HEWLETT-PACKARD £4000 WRITER'S COMPETITION!

WORLD

+ WIRELESS WORLD

DECEMBER 1994 £1.95

SPIGIAL OFFIR Miniature rf link for remote control

AUDIO

Are complements really necessary?

RF DESIGN

Maximising monopole bandwidth

PC ENGINEERING ${ }^{2}{ }^{2}$ C via LPT

THEORY

Harmonic effects

APPLICATIONS

Digital sines and cosines

HISTORY
 Electrolytic rf detection

FROM THE MAKERS OF THE WORLDS BEST SELLING UNIVERSAL PROGRAMMING AND TESTING SYSTEM

Ability to program 3 volt devicas.

* Calibration software to comply with ISO9000.
* Batch software for production programming.
* High quality 42 pin Textool zero insertion force sockets.
* Rugged metal housing and heavy duty screened cable.
* Ground control circuitry using relay switching.
* Protection circuitry to protect against wrong insertion of devices.
* Speed optimised range of programming algorithms.
* Supplied with MICROTEC disassemblers for 28, 8085, 8048, 8051, 6809 \& 68HC11.

NOW ONLY £469

* Programs PIC16 series without adaptor
* Software supplied to write own test vectors for custom ICs and ASICs etc.
* One model covers the widest range of devices, at the lowest cost.
* Over 2000 different devices (including several hundred MPU's) supported.
* Tests and or identifies a wide range of logic devices.
* High speed PC interface card designed for use with all types of PC.
* No need to tie up a slow parallel port.
* More Sunshine programmers sold worldwide than any other of its type.
* UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL.
* Two year free software update.
* Free demo disk with device list available.

The Sunshine Expro-80 Universal Programmer and Tester is the 42 pin version of the immensely popular Expro-60/PC-82. Following that success, the Expro-80 is a PC-based development tool designed to program and test more than 2000 ICs. The culmination of over 8 years production experience has resulted in perfecting this rugged, classically designed programmers' programmer.

Volume production has now enabled us to offer this powerful programmer at a very competitive price for a product of such high quality. The Expro-80 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the Expro-80 for their own use!

The Expro-80 can program E/EPROM, Serial PROM, BPROM, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX and MPU. It comes with a 42 pin DIP/SDIP socket capable of programming devices with 8 to 42 pins. It even supports EPROMs to 16 Mbit , the PIC16 series of MPUs and many many more without the need of an adaptor. Adding special adaptors, the Expro-80 can program devices up to 84 pins in DIP, PLCC, LCC, QFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS 40/45 series, DRAM (even SIMM/SIP modules) and SRAM. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user. The Expro-80 can even check and identify unmarked devices.

The Expro-80's hardware circuits are composed of 42 set pin-driver circuits each with control of TTLI/O and "active pull up", D/A voltage output, ground, noise filter circuit and OSC crystal frequency.

New features include negative programming voltages, 3 volt programming ability, protective circuitry for ICs incorrectly inserted, calibration software to comply with ISO9000, new six layer PCB and voltage clamping to banish noise and spikes.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all types of PC. In addition, there is now the Link-P1 enabling the programmer to be driven through the printer port. Ideal for portables and PC's without expansion capability.

The pull-down menus of the software makes the Expro-80 one of the easiest and most userfriendly programmers available. A full library of file conversion utilities is supplied as standard.

Sunshine's team of over 20 engineers are continually developing the software, enabling the customer to immediately program newly released ICs.

Citadel, a 33 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

CONTENTS

FEATURES

GOING

UNDERGROUND .982
Adventurers exploring caves and potholes don't have the luxury of telephones, and rock impedes propagation from traditional radios. But there are other options available for communicating underground, as Mike Bedford reveals.

Cover: Jamel Akib
BETTER AUDIO FROM NON-COMPLEMENTS? . 988
Bengt Olsson challenges the idea that complementary output mosfets are essential for high-quality audio. His new power amplifier design suggests lower distortion and higher efficiency using only n-channel power fets to provide output power.

I²C VIA THE PC ... 994
Scores of I ${ }^{2} \mathrm{C}$ chips now provide an easy route to implementing i/o for applications from lamp switching to radio tuning. John Davies explains how easy it is to intertace and control $\mathrm{I}^{2} \mathrm{C}$ driven chips via the pe LPT port.

DETECTION BEFORE THE DIODE 1003
For a few years before the diode was invented in 1913. electrolytic devices were common in radio receivers. George Pickworth has been trying out some of the more popular devices.

REVERSE ENGINEERING FOR GRAPHS. \qquad .1014
Allen Brown has been looking at a new software package designed to read hard-copy graph plots into a pe as x, y
coordinates. Once in the computer, the data can be used to feed spread sheets and other numeric processing tools.

CIRCUITS BY DESIGN. .1016
Aspects ol DC modelling via Windows-based circuit sinulation soltware are discussed by Owen Bishop, who uses the common-emitter amplifier to illustrate the various features.

KEEPING A TAG ON TECHNOLOGY MISUSE. 1023

Electronie tagging has the potential for uses both good and sinister. Nigel Burke looks at a selection of the emerging technologies, and discusses the ir implications.

MAXIMISING MONOPOLE BANDWIDTH.... 1026
In addition to heing simple and versatile, the widely used monopole offers exceptional thandwidth capability. Richard Formato describes the monopole and explains how to maximise its bandwidth.

STABLE PERFORMANCE IN THE REAL WORID. 1031
How to use manulacturers specifications to get the best out of if transistors in terms of gain, noise and stability - from Norm Dye and Helge Granberg.

ELECTRONICS WORLD OFFER

Low Power Ratio Solutions as offering a remote-con-rol transmiter-receiver pair to 1000 readers of $E W+W W$ at $£ 11.75$ inclusive. instead of the usual price of $£ 19.50$. Details on pages 1046 and 1051

REGULARS

Abstract

COMMENT .971 Thinking ahead NEWS. 972 Field-emission displays. Crt and led technologies combined, Government funds cable research, US delay in digital radio, Computer sees complete images, Audio entrants to pc market. Integrated bascband processors for DECT, UK Europe's largest semiconductor market... but third-world status for Europe, 50 W psus cleaned up.

RESEARCH NOTES 977
Brighter future for led fïbre comms. Technical eye lights, Electrical resistance reveals bodily health, Computer huffs get emotional about user interfaces, Ion heams reveal device infrastructure, Practical digital amplifier has dsp built in, Bendable chip heralds cheaper electronics.

DESIGN BRIEF.
Harmonising theory with practice. lan Hickman looks at ways of representing waveforms and marries what is taught about the subject with what one sees on the oscilloscope screen.

CIRCUIT IDEAS
1008
Capacitive continuity tester, Lighting control for
oscillators, Hf converter for car radios. Magnetic field detector. Bike battery charger

LETTERS 1035
Braun-ed off, Mosfet input. Hear, hear. Digital old master, Feed-forward, feed back. Sound question. Subjective bias, Musical components, Magic numbers, Noisy response. No conspiracy.

APPLICATIONS. .1042
Digital synthesizer generates quadrature-matched sines and cosines, Current conveyor 1 Cs for high-end audio. 1 kW , 48 V supply with power factor correction.

NEW PRODUCTS.
.1047
Classified run-down of a wide selection of new electronic producis presented with emphasis on ease of selection.

In next month's issue:

Piezoelectric cable - siznal conditioning circuits
Audio output stages - reducing distortion
New null filter - simpler alternative to twin-tee featuring low distortion
JANUARY ISSUE ON SALE DECEMBER 29

FROM CONCEPT TO ARTWORK IN I DAY

Your dss gn ideas are quickly captures using the ULTICap schematic design Tool. ULTIcap uses REAL- IME checks to prevent logic errors. Schemaic editing is painless; simply click your start and end points and ULT cap automatically wires them for you. ULTICap's auto snap to pin and auto, junction features ensurf your nelisis is compleae, thereby relieving you of tedious nettist checking.

ULTIsh Hil, he integrated userinteriace, makes sure all your design intormation is transierred correctly from ULTICan to ULTIboard. Good manual placement tools are vita to the progress of your design, therefiore ULTTHoard gives you a powertul suite of REAL-TIME functions such as, FORCE VECTOAS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout.

Now you can quickly route your critical tracks. ULTIbourd's REAL-TIME DESIGN RULE CHECK will not allow you to make illegal connections or violate your design rules. ULTIboard's poweriul TRACE SHOVE, and REROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vias and surface mount designs are fully supported.

If you need partial ground planes, then with the Dos extended board systems you can automatically create copper polygons simply by drawing the outine. The polygon is then filled with copper of the desired net, all correct pins are connected to the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTIboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, or the whole board. ULTIboard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.

Thinking ahead

EDITOR

Martin Eccles 081-6523128

CONSULTANT
Frank Ogden
DESIGN \& PRODUCTION
Alan Kerr
EDITORIAL
ADMINISTRATION
Jackie Lowe
081-6523614
ADVERTISEMENT
MANAGER
Richard Napier
081-6523620
DISPLAY SALES
EXECUTIVE
Malcolm Wells
081-6523620
ADVERTISING
PRODUCTION
Christina Budd
081-6528355
PUBLISHER
Mick Elliott

EDITORIAL FAX

081-652 8956
CLASSIFIED FAX
081-6528956
SUBSCRIPTION
HOTLINE
0622721666
Quote ref INJ
SUBSCRIPTION
QUERIES
0444445566
NEWSTRADE
DISTRIBUTION
Martin Parr
0816528171
BACK ISSUES
Available at $£ 2.50$
0816523614
ISSN 0959-8332

REED
BUSINESS
PUBLISHING

There were two woodcutters, walking into the forest at the start of a day's work. The younger one decided to spice up his day with a small wager, "I bet that I can cut up more logs in a day than you can". The older woodcutter agreed to the challenge and they both started work.
At the end of the day the older woodenter had cut up far more logs than what the younger one had. "I just don't understand it". said the young man, "every time l looked to see how you were doing, you were having a break".
"Yes," said the older man, "but what you didn't see was that, each time I rested, I also sharpened my axe!"
I do not claim any originality for this story. but the moral behind it is to make sure that your tools are fit for the job. An engineer's best tool is his brain. The basis of the IEE's continuing professional development program is to make sure that engineers do not rest on their laurels. In the future it is possible that. for an engineer to keep his professional status, he will have to prove that he has been keeping up-to-date with new developments. But there is more at stake than status - it is future employment.
Some employers think they are getting more out of their employees by flogging them to death. They think that by employing the 'young woodcutter', working away at a furious rate, they are somehow getting more work done. Wise employers know that, at the end of the day, the young woodcutter will be tired and make mistakes, and before long his tools will be blunt and useless. The wise employer will make sure that their 'woodcutter' regularly keeps his tools sharp. and can therefore do a better job. Although product quality is not important in the simile used in the story, it is important in the world of electronics.
If predictions are correct, more and more people will be working part-time or on short term contracts (see the leader in IEE News I Sept 94). Employees will become a commodity, with the most able commanding the highest salaries and greatest future opportunities. In order to become a desirable commodity all engineers should seek opportunities to improve their knowledge. Attending seminars, conferences and tutorials.

Electronics World + Wireless World is published monthly. By post, current issue $£ \supseteq .25$, back issues (f available) $£ 2.50$ Orders, payments and general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tlx:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group.
Newstrade: Distributed by Marketforce (UK) Ltd 247 Tottenham Court Road London W1P 0AU 0フ1 261-5108 Subscriptions: Quadrant Subscription Services, Oakfield House, Perrymount Road. Haywards Heath, Sussex RH16 3DH. Telephone 0444445566 . Please notity change of address. Subscription rates 1 year (normal rate) $£ 30$ UK and £43 outside UK
USA: $\$ 52.00$ airmail. Reed Business Publishing (USA) Subscriptions office, 205 E. 42nd Street, NY 10117.
whether organised by component manufecturers, institutes or others is a valuable source of new ideas. Reading the latest books and technical journals also helps.
If you consider yourself know'ledgeable in your specialism, try learning about areas that are not so familiar. Hardware engineers could try to learn a programming language. analoguc engineers could learn more about digital techniques. Cross fertilisation can produce novel solutions to old problems. New ideas may help to improve the fortunes of your company. But ideas do not just appear because you think hard, they are formed from many small pieces of knowledge that your mind puts together like a puzzle and unless you have all the pieces, you cannot find the answer.
Training takes time and money, and a good employer will usually have a budget for training their greatest asset; their employees An employee's manager is perhaps the best person 10 identify suitable training, but how many managers have no conflicting pressures? A manager may have the best intentions towards his staff, but fails to train them properly because he cannot spare his time or his employee's time. Often it is up to the employee to help himself, by identifying a suitable training course or seminar. He should also think of a persuasive reason why he should attend: how will it improve performance and save money in the long run. These arguments can then be used by the busy manager to argue for funding from the employer's finance department.
A reasonable training fund should be provided by employers: but this may be impossible if the company is not doing very well. However, training does not have to be expensive; some component manufacturers provide free or low-cost seminars, these are often very useful and full of applications. Employees could help increase their knowledge by reading trade magazines - even magazines aimed at basic hobby electronics can provide valuable information. Text books can be borrowed from libraries or colleagues. Although low-cost training is not an ideal way to learn, it is better than nothing. There is a saying "you learn something new every day". try to make sure that you do. Steve Winder

[^0]
The future for field emission displays

Theoretically, fieldemission displays can match the luminosity of conventional crt displays while
consuming a fraction of the power.
ast year US technologists believed that the field emission display (FED) was the true flat panel alternative to the led for large area displays. Times - and thoughts - have changed. The FED is a relatively immature technology which has yet to be put into any sort of volume production.

Theoretically, FEDs can match the luminosity of conventional cathode ray tube displays while consuming a fraction of the power and being less than 2.5 mm thick. At the Society of Information Display (SID) symposium in the US in June, Raytheon demonstrated a prototype FED which delivered a brightness of $10,000 \mathrm{ft}$-lamberts, or 34,000 candelas $/ \mathrm{m}^{2}$ and was 50 percent more power-efficient than monochrome crts.
This was only a small 128×128 pixel prototype that measured less than two inches square. Raytheon has set a target date of 1996 to turn that FED technology into a commercially manufactured display. On the other hand, FED flat panel technology pioneer, Pixel Technology of Rousset, Southern France, claims that it will be in volume production of a 6in colour FED next year.
The company was set up in 1992 to develop and market an FED technology developed by the French Atomic Energy Authority (CEA). This technology has been licensed
to Texas Instruments and Raytheon in the US and to Futaba, the Japanese fluorescent display maker.
Pixel is also moving ahead with its own product development plans. It demonstrated a in colour panel in the US in July 1993 and is due to open its first FED manufacturing plant in Montpellier next month, representing a total investment of $\$ 17 \mathrm{~m}$. Pixel plans to be producing its first 6 in colour displays in the second quarter of 1995 , with 10 in by the end of the year and 12 in in 1996, which may prove overambitious
Pixel's FEDs rely on a unique micro-tip cathode (see diagram). Hundreds of $1 \mu \mathrm{~m}$ microtips $\left(25,000 / \mathrm{mm}^{2}\right)$ are required to generate the cold electron emission which illuminates each pixel of the display. A 6 in display with 256×256 pixels will have millions of microtips fabricated on a glass substrate.
Even with a level of redundancy built-in this structure will not be casy to manufacture in volume cost effectively. What is suggested to be a more cost-effective alternative has

CRT and liquid-crystal technologies combined

In this new Icd technology, liquidcrystal optical shutters operating at high speeds determine display colour.

Tektronix has reconsidered the design of the earliest electromechanical colour crts and combined it with today's liquid crystal technology. The result is a technique that combines high

resolution monochrome crts with an active high quality colour filter.
The technique can be applied to small displays used in instrumentation and workstations just as in the large area displays in aircraft cockpits and air traffic control that are expected to form its initial markets. The potential of the technology, known as the Nu Color shutter, convinced US display specialist Planar Advance, which earlier this year bought the Tektronix displays group that invented it.
Early electro-mechanical colour crts produced their colour images as a result of the user viewing a black and white screen through a revolving red, green and blue (rgb) colour filter. The new system replaces the mechanical fïter with a liquid crystal filter which can be switched at high speed. The rgb
filter sub-system consists of two liquid crystal optical switches, known as Pi-cells, which sit in the middle of a sandwich of colour and neutral polarisers. The whole filter sub-system can be fitted to what is in essence a standard high resolution monochrome crt.
The colour polarisers are used to orthogonally polarise and separate the rgb components of the crt's emission. Under the direction of a drive voltage, the Pi-cells rotate the polarity of the light through 90 degrees. The drive signal to the $\mathrm{Pi}-$ cells is derived from the crt's drivers and the filter's switching is synchronised to the display of each of the rgb colour elements on the crt. In this way the colours of the image are built up sequentially, reds followed by greens, followed by blues. The different colour tones, obtained by varying the intensity of
been developed by SI Diamond Technology, of Houston, Texas. This uses thin-fïlm diamond cathodes instead of the microtips. The company also claims that the diamond eathode design uses less power, has longer lifetime and is more easily scalable than the microtip design. However, SI's fïrst prototype FEDs were only an inch square with 125×125 pixel resolution and luminous efficiency was only a tenth that of conventional crts.
From Pixel's microtip design,
Raytheon has demonstrated a 6 in FED with a 500 V drive voltage. It has also designed a higher voltage version that can achieve $10,000 \mathrm{ft}$ lamberts of brightness by increasing the distance between the microtip cathodes and the luminescent phosphors so that an anode grid can be used to focus the electron beam. This design outstrips the brightness efficiencies of erts and the US company claims that it will be easier to manufacture. On the other hand. the anode potentials are increased and at tive to 10 kV are similar to those of crts.
With Sharp’s demonstration of the first 2 in active matrix lod recently, it seems unlikely that FEDs will provide a strong challenge in the flat panel market before the final years of the decade. Enough companies are developing the technology to make it a strong bet for the future, however.
Richard Wilson,
Electronics Weekly
the original monochrome light information, are integrated by the viewer's eyes.
The integration process means that a 180 Hz scan rate on the rgb colour fields results in a 60 Hz frame rate for the complete colour picture.
Planar Advance has demonstrated the technique on small area lin square displays right up to 19 in diagonal crts with 1280×1024 resolution and a high contrast ratio of $100: 1$ at 42 ft -candelas. The colour filters use light energy from a single high energy electron beam in the crt, which creates areas of uniformly saturated colour. This is particularly critical in high quality radar screens, but may also find an application in hdtv and virtual reality display systems.
R.W.

Government funds cable research

TThe UK Government is to begin funding research into
technology which will allow cable operators to realise the full potential of their growing broadband networks.
An r\&d programme jointly
funded by the Department of Trade and Industry and the Cable Communications Association will be spearheaded by Eugene Connell, chicf executive officer of one of the UK's largest cable operators.
Nynex CableComm, who is also chairman of the Cable
Communications Association. The plans were revealed at the opening of the European Cable
Communications show held in London recently.
Software will be developed to take full advantage of the
broadband systems beng built by cable operators as part of a high level DTI programme aimed at creating some form of broadband policy similar to those in other countries. The UK government has been criticised for not matching the information super highway plans of the US government but is now talking to companies such as IBM and ICl .
Government broadband policy is to be revealed before Christmas but this is unlikely to lead to a reversal of current tv restrictions on BT . The government is expected to dismiss a recent select committee report that called for the rapid lifting of the restrictions on BT which prevent it from offering iv services on its network until 1998.

US delay in digital radio

Wil Kreuwels of Philips Research and head of the Jessi digital audio broadeast programme has accused the United States of instigating delaying tactics in digital radio broaceasting. The UK. Germany, Canada, France, Scandinavia, Belgium, Australia and India are either using DAB (digital audio broadcasting) or have said that they will. On the other hand, the USA has said that it won't.
According to Kreuwels the US has said that it has a better system but the demonstration of this, first promised two years ago, has still not materialised.
Europe is leading the way in implementing DAB. Over 20 sites broadcasts: 11 in Germany, 5 in France, 2 in Scandinavia, 2 in Belgium and 1 in the UK. Kreuwels says that another eight sites in Earope are in the planning stage.
He adds that Europe's consumerelectronics industry has a unique opportunity to dominate the market for digital broadeast equipment but that highly integrated, low cost receive and transmit chipsets are still lacking. Jessi has produced a chipset for the receiving function which is available now. It has been incorporated in a test receiver system by Philips. This is now available to potential DAB receiver manufacturers says Kreuwels. David Manners, Electronics Weekly

Computer sees complete images

Two US researchers have created an optical computer which can see complete optical images through a pattern recognition device. The computer is designed to compare images and recognise similaritics and works on principles similar to those used to create holograms. It consists of a lens, a glass cell filled with caesium gas and a laser.

The 'cpu' of the experimental computer is the glass cell in which "the caesium gas atoms do the actual computing," according to Dr. Randall J. Kluze, a physics professor at the University of

Southern California. He has been working on the device for the past three years. The caesiam gas is used as an erasable film to store infra-red light patterns.
The researchers shinc a single laser through a lens. This splits it into two beams, one of which reflects off the object while the other shines directly into the gas, producing an interference pattern. When a third laser beam is focused at the gas from the opposite direction, it is bent in the areas where the two images are similar, producing bright spots.

Audio entrants to pc market
$T^{\text {wo manufacturess }}$ of audio equipment - Aiwa, a unit of Sony Corporation, and Teac - are to enter the pc market jointly. Aiwa will use its multiplexing technologies and other expertise in audiovisual equipment, while Teac will provide the motherboards and main circuits for the computer systems.
The first joint products, two pc models on which users can view television programmes, are now available.

Cooke International Services wishes you a

Santa's storehouse for all your Test Equipment needs Also
Operating and service manuals plus accessories
H.P. 5316 A , Universal Counter, 30 Hz -1 1 GHz z, 8 Dign: Display, fitted with Option 001
 standard 11.P. 182 T Large Screen Spectrun. Analyzer Display complete with; 8588B. Spec.
trum Analyzer Plug In. $100 \mathrm{k} 1 \mathrm{Iz-1} 500 \mathrm{MHz}, 50 \Omega$

 manual measures AM and FM to 1 I ; accuracy; Measures RF frequency with 10 or 100 Hz Resolution also: RF peak power. Fitted with Option: 001 Rear panel connectors: 002 Internal reference oselllator 010 AM. FM Catibrators $\quad .3320$ II.P. 8901 A . Modulation A Anyyzer 150 kHz -13000 Mzz, HP-IB; Fully Automatic or Manual), measures AM and FM to 1 IV accuracy; Measures RF frequency with 10 or
100 Hz Resolution also; RF peak power. Fitted with Option 010 AM FM Calibrators
TEK 491. Portable Spectrum Analyzer $1.5 .51 .4 \mathrm{GHz} \quad . \quad$. 950 General Microwave. 478A Automatic Peak Power Meter: Digital C.R. Display,
Keyboard Entry, IEEE. 488 Interface; Fully Automatic or Manual mode Built in Keyboard Entry. IEEE 488 Interf ace: Fully Automatic or Manual mode Built in
Auto Colibration Measures and Display Pulse pak, Instantaneous, CW Power; Complete with M438A, 750MHz-26. 5 GHz 100mW Power Head 1.P. 8405 A . 'ector Voltmeter. $1 \mathrm{MHz}-1 \mathrm{GHz}, 100 \mu \mathrm{~V}-1$ Volk; Two channel capabillty
measures magnitude and phase
E500 H. P. 6002A Autoranging Power Supply: 0 - 50 Volt, $0-10 \mathrm{Amp} 200$ Watt Wrth Option
001 HP-IB Interface.
 voltage current. Separate Coarse and Fine contro!
 tock synchronzer
 M1 Sanders, 6058. Signal Source 7-12, 5 GHz . Internal Mod \quad ….... $£ 270$ MI Sanders, 6058 B Signal Source 8-12, 5 GIIIz , Internal Mod Omni-Spectra. 2030-6367-00. Directional Coupler; 4, 0.8 . 0 G 1 I , Twin -3dB "SMA" Output s
 Gould OS300. Portable General purpose Dual Trace Oscilloscope: DC-20Mitz. Full $8 \times 10 \mathrm{~cm}$ C R.T. callbration graticule. Timebase range $0.2 \mathrm{~s} / \mathrm{cm}$ to $0.5 \mu \mathrm{~cm}$ with * 10 expansion.
HP ${ }^{14 T T}$ Spectrum Analyzer complete with: 8552 B . IF unit and 85531 BF . RF unit. $1 \mathrm{kHz}-110 \mathrm{MHz}$ Marconi 893A. AC Microvaltmeter. $15 \mu \mathrm{~V}, ~ 500 \mathrm{~V}$. 1 Hz . $3 \mathrm{M} / \mathrm{Mz}$

SEND LARGE S.A.E. FOR LISTS OF EQUIPMENT AND MANUALS

Our Elves await your calls on $(+44) 0243545111$ or 545112 or Fax: $(+44) 0243542457$
ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS. SHIPPING ARRANGED OPEN MONDAY TO FRIDAY, 9.00 am to 5.00 pm

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham Bognor Regis, West Sussex, PO22 0EB
Claude Lyons. TS2 Automatic A.C. Voltage Stabilisers, I/P. 198-258 Volt. 47.65 Hz Farnell. LFM 4. Sine-Square Oscillator, $10 \mathrm{~Hz}-1 \mathrm{MHz}, 1 \mathrm{mV} .12 \mathrm{~V}$ OP General Radıo 1383. Noise Geaerator, 20 Hz -20M1tz, 50 م HiP 8690 B. Sweep Oscillator with 8694 B . RF Plug in $8-12.4 \mathrm{GHz}$ H.P 86250D RF Plug $\ln 8-12.4 \mathrm{GHz}$. To Suit 8620 C sweeper H1.P 86260A. RF Plug In 12.4-18GHz. To Suit 8620 C sweeper
Levell. TG200DM. R.C. Oscillator $1 \mathrm{~Hz}-1 \mathrm{MHz}$. Sine or Square
Levell. TG200DMP R.C. Oscillator $1 \mathrm{~Hz}-1 \mathrm{Mhz}$. Sine or Square Lyons. I'G73N. Bipolar Pulse Gen. 50ns-1 $\mu \mathrm{s} \pm 10 \mathrm{Volt}$ O/P 50 O Lyons SQ10 R.C Osciliator $1 \mathrm{~Hz}-1 \mathrm{MHz}$. Sine or Square Lyons WG 716. 16 MHz Word Generator
Marconi TF 1247. Oscillator 20-300MHz 4 Volt O/P
Philips PM5715 Pulse Gen $1 \mathrm{~Hz}-50 \mathrm{M}: \mathrm{Hz}$. $6 \mathrm{~ns}-500 \mathrm{~ms}$. 10 Voit, 50Ω Datron. $1041.41 / 2$ Digit Diplay D.M.M. with AC RMS and Autorange Fluke. 8030A. $3 / 2$ Digit Display Battery/Mains True RMS D M.M.
Levell. TM10. DC Microvoltmeter $-+30 \mu \mathrm{~V}-300$ Volt
Solartron 7050 Auto Range $5^{1 / 2}$ Digit Display D M
Systron Donner 7003. $3^{1 / 2}$ Digit Display D M. M
Systron Donner. $7141 \mathrm{~B} .4^{1} 2$ Digit Display auto range D M. M Thurlby. $1503.41 / 2$ Digit Display D M M
Thurlby MA9 AC-DC Mains Adaptor (to suit 1503)
Thurlby MA9 AC-DC Mains Adaptor (to suit 1503)
Tek. 7A11. DC-250MHz Single Trace Amplifier Plug In
Tek. 7A13 DC-105Mizz Differential Comparator Plug in.
Tek $7 \mathrm{~A} 18 . \mathrm{DC}-75 \mathrm{MHz}$ Dual Tsace Amp Plug In.
Tek, 7A19. DC-600Milz Single Channel Vertical Amp Plug In (Opt. 04
Tek. 7A19. DC-600M:Iz. Single Channel Vertical Amp Plug In
lek. 7A26. DC 200M1!z Dual Trace Amp Plug in
Tek. 1810 . Delayed Time Base. Plug in
Tek. 7B53A. Dual Time Base. $5 \mathrm{~ns}-58 / \mathrm{Tiv}$ Triggering to 100 MHz .
Tek. 7B533AN As ahove hut without CR'T read out
Tek. 7B70 Time Base. 2ns-5s/Div. Triggering to 200 MHz
Tek. 7871. Delaying Time Base Plug
Tek. 71380 . Time Base. Trıggering to $400 \mathrm{MH}_{2}$
Tek. 7B85. Delaying Time Base. Triggering to 400 MHz
Tek. 71392A. Dual Time Base. if $5 \mathrm{~ns}-02 \mathrm{~s}$ Div. Triggering to 500 MHz
Tek. 7D10. Digital Events Delay One to 10.7 events
Tek 7I)II Digital Delay L'tit 100 ns- 18 Delay tume
Tek 5 I. Digital Delay Cnit. 100ns- 18 Delay fime
Tek. S-52. Pulse Generator Ilead 25ps Rise Time (to suit 7S12)
.......

........

 $\begin{array}{r}£ 95 \\ \times \quad £ 900 \\ \left.\hdashline \quad \begin{array}{r}1 \\ \hline\end{array}\right) \\ \hline\end{array}$$\qquad$ $£ 95$

$$
\left.\begin{array}{r}£ 150 \\ £ 85\end{array} \right\rvert\,
$$

\section*{2} | $£ 65$ |
| ---: |
| $-\quad 180$ |
| $\left.\quad \begin{array}{l}1880\end{array}\right)$ |- $\quad \begin{array}{r}£ 380 \\ \\ \hline\end{array}$

\square
\square

1650
$-\quad 6650$

Hz....
$\cdots \cdots+\cdots$

500 MHz

$\begin{array}{r}£ 180 \\ -\quad £ 200 \\ \hline\end{array}$

Integrated baseband processors for DECT

Highly integrated baseband processors have been introduced by Philips Semiconductors and Advanced Micro Devices, indicating that reasonably priced digital cordless telepliones for the DECT standard could be less than 12 months away. Philips
Semiconductors is further down the road than anyone else to offering a single chip DECT handset design. The first element is a family of single chip baseband processor chips which will be followed shortly by a single device for all the rf down conversion and synthesiser functions.
The PCD509X baseband chip integrates all the bulky analogue to digital and digital to analogue converters and an 8bit 80(51 microcontroller on the same piece of silicon as the DECT burst mode logic, the (: 721 ADPCM codec and the ($j .71 /$ voice codec. The DECT
user interfaces and ancess protocol, which supports multiple access with collision detection, was developed on the $805 /$ architecture, so Philips does not believe the on-chip microcontroller will restrict handset designers in their choice of systems sottware. Four ports are available for interfacing to display, keyboard. interrupt sources and external memory. Interfaces fully support the generic-access protocol (GAP).
Unlike Philips. AMD is keeping the microcontroller external to its Am79C420 basebsud processor. which integrates the burst mode logic, ADPCM, C. T11 and analogue to digital converters. On-chip interfaces support d rect connection to Mitsubishi, iAPX, and Motorola compatible microcontrollers.
Philips has also included on-chip emulation of the 80e5/program, two interrupt lines for the burst
mode logic and a speech codec to interrupt the $80 C 5 /$. There is 64Kbyte of eeprom program memory and 3 Kbyte of data memory on chip, and a further Ikbyte of data memory is available for the BML and speech dsp. There is a three-channel time-multiplied Sbit a-to-d converter for RSSI measurement and battery voltage measurement. The 8-bit d-to-a converter provides interfacing to the 13824 MH chip crystal oscillator.
This $A B C$ family operates over a 2.7 V to 5.5 V supply voltage range and includes the PCD5091 handset controller, the $P C D .5092$ base station baseband conaroller and the $P(D) 5093$ multi-line base station device which will support up to four $64 \mathrm{kbit} / \mathrm{s}$ isdn channels

AMD's is a single programmable device which can be used for handset and base station designs.

UK: Europe's largest semiconductor market...

A
coording to US market analyst, Dataquest, the UK will become Europe"s largest semiconductor during 1994, overtaking Germany. This is because the United Kingdom produces half of Europe's pes and pe compatibles and has the fastest growing automotive semiconductor usage. At its European Semiconductor Industry Seminar in London last
week Dataquest projected that the fastest growing narket this year would once again be the UK with growth of 21 per cent, followed by Scandinavia (19 per cent), France (17 per cent) and Germany (15 per cent). The largest growth is seen in computing: up 21 per cent to $\$ 9.3 \mathrm{bn}$. The second largest area is communications tat \$5bn) with 1994 growth of 14 per cent, followed
hy industrial ($\$ 3.2 \mathrm{bn}$), up 16 per cent: consumer ($\$ 2.6$ bn) up 16 per cent: automotive ($\$ 1.9 \mathrm{bn}$) up 19 per cent and military/acrospace ($\$ 681 \mathrm{~m}$). up 14 per cent.
Total European semiconductor sales are $\$ 22 \mathrm{bn}$ ($\$ 2($ bon for ICs). This breaks down as mos memory $\$ 5.3 \mathrm{bn}$, mos micros 55.2 bn , mos logic $\$ 2.5 \mathrm{bn}$, analogue $\$ 3.1 \mathrm{bn}$, and discretes \$2bn.

...but third world status for Europe

E
-urope is heading for a position as E the Third World of the electronics industry warns Marco Landi, President of Texas Instruments Europe. The alarm was sounded at the 4th Annual European
Microelectronics Forum organised by Future Horizons in Munich in October.
"European semiconductor companies have i.nproved but they are still lagging. Not one is in the top ten" said Landi, "Even in telecomms, Europe"s traditional stronghold, we have been losing market share, apart from in GSM."
The old European strategy of supporting National Champions has
o end. Landi is insistent that it is a failed concept and must be abandoned. Landi warned that in the most successful high-tech markets, the "tigers of Asia', they don't write reports about their industrial problems, they tackle them. "We are full of action plans", said Landi, "but where is the action?"

50W psus cleaned up

E
C regulations that stipulate equipment power supplies must have a pure sine wave at the socket will now apply to devices down to 50 W , not 75 W . This will force power supply companies to spend more money between now and January 1996. The lower rating is as
a result of German lobbying.
Power factor problems arise mainly in switch mode power supplies because they feed harmonic currents back into the mairs as a result of the waveform produced by chopping rectified do at a high frequency. Another factor is that in uncorrected
power supplics. power conversion is as low as 70) per cent.
Malcolm Burchall, a consultant who sits on the relevant BSI Committee, said: "In general, PC manufacturers will meet the new specification by fitting an inductor at a cost of $£ 2$ to £ 3 into the power supply unit".

PowerPC under Acorn's eye

Following the announcement that Acorn Computers is to use IBM 486-based cards in its current range of Risc-based pcs, it is now believed to be evaluating IBM
Microelectronics,
PowerPC
microprocessors for use in its future range of pcs.
Acorn's only comment was that it is committed to ensuring its customers have access to. a whole range of options in the pc arena.

The cards will be
made at an IBM
plant in Italy and supplied through
Blue Micro, IBM
Microelectronics'
UK representative.

PROTEUS

The Complete Electronics Design System

Schematic Capture

- Easy to Use Graphical Interface.
- Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

Simulation

- SPICE compatible Analogue Simulation.
- Event driven Digital Simulation with modelling language \& PLD support.
- Partitioned simulation of large designs with multiple analogue \& digital sections.
- Graphs displayed directly on the schematic.

PCB Design

- Multi-Layer and SMT support.
- Unlimited Design Capacity.
- Full DRC and Connectivity Checking.
- Advanced Multi-Strategy Autorouting.
- Output to printers, plotters, Postscript, Gerber, DXF and DTP bitmaps.
- Gerber View and Import capability.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 0756753440 . Fax: 0756752857. 53-55 Main St, Grassington. BD23 5AA.

RESEARCH NOTES

Jonathan Campbell

Brighter future for led fibre comms

ight emitting diodes that are tive Ltimes more emission-efficient than conventional leds in practice and ten times more in theory could become valuable sources for optical fibre communications as a result of work being carried out at AT\&T Bell Laboratories, New Jersey (EF Schubert et al, Science, Vol 265, pp. 943-945). In tests, the new resonant-cavity leds (rcleds) significantly out-performed the best conventional devices in photon flux density, a critical measure of a led's usefulness for fibre-optic communications.
Such a dramatic boost to efficiency has been brought about by integration into the led of a microcavity - an optical resonator with coplanar rellectors separated by a distance of the order of the optical wavelength. Photon energy propagating along the optical axis of the cavity is quantised; placing the photon-emitting active region of a led inside a microcavity allows the scientists to enhance the photon flux density, and so directly influence the optical power coupled into a fibre.

The AT\&T reled is a pn-junction diode integrated with a microcavity whose fundamental mode is in resonance with the 930 nm lightemitting active region of the diode. In conventional leds, the spectral characteristics of the devices reflect the thermal distribution of recombining electrons and holes in the conduction and valence bands. But with a microcavity led, onresonance luminescence is enhanced and off-luminescence is suppressed, so the spectrum actually reflects the properties of the cavity.

Optical sources based on spontaneous and stimulated emission, such as leds and lasers, form the basis of all silica fibre communications. In practice leds are preferred because of their higher reliability, better temperature sensitivity and simpler fabrication costs.

The rcled has been designed for an operating current of 5 mA . At this current, its intensity is reported to be 3.3 times that of the best conventional leds, including the state-of-the-art ODL GaAs led.
The researchers say that though the rcled has some similarity with vertical-cavity surface emitting lasers (vesels) - also candidates for optical interconnect systems differences in exit mirror losses compared to self-absorption in the active region mean the vcsel has light output intensities in the spontaneous region that are orders of magnitude lower than the reled.

AT\&T's rcled shows much better performance than conventional leds
(shaded area), and better than a theoretical ideal isotropic emitter

Technical eye-lights: An electronic camera, many times more sensitive than photographic tilm, and with a resolution that divides a 0.3 mm square into more than 250,000 pixels has helped scientsts at t.ee University of Rochester to take the sharpest pictures yet of the nside of the living eye.
Using the camera - a Photometrics servs 200 system with a Thomson TH7895B CCD arāy - and shooting a low power laser into the eye for a fraction of a second, the Rochester tearn has recordea individual cones which are about $3 \mu \mathrm{~m}$ wide.
Instruments that opthalmologists currently use see structures no smaller than about $10 \mu \mathrm{~m}$. The achievement could help doctor:: treat age-related ocular degeneration and retir itis pigmentos i whical causes gradual deterioration of the eye.

Picture courtesy lanes montanus/University of Rochester.

Electrical resistance reveals bodily health

W emphysena? Put yourself in the hands of researchers at the Department of Biomedical Engineering \& Medical Physics. University of Keele/North Staffordshire Hospital, and you could find the answer - in pietures.

Electrical impedance tomograms of an adult male. Top left hand picture is end expiration and sequence progresses top right, bottom left, bottom right, to end inspiration. The purple/blue regions are believed to be air in the lungs. Orientation is left/right (as seen) and top is anterior, bottom posterior. The scale indicates 16 intensity levels ranging from no change, black, to 100% change, purple. Resistance readings were made at 21 kHz and each image took 100 ms to collect.
different layers. They were looking for minerals and oil.
But the Staffordshire researchers have put the technology to use in monitoring the human body, and are working to see eit take its place alongside the more familiar imaging techniques such as x-ray computer tomography, nuclear magnetic resonance imaging and ultrasound

A patient's first contact with the technology is when 16 electrodes are strapped counter-clockwise around their chest. In effect, they are (almost) circular conductors with electrodes spaced equidistant around the periphery. A current is applied to the first pair of electrodes and the resulting potentials generated between every other pair around the body are measured. By taking successive readings resulting from applying a current to each electrode pair in turn, data on the differing electrical resistances within the body can be built up.
As part of the hardware, a multiplexer both directs current to the electrodes and allows the electrodes to be selected from which the potentials are to be measured. Received signals are amplified. demodulated - the signal being measured is an ac voltage and must be converted to de for image reconstruction - and digitised. Design of the various hardware components is complicated by the fact that a very large range of potentials has to be handled, setting problems in terms of analogue noise and digitisation accuracy.
Acceptable hardware has now been developed and by taking two complete sets of measurements, separated by time, a picture of the change in resistance in the body can be built up. It is this change-inresistance map that the Staffordshire
team is using to give valuable information about the health and operation of a body.

For example, lung tissuc has a resistivity which changes considerably with ventilation, so EIT could be used to image changes in lung air volume. Clinicians need merely to ask the patient to breathe in, take a reading, then breathe out, and take another reading. The resulting image of a resistance change map would indicate any problems. Record says the technique has been well-validated against other lung volume measurements.

Displaying the distribution of air in the lungs could allow conditions such as emphysema and pneumonia to be investigated. The method could also be applied to continuous monitoring in sports medicine.

In general, eit offers a noninvasive, low cost, high spced and highly sensitive method. It does suffer from poor spatial resolution against procedures such as x-ray ct. Unlike ct it could be used for continuous monitoring of a patient on an intensive care unit for example.

At present cit is in pre-clinical trials, being used to monitor lung conditions such as differences in the inflation of each of the lungs.

Other possible applications are in monitoring gastric function, change in tissue temperature during hypothermia treatment of tumours, and changes in lung water. It may also be possible to image heart conditions through tracking movement of blood from the heart to the lungs and back during the cardiac cycle. But complexity of the heart geometry makes calibration for this sort of application much more difficult.

Computer buffs get emotional about user interfaces

|t won't be long, according to computer scientists, before we are all getting pally with our "interface agents", software personal assistants that are animated characters which learn our behaviour (and our shortcomings) and accordingly adjust the help they offer us.
Development of agents is involving all the usual tools and complex algorithms so beloved of the computer fraternity. But Joseph Bates, both associate professor at the School of Computer Science and also a
fellow of the College of Fine Arts at Carnegie Mellon University, has been researching a less familiar road as part of the project: how can we make those agents believable? The Oz project, an interdisciplinary effort led by professor Bates, is currently working in this area. Writing in Communications of the $A C M$ (Vol 37, No 7, pp.122-125) Bates explains how it is emotion that is the key "...because it helps us know that characters really care about what happens in the world".

As such it is felt to be at the heart of creating sympathetic creatures that could serve as components in new user interfaces for the non-specialist.

Endowing computer software with a personality certainly sounds like a wild idea. But remembering hours of work lost through computer failures over the years, perhaps endowing it with a kickable bottom and a thick skin would be the real breakthrough.

Ion beams reveal device infrastructure

Depletion regions contained within the layered structure of electronic devices could be much easier to analyse at high resolution than previously, with development of an ion beam microscopy method by Mark Breese and coworkers at the SPM unit, Oxford University.
Irradiating chips with ionising beams to generate charge carriers and so monitor electrical and physical properties is an accepted method of identifying manufacturing flaws. Fewer carriers are measured at defects and dislocations because they act as trapping and recombination sites.
But multilayer devices cause difficulties for conventional keV electron beam examination or laserinduced microscopy, as upper insulating and metallised layers can block examination of the structure. Previously surface layers have had to be stripped away or the device cleaved to image the underlying layers.

Breese's technique of ion beam induced charge (ibic), reported in Physics World, (October, 1994, pp.26-27), fires MeV ions at the chip

to produce very large numbers of carriers which can be detected. Focusing the beam of alpha particles or protons is more difficult than with other approaches but the heavy MeV beams do not suffer so much lateral scattering and so information can be gleaned much deeper down into the structure.

Ibic imaging of an eprom, measured with an incident beam of 2 MeV alpha particles ($\mathrm{a}, 200 \mu \mathrm{~m}^{2}$ and b, $60 \mu \mathrm{~m}^{2}$). The technique reveals information about the inner structure of a device without the need for removing upper layers. Different colours represent differing amounts of measured charge, showing up depletion areas for example.

Practical digital amplifier has DSP built in

Digital power amplification, using dsp technology to convert a digital signal directly into a corresponding high power analogue waveform, could move from the possible into the practical as a result of work being carried out by two researchers at Kings College, London, and Uni versitat Politèenica de Catalunya, Barcelona.

Mark Sandler and JM Goldberg have developed a high-accuracy pulse-width modulation d-to-a converter suitable for high power and low power use and are currently building prototypes.
Main difference between their converter and those previously proposed is that use of dsp has made the device much easier to realise in hardware, and distortion looks to be considerably reduced (IEE Proc Circuits Devices Syst, Vol 14I, No 4, 1994). DSP is used prior to modulation and seems to greatly enhance the potential for realising a linear 16 -bit quality pwm-based d-to-a converter in practice.

Key to the approach is inclusion of a premodulation algorithm -a "cross-point deriver" - designed to digitally emulate the harmonic
distortion-free natural sampling process. This "pseudonatural pwm", or pnpwm, has demonstrated dramatic improvements in d-to-a performance, often completely eliminating the harmonic distortion associated with more conventional uniform sampling pwms. In addition, dsp techniques using an oversampled noise shaping network (ons) that reduces input signal wordlength but loses little in baseband signal quality, allow modulator clock speed to be decreased to a rate suitable for hardware implementation. The researchers also say their specially designed ons noise transfer function eliminates undesirable effects associated with more popular designs.
In general terms, the ons/pwmbased d-to-a converter is similar to a one-bit sigma-delta modulation based converter: both use a combination of oversampling, coarse quantisation and error feedback to achieve high performance with reduced hardware requirements. But Sandler and Goldberg explain that the combination of ons with pwm reduces stability problems and

hardware difficulties associated with single-bit sigma-delta modulation systems.

At the moment, interpolation, cross point derivation, noise shaping and digital pum sections are being built, and the researchers believe a third-order cross-point deriver could be implemented on a general purpose floating point dsp chip or in about $400 \mathrm{~mm}^{2}$ of a $1.2 \mu \mathrm{~m} \mathrm{cmos}$ process (including a fifth-order noise shaper).

The power switching stage is yet to be built.

Using dsp to produce a practical highaccuracy pwm d-to-a converter.

Bendable chip heralds cheaper electronics
 evelopment of an all-organic

Dflexible device by researchers at Laboratoire des Matériaux Moléculaires, France, could herald the first steps in opening up manufacture of large-area, low cost electronics. Not only does the manufacturing process rely completely on printing methods, but the resulting device is so pliable that

Constructing an

 all-polymer fet, starting with the insulator, ins, then gate, G, substrate, Sub, source, S, and drain, D, electrodes and the organic semiconductor, SC.
it can be rolled up, bent and twisted through 90°.
Organic fets and leds have been around for the past four years or so. But as Francis Garnier and colleagues point out, "organic" is a bit of a misnomer since the structures still contain a metallic part: the gold source and drain electrodes in fets or the rectifying calcium or magnesium electrodes in leds. Metal deposition calls for costly high vacuum and high temperatures and the resulting metal-organic interfaces could never be considered fully flexible.

Now the French team has reported (Science, Vol 265, pp.1684-1686) a truly all-polymer fet fabricated solely by printing techniques.

