HECT
 WORLD + WIRELESS WORLD

 RONIDenmark DKr. 70.00 Germany DM 15.00 Greece Dra. 760 Holland Dfl. 14 Italy L. 7300 IR £3.30

OCTOBER 1994 £1.95
AUDIO
Feed forward beats feedback for better audio? REVIEW
The best schematic under Windows?

APPLICATIONS New circuits for one-chip function generators

DESIGN

4-Q multipliers give the edge to wideband systems
RF ENGINEERING Signal processing at microwave frequencies
COMPONENTS Light ballast with other uses

FROM THE MAKERS OF THE WORLDS BEST SELLING UNIVERSAL PROGRAMMING AND TESTING SYSTEM

* Ability to program 3 volt devicas.
* Calibration software to comply with ISO9000.
* Batch software for production programming.
* High quality 42 pin Textool zero insertion force sockets.
* Rugged metal housing and heavy duty screened cable.
* Ground control circuitry using relay switching.
* Protection circuitry to protect against wrong insertion of devices.
* Speed optimised range of programming algorithms.
* Supplied with MICROTEC disassemblers for Z8, 8085, 8048, 8051, 6809 \& 68 HC 11 .

NOW ONLY

 £469* Programs PIC16 series without adaptor
* Software supplied to write own test vectors for custom ICs and ASICs etc.
* One model covers the widest range of devices, at the lowest cost.
* Over $\mathbf{2 0 0 0}$ different devices (including several hundred MPU's) supported.
* Tests and or identifies a wide range of logic devices.
* High speed PC interface card designed for use with all types of PC.
* No need to tie up a slow parallel port.
* More Sunshine programmers sold worldwide than any other of its type.
* UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL.
* Two year free software update.
* Free demo disk with device list available.

The Sunshine Expro-80 Universal Programmer and Tester is the 42 pin version of the immensely popular Expro-60/PC-82. Following that success, the Expro-80 is a PC-based development tool designed to program and test more than 2000 ICs. The culmination of over 8 years production experience has resulted in perfecting this rugged, classically designed programmers' programmer.

Volume production has now enabled us to offer this powerful programmer at a very competitive price for a product of such high quality. The Expro-80 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the Expro-80 for their own use!

The Expro-80 can program E/EPROM, Serial PROM, BPROM, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX and MPU. It comes with a 42 pin DIP/SDIP socket capable of programming devices with 8 to 42 pins. It even supports EPROMs to 16 Mbit , the PIC16 series of MPUs and many many more without the need of an adaptor. Adding special adaptors, the Expro-80 can program devices up to 84 pins in DIP, PLCC, LCC, QFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS $40 / 45$ series, DRAM (even SIMM/SIP modules) and SRAM. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user. The Expro-80 can even check and identify unmarked devices.

The Expro-80's hardware circuits are composed of 42 set pin-driver circuits each with control of TTL I/O and "active pull up", D/A voltage output, ground, noise filter circuit and OSC crystal frequency.

New features include negative programming voltages, 3 volt programming ability, protective circuitry for ICs incorrectly inserted, calibration software to comply with ISO9000, new six layer PCB and voltage clamping to banish noise and spikes.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all types of PC. In addition, there is now the Link-P1 enabling the programmer to be driven through the printer port. Ideal for portables and PC's without expansion capability.

The pull-down menus of the software makes the Expro-80 one of the easiest and most userfriendly programmers available. A full library of file conversion utilities is supplied as standard.

Sunshine's team of over 20 engineers are continually developing the software, enabling the customer to immediately program newly released, ICs.

Citadel, a 33 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

Our stocked range of own manufactured and imported Sunshine products include:

* Super fast EPROM Erasers.
* 8Mbit EPROM Programmers:
ie: $\quad 1$ gang $£ 149$
4 gang £229
8 gang $£ 399$
* Battery operated portable EPROM programmers.
* "In circuit" Emulators.
* Handy pocket IC testers.

CITADEL PRODUCTS LTD DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 081951 1848/9

CONTENTS

Cover: Hashim Akib

VOLTAGE REGULATOR CHIPS: SWITCH TO LINEAR?
 \qquad .806

Supply voltage can be crucial in defining a system's overall performance, yet regulator IC data sheets rarely tell the full story. Ben Duncan investigates a crosssection of popular devices, both old and new.

CAPTURE AND LAYOUT FOR PCs.
John Anderson looks at whether Protel is justified in adding the word 'Advanced' to their newly upgraded schematic capture and pcb layout packages.

AUDIO DESIGN LEAPS FORWARD? \qquad
Designers have long been aware of the benefits of applying feed forward to audio power amplifiers but so far, attempts to turn these theoretical advantages into practice have never quite lived up to expectations. Has Giovanni Stochino found the answer?

NEW WAVE MICROWAVES
In his article covering mixers and signal converters, Mike Hosking describes the components and circuits needed to extract information from microwave communication signals.

MULTI I/O VIA THE SERIAL PORT. \qquad .860
By having on-board intelligence in the form of a $68000-$ family processor, this 64 -line i/o card makes up for the sluggishness typical of interfaces controlled via a PC
serial port. Designed by J. N. Ellis, the board has uses ranging from led switching to managing a control system.

HIGH-VOLTAGE VERSATILITY

International Rectifier's $I R 2151$ is a fluorescent lamp ballast driver, but incorporating a 555-type timer and 600 V power mosfet drivers, it could have many other applications. The $I R 215 I$ is the subject of this month's free offer and our $£ 1800$ design competition on page 840 .

IR £1800 DESIGN COMPETITION

By finding a new application for a high-voltage IC comprising power mosfet drivers and a 555-type timer, you could win one of six mosfet designer's kits worth $£ 1800$ in total.

Full details on page 837...

REGULARS

COMMENT... 795
Goodbye, Goodbye.
NEWS. .796
EC in the dark over R\&D, Euro screen is clear world leader, Multilevels boost memory, Big TI hopes for the big screen, Video surveillance over the telephone line, Inmarsat improves on GPS services, Eurofighter scrap.

RESEARCH NOTES .802
Old masters painted in pixels, Robodoc with the hip attitude, Mesfet redesign cuts power needs, Digital laser control puts pulse power on site, Mobile 'phones make for mean street.

DESIGN BRIEF

 .842Active multipliers and their uses as variable attenuators and modulators, explored by Ian Hickman.

LETTERS .850
Split decision, Listening post, Radar replication, crossover critic, Bussman's $I^{2} \mathrm{C}$ kits, Historical insight, Discrete behaviour, Big science squashes little projects, Fourier dice.

NEW PRODUCTS .855
Classified run-down of new electronic products, presented in the industry's most readable format.

APPLICATIONS

Wideband op-amp delivers broadcast-quality video, Function generators use analogue trigonometric synthesiser, Switching with igbts reduces lamp ballast size.

CIRCUIT IDEAS.

 872One-chip air-flow monitor, Monostable flip-flop pulses down to 10 ns , Guitar fuzz box uses radio chip, Triggered sawtooth generator from a phase-locked-loop IC, Low battery-voltage indicator, Bench filter evaluator with tuning control.

In next month's issue: Making the most of CAD. Owen Bishop takes an in-depth look at CAD from the design engineer's viewpoint, using working circuitry for demonstration. And John Gregg looks at a new generation of atomically engineered magnetic materials.
There will also be details of our writers' award - the prize for which is a $£ 4000$.
THE NOVEMBER ISSUE IS ON SALE FROM October 27

Programming Solutions
 SMART Communications offer the best range of low cost programmers for your every need.

 Unrivalled device support includes the latest MACH, pLSI, MAPL, PIC, WSI, Atmel, Xilinx and Intel parts.

ALL-07 Universal Programmer
Pin driver expansion can drive up to 256 pins.
Supports over 2000 IC's - 3 and 5 volt devices. EPROMs, E2PROMs, Bipolars, Flash, Serial EPROMs up to 16 Mbits parts, over 150 Microcontrollers and PLDs, EPLDs, PEELs, PALs, GALs, FPGAs etc...
Universal DIL (up to 48 pins), PLCC and gang PACs - significantly reduces the number of adapters required. Powerful full colour menu system.
Connects to the pc printer port with its own power supply. Latest programming algorithms.
Tests TTL, CMOS and SRAM devices - even identifies unknown parts. Approved by AMD for their range of programmable logic.
$£ 595$

EMP-20 Multi-Device Programmer

EPROMs, E2PROMs, Flash, Serial EPROMs to 16 Mbits. PLDs, GALs, PEELs, WSI PSDs. Intel, Microchip, Motorola and Zilog Microcontrollers. Fast programming algorithms.
£325

Erasers \& pin convertors

AT-701 - Chiprase Ultra-violet eraser.

Very compact 16 chip capacity Built in timer $£ 95$

Pin convertors from DIL to

PLCC, SOP, SOIC etc... from $£ 50$

PB-10 Programmer

Low cost programmer.
EPROMs, E2PROMs, Flash and 8748/8751.
Fast programming algorithms.
Simple but powerful menu driven software.
£139
SMART Communications have a full range of dedicated programmers for the Microchip PIC range of microcontrollers - both single and gang for DIL and SOIC variants.

We also supply a wide range of development tools - Assemblers, Compilers, Simulators and Emulators - for a wide range of microprocessors, especially the Microchip range. Our ROM emulators start at just $£ 99$.

2 Field End • Arkley • Barnet • Herts • EN5 3EZ • England Telephone +44 (0)1814413890
Fax +44 (0) 1814411843

Goodbye, goodbye

EDITOR

Frank Ogden
081-652 3128
DEPUTY EDITOR
Martin Eccles
081-652 8638
CONSULTANT
Derek Rowe

DESIGN \&

PRODUCTION
Alan Kerr

EDITORIAL

ADMINISTRATION
Jackie Lowe
081-652 3614

ADVERTISEMENT

MANAGER
Richard Napier
081-6523620
DISPLAY SALES
EXECUTIVE
Malcolm Wells
081-652 3620

ADVERTISING

PRODUCTION
Christina Budd
081-652 8355

PUBLISHER

Susan Downey
EDITORIAL FAX
081-6528956
CLASSIFIED FAX
081-6528956
SUBSCRIPTION
HOTLINE
0622721666
Quote ref INJ

SUBSCRIPTION

QUERIES
0444445566
NEWSTRADE DISTRIBUTION Martin Parr
0816528171
BACK ISSUES
Available at $£ 2.50$
0816523614
ISSN 0959-8332

REED
BUSINESS
PUBLISHING

|have always promised that I would never allow sporting similes to appear in this magazine. After all, it is simply not cricket. But since this is my last editorial for our magazine, I shall make an exception.
How else can you note the performance of Great British Electronics plc other than to compare it with our national cricket or football teams and their past triumphs? I say this because the rumours are insistent that our last major semiconductor maker, GEC Plessey Semiconductors, is about to be sold off to US company Rockwell. It looks like we are about to say goodbye to our last chance to compete in a $\$ 100 \mathrm{bn}$ worldwide industry, a figure which is expected to rise to $\$ 200 \mathrm{bn}$ by the turn of the century.
It is worth recalling that just a decade ago, we had five major indigenous semiconductor makers: Ferranti, Plessey, Marconi, STC and Inmos. A similar list for two decades ago would have been double that length. There are a host of complacent voices in the UK Government and the Civil Service who ask if the passing of a national semiconductor industry really matters...
The same voices say that the real value comes from building semiconductors into systems rather than in the making of the devices themselves. They see that wafer lines require astronomic investment, produce irregular returns and don't employ too many people. Contrast this with equipment assembly operations which are undemanding of their bankers and backers while employing any number of redundant miners and shipbuilders.
To anyone who has worked in electronics as I have, who has sat in this office and watched in impotent fury as we have moved down the world technology league table, the seductive voices were wrong, wrong, wrong. I say "were" because, realistically,
the time has long gone when we could have turned the situation around. We are now marginalised in an area fundamental to electronics design.
Semiconductor development and manufacture controls absolutely the design of the end-equipment. We mostly define the nature of a complete system at the silicon layout stage. If we wanted to add significant value in system building, we should have retained control of the enabling technology. We didn't, we haven't while our national competitors have and thus the fists of rage. The picture of Arnie Weinstock abdicating totally from any responsibility to our last major semiconductor concern will present a fitting epitaph to the UK's high technology decline.
Returning to the sporting simile, there are two remaining hopes. Root for the Europeans such as Temic, SGS-Thomson, Siemens and Philips in the hope that they play a few away matches in our country; support our junior league of small silicon design houses which have been singularly successful in contrast to the big league. Either way, we must keep playing the game to retain any sort of advanced technology manufacturing base.

II am saying goodbye to Wireless World after six years in the editor's chair to take up a position with another magazine. I have enjoyed my tenure and I would like to thank both readers and contributors for their support and the help which they continue to give to our magazine. I know that my successor, Martin Eccles, currently WW's deputy editor, will continue to develop this venerable journal towards applied electronic design. This has always been my ambition and I believe it to be one that Martin shares. Frank Ogden

Electronlcs World + Wireless Worid is published monthly. By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$ Orders, payments and general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tlx:892984 REED BP G Cheques should be made payable to Reed Business Publishing Group.
Newstrade: IPC Marketforce, 071 261-5108. Subscriptions: Quadrant Subscription Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444445566 . Please notity change of address. Subscription rates 1 year (normal rate) £30 UK and £43 outside UK
USA: $\$ 52.00$ airmail. Reed Business Publishing (USA) Subscriptions office, 205 E. 42 nd Street, NY 10117

Overseas advertlsing agents: France and Belgium: Pierre Mussard, 18-20 Place de fa Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 205 E, 42nd Street, NY 10117. Telephone (212) 867-2080. Tlx 23827.
USA malling agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above. Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate, Carlisle. Cumbria, CA2 7NR Typeset by Marlin Graphics 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT

EC in the dark over r\&d

A
n admission by the European Commission that it does not know what the r\&d plans of Europe's major companies are, or how they relate to the EU's own strategy, is expected to create further argument in the UK cabinet.
The Commission plans to create a register of the research and development strategies of Europe's top 500 industrial companies. The aim is to discover the effectiveness of r\&d being funded through its

Framework Programme and Eureka. EC spokesman Michel André said: "European enterprises are responsible for 60 per cent of all r\&d undertaken in Europe, but the information we need to evaluate this work is missing."
The admission by the Commission will add weight to the UK government's criticism of the way in which the EC calculates funding for R\&D programmes. It will also strengthen the government's view
that cutting back UK funding to the Eureka programme was the right one.
A spokesman for the DTI said that such a situation could not arise in the UK. He said: We run a UK r\&d Scoreboard, giving a breakdown on UK high tech companies, and how much they spend on r\&d as a percentage of sales and profit. We also have an Innovation Unit linking national programmes, such as Link, into the work being undertaken by industry and academia.

Euro screen is clear world leader

A
new liquid crystal screen for portable computers and video projectors has the remarkable property of self-healing any defects in manufacture.
Developed by Philips Research Laboratories at Redhill, UK, the display uses active-matrix thin-film diode Icd is easier and cheaper to make than conventional lcds. It also gives brighter pictures.
The screen measures 24 cm diagonally and is made as a plug fit replacement for the conventional lcd panels currently supplied by Japanese manufactures. Philips hopes this will encourage firms making portable computers to switch from using Japanese to European displays.
Virtually all screens in today's portable PCs use thin-film transistor technology to control the flow of electricity through the liquid crystal. The material is sandwiched between two thin glass plates and light-polarising filters. When electricity is passed thorough the lc
material it reacts to alter the angle of polarisation of any light which is passing through. The filters then work like crossed sunglasses, to create light areas where the crystal and filter polarisations have matching angles and dark areas where they cross.
In thin-film transistor screens, the glass plates have a thin film of amorphous silicon semiconductor material bonded to their surfaces. This silicon is formed into a mosaic of transistors which control the flow of electricity through pixel spots of the lc material to create a pattern of light and dark which displays the text or graphics image. Philips uses silicon diodes instead of transistors. The diodes are easier to make than transistors and need only two wire connections. They work with the capacitance of the lc material to switch between on and off states.
The diodes are made by sandwiching silicon nitride between metal electrodes which are so thin that they are almost transparent.

Because the diodes block less of the light which passes through the screen, the picture is around 10% brighter and has crisp contrast with 256 grades of grey. In practice this means that black areas of the image look much blacker than on conventional screens. The diodes also respond rapidly to the switching current so there is no smear on moving objects.
The diodes are easy to massproduce because alignment of the electrode sandwich is not critical. As long as the two outer electrodes cover at least part of the silicon nitride filling, the diode works as a switch. The filling also has the remarkable ability to self-heal. If it is faulty through a fault in manufacture, and thus passes too much current, its electrical resistance increases to reduce the current.
Philips claims that the diodes are stable in bright light and heat and thus suitable for use in a projector. This means that the new lcd panels can be used in a video projector, where a bright light is shone through a small lcd panel and lens, and onto a large wall screen. Transistor panels break down after a few hours use under these conditions.
Philips began work on the display technology in 1989 and the first manufacturing samples are now rolling off a production line which Philips has jointly constructed with Thomson of France at a factory in Eindhoven, the Netherlands. This was the factory originally built for the ill-fated Megachip memory project.

Barry Fox

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

NEW LOW PRICE - NEW COLOUR HP141T SPECTRUM ANALYSERS TESTED

HP141T + 8552A or BIF - 8553B RF - $1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}$ A IF $£ 600$ or B IF - $£ 700$.
HP141T + 8552A or B IF - 8554B RF - 100kHz $1250 \mathrm{Mc} / \mathrm{s}-\mathrm{A}$ IF $£ 800$ or B IF - $£ 900$
HP141T + 8552A or B IF - 8555A RF - $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}$ - A IF $£ 1400$ or B IF - $£ 1600$. The mixer in this unit costs $£ 1000$, we test every one for correct gain before despatch.
HP141T + 8552A or BIF - 8556A RF $-20 \mathrm{~Hz}-300 \mathrm{kHz}-$ A IF $£ 600$ or B IF - $£ 700$.

HP ANZ UNITS available SEPARATELY NEW COLOUR - TESTED

HP141T Mainframe - $£ 350-8552$ A IF - £200-8552B IF - £300-8553B RF - $1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-£ 200-8554 \mathrm{~B}$ $\mathrm{RF}-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 400.8555 \mathrm{~A} \mathrm{RF}-10 \mathrm{Mc} / \mathrm{s}-$ $18 \mathrm{GHz}-£ 1000.8556 \mathrm{~A}$ RF-20HZ-300KHZ-£250.
HP8443A Tracking Generator Counter - 100 kHz $110 \mathrm{Mc} / \mathrm{s}-£ 300-£ 400$.
HP8445B Tracking Pre-selector DC - 18GHz - £400£600 or HP8445A - £250.
HP8444A Tracking Generator - $£ 750-1300 \mathrm{Mc} / \mathrm{s}$.
HP8444A Opt 059 Tracking Generator- $£ 1000-1500 \mathrm{Mc} / \mathrm{s}$.

SPECIAL OFFER - 14 ONLY HP140T (NON-STORAGE)

Mainframe Plus 8552A IF Plug-In Plus 8556A RF PlugIn $20 \mathrm{~Hz}-300 \mathrm{kHz}$ Plus 8553 B RF Plug-In 1 kHz $110 \mathrm{Mc} / \mathrm{s}$. Tested with instructions - $£ 700$.

Marconi TF20e8 - AM-FM signal generator - also sweeper - $10 \mathrm{Kc} / \mathrm{s}-510 \mathrm{Mc} / \mathrm{s}$ - from £250 - tested to $£ 400$ as new with manual - probe kit in wooden carrying box.
HP Frequency comb gener ator type $8406-£ 400$.
HP Vector Voltmeter type 8405 A - $£ 400$ to $£ 600$ - old or new colour.
HP Sweep Oscillators type 8690 A \& B + plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R MP Network Analyzer type 8407A $+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500-\mathrm{f} 1000$. HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{Mc} / \mathrm{s}$ E200-HP6447F. 1 -1300 $\mathrm{Mc} / \mathrm{s} £ 40$
HP Frequency Counter type 5340 A - $180 \mathrm{H}_{2}$ £ 1000 - rear output 1800
AP 8410 - A - B - C Netwe k Analyzer $12 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and displays used in this set-up
$8746-8650$. From f1000.
Racal/Dana 9301A - 9302 RF Millivoltmeter - $1.5-2 \mathrm{GHz}$ - $£ 250-£ 400$
Racal/Dana Counters 9915 M - 9916 - 9917 - 9921 - $£ 150$ to $£ 450$. Fitted FX standards
RacsI/Dana Modulation Meter type $9009-8 \mathrm{Mc} / \mathrm{s} \mathbf{- 1 . 5 G H z - £ 2 5 0 .}$
Marconl RCL Bridge type TF2700- $£ 150$.
Marconl/Saunders Signal Sources type - 6058B - 6070A - 6055A - 6059A - 6057A - 6056 $\mathrm{f} 250-\mathrm{f} 350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz
Marconi TF1245 Circuit Magnification meter +1246 \& 1247 Oscillators - $\mathbf{f 1 0 0 - £ 3 0 0}$
Marconi microwave 6600 A sweep osc., mainframe with $6650 \mathrm{PI}-18.26 .5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5-$.
Marconi distortion moter type TF2331 - £150. TF2331A - 200.
Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S - S2 - S6 - S52 - PG506 - SC504 - SG502 - SG503 - SG504 - DC503 -DC508 - DD501 WR501-DM501A - FG501A - TG501 - PG502 - DC505A - FG504 - 7B80 + 85-7892A Gould J3B test oscillator + manual - $£ 200$.
Tektronix Mainframes - 7603-7623A - 7613-7704A - 7844-7904 - TM501 - TM503-TM506 -7904-7834-7104-7623-7633.
Altech 757 Spectrum Analyser -00122 GHz - Digital storage + readout $-\mathbf{£ 2 0 0 0}$
Marconi 6155 A Signal Source - 1 to 2 GHz -LED readout- £400
Barr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass $-£ 150$.
Merconi TF2163S attenuator $-1 \mathrm{GHz} . £ 200$
Farnell power unit H60/50 - £400 tested. H60/25 - £250.
Racal/Dana 9300 RMS voltmeter - $£ 250$.
MP 8750 A storage normalizer - $£ 400$ with lead + S.A or N,A Interface.
Racani TF2330-or TF2330A wave analysers - $£ 100-£ 150$.
Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 500$.
Racal/Dana signal generator $9082 \mathrm{H}-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 600$
Tektronix-7S14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11
Marconi mod meters type TF2304-£250.
HP 5065 A rubidrum vapour $F X$ standard $-£ 2.5 \mathrm{k}$
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - $£ 1 \mathrm{k}$.
Racal/Dana 9083 signal sourco - wo tone- $£ 250$
SYetrolx TM515 mainframe + TM5006 mainfresized to 1GHz - AMFM - £600.
Tok
Ball Efrat
Fernall electronic load type RB1030-35- $£ 350$.
Racal/Dana counters - 9904 - 9905 - $9906-9915-9916-9917-9921-50 \mathrm{Mc} / \mathrm{s}-3 \mathrm{GHz}-£ 100$ £450-all fitted with FX standards.
HP4815A RF vector impedance meter c/w probe - $\mathrm{C} 500-\mathrm{E} 600$
Marconi TF2092 noise receiver. A, B or C plus filters- $£ 100-£ 350$.

Marconi TF2091 noise ge nerator. A, B or
HP180TR, HP182T mainframes $£ 300-£ 500$.
Fluke 8506A thermal RMS digital multimeter. $£ 400$
Phillips panoramic receiver type PM7900-1 to 20GHz - $£ 400$.
Marconi 6700A sweep oscillator $+6730 \mathrm{~A}-1$ to $2 \mathrm{GHz}-£ 500$.
AP8505A network ANZ + 8503A S parameter test set + 8501A normalizer - ¢4k
Recel/Dana VLF frequency standard equipment. Tracer receiver type 900A + difference meter
type $527 \mathrm{E}+$ rubidium standard type $9475-£ 2750$.
HP signal generators type 626 - 628 - frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$.
HP $432 \mathrm{~A}-435 \mathrm{~A}$ or $\mathrm{B}-436 \mathrm{~A}$ - power maters + powerheads - $\mathrm{Mc} / \mathrm{s}-40 \mathrm{GHz}$ - £200-£1000.
HP $432 A$ - 435A or B-436A - power meters + p
Bradley oscilloscope calibrator type $192-$ E600.
Bart \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{Kc} / \mathrm{s}$
high pass + low pass - $£ 150$
Marconi TF2370 spectrum ANZ + TK2375 FX extender 1250 Mc/s + 1 st gen - f 1.5 K
HP8614A signal generator $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour $£ 400$.
HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour $£ 400$.
HP 3325A syn function gen $20 \mathrm{Mc} / \mathrm{s}-£ 1500$.
HP 3336A or B syn level generator - $£ 500-£ 600$.
HP 3586B or C selective level meter - $£ 750-£ 1000$
HP 3575A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}-£ 400$
HP 8671 A syn microwave $2-6.2 \mathrm{GHz}-\mathrm{f} 2 \mathrm{k}$.
HP 8683D S/G microwave $2.3-13 \mathrm{GHz}$-opt $001-003$ - $£ 4.5 \mathrm{k}$
HP $8660 \mathrm{~A}-\mathrm{B} \cdot \mathrm{C}$ syn S/G. AM + FM + $10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to
P8640B SIG AM FM 51.
HP 8640 B S/G AM-FM $512 \mathrm{Mc} / \mathrm{s}$ or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or 003 - £ $800-\mathrm{f} 1250$
HP 8622 B Sweep PI - $01-2.4 \mathrm{GHz}+$ ATT $-£ 1750$
HP 8829A Sweep PI - $2-18 \mathrm{GHz}$ - 11000 .
HP 86290 S Sweep PI $-2-18 \mathrm{GHz}-£ 1250$.
HP 86 Series Pl's in stock - splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-£ 250-\mathrm{f} 1 \mathrm{k}$.
HP 8620C Mainframe - £250. IEEE - £500.
HP 8615A Programmable signal source - $1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}$ - opt 002 - £1 k
HP 8601 A Sweep generstor. $1-110 \mathrm{Mc} / \mathrm{s}-£ 300$.
HP 4271B LCR meter 1 MHz digital meter +16063 A test adaptor - $£ 850$.
HP 4342 A a meter $22 \mathrm{kHz}-70 \mathrm{Mc} / \mathrm{s} 16462 \mathrm{~A}+$ aty of 10 inductors - $£ 850$.
HP 3488A HP - IB switch control unit - $£ 500+$ control modules various - $£ 175$ each
HP 3561 A Dynamic signal ANZ - $£ 3 \mathrm{k}$.
HP $8160 \mathrm{~A} 50 \mathrm{Mc} / \mathrm{s}$ programmable pulse generator $-£ 1400$.
HP 853A MF ANZ $+8558 \mathrm{BB}-0.1-1500 \mathrm{Mc} / \mathrm{s}-£ 2500$.
HP 8349A Microwave Amp $2-20 \mathrm{GHz}$ Solid state - $\mathbf{£ 1 5 0 0}$
HP 3585A Analyser 20Hz-40Mc/s - $£ 4 k$
HP 8569 B Analyser. $01-22 \mathrm{GHz}-£ 5 \mathrm{k}$.
HP 3580A Analyser 5 Hz - 50 kHz - $£ 1 \mathrm{k}$.
HP 1980B Oscilloscope measurement system - $£ 600$.
HP 3455A Digital voltmeter - $£ 500$.
HP 3581C Selective voltmeter - 5500.
HP 5370 A Universal time interval counter - $£ 450$
HP 5335A Universal counter - $200 \mathrm{Mc} / \mathrm{s}-£ 500$.
HP 5328A Universal counter- $500 \mathrm{Mc} / \mathrm{s}-£ 250$
HP 6034 A System power supply - $0-60 \mathrm{~V}-0-10 \mathrm{amps}-£ 500$.
HP 3960A 3964A Instrumentation tape recorders - $£ 300-£ 500$.
HP 5150 A Thermal printer - £250.
HP 1645 A Data error analyser - $£ 150$
HP 4437 A Attenuator - $£ 150$.
HP 3717A $70 \mathrm{Mc} / \mathrm{s}$ modulator - $£ 400$.
HP 3710A - 3715A - 3716A - 3702B - 3703B - 3705A - 3711A -3791B - 3712A -3793B HP 3730 A + B RF down converter - P.O.R
HP 3552A Transmission test set - E400
HP 3763A Error detector - ©500.
HP 3764A Digital transmission analyser - $£ 600$.
HP 3770A Amp delay distortion analyser - £400.
HP 3780A Pattern generator detector - $£ 400$.
HP 3781A Pattern generator - $£ 400$.
HP 3781 B Pattern generator (bell) - $£ 300$
HP 3782A Error detector - $\mathbf{E 4 0 0}$.
HP 3782B Error detector (bell) - $£ 300$.
HP 3785A Jitter generator + receiver - $£ 750-\mathbf{L 1 k}$
HP 8016A Word generator - £250.
HP 8170 A Logic pattern generator - $\mathrm{E500}$
HP 59401A Bus system analyser - $£ 350$.
HP 59500 A Multiprogrammer HP - IB - £300
Philips PM5390 RF syn-0.1-1GHz - AM + FM - £1250.
Philips PM5519 Colour T.V. pattern generator - $£ 250$.
S.A. Spectral Dynamics SO345 spectrascope 111 - LF ANZ - $£ 2500$.

