two major attributes of an abstraction - its structure and its behaviour.

Fig. 5. A matrix hierarchy supporting
geometric transformations. The root matrix provides generic behaviour while the derived classes provide for specific functionality.

Fig. 6. Example of simple hierarchy structure for waveform generation.
(ii) Derived classes: Given an application, generally hierarchies of related types exist. Below is a hierarchy of waveform types, with the 'base' of the hierarchy being the 'waveform' class and the 'derived' classes being 'sine', 'square' etc, Fig. 6.
Hierarchies allow related types to share common functionality and to be viewed in many instances as objects of their common base class. Below the sinewave class has been derived from a waveform class allowing a large measure of its functionality to be expressed in terms of its base class.
class sinewave : public waveformf
//representation in base class.
//common to all wavetypes.
public:
sinewave (float $x, f l o a t y$) : waveform (x, y,) \{ //only need sinewave specific functions. //otherwise view as a generic waveform. \};

Whatever their type, waveforms share a great deal in common and are thus able to use a great deal of generic code. With an appropriate class library, C++ enables the following to be written:
complexwave1=sine1+square3+ramp5+sine7; complexwave2 = (mybandpass) (complexwavel) ;
Not only is this semantically clear but it is as

SOFTWARE

Requirements:
general lists of employees accounts waveforms in a complex wave

Solution:
a list type that can hold any type for which
a list makes sense

Fig. 7. Parameterised types allow for the creation of generic classes and functions.
efficient if not more so than code written in \mathbf{C}.
Hierarchies, therefore have a crucial role to play in organisational terms and introduce a high degree of code re-use
(iii) Templates: Whereas hierarchy supports re-use through derivation, templates support re-use through parameterised types. Thus you define a class or function to provide services across a range of types which may not necessarily be related to one another. Figure 7 illustrates the general requirement and solution.
Initially, they arose from the requirement to provide a library of container classes which is a fundamental requirement within most development environments. Assume we need lists; but lists of what exactly? How is it possible to provide for the lists that may be needed in the future? Templates fulfil this requirement, below we look at the outline of a matrix template:

```
template <class T> class matrix{
    int col;
    int row;
public:
    matrix(int x,int y){col=x; row=y;}
    ~matrix();
    //other matrix stuff
```

\};

A developer can now declare matrices of any type;
matrix <int> intmatrix $(2,2)$;
matrix <complex> complexmatrice $(5,3)$
and given that those types are available matrix algebra can be applied to them. Likewise at a future date matrix algebra could be applied to as yet unspecified types.
Used together with derivation the potential for re-use and the impact on program organisation are enormous. Taking as a case in point, in our matrix example we can derive from matrix and apply templates to a specific type of matrix. I may perhaps wish to optimise for geometric transformations which are derived from a matrix and are able to take a variety of types as their parameters.
Together, classes, the related subjects of hierarchies, and templates, form the basis of support for object oriented techniques within $\mathrm{C}++$. Also incorporated within the class concept are features to encourage semantically meaningful syntax, the efficient creation and deletion of objects and the minimisation of global data and pre-processor directives. In addition, there is the introduction of static typing, which is equally applicable to stand-alone functions. Static typing enforces compile-time
checking of arguments, and can go a long way to eliminating run-time errors. It is to be recommended in almost all cases.
Finally, modularity is supported in C++ by the use of libraries and separate source and header files. Organisation is in terms of abstractions, related abstractions reside in the same files and are interfaced through their header files, Fig. 8.
Application specific libraries can then be generated from these files and made available for general use. With a good library of classes that map well onto the application's domain it should not generally be necessary to access the source code in order to use or add further speciality.

In summary

Without a doubt $\mathrm{C}++$ is rapidly becoming the language of choice in many areas, and given its excellent support for object oriented programming coupled with its association with C it looks set to be a major development language in all spheres.
What is often overlooked, however, is that $\mathrm{C}++$ also addresses those areas in which C is deficient. Features such as static typing, class specific dynamic memory allocation, static class members, exception handling are radical improvements when viewed from a software engineering perspective.
C++ also supports mixed-language development with a simple linkage model, allowing previous software investment to be fully used. Given these advantages there is a strong case both commercially and technically for companies to considering C++ seriously as the basis for their future software development.

However, while the benefits to be gained by adopting an object oriented approach to development - whether C++ based or otherwise can be enormous; unfortunately without an adequate understanding of the issues involved, these benefits may not be achieved.
With no informed strategy for the adoption of $\mathrm{C}++$, the net result within organisations will be disenchantment amongst development staff, and a discrediting of the whole process. Such a strategy should deal directly with the change in emphasis that the philosophy requires. It should set out a program in which object oriented design methods and programming are introduced over a period of time at both a project and individual level. Given such a strategy the resultant impact on design and implementation are indeed significant.

Further reading

Grady Booch, 'Object Oriented Design with Applications', Benjamin Cummings. Bjarne Stroustrup, 'The Design and Evolution of C++', Addison Wesley.
The C++ Programming Language, Addison Wesley.

If you have followed our series on the use of the \mathbf{C} programming language, then you will recognise its value to the practising engineer.
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An apendix provides a 'getting started' introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming. The programs having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

Please supply \qquad copies of INTERFACING WITH C
Please supply \qquad copies of
Disk containing all the example listings £29.96
Remittance enclosed $£$ \qquad

Interfacing with C can be obtained from Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Cheques should be made payable to
Reed Business Publishing Group Ltd
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. \qquad
Exp date
NAME (Please print)
ADDRESS \qquad
\qquad

POST CODE \qquad
DATE \qquad TELE \qquad

SIGNATURE
VAT NO \qquad
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.

DID YOU KNOW?!

The world's largest producer of BIOS, American Megatrends Inc., produces a complete range of hardware too?

- For 486, PENTIUM, ${ }^{\text {TM }}$ P5, P54C
- Motherboards EISA-VLB-PCI
- PCI SCSI RAID Controllers
- MULTIMEDIA - TeleCom Adapters
- SCSI \& Graphics Adapters
- PCMCIA Adapters \& Software
- Diagnostics Hard \& Software

Best of all, did you know that we have an office right here in the U.K. to serve you. Call us for more information!

The first 500 callers get a FREE copy of AMIDiag 4.5 (trial) for evaluation!
American Megatrends Intl. Limited
Unit C5, Worth Corner, Turners Hill Road Pound Hill, Crawley, West Sussex RH107SL
Tel: 01293882288
Fax: 01293886550

American Megatrends

PLEASE ADD 17.5\% VAT. TO ORDER: RING FOR C/P PRICES NOT SHOWN: OFFICIAL ORDERS AND OVERSEAS ENQUIRIES WELCOME
 ALL PRICES PLUS VAT AND CARRIAGE • ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY

86 Bishopgate Street, Leeds LSI 4BB
Tel: (0|| 3) 2435649 Fax: (0||3) 242688 |

A computerised index of Electronics World+Wireless World magazine is now available. It covers the five years 1990 to 1994 volumes 96 to 100 - and contains over 1400 references to feature articles, circuit ideas and applications, with a synopsis for each. The software is easy to use and very quick. It runs on any IBM or compatible PC with 512 K ram and a hard disk. Each disk is scanned before shipping with the current version of Dr Solomon's Anti-Virus Toolkit.
For the UK, the five year index is priced at $£ 20$. Please specify $5 \frac{1}{4}$ or $31 / 2$ in format. This price includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders.
Photo copies from back issues of EW+WW are available at 50 p per page plus VAT (in EC) and a flat postage charge of 50 p (UK), $£ 1$ (rest of EC), and $£ 2$ (rest of world). For enquiries about photo copies send an sae to Video Interface Products.
Please allow up to 28 days for delivery. Cheques should be made payable to Video Interface Products, not EW\&WW or Reed Business Publishing.
Please post your request to Video Interface Products Ltd, 1 Vineries Close, Cheltenham GL53 0NU, UK.

Unique $\mathbf{E W}+\mathbf{W W}$ reader offer

30% discount on TTI's PFM1300 1.3GHz frequency meter

5 Hz to 1.3 GHz hand-held frequency/period meter for just $£ 85.76$, fully inclusive - almost a third lower than the normal price of $£ 134.55$.

With a resolution of 0.0001 mHz , the professional PFM 1300 hand-held frequency meter from Thurlby Thandar measures from 5 Hz to 1.3 GHz with very high sensitivity at all frequencies.

This battery-powered instrument also features a reciprocal counting technique providing superior accuracy, and a push-to-measure function with auto power down. Readings to eight digits are shown on a large eight-digit display and the meter incorporates a full range of annunciators.

Measurement - range A
Frequency range $\quad 5-25 \mathrm{MH}$
Resolution $\quad 10^{-7} \mathrm{~Hz}$ to 10 Hz
Accuracy
± 1 digit + timebase error
Measurement - range B
Frequency range $\quad 20 \mathrm{MHz}-1.3 \mathrm{GHz}$
Resolution $\quad 1 \mathrm{~Hz}$ to 1 kHz
Accuracy $\quad \pm 1$ digit + timebase error
Period
Frequency range $\quad 5-25 \mathrm{MHz}$
Resolution
Accuracy
$10^{-7} \mathrm{~ns}$ to $1 \mu \mathrm{~s}$
± 1 digit + timebase error
Note: resolution depends on measurement time and input frequency.

Input $\mathrm{A}, 5 \mathrm{~Hz}-25 \mathrm{MHz}$
Impedance
Sensitivity
to 20 MHz

Input B, 20MHz-1.3GHz
Impedance
Sensitivity

50Ω

$10 \mathrm{mV} \mathrm{rms}, 20 \mathrm{MHz}$ to $700 \mathrm{MHz}, 50 \mathrm{mV}$ rms to 1.3 GHz

Input A/B limits
Abs. maximum i/p voltage $250 \mathrm{~V} \mathrm{dc}, 250 \mathrm{~V}$ rms 50 Hz to $400 \mathrm{~Hz} \mathrm{i} / \mathrm{ps} \mathrm{A}, \mathrm{B}$,
$1 \mathrm{Vrms}>1 \mathrm{MHz} \mathrm{i/p} \mathrm{~A}_{1}$ iV rms 20 MHz to 1.3 GHz for $\mathrm{i} / \mathrm{p} \mathrm{B}$.

Detailed specifications available - send s.a.e. marked Meter Details to
EW+WW, Room L330 Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

The PFM1300 - the hand-held frequency meter with bench-top performance.

Fully-inclusive price UK £85.76 Europe £90.44 Rest of world ${ }^{\text { }}$ £ 97.46 Cheques payable to Reed Business Publishing Group Lid please, and posted to address above

Total
Name
Card Holders Address
\longrightarrow

Credit Card name, no
Expiry date__Tel:
Signed \qquad Date \qquad
"We regret that this offer is not open to readers in North America.

Iransient storage for ANALOGUE SCOPES

Rather than fie up an expensive dso looking for infrequent transients, Ken Deevy, Dan Sheehan and Mike Byrne* show how to use a low-cost, dedicated transient recorder with an ordinary analogue oscilloscope or XY plotier.

one of the difficulties in capturing single-shot events is the speed at which the transient recorder circuit responds once the input signal has crossed a predetermined trigger point. If the recorder circuit responds too slowly, it can miss fast transients altogether.
To capture fast events accurately, you need a high-speed a-to-d converter and a wide-bandwidth track/hold amplifier. For example, an eight-bit a-to-d converter having a $1 \mu \mathrm{~s}$ conversion time can capture $l \mu$ s transients only when not preceded by a track/hold amplifier. With a 100 kHz track/hold amplifier, the converter can recover $6 \mu \mathrm{~s}$-wide 5 V transients.

To simplify fault detection or to take corrective measures, a transient recorder must be able to capture pre-transient information, which you can use to discover timing relationships between the transient and another waveform. Additionally, the recorder should be able to react to both positive and negative transients.
Another important criterion is cost. There is little point in replacing one expensive instrument with another. Figure 1 shows that two counters, $I C_{1}$ and $I C_{2}$, determine where the circuit stores pre-transient and transient data, also clocking out data to the oscilloscope or X-Y plotter. You can use the

fast clock input, CLK IN_{1}, for the clock source in record mode or when displaying stored data on an oscilloscope. A slower clock input, CLK IN_{2}, is for use when printing data on an X-Y plotter.
Switch S_{1} selects the two basic modes: record and playback, $I C_{18 \mathrm{a}}$ and $I C_{18 \mathrm{~b}}$ providing debouncing. With the MODE output of $I C_{\text {[3d }}$ low, one input of both $I C_{\text {I5d }}$ and $I C_{\text {I4d }}$ is low, so the clock inputs of $I C_{9 \mathrm{a}}$ and $I C_{9 \mathrm{~b}}$ are disabled, ensuring that the $1 Q \backslash$ and $2 Q \backslash$ outputs of $I C_{9 \mathrm{a}}$ and $I C_{9 \mathrm{~b}}$ are high. Besides disabling the chip-select inputs of the d-to-a converter, CSA and CSB
, the circuit disables the output enable signals of $I C_{3}, I C_{4}$ and $I C_{5}$, the HM6264 memory chip, ensuring that the playback portion of the transient recorder is turned off.
Input CLK IN $_{\text {I }}$ serves as the clock source for the counters via $I C_{18 \mathrm{c}}, I C_{14 \mathrm{~b}}, I C_{15 \mathrm{a}}$ and $/ C_{15 \mathrm{c}}$. While the MODE signal is low, CLK is the clock input for both counters and provides the RD (convert) signal for the $A D 782$ I a-to-d converter, $I C_{6}$. At the same time, $I C_{6}$'s CS \backslash input is active, ensuring that the device is selected. After a reset from S_{3} initialises the circuit, counter 2 begins counting. Monostable $I C_{17}$ and $/ C_{23 b}$ hold the reset (CLR) input of counter 1 high from power-up, keeping it in reset until the circuit detects a transient.
Connecting pin 7 of the $A D 7821$, labelled Mode, to ground, sets the operating sequence in which, when the CLK signal toggles its RD input, the a-to-d converter executes continuous conversions of the input signal, $V_{\text {in }}$. (This Mode pin is in no way connected with the mode signal in the circuit dia-
gram.) Counter 2 provides the memory addresses for the a-to-d conversion results. Data transfers from the digital outputs of $I C_{6}$ to $I C_{5}$ employ the INT output of $I C_{6}$ to drive the WE input of $I C_{5}$.
The circuit automatically loads the first conversion result after reset into location 0 of memory and the second into location 1. After transferring the result of the 4096th conversion to memory location 4095, the counter resets and stores the next conversion result in location 0 . Memory always, therefore, contains the most recent 4096 samples of the input waveform.

Fast transients

Input signal $V_{\text {in }}$ goes directly to two TL3II comparators and the analogue input of the a-to-d converter. Comparator $I C_{19}$ detects positive transients and $I C_{20}$ negative ones, threshold levels being adjusted by R_{5} and R_{6}. Wiring the outputs of the comparators together ensures that they produce a rising edge to the clock input of $I C_{8}$ when either a negative or a positive transient occurs.
Once the circuit detects a rising edge at pin 11 of $/ C_{8}$, it illuminates a led, D_{1}. At the same time, it releases counter I from its reset condition by taking RS $_{1}$ low and both counters clock as a-to-d conversions continue, counter 2 counting up from the value it held before the transient was detected. Memory locations determined by the output of counter 2 store the transient data while overwriting the oldest 2048 samples of pre-transient data already stored in memory.

Transient recording

A transient recorder or burst-mode event sampler consists of a highspeed a-to-d converter, a wide-band track/hold amplifier, and an antial iasing filter. The a-to-d converter needs a sampling rate of at least twice the bandwidth to satisfy the Nyquist criterion, although at this rate the filter needs an infinite roll-off rate to avoid aliasing effects. With three times oversampling, the roll-off requirement drops to $50 \mathrm{~dB} /$ octave in an eight-bit system and oversampling at a ratio of 10:1 requires a filter roll-off of only about $16 \mathrm{~dB} /$ octave.
High-speed, sampling a-to-d converter chips often include track/hold amplifiers on the same chip; the AD7821 is an example of this trend, combining a 100 kHz track/hold amplifier with a 1 Msample/s, eight-bit a-to-d converter. Because the a-to-d conversion rate is ten times the input bandwidth, there is no need for a complex antialiasing filter; indeed, if the input signal exhibits only a low-power spectral content at and above 500 kHz , no filter is needed at all.
The AD7821 uses a half-flash conversion technique to perform an eight-bit conversion in 660 ns which, with the requirement of a 350 ns signal-acquisition period between conversions, results in a maximum acquisition rate of $1 \mathrm{Msamples} / \mathrm{s}$. It accepts either single or dual supplies for unipolar or bipolar inputs.
Figure A1 is a block diagram of a transient recorder, showing the minimum hardware needed to build a high-speed transient recorder with playback. For simplicity, the design uses a clock with an even mark/space ratio, which limits the acquisition rate to $660 \mathrm{ksamples} / \mathrm{s}$ rather than the a-to-d converter's $1 \mathrm{Msample} / \mathrm{s}$ maximum rate, the oversampling ratio now being 6.6:1. A memory chip stores the digitised data for later playback on an X-Y plotter or oscilloscope, via a dual, 12 -bit d-to-a converter and a quad op-amp. Half the samples are pre-transient information and the other half transient data.

Fig. A1. Block diagram of the transient recorder mainly digital, but with data converters at each end.

Fig. 2. Recorder presents results on either an analogue oscilloscope (a) or on a plotter, as at (b). Pre-transient information occupies the first half of the trace, the second half being the data after the trigger.

Counter 1 counts off the 2048 clock states that correspond with the samples.
Because the output of $I C_{16 \mathrm{~b}}$ is always high in the record mode, when counter 1 reaches 2047, all inputs to $I C_{10}$ and $I C_{11}$ are high and the outputs of both ics go low. As a result, the output of $I C_{12 \mathrm{a}}$ goes high, causing the output of $I C_{14 \mathrm{a}}$ to go low via $I C_{13 \mathrm{a}}$ and $/ C_{12 \mathrm{~b}}$, this DIS REC CLK signal gating off CLK IN_{1} from the rest of the circuit in $I C_{14 b}$. The output of $I C_{18 \mathrm{c}}$ ensures that the CLK signal is held low, stopping both counters and the a-to-d converter.
At the end of the transient-record cycle, the memory will contain 4096 samples of the input waveform. Half of these samples are transient data, the other half representing pretransient information. Whatever value is in counter 2 will be the last memory location for the transient data and the next memory location will hold the first of the 2048 words of pre-

transient data; when playback mode starts, the first output from the counter will correspond to the memory location of the first pre-transient sample. To alter the ratio of transient to pre-transient samples, simply alter the connections from counter I to $I C_{10}$ and $I C_{11}$.
To convert the input waveform to stored data accurately, you must pay close attention to the circuit. Use a precision reference, $I C_{21}$, to generate 5 V and -5 V references for the $V_{\text {rel }}+$ and $V_{\text {ref }}-$ inputs of the a-to-d converter. Make sure that these reference voltages are properly decoupled, along with the V_{DD} and V_{SS} lines of the a-to-d converter. Connect the GND pin of $I C_{6}$ to the star ground of the system, ie the point in the circuit at which you connect the analogue and digital grounds. Make sure that the conductor between the a-to-d converter and the star ground is as wide as circuit board layout constraints allow. Further, ensure that the WRVRDY line is pulled high via R_{19} to avoid noise pickup on this pin.

Playing back captured signals

Information is retained as long the power remains on or until you depress the reset button. Select play-back mode with S_{1}. This takes the MODE signal low, activates the WR input to I_{7}, and deselects $I C_{6}$ by taking its $\mathrm{CS} \backslash$ high. Display the transient on either an analogue oscilloscope or an X-Y plotter, depending on the position of S_{2}. Make sure to select the oscilloscope or the plotter before starting playback.
For the oscilloscope display, the clock source for the circuit is the same as in the record mode. If you use a plotter for playback, the clock frequency is much lower and is applied via the CLK IN_{2} input. CLK, from either CLK IN_{1} or CLK IN_{2}, passes through gates $I C_{15 \mathrm{~d}}$ and $I C_{14 \mathrm{~d}}$ because the MODE signal is high. $I C_{9 \mathrm{a}}$ and $I C_{9 b}$ generate the CSA \backslash and CSB \backslash pulses for $I C_{7}$ from this CLK signal.
Monostable $I C_{9 \mathrm{a}}$ drives the CSA\ input of $I C_{7}$ as well as providing the enable signals for $I C_{3}$ and $I C_{4}$. In playback mode, counter I resets and starts counting from 0 to 4095 , its output being the digital input code to DAC A of $I C_{7}$, which drives the \mathbf{X} axis of either the oscilloscope or the plotter. d -to-a converter A produces a unipolar output range from 0 to 5 V , with a resolution of 4096 steps.
Output of $I C_{9 \mathrm{~b}}$ drives the $\mathrm{CSB} \backslash$ input of $I C_{7}$ and also sets the logic level on the output-enable line of $I C_{5}, \mathrm{OE}$, to latch the data from memory into DAC B, which drives the Y axis of the oscilloscope or plotter. Use of dual supplies allows DAC B to be set for a bipolar output range to reconstruct both positive and negative transients.
Counter 2 starts its count from the point at which it stopped at the end of the record mode; the first memory output word to $I C_{7}$ is the oldest sample in memory. Scanning then proceeds through the 2048 samples of pre-transient information and the 2048 samples of transient information. Output of each sample from memory to the Y axis, via DAC B, corresponds to the output of a count value from counter 1 to the X axis via DAC A. In this way, the circuit reconstructs the pretransient and transient waveforms.
For oscilloscope display of waveforms, place S_{2} in the 'oscilloscope' position. Doing so locks out CLK IN_{2} from the rest of the circuit but allows CLK IN, to operate as clock signal for the circuit. Unlike the operation of plotter display, where counter 1 runs through once and then stops, CLK runs continuously. CNT FIN does go high when counter 1 reaches a count of 4095 but, because the output of $I C_{14 c}$ is high, the DIS PLOT CLK signal does not go low. Figure 2(a) shows a typical oscilloscope waveform display.
Switching S_{2} to 'plotter' locks out the CLK IN_{1} input from the rest of the circuit and permits CLK IN_{2} to generate the clock signal for the circuit. $I C_{16 b}, I C_{10}, I C_{11}$ and $I C_{12 \mathrm{a}}$ generate a high CNT FIN signal function, as in record mode, but this time $I C_{10}$ and $I C_{11}$ go low when counter I reaches a count of 4095. $/ C_{13 \mathrm{a}}$ goes low and, because the output of
$I C_{14 c}$ is already low, the DIS PLOT CLK signal goes low turning off CLK IN_{2} at $I C_{18 \mathrm{c}}$ and holding the CLK signal high. Figure 2(b) shows a captured transient displayed using a plotter as the display method.

Record-mode timing and clock waveforms

Figure 3 shows the logic relationships for the record mode, when MODE (not shown) is low and the DIS REC CLK signal is high. Signal RS_{2} goes high when the recorder receives a reset command via S_{3}, resetting counter 2 . The next falling edge of the CLK signal clocks out an address for $/ C_{5}$ from counter 2 and initiates a conversion. Within 700 ns , the INT signal of $I C_{6}$ goes low, activating the WE input of $I C_{5}$. The rising edge of CLK resets the INT line 50 ns later
When the circuit detects a transient, TRANS REC goes high, causing the RS, line to go low and releasing counter I from its reset state, the next falling edge of CLK clocking out the contents of counter I. When the output from counter I reaches 2047, CNT FIN goes high and causes the DIS REC CLK signal to go low, shutting off the CLK signal.
Since, in record mode, the a-to-d converter needs a CLKlow time of 750 ns to convert and latch the data into $I C_{5}$, the 50:50 mark/space ratio of the clock signal limits clock frequency to 660 kHz . However, the CLK-high time can be as short as 350 ns , the time required between conversions by the AD782I. Therefore, if the input to CLK IN, has a low time of 750 ns and a high time of 350 ns , the circuit can make one conversion every 1100 ns - equivalent to approximately 900ksample/s.

Record-mode timings

Figure 4 shows waveform timing during playback to an oscilloscope. MODE, the WE input of $I C_{5}$, and the DIS REC CLK signal are high and, with S_{1} in the playback mode, $R S_{1}$ goes high, resetting counter 1. CLK generates a CSAl signal for $I C_{7}$ on its rising edge and a CSB \backslash signal on its falling edge. Data from counter 1 is clocked out on the falling edge of the CLK signal and the rising edge of CSAl updates the X axis; the falling edge of OEloutputs stored data from memory and the rising edge of CSB \backslash updates the Y axis. CLK runs continuously when the circuit is in oscilloscope play-back mode.
Figure 4(b) shows circuit operation for play-back on a plotter. Once again, MODE, the WE input of $I C_{5}$, and the DIS REC CLK signals are high. The circuit generates CSA\ and CSB to update the X and Y axes. Compared with oscilloscope play-back, the difference in the circuit's operation is that when the output count from counter 1 reaches 4095 and the CNT FIN signal goes high, the DIS PLOT CLK signal goes low, forcing the CLK signal into a high state.

Sampling in burst-mode

Burst-mode event sampling places requirements on an a-to-d converter similar to those for transient recording. In burstmode sampling, the recorder looks at the input waveform infrequently, but when it does, it must acquire a large number of samples in a short time. With slower microprocessors or microcontrollers, timing constraints impose a much lower throughput than the a-to-d converter can deliver.
Timing limitations in a burst-mode sampler are reduced by using a direct-memory-access, dma, controller to initiate a-to-d conversions and transfer conversion data to memory, allowing the a-to-d converter to run at or near its maximum sample rate and permitting high oversampling ratios and the acquisition of short transients.
Building a burst-mode sampler is relatively easy with the popular 8052 microcontroller, shown in the circuit diagram of Fig. 5. Although the 8052 does not support hardware dma, it does support what is termed 'fake dma'. However, the response time to dma requests is much slower than is possi-

ble with microcontrollers that support genuine dma.
Memory chip $I C_{3}$, an $H M 6264 P$, stores the control program for $I C_{1}$, of which the first part is the initialisation routine. This routine, Listing 1, sets up the sense of the DACKO line of the 8237 dma controller, $I C_{2}$, to be active high and loads the starting data address into it for the first conversion results. Microcontroller $I C_{1}$ initialises the counting register to control the number of conversions before $/ C_{2}$ returns control to $I C_{1}$. The program must also set up $I C_{1}$ for 'fake dma'.
After running the initialisation program, $I C_{2}$ is ready to take control when requested to do so. Although $/ C_{2}$ has four

Listing 1. Initialisation routine for the burst-mode sampler.

10	$\mathrm{XBY}(8008 \mathrm{R})=80 \mathrm{H}$: SETS DACK SENSE ACTIVE HIGH
20	$X B Y(800 \mathrm{FH})=0 \mathrm{EH}$: CLEARS DREQO MASK REGISTER
30	$X B Y(800 \mathrm{BH})=94 \mathrm{H}$: SETS MODE REGISTER
40	$X B Y(800 \mathrm{CH})=00 \mathrm{H}$	$\begin{aligned} & \text { : CLEARS FIRST/LAST FLIP-FLOP } \\ & \text { : (ONLY NEEDED IF } 8237 \text { IS } \\ & \text { : NOT RESET BETWEEN DMA REQUESTS) } \end{aligned}$
50	$\mathrm{XBY}(8000 \mathrm{H})=00 \mathrm{H}$: LOADS LOWER BYTE OF STARTING DATA :ADDRESS TO BASE AND CURRENT ADDRESS
60	$\mathrm{XBY}(8000 \mathrm{H})=08 \mathrm{H}$:LOADS HIGHER BYTE OF STARTING DATA :ADDRESS TO BASE AND CURENT ADDRESS
70	$\mathrm{X8Y}(8001 \mathrm{H})=00 \mathrm{H}$: LOADS LOWER BYTE OF COUNTING NUMBER :TO COUNT REGISTER
80	$X B Y(8001 \mathrm{H})=02 \mathrm{H}$:LOADS HIGHER BYTE OF COUNTING NUMBER :TO COUNT REGISTER
90	DBY (38) $=\mathrm{DBY}(38) \cdot 0 \mathrm{P} \cdot 02 \mathrm{H}$	
100	IE = IE.OR. 81 H	
110	GOTO 10	

interrupt-request lines, this circuit uses only one, DREQ0. An external command signal drives this interrupt line high, telling $I C_{2}$ to take control of the circuit and start the a-to-d converter sampling the input waveform.
When $I C_{2}$ receives the DREQ0 request, its HRQ line goes high and $I C_{14 c}$ output, which drives the INTO line of $I C_{1}$ low, which takes the INTO \backslash line of $I C_{1}$ low, its P1. 6 line low and the output of $I C_{14 \mathrm{a}}$ high, selecting inputs of $I C_{7}, I C_{8}, I C_{9}$ and $I C_{10}$. When the output of $I C_{14 \mathrm{a}}$ goes high, it shuts off $I C_{1}$'s address and data lines from the rest of the circuit and deselects the output's address decoder, $I C_{13}$. The inverted P1. 6 line also feeds the HLDA input of $I C_{2}$, acknowledging $I C_{2}$'s request for control, $I C_{2}$ then taking control of the
address and data bus and sampling of the input waveform. To reduce pin count, $I C_{2}$ multiplexes the eight higher-order address bits on the data lines, an external device being needed to latch these address bits. Address strobe signal, ADSTB, takes AEN high to switch the OC line of $I C_{6}$ low; ADSTB drives the C input of $I C_{6}$ to latch the higher address lines to the outputs of $I C_{6}$. The inverted AEN line also drives one input of $I C_{16 \mathrm{~d}}$, the other input of this gate being fed by the decoded output of $I C_{13}, Y 0$. Therefore, because both $I C_{2}$ and $I C_{1}$ must be able to access $I C_{3}$, either a high on AEN or a low on the decoder output selects it.
Acknowledge line DACK0 goes high at about the same time that ADSTB latches the address and drives one input of

Fig. 5. Burst-mode sampling using an 8052 microcontroller and dma controller allows the a-to-d converter to run at its maximum sampling rate to

$I C_{15 \mathrm{a}}$, this and $I C_{15 \mathrm{~b}}$ ensuring that the $\mathrm{CS} \backslash$ line of $I C_{4}$ goes low only when an input/output read operation of $I C_{2}$ occurs. IC $C_{15 c}$ provides the correct polarity for the RD\input and equalises the delay paths for the CS\and RD\ lines, ensuring that the circuit obeys the CS\-to-RD setup time.
Once $I C_{4}$ receives a $C S \backslash$ signal, it acknowledges receipt of the signal by bringing its RDY line low, placing the controller, $I C_{2}$, into a wait state for as long as its RDY input is low. When the device completes a conversion, the RDY line goes high, releasing $I C_{2}$ from its wait state; pull-up resistor R_{2} takes account of $I C_{4}$'s open-drain RDY output.
When the circuit releases $I C_{2}$ from its wait state, data from $I C_{4}$ is valid and the address lines of $I C_{2}$ determine where data

Fig. 6. 'Fake dma', used because the 8052 does not support true dma, allows rapid data transfer to memory.
loads into memory. Controller $I C_{2}$ performs all of these operations automatically because a memory write accompanies each input/output read. Depending on the value loaded into the counting register, $I C_{2}$ will continue to issue read commands to $I C_{4}$ until the circuit completes the required number of conversions, automatically incrementing the memory address after every write operation.
Multiplexer $I C_{12}$ accommodates eight input channels, selected by the three highest and three lowest address lines of $I C_{2}$, gated through $I C_{16 \mathrm{a}}, I C_{16 \mathrm{~b}}$ and $I C_{16 \mathrm{c}}$. If the three upper lines are all at $1, I C_{4}$ will convert each channel in sequence and the conversion results will be stored in consecutive memory locations. For example, if the first conversion takes place on the channel 1 input voltage, $V_{\text {in1 }}$ and the result is stored in location M of $I C_{3}$, the next conversion will take place on $V_{\mathrm{in} 2}$ and the result will be stored in location $M+1$. If the three uppermost address bits are set to 011_{16}, the circuit will sequence through channels 1 to 4 only.