The device is constructed by first depositing a $10 \mu \mathrm{~m}$ thick layer of conducting graphite-based polymer ink through a $5 \times 12 \mathrm{~mm}$ mask onto a polyester insulating film. This is the gate electrode. Then the device substrate, adhesive tape which provides both flexible mechanical support and self-standing properties of the device, is applied to the gate
and insulating layer. Electrical contact for the gate is through the same conducting ink as is used for the electrode. Next the team deposits, through a mask, two I x 10 mm strips, $10 \mu \mathrm{~m}$ thick and $200 \mu \mathrm{~m}$ apart, of the same conducting polymer ink onto the opposite side of the insulating film. These are the source and gate electrodes with a channel width of $200 \mu \mathrm{~m}$ and length of 10 mm .

Finally a 40 nm organic semiconducting layer is deposited, by flash evaporation at $350^{\circ} \mathrm{C}$. between the source and gate.

The French researchers say that tests show the device demonstrates excellent amplification characteristics in the $\mu \mathrm{A}$ range and their fet demonstrates the p-type character seen in other organic fets with their metallic electrodes.
The current design looks a little over-large - though the team says even conventional printing techniques would allow dimensions to be reduced. There is also potential for macrosized chips needed in the display area.

Atomic electroplating that captures the sun

U
niversity of Georgia electrochemist John Stickney has developed an electrodeposition technique that could open up a new way of manufacturing electronic components, including semiconductors and optical electronic devices.
Scientists have long been depositing materials electrochemically, but the structures have been very polycrystalline composed of many small crystals and there has been little control over the resulting structure.

What is different about Stickney's recently-patented technique is its atomic scale.

For the past five years, the associate professor of chemistry has experimented with ways to electrodeposit, alternately, one-atomthick layers of two or more elements, such as cadmium and tellurium, to form a compound. His method, electrochemical atomic layer epitaxy (ecale) produces compounds that could prove useful for many kinds of semiconductors.
For example, one application of cadmium telluride is in the formation of photovoltaics. Stickney points out that cadmium telluride is perfectly matched to adsorb sun light, and so has the potential to produce very efficient photovoltaic devices.

Ecale also might have applications in making phosphor materials which could be essential in developing new high-definition display systems.

To deposit one-atom-thick layers, Stickney combines atomic layer epitaxy - a chemical deposition process - with a surface-limited reaction that stops when the electrode surface is covered. Stickney's process is environmentally friendly in that he uses very small amounts of dilute solutions that are easily recycled. Theoretically it should cost less too since it uses much smaller amounts of chemicals and has simple hardware.

Technophobia - the unrecognised epidemic

Techno-sophisticated cyber-punk $E W+$ $W W$ readers apart, we must accept that there are a few old fogeys in this world who are less than at ease with computers and related technology. But a recent analysis in the US suggests that those people are neither few, old or fogeys. They're just as liable to be Nintendo-playing game whizzes as women of a certain age, and they could number half the population!

These surprising findings have come out of ten years of study by Larry Rosen of California State University and Michelle

Weil of Chapman University ("What have we learned from a decade of research on the psychological impact of technology?"), Computers and Society, 3, 1994). They estimate that between 25% and a half the US population is technophobic, suffering anxiety about computers and technology. Women and older people, say the researchers, are no more technophobic than men and teenagers. The only characteristic that links them all is the avoidance of technology at all costs.

Part of the problem identified by the
analysts is that technophobes often had bad early experiences of technology, introduced to it by people who were themselves uncomfortable - one study showed that 45\% of school teachers were technophobic.
Fortunately technophobia can be cured the researchers claim a 92% success rate by only a few hours of sensitive introduction to computer technology. How long it takes to get a technophobe to sit through a complete Spielberg film is not recorded.

PROGRAM 8

CHIPS IN THE
 TIME IT TAKES FOR ONE!

At $£ 645$ costing around half the price of slower gang programmers, the Speedmaster 8000 gang programmer uses a simple 2 button operation in stand-alone mode. PC operation gives comprehensive file handling and editing functions. Capable of gang and set programming it supports 32 pin EPROMs to 8 M with no adaptors required. Programming cycle times of only 23 seconds for 8 27CO10's mean your throughput can now be faster than ever before.

CIRCIE NO. 106 ON REPLY CARD

ROM/RAM EMULATOR PLUG IN CARDS

Using these expansion cards your programmer can run as if there's an EPROM or RAM plugged into the target socket. Available as 8 bit wide $128 \mathrm{k} \times 8$ as standard, upgradable to $512 \mathrm{k} \times 8$, and 16 bit capable of emulating 40 pin EPROMs. They can emulate both 5 V and 3.3 V devices.

CIRCIENO. 107 ON REPLY CARD

PACKAGE ADAPTORS

A full range of package adaptors is available for non DIL devices and parts with more than 40 pins. Prices from $£ 65$

CIRCIE NO. 108 ON REPLY CARD
DISTRIBUTORS
BENELUX: + 3255313737;
CYPRUS: 02485378
DENMARK: 048141885
FINLAND: 070039000:
FRANCE: $0139899622 ;$
GERMANY: 060827421615;
GREECE: 0190201I5;
ITALY: 0245784I;
JAPAN: 053865501 ;
NORWAY: 063840007
SINGAPORE 04831691
SOUTH AFRICA: $0119741211 / 1521$
SPAIN: 013270614
USA: Distributors required.

FREE SOFTWARE UPGRADES! KEEP UP TO DATE WITH NEW DEVICES

Before you choose your programmer, check out the cost of ownership. While other manufacturers charge for every update or require expensive libraries and modules, ICE Technology programmers
support the whole range of devices at no extra charge*. And keeping up to date is FREE for life at no charge on our BBS service.
Just dial on: $+44(0) \mid 226761181$. and download the latest version.

Disk based upgrades are available free in the first year, and a small administration charge made for each subsequent disk.

* for DIL up to 40 pins.

CIRCLENO. 109 ON REPLY CARD

AT LAST, AN AFFORDABLE 3V AND 5V UNIVERSAL PROGRAMMER!

The latest universal programmers from ICE Technology, the Micromaster LV and Speedmaster LV, now support programming and ver fication of 3.3 V devices, now you can test devices at their actual operating voltage.

They offer wider device support than ever tefore, the majority requiring no adaptor. They will operate from battery or mains power,

FEATURES

- Widest ever device support including: EPROMs, EEPROMs, Flash, SPROMs, BPROMS, PALs, MACH, MAX, MAPL, PEELs, EPLDs Microcontrollers, etc
- High speed, programmes a PIC16C54 in 0.5 secs (Micromaster LV).
- Up to 84 pin device support with adaptors
- Connects directly to parallel port - no PC cards needed
- Built in chiptester for 7400, 4000, DRAM, SRAM.
- Lightweight and operates from mains or battery.
- Optional 8 or 16 bit wide ROM/RAM emulator
- Designed, built and supported in the UK
- FREE software device support upgrades via bulletin board.
- Next day delivery

Speedmaster LV

Programmes 3 and 5 V devices including memory, programmable lozic and 8748/51 series micros. Complete with parallel port cable, software, recharger and documentation.

As above plus support for over 90 different micro controllers without adaptors, including PICs, 89C51, 87C751, MC68HIC705, STo, Z86 etc.

£625

8 bit Emulator card

Expansion card containing 8 bit wide ROM RAM emulator includes cable and software. $128 \mathrm{~K} \times 3$.

16 bit Emulator card

Expansion card containng 16 bit wide ROM RAM emulator, includes cable and software. $128 \mathrm{~K} \times 16$.

£195

Call now to place your order, for more details or a free demo dish, or call our bulletin board to download the latest demo. Alternatively clip the coupon or circle the reply number.

Name:

Position:
Company:
Address:

Tel
Fax:

All major credit cards accepted

Traditional radio-frequency transmitters and receivers are of little use underground. But there are other communication options available to cavers and potholers, as Mike Bedford reveals.

In the summer of 1953, Geoffrey Workman achieved his moment of fame. In fact, such was the demand for his story that James Lovelock of the News Chronicle secured his 'exclusive' by interviewing him in a deserted cave passage hundreds of metres below the ground.
For the previous two weeks Geoff had remained alone in Sand Cavern, part of Yorkshire's famous Gaping Gill pothole, and
in so doing had broken the underground endurance record. In the build-up to this event, speculation had been rife regarding the likely outcome of this apparently foolhardy venture. Of prime interest were the effects of his total isolation from the outside world. How would the human body react to being cut off from the daily cycles of the sun? Would the lack of external stimuli render Geoff insane? Or, for that matter, wasn't he surely somewhat

deranged in the first place to even contemplate such a feat?
In the event, when Geoffrey Workman emerged to an incredulous world, except for having to wear sunglasses to protect his eyes from the sunlight, he appeared quite unscathed
What place - you may wonder - has this introductory tale in a magazine dedicated to the application of electronics and radio? Quite simply, it reminds us of how totally isolated the subterranean realm is from the rest of the world. Not only is sound very effectively excluded, but sunlight and a large proportion of the electromagnetic spectrum are totally incapable of penetrating the ground. It also hints at the problems associated with communicating between caves and the surface.

Applications of cave communication During 1993, the member organisations of the British Cave Rescue Council were called out to 53 incidents involving 128 individuals - all but two of whom were brought safely to the surface.
The use of inductive cave radios played no small part in ensuring the success of many of these rescues. In particular, they have been used to co-ordinate rescue efforts, and to summon medical assistance to the cave entrance to meet casualties. Of course, much of what I say here about cave rescues also applies to the

Caver Stuart France with his experimental 27 kHz fm cave radio in Ogof Ffynnon Ddu, South Wales.
mining industry. During the 70s, the Federal Bureau of Mines, in the USA, sponsored a development program for underground radios in response to a spate of serious accidents. Ironically, it was a spectacular improvement in the safety record in the early 80 s which made this development redundant, and so curtailed further work.
As continued media attention illustrates, the same cannot be said of potholing, especially where novices fail to observe the basic safety precautions. Inevitably, therefore, cave rescue groups will continue to have need of effective communication both within caves, and between caves and the surface.
On the afternoon of Tuesday 16 January 1979, Geoff Yeadon and Oliver Stratham secured themselves a place in the annals of caving history by making a 6000 metre through dive from Kingsdale Master Cave to Keld Head in North Yorkshire. Not only was this expedition a major feat of skill and stamina for the divers, it was also one the first success stories for cave radio.
During their record breaking trip, a waterproofed cave radio attached to one of the divers was used to communicate with the surface. The support team located the divers' position, placing flashing road lights on the surface to trace out their path. This episode was an impressive illustration of another application of cave radio - namely radio location.

Since then, the use of cave radios to provide fixed surface locations corresponding to underground survey points has greatly improved the accuracy of cave surveying. This in turn has resulted in a number of spectacular new discoveries. Of particular note was the link-up of Ingleborough Cave and Gaping

Gill, involving a 10 hour trip through a series of tortuous passages which had eluded explorers for 150 years.
Cave communications are also used during expeditions to assist the exploration of new cave systerns. Additionally they have been used for data logging by cave scientists. Normally, taving installed monitoring equipment in a cave, taking readings involves making trips into the cave at regular intervals. With a microprocessor controlled data logger, interfaced to suitable communication equipment, however, regular readings can be stored in memory and transmitted to the surface via the communication link on receipt of the appropriate command.

The challenges

It will be no surprise to you that most radio waves are heavily attenuated by solid rock. What is probably not as universally know is the exact nature of the relationship between the atteruation of a radio signal, its frequency, and the characteristics of the rock. Rather than get into heavy mathematics, let me simply state that the attenuation increases with the frequency of the signal and with the conductivity of the rock.
In limestone - the rock in which caves and potholes occur - attenuation at 100 MHz varies from $6 \mathrm{~dB} / \mathrm{m}$ to $60 \mathrm{~dB} / \mathrm{m}$. Even at 1 MHz , the range is $0.6 \mathrm{~dB} / \mathrm{m}$ to $6 \mathrm{~dB} / \mathrm{m}$. Orily when we get down to the long wave broadcast band do we find frequencies which are even remotely feasible for transmission to a significant depth. In practice lower frequencies still would be far more beneficial in most instances.
A low frequency equates to a long wavelength and a long wavelength implies a large

Steve Laugher, G7LYN, locates an underground beacon using an 874 Hz receiver.
antenna. However a large antenna is incompatible with small cave passages. At the sort of frequencies which look promising for through rock communication, half-wave dipoles would range from about 750 m to 150 km ! This, in a nutshell is the problem with cave radio.
For the moment, ignore the theoretical difficulties and assume that suitable means are available. Even then, further challenges present themselves. The cave environment doesn't exactly replicate the workshop; nor are potholers renowned for their careful handling of equipment. You can reasonably expect that

In this transmitter circuit for underground communications, on/off keying is used to conserve battery power. This feature also makes the signal easier to detect. More details in the panel on page 986.

Receiver for underground communication at 874 Hz . The ICL7611 is configured as a Q multiplier, simulating negative resistance to compensate for the imperfect inductance of the antenna. Diodes in the feedback loop provide protection against strong signals.
any equipment taken into a cave will be dragged in tackle bags and dropped - possibly even into water. Mechanical construction, especially with regard to ruggedness and waterprooting, is a major consideration in the design of any cave communication equipment.

Communication options

As I have said, conventional radio is unsuitable for underground communication. I guess that the most obvious alternative to
radio is the telephone.
In mines, telephones are common. One of the attractions of caving, however, is seeing nature unspoiled by human advances. The presence of cables down each and every passage is incompatible with this. In addition, cabling would be expensive to install and maintain.
In practice, rescuers lay a line each time they enter a cave. To keep down costs, cable weight and complexity, single-wire telephone

Induction and magnetic fields in a radiated signal. Within a few wavelengths of the antenna, electric and magnetic fields exist separately. Conveniently, the near-field inductive component can be transmitted and received via a loop very much smaller than a wavelength.
lines can be used, with a return path through the earth.
An alternative single-wire technique used in the mining industry is rf guide-wire conmunication. Here, an rf signal, as opposed to the single-wire telephone's audio-frequency signal, passes along the wire conductor. The main advantage over simple single-wire telephones is that the transmitters and receivers can be coupled to the cable capacitively; a direct connection is not required.
Also, of particular interest to cavers, temporary 'capacitive' repairs to damaged cables can be effected by simply tying together the loose ends. Interestingly, some recent single wire telephone designs, having very high impedance inputs, exhibit similar characteristics.

A third approach, illustrated overleaf, involves a technique used in the first world war and regularly re-invented, abbeit not normally for caving applications. If a signal is injected into the ground through a pair of electrodes, that signal can be detected as ground current by another pair of electrodes some distance away. This technique is usually referred to as earth current signalling. It was the subject of experimentation by British radio amaleurs during the second world war when amateur licences were revoked.
It was only discovered some time later that these signals penetrate the earth to some considerable depth. Theoretical effectiveness of such a system can be calculated by considering the distance - and hence the earth resistance - between the various electrodes. Hardly surprisingly, the signal-to-noise ratio increases with the separation between the transmitter and receiver electrode pairs, and decreases with the separation between transmitter and receiver.
Something else which was not appreciated by the early experimenters was that the earth current model is not the only one which applies to this form of communication. Experiments have shown that magnetic fields are also set up in the earth and that these can be detected by induction radios introduced in

RF EQUIPMENT

WIDEBAND AMPLIFIERS

TYPE 9301 100KHz-500MHz. NF 2dB at 500 MHz . Gain 30dB.
Output $12.5 \mathrm{dBm}, 18 \mathrm{~mW} .50 \mathrm{ohms}$ $£ 175$

TYPE 9302 10MHz-1GHz. NF 2 dB at 500 MHz . Gain 30 dB . Output $12.5 \mathrm{dBm}, 18 \mathrm{mw} .50$
ohms.

TYPE 9008 Gasfet. $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 2.5 dB at 1 GHz . Gain 10 dB .
Output $18 \mathrm{dBm}, 65 \mathrm{~mW} .50 \mathrm{hms}$
TYPE 9009 Gasfet. $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 3.80 B at 1 GHz . Gain 20dB.
Output $20 \mathrm{dBm}, 100 \mathrm{~mW}$. 50 ohms.£195

TELEVISION LINEAR POWER AMPLIFIERS

Tuned to your specified channel in bands I, III, IV or V
TYPE 925210 mW input, 500 mW output.

TYPE 9259500 mW input, 3 watts output... 416
TYPE 9263 2-3 watts input, 12 watts output.. $\mathbf{£} 700$
TYPE 93643 watts input, 22-25 watts output ... $£ 1370$
TYPE 926610 watts input, 50 watts output. Integral forced air cooling \& cutput
transistor protection.
... $£ 2110$
TYPE 936750 watts input, 150 watts output. Integral forced air cooling \& output

transistor protection.

PULSE TELEMETRY AMPLIFIER

Tuned to your specified frequency in the range $250-470 \mathrm{MHz}$
TYPE 9128500 mW input, 10 watts output.
UHF LINEAR POWER AMPLIFIERS
Tuned to your specified frequency in the range $250-470 \mathrm{MHz}$
TYPE 9123500 mW input, 5 watts output .. 2385

TYPE 91268 watts input, 50 watts output..

GASFET LNA's 5 MHz-2 GHz

Two-stage. Masthead or local use.
TYPE 9006 Freq: $5-250 \mathrm{MHz}$. B/W up to 20% of CF. Gain $10-40 \mathrm{~dB}$ variable. 50 ohms. NF 0.6 dB .
. $£ 135$
TYPE 9004 Freq: $250-1000 \mathrm{MHz}$. BW up to 10% of CF. NF 0.7 dB . Gain 25 dB .50
ohms
TYPE 9305 Frea: $1-2 \mathrm{GHz}$. BW up to 10% of CF. NF 0.7dB. Gain 20 dB . 50 ohms $£ 350$
TYPE 9035 Transient protected mains power supply for above preamplifiers............ $£ 65$
TYPE 9010 Masthead weatherproof unit for preamplifiers $£ 18$

PHASE LOCK LOOP FREQUENCY CONVERTER

TYPE $9115 \mathrm{Up} /$ down converter. I / p \& o/p frequencies $20 \mathrm{MHz}-2 \mathrm{GHz}$. B/w up to 50 MHz .
NF 0.7 dB . Gazin 60 dB variable. $0 / \mathrm{p}$ up to $10 \mathrm{~mW},+10 \mathrm{dBm}$. AGC
PHASE LOCK SIGNAL SOURCES $20-2000 \mathrm{MHz}$
TYPE 8034 Freq. as specified in the range $20-250 \mathrm{MHz}$. $0 / \mathrm{p} 10 \mathrm{~mW}$......................... 250
TYPE 9036 Freq. as specified in the range $250-1000 \mathrm{MHz} .0 / \mathrm{p} 10 \mathrm{~mW} . ~ £ 350$
TYPE 9038 Freq. as specified in the range $1-2 \mathrm{GHz} .0 / \mathrm{p} 10 \mathrm{~mW} . ~ £ 420 ~$
TYPE 9282 FM up to $\pm 75 \mathrm{KHz}$ max. Freq. as specified in the range $30-21000 \mathrm{MHz}$. $0 / \mathrm{p} 10 \mathrm{~mW}$.

TELEVISION TRANSMISSION MODULES
TYPE 9169 Voltage tunable T N modulator. Bands 1 or Ill or IV or V. $0 / \mathrm{p} 50 \mathrm{~mW}$. Sound channel
£395
TYPE 9269 PLL TN exciter. Single channel. Bands I, III, IV or V. O/p 10rW...
TYPE 9115P PLL TN transposer. Up to 10 adjacent channels in bands I III, IV or
V. $0 / \mathrm{p} 10 \mathrm{~mW}$.

Prices are ex-VAT \& ex-P\&P.

RESEARCH COMMUNICATIONS LTD

Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG Tel: 0303893631

Fax: 0303893838
CIRCLE NO. 111 ON REPLY CARD

‘OFF-AIR’ FREQUENCY STANDARD

* Use it 10 MHz . 5 MHz \& 1 MHz
* Use it for callibrating
VXCOs. oven crystals

VXCOs. oven crystals

* Phase locks to DROITWICH (rubidium controlled and traceable to NPL)
* For ADDED VALUE also phase locks to ALLOUIS (cesium contro led
- and traceable to OP - French eq to NPL
* Options avalable include enhanced receiver, sine wave outputs and 13MHz output for GSM. Prices on application

Still Only $£_{195}^{\text {+var }}$
carriage extra

SUPERB DUAL TRACE SCOPES, TELEQUIPMENT D61A, 10 mV SENSITIVITY, $10 u S-500 \mathrm{mS} / \mathrm{DIV}(\& \times 5)$, X-Y INPUTS, Z-MOD, INT/EXT/TV TRIGS, ETC. FROM \&99

774 (VHF BC221) HET FREOMETER AMPROBELAVZXV-METER RECORDERS 19 "x20U $\times 31^{-1}$ DEEP INSTRUMENT RACKS P E GENERAIOR $12 V$ 17A BATT CHARGE JANKE \& KUNKEL HI-SPEED MINI MIXER
COMMODORE PETS. PRINTERS, DRRIVES, ETC CAMBRIDGE SCHERING BRIDGE
TIME 2004 DC VOLTAGE STANDARO 0005% FLUKE 760A MULIIMETER CALIBRATOR BRADLEY 1718 MULTIMETER CALIBRATOR HONEYWELL COLOUR GRAPHIC RECORDER TEKTRONIX 545 PLUG-INS VARIOUS PLESSEY TCT10 SIG GENANAL 50-300 BDS PRECISION STD CELL MUIRHEAD K231A TEMP CONT QUAD 303 STEREO POWER AMPS DRAKE MN2700 MATCHING NWORK \& PS7PSU SCOPEX 4 S6 6 MHz SINGLE TRACE SCOPEX 4D10BL S. 10MHZ WITH EXTENDED LF T/B LEADER LBO-SC ALIGNMENT SCOPE
IWATSUSS5116 DUAL TRACE 10 MHz TELEQUIPMENT D 10111 OMHZ DUAL IRAC HP 8405A VECTOR V/METER 1 GHz TELEOUIPMENT D67A 25MHZ 2T DEL T/B HITACHIVC 601510 MHZ DIG TAL STORAGE HP1 340A X-YDISPLAYS

Output frequencies $10 \mathrm{MHz} 5 \mathrm{MHz}, \mathrm{MHz}$ Short term tability -
than $1 \times 10^{-8}(1 \mathrm{sec})$ Typical $-4 \leqslant 10^{-9}(1 \mathrm{sec})$ Long term - tends to
$2 \times 10^{-12}(10,00 \mathrm{sec})$

[^1] QUALITY ELECTRONIC EQUIPMENT ALWAYS WANTED

CIRCLE NO. 113 ON REPLY CARD

Typical circuits for radio location

To illustrate the principles of simple radio location cave radios, two circuits are reproduced on pages 983984 by kind permission of Stuart France and Bob Mackin. You will notice that rf design techniques are not too important at such low frequencies. and in many instances AF circuitry suffices.
The transmitter is a simple four-stage design with an additional 'interrupter'. The first stage is a cmos crystal oscillator/divider based on a 4060 B for generating the 874 Hz signal. Two of the $4093 B$ nand gates generate a 1 Hz square wave which modulates the signal using a further nand gate.
The purpose of this on/off keying is to conserve battery drain and to make the received signal more easily recognisable. Based on a BC 107 , the pre-amplifier filters the 874 Hz square wave using a pi-network to provide an approximately sine wave drive to the final stage. The mosfet power amplifier drives the tuned loop, coupling via a tapped link coil.
In the receiver circuit, you will notice that the antenna loop and tuning capacitor are connected in the feedback loop of the first stage amplifier. This device, an /CL761/, is configured as a Q-multiplier, simulating negative resistance to compensate for the imperfect nature of the antenna loop as a pure inductor.
Two diodes in the feedback loop provide protection under strong signal conditions. The TL074 acts as a bandpass filter, and is set up to achieve maximum selectivity without inducing instability. Since the signal is in the audio range, the receiver does no need any sort of detector. Reception is simply a matter of amplifying the signal. Audio output is based on an LM380, and drives a pair of personal-stereo headphones, rewired for mono operation.
the next section. In reading the following description, you can envisage carth current signalling and induction radio as one and the same thing.

Low-frequency induction

Earlier on I mentioned that the main problem with using radio for cave communication is that low frequencies are needed, resulting in prohibitively large antennas. For the moment, forget about the size constraints, and consider what happens when an alternating current is fed into a full-sized antenna.

At a distance of a few wavelengths from the antenna you will observe an electromagnetic radio signal - electric and a magnetic fields existing in a fixed ratio to each other.
Much closer to the antemna, a different pattern emerges. You will still find magnetic and electric fields, but instead of the radiated far field signal, you will find the near fied - a collective name for the electrostatic (electric) and the induction (magnetic) fields.
The induction field is particularly interesting since it can be generated not only by a large conventional antenna, but also by a loop very
much smaller than a wavelength. At lirst sight this may seem quite remarkable - low frequency radio from small antennas. But remember that this is not real radio. We are only concerned with the near fiedd which, as its name suggests, does not propagate very far.
In fact the induction field decays with the cube of distance, and so range is severely limited. But since most caves are only of the order of a few hundred metres deep. this is not a problem, and induction is one of the prime means of cave communication.
Operation of an inductive communication system can be thought of as being analogous 10 that of a transformer. The transmitter loop is the primary, and the receiver loop is the secondary. Clearly, the coupling between the two is very loose due to their wide separation. It is imperative to maximise the magnetic field generated by the transmitter, and the signal-tonoise ratio of the receiver.
At this stage. I must introduce the concept of the loop's magnetic moment - a measure of its efficiency in generating an induction field, and hence the communication range achicvable. The magnetic moment is proportional to the number of turns, the loop current and the cross sectional area, so you can see in broad terms how to maximise the range. However, if I also refer back to the inverse cube relationship of the induction field, it becomes clear that to double the range. an eight fold increase in either turns. cross-sectional area, or current is required.
Take a brief look at cach of these in turn. Considering the turns procuce a rather unexpected result - assume that the range is to be doubled by winding eight times more turns. Infuriatingly, this increases the resistance by a factor of eight and so, assuming that the driver voltage is constant, reduces the current correspondingly. Gain has been cancelled out.

Antenna for the 874 Hz receiver. Together with the inductance of the antenna, the protection diodes and capacitor form the Q-multiplier's feedback-loop components.

Drive for the transmitting 874 Hz antenna is provided by a power mosfet, which is in turn driven by a near sine-wave. Note that both antennas shown here are represented as components on their respective circuit diagrams.

The only way to achieve a gain by increasing the number of turns is to also increase the gauge of the wire. All in all, doubling the range results in a 64 -fold increase in weight! In fact, it can be shown that the number of furns is irrelevant. All that really matters is the mass of copper in the loop.

This argument assumes that the loop's diameter is kept constant. Actually a loop with a large cross sectional area is by far the best way forward, but in tight cave passages. the limitations are obvious.
Of course, another approach to improving performance is to push the power up, but once again you encounter the law of diminishing returns - a modest increase in range would require a very significant increase in current, and hence also of battery weight.

Areas for practical work

As already intimated, the challenges of cave radio are unique. In particular, the would-be designer has to work at unfamiliar frequencies, aim to maximise the magnetic moment of the loop while minimising its weight and dimensions. and in addition, engineer the radio to withstand harsh environmental conditions. On the plus side. few people are currently working in this area, so there's plenty of scope for innovation.
A number of avenues are available for experimentation. Scope for commercial exploitation is limited - cavers don't often have a lot of money. However, there is a possibility of making a significant contribution to cave rescue and potentially help to save lives.
In the panel entitled 'Typical cave radio circuits for radio location', I have shown the circuits for a simple 874 Hz transmitter and receiver which designed for radio location. With minor modifications, they could also be used for Morse or data communication.
The circuits are simple, so this would be a suitable first step for those interested in cave radio. Despite their simplicity, however, the constructor would still need to address the ruggedness and ergonomic issues discussed earlier, so their construction would provide some valuable experience.
The circuits described here operate below 9 kHz - a grey area as far as licensing is concemed. I have been told that the RA no longer regulates this part of the spectrum. The RSGB on the other hand, has been told that although 9 kHz and below is not regulated internationally, the UK authorities still do regulate this, band. You can carry out sub-9klyz work under a Test\&Development license, but this is expensive.
It is expected that a UK vIf amateur radio allocation may come into being in the near future. A frequency in the vicinity of 87 kHz . has been mentioned. and this would be eminently suitable for cave radio. In the first instance, this will be an experimental permit for people who have already registered an interest with the RSGB. Later, a general allocation may be made for the whole of the IARU region l, i.e. Europe.
If you decide to experiment with vlf or elf

Used in the first-world war and regularly re-invented, this technique for communicating underground involves a magnetic field generated by injected loops of current.

Signals produced by inserting electrodes in the ground can be picked up either by probing current or voltage or by picking up the magnetic head using a vertical induction loop in the cave.
radio, and decide to put it to the test by taking it underground. remember that caving can be extremely dangerous to the inexperienced, and that no one should go exploring alone.
If you want to meet up with electronically minded cavers, you might like to consider joining the Cave Radio and Electronics Group (CREG) of the British Gave Research Assoctation (BCRA). In addition to publishing a quarterly technical journal containing a mix of theoretical and practical articles, the CREG acts as a clearing house for the dissemination of ideas, and arranges twice yearly field meetings.
For details, please send a stamped, selfaddressed envelope to me. Mike Bedford, at 4. Holme House, Oakworth. Keighley, W. Yorkshire, BD220QY.
My thanks to Stuart France and Bob Mackin for their permission to duplicate their 874 Hz transmitter/receiver circuits

Further reading

Full constructional and setting-up details were published in Making a Simple Radio-Location Device, Stuart France \& Bob Mackin, Caves \& Caving 52 (summer'91), pp 7-11. It was reprinted with corrections in An Introduction to Radio Location, Mike Bedford, CREG forrnal 14, December 1993. pp16-18 \& 14. Back issues of this journal are available from the Cave Radio and Electronics Group at the andress given later.

BETTER AUDIO
 from non-complements?

Abstract

A mosfet amplifier with lower distortion, 30\% more output using the same power supply, savings in parts and labour and high output voltage compared to conventional units? It's all due to 'virtual complements' says Bengt Olsson.

Bias system symmetry and thermal stability have led to complementary output transistors still being used in power amplifiers, even after 30 years. In fact the complementary concept has never been seriously challenged. Yet the symmetry is actually only theoretical, and though the schematic looks symmetric, in practice, it is not.
So why use expensive p-channel devices with 1Ω resistance when there are rugged 0.2Ω n-channels at half the cost? I believe my new idea for a symmetric mosfet amplifier could prove a workable alternative to amplifiers with high $R_{\text {on }}$ and low efficiency.

Symmetry by 'virtual complement'

The symmetric amplifier uses two identical nchannel mosfet transistors, one working in reverse - like a p-channel transistor in a "virtual complement". In reality the mosfets behave like a symmetric pair with a "supersymmetry".

Except for polarity, the virtual p-channel transistor is identical to the real n-channel, and symmetry is perfect. Like the real complement, the virtual complement has excellent thermal stability, and after heavy loads bias current deviates by a maximum $\pm 30 \%$ for a couple of seconds before it settles again. But since there is no optimum bias in a mosfetamplifier, the changeover is inaudible.
Some of the main advantages of the circuit are its extreme simplicity, high efficiency and low distortion.

In the circuit, the bias network is connected to the output terminal (Fig. 1), with its voltage fed to the gates of two mosfets via resistors R_{1} and R_{2}. Input transistor $T r_{3}$ provides push-pull symmetric signals to the gates, independent of the voltage across it - resistor R_{1} may be above the positive rail while R_{2} could be at the negative rail; the circuit will still function perfectly well.

Symmetry depends on an equal current in the two (equal) resistors. When the voltage is

Fig. 1. The basic circuit. $V_{B}=V_{T}+V_{2}{ }^{\prime}+V_{3}$ if $R_{1}=R_{2} . V_{B}$ is adjusted to provide the proper bias current in $\operatorname{Tr}_{1}, T r_{2}, R_{3}\left(=R_{2}\right)$ makes the input impedances of Tr_{1} and Tr_{2} equal at high frequencies.
rising on one gate it decreases equally on the other gate, assuring symmetry of gate voltages. Because the transistors are equal, the output current will be symmetric too.

Bias current is very stable and works as shown in Fig. 2. Quiescent current can be set by a potentiometer. But some kind of temperature compensation is preferable if 'vertical' mosfets are used as these have a higher g_{m} and so are more sensitive to temperature-dependent bias changes than the more commonly used audio "lateral" channels.
Figure 3 is a variation of Fig 1. It has higher input impedance and lower bias voltage as the gate of $T r_{3}$ is bypassed and is stable with low distortion. Figure 4 shows an implementation of a "reversed power stage".

Negative side input

Driver transistor $T r_{3}$ may be an n-channel device (Figs. 5 and 6): it is only a current path

Fig. 2a. Virtual complement, redrawing Fig. 1.

2b. Virtual complement, redrawing Fig. 2a with Tr $_{\rho}$ replacing deleted area.

2c. cf Fig. 3.

Fig. 3. P-channel, high impedance input. Note: $V_{B}=V_{1}+V_{2}{ }^{\prime}$

Fig. 4. Block diagram of a reverse power stage amplifier.
so a change will cause no basic difference. In this case the input to Tr_{3} is close to the negative rail and the stage can be driven directly from an input differential pair (Fig. 7).

If $T r_{2}$ and $T r_{3}$ gates are connected, another bias-supply, B_{2}, will be needed. The new bias will compensate for the lower emitter voltage of Tr_{3}, but may be adjusted by B_{1} only (see equations, Fig. 6).
$T r_{2}$ gate will be controlled by the overall feedback, keeping the output terminal at zero by balancing the currents of $T r_{1}$ and $T r_{2}$, and taking no notice of the quiescent current. This circuit needs special attention when the power is turned on or off, as lowering $V_{\mathrm{B} 2}$ will increase the quiescent current.

Two bias supplies need new bias rules

 The existence of B_{2} opens new possibilities of bias voltages selection, as the difference between B_{1} and B_{2} controls the gate voltage (No change is involved since B_{2} used to be zero.)Adding the same voltage to B_{1} and B_{2} will keep the difference constant, leaving more headroom for the bias of transistor $T r_{1}$ and $T r_{2}$: ie, a higher gate voltage at transistor saturation.

The anti-saturation circuit of Fig. 8 will work the same way and could replace Fig 6. After all, with no negative bias supply needed, what use is B_{2} ?

Generally, bias supply B_{2} has no function and can easily be avoided, as in Fig. 8.
Any addution or change of bias will affect the quiescent current, and the same is also true of V_{s} in Fig 8 . Increasing V_{s} has the effect of decreasing the bias current of $T r_{1}$ and $T r_{2}$, even if V_{i} is only indirectly associated with the bias loop (via V_{2}).
V_{s} is shown stabilised, preventing current rise during on and off (when V_{s} is diminishing). When the power supply voltage drops below 50%. $V_{B 1}$ will also he reduced, producing a net reduction in quiescent current.
This result makes it possible to use the main power supply for safe biasing during on and off transients.

Industrial or audio power transistors?

The modern "vertical" mosfet has a high gate bias voltage, typically $3.5-4 \mathrm{~V}$ at 100 mA . But this is not a problem, because it is easy to have a very precise bias supply that is temperature-compensated, using a sensor-transistor mounted on top of one of the power devices.

Unfortunately, it is a sad fact that a high gate voltage is a pre-requisite for this circuit to function, as the gate voltage cannot exceed 2. $V_{g 1}=V_{B 1}$. The rule is that the mosfet must be able to produce full current at twice the idling gate voltage, the only exception being when a B_{2} bias supply is used.

Fortunately, the g_{m} transconductance of a modern n-channel transistor is very high, typically $5-10 \mathrm{AN}$, so the current at 7 V is otten above 20A, which is more than enough.
Hitachi lateral mosfets are often considered as superior to others because they have a lower input capacitance. But it is not the absolute capacitance, rather $\mathrm{G}_{\mathrm{i}} / \mathrm{g}_{\mathrm{m}}$ that determines the capacitive gate current (high g_{m} means low sr).
High power vertical mosfets are superior in this respect, with a factor of 2-3, and can be used in high quality audio amplifiers.

Bias with adjustable $T C$ and voltage

The regulated bias network, V_{B}, has a temperature sensing transistor Tr_{s}, mounted in thermal contact with one of the power devices - though not on the heat sink as this may cause thermal run away. The bias can be shunt regulated (Fig 9a) or series regulated (Fig. 9b). It should match the $T C$ of the mosfet channel. Maximum current never exceeds $\mathrm{V}_{\mathrm{B}} / \mathrm{R}_{1}$, and typically it is maximum 25 mA for $R_{1.2}$, equal to 330Ω.
$T C$ should be minus $0.1-0.3 \% /{ }^{\circ} \mathrm{C}$ and is made up of one constant part $\left(R_{3}+R_{4}\right.$ in Fig

AUDIO

Fig. 5. High input impedance circuit with n channe/ drive.

Fig. 6. Anti-saturation circuit (of Fig. 5) with $V_{B 2}$.
Notes. If $\boldsymbol{R}_{\mathbf{1}}=\boldsymbol{R}_{2}$
$V_{B 1}=V_{1}+V_{2}^{\prime}$
$V_{B 2}=V_{3}+V_{2}^{\prime}-V_{2}$
where $V_{2}{ }^{\prime}=V_{2}+K$
At saturation: $2 V_{2}^{\prime}=V_{B 1}+V_{B 2}+V_{\text {sat }}$. But V_{2} (and V_{3}) is not limited (isolated gate). V_{1} is
limited to $V_{B 1}=V_{1}+V_{2}+K$.

9a, R_{2} in Fig 9b), and a variable part $\left(-0.33 \% /{ }^{\circ} \mathrm{C}\right.$ determined by $R_{1}+R_{2}$ in Fig 9 a and $R_{3}+R_{4}$ in Fig. 9b). The current in the sensing device $T r_{5}$ is absolutely constant in Fig. 9 b so $T C$ is determined by the ratio V_{E} $/ V_{\text {R2 }}$.

More power

Measurements indicate that, with the same power supply, output power is increased by typically 30% compared to the old audio transistors with their complementary circuit. Using the new technique with $0.2 \Omega \mathrm{n}$-channel transistors (at even lower thd) will also make the new amplifiers run noticeably cooler.
Simplicity of the design is clear (Figs. 4 and 10), with grounded output and floating power supply producing excellent results (Fig. 12).

Negative side input with n-channel driver

 The examples in Figs. 7 and 10 include a conventional balanced input stage.Notice that the commonly used second balanced stage is no longer needed as it is already built into the power stage.
The benefit of a double-balanced stage
design - no jolt when turned on or off - is retained in this circuit.

Distortion

Distortion is a dynamic problem in mosfetamplifiers, and depends on the maximum slewing rate (sr) and gain-bandwidth product (gbw) of the driver amplifier. A high value of gbw, giving a large feedback factor, makes it possible to reduce the static non-linearity to practically zero. There is no hidden or unmeasurable distortion linked to this type of linearisation - except that expected from static characteristics and frequency response, which is constant up to the MHz range.
Very consistent data is a valuable property of n -channel mosfets. Different samples show almost identical gate-characteristics and $R_{\text {on }}$, and the gate-voltages become symmetric, resulting in the lowest possible distortion.

In fact, given a specific bias current, the distortion will typically be 26 dB lower than with a conventional amplifier. This is because the driver acts directly on the gate, and not on the superimposed gate-plus-output, as is customary. This type of drive (shown in Figs 4 and 7) can be called "direct drive" (DD).

Distortion proves to be almost unmeasurable below 1 kHz in a well designed amplifier. At higher frequencies, the thd will increase in proportion to frequency up to 20 kHz , (Fig 12).

Symmetry at high frequencies.

Gate input is capacitive ($800-2000 \mathrm{pF}$), causing a phase shift at T_{2} in Fig 1, and crossconduction at hf unless the generator (drive) impedance is equal for both $T r_{1}$ and $T r_{2}$. According to Thevenin, the drive impedance to $T r_{2}$ is equal to R_{2}. The drive input to $T r_{1}$ is zero, taking the input as a reference, but it can be made equal to that of $T r_{2}$ if R_{3}, equal to R_{2}, is inserted as shown in Fig 4, at the 'source' transistor.

Now the phase difference will be minimal up to several hundred kilohertz, with negligible cross-conduction.

Anti-saturation circuits.

Use of low $R_{\text {on }}$ transistors increases the output power, given a specific power supply. Bui there is one problem: the gate voltage must be sufficient to saturate the transistor.
The gate voltage of $T r_{1}$ is floating and will exceed the positive rail voltage. Conventional mosfet amplifiers usually have an extra positive power supply, but this is not needed in this amplifier.

However, for $T r_{2}$ the situation is different. Turned on hard, $T r_{3}$ will saturate (the voltage is typically only 50 mV across $T r_{3}$).
Adding voltages from the negative rail (Fig. 3) will accent the problem:
$V_{\text {sat }}+V_{\mathrm{B}}=V_{2}+V_{2}$
$V_{\text {2sat }}=1 / 2\left(V_{\mathrm{B}}+V_{\text {sat }}\right)$
Normal bias is $1 / 2\left(V_{\mathrm{B}}\right)$. Thus, the gate voltage of $T r_{2}$ increases only $1 / 2\left(V_{\text {sat }}\right)$ at saturation, which is insufficient, bearing in mind the square-law gate characteristic.

Continued on page 992...

Fig. 7. Block diagram, conventional amplifier.

Fig. 8. Anti-saturation circuit (of Fig. 6).]
Notes. $V_{B}=V_{1}+V_{2}{ }^{\prime \prime}$
$V_{2}^{\prime} \approx V_{2}{ }^{\prime \prime}$
$V_{2}+V_{s}=V_{2}^{\prime}+V_{3}$
$\approx V_{B}-V_{1}+V_{3}$
Make $V_{s} \approx V_{3}$. Adjust bias with V_{B}.

Fig. 9a. Bias with adjustable TC and voltage: shunt regulator.

9h. Series regulator.

Note. $V_{R}=0.4724 \mathrm{~V}$ and $V_{B E}=0.5306 \mathrm{~V}$, so variable part is 52.9% and fixed part is 47.1% which will match ($V_{B 1}-0.125 V$) perfectly.

ANCHOR SURPLUS LTD THE CATTLE MARKET NOTTINGHAM NG2 3GY TEL: (0115) 9864902 \& 9864041 FAX: (0115) 9864667

Marconi TF2120/Prosser A100
Precision Waveform Generators Sine/Square/Ramp 50/600r ...0-10V Outputs 0.001 Hz -100Khz Now Only £250

Schlumberger STABILOK 4010A Radio Telephone Test Sets $10 \mathrm{Khz}-200 \mathrm{Mhz} / 420 \mathrm{Mhz}-440 \mathrm{Mhz}$ AM/FM, Synthesised Signal generator, Deviation/Modulation, RF Power, AF Distortion/Sinad etc etc Complete System $£ 745$

SPECIAL OFFER for 1 Month Only HP 8554B Plug-In's for 141T Spectrum Analysers 1Mhz-1250Mhz ONLY $£ 250$

Oscilloscope Special Offers ONE MONTH ONLY

TEK $7633 \mathrm{c} / \mathrm{w} 7 \mathrm{~A} 18+7 \mathrm{~A} 18+7 \mathrm{~B} 53 \mathrm{~A}$
4 Trace Dual Time Base with Delay Multi Mode Storage 100 Mhz BMidth Only $£ 475$

TEK $5113 \mathrm{c} / \mathrm{w} 5 \mathrm{~A} 18 \mathrm{~N}+5 \mathrm{~A} 18 \mathrm{~N}+5 \mathrm{~B} 12 \mathrm{~N}$ True Dual Beam Variable Storage Store write speeds to $20 \mathrm{Div} / \mathrm{mS}$ Multi Event Capture, 4 Trace, 2 Mhz One Only £325

TEK $7603 \mathrm{c} / \mathrm{w} 7 \mathrm{~A} 26+7 \mathrm{~A} 22+7 \mathrm{~B} 53 \mathrm{~A}$ 3 Trace, Dual Timebase with Delay 100Mhz B/Width Only £395

ONE ONLY SPECIAL OFFERS TO CLEAR

HP 1740A, 100Mhz Dual Trace, Dual Time Base ONLY £275

HP 1744A, 100Mhz Dual Trace Dual Time Base Storage ONLY £345

HP 1722A, 300Mhz, Dual Trace, Dual Time Base ONLY £375

Cossor OAMS TX+RX
Optical Attenuation Measuring Set
Mains/Batt c/w Case etc
For Fibre Optic Links $£ 110$

RACAL Store 4 Reel-Reel Tape Deck with TAC 4 Controller. $15 / 16$ to $60^{\prime \prime} / \mathrm{sec}$ 72 hour capability. DC to 20Khz B/W TAC4 Transcription Analysis Controller With Manual ONE ONLY $£ 375$

Polarad 1107E microwave Sig Gen
3.7Ghz-8.4Ghz with 1020A Modulator

ONE ONLY £ £95

Dytecna Ulitra Low Resistance
Test Set 0-200milliOhms
Adj Alarm Case/Leads One Only $£ 95$

Hocking UH Locator incl Case/Probes
'Universal High Current Eddy Current Instrument' ONE ONLY £110

Cossor T433H Cable
Test Set. CRT + Digital $30 \mathrm{~m}-15000 \mathrm{~m}$ One Only £195

NOW OPEN SEVEN DAYS A WEEK
Monday to Friday: 9.00 am to $6.00 \mathrm{pm} \quad$ Saturday: 8.00 am to 4.00 pm SUNDAY: 10.00 am to 4.00 pm

ALL EQUIPMENT TESTED WITH VERIFIED CALIBRATION

All prices excluding VAT \& carriage.

Fig. 13. Anti-saturation circuit (of Fig. 3). Note Tr $_{3}$ may be n-channel. $V_{B 1}-V_{B 2}=V_{1}+$ $V_{2}-V_{s}$ (if $R_{1}=R_{2}$).

Fig. 14. Anti-saturation circuit of Fig. 1.
Notes. Assume $\boldsymbol{R}_{1}=R_{2}$
$V_{B}=V_{1}+V_{s}+V_{3}+V_{2}^{\prime}$
Saturated:
$V_{2}=1 / 2\left(V_{\text {sat }}+V_{B}\right)=V_{2}+1 / 2\left(V_{\text {sat }}+V_{3}+V_{s}\right)$

Design advantages

The new mosfet-power amplifiers deliver several useful advantages: low distortion (due to "direct drive"), high efficiency (30% more output using the same power supply), savings in parts and labour (typically 25%) and high output voltage (up to $350 \mathrm{Vpk}-\mathrm{pk}$ in a single output triplet).

