NEW SERVICE - EW+WW INDEX ON FLOPPY DISK

WORLD

+ WIRELESS WORLD

Denmark DKr. 70.00
Germany DM 15.00 Greece Dra. 760 Holland Dfl. 14

FEBRUARY $1995 £ 1.95$

VIDEO
ON
DEMAND
The audio power interface

New null filter design

Data logging via the PC

Combiners and splitters for RF

Analogue design with a 5V supply
WIN A £400 CAD PACKKAGE

FROM THE MAKERS OF THE WORLDS BEST SELLING UNIVERSAL PROGRAMMING AND TESTING SYSTEM

* Ability to program 3 volt devicas
*. Calibration software to comply with ISO9000.
* Batch software for production programming.
* High quality 42 pin Textool zero insertion force sockets.
* Rugged metal housing and heavy duty screened cable
* Ground control circuitry using relay switching.
* Protection circuitry to protect against wrong insertion of devices
* Speed optimised range of programming algorithms.
* Supplied with MICROTEC disassemblers for Z8, 8085, 8048, 8051, 6809 \& 68HC11
NOW ONLY £469

ORDERING INFORMATION

Expro-80 complete with interface card, cable software and manual
onv $£ 469$

Please add $£ 8$ carriage (by overnight courier) for UK orders, $\mathbf{£ 3 0}$ for export orders and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO. Official orders are welcome from Government bodies and local authorities.

CITADEL PRODUCTS LTD DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 0181951 1848/9
\square

Our stocked range of own manufactured and imported Sunshine products include:

* Super fast EPROM Erasers.
* 8Mbit EPROM Programmers:
ie: $\quad 1$ gang $£ 149$
4 gang $£ 229$
8 gang £399
* Battery operated portable EPROM programmers.
* "In circuit" Emulators.
* Handy pocket IC testers.

* Programs PIC16 series without adaptor.
* Software supplied to write own test vectors for custom ICs and ASICs etc.
* One model covers the widest range of devices, at the lowest cost
* Over 2000 different devices (including several hundred MPU's) supported.
* Tests and or identifies a wide range of logic devices.
* High speed PC interface card designed for use with all types of PC.
* No need to tie up a slow parallel port.
* More Sunshine programmers sold worldwide than any other of its type.
* UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL.
* Two year free software update.
* Free demo disk with device list available.

The Sunshine Expro-80 Universal Programmer and Tester is the 42 pin version of the immensely popular Expro-60/PC-82. Following that success, the Expro-80 is a PC-based development tool designed to program and test more than 2000 ICs. The culmination of over 8 years production experience has resulted in perfecting this rugged, classically designed programmers' programmer.

Volume production has now enabled us to offer this powerful programmer at a very competitive price for a product of such high quality. The Expro-80 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the Expro-80 for their own use!

The Expro-80 can program E/EPROM, Serial PROM, BPROM, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX and MPU. It comes with a 42 pin DIP/SDIP socket capable of programming devices with 8 to 42 pins. It even supports EPROMs to 16 Mb it, the PIC16 series of MPUs and many many more without the need of an adaptor. Adding special adaptors, the Expro-80 can program devices up to 84 pins in DIP, PLCC, LCC, QFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS 40/45 series, DRAM (even SIMM/SIP modules) and SRAM. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user. The Expro- 80 can even check and identify unmarked devices

The Expro-80's hardware circuits are composed of 42 set pin-driver circuits each with control of TTL I/O and "active pull up", D/A voltage output, jround, noise filter circuit and OSC crystal frequency.

New features include negative programming voltages, 3 volt programming ability, protective circuitry for ICs incorrectly inserted, calibration software to comply with ISO9000, new six layer PCB and voltage clamping to banish noise and spikes.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all types of PC. In addition, there is now the Link-P1 enabling the programmer to be driven through the printer port. Ideal for portables and PC's without expansion capability

The pull-down menus of the software makes the Expro-80 one of the easiest and most userfriendly programmers available. A full library of file conversion utilities is supplied as standard

Sunshine's team of over 20 engineers are continually developing the software, enabling the customer to immediately program newly released ICs.

Citadel, a 33 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

CONTENTS

ADSL - AN EASY ROUTE TO VIDEO ON DEMAND....... 102

Television down the telephone line. ADSL technology is at the heart of BT's forthcoming trials for video on demand. It enables television signals to be sent down 'phone wires - a technique that Geoff Lewis believes could become a world standard.

CATCHING DATA VIA LPT1 107
Interfacing via the pc's printer port, Pei An's data acquisition system for capturing 16 channels with 12 -bit resolution is easily transferred between machines. As a bonus, this analogue signal capture system also offers an 8 bit digital output port for control.

BETWEEN AMPLIFIER AND SPEAKER

\qquad 114
Loading an amplifier with a moving-coil loudspeaker involves reactances, impedances and phase effects - all conspiring to upset stability. Ivor Brown shows how to minimise the undesirable effects.

NEW NULL FILTER REPLACES TWIN-T

Suitable for distortion measurement, Bengt Olsson's highperformance null filter avoids the tedious adjustments needed when twin-T filters are used.

IMPROVING ANALOGUE CONVERSION

134Rather than using a cad-designed post-conversion filter for good hf performance with clocked dacs, Michael Batty opts for a much simpler, separate correction filter.

CIRCUITS BY DESIGN

Before cad, designing filters was tedious, to say the least. Owen Bishop shows how to get the best out of modern Windows-based cad software when engineering filter circuits.

WIN SPICE AGE FOR WINDOWS.
Answer a few questions correctly and you could win a copy of the professional version of Spice Age for Windows worth over $£ 400$.

A QUESTION OF BALANCE

Whether two rf sources are being brought into, or taken from, a single port, load balancing is essential. Steve Winder provides some tips for designing rf combiners and splitters.

PROGRAMMING FOR TELETEXT ON THE PC... 146

Complementing his previous hardware description, Laurence Cook discusses how to design software for controlling his teletext adapter for the pc.

CIRCUITS FOR SMALL-SIGNAL AMPLIFIERS 155 Having succeeded in designing your small-signal amplifier and determining its source and load impedances you need circuits to realise those impedances. Norm Dye and Helga Granberg present the final extract from their book $R F$ Transistors - Principles and Practical Applications.

ANALOGUE DESIGN WITH A 5V SUPPLY
While low supply voltages are common in the digital world, they are only just spreading to analogue devices. Walt Jung and James Wong look at the limitations imposed when designing circuits to run from a single lowvoltage supply.
COMMENT 91
Video games

NEWS .92

ADSL improvement, No follow through for double science, Deep-field video microscopy, Intelligent agents under development, World's smallest power amp, War on video cd format.

RESEARCH NOTES

Teleassistance for robots, Submarine swims like a fish, Testing time for microwave circuits. Does electronics make us worse drivers?

DESIGN BRIEF
Tweaking the diode detector. Ian Hickman finds that the diode detector has a lot to offer - having found a way round forward-voltage offset.

CIRCUIT IDEAS.
Jump-starting a rom-less microcontroller, Quadratureoutput oscillator for sine waves, Digital thermometer using low-noise bridge amplifier, Active photodiode source, Preventing battery over-discharge.

LETTERS

 149A compulsive comment, Sine post, Hand-Shakey, Electrolytic detection, Coil question. Heartfelt criticism, Unacceptable terms and Slew review - correspondence on Doug Self's amplifier design.

NEW PRODUCTS

 167Classified run-down of a wide selection of new digital and analogue electronics products presented with emphasis on ease of selection.

[^0]

Phytec modules are low cost prototyping and production cards, available for today's most popular microcontrollers, including the 8051, 68 HC 11 and 80 C 166 families.

Each of the eurocard-sized prototyping boards is available as part of a development kit containing an assembler, ANSI C compiler and source level debugger.

Once your product has been developed, the same prototyping hardware is available as a surface mount production module, ready to be incorporated into your final design.

With countless uses in the fields of measurement, control and monitoring, Phytec modules are an ideal, cost-effective solution for rapid product prototyping and development.

Sample Modules

Board for Siemens SAB80C537. With A/D and DIA, 2 serial ports, 5 digital I/O ports, up to 64 K EPROM, 160K RAM and 32K EEPROM

Board for Siemens SAB80C166. 40 Mhz , 16Bit Controller, 100 ns interrupt latency, 256K RAM, real time clock.

Credit card sized production modules based on the miniCON development boards, with a low-power, surface mount design. Migrate from a prototype to finished hardware, vastly reducing time for marketing and development costs.

Hitex (UK) Ltd

Warwick University Science Park, Coventry, CV4 7EZ Tel: 01203692066 FAX: 01203692131 BBS: 01203690026

Inew low nivean ligendiar Bils froun Antax

Removing larger components from PCB boards can be a problem in rework and repair shops. The new Antex range of 10 SMT Desolder Bits have been produced to fit components from S018 through to PLCC 68.

They will fit most Antex Temperature Controlled Irons and complement the existing range of smaller DST Desolder Bits. All Bits are available singly or in sets together with a Bench Tray. A new Bench Rest for irons fitted with the New Bits plus an attachment for Antex Soldering Stations is also available from leading Electronic Distributors.

Antex (Electronics) Lid.
2 Westhrideye Industrial Estait, Tavistoct, Devon P121 80E Tel: (0822) 613565 Fax: (0822) 617598

CIRCLE NO. 105 ON REPLY CARD

PIC ICE II* In Circuit Emulator for PIC16C54-55-56-57-71-84. Replaces all 18 or 28 pin PICs. All ports Bi-directional, OSC2 output, RTCC input.
On board A/D converter for PIC16C71.
Supplied with PICDEV54 and PICDEV71 software, manual, connecting leads and headers, ASM examples, and hardware circuit projects.
PIC ICE 18P In-Circuit Emulator for 18 pin PICs only no A/D. Plugs into the printer port appears to the target system as a normal Pic device including OSC2 and RTCC in/out. Runs in real time from the IBM PC changes made to File registers reflected on target. Supplied with Development software PicDev $54-57$ and PicDev 71/84 PICPROG* Programs Pic 16C54-56-56-57-71.84. Centronics port interface Powerful editing software to Read, Write \& Copy Pic devices including data memory in Pic16C84.
Top quality components used throughout including production ZIF socket. Now includes a Text Editor/Assembler for all above PICs.
Requires external power $15-20 \mathrm{v}$ AC or DC @ 250 ma. (optional extra 66.50).
MEGAPROM programmer. EPROMS, E2PROMS, and FLASH memories from $2 k$ (2716) to 8 Meg (27CO80). Runs on IBM PC via the centronics port using standard printer cable. Works on all PC compatibles, laptops, and notebooks. No special port requirements. Uses approved programming algorithms. Very fast program \& verify $27 \mathrm{C} 512=45$ seconds. Full screen editor soft ware supports Bin, Intel Hex, Motorola S and Asc formats. Top quality components used throughout including production ZIF socket.
Requires external power supply $18-25 \mathrm{v}$ AC or DC @ 250 ma . (optional extra $£ 6.50$).
EPROM EMULATOR Works on ANY computer with centronics printer port. Data sent to the printer appears in the target board Eprom socket. Emulates from $1 \mathbf{k}$ to 32k Byte (27C256) roms, board switchable.
Very fast download. Works with or without our Development software. $£ 59.9$
PC SCOPE. Convert your IBM PC into a Stor age Oscilloscope with our A/D converter. Software supplied for Scope and Voltmeter. AND source to write your own programs. $£ 29.9$ DEVELOPMEN SOFT SOFTARE
Develop software on your IBM PC for other Microprocessors, Controllers, Pic's etc. Develop software on your IBM PC for other Microprocessors, Controllers, Pic's etc.
Software has fully integrated Text Editor, Assembler, Disassembler, and Simulator. The Simulator displays all registers along with disassembled code program counter, The Simulator displays all registers along with disassembled code program counter, change any/all registers/memory locations at any time (on the fly).
Code can be Saved to disk and/or downloaded directly to our EPROM Emulator. All sofware supplied with sample. ASM files, and user documentation/manual.
Very powerful software as supplied to universities, colleges ITECS and Industry. Available for the following:-
MCS8051/52/552
MCS8048/49
PIC16C71/84

Starred items also available from FARNELL (Leeds)
All hardware carries a 12 months parts and labour Guarantee. No Vat payable. Please add £1.50 for Carriage.

CREDIT CARD ORDERS SAME DAY DESPATCH

JOHN MORRISON DEPT WW

 4 REIN GARDENS, TINGLEY, WEST YORKSHIRE WF3 1dR TEL (or FAX) 0532537507
Video games

EDITOR

Martin Eccles
081-652 3128

CONSULTANT

Frank Ogden

DESIGN \&

PRODUCTION
Alan Kerr

EDITORIAL

administration

Jackie Lowe
081-652 3614

ADVERTISEMENT

MANAGER
Richard Napier
081-652 3620
DISPLAY SALES
EXECUTIVE
Malcolm Wells
081-652 3620

ADVERTISING

PRODUCTION
Christina Budd
081-652 8355

PUBLISHER

Mick Elliott
editorial fax
081-652 8956
CLASSIfied fax
081-652 8956
SUBSCRIPTION
hOTLINE
0622721666
Quote ref INJ
SUBSCRIPTION
QUERIES
0444445566
NEWSTRADE
DISTRIBUTION
Martin Parr
0816528171
BACK ISSUES
Available at $£ 2.50$
0816523614
ISSN 0959-8332

REED
BUSINESS
PUBLISHING

BT's Head of Research, Dr Alan Rudge, formal title MD Development and Procurement - stands out like a sore thumb amongst BT's other bosses. He talks with the frankness and honesty of an engineer, not the veneered smarm of an accountant or professional manager.
In early December, BT celebrated ten years of privatisation. At one event, 'A glimpse of the future', Rudge described his job. Because he cannot personally oversee all research projects at Martlesham, he gets most closely involved in the ones that go wrong. "It's like being at the end of a sewer pipe", said Rudge, before demonstrating a few of the projects that are going well.

One is 'remote foetal scanning'. Guests at the top of the BT Tower watched high-quality moving ultrasound images transmitted in real time by telephone wire from a hospital on the Isle of Wight. The pictures of a 15 week-old foetus came down the wire in a two-megabit stream.
Earlier Rudge had talked of BT's plans for a Video On Demand trial this summer (1995), using 2Mbit ADSL and covering 2500 homes in the Ipswich area. "It is a market trial," stressed Rudge, "not an experiment". Presumably then, the foetal images were streaming from the Isle of Wight thanks to VOD technology?

No. BT had ganged together 30 ISDN channels. Why? Because even though the VOD market trial was still only six months away, BT could not muster a single pair of ADSL codec/modems and found it easier to sledgehammer the problem with 30 ISDN lines.
Barely able to disguise his frustration at the Government's refusal to promise BT the right to earn money from piping entertainment through its network after 2001, Rudge became even more frank about the practical limitations of VOD.
"ADSL is not economic for 30 million customers. The cable companies are digging up the roads and putting in copper. That is the technology we are trying to get away from.

Electronlcs World + Wireless World is published monthly. By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$. Orders, payments and general correspondence to $\mathbf{L 3 3 3}$. Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tlx:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group.
Newstrade: Distributed by Marketforce (UK) Ltd,
247 Tottenham Court Road London W1P 0AU 071 261-5108 Subscriptions: Quadrant Subscription Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444445566 . Please notify change of address. Subscription rates 1 year (normal rate) £30 UK and £43 outside UK.
USA: $\$ 52.00$ airmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42nd Street, NY 10117.

We have $£ 15$ billion, the price of two Channel Tunnels, earmarked for an optic fibre highway. We don't want to invest too much in an interim solution. But we need to know where we stand after 2001 - and how we can earn revenue from our highway".
The consumer electronics industry is already using the same MPEG compression technology that makes ADSL VOD possible, to release movies of better-than VHS quality on pairs of one hour five inch CDs. The recently announced Philips/Sony High Density Digital Video Disc puts a full length movie onto a single five inch $C D$, with broadcast quality.
At pressing costs of under 50 p per disc, Video CD provides a very cheap way of distributing movie material by retail sale, mail order or corner store rental. To compete, VOD must offer similar quality, on the same or more modern movies, at similar price points.
Prototype VOD codec/modems currently cost around $\$ 10,000$. At the recent CD-i conference in Dusseldorf, panelists from Philips and Motorola were arguing over whether consumer box prices could fall to below $\$ 750$ by the end of the century.
Rudge is right. However exciting VOD and the enabling technology may be, and however excited BT's publicity machine may get, using old-fashioned twisted pairs to carry VHS quality pictures is an interim solution which sucks investment from the long-term strategy of replacing copper with fibre.
BT feels confident that the Labour leaders-in-waiting have grasped this point. The best leaving present the current Government could give Britain before it collapses into a lost election would be to move fast with a clear challenge to BT and the Labour party - 'OK, BT; if you put your money where your mouth is, and pledge to 'fibre' the country by the end of the century, we pledge that you can use that fibre in the next century, in any way you like. And we will put it to a Commons vote so that Labour can't reverse that policy.'

Barry Fox

Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080. TIx 23827.
USA mailing agents: Mercury Airfreight International Ltd inc 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
Printed by BPCC Magazines (Carlisle) Litd, Newtown Trading Estate, Carlisle. Cumbria, CA2 7NR
Typeset by Wace Publication Imaging 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT

Aware proposes ADSL improvement

M-band wavelet transforms are being used by Aware, the Massachusetts-based signal processing software developer, to provide radical improvements to the performance of the adsl modulation technique used by BT in its video-on-demand service.
Adsl, or asymmetric digital subscriber loop signalling, is a technique which enables a broadband signal, theoretically up to $6 \mathrm{Mbit} / \mathrm{s}$, to be transmitted over copper telephone lines from the exchange to the subscriber's home. BT in the UK and Bell Atlantic in the US are using adsl systems supplied by Westell International to transmit a video channel carrying video on demand and homeshopping services to subscnbers.

Current adsl systems use carrierless amplitude and phase (cap) modulation which effectively divides the $2.048 \mathrm{Mbit} / \mathrm{s}$ channel data rate between two carriers of different phase and amplitude. BT believes that cap will support a

Cambridge Technology Systems claims that deep field video microscopy, a system it markets in the UK for Scientific Instruments, can be used to reveal micro-defects in solder adhesion and integrity - particularly at the contact points between miniature components and pcbs. The right hand side of the photo shows a sound micro-pin soldered connection; on the left is a poor one which, due to lack of solder volume, shows early signs of failure. (The solder appears black in the photo.)
This photo was taken at $80 \times$ magnification. The magnification range can be extended to $1,000 \times$ if necessary, to resolve fine surface detail.
$2 \mathrm{Mbit} / \mathrm{s}$: video channel over 6 km of copper pair which represents 91 per cent of its subscriber lines.
A multi-carrier version of adsl, although more expensive than capbased systems, is able to support data rates up to $6.9 \mathrm{Mbit} / \mathrm{s}$ and is more immune to line interference.
Aware, which along with fellow US software developer Amarti, as well as Analog Devices and Westell, has been developing the technique known as discrete multitone (dmt), is proposing a new approach based on wavelet rather than Fourier signal processing techniques. Drawbacks with dmt have led the US developer to investigate the use of the altemative discrete wavelet multitone (dwmt) modulation technique.

The attraction of dwmt, using an M-band wavelet transform, is that it provides both a longer symbol duration and lower sidelobes than the fft-based dmt. The wavelet methodology provides a more practical implementation of
classical Fourier transforms.
Aware claims that use of M-band wavelet transforms instead of fft in the classic discrete multi-tone technique produces a 4 dB improvement in signal margin in a practical adsl multi-carrier transceiver. According to Aware, the computational complexity of the wavelet transform is around one half that of the Fourier transform.
Aware quantifies performance improvement in terms of the interference between sub-channels and symbols for dmt and dwmt systems of similar complexity. Average improvement is around 6 dB in signal sensitivity and Aware quotes a minimum improvement figure of 4 dB .
Aware also says that the use of Wavelet instead of Fourier transforms does not threaten compatibility with the other elements of the adsl transceiver design, as proposed by Amarti which is working with Motorola. Richard Wilson, Electronics Weekly

Double science increase not followed through

Although there are now more young people in the UK studying science to the age of 16 , fewer of them are carrying on to take science A levels. This is one of the main findings of a report, 'The Impact of Double Science' published by the Engineering Council and written by two authors from the University of Manchester.
There has been a marked growth in entries for science GCSE since compulsory science to the age of 16 was introduced. The increase in entries is particularly marked in double science; these have risen from 22.3% in 1989 to 82%. The term 'double science' indicates the amount of curriculum time allocated to science: the equivalent of two subjects.
However, at A level, physics entries have fallen by 18.7% over the last four years and chemistry entries by 8.1%. The most likely
reason for this is the gap between GCSE and A level. Other possible reasons are the upheaval in science education that takes place between 14 and 16 , poor teaching, signals from the labour market and the rigidity of the three A-level system. All are likely to have contributed.
The lack of follow on to science A levels has to be seen in the light of an overall rise in A level entries since 1962 , from 11 to 31% of the age group. The report's authors suggest bridging the gap between GCSE and A level by recording performance in the double award separately for biology, chemistry and physics or by aligning the two better so that A levels begin where the GCSE leaves off. It is also suggested that students should take five subjects at A level, rather than three, giving them more choice of subject as well as leading on more naturally from GCSE.

Surpus aways THE ORIGINAL SURPLUS WONDERLAND!

PC SCOOP

AT 286
40 Mb HD + 3Mb Ram

ITTED QUANTITY only of these 12 Mhz HI GRAD de in the USA to an industrial specification, ard, PSU and EGA video carra with single 50/4" 1.2 e \& intagral 40 Mb hard disk drive to the front dition complete with enhanced keyboard, 640 C S.01 and 90 DAY Full Guarantee. Ready to der as HIGRADE ${ }^{286}$ ONLY EfY?	
	¢ ${ }_{\text {¢ } 29.00}$

5.25" from £22.95-3.5" from £24.95
 stated) are BRAND NEW or removed from often brand new equipment and are fuly tested, aligned and shipped to you win a 90 day guaraniee and operate from standard volitages and are of standard
Sizze All are IBM-PC compatile (if 3.5 supported on your $P C$). ${ }^{\text {size }}$. All are IBM-PC compatibe (n) 3.5 suppo
3.5" Mittubishi MF355C-L. 1.4 Meg. Laptops on

Teaca FD-55GFR 1.2 Me9 Me5018
5.25 BRAND NEW MItsubs

Shugart $800 / 8018^{\circ}$ SS Shugart 8518^{8} double sided returbished \& tested Mitsubish1 M2894-63 8" double sided NEW
Mitsublish M2896-63-02U 8" 0 SS slimine NEW

HARD DISK DRIVES

End of line purchase.8coopl Brand new NEC D2246 8" 85 Mbyte of hard disk storagel Full industry standard SMD interiace. Ultra model. complete with manual. Only
E299.00(E) 3.5° FUJI FK-309-26 20 mb MFM I/F RFE CONNER CP3024 20 mb IDE I/F (or equiv)RFE
CONNER CP3044 40 mb IDE I/F (or equiv)RFE RODIME RO3057S 45 mb SCSI (or equiv.)RFE MINISCRIBE 342520 mb MFM I/F (or equiv.) RFE SEAGATE ST-238R 30 mb RLL I/F Refurb FUJITSU M2322K 160 Mb SMD I/F RFE tested

£24.95(8) £36.95
 £36.95 (8) ع29.95 ع

ع29.95(B)
195.00(E)

ع250.00(E
£285.00(E)

Had disc conrolers for MFM, IDE, SCSI, RLL eic. from $£ 16.95$

THE AMAZING TELEBOX

The TELEBOX consists of an attractive fully cased mains powered lors made by makers such as MICROVITEC, ATARI, SANYO SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD etc. The recorders, allowing reception of TV channels not normally receivable
on most television receivers* (TELEBOX MB). Push button controls on the front panel allow reception of 8 tully tuneable 'off air' UHF
colour television channels. TELEBOX MB covers virtually all television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. A composite video output is monitor or desktop video systems. For complete compatibility - even ow level Hi Fi audio output are provided as standard.
$\begin{array}{ll}\text { TELEBOX ST for composite video input type monitors } & £ 34.95 \\ \text { TELEBOX STL as ST but with integral speaker } \\ \text { TELEBOX MB Multiband VHF-UHF-Cable- Hyperband tuner } & £ 69.95\end{array}$ For overseas PAL
\qquad

FANS \& BLOWERS

 $\begin{array}{ll}\text { MITSUBISHI MMF-D6D12DL } 60 \times 25 \mathrm{~mm} 12 \mathrm{VCC} & £ 4.9510 / £ 42 \\ \text { MITSUBISHI MMF-09B12DH } 92 \times 25 \mathrm{~mm} \text { 12vDC } & £ 5.9510 / £ 53\end{array}$ EX-EQUIP $120 \times 38 \mathrm{~mm}$ AC fans - tested specify 110 or $240 \mathrm{~V} £ 6.95$
EX-EQUIP $80 \times 38 \mathrm{~mm}$ AC fans - tested specify 110 or $240 \mathrm{v} £ 5.95$ VERO rack mount $1 \mathrm{U} \times 1^{\circ}$ tan tray specify 110 or 240 V £45.95 (E)
IMHOF B26 1900 rack mnt $3 \mathrm{U} \times 19^{\prime \prime}$ Blower $110 / 240 \mathrm{v}$ NEW $£ 79.95$

IC's -TRANSISTORS - DIODES

BSOL

5,000,000 items EX STOCK

COLOUR SYSTEM
ONLY £99.00
 asdy to run colour PC system The Display Electronics PC99 system comprises of fully com py disk drive, $12^{\prime \prime}$ CGA colour monltor, standard 84 key key-
board, MS DOS and all connecting cables - just plug In and go Ideal students, schools or anybody wishing to learn the world o Fully guaranteed for 90 Days. \quad Order as PC99COL $\quad \mathbf{~} 99.00$ (E)

VIDEO MONITOR SPECIALS
\qquad
\square Good used condition, 90 day guarantee

NEC CGA 12^{2} colour IBM-PC compatible. High qual-
ee. In an attractive tow tone rimbed groy playtiticaras
measuring $15^{\circ} \mathrm{L} \times 13^{\circ} \mathrm{W} \times 12^{\circ} \mathrm{H}$. The fiont cosmetic Only £49.00(E)
20" 22 " and 26"AV SPECIALS Superbly made UK manulatiee A complevi case. Periect for Schol 20"....£135 22".....£155 26"....£185(F) 12" Mono. Phillos BM7542 105G for CCTV NEW £69.95 (C) DC POWER SUPPLIES
10,000 Power Supplies Ex Stock

```
Power One SPL200-5200P 200 wath (250 w peak). Semi open
frame giving \(+5 v 35 a_{1}-5 v 1.5 a_{1}+12 v 4 a\) (8a peak), \(-12 v 1.5 a,+24 v\)
```


 Laser Video Disk Player

One of the most amazing surplus

unit features full computer control, Plays standard 12^{*} LaserVisiondisks with startilng visual and audio quality in two channel stereoor mono. When controlled by a computer, it may also be used as aeither Laservislon CAV (active play) or CLV (Long Play) discsome of the many features of this incredible machine are:RGB / COMPOSIE VIDEO OUTPUTBNC+SCART NTERFACE

PAL/RGB DECODER

SPECIRL PUREHRSE Only £399.00

TOUCH SCREEN SYSTEM

MicroTouch but sold at a price below Cost II System consists of

 a flat translucent glass laminated panel measuring $29.5 \times 23.5 \mathrm{~cm}$ the board comes a standard serlal RS232 or TL output. The out put continuously gives simple serial data containing positional X\& Y co-ordinates as to where a finger is touching the panel - as the fingiven at an Incredible matrlx resolution of 1024×1024 positions over the screen size !!! So, no position, however small tails detec:tion. A host of available translation software enables direct connection to a PC for a myriad of applications including: control pan computer un-trained etc etc Imagine using your finger in 'Windows tlons for this amazing product are only limited by your imagina fionll Supplied as a complete system including Controller Power Supply and Data at an incredible price of only: $£ 145.00$ (8)

LOW COST RAM \& CPU'S

and PC-AT compatible card with 2 Mbytes of memory on board.

 Card is fully selectable for Expanded or Extended (286 processorand'above) memory. Full data and driver disk supplled. In goo used condition fully tested and guaranteed. \quad Windows compatible. Order as: ABOVE CARD 59.95 (A Half length 8 blt memory upgrade cards for PC AT XT expands memory either 256 k or 512 k in 64 k steps. May also

NO BREAK UNINTERRUPTIBLE PSU'S

system from Densel. Model MUD 1085-AHBH. Complete with rupt is 15 minutes. Complete with full manual. $\quad £ 575.00$ (a)
read EMERSON-ACCUCARD UPS, brand new 8 Bit halt length PC pomparible card for all internal system components in the event of power supply failure. The Accusaver software provided uses only 6k of base memory to the hard disk in the event of loss of power. When powe
is returned the machine is returned to the exact status when the is returned the machine is returned to the exact status when the supplied brand new, with full, easy fitting instructions and manual.
Normally $£ 189.00$ NOW! £69.00 or 2 for $£ 120$

Issue 13 of \mathcal{D} isplay News now available - send large SAE - PACKED with bargalns!

ALL MAIL \& OFFICES
Open Mon-Fri 9.00-5:30 Dept WW. 32 Biggin Way Upper Norwood

01816791888

Intelligent agents under development

£25m R\&D project

British semiconductor equipment companies are poised to participate with other European firms in the largest single microelectronics R\&D project to date, funded by the EU's $£ 10$ bn Fourth Framework Programme. If accepted, the proposal, worth $£ 25 \mathrm{~m}$ will examine ways of extending photolithography technology beyond the visible light spectrum, including the possible use of X-rays. Potential UK participants include Rutherford Laboratories, Lumonics and Leica Cambridge. The project is being jointly funded by the EC and Jessi, the pan-European collaborative microelectronics venture.

R
esearchers at BT's Martlesham laboratories in Suffolk are leading the world in the development of intelligent agents for use in tomorrow's 'super highway'. These agents could take on everything from organising the cheapest route for a long distance phone call to buying a car.
Part of the motivation for developing intelligent agents is the fear that dealing with the sheer volume and complexity of services available on the superhighway will be too complicated for most human beings. Intelligent agents will act as friendly intermediaries between us and the network allowing us to interact with the network in a natural way
Software used in BT's intelligent agents differs from ordinary pieces of code in two key ways. It is not a set of detailed instructions on how to respond to every situation, but a general description of the way the agents should behave. They mimic
the way humans behave, working by trial and error rather than planning in detail. Secondly, the software can learn from experience and adapt the way it behaves to perform better.
Although BT is keeping the details of how its intelligent agents are programmed to behave and learn a closely guarded secret, Dr Chris Winter, project leader for its intelligent agent programme, says the techniques are borrowed from work on neural networks and game theory.
BT believes an early application of intelligent agents could be to plot the cheapest routes for telephone calls. Winter's group has already demonstrated intelligent agents performing this function. The call could be routed through several different networks representing the cheapest path to its final destination. Rates could be negotiated based on knowledge of the current costs and demand for
bandwidth on the networks.
BT is not the only company working on intelligent agents. Other major telecoms firms such as Northern Telecom and AT\&T are running similar programmes, although BT believes it is leading the way in agents that can negotiate.
While BT's agents live on their 'master's' network terminal all the time, other companies are developing agents that are more mobile. "Our agents stay in one place at the moment and communicate across the network," Winter says, "but AT\&T's agents actually move around the network, copying themselves". He is not yet convinced of the value of such roaming agents.
More important, in Winter's eyes, is to make the way we interact with agents more and more like the way we deal with other humans, with meaning conveyed through facial expression or hand motions. Karl Schneider, Electronics Weekly

World's smallest power amp for mobile comms systems

Toidoshiba has developed what it claims to be the world's smallest power amplifier module. The amplifier is aimed at the digital mobile communications systems currently under development and is approximately one third the size of current power amplifier modules, at $5.5 \times 5.5 \times 2.0 \mathrm{~mm}$. It also operates

at 2.7 V , reducing demands on the battery.
The amplifier IC design has been simplified, making it relatively easy to mass produce. The drain offset self-alignment is simpler than that of other Mesfets.
Total assembly area is minimised through application of a land grid
array (lga) structure that puts the thermal bumps and i / o on the underside of the module. This enables all of the i/o electrodes on the motherboard to be covered, and supports highly integrated packaging.
Peripheral components consist of six passive components with a size of $1 \times 0.5 \times 0.5 \mathrm{~mm}$.

MOD spending cuts will shake up industry

B
ritain's defence electronics exporters could lose out to foreign competitors as a result of government plans to reduce the funding of Ministry of Defence procurement activities by $£ 6 \mathrm{~m}$. Defence electronics suppliers are lobbying the MoD to lift the threat, which is the result of rationalisation of its electronics components standards review body. The electronics standards arm of the Defence Research Agency (DRA) is due to have its role drastically reduced next March.
While accepting the need for cuts, the components industry is concerned that its competitiveness abroad will be jeopardised if the cost-cutting programime is mishandled. "It is vital that a common standard of quality-assessed component procurement is adopted - equipment
makers and component companies both want that", said a spokesman for the Federation of the Electronics Industry. At the centre of the row is the future of the DRA's electronics standards watchdog, known as the PCS. This oversees the MoD's priority and quality programme for the ordering of electronics components as laid out in DEFCON 17 document. The PCS, which accounts for almost half of the MoD's electronics standards budget, also ensures that the interests of UK suppliers are represented on international standards committees such as CECC and NATO's priority list, known as MUAHAG.
Removal from Mil Standard lists would threaten exports of UK suppliers. According to one industry source, 75 UK companies currently have components
qualified for the internationally-recognised Mil Standard. "All these things could go into jeopardy," said the source.
The government issued its plans for the PCS in a discussion document published in October. The scale of the hostility from industry has surprised the government, which has been forced to rethink its original proposal to close PCS in March with the loss of as many as fifty staff. "As I understand things, it is all back in the melting pot," commented a spokesman for the FEI.
One option being considered is replacing the out of date DEFCON 17 protocol with self-auditing of component quality by the suppliers. "You don't need the PCS to police industry with self-audit," said the FEI spokesman.
R. W.

The Complete Electronics Design System

Schematic Capture

- Easy to Use Graphical Interface.
- Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

Simulation

- SPICE compatible Analogue Simulation.
- Event driven Digital Simulation with modelling language \& PLD support.
- Partitioned simulation of large designs with multiple analogue \& digital sections.
- Graphs displayed directly on the schematic.

PCB Design

- Multi-Layer and SMT support.
- Unlimited Design Capacity.
- Full DRC and Connectivity Checking.
- Advanced Multi-Strategy Autorouting.
- Output to printers, plotters, Postscript, Gerber, DXF and DTP bitmaps.
- Gerber View and Import capability.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 0756753440. Fax: 0756752857. 53-55 Main St, Grassington. BD23 5AA.

War escalates on video cd format

F
ifteen years ago, after the VHS, Beta and V2000 video wars, the electronic companies vowed they would never cripple themsleves again with a format battle. They remembered this when they launched cd, after agreeing in advance on a single system. Then they forgot their lesson and launched DCC and Mini Disc as rivals. So far both have paid the price.
Now the companies are making another mistake and lining up for a fresh format war over a new standard for High Density Video cd. This battle is even more dangerous because it will unsettle the trade and public who are currently being asked to support the one hour single density Vcd system which is just reaching the shops.
Two years ago Philips and Sony developed Video cd - a 12 cm cd which stores an hour of movie or karaoke pictures of VHS quality. Video cds are just reaching the shops. The first public demonstration of HD-DVD, a high density digital video disc that needs a completely new player, was given recently.
Because DVD stores up to ten times more digital data, it can carry a full length feature movie, with widescreen pictures of quality that equals broadcast television and six tracks of stereo or multilingual sound. One disc can carry both original and expurgated versions of the same movie. DVD can work with a personal computer to deliver a multimedia mix of reference and games material. Philips and Sony say they hope the new technology
"will become the basis of optical media for the coming multimedia era".
Because the potential rewards are so huge, Toshiba is promoting a rival system for 'the 21st century' which it claims the Hollywood movie studios support. The balance of power sits with Matsushita, maker of Panasonic equipment and the largest consumer electronics manufacturer in the world.
All today's cds, whether used for audio, video or multimedia, rely on a finely tuned optical system. A spiral track of microscopic pits is read by a finely focused laser beam. The pits are spaced by 1.6 micrometres, which is around one fiftieth the width of a human hair. The laser emits infra-red light, with wavelength of 780 nanometres. The single-sided disc can store around 650 megabytes of data which is read at a constant rate of around 1.5 million bits a second. This lets a single-sided disc store just over an hour of moving pictures which have been very heavily compressed to the MPEG-1 digital standard.
The new high density cd will use a laser which emits red light with a shorter wavelength: 635 nm . This lets it focus into a tighter spot and thus read smaller pits in a half width spiral. This gives the disc a storage capacity of 3.7 gigabytes. The rate at which the bits are read also varies, between 1 and 10 million a seconds, depending on whether the picture contains moving detail or stationary objects.
Together, these tricks let the new
disc store 135 minutes of pictures coded to the superior MPEG-2 standard. IBM, Apple, Compaq and. Microsoft are already working with Philips and Sony to set a multimedia standard for using the new disc with a new generation of pcs.
In a surprise move Philips and Sony have worked with US optics company 3 M to propose a future option. This will double the storage capacity to 7.4 gigabytes and 270 minutes of continuous movie playback. The double-high density disc is pressed with two spiral tracks instead of one, each at slightly different depths in the plastics material.
The effect is like writing different messages on both sides of a window pane. The laser focuses on one track for one play through the disc, and then re-focuses on the other track for a second play through.
Toshiba's proposed disc will use similarly small pits, but glue two separately pressed discs together, back to back. The laser reads one side of the disc first, then moves round to the other side of the disc and reads that to double overall playing time.
Philips and Sony say it will be difficult to mass-produce Toshiba's glued discs. Toshiba says it will be dificult to make and read the double layer single sided discs used by Philips and Sony.
The companies promoting HD-cd now have both to support the future high density market without destroying the fragile market for the existing single density systems - a tricky problem of their own making.

VLSI goes for MPEG

VLSI Technology has acquired MPEG 1 and 2 video decompression design blocks for its Asic library through a licensing deal with two year-old Californian video compression start-up, Mediamatics.
VLSI, which has previously said that it would not offer a standalone MPEG decompression device, intends to use the technology in its cable and satellite tv set-top box chips.
Mediamatics uses a combination of software and hardware proessing for the MPEG 2 video decompression algorithm. The deal includes its MPEG 1 and 2 hardware decoder designs as well as a suite of design tools which will enable VLSI to
implement the technology as functional blocks in its asic library.
Earlier this year VLSI acquired a stake in French data transmission specialist Comatlas, as part of its plan to introduce silicon for the set-top box market. It has recently introduced a QPSK satellite tv demodulator and forward error correction device jointly developed with Comatlas.

- Digital media compression special-

 ist, Divicom, has selected LSI Logic's ATMizer architecture as the enabling technology for its digital broadcast system that will transport MPEG-2 compressed video streams over ATM. The MPEG-2 to ATM mappingscheme used in Divicom's encoder has been proposed to the ATM forum for adoption as the standard for MPEG-2 transport.

- C-Cube Microsystems has introduced chips for compressing video systems using MPEG-2, dramatically reducing the size of the encoder.
- Pioneer Electronic Europe nv has signed a contract with French DBS and pay tv company, Canal+, that will enable the company to offer digital broadcasting by the middle of this year. Panasonic will supply digital satellite receivers to Canal+ subscrbers. It was selected as a supplier as the result of a competition launched in April 1994.

Robots are not yet clever enough to be given a completely free hand. With
Teleassistance, the robot has a great deal of autonomy, and the operator only needs to intervene with a few crucial commands.

Helping hand cuts robots free - almost

Robots are still too stupid to be left to their own devices, while teleoperating them can be tedious for an operator. But the newest technique being hurriedly boltedtogether in automation laboratories around the world is teleassistance, where a robot busies itself about its task, receiving only vital strategic information from its human master.
Teleassistance is quite different from the familiar teleoperation, where an operator remotely guides a robot to investigate a bomb, explore a volcano or even repair an orbiting space shuttle. Time delays can play havoc with sensitive control, and operators can end up feeling like their system is floating in treacle.

Obviously packing enough electrical intelligence into a robot so that it can act independently in complex situations is still science fiction rather than fact. But researchers, such as a team at the University of Rochester, are finding that a few simple hand signals from a human can dramatically increase both a robot's usefulness and independence.

Rochester graduate student Polly Pook, who recently presented her work at a conference on intelligent robots and systems in Germany explains:
"Any time you're dealing with an unknown environment, or with other people, the robot needs judgement and common sense - abilities that are extremely difficult to program".
In teleassistance, just a few strategic cues from a human operator - and a little programming - allow the robot to accomplish tasks autonomously, she says.

Pook describes today's robots as good at responding to local feedback, but still needing someone to provide context and set their agenda.
"In teleassistance, the robot has control over local problems like balancing and avoiding obstacles, and humans provide the goals and high level direction, such as where to go," says Pook.

He uses hand signals to communicate with the robot. The signals tell the robot what to do next, and sometimes, where or how

to do it. The robot detects hand motions, through sensors mounted on a glove Pook wears.
"People frequently communicate with non-verbal signs," says Pook. "We point when giving directions, hold up a hand to mean stop and gesture to say come along. I can do the same with the robot".

So far, Pook has guided the robot in two tasks: opening a door and flipping a plastic fried egg. They may sound easy, but insignificant changes such as substituting a different door knob or spatula, or rearranging the positions of objects, can easily confound the robot.

In the door-opening exercise, the robot reaches for the door after Pook points to it, and checks how Pook shapes her hand to discover the type of handle. Then the robot takes over using pre-defined programs to grasp and turn the handle and swing the door open.
In Pook's experiments, the teleassisted robot opens the door much more reliably than an autonomous robot, while relying on just a fraction of the human effort compared to traditional teleoperation.
Within each context, it is able to respond quickly and appropriately to sensory feedback, without having to consider all possible world scenarios, "Once the robot knows its context, the behaviour flows smoothly and we can skip a lot of mathematics," says Pook.
Computationally-assisted telemanipulation is a science that is growing extremely fast. Pook recalls that when she began her work in teleassistance just a few years ago, hers was one of a handful of such presentations. But at the Iros conference, dozens of groups presented work in the area, with possible applications spanning robot assistance for the elderly and disabled, mining, exploration of remote sites and hazardous waste clean up.

Picture coutesy James Montanus/University of Rochester.

Submarine that swims like a fish

Scientists at Massachussetts Institute of Technology have moved one step closer to their goal of relating the physics of how a fish swims to development of an autonomous underwater vehicle. Following extensive testing of a 'robotuna' fish that swims up and down a tank, attached to a structure containing all its electronics, the MIT team has now started design of a more complex 'robopike', that will manoeuvre attached only by a tether.
David Barrett at MIT says that testing of robotuna has gone so well that the second model could be available this summer. The tether attachment should enable robopike to make hairpin turns, while accelerations of 10 g are being targeted. A real fish could experience 25 g .
The robofish project began about three years ago, prompted by the need for a better propulsion system for autonomous under-water vehicle (auvs). Small robotic submarine
auvs could be used to map the ocean floor or find sources of underwater pollution. Unfortunately, conventional auvs can not carry enough batteries to allow them to explore areas such as the midAtlantic ridge. The obvious solutions are either to develop better batteries or improve the propulsion system. The MIT group has opted for the latter.
At present, the researchers are still concentrating on getting robotuna to swim as efficiently as possible in a straight line, to test whether their system is actually better. But other studies are also being carried out. For example, MIT is finding out more about the fundamental fluid mechanics of swimming. The robot is also acting as a test bed for possible controllers and sensors, and the researchers are using it to find a computer control system that will make a robot swim most effectively.
The project has involved a lot of watching, both real tuna at the New England Aquarium and the

electronic robotuna. The mechanical fish has been built, as far as possible, to resemble a real one and its 2843 parts include over 40 ribs, a set of tendons, a segmented backbone with vertebrae, and a Lycra skin. The robot swims down the tank propelled by a tail that gently swishes back and forth as its flexible body follows suit.