Ready or not

The RDY line of $I C_{4}$ drives the WR \backslash input of $I C_{12}$, loading the address for the next channel to be converted into the multiplexer. If there is only one input channel to convert, remove $I C_{16 \mathrm{a}}, I C_{16 \mathrm{~b}}$ and $I C_{16 \mathrm{c}}$ and drive the A_{0-2} inputs of $I C_{12}$ directly from the three uppermost address lines. With this arrangement, the program chooses the input channel.
Microcontroller $I C_{1}$ selects the device it talks to using a 1 -of- 8 address decoder, $I C_{13}$, the outputs of which provide signals for $I C_{12}$'s write line and chip-select inputs of $I C_{3}$ and $I C_{2}$. One of the outputs also gates read line P3.7 and the P3.6 outputs from the controller to drive the IOW and IOR \backslash inputs of $I C_{2}$.
Three upper address lines of $I C_{1}$ select the required device, the lower address lines being multiplexed with the data lines in a similar manner to those of $I C_{2}$. Decoder $I C_{10}$ demultiplexes the lower eight address lines, the microcontroller's ALE signal latching them in $I C_{11}$; tri-state buffers, $I C_{2}, I C_{8}$ and $I C_{10}$ isolate the microcontroller outputs from the address bus when $I C_{2}$ takes control, since it cannot place its address and data buses into a high-impedance state when $I C_{2}$ takes control of the circuit. $I C_{9}$ also acts as a buffer, but is bidirectional because the microcontroller must read data from

Fig. 7. Requirements of an antialiasing filter depend on the degree of oversampling. Since 10 times oversampling allows three ocfaves for roll-off, and since an 8-bit a-to-d converter needs 48 dB of atfenuation, a threepole filter giving $18 \mathrm{~dB} / o c t a v e$ will suffice.

and write data to memory.
The microcontroller uses a 10 MHz input-clock frequency, a $74 H C T 74$ counter ($/ C_{19}$) dividing this frequency to form the clock input to $I C_{2}$. As the standard 8237 operates from a 3 MHz maximum clock frequency, you can divide the 10 MHz clock by four to give an acquisition rate of 608 ksam ple/s. A faster version of the 8237 , the $8237-5$, operates from a 5 MHz input clock, allowing you to divide the clock frequency by two and enabling the circuit to take $812 \mathrm{ksample} / \mathrm{s}$. If $/ C_{1}$ were used on its own to control the sampling of the input waveform, the best acquisition rate would be approximately $100 \mathrm{ksample} / \mathrm{s}$.
The entire circuit operates from 15 V and 5 V supplies. If there is no 5 V supply in your system, add a regulator to generate 5 V . In addition, use a precision 5 V reference $\left(I C_{5}\right)$ for the a-to-d converter, allowing an input range of $0-5 \mathrm{~V}$. To obtain accurate conversion results, obey the usual guide lines regarding decoupling and grounding in both the circuits described.
Slow and medium speed microprocessors that support direct memory access requests can be used in this circuit to provide a much faster dma response than that of the 8052's 'fake dma'. Because microprocessors that support genuine dma will tri-state their address and data lines during a dma transfer, you can eliminate the tri-state driver chips.

Oversampling and antialiasing

In the spectrum of a periodically sampled waveform, the spectrum of the (unsampled) input signal repeats around harmonics of the sampling frequency. Any frequency contained in the input signal is repeated above and below each harmonic of the sampling frequency. Therefore, in the spectrum of the sampled signal, the band between 0 and $f_{\text {in }}$ (the input spectrum) appears, among other places, between $f_{\mathrm{s}}-f_{\text {in }}$ and f_{s}, where f_{s} is the sampling frequency.

Although you may be under the impression that the inputsignal bandwidth is 100 kHz , if the sampling frequency is I Msample/s, a signal at 991 kHz in the input spectrum would

[^4]appear as a 9 kHz alias component in the spectrum of the sampled signal.
An antialiasing filter removes or at least attenuates any noise or spurious signals that could be aliased back into the bandwidth of interest. Figure 7 shows the frequency response of such a filter for a generalised a-to-d converter. Determine the filter roll-off by drawing a straight line between the highest signal frequency of interest, $f_{\text {in }}$, and the stop-band attenuation frequency, $f_{\mathrm{s}}-f_{\mathrm{in}}$. As the ratio of f_{s} to $f_{\text {in }}$ increases (that is, as the oversampling ratio increases) the slope of the line decreases.

In an eight-bit system. an ideal a-to-d converter's sig-nal-to-noise ratio ($\mathrm{s}: \mathrm{n}$) is slightly greater than $256: 1$ or 48 dB . To prevent noise limiting the system performance, the ratio of the input signal-to-noise ratio should exceed the approximate 48 dB limit imposed by the converter. Here, the signal is the peak-to-peak value of the signal within the band of interest, and the noise is the square root of the sum of the squares of the amplitudes of all the frequency components outside that band.
Attenuation required for signals outside the band of interest depends on the application and the expected magnitude of the out-of-band signals. In most cases, the magnitude of these signals is much lower than that of the desired signal.
Usually, eight-bit systems require 50 dB of attenuation for signals that can be aliased into the band of interest. Even if 50 dB is not the desired number, the following calculations show the kind of reduction in antialiasing filter requirements brought about by oversampling. With $2 \times$ oversampling, i.e. with $f=2 f_{\text {in }}, f_{\mathrm{s}}$ and $f_{\text {in }}$ are at the same point and the filter has to have infinite roll-off to attenuate signals at $f_{\mathrm{s}} f_{\text {in }}$. With $f_{\mathrm{s}}=3 \mathrm{f}_{\text {in }}$, ($3 \times$ oversampling), the filter's attenuation must drop from 0 dB at $f_{\text {in }}$ to 50 dB at $2 f_{\text {in }}$. In other words, the slope of the attenuation vs frequency curve must be $50 \mathrm{~dB} /$ octave; the filter (if it has a Butterworth characteristic) must have more than eight poles.

With $10 \times$ oversampling, there are three octaves for the attenuation to drop from 0 to 50 dB ; the required slope is a little more than 16 dB /octave and a three-pole Butterworth filter will do the job.
This analysis of the antialiasing filter holds true regardless of the type of a-to-d converter that follows the filter. No matter what the conversion technique, oversampling reduces the antialiasing filter requirements. Oversampling also reduces the converter noise within the signal bandwidth because it spreads the quantisation noise over a wider bandwidth. Oversampling has recently gained considerable popularity in connection with sigma-delta a-to-d converters. In the case of these converters, the advantages of oversampling are much greater than with successive-approximation or flash converters because noise shaping produces dramatic improvements in noise performance as the oversampling ratio increases.

However, the relationship between antialiasing-filter performance and oversampling is exactly the same for an oversampled sigma-delta modulator as for half-flash or succes-sive-approximation alternatives; sigma-delta and half-flash a-to-d converters with the same oversampling ratio place the same demands on the antialiasing filter.

Pipelining or averaging inherent in sigma-delta converters is a disadvantage of the sigma-delta process for transient recording. Because of the pipelining, a step change requires a significant time (the settling time of the converter's digital filter) to ripple through to the output. Therefore, there is a delay before a sigma-delta converter produces an output that represents an input change. Between the time the input changes and the sigma-delta converter's output reflects the change, the a-to-d converter's output does not accurately represent the converter's input. Such performance is not appropriate for transient recorders of the type discussed here.

Programming Solutions

Multi-Device Programmer

- EPROMs, E²PROMs, Flash EPROMs, Serial E2PROMs, PLDs, GALs, PEELs, EPLDs, MACHs \& WSI PSDs Micros - Intel, Microchip, Motorola, Zilog
- Fast programming algorithms.
- Connects direct to pc printer port.
- Simple full colour software.
- No expensive adapters.

Universal Programmer
 - Uses standard pc printer port

works with notebook and handbook pc 's

- Pin driver expansion can drive up to 256 pins.
- Supports over 2000 IC's - 3 and 5 volt devices.

EPROMs, E2PROMs, Bipolars, Flash, Serial EPROMs
over 150 microcontrollers, WSI/Philips PSDs,
PLDs, EPLDs, PEELs, PALs, GALs, FPGAs
including MACH, MAX, MAPL \& Xilinx parts

- Universal DIL (up to 48 pins), PLCC and gang PACs
- Powerful full colour menu driven software.
- Approved by AMD, TI, NatSemi, etc...
- Tests TTL, CMOS and SRAM devices (including SIMMS)

Eprom Programmer

EPROMs, E2PROMs, Flash and 8748/51 micros.
Fast programming algorithms. Simple colour menu operation.

EMULATORS • SIMULATORS • COMPILERS • ASSEMBLERS $320 C 25 \quad 68 H C 11 \quad 6301 \quad 6502 \quad 87 C 751 \quad 65816 \quad 280 \quad 6809$ PIC 7720 MIPS etc.

		ANC	R	S		E.			
PHONE		DISTRI	UTO	S OF EL	CTR	NIC VALV	S		FAX
0181684		TUBE	, SEM	ICONDU	TOR	AND I.C.		018	1684
1166	1 M	YO RO	D -	ROYDO	-	URREY		QP	3056
	HOU	EXPR	S M	ORD	ER	CE ON S	OC	ITEMS	
	£ D	EL86	2.75	PY500A	4.00	68A7	5.00	65K7	3.00
A231	5.00	El91	3.00	PY800	1.50	6BE6	1.50	6S1761	4.50
CBI31	$¢ 12.50$	E195	2.00	PY801	150	68H6	2.50	6SN7G	4.50
CL33	10.00	El360	18.50	Qovoz-6	12.00	6816	2.25	6557	3.00
DY86/7	1.50	C1509	12.00	0av03-10	5.00	6BN6	2.08	6 U 8 A	1.50
E88CC Mull	850	EM34	15.00	COY03-20A	15.00	6807A	3.50	6 V 6 T	4.25
E180F	3.50	EM81	4.00	00Y06-404	17.50	68R7	6.00	6×4	3.00
E810F	2200	EM84	4.00	0YC3-12	10.00	68R8A	4.00	6x5GT	250
EABC80	2.00	EM87	4.00	U19	10.00	6BS7	8.00	12477	3.00
E891	1.50	EN91 Mul	7.50	UABCsa	1.50	68W6	4.50	12au7	300
Ebf80	1.50	EY5I	2.50	UBC41	4.00	68W7	1.50	12807	3.50
E8r89	1.50	EY86	1.75	UBr89	$\underline{1.50}$	6826	2.50	12axta Ge	1.00
E8131	15.00	EY88	1.75	UCH4?	4.00	6 CH	2.00	128A6	2.50
ECC33	7.50	E280	3.50	uCH81	2.50	$6 \mathrm{C6}$	5.00	128E6	2.50
ECC35	7.50	E281	3.50	UCL182	200	${ }^{6 C 86 A}$	3.00	128h7a Ge	6.50
ECC8.	3.00	Gr501	3.00	UCL83	3.00	6C06GA	5.00	12877a GE	1.00
ECCB2	3.00	G232 Mull	8.50	UF89	4.00	6 CL6	3.75	12 El	15.00
ECCB3	3.50	G233	6.00	W4!	12.00	${ }_{6} 6 \mathrm{C} 7$	1.50	12H67/12GN7	6.50
ECC85	3.50	G734 GE	1.50	U184	3.50	6CH6	5.00	30FL1/2	1.50
ECC88 Mull	6.00	6737	6.00	u441	4.00	6 CWM	8.00	30 P 19	2.50
ECC91	2.00	KT61	10.00	UY85	2.25	606	5.00	300B(PR)	110.00
ECF80	1.50	K166	10.00	vR105/30	2.50	6005 GE	17.50	5728	70.00
$\mathrm{ECH35}^{\text {che }}$	3.50	KT88	15.00	VR150/30	2.50	${ }^{60068}$	12.50	805	50.00
ECH42	3.50	N78	9.00	2759	25.00	${ }^{6 E 48}$	3.50	807	5.75
ECH81	3.00	OA.	2.70	28034	25.00	6EH5	1.85	8114	18.50
EC180	1.50	OB2	2.70	2021	3.50	${ }_{6} 66$	3.50	8124	65.00
ECL82	3.00	CC3	2.50	3828	15.00	$6 F 07$	E1.50	813	21.50
EC183	3.00	003	2.50	4 CX 250 BSTC	55.00	6GK6	4.00	833A	8500
ECL86 Mull	3.50	PCF80	2.00	${ }^{5 R 46 Y}$	6.00	646	3.00	8664	25.00
ccliben	25.00	PCF82	1.50	${ }^{5} \mathrm{SUGG}$	5.25	${ }^{6} \mathrm{HS} 6$	4.95	872A	20.00
cf37a	350	PCF86	2.50	SVGG	4.00	615	300	9314	25.00
EF39	2.15	PCF801	2.50	$5736{ }^{5}$	2.50	616	3.00	2050A GE	10.00
EF40	5.00	PCF802	2.50	523	4.00	617	4.00	5751	6.00
EF41	3.50	PCL82	2.00	$5246 T$	2.50	${ }^{\text {6IBEA GE }}$	19.00	5763	10.00
EF42	4.50	PCL83	3.00	6aH6	4.00	${ }^{61656}$	20.00	58144	5.00
EF80	1.50	PCL84	2.00	6ak5	4.50	6IS6C GE	17.58	5842	12.00
EF85	1.50	PCL85	2.50	6AL5	1.00	6KGGT	3.00	6080	7.50
EF86	7.50	PCL 85	2.50	6AM\%	2.00	$6 \mathrm{K7}$	4.00	61468 GE	15.00
EF91	2.00	PCLL805	2.50	GAN5	5.00	6K8	4.00	6550A GE	20.00
CF92	2.00	P0500	6.00	6an8a	4.50	6166	8.50	${ }^{68838 \mathrm{CGE}}$	15.00
Ef183	2.00	P136	2.50	6A0S	3.25	666GCSY	12.50	7025 GE	7.00
E184	2.00	P181	1.75	6AR5	25.00	666CC Siemens	7.50	7027age	17.50
Cl32	2.50	Pl 82	1.50	6as6	3.50	666CC GE	12.50	7199	1000
E33	1000	P183	2.50	6AS7G	9.50	617	3.50	7360	25.00
E134 Siemens	800	P184	2.00	6AT6	2.00	6106	20.00	7586	15.00
El36	400	Pr 504	2.50	6AU5GT	5.00	607	4.00	7587	23.00
E141	3.50	P1508	5.50	6aub	2.50	6RHH8 6 KMB	12.00	7868	12.00
¢乚⿺80	25.00	P1509,P1519	6.00	6AWBA	4.00	65A7	3.00	8417 GE 1750	
Et81	5.00	P1802	6.00	687	4.00	6SC7	$\begin{aligned} & 2.50 \\ & 2.00 \\ & 3.00 \end{aligned}$	Prices correct when going to press	
$E 184$	2.25	PY81	1.50	688	1.001.50	$\begin{aligned} & \text { 6SG7 } \\ & 6 \mathrm{SJ} 7 \end{aligned}$			
E184 Muli	6.00	PY88	2.00	6846					

OPEN TO CALLERS MON-FRI 9AM-4PM, CLOSED SATURDAY. OVER 6,000 TYPES AVAILABLE FROM STOCK. OBSOLETEITEMS A SPECIALITY. QUOTATIONS FOR ANY TYPES NOT LISTED.
TERMS: CWONISA/ACCESS. POST \& PACKING: 1-3 VALVES E2.00, 4-6 VALVES $£ 3.00$. ADD 17.5% VAT TO TOTAL INC. P\&P.

CROSS DEVELOPMENT SOFTWARE TOOLS FOR THE PC 8051 C ASSEMBLY - SIMULATION

FULLY SUPPORTED QUALITY SOFTWARE

8051 C Compiler (DOS)

An optimising C compiler with full support for floating point arithmetic, interrupts, embedded assembler, linking and relocation, IEEE695 debug output. Includes a complete relocatable cross assembler.

Price: $£ 349.00$
8051 Cross Assembler (DOS)
Available in two variants: absolute and relocatable. The relocatable assembler allows you to flexibly link and locate your program into 8051 address space and generates IEEE695 debug output for symbolic information (ideal for use with our simulator). The absolute assembler is easy to use and creates final 8051 code from a single assembler source file.

Prices: Relocatable $£ 169.00$, Absolute $£ 99.00$
8051 Simulator (Microsof Windows)
Watch your program run on your PC. Set breakpoints, single step, trace, watch and modify memory and SFR's. Generate interrupts, run the timers, serial port and parallel ports. All without a single piece of 8051 hardware. Works with any 8051 assembler or compiler that generates Intel hex, OMF51, IEEE695 or binary output. Uses debug information in OMF51 and IEEE695 files to create a symbolic disassembly of your program.

Price: still only $£ 99.00$!
Data sheets and demo discs from:
(prices exclude VAT and delivery) CROSSWARE PRODUCTS
St John's Innovation Centre, Cowley Road, Cambridge, CB4 4WS, UK Tel: +44 (0) 1223 421263, Fax: +44 (0) 1223421006 BBS: +44(0)1223421207(8-N-1), Internet: sales@crossware.com

LOW POWER singlectip time reiver

With fm receivers designed for batterypowered equipment, disconnecting the audio amplifier from the supply when it is not in use saves power and eliminates unnecessary audio hiss. Ed Baker describes an fm receiver ic designed to disconnect its own audio power stage.

Fig.1. Schematic of the ULN3883A fm receiver ic shows the three subsections converter, If demodulator and audio amplifier. his article describes how to apply the ULN3883A, a low-power, narrowband fm receiver ic providing the second converter, second IF demodulator and audio amplifier circuitry for communications and scanning receivers.
The device offers a number of advantages over other types of narrowband frequencymodulated receiver circuits, particularly for cordless telephones and other battery-operated receivers. Most such units operate in a mode in which the receiver is muted by removal of the audio input to the amplifier driving the loudspeaker, while still leaving this amplifier drawing a considerable current. This current can often be many times greater than that drawn by the rest of the receiver.
A more sensible way to mute the receiver is to disconnect the audio amplifier from its power supply so that it draws little or no current. This not only improves battery life (or intervals between charging), but also removes what can be a very annoying hiss from the loudspeaker.
This is exactly what is achieved in the ULN3883A. During normal operation, with no input present, the ic draws up to 15 mA . Once the mute is operated, this drops to typically 3 mA , drawn by the rest of the circuit: i.e. the
mixer, IF amplifier, detector and filter amplifier. This current reduction extends battery life considerably, depending on the operate-standby ratio of the equipment. In an extreme case, where a receiver spends 95% of its life in standby mode, battery life would be increased by a factor of ten.

Functional description

The device, which contains a number of distinct on-chip functions, Fig. 1, was originally designed for use as the second IF stage of a dual-conversion superheterodyne receiver with a first IF of 10.7 MHz and a second IF of 455 kHz . The high performance of the input circuitry, which exceeded its designer's expectations, also allows it to be used as a single conversion receiver for frequencies up to the low end of the vhf band. A typical application of the device in this role is the cordless telephone receiver shown in Fig. 2. Functions included in the ULN3883A are as follows:

Double balanced mixer. The active mixer, because of its nature, has an extremely high rejection of both input and oscillator frequency feedthrough, as well as reduced local-oscillator re-radiation. The circuit also exhibits a very wide dynamic range; in excess of 80 dB . Since the input circuitry is internally biased,

an input coupling capacitor is required for the purposes of dc blocking. However, its smallsignal impedance equates to a $3 \mathrm{k} \Omega$ resistor in parallel with a 20 pF capacitor. The input ground is separate from the rest of the ic circuitry, and is connected to pin 9 . It should be connected via the shortest possible path to the input-circuit grounding. The small-signal output impedance is approximated by a $100 \mathrm{k} \Omega$ resistor in parallel with a 3 pF capacitor, and it has an output drive capability of about $400 \mu \mathrm{~A}$. For correct operation, a dc path to the positive supply rail is required. Converse transconductance is typically $600 \mu \mathrm{mho}$; however, if required, the mixer can be disabled and used as an amplifier by connecting pins 12 and 13 together. Under these circumstances, the transconductance is typically 1.4 mmho .

Oscillator. This circuit is configured as a standard Clapp oscillator, and the base pin 13 and emitter, pin 12, are brought out of the ic for connection to the external circuitry. This can be either a crystal, shown in Fig. 3a or an $L C$ circuit for instances where a tuneable circuit is required (Fig. 3b).
Since the transistor is a pnp type, the bottom end of the coil must go to the positive rail, unless a capacitor is connected between pin 13 and the tuned circuit. If required, the oscillator can be disabled by leaving pin 12 open circuit and injecting an external oscillator signal into pin 13.
In the circuit shown in Fig. 2, a crystal oscillator operating in a third-overtone mode is used. The base input circuitry exhibits a stray

capacitance of about 7 pF , and has to be taken into account when designing the external oscillator circuitry.

IF amplifier. Pin 15, which is the input stage, is internally biased by a $2 \mathrm{k} \Omega$ resistor connected to pin 14. However, an external resistor is normally used to give good impedance matching with the rest of the circuitry. In the example shown in Fig. 2, a $1.8 \mathrm{k} \Omega$ resistor is used to accommodate the CFU455 filter
requirements. Although there is internal biasing, an external resistor of between 0 and $10 \mathrm{k} \Omega$ has to be used for correct balance of the IF amplifier.
The amplifier has a response of -3 dB at about 1.5 MHz , and rolls off at 6 dB per octave above this. The 3 dB limiting sensitivity is $13 \mu \mathrm{~V}$ at 455 kHz .

Noise-blanking fim detector The squarewave output of 570 mV from the IF amplifier

Table 1. Performance of receiver FIg. 2.

maximum sensitivity	$1 \mu \mathrm{~V}$ for a signal to noise ratio of $12-20 \mathrm{~dB}$
quieting sensitivity	$3.6 \mu \mathrm{~V}$ at 3 dB
limiting sensitivity	$<1 \mu \mathrm{~V}$
apparent peak separation at 1 mV input	12 kHz
overload capacity	3000 mV
am rejection ($\mathrm{m}=30 \%$)	
\quad at $100 \mu \mathrm{~V}$ input	41 dB
at 1 mV input	38 dB
distortion at 2.5 kHz deviation	4%
adjacent channel rejection at $\pm 30 \mathrm{kHz}$	76 dB

Fig.4. The noise-amplifier can be configured in a number of ways, the most common being the highpass filter.

Fig.5,6. Improvements on noise factor and sensitivity of the receiver can be achieved using a jfet or a double gated mosfet in the rf input stage.
is fed into the detector output via an on-chip 10 pF capacitor. This is brought out to pin 17 , and connected to an external tuned circuit which is tuned to the IF frequency. The signal level on this pin should have a minimum level of 100 mV rms for correct detector operation. The component connected to this pin is determined as follows:

$$
\begin{aligned}
& V_{17}=V_{1} Q_{1}[10 \mathrm{pF} /(10 \mathrm{pF}+C)] \\
& \left.R_{1}=Q_{0} C\left[Q_{1} / 9 Q_{0}-Q_{1}\right)\right]
\end{aligned}
$$

where
$V_{1}=140 \mathrm{mV} \mathrm{rms}$
$C=$ detector tuning capacitance
$Q_{1}=$ loaded Q of detector coil
$Q_{0}=$ unloaded Q of detector coil
$R_{1}=$ damping resistor across tuned circuit.
The output circuit of the detector is an emitter of 400Ω output impedance. Since some of the IF signal is still present, care needs to be taken with the circuit layout so that the circuitry connected to pin 18 does not associate with the components connected to pin 16.

Audio amplifier. The stage gain of the power amplifier is typically 35 dB , and is designed to drive either a 4Ω or an 8Ω loudspeaker. With a supply voltage of 5 V , it is capable of an output of 260 mW at a third-harmonic distortion of 10%.

The output-circuit coupling capacitor should be selected to give the desired IF response and to reduce power consumption caused by unwanted IF drive to the loudspeaker. To ensure optimum stability, the ground side of the speaker return should be connected as close as possible to pin 3: the amplifier (and main) ground connection.

Noise amplifier. This is an inverting amplifier with an open-loop gain of 53 dB at 4 kHz , and requires a feedback resistor between the
input and output (pins 6 and 7) to reduce the gain to a more practical level.
The amplifier can be configured as a lowpass filter, a bandpass filter or a highpass filter, the last being the most commonly used in applications of this type (Fig. 4). All capacitors used should be of a high- Q variety such as polystyrene or polycarbonate; if ceramics are used, the filter will not perform to the required specifications.

Muting switch. The input circuit is a $22 \mathrm{k} \Omega$ resistor in series with the base of a transistor whose emitter is connected to ground. As expected, the threshold is the same as the forward bias point of a transistor (around 600 mV). Since all muting functions are on the chip, this stage has no output pin.

Applications

The application shown in Fig. 2 is by no means definitive. Improvements in this design can be made by changing the rf input stage to a jfet (Fig. 5), a dual-gate mosfet (Fig. 6) or even a gaAsfet. Since receiver sensitivity is determined by the selection of this stage, a device must be chosen to give a noise factor and gain which presents sufficient input to give full limiting ($8 \mu \mathrm{~V}$) and enough sensitivity for a reasonable signal to noise ratio with the signal being received. The market abounds with suitable alternatives to those given (e.g. U3IO, BF800, BF98I, 3SK51, 3N200, 3NI40 etc.). Depending on which is chosen, the component values will have to be modified to suit the transistor selected.
The ceramic filter connected to L_{4} determines the degree of rejection of image signals and so should have a good out-of-band rejection characteristic, while the filter connected to $\mathrm{IFT} \mathrm{I}_{1}$ determines the overall receiver bandwidth and adjacent channel rejection. The first filter could be replaced by a saw filter, and the second by a crystal filter, if improved performance is required.
The circuit shown in Fig. 2 has an audio filter which tailors the audio for speech reception in series with the af amplifier. If this is not required for reasons of cost or fidelity, it can be omitted, and a simpler circuit using a $50 \mathrm{k} \Omega$ volume control can be used.
As shown in Fig. 2, the ULN3883A is used with (a) a crystal oscillator using the onboard circuitry; (b) a tuned $L C$ oscillator, again using the onboard circuitry; or (c) either of the above using an extemal oscillator or a synthesiser. If option (c) is required, a signal with an amplitude of 500 mV is required at pin 13 of the $U L N 3883 A$.
The device is, of course, not limited to acting as a single superheterodyne receiver. As indicated, it can also act as the second mixer/oscillator and IF amplifier in either a fixed capacity or as a tuneable If with a broadband front-end circuit. This practice is very common in vhf and uhf receivers where it is difficult and expensive to manufacture stable oscillators or synthesisers.

NEW LOW PRICE - NEW COLOUR HP141T SPECTRUM ANALYSERS
 TESTED

HP141T + 8552A or BIF - 8553BRF $-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-$ AIF £600 or B IF - $£ 700$.
HP141T + 8552A or B IF - 8554B RF - 100 kHz $1250 \mathrm{Mc} / \mathrm{s}$ - A IF $£ 800$ or B IF- $£ 900$.
HP141T + 8552A or B IF - 8555A RF - $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}$ - A IF $£ 1400$ or B IF - $£ 1600$. The mixer in this unit costs $£ 1000$, we test every one for correct gain before despatch.
HP141T + 8552A or BIF - 8556A RF - $20 \mathrm{~Hz}-300 \mathrm{kHz}-$ A IF $£ 600$ or B IF - $£ 700$.

HP ANZ UNITS
 AVAILABLE SEPARATELY NEW COLOUR - TESTED

HP141T Mainframe - £350-8552A IF - £200-8552B IF - £ $300-8553 \mathrm{BRF}-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 200-8554 \mathrm{~B}$ RF $-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 400.8555 \mathrm{ARF}-10 \mathrm{Mc} / \mathrm{s}-$ $18 \mathrm{GHz}-£ 1000.8556 \mathrm{~A}$ RF - $20 \mathrm{HZ}-300 \mathrm{KHZ}-£ 250$.
HP8443A Tracking Generator Counter - 100 kHz $110 \mathrm{Mc} / \mathrm{s}-£ 300-£ 400$.
HP8445B Tracking Pre-selector DC $-18 \mathrm{GHz}-£ 400-$ £600 or HP8445A - £250.
HP8444A Tracking Generator - $£ 750-1300 \mathrm{Mc} / \mathrm{s}$.
HP8444A Opt 059 Tracking Generator - $£ 1000-1500 \mathrm{Mc} / \mathrm{s}$.

SPECIAL OFFER - 14 ONLY HP140T (NON-STORAGE)

Mainframe Plus 8552A IF Plug-In Plus 8556A RF PlugIn $20 \mathrm{~Hz}-300 \mathrm{kHz}$ Plus 8553B RF Plug-In 1 kHz $110 \mathrm{Mc} / \mathrm{s}$. Tested with instructions - $£ 700$.