Reliability and cost benefits are possible too, as a result of using proven industrial n-channel transistors.

Apart from these improvements, the amplifier is also easy to work with, being very "forgiving" and easy to stabilise. Extremely low levels of distortion are easily achieved and tests show that the gate wave-form is perfectly symmetric.

Maybe the days of the complementary stage are numbered. The troubles with p-channels could be something of the past.

FOUNTAYNE HOUSE, FOUNTAYNE RD., LONDON N15 4QL TEL: 081 -885 2884

$I^{2} \mathrm{C}$ via the

> There is now a wide variety of $I^{2} C$ chips performing functions ranging from simple i/o switching to frequency synthesis. This twotransistor interface provides a simple means of communicating with these devices via the pc's parallel printer port, as John Davies explains.

Previous articles in $E W+W W$ have looked at the concept of the $\mathrm{I}^{2} \mathrm{C}$ bus and also the use of the pe parallel port as a more general purpose interface. This article expands on both topics, presenting a simple way of implementing an $I^{2} \mathrm{C}$ port using the pe parallel port.
Only the master-slave part of the $1^{2} \mathrm{C}$ standard is implemented, with the pc acting as the master. Implementing a full master-master interface using the parallel port would be too processor intensive, leaving little time for the pc to do anything else.
Interfacing entails some very simple hardware together with generalpurpose software drivers. These are written in assembler but could easily be translated into higher level languages such as C . No real benefit would be obtained from using interrupts in this application, so the software is simplified even further.
Hardware and software are described by using an example of a simple event counter using the readily available Philips PCF8583 chip which is a clock/calendar/256byte ram device
Following sections describe both the software and the hardware. I have assumed that you are reasonably familiar with the $1^{2} \mathrm{C}$ bus concept, and with the pc parallel port. Some additional information is pre-

sented in the references at the end of the article.

Hardware

Figure 1, on page 996, illustrates the interface's simplicity. Conversion to and from the parallel port tt l level interface to the $\mathrm{I}^{2} \mathrm{C}$ bus is done using the two transistors $T r_{1,2}$. These provide the open collector outputs needed for the data and clock lines on the $\mathrm{I}^{2} \mathrm{C}$ bus.
Input to the parallel port for reading the $I^{2} \mathrm{C}$ bus is taken directly from the bus as the 5 V level used on this version of the $I^{2} \mathrm{C}$ bus is ttl compatible. Obviously if any other voltage was used on the $l^{2} \mathrm{C}$ bus some level shifting would be necessary.

Discrete transistors are used rather than ' 74 series open-collector gates partly because they are cheaper and partly because the ' 74 series device would need a 5 V power supply. This is not a problem where the $\mathrm{I}^{2} \mathrm{C}$ bus is at 5 V level, but it would be at other voltage levels.
Any general purpose npn transistor is suitable, as long as it is capable of switching at around 100 kHz . Values for $R_{1,2}$ depend on the physical characteristics of the $I^{2} \mathrm{C}$ bus, but $2.7 \mathrm{k} \Omega$ is reasonable.
Some of the parallel-port inputs and outputs are inverted in the internal hardware and the transistor stages introduce an inversion. These are

Inside the PCF8583

Within the 8-pin PCF8583 are 256 bytes of ram, an oscillator, a frequency divider, the $I^{2} \mathrm{C}$ interface and a power on reset circuit. The first eight bytes of ram are used to control the modes of operation of the device, and to store counter information. The next eight bytes can be used either as free ram or as alarm registers.
Three different modes of operation can be selected by programming the control and status register at address 0 . Format of this register is:

Bit Function
 0 Timer flag
 1 Alarm flag
 2 Alarm-enable bit ($1=$ enable)
 3 Mask flag (affects addresses 5, 6)
 4,5 Mode: $\quad 00=32768 \mathrm{kHz}$ oscillator $10=50 \mathrm{~Hz}$ oscillator $01=$ event counter mode 11=test mode
 6 Hold last count (1 =hold)
 7 Stop counting flag ($0=$ count)

A memory map of the other registers is shown in Fig. 2. The first two modes are both real-time clocks, one running from a 32768 kHz clock, the other from a 50 Hz input. In these modes, time of day is
stored in bcd format. Up to six digits of data ($\mathrm{D}_{0.5}$) are stored in the event counter.
Setting the alarm enable bit of the control/status register activates the alarm function. Via the alarm control register, a dated alaım, daily alarm, weekday alarm or timer alarm may be programmed. Format of the alarm control register is as follows:

Bit Function

2-0 Timer function:

$$
000 \text { - no timer }
$$

001-1/100s
010 - seconds
011 - minutes
100 - hours
101 -days
110 - not used
111 - test mode
3 Timer interrupt enable
5,4 Clock alarm function:
00 - no clock alarm
01 - daily alarm
10 - weekday alarm
11 - dated alarm
6 Timer alarm enable ($1=$ enable)
7 Alarm interrupt enable
timer alarm event sets the alarm flag and an overflow condition of the timer will set the timer flag. The open drain interrupt output is switched on when the alarm or timer flag is set.
In clock mode more detail is available in the hours, months and years bytes as follows:

Hours taddress 04)	
Bit	Function
3-0	Unit hours in bcd
5,4	Tens hours in bed
6	am/pm flag
7	24/12 hour format clock ($0=24$
hour)	
Year/date (address 05)	
Bit	Function
3-0	Unit days in bcd
5,4	Tens days in bcd
7,6	Years 0-3 (from leap yea*)

Weekdays/months (address 06)
Bit Function
3-0 Unit months in bcd
5,4 Tens months in bcd
7-5 Weekdays (0 to 6 binary)

Whenever an alarm occurs, the alarm flag of the control/status register is set. A

Fig. 2. Control and status registers, left, allow programming of the PCF8583 as a real-time clock or event counter. When acting as an rtc, it can be driven from a 50 Hz or 32.768 kHz clock. Acting as an event counter, the oscillator input allows pulses to be counted. Below lift is a functional diagram of the device accompanied below right by an application circuit showing an rtc configured PCF8583 together with two event counters.

PC ENGINEERING

compensated for in the software drivers.
There is an address pin on the $P C F 8583$, namely A_{0}, which can be used to differentiate between two devices on the same bus. This pin is tied low in this application

Software

There are two sections to the sofiware. Firstly there are the general purpose $I^{2} \mathrm{C}$ drivers, and secondly, routines specific to this application.
The application software simply reads how many events have occurred on the PCF8583 input since the last read and prints the result on the screen. Drivers for the $I^{2} \mathrm{C}$ bus are modular, which makes debugging and modification of the code much easier. Figures 3,4 show the structure of these drivers.
Application software interfaces to the $1^{2} \mathrm{C}$ drivers also divides into two main parts - one for transmission of an $I^{2} \mathrm{C}$ message to a speciffed address and one for the reception of an $I^{2} \mathrm{C}$ message from a specified address. Data passes to and from these interfaces in the form of a message giving the number of bytes to be written or read, the $\mathrm{I}^{2} \mathrm{C}$ address and the actual data to be transmitted, or where the read data is to be stored.
Consider the transmission software lirst, Fig. 3. The top level interface is a routine called 'ix_mess'. This routine takes the data passed to it. Using the three routines called "i2e_start', "i2e_stop' and 'tx_byte", it transmits the message in the correct format
A further a routine, 'read_ack', is called by "ix_byte". This routine checks that the receiver has acknowledged each of the bytes. If the

$I^{2} \mathrm{C}$ software on disk

An annotated assemblylanguage listing for transmitting and receiving $I^{2} \mathrm{C}$ via the PC is available. To obtain it on 3.5 in disk, together with the listing for Mike Button's article in the June 1994 issue, send a postal order or cheque for $\mathbf{£ 1 2 . 5 0}$ inclusive, payable to Reed Business Publishing, to $\mathbf{E W}+\boldsymbol{W} \boldsymbol{W}$ Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please mark ${ }^{\prime}{ }^{2} \mathrm{C}$ via LPT' clearly on your envelope.
acknowledgement is not received then the sequence is terminated and an error returned.
All of the above call the three lowest level routines. These are 'ix_bit', 'set_clock' and 'rx_bil’ and they output the data onto, or read the data from, the $i^{2} \mathrm{C}$ bus. Bit inversions due to the hardware are also taken care of here.
Interfacing for receiving, Fig. 4, is a little more complicated. To receive data. some of the transmit routines must also be used for initially addressing the PCF8583. Once this has been done, the receive message routine "rx_mess' calls the receive byte routine "rx_byte" the required number of times.

Fig. 1. Controlling an $1^{2} \mathrm{C}$ real-time clock via the standard pc printer port. In hardware terms, creating an $1^{2} C$ master/slave interface capable of being controlled from a pe printer port is very simple.

The routine 'send_ack' indicates to the slave device that each byte has been received. Note that there is a slight quirk in that the last byte received docs not require an acknowledgement. This indicates to the slave that ail bytes have been transmitted.
Finally the ' 122 c_stop' routine is used to complete and terminate the transmission sequence. Again the low level interfaces to read or write to the parallel port pins are used.
The software initialises the PCF8583 as a counter device, zeros its count and waits for the pc operator to strike a key. It then reads the PCF8583 count buffers and displays the result on the screen. An example of the message sequences which are used by the routine 'Ix_mess' is as follows

Reset counters:

5 Number of bytes
A1 PCF8583 address / write command
00 Start address to write
20 Command to start counter (see explanation of PCF8583)
00
00 | Zero counters
00 |

Final thoughts

Although the circuit and sofiware described here are simple. they could form the basis of a more sophisticated system. A description of how to extend the range of the $I^{2} \mathrm{C}$ bus, or how to isolate the power supplies of two different systems, is given in the $1^{2} \mathrm{C}$ articles mentioned below.
On the sofiware side the two message interfaces (tx_mess and rx_mess) could be extended to interface to a high level language such as C. For the really ambitious the software could be extended to include master to master communications but as mentioned previously doing this via the printer port could result in the p.c. spending most of its time servicing the $I^{2} \mathrm{C}$ bus rather than doing anything else.

Further reading

Busman's guide to $i^{2} c-E W+W W$ Jan//un 1994.

Philips $I^{2} C$ hus specification.
Philips PCF8583 data shect.

Fig. 3. Software flow for controlling $I^{2} \mathrm{C}$ bus transmission from a pc via the printer port.

Fig. 4. Receiving $1^{2} \mathrm{C}$ data via the PC printer port is a little more complex than transmitting it.

Look what's new in

 version 4 of SpiceAge for Windows ${ }^{\text {TM }}$- DDE link with Modelmaker, the utility that synthesizes opamps, transformers, attenuators and transistor library models
- Reflection coefficient analysis
- Noise analysis
- Improvements to digital displays
- Auto-time interval setting option
- Time optimisation in relaxed circuits
- Faster quiescent calculations
- SPICE repertoire enhancements for ASICS

- Better screen \& paper presentation
- Windows ${ }^{\text {TM }}$ wave (.wav) file compatibility. Multi-media users can listen to their waveforms or capture sound samples for Fourier analysis or filtering. Binary output option makes ROM programming easy.
- PWL non-linear enhancements saves calculating polynomial coefficients for those awkward functions.

Make sure you know what you are missing by asking us for a copy of the demonstration program and booklet. Subscribers to the SpiceAge maintenance service will be receiving their new version along with a copy of the new manual.
Please contact:
Those Engineers Ltd., 31 Birkbeck Road, London NW7 4BP
Tel: 0181-906 0155, Fax: 0181-906 0969

CIRCLE NO. 115 ON REPIV CARD

SYSTEMS COMPONENTS
386SX/486SLC CPU Cards with Multi I/O interfaces, AT \&
PC/104 Bus, in PC half card format • VGA \& Flat Panel Driver Cards • ROM \& Flash Memory Cards • ISO 7816 IC Card Modules • Flat Panel Displays • Housings,

SYSTEMS INTEGRATION
Commercial, Scientific \& Industrial • Point of Sale

- Smart Cards • Installation • Maintenance

> 2c Chandos Road, Redland, Bristol BS6 6PE, UK Tel: 01179730435 Fax: 01179237295

KESTREL ELECTRONIC COMPONENTS LTD

\& All items guaranteed to manufacturers' spec. is Many other items available.
'Exclusive of V.A.T. and post and package'

	1+	$100+$		$1+100+$	
EPROMS			STATIC RAMS		
27C64-15	2.00	1.45	62256LP-10	3.00	2.15
27C128-15	2.40	1.80	6264LP-10	2.10	1.40
27C256-15	2.20	1.65	MM58274CN	4.90	3.75
27C512-15	2.20	1.65	ULN2003A	0.45	0.28
27C010-15	4.00	2.75	LM311N	0.30	0.18
27C020-15	6.00	3.99	LM555	0.30	0.18
27C040-15	8.60	6.45	MAX232	1.35	0.88
80C31-12	2.10	1.65	7406	0.35	0.23
80C32	3.00	2.40	7407	0.35	0.23
80C85ARS	2.90	2.30	74LS244	0.35	0.22
82C55-5	2.40	1.55	74LS245	0.35	0.22
D8748H	4.30	3.35	74LS373	0.35	0.22
D8749H	4.40	3.45	74LS374	0.35	0.22

74LS, 74FC, 74HCT Series availaple
Phone for full price list
All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road,

Purley, Surrey CR8 4HA
Tel: 081-668 7522. Fax: 081-668 4190.

Fig. 1. Top to bottom, fundamental waveform, with its third, fifth and seventh harmonics, at the appropriate amplitude and phasing. Their sum is the bottom trace. As more harmonics are added, the sum becomes ever closer to an ideal square wave.

Harmonising theory with practice

Textbooks rarely explain the frequent gap between learned theory and practical result viewed on an oscilloscope. Ian Hickman explores the relation between time and frequency-domain representations of common waveforms to provide an answer.

Take a sine wave of angular frequency $\omega \mathrm{rad} / \mathrm{s}$, say, or $\omega / 2 \pi$ cycles/s and compare it with its third harmonic at one third of the amplitude, its fifth at one fifth and its seventh at one seventh of the amplitude. Relative to the fundamental, the amplitude of each harmonic is inversely proportional to its order. All the components start at the left hand end of the plot at time $t=0$, so that the angle ωt is also zero. As they are all sine waves, they all start from zero, positive-going

Examining their sum (Fig. 1, bottom trace) shows an already passable approximation to a square wave is beginning to emerge.
(a)

The 'flat' top of the square wave has three dips and four bumps, indicating that only harmonics up to the seventh are present. A good few more would be needed to make the top sensibly flat and, in particular, to make the rising and falling edges vertical, at $\omega t=0$ and $\omega t=\pi$ radians. Note that the sine wave positive peak coincides with the negative peaks of the third and seventh harmonics (and 11 th, 15 th , etc.) while it coincides with the positive peak of the fifth harmonic (and 9th, 13 th , etc).

On the other hand, at $t=0$ all are positive going, resulting in an infinitely steep rising edge, if odd

harmonics are included all the way up to infinity.
The four waveforms shown are of course simply those predicted by Fourier analysis of a square wave. For a "triwave" or triangular wave, this time the positive peak of the sine wave coincides with the positive peaks of all the harmonics (first four again shown in Fig. 2), resulting in the peak of their sum (botrom trace) becoming ever sharper as more harmonics are added. In addition to the altered phasing of the $3 \mathrm{rd}, 7 \mathrm{th}, 11$ th... harmonics, this time the amplitudes of the $3 \mathrm{rd} .5 \mathrm{th}, 7 \mathrm{th}$... harmonics are $1 / 9^{\text {th }}, 1 / 25^{\text {th }}$ and $1 / 49^{\text {th }}$... that of the fundamental; ie, inversely proportional to the square of their order. So in the triwave (Fig. 2a) the fundamental has been plotted at a larger amplitude than in the sine wave. enabling the harmonics, which are now of very low amplitude - especially the 7th and higher - to be seen.
Taking just the fundamental and even a few harmonics, the triangular wave is now very convincing. It needs only to be a bit sharper at its tips to be perfect.

Inverted question

So how is it that, in the triwave, the 3rd and 7th, etc harmonics have become inverted in phase, while the 5th, 9 th... have not?
To clarify this, we must change the measurement domain in order to show how the square wave can be converted to a triwave in practice.
Figure 2b shows an op amp integrator and Fig. 2c illustrates its frequency and phase response. Its gain is unity at that frequency where the reactance of the capacitor in ohms equals the value of the input resistor R, falling at 6 dB per octave above this frequency and rising at $6 \mathrm{~dB} /$ octave below it (in both cases, for ever more. if the op amp is perfect).

In addition, an input sine wave, of any frequency, suffers a 90° phase lag in passing through the circuit. When the input sine wave is at its positive peak, the output is zero and increasing at its maximum rate.
The more usual sort of op amp integrator is in fact an inverting device, so that the 90° phase lag looks at its output like a 90° lead. So Fig. 2 b is actually a noninverting integrator circuit - sometimes known as a de Boo integrator - which behaves exactly like an implementation of the mathematical operation of integration.

LEARNFROM THEEXPERTS

CIRCIE NO. 118 ON REPLY CARD

For more information,
just clip the coupon and return it to

Texas Instruments

Technical library MS83
P.O. Box 5-06271 Villeneuve-Loubet cedex FRANCE

Name
Title
Company
Address
Postal Code \qquad City

Fig. 3. Effect of repeated integration and differentiation on a (nearly) square wave.

\qquad

Fig. 4. Fundamental plus 3rd, 5th and 7th harmonics of a triwave that has been integrated, and (bottom) the resultant.

Examining the response of the integrator to a square wave input (Fig. 2d) shows that all the while the input is positive, the output increases. Likewise, when it is negative the output decreases. But to understand the relation between the time- and frequency-domain representations, we must see how the effect of the integrator on the individual harmonics in Fig. 1 results in the corresponding harmonic components in Fig. 2a.

Compared to their phasing in Fig. 1, the integrator has delayed all the frequency components in Fig. 2a by 90° - at the left hand side where $t=0$ they are all at their negative peaks and do not pass through zero going positive until 90° later.

Now, for the fundamental, this corresponds to the time indicated at $\mathrm{A}-\mathrm{A}$ (Fig. 2a). But at this point the third harmonic has moved through 270°, being at three times the frequency. Discounting the 90° phase shift suffered by the third harmonic itself, this means that, net, it has moved forward 180° relative to the phase relation with the fundamental at the input to the integrator. This is clearly shown in Fig. 2a, where at point $\mathrm{A}-\mathrm{A}$ (corresponding to the left hand side of Fig. l) the fundamental is passing through zero positivegoing, and the third harmonic is passing through zero negative-going. So its positive peak now coincides with that of the fundamental. But the 90° delay of the fundamental at $\mathrm{A}-\mathrm{A}$ corresponds to 450° at the fifth harmonic, or 360° discounting the 90° phase lag suffered by the fifth harmonic itself. In fact its phasing relative to the fundamental is unchanged. Now, the positive peaks of all odd harmonics, not just those of the 5th, 9 th..., etc., coincide with that of the fundamental, resulting in the sharp point of Fig. 2a.

Integration and differentiation

We should now consider the effect of repeated integration on a square wave, and of repeated differentiation, Fig. 3, assuming a finite rise-time to avoid infinite amplitudes. Taking integration first, Fig. 4 shows the effect of a second integration of a square wave - ie integrating the triangular wave of Fig. 2a. Again, the phase of the third and seventh harmonics, but not the fifth, has inverted. (The 7th might look like a straight line, but its amplitude is in fact $1 / 7^{3}$ times that of the fundamental, just -51 dB or a more or less negligible 0.29%).

At $1 / 27$ th of the fundamental, the third harmonic is responsible for 3.7% distortion, the total harmonic distortion being under 4%. So, for uncritical applications, a twice-integrated square wave could stand in for a sine wave, although as can be seen by comparing the bottom trace in Fig. 4 with the sine wave top trace, it is visibly just a little too rounded at the peak.

In differentiation (Fig. 5), the differentiator has a frequency response which rises at $6 \mathrm{~dB} /$ octave - the very reverse of the -6 dB /octave of the integrator illustrated in Fig. 2c. The harmonics are emphasised so that they are now the same amplitude as the fundamental.

Compared with the square wave of Fig. 1, in differentiation all the frequency components are advanced in phase by 90°. Like the triangular wave, but unlike the square wave, their positive peaks all line up with that of the fundamental. This is greatly accentuated into alternate positive and negative spikes (bottom trace) which, as more and more harmonics of appropriate phase and amplitude are added, would turn into infinitely high positive and negative spikes or 'delta functions'.

Fig. 5. When a square wave is differentiated, relative amplitudes and phases of the fundamental and the first three odd harmonics add to produce alternate positive- and negative-going spikes (bottom trace). Since, after differentiation, the amplitude of each odd harmonic of a square wave is the same as that of the fundamental, many more harmonics would need to be shown to get very near the ideal waveform.
$y=\frac{\sin x}{x}$

(c)

Fig. 6a). The "sin x upon x " function, plotted for positive values of x only.
6b). How the value of y gives the amplitude and phase of the various frequency components of a square wave when the frequency of the fundamental is represented by the value $\pi / 2$.
6c). Modulus of 6a), showing only the numerical value of the function at each point, regardless of its sign.

Fersonal computing is one of today's most exciting and rapidly changing technologies Much of this change is due to the dramatic Cevelopments of hardware and software for graFhics processing. Texas Instruments introduced the first graphics processor to the marketflace and is now widely recognised as a world laader in this field.

A Simple Approach to Personal Computer Graphics is a brand new book written in simple, understandable English for the engineer who is new to this fascinating branch of electronics. It is extensively illustrated and 'reats its subject as non-mathematically as zossible. This is a book by today's experts which could help you to become tomorrow's.

CIRCLE NO. 119 ON REPIYCARD

For more information,
just clip the coupon and return it to

Texas Instruments

Technical library MS83
P.O. Box 5-06271 Villeneuve-Loubet cedex FRANCE

Name
Title
Company
Address
Postal Code

DESIGN BRIEF

Mathematical treatment

Returning to the square wave, the relative amplitudes and phases of the fundamental and its harmonics are described exactly by an important mathematical function which, like π and exponential e, turns up all over the place:

$y=[\sin (x)] / x$.

When plotted, clearly the function is going to look like a sine wave. but getting smaller on successive cycles, due to the x in the denominator. But although $\sin (x)$, and hence y, will generally be zero each time x is an integral multiple of π - ie at $180^{\circ}, 360^{\circ}, 540^{\circ}$, etc, -0° is a special case. Here, $y=0 / 0$. The standard way to evaluate a function at a point where its value is the quotient of two noughts is De l'Hospital's rule. But in this case it can be done by mental arithmetic, remembering that for $x \ll 1$ rad, $\sin (x)$ approximately equals x. The smaller x is, the more nearly exact is the approximation, so that as x tends to zero, y tends to 1 .

Traditionally, x is used as the variable in this function, rather than, say, θ, with good reason. The latter suggests an angle, whereas the variable may often be something different. In the case of square waves of all sorts, a useful representation is when x represents not the instantaneous phase angle of the fundamental, but rather the various frequencies involved. The first zero of the function, when y $=0$, occurs when $x=180^{\circ}$ or π radians (Fig, 6a).

Now the positive half cycle of a square wave is identical in shape to the negative half cycle, in the sense that if you flip the positive half down below the horizontal and then slide it along half a cycle, it fits exactly. This indicates that the waveform contains no even harmonic components, a point which you can verify for yourself by
adding waveforms graphically as in the illustrations here, or by referring to old college notes on Fourier analysis

What happens if we let the point $x=\pi$ represent the frequency of the waveform's (missing) second harmonic component? The frequency of the fundamental would then be $\pi / 2$; of the third harmonic $3 \pi / 2$; of the fifth, $5 \pi / 2 \mathrm{etc}$. Corresponding values of y would then be $[\sin (\pi / 2) \mid / \pi / 2=2 / \pi$, one third of this value, one fifth and so on... precisely the relative amplitudes of the fundamental and harmonics of a square wave.

Here x represents the radian frequency, often called Φ, and x or Φ equals $2 \pi f$, where f is the frequency in hertz or cycles/s. So a radian frequency $x=\pi / 2$ corresponds to $(\pi / 2) / 2 \pi$, or 0.25 Hz , but the curve can still represent any frequency square wave, simply by introducing a suitable scaling factor.

Similarly, a scaling factor can be used to adjust the amplitude y to represent the actual amplitude of any particular square wave. In this way the curve can represent the constituent frequency components of any square wave un both frequency and amplitude - and notice that its negative loops show the phases of the 3 rd and 7 th.. harmonics to be opposite to that of the fundamental, 5 th and 9 th..., Fig. 6b. Sometimes, the curve is drawn to represent only the amplitudes of the harmonic components, not their phases, Fig. 6c. This is similar to a spectrum analyser display, where only the relative amplitudes of the components of a complex waveform are shown, without information defining their relative phases.

The curve of Fig. 6a also fits the spectrum of asymmetrical square waves and pulse trains of all sorts.

In a subsequent article. Ian is to discuss the implications of waveform representations for d-to-a comerters in digital audio.

> In the decade before thermionic diodes became widely used for radio reception, the barretter was one of the most popular devices available for rf detection. Here, George Pickworth discusses his work in replicating some of these early electrolytic detector designs.

In 1903, Reginald Fessenden patented the first practical electrolytic detector. He called his detector a barretter - a name apparently derived from the French word for 'exchanger". This name implies the exchange of ac for dc - i.e. that the device behaved as a rectifier.
Barretter hecame the generic name for a range of electrolytic detectors based on Fessenden's design. A typical receiver circuit is shown in Fig. 1. In North America, the barretter was the main commercial successor to the coherer It competed with many later detectors. including DeForest's audion valve, the gold-point. fused silicon detector and the steel-point carborundum detector, until about 1913 when the triode valve appeared.
A version of the barretter was made by the British Insulated Wire Company, BIWC, but it was not widely used in the UK, where Marconi's magnetic detector was a popular successor to the coherer. The barretter was however popular with North American experimenters and a number of variations evolved.
During its early years, the barretter was the standard for sensitivity and was generally
quoted as being somewhat better than Marconi's magnetic detector. On the other hand, the magnetic detector was rugged, reliable and - unlike the barretter - required no further adjustment after initial setting up. As a result, it was widely adopted by the UK for maritime use.
Fessenden's original barretter had an opentop cell, making it unsuitable for maritime use. To overcome this drawback, Fessenden patented his sealed-cell barretter in 1904.
Like many radio innovations, the electrolytic detector seems to have evolved as the result of empirical experiments, but it was not the only electrolytic device employed by the pioneers. The Wehnelt Interrupter, for example was an attractive alternative to the vibrator interrupter and was frequently used by Fessenden;
Although applied primarily in wave-train telegraphy systems, the barretter seems to have been the first practical continuous wave detector. Fessenden and Ruhmer, among others, used it to demodulate experimental ampli-tude-modulated telephony transmissions.
Unfortunately, a search through the literature failed to reveal meaningful technical data on

Fig. 1a). Dc bias for the barretter-based receiver, of between 1.9 and 2.5 V , was usually provided via a 500Ω potentiometer. Diagram b) details currents and voltages around the barretter electrolytic detector.

Photo A. When rectifying a 50 kHz wave train, the BIWC replica barretter resulted in this half-pear-shape outline.

Photos B.C. Output from the barretter electrolytic detector receiver, top, compared with output from the same receiver but with the barretter replaced by a diode. Both are 50 kHz continuous waves.

the barretter, so, from data gleaned from various sources, I constructed a replicas and conducled my own research with a number of variations. These included a simple Fessenden Barretter, a circa 1905 experimenter`s barretters based on Fessenden's original device, a BIWC type and a hybrid design.

Rectification

This study confirmed that the end result is rectification due to dissipation by the barretter of positive-going of half cycles; this effect can of course be simulated with a modern diode.
Operation of the barretter is complicated and involves the movement of ions in the electrolyte. A simplistic explanation is that posi-tive-going rf half cycles ride on the steady forward current through the barretter: this is created by the applied dc.
I found the sensitivity of my replica shown in Fig. 1a) to be poor. With greatly reduced with rf input power. I obtained a tone of similar loudness in a pair of headphones from around 1920 by substituting a diode for the barretter and its applied do source. Furthermore, rectification efficiency deteriorated as rf frequency was increased.
Rectification efficiency was based on the forward/reverse current ratio, measured by the relative amplitude of negative and positivegoing half cycles across the load resistor of headphones, Fig 1b).
Generally with pear-shaped wave trains, Photo A, the best I was attained was about 10:1 forward/reverse current ratio at $10 \mathrm{~h} / \mathrm{lz}$. This deteriorated to about $3: 1$ at 100 kHz and to about 1.2:1 at 500 hHz . Fig. 2. Rectification efficiency of the barretter is compared with a modern diode in Photos B and C.
I found that with wave train transmissions. Photo D, a forward/reverse current ratio as low as $1.3: 1$ still gave a clearly audible tone with my 1920 magnetic headphones. But, as

Photo D. Pear-shaped waveforms at 50 kHz produced by a receiver based on the hybrid barretter detector.

Photo E. Exponentially-declining wave trains at 10 kHz produced by a replica of BIWC barretter design.
maritime spark systems operated on frequencies between 500 kHz and 1 MHz , I assumed that commercial barretters had a better highfrequency response. More about this later.
A better than 5:1 forward/reverse current ratio was found to be necessary to give reasonable speech quality when demodulating am voice transmissions; with my replicas, this was only possible with low frequencies. However. with precise adjustment of rf input and applied dc, almost perfect rectification was attained with exponentially declining waves with a frequency of 10 kHz when using the BIWC replica. Fig. 3, and Photo E.

Recreating Fessenden's experiment

With the kind co-operation of the DTI. I was able to re-create conditions in a disused railway tunnel, similar to those experienced by the pioneers more than 90 years ago. I used my miniature spark transmitter, which, like Fessenden's system, had a spark coil and Wehnelt interrupter. It produced a wave train repelition frequency of approximately a 1 kHz . Frequency was 50 kHz .
I faithfully replicated equipment used by Fessenden - the only exception being that the transmitter was inductively coupled to the receiver. Hearing a musical note virtually identical to that first heard by Fessenden was a remarkable experience.

Musical note

To produce a pure musical note, the period between wave trains and must be precisely constant Photo D. Transmitters with rotary dischargers gave the purest tone, but as you have seen, a spark coil and Wehnelt interrupter could also produce pleasant tone: the makes/breaks were "clean" with an almost constant period and much faster than was possible with vibrators type interrrupters; these suffered from contaci bounce and imprecise make/breah. (See Spark transmitter techmolog. $E W+W W$ Nov. 93.)

Experiments showed that the shape of the wave-train envelope was not critical and that a pleasant note could be obtained with both pear-shaped, Photo A, and exponentially declining wave trains, Photos A\&E.
Loudness of the tone was set by the amplitude of the positive-going half cycles, as displayed by the oscilloscope. It was not significantly reduced by an increase in the magnitude of the negative going half cycles. provided that the forward/reverse current ratio did not fall to less than 2:1

Rf filtering

The circuit configuration precluded of current from being filtered from the headphone circuit. A capacitor connected across the headphone terminals would be in series with potentiometer, creating an R / C circuit that upsets the tuner.
Despite the high inductance of the headphone, their diaphragms respond to a train of radio-frequency half cycles as if they were a single pulse.
Successive wave trains cause the diaphragm to vibrate at the wave train repetition rate, typically 200 to 1 kHz , producing a corresponding tone in the carpieces. Photo D.
Diaphragms generally had a natural resonant frequency of about 1 kHz , so were most sensitive to wave trains having a repetition rate of this frequency.
To increase both sensitivity and selectivity. the resonant frequency of the diaphragms was occasionally tailored to a specific wave train repetition frequency. Signalling was by transmitting short or long groups of wave trains corresponding to the dots and dashes of the morse code.

Demodulation

Unfortunately, at Radio 4's frequency of 198 kHz , the forward/reverse current ratio of my replica barretters was insufficient to allow the transmissions to be used to evaluate the barretter as an an detector.
Nevertheless. experiments involving modulating the function generator output with speech signals confirmed that the replica BIWC barretter was capable of demodulating amplitude-modulated continuous waves at frequencies below about 50人1Iz. Speech reproduced was reasonably clear.

Barretter versus coherer

As the barretter was a direct successor to the coherer, it was interesting to compare these
two devices. The coherer obviously behaved as a latching relay; it was triggered by individual wave trains, thereafter a local de source operated the morse register. (see Cohererbased radio $E W+W W$ July 94)
The principal drawback to the coherer was that it had :o be re-sct or "restored" after responding to cach wave train: this limited wave train repetition rate to the order of a

100 Hz while making signalling very slow.
When the barretter was found 10 work in a circuit virtually the same as that used by the coherer - with the exception that the headphones were replaced by the morse inker and restorer - it was understandable that the the pioneers considered it as a relay type detector.

The barretter was therefore perceived as a polarised, very-high-speed. non-latching relay

Fig. 4. In this simplified Fessenden barretter, platinum-wire electrodes are used in conjunction with a 20% nitric acid electrolyte solution.

Fig. 5. Diagram of the original British Insulated Wire Company's barretter showing the thumb screw used to wind the anode into the electrolyte. The cathode was a mercury pooi.

Fig. 6. Experimenter's barretter from around 1905, based on Fessenden's original design. In this case, the electrolyte was 20% sulphuric acid and the cathode a lead strip.

Fig. 7. Hybrid barretter involving an anode similar to that used in the British Insulated Wire Company's design, Fig. 3.

Fig. 8. Delaney lamp detector was unusual in that it had electrodes equal in size. These electrodes were simply the filament supports of a small bulb.
that responded to individual waves within a train. As it did not need to be restored after each operation, it became known as a 'selfrestoring' detector.

While the relay analogy of a barretter was found to be faulty, the result was indeed pulses but with a repetition rate beyond the capability of a morse register. As a result, it was possible to hear and read signals via headphones.

Being a two-terminal device, isolating the input and output circuits of a barretter presented problems similar to those with the coherer. Circuit configuration had to avoid shunting the barretter with a dc path via the tuning coil; this was usually achieved by series tuning, as in Fig. 1.

Parallel tuning in conjunction with a dc blocking capacitor was occasionally adopted however. Many early experimenters simply connected the barretter directly to the antenna in the so-called 'untuned' mode originally used with the coherer.

While the coherer was best suited to trains containing very few waves, the barretter, being a rectifier type detector, was suited to continuous wave systems where tuners could be used to give a high degree of syntony. At that time however, wave-train transmissions prevailed. Although the barretter itself was well suited to these transmissions, $L C$ tuners were not. For this reason a high degree of syntony could not be achieved.

Electrolysis

Electrolysis is fundamental to the operation of the barretter, but as as the controversy over cold fusion shows, it is still not fully understood. Platinum, which seems to be an essential component of the barretter, is closely related to palladium. So it is not surprising that my experiments raised many questions that remain to be answered.

A typical a barretter comprised a small cell containing 5 to 10 ml electrolyte, either 20% nitric or sulphuric acid and a pair of electrodes. It required an applied dc, typically 1.9 to 2.5 V , and typically derived from two 1.5 V cells via a 500Ω potentiometer.
The barretter generates a potential of about 1.7V that opposes the applied dc. As a result, forward current remains virtually zero until applied dc reaches about 1.7 V . Here, forward current increases linearly with applied dc.

This phenomenon was known to the pioneers. They perceived that if applied dc was
set at a level slightly below 1.7 V , positivegoing rf half cycles would add to the applied dc. In turn, this would cause current pulses to flow through the circuit in sympathy with the rf half cycles.

Typical barretters

An essential feature of barretter is that one electrode presents a minute, almost a microscopic surface area to the electrolyte; this was generally the anode but some early literature shows it as the cathode.
Although my replicas would work when the minute electrode was the cathode, efficiency was far inferior. So for the purpose of this study, the minute electrode is the anode. The polarity of the electrodes is of course set by the polarity of the applied dc, Fig. 1b).
The term barretter applies only to devices based on Fessenden's design, ie devices requiring applied dc and having one minute electrode. A large number of pioneers experimented with electrolytic detectors and numerous variations evolved.

Fessenden detector construction

I made a simple Fessenden detector using a small cell with an anode comprising a short length of very fine platinum wire. This wire was attached to the end of a screw so that it could be adjusted to just 'tip' the 20% sulphuric acid electrolyte. The cathode was a small platinum strip. With my replica, I found adjusiment critical. It was also upset by vibration, which presumably caused slight variations in the level of the electrolyte, Fig. 4.
Incidentally, early literature often referred to platinum wire as Wollaston wire; presumably after Wollaston who developed and patented a technique for producing platinum, thus making this metal more readily available and dramatically reducing its price.

Insulated Wire's design

The British Insulated Wire Company, BIWC, design had a cell with a capacity of only about 2.0 ml ; the electrolyte was 20% nitric acid. The anode consisted of a short length of platinum wire, said to be only 0.004 mm diameter, fused into the end a glass tube; the end of the wire was ground flush with the tube to expose only the wire's cross section. The cathode was a pool of mercury, Fig. 5.
For my replica, Fig. 3, I used 0.01 mm diameter platinum wire for the anode, as this was the finest I could obtain. As you will see this
difference in wire gauge may well account for the better high frequency response of commercial barretters.

Other designs

Most early experimental designs were based on Fessenden's original screw-thread anode. Cathodes varied from a tiny platinum plate, platinum wire, a pool of mercury to lead strips. The electrolyte was either 20% nitric or sulphuric acid, Fig. 6.

The hybrid design. I found the BIWC-type anode convenient as the electrode was simply immersed in the electrolyte to the optimum depth. No further adjustment was needed. Moreover, I found the hybrid design of Fig. 7, which incorporated a BIWC anode and a lead strip cathode, to be most practical. Depth to which the lead strip cathode was immersed in the electrolyte could easily be adjusted, thereby changing its effective surface area.

The hybrid barretter cell had a capacity of about 20 ml and contained about 10 ml of 20% sulphuric acid; it was housed inside a screwcap jar to prevent spills. Although slightly less efficient than the BIWC design it was reliable and gave consistent results.

Delaney lamp detector. Unlike the barretter, the Delaney-lamp electrolytic detector, so named because it was constructed from a small electric lamp, had electrodes of equal size, Fig. 8. Experimenters used a blow torch to melt a small hole in the glass envelope and remove the filament; the bulb was then partly filled with 20% nitric acid. The filament support leads formed the electrodes; these were platinum as this was one of the few materials available at that time that could be fused into the glass.

The Delaney lamp detector was reported to be less sensitive than the barretter but tolerant to very strong transmissions which could damage the barretter's minute electrode; this gives a good indication of the enormous energy present in wave train radiated by a spark transmitter.

Voltaic-cell designs. The Shoemaker detector apparently had a minute platinum anode, but its cathode was a small zinc plate. The electrolyte was dilute sulphuric acid; it was in effect a tiny voltaic cell so did not require applied dc.
Other voltaic-cell designs apparently used platinum in conjunction with carbon, zinc or copper electrodes while some designs used copper-sulphate solution as the electrolyte.

In a second article, George will be discussing behaviour of barretter in more detail.

Iaw Iwwinicail Iaganditer Bils from Antar

Removing larger components from PCB boards can be a problem in rework and repair shops. The new Antex range of 10 SMT Desolder Bits have been produced to fit

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM: Programs 24,28,32 pin EPROMS, EEPROMS, FLASH and Emulators as standard, quickly, reliably and at low cost.
Expandable to cover virtually any programmable part including serial EEPROMs, PALs, GALs, EPLDs and microcontrollers, in many different packages.
DESIGN: Not a plug in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee. ASK FOR FREE

MQP ELECTRONICS LId. Park Road Centre Malmesbury, Wiltshire. SN16 OBX. UK TEL. 0666825146 FAX. 0666825141

INFORMATION PACK
IRELAND 1.2800395 GERMANY O89966002071
NORWAY 0702.17800 $\begin{array}{ll}\text { NORWAY } & 0702-17890 \\ 029210354\end{array}$ FARANCE
$\quad 0292103544$
16901379 SWEDEN 0859032185 ASOOTOOM ELECTROSFEEOUK

Finally an upgradeable PCB CAD system to suit any budget ...

BOOTOCODHITO
 BoardCapture - Schematic Capture

- Direct netlist link to BoardMaker2

Forward annotation with part values
Full undo/redo facility (50 operations)
Single-sheet, mutti-paged and hierarchical designs
Smooth scrolling

- intelligent wires (automatic junctions)

Dynamic connectivity information
Automatic on-line annotation

Integrated on-the-fly library editor
Context sensitive editing
Extensive component-based power control
Back annotation from BoardMaker2

Board Maker

BoardMaker1 - Entry level

- PCB and schematic dráting
- Easy and intuitive to use
- Surface mount support

9C, 45 and curvad track comers

- Ground plane fil

Copper highlight and clparance checking
BoardMaker2 - Advanced level

- Al the features of BonedMaker1 plus
- Full netlist support - O=Cad, Schema, Tango, CadStar

Full Design Rule Checting - mechanical \& electrical

- Tcp down modification Yom the schematic
- Component renumber with back annotation
- Report generatof - Database ASCII, BOM

133

- Thermal power plane Espport with full DRC
Board Router

BoardRouter - Gridiess autorouter

- Simultaneous multi-laye routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix. HPLaserjet and PostScripi
- Penplotters - HF, Grapltec, Roland \& Houston
- Photoplotters - All Gerter 3×00 and 4×00
- Excellon NC Dril / Ancotated drill drawings (BM2)

Call ${ }^{3}$ or info or full evaluation kit Tsien (UK) Limited Tel (2354) 695959
Fax 10354) 695957

$$
2-1+2 \pi=
$$

Excellon NC Dril / Anfotated drill drawings (BM2)

tsien

Do you have an original circuit idea for publication? We are giving $£ 100$ cash for the month's top design. Other authors will receive $\mathbf{\Sigma 2 5}$ cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

Winner of the first spectrum analyser goes to the circuit: One chip air-flow monitor

$\mathrm{A}_{\mathrm{p}}^{\mathrm{n}}$
n 800Ω thermistor with a lamp in series provides combined negative and positive temperature coefficient, and can accept voltage excitation; the positive
coefficient of the lamp filament prevents thermal runaway, but allows sensitivity to heat dissipation in the air stream.
With normal flow, the thermistor

possesses high resistance and passes a low current to node 11 of the 3046 transistor array. The triple current mirror therefore turns off the output transistor. If air-flow drops, the temperature rises, reference current and current through the monitor increase and the output transistor conducts and saturates.
The supply voltage and load resistor R_{c} should be chosen to provide the required output levels; limits for the 3046 are 15 V and 10 mA collector current. Trim reference current to take account of varied ambient temperature.
John A Haase
Fort Collins
Colorado
USA

Capacitive continuity tester helps locate cable breaks

${ }^{t}$ is common knowledge that breaks in multi-way cables with moulded connectors always occur at the other end to the one you cut off. This device uses a single probe to test continuity and will indicate at which end the break is.
A 4060 oscillator/counter runs its oscillator at 20 kHz , additional resistance or reactance connected to the junction of the $100 \mathrm{k} \Omega$ and 220 pF tuning components changing the frequency. An output from Q_{3}, Q_{4} or Q_{5}, depending on personal preference, drives a piezoelectric sounder to give the indication and the circuit is housed in an unpainted metal case.
Hold the cable in one hand, the tester in the other and touch the rigid probe to each pin in turn; if the pin is connected, stray capacitance decreases the tone frequency. Do the same at the other end of the cable. Breaks are at the end where the tone frequency is least affected by strays. Carry
out pin-to-pin checks by touching one pin with the probe pin and the other with a finger; the oscillator stops if there is continuity.
Motors and large inductors can be compared to indicate shorted turns, but this will need a little practice.

Robert Atkinson

Christchurch
Dorset

YOU COULD BE USING A 1GHz SPECTRUM ANALYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $£ 100$ monthly star author's fee together with $£ 25$ for all other ideas published.
Our judging criteria are ingenuity and originality in the use of modern components with simplicity particularly valued.

Light-control for oscillators

Varying the amount of light falling on a light-dependent resistor varies the frequency of an oscillator.
Light on $R_{\text {L }}$. the ldr. determines the light output of the opto-coupler led and therefore the output of its photodiode. Reverse hias on the variable-capacitance diode forming part of the oscillator tuned circuit is now dependent on the ldr illumination. which sets the frequency of oscillation.

K N Sunil Kumar

Amount of light falling on the light-dependent resistor R_{L} determines oscillator frequency,
Visakhapatnam
India

HF converter for car radios

Asimple frequency converter in from of an AM car radio offers a convenient means of monitoring he signals. Frequency stability and easy tuning are among the advantages over more exotic circuitry and the selective front end contributes 10 good image rejection.
The converter shown is conventional: it is crystal-controlled. each crystal giving two tuning ranges, although one of them is reversed. Two crystals therefore give four 1 MHz ranges, $5 \mathrm{MH} \neq$ and 6 MHz crystaln covering 3.4-7.6MHz continuously. ssh/cw signals can be received if a 45.5 hHz hfo is used.
Inductors L are wound on ferrite toroids. House the conserter in a metal box to avoid picking up local hroadeast signals.

Peter Parker

Bentley
Australia

Tuned front end converts hi signals to broadcast

Magnetic field detector

External magnetic fields affect the Epermeability of a magnetised ferrite rod far more than that of a non-magnetised one. Making the ferrite tune an oscillator produces a beat frequency with the output of a similar reference oscillator.
These rods are 8 by 110 mm and wound with 110 turns of 0.3 mm enamelled copper wire and have a little magnet glued to one end, with reversed polarity one to the other. You may find similar rods and coils in a salvaged mw receiver.
Reference and scanning probes are identical, mechanically and electrically, to confer invulnerability to temperature and voltage variation. Both oscillators tune to 1.25 MHz , a small magnet being attached to the outside of the scanning probe case, to vary the beat frequency when it is turned.
Though screening is vital, a metal cae stops oscillation, so a plastic case is used, with metal strips or wires parallel to the rod and earthed at one end. Other circuitry is in one box, with the halves screened from each other to avoid locking one oscillator to the other.
Zero beat is obtainable with the fine frequency control and a very low beat frequency is detected by using the If oscillator to interfere with the beat and produce an audible sound.
Turning the scanning probe through 180° in the Earth's field produces a 1 12 kHz beat frequency change.
It is possible to detect the beat clearly at, for example, 20 cm from the front of a tv set, 1 m from its side, 25 cm from an oven and 60 m from a 300 kV power line. D Di Mario
Milan
Italy
Magnetic stray field of appliance and other sources and distance for clearly detectable modulation.