Jektronix R7912 Transient waveform digitizer - programmable - $£ 400$.
Tektronix 496 Analyzer $1 \mathrm{kHz}-1.8 \mathrm{GHz}$ - $\mathbf{E 3} .5 \mathrm{k}$.
Tektronix TR503 + TM503 tracking generator 0.1 - 1.8 GHz - £1k - or TR502.
Tektronix 578 Curve tracer + adaptors - $£ 900$
ekronix 1502/1503 TDR cable test set - f1000.
Tektronix 7 L 5 LF analyser $-0-5 \mathrm{Mc} / \mathrm{s}-£ 800$. OPT $25-£ 1000$.
Tektronix AM503 Current probe + TM501 mfframe - £1000.
Tektronix SC501 - SC502 - SC503 - SC504 oscilloscopes - $£ 75$-£350
Tektronix 465-4658-475-2213A-2215-2225-2235-2245-2246-£250-£1000.
Kikusui 100Mc/s Oscilloscope COS6100M- $£ 350$.
Farnell PSG520 Signal generator - $£ 400$.
Nicoiat 3091 LF oscilloscope - $£ 1000$.
Racal 1991-1992-1988-1300 Mc/s counters - £500-£900
Tek $2445150 \mathrm{Mc} / \mathrm{s}$ oscilloscope - E 1400.
Fluke $80 \mathrm{~K}-40$ High voltage probe in case - $\mathrm{BN}-£ 100$.
Racal Recorders - Store $4 \mathbf{4 D}$ -
Racal Store Horse Recorder \& control- $£ 400-\mathrm{f} 750$ Tested.
Fluke 510 A AC ref standard - $400 \mathrm{~Hz}-£ 200$.
Fluke 355A DC voltage standard - $£ 300$.
Schlumberger 5229 Oscilloscope $-500 \mathrm{Mc} / \mathrm{s}-£ 500$.
Solartron 1170 FX response ANZ - LED dislay - $\mathbf{2 8} 2$
Wiltron 610D Sweep Generator +6124 C PI-4-8GHz-f400
Wiltron 610D Sweap Generator $+61084 \mathrm{D} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 500$
Time Electronics 9814 Voltage calibrator - $\mathbf{£ 7 5 0}$.
Time Electronics 9811 Programmable resistance - $£ 600$
Time Electronics 2004 D.C. voltage standard - £1000.
HP 8699B Sweep PI YIG oscillator . $01-4 \mathrm{GHz}$ - $£ 300.8690 \mathrm{~B} \mathrm{MF}$ - £250. Both £500.
Schlumberger 1250 Frequency response ANZ - £2500.
Dummy Loads \& power att up to 2.5 kilowatts FX up to 18 GHz - microwave parts new and ex equipt - relays - attenuators - switches - waveguides - Yigs - SMA -APC7 plugs - adaptors, etc.
B\&K Items in stock - ask for list.
N\&G Items in stock - ask for list.
Power Supplies Heavy duty + bench in stock - Farnell- HP - Weir - Thurlby - Racal etc. Ask for list.

TTEMG BOUGHT FROM HM GOVERNMENT BEING SUARPLUS. PRLCE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FDR DEMONSTRATION OF ANY TEMS, AVALLABILTY OR PRICE CHANGE. vAT AND CARRIAGE EXTRA IItMS MARKED TESTED HAVE 3 D DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No: (0274 | 684007 , Fax: 651160

The ultimate train set: Managing the Jubilee line extension of the London Underground could be carried out from a computer terminal. Datel Technology has demonstrated an information management system in a $£ 60 \mathrm{~m}$ project for the railway. Real-time information from the platforms, signalling and surrounding area will be available from the ten stations on the line.

Multilevels boost memory

ntel has revealed that it is developing new flash memory technology which will enable a single storage cell to hold two or more bits of data.
The technology, dubbed Multilevel Cell, dramatically increases a chip's storage capacity without needing any more memory cells. Intel says the technique will be applied to memories for cost sensitive mass storage applications such as PCMCIA cards, digital audio and digital photography.
Multilevel CelI technology is simply the ability to write and read four (for 2-bit storage) or more voltage levels on the flash memory's floating gate storage cell. This compares with the conventional two levels for single bit storage and implies the use of three internal reference voltages.
Dr Stefan Lai, Intel's director of flash technology, said the technique has been demonstrated on a 16 Mbit die storing two bits per cell. However, Lai also reported Intel engineers have experimented with three bits (eight voltage levels) and even four bits (16 voltage levels) per cell. "Our goal is to provide a IGbit
flash memory this decade based on four bits per cell and a 256 Mbit die," said Dr Lai. The chip would need a $0.35 \mu \mathrm{~m}$ process.
Intel's move has interested other flash memory manufacturers. Hitachi engineers in Japan said they were aware of multilevel cell technology but had no plans at present to implement it. They identified tighter process control and slower read times,.because the cell has to be compared to a minimum of three reference voltages, as the two principal drawbacks.
Giulio Casagrande, technical manager of SGS-Thomson's flash memory division, said Intel's development made sense. "If you want to address the solid-state storage market, then multilevel cell technology is just one of the alternatives that may provide the breakthrough needed to significantly reduce the cost per bit," said Casagrande. But he questioned the scalability of the approach, suggesting the read voltage would need boosting as Intel progressed to smaller geometry processes.
Dr Lai reports that the main engineering problems to be
overcome are designing sufficiently accurate reference voltages and boosting the read currents from the cells. He does not consider the more stringent signal-to-noise constraints (to maintain adequate s / n margin between levels) to be outside the bounds of Intel's existing 0.6 mm process even for 16 voltage levels.
"We feel comfortable at 16 levels even down to a 0.1 V margin between levels. The process is the most developed part of the technology," said Dr Lai.
"The read access times are slower but that's not really because we are reading two bits but rather that the sense currents are smaller and take a longer time to charge up the column. So we are looking at more sensitive techniques and are looking at a parallel read operation.
"Reference voltage accuracy is the big issue at the moment. The voltages need to be stable across a range of operating conditions and although there are external references that provide the accuracy, the challenge will be building an internal reference." he said.

Simon Parry, Electronics Weekly.

Big TI hopes for the big screen

T exas Instruments looks as though it will lead the market for PALPlus decoders with the launch of Britain's first widescreen TV service using PALPlus technology later this year. Channel 4 has announced plans to broadcast at least 500 hours of PALPlus 16:9 format material a year starting in October. The $£ 1.5 \mathrm{~m}$
cost incurred by Channel 4 is being split between the EU and Nokia Consumer Electronics, which will launch a 28 in PALPlus tv to coincide with the start of services. The set will cost $£ 1299$.
TI is the only company with a highly parallel digital signal processor aimed at pixel processing and suitable for handling the

PALPlus decoding in tvs. It could maintain that position until dedicated PALPlus chipsets become available, and they are not expected until next year end at the earliest.
"Everyone is using the Texas chip," confirmed Dr Helmut Stein, head of r\&d at Nokia Consumer Electronics.
Called the SVP, the TI chip enables three dimensional processing of an entire line of the picture at a time. The chip integrates 960 processing elements in a singleinstruction, multiple-data architecture. The number of elements is sufficient for a 16:9 picture format and is quick enough to cope with 16 MHz sampling.
A more powerful version of the chip is due at the end of this year.
It will be four times faster, integrate more on-chip program memory and integrate 1024 processing elements - sufficient for 16:9 format pictures using computer-compatible square pixels.
Three German tv stations are already making regular PALPlus broadcasts. Belgium is due to start this year, and Holland and Italy next.

POWERFUL SCHEMATIC CAPTURE, PCB DESIGN AND AUTOROUTING ALL FOR JUST E395...

PROPAK AR for DOS provides all the features you need to create complex PCB designs quickly and easily. Draw the circuit diagram using the powerful facilities of ISIS DESIGNER + and then netlist into ARES AUTOROUTE for placement, autorouting and tidy up. Advanced real time design rule checks guarantee that the final PCB will correspond exactly with the schematic thus saving you from costly layout errors and time consuming debugging.

- Attractive, easy to use graphical interface.
- Object oriented schematic editor with automatic wire routing, dot placement and mouse driven place/edit/move/delete.
- Netlist generation for most popular CAD software.
- Bill of Materials and Electrical Rules Check reports.
- Two schemes for hierarchical design.
- Automatic component annotation and packaging.
- Comprehensive device libraries and package libraries including both through hole and SMT parts.
- User definable snap grids (imperial and metric) and Real Time Snap to deal with tricky SMT spacings.
- Manual route editing features include Auto Track Necking, Topological editing and Curved tracks.
- Autorouting for single, double and multi-layer boards.
- Non autorouting PROPAK is available for just $£ 250$ if you do not need or want the router.
- Full connectivity and design rule checking.
- Power plane generator with thermal relief necking.
- Graphics support to 800×600 Super VGA.
- Output to dot matrix and laser printers, HP and Houston plotters, Postscript devices, Gerber and Excellon NC machines plus DXF and other DTP file formats.

CADPAK
 Two Programs for the Price of One

ISIS SUPERSKETCH

A superb schematic drawing program for DOS offering Wire Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more.

Exceptionally easy and quick to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest.

PCB II

High performance yet easy to use manual PCB layout package. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more.

Alan Chadwick writing in ETI (January 94) concluded... "At $£ 79$ I thought this was an excellent buy."

ISIS ILLUSTRATOR

 Schematic Drawing for Windows

Running under Windows 3.1, ISIS ILLUSTRATOR lets you create presentation quality schematic drawings like you see in the magazines. Furthermore, when the drawing is done, transferring it to another document is just a matter of pasting it through the Clipboard.

Now used by a number of prominent technical authors to illustrate their latest books and magazine articles.

Call us today on 0756753440 or fax 0756752857 for a demo pack - state DOS or Windows. Multi-copy and educational discounts available.
WE HAVE MOVED. NOTE NEW ADDRESS Prices exdude p\&p ($£ 5$ for U.K) and VAT. 53-55 Main St, Grassington, North Yorks. BD23 5AA.

Video surveillance over the 'phone line

Video surveillance technology developed for the US army by Iterated Systems of Atlanta, Georgia, will soon let unattended cameras in art galleries, car parks and office buildings catch thieves, vandals and terrorists. It relies on fractal compression of moving images and plays a clever trick to send clear moving pictures of any suspicious behaviour down an ordinary 'phone line. Since the system also works over a cellphone link, the camera can be in a field.
The pictures display any distance away on an ordinary personal computer, and are recorded on an ordinary floppy disk. To save money on phone charges the camera automatically dials the telephone number of the display PC only when it registers motion. The same technology can be used for low cost videoconferencing.
Until now videophones have only been able to send very blurred moving pictures down ordinary domestic telephone lines. Thieves are only recognisable if they obligingly remain still and pose close to the camera. Systems which deliver high quality pictures rely either on ISDN digital telephone lines or work only over very short distances.
The US military wanted to put a video camera on a remote-controlled vehicle, and send it into a dangerous area, while relaying high quality moving pictures by low quality radio links. Iterated Systems had
already developed fractal technology to compress high quality still pictures into small volumes of digital code. The company made the compressor work fast enough to code moving pictures from a video camera.
Coding a picture by fractal compression reduces the number of digital bits needed to capture good quality by a factor of around thirty. The fractal compressor works by breaking each picture down into component shapes, like pieces of a jigsaw, and then rebuilding the picture by arranging basic shapes which have been previously stored in a library. Conventional picture compression systems work by breaking the picture down into a mosaic of tiny picture points or pixels, and coding each one separately.
Despite the powerful compression achieved with fractals, the number of bits per second needed to display a full screen picture of clear motion is still far too many to send over long distances by a POTS ("plain old telephone service") line. POTS lines, and cellphone links, can reliably carry only around 10 kilobits/second, and at best 20kbits/s.
Iterated Systems gave the US military a clever compromise. At the beginning of the surveillance session, the camera takes around 10 s to transmit a high quality still picture of the whole area under surveillance. This picture is frozen
on the screen of the display PC. The operator then singles out a small 'window' area of the picture, such as a vulnerable doorway or valuable painting on a wall. The camera now provides a moving image for just that part of the picture.
Because the selected area of the screen can be relatively small, the quality of the moving image is high, but the bit rate within phone line limits. So the overall impression is of a clear picture of the whole area, with an equally clear view of any motion in those areas which need surveillance.
After initial setup, the telephone connection is broken to save money. But as soon as the camera registers any motion in the selected image area it automatically dials the telephone number to connect with the PC, and triggers an alarm to alert the operator.
Alan McKeon, Iterated System's Vice-President of Sales and Marketing, recently demon strated the system working on ordinary telephone lines between London and Atlanta. Clear moving pictures of an office worker's head and shoulders appear in the middle of an overall, frozen view of the office room.
The compression circuitry will be built into a video camera, along with a telephone modem and auto-dialler, and sell for around $£ 750$. All the user then needs is a desktop PC, ordinary phone line or cellphone. Iterated Systems Ltd 0734-880261.

Inmarsat to improve on GPS services

Inmarsat, the international satellite operator, has signalled its intention to compete head-to-head with existing US and Russian global positioning (GPS) satellite services, inviting potential GPS service providers to bid for navigation transponders on its next generation Inmarsat- 3 satellites. violent rear end shunt.

Inmarsat claims the new satellites, to be launched at the end of next year or early 1996, will offer a more accurate positioning service than the existing military-owned US Global Positioning System and Russian GLONASS (Global Navigation Satellite System).

In addition, Inmarsat says it will provide an independent "integrity monitoring" service for the existing GPS networks. As well as the navigation signals, the satellites will broadcast an additional signal which corrects errors in the US and Russian services. The move could enable civil airlines to start using GPS for navigation for the first time. Until now airlines have been put off by the unreliability of existing services.
The satellite organisation says Inmarsat 3's correction signals will
pinpoint the position of users to within 10 m , compared to the 50 m currently achievable by using the US service alone.

Eurofighter scrap

A call that the Eurofighter manufacturing collaboration should be scrapped due to soaring development costs has come from the German opposition Social Democrats. But the German defence .minister Volker Ruhe has defended the multi-billion DM project which is being financed by German, British, Spanish and Italian taxpayers.

PROGRAM 8

CHIPS IN THE
TIME IT TAKES FOR ONE!
At $£ 645$ costing around half the price of slower gang programmers, the Speedmaster 8000 gang programmer uses a simple 2 button operation in stand-alone mode. PC operation gives comprehensive file handling and editing functions. Capable of gang and set programming it supports 32 pin EPROMs to 8 M with no adaptors required. Programming cycle times of only 23 seconds for 8 27C010's mean your throughput can now be faster than ever before.

CIRCLE NO. 106 ON REPLY CARD

ROM/RAM EMULATOR PLUG IN CARDS

Using these expansion cards your programmer can run as if there's an EPROM or RAM plugged into the target socket. Available as 8 bit wide $128 \mathrm{k} \times 8$ as standard, upgradable to $512 \mathrm{k} \times 8$, and 16 bit capable of emulating 40 pin EPROMs. They can emulate both 5 V and 3.3 V devices.

CIRCLE NO. 107 ON REPLY CARD

PACKAGE ADAPTORS

A full range of package adaptors is available for non DIL devices and parts with more than 40 pins. Prices from $£ 65$.

CIRCLE NO. 108 ON REPLY CARD
DISTRIBUTORS
BENELUX: +3255313737;
CYPRUS: 02485378;
DENMARK: 048141885;
FINLAND: 070039000;
FRANCE: Ol39899622; GERMANY: 060827421615; GREECE: 0190201 I5;
ITALY: 0245784I;
JAPAN: 053865501 ;
NORWAY: 063840007;
SINGAPORE: 04831691;
SOUTH AFRICA: $0119741211 / 1521$;
SPAIN: 013270614
USA: Distributors required.

FREE SOFTWARE UPGRADES! -

KEEP UP TO DATE WITH NEW DEVICES

Before you choose your programmer, check out the cost of ownership. While other manufacturers charge for every update or require expensive libraries and modules, ICE Technology programmers
support the whole range of devices at no extra charge*. And keeping up to date is FREE for life at no charge on our BBS service.
Just dial on: $+44(0)$ 1226761181, and download the latest version.

Disk based upgrades are available free in the first year, and a small administration charge made for each subsequent disk.

* for DIL up to 40 pins.

CIRCLENO. 109 ON REPLYCARD

AT LAST, AN AFFORDABLE 3V AND 5V UNIVERSAL PROGRAMMER!

The latest universal programmers from ICE Technology, Micromaster LV and Speedmaster LV, now support programming and verification of 3.3 V devices, now you can test devices at their actual operating voltage.

They offer wider device support than ever before, the majority requiring no adaptor. They will operate from battery or mains power,

FEATURES

- Widest ever device support including: EPROMs, EEPROMs, Flash, SPROMs, BPROMS, PALs, MACH, MAX, MAPL, PEELs, EPLDs Microcontrollers, etc.
High speed, programmes a PIC16C54 in 0.5 secs (Micromaster LV).
- Up to 84 pin device support with adaptors.
- Connects directly to parallel port - no PC cards needed
- Built in chiptester for 7400 , 4000, DRAM, SRAM.
- Lightweight and operates from mains or battery.
Optional 8 or 16 bit wide ROM/RAM emulator.
- Designed, built and supported in the UK.
- FREE software device support upgrades via bulletin board.
- Next day delivery.

CIRCLE NO. 110 ON REPLY CARD

Speedmaster LV

Programmes 3 and 5 V devices including memory, programmable logic and 8748/51 series micros. Complete with parallel port cable, software, recharger and documentation.

$£ 495$

MicromasterLV

As above plus support for over 90 different micro controllers without adaptors, including PICs, 89C51, 87C751, MC68HC705, ST6, Z86 etc.

$£ 625$

ICE Technology Ltd. Penistone Court, Station Buildings, Penistone,
South Yorkshire, S30 6HG, UK.
Tel $+44(0) 1226767404$, Fax $+44(0) 1226370434$, BBS $+44(0) 1226761181$

8 bit Emulator card
Expansion card containing 8 bit wide ROM RAM emulator, includes cable and software. $128 \mathrm{~K} \times 8$.

$£ 125$

16 bit Emulator card Expansion card containing 16 bit wide ROM RAM emulator, includes cable and software. $128 \mathrm{~K} \times 16$.

$£ 195$

Call now to place your order, for more details or a free demo disk, or call our bulletin board to download the latest demo. Alternatively clip the coupon or circle the reply number.

Name: ...

\qquad
\qquad

EWWOC̈T

All major credit cards accepted

Jonathan Campbell

Old masters painted in pixels he EC programme to put high-
 is slow, cumbersome and limited to

Tresolution copies of Europe's greatest art masterpieces onto CDrom could take a leap forward with development of a camera that delivers high resolutions, rapidly and from a much smaller unit than previously. The new digital camera has been developed by Lindsay MacDonald of Crosfield Electronics and Reimar Lenz of Munich's Technical University ('An Ultra-

Monolisa, left, through the eye of a predecessor of a micro-scanning camera designed for digitally archiving works of art, right.

High Resolution Digital Camera', The Journal of Photographic Science, Vol 42, pp. 49-51) within the European Marc research project.

Marc - Methodology for Art Reproduction in Colour, part of the Esprit programme - aims to produce digital representations of fine art for high quality printing or for electronic manipulation and distribution. But current, high resolution digital camera technology
two-dimensions. MacDonald and Lenz believe their camera could change that.
Like previous digital cameras, the Marc camera makes use of microand macro-scanning to boost the resolution of conventional ccd arrays.
In micro-scanning, a mask is fitted over a standard low resolution ccd array to make the sampling apertures smaller. Using piezoelectric actuators, the chip can be moved in two dimensions across the image plane allowing partial images to be captured at each sampling point. These can then be assembled in the correct pixel sequence by computer. Colour images are obtained by using a ccd sensor with built-in colour filter stripes and image quality is comparable to 35 mm film. The sensors are lowprice and the camera is easy to set up, though the piezo-electric actuators must be carefully calibrated and the small aperture means high levels of illumination must be used. But the technique has been used to produce high resolution commercial cameras.
Macro-scanning involves stepmoving the camera and lens assembly in front of the scene, by the width and height of the ced array, to build a complete image by a series of patches. Speed of acquisition is rather slow because the sensor has to be moved about 10 mm and must be allowed to settle between adjacent patches. But with
sufficient positioning precision, defect-free images can be obtained.
Cameras combining micro- and macro-scanning are already in use, digitising fine art at the National Gallery in London and Neue Pinakothek in Munich
But the problem is that they are so big, as they need to incorporate a massive rigid frame to make accurate patch movement possible. As a result, pictures must be removed from the gallery to be processed in the laboratory.
The new Marc camera combines micro- and macro-scanning behind a stationary lens so that the need for a large $x-y$ external position mechanism is eliminated. As the image perspective is not altered, the developers say that, with a suitable lens, 3-d objects of arbitrary size can be processed, resolution of the system is limited only by diffraction and the image field size of the lens.
The camera is currently undergoing final debugging before it is used later this to year scan in a series of Flemish masters. During digitisation, each patch needs only 4 s to micro-scan with an additional 0.7 s to reposition. So a full size image can be acquired in less than five minutes. But the greatest advantage is that the camera can be used on pictures still hanging in position in the gallery. The result is faster processing, no transport problems or extra insurance cover and no worries over humidity damage for what are extremely valuable pictures.

Robodoc with the hip attitude

Hundreds of thousands of people every year undergo surgery to replace hips with artificial implants. But currently in the US, a brave few are being operated on by a rather unusual surgeon - a robot.
The Robodoc surgeon takes over from the human one in cutting the cavity in the thigh bone into which the implant is pushed. Results have shown that the robot's accurate preparation and positioning of the cavity means patients have a better than usual chance of walking properly again.

Trials are still in the early clinical stages. An initial ten-patient singlecentre study has been successfully completed and now researchers are in the middle of a 300 patient, multi-centre test.
The robot has been developed by a US team from IBM and Integrated Surgical Systems. In early tests it was used in veterinary clinical trials on dogs needing hip replacement surgery.
The researchers report an order of magnitude improvement in surgical precision compared to manual
broaching for cementless hip replacements. Russel Taylor of the IBM TJ Watson Research Center, and colleagues, claim the robot is a step forward in the evolving partnership between humans (surgeons) and machines (computers and robots), a relationship that seeks to complete a task better than either can do alone.
Robots have been used for limited tasks in surgery before. But the group says that the hip replacement application requires ten-times greater accuracy than other uses,
while the shapes to be cut are more complex. Safety is more important and the working volume must be much less constrained.
For the patient, preparation for robot surgery begins prior to the operation, with the implanting of three titanium pins through a small skin incision into the thigh bone. A computer tomography scan is then made of the leg, and the pins are located relative to the coordinate system of the CT images. The surgeon selects a hip implant module and determines its position, using the CT data, which is written to disk for use in the operation. During the surgery, the sterilised robot is brought into the operating theatre and the patient data disk loaded. When the patient is ready, his or her thigh bone is fixed rigidly to the robot base and the three titanium pins exposed.
The robot then orientates itself using these pins and computes the transformation from CT coordinates to robot coordinates. Cuts can be made by the robot to produce the desired implant shape at the planned position and orientation relative to the pins.
The human surgeon monitors the robot both visually and by observing a graphical display showing successive cuts. When cutting is complete the thigh-bone is unclamped and the robot is moved out of the way. Plainly, when cutting into a human body, constant position checking and protection against machine failure is vital. But the researchers say there as yet have been no problems.
One of the main needs has been

that the human must be in charge at all times, a complex requirement as the surgeon must also trust the system to some extent. Researchers say the system has worked well in surgery and the total surgery time was comparable to manual broaching. A future development could be addition of a head-up display that shows the surgical plan superimposed on the actual patient. It will surely be some time before such robots become part of the scene in normal NHS hospitals. Researchers will need to develop an integral coin slot and pay meter for a start.

Robodoc's participation in a total hip replacement marks the first time in US medical history that robotics technology has been actively employed in an invasive surgical procedure.

Mesfet redesign cuts power needs

Announcement of a 2 d mesfet that makes big cuts in the power consumption/delay product could pave the way for greater vlsi scaling and longer battery life. Conventional fet power needs put an upper limit on vlsi size, while reducing power consumption will detrimentally affect switching speed.
But using a novel design of 2d mesfet, where opposing Schottky side-gates modulate channel width, WCB Peatman and colleagues at the University of Virginia (IEEE Electron Device Letters, Vol 15, No 7, pp. 245-247) say they have practically eliminated the narrow channel effect which limits the minimum power consumption in conventional fets.

The power/delay product of a fet is determined by the energy stored in the gate capacitor and is determined by the gate capacitance plus parasitic capacitance, multiplied by the square of gate voltage swing needed to switch between on and off. In the Virginia 2 d mesfet, gate design is based on a lateral metal-2d electron gas (2deg) junction, having geometry very different to that of conventional fet devices. Junction capacit ance of the 3d-2d Schottky diode is dominated by the direct contact to the 2 d electron gas, and the parasitic capacitance is small compared to the junction capacitance.
Transconductance is said to be higher than achievable in conventional $1 \mu \mathrm{~m}$ fets suffering

from the narrow channel effect while threshold voltage and subthreshold ideality factor are reported to comparable to state-of-the-art hemfets. Gate capacitance is
estimated to be $0.8 \mathrm{fF} / \mu \mathrm{m}$ per sidegate, or about half that of conventional hemfets.
Overall, the device shows a significant reduction in power
consumption without loss in speed, and the researchers believe it could have very good prospects for ultra low power circuit applications in the future.

Digital laser control puts pulse-power on site

Alberta researchers squeezing high-power performance from a low power burst mode laser welding X 70 pipeline steel.

Heavy section welding expensive and traditionally carried out in-shop - could become a practical process for use on-site following a breakthrough in welding power obtained from cheaper, lower power lasers.
Researchers led by Stefan Scott at the University of Alberta report (Applied Physics Letters, Vol 65, No 3, 1994) development of a multikW cw laser demonstrating significantly improved welding properties over conventional technology. At the heart of the system is a CO_{2} burst-mode PIE (photoinitiated, impulse-enhanced, electrically-excited) laser. The pie process involves applying dual-

polarity 10 kV photoionisation impulses coupled with high voltage dc excitation to produce a highly controllable large-volume discharge. A digitally controlled hydrogen thyratron circuit is used to produce the impulses. Penetration with the pie laser is claimed to be 50% better, and the weld profile far
superior to normal cw welding at the same average power level.
Peak optical power is reported to be up to three times greater than cw operation, while the multi-kW average output power is retained. The drawback with conventional high-power cw laser systems is that they need large capital investment and can prove unreliable in constant duty applications. They also allow only average power to be controlled during operation.
Deep penetration welding has tended to focus on peak-power, short-duration, high-frequency laser pulsing. Although such systems give deep penetration, average laser beam power is low. Unfortunately, average power (along with peak intensity) is one of the main factors that makes economical welding possible. But the Alberta researchers say their unit is the first pulsed laser system capable of high peak power, pulse-periodic operation at multikW average power levels.
Continuous-wave operation is achieved using low-level digital pulse excitation of a pentode hydrogen thyratron pulser circuit while burst mode is obtained by manipulation of the digital trigger signal. Gating the cw excitation trigger produces basic burst mode operation. The project is built around a 30 kW cw pie laser originally designed for application in the oil and gas pipeline industries.