MIT's robotuna could lead to a new method of propulsion for autonomous underwater vehicles.

Does electronics make us worse drivers?

$\mathrm{A}_{\mathrm{r}}^{\mathrm{s}}$
As automobile manufacturers fight to pack ever more electronics into their cars, two studies recently carried out cast doubt on whether drivers can actually cope with any more technology.
The first concerns driver experience with relatively simple anti-lock braking (Allan Williams and Joanne Wells, Accid. Anal. and Prev., Vol 26, No 6, pp.807-811).
In anti-lock systems, sensors monitor wheel rotational speed and as brakes are applied and the vehicle decelerates, a control unit determines when any wheel is about to lock up. If locking occurs, the control unit sends a signal to valves to reduce the brake pressure just enough to allow the wheel to start rotating again. The cycle is repeated until the driver's foot is removed from the brake or traction is restored. We all expect shorter stopping distance and improved stability should to be the result.
But data suggests that cars equipped with four-wheel anti-lock brake systems are no less likely to crash than those with conventional brakes.
Previous studies have suggested that one reason could be because drivers perform more aggressively and carry out more
dangerous manoeuvres if they believe technology is going to come to their rescue.
In addition, Williams and Wells have found that many drivers simply do not know how to use anti-lock systems in an emergency. The most effective way to activate anti-lock systems is to brake hard and keep the foot down on the pedal - the opposite of how people are taught to avoid skids using conventional brakes. In the Williams and Wells work in the US, 33$50 \%$ of drivers of cars fitted with anti-lock systems said they would pump the brakes in a skid, negating much of the anti-lock effect.

In a second unrelated but relevant study appearing in the same journal (pp. 703717), Nicholas Ward and Andrew Parkes from Loughborough University have been investigating head-up displays (huds), now beginning to find their way into cars.
Huds have obvious advantages. Information can be displayed in a driver's field of view, eliminating the need to shift the gaze from the outside world, and the proliferation of intelligent vehicle systems such as collision avoidance, route navigation and vision enhancement systems would seem to make them ideal
display units.
But the main objective of the hud has to be an increase in safety of vehicle operation. Unfortunately, much of the understanding of how huds are used comes from aeronautical applications, and the requirements of driving a car along a road are quite different. For example, background complexity adversely affects target visibility - and complex backgrounds are certainly a normal feature of every-day motoring. Studies suggest too that for some people, the hud may be much less effective than traditional head-down displays. Effects on speed and distance judgement could also have serious effect on safe traffic negotiation, and overall the safety consequences of such changes in attentional behaviour and information processing are not clear.
Their results convince the researchers that the hud should not be seen as just another display opportunity.
Taken with the findings on anti-lock brakes, a worrying conclusion seems to be that without very careful thought, electronics designed to make motoring safer could actually be making the roads a lot more dangerous.

Testing time for microwave circuits

NPL in the UK, the Fraunhofer Institute for Applied Solid State Physics in Germany and Dassault Electronique, France, have joined forces to develop an electro-optic probe station for measurement of rf and microwave integrated circuits to 20 GHz and beyond.

Electro-optic probe station for GaAs microwave integrated circuit measurement.

Researchers at NPL investigating electro-optic sampling for measurement of fast electrical pulses and microwave signals. NPL has joined with the Fraunhofer Institute and Dassault to develop a useable test technique.

Demand for increasingly dense components, where it is difficult to lay down test points, are pushing current test techniques to their limits. But the NPL/Fraunhofer/Dassault work, sponsored by the European Commission, should improve circuit measurement capabilities by extending existing wafer-probe techniques.
Recent advances in the fields of electronics and opto-electronics have had a significant impact on communications, information systems and military markets. This has led to development of components and systems with bandwidths of many tens of gigahertz, capable of handling optical or electrical pulses and transients in the pico to nanosecond range. Electro-optic probing could become an important tool in the validation of new microwave integrated circuit designs.
As its name implies, the probe station will operate by using the electro-optic effect to sense microwave electrical fields at points inside an integrated circuit. The effect is exhibited by certain classes of non-centrosymmetric crystals which, in the presence of an applied electric field, acquire an induced anisotropic refractive index. Such
materials are able to act as transducers for the detection of microwave signals by optical means, because the time-varying refractive index can be used to modulate an optical signal used in a probe. Change of phase of the optical signal can be related to the local microwave E-field strength in the circuit.
By scanning a sharply focused laser beam across a circuit, a high spatial resolution two-dimensional map of the field strength inside the circuit can be produced.
Two distinct techniques are possible for the electro-optic characterisation of microwave integrated circuits. Firstly, for III-V semiconductors which exhibit the electro-optic effect, such as GaAs, it is possible to use the phenomenon in the circuit substrate itself to sample the microwave field.
If the substrate is not electrooptically active - silicon or alumina for example - a small crystal of an electro-optically active material such as LiTiO mounted close to the circuit under test can be used as an external field probe.
The goal, according to Dr Alan Roddic of NPL, is a non-invasive technique that will be able to obtain results where conventional technology falls short.

PROGRAM 8 CHIPS IN THE TIME IT TAKES FOR ONE!

At $£ 645$ costing around half the price of slower gang programmers, the Speedmaster 8000 gang programmer uses a simple 2 button operation in stand-alone mode. PC operation gives comprehensive file handling and editing functions. Capable of gang and set programming it supports 32 pin EPROMs to 8 M with no adaptors required. Programming cycle times of only 23 seconds for 8 27COlO's mean your throughput can now be faster than ever before.

ROM/RAM EMULATOR PLUG IN CARDS

Using these expansion cards your programmer can run as if there's an EPROM or RAM plugged into the target socket. Available as 8 bit wide $128 \mathrm{k} \times 8$ as standard, upgradable to $512 \mathrm{k} \times 8$, and 16 bit capable of emulating 40 pin EPROMs. They can emulate both 5 V and 3.3 V devices.

PACKAGE ADAPTORS

A full range of package adaptors is available for non DIL devices and parts with more than 40 pins. Prices from $£ 65$.

DISTRIBUTORS
BENELUX: + 3255313737 ;
CYPRUS: 02485378; DENMARK: 048141885; FINLAND: 070039000; FRANCE: 0139899622; GERMANY: 060827421615; GREECE: 019020115; ITALY: 0245784I; JAPAN: 053865501; NORWAY: 063840007; SINGAPORE: 04831691: SOUTH AFRICA: $01197412 \mid 1 / 1521$; SPAIN: 013270614 USA: Distributors required.

FREE SOFTWARE UPGRADES! KEEP UP TO DATE WITH NEW DEVICES

Before you choose your programmer, check out the cost of ownership. While other manufacturers charge for every update or require expensive libraries and modules, ICE Technology programmers
support the whole range of devices at no extra charge*. And keeping up to date is FREE for life at no charge on our BBS service.
Just dial on: $+44(0) 1226761181$,
and download the latest version.

Disk based upgrades are available free in the first year, and a small administration charge made for each subsequent disk.

* for DIL up to 40 pins.

AT LAST, AN AFFORDABLE 3V AND 5V UNIVERSAL PROGRAMMER!

The latest universal programmers from ICE Technology, the Micromaster LV and Speedmaster LV, now support programming and verification of 3.3 V devices, now you can test devices at their actual operating voltage.

They offer wider device support than ever before, the majority requiring no adaptor. They will operate from battery or mains power,

Speedmaster LV

Programmes 3 and 5 V devices including memory, programmable logic and $8748 / 51$ series micros. Complete with parallel port cable, software, recharger and documentation.

£495

MicromasterLV

As above plus support for over 90 different micro controllers without adaptors, including PICs, 89 C 51 , 87C751, MC68HC705, ST6, Z86 etc.

8 bit Emulator card
Expansion card containing 8 bit wide ROM RAM emulator, includes cable and software. $128 \mathrm{~K} \times 8$.

£125

16 bit Emulator card

Expansion card containing 16 bit wide ROM RAM emulator, includes cable and software. $128 \mathrm{~K} \times 16$.

FEATURES

- Widest ever device support including: EPROMs, EEPROMs, Flash, SPROMs, BPROMS, PALs, MACH, MAX, MAPL, PEELs, EPLDs Microcontrollers, etc.
- High speed, programmes a PIC16C54 in 0.5 secs (Micromaster LV).
- Up to 84 pin device support with adaptors.
- Connects directly to parallel port - no PC cards needed
- Built in chiptester for 7400, 4000, DRAM, SRAM.
- Lightweight and operates from mains or battery.
Optional 8 or 16 bit wide ROM/RAM emulator.
- Designed, built and supported in the UK.
- FREE software device support upgrades via bulletin board.
Next day delivery.

CIRCIENO. 112 ON REPIY CARD

Call now to place your order, for more details or a free demo disk, or call our bulletin board to download the latest demo. Alternatively clip the coupon or circle the reply number.

All major credit cards accepted

> With BT announcing extensive video-ondemand trials in the middle of this year, interest in the technology needed to control television pictures via the telephone is high. Geoff Lewis believes that the technology in question - adsl - could even become a world-wide standard.
 an eusy

$A D S L$

Who needs adsl?

Before a new technology becomes acceptable, the general public has to accept that it provides a solution to a recognised problem at an acceptable add-on cost. This can be seen by comparing the adoption rates of satellite and cable delivered television programmes with the rapid up-take of video recorders.
After the standards battle had been settled, with plenty of software available, the video recorder quickly became part of the entertainment system. First the recorder was used as a time shifting device to combat channel conflicts, then as a primitive form of video on demand, VOD, following the introduction of the local video shop.
If offered a more immediate form of video on demand, removing the need for the journey to the shop, the viewer would be presented with a solution to a problem that had probably not been previously recognised. Adsl promises to meet this need - and at a competitive price.
Although adsl is a product of the 1990s, internationally there are many players investigating its possibilities. Every month a new one joins the band of would-be service providers. Among the latest is Australia, where their subcontinental super-highway includes plans to incorporate adsl as a way of providing new services for areas of low population density.
in diameter. Since any particular subscriber's final link may consist of a combination of these, the line attenuation may well vary from link to link.
About five years ago, it was recognised that unshielded twisted pair cables were in use with local area networks, lans, and carrying digital data at rates greater than 10Mbit/s.

Video on demand gives customers the sort of control over selected programmes and services that they would normally have on a video recorder - play, fast forward, rewind and freeze frame.

Research work in the USA at Bell Laboratories and in the UK at British Telecom then took a new look at the rf characteristics of the local loop. Figure 1 indicates how the line attenuation and group delay varies for a typical section of unshielded twisted pairs up to 1 MHz .

While attenuation over the major part of the range is high at about $-0.075 \mathrm{~dB} / \mathrm{kHz}$, the characteristic is fairly linear and easily equalised. But most importantly, the group delay is practically constant so that any pulse distortion will be small, with consequently few bit errors in a digital transmission. These features allow the simultaneous transmission of high bit rate digital signals and conventional telephony over the same local loop.

Figure 2 shows the general allocation of the frequency spectrum above the voice band. A low bit rate control channel operating at either $9.6,16$ or $64 \mathrm{kbit} / \mathrm{s}$ provides for the subscribers' demands, together with a high bit rate channel for the delivery of selected tv and
other programmes. It is this asymmetrical bitrate allocation that gives the system its title of asymmetrical digital subscriber loop or adsl.
Organising the system in this way is cost effective. The hardware costs for the individual user end is relatively low, while the high costs of the high bit rate end are shared by many subscribers. Adsl can provide video with video-recorder type characteristics - fast forward, fast rewind, freeze frame, pause, etc functions - on demand.
Using MPEG-1 digital compression with suitable channel coding, video signals of various grades can be transmitted direct to the home. A bit rate of $2.048 \mathrm{Mbit} / \mathrm{s}$ can provide VHS quality video together with digitally coded stereo sound. At $6.144 \mathrm{Mbit} / \mathrm{s}$ with MPEG-2 compression, the video quality is equal to that of a broadcast transmission. The introduction of a new consumer-based demand would provide the necessary impetus to reduce the high cost of current MPEG-2 chip sets.

Fig. 1. Rf characteristics of unshielded twisted-pair telephone. While the attenuation might be anticipated, the constant group delay characteristic is fortuitous for a digital system.

Fig. 2. Frequency-division multiplexing for adsl. This shows clearly adsl's ability to support simultaneous voice, telephony and the subscriber's demand and programme delivery channels.

CONSUMER ELECTRONICS

There are various ways of allocating the high-bit-rate down-stream channel; four times $1.544 \mathrm{Mbit} / \mathrm{s}$ and $6.176 \mathrm{Mbit} / \mathrm{s}$ suit North America while three times $2.04 \mathrm{Mbit} / \mathrm{s}$ and 6.144Mbit/s cater for Europe; other combinations are possible. Note that this makes the bit rates compatible with integrated-services digital network, isdn. As you would expect, the higher the bit rate systems, the shorter the local-loop penetration distance.
Analogue filters with high stop-band attenuation are used at each end of an adsl network in order to combine or separate the telephony and the extra services with the minimum of mutual interference. In practice, it is necessary to be able to separate adsl signals of a few millivolts in amplitude from a few tens of volts of ringing tone.

Because of the make-up of the local loop, many of which include overhead sections, there are many connections that can give rise to resistive variations which tend to be temperature and moisture dependant. In particular, overhead line vibrations and other variables can give rise to signal drop-outs that last for several milli-seconds. Adsl networks are designed not to reset under these conditions but to ride out such breaks.

Cross talk between the individual pairs in a multi-pair cable is not significant and neither is cross talk between other isdn users. Impulsive noise from ringing tones and switching signal could be troublesome, but by using a suitable transmission technique with forward error correction, fec, this has little significance in a well maintained network.
To minimise the effects of both radiated and induced radio frequency interference, adsl employs a balanced feed of signal to the line. By taking suitable preventative measures, adsl signals of less than 1 mV amplitude can be recovered even under noisy conditions and in the presence of high level telephony signals. The specification includes forward error correction in the form of Reed-Soloman coding with the possibility of adding interleaving. Parameters for these features are incorporated in the American National Standards Institute (ANSI) documentation.
Digital adaptive equalisers adjust automatically to suit individual line characteristics. These cater for the problems including the temperature and moisture dependent parameters and continuous interference. Provision is made so that at each new line acquisition, the adaptive equalisers are reset under the control of a line-probing bit sequence that establishes the system signal-to-noise ratio. To maximise

Interactive tv trials

Towards the end of last year, BT announced that it is to start consumer trials of interactive tv - which includes video on demand. Starting in the middle of this year the trial is to involve 2500 households in Colchester and lpswich. The move follows successful technical trials, held near lpswich, involving sixty BT employees.
The new service will bring together the telephone and television to enable customers to choose from a range of services
and material. Once selected in the home, video information is transmitted from a central database over the telephone network to the television, without affecting the normal telephone line.
During the trial, BT aims to offer shopping on demand, a range of educational programming for homes and schools, movies and television programming (video on demand), a home banking service, a magazine service and a community link local information service.

Telephone television. With adsl, $16 \mathrm{kbit} / \mathrm{s}$ data from the subscriber is used to access a one-way broadband video signal from the exchange.

The basic cap modulation system depends on relatively low cost, readily a vailable visi chip sets.

Discrete multi-tone modulation system. While there is nothing new in the processors, visi device development for dmt is still at an early stage of development.

Video-on-demand technical trial results

Objectives of BT's technical trial were to test the feasibility of delivering video and multimedia services, with no market information objectives.
The set top box used was based on an Apple Macintosh LC475 running a Mac operating system modified to support MPEG and a $2 \mathrm{Mb} / \mathrm{s}$ network interface. At start-up it downloaded the operating system and Oracle Media Objects (OMOs), the run time version of the authorware tool in which the services are created.
The network connected to the set-top box was a $2 \mathrm{Mbit} / \mathrm{s}$ stream delivered over either copper, using asymmetric digital subscriber loop (adsl), or fibre. Over an ordinary telephone loop, adsl technology delivers $2 \mathrm{Mbit} / \mathrm{s}$ in one direction, a $9.6 \mathrm{kbit} / \mathrm{s}$ bidirectional control channel, and the analogue telephone service.
The variety of adsl used in the trial was discrete multitone, which divides the spectrum into a number of bands and
spreads the audio transmission over them in a such a way as to minimise interference and noise. For the fibre delivery a passive optical network was used.
Users were directly connected to the server system without any concentration or switching stage. The server system consists of an nCube massively parallel computer and the system ran on Oracle database software with the video content compressed to MPEG 1 standards.
Results of the trial were:

- Adsl technology is robust and has wider than expected range - of about 6 km . Resistance to noise and to installation wiring anomalies is excellent, corresponding to 92% network penetration:
- The combination of MPEG coding and adsl works well. As a result, adsl is a viable technical solution to the problem of delivering high-bandwidth asymmetrical services.

BT will be using adsl for the market trial along with fibre in the ratio of about four copper to one fibre. In the technical trial discrete multitone was used, but carrierless amplitude and phase modulation adsl is to be used for the market trial. This is because it is available earlier in a more integrated and therefore cost effective form, says BT.
For the market trial, the same combination of server and set top box technologies supplied by nCube, Oracle and Apple Computers will also be used. However, there will be a switching/concentration stage which will be asynchronous transfer mode, atm, based. Users will be connected to an atm switch with a concentration ratio of roughly two to one. This means that there are about twice as many users as there are server ports, and about half of them can be on line to the system at any one time.
the channel capacity, bit rate reduction coding may be used. For example, with 2B1Q coding, each pair of binary input digits is converted into one of four quaternary output symbols.

Modulation format options

A number of different modulation formats have been tested and these include, qam, cap and dmt.

Quadrature amplitude modulation, qam. First, the binary data stream is split into two sub-streams and each separately modulated on to orthogonal versions of the same carrier frequency. The two modulated signals are then added and low pass filtered before transmission to network.

Carrierless amplitude-phase modulation, cap. The basic implementation of this technique is shown in Fig. 3. Again, the bit stream is split into two components. Each is then passed through a pair of Hilbert non-recursive digital filters that have an impulse response differing in phase by π. The outputs are then added, passed through a digital-to-analogue converter and filtered before being passed to the transmission network.

Discrete multi-tone modulation, dmt. This preferred method has a lot in common with cofdm, which is short for coded orthogonal frequency division multiplexing, in that the main channel is divided into many sub-channels.

Each serial digital input signal is first encoded into a parallel form and then passed through a fast-Fourier-transform processor. This converts the frequency domain samples
into time domain values with a sliding timewindow effect. These values are then transcoded into a.serial format and digital to analogue converted before transmission.
Basic transmission processing is shown in Fig. 4, which shows that two or more prefix bits are added to the bit stream in order to minimise inter-block interference. When these bits are dropped in the decoder, the bit stream is typically broken up into 512 bit blocks to improve the definition of the FFT window. The line characteristic for each narrow subchannel is practically constant so that the minimum of pulse smearing is created thus improving signal quality. Any impulse noise that appears as interference is spread over many sub-channels by the FFT processor window so this form of interference is less likely to create data errors.
Within a sub-channel, the number of bits transmitted can be varied adaptively depending on the signal to noise ratio in the subchannel. This not only improves signal quality on a particular line, but it also minimises the effect of cross-talk from other lines.
While the dmt modulation scheme is more robust under noisy conditions, the processors are more expensive than those for cap modulation. However, at least one chip manufacturer has stated that chip sets could be available by the end of 1996 for under $\$ 100$, Other proponents of adsl have variously estimated that if the take-up by subscribers is greater than about 10%, the system would be profitable to both chip set manufacturer and video-on-demand providers.
Whichever modulation scheme is used, the digital data is converted into analogue format, low pass filtered and coupled to the balanced
line network via a hybrid transformer. In each case, the down-stream receiver functions in a complementary manner.
Hardware development is aimed at a single board approach with extensive use of standard vlsi chips wherever possible and with consumer prices very much in mind. The concept, which is a product of the 1990 s , is compatible with the optical fibre networks that are currently in the process of being installed. When fibre is everitually installed in the final loop, both the quality of the images and the extent of the information services available in the home will be vastly expanded. Data rates in excess of $6.144 \mathrm{Mbit} / \mathrm{s}$ have already been tested over relatively short voice-grade transmission lines.
Although the technology has been largely been driven by the laboratories such as BT and Bell, hardware manufacturers are starting to develop and offer systems to implement adsl. While BT is currently running trials in the UK, it is interesting to note that the telecoms organisations of Hong Kong, Korea and Singapore all plan to start trials before the end of 1994. With such Far Eastern interest, the costs of installing adsl must surely drop dramatically within the next three years.
Standards for adsl are currently being developed by ANSI by the working Group TIE1.4; under Document No TIE1.4-007 1993. The European Telecommunication Standard Institute (ETSI), group STC TM3 RG12, is currently engaged in agreeing the details of this annex. Since it is not expected that an independent European standard will develop and because of isdn compatibility, adsl could offer a possible world standard distribution system for television signals.

CRYSTAL OSCILLATORS
2M4576 3M6864 5MO 5M76 6M144 7M000 7M3728 8M000 12M000 25M175 27M0 27 M036 28M322 32M000 33M 3330 35M4816 40M000
 16M000 18M432000 19M0500 20M0500 38M10000 56M6092 76M1
84M0．
CRYSTALS
4M0256 10M368 17M6256 18M432 25M000 28M4694 31M4696
48M000 55 M500 111M80 112M80 114M318 14M $80 ~ 1 M 0 ~ 1 M 843 ~$

 12 M 000 13M000 13M270 14M000 14M381818 15M000 16 M 000 16M5888 17 M 00020 M 00021 M 30021 M 85522 M 118424 MO 00 34M368 36M 7562536 M 76875 36M78125 36M 7937536 M 8062 36M81875 36M83125 36M84375 38M900 49M504 54M19166
54M7416 57M75833 60M000 59 M545 59 M550 BN 25 M 995 RD27M045 OR27M095 YW27M145 GN27M195 BL27M245 3M225
TRANSISTORS
M 2 2SO97A

BCII S7 BCY70 PREFORMED LEAD \qquad £1 $£ 4 / 100 £ 30 / 1000$
C557，BC238C，BC308B ．．． E1／30 £3．50／100

POWER TRANSISTORS

TEXTOOL ZIF SOCKETS

 DUAL INLINE DEVICES ．．．COUPLING SUPPLED．．．．．．．．．．251．50

NEW BITS

2 VOLT 920 Ahr LEAD ACID CELLS．UNUSED，UNFILLED $18^{\prime \prime}$ HIGH 12＂$\times 7$＂，WEIGHT 48Kg each，RUBBERISED CASE，GAULTLETED CURRENT USE，MADE FOR BRITISH NAVY， 800 CELLS
AVAILABLE，PHONE FOR PRICING ALSO AVAILABLE FILLED \＆ CHARGED
Narrow angle infra red emitter LED55C．
Z808 PIO 7000 availa mount 1000 available OPTO ICS also available TLP550 TLP666GF

KEYTRONICS
TEL．01279－505543
FAX．01279－757656
P O BOX 634
BISHOPS STORTFORD
HERTFORDSHIRE CM23 2RX

MISCELLANEOUS

MINIATURE FERRITE MAGNETS $4 \times 4 \times 3 \mathrm{~mm} \quad$＿－．．．．．．．．．．． $10 / \varepsilon$ ALPS MOTORISED DUAL 47K LOG pois with spindle，works on TVO71 LO NOISE OP AMP $T 081$ OP AMP 5 for ε $47000 \cup$ 25V SPRAGUE 36 D
12 way dil SW
10 NF 6 VI XTR PHILIPS SURFACE MOUNT 100 K SWITCHED MODEPSU 40 WATT UNCASED OTY． AVAILABLE $+5 \vee 5 A,+12 V 2 A, 12 V 500 \mathrm{~mA}$ FLOATING 220 R 2．5W WIREWOUND RESISTOR 6OK AVAILABL CMOS 555 TIMERS ICM7126CPL CMOs as used in compact cameras．．．．．．．．2／81．50 LITHIUM CELL 1／2 AASIZE CO …．．．．．．．．．．．．．．．2FOR 1 PASSIVE INFRA RED SENSOR CHIP＋MIRROR＋CIRCUIT

EUROCARD 21－SLOT BACK PLANE 96／96－WAY．．． MULTILAYER PRHPCB
EUROCARD 96 －WAY EXTENDER BOARD $290 \times 100 \mathrm{~mm}$
＂PROTONIC 24＂CIW 2 SUPPORT ARMSIEJECTORS． DIN 41612 96－WAY ABZC SOCKET PCB RIGHT

 DIN 41612 64－WAY ACC PLUG PCB RIGHT ANGLE． DIN 41612 64－WAY AB SOCKET WIRE WRAP（2－HOW BODY BT PLUG＋LEAD \qquad MIN．TOGGLE SWITCH 1 POLE C／O PCB TyPe CO MODULE sim．LMO18 but needs 150 to 250 V AC for displa 6－32 UNC 5／16 POZI PAN SCREWS
NUTS．．．．
PUSH SWITH CHANGEOVER
RS232 SERIAL CABLED25 WAY
．．
…．．．．．．． $1.25 / 1$ 25 FEET LONG， 15 PINS WIRED BAAID＋FOIISCR 5 ETOA ea（ 51.30 ） AMEAICAN 2／3 PIN CHASSIS SOCKET INMAC LIST PRICE E30 AMERICAN 2／3 PINCHASSIS SOCKET WIRE ENDED FUSES $0.25 A$ Also available 28 slot vari－bus backplane same size +
Price．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
TS．．．．． BNC 50OHM SCREENED CHASSIS SOCKET SMALL MICROWAVE DIOOES AE1 OC1026A DIII．L．SWITCHES 10－WAY \＆8．WAY 800 4／5／6－WAY MINGLASSNEONS
RELAY $5 V$ 2－pole changeover looks like RS 355.741 marked $10 / 1$ STC 47WBost MINIATURE CO－AX FREE PLUG RS 456－071 MNIAAURE CO－AA PCB SKT RS 456－093
PCB WITH 2 N2646 UNIJUNCTIO WIH PCB WITH 2 N2646 UNIJUNCTION WITH 12V 4－POLE RELAY 400 MEGOHM THICK FILM RESISTORS．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $4 / \AA$ STRAIN GAUGES 40 ohm Foil type polyester backed balco grid ELECTAET MICROP HONE INERT．．．．．．．．．．．．．．．．．．．．．．．．．．2／ 20 Linear Hall effect IC Micro Switch rio 613 SS4 sim RS $304 \cdot 267$

DIODES AND RECTIFIERS
A115M 3A 600V FAST RECOVERY DIODE 4／81 N5407 3A 1000V 100081.50

N4004 SD4 1A 300 V $-. .100 / 123$
1N5401 3A 100V．．．．
BA158 1 A 400 V tast recovern
BY254 800 V 3 A.
BY 255.1300 V 3 A.
SA 100V SIMILARMA751
A GOOV BRIDGE RECTIFIER
4A YOV BRIDGE
6A 100V BRICGE
A 1 100V BRIDGG
12A 2000 VRIIGE
25A AOOV BRIIDGE E2． 50
KBPO2 IN LINE 2A 200V BRIDGE REC
SCRS
PUUSE TRANSFORMERS $1.1+1 \ldots \ldots \ldots$ TICV1060 800 mA 400 C SCR $3 / \mathrm{E} 1$ $100 / \Sigma 15$
$3 / \Sigma 1$

TRIACS

DIACS 4／乏1
NEC TRIAC ACOBF BA GOOV TO220．
$5 / 52100 /\{30$
$2 \Sigma 1100 \% 35$
 TRIAC IA 800 V TLC 381 T 16k AVALLABLE ．．．．．．．．．．．． 5 FOR 11 §15／100 CONNECTORS
D25 IDC PLUG OR SOCKET．．

CENTRONICS 36 WAY IDC PLUG．．．
BEC TO CENTRONICS PRINTER LEAD 1.5 SM ．
CENTRONICS 3 WAY PLUG SOLDER TV
14 WAY IDC BLOCK HEA

PHOTO DEVICES

HI BRIGHTNESS LEDS COX24 RED．．．．．
SLOTIED OPTO－SWITCHOPCOA OPBB15
N5777
IL81 PHOTO TRANSISTOR．．
TIL38 INFRA RED LED
N25，OP 12252 OP
HOTO DIODE 50P
MEL12（PHOTO DARLINGTON BASE NC
LED＇s RED 3 Or 5 mm 12／E1．．．．．．．
期
FLASHING RED LED 5mm 50p．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1001540
STC NTC BEAD THERMISTORS
G22 220R．G13 1K，G23 2K，G24 20K，G54 50K，G25 200K，RES $20^{\circ} \mathrm{C}$
DIRECTLY HEATED TYPE．．
 A13 DIRECTLY HEATED BEAD THERMISTOR 1 k res．ideal tor audio
Wien Brldge Oscillator．．．
CERMET MULTI TURN PRESETS $\mathbf{3} \mathbf{4 "}^{\prime \prime}$
10R 20R 100R200R 250 R 500 R 2K 2K2 2K5 5K 10K 47 K 50K 100K

IC SOCKETS

14／161 18／20／24／28／40－WAY DIL SKTS
8－WAY DIL SKITS．．．．．．．．．．．．．
E1 per TUBE
32－WAY TURNED PIN SKTS

way SIMMS

POLYESTER／POLYCARB CAPS

$330 \mathrm{nF} 10 \% 250 \mathrm{~V}$ AC X2 RATED PHILIPS TYPE $330 \ldots \ldots$.

$\mu 2160 \mathrm{~V}$ rad $22 \mathrm{~mm}, 2 \mu 2100 \mathrm{~V} \mathrm{rad} 15 \mathrm{~mm}$
$1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC
140 100V rad 15mm， 10022 mm rad．．ea

RF BITS

SAW FILTERS SW662／SW661 PLESSEY SIGNAL TECHNOLOGY
379.5 MHZ ．．ea X3286 FERRITE RING GID 5mm OD 10 mm ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 10 for $£ 1$ ASTEC UM1233 URF VIDEO MODULATORS（NO SOUND） 1250 §1．50
MARCONI MICRO WAVE DIODES TYPES DC2929，DC2962，
DC4229F1／F2．．．．．．．．．．．．．．．．．．．．．
ALL TRIMMERS．
SELLL MULLARD 3 FOR $50 \mathrm{p} £ 10100$
TRANSISTORS 2N4427， 2 N3866．． 30 p ea
 6 SLOLT TELEDYNE RELAYS 2 POLE CHANGEOVER．．
（BFY51 TRANSISTOR CAN SIZE）
2N2222 METAL
P2N2369AA．．．．
．．．．2／21

PLESSEY ICS EX－STOCK

SL350G SL360G SL362C SL403D SL423A SL521B SL523C SL541B
L850C SL1021A SP8655 SP8719DG
MONOLITHIC CERAMIC CAPACITORS
100 n 50 V 2.5 mm or 5 mm ．
00n ax short leads
100 n ax long leads ．．．．．．．．．．．．．．．．
100 n 50 v dil package 03^{\prime} rad
100／£4．50

QUARTZ HALOGEN LAMPS
12V 50watt LAMP TYPE M312．．．．．．．．．．．．．．．．．．．．．．$£ 1$ ea HOLDERS 60 p ea

MAIL ORDER ONLY
ERS WELCOME隹 P\＆P AS SHOWN MIN．ACCOUNTORDEACKETS（HEAYY TIEMS）OTHERWISE 95p ADD $17 ½ \%$ VAT TO TOTAL
ELECTRONIC COMPONENTS BOUGHT FOR CASH

> Interfacing via the $p c^{\prime} s$ printer port, this 16-channel data-capture subsystem with 12-bit resolution can be moved between machines without having to open the computer's lid. In addition to its analogue inputs, the subsystem also provides an eightbit digital output port, as Pei An explains.

Fig. 1. Precision data logger/controller comprises an a-to-d converter board providing 16 analogue input lines and 8 ttl outputs. It is controlled by a pc or laptop computer via the centronics printer port using appropriate i/o card.

CATCHING DATA VIA

The present precision data acquisition system has a 16 -channel analogue multiplexing facility and a 12 bit a-to-d conversion accuracy. It incorporates an on-board digitally-controlled variable gain amplifier, offering gains of 10,100 and 1000 .
Input voltage is in the range from -5 V to +5 V with an accuracy of about $1 \mu \mathrm{~V}$. The conversion rate is 7 Hz . In addition, the system has an 8 -bit digital output port. This allows the device not only to read analogue signals into the computer, but also to send data out of the computer for controlling external equipment.
There are two main modules in the data log-

ging system - an a-to-d conversion board and an interfacing card. The former deals with analogue signal multiplexing, amplifying and analogue-to-digital conversion; the interfacing card manages communication between the a-to-d board and the computer.
I have designed two versions of the interfacing cards. The first is intended for interfacing with the centronics port of the computer and the second for interfacing with the RS232 ports. Both cards incorporate an 8255 programmable peripheral interfacing (ppi) IC. This provides three programmable eight-bit i/o ports through which the a-to-d converter board is connected. In this article, only the design of the centronics i / o card is discussed.
The a-to-d board can be connected to any i/o ports, provided that two 8 -bit outputs and one 8 -bit input are available. A complete data logging system connected to a pc or a laptop computer is illustrated in Fig. 1.
The description of this system is divided into two parts. The first one concentrates on the works of the a-to-d conversion board and the second on the centronics i/o card.

A-to-d conversion module

The system comprises five blocks. These are the analogue multiplexer unit, the digitallycontrolled variable gain amplifier unit, the a-to-d conversion unit, the digital output unit and power supply unit. Figure 2 shows the block diagram of the a-to-d board while Fig. 3 gives the circuit diagram.

Analogue multiplexer. The analogue multi-

Fig. 3. The a-to-d board comprises two analogue multiplexers, a digitally-controlled variable gain instrument amplifier, a 12-bit a-to-d converter and support ttl chips. Output data from the pc is latched in the 374 octal D-type latches.

Software/hardware source

Printed-circuit boards, control software and parts for the a-to-d converter and centronics or RS232 interfacing cards are available from the author. For more details, write to $\operatorname{Dr} \mathrm{An}$ at 58 Lamport Court, Lamport Close, Manchester M1 7EG, England, or phone or fax on +44-(0)161-272-8279.

and -10 V rails of the power supply. Pins S_{0} through S_{7} are the analogue inputs while D, on pin 8 , is the analogue output.
Analogue input is selected by applying an address at A_{0-2} address lines. During the operation, the enable input should be pulled high. Address lines A_{0-2} are connected to the lines $D B_{0-2}$ on port C of the 8255 peripheral IC. Enabling for $I C_{2}$ connects directly to $D B_{3}$ of port C and the enable for $I C_{1}$ connects to $D B_{3}$ via inverter $I C_{6}$. This ensures that only one multiplexer works at a time.
Analogue outputs of the ICs are wired together and then connected to the input of the amplifier, Fig. 3.

Variable-gain amplifier. Analogue outputs from the multiplexers connect to the input of the PGA204 amplifier. This device is a high performance, low cost, general purpose instrumentation amplifier with programmable gain. It is laser trimmed for very low offset voltage and drift combined with high common-mode rejection. In addition, it will operate with supplies from 4.5 V to 18 V and its quiescent current is about 5 mA .
Inputs $V+$ and V - of the PGA204 connect to the +5 V and -5 V rails of the power supply. Gains of 1,10100 and 1000 are digitally selected by two $\mathrm{tt} / \mathrm{cmos}$-compatible address lines, $A_{0,1}$ on pins 15 and 16.
There is no latching for the address lines. A change in the address inputs immediately selects the new gain. However, a delay of around a microsecond is needed for the amplifier to settle to a new output voltage in the newly selected gain.
Input connects between $V_{\text {in- }}$ and $V_{\text {int }}$. Internal input protection allows overloads up

Fig. 4. Centronics port to 8255 peripheral interface chip. Communication between the computer and the 8255 is achieved by several ttl chips. Data and status ports centronics interface are used for sending data to and reading data from the 8255 peripheral IC. The control port manages operation of the 8255 peripheral chip.
to $\pm 40 \mathrm{~V}$ on the inputs without damage. Output V_{0} is referred to the output reference $R E F$, which normally connects to the analogue ground via a low impedance.
The PGA204 has an output feedback connection at pin 12 which must be connected to the V_{o} output terminal for proper operation. Normally, a constant current of approximately 1.3 mA flows through the digital ground pin. This makes it necessary to return the digital ground through a separate connection path so that the analogue ground is not affected by current in the digital ground.
Pins 6 and 7 allow offset of the input stage to be trimmed. Address lines $A_{0,1}$ connect to $B D_{4,5}$ of the 8255 's port C, which is configured as an output port.

A-to-d conversion unit. Amplified analogue signal is finally fed into the ICL7109 12-bit a-to-d converter. This IC is a high-performance, low-power, integrating a-to-d converter. It needs +5 V and -5 V power supplies on pins 40 and 28 respectively. Pin 1, GND, connects to the ground.
References $R E F_{\text {IN }+}$ and $R E F_{\text {IN }-}$ connect to a bandgap voltage reference. The 7109 provides an on-board voltage reference which is normally 2.8 V below $V+$ and has a typical temperature coefficient of $\pm 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. This ref-
erence voltage is at $R E F_{\text {Out }}$ -
The IC needs some capacitors and resistors for the analogue side of the converter, values of which should be calculated according to the manufacturer's data sheet. An on-chip oscillator operates with an inexpensive 3.5795 MHz tv crystal producing 7.5 conversions per second.
Digital communication with the 7109 is configured in direct mode, achieved by making the mode input pin open or low. In this mode, output data is directly accessible under control of the chip. The RUNIHOLD pin is unconnected and thus pulled high by the 7109's internal pull-up resistor. This allows the converter to perform a-to-d conversions continuously and to update the 14 tri-state outputs $B_{1-12}, O R$ and $P O L$. Lines B_{1-12} present the 12 bits of the conversion data. Input over-ranging is indicated on the $O R$ pin while $P O L$ indicates polarity of the signal.
During a conversion cycle, the status output goes high then low after new converted data has been stored in the output latches. It is used as a 'data-valid' flag for monitoring the status of the converter. In this design, STATUS and data bit B_{1} share the same line, which connects to $D B_{0}$ of port A of the -8255 peripheral interface. Data line $D B_{6}$ of port B selects whether STATUS or B_{1} is read into the pc.
Chip enable line -CE/LOAD connects to the ground to enable the IC. When -LBEN is low, the low eight bits B_{1-8} output the data while high bits $B_{9-12}, O R$ and $P O L$ are high impedance. When $-H B E N$ is low, $B_{9-12}, O R$ and $P O L$ will output data and the low bits are in high-impedance state.
In Fig. 3a, some outputs in the two groups are connected together to form an eight-bit

PC INTERFACING

Fig. 5. Software flow for writing data to, and reading data from, the peripheral registers of the 8255 parallel interface. When writing, the data port of the centronics interface supplies data to the 8255 and the control port controls transfer. During reading, data from the 8255 is read into the $p c$ via the status port. As only four inputs are used by the status port, the eight-bit data is loaded into the pc in two consecutive readings, which is controlled by the first lsb of the data port. Operation of the 8255 is again managed by the centronics control port.
output instead of 14 bits. Lines $-H B E N$ and $-L B E N$ are used to select the lines either in the high byte or in the low byte. These eight-bit data buses connect to port A of the 8255 peripheral interface which is configured as an input port. Line $-H B E N$ connects to $D B_{0}$ of port B while $-L B E N$ connects to $D B_{0}$ of port B via inverter $/ C_{6}$

Digital output unit. An LS374 octal latch is used. Inputs to the IC are supplied by port B of the 8255 , which is configured as an output. This data is latched to the outputs by taking the clock line from low to high. The clock is connected to $B D_{7}$ of the 8255^{\prime} 's port C .

Power unit. The power unit derives -5 V and $\pm 10 \mathrm{~V}$ dc supplies from a 5 V dc rail via two voltage conversion chips, Fig. 3b. The ICL7660 converts +5 V to -5 V while a MAX680 converts +5 V to +10 V and -10 V .

Interfacing to the pc

Interfacing via the centronics printer port was discussed in an article entitled 'Real world control via $L P T$ in the September issue of $E W+W W$. Briefly, the centronics port consists of three independent ports, namely, the data

Fig. 6. Analogue-to-digital conversion begins with selecting one of the 16 analogue inputs. It is followed by sending a command to select the gain of the amplifier. After this the status of the a-to-d converter is polled continuously until it indicates that conversion is finished. The 12 bit data - plus polarity and over-range flags - are read into the pc twice. They are finally combined to form a single 12-bit word.
output port, the control output port and the status input port.
For the data logger, the centronics data port is used to send information to the interface card while the status port is used to read data from the IC. The control port manages reading and writing operations of the 8255 interface chip.
The 8255 is an industry standard programmable peripheral interface with four internal registers. Three of these are called peripheral registers and are associated with ports A, B and C. The fourth is the control register.
All three peripheral registers are used for data transactions between the 8255 and external circuits while the control register is used to initialise the operation modes of the parallel interface.
There are eight bidirectional data lines, $D B_{0.7}$, through which data is written to or read from the internal registers under the control of read and write lines. Address lines $A_{0,1}$ select a particular register.
Data transfer is facilitated by $I C_{2}$ and $I C_{3}$, which are tri-state buffers. Control over the 8255 is made by $I C_{4}$ and $I C_{5}$ which are a tristage buffer and nor gate respectively.
You can see from Fig. 4 that two lines of the centronics control port, pins 31 and 36 , are
connected to address lines $A_{0,1}$ of the 8255 peripheral interface via $I C_{4}$ - a tri-state buffer.
The other two lines of the control port, pins 1 and 14 , connect to $-R D$ and $-W R$ of $I C_{1}$ via $I C_{4}$. A problem could occur when these two lines are both low, since the $8255-R D$ and -WR lines cannot be set low simultaneously. To prevent this, a nor gate is used. Its two inputs connect directly to the two control lines from the centronics port, pins 1 and 14, and its output connects to the enables of $I C_{4}$.
When the two lines from the control port are both low, output of the nor gate goes high. This disables the buffers on the $L S 365$ and sets all the outputs at high impedance. Resistors $R_{1,2}$ pull the $-R D$ and $-W R$ lines high.
To write data to an 8255 register, firstly the required data is written to the centronics data port together with an address to the control port, then a high-to-low-then-high pulse is issued from the control port write line. This enables data on the inputs of $I C_{3}$ buffers to be transferred to the 8255 data bus and in the same time written into the selected register.
Reading data from the 8255 is slightly complicated, since the centronics port only has five input lines. In order to read eight bits of data, the computer has to read at least twice. This is done by $I C_{2}$, an $L S 241$ tri-state octal buffer.

In Fig. 4, when the first enable, pin 1, is low, the four left hand side buffers work, i.e. the outputs follow the inputs. When pin 19, the second enable, goes high, the four right-hand side buffers operate.
By connecting pins 1 and 19 together to form a data-select line and by putting the line low and then high, the status port can read the four bits connected to the left and right hand buffers in turn. These two readings are then bit-manipulated and combined to form a single eight-bit byte.
Operating in such a manner, the 8 -bit data appearing on the input lines of $I C_{1}$ can be read into the centronics port. Referring to Fig. 2, the data-select line is controlled by $D B_{0}$ of the centronics data port.
The card incorporates a $70851 \mathrm{~A}, 5 \mathrm{~V}$ regulator. An external $8-12 \mathrm{~V}$ dc supply capable of delivering about 100 mA is needed. In my design, the regulated 5 V supply also feeds the expansion socket for conveying power to the a-to-d conversion board. An 800 mA on-board fuse is used.