14in tv - front	20 cm
14in tv - side	1 m
300W halogen lamp	10 cm
25W soldering iron	15 cm
Kitchen oven	25 cm
1100W iron	20 cm
Toaster	15 cm
Fluorescent light	22 cm
Compass needle	5 cm
Car - from bonnet	60 cm
380kV Power line	60 m

Bike battery charger

Tlis cycle battery charger using the standard lighting-set dynamo or generator has been in use for three years with no problems.
A voltage-doubler, driven by the generator, provides 3.5 W of cycle-framereferred dc - slightly higher in voltage than when driving lamp loads. Three zeners and T_{1} provide a gentle start-up,
protect the circuit when the cycle is travelling fast and when there is no load and the led indicates that normal operating voltage exists. A National Semiconductor $L M 2575-A D J$ set to 5 V by means of the feedback, converts the rectified voltage to 6 V .
Four NiCd batteries in a solder-tagged pack use any power offered by the
generator at any speed from walking pace to about 14 mile/h. the stabilised voltage having prolonged the life of the 2.4 W halogen bulbs. The whole thing fits into a drink bottle.
P W Fry, G4SBF
Southampton

PCBs for Douglas Self's power amplifier series

Circuit boards for Douglas Self's high-performance power amplifier are now available via $E W+W W$.
Detailed on page 139 of the February issue, Douglas Self's state-of-the-art power amplifier is the culmination of ideas from one of the mast detailed studies of power amplifier design ever published in a monthly magazine. Capable of delivering up to 100 W into 8Ω, the amplifier features a distortion of 0.0015% at 50 W and follows a new design methodology.
Designed by Douglas himself, the fibreglass boards have silk-screened component IDs and solder masking to minimise the possibility of shorts. Sold in pairs, the boards are supplied with additional detailed constructional notes.
Each board pair costs £45, which includes VAT and postage, UK and overseas. Credit card orders can be placed 24 hours on 081-652 8956. Alternatively, send a postal order or cheque made payable to Reed Business Publishing to EW+WW, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Wide-range, low-power, programmable timer

D
rawing only $10 \mu \mathrm{~A}$, this timer can be programmed for delays from 8 ms to over a year, to an accuracy determined by the crystal.
A low-current $(4 \mu \mathrm{~A}) \mathrm{HA} 7210$ oscillator drives a pair of CD4536 24-stage binary ripple counters, whose a-to-d converter and 8 -bypass pins select which stage is used for output. If $8-B Y$ is low, the first eight stages are bypassed; if high, one of the first 16 stages feeds the output, determined by the a-to-d converter inputs.
In the diagram, 8 -BY of $I C_{2}$ is low and that of $I C_{1}$ high, which causes the the pair together to form a 24 -stage counter with an eight-stage prescaler, in which D_{0-7} select the output stage.
When the selected output goes high, it inhibits the $I C_{1}$ clock, so that the output remains high until S_{1} resets the counters.
Since the minimum number of stages selected is eight and the maximum forty, the range of delays is 7.8125 ms with D_{0-7} all low to 33554432 seconds with D_{0-7} high.
Yongping Xia
Torrance
California
USA
For a current cinenditure of 1n,1, delay in this programmable timer ranges from milliseconds to more than a year.

Electronic Designs Right First Time?

Schematic Design and Capture

Create your schematics quickly and efficiently using EASY-PC Professional Areas of the circuit can be highlighted on screen and simulated automatically using PULSAR, ANALYSER III and Z-MATCH our simulation and design programs.

Digital and Analogue Simulation

PCB Design

The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic.

Visa, MasterCard, Amex welcome

Affordable Electronics CAD

EASY-PC: Entry level PCB and Schematic CAD	$£ 98.00$
EASY-PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR.	£195.00
EASY-PC Pro' XM: Greater Capacity, XMS Version.	£245.00
PULSAR: Entry level Digital Circuit Simulator ~ 1500 gate capacity.	£98.00
PULSAR Professional: Digital Circuit Simulator $\sim 50,000$ gate capacity.	£195.00
ANALYSER II: Entry level Linear Analogue Circuit Simulator ~ 130 nodes.	£98.00
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 nodes.	£195.00
Z-MATCH for Windows: Smith Chart based problem solving program for R.F. Engineers.	£245.00
FILTECH: Active and Passive Filter design program.	£145.00
No penalty upgrade policy. Prices exclude P\&P and VAT.	

Number One Systems Ltd.

Ref WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.
For Full Information Please Write, Phone or Fax.
Tel: 0480-461778
Fax: 0480-494042

PC PAL VGA TO TV CONVERTER Converts a colour TV into a basic VGA screen. Complete with built in p.
£49.95. Ideal tor laptops or a cheap upgrade.
EMERGENCY LIGHTING UNTT Complete unit with 2 double bulb floodlights, built in charger and auto switch. Fully cased. 6 v 8 AH lead acid req'd. (secondhand) $£ 4$ ref MAG4P11.
GUIDED MISSILE WIRE. 4,200 metre reel of ultra thin 4 core insuiated cable, 281bs breaking strain, less than 1 mm thickl Ideal alarms, intercoms, fishing, dolis house's etc. $£ 14.99$ ref MAG15P5 SINCLAIR C5 13" $^{\prime \prime}$ WHEELS Complete with centre bearing
 300V PANEL METER $70 \times 60 \times 50 \mathrm{MM}$. AC, 90 degree scale Good quality meter. E 599 ref MAG 6 P14. Ideal for monitoring mains etc. ASTEC SWITCHED MODE PSU BM4 1012 Gives +5 © 375 A +12@1 ${ }^{1}$ 5A, - 12@. 4 A. $230 / 10$, cased, BM41012. E5 99 ref AUG6P3 TORRODIAL TX $30-0-30480 \mathrm{VA}$. Perfect for Mostet amplifers etc. 120 mm dia 55 mm thick. $£ 1899$ ret APR19.
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a cigarplug. $12 v 2$ watt. $£ 9.99$ ea ref $A \cup G 10 P 3$ FLOPPY DISCS DSDD Top quality 5.2° discss, these have been written to once and are unused Pack of 20 is $£ 4$ ref AUGAP1
MOD WIRE Perfect for repaining PCB's, wire wrap etc. Thin
insulated wire on 500 m reets. Our price just $£ 9.99$ ref APR 10 P 8 . 12v MOVING LIGHT Control er. Made by Hella 6 channels rated at 90 watts each Speed control, cased. £34.99 ref APR35.
ECLATRON FLASH TUBE As used in police car fashing lights etc, full spec supplied, $60-100$ flashes a min. 59.99 ref APR10P5. 24v AC 96WATT Cased power supply. New. £ 13.99 ret APR14 MILTARY SPEC GEIG ER COUNTERS Unused and straight from Her majesty's forces. $£ 50$ ret MAG 50 P3.
STETHOSCOP E Fully functioning stethoscope, Ideal for Ilstering to hearts. pipes. motors etc. E6 ref MAR6P6.
OUTDOOR SOLAR PATH LIGHT Captures sunlight during the day and automatically switches on a built in lamp at dusk.
Complete with seales lead acid battery etc.E19.99 rel MAR20P1. A LARM VERSION Of above unit comes withbuilt in alarm and pir to deter intruders. Good value at just $£ 24.99$ ref MAR25P4. CLOCKMAKER KIT Hours of fun making your own clock, com plete instructions and everything you need. $£ 7.99$ ref MAR8P2. CARETAKER VOLUMETRIC Alarm, will cover the whole of the ground foor against forcred entry. Includes mains power supply and integral battery backup. Pow erful internal sounder, will take extemal bell if req'd. Retail £150+. ours? £49.99 ref MAR50P1.
TELEPHONE CABLE White 6 core 100 m reel complete with a pack of 100 dips. Ideal 'phone extns etc. $£ 7.99$ ref MAR8P3. IBM PC CASE AND PSU Ideal base for building your own PC Ex equipment but OK. £9 99 each REF: JUN10P2.
MICRODRIVE STRIPPER Small cased tape drives ideal for stripping, lots of useful goodies induding a smart case, and lots of components. \&2 each ref JUN2P3.
SOLAR POWER LAB SPECLAL You get TWO 6 " $\times 6^{\circ} 6 \mathrm{~V} 130 \mathrm{~mA}$ solar cells, 4 LED's. wire. buzzer, switch plus 1 relay ormotor. Supen rauue kit Ust E5. 99 REF: MAG6P8
SOLID STATE RELAYS will switch 25A mains. Input 3.5-26y DC $57 \times 43 \times 21 \mathrm{~mm}$ with terminal screws $£ 399$ REF MAG 4 P 10 300DPIA4 DTP MONTOR Brand new but shop soiled so hence bargain price!TTLECL inputs, 15° landscape, 1200×1664 pixel complete with circuit diag to help you interface with your projects. JUST E14.99. REF JUN 15P2.
MULTICORE CABLE 300 metre reel of grey 8 core cable ideat for 'phones, intercomms. computers, alarms etc Comes in specialdispensing container to avoid tangles. £ 15 ref AUG15. BUGGING TAPE RECORDER Small voice activated recorder, usesmicro cassette complete with headphones. $£ 28.99$ ref MAR29P1 ULTRAMINIBUGMIC $6 \mathrm{~mm} \times 3.5 \mathrm{~mm}$ made by AKG, 5 t 12 v electret condenser. Cost $£ 12$ ea. Our? four for $£ 9.99$ REF MAG10P2 RGB/CGAVGAITL COLOUR MONTTORS 12° in good condition. Back anodised metal case. £79 each REF JUN79 GX4000 GAMES MACHINES returns so ok for spares or repair E9 each (no games). REF MAG9P 1
C64 COMPUTERS Retums, so ok for spares etc $£ 9$ ref MAG9P2 FUSELAGE LIGHTS 3 foot by 4° panet $1 / 8^{\circ}$ thick with 3 panels that glow green when a valtage is applied. Good for night lights, fron panels, signs, disco etc. $50-100 \mathrm{v}$ per strip. $£ 25$ ref MAG25P2 ANSWER PHONES Returns with 2 faults, we give you the bits for 1 fault, you have to find the other yourself. BT Response 200's $£ 18$ ea REF MAG18P1. PSU $E 5$ ref MAGSP12
SWITCHED MODE PSU ex equip. $60 \mathrm{w}+5 \mathrm{v}$ @ 5 A . -5 v @. 5 A . +12 VCO $2 \mathrm{~A},-12 \mathrm{VQ} .5 \mathrm{~A} \quad 120 / 220 \mathrm{v}$ cased $245 \times 88 \times 55 \mathrm{~mm}$ IECinput socke 5699 REF MAG7P1
PLUG IN PSU 9V 200 mA DC $£ 2.99$ each REF MAG3P9 PLUG IN ACORN PSU 19 v AC 14w . $£ 2.99$ REF MAG $3 P 10$ POWER SUPPLY fully cased with mains and of leads $17 \mathrm{~V} D C$ 900 mA output. Bargain price $£ 5.99$ ref MAG6P9 ACORN ARCH MEDES PSU +5 V Q $4.4 \AA$ on/on sw uncased, selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ £ 7 REF MAG7P2 GEIGER COUNTER KIT Low cost professional twin tube, com plete with PCB and components. Now only £19 REF AUG 19. $9 v$ DC POWER SUPPLY Standard plug in type 150 ma 9 DC with lead and DC power plug pnce for two is $E 2.99$ rel AUG3P4. AA NICAD PACK encapsulated pack of 8 AA nicad batteries (tagged) ex equip, $55 \times 32 \times 32 \mathrm{~mm}$ £3 a pack. REF MAG3P 11 13.8V 1.9A psu cased with leads Just $£ 999$ REF MAG10P3 360K 6.26 brand new halt height noppy drives IBMoompatible industry standard. Just £6.99 REF MAG7P3
PPC M ODEM CARDS. These are high spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance pnce is $£ 5$ REF: MAG5P1 INFRA RED REMOTE CONTROLLERS Onginally made for hi spec satellite equipment but perfect for all sorts of remote control
projects. Our dearance price is just $£ 2$ REF: MAG2
propects. Our dearance price is just $£ 2$ REF: MAG2
TOWERS INTERNATIONAL TRA NSISTOR GUIDE. A very
useful book for finding equivalent transistors, leadouts, specs etc. useful book for finding equivalent transistors, leadouts, specs etc.
$£ 20$ REF: MAG20P9 £20 REF: MAG20P
SINCLAIR CE MOTORS we have a few left without geanoxes.

NEW BULL ELECTRONICS STORE IN

WOLVERHAMPTON

55A WORCESTER ST TEL 090222039
Spec is 12v DC 3,300pm £25 ref MAG25.

-NEWPRODUCT

200 WATT INVERTER Converts $1 \mathrm{C}-15 \mathrm{~V}$ DC into either 110 v or 240 v AC. Fully cased $115 \times 36 \times 156 \mathrm{~mm}$, complete with heavy duty power lead, cigar plug, AC outlet socket.Auto overload shutdown, auto short circuitshut down, auto input over voltage shutdown, auto input under voltage shutdown (with audible alarm), auto temp control, unitshuts down if overheated and sounds audible alarm. Fused reversed polarity protected. output frequency within 2%, voltage within 10%. A extremely well built unit at a very advantageous price!!!Price is $£ 64.99$ ref AUG65.

UNNERSAL SPEED CONTROLLER KIT Designed by us for the C5 motor but ok for any 12 motor up to 30A. Complete with PCB etc A neat sink may be required. $£ 17.00$ REF: MAG17
MAINSCABLE Precut black 2 core 2 metre lengths ideal for MANT, projects etc. 50 metres for $£ 1.99$ ref AUG2P7.
repairs,
COMPUTER COMM UNICATIONS PACK Kit contains 100 m COMPUTER COMM UNICATIONS PACK Kit contains 100 m of 6 core cable, 100 cable dips, 2 line drivers witt RS 232 interfaces and all connectors etc. Ideal low cost method of communicating MINIOYCLOPS PIR $52 \times 62 \times 40 \mathrm{~mm}$ rurs on PP3 battery complete with shrill sounder Cheap protection at only $£ 5.99$ ref MAR6P4. ELECTRIC MOTOR KIT Comprehensive educational hit includes all you need to build an electric motor. £9.99 ref MAR10P4. VIDEO SENDER UNTT. Transmits both audic and video signals from either a video camera. video recorder, $T V$ or Computer etc to any standard TV set in a 100' range! (tune IV to a spare channel) 124 DC op. Price is $£ 15$ REF: MAG15 12 V PSU is $E 5$ extra REF: MAG5P2 -FM CORDLESS MICROPHONE Small hand held unit with a 500^{\prime} range! 2 transmit power levels. Reqs PP3 9 battery. Tu neable 500^{\prime} range! 2 transmit power levels. Reqs PP3 9 VD
to any FM recever. Price is $£ 15$ REF: MAG15F1
LOW COST WALKIE TALKIES Pair of batiery operated units with a range of about 200. Ideal for garden use or as an educational toy. Price is $£ 8$ a pair REF: MAG $8 P 12 \times P P 3^{-}$eq' d .
-MINATURE RADIO TRANSCENERS A pair of walke talkies with a range of up to 2 kilometres in open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases and earpieces. $2 \times P P 3$ req'd. E30.00 pair REF: MAG30.
COMPOSITE VIDEO KIT. Converts composite video into separate H sync, V sync, and video. 12 V DC. $£ 8.00$ REF: MAG8P2. LQ3500 PRINTER ASSEMBLIES Made by Amstrad they are entire mechanical printer assemblies including pnnthead, stepper motors etc etc In fact everything bar the case and electronics, a good stnpper! E5 REF: MAG5P3 or 2 for £8 REF: MAG8P3
SPEAKER WIRE Brown 2 core 100 foot hank E2 REF: MAG2P1 LED PACK of 100 standard red 5 m leds $£ 5$ REF MAG5P4
UNNERSAL PC POWER SUPPLY complete with nyleads, switch, fan etc Two types available 150w at £15 REF:MAG15P2 ($23 \times 23 \times 23 \mathrm{~mm}$) and 200 w at E20 REF. MAG20P3 $(23 \times 23 \times 23 \mathrm{~mm})$ *FM TRANSMITER housed in a standard working 13A adapter!! the bug runs directly of the mains so lasts foreve? why pay $£ 700$? or price is $£ 26$ REF. MAG26 Transmits to any FM radio
-FM BUG KIT New design with PCB embedded coil for extra stability. Works to any FM radio. 9v battery req'd. £5 REF MAG5P5 *FM BUG BUILT AND TESTED superior design to kit. Supplied to detective agencies. Ov battery req'd £14 REF: MAG 14
TALKING COIN BOX STRIPPER onginally made to retail at $£ 79$ each, these units are designed to corvert and ordinary phone into a payphone The units have the locks missing and sometimes broken hinges How ever they can be adapted for their original use or used for
something else?? Pnce is just © REF. MAG3PI something else?? Pnce is just E3 REF: MAG3PI
100 WATT MOSFET PAIR Same spec as $25 K 343$ and $2 S J 413$ ($8 \mathrm{~A} .140 \mathrm{v}, 100 \mathrm{w}$) 4 N channel, 1 P channel, £3 a parr REF: MAG3P2 TOP QUALTTY SPEAKERS Made for HIFI televisions these are 10 watt 4R Jap made 4^{*} round with large shielded magnets. Good quality $£ 2$ each REF: MAG2P4 or 4 for E6 REF MAG6P2
TWEETERS 2^{*} diameter good quality tweeter 140R (ok with the above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3P4 AT KEYBOARDS Made by Apricol these quality keyboards need just a small mod to run on any AT, they work perfectly but you will have to put up with 1 or 2 foreign keycaps! Pnce £6 REF: MAG6P3 PC CASES Again mixed types so you take a chance next one off the pile E12REF:MAG12 or two the same for E2O PEF: MAG20P4 HEADPHONES Ex Virgin Attantic 8pairs forE2 REF: MA G2P8 PROXMITY SENSORS These are small PCB's with what look like a source and sensor LED on one end and lots of components on the rest of the PCB Complete with fy leads. Pace of $5 £ 3$ REF: MAG: 3P5 or 20 for $£ 8$ REF: MAG8P4

Some of our products may be unlicensable in the uk

BULL ELECTRICAL

250 PORTLAND ROAD HOVE SUSSEX BN3 5QT
MAIL ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS $£ 3.00$ POST PLUS VAT.

PLEASEALLOW 7-10 DAYS FOR DELIVERY
telephone orders welcome
TEL: 0273203500
FAX: 0273323077

SNOOPERS EAR? Original made to clip over the earpiece of telephone to amplify the sound-it also works quite well on the cable telephone to amplity the sound-it also works quite
running along the wall! Price is E5 REF: MAG5P7
DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price just ES REF: MAG598 Worth it just for the very comprehensive manual! 5.25° only.
DOS PACK Microsoff version 5 Onginal sofware but no manuals hence only E3 REF: MAG3P6 5.25° only.
PIR DETECTOR Made by famous UK alarm manufacturer these are hi spec, long range internal units. 12v operation. Sllght marks are hi spec, long range internal units. 12 operation. Sight m
case and unboxed (although brand new) E8 REF: MAGBP5 WINDUP SOLAR POWERED RADIO AMFM radio complete with hand charger and solar panel! £14 REF: MAG14P1
MOBILECAR PHONE $\mathbf{5 . 9 9}$ Well almost complete in carphone excluding the box of electronics normally hidden under seat. Can be made to illuminate with 12 v also has built in light sensor so display
only illuminates when dark. Totally connincing! REF: MAG6P6 ALARM BEACONS Zenon strobe made to mount on an extemal bell box but could be used for caravans etc. $12 v$ operation. Just connett up and it flashes regularty) $\mathbf{E} 5$ REF: MAG5P 11
FIRE ALARM CONTROL PANEL High quality metal cased alarm panel $350 \times 165 \times 80 \mathrm{~mm}$. With key. Comes with electronics but no infermation. sale price 7.99 REF: MAG8P6
REMOTE CONTROL PCB These are receiver boards for garage door opening systems. Another use? E4 ea REF: MAG4P5 $6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL 12V $155 \times 310 \mathrm{~mm}$ 130 mA . Bargain price just $£ 5.99$ ea REF MAG6P 12
FIBRE OPTIC CABLE BUMPER PACK 10 metres for £4.99 ref MAGSP 13 ideal for experimenters! 30 m for E 12.99 ref MAG $13 P 1$ LOP ${ }^{-}$X Line outputtransformers believed to be for IBM hi res colour monitors but useful for getting high voltages from low onesl $£ 2$ each REF: MAG2P 12 bumper pack of 10 for $£ 12$ REF: MAG12P3.
HEATSINKS (inned) TOZ20, designed to mount vertically on ap $50 \times 40 \times 25 \mathrm{~mm}$ you can have a pack of 4 for $£ 1$ ref JUN 1 P 11 . WATERPROOF JUNCTION BOX 65 mm dia 33 mm deep. Four cable entry exit points (adjustable for any size cable) snap fit lid. Ide
for TV, satellite use $£ 2$ ea ref APR2 or 6 for $£ 10$ re $A P R 10 P 7$

BOTH SHOPS OPEN 9-5.30 SIX DAYS A WEEK

INFRARED LASER NIGHT SCOPES
Second generation image intensifier complete with hand grip attachment with built in adjustable laser lamp for zero light conditions. Supplied with Pentax 42 mm camera mount and normal eye piece. 1.6 kg , uses 1 xPP3,3xAA's (all supplied) $245+$ Vat

NEW HIGH POWER LASERS

15 mW , Helium neon, 3 switchable wave lengths $.63 \mathrm{um}, 1.15 \mathrm{um}, 3.39 \mathrm{um}$ (2 of them are infrared) 500:1 polarizer built in so good for holography. Supplied complete with mains power supply. $790 \times 65 \mathrm{~mm}$. Use with EXTREME CAUTION AND UNDER QUALIFIED GUIDANCE. £349+Vat. fefifefWE BUY SURPLUS STOCK\&ffafef

TURN YOUK ZURPLUS STOCK INTO CASH.
DMMEDIATE SETTLEMENT. WE WILL ALSO QUOTE FOR

1994 CATALOGUE

3FT X 1FT 10WAT SOLAR PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$ £33.95

TOP QUALITY AMORPHOUS SAICON CELLS HAVE ALMOST A TIMEIESS LIFESPAN WITH AN INFINITE NUMBER OF POSSIBLE AP PLICATIONS, SOME OF WHICH MAY BE CAR BATTERY CHARG ING. FOR USE ON BOAIS OR CARAVANS, OR A
PORTABLE 2 V SUPPIY IS REQUIRED. REF: MAG 34

PORTABLE RADIATION DETECTOR £49.99

A Hand held personal Gamma and X Ray detector. This unit contains two Geiger Tubes, has a 4
digit $L C D$ display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 K VV to over 1.2 M eV and a measuring range of $5-9999 \mathrm{UR} / \mathrm{h}$ or $10-99990 \mathrm{Nr} / \mathrm{h}$. Supplied

Reverse engineering FOR GRAPHS

Graphs on paper are excellent tools for conveying trends. but copying a graph's numeric information into a computer in order to make use of it in software tools can be extremely tedious.

Given a calibration curve of a sensor. for example, it can be handy to have the information not as a plot. but as an array of numbers. Digitising plots or graphs using a digitising tablet is one way of achieving this. But there is now another alternative, and that is to use a pe software package running under DOS called UnGraph
Published by Biosoft of Cambridge. UnGraph can be used manually by clicking the mouse on the plot points. Alternatively you can use the software's automatic line tracer which follows the plot trace and generates the $[x, y]$ coordinates as it progresses - an action referred to as vectorising.
There is sufficient intelligence in UnGraph to correct for possible skew in the image. When in automatic mode, the software is usually able to distinguish between the plot curve and its grid lines.
To make effective use of UnGraph you will need some means of obtaining an image of the graph that you wish to digitise. This normally needs a scanner - whether hand held or flat-bed - interfaced to your pc. The scanner must be able to produce either tif or .pex format line-art image files. Although UnGraph has the ability of directly controlling a ScanMan hand-held scanner, most scanners these days conform to the Twain standard, which is Windows based. UnGraph is only available for dos, and cannot use the Twain driver. Thercfore, when run via Windows, the image must be obtained separately before UnGraph is
evoked as a whole screen dos program.
When evoked, UnGraph recognises the graphics standard of the pc and provides the user with a menu bar of options. These include 'Convert' which is required to convert the .tif or .pex image file into a .scn image file for Ungraph to process.
When selecting the vertorisation option, the image appears on the screen. complete with skew. If the image file is larger that 50 Kbyte , only a fragment of the graph will be visible at any one time. Resolution of the image appears poor, but seems sufficient. The user enters three coordinate positions in order to define the scaling and skew of the graph.

Graph-tracing options

There are five tracing options available to the user Manual, Manual with Grid Elimination. Automatic, Automatic with Grid Elimination and Digitise Individual Points. From the manual it is not at all apparent how the Grid Elimination process is performed, and there is no indication in the vectorising mode how this can be performed.
Graphs with dashed-line plots need filling in using UnGraphs's Paint facility before the Automatic Tracing mode can be used.
Automatic-trace mode is an attractive feature of the package, but it does need a degrec of user interaction. Sometimes, as it is following a curve passing through a grid line. the Auto Trace function follows the grid line instead. It is relatively easy to rectify this by back tracing and manually digitise a few points past the difficult part of the curve. However it does sometimes fail completely to progress and you have to start again.
It may be necessary to use the Erase facility, via the mouse, to remove parts of the plot which are causing problems. Auto Trace does not perform well on curves with very sharp peaks, such as those found in a spectra plot. The user has to manually digitise the process up and over the peaks.
When in the Auto mode the extrapolation between the digitised points defaults to a linear algorithm. But the user has the choice of a quadratic algorithm which is more appropriate for a sharply changing curve.
When the digitising is complete, the user is asked to
confirm the start and end of the x coordinates, and the required separation between the samples. This results in the highlighted data points of collector current as a function of irradiance for a photo-transistor, as illustrated in the screen shot.
When storing the vector as x and y coordinates, the allowed precision is only two decimal places, and scaling may be necessary. If a graph contains several curves, the process can be repeated for each one.

Conclusion

The fact that UnGraph is able to digitise graphical data automatically with comparative ease makes it an attractive tool. It would be preferable to have a Windows version to make its integration into other processes easier.
Nevertheless it can be used effectively once its limitations are recognised.
The software would benefit from having some of its rough edges ironed out - in particular the problem relating to the Auto Trace getting lost and remaining lost. On the whole UnGraph should prove to very useful to you, especially if you want to use someone else's data that is only available in a graphical format.

Software source

Biosoft, 49 Bateman Street, Cambridge CB2 1LR. Tel. 0122368622 , fax 01223312873 . Price $£ 199$ fully inclusive.

UnGraph pulling data from a previously scanned graph. Resolution of the scanned image appears poor but is sufficient for the task in hand.

ADVERTISERS PLEASE NOTE

For all your future enquiries on advertising rates, please contact Malcolm Wells on: Tel: 081-652 3620 Fax: 081-652 8956

Used Equipment - OURRANTEED. Manuels supplled if poselbe.
This is a VERY SMALL SAMPLE JF STOCK EAE or Telephone for lists. Please check avalability before ordering CARRIAGE a l units $£ 16$ VAT to be added to Total of Goods and Carriage.

STEWART of READING

110 WYKEHAM POOAD, READING, BERKS RG6 1PL Telephons: (0731) 268041. Fax: (0734) 351696

Callers Welcome Gam-5.30pm Monday to Friday (until 8pm Thursday)

> Using a commonemitter amplifier as an example, Owen Bishop illustrates how modern circuit simulation software helps to demonstrate dc circuit performance under various quiescent conditions.

Circuits by design

2: dc modelling

Examining the behaviour of a commonemitter amplifier, Fig. 1, under various quiescent conditions gives us the chance to become more familiar with some of the basic procedures available in SpiceAge for Windows.
The circuit is minimal, with a constant voltage source providing base bias. Later this will be replaced by resistors, but for the moment, using a voltage source allows the correct biassing conditions to be found more readily.
As usual, the first step in the simulation is to enter the editing window and key in the netlist, Fig. 2. The transistor specified by the entry 'qnpn.lib' is a general-purpose npn transistor model, the details of which are stored in a library file. These details are called upon by the program when a simulation is run. I will discuss the details of this model later.
Power supply is represented by the voltage generator, appropriately called V_{cc}. This constant 12 V dc source is specified as having no excitation, that is, no superimposed waveform, and an offset of 12 V
Voltage V_{bb} is the input level, which we want to vary from zero up to a suitable level, in order to study how the circuit behaves. A convenient way of doing this is to specify V_{bb} as a voltage generator with a ramp waveform.

Specifying generators

There are two ways of specifying generators, the most straightforward being to key the required characteristics directly into the netlist. Alternatively, first list the generator and its connections in the netlist, then select Time, then Generators to obtain the Signal sources and excitation control dialogue box. A list of generators is displayed there.
To set the $V_{b b}$ generator, for example, highlight the $V_{b b}$ generator by clicking on it in the Generator panel; click the Ramp option; key ' 1 ' in the Value box. On returning to the netlist, we find that the option and its value have been added to the netlist.

The value of such a waveform is the amount, in volts, by which it changes during a second. A look at the netlist shows that we have specified a ramp of $1 / \mathrm{s}^{-1}$.
A suitable range of input voltages is obtained by letting V_{bb} ramp for 2 s . This is achieved by going to the Sweep Time dialogue box, from the Time menu, setting the start time to 0 , the stop time to 2 s , and sampling every 5ms, Fig. 3. This gives 400 samples of V_{bb} and the node voltages and currents during a sweep.
To begin with, the probes are set to read the input voltage at node V_{bb}, and the output voltage at node C. Selecting Analyse, then Transient produces Fig. 4. The scale on the x axis is the time in seconds and, knowing that the lower curve shows $V_{\text {bb }}$ ramping up at $1 \mathrm{Vs}^{-1}$, we read this scale as the voltage V_{bb}.
The other curve shows the collector voltage initially at 12 V , then starting to fall as V_{bb} reaches about 0.5 V . It has fallen almost to zero - saturation - by the time V_{bb} is around 0.8 V . The cross-hairs in Fig. 4 are aimed at the point on the collector voltage curve where it passes down through 6 V , which is half the supply voltage. This is a key point for distor-tion-free operation of the circuit.
At the bottom of the screen, the time indication can be interpreted as representing a value for V_{bb} of 0.6856 V at this point. As a check on the simulation, set up the circuit on a breadboard, using a $B C 548$ transistor. Voltage V_{bb} is provided from a 6 V battery with a potentiometer connected across it, tapped at the wiper to produce a variable voltage.
Figures obtained from the analysis are matched by those found from measurements on the circuit. For example, at the operating point, when output voltage is exactly 6 V , a meter shows that $V_{\mathrm{bb}}=0.683 \mathrm{~V}$. Allowing for tolerance, this is very good agreement.

Fig. 1. Simple simulation of a common-emitter amplifier is useful for illustrating how altering the circuit parameters affects $d \mathrm{c}$ conditions.

Collector current

Figure 9 plots input and output voltage, as before, and also the current through R_{c}, with the 'ynpn.lib' model installed. In order to give all three curves sufficient amplitude suitable scale factors are set on the probe control panel Fig. 10. With these settings output voltage is plotted on the default $(\times 1)$ scale, $V_{\text {hb }}$ is multiplied by 5 , and the current by 5000 .
Figure 9 shows current beginning to flow as $V_{\text {bb }}$ reaches about 0.5 V , rising linearly and saturating at about $8.5 / 5000=1.7 \mathrm{~mA}$. When output is 6 V , current is $4.2 / 5000=0.88 \mathrm{~mA}$, a suitable value for such an amplifier. With $V_{\text {bь }}$ at 0.7 V , output voltage is 6.5 V

These values are found to be true in the breadboarded circuit, too, using a $B C 548$. When we substitute a high-gain $B C 550$ on the breadboard, output voltage falls to only 0.17 V when $V_{b b}=0.77 \mathrm{~V}$. This result is obtained in the simulated circuit if we substitute the $B C 109 \mathrm{C}$ model.
To establish quiescent conditions in the circuit when output is 6 V , first find the exact value of $V_{\text {bb }}$ at this point. Measurements are taken directly from the graph, placing the cross-hairs on selected points and reading the coordinates in the panel below the graph. The voltage graph shows that $V_{\text {bo }}$ is 0.6856 V when output is exactly 6 V
Next edit the netlist to make $V_{\text {bb }}$ a constant de source at this voltage by changing its excitation to 'none' and its offset to 0.6856 V . Then select Analyse followed by DC Quiescent. The quantity analysed, whether voltage, current or power, depends on the selection for Probe 1. Since this probe is already set to measure current through R_{C}, we obtain a table giving currents through all components.
Current through R_{h} is $8.88 \mu \mathrm{~A}$ and that through R_{c} is $879 \mu \mathrm{~A}$ - the same result as obtained above by reading from Fig. 9 resulting in a current gain of 99 , as might be expected. You could also perform a quiescent analysis for the voltage at each node, or for the power dissipated in each component.

Using Mathematica

It is possible to analyse a resistive network by giving the Mathematica portion of SpiceAge eight simultaneous equations to solve - a task well within its capabilities. The same approach

V. Vcc	-output:gnd+output:vccEx=NoneOf $=12.00000$		
V Vbb	-output:gnd+output:vbb	$\mathrm{v}=1.000030$	Ex=Ramp
R Rc	p1:vcc p2:c	$\mathrm{v}=\mathrm{j} .8000 \mathrm{Jk}$	
R Rb	p1:vbb p2.b	$\mathrm{v}=10.000 \mathrm{Jk}$	
= Q1	qnpn.lib col ector:c	base:b	emitter:g

Fig. 2. In the netlist for the common-emitter amplifier of Fig. 1, the transistor qnpn is a general-purpose type specified from within a library.

Fig. 3. Defining a sweep. Having 5 ms steps in a 2 s sweep provides 400 readings of the various node voltages as base voltage gradually rises.

Fig. 4. Analysing transient response of the common-emitter circuit. Since base voltage ramps up proportionally with time, the horizontal scale can also be read as $\mathrm{V}_{b b}$. Collector voltage is on the vertical scale.

Transistor models

In the last line of netlist Fig. 2, the transistor is specified by quoting a file name. The library file of this name is itself a netlist of a sub-circuit which is the equivalent of a transistor.
Selecting Network, then Exploding reveals the netlist. The last statement of the netlist is immediately expanded, Fig. 5, to the full transistor netlist. Fig. 6 shows the equivalent circuit. It consists of two diodes connected back-to-back to simulate the base-collector and base-emitter junctions.
Transistor action is simulated by the voltage-controlled current source, Q1.gm, specified by letter G in Spice (also by the code VCVS in SpiceAge). Its control terminals - not shown in Fig. 6 - are 'connected' to nodes 'Q1.ei' and 'gnd'. The effect of this is that it is controlled by the voltage v_{r} across the emitter resistor. This resistor is included in the model simply to generate the controlling voltage.
The value of the source is 990 m , which means that the current (actually, the collector current i_{c}) in amps is 0.990 times the voltage v_{r}.

> A pair of equations can be written: $v_{\mathrm{r}}=i_{\mathrm{c}} / 0.99$,
from the voltage-current relationship of the VCCS, and,

$$
v_{\mathrm{r}}=r\left(i_{\mathrm{c}}+i_{\mathrm{b}}\right)=1 \times\left(i_{\mathrm{c}}+i_{\mathrm{b}}\right)=\left(i_{\mathrm{c}}+i_{\mathrm{b}}\right),
$$

incorporating Ohm's Law, and summation of currents.
Substituting for v_{r} :

Fig. 5. Exploding results in an expancied netlist with the transistor fully described.

$$
\begin{aligned}
& i_{\mathrm{c}} / 0.99=\left(i_{\mathrm{c}}+i_{\mathrm{b}}\right) \\
& \Rightarrow i_{\mathrm{c}}=0.99 i_{\mathrm{c}}+0.99 i_{\mathrm{b}} \\
& \Rightarrow i_{\mathrm{c}}=0.99 i_{\mathrm{b}} / 0.01=99 i_{\mathrm{b}}
\end{aligned}
$$

The result is a device with a cur ent gain of 99. In general, if the value of the voltage-controlled current source is ζ (always <1), the current gain is $c /(1-\varsigma)$.
Instead of this simple model, we can use a more complicated one, based on the characteristics of a particular type of transistor. SpiceAge has a comprehensive transistor library, including many of the Zetex transistors.
In Fig. 7, 'qbc109c. lib' is substitutec for 'qnpn.lib' and then exploded. The subcircuit is similar to the previous one but has a base resistor and a second generator, a voltage-controlled voltage source, Fig. 8.
Although the positive terminal of volt-age-controlled voltage source appears

Fig. 6. Equivalent circuit of the generalpurpose transistor described in the netlist of Fig. 5 Back-to-back diodes simulate the junctions.

Fig. 9. Input and output voltage of the common-emitter amplifier, together with current through the transistor collector resistor.

Fig. 10. Setting scaling factors to make sure that the curves of Fig. 9 provide useful amplitude displays.
unconnerted, examination of the netlist shows that node Q1.ee is connected to the posit ve control input of the current source. The voltage source is controlled by the vcltage across the emitter resistor and, in turn, the voltage-controlled current sourse is controlled by the voltage across the voltage source.
The voltage source reproduces the voltage across the resistor, but with a delay of 1 ns . The effect of this arrangement is that the current source is controlled as before, but with a delay of 1 ns . This simulates the

Fig. 8. Equivalent circuit for the BC109 transistor of netlist Fig. 7, showing the additional base resistor and voltage source.
can be apolied to find $V_{\text {bb }}$. writing out all possible equations for the circuit and asking for them to be solved.
In the case of Fig. 1, the equation for baseemitter voltage $I_{\text {be }}$ is exponential and the program is unable to produce a solution. It needs to be helped along by having the equations presented to it in the order that will allow it to proceed step-by-step to the solution. With such small steps there is little point in using Mathematica. A scientific calculator will do the job just as well. However, I will take this opportunity to look more closely at the syntax and some other features of the program.
To start with, take a very simple example. the calculation of the collector current when the output of the circuit - i.e. voltage at the collector - is exactly half the supply voltage. Given R_{c} and V_{cc}, the collector current in milliamps is:

$$
\cdots=\frac{V_{c}}{2 R_{c}} \times 1000
$$

Under section (1) in Fig. 11, I show how to incorporate this cquation into a procedure. The function ec is a function of two variables, r

Fig. 7. This retlist is similar to the one used to produce Fig. 6 but the generalpurpose tharsistor qnpn is replaced by a BC109.
base transit t me. Together with the 6 pF capacitor this makes the model sensitive to the effects of frequency, particl larly the Miller effect at high frequencies.
The current-source value is 0.9976 , resulting ir a current gain of $0.9976 / 0.0024$, which is 416 . As with the other models, the characteristics can be edited. This makes it possible to match the model nore precisely to details of a particular tepe as quoted in the manufacturer's data sheet.
One of the disadvantages of using a
and rec. Pore that I have not used capital letters because these are reserved tor the program’s own objects.

The expression following $\quad:={ }^{\prime}$ defines what the function is to do when called. The expression is simply the right-hand side of the equation for the equation above using Mathematica syntax. Remember that a space between two terms indicates multiplication. Having typed in this function, or having loaded it from a file, select the Evaluate button on the tool bar and click the mouse once. or press Shift+Enter. Nothing appears to happen, apart from a blue $|n / n|:=$ indicator appearing before the command, but the function has now been defined. All you need to do subsequently is to type in the function name, but include actual values of the variables.
Clicking on the Evaluate button causes the function to be evaluated for the input variables. The value of the function (0.882353) appears on the screen, as in Fig. 11. One point to note is that the voltage is typed with a decimal point, i.c. '12.', even though no figures follow the decimal point. The reason for this is to obtain a relatively low-precision result, to
more complicated model is that it takes longer for the analysis to be completed.

Means
 The time-averaged means of plotted quantities are indicated on the y-axis of the graphs by triangula- markers. The longer markers indicate root mean square values. The shortes markers indicate arithmetic means. The colours of the markers are same as those in which the curves are platted. In Fig. 9, reading from the top dow ward, the rrrs markers refer to current, output voltage and $V_{b b}$ the mean markers refer to current, $V_{b b}$ and cutput voltage.

six significant figures. It does not matter which of the values has the decimal point. as long as at least one of them has.
If all of the input values are typed as integers. with no decimal poines, the program evaluates the function exactly. This usually mears quoting the result as a ational number. in thes case $15 / 17$. Summing up, ic is a oneline program' for finding the collector current.
The next function in Figg. 11. ealled ber', calculates $I_{h e}$, and requires the entry of three values, $R_{c}, V_{\text {ec }}$, and $H_{f e}$. This is a two-line program. the two parts of the procedure being separated by a semi-colon. The first part takes the previous program a stage further and evaluates the base current be as the collector current divided by $H_{\text {fe }}$. It then takes the value of be and uses this to find the base-emitter voltage, :'he.
This presents a problem beciuse this variable is in the index of an exponential function. You cannot use the Solve command, which is
one reason why Mathematica can not simply be given all the relevant equations and asked to solve them simultaneously. Instead. FindRoot is used to search for the solution. using Newton's method. To commence this you need to state - or guess - a starting point for the itcration.
The two values in curly brackets indicate that the root to be found is the value of $V_{\text {be }}$ and its initial value is to be 0.5 , which is likely to be close to the final value. Having evaluated the function as before, we key it in with a set of values. This time the 100 happens to have the decimal point. When this is evaluated, the function returns the value $V_{\mathrm{be}}=0.532982$. in volts. Because of approximations in the values inserted into the equations, probably only the first two ligures are significant. and $\Gamma_{\mathrm{bc}}=0.53 \mathrm{~V}$.
In general. values like $b c$. calculated within a procedure, are available for use outside the procedure. To find the value of b after running the procedure, type ' $h c^{\prime}$ and select Evaluate. This returns 8.82353×10^{-6}. or $8.8 \mu \mathrm{~A}$.
Because FindRoot is a rule defining how to calculate $V_{\text {be }}$, but is not actually a value, $V_{\text {be }}$ is not available for further calculation. So we use a third procedure to find the value of $V_{b b}$, the total of $V_{\text {be }}$ and the voltage across the base resistor. Keying in the function vhb with the values for $V_{\text {be }}$ and rb returns the base bias. 0.621217 V , or more realistically, 0.62 V .

The text and equations of Fig. 11 are saved as a 'Notebook'. This Notebook, and others included on the disk to be published in con-

CBD02-Common-emitter bjt amplifier

1) Collector current (mA), when output is at half the supply voltage.
$\mathrm{rc}=$ collector resistor
$\mathrm{vcc}=$ supply voltage
$\mathrm{cc}[\mathrm{rc}, \mathrm{vcc}]:=(\mathrm{vcc} /(2 \mathrm{rc}) 1000)$
cc [6800,12.]
0.882353
2) Base-emitter voltage, given
$\mathrm{rc}=$ collector resistor
vcc = supply voltage
hfe = small-signal current gain
$\operatorname{bev}\left[r c _,, v c c\right.$, ,hfe] $]:=$
(bc=vcc(2 rchfe);
FindRoot[bc==10^-14 (Exp[38.647 vbe]-1),

\{vbe,0.5\}])

$\operatorname{bev}[6800,12,100$.
\{vbe $\rightarrow 0.532982$ \}
3)base bias voltage (vbb), given
vbe = base-emitter voltage
$\mathrm{rb}=$ base resistor
Requires program 2 to have been run.
vbb[vbe_,rb] $]=(v b e+r b b c)$
vbb[0.532982,10000]

0.621217

Fig. 11. Steps for incorporating an equation into a procedure. In this case, the equation is for collector current when output voltage is at half the supply rail.

Diode voltage drop

The voltage drop V_{d} across a diode, or the base-emitter junction of a transistor, is defined by:

$$
i_{\mathrm{D}}=I_{0}\left(\mathrm{e}^{\mathrm{Vd} / n \mathrm{nt}}-1\right)
$$

in which i_{D} is the current across the junction, I_{0} is the reverse saturation current, n is a constant, which may be taken to equal unity uniess otherwise specified, and $V_{T}=k T / q$. In the latter expression, k is Boltzmann's constant $\left.(1.38 \times 10-23) \mathrm{K}^{-1}\right), T$ is the temperature (taken as 300 K in this simulation), and q is the electron charge $\left(1.6 \times 10^{-19} \mathrm{C}\right)$. Substituting these values in the equation gives:

$$
i_{\mathrm{D}}=I_{0}\left(\mathrm{e}^{38.647 \mathrm{Vd}}-1\right)
$$

For the base-emitter junction of a $B C 548, i_{0} \approx 10^{-14} \mathrm{~A}$, which is the value taken for the Spice model of a diode.
nection with this series, can be loaded in Mathematica and used as an annotated source of ready-made calculation routines. After loading. place the cursor on the function and then click on Evaluate. Then key in the function with variable values and evaluate.

Biasing

Returning to the SpiceAge circuit, the linal task is to select a pair of fixed resistors to provide operating-point bias from the $1_{\text {ce power }}$ rail. Fig. 12. An appropriate approach is to decide on a value for $R_{\mathrm{b} 1}$. and to sweep $R_{\mathrm{b} 2}$ over a range of values to find one that puts Node c at 6 V . Edit the netlist (Fig. 2), deleting the voltage source $V_{\text {bh }}$ and replacing it with $R_{\mathrm{b} 1}$ and $R_{\mathrm{h} 2}$. Fix the value of $R_{\mathrm{b} 1}$ at $1 \mathrm{k} \Omega$. Allot a temporary value to $R_{\mathrm{b} 2}($ say, $300 \Omega 2$). Its exalet value is not signiticant as it will be swept from 100Ω to 470Ω. which a rough mental calculation indicates will produce a suitable voltage at Node $V_{\text {bb }}$.

The lower and upper sweep voltages are specilied in the netlist statement by quoting ${ }^{\circ} \mathrm{vs}=100^{\circ}$ and ${ }^{*} \mathrm{vf}=470^{\circ}$ for the starting and finishing sweep values respectively. This leehnique can be used when sweeping values of other components, such as capacitors and inductors. To switch on sweeping. seleet Analyse then Tolerance, Value and Temperature Sweeping.
In the dialogue box select Value sweep. clich on the Lincar option and make N, the number of sweep steps. equal to 10 . A small value of N produces a quick sweep. Later, this number can be increased to, say, 50 to bring the results closer to the required operating point.