At present the team can weld, using its modified system, Im diameter pipe and straight sections up to 3.5 m in length. The apparatus

...but will it fly? Helicopter robots able to navigate their own way around an arena, and tracked robots able to manipulate objects on the ground were all busy pumping their servos at the Association for Unmanned Vehicle Systems annual aerial robotics competition. Unfortunately no one machine was yet able to combine both functions though the AUVS says this day is not far off
As usual the competition was held at Georgia Tech's Bobby Dodd stadium and Georgia Tech was among the seven different institutions fielding teams. First prize went to the students from the University of Southern California whose 'behaviourial-based approach' impressed the judges.
has also been used to blind-weld heavy plate onto structural members - as found on large oceanic oil tankers and military vessels. This marine application requires penetration of 0.75 in to weld through the 0.5 in steel plate onto a 0.5 in web.

Alberta says the task was completed at an average laser power of only 9 kW .

Mobile phones make for mean streets

No car-bore worth his wheels feels properly dressed without a dashboard full of invehicle route-finders and journey information systems. But are we in danger of giving too little attention to the actual mechanics of controlling the car?
A recent Swedish study showed that, despite what we think, we can't even make a hands-free mobile phone call without affecting our driving and, surprisingly, we are most influenced when the road conditions seem the safest.
The research was carried out by Häkan Alm and Lena Nilsson of the Swedish Road and Transport Research Institute. They tested the effects of using a hands-free phone on driver reaction time, lane position, speed level and workload. What they found (Accident Analysis and Prevention, Vol 26, No. 4, pp. 441-451), using a driving simulator, was that driving definitely worsened and, against expectations, driver reaction times slowed most when carrying out the easiest tasks. In the hardest conditions, only lateral position was affected. So if the map-reading phone-talking satellite-tracking auto-pilot speeding past at $100 \mathrm{mile} / \mathrm{h}$ is just wobbling in his lane a little, don't worry. The time to be concerned is when he slows down..

Inaw low-pinieal Dasolitier Bils from Antex

Removing larger components from PCB boards can be a problem in rework and repair shops. The new Antex range of 10 SMT Desolder Bits have been produced to fit components from S018 through to PLCC 68.

They will fit most Antex Temperature Controlled Irons and complement the existing range of smaller DST Desolder Bits. All Bits are available singly or in sets together with a Bench Tray. A new Bench Rest for irons fitted with the New Bits plus an attachment for Antex Soldering Stations is also available from leading Electronic Distributors.

CIRCLENO. 111 ON REPLY CARD

Electronic Designs Right First Time?

Schematic Design and Capture

Create your schematics quickly and efficiently using EASY-PC Professional. Areas of the circuit can be highlighted on screen and simulated automatically using PULSAR, ANALYSER III and Z-MATCH our simulation and design programs.

Digital and Analogue Simulation

Modify the configuration and change component values until the required performance is achieved.

PCB Design

The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic.

Visa, MasterCard, Amex welcome

Affordable Electronics CAD

EASY-PC: Entry level PCB and Schematic CAD	$£ 98.00$
EASY-PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR.	£195.00
EASY-PC Pro' XM: Greater Capacity, XMS Version.	£245.00
PULSAR: Entry level Digital Circuit Simulator ~ 1500 gate capacity.	£98.00
PULSAR Professional: Digital Circuit Simulator ~50,000 gate capacity.	£195.00
ANALYSER III: Entry level Linear Analogue Circuit Simulator ~ 130 nodes.	£98.00
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 nodes.	£195.00
Z-MATCH for Windows: Smith Chart based problem solving program for R.F. Engineers.	£245.00
FILTECH: Active and Passive Filter design program.	£145.00
No penalty upgrade policy. Prices exclude P\&P and VAT.	

Number One Systems Ltd.

Ref WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.

For Full Information Please Write, Phone or Fax

Tel: 0480-461778
Fax: 0480-494042

> Ben Duncan measures and compares important, rarely documented regulator performance features through three generations of linear ICs and the latest micropower switching types.

Voliage regulafor dipass switch to linear?

An unsuitable choice of regulator can have repercussions that are more catastrophic and far-reaching than others. Even the best data sheets for linear regulators, from companies like Linear Technology and National Semiconductor, do not tell you everything; important graphs are absent and documentation has not progressed in years.
With switching regulators, there is even more to know, and yet less is graphed in proportion. This article charts important ac and transient domain performance results that are sparsely - and decreasingly - charted by makers.

The line-up

For this evaluation, nine monolithic ICs were chosen, three linear devices and six switchers. For uniformity, all were configured to regulate to +5 V . Since there is an increasing tendency to distribute regulation around pcbs ${ }^{1}$, some low current parts operating at less than 1A were included, and testing carried out at both 105 and 225 mA .
In several cases, both fixed and adjustable
voltage versions of a particular regulator are available. Below, an asterisk indicates that the results shown are for an adjustable type.
Beginning with the linear ICs, the LM340 represents the top grade of classic fixed type, while the LT317 is a premium example of the adjustable variant that is almost as old. The less well known $L T 1129^{*}$ is a recently introduced low dropout (0.4 V), 700 mA part. It has a low quiescent current that is claimed not to increase when the regulator is unloaded. Figures $\mathbf{1 - 3}$ show the test configurations.
All the switching regulators were chosen for their low external component requirements, Fig. 4. Ignoring the IC and input and output decoupling capacitors $C_{\mathrm{in}}, C_{0}, C_{02}$, the LM2576 uses the fewest - just an inductor and a diode. The L4962 requires the most, totalling seven, namely two resistors, three capacitors, one inductor and a diode.
Throughout, the switching regulators are differentiated by their current ratings. The first three are in plastic dual-in-line packages. Maxim's MAX639 is a step-down switching IC rated at up to 225 mA . Its current-limiting 'pulse frequency modulated' scheme yields

high efficiency over a range of loads ${ }^{\dagger}$.
Linear Technology's LTC1174* is a multipurpose switching converter. Here it is configured as the others are made: as a stepdown (buck) regulator. Maximum output current of 600 mA can be stepped down to 340 mA by strapping. The integral switch is mosfet, quiescent current is $130 \mu \mathrm{~A}$ and switching frequency is adjustable, up to a higher than average 200 kHz .
Within the LT1 176 step-down switching IC is an integral 1.2 A bipolar transistor switching at a nominal 100 kHz . Response to voltage changes is speeded by using a multiplier in the loop.
SGS-Thomson's L4962 is a 1.5A step-down switching IC in a Heptawatt seven legged T0220 packaging. It operates at 150 kHz . While requiring more parts than others, it includes soft-start. At 50 V , the input and differential voltage ratings are higher than any of the preceding ICs.
Finally, National Semiconductor's LM2576* is a similar category of device in a Pentawatt packaging. Operating at up to 63 V in its $H V$ version, this device is rated at 3 A and switches at a fixed 52 kHz .

Tests and application

Measurements are focused on graphical performance information readily obtained with a modern If test set, but scarcely documented by makers, namely:

- Intrinsic noise versus frequency
- Ripple rejection versus frequency
- Spectra of ripple caused by abrupt, repetitive load change.
Switching IC data sheets make efficiency claims, but how often is the efficiency of a linear psu charted ? Being long overdue, a uniform assessment is included here.
Figure 5 shows the test circuit used for noise tests. Figures $\mathbf{6}$ to $\mathbf{1 5}$ illustrate regulator noise. Getting a clean enough input voltage is the first stumbling block. Loading is stepped to reveal changes that can make a regulator manifest as a current-controlled noise-source. You too may be surprised at the disparity in behaviour patterns - particulary between the switching devices.
Figure 16 shows the ripple rejection test circuit used while Figs 17 to 25 illustrate the results obtained. Part of the test circuit is a 20 V rms audio power amplifier having extended hf response. This can handle a 4Ω load and is used to drive the test network.
A power amplifier is needed because R_{in}, at 47Ω, is seen as a load in shunt with the regulator's input. A higher $R_{\text {in }}$ value would reduce loading but also drop the incoming lab supply, when loaded. As a result, it would need to swing above 30 V in order to attain the 9 V (excluding superimposed AC) required at the regulator input.
Capacitors of $10,000 \mu+1000 \mu+1 \mu$ in parallel provide resonance-free coupling into the 47Ω,

[^0]

Fig. 6. Ideally, measurement of regulator's output noise should not be affected by incoming noise from the dc (raw) voltage source, but it may be, with all of the regulators having less than infinite and perfectly uniform ripple rejection. The upper plot (A) shows a Thurlby lab supply, considered good enough to test sensitive circuitry, measured at the end of 300 mm twisted cabling. It helps to recall that -100 dBr is $10 \mu \mathrm{~V}$ rmsir and -60 dBr is one millivolt. Mid-band noise can be reduced by decoupling the psu output with low inductance elcaps $>1000 \mu \mathrm{~F}$, but below 10 kHz any sensible array has little useful effect. The lower curve is the AP residue. A pair of 9 V primary batteries paralleled with a $1000 \mu \mathrm{~F}$ Elna Low-L capacitor yielded a plot identical to this, and were duly adopted it as a 'virtually noisefree' DC supply for measuring the intrinsic noise.
Fig. 7. The 20 year old LM340T-5 has equal second lowest noise, exceeding $-95 d B$ in all the tested places. Noise character is smooth. Note how noise is identical with either loading (A) yet how much the unloaded noise droops away above 3 kHz (B).

OdBr=1 volt in all graphs

contributing less than -1 dB additional deviation from 10 Hz to 200 kHz . The protective zener was added after the more highly stressed DIL-packaged switchers with marginal voltage ratings were vaporised when loading was removed before reducing the lab supply input.

Figures 26 and 27 illustrate the group spectra caused by abrupt load switching. In test circuit Fig. 26, a mosfet is driven with a 10 kHz square wave with roughly equal mark:space ratio. This in turn switches the 22Ω load.

Finally, Fig. 29 compares efficiency. Each
regulator was driven at 10 V so its burden is about 5 V . Loading was kept close to 50% of the rated value using off-the-shelf resistors.
Average (not true rms) input and output currents and voltages were then measured and waste computed from:
$\%$ efficiency $=\left[\left(V_{0} \times I_{0}\right) /\left(V_{\text {in }} \times I_{\text {in }}\right)\right] \times 100$
There are surprises. First, efficiencies of the competent switchers converge at around 70%. This is better than for the linear devices, with $V_{\text {in }}$ being twice V_{0}. But remember that if $V_{\text {in }}$ is set much closer to V_{0}, linear efficiency can rise to at least 70\% too.
Secondly, the dismal efficiency of the LTC1174 was confirmed with retests at slightly lower current and after a

Vapid silicon

Both the MAX639 and LTC1174 proved instantly destructible by exceeding idiosyncratic voltages (around 11 to 13V) that may not ring alarm bells in analogue design heads. The rejection test network's series resistor $R_{\text {in }}$ (Fig. 16) causes a voltage drop when running loaded. It is easily compensated for by jacking up the input voltage, but had deathly consequences for these chips when the test load was removed even momentarily. This loss prevented the plotting of the input drive level when in the loaded condition. IC designers should think more clearly before making parts with such arbitrary and low breakdown voltages.

Fig. 9. Listening through the $1 / 3$ rd octave sweep, the LT1129 produced the classic, psychologically disturbing noise (sounding in the mid-band when put through speakers like a deathly Antarctic wind) of a crude zener reference. Lower plot shows noise when unloaded. Note same increase in hf noise with loading irrespective whether this is 47Ω or 22Ω, indicating nil noise modulation over this span of current.

Noise and layout

Even for instrumentation, listening to noise is one of the quickest ways to evaluate its characteristics. One would expect linear regulators to be intrinsically quieter than any switcher. The results show this is mostly true. Excess noise in linear regulator ICs arises mainly from the reference. It has been long established that regulators using plain (cf buried) zener references have a subjectively "gross" noise character. Bandgap-referred (as well as the more modern buried zener-referred) regulators are both measurably quieter and have a smoother, more unobtrusive noise character. Peak noise voltages are up to at least 10 times (20 dB) higher than the rms levels plotted. When supplies are bussedabout this may couple into a critical node. Fig. 6b amply illustrates why high-end audio perfectionists might dispense with ac mains and the regulators, and opt for cupboards full of car batteries.
All IC regulators demand considered layout. The older fixed types readily oscillate at rf and can even burn out if driven from a distant source without local and quite wideband decoupling. In all test circuits, $C_{\text {in }}$ was 680 nF low ESL MKT, placed less than 10 mm from the IC legs. Most linear regulator ICs also require typically a minimum of $100 \mu \mathrm{~F}$ of output decoupling. The LT1129 is exceptional, being intelligently designed to be stable with C_{0} of under $10 \mu \mathrm{~F}$. However, above 1 kHz , the Z_{0} and transient response of all this and all other linear regulator ICs employing voltage feedback is increasingly dependent on adequate C_{0}
In all test circuits (Figs. 1 to 4) the stricter standard of a low

ESL $100 \mu \mathrm{~F}$ combined with 100 nF low ESL+ESR reservoir capacitors which are mandatory for switching regulators was adopted uniformly throughout, so output decoupling has no appreciable part in performance differences. All $100 \mu \mathrm{~F}$ elcaps were matched within $+2 \%$. Adjustable linear regulators require the sensing resistor to be connected to output pin, but a sample of the output current is not required, and a wrong, non-starred connection degrades Z_{0} and the transient response.
Turning to switchers ${ }^{2}$, we face incisive waveforms with plentiful harmonics. As well as radiating noise, many switchers depend on comparators, and these require robust hysteresis and appropriate filtering so that locally generated noise does not upset the feedback loop(s). As a switching regulator is so easily upset by its own hash, it pays to be kind to it and the environment at the same time, and design the layout for low noise and precision. This is mainly achieved by compact placement, fat star grounds, low inductance, preferably paralleled capacitors of at least two widely spaced values, and the use of adequately rated inductors, preferably toroidal types which radiate least.
With switchers like the LTC1174 working up to 200 kHz and higher, subtler techniques including steps to forestall eddycurrents such as use of Litz wire (plaited conductors) to balance copper losses will be significant. For lowest noise, output (including return) must be taken directly across the output capacitor. Fig. 19c, Fig.24d and Fig. 25b are plots demonstrating the results of misconnecting the analyser's cold input just a few inches up the 0 V wire back towards the power source, instead of coming off the star ground separately.

Fig. 10. The prototype of my high power audio regulator [see 4; and discussed in recent issues] was dragged out to show the kind of thing that audiophiles find improves their ability to hear ambient cues and other nuances in recordings: Irrespective of loading, this regulator's noise is indistinguishable from the $A P$ residue in my lab's environment. If anything, the two AP plots are actually the higher of the four here.

Fig. 13. The LT1176 has commendably low noise below 1 kHz , irrespective of load condition. The lowermost curve (A) shows the 100 kHz switch frequency, rejected by at least -60 dB . The middle and upper curves are for loads of 47Ω and 22Ω respectively. Note that noise increases 20 dB for a just over twofold rise in current well away from the maximum current rating of at least 1.2 A . The change in noise (ie. noise modulation) might disturb sensitive circuitry drawing discontinuous current. At least noise character is uniformly smooth.

Fig. 11.below The MAX639 is most commendably quiet when unloaded (lowermost), except for 50 Hz reception spike (left). Loaded noise is far higher (upper curves). With the 47Ω load, the noise character is rough (like the fixed linears), and curiously includes a 1.8 kHz tone (peak at ' X '), as in Fig. 8. With the 22Ω load, switch artifacts are clearly audible; the third octave sweep sounds like a swarm of bees! The bee sound is imparted as the tone spike (at ' X^{\prime} ') has shifted down to 250 Hz (Y). Overall, noise with this higher loading is unchanged in the decade above 25 kHz , is slightly less down to 5 kHz , and below $1 \mathrm{kHz}, 20$ to 50 dB higher.

Fig. 14. SGS's $\angle 4962$ was measured in a later session, so the $A P$ residue was replotted (lowest, A). Compare this to Fig.10. When unloaded, the 14962 is just above the residue and remarkably quiet above $1 \mathbf{k H z}$. Even below 1 kHz noise is good for any switcher, at $<-105 \mathrm{~dB}$. When loaded (47R, curve C), noise rises markedly around the switching fundamental to a -35 dB minima. Past this point there is little noise modulation - shown by the negligible change with the 22Ω load (uppermost, D). Noise character is truly excellent for a switcher - as smooth as bandgap linears.

Fig. 12. The LTC 1174 (C for CMOS) switcher is contrastingly noisiest (upper curve) when unloaded. A $2 k 4$ fixed load resistor was added to set a more realistic quiescent 'unloaded' current of 2 mA . The peak point indicates an unloaded PRF of 40 Hz . Measured noise with 47 and 22 ohm loading is almost the same (A,B). But A's peak suggests a low Q version of Fig. 8's resonant phenomenon, about an octave either side of 1.7 kHz .

Fig. 15 The LM1576T when unloaded, was as noisy as the $L 4962$ when the latter was loaded. Still, the noise character is similarly smooth. The unloaded plot (A) is quite good in the audio band, but above 20 kHz , a train of harmonically related spectra occur, harmonics made visible because this regulator's fundamental is about an octave or two lower than the others at 50 kHz . When loaded, the fundamental peaks only 23 dB below 7 V , and noise is barely changed between the 22Ω and 47Ω loads.

Fig. 16. The Rejection Test Network. Although ripple is fundamentally at power line frequency, one cannot just test at $100 / 120 \mathrm{~Hz}$! The capacitor array, power amplifier and high wattage resistor allows tens to hundreds of milliamperes of incoming DC at 9 volts, to be mixed with 1 V rms of sweepable $A C$ from the Audio Precision's generator, with uniform response over 13 octaves ($10-200 \mathrm{kHz}$) being preserved at the regulator's input. DC and ac levels have to be finely set to avoid clipping the ac, or overstressing the marginally rated switcher chips; or dropping out on the longest $(20 \mathrm{~Hz})$ ac peak dip. Any ac appearing at the regulator's output is feedthrough. The amount varies with loading, as open-loop gain is depressed, eg. by beta loss with increasing current.

Fig. 17. In this and all the subsequent rejection graphs, the upper plot shows the incoming, 1 V swept 20 Hz to 200 kHz swept test signal as applied to the regulator's input. Much of the rolloff above 30 kHz , to -12 dB at 200 kHz , arises because the drive capability required is borrowed from an audio power amplifier, one of the few with extended ultrasonic response to 200 kHz . The incoming signal has been plotted with the regulator's output both unloaded (A) and loaded (B), to confirm that the drive reference only changes slightly around $130-200 \mathrm{kHz}$. Rejection is best when unloaded (C). When loaded with 47 and 22 ohms (D,E) rejection improves slightly below 200 Hz but reduces markedly above 1 kHz . Note also how rejection barely changes (mainly below 200 Hz) with the more than two fold load increase, and how the heavier loading (E) has the best rejection of all below 1 kHz , better than the unloaded case.

Fig. 20. High power reference regulator for audio. The input shows about 10 dB extra attenuation at 200 kHz (D), showing imperfect buffering at hf. Unloaded rejection beats all the regulator ICs. Rejection degrades greatly with slight loading, most markedly at IF, where the outcome is least audible. Note the psychoacoustic tuning; after having accepted decay with loading, deepest rejection has been tuned to the ear's most sensitive region, about 3.5 kHz . Loading was the same 105/225mA as other regulators. Further up the scale of this regulator's far higher operating capacity (up to 35 Amperes) rejection improves, where again it matters most.

Fig. 18. The LM340 still sets standards, at least at low currents. Whether unloaded (B) or loaded with 47Ω (C), rejection below 3 kHz is the same within tolerance and at least -70 dB . Above 3 kHz , the loaded condition is consistently about $12 d B$ less good but still manages to exceed -45 dB . With the heavier (22R) load, rejection is degraded to a less healthy $-35 d B$ uniformly with frequency (D). The 30 kHz step-down is curious; answers please. Note all three load conditions show identical input levels (A, uppermost), suggesting the input is well buffered at hf.

(dBr)

Fig. 21. The MAX639's unloaded rejection is excellent below 3 kHz , being better than - 70 dB . But rejection decay sets in markedly above 10 kHz and well before the 125 kHz switching frequency. See footnote on p807.

Fig. 23. LT1176 has quite good rejection in the audio band before loading, but with $47 R$, rejection decays to an unimpressive -25 dB at 6 kHz . With the input drive (uppermost), note the peaked-up then steeper rolloff at 120 kHz , the switching frequency.

Fig. 19. With the LT317, loaded and unloaded rejection is identical below 10 kHz . Above, the 22 and 47Ω load conditions (D, E) are no more than 10 dB worse than the best unloaded case (B) at 30 kHz , re-converging above. Curve C shows the effect of the unloaded case with a bad ground connection; here the analyser's 'cold' input was coupled to ground several inches back from the output capacitor towards the supply input.

Fig. 22. Unloaded, the LTC1174 has marginally good (>-40dB) rejection between 200 Hz and 20 kHz , but both modestly loaded (47S) and unloaded, it offers a paltry less than $-30 d B$ of rejection at line $(50 / 60 \mathrm{~Hz})$ and switching ($>50 \mathrm{kHz}$) frequencies. "Unloaded" includes the small 2 mA bias established earlier (Fig.12). Notice also that the upper, reference plot of the incoming test signal is peaking slightly just above 100 kHz , a sign that $Z_{\text {in }}$ is affecting the driving amplifier's stability.

Fig. 24. (Bottom right) Unloaded, the 14962 displays its best rejection around 600 Hz , with a negative resonance. When loaded, rejection is a more modest 45 dB but is uniform with frequency and load up to 50 kHz . Noise at the switching frequency is also at least 15 and up to $30 d B$ lower than any of the other switcher ICs. It is clearly amongst the cleanest switchers. Above 100 kHz , the loading effect on the source is slight but more varied than others. Curve D shows the same bad ground connection as in fig. 19 (C). Notice how the result is less catastrophic.
cool-down period. Thirdly, you might imagine that the LTII29 would be slightly more efficient than a 'normal dropout' regulator with emitter follower output. But this is clearly not so for real-world test condition, where $V_{\text {in }}$ is higher than it might be.
All the switching regulator ICs were successfully applied by reference to the data sheet alone. And all four switching device makers offer some in-depth advice on critical layout and critical component specification for optimum performance. Linear Technology's LTC1174 data sheet had the most explicit physical layout recommendations while National's showed the IC internal workings most clearly in relation to the outside world. Physical layout was on five-node analogue Veroboard (RS 433 911). Positioning of major critical parts was organised for shortest lead lengths, then repeated within $\pm 3 \mathrm{~mm}$ for each different device.

Conclusions

Beginning with noise, the benchmarks are set by my own regulator circuit. Similar op-ampbased regulators after Sulzer ${ }^{5}$, set even higher or similar standards as do ones yet to be published by Walt Jung ${ }^{6}$ which I have had a
chance to consider.
For the quietest regulator with the best rejection and lowest output impedance, you need to look at ICs other than those labelled as regulators. On the other hand, while these opamp based designs are not expensive against performance, they will cost many times more than an IC like the LM340T, which is typically under 40 p in bulk. The more discrete design will also occupy more space.
Returning to explicit regulator ICs, easily the all-round quietest are LM340 and LT317. In this instance, the latter is slightly quieter below 1 kHz , and the former above. With the switchers, $L 4962$ is the clear leader, staying below -95 dB up to 20 kHz under the three test conditions. Considering just noise in the audio band, it comes close to equalling the LM340. LM2576 is next best. Such a pattern suggests that switcher noise can be curtailed by using an IC with plenty of reserve current capability. As for "ripple" (really broadband ac) rejection, the LM340 exhibits the best figures until it falls apart - at a load current of one fifth of its 1.2 A rating (Fig. 18 curve D). The LT3I7's rejection hardly varies with load current, but all load conditions share the earlier onset of decaying rejection above

1 kHz . High frequency rejection might improve with improved adjustment pin decoupling - not an option with LM340.
The LT1 129 is again a slight backwards step from twenty year old technology. Only two of the switchers shows rejection across the range of loading that is remotely acceptable for plumbing around a sensitive analogue circuit. Again, this is SGS's L4962, with its near uniform loaded rejection of -45 dB , ie. 6 mV mm per every 1 V rms of ripple sawtooth, with LM2576 again not far behind. In a real application, the hf ($>10 \mathrm{kHz}$) rejection of the switchers will likely be improved markedly if inputs are EMI filtered.
Faced with abrupt load switching, and taking the ripple at fundamental as an indicator of output impedance $\left(Z_{0}\right)$, then the familiar linear duo LM340 and LT317 have the lowest Z_{0} and maintain the overall cleanest supply, but are still perturbed more than 22 dB compared with the BDR linear benchmark regulator.
The LT1129 is by contrast fundamentally worse than even the most perturbed of the switchers, with a closed loop, loaded Z_{0} that is 6 to 11 times greater than the follower type outputs.

Test conditions

The tested parts were either fixed 5 V models or if adjustable, were set to output +5 V . As the ICs' maximum rated load current varied from 225 mA upwards, and the surprisingly puny PP9 batteries used for noise testing could not support much more than 225 mA on-load tests were performed with 47 and 22Ω, 2% CF load resistors, drawing a nominal 105 mA and 225 mA respectively.
Note: Throughout the following text and graphs, $0 \mathrm{dBr}=1$ volt rms. -60 dBr $=1 m \mathrm{~V} .-120 \mathrm{dBr}=1 \mu \mathrm{~V}$. "Unloaded" means, unless stated, that there is only the load of the test equipment - typically under $100 \mu \mathrm{~A}$.

Fig. 25 Unloaded, the LM2576 is quiet and commendably so at ultrasonic frequencies. Again, the outcome of poor grounding practice is shown (B), this time with marked effect. Loaded response (C, D) behaviour is akin to the L4962, only not quite so good by some $7 d B$.

Fig. 26. Abrupt load switching test network. A mosfet switches the 22Ω load in and out at about 12 kHz with a consistent (though approximate) 50/50 mark-space ratio. The test set is then set to plot the third-octave spectra above 10 kHz to 200 kHz . If Z_{0} were zero, or the feedback were instantaneous and the slew and loop gain infinite, there would be no spectra. The spectral levels give a proportional indication of each regulator's averaged,
dynamic output impedance - the product of the static Z_{o} and transient response.

Fig. 27. These abrupt load switching spectra are a new way of looking at a related characteristics simultaneously: Voltage and current step as well as Zo and slew induced perturbations mapped into the frequency domain.
The Audio Precision spectra show how a 12 kHz clock (with clean rise and fall of about $1 \mu s$) driving a rather abusive 22Ω load would appear on the supply rails at the regulator output. In other words, the results are based on direct, optimum noding. The performance on real pcbs won't get any better and will likely be worse if the clocked supply conductors even remotely share with any other currents. Of the linears, LT1129 has the highest spectra indicating higher impedance and inferior damping. The bandgap twins, LM340 and LT317 have at least 14dB better performance. LM340 is up to $4 d B$ better than $L T 317$ below 60 kHz and vice-versa above 100 kHz . My high current audio regulator has the lowest artifacts, up to 30 dB below the best regulator ICs. Note how each regulator follows a recognisably similar set of inflexions.

Fig. 28. Turning to the switchers, the inflexion pattern is devoid of correspondence with the exception of the fundamental. At this point $(12 \mathrm{kHz})$, the order of performance is similar to the feedthrough ranking, with LTC74 the clear loser (fundamental 24dB below 1 V) and 14962 the clear winner. Yet, by 200 kHz , the chaotic traces have exactly reversed the positions. Averaging by eye over the bandwidth displayed suggests that (i) the L4962, followed by the ITC1174, will maintain the cleanest rails, (ii) the LT1176's rails will be the noisiest, followed by the LM2576. The MAX639 does not
appear; see below.

As for the other switchers, the by now familiar $L 4962$ is least perturbed at the fundamental, but still near three times (10 dB) more than the LM340. Note the wide, individualistic swings in ripple above the fundamental of all the switchers other than (oddly) LTC1174.
On the basis of these results, regulator IC ac/transient performance has not improved since Linear Technology's first efforts 11 years ago.
Low dropout regulators, while a boon for battery systems, should be used with care in sensitive circuitry powered off-line as their ac $(20-200 \mathrm{kHz})$ rejection and output impedance
(hence transient line and load regulation) are both inferior to normal dropout parts.
Analogue circuitry employing switching regulators may require considerable if filtering and stout decoupling. Even if EC or other EMC regulations do not make this mandatory, hash pickup may well affect performance. In this case, the cost of fixing this (in money, space and weight) may exceed the cost of using a linear regulator with a slightly larger heatsink from the outset. In summary - and with the possible exception of applying SGS Thomson's SMPS chip - before, while and after switching to switchers, designers must perform regular reality checks!