Programming

I have written a control program in Turbo Pascal 6 for this data logging system. Flow charts for the centronics i/o card and data logging system are shown in Figs 5 and 6.
 list, is available on request. Please make your request on company headed notepaper, by post on by fax, to:
B.K. ELECTRONICS Unit 1 Comet Way, soUTHEND-ON-SEA, Essex, 8s2 5TR. Tel.: 0702-52757e Fax: $0702-420243$

CIRCIE NO. 113 ON REPLY CARD

WE WILL PAY.... TOU
Just to view our NEW Low Cost Emulator:

> EASY TO USE \quad. Borland type IDE UNIVERSAL Supports most micros LOW PRICE_....... Systems from $£ 599$

FAST... REAL-TIME Source Level debugging for any Assembler or 'C' Compiler

RING our NEW Sales Omice (BATH). 01225-448630

M \& B RADIO (LEEDS)

ALL PRICES PLUS VAT AND CARRIAGE • ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY

86 Bishopgate Street, Leeds LS I 4BB Tel: (0532) 435649 Fax: (0532) 42688 I

CIRCLE NO. 115 ON REPIY CARD

SEETRAXCAE - RANGER-PCB DESIGN

Ranger 18100

* Parts and wiring list entry* Qufline (fortprint) library editor*	

Rangex ${ }^{2} \neq 599$

All the feitiones Rangerl plus

* Gate \& pin swappling (iliwid to sheqipife
*Track hithlichting
*Auto track necking
* Copper flood fill
*Power planes (heat-relief or anti pars)
O 1 Hftp-up \& retry autovoutes

Ranger 3 \&3500

Al the featuras of Ranger2 pluse

* UNIXor DOS versions
* 1 Micuon resolution*ind gingles to $1 / 10$ th degree
* Hioranchical or fifat schematic

Unlinatied design size
*Any-shaped pad

* Split power planes

* Optional on-line DRC

W too \%ripup \& netry, push \& shiove sinformuter.

Outputs tor

$\because \cdots-\infty$

* $1 / 9$ and, 24 pin det-matrix printers
* HP Desk/Laset Jet, Canon•BJet, Poststript (R3 ofly)
* J12 GL, Houston Instruments plowers
(3) Gerber photorl ghets.
t NC Drill Excellons sieb \& Meyer
duncinanxF

INTERFACING WITH C

by
HOWARD HUTCHINGS

Interfacing with C can be obtained from Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-652 3614.
A disk containing all the example listings used in this book is available at $£ 29.96$. Please specify size required.

C HERE!
If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

AUDIO

> Connecting a speaker to an amplifier isn't just a matter of linking a piece of wire. There are reactances, impedances and phase to consider - all conspiring to upset stability. Ivor Brown shows how to avoid trouble.

Between amplifier and speaker

|n audio systems, there is usually more than just a length of cable between the power amplifier circuit and the loudspeaker; additional components are there because the amplifier designer has no control over the load that the amplifier will have to feed. They are intended to isolate load variations from the amplifier circuit so that it operates as intended for all reasonable loads.
Usually, a series resistor-capacitor network is across the amplifier's output terminals and an inductor of a few microhenries goes between the output of the circuit and the live speaker terminal. The $R C$ network provides an effective low-impedance load at high frequencies where, for example, an electromag-
netic loudspeaker will have an impedance much larger than its nominal value. The inductor removes the effects of significant capacitive loads on the amplifier, such as may be encountered with long leads. The amplifier 'looks into' the inductor, whose impedance rises with frequency and buffers the capacitance loading at these frequencies. It sounds very simple, but analysis reveals that the circuit's operation is rather complex.
Why are amplifiers sensitive to reactive loads? Most employ some negative feedback to linearise their behaviour, the stability of the feedback loop being all-important. To ensure adequate stability margins for a multi-stage amplifier with a resistive load is difficult
enough, but to do it for unspecified reactive loads is virtually impossible. An inductive load may cause the open-loop gain of the amplifier to rise at high frequencies and prevent satisfactory stability margins being obtained. A capacitive load will introduce additional phase lag into the forward gain path and this may also lead to unsatisfactory stability margins.
Negative feedback has had a bad press over the last few years, some designers making a feature of using as little as possible. There is nothing wrong with the technique in itself, but its use without appreciating and avoiding its limitations can - and does - cause problems ${ }^{1}$. Most importantly, open-loop bandwidth of the
amplifier must cover the whole audio frequency range. Outside these frequencies the gain must be rolled-off in a controlled manner to ensure satisfactory gain and phase stability margins; behaviour made difficult to achieve by unspecified reactive loads. Since most designs employ dc-coupled feedback loops, serious stability problems are normally confined to high frequencies above 10 kHz , extending to around $\mathbf{I} \mathrm{MHz}^{2,3}$.

Series inductor

To start, assume a load consisting of a resistive loudspeaker plus some shunt capacitance. Inductor L, shunt capacitance C and the load resistor R form the damped resonant circuit of Fig. 1. In practice, the capacitance is mainly due to the speaker cable, but a well designed amplifier should be stable with appreciably larger values than those expected from this source. This implies that the design has good stability margins and component tolerances between samples are unlikely to be a problem. Also, although having an amplifier remote from the speaker is not a good idea, it may be operated in this way and must not be unstable even with very long cables.

Equations in the diagram describe the impedance of the network. When the imaginary parts in the numerator and denominator of the right hand impedance expression are equal, it is resistive. The equation for the zerophase frequency, zpf, shows it is real only for capacitance above a minimum value ($C_{\text {min }}$); with $C_{\text {min }}$ in circuit, zpf tends to zero, the significance of zpf being that, below it, the impedance of the network is capacitive and, in spite of the inductor, will capacitively load the system. Above it, the impedance is inductive with leading phase.
Figure 2 is zpf shown plotted against capacitance for two values of inductor and a 8Ω resistor; also shown is the frequency calculated from the $L C$ product. With large values of capacitance, circuit Q is high and the two frequencies are virtually identical. As the capacitance is reduced towards the minimum value, Q is lowered and zpf differs appreciably from the $L C$ frequency. The larger inductor lowers the zpf for a given value of C and hence the frequency range where the amplifier experiences capacitive loading.
With a larger load resistor, $C_{\text {min }}$ is lower and the curves are shifted upwards and to the left.

Fig. 1. Impedance and frequency for zero phase of the deceptively simple circuit with series L , cable capacitance and resistive speaker load. Above and below zero-phase frequency, impedance is inductive and capacitive respectively.

Fig. 2. Zero-phase frequency against C , with L of $1 \mu \mathrm{H}$ and $5 \mu \mathrm{H}$ and an 8Ω resistor in the circuit of Fig. 1.
"Negative feedback has had a bad press over the last few years, some designers making a feature of using as little as possible. There is nothing wrong with the technique in itself, but its use without appreciating and avoiding its limitations can - and does - cause problems."

The zpf curve follows the $L C$ line to lower values of C and reaches higher frequencies, as expected because circuit Q is increased. Before proceeding, the series $R C$ network must be added across the input, 10Ω and 100 nF being typical values. In the introduction I suggested that its purpose was to prevent the inductive speaker presenting a high impedance load at high frequencies, but now a physical inductance is connected to the amplifier output.
Figure 3 shows the circuit as so far described and two simulated responses of its input impedance for shunt capacitances of 200 nF and $2 \mu \mathrm{~F}$, showing the lower zpf and the larger maximum phase lag occurring at a lower frequency for the larger C. The input $R C$ network increases the maximum phase lag slightly but, more importantly, reduces the magnitude at higher frequencies. Without the network, the phase would tend towards $+90^{\circ}$.
Connecting a load of 8Ω and $2.2 \mu \mathrm{~F}$ in parallel is a common test to assess stability margins. It will almost certainly cause a squarewave output to ring severely on the transitions, but the ringing should die away quickly, indicating that the amplifier has adequate margins. Most of the ringing may be due to the transmission characteristic of the $L C R$ circuit with the waveform at the input side of the inductor looking much better. In this case the additional phase lag at relatively low frequencies is not causing a problem.
However, with an appreciably lower capacitor, more representative of cable capacitance, things may not be so good. Maximum phase lag is less, but it occurs at higher frequencies; active devices in the amplifier are also causing appreciable lags and the circuit may not be able to tolerate the additional loading.
When looking at the loading impedance, one must consider both magnitude and phase. A large magnitude with phase tending to -90° represents a small capacitor which may have little effect. A small magnitude with a smaller

Fig. 3. Additional CR across input of circuit in Fig. 1 reduces impedance magnitude swing at high frequencies. Performance curves are shown on the left.
seeking great accuracy unless an amplifier is being designed for use with one specific speaker system; hardly a practical proposition.
Input impedance responses in Fig. 4 show the result of using the three-component compensation circuit with the 8Ω load replaced by the loudspeaker model. Note the wide variation in magnitude with the scales going up to 25Ω as opposed to 10Ω in Fig. 3.
Comparison of the 200 nF responses in Figs 3 and 4 reveals how much the loudspeaker model has changed matters for the worse. Maximum phase lag is much greater than before and it occurs at a higher frequency; the magnitude at maximum phase lag is considerably reduced; just the effects we have been trying to avoid!

Figure 1 shows that, for 8Ω and $5 \mu \mathrm{H}$, the value of $C_{\min }$ is 78.1 nF . With the simulated speaker, capacitance values below $C_{\min }$ do result in an impedance with a lagging phase angle. The upper responses in Fig. 5 show what happens with just 50 nF : a low magnitude with over 60° of lag at around 300 kHz . Curves are not shown, but with only 10 nF , the
phase angle may take an appreciably greater quadrature current component.

Practical loudspeaker loads

At audio frequencies, the impedance of loudspeakers varies widely from the nominal resistive value; however, in the context of this article, it is the impedance above 10 kHz that is important. Measurements have been made on a number of 8Ω, two-unit systems and the results suggest that the impedance curves for such systems are not too dissimilar: the magnitude rises gradually from about the nominal value at 10 kHz to above 100Ω at 1 MHz .
Figure 4 is a reasonable model with typical component values shown. There is no point in

Fig. 4. Three-component circuit of Fig. 2, with a speaker instead of an 8Ω resistor. Both magnitude and phase swings are much worse, even though magnitude scale is now 25Ω. Performance curves are shown on the right.

lag approaches 45° over the range 100 kHz 700 kHz .
Inductive speaker impedance is again causing a problem and second series $R C$ network must be added to ground from the load side of the inductor. Considering the other impedances in the circuit and the likely low output impedance of the amplifier, values of 10Ω and 500 nF form a negligible shunt across the speaker at audio frequencies, and largely overcome the problem. Figure 5 is the complete circuit and simulated input-impedance plots for three shunt capacitor values, two the same as in Fig. 4; the reduced magnitude variation, on a 0 to 10Ω scale, and the smaller lag angles are clearly shown. Responses for the larger capacitors are not very different from those shown in Fig. 3.
Investigation of the five-component isolation circuit with the loudspeaker model replaced by a 8Ω resistor gives responses that are also not very different from those in Fig. 3. There is only a small phase lag for capacitors less than $C_{\min }$. With larger values, the magnitude and phase at the maximum-phase-lag frequency are within 20% and 10° respectively, although this condition does occur at a slightly lower frequency. To make the test more stringent, a larger load resistor could be used to increase the lag angle somewhat.

A point that needs watching is the dissipation in the 10Ω resistor of the second $R C$ network. A sinusoidal output of 100 W at 1 kHz into a 8Ω load will give less than 100 mW in the 10Ω resistor but, at 10 kHz , the power increases to about 8 W . Under normal use with music signals, this will present no problem, but if high-frequency, high-power testing is attempted, a suitably rated resistor must be used. Similar considerations apply to the first $R C$ network, but the smaller capacitor reduces the 10 kHz dissipation to less than half a watt.

Conclusions

High-frequency impedance of real loudspeakers makes the three-component load isolation circuit with shunt $C R$ and series L perform relatively ineffectively.
Connecting a second $C R$ network in series across the output terminals to the speaker largely compensates for the speaker impedance, the resulting five-component isolation circuit presenting a more easily driven load to the amplifier. When loaded by a loudspeaker, it performs in a similar manner to the three-component circuit with a resistive load. Provided a range of capacitors are used with the five-component circuit, testing with a load resistor and capacitor in parallel is meaningful. It provides a loading not too far removed from what may be encountered in practice.

This article is intended as a general discussion of the effects of loading on amplifiers. Computer analysis and simulation cannot be performed in general terms, so component values have had to be introduced to illustrate the points discussed. I do not suggest that they are suitable for general application and it is left for designers to evaluate the component values most suited to their particular amplifier.

References

1. I J A Brown. Feedback and fets in audio power amplifiers. Electronics and Wireless World, vol. 95, No 1636, February 1989.
2. Savant, Roden and Carpenter. Electronic

Design, Circuits ánd Systems.
Benjamin/Cummings 1991.
3. Schilling and Belove. Electronic Circuits,

Discrete and Integrated, 3rd ed. McGraw-Hill 1989.

Fig. 5. Second RC after the L solves the problem and this is the complete circuit. Magnitude scales on graphs are back to 10Ω.

NEW LOW PRICE - NEW COLOUR HP141T SPECTRUM ANALYSERS
 TESTED

HP141T + 8552A or BIF-8553BRF - $1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-$ A IF $£ 600$ or B IF - $£ 700$.
HP141T + 8552A or B IF - 8554B RF - 100 kHz $1250 \mathrm{Mc} / \mathrm{s}$ - A IF $£ 800$ or B IF- $£ 900$.
HP141T + 8552A or B IF - 8555A RF-10 Mc/s - 18 GHz - A IF $£ 1400$ or B IF - $£ 1600$. The mixer in this unit costs $£ 1000$, we test every one for correct gain before despatch.
HP141T + 8552A or BIF - 8556A RF - $20 \mathrm{~Hz}-300 \mathrm{kHz}-$ A IF $£ 600$ or B IF $-£ 700$.

HP ANZ UNITS
 AVAILABLE SEPARATELY NEW COLOUR - TESTED

HP141T Mainframe - £350-8552A IF - £200-8552B IF - £ 300-8553B RF $-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-£ 200-8554 \mathrm{~B}$ RF $-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 400.8555 \mathrm{~A}$ RF $-10 \mathrm{Mc} / \mathrm{s}-$ $18 \mathrm{GHz}-£ 1000.8556 \mathrm{~A}$ RF $-20 \mathrm{HZ}-300 \mathrm{KHZ}$ - £250.
HP8443A Tracking Generator Counter - 100kHz $110 \mathrm{Mc} / \mathrm{s}-£ 300-£ 400$.
HP8445B Tracking Pre-selector DC - 18GHz - £400£600 or HP8445A - £250.
HP8444A Tracking Generator - $£ 750-1300 \mathrm{Mc} / \mathrm{s}$.
HP8444A Opt 059 Tracking Generator - $£ 1000-1500 \mathrm{Mc} / \mathrm{s}$.

SPECIAL OFFER - 14 ONLY HP140T (NON-STORAGE)

Mainframe Plus 8552A IF Plug-In Plus 8556A RF PlugIn $20 \mathrm{~Hz}-300 \mathrm{kHz}$ Plus 8553 B RF Plug-In 1 kHz $\mathbf{1 1 0 M c} / \mathrm{s}$. Tested with instructions - $£ 700$.

Marconi TF2008 - AM. FM signal generator - also sweeper - $10 \mathrm{Kc} / \mathrm{s}$ - $510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250$ - tested to $£ 400$ as new with manual - probe kit in wooden carrying box
HP Frequency comb generator type $8406-£ 400$.
HP Vector Votimeter type $8405 A$ - $£ 400$ to $£ 600$ - old or new colour.
HP Network Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+850$ from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$. P.O. HP Netwlifie Analyzer HP Frequency Counter type 5340A - 18G HP8447F. 1-1300Mc/s $£ 400$
HP 8410 - A - B - C Network Analyzer $110 \mathrm{Mc} /$ s to 12 GHz or 18 GHz - plus most other units and
displays used in this set-up-8411a-8412-8413-8414-8418-8740-8741-8742-8743-8746-8650. From £1000.
Racal/Dana 9301A-9302 RF Millivoltmeter - $1.5-2 \mathrm{GHz}$ - $£ 250-\mathrm{E} 400$
Racal/Dana Counters 9915 M - 9916 - 9917 - $9921-£ 150$ to $£ 450$. Fitted FX standards
Raca/Dana Modulation Me ter type 9009
Marconi RCL Bridge type TF2700-£150.
MarconiRCL Bridge type TF2700-£150.
Marconi/Saunders Signal Sources type - 6058B - 6070A - 6055A - 6059A - 6057A - 6056$£ 250-£ 350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
MarconiTF1245 Circuit.Magnificatlon meter + $1246 \& 1247$ Oscillators- $£ 100$ - $£ 300$.
Marconi microwave 6600A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ 40 GHz - $£ 1000$ or Pl only $£ 600$. MF only $£ 250$.
Marconi distortion meter type TF2331- E150. TF2331A - 200.
Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1 - S2 - S6 - S52 - PG506 - SC504 - SG502 - SG503 - SG504 - DC503 -DC508 - DD501 WR501 - DM501A - FG501A - TG501 - PG502 - DC505A - FG504 - 7B80 + 85-7B92A Gould J3B test oscillator + manual - $£ 200$.
Tektonix Mainframes -723-7623A - 7613-7704A - 7844 - 7904 - TM501 - TM503 - TM506 -
litech 757 Spectrum Analyser
Altech 6155 ction Salyser - 00122 GHz - Digital storage + readout - $\mathbf{f} 2000$
Barr \& Stroud Variable filter EF3 0.1 Hz - LED readout - $£ 400$.
Marconi TF2163S attenuator -1 GHz . f 200 .
Farnell power unit H60/50-£400 tested. H60/25-£250.
Racai/Dana 9300 RMS voltmeter $-£ 250$.
HP 8750A storage normalizer $-£ 400$ with
HP 8750A storage normalizer - $£ 400$ with lead + S. A or N,A Interface.
Marconi TF2330 - or TF2330A wave analysers - $£ 100-£ 150$.
Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 500$
Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 500$.
Racal/Dana signal generator $9082 \mathrm{H}-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 600$.
Racal/Dana signal generator 9082 $-1.5-520 \mathrm{Mc}$ - $\mathbf{~} 600$
Tektronix - 7S14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11
HP 5065 A rubidrum vapour $F X$ standard $-£ 2.5 k$
Systron Donner counter type 6054 B - $20 \mathrm{Mc} / \mathrm{s}$ - 24 GHz - LED readout - $£ 1 \mathrm{k}$
Racal/Dana 9083 signal source - two tone - $£ 250$
Systron Donner - signal generator 1702 - synthesized to 1 GHz - AM/FM - E600.
Tektronix TM515 mainframe + TM5006 mainframe -£450-£850.
Rhodes \& Schwartz power signal generator SLRD-280-2750Mc/s - £250-£600.
Ball Efratom rubidrum standard PT256B-FRKL - $£ 1000$.
Farnall electronic load type RB1030-35- £350.
Racal/Dana counters -9904-9905-9906-9915-9916-9917-9921-50Mc/s - $3 \mathrm{GHz}-\mathbf{£ 1 0 0}$ -E450-all fitted with FX standards.
Maroni TF2092 no

New null filter replaces

Using twin-T filters can involve tedious adjustment. Here, Bengt Olsson describes a null filter alternative that offers the advantage of low commonmode distortion, making it highly suitable for thd analysis.

This filter is very simple: it uses a single op amp and provides a buffered output. The basic circuit, Fig. 1, consists of a minimal network, with a resonance dip d that is amplified to a complete null by the op amp. The filter is zeroed in two, preferably orthogonal, directions: gain and phase (frequency). These are separated: the gain adjustment is made with R_{4} and the phase is tuned by adjusting the network frequency. To maintain orthogonality both R_{1} and R_{2} have to be changed proportionally, assuming the two capacitors are equal.

Selectivity

Like the twin-T, this circuit has a low Q, Fig

3, and ought to be improved by positive feedback. This involves feeding back part of the op-amp output to R_{2}, Fig. 4. At resonance the output is zero, as if R_{2} were grounded, which means that the balance condition at resonance is as it was without feedback. For all other frequencies the gain will be closer to one, resulting in a narrower null.
According to Thévenin, the feedback circuit R_{2}, R_{5} and R_{6} can be replaced by only R_{5} and R_{6}, where R_{5} is slightly larger than the original R_{2}. In this way, power dissipation in the feedback network is minimised to practically zero. In spite of this, the equivalent voltage divider has zero impedance. A typical feedback factor is 85%, which gives a second harmonic atten-

$$
\begin{aligned}
& \text { If } \sqrt{R_{1} R_{2}}=R_{0} \\
& C_{1}=C_{2}=C_{0} \\
& 2 \pi f_{0}=\frac{1}{R_{0} C_{0}} \\
& \frac{1}{d}=1+\frac{R_{1}}{2 R_{2}} \\
& \frac{R_{4}}{R_{3}}=\frac{d}{1-d}=2 \frac{R_{2}}{R_{1}}
\end{aligned}
$$

Fig. 1. Basic circuit of the null filter. The resonance dip, d, is amplified to a complete null by the op-amp.

$$
\begin{aligned}
& d=\frac{2 R_{2}}{2 R_{2}+R_{1}} \\
& \frac{R_{4}}{R_{3}}=\frac{d}{1-d}
\end{aligned}
$$

Fig. 2. Plotting V_{1}, a circle in complex notation, and multiplying by $1+R_{4} R_{3}$ in the namplifier gives a zero for V_{0} at frequency f_{0}.

Fig. 3. Positive feedback improves Q of the null filter. These curves show measured frequency response with various amounts of feedback, K.

Fig. 4. Positive feedback can improve the circuit. Part of the op amp output is fed back to R_{2}.

Fig. 5. Wide band tuning. The filter can be used to provide orthogonal tuning in a wider range using a ganged potentiometer.
uation (amplitude error) in a thd-analyser of approximately 25%, or 15% for the third, etc). These harmonics can be corrected in a subsequent, slightly peaked, second order high-pass filter, with a cut-off at approximately $1.8 f_{0}$, which will also be used to amplify the distortion products.

Common-mode distortion

At resonance, the low signal level d reduces the common-mode-distortion proportionally. Use of a low-distortion op-amp with sufficient slew-rate will not cause deterioration of the residual signal.
With this method, it is possible to make a simple analyser with a resolution of 10 ppm , or better. Each plug-in circuit board may comprise one state-variable oscillator and one nullfilter. Operating at frequencies of, say 1,10 and 30 kHz , such an analyser would be useful for audio amplifier testing.
Another interesting feature is that the signal input to the non-inverting terminal is equal to d multiplied by the signal amplitude. Selecting d at 0.1 , the op amp can analyse a $200 \mathrm{Vp-p}$ sine-wave directly (sine-wave only!). It is therefore possible to measure the output of any size of power amplifier without needing an attenuator.

Wide-band tuning

Figure 5 shows how to provide orthogonal tuning in a wider range using a ganged potentiometer, $R_{5}+R_{7}$. Since the original R_{2} is equal to the parallel connection of R_{5} and R_{6}, an equivalent value for R_{1} is designed in the same way with R_{7} and R_{8} in parallel. Ratio R_{1} / R_{2} is constant when tuning, which means that R_{4} / R_{3} (gain) will be constant (see the second equation in Fig. 2).
For thd-measurements at one selected frequency, R_{5} and R_{7} can be low-resistance trimmers in series with larger metal-film resistors. These, and R_{t}, are set. When automatic zeroing is preferred, the ground connection of R_{6} is then used as the input for two quadrature sine-wave voltages.

Summary

The null-filter can be used in a wide range of applications, from a simple hum-suppressing filter to an advanced thd-meter with high resolution. It features low noise. Tests with a 1 V input show that the noise is typically $3 \mu \mathrm{~V}$ rms. One can clearly read $7 \mu \mathrm{~V}$ thd, that is 0.0007% at $20 \mathrm{kHz}(7 \mathrm{ppm})$. At higher voltages or lower frequencies the resolution is even better.
It is possible to tune the circuit manually using coarse and fine tuning potentiometers, but at lowest distortion level an automatic balancing circuit is preferred, Fig. 5. It can be applied to R_{6} via the output from an op amp summing the gain and phase error sine-waves.
For improved resolution, it is advantageous to connect an op-amp with $20-40 \mathrm{~dB}$ gain directly to the output of the circuit. The op amp can be wired as a peaked high-pass sec-ond-order filter with gain, which compensates for the response of the null-filter at the second, third, etc, harmonics.

CROSS DEVELOPMENT SOFTWARE TOOLS FOR DOS

C. COMPILERS

 CROSS•ASSEMBLERSFULLY SUPPORTED QUALITY SOFTWARE

You might only need a simple absolute cross assembler for your first project. Later you might decide that you need the sophistication of a fully relocatable package (and of course you will want your existing source code to migrate effortlessly with you). You might decide to make C your primary language, with full IEEE floating point maths available whenever you need it. If you do, you will certainly want to keep your options open by being able to integrate C and assembler.
Whatever your choice you will want the benefit of a user friendly environment with a sophisticated multi-file, multi-window editor/workbench and comprehensive on-line help.
That's why we have configured our product range the way we have.
XPC series: absolute cross assemblers @ $\mathbf{£ 9 9 . 0 0}$ each XDS series: relocatable cross assemblers @ $£ 169.00$ each PSDS series: C compilers \& cross assembler @ $£ \mathbf{£ 3 4 9 . 0 0}$ each

Further information from:
(prices exclude VAT and delivery)
CROSSWARE PRODUCTS
Melbourn, Royston, Herts, SG8 6BA, UK
Tel: +44 (0) 1763 261539, Fax: +44 (0) 1763262983
BBS: +44 (0) 1763261716 (8-N-1), Internet: sales@crossware.com
CIRCLE NO. 110 ON REPLY CARD

New Analog \& Mixed Mode Simulation

Professional Level

ICAP/4, The Virtual Circuit Design Lab, is a complete circuit design system. It features
Easy To Use ${ }_{u}$ Full Systems from $£ 450$ to $£ 2300$ 1st Class, Eree UK technical support schematic entry, interactive analog and mixed mode simulation, extensive device libraries, and powerful data processing, all integrated in one easy to use environment. With ICAP/4 you can simulate all types of designs including Power, ASIC, RF, Mixed Mode, Control Systems, and Mixed Technologies
Interactlve SPICE $3 F$ based SImulator (AC, DC, Transient, Temperature, Noise, Distortion, Fourier, Monte Carlo, and Sensitivity (AC/ DC) analyses)

Natlve MIxed Mode - includes 12 state Digital Logic Simulator

- Interactive Parameter SweepIng and Measurements
Real TIme Cross Probing Directly on the
Schematlc
- Over $6000+$ Models Avallable including Special RF and Vendor Libraries
Multiple Platform Support - Windows (32s),
Windows NT on the PC, Digital Alpha \& MIPS, DOS, Macintosh, and Power PC
Or Entry Level
- SPICE 3F based simulator (AC, DC, Transient,

Temperature, Operating point)

- UNLIMITED CIRCUIT SIZE
- Over 500 device models
- Separate upgrades available, when you need them, for Schematic Entry, Models LIbrary, Spice Engine \& Graphical Post-processor
- Windows \& Windows NT
and both with
- Integrated Schematic Entry
- High Performance 32-bit Simulator
- Real Time Waveform Display
- Third Party Support - Works with all popular schematic entry systems

The Future is interactve!

Call or write for free information and eval SW: Technology Sources Ltd - Falmouth Avenue Newmarket - Suffolk CB8 OLZ Ph: 0638-561460 Fax: 0638-561721

Tweaking the diode detector

|mportant applications for rf detectors of wide dynamic range include the various schemes for linearising radio transmitters. Simple diode detectors can be used, but suffer from a limited dynamic range and - a point which can be important - although amplitude response in the large signal range is linear, it is not proportional to the signal amplitude. This is a result of the diode's forward voltage, V_{f}.

Infinite-impedance detector

Since my interest while I was making this study was in level measurement rather than just detection of the
presence of a signal, my thoughts turned to the infinite impedance detector ${ }^{1}$. In this, the detector is a transistor or, in earlier times, a valve. It is in its active range at all times, so one might think that the troublesome curve at the foot of the characteristic in Fig. A(d) could be avoided. (See panel on page 123)
My plan was to surround the infinite impedance detector with a high-gain servo loop which would jack up the dc voltage at the emitter of the detector to restore the nosignal dc conditions. The transistor could be a type with a very high frequency cut-off f_{t}, and both the emitter and the collector could be bypassed at rf, confining rf solely to the

> After working through a number of variations on the infinite-impedance detector, lan Hickman returns to the diode - but finds a wide dynamic range and a way round forward-voltage offset.

Fig. 1(a). First try at infinite impedance detector. It is embedded within a servo loop maintaining constant collector current . Variant at (b) has a lower (more manageable) amount of loop gain. Circuit at (c) uses both transistors in the servo loop operate at rf.

Diode performance

Figure $A(a)$ shows an ideal diode which has an infinite slope resistance when the voltage at its anode is negative with respect to the cathode, and a slope resistance of zero when forward biased. Such diodes don't exist, but they can be closely approximated, over a limited frequency range, by a combination of one or more real diodes and op-amps. Figure $\mathbf{A (b)}$ shows a slightly less unrealistic representation of a real diode: the slope resistance when forward biased is still zero, but an anode voltage positive by an amount V_{f} relative to the cathode must be applied to cause current to flow.
Figure $\mathbf{A}(\mathbf{c})$ is one step nearer reality, showing as it does a finite diode slope resistance when forward biased. Unfortunately, the resistance does not drop instantly from infinity at forward voltages below V_{f} to a low constant value at V_{f} and above, but makes the transition gradually, as the curve at the bottom of the characteristic in Fig. A(d) shows. Projecting the characteristic in the forward biased regime back until it cuts the voltage axis gives a value which may be taken approximately as the diode's V_{f}, the voltage which must be applied before some arbitrary small current flows.
When a practical Fig. A(d) diode is used as an amplitude detector, the detected dc voltage output increases with rf input up to the point where the peak reverse voltage equals $V_{b r}$, the diode reverse breakdown voltage. With decreasing of input, the detected voltage falls linearly at first, then reaching a point where it falls faster than the input, since the latter no longer comfortably exceeds V_{f}. This is the square-law region, where the detected voltage is proportional
(a)

(d)

Fig. A(a).
Current/voltage characteristic of an ideal (non-existent) diode. At (b), diode is ideal except for forward voltage V_{i} which has to be overcome before current flows. Diode at (c) is as (b) except that, when conducting, the diode has a finite resistance. In real diode as at (d), there is no sharp change of slope at V_{f}.
to the applied power rather than to the applied voltage. Where it is simply desired to detect the presence of a signal, rather than accurately to measure its amplitude, the diode can still be successfully used in the square-law region down to the level where the detected voltage starts to disappear into the circuit noise.
This level of rf input to the detector is known as the tangential sensitivity, and can be determined by displaying the detected voltage on an oscilloscope whilst driving the diode with an rf signal 100% on/off modulated by a square wave. Tangential sensitivity is the rf level at which the level of the top of the 'grass' in the off periods just coincides with the level of the bottom of the grass in the on periods, as in the middle illustration in Fig. B(a). Results obtained depend to some extent on the oscilloscope
intensity setting and upon the operator but, being a quick, simple and easy test, it is widely employed.
Tangential sensitivity can be improved by applying a small forward bias current to the detector diode as shown in Fig. $\mathbf{B}(\mathbf{b})$ for various diodes. Optimum bias and the improvement that results depend upon frequency. This is illustrated in Fig. $\mathbf{B}(\mathbf{c})$ for a particular diode, where you can be see that the tangential sensitivity can exceed -60 dBm . This means that the sensitivity of a simple diode video receiver is only 35 to 40 dB less than that of a superheterodyne receiver. Not only is the diode video receiver much cheaper, simpler and easier to maintain, but it can easily be designed to offer a greater rf bandwidth than a superhet, and it is useful in a variety of applications, both military and civil.
(a)

Fig. B(a). Tangential sensitivity of a diode, taken when output is as in middle case. Tangential sensitivity can be improved by applying a small forward bias current to the detector diode, as shown at (b) for various diodes. Optimum value of bias and the improvement that results depends upon frequency, as illustrated at (c) for a particular diode. ((b) and(c) reproduced by courtesy of Hewlett-Packard Itd, from H-P Application Note 923.)

Fig. 2(a). The shunt diode detector needs a dc path to ground at its output to enable it to follow a decreasing rf input level. It produces the same dc detected output for any input level as circuit at (b), the conventional peak detector circuit. By adding V_{f} to the detected output, as at (c), it becomes proportional to the signal level, except in the low-level square-law area.

base/emitter circuit.

Identical dc conditions, regardless of whether rf was present or not, could be ensured by the use of constant-current generators in the emitter and collector circuits. When two near-perfect constant current generators - one a source and the other a sink - fight each other, their junction is a point of very high voltage gain.
Figure 1(a) shows the resulting pipe-dream, where the op-amp supplies the difference between emitter's constant tail current I_{e} and the constant collector current I_{c}. Total gain within the loop includes a contribution equal to the slope resistance of the collector circuit divided by (R_{1} plus r_{e}), where r_{e} is the common-base input resistance of the transistor. Some quick mental arithmetic showed this to be so great that the roll-off of loop gain had to start at such a low frequency that the circuit's response to a change of input level was inordinately slow. So the op-amp was replaced by a p-n-p transistor, $I C_{1}$ being redeployed to provide a voltage source for its emitter, as in Fig. 1 (b).
While this circuit worked, it represented little advance in low-level sensitivity; in fact, better results were obtained by removing the collector decoupling and closing the loop around Tr_{1} and $T r_{2}$ at rf as in Fig. 2(c), which is similar to a circuit which appeared in Ref. I. This offered a useful improvement in low-level sensitivity compared to a simple diode detector. However, the impression was that all these circuit variations were basically more or less complicated ways of extracting such dc output as was obtainable from a basic diode detector circuit.

Back to the diode

My attention was redirected to the shunt diode detector circuit of Fig. 2(a), which conveniently has one end of the diode grounded. The diode de restores the input rf negative-going with respect to ground, the smoothing circuit then picking out the mean level of the waveform at the diode's anode. Detected dc is thus equal to the peak value of the rf, or would be with an ideal diode, where V_{f} is zero. The dc detected

Table 1. Measured performance of test set-up Fig. 4(b).

Input dBm		Output			
50Ω	mVpk	Ideal	normalised	mVpk motual	Error
+20	3180	1.0	3180	1.0	-
+10	1005	0.316	946	0.297	-6
0	318	0.1	299	0.094	-6
-10	101	0.0316	85	0.027	-15
-20	31.8	0.01	31	0.0097	-3
-30	10.1	0.0032	10	0.0031	-1.9
-40	3.2	0.0001	1.3	0.00041	-59

output of this circuit versus input rf level is the same as the usual diode peak detector circuit of Fig. 2(b).

At high levels, the curve is linear, but does not pass through the origin when projected backwards; the detected dc output is not proportional to the rf level. It could be made so by adding a constant offset, equal to V_{f}, to the detector's output, which would simply have the effect of raising the whole curve by V_{f}, as in Fig. 2(c).
Although the output is now - at least at higher input levels - not only linear but also proportional to the input, there is a standing dc output V_{f} when no rf is applied. This is an unfortunate state of affairs since V_{f} is temperature dependent. But with a little lateral thinking, it is possible to add the V_{f} offset to the detected output in such a way that, as the detected output falls to zero, so does the added offset.
After a few iterations, a circuit designed to do just this finished up with the comparatively simple arrangement of Fig. 3(a). It was built on copper stripboard, except for diode D_{1}, with R_{1}, R_{2}, C_{1} and C_{2}, which were all mounted on the back of a bnc socket, the body of which was soldered to a sheet of copperclad board. To increase the sensitivity of detector diode D_{1}, a small amount of forward bias is applied via a $10 \mathrm{M} \Omega$ resistor R_{1}, and the resultant offset balanced out by the corresponding drop across D_{2}. The $2.2 \mathrm{M} \Omega$ resistor is returned to the positive or negative 15 V rail as necessary, depending on whether D_{1} or D_{2} exhibits the larger forward voltage at the current defined by R_{1} and R_{6}.
These diode voltages are, of course, temperature dependent but, provided they track, they represent purely a common mode signal and $I C_{1 a}$ is so connected as to reject any common mode input. Resistor R_{2} with C_{2} provides the rf smoothing to extract the detected dc component, while R_{2} plus R_{3} matches the value of the three other bridge resistors R_{7}, R_{8} and R_{9}.
Op-amp $I C_{\text {la }}$ exhibits an inverting gain of unity to detected output of D_{1}, and its positive going output is applied to inverting amplifier $I C_{1 b}$, whose gain can be set to a gain of unity, or more or less as required. With the wiper of R_{16} set to ground, the detector law is exactly as in Fig. 3(a).
Positive-going output of $I C_{1 \mathrm{a}}$ also goes to inverting amplifier $I C_{\text {l }}$. With R_{5} correctly set up, the outputs of $I C_{1 \mathrm{~b}}$ and $I C_{1 \mathrm{c}}$ will both be zero in the absence of any rf input, at least assuming all the op-amps ideal. With an increasing level of rf applied, the output of $I C_{1 a}$ is initially small since it operates in the square-law region, but the output of $I C_{1 c}$ will rise much faster as it operates at a gain of 40 dB , defined by R_{14} / R_{13}. However, with increasing detector output D_{3} starts to conduct, progressively reducing the gain of $I C_{1 c}$. Ultimately, the gain of $I C_{1 \mathrm{c}}$ falls below unity, indeed almost to zero; in fact, the ratio of the forward resistance of D_{3} in the milliamps range (about 20Ω) to
the value of R_{13}, or roughly -40 dB .
By advancing the wiper of R_{16} from ground, a proportion of this voltage can be injected into the noninverting input of $I C_{1 \mathrm{~b}}$. Note that to an input at its non-inverting input, the gain of $I C_{1 \mathrm{~b}}$ is around 6 dB , due to R_{10} and $R_{11}+R_{12}$. This permits a useful degree of dynamic range extension, by ensuring that the output of the whole circuit starts to rise appreciably at a much lower rf input level than would otherwise be the case.

Test results

I tested circuit operation at rf levels of +20 dBm . downwards using the set-up in Fig. 3(b), and the results are recorded in Table 1. Originally, I planned to use the video oscillator's maximum output frequency of 10 MHz , but the spectrum analyser showed that there was significant second harmonic distortion at this frequency - bad enough to be clearly visible even on the oscilloscope. I therefore carried out the tests at 5 MHz , at which frequency the second harmonic was over 35 dB down and all other harmonics much lower still. Harmonic distortion especially even-order distortion - is an important consideration here, as the diode detectors of Figs 3(a) and 4(b) sense the peak of the rf waveform, although the indicated result is conventionally presented as the rms value of the signal. This is assumed to be a pure sinewave.
Generator output at 5 MHz was +20 dBm using the indication on the spectrum analyser, after setting the gain of the latter using its internal calibration output. As a cross check, I used a newly calibrated oscilloscope to measure the peak-to-peak voltage at the output of the 50Ω through-load, i.e. at the input to the detector circuit. The result was $3.2 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$, perhaps a shade under. This agrees with the expected value of 3.18 V pk-pk for +20 dB relative to 1 mW in 50Ω.
Circuit setup to take the results in Table 1 was as follows. With the wiper of R_{16} at ground and R_{12} set to mid travel, R_{5} was adjusted for zero reading on a digital voltmeter. To check that there was negligible hum pick-up, in view of the high circuit gain and the division of the circuit between two different boards, the oscilloscope was also connected to the output of $I C_{1 \mathrm{c}}$. A $5 \mathrm{MHz}+20 \mathrm{dBm}$ input was then applied to the 50Ω through-termination and R_{12} adjusted to give the expected theoretical output of 3180 mV . Input level was then reduced to -20 dBm and R_{16} adjusted to give an output of 31.8 mV .
Results were not repeatable, due to the need for frequent resetting of R_{5}. As a result I relocated D_{2} from the circuit board to a position adjacent to D_{1}, well decoupled to prevent it picking up any rf. The rear of the BNC socket, with the two diodes and related components, was then enclosed in a box, shielding the diodes from both draughts and light. This largely cured the drift problem, although a more modern quad op-amp with improved dc characteristics, in place of the TL084 used, would be even better.
Following final adjustment of R_{5}, I repeated the +20 dBm and -20 dBm adjustments, iterating them alternately until no further adjustment was needed. Later, I took a set of measurements and recorded the results shown in Table 1. Plotting them on \log / \log

Fig. 4. Results from Table 1 over a $50 d B$ range, plotted on $\log \log$ graph paper. Vertical axis is actual detected dc output voltage and the horizontal indicates peak input voltage, measured points being indicated on the graph. Sloping line at 45° indicates output that would be provided by perfect detector. For convenience in plotting, both peak input voltage and dc voltage have been normalised to $3.18 \mathrm{~V}(2.25 \mathrm{~V} \mathrm{rms})$ at unity.
graph paper over a 50 dB range gave Fig. 4 .
Results obtained to date are, as can be seen, very encouraging, though certain aspects await further investigation, notably the large negative error at around -10 dBm . The three diodes were HP5082 2811 schottky barrier types intended for general purpose applications. They were not a matched set and were used simply because a number of them were in stock, although they are available as unconnected matched quads under the type number 50822815.
How much improvement using matched diodes would achieve is unknown, as are a number of other possibilities. These include setting up at, say, +20 and -10 dBm , instead of +20 and -20 dBm , or choosing a different value for the forward bias applied to D_{1} and D_{2}. Other parameters available are varying the ratio of R_{14} to R_{13}, and also their absolute values, and the inclusion of resistance in series with D_{3}. These might help to reduce the effect of a mismatch between two separate characteristics.
The detector law is a square law at low levels, while the compensation diode law, determining the voltage across D_{3}, is basically a log law relative to the voltage applied to R_{13}.
Where maximum sensitivity is required from the circuit, one of the low $1 / f$ (flicker) noise diodes from the $50822 x \times x$ series might be a better choice. For example, the $30 \mathrm{~V} V_{\mathrm{br}}$ of the 50822301 would allow the detector to accept inputs up to almost +34 dBm against only +27 dBm for the 50822811 .
For the widest possible dynamic range, the 5082

2800 (1 N 571 I) with its V_{br} of 70 V would accept an input of up to +40 dBm . Assuming that it too would work down to -30 dbm in the circuit of Fig. 4(a), it would provide a detector with a dynamic range of over 70 dB .
Detectors of wide dynamic range can be used in the linearisation of transmitters using a non-constant envelope type of modulation, e.g. am, dsbsc and all varieties of ssb from compatible am, through pilot carrier types to pure J3E. A negative-feedback loop from the detected audio recovered from a coupler at the transmitter's output, feeding back to the audio input to the exciter, can suppress third-order intermodulation products in a solid state transmitter to 60 dB below peak envelope power ${ }^{2}$, provided the transmitter is designed to hold am to pm conversion in all stages to a low level. This can provide a much cheaper solution than complex arrangements such as a polar loop or cartesian loop scheme.

References

1. Hickman 1. Measuring detectors, $E W+W W$, November and December, 1991.
2. UK Patent 2209639A, Single Sideband Transmitters, 1991.

RF EQUIPMENT

WIDEBAND AMPLIFIERS

TYPE $9301100 \mathrm{KHz}-500 \mathrm{MHz}$. NF 2 dB at 500 MHz . Gain 30 dB .
Output 12.5 dBm ; 18 mW .50 ohms ... 175
TYPE 9302 10MHz-1GHz. NF 2 dB at 500 MHz . Gain 30 dB . Output $12.5 \mathrm{dBm}, 18 \mathrm{mw} .50$

ohms.

