NEW SERVICE - EW+WW INDEX ON FLOPPY DISK

Denmark DKr. 70.00 Germany DM 15.00

JANUARY $1995 £ 1.95$

40\% DISCOUNT
On Quickroute 3
pcb designer
ANALOGUE
Filfers for digital audio

RF DESIGN Impedance matching

REVIEW

Routeing pcbs via the PC

SENSING

Buffering for piezoelectric cable output

TECHNOLOGY

Advances in
a-to-d conversion

FROM THE MAKERS OF THE WORLDS BEST SELLING UNIVERSAL PROGRAMMING AND TESTING SYSTEM

* Ability to program 3 volt devicas.
* Calibration software to comply with ISO9000.
* Batch software for production programming.
* High quality 42 pin Textool zero insertion force sockets.
* Rugged metal housing and heavy duty screened cable.
* Ground control circuitry using relay switching.
* Protection circuitry to protect against wrong insertion of devices.
* Speed optimised range of programming algorithms.
* Supplied with MICROTEC disassemblers for 28, 8085, 8048, 8051, 6809 \& 68HC11.
NOW ONLY £469

ORDERING INFORMATION

Expro-80 complete with interface card, cable, software and manual

Please add $£ 8$ carriage (by overnight courier) for UK orders, $£ \mathbf{3} 0$ for export orders and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO. Official orders are welcome from Government bodies and local authorities.

> CITADEL PRODUCTS LTD DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 0181951 1848/9

Our stocked range of own manufactured and imported Sunshine products include:

* Super fast EPROM Erasers.
* 8Mbit EPROM Programmers:
ie: $\quad 1$ gang $£ 149$
4 gang $£ 229$
8 gang $£ 399$
* Battery operated portable EPROM programmers.
* "In circuit" Emulators.
* Handy pocket IC testers.

* Programs PIC16 series without adaptor.
* Software supplied to write own test vectors for custom ICs and ASICs etc.
* One model covers the widest range of devices, at the lowest cost.
* Over $\mathbf{2 0 0 0}$ different devices (including several hundred MPU's) supported.
* Tests and or identifies a wide range of logic devices.
* High speed PC interface card designed for use with all types of PC.
* No need to tie up a slow parallel port.
* More Sunshine programmers sold worldwide than any other of its type.
* UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL.
* Two year free software update.
* Free demo disk with device list available.

The Sunshine Expro-80 Universal Programmer and Tester is the 42 pin version of the immensely popular Expro-60/PC-82. Following that success, the Expro-80 is a PC-based development tool designed to program and test more than 2000 ICs. The culmination of over 8 years production experience has resulted in perfecting this rugged, classically designed programmers' programmer.

Volume production has now enabled us to offer this powerful programmer at a very competitive price for a product of such high quality. The Expro-80 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the Expro-80 for their own use!

The Expro-80 can program E/EPROM, Serial PROM, BPROM, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX and MPU. It comes with a 42 pin DIP/SDIP socket capable of programming devices with 8 to 42 pins. It even supports EPROMs to 16 Mbit , the PIC16 series of MPUs and many many more without the need of an adaptor. Adding special adaptors, the Expro-80 can program devices up to 84 pins in DIP, PLCC, LCC, QFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS $40 / 45$ series, DRAM (even SIMM/SIP modules) and SRAM. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user. The Expro-80 can even check and identify unmarked devices.

The Expro-80"s hardware circuits are composed of 42 set pin-driver circuits each with control of TTL I/O and "active pull up", D/A voltage output, ground, noise filter circuit and OSC crystal frequency.

New features include negative programming voltages, 3 voit programming ability, protective circuitry for ICs incorrectly inserted, calibration software to comply with ISO9000, new six layer PCB and voltage clamping to banish noise and spikes.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all types of PC. In addition, there is now the Link-P1 enabling the programmer to be driven through the printer port. Ideal for portables and PC's without expansion capability.

The pull-down menus of the software makes the Expro-80 one of the easiest and most userfriendly programmers available. A full library of file conversion utilities is supplied as standard.

Sunshine's team of over 20 engineers are continually developing the software, enabling the customer to immediately program newly released ICs.

Citadel, a 33 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

CIRCUITS BY DESIGN.

40Simulation and analysis tools within a windows-basedcircuit-design package help engineers predict exactly howtheir creations will work in practice, as Owen Bishopexplains.
LOWER THD FROM VINTAGE DESIGNS. 52Rick Downs illustrates how to build high-performanceanti-aliasing and anti-imaging filters using frequency-dependent negative resistance. These circuits also offerlow sensitivity to component value variations.
TRANSMITTING AM58High-speed, solid-state switches make it possible to buildam transmitters combining efficiency and ease ofmanufacture. John Burnill looks at various configurationsfor transmitting am, culminating in a modular outphasingdesign.

RF TRANSISTORS

63Norm Dye and Helge Granberg explain one of the most important aspects of designing a low-power rf amplifier determining the desired load and source impedances.
21 pressure sensing, but the signal it generates needs careful interfacing. Barry Gillebrand discusses the options.

EW+WW SOFT INDEX .23
Back issues of $E W+W W$ are an invaluable reference source - given a good index. Peter Marlow has produced a pcbased index of $E W+W W$ allowing key word searches not only on titles but also on article content summaries.

ADVANCES IN ADCS
There has been a boom in new designs for analogue-todigital converters over the past few years. Simon Parry presents a round-up of current and emerging technologies.
COMMENT. 3
Build or borrow?
NEWS 4
Video down the 'phone line, Voice id as pin replacement, Mosfet technological leap, Possible European standard for digital tv access, Advances in disk drives, Japanese chip production consortium.
RESEARCH NOTES10
Jamming could undermine GPS, Robot border controlsAdhesive monitoring, New voltage follower.
CIRCUIT IDEAS32Quick and accurate impedance measurement, Double anop-amp's output current, Generating high voltages,Synchronised power-rail switching, DC motor controller,Mosfet drive booster.
PC ENGINEERING47
PCBs through windows - Martin Cummings has beenreviewing the performance of Powerware's upgradedwindows pcb design package, Quickroute 3.0.

PIGGY BACKING FOR PERFORMANCE.............. 26
Mounting one audio driver IC directly on the back of another improves noise and common-mode rejection performance. Ben Duncan has been measuring the benefits.

DETECTION BEFORE THE DIODE

In the days before the diode, barretters were frequently used as detectors in radio receivers. George Pickworth analyses replicas of these early electrolytic devices.

40\% DISCOUNT - PCB DESIGN SOFTWARE

$E W+W W$ readers are offered a $\mathbf{4 0 \%}$ discount on Powerware's recently launched upgrade to the windows-based pcb design package - Quickroute 3. See page 47 for our review of Quickroute and page 50 for details of this exclusive offer.
APPLICATIONS 61Osciloscope probing, Active scsi terminator, Currentsensing for battery-powered portable equipment.
LETTERS 68
Readers' reactions interspersed with ideas.
DESIGN BRIEF 74
Ian Hickman uses measuring instruments to check howreal waveforms match up to their theoretical shapes.
NEW PRODUCTS79Classified run-down of a wide selection of new electronicproducts presented in easy-to-scan format.

In next month's issue:

Between amplifier and speaker. Ivor Brown examines interactions between the audio power output and its load. RF power splitters and combiners. Steve Winder discusses the pros and cons of various types of splitters and combiners. Data logging via LPT1. Pei An describes a subsystem for logging 12 bit analogue data via the printer port.
THE FEBRUARY ISSUE IS ON SALE FROM January 26

Analog Module: Tuning an RF front end.

"Electronics Workbench

is the best simulator to

design and verify circuits."

Gordon MacDonald
Production Engineer Technician

Electronics Workbench is a highly productive bench where you design and verify circuits in a fraction of the time Connections are always perfect.Wires route themselves. And the simulated components and test instruments work just like the real thing.

Digital Module: Analyzing a logic circuit.
It's faster than building with actual components because you change connections and component values instantly. And since the simulated components are free, you don't need to replace burnt-out parts or keep an extensive inventory. The result: You save precious time and money. Guaranteed!

The standard for simplicity and power for over six years, Electronics Workbench is the most popular tool of its kind. It has gained worldwide acclaim as the ideal complement to any test bench. Fact: Over 90% of our customers recommend it to their friends and colleagues.

Just £199*

Electronics Workbench

The electronics lab in a computer ${ }^{\text {тм }}$

EDITOR

Martin Eccles
081-6523128

CONSULTANT

Frank Ogden

DESIGN \& PRODUCTION

Alan Kerr
EDITORIAL
ADMINISTRATION
Jackie Lowe
081-652 3614
ADVERTISEMENT
MANAGER
Richard Napier
081-652 3620
DISPLAY SALES
EXECUTIVE
Malcolm Wells
081-6523620
ADVERTISING
PRODUCTION
Christina Budd
081-6528355
PUBLISHER
Mick Elliott

EDITORIAL FAX

081-652 8956
CLASSIFIED FAX
081-6528956

SUBSCRIPTION

HOTLINE
0622721666
Quote ref INJ
SUBSCRIPTION
QUERIES
0444445566

NEWSTRADE

DISTRIBUTION
Martin Parr
0816528171
BACK ISSUES
Available at $£ 2.50$
0816523614
ISSN 0959-8332

REED
BUSINESS
PUBLISHING

Build or borrow?

We're used to differences between the UK and mainland Europe, but it was a surprise that last week's meeting between the Semiconductor
Manufacturers Association (SMA) and the Parliamentary Information Technology Committee (PITCOM) should highlight quite such a fundamental gap between the official attitudes of the UK and mainland Europe towards microelectronics.
Both the UK and Continental Europe know microelectronics is important, but from there on attitudes diverge. Whereas Europe sees a necessity to protect and support European companies and European technology, the UK sees microelectronics as something done outside Europe which we need to attract inside if we are to get our share of the jobs and investment it involves.
Many a Brit has squirmed at Jessi (Joint European Sub-Micron Silicon Initiative) meetings when our European partners have referred to the 'modest' or 'limited' contribution coming from the UK.
Jessi, as the main body in the EU devoted to all aspects of silicon research - design, process technology and production equipment - is generally credited with revitalising the European semiconductor industry just as the collaborative VLSI Project brought Japan's chip industry to the fore, and the Sematech industry consortium halted the slide in US chip competitiveness.

Yet Britain's contribution to Jessi is only a tenth of Holland's, and Holland's is only 40 per cent of the individual contributions of Germany and France.
The SMA/PITCOM meeting last week explained this stinginess. There was nothing about improving the UK's competence in microelectronics; it was all about how best to spruce up the place to attract inwardly investing Japanese, American, Korean and Taiwanese microelectronics companies into the country.
Industry figures from US companies dangled tasty morsels before parliamentarians, such as the fact that between 100 and 150 new chip factories - each costing a billion dollars - will be built in the world in the next decade to a decade and a half.
MPs' eyes may glaze over at the mention of technology but figures like $\$ 100$ billion to $\$ 150$ billion have a good chance of attracting their attention. Compared to $\$ 2000$ for asking a question it's serious money. All we have to do to get it, said chip men, is to adjust the tax laws a little, give grants on the basis of investment size rather than employee count (these plants won't employ many people), and skew the education system more towards the needs of these potential investors.
Is that good old Anglo-Saxon pragmatism, or is it a bit sad?

David Manners

Electronics World + Wireless World is published monthly. By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$.
Orders, payments and general correspondence to L333,
Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tlx:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group,
Newstrade: Distributed by Marketforce (UK) Lid,
247 Tottenham Court Road London W1P OAU 071 261-5108. Subscriptions: Quadrant Subscription Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444445566 . Please notify change of address. Subscription rates 1 year (normal rate) £30 UK and £43 outside UK.
USA: $\$ 52.00$ airmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42nd Street, NY 10117.

[^0]
Video down the 'phone line

Telephone television. With adsl, 16kbit/s data from the subscriber is used to access a oneway broadband video signal from the exchange.

B
R $\mathrm{T}_{\text {believes it has found the }}$ technology to transmit a $1.5 \mathrm{Mbit} / \mathrm{s}$ digital video channel down 92 per cent of its 24 million copper telephone lines. As a result, next summer, 2000 households in Suffolk will get the chance to use interactive tv services such as home shopping, a multimedia version of TV Times and video-on-demand.
The asymmetric digital subscriber loop (adsl) technology which will achieve this is still in its infancy. US developers like Aware, Westell International and Analog Devices are now working on software and components which could both increase the capacity and cut the cost of adsl systems.

The BT system will be based on an adsl transceiver which Westell and Allantech have been marketing for over 12 months. The principle of adsl is that a $16 \mathrm{kbit} / \mathrm{s}$ data signal from the subscriber to the exchange is used to access a one-way broadband signal distributing video. It uses the carrierless amplitude and phase (CAP) modulation scheme originally developed by AT\&T Paradyne for the US cable tv industry. CAP relies on effectively halving the $2.048 \mathrm{Mbit} / \mathrm{s}$ channel data rate by splitting the data stream between two carriers which are $\pi / 2$ out of phase with one another. BT believes that Westell's FlexCAP system can support 2Mbit/s transmission to the subscriber over 6 km lengths of telephone grade copper pair. A newer adsl technology which increases the forward data rate to a theoretical $6.9 \mathrm{Mbit} / \mathrm{s}$ and is based on a discrete multi-tone modulation (dmt) technology has also been evaluated by BT. This technology, pioneered by Aware, Westell and analogue-todigital converter specialist Analog Devices, though technically superior to CAP, is too expensive and power thirsty for BT's application.

French propose voice identification as PIN replacement

R
esearchers and scientists at CEPT, the France Telecom and La Poste research centre, have embarked on a project of voice authentication, which could replace the PINs used in bank card transactions. Voice authentication not only offers better security, it can be used for remote verification typically performed over the phone or at an atm. Unique voice parameters are stored in the form of spectral coefficient and fundamental frequencies calculated for every 20 ms of speech.
"We use evolution of the frequency and the spectral coefficient in the human voice," said Isabelle Milet, senior researcher at CEPT.

The system consists of a low pass filter and an a-to-d converter digitising on 8 kHz to 14 bits on an ISA card designed by Acsys of France. It is installed in a pc also equipped with a Dialogic ISA card that performs a Fast Fourier Transform on the voice spectrum using a Motorola DSP56000 chip.
The system's response time in the lab is less than one second. The product is at its prototype stage at present and CEPT is currently on the look-out for companies which would like to use this product. "For the moment we are not completely ready to sell the licence although we are showing the prototype. But we are looking for companies which are interested in it", said Milet.

Dmt uses orthogonal frequency division modulation techniques and divides the signal between around 100 narrow carriers. The low data rates on each carrier reduce the dispersion in the cable and the use of Reed-Solomon forward error correction makes the dmt scheme more resilient to poor line quality and interference. Aware has developed a more efficient digital signal processing algorithm, which is claimed to reduce the cost of the dmt modulation scheme.
Analog Devices, which is already in prototype production of its dmt chipset, is currently incorporating the new dsp software, known as Wavelet technology, into its dspbased adsl design. "Wavelet technology will significantly increase the bit rate of dmt and make it more cost effective", said a spokesman for Analog Devices. He likened the improvement in signal processing efficiency, with little loss of precision, to that achieved with a fast Fourier transform compared to the discrete Fourier transform. Westell is also developing an adsl system based on the new technology and the first Wavelet-based dmt systems should be available in 1995.

Survey shows

 fast electronics growthElectronics and computers $E_{\text {was the fastest growing }}$ sector by a long way in the British engineering industry, according to the Engineering Employers' Federation (EEF) in its biannual survey of British engineering. This showed sales growing by 24 per cent over the past 18 months, measured at constant purchasing power.
The EEF says the sector is likely to continue its steady growth until the end of 1995, boosting sales by a further 14 per cent.

The Complete Electronics Design System

Schematic Capture

- Easy to Use Graphical Interface.
- Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

Simulation

- SPICE compatible Analogue Simulation.
- Event driven Digital Simulation with modelling language \& PLD support.
- Partitioned simulation of large designs with multiple analogue \& digital sections.
- Graphs displayed directly on the schematic.

PCB Design

- Multi-Layer and SMT support.
- Unlimited Design Capacity.
- Full DRC and Connectivity Checking.
- Advanced Multi-Strategy Autorouting.
- Output to printers, plotters, Postscript, Gerber, DXF and DTP bitmaps.
- Gerber View and Import capability.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 0756753440 . Fax: 0756752857.
E I e c troniccs

Tagging via 'programmable magnefic resonance? When set in motion by an ac electromagnetic field from the reader, the resonator rings at a number of programmable, well defined frequencies.

Alternative to bar codes announced

C
ambridge-based Scientific Generics has introduced a technology that is claimed to solve the main problems that relate to identification technology. There are two main methods currently in use: bar coding and electronic tags. Bar codes are cheap but need line of sight equipment to read and are not well suited to industrial use. Electronic tags (radio frequency devices) do not require line of sight technology but are too expensive

for most applications.
The Scientific Generics technology, Programmable Magnetic Resonance, like electronic tags, can be read without using line of sight scanning technology and irrespective of orientation of the scanned item. It involves tags with a hard magnetic strip and a mechanical resonator packaged together. These can be encoded at the point of issue, making it flexible to use. It is also claimed to be cheap to manufacture: each tag costs only a few pence rather than the \$1 US typical of existing rf tags.
The tags are also suitable for industrial use. Providing the capsules containing the magnetic material are robust enough, the tags can be used over a wide temperature range as well as being able to withstand high pressure and adverse chemical environments.

In addition to the tag, the system consists of a conventional magnetic strip reader/writer and a remote reader that generates and detects alternating magnetic fields from a distance, using coils. Readers can be hand-held, or more sophisticated gate readers used for automatic sorting.
The tag's hard magnetic material can have a magnetic pattern written conventionally, like the strip on a credit card. This part is placed close to the mechanical resonator and sets up relatively high dc magnetic fields in the resonator. The resonator can resonate or ring at a number of well-defined frequencies, where frequency equals (resonance number \times velocity of sound in material) divided by twice the length of the resonator. There is a characteristic spatial vibration pattern for each resonance

Hexfet power MOSFETS make fechnological leap
 nternational Rectifier claims to

have made the biggest advance in Hexfet power Mosfet technology since the original device was developed in 1979. Its Generation V range of products offer "lowest cost per Amp," claims Gene Sheridan, IR's director of strategic product marketing.
The next generation of IR's vertical dmos (VDMOS) process has enabled IR to slash power drain
source on-resistance ($R_{D S-o n}$) on the p-channel by up to 80 per cent, and reduce it by up to 50 per cent on the n-channel. This means the nchannel $\mathrm{R}_{\mathrm{DS} \text {-on }}$ level comes in at 8 milliohms and p-channel $R_{\text {DS-on }}$ levels will be at 30 milliohms early next year. The n-channel option is out first as it addresses the bigger volume users of the product. New p-channel products will be available this month.

The first series of products will offer ratings of 55 V and below. The low-voltage sector is the largest in the market at 40 per cent. Its aims are automotive applications and 12 V , portable and laptop computers.
International Rectifier will offer products in three packages including its new Micro 3 SOT-23 package which has a profile of less than 1.1 mm . The portable 'phone market is one of its targets.

Protel plans Windows EDA client

S
an Jose developer Protel Technology is joining Intergraph in supporting Windowsbased eda tools. Protel is proposing a client/server architecture for desktop eda and is developing a set of Windows-based eda tools which will run on existing client/server computer systems. This will enable eda tools to run in a shared environment and potentially opens the way for high performance eda tools from more than one vendor running under Windows.
Protel's EDA Client will enable a single pc-based client to run eda editors such as symbolic editors, special editors for Verilog, VHDL and pld/fpga design, and layout editors for pcb design. Servers will. provide more complex functions. such as analogue and digital
simulators, design compilers and synthesis tools, design verification and analysis tools. For design vendors there is no need to include a graphical user interface on these server tools, as they will be accessed through the client system.
The user can not only run more complex eda tools in a cost effective Windows environment, but can also mix and match tools from a number of vendors. Cost savings could result when a single simulation or compiler tool licence can be accessed through a workgroup of clients although the eda vendors will probably be quick to plug any loophole.
Protel believes that increasing PC performance and the emergence of multi-tasking Windows and Windows NT environments opens
the way for multi-user eda in a pcbased client-server environment. Intergraph is perhaps the only eda vendor committed so far to the view that the Windows NT environment will quickly start to replace the Unix environment as the main platform for both high and low cost eda. Earlier this year it introduced its Veribest family of chip and pcb design tools which run under Windows NT as well as Unix.
Jeff Edson, Intergraph's vicepresident, predicts that the emergence of Windows 95 and Windows NT will threaten Unix as the main eda platform. "Unix will become an insignificant percentage of the market within two years; 20 per cent is insignificant," he added.

LOW COST PC's - ALL EXPANDABLE - ALL PC COMPATIBLE

SPECIAL OFFER

SPECIAL BUY

AT 286
40 Mb HD + 3Mb Ram
LIMITED QUANTITY only of these 12 Mhz HI GRADE 286 systems Made in the USA to an industrial specification, the system was board, PSU and EGA video card with single $51 / 4$ " 1.2 Mb floppy disk
drive $\&$ integral 40Mb hard disk drive to the front. Real time clock with battery backup is provided as standard. Supplied in good used
condition complete with enhanced keyboard, $640 \mathrm{~K}+2 \mathrm{Mb}$ RAM DOs 4.01 and 90 DAY Full Guarantee. Ready to hun!
Order as HIGRADE 286 ONLY 149 .OO

THE AMAZING TELEBOX

-

TV SOUND \& VIDEO
 TUNER!

FANS \& BLOWERS

MITSUBISHI MMF-D6D12DL $60 \times 25 \mathrm{~mm}$ 12vDC $£ 4.9510 / £ 42$

 EX-EQUIP $120 \times 38 \mathrm{~mm}$ AC fans - tested specity 110 or $240 \mathrm{v} £ 6.95$ MHOF B26 1900 rack mnt 34×19 Slower $110 / 240 \mathrm{v}$ NEW $£ 45.95$ (8)

IC'S -TRANSISTORS - DIODES

5,000,000 items EX STOCK
Issue 13 of $\mathcal{D i s p l a y}$ News now available - send large SAE
3M VDA - Video Distribution Amps. 1 in 32 out
VG Electronics 1035 TELETEXT Decoding Margin Meter AED TOP IR Heat seeking missile (not armed I!)
Tektronix 1130 Spectrum analyser plug in
Thurlby LA 160B logic analyser
GEC 1.5 kw 115 v 60 hz power source
converter
Brush 2 Kw 400 Hz 3 phase frequency converter
Anton Pillar 75 kW 400 Hz 3 phase frequency converter
Newton Derby 70 KW 400 Hz 3 phase fr
Nikon PL-2 Projection lens meter/scope
Sekonic SD 150 H 18 channel digital Hybrid chart recorder HP 7580A A1 8 pen HPGL high speed drum plotter $\begin{array}{ll}\text { Kenwood DA-3501 CD tester, laser pickup simulator } & \mathbf{8 3 5 0} \\ \text { Computar MCA1613APC } 16 \mathrm{~mm} \text { auto iris lenses 'C' mount } & \mathbf{E 1 2 5}\end{array}$

One othe mos amzang supus

ther

PC SCOOP
 COLOUR SYSTEM ONLY $£ 99.00$

Goood used condition. 90 day Puaraniee. KME 10 as above for PC $E G A$ standard $£ 145.00$ (E)
NEC CGA 12 " colour IBM-PC compatible. High quar-
 measunng
bezel has be

Only £49.00(E)
$20^{\prime \prime} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS
Superbly made UK manutacture. PIL all solid state colour montiors,
complete with compostie video \& optional sound inputs. Atractive
 $20^{\prime \prime} £ 135 \quad 22^{\prime \prime} £ 155 \quad 26^{\prime \prime} \ldots .$. . 185 (F)

12" Mono. Phillps BM7542/05G for CCTV NEW $£ 69.95$ (C) DC POWER SUPPLIES
 10,000 Power Supplies Ex Stock

Power One SPL200-5200P 200 watt (250 w peak). Semi open

 frame giving $+5 v 35 \mathrm{a},-5 \mathrm{v} 1.5 \mathrm{a},+12 \mathrm{v} 4 \mathrm{a}$ (8a peak), $-12 \mathrm{v} 1.5 \mathrm{a},+24 \mathrm{v}$$4 \mathrm{a}(6 \mathrm{a}$ peak). All outputs fuly regulated with over voltage protection
on the +5 v output. AC Input selectable for $110 / 240$ vac. Dims $13^{4} x$ disks with startling visual and audio qually in two channel stere or mon. When controlled by ecomputer, it may also be used as versatile high quality storage / retrieval medium. It will play back elther LaserVision CAV (active play) or CLV (Long Play) dlscs
(which covers most types of commercially available video discs) Wome of the many features of this
RS-232 INTERFACE RS-232 INTERFACE
BNC+SCART INTERFACE
IR+WIRED REMOTE CONTROL incredible machine are:
RGB / COMPOSTTE VIDEO OUTPUT $\begin{array}{ll}\text { BNC+SCART INTERFACE } & \text { PAL/RGB DECODER } \\ \text { IR+WIRED REMOTE CONTROL } & \text { FAST RANDOM ACCESS }\end{array}$

TOUCH SCREEN SYSTEM

The ultimate in 'Touch Screen Technology' made by the experts
MifroTouch - but sold at a price below cost 11 System consists of a flat translucent glass laminated panel measuring $29.5 \times 23.5 \mathrm{~cm}$ connected to a PCB with on board sophisticated electronics. From put continuously gives simple serial data containing positional X \& Y co-ordinates as to where a finger is touching the panel-as the fin-
ger moves, the data instantly changes. The $X \& Y$ information is ger moves, the data instantly changes. The $X \& Y$ information
given at an incredible matrix resolution of 1024×1024 poslions over the screen size !!! So, no position, however small fails detec nection to a PC for a myriad of applicatlons including: control pan-
computer un-trained etc etc lmagine using your finger in "Windows tions for this amazing product are only limited by your imagina fon!! Supplied as a complete system including Controller, Powe Supply and Data at an incredible price of only:
RFE. Full Sotware Support Avallabis - Fully Gueranter
$£ 145.00$ (в)

LOW COST RAM UPGRADES
 INTEL 'ABOVE' Memory Expansion Board. Fuil length PC-X Card is fully selectable for Expanded or Extended (286 processo and above) memory. Full data and driver disk supplled. In goo used condition fully tested and guaranteed. \quad Windows compatible. Order as: ABOVE CARD $\mathbf{5 9 . 9 5}$ (A1 Half length 8 bit memory upgrade cards for PC AT XT expands memory either 256 k or 512 k in 64 k steps. May also be used to fill in RAM above 640k DOS limit. Complete with data. Order as: XT RAM UG. 256 k
 $£ 32.95(\mathrm{~A} 1$ $£ 38.95 \mathrm{~A} 1$ $£ 19.50(\mathrm{~A})$ $£ 23.50(\mathrm{~A})$ $£ 22.50(\mathrm{~A})$
 $1 \mathrm{MB} \times 9$ SIMM 9 chip 120 ns 1 MB 99 SIMM 3 chip 80 ns
 only only

SPECIAL INTEREST

Zeta 3220-05 A0 4 pen HPGL RS232 last drum plotter

NO BREAK UNINTERRUPTIBLE PSU'S

Brand new and boxed 230 volts 1 KVa uninterruptible power supply sealed lead acid batteries in matching case. Approx time from inter rupt is 15 minutes. Complete with full manual. $£ 575.00$ (G) EMERSON ACCUCARD UPS, brand new 8 Bit half length P compatible card for all IBM XT/AT compatibles. Card provides DC ply failure. The Accusaver software provided uses only 6 k of base memory to the hard disk in the event of loss of power. When power is returned the machine is returned to the exact status when the power falled !! The unit faatures full self diagnostics on boot and is
supplied brand new, with full, easy fitting instructions and manual. Normally $£ 189.00$ NOW! £69.00 or 2 for $£ 120$ (日)

DBS dish for computer data receipt

Hughes Network Systems is planning to introduce a direct broadcast satellite dish specifically for receiving computer data. The product will be called DirecPC and will be aimed at businesses who want to receive large amounts of computer data at T1 line speeds of about $1.5 \mathrm{Mbit} / \mathrm{s}$. According to Hughes, businesses will be able to receive large software updates directly from software vendors and they will also be able to download large multimedia files that would take hours using standard modem connections.
The DirecPC receiver will cost about \$1,500 and carry a $\$ 16$ monthly charge. Hughes hopes that DirecPC will follow the success of the DirecTV satellite digital TV broadcast system introduced earlier this year into the US with partners RCA-Thomson and Hubbard Broadcasting.

Japanese propose chip production consortium

F
ears for their future competitiveness in chipmaking have propelled the top Japanese semiconductor companies to propose an industry/government/academic consortium to develop production equipment for the Gigabit chip generation.
The move is a response to the successes of America's Sematech consortium, the European Jessi collaboration and the European and Taiwanese industry/university collaborations in developing advanced chip processes and equipment. Japan's top companies are looking for a similar arrangement to defray the heavy financial burden. Senior executives from ten leading Japanese chip firms, including NEC, Toshiba and Hitachi, met earlier this month to discuss the formation of the
new collaboration.
Although Japan has an ongoing industry/government programme called Sortec which provides for shared R\&D effort in advanced technology, this is thought to be the first collaborative effort to be focussed on chipmaking since the famous 'VLSI Project' of the early 80s which resulted in the Japanese putting a 256 K dram into production a full year before the Americans. It also led directly to the exit of all US companies (except TI and Micron) from the dram business in the recession year of 1985 and to Japan's market share lead in chips after 1989
Sematech, the American industry/government consortium was set up in 1988. It worked first on developing new processes and then
in developing new process equipment. The US regained market share ascendancy in 1992 and has been increasing its lead ever since. In the meantime, Europe has formed a similar consortium called Jessi which developed the half micron process currently being used by Europe's leading chip companies, Taiwan's ERSO has delivered a half micron process to Taiwan's leading chip companies, and Korea's KIET has delivered world-competitive processes to Samsung, Hyundai and Lucky Goldstar.
The new Japanese consortium is expected to start its work in 1996. It will be aimed at developing costeffective equipment to be used in chip-making from 2000AD onwards and manufacturing chips with feature sizes down to 0.18 micron.

Integrated VR system for consumer market

BM and UK virtual reality (vr) Ispecialist Virtuality are expected to launch the world's first integrated vr system for the consumer market by 1996. The system will consist of IBM's hardware, including a headmounted motion sensor, joystick, tracker and graphics cards, and Virtuality's software. "Individual packages and software like this already exist, but we want to integrate it and make it easier to use
and more reliable," said Jan-Paul Boos, the new markets manager at IBM Europe.
The package will be sold either as a PC upgrade kit, priced around $\$ 5,000$, or already integrated in a PC. Currently the two companies are delivering the more expensive version of this product, called Elysium, to beta sites. It costs between $\$ 10,000$ and $\$ 70,000$, depending on the model version, and
is aimed mainly at companies and software designers who would like to develop software for their own 'full experience' VR model used for promotion or advertising.
"Elysium itself is not targeted at the consumer market, more in entertainment products for public use But we are looking into dropping the price down for consumers to use it on their PCs," said Richard Holmes, the design director at Virtuality.

Possible European standard for digital TV access

Moves by British broadcasters to Broadcasting Union. establish a conditional access (CA) format for digital TV services could broaden into a new European CA standard. Major terrestrial broadcasters from across Europe have discussed the development of a common digital CA standard in a meeting of the European

The BBC, ITV companies and the DVB, Europe's digital believe that the compromise that Channel 4 decided to work on their own CA system in September after broadcasting standards body, failed to agree to a compulsory common CA system. Terrestrial broadcasters

Multiple advances in disc drives

Advanced disc-based storage systems have been unveiled by 3M, Toshiba and Hitachi. 3M has shown a high-capacity CD-ROM disc that doubles the storage capacity of existing high density CD-ROM discs through the use of an innovative dual layer technology The disc has a second layer that can be accessed by a CD-ROM drive
read head by shifting the angle of reflected laser light as it shines through the top layer. 3M says its discs can store as much as 6Gbytes ten times the current 600 Mbyte capacity of cd discs. The disc was developed with help from Philips and Sony.
Toshiba, like Panasonic, is to sell rewritable optical disc systems based
resulted from that meeting and is based on a code of practice, is unworkable.
The DVB has already agreed a non-compulsory common interface for CA systems. Sources close to the Iatest talks say they could result in a common Europe-wide CA format to go with this interface.
on phase change technology. The company has developed a doublesided 3.5 inch disc that can store 1.3Gigabytes. First products are expected towards the end of 1995.
Toshiba and Hitachi have both announced 2.5 inch magnetic hard disc drives with capacities of over a gigabyte. The drives are due on the market early next year.

For all your Power Distribution Olson offer a varied choice

RESEARCH NOTES

Jonathan Campbell

Fig. 1. Hierarchical view of the proposed optical network architecture.
a) represents ATM cell injection and switching;
b) ring and mesh fibres have equal status for subframe switching.

Optical ether could become reality

ommunication completely in the optical domain across the whole of the UK, in a network implemented on a step by step basis, could become a practical reality if proposals by two researchers in the department of electronics and electrical engineering, University College, London, succeed. Using the principle of an optical 'ether', they have developed (IEE Proc Optoelectronics, Vol 141, No 5) a novel method that will allow a network to be constructed piecemeal yet have the capacity to

service 25 million customers with over $3 \mathrm{Mbit} / \mathrm{s}$ capacity each.
There has already been much speculation about building a network, national or global, in which the complete transmission path is in the optical domain.

But up to now proposed methods have relied on simultaneous implementation across the whole network, with the ultimate number of nodes in the network set at the beginning of the project.

M Sabry and JE Midwinter's idea is to exploit unused bandwidth in existing optical fibres to develop an optically routed broadband network that could evolve 'gracefully' from today's point-to-point transmission, on some routes only, to an extensive multi-node network.

An inner core would be a highly interconnected mesh, with each of the nodes providing routing within the mesh as well as access to one or more ring-type networks making up an outer core. These in turn would be connected to end users via pons (passive optical networks).

First step in building the network would be to replace present optical
fibre regenerators with erbiumdoped fibre amplifiers (edfas). This would remove the need for rigid data formats imposed by regenerators and would turn the fibre links into transparent lossless data pipes.
Existing transmission links that would form the inner core would then be upgraded to use densewavelength division multiplex (dwdm) transmission, but with each carrier operating to standard interfaces. Later these interfaces would be replaced by transparent wavelength switches, which, once rings are added, would allow transmission between rings entirely in the optical domain.

The achitecture allows the network to be developed from the top down using a common set of components throughout.
"As our proposed evolution of the whole network relies on a single modular set of building blocks, the development can stop at any stage", say the researchers. It could just as easily restart and be used to interface to the existing public switched network as necessary.

Giant steps for memory boosts

Giant magnetoresistance (gmr) I could be the key to a new generation of fast ram devices and permanent magnetic random access memory (mram) chips.

Many fundamental problems still need to be solved. But Barthélémy, Fert, Morel and Steren at the Laboratoire de Physique des Solides, Université Paris-Sud, France - one of the original groups involved in identifying giant magnetoresistance - believe that such breakthroughs should be possible and that gmr holds the key to advances in information storage and logic operations (Physics World, November, 1994, pp. 34-38).

In giant magnetoresistance, the resistivity of a layered structure of alternate magnetic and nonmagnetic materials dramatically
changes when a sufficiently high magnetic field is applied. The effect seems to be because the magnetisations in the alternate layers are anti-parallel.

At zero field the resistivity is at a maximum, but in high fields the magnetisations become parallel to the applied field and resistivity drops startlingly.

Mram chips would be constructed by cutting an array of magnetic plots into the top layer of a threelayer structure. Resistivity of each plot would depend on whether its magnetisation was parallel or antiparallel to the reference.

Information could be written by flipping the magnetisation of the plots - by running an electrical current in a nearby wire - and information could be read by
sensing the resistivity of each plate But the memory would be permanent because the magnetic plots would need no energy to retain their orientations. According to the group, such very high density memories will be feasible within a few years.
The new fast ram devices would make use of a development that adds magnetic clusters into a non-magnetic-layer/magnetic layer structure. While the dynamics of magnetic processes in multi-layers are governed by the relatively slow motion of domain walls, reversal of magnetisation in a small particle can be very fast - possibly as rapid as 10^{-11} or $10^{-12} \mathrm{~s}$. This speed, combined with gmr sensitivity, would be the main attraction of the new devices.

Jamming could undermine GPS

L
ow-power rf jamming could -wreak havoc with commercial global positioning satellite (gps) systems, according to researchers at Georgia Tech. As a result we must be much more careful about how gps is used, they warn.
GPS technology is increasingly becoming part of daily life, giving position or velocity information for a large number of uses.
So the findings by Georgia Tech's John Daher, Joseph Harris and Mark Wheeler that commercial gps receivers show worryingly large susceptibilities to in-band interference by anyone with unfriendly intent (IEEE AES Systems Magazine, October, 1994, pp.21-25) could have wide implications.
Two commercial receivers were tested in detail for the study: both exhibited low susceptibility thresholds to in-band continuous wave signals, and both could also be over-driven with an out-of-band signal.
The Georgia researchers also assessed just what it would take to jam a receiver. Using measured inband susceptibility levels of -112 dBm for threshold, -103 dBm for las ('lost all satellites') and a typical gps antenna gain of 3 dBi showed that a gps receiver could be vulnerable to jamming from low power transmitters tens of km away. Fortunately the receivers showed good rejection of out-of-band and pulsed interference signals, so unintentional interference is much
less likely than the intentional jamming threat.
But the researchers say that, based on their measured gps receiver vulnerabilities, careful consideration must now be given to the applications for which gps is chosen, particularly as the technology has been considered as a replacement for the current instrument landing system (ILS) and future microwave landing system (MLS), putting it in a safety-critical position.
Even where commercial use was not safety-critical, inaccurate data could still be very costly for users.
Interference mitigation techniques must be be investigated to improve system reliability, while interference rejecting antenna techniques such as the military controlled response antenna (crpa) should be evaluated for commercial applications, say the researchers.
Meanwhile, they say, signal processing and filtering techniques should be incorporated into commercial receivers.

- Also at Georgia Tech, software that scans research databases and automatically builds up profiles of activity in particular technical areas has been developed.
Toak software can analyse databases - such as the international electronics database, Inspec; the engineering, computer, and business indexes, and US Patents - and show how much an emerging technology is linked with various applications

such as checking whether a new plastic is being used in electronics packaging or aerospace. Toak can also map relationships between sectors, identifying component technologies that contribute to advances in a target area, or can be used to compare research and development activity by state or nation. Such an analysis recently showed that Japan and the US are going head-to-head across most electronics assembly technologies.

Border controls that cross the line?

R
obot search planes equipped with laser scanners and advanced electronic systems able to track large numbers of 'infiltrators' sounds like a scene from The Terminator. In fact it is the language and emergent technology of US immigration control.
Over 1000 people a day are drawn to enter the US illegally, many dodging border patrols and crossing from Mexico into the San Diego region of California
But border guards could soon be the last thing on the mind of frontier-crossing Mexicans if Bill Wattenburg, a senior research scientist at the University Foundation, California State University, is right.

He makes a case (Science, Vol 265, pp.1184-1185) for dusting all popular border-hopping routes with a material that fluoresces when illuminated with laser or uv light.
Using fdi - fluorescent tagging of infiltrators - Wattenburg, who has been an enthusiast of fdi for 25 years, says that anything touching the fluorescent material could be easily identified.
Amongst the many systems that could be used for tracking the illegal immigrants, Wattenburg likes the look of a portable system developed by Lawrence Livermore National Laboratory to track the trajectory of a rifle bullet. Fitted to a robot plane and
used with a laser scanner, Wattenburg says that the system could be used to monitor a strip at least 10 km long and keep track of even 100 moving 'targets'.

He estimates the cost of a six-month fairly-low tech experiment based around San Diego as $\$ 500,000$. Compared with figures he reproduces for the drain on the state of illegal immigrants - "...while needy families of legal immigrants and native born alike will be denied the full government assistance they require to better their lives" - that sounds like a bargain. If the system could be automated, then no-one, it seems, need get their hands dirty.

Dielectric permittivity
can be used to indicate precisely when an adhesive has set. These curves are for bridge adhesive SKIA PBA 31 LT cured at $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$.

Voltage follower that gives a lead

A^{a}voltage follower that promises much higher chip performance - irrespective of which semiconductor technology is used has been designed by W J Su and supervisor F J Lidgey at the School of Engineering, Oxford Brookes University, Oxford.

With conventional buffers, compromises have to be made

Combined negative feedback buffer augmented with two source/emitter followers speeds performance.

Microwave sticking point

K
nowing to the second when an adhesive has hardened is not easy, but it can be vital for efficient and safe production of glued structures and components. The problem is that production time is wasted through leaving a joint to cure for longer than is necessary, while trying to handle a joint too early can result in even more serious consequences.

But Abayomi Olusanya and colleagues at NPL, Teddington, are developing a technique to monitor the dielectric permittivity of curing adhesives that should indicate precisely when the bond has formed.

Unlike dielectric methods that have been tried before, the NPL technique
uses microwave frequency, so removing much of the uncertainty that has been associated with the approach.

During the cure of thermosetting adhesives, cross-linking of molecules takes place. But initiators taking part in the reaction can cause confusing conductivity effects which have upset previous methods.
Using microwave frequencies effectively 'freezes' the initiator ions, removing them from the signal, while electrode polarisation problems are avoided too

NPL says the method is particularly suited to applications where access to the bonded areas is restricted. Only one surface needs to be accessible and a use being envisaged in the early trials is in monitoring adhesive joints in bridges. On site, a large area would be coated with adhesive, with a small area left exposed to fit the electrode.

The method could also be suitable for measuring the degree of mixing in two-part adhesives, if the overall dielectric properties can be related to the individual dielectric properties of the constituent components.

Dynamic dielectric properties of adhesives during cure are obtained through analysis of the adhesives' reflection coefficient using a reflectometric coaxial sensor. At present, NPL is studying how changes in permittivity relate to mechanical properties.
between high speed and high accuracy. But by using an existing op amp negative feedback approach augmented by a feedforward technique to make the op amp float, the researchers look to have avoided the usual speed-accuracy trade-off (Electronics Letters, Vol 30, No. 22).

System design allows the input signal to propagate either via the op amp, with $100 \% \mathrm{nfb}$ used to correct the difference between input and output, or through the additional feed-forward circuits - the source/emitter followers. The result is to float the op amp with all its nodes at virtually the same signal voltage as the input. So capacitances within the op amp have little effect on overall frequency response and a large bandwidth can be achieved.

Near zero response delay time of the floating op amp to an input also means the main speed limitations of conventional followers are overcome.

Microscopic improvement is good news for chips

US applied physicist has reported success in using an atomic force microscope (afm) to half the size of semiconductor gates - opening up the possibility of much faster transistors.
Cal Quate of Stanford University has been using the afm - up to now used mostly as an imaging tool - to create silicon dioxide masks less than 100 nm wide on semiconductor chips.

Conventionally, the afm, which has an extremely fine tip, is used to trace surface topography on an atomic scale. But Quate has used it to apply a current to a substrate coated with amorphous silicon, forming a line of silicon dioxide which protects the underlying silicon during etching.

A series of mosfets was produced by normal manufacturing methods, with the afm used to make the gate.
Reports are (Science, Vol 266, p.543) that Quate and his team fabricated several devices with gates between $0.7-0.2 \mu \mathrm{~m}$. Transistors are said to have behaved much the same as conventional mosfets.
What has generated so much excitement is that afm techniques are in their infancy and can only get better, while conventional lithographic methods are pretty near their limits.

The researchers say that simulations are demonstrating that more than $1300 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 60 ns settling time can be obtained relatively easily. At the same time, bandwidth is increased, from around 35 MHz in conventional feedback buffers, to approximately 220 MHz with a phase margin of 53°. Improved accuracy comes from the enhanced gain and faster speed of the core floating amplifier.
Some additional circuitry has had to be used, reducing the input and output voltage headroom, and the power supply current is higher. But the researchers insists that these cost penalties are: "relatively minor compared with the substantial benefits that the circuit exhibits".
The work is being supported by Analog Devices and the main application of the design is thought to be monolithic integrated circuit voltage followers.

$c^{2} \mathrm{c}$

Chelmer Valve Gompany

Worldwide supplier with 30 years experience

- Electron tubes: Transmitting, Industrial, Microwave, Audio, Receiving, Display, etc, etc.For Maintenance, Spares or Production.
- Semiconductors: Transistors, Thyristors, Diodes, RF, Power I/C's, etc.
We have one of the largest stocks in the U.K.

\star TRY US! \star

fax, Phone, post or telex your requirements 130 NEW LONDON ROAD, CHELMSFORD, ESSEX CM2 ORG, ENGLAND

KENWOOD
TEST \& MEASURING INSTRUMENTS A SUPERB RANGE OF OVER 100 QUALITY INSTRUMENTS. Available from B.K. ELECTRONICS

FM-AM Signal Generators Colour Pattern Generators \star Video Signal Analyser \star Video Timing Analyser \star Video Noise Meter * Vectorscopes \star Audio Generators \star Wow Wand Flutter Meters \star Electronic Voltmeters

* Digital Multimeters \star Function Generators * Frequency Counters \star Bus Analyser
\star Resistance Attenuator \star Oscilloscopes \star Fully Programmable Digital Storage Oscilloscopes * Regulated D.C. Power Supplies

A free, 50 page colour brochure, including price list, is available on request. Please make your request on company headed notepaper, by post or by fax, to:
B.K. ELECTRONICS Unit 1 Comet Way, SOUTHEND-ON-SEA, Esbex, SSE 6TR.
Tㅂ..: $0702-527572$
Fax:0702-420243
CIRCLE NO. 108 ON REPIY CARD

Electronic Designs Right First Time?

Schematic Design and Capture

Create your schematics quickly and efficiently using EASY-PC Professional. Areas of the circuit can be highlighted on screen and simulated automatically using PULSAR, ANALYSER III and Z-MATCH our simulation and design programs.

Digital and Analogue Simulation

Modify the configuration and change component values until the required performance is achieved.

PCB Design

The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic.

Visa, MasterCard, Amex we/come

Affordable Electronics CAD

EASY-PC: Entry level PCB and Schematic CAD	$\mathbf{£ 9 8 . 0 0}$
EASY-PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR.	$\mathbf{£ 1 9 5 . 0 0}$
EASY-PC Pro' XM: Greater Capacity, XMS Version.	$\mathbf{£ 2 4 5 . 0 0}$
PULSAR: Entry level Digital Circuit Simulator \sim 1500 gate capacity.	$\mathbf{£ 9 8 . 0 0}$
PULSAR Professional: Digital Circuit Simulator $\sim 50,000$ gate capacity.	$\mathbf{£ 1 9 5 . 0 0}$
ANALYSER III: Entry level Linear Analogue Circuit Simulator ~ 130 nodes.	$\mathbf{£ 9 8 . 0 0}$
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 nodes.	$\mathbf{£ 1 9 5 . 0 0}$
Z-MATCH for Windows: Smith Chart based problem solving program for R.F. Engineers.	$\mathbf{£ 2 4 5 . 0 0}$
FILTECH: Active and Passive Filter design program.	$\mathbf{£ 1 4 5 . 0 0}$
No penalty upgrade policy. Prices exclude P\&P and VAT.	

Number One Systems Ltd.

Ref WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.

For Full Information Please Write, Phone or Fax. Tel: 0480-461778
Fax: 0480-494042

Abstract

AUDIO

As is often the case with articles on audio subjects, Douglas Self's* recent series on amplifier distortion caused a great deal of interest worldwide. Building on Doug's work, Edward Cherry offers an in-depth look at distortion, and discusses how to reduce it.

At the outset I should state that there appears to be something of a philosophical difference between our approaches to distortion inside the feedback loop. There is nothing wrong with tackling the distortion of various stages on an individual basis, but my approach to designing a highquality amplifier is to choose a simple topology based on common-emitter amplifying stages and apply negative feedback to reduce distortion. Variations in circuit topology (other than push-pull operation) rarely give better than a ten-fold reduction in distortion on a production basis; feedback, however, can reduce distortion almost indefinitely ${ }^{1}$.
The beautiful thing about feedback is that it reduces all distortions simultaneously. If there is enough feedback to fix the major sources of distortion, the minor sources will be taken care of automatically. However, as Self points out, feedback cannot correct distortions arising outside the feedback loop.
Common-emitter stages have theoretical advantages over common-collector amplifiers ${ }^{3}$ and, in my opinion, have important practical advantages too. The theoretical basis for my positions regarding both feedback and common emitter stages rests ultimately on the work of Bode ${ }^{4}$, who points out that a com-mon-collector stage can be considered as a

[^1]common emitter stage with a kind of local feedback, which rarely accomplishes anything for the stage within the local loop and usually makes matters worse for the stages outside it. In part, the complex behaviour of distortion in Self's amplifiers is attributable to the local feedback.
Incidentally, I take it as now being universally accepted that there is no basis for linking transient, interface and phase intermodulation distortions to large amount of feedback.
This commentary addresses audible distortions only; that is, nonlinearities which generate distortion products in the audible frequency range 20 Hz to 20 kHz . It is not concerned with nonlinearities that generate ultrasonic distortions, for I am not in the business of trying to '...please any passing bat...! ! ${ }^{2}$
Distortion products can arise as harmonics of a single input frequency, or from intermodulation between two or more simultaneous inputs, in which case the distortion products lie above and/or below the input frequencies. Ultrasonic distortion in an amplifier may, of course, be an indicator of trouble at audible frequencies, but not necessarily; what matters is the presence or absence of audible distortion products.
Indeed, I believe the 20 kHz upper limit should be reduced, because practically no-one can hear distortions at even 15 kHz . As an easy demonstration of this assertion, readers could compare the sounds of a 5 kHz square wave with an accurate 1:1 mark-space ratio and a

5 kHz sine wave of 1.273 times the peak-peak amplitude. The square wave contains a 5 kHz component of the same amplitude as the sine wave, but it also contains a component at 15 kHz of one-third the amplitude. Shift the frequency up or down to find your own frequency limit for audible distortion. Be honest, and remember that this is the equivalent of 33\% third-harmonic distortion!