To set the display of the results. select Time then Probes; turn on Probe 1 as a voltage probe, at Node $V_{b b}$, with its reference at 'Gnd". When all is set up, run a Quiescent sweep. The graph displays the value of 1 bb as

Fig. 12. Complete common-emitter amplifier with base current derived via a potential divider.
R_{bl} is swept from 100) to 470Ω.
At this stage l_{b} is too high over the whole sweep range. Rather than sweep from a lower value, increase R_{b} to $3.3 \mathrm{k} \Omega$. Repeating the analysis shows $V_{b b}$ ranging between 0.3 and 0.6 V , within which range the operating point shoukl lie. Make Probe 2 active, to measure the voltage between Node 6 and ground, with scale factor of 1 . The aim is to find the conditions under which Node c is at 6 V .
Repeating the quiescent sweep shows Node (6 and 12 V , then falling rather rapidly 100 V . Narrow the sweeping range so that it just spans the fall at Node c. The scale on the x axis of the analysis is not graduated in ohms or any other physical quantity but represents sweep numbers. If N is 50 , the scale is graduated from -25 to +25 . Any given point on this scale is converted to resistance by using the formula:

$$
R=\min +\frac{\operatorname{rangc}(n+N / 2)}{N}
$$

in which min is the lower end of the sweep range, range is the sweep range, and n is the sweep number. For example, at the operating point, sweeping from 100Ω to 225Ω in 50 steps. the sweep number is 6.58 . Substituting in the formula:

$$
R=100+\frac{125(6.58+25)}{50}=178.95 \Omega
$$

A standard 18002 resistor is the obvious choice. Edit the netlist to make R_{b} cqual to 180Ω and delete the sweep specifications. Cancel Value sweep in the dialogue box and click on Nominal. Turn on the voltage probes. Now select Analyse then DC Quiescent (not sweep), to obtain a table of node voltages.

Node c is at 5.72 V . which is close to the operating point. Change Probe 1 from voltage to current through R_{c}. Repeat the analysis and obtain a table which shows that the collector current is $923 \mu \mathrm{~A}$. close enough to the required 1 mA .

Looking at the currents through other resistors we see that $R_{\mathrm{b} 1}$ and $R_{\mathrm{b} 2}$ are both passing more than 3 mA , which might be considered wasteful. Edit the netlist to make $R_{1 \mathrm{a}}$ and R_{fb} ten times bigger. $33 \mathrm{k} \Omega$ and $1.8 \mathrm{k} \Omega$ respectively. Repeating the analyses shows that now the collector voltage is 6.1 V , and its current is $867 \mu \mathrm{~A}$. which are close enough to the required operating conditions.

SPECIAL BUY
AT 286 40 Mb HD + 3Mb Ram
 5.25" from £22.95-3.5" from £24.95
 The TELEBOX consists of an attractive fully cased mains powered
unit, containing all electronics ready to plug into a host of video mont
tors made by makers such as MICROVITEC, ATARI, SANYO,
SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD etc. The
composite video output will also plug directly into most video
\qquad
\qquad TELEBOX ST for composite video input type monitors TELEBOX STL as ST but with integral speake
TELEBOX MB Multiband VHF-UHF-Cable- Hy

FANS \& BLOWERS

MITSUBUSH MMF-09B12DH $92 \times 25 \mathrm{~mm}$ 12VDC PANCAKE $12-3.592 \times 18 \mathrm{~mm} 12 \mathrm{~V}$ DC $\quad 12 \mathrm{~mm}$ £5.95 $10 / \mathrm{E} 53$ EX-EQUP 120
EX-EQUIP 80 ERO rack

IC's -TRANSISTORS - DIODES
5,000,000 items EX STOCK
 ONLY $£ 99.00$

Order as PC99COL	$£ 99.00$ (E)
Optlonal Fitted exiras: 640 k RAM 2nd floppy drive, specify $51 / 4^{*} 360 \mathrm{k}$ or $31 / 2^{\circ} 720 \mathrm{k}$ Above prices for PC99 offer OMLY.	Y \quad29.00 Y29.95

VIDEO MONITOR SPECIALS

Naba £145 00 (Е)

spat 20° " 22^{2} and $26^{\text {" }}$ AV SPEECALS

DCPOWER SUPPLLIES

10,000 Power Supplies Ex Stock

Issue 12 of Display Xews now ivailable - send large SAE - PACKED with bargains!
 ALL MAIL \& OFFICES Open Mon-Fri 9.00-5:30 Dept EWW. 32 Biggin Wa Upper Norwood

DISTEL © The Original
FREE On line Database FREE On line Database
Info on 1000 's of items Info on 1000's of item
V21,V22, V22 BIS 01816791888

ALL E ENQUIRIES
11R 17
FAX 01816791927

V/SA

PIC ICE II. In Circuit Emulator for PIC16C54-55-56-57-71-84. Replaces all 18 or 28 pin PICs. All ports Bi-directional. OSC2 output. RTCC input.
On board A/D converter for PIC 16 C 71
Supplied with PICDEV54 and PICDEV71 software. connecting leads and headers. AS examples, and hardware circuit projects.
P1C ICE 18P (In-Circuit Emulator). 18 pin PICs only no A/D.
Plugs into the printer port and runs in conjunction with the PIC development simulator software.
Appears io the targer system as a normal Pic device including OSC2 and RTCC in/out. Runs in real time from the IBM PC changes made to File registers reflected on target. Supplied with Software of your choice Pic54-57 or Pic $71 / 84$
PICPROG. Programs Pic 16C54-55-56-57-71-84. Centronics port interface. Powertul editing software to Read, Write \& Copy Pic devices including data memory in Powertule
PicIfC84.
Top quality components used throughout including production Z1F socket. Requires external power $15-20 \mathrm{v}$ AC or DC (a 250 ma . (optional extra $£ 6.50$) Requires external power $15-20 \mathrm{v}$ AC or DC (a 2.50 ma. (optional extra £6.50). $\quad \mathbf{~} 69.95$ MEGAPROM programmer. EPROMS, E2PROMS, and FLASH memories from 2k (2716) Works on all PC compatibles, taptops, and notebooks. No special port requirements. Uses approved programming algorithms. Very fast program \& verify $27 \mathrm{C} 512=45$ seconds Uses approved programming algorithms. Very fast program \& verify $27 \mathrm{C} 512=45$
Full screen editor software supports Bin, Intel Hex. Motorola S and Ase formats. Full screen editor software supports Bin, Intel Hex. Motorola S and Asc form
Top quality components used throughout including production Z1F socket.
Requires external power supply 18-25v AC or DC @ 250 ma. (optional extra 56.50) $\mathbf{~} 99.95$
EPROM EMULATOR Works on ANY computer with centronics printer port. Data sent to the printer appears in the target board Eprom socket. Emulates from 1 k to 32 k Byte (27 C256) roms, board switchable.
Very fast download. Works with or without our Development soft ware.
PC SCOPE. Convert your 1BM PC into a Storage Oscilloscope with our A/D converter. Simply plug into the printer port (no power required). Sample rate 10 k to 30 k per second. Software supplied for Scope and Voltmeter. A/D source to write your own programs. £29.95 DEVELOPMENT SOFTWARE.
Develop software on your IBM PC for other Microprocessors, Controllers, Pic's etc Software has fully integrated Text Editor, Assembler. Disassembler, and Simulator.
The Simulator displays all registers along with disassembled code program counter Condition code register. The user can single-step, go with breakpoints. watch memory, etc. change any/all registers/memory locations at any time (on the fly).
Code can be Saved to disk and/or downloaded directly to our EPROM Emulator. All software supplied with sample. ASM files, and user documentation/manual. Very powerful software as supplied to universities, colleges ITECS and Industry
Available for the following:
$\begin{array}{llrl}\text { MCS8048/49 } & £ 19.95 & \text { PIC16C54/5/6/7 } & \mathbf{£ 2 9 . 9 5} \\ \text { HD61/6809 } & £ 39.95 & \text { R6502 } & £ 29.95\end{array}$
 All hardware carries a 12 months parts and labour Guarantee. No Vat payable. Please add £1.50 for Carriage.

CREDIT CARD ORDERS SAME DAY DESPATCH
JOHN MORRISON DEPT WW 4 REIN GARDENS, TINGLEY, WEST YORKSHIRE WF3 1JR TEL (or FAX) 0532537507

CIRCLENO. 128 ON REPLY CARD

SEETRAX CAE - RANGER - PCB DESIGN

Ranger1 £100

* Schematic capture linked to PCB
* Parts and wiring list entry
* Outline (footprint) library editor
* Manual board layout
* Full design rule checker
* Back annotation (linked to schematic)
* Power, memory and signal autorouter - $£ 50$

All systems upward compatible. Trade-in deals available.
Call Seetrax CAE for futher information ${ }^{\text {demo packs. }}$ Tel 0705591037 Fax 0705599036
Sectrax CAE, Hinton Daubiay House, Broadway Lane, Lovedean, Hampshire, PO\& 0SG

All trademarks acknowledged.

Ranger 2559

All the features of Rangerl plus

* Gate \& pin swapping (linked to schematic)
* Track highlighting
* Auto track necking
* Copper flood fill
* Power planes (heat-relief \& anti-pads)
* Rip-up \& retry autorouter

Ranger 3 £3500

All the features of Ranger2 plus

* UNIX or DOS versions
* 1 Micron resolution and angles to $1 / 10$ th degree
* Hicrarchical or flat schematic
* Unlimited design size
* Any-shaped pad
* Split power planes
* Optional on-line DRC
* 100% rip-up \& retry, push \& shove autorouter

Outputs to:

* $8 / 9$ and 24 pin dot-matrix printers
* HP Desk/Laser Jet, Canon BJet, Postscript (R3 only)
* HP-GL, Houston Instruments ploters
* Gerber photoplotters
* NC Drill Excellon, Sieb \& Meyer
* AutoCAD DXF

Keeping a tag on technology misuse

The mix of rf and digital engineering that is tagging technology can already keep a limited track of people. How far could we - or should we - go asks Nigel Burke?

Electronic tags are coming, ready or not. Society has not yet developed a cultural attitude to wireless tagging, nor worked out its effeces on the workplace. But the tagging market will be supply-driven by the neat rf modules that are now becoming available to engineers.

The Criminal Justice Bill provides for fresh trials of electronic prisoner-tagging next year, and the baby stealing headlines of only a few montls ago have focused thinking on access control to hospitals, and even the direct radiolocation of unsupervised children.
Techniques for tagging people are the same as those for inanimate articles and livestock except that tags may not be stuck nor rivetted onto humans. It is also natural for people to try to subvert anything which inconveniences them. In 1989 when the Home Office first tried electronic tagging offenders, more than a third of the laggees cut and ran.
Present people-tagging devices deal mainly with locations around a site. Machinery that could send world-wide coordinates back to any controll:ng point is still unwieldy, though quite feasible, since gps or loran data need no longer be returned to base by shortwave or satellite phone. Channelling through the nearest Internet dial-up host is a possibility. The Home Office expects that its American contractors for the new judicial tag uill supervise curfew vielations by modem from the USA.
The tag will only monitor proximity to a base station connected to a BT socket. It will not yet give latitude and longituce.
Humbler tagging applications have evolved from the tarniliar anti-shoplifting tags. Types containing at lumped resonant LC circuit are

still in use, while library books and flatter articles are protected by printed coils and stripline resonators. Such tags are inert until they approach a 'read field' in which a pulsing rf emitter excites the circuit, and listens for the damped oscillations. There is no way to differertiate between two tags using the same band and range tends not to exceed the 2 m needed to cover a doorway. Edinburgh's Simpson Memorial Hospital is evaluating this kind of system as a proposed solution to babynapping - though it is hard to see why a kidnapper would fail to detach the tag. Simple tags are also in use at Addenbrooke's Hospital to warn staff when elderly patients have wan-

Supertag security

The Supertag long-range rfid device was developed by the South African CSIR organisation, and has been licensed in Britain to ICL through the British Technology Group. It is a battery-less uhf transponder device, intended to replace barcodes for labelling goods in shops.

The circuit is broad band, relying on time div'sion and addressed transmissions to supply data to and from the correct tag. Working energy is extracted from the interrogating of using a Schottky diode charge pump.

Eecause goods will be piled together, a good anti-clash technique is needed to differentiate each tag, especially where tags return the same id code. This can be achieved by programming tag; to respond at random intervals, 25 items $/ \mathrm{s}$. Whenever a clear and uninterrupted tag signal is received, it is addressed with a control signal to stop transmitting its 64 bit id, and counting rate changes to fifty items/s.
The British Technology Group, London, sees the Supertag as technology ideal for personnel tag sing. If economies of scale do allow it to displace barcode labels, it would certainly be che ap enough for a throw-away visitors pass.
Eut the necessary simplicity of the digital circuits, having only 300 gates and 64 bits of eef rom memory, prompts security questions cor cerning the whole technology. A tag could be rewritten for a different price, or a different visitor secarity clearance. Even a read-only tag is sus-eptible to a record-and-playback hack.
f. s with the first generation of radio car locks, any device that transmits the same code every time can be imitated by a programmable transmitter. BTG's plans for the development of the Supertag include tamper-evident features. Un*ortunately, the best security lies with a tag tha: records all reads and writes in an audit trail a c onsiderable pressure on production cost.
dered off. They can be effective in giving slightly-vague patients semi-autonomy. But they will vary in how far the semi-autonomy represents freedom from dependency, or the loss of full autonomy.

Making tags more useful

Tag usefulness is extended by modulation of the return signal with a unique identification code. Current tags such as Cotag's security badges and stock-control labels do not have their own rf frequency source. Instead, they intercept the reader-equipment's wave and reradiate it having performed frequency division with a flip-flop, and chopped it with a digital waveform. The battery-less versions rectify some of the incident wave to provide dc power for the digital circuits.
Eagle Tracer in Cheshire manufactures a read/write variant that can return a 64bit id code, and be reprogrammed on-the-fly. RFID tags of this nature, produced to wheat-grain dimensions and made biologically inert, can be implanted in flesh. In the Irish Republic, licensed guard dogs have had to have rfid implants since 1989, and there is no medical reason why human beings could not have implanted tags.

RFID can plainly help with access control. Eagle Tracer tags are meant to be integrated

Economics of total surveillance

The notion that everyone might one day be tracked by computer is always titillating to fiction writers. But it is unlikely that such tracking will come about in a unitary and planned way.
RFID techniques can certainly be used to police buildings, and perhaps even security zones such as the City of London. Ad hoc location data can be culled from cameras scanning car number plates, and the Inland Revenue has already used cashpoint machine records to map the movements of tax exiles, to see whether they are honestly claiming non-resident status.
But what about tracking all our movements to a 10 m resolution throughout the whole of our lives?

Let's do the sums.
If you live for 76 years - the UK national average - that is a total of 39945600 minutes. The equatorial circumference of the Earth is $40,689 \mathrm{~km}$, giving 4,068,900 reference points of 10 m , ie longitudes. We can refer to any longitude by a seven figure denary, or twenty-two bit binary number. Taking a liberty with the actual shape of the Earth, we'll say that the latitude can be expressed in the same way, so we can transmit a person's location to this accuracy in forty-four bits. Doing this once a minute accumulates a lifetime tachometer disk only 219.7 Mb in size. That includes a lot of redundant data, because people are stationary for most of the time, and only slight displacements need be recorded. So the data is compressible.

If everyone has to transmit a unique identity number, location and some parity and celfular handshake data, the data rate will turn out to be about 1baud, and the system's bandwidth requirement should be comparable to existing cell phone networks.
with pir sensors and a computer-governed environment, such that people without valid tags in the form of badges are detected. In the hospital context, security would mean giving tags to workers, nursing mothers and cleared visitors. Tag-reading doorways would be looking for intruders, not smuggled infants.
Over at Olivetti Research Labs, the smart security badge has been transformed into the active badge, a technology that provides services to the user, rather than just the stern function of access control. An active badge is an addressable tag for office workers, that communicates with the office computer network via infra-red transceivers distributed about the site. It transmits its id using an led baseband ppm signal at 9600 baud, then listens for any paging messages from the network.

Badge wearers' locations are mapped room by room - relative to colleagues and badged pieces of shared portable equipment - and can be paged, have phone calls, work sessions and mail diverted to the nearest workstation. Thankfully a do-not-disturb status can also be requested through the system.
A smart governing network can take far more advanced decisions than whether or not to let someone through a door. It can decide whether staff are adequately supervised by more senior workers, or whether movements seem suspicious or unproductive. Built-in security includes authenticating badges by shooting a random number at them and requiring the badges to process it through a cryptographic algorithm and respond with the right answer.

Analysing how workers spend their day using all the available context is potentially more powerful, since businesses lose more to inside cheats than interlopers. But there is also the potential for misuse of active badges or similar technology, having the potential to increase the general serfdom of hireling workcrs, just as nctworked keystroke-counting can be used to squeeze the work rate of typists.

Wider context

In the wider world, serious if is needed to keep tabs on people. Anti-kidnap tags have been available for years for VIPs but have been expensive, relying on matched receivers to track them from great distances.

Classical df (direction finding) techniques have reached the mass market in the form of Tracker, AA's vehicle location product. A vhf transmitter hidden in the car is activated at the owner's request by a signal from the system's administrators, and transmits a signal that suitably equipped police cars can track, using a phased array of roof-mounted rod antennae. Range is said to be six miles, though the tracker does not know where the vehicle is, being

just an emitter. As such it is not the future for outdoor people tagging.

The cell phone networks are a more promising prospect for location information. A rough-grained location facility is already built into cellular networks. Users are tracked from cell to cell to allow distribution of frequency slots, and in urban areas, the cell may be barely a hundred yards wide. Spectrum re-use amongst non-adjacent cells makes it possible for far more users to emit locator signals than on a free-range basis, as in Tracker.

Cellular phone networks and data networks such as Paknet could be enhanced with direction sensing antennae, and offer a convenient route back for location data to whatever business or authority is using it. Or gps/loran data could be collected by the tag, and returned by cell phone.

Certainly, cell phones are underdeveloped for personal security. Low tariff emergencyonly phones would be useful for children, and ccd camera chips could be incorporated to enable subscribers to threaten aggressive strangers with sending a snapshot straight to the police.

Rf and digital engineering have both come together with a mighty clash to get tagging off the ground. But when it comes to tagging people, even more technologies are converging.

Graphical information systems will allow industrial site operators, rescue ser
vices and pizza deliverers to map staff on screens showing not just route data, but warning information too: from chemical hazard zones to credit blackspots.
Neural network pattern analysis will be used to examine working patterns for inefficiency and fraud, while tagging supermarket trolleys could lead to development of new means of consumer anthropology. Video and biometrics will be used to ensure that people tagging is monitoring the specified persons. The problem for engineers is not so much to make it all work as to predict which among all the technological permutations will be commercial winners.

For individuals, the problem is deciding whether to have a subcutaneous Visa card fitted, a cell-phone that can send a distress signal with coordinates down to 10 m , or even one that transmits a signal like that all the time, home to Mum - or to Big Brother's bunker.

electronic engineers REFERENCE BOOK

6th Edition F F Mazda

This reference book is divided intc five parts: rechniques, physical phenomena, materials and components; electronic design and applications. The sixth edition was updated throughout to tare irto account changes in standards and materials as well as advances in techniques, and was expanded to include new chapters on surface mount technology, hardware and software design techniques, semi-custom electronics and data communications.

Fraidoon Mazda has worked in the electronics and telecommunications industry for over twenty years, and is currently Product and Operations Manager, Generic Network Management, with Northern Telecom. He is the author of six technical books (translated into four languages) and the editor of the Communications Engineers Reference Book published by ButterwcrthHeinemann.

CONTENTS:
Techniques Trigonometric functions and general ormulae;
Calculus; Series and transforms; Matrices and determinants; Electric circuit theory; Statistics. Physica Phenomena Quantities and units; Electricity; Light; Radiation; The icnosphere and troposphere. Materials and comporents Resistive materials and components; Dielectric materias and components; Magnetic materials; Inductors and transfcrmers; Relays; Piezoelectric materials and components; Cornectors; Frinted circuits; Power sources; Discrete semiconductors; Microwave semiconductor devices; Optical digital integ'ated circuits; Linear integrated circuits; Semiconductor memo-ies; Microprocessors; Application-specific integrated circuits; Elইctron microscopy; Digital design; Software engineering; Dig tal systems analysis; Control systems; Antennas and arrays; Noise managernent in electronic hardware; Noise and communization; Computer aided design; Television and sound broadcasting. Applications Communication satellites; Point-to-point communication; Fibreoptic communication; The integrated senices digital network (ISDN); Local area networks; Radar systems Computers and their application; Videotape recording; Ofice communications; Medical electronics.

1006 pages PAPERBACK ISBN 0750608099 ع42.50 (inc post \& packaging)

Please return to: Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Suiton, Surrey SM2 5AS

* Now available to Electronics World \& Wireless World readers in paperback
* Expert coverage of all aspects of electronics
* Over 50 contributors
* For electronic engineers, technicians and students

Please supply me __ copies of the ELECTRONIC ENGINEERS REFERENCE BOOK (ISBN 075060809 9) @ £42.50 (INC POST \& PACKAGING)

Add VAT at local rate
NB ZERO RATE FOR UK \& EIRE TOTAL
Business purchase: Please send me the books listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below.

Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund

Remittance enclosed $£$
Cheques should be made payable to Reed Book Services Ltd.

Please debit my credit card as follows:
Access/Master Barclay/Visa
Amex
Diners
Credit Card No \qquad Exp date

NAME (Please print)
ORGANISATION
STREET
TOWN
COUNTY \qquad POST CODE
COUNTRY \qquad
DATE TELEPHONE NUMBER
SIGNATURE
T3000

VAT RATES

6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Germany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3\% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)
VAT NO.

If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.

Please delete as appropriate. I do/do not wish to receive further details about books, joumals and information services.

Credit card orders
accepted by phone
Call 0816523614

MAXIMISING monopole bandwidth

Abstract

Monopoles on a ground plane are simple and versatile but one of their most attractive features is exceptional bandwidth of up to 50% of the quarter-wave frequency. Richard Formato describes how the monopole's bandwidth behaves and how to maximise it.

Typical maximum-bandwidth monopole with an L / D ratio of 5 . It covers approximately $246-393 \mathrm{MHz}$ with a vswr less than 2.5 .
n the base-fed monopole on a ground plane, the radiating element is a conducting cylinder of height L and diameter D, Fig. 1 . The bottom of the element is insulated from the ground plane by a base insulator, and the if source (transmitter) is connected between the bottom of the antenna and ground ${ }^{l}$.
In theory, the source is a 'delta-function' generator, which means that the base insulator is infinitely thin. In practice, the insulator should not be too thick. Coaxial cable is usually used to feed the antenna, with the centre conductor connected to the monopole and the shield to the ground plane.
Bandwidth of the antenna is determined by the $L: D$ ratio, which is computed by dividing the element length. L, by its diameter, D, in consistent units. Dimensions specified in different units - feet and inches for example must be converted to the same unit before calculating this ratio.
The term bandwidth means impedance bandwidth, defined here as the range of frequencies where the antenna's input vswr is 2.5:1 or less. Voltage-standing-wave ratio thresholds other than 2.5 can be used, but this value is a good compromise for antennas used for both transmitting and receiving.
Figure 2 plots the monopole vswr relative to 50Ω versus frequency for several L / D ratios. The abscissa is the ratio F / F_{0} in percent, where F_{0} in megahertz is given by $299.8 /(4 L)$. Note that L is in metres.

At frequency F_{0}, L is a quarter-wavelength in free space. For example, if L is 2.5 m , the free-space wavelength is $4(2.5)$, which is 10 m . and the corresponding frequency F Fo is $299.8 / 10$ which is 29.98 MHz . Many of you will recognise this as the formula $\mathrm{f}(\mathrm{MHz})=300 /$ wavelength (m) with the more accurate value of 299.8 replacing 300 . Note that F_{0} is not the monopole's resonant frequency, which is slightly lower than F_{0}.
Figure 2 includes curves for L / D ratios ranging from 2500 to 3.125 . The narrowest bandwidth is slightly less than 15% of F_{0} and corresponds to the highest L / D ratio of 2500 . At $L / D=12.5$, bandwidth increases to nearly 35%.
When $L / D=5$, the bandwidth reaches its maximum value of about 50% of F_{0}, which is very large for a simple radiating element without any broad-banding components. As L / D falls below five, the bandwidth decreases. At $L / D=3.125$, for example, it is about 38%.
Figure 2 also reveals an interesting distribution of bandwidth with frequency when $L / D=5$. Slightly less than two thirds of the available bandwidth is above F_{0}, and slightly more than a third below it. The lowest frequency where vswr is $2.5: 1$ is about $0.808 F_{0}$, the highest $1.3 \mathrm{I} F_{0}$, and the frequency for vswr minimum is about $0.987 F_{0}$.
These observations provide some simple, easy-to-remember and use rules for computing maximum monopole bandwidth (50Ω characteristic impedance, vswr $<2.5: 1$):

- maximum bandwidth occurs when the ratio of monopole length to diameter is five. - maximum bandwidth is about 50% of the frequency at which the monopole is a quarter-wave long.
- frequency of minimum vswr is about 1.3% less than the quarter-wave frequency.
- approximately two thirds of the bandwidth is above the quarter-wave frequency, and about a third is below.
- vswr minimum is a near-perfect 1.009:1.

As an example, a monopole 43 cm long, 8.65 cm diameter, covers the frequency range $140.84-228.34 \mathrm{MHz}$, which corresponds to the

Fig. 1. Monopoles are widely used because of their bandwidth and simplicity. This is a base-fed monopole on a ground plane, whose rf source is connected between the bottom of antenna and ground.

2 and 1.25 metre bands. Vswr is less than 2.5 and quarter-wave frequency is 174.3 MHz .
At hf, a monopole 4.35 m long and 87 cm diameter will cover $13.92-22.57 \mathrm{MHz}$, i.e. 20 , 17 and 15 metre bands. Other frequency ranges can be covered by varying the radiating element length and applying the rules above.
Why the monopole's bandwidth behaves this way can be understood by referring to Fig. 3. These curves plot the input impedance (resistance R, reactance X) versus frequency for L / D ratios of 2500 ('thin' antenna) and 5 (fat' antenna).
Resistance variation is similar for both antennas. Value R is comparable at most frequencies and gradually increases with increasing frequency. But when the frequency exceeds 120% of F_{0}, the behaviour changes. lnput resistance of the thin antenna increases
quickly above $1.2 F_{0}$, while the fat monopole's flattens out, then starts to decrease.
Input reactance behaves much differently. For the thin antenna. X increases almost linearly with frequency, varying from -60Ω (capacitive) at $0.84 F_{0}$ to $+100 \Omega$ (inductive) at $1.15 F_{0}$. The thin antenna is resonant $(X=0)$ at only one frequency near $0.96 F_{0}$.
The fat monopole's reactance varies much more slowly over the entire range, 80% to 133% of F_{0}. While essentially capacitive (-16.5 to $-5.5 .5 \Omega$), the antenna is actually resonant at two frequencies: approximately 99.87% and 101.67% of H_{0} This is not obvious on the plot.
Because the resistance and reactance, especially X, fluctuate more for the thin antenna, its vswr increases more quichly with frequency than the fat monopole's. Gradual variation of input reactance when $I / D=5$ is primarily
responsible for the fat antenna's large impedance bandwidth.
Building fat monopoles at hf may require special construction techniques because the element diameter is large. Instead of a continuous conducting cylinder as the radiator - a form covered by metal foil, for example - an acceptable, easy-to-build altemative consists. of wires parallel to the cylinder axis equally spaced around its circumference. This configuration is sometimes referred to as a cage monopole', apparently because of the resemblance to a bird cage. The greater the number of wires, the better the approxination to a continuous conductor. As a rule of thumb, at least eight wires should be used.

Another consideration in building any kind of monopole is the size of the ground plane. Theoretically, it should extend indefinitely in

Monopole applications

Throughout the rf spectrum, the monopole antenna is one of the most widely used. It is probably the only one used at all frequencies ranging from vhf to uhf. Resonant quarterwave antennas are the rule at mf and above (the $A M$ broadcast band is in the $m f$ range), but other electrical lengths are occasionally employed for special applications. At vif, the long wavelength forces monopoles to be electrically short.

Communication services supported by these simple antennas are as varied as their operating frequencies. Very-low frequency monopoles support worldwide military communications, especially Navy and Air Force. Base-fed AM broadcast towers are a familiar sight in every part of the country.

At vhf, public services such as the police, fire, and highway departments rely on mobile whip and base station monopoles to provide essential communications. Many private services, for example, taxicabs, trucking, and even remote telephones, also use monopoles in the low vhf range.

At higher vhf frequencies, aircraft communications rely on fuselage-mounted monopoles. And, at uhf, the car phone
antenna is probably quickly becoming the most common monopole of all. These systems serve to illustrate how widespread use of the monopole antenna is.
Monopoles are used extensively by the US Navy to support shipboard hf communications, and many of them are broadband systems. Two examples of shipboard monopoles are the US Navy's hf cylindrical cage monopole, consisting of eight wires parallel to the support mast, and the multielement broadband monopole.
The cage monopole's L / D ratio is greater than 5. This results in less than optimum bandwidth, but nevertheless improves performance over a single, thin element. The multi-element broadband monopole has an L / D ratio much closer to $5: 1$, which provides better performance than the cage monopole because of the lower L / D ratio.

New communication technologies, especially spread spectrum, frequency-hopping, and frequency-agile systems, dernand the widest possible antenna bandwidth. Although these systems are currently used primarily for military communications, commercial applications will follow which gen-
erate still more pressure for wider bandwidth. The broadband monopole is an attractive transmit/receive antenna for these new modes because it provides robust performance in a simple, efficient, and inexpensive system.
In the photograph is a typical maximumbandwidth monopole with an L/D ratio of 5 . It is 25.4 cm long by 5.08 cm diameter and covers approximately $246-393 \mathrm{MHz}$ with a vswr less than 2.5. Quarter-wave frequency is approximately 295 MHz . This device was fabricated from hard-drawn copper tubing, weather-sealed at the top with brass foil, and mourted on an end-cap containing a centred $1 / 4$-inch threaded brass rod. The rod mounts the monopole on a base feedthrough insulator which electrically isolates the element from the ground plane.
Continuous, radial-wire, or wire mesh grourd planes can be used. The centre conductor of a 50S2 coaxial cable connects direcily to the monopole, and the shield is connected directly to the ground plane. The optimised $L / D=5$ monopole element thus provides maximum possible bandwidth with no matching or tuning circuitry.

Fig. 3. Input impedances for quarter-wave monopole with ground plane. When frequency reaches 120% of F_{o} resistance behaviour starts to change for both thin and fat antennas.
all directions; but, as a practical matter, a circular ground plane of a few wavelengths radius usually works well. The cylindrical radiating element should be a continuous conducting metallic surface; the ground plane should also be continuous if practical.,
Ground planes of wire mesh or radial wires are frequently used. They provide good performance if properly constructed. Mesh openings should be a small fraction of a wavelength, typically eighth-wave or less. If radials are used, a large number is required, at least 16 , preferably more.

Predicted monopole bandwidth performance has been verified experimentally, with theoretical and measured data showing excellent agreement, typically within 5%. Measured bandwidth for a 476 MHz antenna was actually somewhat greater than predicted. Of course, actual and computed performance will not agree well if modelling assumptions are violated. For example, if the ground plane is too small, or if continuous metallic surfaces are poorly approximated by wire structures, then the agreement between measured and theoretical data will be degraded.

Another potential source of error is making measurements through a long coaxial cable. Resistive losses artificially reduce the vswr and increase the bandwidth at the cable input by dissipating some of the reflected power in an unmatched system. The vswr reference point in this note is the monopole input, so that only data measured at the monopole's base can be compared directly.
These simple design rules should encourage experimentation with broadband monopoles throughout the amateur bands. Multiband or single band antennas are easy to design and build, and can be fed directly with 50Ω coaxial cable without an antenna tuner or matching network.
This article illustrates the importance of the L / D ratio in determining the bandwidth of wire radiators generally. Similar considerations apply to other wire antennas, such as dipoles, parasitic arrays like yagis, or active arrays. Even though the monopole design rules are not directly applicable, paying attention to L / D should be a design consideration for any wire antenna, because selecting the right value may result in significantly improved bandwidth.

Reference:

1. Mathematically, the RF source is a "delta function" or "slice" generator. It drives the antenna by creating voltages $+\mathrm{V} / 2$ and $-\mathrm{V} / 2$ across the infinitely thin cross section where the monopole base is in electrical contact with the ground plane. In theory this means that the base insulator is infinitely thin; in practice, it should not be too thick.

The EM68 68000 Embedded OEM Module

Powerful, Practical and Sensibly Priced

The CPU is Motorola's 16 bit 68302 , a highly integrated 68000 processor running at 16 Mhz . This processor has 3 full high speed serial ports operating in UART, HDLC/SDLC, BISYNC or DDCMP modes. It also has DMA channels. Interrupt controller, 28 parallel I/O lines 216 bit timers with compare and capture. Watchdog timer and low power (standby) modes. (We can supply the MC68302 Data Book.)
The Memory Up to 1 M byte of EPROMs - 1 M byte of FLASH EPROM and 64 k Bytes of static RAM
The EM68 Expandable to 16 M byte, the EM68 is constructed on a Multilayer PCB with full power and ground planes and has a small $7.62 \mathrm{~cm}^{2}$ footprint.
Prices range from $£ 255.50$ (1 off - 1M Byte FLASH) down to $£ 95.00$ ($\mathbf{1 0 0 +}$ No FLASH) Our Catalogue lists products based on the $64180,80 \mathrm{C} 31$, Dallas $80 \mathrm{C} 320,80 \mathrm{C} 552$ 80 Cl 88 processors, and a wide range of peripheral modules, A/D, D/A, Serial, Opto Relay, Transistor drive, Stepper drive, Thermocouple etc. with power supplies backplanes and cases. Request a copy today.

JPG Electronics

Wide range of CMOS FTL 74 HC 74 F Linear Tew and unused unless otherwise stated.

Access/Visa
(0246) 211202

Callers welcome

ILLATORS

 12M000 14M3181 17M6256 16M257 18M000 20 M 00023 M 587 35M4816 40M000 44M4444 44M 900 48MOOO 64 M 000 1MOO 20 M 050038 M 1000056 M 609276 M 184 MO MO 1M8432 2M000 2 M45762M77 ЗM00 3 M2768 3M579545
 10 M 25 S 10 MrOOOOO 11 MOOO 12 MOOO 13M000 13M270 14 MOOO M 30021 M855 22 M 118424 M 00034 M 36836 M 75625

OR27M095 YW27M145 GN27M195 BL27M245 3M225 ．．．\＆1 e

MPSA92
BC477，BC4B

£1／30 £3．50／100
POWER TRANSISTORS

2 SC 1520 sim BF 259
SE9301 100V 1 DA DARL SIM TIP
TEXTOOL ZIF SOCKETS
28PNUSED ANYDUUL INLINE DEVICES．COUPLING SUPPLIED
E1．50

保

NEW BITS

UM6116M－2L surface mount 1000 avail CNYO OPTO ISOL 3000 avalable ．．．．．．．．．．．

MISCELLANEOUS

MINATURE FERRITE MAGNETS $4 \times 4 \times 3 \mathrm{~mm}$－ $10 / \mathrm{I} 1$ ALPS MOTORISED DUAL 47K LOG pots with spindie，works on

TL081 OP AMP
E1．50 ea
5 for $£ 1$
47000 U 25 SPRAGUE 360 ${ }_{1}^{12 \text { way }} 63 \mathrm{Viv}$
vWIIable SWITCHED MODE PSU 40 WATT UNCASED OTY
AVAILABLE $+5 v 5 A,+12 V 2 A, 12 V 500 \mathrm{~mA}$ FLOATIN
$330 \mathrm{nF} 10 \% 250 \mathrm{~V} \times 2$ AC RATEO PHILP 220R 2．5W WIREWOUND RESISTOR 60K AVAILABLE
CMOS 555 TIMERS
2／3 AA LITHIUM cells as used in compact caneras． CM CO ITHIUM CELL $1 / 2$ AA SIZE $\stackrel{〔 50 / 100 \mathrm{~m}}{2}$ PASSIVE INFRA RED SENSOR CHIP＋MIFROR＋CIRCUTT EUROCARD 21－SLOTBACK PLANE 96／96－WAY，．．．．．．．．£25ea PROMER UROCARD MAY
UROCARD 96 ．WAY EXTENDERBOARD $290 \times 100 \mathrm{~mm}$
＂PROTONIC 24＂Cw 2 SUPPORT ARMSIEJECTORS．

DIN 41612 96－WAYABIC SOCKETPCB AIIHT ANGLE $£ 1.30$
DIN 4161296 －WAYABC SOCKETWIRE WRAP PINS OIN 4161296 －WAY AB／C SOCKET WIRE WRAP PINS ．．$£ 1$. DIN 11612 64－WAY AC PLUGPCB RIGHT ANGLE DIN 41612 64－WAY AB SOCKET WIRE W RAP（2－ROW BOD
BT PLUGO＋LEAD
3 A MOULDED PLUG +2 m lead
MIN TOGGLE SWITCH 1 POLECOOPCB Iype
Cd 150 to 350 V AC ord 5
TL4312 5 to 36V TO92 ADJ．SHUNT REG
6－32 UNC $5 / 16$ POZI PAN SCREWS
${ }_{2}{ }_{2}{ }^{2}$
NUTS．
RS232 SERIAL CABLE D25 WAY MAL E CO 25 FEEET LONG，IS PINS WIRED BRAIO＋FOILSCREENS（IT．3 AMERICAN \because Ï PINCHASSIS SOCKI INMAC LIST PRICE £3O AMERICAN $2 / 3$ PIN CHASSIS SOCKET． WIRE ENDED FUSES O．25A Also avalable 28 slot vari－bus backplane sare size
 SNC 5OOHM SCREENED CHASSIS SOCKET SMALL MICROWAVE DIODES AE 1 OC 1026 A 180VOLT WAT ZENERS also $12 \mathrm{~V} \& 75 \mathrm{~V}$ MIN GLASS NEONS
 STC 47 WBost
MINATURE CO．AX FREE PLUGAS 456－07 PCB WITH 2N2646 UNIJUNCTION WITH 12V 4－POLE R
400 MEGOHM THICK FIL M RESISİORS STAAIN GAUGES 40 ohm Foll type polyester backed balco g

 ḦALLLE ËFECTIC UGS 3040 ＋magne OSCIL LOSCOPE PROBE S
1pole 12 －way rotary switch．．
A010 CS LM38L M M 386
555 TMER
N414 AM RADIO CHIP
COAX PLUGS nice ones
COAX BACK TOBACK JOINERS
4×4MEMBRANE KEYBO
NOUCTOR 2OUH $1.5 A$.
1．25＂PANELLHUSEHOLDERS
CHROMED STEEL HINGES 14.5×1＂OPEN
$12 V 12 W$ small wie lamps fit most modern cars
STEREO CASSETTE HEAD
MONO CASS HEAD \＆1ERASE HEAO
MHERMALCUTOUTS50 $7785120^{\circ} \mathrm{C}$
THERAL
THERMALCUSES $220^{\circ} \mathrm{C} / 121{ }^{\circ} \mathrm{C}$ 240V $15 A^{\circ}$
THERMAL FUSE
TRANSISTOR MOUNTNG PADS TO－5TO－18
TO－3 TRANSISTOR COVERS
CB PINS FIT 0 1＂VERO
to－3 micas＋bushes
Large heat shrink sleeving pack
EC chassis plug filter 10
OTS SHORT SPINOLES $2 K 5$ 1OK 25K 1 M 2MS
40K UIS TRANSDUCERS EX－EQPTNO DATA
M3352 10 MV ／degree
EMNC TO CMM BINOING POST SIM RS 455－96
MIN PCB POWER RELAYS to $5 v$ COIL 6 A CONTAC TS 1 P OOI
AVEL－LINDBERG MOULDED TRANSFORMER TYPE OB10 15＋15V 1OVAOTY AVAILABLE
BANDOLIEREO COMPONENTS ASSORTEÖ RS，CS．ZENERS CDMODULE 16 CHAR．X 1 LINE（SIMLLAF TO HITACH／1000 CD MO
KYNAR WIRE WRAP WIRE
 LOVE STORY CLOCKWORK MUSICAL BOX 1.35 ea $100+£ 1$ ea MADE BY SANKYO．
Telephone cable clips with hardened pins
0.000 uF 16 V PCB TYPE 30 mm DIAx31mm

2A CERAMIC FUSE $1.25^{\prime \prime} \mathrm{QB}$
40 WAYIOC RIBBON CABLE 100 FOOTREE 0 mm PCB FUSEHOLDER
ECCHASSIS FUSED PLUG B－LEE L2728 STEC MODULA TOR VIDEO＋SOUND UM1287 NE567PHASE LOCKED LOOP

DIODES AND RECTIFIERS

SCRS

PULSE TRANSFORMERS $1: 1+1 . \quad ~ £ 1.25$ MEU21 PROG．UNIJUNCTION ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．3／反1 TRIACS ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．DIACS 4／£1
NEC TRIAC ACO8F 8 A 600 V TO220 TXAL 2258 A 500 V 5 mA GATE DIACS 4121 BTA $08-400$ ISO TAB 400 V 5 mA GATE 2／E2 100／E35

CONNECTORS

O25 IDC PLUG OR SOCKET． 34 －way card edge IDCCONNECTOR（disk dnve type）．．．．．．．．．．．．．．．．．．． | 1． |
| :--- |
| 15 | CENTRONICS 36 WAY IOC PLUG．．．．．．．．．．．．．．．．．．$£ 2.50$

BBC TOCENTRONICS PRINTER LEAD 15 M
CENTRONICS 36 WAY PLUG SOLDER TYPE
USED CENTRONICS $36 W$ PLUG＋SKT
14 WAYIDC BLOCK HEADER SKT．
14 WAY IDC BL OCK HEADER SKT．$\ldots . . \sum_{5 / \Sigma 1}^{1}$

PHOTO DEVICES

HI BRIGHTNESS LEDS CQX24 RED． N5777．．
IL81 PHOTO TRANSISTOR
TIL38 INFRA RED LED．
4N25 OP 12252 OPTO ISOLATOR
PHOTO DIODE 50P
MEL 12 （PHOTO DARLINGTON BASE n／C）

ELOS GREENOR YELLOW 10／
HIGH SPEED MEDIUM AREA PHOTODIOOE RS651
STC NTC BEAD THERMISTORS
G22 220R，G13 1K，G232K，G24 20K，G54 50K，G25 200K， RES $20^{\circ} \mathrm{C}$ DIRECTLY HEATED TYPE．．．GIASS PROME \＆1 ea
 A 13 DIRECTLY HEATED BEAD THERMISTOR 1 k res．ideal for
audio Wien Bridge Oscillator．

CERMET MULTI TURN PRESETS $3 / 4{ }^{\prime \prime}$

t0R 20R 100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K
IC SOCKETS
14／16／18／20／24／28／40－WAY DIL SKTS ．．．．．．．．．．．．$£ 1$ per TUBE 32－WAY TURNEOPMIN SKT̈S 7 k available ．．．．．．．．．．．．． 3 for 11
SIMM SOCKET FOR 2×30－way SIMMS．

POLYESTER／POLYCARB CAPS

 00n， $220 \mathrm{n} 63 \mathrm{~V} 5 \mathrm{~mm} . .$. ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．20／E1 100／£3 n／3n3／5n6／8n2／10n $1 \% 63 V 10 \mathrm{~mm}$
100 n 250 V radial 10 mm
100 n 600 V Sprague axial $10 / \mathrm{I} 1$

$10 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} 250 \mathrm{~V}$ AC x rated 15 mm
$1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC．．．．．．．．．
RF BITS
SAW FILTERS SW662SW6 I PLESSEY SIGNAL
 ASTEC UM 1233 UHF VIDEO MODULATORS INO SOUND） 1250 STOCK ．． 1.50

YELLOW 5－65p RED 10－110pF GREY 5－25pF
SMALL MULLARD 21022 pF FOR 50p £10／100
 CERAMIC FILTERS 4M5／6M／9M／10M7
 BFY51 TRANSISTOR CANSIZE）
2N2222 METAL．．．
2N2369A
ASREC UM1287 UHF VIDEO MODULATOR（with sound）．\quad I／ 1
PLESSEY ICS EX－STOCK
SL350G SL360G SL362C SL4030 SL423A
P8655 SP87190G
MONOLITHIC CERAMIC CAPACITORS
100 n 50 V 2.5 mm or 5 mm
100 n ax short leads．
100 n 50 V dil pack
$1 \mu \mathrm{~F} 50 \mathrm{~V} 5 \mathrm{~mm}$
$1 \mu \mathrm{~F} 50 \mathrm{v} 5 \mathrm{~mm}$ $100 / 56$
$100 / / 3$
$100 / \Sigma 5$
$100 / / 8$
$56 / 100$

KEYTRONICS
TEL．0279－505543
FAX．0279－757656
POBOX 634
BISHOPS STORTFORD
HERTFORDSHIRE CM23 2RX

AII ORDER ON

MIN．CASH ORDER 5.00 OFFICIALORDERS WELCOME
UNIVERSITIES／COLLEGES／SCHOOLS／GOVT．DEPARTMENTS
P\＆P AS SHOWN IN BRACKETS（HEAVY ITEMS）OTHERWISE 95p
ADD $17 ½ \%$ VAT TO TOTAL
VISA
ELECTRONIC COMPONENTS BOUGHT FOR CASH