Marconi TF2008 - AM-FM signal generator - also sweeper - $10 \mathrm{~K} / \mathrm{c} / \mathrm{s}$ - $510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250$ - tested to $£ 400$ as new with manual - probe kit in wooden carrying box. HP Frequency comb generator type 8406 - $£ 400$
HP Vector Voltmeter type 8405A - © 400 to $\mathbf{~ C 6 0 0}$ - old or new colour.
HP Sweep Oscillators type 8690 A \& B + plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R. HP Network Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500-\mathrm{E} 1000$. HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{Mc} / \mathrm{s}$ £200-HP8447F. 1-1300MC/s $£ 400$
HP Frequency Counter type 5340A - 18GHz f1000-rear output f800.
displays used in this set-up-8411a-8412-8413-8414-8418-8740-8741 other units and 8746-8650. From $£ 1000$.
Racal/Dana 9301A - 9302 RF Millivoltmeter $-1.5-2 \mathrm{GHz}$ - $£ 250-£ 400$
Racal/Dana Counters 9915M -9916-9917-9921-£150 to f450. Fitted FX standards.
Racal/Dana Modulation Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}$ - f 250 .
Marconi RCL Bridge type TF $2700-\mathrm{£} 150$.
Marconi/Saunders Signal Sources type - 6058B - 6070A - 6055A - 6059A - 6057A - 6056 $€ 250-\mathrm{-} 350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
 Marconi microwave 6600 A sweep osc., mainfra
$40 \mathrm{GHz}-£ 1000$ or Pl only $£ 600$. MF only $£ 250$.
Marconi distortion meter type TF2331- £150. TF2331A - 200
Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1 - S2 - S6 - S52 - PG506 - SC504 - SG502 - SG503 - SG504 - DC503 -DC508 - DD501 WR501 - DM501A - FG501A - TG501 - PG502 - DC505A - FG504 - 7B80 + 85-7B92A
Gould J38 test oscillator + manual - $£ 200$.
Tektronix Mainframes - 7603-7623A - 7613-7704A - 7844-7904 - TM501 - TM503 - TM506 -7904-7834-7104-7623-7633.
Altech 757 Spectrum Analyser - 00122 GHz - Digital storage + readout - $£ 2000$.
Marconi 6155A Signal Source - 1 to 2 GHz - LED readout - $£ 400$
Barr \& Stroud Variable fiter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}$ + high pass + low pass - $£ 150$
harconi 1 power unit H60/50-f400 tested. H
Racal/Dana 9300 RMS voltmeter - $£ 250$.
HP 8750 A storage normalizer - C 400 with lead + S. A or N.A Interface.
Marconi TF2330- or TF2330A wave anslysers - $£ 100-£ 150$
Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 500$.
Racal/Dana signal generator $9082 \mathrm{H}-1.5 .520 \mathrm{Mc} / \mathrm{s}-£ 600$.
Tektronix - 7S 14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11.
Marconi mod meters type TF2304-£250.
HP 5065A rubidrum vapour FX standard - $£ 2.5 \mathrm{k}$.
Systron Donner counter type 6054B-20Mc/s - 24GHz - LED readout - $£ 1 \mathrm{k}$.
Racal/D Dana 9083 signal source - iwo tone - $£ 250$.
Systron Donner - signal generator 1702 - synihesized to 1GHz - AM/FM - $£ 600$.
Tektronix
Rhodes \& Schwartz power signal generator SLRD-280-2750Mc/s - $\mathbf{6 2 5 0}$ - $\mathbf{6} 600$
Farnall electronic load type RB $1030-35$ - $£ 350$.
Racal/Dana counters -9904-9905-9906-9915-9916-9917-9921-50Mc/s - 3GHz - $\mathbf{5 1 0 0}$ E450 - all fitted with FX standards.
HP4815A RF vector impedance meter c/w probe - $5500-\mathrm{f} 600$.
Marconi TF2092 noise receiver. A, B or C plus filters - $£ 100$ - $£ 350$

Marconi TF2091 noise generator. A, B or C plus filters - $£ 100 \cdot £ 350$
HP180TR, HP182T mainframes $£ 300-£ 500$.
Fluke 8506A thermal RMS digital multimeter. $£ 400$.
Phillps panoramic recelver type PM7900-1 to $20 \mathrm{GHz}-£ 400$
Marconi 6700 A sweep oscillator $+6730 \mathrm{~A}-1$ 10 $2 \mathrm{GHz}-£ 500$
HP8505A network ANZ + 8503A S parameter test set + 8501A normalizer - £4k
Racal/Dana VLF frequency standard equipment. Tracer receiver type 900A + difference meter type $527 \mathrm{E}+$ rubidium standard type 9475 - $\mathbf{£ 2 7 5 0}$.
HP signal generators type $626-628$-frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$.
HP 432A - 435A or B - 436A - power meters + powerheads - Mc/s - 40GHz - £200-f1000 Bradley oscilloscope calibrator type 192 - $£ 600$.
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{Kc} / \mathrm{s}+$ high pass + low pass - $£ 150$ Marconi TF2370 spectrum ANZ - $110 \mathrm{Mc} / \mathrm{s}$ - f 900 . Marconi TF2370 spectrum ANZ + TK2375 FX extender $1250 \mathrm{Mc} / \mathrm{s}+1$ 1st gen - $\mathbf{~} 1.5 \mathrm{k}$ HP8614A signal generator $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour $£ 400$.
HP 3325 A syn function gen $20 \mathrm{Mc} / \mathrm{s}-\mathbf{£} 1500$.
HP 3325 A syn or B synction level generator - $£ 500$ - f 600 .
HP 3586B or C selective level meter - $\mathbf{E 7 5 0}$ - 1000 .
HP 3575 A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 400$.
HP 8671 A syn microwave $2-6.2 \mathrm{GHz}-\mathrm{f} 2 \mathrm{k}$.
HP 8683D S/G microwave 2.3-13GHz-opt 001 - 003 - E 4.5 k
HP $8660 \mathrm{~A} \cdot \mathrm{~B} \cdot \mathrm{C}$ syn S/G. AM + FM + $10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to $2500 \mathrm{Mc} / \mathrm{s}$ - f 750 - $\mathbf{2} 2800$.
MP 8640 B S/G AM-FM $512 \mathrm{Mc} / \mathrm{s}$ or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or $003-£ 800-\mathrm{f} 1250$.
HP 8656A S/G AM-FM 0.1-990 Mc/s - 11500.
HP 8622 B Sweep PI $-01-2.4 \mathrm{GHz}+$ ATT - £ 1750 .
HP 8629A Sweep Pl-2-18GHz - £ 1000 .
HP 86 Series PI's in stock - splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-\mathrm{£} 250-\mathrm{f} 1 \mathrm{k}$.
HP 8620 C Mainframe - $\mathbf{E 2 5 0}$. IEEE - $£ 500$.
HP 8620C Mainframe - E250. IEEE - $£ 500$.
HP 8601 A Sweep generator . 1 - $110 \mathrm{Mc} / \mathrm{s}-£ 300$
HP 4261A LCR meter +16038 A test leads - $£ 400$
HP 4271B LCR meter 1 MHz digital meter + 16063A test adaptor - f 850 .
HP 4342A Q meter 22 kHz - 70Mc/s 16462A + qty of 10 inductors - E850.
HP 3488A HP - IB switch control unit - E 500 + control modules various - $£ 175$ each.
HP 3561A Dynamic signal ANZ - E3k.
HP 8160A 50Mc/s programmable pulse generator - $\mathbf{f 1 4 0 0}$
HP 853A MF ANZ $+8558 \mathrm{~B}-0.1-1500 \mathrm{Mc} / \mathrm{s}-£ 2500$.
HP 8349A Microwave Amp 2-20GHz Solid state - f 1500
HP 3585A Analyser 20 Hz - $40 \mathrm{Mc} / \mathrm{s}-£ 4 \mathrm{k}$
HP 85698 Analyser. $01-22 \mathrm{GHz}_{2}-\mathrm{E} 5 \mathrm{k}$
HP 3580 Analyser 5 Hz - 50 kHz - £ 1 k .
HP 3455 A Digital voltmeter - $£ 500$.
MP 3437 A System voltmeter - $£ 300$.
HP 5370A Universal time interval counter - $£ 450$.
HP 5335 A Universal counter $-200 \mathrm{Mc} / \mathrm{s}-\mathrm{£500}$.
HP 5328 A Universal counter $-500 \mathrm{Md} / \mathrm{s}-£ 250$.
HP 6034A System power supply-0-60V-0-10 amps - 5500 .
HP 3960A 3964A Instrumentation tape recorders - £300-£500.
HP 5150A Thermal printer - £250.
MP 1645A Data error analyser - 150.
HP 4437A Attenuator - 15150 .
HP 4437A Attenuator - f150.
HP 3710A - $3715 A-3716 A-3702 B-3703 B-3705 A-3711 A-3791 B-3712 A-3793 B$
microwave link analyser - P.O.R.
HP 3552A Transmission test set - $£ 400$.
HP 3763A Error detector - £500.
HP 3764A Digital transmission analyser - $£ 600$.
HP 37704 Amp delay distortion analyser - £400
HP 3780A Pattern generator detector - $£ 400$.
HP 3781 A Pattern generator - C 400.
HP 37818 Pattern generator (bell) - $£ 300$.

HP 3785A Jitter generator + receiver-E750-E1k.
HP 8006A Word generator - $£ 100$ - 1150 .
HP 8016A Word generator - $£ 250$.
HP 8170 A Logic pattern generator - $\mathbf{5} 500$
HP 59401A Bus system analyser - $£ 350$.
HP 59500A Multiprogrammer HP - IB - $£ 300$.
Philips PM5390 RF syn-0.1-1GHz-AM + FM- 11250.
Philips PM5519 Colour T.V. pattern generator - $\mathbf{£ 2 5 0}$.
S.A. Spectral Dynamics SD 345 spectrascope 111 -LF ANZ - 12500 .

Tektronix R7912 Transient waveform digitizer - programmable - $£ 400$.
Tektronix 496 Analyzer $1 \mathrm{kHz}-1.8 \mathrm{GHz}-£ 3.5 \mathrm{k}$.
Tektronix TR503 + TM503 tracking generator 0.1 - 1.8 GHz - £1k- or TR502.
Tektronix 576 Curve tracer + adaptors - $£ 900$.
Tektronix 1502/1503 TDR cable test set - $£ 1000$
Tektronix 7 L 5 LF analyser $-0-5 \mathrm{Mc} / \mathrm{s}$ - 8800 . OPT 25 - 11000.
Tektronix AM503 Current probe + TM501 m/frame - $£ 1000$.
Tektronix SC501 - SC502 - SC503 - SC504 oscilloscopes - $\mathbf{~ 7} 75$ - $\mathbf{E} 350$.
Tektronix 465-465B-475-2213A-2215-2225-2235-2245-2246-f250-f1000
Kikusui 100 Mc /s Oscilloscope COS 6100 M - $£ 350$.
Farnell PSG520 Signal generator - $£ 400$
Nicolet 3091 LF oscilloscope - $£ 1000$.
Racal 1991-1992-1988-1300 Mc/s counters - £500-£900
Tek $2445150 \mathrm{Mc} / \mathrm{s}$ oscilloscope - f 1400.
Fluke $80 \mathrm{~K}-40$ High voltage probe in case - BN - £100
Racal Recorders - Store 4-4D-7-14 channels in stock - $£ 250$ - $£ 500$
Racal Store Horse Recorder \& conirol- $£ 400-\mathrm{E750}$ Tested
Fluke 510 A AC ref standard - 400 Hz - f 200
Fluke 355A DC voltage standard - $£ 300$
Schlumberger 5229 Oscill oscope - $500 \mathrm{Mc} / \mathrm{s}-\mathbf{£ 5 0 0}$.
Solartron 1170 FX respanse ANZ - LED dislay - 2880
Wiltron 610D Sweep Generator $+6124 \mathrm{CPI}-4-8 \mathrm{GHz}-\mathbf{£ 4 0 0}$
Wiltron 610D Sweep Generator $+61084 \mathrm{DPI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-£ 500$
Time Electronics 9814 Voltage calibrator - $\mathbf{£ 7 5 0}$.
Time Electronics 9811 Programmable resistance - $£ 600$
Time Electronics 2004 D.C. voltage standard - $\mathbf{£ 1 0 0 0}$
HP 8699 B Sweep PI YIG oscillator $.01-4 \mathrm{GHz}-£ 300.8690 \mathrm{~B}$ MF - $£ 250$. Both $£ 500$.
Schlumberger 1250 Frequency response ANZ - $£ 2500$.
Dummy Loads \& power att up to 2.5 kilowatts FX up to 18 GHz - microwave parts new and ex eqt.
B\&K Items in stock - ask for list.
W\&G Items in stock - ask for list
Power Supplies Heavy duty + bench in stock - Farnell - MP - Weir - Thurlby-Racal etc. Ask for list.
items bought from hm government being surflus. price is ex works. sae for enouirles. phone for apponinment or for demonstration of any items, availability or price change vat and carriage extra ITEMS MARKED TESTED HAVE 30 day warrantr. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTNG AND RECEIVING EQuIPMENT ITC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No: (01274) 6884007. Fax: 651160

PROFESSIONAL SCHEMATIC CAPTUNE AND PCB SOFWARE FOR WNDOWS

At last, professional schematic and PCB design software for Microsoft Windows is available at prices that won't break the bank. CADPAK for Windows offers entry level schematic and PCB drafting whilst PROPAK for Windows adds netlist integration, multi-sheet schematics, highly effective autorouting, power plane generation and much more.

ISIS Illustrator was the first schematic drawing package for Windows and it's still the best. Illustrator's editing features will enable you to create circuit diagrams as attractive as the ones in the magazines.

- Runs under Windows 3.1.
- Full control of drawing appearance including line widths, fill styles, fonts, colours and more.
- Automatic wire routing and dot placement.
- Fully automatic annotator.
- Comes complete with component libraries; edit your own parts directly on the drawing.
- Full set of 2D drawing primitives + symbol library for logos etc.
- Exports diagrams to other applications via the clipboard.

LOW PRICES!

CADPAKIor Windows:	¢149
O/DPAK for DOS	E79
PROPAK for Wirdows	¢495.
PROPAK for DOS	± 395.

ARES for Windows provides all the functionality you need to create top quality PCB layouts under Microsoft's GUI. Combining the best of our DOS based PCB layout technology with the best of Windows, this package is our most powerful and easy to use PCB design tool to date.

- True 32 bit application under Windows 3.1.
- Advanced route editing allows modification or deletion of any section of a track.
- Unlimited number of named pad/track styles.
- Comprehensive package library for both through hole and SMT parts.
- Full imperial \& metric support including all dialogue forms.
- Gerber, Excellon and DXF outputs as well as output via Windows drivers. Also includes Gerber viewer.
- Multi-strategy autorouter gives high completion rates; power plane generator creates ground planes with ease.

Call us today on 01756753440 or else fax

 01756752857 for a demo pack - please state DOS or Windows as these products are available for both platforms.[^5]
Smash - simulation via

Smash - the subject of this month's free disk offer - is a multi-level, mixed-mode simulator running under Windows and featuring true behavioural modelling.

The simple example, starting on the right, demonstrates the possible analyses in Smash. As it may be the first example you will try, it is kept simple, being purely analogue and using only primitives. However, it demonstrates features like parameter sweeping and Monte Carlo analysis. It is a simple $R C$ network, the demonstration files for which are on the evaluation disk. The disk is a fully-working version of Smash, limited only to 25 analogue and 50 digital nodes.

Notes on behavioural modelling

Behavioural modelling is a term you have probably heard a number of times. The fact is that most often, people talk about behavioural modelling as soon as the model is not a low-level primitive - a transistor or gate.
This is particularly true where analogue simulation is concerned. Some people even consider, or want you to believe, that a G device (i.e. Spice-device) is a behavioural model. But genuine behavioural modelling goes far beyond this.
The designation behavioural has long been reserved for a design method that describes parts of your systemvia a high-level programming language. Behavioural means that you describe the way a component works, without presuming the way it is actually implemented. The purpose of the method can be to make an architectural study of a system at early stages of the design, before implementation has been fully decided. Or you can use it simply to increase the speed of a simulation - a few lines of code can easily replace thousands of transistors or gates.
There is nothing wrong with using a different term (behavioural) for differentiating things which do not readily map to anything physical, like a G-device, a Laplace-defined block, or a non-linear equation. But you should be aware that behavioural modelling may have more than one meaning.
In Smash, you can use Laplace-defined blocks and nonlinear conditional equations. But the true power of the software comes from its capacity to mix genuine behavioural models - both analogue and digital - with primitives. As the Smash HDL is based on the popular C language, you can use variables, complex control structures - loops, etc - and all the features available in a
high-level programming language.
Since these models are compiled, not interpreted, they are highly efficient and you can simulate complete systems, ics and/or pcbs, that you would not be able to simulate with any other tool.

B: These three windows are the netlist, pattern and operating point files for the simple RC circuit. These files are contained on the evaluation disk in the 'eval' folder (example continued over)...

Free CAD software offer

The full version of the Smash multi-level, mixed-mode simulator costs $£ 1500$. The first 1000 EW+WW readers sending in the coupon opposite this page can obtain a size-limited but otherwise fully functional evaluation version of Smash free of charge.

Smash and schematic entry
There is no proprietary schematic entry in Smash. Instead it interfaces at the netlist level with commercial schematic entry packages. Basically any schematic entry program with a Spice netlist output can be used with Smash. Some packages are tightly integrated with Smash, with libraries available etc. Among these are DesignWorks from Capilano Computing, ECS/Synario from Data I/O, and Opus 4.2.2 from Cadence. The DesignWorks and ECS/Synario libraries for Smash are contained on the evaluation floppy.

C: Analysing the circuit for transients is simply a matter of selecting the transient parameters under the Analysis menu and running the routine.

E: In Monte Carlo analyses component values are varied at random, according to specified statistical distributions and tolerances. Also, the analyses are re-run a number of times. In this way, you can simulate how off-the-shelf component tolerances affect the circuit's response.

D: Small-signal analysis is equally simple. Note that running this analysis does not result in the previous transient analysis window being lost. Waveform processing - zooming, measuring etc - is available, even when a simulation is running, through the commands under the Waveforms menu. You may add new signals in the window with the Add analogue signals item. A dialog box displays a list of available signals. Simply double-click the name of the signals you want to view.

F: An example of running the transient analysis routine for a mixed analogue and digital circuit. In this case, Smash has to deal with both analogue voltages and logic levels. Whenever a node connects to both analogue and digital components, it becomes an interface node.

 Buack STMR EQHPMEDT PPP \&II Units ESt

Al thes Blaci Star Equipment avail able
OSCILOSCOPE PRoses Swilchable $\times 1 \times 10$ (Pap [3].
Used Equlpment - GUARANTEED. Manuals supplled if pessible.
This is WERY SMALL SAMP EF .

110 WYKEHAM ROAD, READING, BERKS RG6 1PL
Telephone: (01734) 268041. Fax: (01734) 351696 Callers Welcome 9am-5.30pm Monday to Friday (until 8pm Thursday)

SEETRAX CAE-RANGER - PCB DESIGN

Ranger1 1100

* Schernatic capture linked to PCB
* Parts and wiring list entry
*. Outline (footprin!) library editor
* Manual board layout
* Full design rule checker
* Back annotation (linked to schematic)

Pỏwer, memory and signal autorouter - £50

All systems upward compatible. Trade-in deals avảilable.
Call Seetrax CAE for further information/demo packs. Tel 01705591037

Fax 01705599036
Seetrax CAE, Hinton Daubnay House, Broatway Lane,
Lovedean, Hampshire, PO8 0SG

All trademarks acknowledged

Ranter2 $£ 599$

All the features of Rangerl plus

* Gatè \& pin swapping (linked to schematic)
* Track highlighting
*-Auto track necking
* Copper flood fill
* Pbwer planes (heat-relief \& anti-pads)

4. Rip-up \& retry autorouter

Ranger 3 £3500

All the features of Ranger 2 plus

* UNIX or DOS versions
* 1 Micron resolution and angles to $1 / 10$ th degree
${ }^{*}$ Hierarchical or flat schematic
? Unlimited design size
* Any-shaped pad
* Split power planes
* Optional on-line DRC
- 100% _ip-up \& retry, push \& shove autoroufer

Outpust to:

* $8 / 9$ thid 24 pin dot-matrix printers

* HP Desk/Laser Jet, Canon'BJet, Postscript (R3 onily)
* HP-GL. Houston Instruments plotters
* Gerber photoplotters
* NC Drill Excellon, Sieb \& Meyer

A AutocaD DXF.

Oscillati AT

Two basic circuit configurations are responsible for most oscillator designs working at frequencies up to the uhf range. Ian Hickman describes the often conflicting requirements of uhf oscillators - including a disadvantage of the emitter-follower now put to good use.

0scillators for frequencies to uhf and beyond have been built using all sorts of active devices, from valves onwards. Most of them use three terminal active devices, often connected to a simple tuned circuit in one of two basic ways, which were enumerated for my benefit as a student by an older colleague of many years experience with the aid of a sketch which I call O'Connor's Universal Oscillator Circuit, Fig. 1. It is drawn in an unconventional way to emphasise the following points.
For the circuit to function as an oscillator, Z_{2} and Z_{3} must be reactances of the same sign both inductances or both capacitances - while Z_{1} must be of the opposite sign. With this proviso, the diagram shows that, relative to the cathode (emitter, source), the voltages at the other two electrodes are in antiphase.
No earth connection is shown, since in principle the circuit could be provided with the necessary power supplies via ideal rf chokes of infinite reactance at the operating frequency , and a, g or k earthed as convenient, or the whole circuit left floating.
If Z_{1} is an inductor with capacitors at Z_{2}, Z_{3}, the circuit is a Colpitts oscillator, whilst if a tapped inductor forms Z_{2} and Z_{3} with Z_{1} being a capacitor then the circuit is a Hartley oscillator. One way or another, all three electrodes

Fig. 1. O'Connor's universal oscillator circuit. Z_{1} is a reactance of one sign while Z_{2} and Z_{3} are both of the other. For 'valve' read $n-p-n$ bipolar, n-channel fet, hemt etc, as appropriate.
of the active device must be connected to the tuned circuit.
Many other circuit arrangements are possible, some using more than one active device, a variety being shown in Fig. 2. However, at uhf a circuit using a single device, connected as in Fig. 1, often proves best because additional phase shifts associated with a second active device or parasitics associated with coupled windings introduce additional complexities into the design process, effects that would be smaller or negligible at vhf or hf .

Colpitts oscillator

As a basis of a signal generator, an oscillator with a wide tuning range is required. While at one time this would have been tuned by a precision mechanical variable capacitor, in a more modern application varactor tuning will usually be employed, permitting accurate frequency control by means of a phase-lock loop. With a possible application in view, I experimented with what might be regarded as a Colpitts oscillator, if you draw in the transistor's internal base/emitter capacitance to go with the 3.3 pF external collector/emitter capacitance as Z_{2} and Z_{3}, Fig. 3(a).
In a wide-range oscillator, one needs to be able to vary its frequency over a wide range at will, but then instantly have its frequency as stable as a rock once one has set it to a particular desired frequency. To start with, it pays at the outset to design the oscillator circuit to have very stable dc conditions, ensured in Fig. 3(a) by the supply regulator, and by the base bias chain with its low source resistance at dc, which is moreover well decoupled at rf. As first constructed, the oscillator covered from under 400 MHz to over 600 MHz , but was modified as shown for the intended purpose to cover well over 200 MHz centred on 400 MHz .
This is shown in Fig. 3(b). The oscillator was tuned back and forth across its range during the six-second exposure required by the
home-made oscilloscope camera, which does duty also for my spectrum analyser. There is a general slope in level of several decibels across the tuning range. But the superimposed ripples are due to the connection to the spectrum analyser. This effect was demonstrated by doubling the length of coaxial cable used for the connection, which gave twice as many ripples. Clearly, the analyser's input impedance isn't exactly 50Ω on the most sensitive range used; switching in 10 dB at the input attenuator largely removed the ripples.

Base-current phase shift

It is a convenient fiction that, in commoncathode, emitter or source mode, an active device is an inverting amplifier, i.e. that the voltages at the other two electrodes are in antiphase. This is true in the case of valves up to fairly high frequencies, since the velocity of electrons in vacuo is a good deal faster than minority carriers in silicon. But in a transistor, phase shifts start to show up even in high-frequency devices at a much lower frequency, as is illustrated in Fig. 4.
Figure 4(a) shows the relation between the currents in the three electrodes of a transistor at dc, and recaps on the relation between the current gains α and β. The latter is often also called α^{\prime} or h_{FE}. Figure 4(b) shows how even a small phase shift in the collector current can result in a phase shift in the base current which is much larger, and moreover in the opposite direction.
In the simplified treatment given here, any phase shifts suffered by the base or collector currents after they part company, due to 'transmission line delay' in different regions of the bulk of the semiconductor, are assumed to be negligible.
The higher the dc value of β, i.e. the more nearly the magnitude of the collector current equals that of the emitter, the smaller the phase shift in the collector current needed to give a 45° advance to the base current. For an audio-frequency transistor such as the BC109 with its typical β of 300 and f_{T} of 300 MHz , this occurs at around 1 MHz . At higher frequencies, the base current can lead the emitter current by not far off 90°.
An emitter follower is an extremely useful and widely used circuit, acting as a buffer and permitting a high-impedance source to drive a lower-impedance load. But the circuit has an unfortunate tendency to oscillate, particularly if the load is a bit capacitive. The phase advance suffered by the base current is the culprit.

Fig. 2. A variety of oscillator circuits, some more suited to lower frequencies, reproduced from Newnes Practical RF Handbook published by Butterworth Heinemann.

Fig. 3. Wide-range, uhf, varicaptuned oscillator circuit at (a) offers the tuning range shown at (b), covering from below 300 MHz to over 500 MHz . Span $0-1000 \mathrm{MHz}, 10 \mathrm{~dB} /$ div vertical.

(a)

(a)
(a)

This is illustrated in Fig. 4(c). Here an important assumption is made: the mutual conductance of the device is high (its output impedance low compared to the impedance of the load connected to the emitter) so that, to a first approximation, the voltage at the emitter equals that at the base.
As the emitter current is leading the base voltage by up to 90°, with a purely capacitive load, and the base current substantially leading the emitter current, it follows that the base current leads the base voltage by well over 90°. The input impedance consists of a negative resistive component in parallel with a capacitance.
This effect has been used as the basis of a microwave oscillator design producing over 100 mW output at $2 \mathrm{GHz}^{1}$. It can equally well be used at uhf, and Fig. 5 shows just such an application. The reactance of 18 pF at 345 MHz is 25Ω, doubtless effectively reduced somewhat by the inductance of the leads even though these were kept as short as possible, so the emitter circuit load is almost purely capacitive. The capacitance tuning the inductor consisted only of the capacitive component of device input impedance, and device and circuit strays.

$$
\begin{aligned}
i_{e} & =i_{b}+i_{c} \\
\alpha & =\frac{i_{c}}{i_{e}} \quad \beta
\end{aligned}=\frac{i_{c}}{i_{b}}, ~ \frac{i_{c}}{i_{e}-i_{c}}, ~=\frac{1}{I-\alpha}
$$

(c)

(b)

If the circuit of Fig. $\mathbf{5 (a)}$ is compared with that of Fig. 3, it will be seen to be almost identical. In both cases, the collector is connected to the opposite end of the tuned circuit from the base, while a capacitor is connected from the emitter to the collector end of the tuned circuit. Thus in fact most oscillators operating at vhf or above and using a single active device are likely to be found on analysis to be negative resistance oscillators.

Depending on the Q of the tuned circuit (and that in Fig. 5(a) was certainly not very high), the noise performance or short term stability of such an oscillator can be good, though of course the medium and long term stability will be poor unless the oscillator is used as a volt-age-controlled oscillator in a phase-lock loop.

Figure 5(b) shows the output of the Fig. 5(a) circuit, the centre frequency being 345 MHz and the horizontal scale $5 \mathrm{kHz} /$ division. Analyser bandwidth was set to 1 kHz and a great many sweeps occurred during the six second exposure needed to record the background and graticule.
Some noise modulation is evident but the overall shape is not so very different from that of the analyser's 1 kHz filter. However, towards the end of the exposure the oscillator

Fig. 5. Uhf oscillator at (a) uses the negative input resistance effect, tuning .capacitance consisting of the capacitive component of base circuit input impedance plus device and circuit strays. Inductor L is three turns (spaced one wire width) of 16 swg tinned-copper wire, on 5 mm internal diameter with a 3.75 mm ferrite slug. At (b) is the output from the loosely coupled, single-turn winding, centre frequency $345 \mathrm{MHz}, 5 \mathrm{kHz} /$ div. horizontal, $10 \mathrm{~dB} /$ div. vertical, ref. level - 10 dBm , IF bandwidth 1 kHz , video filter off.
took it into its head to start wandering up in frequency; a stability of 1 kHz in an open-loop uhf oscillator could be achieved, but only with a more sophisticated circuit, using a high- Q cavity resonator for example.

Line stabilisation

Another arrangement providing improved frequency stability without resorting to a phaselocked loop is the line-stabilised oscillator. Using a line consisting of 150 cm of 50Ω miniature coaxial cable, believed to have a velocity ratio of around 0.66 , with its far end shorted, the Fig. 5(a) was modified to work in this mode. A tuning capacitor was added to enable the tank circuit to be tuned to a frequency at which the emitter load looked capacitive. It oscillated at 235 MHz , at which frequency the length of the line would be just over one and three quarter wavelengths, i.e. capacitive.
Clearly there are other frequencies, both higher and lower, at which the line looked capacitive, for example where the line length is $5 / 4 \lambda, 9 / 4 \lambda, 11 / 4 \lambda$ etc, and the tuned circuit is used to pick out one of these as the operating frequency. If the tank circuit Q is high and the regeneration only just sufficient to ensure oscillation, then only one of these modes can be sustained. If the $\operatorname{tank} Q$ is lower and the negative resistance much lower than necessary to sustain oscillation, the circuit can oscillate in several modes at once.
This was the case when the collector supply was the same as in Fig. 5(a). Reducing collector voltage until it equalled the base voltage, as shown in Fig. 6(a), prevented oscillation in several modes simultaneously. With a constant tail current generator or rf choke/resistor combination in place of the $10 \mathrm{k} \Omega$ resistor to -12 V , the oscillator circuit would work happily on a supply of a volt or two.

Output from the loosely coupled winding was as in Fig. 6(b), where the span is 0 1000 MHz and the fundamental at 235 MHz is visible, together with the second, third and fourth harmonics. Figure 6(c) zooms in on the fundamental, at 5 kHz per division horizontal. At the selected video filter bandwidth, a single sweep took six seconds and at 60 dB down, the

response is 15 kHz wide, which is more or less identical to the analyser's 1 kHz filter specification.
Of course, a length of coaxial cable does not make for a very convenient line stabilised oscillator. Even if semi-rigid, solid-outer coaxial were used, the stability of the oscillator with temperature would not be wonderful. But line stabilisaton is now very attractive and competitive, in the form of surface acoustic wave resonators.
Owing to the extremely slow propagation speed of acoustic waves in lithium niobate slow at least compared with the speed of light - a compact package can contain a line length of many wavelengths. Such devices are used at uhf in lieu of crystals, where tight frequency control is required. An example is the range
of 418 MHz telemetry modules featured in Ref. 2.
Connecting a negative resistance across a tuned circuit results in an oscillator, and the negative resistance need not imply a three terminal device. Many years ago a two terminal device - the tunnel diode - was a popular means of making uhf oscillators. This was at a time when transistors with adequate performance were not available, or at best very expensive.

Now that transistors with more than adequate performance are common and cheap, the tunnel diode uhf oscillator has taken a back seat. But negative resistance two terminal oscillator circuits are still used at microwave frequencies, in the form of the Gunn diode oscillator.

Fig. 6. Simple and fairly crude line-stabilised oscillator (a) gives output at (b); span 0.1000 MHz , $10 \mathrm{~dB} /$ div vertical, ref. level (top of screen) -10dBm. Fundamental component of (b) shown in (c), with centre frequency 235 MHz and horizontal scale $5 \mathrm{kHz} /$ div, IF bandwidth 1 kHz , video filter at max. (giving a post-detector bandwidth of 1.5 Hz), $10 \mathrm{~dB} /$ div. vertical, ref. level -30 dBm .

(c)

References

1. Partha and Krishnakumar. Oscillator design employs common-collector bipolars. Microwaves and RF, October, 1994 Pp. 8892.
2. Hickman I. Low power radio links, $E W+W W$, February 1993, pp. 140-144.

ADD VALUE AND CREDIBILITY WITH REPRINTS

Multiple copies of your articles and advertisements published in this magazine make ideal promotional material for sales literature, exhibition handouts, direct mail, new product launches, distributor promotions, Public Relations etc.
You can add your own artwork and copy, utilise the front cover of this magazine, include your list of distributors, and/or your latest advertisement/s. Reasonably priced reprints can be tailor-made to your own specific requirements or simply reprinted in their original form. (Minimum order number 250)

For a FREE quotation please telephone Jan Crowther now on: 0181-652 8229 or fax: 0181-652 3978
Reprint Services, Reed Business Publishing,
Room 1006, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS, England

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF Tel: 01203650702 Fax: 01203650773 Mobile: 0860400683
(Premises situated close to Eastern-by-pass in Coventry with easy
access to M1, M6, M40, M42, M45 and
OSCILLOSCOPE
Gould O 4000, OS4200, OS4100, OS1000B Gould OS $3000-40 \mathrm{MHz}$, dual ch.
Gould $4035-20 M \mathrm{Mz}$ dignal storage
Gould $4050-35 \mathrm{MHz}$. Gould $5110-100 \mathrm{MHz}$ intelligent oscilloscope.
Hewletl Packard $1707 \mathrm{~A}, 7707 \mathrm{~B}-75 \mathrm{MHz}$ dual

TELNET

Datalab OL 1080 - Programmable Transient Recorder...............
Dynapert TP20- intelliplace lape peel tester, mmaculate condition
 E.I. 1.331 . 18 GHz trequency counter
Farnell 2081 RF F Power mete

Farnell 2081 RF Fower meter.
Farnell TSV70 MkIII-Power

Fluke 51010 - Callurator $A C C D$
Fluke 5220 A - Transconductanace Ampilifer (20A)
Fluke 720 A - Kelvin-Varce Volago Divide
Fluke 750A - Relerence Divider
He
Heiden 1107 - 30 - 10 A Programmable power supply (IEEE)
Gould $\mathrm{K} 100 \mathrm{D}-100 \mathrm{MHz}$ Logic Analyser with PODS...
Hewlet Packard 4364 Power meter +8481 A sensor
Hewien Pack kard $3325 \mathrm{~A}-21 \mathrm{MHz}$ synthesiserflunction gen

Hewlet Packar 3338 A Diglat multimeter
Hewlet Packard 3490 AD Dial multimeter
Hewwert Packard 3586 A - Solective ivel metar

He wlett Packard 3711 A 3712 A $137918 / 37938$ Microw av
Hewlet Packarar 376237763 Data gen + error detector
Herror detector

 Hewlett Packard 5150 A Thermal printer Hewien Packard 5315 A - Universal counter HPIB
Howlet Packard 5316 B - Universal count

Hewlet Packard 595018 HP P IB isolated O / A power supply program
Hewlen Packard 6181 C D.C. current source.