TYPE 9008 Gasfet. $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 2.5 dB at 1 GHz . Gain 10 dB .
Output $18 \mathrm{dBm}, 65 \mathrm{~mW} .50$ ohms
TYPE 9009 Gasfet. 10MHz-2GHz. NF 3.8 dB at 1 GHz . Gain 20 dB .
Output $20 \mathrm{dBm}, 100 \mathrm{~mW} .50$ ohms£195

TELEVISION LINEAR POWER AMPLIFIERS
Tuned to your specified channel in bands I, III, IV or V
TYPE 925210 mW input, 500 mW output.. 890

TYPE 926610 watts input, 50 watts output. Integral forced air cooling \& output
transistor protection... $£ 2110$
TYPE 936750 watts input, 150 watts output. Integral forced air cooling \& output
transistor protection.
... $£ 4345$

PULSE TELEMETRY AMPLIFIER

Tuned to your specified frequency in the range $250-470 \mathrm{MHz}$
TYPE 9127100 mW input, 5 watts output. . $£ 575$

AUTOMATIC TRANSMIT/RECEIVE SWITCHING AMPLIFIERS
Tuned to your specified frequency in the range $400-470 \mathrm{MHz}$
TYPE 9405100 mW input, 5 watts output........£775 (Inc. gasfet preamp......... £960)
TYPE 9406500 mW input, 10 watts output....... $£ 795$ (Inc. gasfet preamp........... £980)
TYPE 94073 input, 25 watts output..............£895 (Inc. gasfet preamp....... £1080)

GASFET LNA's $5 \mathrm{MHz}-2$ GHz
Two-stage. Masthead or local use.
TYPE 9006 Freq: $5-250 \mathrm{MHz}$. BW up to 40% of CF. Gain $10-40 \mathrm{~dB}$ variable. 50 ohms. NF 0.6 dB
£135
TYPE 9004 Freq: $250-1000 \mathrm{MHz}$. B W up to 10% of CF. NF 0.7 dB . Gain 25 dB .50 ohms. £185
TYPE 9305 Freq: 1-2GHz. BW up to 10% of CF. NF 0.7 dB . Gain 20dB. 50 ohms $£ 350$
TYPE 9035 Transient protected mains power supply for above preamplifiers............£65
TYPE 9010 Masthead weatherproof unit for preamplifiers .. 18

PHASE LOCK LOOP FREQUENCY CONVERTER

TYPE 9115 Up/down converter. $1 / \mathrm{p} \& \mathrm{o} / \mathrm{p}$ frequencies $20 \mathrm{MHz}-2 \mathrm{GHz}$. B/W up to 50 MHz . NF 0.7 dB . Gain 60 dB variable. $0 / \mathrm{p}$ up to $10 \mathrm{~mW},+10 \mathrm{dBm}$. AGC £750

PHASE LOCK SIGNAL SOURCES $20-2000 \mathrm{MHz}$

TYPE 8034 Freq. as specified in the range $20-250 \mathrm{MHz}$. $0 / \mathrm{p} 10 \mathrm{~mW} . ~ £ 250 ~$
TYPE 9036 Freq. as specified in the range $250-1000 \mathrm{MHz}$. $0 / \mathrm{p} 10 \mathrm{~mW}$..................... $£ 350$
TYPE 9038 Freq. as specified in the range $1-2 \mathrm{GHz} .0 / \mathrm{p} 10 \mathrm{~mW} . ~ £ 420 ~$
TYPE 9282 FM up to $\pm 75 \mathrm{KHz}$ max. Freq. as specified in the range $30-2000 \mathrm{MHz}$. $0 / \mathrm{p} 10 \mathrm{~mW}$
£465

TELEVISION TRANSMISSION MODULES

TYPE 9169 Voltage tunable TN modulator. Bands I or Ill or IV or V. $0 / \mathrm{p} 50 \mathrm{~mW}$. Sound channel . $£ 395$
 TYPE 91158 PLL TN transposer. Up to 10 adjacent channels in bands I, ill, IV or V. $0 / \mathrm{p} 10 \mathrm{~mW}$ £750

Prices are ex-VAT \& ex-P\&P.

RESEARCH COMMUNICATIONS LTD

Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG
Tel: 0303893631 Fax: 0303893838

Audio Engineer's Reference Book

the work for everyone with a serious interest in audio

- Comprehensive - over 600 pages

- Writen by leading authorities from the audio world
- Easy to read, written for maximum accessibility
- Concise and authoritative
- Covers topics from noise measurement to studio installation

An invaluable reference work for anyone involved with audio - from broadcast consultant to serious enthusiast.

The Audio Engineer's Reference Book is written by an international team of experts and edited by Michael Talbot-Smith - previously a trainer of audio engineers at BBC Wood Norton and now a freelance audio consultant and technical writer.

Subjects included are:
Recording, microphones and loudspeakers

Digital audio techniques
Basic audio principles

Acoustics and psychoacoustics

Audio and television studios and their facilities

Radio and telephony

Please supply me \qquad copies of the AUDIO ENGINEER'S REFERENCE BOOK (ISBN 075060386 0)
Fully-inclusive price - UK $£ 62.50$, Europe $£ 68$,
Worldwide $£ 78$. Please add vat at local rate where applicable.

Business purchase: Please send me the book listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below.
Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund.

Remittance enclosed $£$ \qquad -
Cheques should be made payable to Reed Business Publishing Group Ltd
Please return to: Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Credit card orders accepted by phone. Call 01816528614.

Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. \qquad
Exp date
NAME (Please print) \qquad
ADDRESS \qquad
\qquad
\qquad

POST CODE \qquad
DATE \qquad TELE \qquad

SIGNATURE

VAT RATES
6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3\% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)

VAT NO. \qquad
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change. Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Do you have an original circuit idea for publication? We are giving $£ 100$ cash for the month's top design. Other authors will receive £25 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

£ 100 WINNER

Jump-starting a rom-less microcontroller

Configuring a test clip as shown allows the use of a single sram for both program and data storage by providing a means of loading program code into ram.
With the test clip in place over the ram chip, data reads come from the eprom and writes go to ram and eprom. The following procedure prevents bus contention.
The eprom contains a copy of the required ram data and has a routine at the start which writes 01 to a location 00 in the eprom, then reading it back. If 01 is read, the application code starts, since it now runs from ram without the clip. If not, ram copies the eprom by reading each byte and writing that value back and then stops until the clip is removed and the controller reset. After this procedure, new code can be loaded via the serial port, this code being held in the internal controller ram to avoid overwriting itself. The clip is only then needed in the event of code corruption or a crash.
The system shown uses a Mitsubishi 50747 with the controller and ram permanently powered to avoid the need for ram power-down protection; the

controller can use sleep mode. Do not leave i/o pins floating, as that increases current drain. The $1 \mathrm{M} \Omega$ resistor pack stops the data bus floating.

Mike Harrison
White Wings Logic
Loughton
Essex

Quadrature-output oscillator for sine waves

As an alternative to the use of rom lookup tables to generate stored sinusoids, Szymanski ${ }^{1}$ described a circuit using steepcut switched-capacitor filters. In the version shown here, the outputs are two sinusoids at 90° to each other.
Clock signals go straight to the National Semiconductor MF6-100 switched-capacitor filter, which is a Butterworth low-pass type. After division by 40 in the 4017 decade counter and two stages of the 4024 binary counter, the $f 140$ clock drives two halves of a dual JK bistable device, being inverted to one of them. Inputs to the MF6s are now square waves at $f f 80$, separated in phase by 90°, and the outputs of the low-pass filters
are sinusoids.
Some clock signal appears at the output, but is easily removed by a simple $R C$ section without introducing undue phase shift. Improvement can be obtained by increasing the clock division ratio, while ensuring that the last counter stages divide by two.
Harold W Shipton

St Louis

USA

1. EW+WW, July 1994.

Two divider chains, driving switchedcapacitor filters, produce sinusoidal outputs at 90° over three decades of $f_{\text {in }}$.

YOU COULD BE USING A IGHz SPECTRUM ANALYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $£ 100$ monthly star author's fee, together with $£ 25$ for all other ideas published.
Our judging criteria are ingenuity and originality in the use of modern components - with simplicity particularly valued.

Digital thermometer uses low-noise bridge amplifier

To avoid the problem of conventional feedback impairing the low-noise characteristic of an instrumentation amplifier, connect the feedback to the amplifier's trimming pins. The $O P-37$ differential amplifier in the circuit shown provides a gain of $3 \times 10^{3} / R_{\mathrm{B}}$, resistance R_{B} being in kilohms, with no effect on noise level. In this case, bridge output is 30 mV and the gain to drive the MAX132 a-to-d converter is $17 ; R_{\mathrm{B}}$ is therefore 180Ω.

K Kraus

Rokycany
Czech Republic

Avoid ruining the noise performance of a
differential bridge amplifier by taking the feedback to the trim pins. Circuit shown is a digital thermometer, but the principle applies for any bridge amplifier.

Quadrature oscillator

produces square output

Originally intended to drive a stepping motor, this $R C$ oscillator produces 90 Hz square waves with a 90° phase difference and $1: 1$ mark:space ratio.
Start operation by taking the gate input low. Diode D compensates for op-amp asymmetry, since the op-amp has the same 5 V supply, the mark/space ratio and phase difference being accurate to within about 5%. Frequency is around $0.36 / C R$ and is hardly affected by variations in V_{cc}, since all thresholds are proportional to the supply voltage. Voltage V_{j} varies during the cycle and compensates for the exponential $R C$ charging curve.
W Gray,
Farnborough,
Hampshire

Active photodiode source

Diode current to a photodiode receiving pulsed infrared signal commonly comes by way of a resistor, as shown in Fig. 1. Drawbacks to this simple arrangement are that the resistor shunts signal current, injects thermal noise and may set too low a limit on the current for high light levels.
One solution is to use a gyrator, but it is simpler to use the n-channel fet in Fig. 2. Capacitive coupling between source and gate gives the required high ac series impedance and the direct connection between the gate and amplifier input provides bias at any diode current up to $I_{d s}$.
Corner frequency of the resulting highpass function is $\mathrm{g}_{\mathrm{m}} / 2 \pi C$, the best hf response being obtained when the load is a low impedance, such as the virtual earth of the CA3140 fet-input inverting amplifier. Transistor Tr_{1} can be a general-purpose n channel jfet such as a $2 N 3819$, selected for adequate $I_{\text {dss }}$ and maximum pinch-off

Fig.1. Simple resistive bias to a photodiode may limit diode current at high light levels and inject noise.
 and will not limit current.
much less than V_{dg}. Two diodes in the
feedback path provide progressive limiting
for large signals.
A New
Fishponds
Bristol

Single-rail, bipolarinput amplifier

W ithout much trouble, an amplifier supplied from only $\mathrm{a}+5 \mathrm{~V}$ rail can be made to process $\pm 5 \mathrm{~V}$ inputs.
A 2.5 V reference derived from the 5 V rail often found on interface connectors biases the non-inverting inputs of the op-amps. Fixed current through R_{2} and $R V_{2}$ to the first stage inverting input should be supplied via a stable 5 V supply.
To avoid saturation at the first-stage output, gain of the first stage is 0.4 , set by $R V_{1}$, and 1.2 for the second. Output voltage swings from V_{cc} to ground, using the entire a-to-d converter input range.
Giorgio Delfitto
University of Padova
Italy

Mosfet driving via a 555

f you need to drive one mosfet and have a space-saving requirement, a 555 timer replaces half a dozen discrete components. If the mosfet supply lies within $12-15 \mathrm{~V}$, the timer drives the gate to at least 10 V and, because of the 555 totem-pole output, switching on and off takes 100 ns or less.
Input impedance to the timer is high, output impedance low and setting the voltage on pin 5 to +3.5 V by R ensures level conversion from 5 V logic to that needed by the mosfet gate. Pin 4 is the reset input,
which can, if required, be used for an inhibit input. For pulse control of the mosfet, configure the 555 as a free-running or monostable flip-flop.
Supply voltage for cmos 555 s should be 14 V or less and switching speed may be slightly reduced. Decouple the timer supply close to the chip and mount the device near the mosfet.
SH Dolding
Carlingford
NSW, Australia

One more use for a 555: as an inverting gate driver and level shifter for mosfets.

Preventing battery over-discharge

To prevent failure of rechargeable batteries from over-discharging, this circuit switches the load out of circuit at a preset battery voltage. Depending on Hexfet type, it handles loads of over 20A, needs no heat sink and in a no-load condition takes only $370 \mu \mathrm{~A}$.
An LM10CH contains an op-amp, buffer and voltage reference. The buffered reference is taken via R_{2} to the op-amp, which is used to compare the reference with the fraction of battery voltage set by $R_{l, 4}$, its output switching the Hexfet on and off.
If battery voltage falls below the trip point which, for 12 V cells, is about 10.5 V , the fet switches off and the negative output terminal rises towards the battery voltage, latching itself off through R_{3}, D_{1}, C_{1} and the comparator. If the battery voltage increases after the load is removed, the switch stays off due to the voltage through D_{l} from the rail. If either the load or battery is removed and
reconnected, the circuit restarts if the battery voltage is above the trip point. V Labuc
Hudson
Quebec, Canada

PCBs for Douglas Self's power amplifier series

Circuit boards for Douglas Self's high-performance power amplifier are now available via $E W+W W$. Detailed on page 139 of the February 1994 issue, Douglas Self's state-of-the-art power amplifier is the culmination of ideas from one of the most detailed studies of power amplifier design ever published in a monthly magazine. Capable of delivering up to 100 W into 8Ω, the amplifier features a distortion of 0.0015% at 50 W and follows a new design methodology.
Designed by Douglas himself, the fibreglass boards have silk-screened component IDs and solder masking to minimise the possibility of shorts. Sold in pairs, the boards are supplied with additional detailed constructional notes.
Each board pair costs $£ 45$, which includes VAT and postage, UK and overseas. Credit card orders can be placed 24 hours on 081-652 3614. Alternatively, send a postal order or cheque made payable to Reed Business Publishing to EW+WW, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Tricks with a voltage regulator

t is worth pointing out that between the input and common pins of a Motorola 7805 ACP 5 V voltage regulator is a useful current regulator. A batch of these devices showed a current of 2 mA regardless of the applied voltage over 7V or load. A TI8306 (78L05) still had the constant current, but of 3.5 mA .

To increase the output of the IC regulator, one can insert a diode in the common leg
but, in view of the constant current of 2 mA , a resistor of $500 \Omega /$ volt is satisfactory. There seems to be no loss of conventional regulator performance when the 7805 is used in these ways.

John Cronk

Prestatyn
Clwyd
Wales

Unorthodox use of a Motorola 7805 voltage regulator to obtain a current regulator and to increase voltage output.

Driving three-phase brushless dc motors

Cigure 1 shows a circuit designed to test the functioning of a range of three-phase brushless motors obtained from disk drives. A 4018 divide-by- n counter generates the three-phase drive waveforms ${ }^{1}$ shown in Fig. 2, feedback from Q_{3} causing the first three Johnson counters to generate a sixstep sequence, which is sequentially stepped out via Q_{4} and Q_{5}. Waveforms from Q_{1}, Q_{3} and Q_{5} each take six clock pulses per cycle, the phase lags being 120°

Direction control is provided by an input to the 4070 Ex-Or, which inverts phases 1 and 2 when the input is high, and the 4001 simply switches off the motor drive transistors by grounding their gates
N -channel $I R 110$ mosfets rated at an amp were used in the prototype, but for higher current, Fig. 3 shows a circuit using TIP 122 Darlingtons
Motors tested appeared to be rated at $24 \mathrm{~V}, 2 \mathrm{~A}$, and maximum clock frequency was 200 Hz , giving a motor speed of $2000 \mathrm{rev} / \mathrm{min}$. At very low clock frequencies -2 Hz - the motor stutters before rotating smoothly, an effect that disappears at higher speeds.
W A Russell
Bay of Plenty Polytechnic
Tauranga
Australia

Reference

1. Lancaster D. Cmos Cook Book, 2nd edition.

Fig.1. Simple drive circuit for three-phase, brushless dc motors, with reverse and inhibit inputs.

Fig.2. Drive waveforms from circuit of Fig. 1.

LOUDSPEAKERS

$2^{\prime \prime}$ Round 50 ohm Coil $1 / 2 \mathrm{~W}, 2$ for $£ 1$, Order Ref: 908 $21 / 4 " 8$ ohm, 2 for $£ 1$, Order Ref: 454. $21 / 2 / 35 \mathrm{ohm}, 2$ for $£ 1$, Order Ref: 514 $21 / 2^{\prime \prime} 8 \mathrm{ohm}, 2$ for $£ 1$, Order Ref: 682 . $61 / 2^{\prime \prime} 4 \mathrm{ohm}$ with Tweeter, $£ 1$, Order Ref: 895. $61 / 22^{\prime \prime} 6$ ohm, $£ 1$, Order Ref: 896. $61 / 2^{\prime \prime} 8$ ohm with Tweeter, $£ 1$, Order Ref: 897. $6^{\prime \prime} \times 4^{\prime \prime} 4$ ohm, $£ 1$, Order Ref: 242. $5^{\prime \prime} \times 5^{\prime \prime} 15 \mathrm{ohm}, \mathrm{£1}$, Order Ref: 906. $5^{\prime \prime} \times 5^{\prime \prime} 16$ ohm, $£ 1$, Order Ref: 725. $6^{\prime \prime} \times 4^{\prime \prime} 16$ ohm, 2 for $£ 1$, Order Ref 684 $8^{\prime \prime} 15 \mathrm{ohm}$ Audax, $\mathbf{£ 1}$, Order Ref: 504. $9^{\prime \prime} \times 3^{\prime \prime} 8 \mathrm{hmm} 5 \mathrm{~W}, £ 1$, Order Ref: 138. 3" 4 ohm Tweeter, £1, Order Ref: 433. Goodmans $\mathbf{6} 1 / 2^{\prime \prime} 10 \mathrm{~W} 4 \mathrm{ohm}, \mathbf{£ 2}$, Order Ref: 2P27 Horn Speaker $41 / 2^{\prime \prime} 8$ ohm, £3, Order Ref: $3 P 82$ 20W 5" 4 ohm by Goodmans, £3, Order Ref: 3P145. 20W 4" 4 ohm Tweeter, $£ 1.50$, Order Ret: $1.5 \mathrm{P9}$. Amstrad $8^{\prime \prime} 15 \mathrm{w} 8$ ohm with matching Tweeter. £4 Order Ref: 4P57.
Cased pair of Stereo Speakers by Bush, 4 ohm, $\mathbf{\Sigma 5}$ per pair, Order Ref: 5P141.
Double Wound Voice Coil, 25W ITT with Tweeter and Crossover, £7, Order Ref: 7P12.
25W 2 way Crossover, 2 for £1, Order Ref: 22. 40w 3 way Crossover, £1, Order Ref: 23.

MAINS TRANSFORMERS

5V 45A, £20, Order Ref: 20P16. 6V 1A, 2 for £1, Order Ref: 9. 8V 1A, £1, Order Ref: 212. 9V $1 / 2 \mathrm{~A}, 2$ for $£ 1$, Order Ref: 266 9V 1A, £1, Order Ref: 236. 10V 1A, £1, Order Ref: 492. 12V 1/2A. 2 for $£ 1$, Order Ref: 10 12 V 1A, £1, Order Ref: 436. 12V 2A, $£ 2$, Order Ref: 2P337. 15V 1A, £1, Order Ref: 267. 17V 1A, £1, Order Ref: 492. $18 \mathrm{~V} 1 / 2 \mathrm{~A}, \mathrm{E} 1$, Order Ref: 491 $20 \mathrm{~V} 4 \mathrm{~A}, \mathbf{£ 3}$, Order Ref: 3P106 $24 \mathrm{~V} 1 / 2 \mathrm{~A}, ~ £ 1$, Order Ref: 337. 30 V 21/2A, £4, Order Ref: 4P24 $36 \mathrm{~V} 3 \mathrm{~A}, ~ £ 3$, Order Ref: 3P14. 40V 2A, £3, Order Ref: 3P107 43V 31/2A, £4, Order Ref: 4P14 50 V 2 A fully shrouded, $\mathbf{\Sigma 5}$, Order Ref: 5P210. 50 V 15A, £20, Order Ref: 20 P 2. 90 V 1A, £4, Order Ref: 4P39. 675V 100mA, 55 , Order Ref: 5P166. 3kV 3mA, £7, Order Ref: 7P7. 4kV 2mA, £5, Order Ref: 5P139. $6-0-6 \mathrm{~V} 10 \mathrm{VA}, £ 1$, Order Ret: 281 $8-0-8 \mathrm{~V}$ 8VA, $£ 1$, Order Ref: 212. 12-0-12V 2V 3VA, $£ 1$, Order Ref: 636 12-0-12V 6VA, $£ 1$, Order Ref: 811 12-0-12V 50VA, $£ 3.50$, Order Ref: 3.5P7. 15-0-15V 1VA, £1, Order Ref: 937. 15-0-15V 15VA, $£ 2$, Order Ref: 2 P 68 18-0-18V 10VA, £1, Order Ref: 813. 20-0-20VA 10VA, $£ 1$, Order Ref: 812 20-0-20V 10VA, £2, Order Ref: 2P85 $\mathbf{2 0 - 0} \mathbf{- 2 0 \mathrm { V }} \mathbf{2 0 \mathrm { VA } , \mathbf { £ } , \text { Order Ref: 2P138 }}$ 20-0-20V 80VA, $\mathbf{\varepsilon 4}$, Order Ref: 4P36.
$\mathbf{3 6 - 0 - 3 6 V} 20 \mathrm{VA}, \mathbf{£ 2}$, Order Ref: 2P156.

SPECIAL TRANSFORMERS

15VA gives 1V, 7V, 8V, 9 V or 10V, £1, Order Ref: 744. $38-0-38 \mathrm{~V} 15 \mathrm{VA}$ with regulator winding, $£ 10$, Order Ref: 10P36
230V-115V auto transformer 100VA, £2, Order Ref: $2 P 6$.
$230 \mathrm{~V}-115 \mathrm{~V}$ auto transtormer 10VA, £1, Order Ref: 822. $230 \mathrm{~V}-115 \mathrm{~V}$ auto transtormer 1 kVA , $£ 20$, Order Ret 20 P 29.
MULTI VOLTAGE auto transformer, gives 115 V and voltages above and below this. £4, Order Ref: 4P79.

ISOLATION TRANSFORMERS

230V-230V 10VA, £1, Order Ref: 821 $230 \mathrm{~V}-230 \mathrm{~V}$ 150VA, $\mathbf{£ 7 . 5 0 \text { , Order Ret: 7.5P5 }}$ 440 V -240V 220VA, £10, Order Ref: 10P115

MISCELLANEOUS BARGAINS

We have approximately 2,000 various bargains avail able. We cannot possibly list them alt on this page. Most of those we have previously advertised are still available. If there is anything you especially want, then please give us a ring.

DC MOTOR SPEED CONTROLLER
Now available made up, cased and tested. Two versions, one for motors up to $1 / 4 h p, ~ £ 29.50$, Order Ref: 29.5P2, and a more powerful model sultable for motors up to $1 / 2 \mathrm{hp}$ is $£ 37.50$. Order Ref: 37.5P1. Still available in kit form, £18., Order Ref: 18P8, and £26, Order Ref: 26P1.

1/3rd HORSE POWER 12 V MOTOR (Sinclair C5) $£ 29.50$, Order Ref: 29.5P1 OV-20V DC PANEL METER
This is a nice size 65 mm sq. It is ideal if you are making a voltage variable instrument or battery charger. Price £3, Order Ref: 3P188.

FLASHING BEACON

deal for putting on a van, a tractor or any vehicle that should always be seen. Uses a XENON tube and has an amber coloured dome. Separate fixing base is included so unit can be put away if desirable. Price £7.50, Order Ref: 7.5P13.
ANOTHER $12 \mathrm{~V}-0 \mathrm{~V}-12 \mathrm{~V}$ TRANSFORMER is a 50VA and is suitable for dropping through the chassis or as it is fitted with 4 pillars it can be mounted above the chassis. Also should you want a 12V 4A transformer then this one should be quite suitable, you use just one half of the secondary. Price $£ 3.50$, Order Ref: 3.5P7 HIGH RESOLUTION MONITOR
$9^{\prime \prime}$ by Philips, in metal frame for easy mounting. Brand new, offered at less than price of tube alone, only $£ 15$, Order Ref: 15P1.

15W 8" 9 OHM SPEAKER \& 3" TWEETER Amstrad, made for their high quality music centre, $£ 4$ per pair, Order Ref: 4P57

INSULATION TESTER WITH MULTIMETER

 internally generates voltages which enables you to read insulation directly in megohms. The multimeter has four ranges, $\mathrm{AC/DC}$ volts, 3 ranges milliamps, 3 ranges resistance and 5 amp range. These instruments are exBritish Telecom but in very good condition, tested and guaranteed OK, probably cost at least $£ 50$, yours for only $£ 7.50$ with leads, carrying case $£ 2$ extra, Order Ref: 7.5P4WE HAVE SOME of the above testers but slightly faulty, not working on all ranges, should be repairable, we supply diagram, £3, Order Ref: 3P176

250W LIGHT DIMMER
Will fit in place of normal wall switch, only $\mathbf{£ 2 . 5 0}$ each Order Ref: 2.5P9. Note these are red, blue, green or yellow but will take emulsion to suit the colour of your room. Please state colours required.

TOUCH DIMMERS
$40 \mathrm{~W}-250 \mathrm{~W}$, no knob to turn, just finger on front plate will give more or less light, or off. Silver plated on white background, right size to replace normal switch, $£ 5$, Order Ref: 5P230

LCD $31 / 2$ DIGIT PANEL METER
This is a multi-range voltmeter/ammeter using the A-D converter chip 7106 to provide 5 ranges each of volts and amps. Supplied with full data sheet. Special snip price of $£ 12$, Order Ref: 12P19.

MULTI TESTER
19 range, ex-British Telecom, reconditioned. These measure AC and DC volts, DC milliamps and have 3 resistance ranges made to BT specification and 20,000 opv movement. Complete with test prods, £8.50, Order Ref: 8.5P3. Carrying case with handle £2 extra

CLOCK MODULE

${ }^{\prime}$ ' LCD display, requires 1.5 V battery, goes back to zero when switched off so ideal for timing operations, £2, Order Ref: 2 P307

MINI BLOW HEATER

1 kW , ideal for under desk or airing cupboard, etc Needs only a simple mounting frame, $\mathbf{\Sigma 5}$, Order Ref 5P23.

MEDICINE CUPBOARD ALARM

Or it could be used to warn when any cupboard door is opened. The light shining on the unit makes the bell ring. Complete built and neatly cased, requires only a battery, £3, Order Ref: 3P155.

DON'T LET IT OVERFLOWI
Be it bath, sink, cellar, sump or any other thing that could flood. This device will tell you when the water has risen to the pre-set level. Adjustable over quite a useful range. Neatly cased for wall mounting, ready to work when battery fitted, £3, Order Ref: 3P156.

FIGURE 8 FLEX
A wire with a thousand uses. It will carry $5 A$ and is insulated up to 300 V but is thin enough to hide away along the carpet or skirting. Also ideal for burglar alarms, door bells, etc, etc. 50 m coil $\mathbf{~ 2}$, Order Ref: 2P345.

£1 BARGAIN PACKS -LIST 2

This is the $£ 1$ Bargain Packs List 2 - watch our for lists 3 and 4 next month.
$3 \times$ Battery Model Motors, tiny, medium and large, Order Ref: 35 .
$2 \times$ Tuning Capacitors for medium wave radios, Order Ret 36.

Minlature 12V Relay with low current consuming coil, 2 x 3A changeover contacts, Order Ref: 51.
x Ferrite Siab Aerials with medium wave colls. Ideal for building small radlo, Order Ref: 61.
$\mathbf{x} 25 \mathrm{~W} 8 \mathrm{ohm}$ Variable Resistors. Ideal for loudspeaker volume control, Order ref: 69.
$2 \times$ Wirewound Variable Resistors in any of the following alues, 18, 35,50, 100 ohms, your choice, Order Ref: 71. $4 \times 30 A$ Porcelain Fuse Holders. Make your own fuse board, Order Ret: 82
$2 \times 61 / 2^{\prime \prime}$ Metal Fan Blades for $5 / 16^{\prime \prime}$ shaft, Order Ref: $86 / 61 / 2$ Mains Motor to suit the $61 / 2^{\prime \prime}$ blades, Order Ref: 88.
x 4.5 V 150 mA DC Power Supply. Fully enclosed so quite safe, Order Ref: 104.
10 each red and black small size Crocodile Clips, Orde Ref: 116.
15m Twin WIre, screened, Order Ref: 122A
100 Plastic Headed Cable Clips, nail in type, several sizes Order ref: 123.
$4 \times$ MES Batten Holders, Order Ref: 126
Complete Pocket Size MW Radio, believed OK but not ested, Order Ref: 133R
4×2 Circuit Micro Switches (Licon) Order Ret: 157.
$\times 13 A$ Switch Socket, quite standard but coloured, Order Ref: 164.
x 30A Panel Mounting Toggle Switch, double-pole, Order Ret: 166.
$2 \times$ Neon Numicator Tubes, Order Ref: 170.
$100 \times 3 / \mathrm{F}$ Rubber Grommets, Order Ref: 181.
$6 \times$ BC Lamp Holder Adaptors, Order Ref: 191
$8 \times$ Superior Type Push Switches. Make your own keyboard, Order Ref: 201
Malns Transformer 8V-oV-8V 1/2A, Order Ref: 212.
$2 \times$ Sub Min Toggle Switches, Order Ref: 214.
High Power 3" Speaker (11W 8ohm) Order Ref: 246. Medium Wave Permeability Tuner, it's almost a complete adio with circuit, Order Ref: 247.
$6 \times$ Screwdown Terminals with through panel insulators, Order Ref: 264.
LCD Clock Display, $1 / 2^{\prime \prime}$ figures, Order Ret: 329.
$10 \times$ Push-on Long Shafted Knobs for $1 / 4^{\prime \prime}$ spindle, Order Ref: 339.
$2 \times$ ex-GPO Speaker inserts, ref 4T, Order Ref: 352 $100 \times$ Sub Min 1F Transformers. Just inght if you want coil ormers, Order Ref: 360
$1 \times 24 V 200 \mathrm{~mA}$ PSU, Order Ref: 393.
$1 \times$ Heating Element, mains voltge 100 W , brass encased, Order Ref: 8.
1 x Mains Interference Suppressor, Order Ref: 21.
$3 \times$ Rocker Swliches, 13A malns voltage, Order Ref: 41 \times Mini Unl-Selector with diagram for electronic jigsaw Order Ref: 56.
$2 \times$ Appliance Thermostats, adjustable up to 15A, Order Ref: 65 .
$1 \times$ Malns Motor with gearbox giving 1 rev per 24 hrs, Order Ref: 89.
$10 \times$ Round Pointer Knobs for flatted $1 / 4^{\prime \prime}$ spindles, Order Ref: 295.
$1 \times$ Ceramic Wave Change Switch, 12 -pole, 3 -way with $1 / 4^{\prime \prime}$ spindle, Order Ref: 303
$1 \times$ Tubular Hand Mike, suits cassette recorders, etc. Order Ref: 305.
$2 \times$ Plastic Stethosets, take crystal or magnetic inserts, Order Ref: 331.
$20 \times$ Pre-set Resistors, various types and values, Order Ref: 332.
$6 \times$ Car Type Rocker Switches, assorted, Order Ref: 333 $10 \times$ Long Shafted Knobs for $1 / 4^{\prime \prime}$ flatted spindles, Order Ref: 339.
$1 \times$ Reversing Switch, 20A double-pole or 40A single-pole, Order Ref: 343.
$4 \times$ Skirted Control Knobs, engraved 0-10, Order Ref: 355 $3 \times$ Luminous Rocker Switches, Order Ref: 373 .
$2 \times 1000 \mathrm{~W}$ Tubular Heating Elements with terminal ends Order Ret: 376.
1 x Mains Transformer Operated NICad Charger, cased with leads, Order Ref: 385.
$2 \times$ Clockwork Motors, run for one hour. Order Ref: 389.

Prices include VAT. Send cheque/postal order or ring and quote credit card number. Add £3 post and packing Orders over £25 post free.

> M\&B ELECTRICAL SUPPLIES LTD
> Pilgrim Works (Dept. WW), Stairbridge Lane, Bolney, Sussex RH17 5PA
> Telephone (01444) 881965 (Also Fax but phone first) Callers to 12 Boundary Road,

> Hove, Sussex

analogue conversion

> Getting the best high frequency performance from a clocked d-to-a converter normally needs a complex postconversion filter designed using cad. Michael Batty's $\sin (x) / x$ correction filter provides an easy to implement yet effective means of compensating for a clocked data converter's natural roll off.

Most d-to-a converters are effectively sample and hold devices. They latch each successive incoming value to provide a first-order 'staircase' approximation of the output signal.
Conversion is normally followed by a lowpass reconstruction filter. This is typically a high-order elliptic design giving a relatively flat response up to just below half the sampling frequency, F_{s}, followed by a sharp cutoff. But this arrangement provides no correction for the sinc function $(\sin (x) / x)$ fall-off in amplitude naturally produced by the sample and hold function.
As shown in Fig. 1, the roll off reaches the considerable value of -3.9 dB at $F_{\mathrm{s}} / 2$, falling to zero at F_{s}. Correction for this roll off can be designed into the reconstruction filter if com-puter-aided design tools are available, but the simple separate correction filter described here yields excellent results and allows more flexible design.
The correction filter is a simple secondorder low-pass section, with frequency and Q optimised to have a response almost exactly inverse to that of the sinc roll off function up to around $0.4 F_{\text {s. }}$. If required, a single additional second-order all-pass stage can be cascaded to improve delay equalisation of the correction filter.

Fig. 2. Amplitude correction and optional delay correction stages are simply cascaded at the output of the d-to-a converter. These two stages consist of second-order low-pass and all-pass filters respectively, with parameters as shown. The delay correction stage should only be needed if it is desired to approximate linear phase (constant delay) behaviour from the whole system.

Fig. 1. Amplitude correction scheme uses a filter with a response which is almost exactly complementary over a wide range of frequency to the $\sin (x) / x$ roll off inherent in the d-to-a converter. This cancels the roll off to a surprising degree of accuracy, considering the simplicity of the scheme, although the response deviates markedly above half the sampling frequency. However, by this stage, the stopband response of the normal analogue reconstruction filter should give adequate rejection.

Note that in most practical situations, the delay equalisation stage may be omitted, since it is unlikely that the accompanying reconstruction filter will itself have linear phase. Also, the correction filter alone is not useful as a reconstruction filter, due to its rather poor roll off characteristics.
Figure 2 shows the general configuration of the correction scheme, with optimised filter parameter values. Frequency and Q for each stage were arrived at by a simple but partly computer-assisted optimisation procedure, with a goal of maximum flatness and linear phase up to $0.4 F_{\mathrm{s}}$.
Results are shown in Fig. 3. The low-pass stage produces a surprisingly flat equalisation of the sinc function: to within $\pm 0.01 \mathrm{~dB}$ from

0 to $0.4 F_{\mathrm{s}}$, with an error of -0.12 dB at $0.5 F_{\mathrm{s}}$. The optional delay equalisation stage results in an overall phase linearity to within $\pm 0.5^{\circ}$ from 0 to $0.4 F_{\mathrm{s}}$, or a group delay variation of less than $\pm 0.7 \%$ within this range. In practice these figures will almost certainly be swamped by analogue component tolerances.
Figure 4 shows a practical implementation for an F_{s} of 20 kHz using single op amp stages, quite adequate for the low $Q s$ involved, although the choice of op amp may depend on the value of F_{s} if high accuracy is required. In any case precise components of 1% tolerance or better should be used.
Preceded by a unity-gain buffer stage to provide a low source impedance, the low-pass section uses a standard unity-gain Sallen and Key design. The optional delay equaliser section includes a final gain stage to compensate for 12.2 dB loss in the all-pass stage Component values in the two filter stages may of course be modified for other values of F_{s} by scaling either resistor or capacitor values in the standard manner.

Further reading

Analog filter design by M. E.Van Valkenburg, 1982, Sect. 6.5, 18.4, pub. Holt Rinehart \& Winston.

Fig. 4. The correction scheme may be realised at audio frequencies using simple second-order op-amp filter circuits, this diagram showing a practical circuit designed for a sampling frequency of 20 kHz . For precision applications a full circuit simulation is suggested, to examine the effects of passive component tolerances and real op-amp limitations. For other sampling frequencies, all $R($ or $C)$ values in the second and third op-amp stages may be scaled inversely with frequency in the usual way. Details of the all-pass filter design may be found in the reference.

D-to-a converters and $\sin (x) / x$ roll off

Spectral roll off produced by a d-to-a converter which always holds (latches) its last value is a well known effect in signal processing systems, and may be briefly (although by no means trivially) understood as follows:

Prior to sampling, a signal spectrum can consist of frequency components up to half the sampling frequency, F_{5}, as shown in Fig. A (if they are any higher we run into undersampling and hence aliasing problems - another issue).
Ideally, sampling a signal can be quite correctly considered as multiplying it by a train of impulses, Fig. B, thus producing a spectrum containing an infinite number of copies of the signal band, each symmetrically 'folded' about harmonics of the sampling frequency. This may perhaps be understood more simply in the frequency domain by considering sampling as a mixing process; the various copies of the spectrum formed correspond to all the sum and difference products formed by the signal and the uniform comb of harmonics of the sampling signal.
To accurately reconvert the signal into analogue form, it must, of course, be smoothed; this is just equivalent to lowpass filtering. In the frequency domain, this reconstruction filter does its job perfectly if it removes all copies of the spectrum except the one near zero frequency, as shown in Fig. C. The analogue signal is then perfectly recovered. Clearly, an ideal reconstruction filter would have zero attenuation (and phase shift) up to $0.5 F_{\text {s }}$, but infinite loss above this.
The effect of holding the last output of a d-to-a converter is to provide a degree of (stepwise) smoothing, which does give some low-pass filtering, but is far from ideal. At this point, we need a little signal processing theory to help. In the time domain, the hold function is equivalent to convolving the sampled waveform with a rectangle function of width one sampling period. Now Fourier theory (in particular the convolution theorem) tells us that in frequency terms, this is exactly equivalent to multiplying the spectrum by the Fourier

Transform of the rectangle function, which just happens to be of the form:

$$
\frac{\sin (\pi f T)}{\pi f T}
$$

(commonly known as a sinc function), where f is the frequency and T the sampling period, $1 / F_{5}$). This is illustrated in Fig. D, and produces a zero value at F_{5}, with a -3.9 dB response at $0.5 F_{s}$, thus distorting the spectrum considerably from the original. Clearly if the sampling frequency is very high compared to the signal (ie highly oversampled), then the effect on the signal may be small, and this is often used to advantage.

Circuits
 bydesign

4: Filters

> Due to the number of calculations involved, filter design in particular is greatly simplified by using cad software. Owen Bishop describes how to get the best out of modern circuit simulation and analysis tools.

Afirst-order low-pass passive filter is easily realised with a pair of components, Fig. 1, or as a Spice netlist, Fig. 2. With the selected values of the capacitor and resistor, the -3 dB point - cut-off frequency - is $f_{c}=1 / 2 \pi R C=1592 \mathrm{~Hz}$. I will use this simple example to demonstrate some of the frequency response analyses available in SpiceAge for Windows. For all of these analyses, a voltage probe is set between 'vout' and 'gnd', so that it monitors voltage across the capacitor.
The first run is a straightforward Bode Plot, input being a 1 kHz sine wave at 1 V . Frequency range is set for 10 Hz to 1 MHz in 100 steps. Under the Frequency drop-down menu, select Y-display mode, then tick $d B$ plot and Phase plot.
Under Analyse, selecting Frequency response now produces Fig. 3. On the left is a decibel scale, instead of the usual voltage scale, with 0 dB being equivalent to 1 V , the amplitude of the voltage generator. On the right is a phase scale running from $+180^{\circ}$ to -180°.

Fig. 1. Nodes of this simple low-pass filter are named, ready for entering in as a SpiceAge netlist.

The graph has two curves, one for output signal amplitude and the other - in a different colour on the display - for the phase difference between the input and output signals. The graphs show that amplitude begins to fall above about 50 Hz .
The cross-hairs are placed on the -3 dB point, as indicated by the value displayed below the graph. At this point the frequency

Fig. 2. The netlist above defines the values of the components in Fig. 1, and the connections between them.

Fig. 3. A frequency sweep shows a typical low-pass amplitude curve, right. Phase of the output signal lags when frequency is greater than about 1 kHz , tending toward 90° as frequency approaches 1 MHz .

reading is 1.606 kHz , which is the closest reading to the calculated value of f_{c}. Beyond this point, response falls steadily at -6 dB per octave.
Phase changes are shown on the lower curve. At low frequencies, the output signal is in phase with input. As frequency increases, the output lags further and further behind input, eventually finishing with a phase lag of 90°.
Another display mode, Fig. 4, is obtained by selecting Real and imaginary in the list of Y display modes. In this, the real and imaginary components of the voltage across the capacitor are plotted separately against frequency. The real component, shown in the upper curve, falls from 1000 mV at frequencies below about 80 Hz to zero at frequencies greater than about 200 kHz . At f_{c}, it reaches its half-way value of 500 mV , equivalent to -3 dB , as indicated by the vertical cross-hair. The imaginary part, lower curve, has its greatest negative value of -500 mV at this frequency. At this frequency the phase angle is -45°.
A third display mode is Nyquist Plot, obtained by running the same simulation, Frequency response, but with Complex plane ticked as the Y-display mode. Display, Fig. 5, is a plot in the complex plane, the x -axis being real and the y-axis being imaginary. Both axes are graduated in a linear voltage scale though, on the screen, the scales are not equal.
Note that in this example all the values on the y-axis are negative and the origin is in the top left corner. The curve passes through a set of points labelled with the frequency.
A graph of this type is most easily interpreted by reference to a set of phasors. Beginning at top right of the graph with the

Packages

A number of standard packages are included with Mathematica. These provide some of the routines which are less often required than those in the kernel. Examples are statistical functions, and calculus functions such as the Laplace transform. These are read into the program by a command such as

<< Calculus ${ }^{\circ}$ LaplaceTransform"

or

Needs["Calculus"LaplaceTransform"]

It can be arranged that a package is loaded automatically when one of its functions is called. With the engineering package, the easiest method is to begin the session by typing:

Needs["EE"Master"]

This loads all the functions that are present in the EE package.
lowest frequency, the output is in phase with and has the same amplitude as the input, dashed line of Fig. 6. The real component has the value 1000 mV and the imaginary component is zero.

As frequency increases up to 1592 Hz , the imaginary component increases but is negative, while the real component decreases. At 1592 Hz they have equal magnitude $(500 \mathrm{mV}$ and -500 mV , see Fig. 3) and the phase angle is -45°. This is the point at the bottom centre of the graph in Fig. 5, the curve being the locus of the tip of the phasor as frequency changes.

As frequency increases further, we follow the curve around to the left, both components decreasing. You will notice that the real component decreases at a faster rate and thus, at the limit, the phase angle is -90°.

Designing active filters

As a change of approach, I will use Mathematica to assist with the designing of a first-order low-pass active filter, based on an operational amplifier, Fig. 7. It is to have a dc gain of 25 , and a cut-off frequency of 10 kHz .
Decide on a possible value for the capacitor, say 2.2 nF . Calculating the values of the resistors follows a routine. As in the programs described last month, set up a Notebook that begins with the definition of a function LowPass, Fig. 8. This needs 3 values: dc gain (a), cut-off frequency $(f c$) and capacitor value (c). It calculates the values of the input resistor (r), the amplification resistor $(r a)$, and the feedback resistor (r)
Equations for these calculations appear in the definition, and balance the bias current by making $r a$ and $r f$ in parallel equal to r. These calculations would normally be done by hand, on paper, but here we can run through them simply by clicking the Action menu and selecting Evaluate notebook. As explained last month, you can also click on and evaluate one stage at a time when testing and debugging the routine.
When the function is called, it returns the value of $r f$, given by the final equation in the definition. Commands ' $r a$ ' and ' r ' following this causes the calculated values of $r a$ and r to be displayed. These are then converted to standard resistor values (see panel). In this way, the three resistor values required for building the filter are obtained, assuming an ideal opamp.