£1 BARGAIN PACKS

1,000 items appear in our Bargain Packs List request one of these when you next order. $1 \times 12 v$ Stepper Motor. 7.5 degree. Order Ref: 910.
1×10 pack Screwdrivers. Order Ref: 909 1×10 pack Screwdrivers. Order Ref: 909. 2×5 amp Pull Cord Ceiling Switches. Brown. Order Ref: 921 .
$5 \times$ reels Insulation Tape. Order Ref: 911. $4 \times 14 \mathrm{~mm}$ Ball-races. Order Ref: 912
$2 \times$ Cord Grlp Switch lamp Holders. Order Ref: 913. $1 \times$ DC Voltage Reducer. 12 v - 6 v . Order Ref: 916.
1×10 amp 40 v Brldge Rectifier. Order Ref 889. Llghtwin superior sound. Order Ref: 896.
$2 \times 25 \mathrm{~W}$ Crossovers. For 40 hm loudspeakers. Order Ref: 22.
$2 \times$ Nicad Constant Current Chargers. Easily adaptable to charge almost any nicad battery. Order Ref: 30. 18v-0-18v 10va Mains Transformer. Order Ref: 813. $2 \times$ White Plastlc Boxes. With lids, approx. $3^{\prime \prime}$ cube. Lid has square hole through the centre so these are ideal for light operated switch. Order Ref: 132 .
$2 \times$ Reed Relay Klts. You get 8 reed switches and 2 $2 \times$ Reed Relay Kits. You
coil sets. Order Ref: 148.
12v-0-12v 6va Mains Transformer. PCB mounting. $12 v-0-12 \mathrm{v} 6 \mathrm{va}$
Order Ref: 938.
$1 \times$ Big Pull Solenold. Mains operated. Has $1 / 2^{\prime \prime}$ pull. Order Ref: 87
$1 \times$ Big Push Solenold. Mains operated. Has $1 / 2^{\prime \prime}$ push. Order Ref: 872
$1 \times$ Mini Mono Amp. 3W into 4 ohm speaker or 1 W into 8 ohm. Order Ref: 495
$1 \times$ Minl Stereo 1 W Amp. Order Ref: 870.
15v DC 150 ma PSU. Nicely cased. Order Ref: 942.
$1 \times$ In-Flight Stereo Unlt is a stereo amp. Has two most useful mini moving coil speakers. Made for BOAC passengers. Order Ref: 29.
1 \times 0-1mA Panel Meter. Full vision fact 70 mm square. Scaled 0-100. Order Ref: 756.
$2 \times$ Lithlum Batterles. 2.5 V penlight size. Order Ref: 874.
$2 \times 3 \mathrm{~m}$ Telephone Leads. With BT flat plug. Ideal for phone extensions, fax, etc. Order Ref: 552.
$1 \times 12 \mathrm{~V}$ Solenold. Has good $1 / 2^{\prime \prime}$ pull or could push if modified. Order Ref: 232.
$4 \times \ln$-Fiex Swltches. With neon on/off lights, saves leaving things switched on. Order Ref: 7.
$2 \times 6 \mathrm{~V} 1 \mathrm{~A}$ Mains Transformers. Upright mounting with fixing clamps. Order Ref: 9.
$2 \times$ Humidity Switches. As the air becomes damper, the membrane stretches and operates a micro switch. Order Ref: 32
$5 \times 13 \mathrm{~A}$ Rocker Switch. Three tags so on/off, or changeover with centre off. Order Ref: 42
Mini Cassette Motor. 9v. Order Ref: 944.
$1 \times$ Suck or Blow-Operated Pressure Switch. Or it can be operated by any low pressure variation such as water level in tanks. Order Ref: 67
$1 \times 6 \mathrm{~V} 750 \mathrm{~mA}$ Power Supply. Nicely cased with mains input and 6 V output lead. Order Ref: 103A.
$2 \times$ Stripper Boards. Each contains a 400 V 2 A bridge rectifier and 14 other diodes and rectifiers as well as dozens of condensers, etc. Order Ref: 120.
12 Very Fine Drills. For PCB boards etc. Normal cost about 80p each. Order Ref: 128
$5 \times$ Motors for Model Aeroplanes. Spin to start so needs no switch. Order Ref: 134.
$6 \times$ Microphone Inserts. Magnetic 400 ohm, also act as speakers. Order Ref: 139 .
$6 \times$ Neon Indicators. In panel mounting holders with lens. Order Ref: 180.
$1 \mathbf{x}$ In-Flex Simmerstat. Keeps your soldering iron etc $1 \times$ in-Flex Simmerstat. Keeps your
always at the ready. Order Ref: 196.
$1 \times$ Mains Solenold. Very powerful as $1 / 2^{\prime \prime}$ pull, or could $1 \times$ Mains Solenold. Very powert.
push if modified. Order Ret: 199.
$1 \times$ Electric Clock. Mains operated. Put this in a box and you need never be late. Order Ref: 211.
$4 \times 12 \mathrm{~V}$ Alarms. Makes a noise about as loud as a car $4 \times 12 V$
horn. All brand new. Order Ref: 221.
$2 \times\left(6^{\prime \prime} \times 4^{\prime \prime}\right)$ Speakers. 16 ohm 5 watts, so can be joined in parallel to make a high wattage column. Order Ref: in pa
243.
$1 \times$ Panostat. Controls output of boiling ring from simmer up to boil. Order Ref: 252
$2 \times$ Oblong Push Switches. For bell or chimes, these can switch mains up to 5 A so could be foot switch if fitted in pattress. Order Ret: 263
$50 \times$ Mixed Silicon Diodes. Order Ref: 293
1×6 Digit Mains Operated Counter. Standard size but counts in even numbers. Order Ref: 28
$2 \times 6 \mathrm{~V}$ Operated Reed Relays. One normally on, other normally closed. Order Ref: 48.
$1 \times$ Cabinet Lock. With two keys. Order Ref: 55
$6^{1 / 2^{\prime \prime}} 8$ ohm 5 watt Speaker. Order Ref: 824
$1 \times$ Shaded Pole Mains Motor $3 / 4^{\prime \prime}$ stack, so quite powerful. Order Ret: 85.
2×5 Aluminium Fan Blades. Could be fitted to the above motor. Order Ref: 86.
$1 \times$ Case. $3^{1 / 2} \times 2^{1 / 4} \times 13 / 4$ with 13 A socket pins. Order Ref: 845 .
$2 \times$ Cases. $2^{1 / 2 \times 2^{1 / 4} \times 13 / 4}$ with $13 A$ pins. Order Ref: 565. $4 \times$ Luminous Rocker Switches. 10A mains. Order Ret: 793.
$4 \times$ Different Standard V3 Micro Switches. Order Ref: 4×0
340.
$4 \times$
$4 \times$ Different Sub Min Micro Switches. Order Ref

BARGAINS GALORE

insulation Tester with Multimeter. Internally generates voliages which enable you to read insulation directly im megonms. The multumeter has four ranges, $A C / D C$ volts, 3 ranges milliamps, 3 ranges resistance and 5 amp range. These instruments are ex British Telecom but in very good condition, tested and guaranteed OK, probably cost at least $£ 50$, yours for only $£ 7.50$ with leads carryng case 22 exra. Order Rel 7
This Instrument but slightly faulty - you should be able to repa
it. We supply circuit dlagram and notes, $£ 3$. Order Ref 3 P176 it. We supply circuit dagram and notes, £3. Order Ref 3P176. 12V 10A Switch Mode Power Supply. For only $£ 950$ and a little bit of work because you have to convert our 135W PSU Modifications are relatively simple - we supply instructions Simply order PSU Ref 9.5 P 2 and request modification detalls Price
Medicine Cupboard Alarm. Or it could be used to warn when any cupboard door is opened. The light shining on the unit makes the bell ring. Completely bult and neatly cased, requires only battery, £3. Order Ref 3P15
Don't Let It Overflow! Be it bath, stnk, cellar, sump or any other thing that could flood. This device will tellyou when the water has isen to the pre-set level. Adjustable over quite a useful range £3. Order Rel 3P156.
Light Dimmers On standard plate to put directly in place of fiush Light Dimmers On standard plate to put directly in place of flush
switch. Available in colours, green, red, blue and yellow. $£ 2.50$. Order Ref. 25 P9.
45A Double Pole Malns Swltch. Mounted on a $6 \times 3^{1 / 2}$ atuminium plate, beautifully finished in gold, with pilot light Top quality, madэ by MEM, £2. Order Ref: 2P316.
Touch Dimmers 40W-250W, no knob to turn, just finger on frort plate, will glve more, or less light, or off Silver plate on white background, right size to replace normal switch $£ 5$. Order Ret 5P230.
Don't Stand Out in The Cold. Our 12 m telephone extenston lead has a flat BT socket one end and flat BT plug other end, $\mathbf{£ 2}$. Order Ref 2 P 338.
20W 5" 4 OHM Speaker. £3. Order Ref 3P145. Matching 4 ohm 20 W tweeter on separate bafle, $£ 1.50$. Order Ref $1.5 \mathrm{P9} 9$.
Phillips $\mathbf{9}^{\prime \prime}$ High Resolution Monitor. Black and white in metal frame for easy mounting. Brand new, stll in maker's packing ottiered at less than price of tube alone, only $£ 15$. Order Ret 15P High Current AC Mains Relay This has a 230 v coil and changeover switch rated at 15A with PCB mounting with clear plastic cover. £1, Order Ret. 965.
Ultra Thin Drills, actually 0.3 mm . To buy these regular costs a fortune However, these are packed in halt dozens and the price to you is $£$ per pack, Order Ret: 7978.
You Can Stand On It1 Made to house GPO telephone oquipment, this box is extremely tough and would be ideal for keeping your small tool in, internal size approx. $10^{1} / 2^{\prime \prime} \times 4^{1} / 2^{\prime \prime} \times 6^{\prime \prime}$ nigh Complete with carrying
strap. price $£ 2$. Order Ref $2 P 2838$. strap. price $£ 2$. Order Ref 22838.
Ultra Sonic Transducers Two metal cased units, one transmuts, one
recerves. Built to operate around 40 kHz . Ptice $£ 1.50$ the pair, Order Ret
15 P 4
Burnp 'n Go Spaceship Kit. A wondertul present for a budding youne electrician. It responds to claps and shouts and, should it strike an object, it will set off in another direction Kit contans all the parts that a youngster should be able to assembie but you might have to help with the soldering The assembly instructions are very detaled and a
successfui spaceship will result. Price is $£ 8.95$ for the comolete kil.

Order Ret gpg

Solar Working Models Non-technical but really educational. youngster will get considerable pleasure in assembling and watching
operate and there won't be any expensive batteries to buy because the are all solar powered. Ideally, of course they will to buy because the when the sun isn't shining these will pperate quite well under an electris light bulb 3 models avalable' the Helicopter, Order Ref 7.5P1, the Monoplane Propellor Arrcratt, Order Ret 75 P 2 and the Antique Horr complete with pre-cut parts, ready to glue together, solar cells, glue and atl parts necessary to make them work Price $\mathbf{5 7} .50$ each kit or any 2 for $£ 14$ or any 3 for $£ 20$.
Mains Isolation Transtormer Stops you getting "to earth" shocks
230 V in and 230 V out, 150W $\mathbf{5 7 . 5 0 \text { Order Ref } 7 5 \mathrm { P } 5 \text { . }}$. Mains 230V Fan Best make "PAPST", 41 n" square metal blades. 18 Order Ref 8P8
2MW Laser Helum neon by Philips, full spec, $\mathbf{L 3 0}$ Order Ref 30P1 in larger case to house tube as well, $\mathrm{K18}$ Order Ref 18 P 2 The larger unit. made up. tested and ready to use. complete with laser tube, $\mathbf{K} 69$ Order Ref 69pi.
Air Spaced Trimmer Caps 2-20pf, ideal for precision tuning UHF
circults, 4 for $£ 1$ Order Ref 8188 circults. 4 for $\mathrm{E1}$ Order Ref 818 B
Modem Amstrad FM240 As new condition bul customer return so you may need to fault find. $£ 6$ Order Ref 6 P34
Amstrad Power Unt 135 V at 1.9A or 12V at 2 A encased and with leads and output plug, normal mains input, 56 Order Ret 6 P23 80W Mains Transformer Two avaliable, good quality, both with norma primaries and upright mounting, one is 20 V 4 A Order Ref 3 P 106 , the
other 40 V 2 A Order Ref 3 P 107 Proiect Box Sue Rux
Project Box Size approx $8 \times 4 \times 41$ R" metal, sprayed grey, louvred end
for ventilation otherwise undrilled. Made for GPO for veniluation otherwise
£3 each Order Ret 3P74
Sentinel Component Board Amongs! hundred of other parts, this has 15 ICs , all plug in so do not need soldering Cost well over $£ 100$ Yours tor $£ 4$ Order Ref 4 P67
Sinclair $9 \vee 2.1$ A Power Supply. Made to operate the 138 K Specturm Plus 2. cased with input and output leads. Originally listed at around £15. are brand new, our price is only $£ 3$ Order Ret 3 P151 15W 8 ohm $8^{\prime \prime}$ Speaker \& $\mathbf{3}^{\prime \prime}$ Tweeter Made for a discontruued high
quality music centre. gives real hith and oniy $\mathbf{C 4}$ per pair. Order Ret quahty music centre. gives reat hi-ft and oniy $£ 4$ per pair. Order Re
4 P 57 Water Pump Very powerful, mains operated, 510 Order Ref 10P74 $0-1 \mathrm{~mA}$ Full Vision Panel Meter. $23 / 4^{\prime \prime}$ square, scaled
easily removed for re-writing, $\Sigma 1$ each Order Ret 756

Amstrad Keyboard Model KB This is a most comprehensiv

 keyboard, having over 100 keys including, of course fuli numerical and Qwerty. Brand new. sitll in maker's packing. £5 Order Ref 5P202 1 RPM Motor This is only $2 W$ so will not cost much to run Speed is ideat for revolving mirrors or lights, E2 Order Ret 2 P328Unusual Solenoid. Solenoids normalty have to be energised to pull in
and hold the core this is a disavatatage where the apolince in let and hold the core, this is a disadvantage where the appliance is left on for most of the time We now have magnetic solenoids which hold
core untll a voltage is applied to release it $£ 2$. Order Ref 2 P327 Mains Filter. Resir impregnated nicely cased pcb mounting £2 Order

£1 BARGAIN PACK

This is the E1 Bargain Packs List 2 - watch out for lists 3 and 4 next month.
$3 \times$ Battery Model Motors, tiny, medium and large. Order Ref 35.
$2 \times$ Tuning Condensers for medium wave radios. Order Ref 36.
Miniature 12 V Relay with low current consuming coil, 2×3 A changeover contacts. Order Ref 51.
$2 \times$ Ferrite Slab Aerials with medium wave coils. Ideal for building small radio. Order Ref 61 .
$2 \times 25 \mathrm{~W} 8 \mathrm{OHM}$ Variable Resistors. Ideal for loud speaker volume control. Order Ref 69 .
$2 \times$ Wire Wound Variable Resistors in any of the following values, 18, 35, 50, 100 ohms, your choice. Order Ret 71.
4×30 A Porcelain Fuse Holders. Make your own fuse board. Order Ref 82
$2 \times 61 / 2^{\prime \prime}$ Metal Fan Blades for $5 / 16$ shaft. Order Ref $86 /$ $6^{1 / 2}$.
Main
Mains Motor to suit the $61 / 2^{\prime \prime}$ blades. Order Ref 88 $1 \times 4.5 \mathrm{~V} 150 \mathrm{~mA}$ DC Power Supply. Fully enclosed so quite safe. Order Ref 104.
10 each red and black smail size Crocodille Cllps. Order Ret 16 .
5 mm Twin WIre, screened. Order Ref 122A
100 Plastlc Headed Cable Cilps, nail in type, several sizes. Order Ref 123
4 MES Batten Holders Order Ref 126
Complete Pocket Slze MW Radlo, believed OK but not tested. Order Ref 133R
4×2 Clrcult Mlcro Swltches (Licon). Order Ref 157. $1 \times 13 A$ Swltch Socket, quite standard but coloured Order Ref 164
$\times 30 \mathrm{~A}$ Panel Mounting Toggle Switch, double pole. Order Ref 166.
2 Neon Numicator Tubes. Order Ref 170.
$6 \times$ BC Lamp Holder Adaptors. Order Ref 191
$8 \times$ Superlor Type Push Swltches. Make your own
x \times Superlor Type Push Switches. Make your
keyboard. Order Ref 201 .
Malns Transformer $8 \mathrm{~V}-0-8 \mathrm{~V} 1 / 2 \mathrm{~A}$. Order Ref 212
$2 \times$ Sub Min Toggle Switches. Order Ref 214.
High Power $3^{\prime \prime}$ Speaker (11 W 8ohm). Order Ref 246. Medlum Wave Permeability Tuner. Its almost a Memplete radio with circuit. Order Ref 247 .
$6 \times$ Screwdown Terminals with through panel insula $6 \times$ Screwdown
tors. Order Ret 264.
CD Clock Display. $1 / 2^{\prime \prime}$ fiqures. Order Ref 329
$10 \times$ Push On Long Shafted Knobs for $1 / 4^{\prime \prime}$ spindle. Order Ref 339
$2 \times$ ex-GPO Speaker Inserts, ref 4 T. Order Ref 352 $100 \times$ Sub Min 1F Transformers. Just right if you want coil formers. Order Ref 360.
$1 \times 24 \mathrm{~V} 200 \mathrm{~mA}$ PSU. Order Ref 393
$1 \times$ Heating Element, mains voltage 100 W , brass encased. Order Ref 8.
x Mains Interference Suppressor. Order Ref 21. $3 \times$ Rocker Switches, 13A mains voltage. Order Ref
$1 \times$ MInI Uni Selector with diagram for electronic jigsaw. Order Ref 56
$2 \times$ Appliance Thermostats, adjustable up to 15A. Order Ref 65
$1 \times$ Mains Motor with gearbox giving 1 rev per 24 hrs. Order Ref 89.
$10 \times$ Round Pointer Knobs for flatted $1 / 4^{\prime \prime}$ spindles. Order Ref 295.
$1 \times$ Ceramic Wave Change Switch, 12 pole, 3 way with $1 / 4^{\prime \prime}$ spindle. Order Ref 303
$1 \times$ Tubular Hand Mike, suits cassette recorders, etc Order Ref 305
$2 \times$ Plastic Stethosets, take crystal or magnetic inserts. Order Ref 331
$20 \times$ Pre-set Resistors, various types and values Order Ref 332
x Car Type Rocker Switches, assorted. Order Ref 333.
$10 \times$ Long Shafted Knobs for $1 / 4^{\prime \prime}$ flatted spindles Order Ref 339
$1 \times$ Reversing Switch, 20A double pole or 40A single pole. Order Ref 343
$4 \times$ Skirted Control Knobs, engraved 0-10. Order Re 355.
$3 \times$ Luminous Rocker Switches. Order Ref 373. 2×1000 W Tubular Heating Elements with terminal ends. Order Ret 376
x Mains Transformer Operated Nicad Charger cased with leads. Order Ref 385.
$2 \times$ Clockwork Motors, run for one hour. Order Ref
Prices include VAT. Send cheque/postal order or ring and quote credit card number. Add E3 post and packing. Orders over £25 post free.

> M\&B ELECTRICAL SUPPLIES LTD
> Pilgrim Works (Dept. WW), Stairbridge Lane, Bolney, Sussex RH175PA Telephone (0444) 881965phone for Fax Callers to 12 Boundary Road, Hove, Sussex

Norm Dye and Helge Granberg explain how acceptable gain, noise and stability are achieved in the real world of modern high performance transistors. From the book RF Transistors: principles and practical applications.

Stable performace in the real world

M
aking an assumption of unilateral gain has helped in analysing the overall gain of a transistor stage by considering contributions from three parts. But assuming S_{12} (the cause of the interaction of input and output, see November $E W^{\prime}+W W$) has a value of zero ignores the problem of amplifier stability - it also leads to the eroneous conclasion that output matshing has no effect on :nput matching.
Amplifier design calculations which do not include device (and circuit) feedback are only an approximation. and can lead to inaccurate solutions and. possibly, circuit oscillations when the design is realised.

So how are acceptable gain, noise and stability achieved in the real world of modern high performance transistors when S_{12} is other than zero" The answer is straightforward -S-parameters, allowing device stability to be calcuiated by determining a term called the Rollent stability factor K.
To make the equation simple, first calculate intermediate quantity $D_{s}=S_{11} S_{22}-S_{12} S_{21}$. Stability factor K is then calculated as:

$$
K=\left(1+\left|D_{1}\right|^{2}-\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}\right) / 2\left|S_{21}\right|\left|S_{12}\right|
$$

If K is greater than unity, then the device will be unconditionally stable for any combination

$\mathrm{V}_{\text {CE }}=8.0 \mathrm{~V} . \mathrm{ic}=5.0 \mathrm{~mA}$ $1=1.0 \mathrm{GHz}$

「MS	「ML
$0.89 \angle-179^{\circ}$	$0.81 \angle 66^{\circ}$

Solid circles - Gain Dashed circle - Noise figure

Fig. 2. Comparing gain and NF circles shows that minimum noise figure cannot generally be obtained at maximum gain.

f(GHz)	NF OPT(dB)	Rn (1)	NF5O Ω (d8)	TMS NF OPT
1.0	1.5	7.5	2.2	$0.48 \angle 134^{\circ}$

of source and load impedance. But if it calculates to be less than I, the device is potentially unstable and will most likely oscillate with certain combinations of source and load impedance.
S-parameters go one step further. They permit the catculation of "stability circles" which can be plotted on the Smith chart and which separate regions of stability and instability. Generally only a portion of the circle will be visible on the Smith chart. When choosing source and load impedances. values that lie within the regions of instability should be avoided.

Manufacturers who supply gain and noise circle data with their transistors also plot regions of instability, typically indicated by dashed lines. Obviously these circles (or por-

Plotting a specific power gain circle

A step-by-step procedure for plotting a
specific power gain circle would be:

- Select the desired value of G_{p};
- calculate $g_{p}=G_{p} /\left.S_{21}\right|^{2}$:
- calculate $K=\left(1+\left|D_{s}\right|^{2}-\left|S_{\left.1\right|^{2}}\right|^{2}-\right.$
$\left.\left|S_{22}\right|^{2}\right) / 2\left|S_{2 \mid}\right|\left|S_{12}\right| ;$
- calculate $D_{s}=S_{11} S_{22}-S_{12} S_{21}$;
- determine

$$
R_{p}=\frac{\left[1-2 K\left|S_{12} S_{21}\right| g_{p}+\left|S_{12} S_{21}\right|^{2} g_{p}^{2}\right]^{\frac{1}{2}}}{\left|1+g_{p}\left(\left|S_{22}\right|^{2}-\left|D_{s}\right|^{2}\right)\right|}
$$

- determine

$$
C_{p}=\frac{g_{p} C_{2}^{*}}{\left|1+g_{p}\left(\left|S_{22}\right|^{2}-\left|D_{s}\right|^{2}\right)\right|}
$$

Once we select a value of Γ_{1} from a point on the gain circle, we can then determine Γ_{s} $=\Gamma_{\mathbb{N}}{ }^{*}$ using

$$
\Gamma_{1 \mathrm{~N}}=S_{11}+\frac{S_{12} S_{21} \Gamma_{\mathrm{L}}}{1-S_{22} \Gamma_{\mathrm{t}}}
$$

tions thereof) will not exist within the Smith chart boundaries for transistors with a value of $K>1$.
Calculation and plotting of instability circles (Fig. 1) are straightforward operations involving S-parameters - though tedious and best performed using a computer. Bringing logether the equations for the centre locations of the input instability circle and the output instability circle along with those for their radii r_{-}, gives:

$$
\begin{array}{r}
r_{s 1}=\frac{C_{1}^{+}}{\left|S_{11}\right|^{2}-|D|^{2}} \\
\text { where } D_{s}=S_{11} S_{22}-S_{12} S_{21} \\
C_{1}=S_{11}-D_{1} S_{22}^{*}
\end{array}
$$

and r_{11} is the centre of input stability circle. Also

$$
D_{11}=\left|\frac{S_{12} S_{21}}{\left|S_{11}\right|^{2}-\left|D_{s}\right|^{2}}\right|
$$

where $p_{, 1}=$ radius of input stability circle. Likewise

$$
r_{12}=\frac{C_{2}^{*}}{\left|S_{22}\right|^{2}\left|D_{1}\right|^{2}}
$$

where

$$
C_{2}=S_{22}-D S_{3} S_{11}^{*}
$$

and r_{52} is the centre location of the output slability circle. And

$$
\mathrm{r}_{12}=\frac{S_{12} S_{21}}{\left|S_{22}\right|^{2}-\left|D_{1}\right|^{2}}
$$

where $p_{s 2}$ is the radius of the output stability circle.
However, determining the proper source and load impedances is simplified to a large extent when the transistor can be treated as a unilateral network. If we have satisfied ourselves about the stability of our circuit, then we will find it bencficial, at least as a tirst approximation. to treat it in this manner whenever possible during design.

If S_{12} can not be assumed equal to 0 . then the equation for power gain G_{p} can be used to

Summary of gain/noise

 figure design procedures1. Once a transistor and its bias conditions have been selected, the S-parameters should be analysed to determine if the simpler design procedures involving the assumption that $S_{12}=0$ can be used. Limits placed on the maximum error introduced by this assumption can be seen from:

$$
U=\frac{\left|S_{11}\left\|S_{21}| | S_{12}\right\| S_{22}\right|}{\left(1-\left|S_{11}\right|^{2}\right)\left(1-\left|S_{22}\right|^{2}\right)}
$$

and

$$
\frac{1}{(1+U)^{2}}<\frac{G_{t}}{G_{t u}}<\frac{1}{(1-U)^{2}}
$$

2. Next, use Rollett's stability factor, from $D_{\mathrm{s}}=$ $S_{11} S_{22}-S_{12} S_{21}$ and $K=\left(1+|D s|^{2}-\left|S_{11}\right|^{2}-\right.$ $\left.\left|S_{22}\right|^{2}\right) / 2\left|S_{21}\right| I S_{12} \mid$ to identify the possibility of instabilities depending on source and load matching.
3. Subsequent steps depend on the desired

results:

- For narrow-band and maximum gain,
conjugate match input and output.
- For specific gain at a single frequency, use the gain circles provided by the device manufacturer (or draw the appropriate available gain circle using the equations for $g_{\mathrm{a}}, C_{1}, R_{\mathrm{a}}$ and $\left.C_{\mathrm{a}}\right)$. After the gain circle is drawn, select a value for Γ, and calculate $\Gamma_{\mathrm{L}}=\Gamma_{\text {OUT }}$ using:

$$
\Gamma_{1 \mathrm{~N}}=S_{11}+\frac{S_{12} S_{21} \Gamma_{\mathrm{L}}}{1-S_{22} \Gamma_{\mathrm{L}}}
$$

If $S_{12}=0$ can be assumed, the "gain" or "loss" can be divided between the input/output matching networks using the equations for $d_{\mathrm{s}}, R_{\mathrm{s}}$ $g_{\mathrm{s}}, G_{\mathrm{s}}, d_{\mathrm{L}}, R_{\mathrm{L}}, g_{\mathrm{L}}$ and G_{L}, and appropriate values for source and load terminations determined. In this case the input and output of the amplifier will not be matched to Z_{0}. So if a low vswr is a requirement, this approach should be avoided.

- If a noise figure and gain at a frequency are needed, use both gain and noise figure circles provided by the device manufacturer and select an appropriate value of Γ_{s}. Again, calculate Γ_{L} as previously stated.
- For broadband performance, examine the $\left|S_{21}\right|^{2}$ performance of the transistor over the frequency range of interest and determine the amount of gain or loss that must be provided by the matching networks to keep the overall gain the same at the band edges. Plot these gain circles on a Smith chart using the equations for $g_{\mathrm{a}}, C_{1}, R_{\mathrm{a}}$ and C_{a}. By trial and error (or the use of computer optimisation) determine a matching network that will satisfy both "gain/loss" circles simultaneously.
develop a mathematical procedure for determining values of Γ_{L} and $\Gamma_{\mathrm{s}}=\Gamma_{\mathrm{IN}}{ }^{*}$.
Manipulating that equation allows recognition of constant operating power gain circles having radii R_{p} of

$$
R .=\frac{|1-2 \mathrm{~K}| s_{12} s_{21}\left|g_{1}+\left|s_{12} s_{21}\right|^{2} g_{t}^{2}\right]^{\frac{1}{2}}}{\left|1+g_{\cdot}\left(\left|S_{22}\right|^{2}-|\mathrm{D}|^{2}\right)\right|}
$$

where K is the previously-identified Rollett stability factor. $D_{4}=S_{11} S_{22}-S_{12} S_{21}$ and $g_{p}=$ ($p_{p} / / S_{21} 1^{2}$
Locations of the centres C_{p} of the circles are

$$
C_{p}=\frac{g_{p} C_{2}^{*}}{\left|1+g_{p}\left(\left|S_{22}\right|^{2}-|D|^{2}\right)\right|}
$$

where $C_{2}=S_{22}-D_{2} S_{11}$ as before.
Maximum operating power gain occurs when $R_{\mathrm{p}}=(0$, and for this condition and for the case where $K>1$ (the circuit is unconditionally stable):

$$
G_{\mathrm{p} . \max }=\frac{\left|S_{21}\right|}{\left|S_{12}\right|}\left(K-\sqrt{K^{2}-1}\right)
$$

We have already assumed that $\Gamma_{\mathrm{s}}=\Gamma_{\mathrm{iN}}{ }^{*}$ and. under these conditions $\Gamma_{\mathrm{p} \cdot \mathrm{max}}=\Gamma_{1 . \max }$

Because poner gain circles involve load reflection coefficients, it is more common to plot constant available power gain circles which involve source reflection coefficients. The process is similar and the equations are only slightly different: $g_{i}=G_{\mathrm{N}} /\left.S_{21}\right|^{-2}$ and $C_{1}=$ $S_{11}-D_{4} S_{22}{ }^{*}$. Then

$$
\begin{aligned}
& S_{11}=\text { input reflection coefficient }={ }_{a_{1}}^{b_{1}} d_{2}=0 \\
& S_{22}=\text { output reflection coefficient }={ }_{c r}{ }_{r}^{x} \mid a_{1}=0 \\
& S_{21}=\text { forward transmission coefficient } \left.=\begin{array}{c}
h_{2} \\
a_{1}
\end{array} \right\rvert\, a_{2}=0 \\
& S_{12}=\text { reverse transmission coefficient }={ }_{a_{2}}^{b_{1}} \mid a_{1}=0
\end{aligned}
$$

Two-port S-parameter definitions (accidentally omitted from last month's Fig. 1).

$$
R_{-}=\frac{|1-2 k| S_{11} S_{12}\left|g_{.}+\left|S_{21} S_{12}\right|^{2} g^{2}\right|^{\frac{1}{2}}}{\left|1+g_{1}\left(\left|S_{11}\right|^{2}-\left|D_{1}\right|^{2}\right)\right|}
$$

and

$$
c=\frac{g_{2} c_{1}}{\mid 1+g_{11}\left(\left|s_{11}\right|^{2}-|D|^{2}| |\right.}
$$

where $)_{5}=S_{11} S_{22}-S_{12} S_{21}$ and $g_{p}=\left(G_{p} / S_{21} I^{2}\right.$. R_{a} is the radous of gain circle and C_{a} is centre of gain circle.
Constant available power gain circles involve Γ and. as seen carlier, so do constant noise figures. Thus, both sets of circles can be plotted together on a Smith chart to provide trade-off information between gain and noise figures. These are the curves presented by device manufacturers in their low noise tramsistor data sheets.
Comparisen of gain circles with noise circles (Fig. 2) makes clear another fundamental
point about low noise amplifier design. Minimum noise figure cannot generally be achieved at the same time as minimum gain. So designing a low noise amplifier becomes a trade-off of gain and noise figure to achieve an acceptable value of each.

In a fiture issue, Norm Dye and Helge Granserg will look at examples intended to clarifv these procedures further by working through specific problems.

RF Transistors: Principles and practical applications is available by postal application to room L333 EW+WW, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.
Cheques made payable to Reed Books Services. Credit card orders accepted by phone (08"-652 3614).
2880p Hardback 0750690593 Cost E19.95 + Postage $£ 2.50$

Best rf article '95

Following the success of 1994's Writers Award, Electronics World and Hewlett-Packard are launching a new scheme to run from January to December 1995.
Only articles which have an element of if design will be eligible for consideration by the judging panel. It is hoped that this year's award will focus writer interest on rf engineering in line with the growing importance of radio frequency systems to an increasingly cordless world.
The aim of the award scheme is to locate freelance authors who can bring applied electronics design alive for other people.
Qualifying topics might include direct digital synthesis, microstrip design, application engineering for commercially available of ICs and modules, receiver design, PLL, frequency generation and rf measurement, wideband circuit design, spread spectrum systems, microstrip and planer aerials... The list will hopefully be endless.
All articles accepted for publication will be paid for - in the region of several hundred pounds for a typical design feature.

The prize for the coming year's award is a $£ 4000$ Hewlett-Packard HP8647A 1 GHz programmable signal generator. It features HPIB interface, solid state programmable attenuator and built in AM-FM modulation capability.

> For further detalls cbout our quest for the best, call or write tos Mortin Eccles, Editor Electronics World, Quadrant House, The Quadrant, Sution, Surroy, SM2 5AS Tel 081-6523128

LETTERS

Letters to "Electronics World + Wireless World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Braun-ed off

John Powell Riley's article "The man who started ripples in the ether" (EИ + И И. September. pp. 778-782) was very interesting and contained a lot of information about the early days of wireless. 1 am also in complete agreement with his words: "No single person invented the radio". But I would like to suggest a reappraisal of the Cierman part of his article.
For me there is too much stress on Slaby and nothing on Braun. who was in fact much more important for the "ripples in the ether"
Karl Ferdinand Braun was a professor in Stralbburg, and some of his important work included investigating the semiconductor effect, the volimeter, the display tube, radar displays, the crystal semiconductor, ¢park transmitter with primary and secondary system - the type of transmitter used by Marconi for crossing the ocean in I9()I - and ferrite.
Bratm was granted a patent for his
transmitler in Germany in 1898 , and in England, No 1862, in January 1899. Marconi applied in L.ondon for the same item in two parts and got the patents in April 26, 190). and Janary 7, 1901, one of them number 7777.
In 1899 Braun founded the "Prolessor Braun's Telegraphic GmbH Hamburg", and in lanuary 190) he tried to get into business contact with Marconi. Instead he joined with Siemens \& Haltake in 1901 .
Slaby copied from Braun without crediting the origins - Braun, in fact. was really the better inventor - and patent troubles rumbled on until May 1903, when the German Emperor ordered AEG and Siemens \& Halske to create a new company, later called Telefunker.

Braun and Marconi logether were awarded the Nobel prize for physics in 1909.
I would be very interested to read a copy of the three patents mentioned above. to see their
differences. Could any $E W+W h$
reader heip me?
Gregor Ulsamer
Logumer Str 66
D-2672.3 Emden
Germany

Mosfet input

I found it interesting that Doug'as Self should blame the input stage for the disparity in positive and negative stew rales. L'nless he was driviag the input circuit and VAS stage ink an almosi-totally saturated condition provoking a slow recovery which might be exacerbated by a droo in the supply voltages during prolonged driving - then the most likely culprits are almost certainly the ponderously slow output devices, and drivers that he has opted to use. This is particularly so since the pop driver (M./E 350) has a nominal F_{T} of 4 MHI 1 , while its complement MJE340, npn, has an F_{T} of 10M1 Iz. Moreover the output devices are only rated at $2 \mathrm{MHz} F_{\mathrm{T}}$. These 30 A
devices probably have a low β and need some considerable driving. At lirst sight, changing R_{13} in the VAS stage to a lower value might indicate a lack of drive for the pup driver/output devices at high frequency. The problem is that one erroneously assumes that the output devices are matched at high frequencies. Mostly they are not, and may need a higher current drive than antiepated hecause of dynamic capacitive effects prominent at high power.
It is this effect which provides a large anomaly between an estimated slew rate, in this case of $40 \mathrm{~V} / \mu \mathrm{s}$, and what is actuatly achieved at full power - which will be considerably less.
One major condtion for slew rate, according to the book, is that it refers to the maximum frequency at which the amplifier can deliver a voltage corresponding to its rated power. At $40 \mathrm{~V} / \mu \mathrm{s}$, and assuming a peak voltage of 31 V . Self"s amplifier would be expected to

Hear, Hear

I was very pleased that in Research Notes ($E W+W W$. August) Prof Engebretson's point was reported that, technically, we can create sophisticated hearing aids but the question is what do we want them to do?

The fact that so many hearing aids are consigned to the drawer is because they do not restore the hearing to original normality. The situation has now arisen where people can see wars, disasters, sport and so on from the other side of the world, as it happens, and yet a hard-of-hearing person cannot hear properly from the other side of the room.

I never cease to be ashamed of the electronics industry, of which I am a member, when a hearing impaired person makes this sort of comparison to me. I am pleased that the Technical Committee of the charity, "Hearing Concen" whose members are either hard of hearing senior members of the Institution of Electrical Engineers or of the Medical Profession, have taken a more positive line and take the attitude "We want hearing aids which restore our hearing to normal". People think that hearing loss can be compensated for by an amplifier, perhaps with some frequency shaping and maybe some amplitude compression. Sadly, this is far from the truth. Some other
"distortion" takes place in the impaired cochlea (the part of the ear which converts sound vibration into neural signals for onwards
transmission to the central nerv ous system).
This cistortion has yet to be defined. But its effect is that sounds can be loud enough frequenly 100 loud for the impsired ear - yet the inte ligibility of speech ren ains poor.
It is sometines suggested that this diserimination deficit is due to loudness recruitinent, the curious effect whereby the impaired ear is deaf to quieter sounds, but as they are made louder it seems to recover the loss until frequently, at high levels, sounds can be heard at the same loudness as a normal ear.
Prof Engebretson also made reference to this effect.
In e<periments in the laboratory we corrected this problem and yet patient's speech discrimination was improved by very little, i^{-}at all. Unfortunately the techniaue corrected the loudness distortion with the eddition of some harmonic or intermodulation distortion and noise
In the course of many years in otological work I have questioned hard of hearing people inclu ling acoustically and technically expe-ienced people - as to what it is that makes speech difficult for them to anderstand. But nothng they say gives us a ecal clue as to how to reverse the effect electronically in a hearng aid.

If you are hard of hearing and know the answer then for goodness sake don't keep it to yourself.

T ee advent of digital signal processing \mathfrak{r} as
giden the search for the answer a new impetus. Kent University, Electronics Departnient, has designed chips which mean that all sorts of dsp ficilities can be provided in a hearing aid and use less current than the equivalent analogue ciscuit. That is great for aid users, but what they, and we. and Prof Engebretson, are waiting for is to know how to program the thing to produce real benefits.
Edward Trinder
institute of Laryngology and Otology
University College London
'Hearing Concern', 711 Armstrong Road, こondon W3 7 JL .

Digital Old Master

With reference to "Painting Old Masters in pixels" (Research Notes, October, p.802), I understand there is no possibility of restoring the Mona Lisa to its original state, as opposed to conserving it without tryirg to turn the clock back.

Some say, too, that the subtlety of the Sistine Chapel ceiling has been ooliterated in restoration. So in the long term, digital records will be the only valid ones, though masterpieces that have deteriorated grotesquely will obviously still have high value attached to them. Bernard Jones
London

 Easy to use, low cost data acquisition products that allow your PC to be used as a range of useful test and measurement instruments,

 or as an advanced data logger. Easy installation via a parallel port except the ADC-16 which connects to the serial port. They require no power supply. Take up no expansion slots. Each comes with a comprehensive manual. Software drivers are included for users who wish to write their own software. Software supplied on 3.5 " disk.| PicoScope | 'Virtual instrument' software. |
| :--- | :--- |
| Storage scope with trigger, timebase, | |
| rulers and offset. Real time spectrum | |
| analysis with min/max frequency and | |
| signal averaging. Multiple meters on | |
| screen (digital and bargraph). | |

PicoLog
Storage scope with trigger, timebase, rulers and offset. Real time spectrum nalth min/max frequency and screen (digital and bargraph).

Advanced data logging software.
Collect store, display and print data. Record average, min/max or scaled values (linear, equation, table look-up). Report types; monitor (with min/max alarms), y-time, $x-y$ graphs, spreadsheet reports.

NEW S.A.A-16 Logic Analyser

 Pocket sized 16 Channel Logic Analyser

- Connects to PC serial - up to 50 MHz - Internal \& external clock modes - 8K Trace Buffer $A D C-10112$
- Single channel of analog input - 0-5V input range S.AA-16 with power - 8 bit resolution 22 kHz sampling (ADC-10)
supply and cables $\mathbf{£ 2 1 9}$

NEW ADC-100 Virtual Instrument

Dual Channel 12 bit resolution

- Digital Storage Scope - Spectrum Analyser
- Frequency Meter - Chart Recorder
- Data Logger - Voltmeter

The ADC-100 offers both a high sampling rate (100 kHz) and a high resolution. It is ideal as a general purpose test instrument either in the lab or in the field. Flexible input ranges $(\pm 200 \mathrm{mV}$ to $\pm 20 \mathrm{~V})$ allows the unit to connect directly to a wide variety of signals.

$4 D C-100$ with PicoScope $£ 199$

ADC-10 £49 ADC-11/12 £85 ADC-16 with PicoLog $£ 115$ ADC 10/11/12 supplied with PicoScope software. Picolog for ADC 10/11/12:100 available for an additional $£ 10$.
Carriage Overseas $£ 6$ Oscilloscope Probes $(\times 1, \times 10) £ 10$

deliver full power at over 200 kHz .
Of course it is deliberately rolled off within the audio bandwidth to cater for stability margin and to reduce SID. Since it is rolled off, the amplifier cannot slew at the rate suggested.

The point is that to maintain stability etc the amplifier is probably beginning to roll off at about 15 kHz at full power into a $4 \Omega 2$ load. The net result is an amplifier that sounds comparatively dull in the treble. compared to mosfet designs.

The dynamic capacitive effects of bi-polars at high power always force the designer into compromises between a reasonable bandwidth. stability and distortion - not to mention the poor ruggedness of higher F_{T} types.

Naturally, lower power amplifiers will benefit in these respects. But as you go up in power and use multiple output devices paralleled-up. this capacitive effect is increased so that using faster and faster devices becomes mandatory. The readymade solution to these problems is to use mosfets which, when used properly, have feu vices, provided certain strict rules are observed.

In the February issue (Letters, 1994) Douglas Self, in reply to Ivor Brown's letter, suggests that mosfets are "so depressingly non-linear". This statement is contrary to text books which make a case for lower distortion, particularly in terms of the third-harmonic content, giving more favourable intermodulation and cross modulation figures than a bi-polar device. So for mosfet designs, less negative feedback is required, giving better stability margin for wider bandwidth. In fact Self said as much in his article Sound mosfet design ($E W+W W$. September, 1990) where he shows in his hybrid circuit a distortion figure of 0.05% open loop.
The linearity of mosfets is proportional to drain current. But if you set the quiescent current as Self has done in his hybrid circuit to 45 mA , the mosfets will initially wander since the change-over from positive to negative lemperature coefficients occurs at around 80 mA . Devices will gravitate towards this by temperature changes during driven conditions and this effect may be the cause of his non-linearity - it is why Hitachi suggests an 80 mA quiescent minimum. Parallelling up devices improves linearity, as does increasing the quiescent current.

As to the charge that they will not drive complex loads, this is the sort of comment of someone who has not understood the relationship betueen the gate-source voltage to drain current. and who has placed a low voltage protection zener across the input then expects it (the mosfet) to deliver full current.
I find it disappointing that after 20 years, mosfets still seem to be regarded with deep suspicion by some parties due. it seems. to a lack of understanding. For my part, given all the difficulties, I cannot understand why designers are still playing with bi-polar audio output stages.
Some 15 years ago David Hatler brought out his DH2OO mosfet amplifier, a fully symmetrical design of $100 \mathrm{~W}+/$ channel. That is still absolutely superb and is what I call blameless: updated with a better power supply it is probably unbeatable!
My last comment concems the incessant need for the cognoscenti to express what we hear, in terms of sine waves, as an expression of hearing limitation. I know of few people who have actually taken the trouble to find out how the car, and more importantly the brain'ear interface responds.
The ear has its own non-linearity which produces overtones. This effect and the fact that the brain is capable of interpreting extremely fast changing wavefronts is one of the major reasons why elderly people can detect tones well up into the audio bandwidth - top hats (cymbals), triangles, etc - and yet will have a severely limited response to sine waves. The way in which the brain perceives this information tends to make a mockery of those experts who say "you can't hear this or that because...": differences are already perceived between amplifiers despite their speed being supposedly more than adequate to encompass the highest audio signal. It would be nice if this anomaly in relation to the hearing mechanics could be cleared up once and for all by someone that really knows what he/she is talking about.
I prefer mosfet amplification because I have yet to hear a bi-polar that produces anything like the detailed clarity and openness that it affords - particularly using a 0.75 in dome super-tweeter, power for power!

V / Hawtin

Middlesex

References

The Audio Handbook, Gorton J King; Sound and Hearing, Charles Gramer, and The Imatruments of Music, Robert Donington.

D. Self replies

1 regret that Mr Hawtin heeds to reread the article a little more carcfulls:

I did not hlame the input stage for unequal positive and negative slewrates: the major couse of this effect - which / expounded on at some length - is capacitive feedthrough in the V'AS curren source, which reduces the currem available during positive slew.

I was indeed driving the input stage into saturation, beculuse this is the basis of slew-limiting, but was carcful not to drive the VAS imo clipping; the two constraints are quite diffcrent. There are no slonrecorery affects beculuse there is no clipping. and the supply rail has no significam influence.
The power devices are indeed relarively show compared with the small-signal stages, though this has no direct effect on slew--limiting, this is why many of the tests were done on a 'model' amplifier with a TO-92 Class-A output stage, to minimise the possible complications. Possibly Mr Hawtin has overlooked these paragraphs.

I do not assume that the outpin devices are matched at hff, or anywhere chse. If the output stage had a trudy massive beta-mismanch between the top and bottom halies then it mught in theory be possibte to have a slew limit that was slighty different above and below the zero axis, but this is not a realistic condition.
The amplifier does not have its closed-loop gain rolled-off at 15 hHz , and it most certainly does not sound dull into a 4Ω load.
1 stand by my previous statement that fets are non-linear by comparison with hipolar junction transistors. I would have thought that the wingspread gain diagrams (n'ingspread is a handy term borrowed from a slightly different ficld of technology) in Part 4 of Distortion in Power Amplifiers buts the matter beyond doubt - espewially since they are backed up by practical measuremems I don't know what textbook he is talkin? about. but possibly it refers to of mixers, where fets do have theil advantages: however, this has nothing io do with power amps.