Hewlett Packard 62618 Power supply 20V-50A.. dISCOUNTFOR OUANTITES	c50

Hewfert Packard 80058 Pulse generator.
H
Hewleth Packarr 8152A - optical average power meter
Hewlett Packard 81588 - 1 . Hewlet Packard 8158 B - optical attenuator with opt's 002
Hewlet Packard 8443 T Tracking ten/counter with 1 EEE Hewlett Packard 8443A Tracking gervcounter with 1EEE 001... $£ 1100$
E300/ 400 Hewlett Packard 8620C Sweep oscillator manntr
Hewlett Packard 8750 A Storage normaliser......
Hewlett Packard 86578 - Synthesised Sig. Gen. (2060 MHz)
Hewlett Packard 3456A Digital voltmeter.
Hewlett Packard 3488 - HP. 18 switch and

-

Howlett Packard 3488-KP. 1 switch and control unin
Hewletl Packard $8684 \mathrm{~A}-5.4 \mathrm{GHz}$ to 12.5 GHz Si
Hewlett Packard 3785A - Iter Generator + Receiver
Hewlett Packard 6632A - Systern Power Supply (HPIB).
Hewlet Packard B640B - AM/FM Signal Gen. (512 MHz)
Hewlet Packard $5340 \mathrm{~A}-18 \mathrm{GHz}$ Frequency Counter..
He wlett Packard 5356A - 18GHz Frequency Converter Head
Hewlett Packard 432 A - Power Meter (with 478 A Sensor)
Hewlett Packard 435A or B - Power Meter (with 8481A8484A)
International Light - iL 1700 research radiometer with Erythemal sensor
Leader LCR745G - LCR Meter
Lyons PG73N/PG75/PG2B/PG Pulse generator
Marconl 2019-AMFM sig. gen. 1040 MHz Marconl 2306 Programmable Intertace. Marconl 2337A Automatic dist. meter Marconl 2356 A Hz evel oscllator Marconil 2830 Mutiplen dister Marconl 2831 Channel access Marconi 893 BAF A. power meter.
Multicore "Vapouretle" Dench to


```
...........
``` Multicore "Vapourette bench top
(new and unused) (\(£ 1100+\) new)
Phillps PM \(516710 M H z\)Phillps PM 5190 LF svnthesizer w/th GPIBPhilips 5390 1 GHz sugnai gen.
Philips PM 5716 Pulgo genRacal 9301 A THO PMS PF Fill
Racal 9301 A True RMS R/F millvoltmeter.
Racal Dana 3100 40-130MHz synthesiser
Racal Dana 5002 Wideband level meterRacal Dana 5003 Digital rivmeter.Racal Dana 9000 Microprocess ing limerfcou
Racal Dana 9081 Synth. sig. gen. 520 MHz .
Racal Dana 9084 Synth. sig. gen. 104 MHz
Racal Dana 9246 S Programmable PSU \(25 \mathrm{~V}-10\)Racal Dana 9301 A 9302 R/F Millivolt metetRacal Dana 9303 True: RMS/RF level meterRacal Dana 9341 LCR databridge.
Racal Dana 9500 Universal timerfcounter 10
Racal Dana 9921 3GHz frequency counterRacal Dana 99213 GHz frequency counter,Rohde \& Schwarz LF M2 Sweep generatoRonde \& Schwarz SCUD Pwadio code test setRotek 39904Adap 3980 A - AC/OC. Precision Calibrator with Rolek 350A High Current
Schlumberger SI 4040 - Stabilock, high accuracy \(1 \mathrm{GHz} \mathbf{~ r a d i o ~ t e s t ~} \mathrm{s}\)Schlumberger 4923 - Radio Code Test SetSchlumberger \(2720-1250 \mathrm{MHz}\) Freq. CoumerSystems Video 1258 Wavetorm analyser + +............................ 560differential phace 1258 Waveform analyser +1255 vector monitor +1407differential phase \& gain module +1270 remote control panel
Tektron \(\mathbf{x}\) DA59100 Senes Logic Analysefrom \(£ 800\)ᄃ500
c950
Tektronix - Piug-ins
SW503, SG 502 etc
SW503, SG 502 etc.
Time 9814 Vottage callinatorWatanabe WTR2 2113 penWeller D900 Desoldering stationWiltron 352 Low freq. difierential input phase meter

\section*{BROADCAST MONITOR RECEIVER 2 \(150 \mathrm{kHz}-30 \mathrm{MHz}\)}

We have taken the synthesised all mode FRG8800 communica tions receiver and made over 30 modifications to provide a receiver for rebroadcast purposes or checking transmitter performance as well as being suited to communications use and news gathering from international short wave stations.
The modifications include four additional circuit boards providing *Rechargeable memory and clock back-up "Balanced Audio line output *Reduced AM distortion *Buffered IF output for monitoring transmitted modulation envelope on an oscilloscope *Mains safety improvements.
The receiver is available in free standing or rack mounting form and all the original microprocessor features are retained. The new AM system achieves exceptionally fow distortion: THD, 200Hz6 kHz at \(90 \%\) modulation \(-44 \mathrm{~dB}, 0.6 \%\) (originally \(-20 \mathrm{~dB}, 10 \%\)). *Advanced Active Aerial \(4 \mathrm{kHz}-30 \mathrm{MHz}\) *PPM10 in-vision PPM and chart recorder "Twin Twin PPM Rack and Box Units \({ }^{*}\) Stabilizers and Fixed Shift Circuit Boards for howl reduction *10 Outlet Distribution Amplifier 4 *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifiers *Peak Deviation Meter *PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/ +6dB drives and movements *Broadcast Stereo Coders.

\section*{SURREY ELECTRONICS LTD}

The Forge, Lucks Green, Cranleigh Surrey GU6 7BG
Telephone: 01483275997 Fax: 276477

\section*{JPG Electronics}

JPG Electromics, 276-278 Chatsworth Road, Chesterfield S40 2BH Access/Visa (01246)211202 Fax:550959 Callers welcome CIRCLE NO. 138 ON REPLY CARD

\title{
Reference books to buy
}

\section*{For Audio Engineers}

\section*{Subjects include}

Recording, microphones and loudspeakers

Digital audio fechniques
Basic audio principles
Acoustics and
psychoacoustics
Audio and relevision studios and their facilities

Radio and telephony
- Comprehensive - over 600 pages
- Written by leading authorities from the audio world
- Easy to read, compiled for maximum accessibility
- Concise and authoritative
- Covers topics from noise measurement to studio installation

Invaluable reference work for anyone involved with audio from broadcast consultant to serious enthusiast. Audio Engineer's Reference Book is written by an international team of experts and edited by Michael Talbor-Smith previously a trainer of audio engineers at BBC Wood Norton and now a freelance audio consultant and technical writer.

\section*{For TV \& Video Engineers}

\section*{Subjects include}

Fundamentals of colour TV
TV studios
High definition TV
Satellite broadcasting
Distribution of broadband signals
TV receiver servicing
Video and audio recording and playback
Teletext
- Over sixty chapters on the latest techniques in video and relevision
- Up to date reference on EMC requirements, DBS and HDTV
- Easy-fo-use reference, eminently suitable for students
- Topics range from materials and construction to medical and defence applications of television.

The TV \& Video Engineer's Reference Book will be of immense value to anyone involved with modern tv \& video techniques - in particular broadcast engineers. The new format makes it an excellent reference for students. Edited by KG Jackson and GB Townsend from contributions written by acknowledged international experts.

Please supply me \(\qquad\) copies of the
Audio Engineer's Reference Book, (ISBN 0750603860)
Fully-inclusive price - UK \(£ 62.50\), Europe \(£ 68\), Worldwide £78. Please add vat at local rate where applicable.

Please supply me \(\qquad\) copies of the
TV \& Video Engineer's Reference Book, (ISBN 075061953 8)
Fully-inclusive price - UK £42.50, Europe \(£ 48.00\), Worldwide \(£ 58.00\), Please add vat at local rate where applicable.

Remittance enclosed \(£\) \(\qquad\)
Cheques should be made payable to Reed Business Publishing Group Ltd
Please return to: Jackie Lowe, Room L333,
Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. \(\qquad\)
Exp date
NAME (Please print) \(\qquad\)
ADDRESS \(\qquad\)

POST CODE \(\qquad\)
DATE \(\qquad\) TEL \(\qquad\)

\section*{SIGNATURE}

\section*{VAT RATES}

6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4\% ltaly, 3\% Luxembourg, \(6 \%\) Netherlands, \(5 \%\) Portugal, \(3 \%\) Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)

VAT NO.
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Business purchase: Please send me the book listed with an invoice I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below. Guarantee: If you are not completely satistied, books may be returned within 30 days in a resalable condition for a full refund.

Do you have an original circuit idea for publication? We are giving \(£ 100\) cash for the month's top design. Additional authors will receive \(£ 25\) cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

\section*{All-in-one mains monitor}

A
Il the components of this monitor will work separately or form a complete indicator of the health of a mains supply, showing the presence of spikes, over/under voltage or voltage fluctuations and containing a mains noise filter.
Filter. Removes the 50 Hz waveform to reveal the presence of noise and harmonics, heard on a speaker, and spikes indicated by a bicolour led, which shows by its predominant colur whether the spikes are positive or negative. Adjust the \(22 \mathrm{k} \Omega\) pot. in the filter for least light from the led.

Spike detector. Spikes on the rectified filter output trigger the SCR and sound the buzzer for just under 1s, until current is established through the SCR. Triggering occurs when household appliances switch on and off and the \(2.2 \mathrm{k} \Omega\) pot. should be adjusted so that the circuit does not trigger when the monitor is switched on. Do not use a sensitive SCR.
Over/under voltage. Normally, the led flashes at around 6 Hz , this frequency doubling for \(\mathrm{a}+10 \%\) mains voltage change and stopping for a \(-10 \%\) variation. Choose

the correct zener for the relevant mains voltage.
Mains fluctuations. Significant variations in mains voltage modulate the red led heavily, from full on to off, independently of average mains voltage.
Bear in mind that the circuit is connected to the mains and that the large capacitors will probably stay charged for some time. D Di Mario
Milan
Italy

\section*{YOU COULD BE USING A 1GHz SPECTRUM ANALYSER ADAPTOR!}

\author{
Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours. \\ Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of \(70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}\), it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration. \\ Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our \(£ 100\) monthly star author's fee, together with \(£ 25\) for all other ideas published. \\ Our judging criteria are ingenuity and originality in the use of modern components - with simplicity particularly valued.
}

\section*{Thermally stable current source}

T
his thermally stable current source features very high dynamic impedance, high output voltage swing and wide bandwidth.
In the connection shown, the op-amps maintain the same voltage drop across \(R_{\text {ref }}\) as across the reference diode, so that the output curent is precisely determined. Opamp \(\mathrm{OP}_{2}\) sinks bias current, which has therefore almost no effect on \(I_{\text {ref }}\). Highest instantaneous output voltage is given by the highest value of Rbias consistent with there being enough bias current to operate the diode, while the lowest \(R_{\text {bias }}\) value is determined by the maximum power from \(\mathrm{OP}_{2}\). Output current
and reference voltage determine the value of \(R_{\text {ref. }}\)

With values given, a 24 V supply and 1 mA output, a \(2.2 \mathrm{k} \Omega R_{\text {bias }}\) gives 50 mW of power in \(\mathrm{OP}_{2} ; R_{\text {ref }}\) gives the 1 mA output when used with a Plessey \(Z N 458 B\) reference diode and the minimum diode current gives a 17 V output swing.
Since both op-amps act as buffers, it is unnecessary to use high-performance types, although improvements would be seen. As it is, the circuit works well over the audio range with any op-amp and diode.

\section*{Andrea Scozzari}

Livorno
Italy

Current source provides very high thermal stability. Output current is determined by value of \(R_{\text {ref }}\) and diode voltage.

\section*{Positive start for 555 oscillator}

Using a 555 as an astable oscillator in a digital delay circuit entails holding the reset pin low until the oscillator is required to start. Normally, this causes the timing capacitor to discharge completely via the timing resistor, so that the first charge is longer than succeeding ones at
\(1.1\left(R_{\mathrm{a}}+R_{\mathrm{b}}\right) C\) instead of \(0.69\left(R_{\mathrm{a}}+R_{\mathrm{b}}\right) C\).
To avoid the effect, the capacitor must be held at \(V_{\mathrm{cc}} / 3\) when the oscillator is stopped, by means of the p-n-p transistor controlled by the run/stop signal, \(R_{\mathrm{c}}\) being \(2 R_{\mathrm{b}}\).
Mike Aldington
Gillingham
Kent

Circuit prevents total discharge of timing capacitor in 555 astable oscillator when oscillator stops, ensuring time of first mark period same as subsequent cycles.

\section*{Prescaler functions to 1.3 GHz}

U
sing two ICs, a \(74 L S 90\) and a \(T F K\) U665B two-modulus (960/1024)
divider, the circuit divides frequencies up to 1.3 GHz by 1000 .
A logic level on the 665B's mod input, pin 6, determines which modulus is used - logic zero gives 1024 and one, 960.

Pulses from the QA output of the 74LS90
decade divider form the sequence 00000111 to give 5 at 1024 and 3 at 960 \((5 \times 1024+3 \times 960=8000\) input pulses for eight output pulses, or \(8000 / 8=1000\)).
Biquinary connection of the 74LS90 allows forced resetting to 9 , when its natural output is 7 , by the connection of its reset-9 inputs to QA and QB. One's
first thought, that a shift register might perform the function, is not valid, since glitches and noise have a tendency to cause errors.
For connection to a long output lead, use the prescaled output on pin 7.
Stefano Pigozzo

\section*{Belluno}

Italy

Two ICs, one of them a two-modulus type, divide 1.3 GHz by 1000 .

\section*{\(20 \mathrm{~Hz}-20 \mathrm{MHz}\) function generator with duty-cycle adjust}
iving a 2 V pk-pk output, the Maxim \(\triangle\) MAX038 is a \(20 \mathrm{~Hz}-20 \mathrm{MHz}\) function generator providing sine, square and triangle waveforms with an adjustable duty cycle on squares and triangles of \(15 \%-85 \%\).
Logic levels on \(A_{0}\) and \(A_{1}\) pins select the output waveform; position 1 of Sw 1 gives sine, 2 square and 3 triangle. Output frequency depends on current into \(I_{\text {in }}\), set by \(R_{4,6}\) and the 2.5 V reference voltage output, and the values of \(C_{1-6}\) on the \(C_{\text {osc }}\) pin, selected by \(S w_{2}\) to give six 10:1 ranges. Varying the voltage on the DADJ pin between -2.3 V and +2.3 V by \(R_{2}\) varies duty cycle from \(15 \%\) to \(85 \%\) when square and triangle waves are in operation.

\section*{Yongping Xia}

\section*{Torrance}

California
USA

Flexible function generator uses MAX038 to provide sine, square or triangle waveforms over a very wide frequency range and with adjustable duty cycle.

SMART CARD READER/PROGRAMMER
On board ISO 7816 Card Reader Socket (Videocrypt etc). Software runs on IBM/PC enabling the user to read \& write to card. Board also contains a PIC16C84 programmer Ideal smart card devetopment too
Requiries external power \(15-20 \mathrm{v}\) AC or CD @250 ma. (optional extra \(£ 6.50\))
MICRO-ENGINE MCS80C31/51 Development board.
Tiny \(72 \mathrm{~mm} \times 42 \mathrm{~mm}\) PCB contains socketed 44 pin CPU, turned pin rom sockel. 12 MHz xtal and ports 1,3 output on IDC connector. Ideal for stand alone projects or development work. Supplied with CIRCUIT \& MCS8051/52 development software
PIC ICE II* In Circuit Emulator for PICI6C54-55-56-57-71-84
Replaces all 18 or 28 pin PICs. All ports Bi-directional. OSC2 output. RTCC input. On board A/D converter for PIC167Cl. Supplied with PICDEV54 and PICDEV7I software manual, connecting leads \& headers, ASM examples, and hardware circuit projects.

PIC ICE STD In-Circuit Emulator for 18 pin PICs only no A/D.
Plugs into the printer port, appears to the target system as a normal Pic device including OSC2 and RTCC in/out. Runs in real time from the 1BM PC changes made to File registers reflected on target. Supplied with Development software Piclev 54-57 and PicDev \(71 / 84\)

PIC PROGRAMMER* Programs lic16C54-55-56-56-71-84. Centronics port interface Powerful editing software to read. write \& copy Pic devices including data memory in Picl6C84. Top quality components used throughout including production ZIF socket. Now includes a Text Editor/Assembler for all above PICs.
Requires external power 15.20 v AC or DC @250ma. (optional exira £6.50)
MEGAPROM programmer. EPROMS, E2PROMS, and FLASH memories from 2k (2716) 108 Meg (27 CO 80). Runs on IBM/PC via the centronics port using standard printer cable. Works on all PC compatibles, laptops, and notebooks. No special port requirements. Top quality components used throughout including production ZIF socke
Requires external power supply 18 -25v AC or DC@250ma. (optional extra f6.50)
EPROM EMULATOR Works on ANY computer with centronics printer port. Data sent to the printer appears in the target board Eprom socket. Emulates from 1 k 1023 k Byte (27C256) roms, board switchable. Very fast download. Works with or without our Development software.
DEVELOPMENT SOFTWARE.
Develop software on your IBM/PC for other Microprocessors, Controllers. Pic's etc. Software has fully integrated Text Editor. Assembler, Disassembler, and Simulator. Code can be downloaded directly to our EPROM Emulator. All software supplied with sample ASM files, and user documentation manual.
£ 19.95 each
HD63/6809
PIC16C71/84
All hardware carries a 12 months parts and labour Guarantee. No Vat payable. Please add \(\mathbf{8 1 . 5 0}\) for Carriage

Starred items also available from FARNELL (Leeds) CREDIT CARD ORDERS SAME DAY DESPATCH

\section*{JOHN MORRISON DEPT WW} 4 REIN GARDENS, TINGLEY, WEST YORKSHIRE WF3 1J
TEL (or FAX) 01132537507

\section*{THE clock for your computer}

The ADC-60 brings the accuracy of a time standard to your computer. It provides a data source which can be used by any system which has a serial port such as a PC, MAC or mainframe. The ADC-60 offers improved reliability by using both the British MSF and German DCF time standards. If one of the signals cannot be received the other source will automatically be used.
Other ADC-60 Features include:
- LCD display showing current time and date together with the lock status of the unit
Provides GMT or Local time outputs together with the date
- Serial output in ASCII or BCD format
- Includes 2 software packages, the first is a TSR which runs under DOS, the second runs as a minimised window in Microsoft Windows
Contact us today for further information on this superb product

\title{
AMDAT \\ 4 Northville Road, Northville Bristol BS7 ORG \\ Tel: 01179699352 Fax: 01179872228
}

CIRCIE NO. 140 ON REPLY CARD

\section*{The new schematic capture program Geswin (GESECA for Windows \({ }^{T M}\)) adds more than a pretty face to SpiceAge. Upgrade for \(£ 100+\) VAT*} circuit editing. Because this link enables SpiceAge to retain all its simulation settings, the schematic (produced by Geswin) is uncluttered so that you can create clean drawings that may be clipboarded into your other Windows applications.
- You can clipboard sections of your netlist from SpiceAge back into Geswin's attribute Inspector if
 you wish to use patches of existing circuits.
- Geswin has inherited GESECA's speed and ease of use. You will find it's best-loved "bucket of bits" components' store waiting for your instant use from a special self-replenishing window.
- The SpiceAge component library has been expanded and re-drawn into "stubbies". The new symbols allow more components to fit within a given screen area without compromising clarity.
- Multiple windows allow you to scratch pad your designs (simulating as you work) and clipboard them into a fair copy window.
- File compatible with GESECA: schematics and components from GESECA may be read.
- Comprehensive HELP provides reference material; tutorial style manual reassures you of your own intuition.
- Geswin automatically invokes (or switches to) SpiceAge; you can also invoke Geswin from SpiceAge.

Please contact Those Engineers Ltd, 31 Birkbeck Road,
LONDON NW7 4BP.
Tel 0181-906 0155, FAX 0181-906 0969.
*upgrade price from GESECA; £295 + VAT new

\section*{Bistable switch}

Droviding a bistable output that reverses after a set time in each state, this switch continues in the same state after a loss of power.
Digitally controlled potentiometer \(\mathrm{IC}_{1}\) - a Xicor X9C103P, for example - and comparator \(\mathrm{IC}_{2 \mathrm{a}}\) are the basic elements, \(\mathrm{IC}_{1}\) wiper moving its complete travel when 100
pulses are applied; the values of the potentiometer and \(R_{11,12}\) determine the fullscale output voltage. As the hunredth pulse arrives, the potentiometer output voltage to the comparator exceeds the reference voltage from the zener, the output changes state and the potentiometer changes the direction of travel.

To ensure that the chip-select line of the potentiometer is low after the power supply has settled and high before it falls below the 4.5 V lowest working voltage of \(\mathrm{IC}_{1}, \mathrm{IC}_{2 \mathrm{~b}}\) controls this input to the potentiometer.

\section*{A / Stephenson}

Seaford
East Sussex

Bistable circuit changes output state after a given number of pulses are applied to the input, retaining its setting after power is removed.

\section*{Simultaneous sawtooth, square and triangle waves from a vco}

A prodacing square and triangular waves was described by Horowitz and Hill in The Art of Electronics, published by Cambridge University Press. CA3160E op-amps \(I C_{1,2}\) form the oscillator, supplied from a \(5-12 \mathrm{~V}\) rail and generating triangular and square waves at \(\mathbf{A}\) and \(\mathbf{B}\) respectively.
A third CAI \(360 E\) operates as either a follower or as an inverter, depending on whether the mosfet conducts or is cut off. If the input to \(I C_{3}\) is taken from the triangle wave and the mosfet drive comes from the square wave output, output C is a replica of the rising ramp of the sawtooth, followed by an inverted version of the falling ramp, the result being a sawtooth. Input voltage \(V_{\text {control }}\) should conform to \(0 \leq V_{\text {control }} \leq 2\left(V^{+}-1.5 \mathrm{~V}\right)\), so that \(f=150 V_{\text {control }} / V^{+}\)
L Szymanski
Stamford
Lincolnshire

\section*{MONO VGA MONTORS}

Some with slight screen burns but OK at £19.96 Ref EF40 and some without burns at £29.96 Ref EF39.

A4 DTP MONTTORS Brand new, 300 DPI. Complete with diagram but no interface details.(so you will have to work it outl) Bargain at Just \(£ 12.99\) eachIII!
OPD MONTTORS \(9^{\circ}\) mono monitor, fully cased complete with raster board, switched mode psu etc. CGATTL input (15 way D). IEC malns. \(£ 15.99\) ref DEC23. Price including wit to \(C\)
monitor for CCTV use etc is \(£ 21.99\) ref DEC24
PC CONTROLLED 4 CHANNEL TMER Control (on/off times etc) up to 4 items (8 A 24 Q each) with this kit. Complete with Software, relays, PCB etc. \(\mathbf{E 2 5} 99\) Ref \(95 / 26\)
COMPLETE PC 300 WATT UPS SYSTEM Top of the range UPS system providing protection for your computer system and valuable software againstmainspow er fuctuations and cuts. New and
boxed, UK made Provides up to 5 mins running time in the event of boxed, UK made Provides up to 5 mins running time in the event of
completepower failure to allow youtorun yoursystem down cortecty. completepower failure to allo
SALE PRICE just E119.00.
RACAL MODEM BONANZAI 1 Racal MPS 1223 120075 modem, telep hone lead, mainslead, manual and comins software, the cheapest way onto the netl all this for just \(£ 13\) rel \(D E C 13\).
HOW LOW ARE YOUR FLOPPIES? \(3.5^{\circ}(1.44)\) unbranded. We have sold \(100,000+\) so okl Pack of 50 £24.99 ref DEC16 BRTISH TELECOMM MULTMMETERS SA9083 These are 'returns' sothey may have faults but look ok. Complete with new leads and leather case. Price tor two meters \& 1 case is \(£ 10\) ref DECB9. 6 mw LASER POINTER. Supplied in kit form, complete with power adjuster, 1-5mw, and beam divergence adjuster. Runs on 2AAA batteries. Produces thin red beam ideal for leveis, gun sights, expeitments etc. Cheapest in the UKI Just \(£ 39.95\) ref DEC49
SHOP WOBBLERSISmall assemblies designed to take D size batteries and wobble
£3.99 Ref SEP4P2.
RADIO PAGERSBrand new, UK made pocket pagers dearance price is just \(£ 4.99\) each \(100 \times 40 \times 15 \mathrm{~mm}\) packed with bitsl Ref SEP5. BULL TENS UNTT Fully built and tested TENS (Transcutaneous Electrcal Nerve Stimulation) unit, complete with electrodes and fuli
instructions. TENS is used for the relief of pain etc in up to \(70 \%\) of instructions. TENS is used for the relief of pain etc in up to \(70 \%\) of
sufferers. Drug tree pain rellet, sate and easy to use, can be used in conjunction with analge sics etc. £49 Ret TEN/4
COMPUTER RS232 TERMINALS. (LIBERTY) Excellent quality modem units,(like wyse \(50, \mathrm{~s}\)) 2 2RS 232 , 22 function keys, 50 thro 1038,400 baud, menu dnven port, screen,
selup menus (18 menu's). £29 REF NOV4.
setup menus (18 men's). E29 REF NOVA.
OMRONTEMPERATURE CONTROLLERS (E6C2).Brand new controllers, adjustable from -50 deg C to \(+1,200 \mathrm{deg} \mathrm{C}\) using new controllers, adjustable from -50 deg C to \(+1,200 \mathrm{deg} \mathrm{C}\) using
graduated dial, \(2 \%\) accuracy, thermocouple input, ong life relay output graduated dial, \(2 \%\) accuracy, the fmocouple input, long life relay output .3 A 240 V /p contacts. Perfect for exactly
Normal trade \(£ 50+\), ours \(£ 15\). Ref \(\mathrm{E5C2}\).
ELECTRIC MOTOR BONA NZA! \(110 \times 60 \mathrm{~mm}\).Brand new predsion. cap start (or spin to start), virtually silent and features a
moving outer case that acts as a ly wheel. Because of their unusual moving outer case that acts as a fly wheel. Because of their unusual design we think that 2 of these in a tube with some homemade fan
blades could dom the basis for a wind tunne| etc. Oearance pricels just blades could dorm the basis for a wind tunnel etc. Clearance price is just
\(£ 4.99\) FOR A PAIRI (note- these will have to be wired in series for 240 v \(£ 4.99\) FOR A PAIR1 (no
operation Ref NOV1.
MOTOR NO 2 BARGAIN \(110 \times 90 \mathrm{~mm}\).SImilar to the above motorbut more suitable for mounting vertically (ie tumtable etc). Again motorbut more sultable for mount ing vertically(ie tumtable etc). Again
you will have to wire 2 in series for 240 v use. Bargain price isjust \(£ 4.99\) FOR A PAIR!! Ref NOV3.
OMRON ELECTRONIC INTERVAL TIMERS.
Minature adjustable timers, 4 pole c/o output 3 A 240 v , HY1230S, 12vDC adjustable from \(0-30\) secs. \(£ 9.99\) HY1210M, 12 VDC adjustable from \(0-10\) mins. £9.99 HY1260M, 12 vDC adjustable from \(0-60\) mins. \(£ 9.99\) HY2460M, 24vAC adjustable from \(0-60\) mins. \(£ 5.99\) HY241S, 24 VAC adjustable from \(0-1\) secs. \(£ 5.99\) HY2460S, 24VAC adjustable from 0-60 secs, \(£ 5.99\) HY243H. 24vAC adjustable from 0-3 hours. \(£ 8.99\) HY2401S, 240 V adjustable from \(0-1\) secs. \(£ 9.99\)
HY2405S. 240 v adjustable from \(0-5\) secs. \(£ 9.99\) HY2405S. 240 V adjustable from \(0-5\) secs. \(£ 9.99\)
HY24060m, 240 v adjustable from \(0-60\) mins. \(£ 12.99\) PC PAL VGA TO TV CONVERTER Convents a colour TV into a basic VGA screen. Complete with built in psu, lead and s/ware. £49.95. Ideal for laptops or a cheap upgrade. We also can supply this in kit torm for home assembly at £34 95 ret EF54.
DRINKING BIRD Remember these? hook onto wine glass (suppilled) and they dinnk. standup, drink, standup ETCI 44 each Rel EF1
EM ERGENCY LIGHTING UNT Complete unit with EM ERGENCY LIGHTING UNT Complete unit with 2 double bulb flooditights, built in charger and auto switch. Fully cased. 6v 8AH
lead add req'd. (secondhand) £4 ref MAG4P11. lead add req'd. (second hand) E4 ref MAGAP 11 .
GUIDED MISSILE WIRE. 4,200 metre reel of ultra thin 4 core insulated cable, 281 bs breaking strain, less than 1 mm thickl Ideal alams, intercoms, fishing, dolls house's etc. \(£ 14,99\) ref MAG15P5 \(300 v\) PA N ELM ETER \(70 \times 60 \times 50 \mathrm{MM}, \mathrm{AC}\), 90 degree scale. Good qually meter. \(£ 5.99\) ref MAG 6 P14. Ideal for monitoring mains etc. ASTEC SWITCHED MODE PSU BM4 1012 Gives +5 © 3.75 A. +12@1.5A.-12@.4A. \(230 / 110\), cased, BM41012. £5.99 ret AUG6P3. TORRODLAL TX 30-0-30 480VA, Pertect for Mostet amplifers etc. 120 mm dia 55 mm thick. \(£ 18.99\) ref APR19.
AUTO SUNCHARGER \(155 \times 300 \mathrm{~mm}\) solar panel with diode and 3 metre lead fitted with a digarplug. 12 V 2watt. \(£ 9.99\) ea ret AUG10P3. FLOPPY DISCS DSDD Top quality \(5.25^{\circ}\) discs, these have been wniten to once and are unused. Pack of 20 is \(£ 4\) ref AUG4P1.
ECLATRON FLASH TUBE As used in police car flashing lights etc, full spec supplied, \(60-100\) flashes a min. 59.99 ref APR10P5. 24VAC 96WATT Cased power supply. New. \(£ 13.99\) ref APR14.
MILITARY SPEC GEIGER COUNTERS Unused anstraightrom Her majesty's forces. \(£ 50\) ref MAG 50 P3. STETHOSCOPE Fully functioning stethoscope, ideal forllstening to hears, pipes, motors etc. \(£ 6\) ref MAR6P6. OUTDOOR SOLAR PATH LIGHT Captures sunlight during
he day and automatically switches on a built in lamp at dusk. Complete with sealed lead adid battery etc \(£ 19.99\) ref MAR20P1.
ALARM VERSION Of above unit comes with builh in alarm and pir to deter intruders. Good value at just \(£ 24.99\) ref MAR25P4.
CARETAKER VOLUMETRIC Alam, will cover the whole of the ground foor against forcred entry. Includes mains power supply and integral battery backup. Puwerfl internal sounder, will take external bell req'd. Retail \(£ 150+\), ours? \(£ 49.99\) ret MAR50P1.
TELEPHONE CABLE White 6 core 100 m reel complete with a pack of 100 dips. Ideal "phone extns etc. \(£ 7.99\) ref MAR \(8 P 3\).
MICRODRIVE STRIPPER Small cased tape dives ideal for
stripping, lots of useful goodies including a smart case, and lots of components. E2 each rel JUN2P3.
SOLAR POWER LAB SPECIAL You get TWO \(6^{\circ} \times 6^{\circ} 6 \mathrm{v} 130 \mathrm{~mA}\) solar cells, 4 LED's, wire, buzzer. switch plus 1 relay or motor.Supet value kitijust E5.99 REF: MAG6P8
SOLID STATE RELAYS Will switch \(25 A\) mains. Input \(3.5-26 \mathrm{v}\) DC \(57 \times 43 \times 21 \mathrm{~mm}\) with terminal screws \(£ 3.99\) REF MAG4P 10
BUGGING TAPE RECORDER Small volce actlvated recorder, uses micro cas sette complete with headp hones. \(£ 28.99\) ref MAR29P1. ULTRAMINIBUGMIC \(6 m m \times 3.5\) mmmade by AKG. 5 - 12 velectret condenser. Cost \(£ 12\) ea. Ours? just four for \(£ 9.99\) REF MAG10P2. RGB/CGAEGAITLL COLOUR MONTORS \(12^{\circ}\) in good condition. Back anodised metal case. \(£ 79\) each REF JUN79 A NSWER PHONES Retums with 2 faults, we glve you the bits for 1 fault, you have to find the other yourseff. BT Response 200's \(£ 18\) ea REF MAG18P1. PSU £5 ref MAGSP 12.
SWITCHED MODE PSU ex equip, 60w +5 V © \({ }^{5} \mathrm{AA}\), -5 V ©. 5 A . \(+12 v @ 2 A .-121 @ .5 A 120 / 220 \mathrm{v}\) cased \(245 \times 88 \times 55 \mathrm{~mm}\) IECMput socket PLUG M PSU
PLUG IN PSU 9V 200 mA DC \(£ 2.99\) each REF MAG3P9 PLUG IN ACORN PSU 19V AC 14w, E2.99 REF MAG3P 10 POWER SUPPLY fully cased with mains and o/p leads \(17 \mathrm{~V} D C\) 2(4)mA output Bargaln price \(£ 5.99\) rel MAG6P9
ACORN ARCHIMEDES PSU +5 V © 4.4A. on/off sw uncased, selectable mains input, \(145 \times 100 \times 45 \mathrm{~mm}\) € 7 REF MAG7P2 GEIGER COUNTER KTT Low cost prolessional twin tube, complete with PCB and components. Now only E19 REF AUG19. 9v DC POWER SUPPLY Standard pl ug in type 150 ma 9 DV C with lead and DC power plug. price for two is \(£ 2.99\) rel \(A \cup G 3 P 4\). AA NICAD PACK encapsulated pack of 8 AA nicad batteries (tagged) ex equip, \(55 \times 32 \times 32 \mathrm{~mm}\). 33 a pack. REF MAG3P 11 13.8 V 1.9A psu cased with leads. Just \(£ 9.99\) REF MAG10P3 PPCMODEM CARDS. These are high spec plugin cards made for the Amstrad laptop computers. 2400 baud dial up unlit complete with eads. Cearance plce le
INFRA RED REMOTE CONTROLLERS Orginally made for hi spec satellite equipment but perfect for all sorts of remote control projects. Our clearance price is fust \(£ 2\) REF: MAG2
200 WATT INVERTER Converts 10-15v DC into either 110 v or 240 VAC . Fully cased \(115 \times 36 \times 156 \mathrm{~mm}\), complete with heavy duty power lead, cligar plug. AC outtet socket Auto overioad shutdown, auto short circuit shut down, auto inpul over voltage shut down, auto input under
voltage shut down (with audible alamm), auto temp control, unit shuts down if overtheated and sounds audiblealarm. Fused reversed polarity protected.outputfrequency within \(2 \%\), voltage within 10\%. A extremely well bullt unit at an excellent pice. Just \(£ 64.99\) ret AUG65.
UNIVERSAL SP EED CONTROLLER KT Designed by us for the C5 motor but ok for any 12 v motor up to 30 A Complete with PCB etc. A heat sink may be required. \(£ 17.00\) REF: MAG 17
MAINSCA BLE P recut black 2 core 2 metrelength sideal for repairs. projects etc. 50 metres for \(£ 1.99\) ref AUG2P7.
COM PUTER COMMUNICATIONS PACK Kit contains 100 m of 6 core cable, 100 cable dips, 2 line drivers with RS232 Interfaces and all connectors etc. Ideal low cost method of communicating beMINICYCLOPS PIR \(52 \times 2240\) mpie ki Minic YCLOPS PIR \(52 \times 62 \times 40 \mathrm{~mm}\) runs on PP3 battery complete
 all you need to bulld an electric motor. \(£ 9.99\) ref MAR10P4 VIEWDATA SYSTEMS made by Phillips, complete with internal \(1200 / 75\) modem, keyboard, psu etc RGB and composite outputs, menu diven, autodialler etc. \(£ 18\) each Ref EF88.
BOOMERANG High tech, patented poly propyene, 34 cm wing span. Get out and get some exercise for \(£ 4.99\) ref EF83
AIR RIFLES.22As used by the Chinese amy for tralning puposes, so there is a lot aboutl \(£ 39.95\) Ret EF78. 500 pellets \(£ 4.50\) ref EF80. PEANUT TREE Complete kit to grow your own peanuls! full instructions supplied. £3 Ref EF45,
PLUG IN POWER SUPPLYS Plugs in to 13A socket with ouput lead. three types available, 9 vdc 150 mA £2 ref EF58, 9vdc 200 mA
\(£ 2.50\) ref \(\mathrm{EF} 59,6.5 \mathrm{vdc} 500 \mathrm{~mA} £ 3\) ref EF 61 . VIDEO SENDER UNIT. Transmilts both audio and video signals from either a video camera, video recorder, TV or Computer etcto any
standard TV set in a 100 ' rangel (fune TV to a spare channel) 12 VDC standard TV set in a 100 range! (fune TV to a spare channel) \(12 v D C\)
op. Pice is \(£ 15\) REF: MAG 1512 V psu is \(£ 5\) extra REF: MAG5P2 -FM CORDLESS MICROPHONE Small hand held unit with a \(500^{\prime}\) rangel 2 transmitpowerlevels. Reqs PP3 9v battery. Tuneable to any FM receiver, PHce is \(£ 15\) REF: MAG15P1
LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200". Ideal for garden use or as an educational toy. Price is \(£ 8\) a pair REF: MAG \(8 P 12 \times P P 3\) req'd.
*MIN ATURE RADIO TRANSCENERS A pair of walkie talkies
BULL ELECTRICAL
250 PORTLAND ROAD HOVE SUSSEX BN3 5QT(ESTABLISHED 50 YEARS) MAIL ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS \(£ 3.00\) POST PLUS VAT.