Figure 8 has a final line needing more explanation. The function BodePlot is one defined in a package specially intended for engineers. This is the Electrical Engineering Pack, obtainable as an optional extra from the publishers of Mathematica. It consists of a number of Notebooks, describing various ways of using Mathematica in electrical and electronic applications. These are presented as a printed book and as a series of files on disk ready to load when running Mathematica.
More interestingly for us, it also contains a package of functions relevant to electrical and electronic engineering. The Bode Plot is one of the routines included in the $E E$ package and

Fig. 4. In this curve, frequency response of the low-pass filter is plotted in terms of the real and imaginary parts of the output voltage phasor.

Fig. 5. A Nyquist Plot in the complex plane defines the locus of the apex of the output voltage phasor as frequency rises from $\mathbf{0 H z}$ (top right) to 1 MHz (top left).

Standard resistor values

The calculations return the values of resistors to several significant figures, usually at least five. In practice, a circuit is built from resistors of the E12 or E24 series and only rarely from E48 or higher-precision resistors. The EE package has a routine SelectResistor to pick out the standard resistor nearest to any given resistor value. The syntax is:

SelectResistor[resistance, tolerance]

In Fig. 8 this routine is used for finding practical values for $R, R A$ and $R F$, assuming 5% tolerance. In this Notebook, the selected value is assigned to the variable before calling BodePlot. Because of this, the plot shows the behaviour of the filter using standard resistors.

Fig. 6. A few of the output voltage phasors represented by the Nyquist Plot of Fig. 45 show how the almost semicircular curve is traced.

Fig. 7. A low-pass active filter based on op-amps, to be used as a basis for analysis by Mathematica.

CBDO4 - Low-pass RC filter
LowPass[a_, fe_, $\left.c_{-}\right]:=(x=1 /(6.28319$ fce); $\boldsymbol{f f}=\mathrm{r}$ (a-
Input["DC gain"];
$a=1$!
Input ["Cut-off frequency"] ;
$\mathrm{f} C=$:
Input["Capacitor"];
$c=1$;
LowPass\{a, fc, c\}
r
Select Resistor[rf, 0.05]:
$\mathbf{r f}=5$
selectResistor [r, 0.05] :
$\mathbf{r}=$
BodePlot [(a/(2 gi x c))/(I w+1/(2 Pi rc)).
(w, 100, 10^7)]

Fig. 9. This procedure modification gives a Nichols Plot. Gain is related to phase angle. Curve shows gain reducing and phase lag increasing at higher frequencies.

Fig. 11. Transient analysis shows peak response at 2.5 kHz , and a fall-off on either side of this at the specified rate.

Fig. 12. Band-pass filter of Fig. 10 in action. A 2.5 kHz triangle wave is filtered to a 2.5 kHz sine wave, all harmonics are filtered out because they are well above the pass band.

Fig. 13. When filter input is a 1 kHz square wave, well below the pass band, only the 3 kHz sine wave component comes through strongly. This transient analysis plots the filter's 1 kHz square input and 3 kHz sine output.

Enlarging the plot

Although the graphs are too small to read when first plotted, they are easily enlarged. Place the cursor anywhere in the cell - except for the cell bracket - and click the mouse. This makes a box appear around the graphs. The box has handles comprising small shaded squares; clicking on one of these and dragging it toward the edge of the screen causes the display to be enlarged. Click in an adjacent cell to remove the box.

I will discuss several others in due course. Syntax of BodePlot is:

BodePlot[transfer-function, \{frequency, minimum, maximum\}]

In the case of the first-order filter, the transfer function in the frequency domain is:

$$
H(s)=\frac{A / 2 \pi R C}{s+1 / 2 \pi R C}
$$

This is incorporated into the function in Fig. 8 , substituting $\mathrm{j} \omega$ for s , but using I for j). In curly brackets we have ω, the frequency variable, with 100 and 10^{7} setting the plot to range from 100 Hz to 10 MHz .
Evaluating the Notebook, input ' 25 ' as the dc gain, ' 10000 ' as the cut-off frequency and '2.2 10^-9' (note the space between the ' 2.2 ' and the ' 10 ') as the capacitor value. The program responds by displaying 180858 as the value of $r f$, and 7234.31 for R. These are converted to $180 \mathrm{k} \Omega$ and $7.5 \mathrm{k} \Omega$ respectively. Then it displays the Bode plot in the form of two graphs.
The upper graph shows amplitude against frequency. It is plotted on a decibel scale, with $28 \mathrm{~dB}(=20 \log 25)$ as the reference; the amplitude falls by 3 dB , to 25 dB , at the cut-off frequency, as indicated by the cross-hairs. The lower graph is phase against frequency, falling from 0° to -90° over the displayed range. Cross hairs indicate that the output lags the input by 45° at the cut-off frequency.

Other plots

The Engineering Pack of Mathematica has functions for two more useful plots, one of which is the Nyquist plot. The syntax is the same as for the Bode plot; just substitute 'NyquistPlot' for 'BodePlot' in Fig. 8 and evaluate the Notebook.
The other function is the Nichols Plot, in which the gain of the filter in decibels is plotted against the phase angle. Substitute 'NicholsPlot' for 'BodePlot' in Fig. 8 and evaluate the Notebook. In Fig. 9, gain rises from a low level when the phase angle is -90° at high frequency to 28 dB when the phase angle is close to 0°, i.e. at low frequency.

Filter design

The task is to design an active band-pass filter

Creating .WAV files

Readers whose simulation software does not have the facility to generate. WAV files may make use of this simple technique. You need a program for generating a .WAV file from an equation. A suitable program, which is a complete sound file editor, is GoldWave, by Chris Crain. This is available as shareware from Chris at PO Box 51, St. John's, NF, Canada A1C 5H5
Internet: chris3@garfield.cs.mun.ca. Registration fee is \$30 Canadian. It is also on the diskette packaged with Soundblaster: The Official Book by Peter M. Ridge, David M. Golden, Ivan Luk and Scott E. Sindorf, 2nd Edition, published by Osborne/McGraw-Hill.
When you have performed a transient analysis, preferably of five or more cycles, obtain a Fourier transform. Use the cross-hairs to measure the amplitude of the fundamental and each harmonic. Also measure their phase angles. Given this information, write an equation to reconstruct the waveform.
As an example, here are the data for a 1 kHz triangular wave with a 1 V amplitude:

Frequency	Amplitude (V)	Phase
1 kHz	0.8063	-90°
3 kHz	0.09019	$+90^{\circ}$
5 kHz	0.03247	-90°
7 kHz	0.01647	$+90^{\circ}$
9 kHz	0.01013	-90°

Written as a Fourier series:

$$
y=-0.8063 \sin x+0.09019 \sin 3 x-0.03247 \sin 5 x+0.01647 \sin 7 x-0.01013 \sin 9 x
$$

The angle should include the phase angles but, since all angles are either $+90^{\circ}$ or -90°, it is simpler to alter the angle of reference and give the terms the sign of the phase angle.
The right-hand side of this equation is typed into the GoldWave Expression Evaluator, substituting 't* 1000^{\prime} ' for x to obtain a 1 kHz wave. The expression was evaluated for $t=0$ to $t=2$ to give a two-second file. You could substitute any other factor instead of 1000 to obtain sounds of other frequencies.
The same triangle wave is filtered through a three-pole $R C$ low-pass filter with a -3 dB point of 2 kHz . The output transient is evaluated from 2 ms to 12 ms to eliminate the starting-up transient. After a transient analysis as above, the Fourier analysis gives:

Frequency	Amplitude (V)	Phase
1 kHz	0.2773	178°
3 kHz	0.00758	-60°
5 kHz	0.00103	$+90^{\circ}$
7 kHz	0.00025	-108°

Here it is necessary to take full account of the phase angle, after converting it into radian (all terms positive):
$y=0.2773 \sin (x+3.11)+0.00758 \sin (3 x-1.05)+0.00103 \sin (5 x+1.57)+0.00025 \sin (7 x-1.88)$
Type this in, substituting 't* 1000^{\prime} for x, as before. The whole expression is bracketed and multiplied by three to compensate for the attenuation of the filter. The result is a .WAV file sounding like a 1 kHz sine wave, which is virtually what it is after such heavy filtering.
with the Butterworth response, using 741 opamps. The -3 dB frequencies are 2 kHz and 3 kHz ; response is 30 dB down'at 1 kHz and 6 kHz . The filter consists of a low-pass filter cascaded with a high-pass filter.
The standard routine for deciding how many poles are required and for calculating resistor and capacitor values involves very little calculation. Most of the values are obtained by consulting tables. It is hardly necessary to invoke the aid of Mathematica.
You will find that both the low-pass and high-pass sections must be five-pole filters.

Each consists of a three-pole filter followed by a two-pole configuration. Figure 10 shows the circuit and is marked with the calculated values. Having completed the design, we use SpiceAge to verify it and to investigate some of its properties.
Power supply to the capacitor is provided in the netlist by two 15 V batteries connected in series, and to the positive, negative and ground lines. Input is a sine wave voltage generator, amplitude 1 V , first set to 2.5 kHz , which is the mid-frequency of the filter.
The procedure is the same as if the filter has
been assembled with real components. I will demonstrate how it works. The advantage with using a simulator is that it is not possible to burn out expensive components because of wrong connections. Additionally, there is no problem with electrostatic charges when using cmos components.
A probe is set to monitor vout. Call up the Time selector box and enter a start time of 0 s , a stop time of $400 \mu \mathrm{~s}$ and a step time of $8 \mu \mathrm{~s}$. This gives time for one complete cycle
The first test, a Transient analysis, gives an output of 400 V amplitude; obviously something is wrong. Instead of desoldering connecting wires, it is possible to 'isolate' parts of the circuit and test them individually for faults; simply type an asterisk at the beginning of any statement to remove the component from the circuit.
Check that the remaining components have the correct temporary connections and test again. Isolating the first op-amp still produces an excessively high output, so obviously something more fundamental is wrong. Careful scrutiny of the netlist reveals a typing error; there is ' $\mathrm{v}-$ ' where there should be ' -v '. Once this is corrected the circuit works perfectly. The output amplitude is about $1 / 5$ that of the input and appears to be almost in phase.
To confirm that the filter behaves as intended, set the Frequency range to extend from 10 Hz to 1 MHz and run a Frequency response analysis. The result, Fig. 11, shows that the response is almost exactly as required. At the low end it is -30 dB at 1 kHz , and -3 dB at 1 kHz . At the high end it is -3 dB at 3.2 kHz and -30 dB at 6.1 kHz .
The pass-band is narrow and fall-off is steep on both sides so that the typical flat pass-band of a Butterworth filter is not shown. Also shown in the graph is how phase angle varies with frequency. The angle decreases from 90° at low frequencies to -180° at about 2 kHz . It continues to fall, but having completed half a circle, now appears as $+180^{\circ}$ on the graph falling to 0° (really -360°) at 2.5 kHz . In continues to fall as frequency increases.

Filtered waveforms

SpiceAge can show the effect of the filter on various waveforms. Change the excitation of the voltage generator to 'triangular' and set the Time selector to start at 0 s , stop at 2 ms with steps of $20 \mu \mathrm{~s}$. This gives time for 5 complete cycles.
Transient analysis shows that the output amplitude increases gradually during the first three cycles and is constant thereafter. This is because it takes about that length of time for the capacitors to become charged to their operating levels. Such a result is not a good basis for a Fourier analysis.
Re-set the timing to begin at 1.2 ms and stop at 3.2 ms . The first three cycles are ignored and the fourth to eighth cycles displayed, Fig. 12. In the figure, the output appears to have a greater amplitude than the input, but this is because a scale factor of times five is set for the output waveform.
Input waveform is clearly triangular but the

Win Spiceage for Windows

Two readers answering the questions below correctly will win a copy of SpiceAge for Windows Level 3 - base professional level - worth $£ 395+$ VAT. Simply answer the following questions and complete the tie break, posting your reply to arrive at the offices of Those Engineers before 25 February 1995.

Q1. SpiceAge for Windows is written in which country: USA, Germany, UK, Israel, Australia, Japan?

Q2. In a lossless circuit, resonance is given by $\omega=1 /\left(L C^{0.5} \mathrm{rad} / \mathrm{s}\right.$. Write down the analogous expression for a mechanical spring plus mass system. Please define completely the terms within your expression.

Q3. Which of the following traces which show the current in the
terminating resistor is the correct response of a 75Ω transmission line terminated with a 150Ω resistor to which a current of 1 A is suddenly applied?

Q4. You are on site repairing a board for which you need a $20 \mathrm{k} \Omega 5 \%$ resistor. You have just dropped your ohm meter in a puddle and your tool kit contains only one each of 5% values fitting the $10,12,15,18,22,33$ and 47 decade multipliers between $1 \mathrm{k} \Omega$ and $47 \mathrm{k} \Omega$. What do you do to keep within the original value to 3 significant figures?

Q5. Tie breaker. Complete the following in no more than $\mathbf{1 0 0}$ words. "I would be interested in using SpiceAge to..." Your reply will be judged (i) on its feasibility and (ii) on how interesting your application is.

Your answers must arrive before 25th February 1995. The winners will be announced in the April 1995 edition of Electronics World + Wireless World. No purchase is necessary. The judges' decision is final. The competition is open to EC residents only but is not open to employees or suppliers of Those Engineers Ltd. No correspondence will be entered into. Send your answers by post please to: Those Engineers, Sawcomp, 31 Birkbeck Road, London NW7 4BP.
output appears to be a sine wave, almost in phase with the input - actually about 360° out of phase, as explained above. Fqurier analysis shows a single spectrum line at the fundamental frequency, 2.5 kHz . Harmonics are well above the pass-band so are considerably attenuated. The output is an almost pure sine wave.
Try the effect of the filter on a square wave, by changing the excitation of the generator. Also reduce its frequency to 1 kHz , to bring it below the pass-band. Display the transient analysis from the second to the fourth cycles. As before, the output appears to be a pure sine wave, but its frequency is 3 kHz , not 1 kHz , Fig. 13. A square wave has only the even harmonics and an examination of the subsequent Fourier analysis has only three significant spectrum lines:

- 1 kHz , amplitude 40 mV - the fundamental, but much reduced by filtering
- 3 kHz , amplitude 289 mV - second harmonic, within the pass-band
- 5 kHz , amplitude 15 mV - fourth harmonic, reduced by filtering

Making sounds

Although a simulator can tell you all you need to know about the voltages and currents in a
circuit - and display graphs showing the shapes of the waveforms - there are occasions on which it would be informative to hear a waveform. This is important to anyone designing audio equipment, in which subjective judgements play no small part
There are several ways in which you can make your circuits 'emit' sounds. SpiceAge is able to produce a file called a log file which is an ascii file containing a table of the output voltage at regular intervals of time. This is the data which is used by SpiceAge to plot graphs, such as Fig. 12.
Log files are of no direct use for producing sound, but their data is convertible into the format of a WAV file. A .WAV file is one of the standard file formats used by computer sound cards. When the card reads the file, it produces the corresponding sound.
Most recent versions of SpiceAge have a routine for converting a \log file to a WAV file, which is playable on a sound card such as those in the Soundblaster range. The file is monophonic, so the inexpensive Soundblaster V2 is adequate. The files play on stereo sound cards too, including 16 -bit cards.
When creating a .WAV file in SpiceAge, the first stage is to set up the netlist. Next select Log file in the Presentation menu. In the Time selector box enter a suitable start and stop time. Only one cycle is required but, with reac-
tive circuits, allow a few cycles to run before the analysis period to allow values to settle.
Step time must not be less than $16 \mu \mathrm{~s}$. In the most recent version, the time selector accepts 'samples per second' as an alternative to sample times. Set Probe 1, to measure input or output voltage. Run a Transient analysis and note the hard disk activity as the circuit is analysed and the data is stored in the log file. The graph is displayed as usual after the analysis is complete.
In the File menu select Convert log file to .WAV format. A dialogue box asks you to name the \log file to be converted (for example, the one just created), then a box asks you to provide a name for the .WAV file.
Assuming that you have a Soundblaster or similar sound card installed, play the file by selecting Play sound. A dialogue box lists the .WAV files available on the current drive; select one of these and the sound begins immediately. Another box appears inviting you to 'Stop sound' by clicking on a button.
The files produced by SpiceAge, derived from the transient analysis, last only for the period analysed. This period is unlikely to be more than a few milliseconds Correspondingly, the files require few bytes. The play routine of this program repeats the file until told to stop unlike most file-playing programs which play a .WAV file only once.

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE,
COVENTRY CV3 2SF
Tel: 01203650702
Fax: 01203650773
Mobile: 0860400683

MISCELLANEOUS	
attern gene	
Ballantine 323 True RMS voltmete	5350
Datalab DL 1080 - Programmable Transient Recorde	350
E.I.P. $331 \mathrm{t8GHz}$ frequency counter	¢850
Farnell RB 1030-35 Electronic load 1	¢450
Farnell 2081 R F Power meter	¢350
Farnell TSV70 Mkll - Power Supply (70V-5A or 35V-10A)	¢225
Ferrograph RTS2 Audio test set with	5500
Fluke 5101A - Calibrator ACIDC	L3
Fluke 5101日-Caitrator AC/DC	¢6500
Fluke 5220A - Transconductanc	¢3000
General Rad 1658 LCR Digibridge	[25
Helden 1107-30v-10A Programmable power supply (IE E	56
Hewlett Packard 4364 Power meter + 8481A senso	c950
Hewiett Packard 1630G - Logic Analyser (65 c	
Hewlett Packard 3437A System volimeter	¢350
Hewlett Packard 3436A Digtal multimeter	C200
Hewlett Packard 3490A Digital m	C250
	5
Hewlett Packard 37028/3705A3710A/3716A Microwave link analyser	
Hewlett Packard 3711~3712A3791B/3793日 Microwave link	
Hewlett Packard 3760/3761 Data gen * error delector each £300	
Hewlett Packard 3762/3763 Data gen - error detector.......each £350	
Hewlett Packard 3764A Opt. 002 - Dignal Trans. Analyser	¢3500
Hewlett Packard 3777A Channel select	c250
Hewlett Packard 3779A3779C Primary mult, analyser...... [600/ 1000	
Hewlett Packar 4193A Vector mpedance meter 5250	
Hewlett Packard 42718 - LCR Meter $¢ 900$	
Hewlett Packard 5150A Thermal printer	¢275
Mewlen Packard 5316A - Universal counter MPIB .-............... 5550	
Hewlett Packard 53168 - Universal counter HPIBc750	
He wlett Packard 5385A - Frequency counter $1 \mathrm{GHz}(\mathrm{MPIB})$ with Opts 0011003/004/005 5995	
Mewlett Packard 59501 B HP IB isolated D/A power supply	
Hewlett Packard 6181 C D.C. Current source	5150
Hewlett Packard 62618 Power supply 20V-50A	0
Hewlett Packard 6453A - Power supdly 15V-200A	¢1250
Hewlett Packard 7402 Recorder with 17401A $\times 2$ plug-Ins £300	
Hewiett Packard 8005B Pulse generatorc250	
Hewlett Packard 80114 Pulse gen. $0.1 \mathrm{~Hz}-20 \mathrm{MHz}$	
Hewlett Packard 8406A Frequency comb. generator	5400
Hewlett Packard 8443A Tracking genvcounter with 1EEE ... $5300 / 5400$	
Hewtett Packard 8620C Sweep oscillator mainframe.................. 5400	
Hewlett Packard 8750A Storage normaliser 5375	
Hewiett Packard 8901B - Modulation Analyser AM/FM 150KHz -	
1300 MHz	c3750
Hewletl Packard 3456A Digital voltmeter................................ 5750	
Hewlett Packard 3488-HP.18 switch and controt unit	5500
Hewletl Packard 6623A - Trple output system power supply [1950	
Hewlett Packard 6624A - Ouad output system power supply 52250	
Hewlett Packard 8656A - 990MHz synth signal generator.......... [1500 Hewiet' Packard 8903B - Audxo Analyser $\left(20 \mathrm{~Hz}_{z}\right.$ - 100 KHz)....... 52750	
Hewlett fackard 8920A - R/F communications lest sel (as	
	7000
Hewlet1 Packard 35677A - S Parameter Test Set . 1250 International Light - IL 1700 research radiometer with Erythemal sensor head	

7/PG2B/PG Pulse generatorfro	from
Marconi 2306 Programmable inter'ace.	£500
Marconi 2337A Automatic dist. meter	5150
Marconi 235620 MHz level oscillator	¢300
Marconi 2432A500MHz digtal freq. meter	¢200
Marconl 2830 Multiplex lester.	51000
Marconi 2831 Channel access swich	¢400
Marconi 893B A/F power meter	c325
Multicore "Vapourette" bench top vapour phase SMD soldering	
Philips PM 516710 MHz tunction gen.	5400
Philips PM 5190 LF synthesizer w/th G	[800
Phillips 5390 tGHz signal gen.	C125
Philips PM 5716 Pulse generator high lreq. mos	¢600
Philips PM 6672 1GHz timer counter WF IEEE	¢650
Philips PM 8272 XYT chart recorder.	5500
Racal 9301A True RMS R/F millvolitmete	¢300
Racal Dana 1992-1300 MHz trequency count	[B00
Racal Dana 3100 $40-130 \mathrm{MHz}$ synthesiser	8750
Racal Dana 5002 Wideband level meter.	c650
Racal Dana 5003 Digital m/meter	5150
Racal Dana 9000 Microprocessing timer/count. 52MHz	c250
Racal Dana 9009A Modulation meter (new version)	¢300
Racal Dana 9081 Synth. sig. gen. 520MHz	¢550
Racal Dana 9084 Synth. stg. gen. 104 MHz	[450
Racal Dana 9242D Programmable PSU 25 V -2A	\$300
Racal Dana 9246S Programmable PSU $25 \mathrm{~V}-10$	5400
Racal Dana 9301~9302 R/F Millivolt meter	om ¢300
Racal Dana 9303 True RMS/RF level meter	5650
Racal Dana 9341 LCR databridge	¢250
Racal Dana 9500 Universal timer/Counter 100 MHz	00
Racal Dana 99213 GHz trequency counter	[450
Rohde \& Schwarz BN36711 Digital O meter.	[400
Rohde \& Schwarz LFM2 Sweep generator $0.02-60 \mathrm{MH}$	¢1500
Rohde \& Schwarz SCuD Radio code lest ser	¢1500
Rohde as Schwarz SMFP2 Mobile tester	54000
Schlumberger SI 4040 - Stabilock, high accuracy 1 GHz radio test	
set.	c8500
Schlumberger 4923-Radio Code Test Set	[2000
Schiumberger 2720-1250MHz Freq. Counter.	
Systems Video 1258 Wavelorm analyser * 1255 vector moni	monitor +
1407 ditterential phase \& gain module +1270 remote control paner	panel $£ 2250$
Thurlby Thandar TG 1304 Programmable Function Generator	
(13MHz).	[500
Time 9811 Programmable resistance	5600
Time 9814 Volitage callbrator	5750
W8 G MU3 Test point scanner	¢500
W\& G PCM3 Auto measuring set for telep	¢950
Watanabe WTR211 3 pen plotter,	[250
Weller 0800/D801 Desoldering staton	[175
Weiler D900 Desoldering station	¢150
Wiltron 352 Low treq. diflerential input phase meter	
Wiltron 560 Scalar Network analyse	
MANY MORE ITEMS AVAILABLE - SEND	
LARGE S.A.E. FOR LIST OF EQUIPMENT	
ALL EQUIPMENT IS USED - WITH 30 DAYS	
GUARANTEE. PLEASE CHECK FOR	
AVAILABILITY BEFORE ORDERING - CARRIAGE	

A question of balance

Two transmitters into one aerial system, two signal generators connected to a circuit under test, one generator feeding multiple outputs... All these applications require load balancing for correct operation. Steve Winder offers a thumbnail tutorial on obtaining the perfect balance.

Power combiners and splitters find use in rf whenever there is a need to bring sources or loads out to a single port. Combiners are physically the same as splitters: one device can serve two functions. Inputs become outputs and outputs become inputs.
Simply joining sources together will not do; impedances must be matched and isolation between the two sources may be required. A typical use would be in intermodulation distortion testing where two signal generators are coupled to a single output connected to the unit under test. Another relates to single sideband circuits, where two phase shifted signals are combined to eliminate one of the sidebands.
Power splitters are used whenever one signal source is used to drive two or more circuits. For example, this could be when two radio receivers use the same antenna.
The design coupler naturally depends on the application. Combiners used for two-tone testing require isolation between the two input

Fig. 1a. Delta resistive splitter network. Each resistor should equal the source resistance for perfect matching.

Fig. 1b. Star resistive divider. This is functionally the same as the circuit shown in Fig. 1a.

Fig. 2. Derivation of the transformer coupled power divider. a) shows the basic circuit. The first transformer changes the source impedance from 50Ω to 25Ω while the second provides the balancing and isolation action. When ports 2 and 3 see an equal load, there will be no power dissipated in the 100Ω resistor. Fig. $2 b$) is the circuit model while c) is a practical implementation with readily available prewound components.
ports and transformer coupled circuits give this isolation.
Where the two signals widely differ in frequency, a diplexer could be the best choice, for instance to separate a vhf radio signal and a uhf television signal transmitted over the same co-axial cable. The following descriptions of power splitters and combiners assume a 50Ω source and load impedance is assumed.

Resistive power splitters

Resistive power dividers can be realised in either of the two forms, shown in Fig. 1. Form a uses a delta network of resistors, each equal in value to the source impedance, $50 \Omega(51 \Omega$ will do). Form b is a star network of resistors, each resistor has a value equal to one third of the source impedance. In a 50Ω system, the three resistors in the star network will have a perfect value of 16.67Ω. In both cases, input impedance matching is dependent on the impedance of both loads.

When a signal is applied to any port of the delta network, the other two ports will deliver a level equal to half the applied voltage. This is one quarter of the input power. Since both outputs have the same voltage on them, no current flows through the resistor connected between the output ports. Each of the other resistors in the delta network is in series with a load resistor of equal value. Half the applied voltage will be dropped across resistors in the splitter, leaving half of the voltage across the load.

Looking at the input and output ports, the star network behaves in an identical way to the delta network. The voltage at the two output ports is half the applied voltage. Both star and delta networks deliver just 3 dB of isolation between ports.

Transformer coupled dividers

Using transformers in a power splitter, or combiner, enables isolation of the two output ports. This is important in some applications, such as at the output of a diode mixer where signals could mix to generate unwanted products. Isolation between the two outputs is often about 35 dB . It also eliminates the losses inherent to the resistive splitter. Half the power goes to each output resulting in a 3 dB reduction in signal level. Some transformer losses are inevitable however.
The transformer coupled splitter comprises two transformers, as shown in Fig. 2a. One is an autotransformer, the other transformer has a single centre tapped winding. The autotransformer reduces the input impedance by half, to present a 25Ω source impedance to the centre tap of the second transformer. Splitters of this type are available commercially, in modular form, from manufacturers such as Mini-Circuits ${ }^{1}$.
When transmitting signals from port I to the output ports 2 and 3 , an equal amount of current flows through each of the second transformer's windings. Since the currents flow in opposite directions through the two transformer windings, there is no magnetic flux produced. Without flux there is no voltage

Fig. 3. The spectral plot delivered by the practical implementation of Fig. 2 demonstrates the splitting action, giving equal outputs at ports 2 and 3.

Fig. 4. Demonstrating the isolating action. Port 3 is connected to the spectrum analyser while port 1 has 5 MHz signal applied (centre) and, at the same time, port 2 has a 6 MHz tone applied. Both signal generator output levels are equal. The isolation achieved is about 30 dB .
induced into the windings; the voltage at the auto-transformer tapping point appears equally at the two outputs. Imbalance in the output ports causes a current to flow in the 100Ω resistor connected between them: this limits the swr mismatch to $2: 1$ in worst case open circuit or short circuit on one port
A model of the splitter omitting the autotransformer - the source resistance given as 25Ω for clarity - is shown in Fig. 2b. This illustrates what happens when a signal is
applied to port 2. The ports all have 50Ω impedance, so the current flowing into port 2 with a one volt signal applied is 20 mA . Since no signal should appear at port 3 , it has a potential of zero volts, and it can be considered open circuit.
All the current must flow into the 25Ω resistor, producing 0.5 V across it. Clearly the other 0.5 V must be induced across one of the transformer windings (the upper winding in the diagram). By transformer action, the other

Fig. 5. Configuration (a) is a highpass/lowpass diplexer arrangement suitable for frequency splitting, for instance to a common aerial system. Diagram (b) demonstrates a
bandpass/bandstop arrangement which could deliver a predictable termination to an impedance sensitive diode mixer.
winding will also have 0.5 V induced into it. The voltage produced is negative with respect to the centre tap point. However, the centre tap potential is at 0.5 V so, by subtracting the winding voltage, port 3 is at 0 V . This also means that one volt appears across the 100Ω internal resistor, drawing 10 mA from port 2. This accounts for the 3 dB power loss when transmitting signals into ports 2 (or 3) and out of port 1 .
The autotransformer simply translates the 50Ω system input impedance to the 25Ω presented at the centre tap of the second transformer.
An equivalent power splitter circuit was built from standard Mini-Circuits transformers. The circuit diagram is given in Fig. 2c. An autotransformer was not available, so a 1.414:1 turns ratio transformer (TMO2-IT) was used. The second transformer used just one centre tapped winding of a $T /-I$, the sec-
ondary winding being left open circuit.
With no adjustments, this simple equivalent circuit produced a useable performance, as shown in Figs 3 and 4. The spectral plot in Fig. 3 demonstrates the splitting action, giving equal outputs at ports 2 and 3. In Fig. 4 the isolating action is shown; port 3 is connected to the spectrum analyser while port 1 has 5 MHz signal applied (centre) and, at the same time, port 2 a 6 MHz tone applied. Both signal generator output levels are equal. The isolation achieved is about 30 dB . Carefully designed splitters often achieve 40 dB or more isolation. This is generally frequency dependent.

Diplexers

Diplexers are power combining and splitting circuits which have the advantage of producing no power loss. They use filters to separate or combine different frequency bands, and this limits their use. The filters may be either high-

Fig. 6. Combined response of lowpass and highpass filters. The two curves cross at the frequency where they are both at their cut off frequency (-3dB point).
pass and lowpass, or bandpass and bandstop. These two circuit configurations are illustrated in Fig. 5.
It is important that the -3 dB frequency points are the same for both filters; a diplexer using a bandpass filter with a 1 MHz to 1.5 MHz passband must be combined with a bandstop filter that has a passband of 1 MHz and below, and 1.5 MHz and above. The case where lowpass and highpass filters are combined is illustrated by the frequency response given in Fig. 6. The two curves cross at the frequency where they are both at their cut off frequency (-3 dB point).
Diplexers are valuable because the impedance at the common port remains constant across the band. This is true of a diplexer input, because if the signal frequency is outside the passband of one filter, it must be inside the passband of the other. The source sees a constant impedance, so its voltage does not change with frequency.
Applications for diplexers include mixer output impedance matching. Mixers need to see a constant 50Ω across a wide bandwidth at their output terminal. This constant bandwidth should extend beyond the input signal and local oscillator frequencies. If the mixer output terminal is connected to a low frequency amplifier stage, the impedance that its sees may be nothing like 50Ω at radio frequencies. A constant impedance can be realised by placing a diplexer with a lowpass filter between the mixer and amplifier, and a highpass filter to a 50Ω dummy load. Signals at frequencies outside the amplifier's range will be terminated, via the highpass filter, in the dummy load.
A diplexer can be designed using tables of normalised values, or by using filter synthesis computer programs such as Filtech Professional ${ }^{2}$.

References

1. Mini-Circuits Ltd. Tel. 01252835094
2. Number One Systems Ldd. Tel. 01480461778

OCTOBER 1993
Wideband current mode amplifiers
Bondpass filter on a
mikro processor
Audio power chips
put to the test

MARCH 1994
Designer's guide to SMPS Polyphase $\$ 58$ receiver Glass A ultra-low distortion amplifier Using the Smith chort

AUGUSI 1994
The dato path to multimedio Applying IPGA Designing combiners Designing com
Chorting Smith's
computer world
low power switch mode psu Self-build teletext card for the PC

november 1993

DECEMBER 1993
Low cost spectrum anoly sis
IBM PC on a chip
Electronic power foctor
correction
The state of state mochines

MAY 1994
Designer's guide to
optoelectronics
Ultra-low distortion fest

osallotor

Working with current mode amplifiers

OCTOBER 1994
Signal processing at microwove
frequencies
Hew circuits for one-chip
function generators
Tunction generators
The best sch
Windows?
Windows?
Feed forward beats feedback
audio?

JANUARY 1994

JUNE 1994
Maintain control with RS232
Designer's guide to selcail
Syachronous offernative
to PLLs?
Picking up on wireless LANs

NOVEMBER 1994 Iransformerless ICR bridge Spice-Gir suits by design Superconductor evolution Superconductor evolution
Magnets for storage ond Magnets
switching

JULY 1994
New look to amplifier design?
Sorting signals from noise Using Hall to good effect Precision op-amps: First ever mass review

DEEEMBER 1994 Communisating underground Digital sines and cosines Electrolytis if detection Electrolytis if detecrion Moximising monop bandwidth Har monic effects Miniature if link for remote control

BACK ISSUES

Back issues of Electronics World are available, priced at $£ 2.50$ in the UK and $£ 3.00$ elsewhere, which includes postage. Please complete the coupon and send with correct payment to: Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

Note that all issues are subject to availability and please allow 21 days for delivery.

Issue (Month/Vear)	Quantity	Price	Total	Name

Having described his tuner and decoder card for loading teletext data directly into a pc, Laurence Cook now discusses the software needed to access the teletext information via the pc's com port.

PCBs and software

Silk-screened teletext adaptor pcbs together with eprom firmware and terminal software on disk are available. Details of the circuit for the adaptor, which features a video output for use with a monitor or multi-media, were presented in the August 1994 issue.

The board is double sided, with plated-through-holes, and has a goldplated edge connector to fit an 8 -bit pc ISA bus slot). It has a silk screened component legend. Terminal software on disk allows teletext data to be displayed on the pc's monitor.
Originally, the pcb and software package was $£ 65$ inclusive, but the author has reduced this price to $£ 45$ inclusive due to demand. Send your cheque or postal order to L. Cook, 9 Goose Cote Hill, Bolton, Lancashire BL7 9UQ. Overseas readers please add $£ 5$ to cover extra postage. All enquiries relating to the adaptor should be accompanied by an sae and sent to Laurence at the above address - not to EW+WW. Laurence's telephone and fax number is +44-01204307293.

Programming for teletext on the pc

The design published in August $E W \& W W$ for a pc card teletext adaptor has created a good deal of interest. This follow-up is intended to provide you with enough information to program the adaptor, by describing the command set and formats used to control the tuner and teletext processor.
Before describing how to communicate with the adaptor, it is worth mentioning the answer to the most frequent query I have had relating to the adaptor - "How do I set up the card for optimum reception?" The answer is simply "you don't". It is supplied already set up for optimum results. There are no adjustments on the card, apart from the selection of com port and irq line. Even programmers can build the card, provided they can solder properly.
So how is teletext information made available to the pc ? Simply via a standard serial com port using conventional asynchronous data on a row-by-row basis. It has a default bit rate of 9600 baud (more on this later) just as if it had come from a modem or any other similar type of device.

The only quirk is the protocol used to specify and to encapsulate the data. Why does the data have to be supplied in this way, you may well ask? The answer is that the transmission system deals with 'rows' - which most people would call lines - of data. A 'page' of data, i.e. a screenful is 24 rows, cannot contain blank rows. This practice is sensible, since empty rows of forty spaces are a waste of valuable bandwidth.
So whereas, for example, a vdu might send two line-feed characters to include a couple of blank rows on a page, the broadcast teletext system simply omits to send those rows.
Normal pages, as seen on a domestic television receiver, comprise twenty four rows, numbered 0 to 23 . The top row on the screen is special, and is called a header. It is row 0 , and contains 32 characters for display (1 to 23 contain 40 characters each), the other 8 characters being used to identify the page to which the row belongs.
A 'page' of teletext is part of a 'magazine'. What we see as page 601 for example is actu-

Teletext adaptor command set

This is the command set and responses for the adaptor using the following convention:

- STX, EOT, etc, are ascii control codes, e.g. STX is 01_{16}.
- Strings in quotes are literal, e.g. ' BC ' is $42_{16,}, 43_{16}$.
- Commas are included for clarity only and are not used.

Function	Command	Response	Comment
RESET	SOH, 'Z'	CF2000	Ver. 5.19
CHANNEL	SOH, 'T', NN	SOH,ACK,'T',EOT	$\mathrm{NN}=21$ to 69
HEADERS ON	SOH, 'H+'		
HEADERS OFF	SOH,'H.'		
SELECT PAGE	SOH,'P',ppp EOT	SOH,ACK,'P',EOT	s is subpage

Function	Command	Response	Comment
SEND TESTPAGE	SOH,'P', FFFFFFF',EOT	<Reset sequence> page from ROM	

Received data formats are as follows:

HEADERS $\quad S O H, ' H^{\prime}, N, S T X,<40$ characters $>, E T X \quad$	$n=$ magazine
	represented as
	an ASCII digit

PAGES SOH,'P',pppssss,STX,' ' <40 chars. >for row zero $\mathrm{r},<40$ characters $>\mathrm{r}$ is $($ row +20) $7 F$ HEX,EOT page ends here
ally page 01 of magazine 6 . This means that there are up to eight broadcast magazines. Zero to seven, you might think. No. They are referred to as magazines 1 to 8 , but magazine 8 is number 0 while magazines 1 to 7 are numbered 1 to 7 . This was chosen because the 3 -bit binary number of a magazine, combined with the 5 -bit binary number of a row, nicely fits an 8 -bit byte which is contained at the start of each row transmitted. By choosing this scheme, the broadcasters can, and do, interleave rows from different magazines in a time division multiplex way, so improving page access time.
Luckily for the applications programmer, the adaptor sorts all this out and delivers a row prefixed with the appropriate number, as will be clear later. Content formats of rows, particularly those containing text and graphics, are best understood by referring to the Broadcast Teletext specification of September 1976.

Commands accepted by the adaptor are shown in the panel.

Flow control

The adaptor uses out-of-band flow control. That simply means that instead of embedding XOFF (transmission off) and xON (transmission on) characters in the data stream, the modem control lines rts (request to send) and cts (clear to send) are used. These are hardware handshake lines that ensure data is not lost in either direction
When programming the uart on the card, remember to have regard to the appropriate command and status bits in the relevant registers; unless of course you are using a comms library from C , in which case just call the pertinent functions.
On the subject of uarts, note that the default rate is 9600 baud and the data is asynchronous with 8 bits plus 1 stop bit and no parity. Also, you might have problems if you reprogram the

adaptor baud rate but forget to do the same for the uart. Of course, the two must always be in step for correct operation.
Throughout this short article, references to broadcasters can of course be widened to include cable operators. I have just subscribed to cable tv and I am amazed at the amount of worldwide data entering my home via teletext. I wonder how long it will be before the opportunities for distribution of information via telesoftware are fully realised

Hardware update

Since I wrote the article describing my teletext adaptor for the pc in the August issue, Hitachi has introduced a new addition to the 64180 microprocessor family called the HD64180S2CP10. This is cheaper than the HD64180SCP10 used in the original adaptor design. It should be a drop-in replacement for it, but I have not yet evaluated it.
The antenna socket on the FQ844 tuner module needed a small flat filing on it in order for it to fit through one of the pc enclosure's expansion board access holes. There is now a new tuner called the $F Q 916 M E / L I F$ whose antenna socket fits without modification. I am currently evaluating this part, and so far, all indications are that this is a drop-in replacement. As a bonus, it is also cheaper

Teletext adaptor for the $p c$ incorporates a synthesized tv tuner and takes single 8-bit slot.

KESTREL ELECTRONIC COMPONENTS LTD

$\underset{\sim}{\sim}$ All items guaranteed to manufacturers' spec. $\underset{\sim}{\boldsymbol{w}}$ Many other items available.
'Exclusive of V.A.T. and post and package ${ }^{*}$

	$1+$	$100+$		$1+$	$100+$	
EPROMS				STATICRAMS		
27C64-15	2.00	1.45		62256LP-10	3.00	2.15
27C128-15	2.40	1.80		6264LP-10	2.10	1.40
27C256-15	2.20	1.65	MM58274CN	4.90	3.75	
27C512-15	2.20	1.65	ULN2003A	0.45	0.25	
27C010-15	4.00	2.75	LM311N	0.30	0.18	
27C020-15	6.00	3.99	LM555	0.30	0.18	
27C040-15	8.60	6.45	MAX232	1.35	0.88	
80C31-12	2.10	1.65	7406	0.35	0.23	
80C32	3.00	2.40	7407	0.35	0.23	
80C85ARS	2.90	2.30	74HCT244	0.35	0.27	
82C55-5	2.40	1.55	74HC245	0.35	0.27	
D8748H	4.30	3.35	74HC373	0.35	0.26	
D8749H	4.40	3.45	74HC374	0.32	0.26	

74LS, 74HC, 74HCT Series available
Phone for full price list
All memory prices are fluctuating daily, please phone to confirm prices
178 Brighton Road, Purley, Surrey CR8 4HA Tel: 081-668 7522. Fax: 081-6684190.

MEJDAF
 Europe Ltd

*Quartz Crystals 32.768 KHZ , Watch 6 mm tubular $\pm 20 \mathrm{ppm}$.£0.25 2.097152 MHZ HC49 ± 25 ppm 0.99
3.579545 MHZ HC49 $\pm 25 \mathrm{ppm}$ £0.52
4.149304 MHZ HC49 ± 25 ppm 0.52
4.433619 MHZ HC49 ± 25 ppm 0.52
5.068800 MHZ HC49 $\pm 25 \mathrm{ppm}{ }^{2} 0.52$
$6.000000 \mathrm{MHZ} \mathrm{HC49} \pm 25 \mathrm{ppm} .50 .52$
6. 144000 MHZ HC49 $\pm 25 \mathrm{ppm}$........................... 0.52
10.000000 MHZ HC49 $\pm 25 \mathrm{ppm} .50 .52$
\star 'Engineer' brand tools for Electronic Industry, professional and hobbyist.

* 'Pro's-Kit' brand tool-kits

Example, Butane torch soldering kit in a foam-lined case comprising of torch, solder, soldering tips, cutter, plier.................................. £18.00
Example, Electronic tool-kit comprising of a good digital multimeter, soldering iron, desoldering tool, pliers, cutters, screwdrivers, nutdrivers, adjustable wrench and many other tools...
$£ 42.34$
*PLUS a wide range of active and passive components including Japanese transistors, power transistors and IC's.

Callers welcome - we are open Monday to Saturday 9 to 5.30 pm .
Prices quoted are exclusive of VAT and carriage.
MEJDAF EUROPE LIMITED
196 Preston Road, Wembley, Middlesex HA9 8PA

Tel: 01819049671
Fax: 01819049546

Letters to "Electronics World + Wireless World" Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Compulsive comment

As a compulsive audio-project constructor and potential user of ideas offered by Graham Nalty (Letters, December) I should like to say that a critical feature that distinguishes Douglas Self's amplifier from Graham's and other offerings is that of simplicity.
Exclusion of power supply regulation is a good start. Projects invariably provide the opportunity for the designer to offer components, multiple pcbs and often an upgrade service involving highpriced items and materials from what is becoming an array of audio boutiques. Moreover, these entrepreneurs tender a variety of 'improvements' to other people's designs with a similar range of expensive bits and pieces.
I can say that few projects have given as much satisfaction during construction and practical use as the D Self amp. The pcb alone is far superior to most encountered previously and the audible results are very acceptable.
I qualify that last point by stating that I do not enjoy the acute aural sensitivity of many of my contemporaries and judge by the effect of listening for substantial periods without fatigue.
Certainly, the generously rated components used at moderate domestic levels barely get warm and to that extent I am now installing four of the five boards built to date into one case. Current fashion dictates separate amps for each driver (plus the sub-woofer in the floor) and it is sensible to have them all at the same sensitivity. Moreover, the existence of logic decoders, and the novelty of effects available calls for even more amps and speakers, so there is no end in sight at present.
$E W+W W$ has maintained its long-standing pre-eminence in sponsoring only projects that will stand the critical test of time. Long may it continue so to do.