Feed-forward feedback

I read with interest Giovanni Stochino's article (Audio design leaps forward. $E W+W W$, October, pp. 818-824) on the application of feed-forward in Audio.
But I believe that the concept can be developed much more clearly and simply. First, we have his block diagram showing how power amplifier error is extracted, determined and isolated via a criterion network comprising α, γ and $S C$; and the formula $V_{0}=V_{\mathrm{p}}{ }^{-}$ V_{a}.
$\stackrel{\text { Next, }}{ } \mathrm{Mr}$ Stochino introduces E_{p} and E_{a} (the error components in the main and auxiliary amplifiers), which is confusing as these are not shown in the figure. It is much simpler to assume that all errors, noise etc. are contained in the terms G_{p} and G_{a}, describing the two amplifiers. The expression is then developed straightforwardly by substitution:

$$
\begin{aligned}
& V_{\mathrm{p}}=V_{\mathrm{i}} \cdot G_{\mathrm{p}} ; \\
& V_{\mathrm{p}}^{\prime}=\lambda \cdot V_{\mathrm{p}} ; \\
& V_{\mathrm{p}}^{\prime}=\lambda \cdot V_{\mathrm{i}} \cdot G_{\mathrm{p}} . \\
& \text { Similarly, } \\
& V_{\mathrm{a}}=V_{\mathrm{e}} \cdot G_{\mathrm{a}} ; \\
& V_{\mathrm{e}}=V_{\mathrm{i}} \cdot \alpha+V_{\mathrm{p}} \cdot \gamma \\
& V_{\mathrm{e}}=V_{\mathrm{i}} \cdot \alpha+V_{\mathrm{i}} \cdot G_{\mathrm{p}} \cdot \gamma \\
& \text { thus: } \\
& V_{\mathrm{a}}=G_{\mathrm{a}} \cdot V_{\mathrm{i}}\left(\alpha+\gamma \cdot G_{\mathrm{p}}\right) .
\end{aligned}
$$

The output V_{0} then becomes: $V_{\mathrm{o}}=V_{\mathrm{i}} \cdot G_{\mathrm{p}} \cdot \lambda-G_{\mathrm{a}} \cdot V_{\mathrm{i}} \cdot\left(\alpha+G_{\mathrm{p}} \cdot \gamma\right)$.
The system gain is:
$V_{0} / V_{\mathrm{i}}=G_{\mathrm{p}} \cdot \lambda-G_{\mathrm{a}} \cdot \alpha-G_{\mathrm{p}} \cdot G_{\mathrm{a}} \cdot \gamma$.
Clearly, the system is independent of
the main amplifier if:
$G_{\mathrm{p}} \cdot \lambda-G_{\mathrm{p}} \cdot G_{\mathrm{a}} \cdot \gamma=0$.
This leads to the condition
(assuming $\lambda=1$) $G_{\mathrm{a}} \cdot \gamma=1$,
which is equivalent to Mr . Stochino's result, but is much easier to understand.
From this result it can also be concluded that in this case the system gain becomes:
$V_{d} / V_{\mathrm{i}}=-G_{\mathrm{a}}, \alpha$.
Furthermore, the condition $G_{0}=$
$G_{\mathrm{o}}{ }^{\prime}=G_{\mathrm{o}}{ }^{\prime \prime}$ is not necessary. However, $\alpha=1 / \gamma$, which follows from Figs. 2 and 5.
By the way, I wonder whether a copy of the patent application would be available. What is it exactly that Mr.Stochino wishes to patent?

Jan Didden

Zevenbergen
The Netherlands.

As for Mr Ihantin's lust comment. 1 am left breathless at his apparent! twat ignorance of the entire field of psechroacolastics, which has addressed itself to car and brain for at least the past century. involving thonsands of sciemific wowkers.
There are more mis-statements in letter, but commenting on them all would be too tedious. I meed hardy. say that I am deeply grieved to learn that Mr Havtin comsiders / am oms playing with power amplifiers, and look fow wod in humility to the first article from him showing how it realls should be done.

Sound question

1 found Douglas Selfs article /ligh speed andio power ($E W+$ HW.
September. pp. 760-764) very interesting. But one question remains unanswered. Does Mr Self: modified design sonnd better or worse than his original design"?

I think we should be told.
Phil Randal
Worcester
D.Self replies:

The answer to this question is very simple: it sormods exarth the same. I think the article made it cleat that I wos examining the slew-rate issues beth from the commercial peime of view. where faster is better, and alsw as an illustration of just how for astray simplistic theory cull lead som. I certainly don't cham that the wew-rate increases described open Hew ristas of ardio ecostass.

Subjective bias

Conceming his view that: "Audio electronics circuits are built and sold to be listened to." Jerry Mead informs us (Lecters. $E W+W W$, July 1994) that:" The research |he| cited... is |his| own" and that "It is culled from a career panning 25 years of talking and listening to customers in the broadcasting, sound recording, live sound and music markets around the world". This is not scientific research, this in market research.

Unfortunately for Jerry the great bulk of data collected through scientific research does not support
his hypotheses.
Jerry says his "rescarch" is "culled from a carcer...". But what is of great importance is what he has culled out. The fact that proof of ais hypotheses is so clusive should indicate to him that he might be on the wrong track. especially when there already exists such a large body of research that proves the unreliability of his methods.

An essential part of scientific research is that data and procedures (experimental, computational, ete) be open to scrutiny. It heeps rescarchers honest and accurate

During my career in electronics and audio (which spans more than 20 years) I have never seen nor heard of ‘subjectivist' views being vindicated by rigorous scientific research. I for one would like to see it if exists. Until then I will be guided by the information that already exists and will disregard the garbage put up by the mosily ignorant 'subjectivists’

Jerry suggests that because audio electronics is for listening to we should use our ears to test it. As any competent audio designer knows.
human hearing is far too unreliable. non-uniform and too casily fooled to be used often for testing purposes. This is why "objectivisis" place more faith in simple tests for thd, ind. frequency response, etc.

I am sure we would all prefer to be able to test our designs just by listening to them; unfortunately there are too many extrancous influences (including personal prejudice) to make this practical and reliable.
Jerry has courageously offered to take part in some independent listening tests, and he has laid out his requirements for his part in these tests. He wishes to choose his own source material. However this would show us more about his musical preferences than the performance of the equipment. It has been said that choosing program material represents one of the most obvious opporlunities for prejudicing listening test results.
Jerry wishes also to choose his own listening levels. But if he is asking to be given a volume control to change the levels while testing. that would invalidate the results.

Unless the frequency response of

Quickroute 3.0

PCB \& Schematic Design System for Windows 3.1

Announcing a new range of affordable, powerful Windows based PCB and schematic design packages from POWERware.

D E S I G N ER $£ 99$ *
PCB and schematic design with all the new 'Easy-Edit' features and an Auto router!

DESIGNER + 149^{*}
For larger PCB and schematic designs, adds Gerber and NC-Drill support.

PRO £199 *
Schematic capture, with integrated rats-nest generation and auto-router. Export net-lists for design checking.

PRO + $£ 299$ *

Advanced schematic capture for management of larger schematics. Gerber import facility for file exchanging.

For more details, contact
POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK.

* Prices exclude VAT, post \& packing

Tel/Fax 0614497101

from

£99*
the system is maintained to a small fraction of a decibel, and the listening level does not change more than 0.5 dB (possibly even less) then audible differences will emerge, due to the nature of our hearing. This fact has been known for over 20 years and is usually forgotten or ignored by subjectivists, and is the reason many amplifiers have loudness and tone controls. You can hear the effect simply by turning the volume up slowly from zero and listening as the music becomes brighter and fuller.

I should also like to respond to Charles Friell and R L Tufft (Letlers, $E W+W W$, August, 1994).
Friell is correct in thinking "...that there is rather more involved than logic and mere engineering principles when discussing sound reproduction"

Like him I am not convinced of the need for amplifier distortion to be vanishingly small. Scrutinising data given for loudspeakers and microphones, especially frequency response graphs and distortion figures, shows that they are indeed quite inferior to most amps and preamps. Their performance weaknesses have long been known and, along with the listening room and human hearing, contributes the greatest limitation of most audio systems.

In response to R L Tufft's call for suppliers and manu facturers to furnish us with information about their cables, proving that some nonexistent thing does not exist can be extremely difficult. I would warn everybody to be wary of any such information. This is like asking a Christian about the existence of God.
Finally, let me congratulate Doug Self for winning the $E W+W W / \mathrm{HP}$ writer's award. His "Distortion in Audio Power Amplifiers" is a solid contribution to the practice of power amp design and has a legitimate place beside Peter Baxandall's great
"Audio Power Amplifier Design" from the 1970s.

Phil Denniss

Dept of Plasma Physics
University of Sydney
1 agree - DS.

Musical components

I welcome the common sense attitude of Stephen Merrick (Letters, July) who says: "The only purpose for audio amplifiers is the reproduction of music".
There is no absolute rating of amplifier performance, only a consensus. But that consensus does show a statistical bias towards products which are designed with the enjoyment of music foremost.

The engineer must start by listening to amplifiers, identifying
those that make the most positive contribution to the music ard seeking out the design features that they share.
On this basis I would like to make some comments on Douglas Self's design published in February $E W+W W$. (To meet Douglas challenge that critics should offer their own rival amplifiers. 1 would point to my Apex and Virtuoso designs, published in the UK around five years ago. These were designed to reproduce music, although one version of the Virtuoso was measured by a leading technical reviewer at 0.001% distortion at $2 / 3$ power at 1 kHz .)

If the standard low-cost metal film resistors are replaced with semi precision types (eg Holco $H 8$) the sound quality would be noticeably better. Further upgrading with ultra precision types such as Vishay VSRJ bulk foil would give quite a surprising sonic gain, but at high cost. (Try R_{8} and R_{9} first.)

Try replacing R_{1} with a polyester or polypropylene capacitor. or place a similar capacitor in parallel with R_{2}. I would prefer to design the feedback resistor to be high enough to use a polypropylene capacitor for C_{2}, if this can be done without creating a high dc offset at the output. I do not recommend a dc servo - they sound worse than a polyester capacitor. Remove C_{4} and C_{5} unless this affects amplnfier stability. The amplifier is bound to sound better without.

There are audio transistors available which have smoother gain versus current graphs and can improve sound quality. The Darlington output arrangement is the best, but some readers might like to compare its sound with a single Darlington pair such as M/IIO15/6. Insulating pads with lower thermal resistance between transistors and heat sink can improve sound quality slightly as well as reliability.
Constant current sources is good design. Removing C_{11} should degrade the sound slightly, but try replacing R_{21} with a constant current diode (J507 or J508).

Cascode transistors above the collectors of $T r_{2}, T r_{3}$ and $T r_{4}$, and separate power supplies for the low and high current sections offer further scope for improving sound quality.
On the subject of cables. previous correspondents are right when they imply that both copper and silver degrade sound quality, but silver degrades less than copper. To test the validity of this statement, obtain a suitable collection of high quality cables and listen to them

In fact every single component in
the audio chain degrades the signal. The skill of good design in both amplifiers and cables is finding what degrades it the least.
Graham Nalty
Audiokits Precision Components Derby

Before buying expensive cables and components, I suggest you get someone to demonstrate the claimed improvements to you - Ed.

Magic numbers

I have received several leters concerning the golden mean, golden section or golden ratio mentioned in my article "Magic numbers in
electronics" (September, pp.730-733).
G C A of Dorset enclosed a
photocopy of a brief entry in
Colliers Encyclopaedia which gives the standard geometrical
construction and states that the latter is dealt with in Euclid Book VI,
Proposition 30. This led the
Pythagoreans to a realisation of the existence and significance of "incommensurables" or surds
A C of Neweastle-upon-Tyne wrote to say that the Greek mathematician Eudoxus was the first man to investigate the golden mean. at first empirically and then more formally. His letter states that the Greek letter phi came to be associated with the golden mean after the artist Phidias, who used it extensively to proportion his sculptures. A C added that the ratio of successive numbers in the Fibonacci series approaches the golden ratio as the series progresses.
A H D of Hampshire wrote to say he was intrigued by the connection of the golden mean to the amplisude response of filters, but says it is not called K (or for that matter phi, hut tuu, being 'the Fibonaca number". He kindly encloses a photocopy of a four page article which appeared in an issue of Scientific American of about a quarter of a century ago. concerning Fibonacci and his series. the first two terms of which are both 1, with each subsequent term being the sum of the previous two. It gives an explicit formula for the nth term, based upon K, phi, talu or call it what you will, and a long list of intriguing properties of the series.

Ian Hickman

Hampshire

Noisy response

It was very kind of Ian Hickman to go to such high-powered lengths in his reply to my letter (Letters,
August, November).
To consider just one simple point though: why do 1 wonder what $1 / t$
noise is? From books, I read that it is the same as "Schottky noise" or
"flicker noise" which, as M G
Scroggie states in his book
Foundations of wireless and
electronics occurs at very low frequencies (a few kHz) and is called $1 / f$ noise because it is inversely proportional to frequency.
So we seem to have an equation:
$I_{\mathrm{n}}=\mathrm{K} / f$ where I_{n} is the noise current in a given low frequency circuit, f its operating frequency, and Ka constant.

How then, I ask, is this equation developed, derived and demonstrated? I am unaware of any studies of this theory. Perhaps Ian Hickman could enlighten me.

Peter Dawe

Oxford

No conspiracy

As a practising design engineer with a physics background, I have often been entertained by the more novel views on scientific orthodoxy propounded by $E W+W W$. But there seems to be a tendency towards charges of conspiracy (eg A Goldberg. Letters. July 1994), with the implication that refusal to accept any outlandish idea is a sign of bigotry or self interest.
I would like to reply to those charges using the words of Richard Dawkins, whose books are a model to anybody with a valid case to argue:
"There have heen times in the history of science when the whole of orthodox science has been righly throw'm over because of a single awhward fact. It would be arrogam to assert that such overthrows will never happen again. But we nuturalls, and righty, demand a higher standard of authentification before accepting a fact that would turn a major and successful scientific edifice unside down, than before accepting a fact which, even if surprising, is readily accommodated by existing science" The Blind Watchnaker

Some readers are confusing this widely held establishment view with something altogether more sinister and, to my mind, non-existent. I suggest that those with an interest in heterodox ideas attempt a more coherent statement of their position, supported by objective evidence and repeatable experiment, and bearing the above passage in mind. If they do one tenth as good a job as Dr .
Dawkins they will gain my ear, and my respect, although 1 suspect not my conversion

Pete Davis

Birmingham

troubleshooting analog circuits. Now, Bob has compiled his 'battle-tested' methods in the pages of this book. Based on his immensely popular series in EDN Magazine, the book contains a wealth of new material and advice for Digital/Analog electronics engineers on using simple equipment to
troubleshoot. Paperback 217 pages.
Price £14.95
0750616326

PC-Based instrumentation and Control
 M Tooley

Do you need information to enable you to select the necessary hardware and software to implement a wide range of practical PC-based instrumentation and control systems? Then this book is for you. Paperback 320 pages.
Price £14.95 0750616318

Electronic Circuits Handbook M Tooley

Provides you with a unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without recourse to theoretical texts. Paperback 345 pages
Price £24.95 0750607505

Communication Services via

 Satellite
G E Lewis

DBS is already with us, and will create a series of new technical problems for
engineers/technicians in television and communication services. This book gives you the solutions to these problems by:
explaining how the system functions; describing several actual systems and giving several analyses and design rules. You can't afford to be without this invaluable technology update if you're a systems design engineer, service engineer or technician
Paperback 400 pages
Price $£ 25.000750604379$

Digital Logic Design Brian Holdsworth
As one of the most successful and well established electronics textbooks on digital logic design, this book reflects recent developments in the digital fields. The book also covers new functional logic symbols and logic design using MSI and programmable logic arrays.
Paperback 448 pages.
Price £19. 500750605014
The Circuit Designers

Companion

T Wiliams

This compendium of practical wisdom concerning the real world aspects of electronic circuit design is invaluable for linear and digital designers alike Hardback 320 pages.
Price £2500 0750611421

Credif card orders accepted by phone 0816523614

Return to: Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
Please supply the following titles:

Exp clate

NAME (Please print)

organisation
STREET
TOWN
countr
POST CODE \qquad COUNTRY

Date TEL.EPHONE NUMBER
signature

VAT RATES
6% Belgium, 25% Denmark, 5.5% France, 7% Gemary, 4% Greece, 4% Italy, 3\% Luxembourg, 6% Netherlands, 5% Portugal, 3% Spain. FOR C(OMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blanks
VAT NO.
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I cto/do not wish to recieve further details about books, journals and information services.
Reed Busineus Publishing - Registered Office - (Quadrant Hse The Quadrant Sutton Surrey SM2 5AS Registered in England 151.537

APPLCATIONS

Please mention Electronics World + Wireless World when seeking further information.

Digital synthesizer generates quadrature-matched sines and cosines

Functions performed by Raytheon's -TMC2.340 are waveform synthesis, modulation, and demodulation. Designed to drive a d-to-a converter, the synthesizer generates quadrature-matched quadrature-matched pairs of 16 -bit sine and cosine waves.

As described in the TMC2340 data sheet, imputs needed are a a til clock signal and userselected 15 -bit amplitude and 32 -bit phase increment values. Output is in 16 -bit offset binary format, and the device can operate at up to 25 mega-operations per second.
These waveforms are easily phase or fre-quency-modulated on-chip, and the amplitude input facilitates gain adjustment or amplitude modulation. Digital output frequencies are restricted only by the Nyquist limit of clock rate $/ 2$, with frequency resolution of 0.006 Hz at the guaranteed maximum 25 MHz c clock rate.
A new data-word pair is available at the output every clock cycle. All input and output data ports are registered, with a user-configurable phase aceumulator structure and inputcloch enables to simplify interfacing. The phase data range over a full 2π radians. All signats are tul compatible.
Polar data - i.c. phase and magnitude - is converted into rectangular, cartesian, format. The first transformed result is available at the outputs 22 clock cycles after startup, with new output data available every 40 ns .
Input clock enables simplify system bus connections. Input ports accept 15-bit amplitude and 32-bit phase data. The output ports produce 16 -bit rectangular data words in either 16-bit offset binary or 15 -bit unsigned magnitude format.

Elements of Raytheon's 25 Msamples/s digital synthesizer for producing waveform sine or cosine pairs with accurately matched quadrature.

Input to output relationship for sinusoid generation.

Phase/amplitude to sine/cosine conversion

The TMC2340 performs a coordinate-space transformation according to the familiar trigonometic relationships shown. With constant amplitude and phase increment values and either fm or 'pm high', the TMC2340) outputs a series of complex number pairs. These represent the horizontal and vertical projections of a vector rotating about the origin, i.e. a cosine wave and a sine wave.
Via the device`s internal phase accumlators, it is easy to generate high-accuracy digital quadrature sinusoidal waveforms with minimal support. The 32 -bit data path ensures negligible cumulative error in most applications. Accuracy of the transform is limited only by the truncation of the result to 16 bits prior to the transform processor and the +11 sb maximum error of the transform algorithm.
Amplitude modulation is performed simply by varying the amplitude input. Either firequency or phase modulation can be realized by configuring the synthesizer as shown in the two configuration diagrams.
Connection of the TMC234() to a TDC 1012 d-to-a converter is straightforward. As shown in the circuit diagram, the converter data lines

Configuring the TMC2340 for phase modulation, left, and frequency modulation, right.
are connected to either the I or Q outputs Both outputs may be used, with two TDC 1012s for quadrature synthesis.
Full design details and equations for waveform generation/modulation are also included in the data sheet, as is a description of the control circuitry.

Raytheon, Ambar Components, 17
Thame Park Road, Thame, Dxfordshire OX9 3XD. Tel. 0844261144 , tax 0844 261789.

When the synthesizer is interfaced to a TDC1012 d-to-a

Current-conveyor ICs for high-end audio

Two ICs. each consisting of an accurate current conveyor. a current mirror, and two unity gain bulfer amplifiers, are described in a preliminary data sheet from Phototronics.
Designed specifically for high-quality audio applications, these ICs are the PA630 and $P A 630 A$. The devices are identical apart from two additional pins on the PA630A.
Fig. 1. These are used to interface with two external junction fets to cnhance conveyor performance.
The devices are fabricated on an advanced complementary bipolar process that produces npu and pnp transistors with equally high bandwidth and current gain. Although functionally equivalent to the schematic shown, the circuitry of the mirror and current conveyor comprises a novel connection of Wilson current mirrors. It also incorporates an emitter de-generation compensation scheme to optimise the transient response and stability of these mirrors, and a novel output mirror arrangement to enhance output impedance.
In professional audio, virtual ground inputs can be implemented without the global negative feedback required by most other circuits such as op-amps. The ICs are therefore inherently free of dynamically induced distortion mechanisms such as transient-intermodulation and slewing induced distortion.
Bandwidth of the current conveyor is 18 MHz while bandwidth of the buffer amplifier is 50 MHz . Current conveyor distortion is rated at 0.02%.
Each unity gain buffer amplifier consists of four emitter followers and two curint sources als shown in Fig. 2. The quiesc int operating point of each can be set independently via an external resistor. $\mathrm{R}_{\text {set }}$. Pins I and 3 may be left open to save current if this buffer is not required. but since the other buffer provides internal bias it must be powered up with an output stage current of no less than one tenth of the conveyor quiescent current.
As the current sources are actually Wilson mirrors, $2 \mathrm{~V}_{\text {be }}$, and the output devices are five times larger than the input transistors, the quiescent current in the output stage can be calculated as $5\left[\mathrm{~V}_{\mathrm{cc}}+\mathrm{V}_{\mathrm{ec}}-2.8 \mathrm{~V}\right] / \mathrm{R}_{\mathrm{sel}}$.
Additional pins on the PA630A can be used to interface with two external junction fets which buffer the output, as shown in
Fig. 3. This arrangement provides extremely high output impedance, improved accuracy. and lower distortion.
The precision rectifier circuit of Fig. 4
provides gliteh free performance up to 1 MHz due to the fact that the diodes are current driven and there is no feedback. In
contrast, even fast op-amps ($30 \mathrm{~V} / \mu \mathrm{s}$, 20 MHz) will produce distortion spikes well below 100 kHz when used as precision

Fig. 1. Internal equivalent of the PA630A current-conveyor IC for professional audio. Since the device can be implemented without global feedback, two dynamicallyinduced distortion mechanisms are eliminated.

Fig. 2. Used as a buffer, the PA630 current-conveyor allows quiescent operating point to be set via a single resistor. Pulse response of the circuit is also shown.

Fig. 3. Two additional pins are provided on the PA630A to allow junction fets to be connected. This arrangement provides high output impedance, improved accuracy and lower distortion.

rectifiers, due to the slew rate limitations that result from having the diodes inside the feedback loop.
Figure 5 shows the PA630 in the analogue section of compact-disc player. The IC implements the virtual ground required by
the d-to-a converter, as well as the second order linear phase filter. This configuration completely eliminates the potential for the generation of dynamically induced distortion.

Phototronics Co., Box 977, Manotick, Ontario, Canada KOA 2NO. Tel. 613692 2247, fax 6136922605.

$1 \mathrm{~kW}, 48 \mathrm{~V}$ supply with power factor correction

T
Thre diggans ind dew bullel points outline a 1 kW modular power supply in Astec's PFC.PM4 AMPSS Application Note. Intended primarily for telecomms applications, the 48 V supply features powerfactor correction and $n+1$ redundancy \tilde{n} a method of increasing power supply reliability by parallelling a 'redundant'
regulator module.
Using the modules shown, power-factor correction is to IEC555-2. The scheme is said to offer protection against severe line transients 10450 V peak for 20 ms . and low output ripple due to module interleaving. Fet switches are used to isolate the DJ80 regulator modules from transients.

In addition to the overall system diagram shown, the note contains more detailed schemes for the power factor correction and transient protection sections.
Astec Standard Power, High Street Wollaston, Stourbridge, West Midlands DY'8 4PG. Tel. 01384440 044, fax 01384440777.

Transmitter-receiver pair for

remote

Designing a uhf transmitter to meet the EMC requirements of the DTI's MPT1340 standard is notoriously difficult. In addition to a having low-distortion circuitry, the transmitter needs a very carefully designed peb. enclosure and antenna.
Much of the design effort is removed by using a ready-made transmitter module like the LPRSTX-4/8 transmitter from Low Power Radio Solutions. Provided the module`s applications guidelines are followed, it should be

> When designing a uhf remote-control link, cleaning up the transmitter signal enough to obtain type approval can be an expensive and time-consuming business. One solution is to use ready-made modules.

possible to make a complete transmitter capable of gaining approval at the first attempt - saving considerable design effort, time and costs.
Measuring 13 by 13 mm , the $\angle P R S T X-418$ is designed for applications such as radio keyfobs and wireless security systems. The module incorporates a saw filter and is intended for on-off signalling, via amplitude modulation. It is optimised for peb loop antennas, and is compatible with most encoding integrated circuits operating from 5 V to 12 V . Typical applications include key fob designs, car alarm ‘blippers’, garage door openers and lighting controllers.
Note that the transmitter module is not type approved and any equipment that incorporates it will need type approval. A 433.92 MHz version for Europe will be available soon.
The LPRSTX-418 integrates the main rf
components required for a low power radio transmitter. The designer only needs to interface a tuned loop antenna and set the drive level to the module from the chosen encoding integrated circuit.
Antenna matching has been optimised so a transmitter can produce the maximum permitted output of -6 dBm on a compact loop antenna without drawing excessive currents or exceeding the spurious emission limits
Figure 1 shows a typical circuit for a design using a loop antenna. A 1 to 5 pF ceramic trimmer is used to tume tine loop for maximum output. Figure 2 shows a typical layout for a keyfob transmitter. The dimensions are not critical but excessively small or large loops should be avoided as these will affect antenna matching and efficiency
When using a printed antenna on the peb you should specify a good guality fibreglass material. Lower cost materials such as srbp will cause excessive losses at uhf.

Modulation drive level

Output power of the LPRSTX is controlled by varying the resistor in series with the modulation input to the module. Power and spurious emission increase with rising drive current.

The table below gives typical values for a loop antenna The actual value for a particular antenna and supply voltage will need to be determined by experiment. It is advisable to aim for effective-radiated-power levels 3 dB or more below the limits set in MPT1340 to allow for measurement errors.

Measuring 13 by 13 mm , this low-power transmitter for remote control send to distances over 50 m under the right conditions.

Circuit-board layout and decoupling

 To achieve the results described above, good layout is needed. The loop antenna should be free of any components or tracks except for the module and tuning capacitor. Avoid routeing tracks under the module. Failure to observe these precautions may cause excessive spurious emissions.Encoding and other circuits should be mounted over a ground plane to screen them from the of. The ground plane should not extend under the module. Decoupling has been provided on the module which is adequate for most applications. If extra decoupling is needed use ceramic capacitors of 220 to 1000 pF from the supply and modulation pins to ground.

Hybrid receiver module

Operating on 418 MHz , the RF290A-5S am hybrid receiver module is fully compatible with the LPRSTX-418 transmitter. Receiver front-end and logic circuits have separate supply pins for easy interfacing to decoding logic operating from a different supply voltage.
Measuring 16.5 by 36.1 mm , the superregencrative receiver is a single-in-line module designed for direct peb mounting. Pin pitching is a standard 2.54 mm .

More details on page 1051...

> LPRS transmitter/receiver module pair for under $£ 12$.
> For details of the special offer, see page 1051.
$\begin{array}{llll}\text { Drive voltage } & 5 \mathrm{~V} & 8 \mathrm{~V} & 11 \mathrm{~V} \\ \text { Drive resistor } & 150 \mathrm{k} \Omega & 330 \mathrm{k} \Omega & 470 \mathrm{k} \Omega\end{array}$
The actual level required will depend on the antenna efficiency. Increasing the drive in order to overcome excessive antenna losses will also increase the spurious emissions.

Although local decoupling is built into the module, some configurations can benefit from additional ceramic capacitors from ground to the transmitter's positive supply and modulation inputs.

By adding simple encoding logic and a power supply, the transmitter module can be used to emit a unique code for, say, opening a garage door. Tuning capacitance is typically 1-5pF.

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World + Wireless World" when seeking further information

ACTIVE

Asics

Big, fast gate array. New member of Rockwell's Lightning family of GaAs gate arrays, the 5 GHz L/1000 is meant for high-speed digital communications including SONET and ATM international standards. It is based on the heterojunction bipolar transistor and provides 84 i/o cells, the core consisting of a channelled architecture with 1000 equivalent gates or (504 core cells) that can be configured to operate in high-speed, standard or low-power modes. Unloaded gate delay is 20 ps and power dissipation 10.4 mW . A library with 95 macrocells is available. Rockwell International
Communications. Tel., 081-751 6760; fax, 081-570 0758

A-to-D and D-to-A converters

500ksample/s, 12 -bit a-to-d Samples of the Linear Technology LTC1278 analogue-to-digital converter are now available. The 12 bit device samples at $500 \mathrm{ksample} / \mathrm{s}$ and consumes only 75 mW from a

Palette D-to-A converters RGB528/514/513 are three palette d-to-a converters by IBM, offering the kind of video performance normally associated with workstations and required for applications in desk-top publishing and multimedia use.
The 32bit pixel port uses a 2Mbyte video memory to deliver up to 16.8 million colours on screens with up to 1600 by 1280 resolution, the 513 s clock
generator operating at 170 MH 2 . Working at 250 MHz , the 528 has a 128-bit pixel port and is meant for workstation graphics. Its two programmable clocks allow the graphics controller and pixel frequencies to be optimised. This is claimed to be the first palette d-to-a to enable flat panels to display graphles without sacrificing performance, Main claim of the 514 is its space saving, being contained in a 144-pin quad fiat pack. It has a 64-bit pixel path, packed 24 -bit pixels, triple monotonic 8 -bit d-to-a converters and a 220 MHz clock. Blue Micro Electronics. Tel., $0604603810 ;$ fax, 0604 603320.
single 5 V supply. It features a sinad ratio of 70 dB and exhibits a thd of 74 dB at its Nyquist frequency. On chip are a 300 ns sample-and-hold, a precision reference and a clock internally trimmed for a $1.6 \mu \mathrm{~s}$ conversion time, which synchronises to each sample command. Micro Call Ltd. Tel., 0844 261939; fax, 0844 261678.

5 V , 10-bit d-to-a converters Maxim's MAX503/504/515 are claimed to be the first low-power, voltage-output, 10 -bit d-to a converters to operate from a single 5 V supply; 503 and 504 will also accept $\pm 5 \mathrm{~V}$. 503/504 have internal references and either unipolar or bipolar outputs, while 515 uses an external reference and draws only $150 \mu \mathrm{~A}$ from the supply. All three have compatible upgrades to 12 bits (MAX530/531/539) and will work as our-quadrant multipliers. Maxim Integrated Products UK Lid. Tel., 0734845255 ; fax, 0734843863.
'Fastest' flash converter. Analogue-to-digital converters in the Signal Processing Technologies SPT7750/55 family have guaranteed speeds up to $750 \mathrm{Msample} / \mathrm{s}$ Unusually, each comparator is provided with a preamplifier to buffer the capacitive comparator inputs and to reduce feedback of switching current into the inputs and reference ladder. With a 50 MHz input, s:n ratio is 47 dB and thd -46 dB . At 250 MHz , total dynamic error is -38 dB Ambar Cascom Ltd. Tel., $0296434 / 41$; fax, 029629670

Discrete active devices

Zero-bias Schottkys. Low-cost, surface-mounted, zero-bias Schottkys by H-P are intended for use in passive and active identification and tagging in the current standard frequency bands of 915 MHz , 2.45 GHz and 5.8 GHz . They are used to detect radiated energy and either radiate harmonics back to the interrogator or rectify the energy to drive other circuitry. Characteristics of these p-type diodes include 100 mV forward voltage, 0.3 pF at 1 GHz , tangential sensitivity -57 dB at 2.45 GHz and voltage sensitivity $30 \mathrm{mV} / \mu \mathrm{W}$ at 2.45 GHz . HewlettPackard Ltd. Tel., 0344 362277; fax, 0344362269.

Digital signal
 processors

Video-CD chipset. Tl's
TMS320AV220 video full-motion cd chipset consists of three ICs: an

MPEG-1 cecoder: MPEG audio decoder; End NTSC encoder. Together with a 4 Mb dram and a c - to a converter for audio, the chipset turns a cd player into a video-CD player. It cecodes, synchronises and decompresses audio and rideo déta encoded to the MPEG standard, providing an NTSC video output and audio. Te, as Instruments. Tel., 0234 270111; fax, 0234223533.

MPEG-2 decompression First in a family of MPEG-2 chips from Blue Micro is a single-chip decoder for the full-motior digital video market, processing the compressed bit streams tc obtain high-quality vid \in. An error-concealment feature fully exploits the good data aveilable Multiple dram configuratio s s ştore coded date and partially decoded and reference pictures are sufported. Filtering and display control allow aspect-rato changes. Blue Micro Electronics. Tel., 0604 603310; fas, 0604603320.

Linear integrated circuits

Dual/quad op-amps. LT1361/62 dual/quad op-amps by Linear Technology are 50 MHz gain/bandwidth devices w.th slew rates of $800 \mathrm{~V} / \mu \mathrm{s}$ and draw only 4 mA per amplifer. LT1364/65, also dual/quad devices, are 70 MHz types slewing at $1000 \mathrm{~V} / \mu \mathrm{s}$ and taking 6 mA . These devices are in L.T's C-Load family and will drive $10,000 \mathrm{pF}$ loads without oscillating. Micro Call Lid. Tel., 0844261939 ; fax, 0844261678.

Single-supply uhf amplifier. Anglia's

Triple-modulus frequency
divider. Three division ratios in GPS' SP8713 prescaler instead of the usual two solve the difficulties of gapless band coverage. These are caused by having to lower the synthesiser loop division ratio to cope with increasing system comparison frequencies as fractional n techniques come into use to improve locking performance. With dual-modulus prescalers, the only answer is to use low division ratios, which require high input frequencies; the trouble is that fast, low-ratio prescalers are not available. Using the SP8713 gives a low overall ratio but relatively high individual ratios in the three dividers. Used with the GPS NJI8C50 Synthesiser, the SP8713 forms a fractional-n PLL on two chips.
Switchable ratios are 64, 65 and 72 and the device works at up to 1.1 GHz . Current drawn is 4.7 mA maximum from $2.7 \mathrm{~V}-5.5 \mathrm{~V}$ and there is a pin-selected economy mode in which only $20 \mu \mathrm{~A}$ is needed. Times fo power-up and power-down are about 2 ms . GEC Plessey Semiconductors Ltd. Tel., 0793518510 ; fax. 0793518582.

RF2103 is a medium-power linear amplifier working from a single positive $3-6.5 \mathrm{~V}$ supply as the final stage in uhf transmitters in the 4501000 MHz range or as an exciter in higher-power equipment. Peak output is 800 mW in cw or 400 mW average for a two-tone input on a 6.5 V supply

PCMCIA data acquisition. Adept Scientific has a data acquisition interface to connect to a mobile computer's pomcia slot. The PCM-DASOB device connects to transducers to measure current, temperature, pressure, flow or other process variables when used with software such as Labtech Notebook or VisSim DACC for Windows, which effectively converts a PC into a measuring instrument. PCM-DASO8 card and socket services installation software handles both addressing and the link between computer and card, so that cards can be changed quickly when required. The device is i/o-mapped and is controlled by standard software. ComputerBoards Universal Library, which is provided, supports QuickBasic,
VisualBasic for dos, C and
Turbo Pascal. Adept Scientific Micro Systems Ltd. Tel., 0462 480055 ; fax, 0462480213.

Maximum cw output at 3 V is 135 mW . Total gain is 25 dB , depending on output matching. Anglia Microwaves Ltd. Tel., 0277630000 ; fax, 0277 631111.

Logic building blocks

Interface logic. Tl's Widebus+ bus interface logic provides a 36 -bit interface and is sufficiently integrated to eliminate the need for discrete components. With 5 ns propagation delay and low consumption and noise, the devices possess a range of data communication functions transparent, registered, latched, clocked and universal bus functions. Bus hold allows the devices to hold the last state of the bus, so pull-ups are not needed. Pin layouts allow the devices to be mounted on either side of a board to share the same control lines; non-powered boards may be plugged into a powered backplane. Texas Instruments. Tel., 0234 270111; fax, 0234223459.

Memory chips

16 M drams. Volume shipments of second-generation 16 M drams organised as 1 M by 16 constitute a first for NEC. μ PD 4216160 and $\mu P D 4218160$ are made in $0.45 \mu \mathrm{~m}$ technology and are available with access times of 70 ns or 80 ns and in 3.3 V or 5 V versions. NEC Electronics (UK) Ltd. Tel., 0908 691133; tax, 0908670290.

512K-by-8 Superflash. The Silicon Storage Technology 28SF040 is the second member of the SuperFlash family, which combines the reliability of an eeprom with a small-sized cell. It is compatible with standard eprom, flash eprom and eeprom and includes sector erasability. Time to erase and rewrite a page is under 10 ms . Ambar Components Ltd. Tel., 0844 261144; fax, 0844261789.

Microprocessors and controllers

Datacomms processor. IDT's R3071 and R3071E are mips-based data communications risc microprocessors operating at speeds up to 50 MHz with up to 20 KB total cache; the 3071 E also has a memory-management unit. Both devices are compatible with other members of the risc controller family, so that a single design can be up-graded without a major redesign. Versions available operate at 33 MHz , 40 MHz and 50 MHz . Micro Call Ltd. Tel., 0844261939 ; fax, 0844261678.

Low-power controller. Epson has two 4-bit, low-power microcontrollers, meant for use in metering and remote control. Core cpu used in the devices is the SMC6200A and on-chip peripherals include rom, ram, Icd driver, supply voltage detector and a-to-d converter. SMC621C has an 108 instruction set and a 32kHz clock, with 455 kHz or 1 MHz as mask options. SMC6292 has 100 instructions and $32 \mathrm{kHz} / 1 \mathrm{MHz}$ clock. Rom is 2 K by 12 bits and ram 128 by 4bits. It also has an 8 -bit i/o port, 4 -bit Schmitt input port and 4-bit output. Epson. Tel., 0442 227331; fax, 0442 227244.

Embedded PC. The Ampro CoreModule/PC is a new member of the family of embedded microcontrollers, which contain the equivalent of a PC motherboard and expansion cards, this one intended to sell for under $£ 100$ in quantity. The board has a 9.8 MHz 8088 -compatible cpu, 256Kbyte of dram, a
series/parallel controller, keyboard port and speaker interfaces, together with an on-board bootable solid-state disk. Power consumption is 0.6 W from 5V. Diamond Point International Ltd. Tel., 0634 722390; fax. 0634 722398.

Mixed-signal ICs

Voltage detectors. Using 90\% less current than their rivals, Panasonic's

MN1 380 series of cmos voltage detectors monitor power supply voltages to computers and othe systems, provide the reset for initialisation at power-up and prevent runaway when the power supply varies. The devices provide a choice of cmos n-channel open-drain and inverted cmos output to match devices from any maker. Current consumption is $1 \mu \mathrm{~A}$ for a drain voltage of 5 V . Panasonic Industrial (Europe) Ltd. Tel., 0344 863444; fax. 0344861656.

Oscillators

Rubidium oscillator. A miniature atomic frequency standard, the BallEfratom FRS-C rubidium oscillator, is now available in the UK. Intended for use as a local oscillator or time-base reference, the oscillator exhibits a long-term accuracy of 1 in 10-9/year atter ageing and temperature effects are considered. Annual adjustment to compensate for ageing in rubidium oscillators is extended to five years in the FRS-C. Output options include 5 MHz sine, 10 MHz sine, 10 MHz tt and 2.048 MHz tt . Warm up to full accuracy is six minutes. Sematron UK Ltd. Tel., 0734 819970; fax, 0734 819786.

SMD oscillator. Contaned in a surface-mounted package measuring 10.5 by 5 by 2.4 mm , the Seiko Epson SG-636SCE is a cmos-compatible oscillator for 3.3 V devices, working in the range $2.2187-70 \mathrm{MHz}$. Current consumption is 10 mA and $1 \mu \mathrm{~A}$ in standby. Temperature range is $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, with a stability of $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and ageing at $\pm 5 \mathrm{ppm} /$ year. Advanced Crystal Technology. Tel., 0635 528520; fax, 0635528443.

Data logging

Portable logger. Bitlogger by Logic Beach Inc. is a portable, weatherproof instrument intended for site work with later analysis on a PC. No programming knowledge is needed

Radio comms test set. Marconi Instruments's 2945 TestMate is said to be the lightest fully-featured radio communications service monitor available at 11.4 kg , possessing a test speed up to four times as fast as its rivals. Features include a digital spectrum analyser with an update speed fast enough for live monitoring of transmissions; a very easy-touse user interface; a bright, high-resolution Icd visible under all lighting conditions; and fully protected inputs. A pcmcia memory card interface allows results to be saved for later examination. Marconi Instruments Ltd. Tel., 0727859292 ; fax, 0727857481.
and user-configuration is possible by means of a menu-driven approach. Plug-in units allow sensors for temperature (thermocouples, itds and thermistors), voltage, current, 4-20mA current loop, frequency, count, events, pH and more. A modem may be used to collect data from a number of loggers with poling software for control. Quickgraph software allows downloading to a PC. Vidas International Marketing. Tel., 0428 606222; fax, 0428606676.

Power semiconductors

60A Schottky. IR has the
MBR6045WT, which is a centre-tap Schottky rectifier exhibiting a maximum forward voltage drop of 0.5 V per leg at 30 A and $125^{\circ} \mathrm{C}$. Maximum DC reverse voltage is 45 V and $d v / d t$ is $10,000 \mathrm{~V} / \mu \mathrm{s}$.
InternationalRectifier. Tel., 0883 713215; fax, 0883714234.

PASSIVE

Passive components

Vernier dial drives. Jackson's new range of vernier dial drives come in three sizes, having overall diameters of $43 \mathrm{~mm}, 50 \mathrm{~mm}$ and 70 mm , with front-of-panel depths of $18 \mathrm{~mm}, 20 \mathrm{~mm}$ and 22 mm . Standard coupling is for 0.25 in or 6 mm spindles and the drives come with a 100 -division scale over 180°. Variations of shaft size and scales are available to order. The drives use a ball-bearing system instead of the more common friction drive to confer freedom from slippage and backlash. Jackson Brothers Ltd. Tel., 081-681 2754; fax, 081-681 3728.

SM fuses. The Schurter OMF range of surface-mounted fuses is extended to encompass the $63 \mathrm{~mA}-5 \mathrm{~A}$ current range. To speed production, the fuses can be supplied reeled or boxed with the fuse inserted, for fitting to the board in one operation. Radiatron Components Ltd. Tel., 01784 439393; fax, 01784477333.

Dielectric filter. AVX announces the PDFC series of dielectric filters meant for use in telecomms, particularly in the DECT sector. Frequency range is $1.8-2 \mathrm{GHz}$, insertion loss is 3 dB and size is 6.5 by 5.5 by 3 mm , making the products compatible with the latest equipment. Filters to provide lower insertion loss and improved stop-band attenuation are available to order. AVX Ltd. Tel., 0252 336868; fax, 0252346643.

Connectors and cabling
Space-saving connectors On a 0.1 in pitch, $F C N-790$ connectors by Fujitsu are designed to fit into tight spaces, the series including both straight and right-angled types standing only 8.6 mm and 4.6 mm off the board respectively. They are available with contacts numbering between 10 and 40 . Making a reliable
ribbon contact, a locking feature ensures that the contact is not broken by wear, vibration or shock. Devlin Electronics Ltd. Tel., 0256 467367; fax, 0256840048.

Phono connectors. Two ranges of audio connectors from Deltron incorporate a T-slot outer contact spring mechanism to improve mating with RCA-type sockets. A protessional range of plugs comes in colour-coded anodised aluminium bodies with a large internal cable clamp and a strain-relief spring. The centre pin is gold-plated, as is the 1 slot contact spring; colour coded sockets are also offered. A screened range of connectors use silver plating and bright nickel and also have the contact spring, being produced with or without a six-colour coding.
Electrospeed. Tel., 0703644555 ; fax, 0703610282.

Displays

Flat touch screen. The intersys tp200 flat display colour and monochrome touch screens replace hard-wired panels such as push button pilot lights, selector switches, digital readouts and message displays. A colour leaflet describing them is available from Contraves. Contraves Industrial Products and Systems Ltd. Tel., 0604493201 ; fax, 0604670779.

Filters

High-current filters. Dale Electronics' Model $T J$ high-current filter inductors are toroidal and vertically mounted to reduce interference. Seven models (TJ3-TJ9) cover the inductance range $1.2 \mu \mathrm{H}$ $5600 \mu \mathrm{H}$ at current ratings up to 20A. Vishay Components (UK) Ltd. Tel. 0915 144155; fax, 0915678262.

Instrumentation

EMC signal analyser. From Thurlby Thandar, the Model 8010 EMC signal analyser allows both large and small companies to carry out conducted emission tests to final compliance level.
Combined with the TTI LISN1600 line impedance stabilisation network and linked to a PC, the 8010 forms a complete system, conforming to CISPR-16 for equipment drawing up to 16 A , and suitable for use in normal lab. conditions.
In effect. the instrument combines a receiver and spectrum analyse with the PC's control, storage and display functions. It operates over 10 kHz 30 MHz with 200 Hz and 9 kHz bandwidths and true peak, quasi-peak and average detection. A preselector improves dynamic range to over 105 dB and am and fm demodulation with audible monitoring is provided. Thurlby Thandar Instruments Ltd.
Tel. 0480412451 ; fax, 0480450409.
PC-based instruments. Three more PC-based instruments from Pico are announced. The SLA-16 is a logic analyser about the size of a cigarette packet, offering 16-channel operation

More memory for DSOs. LeCroy's 9350/54 digital storage oscilloscopes, a six-member family of $500 \mathrm{MHz}, 500 \mathrm{Msample} / \mathrm{s}$ sirgle-shot/channel instruments, are now accompanied by memory upgrades from 25 and $100 \mathrm{Kbytes} / \mathrm{ch}$ annel to 100 Kbyte and $2 \mathrm{Mbytes} / \mathrm{channel}$, which means that a lower cost is possible for the initial purchase. LeCroy Ltd. Tel., 0235 533114; fax, 0235528796.
and an 8 K trace buffer. Internal and external clocking modes up to 50 MHz are supported; its software provides state listings and waveform displays. $A D C-100$ turns the PC into a dualchannel dso, spectrum analyser, frequency meter and voltmeter and, with extra software, a long-term data logger and chart-recorder emulator. For data logging, the $A D C-22$ provides 22 input channels, its specification being otherwise the same as the existing $A D C-11$. Pico Technology. Tel., 0954211716 ; fax, 0954211880

Remote analogue measurement

Remote indication by analogue sensors to 16 -bit accuracy is the function of the IMS ADAM-4014D module, which also has a local display. Measurement is transmitted up to 1200 m by RS485 digitised Ascii output. The instrument has its own processor to convert transducer signal to engineering units; high or ow limits are settable and iritiate an alarm if exceeded, two digital outputs triggering other equipment in that case. Up to 256 units can be daisychained on one RS485 link. Integrated Measurement Systems Ltd. Tel., 0703 771143; fax, 0703 704301.

SDH/PDH test set. Themis is Schlumberger's telecomms data analyser to work with both synchronous digital hierarchy and plesiosynchronous digital hierarchy networks or any combination of the two. It is based on an open VMEbus architecture enabling it to accommodate future forms of network testing. A simple user interface and auto-configuration are combined with an extensive menu for the
experienced user. Schlumberger Technologies. Tel., 01252375111 fax, 01252370792.
Electrometer. Having $5 \times 10^{-15} \mathrm{~A}$ of
input bias current. less than 1 mV of burden voltage and over $2 \times 10^{14} \Omega$ input impedance, Keithley's Model 6512 electrometer has full autoranging on all ranges while measuring current (2fA-20r-A), resistance ($100 \mathrm{~m} \Omega-200 \mathrm{G} \Omega$), voltage ($10 \mu \mathrm{~V}-200 \mathrm{~V}$) and charge ($10 \mathrm{fC}-20 \mathrm{C}$) The instrument is digitally calibrated and the display uses exponential notation or engineering units. Control is front-panel or by IEEE-488 interface. Keithley Instruments Lid. Tel., 0734575666 ; fax, 0734596469.