PLEASEALLOW 7 - 10 DAYS FOR DELIVERY TELEPHONE ORDERS WELCOME

TEL: 01273203500
FAX: 01273323077
with a range of up to 2 km in open country. Unitsmeasure \(22 \times 52 \times 155 \mathrm{~mm}\),
Including cases and earp'ces. \(2 \times P\) P3 req' d . \(£ 30.00\) pr. REF: MAG
. induding cases and earp'ces. \(2 \times P P 3\) req'd. \(£ 30.00\) pr.REF: MAG 30
COMPOSTTE VinEO KIT. Converts composite video into sepa rate \(H\) sync, \(V\) sync, and video, \(12 v \mathrm{DC} . £ 8.00\) REF: MAGBP2. LQ3500 PRINTER ASSEMBLIES Made by Amstrad they are entiremechanicalprinter assemblies induding printhead, steppermo-
lors etc etc in fact everything bar the case and electronics. a good stripper £5 REF: MAG5P3 or 2 for \(£ 8\) REF: MAG8P3
LED PACK of 100 standard red 5 m leds \(£ 5\) REF MAG5P4
UNNERSAL PC POWER SUPPLY complete with fyleads, switch, fan etc. Two types available 150 w at £15 REF:MAG15P2 (\(23 \times 23 \times 23 \mathrm{~mm}\)) and 200 w at \(£ 20\) REF: MAG \(20 \mathrm{P} 3(23 \times 23 \times 23 \mathrm{~mm}\)) GYROSCOPE About \(3^{\circ}\) high and an excellent educational toy for all ages! Price with instruction booklet \(£ 6\) Re1 EF15.
FUTURE PC POWER SUPPLIES These are \(295 \times 135 \times 60 \mathrm{~mm}\), 4 drive connectors 1 mother board
inet and on/ori switch. \(£ 12\) Ref EF6.
VENUS FLYTRAP
simple kit 53 ref EF34.
PC POWER SUPPLIES (returns) These are \(140 \times 150 \times 90 \mathrm{~mm}\). of ps are \(+12-12,+5\) and \(-5 v\). Built In 12 v fan. These are retums so they may well need repainng! \(£ 3.50\) each ref EF42.
-FM TRANSMITTER KIT housed in a standard workng 13A adapterl! the bug runs directly of the mains so lasts foreverl why pay
£ 700 ? or price is £15 REF: EF62 Transmits to any \(F\) F radio. (this is in kitform with full instuctions.)
- FM BUG KTT New design with PCB embedded call for extra stabilty Works to any FM radio. 9v battery req'd. \(£ 5\) REF: MAG5P5
-FM BUG BUILT ANDTESTED superior design to kit Supplied o detective agences gv batery req E14REF:MAG14
TALKING COINBOX STRIPPER onginally made to retail at \(£ 79\) each, these units are designed to convert an ordinary phone imo a payphone. The units have the locks missing and sometimes broken
hinges. However they canl beadapted for their orfginal use or used for ninges. However they can be adapted for their orf
something else? Price is fust \(£ 3\) REF: MAG3P1
TOP QUA LTTY SPEA KERS Made for HIFI televisions these are 10 watt \(4 R\) Jap made \(4^{\circ}\) round with large shielded magnets. Good quality. \(£ 2\) each REF: MAG2P4 or 4 for \(£ 6\) REF: MAG6P2 TWEETERS \(2^{\circ}\) diameter good quality tweeter 140R (ox with the above speaker) 2 for \(£ 2\) REF: MAG2P5 or 4 for \(£ 3\) REF: MAG3P4 AT KEYBOARDS Made by Apricot these quality keyboards need just a small mod to run on any AT. they work perfectly but you will HEADPHONES ExVirgin Atlantic. 8pairsfor£2 REF: MAG2 DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price |ust \(£ 5\) REF: MAGSP8 Worth it fust for the very comprehensivemanual! \(5.25^{\circ}\) oniy.
GA S HOBS Brand new made by Optimus, basic three bumer suitable for small flat etc bargain price just \(£ 29.95\) ref EF73.
GAT AIR PISTOL PACK complete with pistol, darts and pellets £12.95 Ref EF82 extra pellets (500) \(£ 4.50\) ref EF8O. CHRISTMAS TREE KIT Stan growing it nowl £3 ref EF53 DOS PACK Microsofi version 5 Original sottware but no manuals hence only \(£ 5.99\).
PIR DETECTOR Made by famous UK alarm manufacturer these are hi spec, long range internal units. 12v operation. Slight marks on case and unboxed (although brand new) \(£ 8\) REF: MAG8P5
MOBILECAR PHON E£ 5.99 Well almostt complete in car phone excluding the box of electronics normally hidden under seat. Can be made to illuminate with 12 valso has built inlight sensor so display only illuminates when dark. Totally convincing! REF: MAG6P6
ALARM BEACONS Zenon strobe made to mount on an extemal bell box butcould be ssed for caravans etc. 12 v operation. Just connect up and it flashes regulary) E5 REF: MAG5P19
6 " \(\times 12^{\prime \prime}\) AMORPHOUS SOLAR PANE
6"X12" AMORPHOUS SOLAR PANEL \(12 \mathrm{~V} 155 \times 310 \mathrm{~mm}\) 130 mA . Bargain price Just \(£ 5.99\) ea REF MAG6P12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for \(£ 4.99\) ref MAG5P 13 ideal for experimenters! 30 m for \(£ 12.99\) ref MAG13P1 HEATSINKS (inned) TO220, designed tomountvertically on a pcb \(50 \times 40 \times 25 \mathrm{~mm}\) you can have a pack of 4 for \(£ 1\) ref JUN1P 11 STROBE LIGHT KIT Adjustable from 1 hz right up to 60 hzl (electronic asssembly kit win ROCK LIGHTS Unusual things these, two pieces of rock that glow

\section*{NEW HIGH POWER LASERS}

15 mW . Helium neon, 3 switchable wavelengths. \(63 \mathrm{um}, 1.15 \mathrm{um}, 3\).39um (20 th hem areinfrared) 500.1 polarizer built in so good for holography. EXTREME CAUTION AND QUALIFIED GUIDANCE. £349+Vat

WE BUY SURPLUS STOCK FOR CASH

\section*{FREE CATALOGUE}

\section*{1995100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE WITH ORDER.}

\section*{PORTABLE RADIATION DETECTOR}

WITH NEW COMPUTER INTERFACE.

\section*{\(£ 59.00\)}

A Hand held personal Gamma and \(X\) Ray detector. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 K eV to over 1.2 M eV and a measuring range of 5-9999 UR/h or 10-99990 Nr/h. Supplied complete with handbook. Ref. NOV 18.

\section*{Meter response equaliser}

Dointer movement of dc milliammeters exhibits a second order response to changing current. This can be equalised by the circuit shown, speeding up the response typically by a factor of ten. Response time is limited by the low-pass filter on the input, which is there to prevent the subsequent circuitry clipping on full scale steps in amplitude.
Values shown are for a typical \(200 \mu \mathrm{~A} / 1 \mathrm{k} \Omega\) ' VU ' meter. Resistor \(R_{3}\) adjusts the \(\mathbf{Q}\). This is independent of \(R_{\mathrm{L}}\) which adjusts the corner frequency. These equations give the corner frequency and the \(\mathbf{Q}\). Resistor \(R_{4}\) is assumed equal to \(R_{5}\).
\[
\begin{aligned}
& f=\frac{1}{2 \pi C \sqrt{R_{1} R_{2}}} \\
& Q=\frac{R_{3}}{2 \pi f R_{1} R_{2}}
\end{aligned}
\]

\section*{Fast full-wave peak rectifier}

This full wave peak rectifier is fast due to the fact that none of the op-amps saturate. The circuit is accurate to 1 dB to 300 kHz using TLO81s. Attack time is limited by the limited output current of the op-amps. Decay time is set by the \(4.7 \mathrm{M} \Omega\) resistor. Taking this resistor to the negative supply rail gives approximately linear decay against time.

\section*{Video-signal processing}

Two ideas related to each other in that they concern the processing of video signals. First is a precision de restorer. Basic circuits using a diode can mangle the sync enough to cause loss of frame sync on some receivers. The circuit shown here solves the
problem. Resistor \(R_{1}\) controls the 'attack' time and \(R_{2}\) the tilt.
The second circuit is a very simple clamp with more than adequate performance. Clamping time is determined by the time constant \(R_{2} / C_{1}\). Resistor \(R_{1}\) is to offset the
input current of the output op-amp to minimise drift on the clamped wave form. The input amplifier is a EL2020 because when the clamp is switched on it must drive a \(100 \Omega\) load.

Precision Video DC Restorer

\section*{Oven for crystal stabilisation}

Acircuit to use as a heater for temperature stabilisation of a crystal. Base emitter junction voltage of the heater transistor is sampled as a measure of device temperature while collector current is held constant. Resistor \(R_{\mid}\)provides reference current. The opamp is the sample-and-hold and loop error amplifier. A reference voltage is applied to the non-inverting input to set the temperature.
The heater transistor used is a LM395. This device is overload and overtemperature protected, making temperature adjustment idiot proof. For best performance the crystal to transistor thermal resistance should be minimised and the thermal resistances from the two to ambient maximised. Power supplies are \(\pm 8 \mathrm{~V}\). Sample timing is not critical. A 1 ms period and 0.2 ms sample width are fine.

\section*{Narrow and wide-range voltagecontrolled oscillators}

T
wo more related ideas. A voltage controlled crystal oscillator designed to maximise the pulling range of a parallel crystal. The two diodes decrease the of voltage across the varicap.
Capacitor \(C_{1}\) sets the centre frequency. This is done using the final layout to compensate for circuit strays. There is no need for a trimmer if all the crystals are cut to the same load capacitance. Pulling range is about \(\pm 50 \mathrm{~Hz}\) for a typical 2 MHz crystal.
A simple wide-range vco is shown in the second diagram. The diodes decrease the rf voltage across the varicap and have the added benefit of making the output waveform symmetrical.
Output is low impedance. Range for this circuit is \(1 \mathrm{MHz}-3.5 \mathrm{MHz}\) for a voltage swing of \(1-29 \mathrm{~V}\) on the varicap. The arrangement is easily scalable.

\section*{Simple \(I^{2} \mathrm{C}\) interface for pcs}

This is a way of interfacing an IBM pc compatible to the \(I^{2} \mathrm{C}\) bus. The software is too lengthy to be given here. Port \({ }^{37} 9_{16}\) is used to read data in. The relevant output must be off (port \(37 \mathrm{~A}_{16}\) set low). Port \(37 \mathrm{~A}_{16}\) is for outputting data. Note there is polarity inversion.
Both SDA and SCL lines need \(1 \mathrm{k} \Omega\) pull up resistors at the receive end if the bus is to be used at full speed over reasonable length connections.

Integrator with no signal inversion

\section*{Radio Engineer's Pocket Book}
by John Davies, 240pp, hardback Order - ISBN 0750617381 Price \(£ 12.99\)

Contalns: Propagation; decibel scale; transmission lines; antennas; resonant circuits; oscillators; piezo-electric devices; bandwidth requirements and modulation; frequency planning; radio equipment; Microwave comms; information privacy and encryption; multiplexing; speech digitisation and synthesis; vhf and uhf mobile communication; signalling; channel occupancy, trunking; mobile systems; base station management; instruments; batteries; satellite comms; connectors and interfaces; broadcasting; abbreviations and symbols; tables and data; glossary.

Covers all aspects of radio and communications engineering from very low frequencles to microwaves, with particular emphasis on mobile communications. Wave principles and the decibel scale, instrumentation and power supplies, equipment types and encryption methods, connectors and interfaces, are all included in this book.

\section*{Audio Recording and Reproduction}

Michael Talbot-Smith, 204pp, paperback
Order-0 750619171
Price £12.99
Contains: Physics of sound waves; hearing; basic acoustics; microphones; loudspeakers; public address; stereo; simple mixing equipment; recorders; introduction to digital audio; music and sound effects; miscellaneous data.

This book gives a simple and straightforward approach to audio techniques, detalling technical and practical Information for those with no specific training in the subject.

\section*{Circuit Designer's Companion}
by T Williams, 320pp, paperback Order - 075061756 X Price \(\mathbf{\Sigma 1 5 . 9 9}\)

Contalns: grounding and wiring; printed circuits; passive components; active components; linear integrated circuits; digital circuits; power supplies; electromagnetic compatibility.

Valued by linear and digital designers alike, this guide explains and outlines solutions that take into account the imperfect behaviour of real components, interconnections and circuits.

\section*{Servicing Personal Computers}
by Michael Tooley, 304pp, hardback Order - ISBN 0750617578 Price \(£ 25.00\)

Contains: Microcomputer systems; test equipment; fault diagnosis; tape and disk drives; printers and monitors; servicing IBM pc compatibles and 68000-based computers.

This completely rewritten fourth edition still covers the whole range of microcomputer equipment but now also includes a guide to developments and trends such as the new generation of diagnostic software code included - and applications such as serial communication, and memory and hard disk management..

\section*{Newnes Audio and Hi-Fi Handbook}
by lan Sinclair, 656pp, hardback Order - ISBN 075060932 X Price \(£ 40.00\)

Contalns: Sound waves and acoustics: studio acoustics; microphones; sound synthesis; introduction to digital principles; compact disc technology; other digital systems - DAT, NICAM, DCC, MD analogue tape recording; noise reduction systems; LP records; disc reproduction; tuners and radio receivers; preamps and inputs; voltage amplifiers/controls; loudspeakers and enclosures; Headphones; public address; in-car audio; interconnections; the future.

Covers a wide perspective of highquallty sound reproduction, including reproduction under adverse circumstances, from less conventional sources and with regard to the whole technology from studio to ear.

\section*{TV \& Video Engineer's Reference Book}
by Boris Townsend, 876pp, paperback Order - ISBN 0750619538 Price \(£ 40.00\)

Contains: Materials; components and construction; colour tv fundamentals; broadcast transmission; distributing broadband; DBS; tv studios; mobile and portable equipment; tv sound; tv receivers; servicing tvs; video recorders; teletext etc; HDTV; other applications of tv; performance measurements.

Covers information on every aspect of modern broadcast technology. Of value to all practicing engineers and managers involved with broadcast, cable and satellite services.

\section*{Masts, Antennas and Service Planning}
by Geoff Wiskin, 256pp, hardback Order - ISBN 0240513363 Price \(£ 49.50\)

Contalns: Antennas; antenna support structures; service planning.

Covers all aspects of information conveyance via radio-wave transmission. Invaluable to anyone planning for broadcast and mobileradio coverage, or designing, installing and maintaining antenna systems.

\section*{Operational Amplifiers}
by Jiri Dostal, 400 pp , hardback Order - 0750693177 Price \(£ 40.00\)

Contents: The operational amplifier; basic concepts; operational amplifier parameters; operational amplifier properties; the operational circuit; the ideal operational circuit; analysis of the real operational circuit; static and dynamic errors in the frequency domain; dynamic errors in the time domain; input and output impedances;

offset; noise; stability; good laboratory practices.

Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits. Provides the reader with practical knowledge necessary to select and use operational amplifier devices.

\section*{Servicing Video Cassette Recorders}
by Steve Beeching, 250pp, hardback Order - ISBN 0750609354 Price \(£ 25.00\)

Contains: Vcr systems; azimuth tilt;.Frequency modulation; servo mechanisms; colour systems; systems control; long play; VHS-C \& camcorders; a-v sockets.

Written for students and people involved with ver servicing, this book is an invaluable guide and reference covering all aspects of modern vcrs. Contains new material on basic magnetic theory to C\&G 224

\section*{Principles of Transistor Circuits}
by S W Amos, 384pp, paperback
Order - 0750619996
Price \(£ 17.99\)
Contains: Semiconductors and junction diodes; basic principles of transistors; common-base and common-gate amplifiers; commonemitter and common-source amplifiers; common-collector and common-drain amplifiers; bias and dc stabilisation; small-signal af amplifiers; large-signal af amplifiers; dc and pulse amplifiers; i and if amplifiers; sinusoidal oscillators; modulators, demodulators, mixers and receivers; pulse generators; sawtooth generators; digital circuits; further applications of transistors and other semiconductor devices.

This seminal work has now been presented in a clear new format and completely updated to include the latest equipment such as laser diodes, Trapatt diodes, optocouplers and GaAs transistors, and the most recent line output stages and switchmode power supplies.

\section*{Logic Designer's} Handbook
by Andrew Parr, 488pp, paperback Order-07506 05359 Price \(£ 30.00\)

Contalns: Simplified data on a comparative basis of ttl and cmos ics; storage devices; logic circuits; timers; counters; drivers; interface circuits; logic gates; definitions of ic characteristics; event driven logic; communication and highways; analogue interlacing; practical considerations; summaries by function of all relevant circuits individual pin-out diagrams.

Easy-to-read, but nonetheless thorough, this book on digital circuits is for use by students and engineers, and is a readily accessible source of data on devices in the ttl and cmos families.

\section*{The Art of Digital Audio}

John Watkinson, 490pp, hardback Order - 0240513207
Price \(£ 49.50\)
Contains: Why digital?; conversion; AES/EBU; digital audio coding and processing; digital compact cassette (DCC); advanced digital audio processing; digital audio interconnects; digital recording and channel coding; error correction; rotary head recorders; stationary head recorders; NAGRA and data reduction; Digital Audio Broadcasting (DAB); the compact disc/mini disc.

New edition, completely updated to include all the latest developments, including DCC, the mini disc and digital audio broadcasting.

\section*{Microphone}

Engineering
Handbook
by Michael Gayford, 384pp, hardback
Order - 0750611995
Price \(£ 65.00\)
Contains: Microphone techniques; precision microphones; optical microphones; high quality if microphones and systems; radio microphones and ir systems; microphone testing; ribbon microphones; microphone preamplifiers; stereo microphones; microphone standards.

Comprehensive and authoritative book for engineers, technicians, students and anyone else concerned with the design and use of microphones.

\section*{MIDI Systems and}

Control
by Francis Rumsey, 256pp,
paperback
Order - 0240513703
Price 19.95
Contains: Introduction to principles and terminology; synchronisation and external machine control; common implementations; systems control sequences and operating systems; implementation of midi with peripheral devices; practical systems designs.

Second edition is updated and enlarged to take MIDI evolution into account. More examples of real implementations, more diagrams and the whole book has been rewritten to include a far greater practical element, to complement its existing technical strengths. Several completely new sections and complete chapters have been added including a new opening chapter as an introduction to principles and terminology; MIDI timecode; librarians and editors.

\section*{Loudspeaker and} Headphone Handbook
by John Borwick, 224pp, hardback Order - 0240513711 Price \(£ 35.00\)

Contalns: This book brings together in a single volume every aspect of loudspeaker and headphone theory and practice in sufficient depth to equip students and practitioners alike with a solid working knowledge of the subject. A comprehensive technical reference on the theory and practice of loudspeaker and headphone performance, design and operation.

\section*{The Art of Linear Electronics}
by John L Hood, 400pp, paperback Order-0 750608684 Price £16.99

Contalns: Electronic component symbols and circult drawings; passive components; active components based on thermionic emission; active components based on semiconductors; practical semi-conductor components; dc and low frequency amplifiers; feedback negative and positive; frequency response; modifying circuits and filters; audio amplifiers; low frequency oscillators and waveform generators; tuned circuits; high frequency amplifiers/oscillators; radio receiver circuitry; power supplies; noise and hum; test instruments and measurements.

This practical handbook gives a complete working knowledge of the basics and technology of linear electronics - with application examples in such fields as audio, radio, instrumentation and television.

\section*{Servicing Audio and Hi-Fi Equipment}
by Nick Beer, 304pp, hardback Order - 0750621176
Price \(£ 25.00\)
Contains: introduction; tools and test equipment; radio receivers; amplifiers; power supply circuits; portable audio; cassette deck mechanics; cassette electronics; turntables; system control; motors and servo circuits; compact disc; mini disc; digital audio tape; digital compact cassette; speakers, headphones and microphones; repair, addresses.

As a bench-side companion and guide, this work has no equal. Its purpose is to ease and speed up the processes of fault diagnosis, repair and testing of all classes of home audio equipment: receivers, amplifiers, recorders and playback machines.

\section*{EMC for Product}

\section*{Designers}
by Tim Williams, 304pp, hardback Order - ISBN 0750612649 Price \(£ 25.00\)

Contains: What is EMC? standards; EMC measurements; interference coupling mechanisms; circuits; layout and grounding; interfaces; filtering and shielding.

EMC
FOR
RODUCT DESIGNERS

'This book is likely to become essential reading for those designing electronic products for the European market,' according to New Electronics. Widely regarded as the standard text on EMC, providing all the information needed to meet requirements of the EMC Directive.

\section*{Build Your Own PC}
by lan Sinclair, 256 pp , paperback Order - ISBN 0750620064 Price 16.95

Contains: Assembly from scratch mainly for masochists; fundamentals and buying guide; case, motherboard and keyboard; disk-drive details; improvers and modifiers for graphics and i/o; DOS operation and hints; Windows; connecting printers; glossary.

Covers Building your own pc from scratch or from modules. Written at a level suitable for beginners and those with experience of computers or electronics. In addition, this work provides a useful guide for anyone wanting to save money by upgrading their \(p c\) themselves.

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following titles:
\begin{tabular}{l|l|l}
Qty & Title or ISBN & Price \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

Please add \(£ 2.50\) UK Postage, \(£ 5.00\) Europe \(£ 7.50\) Rest of World Total

Name
Address

Post code
Telephone
Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to Reed Business Publishing Credit card no
Card expiry date
Signed

Letters to "Electronics World + Wireless World" Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

\section*{UK mains change any effects?}

Kettles, toasters, electric ovens and any piece of domestic electrical equipment with an ac motor - even if it has a power stabiliser for its dc electronics - all have reduced power following the normalisation of Britain with the European Union's electrical standards body Cenelec, based in Brussels.
Electricity boards can take advantage of the new rules to supply more consumers from a single generator. This, rather than any change in hardware, reduces average supply from 240 V to 230 V .
The 8.2 per cent associated average decrease in power was too subtle to be obvious to everyone, but hundreds of complaints have been reported.
On the individual scale, last minute rushers have found themselves missing buses and trains in the moming after a slightly delayed breakfast.
These complaints may soon be forgotten as people adjust to get up a few minutes earlier, but the attempted cover-up was quite a remarkable piece of work. A Sunday tabloid editor was successfully fobbed off by

\section*{IEE 'nonsense'}

Many people working in the field of bioelectromagnetics research have been shocked and angered at the review published last year by the UK Institution of Electrical Engineers. The organisation published a similar study in 1991, I believe, which noone took very seriously.
The latest conclusions are that there are no effects, either hazardous or beneficial, from weak elf em fields. This is not only an absolute nonsense but contradicts many thousands of cellular live animals and epidemiological studies. In my view it is simply propogandist material masquerading as science.
The IEE refuses to disclose the references on which it claims to rely. A look at the composition of its working committees shows that they are heavily weighted with power-utility-related personnel.
Roger Coghill
Gwent
an electricity board public relations spokesperson.
Only when a sackful of irate letters arrived at the tabloid's London office after the paper's editor wrote about his search for 'loose wires' or 'crumbs' in his kettle and toaster, were experts consulted as the media began to wonder whether January's regulations change could really be to blame.
Confusion has arisen over the difference in the changes in volts and power. Power is simply volts squared and divided by resistance. The latter varies with temperature, but this is usually negligible over the 4.2 per cent reduction in volts. Thus, the mains electric power has been reduced by around 8 per cent. Concems over hospital life-support systems, word processors and computers, and video recorders slowing down are mainly unfounded. All use regulated dc power from an in-built mains ac converter.
Old fashioned electric clocks are of course unaffected, because the alternating frequency of the generators, still 50 hertz, keeps them on time. Mains electronic clocks using crystal oscillators again have a power regulator which compensates easily for the reduction.
We may also be able to turn the oven up easily, but we can hardly take some windings off the coils of our electric motors, or reduce the electrical resistance of our kettles.
So vacuuming, boiling for tea or coffee, toasting, and lawn mowing will just have to take longer. At least, until manufacturers reduce the resistance of their products by 8.2 per cent, so that they deliver the same average power and speed of work as their specifications state, and until consumers buy the new appliances. Nigel Cook Addlestone
Surrey

\section*{Learning while earning}

Andrew Ainger's leader 'Training Dinosaurs' in \(E W+W W\) March '95 expressed an interesting idea, but can he offer any clues as to how the idea of learning on the job might be work in practice?

\section*{H. Martinson}

Newcastle

Cell-based ractory: horizontal axis indicates manuracturing cens whie the vertical axis gives overall load on the cells. 'Depth' axis is the time.

Andrew replles:
An example of human-centred technology - technology that enables staff to learn while they earn - is as follows.
Consider a very common industrial problem, that of planning what each machine has to do within a manufacturing organisation. For a manufacturer to remain competitive it has to remain profitable. To remain profitable the business has to maximise use of factory resources.
In the past this Manufacturing Resource Planning (MRP) was achieved by what has been termed MRPII computer systems. These systems attempted to plan out what each machine in the factory does, and when and how it does it. In theory, this approach works. In practice it may work well in companies where the products are relatively simple, but in the vast majority of cases, MRPII schedules are unrealistic, unreliable and - as many a manufacturing manager knows - often a work of fiction.
This is not really surprising as it only takes one small deviation from the plan to upset the rest of the downstream factory. It is rather like planning your car journey from Lands End to John O' Groats and telling your aunt, who lives in Birmingham, when she should put the kettle on for your cup of tea.
In modern manufacturing organisations there is now a move towards Cell-Based manufacture. This is rather like splitting the Lands

End to John O'Groats journey into sections. In many ways this can be regarded as a way of remedying the planning problem via an organisational solution. There can be no doubt that cell-based manufacturing, with its added flexibility, has proved to be an extremely effective and profitable way of manufacturing products.
Traditional IT planning systems are trying to catch up and match this flexibility. However it is not only the IT systems that have to be flexible but also - and more importantly the people.
For people to remain flexible they have to welcome change; in order to welcome change they have to gain new knowledge. Human Centred Systems appear to be the only solution to this problem.
Rather than presenting data to the manufacturing personnel, the human-centred way is to provide them with information.
The diagram depicts a cell-based factory: the horizontal axis indicates manufacturing cells while the vertical axis gives the overall load on the cells. The 'depth' axis gives the time, divided into periods, which may be shifts, days or weeks for example. Using this diagram and the information it embraces, three learning opportunities emerge:

First and most obviously, this view (map) of the factory enables the state of the factory to be judged at a glance, production hot spots
identified and appropriate action initiated.
- Trends can be identified extremely quickly. For example, depending upon the work load and the factory's capacity, 'waves of colour' can be seen to ripple over the surface of the factory. These trends can alert the system operator to situations that have been hitherto undetected in traditional print-outs.
- Output of this particular planning system enables the 'sensitivity' of the factory to certain orders to be 'felt', just as the driver of a car can feel the difference when driving over different road surfaces. Over time the sensitivity to certain orders and the 'feel' of the factory can give advanced warning to the humancentred IT system operators when a particularly awkward product mix is being contemplated.