Efficiency - a score card

Efficiency,	at	50% rated load
LT 1176	71.5%	576 mA
L4962	70.5%	710 mA
LM2576	69.0%	1.4 A
LT317	52%	710 mA
LT1129	49%	333 mA
LTC1174	23%	215 mA

$V_{\text {in }} 9.5 \mathrm{~V} \pm 0.1 \mathrm{~V} ; V_{0} 5 \mathrm{~V} \pm 0.1 \mathrm{~V}$

REFERENCES

1. R Widlar, A versatile monolithic voltage regulator, NSC AN-1, Nov '67.
2. R Widlar, Designing switching regulators, NSC AN-2, Mar "69. 3. E Dietz, Understanding and reducing noise voltage on three-terminal voltage regulators, EDN (USA)
3. B Duncan, PSU regulation boosts audio performance, EW+WW, Oct '92.
4. M Sulzer, A high quality power supply regulator for operational amplifier preamplifiers, The Audio Amateur (USA), 2/1980.

The author wishes to acknowledge the assistance of Anzac, Linear Technology, Macro Marketing and Maxim.

The G-TRON 08ERD Electric Radiation Detector will indicate by bleeping the presence of any alternating electric field radiating from cables carrying electricity. This unit will indicate 240 V at a distance of about 15 cms , depending on cable layout, and about 30 metres from electric pylon cables carrying 132,000 volts. Overall sensitivity 4 volts per cm . It can be used to:

- Warn of electric pylons tens of metres away.
- Check the field strength from all electrical apparatus.
- Check if cables are live.
- Monitor automotive ignition.
- Price: £19.98 inc. Battery, P\&P \& VAT

The G-TRON 08MRD Magnetic Radiation Detector will measure the presence of any alternating magnetic field from 50 to 500 nanotesla. Use to measure the field from:

- Electric cables above and underground.
- Meters and switchboards.

All electrical apparatus.

- Automobiles and electric trains.
- Price: $£ 29.85$ inc. Battery, P\&P \& VAT.

Designed \& Manufactured in the U.K. by GLAZERTRON LTD
Upnor Road, Lower Upnor, Rochester, Kent ME2 4UY
Tel: 0634712699 Tech-help: 0634294030 Fax: 0634712891

MEGAPROM device programmer. EPROMS, E2PKOMS, and FILASH memurics from $2 k$ (2716) to 8 Meg (27Cusu). Runs on IBM PC via the centronics port using standard printer cable. Works on all PC compatibles, taptops, and notebooks. No special port requirements.
Uses upproved programming algorithms. Very fast program and verify 27 C 512 (64 K Bytes) in 45 seconds.
Full screen editor software supports Bin, Intel Hex, motorola S and Asc formats. Only $\mathbf{8 9 9} \mathbf{9 5}$ Top quality components used throughout including production ZIF sucket.
Requires external power supply $18-25 \mathrm{v}$ AC or DC @ 250ma. (oplional extra (56.50)
PICPROG Programs Picl6CS4-55-56-57-71-84. Centronles purt interface same as Mega prom.
Powerful editing software to Read, write \& copy lic devices including data memory in PicI6C\&4. Unit suippliod with IBM software \& 12 months parts \& labour guarantec. Only $\mathbf{2 0 9 . 9 5}$.
Requires external power $15-20 \mathrm{VAC}$ or DC @ 250 ma . (optional extra 66.50).
EPROM EMULATOR Works on ANY computer with centronics printer port. Data sent to the printer appears in the turget board Eprom socket. Emulates from $1 k$ to 32k Byte (27C256) roms, board switchable. Power supplied from target Rom socket (less than 10ma). Very fast download. Software supplied for IBM PC to convert and send Intel Hex, Moterola S, ASC and B in files.

Only 149.95
Board supplied with software and 12 months parts and labour guarantee.
PC SCOPE Convert your IBM PC into a Storage Oscilloscope with our AD conventer. Simply plug into the printer port (no power required). Sample rate 10 k to 30 k per second.
Suftwere supplied for Scope and Voltmeter. AD source to write your own programs.

Only $£ 29.95$
DEVELOPMENT SOFTWARE
Develop software on your IBM PC for other Microprocessors_Controllers, Pic's etc. Software has fully integrated Text Editor, Assembler, Disassembler and Simulator.
The Simulator fisplays all registers along with disassembled code program counter, Condition carde register. The user can single-step, go with breakpoints, watch memory etc. change any/al! registen memory locations at any time (on the fly).
Code can be Saved to disk and/or downloaded directly to our EPROM Emulator. All software supplied with sample ASM files and user documentation.
Very puwerful software as supplied to universities, colleges ITECS and Industry Available for the following:-

MCS8051/52/552 series	Software $£ 19.95$	MCS8048/49 series	Software $£ 19.95$
PICI6C5W/5/6/7	Software $£ 29.95$	PICI6C71/84	Software $£ 29.95$

Software $£ 29.95$
PIC16C71/84
Software £29.95
LOW COST PIC ICE (In-Circuit Emulator)
Plus into the printer port and runs in conjunction with the PIC development simulator software. Appears to the target system as a normal Pis device including OSC2 and RTCC in/out. Runs in reil time from the IBM PC changes made to File registers reflected on target. Supplied with Software of your choice Pic54-57 or Pic 71/84

From capture to layout

Protel's new pcb design and schematic capture packages both have the prefix 'Advanced', but with so many excellent products on the market how do they compete? John Anderson investigates.

The company known for Easytrax and Autotrax, Protel, has recently launched Advanced Schematic 2. In addition to providing schematic capture, this package executes front-end tasks for Advanced PCB - a new pcb design tool covered later in this review.
First launched as Schematic for Windows, this product retains the same object orientated editor, but adds many new features. These include library searching, drag and drop editing, and guided wiring.
The software is supplied with professionally produced, comprehensive user, reference and library reference manuals. In addition, there is a strange document entitled the Environment Guide, and a software-protection dongle plugging into the parallel port. Installation follows normal Windows procedure, involving a 'set-up' program which unpacks the files and installs its own group in file manager.
On initial start up, you are taken to an interrogation screen where you are prompted for access codes. These are codes that unlock specific features of the software - the review version had an eight-digit code for the schematic capture module.

Editing

The system requirements state that a minimum screen resolution of 800 by 600 is needed. This type of specification is quite unusual and it was not until I ran the program that the reason for this requirement became apparent. There are two dialogue panels, namely the Component Browser and Project Manager, which in standard vga take over half the editing screen area. These can be turned off, but realistically, because the Component Browser is an essential part of the software operation, it needs to be kept on all the time.
On-screen working space is made even smaller because of two floating toolbars carrying wiring and drawing tools. The distinction between wiring and drawing tools is important, and obvious - except for the icons. In particular, because both line types have similar default colours, it is easy to inadvertently select a drawing rather than the wiring tool, and hence fail to connect up the components electrically.
Capture works as follows. After selecting the component

The Normal operating screen! Note that this picture is captured in 640×480 vga format and the actual editing screen size increases with higher resolution formats.
browser, the user selects which of the standard libraries to use via the Windows 'add feature' method. Back at the browser, any of the libraries in the selection list can be chosen. Once a library is chosen a list of components from that library is displayed. A specific component may then be selected and moved onto the drawing sheet.
This format of selection and placement seemed to work well, although the method did have weaknesses. In particular, if a multiple element component is selected, for example a 4-by-2-input nand gate, the placement system described above always places the first gate of the four, and you need to undertake a specific subsequent task to edit the gate identifiers or use the toggle part number icon to select any of the remaining three gates.
Editing facilities work well with the Windows clipboard, allowing selected items to be moved to the clipboard and then pasted to a new sheet. If the items are copied to the

Zoom in and the placement grid is clear.

There is much more room if the project manager and component browser are off.
clipboard then pasted back into the same drawing, no prompt or correction is made for the duplicated identifiers. Again using the clipboard, items clipped can be moved to other applications in Windows '.WMF' format - a nice touch for desktop publishing of technical manuals.
Moving around the sheet is somewhat awkward. This is mainly because the automatic panning is rather limited and only becones available once a editing function is selected. The alternative is to rely on Windows scroll bars.
There are several files that can be generated from the schematic. There is a bill of materials, in tabular and comma separated variable form for spreadsheet or database use. There is also netlist output for interfacing to the pcb cad package, which may be output in any one of over 30 different formats.
Most important is the electrical rules check, or erc. This feature reads through the schematic database, generating a
list of rule violations. Examples include multiple components with the same identifier, unconnected lines and floating input pins.
Rules for the erc are set in a user programmable matrix of errors and warnings. As an example, connecting output pins together would normally be an error but leaving input pins unconnected may be considered warning. The designation of pin type is set in the library edit facility.

Project control

Facilities within Advanced Schematic for project control are excellent and intuitive. Any number of sheets in a project hierarchy can be connected, and then whole projects loaded automatically. Each sheet is available at a click, which moves the selected sheet to the top window of a cascaded window stack.
Selecting the Library Editor from the Schematic Editor library menu results in a program running in another window which looks very similar to the schematic editor. However it automatically loads and decodes the currently , selected library in the Library Browser.

As well as adding bit maps in any one of a variety of forms from '.WMF' and '.PCX' through to PostScript, the editor provides all the normal vector drawing facilities. The list of standard libraries is impressive, with a total of 76 libraries in all amounting to over 12,000 components taking over 12 M -byte of disk space.

Compatibility

A level of compatibility is maintained with the earlier 'Protel dos based schematic program, with some of the libraries arranged in a similar multiple vendor form.
Files generated by the earlier dos product are loaded by the editor, but a warning is provided that some components are converted from a bitmap form to vector form. In practice this did not seem to cause any problems and existing designs loaded without incident.
Electrical rule checking of the new software is better than that of the dos product. This can result in errors being reported in dos-based schematic designs which had passed the equivalent report facility in the old product.
When the schematic editor and the companion Advanced $P C B$ editor are open at the same time, it is possible to cross probe - that is, select a part in the schematic and then jump automatically to the corresponding pcb component. This works in the reverse direction, perhaps suggesting that these two products might have been sold as one.
Back annotation from the pcb to the schematic, sometimes called the 'was-is' function, is supported. Forward annotation, where changes in the schematic are transferred to the pcb, is also provided. In this case, annotation reflects all netlist changes through removal of obsolete tracks and component footprints - dangerous!
Advanced Schematic has routes to interact with other programs. There is, as you might expect, the direct access icon to the Advanced PCB product, but direct execution of analogue, digital or mixed signal simulators is also possible. However, these are not supplied with the package and the level of support is little more than that of launching another dos or Windows program.
One exception to this is support for the analogue simulator, S. The software produces Spice compatible net alists, together with an ascii text input facility to add other Spice commands to the Spice control. These might be, for example, generator frequency or simulation parameters.
Other than Spice, the Advanced Schematic outputs for the somewhat obscure EEsof and Touchstone simulators.

Advanced PCB 2

This is an upgraded version of the Windows-based integrated pcb layout program that Protel released two years ago. In addition to updating the package, Protel has also integrated Advanced PCB 2 with Advanced Schematic 2.
Compared with the earlier Protel for Windows, this new package has 123 new functions and features. Although some of these are little more than corrections of problems with the earlier version, some of them are valuable. There is a split plane feature which allows a net to be assigned to one or more copper planes for example, and a previewmode display allowing quick scanning between layers, displaying only one at a time.
The package is supplied with comprehensive user and reference manuals, an Environment Guide and a parallel port dongle. Installation follows the normal Windows procedure, involving a 'set-up' program which unpacks the files and installs its own group in file manager. It also requires modification of autoexec.bat.
Both manuals are well produced and include a command reference and user guide. However the package is straightforward to learn and use, so the manuals are only of importance should you run into problems. The level of detail in the manuals is commendable - extending even as far as providing the exact format of the pcb-file database. Stored in ascii form, the database could be edited by any word processor.
On initial start up, you are taken to an interrogation screen where you are prompted for access codes. These are codes which unlock specific features of the software. The review version had an eight-digit code for each of four modules, namely ' $P C B$ ', 'Advanced $P C B$ ', 'Advanced Route' and 'Advanced Place'. How advanced all these advanced features are remains to be seen.
Dimensional limits on pcb size are 100 by 100 in , while positional resolution is 0.001 in . Even with toggling between imperial and metric units, the system maintains an accuracy of 0.005 in . It supports up to 16 signal layers, 4 internal power planes, 4 mechanical assembly layers, 2 silkscreen overlays, 2 resist masks, 2 paste masks, drill guide, drill drawing, multi-layer and drc error layers - 34 in all!

Editing

Without further delay, and without reading the manuals, straight into the editor; load a file, Windows style, and start work. Moving around the pcb is done with the mouse, cursor keys or scroll bars. Zoom level is controlled viapage up/down keys, the zoom toolbar, which is a window zoom function, or the zoom menu, from which any zoom can be set.
Commands can be executed from Windows pull down menus, but experienced users will find using two key sequence mnemonic hot keys much quicker. Pressing 'PA' for example places an arc. Pressing the Q key at any time toggles between metric and imperial units.
There are hot-key shortcuts for automatic pan and zoom. If you are using auto pan, for example, while dragging a component, holding down the shift key will pan the display at four times the normal rate. When using page-up and page-down to zoom, holding down the shift key causes slow zooming at 0.1 of the normal rate.
Interconnection starts with the pcb netlist generated by schematic capture. This defines the set of pcb footprints and the connectivity between nodes. Once the components

Advanced PCB's conventional windows editing environment.

Pattern selection from library by name and preview.
are placed, a rat's nest shows what needs to be connected and as the nodes are connected, so the rat's nest is removed. Once all the node connections are complete, the engineering rule check evaluates whether nets are complete and separate from one another.

Component placement is usually the key to a good pcb, making it easy to route and optimising it electrically. The strategy for auto-placement facility in Advanced PCB is not specified, but it is usual for optimisation to be based on total net length and real estate use. The facility worked well, if rather slowly, but using local auto-placement, quicker placement of specific areas can be achieved.
The autorouter can be set for a wide variety of routeing strategies and passes, including pre-routes, smd stringer and fanout, memory routes and line probe. A maze router
and shape router can be selected. Performance of each of the facilities does depend upon the pcb type and density, but the overriding impressions are of very slow progress combined with excellent final results.

Speed - or the lack of it

For any pcb layout package, it is essential that the redraw speed is fast. When you are trying to visualise how to route or place an item, you do not want to have to wait for the system to redraw. I tried Advanced PCB with a logic board of about 25 ICs and the redraw time was about 2-3 seconds on a 33 MHz 486 DX PC. This was significantly worse than the redraw time using the earlier DOS based Autotrax product. This made it clear why the Preview Mode display had been implemented!
Autorouteing and placement are other areas where the speed problem prevails. If it takes an hour to try and route a few dozen routes - and fail to route about half of them then productivity is certain to be poor.
Advanced $P C B$ retains the same review and report structure as its predecessors. Although functional, some competing products provide on-line design-rule checks which can stop you doing something silly at the time. The design-rule check function was very slow compared with the old DOS based Autotrax - probably taking twice as long to do the same job.
There is a wide variety of component libraries, and as each library may have hundreds of components the new library search facility is very welcome.
The component outline library provides data on pad size and placement for a wide variety of component footprints totalling over 300 . There are options available to generate your own library components, or indeed modify those provided. This is all achieved within the program library

SYSTEM REQUIREMENTS

Advanced PCB 2:

Windows 3.1 in standard mode with a 286 or better processor and at least 1 M -byte ram.
Advanced PCB requires at least 4 M -byte of ram with Windows 386 enhanced-mode recommended. Will work with a 386 with maths coprocessor, but a 486 processor is recommended.
MS DOS 5.0 or later.
Advanced PCB needs a minimum display resolution of 800×600. Larger screens are recommended.
Output to a Windows supported pen plotter or printer is provided plus separate direct HPGL output. Gerber format photoplotter output is also possible.

Advanced Schematic 2:

Windows 3.1. 386 processor minimum, 486 and svga video, i.e. 800 by 600 , preferable. Larger screens are recommended. System will work with standard vga.
20M-byte hard disk space plus 8 M -byte ram.
Output to a Windows supported pen plotter or printer.
Separate direct HPGL support. Gerber format photoplotter output.

SUPPLIER DETAILS AND PRICE

Premier EDA Solutions, 133 Cardiff Road, Reading, Berkshire RG1 8ES. Tel 07345744 44, fax 0734599 519. Prices for the Protel packages: Professional PCB £695, Advanced PCB £1250, Advanced Route $£ 695$, Advanced Placement $£ 695$ and Advanced Schematic 2. $£ 695$. The productivity pack reviewed is priced at $£ 2795$. There is a competitive upgrade scheme plus educational and volume discounts.

CELL VERSUS SHAPE-BASED ROUTEING

Most autorouters are grid-based routers using a map of grid cells to define every available cell on the pcb. For tight tracking, a small grid size is required and the memory requirements escalate alarmingly. A four layer pcb on a 0.001 in grid only 5 by 5 in with one byte per cell, for example, requires 100 M byte of memory. Although the day when a standard PC has this much memory may not be too far off, shape-based routeing offers high resolution routeing by only checking pcb objects while routeing.
Protel's Advanced SB Route is an optional shapebased autorouter. The benefits of the shape-based router is that it describes the routeing problem more precisely and in much less memory than a grid router. Applications where shape-based routeing will score are off-grid metric placements, fine-pitch smds or staggered pga objects, where high resolution is required.
editor. Each 'component' may then be loaded to the pcb in the same way as any other.
Engineering change order, or eco, is a new Protel function. Following closely the PADS pcb system, it checks the pcb database for changes made during routeing and produces a file which can be read into the schematic.
When the schematic editor and the companion Advanced $P C B$ editor are open at the same time, it is possible to cross probe - that is, select a part on the pcb and then jump automatically to the corresponding pcb component on the schematic.

Conclusions

Advanced Schematic 2 is a truly excellent electronic cad tool. Although it has some weaknesses, these can be spotted and overcome in the normal use of the product to provide an electrically consistent schematic.
The ability to link to the simulation products is perhaps rather overstated, because it is only the Spice interface that seems to be properly supported. Many of the so called 'tool' facilities are just as easy to launch by task switching to program manager - an example of a facile menu option is that of launching the windows clock!
With a full Windows help system, you should be able navigate through the program almost without reference to the documentation.
Fast selection of library components and a really good project orientated sheet hierarchy offer great user productivity, but this can only be achieved using the high resolution screen. A standard vga screen will operate - but is barely usable.
At less than $£ 700$ the package is competitively priced, and offers users the opportunity to truly upgrade their dos products to a product with much greater power and functionality. With a high resolution screen and fast processor the functionality and performance is equivalent to the best workstation products.
Although this review was carried out on a 33 MHz 486DX PC with 8M-byte of ram, all the functions on the latest version of Advanced PCB 2 ran very slowly. This is sad, because the software looks good and handles well, but without a 100 MHz Pentium, it could bring on a case of severe frustration.
Advanced PCB offers a workstation level of functionality, but without the best PC processor speed and extended memory size it cannot deliver sufficient speed for good user productivity.

Forget everving y you about FPROM EMULATORS.

Debugging takes up no ROM space and requires no mods to code. Debug 100\%

- PC Printer port: 200Kbyte/Sec - Emulates 16 Kbit- 16 Mbit, 8 \& 16-bit, 24/28/32/36/40/42-pin ROMis and EPROMs in one unit.

- BackChannel tomms links

- Shedow Memory, Hardware Instruction-Injection for break. points, Breakpoint-per-address, Single-step, see/edit RAM/ROM/ Regs, irue Source-Level Debug, any MPU just from ROM sockets.

METAI New Features

- Incremental Linking; allows linking of object modules to form a new, composite OBJ file that can in lurn be linked - improves modularity ond link speed in large programs
- One-pass Assentily tokes half the time of two-pass assemblers,

- Assemble how actepis sourd fies ot ony size, cathing in 160 chunks \square Assem the wh generate TMayte per segment, up from 64 K ,
 - Assemilat con:aced mades ond repeouty hill loops of ony size - Environment variablecsaidtnetwork use define defiult paths DLinker acepts LOCATOR file to aullow complexbenk mapping schemes to be callered for automiatically y iodiusts sode pesition in oufiput file without changing toriget-system addresses
\square New Debugger Sourcesteveldisplay - Folds macro, lidude file and repeat/until loop bodies to give a 'tree' display; you can individually unfold items to retain a 'high level' view of your code, - without geting swalinped by the details offinger reacro levels
- ASSUME Support deals with moveable base-page udtersing modes - New transient symbols - exist only until next n̄on-transient
- New CONTANS directive allows sub-classes to be arranged within a container class, excellent for arranging code blocks wihin banks
Both Assembler and Linker use new Symbol table techniques that increase speed and remove constraints - typ. 320K for the Assembler

Fromil $£ 445$ Existing users can get new manual

CIRCLE NO. 116 ON REPLY CARD

Audio design leaps forward?

> Designers have long recognised the theoretical advantages of combining feedforward error correction with feedback. But in his design for a feedforward audio power amp Giovanni Stochino looks to have succeeded in putting theory into practice.

Since its invention by $\mathrm{HS} \mathrm{Black}{ }^{1}$ in the 1920s feed-forward error correction has found practical application in radio frequency and microwave amplifiers ${ }^{2}$. But it has never been used, in Black's form, in audio power amplifiers ${ }^{3}$. The reason is probably the inherent difficulty in accurately and efficiently applying Black's feed-forward principle to audio power amplifiers over the full audio frequency range.
But a newly-developed circuit technique could do just that, and, within specified limits, put Black's true feed-forward principle to work in high power audio amplifiers.
Experimental results demonstrate the effectiveness of the proposed technique, but first , a look at some of the underlying theory.

Feed-forward or feedback?

The general input-output relationship of a power amplifier, before applying correction, can be written as $V_{\mathrm{p}}=V_{\mathrm{i}} G_{\mathrm{p}}+E_{\mathrm{p}} . G_{\mathrm{p}}$ is the volt-
age gain, generally a function of frequency and load impedance, and E_{p} is the error component that includes the amplifier's non-linear distortion and noise. E_{p} depends on input voltage and load impedance, and on frequency.
When negative feedback is applied (Fig. 1), the input-output relationship of the corrected amplifier becomes $V_{\mathrm{o}}=A_{\mathrm{cl}} V_{\mathrm{i}}+E_{\mathrm{fb}} . A_{\mathrm{cl}}$ is the closed loop voltage gain, substantially defined by the feedback network, and E_{fb} is the residual error component after feedback correction.
Analysis shows that distortion can never be completely nulled by negative feedback though feedback is effective in reducing distortion as long as there is enough gain within the feedback loop.
Feed-forward is based on a different mechanism of error correction. The basic scheme (Fig. 2) incorporates a criterion network (α, γ and SC) to determine, isolate and extract power amplifier error; an auxiliary amplifier $A A$ (low power requirement, low distortion
fig. 1. Basic elements of a feedback amplifier. Analysis shows that distortion can never be completely nulled with this configuration.

Fig. 2. Principles behind feed-forward. In this configuration, power amplifier error is extracted, determined and isolated via a
 criterion network comprising α, γ and SC.

and low noise compared with the power amplifier, PA) to provide a buffered copy of E_{p}; and output summing network $S O$. In SO the error component of $P A$ and its copy available at the output of $A A$ cancel out to provide a distortion-free output voltage on load R_{0}. Phase-amplitude equaliser network λ is added to the basic scheme to improve the error-correction mechanism at high frequency
The scheme should include a few delay lines to compensate for amplifier propagation delay and connections. But their influence is negligible in the audio frequency range.
Simple analysis of the diagram gives:

$$
\begin{aligned}
V_{0} & =V_{\mathrm{p}}^{\prime}-V_{\mathrm{a}} \\
& =V_{\mathrm{i}} G_{\mathrm{p}} \lambda-G_{\mathrm{a}} V_{\mathrm{l}}\left(\alpha+\gamma G_{\mathrm{p}}\right)+E_{\mathrm{p}}\left(\lambda-\gamma G_{\mathrm{a}}\right)+E_{\mathrm{a}}
\end{aligned}
$$

where E_{a} is the error component (distortion plus noise) produced by the auxiliary amplifier. Proper operation of the feed-forward technique requires that $E_{\mathrm{a}} \ll E_{\mathrm{p}}$ so the effective output error is $E_{\mathrm{ff}}=E_{\mathrm{a}}+E \rho / \rho$. Term $\rho=1 /(\lambda$ γG_{a}) can be defined as the distortion rejection factor of the feed-forward amplifier and describes the effectiveness of feed-forward in removing distortion in the power amplifier. $E_{f f}$ reduces to its lowest value of E_{a} when $\rho=\infty$, that is when $\gamma G_{\mathrm{a}}=\lambda$, and shows the potential of the feed-forward mechanism to completely null distortion E_{p} in the power amplifier.
The further condition $\gamma G_{\mathrm{p}}=-\alpha$ should be satisfied to nullify the component $V_{\mathrm{e}}{ }^{*}=V_{\mathrm{e}}\left(V_{\mathrm{i}}\right)$ (see panel p. 822 for definition of V_{e}^{*}) at the input of the auxiliary amplifier. This would minimise both E_{a} and power handling requirements for the auxiliary amplifier. The mathematics implies that when $\gamma>0, G_{p}$ and α have opposite signs.

Feed-forward more promising?

Distortion E_{fb} of a feedback amplifier can never be nulled, but it can be substantially reduced in the range of frequency and input voltage, where the feedback factor is much greater than I.
As a technique, it is less effective at the highest frequency of the audio range and in the crossover region of class AB amplifiers, where the feedback factor can be low and deviation from linearity is high ${ }^{4}$.
On the other hand, negative feedback amplifier configurations are very simple and require no matching of components (Fig. 3).
Feed-forward error correction is much more complex. But better distortion results are possible. In theory, the error of the whole power amplifier can be reduced to that of the auxiliary amplifier alone, even at high frequencies and in the crossover region. The advantage is that the auxiliary amplifier needs to handle only moderate currents and voltages. So it can be designed to provide much lower distortion (for instance it can be operated in class A) than the power amplifier, and very low distortion can be achieved.
Neither feedback nor feed-forward error correction can completely null the output error of a power amplifier. But feed-forward is more promising, virtually nulling distortion of the

power amplifier, leaving only the low residual error of the auxiliary amplifier over the load.

Combining feedback and feed-forward

 Tight matching of parameters in the feed-forward scheme (Fig. 2) can be achieved, simply and steadily, by using negative feedback. The strategy helps precise definition of gain in both the power amplifier and the auxiliary amplifier - provided the open loop gain of both amplifiers is high in the audio frequency range. So feedback and feed-forward techniques can be profitably combined in a true low-distortion audio power amplifiers. In a practical application (Fig. 4), the power amplifier and auxiliary amplifier have the gains defined by their respective feedback networks: $G_{\mathrm{p}}=V_{\mathrm{p}} / V_{\mathrm{i}}=G_{0}$ and $G_{\mathrm{a}}=V_{\mathrm{a}} / V_{\mathrm{e}} \equiv\left(1+G_{0}{ }^{\prime \prime}\right)$ provided $A_{1} / G_{0} \gg 1$ and $A_{2} / G_{0}{ }^{\prime \prime} \gg 1$. But there is also $\gamma=1 /\left(1+G_{0}{ }^{\prime}\right), \lambda=1$ and $\alpha=G_{0}{ }^{\prime} /\left(1+G_{0}{ }^{\prime}\right)$. As a result, $G_{0}{ }^{\prime \prime}=G_{0}$ and $G_{0}{ }^{\prime}=G_{0}$.The scheme is a practical way of assuring that the fundamental conditions for proper operation of feed-forward technique are always satisfied. But the problem remains in
implementing the output summing network probably the most difficult obstacle in the basic feed-forward error correction scheme.
The simplest and most intuitive way of realising this summing network is where corrective voltage V_{a} is directly transferred into the load's loop. Voltage V_{0} across the load is equal to $V_{\mathrm{p}}-V_{\mathrm{a}}=-G_{0} V_{\mathrm{i}}+E_{\mathrm{p}}-E_{\mathrm{p}}+E_{\mathrm{a}}=-G_{0} V+E_{\mathrm{a}}$, which is consistent with feed-forward theory.
But if, in this scheme, the auxiliary amplifier has to sustain the full load current, the assumption that the auxiliary amplifier is a low-power, low-distortion (prospectively class A) amplifier is no longer valid.