Hugh Haines

Sunderland

Unacceptable terms

I note that Graham Nalty (Letters, December) sees fit to offer a set of suggestions for improving the class-

B amplifier design that I presented in my series Distortion in Power Amplifiers, $E W+W W$ passim. All these modifications are supposed to give 'improved sound quality' a phrase which Mr Nalty chooses not to define, but which is left so vague as to be wholly unacceptable.
If Mr Nalty is unable to specify what effect his recommendations will have more closely than this, then it suggests he does not know himself.
The methodology used in the design in question, has, I think, been explained in greater detail than for any amplifier ever before. This has not dissuaded Mr Nalty from choosing to ignore the theoretical arguments, practical data and logical reasoning that I have tried to set out; he has simply sailed straight into a tinkering session based on reciting the usual old dogmas of
subjectivism, which I suggest are by now becoming very tired indeed.
I do not think my amplifier is incapable of improvement. Indeed, having given the conventional architecture a fairly thorough workout, I have thought up some very interesting improvements in the last few months. But I am quite certain that stolidly replacing components with more expensive ones - apparently for no other reason than because they are expensive - is not the way to do it.
Firstly, all the exhortations about replacing perfectly good carbon-film resistors with expensive fetish items may be disregarded.

Improvement of the sound by this sort of thing is flatly impossible. I wonder if Mr Nalty just happens to sell Holco resistors, as he apparently sells expensive speaker cables? As for the rest of it , I have raked through the comments looking for any nuggets of truth, with the results I give below:
Nalty suggests: "Try replacing R_{1} with a polyester capacitor; or place a similar capacitor in parallel with R_{2} ".

Better not, as $T r_{1}$ must have a source of base current to work, so replacing R_{1} with any sort of capacitor will stop the amplifier dead. A capacitor shunting R_{2} will almost certainly cause hf oscillation. On the other hand, R_{1}, R_{2} may be a typographical error for C_{1}, C_{2}, which has at least the advantage of making some sort of sense. However no

performance improvement can

 possibly result."I would prefer the feedback resistor to be high enough to use a polypropylene capacitor for C_{2}, if this can be done without creating a high dc offset at the output... remove C_{4} and $C_{5} \ldots$ "

I would prefer to see Mr Nalty refrain from this sort of irresponsible tampering, which he cannot have thought through. I do not know what sort of polypropylene capacitors he has in mind, but the largest size stocked by RS Components is $0.47 \mu \mathrm{~F}$. This implies that R_{8} would have to be increased to about $2 \mathrm{M} \Omega$ to maintain the same if response, and the resulting output dc offset would roam between $\pm 10 \mathrm{~V}$, depending on transistor beta. Since a good deal of electronic design goes toward making sure that things do not depend on beta - which is often a wholly untrustworthy parameterthis hardly seems the way forward.

It is quite untrue that de servos always sound awful, though it is certainly the case that they require some care in design. In the case of power amplifiers, however, I think I have demonstrated that if $a \pm 50 \mathrm{mV}$ offset range is acceptable, neither servo nor de trimmers are necessary, even if high-voltage low-beta devices are used for the input pair.
As for removing C_{4} and C_{5}, please don't do it. C_{4} provides signal feed-
forward around the $V_{\mathrm{be} \text {-multiplier, }}$ and without it there may be enough phase-shift in Tr_{13} to cause instability. C_{5}, as I carefully explained, gives cleaner switch-off of the output devices and so reduces hf distortion. Am I to understand that Mr Nalty thinks that clean switch-off is a bad thing?
"There are audio transistors available which have smoother gain vs current graphs..."
Tell us what the part numbers are then. The basic transconductance linearity of a transistor (ie the $I_{\mathrm{c}} / V_{\text {be }}$ law) is fixed by physics and is about as negotiable as the law of gravity. If, however, this refers to beta variation with I_{c}, then the MJ802/4502 have pretty much the same beta-variation as most large power devices; Normalised $h_{\text {FE }}$ varies by a factor of about 4.5 over the I_{c} range $30 \mathrm{~mA}-10 \mathrm{~A}$. As the published series of articles showed, this materially affects thd into 4Ω loads or lower only. Mr Nalty's MJIIO16 shows a variation factor of 7.7 over the same I_{c} range, so his point seems somewhat obscure.
"The Darlington output arrangement is the best..."
In some respects it certainly is, but such a flat statement is misleading. Distortion in Power Amplifiers showed unequivocally that the CFP output stage has significantly better linearity and much more precise

Sine post

Noting that lan Hickman is interested in the study of waveforms
("Harmonising theory with practice", $E W+W W$, December, pp.98-
1002), I wonder what he might have to say regarding the initiation of sinusoidal waveforms in simple series L, C and R circuit, by
application of a step function of voltage to the combination.
Why are the voltage waveforms generated across the elements sinusoidal?

When a coil of wire is rotated between the poles of a magnet, it is obvious that the generated waveform should be sinusoidal, because the rate of change of magnetic flux linkage producing the voltage, is proportional to the sine of the angle of rotation of the coil. But there seems no easy physical property of the series L, C and R combination explaining why their voltage waveforms should be sinusoidal.

I know of course that we can prove, mathematically, via the solution of a differential equation for the circuit, that they should be so. But I am left wondering about the physical reasons.
Peter Dawe
Oxford
Ian is to reply to these comments in a future article.

COMPONENTS \& Systems from Iosis

20525

Industrial Spec Components and Systems 386SX-40 All-in-one CPU Board on PC half card from $£ 215$. Requires only display adapter and RAM to complete the core of a PC-compatible system. PC/104 or ISA bus expansion. PC/104 display adapter from $£ 135$. Desktop LCD mono VGA monitor with display adapter and passive backplane from $£ 499$. Please enquire for complete systems. Prices exclude VAT and carriage.
2c Chandos Road, Redland, Bristol BS6 6PE, UK Tel: 01179730435 Fax: 01179237295

The EM68

 68000 Embedded OEM ModuleFrom $32 \mathrm{k} \times 16$
to $512 \mathrm{k} \times 16$
EPROM

Powerful, Practical and Sensibly Priced
The CPU is Motorola's 16 bit 68302 , a highly integrated 68000 processor running at 16 Mhz . This processor has 3 full high speed serial ports operating in UART, HDLC/SDLC, BISYNC or DDCMP modes. It also has DMA channels. Interrupt controller, 28 parallel I/O lines 216 bit timers with compare and capture, Watchdog timer and low power (standby) modes. (We can supply the MC68302 Data Book.)
The Memory Up to 1 M byte of EPROMs - 1 M byte of FLASH EPROM and 64 k Bytes of static RAM.
The EM68 Expandable to 16 M byte, the EM68 is constructed on a Multilayer PCB with full power and ground planes and has a small $7.62 \mathrm{~cm}^{2}$ footprint.
Prices range from $£ 255.50$ (1 off - 1M Byte FLASH) down to $£ 95.00$ ($\mathbf{1 0 0}+$ No FLASH) Our Catalogue lists products based on the $64180,80 \mathrm{C} 31$, Dallas $80 \mathrm{C} 320,80 \mathrm{C} 552$, 80 C 188 processors, and a wide range of peripheral modules, A/D, D/A, Serial, Opto Relay, Transistor drive, Stepper drive, Thermocouple etc. with power supplies, backplanes and cases. Request a copy today

Devantech Ltd vananacionmen Vinces Road Industrial Est, Tel: + 44379644285 INDUSTRIAL ELECTRONIC CONTROLS $\begin{aligned} & \text { Tel: }+44379644285 \\ & \text { Fax: }+44379650482\end{aligned}$

CIRCLE NO. 123 ON REPLY CARD
CIRCIENO. 124 ON REPLY CARD

See us on Stand A 107 at ICAT 95 (CADCAM) Show, NEC 7-9 March

Electronic Designs Right First Time?

NEW! - LAYAN - Affordable Electromagnetic Simulation

Only £495!

Affordable Electronics CAD

LAYAN: Electromagnetic Layout Simulator. Links to EASY-PC Pro' XM and ANALYSER III Pro'.	$£ 495.00$
EASY- PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR.	From $£ 195.00$
PULSAR: Digital Circuit Simulator	From
ANALYSER III: Linear Analogue Circuit Simulator	From
Z-MATCH for Windows: Smith Chart based problem solving program for R.F. Engineers	$£ 245.00$
FILTECH: Active and Passive Filter design	$\mathbf{£ 1 4 5 . 0 0}$
EASY- PC: Entry level PCB and Schematic CAD	$\mathbf{£ 9 8 . 0 0}$

Technical Support FREE for life! Prices exdude P\&P and VAT.
Special discount schemes for education

Number One Systems Ltd.

Ref: WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.
For Full Information Please Write, Phone or Fax.
Tel: +44 (0) 1480461778
Fax: +44 (0) 1480494042
quiescent control, and in many applications would probably be the preferred approach. Integrated Darlingtons give truly awful quiescent stability, and I have yet to hear of a good reason for using them in audio amplifiers.
"Constant current sources are good design." The simple $R C$ decoupling applied to bias chain R_{21}, R_{22} could indeed be replaced by a constant-current diode. One minor snag is that the cost is about thirty times that of doing it my way. In addition, an $R C$ network can be relied upon to maintain effectiveness up to high frequencies, which is in general not true of 'electronic' decoupling methods.
"Cascode transistors above the collectors of $T r_{2}, T r_{3}$ and $T r_{4} \ldots$ offer further scope for improving sound quality"
Wholly untrue, I'm afraid. Cascoding the input pair $\operatorname{Tr}_{2,3}$ has the potential to improve negativerail psrr, but the best rationale for doing it is to allow the input pair to be low- $V_{\text {ce, }}$ high-beta types, which will reduce the range of dc offset at the output. DC is not usually considered an audible phenomenon.
Cascoding the vas Tr $_{4}$ is redundant as it is already linearised by Tr_{12}, and in any case cascoding alone is pointless because the vas collector impedance cannot be much raised when it is subject to the nonlinear loading presented by the output stage. This was discussed at some length in the articles, and I rather wish Mr Nalty had read it.
I am unable to comment on the Apex and Virtuoso designs, as we are not told where or when they were published. Perhaps Mr Nalty might like to make the circuitry available for critical examination.
Finally, Mr Nalty remarks that "every single component in the audio chain degrades the signal" which is simply not true. From this point of view most of them are blessedly irrelevant. Even in the power amplifier there are very few components that have a major effect on the audio performance. This is, after all, the glory of negative feedback.
Mr Nalty's criticisms are couched entirely in the language of subjectivism. There is now a growing consensus that a school of thought which in 20 years has been quite unable to offer a single piece of solid evidence in support of its beliefs need not be taken too seriously.
Douglas Self
London

Slew review

Douglas Self seems to believe I was criticising his work (Letters,
December) rather than simply
responding to anomalies raised in his articles.

I did not think it out of context to blame the input stage for the disparity in positive and negative slew since it is clear from the article that the primary effect of charge and discharge of $C_{\text {dom }}$ is derived from the input stage.
It may be true that loading effects are influencing $C_{\text {dom }}$ from the vas stage. But this was not really my point. I had prefixed my comment with the proviso "unless". Unless there were other mechanisms not alluded to, then the slow output devices would be responsible for the ultimate rate of slew.

In "Further complications" (High speed audio power, $E W+W W$, September, pp. 760-764) Self states that with certain values for R_{4} and R_{13}, the slew rate is +37 and $-52 \mathrm{~V} / \mu$ s for class B operation and an 8Ω load.
So I assume that the output devices are now connected in place of the test circuit and that slew rate figures refer to an actual completed amplifier. If such is the case then, as I quoted before, the condition for slew rate is: maximum frequency at which the amplifier can deliver a voltage corresponding to its rated full power.
Given the condition stated in my letter, Self's amplifier would need to maintain full power to a frequency exceeding 200 kHz .

An alternative way of expressing the bandwidth of an amplifier, without using slew rate, is that if 20 kHz is to be the accepted upper frequency response then the amplifier should be capable of delivering this open loop ie without feedback. With feedback applied, the upper frequency cut-off should be at least 20 kHz multiplied by the feedback loop gain so that for 30 dB of feedback, the cut-off should be 600 kHz or more.
I have made as close an estimate as possible of slew rate and the alternative expressions based on the The Audio Handbook by Gordon J King, pp. 47 and 103.

On a personal note, I have auditioned bi-polar amplifiers over the years and where possible obtained the frequency/power curves. For those amplifiers with 100 W and over, the rate of roll-off with few exceptions - occurs around the 15 kHz mark. It has in fact become endemic, and some amplifiers from reputable stables with multiple output devices start to roll off as low as 12 kHz , while claiming slew rates of $30 \mathrm{~V} / \mu \mathrm{s}$ or more. Clearly this is an anomaly, and yes, they do sound dull compared to the mosfet amplifiers which is hardly surprising.
Self's amplifier is being advertised as usable up to 100 W
output. I had naturally assumed a high frequency penalty and had expected a qualification. As it stands the amplifier must remain the substance of things hoped for, and for me, the evidence of things not seen.
The mechanisms concerning $C_{\text {dom }}$ can be found in J Linsley Hood's book The Art of Linear Electronics. Effects of the vas stage on $C_{\text {dom }}$ increasing its value by the stage gain to $(A+1)-$ and an alternative position for $C_{\text {dom }}$ to overcome the problems experienced by Self's circuit topography can be found here: pp. 119 and 163 refers.
With respect to the question of linearity and mosfets, Self will be able to find in both the above reference books categorical statements that mosfets are more linear than bi-polars - and perhaps more importantly why this is so.
I believe that the statistical evidence is in favour of the mosfet since even the worst examples of the Hitachi cloned circuits exhibit very low levels of distortion, with little effort. By contraindication, many of the bi-polar circuits, using more devices, are barely managing distortion levels 10 to 100 times worse. In fact many amplifiers could hardly be classified as hifi by the agreed standard, almost as if distortion is to be welcomed. Self's amplifier is very much the exception I'm afraid.
Dealing with the question of psychoacoustics, Self must be privy to information that most us are not, since with all the work done over the years, we could have expected some of it to have trickled down into the audio world. I observe that no internationally agreed upper frequency hearing response has been established - or lower frequency response for that matter.
Sine wave expressions continue to be used for complex waves as does a criterion for testing amplifiers that has caused a division so great that there are now two distinct schools of thought (objectivity and
subjectivity). That criterion is the double-blind listening test. Yet there seems to be no relevant technical paper to back it up, and main evidence appears to have been adapted from medical and scientific research methods using double blind tests. But the substance of those tests is based on an entirely different context. Exponents of this philosophy seem to believe that all properly-designed amplifiers sound the same, thereby at a stroke undermining all attempts by designers to improve circuit topographies, reduce distortion, and improve components.
I see no advance in the cause of psychoacoustics. But I do see the revival of the Zanzibar fallacy, the
story of which can be found in King's book.
Self's last comment is rather terse. I suspect we have all played with circuits. Surely that does not put expertise into question.

V / Hawtin
 Middlesex

Douglas Self replies
I can reassure Mr Hawtin that I am in no way outraged by his comments, but I am saddened that he found my writings somewhat less than lucid.
I stand by my statement that while an amplifier input stage is the primary determinant of slew-rate capability, it is vital to remember that current sourced or sunk by this stage must also be sunk or sourced somewhere else if it is to complete its circuit. This typically adds limitations that render the maximal slew-rates asymmetrical. Similarly, it is easy to overlook how current siphoned off into other stages e.g. via the input impedance of the output stage, which is naturally load dependent can degrade slewing.

Output stages do not have an inherent slew-rate limit, although they naturally have bandwidth limitations. Mr Hawtin is unclear about the difference between these two parameters; they are in no way interchangeable, and can be altered independently of each other in most cases. An output capability that changes with frequency is no guarantee that there is a slewlimiting problem; there are other ways this can come about.
To move on to power fets, I am having some difficulty believing in the large body of "statistical evidence" that Mr Hawtin claims to have in support of his statement that mosfets are just as linear as bipolars, if not more so. Perhaps he will be good enough to let us see it, so we do not have to rely on his word? Or perhaps, like some other correspondents, he feels that to actually present evidence is in some way distastefully vulgar, and that it should merely be alluded to with a knowing smile.
'Hitachi-clone' mosfet amplifiers rarely seem to do better than 0.01% thd at 1 kHz in practice, and I believe this to be determined very largely by the intrinsic Class B crossover nonlinearity of these power devices. I think it would be very difficult to obtain less than 0.001% thd from mosfets in relatively straightforward circuitry, but this can be done routinely with bipolars if the correct design methodology is used.
Why Mr Hawtin should think that psychoacoustics is some sort of secret science I cannot imagine. Textbooks on the subject are available in any decent academic bookshop. A good introduction is

Quickroute 3.0

PCB \& Schematic Design System for Windows 3.1

Announcing a new range of affordable, powerful Windows based PCB and schematic design packages from POWERware.

DESIGNER 199 *

PCB and schematic design with all the new 'Easy-Edit' features and an Auto router!

DESIGNER + £149 *

For larger PCB and schematic designs, adds Gerber and NC-Drill support.

PRO £199 *

Schematic capture, with integrated rats-nest generation and auto-router. Export net-lists for design checking.

PRO + £299 *

Advanced schematic capture for management of larger schematics. Gerber import facility for file exchanging.

For more details, contact POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK.

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM: Programs $24,28,32$ pin EPROMS, EEPROMS, FLASH and Emulators as standard, quickly, reliably and at low cost.
Expandable to cover virtually any programmable part including serial EEPROMs, PALs, GALs, EPLDs and microcontrollers, in many different packages.
DESIGN: Not a plug in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

MQP ELECTRONICS Ltd. Park Road Centre Malmesbury, Wiltshire. SN16 OBX. UK TEL. 0666825146 FAX. 0666825141

ASK FOR FREE INFORMATION PACK

IRELAND 1-2800395 GERMANY 089/4602071 NORWAY 0702-17890 ITALY 0292103554 | FRANCE 169301379 |
| :--- |
| SWEDEN | Albo from EI ECTROSPEED UK

JPG Electronics

SL952 UHF Limiting amplifier LC

mounting package with data shect is surface | AM275020. |
| :---: |
| CD 4007 LB |

 Airpax A82903-C lare stepping moor 14v $7.5^{\text {n }}$ step

 500pach compression trimmer 3.
40 uf $\$ 70 \mathrm{Ovac}$ motor start capacitor (dialectrol type
 RF circuits 27 ohm 2 W , $68 \mathrm{Bh} \mathrm{m} 2 \mathrm{~W} . . .-25 \mathrm{p}$ each
IFp each $100+$ 15 peach
We have a range
P.C. carbon resistors. please send SAE for list ${ }^{2} \mathbf{W}$ W solic dard motherboand and 5 disk drive connectors. fans and mains inlevoutlet connectors on back
and switch on the side (top for tower case) dims and switch on the side (top for tower case) dims
$212 \times 149 \times 149 \mathrm{~mm}$ excluding witch $£ 26.00$ each
$£ 138.00$ for 6

MX180 Digital multimeter 17 ranges 1000 vdc

750 vac 2 Mohma 200 mA transistor Hfe 9 v and | 1.5v battery test $£ 12.95$ |
| :--- | AMD 27256 -3EProms §2.00 cach $£ 1.251100+$ dis

$40 p .100+$
dis
Disk drive boxes for 5.25 disk drive with roonn for a
power supply, light grey plastic, $67 \times 268 \times 247 \mathrm{~mm}$ Hand held ultrasonic remore contro or $£ 49.50$ for 10 CV2486
gas restay, , 30×10 nals, will also work as a ncon light 20 p cach
$£ 7.50$ per 100 All products advertised are new and unused unless otherwise stated.
Whde range of CMOS TTL, 74 HC 74F Linear Transistors kies. Rechargeable batteries, capacitors, tools etc
JPG Electronics, 276.278 Chatsworth Road, Chesterfield S40 2BH Access/Visa
(01246) 211202
Callers welcome
the work, An introduction to the psychology of hearing by Brian Moore (Academic Press). It includes a section on psychoacoustics and hi$f i$ that illustrates why subjectivist notions are not necessary to explain the ear/equipment relationship.
Finally, I can make no sense of Mr Hawtin's repeated claim that all bipolar amplifiers have a bandwidth limited to 12 or 15 kHz ; since this is patently untrue, there is no point exploring the topic.
Doug Self

Heartfelt criticism

Recently one of my customers wrote to thank me for the immense pleasure and satisfaction he was experiencing when listening to music reproduced through an amplifier manufactured by my company. Immediately, not to fall foul of the Trade Descriptions Act, I had to contact him to tell him that, though my test equipment had confirmed that his amplifier did indeed meet its published spec, what he had said was a) merely his opinion, b) not supported by any form of scientific evidence or research, and c) almost certainly invalid anyway because his hearing was far too unreliable, non-uniform and too easily fooled to be relied upon for a meaningful value judgement.
He faxed me back to say that if I was going to talk such a load of old twaddle then, thank you very much,
but he'd rather get on with listening to his own choice of music at his own choice of level. So would I.
Now a question for Phil Denniss and Douglas Self: what about the great symphonies, the playing of a lovingly-crafted violin, early morning bird song? You can't use a scope to explain why or how such things come in through our ears and touch our hearts... but it happens.
I tell you what I hear, you tell me I don't - although to 'prove' your prejudices you have to resort to derision, selective argument and syllogistic reasoning.
Presumably, as true objectivists, you must also deny the existence of beauty, or harmony, or perhaps even hunger as not being scientifically provable? Anyway, no more. I give in. Goodbye.

Jerry Mead

Mead \& Company
Herts

Hand-shakey?

In the scores of pc-related $\mathrm{I}^{2} \mathrm{C}$ implementations, nearly no one takes into account the fact that both the scl and the sda lines must be bidirectional, for handshake purposes.
The simple interface given in John Davies' article ($I^{2} \mathrm{C}$ via the $P C$, December, pp.994-996) might well work in some simple cases, but you will hit trouble as soon as you try to use e^{2} proms, or a-to-d/d-to-a converters; or the PCD8584 bus controller (even as a slave).

Hardware must provide an input to read the state of the scl line, and the software must provide a way of reading that input.
Jean-Paul Brodier
Curry
France

Electrolytic detection

I noted the various electrolytic detectors described in George Pickworth's article (Detection before the Diode, pt I, December, pp.10031006). The early pioneers seemed to use platinum or lead in various diluted acid solutions. But I wonder if other materials and solutions were tried as detectors.
Some electrolytic rectifiers which may be of relevance are:
Al Pb 10:1 forward:reverse current
AlFe 10:1
CuPb 12:1
ZnPb 4:1
Also usable is zinc-aluminium alloy rod or cylinder with an iron tube.
In a saturated solution of phosphate of ammonium, current direction, alloy-to-iron results in film deposit on the surface of the alloy. Current direction, iron-toalloy, results in reduction of film.
I think the claim was 85% efficiency, but would appreciate any comment related to this matter.
Unsigned
Middlesex

Coil question?

I am searching for several formulas involved in constructing inductors and coils using different configurations. I am familiar with formulas for calculating the number of turns, inductance, dimensions, etc, for single and multi-layer round inductors. However the project I am presently working on involves miniature coil construction using three-dimensional square and rectangle cores and twodimensional pcb etched inductors.
I have searched through numerous reference books
without success and would be most grateful for any help.

Formulas required are indicated in the accompanying figures. For example, I may wish to calculate the inductance from the number of turns etc or the coil design from a given inductance.
Any information will be greatly appreciated.

J P English

42 Matlock Road
Brighton, East Sussex
BN1 5BF

Free with next month's issue!

Free with all UK copies of the March issue of $E W+W W$ is a special edition of the Circuit Ideas Pocket Book - a compilation of circuit ideas published in previous issues of $E W+W W$. This unique book is worth $£ .4 .95$. To reserve your copy, fill in the newsagent's order form between pages 144 and 145.

Norm Dye and Helge
Granberg have shown how to develop the tools needed to design a small signal amplifier and how to determine source/load impedances. Here they bring all the tools together and suggest circuits that will realise those impedances. From the book RF Transistors: principles and practical applications.

Determining circuits for small signal amplifiers

nput impedance for the narrow band example where the match is for optimum gain and $S_{12}=0$ (example 1) is plotted in Fig. 1. The Smith chart shows $\Gamma_{\mathrm{S}}=0.6$ at an angle of -156°. This is the value already determined from plots of optimum source and load reflection coefficients - see $E W+W W$ January issue for more information - and the problem now is to take the 50Ω source and make it look like Γ_{S}.
The most common circuit is a low-pass filter configuration consisting of a shunt C and a series L. When using the Smith chart with shunt elements it can be used as an admittance chart, and when using it for series elements it can be used as an impedance chart. For this reason, Fig. 1 is plotted on a special Smith chart graph that simultaneously displays both normalised impedance and admittance circles.
The plot also demonstrates that a shunt capacitor having a susceptance value of $+j 1.75$, which is the arc length from O to A, and a series inductance having a positive reactance value of $+j 0.225$, arc length from A to B, will rotate the 50Ω source into the normalised value of 0.6 at -156°.
Calculating the actual values that give these normalised results at a frequency of 1 GHz is a simple matter and the values turn out to be 5.6 pF and 1.8 nH .

Similarly, Fig. 2 shows the output load
impedance, also previously plotted. Again a network of shunt C and series L will be used to transform the 50Ω load to the desired load impedance represented by point D in Fig. 2. The arc from O to C calls for a shunt capacitor having a normalised susceptance value of $+j 0.5$, and the arc from C to D needs a series inductance with a normalised value of $+j 0.45$.
At a frequency of 1 GHz , these can be realised by a shunt capacitor of about 1.6 pF and a series inductance of 3.6 nH (Fig. 3).

When S_{12} is not zero

For the narrow band, match-for-optimum-gain instance, where $S_{12} \neq 0$ (example 2) the output matching circuit is of course identical to example 1.
But slight changes in Γ_{S} and the shunt susceptance and series inductance are needed to transform the normalised 50Ω source impedance (centre of the chart) to the normalised value of Γ_{S} (Fig. 4).
Arc between O and A represents a shunt susceptance, i.e. parallel capacitor of $+j 1.6$ and arc $A B$ represents a series reactance, in this case a series inductance of $+j 0.275$. Component values at 1 GHz are 5.1 pF and 2.2 nH . The circuit is identical to that of example 1, shown in Fig. 3, except for the slight change in component values in the input matching network.

RF TRANSISTORS

Specified gain < optimum gain
Example 3 is narrow band where specified gain < optimum gain and $S_{12}=0$. The input circuit is shown in Fig. 5.
$A \Gamma_{\mathrm{S}}$ was previously plotted on the -1 dB gain circle on a Smith chart. Here it is re-plotted on a Smith chart showing both impedance
and admittance circles. The value of Γ_{S} selected was 0.44 at an angle of $+100^{\circ}$. Transformation of the 50Ω source impedance into the desired value represented by Γ_{S} is again most easily accomplished by using a shunt C and series L, seen in Fig. 5.
Arc $O C$ represents a shunt capacitor having
a normalised susceptance of 0.82 while arc $C A$ represents a series inductance having a normalised reactance of approximately 1.15 . These values are realised at 1 GHz by a capacitance of 2.6 pF and inductance of 9.2 nH . The desired output load impedance is identical in examples 3 and 1 , so the matching output cir-

Fig. 1. Input matching for narrow band, match-for-optimum-gain, $\mathrm{S}_{12}=0$.

Fig. 3. Narrow band matching for best gain. Circuit can be used to match imput and output.

Fig. 5. Input matching for specified gain <optimum gain.

Fig. 2. Output matching for narrow band, match-for-opti-mum-gain, $S_{12}=0$.

Fig. 4. Input matching for $S_{12} \neq 0$.

Fig. 6. Circuit for specified gain <optimum gain.
cuit is also identical to that shown in Fig. 2.
Figure 6 is the final circuit for this example.

Broadband design

Gain circles for the broadband design, example 4, have been plotted previously but here they are re-plotted in Fig. 7 using the special

Smith chart with normalised impedance and admittance circles. The objective is to devise a matching network that sits on the -4.5 dB gain circle at 500 MHz and at the same time on the +1.1 dB gain circle at 1 GHz .
In this instance, the Mmicad optimiser program can determine an appropriate network,
consisting of a shunt C and a combination of series C and L. A similar solution could have been achieved by an iterative process of adjusting the circuit values until a combination is determined which meets both objectives.

At 500 MHz the shunt susceptance moves along $\operatorname{arc} O A$. The same capacitor will move

Fig. 7. Input matching for broadband design.

Fig. 9. Broadband design circuit.

Fig. 11. Output matching for low noise.

Fig. 8. Broadband design output matching.

Fig. 10. Input matching for low noise.

Fig. 12. Circuit configurations for low noise.
to C when the frequency increases to 1 GHz . When the frequency is at 500 MHz , the series network must move along arc $A B$ while the same network must move from C to D at 1 GHz .
Values that will achieve these objectives simultaneously are a shunt susceptance of $+j 0.4$ at 500 MHz , increasing to $+j 0.8$ at 1 GHz and an overall series reactance that is $j 0.84$ at 500 MHz but $+j 0.09$ at 1 GHz .
Component values that give the desired susceptance and reactances are a shunt capacitor of 2.55 pF and a series capacitor of 5.4 pF along with a series inductance of 5.5 nH (Fig. 9). Because all the gain correction is placed in the input network, the output is the conjugate match, or $S_{22}{ }^{*}$ at each frequency, points plotted in Fig. 8. The problem now is to find a network that will simultaneously locate the matched load (O in the centre of the chart) at point A when $f=500 \mathrm{MHz}$ and at B when $f=$ 1 GHz . A shunt $L C$ network with a series $L C$ network is chosen such that the shunt network in Fig. 8 moves along the arc $O C$ at 500 MHz , but only moves from O to D at 1 GHz .
Likewise, the series network moves the normalised line impedance from C to A at 500 MHz , and moves the normalised line impedance from D to B at 1 GHz .
Values of L and C that accomplish these objectives can be determined by solving relatively simple simultaneous equations relating
the susceptances and reactances at the two frequencies of interest.
Actual values, along with the input network, are shown in Fig. 9.

Designing for low noise

The value of Γ_{S} taken from a previous plot of the 2 dB noise figure and 12 dB gain has been re-plotted on the special impedance and admittance Smith charts used to determine graphically the impedance matching networks needed for a particular application (Fig. 10).
Matching is readily achieved by using a shunt capacitor to transform the 50Ω source from O to B. A series inductance finishes the match by transforming the value of B to the desired Γ_{S}, shown as C. Values of the shunt capacitor and series inductance that achieve the desired source reflection coefficient are 4.9 pF and 5.1 nH , Fig. 12, and output impedance matching is shown in Fig. 11.
The matching network, if $S_{12}=0$, is a series capacitance and a shunt inductance that transforms the matched load first to A (series capacitor) and then to B (shunt inductance), or in the case of $S_{12} \neq 0$, to C (series capacitor) and then to D (shunt inductance).
So for $S_{12}=0$, arc $O A$ is a reactance of $j 0.64$ which translates into a series capacitor of 5 pF Likewise, arc $A B$ is a susceptance of $+j 0.91$ which can be realised by a shunt inductance
having a value of 8.7 nH as shown in Fig. 12a.
If the measured S_{12} value is used, matching requires a reactance represented by arc $O C$ and a susceptance represented by $\operatorname{arc} C D$. These values are realised by a series 3.5 pF capacitor and a shunt 6.5 nH inductance, Fig. 12b.

> RF Transistors:
> Principles and practical applications is available by postal application to room L333 EW+WW, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

> Cheques made payable to Reed

> Radio Frequency
> Transistors
> Principles and Practical Applications

Books Services.
Credit card orders accepted by phone (081 652 3614).

288 pages Hardback 0750690593
Cost $£ 19.95$ + Postage $£ 2.50$

Finally an upgradeable PCB CAD system to suit any budget ...

 Boord CaptureBoardCapture - Schematic Capture

- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivily information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control Back annotation from BoardMaker?

BoardMaker1 - Entry level
PCB and schematic drafting

- Easy and intuitive to use
- Surfaco mount support
- 90,45 and curved track comers
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMaker1 plus
- Full netlist support - OrCad, Schema, Tango, CadStar
- Full Design Rule Checking - mechanical \& electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCII, BOM
- Thermal power plane support with full DRC

Boord Router
BoardRouter - Gridless autorouter

- Simultaneous multi-layer routing
$€ 200$
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Pnnters - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec, Roland \& Houston
- Photoplotters. All Gerber 3X00 and 4X00
- Excellon NC Drill / Annotated drill drawings (BM2)

Tsien (UK) Lid Aylesby House Wenny Road Chatteris, Cambridge PEI6 gUT

Join the 'Virtual Instrument'Revolution

Pico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.

Picolog Advanced data logging
software.

NEW

400-100 Virtual Instrument

 Dual Channel 12 bit resolution- Digital Storage Scope - Spectrum Analyser
- Frequency Meter - Chart Recorder
- Data Logger

The ADC-100 offers both a high sampling rate (100 kHz) and a high resolution. It is ideal as a general purpose test instrument either in the lab or in the field. Flexible input ranges $(\pm 200 \mathrm{mV}$ to $\pm 20 \mathrm{~V})$ allows the unit to connect directly to a wide variety of signals. ADC-100 with PicoScope $£ 199$ Gives your computer a with PicoScope \& PicoLog $\mathbf{£ 2 0 9}$ single channel of analog input. Prices from $£ 49$.

‘OFF-AIR’ FREQUENCY STANDARD

Still Only $£^{195} 5_{\text {trar }}$

* Provides $10 \mathrm{MHz}, 5 \mathrm{MHz} \& 1 \mathrm{MHz}$
- Use it for calibrating equipment that relles on quartz crystals.

TCXOs, VXCOs, oven crystals

* Phase locks to DRÓITWICH (rubidium controlled and
traceable to NPL)
* For ADDED VALUE also phase locks to ALLOUIS (cesium
controlled and traceable to OP - French eq to NPL)
* Bntish designed and British manufactured
outputs and 13 MHz output for GSM. Prices on application.

Output frequencies
$10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$ Short term stability - better than $1 \times 10^{-8}(1 \mathrm{sec})$
Typucal $-4 \times 10^{-9}(1$ sec $)$ Турисаи $-4 \times 10^{-9}(1 \mathrm{sec})$ Long term - lends to
$2 \times 10^{-12}(1000 \mathrm{sec})$ $2 \times 10^{-12}(1000 \mathrm{sec})$
SUPERB DUAL TRACE SCOPES, TELEQUIPMENT D61A, 10 mV SENSITIVITY, $10 \mathrm{uS}-500 \mathrm{mS} / \mathrm{DIV}(\& \times 5$), X-Y INPUTS, Z-MOD, INT/EXT/TV TRIGS, ETC. FROM £ 125

MARCONI TF2333 MF TRANS OSCALEVEL METER
AMPROBE LT8100 2 RANGE TEMP RECORDER AMPROBE LI8100 2 RANGE TEMP RECORDER
AMPROBE LAV3X AC V-METER RECORDERS $12^{\prime \prime} \times 20 \mathrm{UX} \times 31^{\prime \prime}$ DEEP $\operatorname{NSTRUMENT~RACKS~}$ IANKE \& KUNKEL HI-SPEED MINI MIXER COMMODORE PETS, PRINTERS, D/DRIVES, ETC
FIUKE 76OA MUITIMETER CALIBRATOR BRADLEY ITIB MULTIMETER CALIBRAIOR BRADLEY 191 DISTRIBUTION UNIT HONEYWELL COL OUR GRAPHIC RECORDER PLESSEY TCTIO SIG GEN/ANAL 50-300 BDS PRECIILION STD CELI MUURHEAD K23IA TENP CONT DUAD 303 STEREO POWER AMPS ORAKE MN2700 MATCHNG WORK \& PS7 PSU TELEQUIPMENT D83 50MH2 2 TRACE DEL GOULD OS $1100-$ SI 30 MHz DUAL TRACE KIEUSUI COSSISOM 100 MH I 25 TRACE DEL T/B
TEKTRONIX 545 PUG TEKTRONIX 545 PLUG-INS, VARIOUS
SCOPEX 456 SMH SINGIE TRACE
SCOPEX $4010 B L$ S. $10 M H Z$ WITH EXTENOED LF T/B LEADER LBO-9C ALGMNENT SCOPE WATSUSSSI 166 DUAL TRACE 10 MH Hz TELEQUPMENT DIO11 10MH2 DUAL TRACE TELEQUIPMENT DG7A 25MHz, 2T, DEL T/B HITACHI VC 6015 IOMHZ DIGITAL STORAGE MARCONI TF2212 X-Y DISPIA
£75 T74 (VHF BC221) HET FREO METER
\&75
LEVEU TM6B WICRO V-METER 450 MH
 f99 HP. 8445B PRE-SELECTOR 10MHz-18GHz £20 MARCONI TF2905/8 SINE SOPPLASE/BAR GEN
 E249 TIME 2004 DC VOLTAGE STANDARD 0.005\% E149 TME 404S PRECISION MV SOURCE 0-1V 20 m E295 TIME 2003N OCV POI/CAL O- IOV, MULLL. ETC E95 MP 3701 IN3702 1 TX GENERATOR \& BB RX £195 19 " $\times 60$ VERO INSTRUMENT CASES BRAND NEW £95 AVO VALVE TESTERS MK2, MK4 \& CI160
£195 ea "GIBSON GIRL" EMERGENCY RADIO SET 500 K E395 ELECTRONIC VISUALS EV4020A MTSC V/SCOPE E349 FERROGRAPH RTS2 TEST SETAAUX TEST UNIT
 E495 PHILIPS PM5716 PULSE GENERATOR $1 \mathrm{~Hz}-50 \mathrm{MHz}$ £10 to $£ 15$ BRADIEY 144 DC MUETIPLIER UNIT £149 LVVELL TM3B MICRO V-METER JMHZ E195 UNG DTW VIB GEN 405 \& PA300 PWR OSC E175 UDI2026 SONAR SCANMER SURFACE UNIT £165 CITOH CX6000 6-PEN AA PLOTTER. CENT/AS232 E215 GOULO 24004 -PEN CHART RECORDER E195 MARCON TF2300 FMMAM MODULATION METER \&99 MCKENZIE DAY TEMPAUMMIDIIY RECORD
£59 FEEDBACK SSO603 IMHZ SINE SQ OSC

CIRCLE NO. 133 ON REPLY CARD

in grasping electrical and electronics theory. This book has been written to help such students to understand the mathematical principles underlying their subject so that they can go on with confidence to tackle problems in practical circuits. Paperback 256 pages.
Price £14.95 0750609249

CIRCUIT MANUALS

Ray Marston
A series of books dealing with their subjects in an easy-to-read and non-mathematical manner, presenting the reader with many practical applications and circuits. They are specifically written, for the design engineer, technician and the experimenter, as well as the electronics student and amateur. All the titles are written by Ray Marston, a freelance electronics design engineer and international writer.

Op-amp Circuits Manual
Paperback 224 pages
Price £13.95 0434912077
Audio IC Circuits Manual
Paperback 168 pages
Price £13.95 0434912107
CMOS Circuits Manual
Paperback 192 pages
Price £13.95 0434912123
Electronic Alarm Circuits
Manual
Paperback 144 pages
Price $£ 13.950750600640$

Timer/Generator Circuits

Manual
Paperback 224 pages
Price £13.95 0434912913
Diode, TransIstor and FET Circuits Manual
Paperback 240 pages
Price £13.95 0750602287

Instrumentation and Test Gear Circuits Manual

Ray Marston
Modern instrumentation and test gear circuits of value to the industrial, commercial, or amateur electronic engineer or designer make up this book. Almost 500 outstandingly useful and carefully selected practical circuits are in here. This is one book you must have if you need access to practical working circuits ranging from simple attenuators and bridges to complex digital panel meters, waveform generators, and scope trace doublers. Paperback 400 pages.
Price £16.95 0750607580

Logic Designers Handbook

Andrew Parr

Easy to read, but none the less thorough, this book on digital circuits is for use by students and engineers and provides an accessible source of data on devices in the TTL and CMOS families. It's a 'Designers Handbook' that will live on the designer's bench rather than on the bookshelf. The basic theory is explained and then supported with specific practical examples.
Paperback 488 pages.
Price £25.00 0750605359

Digital Audio and Compact Disc Technology

Luc Baert, Luc Theunissen \&

Guido Vergult

Essential reading for audio engineers, students and hi-fi enthusiasts. A clear and easy-tofollow introduction and includes a technical description of DAT (digital audio tape). Contents includes principles of digital signal processing, sampling, quantization, A/D conversion systems, codes for digital magnetic recording, principles of error correction, the compact disc, CD encoding, optoelectronics and the optical block, servo circuits in CD players, signal processing, digital audio recording systems, PCM, Video 8, R-DAT and S-DAT. Paperback 240 pages.

Price $£ 16.95$
 0750606142

NEWNES POCKET BOOKS

A series of handy, inexpensive, pocket sized books to be kept by your side and used every day.
Their size makes them an ideal 'travelling' companion as well.

Newnes Electronics
Engineer's Pocket Book
Keith Brindley
Hardback 319 pages
Price £12.95 0750609370
Newnes Electronics Assembly Pocket Book
Keith Brindley
Hardback 304 pages
Price $£ 10.950750602228$
Newnes Television and Video
Engineer's Pocket Book
Eugene Trundle
Hardback 384 pages
Price £12.95 0750606770

Newnes Circuit Calculatlons
Pocket Book
T Davies
Hardback 300 pages
Prlce £10.95 0750601957

Newnes Data Communications
Pocket Book
Michael Tooley
Hardback 192 pages
Price $£ 12.950750604271$

Newnes Telecommunicatlons
 \section*{Pocket Book}

JE Varrall \& EA Edis
Hardback 400 pages
Price £12.95 0750603070
Newnes 280 Pocket Book

Chris Roberts

Hardback 185 pages
Price £12.95 0750603089
Newnes 68000 Pocket Book
Mike Tooley
Hardback 257 pages
Price £12.95 0750603097

Newnes Electrical Pocket
Book
21 st edition
E A Parr
Paperback 526 pages
£12.95
0750605138
Newnes Electric Circults
Pocket Book Linear IC
Ray Marston
Hardback 336 pages
Price £12.95 0750601329

Newnes Guide to Satellite TV
 D J Stephenson

A practical guide, without excessive theory of mathematics, to the installation and servicing of satellite TV receiving equipment for those professionally employed in the aerial rigging/TV
trades. Hardback 256 pages.
Price £17.95 0750602155
Newnes Practlcal RF
Handbook
lan Hickman
Pressure on the RF spectrum has never been greater and it's people with knowledge and skills of RF design who are now in demand in the electronics industry to design, produce, maintain and use equipment capable of working in this crowded environment. This practical introduction to modern RF circuit design will equip you with the necessary RF knowledge and skills to enable you to compete effectively in the industry. Paperback 320 pages.
Price £16.95 0750608714
Troubleshooting Analog
Circuits
R A Pease
Bob Pease is one of the legends of analog design. Over the years, he's developed techniques and methods to expedite the oftendifficult tasks of debugging and
troubleshooting analog circuits. Now, Bob has compiled his 'battle-tested' methods in the pages of this book. Based on his immensely popular series in EDN Magazine, the book contains a wealth of new material and advice for Digital/Analog electronics engineers on using simple equipment to troubleshoot. Paperback 217 pages.
Price £14.95 0750616326
PC-Based Instrumentation and Control
M Tooley
Do you need information to enable you to select the necessary hardware and software to implement a wide range of practical PC-based instrumentation and control systems? Then this book is for you. Paperback 320 pages.
Price $£ 14.95 \quad 0750616318$

Electronic Circuits Handbook

 M TooleyProvides you with a unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without recourse to theoretical texts. Paperback 345 pages.
Price £24.95 0750607505
Communication Services via Satellite

GELewis

DBS is already with us, and will create a series of new technical problems for
engineers/technicians in television and communication services. This book gives you the solutions to these problems by:
explaining how the system functions; describing several actual systems and giving several analyses and design rules. You can't afford to be without this invaluable technology update if you're a systems design engineer, service engineer or technician. Paperback 400 pages.
Price £25.00 0750604379

Digital Loglc Design Brian Holdsworth

As one of the most successful and well established electronics textbooks on digital logic design, this book reflects recent developments in the digital fields. The book also covers new functional logic symbols and logic design using MSI and programmable logic arrays. Paperback 448 pages.
Price £19. $50 \quad 0750605014$

The Circuit Designers Companion
 T Wiliams

This compendium of practical wisdom concerning the realworld aspects of electronic circuit design is invaluable for linear and digital designers alike. Hardback 320 pages.
Price $£ 2500 \quad 0750611421$

> Credif surd orders acsepted by phone 0816523614

Return to: Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Please supply the following titles:

PLEASE ADD $£ 2.50$ FOR POSTAGE
Add VAT at local rate
NB ZERO RATE FOR UK \& EIRE
TOTAL
Business purchase: Please send me the books listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. will attach my business card/letterhead and have signed the form below. Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resaleable condition for a full refund

Remittance enclosed $£$
Cheques should be made payable to Reed Book Services Ltd.
Please debit my credit card as follows:
Access/Master BarclayNisa Amex Diners

Credit Card No. \qquad Exp date
NAME (Please print)
ORGANISATION
STREET
TOWN
COUNTY \qquad POST CODE \qquad COUNTRY

DATE \qquad TELEPHONE NUMBER
SIGNATURE

VAT RATES
6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Gemany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3\% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR
REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)
VAT NO. \qquad
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to recieve further details about books, journals and information services.
Reed Business Publishing - Registered Office - Quadrant Hse The Quadrant Sutton Surrey SM2 5AS Registered in England 151537

Analogue design with a 5 V supply

> Op-amp selection can minimise the impact of singlesupply design. Walt Jung and James Wong* explain why careful choice is so important.