Distortion analysed

Figure 1 is Self's Fig. la from $E W \& W W$ of August 1993, with some minor changes. I analysed it in May 1982^{5} and a main purpose of this commentary is to point out that many of Self's conclusions have a rigorous mathematical basis. In addition, given that an audio amplifier is to be of this basic topology (and it would not be my first choice), then the simple changes shown in Fig. 2 give substantial improvement at little cost. Figures 1 and 2 can, of course, be flipped upside down, with $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors interchanged; the analysis is identical. It is actually the flipped version that is considered in Reference 5.

Nonlinearity, sensitivity and distortion Distortion can be considered as variation of incremental gain from point to point on the signal waveform. In other words distortion is caused by nonlinearity in parameters like β and g_{m}. For example, when an amplifier is driven near the point of clipping, its incremental gain falls at the waveform peaks; these

Definition of terms

The analysis in Reference 5 is in terms of the effective values of β and g_{m} for each stage.

Current amplification factor B of a transistor is defined formally as the gradient of a graph of collector current I_{C} versus base current I_{B}. Nonlinearity in B is any departure of the graph from a straight line, from any physical mechanism whatsoever. In practice there are many such mechanisms, and the magnitude of B falls at both large and small currents.

Mutual conductance g_{m} is similarly defined as the gradient of a graph of collector current I_{C} versus base-emitter voltage $V_{B E}$. Nonlinearity in g_{m} is any departure of the graph from a straight line. One physical mechanism for such a departure is the exponential IC versus $V_{B E}$ characteristic, inherent in bipolar junction transistors and which results in the well-known formula

$$
\begin{equation*}
g_{m} \approx q I_{c} / k T \tag{1}
\end{equation*}
$$

where $k T / q$ is approximately 25 mV at room temperature.
Although these definitions of B and g_{m} are most often applied to an intrinsic transistor (a transistor from which parasitic elements such as base-spreading resistance r_{B} have been removed), basic formulae like Eq. 1 can be adapted to a complete transistor:

$$
\begin{equation*}
g_{m(\mathrm{eff})} \Rightarrow \frac{1}{r_{B} / \beta+k T / q I_{C}} \tag{2}
\end{equation*}
$$

For the Darlington transistor in Fig. 3,

$$
\begin{equation*}
g_{n(\mathrm{eff})} \Rightarrow \frac{1}{\left[r_{B(\mathrm{a})} / \beta_{(\mathrm{a})}+k T / q I_{C(\mathrm{a})}+r_{B(\mathrm{~b})}\right] / \beta_{(\mathrm{b})}+k T / q I_{C(\mathrm{~b})}} \tag{3}
\end{equation*}
$$

where the (a) and (b) subscripts identify parameters of the individual members. The formulae can even be adapted to include local emitter degeneration

$$
\begin{equation*}
g_{n(\text { eff })} \Rightarrow \frac{1}{k T / q I_{C}+R_{E}} \tag{4}
\end{equation*}
$$

or a resistance R_{S} between base and emitter:

$$
\begin{equation*}
\frac{1}{\beta_{\mathrm{eff}}}=\frac{1}{i_{C} / i_{S}}=\frac{1}{\beta}+\frac{R_{E}}{R_{S}\left(1+q I_{C} R_{E} / k T\right)} \tag{5}
\end{equation*}
$$

neglecting r_{B} for simplicity. Equation 5 is a particularly useful analytical trick, since it allows the output resistance of one transistor or stage (a kind of source resistance) to be incorporated into the effective B for the next.
In all such cases, 'base' and 'collector' currents and 'baseemitter' voltage are measured at the effective terminals of the device, and include the currents in shunt resistances or the voltage drops across series resistances. Nonlinearity in effective g_{m} then includes any nonlinear component of voltage drop across r_{B}, and therefore involves the nonlinearity in B; note that B occurs in Eqs. 2 and 3.
peaks are amplified less than the rest of the input waveform, and the output is 'squashed'. Sensitivity is the ratio of a percentage change in some parameter like β or g_{m} to the resulting percentage change in incremental gain. At any point on a signal waveform the instantaneous voltage and current in, say, the output transistors of an amplifier can be found. Hence the fall in, say, B at the signal peaks can found from the known nonlinearity. Then, if sensitivity to changes in B is known, the gain compression can be calculated and ultimately distortion can be predicted quantitatively. For example, if the gain compressions at the positive and negative peaks of a signal waveform are γ and γ^{\prime} respectively, the second and third harmonic distortions are:

$$
\begin{align*}
& D_{2} \approx \frac{\gamma^{\prime}-\gamma^{\prime \prime}}{8} \tag{12a}\\
& D_{3} \approx \frac{\gamma^{\prime}+\gamma^{\prime \prime}}{24} \tag{12b}
\end{align*}
$$

Figure 4, reproduced from Reference 5, shows the sensitivity of the overall gain of Fig. 1 to changes in parameters, as functions of frequency on logarithmic scales. Many of the labelled points have the physical significance of quantities like mid-band loop gain considered above. Numerical values are calculated for,
$-B_{2}=100$ (typical);
$-B_{3}=5000$ (a typical Darlington);
$-g_{\mathrm{ml}}=4 \mathrm{~mA} / \mathrm{V}$ (typical for bjts operating at a few hundred microampères without emitter

Fig. 2. Suggested modifications of Fig. 1, including a current-mirror and phase correction in the feedback loop are shown to possess advantages.

Fig. 3. Some examples of sub-circuits for which effective B and gm can be defined: Darlington, emitter degeneration, and degeneration plus shunt resistance.

AUDIO

fig. 4. Sensitivity of overall gain to changes in parameters, as functions of frequency.

degeneration, or at larger currents with degeneration);
$-g_{\mathrm{m} 2}=10 \mathrm{~mA} / \mathrm{V}$ (corresponding to about 68Ω in the second-stage emitter as part of the protection circuitry, Eq. 4);
$-g_{\mathrm{m} 3}=1 \mathrm{~A} / \mathrm{V}$ (corresponding to about 0.68Ω ballast in each of the third-stage emitters, Eq. 4);
$-\omega_{3}=1 \mathrm{Gr} / \mathrm{s}$ (typical for a Darlington which consists of a reasonably fast first member and a slow second member);
$-C=100 \mathrm{pF}$ (to set the overall 3 dB bandwidth at 300 kHz , Eq. 8);
$-B=0.05$ (corresponding to an overall midband gain around 20 , perhaps $R_{\mathrm{Fl}}=2 \mathrm{k} 2 \Omega$ and $R_{\mathrm{F} 2}=47 \mathrm{k} \Omega$);
$-R_{\mathrm{C} 2}=100 \mathrm{k} \Omega$ (a guess, but it hardly affects the results)
$-R_{\mathrm{L}}=8 \Omega$ nominal load.

First stage

As stated by Self, signal amplitude in the first stage increases in proportion to frequency above the forward-path cut-off $1 / B_{2} B_{3} R L C$ where overall loop gain falls away. The nonlinearity of $g_{\mathrm{m} 1}$ is therefore more strongly exercised as the frequency increases. Simultaneously, sensitivity to changes in g_{m} I increases with frequency as shown in Fig. 4. Therefore, overall distortion rises with frequency, either as the square or cube, depending on details.
In my opinion, Self's discussion of input stages is over-kill. Despite the rapid increase of distortion with frequency, the simple longtailed pair with emitter degeneration shown in Fig. 5 contributes vanishingly small audible distortions. Fancy topologies are simply not required.

Emitter degeneration. If a feedback amplifier is fed with a fast-rise mid-frequency square wave, the peak-to-peak input to the first stage
is twice as large as the square wave itself. Therefore, if an amplifier is not to go into slew-rate limiting (alternatively, is not to generate hard transient intermodulation distortion) when fed with a full-amplitude fast-rise square wave, its input stage must be designed not to clip on a signal twice the amplitude of rated mid-band sinusoidal input to the complete amplifier ${ }^{6}$. This result is independent of the overall bandwidth and slewing rate.
Taking the numerical values in Fig. 5 as an
example, g_{m} is about $4 \mathrm{~mA} / \mathrm{V}$ and maximum output is about 8 mApk -pk; the stage clips at about $2 \mathrm{Vpk}-\mathrm{pk}$ input. Therefore, this circuit should not be used as first stage in an amplifier rated at more than $1 V$ pk-pk input (350 mV mms) for full output. Suppose this input is at 6.67 kHz , so that the third harmonic is at 20 kHz (our upper limit for audible distortion), and suppose that other parameters are as in Fig. 4. Then:

- Overall loop gain at 6.67 kHz is 46 .
- Therefore, the differential component of the input to the first stage is overall input/loop gain, which is 22 mVpk -pk.
- Therefore, signal current in each transistor is $1 / 2 \times g_{\mathrm{m} 1} \times($ differential input $)=47 \mu \mathrm{Apk}-\mathrm{pk}$.
- Compression of incremental gain at this peak current is 0.0075%, found from the formula for effective g_{m} of a degenerated longtailed pair:
$g_{\text {meff) }} \Rightarrow \frac{2}{k T / q I_{C(\text { left })}+k T / q I_{C(\text { right })}+2 R_{E}}$
- But, from Fig. 4, sensitivity towards changes in $g_{\mathrm{m}!}$ at 6.67 kHz is 0.022 .
- Hence the (equal) compressions γ^{\prime} and $\gamma^{\prime \prime}$ of overall gain at the signal peaks $=$ sensitivity ${ }^{*}$ first-stage compression $=0.00016 \%$.
- Hence overall third harmonic at 20 kHz associated with first-stage nonlinearity is 0.000013%, from Eq. 12 b. This is at least a factor of ten smaller than the wildest suggestion I have ever seen as a target figure for an 'ideal' amplifier.

An analytical approach allows one to classify for certain the nonlinearities in an ampli-

Basic equations

With the notation shown in the
Definitions panel, the main features of the small-signal response of Figs 1 and 2 are determined by just four components:

- the overall feedback resistors $R_{\mathrm{F} 1}$ and
$R_{F 2}$ via the overall feedback factor B :

$$
\begin{equation*}
B=\frac{R_{F 1}}{R_{F 1}+R_{F 2}} \tag{6}
\end{equation*}
$$

- the first-stage mutual conductance $g_{m 1}$ - the second-stage lag-compensating capacitor C.

Overall mid-band gain

$$
\begin{equation*}
A_{\text {mid }} \approx \frac{1}{B} \tag{7}
\end{equation*}
$$

Overall high-frequency 3 dB cut-off

$$
\begin{equation*}
\omega_{3 \mathrm{~dB}}=\frac{g_{m 1} B}{C} \tag{8}
\end{equation*}
$$

Forward-path mid-band gain

$$
\begin{equation*}
G_{0} \approx g_{m 1} \beta_{2} \beta_{3} R_{L} \tag{9}
\end{equation*}
$$

Forward-path high-frequency 3 dB cut-off

$$
\begin{equation*}
\omega_{0}=\frac{1}{\beta_{2} \beta_{3} R_{L} C} \tag{10}
\end{equation*}
$$

Mid-band loop gain

$$
\begin{equation*}
A_{L}=g_{m 1} \beta_{2} \beta_{3} R_{L} B \tag{11}
\end{equation*}
$$

where,
$-B_{1}$ (not used here), B_{2} and B_{3} are the effective current amplification factors of the transistors, including the effect of any series or shunt resistors, in the first, second and third stages respectively;
$-g_{m 1}, g_{m 2}$ and $g_{m 3}$ are the effective mutual conductances of the transistors (including the effect of resistors);
$-\omega_{1}, \omega_{2}$ (neither actually used here, but used in the JAES paper) and ω_{3} are the projected gain-bandwidth products of the transistors;

- for later use, $R_{C 2}$ is the equivalent resistance (ideally infinite) of the second-stage current-source load.
The substance of these results is the same as given by Self.
fier as significant or insignificant contributors to audible distortion. Repeating the above calculation using a 20 kHz input (the popular 20 kHz thd test beloved of spec. men), gives the third harmonic as 0.0004% - not nearly so impressive, and even casting doubt on the intermodulation performance with real programme material. But this harmonic is, of course, at 60 kHz and of itself has nothing to do with audible distortions.
In one of the more savage forms of the IEC total-difference-frequency intermodulation test, the input consists of two equal-amplitude sine waves at approximately 10 kHz and 15 kHz . For Fig. 5, the total of the audible intermodulation products near 5 kHz is 0.000008%; the inaudible products near 25 , $30,35,40$ and 45 kHz are larger, but it is the audible distortion that matters. To chase anything better than Fig. 5 would be folly.
The theoretical requirement that a complete amplifier should be able to accept a full-amplitude fast-rise square-wave input is unnecessarily severe; real programme material (even the output from a digital synthesiser) is subject to some form of band limiting. Typically I relax the requirement by about a factor of two. This increases 20 kHz third-harmonic distortion of 6.67 kHz by four, to 0.00005%.
However, I do regard some form of emitter degeneration as mandatory in a bjt first stage (perhaps not with fets). If there is none, a bjt long-tailed pair clips at about 100 mV pk-pk input. Ideally, therefore, an amplifier that uses an undegenerated first stage should be designed to operate with no more than 50 mV pk-pk or 18 mV rms input. Self's Fig. 1a of August 1993 would certainly generate hard transient intermodulation distortion in the square-wave test.
Including adequate emitter degeneration in the first stage carries the penalty of a slight increase in noise. The numerical situation for Fig. 5 is confused because total noise is dominated by the current mirror. However, if mirror noise could be eliminated (it can, but not in an amplifier of the Fig. 1 type), then the thermal and shot noise noise referred to the input of Fig. 5 would be $5.6 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$. After removing the emitter degeneration and adjusting the quiescent current to give the same gain, the noise drops about 1 dB to $5.0 \mathrm{nV} / \mathrm{VHz}$.

Current mirror. Self correctly points out that a current mirror in the first stage, rather than a simple resistance load: doubles the first-stage gain $g_{\mathrm{m} 1}$ and therefore the overall feedback if nothing else is changed; doubles the available output current and hence the slewing rate; and improves the common-mode rejection.
Far more importantly, it raises the source impedance seen by the second stage. I shall show that distortion associated with outputstage B nonlinearity is inversely proportional to effective B of the second stage. Raising the source resistance for the second stage by using a current mirror in the first stage has the potential for increasing B_{2} (Eq. 5) and reducing this distortion by orders of magnitude.
Increased first-stage gain is a mixed blessing
because it may provoke high-frequency instability. Self's suggested remedies are to double the first-stage emitter degeneration resistors, which is wasteful if these are already adequate, and it increases the noise; and to double the compensating capacitor C, which loses the slewing-rate improvement.
However, there is a third solution, which I strongly recommend: halve the value overall feedback factor B (halve R_{FI}, for example), thereby doubling the overall mid-band gain and halving the signal input voltage required to produce full output from the amplifier. This has two advantages in that it halves the com-mon-mode voltage present in the first stage, and thereby halves a second-harmonic distortion mechanism associated with finite com-mon-mode rejection; and it reduces the likelihood of clipping in the first stage, thereby reducing the incidence of hard transient intermodulation distortion.
Halving the input voltage required for full output, from something like the typical 0.6 1.0 V of modern transistor amplifiers to $0.3-$ 0.5 V , makes the transistor amplifier more like the earlier Leak/Mullard/Quad vacuum-tube amplifiers. Why was this 'standard' ever changed? My best amplifiers are designed with 300 mV sensitivity.

Second stage

Distortion in the second stage originates from three quite distinct types of nonlinearity:

- distortion associated with variation of effective B_{2} from point to point on the signal waveform, as the instantaneous current and voltage in the transistor change;
- distortion associated with similar variation of effective $g_{\mathrm{m} 2}$ (this turns out to be very small);
- distortion associated with variation of the collector-base capacitance.

Fig. 5. First stage, with emitter degeneration, current source and current mirror, and with typical numerical values as used by the author.

Distortion associated with $\boldsymbol{\beta}_{\mathbf{2}}$. Nonlinearity in β_{2} models the changes in current gain at high and low collector voltages and currents. Figure 4 shows that sensitivity to these changes is constant over most of the audible band of frequencies, but increases somewhere near the top of the band at the β cut-off frequency ω_{3} / B_{3} of the output transistors $(40 \mathrm{kHz}$ for the assumed data). However, sensitivity is inversely proportional to B_{2}; distortion from this nonlinearity can be reduced simply by making B_{2} large - for example, by using a Darlington. Sensitivity and distortion are not affected by the choice of lag compensation C, and hence are independent of both the for-ward-path and overall high-frequency cut-off.

Fig. 7. Combinations of output voltage and current available with nonlinear fold-back protection of the output stage. For a nominal $50 W, 8 \Omega$ amplifier, $I_{\text {min }}$ should be around 1.5A and $I_{\text {max }}$ around 6A.

Distortion associated with $g_{m 2}$. Nonlinearity in $g_{\mathrm{m} 2}$ models the exponential I_{C} versus V_{BE} characteristic intrinsic to a bjt, and the voltage drop across r_{B}. Sensitivity to changes in $g_{\mathrm{m} 2}$ is extremely small (it is not even shown in Fig. 4) so the distortion associated with this nonlinearity is small too. Additionally, $g_{\mathrm{m} 2}$ does not appear in the sensitivities of the other parameters. Therefore, emitter degeneration in the second stage, which reduces effective $g_{\mathrm{m} 2}$, has no effect on overall distortion and might at first appear pointless.

However, emitter degeneration can improve high-frequency stability. A significant amount of such degeneration is normally provided inadvertently, as part of the current-limiting protection circuitry. Second-stage degeneration therefore costs nothing in components, it does no harm, and it may do some incidental good.

Collector-base capacitance. Collector-base capacitance $c_{C B}$ of the second-stage transistor
is basically in parallel with the lag-compensating capacitor C and adds to its value. Collector-base capacitance is inevitably nonlinear, and has something like an inverse-square-root dependence on collector voltage.
Figure 4 shows that sensitivity to changes in C (hence c_{CB}) increases in proportion to frequency over the whole of the amplifier passband, and reaches unity at $\omega_{3 \mathrm{~dB}}$. The only way of reducing sensitivity towards C while retaining the basic amplifier topology is to increase overall cut-off frequency. Contrary to intuition, it does not help to use a larger value of C (the idea being that the nonlinear transistor capacitance would represent a smaller part of the total), nor does it help to increase β (by using a Darlington); it does help to use a cascode for the second stage (Self's Fig. 4d of October 1993) or his modified Darlington (Fig. 4c same ref). Either removes signal voltage from the collector of the first member.

Output stage

In a push-pull. class-B stage, the values of β_{3} and $g_{m 3}$ for the n-p-n and p-n-p transistors individually apply well into each half of the signal waveform, where only one transistor is conducting. In the overlap region near the middle where both transistors are conducting, or in a class-A stage, the values of B_{3} and $g_{\mathrm{m} 3}$ are appropriately-defined averages.

Distortion associated with β_{3}. Sensitivity to changes in B_{3} is constant throughout the amplifier passband. This rather surprising result is confirmed by experiment. Distortion associated with nonlinearity in β_{3} does not increase above the forward-path cut-off frequency ω_{0} as loop gain falls away, nor does it increase above the B cut-off frequency ω_{3} / β_{3} of the output transistors.
Sensitivity to changes in B_{3} is inversely proportional to both B_{2} and B_{3}. Increasing either reduces distortion without jeopardising stability. Notice particularly that B_{2} corresponds to the effective current gain of the second stage. Even in the ideal situation of very high

Fig. 8. Circuit-board and chassis layout for low distortion, showing separate tracks for noisy and quiet circuitry, separately grounded.
transistor β (such as a Darlington) and very large quiescent current $I_{\mathrm{C}}, \beta_{\text {eff }}$ given by Eq. 5 cannot exceed $R_{\mathrm{S}} / R_{\mathrm{E}}$. For example, in Self's Fig. Ia of August 1993, the first-stage collec-tor-load resistors are $2.2 \mathrm{k} \Omega$ and second-stage quiescent current is about 6 mA . In a real circuit there would almost certainly be a resistor of $50-100 \Omega$ in Tr_{4} emitter, as part of the protection circuitry. Hence $\beta_{\text {eff }}$ of the second stage cannot exceed about 30 . In contrast, if there is a current mirror in the first stage, the source resistance as seen by the second stage is large and $B_{\text {eff }}$ approaches B of the transistor. Herein lies the greatest advantage of the firststage current mirror.
Self considers nonlinearity associated with β_{3} as a nonlinearity in the input resistance of the third stage and hence as a nonlinear loading on the second stage. He goes on to consider the benefits of an emitter-follower buffer between the second and third stages. This is perfectly valid, but I prefer to consider such a buffer as an extra member in the third-stage Darlington where it increases B_{3}. Note that the 220Ω resistor in Self's Fig. 4f of October 1993 reduces effective B (Eq. 5 again!); his Fig. 4 e would be my preferred option. However, because sensitivity to changes in β_{3} is inversely proportional to both B_{2} and β_{3}, it would do just as much good (and probably be simpler) to put the extra transistor into a sec-ond-stage Darlington.

Distortion associated with $g_{\mathrm{m} 3}$. Nonlinearity in $g_{\mathrm{m} 3}$ models the exponential I_{C} versus V_{BE} intrinsic to transistors (twice over, because the transistor is usually a Darlington, Eq. 3); it models the nonlinear voltage drop across r_{B} associated with β (also twice over in Eq. 3); and it models cross-over distortion. Effective $g_{\mathrm{m} 3}$ includes the local emitter degeneration that is associated with emitter ballast resistors (Eq. 4).

Sensitivity to changes in $g_{m 3}$ increases in proportion to frequency, starting from a very small value which depends of all things on the equivalent resistance $R_{\mathrm{C} 2}$ of the second-stage current-source load. The only way of reducing sensitivity towards $g_{\mathrm{m} 3}$ while retaining the basic amplifier topology is to increase the overall cut-off frequency. Changing the emitter degeneration in any stage does not help, nor does increasing β of any transistor.

Notice that cross-over distortion is predominantly associated with nonlinearity in $g_{\mathrm{m} 3}$. Self considers the cross-over region in detail; he points out the near impossibility of eliminating cross-over nonlinearity, stresses that the overall feedback is relatively ineffective in an amplifier of the topology of Fig. 1, and concludes that cross-over nonlinearity is the greatest source of distortion in a 'blameless' amplifier. In short, his observations confirm the theoretical prediction.

However, a great improvement can be achieved by slightly changing the amplifier topology: move the second-stage compensating capacitor C so that it encloses the third stage as shown in Fig. 27. Sensitivity to changes in $g_{\mathrm{m} 3}$ becomes constant throughout
the passband, instead of increasing with frequency.
Many people believe that moving C provokes high-frequency oscillation, but this is not my experience and I strongly recommend the change. My amplifiers always incorporate a judicious amount of emitter degeneration in the second stage and a properly-designed loadstabilising network. If an amplifier oscillates when C is moved, it usually oscillates at several megahertz (far above the frequency of unity overall loop gain) and will usually continue to oscillate if the overall feedback can somehow be removed. The oscillation is a local parasitic. Try adding capacitors of around 50 pF between collector and base of the first member of the output Darlingtons, using the shortest possible leads. Try shortening all leads to the output transistors. Try a small resistor in series with C, in theory about 20% larger than the second-stage emitter-degeneration resistor.

Nested feedback loops

Self makes brief reference to multiple feedback loops, nested one inside the another, but this of course is to depart from the basic amplifier topology under consideration. He also mentions multi-pole roll-off.

Nested feedback loops in general, and my own nested differentiating feedback loops in particular, offer a very great improvement in amplifier performance. However, the designer of a nested-loop amplifier needs to understand what he is about: time constants must be in correct ratios or the whole becomes impossible to stabilise. This is not to say that nested feedback circuits become more critical towards component tolerances - far from it but the nominal values do need to be right.
Interested readers might refer to Reference 7, which describes how two nested differentiating feedback loops can be added to an amplifier of Self's basic topology, leading to an order-of-magnitude reduction in distortion. Loop roll-off is at a three-pole rate.

Protection

Self's class-B amplifier (February 1994) includes no protection - no doubt the circuit as printed was never intended to be a complete design. This amplifier would almost certainly be destroyed by even a momentary short-circuit of the output terminals; it requires current limiting in the output stage (probably of the fold-back variety) and also in the second stage, as in Fig. 6.
Despite what I may have published in the past, I have in recent years become an advocate of nonlinear fold-back limiting for the output stage. The circuit is not complicated, and it gives better protection than either simple limiting or linear fold-back limiting without restricting an amplifier's ability to drive reasonable reactive loads, so much so that it may even be possible to dispense with fuses in the supply rails.

Figure 7 shows the accessible regions of the load $V I$ plane; the applicable design equations are,

Fig. 9. Two forms of Thiele's load-stabilising network, with component values for 8Ω nominal load and 200 kHz cut-off, where the output transistors see a nominally constant load.

$$
\begin{align*}
& I_{\min } \approx \frac{V_{B E}}{R_{E 3}} \tag{14a}\\
& I_{\max } \approx \frac{1}{R_{E 3}}\left[V_{B E}+V_{C C}\left(\frac{R_{1}}{R_{2}}\right)\right] \tag{14b}
\end{align*}
$$

where V_{BE} is about 0.7 V and $R_{\text {I }}$ should be somewhere around 100Ω.
I regard current limiting as mandatory in the second stage. If the load is short circuited and the input signal goes negative, the second stage is turned hard on, fighting against the limiter for the p-n-p half of the output stage. A simple current limit is sufficient for the second stage, and I set this at rather more than twice the quiescent current

$$
\begin{equation*}
I_{\text {limit }} \approx \frac{V_{B E}}{R_{E 2}} \tag{15}
\end{equation*}
$$

Typically, this quiescent current is a few milliampères, so $R_{\mathrm{E} 2}$ becomes $50-100 \Omega$. This provides just about the optimum level of emitter degeneration for high-frequency stability, as referred to above.

Distortions outside the feedback loop

Hum and distortion currents. Correct layout of an amplifier pcb is essential, to isolate hum and distortion currents in the output stage from the low-level wiring. Figure 8 shows the approach I adopt ${ }^{8}$ to reduce both conductive and inductive coupling.
Note first the use of separate quiet and noisy ground tracks on the pcb, connected to chassis ground at separate points. Power-supply ground is connected to the chassis at yet another point. I don't believe in single-point grounding! Within the power supply, the transformer centre-tap and filter-capacitor grounds are all joined together as described by Self, and then a single lead comes out from this junction.
Quiet and noisy ground tracks run parallel to each other on the pcb, and as close as possible to minimise the area between them. Magnetic fields associated with the large currents in the output stage induce voltages between these tracks, proportional to this area.
Connect the quiet ground track to chassis ground at the input socket, via the shield on the input coaxial cable. This track carries the input-resistor and feedback-resistor ground currents and, depending on circuit details, may carry the ground currents from intermediatelevel stages. Also, the vector area of the loop formed by the input lead/coupling capacitor/input transistors/local emitter-degeneration resistors/feedback capacitor/feedback resistor is zero; follow this loop, and note how the

Fig. 10. Modified load-stabilising network which incorporates the overall feedback network. Values are for 8Ω nominal load and 200 kHz cut-off.
areas enclosed on its left and right sides are equal. All these components hug the quiet ground track.
Connect the noisy ground track to chassis ground at the output terminal, via the twisted output leads. This track carries the ground currents from the supply bypass capacitors, the load-stabilising network (if any), and it may also carry ground currents from intermediatelevel stages. The ground ends of the bypass capacitors are connected to this track as close together as possible, and no connections are made to the track between these two capacitors.
Similarly, the emitter ballast resistors in the output stage are connected to the output track as close together as possible, and no connections are made to this track between these two resistors. The output track runs parallel and close to the noisy ground track. The feedback pick-off point from this track is located between the ballast-resistor connections and the output connection, as is any load-stabilising network.
Mutual inductance should be zero between signal wiring and the loop formed by the bypass capacitors, emitter ballast resistors, power transistors and associated wiring. This corresponds approximately to setting zero vector area for the loop; in Fig. 8 the ballast resistors and bypass capacitors form a figure-ofeight, and the tracks to collector and emitter are spaced as closely as possible. Self's recommendation of twisted power-supply leads (February 1994) is really not enough; harmonic currents flow in all components of the loop, including the wiring to the power transistors. I recommend small filter inductors of a few microhenries in the positive and negative supply rails, to confine high-frequency components of supply current to the figure-ofeight loop on the pcb where the wiring layout is well defined ${ }^{8}$; these inductors should be

mounted well away from the pcb itself, so that their magnetic fields do not interact with the input stage.

The two ground tracks on the pcb are linked via a 10Ω resistor, so that the bypass capacitors are effective for the low-level stages. This resistance is practically short-circuit in comparison with the impedances in typical lowlevel stages (it is smaller than the reactance of a 10 nF capacitor at all frequencies up to 1 MHz), but is open-circuit in comparison with the impedances in high-level stages. Signal components of current in the low-level stages can cross into the noisy ground track, but currents in the high-level stages cannot cross into the quiet ground.

Further thoughts on distortion

Here are a few ideas, unrelated to Self's articles.

First, there was another outstanding series on audio amplifiers by Peter Baxandall in Wireless World, beginning in January 1978^{9}. Sixteen years on, these articles are still well worth reading.

Load-stabilising networks. Thiele ${ }^{10}$ has proposed an $L R C$ network to be connected between an amplifier and its load, to reduce the problem of high-frequency instability when the load is capacitive and also to reduce the problem of radio-frequency pickup on the loudspeaker leads. The output transistors are in principle presented with a constant-resistance load, and in practice are protected from the worst excesses of high-frequency variation in loudspeaker impedance.

Figure 9 shows two forms of Thiele's circuit. Parameter inter-relations are:

$$
\begin{align*}
R & =R_{L(\text { nominal })} \tag{16}\\
\frac{1}{R C} & =\frac{R}{L}=\omega_{X} \tag{17}
\end{align*}
$$

where ω_{x} is the network cut-off frequency, usually corresponding to $100-300 \mathrm{kHz}$. Figure 9 b , with 100 nF connected directly across the load looks crazy - more like an unstabilising network - but it is correct and has some advantages.
It is amazing how few published circuits are correctly designed (Self's are not). Usually they appear to be based on Fig. 9a, but they include a resistor in parallel with L as shown in Fig. 1, and the values are all wrong anyway!

Figure 10 is a modified load-stabilising network ${ }^{2,7}$ which incorporates the overall feedback network and has two advantages over Fig. 9 in that the network does not introduce a 3 dB loss at the cut-off frequency ω_{x}; and that radio-frequency interference picked up on the loudspeaker leads is isolated from the feedback point by a two-pole filter (isolation in Fig. 9 is single-pole).

If the amplifier without feedback has just one dominant pole, and if the overall loop gain without the network falls through unity at ω_{x}, then the overall response is made phase-linear by choosing

$$
\begin{equation*}
R_{F 2} C_{F 2}=\frac{(\sqrt{3}-1)}{\omega_{X}} \approx \frac{0.7}{\omega_{X}} \tag{18}
\end{equation*}
$$

In practice, where the amplifier has secondorder poles, $\boldsymbol{C}_{\mathrm{F} 2}$ is selected around this value to give the best square-wave response. The inductor should be air cored and mounted with nylon or other non-conducting screws, well away from any metalwork to avoid nonlinear eddy-current losses. I usually mount it on the pcb, in the under-populated area near the firststage tail current source.

Low-frequency phase compensation. There is a simple modification to the overall feedback network which linearises the phase of the low-frequency cut-off and improves the square-wave response.
In Fig. 11a the low-frequency cut-off associated with the feedback network is

$$
\begin{equation*}
\omega_{\text {low }}=\frac{1}{R_{F 1} C_{F 1}} \tag{19}
\end{equation*}
$$

There is an additional fall-off associated with $R_{\mathrm{B} 1}$ and C_{C}, usually small in comparison. If $\omega_{\text {low }}$ is chosen corresponding to 5 Hz , a 20 Hz square wave is reproduced with about 40% tilt and looks nothing like a square wave. This is the result of phase nonlinearity; all the Fourier components in the waveform are reproduced within 3% of their correct amplitudes.
However, if $C_{F 3}$ in Fig. 11 b is chosen,

$$
\begin{equation*}
R_{F 3} C_{F 3}=\frac{2}{\omega_{\text {low }}} \tag{20}
\end{equation*}
$$

the phase is linearised and a 20 Hz square wave is reproduced with essentially zero tilt. In practice, $C_{\text {F3 }}$ should be somewhat smaller than this theoretical value, to compensate also for the phase associated with C_{C}. The nearest preferred-value resistors are close enough.

Maximal flatness of frequency response is incompatible with phase linearity, at both low and high frequencies. Linearising the high-frequency phase inevitably results in a small drop in gain. Linearising the low-frequency phase inevitably results in a small peak (1dB at 1.6 Hz for the values given). Given the choice between flat frequency response and phase linearity, everybody opts for the latter at high frequencies (that is, for best square-wave response). Why not at low frequencies?

Capacitor types. Most readers will know that polyethylene-terephthalate (Mylar) capacitors exhibit nonlinear effects at audio frequencies, associated with the dielectric relaxation time, and should be avoided in high-quality amplifiers. Polycarbonate capacitors are recommended for values up to a few microfarads. A problem is $C_{F 1}$, of the order of $100 \mu \mathrm{~F}$. Nonlinearity in $C_{F_{1}}$ results in distortion that increases at low frequencies.
Ten years ago I made a study of the capacitors available in Australia. The surprising result was that ordinary cheap aluminium electrolytic capacitors were remarkably linear, far better than most tantalum types. I have made no measurements on more modern components, but the underlying chemistry has not changed, so it is unlikely that the situation has changed. Be sure to use the capacitors in the correct polarity - the positive side of both C_{C} and $C_{F I}$ towards the transistor bases if amplifier polarities are as in Figs 1 and 2.

References

1. E.M. Cherry. A high-quality audio power amplifier. Proc. I.R.E.E. Australia, 39, pp.1-8, Jan/Feb. 1978.
2. M. Flanders and D. Swann. A song of reproduction, At The Drop of a Hat, Parlophone Record PMCO1033, London, 1958.
3. E.M. Cherry and G.K. Cambrell. Output resistance and intermodulation distortion of feedback amplifiers. J. Audio Eng. Society, 30, pp. 178191, April 1982.
4. H.W. Bode. Network Analysis and Feedback Amplifier Design. van Nostrand, Princeton N.J., 1945. See also a number of papers in the Bell System Technical Journal for the decade preceding 1945.
5. E.M. Cherry. Feedback, sensitivity and stability of audio power amplifiers. J. Audio Eng. Society, 30, pp. 282-294, May 1982. See also ibid, 31, pp. 854-857, November 1983
6. E.M. Cherry. Transient intermodulation distortion - Part 1: hard nonlinearity. I.E.E.E. Trans., ASSP-29, pp. 137-146, April 1981.
7. E.M. Cherry. Nested differentiating feedback loops in simple audio power amplifiers. J. Audio Eng. Society, 30, pp. 295-305, April 1982.
8. E.M. Cherry. A new distortion mechanism in class-B amplifiers. J. Audio Eng. Society, 29, pp. 327-328, May 1981.
9. P.J. Baxendall. Audio power amplifier design. Wireless World; 55, pp. 53-57, January 1978, and subsequent issues.
10. A.N. Thiele. Load stabilising network for audio amplifiers. Proc. I.R.E.E. Australia., 36, pp. 297-300, September 1975

INTERFACING piezoelectric cable

> Piezoelectric coaxial cable offers a very simple means of sensing pressure or vibration. But since the signal produced is high impedance, a carefully designed interface is needed. Barry Gillebrand looks at some of the alternatives.

Piezoelectric coaxial cable is similar to standard coaxial cable with the interelectrode insulation replaced by a piezoelectric composite elastomer. When compressed or flexed, the cable generates a voltage between the centre conductor and the screen braiding which varies directly with the applied radial pressure.
The voltage/pressure relationship is linear over several decades. However, being a signal source of high Thévénin impedance - typically several megohms - care is needed when designing interface circuits or preamplifiers.
Consider the design of an amplifier to operate at audio frequencies with a gain of 40 . The simplest approach, Fig. 1, would be to design a non-inverting voltage amplifier using a low-

[^2]noise op amp such as the TLA071. This has a unity-gain bandwidth of 3 MHz , so this would give a flat response up to around 70 kHz .
It is necessary to provide a path to signal earth for the input bias current of the amplifier, in this case some 200 pA . The resistor needed for this purpose appears as the principal component of the input impedance, so it should not be less than $20 \mathrm{M} \Omega$ if the piezo cable is not to be loaded excessively.
A current of 200 pA flowing through $20 \mathrm{M} \Omega$ generates an offset voltage of 4 mV , which combined with the inherent input offset voltage of 3 mV and the contribution of the gaindefining components will produce an output offset of 0.2 V ; if offset trim is not used, ac coupling may be advisable in the next stage. The principal advantage of this circuit, apart from its simplicity, is the excellent low-frequency response, which extends down to dc.
A more compact voltage amplifier with the advantage of lower noise figures can be constructed using an fet/bipolar cascode pair of transistors. The circuit of Fig. 2 has an input impedance of $20 \mathrm{M} \Omega$ and exhibits a high degree of linearity due to the negative feedback used. Gain can be varied without affecting the operating point of either transistor by changing the feedback coefficient using the ac-coupled resistor \mathbf{R}_{2}. The gain of this amplifier is:
$$
A_{\mathrm{v}}=\left(R_{1}+R_{2}\right)\left(R_{\mathrm{s}}-R_{2}\right) / R_{\mathrm{s}} R_{2}
$$
assuming reasonably high values of g_{m} and h_{fe} for the two transistors: I assumed $5 \mathrm{~mA} / \mathrm{V}$ and 100 respectively for this calculation, giving an open-loop gain of some 105 dB with the specified load resistors.
The output impedance of this collector-coupled circuit may be a little high for some applications; there are a number of commercial instrumentation amplifiers of hybrid microcircuit construction which can be used 'out of the box'. Unipulse's U300 series has an output impedance of 0.1Ω and and a fixed gain of 200 , variable gain versions are also available.
One of the most suitable types of amplifier

Fig. 1. A non-inverting buffer based on a lownoise op-amp is the simplest way of interfacing the high-impedance of piezoelectric cable.

Fig. 2. Fet/bipolar cascode amplifier with input impedance of $20 M \Omega$ and excellent linearity due to negative feedback.

Fig. 3. One of the best types of amplifier for interfacing is the charge amplifier since it amplifies the input signal but not dc offsets.

SENSORS

Fig. 4. Piezoelectric coaxial cable produces an output voltage in response to compression or vibration.
for use with piezoelectric cable is the charge amplifier, which exhibits a higher gain to the generated signal than for any dc offsets. A circuit is shown in Fig. 3, where the operational amplifier is again a low noise, low offset fet input type such as the TLA071. For a continu-ously-varying signal, the transfer function of such an amplifier is :

$$
V_{0}=Q / C_{\mathrm{f}}\left(1+1 /\left(\mathrm{j} R_{\mathrm{f}} C_{\mathrm{f}}\right)\right)
$$

where Q is the rms value of the charge generated by the variations in pressure. Note that the effect of the feedback resistor needed to provide a leakage current path for the op amp is to introduce a single pole which limits the gain at low frequencies; for the TLA071 this could be $20 \mathrm{M} \Omega$ for an offset of less than 5 mV at the output.
For a 1000 pF piezo cable, a feedback capacitor of 25 pF would give the required gain,
since the charge variation generated by the cable is proportional to its total capacitance. The lower 3 dB point of this amplifier would then be 318 Hz .
Getting charge amplifiers to work at very low frequencies poses a problem because of the large values of feedback resistor needed with typical feedback capacitor values. In this inslance, the desired gain could be split between the charge amplifier and a conventional second stage to improve the low-frequency response; assuming the charge amplifier had unity gain, the feedback capacitor would then be 1000 pF and the lower 3 dB point at 8 Hz .
As with any engineering design, a compromise must be reached between the various characteristics of the amplifier: maximum permissible offset versus low-frequency performance, closed-loop gain and resistor availability and physical size here. With such large
values of resistance and small capacitors, this is an obvious contender for a custom hybrid, if numbers permit. The principal advantage of using a charge amplifier compared with a voltage amplifier as the first stage is that the piezoelectric cable is driving a virtual earth point, so the input impedance of the op amp does not load the transducer.
Piezoelectric coaxial cable is a durable, water-resistant form of pressure sensor ideally suited to outdoor applications such as vehicle detection and vibration analysis. With a little care in the design of the input stages of the conditioning amplifier, it is also linear and responds well to both high and low frequencies. Though still a very new material (first described by Hisao Banno of NTK Ceramics in 1986), it should find widespread application in industry over the next few years.

Further reading

Banno, O., et al: Piezoelectric \& Acoustic Properties of Piezoelectric Composites, Japan Journal of Applied Physics, Vol. 26. For an excellent analysis of charge amplifiers, see Mark Serridge \& T.R. Licht: Piezoelectric Accelerometer \& Vibration Preamplifier Handbook, Bruel \& Kjaer, 1987.
For further information on piezoelectric cable, contact Quantelec at 50 Market Square, Witney, Oxon OX8 6AL. Tel : 0993776488 , fax 0993705415.

As with feature articles, each circuit idea in the $E W+W W$ computerised index is accompanied by a brief description.

> Peter Marlow explains the rationale behind the new computerised index for Electronics World.

EW+WW SOFT INDEX

Electronics World and Wireless World now has a computerised index. It runs on IBM and compatible personal computers, and covers the five years from 1990 to 1994 volumes 96 to 100 . It contains over 1400 references to feature articles, circuit ideas and applications, each accompanied by a synopsis.
Why put the index of $E W \& W W$ on to a data base? A computer is particularly good at searching quickly through large quantities of data. Applied to an index it can save a lot of time looking for information.
Minimum requirements for the soft-index are an IBM or compatible pc running DOS 3.0 or higher, with at least 512 K of ram, and a hard disk with 600 K byte available. A floppy disk drive for either $5 \frac{1}{4}$ in 360 K or $31 / 2$ in 720 K disks is needed to load the software. The program runs under DOS, and supports a mouse; it will also run via windows.

Features

The soft-index is easy to use with plenty of on-screen help. Finding information is a two stage process; first you select a subject in the 'Table of Contents' then you examine the subject index. The subject index is like a card file: an index is displayed on one side of the screen while information relating to the chosen index item appears on the other side.
Many useful features have been built into the software. They are accessible by using function keys and menus. Rapid searches of data on one or more words are possible. A Memo function enables comments to be added to index data. A blank subject index is also provided for your own notes and information.
The $E W \& W W$ Soft-Index should be treated like a book. A purchased copy should be run on only one machine at any one time but a copy may be taken for backup.
Now for a look at the main features of the software. Full instructions for use are contained in the manual supplied with the disk.
The $E W \& W W$ Soft-Index is shipped on disk in 'archived' form. There is a simple install procedure which results in the program
and data being 'expanded' and copied to a directory called EW on drive C, taking up 600 Kbyte . Other directory names and drives can be used.
To run the program, type 'EW' followed by Enter.

Table of contents

After a short pause, the Table of Contents screen appears. A list of subjects is displayed on the left hand side of the screen. The Information section provides details about $E W \& W W$ such as editorial information, magazine subscription rates and back copies. It also contains licensing details, etc. 'Notes' is, as the name suggests, for your own notes, information and contacts, etc.
To access the subject index, move the highlight bar to that subject using the up or down arrow keys and the PgUp or PgDn keys. Then press the Enter key. A faster way of positioning the highlight bar is to type the first letter of the desired subject. If a mouse is in use, it can be 'clicked' on a subject to select it.
On the far left of the screen there is a 'progress bar' which shows where you are, relative to the rest of the file. The little arrows at the top and bottom of the progress bar are for scrolling up and down with the mouse. The mouse can be 'clicked' on any part of the progress bar to go to different parts of the Table of Contents.
The 'Help line' at the bottom of the screen identifies the various functions available. Pressing the F1 key brings up a page of more detailed help information.
The Search function is perhaps the most useful feature. Pressing F2 enables word searches to be made of either the individual subject indexes (very fast) or all of the data.
On the right of the screen is a welcome message. This is a scratchpad area for your notes which can be modified or edited by pressing the 'forward arrow' key. Text can be typed anywhere in the box. Press escape to exit.
The current line number and total lines of the Table of Contents are displayed at the bot-
tom right of the screen.
To exit the program press F10, or 'click' the mouse on the small square in the top left of the screen.
The Subject Index shown belongs to Circuit Ideas. The screen has two halves with an index displayed on the left of the screen and data on the right. Moving the highlight bar to a different index entry automatically brings up the correct data as with a card file. A rapid way of positioning the highlight bar is to spell the desired item on the keyboard.
As before, the 'Help line' at the bottom of the screen identifies the various functions available. Pressing the F1 key brings up a page of more detailed help information.
F2 is the Search function which is more extensive than in the Table of Contents screen. It allows searches on up to five words, either together (and) or individually (or). Entries can also be marked with an arrow for quick access later.
Information in the top left of the screen shows that two items are marked and that you are pointing at the first one. The + and - keys are used to 'travel' between marks. In the opposite corner an ' R ' symbol shows that the file is 'read-only'; it cannot be edited as the information is fixed. However, using the Memo function, F3, a note can be added in the bottom line of the data. In the Notes subject index data can be added or altered using the edit function, F4.
'Other' functions on the F5 key enable printing. Individual records can also be stored in an ascii text file for incorporation into word-processed documents - particularly useful for company names and addresses.
To return to the Table of Contents press F10 or escape, or 'click' the mouse on the small square in the top left of the screen. The computer remembers where you are for next time.
I hope that you will make suggestions about the content, presentation and software operation. The plan is to publish a new issue of the disk annually, and any useful amendments will be incorporated.

Advances in

 \section*{A}

 \section*{A}}

Growth in demand for a-to-d converters - in particular for devices with lower power consumption - has triggered the introduction of a number of new designs over the past two years. Simon Parry reports.

The last two years have witnessed a hive of activity in the world of analogue-todigital converters. Designers have been spurred to develop novel architectures by demand from growing audio and communications applications.
Sigma-delta oversampling, interpolation, residue or subranging and pipeline techniques have come to the fore as engineers have striven to gain performance without significantly impacting either chip area or power consumption. The old a-to-d converter king - the flash device - has hardly had a look in because of its high power-consumption.
The last few months have proved exceptional in the number of analogue-to-digital converters being either launched onto the market or nearing completion in the lab. And the trend is due to continue. Again next year, the

International Solid State Circuits conference has two whole sessions dedicated to data converters.
Thankfully Europe - the UK included - is not being left behind in the innovation stakes. Philips engineers continue to drive forward the technology and in recent months world-class analogue-to-digital converters have been designed by UK engineers.
For instance: Data Conversion Systems, a small UK chip design company based in Cambridge, has developed a world-beating analogue-to-digital converter. Engineers there have designed a 500 kHz analogue-to-digital converter with a 14 -bit resolution employing novel techniques which ensure a compact circuit.
Mark Pinchback, lead designer, reports that samples of a prototype two-chip implementa-

Pinchback's 14-bit converter is a two stage residue design attaining its dynamic range with overlap

tion have just been received and are currently undergoing testing.
"The testing is going well," said Pinchback. "It will be difficult characterising the complete performance of the analogue-to-digital converter because it is in two parts at the moment but we should have a single monolithic chip early next year."
The single chip should be the industry's first monolithic converter to offer a 14 -bit 500 kHz performance, says Pinchback. It will cost significantly less and have a higher reliability than the hybrid converters currently available. "DCS is hoping to have the part on the market by October next year," he said.
According to Pinchback current monolithic 14-bit analogue-to-digital converters do not have a sampling rate above 100 to 200 kHz . "This device is at least twice as fast," he said. "Also, although the initial target is 500 kHz , the design is capable of going to 2 MHz ."
The converter employs the classic two-stage residue architecture in which the output digital word has been converted from the analogue input in two halves. However, clever circuit design and the incorporation of signal processing techniques have meant dramatic silicon area savings and an enhanced dynamic range, says Pinchback.
In a residue converter a first-stage analogue-to-digital converter produces a coarse approximation of the input analogue sample. The digital output is reconverted into the analogue domain and subtracted from the analogue input. The residue, or conversion error, is amplified and then converted by a second 'fine' converter. The coarse and fine digital outputs are combined to produce the final digital output word.

However, a conventional residue converter needs an overlap between the first and second digital samples to correct for system errors. This overlap reduces the overall dynamic range; two 8 -bit analogue-to-digital converters with an overlap of 2 bits would be needed for a 14 -bit output.
The breakthrough in the DCS converter is to use only 7-bit converters combined with digital signal averaging to give a true 14-bit dynamic range on the output. A two-bit overlap has to be employed - just like any other residue converter - but the signal averaging over a number of samples suppresses the noise floor 'recovering' the dynamic range.