As a result, we can not assume that $E_{\mathrm{a}} \ll E_{\mathrm{p}}$, and consequently the inherent advantage of the feed-forward technique disappears. This is why the simple feed-forward configuration has never been used in power amplifiers ${ }^{3}$.
It also explains why, though the advantages of the feed-forward technique, in conjunction with feedback, are generally recognised, Black's feed-forward error correction technique has found only limited application by audio designers.

Feed-forward error correction (always intraloop) is sometimes used in audio power amplifiers ${ }^{5}, 6$, but Black's basic scheme has yet to be incorporated into audio power amplifier design.

A feed-forward power amplifier that works

We have seen that, in the feed-forward scheme (Figs. 2, 4), the most critical part to be implemented in audio applications is the output summing network (SO). Here the power signal V_{p} coming from the power amplifier and low level corrective signal V_{a} produced by the auxiliary amplifier have to combine without undesired interaction (ie cross-modulation, frequency instability, gain impairment) to provide a distortion-free output.
What is more, this combination must be performed efficiently without requiring much power from the auxiliary amplifier, and must not be affected by impedance-variations of loads - even loads as difficult as loudspeakers.
In amplifiers for hf use, such problems are less critical. Appropriate networks can be used to implement the output summing function,
due mainly to the favourable frequency range and fixed system impedance (50).
Bur audio applications span an unfavourable frequency range and imply complex and unpredictable load impedances. As a result, circuit techniques commonly used in radio frequency and microwave feed-forward power amplifiers are not practical, and different solutions have to be found.
An effective approach (Fig. $\mathbf{5}^{7}$) has PA as the power amplifier to be corrected (usually class AB), and $A A$ as the auxiliary amplifier. AA should be operated in class A for the best performance and incorporates transformer $T R$ in its feedback loop. (Resistor R also includes the resistance of winding W_{1} and the output resistance of A_{2}.)
The unique role of $T R$ is to provide both the wide-band impedance matching of the auxiliary amplifier to R_{0} and the power-efficient means for injecting the corrective signal V_{a} into the load's loop.
Transformers are usually avoided in solid state audio power amplifiers, as they are expensive, bulky, band-limited and not suited for very low distortion applications. But when
used in unconventional ways, as in this case, their unique properties can prove useful.
Putting transformer $T R$ in the feedback loop of the auxiliary amplifier has two very important effects. The flux produced in the magnetic core of $T R$ by the power component of the load current is automatically annulled by the feedback that forces voltage V_{a} to be insensitive to power component variation. So no restrictions are imposed on transformer size and core material by the amount of power that the power amplifier transfers into the load. In most cases a small transformer can be used.
Open loop output impedance of the auxiliary amplifier can also be extremely low (a few $\mathrm{m} \Omega$) in the full audio frequency range and above. The consequence is that undesired interactions and cross-modulations between power amplifier and auxiliary amplifier, as well as the sensitivity of the auxiliary amplifier to load impedance variations, are strongly reduced. A further benefit is that the primary winding of $T R$ is driven, virtually, by a voltage source, since R tends to zero. This widens the frequency bandwidth of $T R$, whose practical low frequency corner f_{0} turns out to be as low as a few Hz , even if a small ferrite core is used to improve its bandwidth and linearity.

Transformer operational requirements

The function of the transformer - to permit injection of the corrective current into the load without interaction with the main current component - is performed by cancelling the core flux generated by the main current component.
This flux neutralisation is carried out by the coercive action of the auxiliary amplifier's feedback loop and is effective as long as the current and voltage available at the output of A_{2} are adequate and the loop gain remains ${ }^{\circ}$ high. The only effective flux in the transformer core is therefore produced by the corrective voltage V_{a}.
For frequency $f>f_{0}$, the peak flux density B_{p} and the peak voltage $V_{\text {ap }}$ are linked by $2 \pi f B_{\mathrm{m}} S_{\mathrm{e}} N_{2}$ where S_{e} is the effective cross-sectional area of the transformer core. So the amount of corrective voltage V_{ap} that can be provided to the load is limited by the core geometry, through S_{e}, and the core material, through B_{s} (ie the saturation flux density), since it must always be $B_{\mathrm{p}} \leq B_{\mathrm{s}}$. The amount of available corrective voltage can also be seen to increase in direct proportion to frequency.
As an example, take a toroidal ferrite core with S_{e} at $100 \mathrm{~mm}^{2}$ and B_{s} at 200 mT . If N_{2} is $20, V_{\text {ap }}$ is 50 mV at 20 Hz and $V_{\text {ap }}$ is 5 V at 2 kHz . Compared to an output of $100 \mathrm{~W} / 8 \Omega$, they represent peak correctable errors of 0.12% and 8.7% respectively.
Performance matches well with that of class AB audio power amplifiers, exhibiting nonlinear distortion that rises with increasing frequency, and extends normally, say, from 0.01% to 1% in the audio frequency range.

Amplifier requirements

Class A operation is mandatory for amplifier A_{2} to achieve the lowest distortion with low level error signals. High gain and low noise

A Selection from Current Inventory - call today to view

SURFACE MOUNT

DYNAPERT Pick and Place MPS111

- 2000cph test rate
- $457 \times 457 \mathrm{~mm}$ working area - Adhesive dispensing unit - Achesive dispensing unit - Self teach programming
- 30 or 60 way feeder capacity MPS318*
- 4000 cph test rate
- $457 \times 457 \mathrm{~mm}$ working area - Adhesive dispensing unit - Systems accuracy. $+/-0.2 \mathrm{~mm}$ - 60 way feeder capacity MPS318HR*
As the MPS318 with higher
resolution Theta Drive (0.1^{1})
- Options available for MPS318/HR
- Fiducial correction,
- Manual or autochuck
- Front and rear cropper
- Feeder compaction
- CCTV system for
programme ease
Pattern recognition
- 100 way feeder capacity

MPS500

- 6000 cph test rate
- $457 \times 356 \mathrm{~mm}$ working area - Adhesive dispenser
- Systems accuracy. $+/-0.1 \mathrm{~mm}$ - 120 way feeder capacity - Feeder compaction
- In-Ilne auto chuck

MPS525
Same specification as MPS500, but includes flying probe pattern recognition. 200 way feeder cpcty.

MPS2500

13000 cph test rate
$610 \times 457 \mathrm{~mm}$ working area
System accuracy: $+1-0.1 \mathrm{~mm}$ 0805 chip to PLCC84 Linear or carousel feeder carriage
Magazine Board Loaders Unloaders and Inverters available
OKANO OCM 8400IIL
4500 cph test rate
$460 \times 410 \mathrm{~mm}$ working area 60 feeder capacity
ISMECA 35019115 Bad board detection, Feeder pack

SMT Produetion Lines:

- Stayo

- Pamasenic WMK18
*-Siamans H\$180 Phone for Detalis:

SCREEN PRINTERS

DEK 240 Manual
$254 \times 203 \mathrm{~mm}$ print area Print stroke from 25 mm upwards

DEK 245 Semi-Automatic

- $254 \times 203 \mathrm{~mm}$ print area
- Print stroke:Halt $60 \mathrm{~mm} /$

Full 290 mm
Print registration +/- 25 microns
DEK 247 Semi-Automatic

- $304 \times 304 \mathrm{~mm}$ print area
- Electronic control of print head Print registration: +/- 25 microns
DEK 255 Pass Thru Automatic
- Motorised automatic print cycle
Screen adjustment
$X, Y+/-10 \mathrm{~mm}$
DYNAPERT MPM ASP-24 Automatic
- $500 \times 500 \mathrm{~mm}$ print area
- Stand alone or inline

REFLOW OVENS
MCBT 6820 Belt type hot platen SURF UV/IR adhesive curing oven HERAEUS CM-V/24-IR/T21-PC adhesive curing oven
UNIVERSAL 4813C curing and reflow
IEMME IM750 infrared reflow
ENVIRONMENTAL OVENS
MONFORD: -70 c to +200 c . Liq Nit
GALLENKAMP: Amb to +60 . Humid GALLENKAMP: Amb to +60 . Hum
HERAEUS: Ambient to 250 c HERAEUS: Vacuum. +40 to +180

THRU-HOLE Panasonic Completer Panasonic radial and axial ition. Consisting of Hactial RH6 - Axiay AV Phus toaders/tunloaders. Phone for detay

AMISTAR A16448

Axial Lead Component Inserter
Sequencer/Inserter
VCD Head
Component Verifier
64 fixed reels/48 Cartridges AL300 Cartridge Loader
AMISTAR CI3000: Dip socket inserter
TDK VC4H
Upgraded to the VC5 insertion head. Complete line. Phone for details
ROBIN AMBOTECH

- Automatic axial radial machine

NAROON:SITAHOO

Board Thet System fully config-
fined Plus latest firmware and
Software upgesogs
HEEA LIGHT GUIDED ASSEMELY

- For sart ar baded componentie - Quantly avalaitia

ELECTHOVERT CENTUAY 2000S WWE SOLDERER Mols Periontance Kfero Frocessior: Wave Siolder Machine With auto solder wire feed feplonistinmant:

HUGHES 2460-11

FAE EOMDER
fitigh spood single point tape fulomated border (fA位).

TEST EQUIPMENT

 Signal Analysers:HP 3582A Dynamic signal analyse $0.02 \mathrm{~Hz}-25.5 \mathrm{kHz}$
TEK AM503S Current probe
amplifier system
Signal Sources:
HP 8640B 0.5 to 512 MHz .AM FM PM Signal gen
HP8662A 10 kHz to 1280 MHz signal/sweep gen HP3335A synthesizerflevel genera tor 200 Hz to 81 MHz
Oscilloscopes:
TEK 2445150 Mhz 4 channel TEK 2201DSO 10 MHz Digital storage
TEK 222 Hand-held battery portable 10 MHz DSO Audio/TV Test: Abacus ARTA600 Audio real time analyser System video 2461 Gencoder

TEL: 071-2844074 FAX: 071-267 7363
Alternative Distribution (UK) Ltd., 146 Camden Street, London NW1 9PF England. Tel + 44712844074

CIRCLENO. 118 ON REPLY CARD

KESTREL ELECTRONIC COMPONENTS LTD

埌 All items guaranteed to manufacturers' spec.
\& Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	$100+$
EPROMS			STATIC RAMS		
27C64-150	2.30	1.68	62256LP-10	3.00	2.25
27256-25	2.20	1.85	$6264 L P-10$	1.85	2.28
27C256-15	2.50	2.20	$6522 P$	2.40	1.80
27C512-15	3.00	2.40	65C02P2	2.90	2.38
27C010-15	5.60	3.70	65C21P2	2.90	2.50
27C020-15	6.20	4.30	65C22P2	2.80	2.30
27C040-15	9.60	7.00	MC146818AP	2.20	1.65
MAX232	1.35	0.95	MM58274CN	4.90	3.98
D8748H	4.20	3.40	SN75176BP	1.60	0.80
D8749H	4.40	3.50	Z80A CPU	1.50	1.00
80C31-12	2.60	1.80	Z80A CTC	1.30	0.85
80C85A	2.60	1.80	Z80A DART	2.10	1.40
82C55-8MEG	1.95	1.58	1488P/1489P	0.32	0.25

$74 \mathrm{LS}, 74 \mathrm{HC}, 74 \mathrm{HCT}$ Series available
Phone for full price list
All memory prices are fluctuating daily, please phone to confirm prices
178 Brighton Road,
Purley, Surrey CR8 4HA
Tel: 081-668 7522. Fax: 081-6684190.

JPG Electronics

are also recommended, as is low output offset voltage to stop any noticeable direct current flowing into the transformer winding.
Other requirements are wide bandwidth and high slew rate so that the correction capability of the auxiliary amplifier is extended to the highest harmonics of audio signals.
Output voltage and current handling capabilities of the auxiliary amplifier are dictated by the peak values of load current and corrective voltage: $V_{1} \cong n V_{\text {ap }}$ and $I_{1} \cong I_{\text {op }} / n$ where $n=N_{1} / N_{2}$ is the turns ratio and is $\gg 1$. The turns ratio is used to trade-off voltage for current to reach the best level of performance of A_{2} with a reasonable power consumption. For example, $I_{\text {op }}=8 \mathrm{~A}, V_{\mathrm{ap}}=0.5 \mathrm{~V}$ and $n=40$ gives $V_{1}=20 \mathrm{~V}$ and $I_{1}=0.2 \mathrm{~A}$. Therefore, A_{2} can be powered from $\pm 25 \mathrm{~V}$ and its output stage biased at 0.2 A for class A operation.
Only 10W of power is consumed by the auxiliary amplifier - a reasonable and worthy amount if compared with the 256 W of undistorted audio power furnished to an 8Ω load.

Auxiliary considerations

An important, yet often overlooked, characteristic of feed-forward schemes based upon Black's principle, is that the voltage across the load is not defined by the power amplifier, but by the auxiliary amplifier only. In other words V_{0} is not theoretically dependent on power amplifier parameters (output impedance, gain, linearity etc). Power amplifier output could even be completely uncorrelated with V_{i}, and power amplifier output impedance could be high and non-linear without affecting the output voltage value ($V_{0}=-G_{0} V_{\mathrm{i}}$ in Fig. 5).
We can also deduce, mathematically, that $V_{\mathrm{a}}=V_{\mathrm{i}} G_{0}+V_{\mathrm{p}}$ and $V_{0}=V_{\mathrm{p}}-V_{1} G_{0}-V_{\mathrm{p}}=-V_{\mathrm{i}} G_{0}$ to show that output voltage is always equal to the desired value, regardless of the power amplifier output voltage V_{p}. So any deviation of V_{p} from its ideal value affects the output of the auxiliary amplifier but not output voltage V_{0}.
We reach the same conclusion if we take into account the non-zero output impedance of the power amplifier Fig. 6 - particularly important in the crossover and clipping regions, where comparatively high values of output impedance can be experienced.

Assume $G_{0} R_{3} \gg R_{\mathrm{pa}}$. In this case we have I_{f} $\ll I_{\mathrm{p}}$ so $I_{\mathrm{p}} \cong I_{0}$ and the node voltages are:
$V_{\mathrm{p}}=\left(V_{\mathrm{pa}}-V_{\mathrm{a}}\right) /\left(R_{0}+R_{\mathrm{pa}}\right)+V_{\mathrm{a}}$,
and,
$V_{\mathrm{a}}=V_{\mathrm{pa}}+G_{0} V_{\mathrm{i}}$.
Solving simultaneously, substituting and assuming in normal operation that $V_{\mathrm{pa}}=-G_{0} V_{\mathrm{i}}+E_{\mathrm{p}}$, we have:
$V_{\mathrm{p}}=-G_{0} V_{\mathrm{i}}\left(1-R_{\mathrm{pa}} / R_{0}\right)+E_{\mathrm{p}}$
and

$$
V_{\mathrm{a}}=G_{0} V_{\mathrm{i}} R_{\mathrm{p} a} / R_{0}+E_{\mathrm{p}}
$$

You can see that the auxiliary amplifier has to contribute a certain amount of signal voltage to the load in addition to the copy of the error voltage E_{p}. This amount is proportional to the ratio R_{pa} / R_{0}.
Power amplifiers with poorly biased class $A B$ output stages can actually have closed loop-output impedances comparable with load impedance, at least in the crossover region. In such cases, the auxiliary amplifier contribution to the output signal voltage in the crossover region can prove significant.
Clearly, the role of forcing the desired voltage across the load is undertaken by the auxiliary amplifier.
In well-designed feed-forward amplifiers, the power amplifier provides the power to the load, while the auxiliary amplifier is limited to providing accuracy and precision only. Nevertheless, should the power amplifier fail to do its job (for instance due to crossover mechanism), the auxiliary amplifier would be forced to provide power as well as precision. Obviously, the auxiliary amplifier is designed to provide only a limited amount of precise corrective voltage.
It is worth noting that the auxiliary amplifier is always stable because even with the worst-case positive feedback factor ($\left.\boldsymbol{R}_{\mathrm{pa}}=\infty\right)$,

$$
F_{\mathrm{p}}=R_{3} /\left[R_{3}\left(1+G_{0}{ }^{\prime}\right)+R_{0}\right]
$$

Turning Black's feed-forward principle into practice

Load impedance 'seen' by amplifier A_{2} is high enough to allow true low distortion operation of the auxiliary amplifier.
Auxiliary amplifier has to process only small error components, and being class A operated, its percent error contribution to load current is extremely low.
There is no appreciable common-mode-induced distortion because component $V_{e}^{*}=V_{e}\left(V_{i}\right)$ is virtually zero.
Transformer distortion, if any, is reduced in proportion to the loop gain
of the auxiliary amplifier
Extremely low open loop output impedance means the auxiliary amplifier's closed loop gain and distortion performance are insensitive to load impedance variations.
Wide bandwidth achievable for the low power auxiliary amplifier also allows a large reduction of the highest harmonics of audio signals.
Error correction technique (Fig. 5) can be applied to all power amplifier circuit configurations, with inverting as well as non-inverting gain.

Magnetic flux cancellation

This diagram helps analyse the mechanism of magnetic flux cancellation $\Phi\left(\mathrm{V}_{\mathrm{i}}\right)$ in the transfomer core, due to main signal current $\mathrm{I}_{\mathrm{p}}=V_{\mathrm{p}} / R_{0}=-\mathrm{G}_{0} V_{\mathrm{i}} / R_{0}$. It is operated by the auxiliary amplifier.
$\Phi\left(V_{i}\right) \cong V_{2}\left(V_{i}\right) /\left(2 \pi j N_{2}\right)$
$V_{2}\left(V_{i}\right) \cong-G_{0} V_{i} \frac{R}{n^{2} R_{0}} \cdot \frac{1}{\left\{1+A_{2} /\left[n\left(1+G_{0}{ }^{\prime \prime}\right)\right]\right\}}$
From this,

$$
\lim V_{2}\left(V_{i}\right)=\Phi\left(V_{i}\right)=0
$$

$$
\left(A_{2} \rightarrow \infty \text { and/or } R \rightarrow 0\right)
$$

is always lower than the negative feedback factor $F_{n}=R_{2} /\left[R_{2}\left(1+G_{0}{ }^{\prime \prime}\right)\right]$ when $G_{0}{ }^{\prime}=G_{0}{ }^{\prime \prime}$.

Practical circuit

In a practical circuit implementation (Fig. 7), the first-order error due to the finite gainbandwidth product of the amplifiers can be taken into account and compensated for.
Transformer $T R$ is modified to provide error correction to a grounded load and its secondary windings W_{2} and W_{3} are close-coupled to assure that $V_{\mathrm{a}}{ }^{\prime}=V_{\mathrm{a}}$. Follower B buffers the input voltage source and the phase-amplitudeequaliser ($R_{10}, R_{1 \mid}$ and C_{4}) from the criterion network. R_{g} and C_{5} form an input low-pass filter cutting off input frequencies above 100 kHz . Decoupling C_{2} avoids undesired dc operation with the auxiliary amplifier. Trimmers T_{1}, T_{2} and T_{3} facilitate calibration of the complete amplifier and help achieve the best distortion performance.
In analysing the circuit, the effects of C_{2} on the output voltage can be neglected, with C_{2} assumed to be ∞.
In the Zobel network ($R_{2}, C_{z}, R_{\mathrm{s}}$ and L_{s}) commonly used at the output of class AB audio power amplifiers, R_{s} and L_{s} in conjunction with C_{6} implement the λ amplitude-phase equalisation network (Fig. 2).
As well as its normal role of separating the power amplifier from the load at frequencies far above the audio range, this network also limits positive feedback around the auxiliary amplifier at the highest frequencies, improving

FROM CONCEPT TO ARTWORK IN I DAY

Your design ideas are quickly captured using the ULTIcap schematic design Tool. ULTIcap uses REAL- IME checks to prevent logic errors. Schematic editing is painless; simply click your start and end points and ULTIcap automatically wires them for you. ULTI cap's auto snap to pin and auto junction features ensure your netlist is complete, thereby relieving you of tedious netlist checking.

ULTISh Il, the integrated user interlace, makes sure all
your de ign information is transferred correctly from your de ign information is transferred correctly from vital to the progress of your design, therefore ULTIboard gives you a powerfill suite of REAL-TIME functions such as, FORCE VECTORS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout.

Now yo can quickly route your critical tracks.
I ULTIDo rd's REAL-TIME DESIGN RULE CHECK will not llow you to make illegal connections or your design rules. ULTIboard's powertul TRACE SHOVE, and REROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vias and surface mount designs are fully supported.

If you need partial ground planes, then with the Dos extended board systems you can automatically create copper polygons simply by drawing the outline. The polygon is then filled with copper of the desired net, all correct pins are connected to the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTiboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, or the whole board. ULTlboard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.

ULTiboard's backannotation automatically updates your ULTIcap schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate pen / photo plots, dot matrixhaser or posiscript prints and custom drill files.
CIRCLENO. 121 ON REPLY CARD

ULTIboard/ULTIcap evaluation system: all features of the bigger versions

- full set of manuals
- design capacity 500 pins

Price incl. S \& H , excl. VAT:
£95
Purchase price is 100% credited when upgrading to a bigger version. • Also suitable for study \& hobby

ULTlboard PCB Design/ULTIcap

Schematic Design Systems are available
in low-cost DOS versions, fully compatible
with and upgradable to the 16 and 32 bit
DOS-extended and UNIX versions,
featuring unlimited design capacity.

Fig. 8. Complete circuit diagram of the power operational amplifier A_{1}. Output power into 8Ω is 100 W and slew rate is $60 \mathrm{~V} / \mathrm{\mu s}$.
frequency stability of the whole amplifier.
Resistor R_{8} controls the high frequency output impedance of $A A$. Trimmers T_{1} and T_{2} permit conditions to be satisfied. C_{3} compensates the frequency response of the auxiliary amplifier, and the input capacitance of A_{2}.
In the analysis, a single pole frequency response is taken for all amplifiers. So, in addition to condition $G_{0}{ }^{\prime}=G_{0}{ }^{\prime \prime}=G_{0}$, we shall assume $V_{\mathrm{p}}=\left[-V_{\mathrm{i}} G_{0} /\left(1+s / p_{\mathrm{i}}\right)\right]+E_{\mathrm{p}}$. Also,

$$
V_{\mathrm{b}}=V_{\mathrm{c}}\left(1+s / p_{3}\right) \cong V_{\mathrm{c}}=V_{\mathrm{i}}\left(1+s / z_{0}\right) /\left(1+s / p_{0}\right),
$$

where p_{0} is $1 /\left[C_{4}\left(R+R_{11}\right)\right], z_{0}$ is $1 / C_{4} R_{11}$ and V_{a} is $V_{\mathrm{e}}\left[\left(1+G_{0}\right) /\left(1+s / p_{2}\right)\right]+E_{\mathrm{a}}$.
In general we have $p_{3} \gg p_{1}$ and $p_{3} \gg p_{2}$ so that the assumption $V_{\mathrm{b}} \cong V_{\mathrm{c}}$ has no appreciable consequences.
As for λ - assuming a first order response of the auxiliary amplifier - we expect a first order low-pass frequency response so that $\lambda \cong 1 /\left(1+s / p_{5}\right)$ where $p_{5}=1 /\left(C_{6} R_{6}\right)$, corresponding to the assumption that $R_{5} \ll s L_{\mathrm{s}}$.
Regarding the value of the distortion rejection factor, the validity of the above expressions for λ and p_{5} is substantially independent on the load impedance value, since $V_{\mathrm{a}}{ }^{\prime}$ is applied in series with R_{0}. Then, according to Black's scheme in Fig. 2, applied to our circuit (Fig. 7), the error voltage V_{e} can be written as:

$$
V_{\mathrm{e}}=V_{\mathrm{i}}\left(\alpha+\gamma G_{\mathrm{p}}\right)+\gamma E_{\mathrm{p}}
$$

where

$$
\begin{aligned}
& \alpha=\left[\left(1+s / z_{0}\right) /\left(1+s / p_{0}\right)\right] \cdot\left[G_{0} /\left(1+G_{0}\right)\left(1+s / p_{4}\right)\right], \\
& \gamma=\left(1+s / z_{3}\right) /\left[\left(1+G_{0}\right)\left(1+s / p_{4}\right)\right], \\
& \gamma G_{\mathrm{p}}=-G_{0}\left(1+s / z_{3}\right) /\left[\left(1+G_{0}\right)\left(1+s / p_{1}\right)\left(1+s / p_{4}\right)\right], \\
& z_{3}=1 /\left(G_{0} R_{3} C_{3}\right)
\end{aligned}
$$

and

$$
p_{4}=\left(1+G_{0}\right) z_{3} .
$$

The condition that $\gamma G_{\mathrm{p}}=-a$ can be met if $p_{0}=p_{1}$ and $z_{0}=z_{3}$ so that the error V_{e} reduces to γE_{p}.
We also want to satisfy the condition $\gamma G_{\mathrm{a}}=\lambda$. Substituting for each term reveals that this condition is true if $z 3=p_{2}$ and $p_{5}=p_{4}$ so that $\rho=1 /\left(\lambda-\gamma G_{\mathrm{a}}\right)=\infty$. Therefore, the power amplifier error E_{p} turns out to have been completely removed from the output voltage and the above can be written as:

$$
p_{5}=p_{4}=\left(1+G_{0}\right) z_{3}=\left(+G_{0}\right) p_{2} \cong 2 \pi f_{\mathrm{T} 2},
$$

where $f_{\mathrm{T} 2}$ is the nominal gain-bandwidth product of the auxiliary amplifier.
The interpretation of making z_{3} equal to p_{2} and $p_{5}=p_{4}$ is that zero z_{3} is introduced to compensate for the first-order phase-amplitude errors caused by the pole p_{2} of the auxiliary
amplifier, while the low residual errors due to the collateral pole p_{4}, associated with block of the criterion network, are counteracted by means of the high frequency pole p_{5} of the phase-amplitude equalising network λ.
In other words we can state that all potential limitations of Black's feed-forward error-correction mechanism, due to the dominant pole of both the power and the auxiliary amplifier, have been actually counterbalanced in this practical implementation.
The more accurate expression of λ, written as $\lambda=\left(1+s / z_{\mathrm{s}}\right) /\left(1+s / z_{\mathrm{s}}+s^{2} / \omega_{0}^{2}\right)$ where z_{s} is $R_{\mathrm{s}} / L_{\mathrm{s}}$ and ω_{0}^{2} is $1 / L_{\mathrm{s}} C_{6}$ shows the additional potential of the λ network to compensate for a more realistic second-order frequency response of the auxiliary amplifier, by suitable choice of z_{s} and ω_{0}.
This accounts for the high distortion rejection factor (30 to 60 dB for frequencies up to 1 MHz) that has been measured after calibration on the prototypes (see 'Measurement results') with different load conditions. The end result is that very low distortion figures can be expected - and attained.
An additional property of the feed-forward implementation depicted in Fig. 7, with its floating winding $\left(W_{3}\right)$ able to inject the corrective voltage V_{a} into the load's loop, is that it easily lends itself to iterative application, reducing output error to extremely low levels.

Power op-amp A_{1} in practice

The viability of the error-correction technique discussed so far has been demonstrated by prototypes of an $100 \mathrm{~W} / 8 \Omega$ audio power amplifier (Figs. 8, 9 and 10), assembled and calibrated according to Fig. 7 using the theory analysed above.
Power op amp output stage (Fig. 8) includes

Main characteristics of A_{1}	
Output power into 8Ω	100 W
Output power into 4Ω	160 W
Slew rate	$\pm 60 \mathrm{~V} / \mu \mathrm{s}$
Power bandwidth	$\cong 200 \mathrm{kHz}$
Gain-bandwidth product \quad (measured at 1 MHz)	$\cong 11 \mathrm{MHz}$

two pairs of complementary n - and p -channel power mosfets whose quiescent current can be adjusted with trimmer T_{2}. Different supply rails are used to improve amplifier efficiency.
Output offset voltage can be adjusted with trimmer T_{1}.