EDN Designer's companion is available by postal application to room L333 EW+WW, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS. Cheques payable to Reed Book Services please. Credit card orders accepted by 'phone
\{0816523614\}. 254 pp hardback ISBNO 750617217 Price $£ 25.00+£ 2.50$ postage.

Walt Jung and James Wong are with Analog Devices Inc. This article first appeared in EDN.

System designers are turning to singlesupply power not just in digital applications but, increasingly, in analogue circuits. Some loss in performance can result. But using amplifiers expressly designed for the job can help minimise this loss, and among the performance specs that will be enhanced are supply-power and operating ranges, dynamic range, and input and output ranges. Better linear operation overall should result too.
Op-amps operating from +15 V supplies generally accept an ample input commonmode (cm) range and provide a wide output range - both typically +10 V or more. But sin-gle-supply systems often handle much smaller voltage ranges: 12 V down to 5,3 , or even 1.5V. At these levels, most dual-supply opamps simply cease to function. Those that will operate suffer performance degradation, and so choice of single-supply amplifiers is much more limited than that for dual-supply.

General-purpose amplifiers such as 741 s and 1558 s - and most fet-input amplifiers - can operate from supplies as low as $\pm 5 \mathrm{~V}$, or 10 V total. Precision-amplifier families such as the $O P-07$ and $O P-27$ do not work below 5 V , though a few selected family types may be useful for some regions of this voltage spectrum. For example the OP-97 proves useful down to $\pm 2.25 \mathrm{~V}(4.5 \mathrm{~V})$.

But, typically, only amplifiers specifically designed for single-supply or low-voltage operation can function without major performance compromises below 10 V total.
Devices designed for $\pm 15 \mathrm{~V}$ operation typically require $2-5 \mathrm{~V}$ of headroom, with respect to both supply rails and at both inputs and output. Even the more-flexible dual-supply amplifiers only come within IV or so of the rails. Need for headroom in single-supply applications severely limits linear operation
over wide signal swings. The limitations are most acute at lower supply voltages and, for this reason, single-supply amplifier input stages usually remain linear even when the common-mode voltage applied is right at the negative rail (ground) or even slightly below $(\approx-200 \mathrm{mV})$. Op-amp input stages that operate in this way include pnp bipolars, cmos or pmos types, and n-channel jfet types.

Common-mode stresses

Obviously, devices with the above various input stages will have differing input-bias currents, noise voltage and currents, and offset voltage and drift. Spec sheets will delineate these characteristics, but a subtle (and potentially important) characteristic for a given device is how it reacts to common-mode stresses.
Over-driving amplifiers below the negative rail (pnp inputs in particular) can cause a nondestructive output-phase reversal. Over-driving may not actually damage the device if the input-fault current is limited, but the circuitry around the amplifier can react violently. If the circuitry is a polarity-sensitive servo, for example, it may lock up or oscillate.
Few single-supply amplifiers have internal protection against over-drive. Fortunately, preventing it is easy: simply clamp the input voltage to no more than 300 mV below the negative rail with a low-threshold Schottky diode.
Protection of cmos- and pmos-input stage amplifiers is more difficult because exceeding their supply rails can trigger a parasitic scr within the device - with possible destruction. As with any cmos device, possible transients should be kept in mind and data-sheet recommendations followed.
At the positive end of the input-cm range, some devices can operate to within IV of the rail while others may need 1.5 V of headroom.

Generally, over-driving an op-amp's com-mon-mode inputs above the positive rail causes non-linearity (as opposed to phase reversal) and, again, cmos- or pmos-input devices should not be driven beyond the positive rail.
With the exception of rail-to-rail outputstage devices, most op-amps can swing only to within 1-2V of the positive rail and when these devices operate from supplies of 5 V or less, output swing is greatly reduced. Even if the input's noise floor remains constant - it seldom does - the s / n ratio and dynamic range suffer for devices operating from low voltages.

Ultra-low quiescent current drain

A fundamental reason for using single-supply designs is to conserve power, so most singlesupply op-amps draw low stand-by current. But very low current designs may involve fundamental trade-offs, and band width, slew rate, and input noise voltage are sometimes all sacrificed.
Stand-by current drain per amplifier channel can often make or break a device when a system's power consumption is critical. (There is no industry standard definition of low power. We suggest that devices drawing quiescent currents of $\leq 1 \mathrm{~mA}$ /channel are low power, and those drawing $<100 \mu \mathrm{~A} /$ channel are micropower.)
Given a requirement for low-power designs, engineers face not just slower speeds but also band-width restrictions arising from higher circuit impedances.

	Noise $(\mathrm{nV} / \mathrm{JHz})$	supply current/ channel
OP-295	51	$160 \mu \mathrm{~A}$
AD820	12.5	$750 \mu \mathrm{~A}$
AD822	12.5	$750 \mu \mathrm{~A}$
OP-213	6	1.45 mA
Table 2. Current vs band width trade-offs		

	Current drain ($\mu \mathrm{A} / \mathrm{ch})$.		Slew rate $(\mathrm{V} / \mu \mathrm{s})$
$\mathrm{OP-295}$	160	75 kHz	0.03
$A D 822$	750	2 MHz	3.5
$324 / 358$	500	1 MHz	0.6

fully-buffered op-amp follower stages for the lowest wide-band dynamic impedance. When the dynamic current is low, a well by-passed noise-free divider is suitable for highimpedance loads. When high, a simple opamp follower (Fig. 1) can do the job. In the circuit shown, a wide range of supplies can be used to produce a low-noise output of $V_{\text {supply }} / 2$. Choice of $I C_{1}$ determines the circuit's standby current.
If a precise pseudo-ground voltage is needed, a reference IC that can source and sink current (Fig. 2) should be used.
Operating from a 5 V supply, the suggested

Fig. 1. False or "pseudo" grounds can be made any value desired. When dynamic currents are high, use this simple op-amp follower.

Fig. 2. Use a reference IC that can source and sink current if a precise pseudo-ground voltage is needed. This circuit can handle load currents both into and from the 2.5 V source.

Fig. 3. Balanced IC filter suppresses glitch noise by 40 dB or more.

Table 1 indicates trade-offs in noise versus supply current and Table 2, band width. The dual amplifiers in the Table 2 bracket the industry standard 324 and 358 , with their $500 \mu \mathrm{~A} /$ channel current drain, 1 MHz bandwidth, and $0.6 \mathrm{~V} / \mu \mathrm{s}$ slew rate. Greater speed also comes at the price of increased current.

Ground rules

Assigning ground is a task that can become important in single-supply, ac-coupled op-amp circuits. A false or pseudo ground can be anything required, the best choice depending on the individual application. But maximum amplifier flexibility helps make signal referencing less problematic, particularly if the design has substantial dynamic current into an elevated ground.
Possible choices for false ground range from simple ac-by-passed resistive dividers, to
circuit can handle load currents both into and from the 2.5 V source. Low-esr (equivalent series resistance) by-pass capacitors help keep the circuit's ac impedance low.

Power supply noise

Power-supply noise, if not dealt with correctly, can shred even the best paper design. Lowpower circuits tend to have poorer supply rejection, and the noise from commonly used 5 V digital supplies is nearly worst-case. Simple power-line filters may not be adequate for high-performance analogue stages. A common analogue and digital supply may be attractive for size and cost reasons, but a common supply should be avoided if at all possible. Power taken from the middle of a logic layout contains huge amounts of high-frequency noise -100 mV or more. Worse yet, logic supplies are typically switching types,

Fig. 4. Two op-amp instrumentation amplifier normally uses two supplies. Using a single supply constrains the design's common-mode range.

ANALOGUE DESIGN

Fig. 5. Accurate strain gauge bridge amplifier operating from 5 V and producing linear outputs to as low as $600 \mu \mathrm{~V}$ from ground.

which have large output spikes. Using a separate, linear mode, low-noise supply for the sensitive analogue circuits is a much better idea whenever possible.

If a 5 V logic supply is the only option, isolation and circuit partitioning, as well as optimised decoupling and filtering, can help greatly. Make sure the analogue power is tapped right at the supply terminals, not from the logic stages, so avoiding the voltage drops of the logic-supply runs and allowing maximum supply regulation.
By-pass capacitors alone are usually not adequate for filtering switch-mode glitches, so take additional steps such as a balanced IC filter (Fig. 3). The filter comprises two high-frequency inductors - each made from a threeturn, toroidal ferrite bead - and a large, composite output capacitor. Capacitors should be low-esr switching types for best performance. As shown, the filter suppresses glitch noise by 40 dB or more.
Even with a device that has a wide output swing, an application's configuration can limit that swing. Take, for example, a two op-amp instrumentation amplifier (Fig. 4). It normally uses dual supplies, but in this case, has a single supply and a gain of approximately 100.

At first glance, the amp will faithfully amplify a 10 mV differential input to 1 V at $V_{\text {Out }}$ with a low common-mode voltage.
But a close examination proves otherwise. The output from amplifier $I C_{\mid}$must be a neg-
ative 94 mV to satisfy the loop's requirements and produce $I \mathrm{~V}$ at the output. Obviously, $I C_{\mid}$ cannot produce a negative output from a single supply. Indeed, if the circuit attempts such operation, $I C_{1}$ saturates, and $V_{\text {out }}$ becomes non-linear.
As it turns out, this input-cm limitation is a function of the instrumentation amp's gain as well as the output swing of the op-amps within it. So, low negative- $V_{\text {sat }}$ or rail-to-rail out-put-stage op-amps help improve commonmode handling. In Fig. 4 the worst-case minimum cm voltage is 0.4 V (assuming a 5 V output swing and each op-amp swinging to within $100 \mu \mathrm{~V}$ of each rail). Op-amps that cannot swing to 0 V will have a worse input cm voltage minimum. The conclusion is that even though an op-amp might be designed for sin-gle-supply operation, a particular configuration could still constrain it.

Sensible application

But despite its basic limitations, the topology can still be useful if it is carefully applied. For example, consider an accurate strain-gauge bridge amplifier circuit in which the bridge and amplifier are powered from 5 V (Fig. 5). The amplifier produces linear outputs to as

low as $600 \mu \mathrm{~V}$ from ground. In this case, the bridge itself supplies the 2 V common-mode bias, keeping the op amps in the middle of their common-mode range. Driving the bridge with a low-noise 4 V supply further minimises noise.
Design of an instrumentation amplifier that shrugs off switch resistance is also possible (Fig. 6). Compared with the circuit in Fig. 4, this circuit's primary advantage is that it does not exhibit extreme common-mode limitations. Also, its topology switches divider taps for gain changes, so moderate switch resistances (10 to 100Ω) do not cause major errors. A circuit's gain can easily be set with jumpers or dpdt cmos switches. However, adding the same gain setting switches in series with R_{G} in Fig. 4 would produce serious errors.
In Fig. 6, amplifier $I C_{1 \mathrm{~A}}$ is a follower for signals at terminal $-V_{\text {in }} . I C_{1 \mathrm{~B}}$ is a follower for signals at $+V_{\text {in }}$, and an inverter for signals at its negative input. Linear subtraction of cm signals and amplification of differential signals provides the circuit with a precise gain that can be varied between 10 and 100 .
Performance keys to this circuit are the resistor network and the amplifier. For best performance with premium amplifiers, the resistor network should have a ratio-match specification of 0.1% minimum, with 0.01% as a goal. Ideal amplifiers and 0.01%-match gain resistors will have the common-mode error at the output on the order of -100 and -120 dB for gains of 10 and 100 , respectively. Common-mode limitations of the configuration must be observed when a single supply is used. $V_{\text {out }}$ in the circuit is referred to the potential applied to the resistor network's V_{R} pin. This ground assignment implies that if the

Fig. 6. Instrumentation amplifier that shrugs off switch resistance, enabling gains to be switched.
circuit has to exhibit high linearity for even small $V_{\text {in }}$ difference voltages, the op-amps should be able to swing close to ground.

Output-stage swing

Not all single-supply amplifier outputs can swing to the negative rail (ground). Some may swing to within a diode drop (0.6 V); others may swing within a few tens of millivolts. Only a very few swing to less than 1 mV from the negative rail.
To understand which op-amp functions best for output-swing-critical applications, calls for detailed knowledge of output stages.
Figure 7 shows a sampling of output-stage topologies used in single-supply op-amps. At best, the bipolar complementary emitter-follower stage is only active to within a diode drop of each rail. It may or may not use a Darlington for transistor $T r_{1}$ - but usually has a single pnp for $T r_{2}$ - and cannot swing to ground without outside help, such as the added resistor $R_{\text {puldown }}$. This resistor allows output linearity to ground for source-type loads only, while also raising overall dissipation for sustained high-level outputs.
Amplifiers with this type of output stage can be useful for single-supply applications, but must be carefully applied for all trade-offs to be optimised.
The nmos bipolar emitter-follower commonsource output stage (Fig. 7b) has, by nature, an asymmetrical voltage swing. However, it exhibits low saturation voltages to ground because of the nmos pull-down transistor N_{1}. Saturation voltage to the positive rail is about IV (or more), and the advantage of the stage is that the nmos pull-down transistor can drive current-sink loads to within a few millivolts of ground - enhancing the linearity in many sin-gle-supply applications.

The cmos stage (Fig. 7c) is, by definition, fully complementary and offers a resistive

Fig. 7. Output-stage topologies used in single-supply op amps. The bipolar complementary emitter-follower stage (a) is active only to within a diode drop of each rail at best. The bipolar emitter-follower, nmos common-source output stage (b) has by nature, an asymmetrical voltage swing. The cmos stage (c) is, by definition, fully complementary. Complementary-bipolar common-emitter stage (d) is another rail-to-rail output stage.
connection to the supply rail for a high or low output, rail to rail. With appropriate low- $R_{\text {on }}$ transistors for P_{1} and N_{1}, saturation drops to either rail can be a millivolt or less at low currents. The stage is inherently class A so amplifier design must carefully control the static currents in P_{1} and N_{1} for low quiescent current. But for output currents of a few milliamps, this type of output stage is effective and quite versatile because of its rail-to-rail nature.

The complementary-bipolar common-emitter stage (Fig. 7d) is another rail-to-rail output stage. Saturation-drops to the rails range from a few millivolts to hundreds of millivolts over current ranges up to 20 mA . Like the cmos rail-to-rail output stage, this bipolar counterpart is both effective and versatile, but avoidance of punitive trade-offs in power is critical to design of the bipolar stage.

ELECTRONICS WORLD SOF'T
 INDEX

A computerised index of Electronics World+Wireless World magazine is now available. It covers the five years 1990 to 1994 - volumes 96 to 100 - and contains over 1400 references to feature articles, circuit ideas and applications, with a synopsis for each. The software is easy to use and very quick. It runs on any IBM or compatible PC with 512 K ram and a hard disk. Each disk is scanned before shipping with the current version of Dr Solomon's Anti-Virus Toolkit.
For the UK, the five year index is priced at $£ 20$. Please specify $5 \frac{1}{4}$ or $3 \frac{1}{2}$ in format. This price includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders.
Photo copies from back issues of $E W+W W$ are available at 50 p per page plus VAT (in EC) and a flat postage charge of 50 p UK, $£ 1$ rest of EC , and $£ 2$ rest of world. For enquiries about photo copies send an sae to Video Interface Products.
Please allow up to 28 days for delivery. Cheques should be made payable to Video Interface Products, not EW\&WW or Reed Business Publishing.
Please post your request to Video Interface Products Ltd, 1 Vineries Close, Cheltenham GL53 ONU, UK.

A4 DTP MONTORS Brand new, 300 DPI. Complete with diagram but no Interface details.(so you will have to work it out!) Bargain at Just $£ 12.99$ eachll!! OPD MONTTORS 9° mono monitor, fully cased complete with raster board, switched mode psu etc. CGATTL input (15 way D), IEC mains. $£ 15.99$ ref DEC23. Pice including kit to conven to composite monitor for CCTV use etc is $£ 21.99$ ret DEC24
LOW COST LASER NIGHT SIGHT just E.791! Cheaper version of our £245 Cyylops model, works ok in low light levels orin complete darkness with the builtinL Laser. ref $95 / 79$ (please allow about 1 month delivery for these due to impor difficulties) PC CONTROLLED 4 CHANNEL TMER Cortrol (on/off times etc) up to 4 items (8 A 240 V each) with this kit. Complete with Sottware, relays, PCB etc. £25.99 Ref 95/26
LOW COST RADAR DETECTOR Bull and lested pocket radar detector, ideal for picking up speed traps etc. Why pay $£ 70$ or radar detector, ideal for plcking up s.
more? ours is just $£ 24.99$ ret $95 / 25$.
COMPLETE PC 300 WATT UPS SYST EM Top of the range UPS system providing protection for your computer system and aluable software againstmainspow er fluctuations and cuts. New and ooxed, UK made Provides up to 5 mins running time in the event of
completepower failure to allow you to run your system dow ncorectly. SALE PRICE JUst E119.00.
RACAL MODEM BONANZAI I Racal MPS1223 1200/75 modem, terep hone lead, mainslead, manual and comms software, the cheapest way onto the netl all this for Just $£ 13$ ref DEC13.
HOW LOW ARE YOUR FLOPPIES? $3.5^{\circ}(1.44)$ unbranded. We have sold $100,000+$ so okl Pack of 50 f 24.99 ref DEC 16
BRITISH TELECOMM MULTMETERS SA9083 These are 'returns' so they may have faults butlook ok. Complete with new leads and leather case. Price for two meters \& 1 case is $£ 10$ ref DEC89. 5 mw LASER POINTER. Supplied In kit form, complete with pow er adjuster, $1-5 \mathrm{mw}$, and bearn divergence adjuster. Runson 2 AAA batteries. Produces thin red beam ideal forlevels, gun sights. experiments etc. Cheapest in the UKI Just $£ 39.95$ ref OEC49
SHOP WOBBLERSISmall assemblles designed to take D size batteries and 'wobble' cardboard model signs aboutin shop windows! £3.99 Ref SEP4P2.
RADIO PAGERSBrand new, UK made pocket pagers clearance price is Just $£ 4.99$ each $100 \times 40 \times 15 \mathrm{~mm}$ packed with bitsl Ref SEP5. BULL TENS UNTT Fully buit and tested TENS (Transcutaneous Electrical Nerve Stimulation) unit, complete with electrodes and full Instructions. TENS is used for the rellef of paln etc in up to 70\% of sufferers. Orug free pain relief, safe and easy to use, can be used in conjunction with analgesics etc. £49 Ref TEN/1
STEREO MICROSCOPE $155 \times 195 \mathrm{MM}$, up to 600 mm high, so items up to 10^{*} will fit under lense. Rack and pinion focusing, 6 +scaled eyeplece for accurate measuring etc. Pow erful low voltage illumination system with green filter and variable intensity, 100 mm blackfwhite + ground glass stage plate, 70 mm swivel mirror, adjustabe eyepieces (both focus and width). Magnification range 4.6-100.8, field of view $39-2.4 \mathrm{~mm}$). Price is $£ 299$ for complete setup. Ret $95 / 300$. 3D 36MM CAMERA SYSTEM Complete kit to convert a standard 35 mm camera into a 3D versionl, enable you to take 3D colour slides with your own camera! Kit contains a prism assembly for the front of your existing lense, a sample 3D side, a 30 slide vlewer and 2 different lense mounts 49 mm and 52 mm , (other sizes available from hoto shops at about $£ 3$ ea) all you need is standard slide film. Price or the complete kit is $£ 29.99$ ref $95 / 30$.
COMPUTER RS232 TERMINALS. (LIBERTM) Excellent quality modem units, (nike wyse 50,s) 2xRS232, 20 function keys, 50 thro to 38,400 baud, menu driven port, screen, cursor, and keyboand setup menus (18 menu's). E29 REF NOV4.
OMRON TEMPERATURE CONTROLLERS (E6C2).Brand new controllers, adjustable from $-50 \mathrm{deg} C$ to $+1,200 \mathrm{deg} C$ using graduated dial. 2% accuracy, thermocoupleinput, longlife relay output .3A 240 v o/p contacts. Perfect for exactly controlling a temperature, Normal trade $£ 50+$, ours $£ 15$. Ref E5C2.
ELECTRIC MOTOR BONANZAI $110 \times 60 \mathrm{~mm}$.Brand new precision, cap start (or spin to start), virtually silent and features a moving outer case that acts as a fly wheel. Because of their unusuat design we think that 2 of these in a tube with some homemade fan blades could form the basisfor a wind tunnel etc. Clearance pricelsjust £4.99 FORAPAIR! (note-these will have to be wired in series for 240 v
operation Ref NOV1. operation Ref NOV1.
MOTOR NO 2 BARGAIN $110 \times 90 \mathrm{~mm}$. Similar to the above motor but more sutable for mounting vertically (ie tumtable efc). Again
you will have to wre 2 In series for 240 v use. Bargain price is just $£ 4.99$ FOR A PAIR!! Ref NOV3.
OMRON ELECTRONIC INTERVAL TIMERS
Minature adjustable timers, 4 pole olo output 3A 240v, HY1230S, 12vDC adjustable from 0-30 secs. $£ 9.99$ HY1210M, 12vDC adjustable from $0-10$ mins. $£ 9.99$ HY1260M, 12vDC adjustable from 0-60 mins. $£ 9.99$ HY2460M, 24vAC adjustable from $0-60$ mins. $£ 5.99$ HY241S, 24VAC adjustable from $0-1$ secs. $£ 5.99$ HY2460S, 24 VAC adjustable from $0-60$ secs, $£ 5.99$ HY243H, 24vAC adjustable from 0-3 hours. $£ 8.99$ HY2401S, 240 V adjustable from 0.1 secs. £9.99 HY2405S, 240 V adjustable from $0-5$ secs. $£ 9.99$ HY24060m, 240 N adjustable from $0-60$ mins. $£ 12.99$ PCPAL VGA TO TV CONVERTER Converts a colour TVInto a basic VGA screen. Complete with built in psu, lead and s / w are. £49.95. Ideal for laptops or a cheap upgrade.
EMERGENCY LIGHTING UNTT Complete unit with 2 double bulb floodlights, built in charger and auto switch. Fully cased. 6v 8AH lead acid req'd. (secondhand) £4 ref MAG4P11.
GUIDED MISSILE WIRE. 4,200 metre reel of ultra thin 4 core insulated cable, 28ibs breaking strain, less than 1 mm thick! Ideal alarms, intercoms, fishing, dolls house's etc. E14.99 ref MAG15P5 300y PANELMETER 70X60X50MM, AC, 90 degree scale. Good quality meter. $£ 5.99$ ref MAG 6P14. Ideal for monitoning mains etc. ASTEC SWITCHED MODE PSU BM41012 Gives +5 © 3.75A.

TORRODIAL TX 30-0-30 480VA, Perfect for Mosfet amplifiers etc. 120 mm dila 55 mm thick. $£ 18.99$ ref APR19.
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a digar plug. 12 v 2 watt, £9.99 ea re' AUG 10 P3. FLOPPY DISCS DSDD Top quality 5.25° discs, these have been written to once and are unused. Pack of 20 is $£ 4$ ref AUG4P1.
ECLATRON FLASH TUBE As used in police car flashing ights
etc, full spec supplled, $60-100$ flashes a min. 59.99 reo APR10P5.
24v AC 96WATT Cased power supply. New. £13.99 rel APR14. MILITARY SPEC GEIGER COUNTERS Unused anstraightrom Her majesty's forces. $£ 50$ ret MAG 50P3.
STETHOSCOPE Fullyfunctioning stethoscope, ideal for listening to hearts, plpes, motors etce $£ 6$ ref MAREP6.
to hearts, plpes, motors etc. £6 rel MAR6P6.
OUTDOOR SOLARPATH LIGHTCaptures sunlight during the day and automatically switches on a builtin lamp at dusk Completewith sealed lead acid battery etc. $£ 19.99$ ref MAR20P1
A LARM VERSION Of above unit comes with built in alam and pir to deter intruders. Good value at just $£ 24.99$ ref MAR25P4.
CA RETAKER VOLUM ETRIC Avam, will cover the whole of the ground floor against forcred entry. Includes mains power supply and integral batterybackup. Powerful internal sounder, will take external bell if req'd. Retail $£ 150+$, ours? $£ 49.99$ ref MAR50P1.
TELEPHONE CABLE White 6 core 100 m reel complete with a pack of 100 dips. Ideal 'phone extns etc. $£ 7.99$ rel MARBP3.
MICRODRIVE STRIPPER Small cased tape drives ideal for stripping. lots of useful goodies inctuding a smart case. and lots of components. $E 2$ each ref JUN2P3.
SOLAR POWER LAB SPECIAL YOu get TWO $6^{\circ} \times 6^{\circ}$ 6v 130 mA solar cells, 4LED's, wire, buzzer, switch plus 1 relay or motor. Superb value kit just $£ 5.99$ REF: MAG6P8
SOLIDSTATE RELAYS Will switch 25A mains. Input 3.5-26vDC $57 \times 43 \times 21 \mathrm{~mm}$ with terminal screws $£ 3.99$ REF MAG4P 10
300 DPI A4 DTP MONTTOR Brand new but shop soiled so hence bargai n price! TTLECL Inputs, 15° landscape, 1200×1664 pixel combarga in pricelTTLECL inputs, 15^{*} landscape, 1200×1664 plxel com-
plete with circult diag to help you Interface with your projects. JUST plete with circult diag to
£14.99. REF JUN15P2.
BUGGING TAPE RECORDER Small voice activated recorder, uses microcassette complete with headphones. £28.99 ref MAR29P1. ULTRAMINIBUG MIC $6 m m x 3.5 \mathrm{~mm}$ madeby AKG, 5-12v electret condenser. Cost $£ 12$ ea, Ours? just four for $£ 9.99$ REF MAG10P2. RGB/CGAEGATTL COLOUR MONTTORS 12° in good condition. Back anodised metal case. £79 each REF JUN79
ANSWER PHON ES Retums with 2 faults, we give you the bits for 1 fault, you have to find the other yourself. BT Response 200's $£ 18$ ea 1 fault, you have to find the other yourself.
REF MAG18P1. PSU £5 ref MAG5P12.
SWITCHED MODE PSU ex equip, $60 \mathrm{w}+5 \mathrm{v}$ © $5 \mathrm{~A},-5 \mathrm{~V} @ .5 \mathrm{~A}$, +12vQ2A -12ve. 5 A 120/220v cased $245 \times 88 \times 55 \mathrm{~mm}$ IECInput socket £6.99 REF MAG7P1
PLUG IN PSU 9V 200mA DC $£ 2.99$ each REF MAG3P9
PLUG IN ACORN PSU 19 v AC 14 w , $£ 2.99$ REF MAG3P 10
POWER SUPPLY fully cased with mains and of leads $17 v D C$ 900 mA output. Bargain price $£ 5.99$ ref MAG6P9
ACORN ARCHIMEDES PSU $+5 \mathrm{v} @ 4.4 \mathrm{~A}$. on/off sw uncased, ACORN ARCHIMEDES PSU $+5 \mathrm{~V} @ 4.4 \mathrm{~A}$. On/off Sw
selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ £ 7 REF MAG7P2 selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ £ 7 REF MAG7P2
GEIGER COUNTER KIT Low cost professional twin tube, complete with PCB and components. Now only E19 REF AUG19.
9v DC POWER SUPPLY Standard plug in type 150 ma 9 V DC with lead and DC power plug. price for two Is $£ 2.99$ ref AUG3P4. AA NICAD PACK encapsulated pack of 8 AA ricad batteries (tagged) ex equip, $55 \times 32 \times 32 \mathrm{~mm}$. £3 a pack. REF MAG3P 11
13.8 V 1.9A psu cased with leads. Just $£ 9.99$ REF MAG10P3 PPCMODEM CARDS. These are high specplug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance price is $£ 5$ REF: MAG5P
INFRA RED REMOTE CONTROLLERS Originally made for hi spec satellite equipment but periect for all sorts of remote control projects. Our clearance price is just 22 REF: MAG2
200 WATT INVERTER Converts $10-15 \mathrm{v}$ DC Into either 110 v or 240 v AC. Fully cased $115 \times 36 \times 156 \mathrm{~mm}$, complete with heavyduty power lead, cigar plug, AC outiet socket. Auto ove eload shutdown, auto short circult shut down, auto input over voltage shutdown, auto input under voltage shut down (with audible alarm), auto temp control, unit shuts down if overneated and sounds audible alarm. Fused reversed polarity protected. output frequency within 2%, valtage withln 10%. Aextremely well built unit at an excellem price. Just £64.99 ref AUG65.
UNIVERSAL SPEED CONTROLLER KIT Designed by us for the C5 motor but ok for any 12v motor up to 30A. Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MAG 17
MAINSCABLE Precutblack 2 core 2 metrelengths ideal for repairs, projects etc. 50 metres for $£ 1.99$ ref AUG2P7.
COMPUTER COMMUNICATIONS PACK Kit contains 100 m of 6 core cable, 100 cable dips, 2 line drivers with RS232 interfaces and ail connectors elc. Ideal low cost method of communicating between PC's over a long distance. Complete kit $£ 8.99$.
MINICYCLOPS PIR $52 \times 62 \times 40 \mathrm{~mm}$ runs on PP3 battery complete with shrill sounder. Cheap protection at only $£ 5.99$ ref MAR6P4. ELECTRIC MOTOR KIT Comprehensive educational kitlncludes all you need to build an electric motor. $£ 9.99$ ref MAR1OP4.
VIDEO SENDER UNT. Transmits both audlo and video signals from either a videocamera, video recorder, TV or Computer etc to any
standard TV set in a 100 rengel (tune TV to a spare channel) 12 vDC standard TV set in a 100' reangel (tune TV to a spare channel) 12v DC
op. Price Is $£ 15$ REF: MAG15 12v psu is $£ 5$ extra REF: MAG5P2

250 PORTLAND ROAD HOVE SUSSEX BN3 5 QT (ESTABLISHED 50 YEARS) MAIL ORDER TERMS: CASH POOR CHEQUE WTH ORDER PLUS 83.00 POST PLUS VAT.

PLEASE ALLOW T- 10 OAYS FOR DELIVERY
TEL: 01273203500
FAX: 01273323077
*FM CORDLESS MICROPHONE Small hand held unit with a 500' rangel 2 transmit power levels. Reqs PP3 9vbattery. Tuneable to any FM receiver. Pice is $£ 15$ REF: MAG15P1
LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200 . Ideal for garden use or as an educational toy.
Price is $£ 8$ a pair REF: MAG $8 P 12 \times P P 3$ req'd Pitee is $£ 8$ a pair REF: MAG 8P1 $2 \times$ PP3 req'd
*MINATURE RADIO TRA NSCENERS A pair of wallde talkies with a range of up to 2 km in qpen country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. including cases and earp'ces. 2xPP3 req'd. £30.00 pr.REF: MAG30 COMPOSITE VIDEO KIT. Converts composite video into sepa rate H sync, V sync, and video. 12v DC. £8.00 REF: MAG8P2. LQ3500 PRINTER ASS EMBLIES Made by Amstrad they are entire mechanical printer assemblies induding printhead, steppermo tors etc etc In fact everything bar the case and electron
strippen £5 REF: MAG5P3 or 2 for $£ 8$ REF: MAG8P3
LED PACK of 100 standard red 5 m leds $£ 5$ REF MAGSP4
UNNERSAL PC POWER SUPPLY complete with flyleads,
switch, fan etc. Two types available 150 w at $£ 15$ REF:MAG15P2
($23 \times 23 \times 23 \mathrm{~mm}$) and 200 w at $£ 20$ REF: MAG20P3 ($23 \times 23 \times 23 \mathrm{~mm}$)

- FM TRANSMTTER housed in a standard working 13A adaptent the bug runs directly of the mains so lasts forevert why pay $\mathbf{\Sigma 7 0 0}$ or price is $£ 26$ REF: MAG26 Transmits to any FM radio.
- FM BUG KITNew design with PCB embedded coil for extra stability. Works to any FM radio. Ov battery req'd. ©5 REF: MAG5P5
*FM BUG BUILT AND TESTED superior design to kit. Supphed to detective agencies. 9v battery req'd. E14 REF: MAG14
TALKING COINBOX STRIPPER originalitymade to retail at $£ 79$ each, these units are designed to convert an ordinary phone into a payphone. The units have the locks missing and sometimes broken hinges. How ever they can be adapted for their original use or used for something else?? Price is just E3 REF: MAG3P1
TOP QUALITY SPEAKERS Mat
TOP QUALITY SPEAKERS Made for HIFI televisions these are 10 watt $4 R$ Jap made 4° round with large shielded magnets. Good
quality. $£ 2$ each REF: MAG2P4 or 4 for $£ 6$ REF: MACBP2 quality. £2 each REF: MAG2P4 or 4 for E6 REF: MAG6P2
TWEETERS 2° dlameter good quality tweeter 140 (ok with the above speaker) 2 for £2 REF: MAG2P5 or 4 for E3 REF: MAG3P4 AT KEYBOARDS Made by Apricot these quality keyboards need Just a small mod to run on any AT, they work perfectly but you will to put
HEA DPHONES Ex Virgin Atlantic. 8 pairs for 22 REF: MAG2P8 DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price just E5 REF: MAG5P8 Worth it just for the very comprehensivemanuall 5.25° only.
DOS PACK Microsoft version 5 Original software but no manuals hence only $£ 5.99$.
$3.5^{\prime \prime}$ only.
PIR DETECTOR Made by famous UK alarm manufacturer these are hi spec, long range internal units. 12 V operation. Slight marks on are hi spec, long range internal Units. 12 V operation. Slight
case and unboxed (although brand new) £8 REF: MAG8P5 case and unboxed (although brand new) £8 REF: WAG8P5
MOBILE CAR PHONE 6.99 well aimostl complete in ca MOBILE CAR PHONE 5.99 Well almost! complete In carphone exduding the box of electronics normally hidden under seat. Can be
made toilluminatewith $12 v$ also has built in light sensor sodisplay only made toilluminate with $12 v$ also has built in light sensor sod
illuminates when dark. Totally convinangl REF: MAG6P6
iluminates when dark. Totally convinaingl REF: MAG6P6
ALARM BEACONS Zenon strobe made to mount on an extemal bell box butcould beused for caravans etc. 12 voperation. Just connect up and it flashes regulany) E5 REF: MAGSP11
$6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL 12V $155 \times 310 \mathrm{~mm}$ 130 mA . Bargain price just $£ 5.99$ ea REF MAG6P12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ rel MAG5P 13 ideal for experimenters) 30 m for $£ 12.99$ ref MAG13P1 HEATSINKS (finned) TO220, designed to mountvenically on a pct INFRARED LASER NIGHT SCOPES
Image Intensifier complete with hand grip attachment with built in adjustable laser lamp for zero light conditions. Supplied with Pemtax 42 mm camera mount and normal eye piece. 1.6 kg , uses $1 \times$ PP $3,3 \times A A$'s

problems I $£ 245+\mathrm{V}$

NEW HIGH POWER LASERS

15 mW . Helium neon, 3 switchablew ave lengths $.63 \mathrm{um}, 1.15 \mathrm{um}, 3,39 \mathrm{um}$ (2 of them are infrared) 500: 1 polarizer built in sogood for holography. Supplied complete with mains power supply. $790 \times 65 \mathrm{~mm}$. Use with
EXTREME CAUTION ANO QUALIFIED GUIDANCE. £ $349+$ Vat.

WE BUY SURPLUS STOCK FOR CASH

 1995100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE WITH ORDER.
3FT X 1FT 10WATT SOLAR PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$ £44.95

TOP QUALITY AMORPHOUS SILICON CELLS HAVE ALMOSTA TIMELESS LIFESPAN WTH AN INFINTE NUMBER OF POSS, BLE APPLICATIONS, SOME OF WHICH MAY BE CAR BATERY CHERE A PORTABLE 12 V SUPPLY IS REQUIRED.
WHE

PORTABLE RADIATION DETECTOR

WITH NEW COMPUTER INTERFACE.
$£ 59.00$
A Hand held personal Gamma and X Ray detector. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 KeV to over 1.2 M eV and a measuring range of 5-9999 UR/h or 10-99990

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World + Wireless World" when seeking further information

Asics

Mixed-signal, 50 V asics. AMS can now supply mixed-signal asics that take a 50 V supply voltage and offer the option of a second polysilicon layer. Integrating bipolar transistors in a cmos device makes for lower power consumption and fast switching. Since high voltage is needed to drive fast power fets, this process allows a low-cost cmos driver to control fets handling up to several hundred amps. It also enables the construction of floating polysilicon-polysilicon capacitors, removing voltagedependence problems and parasitics. Austria Mikro Systeme international. Tel., 01276 23399; fax, 0127629353.

A-to-D and D-to-A converters

Modulator. Crystal Semiconductor has introduced the CS5321, a deltasigma modulator meant for use with the CS5322 filter to form a 24 -bit analogue-to-digital converter. CS5321 implements a fourth-order, 256 times oversampled modulator to give 123 dB dynamic range at a thd of 118 dB ,

Measuring amplifier. To overcome the limitations of purely analogue measurements from mechanical transducers such as inferior accuracy, lack of set-up storage and size, HBM introduces the MGC Measuring Amplifier System, which uses gate-array techniques to produce a new analogue-to-digital converter and flexible dsp to do the signal conditioning. Analogue signal is digitised at high speed and at high resolution to allow low-error processing over the whole frequency range providing a three-times improvement in accuracy over purely analogue methods. Measurement set-ups are stored on amplifier cards or in external memory modules and the MGC gives either analogue or digital output. Control is by front panel or by computer via RS232C, RS-485/422 or IEEE488 interfaces. The compact version is a two-channel instrument, but models are available with six, welve or sixteen channels. HBM United Kingdom Ltd. Tel., 0181 4207170 ; fax, 0181-420 7336.
while consuming only 70 mW for both chips. Use of the switched-capacitor technique reduces the effects of clock jitter without the use of plls and vcos. Sequoia Technology Lid. Tel., 01734 258000; fax, 01734258020.

Discrete active devices

High-voltage mosfet. High-voltage p-channel mosfets, the Supertex TP2635 and TP2640 are rated at maximum drain/source voltage of 350 V and 400 V , have low gate/source thresholds of 2 V maximum and a guaranteed $R_{\mathrm{ds}(o n)}$ of $15 \Omega .2001$ Electronic Components Ltd. Tel., 01438742001 ; fax, 01438742002.

Digital signal
 processors

Serial I/o filter. Harris's HSP43124 is a digital filter engine designed to take the burden of filter processing from a digital signal processor. Signal is input digitally and a second input takes the mix factors which are multiplied by the input samples. A multiply/accumulator performs the sum-of-products needed for the filter format selected by further inputs. Outputs go to an output formatter which rounds or truncates them to a selected width and generates timing and sync. signals for serial output transmission. The device will also serve in digital tuning. Dynamic range is over 100 dB , operating on 24 -bit words with 32-bit coefficients. Harris Semiconductor UK. Tel., 01276 686886; fax, 01276682323.

Linear integrated

 circuitsQuad power drivers. In one package, each of four power drivers in the Elantec cmos EL7412CM sources or sinks a continuous 100 mA into 4Ω. Response time is 20 ns , with transient times of 10 ns , matched to reduce timing errors. The chip takes 2 mA from a single $5-15 \mathrm{~V}$ supply METL. Tel. 01844 278781; fax, 01844278746.

Video buffer. MAX4005 is a high speed buffer with an internal, thin-film 75Ω resistor to prevent reflections when driving 75Ω cables. The input stage is a jfet, which takes only 10 pA input current. Features include gain and phase errors of 0.11% and 0.03°, $60 \mathrm{MHz}, 0.1 \mathrm{~dB}$ gain flatness, better than -60 dB third-harmonic distortion, $1000 \mathrm{~V} / \mu$ s slewing and 2 ns settling to 0.1%. Rise and fall times are 350 ps Maxim Integrated Products UK Ltd. Tel., 01734845255 ; fax 01734 843863.

Memory chips

64 Mb drams. Engineering samples of Micron Technology's 64 Mb drams organised as 16 Mb by 4 , are available. They are made in a fourpoly, double-metal cmos process with channel lengths of $0.35 \mu \mathrm{~m}$. The MTL4LC16M2A7 is available with access speed of $60 \mathrm{~ns}, 8 \mathrm{~K}$ refresh and fast-page mode in a 500 mil 34 -lead SOJ package. Micron Europe. Tel., 01344-360055; fax, 01344-869504.

Eeproms for SPI. Xicor's 8-64K serial eeproms in the X25000 series support the Serial Peripheral Interface bus protocol, interfacing directly to the serial port of microcontrollers when in synchronous mode or to a separate serial interface for inter-chip transfers on some controliers. Selected areas of the memory can be protected. Micro Call Ltd. Tel., 01844 261939; fax, 01844261678

Microprocessors and controllers

Twin-Pentium processors. TwinStar multi-chip modules based on two 100 MHz Pentium processors are being sampled by MicroModule. Each module is in a 347 -pin package with a pinout that is a superset of the Intel Overdrive socket, needing only a 3.3 V supply. TwinStar is validated with both Intel $8243 n x$ and

OTP microcontroller. PIC16C74 by Microchip is a 40 -pin, fieldprogrammable 8 -bit microcontroller that has an a-to-d converter and extensive comms facilities; it also has a 4 K one-timeprogrammable program memory. Its risc core uses Harvard architecture with a 200 ns cycle time and 35 single-cycle, 14-bit instructions. The a-to-d converter acquires in $16 \mu \mathrm{~s}$. Thirty-four pins are concerned with i/o functions, including an 8-bit asynchronous slave port for other controllers, a synchronous serial port for SPI or $1^{2} \mathrm{C} /$ Access buses, a $5 \mathrm{Mb} / \mathrm{s}$ usart. two pwm outputs at 80 kHz and a 16-bit capture/compare facility with 200 ns resolution. Arizona Microchip Technology Ltd. Tel., 01628 851077; fax, 01628 850259.