The arithmetic logic unit, alu, performs the signal averaging on the fine second-stage conversions. The user of the analogue-to-digital converter is able to control the alu to trade-off resolution against speed. At 500 kHz 16 samples are averaged but at 2 MHz only four are used.
Other features of the converter include a DCS-developed 'flashDAC' approach inside the converter and novel dual-mode front-end sample-and-hold amplifier. In the flashDAC circuit, the digital output from the initial

The basic Sigma-delta modulator, above, employed by the Linkoping University team utilises a memory-cell with low noise clocking scheme(below).

coarse analogue-to-digital conversion is reconverted into an analogue residue signal without first being encoded. This combined with a subranging architecture for the coarse flash analogue-to-digital converter ensures there are no pipeline delays allowing the complete system to provide continuous 14-bit conversion at up to 2 MHz signal input.
Initial simulations predicted a signal-tonoise ratio of 82 dB at 500 kHz and 78 dB at 2 MHz . The two-chip prototype and the final monolithic device are being built in a $2 \mu \mathrm{~m}$ Bicmos process from SGS-Thomson Microelectronics.
At Philips, engineers are preparing samples of a folding-interpolating analogue-to-digital converter to offer a 10 -bit dynamic range at up to 100 MHz sampling. Importantly, the device, the TDA8762, will consume half the power of the company's present TDA8760 chip; that is about 350 mW .
The TDA8762 is more akin to the Philips TDA87/8 part which uses folding-interpolating techniques to attain 8 -bit resolution at a 650 MHz sampling rate rather than the TDA8760 which is a two-stage residue converter.
Folding-interpolation techniques use reentrant transfer functions that allow the designer to reduce the number of input stages for two reasons. First quantisation levels are
interpolated between comparator stages and analogue preprocessing of the input signal means each comparator stage detects more than one level of the input.
The major advantage of this approach is the reduction of input capacitance, because of the reduced number of input stages, allowing a higher performance.
"We've seen samples of the TDA8762 with a performance better than 9.6 bits with a 40 MHz input," said Claude Giraud, Philips product manager. "A slight modification of the architecture should take us to 100 MHz ."

At Linkoping University in Sweden a team of engineers has designed an 11-bit sigmadelta modulator (the basic building block of sigma-delta data converters) using switchedcurrent circuit techniques rather the conventional switched-capacitor schemes.

Although the performance of the modulator is unremarkable - it attained a 60 dB signal-to-noise-and-distortion ratio with a 2 kHz input and an oversampling ratio of 128 - the circuit is notable for its use of switched-current techniques.

The modulator was designed in a $0.8 \mu \mathrm{~m}$ digital cmos process and operates from a 3.3 V supply. A modified memory cell provided reduced power consumption and chip area and eliminated some of the noise sources associated with the switched-current technique.

Piggy

Piggy

Piggy-backing two or three balanced-driver audio ICs improves both noise and common-mode rejection ratio performance.
Ben Duncan has been investigating the benefits.

Analog Device's SSM-2142 balanced driver IC is a cross-coupled circuit simulating a signal transformer with a cen-tre-tapped secondary. It suits both audio and instrumentation.
To avoid degrading low-frequency com-mon-mode rejection - particularly in instrumentation - the manufacturer cautions that output dc blocking capacitors must not be used. This is because the close matching, needed to avoid degrading the output com-mon-mode rejection, is doubtful with the elec-trolytic-sized values required, of at least
$100 \mu \mathrm{~F}$. However, real 2142s commonly exhibit high dc output offsets, commonly $\pm 10 \mathrm{mV}$ to above $\pm 100 \mathrm{mV}$.
There is no offset null capacity. To avoid the expense of selecting components, and assuming the input can be direct coupled, then the

Fig. 2. Bandwidth remains almost constant whether the IC is used alone, bottom curve, or with two or three devices piggy-backed, middle and top curves. Parallelling devices does improve the fransfer function by taking gain nearer to unity.

Fig. 1. To improve noise and cmr performance, ICs are simply piggy backed and soldered to each other.

Fig. 3. Plotting distortion against output level shows an improvement at lower levels, where noise is dominant.
performance
preceding op amp stage can be offset by an amount that best nulls the 2142's outputs, both to each other - differential mode - and to ground - common-mode. Abusing an op amp's offset null facility in this way can degrade dc stability over temperature - a point that might need consideration in critical dc applications.

The SSM-2/42 is about 10 dB noisier than is the norm in professional audio for the same balanced circuit. This is because the balanced circuit is commonly built, 'discretely' with an NE5532 op-amp. But the 2142 has the advantage of a good common-mode rejection without trimming, and a major saving in pcb real estate. Its signal-to-noise ratio can be improved by parallelling, Fig. 1. The ics are simply stacked vertically, ie, soldered leg to shoulder.

Assuming dc offsets are matched within a few percent, outputs won't appreciably load each other, and each sees some fraction of the output loading. This may reduce total harmonic distortion in some cases.
Figure 2 shows how bandwidth is unaffected while unity gain is ever more closely approached, with one then two and three paralleled units driving 600Ω. Direct-current offset was measured at this stage, using a number of samples.

Differential offset hardly varied but com-mon-mode offset could increase cumulatively. Direct-current offset was measured at this stage, using a number of samples. Grading would overcome this.
Figure 3 shows \%THD $+N$ plotted against level. The lowest point represents pure percentage total harmonic distortion. There is no difference here between one or three stacked devices. The curves on the left are by contrast mainly noise (' $+N$ '), and the divergence shows that three stacked 2142 s (lower curve) are quieter. Figure 4 confirms this: above 500 Hz , where the ear is most sensitive, the stack of three is about 3.5 dB quieter, as would be predicted.

Figure 5 shows how output common-mode rejection below 10 kHz progressively improves by up to 15 dB at low frequency, as units are stacked. The BBC test method was used; see the SSM2 142 data sheet. Higher stacks have not been tested, as the law of diminishing returns sets in rapidly with parallel channels.

Fig. 4. Above about 500 Hz , where the ear becomes more sensitive, stacking three ICs lowers noise by about $3.5 d B$.

Fig. 5. Output common-mode rejection below 10 kHz improves progressively by up to 15 dB when three devices are stacked, bottom curve.

HISTORY

DETE
 before

Its effect is similar to
that of a diode, but the electrolytic detector clearly relies on different principles. George Pickworth puts the barretter back on the test bench.

Fessenden's electrolytic barretter, patented in 1903, was the first practical continuous wave detector. Yet for such an important device in the history of radio, technical information on its operation is scarce. Only by building modern replicas of various models and carrying out experiments ('Detection before the diode', $E W+W W$, December, pp.1003-1006) can its operation be understood.
The end result of using the barretter Fig. 1 is half wave rectification of rf current, an effect simulated today by substituting a diode for the barretter and applied current source. With rf current forward-going through the diode (positive at point A, Fig. 2), the device conducts and half cycles are dissipated. When polarity reverses (rf current positive at B) the half cycles are blocked by the diode and routed through the load resistor to appear as posi-tive-going half cycles on the oscilloscope.

Rectification in this way, by dissipation of unwanted half cycles, is very inefficient in that the barretter damps the tuner heavily and poor sensitivity results. But it leaves the wanted half cycles untouched, so non-linearity of rectification does not effect the end result and it can perform well as an am demodulator.
In a biased-carborundum crystal-set configuration (Fig. 3), where wanted half cycles pass through the detector and unwanted half cycles are blocked, it can not be made to operate. So an advantage of the crystal-set configuration that the load on the tuner is virtually that presented by the headphones, around $30 \mathrm{k} \Omega$ at 1.0 kHz - is lost.

Setting up experiments

Its effect is similar to that of a biased diode, but obviously the barretter operates in a quite different manner. To find out exactly how, we must experiment.
Using a typical receiver circuit, Fig. 1, and a function generator as a signal source, the potential of the applied dc can be adjusted until the waveform across the load resistor (observed on the oscilloscope) shows that neg-ative-going half cycles are greatly attenuated. The trace consists principally of positivegoing half cycles which, significantly, are found to be riding on the applied dc.
If the applied dc is reduced to a level where forward current no longer flows, ie below 1.7 V , rectification ceases and both negative and positive-going half cycles are then displayed. Optimum forward current is 10 $.400 \mu \mathrm{~A}$ (applied dc 1.9-2.75V) depending on amplitude of the rf input Fig. 4.
But amplitude of the positive-going half cycles is only 25% of that achieved with the diode, even though input power is substantially the same. Possibly, when rf current is positive at B (Fig. 2), some of it passes through the barretter as reverse current and less passes through the load resistor. With the diode, reverse current is minimal.
Moreover, while negative-going half cycles (as displayed by the oscilloscope) are present but small with the diode, with the barretter they are significant and their magnitude increases with frequency, causing the forward/reverse current ratio to deteriorate progressively, ultimately becoming 1:1 (see panel entitled Oscillograms).
One explanation for the effect is that when rf current is positive at point A, the barretter's forward resistance is much higher than the diode's, causing significant current to flow back through the load resistor and appear, to the oscilloscope, as negative-going half cycle.
Presumably, the barretter's forward resistance increases with frequency, causing more 'reverse' current to flow through the load resistor, in turn increasing the magnitude of the negative-going half cycles. On the other hand, with optimum applied dc, the amplitude of the positive going half cycles remains more or less constant.
This can be simulated with a diode, Fig. 5a, where, by choosing appropriate resistors, Fig.

5b, the end effect is approximately that of the hybrid barretter. In the circuit R_{2} shunts the load resistor and has a value of about $4.0 \mathrm{k} \Omega-$ about the same as the headphones.

Blocking diode

What can we learn from blocking the reverse current? Putting an AA119 diode, with corresponding polarity, in series with the barretter at point X on the cathode line, Fig. 3 causes forward current to cease when the applied dc is less than 1.7 V . The output waveform disappears completely but the rf half cycles riding on the steady forward current can be observed much more readily on the oscilloscope.

Provided the applied dc has a potential high enough to allow a small forward current to flow through the barretter, the waveform displayed by the oscilloscope is virtually identical, in shape and magnitude, to that for the diode alone. Reduction in amplitude of nega-tive-going half cycles ('reverse current') could be due to the blocking diode somehow reducing the barretter's forward resistance to that of the diode.

Water voltameter

We have seen how, at first glance, the barretter looks behave as a biased diode. But closer inspection reveals it to be a unique device, with operation based on polarisation and the movement of ions in an electrolyte during electrolysis. A brief look at the water voltameter could give some insight here.
The water voltameter does not ordinarily produce a current, but uses an applied current to decompose water into oxygen and hydrogen. The volume of gas produced is in direct ratio to the applied current and can easily be measured. Oxygen is released at the anode and hydrogen at the cathode.
When the applied voltage is less than 1.7 V , current flows through the voltameter for only a short time, before stopping.
In simple terms, the electrodes became covered with a gaseous insulating film having a maximum dielectric strength of about 1.7 V . So, when potential of the applied dc is less than 1.7 V , current falls quickly to virtual zero through polarisation.
In this state, the electrodes are in effect hydrogen and oxygen, so when connected to an external load the internal current flows from the oxygen to the hydrogen electrode. Indeed, the voltameter seems to behave as if it were a capacitor and can be made to discharge, briefly, through an external load with the anode behaving as if it were the positive pole of a current source.
Interestingly, the hybrid barretter maintains a steady $40 \mu \mathrm{~A}$ through a microammeter (resistance 650Ω) for 5 h after the applied dc is switched off.
Using a digital voltameter to measure applied dc and an analogue microammeter to measure current, Fig. 6a, the experimental water voltameter develops a constant 0.2 V even after standing for long periods with the applied dc switched off. Unless precautions
are taken, this will cause a reverse current, heavy enough to damage the microammeter.
Starting with 0.2 V as the base line, 0.1 V increments in the applied dc cause a momen-
tary rise in current to a peak value, Fig. 6b, which after 10 s declines. The drop is attributed to the dielectric strength of the gaseous film stabilising at a new level after each incre-
 showing the route of positive-going half cycles for points A and B.

Fig. 4. In a biased' carborundum crystal-set configuration, wanted half cycles pass through the detector while unwanted half cycles are blocked. The barretter can not be made to operate in this configuration. oscilloscope
 -
 5b. Choosing appropriate resistors.

HISTORY

Reliability

All the replica barretters needed time to settle down, when some chemical reaction was probably taking place between the electrodes and the electrolyte

After the hybrid barretter was 'tuned' to give best results and allowed to settle, it behaved reliably and consistently during the period of experiment.

Ultimately lead sulphate deposits on the cathode became so great that the barretter ceased to function. But, so far, no deterioration has occurred with replicas employing platinum or mercury cathodes.
mental increase in applied dc. After 10s the decline continues, but very slowly.

When the applied dc reaches about 1.7 V , as anticipated, the characteristics of the voltameter change and current increases more or less linearly with applied dc.

Water voltameter v hybrid barretter

In the hybrid barretter, current rises immediately to its steady value, Fig. 6c, and any slight increase in applied potential causes it to rise and remain steady at a new high point. The behaviour approximates to the lower values dotted curve for the voltameter, Fig. 6b.

Not surprisingly, the characteristic curve for a Delaney lamp detector is found to be similar to that for the water voltameter as the only real physical difference is that the Delaney lamp electrolyte is 20% nitric acid.

Differing electrical characteristics of the Delaney lamp detector, compared to the barretter, are attributed to the barretter's tiny anode. Only a minute current is required to polarise the anode, so stabilisation occurs too quickly to be observed on the microammeter. For the water voltameter, a momentary reversal of applied current causes instant de-polarisation, followed quickly by re-polarisation. This may well apply to the barretter where the smaller anode requires less current to repolarise after conducting positive half cycles.

Such an interpretation is consistent with frequency response being related to the surface
area of the minute electrode and explains why commercial barretters with much smaller electrodes than my replicas had a higher frequency response.

The difference could also account for the Delaney lamp being less efficient than the simple Fessenden type barretter, and much less efficient than the BIWC design.

Sensitivity

We could attempt to measure sensitivity of barretter type receivers in terms of input voltage. But more informative is to keep input power fixed and compare the amplitude of the output waveform of the barretter with that of a modern diode.
The wave train generator is essentially a shock-excited oscillator based on a capacitor charged to a given potential and discharged via a thyristor. So the amount of energy present in a wave train is assumed to be reasonably constant over a wide range of loads.
Substituting a point contact diode for the barretter increases the peak potential of the wave train envelope by a factor of five. At a frequency of 10 kHz and a wave train repetition rate of 200 Hz , the peak potential of the wave train envelope needs to be around 500 mV to produce a moderately loud tone. But at 100 kHz and a wave train repetition rate of 1.0 kHz , a peak potential of 200 mV is adequate. Apparently increased sensitivity is probably due to diaphragm resonance and to the ear being most sensitive at around 1.0 kHz .

Incoming wave trains would have to contain a large amount of energy for the peak potential of the envelope to be $200-500 \mathrm{mV}$. But, spark transmitters were capable of packing an enormous amount of energy into each wave train and as we have seen, could damage the minute barretter electrode, and was one reason for employing the Delaney lamp detector.

Overall, we have seen that the replica barretters, which represent c. 1905 experimenters' devices, were very inefficient when compared with modern diodes.

But, the fact that a tone could still be obtained with high impedance magnetic headphones when the forward/reverse current ratio

Oscillograms

To produce oscillograms, the hybrid barretter was used with a $5.0-500 \mathrm{kHz}$ wave train generator having a wave train repetition rate variable from 50 Hz to 1.0 kHz . (My miniature spark transmitter was used only in a railway tunnel because of the possibility of causing interference.)

The wave train generator is inductively coupled to the receiver tuner, so some degree of interaction is inevitable. True simulation of energy arriving via em waves would only be possible by to using opto/electric devices, but this was not warranted for this study

Starting at 10 kHz , the wave train generator's output frequency was incrementally increased to 200 kHz and the ratio of positive-going half cycles to negative half cycles was measured directly from the oscilloscope screen and plotted on a graph.

My ancient magnetic headphones were used to evaluate the purity of the tone, and note any effect they might have on output waveform when compared with a noninductive load resistor. It was found that replacing the headphones with a $8.0 \mathrm{k} \Omega$ non-inductive load had only a marginal effect on waveform at frequencies below 50 kHz .

But, at frequencies above 50 kHz the headphones had some effect on the envelope shape, an influence that increased with frequency and was presumably caused by the back emf generated by the electromagnets.

For more information on oscillograms and related experiment, please see previous issue.
fell to about $1.2: 1$ at 500 kHz throws new light on early rectifier type detector

Acknowledgements

Thanks to goldsmith A Thornton, Kettering, who made and fused the platinum electrodes into the glass ware. Thanks also to the DTI for kindly allowing me to continue my barretter experiments in the railway tunnel.

Fig. 6a. The experimental water voltameter develops a constant 0.2 V even after standing for long periods with the applied dc switched off. 6 b . Starting with 0.2 V as the base line, 0.1 V increments in the applied dc cause a momentary rise in current to a peak value which after 10s declines. 6c. In the hybrid barretter, current rises immediately to its steady value and any slight increase in applied potential causes it to rise and remain steady at a new high point.

PROGRAM 8

CHIPS IN THE TIME IT TAKES FOR ONE!
At 6645 costing around half the price of slower gang programmers, the Speedmaster 8000 gang programmer uses a simple 2 button operation in stand-alone mode. PC operation gives comprehensive file handling and editing functions. Capable of gang and set programming it supports 32 pin EPROMs to 8 M with no adaptors required. Programming cycle times of only 23 seconds for 8 27C010's mean your throughput can now be faster than ever before.

CIRCLE NO. IIO ON REPLYCARD

ROM/RAM EMULATOR PLUG IN CARDS

Using these expansion cards your programmer can run as if there's an EPROM or RAM plugged into the target socket. Available as 8 bit wide $128 \mathrm{k} \times 8$ as standard, upgradable to $512 \mathrm{k} \times 8$, and 16 bit capable of emulating 40 pin EPROMs. They can emulate both 5 V and 3.3 V devices.

CIRCLE NO. IIION REPIY CARD

PACKAGE ADAPTORS

A full range of package adaptors is available for non DIL devices and parts with more than 40 pins. Prices from $£ 65$.

Circle no. II2 on reply card
DISTRIBUTORS
BENELUX: +3255313737;
CYPRUS: 02485378;
DENMARK: 048141885;
FINLAND: 070039000; FRANCE: $0139899622 ;$
GERMANY: 060827421615;
GREECE: 019020115;
ITALY: 02457841; JAPAN: 053865501 ; NORWAY: 063840007; SINGAPORE: 04831691: SOUTH AFRICA: 011974 |21|/I521; SPAIN: 013270614 USA: Distributors required.

FREE SOFTWARE UPGRADES! -
 KEEP UP TO DATE WITH NEW DEVICES

Before you choose your programmer, check out the cost of ownership. While other manufacturers charge for every update or require expensive libraries and modules, ICE Technology programmers
support the whole range of devices at no extra charge*. And keeping up to date is FREE for life at no charge on our BBS service.
Just dial on: $+44(0)$ 1226761181, and download the latest version.

Disk based upgrades are available free in the first year, and a small administration charge made for each subsequent disk.

* for DIL up to 40 pins.

CIRCIENO. 113 ON REPLY CARD

AT LAST, AN AFFORDABLE 3V AND 5V UNIVERSAL PROGRAMMER!

The latest universal programmers from ICE Technology, the Micromaster LV and Speedmaster LV, now support programming and verification of 3.3 V devices, now you can test devices at their actual operating voltage.

They offer wider device support than ever before, the majority requiring no adaptor. They will operate from battery or mains power,

Speedmaster LV

Programmes 3 and 5 V devices including memory, programmable logic and 8748/51 series micros. Complete with parallel port cable, software, recharger and documentation.

£495

MicromasterLV

As above plus support for over 90 different micro controllers without adaptors, including PICs, 89 C 51 , 87C751, MC68HC705, ST6, Z86 etc.
£625
making them flexible enough whatever your programming needs.
Not only that, as new devices come onto the market we give free software upgrades and the units' modular design, with easy upgrade path, protects your investment.

Available now and priced from E495 they are everything you'll need for programming, chiptesting and ROM emulation.

CIRCIE NO. 114 ON REPIY CARD

8 bit Emulator card

Expansion card containing 8 bit wide ROM RAM emulator, includes cable and software. $128 \mathrm{~K} \times 8$.

16 bit Emulator card

Expansion card containing 16 bit wide ROM RAM emulator, includes cable and software. $128 \mathrm{~K} \times 16$.
$£ 195$

ICE Technology Ltd. Penistone Court, Station Buildings, Penistone, South Yorkshire, S30 6HG, UK.
Tel $+44(0) 1226767404$, Fax $+44(0) 1226370434$, BBS $+44(0) 1226761181$

Call now to place your order, for more details or a free demo disk, or call our bulletin board to download the latest demo. Alternatively clip the coupon or circle the reply number

All major credit cards accepted

FEATURES

- Widest ever device support including: EPROMs,
EEPROMs, Flash, SPROMs, BPROMS, PALs, MACH, MAX, MAPL, PEELs, EPLDs Microcontrollers, etc.
- High speed, programmes a PIC16C54 in 0.5 secs (Micromaster LV).
- Up to 84 pin device sưpport with adaptors.
- Connects directly to parallel port - no PC cards needed
- Built in chiptester for 7400, 4000, DRAM, SRAM.
- Lightweight and operates from mains or battery.
- Optional 8 or 16 bit wide ROM/RAM emulator.
- Designed, built and supported in the UK.
- FREE software device support upgrades via bulletin board.
- Next day delivery.

Do you have an original circuit idea for publication? We are giving $£ 100$ cash for the month's top design. Other authors will receive £25 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

Quick and accurate impedance measurement

Having a large number of inductors with unknown impedances, I designed this instrument to allow fast, but accurate measurement up to around 10 kHz ; at 20 kHz it is in error by about 20%.
A sinewave from the Colpitts oscillator goes to T_{2}, being adjusted to give $3 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ at Tr_{2} collector by R_{4}; aside from an amount of buffering, $T_{r_{2}}$ produces a gain of 15 with an output impedance of just less than $10 \mathrm{k} \Omega$. Capacitor C_{4} provides dc isolation.
An unknown impedance goes in series with $R_{9,10,11}$, three pots wired series. Back-to-back diodes allow C_{5} to charge in only one direction, so that when the three pots are adjusted for lowest voltage across C_{5}, the unknown is in balance with the pots, which can be either measured or calibrated.
Frank Simonsen
Burnaby
British Columbia Canada

Components:
R_{9}, R_{10}, R_{11} Consists of 3 linear pots in series 100R, $1 \mathrm{kO}, 10 \mathrm{kO}$
$\mathrm{C}_{1}, \mathrm{C}_{3} \quad 2 \mu$ non-polarised
$T r_{1}, \mathrm{Tr}_{2} \quad$ 2N3703 general purpose transistor
100 mH
1N914 silicon diodes (if greater accuracy is required diodes should be balanced)

These connect to a high impedance voltmeter. $\mathrm{R}_{9}, \mathrm{R}_{10}, \mathrm{R}_{11}$ then adjust for lowest dc voltage

Quicker than an LCR bridge for a large number of measurements, this meter is very accurate to about 10 kHz .

Double an op-amp's output current

Using both the op-amps in a dual package drives a 24 V pk-pk signal into a 300Ω load, doubling the output current of a single device. The arrangement serves when the use of a higher-power op-amp cannot be justified. Circuit arrangements for both
polarities are shown
Op-amp IC_{2} is in the feedback path of IC_{1}, load current being shared in the ratio $I_{4} / I_{3}=$ R_{3} / R_{4}, currents matching if resistor values are equal. Normal output current of 20 mA is increased to 40 mA .

Ms Hema and V Manoharan Naval Physics and Oceanographic Laboratory Cochin India

If a power op-amp is hard to justify, using both op-amps in a dual package doubles load current.

YOU COULD BE USING A
 1GHz SPECTRUM ANALYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $£ 100$ monthly star author's fee, together with $£ 25$ for all other ideas published.
Our judging criteria are ingenuity and originality in the use of modern components - with simplicity particularly valued.

Generating high voltages

Acar ignition coil and a blocking oscillator will generate pulses of about 30 kV .
A separate coil must be used for the blocking action, since ignition coils only have two windings, the one shown being made from 1 mm enamelled copper wire on a laminated iron rod measuring 7 by 7 by 57 mm . The circuit oscillates at 1.5 kHz from a supply of just a few volts up to over 12 V , limits being set by the coil insulation and the transistor voltage rating. Use a $5-7^{\circ} \mathrm{C} / \mathrm{W}$ heat sink for continuous working.
This arrangement will sustain a steady 0.5 in spark at a 10 V supply voltage.
D Di Mario
Milan

Blocking oscillator and car ignition coil produce 30 kV pulses.
Italy

Frequency doubler/quadrupler for square waves

Twice and four times the input square-
wave frequency are produced by two ICs and a few passive components.

Inverter 1 in Fig. 1 integrates the square wave to produce a triangle, which is amplified by inverter 2 and squared by inverter 3. Since waveform B in Fig. 2 is
90° phase-shifted with respect to A and C is in phase with B, C is effectively phaseshifted by 90° at one frequency. Exclusiveoring C with the input produces D , which is $2 f_{\text {in }}$. An identical process is carried out by inverters 4,5 and 6 and the second ex-or to produce $4 f_{\text {in }}$.
 frequency.

L Szymanski
Stamford
Lincolnshire

Fig. 2. Waveforms seen in the circuit of Fig. 1

Synchronised power-rail switching

Dlugging a mixed-rail board into an already-powered system can cause power-supply problems, particularly where digital supplies must be applied either before or simultaneously with the analogue rails. Surges can appear in the main

Fig. 1. Dallas EconoReset delays application of analogue supply until 5 V digital rail is established.
system. This circuit overcomes the problem.
At the core of the circuit is the Dallas DSI233 EconoReset microprocessor reset IC ($E W+W W$ November, 1992) to delay the analogue rail. After a delay of 200 ms after the 5 V input in Fig. 1 rises above the IC's threshold, it turns Tr_{2} on and switches on the 15 V supply via Tr_{1}.
For dual-polarity rails, the circuit of Fig. 2 switches both together. Since the negative rail uses a p-channel fet, isolated switching is provided by the opto-isolators. Connecting the isolator leds in series is an effective fail-safe arrangement; if one led fail goes open-circuit, the other is blocked and neither supply comes on. To switch the 5 V at the same time as the 15 V supplies, connect a p-channel mosfet with its source to the 5 V input, its drain as the output and drive the gate with Tr_{3}.
Steve Winder
lpswich
Suffolk

Fig. 2. Dual supply switched by the same method, but with opto-isolators to take account of the p-channel device on the negative rail.

DC motor controller produces high torque at low speeds

U
sing a pulse-width modulator and phase-locked loop, this circuit smoothly controls a 6 V dc motor, according to the input frequency, down to low speeds at high power.
Feedback to the pll is by way of a slotted disc on the motor shaft, a difference between
the fed-back pulses and the input frequency causing a voltage variation into the pll and a change in pulse width driving the motor. Phase-locked-loop switching frequency is determined by the values of R_{10} and C_{4}.
Values of the filter components R_{4} and C_{2} must be selected to suit the motor in use, C_{3}
smoothing the pulses and reducing noise. To check operation, connect one channel of a dual-beam oscilloscope to the signal input and the other to pin 3 of the 4046.
Ernst Schmid
Munchen
Germany

Binary voltage generator

E ach operation of the push-button E switch produces at the output a binary fraction of a reference voltage.
Ten decoded outputs of the $4017 B$ cmos counter IC_{1} are input to an AD7533 10-bit digital-to-analogue converter, current from which is converted to vollage by the $O P-07$ low offset op-amp. Only one input to the d-to-a is high at any time.
Each time the switch is pressed, the counter advances by one count and the output voltage doubles until $V_{0}=V_{\text {ref }}$, in the progression $V / 512, V / 256, V / 128$, etc. Dehouncing is provided by R_{1} and C_{1}. Adjust the op-amp gain by the potentiometer until $V_{0}=V_{\text {ref }}$ when the counter msb is high.
MS Nagaraj
ISRO Satellite centre Bangalore India

Each press of the switch advances the voltage output in a binary progression from $V_{\text {ref }}$ to $V_{\text {re }} / 512$.

PCBs for Douglas Self's power amplifier series

Circuit boards for Douglas Self's high-performance power amplifier are now available via $E W+W W$.
Detailed on page 139 of the February issue, Douglas Self's state-of-the-art power amplifier is the culmination of ideas from one of the most detailed studies of power amplifier design ever published in a monthly magazine. Capable of delivering up to 100 W into 8Ω, the amplifier features a distortion of 0.0015% at 50 W and follows a new design methodology.
Designed by Douglas himself, the fibreglass boards have silk-screened component IDs and solder masking to minimise the possibility of shorts. Sold in pairs, the boards are supplied with additional detailed constructional notes.
Each board pair costs $£ 45$, which includes VAT and postage, UK and overseas. Credit card orders can be placed 24 hours on 081-652 3614. Alternatively, send a postal order or cheque made payable to Reed Business Publishing to EW+WW, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Mosfet drive

booster

Originally used for mosfet gate drive in a radio-control motor-speed controller, this circuit boosts gate drive from a $5-6 \mathrm{~V}$ supply to $8-10 \mathrm{~V}$, providing an improvement in mosfet on resistance. Its advantages are that it needs no separate boost regulator, it produces no extra switching noise, and it takes up little space, particularly if a tantalum bead capacitor is used.

Figure 1 shows the circuit, with the switching transistor represented as a mechanical switch. When the switch is on, C charges to $V_{\mathrm{s}}-V_{\text {on }}-2 V_{d}$, where $V_{\text {on }}$ is the switch on resistance and V_{d} is a diode voltage drop. When off, $V_{\text {out }}$ becomes $2 V_{\mathrm{s}}-2 \mathrm{~V}_{\mathrm{d}}$. Loading the circuit does, of course, cause a drop in $V_{\text {out }}$, but attention to leakage paths maintains the level for many seconds or even minutes. Hold time is affected by capacitor value.

Load capacitance $C_{\text {in }}$ and equivalent output resistance in the practical circuit of Fig. 2 slow the mosfet's switch-on to around $4 \mu \mathrm{~s}$ for a 2 nF capacitor, but this has the effect of reducing rf noise and

Fig.1. Charge on capacifor adds to supply voltage to increase output voltage.

Fig.2. Practical circuit of mosfet gate drive booster, using circuit of Fig. 1.

avoids simultaneous conduction in pushpull circuits, although some switching losses do occur. Turn-off time depends on the on resistance of Tr_{1} and is smaller, at less than 100 ns . It is possible to extend the
technique to triplers, but losses are then increased.
A New
Fishponds
Bristol

Finally an upgradeable PCB CAD system to suit any budget ...

BoardCapture - Schematic Capture

- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information

139

- Automatic on-line annotation

- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control - Back annotation from BoardMaker2

BoardMaker

BoardMaker1 - Entry level
 - PCB and schematic dráting

- Easy and intuitive to use
- Surface mount support
- 90, 45 and curved track comers
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMaker1 plus
- Full netilst support - OrCad, Schema, Tango, CadStar
- Full Design Rule Checking - mechanical \& electrical
- Top down modification from the schematic
- Component renumber with back annolation
- Report generator - Database ASCII, BOM
- Thermal power plane support with full DRC

BoardRouter - Gridless autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec, Roland \& Houston
- Photoplotters - All Gerber 3×00 and 4×00
- Excellon NC Drill / Annotated drill drawings (BM2)

Call for info or full evaluation kit
Tsien (UK) Limited
Tel (0354) 695959
Fax (0354) 695957

CRYSTAL OSCILLATORS

2M4576 3M6864 5MO 5M75 6M144 7M000 7M3728 8MOOO 12M000
 16 M 000 （ 490048 M 00064 MOOO 1 MOOO 1 M 84324 MOOO 10 MOOO 164000
84 MO

CRYSTALS

4MO256 10M368 17M6256 18M432 25M000 28M4694 31M4696 2M000 2M4576 2MT7 ЗМ00 ЗM2768 ЗМ579545 ЗМ58564 ЗМ93216 4M000 4M19304 4M433619 4M608 4M9152 5M000 5M0688 6MO000 6M400 8MO00 8M488 9M8304 10M240 10M245 10M70000 11M000 16M5888 17M000 20 M000 21 M 3002 1M 855 22M1 18424 M000 34M368 36M75625 36M76875 36M78125 36M79375 36M8062 36M81875 36M83125 З6M84375 38M900 49M504 54M 9160 RD27M045 OR27M095 YW27M145 GN27 M195 127 M245 TRANSISTORS
MPSA92．

```
B4C spec．．．．．．．．．．．．．．．．．．．．
£ \(£ 1 / 30 £ 3.50 / 10\)
```

2N3819FETS short leads．
2N2907 CROPPED．．．．．．．．．
00．E4
POWER TRANSISTORS

£1．35 ea

TEXTOOL ZIF SOCKETS
28 PINUSED．．．．．．．．．．．．．．．． 40 PIN NEW． DUAL INLINEDEVICES ．．．COUPLINGSUPPLIED ．．．．．．．．．．．． 2 2 1.50 NEW BITS
Narrow angle infra red emitter LED55C
UM6116M－2L surface mount 1000 avali

```
C．．．．．．．．．．．
price：
``` CNY65 OPTO ISO OPTO ICS also available TLP550 TLP666GF 100 wa PLCC SKT 100 available． 20．i．．．．．．．．．．．．．．．．each each \(2^{2} \times 7^{\prime \prime}\) ，WEIGHT 48K ACID CELLS，UNUSED，UNFILLED \(18^{n}\) HIGH TUBULAAPLATE CONSTRUCTION，FORDEEPCYCLE，HIGH AVAIL ABT USE，MADE FOR BRITISH NAVY 800 CELIS CHARGED

TEL．01279－505543
FAX．01279－757656 POBOX 634
BISHOPS STORTFORD HERTFORDSHIRE CM232RX

\section*{MISCELLANEOUS}

MINIATURE FERRITE MAGNETS \(4 \times 4 \times 3 \mathrm{~mm}\) ．．．．．．．．．．．．．．．．．．．10／£
 TLO71 LO NOISEOP AMP 1.50 ea TL．081 OP AMP 4 for E 1
 12 Way dil Sw 10 F GHiLIPS SURFACE MOUNT 160 K available
§30／4000
box
SWITCHED MODE PSU 40 WATT UNCASED OTY AVAILABLE \(+5 v 5 \mathrm{~A},+12 \mathrm{~V} 2 \mathrm{~A}, 12 \mathrm{~V} 500 \mathrm{~mA}\) FLOATING \(330 \mathrm{nF} 10 \% 250 \mathrm{~V} \times 2\) AC AATED PHILIPS．．．．．．．．．．．．．．．．．．．．．．．． \(250 / 100\)
 CMOS 555 TIMERS
2／3 AA LITHIUM cells as used in compact cameras． ICM 7126 CPL CMOS \(31 / 2\) DIGIT LCD DRIVER CHIP
36 CORE \(7 / 0.2 \mathrm{~mm}\) OVERALL SCREENED LTHHUM CELI \(1 / 2\) AA SIZE
PASSIVE INFRARED SENS
\(2 / \varepsilon 1.50\)

EUROCARD 21－SLOT BACK PLANE 96／96－WAY
EUROCARD 21 －SLOT BACK PLANE 96／96－WAY．．．．． MULTILAYER PRHPCB
EUROCARD 96 －WAY EXTENDER BOARD \(290 \times 100 \mathrm{~mm}\)
＂PROTONIC 24＂CW 2 SUPPORT ARMS／EJECTORS \(£ 10\) ea DIN 41612 96－WAY AB／C SOCKET PCBRIGHT ANGLE \(£ 1.30\) DIN 416126 64－WAY AMC SOCKE T WIRE WRAP PINS．．．．．．． DIN 41612 64－WAY ACC PLUG PCB RIGHT ANGLE． DIN 41612 64－WAY AB SOCKET WIRE WRAP（2－ROW BODY） BTPLUG＋LEAD MIN．TOGGLE SWITCH 1 POLE CIO PCB type ．．．．．．．．．．．．．．．．．．．．． \(5 / \mathrm{E}\) LCD MODULE Sim．LM018 but needs 150 to 250 V AC for display \(40 \times 2\) characters \(182 \times 35 \times 13 \mathrm{~mm} . ~\)
6－32 UNC \(5 / 16\) POZI PAN SCREWS
PUSH SWITCH CHANGEOVER．． RS232 SERIAL CABLE D25 WAY MALE CONNECTORS 25 FEET LONG， 15 PINS WIRED BRAID＋FOIL SCREENS AMERICAN 2／3 PINCHASSIS SOCKET ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．2§1 WIRE ENDED FUSES \(0.25 A\) ．．．30／乏1 NEW ULTRASONIC TRANSDUCERS 32 kHz ．．．．
\[
\begin{aligned}
& \text { Also available } 28 \text { slot vari-bus backplane same size }+ \\
& \text { Price....... NEW }
\end{aligned}
\]

POWERFUL SMALLCYYLNDRICAL MAGNETS．
BNC 5OOHM SCREENED CHASSIS SOCKET．． SMALL MICROWAVE DODES AE1 OCC1026A．．．．．．．．．．．． D．I．L．SWITCHES 10－WAY 118 －WAY \(80 p\) 4
180 VOLT IWATT ZENERS also \(12 \mathrm{~V} \& 75 \mathrm{~V}\) MIN GLASS NEONS \(\qquad\) RELAY 5V 2－pole changeover looks like RS 355－741 marked MINATURE CO－AXFREE PLUG RS 456－071 MINIATURE CO－AX PCB SKT RS 456－093

400 MEGOHM THICK FILM RESISTORS STRAIN GAUGES 40 ohm Foil type polyester backed balco grid ELECTRETMICROPHONE INSERT ．．． Linear Hall effect IC Micro Switch no 613 SS4 sim AS 304－267 HALL EFFECTIC UGS 3040 ＋magnet．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\(£ 1\) OSCILLOSCOPE PROBE S
AUDIO ICS LM380 LM386．
555 TIMERS \(£ 1741\) OP A
ZN4 14 AM RADIO CHIP．
COAX PLUGS nice ones ．．．．．．．．．．．．
\(4 \times 4\) MEMBRANE KEYBOARD
INDUCTOR 20 \(1.25^{1.5 A}\) PANEL FUSE．．．．．．．．．

MONO CASS．HEAD \＆1 ERASE HEAD．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 50 p

THERMAL FUSES \(220^{\circ} \mathrm{C} 17^{\circ}{ }^{\circ} \mathrm{C}\) 240V 15A．．．．．．．．．．．．．．．．．．．．．．．．．．\(£ 1\) ea
TO－3 TRANSISTOR COVERS
TO－220 micas＋bushes
TO－3 micas＋bushes．．
Large heat shrink sleeving pack
IEC chassis plug jilter 10A．
40k UIS TRANSDUCELES \(2 K 5\) 10K \(25 \mathrm{~K} 1 \mathrm{M} 2 \mathrm{M5}\)
\(10 / 50 \mathrm{p}\) 100／£2 LM335Z 10MV／degree C LM234Z CONST CURRENT I．C．
BNC TMM
4MM BDING POST SIM RS \(455-961 . ~\)
\＆ MIN PCB POWER RELAYS 10.5 V COIL 6A CONTACTS 1 p ote．．． AVEL－LINDBERG MOULDED TRANSFORMER TYPEOB10 \(15+15 V\) 10VA OTY．AVAILABLE ．．．．．．．．．．．．．．．．．．． 22 ea
BANDOLIERED COMPONENTS ASSORTED Rs，Cs，ZENERS LCD MOOULE 16 CHAR．X 1 LINE（SIMILAR TO HITACHI －M10） ＇LOVE STORY＇CLOCKWORK MUSICAL BOX MECHANISM MADE BY SANKYO． \(\qquad\)

10.000 uF 16 V PCB TYPE 30 mm DIAx 31 mm

EC CHASSIS FUSED PLUG B－LEE L2726．．．
2A CERAMIC FUSE \(1.25^{\prime \prime}\) QB
40 WAY IDC RIBBON CABLE 100 FOOT REEL ．．．．．．．．．．．．．．．．．．． \(10 / \mathrm{A} 1\) 20mrn PCB FUSEHOLDER．．．．． EC CHASSIS FUSED PLUG B－LEE L2728．．．．．．．．．．
ASTEC MODULATOR VIDEO＋SOUND UM1287 BARGRAPHDISPLAY 8 RED LEDS NE567 PHASE LOCKED LOOP
NE564．．．．．．．．．．．．．．．．．．．．．

\section*{DIODES AND RECTIFIERS}

AIISM 3 A GOOV FAST RECOVERY IIODE
ins407 3A 1000V．

1N5401 3A 100V．．．．
BA158 1A 400 V fast recovery
BY127 1200V 1．2A．．．．．
BY254 800V \(3 \mathrm{~A} . \ldots\)
BY255 1300 V 3 A
GA 100 V SIMILAR MR751
A GOOV BRIDGE RECTIFIER
4A 100V BRIDGE
OA 2OOV BRIDG
\(25 A 200\) VBRIDGE \(\mathbb{2} 2 \ldots\)
…．． 10 18
KBP02 IN LINE 2A 200V BRIDGE REC ．． 8 I
PUISE TRANSFORMERS \(1: 1+1\) E1 25
PULSE TRANSFORMERS \(1: 1+1\) ．． 100515 MEU21 PROG．UNIJUNCTION

\section*{TRIACS \\ DIACS 4／£1}

NEC TRIAC ACO8F 8A 600 V TO220． 5／22 100／£30
2／E1 100／ 535 XAL225 8A 500V 5mA GATE．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．2／£1 100， 33 RAL2230D 30 A 400V ISOLATED STUD．．． 5 ea TRIAC ：A 800 V TLC381T 16k AVAILABLE 5 FOR \＆1 \(£ 15 / 100\) CONNECTORS

34 －way card edge IDCCONNECTOR（disk drive type）
CENTRONICS 36 WAYIDC PLUG
CENTRONICS 36 WAY IDC SKT．．．．．．．．．．．．
CENTRONICS 36 WAY PLUG SOLDER TYPE
USED CENTRONICS 36W PLUG＋S
14 WAY IDC BLOCK HEADERSKT
\(\begin{array}{r}\text { ．} £ 4.00 \\ -. . . . \\ \hline 84\end{array}\)

\section*{PHOTO DEVICES}

\(1 L 81\) PHOTO TRANSISTOR
TIL 38 INFRA RED LED
N 25 ，OP +2252 OPTO ISOLATOR．．．．．．．．．．．．．．．．．．．．．．．．．．
PHELI2（PHOTO DARLINGTON BASE n／c）
LED＇S RED 3 or \(5 \mathrm{~mm} 12 / 21\) ．
LASHNG RED LED 5 mm 50 p ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 100 E 40
位
STC NTC BEAD THERMISTORS
G22 220R，G13 1K，G23 2K，G24 20K，G5450K，G25 200 K ，RES \(20^{\circ} \mathrm{C}\)
FS22BW NTC BEAD INSIDE END OF \(1^{\prime \prime}\) GLASS PROBE RES \(20^{\circ} \mathrm{C}\) A13DIRECTY HEATED BEAD THERMISTOR ik res．Ideai．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Wien Bridge Oscillator
CERMET MULTI TURN PRESETS \(3 / 4^{\prime \prime}\)
10R 20R 100R 200R 250 R 500 R 2 K 2 K 2 K 55 K 10 K 47 K 50 K 100 K
200K 500 K 2 M

\section*{C SOCKETS}

14／16／18／20／24／28／40－WAYDIL SKTS
8．W－WAY TURNED PIN SKKTS． 7 k available
SIMM SOCKET FOR \(2 \times 30\)－way SIMMS．
\({ }^{51}\) per TUBE
E2 per TUBE

\section*{POLYESTER／POLYCARB CAPS}

\section*{\(330 \mathrm{NF} 10 \% 250 \mathrm{~V}\) AC \(\times 2\) RATED PHILIPS TYPE 330.}
．．．． \(120 / 100\)
\(10 \mathrm{n} / 15 \mathrm{n} / 22 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} / 66 \mathrm{n} 10 \mathrm{~mm} \mathrm{rad}\).
\(\begin{array}{r}20 / 51100 /[3 \\ \hline . .100 / 23.50\end{array}\)
100 n 250 V radial 10 mm ．．．．．．．．．．．．．．．．．．．．

\(10 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} 250 \mathrm{~V}\) AC \(\times\) rated 15 mm ．．
\(\mu 600 \mathrm{~V}\) MIXEDDIELECTRIC

\section*{RF BITS}

\section*{SAW FILTERS SW662SW661 PLESSEY SIGNAL TECHNOLOGY}
379.5 MHZ ． FX3286 FERRITE RING D 5 mm OD 10 mm ．．．．．．．．．．．．．．．．．．．．．．．．．．． 10 tor \(£ 1\)
ASTEC UM1233 UHF VIDEO MODULATRRS（NO SOUND） 1250
STOCK．．． MARCONI MICROWAVE DIODES TYPES DC2929，DC2962，
DC4229F1／F2．．．．．．．．．．．．．．．．．．
XTAL FILTERS 2
ALL TRIMMERS
．．．．． 51 EA
¿2 ea
3 for 50 p
YELIOW 5－650FRED 10－110 FGREY 5250 F
SMALL MULLARD 2 to 22pF．．．． 3 ．．．．．．．．．．．．．．．．．3FOR 50p \(£ 10 / 100\) TRANSISTLORS 2N4427．2N3866．．．．．．．．．．．．．．．

80p ea
60p ea
10 c 1
CERAMMC FILERS 4M5／6M／9M／TOM7
FEED THRU＇CERAMIC CAPS

8 VOLT TELEDYNE RELAYS 2 POLE CHANGEOVER．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 12
（BFY51 TRANSISTOR CAN SIZE）
2N2222 METAL
2N2369A．
VN10KM．

\section*{PLESSEY ICS EX－STOCK}

SL350G SL360G SL362C SL403D SL423A SL521B SL523C SL541B
SL850C SL1021A SP8655 SP9719DG MONOLITHIC CERAMIC CAPACITORS
100154.5

10 n 50 V 2.5 mm ．．．．．．．．．．．．．．．．．
100 n 50 V 2.5 mm or 5 mm
100 n ax short leads
100 n ax iong leads．
100 n 50 V dil package \(0.3^{\mathrm{r}} \mathrm{rad}\)

\section*{QUARTZ HALOGEN LAMPS}
\(12 V 50\) watt LAMP TYPE M312．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． \(\mathbf{\Sigma 2}\) ea 50 ea
24 V 150 WATTS LAMP TVPEA1／215．．．．．．．．．．．．．

\section*{Spare monostable as oscillator}

W
ith an eye to cost and space saving, a spare one-shot multivibrator from, say, a \(74 H C T 221\) makes a convenient oscillator.
Capacitor \(C\) charges and discharges at the same rate, duty cycle is around \(50 \%\) and \(T=R C\). Substituting the diode network in (b)

for the charging resistor \(R\) provides other duty cycles, \(C\) charging through \(R_{1}\) and discharging through \(R_{2}\) to give \(T=\left(R_{1}+\right.\) \(\left.R_{2}\right) C / 2\) and a duty cycle approximately \(R_{1} /\left(R_{1}+R_{2}\right)\).
Logic families such as \(H C\) or \(L S\) series will work, but different periods and duty cycles can be expected. \(H C\) types need a \(10 \mathrm{k} \Omega\) resistor in series with pin 1 to avoid spurious transitions.

\section*{Giorgio Delfitto}

University of Padova
Padova
Italy

Unused monostable employed as a freerunning oscillator with 50:50 duty cycle. Circuit in (b) replaces \(R\) to produce asymmetrical waveforms.

\section*{Something for (perhaps) nothing}
|f you need more output from a speaker driven by a logic gate, drive it differentially across input and output so that the cone moves twice as far as when it is taken to the rail. If, as is often the case, an inverter is spare, nothing more is needed.

\section*{Michael A Covington}

Artificial Intelligence Center
University of Georgia
Athens, Georgia

Frugal method of obtaining more from a logic-driven speaker.

\section*{Infrared control from another room}

To control a video recorder or satellite receiver by infrared, but rather more remotely than usual, this circuit uses a twist-ed-pair from a local infra-red receiver to the remote controller.
A local infra-red controller sends infrared pulses to a receiver, where they are recognised by a photodiode, amplified and converted to ttl-level signals by the TBA2800 preamplifier. These signals drive a MAX483 RS-485 differential transmitter, which feeds a twisted-pair cable up to about 3000 ft long leading to an RS-485 receiver on a MAX483 in the other room, where the signals are again converted to tt and used to drive the two infra-red emitters. This infrared beam controls the remote equipment and, since it is identical with that from the original transmitter, the circuit will work with almost any type of remote control.

\section*{W H Ip}

University College of Swansea

Infrared link repeater controls equipment such as a video recorder from a distance of up to 3000f.

Completing the deterrent effect of a PIR alarm and floodlamp, this circuit also switches on a buzzer

\section*{Buzzer for PIR alarms}

To enhance the warning given by an infrared alarm, this circuit activates a buzzer whenever the light is illuminated
When current is drawn by the 500 W floodlamp, the voltage dropped by the \(0.6 \Omega\) series resistor turns on the scr opto-isolator, which rectifies the ac to drive a 12 V dc buzzer. In the original, a \(7.5 \mathrm{k} \Omega, 1 \mathrm{~W}\) dropping resistor was needed, but this value depends on the type of buzzer in use. All components can be fitted in the indoor wiring to the lamp.

\section*{H P Ho}

University of Nottingham

\section*{Beeston}

Nottinghamshire

CIRCLE NO. 116 ON REPLY CARD

\section*{LOW COST DEVELOPMENT SYSTEM}

ECAL comprises a versatile relocatable assembler with integral editor which runs about ten times faster than typical assemblers. Support includes 4, 8, 16 \& 32 bit processor families including 75X, 6502, 6809, 68HC05/11, 8031/51, H8-300, 78K, PICs, ST6 \& Z80/180, 68000, 80C196, H8500 \& Z280.

ECAL is either available for a single processor family or all families.

Single processor version \(£ 295\) Multiprocessor version.... £395

\section*{Overseas distributors required}

OEMA Ltd.,
7 \& 7A Brook Lane,
Warsash,
Southampion S031 9FH
Tel: 01489571300

The PC based ECAL hardware emulator is fully integrated with the assembler. Connection is made to the target through the eprom socket so a single pod can support all processors. Facilities include windows for the inspection or change of registers or memory. You can even watch your program executing at source level!