Auxiliary op-amp A_{2}

Amplifier A_{2}, Fig. 9, has a mosfet output

Main characteristics - amplifier A_{2}	
Voltage gain	$\geq 10^{8}$
Output voltage range	$\cong \pm 20 \mathrm{~V}$
Output current range	
\quad Class A	$\equiv \pm 200 \mathrm{~mA}$
\quad Class AB	$\pm 800 \mathrm{~mA}$
Slew rate	$\cong \pm 500 \mathrm{~V} / \mu \mathrm{s}$

Gain-bandwidth product
(measured at 1 MHz) $\equiv 300 \mathrm{MHz}$
Output offset voltage $\equiv \pm 600 \mu \mathrm{~V}$

ENGINEERING \&SCIENTIFICPC

Plus MUCH more ...
Please CALL for your FREE copy of our latest Catalogue
OEM Deater \& Educational Enquiries Welcomt

SYSTEMS

Integrated Measurement Systems Ltd. 305-308 Solent Business Centre, Millbrook Rd West Southampton SO1 OHW, HAMPSHIRE ADMNTECH
Tel: (0703) 771143 Fax: (0703) 70430
Designers \& Suppllers of Measurement, Test \& Control Sy

ALL PRICES INCLUDE VAT TEST METERS Sate lite Finder
E. Eosy to use kil EFosy lo usi kill \quad E29.95 Fis melter
 inductonce 17 resisionce ranges $\mathbf{5 6 7 . 9 3}$
 Dighal Lux Meter
 Sound Level Meter Analogue Clamo Meter $\mathbf{£ 4 6 . 9 5}$ - 03300 omps ACS 5 ronges
 Digital Clamp Meter - KKolgit ll ronges hat lemperolure - Dato hold etc. \quad E56.95 ACDC Current Clamp
 Temperature Measureme
 BENCH INSTRUMENTS Digitol LED Copocitiance outoronge
bench melea 0.1%
O.00 LCR bíide 7 Digit trequency counter
10 H 2 O 20 MZ Fsingle meter - win mpler $0 / 24 \mathrm{~V}$ dc $013 \mathrm{mmps} \quad+£ 74.00$

 $0 / 30 v \mathrm{dc} 0 / 3 \mathrm{omps} \quad \pm \mathbf{E 1 4 0 . 0 0}$ Tiwn version $\quad=\ldots 250.00$ $5.15 v d c \quad 04$ amps $\quad+£ 52.95$ 599.95 SIGNAL SOURCES 2PA20Y AC (350MHZ Harmonics) $£ 122.00$ 5. range Audio Gen IOHz io 1 MHZ | Mine |
| :---: |
| $E 119.00$ |

ALL PRICES INCLUDE VAT OPEN 6 DAYS A WEEK info pock (SAE 36 p UK) Ret: TG \qquad
 CIRCIE NO. 130 ON REPLY CARD

CIRCLENO. 131 ON REPLY CARD

stage, biased by adjusting trimmer T_{1} at 200 mA for class A operation in normal working conditions. But it can operate in class AB operation, when A_{2} is forced to sink or source higher currents, due to variations in load impedance or clipping for example.
The circuit is a combination of a high-speed, high dynamic-range amplifiers ($T r_{1-17}$) and a precision integrated op-amp $/ C_{1}$. The main task of $I C_{1}$ is, with the help of coupling capacitor C_{a} and feedback resistor R_{a}, to keep the offset voltage below a few hundred millivolts and to increase the low frequency open loop gain of the overall amplifier.
$I C_{1}$ also helps reduce the low-frequency voltage noise ($1 / f$ noise) associated with jfet pair $\boldsymbol{T r}_{1,2}$

Main characteristics - buffer

TDH with $1 \mathrm{~V} / 600 \Omega$

$$
\text { from } 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}
$$

-3 dB small-signal bandwidth $\cong 15 \mathrm{MHz}$
Voltage noise density $\quad \cong 1 \mathrm{nV} / \mathrm{NHz}$
Slew rate $\equiv \pm 20 \mathrm{~V} / \mu \mathrm{s}$

Buffering

Buffer B of Fig. 10 consists of an op-amp voltage follower and makes use of a high-performance integrated operational amplifier, featuring low noise and very low distortion.

Transformer

Transformer $T R$'s core is a small toroid 23 mm external diameter, 14 mm internal diam-

Complete auxiliary amplifier and transformer characteristics	
Voltage gain	$\cong 18.1$
Gain-bandwidth product	$\cong 10 \mathrm{MHz}$
Slew rate	$\cong \pm 17 \mathrm{~V} / \mathrm{\mu s}$
Thd+noise @ 5 kHz	$\cong 0.01 \%$
Thd, $V_{a}=0.5 \mathrm{~V} / 1 \Omega$ @ 00 kHz	$\cong 0.05 \%$

eter and 7 mm high. Its cross-sectional area S_{e} is approximately $31 \mathrm{~mm}^{2}$. The core material is Ferroxcube-grade 3E2, having a saturation flux density B_{s} of about 350 mT , and a useful linear range of $\pm 200 \mathrm{mT}$. Turns ratio n is 30 ($N_{1}=300, N_{2}=N_{3}=10$).
Secondary windings W_{2} and W_{3} are closecoupled with parallel and cross-coupled thick

Fig. 9. Power output requirement for the auxiliary operational amplifier, A_{2} is lower. In class A, output is $\pm 200 \mathrm{~mA}$ while in class $A B$ it rises to $\pm 800 \mathrm{~mA}$.

Step I: Jumper J_{1} is opened to isolate $A A$.
Step 2: Comer frequency of both $P A$ and $A A$ is measured and recorded $\left(G_{0}{ }^{\prime \prime} \cong G_{0} \cong 18.1\right)$.
$f_{\mathrm{cl}}=p_{1} / 2 \pi \cong 422 \mathrm{kHz}$
$f_{\mathrm{c} 2}=p_{2} / 2 \pi \cong 650 \mathrm{kHz}$
Step 3: Nominal value of C_{3} is determined with $z_{3}=p_{2}$:
$C_{3}=1 /\left(G_{0} R_{3} p_{2}\right) \cong 13.5 \mathrm{pF}$.
Step 4: Nominal values of C_{4}, R_{10} and $R_{1!}$ are found by applying $p_{0}=1 / C_{4}\left(R_{10}+R_{11}\right)$ and $z_{0}=1 / C_{4} R_{11}$ and using $p_{0}=p_{1}$ and $z_{0}=z_{3}$. Since $R_{10}+R_{11}=R_{\mathrm{T} 3}=2 \mathrm{k} \Omega$ we obtain:
$C_{4}=1 /\left[\left(R_{10}+R_{11}\right) p_{1}\right] \cong 188 \mathrm{pF}$
$R_{11}=1 / C_{4} z_{3}=1 / C_{4} p_{2} \cong 1.3 \mathrm{k} \Omega$.
Step 5: The aim is to meet the condition defined by $\gamma G_{a}=\lambda$. Signal $V_{i}^{\prime}=100 \mathrm{mV} / 3 \mathrm{kHz}$ is applied to the input and trimmer T_{1} is adjusted so that $V_{\mathrm{e}}^{*}=V_{\mathrm{e}}\left(V_{\mathrm{i}}\right)$ reaches a minimum. Then the frequency is increased to 100 kHz and trimmer T_{3} is adjusted so that $V_{\mathrm{e}}{ }^{*}$ $=V_{\mathrm{e}}\left(V_{\mathrm{i}}\right)$ is again at a minimum.

Step 6: Connect jumper J_{1} and repeat step 5.
Step 7: Input of the amplifier is grounded and a forced error signal E_{pn} is produced at the output of $P A$ by applying the input voltage V_{n} $\cong 50 \mathrm{mV}$ (the amplitude of V_{n} must be kept below the limits set by $V_{\text {am }}=2 \pi f B_{\mathrm{m}} S_{\mathrm{e}} N_{2}$, as shown in Fig. 7. Since $E_{\mathrm{pn}}=E_{\mathrm{n}}$, this method maximises, in a wide frequency range (up to 1 MHz), the distortion rejection factor ρ $=1 /\left(\lambda-\gamma G_{p}\right)$ of the auxiliary amplifier.
Frequency of V_{n} is first set at 3 kHz and trimmer T_{2} is adjusted so that the output voltage $V_{0}\left(V_{\mathrm{n}}\right)$ is at a minimum. Then, the frequency is increased to 300 kHz and C_{3} is adjusted again to have maximum rejection. A network analyser would simplify amplifier calibration, allowing optimization of π in the 1 kHz to 1 MHz frequency range.

Step 8: Repeat step 5

Measurement results

Figure 11 shows the magnitude of the distortion rejection factor as a function of frequency,
achieved for the experimental prototypes which have been calibrated.
We see that π values extending from magnitudes of $30-60 \mathrm{~dB}$ have been achieved in the wide frequency range 200 Hz to 1 MHz . Even better results can be expected with more care taken in layout and power distribution design. These values translate into an equivalent degree of reduction of the total harmonic distortion, thd, of the power amplifier, as demonstrated by test results (Figs. 12 and 13).
Two significant levels of the total bias current $I_{\text {bias }}$ of the power amplifier mosfet output stage are taken into account. The first one, $I_{\text {bias }}=1 \mathrm{~mA}$, representing a very poor biasing level, helps prove the ability of the proposed technique to counter-balance the effects of the comparatively high output impedance of the power amplifier in the crossover region.
In addition, it shows the ability of feed-forward to reject high-order harmonics normally generated by poorly-biased output stages.
The second level, $I_{\text {bias }}=100 \mathrm{~mA}$, is closer to the normal level of biasing of power mosfet output stages and demonstrates the effectiveness of the proposed technique to correct small amounts of distortion.
Results (Figs. 12 and 13) show that the measured improvement ratio of about 30 dB is in good agreement with the value of distortion rejection reported in Fig. 11, and gives clear evidence of the effectiveness of the proposed feed-forward technique.
Only the worst case ($f=20 \mathrm{kHz}$) thd+noise versus output level (volt peak-to-peak/ 8Ω load) is reported. All other measurements taken at $f<10 \mathrm{kHz}$ are, after applying the error correction technique, very close to the instrumentation limits.
Effectiveness of the distortion rejection mechanism with audio programs, has also been simulated by superposing a white-noise voltage at the output of the power amplifier.
A white-noise level of $V_{\mathrm{n}}=0.5 \mathrm{Vrms}$ was injected at input node N while the amplifier was delivering $20 \mathrm{Vpk}-\mathrm{pk}$ to the load with f at 1 kHz . Unfiltered noise appearing across the load was 32 dB lower than that measured at the output of PA - a high level of rejection in agreement with theoretical expectations.
The final test report refers to the output noise levels of the amplifier, before and after correction. They are 0.79 mV and 0.38 mV , respectively.

Components

These component values were used in the prototype. All resistors have 1% tolerance.

R_{1}	$=12.5 \mathrm{k} \Omega$
$G_{0} R_{1}$	$=226 \mathrm{k} \Omega$
C_{0}	$=18.08$
R_{2}	$=89.6 \Omega$ (nom)
$C_{0}{ }^{\prime \prime} R_{2}$	$=1.62 \mathrm{k} \Omega$
R_{4}	$=10 \mathrm{k} \Omega$
R_{5}	$=5 \Omega$
R_{6}	$=110 \Omega$
R_{7}	$=332 \Omega$
R_{8}	$=5.11 \Omega$
R_{9}	$=1 \mathrm{k} \Omega$
R_{10}	$=0.7 \mathrm{k} \Omega$ (nom)
R_{11}	$=1.3 \mathrm{k} \Omega$ (nom)
R_{12}	$=4.7 \mathrm{k} \Omega$
R_{13}	$=909 \Omega$
R_{14}	$=17.8 \mathrm{k} \Omega$
C_{2}	$=1 \mu \mathrm{f}$
C_{3}	$=13.5 \mathrm{pF}$ (nom)
C_{4}	$\cong 188 \mathrm{pF}$ (nom)
C_{6}	$=13.5 \mathrm{nF}$
T_{1}	$=220 \Omega$
T_{2}	$=1 \mathrm{k} \Omega$
T_{3}	$=2 \mathrm{k} \Omega$
L_{s}	$=1 \mu \mathrm{H}$
R_{s}	$=8 \Omega$
R_{z}	$=10 \Omega$
C_{z}	$=47 \mathrm{nF}$

References

1. H S Black, Translating System, US Patent 1686792 (1928 Oct. 9).
2. H Seidel, H R Beurrier, and A N Friedman, Error-Controlled High Power Linear Amplifier at VHF, Bell Sys Tech /, Vol. 47, pp. 651-722 (1968 May-June).
3. J Vanderkooy, S P Lipshitz, Feed-forward Error Correction in Power Amplifiers, I Audio Eng Soc, Vol. 28, N 1/2, (1980
January/February).
4. D Self, Distortion in Power Amplifier, 5: output stage, $E W+W W$, Vol 99, No 1693, pp.1009-1014, (1993 December). 5. P J Walker, Current Dumping Audio Amplifier, Wireless World, Vol. 81, pp.560562, (1975 December).
5. S Takahashi, S Tanaka, Design and construction of a Feed-forward ErrorCorrection Amplifier, J Audio Eng Soc, Vol. 29, No. 1/2, pp.31-37, (1981 January/February). 7. G Stochino, Italian Patent Application No RM93. A000611, (1993 September 10).

ONE MONTH ONL Y SPECIAL OFFERS

GOULD OS250A-S2 OSCILLOSCOPES
Dual Trace Cal to 10MHz. Use to 30Mhz typ
Tested \& Calibration Verified ONLY £99.00
FARNELLDSG2M
SYNTHESISED SIGNAL GENERATORS
Precision generators from 0.001 Hz to 110 Khz 5000 hm \& 300ohm Outputs Fitted IEEE (GPIB)
Range Sweep Incl Manual ONLY £125.00

HEWLETT PACKARD 1600A LOGIC STATE ANALYSERS incl PODS....16bit...50MHz ONLY $£ 99.00$
HEWLETT PACKARD 1607A
LOGIC STATE ANALYSERS incl PODS...16bit...50MHz ONLY $£ 79.00$
Both 1600A \& 1607A (32bits) ONLY £149.00

RACAL DANA 9904
UNIVERSAL COUNTER TIMERS 7 Digit LED Display Measures Frequency...Period... Interval etc etc Calibration to 50 MHZ
Typically OK to 85 MHZ
FEW ONLY at $£ 55.00$

MARCONI TF2603
RF MILLIVOLTMETERS 1 mV to 300 V fsd to 1500 Mhz incl probe ONLY £75.00

AVO HF135

RF SIGNAL GENERATORS 100 Khz to 240 MHz

Int/Ext Mod
ONLY £75.00

NOW OPEN SEVEN DAYS A WEEK

Monday to Friday: 9.00 am to $6.00 \mathrm{pm} \quad$ Saturday: $\mathbf{8 . 0 0} \mathrm{am}$ to 4.00 pm SUNDAY: 10.00 am to 4.00 pm

ALL EQUIPMENT TESTED WITH VERIFIED CALIBRATION

NEW WAVE MICROWAVES

7: mixers and signal conversion

Microwave signals must be detected and demodulated to reveal their information. Mike Hosking describes components and circuits for this application.

*Mike Hosking is a lecturer in telecommunications and microwaves at the University of Portsmouth.

So far in this series, solid state devices encountered have been those associated with microwave signal generation and amplification. The complement to this is the extraction of information contained in the signal if any. Information may take the form of carrier frequency and power level together with any amplitude, frequency, phase, pulse or code modulation.

Other things may be important... attenuation, amplitude and pulse modulation and limiting. Phase shifting is also required, together with signal routing, as in multi-throw switches. For instance, phased array radars require electronic control of phase and amplitude to each element for beam shaping and steering; microwave receiver applications generally require input limiting for receiver protection; communication systems often use frequency or channel switching for frequency or time division multiplexing.

Signal detection

Diodes are the mainstay of microwave signal detection. Two forms of circuit are commonly employed: the simple diode detector, Fig. 1a), or down-converter of Fig. 1b).
At the higher frequencies, the technology of the diode is different with much attention paid to reducing parasitic reactances associated with packaging and bond wires. Diode types include point contact, a chemically sharpened metallic whisker is brought into physical contact with the semiconductor; the backward diode, a pn junction which operates by tunnelling action. A bipolar transistor or fet junction itself may be used as the non-linear detection element. However, the most common form of microwave diode is the Schotlky barrier device.

As operating frequencies increase into the microwave region, charge storage makes the pn junction less effective which limits switching speed. The Schottky diode is a metalsemiconductor junction (Fig. 2) made with either Si or GaAs . The junction area is defined by etching a small hole in the oxide passivation layer and depositing a metallic contact (in a choice of metals or alloys) on top of the hole. Bonded contact to the external circuitry is then made to the deposited metal.
With no external voltage applied to the junction, electrons in the n-type layer diffuse into the metal contact, leaving behind a spacecharge, or depletion region containing positive charge. This fixed charge tends to inhibit the further flow of electrons until a threshold voltage is reached. This point, the built-in potential difference, is called the barrier height of the Schottky junction. Depending upon choice of metal and semiconductor, this barrier lies typically between 0.3 V and IV . Externally applied voltage beyond this causes the junction to behave as other rectifying junctions.
The key Schottky feature is the fact that the depletion region is highly insulating with virtually no minority carrier current (1pA or less). Thus, the junction stores negligible charge and can switch extremely rapidly between forward and reverse bias making it suitable for high frequency operation.
Simple diode detection finds use in instrumentation: for example, as part of the AGC in signal generators and as a sensor in the measurement of 's' parameters using a scaler network analyzer (Fig. 3).
Certain types of radar detection and surveillance receivers also use wideband diode detection for the reception and de-interleaving of complex pulse trains. In addition, as the detec-

Fig. 2. The Schottky barrier diode is one of the main devices for microwave detectors and mixers, as its virtual absence of minority carriers results in negligible charge storage and fast response.

Fig. 4. A collection of diode detector circuit modules available to the microwave designer, already matched and with either standard connectors or with pins for 'drop-in' application. Courtesy of M/A Com Ltd.

(a)

Fig. 3a. One typical application of the diode detector is as part of a levelling loop to sample the amplitude of the main signal so that fluctuations can be reduced.

(b)
b). The diode is also found as the wideband sensor in scalar network analysis where the incident, reflected and transmitted signals are used to determine a component's s-parameters.

Fig. 5. Equipment used for the measurement of tangential sensitivity, determined by the coincidence of noise peaks on a pulse modulated signal.
tor output voltage is related to the microwave input power, a simple transfer calibration can yield a moderately accurate power meter, suitable for both peak and average power measurement.

Commercially available detectors with integral matching may cover an instantaneous bandwidth of 10 MHz to 20 GHz . Figure 4 shows a number of matched and packaged detectors suitable for direct circuit connection or as drop-in modules. A well designed diode and input matching circuit usually requires just an output rf bypass, with possibly a small dc bias and a video amplifier.
Detection sensitivity of the simple diode detector is typically several orders of magnitude less than that of a superheterodyne receiver; The limits are the barrier potential but, more so, the l/f noise and any dc bias current noise.
From a system point of view, the detector is performing a rectifying function and, thus, the output only contains information relating to the amplitude of the microwave input signal. Frequency and phase information is lost.

Detector specifications

A point of great interest is the minimum input power level which can be detected to provide a useable output. This results in a parameter, unique to microwave applications, called the
tangential sensitivity (TSS). For circuits and devices operating at microwave frequencies, there exists a conceptual difference from their lower frequency counterparts in the treatment of voltage and current. These quantities have little physical significance at small wavelengths as they cannot be measured directly. Furthermore, being a function of position within the transmission line circuits, they have no unique value. Instead, circuit analysis is performed using electric and magnetic field distributions and the quantities actually measured are power and impedance. Also, as we saw earlier in the series, the situation is complicated further when a particular circuit element, active or passive, becomes a significant fraction of a wavelength in extent. Fig. 5 shows the test arrangement for the measurement of TSS: a microwave signal generator on/off square wave modulation and variable signal amplitude control.
The output of the diode under test is taken to an oscilloscope display via a video amplifier. With no microwave signal present, the display will be just the amplified thermal noise from the test system but, as the signal amplitude is increased from zero, the square wave modu lated output from the detector will appear. The TSS is defined as that input power level at which the peak noise level without the signal coincides with the lowest levels on the square
wave pulse when the signal is present as indicated in Fig. 5.
Although this is a subjective measurement and operator dependant, it has been found to be repeatable to within about 1 dB and is still the method most widely used by diode manufacturers for specifying the low-level sensitivity. The units of TSS are invariably quoted in dB , as a power level with respect to a 1 mW reference; i.e. dBm . Values of -50 to -55 dBm are typical for good detectors $\left(<10^{-8} \mathrm{~W}\right)$. For purposes of calculation consistency, the TSS is usually taken as an input rms signal to noise ratio of $2.5(4 \mathrm{~dB})$ and this should also be referenced to the noise bandwidth and noise figure of the video amplifier.
A further parameter of interest is the actual voltage output from the detector, compared with the microwave power input. This is termed the voltage sensitivity and, while intrinsically having the units of volts per watt, is colloquially quoted in $\mathrm{mV} / \mu \mathrm{W}$. Typical, low power open circuit voltage sensitivities for silicon Schottky barrier and point contact diodes range from about $1 \mathrm{mV} / \mu \mathrm{W}$ to $15 \mathrm{mV} / \mu \mathrm{W}$.
The actual achievable sensitivity is dependent on a further parameter: the output resistance of the diode (usually called the video resistance R_{v}) and its associated loading by any external circuit resistance R_{L}. For Si

SYSTEM: Programs $24,28,32$ pin EPROMS, EEPROMS FLASH and Emulators as standard, quickly, reliably and at low cost.

Expandable to cover virtually any programmable part including serial EEPROMs, PALs, GALs, EPLDs and microcontrollers, in many different packages.
DESIGN: Not a plug in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to control sottware, cable and manual.
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

ASK FOR FREE INFORMATION PACK
IRELAND 1-2800395 GERMANY 089/4602071
NORWAY 0702-17890 $\begin{array}{ll}\text { NORWAY } & \text { 0702-17890 } \\ \text { ITALY } & 0292103554\end{array}$ FRANCE $\quad 169301379$ FRANCE
SWEDEN 0859032185 Also from ELECTROSPEED UK Malmesbury, Wiltshire. SN16 OBX. UK TEL. 0666825146 FAX. 0666825141

PLEASE SEND ME FULL DETAILS, CONFERENCE PROGRAMME AND FREE TICKETS TO THE EXHIBITION

Name \qquad Position \qquad
Company \qquad
Address \qquad

Tel \qquad Fax \qquad
SEND TO : LOW POWER RADIO ASSOCIATION The Old Vicarage, Haley Hill, Halifax, HX3 6DR.

OR CONTACT HOLLY McGILL NOWON TEL : 0422380397 FAX: 0422355604

Fig. 6. The diode V/I characteristic passes from a square-law region to linear and into saturation with a forward voltage drop before conduction takes place. In the square-law region, the OUTPUT voltage is directly proportional to the INPUT power.
detector diodes, R_{v} is typically $1 \mathrm{k} \Omega$ to several $\mathrm{k} \Omega$, although higher values are possible at low microwave frequencies. Thus, the voltage sensitivity will be degraded by the factor and so, for maximum output, R_{L} must be high.
When detecting pulsed input signals, the fidelity of the pulse output depends upon the time constant set by the output resistance and capacitance. There is, thus, a trade-off which can be made: sacrificing voltage sensitivity with a small value of load resistance (say 50Ω) in order to speed up the rise time.
Input power level also affects the diode parameters and Fig. 6 illustrates this for several values of load resistance. The main features of the curves are the three regions of different slope. Firstly, at low power levels typically less than a microwatt, the curve follows a square law, so that the output voltage becomes directly proportional to the output power. As the input power level rises, the detection law changes to linear and then starts to saturate. The video resistance and sensitivity properties also change so, for the circuit designer, different matching techniques must be used, depending upon whether the detector is to be optimised for high output, wideband, or flat response.

Mixing

Radar and communications systems require the ability to receive signals much lower in
amplitude than those which can be detected with a simple diode. A level of one picowatt $\left(10^{-12} \mathrm{~W}\right)$ is not uncommon. For these systems, the process employed uses a separate local oscillator for carrier injection into the mixer circuit. Within the context of this article, the key component is the Schottky barrier diode again, although optimised for the frequency conversion rather than simple detection.
The mixing process combines the microwave input signal with the local oscillator (10), at the terminals of one or more diodes. The lo signal is normally orders of magnitude larger (about 1 mw per diode) than the microwave input and serves to switch the diode(s) between conducting and non-conducting states during each cycle.
This action is analogous to a sampling process and results in the non-linear V - I characteristic of the diode generating a theoretically infinite series of harmonics and sidebands of the lo and input signals. In the down-converting mixer, only one of these outputs is required: the difference frequency between the microwave input and the lo (intermediate frequency, IF). Other components generated in the mixing process, shown graphically in Fig. 7 , are a dc level caused by rectification of the lo signal, together with the sum frequency (or upper sideband) of the two inputs. All of these are rejected by filtering.
Intermediate frequencies of several hundred Leading the way in Windows EDA

Protel for Windows - First in Windows EDA

Advanced Schematic 2.0

- Heads up guided wiring.
- Pop up library editor/manager.
- $15,000+$ component library with graphical browsing.
- Easy navigation through complex hierarchical designs with our Project Manager.
- Font management system.
- Forward and backward annotation between schematic and PCB (ECO).
- Bidirectional cross-probing between schematic and PCB.
- SPICE simulation support.
- EEsof simulation support.
- EDIF netlist output.
* Full support for loading 32-bit OrCAD SDT $386+$ file format.
Protel for Windows - First in Windows EDA

Advanced PCB 2.0

- 32-bit, 0.000001 " resolution.

- Unlimited database size.
- Fully editable copper pour.
- On-line design rule checking.
- Forward and backward annotation between schematic and PCB (ECO).
- Bidirectional cross-probing between schematic and PCB.
- Direct loading of Gerber, PADS, PCAD \& Tango file formats.
- Optional integration to Cooper \& Chyan's SPECCTRA autorouter.
To find out more about Protel for Windows please contact us at...
Premier EDA Solutions Ltd,
133 Cardiff Road,

Reading,

Berks.

RG1 8ES.

Analog Module: Tuning an RF front end.

"Electronics Workbench

is the best simulator to

 design and verify circuits."Gorrion MacDonald
Production Engineer Technician

Electronics Workbench is a highly productive bench where you design and verify circuits in a fraction of the time. Connections are always perfect. Wires route themselves. And the simulated components and test instruments work just like the real thing.

Digital Module: Analyzing a logic circuit.
It's faster than building with actual components because you change connections and component values instantly. And since the simulated components are free, you don't need to replace burnt-out parts or keep an extensive inventory. The result: You save precious time and money. Guaranteed!
The standard for simplicity and power for over six years, Electronics Workbench is the most popular tool of its kind. It has gained worldwide acclaim as the ideal complement to any test bench. Fact: Over $\mathbf{9 0 \%}$ of our customers recommend it to their friends and colleagues.

Electronics Workbench

The electronics lab in a computerm Call: 440203233216
Robinson Marshall (Europe) PLC
Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF FAX: (44) 0203233210
*30-day money-back guarantee.
Snipoing charges - UK $£ 4.99$. Ail prices are plus v.a.T.
All trademarks are the property of ther respective owners.

- With the purchase of Electronics Workbench. Offer valio until Octooer 15, 1994

RF ENGINEERING

Fig. 7. The spectral components generated during the mixing process consist of a dc level, the IF and image and an infinite series of input signal and lo intermodulation products. Filtering and phase cancellation are used to extract the wanted IF containing the modulated information.

Fig. 8. In determining the performance of a mixer, two key parameters are the 1 dB compression point which indicates the onset of saturation and the 3 rd. order intercept point which indicates the power level at which intermodulation products will appear

MHz or less are common in microwave receivers, leading to easier signal processing than would be the case with an input signal at 10 's of GHz . Furthermore, all of the information content on the original signal is preserved in the down-conversion process and, knowing the lo frequency, the input carrier frequency can also be deduced.
The switching action overcomes sensitivity problems of the simple detector; The limit for the mixer is set by the efficiency of the conversion process and the thermal noise bandwidth. Other sources of noise, such as lo phase noise, together with the requirement for a finite signal-to-noise ratio, impose further limitations but the overall improvement is, typically, several orders of magnitude over the diode detector.
In very low noise receivers, the lo phase noise is important and so the oscillator can become quite costly. Another point is that whilst the mixer may be broadband in the sense of operating over a wide frequency range, it does not have a wide "instantaneous" bandwidth. This characteristic is fixed by the IF filter response and need only be wide enough to pass the information content of the carrier.Typically, this might be $1-1000 \mathrm{MHz}$ and so, if the input frequency is separated from that of the lo by more than this bandwidth, it will not be detected by the mixer. This means that in applications such as surveillance receivers and instrumentation spectrum analyzers, the lo must also be tuneable and often results in a bank of oscillators to cover the full input range. In effect, the mixer receiver sweeps a narrow "window" equal to the noise bandwidth across a much wider RF input band.