This type of diagram adds credence to the saying that ' \(a\) picture is worth a thousand words" It is these types of IT systems that enable users to assimilate and build knowledge while they work - a true learning earning environment. It is not easy to design IT systems that can be used in this human-centred way, but it is possible. The mindset of the design engineers concerned has to be woken up to this new design philosophy.

Bear in mind that although you cannot design human-centred technology you can design the opposite. Although the logic of this statement is initially surprising, it becomes quite straightforward when you consider that we cannot design a perfectly safe car but we can certainly design an unsafe one. It is only by designing technology that can be used in a human-centred way - as will a true Human Centred System - that continued incremental learning can take place. By this I mean that the car may be designed with safery in mind, but it is the way it is driven that is most important.
The challenge is to design IT systems that can be used in a human-centred way, enabling people to learn while they earn. It is only through continued learning that organisations can continue to change, flex and survive. Engineers should take note. A new and powerful design philosophy has emerged, and if we fail to embrace it the 'future' may fail to embrace us.

\section*{Andrew Ainger}

Human Centred Systems
Windsor

\section*{Beyond TV Sat 2}

Reg Williamson's complaint (Letters, March '95) of arbitrary cessation of TV Sat and its 16 station service might cause a perceptive person to ask what are German listeners doing about it?
The answer must be that they, like
me, are retuning to the lower powered Kopernicus transmission and receiving the same service albeit with the odd flip if anything other than a very large dish is used. At my latitude, one metre is recommended, but an 80 cm dish combined with an lnb made for the telecom band, is acceptable for my purpose, which is recording the audio on digital tape.
When the Kopernicus service ends, we will have to pay for digital audio satellite transmissions. But it will still be cheaper than buying cds, and preferable to Classic FM and its relentless commercials - not to mention Radio 3 fm , which varies from grand ole opry to children's hour, with cricket in the summer to induce total somnolence.
Hugh Haines
Sunderland

\section*{Roadside oxide}

In a recent photovoltaics installation used for a display by the environmental group Common Ground, some components such as leds corroded and broke down after being exposed to the elements for a period of five weeks.
Can any of you say whether this is normal, or caused by adverse conditions such as acid rain? The installation was near a busy London road and quite a lot of rain fell during the five weeks.
Since we are planning a similar installation to coincide with the end of 1995, we would like to learn from this, especially if it involves a mistake on our part.
Nicolas Holliman
London

\section*{Cheap talk}

I saw an article in Computing and Control Engineering Journal October 1994 about a development that could lead to entirely free electronic mail - once the equipment has been bought.
The problem with Internet is that it requires the use of the telephone system, which can never be free. However most broadcasting is free Although some countries like the UK charge a licence fee, this is only to pay for the government station, in our case the BBC. The commercial channels are all free, as are foreign stations receivable here.
Although it sounds far-fetched, this freedom of broadcasting can be transferred to two way communication.
The secret is that every node is a transmitter and receiver of very low range, and the system relies on each node being able to send its message to the next node and so on. In addition, the message contains directional information, so nodes that are in the wrong direction can refuse it.

\section*{Unknown rectifier materials}

I know of no electrolytic rectifiers using the electrode combinations mentioned by 'unsigned' (Letters, February) being used as radio detectors. However, electrolytic rectifiers using similar electrodes were used with accumulator chargers and were described in 1920s radio books. So far, I have been unable to discover whether they evolved before or after Fessenden discovered the barretter, or the evolution of the crystal detector.
In 1935, when a schoolboy experimenter, I employed four electrolytic rectifiers in a bridge circuit to trickle charge 6 V accumulators. Unfortunately I have long since lost my records but I seem to remember experimenting with aluminium/lead and aluminium/iron electrodes. Large jam jars served as cells and the electrolyte was ammonium phosphate.
'Unsigned' explains that with iron/zinc alloy electrodes, an insulating film develops on the alloy electrodes but this disappears when current flows from iron to alloy. Presumably the same applies to my electrolytic rectifiers.
On the other hand, rectification with the barretter seems to depend more on the movement of ions.
Nonetheless, I would like to experiment with the electrode combinations mentioned by 'Unsigned' and would be most grateful for any further information.
George Pickworth
Kettering

\section*{Hisses and glows from the past}

George Pickworth's recent articles, Detection before the diode, and the unsigned letter from Middlesex in the February 1995 issue brought back memories of some seventy years ago.
In the very early days of domestic radio I had gradually acquired enough 12 V lead-acid accumulator blocks to give me 120 V ht. We lived out of town and I used to carry these on my bicycle to my grandmother's cellar where 220 V dc was available.
Later on, electricity reached our house - ac of course - so I was able to recharge them at home when I'd made a rectifier. This was a chain of ten or twelve tiny sample jam jars with electrodes of aluminium strip and carbon rods from exhausted 4.5 V batteries, in a solution of ammonium phosphate.
One could buy ammonium phosphate, sold as fertiliser, from the seed shop. These cells made a peculiar hissing noise and in the dark you could see a pulsating glow on the aluminium strips. I don't know what the reverse current was but it may have been good for the health of the battery. All this information must have come from Wireless World happy days
I was given a coherer some years ago and it still works. Put in series with a 1 V cell and an AVO on the 3 V range there was no visible deflection. Flicking 230 V ac mains across a \(4 \mu \mathrm{~F}\) capacitor at a distance of 15 cm gave an immediate deflection of several milliamps. A very light tap to the coherer and it immediately returned to its nonconducting state ready for the next burst of rf energy.
Ralph Wesr
Villereal, France

The system will not work in areas of low population density, but as humanity is fairly well concentrated in small areas of the planet most people should have access.
The article describes a wireless local area network. That is to say the network is limited to a particular business or other grouping of computers. However there is no reason why such networks shouldn't communicate with each other using a radio version of the Internet. The article also says that wireless lans would meet type approval so as to be licence free, as they are low power transmissions.
Initially the existing telephonebased Internet would be used to connect wireless lans that were out
of range of each other, but as more and more are installed they would be able to communicate with each other directly and the use of the telephone Internet would fall.
John de Rivaz
Truro

\section*{What conspiracy?}

In a letter to \(W W\), Nov. ' \(81, \mathrm{JL}\) Linsley Hood writes that "censorship has been effective throughout my own professional career...". He lists nine authors who could not have been published anywhere but in Wireless World.
As Pete Davis (EW+WW Dec. '94) asserts, there is usually no conspiracy to suppress heretical
views. There is no need of one, except in some specific instances, because as Charles McCutcheon wrote in the New Scientist (itself a notorious suppressor, but not as bad as Nature) on 29 April 1976, p225,
"An evolved conspiracy" suffices. For example, I ran into a discussion in the interval at the Royal Institution seminar to celebrate the centenary of the Michaelson-Morley experiment. An American who was setting up an international conference on relativity discussed with one of the lecturers whether ether buffs should be suppressed at that conference. He
also asked the lecturer how Harold Aspden should be dealt with. They concluded that if Ether believers kept to Establishment mathematics, they should be allowed to put their case.
The American told me he regarded heresy in science much as he regarded heresy in religion. More generally, suppression in science results from fear that a new idea will disrupt the normal, calm progression of academic career progress and research funding.
Suppression is the norm rather than the exception. Even Maddox, editor of Nature, now says he is worried \({ }^{1}\).

With his track record, that is mindblowing. Scientists have successfully resorted to false authorship and false addresses to get into Nature.
The most interesting and most destructive aspect is the pandemic suppression of advances relating to the AIDS epidemic. Other experts, whose names I can supply, specialise in the allied subject of fraud in science. Stewart and Feder lead this field.
My first publication on suppression in science was 'The Rise and Fall of Bodies of Knowledge', published in The Information Scientist No 12 (4)

Dec. 1978, pp. 137-144, where I discuss some of the cases of suppression which litter science. My article was re-published in my book 'Electromagnetic Theory vol I', 1979, p. 117. All of the content of that book is suppressed, including the point that I raised at the Michaelson-Morley centenary seminar, asking about the apparent paradox in their experiment that although Michaelson-Morley predate wave/particle dualism, both wave and particle have to be assumed at different stages in the experiment to suppress anomalies.

\section*{Sine waves - another turn}

I see from the March issue of \(E W+W W\), p. 215, that Ian Hickman has kindly accepted my challenge for an explanation of how sinewaves appear across an \(L C\) circuit from an applied step function of voltage.
In his case he prefers to use a very short and theoretically extremely high pulse of voltage from a generator with an extremely high internal resistance. He then proceeds with some high powered computer analysis and calculations which I do not understand at all. In fact, Ian admits that he may well be "simply solving the differential equations by stealth".
I agree, of course, that the terminal voltage across an inductor is proportional to the rate of change of magnetic flux linkage, and therefore current, within it. I also agree that the current through a capacitor is proportional to the rate of change of electric flux, \(\phi_{\mathrm{C}}\), within it. This is in turn proportional to the rate of change of charge, \(q_{\mathrm{C}}\), across it. We may need to know, though, more about the Ether before we can fully explain these fluxes.
In the meantime however we can simply write the following equations. Voltage across inductor \(L\) is:

> "Apart from the initiation waveform, which is non-linear and has a discontinuity, this waveform is explained by the mathematical analysis shown."
\[
V_{L}=L \frac{d \phi_{L}}{d t} \equiv L \frac{d i_{L}}{d t}
\]
where \(\phi_{\mathrm{L}}\) is flux in the inductor, \(i_{\mathrm{L}}\) is inductor current, \(\mathrm{d} / \mathrm{d} r\) is rate of change. Voltage across capacitor \(C\) is:
\[
V_{C}=\frac{q_{C}}{C}
\]
so,
\[
\frac{d q_{C}}{d t}=C \frac{d V_{C}}{d t}+C \frac{d \phi_{C}}{d t} \equiv i_{C}
\]
where \(\phi_{\mathrm{C}}\) is electric flux within the capacitor, and is proportional to the amount of charge, \(q_{\mathrm{C}}\), on it.
From these equations you can produce a second order differential equation whose solution is a sine function. I have discovered though that at the initiation of the oscillation, the rising voltage across the capacitance is nonlinear since a small proportion of the initial voltage step appears across the capacitor before the sine oscillation gets underway. This seems to suggest that the capacitor also must contain some inductance which initiates the sine oscillation, then proceeding by the fall of voltage across the inductor which produces back emf to charge the capacitor.
Textbooks such as 'An Introduction to Electronics' by Dennis F Shaw, p 18, say though that initial voltage across the capacitor is zero, but I have found this not to be the case.
I conclude that simple mathematical analysis as outlined above gives the only explanation we can have at present for the waveforms produced. The exception is the initiation waveform across the capacitor, which is non-linear, containing a discontinuity.

\section*{Peter Dawe}

Oxford

\section*{Ian replles:}

On Mr Dawe's own analysis, there cannot be an instantaneous voltage step across an ideal capacitor, unless, that is, an infinite current flows - which was precisely the case with the delta function in Ref. I. If Mr Dawe really seems to see an 'instantaneous' voltage step across the capacitor in his circuit, there is a limited number of possible explanations.' i) the capacitor possesses significant series loss (possible, but unlikely, ii) The capacitor possesses significant inductance (as Mr Dawe himself suggests; was it a capacitor rated for pulse operation?), iii) The rise in voltage was not really instantaneous or, iv) There is a measurement error (it was not
clear how Mr Dawe was measuring the voltage across the capacitor, which - from the diagrams
- had neither end grounded.)

Analysis of the operation of his circuit is complicated by the fact that his 'step function' recurred, with alternating polarity, every 5 ms ; i.e. it was actually a 100 Hz squarewave, while the resonant fiequency of the tuned circuit to which it was applied was observed to be only some thirty times higher (approximately), with an unspecified Q. Furthermore, far from being instantaneous, the rise time of the 'step function' from zero to +4 V was \(50 \mu \mathrm{~s}\) - around one sixth of the period of the funed circuit's natural frequency.

A solution of the circuir's response to the given stimulation is straighiforward, but could not be undertaken without exact values for the complex impedances of the components used. For example, the iron cored inductor doubtless had significant iron and copper loss in addition to its self capacitance. (The values of \(L\) and \(C\) \(0.0016 \mu \mathrm{~F}\) and 5 H - which Mr Dawe gives do not rally even approximately with his observed natural frequency of anound 3 kHz). The observed voltage step across the capaciror is probably due to the division of the applied step between the said \(0.0016 \mu \mathrm{~F}\) capacitor and the self capacitance of the inductor:
As the stimulus is a simple recurrent waveform, the circuit could be analysed in either the time or frequency domain though of course both analyses could give the same result.
However, one important point is perhaps made clear more easily by consideration in the frequency domain. The squarewave drive signal will have significant harmonics up to the resonant frequency of the tuned circuit. If the tuned circuit has a high Q and resonates exactly at one of these harmonics, there will be no phase changes in the damped oscillatory response, only magnitude changes. However, slight mistuning either side of the harmonic can result in dramatic changes in the response, as was illustrated with actual measurements in Ref. 2. If, on the other hand, the circuit \(Q\) is so low that the response to one edge of the squarewave dies away completely before arrival of the next, then analysis of the effect of an isolated quasi-step function with a finite rise-fime would give the complete solution. Either way, there is no need to invoke unknown effects of the Ether to explain the observed results.
1. Hickman, I, Sinewaves step by step,

EW +WW March 1995, p. 215.
2. Hickman, I, Integrated creativity, EW+WW Jan. 1992, pp. 40-42.

It appears to me that for the experiment to have any value, the light must act as particles during its travel, because parallel waves would interfere with each other and ruin the experiment; but it has to act as waves on arrival in order to determine transit time difference by interference fringes. In the Michaelson-Morley centenary seminar, speaker Professor Kilminster said, "That has never been mentioned before". It has never been mentioned since - being suppressed for good reason.
To raise such questions, and there are many, is cheating, like making your pawn move as a combination of knight and bishop in a chess match. Science today is the manipulation of pre-agreed axioms and old knowledge; nothing more. Further, the request for more detailed statements of the axioms, as in my case with Michaelson-Morley, is resisted to the death. Today's science resembles the religious service, which should not be interrupted by the raising of theological questions.
My work on wafer-scale integration, described in Wireless World July 1981, was always rejected for publication by all learned journals, even though it attracted \(£ 16 \mathrm{~m}\) of funding including government funding - and became a widely praised product in the field. Of course, its suppression reduced the threat that it would upset the research funding being received in their universities by journal referees for their own approaches to WSI. In spite of my track record, my new WSI invention, \(E W+W W\) March 1989, for which I have worldwide patents, cannot be published in any learned journal.
In a letter in Wireless World, January 1983, I wrote that during 25 years of work, I have never succeeded in publishing any of my work on e-m theory in any British learned journal. This ban now extends to 35 years. However, Davis should particularly think about the refusal of the Establishment, when approached, to clarify the classical theory they are defending. Professor M Pepper FRS and his boss Professor A Howie FRS, head of Cavendish Laboratories, disagree with each other \({ }^{2}\) as to where the negative charge comes from in the Catt Anomaly, EW+WW Sep '87.
They refuse either to discuss it with us or with each other, or to say that the matter is of no importance.
Not only are new theories ignored and suppressed. We also find that the Establishment is nonchalant about its contradictory versions of old theory. See also the co existing, hopelessly contradictory, versions of a TEM wave pointed out in 'The Heaviside Theory', WW July '79, which has been totally ignored
Ivor Catt
St Albans

1 Maddox says that suppression is increasing. "The epoch making paper by Francis Crick and James Watson outlining the structure of DNA, which appeared in Nature in 1953, would 'probably not be publishable today', Mr Maddox laments..." - Daily Telegraph, I May '89, p. 18
2 Howie says it comes from the west. Pepper says that (since electrons would have to travel at the speed of light) it cannot come from the west, and must come from the south. Until this is resolved, we do not have a classical theory. Before it can exist, a theory has to be stated

\section*{Lend a golden ear}

I followed Doug Self's series - and the debate that followed - with interest. As some of the statements expressed by readers that do not share Mr. Self's approach to amplifier design appeared to me at best biased, it is not surprising that Mr Self has lost his patience in the Feb. ' 95 letters column. True, the subjectivists' arguments have been around long enough, without much concrete progress, but could it be that engineers and the 'golden eared' are simply not speaking the same language?
To illustrate, one of my grammar school colleagues, who later became a professional musician, was able to detect signal level differences of a fraction of a decibel consistently, even if the changed level was presented to him after several minutes of silence. His ability was discovered accidentally. One of my stereo amplifiers had a \(20.9 \mathrm{k} \Omega\) resistor on one input and a \(22.3 \mathrm{k} \Omega\) on the other while the preamp output impedance was \(1 \mathrm{k} \Omega\), and he noticed a difference in output levels between channels. No need to mention, he was able to detect absolute pitch, too. Six years ago I owned an Alfa Romeo Sprint Veloce which developed a rattling sound in its engine. It turned out to be a loose screw on the air filter cover, but the mechanic noticed a hissing above \(3000 \mathrm{rev} / \mathrm{min}\). Two days later I returned to him with a broken main bearing.
We are able to identify a familiar voice on the 'phone almost immediately, in spite of the badly distorted and band-limited signal, even if we have not heard the voice for many years.
Most of us will readily accept these impressive examples of performance of the ear-brain combination as a normal every-day experience. But when it comes to hi-fi equipment, our opinions change.
When discussing amplifier and speaker performance with musicians, I have often experienced that when I was talking of amplifier bandwidth, I had in mind the standard half-power
definition, while they were referring to the frequency at which the phase is shifted by no more than a few degrees. When they were talking of clarity and presence, they were referring to being able to pin-point a sound source on the stereo image,
while I was suspecting excessive 3 to 5 kHz lift. When we were discussing transient performance, I was referring to the rise-time and overshoot of the response to a square-wave input, while they were referring to the attacking part of the complex waveform envelope which in most cases implied many waveform periods.
I'm certainly not advocating that audio engineers should rely on their ears only. But we should try to adopt the attribute of lawyers and doctors and listen carefully to what other people are saying before making a judgement. Indeed, we know the limitations of our instrumentation and we struggle hard to eliminate systematic errors when making sensitive measurements, so why not treat other people as sensitive instruments - albeit somewhat strange, sometimes unreliable ones?
Of course, the 'golden eared' must willingly accept being treated like instruments if they continue to seek credibility.
Erik Margan
Ljubljana
Slovenia

\section*{Supplies for audio power}

I read with great interest the article 'Distortion off the rails' by D. Self in the March issue. While certainly not questioning Douglas' undoubted skills in audio amplifier design, may I draw attention to Douglas'
statement, "l assume that any rail filtering arrangements will work with constant or increasing effectiveness as frequency increases; this is clearly true for resistor-capacitor filtering.
Taking as a base for availability the Farnell catalogue, data from Philips' 1994 Data Handbook, and assuming an axial capacitor of \(100 \mu \mathrm{~F}\) at 40 V or more, as in Douglas' Figs 2\&3, then the Philips 021 and 031 styles will have a self inductance of 40 50 nH and an esr of some 0.55 to \(1.2 \Omega\) at 10 kHz , depending on exact choice. Also \(47 \mu \mathrm{~F}\) at 63 V , depending on case size, can exhibit inductance up to 85 nH .
Similar values of radial styles have less inductance, say \(25 n \mathrm{H}\). From Philips' data curves, these types have a self resonant frequency of around \(20-50 \mathrm{kHz}\). Above this they become totally inductive. Also at 100 Hz , a typical esr of \(1.25-2.5 \Omega\) must be expected.
As Douglas states, the amplifier internal loop gains will be reducing at frequencies when the capacitor starts to become inductive.

My two questions for Douglas are: what effect would a capacitor having \(100 \mu \mathrm{~F}, 50 \mathrm{nH}, 1 \Omega\), as a series \(L C R\), have on amplifier performance at 10 kHz and above with regard to the simulation curves of Figs \(2 \& 3\) ? Secondly, what effect would an esr of \(2.5 \Omega\), as a series \(C R\), have on modelling or measurements at 100 Hz ?
Cyril Bateman
Acle
Norfolk
Douglas replies:
Mr Bateman is of course completely correct in pointing out that capacitors have parasitic inductance and esr, and that this is ignored in my article, which used only pure capacitance in the simulations However, a technical article is not a legal document; you cannot enumerate all the ifs and buts, and exceptions and caveats, without the prose becoming as uninformative as it would be unreadable. In this case, some of the concepts involved are not wholly straightforward (eg the change of reference in the voltage amplifier), and adding a further layer of complication simply to make the components more realistic would not have been a good idea.
The orher point is that parasitic inductance, esr, etc, seem to make no difference in practice; ordinary electrolytics do the job very well. Ripple and signal voltages on the rails do not reach up into the rf regions, and even if they did, the series inductance of the supply conductors combined with the hf rail decoupling would reduce it. The only credible source of rf is commutation spikes in the bridge rectifier, and these need to be dealt with at source by the usual snubbing network.

\section*{Reflection on deflection}

With reference to the piece
'Cathode-ray conundrum' in the April issue letters column, the proposition goes against provable laws of physics.
The effect described is of very small magnitude in relation to the others occurring at the same time - a potent source of error.
The flaw in Lerwill's proposition is that an electron beam which has been deflected off the precise axis of the acceleration system will have an effect in one or both of the orthogonal axes. There will be an electrostatic or electromagnetic interaction with the acceleration system, amounting exactly to the reaction which seems to have escaped - just too small to measure.
NPE Wheeler
Sutton,
Surrey

\section*{‘OFF-AIR’ FREQUENCY STANDARD}

Variants from £195
* Provides \(10 \mathrm{MHz}, 5 \mathrm{MHz} \& 1 \mathrm{MHz}\)

Use if for calibrating equipmenI
TCXOs, VXCOs, oven crystals
* Phase locks to DROITWICH (rubidium controlled and traceable to NPL)
* For ADDED VALUE also phase locks to ALLOUIS (cesium
- controlled and traceable to OP - French eq to NPL)
* British designed and British manufactured
outputs and 13 MHz output for GSM Prices on wave

Output frequencies Short term stability - better than \(1 \times 10^{-8}(1 \mathrm{sec})\) Typicat \(-4 \times 10^{-9}(1 \mathrm{sec})\) Long term - tends to \(2 \times 10^{-12}(1000 \mathrm{sec})\) Callfor 'OHf-Air' Standard hist

\section*{TEST EQUIPMENT}

We are well known for our quality, new and used Test Equipment. Our list is extensive, the following will give some idea of our range and prices:

\section*{TIME 404S Precision mV source} TIME 2003N DCV PotCal, \(0-10 \mathrm{~V}\), null, elc TIME 2004 DC Volt standard \(0.005 \%\) HP134CA X-Y displays E.V. EV4020ANTSC Viscope LEADER LG398 NTSC pattem generator PHILIPS 5509 PAL pattern generator PHILIPS 5519 PAL pattern generator £295 ADRET 740A0.1MHz-1.2GHz sig. gen. AMFM PM §1450 PHILLPS PM5134 function generator \(£ 1495\) Call for Equipment ist

\section*{ONE ONLY OFFER}

One only, mint condition VIDEO/COMPUTER PROJECTOR as used in AV theatres, and similar large screen or wall projection applications. Can be ceiling or bench mounted. This is a very high quality instrument, new price upwards of \(£ 10 k\), serious offers only.

\section*{KESTREL ELECTRONIC COMPONENTS LTD}

A All items guaranteed to manufacturers' spec.
is Many other items available.
'Exclusive of V.A.T. and post and package'
\begin{tabular}{llllll}
& \(1+\) & \(100+\) & & \(1+\) & \(100+\) \\
27C64-15 & 2.00 & 1.45 & 628128LP-80 & 8.30 & 7.20 \\
27C128-15 & 2.40 & 1.80 & 62256LP10 & 3.00 & 2.20 \\
27C256-15 & 2.20 & 1.65 & 6264LP-10 & 2.10 & 1.40 \\
27C512-15 & 2.20 & 1.65 & MM58274CN & 4.90 & 3.75 \\
27C010-15 & 3.60 & 2.20 & ULN2003A & 0.43 & 0.25 \\
27C020-15 & 6.00 & 3.99 & LM555 & 0.30 & 0.18 \\
27C040-15 & 8.60 & 6.45 & MAX232 & 1.35 & 0.88 \\
80C31-12 & 2.10 & 1.65 & 7406 & 0.35 & 0.23 \\
80C32 & 3.00 & 2.40 & 7407 & 0.35 & 0.23 \\
80C85ARS & 2.90 & 2.30 & 74HCT244 & 0.35 & 0.27 \\
8255AC-2 & 2.00 & 1.50 & 74HCT245 & 0.35 & 0.27 \\
D8748H & 4.30 & 3.35 & 74HCT373 & 0.35 & 0.26 \\
D8749H & 4.40 & 3.45 & 74HCT374 & 0.32 & 0.26
\end{tabular}

74LS, \(74 \mathrm{HC}, 74 \mathrm{HCT}\) Series available Phone for full price list
All memory prices are fluctuating daily, please phone to confirm prices
178 Brighton Road, Purley, Surrey CR8 4HA
Tel: 0181-668 7522. Fax: 0181-668 4190.

CIRCLE NO. 144 ON REPLY CARD

\section*{TELFORD ELECTRONICS}

AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE
Postage and packing must be added. Please phone for price. VAT @ \(171 / 2 \%\) to be added to all orders. Please send large SAE for details.
Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6DJ
Tel: 01952605451 Fax: 01952677978

\title{
NEW PRODUCTS CLASSIFED
}

Please quote "Electronics World + Wireless World" when seeking further informatlon

\section*{Discrete active devices}

Little mosiets. Meant for use on PCMCIA cards, Micrel's MIC94030/1 TinyFETs boast the lowest on resistance for their size, at \(1 \Omega\) and 3.3V, and are contained in SOT-143 packages, being only a quarter of the size of current 8 -pin SOIC mosfets. MIC94030 is a basic 4-lead p-channel device, while the MIC94031 has an Internal gate pull-up resistor to turn the device off when driven by tri-state or open-drain logic. Solid State Supplles Ltd. Tel., 01892 836836; fax, 01892837837.

\section*{Digital signal}
processors
NEC's \(\mu\) PD7701X family of generalpurpose dsp chips has a new member with larger memory, the 3 V

\section*{Microprocessors and controllers}

Miniature controller. Z World's newest C -programmable miniature controller is the Little Genius, with 26 i/o lines, intended for the OEM market for control and data acquisition use, although it also works as a core module interfacing with userdesigned boards. Having 14 digital inputs and 12 digital outputs, seven of which handle high currents, and both RS232 and RS485, it is well suited to use in networked controllers. Features include an ceprom, battery-backed ram and real-time clock, programmable timers, a 9 MHz processor clock, a watchdog timer and power-failinterrupt and an expansion port to the Z-World PLCBus, which allows the connection of a d-to-a converter or other boards such as the prototyping board on offer. If not in use for expansion, the bus will take eight more cmos inputs. The C development system for both dos and
windows has many function libraries and program samples in source code. Greening Technology Ltd. Tel, 0116 2796500; tax, 01162796501.
\(\mu\) PD77018, which handles up to 250 million operations per second. Memory is 256 by 32 bit instruction ram and 24 K by 32 bit rom, data memory consisting of two blocks of 3 K by 16 bit ram and two blocks of 12 K by 16 bit rom. The device has a 30 ns instruction cycle time, a threestage pipeline architecture and its instruction set enables eight operations to be performed in parallel. Development tools available operate through a workbench under Windows. NEC Electronics (UK) Lid. Tel., 01908 691133; fax, 01908670290.

Floating-point DSP. TI's latest digital processor, the TMS320C32, allows the use of floating-point techniques used for research and development in commercial products to eliminate the usual switch to fixed-point working for commercial use. It is available in \(40 \mathrm{MHz}, 50 \mathrm{MHz}\) and 60 MHz versions and uses new memory management and data packing features to allow the flexible use of 8 -blt, 16 -bit and 3 -bit memory architecture. There is also a two-channel dma co-processor for data movement. SR Communicatons (Texas Instruments). Tel., 0181692 7575; fax, 01816928057.

\section*{Logic}
3.3V logic devices. Quality Semiconductor announces seven 3.3V, 8bit logic elements, the FCT3244 bufter/line driver, FCT3245 transceiver, FCT3373 buffered latch, CT3240 inverting buffer, FCT3540 flow-through inverting buffer, FCT3541 flow-through buffer and FCT3573 flow-through latch. They are all function and pin compatible with existing 5 V devices and will accept 5 V inputs while the outputs are at 3.3 V . Speed is compatible with Bicmos and power consumption with cmos. Quality Semiconductor, Inc. Tel., 01420 563333; fax, 01420561142

\section*{Memory chips}

Low-voltage serial eeprom. New from Holtek of Taiwan, via Hero Electronics, is the HT93LC46 1 Kbit serial eeprom, to which one can write to at 2.7 V and read from at 2 V Operating current is 2 mA and maximum standby \(2 \mu A\). Data is retained for ten years. Hero Electronics Ltd. Tel., 01525 405015; fax, 01525402383.

\section*{Mixed-signal ICs}

Energy measurement. A range of five ICs from the South African firm of

SAMES are for single and three phase ac power or energy measurement over a 60 dB range, meeting the requirements of IEC 521/1036 for Class 1 ac watt-hour meters. They are protected against overvoltage and use shunt resistors or current transformers for current sensing, a voltage reference being built in. Output is either digital or analogue in form. Ginsbury (UK) Ltd. Tel., 01634 290903; fax, 01634 290904.

\section*{Optical devices}

Laser measurement. Matsushita's LM200 analogue laser is immune to surface irregularities and colour changes. This is because of its use of light feedback and trlangulation range measurement to minimise analogue output error. An aspherical glass lens provides good linearity combined with low temperature drift. The measurement range is \(\pm 3 \mathrm{~mm}\) or \(\pm 6 \mathrm{~mm}\) while resolution is \(1 \mu \mathrm{~m}\). Matsushita Automation Controls Lid. Tel., 01908 231555; fax, 01908 231599.

Fibre pigtailed laser diodes. A series of diode laser assemblies designed to couple laser radiation into single and multi mode fibres is available from Melles Griot. Both visible and infrared diodes are used, the \(>700 \mathrm{~nm}\) infra-red types being over \(55 \%\) efficient and the \(<700 \mathrm{~nm}\) visible diodes better than \(30 \%\) efficient. Powers from 0.5 mW to 30 mW are offered. The housing is stainless steel and has a 1 m length of fibre with a cleaved end, ST, FC and SC connectors beling used. Melles Griot Ltd. Tel., 01223 420071; fax, 01223 425310.

\section*{Programmable \\ logic arrays}

Fast 128-cell device. AMD has brought out what it claims to be the fastest 128-macrocell complex programmable logic device, the MACH231. This is one of the new Performance Plus family of 7.5 ns complex plds. The addition of power-down macrocells means that each macrocell can be configured into a low-power mode. Additionally, input/outputs and inputs have a latching faclity to avoid the long pull-up times associated with resistors. Advanced Micro Devices (UK) Ltd. Tel., 01483 740440; fax, 01483756196.

Oscillators
3.3V erystal oscillator. Q-Tech has a range of military-grade crystal clock oscillators, believed to be the first 3.3 V types to operate over a \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) temperature range while preserving \(\pm 100 \mathrm{ppm}\) stability. Output is at logic level into 15pF with transient times of 3ns. Many package styles are avallable. Wavelength Electronics Lid. Tel., 01843 602869; fax, 01843862276.

\section*{PASSIVE}

\section*{Passive components}

Low-voltage tantalum. Low-voltage Series surface-mounted tantalum capacitors by AVX are rated at 2-10V and are meant for use in products needing \(1.5-5 \mathrm{~V}\) supplies. Packaging is of 1.2 mm profile. AVX Ltd. Tel., 01252 770000; fax, 01252770001.