Download time is about two seconds!

Pods can be daisy-chained for 16/32 bit systems.

Applications include software development, hardware debug, test and, finally, teaching about microcontrollers in education.

ECAL emulator
Quantity discoumts of up to \(50 \%\) make ECFI software ideal for education.

> Delving deeper into the workings of modern spice software, Owen Bishop examines the special analysis tools designed to help engineers predict precisely how well their circuit will perform.

\section*{SpiceAge has no node limit} In Owen's first article, the brief background note about SpiceAge on the first page stated that the package could handle up to 60 nodes. This is not the case. The node capability of all but the Level 1 SpiceAge package is only limited by the amount of ram available in the host PC.

\section*{Circuits by design}

\author{
3: Input and output
}

Those of you who took the trouble to assemble the basic common-emitter amplifier described last month may well have been disappointed. To make a comparison with the simulation, we set up the 'final' design on a breadboard and found that, as predicted, \(\mathrm{V}_{\mathrm{bb}}\) is 0.62 V . But the output voltage at the collector of \(Q_{1}\) is far from the required 6 V . Consequently, the collector current is much less than the predicted 0.88 mA .
Since the amplifier is not at its operational point, before attempting to supply an input signal to it, the design needs further refinement. The most likely cause for the discrepancy is that the gain of the transistor on the breadboard is higher than the gain of the model transistor used in the simulation. This is a general-purpose transistor and, while it is reasonable to use it for non-critical circuits, including switching circuits, it is not a precise enough model for amplifiers.
An amplifier is intended to amplify, and any lack of precision in one part of the circuit may be amplified in other parts. If the present circuit is to be brought to a suitable operating point, then \(V_{\mathrm{bb}}\) must be set much more precisely than is possible by taking two convenient E12 resistors from the component box. But selecting high tolerance resistors does not solve the problem. There is a spread of gain between transistors, even between transistors of the same type. We need to make the circuit less dependent on the exact gain of the transistor and on the values of the base biassing resistors. In short, the circuit needs to be better stabilised.
One approach to stabilisation is to introduce an emitter resistor, Fig. 1. If this is a \(1 \mathbf{k} \Omega\) resistor and the current through it is to be 0.88 mA , the emitter voltage is 0.88 V . Given that the emitter-base voltage of a transistor in its operating region is approximately 0.6 V , the voltage \(\mathrm{V}_{\mathrm{bb}}\) is about 1.48 V . Using the values

Fig. 1. Adding an emitter resistor to last month's basic amplifier circuit stabilises it; feedback makes its gain independent of the transistor's gain.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{CBD03-Common-emitter amplifier - stabilising} \\
\hline Vcc & -out:gnd & +out.vcc & Ex= None & \(\mathrm{Of}=12.0000\) \\
\hline R Rb1 & plivec & p2. ybb & \(v=13.0000 \mathrm{~K}\) & \\
\hline R Rb2 & plybo & p2:gnd & \(v=1.80000 \mathrm{~K}\) & \\
\hline R Rc & plivce & p2.c & \(\mathrm{V}=6.80000 \mathrm{k}\) & \\
\hline R Re & p1:e & p2:gnd & \(v=1.00000 \mathrm{k}\) & \\
\hline > Q \({ }^{\text {l }}\) & qbcl 08.1 lib & collector:c & base.vbb & emi \\
\hline
\end{tabular}

Fig. 2. In this netlist of the stabilised amplifier of Fig. 26, we specify a model of a BC108 transistor in place of the general-purpose npn transistor used last month.

Fig. 3. Amplifier Fig. 26 now has a sinusoidal input signal applied to it, a load resistor, and a pair of coupling capacitors.
of the biassing resistors of Fig. I achieves this fairly closely.
Netlist Fig. 2 shows the new circuit, including a BC108 transistor. Place a probe on Node c to measure voltage. A dc quiescent analysis shows that the collector current is \(793 \mu \mathrm{~A}\), voltage at c is 799 mV and the base voltage is 1.45 V , all reasonably close to the required values. These values are commensurate with those obtained when the circuit is breadboarded. The purpose of the emitter resistor is to provide negative feedback, to make the circuit relatively independent of the gain of the transistor.
Exploding the transistor model shows that the value of the VCCS is 0.992 . Applying the formula quoted last month, this produces a current gain of \(0.992 /(1-0.992)=124\). To investigate the extent to which the quiescent state of the circuit is influenced by gain, set up the program to sweep the gain over a wide range. Explode the model and edit its specification, adding ' \(\mathrm{vs}=0.98 \mathrm{vf}=0.995\) ' This is the equivalent of sweeping the gain from 50 to 200.

Running a quiescent sweep produces a graph in which the collector voltage ranges linearly from 6.77 V for a gain of 50 to 6.57 V for a gain of 200 . The voltage changes by only 0.2 V for a fourfold increase of gain. The circuit would operate in much the same way with many differing types of transistor with differing gains. For the same sweep, the collector current ranges between \(769 \mu \mathrm{~A}\) and \(799 \mu \mathrm{~A}\). This analysis clearly and quickly illustrates that the gain of the amplifier is virtually independent of the gain of the transistor. Such demonstrations emphasise how valuable simulation software can be as a teaching aid.
Delete the start and finish values from the model, Implode the model, and cancel the value sweep.

\section*{Transient behaviour}

To provide input to the circuit and to obtain output from it, add a capacitor to couple the circuit to an alternating voltage source and a second capacitor to couple it to a load resistor, Fig. 3. The voltage source has a sine waveform at 1 kHz , and 100 mV amplitude. Place probes to measure input voltage (at node \(\mathrm{V}_{\text {in }}\)) and output voltage (at node \(\mathrm{V}_{\text {out }}\)).
In the Time Selector dialogue box make Start time zero, Stop time 5ms and Step time \(50 \mu \mathrm{~s}\). This samples the waveforms 100 times during 5 complete cycles. A Transient analysis gives Fig. 4. The curve of lesser amplitude is the input sine wave. The curve of greater amplitude is the output sine wave. It is \(180^{\circ}\) out of phase, as expected. Its amplitude is about 6.14 times that of the input signal, so the voltage gain of the amplifier is much lower that the gain of transistor. This is because of the feedback effect of \(R_{e}\), and is the price to be paid for slability.
Figure 4 shows that the output swing is only \(\pm 600 \mathrm{mV}\), so there is scope for increasing input signal amplitude without introducing distortion. Fig. 5 shows the result of a value sweep carried out for the amplitude source generator.

Fig. 4. A transient analysis of the amplifier of Fig. 1. at 1 kHz shows the output signal \(180^{\circ}\) out of phase with the input signal, and a gain of just over 6.

The range is specified by adding 'vs \(=100 \mathrm{~m}\) \(\mathrm{vf}=500 \mathrm{~m}\) ' to the netlist statement. At the sweep dialogue box select Value sweep, the Linear option, and 10 steps. It is clear that input amplitude may be as great as 300 mV without introducing distortion.
Editing the netlist again, to set the value sweep range from 500 mV to 1.5 V , produces the transient analysis of Fig. 6. Clipping affects the outputs of greatest amplitude. The maximum amplitude without clipping is about \(\pm 900 \mathrm{mV}\).

\section*{Frequency response}

To investigate the behaviour of the circuit over a useful working range of frequency, the single transient analysis with 100 mV input is repeated with the generator frequency increased to 1 MHz . At the Time Selector box the values were altered to Start time \(=0\). Stop time \(=5 \mu \mathrm{~s}\), Step time \(=50 \mathrm{~ns}\). Remember that the ' \(s\) ' for 'seconds' must not be included when keying in the times. This again allows enough time for 5 complete cycles. The curves are virtually identical to Fig. 4, except that the gain is not quite as high. High frequency response is acceptable. Next, check on response at the low end of the audio range, 30 Hz . Specify Start time \(=0\), Stop time \(=\) 166.66667 ms , and Step time \(=1.66667 \mathrm{~ms}\). Once again, curves similar to Fig. 4 are obtained, though the gain is only 5.85 . Obviously there is a falling off of gain below 30 mHz and above 1 MHz .
To study the how gain varies over a range of frequencies, use the Frequency response analysis. In the Frequency selection box set the Start frequency to 25 Hz , the Stop frequency to 1 MHz and the number of steps to 200 . The result is Fig. 7, showing a fall in response at both ends of the range, but a level response between about 500 Hz and 100 kHz . Note that the scale is logarithmic on the x -axis. The scale on the \(y\)-axis is in volls but it can optionally be graduated in decibels.

\section*{Increasing gain}

Voltage gain obtained from this circuit, at about six, is disappointing. This low figure is due to the feedback effect of the emitter resistor. The resistor not only compensates for differences in the gain of different transistors but at the same time 'compensates' for voltage changes caused by the audio signal. To a large extent it cancels out the signal, resulting in low gain.
The cure for this is a by-pass capacitor connected across the resistor. Its passes the audiofrequency signals to ground, so that their effect is not fed back to the base terminal of the transistor and they are not attenuated. Fig. 8

Fig. 7. Frequency response curve from 25 Hz to 1 MHz is level from 500 Hz to 100 kHz .

Fig. 5. Simulators make it easy to sweep circuit parameters over a chosen range and observe the results. Here, input amplitude is swept from 100 mV to 500 mV in 10 linearly spaced steps. There is no distortion in the output signal.

Fig. 6. Sweeping input amplitude from 500 mV to 1.5 V shows clipping of the output signal when input exceeds \(\pm 900 \mathrm{mV}\).

\section*{PC ENGINEERING}

Fig. 8. Circuit Fig. 28 is given negative feedback by the addition of a by-pass capacitor across \(\boldsymbol{R}_{E}\).

Fig. 9 The effect of the by-pass capacitor is to increase gain so much that the output signal is severely clipped.

Fig. 10. In this netlist of Fig. 28 plus the bypass capacitor, \(R_{E}\) is tapped half-way by listing it as two resistors, \(R_{\mathrm{e} 1}\) and \(R_{\mathrm{e} 2}\), each of 500.

Fig. 11. Fourier analysis of the output of the signal generator produces a frequency spectrum which confirms that it is pure sine wave, frequency 1 kHz , amplitude 100 mV .
shows the location of the by-pass capacitor. Add this to the netlist and re-run the transient analysis; the result is Fig. 9.
Gain is increased to such an extent that the output signal is clipped in both directions. Obviously, we need a response somewhere between that of Fig. 4 and that of Fig. 9. The solution is to connect the by-pass capacitor across part of \(\mathrm{R}_{\mathrm{e}}\). This is done in the netlist by setting up two resistors, \(\mathrm{R}_{\mathrm{e}}\) and \(\mathrm{R}_{\mathrm{e} 2}\), as Fig. 10. For successive analyses, edit the values of \(R_{\mathrm{e},}\) and \(R_{\mathrm{e} 2}\). keeping their total equal to \(1 \mathrm{k} \Omega\). Starting with \(R_{\mathrm{e}}=R_{\mathrm{e} 2}=500 \Omega\), gain becomes 11.9. With \(R_{\mathrm{e} \mid}=300 \Omega\) and \(R_{\mathrm{e} 2}=700 \Omega\), gain increases to almost 19. With \(R_{\mathrm{el}}=200 \Omega\) and \(R_{\mathrm{e} 2}=800 \Omega\), gain is 26 , but the output signal is slightly asymmetrical. In the positive direction it swings to 2.61 V (above its approximately 6 V central value). In the positive direction it swings down to -2.74 V . There is no clipping and distortion is relatively insignificant. With \(R_{\mathrm{el}}=100 \Omega\) and \(R e_{2}=900 \Omega\), gain is nearly 45 , and there is no clipping, but asymmetry becomes more apparent (+3.96 . -4.96). In the end, we settled for \(R_{\mathrm{e}}=250 \Omega . R_{\mathrm{e}}=750 \Omega\), with almost perfect symmetry and a gain of 22 . This is a great improvement on the original gain of 6 for this circuit.

As a final check, run the analysis with probes set to measure power in \(R_{\mathrm{c}}, R_{\mathrm{e} 1}\) and \(R_{\mathrm{e} 2}\). Power in \(R_{\mathrm{c}}\) and \(R_{\mathrm{el}}\) is negligibly low, but in \(R_{\mathrm{e} 2}\) it peaks at 850 mW . Provided that a 0.6 W resistor is used for \(R_{\mathrm{e} 2}\), there should be no over-heating.

\section*{Fourier analysis}

Although the output curve in Fig. 4 appears to be a sine wave, there is no way in which this can be confirmed by visual inspection. A Fourier analysis is used to check on its purity, or otherwise. Various options are available in SpiceAge; the following analysis has Autodisperse deselected so that we can set the frequency range to start from 100 Hz and extend up to 10 kHz . In this application, there is little of interest outside this range.
Phase plot and decibel plot are also deselected, to obtain a straightforward graph, indicating the amplitudes of the component waves. The Lines to origin option is selected so that the display appears as a frequency spectrum which, in general, is the most easily understood and informative of the various display modes. The grid option for graph plotting is deselected because vertical lines that coincide with grid lines are printed out as inverse dashed lines, practically indistinguishable from ordinary grid lines, which makes the printout almost impossible to read.
As a check on the purity of the signal from the sine wave generator, set up a circuit consisting of the same generator, with a \(100 \mathrm{k} \Omega\) resistor connected across its output. Run a Transient analysis - always required prior to a Fourier analysis - and obtain a pure (??) sine wave.
In all the analyses, the transient is timed to last for five cycles. It is important to run for several cycles and for a time that is an exact number of cycles. This 'informs' the Fourier

Fig. 12. In contrast to Fig. 36, the amplifier has reasonably high gain but is distorted by the presense of the first 400 harmonics.
analysis that the waveform is repetitive and prevents spurious harmonics being generated by the odd fraction of a cycle at the end of the run. Then run a Fourier analysis, Fig. 11; this shows a single frequency: 1 kHz , amplitude 100 mV , so there are is no doubt that the input to the circuit is a pure sine wave.

Returning to the circuit of Fig. 10, with \(R_{\mathrm{el}}=250 \Omega\) and \(R_{\mathrm{e} 2}=750 \Omega\), place Probe 1 to measure the voltage at node 'in'. Run a Transient analysis, followed by Fourier. The result is the same as in Fig. 9, a pure 1 kHz sine wave. Change the probe to measure output voltage at node 'out'.

\section*{Mathematica conventions}

User variables and names are lowercase Mathematica variables and objects begin with upper-case letter, e.g. Pi, E.

Equals symbol usage is as follows
= assigns a value to a variable immediately
:= assigns a value to a variable each time the statement is encountered
== mathematical equality of two sides of an equation.

Round brackets are used in equations while square brackets define commands. Curly brackets include lists and the percentage symbol represents for the result of the previous calculation.

Multiplication is implied when two variables have a blank space between them; or use an asterisk.

The statement,
f[variable1_, variable2_, variable 3_]
is a function of the variables. It can be assigned a value calculated by one or more routines, enclosed in round brackets and separated by semicolons. To call the function give its name and variable values.

The Fourier analysis shows the 1 kHz signal coming through strongly, amplitude 2.2 V , but with the first harmonic of 2 kHz showing slightly, amplitude 29 mV . For comparison, edit the netlist to make \(R_{\mathrm{e} 1}=50 \Omega\) and \(R_{\mathrm{e} 2}=950 \Omega\) and re-run the lests. Now the 1 kHz signal is accompanied by a number of harmonics, mainly the Ist and 2nd harmonics, as shown in Fig. 12. Gain is high but distortion is becoming unacceptable.

\section*{Computation routines}

This is intended as an example of the way Mathematica is used when there is a preferred routine for circuit design. We carry out a sequence of calculations in order, the result of one calculation providing values to insert into the next.
In this example, we assume that the values of the resistors have already been chosen so as to bring the circuit to a suitable operating point. We could, of course, have previously set up a routine for deciding on these values and this \(t 00\) would be an example of a computation routine. Here we intend to study the response of the circuit of Fig. 3 (plus the bypass capacitor of Fig. 8). We are looking at its response to small-amplitude ac input, so consequently we can replace the capacitors with short circuits, as in Fig. 13. Resistor \(R_{\mathrm{e}}\) is shown as a variable resistor, with the wiper connected to ground representing the by-pass capacitor. In the calculations, \(R_{\mathrm{e}}\) is the resistance between the wiper and the positive end of the resistor. The output impedance of the source is so small that it is ignored.
The sequence of calculations is set out in Fig. 14 as a Mathematica notebook. In effect, it is a program for calculating ic. On the first few trials, take the steps one at a time. This gives insight into the way the software works, and also makes it possible to monitor the validity of the results. It is also better to use step-wise evaluation when checking the program for bugs. At each stage, click on the appropriate line, then on the Evaluate button.
The first seven stages invite the user to key in the relevant values. Each stage calls up a dialogue box into which values are entered (incidentally, there is no need to click on the 'OK' button; just press Enter). After each input command there is a command of the form ' \(\mathrm{rbl}=\%\) '. This assigns the entered value to the variable. The value for re is 1000 , or less to make it partly by-passed.

The next six slages set out the sequence of calculations:
- 1 'bb is the base voltage
- \(r_{\mathrm{b}}\) is the resistance of \(r_{\mathrm{b} 1}\) and \(r_{\mathrm{b} 2}\) in parallel - \(i_{\text {cq }}\) is quiescent collector current, assuming that base-emitter voltage v be is 0.7 V .

Having found \(i_{\mathrm{cq}}\) in this way we then use its value to calculate a more precise figure for v beThis is used in the next stage to re-calculate \(i_{c q}\) more precisely. Strictly, this pair of equations should be iterated until there is no change in the values of \(i_{c q}\) and \(r^{\text {be. }}\). But in practice the
values converge only slowly and a single iteration gives values precise to about three significant figures. av is the voltage amplification of the circuit.
All except the last of these equations is followed by a semi-colon. The effect of this is to suppress the output of the result, which is held in memory and used in the next equation. When debugging the program the semi-colons are omitted. so that the result of each stage can be checked. There is no semicolon on the last equation so the value of av is displayed as the last equation is evaluated. After that, click and evaluate icq, calculated earlier but displayed at the end.
This may be as far as you need to go but it is now possible to input a signal voltage, and have the corresponding output voltage displayed.
These equations are not a circuit simulation, so no account is taken of the inner workings of transistors. It is possible to input an unrealistically large signal voltage such that the calculated outpu voltage exceeds \(r^{\prime}\) cc, or is less than \(r_{\text {be }}\). Also it is essential that \(r_{\mathrm{b}}\) is less than \(0.1 \times h_{\mathrm{fe}} \times r_{\mathrm{e}}\). The final statement in the program checks that results are valid and realistic. In effect it is saying ' \(\mathrm{IF} \mathrm{rb}<0.1 \times \mathrm{hfe} \times\) re AND vout < 12 AND vout > vbe THEN print 'True', ELSE print 'False'. If 'False' is displayed at the end of a run, the results are not acceptable.
For more frequent use, evaluate the Notebook in a single operation; Select Action, then Evaluate notebook. The computer runs rapidly through the sequence, demanding input and displaying all results on the way.
The program is easily modified to suit the user. It may be that only the values of re and vin are to be varied. Having to input the same values of the other variables each time is a tedious matter.
Figure 15 shows how the program may be streamlined. In the first block of the program we create a procedure called 'output', listing the symbols for all the variables that are to be input to it. This is followed by all the equations, separated by semi-colons and enclosed in round brackets. After this, the user is asked to enter re and hfe.
Next comes the 'output' procedure with a bracketed list of the values of the variables. Clicking on and evaluating this causes the procedure to be run, using these values and also the two previously input values. The result is the value of the final equation, av. We have also asked for ' 1000 icq' so as to display the quiescent collector current in milliamps. The routines for finding the vout for any given vin are the same as before. This Notebook, too can be run in a single operation.
The procedure is easily modified for calculations based on other circuit equations, or to accept other input values, or to return other outputs. In contrast to the predetermined routines of simulation programs, even with their options, Mathematica offers a flexible , DIY approach to compulation. Nexi month we look at some Mathematica routines specially written for electrical and electronic engineering.

Fig. 13. The circuit of Fig. 28 redrawn without capacitors, to facilitate its analysis by Mathamatica.
```

Inputl"Base resistor 1"1:
rbl = is
Input|"Base resistor 2"1:
rb2 $=$ :
Input ("Emitter resistor"):
$r e=i$;
Inputl"Collector resistor"1;
re = :
Inputl"Load resistor"]:
r1 = B ;
Input["supply voltage"]
vcc = :
Input("hfe"):
hfe $=$ :
$\mathrm{vbb}=\mathrm{rb2} \mathrm{vcc} /(\mathrm{rb} 1+\mathrm{rb} 2)$
$r b=r b 1 r b 2 /(r b 1+r b 2)$.
$\mathrm{icq}=(\mathrm{vbb}-0.7) /(\mathrm{rb} / \mathrm{hfe}+\mathrm{re})$ :
$\left.\mathrm{vbe}=\mathrm{Log[icq/10}^{n}-14\right] / 38.647 ;$
$i c q=(v b b-v b e) /(r b / h f e+r e)$
$a v=-(r l r c) /(r I+r c) /((0.026 / i c q)+r e)$
icq
Input["vin"]
vin = :
vout $=12$ - icq re + av vin
Iflrb < O.1 hfe re 66 vout<12 $\& 6$ vout $>$ vbe, True
False

```

Fig. 14. The first section of this program asks for the relevant values to keyed in from Fig. 13. The next section calculates icq, the quiescent collector current. Then, given \(V_{I N}\), the routine calculates \(V_{\text {OUT }}\). The last line checks that the values used are valid ones.
```

output [rb1_, rb2_, rc, rl_, vcc_, hfe_]
$(\mathrm{vbb}=r \mathrm{~b} 2 \mathrm{vcc} /(\mathrm{rb} 1+\mathrm{rb} 2))$
$r b=r b 1 r b 2 /(r b 1+r b 2)$
$i c q=(v b b-0.7) /(r b / h f e+r e):$
vbe $=\log \left[i c q / 10^{2}-14\right] / 38.647$ :
$i c q=(v b b-v b e) /(r b / h f e+r e)$;
$a v=-(r 1 r c) /(r 1+r c) /((0.02 \mathrm{~g} / \mathrm{icq})+\mathrm{re}))$
Input["Emitter resistor"];
$x \in=1$ :
Input["hfe"]:
Ife = :
out put $\{13000,1800,6800,100000,12,124\}$
1000 icq
Input["vin"]:
vin $=\mathrm{s}$;
vout $=12$ - icq rc + av vin
fflrb < 0.1 hfere \& vout<12 \& vour>vbe, true,
false]

```

Fig. 15. Here the program of Fig. 14 is simplified by defining a procedure, called output, to find icq. Given values of \(R_{E}, h_{F E}\) and \(V_{\mathbb{N}^{\prime}}\), output calculates \(V_{O U T}\).

\section*{TOROIDAL TRANSFORMERS}

High Quality Low Prices
In addition to our standard range we will be pleased to quote for your special requirements.

PRICE LIST
\begin{tabular}{|r|c|c|c|c|c|c|c|}
\hline & & \multicolumn{5}{|c|}{ Quantity Price Excluding VAT \& Carriage } \\
VA & Mail Order & \multicolumn{1}{|c|}{\(2+\)} & \multicolumn{1}{|c|}{\(10+\)} & \(25+\) & \(50+\) & \(100+\) \\
\hline 15 & 14.59 & 10.21 & 7.69 & 5.69 & 5.52 & 5.35 \\
30 & 16.04 & 11.23 & 8.45 & 6.25 & 6.06 & 5.89 \\
50 & 17.83 & 12.48 & 9.40 & 9.95 & 6.74 & 6.53 \\
60 & 18.02 & 12.61 & 9.49 & 7.02 & 6.82 & 6.61 \\
80 & 17.98 & 12.60 & 9.49 & 7.02 & 6.81 & 6.60 \\
100 & 21.07 & 14.74 & 11.11 & 8.21 & 7.96 & 7.72 \\
120 & 21.54 & 15.08 & 11.35 & 8.39 & 8.15 & 7.89 \\
150 & 25.98 & 18.19 & 13.70 & 10.12 & 9.82 & 9.53 \\
160 & 23.83 & 16.68 & 12.56 & 9.28 & 9.00 & 8.73 \\
225 & 30.10 & 21.07 & 15.87 & 11.73 & 11.39 & 11.04 \\
300 & 34.32 & 24.02 & 18.09 & 13.38 & 12.98 & 12.58 \\
400 & 46.19 & 32.32 & 24.35 & 17.99 & 17.47 & 16.94 \\
500 & 50.48 & 35.34 & 26.61 & 19.67 & 19.09 & 18.51 \\
625 & 53.09 & 41.36 & 31.14 & 23.02 & 21.24 & 20.57 \\
750 & 58.39 & 44.23 & 33.30 & 24.62 & 23.89 & 23.17 \\
1000 & 78.80 & 55.16 & 41.54 & 30.70 & 29.80 & 28.89 \\
1200 & 82.45 & 57.72 & 43.46 & 32.12 & 31.17 & 30.23 \\
1500 & 105.10 & 73.63 & 55.40 & 40.94 & 39.74 & 38.53 \\
2000 & 114.45 & 96.13 & 72.39 & 53.51 & 51.93 & 50.36 \\
2500 & 163.04 & 114.13 & 85.94 & 63.51 & 61.64 & 59.79 \\
\hline
\end{tabular}

These prices are for 240 volt primary and two equal secondaries with \(8^{\prime \prime}\) colour coded fly leads.
Each transformer is supplied with a mounting kit (steel dish washer pads, nut and bolt)
Mail order prices include vat and postage.
Please do not hesitate to telephone or write with your particular requirements.

Amiz Airlink Sales Co
16 Knight Street, Sawbridgeworth, Herts CM21 9AT Tel: 0279600139 Fax: 0279726379

\section*{Components \& Systems from Iosis}

\section*{£1 BARGAIN PACKS}

1,000 items appear in our Bargain Packs List request one of these when you next order \(1 \times 12 v\) Stepper Motor. 7.5 degree. Order Ret: 910 \(1 \times 10\) pack Screwdrivers. Order Ref: 909.
\(2 \times 5 \mathrm{amp}\) Pull Cord Celling Switches. Brown. Order Ref: 921.
\(5 \times\) reels Insulation Tape. Order Ref: 911
\(4 \times 14 \mathrm{~mm}\) Ball-races. Order Ref: 912.
\(2 \times\) Cord Grip Swltch lamp Holders. Order Ref: 913 \(1 \times\) DC Voltage Reducer. \(12 \mathrm{v}-6 \mathrm{v}\). Order Ref: 916 \(1 \times 10\) amp 40 v Bridge Rectifier. Order Ref. 889 Lightweight Stereo Headphones. Moving coil so superior sound. Order Ref: 896.
\(2 \times 25 \mathrm{~W}\) Crossovers. For 4ohm loudspeakers. Order Ref: 22
\(2 \times\) Nicad Constant Current Chargers. Easily adaptable to charge almost any nicad battery. Order Ref: 30. \(18 \mathrm{v}-0-18 \mathrm{v} 10 \mathrm{va}\) Mains Transformer. Order Ref: 813. \(2 \times\) White Plastic Boxes. With lids, approx. \(3^{\prime \prime}\) cube Lid has square hole through the centre so these are ideal for light operated switch. Order Ref: 132.
\(2 \times\) Reed Relay Kits. You get 8 reed switches and 2 coil sets. Order Ref: 148
\(12 \mathrm{v}-0.12 \mathrm{v} 6 \mathrm{va}\) Malns Transformer. PCB mounting. Order Ref: 938.
\(1 \times\) Big Pull Solenoid. Mains operated. Has \(1 / 2^{\prime \prime}\) pull. Order Ref: 871.
\(1 \times\) Blg Push Solenoid. Mains operated. Has \(1 / 2^{n}\) push. Order Ref: 872
\(1 \times\) Mini Mono Amp. 3 W into 4 ohm speaker or 1 W into 8 ohm. Order Ref: 495.
\(1 \times\) Mini Stereo \(1 W\) Amp. Order Ref: 870
15 v DC 150 ma PSU. Nicely cased. Order Ref: 942. \(1 \times \ln\)-Flight Stereo Unit is a stereo amp. Has two
most useful mini moving coil speakers. Made for BOAC most useful mini moving coil
passengers. Order Ref: 29.
passengers. Order Ref: 29 .
\(1 \times 0 \mathbf{1 m A}\) Panel Meter. Full vision fact 70 mm square. Scaled 0-100. Order Ref: 756
\(2 \times\) Lithlum Batterles. 2.5 V penlight size. Order Ref: 874.
\(2 \times 3 \mathrm{~m}\) Telephone Leads. With BT flat plug, Ideal for 'phone extensions, fax, etc. Order Ref: 552
\(1 \times 12 \mathrm{~V}\) Solenoid. Has good \(1 / 2^{\prime \prime}\) pull or could push if modified. Order Ref: 232.
\(4 \times\) In-Flex Switches. With neon on/off lights, saves leaving things switched on. Order Ref: 7 .
\(2 \times 6 \mathrm{~V}\) 1A Mains Transformers. Upright mounting with fixing clamps. Order Ret: 9.
\(5 \times 13 A\) Rocker Switch. Three tags so on/off, or changeover with centre off. Order Ref: 42
Mini Cassette Motor. 9v. Order Ret: 944
\(1 \times\) Suck or Blow-Operated Pressure Switch. Or it can be operated by any low pressure variation such as water level in tanks. Order Ref: 67.
\(1 \times 6 \mathrm{~V} 750 \mathrm{~mA}\) Power Supply. Nicely cased with mains input and 6 V output lead. Order Ref: 103A.
\(2 \times\) Stripper Boards. Each contains a 400 V 2 A bridge rectifier and 14 other diodes and rectifiers as well as dozens of condensers, etc. Order Ref: 120
12 Very Fine Drills. For PCB boards etc. Normal cost about 80p each. Order Ref: 128.
\(5 \times\) Motors for Model Aeroplanes. Spin to start so needs no switch. Order Ref: 134
\(6 \times\) Microphone Inserts. Magnetic 400 ohm , also act as speakers. Order Ref: 139 .
\(6 \times\) Neon Indicators. In panel mounting holders with lens. Order Ref: 180.
\(1 \times\) In-Flex Simmerstat. Keeps your soldering iron etc always at the ready. Order Ref: 196.
\(1 x\) Mains Solenold. Very powerful as \(1 / 2^{\prime \prime}\) pull, or could push if modified. Order Ref: 199
\(1 \times\) Electric Clock. Mains operated. Put this in a box and you need never be late. Order Ref: 211
\(4 \times 12 \mathrm{~V}\) Alarms. Makes a noise about as loud as a car horn. All brand new. Order Ref: 221
\(2 \times\left(6^{\prime \prime} \times 4^{4}\right)\) Speakers. 16 ohm 5 watts, so can be joined \(2 \times\left(6{ }^{\prime \prime} \times 4\right)\) Speakers. 160 hm 5 watts, so can be joined in pa
243.
\(1 \times\) Panostat. Controls output of boiling ring from simmer up to boil. Order Ref: 252 .
\(2 \times\) Oblong Push Switches. For bell or chimes, these can switch mains up to 5A so could be foot switch if fitted in pattress. Order Ref: 263
\(50 \times\) Mixed Silicon Diodes. Order Ref: 293.
\(1 \times 6\) Digit Mains Operated Counter. Standard size but counts in even numbers. Order Ref: 28. \(2 \times 6 \mathrm{~V}\) Operated Reed Relays. One normally on, other normally closed. Order Ref: 48.
\(1 \times\) Cabinet Lock. With two keys. Order Ref: 55
\(61 / 2^{\prime \prime} 8\) ohm 5 watt Speaker. Order Ref: 824
\(1 \times\) Shaded Pole Mains Motor. \(3 / 4^{\prime \prime}\) stack, so quite powerful. Order Ref: 85
\(2 \times 5\) Aluminium Fan Blades. Could be fitted to the above motor. Order Ref: 86 .
\(1 \times\) Case. \(31 / 2 \times 21 / 4 \times 1^{13 / 4}\) with \(13 A\) socket pins. Order Ref: 845.
\(2 \times\) Cases. \(21 / 2 \times 21 / 4 \times 13 / 4\) with \(13 A\) pins. Order Ref: 565 . \(4 \times\) Luminous Rocker Switches. 10A mains. Order Ref: 793.
\(4 \times\) Different Standard V3 Micro Switches. Order Ref: 340.
\(4 \times\) Different Sub Min Mlcro Switches. Order Ref:

MISCELLANEOUS BARGAINS
Almost all of the bargains offered last month are still available. If in doubt, give us a ring.

\section*{0-20V DC PANEL METER}

This is a nice size 65 mm sq. It is ideal if you are making a voltage variable instrument or battery charger. Price £3, Order Ref: 3P188

\section*{FLASHING BEACON}

Ideal for putting on a van, a tractor or any vehicle that should always be seen. Uses a XENON tube and has an amber coloured dome. Separate fixing base is included so unit can be put away if desirable. Price \(£ 7.50\), Order Ref: 7.5P13 12V 2A TRANSFORMER. £2, Order Ref: 2P337. ANOTHER \(12 \mathrm{~V}-0 \mathrm{~V}-12 \mathrm{~V}\) TRANSFORMER is a 50 VA and is suitable for dropping through the chassis or as it is fitted with 4 pillars it can be mounted above the chassis. Also should you want a 12 V 4 A transformer, then this one should be quite suitable, you use just one half of the secondary Price \(£ 3.50\), Order Ref: 3.5P7.

\section*{HIGH RESOLUTION MONITOR}
\(9^{\prime \prime}\) by Philips, in metal frame for easy mounting. Brand new, offered at less than the price of the tube alone, £15, Order Ref: 15P1

\section*{15W 8" 8 OHM SPEAKER AND 3 " TWEETER} Amstrad, made for their high quality music centre, £4, a pair, Order Ref: 4P57.

INSULATION TESTER WITH MULTIMETER Internally generates voltages which enables you to read insulation directly in megohms. The multimeter has four ranges, \(\mathrm{AC} / \mathrm{DC}\) volts, 3 ranges milliamps, 3 ranges resistance and 5 amp range. These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, probably cost at least \(£ 50\), yours for only \(£ 7.50\) with leads, carrying case \(£ 2\) extra, Order Ref: 7.5P4.
WE HAVE SOME of the above testers but slightly faulty, not working on all ranges, should be repairable, we supply diagram, \(£ 3\), Order Ref: 3P176.

\section*{250W LIGHT DIMMER}

Will fit in place of normal wall switch, only \(£ 2.50\) each, Order Ref: \(2.5 \mathrm{P9}\). Note these are red, blue, green or yellow but will take emulsion to suit the colour of your room. Please state colours required.

\section*{TOUCH DIMMERS}

40W-250W, no knob to turn, just finger on front plate will give more or less light, or off. Silver plated on white background, right size to replace normal swltch, £5, Order Ref: 5P230.

\section*{LCD \(3 ½\) DIGIT PANEL METER}

This is a multi-range voltmeter/ammeter using the A-D converter chip 7106 to provide 5 ranges each of volts and amps. Supplied with full data sheet Special snip price of \(£ 12\), Order Ref: 12P19.

\section*{MULTITESTER}

19 range, ex-British Telecom, reconditioned. These measure AC and DC volts, DC milliamps and have 3 resistance ranges made to BT specification and 20,000 opv movement. Complete with test prods, £8.50, Order Ref: 8.5P3. Carrying case with handle £2 extra.

\section*{1/3rd HORSE POWER 12 V MOTOR}
(Sinclair C5) \(£ 29.50\), Order Ref: 29.5P1 SPEED CONTROLLER
Suitable for the C5 or other DC 12 V motor. Complete kit £18, Order Ref: 18P8, already made £29,50, Order Ref: 29.5P2.

CLOCK MODULE
\(2^{\prime \prime}\) LCD display, requires 1.5 V battery, goes back to zero when switched off so ideal for timing operations, £2, Order Ref: 2P307.

\section*{MINI BLOW HEATER}

1 kW , ideal for under desk or airing cupboard, etc. Needs only a simple mounting frame, \(£ 5\), Order Ref: 5P23.

\section*{MEDICINE CUPBOARD ALARM}

Or it could be used to warn when any cupboard door is opened. The light shining on the unit makes the bell ring. Complete built and neatly cased, requires only a battery, £3, Order Ref: 3P155.

\section*{DON'T LET IT OVERFLOW!}

Be it bath, sink, cellar, sump or any other thing that could flood. This device will tell you when the water has risen to the pre-set level. Adjustable over quite a useful range. Neatly cased for wall mounting, ready to work when battery fitted, \(£ 3\), Order Ref: 3P156.

\section*{POWER SUPPLIES - SWITCH MODE}
(all 230 V mains operated)
Astex Ref: B51052 with outputs: + 12V 0.5A; \(12 \mathrm{~V} 0.1 \mathrm{~A} ;+5 \mathrm{~V} 3 \mathrm{~A} ;+10 \mathrm{~V} 0.05 \mathrm{~A} ;+5 \mathrm{~V} 0.02 \mathrm{~A}\) unboxed on p.c.b. size \(180 \times 130 \mathrm{~mm}\), \(£ 5\), Order Ref: 5P188
Astec Ref: BM41004 with outputs: \(+5 \mathrm{~V} 31 / 4 \mathrm{~A} ;+\) 12V 1.3; W 12V 0.2A; £5, Order Ref: 5P199.
Astec No. \(12530+12 \mathrm{~V} 1 \mathrm{~A} ;-12 \mathrm{~V} 0 \cdot 1 \mathrm{~A} ;+5 \mathrm{~V} 3 \mathrm{~A}\); uncased on p.c.b. size \(160 \times 100 \mathrm{~mm}, £ 3\), Order Ref: 3P141.
Astec No. BM41001 110W \(38 \mathrm{~V} 2 \cdot 5\); 25.1V 3A part metal cased with instrument type main input socket and on/off d.p. rocker switch, size \(354 \times 118 \times\) 84 mm , 8.50 , Order Ref: 8.5 P 2 .
Astec Model No. BM135-3302 \(+12 \mathrm{~V} 4 \mathrm{~A} ;+5 \mathrm{~V}\) \(16 A_{;}-12 V 0.5 A_{\text {, totally }}\) encased in plated steel with mains input plug, mains output socket and double-pole on/off switch, size \(400 \times 130 \times 65 \mathrm{~mm}\), £9.50, Order Ref: 9.5P4.

\section*{POWER SUPPLIES - LINEAR \\ (all cased unless stated)}
4.5 DC \(150 \mathrm{~mA}, ~ £ 1\), Order Ref: 104.
\(5 V\) DC 21/2A PSU with filtering and voltage regulation, uncased, £4, Order Ref: 4P63. 6V DC 700 mA , \(£ 1\), Order Ref: 103.
6V DC 200 mA output in 13A case, £2, Order Ref: 2 P 112.
6-12V DC for models with switch to vary voltage and reverse polarity, \(£ 2\), Order Ref: 2P3. 9V DC \(150 \mathrm{~mA}, ~ £ 1\), Order Ref: 762. 9V DC 2-1A by Sinclair, £3, Order Ref: 3P151. 9V DC \(100 \mathrm{~mA}, ~ £ 1\), Order Ref: 733. 12V DC 200 mA output in 13A case, \(\mathbf{£ 2}\), Order Ref: 2P114.
12V 500 mA on 13A base, \(£ 2.50\), Order Ref: 2.5P4. 12V DC 1A filtered and regulated on p.c.b. with relays and plezo sounder, uncased, \(£ 3\), Order Ref: \(3 P 80\).
Amstrad 13.5 V DC at 1.8 A or 12 V DC at \(2 \mathrm{~A}, \mathrm{£6}\), Order Ref: 6P23
24 V DC at 200 mA twice for stereo amplifiers, \(£ 2\), Order Ref: 2 P4.
9.5 V 60 mA A.C. made for BT, \(£ 1.50\), Order Ref: 1.5 P 7 .

15 V 320 mmA A.C. on 13 A base, \(\mathbf{\varepsilon 2}\), Order Ref: 2 P281.
AC out 9.8 V at 60 mA and 15.3 V at \(150 \mathrm{~mA}, £ 1\), Order Ref: 751.
BT power supply unit 206AS, charges 12V battery and cuts off output should voltage fall below pre-set, £16, Order Ref: 16P6.
Sinclair Microvision P.S.U., £5, Order Ref: 5P148.

\section*{LASER AND LASER BITS}

2 mW Laser, Helium Neon by Philips, full spec. £30, Order Ref: 30P1
Power supply for this in kit form with case is \(£ 15\), Order Ref: 15P16, or in larger case to house tube as well, \(£ 18.00\), Order Ref: 18 P 2.
The larger unit, made up, tested and ready to use, complete with laser tube, \(£ 69\), Order Ref: 69P1.

\section*{SOLAR CELLS AND PROJECTS}

100mA solar cell, \(£ 1\), Order Ref: 631
400mA solar cell, £2, Order Rel: 2P119
700 mA solar cell, £3, Order Ref: 3 P42
1 A solar cell, \(£ 3.50\), Order Ref: 3.5 P 2 .
3 V 200 mA solar cell, \(£ 2\), Order Ref: 2P324.
15 V 200 mA solar cell, \(£ 15\), Order Ref: 15P47. Solar Education Kit with parts to make solar fan, £8, Order Ref: 8P42.
Solar kits - make vintage gramophone, \(\mathbf{£ 7 . 5 0}\), Order Ref: 7.5P3.
Make Helicopter, \(£ 7.50\), Order Ref: 7.5P17.
Make Monoplane, \(£ 7.50\), Order Ref: 7.5P18.

The above prices include VAT but please add \(£ 3\) towards our packing and carriage if your order is under \(£ 25\). Send cheque or postal orders or phone and quote credit card number.

\section*{NEW LOW PRICE - NEW COLOUR HP141T SPECTRUM ANALYSERS TESTED}

HP141T + 8552A or BIF - 8553B RF - \(1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-\) A IF E 600 or B IF - \(£ 700\).
HP141T + 8552A or B IF - 8554B RF - 100kHz \(1250 \mathrm{Mc} / \mathrm{s}-\mathrm{A}\) IF \(£ 800\) or B IF - \(£ 900\).
HP141T + 8552A or BIF -8555 A RF \(-10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}\) - A IF \(£ 1400\) or B IF - \(£ 1600\). The mixer in this unit costs \(£ 1000\), we test every one for correct gain before despatch.
HP141T + 8552A or B IF - 8556A RF - \(20 \mathrm{~Hz}-300 \mathrm{kHz}-\) A IF \(£ 600\) or B IF - \(£ 700\).

\section*{HP ANZ UNITS AVAILABLE SEPARATELY NEW COLOUR - TESTED}

HP141T Mainframe - \(£ 350-8552\) A IF - £200-85528 IF - £300-85538 RF \(-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-£ 200-8554 \mathrm{~B}\) RF \(-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 400.8555 \mathrm{ARF}-10 \mathrm{Mc} / \mathrm{s}-\) \(18 \mathrm{GHz}-£ 1000.8556 \mathrm{~A}\) RF \(-20 \mathrm{HZ}-300 \mathrm{KHZ}-\mathrm{£} 250\).
HP8443A Tracking Generator Counter - 100 kHz \(110 \mathrm{Mc} / \mathrm{s}-£ 300-£ 400\).
HP8445B Tracking Pre-selector DC \(-18 \mathrm{GHz}-£ 400\) £600 or HP8445A - £250.
HP8444A Tracking Generator - \(£ 750-1300 \mathrm{Mc} / \mathrm{s}\).
HP8444A Opt 059 Tracking Generator - \(£ 1000-1500 \mathrm{Mc} / \mathrm{s}\).

\section*{SPECIAL OFFER - 14 ONLY HP140T (NON-STORAGE)}

Mainframe Plus 8552A IF Plug-In Plus 8556A RF PlugIn 20 Hz - 300 kHz Plus 8553 B RF Plug-In 1 kHz \(110 \mathrm{Mc} / \mathrm{s}\). Tested with instructions - \(£ 700\).

Marconi TF2008 - AM-FM signal generator - also sweeper - \(10 \mathrm{Kc} / \mathrm{s}\) - \(510 \mathrm{Mc} / \mathrm{s}\) - from \(£ 250\) - lested \(10 £ 400\) as new with manual - probe kit in wooden carrying box.
HP Frequency comb generator type 8406 - E 400 .
HP Vector Vottmeter type \(8405 \mathrm{~A}-£ 400\) to \(£ 600\) - old or new colour.
HP Sweep Oscillators type \(8690 \mathrm{~A} \& \mathrm{~B}+\) plug-ins from \(10 \mathrm{Mc/s}\) to 18 GHz also \(18-40 \mathrm{GHz}\). P.O.R
 HP Amplifier type \(8447 \mathrm{~A}-1-400 \mathrm{Mc} / \mathrm{s}\) £200-HP8447F. 1-1300Me/s £400.
HP Frequency Counter type \(5340 \mathrm{~A}-18 \mathrm{GHz} \mathrm{E} 1000\) - rear output \(£ 800\).
HP 8410 - A - B - C Network Analyzer \(110 \mathrm{Mc} / \mathrm{s}\) to 12 GHz or 18 GHz - plus most other units and displays used in this set-up
\(8746-8650\). From \(£ 1000\).
Racal/Dana \(9301 \mathrm{~A}-9302 \mathrm{RF}\) Millivoltmeter - \(1.5-2 \mathrm{GHz}\) - f 250 - f 400
Racal/Dana Counters \(9915 \mathrm{M}-9916\) - 9917 - \(9921-£ 150\) to \(£ 450\). Fitted FX standards. Racal/Dana Modulation Meter type \(9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}\) - E250.
Marconi RCL Bridge type TF2700-£150.
Marconi/Saunders Signal Sources type - 6058B - 6070A - 6055A - 6059A - 6057A - 6056 Marconi TF1245 Circuit Magnific
Marconi microwave 6600A sweep oscter + 1246 \& 1247 Oscillators - \(£ 100\) - \(£ 300\) 40 GHz - f 1000 or PI only \(£ 600\). MF only \(£ 250\). Marconi distortion meter type TF2331-£150. TF2331A - 200.
Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1 S2 - S6 - S52 - PG506 - SC504 - SG502 - SG503 - SG504 - DC503 -DC508 - DD501 -WR501-DM501A - FG501A - TG501 - PG502 - DC505A - FG504-7B80 + 85-7B92A Gould J3B test oscillator + manual - \(£ 200\).
Tektronix Mainframes - 7603-7623A - 7613 - 7704A - 7844 - 7904 - TM501 - TM503 - TM506 -7904-7834-7104-7623-7633.
Altech 757 Spectrum Analyser - 00122 GHz - Digital storage + readout - \(\mathbf{£ 2 0 0 0}\).
Marconi 6155A Signal Source- 1 to 2GHz-LED readout- \(\mathbf{~} 400\).
Barr in Stroud Variable filter EF3 0.1 Hz - \(100 \mathrm{ke} / \mathrm{s}+\) high pass + low pass - \(£ 150\).
Farconi TF2163S attenuator - 1 GHz . £200.
Racal/Dana 9300 umit H60/50 - \(£ 400\) tested. H60/25 - \(£ 250\).
HP 8750 A 9300 RMS voltmeter \(-£ 250\).
HP 8750A storage normalizer - \(£ 400\) with lead + S.A or N,A Interface.
Marconi TF2330-or TF2330A wave analysers - \(£ 100-£ 150\).
Racal/Dana signal generator \(9082-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 500\).
Raca/Dana signal generator 9082H-1.5-S2 MC/ - E600.
Tektronix-7S14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11
Tektronix-7S14-7T11-7S11-7S12-S
Marconi mod meters type TF2304- \(£ 250\).
Marconi mod meters type TF2304- \(£ 250\).
HP 5065 A rubidrum vapour FX standard \(-£ 2.5 \mathrm{k}\)
Systron Donner counter type \(6054 \mathrm{~B}-20 \mathrm{Me} / \mathrm{s}-24 \mathrm{GHz}\)-LED readout - \(£ 1 \mathrm{k}\).
Racal/Dana 9083 signal source - two tone -E 250 .
Systron Donner - signal generator 1702 - synthesized to \(1 G H z\) - AM/FM - £600.
Teltronix TM515 mainframe + TM5006 mainframe - 5450 - \(\mathbf{f 8 5 0}\).
Rhodes \& Schwartz power signal generator SLRD-280-2750Mc/s - \(£ 250-£ 600\).
Ball Efratom rubidrum standard PT256B-FRKL - \(£ 1000\).
Farnall electronic load type RB1030-35-E350.
Racal/Dana counters - 9904 - 9905 - 9906 - \(9915-9916-9917-9921-50 \mathrm{Mc} / \mathrm{s}-3 \mathrm{GHz}-\mathbf{E 1 0 0}\) f450 - all fitted with FX standards.
ter c/w probe - £500-£600.