Mixer characteristics

Image frequency. The IF produced by an input signal occurs on both sides of the lo. For example, if the lo was at 30 GHz and the required IF was 100 MHz , then this could be produced by an input signal at either 29.9 GHz
or 31.1 GHz . If the wanted signal frequency was, say, at 31.1 GHz then the adjacent or interfering signal at 29.9 GHz (called the image) would also produce a simultaneous IF, which could be accepted by the receiver and degrade its performance.
Conversion loss. Conversion loss of the mixer is a measure of the efficiency of the mixing process and is normally quoted in dB . Conversion loss depends on the quality of the impedance match at the RF and IF ports; loss of input power due to the series resistance, R_{J} and capacitance, C_{J} of the diode junction. In turn, this loss is also a function of both the lo power level and the ratio of lo frequency to the cut-off frequency of the junction. This cutoff frequency is given by $1 / R_{\mathrm{J}} C_{\mathrm{J}}$, which should be as high a value as possible.
Noise figure. Perhaps the most important mixer parameter and related to the conversion loss, is that of the Noise Figure, F. This is a measure of the degradation in signal-to-noise ratio caused by the mixer as the signal undergoes the conversion process and becomes the IF. Noise figure can be related to the conversion loss by the inclusion of a noise temperature, t_{m}, which takes into account various internal noise mechanisms and the contribution from the IF amplifier, F_{IF}. So,

$$
F=\operatorname{Loss}\left(\mathrm{t}_{\mathrm{m}}+F_{\mathrm{IF}}-1\right)
$$

It has become common (though not universal) practice for manufacturers to quote noise figure assuming a nominal 1.5 dB for F_{IF}. Also, t_{m} is close to unity for many diodes. Thus, the quoted figure must be adjusted for amplifiers of different noise figures. Like many microwave components, the designer has the choice of buying from a wide range of mixers, already packaged and matched, to a quoted noise figure and, in this case, must be careful as to the exact definition implied. Noise performance is usually measured with a wideband noise source and so injects noise power at both signal and image frequencies.

This results in a 'double sideband' (dsb) noise figure, whereas it is the 'single sideband' (SSB) figure which is needed. As the DSB output will be twice that of the SSB, the noise figure will appear to be 3 dB better... check which is the one quoted.
Dynamic Range and Intermodulation. Most receivers have to operate over a wide range of signal strengths. The lower limit is determined by the inherent noise level, but it is also useful to define an upper limit. In addition, there is no guarantee that a receiver will have only a single wanted frequency at its input; there is a potential problem of spurious responses. Fig. 8 shows the form of a dynamic range plot for a non-linear device relating the input and output power, in this case for a mixer, but applicable in principle to amplifiers as well.
The difference between the absolute values of the two axes is the conversion loss, shown here for convenience as 10 dB . The fundamental response curve is that of the IF and it can be seen that this is a linear relationship up to a certain input power, when the mixer starts to saturate. Eventually, at a particular input power level, a 1 dB deviation from linear will occur and this is termed the 1 dB compression point of the mixer. Linear dynamic range is then defined from the noise level to this point.
If we have the situation of two closely spaced input signals at frequencies f_{1} and f_{2} (usually called 'tones' in this context) incident simultaneously at the mixer, then the non-linear device characteristic will result in the generation of harmonics, called intermodulation products. These take the form $m f_{1} \pm n f_{2}$, where $m(\neq-1)$ and $n(\neq 1)$ are integers. The order of a harmonic is defined as $m+n$ and the slope of the graph of output power in a particular harmonic against input power is equal to its order. This is shown in Fig. 8 for second and third order intermodulation products, the last of which causes the most concern to mixer users. Its frequency lies close to the wanted IF.
Thus, the better the mixer, the higher the input power level at which this product
becomes significant. Manufacturers quote the point at which the third order curve intersects the fundamental as the "third-order intercept point'. It is, in fact, the point at which the power in the intermodulation product equals the IF power and defines a spurious-free dynamic range for the mixer.

Mixer circuits

Considerable variation exists in the choice of diode mixer design, as specialised circuits can be chosen for particular applications. The number of diodes themselves in a particular mixer can vary from one to eight. Good mixer performance also depends on correctly matched lo and output circuitry. Fig. 9a shows a circuit using just one diode, a single-ended mixer. The coupler could be one of the types described earlier in the series, depending on the bandwidth required and the degree of isolation between ports. This last consideration makes wideband operation difficult and there is little scope, other than filtering, to reduce unwanted noise or mixing products. However, the circuit is simple and requires modest local oscillator power, 0 dBm or less. A more commonly encountered design is the balanced mixer of Fig. 9 b . This circuit was illustrated in microstrip form in Part 3. The coupler can be any of the 90° or 180° hybrid types such as branch line or Lange, depending upon the bandwidth. The two diodes of this configuration are connected in reverse polarity: a complete bipolar IF waveform is obtained by summing the diode outputs. This gives a good impedance match at the input ports, together with improved reduction of spurious mixing products. If a 180° hybrid is used then all even harmonics of one of the inputs (the lo, say) can be suppressed.
Another feature is that any am noise on the lo signal appears in antiphase at the two diode outputs and thus tends to cancel at the IF combiner. Harmonic suppression can be extended further using the double balanced circuit of Fig. 9c to reject all even harmonics of both input signals. Twice the lo power is required, injected via a balun shared with the IF, as there are now four diodes, but the dynamic range is also increased. By extending the basic mixer design still further, it is possible to achieve image rejection without having to attempt what would often be a prohibitively difficult or expensive filtering problem.
Although image and signal inputs produce identical output frequencies, the relative phase of these outputs is different and this can be used as a discriminating factor. Shown in Fig. 9c this type of mixer uses two separate balanced mixers with the signal input routed to each via a $3 \mathrm{~dB}, 90^{\circ}$ hybrid coupler; the lo is fed to each at the same phase via a power splitter. A similar, but lower frequency hybrid coupler produces two IF outputs, one of them the upper sideband and the other the lower sideband. It is then only necessary to terminate the output caused by the image.
Such mixers are complex to build over a wide band, but may deliver an image rejection of 20 dB or more. However, even if these mix-

ers were lossless, there would still be a conversion loss of 3 dB because the mixing process generates an equal power second image. By reactively terminating the mixer output at this image frequency, the power can be reflected back onto the diodes in the correct phase to recombine and thus improve the conversion efficiency. The practical improvement obtained is about 1 dB .
GaAs mesfets and derivatives may be used as the mixing element. At small drain-source voltages, the mesfet behaves as a voltage controlled linear resistor and thus mixing can take place with both signal and local oscillator signal applied to the gate. Alternatively, the nonlinearity of the transconductance can be used with the signal applied to the gate and the lo applied to the drain. Similar configurations to those above can be realised.

A more elegant technique uses dual-gate transistors to implement the configuration of Fig. 10. Such components exhibit a high conversion gain and a lower noise figure than single gate devices; they are also more suitable for integrated circuits and monolithic designs. This is the type of detector often used as the front-end for domestic satellite receivers.

Receiver front end

With the improvements to the noise figure of mesfet amplifiers, it is usual to precede the actual mixer or detector with a low-noise preamplifier. This is because the achievable noise figure from the amplifier can be much less than that from the mixer; so, provided that the amplifier has a reasonable gain, the contribution to the overall noise of the mixer second stage will be small.
For example, if the mixer has a noise figure of 6.5 dB and the preamplifier has a noise figure of 2 dB with an associated gain of 11 dB , then the total noise figure at the input would be 2.12 dB and the contribution of the 6.5 dB mixer noise figure to that of the overall noise figure is only 0.12 dB . There are still considerations, though, of amplifier dynamic range and intermodulation distortion which have to be taken into account in the same way as for the mixer.

Next Month. Superconductors in microwave circuits.

PC PAL VGA TO TV CONVERTER COnverts a colour TV Into a basic VGA screen. Complete with bullt in psu, lead and sware E49.95. Ideal for laptops or a cheap upgrade.
EMERGENCY LIGHTING UNT Complete unit with 2 double bulb floodights. built in charger and auto switch. Fully cased. ©v 8 Ah ead acid req'd. (secondhand) £4 ret MAG4P11.
GUIDED MISSILE WIRE. 4,200 metre reel of ultra thin 4 core insulated cable, 281 bs breaking strain, less than 1 mm thickl Ideal alams, intercoms, fishing, dolls house's etc. $£ 14.99$ ref MAG15P5 SIMCLAIR C5 13" WHEELS Complete with centre bearing (cyde type). tyre and inner tube. $£ 6$ ea ref MAG 6P10. Ideal go kart 300 v PANEL METER $70 \times 60 \times 50 \mathrm{MM}, \mathrm{AC}$, 90 degree scale. Good quality meter. $£ 5.99$ ref MAG 6P14. Ideal for monitoring mains etc. ASTEC SWITCHED MODE PSU 8 M4 1012 Gives $+5 @ 3.75 \mathrm{~A}$ +12 C1.5A. -12@. 4A. 230/110, cased, BM41012. E5.99 ret AUG6P3. TORRODLAL TX $30-0-30$ 480VA, Perfect for Mostet amplifers etc. 120 mm dia 55 mm thlck. $£ 18.99$ rel APR19.
AUTO SU NCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and
 FLOPPY DISCS DSDD Top quality 5.25° discs, these have been writen to once and are unused. Pacx of 20 is $£ 4$ rel AUG4P1. MOD WIRE Perfect for repainng PCB's, wirc wrap etc. Thin insulated wire on 500 m reets. Our price just $£ 9.99$ ret APR 10P8. 12v MOVING LIGHT Controller. Made by Hella, 6 channels rated at 90 watts each. Speed control, cased. $£ 34.99$ rel APR35. ECLATRON FLASH TUBE As used in police car flashing lights etc, full spec supplied, $60-100$ nashes a min. $£ 9.99$ rel APR10P5. 24v AC 96 WATT Cased power supply. New. £13.99 ret APR14 MILTARY SPEC GEIG ER COUNTERS Unused and straight rom Her majesty's forces $£ 50$ ref MAG 50P3.
STETHOSCOPE Fully functioning stethoscope, Ideal for listening to hearts, pipes, motors etc. $£ 6$ ref MAR6P6.
OUTDOOR SOLAR PATH LIGHT Captures sunlight during the day and automatically swiches on a bult in lamp at dusk Complete with seales lead acid battery etc. $\mathrm{E19.99}$ ref MAR20P1.
A LARM VERSION Of above unit comes withbuilt in alarm and pi
to deter intruders. Good value at just $£ 24.99$ ret MAR25P4
CLOCKMAKER KT Hours of fun making your own clock. com plete instructions and everything you need. £7.99 ref MARBP? CARETAKER VOLUMETRIC Alam, will cover the whole of the ground tioor against forcred entry. Includes mains power supply and ground door against forcred entry. Includes mains power supply anc bell if req'd. Retail $£ 150+$, curs? $£ 49.99$ ref MAR50P1.
TELEPHONE CABLE White 6 core 100 m reel complete with pack of 100 dips. Ideal 'phone extns etc. $£ 7.99$ ref MARBP3. IBM PC CASE AND PSU Ideal base for Duilding your ow P PC Ex equipment but OK. £9.99 each REF: JUN10P2.
MICRODRIVE STRIPPER Small cased tape dives ideal for stripping, lots of useful goodies induding a smant case, and lots of components. £2 each fef JUN2P3.
SOLAR POWER LAB SPECLAL You get TWO $66^{\circ} \times 6^{\circ}$ 6v 130 mA solar cells, 4 LED's, wire, buzzer, switch plus 1 relay ormotor. Supert value kit just 55.99 REF: MAG6P8
SOLID STATE RELAYS will switch 25A mains. Input 3.5-26 DC $57 \times 43 \times 21 \mathrm{~mm}$ wth terminal screws E 3.99 REF MAG4P10 300DPIA4 DTP MONTOR Brand new but shop soiled so hence bargain pricelTTLECL inputs, $15^{\text {- }}$ landscape. 1200× 1664 pixel complete with criccuit diag to help you interface with your projects. JUST £14.99. REF JUN 15 P2.
MULTICORE CABLE 300 metre red of grey 8 core cable ideal for 'phones, intercomms. computers, alarms etc. Comes i specialdispensing container to avoid tangles. £ 15 rel AUG15. BUGGING TAPE RECORDER Small voice actvated recorder. uses micro cassette complete with headp hones $£ 28.99$ ref MAR29P1. ULTRAMINIBUG MIC $6 \mathrm{~mm} \times 3.5 \mathrm{~mm}$ made by AKG. 5 - 12 velectret condenser. Cost $£ 12$ ea, Our? four for $£ 9.99$ REF MAG10P2 RGB/CGA/EGATTL COLOUR MONTORS 12 in good condition. Back anodised metal case. $£ 79$ each REF JUN79 GX4000 GAMES MACHINES returns so ok lor spares or repair E9 each (no games). REF MAG9P1
C64 COMPUTERS Retums. so ok for spares etc $\varepsilon 9$ rel MAG9P2 FUSELAGE LIGHTS 3 foot by 4^{4} panet $1 / 8^{\circ}$ ithick with 3 panels that glow green when a voltage is applied. Good for night lights, front panels, signs, disco etc. $50-100 \mathrm{v}$ per strip. $£ 25$ ret MAG25P2 ANSWER PHON ES Returns with 2 fauts, we give youthebits for 1 fault, you have to find the other yourself. BT Response 200's $£ 18$ 1 fault, you have to find the other yourselt. B .
ea REF MAG18P1. PSU 55 ref MAG5P12
SWITCHED MODE PSU ex equp. 60w +5 v © ${ }^{5 A}$. $-5 \mathrm{ve}$. . 5 A ,
 +12V@2A. 12V@.5A 1201
socket £6.99 REF MAG7P1
PLUG IN PSU 9V 200mA DC $£ 2.99$ each REF MAG3P9 PLUG IN ACORN PSU 19v AC 14w, E2.99 REF MAG3P POWER SUPPLY fully cased with mains and op leads 17v DC 900 mA output. Bargan price $£ 5.99$ ref MAG6P9
ACORN ARCH MEDES PSU +5 V © 4.4A. on/oll sw uncased. selectable mains input, $145 \times 100 \times 45 \mathrm{~mm} £ 7$ REF MAG7P2 GEIGER COUNTER KIT Low cost protessional win tube, complete with PCB and components. Now only £19 REF AUG19 9v DC POWER SUPPLY Standard plug in type 150 ma 9v DC with lead and DC power plug. price for two is $E 2.99$ rel AUG3P4. AA NICAD PACK encapsulated pack of 8 AA nicad batteries (tagged) ex equip, $55 \times 32 \times 32 \mathrm{~mm}$. £3 a pack. REF MAG3P 11 13.8 V 1.9 A psu cased with leads. Just $£ 9.99$ REF MAG1OP3 360 K 5.26 brand new half height fioppy drives l8Mcompabible industry standard. Just 56.99 REF MAG7P3
PPC MODEM CARDS. These are high spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance price is $£ 5$ REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Originally made for hi spec satellite equipment but perfect lor all sorts of remote control projects. Our dearance price is just $£ 2$ REF: MAG2
TOWERS INTERNATIONALTRA NSISTOR GUIDE. A very useful book for finding equivalent transistors. leadouts. specs etc.
E20 REF: MAG20p1 20 REF: MAG20P1
SINCLAIR C5 MOTORS We have a few len without gearboxes.

NEW BULL ELECTRONICS STORE IN

WOLVERHAMPTON
55A WORCESTER ST TEL 090222039
Spec is 12v DC 3,300 pm £25 rer MAG25.
-NEWPRODUCT
200 WATT INVERTER Converts $10-15 \mathrm{v}$ DC into either 110 v or 240 V AC. Fully cased $115 \times 36 \times 156 \mathrm{~mm}$, complete with heavy duty power lead, cigar plug, AC outlet socket.Auto overload shutdown, auto short circuitshut down, auto input over voltage shutdown, auto input under voltage shut down (with audible alarm), auto temp control, unit shuts down ifoverheated and sounds audible alarm. Fused reversed polarity protected. output frequency within 2%, voltage within 10%. A extremely well built unit at a very advantageous price!!!Price is $£ 64.99$ ref AUG65.

UNIVERSAL SPEED CONTROLLER KIT Designed by us for the C5 motorbut ok for any $12 y$ motor up to 30A Complete with PCB the C5 motorbut ok for any 12v motor up to 30 A Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MAG17
MAINSCABLE Precut black 2 core 2 metre lengths ideal for repairs. projects etc. 50 metres for $£ 1.99$ ref AUG2P7.
COMPUTER COMMUNICATIONS PACK Kit contains 100 m of 6 core cable, 100 cable dips. 2 line divivers with RS 232 interfaces and all connectors etc. Ideal low cost method of communicating between PC's soveralong distance. Completekt $£ 15.99$ Rel MAR 16 P2 MINIOYCLOPS PIR $52 \times 62 \times 40 \mathrm{~mm}$ runs on PP3 battery complete with shrill sounder. Cheap protection at only $£ 5.99$ rel MAR6P4. ELECTRIC MOTOR KT Comprehensive educational bit in cludes all you need to Duild an electnc motor. 59.99 rel MAR 10 P4. VIDEO SENDER UNT. Transmits both audio and video signals from either a video camera, video recorder, \mathbb{N} or Computer etc to
 DC op. Pice is $£ 15$ REF: MAG $1512 \cup$ psu is $£ 5$ extra REF: MAG5P2

- $F M$ CORDLESS MICROPHONE Small hand held unit with a -FM CORDLESS MICROPHONE Smal hand held unit with a 500 rangel 2 transmit power levels. Reas PP3 9v battery. Tuneabie to any FM receiver. Price Is $£ 15$ REF: MAG $15 P 1$
LOW COST WALKIE TALKIES Pair of battery operaled Units with a range of about 200\%. Ideal for garden use or as an educational with a range of about 200. Ideal ior garden use or as an
toy. Price is $£ 8$ a pair REF: MAG $8 P 1 \quad 2 \times P P 3$ req'd.
-MINATURE RADIO TRANSCENERS A pair of wallise talkies with a range of up to 2 kilometres in open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Compiete with cases and eapleces. 2xPP3 req'd. E30.00 pair REF: MAG30.
COMPOSTE VIDEO KTI. Converts composite video into sepa rate H sync. V sync, and video. 12v DC £8.00 REF: MAG8P2. LQ3500 PRINTER ASSEMBLIES Made by Amstrad they are entire mechanical printer assemblies induding printhead, stepper motors etc etc In fact everything bar the case and electronics. a good strippen 55 REF: MAG5P3 or 2 for $£ 8$ REF: MAG8P3
SPEAKER WIRE Brown 2 core 100 foot hank £2 REF: MAG2P1 LED PACK of 100 standard red 5 m leds $£ 5$ REF MAG $5 P 4$ UNNERSAL PC POWER SUPPLY complete with Ilyteads, switch, fan etc. Two types available 150 at $£ 15$ REF:MAG15P2 ($23 \times 23 \times 23 \mathrm{~mm}$) and 200 w at $£ 20$ REF: MAG2OP 3 ($23 \times 23 \times 23 \mathrm{~mm}$) -FM TRA NSM TTER housed in a standard working 13A adapter!! the bug runs directly off the mains so lasts forever! why pay $£ 700$? or price is $£ 26$ REF: MAG26 Transmits to any FM radio.
-FM BUG KT New design with PCB embedded coil for extra stability. Works to any FM radio. 9v battery req'd. E5 REF: MAG5P5 - FM BUG BUILT ANDTESTED superiordesign to kit. Supplied - FM BUG BUILT AND TESTED superiordesign to kit.
to detective agendies. ov battery req'd. $£ 14$ REF: MAG14

TALKING COINBOX STR IPPER originally made to retall at६79 each, these units are designed to convert and ordinary phone into a payphone. The units have the locks missing and sometimes broken hinges. However they can be adapted for their original use or used for something else?? Price is just 53 REF: MAG3P1
100 WATT MOSFET PAIR Same spec as 2SK343 and 2SU413 (8A. $140 \mathrm{~V}, 100 \mathrm{w}$) 1 N channel. 1 P channel, £3 a pair REF: MAG3P2 TOP QUALITY SPEAKERS Made for HIFI telev sions these are 10 watt $4 R$ Jap made 4^{4} round with large shieded magnets. Good quality. E2 each REF: MAG2P4 or 4 for E6 REF: MAG6P2
TWEETERS 2^{*} dlameter good quality weeter 140R (ck with the above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3P4 AT KEYBOARDS Made by Apricot these quality keyboards need justa small mod torun on any AT, they work perfecty yut you will have justa smal mod tonunon any AT, they workpenfecty but you will
to put up with 1 or 2 foregn keycaps! Pice $£ 6$ REF: MAG6P3 PC CASES Againmixed types so you take a chance next oneorthe PCCASES Againmixed types so you take achance nex oneo
pile £12 REF:MAG12 or two the same for $£ 20$ REF: MAG2OP4 pile £12REF:MAG12 or two the same for £20 REF: MAG2OP4
HEADPHONES EXVirgin Atlantic. 8pairs for $E 2$ REF:MAG2PB PROXMTY SENSORS These are small PCB's with what look like a source and sensor LED on one end and lots of componemts on the rest of the PCB. Complete with fyl leads. Pack of $5 £ 3$ REF: MAG: 3P5 or 20 1or 58 REF: MAGBP4

SOME OF OUR PRODUCTS MAY BE UNLICENSABLE IN THE UK BULL ELECTRICAI
 250 PORTLAND ROAD HOVE SUSSEX BN3 5QT
 MAIL ORDER TERMIS, CASH PO OR CHEQUE WITH ORDER PLUSE 3.00 POST PLUS VAT
 PLEASE ALLOW 7 - 10 DAYS FOR DELIVERY

A^{TE}
TEL 0273203500
FAX: 0273323077

SNOOPERS EART Original made 10 clip over the earpiece of telephone to amplity the sound-n also works quite well on the cable running along the wall! Price is E 5 REF: MAGSP
DOS PACKS Microsoft version 3.3 or higher complete with all manuals or pice just $£ 5$ REF: MAG5P8 Worth it just for the very comprenensive manual 5.25° only.
DOS PACK Microsofi version 5 Original software but nomanuals hence only E.3 REF: MAG3PE 5.25° onty.
PIR DET ECTOR Made by famous UK alarm manufacturer these are hi spec, long range internal units. 12v operation. Slight marks on are he spec, long rangelinernal unts.
case and unboxed (altough Drand new) $£ 8$ REF: MAG8P5 WINDUP SOLAR POWERED RADIO AMFM radio complete with hand charger and solar panell $£ 14$ REF: MAG14P1
MOBILECAR PHO N E 5.99 Well almostl complete in carphone exduding the box of electronics normally hidden under seat Can be made to illuminate with 12 V also has built in light sensor so display onit illuminates when dark. Totally convincing! REF: MAG6P6 ALARM BEACONS Zenon strobe made to mount on an extemal bell box but could be used for caravans etc. 12v operation. Just connect up and it fashes regularty) E5 REF: MAG5P 11
FIRE ALARM CONTROL PANEL High quality metal cased alarm panel $350 \times 165 \times 80 \mathrm{~mm}$. With key. Comes with electronics but no information. sale price 7.99 REF: MAG8P6
REMOTECONTROL PCB These are receiverboards for garage door opening systems. Another use? £4 ea REF: MAG4P5 $6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130 mA . Bargain price just E 5.99 ea REF MAG6P12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ rel MAGSP 13 ideal tor experimenters! 30 m for $£ 12.99$ rel MAG13P1 LOPTX Line output transformers belleved to be for IBM hi res colour monitors but useful for getting high voltages from low ones! $£ 2$ each REF: MAG2P12 bumper pack of 10 for £12 REF: MAG12P3.
HEATSINKS (finnec) TO220, designedtomount vertically on apct $50 \times 40 \times 25 \mathrm{~mm}$ you can have a pact of 4 for $£ 1$ ref JUN1P11. WATERPROOF JUNCTION BOX 65 mm dia 33 mm deep. Four cable entry exit points (adjustabte for any size cable) snap fit lid. Idea for TV. satellite use. £2 ea ret APR2 or 6 for $£ 10$ re1 APR10P7.

BOTH SHOPS OPEN 9-5.30 SIX DAYS A WEEK

INFRARED LASER NIGHT SCOPES Second generation image intensifier complete with hand grip attachment with built in ad justable laser lamp for zero light conditions. Supplied with Pentax 42 mm camera mount and normal eye piece. 1.6 kg , uses $1 \times P P 3,3 x A A ' s$ (all supplied) $£ 245+$ Vat NEW HIGH POWER LASERS
15 mW , Helium neon. 3 switchable wave lengths $.63 \mathrm{um}, 1.15 \mathrm{um}, 3.39 \mathrm{um}$ (2 of them are infrared) 500:1 polarizer built in so good for holography. Supplied complete with mains power supply. $790 \times 65 \mathrm{~mm}$. Use with EXTREME CAUTION AND UNDER QUALIFIED GUIDANCE. $£ 349+$ Vat. fffefffWE BUY SURPLUS STOCK\&fffeff

TURN YOUR ZURPLUS STOCK INTO CASH.
IMMEDIATE SETTLEMENT. WE WILL AL SO QUOTE FOR
COMPLETE FACTOR Y CLEAR ANCE.

3FT X IFT IOWATT SOLAR PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$ £33.95

TOP QUALITY AMORPHOUS SHICON CELLS HAVE ALMOST A TIMELESS LIFE SPAN WTH AN INFINTE NUMBER OF POSSBLE AP PIICATIONS. SOME OF WHICH MAY BE CAR BATIERY Charg ING. FOR USE ON BOATS OR CARAVANS, OR ANWHERE A PORTABLE I2V SUP9IY IS REQUIRED. REF: MAG 34

PORTABLE RADIATION DETECTOR $£ 49.99$

A Hand held personal Gamma and X Ray detecfor. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 K eV to over 1.2 M eV and a measuring range of 5-9999 UR/h or $10-9999 \mathrm{Nr} / \mathrm{h}$. Supplied complete with handbook.Ref MAG50.

voltage

 versatility

 versatility}

By producing a new and innovative application for this month's free* IC, you could become the owner of one of six mos design kits worth up to $£ 750$. Full competition details are on p. 840. Since the IC in question is closely related to a 555 timer with integral 600 V power mosfet drivers, the opportunities for new ideas are endless.
nternational Rectifier's IR2151 was developed in response to demand for cheaper and more efficient fluorescent lamp ballasts. Energy bills for lighting represent a significant outgoing for many companies, so the pressure for better and cheaper lamps and drivers is great.
Over the past decade or so, electronic ballasts have been gradually replacing traditional passive circuits. Most electronic designs use two power switches in a half-bridge configuration, also known as a totem-pole. The tube circuits comprise $L C$ resonant circuits with the lamps across one of the reactances, as shown in Fig. 1.
In this circuit the switches are power mosfets driven to conduct alternately by windings on a current transformer. Current in the lamp circuit drives the primary of this transformer, which operates at the resonant frequency of L and C. Unfortunately, the circuit is not self starting and must be pulsed by the diac con-

*Free IR2151 oscillator and gate drive IC

The first 500 readers completing the coupon between pages 848 and 849 will receive an IR2151 fluorescent lamp ballast IC completely free of charge. Additional devices can be bought by contacting lan Spanswick, Polar Electronics, Cherrycourt Way, Leighton Buzzard, Bedfordshire LU7 8YY. Tel. 0525 377093, fax 853070.

Fig. 3. At the front end of the IR2151 is a timing circuit that is very similar to the 555. Two timing pins are available externally, opening up the possibility for numerous applications other than lamp ballasting.