\section*{Audio products}

Audio codec. Crystal Semiconductor announces the CS4225, a multichannel audio codec for automotive and surround-sound application, which replaces three stereo data

Please quote "Electronics World + Wireless World" when seeking further information
converters, three volume-control ICs, an input multiplexer, a 12 -bit a-to-d converter and numerous passive components, not to mention affording a reduction size over conventional equipment of around \(90 \%\). An onboard phase-locked loop generates clock pulses to reduce EMI. Crystal Semiconductor Corporation. Tel., (USA) 005124427555 ; fax, 00512 4457581.

\section*{Connectors and cabling}

Board/board connector. Wieland pluggable board-to-board connector with \(2-16\) ways on a 5.08 mm pitch is rated at 250 V to VDE 0110 GR C and 10A. The female socket can be

\section*{Communications equipment}

Two-chip GSM set. Two ICs from VLSI, the VP22002 kernel processor and VP22020 vocoder carry out all necessary baseband signal processing for a Global System for Mobile
Communications (GSM) system, from speech vocoding to the radio system modular interface. The kernel processor contains the type-approved GSM blocks channel coder, equaliser, GSMK modulator and timing generator and VLSI's Functional System Block techniques including a 32bit asynchronous response mode (ARM) microcontroller, operating at one instruction per clock cycle to give a processing power of 13 Mips . Development tools are supplied. Operating at \(13 \mathrm{kbit/s}\), the vocoder provides fully asynchronous coding and decoding, having two asynchronous data ports and a host processor interface. The analogue front end has two lownoise input preamplifiers and a second microphone and speaker interface give hands-free operation. VLSI Technology Ltd. Tel., 01908 667595; fax, 01908 670027.
mounted vertically or at right angles to provide connection for daughter boards. Wieland Electric Ltd. Tel., 01483 31213; fax, 01483505029.

PCMCIA SM connectors. Methode MCFK Types I, II and III surfacemounting connector frame kits snap together without the assistance of glue or any other fixative. The connectors have stainless-steel covering, UL94VO rating and electrical grounding via spring tabs. Surtech Interconnection Ltd. Tel., 01256 51221; fax, 01256471180.

Bendy coax. From Belden comes Conformable Coax, an alternative to semi-rigid coaxial cable that can be hand manipulated into curves with radii down to 3.18 mm , retaining its shape when formed. There are two types of microwave cable, 1671A RG405 type of 0.085 in outside diameter and 1673 A (RG-402) of 0.138 in od, both with \(50 \Omega\) impedance. Type \(1672 A\) is for video at \(75 \Omega\), having an od of 0.087 in . Cables can be flexed many times without damage. Belden UK Ltd. Tel., 01483 726818; fax, 01483771569.

\section*{IDC connector.}

Insulation-displacement connector blocks used by Mod-Tap in voice and data equipment are now available to network users. The blocks are designed for pcb mounting and can be used in wall sockets or patch panels. Termination tools are offered, but standard tools can be used. Blocks take two-pair and four-pair combinations and are in blue/orange, green/brown or in custom colour codes. MOD-TAP Ltd. Tel., 01703 701919; fax, 01703704063.

\section*{Displays}

Tft colour Icds. Ginsbury's GE10 and GE14 10in and 14 in thin-film transistor colour ic displays are said to give a stable image with no flicker. They may be driven by a dedicated graphics card for best quality or by an internal analogue card to emulate crt monitors. As an option, a capacitive touch screen can be fitted, RS232

and Windows mouse emulation is standard. A robust polystyrene enclosure suits industrial use and can be fully IP65 sealed on request. Ginsbury (UK) Lid. Tel., 01634 290903; fax, 01634290904

\section*{Filters}

Programmable video filter. Raytheon's RC6601 is an integrated continuous-time filter, fully programmable for video filtering, antialiasing, comms filtering and hdtv use. In addition, it costs about half as much as analogue filter alternatives. Cut-off frequency is voltage-variable in the 1 to 10 MHz range and the device is phase-corrected to \(0.2^{\circ}\); differentlal gain is \(0.25 \%\). It meets CCIR601 for NTSC and Pal signals, providing \(\pm 0.25 \mathrm{~dB}\) pass-band ripple to 5.5 MHz , with a -40 dB pass-band starting at 8 MHz . Ambar Components Ltd. Tel., 01844 261144; fax, 01844 261789.

Rf filters. Filters in the BTF range from BLP Components are for use in the protection of telephone networks, being flexible to accommodate future requirements, conforming to
MIL-STD-220A and usable in all Tempest-rated networks as well as low-current control circuitry and audio lines. Configurations include two, four and ten line stand-alone forms and ten-line modules to fit 50,100 and 200 line cabinets. They are in steel cases and are provided with idc connectors. BLP Components Ltd. Tel., 01638 665161; fax, 01638 660718.

\section*{Hardware}

Control knobs. Attractive knobs in Sifam's Trio range are made using a technique whereby three shots of material are injected into the mould, providing a more versatile design and the opportunity for more detailed colour-coding. Material is nylon, with a matt body and contrasting gloss pointer. Two 11 mm -diameter versions are made, with and without a nut cover, taking shafts up to 6 mm diameter. The three-shot facility is

Waveform generator. Taking the form of a pcexpansion board, the Scensys PCl-311/2 occupy one slot and perform the functions of a standalone generator but rather more conveniently. Output from each channel is
12 Vpk -pk into \(50 \Omega\) from 12bit a-to-d converters with update rates to 50 Ms smple/s to \(0.01 \%\) frequency
tolerance. A 99-segment waveform memory, each segment of which holding one waveform, allows the creation of irregular shapes such as video test patterns and encoded communications signals using BenchTop or
BenchCom software,
importing them from maths programs or from an oscilloscope card. Scensys Scientilic \& Engineering Systems Ltd. Tel., 01296 397676; fax, 01296397878.
also offered to customers needling custom-designed knobs, for which designs can be accepted in electronic form. Sifam Ltd. Tel., 01803 613822; fax, 01803613926.

\section*{Instrumentation}

Function generators. First members of Vann Draper's H6000 series of function generators are the H6000 and H6001, which produce sine, square, triangle, pulse and sawtooth outputs in the frequency ranges \(0.1 \mathrm{~Hz}-10 \mathrm{MHz}(\mathrm{H} 6000\)) and \(0.2 \mathrm{~Hz}-20 \mathrm{MHz}\), prices being \(£ 149 / 199\). Both allow external frequency control for modulation, sweep and pulse modulation. Outputs are ttl and 50, with \(600 \Omega\) as an option, controlled by switched attenuator and a continuous control. Thd is under \(1 \%\) and triangular wave linearity better than 99\%. Vann Draper Electronics Ltd. Tel., 0116 2813091; fax, 0116 2570893

CPC - components. A new circa 1600 -page catalogue from CPC - a company said to be UK's leading specialist spares distributor - is now available. Products carried include batteries, cables, capacitors, connectors, power supplies and semiconductors. This A4 publication also features industrial and office equipment, and, of course, a multitude of spares for consumer, office and industrial electronic equipment. CPC plc, Tel., 01772654455 . fax 01772654466.

Digital video analyser. Rohde \& Schwarz's Video Component Analyser is a video analyser and waveform monitor in one case, and said to be the first wholly digital instrument of its kind. Measurement of analogue television waveform monitors is combined with new functions to allow monitoring of digital encoding and slgnal transmission, detecting errors in transmission, showing bit errors and checking sync. frame. Features include the numeric dump function to allow video signals to be shown at bit level. Rohde \& Schwarz UK Ltd. Tel., 01252 811377; fax, 01252811447.

MIDI-Scope. Artistic Licence has the MIDI-Scope, a hand-held analyser for the Musical Instrument Digital Interface. When used as a receiver, the lcd screen shows data either in hex or as command icons, while received data can be stored for later analysis or re-transmission. The transmitter is used to regenerate received data or to transmit up to eight programmable messages. Other functions include cable testing, oscilloscope triggering and an RS485 output boost to drive long cables. Artistic Licence (UK) Lid. Tel. and fax, 01818634515

Cable simulator. Designed to simulate the effect of up to 500 m of coaxial cable on serial digital signals, Faraday's Cable Clone is a hand-held unit, requiring no other equipment, that is simply connected in the cable.

By means of eight switches, the effective cable length is increased in 5 m steps until the signal deteriorates to an unacceptable point. The length of cable inserted indicates the margin. Cable Clones simulate amplitude and differential group delay of coax. with the SMPTE 267 360Mbit/s serial signal from 5 MHz to 360 MHz . Faraday Technology Lid. Tel., 01782 661501; fax, 01782630101.

Comms test set. H-P's HP 8920 B communications test set has more than 22 functions to measure the performance of radio telephone equipment, including signal generator, modulation analyser, power meter. audio sources, digital oscilloscope, sinad meter, frequency meter and, as an option, a spectrum analyser with tracking generator. Measurement programmes are stored on a PCMCIA card. Hewlett-Packard Ltd. Tel., 01344366666 ; fax, 01344362269

Nanovolt/micro-ohm meter. HP 34420A by Hewlett-Packard is a lownoise nanovolt-microhmmeter offering 7.5 -digit resolution, 2 ppm , 24 -hour dc voltage accuracy and selectable filtering. There is a two-channel programmable scanner for ratio and difference measurement, and built-in conversion routines to display thermocouple, thermistor and rid readings directly in degrees, resolved to \(0.001^{\circ} \mathrm{C}\). Features include scaling and statistics functions, 1024-reading memory, chart recorder analogue input, RS-232 and HP-IB interfaces and both SCP and Keithley 181 programming languages. HewlettPackard Ltd. Tel., 01344 366666; fax, 01344362269.

Direct recording oscilloscope. Gould's DataSYS 765 dr oscilloscope

Conductive greases. Two types of grease from Planned Products of Santa Cruz not only lubricate and protect against moisture, but provide electrical and thermal conduction to drain away static and provide grounding and to dissipate heat. Circuit Works Conducfive Grease 7100 for low-to-medium loads and speeds is a silicone grease containing silver for greatest conductivity, giving a typical resistivity of \(<0.0112 \mathrm{~cm}\) and high thermal conductivity. It is stable over the -57 to \(252^{\circ} \mathrm{C}\) temperature range.
Unworked and worked penetrations are 210 and 250 , with steel-on-steel wear of 1.5 mm . The 7200 Carbon Conductive Grease has <30sycm resistivity, with penetrations of 335 and 338, wear measuring 2 mm . Both types are chemically inert, thermally stable and nonflammable. Intertronics Lid. Tel., 01865 842842; fax, 01865 842172.

has a 500 Mbyte hard-disk drive and handles direct data recording to disk at up to \(250 \mathrm{Kbyte} / \mathrm{s}\) with no dead time. Recordings can also be made to paper or recalled from disk to paper. As a 150 MHz digital storage oscilloscope, the instrument offers 100Msample/s single-shot acquisition on four channels. Although the 765 captures glitches down to 10 ns , the storage provided allows recording for a period of 230 days, recordings being displayed as though on a paper roll, but with more control. Gould Instrument Systems Ltd. Tel., 0181 500 1000; fax, 01815010116.

\section*{Literature}

SM oscillators. Surface-mounted crystals and oscillators by M-tron are now obtainable in the UK and are described in a new 40-page catalogue containing details of, among many other devices, crystals for use in extreme environments and oscillators for use as clock generators and in military application. Semi-Dice (UK) Ltd. Tel., 01494 488353; fax, 01494 771396.

RS Components. In its new catalogue, RS Components
introduces over 200 new
potentiometers from makers including Bourns, Meggit Piher and Spectrol. From Bourns, a \(6 \mathrm{~mm}, 0.5 \mathrm{~W}\) pot. for machin'e adjustment and with a multiwire wiper; by Meggit Piher, a series of \(10 \mathrm{~mm}, 150 \mathrm{~mW}\) and \(12 \mathrm{~mm}, 200 \mathrm{~mW}\) units with plug-in spindles and top or side adjusted edge wheels as options and 12 mm cermet pots by Spectrol rated at 1 W and offering \(\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) temperature coefficient. RS
Components Ltd. Tel., 01536 201234; fax, 01536405678.

Batterles. Batteries by Univercell are described in a new loose-leaf brochure. The company, formed by a group of managers from Ever Ready, manufactures layer cell zinc-carbon types, NiCd, special packs using various types of cell and memoryprotection NiCd batteries. It also undertakes packaging to order. Univercell Battery Company Ltd. Tel., 01952580505 ; fax, 01952680075.

Loughborough Sound Images. In

Modular switches. Lever switches in the Swiss SwissTac range of modular types are now obtainable in the UK. Virtually all elements of the switches are interchangeable, contacts at the rear remaining in the same plane when switches are block mounted. Since contacts can be removed from the switch, it is possible to carry out the wiring as a separate process. Switches are available in five sizes from 18 mm diameter to 24 mm square, in grey or black, the actuators being black or chromed. EAO-Highland Electronics Ltd. Tel., 01444 236000; fax, 01444236641.

132 pages, LSI provides details of a comprehensive range of digital signalprocessing hardware and software support for VMEbus, PCbus and SBus, and a product guide to equipment for industrial image processing and video multimedia. Loughborough Sound Images Ltd Tel., 01509634300 ; fax, 01509 634333.

Blue Micro. Blue Micro is IBM's representative company, dealing only in IBM products. On offer is the company's 20 -page publication giving brief details of, for example, the Blue Lightning 486 32-bit microprocessor, the Power PC 64-bit and 32-bit risc processors and the 403GA 32-bit risc embedded controller. Also covered are peripheral chips and sets, MPEG-2 decoding, memory and PCMCIA products. Free from Blue Micro Electronics. Tel., 01604 603310; fax, 01604603320.

\section*{Materials}

Insulation for semiconductors.
Thermaflex tube by Warth is in a flexible plastic material designed to fit round semiconductor packages to allow them to meet higher flash test requirements while retaining good thermal performance. A 0.5 mm wall takes most standard packages and grips the device for assembly. Tubes come in two sizes: 25 mm long by

10 mm wide for TO-220 packages and 30 mm long by 13 mm wide for TO-218/3P/247 and SOT-93. Catalogues and samples available. Warth International Ltd. Tel., 01342 315044; tax, 01342312969.

\section*{Power supplies}

Power-factor correction. XP has provided power-factor correction on its \(Z X\) series \(350 / 550 \mathrm{~W}\) power supplies to meet the requirements of EN61000-3-2 and EN55022 without increasing unit size, so that they can replace uncorrected supplies with no mechanical redesign. The psus are universal-input types covering the \(2 \mathrm{~V}-60 \mathrm{~V}\) range of outputs. XP plc. Tel., 01734845515 ; tax, 01734843423.

\section*{Radio communications products}

Vhf transmitter/exciter. SU 125 from Rohde and Schwarz is said to be the first true vhf transmitter/exciter, as opposed to those that are simply modulators, with driver stages and add-ons. This contains in one case the stereo coder, modulator, if amplifier, deviation meter, transmitter control and monitor, the latter two facilities allowing the unit to be combined with any fm amplifier. The microprocessor would then monitor, protect and control the amplifiers and exciter. Inputs include af and auxiliaries such as RDS and interfaces for remote control. It is usable as a stand-alone 20W transmitter or can be used with an R\&S 600 W vhf amplifier. Rohde \& Schwarz UK Lid. Tel., 01252811377 ; fax, 01252811447.

Data converter intertace. SMT225 is a size 2 TRAM board (TRAnsputer Module in parallel processing systems) by Sundance that combines 12 -bit d-to-a and a-to-d converters with a 25 MHz transputer to provide a versatile interface for control. It is half the size of alternatives and about onethird the price. Sundance Multiprocessor Technology Ltd. Tel., 01494 431203; fax, 01494726363.

\section*{Protection devices}
\(3 V\) transient protection. Protek's
SOT/SMDB series of silicon avalanche transient voltage
suppressors are expressly designed for \(3 \mathrm{~V} / 3.3 \mathrm{~V}\) use at up to 500 W , protecting one or four unidirectional lines, being packaged in SOT-23 or SO-8 respectively. Theoretical response times are \(8 \mu\) s and \(20 \mu \mathrm{~s}\). Hunter Electronic Components. Tel., 01628 75911; tax, 0162875611.

\section*{Switches and relays}

Power reed relays. \(S\) series vacuum reed relays made by Kilovac Corp. are high-voltage, high-power types for use at if and with a mechanical life of 50 million operations. Voltage ratings are up to 10 kV at 5A continuous, and the contacts switch 500 W loads. Standard coils are \(5 \mathrm{~V}, 12 \mathrm{~V}\) and 24 V . LRE Relays + Electronics Ltd. Tel., 01962734433 ; fax, 01962734685.

Slow relay. With turn-on and turn-off times of 8.5 ms and 4.1 ms , Matsushita's Soft-on/off PhotoMos solid-state relay reduces the transients that occur when switching reactive or incandescent filament loads, thereby protecting itself and associated components; no other forms of transient protection are needed. Contacts handle 4 A at 80 V . Matsushita Automation Controls Ltd. Tel., 01908 231555; tax, 01908231599.

Hf relays. RK and RG relays by Matsushita exhibit an insertion loss of 0.3 dB at 900 MHz and use only 200 mW , or less when the optional latched type is driven by pulses. Contacts are single or double changeover and the footprint is 20.2 mm by 11.2 mm . Matsushita Automation Controls Ltd. Tel., 01908 231555; fax, 01908231599.

\section*{Transducers and sensors}

Low-pressure sensor. Higher sensitivity than is common, 100 mV for \(1 \mathrm{ib} / \mathrm{in}^{2}\) compared with around 50 mV , is offered by IC Sensors' new boardmounted, temperature-compensated device in TO-8 or HIT packaging. Two ranges cover \(0-0.031 \mathrm{~b} / \mathrm{in}^{2}\) and 0 \(1 \mathrm{lb} / \mathrm{in}^{2}\). Linearity (best fit straight line) is around \(0.01 \%\) of span. Eurosensor. Tel., 0171405 6060; fax, 0171405 2040.

\section*{Vision systems}

PCI-bus image capture. Image Technologies has the IC-PCI highspeed board offering 'plug-and-play' facility for image acquisition on the PClbus, direct-memory access being provided. Transfer rate is up to 80Mbyte/s directly to a PCI VGA card and acquisition rate to local memory up to 40Mbyte/s. DataCell. Tel., 01628 415415; fax, 01628415400.

\section*{Computer board-level products}

Single-board computer. Motorola's 68360 processor with on-board Ethernet and the 68060 make Syntel's SYN-SBC5 single-board computer suited to both communications and control applications. It has a processing speed of 60 Mips and possesses up to 32Mbyte of dram, 16Mbyte of flash eprom and 2Mbyte of sram. There is a PCMCIA interface, a SCSI interface and an on-board 32 -bit graphics controller supporting Icds,
electroluminescent and cri displays. Syntel Microsystems. Tel., 01484 535101/2/3; fax, 01484519363.

PC instrument control. National instruments offers the PC/104-GPIB, an IEEE488 interface board for embedded pcs with PC/104 expansion. It is compatible with Ni 's AT-GPIB/TNT plug-in interface and uses the HS488 mode for GPIB transfers to \(1.6 \mathrm{Mbyte} / \mathrm{s}\), enabling an embedded pc with the PC/104-GP/B to control, monitor and communicate with GPIB-based instruments. National Instruments UK. TeI., 01635 523545; fax, 01635523154.

\section*{Computer systems}

Single-chip PC core logic. NEC and Future Technology Devices collaborated to produce the FTD 82C4591, a single-chip device containing the core logic of a 386/486 pc-compatible embedded control system with bus speeds to 66 MHz . It has ISA and VL-bus interfaces with programmable speed and only needs standard buffers for the ISA address lines. The device connects directly to an sram-based, direct mapped, bank interleaved cache, supporting writeback and through modes. Sunrise Electronics Ltd. Tel., 01908 263999; fax, 01908263003.

PC-AT-compatible board. Arcom has a new PC-compatible singleboard computer, the VSCMM486DX, using the \(100 \mathrm{MHz} 486 \mathrm{DX4}\) processor. A full VMEbus interface is complemented by ports to the SCIM mezzanine local expansion bus, the Signal Conditioning Scheme (SCIM), STEbus and two memory expansion buses. It can be provided with 68 Mbyte of dram, 256 Kbyte of cache sram, 128 K byte of battery-backed ram dual-ported to STEbus and an accelerated SVGA graphics controller with 1Mbyte of ram; the chip incorporates a 32 -bit maths
co-processor. Since the board runs dos and windows, software such as LabView is accessible. Arcom Control Systems Ltd. Tel., 01223411200 ; fax, 01223410457

Industrlal workstations. H-P's HP9000 workstations are based on the company's PA-RISC processors running at up to 100 MHz and supporting H-P's version of UNIX, HP-UX. Models 745i/50 and 745i/100 are the basic types with four EISA slots and 50 MHz or 100 MHz PA-RISC processors, while 747i/50 and 747i/100 have six VME slots and two EISA slots. XP plc. Tel., 01734 845515; fax, 01734843423.

\section*{Data communications}

Digital packet radlo. PackNet-2 by the Swedish company Radius is a vht/uhf packet radio for remote control telemetry and data transfer, providing a link between the components of computer networks and control systems. Radio transceiver, microprocessor control and modem are combined in one box and a built-in repeater or external repeaters allow for extension of a network. PackNet-2 offers both serial and parallel connection, a full RS-232-C interface being provided. Radius Telecommunications (UK) Ltd. Tel., 01256 469460; fax 01256 842362.

\section*{Multimedia}

Installation diagnostics. Developed to assist those installing or upgrading pCs with multimedia hardware,
Eurosoft's CD-Check Diagnostic Disk tests the installation and operation of cd drives, memory, sound cards and

Media accelerators. BrV MedlaStream by Brooktree is first in a famlly of products combining hardware and software to allow a pc to take full advantage of the facllities offered by multimedia offerings. It is a three-chip set enabling dos games-compatible audio or digital sound, 1280 by 1024 graphics and 30 frame/s, television-quallty, full-motion video windows. BiV
MedlaStream Is intended for use with add-on cards, 486 VL local-bus systems and the new PCI-based Pentium pcs, either on cards or on the
motherboard. An important feature is the provision to output ali-digital audio directiy to consumer equipment with digital ports, such as DAT and cd players. The system produces high-quality graphics even when multiple windows run and good video lip-sync. at 30frame/s. It also supports standards such as the Microsoft MCI and DCI
extensions under Windows and
Microsoft's Plug-and-Play.
Brooktree Lid. Tel., 01252
811358; fax, 01252811505
display, supplying a report on the results. It checks all system components to the Multimedia PC Council (MPC) standards. Eurosoft (UK) Ltd. Tel., 01202 297315; fax, 01202558280.

\section*{Programming hardware}

In-circuit programmer. In-circuit, board-level programming becomes necessary in military or other critical applications when ICs must be programmed after assembly, to ensure nothing happens to the data during soldering. Stag has produced the ICP 9000 board-level programming system which reduces the need for extensive mechanical work in interfacing to the board and for complicated software where the board contains ICs other than eproms. With the ICP 9000, the only interface needed is a removable interface adaptor and the software can be written much more easily, by a technician, using a purposedesigned high-level language, so that boards not designed to accept ICP are able to benefit. A library of definition files further reduces the programming needed and facilitates the writing of programs for future requirements. The time taken for the process is said to be reduced from weeks to hours. Stag Programmers Ltd. Tel., 01707332148 ; fax, 01707 371503.

\section*{Software}
interconnection analysis. IPA 510 Interconnect Parameter Analyser by Tektronix is an expansion of the earlier IPA 310. In essence, it models and verifies the interconnections of semiconductor devices on boards and even from the chip to the pins of packages. The system consists of a time-domain reflectometry oscilloscope and associated software. IPA 510 will extract and verify Spice models, perform tdr and td transmission and execute network analysis, presenting true impedance diagrams of purely passive interconnections from zero to 12.5 GHz and modelling energy through dissipation or coupling to effects on adjacent traces on the board. Interfaces for Contec-Spice and P-Spice are available and, since the system links measurement and Spice simulation, Spice models can be developed by extracting models from overlay of time-domain results. The oscilloscope used is an 118018 and the software runs under Windows. Tektronix UK Ltd. Tel., 01628 486000; fax, 01628474799.

Development tools. TNT Embedded ToolSuite by Phar Lap is a set of tools, running under dos or Windows, for the development of 32 -bit embedded systems based on the Intel 386/486 family. It supports 32 -bit \(\mathrm{C}_{\text {and }} \mathrm{C}_{++}\) compliers from Borland, Microsoft and MetaWare. Facilities include the TNT embedded kernel, Visual System

Builder, a 32-bit linker/locator, embedded cross-debugging, C and C++ run-time libraries and a floatingpoint emulation library. Phar Lap Software Inc. Tel., 00617 876-2972; fax, 006176611510.

Ice debugger for Windows. Nohau has introduced a Windows-based in-circuit emulator debugger for the 8051 emulator. The debugger uses an unlimited number of windows instead of the common single one, displaying data in up to 12 different forms simultaneously. In this way, the user can view at the same time C source code, disassembled code, data, assembler with comments and more. The debugger comes either as a package with the emulator or as a software update for existing users. Nohau UK Ltd. Tel., 01962733140 ; fax, 01962735408.

Fm noise analysis. The fm noise simulation package by Phasor Design includes the facillty to determine bit error rate in digital communications systems from carrier-to-noise ratio and the ssb phase noise of oscillators, fm deviation, emphasis and noise weighting being included. It carries out numerical integration in the frequency domain to obtain \(\mathrm{s}: \mathrm{n}\) ratio, numerical summation of the amplitude distribution giving error probability to one bit. The package runs on a pc with a gul, and data files of system characteristics such as phase nolse
and de-emphasis are included or can be written by the user. Phasor Design. Tel., 01858 432148; fax, 01858 432109.

Instrument-to-program translator. SoftwareWedge takes serial input data from measuring instruments fitted with RS-232, parses it and filters it to suit any application program running on a pc , as though the data were being typed in. In the other direction, keyboard and program instructions to the remote instruments are also translated into the correct form. Dos and Windows versions are available, the Windows version also supporting OS/2, NT and DDE. Kyle Data Service Ltd. Tel., 01292311169 ; fax, 10292 318005.

Bare-board tester. FIXpert is a windows-based package to make drill patterns and test programs for the testing of unpopulated printed-circuit boards to design data. Since the 'known good board' approach is not used, the possibility of a fault being perpetuated is avoided. Drill files and their test programs are automatically produced and the whole process of creating the test routine from input to production of files and test program takes under an hour. Dense boards are \(100 \%\) tested in two passes and double-sided boards are tested for side-to-side connectivity. Circuitest Ltd. Tel., 01903 218086; fax, 01903 218689.

\section*{FRE TO SUBSCRIBERS}

\section*{Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!}

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only. Trade advertisers should call Malcolm Wells on 0181-652 3620

All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject advents which do not fulfil the terms of this offer.
\begin{tabular}{|l|l|l|l|l|}
\hline & & & & \\
\hline
\end{tabular}

Please send your completed forms to:
Free Classified Offer: Electronics World, L329, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
COMPUTER ICS
\begin{tabular}{|c|}
\hline TMS 9900 L－40 PULLS \\
\hline S9900 NEW AMDEQUIVALENT．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 530 ea \\
\hline TMS 9901 NL －40 PULLS \\
\hline MC6802 PROCESSOR．．．．．．．．．．．．．．－TM \({ }_{\text {TMS320 }}\) \\
\hline AM27CO20－125L1 SURFACE MOUNTEPROM USED／WIPED．．．E1．50 \\
\hline MM16450 UART CHIP ．．．． \\
\hline P8271 BEC DISC CONTROLL ER CHIP EX EOP \\
\hline XEOPT \\
\hline 2 \\
\hline \\
\hline \\
\hline 49H \\
\hline \\
\hline MK48Z02－20 ZERO POWER RAM EQUIV 6116LP．．．．．．．．．．．．．．．．．．．．． \(\mathrm{E}^{4}\) \\
\hline \\
\hline \\
\hline ED 4164．15．．． 60 p \\
\hline \\
\hline \\
\hline \(\times 4164\) SP MODULENEW ．．． \(\mathrm{c}_{8}\) \\
\hline FLOPPY DISC CONTROLLER CHIPS 1771．．．．．．．．．．．．．．．．．．．．．．．． 116 \\
\hline FLOPPY DISC CONTROLLER CHIPS 1772 ． \\
\hline 68000－8 PROCESSOR NEW．．\(\Sigma^{6}\) \\
\hline ALL USED EPR OMS ERASED AND BLANK CHECKED \\
\hline \(2716-45\) USED ．．\(£ 2\) 100／51 \\
\hline 32.45 \\
\hline 2764.30 USED ．．．．100／：1．60 \\
\hline \\
\hline \\
\hline 1702 EPROM EX EOPT．． 55 \\
\hline 2114 EXEOPT 50 4116 EX EOPT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 70 P \\
\hline 6264－15 88 STATIC RAM． \\
\hline \\
\hline \\
\hline \\
\hline －\({ }^{\text {a }}\) HOUSE MARKED - － \\
\hline TMS2532JL．．．．．．．．．．．£2．50 2708 USED \\
\hline \\
\hline 68000－10 PROCESSOR． \\
\hline \\
\hline \\
\hline 27 C4001－12 USED WIPED 4M EPROM \\
\hline \\
\hline
\end{tabular}

\section*{REGULATORS}

LM332K SV 3A P AASTIC．
LM332KK SV
78H12ASC 12V 5A
LM317H TOL CAN．．דozze varable
7812 METAL 12 V 1 A
7805 ；12 215242
\(7905 / 1215 / 24\)
CA3085 TO99 variable req．
LM123ST93 SV 3 ATO TOEGS
CRYSTAL OSCILLATORS
2M4576 3M6864 5MO 5M76 6M144 7M000 7M3728 8M000 12 M000

 16M000 18 M 432000 19M0500 20M0500 38M10000 56M6092 76M1
84 MO
E1．50 ea

\section*{CRYSTALS}
 2M000 2 M45766 2M77 3MOO 3M2768 3M579545 3M58564 3M93216
 \(12 \mathrm{MOOOO} 13 \mathrm{M} 000+1 \mathrm{M} 27014 \mathrm{MO} 00014 \mathrm{M} 38181815 \mathrm{M} 00016 \mathrm{MOOO}\) 16M5888 17M000 20 M 00021 M 30021 M855 22 M 118424 MO 00
 36M8187536M83125 36M8437538M900 49M504 54M 19166
54M741657M75333 60M000 69M545 54M7416 57M75833 60M000 69M54569M550 BN 26M995
FD27M045 OR27MO95 YW27M145 GN27M195 BL27M245
TM225．．．
TRANSISTORS
MPSA92．．．
\(10 / 51\)
\(10 / 51\)
\(10 / 81\)
\(\mathrm{BC} 477, \mathrm{BC} 488\)
BC 107 BCY PREFORMED LEADS

\section*{POWER TRANSISTORS}

 2 SCI 1520 sim BF 259 ． 12420 ．

TEXTOOL ZIF SOCKETS
28 PIN USED 10 SINGLEINLINE 32 WAY CANBE GANGED FOR USE WITH ANY
DUALIN LINE DEVICES．COUPLING SUPPLIED．．．．． 2.50

\section*{MISCELLANEOUS}

2 VOLT 920 Ahr LEAD ACID CELLS，UNUSED，UNFILED \(18^{\prime \prime}\) HIGH 12 × 7 ＂．WEIGHT 48Kgeach，RUBEERISED CASE．GAULTLETED CURAENTUSE，MADE FOR BRITISH NAVY， 800 CELLS
AVAILABLE，PHONE FOR PRICING ALSO AVAILABLE FILLED \＆ CHARGED
 808 P07000 avalable E1 each，qty．price OPTO ISS also vailable TLP550 TLP 666 GF
68 way PLC 68 way PLCC SKT 1500 avaliable．
100 wa PLCC SKT 100 avalable． 100 wa PLCC SKT 100 avalable．．．．．．．．．．．．．\(£ 1.50\) each
 LM324（Ouad 741）

MINIATURE FERRITE MAGNETS 4×4x3mm．．．．．．．．．．．．．．10／£1 ALPS MOTORISED DUAL 47K LOG pols with spindle，works on TL071 LO NOISE OP AMP ．． 5 for \(£ 1\) TLO81 OP AMP