TEMS BOUGHT FROM HM GOVERNMENT BEIMG SURPLUS. PRICE ISEX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY TTEMS, AVALLABILTY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA
ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITING AND RECEIVING EQUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitehall Rood East, Birkenshaw, Bradtiod BDI1 2ER. Tel. No: (0274) 684007 . Fax: 651160

Marconi TF2091 noise generator. A, B or C plus filters - \(£ 100-£ 350\).
HP180TR, HP \(182 T\) mainframes \(£ 300-£ 500\).
Fluke 8506A thermal RMS digital multimeter. \(£ 400\).
Philips panoramic receiver type PM7500-1 to 20GHz- \(£ 400\)
MP8505A network ANZ + 8503A S parameter test set + 8501A normalizer \(-£ 4 \mathrm{k}\).
Racal/Dana VLF frequency standard equipment. Tracer receiver type \(900 \mathrm{~A}+\) difference meter
type \(527 \mathrm{E}+\) rubidium standard type \(9475-£ 2750\).
HP signal generators type \(626-628\) - frequency \(10 \mathrm{GHz}-21 \mathrm{GHz}\).
HP 432A - 435A or B-436A - power meters + powerheads - Mc/s - 40GHz - £200-£1000.
Bradley oscilloscope calibrator type 192 - \(\mathbf{£ 6 0 0}\).
Bart \& Stroud variable filter EF3 \(0.1 \mathrm{~Hz}-100 \mathrm{Kc} / \mathrm{s}+\) high pass + low pass - \(£ 150\).
Marconi TF2370 spectrum ANZ - \(110 \mathrm{Mc} / \mathrm{s}\) - \(\mathbf{\text { f }} 900\).
Marconi TF2370 spectrum ANZ + TK2375 FX extender \(1250 \mathrm{Mc} / \mathrm{s}+1 \mathrm{st}\) gen - \(\mathbf{6 1 . 5 k}\).
HP8614A signal generator \(800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}\), new colour \(£ 400\).
HP8616A signal gen \(1.8 \mathrm{GHz}-4.5 \mathrm{GHz}\), new colour \(£ 400\).
HP 3325 A syn function gen \(20 \mathrm{Mc} / \mathrm{s}-£ 1500\).
HP 3586B or C selective level meter - \(£ 750-£ 1000\)
HP 3575A gain phase meter \(1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 400\).
HP 8671A syn microwave \(2-6.2 \mathrm{GHz}-£ 2 \mathrm{k}\)
HP 8683D S/G microwave 2.3-13GHz-opt 001-003-£4.5k.
HP \(8660 \mathrm{~A}-\mathrm{B}-\mathrm{C}\) syn S/G. AM + FM + \(10 \mathrm{Kc} / \mathrm{s}\) to \(110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}\) to \(1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}\) to \(2500 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 750\) - 2800 .
HP 8640 B S/G AM-FM \(512 \mathrm{Mc} / \mathrm{s}\) or \(1024 \mathrm{Mc} / \mathrm{s}\). Opt 001 or 002 or \(003-£ 800-\mathrm{f} 1250\).
HP 8656A S/G AM-FM 0.1 - \(990 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 1500\).
HP 8622B Sweep PI -01-2.4GHz + ATT - \(£ 1750\).
HP 8629A Sweep PI-2-18GHz - 11000 .
HP 86290 B Sweep PI - 2- 18GHz - f 1250 . \(10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}\) - \(\mathrm{E} 250-\mathrm{f} 1 \mathrm{k}\).
HP 86 Series Pl's in stock - splitband from
HP 8620 C Mainframe - \(£ 250\). IEEE - \(£ 500\).
HP 8615A Programmable signal source - \(1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}-\) opt 002 - f1k.
HP 8601 A Sweep generator .1 - \(110 \mathrm{Mc} / \mathrm{s}\) - E300.
HP 4271B LCR meter 1 MHz digital meter + 16063A test adaptor - \(\mathrm{EB50}\).
HP 4342A Q meter \(22 \mathrm{kHz}-70 \mathrm{Mc} / \mathrm{s} 16462 \mathrm{~A}+\) qty of 10 inductors - \(£ 850\)
HP 3488A HP - IB switch control unit - \(£ 500+\) control modules various \(-£ 175\) each
HP 3561A Dynamic signal ANZ-E3k.
HP 8160A 50MC/s programmabie pulse generator - \(£ 1400\)
HP 853A MF ANZ + 8558B-0.1-1500 Mc/s - E 2500 .
HP 8349A Microwave Amp \(2-20 \mathrm{GHz}\) Solid state - \(£ 1500\)
HP 3585A Aralyser \(20 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}-£ 4 \mathrm{k}\)
HP 3580A Analyser \(5 \mathrm{~Hz}-50 \mathrm{kHz}-\mathrm{f1} \mathrm{k}\).
HP 1980 Oscilloscope measurement system - \(£ 600\)
HP 3455A Digital voltmeter - \(£ 500\).
HP 3437 A System voltmeter - \(£ 300\).
HP 3581C Selective voltmeter - \(£ 500\)
HP 5370A Universal time interval counter - \(£ 450\).
HP 5335A Universal counter - 200 Mc/s - 5500 .
HP 5328A Universal counter - \(500 \mathrm{Mc} / \mathrm{s}\) - \(£ 250\).
HP 6034 A System power supply - \(0-60 \mathrm{~V}-0-10 \mathrm{amps}-£ 500\).
HP 3960A 3964A Instrumentation tape recorders - \(£ 300\) - \(£ 500\).
HP 5150A Thermal printer - \(£ 250\).
HP 1645A Data error analyser
HP 4437A Attenuator- \(£ 150\).
HP \(3717 \mathrm{~A} 70 \mathrm{Mc} / \mathrm{s}\) modulator - \(£ 400\).
HP 3710A-3715A-3716A-3702B-3703B-3705A-3711A-3791B-3712A-3793B
HP 3730 A + B RF down converter - P O.
HP 3552A Transmission test set - £400.
HP 3763A Error detector - \(£ 500\).
HP 3764A Digital transmission analyser - £600.
HP 3770A Amp delay distortion analyser - \(£ 400\)
HP 3780A Pattern generator detector - £ 400 .
HP 3781A Pattern generator - \(£ 400\).
HP 3782 A Error detector - \(£ 400\).
HP 37928 Error detector - E400.
HP 37828 Error detector (bell)- \(£ 300\).
HP \(3785 A\) Jitter generator + receiver - \(£ 750-£ 1 \mathrm{k}\).
HP 8006A Word generator - \(£ 100-£ 150\).
HP 8016A Word generator - \(£ 250\).
HP 8170A Logic pattern generator - £500.
HP 59401A Bus system analyser - £350.
HP 59500A Multiprogrammer HP - IB - \(£ 300\).
Philips PM5390 RF syn - 0.1 - 1GHz - AM + FM - f1250.
Philips PM5519 Colour T.V. pattern generator \(-£ 250\)
S.A. Spectral Dynamics SD345 spectrascope 111 - LF ANZ - \(£ 2500\).

Tektronix R7912 Transient waveform digitizer - programmable - \(\mathbf{£ 4 0 0}\)
Tektronix 496 Analyzer 1 kHz - 1.8 GHz - \(\mathbf{f 3}\). 5 k .
Tektronix TR503 + TM503 tracking generator \(0.1-1.8 \mathrm{GHz}\) - £ 1 k - or TR502.
Tektronix 577 Curve tracer + adaptors - \(£ 900\).
Tektronix \(1502 / 1503\) TDR cable test set - \(£ 1000\)
Tektronix 7 LS LF analyser \(\mathbf{- 0} \mathbf{- 5 \mathrm { Mc } / \mathrm { s } - \mathrm { f800 } \text { . OPT } 2 5 - £ 1 0 0 0 . ~}\)
Tektronix AM503 Current probe + TM501 m/frame - f 1000
Tektronix SC501-SC502-SC503-SC504 oscilloscopes - \(\mathrm{E7} 5\) - E 350 .
Tektronix 465-465B-475-2213A -2215-2225-2235-2245-2246-f250-£1000.
Kikusui 100Mc/s Oscilloscope COS6100M - £350.
Farnell PSG520 Signal generator - \(£ 400\).
Racal 1991-1992-1988-1300Mc.
Racal 1991-1992-1988-1300 Mc/s counters - £500-£900.
Tek \(2445150 \mathrm{Mc} / \mathrm{s}\) oscilloscope- E 1400.
Racal Recorders -Store 4-4D-7-14 channels in stock - \(£ 250-£ 500\).
Racal Store Horse Recorder \& control - \(£ 400-£ 750\) Tested.
EIP 545 microwave 18 GHz counter - f .1200 .
Fluke 510A AC ref standard \(-400 \mathrm{~Hz}-\mathbf{£ 2 0 0}\).
Fluke 355A DC voltage standard - £300.
Schlumberger 5229 Oscilloscope - \(500 \mathrm{Mc} / \mathrm{s}\) - \(£ 500\).
Solartron 1170 FX response ANZ - LED dislay - \(£ 280\)
Wiltron 610D Sweep Generator +6124 C PI-4-8GHz-£400.
Wiltron 610D Sweep Generator \(+61084 \mathrm{DPI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 500\).
Time Electronics 9814 Voltage calibrator - \(\mathbf{E 7 5 0}\).
Time Electronics 9811 Programmable resistance - f 600 .
Time Electronics 2004 D.C. voltage standard - \(£ 1000\).
HP 8699 B Sweep PI YIG oscillator .01 - 4GHz - £300. 8690 B MF - £250. Both \(£ 500\).
Schlumberger 1250 Frequency response ANZ - \(£ 2500\)
Dummy Loads \& power att up to 2.5 kilowatts \(F X\) up to 18 GHz - microwave parts new and ex equipt - relays - attenuators - switches - waveguides - Yigs - SMA -APC7 plugs - adaptors, etc.
B8k Items in stock - ask for list.
W\&G Items in stock - ask for list
Power Supplies Heavy duty + bench In stock - Farnell-HP - Weir - Thurlby - Racal etc. Ask for list.

\title{
At the heart of Powerware's range of windows-based pcb design products is a core called Quickroute. This core has \\ PCBsrecently been upgraded to version 3.0, chiefly to cope with larger pcb designs, as Martin Cummings explains. through windows
}

\(Q\)uickroute started life as shareware. Two software generations later, it is being sold as a professional cad package. It provides pcb layout and schematic capture in several forms depending on the complexity of your design and price you want to pay.Quickroute runs under windows, and it gets top marks for efficient programming. There can be few windows programs these days that can be supplied on one 720 K byte disk.
One of the chief advantages of the windows platform is that Quickroute can output to any device, printer or plotter that comes with a windows driver. It can handle up to eight layers plus two silk screens and all versions come with an autorouter, although the competence of the router varies as you go up through the product range.
The trouble with windows is that it makes you think you can use software right from the word go. This is not the case. Don't misunderstand me, Quickroute is easy to use, and makes full use of the standard windows interface, but if you don't read the manual the interesting designs on the screen will not live up to expectations when you try to do something clever.
The Quickroute screen is exactly what you would expect. Design area is surrounded by a menu bar, button bar, scroll bars and a status line at the bottom of the screen. Current working environment is reported on the status line. It show the current layer, the \(x y\) coordinates of the cursor and the current zoom level.
Cursor snap can be set from lin down to 0.001 in and a reassuring click is given at each step of the cursor. A grid can be displayed and in keeping with previous versions of Quickroute you have no control over the resolution, it adjusts itself according to the zoom level. This sounds disconcerting but is surprisingly acceptable in practice.
There are two ways to zoom. A pull down menu provides a selection of magnification factors from 0.15 to 10 in seven steps. The function keys provide a single key press alternative to the menus. You can also type in your own magnification factor in the unlikely event that one of the standard ones is unacceptable.
While zooming is not a problem, the ability to define a zoom rectangle would be a natural way to zoom and could be a useful addition.

Quickroute 3 has evolved as a pcb layout tool but it can also turn its hand to schematic design.

\section*{Capturing schematics}

In any design, the first step is to draw a schematic, so why is it that the tutorial in the manual jumps into pcb layout and treats schematic capture as an afterthought?
Eventually chapter 4 of the manual gets round to explaining how to design the circuit.
The first decision is that of library choice. Quickroute is supplied with a number of libraries. For analogue designs and simple logic work (ie not/nand/nor etc) the supplied libraries will usually suffice, there is a good chance you will find what you want. If you need to go beyond the 741 op-amp and the most popular 7400 series devices then be prepared to define the part yourself.
An up to date listing of library components is provided via a read-me file. It is useful to have a print of this to

hand. Nevertheless a little exploration is necessary to confirm exactly what you want to select.
Select a library then one of the three symbol buttons from the button bar. You can allocate a different symbol to each of the three, so you could have say a transistor, a resistor and a capacitor at your finger tips. Beyond this you have to assign another symbol to one of the buttons. A right mouse click on a button opens an array of possibles to choose from.

Quickroute versions are scaled in price versus features.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Schematic capture & Designer no & Designer+ no & \begin{tabular}{l}
Curriculum \\
max 20 \\
symbols
\end{tabular} & \begin{tabular}{l}
Pro \\
\(\max 250\) \\
symbols
\end{tabular} & Pro+ \(\max 500\) symbols \\
\hline Layers & \(8+2\) silk screen & \[
8+2 \text { silk }
\] screen & \(8+2\) silk screen & \(8+2\) silk screen & \[
8+2 \text { silk }
\]
screen \\
\hline Design size (pads) & 10000 & 20000 & 10000 & 30000 & 40000 \\
\hline Design size & \(30 \times 30\) inches \\
\hline Autorouter speed comparison & 1 & 2.2 times faster & 1 & 5.2 times faster & 5.2 times faster \\
\hline Rat's nest generation & no & no & yes & yes & yes \\
\hline Global nets & no & no & no & no & yes \\
\hline Gerber export & no & yes & yes & yes & yes \\
\hline Gerber import & no & no & no & no & yes \\
\hline Price (single user ex vat) & \(£ 99\) & £149 & £149 & £199 & £299 \\
\hline
\end{tabular}

\section*{Symbol placement}

Placing a symbol on the design area is pleasing. The symbol moves smoothly with the cursor and you can see exactly where it will end up. Top marks to Quickroute for correcting a major frustration of their earlier product. But the sting in the tail is that symbol rotation is a little cumbersome.
Symbols are automatically numbered as they are placed and a dialogue box allows you to enter a value for each device. Multi gate devices are well handled. For example calling up a 7400 will place all four gates on your design. Use the one you want and the spares are ready and waiting for future employment. The power pins are also shown to remind you to connect \(\mathrm{V}_{\mathrm{cc}}\) and ground.

When performing editing operations, Quickroute does a complete redraw after each move. The speed of redraw is acceptable even on my relatively slow 386 SX machine, but if you are swiftly moving several items in quick succession there is just enough delay to become noticeable. There is a 'turbo draw' feature which omits the fill operation. This speeds the redraw by approximately 30 percent. The worst redraw I experienced was reduced from 10 seconds to 7 by the turbo setting.
Care must be taken when entering connections on a schematic. The connections must be entered on the rat's nest layer which all sounds reasonable, however it is also necessary to select the track type netlist. Without this what appear to be connections turn out to be nothing of the sort. This is one of the reasons why manual reading is essential to avoid the pitfalls.

Once the design is complete the Pro and Pro+ versions of the software will scan the design and draw up a netlist ready for the autorouter. If you are working on more complex designs global nets and buses are possible although only on the Pro+ version.
Global nets are connections that are not actually shown on the schematic but exist electrically. Two nets at either side of a schematic can be given the same name to avoid the need to draw a line all the way around. Multiple power

Numbering of symbols and component values is easy with Quickroute. Components are automatically numbered as they are placed. You are given the option of accepting the proposed identity and can annotate the part with, say, a component value.

\(\sqrt{1} \sqrt{6}\)

Symbol Pacement

A simple but effective device editor is provided to enable new or modified devices to be created and added to libraries.
connections also lend themselves to global nets. By this same simple technique buses can be constructed.

\section*{Design rule checking}

Net lists can be exported from Quickroute and because they are nothing more than ascii text, can be read by any text editor. The manual has a section called 'Design Rule Checking'.

Many other programs perform design rule checking and can detect shorts, inputs left open circuit, outputs tied together and unconnected power pins. In the case of Quickroute, design rule checking means printing out the netlist at various stages in the design and checking the connections you want are still there.

Perhaps a little disappointing but we are told that some form of automated design rule checking is on the horizon for future versions.

\section*{PCB layout}

With schematic and netlist in hand we can now begin the pcb layout. Both Designer and Designer+ versions are perhaps aimed more at the layout than the schematic capture. While the drawing of schematics is possible you cannot transfer the design directly into the layout part of the software and nets must be entered manually.

On the higher specification versions, moving from schematic to layout could not be easier. Select the menu item called 'generate rat's nest' and the components appear with the point to point rat's nest connecting the relevant pins. Components can then be placed in a more suitable arrangement prior to routing.
When moving a component a ghost of the component follows the cursor as you decide where to put it and once the decision is taken the new rat's nest connections are drawn in. When you click to say I want it here, a mini menu pops up with the selections move, copy or multicopy. This is another example of something that sounds trivial, but can become irritating when a lot of moving around has to be done. I would prefer to enter move mode
or copy mode so the decision is taken at the start of the exercise and only once.
If components are being placed manually it is a similar exercise to schematic drawing. Select a suitable library, and the component needed then place it on the layout. A vast array of pad types is provided and you can define your own if you want. Track widths from 0.01 in up to 0.6 in are provided and you can define your own track down to 0.001 in if needed. They can be placed on any of the 10 layers which are clearly identified by colour and the status bar at the bottom of the screen. Track drawing is assisted by turning on or off polylines and \(45^{\circ}\) options so the whole exercise is as painless as it can be.
The layout can be annotated with text. Vector text is constructed from lines and can be exploded into its individual tracks although I have yet to think of a reason why I might do that. Alternatively, any font available through windows can be used given the output device can print it. Even wingdings could be used to brighten up a dreary pcb.

\section*{Autorouteing}

All versions of the software include an autorouter of some form. The autorouter needs a netlist to tell it what to route, and on the up market versions of the software this is generated from the schematic.
In the case of the Designer and Designer + versions, the netlist has to be entered manually by drawing the rat's nest. I entered some connections so that I could exercise the autorouter and the procedure is reasonably easy but it does beg the question: would it have been just as easy to lay the tracks?
The autorouter, while not really configurable, does have one or two adjustments you can make. There are two grid settings for the routing algorithm, normal at 0.05 in and fine at 0.025 in . The clearance to be left around pads can also be specified to allow for manufacturing tolerances. The autorouter will route on any or all of the eight layers, you specify which ones by defining them as visible or not.

Curious results were encountered from the autorouter, in this case switched to its fine grid setting and the minimum permitted pad clearance. Be prepared to plough through the manual and experiment a little in order to achieve useful results from the autorouter.

\section*{Software source}

All versions except curriculum: Powerware, 14 Ley Lane, Marple Bridge, Stockport SK6 5DD. Tel./fax: 0161449 7101. The curriculum version is only available to educational establishments and is supplied by: Economatics Education Ltd,
Tel. 01742561122.

A bus structure on a small memory array was used to exercise the autorouter. This is the rat's nest showing the desired connectivity

The track size used will be the current selection made on the menu.
Once unleashed, the autorouter carries on to the bitter end which may, or may not result in all tracks being routed. If the constraints are such that not all can be completed the autorouter reports its success level and leaves rat's nest lines to indicate the outstanding connections to be made.

There is no provision to perform a partial route, which would allow for example power tracks to be routed at 0.1 in width, then 0.015 in to be used for the signal tracks.
For reasons not fully explained, the algorithm avoids routing through component identities on the silk screen layer. These can be turned off to avoid this effect, and it can even be used to advantage because sometimes it is necessary to avoid routing in certain areas and rectangles, circles and other shapes can be placed on the design to achieve this effect.
Performance of the autorouter was difficult to judge. So many factors can influence the perceived speed of operation, and according to the literature the speed varies depending upon which version of Quickroute you buy. It gave some curious results on occasions, this may have been due to misuse or incorrect setup but it did not leave me feeling I had discovered an invaluable tool. My conclusion was that perhaps with effort and patience I would eventually get it to work.

\section*{Multicoloured prints}

Printing or plotting the design is remarkably simple. The output is produced at whatever zoom level is currently selected for the screen. Bearing in mind that you can specify any multiplier as a zoom factor there is plenty of flexibility to fine tune the size of prints.
Any combination of layers can be output using the same idea, just make sure they are selected to show on the screen. Normally all items are printed in solid black to ensure best quality for the final design, however the software will support colour printers, if for example you wanted a multicolour print for checking.

\section*{Package options}

With the exception of the Designer version, Quickroute will output Gerber and NC-drill files for automated manufacturing, and the Pro+ version has the ability to import Gerber designs, perhaps for checking or to integrate parts of a design produced elsewhere.
There is a special version of the program aimed at the educational market known as Curriculum. This includes a 'teacher page' which provides password protection for most of the configurable features of the package. It evens
denies access to the netlisting and autorouteing tools which seems a little draconian, but the general principle is a good idea.
Maximum design area is a more than adequate 30 inches square. Compared to most windows software, Quickroute is quite modest in its requirements for memory. However if you plan to design large circuits and particularly if you are using the autorouter be prepared to plug in more ram.
Quickroute 3 bears a lot of similarities to its earlier generations. The windows interface has been tidied up a little and standardised. Powerware has deliberately moved up market with this product. It costs more than previous versions but is a more competent package. The competence has been extended not so much in additional features but by giving the capacity to deal with larger designs. The top of the range autorouter is also a much more competent algorithm than on previous releases.
There has been a clear effort to address the educational market and this is probably a sensible move. Quickroute shows evidence of evolving from that area rather than the industrial sector, and there is no doubt that the software provides an attractive, easy to use and well structure teaching aid for schools and colleges.
In the mainstream of cad software it will face some stiff competition. But the Powerware organisation is small, responsive and provides good technical support - factors that should be considered when buying software.

\section*{SPECIAL OFFER}

\section*{40\% discount - Quickroute 3 Designer 25\% discount - Quickroute 3 Pro+}

As an introductory offer - exclusive to \(E W+W W\) readers - Powerware is offering the Designer version of its latest Quickroute 3.0 package for \(£ 59.40\). Apart from having its manual on disk rather than as a hard copy, this package is identical to the full-priced software, which normally retails at \(£ 99\) - excluding vat, postage and packing.
In addition, Powerware is also offering \(25 \%\) discount on the Pro+ version of Quickroute 3.0, bringing the price to \(£ 224\) from the usual price of \(£ 299\). See reader reply card between pages 56 and 57 .

\section*{Look what's new in version 4 of SpiceAge for Windows \({ }^{\text {TM }}\)}
- DDE link with Modelmaker, the utility that synthesizes opamps, transformers, attenuators and transistor library models
- Reflection coefficient analysis
- Noise analysis
- Improvements to digital displays
- Auto-time interval setting option
- Time optimisation in relaxed circuits
- Faster quiescent calculations
- SPICE repertoire enhancements for ASICS

- Better screen \& paper presentation
- Windows \({ }^{\text {TM }}\) wave (.wav) file compatibility. Multi-media users can listen to their waveforms or capture sound samples for Fourier analysis or filtering. Binary output option makes ROM programming easy.
- PWL non-linear enhancements saves calculating polynomial coefficients for those awkward functions.

Make sure you know what you are missing by asking us for a copy of the demonstration program and booklet. Subscribers to the SpiceAge maintenance service will be receiving their new version along with a copy of the new manual.
Please contact:

\author{
Those Engineers Ltd., 31 Birkbeck Road, London NW7 4BP
}

Tel: 0181-906 0155, Fax: 0181-906 0969

\title{
LOWER THD
} from vint
igital audio designers are always concerned about noise, total harmonic distortion, and phase linearity. To prevent aliased noise and distortion, using an antialiasing filter, designers have to limit the bandwidth of the audio signal before the signal reaches the analogue-to-digital converter.
Using an anti-imaging filter, designers must also limit the bandwidth of the audio signal that comes from the digital-to-analogue converter. However, maintaining an acceptable phase linearity for a filter that matches the dynamic range of converters with resolution of 16 bits or more can be a challenging task. More and more digital audio designers now use early filter architecture, the Generalised Immitance Converter (gic), to meet this challenge. Immitance is a combined term that covers impedance and admittance.
The immitance converter in Fig. 1 is a two port network whose input impedance is:
\[
Z_{\ln (s)}=\frac{Z_{1(s)} Z_{3(s)} Z_{5(s)}}{Z_{2(s)} Z_{4(s)}}
\]
where \(s\) is the standard Laplacian operator. When impedance \(Z_{\mathrm{s} 2}\) is capacitive and the other impedances are resistive, the immitance converter's input impedance simulates an inductor.
\[
Z_{\mathrm{in}(\mathrm{~s})}=\frac{s R_{1} C_{2} R_{3} R_{5}}{R_{4}}
\]

An inductor can also be simulated by making \(Z_{4}\) capacitive and the remaining impedances resistive. When any two of the numerator impedances are made capacitive, such as \(Z_{1}\) and \(Z_{5}\), and the other impedances resistive, the converter simulates a frequency dependent negative resistor.
\[
Z_{\mathrm{in(s)}}=\frac{R_{3}}{s^{2} C_{1} R_{2} R_{4} C_{5}}
\]

The impedances that are made capacitive have different circuit implications. If \(Z_{1}\) is made a capacitor, and the filter is ac coupled, the operational amplifier, \(I C_{l}\), will not have a bias-current return path, which could affect the filter's operation. When \(Z_{3}\) and \(Z_{5}\) are made capacitive, the op-amps in the immitance converter all have a bias-current return path.
Audio designers generally make \(Z_{1}\) and \(Z_{5}\) capacitive, letting \(R_{2}=R_{3}\left(Z_{2}=Z_{3}\right)\) to be set to minimise the effect of op amp gain bandwidth mismatch. If you configure the converter with capacitors for \(Z_{3}\) and \(Z_{5}\) you should employ

Fig. 1. A Generalised Immitance Converter can simulate the immitance of any passive component, including a frequency dependent negative resistor. Designs incorporating these avoid the need for inductors.
op-amps with well-matched gain bandwidths. An active gic filter can simulate the transfer characteristic of a passive \(L C\) ladder network (Fig. 2a). An LC ladder network is transformed into an active gic filter by multiplying each ladder network element by \(1 / \mathrm{s}\). The transformation changes all the inductors to resistors, the capacitors to fdnrs, and the resistors to capacitors (Fig. 2b). \(R_{1}=R_{2}\) and \(C_{3}=C_{5}\) can be set, allowing the filter to be trimmed using only one component, \(R_{4}\).
Because the gic filter simulates an \(L C\) filter, it has a lower sensitivity to component value variations than other \(R C\) active filters, such as the familiar Sallen and Key topology'. In addition, the gic filter topology lets you design high-order filters having unity gain, whereas the Sallen and Key filter topology (Fig. 3) often requires gain greater than unity to derive real resistor values.
To illustrate an active gic filter design, consider the filter requirements in a practical digital audio record and playback channel. Modern digital-audio channels oversample the recorded bandwidth using a sampling rate that is more than four times the Nyquist rate. Multiplying the recommended standard 48 kHz audio sampling rate by a factor of four produces the standard 192 kHz four times the oversampling rate.
Such a high oversampling rate eliminates the need for 'brick-wall' attenuation slopes

Fig. 2. An LC ladder network generates any low pass filter polynomial (a). The filter's transfer function can be simulated by multiplying each element by \(1 /\) s and the filter can be realised using GICs (b).

Fig. 3. Active-filter handbooks contain many 'cookbook' designs for the familiar Sallen and Key lowpass architecture. The topology often requires greater then unity gain to realise the filter.

Fig. 4. A normalised third-order Butterworth filter serves as a building block for the anti-imaging filter (a). The normalised GIC filter is obtained by multiplying each normalised element value by \(1 / s\) (b).
and eases limitations on allowable phase distortion, hence allowing you to use lower-order - and lower-cost - anti-aliasing and anti-imaging filters. It also avoids the manufacturing difficulties and non-linear group delay associated with brick-wall filters.

\section*{Playback devices aid anti-imaging}

The anti-imaging filter's attenuation requirements benefit from the attenuation provided by three factors in the playback channel. The first factor is the attenuation characteristics of the digital interpolation filter that precedes the digital-to analogue converter. The filter interpolates the data between samples and removes most of the signal energy above 20 kHz to prevent aliasing by the dac.
The second factor is the frequency response and linearity of the output power amplifier. The power amplifier bandwidth is generally restricted to 20 kHz , which attenuates higherfrequency energy. A note of caution, however: noise shaping dacs have significant out-ofband energy, which, if the amplifier becomes non-linear, can create intermodulation products.
The third factor is the frequency response of the dac. Because a dac maintains the analogue value of each digital sample, the converter exhibits the frequency response of a zero-order-hold filter given by
\[
H_{(n)}=\frac{\sin \left(\pi \frac{f}{f_{\mathrm{s}}}\right)}{\left(\pi \frac{f}{f_{\mathrm{s}}}\right)}
\]
where \(\mathbf{f}\) is the signal frequency and \(\mathrm{f}_{\mathrm{s}}\) is the sampling frequency. The converter's \(\sin (x) / x\)
frequency response can provide 20 dB or more of attenuation in the imaging frequency range, which is 20 kHz removed from the sampling rate.
The anti-aliasing filter's attenuation requirements are more stringent. Because there is no digital filter or power amplifier preceding the analogue to digital converter, the filter cannot benefit from the additional attenuation provided by these devices. In addition, because the digital samples from the adc are represented mathematically as impulses in discretetime, an adc does not exhibit the zero-orderhold response of a dac.
To match the dynamic range of a 16 bit analogue to digital converter, the anti-aliasing filter should theoretically provide 96 dB of attenuation to keep alias responses below the quantisation noise level. In practice, however, the amplitude of audio signals in the 10 to 20 kHz range is significantly less than the adc's dynamic range. Therefore, designers often use 65 dB as an adequate rule of thumb for the anti-aliasing filter's attenuation. Because of the help it gets in the playback channel, the anti-imaging filter can be of a lower order than the anti-aliasing filter.
Although there is a wide choice of low pass filter polynomials, many of these polynomials are not suitable for audio applications. Chebyshev and elliptic filters have steep cutoff characteristics, but their large pass-band ripple can be troublesome in some audio applications.
The Butterworth filter has a maximally flat pass-band response, but its cutoff characteristics are less steep. Because these three types of filters do not exhibit constant group delay, pass-band frequencies experience unequal time delays that can cause excessive over-
shoot, and ringing in the transient response.
The Thompson filter, also known as the Bessel filter, has constant group delay, which provides excellent transient response in audio and dsp applications. However, the Thompson filter's cutoff characteristics are even less steep than the Butterworth filter's, so a highorder Thompson filter would be needed to achieve the same stopband attenuation as a lower-order Butterworth filter. Because oversampling relaxes the attenuation requirements, a 40 kHz Butterworth filter can often be used. It has group delay from 20 Hz to 20 kHz , tolerable in most four times over-sampled digital audio systems.
Using a 192 kHz four times oversampling rate, a 1 kHz Butterworth anti-aliasing filter must attenuate the aliasing components in the 160 to 170 kHz frequency range by the rule of thumb 65 dB . The order of a Butterworth filter is determined using the following equation:
\[
10^{\frac{K_{\mathrm{s}}}{20}}=\sqrt{1+\left(\frac{\omega_{\mathrm{s}}}{\omega_{\mathrm{c}}}\right)^{2 \mathrm{n}}}
\]
where \(K_{\mathrm{s}}\), is the stopband attenuation in decibels, \(\omega_{\mathrm{s}}\) is the minimum stopband frequency, \(\omega_{\mathrm{c}}\) is the 3 dB cutoff frequency, and n is the filter order. Solving for \(n\) yields
\[
\mathrm{n}=\frac{\log \left[\sqrt{10} \frac{K_{\mathrm{s}}}{20}-1\right.}{\log \left[\frac{\omega_{\mathrm{s}}}{\omega_{\mathrm{c}}}\right]}
\]

Substituting \(K_{\mathrm{s}}=65, \omega_{\mathrm{s}}=2 \pi \times 160 \mathrm{kHz}\), and \(\omega_{\mathrm{c}}\) \(=2 \pi \times 40 \mathrm{kHz}\) yields \(n=5.4\). This means a sixth-order anti-aliasing Butterworth filter would be needed. Because the anti-imaging filter benefits from attenuation, due to the dig-

\section*{ANALOGUE DESIGN}

ital interpolation filter, the dac's \(\sin (x) / x\) response, and the restricted power amplifier bandwidth, a third-order Butterworth filter, producing 36 dB of attenuation at 160 kHz , should suffice.
Figure 4a shows the component values for a third-order Butterworth \(L C\) filter with a normalised cutoff frequency of \(1 \mathrm{rad} / \mathrm{s}\). The component values from standard filter tables such as those found in Reference 1 can be extracted. To realise the filter using a generalised immitance converter, each component is first transformed by multiplying each value by \(1 / s\). Therefore, \(L_{1}\) becomes \(R_{1}, C_{2}\) becomes a frequency dependent negative resistor having the value \(1 /\left(s^{2} C_{2}\right), L_{3}\) becomes \(R_{3}\), and the terminating resistor, \(R_{4}\), becomes \(C_{4}\), Fig. 4b.
By setting the fdnr values, referring to Fig. 1: \(Z_{1}=R_{1}, Z_{2}=R_{2}, R_{1}=R_{2}=1 ; Z_{3}=C_{3}, \quad Z_{5}=C_{5}\), \(C_{3}=C_{5}=1 / \mathrm{s}\); and \(Z_{4}=R_{4}=1.333 \Omega\). As with the circuit in Fig. 2b, a single resistor \(R_{4}\) determines the value of the frequency dependent resistor.
Next the normalised cutoff frequency must be scaled to the desired cutoff frequency of 40 kHz . Frequency scaling can be achieved
simply by dividing all capacitor values by \(\Omega_{\mathrm{n}}\) \(=2 \pi \times 40 \mathrm{kHz}\). Finally, large capacitor values must be scaled by an impedance scale factor to realise practical circuit elements.
The impedance scale factor is
\[
Z_{n}=\frac{\text { normalised } C \text { value }}{\text { normalised } C \text { value }}
\]

Choosing the desired C value to be 1000 pF yields an impedance scale factor of
\[
Z_{n}=7.23 \times 10^{3}
\]

Multiplying all resistor values and dividing all frequency-scaled capacitor values by \(7.23 \times 10^{3}\) produces the final filter shown in Fig. 5a. Because the output impedance of the filter is high, the output should be buffered via an opamp voltage follower. Figure 6 shows amplitude and phase response of the final filter.
The measured noise-and-distortion and noise levels show a contrast between a third order Butterworth filter design based on the familiar Sallen and Key architecture, Fig. 5b, and this gic realisation. Noise-and-distortion measurements were performed using a 1 kHz test sig-

Fig. 6. The amplitude (solid line) and phase response (dotted line) of the third order Butterworth GIC filter are nearly constant throughout the audio frequency band.
nal and a 22 Hz to 80 kHz measurement bandwidth. The noise-only levels were measured in the same bandwidth when the circuit inputs were grounded. The immitance converter realisation achieves a 96 dB noise and distortion level that matches the dynamic range of a 16 bit digital audio system.
The Sallen and Key realisation achieves a -93 dB noise and distortion level that is adequate for most consumer audio systems, but is 3 dB higher than the gic realisation. Simple output noise level was measured in dBu , referenced to 0 dBu , which equals \(0.775 \mathrm{~V}(\mathrm{rms})\). The immitance converter filter, at -104 dBu , has 7dB less noise than the Sallen and Key filter. Because the Sallen and Key filter must have greater-than-unity gain to realise the component values, its noise gain is higher than that of the unity gain gic filter
A sixth order gic filter can be designed in one of two ways to achieve the 65 dB antialiasing filter requirements. The previous design procedure can be extended using standard element values for a normalised sixth order Butterworth filter, or two of the previously designed third order gic filters can be cascaded to achieve the sixth order polynomial
A design based on a normalised sixth order Butterworth filter is sensitive to gain bandwidth mismatches between all the opamps in the circuit, however. If this approach is used, op amps with high gain bandwidth products should be employed. Cascading two third order gic filters achieves acceptable results and has fewer op amp matching difficulties.

\section*{References}
1. Huelsman, L P, and P E Allen, Introduction to the theory and design of active filters, McGraw Hill, New York, 1979.
2. R Downs, 'DSP Oversampling to Quiet Noise', EE limes, August 8,1988, p. 68.
3. R Downs, 'High-Speed A/D Converter Lets Users Reap Benefits of Oversampling', BurrBrown Update, Vol XIV, No. 2, May 1988, p. 3 4. R Downs, 'A Low-Noise, Low-Distortion Design for Anti-Aliasing and Anti-Imaging Filters', Burr-Brown Application Bulletin AB26, February 1991

\section*{INTERFACING WITH C}
by

\author{
HOWARD HUTCHINGS
}

\footnotetext{
Interfacing with C can be obtained from Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Please make cheques for \(£ 14.95\) (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-652 3614. A disk containing all the example listings used in this book is available at \(\mathbf{£ 2 9 . 9 6}\). Please specify size required.
}

\section*{C HERE!}

If you have followed our series on the use of the \(\mathbf{C}\) programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

\section*{Best rf article '95}

Following the success of 1994's Writers Award, Electronics World and Hewlett-Packard are launching a new scheme to run from January to December 1995.
Only articles which have an element of rf design will be eligible for consideration by the judging panel. It is hoped that this year's award will focus writer interest on rf engineering in line with the growing importance of radio frequency systems to an increasingly cordless world.
The aim of the award scheme is to locate freelance authors who can bring applied electronics design alive for other people.
Qualifying topics might include direct digital synthesis, microstrip design, application engineering for commercially available if ICs and modules, receiver design, PLL, frequency generation and rf measurement, wideband circuit design, spread spectrum systems, microstrip and planer aerials... The list will hopefully be endless.
All articles accepted for publication will be paid for - in the region of several hundred pounds for a typical design feature.

\section*{Win a \(£ 4000\) programmable signal generctior from Hewlett-Packard}

The prize for the coming year's award is a £4000 Hewlett-Packard HP8647A 1 GHz programmable signal generator. It features HPIB interface, solid state programmable attenuator and built in AM-FM modulation capability.

\footnotetext{
For further details about our quest for the best, call or write fo:
Martin Eccles, Edifor, Electronics World, Quadrant House, The Quadrant, Sutton,
Surrey, SM2 5AS
Tel 081-652 3128
}

\title{
ELECTRONIC ENGINEERS REFERENCE BOOK
}

\section*{6th Edition \\ F F Mazda}
* Now available to Electronics World \& Wireless World readers in paperback.
* Expert coverage of all aspects of electronics
* Over 50 contributors
* For electronic engineers, technicians and students

Please supply me - copies of the ELECTRONIC ENGINEERS REFERENCE BOOK (ISBN 075060809 9) @ £42.50 (INC POST \& PACKAGING)

Add VAT at local rate
NB ZERO RATE FOR UK \& EIRE TOTAL
Business purchase: Please send me the books listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below.

Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund.

Remittance enclosed \(£\)
Cheques should be made payable to Reed Book Services Ltd.

Please debit my credit card as follows:
Access/Master Barclay/Visa
Amex
Diners
Credit Card No. \(\qquad\) Exp date \(\qquad\)
NAME (Please print)
ORGANISATION
STREET \(\qquad\)
TOWN
COUNTY \(\qquad\) POST CODE
COUNTRY \(\qquad\)
DATE \(\qquad\) TELEPHONE NUMBER \(\qquad\)
SIGNATURE
T3000

\section*{VAT RATES}

6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3\% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)
VAT NO.

If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.

Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Credit card orders
accepted by phone
Call 0816523614.

With today's highspeed solid-state switches, it is possible to design a scalable 'outphasing' transmitter for am broadcast that combines many desirable performance and manufacturability features. John Burnill explains.

This article owes its origin to a conversation I had with another broadcast engineer about a decade ago. We were debating whether an efficient, scalable and easily reproducible solid-state am broadcast transmitter could be designed and manufactured.
At that time, the technology was very much valve oriented, with its attendant disadvantages - in particular components such as high voltage high power coils. Time has passed and major manufacturers have adopted various solid-state designs which largely meet these desirable goals. But the design I arrived at is different way of attaining these goals. More importantly, it is possibly a better way.

\section*{AM transmitters - past and present} Descriptions of past and current transmitter designs that follow are only outlines. Individual implementations differ quite widely. A manufacturer may favour triodes and another tetrodes for example. With most transmitters, the most complex elements are usually the control circuits, and not the audio and rf stages.
Of the various modulation methods, high level modulation is the most widely known method, Fig. 1. It relies upon the fact that the output of a class C - or other high efficiency
radio-frequency amplifier - is linear with supply voltage. The modulator modulates the power supply.
One half the dc power input to the rf amplifier must be provided by the modulation amplifier. Conventional transmitters achieve 50 to \(60 \%\) overall efficiency at \(100 \%\) modulation. These efficiency levels can be improved upon by using higher efficiency rf amplifiers - harmonic peaking, class D , etc. and pwm audio stages.
Advantages of high level modulation are that it is widely understood and easy to set up - a good selling point. Its disadvantage is the high-power audio modulator, involving a transformer, choke and extra high power valves.
Low level modulation with a linear amplifier is very inefficient, \(30 \%\) being typical. There are numerous modulation schemes which fall into this low efficiency category. Screen grid modulation is one of these. The principle advantage is simplicity, but the low efficiency rules out high-power use of low level modulation.
Doherty modulation involves a form of high efficiency linear amplifier, Fig. 2. Two output stages are linearly summed via a quarter-wave impedance-inverting section. The valve carrier amplifier provides the carrier and negative modulation while the peak amplifier provides

Fig. 3. In the Ampliphase am transmitter, two phase-modulated carriers are summed together at the output. Modulation involves varying the phase between the carriers.
positive modulation by impedance modulating the carrier amplifier.
The Doherty system is efficient \(-60 \%\) being typical - and is not too complex. Its main advantages are respectable efficiency and relative simplicity. There are few disadvantages, which is probably explains its popularity.
Outphasing, also known as Ampliphase and Chereix, is shown in Fig. 3. Two phase-modulated carriers are summed at the output. By varying the phase between the carriers, amplitude modulation can be produced.
The idea is simple but practical implementations have needed additional complications to achieve reasonable efficiency and linearity. Ampliphase transmitters in particular needed amplitude modulation of the two carriers in the stages driving the output amplifiers. This led to a complicated and difficult to set up transmitter, which has discouraged many people from using it. Efficiency of this configuration is on a par with Doherty.
Digital modulation, Fig. 4, is only applicable to solid state transmitters. The digital transmitter uses many power amplifier modules in parallel - 160 for the 100 kW Harris transmitter. Each module can be on or off under the control of an analogue-to-digital converter.
The output modules are in effect rf power d-to-a converters. Efficiency is very good, at more than \(80 \%\).

\section*{Outphasing}

This description covers an up to date (solid state) outphasing am broadcast transmitter. I chose outphasing since it allows modern techniques to be used to produce a simple yet efficient transmitter. The design falls neatly into two blocks, namely the output stages and the phase modulating exciter.
Figure 5 shows an output stage for combining the two phase-modulated carriers. It has two features that make it suitable as a highefficiency outphasing output stage. Firstly it uses class D voltage switching amplifiers. These operate efficiently because the inductors present a high impedance at the harmonic frequencies. Secondly it allows summing of two output stages with no interaction between the amplifiers.
The first four equations can be used to calculate the component values of the output stage for the desired power level at peak carrier when the outputs are in phase. Voltage \(V_{p}\) is the peak to peak output swing from the class D amplifier.
\[
\begin{aligned}
& V_{1}=V_{2}=\left(\sqrt{2} V_{\mathrm{p}}\right) / \pi \\
& \mathrm{Q}=R_{1} /(\omega \mathrm{L} / 2) \\
& \omega=1 / \sqrt{ }(\mathrm{L} / 2 \mathrm{C}) \\
& V_{\text {out }}=\left(V_{1}+V_{2}\right) R_{1} /(\omega \mathrm{L})
\end{aligned}
\]

It is worth noting that in the practical output stage, one of the inductors needs to be varied to balance the power from each amplifier. Otherwise the inductors are fixed and the capacitor is varied to effect tuning of the output stage. By varying only the capacitor the bandwidth remains constant whatever frequency is used,a useful feature if negative feedback is used.
Figure 6 shows one of the class D amplifiers. It is a modified totem pole configuration chosen because it needs no output transformer. Since the transformer shown is at a low power level, it is not difficult to implement. It can be designed out but I have not shown this modification since it has not been tested.
The BYV27 diode is a fast power type since it is part of the output bootstrap circuit which

Fig. 4. Digital generation of the am carrier is
only practicable using solid-state devices. It
Fig. 4. Digital generation of the am carrier is
only practicable using solid-state devices. It involves multiple power amplifier modules working in parallel.

Fig. 5. Outphasing output stages produce two phase-modulated carriers that are summed phase-modulated carriers that are summed
together. Efficiency is high. The inductors present a high impedance to the class-D voltage switching amplifiers at harmonic frequencies.
has to switch at the output frequency. Mosfets were chosen for the output stage since they are were chosen for the output stage since they are
cheap and can be made to switch very quickly (tens of nanoseconds) with simple driver stages.

The next equation below shows the maximum power output for a given device maximum \(V_{\mathrm{ds}}\) and \(I_{\mathrm{ds}}\) for a class-D yoltage switching power amplifier.

Bear in mind that in the am transmitter, for a - -
\[
\circ
\]

pair of output stages, each power amplifier must deliver twice the carrier power at modulation peaks. Additionally, in the real world, the maximum \(V_{\mathrm{ds}}\) and \(I_{\mathrm{ds}}\) must be derated somewhat to cope with potential variations in mains supply voltage and variations in loading conditions.
\[
P_{\text {out }}=V_{\mathrm{ds}} \cdot I_{\mathrm{ds}} / \pi
\]

\section*{Outphasing the exciter}

The equation below shows the output voltage as a function of \(V_{1}, V_{2}\) when they are phase modulated by \(+p\) and \(-p\) degrees respectively. Linear phase modulation produces non linear amplitude modulation of \(V_{\text {out }}\).
\[
V_{\text {oul }} \propto\left(V_{1}+V_{2}\right) \cos \mathrm{p}
\]

What is needed is a non linear phase modulator. Figure 7 shows what was devised using two fast LT1016 comparators and two edgetriggered set-reset flip flops. If the carrier sine wave is IV peak varying \(V_{\text {mod }}\) from 0 V to 1 V causes the outputs to vary from out of phase (\(100 \%\) negative modulation) to in phase (\(100 \%\) positive modulation).
Figure 8 shows the waveforms generated by the phase modulator. The equation below derived from Fig. 8, shows how the carrier phase varies with modulation.
\[
p=\cos ^{-1} V_{\text {mod }}
\]

Substituting this equation into the previous one shows that the output voltage is now linear with modulating voltage.
\[
V_{\text {out }} \propto\left(V_{1}+V_{2}\right) V_{\text {mod }}
\]

In the exciter, the sine-wave generator is more complicated than the phase modulator. It consists of tuned circuits for extracting a clean sine wave from the square wave generated by the phase-locked-loop IC. This IC is referenced to a crystal and has an amplitude stabilisation circuit.
In hindsight a 'digital' method of sine wave generation would have been better leading to a one adjustment frequency setting of the exciter, namely the phase-locked-loop divider ratio.
Note that this scheme is capable of producing dsb modulation with any level of carrier suppression. It also follows that the sine-wave carrier could be phase or frequency modulated in the exciter enabling all forms of modulation to be implemented at low level.

\section*{Negative feedback solution}

Figure 9 outlines a negative feedback scheme. It is of course relevant to any am transmitter, providing the bandwidth of the actual transmitter is not unduly restricted.
The main item to note is the audio high-frequency boost applied in the negative feedback path (zeros). This is necessary for stability
because of the poles in the forward path introduced by the transmitter. These come about because of bandwidth restrictions of the output matching network, harmonic filters and the antenna.
Dominant pole compensation was used with an \(f_{\mathrm{t}}\) of 50 kHz . The low pass filter must have as high a comer frequency as possible to avoid introducing unnecessarily low poles in the overall loop frequency response. I used 500 kHz in the experimental exciter. The use of a full wave rectifier reduces the filtering needed.

\section*{Results}

I built a 10 W transmitter to test these ideas. It worked as expected, linearity being such that the negative feedback was unnecessary. The feedback was tested and proved stable.
Efficiency could not be measured at this low power level as the dissipation of the power mosfets - which were overly large for this power level - consisted only of the static dissipation of their output capacitance being charged and discharged. To get meaningful efficiency measurements means building a transmitter capable of at least kilowatt levels.
For high power levels, output stages need to be paralleled. Figure 10 shows one way to do this. It needs multiple inductors, but each needs handle only a part of the total if current in the output tuned circuit so can be relatively small.