Interfaces

FLXibus i/o. The German company esd GmbH has an industrial i/o module for the FLXibus in Force computers. Eagle-811 provides eight analogue input channels for $\pm 10 \mathrm{~V}$ to 12 bits, each being scanned with a sample rate of 29 kHz and the results stored in fifo memory; an 8-bit wide output port at ttl level is provided to shape external input filtering for the analogue channels. which drive 12-bit d-to-a converters to the four analogue outputs. Eight digital inputs take 5 V 30 V levels and are opto-isolated from other module sections. esd GmbH . Tel., +49511372980; fax, +49511 633650.

Multibus II i:o. 10 CBX/PAC by Concurrent Technologies is a carrier board for IndustryPack modules and provides Multibus II users with a range of i/o interfaces. Modules available include counters, quadrature decoders, data converters, servo loop controllers, stepper controllers etc. Concurrent Technologies Litl. Tel,, 0206752626 ; fax, 0206751116.

Phone line/codec interface. MT9196 C-Phone by Mitel is a single IC for use in digital telephone equipment, incorporating a CCITT-compliant filter/codec, digital gain pads and a
dtmf generator and ringer. Complete interfaces are provided for connection to the handset and speakerphone transducers. Internal registers are accessed through a se-ial port compatible with standard microcontrollers, the digital interface being STI and ST-bus compatible. It is programmable in μ-law or A-law; transmit and receive gains are programmable from -24 dB to 21 dB in 3dB steps; side tone levels are -9.96 dB to 9.96 dB in 3.2 dB steps. Mitel Semiconductor. Tel., 0291 430000; tax, 0291430400.

Literature

Robot listing. The Association for Robotics and Automation has relaunched its Datafile, which is a complete listing of all robots available in the UK. Each of 100 robots from 17 suppliers has a page of detailed description of its vital statistics to do with reach, payload and the work it can do. Company members of the BRA get one free, individuals pay $£ 30$ and non-members $£ 50$: updates cost $£ 15$ and $£ 20$. The Association for Robotics and Automation. Tel., 021-628 1745; fax, 021-628 1746.

Component placement. Component placement and insertion machines for eaded and sm devices are described in a Panasonic catalogue, which also covers Panasert adhesive dispensers solder paste printers and automatic soldering equipment. Panasonic Industrial (Europe) Ltd. Tel., 0344 853277: fax, 0344853803 Rechargeable batteries. Yuasa has

Flush-mount switches. EAO-
Highland has a range of adaptors and actuators for its push-button switches to allow flush mounting on the panel, with stainless steel or aluminlum surrounds. The adaptors also fit a range of keylocks, lever switches and indicators and will take a lens so that metal buttons can be internally Illuminated. EAOHighland Electronics Lid. Tel., 0444236000 ; fax, 0444236641.

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World + Wireless World" when seeking further information
a catalogue and guide to the company's NP range of valve regulated, sealed lead-acid batteries for industrial use. Capacities range from 1 Ah to 150 Ah in $4 \mathrm{~V}, 6 \mathrm{~V}$ and 12 V types. Yuasa Battery Sales (UK) Ltd. Tel. 0793612723 ; fax, 0793618862

Materials

Screening membrane. ITO-coated polyester film with earthing tags, made by Wasp, provides rfi screening of membrane switch panels, meeting all international rfi-suppression requirements. It will also screen apertures with little light reduction Wessex Advanced Switching Products Ltd. Tel., 0705 453711; fax 0705473918.

Flexible casting compound. TRACAST 3010 by the US company TRACON, is a clear, flexible, low-viscosity compound for potting and impregnating heat-sensitive components, having low exotherm and low curing shrinkage. It is repairable and suitable for potting PCBs. TRA-CON Inc. Tel., +1 (617) 391-5550; fax., +1 (617) 391-7380; e mail tcepoxy@ aol.com

Power supplies

6 kV modules. In a package measuring 38.1 by 63.5 by 15 mm , nine members of the Brandenburg 569 series of metal-cased voltage converters provide outputs from 100 V to 6 kV at 3 W from inputs of 4.12 V or $5-15 \mathrm{~V}$. Output is proportional to input and regulation is better than $\pm 5 \%$ up to full load. Temperature coefficient is $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and short and long term dritt 300ppm. Ripple is 0.005% to 0.2% of output. Brandenburg. Tel. 01384393737 ; fax, 01384440777

Radio communications products

VIf-to-hf receivers. Covering the $10 \mathrm{kHz}-30 \mathrm{MHz}$ frequency range, the Rohde \& Schwarz EK 895/6 are developments of the earlier 890/1. The use of digital signal processing is responsible for new features such as 1 bandwidths from 150 Hz to 8 kHz five selectable delay times, double notch filter, suppression of two interfering signals, noise blanking automatically matched to noise characteristics, syllabic squelch, if input protection to 100 VEMF , ISB and fsk/atsk demod. and i/o channel outputs for further dsp. Rohde \& Schwarz UK Ltd. Tel., 0252 811377; fax, 0252811447.

Circuit protection

Lightning barrier. A pcb-mounted lightning barrier from Hunter, the ESP TN/Z provides protection for one end of a twisted pair by restricting transients up to 5 kV caused by lightning to 200 V and voltage 'letthrough' to interface circuitry to below the level at which damage is likely to occur Response time is less than 10 ns ; working voltage is 145 V at 300mA. Hunter Electronic Components. Tel., 062875911 ; fax, 062875611.

Switches and relays Illuminated switches. Fujisoku illuminated switches come in a choice of colours, styles, shapes and types of illumination. Type LP has single or dual-colour lighting by red, yellow and green leds with 12 mm by 12 mm or 12 mm by 15 mm lenses, and with snap-action mechanisms switching up to 3 A at 250 V ac (gold for signal switching). LTM/LTR switches are 7.5 mm or 10 mm round or square; TM/TR types can be supplied with no lighting, and DP4/5 models are dualpole types for pcb or panel mounting Devlin Electronics Ltd. Tel., 0256 467367 ; fax, 0256840048.

Elastomer keypads. The EECO
Switch division of Transico Inc. has a range of low-cost conductive elastomer keypads using silicone rubber, available in a wide range of sizes, keytops and colours in opaque or translucent form and with a coating on the legend. Transico Inc., EECO Division. Tel., 01954 781818; fax 0194789305.

Telecomms switch. AT\&T's LH1529 solid-state relay is contained in an 8pin s-bend package, combining an ssr with an autopolarity optocoupler. It is for use in pomciaType 2 form factor in applications that combine the switchhook function and ring detection, although is equally suitable for designs combining other switching and isolation functions. It is rated at $350 \mathrm{~V} / 120 \mathrm{~mA}$ with a typical 20Ω of onresistance. The s-bend pins allow insertion into board cut-outs to conform to a pcmcia card thickness AT\&T Microelectronics. Tel., 0734 324299; fax, 0734328148

Little microswitches. Measuring 14.7 by 5.4 by 6.8 mm , Cherry's DK Series of single-pole, double-throw microswitches handle $10 \mathrm{~mA}-2 \mathrm{~A}$ at 12 V dc (ac on request), depending on the model, life expectancy being up to 500,000 operations. Contacts are the gold crosspoint type and there is a range of actuator types and terminals. Cherry Electrical Products Ltd. Tel., $0582763100 ;$ tax, 0582768883.

Reed relays. Made by Coto Wabash 9090 mini-sip reed relays measure 3.81 by 15.24 by 6.6 mm and come in

single-pole normally cpen form in hermetically sealed glass and epoxy moulded lead-frame packs. Coils take 5 V or 12 V and the devices switch 10 W . Diodes and magnetic shielding are offered. Avnet Time. Tel.. 0462 484444: fax, 0462483646.

Transducers and sensors

Rotary position sensor. The M-22 resistive absolute rotary position sensor by Control Transducers is a small device for slow or hand operated equipment where accurate positioning is needed. Electrical travel is 320° or 340° and independent linearity 0.5% or 0.25%. It is available in servo and bush mounting in an aluminium and plastic case of 22 mm diameter. Control Transducers. Tel., 0234 217704; fax, 0234217083

Remote charge converter. Allegro

 has a ruggedised remote charge converter to plug directly into signal conditioners and analysers with builtin $4-20 \mathrm{~mA}$ current sources. The Endevco 2771 AM3 is a low-noise two-wire, single-ended, solid-state device for use with piezoelectric transducers designed for system complying with MIL-STD-740-2 Attached to the BNC output of the conditioner/analyser, the RCC transforms the charge output of a

LCR bridge. The Danbridge CT20 automatic LCR tester is a microprocessor-controlled programmable instrument meant for use in production, incoming test and quality control. In addition to L, C and R, the bridge also measures Q, D, R_{S} and R_{p} and G_{p} for C and L, and L_{s} and C_{p} for resistance to accuracies of 0.05% on the main ranges. GPIB and RS232-C interfaces are fitted and a dual-frequency mode allows the measurement of loss factor and capacitance simultaneously at two of the three frequencies provided. The keyboard is dust-proof. Thurlby Thandar Instruments Ltd. Tel., 0480 412451; fax, 0480450409.

Windows data acquisition. IMS
has a data acquisition and control package for Windows Genle. It presents a simple frontend for rapid setting up and configuration of scientific and engineering measurement and control appilications without the need to be a programming expert. Strategy Editor uses a cUl using lcons from a screen library, connected together to form a sequence of commands, the icons representing data acquisition, control, maths computation, file 1/o, etc. Operating conditions in the facilities represented by the icons are changeable by diatogue boxes on screen. Display Editor allows the user to customise the presentation, creating graphical objects such as instrument panels. Genie supports Windows Client and Server DDE. Integrated Measurement Systems Ltd. Tel. 0703771143 ; tax, 0703704301.
high-impedance accelerometer to a low-impedance voltage. Frequency response is 1.50 kHz and gain $1 \mathrm{mV} / \mathrm{pC}$. Endevco UK Ltd. Tel., 0763 261311; fax, 0763261120.

Hall sensors. Multiplexed Hall-sensor ICs from Allegro sense magnetic fields or switch status and send the reading over a two-wire power/signal bus. The A3054KU/SU are digital sensing devices intended for use in multiple-sensor systems where minimum wiring is required. Addressing is sequential by factoryprogrammed address, up to 30 sensors being accommodated on the same bus. Allegro MicroSystems Inc. Tel., 0932 253355; fax, 0932246622.

Temperature sensor. Analog's

 AD22100 temperature sensor measures in the $-50^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ range, using a single $4-6 \mathrm{~V}$ supply, no negative rail being needed for subzero temperatures. The IC is ratiometric, producing a voltage output proportional to temperature and the supply voltage, so that supply voltage variation does not affect the measurement. Analog Devices Ltd. Tel, 0932 253320; fax, 0932247401.Sensor signal processing. MFP GmbH claims to have overcome all problems associated with inductive transducer signals. Its sensor interface for PCs, the IT 40 PC, works entirely in the digital domain and requires no signal conversion or range shifting, and provides a 16 -bit resolution. There is a PC add-on card, a connection box for four probes, a 15 m cable and software for automatic measurement and an open programming interface. Ulrich Hartmann. Fax, 0309691301.

COMPUTER

Computer board-level products

Graphic cards. Three new boards from Volante, one for the PClbus and two for the Vesa Local bus, are accelerators to speed up operations in Windows, OS/2 and cad. Warp VL and Warp PCl use the Tseng ET4000W32P graphics engine and there is a feature connector for multimedia capture devices and monitor power management. Hero include Corel Draw with the boards Hero Electronics Ltd. Tel., 0525 4055015; fax, 0525402383.

Computer systems
Industrial Pcs. For use in hostile
conditions, the Sight Systems range of industrial Pcs consist of a 19 in 4 U chassis, a 14 in or 17 in suga monitor in an enclosure, and a narrow-width keyboard with or without a trackerball built into a 1 U drawer unit. Its chassis accommodates 8 to 20 -slot passive backplanes or the new active backplane range or a range of motherboards. It is complete with an approved 250 W power supply and the passive backplane type will take any of the Sight Systems all-in-ore cpu cards from 386 to the 100 MHz 4860X4. Sight Systems Ltd. Tel. 0273 430993; fax, 0273410380.

Data communications

EIA/TIA-562 transceivers

LTC1385/6 transceivers for portable computers draw $200 \mu \mathrm{~A}$ from 3.3 V , both having two drivers and two receivers working at speeds up to $120 \mathrm{~kb} / \mathrm{s}$ into 1000 pF and $3 \mathrm{k} \Omega$. They are protected against repeated $\pm 10 \mathrm{kV}$ esd strikes. The 1385 works in normal, shutdown and driver-disabled modes, current requirement in shutdown being $0.2 \mu \mathrm{~A}$; the 1386 works in normal mode only. Linear Technology (UK) Ltd. Tel., 0276 677676; fax, 027664851.

ITU-T V. 34 chipset. AT\&T's earlier version of the V. 34 Complete Modem Chipset, available since February, is now in its final form to the ITU $28.8 \mathrm{kbit} / \mathrm{s}$ standard; the earlier version can be software upgraded -a
feature that helps users to cope with non-compatible modems. The dev:ce supports V. $3428.8 \mathrm{kbit} / \mathrm{s}$ data, V.1? $14.4 \mathrm{kbit} / \mathrm{s}$ fax, AT command set, V. 24 and MNP4 error correction, V.24bis and MNP5 data compression, Class send and receive fax and flash download. AT\&T Microelectronics. Tel., 0734324299 ; fax, 0734328148.

PCMCIA fax/modem. Portable Acidons announces its combined fax and modem on a pcmcia card for portable PCs. Since telephone connectors are not an international standard, the company also offers single connectors or packs of connectors to cover the continents. In all, 70 are available. Portable Add-ons (UK) Ltd. Tel., 0483440777 ; fax, 0483452304.

Mass storage systems

1.5Gbyte optical drlve. A multifunction unit operating with both 1.5Gbyte rewritable and 1.4Gbyte worm (write-once-read-many) disks, Panasonic's LF-7300 halt-height optical disk is also backwards compatible with 1 Gbyte and 500Mbyte rewritable disks and 470Mbyte and 940Mbyte worm disixs. It uses double-sided disks and is im the form either of a bare drive or desk-top unit, working vertically or horizontally. There is a 512 Kbyte cache and access time is under 45 ms . A SCSI-2 interface allows connection to computers running dos, Windows, OS/2 or Novell 386.

Panasonic Industrial (Europe) Ltd. Tel., 0344863444 ; fax, 0344861656.

Software

SpiceAge for Windows 4. Version 4 of Those Engineers' SpiceAge for Windows has many new features, prominent among which are reflection coefficient analysis and noise analysis.
There is now a DDE link with the utility program Modelmaker, which synthesises op-amp, transformer, attenuator and transistor library models. Reflection coefficient analysis in the complex plane option gives scattering matrix diagonals $\mathrm{s}_{11}, \mathrm{~s}_{22}$, etc. In noise analysis, each component is measured and total $\mathrm{s}: \mathrm{n}$ ratio or total noise obtained.
There is a time-optimising mode for digital circuit analysis, in which a relaxed circuit makes no further contribution to the calculations until it does something, speeding the process by about ten times while missing no event.
Automatic time step interval is now provided, which TE claims to be an improvement on that in some other programs. It can be switched off, if required.
Further upgrades include faster quiescent analysis and improvements to Spice operation. Windows .WAV files import and export and there is better screen and print presentation Those Engineers Ltd. Tel., 0181906 0155; fax, 01819060969.

Special-offer - low-power tx/rx for less than $£ 12$

For more details of the LPRS transmitter/receiver pair, see page 1046.

Low Power Radio Solutions is offering an am transmitter and receiver module pair at $£ 11.7+$ inclusive to the firs 500 EW $+W W$ readers sending in the coupon below. This exclusive offer is a reduction of well over a third of the list price of $£ 19.50$.
Communication distance is heavily dependen on ciremmatances including enviromment and antema design. but it can exceed 50 m in free space. Even inside a building. communication can be up 10.25 m .

Receiver pin-out	
1	5 V
2	Gnd
3	Rf in
7	Gnd
10	+5 V
11	Gnd
13	Test point
14	Data out
15	$+5-24 \mathrm{~V}$

Hybrid receiver module for
$\$ 18 \mathrm{MHz}$, above. In open air, this module can receive at distances of more than 100 m in free air when used with the LPRSTX -18 transmitter.

Left, pin-out of the +18 MHz lospower transmitter, showing its. outline at roughly twice full size.

Features and specifications

Transmitter module

- Pcb mounting oem module
- Optirrised for pcb antenna
- Small size - $13 \mathrm{~mm} \times 13 \mathrm{~mm} \times 5 \mathrm{~mm}$
- $418 \mathrm{Mi}-1 \mathrm{z}$ saw controlled am

Supply voltage	51012 V
Supply current	2.6 mA typ.
Frequency	4.8 MHz
Radiated power (erp)	-6 dBm
2nd harmonic erp	-56 dBm
ERP above 1 GHz	-60 dBm max

Receiver module

- Hybrid module
- Single-in-line package
- Regenerative superhet design

Sensitivity
Better than 2.5 mV (-100dBm)
Rf pass band $\quad \pm 1 \mathrm{MHz}$ (3dB)
Lf pass band $\quad 2 \mathrm{kHz}$ square
wave max.
Supply, if circ. $5 \mathrm{~V}, 5 \mathrm{~mA}$
Supply, o/p circ. $5-24 \mathrm{~V}$. 2 mA

Please send me the Low Power Radio Solutions transmitter/receiver pair. I enclose o postal order for $£ 11.74$ or cheque payable to Low Power Radio Solutions or credit-cord details, os below. Tick type of card - Access or Viso?

Card number.
.Card expiry date.
Name.
Address of card holder
\qquad

Please post this coupon to Low Power Redio Solutions Ltd, Harvestway House, 50 Market Square, Witney, 0xon 0X8 6AL and mark your envelope EW+WW reader offer. Note that this offer applies only to the first 1000 requests received by LPRS on a first-come-first-served basis.

NEW LOW PRICE - NEW COLOUR HP141T SPECTRUM ANALYSERS TESTED

HP141T + 8552A or B IF - 8553B RF - $1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-$ A IF £600 or B IF - £700.
HP141T +8552 A or B IF $-8554 B R F-100 \mathrm{kHz}-$ $1250 \mathrm{Mc} / \mathrm{s}$ - A IF $£ 800$ or B IF - $£ 900$.
HP141T +8552 A or B IF $-8555 \mathrm{ARF}-10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}$ - A IF $£ 1400$ or B IF - $£ 1600$. The mixer in this unit costs £1000, we test every one for correct gain before despatch.
HP141T +8552 A or B IF -8556 A RF $-20 \mathrm{~Hz}-300 \mathrm{kHz}-$ AIF £600 or B IF - £700.

HP ANZ UNITS
 AVAILABLE SEPARATELY NEW COLOUR - TESTED

HP141T Mainframe - £350-8552A IF - £200 - 8552B IF - £ $300-8553 \mathrm{BRF}-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-£ 200-8554 \mathrm{~B}$ $\mathrm{RF}-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 400.8555 \mathrm{ARF}-10 \mathrm{Mc} / \mathrm{s}-$ $18 \mathrm{GHz}-£ 1000.8556 \mathrm{ARF}-20 \mathrm{HZ}-300 \mathrm{KHZ}-\mathrm{£} 250$.
HP8443A Tracking Generator Counter - 100 kHz $110 \mathrm{Mc} / \mathrm{s}$ - £300-£400.
HP8445B Tracking Pre-selector DC $-18 \mathrm{GHz}-\mathrm{E} 400$ £600 or HP8445A - £250.
HP8444A Tracking Generator - £750-1300Mc/s.
HP8444A Opt 059 Tracking Generator - £1000-1500Mc/s.

SPECIAL OFFER - 14 ONLY HP140T (NON-STORAGE)

Mainframe Plus 8552A IF Plug-In Plus 8556A RF PlugIn 20 Hz - 300 kHz Plus 8553B RF Plug-In $1 \mathrm{kHz}-$ $110 \mathrm{Mc} / \mathrm{s}$. Tested with instructions - $\mathbf{f 7 0 0}$.

[^2]Marconi TF2092 noise receiver A, B or C plus filters - $£ 100-£ 350$

Marconi TF2091 noise generator. A, B or C plus filters - $\mathbf{f 1 0 0} \mathbf{£ 3 5 0}$

HP 180TR, HP $182 T$ mainframes $£ 300$ - 5500
Fluke 8506A thermal RMS digital multimeter. $\mathbf{£ 4 0 0}$
Marconi 6700 A sweep oscillator $+6730 \mathrm{~A}-1$ to $20 \mathrm{GHz}-\mathbf{£ 4 0 0}$
HP8505A network ANZ +8503 A S parameter test set +8501 A normalizer $-\mathbf{E 4 k}$.
Racal/Dana VLF frequency standard equipment. Tracer receiver type 900A + difference meter type 527E + rubidium standard type 9475-f2750.
HP signal generators type $626-628$-frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$.
HP 432A - 435A or B-436A - power meters + powerheads - Mc/s - 40GHz - f200-f 1000
Bradley oscilloscope calibrator type 192 - $\mathrm{E600}$.
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{Kc} / \mathrm{s}+$ high pass + low pass - $\mathbf{£ 1 5 0}$.
Marconi TF2370 spectrum ANZ - $110 \mathrm{Mc} / \mathrm{s}$ - $\mathbf{5} 900$.
Marconith
4 P8614A signal generator $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour $£ 400$.
HP 3325A syn function gen $20 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 1500$.
HP 3336A or B syn level generator - $£ 500$ - $\mathbf{6} 600$.
HP 3586B or C selective level meter - $£ 750-£ 1000$.
HP 3575A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}$ - f 400 .
HP 8671A syn microwave $2-6.2 \mathrm{GHz}-\mathrm{E} 2 \mathrm{k}$.
HP 8683D S/G microwave $2.3-13 \mathrm{GHz}$-opt 001 -003-f4.5k.
HP $8660 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ syn S/G. AM $+\mathrm{FM}+10 \mathrm{Kc} / \mathrm{s}$ to 110 Mc .
HP $8660 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ syn S/G. $\mathrm{AM}+\mathrm{FM}+10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to $2500 \mathrm{Mc} / \mathrm{s}-£ 750-£ 2800$.
HP 8640 S
HP 8656A S/G AM-FM 0.1-990Mc/s - f 1500 .
HP 8622 B Sweep Pl-01-2.4GHz + ATT - $£ 1750$
HP 86290B Sweep PI-2-18GHz-f1250.
HP 86 Series Pl's in stock-splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-£ 250$ - 1 k .
HP 8620C Mainframe- $\mathbf{2} 250$. IEEE - $\mathbf{5} 500$.
HP 8615A Programmable signal source - $1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}$ - opt 002 - f 1 k
HP 8601 A Sweep generator. 1 - $110 \mathrm{Mc} / \mathrm{s}-£ 300$.
HP 4261A LCR meter +16038 A test leads - $\mathbf{~} 400$.
HP 42718 LCR meter 1 MHz digital meter +16063 A test adaptor - $\mathbf{£ 8 5 0}$
AP 4342 A Q meter 22 kHz - dome/s $16462 \mathrm{~A}+$ qty of 10 inductors - $\mathbf{f 8 5}$
HP 3488 A HP - 1 B switch control unit - E 500 + control modules various - $\mathbf{£ 1 7 5}$ each
PP $8160 \mathrm{~A} 50 \mathrm{Mc} / \mathrm{s}$ programma-
HP 853A MF ANZ $+8558 \mathrm{~B}-0.1-1500 \mathrm{Mc} / \mathrm{s}$ -
HP 8349A Microwave Amp 2 - $20 \mathrm{GH}_{2}$ Solid state- $\mathbf{f} 1500$
HP 3585A Analyser $20 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 4 \mathrm{k}$.
HP 8569 B Analyser $.01-22 \mathrm{GHz}-\mathrm{f} 5 \mathrm{k}$.
HP 3580A Analyser $5 \mathrm{~Hz}-50 \mathrm{kHz}-£ 1 \mathrm{k}$.
HP 1980B Oscilloscope measurement system - 6600.
HP 3455A Digital voltmeter - $£ 500$.
HP 3581C Selective voltmeter - $\mathbf{£ 5 0 0}$
HP 5370A Universal time interval counter - £450
HP 5335 A Universal counter - $200 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 500$.
HP 5328A Universal counter - $500 \mathrm{Mc} / \mathrm{s}$ - C 250
HP 6034A System power supply - 0 - $60 \mathrm{~V}-0-10 \mathrm{amps}$ - f 500
HP 3960A 3964A Instrumentation tape recorders - $£ 300-\mathbf{f} 500$.
HP 5150A Thermal printer - £250.
HP 1645A Data error analyser - $\mathbf{£ 1 5 0}$
HP 4437A Attenuator - $\mathbf{f} 50$
HP 4437A Attenuator - $\mathbf{E} 150$.

Microwave link analyser-P.O.R.
HP 3552A Transmission test set - 4400 .
HP 3763A Error detector - f 500 .
HP 3764A Digital transmission analyser - $\mathrm{f600}$.
HP 3770A Amp delay distortion analyser - £400
HP 3780A Pattern generator detector - E 400 .
HP 3781A Pattern generator - $\mathrm{E4} 400$.
HP 3782A Error detector - $\mathrm{f400}$ (4300
HP 3782 Error detector (bell)- $£ 300$
HP 3785A Jitter generator + receiver - $£ 750-\mathrm{E} 1 \mathrm{k}$
HP 8006A Word generator- $\mathbf{f} 100-\mathrm{E} 150$.
HP 8016 A Word generator - $\mathbf{f 2 5 0}$.
HP 8170A Logic pattern generator - $£ 500$.
HP 59401A Bus system analyser - 1350 .
HP 59500A Multiprogrammer HP - IB - E 300 .
Philips PM5390 RF svn - 0.1 - 1GHz - AM + FM - f1250.
Philips PM5519 Colour T.V. pattern generator- $\mathbf{E 2 5 0}$.
S. A. Spectral Dynamics SD345 spectrascope 111 -LF ANZ- $\mathbf{£ 2 5 0 0}$
Tektronix R7912 Transient waveform digitizer - programmable - f 400

Tektronix TR503 + TM503 tracking generator $0.1-1.8 \mathrm{GHz}-\mathbf{f} 1 \mathrm{k}$ - or TR502.
Tektronix 576 Curve tracer + adaptors - $£ 900$.
Tektronix 577 Curve tracer + adaptors - $\mathbf{E 9 0 0}$.
Tektronix $1502 / 1503$ TDR cable test set -f 1000 .
Tektronix 7 LL 5 LF analyser - 0 - $5 \mathrm{Mc} / \mathrm{s}$ - $\mathrm{f800}$. OPT 25 - $\mathbf{f 1 0 0 0}$.
Tektronix AM503 Current probe + TM501 m/frame-f1000.
Tektronix SC501-SC502 - SC503 - SC504 oscilloscopes - f75-f350.
Tektronix 465 -
Kikusui 1 O6L2 20 Signal
Farnell PSG520 Signa generator - $\mathbf{\text { E400}}$
Nicolet 3091 LF oscilloscope-
Racal 1991-1992-1988-1300M/s counters - f500-£900.
Tek $2445150 \mathrm{Mc} / \mathrm{s}$ oscilloscope - E 1400.
Fluke $80 \mathrm{~K}-40 \mathrm{High}$ voltage probe in case - BN - f 100.
Racal Recorders - Store 4-4D-7-14 channels in stock - $£ 250$ - $\mathbf{f 5 0 0}$.
Racal Store Horse Recorder \& control- £ $400-\mathrm{f} 750$ Tested.
EIP 545 microwave 18 GHz counter - f 1200.
Fluke 510A AC ref standard $-400 \mathrm{~Hz}-\mathrm{f} 200$.
Fluke 355A DC voltage standard- $\mathbf{£ 3 0 0}$.
Schlumberger 5229 Oscilloscope - $500 \mathrm{Mc} / \mathrm{s}$ - $£ 500$.
Solartron 1170 FX response ANZ - LED dislay - f280
Wiltron 610D Sweep Generator $+6124 \mathrm{CPI}-4-8 \mathrm{GHz}-\mathrm{£} 400$
Wiltron 610D Sweep Generator +61084D PI-1Mc/s-1500Mc/s-5500
Time Electronics 9814 Voltage calibrator - $£ 750$.
Time Electronics 9811 Programmable resistance - f 600
HP 8699 B Seep PI YIG oscillator $01-4 \mathrm{GHz}-£ 300.869$
HP 86998 Sweep P1 MG oscillator $01-4 \mathrm{GHz}$ - $£ 300.8690 \mathrm{~B}$ MF- $\mathbf{f 2 5 0}$. Both f 500.
Schlumberger 1250 Frequency response ANZ- $£ 2500$.
equipt - relays - attenuators - switches - waveguides - Yigs - microwave parts new and θx etc.
B\&K Items in stock - ask for list.
W\&G Items in stock - ask for list
Power Supplies Heavy duty + bench in stock - Farnell-HP - Weir - Thurlby - Racal etc. Ask for list.

ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLLS. PFICE IS EX WORKS. SAE FOR ENQURIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY TEEMS, AVAILABILTY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tei. No: (0274) 684007. Fax: 651160

CLASSIFIED

ARIICLES FORSAIE

19" Rack Mounting Switch Mode Power Supply By FARNELL INSTRUMENTS F2667 P.O. [B.T.] 164

MONARCH 250C SYSTEM
990 WATTS MODULAR CONSTRUCTICN
+5 volt 48 Amp
+12 volt 8 Amp + Ringer Module Capable of Ringing 12 Telephone Bell Loads
-12 volt 5 Amp
-50 volt 8 Amp
Dimensions H125 D500 W485mm Weight 13.5KG BRAND NEW IN ORIGINAL PACKING

PRICE $£ 199.00$ + VAT
UK Mainland
Carriage £12+VAT

R. Henson Ltd.

21 LODGE LANE
LONDON N12 8JG
TEL: 081-445 2713/0749
FAX: 081-445 5702

VALVES AND CRTs

ONE MILLION ITEMS IN STOCK INCLUDING MAGNETRONS, KYLSTRONS, VALVE SOCKETS FOR AUDIO RECEIVING TRANSMITTING, OBSOLETE BRANDS SUCH AS MULLARD, GEC A SPECIALITY. ALSO HUGE STOCKS OF RUSSIAN AND SOUTEK ITEMS ASK FOR OUR 40-PAGE VALVE CATALOGUE OR CRT CATんLOGUE.

VALVES WANTED FOR CASH

ESPECIALLY KT66, KT77, KT88, PX4, PX25, VALVE HI-FIs e.g. QUAD, LEAK, GARRARD 301. IF POSSIBLE SEND WRITTEN LIST.

BILLINGTON EXPORT LTD
1 E GILLMANS IND EST, BILLINGSHURST, SUSSEX RH14 9EZ
CALLERS STRICTLY BY APPOINTMENT ONLY
TEL: 0403784961 FAX: 0403783519
MINIMUM ORDER $£ 50.00$ PLUS VAT

TURN YOUR SURPLUS TRANSISTORS ICS ETC, INTO CASH Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact:
COLES-HARDING \& CO, Unit 58. Qubens Road, Wisbech, Cambs. PE13 2PO ESTABLISHED OVER 15 YEARS Buyers of Surplus Inventory Tel: 01945584188 Fax: 01945475216

SERVICES

DESIGN SERVICES

Software Design: High and Low Level. Hardware Design: Analogue, Digital, Micro and Embedded.
PCB, Schematic and Production Drawings Prototyping and Feasibility services.

Archimedes Custom Equipment: Tel 0974282670

WE WANT TO BUY !!

IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R.HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 081-445-2713/0749 FAX 081-445-5702.

111191月		
WANTE		
SCRAP Printed Circuit Boards		
We re br for the dese tovere of P		
Comouter salvage		
TEL:0635 552666		
imilitirngrnerint		

WANTED

Test equipment, receivers, valves transmitters, components, cable and electronic scrap and quantity.

Prompt service and cash M \& B RADIO
86 Bishopgate Street Leeds LS1 4BB Tel: 0532435649 Fax: 0532425881

WANTED

High-end Test. Communication \& Computer Equipment. Top prices paid. Please send or fax your offer to Steigerwald 6mbH Neusserstrasse 9,80807 Munich South Germany
Tel: 01049893615833
Fax: 01049893615899

WANTED

High-end Test Equipment, only brand names as Hewlett-Packard, Tektronix, Rhode \& Schwarz, Marconi etc. Top prices paid. Please send or fax your offer to: HTB ELEKTRONIK

Alter Apeler Weg 5,
27619 Schiffdorf, West Germany TEL: 0104947067044
FAX: 0104947067049

FREE CLASSIFIED

COREL DRAW Five for salc. Origina discs and all the manuals with registra tion card. $£ 235$ post paid., insured 0592757384.

WAVTED W.W.2. Militars and Clan destme sets and Mh 32s recence, Mh 119. Nh-217. Wh? HZSRO Ry Otur sad. Hostcihobs 10 Dh $3+0113$

ARIICIES FOR SAIE

\square

 Cooke International SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. AL WAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE COPIES ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME, SEND LARGE "A3" S.A.E. + 50P POSTAGE FOR LISTS OF EQUIPMENT AND MANUALS.

ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS SHIPPING ARRANGED OPEN MONDAY-FRIDAY 9AM-5PM

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OEB

Tel: (+44) 0243 545111/2
Fax: (+44) 0243542457
EQUIPMENT \& ACCESSORIES PURCHASED
CIRCLE NO. 160 ON REPLY CARD

ADVERTISERS PLEASE NOTE

 For all your future enquiries on advertising rates, please contact
Malcolm Wells on:

 Tel: 081-652 3620 Fax: 081-652 8956
INDEX TO ADVERTISERS

	$P A G E$	
Anchor Surplus Ltd	991	M\&B Electrical
Antex Electronics	1007	M\&B Radio (Leeds)
BK Electronics	1002	MQP Electronics
Bull Electrical	1013	Number One Systems
Citadel Products Ltd	IFC	
Cooke International	974	Olson Electronics Ltd
Devantech Ltd	1028	Pico Technology
Display Electronics	1021	Powerware
Field Electric Ltd	985	Ralfe Electronics
Halcyon Electronics	Research Communications	1033
Henrys Audio Electronics	985	Seetrax Ltd
ICE Technology Ltd	1022	Smart Communications
IOSIS	981	Stag Programmers
John Morrison (Micros)	997	Stewart of Reading
Johns Radio	Surrey Electronics	993
JPG Electronics	1022	Telnet
Kestral Electronic Components	1052	Texas Instruments
Keytronics	1028	Those Engineers Litd
Lab Center	997	Tsien Ltd

Rif \& MIcROW:

Permanent and contract opportunities for engimeers as technicians in Cellular, Civil, Military, Satellite Communications, Radio and Microwave Ingineerfage:

Indivicual specialists or large teams swo pli-d.

$$
\begin{aligned}
& 92 \text { Beganway }
\end{aligned}
$$

Bracknell, Bexks, RG12 1FR.
Tel 01 344489489 , Fax 01344489505.
Offices in London, Manchester, Southampton, Stevenage, Crawley, Brussels

CLIVEDEN

Technical Recruitment

331 A distortion meter
339 A d stortion meter
3400 A voltmeter $10 \mathrm{~Hz}-10 \mathrm{MHz}$

ANRITSU TR4 133 A 100 KHz -20GHz synthesized spectrum analyser IFR A7550 1 GHz portable analyser w tracking gen opt IFR A8000 2.6 GG Hz version of above HP3580A 5 Hz -50kHz audio specirum analyser HP3582A dual-channel 25 kHz anayser HP8568B 1.5GHz High-performance ANRITSUMS62D 1700 MHz HP182T/8557A.01-350MHz MARCONIINSTRUMENTS

2019 AMFM syntresized signal generator $80 \mathrm{kHz}-1 \mathrm{GHz}$

2019 A as above, improved spec

2022 D syntinesized signai generator
2438520 MHz universal countertimer 2888 A 2829 digtal simuilatoranalyser 2200 2955 mobile radio test set $2955 \mathrm{~A}+2960$ celluar adapters . . various configurations 6059 A signal source $12-18 \mathrm{GHz}$ 646006420 power meter $10 \mathrm{MHz}-12.4 \mathrm{GHz} 0.3 \mathrm{WW}$ - 10 mW 893B audio power meter
OA2805A PCM regenerator t test set TF2910/4 non-linear distortion (video) analyser TF2914A TV insertion signal analyser:
TF2910 TV interval timer

£4500

£6250

£1500

£3500
2500
£1750
$£ 1000$

£1750
 c1950

£1950

3335A synthesizerlievel generatior with option 01 3336 A level generato

3552A transmiss on test set

3586 A seiective Ievel meler
415 E swi meter
4274A mulit-requency (100 Hz -100kHz) LCR component meter 4275A muti-T-requency LCR component meter
432A4478A microwave power meter $10 \mathrm{MHz}-106 \mathrm{~Hz}$ 432ARA865A uwave power meter $26.5-40 \mathrm{GHz}$ (waveguide) 53708 universal time-interval counter 6253 A dual power supply $0-20 \mathrm{~V}$ O-3A twice 6825 A bipolar power supplylamp $-2010+20 \mathrm{vdc} 0-1 \mathrm{~A}$ 70300A tracking generator plug-in unit 70907 A external mixer for 70000 -ser spectinm analyser $7035 B$ X-Y Sngle pen analoque chart recorder B011A pulse generator 0.1 Hz -20MHz 8112A pulse generator 815A sotted line 1.8-18GHz with carriage 809C \& 447E 8350B sweep generator main -trame 8405 A vector voltmeter, voltage \& phase to 1000 MHz 8620 C sweep generator, many piug-in units avalabie 8671A synthesized signal generator $2-6.26 \mathrm{~Hz}$
 andylyers. 85901.23 ponablie analyseers. Pease call us if you have hight-end capital equipment be ing under votises.
PIEASENOTE: ALL OUR EQUPMETTIS NOW OPERATION-YERIFICATION TESTED BEFORE DESPATCH BY INDEPENIETT LABORATORY
We would be pleased to handie all grades of calibration or NAMAS certifcation by same laboratory at cost price. Al items covered by our 90 -day parts and iabour guarantee and 7 -tay 'Right to Refuse' (money back) waranty

ALL PRICES SUBJECT TO ADDITIONAL VAT AND CARRIAGE

ELECTRONIC UPDATE

Contact Malcolm Wells on 081-652 3620

A regular advertising feature enabling readers to obtain more information on companies' products or services.

The system 2000 is an ideal programmer for the production environment. Fast programming results in high throughput and rigorous verification leads to improved quality control. Single key functions and checks against misoperation facilitates its use by unskilled staff

MQP ELECTRONICS LTID.

Tel: 0666825146
Fax: 0666825141
CIRCIENO 152 ON REPLY CARI)

NATIONAL INSTRUMENTS 1995 CATALOGUE

The 1995 National Instruments catalogue describes more than 90t software and hardware products. Enginecrs and scientists can use these to develop integrated instrumentation systems for test and measurement process monitoring and control, using industry-standard personal computers and workstations.

NATIONAL INSTRUMENTS FOR FURTHER INFORMATION CALI, 01635523545

CIRCLE NO. 153 ON REPLY CARD

OLSON ELECTRONICS LIMITED is a leading manufacturer in the field of mains distribution panels of every shape and size to suit a variety of needs. For use in Broadcasting, Computing, Data Communications, Defence, Education, Finance, Health etc. All panels are manufactured to BS5733. BRITISH AMERICAN, FRENCH, GERMAN CEE22/IEC and many other sockets. Most countries catered for All panels are available ex-stock and can be bought direct from OLSON.

Olson Electronics Limited Tel: 0818852884 Fax: 0818852496 CIRCLE NO. 154 ON REPLY CARD

COMPACT AND LOW COST EPROM ERASER

- Capacity for up to five $24 / 28 / 32$ pin DIP devices or four 40 -pin DIP devices
- Adjustable timer: 0-60 mins
- Anti-static foam lined device drawer
- Power indicator lamp
- Safety interlock on drawer prevents accidental exposure to U-V light
Stag Programmers Limited
Martinfield, Welwyn Garden City,
Hertfordshire AL7 IJT, UK
Tel: 0707-332148
Fax: 0707-371503
CIRCLE NO. 155 ON REPLY CARD

a menufacturer
of the best range of portable
programmers but also the leading brand of Universal Programmers to 256 pin devices, Gang Programmers, In-circuit Procrammers, Logic Compilers, PLD Proçrammers and UV Erasers

Programming Solutions
 \section*{SMART Communications offer the best range of low cost programmers for your every need.}

Unrivalled device support includes the latest MACH, pLSI, MAPL, PIC, WSI, Atmel, Xilinx and Intel parts.

ALL-07 Universal Programmer
Pin driver expansion can drive up to 256 pins.
Supports over 2000 IC's - 3 and 5 volt devices. EPROMs, E2PROMs, Bipolars, Flash, Serial EPROMs up to 16 Mbits parts, over 150 Microcontrollers and PLDs, EPLDs, PEELs, PALs, GALs, FPGAs etc...
Universal DIL (up to 48 pins), PLCC and gang PACs

- significantly reduces the number of adapters required.

Fowerful full colour menu system.
Connects to the pc printer port with its own power supply.
Latest programming algorithms.
Tests TTL, CMOS and SRAM devices

- even identifies unknown parts.

Approved by AMD for their range of programmable logic.
£595

EMP-20 Multi-Device Programmer

EPROMs, E2PROMs, Flash, Serial EPROMs to 16 Mbits. PLDs, GALs, PEELs, WSI PSDs. Intel, Microchip, Motorola and Zilog Microcontrollers. Fast programming algorithms.

Erasers \& pin convertors

 AT-701 - Chiprase Ultra-violet eraser. Very compact 16 chip capacity Built in timer
Pin convertors

from DIL to
PLCC, SOP, SOIC etc...
from $£ 50$

PB-10 Programmer

Low cost programmer. EPROMs, E2PROMs, Flash and 8748/8751. Fast programming algorithms. Simple but powerful menu driven software.

£139

SMART Communications have a full range of dedicated programmers for the Microchip PIC range of microcontrollers - both single and gang for DIL and SOIC variants.

We also supply a wide range of development tools - Assemblers, Compilers, Simulators and Emulators - for a wide range of microprocessors, especially the Microchip range. Our ROM emulators start at just $£ 99$.

[^0]: verseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd 205 E. 4 ćnd Street, NY 10117. Telephone (212) 867-2080 Tlx 23827.
 USA malling agents: Mercury Airfreight International Ltd Inc, O(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
 Printed by BPCC Magazınes (Carlisle) Ltd, Newtown Trading Estate, Carlisle. Cumbria, CA2 7NR
 Typeset oy Wace Publication Imaging 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT
 ©Reed Business Publishing Ltd 1992 ISSN 09598332

[^1]: LIST AVAILABLE BUT 1000's OF UNLISTED BARGAINS FOR CALLERS. ALL PRICES EXC. OF PIP AND VAT

[^2]: Marconi TF2008 - AM-FM signal generator - also sweeper - $10 \mathrm{KC} / \mathrm{s}$ - $510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250$ - tested to $£ 400$ as new with manual - probe kit in wooden carrying box
 HP Frequency comb generator type 8406 - $£ 400$
 HP Vector Voltmeter type 8405A - £400 to $£ 600$-oid or new colour
 AP Sweep Oscillators type $8690 \mathrm{~A} \& \mathrm{~B}+$ plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$. P O.R HP Network Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500-\mathrm{f} 1000$
 HP Frequency Counter type 5340 M - 18 GHz G 1000 -rear output E 800 .
 HP $8410-A-B$ - C Network Analyzer $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and
 displays used in this set-up - 8411a-8412-8413-8414-8418-8740-8741-8742-8743-8746-8650. From f1000.
 Racal/Dana 9301A-9302 RF Millivoltmeter - $1.5-2 \mathrm{GHz}$ - $£ 250-£ 400$
 Racal/Dana Counters 9915M-9916-9917-9921-E150 to E450. Fitted FX standards.
 Racal/Dana Modułation Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}$ - £250
 Marconi/Saunders Signal Sources type - 6058B-6070A - 6055A - 6059A - 6057A - 6056 $\mathrm{f} 250-\mathrm{f} 350.400 \mathrm{M} / \mathrm{s}$ to 18 GHz .
 Marconi TF1245 Circuit Magnification meter +1246 \& 1247 Oscillators - $\mathbf{E} 100-\mathrm{f} 300$ Marconi microwave 6600A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ $40 \mathrm{GHz}-\mathrm{C} 1000$ or PI only E 600 . MF only £ 250 .
 Marconi distortion meter type TF2331-£150. TF2331A - 200
 Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S S2 - S6 - S52 - PG506 - SC504 - SG502 - SG503 - SG504 - DC503 -DC508 - DD501 Gould J 3 B test oscillator + manual - $£ 200$.
 7904-7834-7104-7623-7633.
 Altech 757 Spectrum Analyser -00122 GHz - Digital storage + readout - $\mathbf{f} 2000$
 Marconi 6155 A Signal Source - 1 to 2 GHz -LED readout - E 400 .
 Barr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - $£ 150$
 Marconi TF2163S attenuator-1 GHz . f 200 .
 Farnell power unit H60/50- $\mathrm{E4} 00$ tested. H60/25-£250
 Racal/Dana 9300 RMS voltmeter - $£ 250$.
 HP 8750A storage normalizer - $£ 400$ with lead + S. A or N,A Interface
 Marconi TF2330 - or TF2330A wave analysers - $\mathrm{f} 100-\mathrm{f} 150$
 Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500$
 Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 500$.
 Racal/Dana signal generator $9082 \mathrm{H}-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 600$.
 Tektronix-7S14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11
 Marconi mod meters type TF2304-£250.
 HP 5065A rubidrum vapour FX standard - $\mathbf{f} 2.5 \mathrm{~K}$.
 Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}-$ LED readout $-\mathbf{f} 1 \mathrm{k}$
 Racal/Dana 9083 signal source - two tone - f 250 .
 Systron Donner - signal generator 1702 - synthesized to 1 GHz - AM/FM - $\mathbf{6} 600$
 Tektronix TM515 mainframe + TM5006 mainframe- $\mathbf{E 4 5 0 - E 8 5 0}$.
 Rhodes \& Schwartz power signal generator SLRD-280-2750Mc/s - £250-£600
 Bail Efratom rubidrum standard PT256B-FRKL
 Farnall electronic load type RB1030-35-£350.
 Racal/Dana counters - 9904 - 9905 - 9906 - $9915-9916-9917-9921-50 \mathrm{Mc} / \mathbf{s}-3 \mathrm{GHz}-\mathbf{£} 100$ € 450 - all fitted with $F X$ standards.
 HP4815A RF vector impedance meter c / w probe - $\mathbf{6 5 0 0 - 6 6 0 0}$.