\({ }_{10}^{12}\) Way dil SW－ 63 V XR PHILIPS SURF ACE MOUNT 100 K
available SWITCD MODE PSU 40 WATT UNCASED OTY． £3 for \(£ 1\) AVAILABLE \(+5 V 5 \mathrm{~A},+12 \mathrm{~V} 2 \mathrm{~A} .12 \mathrm{~V} 500 \mathrm{~mA}\) FLOATING 220R 2．5W WIREWOUND RESISTOR \(60 K\) AVAILABLE CMOS 555 TIMERS
9.95 （£2）

〔50／1000
 CM7126CPL CMOS \(31 / 2\) DIGIT LCD DRIVER CHIP ITHIUM CELL 1／2 AA SIZE PASSIVE INFRA RED SENSOR CHIP＋MIRROR＋CIRCUIT
EUROCARD 28－SLOT BACK PLANE 96／96－WAY．．．．．．．．．．．£25 ea ＂PROTONIC 24 VARIBUS＂ \(16.7 \times \times 5^{\prime \prime}\) FIBREGLASS MULTHAYER PTH PCB
EUROCARD 96－WAY EXTENDER BOARD ．．．．．．．．．．．．．．．．．．\(£ 10\) ea \(290 \times 100 \mathrm{~mm}\)
ANGLE．．．．．．．．．．．．．．．．．．．．．． 1.30 ANGLE．．．2 96 WAYAB／C SOCKET WIRE WRAP PINS．．．．\(£ 1.30\) DIN 41612 64－WAY AC PLUG PCB RIGHT ANGLE DIN 43612 64－WAY AB SOCKET WIRE WRAP（2－ROW BODY
BT PLUG＋LEAD MIN．TOGGLE SWITCH 1 POLE d／O PCB type ．．．．．．．．．．．．．．．．．5／£ LCD MODULE sim．LM018 but needs 150 to 250 V AC for display \(40 \times 2\) characters \(182 \times 35 \times 13 \mathrm{~mm}\)
6.32 UNC \(5 / 16\) POZI PAN SCREWS
£1／100
NUTS．．25／100 AS232 SERIAL CABLE D25 WAY MALE CONNECTORS 25 FEET LONG， 15 PINS WIRED BRAID＋FOILSCRENS AMERICAN 2／3 PIN CHASSIS SOCKI．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． WIRE ENDED FUSES \(0.25 A\) NEW ULTRASONIC TRANSDUCERS 32 kHz ． POWERFUL SMALL CYLINDRICAL MAGNETS BNC 50OHM SCREENED CHASSIS SOCKET SMALL MICROWAVE DIODES AEI OC1026A Y 800 4／5／6－WAY 180 VOLT WATT ZENERS also \(12 \mathrm{~V} \& 75 \mathrm{~V}\) ．．．．．．．．．．．．．．．．．．．．． \(20 / \AA\) MiN GLASS NEONS
RELAY 5V 2－pole changeover looks like RS 355－741 marked STC 47 WBost MINATURE CO－AX PCB SKT RS 456.093 PCB WITH 2 N2646 UNIJUNCTION WITH 12 V 4 －POLE RELAY

400 MEGOHM THICK FIL M RESISTORS
STRAIN GAUGES 40 ohm Foil type polyester backed balco grid ELECTRET MICROPHONE INSERT ．． \(2 £ 1\) Linear Hall eflect IC Micro Swltch no 613 SS4 sim RS 304－267 HALL EFFECTIC UGS3040＋magnet．\(\quad . \quad\) ．．．．．．．．．．．．．．．．．．．．．．．．．．\(£ 1\) 1 pole 12 －way rotary swich
AUDIO ICS LM 380 LM 386 555 TIMERS \(£ 1741\) OP AMP ZN4 14 AM RADII CHIP． COAX PLUGS nice ones COAX BACK TO BACK JOINERS INDUCTOR 2OHH 1.5 A
\(1.25^{\circ}\) PANEL FUSE 1．25＂PANEL FUSEHOLDERS

Na004 SD4 1A 3000 V 100．51．50
N5401 3 A 100 V ．．．
A 1581 IA 400 V tast
YY255 1300 V 3 A 3 A
GA 100V SIMLLARMR75
A GOOV BRIDGE RECTIFIEA
A M OOVVRIDGE．
10A 200V BRIDGE
5A 200 V BRIIGE \(\mathbb{C} 2\)
KKBPO2 IN LINE 2A ZOOV BRIDGE REC

\section*{SCRS}

PULSE TRANSFORMERS \(1: 1+1 \ldots \quad . \quad\{1.25\) ICVIOGD \(800 \mathrm{~mA} 400 \mathrm{CSCR} 3 / 2\)

\section*{TRIACS}

DIACS 4／£1

 TRAL2230D 30 A 400 V ISOLATED STUD TRIAC 1A B00V TLC 381T 16k AVAILABLE ．．．．．． 5 FOR \(£ 1\) § \(\$ 5100\)

\section*{CONNECTORS}

D25 IDC PLUG OR SOCKET
34 －way card edge IDCCONNECTOR（disk drive ype）

BEC TO CENTRONICS PRINTER LEAD 1．5M
CENTRONICS 36 WAY PLUG SOLDER TYPE USED CENTRONICS 36W PLUG＋SKT．
14 WAY IDC
BLOCK HEADER SKT\(£ 1\)
\(£ 1.25\)
\(£ 2.50\)PHOTO DEVICES

HI BRIGHTNESS LEDS COX24RED．．．．．．．．．
SLOTTED OPTO－SWITCHOPCOAOPB8IS
2N577，
TLI 81 PHOTO TAANSISTOR
TIL38 INFRA RED LED
PHOTODIODE 50P
MEL 12 （PHOTODARLINGTON BASE NC）
LED＇s RED 30 O 5 mm 12／E1

STC NTC BEAD THERMISTORS
G22 220R．G13 1K，G232K．G24 20K．G54 50K．G25 200K，RES \(20^{\circ} \mathrm{C}\) FS22BW NTCBEAD INSIDE END OF 1＂GLASS PROBE RES \(20^{\circ} \mathrm{C}\) ea 213 DIRECTL Y HEATED BEAD THERMISTOR 1 k res．ideal 10 f audio Wien Bridge Oscillator．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
CERMET MULTI TURN PRESETS 3／4＂

\section*{C SOCKETS}

14／16／18：20124／28440 WAY DIL SKTS
£1 per TUBE 32－WAY TURNEDPIN SKTS
.3 for \(£ 1\)

\section*{POLYESTER／POLYCARB CAPS}

330nF \(10 \%\) 250V AC X2 RATED PHILIPS TYPE 330 ．．．．．．．．．．． 200100 OOn． 22 20 \(20 / 81100 / \mathrm{F} 3\) OOn 250V radial 10 mm ．．．．．．．．．．．．．．．．．．．．．．．．．100．530 1005500 V Sprague axial \(10 / \mathrm{Cl}\) ． \(100 / 56\)（ 11 ） \(2 \mu 2160 \mathrm{~V}\) rad \(22 \mathrm{~mm}, 2 \mathrm{2u2} 100 \mathrm{~V}\) rad \(15 \mathrm{~mm} . . .\).
 \(14600 V\) MIXED DIELECTRIC．．．．．．．．．．
\(1,40100 \mathrm{~V}\) rad 15 mm .14022 mm rad． \(1 \mu 0100 \mathrm{~V}\) rad 15 mm .14022 mm rad
0.224250 V AC X 2 RATING \(0.22 \mu 250 \mathrm{VAC}\)
\(0.22 \mu 900 \mathrm{~V} . .\).

\section*{RF BITS}

SAW FILTERS SW662／SW66I PLESSEY SIGNAL TECHNOLOGY
379.5 MHZ Z．． FX386 FERRITE RING 105 mm OD 10 mm ，\(\quad 10\) tor \(£ 1\) ASTEC UM1 233 UHF VIDEO MODULATORS（NO SOUND） 1250 © 1.50 MARCONI MICROWAVE DIODES TYPES DC2929，DC2962，

 SMALL MULARD 2 1022 2 F．．．．．．．．． CERAMIC FILTERS 4 M5／6M9M IOMZ
FEED THRU＇CERAMIC CAPS 10000F
SL610．
 （BFY51 TRANSISTOR CAN SIZE） 2N2222 METAL
2N2353A
VNOKM

MONOLITHIC CERAMIC CAPACITORS
10 n 50 V 2.5 mm ．

100 ax shon leads．
100 n ax long leads．．

\(1 \mu \mathrm{~F} 50 \mathrm{v} 5 \mathrm{~mm}\) ．．．

\section*{QUARTZ HALOGEN LAMPS}

12V 50 Watt LAMP TYPE M312．．．．．．．．．．．．．．．．．．．．．． 1 ea HoLDERS 60 pea
6V 50 wat

STEREO CASSETTE HEAD MONO CASS．HEAD EI ERASE HEAD． THERMAL FUSES \(220^{\circ} \mathrm{C} 121^{\circ}{ }^{\circ}\) 240V．．． 15 TRANSISTOR MOUNTING PADS TO－5／TO－18 TO－3 TRANSISTOR COVERS PCB PINS FIT \(0.1^{\prime \prime}\) VERO
TO－3 micas＋bushes． Large heat shrink sleeving pac IEC chassis plug filter 10
POTS SHORT SPINDLES 2K5 10K 25K 1M 2M5

\section*{\(10,000 \mathrm{H} 16 \mathrm{~V}\) PCB TYPE 30 mm DIAx 31 mm}

KEYTRONICS

\section*{TEL．01279－505543 \\ FAX．01279－757656 POBOX 634 BISHOPS STORTFORD HERTFORDSHIRE CM23 2RX}

AIL ORDER ONLY
MIN．CASH ORDER E5．00．OFFICIAL ORDERS WELCOME
UIVERSITIES／COLLEGES／SCHOOLS／GOVT．DEPARTMENTS P\＆P AS SHOWN IN BRACKETS（HEAVY ITEMS）OTHERWISE 95p

ELECTRONIC COMPONENTS BOUGHT FOR CASH

\title{
CLASSIFIED
}

\section*{RECRUITMENT}

\section*{ADVERTISEMENT AGENT REQUIRED}

THE RADIO SOCIETY OF GREAT BRITAIN seeks to appoint an independent advertisement agent to handle the advertising space in its publications, principally the magazine Radio Communication Radio Communication is the UK's leading title targeting the licensed radio amateur. Published monthly and circulated to 31,000 members, it is a 100 -page, A4 colour production carrying on average \(30 \%\) of content as display and classified advertising pages.
Applications are sought solely from prospective agents with relevant experience and capability. It will be a significant advantage to be the holder of a current amateur radio licence or to have a practical knowledge of electronics terminology. This is not an opportunity to learn on the job!

The agency responsibilities will include:
1 Marketing of the space to the trade and agencies.
2 Production work, technical copy writing, layout and typography for trade setting or with own DTP system.
3 Page make-up, proofing, classifieds and setting-house liaison.
4 Administration of orders, schedules, charging out (via RSGB).
5 Provision of professional advice to the Society and an impartial complaints service to members and advertisers.
The agent will act independently on all routine matters but will be contracted as an agent in law. Remuneration will be by commission only. Applications will be considered from established professionals and those with the experience who may choose to take this opportunity to open a new and suitably financed venture.

Applications should be made in writing with an outline of relevant professional experience and supporting facilities. Total confidentiality will be observed. Marking your letter 'CONFIDENTIAL' please write to the General Manager at:

Radio Society of Great Britain
Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE

\section*{VALVES}

Electronics VALVES \& SEMICONDUCTORS

Phone for a most courteous quotation

We are one of the largest stockists of valves etc, in the U.K.

COLOMOR ELECTRONICS LTD
170 Goldhawk Road, London W12 8HJ England.
Tel: 01817430899
Fax: 01817493934

\section*{DISTRIBUTOR} INQUIRIES INVITED
Small, expanding manufacturer of PC-based test and measuring instrumentation wants aggressive distributors in UK'and Germany.

Allison Technology
Corporation
8343 Carvel, Houston, TX 77036 U.S.A.
Tel: 713-7770401
Fax: 713-777-4746

DESIGN SERVICES
Software Design: High and Low Level. Hardware Design: Analogue, Digital, Micro and Embedded.
PCB, Schematic and Production Drawings. Prototyping and Feasibility services.

Archimedes Custom Equipment: Tel 0974282670

\section*{WE WANT TO BUY !!}

\author{
IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 081-445-2713/0749 FAX 081-445-5702.
}

\section*{WANTED}

High-end Test Equipment, only brand names as Hewlett-Packard, Tektronix, Rhode \& Schwarz, Marconi etc. Top prices paid Please send or fax your offer to:

\section*{HTB ELEKTRONIK}

Alter Apeler Weg 5,
27619 Schiffdorf, West Germany
TEL: 0104947067044
FAX: 0104947067049

BBC COMPUTERS and/or software needed by Nanhurst School and children's hospital. Please donate unwanted kit. Ring Douglas Hainline on 0483275121

\section*{PURCHASE FOR CASH}

SURPLUS - OBSOLETE - REDUNDANT - EXCESS stocks of electronic, electrical components/accessories, part processed and/or finished products. Please submit preliminary information or lists for immediate response to:

\author{
K.B. COMPONENTS, 21 Playle Chase, Gt Totham, \\ Maldon, Essex CM9 8UT \\ Telephone 0621-893204. Facsimile 0621-893180.
}

\section*{Cooke International SUPPLIER OF QUALITY USED TEST INSTRUMENTS}

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. ALWAYS AVAILABLE

\section*{ORIGINAL SERVICE MANUALS FOR SALE COPIES ALSO AVAILABLE}

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME, SEND LARGE "A3" S.A.E. + 50P POSTAGE FOR LISTS OF EQUIPMENT AND MANUALS.

ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS

SHIPPING ARRANGED
OPEN MONDAY-FRIDAY 9AM-5PM

\section*{Cooke International}

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB

Tel: (+44) \(01243545111 / 2\)
Fax: (+44) 01243542457
EQUIPMENT \& ACCESSORIES PURCHASED
CIRCLE NO. 147 ON REPLY CARD

\section*{FREE CLASSIFIED}

WANTED: SOUJET-Russian "spy" radio. Clandestine sets, all eras. Offer, swap or cash. 028RO R. Otterstad, Hosterkobvej 10, DK-3460 Birkerod. E-mail: Danmec Q iNET.UNI-C. DK.
MAINS POWER conditioner, 1250w type RS208-361, unused, mint, \(£ 200\) ono. Buyer collects or carrier. Phone Rasik 0438748711 , evenings only.
WANTED: PRE-WAR TELEVISION. Jac Janssen, Hogeham 117D, NL-5104 JD Dongen, Netherlands. Tel: 01031 1623 18158; Fax (office): 0103113 624664.

WANTED: User books and commercial software for the Osborne 01 computer, will also consider buying a second machine. Andrew Emmerson, 71 Falcutt, Way, Northampton NN2 8PH. Tel: \(01604-844130\).

SALE OR SWOP for 486PC, HP8405A, \(1 \mathrm{MH}-1 \mathrm{GHz}\) vector voltmeter complete with 11570 A kit. Offers Pericom Graphics Terminal \(£ 50\) ono. Tel: 0767680268.

SUPERMAG, patented magnetic antenna equipped with 2.5 m mini-lowloss cable for best electrical and mechanical performance. Carant AntennAB, Sweden. Tel: +4687680365 Fax: +46 87920677

PCB ASSEMBLY frames (radio spares), small \(£ 20\), large \(£ 25\). Please telephone 01705818034 (Portsmouth).

WANTED Operating manual for Boonton Radio 260A QMeter. Debrabandere Ommegangstr 14, 9690 Kluisbergen, Belgium 00-32-55-388968.

WANTED: 178 Tektronix plug-in for 577 tracer and IC test fixtures manuals Sagnard, 47 Rue de la Procession, 75015, Paris. Tel/fax: 33140563024

COLLECTION OF "WIRELESS
WORLD" 1936-1979. Interested? Please contact: 0181-946-9449
1.5KW HARMER SIMMONS switch mode power supply. \(198 \mathrm{~V}-264 \mathrm{~V}\) A.C. \(1 / \mathrm{P} 52-58 \mathrm{~V} 28 \mathrm{~A} 0 / \mathrm{P}\), with manual. As new f60. J. Jeffery 0171-873-2735.

WANTED. WWII R1155. Any condition or any parts. Could collect, reasonable price as retired. Search attics, cellars. Lawdham, London 0171352 4174.

\section*{INDEX TO ADVERTISERS}

\section*{Airlink Sales Co}

Amdat
AMI
Anchor Surplus Ltd
Barnes Elliott Ltd
BK Electronics
Bull Electrical
Chelmer Valve Co.
Citadel Products Ltd
Cricklewood Electronics
Crossware Products
Dataman
Display Electronics Ltd
Field Electric Ltd
Grandata Ltd
Halcyon Electronics
Interconnections
IOSIS
John Morrison (MICROS)
Johns Radio
JPG Electronics
\begin{tabular}{lr}
Kestral Electronic Components & 438 \\
Keytronics & 444 \\
Lab Center & 414 \\
Langrex Supplies Ltd & 409 \\
M \& B Radio (Leeds) & 400 \\
Microgen Electronics & 384 \\
Millford Instruments & 386 \\
MQP Electronics & 382 \\
Number One Systems & 390 \\
OEMA & 396 \\
Olson Electronics Ltd & 371 \\
Powerware & 389 \\
Premier EDA Solutions & 384 \\
Ralfe Electronics & 448 \\
Robinson Marshall (Europe) Ltd & 362 \\
Seetrax Ltd & 417 \\
Smart Communications & 409 \\
Stewart of Reading & 417 \\
Surrey Electronics & 422 \\
Telford Electronics & 438 \\
Telnet & 422 \\
Those Engineers Ltd & 427 \\
Triangle Digital Services & 384 \\
Tsien Ltd & 382 \\
Ultimate Technology Ltd & IBC
\end{tabular}

\section*{CONTRACT VACANCIES}

RF Design
ATE Engineer
Senior RF Eng
RF Engineer
RF Design
RF Design
Antenna Technician
Test Engineer
RF Design
Approvals Test
Software Engineer

Microstrip antenna techniques
Design/development
FM modulation, CCT to 3 GHz
Mobile comms
Mobile comms
To 500 MHz
Ideally Royal Signals trained
458 MHz, SMT dense
Amps to 1 GHz
UHF private mobile radio
C, mobile comms

Oxon
Berkshire
Hants SCO389
Hants BCO401
Cambs BCO478
Berks BCO534
Hants BCO534
Hants BCO541
Cambs BCO535
Wilts SCO405
Surrey BCO527

BCO524 BCO476

\title{
PERMANENT VACANCIES
}

RF Design Engineer
Microwave Engineer
Test Engineer
System Test Engineer
Snr Design Engineer
Digital VLSI Design
RF IC Design
Analogue IF Design
Product Systems Des

Circuit des (1 GHz), telecomms MICs/RF antennas
RF PCB fault-find mobile comms
GSM/DCS systems
HF/EHF
GSM, PCN, VHDL, ASICS
Filters, low noise/IF amps
High level modelling, BICMOS
Hardware systems design, GSM
\begin{tabular}{llr}
£30k & Various & BP0251 \\
£27k & M4 corridor & BPO307 \\
£17k & Hants & BP0224 \\
£neg & M4 corridor & BP0287 \\
£neg & M4 corridor & BP0204 \\
£neg & Wilts & SP0268 \\
£neg & Wilts & SP0268 \\
£neg & Wilts & SP0268 \\
£neg & Hants & SP0281
\end{tabular}

CALL TO DISCUSS OTHER PERMANENT OPPORTUNITIES
Latest Vacancies on Internet; http://www.cityscape./co.uk/users/cI87/index.html.

92 Broadway
Bracknell
Berks RGl2 lAR
Tel: 01344489489
Fax: 01344489505
E.Mail: cI87@cityscape.co.uk

161 Bitterne Road West
Southampton
Hants SOl8 1BH
Tel: 01703229094
Fax: 01703220326

Offices in London, Brussels, Manchester, Birmingham, Bracknell, Stevenage, Southampton, Crawley

\section*{CLIVEDEN}

Technical Recruitment
Cliveden Consultancy Services ple

16408 senal data analyser 334 A distotion meler \(3325 A\) function generator

IFR MODEL \(\mathrm{A}-7550\) IGHz pormable with inbuilt tracking gen \& IEEE ops \(£ 5000\) HP1417 18GHz system (85528, 8555A) HP358OA 5 Hz - 50 KHz autio trequency spectrum analyse HP3582A aucio trequency th analyser analyser dual-channel HP8559A 21 GHz spec an in 853 A digital mainframe HPIB HP8568A high-spectication 1.5 GHz spectrum analyser HP8566B (genuine " 8 ") Iop-0.-the-range in iaboratory analysers. Prce . . don'l ask HP8593A portable spectum analyser to 2 GGHz IEEE TEISRONX 492216 MACONI INSTMUMENTS

\section*{55000} £2000 \&1500 £2500 £4500 \(\$ 7500\)

ANRISU ME5 18 A porabie error rate test set
BRUEL \& KJAER 2511 vibration meter ffie set 1621 finter) BRUEL \& KJAER 2317 porrable level recorder BRUEL \& KJAER 2635 charge amplitier BRUEL \& KJAEA 2318 graphics pinter BRUTL \& 1065 digital Inulimeleter FARNELL 20811100 AF powe meter to 100 W \& 1 GHz FLUKE PM97 scopemeter
FOTEK M 200 fibre opotic lod power meteo \& test source

2019 shmesized AMFM sional generator \(80 \mathrm{KHz}-10401 \mathrm{Hzz}\)
2305 modulation analyser \(50 \mathrm{KHz}-2.36 \mathrm{~Hz}\) 2828A2829 digital Simulatorianalyser 2955 mobile radio test set ALL SOLD 2955 A as above with sensitive receciver inoult 605X-series signal sources, all in range 5460.6421 power meter 8 sensor 10 MHz 12.46 Hz 6500 amplitude ana yser ciw 2 C 6514 waveguire detectors OA2805A pom regenertator test set TF2910.4 non-linear distation (videos) test sel TF2910 TV interval ime
 * TELECOM \& DATACOM TEST **

HP37721A DIGITAL TRANSMISSION ANALYSERS
Some basic, some with options \(001 / 003\)...... \(£ 3250 / £ 3500\) * IMPORTANT NOTICE TO ALL EXISTING CUSTOMERS *
 longee sogured, or it not being tully yitilsod Plesese do not hass itate to call us
PLEASE REQUEST OUR LATEST UPDATEO STOCK LISTS.
FULL EXPORT SERVICE AVAILABLE. WE FAX LISTS \& SHIP FUILY GUARANTEED INSTRUMENTS WORLDWIOE

\section*{£3000}

KIKUSUU 8522 trequency response analyser 20Hz-200KHz RACAL DANA 1992 requency Counter 1.3GHz IEEE option SCHLUMBEAGEA 1250 frequency response anal yser SCHLUMBERGER 4040 cormmunciations test set, many podions noluded SYSTRON-DONNEA 60548 hequency counter \(20 \mathrm{H}-24 \mathrm{GHz}\) GPIB
 TEKTRONXX transistor cunve trace type 5768577 ea
 UREA repor 4200 portabie lape recorder
WAYNE KERR SR268 Source \(\&\) detector 3400 A voltreter, analogue \(10 \mathrm{~Hz} 2-10 \mathrm{MHz}\) 3456 A digital multmeter 3552A transmis sion test set 3552A transmis sion test set 3581 C selective voltmeter 3586A selective level mete 3762A3763A data generator/erro detector, pair 41408 DA meter, DC voltage source 415E swr meter
4275A mutiti-fequency kr meter
432A/ 486 A u Wave power mer waveguide \(26-40 \mathrm{GHz}\) 436A microwave power meter cw 8481A detector HP1B op! 5335 A 200 MHz fequency counter w OpS \(20 \& 40\) 5370 universal time-inierval counter 6012A power supply \(0.60 \mathrm{~V} 0-50 \mathrm{~A} 1000 \mathrm{~W}\) 6033 A system power supply 0-20V 0-30 A 6038A system power supply 0-60V 0-10A \(6253 A\) duad power supply \(0-20 \mathrm{~V} 0-1 \mathrm{~A}\) twice 64438 power supoly \(0-120 \mathrm{~V} 0-2.5 \mathrm{~A}\) 6825 A bipolar power supppylampifie' -20 V to \(+20 \mathrm{~V}, 0.1 \mathrm{~A}\) 8011 A pulse generator \(0.1 \mathrm{~Hz}-20 \mathrm{MHz}\) 8116A 50MHz pulse generatior 816A slothed line \(1.8 \cdot 18 \mathrm{GHz}\) with cariage 809 C and 4478 8444A trackng generator with ootion 059 \(8505 \mathrm{~A} 500 \mathrm{KHz} \cdot 1.36 \mathrm{~Hz}\) AF network analyset 8671A synthesized signal gener ator \(2 \cdot 6 \cdot 2 \mathrm{GHz}\) 8672A synthesized signal generator \(2-18 \mathrm{GHz}\)
 analysers. \(85801 / 23\) portable analysers Please call us it you have mogh end capital equipment Meing under-vtithsed.
PLEASE NOTE: ALL OUR EQUIPMENTISNOH OPERATION-VERIFICATION TESTED BEFORE DESPATCH BY INDEPENDENT LABORATORY We would be pleased to handie all grades of callbration or NAMAS certification by same laboralory at cost price. All items covered by our 90 -day parts and kabour guaramee and 7-day 'Right to Retuse' (money back) warranty. ALL PRICES SUBJECT TO ADOITIONAL VAT AND CARRIAGE

CIRCIE NO. 148 ON REPIY CARD

\section*{ELECTRONIC UPDATE}

\section*{Contact Malcolm Wells on 0181-652 3620}

四 9

Modeis S2200 and S2400

FLASH, Emulators end OTP日 up to mm bit.

The system 2000 is an ideal programmer for the production environment. Fast programming results in high throughput and rigorous verification leads to improved quality control. Single key functions and checks against misoperation facilitates its use by unskilled staff.

\section*{MQP ELECTRONICS LTD.}

Tel: 0666825146
Fax: 0666825141
CIRCIE NO. 149 ON REPIY CARD

\section*{A regular advertising feature enabling readers to obtain more information on companies' products or services.}

\section*{NATIONAL INSTRUMENTS 1995 CATALOGUE}

The 1995 National Instruments catalogue describes more than 900 software and hardware products. Engineers and scientists can use these to develop integrated instrumentation systems for test and measurement process monitoring and control, using industry-standard personal computers and workstations.

NATIONAL INSTRUMENTS FOR FURTHER
INFORMATION CALL 01635523545
CIRCLENO. 150 ON REPLY CARD

\section*{1995 MASTER PRODUCT \\ \section*{CATALOGUE NOW OUT!}}

Test and instrument control solutions. 48 pages of full description and technical data on our own range of solutions to your PC and PS2 interfacing problems; IEEE488 (GPIB) * DIO *Timer/Counters * RS232 RS422/485 * A/D * D/A * plus Opto solated versions. New Parallel/Serial RS232, Opto Dual RS232, Motion Control. Converter and Repeater for 1995! SO 9001 Quality guarantee \({ }^{\text {a }}\) UK design and manufacture 36 month no-quibble warranty
Telephone hotline support Competitive pricing on the page
Intelligent solutions- friendly service BRAIN BOXES
Unit 3f Wavertree Boulevard South Wavertree Technology Park Liverpool L7 9PF
CIRCIENO. 151 ON REPIY CARD

OLSON ELECTRONICS LIMITED is a leading manufacturer in the field of mains distribution panels of every shape and size to suit a variety of needs. For use in Broadcasting, Computing, Data Communic ations, Defence, Education, Finance, Health elc. All panels are manufactured to BS5733. BRITISH AMERICAN, FRENCH, GERMAN CEE22/IEC and many other sockets. Most countries catered for.
All panels are available ex-stock and can be bought direct from OLSON.
Olson Electronics Limited Tel: 0818852884
Fax: 0818852496
CIRCIE NO. 152 ON REPIY CARD

\section*{FROM CONCEPT TO ARTWORK IN I DAV}

Your design ideas are quickly captured using the ULTIcap schematic design Tool. ULTIcap uses REAL-IME checks to prevent logic errors. Schematic editing is painless; simply click your start and end . points end ULTIcap automatically wires them for you. ULTIcap's auto snap to pin and auto junction features ensure your netlist is complete, thereby relieving you of tedious netlist checking.

ULTIshell, the integrated user interface, makes sure all your design information is transferred correctly from ULTIcap to ULTIboard. Good manual placement lools are vital to the progress of your design, therefore ULTIboard gives you a powerful suite of REAL-TIME functions such as, FORCE VECTORS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout

Now you can quickly route your critical trac«s. ULTIboard's REAL-TIME DESIGN RULE CHECK will not allow you to make illegal connections or violate your design rules. ULTlboard's powerful TRACE SHOVE, and REROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vias and surface mount designs are fully supported.

If you need partial ground planes, then with the Dos extended board systems you can automatically create copper polygons simply by drawing the outine. The polygon is then filled with copper of the desired net, all correct oins are connected to the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTlboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, or the whole board. ULTIboard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.
LTIboard's backannotation automatically updates your ULTicap schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate pen / photo plots, dot matrixlaser or postscript prints and custom drill files.
CIRCIE NO. 102 ON REPLYCARD

ULTIboard PCB Design/ULTIcap
Schematic Design Systems are available in low-cost DOS versions, fully compatible with and upgradable to the 16 and 32 bit DOS-extended and UNIX versions, teaturing unlimited design capacity.

ULTIboard/ULTIcap evaluation system: - all features of the bigger versions
- full set of manuals
- design capacity 500 pins Price incl. S \& H, excl. VAT: £95 Purchase price is \(100 \%\) credited when upgrading to a bigger version. Also suitable for study \& hobby

The Enorerean quality alternative

S4'S VITAL STATISTICS:Totally handheld programmer/emulatorFast approved programming algorithms; eg. program and verify: National 27C512 in 16 seconds AMD 29F010 in only 90 secondsEPROMs to 8Mbit, 5v, 12v and BOOTBLOCK FLASH, EEPROMs and PEROMsThree year parts and labour guaranteeFree next day delivery (UK only)30 day trial available (UK only)Full 24 byte on-screen editorContinuous programming whilst charging (nonstop operation)
- Moulded designer case - feels as good as it looks
- Rubberised colour-coded full travel keypad
- Big, easy-view 80 character supertwist LCD
- Optional modules available to program PICs, 8751, 16-bit EPROMs, Toshiba 4-bit, Hitachi H8
- Optional sockets for programming and emulating PLCC devices

S4's 32 pin ZIF socket programs a huge library of \(8 \& 16 \mathrm{bit}\) EPROMs, EEPROMs, FLASH, PICs and other popular microcontrollers using manufacturers approved algorithms. Our free and easily updatable device library enables users to always have the latest software installed. During our sixteen years of designing and selling innovative and fast programming solutions to industry, Dataman has never charged for software updates or technical support.
Bullt in emulation enables you to see your code running before committing yourself to an EPROM. Load your program from an EPROM or download
code from your PC into S4's memory. Plug S4's emulation lead into the target system, press the emulation key and run the system. Changes can be made using S4's powerful editor, and you can re-run the code to test and confirm changes. When the code is proved to be working, it can then be programmed to a fresh ROM.
The 54 package comes complete with mains charger, emulation leads, organiser-style instruction manual, PC software and a three year guarantee. S4 is always available off the shelf and we ship worldwide on a daily basis. Call now for delivery tomorrow!
```


[^0]:    

[^1]:    $11,300 \mathrm{~km}$ is the longest distance yet for data transmission through commercial optical cable.

[^2]:    * The subject of an article by Douglas to be published in $E W+W W$ in the near future - Ed.

[^3]:    Gerard Moloney is MD of October
    Developments, 01819683586.

[^4]:    EDN Designer's Companion is available by postal application to room L333 EW+WW, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS. Please make cheques out to Reed Business Publishing Group Lid.
    Credit card orders accepted by 'phone on 01816523614.

    254pp hardback
    ISBN 0750617217
    Price $\mathbf{E} 25.00+$ E2.50 UK postage, 55 Europe,
    £8 worldwide.

[^5]:    Prices exclude postage ( $£ 5$ for UK) and VAT. All manufacturers trademarks acknowledged.