\title{
Probing more deeply
}

An oscilloscope probe is more than just a piece of wire for applying a test signal to an oscilloscope input: it is an integral part of the measurement system. This statement is the lead in to one six articles from Fluke's 60 -page A4 book, ABCs of oscilloscopes.
Characteristics that make different probes more suitable for specific tasks are discussed below. Active probes include active electronic components to provide amplification. Passive probes without such active components usually provide input attenuation. Shielding. An important task of the probe is to ensure that only the wanted signal appears at the oscilloscope input. A piece of wire for example would act as an antenna producing lots of unwanted interference.
Some of this noise could even be injected back into the circuit under test. Good screening is needed, provided by screened cable earthed at the bnc connector to the scope and at the circuit under test.
Probe bandwidth. Just like oscilloscopes, probes ave a finite bandwidth which has to be allowed for. If we take a 100 MHz oscilloscope and a 100 MHz probe the combined response is less than 100 MHz . Capacitance of the probe adds to the input capacitance of the oscilloscope, lowering the system bandwidth and the maximum displayed risetime. Loading effect. Measured voltage is rarely exactly the same as when no connections are made. Each probe has an input impedance, consisting of resistive, capacitive and inductive components. Connecting such a probe will affect the circuit under test because of the extra load imposed by the probe. Therefore the probe characteristics must be considered when looking at the measurement results, as well as the test circuit impedances. Some probes have no series resistance. Basically, these consist of a length of cable and a test tip.
Within their operating frequency range or useful bandwidth, there is therefore no atten-
uation of the signal. These probes are referred to as \(1: 1\) or \(\times 1\) probes. They have a loading effect on the circuit because they connect the oscilloscope input impedance and their own capacitance (including the cable capacitance) straight across the test point. Capacitive loading effect becomes more significant as frequency increases.
A \(1: 1\) probe typically has an input capacitance from around 35 pF to over 100 pF , depending on the cable type and length and probe body construction etc. This will load the circuit under test with a low impedance. A \(1: 1\) probe with an input capacitance of 47 pF has a reactance of only \(169 \Omega\) at 20 MHz , making this probe unsuitable for work at these frequencies. The loading effect can be reduced by adding impedance in the probe in series with the scope input impedance. However, this means that a voltage divider is formed.
The diagram shows a simplified probe equivalent circuit. Resistors \(R_{\mathrm{p}}\) and \(R_{\mathrm{s}}\) form a 10:1 divider, where \(R_{\mathrm{s}}\) is the 'scope input impedance. The compensation capacitor, \(C_{\text {Comp }}\) is adjusted to match the probe to the oscilloscope. This ensures that the correct frequency response curve is maintained at the probe tip. Frequency response of this type of probe is much wider than that of a 1:1 probe.
Compensating the probe. With the several adjustable capacitors and resistors, the correct response over a wide frequency range can be achieved. Most of these are set in the factory when the probe is manufactured.
There is only one trimmer capacitor for the user to adjust. This is called the low frequency compensation capacitor, and it should always be adjusted to match the oscilloscope input with which the probe is used. Adjustment is easy, using the front panel signal output of most oscilloscopes. This is marked 'Probe Adjust', 'Calibrator', 'CAL', or 'Probe Cal.', and provides a
squarewave voltage output.
The effects of over and under compensation are very noticeable at higher frequencies. The displayed amplitude of the 1 MHz sinewave is now very inaccurate. There can be slight differences in input capacitance between channels, so you should always compensate the probe on the channel you want to use it with.
Probe read-out. Modern oscilloscope probes are equipped with a coding system that enables the oscilloscope to recognize the kind of probe is connected.
Consequently, the oscilloscope can compensate the vertical deflection indication and all amplitude measurements to avoid confusion. When probes without such recognition system are used, the user has to rescale all waveforms and measurements to compensate for the probe attenuation.
Ground lead inductance. A series tuned circuit can be formed with the ground lead inductance and the combined probe and oscilloscope input capacitances. The tuned circuit is damped by the input resistance.
Like any other tuned circuit, this one will also ring if a step voltage is applied to it. Excessive ground lead inductance can also reduce the displayed risetime. Keep your ground lead as short as possible, especially with high frequencies and fast-rise time sig nals. Before connecting the probe's ground contact, make sure it is not going to short circuit any part of the system under test.
Further articles cover basics, storage instruments, analogue-versus-digital instruments and new developments. There are also measurements and exercises at the back of the book to help new and potential users understand what oscilloscopes can and cannot do.

Fluke UK, Colonial Way, Wayford, Hertfordshire WD2 4TT. Tel. 01923 240511, fax 0923225067.

\section*{Active scsi terminator aids reliable data transfer}

Thhe small-computer-systems interface standard recommends that both ends of the line are actively terminated to maximise data integrity. One chip - Unitrode's UCC5614 - provides nine lines of active termination for an scsi parallel bus. In addition, as described in the data sheet, the device is ideal for high performance 3.3 V scsi systems.
Key features contributing to such low operating voltage are the 0.2 V drop out regulator and 2.7 V reference. Reduced reference voltage was needed to accommodate the lower termination current dictated in the scsi-3 specification. During disconnect, supply current is typically only 0.5 A , which makes the IC attractive for battery powered systems.
Ultra low channel capacitance of 1.8 pF eliminates effects on signal integrity from disconnected terminators at interim points on the bus.
The device is programmable for either \(110 \Omega\) or \(2.5 \mathrm{k} \Omega\) termination. Standard scsi bus lengths use \(110 \Omega\) termination while shorter buses use \(2.5 \mathrm{k} \Omega\) termination. When driving the ttl-compatible DISCNCT pin directly, the \(110 \Omega\) termination is connected when the DISCNCT pin is driven low, and disconnected when driven high. When the DISCNCT pin is driven through an impedance between 80 and \(150 \mathrm{k} \Omega\), the \(2.5 \mathrm{k} \Omega\) termination is connected when the DISCNCT pin is driven low, and disconnected when driven high.
The power amplifier output stage allows the UCC5614 to source full termination

current and sink active negation current when all termination lines are actively negated.
Internal circuit trimming is used, first to trim the \(110 \Omega\) termination impedance to a \(7 \%\) tolerance, and then most importantly, to trim the output current to a \(4 \%\) tolerance, as close to the max scsi- 3 specification as
possible. This maximises noise margin in fast SCSI operation.

Other features of the device include thermal shutdown and current limit.

Unitrode UK, 6 Cresswell Park, Blackheath, London SE3 9RD. Tel. 0181 318 1431, fax 01813182549.

\section*{Current sensing for portable, battery powered equipment}

As described in Maxim's Analog Design Guide \(3 / 8\), the \(M A X 47 l\) is a dedicated single-IC, bidirectional, highside current-sense amplifier for portable pcs, palmtops, and other battery-powered systems. It reduces board space, design time, and cost by eliminating precision resistor networks, precision amplifiers and a current-sense resistor.
Using the eight-pin device in series with the positive battery terminal and the load, all that is needed are gain-setting and pullup resistors. The result is what is claimed to be the world's simplest circuit that measures battery charge and discharge current - including magnitude and polarity.

The device incorporates an internal \(30 \Omega\) sense resistor and measures battery currents from zero to three amps. With a \(2 \mathrm{k} \Omega\) gain setting resistor, the resulting output
gain is \(1 \mathrm{~V} / \mathrm{A}\). For applications that require increased design flexibility, the MAX472 functions with an external sense resistor. Both devices operate from three volts to 36 V , draw less than \(100 \mu \mathrm{~A}\) over tempera-
ture and include a five amp shutdown feature to conserve power. Maxim, 20 A Horseshoe Park, Pangboume, Berks RG8 7 JW , Tel. 01734845255 , fax 01734843863.

> Now that they have given us the tools to design the circuit, Norm Dye and Helge Granberg step back and look at the matching process. In this article they show how to determine the desired source and load impedances. From the book RF Transistors: principles and practical applications.

\footnotetext{
RF Transistors: Principles and practical applications is available by postal application to room L333 EW \(+W W\), Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.
Cheques made payable to Reed Books Services. Credit card orders accepted by phone (081 652 3614).
288pp Hardback 0750690593 Cost
£19.95 + Postage \(£ 2.50\)
}

\section*{Putting theory to work in low power design}

Basic steps in designing a low power amplifier are: select a transistor; choose a bias point; then, finally, design a circuit offering the proper impedances at both input and output to the transistor.
Each step depends to a large degree on the application. Is the circuit narrow band or broad band; must it have low noise figure? All determine how the transistor will be impedance matched.
The matching process itself is made up of two distinct parts: determining the desired source and load impedances (which we will look at in this article); and designing networks that present these impedances to the transistor (final part, next month).
Maximum gain at a single frequency is achieved by conjugate matching both input and output of the transistor, while lowest noise figure is obtained by presenting the proper source impedance to the transistor that produces minimum noise. So trade-offs between gain and noise figure are controlled by selecting source and load impedances that produce the desired gain and noise at the same time.

For suitable performance over a band of frequencies, source and load impedances that give proper overall circuit results as frequency varies must be presented to the transistor.

Whether or not \(S_{12}\) is ignored obviously depends on its magnitude and the accuracy required in a design. Wherever possible, \(S_{12}\) should be assumed to be 0 - at least in the initial design effort. Where \(S_{12}\) cannot be ignored, software such as Touchstone or Mmicad should be used, particularly if the design requires controlled noise and gain performance over a band of frequencies.

Working through specific examples is the best way to understand these procedures and here we are going to show how to determine source and load impedances for maximum gain at a single frequency - both with and
without consideration of \(S_{12}\). A third example will illustrate how to achieve a specified amount of gain, for the same conditions as in examples 1 and 2 , and a fourth goes through the procedures necessary for a broadband design. Finally, we show how to design for low noise while maintaining adequate gain.

Example 1.
Narrow band - match for optimum gain, \(\mathrm{S}_{12}=\mathbf{0}\).
First, assume \(S_{12}=0\), that the source and load impedances are \(50 \Omega\), and that we are interested only in maximum gain at a single frequency. Our frequency of interest is 1 GHz , so a suitable transistor is the MRF571. Bias will be 6 V and 50 mA because the manufacturer's data sheet shows that \(f_{\mathrm{t}}\) is near its peak at 50 mA and values of scattering parameters are given for this particular bias point. From the data sheet we find:
\(S_{11}=0.6\) at an angle of \(156^{\circ}\)
\(S_{22}=0.11\) at an angle of \(-164^{\circ}\)
\(S_{12}=0.09\) at an angle of \(70^{\circ}\)
\(S_{21}=4.4\) at an angle of \(75^{\circ}\)
\(\Gamma_{\mathrm{s}}=S_{11}{ }^{*}=0.6\) at an angle of \(-156^{\circ}\) and \(\Gamma_{\mathrm{L}}=\) \(S_{22}{ }^{*}=0.11\) at an angle of \(+164^{\circ}\) (Fig. 1). \(G_{\mathrm{s}}\), the 'gain' contributed by the input circuit is calculated from \(G_{S}=\left(1-\left|\Gamma_{s}\right|^{2}\right) / 1-S_{11} \Gamma_{\mathrm{s}}{ }^{2}\) to be 1.56 or \(10 \log _{10} 1.56,1.93 \mathrm{~dB}\).
Likewise, for the output circuit where the magnitude of \(S_{22}\) is 0.11 , the 'gain' \(\left(G_{\mathrm{L}}\right)\) contributed by the output circuit match is calculated from \(G_{\mathrm{L}}=\left(1-\left|\Gamma_{\mathrm{L}}\right|^{2}\right) / 11-\left.S_{22} \Gamma_{\mathrm{L}}\right|^{2}\) to be 1.01 or 0.05 dB . Obviously, in this example the transistor is essentially matched in the output, and little is gained from further matching.
Looking at \(\left|S_{2}\right|^{2}\) we can determine the gain contributed by the device itself from \(G_{0}=\) \(\left|S_{2 \mid}\right|^{2}\) as \(G=(4.4)^{2}\) or \(10 \log (4.4)^{2}=12.9 \mathrm{~dB}\). So the total gain expected from conjugate

matching is \(G_{\mathrm{TU}}=G_{\mathrm{s}}+G_{\mathrm{o}}+G_{\mathrm{L}}=1.94+\) \(12.9+0.05=14.9 \mathrm{~dB}\).

\section*{Example 2.}

Narrow band - match for optimum gain, \(\mathbf{S 1 2} \neq 0\).
To understand the effect of assuming that \(S_{12}\) \(=0\), calculate the gain of the same amplifier with the more precise value of \(S_{12}=0.09\) at an angle of \(70^{\circ}\). The formulas are more complex while, in addition, optimum output impedance depends on input impedance and vice versa. The maximum available gain, \(G_{\mathrm{p}, \text { max }}\) - or sometimes mag - is given, if the device is unconditionally stable, by the formula:
\[
G_{p \max }=\frac{\left|S_{21}\right|}{\left|S_{12}\right|}\left(K-\sqrt{K^{2}-1}\right)
\]
where \(K\) is the Rollett stability factor given by:
\[
K=\frac{1+\left|D_{s}\right|^{2}-\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}}{2\left|S_{21}\right| S_{12} \mid}
\]
and \(D_{\mathrm{s}}=S_{11} S_{22}-S_{12} S_{21}\) as stated previously By using the values of the scattering parameters, the first step is to calculate \(D_{\mathrm{s}}\) using the relationship
\[
\begin{aligned}
D_{s}= & \left(0.6 \angle 156^{\circ}\right) \cdot\left(0.11 \angle-164^{\circ}\right) \\
& -\left(0.09 \angle 70^{\circ}\right) \cdot\left(4.4 \angle 5^{\circ}\right) \\
= & 0.066 \angle-8^{\circ}+0.396 \angle-35^{\circ} \\
= & 0.46 \angle-23^{\circ} .
\end{aligned}
\]

Then calculate \(K\) from \(K=\left(1+\left|D_{\mathrm{s}}\right|^{2}-\left|S_{11}\right|^{2}-\right.\) \(\left.\left|S_{22}\right|^{2}\right) / 2\left|S_{21}\right|\left|S_{\text {12 }}\right|\) to verify that the transistor is unconditionally stable (value of \(K>1\)):
\[
\begin{aligned}
K & =\frac{1-0.36-0.0121+0.212}{(2)(0.09)(4.4)} \\
& =\frac{0.840}{0.792} \cong 1.07
\end{aligned}
\]

In the present example, for the \(S\) parameters given and subsequent calculated value of \(K\), \(G_{\mathrm{p}, \text { max }}\) becomes:
\(G_{p \max }=\frac{4.4}{0.09}(1.07-\sqrt{0.145})=33.7\)
It is easy to see how much more complex the situation becomes when \(S_{12}\) cannot be assumed equal to zero. In the instance given, the difference in gain is approximately 0.4 dB and it appears marginal to have assumed \(S_{12}=\) 0 . We could have determined the magnitude of the error at the outset by using \(1 /(1+U)^{2}<\) \(G_{\mathrm{t}} / G_{\mathrm{tu}}<1 /(1-U)^{2}\) as follows. First, calculate \(U^{\prime}\) from:
\[
\begin{aligned}
U & =\frac{\left|S_{11}\right| S_{21}\left|S_{12}\right|\left|S_{22}\right|}{\left(1-\left|S_{11}\right|^{2}\right)\left(1-\left|S_{22}\right|^{2}\right)} \\
& =\frac{(0.6)(4.4)(0.09)(0.11)}{\left(1-(0.6)^{2}\right)\left(1-|0.11|^{2}\right)}=0.041
\end{aligned}
\]

Then from:
\[
G_{\mathrm{P}}=\frac{1-\left|\Gamma_{\mathrm{S}}\right|^{2}}{1-\left|\Gamma_{\mathrm{A}}\right|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1-\left|\Gamma_{\mathrm{L}}\right|^{2}}{\left|\left(1-S_{22} \Gamma_{\mathrm{L}}\right)\right|^{2}}
\]
we can determine the limits of possible error for assuming \(S_{12}=0\). The lower limit is \(\mathrm{I} /(\mathrm{I}+\) \(U)^{2}=0.919\), while the upper limit is \(1 /(1-U)^{2}\) \(=1.108\). Expressed in decibels, these limits become + and -0.36 dB .
We can also see the effect that \(S_{12}\) will have on the optimum source impedance by letting the load reflection coefficient remain the conjugate of \(S_{22}\), but then calculating \(T_{\mathrm{s}}\) from:
\[
\Gamma_{\mathrm{IN}}=S_{11}+\frac{S_{12} S_{21} \Gamma_{\mathrm{L}}}{1-S_{22} \Gamma_{\mathrm{L}}}
\]
will show that \(T_{\mathrm{s}}\) becomes 0.55 at an angle of \(-159^{\circ}\), only slightly changed from the previous value for \(T_{\mathrm{s}}\) when \(S_{12}=0: 0.6\) at an angle of \(-156^{\circ}\).

\section*{Example 3.}

Narrow band, specified gain < optimum gain, \(S_{12}=0\).
Before going to broad band circuit design, assume - for the same transistor and frequency used in examples 1 and 2 - we want a specified value of gain less than maximum, say 1 dB . Example I has already shown that optimum match for the load results in only 0.05 dB gain increase. We also know that the transistor gain is 12.9 dB , so must create a match on the input such that the gain contribution from the input network is approximately -1.0 dB .
To create the -1 dB gain circle for the input network we can use the following equations:
\[
\begin{aligned}
& d_{s}=\frac{g_{s}\left|S_{11}\right|}{1-\left|S_{11}\right|^{2}\left(1-g_{s}\right)} \\
& R_{s}=\frac{\left(1-g_{s}\right)^{\frac{1}{2}}\left(1-\left|S_{11}\right|^{2}\right)}{1-\left|S_{11}\right|^{2}\left(1-g_{s}\right)}
\end{aligned}
\]
where
\[
g_{s}=\frac{G_{s}}{G_{s, \max }}
\]
and
\[
G_{s}=\frac{1-\left|\Gamma_{s}\right|^{2}}{\left|1-\Gamma_{s} S_{11}\right|^{2}}
\]

From example \(1, G_{\text {s.max }}\) is 1.94 dB or, as a number, 1.56. So \(g_{\mathrm{s}}\) becomes \(g_{\mathrm{s}}=G_{\mathrm{s}} / G_{\mathrm{s}, \max }=\) \(0.79 / 1.56=0.506 ; d_{\mathrm{s}}=0.37\) and \(R_{\mathrm{s}}=0.545\). Remember in plotting the -1 dB gain circle (Fig. 2), \(d_{\mathrm{s}}\) is expressed in terms of the magnitude of \(S_{11}\). Any point on the -1 dB gain circle will provide the desired value of \(T_{\mathrm{s}}\) but for reasons of convenience in matching, the point selected is point A. At this point, \(\Gamma_{\mathrm{s}}=0.44\) at an angle of \(100^{\circ}\).

Computing \(\Gamma_{\mathrm{L}}\) from:
\[
\Gamma_{\mathrm{OUT}}=S_{22}+\frac{S_{12} S_{21} \Gamma_{\mathrm{S}}}{1-S_{11} \Gamma_{\mathrm{S}}}
\]
which for the case of \(S_{12}=0\) becomes \(\Gamma_{\text {out }}=\) \(S_{22}\), since we know that \(\Gamma_{\mathrm{L}}\) is the conjugate of \(\Gamma_{\text {out }}, \Gamma_{\mathrm{L}}=0.11\) at an angle of \(+164^{\circ}\), the same value as in example 1.

Example 4. Broad-band design, S12 = 0 .
Our goal is to design the MRF571 into a broad-band circuit having 14 dB of gain oper-

ating from \(500-100 \mathrm{MHz}\). The amplifier is to be driven from a \(50 \Omega\) source and is to drive a \(50 \Omega\) load.
Assume, again, the bias to be 6 V and 50 mA - less than the maximum available gain, as seen in example 1. From the table of \(S\)-parameters, \(\left|S_{21}\right|\) results in 70.6 or 18.5 dB gain at 500 MHz , and 19.3 or 12.9 dB gain at 1000 MHz . So matching circuits must decrease the gain by 4.5 dB at 500 MHz and increase it by 1.1 dB at 1 GHz .
The plan is to put all the 'gain' or 'loss' into the input matching network, an assumption that makes drawing of the gain circles easier using the formulas for available gain:
\[
\begin{gathered}
g_{\mathrm{a}}=G_{\mathrm{A}} /\left|S_{21}\right|^{2}, C_{1}=S_{11}-D_{\mathrm{s}} S_{22}{ }^{*} \\
R_{a}=\frac{\left[1-2 K\left|S_{21} S_{12}\right| g_{a}+\mid S_{21} S_{1}\right.}{\mid 1+g_{a}\left(\left|S_{11}\right|^{2}-\left|D_{s}\right|^{\prime}\right.}
\end{gathered}
\]
and
\[
C_{a}=\frac{g_{a} C_{1}^{*}}{\left|1+g_{a}\left(\left|S_{11}\right|^{2}-\left|D_{s}\right|^{2}\right)\right|}
\]

Computer programs can also be useful, such as Mmicad which was used in determining the gain circles plotted in Fig. 3.
In the next issue of \(E W+W W\) we will use these circles to determine matching networks that place the source impedance on the -4.5 dB
circle at 500 MHz and at the same time on the +1.1 dB circle at 1 GHz . Then the load impedance can be calculated using:
\[
\Gamma_{\text {OUT }}=S_{22}+\frac{S_{12} S_{21} \Gamma_{\mathrm{S}}}{1-S_{11} \Gamma_{\mathrm{S}}}
\]

The process of choosing the proper source reflection coefficient is an iterative one and can be carried out manually or through the use of a computer optimisation program such as Mmicad.

\section*{Example 5. Designing for low noise}

Up to now, gain has been the only concern. But many low power amplifiers must also be low noise so the effect that matching has on noise figures must be taken into account.
Only the source reflection coefficient affects noise figure, though it is true that the load reflection coefficient will affect the source reflection coefficient when \(S_{12} \neq 0\).
If \(S_{12} \neq 0\), then the simplest step to take is to choose the value of \(T_{\mathrm{s}}\) that gives the desired trade-off between gain and noise figure, then use that value of \(T_{\mathrm{s}}\) to calculate \(\Gamma_{\mathrm{L}}\) from the above equation.
In this example, once again, assume the transistor is the MRF571. Frequency is 1 GHz , but this time change the bias to 6 V and 5 mA a more appropriate value for a low noise application. Another reason for these choices is that the MRF571 data sheet has gain and noise figure contours plotted for the conditions
stated. Also, further assume that gain must be at least 12 dB , and the noise figure not greater than 2 dB . New values of \(S\)-parameters are:
\(S_{11}=0.61\), angle \(+178^{\circ}\)
\(S_{12}=0.09\), angle \(+37^{\circ}\)
\(S_{21}=3.0\), angle \(+78^{\circ}\)
\(S_{22}=0.28\), angle \(-69^{\circ}\)
Examining a plot of the 2 dB noise figure circle (Fig. 4) and the 12 dB gain circle taken from the MRF571 data sheet, shows that the 2 dB noise circle intersects the 12 dB gain circle in two places. Either value of \(G_{s}\) will result in both the desired gain and noise figure.
Selecting a value for \(G_{\mathrm{s}}\) on the 12 dB gain circle between these two points will produce a noise figure even lower than 2 dB .
Take the point \(A\) shown in Fig. 4. The value for \(T_{\mathrm{s}}\) is estimated to be 0.55 at an angle of \(158^{\circ}\). All that is left is to determine the value of \(\Gamma_{\mathrm{L}}\) from \(\Gamma_{\mathrm{L}}=\left[S_{22}+\left(S_{12} S_{21} \Gamma_{\mathrm{s}} /\{1-\right.\right.\) \(\left.\left.\left.\Gamma_{5} S_{11}\right)\right\}\right]^{*}\)
The formula clearly shows that for the case when \(S_{12}=0, \Gamma_{L}=S_{22}{ }^{*}\). So, if \(S_{12}=0, \Gamma_{\mathrm{L}}=\) 0.28 at an angle of \(69^{\circ}\)

Taking the value of \(S_{12}\) into account, \(\Gamma_{\mathrm{L}}=\) 0.48 at an angle of \(82^{\circ}\). These values are also shown in Fig. 4 as \(B\) and \(C\) respectively.

Next article: Finding the circuits that will realise the impedances we want.

LOW COST LASER NIGHT SIGHT just £79!! Cheaper version of our \(£ 245\) Cyclops model, warks ok in tow light levels or in complete darkeess with the buill in Laser
PC CONTROLIED 4 CHANNEL TIMER
Contol (onvoft tmes etc) Lp to 4 tems (8 A 240 V each) with wis kit Complete with Sotware, relays. PCB etc. \(£ 25.99\) Ret \(95 / 26\) LOW COST RADAR DETECTOR
Bullt and tested pocket radar detector, ideai for picting up speed traps etc. Why pay \(£ 70\) or more? ours is just \(£ 24.99\) rel \(95 . / 25\) COMPLETE PC 300 WATT UPS SYSTEM
Top of the range UPS system providing protecton for your computer system and valuabte software against mains power muctuations and cuts. New and boxed. UK made Provides up to 5 mins rurring time in he event of complete power failure to allow you to run your system down correctly. SALE PRICE juat \(£ 119.00\).
SHOP WOBBLERS!
Small assemblies designed to take D size batterles and wobble signs. cardboard modets about in shop windowsl \(£ 3.99\) Ref SEP4P2. RADIO PAGERS
Brandnew, UK made pocket pagers clearance price is just \(£ 4.99\) each \(100 \times 40 \times 15 \mathrm{~mm}\) packed with bitsI R ef SEP5.

\section*{BULL TENS UNIT}

Fuly bulh and tested TENS (Transcutaneous Electrical Nerve Stumu(ation) unit, complete with electrodes and full instructions. TENS is used for the retef of pain etc in up to \(70 \%\) of sufferers. Drug free pain relef, safe and easy to use, can be used in conjunction with analgesics etc. \&49 Ref TEN/1
STEREO MICROSCOPE
\(155 \times 195 \mathrm{MM}\), up 10600 mm high, so thems up to \(10^{\circ}\) will ft under lense. Rack and pinion focusing, 6 interchangeable rotating object lenses terchangeable eye pleces, +scaled eyeplece Ior accurate moasuring etc. Powerful low vothage illumination system with green filter and variable intensity, 100 mm blackchhite + ground gass stage plete, 70 mm swivel mirror, adustabe eyepieces (both focus and with). Magnificauton range \(4.6-100.8\), field of view \(39-2.4 \mathrm{~mm}\))
Price is \(£ 299\) for complete setup. Ref 95/300.
3D 35MH CAMERA SYSTEM
Complete bit to convert a standard 35 mm camera into a 30 versionl, enable you to take 30 colour slides with your own cameral Kit contains aprism assembly for the front of your existinglense, a sample 3D side, 3D slide viewer and 2 different lense mounts 49 mm and 52 mm , other sizes available from photo shops at about \(£ 3\) ea) all you need is standard stide film. Price for the complete kit is \(£ 29.99\) ref \(95 / 30\). COMPUTER RS232 TERMINALS. (LIBERTM) Excellent qually modern units,(ike wyse 50,5) \(2 x R S 232,20\) function keys, 50 tro to 38,400 baud. menu diven port. screen, cursor, and
keyboard setup menus (18 menu's). £29 REF NOV4.
OWRON TEMPERATURE CONTROLLERS (E5C2).
Brand new controllers, adjustable from -50 deg C to \(+1,200\) deg C using graduated dial, \(2 \%\) accuracy, thermocouple input, tong life retay output, 34240 v op contacts. Perfectfor exactly controling a temperature, Normal trade \(£ 50+\), ours \(£ 15\). Ref E5C2.

\section*{ELECTRIC MOTOR BONANZAI \(110 \times 60 \mathrm{~mm}\).}

Brand new precision, cap start (or spin to start), wirtually silent and features a moving outer case that acts as a fly wheet Because of their unusual design we tivink that 2 of these in a thoe with some homemade
fan blades could form the basis for a wind tumel etc. Clearance price fan blades couid form the basis for a wind tumel etc. Clearance price
Is ust \(£ 4.99\) FOR A PAIRI (note-these will have to be wred in series for 240 V operation Ref NOV1.
MOTOR NO 2 BARGAIN \(110 \times 90 \mathrm{~mm}\).
Similar to the above motor but more suitable for mounting verticaly (ie urntable etc). Again you will have to wire 2 in series for 240 v use. Bargain price is \(\mu s t ~ £ 4.99\) FOR A PAIRII Ref NOV3.
OMRON ELECTRONIC INTERVAL TIMERS.
Minature adjustable timers, 4 pole c/o output 3 A 240 v , HY1230S, 12 vDC adjustable from \(0-30\) secs. \(£ 9.99\) HY1210M, 12vDC adjustable from \(0-10\) mins. \(£ 9.99\) HY1260M. 12vDC adjustable from \(0-60\) mins. \(£ 9.99\) HY2460M, 24vAC adjustable from 0-60 mins. \(£ 5.99\) HY241S, 24vAC adjustable from \(0-1\) secs. \(£ 5.99\) HY2460S, 24vAC adjustable from 0-60 secs, \(£ 5.99\) HY243H, 24 vAC adjustable from \(0-3\) hours. £8.99 HY2401S, 240 v adjustable from \(0-1\) secs. \(£ 9.99\) HY2405S, 240v adjustable from \(0-5\) secs. £9.99 HY24060m, 240 N adjustable from \(0-60\) mins. \(£ 12.99\) PC PAL VGA TO TV CONVERTER Converts a cotour TV into a basic VGA screen. Compiete with bulk in psu, lead and sware. £49.95. Ideal for laptops or a cheap upgrade
ENERGENCY LIGHTING UNIT Complete urit with 2 double
bub floodights, buil in charger and auto switch. Fuly cased 6V 8AH bub floodights, buill in charger and auto switch. Fuly cased 6 V 8 AH lead acid req'd. (seconothand) £4 ref MAGAP 11.
CUIDED MISSILE WIRE. 4,200 metre reet of utra tun 4 core Insulated cable, 28ks breaking strain, less than 1 mm thick! Ideal atarms, intercoms, fishing, dolls house's etc. £14.99 ref MAG15P5 300v PANEL METER \(70 \times 60 \times 50 \mathrm{MM}, ~ A C, 50\) degree scaie. Good quality meter. \(\mathbf{£ 5 . 9 9}\) ref MAG 6P 14. Ideal for moritoring mants etc. ASTEC SWITCHED MODE PSU BM41012 Gives +5 © 3.75A +12@1.5A.-12@.4A. 230/110, cased, BM41012. £5.99 ret AUG6P3. TORRODIAL TX 30-0-30 480VA, Peffect for Mosfet amplifiers etc. 120 mm dia 55 mm tuck. \(£ 18.99\) ref APR 19.
AUTO SUNCHARGER \(155 \times 300 \mathrm{~mm}\) solar panel with diode and 3 metre lead fitted with a cigar phig. 12v 2watt. \(£ 9.99\) ea ret AUG10P3. FLOPPY DISCS DSDO TOp quality \(5.25^{\prime \prime}\) discs, these have been witten to once and are unused. Pack of 20 is \(£ 4\) ref AUG4P1. ECLATRON FLASH TUBEAs used in police car flasthing lights etc, full spec suppliec, 60-100 fiashes a min. \(£ 9.99\) ref APR10P5.
24v AC 96WATT Cased power supply. New. £13.99 ref APR14. MILITARY SPEC GEIGER COUNTERS Unused and straignt from Her majesty's forces. \(£ 50\) ref MAG 50P3.
STETHOSCOPE Fuly functioning stethoscope, ideal for I istering to hearts, pipes, motors etc. £6 ref MAR6P6. OUTDOOR SOLAR PATH LIGHT Captures sunlight during the day and automabcally switches on a built in tamp al dusk. Complete with sealed lead acid battery etc \(£ 19.99\) ref MARZOP1.
ALARM VERSION of above unit comes with buit in alarm and pir

NEW BULL ELECTRONICS STORE IN
WOLVERHAMPTON

\section*{55A WORCESTER ST TEL 090222039}

CLOCKMAKER KIT Hours of fun making your own clock. complete instructions and everytuing you need \(£ 7.99\) ref MARSP2 CARETAKER VOLUMETRIC Alarm, will cover the whote of the ground floor against forcred entry. Inctudes mains power supply and integral battery backup. Powerful intemal sounder, will take extemal bell If req'd. Retail \(₹ 150+\), ours? \(£ 49.99\) ref MAR50P1.
TELEPHONE CABLE White 6 core 100 m reel complete with a pack of 100 clips . Ideal phone extrs etc. 57.99 ref MARBP3. MICRODRIVE STRIPPER Small cased tape ctives ideal for stripping, lots of useful goodies including a smart case, and lots of components. \(£ 2\) each ref JUN2P3
SOLAR POWER LAB SPECIAL Youget TWO \(6^{\circ} \times 6^{\circ}\) 6v 130 mA
sotar cells, 4 LED's, wire, buzzer, switch pius 1 relay or motor. Supert solar cetis, 4 LEO's, wire. ouzzer, Sy
value kit ust \(£ 5.99\) REF: MAG6PB
SOLID STATERELAYS Wils switch 25A mains input3 5-26v DC \(57 \times 43 \times 21 \mathrm{~mm}\) with terminal screws \(£ 3.99\) REF MAG4P10
300DPI A4 DTP MONITOR Brand new but shop soiled so hence bargain pricel TTLECL inputs, \(15^{n}\) landscape, 1200×1664 pixel complete with circutt dag to hetp you inferface with your projects. JUST £14.99. REF JUN15P2.
BUGGING TAPE RECORDER' Small voice activated recorder, uses nicro cassette complete with heactphones \(£ 28.99\) ref MAR29P1. ULTRAMINI BUG MIC 6 mmx 3.5 mmmadeby AKG, 5-12 velectret condenser. Cost \(£ 12\) ea, Our? four for \(£ 9.99\) REF MAG10P2. RGBICGAEGATTL COLOUR MONITORS \(12^{\text {m }}\) in good condition. Back anodised metal case. \(£ 79\) each REF JUN79 ANSWER PHONES Returns with 2 fauts, we give you the bits for 1 faith you have to find the other yourseff. BT Response 200's f 18 ea REF MAG18P1. PSU \(£ 5\) ref MAG5P12
SWITCHED MODE PSU ex equip, \(60 w+5 v\) © 5 A. \(-5 v\) V. \(5 A\) +12V@2A.-12V 5A 120/220v cased \(245 \times 88 \times 55 \mathrm{~mm}\) IECinput sockel £6.99 REF MAG7P1

\section*{PLUG IN PSU \(9 V 200 \mathrm{~mA}\) DC \(£ 2.99\) each REF MAG3P9}

PLUG IN ACORN PSU 19v AC 14w, £299 REF MAG3P10
POWER SUPPLY tuly cased with mains and op leads 17 v DC 900 mA oupur. Bargain price \(£ 5.99\) ref MAG6P9
ACORN ARCHIMEDES PSU +5 V Q 4.4A. onvoff sw uncased,
selectabte mains input. \(145 \times 100 \times 45 \mathrm{~mm}\) \& 7 REF MAG7P2
CEIGER COUNTER KIT Low cost professional twin tube, comphete with PCB and components. Now only \(£ 19\) REF AUG19.
9v DC POWER SUPPL.Y Standard plug in type 150 mma 9 VDC with lead and DC power plug. price for two is \(£ 2.99\) ref AUG3P4. AA NICAD PACK encapsutated pack of 8 AA nicad batterles (tagged) ex equip, \(55 \times 32 \times 32 \mathrm{~mm}\). E 3 a pack REF MAG3P 11
13.8V 1.9A psu cased with leads. Just \(£ 9.99\) REF MAG10P3

PPC MODEM CARDS. These arehigh spec pug in cards made for the Amistrad laptop computers 2400 baud dial up unit complete with teads. Clearance price is \(£ 5\) REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Orignally made for hi spec satelite equipment but perfect for all sorts of
projects. Or clearance price is ust \(£ 2\) REF: MAG2
TOWERS INTERNATIONAL TRANSISTOR GUIDE. A
very useful book for finding equivalent transistors, leadouts, specs etc. £20 REF: MAG20P
SINCLAIR C5 MOTORS we have a few len without geamoxes.
Spec is 12v DC \(3,300 \mathrm{rpm} £ 30\).
200 WATT INVERTER COnverts \(10-15 \mathrm{~V}\) DC into erther 110 V or 240 VAC . Fully cased \(115 \times 36 \times 156 \mathrm{~mm}\), complete with heavy dutypower lead, cigar purg, AC outtet socket.Auto overload shutdown, auto short voltage shut down (with audible alarm). auto temp contod, unit shuts voltage shut down (wth audible alarm), auto temp contud, unit shuts pownin overmeated and sounds audible alarm. Fused reversed potanty
protected. outpul frequency witrin \(2 \%\), valtage within \(10 \%\). A extemely well oult unit at an excellent price. Just £64.99 ref AUG65
UNIVERSAL SPEED CONTROLLER KIT Designed by us for the C5 motor but ok for any 12 v motor up to 30A Complete with PCB etc. A heat sink may be requred. \(£ 17.00\) REF: MAG 17
MAINSCABLE Precutblack 2 core 2 metrelengths Idealfor repairs,
projects etc. 50 metres for \(£ 199\) ref AUG2P7.
COMPUTER COMMUNICATIONS PACK Kt comtains 100 m of 6 core cable, 100 cable clips, 2 hine crivers with RS232 interfaces
and an cormectors etc. Ideal low cost method of communicating be and al cormectors etc. Ideal low cost method of communicating between PC's over a long distance. Complete kit \(£ 8.99\).
MINI CYCLOPS PIR \(52 \times 62 \times 40 \mathrm{~mm}\) uns on PP3 battery complete with strill sounder. Cheap protection at onty \(£ 5.99\) ref MAR6P4.
ELECTRIC MOTOR KIT Comprehensive educational kitinctudes all you need to build an electric motor. \(£ 9.99\) rel MAR10P4.
VIDEO SENDER UNIT. Transmits both audio and video signals from either a video camera, video recorder, TV or Computer etc to ary
standard TV set in a 100 range! (une TV io a spare channel) 12 VDC standard TV set in a \(100^{\prime}\) rangel (une TV to a spare channel) 12 VDC
op. Price is \(£ 15\) REF: MAG15 12 V pSu is \(£ 5\) extra REF: MAGSP2 op. Price is \(£ 15\) REF: MAG15 12v pSU is \(£ 5\) extra REF: MAG5P2
*FM CORDLESS MICROPHONE Small hand held unit with a \(500^{\prime}\) ranget 2 ransmit power levels. Reqs PP3 9 v battery. Tuneable to ary FM receiver. Price Is £ 15 REF: MAG \(15 P 1\)
LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200'. Idealfor garden use or as an educational toy. with a range of about 200 . Ideal for ganden use oras an
PTice is \(£ 8\) a peir REF: MAC \(8 P 12 \times P P 3\) req'd.

\section*{BULL ELECTRICAL \\ 250 PORTLAND ROAD HOUE SUSSEX}

MAL ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS 53.00 POST PLUS VAT

ALEASEALLOW 7 - to DAYS FOR DELIVERY
TELEPHONE ORDERS WELCOME
TEL: 0273 203500
FAX: 0273.323077
*MINATURE RADIO TRANSCEIVERS A par of wallie tallies with a range of up to 2 km in opencountry. Unts measure \(22 \times 52 \times 155 \mathrm{~mm}\). including cases and earp'ces. \(2 x\) PP3 req'd. \(£ 30.00\) pr.REF: MAG30 COMPOSITE VIDEO KIT. Converts composite video into sepa rate \(H\) sync, \(V\) sync, and video. \(12 \mathrm{~V} D \mathrm{C}\). \(£ 8.00\) REF: MAG8P2 LQ3500 PRINTER ASSEMBLIES Made by Amstrad they are entire mechanical printer assemblles including printhead, stepper motors etc eic in lact everyuing bar the case and electronics, a good stripper! £5 REF: MAGsP3 or 2 for £B REF: MAGAP3
LED PACK of 100 standard red 5 m leds £ 5 REF MAG5P4
UNIVERSAL PC POWER SUPPLY complete wht thead switch, fan etc. Two types available 150w at £15 REF:MAG15P2 (\(23 \times 23 \times 23 \mathrm{~mm}\)) and 200w al \(£ 20\) REF: MAG20P3 \((23 \times 23 \times 23 \mathrm{~mm})\)
*FM TRANSMITTER housed in a standard working 13A adapter! the bug runs directly ofl the mains so lasts forever! why pay \(£ 700\) ? or price is \(£ 26\) REF: MAG26 Transmits to any FM radia.
*FM BUG KIT New design with PCB embedded collfor extra stability. works to any FM radio. 9v battery req d. £5 REF: MAG5P5
*FM BUG BUILT AND TESTED superior designto kot. Supplied to detective agencies. 9v battery req'd. £14 REF: MAG14
TALKING COINBOX STRIPPER ongnally made to retail at£79 each. these units are designed to converl an ordinary phone into a poyphone. The units have the locks missing and sometimes broken tunges. However they can be adapted for their original use or used for something eise?? Price is just £3 REF: WAG3P1
TOP QUALITY SPEAKERS Made for HIFI tetevisions these are 10 watt \(4 R\) Jap made 4" round with large stielded magnets. Good quarty. \(£ 2\) each REF: MAG2P4 or 4 for \(£ 6\) REF: MAG8P2
TWEETERS \(2^{2 "}\) dameter good quality tweeter 140R (ck with the above speaker) 2 for \(£ 2\) REF: MAG2P5 or 4 for \(£ 3\) REF: MAG3P4 AT KEYBOARDS Made by Apricot these quality keyboards need just a small mod to run on any AT, they work perfectly but you wil to put up with 1 or 2 foreign keycapsl Pice 66 REF: MAGEP3 HEADPHONES ExVirgin Atlantic. 8 pairsfor \(£ 2\) REF: MAG2P8 SNOOPERS EAR? Original made to cllp over the earpiece of telephone to amplify the sound-it atso works quite well on the cable rurming along the wall Price is \(£ 5\) REF: MAG5P7
DOS PACKS Microsoft version 3.3 or higher complete with all manuats or price hist £5 REF: MAG5P9 Worth it Mst for the very comprehensive manuall \(8.25^{\circ}\) only.
DOS PACK Microsoft version 5 Original softwere but no manuals hence onty \(£ 5.99\). \(3.5^{\prime \prime}\) only.
PIR DETECTOR Made by famous UK alarm manufacturer these are hi spec, long range internal units. 12v operajion. Slight marks on case and unboxed (allhough brand new) £8 REF: MAG8Ps
WINDUP SOLAR POWERED RADIO AMFM radlo complete with hand charger and solar panell 17.99 REF: 14P200RA
MOBLE CAR FHONE \(£ 5.99\) Well almostI complete in car phone excuding the box of electronics normaly hidden under seat Can be made to illuminate with 12v also has builin light sensor so display only ituminates when dark Totaly convincingl REF: MAG6P6
ALARM BEACONS Zenon stobe made to mount on an external bellbox but coun be used for caravans efc. 12voperation Just connect up and it flashes regutarty) £5 REF: MAG5P11
FIRE ALARM CONTROL PANEL High qually metal cased aiarm panel \(350 \times 165 \times 80 \mathrm{~mm}\). With key. Comes with electronics but no siarm panel \(350 \times 165 \times 80 \mathrm{~mm}\). With key. Come
information. sate price 7.99 REF: MAGBP6
\(6^{\prime \prime} \times 12^{-1}\) AMORPHOUS SOLAR PANEL 12V \(155 \times 310 \mathrm{~mm}\) 130 mA Bargain price just \(£ 5.99\) ea REF MAG6P 12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for \(£ 4.99\) ref MAG5P 13 ideal for experimenters 30 m for \(£ 12.99\) ref MAG13P1 HEATSINKS (finned) TO220, designed to mount vertically on a pcb \(50 \times 40 \times 25 \mathrm{~mm}\) you can have a pack of 4 for \(£ 1\) ref JUN1P11.
INFRARED LASER NIGHT SCOPES
image intenstifer complete with hand grip attactment with builh in adqustable laser lamp for zero light condions. Supplied with Pentax 42 mncameramountand normal eyepiece. 1.6kg, uses txPP3,3xAA's (all supplied) \(245+\) Vat
NEW HIGH POWER LASERS
15 mW , Heliumneon, 3 swichable wave tengths \(.63 \mathrm{um}, 1.15 \mathrm{um}, 3.39 \mathrm{um}\) (2 of them are infrered) \(500: 1\) potanzer bult in 80 good for holography EXTREME CAUTION AND QUALIFIED GUIDANCE. \(£ 349+\mathrm{Vat}\).
WE BUY SURPLUS STOCK FOR CASH
1995100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE WITH ORDER
3FT X 1FT 10WATT SOLAR PANELS \(14.5 \mathrm{v} / 700 \mathrm{~mA}\)
£44.95

TOP QUALITY AMORPHOUS SLLCON CELLS HAVE ALMOST A TIMELESS LIFESPAN WITH AN INFINITE NUMBER OF POSSLBLE APPLICATIONS, SOME OF WHICH MAY BE CAR BATTERY CHARGING. FOR USE ON BOATS OR CARAVANS, OR ANYWHERE APORTABLE 12 V SUPPLYIS REQUIRED.

\section*{PORTABLE RAD|ATION UETECTOR}

WITH NEW COMPUTER INTERFACE. \(£ 59.00\)
A Hand held personal Gamma and X Ray detector This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 K VV to over 1.2 M
eV and a measuring range of \(5-9999 \mathrm{UR} / \mathrm{h}\) or \(10-99990\) eV and a measuring range of 5-9999 UR/h or 10-99990
Nr /h. Supplled complete with handbook. Ref. NOV 18.

Letters to "Electronics World + Wireless World" Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

\section*{The message not the medium}

Stephen Dyke may have somewhat idealised recollections of the \(Z X\) Spectrum and its youthful programmers (Letters, November), but the point he makes is an important one. Readers may remember that at the time Sir Clive was marketing the \(Z X\) range of computers, the BBC had a series of programmes with the title Young Scientist of the Year. Groups of pupils presented their science and technology projects and a panel of judges eventually chose a winning group based on the progress they had made.

Not very exciting \(t v\). But nor did it try to be 'zany', by which I mean it did not patronise its audience. Sir George Porter, no mean chemist, was so intrigued by one problem raised on the program that he investigated it himself.

When it vanished from our screens, I was told by one of the judges that they had found that parents were spending money on equipment to help with the projects, which was felt to be undesirable. The BBC has also claimed that it became increasingly difficult to find schools willing to enter. Judging by the school stories which regularly appear in my local paper, I find this hard to believe.

The real reason may be more to do with the perceptions of science and technology which the media have manufactured for mass
consumption. It is not difficult to find some 'researcher' to tell us that spending too much time with computers is addictive, anti-social, even pathological. I've yet to hear of a dedicated young musician who did not spend a great deal of time alone practising on an expensive instrument, often bought by parents. A youthful violinist next door is a great deal more anti-social than a computer nerd. But of course that is art.

For the most part science and technology on television and radio have become subordinated to programmes about the effects of science and technology - not at all the same thing. In the BBC2 series White Heat it was considered appropriate that the majority of the contributors were historians, cultural critics, sociologists and the like.

Too many scientists and technologists pander to this approach by telling their colleagues they must be 'better communicators'. According to this view, watchers and listeners are merely passive sponges and must never be required to engage their intellects. If that is true, where do the audiences for Radio 3, The Late Show and Kaleidoscope come from?
Having seen blue collar unemployment rise because many of our manufacturing industries have been exported to the third world, we now face the prospect of increasing competition from the huge white collar sector of countries like India. It is not enough that we are a nation of trained and competent technology users; someone has to beat the drum for our being a nation of science and technology innovators.
Les May
Rochdale

\section*{Amplified disagreement}

I would like to thank Doug Eleveld for his kind comments (Letters, EW \(+W W\), November) on my recent amplifier writings. However, I am now placed in the position of disagreeing with much of the rest of his letter.
He asks, if a complementary mosfet common-source output stage is driven by a current-source, "then do we not have perfect dc linearity in the output?" My answer can only be no, we most certainly do not. Power fets are rather non-linear devices and driving them with a current source - which will in itself have some non-linearity - does not alter this. As I explained in the series Distortion in amplifiers, part III \({ }^{1}\), it is in any case almost unheard of for an output stage to be driven by a true current source: off-hand I can think of no examples.

Commonly we talk of voltage-amplifier-stages (vas) with currentsource collector loads. But this verbal shorthand glosses over the fact that an explicit dominant-pole capacitor is almost always required. Even if it appears to be missing the \(C_{c b}\) of the vas transistor, it is carrying out much the same function: giving local negative feedback around the vas which has its output impedance reduced in the
classical manner. Since the feedback element has an impedance that falls with rising frequency, the feedback factor increases and the vas output impedance decreases as the frequency rises.
In a typical amplifier the vas collector impedance might be tens of kilo-ohms at very low frequencies, but it may well have dropped to below \(1 \mathrm{k} \Omega\) at 20 kHz . I do not think this can be meaningfully called current-drive, or come to that, voltage-drive either.
The value of the vas currentsource can place an unexpected extra limit on the maximum positive-going slew-rate \({ }^{2}\). But this is not the most important limit, which for conventional architectures is still set by the input tail-current.

I cannot follow Eleveld's arguments concerning oscillation being less likely with current-drive. Were it possible to make such an amplifier, I would expect the stability to be very doubtful if the vas pole was undefined, or rather defined only by the internal mosfet capacitances. These are both large and variable.

Biasing the amplifier suggested by Eleveld does indeed seem tricky. This appears to be a major problem with common-emitter output stages. Eleveld does not state if the design is intended to operate in class A or B (or some mixture of the two) but the biasing scheme shown does not seem appropriate to either.
It cannot work for class B, because the summed diode voltage applied to the low-pass filter would seriously vary with the output signal level. Real power diodes will only give very approximate clipping, and they do not make any detectable change to linearity of the output stage. (I tested this by Pspice
simulation, using 2SJ5012SK135 power fets and MR752 6A diodes.)

If class \(A\) is intended, biasing should work providing the diodes shown are replaced with the usual small-value resistors, as in pure class \(A\). The sum of voltages across the two resistors will be constant, and in fact the low-pass filter is redundant \({ }^{3}\).

This is about as far as I plan to go in guessing how Mr Eleveld's idea is supposed to work. In putting an idea that could well be useful in the public domain, it might well be wise to explain its intended operation in more detail.
Douglas Self
London

\section*{References}
1. D Self. Distortion In Power Amplifiers, Part 3, EW + WW, Oct 1993, p. 821.
2. D Self. High Speed Audio Power. EW + WW, Sept 1994, p762.
3. D Self. Distortion In Power Amplifiers, Part 8. EW +WW; Mar 1994, p227.

\section*{Fine point}

May I say how much I enjoyed reading George Pickworth's article on electrolytic detectors (Detection before the diode, \(E W+W W\), December, p1003-1006)?