Intel82497/82492 chipsets and is in the process with another set. It complies with the MPS 1.1 standard MicroModule Systems Inc. Tel., +1 4088647437 ; fax,+14088645950 .

Frugal 16-bit microcontroller Affording a saving of 50% in battery power over standard 5 V
microcontrollers, Toshiba's TMP93CM40F 16 -bit chip has

Laser diode. Made by EG\&G in Canada, the C86137E InGaAs pulsed laser diode uses a multiple quantum well deslgn to give a peak output of 8 W at a peak forward current of 25 A and 10 V ; wavelength is 905 nm . Price is under $£ 10.00$. Pacer Components Ltd. Tel., 01734 845820; fax, 01734 845425.
optimised CPU, 16Mbyte of internal memory and i/o cells that operate on 2.7-5.5V supplies at currents as low as 5 mA at 3 V and 12.5 MHz . It has four-channel direct memory access. Toshiba Electronics (UK) Ltd. Tel., 01276694600 ; fax, 01276691583.

Cooler Pentia. Cirrus Logic offers the two-chip set Golden Gate, which reauces power consumption and heat generation of a Pentium by up to 80%, without impairing the microprocessor's performance. The company's subsidiary, PicoPower, uses the Power-on-Demand technique to reduce system power when the Pentium is idle, cycling power to the processor on and off in increments of 1 ns ,. Cirrus Logic Inc. Tel., 01727872 424; fax, 01727 875919.

Mixed-signal Ics

Motor controllers. IR's new intelligent power modules lower the cost of motor control below that of discrete components or existing modules. Opto-isolators are eliminated, as are three of the four Isolated supplies normally needed. First in the family of devices, which contain an IR2130 power IC with Hexfred diodes and igbts, are the IPM1560 and IPM2060 15A and 20A devices rated at 600 V , to drive 1 hp and 2 hp motors. International Rectifier. Tel., 01883 713215; fax, 01883714234.

Video encoder. Philips's SAA7187 digital video encoder takes MPEG compressed data or digital YUV video and encodes it into ntsc or pal composite video or S-video signal. It generates subcarrier and colour modulation and inserts sync. signals; luminance and chrominance are filtered to RS-170-A and CCIR-624 requirements. Pixel data in various formats goes to one of three 8 -bit wide ports, one of them also taking a microprocessor input when free from video. Philips Semiconductors (Eindhoven). Tel., +31 40 722091; fax, +31 40724825.

Optical devices

Blue leds. Nichia gallium nitride leds provide a bright blue light at a luminous intensity of 1000 mcd , output being 1200 mW at 20 mA . Peak wavelength is 450 nm with a viewing angle of $15-45^{\circ}$, depending on type. Packaging is in standard 3 mm and 5 mm types. Hero Electronics Ltd Tel., 01525 405015; fax, 01525 402383.

Oscillators

Crystal oscillator. IQD's 60 series of surface-mounted oscillators measure 7.5 by 5 mm by 1.6 mm high and the thermal coefficient of the ceramic package matches that of the substrate in multi-chip modules, for which the oscillator is designed.
Frequency coverage is $1.5-60 \mathrm{MHz}$ at stabilities of either $\pm 50 \mathrm{ppm}$ or $\pm 100 \mathrm{ppm}$. Compatibility is with ttl or hcmos/ls-ttl, with or without tri-state operation. IQD Lid. Tel., 01460 77155; fax, 0146072578.

Power semiconductors

600 V mosfets. New power mosfets from Toshiba are rated at $400-600 \mathrm{~V}$ and have power loss reduction of 30% over earlier techniques. They are meant for use in lighting and switched-mode power supplies and offer an $R_{\text {ds(on) }} 15 \%$ lower and switching speed 25% faster than before. The $500 \mathrm{~V}, 15 \mathrm{~A}$ 2SK2150 has an on resistance of 0.29Ω, the 20A 2 SK2057 showing only 0.24Ω. Both are in TO3P (N); there is also a 600 V . 6A type in TO220. Toshiba Electronics (UK) Ltd. Tel., 01276 694600; fax, 01276691583.

Power fets. New Hexfet power transistors by IR exhibit an $R_{\mathrm{ds}(0 n)}$ of less than 50% that of existing devices of the same size; the 55 V n-channel IRF3205, for example, has an $R_{\text {ds(on) }}$ of $8 \mathrm{~m} \Omega$, the $\operatorname{RLL} 3803$ in the 30 V series showing only $6 \mathrm{~m} \Omega$ in both 4.5 V and $10 \mathrm{~V}, V_{\mathrm{gs}}$ states, all in TO-220. Pchannel devices show an $R_{\text {ds(on) }}$ only twice that of the n-channel types. International Rectifier. Tel., 01883 713215; fax, 01883714234.

PASSIVE

Passive components

Metal-film resistors. Two ranges of Philips metal-film resistors cover resistance ranges of $24 \Omega-100 \mathrm{k} \Omega$ (MPR24) and 4.99 $\Omega-1 \mathrm{M} \Omega$ (MPR34) to tolerances of $\pm 0.05,0.02$ and 0.01% for the former and $\pm 0.5,0.25$ and 0.1% for the latter. Those in the 24$200 \Omega$ range to $\pm 0.1 \%$ tolerance are of low inductance. Dissipations of 125 , 250 and 400 mW are available. Gothic Crellon Ltd. Tel., 01734 788878; fax, 01734776095.

Tantalum capacitors. Low equivalent series resistance is the feature of $A V X$ s new series of tantalum chip capacitors. With esr in the range $0.15-1 \Omega$, the number of capacitors used to filter the output of switched-mode power supplies can be reduced. Ripple current rating is higher, which makes for lower temperatures and greater reliability. In 3 V logic, any reduction in ripple and noise on the supply is helpful; the capacitors help to ensure that. AVX Ltd. Tel., 01252 770000; fax, 01252 770001 .

Inclinometers. Two kinds of

 inclinometer by ControlTransducers use optical and force-balance techniques. Optical types are either of the incremental variety, giving 7200 pulsestrev with tt output and, optionally, an index pulse, or the absolute type providing 4096 pulsestrev, which have either $0-4096 \mathrm{mV}$ output or RS-232 serial interface port to drive up to 15 sensors on one SEI bus. Force-balance models are in five ranges from $\pm 5.75^{\circ}$ to $\pm 90^{\circ}$, with an output of 0 to $\pm 5 \mathrm{~V}$ full scale. Non-linearity is $\pm 0.005 \%$ and non-
repeatability $\pm 0.005 \%$. Control Transducers. Tel., 01234 217704; fax, 01234217083.

Resistor network. Using the Vishay-
Sfernice CNS range of sip resistor networks, LSW offers a custom network production service in nonstandard values from 50Ω to $1 \mathrm{M} \Omega$, the resistors being single or multiple with a common lead or in chains. Resistors exhibit a temperature coefficient of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and 0.1% tolerance. LS Wiggins Lid. Tel. 01243 826824; fax, 01243860493.

Displays

Thin, mono vga. A new black and white vga display from Hitachi, the LMG5378XUFC offers the full vga 640 by 480 dot resolution and measures only 5.5 mm thick, weighing 330 g . That, together with a single 5 V supply at 20 mA , makes the device very suitable for portable equipment. Its features include a fluorescent backlight, an anti-glare screen and a wide viewing angle. Overall size is 257.7 mm by 174 mm , with a display area of 196 mm by 150 mm . The recommended controller is the HD66841. Elger Technologies Ltd. Tel., 01928 579000; fạx, 01928 579123.

Bright Icds. Three graphic Icds from Citizen use the super-twisted nematic (stn), passive-matrix technique, Citizen's 'chip-on-glass' technology and dual-scan addressing for faster refresh. K6481L-FF is a 4.7 in unit for palm-top equipment; K6483LFF an upgrade of the 7.9 in K6480L-FF with a thicker metal casing for better if performance and a brighter backlight; and G6489L-FF, a 9.4in monochrome type measuring 5 mm thick, with twin retardation control films for improved contrast. All provide 640 by 480 resolution and use a fluorescent backlight. Citizen Europe Ltd. Tel., 01753584 111; fax, 01753582442.

Filters

Motor-drive filter. Schaffner has introduced a new type of filter, the FN500, to follow the output of 4-16A, $6-20 \mathrm{kHz}$ motor-drive inverters which, in the raw state, can cause a shortening of motor life by up to 50% due to high peak currents; leakage losses due to fast edges and stray parasitic capacitance in shielded cables; interference and therefore compatibility precautions; and acoustic noise. Schaffner says the filters provide a smooth output waveform to reduce or eliminate all these effects, for example reducing output pulse slewing rate from $8 \mathrm{kV} / \mu \mathrm{s}$ to $400 \mathrm{~V} / \mu \mathrm{s}$. Schaffner EMC Lid. Tel., 01734770070 ; fax, 01734792969.

Hardware

Enclosures. Equipment enclosures from Briticent come in ranges of polycarbonate, ABS, polyester, stee1, stainless steel for the food industry and aluminium and are of standard sizes or custom-made, complete with accessories. Sizes range from small boxes for push-button switches to floor-standing types. Options include inspection windows, vents, cover plates and specified machining and
drilling. A catalogue is offered. Briticent International. Tel., 01425 474617 ; fax, 01425471595.

Instrumentation

Graphical multimeter. Fluke's 860 Series Graphical Multimeters combine a dual analogue/digital readout with waveform display up to 1 MHz , a 30 h by 1 s plot of readings with a graph of the stored result, in-circuit test of components and logic test to show transitions to 10 MHz , frequency and dc average. Parameters determined by the meter readout are ac and dc voltage, current, resistance, conductance, capacitance, frequency, duty cycle, pulse width, period and decibels. Fluke UK Ltd. Tel., 01923 240511; fax, 01923225067.

Radio communications products

Low-power RF links. LPRS has a matched pair of low-power radio telemetry transmitter and receiver modules for the transmission of analogue or digital data up to 200 metres. Both the TXM-433-A transmitter and SILRX-433-A receiver are pcb-mounted and operate at the standard European ETS 300-220 frequency of 433.92 MHz
(418 MHz in the UK). Transmitter modulation bandwidth is 0 10 kHz with an internal first-order low-pass filter, while the Rx needs only an antenna. Power to the transmitter is 10 mA from 9 V , although it accepts $6-12 \mathrm{~V}$, and that to the receiver is 15 mA from 5 V . Carrier detection signal appears in less than 3 ms to allow power-saving circuitry to operate. Low Power Radio Solutions Ltd. Tel, 01993 709418 ; fax 01993708575.

Mains dropout testing. Schaffner EMC offers the NSG642 variable ac source, intended for use with, and control by, the NSG1003 mains dropout generator, running the Windows-based WIN1003 software. The 642 enables under and over voltage testing between 1 V and 280 V ac, changing output voltage at up to $120 \mathrm{~V} / \mathrm{s}$ to produce timed voltage dips as required by EN61000-4-11. Its two motor-driven transformers are rated at 16A continuous or 80A short-term. The combination also functions as a stable ac source for sensitivity and reliability testing. Schaffner EMC Ltd. Tel., 01734 770070; fax, 01734 792969.

Photometer. Tek's LumaColor II handheld photometer makes colour light measurement for colour matching and balance in television studios, crt manufacture and services such as street lighting, using the existing range of measuring heads. With available single-sensor heads, it measures luminance, illuminance, radiance or irradiance. It has a 10 channel memory for reference colours, rgb bargraphs heiping to match colours with the reference. There is RS-232 control, output being either analogue or by RS-232. Tektronix UK Ltd. Tel., 01628 486000 fax, 01628474799

GSM test sets. Racal has two portable test sets, the 6103 for digital radio telephones and the 6113 for base transceiver stations. They retain the features of earlier instruments, but offer new features. Two PCMCIA cards in the 6113 allow test sequences to be stored and recalled and enable operating code to be loaded into the instrument to lengthen its operating life. 6103 has manual and automatic operation and will check a GSM telephone in under 30s Both can be remotely controlled and
the 6113 runs a Windows control package. Racal Instruments Ltd. Tel. 01734 669969; fax, 01734262121.

Literature

Crystal products. IQD's 1995 Crystal Products Data Book is now available, having 330 pages. Additions since the last one include a digital temperaturecompensated oscillator, a range of surface-mounted filters and ceramicpackaged SM crystals. IQD Ltd. Tel., 0146077155 ; fax, 0146072578.

PCB standard. British Standards has published BS EN 60249, which is concemed with base materials for pcb manufacture. Spec. 6 and 7 are on phenolic cellulose paper copper-clad sheet burning tests, horizontal and vertical. The standard supersedes BS 4584 and costs $£ 44$ or $£ 22$ to subscribing members. BSI Customer Services, Publications, 389 Chiswick High Road, London W4 4AL.

Consumer ICs. In consumer ICs, GEC Plessey concentrates on rf front ends for broadcast, cable and satellite television, vcrs and teletext. Its Consumer IC Handbook describes the company's products in these areas in detail and contains application notes with practical examples. Gothic Crellon Ltd. Tel., 01734788878 ; fax, 01734776095.

Market intelligence. Frost and

Sullivan has new catalogues of market research reports on Sensors, instrumentation and control and Electronics and components. Reports
contain an average of around 320 pages and describe how a particular market is composed and who the market leaders are, growth or otherwise of a market, company profiles, competitive influences and technology trends. Prices vary from around $£ 650$ to $£ 3000$. Frost \& Sullivan. Tel., 0171730 3438; fax, 01717303343.

Materials

Green degreaser. Vaposol by Croftshaw is a replacement for chlorinated hydrocarbon vapour degreaser, such as 1.1.1 trichlorethane, which is not only more friendly to the environment but also saves time and money. It cleans by condensation in one tank, so that parts are clean and dry in five minutes at low temperature. Vaposol can be used with existing equipment Croftshaw Solvents Litd. Tel., 0181 6985556; fax, 01816974614

Navigation systems

GPS from GPS. GEC Plessey Semiconductors has made available a complete Global Positioning System development environment that

Interfaces

PCI-PCMCIA interface. From Cirrus Logic, the CL-PD6729 is claimed to be the first mixedvoltage PCl-to-PCMCIA host adaptor to control two
independent PCMCIA sockets, allowing the use of 5 V and 3.3 V peripherals simultaneously. The dual-slot host adaptor gives a direct connection to the PCI system bus, supporting both PCI interface for $\mathbf{x 8 6}$ systems and PowerPC systems. Low power consumption is achieved by a suspend mode and an automatic low-power dynamic mode which stops transactions on the PCMCIA bus, stops clock distribution and turns most of the internal circuitry off. There is full PCMCIA compatibility and bios-level software to interface host adaptor to host. Cirrus Logic Inc. Tel., 01727 872424; fax, 01727875919.
converts a 486 pc into a 12-channel GPS receiver for learning the system and product development. It includes a chipset and a set of GPS tracking and acquisition software for 12 channel parallel processing in C , available as source and executable code. The chipset includes the GP1010 rf downconverter, DW9230 35.4 MHz IF saw filter and two sixchannel GP1020 correlators, all on a daughter card mounting on the main card with an ISA interface to the host The system also includes a patch antenna, cables, software and a manual. GEC Plessey
Semiconductors Ltd. Tel., 01793
518510; fax, 01793518582.

Production equipment

Marking machine. Rejafix has the Hotmarker Model H.402, a manually operated bench machine for the permanent identification marking of cable sleeving and tube to the BS. 3858 standard. The required mark is dialled into the machine, which gives hot-foil, instant-drying print and avoids the need to hold stocks of specific markings. A number of available print wheels are either flat or curved for tubing and some models are able to cut the tube or cable to length after printing. Rejafix Ltd. Tel., 01815602224 ; fax, 01815608774

Power supplies

Pentium power. First in a range of dc-to-dc converters designed to supply power to Intel's 3.3V P54C-VR Pentium processor, the Semtech MP54C-1B is a 68% efficient 15 W device operating over the $4.75-5.5 \mathrm{~V}$ input range and needs no heat sink. It provides linear regulation, overvoltage, short-circuit and thermal protection and a signal to indicate when the output is within limits. Semtech Ltd. Tel., 01592 773520; fax. 01592774781.

Step-down controllers. MAX796799 high-power step-down controllers drive extemal n -channel mosfets to power cpus at 95% efficiency, logiccontrolled shut-down current being $1.2 \mu \mathrm{~A}$. MAX797/8 have a logiccontrolled, synchronisable, fixedfrequency pwm mode to reduce noise in communications equipment, while MAX796/9 use a secondary feedback input for transformer-based application, to improve crossregulation of auxiliary outputs. Input range is $4.5-30 \mathrm{~V}$ and outputs are $2.9 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5 V at up to 10 A . Maxim Integrated Products UK Ltd Tel., 01734 845255; fax, 01734 843863.

Intelligent SMPS. Vero's ISI-POWER switched-mode power supply is claimed to be the first 19 in rackmount psu with an intelligent controller, which allows programming, control and interrogation from a pc via an RS-232 serial link. It is a 180 W unit in a 6 U by 6 HP module, modules available providing $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, 15 V and 24 V from an autoranging universal input. Monitoring by pc includes input, output and sense voltages and output current; a temperature probe can be fitted, with temperature limits set remotely to
activate fans. Any problem causes an alarm box to open on the computer screen. Vero Electronics Lid. Tel., 01489780078 ; fax, 01489780978.

DC-DC converters for Icds. Surfacemount dc-to-dc converters from Murata are designed to power Icds, voltage from the external power source being converted within the display unit. They are designed for use with simple monochromatic lcds and are in a metallic case to reduce radiation. Output on/off switching is provided. Murata Electronics (UK) Ltd. Tel., 01252 811666; fax, 01252 811777.

Power and protection. Fiskars' PowerRite Plus uninterruptible power supplies provide protection for small systems, incorporating a communications interface that allows the use of Lansafe III power-
management software to guard pcs and workstations, point-of sale equipment, remote lan nodes and others against power problems. The units also have the company's Advanced Battery Management functions to extend battery life by up to 30%, battery test and warning of impending battery trouble. Three models provide 250VA, 400VA and 600VA. Fiskars Electronics Ltd. Tel., 01734 306600; fax, 01734305868.

Television components

Image enhancement. TDA9170 by Philips is a single-chip video processor that improves the quality of the picture on television receivers using the standard luminance and colour-difference interface (yuv). It uses adaptive, non-linear amplification of the y signal, based on real-time analysis of the picture content to enhance contrast to give an apparently sharper picture and better detail in dark areas. There is also adjustable gamma correction, automatic u and v correction and control over the picture area in which black-level detection and the picture analysis are carried out. Philips Semiconductors (Eindhoven). Tel., +3140722091; fax, +3140724825.

Transducers and
 sensors

Monostable solenoid. BLP's PED

Series 68 direct acting solenoids are now available in a monostable version having an international standard frame size. Power rating is 3.5 W at 240 V dc maximum, the coil pulling a load of 0.4 kgf at a 10 mm stroke. Custom-designed types are offered. BLP Components Ltd. Tel., 01638 665161; fax, 01638660718

Vision systems frame grabber. DataCell has upgraded its J-Tool colour Sbus frame grabber to provide 4416 by 3456 pixel resolution at 24 bits/pixel. When used with a Sun SPARCstation and a JVC TK-F7300 camera, the SS2200 J-Tool card allows small areas to be analysed at this very high resolution. J-Tool supports TIFF image storage and capture, providing live image display in an X-window for manual focus and set-up. DataCell. Tel., 01628 415415; fax, 01628415400.

COMMBUE:

Computer board-level

 productsGraphics for VME. Syntel's SYNB301 is a graphics controller with a GDS5422 core, capable of 24-bit truecolour imaging. Its video interface is programmable so that video and sync. signals can be arranged to cope with a range of requirements under

Servo set up. Servo Tuner is an add-on software module to work with Compumotor's Windowsbased Motion Architect software, together providing graphical feedback of real-time motion information and an easy method of setting tuning gain and other characteristics in the 6000 Series of servo controllers. The package allows the drive system to be tuned without the position loop and the position loop tuning with graphical feedback to show exact system motion, automatically generating set-up code, editing and executing motion-control programs and creating a test panel. Parker Hannifin plc, Digiplan Division. Tel., 01202 699000; fax, 01202600820.

Small pc board. DSP Design offers the GCAT 6000, an update on earlier GCAT boards with more functions and still the size of a credit card. Functions include PCMCIA Type II intertacing, an a-to-d converter, 1 Mb of rom and 8 Mb of dram. It forms a reasonably priced alternative to custom boards in embedded microcontroller applications. Engineers can configure i/o, peripheral and graphic processor modules with the help of a development system. Two PCMCIA devices, for example an
Ethernetimodem and hard disk, may be simultaneously connected to the double-stack connector. Ports include keyboard, two serial ports and Icd and crt interface, higherresolution and
electroluminescent displays also being supported. The board draws 75 mA from 5 V on fast run and $50 \mu A$ suspended. DSP Design. Tel., 0171482 1779; fax, 01714821773.
software control. Resolution up to 1280 by 1024 is offered and video frequencies are generated by phaselocked loop, programmable between 7 MHz and 80 MHz . Video memory is 1 Mbyte , expandable to 2 Mbyte . There is audio output and the serial mouse is Logitech-compatible. Syntel Microsystems. Tel., 01484
535101/2/3; fax, 01484519363.

Data communications

200Mbyte/s for VMEbus. Using PEP's AutoBahn Starter Kit, designers of VMEbus systems can obtain a data transfer rate of up to $200 \mathrm{Mbyte} / \mathrm{s}$. The kit includes AutoBahn Spancelvers, 15 -slot backplane, host cpu, drivers, notes and test data, and may also be used for non-VMEbus hardware. Processing power is provided by PEP's VM30 68EC030/68302 singleboard computer giving 16Mips. PEP Modular Computers. Tel., 01273 441188 ; fax, 01273441199.

Plug-and-play modem chips. Users of Sierra's SC11140 fax/modem chipset will have no need to spend time on modem and computer adjustments, since the chips automatically configure an ISA modem. The controller chip queries system resources and determines which com ports and interrupts are available, also incorporating the logic to add voicemail and Windows MCl compatible business audio to a V.32bis modem. It is suited for Windows 95 , when that is available Sierra Semlconductor bv. Tel., +31 73 408 888; fax, +3173423155 .

Dual-port serial boards. Amplicon Liveline has six 200 Series serial communications boards for PC XT or AT(ISA) bus computers, each having two serial ports conforming to RS232 , RS-422 or RS-485 and the
choice of opto-isolation. All have flexible base address and interrupt to allow each port to be independently addressed at locations from 000 to $7 F 8_{16}$ at any 8 -bit boundary. Each serial port has a 16 -byte input fifo and a 16 -byte output fifo in the uart, both being software-selectable. Amplicon Liveline Ltd. Tel., 0800525335 (free); fax, 01273570215.

Wireless modem. Newest member of Rockwell's family of wireless communications products is the RC32ACC, a cellular digital packet data (cdpd) V.32bis data modem twochip set, allowing landline, cellular or digital packet radio communications. It uses the same cellular network for voice and data and delivers services including e-mail and fax in one device and is pin-compatible with the earlier RC144ACL wireline data/fax modem. Rockwell International Corp. Tel., 0181577 2800; fax, 01815772257.

Crash protection for networks. GEC Plessey offers the PCA873, an IC for the protection of networks against low-frequency disturbances on network signals caused by losses in transformers. This is a particularly severe effect on fast signals such as those in Ethernet at $100 \mathrm{Mb} / \mathrm{s}$ or ATM at $155 \mathrm{Mb} / \mathrm{s}$. The IC also protects against the kind of data frame that accentuates the 'base-line wander' and allows high-speed networks to
use unshielded and shielded twistedpair copper cables. GEC Plessey Semiconductors Ltd. Tel., 01793 518510; fax, 01793518582.

Mass storage systems

Sram PCMCIA card. Centennial has the first sram PCMCIA cards with a rechargeable lithium battery, which is charged each time the card is inserted. A range of 3.3 V and 5 V flash, mask-rom and otp cards is available. The company also offers a GPS receiver housed in a Type 2 PCMCIA enclosure. Trident Microsystems Ltd. Tel., 01737 765900; fax, 01737771908.

Software

Speech compression. GSM speechcompression software is obtalnable as source code for the AT\&T DSP32C signal processor working in VME or Sbus systems from Bores. The software costs $£ 4000$, without further royalty payments. It will run on a multi-processor VME system with multi-channel speech i/o. Bores Signal Processing. Tel., 01483 740138; fax, 01483740136.

Operating system simulator. A Windows version of Enea Data's OSE/SIM is now available, which allows developers of embedded applications using the OSE real-time
operating system to debug and test software independently of hardware and even before the hardware exists. The package does the same as the existing version, but has Hypertext help and simplified signal and process entry. It supports 8 -bit, 16 -bit and 32 bit microprocessors. When combined with a native C compiler and sourcelevel debugger, the package forms a complete development environment and Is also available for pc-dos, Unix and VAXNMS hosts. Reflex
Technology Ltd. Tel., 01494 465907; fax, 01494465418.

Network power management Fiskars' LanSafe III and FailSafe III are uninterruptible power supply software packages that monitor network power and control shutdown and rebooting of networks. It shuts down workstations, servers, bridges and the other devices to a defined schedule, saving data and flushing system caches to disk. LanSafe III provides network functions on all major operating systems and FailSafe III on single-user environments such as Windows. Fiskars Electronics Ltd Tel., 01734 306600; fax, 01734 305868.
$6805 / \mathrm{HC} 05 \mathrm{C}$ cross-compiler. Pentica claims its true C compiler for the Motorola 6805 processor to be the first available. Hi-Tech C produces compact and efficient code, is Ansi-compliant and creates complex interrupt-driven applications in C. It supports prototypes and variable argument lists, function pointers, long arithmetic, floating points, bit fields, structures, unions and a full C code printf(). There is full control over variable placement including i/o ports at fixed addresses, and internal or extended ram. Interrupts may be declared in C and called from hardware interrupts; generated code saves and restores the processor state, handles the interrupt and returns. Macros initialise, enable and disable interrupts from C and interrupt vectors can be changed 'on the fly'. A compiled stack preassigns static memory addresses to local variables and function arguments, overcoming the 6805 's limitation of having no addressable stack, which makes it normally impossible to run a C run-time model with stack-based functions. Pentica Systems Ltd. Tel., 01734 792101; fax, 01734774081

FREE TO SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only.
Trade advertisers should call Malcolm Wells on 081-652 3620
All adverts will be placed as soon as possible. However, we are unable ta guarantee insertian dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

Please send your completed forms to:
Free Classified Offer: Electronics World, L329, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Look what's new in version 4 of SpiceAge for Windows ${ }^{\mathrm{TM}}$

- DDE link with Modelmaker, the utility that synthesizes opamps, transformers, attenuators and transistor library models
- Reflection coefficient analysis
- Noise analysis
- Improvements to digital displays
- Auto-time interval setting option
- Time optimisation in relaxed circuits
- Faster quiescent calculations
- SPICE repertoire enhancements for ASICS

- DDE link with GESWIN, new schematic editor (optional extra) for SpiceAge
- Windows ${ }^{\text {TM }}$ wave (.wav) file compatibility. Multi-media users can listen to their waveforms or capture sound samples for Fourier analysis or filtering. Binary output option makes ROM programming easy.
- PWL non-linear enhancements saves calculating polynomial coefficients for those awkward functions.

Make sure you know what you are missing by asking us for a copy of the demonstration program and booklet or talk us through your small circuits for a sample simulation.
Please contact Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP.
Tel 0181-906 0155, FAX 0181-906 0969.

CIRCLE NO. 135 ON REPLY CARD

CLASSIFIED

ARTICLES FOR SALE

DA 1519A AMPLIFIERS

2×11 watt stereo amplifier chips in 9 pin SIL plastic packages $1-9 £ 2.00$ cach: $10+£ 1.50$ each: postage and VAT included. Phone for volume discounts:
Tel: 0959577632
Ken Barker: 18 Shipfield, Tatsfield, Westerham TN16 2AU

TURN YOUR SURPLUS TRANSISTORS ICS ETC, INTO CASH Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact:
COLES-HARDING \& CO, Unit 58, Queens Road, Wisbech, Cambs. PE13 2PO ESTABLISHED OVER 15 YEARS Buyers of Surplus Inventory Tel: 01945584188 Fax: 01945475216

VALVES, and CRTs FOR SALE

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting \& RF Heating. Rare brands such as Mullard \& GEC available. Also MAGNETRONS, KLYSTRONS, CRTs and SOCKETS. Large stocks of Russian \& Sovtek items.
Please ask for our free catalogues of valves or CRTs.

VALVES, etc. WANTED

All types considered but especially KT88/PX4/PX25 (£45), KT66 (£30), KT77/EL34/EL37 (£10), ECC81/ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. All VALVE-ERA EQUIPMENT such QUAD, LEAK, GARRARD 301.
If possible, send a written list for a prompt decision. BILLINGTON EXPORT LTD., 1E Gillmans Ind. Estate, Billingshurst, Sussex RH14 9EZ. Tel: 01403784961 Fax: 01403783519
VISITORS STRICTLY BY APPOINTMENT.
MINIMUM ORDER $£ 50$ plus VAT

ADVERTISERS PLEASE NOTE

For all

 your future enquiries On advertising rates,> Please contact Malcolm Wells

On

Tel: 0181-652 3620 Fax: 0181-652 8956

WENTED

High-end Test Equipment, only brand names as Hewlett-Packard, Tektronix, Rhode \& Schwarz, Marconi etc. Top prices paid. Please send or fax your offer to:

HTB ELEKTRONIK

Alter Apeler Weg 5,
27619 Schiffdorf, West Germany TEL: 0104947067044 FAX: 0104947067049

SERVICES

DESIGN SERVICES

Software Design: High and Low Level. Hardware Design: Analogue, Digltal, Micro and Embedded.
PCB, Schematic and Production Drawings. Prototyping and Feasibility services.

Archimedes Custom
Equipment: Tel 0974282670

WANTED

High-end Test, Communication \& Computer Equipment. Top prices paid. Please send or fax your offer to Steigerwald 6 mbH Neusserstrasse 9, 80807 Munich South Germany Tel: 01049893615833
Fax: 01049893615899

WANTED
 Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity.
 Prompt service and cash. M \& B RADIO
 86 Bishopgate Street, Leeds LS 1 4BB
 Tel: 0532435649
 Fax: 0532426881

FREE CLASSIFIED

WANTED: PRE-WAR television. Jac Janssen, Hogeham 117D, NL-5104JD DONGEN, Netherlands. Tel: 01031 1623 18158, Fax (office): 0103113 624664.

RF DESIGN CONSULTANCY

\square Design and Development
\square Technical Advice
WATERBEACH ELECTRONICS LTD
34 Providence Way, Waterbeach
Cambridge CB5 9QJ
$\square \mathrm{CAD}$
Tel: 0223862550 Fax: 0223440853

CLASSIFIED

ARTICLES FOR SALE

\square

Cooke International SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. ALWA YS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE COPIES ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME, SEND LARGE "A3" S.A.E. + 50P POSTAGE FOR LISTS OF EQUIPMENT AND MANUALS.

ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS

SHIPPING ARRANGED
OPEN MONDAY-FRIDAY 9AM-5PM
Cooke International
ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: (+44) 0243 545111/2
Fax: $(+44) 0243542457$
EQUIPMENT \& ACCESSORIES PURCHASED
CIRCLE NO. 160 ON REPLY CARD

19" Rack Mounting Switch Mode Power Supply By FARNELL INSTRUMENTS F2667
P.O. [B.T.] 164

MONARCH 250C SYSTEM
990 WATTS MODULAR CONSTRUCTION
+5 volt 48 Amp
+12 volt $8 \mathrm{Amp}+$ Ringer Module Capable of Ringing 12 Telephone Bell Loads
-12 volt 5 Amp
-50 volt 8 Amp
Dimensions H125 D500 W485mm Weight 13.5KG BRAND NEW IN ORIGINAL PACKING

PRICE £199.00 + VAT
UK Mainland
Carriage £12 +VAT

INDEX TO ADVERTISERS

	$P A G E$
Antex Electronics	90
BK Electronics	111
Bull Electrical	166
Citadel Products Ltd	IFC
CMS	154
Crossware Products	97
Dataman	BC
Devantech Ltd	150
Display Electronics Ltd	93
Field Electric Ltd	172
Flash Designs	111
Halcyon Electronics	159
Henry's Audio Electronics	159
Hitex (UK) Ltd	90
ICE Technology Ltd	101
Iosis	150
John Morrison (Micros)	90
Johns Radio	118
JPG Electronics	152
Kestral Electronic Components	148
Keytronics	106

BiF \& WIGROWAVE

Permanent and contract opportunities for engineers and technicians in Cellular, Civil, Military, Satellite, Communications, Radio and Microwave Engineering.

Tandiviclual speainlists or large teams supplied.

> 92 Broadlynays
> Bracknell, Berks, RG12 1AR.
> Tel 01344489 489. Fax 01344489505.

Offices in London, Manchester, Southampton, Stevenage, Crawley, Brussels

CLIVEDEN

331 distorion meler
339A distortion meter 3400 A voltmeter $10 \mathrm{~Hz}-10 \mathrm{MHz}$

IFR A7550 portable synntes zed spectrum anatyser 10 kHz -1GHz with GPIE and Tracking Generator optiors HP141T 18GHz system, (85528889555 A) HP3580A 5 Hz -50 kHz audio spectium analyser HP85588 100KHz. 1.5 GHz spectrum analyser ANRITSUMS 6281700 MHz options. $£ 4500$.

20220 synthesized signal generator 2438520 MHz universal countertimer $£ 200$ 2828 A 2829 digital simulatorlanalyse 2955 mobile radio test set ALL SOLD 2955 A +2960 cellular adaptors ALL SOLD 6059A signal source 12.18 GHz 64606420 power meter $10 \mathrm{MHz} \cdot 12.4 \mathrm{GHz} 0.3 \mathrm{UW} \cdot 10 \mathrm{~mW}$ 8938 audio power meter
OA2805A PCM regererator test set TF2910/4 non-linear distortion (udideo) analyser TF2910 TV interal time
c4500 £2000 $\$ 1500$
12500 £2000
 BRLEL \& KAER 1618 band pass fiter BRUEL \& KJAER 3513 portable vitration analyser BRUEL KMISL Sor X.- recorder AVO RM215L-2 insulation \& breakdown testiter DATRON 1065 digital multimeter DRANETZ 626 mains disturbance anatyseri2 \times PA- 6001 FARNELL 2081/100 100W RF power meter FLUKE I722A instrument controller (IEEE) RACAL 9009 automatic modulation meter RACAL 9082 synnthesized ANFM signal generato $5-520 \mathrm{MHz}$

TEST EQUIPMEN

ANRITSUME518A pcm portable entor rate lest sel BRUE \& K KAER2511 brate morn ser BUEL KJA eve recarder RUEL 8 KAER 2317 blat QRUEL $\&$ KJAER 1618 band ass fiter

- ralfe electronics \bullet_{1} Proctussivional Tem

FLUKE 15018 INSTRUMENT CALIBRATOR
with options: Wide Band/GPIB and RS232 interfaces. Price including current manufacturers calibration $\mathbf{£ 6 7 5 0}$.
EXPORTS ARE OUR SPECIALITY. ORDER WITH CONFIDENCE FULL SERVICE AVAILABLE. WE CAN FIX LISTS AND SHIP WORLDWIDE.

RACAL V.STORE
annel instrumentation recorder

£3000

3335A synthesizerfever generator with option 08 3336A level generator
3552A transmission test set
3566A selective level meler 415 E swr meler 4274A multi-irequency (100 Hz -100kHz) LCR component meter 4275A muti-i-requency LCR component meter
432 A 478 A microwave power meter $10 \mathrm{MH2} \cdot 10 \mathrm{CHz}$ 432NR486A uwave power meter $26.5 \cdot 40 \mathrm{GHz}$ (wavequide) 53708 univer sal time interval counter 6253 A dual power supoly $0.20 \mathrm{VO} 0-3 \mathrm{~A}$ wice 6825 A diolalar power supoplyamp $-2010+2000 \mathrm{coc} 0-1 \mathrm{~A}$ 70300A tracking generator pluy-in unit 70907 A extermal mixe for 70000 -ser spectium anaiyser $7035 \mathrm{X} X$.Y single pen analogue chant recorder 8011A pulse generator $0.1 \mathrm{~Hz} \cdot 20 \mathrm{MHz}$ 8112A pulse generalor 816 A soted line $1.8-18 \mathrm{GHz}$ with carriage 809 C \& 447 B 8350 sweep generator mán .trame S405A vectio voltmeter, voltage \& phase to 1000 MHz 8620 C sweep generator, many pug-in units available 8671A synthesized signal generator 2.62 GHz
 andijers: $850 \cdot 123$ poristie analisers. Plesse call us if you have high end captial equipmen being under- vtilised.
PLEASE NOTE: ALL OUR EQUPMENT IS NOW OPERATION.VERIFICATION TESTEDBEFORE DESPATCH BY INDEPEMTEAT LABORGTORY

We would be pleased to handle all grades of calibration or NAMAS cenifcation by same laboratory at cost price. Al items covered by our 90 -day parts and labour guarantee and 7 -day 'Right to Refuse' (money back) warranty.

ALL PRICES SUBJECTTO ADDITIONAL VAT ANDCARRIAGE

ELECTRONIC UPDATE

Contact Malcolm Wells on 081-652 3620

malp

Hosests $\$ 2200$ and $\$ 2400$

24. 27 Ind Sel Programmers low 24. 23 I 32 pun EPROMs EEPRONs.

The system 2000 is an ideal programmer for the production environment. Fast programming results in high throughput and rigorous verification leads to improved quality control. Single key functions and checks against misoperation facilitates its use by unskilled staff.

MQP ELECTRONICS LTD.

Tel: 0666825146
Fax: 0666825141
CIRCLE NO. 152 ON REPLY CARD

A regular advertising feature enabling readers to obtain more information on companies' products or services.

NATIONAL INSTRUMENTS 1995 CATALOGUE

The 1995 National Instruments catalogue describes more than 900 software and hardware products. Engineers and scientists can use these to develop integrated instrumentation systems for test and measurement process monitoring and control, using industry-standard personal computers and workstations.

NATIONAL INSTRUMENTS FOR FURTHER INFORMATION CALL 01635523545
CIRCLE NO. 153 ON REPIY CARD

1995 MASTER PRODUCT

CATALOGUE NOW OUT!

Test and instrument control solutions. 48 pages of full description and technical data on our awn range of solutions to your PC and PS2 interfacing problems; IEEE488 (GPIB) * DIO * TImer/Counters * RS232* RS422/485* A/D * D/A * plus Opto Isolated versions. New Parallel/Seria RS232. Opto Dual RS232, Motion Control, Converter and Repeater for 1995 !
ISO 9001 Quality guarantee 』
UK deslgn and manufacture
36 month no quibble warranty \downarrow
Telephone hotline support δ
Competitive pricing on the page Intelligent solutions,-Triendly service BRAIN BOXES
Unit 3 f Wavertree Boulevard South
Wavertree Technology Park Liverpool L7 9PF
CIRCLE NO. 154 ON REPLY CARD

COMPACT AND LOW COST EPROM ERASER

- Capacity for up to five 24/28/32pin DIP devices or four 40-pin DIP devices
Adjustable timer: $0-60 \mathrm{mins}$
Anti-static foam lined device drawer
- Power indicator lamp

Safety interlock on drawer prevents accidental exposure to U-V light
Stag Programmers Limited Martinfield, Welwyn Garden City, Hentlordshlre AL7 1JT, UK
Tel: 0707-332148
Fax: 0707-371503
CIRCLE NO. 155 ON REPLY CARD

Programming Solutions SMART Communications offer the best range of low cost programmers for your every need.

 Unrivalled device support includes the latest MACH, pLSI, MAPL, PIC, WSI, Atmel, Xilinx and Intel parts.

AALL-07 Universal Programmer

Pin driver expansion can drive up to 256 pins.
Supports over 2000 IC's - 3 and 5 volt devices.
EPROMs, E2PROMs, Bipolars, Flash, Serial EPROMs
up to 16 Mbits parts, over 150 Microcontrollers and PLDs, EPLDs, PEELs, PALs, GALs, FPGAs etc...
Universal DIL (up to 48 pins), PLCC and gang PACs

- significantly reduces the number of adapters required. Powerful full colour menu system.
Connects to the pc printer port with its own power supply. Latest programming algorithms.
Tests TTL, CMOS and SRAM devices
- even identifies unknown parts.

Approved by AMD for their range of programmable logic.

$£ 595$

EMP-20 Multi-Device Programmer

EPROMs, E2PROMs, Flash, Serial EPROMs to 16 Mbits. PLDs, GALs, PEELs, WSI PSDs. Intel, Microchip, Motorola and Zilog Microcontrollers.
Fast programming algorithms.

> Erasers $\&$ pin convertors

AT-701 - Chiprase
Ultra-violet eraser.
Very compact 16 chip capacity Built in timer

Pin convertors

from DIL to
PLCC, SOP, SOIC etc... from $£ 50$

PB-10 Programmer

Low cost programmer.
EPROMs, E2PROMs, Flash and 8748/8751.
Fast programming algorithms.
Simple but powerful menu driven software.
£139
SMART Communications have a full range of dedicated programmers for the Microchip PIC range of microcontrollers - both single and gang for DIL and SOIC variants.

We also supply a wide range of development tools - Assemblers, Compilers, Simulators and Emulators - for a wide range of microprocessors, especially the Microchip range.

Our ROM emulators start at just $£ 99$.

2 Field End • Arkley • Barnet • Herts • EN5 3EZ • England Telephone +44 (0)1814413890
Fax +44 (0)181 4411843

S4'S VITAL STATISTICS:Totally handheld programmer/emulatorFast approved programming algorithms; eg. program and verify: National 27C512 in 16 seconds AMD $29 F 010$ in only 90 secondsEPROMs to 8Mbit, 5v, 12v and BOOTBLOCK FLASH, EEPROMs and PEROMsThree year parts and labour guaranteeFree next day delivery (UK only)30 day trial available (UK only)Full 24 byte on-screen editorContinuous programming whilst charging (nonstop operation)Moulded designer case - feels as good as it looksRubberised colour-coded full travel keypadBig, easy-view 80 character supertwist LCDOptional modules available to program PICs, 8751, 16-bit EPROMs, Toshiba 4-bit, Hitachi H8Optional sockets for programming and emulating PLCC devices

S4's 32 pin ZIF socket programs a huge library of $8 \& 16$ bit EPROMs, EEPROMs, FLASH, PICs and other popular microcontrollers using manufacturers approved algorithms.
Our free and easily updatable device library enables users to always have the latest software installed. During our sixteen years of designing and selling innovative and fast programming solutions to industry, Dataman has never charged for software updates or technical support.
Built in emulation enables you to see your code running before committing yourself to an EPROM. Load your program from an EPROM or download
code from your PC into S4's memory. Plug S4's emulation lead into the target system, press the emulation key and run the system. Changes can be made using S4's powerful editor, and you can re-run the code to test and confirm changes. When the code is proved to be working, it can then be programmed to a fresh ROM. The 54 package comes complete with mains charger, emulation leads, organiser-style instruction manual, PC software and a three year guarantee. $\mathbf{S 4}$ is always available off the shelf and we ship worldwide on a daily basis. Call now for delivery tomorrow!

[^0]: In next month's issue:
 Free Circuit Ideas Pockel Book - a selection of circuit ideas from $E W+W W$ brought together in one handly volume. - Doug Self discusses building power amplifiers for supply immunity. - RS232 communication is faster using psk. as Lanka Kumar et al show. - Looking into transmission lines Geoffrey Billington explains. Fill in the newagents' order form between pages 144 and 145. MARCH ISSUE - ON SALE February 23