Perhaps I can throw some light on the term 'Wollaston wire', which Pickworth notes is often used in reference to platinum wire. The term refers to a particular process for producing very fine wire.
"By Wollaston's procedure, a platinum rod is covered with a close-fitting silver tube, and the composite rod is drawn through wire dies. After the silver has been etched

\section*{Still waters run deep...}

Having read of the fantastic improvement that low resistance loudspeaker cables can make, I remembered I had some lengths of copper water pipe spare. So I substituted these for the cable (wife a little upset with floorboards up). I was very disappointed with the results. I mentioned my disappointment to a homeopathic friend and he explained that as the pipes had been previously used for water which had run over rocks, and so still had the memory of the rock water, I could only expect an improvement with rock music.
\(R\) A Ellis.
London

\section*{KESTREL ELECTRONIC COMPONENTS LTD}

ش All items guaranteed to manufacturers' spec.
Hany other items available.
'Exclusive of V.A.T. and post and package'
\begin{tabular}{llllll}
& \(1+\) & \(100+\) & & \(1+\) & \(100+\) \\
EPROMS & & & & STATIC RAMS & \\
27C64-15 & 2.00 & 1.45 & 62256LP-10 & 3.00 & 2.15 \\
27C128-15 & 2.40 & 1.80 & 6264LP-10 & 2.10 & 1.40 \\
27C256-15 & 2.20 & 1.65 & MM58274CN & 4.90 & 3.75 \\
27C512-15 & 2.20 & 1.65 & ULN2003A & 0.45 & 0.25 \\
27C010-15 & 4.00 & 2.75 & LM311N & 0.30 & 0.18 \\
27C020-15 & 6.00 & 3.99 & LM555 & 0.30 & 0.18 \\
27C040-15 & 8.60 & 6.45 & MAX232 & 1.35 & 0.88 \\
80C31-12 & 2.10 & 1.65 & 7406 & 0.35 & 0.23 \\
80C32 & 3.00 & 2.40 & 7407 & 0.35 & 0.23 \\
80C85ARS & 2.90 & 2.30 & 74HCT244 & 0.35 & 0.27 \\
82C55-5 & 2.40 & 1.55 & 74HC245 & 0.35 & 0.27 \\
D8748H & 4.30 & 3.35 & 74HC373 & 0.35 & 0.26 \\
D8749H & 4.40 & 3.45 & 74HC374 & 0.32 & 0.26
\end{tabular}

74LS, 74HC, 74HCT Series available
Phone for full price list
All memory prices are fluctuating daily, please phoneto confirm prices

\title{
178 Brighton Road, Purley, Surrey CR8 4HA Tel: 081-668 7522. Fax: 081-668 4190.
}

\section*{‘OFF-AIR’ FREQUENCY STANDARD}

\title{
- \\ Still Only £195
}
- Provides \(10 \mathrm{MHz}, 5 \mathrm{MHz} \& 1 \mathrm{MHz}\)

TCXOs, VXCOs, ove equipment that reiles on quartz cryslals,
- Phase locks to DROITWICH (rubidium controlled and traceable to NPL
For ADDED
VAL
For ADOED VALUE also phase locks to ALOUIS (cestum
contolled and raceable to \(O P\) - French eq to NPL
Bntish designed and British manutactured
- Bntish designed and British manufactured
outputs and 1 3MHz output tor GSM Prces on application.
ut frequencles
Output frequenc
\(10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}\) Short term stability - better han \(1 \times 10^{-8}(1 \mathrm{sec})\)
Typical \(-4 \times 10^{-9}(1 \mathrm{~s}\) Typical \(-4 \times 10^{-9}(15\)
Long term tends to
\(2 \times 10^{.12}(1000 \mathrm{sec})\)
SUPERB DUAL TRACE SCOPES, TELEQUIPMENT D61A, 10 mV SENSITIVITY 10uS-500mSIDIV (\& \(\times 5\)), X-Y INPUTS, Z-MOD, INT/EXT/TV TRIGS, ETC. FROM \(£ 99\) AMPROBE LT8100 2 RANGE TEMP RECORDER \(\quad\) I75 FARNELL TSV7OMK20-35V 10A 0.70V 5 A
T74 (VHF BC 221 HET FREO METER AMPROBE LAV3XV-METER RECORDERS \(\quad\) T75 MARCONI TF2905/8 SINE/SQPULSEBAR G 19"x2OUx31" DEEP INSTRUMENT RACKS E. GENERATOR \(12 V\) 17A BATT CHARGE JANKE \& KUNKEL HI-SPEED MINI MIXER CAMMODORE PETS, PRINTERS,
FLUKE 760A MULTIMETER CALIBRATO BRADLEY 1718 MULTIMETER CALIBRATOR BRADLEY 191 DISTRIBUTION UNIT
HONE YWELL COLOUR GRAPHIC RECOROER TEKTRONIX 545 PLUG.INS, VARIOUS PLESSEYTCTIO SIG GEN ANAL 50 - 300 BDS \(£ 10\) MARCONI TF2212 X.Y DISPLAY QUAD 303 STEREO POWER AMPS ORAKE MN2700 MATCHING NWORK 8 PS7 PSU 1 SCOPEX 4 S6 6 MHz SINGLE TRACE SCOPEX \(4010 B L . S\). \(10 \mathrm{MH} 2 \mathrm{~W} / \mathrm{TH}\) EXTENDED LF T/B WATSU SSS116 DUAL TRACE 1OMMZ TELEQUIPMENT O1011 10 MHZ DUAL TRACE M.P. B505A VECTOR VMMETER \(1 G H Z\)
TEI EOUIPMENT D67A 25MHz 2T DE TELEQUIPMENT D67A 25MHZ, 2 T. DEL T/B HITACHI VC 601510 MHZ DIGITAL STORAGE HP1 134AA X.Y DISPLAYS
LEVELL TM6B MICRO V-METER 45OMHZ HP \(5340 \mathrm{~A} 10 \mathrm{~Hz}-1\) BGHz FREQUENCY COUNTER HRO-MX RECEIVERS, COILS, PSU'S. SPEAKERS TIME 2004 OC VOLTAGE STANDARD O.OO5\%
TIME AO4S PRECISION MV SOURCE 0 - 20 mA TIME 404 S PRECISION mV SOURCE O-TV 20
TIME 2003N DCV POT/GAL O-10V, NULL, ETC ZIME 22003NDCV POTTCAL O-1 OV, NULL, HP 3701 A 37028 TX GENERATOR \& 88 RXX \(391^{9} \times 60\) VERO INSTRUMENT CASES BRAND NEW POA ELECTRONIC VISUALS EVVO20A NTSC VISCOPE
FERROGRAPH RTS2 TEST SET/AUX TEST UNIT FERROGRAPH RTS S T TEST SET/AUX TEST UNIT.
PHILIPS PM5134 FUNCTION GEN 1 MHZ - 20 MHZ P9 PHLLPS PM57 ea BRADLEY 144 OC MULTIFLIER UNIT C95 'XT 'AT \& COMPAO COMPUTERS โ149 LEVELL TM3B MICRO V-ME TEA 3 MHZ
ᄃ195 LING OYN VB GEN 406 \& PA 30 PWROS £195 LING OYN VB GEN 406 \& PA300 PWR OSC
£175 UDI2026 SONAR SCANNER. SURFACE UNIT C165 CITOH CX6000 6-PEN A4 PLOTTER.CENT/RS232 C395 GOULD 24004 -PEN CHART RECORDER
E215 PHILIPS PNG456 FM STEREO GENERATOR C195 MARCON TF2300 FMAM MOOULATON METER

LIST AVAIL
QUALITY ELECTRONIC EQUIPMENT ALWAYS WANTED
HALCYON ELECTRONICS USA
 SHOP HOURS 9 -5. 30 MON-SAT. TEL 081-542 6383. FAX 081-542 0340

\section*{SPECIAL OFFER for ONE MONTH ONLY}

HEWLETT PACKARD 62618
Power Supply 20V-50A- \(£ 500\)
SCHLUMBERGER S.I. 4040
Stabilock - High Accuracy 1 GHz Radio Test Set - £8000

> MANY MORE ITEMS AVAIL ABLE - SEND
> LARGE S.A.E. FOR LIST OF EQUIPMENT
> ALL EQUIPMENT IS USED - WITH 30 DAYS
> GUARANTEE. PLEASE CHECK FOR
> AVAILABILITY BEFORE ORDERING - CARRIAGE
> \& VATTO BE ADDED TO ALL GOODS
off...with nitric acid, the platinum wire obtained may be as small as \(0.5 \mu \mathrm{~m}\) in diameter". Procedures in Experimental Physics, J Strong, Pub Prentice Hall, 1941, p. 542.
The minimum obtainable diameter of \(0.5 \mu \mathrm{~m}\) shows that the process is more than able to meet the specification for the BIWC cell. IS Linfoot
Oxford

\section*{Blowing the whistle on referees}

Pete Davis (Letters, December) queries suggestions of a scientific establishment conspiracy and states a naive belief in respect for objective evidence. This is not my own experience.
There may be no formal conspiracy, but many scientists display attitudes which seem to differ little from those of extreme religious fundamentalists for whom their holy book is the incontestable truth.
Where is the claimed objectivity of science when more open mindedscientists risk their careers merely because they make suggestions or try experiments to test the validity of someone else's contrary idea without in any way expressing a strong personal belief?
The practice of refereeing papers for professional journals, although necessary, is inherently wide open to bias by bigots or those with vested interests. Too often new concepts later fully accepted - are suppressed for decades. At least one has had to finance a new journal because no
ther would publish. Why cannot responsible editors expose ideas to full discussion as soon as possible? A percentage of editorial pages could be allocated to potentially controversial papers, refereed only for logic and sound method.
The current approach is largely self defeating as many young scientists grow up with an unquestioning acceptance of establishment ideas. Some no longer even understand the need to question.

It now seems fashionable to knock science. Unfortunately, now an illinformed general public is left unable to distinguish between the claims of ignored or rejected novelty and a flood of unanswered, simplistic and half-baked pseudo science.

\section*{R G Silson}

Herts

\section*{Un-square wave}

Many writers, including Ian Hickman (Design Brief: Cautionary tales for circuit designers, November, pp.926-930) state that a unity mark-space ratio square wave may be obtained by dividing an asymmetrical pulse train by two.
This is not exactly true. Referring to cmos technology, \(t_{\text {LH }}\) is typically slower than \(t p_{\mathrm{HL}}\), attributed to use of complementary devices with differing carrier mobility in the output stage. Our 'square wave' is actually a slightly asymmetric trapezoid.

This can easily be seen on a spectrum analyser by the presence of low-amplitude even harmonics

\section*{Fighting words}

I was interested to read outgoing editor Frank Ogden's comments concerning the demise of the British electronics industry (Comment, \(E W+W W\), October)

But \(E W+W W\) must take some of the blame. In the past, editorial has been extremely critical - to the point of vitriolic - of the Ministry of Defence's involvement in the electronics industry and has busily promoted pacifism. As a respected voice, obviously the magazine must have had some influence.
Defence cuts have savaged the armed forces and consequently, the MoD is no longer the massive purchasing power that it was, while the electronics industry has lost a major customer. Now we see the consequences.

Defence can be a large customer of home industry and it is my belief that the large scale reduction in the British armed forces over many years has lost the country a large manufacturing base covering many technologies.
Interestingly, because of the lack of British entrepreneurial initiative, we are now rated as a third world country by foreign industrialists setting up manufacturing bases here to take advantage of our current economic state. Fortunately, but probably not in my lifetime, the trend will be for Britain to climb its way back to the top. Colin Long
Essex
("Spectrum analysis on the cheap", Nick Wheeler, \(E W+W W\), March 92, p.205) and occasionally can be seen on a good oscilloscope.

In most cases the distinction does not matter. But I found I could not generate a spectrally pure sine wave by a combination of low-pass filtering and notch filters on the odd harmonics.
Nick Wheeler
Sutton

\section*{Interface signal}

C J D Catto's design (Circuit Ideas, Interfacing a signal riding high, November, p. 921) is most useful. Using differential inputs to one single operational amplifier avoids the drawback in the analoguecomputer approach of inverting one input to mix it with the other, imposing different frequency characteristics on the two inputs thus wrecking the cmrr at high frequency.
It is also the only approach that will accommodate inputs well outside the supply rails by attenuating the inputs, since superior circuits for responding only to differential inputs cannot be used directly.

However the published circuit needs minor corrections such as a blob between \(R_{5}\) and \(R_{6}\) and another change concerning \(R_{16}\), while trimmer \(R_{17}\) in the text should read trimmer \(P_{1}\). The first stage differential gain from the input terminals is also not 13.5 but about 1/18.

To obtain the quoted commonmode rejection of 90 dB , ten resistors must restrict their total deviations with time and temperature to one part in 31,600 - or 31.6 pprn . But these are to be added algebraically, taking \(R_{6}\) with \(R_{8}\) as a parallel pair and \(R_{9}\) and \(R_{10}\) likewise
Further, the layout of \(R_{\vdash}-R_{4}\) and their screening should be symmetrical, with wide spacing, and the inputs be via terminals/sockets in a metal panel. Where \(R_{1}+R_{3}=\) \(1.36 \mathrm{M} \Omega\), an extra 1 pf across these end-to-end would have a reactance of \(33180 \mathrm{M} \Omega\) at 50 Hz and the phase of that input would be shifted by 1/2400 radian or so. Consequently the cmir would not adjust above about 68 dB . As well as permitting 250 V input, use of two or more resistors in series at the input is valuable in keeping down such end-to-end capacities of the resistor chains.
Bernard Jones
London

\section*{Radar search}

I am searching for basic information on development of radar, as I have uncovered that its principle and
public knowledge of it was firstly revealed in \(E W+W W\) by Mr R L Smith-Rose in 1945.
How was this device invented, and where was it first successfully built? I understand it was actually first built in 1935, by Sir Robert WatsonWatt. So who was really credited as the inventor of the first radar system?

I also learn that the first radar in the US was built in 1936, by Major Corput and Watson (not the same Watson-Watt). Does any reader have technical information on what kind of rays or source of rays (radiofrequency, wavelengths, type of oscillator etc.) were used that first time, or on the receiving antennas employed?
I am planning on an article on the impact of radar in naval traffic and civil aviation in Norway, and would be most grateful for any help.
Roy Albrigtsen
Feltspatkroken 3
N-4028 Stavanger
Norway

\section*{Relaxing pursuits}

Your Comment, (Abuse of the licence fee, November) points out that the BBC is neatly fulfiling its remit with five national and one local station.

The other 'local' stations are usually vehicles for commercial advertising. As a product of, and stimulus for, the market economy, no doubt they will emulate the BBC and eventually distribute dab, or something like it, to local transmitters via satellite. Conımercial media outlets are steadily being underpinned by multinational conglomerates, so it will probably not take long.

It is worth noting that any broadcast reception must be licensed in the UK, even if via a dish aligned to a foreign satellite. Those of us already acquiring digital music via the German TV Sat 2 are about to lose out, as it is being sold to the Swedes and re-located. The same 16 stations can be received from the lower-powered Kopernicus, albeit via a much larger dish, with a fat fee for local planning permission. The only alternative will be to pay for it from Astra early next year. Even so this is still a lot cheaper than buying cds.
On the subject of audio, 1 am currently completing a total of five Doug Self amps for split filters and sub-woofers and would dearly like to see an update of the practical active filter published by \(E W+W W\) in 1978, a version that used over 30 op-amps in the full implementation. Hugh Haines
Sunderland

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM：Programs 24，28，32 pin EPROMS，EEPROMS FLASH and Emulators as standard， quickly，reliably and at low cost．
Expandable to cover virtually any prog－ rammable part including serial EEPROMs， PALs，GALs，EPLDs and microcontrollers，in many different packages．
DESIGN：Not a plug in card but connecting to the PC serial or parallel port；it comes complete with powerful yet easy to control software， cable and manual．
SUPPORT：UK design，manufacture and support．Same day dispatch， 12 month warranty． 10 day money back guarantee．

MQP ELECTRONICS Ltd Park Road Centre Malmesbury，Wiltshire．SN 16 OBX．UK TEL． 0666825146 FAX． 0666825141

ASK FOR FREE INFORMATION PACK
IRELAND 1－2800395 GERMANY 089／4602071 NORWAY 0702－17890 ITALY
FRANCE
0292103554
169301379 \(\begin{array}{ll}\text { FRANCE } & 169301379 \\ \text { SWEDEN } \\ 0859032185\end{array}\) ASOTTOM EI ECTROSPEED UK

BROADCAST MONITOR RECEIVER 2 \(150 \mathrm{kHz}-30 \mathrm{MHz}\)

We have taken the synthesised all mode FRG8800 communica－ tions receiver and made over 30 modifications to provide a receiver for rebroadcast purposes or checking transmitter per－ formance as well as being suited to communication＇s use and news gathering from international short wave stations．
The modifications include four additional circuit boards providing ＊Rechargeable memory and clock back－up＊Balanced Audio line output＊Reduced AM distortion＊Buffered IF output for monitoring transmitted modulation envelope on an oscilloscope＊Mains safety improvements．
The receiver is available in free standing or rack mounting form and all the original microprocessor features are retained．The new AM system achieves exceptionally low distortion：THD, 200 Hz － 6 kHz at \(90 \%\) modulation \(-44 \mathrm{~dB}, 0.6 \%\)（originally \(20 \mathrm{~dB}, 10 \%\) ）．
＊Advanced Active Aerial \(4 \mathrm{kHz}-30 \mathrm{MHz}\)＊PPM10 in－vision PPM and chart recorder＊Twin Twin PPM Rack and Box Units ＊Stabilizers and Fixed Shift Circuit Boards for howl reduction ＊10 Outlet Distribution Amplifier 4 ＊Stereo Variable Emphasis Limiter 3 ＊Stereo Disc Amplifiers 4 Peak Deviation Meter ＊PPM5 hybrid，PPM9 microprocessor and PPM8 IEC／DIN－50／ +6 dB drives and movements＊Broadcast Stereo Coders．

\section*{SURREY ELECTRONICS LTD}

The Forge，Lucks Green，Cranleigh Surrey GU6 7BG
Telephone： 01483275997 Fax： 276477

\section*{Programming Solutions}

－Uses standard pc printer port works with notebook and handbook pc＇s
\(\checkmark\) Pin－driver expansion can drive up to 256 pins
\(\checkmark\) Supports over 2000 ICs－ 3 and 5 volt devices：－ EPROMs，E2PROMs，Bipolars，Flash，serial PROMs over 150 microcontrollers，WSI／Philips PSD＇s PLDs，EPLDs，PEELs，PALs，GALs，FPGAs including MACH，MAX，MAPL \＆Xilinx parts

WゅDふBロロ®vice Progremmer \(\checkmark\) EPROMs，E2PRoMs，Flash EPRoms，Serial E2PRoMs PLDs，GALs，PEELs，EPLDs，MACHs \＆WSI／Philips PSDs Micros－Intel，Motorola，Microchip，Zilog，Atmel
－Fast Programming Algoritḥms
\(\checkmark\) Connects direct to pc printer port
－Simple full colour menu software
\(\checkmark\) No expensive adpaters
EMULATORS－SIMULATORS－COMPILERS－ASSEMBLERS－PROGRAMMERS 80518085 Z8 \(6802077 C 8280 C 552320 \mathrm{C} 2568 \mathrm{HC} 116301650287 \mathrm{C} 751658162806809\) PIC 7720 MIPS etc． 2 Field End，Arkley，Barnet，Herts EN5 3EZ Tel：0181－441 3890 Fax：0181－441 1843
\(\checkmark\) Universal DIL（up to 48 pins）PLCC and GANG PACs
\(\checkmark\) Powerful full colour menu driven software
\(\checkmark\) Approved by AMD，TI，NatSemi，etc．
Tests TTL，CMOS and SRAM devices（including SIMMs）

\section*{EPR（R）Programm®ロ}
\(\checkmark\) EPROMs E2PROMs Flash EPROMs 8748／51 micros
\(\checkmark\) Fast programming algorithms
\(\checkmark\) Simple colour menu operation only \(f 1\) ？

Programmable Logic

\section*{Handbook}

\section*{Geoff Bostock}

Logic circuit designers are increasingly turning to programmable logic devices as a means of solving problems. This book, for the established electronics engineer, student and technician, is a thorough introduction to programmable logic. Geoff Bostock will take you to a level where you, as a designer, can take full advantage of the growing product range of ASICs and other selfprogrammable arrays used in computer and control systems.
Paperback 256 pages.
Price \(£ 19.950750608080\)

\section*{Understand Electrical and}

Electronic Maths

\section*{Owen Bishop}

People who find maths difficult often have, as a result, difficulty
in grasping electrical and electronics theory. This book has been written to help such students to understand the mathematical principles underlying their subject so that they can go on with confidence to tackle problems in practical circuits. Paperback 256 pages. Price £14.95 0750609249

\section*{CIRCUIT MANUALS}

\section*{Ray Marston}

A series of books dealing with their subjects in an easy-to-read and non-mathematical manner, presenting the reader with many practical applications and circuits. They are specifically written, for the design engineer, technician and the experimenter, as well as the electronics student and amateur. All the titles are written by Ray Marston, a freelance electronics design engineer and international writer.

Op-amp Circuits Manual Paperback 224 pages
Price £13.95 0434912077
Audio IC Circuits Manual
Paperback 168 pages
Price £13.95 0434912107
CMOS Circults Manual
Paperback 192 pages
Price £13.95 0434912123
Electronic Alarm Circults
Manual
Paperback 144 pages
Price £13.95 0750600640
Timer/Generator Circuits Manual
Paperback 224 pages
Price £13.95 0434912913

Diode, Transistor and FET Circuits Manual
Paperback 240 pages
Price £13.95 0750602287
Instrumentation and Test Gear Circuits Manual

\section*{Ray Marston}

Modern instrumentation and test gear circuits of value to the industrial, commercial, or amateur electronic engineer or designer make up this book. Almost 500 outstandingly useful and carefully selected practical circuits are in here. This is one book you must have if you need access to practical working circuits ranging from simple attenuators and bridges to complex digital panel meters, waveform generators, and scope trace doublers. Paperback 400 pages.
Price £16.95 0750607580

\section*{Logic Designers Handbook} Andrew Parr
Easy to read, but none the less thorough, this book on digital circuits is for use by students and engineers and provides an accessible source of data on devices in the TTL and CMOS families. It's a 'Designers Handbook' that will live on the designer's bench rather than on the bookshelf. The basic theory is explained and then supported with specific practical examples. Paperback 488 pages.
Price £25.00 0750605359

\section*{Digital Audio and Compact} Disc Technology
Luc Baert, Luc Theunissen \&
Guldo Vergult
Essential reading for audio engineers, students and hi-fi enthusiasts. A clear and easy-tofollow introduction and includes a technical description of DAT (digital audio tape). Contents includes principles of digital signal processing, sampling, quantization, A/D conversion systems, codes for digital magnetic recording, principles of error correction, the compact disc, CD encoding, optoelectronics and the optical block, servo circuits in CD players, signal processing, digital audio recording systems, PCM, Video
8, R-DAT and S-DAT. Paperback 240 pages
Price \(£ 16.95\)
0750606142

\section*{NEWNES POCKET BOOKS}

A series of handy, inexpensive, pocket sized books to be kept by your side and used every day. Their size makes them an ideal 'travelling' companion as well.

\section*{Newnes Electronics}

Engineer's Pocket Book
Keith Brindley
Hardback 319 pages
Price £12.95 0750609370
Newnes Electronics Assembly
Pocket Book
Keith Brindley
Hardback 304 pages
Price £10.95 0750602228
Newnes Televislon and Video
Engineer's Pocket Book
Eugene Trundle
Hardback 384 pages
Price £12.95 0750606770
Newnes Circult Calculations
Pocket Book
T Davies
Hardback 300 pages
Price £10.95 0750601957

Newnes Data Communications Pocket Book
Milchael Tooley
Hardback 192 pages
Price £12.95 0750604271
Newnes Telecommunications
Pocket Book
JE Varrall \& EA Edis
Hardback 400 pages
Price £12.95 0750603070

Newnes 280 Pocket Book
Chris Roberts
Hardback 185 pages
Price £12.95 0750603089
Newnes 68000 Pocket Book
Mike Tooley
Hardback 257 pages
Price £12.95 0750603097
Newnes Electrical Pocket
Book
21 st edition
E A Parr
Paperback 526 pages
£12.95
0750605138
Newnes Electric Circults
Pocket Book Linear IC
Ray Marston
Hardback 336 pages
Price £12.95
0750601329
Newnes Guide to Satellite TV

\section*{D J Stephenson}

A practical guide, without excessive theory of mathematics, to the installation and servicing of satellite TV receiving equipment for those professionally employed in the aerial rigging/TV trades. Hardback 256 pages.
Price \(£ 17.950750602155\)
Newnes Practical RF
Handbook
lan Hickman
Pressure on the RF spectrum has never been greater and it's people with knowledge and skllis of RF design who are now in demand in the electronics industry to design, produce, maintain and use equipment capable of working in this crowded environment. This practical introduction to modern RF circuit design will equip you with the necessary RF
knowledge and skills to enable you to compete effectively in the industry. Paperback 320 pages.
Price £16.95 0750608714

\section*{Troubleshooting Analog}

Circuits

\section*{R A Pease}

Bob Pease is one of the legends of analog design. Over the years, he's developed techniques and methods to expedite the oftendifficult tasks of debugging and
troubleshooting analog circuits. Now, Bob has compiled his 'battle-tested' methods in the pages of this book. Based on his immensely popular series in EDN Magazine, the book contains a wealth of new material and advice for Digital/Analog electronics engineers on using simple equipment to
troubleshoot. Paperback 217 pages.
Price £14.95
0750616326
PC-Based Instrumentation and Control

\section*{M Tooley}

Do you need information to enable you to select the necessary hardware and software to implement a wide range of practical PC-based instrumentation and control systems? Then this book is for you. Paperback 320 pages.
Price £14.95 0750616318

\section*{Electronic Circuits Handbook}

M Tooley
Provides you with a unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without recourse to theoretical texts.
Paperback 345 pages.
Price £24.95 0750607505
Communication Services via

\section*{Satellite}

GELewis
DBS is already with us, and will create a series of new technical problems for
engineers/technicians in television and communication services. This book gives you the solutions to these problems by
explaining how the system functions; describing several actual systems and giving several analyses and design rules. You can't afford to be without this invaluable technology update if you're a systems design engineer, service engineer or technician.
Paperback 400 pages.
Price £25.00 0750604379
Digital Logic Design Brian Holdsworth
As one of the most successful and well established electronics textbooks on digital logic design, this book reflects recent developments in the digital fields. The book also covers new functional logic symbols and logic design using MSI and programmable logic arrays. Paperback 448 pages.
Price £19. \(50 \quad 0750605014\)

\section*{The Circuit Designers \\ Companion \\ T Wiliams}

This compendium of practical wisdom concerning the realworld aspects of electronic circuit design is invaluable for linear and digital designers alike. Hardback 320 pages.
Price \(£ 25000750611421\)

> Credif card orders accepted by phone 0816523614

Return to: Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

\section*{Please supply the following titles:}

Business purchase: Please send me the books listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. will attach my business card/letterhead and have signed the form below. Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resaleable condition for a full refund

Remittance enclosed \(£\)
Cheques should be made payable to Reed Book Services Ltd.
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. \(\qquad\) Exp date
NAME (Please print)
organisation
STREET
TOWN
COUNTY \(\qquad\) POST CODE \(\qquad\) COUNTRY
DATE \(\qquad\) TELEPHONE NUMBER

SIGNATURE

\section*{VAT RATES}

6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Gemany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3\% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR
REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)
VAT NO.
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to recieve further details about books, journals and information services.
Reed Business Publishing - Registered Office - Quadrant Hse The Quadrant Sutton Surrey SM2 5AS Registered in England 151537

\title{
Analysing waveforms in the practical world
}

\title{
In the second part of his examination, Ian Hickman uses real equipment to check how practical waveforms match up to their theoretical shapes.
}

Fig. 1a. Sin \(x\) upon \(x\).
1b. Value of y gives the amplitude and phase of the various frequency components of a square wave.
1c. Modulus of 1a.
have shown how relative amplitudes and phases of the harmonics of a square wave relative to the fundamental component can be correctly shown (Figure 6 b from last month, reproduced here as Fig. 1b). But it may seem odd at first sight that amplitude of the fundamental itself is 0.637 , or \(63.7 \%\), or -4 dB . \(63.7 \%\) of what? Certainly not of the amplitude of the square wave.
Summing \(1-1 / 3+1 / 5-1 / 7+1 / 9 \ldots\) to infinity gives 0.782 as the amplitude of the square wave whose fundamental component is unity. Taking the reciprocal gives the fundamental component of a \(\pm 1 \mathrm{~V}\) square wave as \(\pm 1.278 \mathrm{~V}\). This brings us to the

question of the reconstruction of sine waves from their digital representations.
Take a digital audio system built around a compact disc, digital audio tape or digital compact cassette system - or even for the present purpose of explanation a straight-through wire connection (Fig. 2a). Assuming the wire connection, and a commonly employed sampling frequency such as 44.1 kHz , then the wave form (Fig. 2b) with exactly 48 steps per cycle, represents a frequency of just over 900 Hz . Clearly, after low-pass filtering to knock off the ripple, it will be a virtually exact replica of the original, \(100 \%\), a gain of unity or 0 dB down.
We know a digital sampling system can represent frequencies (almost) right up to the 'Nyquist rate', or half the sampling frequency. When the input to the A -to-D is just below the Nyquist rate, at first sight the D-to-A output (Fig. 3a) does not look very much like the input signal. But this is because it contains the image frequency component, which is just above the Nyquist rate.
However, when that output waveform is passed through a low pass filter with a steep cut-off at the Nyquist frequency, the image component is suppressed (along with the sharp edges representing harmonics of the wanted and image frequencies) leaving just the original sine wave. Assuming that the sine wave amplitude is \(\pm 1 \mathrm{~V}\) peak to peak, we can see (Fig. 3b), that the square wave out of the D-to-A varies in amplitude between zero and \(\pm 1 \mathrm{~V}\) peak to peak.
At its maximum, the fundamental component of the square wave will be, as noted earlier, \(\pm 1.278 \mathrm{~V}\) peak to peak. The wanted frequency and its image are equal in amplitude, so after the low-pass filter has suppressed the image and all the harmonics, the amplitude of the wanted signal will be \(1.278 / 2\) or \(\pm 0.637 \mathrm{~V}\) peak to peak. While the fundamental component of the 48 step representation of the sine wave shown in Fig. 2b barely differs in amplitude from the original, a signal at - or at least very close to - the Nyquist rate will be, after filtering, only \(63.7 \%\) of the true amplitude. Or 3.9 dB down, as predicted by the \(\sin x\) upon \(x\) curve.

Similarly, a frequency at a quarter of the sampling rate (or half the Nyquist frequency) will be 0.9 dB down. The expression \(\sin x\) upon \(x\) predicts the loss at any frequency and explains why better digital audio reconstruction chips include a \(\cdot \sin x\) upon \(x\) compensation filter'. Such a filter will correct the mild high frequency roll-off which the signal would
otherwise suffer, for all those golden ears who would otherwise be disappointed by the reduced level at 20 kHz .

\section*{Asymmetrical fit}

The \(\sin x\) over \(x\) curve actually fits the spectrum of all sorts of asymmetrical square waves and pulse trains. In fact, an equal mark: space ratio pulse train is simply a square wave with a de component (Fig. 4a). If now the pulse width of such a train is kept the same, but the space between pulses increased slightly, the frequency of the fundamental will be slightly lower than shown in Fig. 1b, so that its second harmonic will now fall just to the left of the first zero of \(y\) (Fig. 4b). The waveform now has some even harmonic components. If the space between pulses were further widened to twice the pulse width, the frequency would fall to two thirds of that shown in Fig. 1b. The spectrum would then have both odd and even harmonic components, though the 3rd, 6th, 9th... harmonics would all be zero.

Reducing the mark:space ratio further to \(25: 75 \%\), still with the same pulse width, reduces the fundamental frequency to half that shown for the \(\sin x\) over \(x\) curve. It would be the 4th, 8 th, 12 th... harmonics that would be zero.

\section*{Testing theory}

Of course theory and practice must tie up - mustn't it? Just to make sure, I built a circuit to check (Fig. 5a), using fast 74ACT devices clocked at a leisurely 4 MHz , and giving out a 250 ns pulse every \(\mu \mathrm{s}\) (Fig. 5b).
The waveform spectrum (Fig. 5c) showed a null at the fourth harmonic, looking fairly convincing even on a linear scale. But note here that we are using a log scale - so it is actually well over 50 dB down on the fundamental, or less than \(0.3 \%\).
Feeding the values of frequency of the fundamental, second and third harmonics - namely \(\pi / 4, \pi / 2\) and \(3 \pi / 4\) - into the formula gives values of amplitude for these components of \(0.90,0.64\) and 0.30 . From these figures, the second harmonic calculates out as 3 dB down, and the third as 9 dB down on the fundamental. This ties up pretty closely with the spectrum achieved (Fig. 5c), which also shows the higher harmonics falling into the pattern shown in Fig. Ic - allowing for the vertical scale being logarithmic, not linear. So the \(\sin x\) upon \(x\) curve is an envelope or locus which passes through the values of amplitude of the component frequencies of any pulse waveform.

\section*{Reduced pulse width}

The foregoing examples illustrate that if the width of the pulses or 'marks' is held constant but the width of the intervening spaces is increased, so lowering the

Fig. 4a. The only difference between a square wave and a unipolar pulse train with unity mark/space ratio is that the latter has a dc component; the former does not. Apart from this, the spectrum of each is identical.

Fig. 2a. Basic digital audio signal chain. The ? block could represent a compact disc, digital audio tape or digital compact cassette storage.

\(2 b\). A sine wave of around 1 kHz as it might appear at the output of the D-to-A converter, before low pass filtering. Shown with the original sine wave.

Fig. 3a. Waveform of the output of the D-to-A converter for a frequency just below the Nyquist frequency - not at first sight very much like the original sine wave.

3b. The left hand end of waveform 3a expanded in time and showing the original sine wave as well.

4b. If the width of the pulses in 4 a is kept the same but the distance between them is increased slightly, then the frequency is slightly lower. The second harmonic will no longer fall on a zero of the \(\sin x\) upon \(x\) function.

\section*{DESIGN BRIEF}
frequency, the positions of the the zeros of the \(\sin x\) upon \(x\) function are unchanged but the spectral lines become more numerous and closer together. In this way, the frequency of the waveform determines the spacing of the spectral lines within the first loop of the \(\sin x\) upon \(x\) function (and elsewhere), the lines being, of course, equally spaced everywhere.
But what happens if the prf (pulse repetition frequency) is fixed while the pulse mark:space ratio is reduced by increasing the space at the expense of the mark? Because the prf is fixed, the position of the lines on the \(x\) or \(\Omega\) axis will remain the same. But as the second (and other even harmonics) must start to appear, the first zero crossing of the \(\sin x\) upon \(x\) function must move to the right - and further and

Fig. 5a. Circuit used to produce a pulse train with an accurate \(\mathbf{2 5 : 7 5 \%}\) mark:space ratio. The fourth section of the Nand gate is used to provide a delay to match that through the second flip-flop. Before adding it, a narrow sneak pulse or glitch occurred at the output when the first flip-flop output went positive, triggering the second flip-flop's output to change from 1 to 0 . This glitch was due to the propagation delay through the second flip-flop before its output fell to the 0 level, resulting in a couple of ns during which the Nand gate inputs at pins 12 and 13 were both positive. To get the ringing down to the level shown, considerable care in connecting the probe was necessary, discarding its usual earth lead in favour of a short thick wire strap to circuit ground. Similar precautions were taken in connecting the signal to the spectrum analyser.

5b. Waveforms associated with 5a. (left) 4 MHz cmos input clock (lower trace) and \(1 \mathrm{MHz} 25 \%\) duty cycle pulses (upper trace) both at \(2 \mathrm{~V} / \mathrm{div}, 250 \mathrm{~ns} / \mathrm{div}\). (right) Leading edge of (left) at \(1 \mathrm{~ns} / \mathrm{div}\), showing pulse rise time to be less than 2 ns .

further to the right as the mark:space ratio becomes smaller. As the pulse narrows down to infinitesimal width - and its amplitude is greatly increased if it is still to convey a finite amount of signal power - the first zero-crossing moves out towards infinite frequency. The spectrum of such a 'delta function' consists of a component at the fundamental frequency plus all its harmonics, all in phase and all of equal amplitude.
The effect can be demonstrated, approximately, by differentiating a square wave and then picking out just the positive-going edges with a fast diode (Fig. 6a).
The 10 MHz square wave was obtained from the same generator as used for the 4 MHz clock in the above circuit, but this time using its much faster SN7412850 2 line driver output. Time-constant \(C R\) of the differentiator is 4.7 ns or nearly \(5 \%\) of the squarewave's period. So the resultant pulses won't be exceedingly narrow - just 4.7 ns wide at \(37 \%\) of full amplitude giving a near-ideal square-wave drive - and will be a different shape to that so far considered. Nevertheless, the resultant spectrum (Fig. 6b) is clearly going in the right direction.
Alternate harmonics (the even ones) are slightly smaller than odd harmonics because of incomplete suppression of the negative-going spikes by the diode. If the diode were shorted, feeding both positive and negative spikes to the spectrum analyser, even harmonics would disappear completely. Last month (Fig. 5, December) we showed that spikes of both polarities involved no even harmonics.
A train of narrow pulses, ie a comb of near-equal amplitude sine waves like this, has numerous uses the lo (local oscillator) drive in a superhet receiver, for instance. The lo is arranged to run at a very much lower frequency than the band of interest, feeding narrow spikes to the mixer. Any signal within the band width defined by the receiver's front-end band pass filter is likely to be near enough to one of the comb of 'local oscillator frequencies' to be received. This permits a sensitive narrow-band (and hence lownoise) receiver to cover the whole band at once without the delay taken with a single swept lo approach - handy if you are sweeping a room for radio bugs.

\section*{Sine wave continuum}

Now let us look at the case where not only does the pulse-width tend to zero (pushing the frequency of the first zero of the \(\sin x\) upon \(x\) function out towards infinity), but its frequency tends to zero also. The lower the frequency of the narrow 'lo' pulses, the closer together are the spectral lines. Ultimately the spectrum becomes an infinite number of sine wave components all of the same amplitude, so closely packed together they represent a continuum.
In Fourier analysis, sine wave components are assumed to exist from time equals minus infinity until plus infinity. That is fine as long as the square wave (or whatever) being represented also exists permanently. But it can lead to some interesting, though idle, speculation when the prf falls to zero. In this case the components represent an isolated pulse occurring at time \(t=0\). The myriad of frequency components of negligible amplitude can be pictured buzzing away, so phased that their sum is zero at every instant, except when the magic moment \(t=0\) arrives. At that point they are all uniquely in phase, producing just the one isolated, infinitely-narrow, never-to-be-repeated spike.

\section*{No pulse paradox}

Suppose a programmable pulse generator has been set up to give a single narrow delayed pulse so that, say, \(t=0\) is set for 3.00 pm next Tuesday afternoon. What would happen to all those components if, just before that time, there was a power cut so that unexpectedly the pulse did not after all occur? There is really no paradox here. The existence of harmonic components of a single isolated pulse prior to that pulse is only a mathematical convenience - such precursors are 'noncausal'. If all those components could suddenly be 'turned on', each at the same amplitude and the correct phase (all at zero, positive-going), they would add up to give that single isolated pulse. They would also never all simultaneously come in phase again to produce another pulse. So, they might as well be all turned off again. As 'post-cursors' they are also ineffective or non-causal.

\section*{Key experiment}

But that doesn't mean their combined effect does not linger on, as can be proved with a simple experiment.
Many homes contain an audio spectrum analyser, of the filter-bank variety, with considerably better frequency resolution than the usual third-octave filters.
Hold down the loud pedal with a couple of bricks, and take off the front (or raise the lid, if you run to a grand piano) and the experiment can begin. Wait for complete quietness (let \(t=0\) be the middle of the night if necessary) and clap loudly, once.
All the piano strings will be heard to sound, each

responding to its particular frequency component of the near-delta-function. The sound soon dies away, since the strings exhibit a finite \(Q\). If they were not losing energy in the form of sound waves we would not be able to hear them. But if the \(Q\) of the individual filter bank channels were near infinite, the post-cursors would indeed continue, almost, for ever.

Fig. 6a). Producing some narrow pulses at a prf of 10 MHz 6b). The spectrum of 6a approximates a sea of equal amplitude 10 MHz -spaced spectral lines stretching out towards infinite frequency. Centre frequency \(100 \mathrm{MHz}, 20 \mathrm{MHz} / \mathrm{div}\) horizontal, \(10 \mathrm{~dB} / \mathrm{div}\) vertical, if band width 100 kHz , video filter max.

\title{
Low Cost Analog Simulation
}

\section*{ICAP/4Lite - Schematic Entry, SPICE and Waveform Display for \(£ 450\)}

ICAP/4Lite, features schematic entry, powerful analog and mixed signal simulation, and extensive device libraries, all integrated in one easy to use environment. With ICAP/4Lite you can simulate all types of designs including Power, ASIC, RF, Mixed Mode, Control Systems, and Mixed Technologies.
Forget those other low cost and not quite SPICE systems. They cannot compare to ICAP/4Lite...

- SPICE 3F based Simulator - AC, DC, Transient, Temperature, Operating Point
- UNLIMITED CIRCUIT SIZE
- Integrated Schematic Entry
- High Performance 32-bit Simulator
- Real time waveform display
- Over 500 Device Models Included
- Inexpensive upgrade path
- Windows and Windows NT
- Works w/other schematic entry programs - Affordable Prices - £450

Call or write for free evaluation SW:
Technology Sources Ltd
Falmouth Avenue
NEWMARKET, Suffolk CB8 OLZ, UK

Ph: 0638-561460 Intl \(+44-638-561460\)
Fax: 0638-561721
Intl + 44-638-561721

\section*{JPG Electronics}

mounting package with data sheet \(\{1.95\)
 Sinclair liyht gun terminated with a jack plug and
PPS
diP gives a siknal when pointed at on PPS clp gives a signal when pointed at soH
fickering light with output wave form chart \({ }^{\ddagger 3.95}\)
DC--DC convereor Reliability model VI2P5 12 v in 5
200 ma out 300 inp input to output Isulation wit 200 ma out 300 v input to output 1
data...... 84.95 ead or pack of 10.

 Polypropulene luf 400 vdc (
pitch \(32 \times 29 \times 17 \mathrm{~mm}\) case BOp
Philijs 129 serices se
10 o \& 2.2 ff 40 v

 each 5p.... \(100+3.5 \mathrm{p}\) 10 uf 37 pac motor start capacitor (dialectron typ
containing no pebs) Colid cartong no pristos) very 15.95 or \(£ 19.50\) for 10 RF circuits-270hm 2W. 68ohm 2W 25 peach
15 peach \(100+\) We have a range of \(0.25 w \quad 0.5 \mathrm{w}\) In and 2 w solid carbon resistors. please send SAE for list 400 W PSU (Intel part \(201095-101\)) wit 400W PSU (1ntel part 201035 -101) with stan
dard mothertoard and 5 disk drive conncector fans and mains indevoutlet comnettors ont bax
and swich on the side (top for tower case dial and switch on the side (top for tower (ase) dims
\(212 \times 49 \times 19\) mm excluding swich \(£ 26.00\) eath
\(£ 138.00\) for 6 MXI80 Difital multimeter 17 ranges 1000 vdc
750 vac 2 Mohm 200 mA transistor Hfe 9 y and
 Dip snitch SPCO 12 P Disk drive boxes for 5.25 dish drive with roon, for
power supply, light grey plattic. \(67 \times 268 \times 217 \mathrm{~mm}\) ……...................... 87.95 or \(£ 49.50\) for 10
 nals, will also
k 7.50
per
and

\section*{SEETRAX CAE - RANGER-PCB DESIGN}

\section*{No: \(\because: \%\) Nanger 1 £100}
- Schetivatic Capture Finked to PCB
* Parts and wiring list entry
- Ontline (footprint) library editor
* Full design rule chectert
* Back annotation (linked to schematic)
- 1 Power memory and signal autorouter - \(£ 50\)

Alf sjysiem upward compatible. Tradi-in de vievailabte.
\(\therefore:\) :- CalLSemax CAE gor futher Ifformation demo paçks Tel 0705591037

Fax 070559903

Lovedean, Hampohire, PO8 OSG
All tradetharly loctowlodion

\section*{Ranger 2459}

All the featires of Rangerl plus
- Gate \& pinswapping ioniced to shematic)
"Thilok highligitang
*-Aumo uack necking
* Copper flood fill

PPowtrplanes (hear-relief \(\&\) anti-pads) स KPp-up \& retryaurboinué

\section*{Ranger \(3 £ 3500\)}

All the featurna of Ranger2 phus
*UNIX or DOS versions?
* 1 Micron resolution and angles to \(1 / 10 \mathrm{~h}\)-dygred
- Hicrarchical or filit sclumatic
t Unlimited design size
*Any-shaped pad
LSplit power planes
* Optional ontine DRE
* \(100 \%\) ripuq \(\&\) irehy pist \& sthove autorouto

\section*{Outputs to}
* 39 Indd 24 pin do-matrixppinters
* HP Desk/Laser Je, Canor'BJet' Postscripe(
* HP-GL, Houston linmaments.ploters
- Geibor photpolotifes.
- Né Drill Excellon, Sieb \& Meyä
+ AncAD DXF

\title{
NEW PRODUCTS CLASSIFED
}

Please quote "Electronics World + Wireless World" when seeking further information

\section*{Asics}
\(0.6 \mu \mathrm{~m}\) cmos. AMI has a new \(0.6 \mu \mathrm{~m}\) cmos digital asic process, two libraries being announced - AM16G gate array and AM16S standard cell. Each individual pad can be driven independently by 3 V or 5 V and the core can be either. Performance figures for 5 V are 135 ps for a fanout of 2 and 200 ps for a fanout of 2 with 2 mm interconnect; for \(3 \mathrm{~V}, 185 \mathrm{ps}\) and 280 ps, all for a 2 -input Nand. Sabre Advanced Microelectronics Ltd. Tel., 01420 22004; fax, 0142022008.

Dense, fast asics. Toshiba's new \(0.4 \mu \mathrm{~m}\) asics are \(70 \%\) denser than earlier \(0.5 \mu \mathrm{~m}\) cmos devices and offer \(20 \%\) shorter delay times. The TC200 series holds 750,000 usable gates with delay times of 0.19 ns at 3.3 V . TC200G are gate arrays, TC200C cell-based ICs and TC200E embedded arrays; development orders for all types are being taken. Toshiba Electronics (UK) Ltd. Tel., 01276 694600; fax, 01276691583.

\section*{Microprocessors and} controllers
User-detined microprocessors. MiniRISC family processors by LSI Logic enable system-on-a. chip design by producing scalable, user-defined processors. The first three cpu cores in the MiniRISC R4000 family are CW4001/4010/4100 for tow-power embedded use in the \(25-250 \mathrm{mips}\) range. To make an application-specific processor, an engineer selects the core on performance/price and then uses the MinisIM architectural
simulator to evaluate other configurations, incorporating or modifying existing processor blocks, creating his own floatingpoint unit, cache, bus interface or memory management. Finally the whole system is integrated to produce the chip. The MiniRISC family has the support of a suite of tools consisting of the simulator, Verilog/VHDL models, a prom monitor, system verification and evaluation board LSI Logic GmbH. Tel., +498945 \(836130 ;\) fax, +498945836138.

\section*{A-to-d and d-to-a converters}

Audio a-to-d converter. Analog Devices's AD18775V, 16-bit analogue-to-digital converter has a fourth-order modulator, three-stage decimator, voltage reference and lock divider. It directly interfaces with microprocessors and dsps, having two serial output ports with eight userdefined modes for master or slave operation. Dynamic range in the \(20 \mathrm{~Hz}-20 \mathrm{kHz}\) input bandwidth is 92 dB and \(\mathrm{s}: \mathrm{n}\) ratio is 88 dB . Analog Devices Ltd. Tel, 01932 253320; fax, 01932 247401.

\section*{Discrete active devices}

GaAs fets. Improved versions of Mitsubishi's MGF0900B series L and S band power GaAs fets, the MGF0906B/7B give Class A operation at output powers of \(37 / 40 \mathrm{dBm}\) at 2.3 GHz . Galn at 2.3 GHz is \(11 / 10 \mathrm{~dB}\). Mitsubishi Electric UK Ltd. Tel., 01707 276100 ; fax, 01707278692.

\section*{Digital signal \\ processors}

52Msample/s down-converter. Harris has the HSP50016 digital down-converter with a 52Msample/s maximum input sample rate, which will extract a narrow baseband signal from a wide-band IF. It has a synthesiser, a mixer and two low-pass filters, tuning centre frequencies to a resolution of less than 0.009 Hz to mix with a LO signal of over 102dB spurious-tree dynamic range Micromark Electronics Ltd. Tel., 0162876176 ; fax, 01628783799.

\section*{Memory chips}

32-bit cmos srams. Organised as 128 K by 32 , EDI's EDI8L32128 4Mb cmos sram accesses in 17 ns and is contained in a Jedec 68-pin PLCC, which allows expansion to 512 K by 32 with no change to the pcb. Four chipenable lines control one byte to allow selection of 256 K by 16 or 512 K by 8 organisatlon. EDI (UK). Tel., 01276 472637; fax, 01276473748.

\section*{Mixed-signal ICs}

Analogue switches. Siliconix has a new family of general-purpose quad analogue switches using a highvoltage silicon-gate cmos process, which affords an on resistance of \(45 \Omega\), leakage of 20 pA , ton of 120 ns and a power consumption of 0.7 nW . The six-member range consists of DG201/202B, DG308/309B and DG211/212B, all of which show a

smaller signal loss, greater accuracy, better sample rate and fewer transients than the earlier serles. Siliconix/Temic Marketing. Tel., 01344 485757: fax, 01344427371.

Remote control. Goldstar GM3043/4 remote-control transmitter ICs contain everything needed to interface a keypad to a Tx diode in a 20 -pin SOP working on 2-3.3V. The 3043 is used for up to 32 function keys and has an led driver, while the 3044 takes 32 keys and three dual-action keys, both handling up to 256 custom codes selected by an external diode. Since both operate with 16 -bit ppm codes, the diode is not essential. Also available are the GM3274/6 preamplifiers to amplify the incoming photo-diode signal and produce ttl/cmos output; the 3276 has a trap to eliminate the effects of high-frequency fluorescent lights. Flint Distribution. Tel., 01530510333 ; fax, 01530 510275.

\section*{Optical devices}

Linear optocoupler. C P Clare's LOC110 opto-coupler uses two phototransistors, one of which provides feedback to compensate for the infra-red led's time and temperature characteristics, so that the other transistor gives an output proportional to the led drive current. Bandwidth is over 200 kHz . C P Clare International nv. Tel., +32 12/39 04 \(00 ;\) fax, +32 12/23 5754 .

Light plpes. Optopipes by Dialight are light pipes, attached to a circuit board to convey the light output of a surface-mounted led to the required viewing location. Variations include 3 mm and 5 mm round pipes, square

Bright led panel lamps. Dialight's T1 3/4 and T3 \(1 / 4\) led panel lamps are provided with colour caps matched to the wavelength of the led light to give higher brightness than is usual and form a long-life atternative to filament bulbs. They come in red, ultra-red, green and yellow, fitted with midget flange, wedge, bl-pin and bayonet bases Dialight. Tel., 01638 665161; fax, 01638660718.

Higher-power lasers. NDL7401P laser diodes by NEC give an output of 3.5 mW , against the 1 mW of the company's earlier types, although power consumption is the same, as are the other analogue characteristics. Spectral width is 1.3 nm , so that fewer repeaters are needed over long distances. No cooling is requlred. NEC
Electronics (UK) Ltd. Tel., 01908 691133; fax, 01908670290

types and one to fit over an RJ45 jack for lan use. Dialight. Tel., 01638 665161 ; fax, 01638660718.

\section*{Oscillators}

Skewless clock generator. A very intelligent chip, the Micro Linear ML6510 Super PACMan automatically removes clock skew without any extra feedback wires. Eight independent outputs determine the length of the track they drive on the pcb by measuring reflection time from the end of the track, and adjust the timing of the output. Timing adjustment is an analogue function, so that subnanosecond variation, including that introduced by manufacturing tolerances, is manageable. Ambar Components Ltd. Tel., 01844 261144; fax, 01844261789.

\section*{Programmable logic arrays}

26,000-gate fpga. AT\&T's ATT2Cxx ORCA field-programmable gate arrays, based on a \(0.5 \mu \mathrm{~m}\) three-level metal cmos process, run at clock speeds up to 150 MHz , the 2 C 26 having 26,000 gates. Pin-pin and clock-out delays are less than 11 ns and, using PREP benchmarks, 2 C 26 delivers an average capacity of 104 instances and a speed of 50 MHz . The devices are compatible with the original ORCA types. 2 C26 offers 384 i/os, \(36,864 \mathrm{~b}\) of user ram and 2304 flip-flops in the core logic cells. AT\&T Microelectronics. Tel., 01734 324299; fax, 01734328148.

\section*{Power semiconductors}

600 V triac. Isocom's IS 6000 series of optically coupled triacs features a 600 V withstand voltage to enable control of rms voltages up to 240 V with a safety factor. Triggering in the range is \(3-30 \mathrm{~mA}\) and forward current 60 mA dc or 100 mA rms, with a peak of 1.5 A . Total power dissipation is 350 mW . Isocom Components Ltd Tel., 01429 863609; fax, 01429 863581.

\section*{PASSIVE}

\section*{Passive components}

Electrolytics. For general-purpose and high-cv use, the Nichicon SA and SR electrolytic capacitors measure 7 mm long and \(4-8 \mathrm{~mm}\) in diameler. Values cover the \(0.1-220 \mu \mathrm{~F}\) range at \(+20 \%\) tolerance and at voltages from 6.3 V to 50 V . Permissible ripple is 240 mA or 130 mA rms , depending on value and voltage. Nichicon (Europe) Ltd. Tel., 01276 685393; fax, 01276 686531.

Solid capacitors. Sanyo's OS-CON range of solid capacitors use an organic semiconductor electrolyte, which enables the capacitors to replace aluminium electrolytics 20 times their value at frequencies over 1 MHz . Frequency range is 10 kHz 10 MHz , and there is negligible impedance change within the operating temperature range of \(-55^{\circ} \mathrm{C}\) to \(105^{\circ} \mathrm{C}\). ESR is around a tenth of that of tantalum types and the units withstand reverse voltage of \(20 \%\) of rated voltage. Jayex Components Ltd. Tel., 01734810799 ; fax, 01734 810844.

Dual capacitors. Due to a reported resurgence of valve amplifiers, LCR has discerned a need for powersupply filter capacitors in the form of two electrolytics in the same can.
Those now available are rated at 450 V dc and 500 V dc in dual values of \(8,16,32\) and \(16+32 \mu \mathrm{~F}\) in 450 V types and \(50 \mu \mathrm{~F}\) in the 500 V version. LCR offers a short-form catalogue. LCR Components. Tel., 01495 723131; fax, 01495722321.

\section*{Connectors and cabling}

IEC PCB mains inlets. Multifit boardmounted mains inlets by Schurter are in UL94 V-0 thermoplastic and take both 7 mm and 9.05 mm pin spacings. They can be snapped into place with no further fixing required, or will take self-tapping screws for added security. The inlets have a full range of approvals and protective covers

\section*{Hardware}

Cooling system. Meech Exair 3200 compressed-air vortex tubes provide cooling rates to dies, solders and adhesives and in electrical enclosures of up to \(10,200 \mathrm{Btu} / \mathrm{h}\). Cooling is achieved by heat exchange between the \(80 \mathrm{lb} / \mathrm{in}^{2}\) compressed air spinning down the tube at up to \(10^{6}\) rev/min and air returning at slow speed through the high-speed alrstream. No moving parts are invoived. Meech Exair Ltd. Tel., 01993 706700; fax, 01993776977.
are available. Radiatron Components Ltd. Tel., 01784 439393; fax, 01784 477333.

Waterproof connectors. Miniature connectors in Tajimi's RO4 series are in the screw-latch, circular form and are waterproof to a depth of 20 m . They are available in a variety of plugs, jack sockets and buikhead receptacles in diameters from 12 mm to 20 mm with up to 12 gold-plated, copper-alloy contacts. Quiller Switches Ltd. Tel., 01202 417744; fax, 01202421255

PCB interconnectors. Connectors and headers on a 2 mm pitch and 4 mm height off-board by Harwin are deslgned for space saving, being around \(35 \%\) shorter than the 2.54 mm types. The series includes single and dual row types from 2 to 16 ways, with crimp terminals, a tool being available. Terminals are in tin-plated phosphor bronze, rated at 650 V rms and 2 A at \(50^{\circ} \mathrm{C}\). Contact resistance is \(30 \mathrm{~m} \Omega\) and minimum insulation resistance \(100 \mathrm{M} \Omega\). RS Components Ltd. Tel., 01536 201234; fax, 01536 405678.

Side-entry mains plug. Designed for side entry, the Bulgin PX0686/SE mains plug is rewireable and has a rigid body shell in UL94V-O flammability-rated nylon incorporating a screw-down cable clamp and strainrelief sleeve/grommet; connection is to screw terminals. It is rated at 10A and complies with IEC-320-2-2; approvals are pending for UL, CSA, BEAB, SEV and SEMKO. Gothic Crellon Ltd. Tel., 01734 788878; fax, 01734776095.

\section*{Displays}

Graphic LCD..Resolution of 240 by 128 and fluorescent back-lighting are features of Datavision's DGF-24128 graphic Icd module. A built-in T6963C control circuit, a rom character generator and 8 K ram simplify interfacing. Viewing area is 132 mm by 76 mm . EAO-Highland Electronics Ltd. Tel., 01444 236000; fax, 01444 236641.

1/4VGA LCD. Hitachi's new colour Icd module uses stn techniques to allow makers of small instruments the cholce of a colour display. Resolution Is 320 by 240 , or the equivalent of \(1 / 4\) VGA, and the modules provide eight or more colours, with a backlight. Dimensions are 160 -by-120-by8.5 mm and mounting holes are compatible with the existing LM69xx monochrome displays. Hitachl Europe Ltd. Tel., 01628 585000; fax, 01628 585200.

AC plasma display. With a typical brightness of \(180 \mathrm{~cd} / \mathrm{m}^{2}\) and a \(20: 1\) contrast ratio, the Jayex Components 10in ac gas-discharge plasma display provides a 640 by 400 matrix on a 0.33 mm pitch. Viewing angle is \(160^{\circ}\) and service life over \(50,000 \mathrm{~h}\). It is designed for use in touch-sensitive screen overlay systems. Jayex Components Ltd. Tel., 01734 810799; fax, 01734810844.

\section*{Filters}

Very small EMI filters
Designed for heavily
populated pcbs, TDK's ACF series of very thin surfacemounted emi chip filters measure 3.2 by 1.8 by 2.5 mm (ACF321825) and 4.5 by 1.8 by 3.2 mm (ACF451832). Each is a T-filter with microbead inductors and a multilayer chip capacitor, the external structure being of ferrite. Frequency ranges are 17 650 MHz and \(12-600 \mathrm{MHz}\), insulation resistance 1 CQ minimum and dc resistance 0.158 maximum. TDK UK Ltd. Tel., 01737 772323; fax, 01737 773810.

\section*{Instrumentation}

Accelerometer calibration. An Automated Accelerometer Calibration System from Endevco provides pneumatic shock exciters from \(\mathbf{1 0 g}\) to \(100,000 \mathrm{~g}\) with a range of modules, vibration from 1 Hz to 50 kHz , highspeed data acquisition and an automatic database. The instrument is pc -compatible for analysis. Consisting of controller, shock and vibration modules, the system controls up to four excitation sources. Features include auto display of results, manual or computercontrolled modes and frequencydomain analysis. Endevco UK Ltd. Tel., 01763 261311; fax, 01763 261120.

Indicators/controllers. Indicators from Control Transducers also act as controllers, units in each of the three ranges containing all electronics relevant to the type of transducer in use: pressure, force and weight and displacement. There is a hardware verslon at low cost and a micro-based type to work as a complete control unit. Features include opencollector/relay output, min/max detection, dual scale, linearisation and autozero. Control Transducers. Tel., 01234 217704; fax, 01234 217083.

Power meter. In one 144 mm by 144 mm panel mounting, the Seltek UPM3001 power meter measures \(V\), A, power factor, kVA, kVArh, Hz, kWh, max and min values, combining these with harmonic analysis up to the 25th for voltage and current. Current-transformer and voltage inputs are provided. Features include a menu presentation on the Icd, and a memory for half-hourly storage of energy profiles and harmonic samples for downloading to a pc. Seltek Instruments Lid. Tel., 01920 871094; fax, 01920871853.

\section*{Literature}

Rack slides. Widney has a new product selector describing a comprehensive range of cabinet and
rack telescopic slides, which take loads of up to 3000 kg . Widney Enclosures Ltd. Tel., 0121327 5500; fax, 01213282466.

\section*{Printers and controllers}

Thermal line printers. Three models of FTP600 24V thermal line printer from Jayex produce high-density, high-resolution output at 480, 640 and 832 dots/line in \(56 \mathrm{~mm}, 80 \mathrm{~mm}\) and 104 mm printing width and are suitable for printing bar codes. The units are available as mechanisms only, mechanisms with interface board or as a set with microcontroller unit and gate array for complete driver control. Jayex Components Ltd. Tel., 01734 810799; fax, 01734810844

\section*{Production equipment}

Solder-paste printer. For accuracy to within 0.05 mm , Panasonic's Panasert SPP-G1 digitally controlled solder-paste printing machine has a built-in visual recognition system for precision and to allow rapid screen exchange. Both board and screen pattern are rotatable through \(45^{\circ}\) and \(90^{\circ}\) to reduce printing variation and continuous high-quality print is achieved by automatically cleaning the underside of the screen. A board positioner automatically adjusts for different board thicknesses. Panasonic Industrial (Europe) Ltd.

Drop-out simulator. Schafiner EMC offers the NSG1003 simulator, which will duplicate all the disturbances that are liable to occur in a mains supply, carrying out all the tests in EN61000-4-11, IEC-4-11 and others. If provides voltage drops down to \(200 \mu \mathrm{~s}\), drops cycles or half cycles, varies the voltage and simulates over and under voltage. The instrument can be linked via RS-232 to a pc controlter running WIN1003, the Windows-based instrument control package. Schaffner EMC Lid. Tel., 01734 770070; tax, 01734 792969.

Fastest dsos. Far exceeding other digital storage oscilloscopes in its capture rate, Tektronix' TDS700A TruCapture range of instruments handles 400,000 acquisltions per second - better than the current fastest analogue oscilloscopes - using the InstaVu Acquisition technique. Features included in these instruments are far too numerous to mention here, but there is a seven-inch colour Icd with a 0.01 in dot size, a graphical user interface, data storage on a 3.5 in floppy and hard copy, waveform maths on board and everything to give an unprecedented level of waveform measurement, data handling and ease of operation. TDS784A has a 1 GHz bandwidth and 4Gsample/s and TDS744A 500 MHz and 2Gsample/s. Tektronix UK Ltd. Tel., 01628 486000; fax, 01628474799.

Tel., 01344853277 ; fax, 01344 853803.

Enamel-wire stripper. Series 4's EC2 Enamel Wire Stripper takes the insulation of enamelled copper wire in gauges from 29awg to 8awg with no damage to the wire. A rotary steel or carbide insert is adjustable to match the wire diameter and is locked in position by a chuck. Special inserts allow stripping close to a coil bobbin or other components. Series 4 Lid. Tel., 01703866377 ; fax, 01703 866323

Hot-melt masking. ITW Dynatec's 022SP hot-melt masking system accurately applies a quick-setting Seal and Peel mask material that cures in minutes and is simply peeled off after use. The system incorporates a hot-melt Melt-on-Demand tank process which eliminates the waste inherent in the use of cold fluid. The material can be used in a variety of thicknesses on conformal coatings including paralene, silicone, urethane, acrylic and epoxy. Bayotech Ltd. Tel., 01933411125 ; fax, 01933411126.

EMI/RF gaskets. Shieldseal IGS is a James Walker product that forms an emi/f/environmental seal directly onto a component such as an enclosure or onto a backing sheet for transfer to components. A pressurised dispensing head moves under computer control in \(X, Y\) and \(Z\) axes to follow complicated paths, forming seals in Shieldseal room-temperaturevulcanising, two-part elastomer and filled with silver-plated ceramic microspheres or carbon graphite. Gasket thickness can be varied throughout the sequence and beads down to 0.4 mm are possible on materials including metal, chromate or plastics with painted, plated or vacuum-deposited metallic finish. James Walker \& Co, Ltd. Tel., 01483 757575; fax, 01483755711.

\section*{Power supplies}

Power switch. Siliconix' Si9718CY reverse blocking switch is meant for use in battery-disconnection application In dual-battery notebook computers, replacing two mosfets and their drive circuits. It allows the computer to switch from one battery pack to the other before cells become completely discharged. Micromark Electronics Ltd. Tel., 01628 76176; fax, 01628783799.

Surface-mount dc-dc converter. SM series surface-mounted, high-density converters by Abbott Electronics provide up to 280 W at power densities of up to \(50 \mathrm{~W} /\) cubic inch over the \(-55^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\) range. Input voltages from 18 V to 36 V and 150 V to 400 V are acceptable for the 28 V and 270 V versions, providing outputs of 328 V DC at currents of \(40-10 \mathrm{~A}\). Abbott Electronics Ltd. Tel., 01233 623404; fax, 01233641777

Internal ups. Network Connectors has a range of Mini UPSs designed to fit a 5.25 in bay in a pc. After a fault on
the supply line, the device sounds an alarm, whereupon the ups keeps the pc running for around slx minutes to allow an orderly shutdown. Both 300 VA and 400 VA versions are TUVapproved, transferring at 4-8ms, and incorporate surge suppressors, line filters, short and overheat protection and provide a 10 h battery charger. The units operate with Autoguard dos data protection or Novell data protection software. Network Connectors Ltd. Tel., 01275 848421; fax, 01275844234

\section*{Radio communications products}

LNA/mixer. The RF2418 uhf receiver front-end ic from Anglia is a lownoise, \(700 \mathrm{MHz}-1 \mathrm{GHz}\) amplifier/mixer for uhf digital and analogue receivers and digital and spread-spectrum communications, the only extras needed being local oscillator and filtering. It contains the Ina, a second If amplifier, dual-gate GaAs fet mixer and IF output buffer driving \(50 \Omega\). Anglia Microwaves Ltd. Tel., 01277 630000 ; tax, 01277631111

Input-voltage switches STR83145 and STR84145 from Allegro are latched, universal input-voltage switches which sense the applied ac line voltage, switching the rectifier and capacitors from a voltagedoubler configuration for inputs under 141 V and a full bridge for inputs over 149 V . The devices contain timing, control and drive circuitry and a high-current triac. User errors when misconnecting jumpers or switching to the incorrect voltage range are eliminated, and the switched-mode power stage need only cope with a smaller range of inputs. During voltage variations, a latch holds the full-bridge mode to avoid the doubler taking over. Switch-over voltage is set during manufacture and an adjustable delay ensures start-up in the full-bridge mode. The two devices offer on-state currents of 10 A (83145) and 12A. Allegro MicroSystems Inc. Tel., 01932 253355; fax, 01932 246622.

NEW PRODUCTS CLASSIFIED
Please quote "Electronics World + Wireless World" when seeking further information

Quadrature modulator. Anglia offers the RF2422 low-cost quadrature modulator ic, which provides universal direct modulation for am, fm, pm or compound carriers in the 0.9 GHz 2.5 GHz range. It contains a \(90^{\circ}\) carrier phase-shift network, carrier limiting amplifiers, two matched doubly balanced mixers, summing amplifiers and an output amplifier driving \(50 \Omega\). Supply is a single 5 V rail Anglia Microwaves Ltd. Tel., 01277 630000 ; fax, 01277631111

\section*{Switches and relays}

Double-tier switches. Arranged in a double tier, JTP2230 switches by Jeil Products have switch buttons on 12.5 mm centres with 3.5 mm diameters, the whole standing 22.6 mm above the pcb and measuring 8.4 mm wide. At 12 V , 50 mA , the switches have a life of 100,000 operations. Operating force can be 100,160 or 260 gf . Seven models are available with different stem lengths. Pedoka Ltd. Tel., 01493 440047; fax, 01493440048.

Versatile relays. Schrack RT relays are only 15.7 mm in height, but offer wide versatility and high capacity. Coils may be monostable or bistable in ac or dc working, consuming 400 mW , and have either one or two cadmium-free changeover contacts rated at 16A. The relays are immersion-proof to IEC 68/2.17, are isolated to \(5 \mathrm{kV} / 8 \mathrm{~mm}\) and meet VDE protection category 2 . Pinning is standard and the units are mounted on the pcb or in DIN rail sockets, designed for the RT series. Schrack Ltd. Tel., 01868 1211; fax, 01868 2221.

\section*{Transducers and sensors}

Zero hold-power solenoid. The PED Series 66 solenoid by BLP Components uses magnetic latching to provide continuous hold without power. It is pulse-operated and coils come in \(5 \mathrm{~V}, 6 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}\) and 48 V types for each four power ratings from 3 W to 20 W . Magnet holding force is typically 0.48 Kgf . BLP Components Ltd. Tel., 01638 665161; fax, 01638 660718.

Heat imaging. Vero's new thermochromic boards allow engineers a 'first-pass' view of the temperature distribution on a populated plug-in board. In Eurocard, Hard Metric (Futurebus+) and a universal version, the boards indicate by a colour change temperature differentials down to \(1^{\circ} \mathrm{C}\); each board has a colour chart for quick reference. A transparent front panel preserves the normal operating airflow while allowing inspection. Vero Electronics Ltd. Tel., 01489 780078; fax, 01489 780978.

Temperature sensors. IRA-E401 is a range of infra-red pyroelectric sensor by Murata, provided with optical filters for flame detection and remote sensing. IRA-E500/600 series sensors detect infra-red emissions from the human body and have filters for various applications. IMD devices have in-built signal processing, the \(B 101\) version having analogue and digital output. Murata Electronics (UK) Ltd. Tel., \(01252811666 ;\) fax, 01252 811777.

Displacement transducers. Internal electronics in Monitran's new range of transducers provide a 4-20mA output for use in control loops. Measuring ranges available are \(\pm 2.5 \mathrm{~mm}\) to \(\pm 600 \mathrm{~mm}\), in various styles of device There is also a pressurised type designed to withstand a pressure gradient of \(6000 \mathrm{lb} / \mathrm{in}^{2}\) across its body. Monitran Ltd. Tel., 01494 816569; fax, 01494812256.

Linear potentiometer. From Data Instruments, the Short Longfellow position transducer is available in strokes from 30 mm to 156 mm in five ranges, with independent linearity better than \(\pm 0.1 \%\). Resistance is \(1.5 \mathrm{k} \Omega\) /in travel and the unit is rated at 0.75 W /in electrical travel. Its 1 in square anodised aluminium housing has a MystR plastic resistive element which gives low noise and a life of \(10^{9}\) operations. Control Transducers. Tel., 01234 217704; fax, 01234217083

DC motors/gearboxes. Bodine has expanded its range of small \(24 \mathrm{~V} d \mathrm{c}\) motors and gearboxes. Those now available include permanent-magnet motors and brushless dc types with \(15-250 \mathrm{~W}\) power ratings. There is also

Mini modem. Datastripe's OEModem is a BABT-approved miniature internal modem, measuring 135 by 43 by 11 mm and contained in an insulated case. It may be connected by flying lead or plugged into a mother board in the host pc. Two versions exist: DS022 supports V21, V22, V22bis; and DS023 additionally supports V23 (1200/75 full duplex and 1200/1200 half duplex), V21 fax, V27ter and V29 fax. Datastripe Ltd. Tel., 01276 682921; fax, 01276683016.

a range of four parallel-shaft and three right-angle gearboxes in a wide range of ratios. All are totally enclosed, providing a typical performance of \(2500 \mathrm{rev} / \mathrm{min}\) at a torque of 40 Nm . At 12 V , the motors give full torque at half speed. Bodine Electric Company. Tel., 01252 811800; fax, 01252811801

Ministepper drive. Two ministep motor drives, the Digiplan \(C D 60 \mathrm{M} / 80 \mathrm{M}\), are under 50 mm wide and are said to provide \(50 \%\) more power than previous narrow units. Units are in 10HP modules, so that eight can be contained in one 3U 19in rack. The drives step at 400-4000 steps/rev. at high accuracy; motor current at up to 6A7.8A is programmable down to \(60 \%\) peak. Both drive and motor are protected against heat and shorts. Parker Hannifin plc, Digiplan Division. Tel., 01202 699000; fax, 01202600820.

\section*{Vision systems}

Video mixer. Replacing six ttl adders and two 12-bit multipliers, Harris's HSP48212 12-bit digital video mixer mixes two sources, providing frame addition, fade in/out, video switching and high-speed multiplying. Its features include 12 -bit pixel data, 12bit mix factor and rounding between 8 and 13 bits. A programmable pipeline delay of up to seven click cycles helps to control misaligned data. Micromark Electronics Ltd. Tel., 01628 76176; fax, 01628783799.

\section*{COMPUTER}

\section*{Computer systems}

Single-chip PX/XT. The LH72501 from Sharp provides most of the functions of a PC/XT on one chip, using the NEC V2OHL processor. Included is the serial/parallel i/o, a three-channel counter/timer, an interrupt controlier, dma controller, clock, bus controller and power management for 3 V or 5 V operation. There are also keyboard, printer and PCMCIA card interfaces and memory controllers for dram, sram and pseudo-sram. At 5 V , the processor runs at 16 MHz . Sharp Electronics

Software development.
Validator is a new function of SDT2.3, a software
development tool by the
Swedish company
TeleLOGIC for designers of embedded microprocessor systems. SDT is based on the ITU/CCITT language SDL and has tools for specification and design, verification, validation and maintenance, plus code generation. Validator
automatically validates the SDL specification, including any C code included. Reflex Technology Ltd. Tel., 01494 465907; fax, 01494465418.
(Europe) GmbH. Tel., +49 40/23 76-0; fax, +49 40/23 76-25 10.

Tough, portable PC. Containing six ISA slots and a 9in colour Icd screen in a 15 in by 16 in by 4 in case, the Fieldworks FW7500 portable pc withstands 100 g shock and vibration to Mil Spec 810C. It uses an IBM 75 MHz Blue Lightning 486 card with an optional co-processor, 4 Mb of ram, expandable to 64 Mb , and a 130 Mb hard disk drive, expandable to 550 Mb . Power supply is suitable for use world-wide, being self-setting, and internal and external battery packs are available. Workstation Source Lid. Tel., 01734759292 ; fax, 01734757522.

\section*{Data acquisition}

PC data. Amplicon's DAP 800/1/2/3 boards, each of which is a complete data acquisition system on a pc card, is a 'very low cost' solution, which means it costs less than \(£ 1000\). Four models, DAP 800/1/2/3 and DAP 801/1, comprise the range: \(100 / 1\) has a 10 MHz cpu , samples at \(75 \mathrm{ksample} / \mathrm{s}\) and has a 256 K ram \(800 / 2,16 \mathrm{MHz}, 105 \mathrm{ksample} / \mathrm{s}\) and \(256 \mathrm{~K} ; 803\) similar to \(800 / 2\), but with 1024 Kram ; and \(801 / 110 \mathrm{MHz}\), 75 ks ample/s and 256 K . All have eight 12-bit analogue inputs, two 12 -bit analogue outputs, 8 -bit digital i/o ports, a programmable-gain amplifier, internal and external clock and hardware and software triggering. Amplicon Liveline Ltd. Tel., 0800525 335 (free); fax, 01273570215.

\section*{Data communications}

Dual uart. From California Micro Devices, the CM16C552 contains two '550A uarts with integrated fifos and serves two serlal i/o ports simultaneously, also having a bidirectional parallel printer port. It is compatible with other '552s and controls transmit, receive, line status and data set interrupts, and includes an internal programmable baud-rate generator, with fax/modem capability. Sabre Advanced Microelectronics Ltd Tel., 01420 22004; fax, 0142022008

Multiple i/o interface. By means of the \(/\) MS PCL-746 \(115 \mathrm{~kb} / \mathrm{s}\) multiinterface, four-port serial comms card, each port is configurable to RS-232, RS-422 or RS-485. The card has four 16C550 uarts with an on-chip fito buffer to reduce the load on the cpu and speed things up, particularly in Windows. All four ports can be set as normal pc serial COM1-COM4 ports or set to share the same interrupt. It is compatible with Arnet four-port cards supporting SCO UNIX/XENIX.
Programming software is included. Integrated Measurement Systems Ltd. Tel., \(01703771143 ;\) fax, 01703 704301.

\section*{Mass storage systems}

PCMCIA flash storage. Clalmed to be the world's smallest removable mass storage system, Sundisk's

CompactFlash uses 32-blt flash techniques and a single-chip ATA controller. It weighs \(0.50 z\) and is around the size of a book of matches, providing full PCMCIA-ATA functions. Capacities of \(2,4,10\) and 15 Mbyte are available - double with Stacker. The unit fits a standard PCMCIA Type II adapter card. Sundisk Corporation. Tel., +1 4085620500 ; fax, +1 408 5620503.
1.8in PCMCIA disk drive. Maxtor offers the latest in the MobileMax series of hard disk drives: the first 1.8 in unit to fit 5 mm Type II PCMCIA slots. Capacities are 85 and 121 Mb and the units operate from 3.3 V with a shock specification of 1000G (nonoperating). Spin-up time is less than 1.5 s and MTBF 300,000h. Ambar Systems Ltd. Tel., 01296435511 ; fax, 01296394183.

\section*{Software}

PictureBook v.2.2. Digithurst announces an enhanced version of the multimedia package, PictureBook, a Windows 3.1-compatible package meant for the creation of electronic books. New features include better object handling for greater flexibility when making publications containing digital video, and the incorporation of text into pages in a scrollable form to allow the use of large virtual pages. PicfureBook will now integrate
information from services such as Internet into electronic publications, rather than simply teletext, as in the earlier version. Taking information from broadcast and network sources enables the package to be used as front-end for electronic newspapers or on-line publications. Version 2.2 can be run with a range of video capture and scanning devices without the use of a MicroEye card for moving image display. Digithurst Ltd. Tel., 01763 242955; fax, 01763246313.

PC letter writer. Apparently, engineers are not the only ones accused of being virtually illiterate. CCA Software has introduced Effective Letters, which is a software package designed to put a veneer of sophistication on letters to grieving bank managers and plaintive customers, since electronics companies are among those whose standard of writing is considered by the Adult Literacy Unit to be the worst. It contains more than 400 letters, in nine categories, on subjects such as how to fire someone, how to avert the wrath of creditors and many others of a more mundane nature. CCA Software. Tel, 0161480 9811; fax, 01614296028.

DSP software development. NEC has a new suite of software development tools by Atair for its \(\mu\) PD7701x family of fixed-point digital
signal processors, which runs on a PC under Windows 3.1. There is Workbench, a 'housekeeping' utility, Debugger for in-circuit emulation and Simulator, which uses a gui for function verification without a need for hardware. NEC Electronics (UK) Ltd. Tel., 01908691133 ; fax, 01908 670290.

Control design/development Integrated Systems's Matrixx family of visual design and development tools for control systems designers will now run under Windows NT on a pc, provlding design, test, graphical simulation and modification aid throughout the whole design cycle and producing code and documentation automatically. The family includes SystemBuild modelling and simulation, Xmath object-oriented maths analysis and visualisation, AutoCode code generator, Documentlt, and RealSim prototyping computers. Integrated Systems Inc. Ltd. Tel., 01707331199 ; fax, 01707391108.

\section*{FREF TO SUBSCRIBERS}

\section*{Electronics World offers you the chance to advertise ABSOLUTEL Y FREE OF CHARGE!}

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only. Trade advertisers should call Malcolm Wells on 081-652 3620
All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.
\begin{tabular}{|l|l|l|l|l|}
\hline & & & & \\
\hline
\end{tabular}

Please send your completed forms to:
Free Classified Offer: Electronics World, L329, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

\section*{Quickroute 3.0}

PCB \& Schematic Design System for Windows 3.1

Announcing a new range of affordable, powerful Windows based PCB and schematic design packages from POWERware.

\section*{DESIGNER 599 *}

PCB and schematic design with all the new 'Easy-Edit' features and an Auto router!

\section*{DESIGNER + £149*}

For larger PCB and schematic designs, adds Gerber and NC-Drill support.

\section*{PRO £199*}

Schematic capture, with integrated rats-nest generation and auto-router. Export net-lists for design checking.

\section*{PRO + £299 *}

Advanced schematic capture for management of larger schematics. Gerber import facility for file exchanging.

For more details, contact POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK.
. Prices exclude VAT, post \& packing
Tel/Fax 0614497101

\section*{from}
£99*

\section*{Powerful, Practical and Sensibly Priced}

The CPU
is Motorola's 16 bit 68302, a highly integrated 68000 processor running at 16 Mhz . This processor has 3 full high speed serial ports operating in UART, HDLCISDLC BISYNC or DDCMP modes. It also has DMA channels. Interrupt controller, 28 parallel I/O lines 216 bit timers with compare and capture, Watchdog timer and low power (standby) modes. (We can supply the MC68302 Data Book.)
The Memory Up to 1 M byte of EPROMs - 1 M byte of FLASH EPROM and 64 k Bytes of static RAM.
The EM68 Expandable to 16 M byte, the EM68 is constructed on a Multilayer PCB with full power and ground planes and has a small \(7.62 \mathrm{~cm}^{2}\) footprint.
Prices range from \(£ 255.50\) (1 off - 1M Byte FLASH) down to \(£ 95.00\) (\(\mathbf{1 0 0}+\) No FLASH) Our Catalogue lists products based on the 64180, 80C31, Dallas 80C320, 80C552, 80 C 188 processors, and a wide range of peripheral modules, A/D, D/A, Serial, Opto Relay, Transistor drive, Stepper drive, Thermocouple etc. with power supplies, backplanes and cases. Request a copy today.
Devantech Ltd
Units 2B-2C, Gilray Road, Vinces Road Industrial Est, Diss, Norfolk IP22 3EU, UK Tel: +44379644285
INDUSTRIAL ELECTRONIC CONTROLS Fax: +44379650482

Other B \& K Equipment available
NEW EQUPMENT

\(\qquad\)

.
Used Equipment - GUARANTEED. Manuals supplled If pessible,
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for lists. Please check avallability before ordering.
CARRIAGE all units £16. VAT to be added to Total of Goods and Carriage.

\section*{STEWART of READING}

110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: (0734) 268041. Fax: (0734) 351696 Callers Welcome 9am-5.30pm Monday to Friday (until 8pm Thursday)

\title{
CLASSIFIED
}

\title{
ADVERTISERS PLEASE NOTE
}

\author{
For all your future
} enquiries on advertising rates, please contact

\section*{Malcolm Wells on:} Tel: 081-652 3620 Fax: 081-652 8956

\section*{ARTICLES FOR SALE}

\section*{DA 1519A AMPLIFIERS}
\(2 \times 11\) watt stereo amplifier chips in 9 pin SIL plastic packages \(1-9 £ 2.00\) each: \(10+£ 1.50\) each: postage and VAT included. Phone for volume discounts:
Tel: 0959577632
Ken Barker: 18 Shipfield,
Tatsfield, Westerham TN16 2AU
TURN YOUR SURPLUS TRANSISTORS, ICS ETC, INTO CASH Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact: COLES-HARDING \& CO, Unit 58 , Queens Road, Wisbech, Cambs. PE13 2PO ESTABLISHED OVER 15 YEARS Buyers of Surpius inventory
01945584188 Fax: 0194547521
Tel: 01945584188 Fax: 01945475216

\section*{VALVES, and CRTs FOR SALE}

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting \& RF Heating. Rare brands such as Mullard \& GEC available. Also MAGNETRONS, KLYSTRONS, CRTs and SOCKETS. Large stocks of Russian \& Sovtek items.
Please ask for our free catalogues of valves or CRTs.

\section*{VALVES, etc. WANTED}

All types considered but especially KT88/PX4/PX25 (\(\mathbf{£ 4 5 \text {), KT66 }}\) (£30), KT77/EL34/EL37 (£10), ECC81/ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. All VALVE-ERA EQUIPMENT such QUAD, LEAK, GARRARD. 301.
If possible, send a written list for a prompt decision.
BILLINGTON EXPORT LTD., IE Gillmans Ind. Estate, Billingshurst, Sussex RH14 9EZ.
Tel: 01403784961 Fax: 01403783519
VISITORS STRICTLY BY APPOINTMENT.
MINIMUM ORDER \(£ 50\) plus VAT

\section*{ARTICLES WANTED}

\section*{WE WANT TO BUY !!}

> IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 081-445-1713/0749 FAX 081-445-5702.

\section*{WANTED}

High-end Test Equipment, only brand names as Hewlett-Packard, Tektronix, Rhode \& Schwarz, Marconi etc. Top prices paid. Please send or fax your offer to: HTB ELEKTRONIK

Alter Apeler Weg 5 ,
27619 Schiffdorf, West Germany TEL: 0104947067044
FAX: 0104947067049

\section*{SERVICES}

\section*{DESIGN SERVICES}

Software Design: High and Low Level. Hardware Design: Analogue, Digital, Hardware
Micro and Embedded.
PCB, Schematic and Production Drawings. Prototyping and Feasibility services.

Archimedes Custom Equipment: Tel 0974282670

\section*{WANTED}

High-end Test, Communication \& Computer Equipment. Top prices paid.

Please send or fax your offer to: Steigerwald 6 mbH
Meusserstrasse 9,80807 Munich South Germany
Tel: 01049893615833
Fax: 01049893615899

\section*{WANTED \\ Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. \\ Prompt service and cash. M \& B RADIO \\ 86 Bishopgate Street, \\ Leeds LS1 4BB \\ Tel: 0532435649 \\ Fax: 0532426881}

\section*{FREE CLASSIFIED}

WANTED: PRE-WAR television. Jac WANTED: PRE-WAR television. Jac
Janssen, Hogeham 117 D , NL-5104JD Janssen, Hogeham 117D, NL-5104JD
DONGEN, Netherlands. Tel: 01031 DONGEN, Netherlands. Tel: 01031
1623 18158, Fax (office): 0103113 624664.

\section*{RF DESIGN CONSULTANCY}
\(\square\) Design and Development
Waterbeach electronics ltd
Technical Advice
34 Providence Way, Waterbeach Cambridge CB5 90
\(\square\) CAD
Tel: 0223862550 Fax: 0223440853

\title{
CLASSIFIED
}

\section*{ARTICLES FOR SALE}

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. ALWAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE COPIES ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME, SEND LARGE "A3" S.A.E. + 50P POSTAGE FOR LISTS OF EQUIPMENT AND MANUALS.
ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS SHIPPING ARRANGED OPEN MONDAY-FRIDAY 9AM-5PM

Cooke International
ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OEB
Tel: (+44) \(0243545111 / 2\)
Fax: \((+44) 0243542457\)
EQUIPMENT \& ACCESSORIES PURCHASED CIRCLE NO. 160 ON REPLY CARD

19" Rack Mounting Switch Mode Power Supply By FARNELL INSTRUMENTS F2667
P.O. [B.T.] 164

MONARCH 250C SYSTEM
990 WATTS MODULAR CONSTRUCTION
+5 volt 48 Amp
+12 volt \(8 \mathrm{Amp}+\) Ringer Module Capable of Ringing
12 Telephone Bell Loads
-12 volt 5 Amp
-50 volt 8 Amp
Dimensions H125 D500 W485mm Weight 13.5KG BRAND NEW IN ORIGINAL PACKING

\section*{PRICE \(£ 199.00\) + VAT}

UK Mainland
Carriage £12 + VAT

\section*{R. Henson Ltd.}

21 LODGE LANE
LONDON N12 8JG
TEL: 081-445 2713/0749
FAX: 081-445 5702

\section*{INDEX TO ADVERTISERS}
\begin{tabular}{|c|c|c|c|}
\hline & PAGE & & PAGE \\
\hline Airlink Sales Co & 44 & M\&B Electrical & 45 \\
\hline BK Electronics & 13 & M\&B Radio (Leeds) & 66 \\
\hline Bull Electrical & 67 & MQP Electronics & 71 \\
\hline Chelmer Valve Company Citadel Products Ltd & \[
\begin{array}{r}
13 \\
\text { IFC }
\end{array}
\] & Number One Systems & 13 \\
\hline Crossware Products & \(1 F\)
44 & OEMA & 39 \\
\hline Dataman & BC & Olson Electronics Ltd & 9 \\
\hline Devantech Ltd & 84 & & \\
\hline Display Electronics Ltd & 7 & Powerware & 84 \\
\hline Field Electric Ltd & 39 & Ralfe Electronics & 88 \\
\hline Halcyon Electronics & 69 & Robinson Marshall (Europe) Ltd & 2 \\
\hline Henry's Audio Electronics & 78 & & \\
\hline ICE Technology Ltd & 31 & Seetrax Ltd & 78
71 \\
\hline IOSIS & 44 & Stag Programmers & IBC \\
\hline John Morrison (Micros) & 39 & Stewart of Reading & 84 \\
\hline Johns Radio & \[
46
\] & & 71 \\
\hline JPG Electronics & 78 & Surrey Electronics & 7 \\
\hline Kestral Electronic Components & 69 & Technology Sources Ltd & 77 \\
\hline Keytronics & 37 & Telnet & 69 \\
\hline Lab Center & 5 & Those Engineers Ltd & 51 \\
\hline Langrex Supplies Ltd & 44 & Tsien Ltd & 36 \\
\hline
\end{tabular}

\title{
RF \& MICROWAVE
}

Permanent and contract opportunities for engineers and technicians in Cellular, Civil, Military, Satellite, Communications, Radio and Microwave Engineering.

Individual specialists or large teams supplied.

Se Erecatimats
Bracknell, Berks, RG12 1AR.
Tel 01344489 489. Fax 01344489505.
Offices in London, Manchester, Southampton, Stevenage, Crawley, Brussels

\section*{CTIVEDEN}

Technical Recruitment

\title{
331 A distortion meter
}

339A distortion meter
3400 A volitmeter \(10 \mathrm{~Hz}-10 \mathrm{MHz}\)

IFR A 7550 1 GHz portable analyser w tracking gen opt IFR A8000 2.6 GH z porlable spectrum analyser．GPIB option HP3580A \(5 \mathrm{~Hz}-50 \mathrm{kHz}\) audю spectrum analyser HP3582A dual－channel 25 kHz analyser HP8568B 1，5GH2 High－perlormance HP182T／8557A．01－350MHz HP141T／8552B／8555A \(10 \mathrm{MHz}-18 \mathrm{GHz}\) system HP 182T／8558B to 18 GHz
HPI82T／8557A 01.350 MHz

MARCONI INSTRUMENTS
2019 AMFM synthesized signal generator \(80 \mathrm{kHz}-1 \mathrm{GHz}\) 2019A as above，improved spec
§4500 £5000 §1500 \(£ 3500\) C10000 10000 \(£ 1000\) \(£ 2000\)
\(£ 2000\) £1000
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{TESTEQUPMENT} \\
\hline ANRITSU ME518A pcm portabie error rate test set & \(£ 2500\) \\
\hline BRUEL \＆KJAER 2511 vibration meler set／1621 filter & £2250 \\
\hline BRUEL \＆KJAER 2307 level recorder & \(£ 1000\) \\
\hline BRUEL \＆KJAER 2308 X－Y recorder & £750 \\
\hline BRUEL \＆KJAER 2397 poriabie level recorder & £1850 \\
\hline BRUEL \＆KJAER 1618 band pass fiter & ¢750 \\
\hline BRUEL \＆KJAER 3513 porable vibration analyser & £3500 \\
\hline AVO RM215L－2 insulation \＆breakdown lester & 6650 \\
\hline DATRON 1055 digitar multhmeter & ¢750 \\
\hline DRANETZ 626 mains disturbance analyseri2 \(\times\) PA． 6001 & ¢750 \\
\hline FARNELL 2081／100 100W RF power melers DC． 500 MHz & £295 \\
\hline FLUKE 1720A TEEE－instrument controller & £500 \\
\hline
\end{tabular}
\(£ 1750\)

\section*{£1950} 3335 A synthesizerflevel generator with option 01 3336 A level generator
3552A transmission test set
3586 A selective level meter
415 E swr meter
4274A mult－requency（ 100 Hz －100kHz）LCR component meter
4275A multi－frequency LCR component meter
432A478A microwave power meter 10 MHz －10GHz
432 AR 486 A uwave power meter \(26.5-40 \mathrm{GHz}\)（waveguide） 5370 B universal lime－interval counter
6253A dual power supply 0－20V 0．3A twc 6825 A bipolar power supplylamp -20 to \(+20 \mathrm{vdc} 0-1 \mathrm{~A}\) 70300 A tracking generator plug－in unit 70907 A external mixer for 70000 －ser spectrum analyse
\(£ 200\)
\(£ 1500\)
£250 \(£ 2500\) £2000 £1000 \(\uparrow 2500\) 2500 \(\cong 35\) \(£ 4000\) £5000
ralfe electronics \(\bullet_{1}\) exctusissielinal 1 Tom FLUKE 1501B INSTRUMENT CALIBRATOR
with options：Wide Band／GPIB and RS232 interfaces．Price including current manufacturers calibration \(£ 6750\)

20220 symithesized signal generator 2438520 MHz universal countertume 2828 A2829 digital simulator／analyse 2955 mobile radio test sel 6059A signal source 12.18 GHz 64606420 power meler 10 MHz － 12.4 GHz 03 uW － 10 mW 8938 audio power meter
OA2805A PCM regenerator test set TF2910／4 non－inear distoction（video）analyser TF2914A TV insertion signal analyse
TF2910 TV interval timer

1950
\(\$ 200\)
§1000

HP8562A 22GHz SYNTHESIZED SPECTRUM ANALYSER \(9 \mathrm{kHz}-22 \mathrm{GHz}, 100 \mathrm{~Hz}\) resolution．Price inc new calibration， \(\mathbf{£ 1 5 0 0 0}\) RACAL V－STORE
16 channel instrumentation recorder with GPIB interface， \(\mathbf{C 8 5 0 0}\)
\begin{tabular}{c|ll}
\(£ 3000\) & KEITHL EY 619 digital electrometer with options \(93+94\) & \(£ 2250\) \\
\hline
\end{tabular}
〔750 RACAL－DANA 9301A RF milvoitmeler \(£ 350\) \(£ 350\) TEKTRONIX TRANSISTOR CURVE TRACERS， 576 and \(577 / D 1\) ，each \(£ 1500\) RACAL 9082 synthesized AM／FM sig＇gen＇ 5.520 MHz RACAL 9300 RMS voltmeler \(-800810+500 \mathrm{db}\)
RACAL V．STORE 16， 16 －chan instrumentation recorder RACAL－DANA 9303 level meter，digital ROBERTS \＆ARMSTRONG to－cable end－cut measure unit TEKTRONIX J16 digital photometer TEKTRONIX \(1503 C / 03 / 04 / 05 / 06\) TDR cable tester
\(£ 1500\)
\(£ 600\) \(£ 325\) \(\begin{array}{r}\text { £ } 50000 \\ \\ \hline\end{array}\) §1000 \(£ 500\) \begin{tabular}{l}
£500 \\
\\
\hline 250
\end{tabular} \(\begin{array}{r}〔 250 \\ \\ \hline 20250\end{array}\)

7035 XX － Y s．ngle pen analogue chart recorder 8011 A pulse generator \(0.1 \mathrm{~Hz}-20 \mathrm{MHz}\)
816 A slotted line \(1.8-18 \mathrm{GHz}\) with carriage 809 C \＆ 447 B 8082 A 250 MHz puise generator
8405 A vector voltmeler，voltage \＆phase to 1000 MHz
8620 C sweep generator，many plug－in unts available \(8656 \mathrm{0} 0.1-990 \mathrm{MHz}\) synthesized signal generator 8671A synthesized signal generator 26.2 GHz

URGENHY REOUIRED－HIGHEST CASH PRICES PAID FOR 8566B．B753NVC，Spectrum nehoort analysers． \(859012 / 3\) portable amalysers Please call us it you have high－end capital squipment being under－utilisel．

PLEASE NOTE：ALLOUR EQUIPMENT IS NOW OPERATION－VERIFICATION TESTED BEFORE DESPATCH BY INDEPENDENT LABORATORY

We would be pleased to handle all grades of calibration or NAMAS cerification by same laboratory at cost price．All items covered by our 90 －day parts and labour guarantee and 7 －day＇Right to Refuse＇（money back）warranty． ALL PRICES SUBJECT TO ADOTTIONAL VAT AND CARRIAGE

\title{
ELECTRONIC UPDATE
}

\section*{Contact Malcolm Wells on 081－652 3620}

Models \(\mathbf{S 2 2 0 0}\) and \(\mathbf{S 2 4 0 0}\)

Gang and Set Programmers tor 24,28 \＆ 32 pin EPROMs．EEPROMLS．
FLASH，Emulators and OTPs up to 1 M bit．

The system 2000 is an ideal programmer for the produc－ tion environment．Fast prog－ ramming results in high throughput and rigorous veri－ fication leads to improved quality control．Single key functions and checks against misoperation facilitates its use by unskilled staff．

\section*{MQP ELECTRONICS LTD． \\ Tel： 0666825146}

Fax： 0666825141
CIRCLE NO． 152 ON REPLYCARD

\section*{A regular advertising feature enabling readers to obtain more information on companies＇products or services．}

\section*{NATIONAL INSTRUMENTS 1995 CATALOGUE}

The 1995 National Instruments catalogue describes more than 900 software and hardware products． Engineers and scientists can use these to dcvelop integrated instru－ mentation systems for test and mea－ surement process monitoring and control，using industry－standard personal computers and worksta－ tions．

NATIONAL INSTRUMENTS FOR FURTHER INFORMATION CALL 01635523545

CIRCLE NO． 153 ON REPLY CARD

\section*{1995 MASTER PRODUCT}

\section*{CATALOGUE NOW OUT！}

Test and instrument control solutions． 48 pages of full description and technical data on our own range of solutions to your PC and PS2 Interfacing problems：IEEE488 （GPIB）＊DIO＊Timer／Counters＊RS232＊ RS422／485＊AD＊D／A＊plus Opto Isolated versions．New Parallel／Serial RS232，Opto Dual RS232，Motion Control Converter and Repeater for 1995 ！ ISO 9001 Quality guarantee
UK design and manufacture \(\downarrow\)
36 month no－quibble warranty \(\checkmark\)
Telephone hotline support \(\downarrow\)
Competitive pricing on the page \(d\) Intel ligent solutions－friendly service \(d\) BRAIN BOXES
Unit 3f Wavertree Boulevard South
Wavertree Technology Park Liverpool L7 9PF
CIRCLE NO． 154 ON REPLY CARD

COMPACT AND LOW
COST EPROM ERASER
－Capacity for up to five \(24 / 28 / 32\) pin DIP devices or four 40－pin DIP devices
－Adjustable timer：0－60 mins
－Anti－static foam lined device drawer
－Power indicator lamp
－Safety interlock on drawer－ prevents accidental exposurc to U－V light
Stag Programmers Limited
Martinfield，Welwyn Garden City，
Hertfordshlre AL7 1 ת，UK
Tel：0707－332148
Fax：0707－371503
CIRCLE NO． 155 ON REPLY CARD of Universal Programmers to 256 pin devices, Gang Programmers, In-circuit Programmers, Logic Compilers, PLD Programmers and UV Erasers

```


[^0]:    Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008 . United States of America: Ray Barnes, Reed Bușiness Publishing Lid, 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080. Tlx 23827.
    USA malling agents: Mercury Airfreight International Ltd Inc 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster, Send address changes to above.
    Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate, Carlisle. Cumbria, CA2 7NR
    Typeset by Wace Publication Imaging 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT

[^1]:    *Distortion in power amplifiers. D Self. August, 1993 to March, 1994.

[^2]:    Barry Gillebrand is managing director of Quantelec.