Features of the IR2151

- Floating channel bootstrappable
- Operates to 600 V de
- Tolerant to negative transients
- dV/dt immune
- Undervoltage lockout
- Programmable oscillator frequency
- Matched channel propagation delay
- Low side output in phase with RT pin

The $\mathbb{R} 2151$ is a high voltage, high speed, self-oscillating power mosfet and IGBT driver with both high side and low side referenced output channels. Output gate drive is 10 to 15 V while rise and fall times are 100 and 50 ns respectively.
Proprietary high-voltage IC and
latch-immune cmos technologies make the device rugged. Its front-end features a programmable oscillator similar to the 555 timer.
Incorporated in the output drivers are a high pulsecurrent buffer stage and an dead time generator designed for minimum driver crossconduction. Propagation delays for the two channels are matched to simplify use in 50% duty cycle applications.
The floating channel can be used to drive an n-channel power mosfet or igbt in the high side configuration that operates from a high voltage rail from 10 to 600 V .

Typical connections for the IR2151 in self-oscillating mode show that the device needs few external components. Power for the high-side switch gate comes from a bootstrap capacitor of $1 \mu \mathrm{~F}$. This is charged to around 14 V whenever V_{S} is pulled low during low-side power switch conduction. The fast-recovery bootstrap diode blocks dc bus voltage when the high-side switch conducts.

Fig. 4. Timings for the IR2151 when used in a typical self-starting, self-oscillating lamp ballast circuit.
nected to the gate of the lower mosfet.
After initial turn-on of the lower switch, oscillation sustains and a high frequency square wave of between 30 and 80 kHz excites the $L C$ resonant circuit. Sinusoidal voltage across C is magnified by the Q at resonance and develops sufficient amplitude to strike the lamp, which then provides flicker-free illumination.
This basic circuit has been the standard for electronic ballasts for years but is suffers from the following inherent short comings:

- Not self starting
- Poor switch times
- Labour intensive (toroidal transformer)
- Not amenable to dimming
- Expensive to manufacture in large quantity

Inside the IR2151

In addition to reducing costs, the International Rectifier $I R 2151$ removes the drawbacks associated with conventional electronic ballasts. Figure 2 illustrates the device in a typical configuration. The mosfets shown could be IRF820 types.
This monolithic power integrated circuit is capable of driving both low and high-side
mosfets or igbts from logic level, ground referenced inputs. It provides offset voltage capabilities up to 600 V dc, and unlike driver transformers it can provide clean waveforms at any duty cycle between 0 and 99%.
Integrated into the 2151 are a timing circuit, level shifting interfaces and high-voltage mosfet drivers, Fig. 3. Operation of the timing circuit is similar to that of a cmos 555 . As a result, it is possible to define whether the circuit self oscillates, or is synchronised with an external signal. Simply configure the chip's R_{T} and C_{T} pins in much the same way as you would those of a conventional 555 timer.
In this type of high-speed mosfet drive circuit, efficiency degrades rapidly if one power mosfet of the pair turns on momentarily before the other turns off. For this reason, the 2151 incorporates a $1 \mu \mathrm{~s}$ dead-time generator to help ensure that both power mosfets are never turned on simultaneously. Even when driving power mosfets with 1000 pF gate loads, the 2151 is capable of switching on in 100 ns and off in 50 ns so this safeguard is important.
Propagation delays for the two channels are matched to simplify use in 50% duty cycle applications. When the device is used in self oscillating mode, frequency of oscillation is given by:

$$
f=\frac{1}{1.4 \times(R T+75 \Omega) \times C T}
$$

Typical timings are shown in Fig. 4.
The $I R 2155$ is intended to be supplied from the rectified ac input voltage and for that reason it was designed for minimum quiescent current. It has a 15 V internal shunt regulator so that a single half-watt dropping resistor can be used, assuming 240 V ac input. The high voltage rail can be anywhere from 10 to 600 V .

Referring again to Fig. 2, note the synchronising capability of the IR2151 driver. The two back-to-back diodes in series with the lamp circuit are effectively a zero crossing detector for the lamp current. Before the tube strikes, the resonant circuit consists of L, C_{1} and C_{2} all in series.

Capacitor \boldsymbol{C}_{2} has a lower value than \boldsymbol{C}_{1} so it naturally operates at a higher ac voltage than C_{2}. It is this voltage which strikes the lamp.
After the lamp strikes, C_{2} is effectively shorted by the lamp voltage drop and frequency of the resonant circuit now depends upon L and C_{1}. This causes a shift to a lower resonant frequency during normal operation, again synchronised by sensing the zero crossing of the ac current and using the resultant voltage to control the 2151's oscillator.
In addition to the quiescent current there are two other components of dc supply current that are a function of the application circuit. One is current due to charging input capacitance of the power switches. The other is current due to charging and discharging junction isolation capacitance of the gate driver.
Both components of current are charge related and therefore follow the rule $\mathrm{Q}=C V$. To charge and discharge the power switch input capacitances, the required charge is a product of the gate drive voltage and the actual input

IR2151 lead definitions

Pin 2, designated RT, is the oscillator timing resistor input; this resistor normally connects between RT and CT. The signal at this pin is in phase with low-side gate drive output pin LO.
Oscillator timing capacitor input is at pin CT. This capacitor normally connects between CT and the logic and low-side return pin, COM, in order to program the oscillator. Frequency is determined using the equation given in the main article.
High and low-side gate drive outputs are on the HO and LO pins respectively. High-side floating supply feeds via V_{B} and is returned via V_{S}. Supply voltage for the low side and logic elements feeds in via the $V_{C C}$ pin. Note that there is an internal zener between this pin and COM so low-impedance supplies above 15 V should not be used. Zener voltage is typically 15.6 V .

Pin designations for the 8 -pin dual-in-line version of the IR2151. The device is also available in small-outline sm packaging.
capacitances and the input power required is directly proportional to the product of charge and frequency and voltage squared:

Power $=\frac{Q V^{2}}{2} \times f$
When designing a lamp ballast, follow these pointers. Select the lowest operating frequency consistent with minimising inductor size. Also select the smallest die size for the power switches consistent with low conduction losses. This reduces charge requirements. Usually, dc bus voltage is specified but if there is a choice, use the lowest voltage.
Note that charge is not a function of switching speed. Charge transferred is the same whether the switching speed is 10 ns or $10 \mu \mathrm{~s}$.
Because the $I R 215 I$ is designed for off-line
supply systems, it contains a zener clamp structure between the chip $V_{\text {cc }}$ and the common pin. This diode has a nominal breakdown voltage of 15.6 V . Because of the diode, the IC supply voltage is normally derived by forcing current into the supply lead.
Typically, the current is supplied via a highvalue resistor connected to the high-voltage supply and decoupling capacitance is connected between V_{cc} and the COM pin. In this way, the internal zener clamp determines the nominal supply voltage. For this reason, the circuit should not be driven by a dc, lowimpedance power source with a voltage greater than $V_{\text {Clamp }}$.

See competition details over page...

Hints and tips on using the IR2151

- Never forget - the IR2151 is a static-sensitive device and should be handled accordingly.
- Limit current into pin 1 to well within the 25 mA absolute maximum.

Recommended current supplied to this pin is 5 mA .

- Do not try to define the voltage at pin 1 . This is set internally by a zener.
- Ensure the diode between $V_{C C}$ and V_{B} has the appropriate reverse recovery capability. Too slow a type and the charge on the bootstrap capacitor could be seriously reduced to the point where efficiency could be affected.
- Remember V_{CT} at 800 V and $\mathrm{V}_{\mathrm{CT}_{-}}$at 400 V determine the 'loggling' of the S-R flip-flop. Defining the 'charge' and 'discharge' currents enable toN, and toff to be inequalities - thereby determining the 'duty cycle' of the converter (See Fig. 7 of Application Note AN-995) Note that 'duty cycle' in this instance refers to inequalities in the ton of the two channels.
- Observe the waveforms shown in Fig. 4. The apparent 'soft start', determined by the undervoltage detect circuit, might cause problems with transformers because of asymmetry.
- Note that taking V_{cc} low automatically 'disables' both outputs. This facility allows for protection circuits provided the previous clause is taken into account. - Observe the $d V_{s} / d_{1}$ rating in the data sheet. Exceeding this limit could lead to false triggering of the two outputs.
- A continuation of the previous point is the requirement of ensuring pin 6 never goes more than 25 V negative with respect to pin 4 . Failure to observe this limit could result in false triggering or to failure of the IC.

Win one of six design kits

For the six most innovative (and practical) circuits using the IR2151 in any application other than a fluorescent lamp ballast, International Rectifier is giving away a design kit comprising a, host of semiconductors complete with storage facilities.
First, second and third best designs will receive prizes valued at $£ 750, \$ 500$ and £250 respectively and a further three designs will. each receive components and storage facilities to the tune of £100. Components included in the kits have been chosen from across the \mathbb{R} range, which incorporates power mosfets and gate driver ICs.
Since the IR2151 is essentially a 555
timer with high-voltage output, the scop.e for imagination is wide. Rower conversion and motor control are obvious examples, but the chip need not necessarily be used to drive mostets or igbts.
This competition is-open to all:EW+WW readers: Entries must, reach EW+WW's editorial offices qu Quadrant House, The Quiadrant, Sutton, Surrey SM2 5AS beforer'December I 1994. Please mark your enyelope clearly with $I \mathbb{R}$ design competition".
The best of the designis will be published in EW+WW. Copyright for all submissions will be assigned to International Rectifier.

COMPUTERICS

CRYSTAL OSCILLATORS

2M4576 3M6864 5MO 5 M 76 6M144 7 M000 7M3728 8M000 12M000 14M3181 17M6256 16M257 18M00020M000 23M587
 4м000 10 М000 16М000 18М432000 19 М0500 20 М0500 38M10000 56M6092 76M1 84M0

CRYSTALS

4M0256 10M368 17M6256 18M432 25M000 28M4694 31M4696 48M000 55 M 500111 M 80 112M80 114M318114M80 1 MO

 5M000 5 M0688 6M0000 6 M400 8 M 0008 M488 9 M8304 10 M 240 10M245 10 M70000 11 MO00 12 M000 13М000 13М270 14M000 14M381818 15 M000 16M000 16M5888 17 M000 20 M000 21 M300 21M855 22M118424M000 34M36836475625 36 M 7687536 M 7812536 M 79375 36MM80625 36M81875 | 36 M 83125 36M8437538M90049M50454M1916654M7416 |
| :--- |
| 57 M 75833 | OR27M095 YW27M145 GN27M195 BL27M245 3M225..... 1 ea

TRANSISTORS

MPSA92.
BC477, BC488
ll spec reronmed LEADS
full spec .
$10 / \varepsilon 1$
$.10 / \Sigma 1$

POWER TRANSISTORS
 N POWER FET IRF531 8A 60 V ... 2SC1520 sim BF259........... SE9301 100 V 1DA DARL SIM TIP12 PLASTIC 3055 OR 2955 equiv 50p.......
BUZ31 POWER FET TO-220 200V 12.5
2.5

10/235
. $2 / \varepsilon 1$

TEXTOOL ZIF SOCKETS

 SINGLEIN LINE 32 WAY CAN BE GANGED FOR USE WITH £1.50

QUARTZ HALOGEN LAMPS

12V 50 watt LAMP TYPE M312................................. $£ 2.50$ ea
24V 150 WATTS LAMP TYPEA1/215

MISCELLANEOUS

MINIATURE FERRITE MAGNETS $4 \times 4 \times 3 \mathrm{~mm} .10 / \mathrm{c} 1$

TL071 LO NOISE OP AMP .. 5 for $£ 1$
 12 way dil SW ... $£ 1$ available SWITCHED MODE PSU 40 WATT UNCASED QTY. $£ 30 /$ AVAILABLE $+5 \mathrm{~V} 5 \mathrm{~A},+12 \mathrm{~V} 2 \mathrm{~A}, 12 \mathrm{~V} 500 \mathrm{~mA}$ FLOATING
$330 \mathrm{nF} 10 \% 250 \mathrm{~V}$ X2 AC RATED PHILIPS............................ $£ 20 / 10$
 CMOS 555 TIMERS £50/1000
 ICM7126CPL CMOS $31 / 2$ DIGIT LCD DRIVER CHIP £2ea
36 CORE $7 / 0.2 \mathrm{~mm}$ OVERALL SCREENED.............$~$
$50 / 100 \mathrm{~m}$ 36 CORE $7 / 0.2 \mathrm{~mm}$ OVERALL SCREENED.................. $250 / 200 \mathrm{~m}$ FOR $£ 1$
LITHIUM CELL $1 / 2$ AA SIZE PASSIVE INFRA RED SENSOR CHIP + MIRROR + CIRCUIT EUROCARD 21-SLOT BACK PLANE 96/96-WAY.......... 225 ea PROTONIC 24 VARIBU
MULTILAYER PFH PCB
EUROCARD $96-W A Y$ EXTENDER BOARD $290 \times 100 \mathrm{~mm}$
"PROTONIC 24 " $/ \mathbf{W} 2$ SUPPORT ARMS/EJECTORS. $£ 10$ ea
DIN 41612 96-WAY ABBC SOCKET PCB RIGHT ANGL
DIN 41612 96-WAY ABBC SOCKET PCB RIGHT ANGLE $£ 1.30$
DIN 41612 96-WAY A/BIC SOCKET WIRE WRAP PINS ... 81.30 DIN 4161264 -WAY AC SOCKET WIRE WRAP PINS. DIN 41612 64-WAY A/C PLUG PCB RIGHT ANGLE..............
DIN 41612 64-WAY AB SOCKET WIRE WRAP (2 -ROW BOD

BTPLUG + LEAD.

3A MOULDED PLUG + 2m lead MIN. TOGGLE SWITCH 1 POLE ©/ PCB type .. 51 LCD MODULE sim. LM018 but needs 150 to 250 V AC for display
40×2 characters $182 \times 35 \times 13 \mathrm{~mm}$ 40×2 characters $182 \times 35 \times 13 \mathrm{~mm}$. TL431 2.5 to 36 V TO92 ADJ. SHUNT REG........................... $2 / \varepsilon 1$ SCREWS $£ 1 / 100$ PUSH SWITCH OHANGEOVER 25 FEET LONG, 15 PINS WIRED BRAID + FOIL SCREENS ICDOISPLAY sim Hitachi LM016L INMAC LIST PRICE $£ 30$ AMERICAN $2 / 3$ PIN OHASSIS SOCKET WIRE ENDED FUSES 0.25A .. $30 / \mathrm{E} 1$ NEW ULTRASONIC TRANSDUCEAS 32 kHzpr Also available 28 slot vari-bus backplane same size + Price...
POWERFAL SME
BNO SOHM SCREENED CHASSIS SOCKET BNC SOMHM SCREENEDCHASSIS SOCKET D.ILL SWITCHES 10-WAY \&1 8 -WAY 80 p 4/5/6-WAY 180VOLT 1 WATT ZEN
MIN GLASSNEONS MIN GLASS NEONS ... 20/乏1
 MINIATURE CO-AX PCB SKT RS 456-093 $2 / 2$
PCB WITH 2N2646 UNIJUNCTION WITH 12V 4-POLE RELAY 400 MEGOHM THICK FLLM RESISTORS STRAIN GAUGES 40 ohm Foil type polyester backed balco grid ELECTRET MICROPHONE INSERT Linear Hall effect IC Micro Switch no 613 SS4 sim AS 304-.. $100+£ 1.50$ HALLEFFECT IC UGS3040+ magnet............................... $£ 12$
OSCILLOSCOPE PROBE SWITCHED $\times 1 \times 10$. OSCILLOSCOPE PROBE SWITCHED $\times 1 \times 10$.. 412 1 pole 12 -way rotary Switch.
AUDO ICS LM 380 LM386.. 555 TIMERS $£ 1741$ OP AMP ZNA14 AM RADIOCHIP. COAX PLUGS nice ones. COAX BACK TOBACK JOINEAS 4 $\times 4$ MEMBRANE KEYBOARD
INDUCTOR $20 \mu H$ 1.5A......... CHROMNEL FUSEHOLDERS . 12 V 1.2 W small w/e lamps fit most modern cars......................... 101 ea STEREO CASSETTE HEAD MONO CASS. HEAD \&1 ERASE HEAD THERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$ TRANSISTOR MOUNTING PADS TO-5/TO-18....................... 51 ea -5/TO-18...................... $\mathbf{\Sigma} / 100$ PCB PINS FIT 0.1" VERO... 200/ $10 .$. TO-220 micas + bushes Large heat shrink sleeving Large heat shrink sleeving
IEC chassis plug filter $10 A$ POTS SHORT SPINDLES 2K5 10K 25 K 1M 2M5 40 k U/S TRANSDUCERS EX-EQPT NO DATA .. LM335Z 10MV/degree C........... SIM AS 455-961 MIN PCB POWER RELAYS 10.5 V COIL 6A CONTACTS 1 p ole AVEL-LINDBERGMOULDED TRANSFORMER TYPE OB10 $15+15 V$ 10VA QTY. AVAILABLE $£ 2$ ea
BANDOLIERED COMPONENTS ASSORTED RS, CSNERS LCO MODULE 16 CHAR. X 1 LINE ISIMILAR TO HITACHI
 OPII2G4A 1OKVOPTOISOLATOR......................... $\mathrm{\Sigma 1}$ ea $100+£ 1$ ea LOVE STORY CLOCKWORK MUSICAL BOX MECHANISM MADE BY SANKYO.
Telephone cable clips with hardened pins......................... $500 / \Sigma 2$
10,000 uF 16V PCB TYPE 30 en EC CHASSIS FUSED PLUG B-LEE L2728.. 2A CERAMIC FUSE $1.25^{\prime \prime}$ QB ..10/乏 1 40 WAY $10 C$ RIBBON CABLE 100 FOOT REEL.......... $£ 5$ + CARR IEC CHASSIS FUSED PLUG B-LEE L2728........................5/£1
DIODES AND RECTIFIERS
A115M 3A 600V FAST RECOVERY DIODE 4/ I_{1}

1N4148 $1 \mathrm{~N} 4004 \mathrm{SD4} 1 \mathrm{~A} 300 \mathrm{~V}$. 100/£1.50
.... 100/E3
1N5401 3A 100V ... 10/E
BA158 1A 400V fast recover
BY254 800V 3 A...
BY 255 1300V 3 A
6A 100 V SIMILAR MA751
1A 600V BRIDGE RECTIFIER 4 A 100 V BRIDGE
6A 100V BRIDGE
10A 200 V BRIDGE....
25A 400 V BRIDGE $£ 2.50$
2KBP02 IN LINE 2A 200 V BRIDGE RE
SCRS
PULSE TRANSFORMERS $1: 1+1$ TICV106D 800 mA 400 C SCR $\mathbf{3} / \mathrm{E} 1$ MEU21 PROG. UNIJUNCTION... \qquad

CONNECTORS

D25 IDC PLUG OR SOCKET... $£ 1$ CENTRONICS 36 WAY IDC PLUG..................... CENTRONICS 36 WAY IDC SKT
BBC TO CENTRONICS PRINTERLEAD 1.5M. CENTRONICS 36 WAY PLUG SOLDER TYPE USED CENTRONICS 36W PLUG+SKT...................................... £ 14 WAY IDC BLOCK HEADER SKT.

PHOTO DEVICES

HI BRIGHTNESS LEDS CQX24 RED $5 / £ 1$
SLOTTED OPTO-SWITCH OPCOA OPB815.................
2N5
TLL81 PHOTO TRANSISTOR...
TIL 38 INFRA RED LED
N25, OP12252 OPTO ISOLATOR
MEL 12 (PHOTO DARLINGTON BASE n/c)
LED's RED 3 or $5 \mathrm{~mm} 12 / \mathrm{E} 1$.
LED'S GREEN OR YELLOW $10 / \mathbf{I} 1$
FLASHING RED OR GREEN LED 5 mm 50 p HIGH SPEED MEDIUM AREA PHOTODIOOE RS651.

STC NTC BEAD THERMISTORS

G22 220R, G13 1K, G23 2K, G24 20K, G54 50K, G25 200K, FS22BW NTC BEAD INSIDE END OF 1"GLASS PROBE RES A13 DIRECTLY HEATED BEAD THERMISTOA 1 k res. ideal for audio Wien Bridge Oscillator

CERMET MULTI TURN PRESETS $3 / 4^{\prime \prime}$

10R 20R 100 R 200 R 250 R 500 R 2 K 2 K 22 K 55 K 10 K 47 K 50 K
100K 200 K 500 K 2 M ...

IC SOCKETS

14/16/18/20/24/28/40-WAY DIL SKTS £1 per TUBE 8-WAY DIL SKITS ... 3 for i for SIMM SOCKET FOR 2×30-way SIMMS.

POLYESTER/POLYCARE CAPS

$330 \mathrm{nF} 10 \% 250 \mathrm{~V}$ AC X2 RATED PHILIPS TYPE $330 \ldots . . \mathrm{E} 20 / 100$ $100 \mathrm{n}, 220 \mathrm{n} 63 \mathrm{~V} 5 \mathrm{~mm} ~$ $1 \mathrm{n} / 3 \mathrm{n} 3 / 5 \mathrm{n} 6 / 8 \mathrm{n} 2 / 10 \mathrm{n} 1 \% 63 \mathrm{~V} 10 \mathrm{~mm}$.
$10 \mathrm{n} / 15 \mathrm{n} / 22 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} / 66 \mathrm{n} 10 \mathrm{~mm} \mathrm{rad}$ $10 \mathrm{n} / 15 \mathrm{n} / 22 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} / 66 \mathrm{n} 10 \mathrm{~mm}$
100 m 250 V radial $10 \mathrm{~mm} ~$ 100 n 600 V Spraque axial 10/E1 100/E3.50 $2 \mu 2160 \mathrm{~V}$ rad $22 \mathrm{~mm}, 2 \mu 2100 \mathrm{~V}$ rad $15 \mathrm{~mm}$. $10 \mathrm{n} 33 \mathrm{n} / 47 \mathrm{n} 250 \mathrm{~V}$ AC x rated 15 mm $1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC $1 \mu 0100 \mathrm{~V}$ rad $15 \mathrm{~mm}, 1 \mu 022 \mathrm{~mm}$ rad

RF BITS

TECHNOLOGY 379.5 MHZ . FX3286 FERRITE RINGID 5 mm OD 10 mm 10 for $\Sigma 1$ ASTEC UM 1233 UHF VIDEO MODULATORS (NOSOUND) 1250 STOCK.. MC4229F1/F2..

 YELLOW 5-65DF RED $10-110 \mathrm{pF}$ GREY $5-25 \mathrm{pF}$
SMALL MULLARD 2 to 22 pF 3 FOR 50p $£ 10 / 100$ TRANSISTOAS 2N4427, 2 N3866.................................. 3 FOp ea
 SL610................ 5 6VOLT TELEDYNE RELAYS 2 POLE CHANGEOVER..........
(BFY51 TRANSISTOR CAN SIZE)
2N2222 METAL . P2N22222A PLASTIC 10/E1 2N2629A .. 4

PLESSEY ICS EX-STOCK

SL350G SL360G SL362C SL403D SL423A
SP8655 SP8719DG
MONOLITHIC CERAMIC CAPACITORS
10 n 50 V 2.5 mm
100 n 50 V 2.5 mm or 5 mm .
100n ax short leads
100 n ax long leads
100 n 50 V dil package 0.3^{n} rad... 100/5

KEYTRONICS
TEL. 0279-505543
FAX. 0279-757656 PO BOX634 BISHOPS STORTFORD HERTFORDSHIRE CM23 2RX

Smaller steps to better performance

My DDS signal generator, self-designed, covers about $1 \mathrm{~Hz}-320 \mathrm{MHz}$ in approximately 1 Hz steps. Output is cw only and an external $0-120 \mathrm{~dB}$ step attenuator provides 10 dB steps.
To add amplitude modulation and fine output adjustment, certain constraints had to be considered. For example, though output from the DDS signal generator was about 0 dBm , variation over the full range up to 320 MHz was nearly 2 dB .
Furthermore, several rf amplifier stages would be needed in the rf path, with each contributing further gain variation. So the whole rf path through the
modulator/attenuator was enclosed within a levelling loop. Since the leveller output is maintained constant regardless of inputor load-variations (within reason), the added advantage is that this represents a zero output impedance point. From there, the load can be supplied via a 50Ω resistor, giving an ideal generator output impedance, independent of the actual output impedance of the last rf amplifier in the chain.

AD834 characteristics

The $A D 834$ accepts a maximum differential input on both its X and Y balanced inputs of $\pm 1 \mathrm{Vpk}$-pk, producing at its differential W output port a current of $\pm 4 \mathrm{~mA}$ full scale, according to the relation $W=$ $X Y / 1 \mathrm{~V}^{2}$. Output from the DDS signal generator was about 0 dBm , or only 630 mV pk-pk, so some amplification was indicated to take full advantage of
the multiplier's $\pm 1 \mathrm{~V}$ dynamic range. With frequencies up to 320 MHz at the multiplier's input, balanced circuitry is not convenient. Fortunately the device's common mode rejection at both X and Y input ports is such that in each case one lead can be grounded and the other driven unbalanced (Fig. 1).
As recommended in the data sheet when using unbalanced inputs, X_{1} and Y_{2} are grounded, the inputs being applied to pins $1\left(Y_{1}\right)$ and $8\left(X_{2}\right)$.
Similarly, for convenience, an unbalanced output is taken from W_{1}, W_{2} being returned to the supply, even though this halves the available pk-pk output current to $\pm 2 \mathrm{~mA}$. This alternating current is superimposed on a standing 8.5 mA (nominal) dc component and is sunk by an open collector output.
The open collector W outputs must be operated at a voltage slightly above that on pin $6(\mathrm{~V}+)$ - the manufacturer's recommended method is to insert a resistor in series with the supply to pin 6 .
The ac component, flowing in 47Ω load resistor R_{6} in parallel with the (nominal) 50Ω input impedance of $I C_{3}$, forms the output voltage from the modulator, and is applied to the following amplifier stages.
Note that the 390Ω supply resistor of $I C_{3}$ is somewhat lower than the recommended value, so device dissipation will be increased. But this is acceptable for lab use as distinct from a full-temperature-range application.
After further amplification, the signal voltage at the output of $I C_{4}$ corresponds to +6 dBm when the voltage on the Y_{1} input of the modulator is rather less than +1 V (or -1 V). Thus the level delivered to a matched load at the output is just 0 dBm . The rf output of $I C_{4}$ is dc restored positive-going by D_{1}, whose linearity versus signal level is improved somewhat by a hint of

Fig. 1. RF path through the modulator/ attenuator/leveller.

forward bias via R_{11}.
Mean level of the voltage at D_{1} 's cathode is (almost) equal to the peak rf voltage, and it is applied via R_{12} to the modulator/attenuator/levelling loop (Fig. 2).

Remaining circuit

The circuitry of Fig. I was constructed on a scrap of single sided copper-clad laminate, used as a ground plane. But that of Fig. 2 was built on a piece of 0.1 in matrix copper strip board. The level detector output is applied to the loop filter-amplifier, $I C_{7 \mathrm{~B}}$ and associated components.
$I C_{7 \mathrm{~B}}$ controls the gain of the transconductance amplifier stage $I C_{8}$ which receives its input from $I C_{7 \mathrm{D}}$.
$I C_{8}$ is an $L M 13600$, of which one half is unused. (An LM I3700 will do too as there is only a minor difference between these two devices. In the LMI3600 the emitter current of the input transistor of the Darlington output buffer is controlled pro-rata with the g_{m} of the transconductance section, providing improved dynamic range. In the LM13700, it is fixed. Since the output buffer is not used in this application, either device will do.)
R_{25} provides the current to operate the LM13600's input linearising diodes.
$I C_{7 \mathrm{D}}$ produces a dc level which determines the carrier at the output, combining it with an ac signal where modulation is required. For maximum cw output, $I C_{7 \mathrm{C}}$ (which buffers the ota's output) applies the required voltage, up to +1 V , to the modulator's Y_{1} input, via R_{27}. This occurs with $0-10 \mathrm{~dB}$ attenuator control R_{29} set to maximum and with R_{31} suitably adjusted. R_{29} provides an attenuation range of over 10 dB , and though its
operation is approximately linear rather than logarithmic, it can readily be calibrated with a dB scale. Operation on
am is similar, except that the dc level at the modulator's Y_{1} input is halved to allow for up to 100% modulation. Internal 1 kHz modulation oscillator $I C_{9}$ is included and the modulation depth can be set by $R_{18} \cdot R_{18}$ can be calibrated directly in percent amplitude modulation depth, with the level supplied by the internal modulation oscillator making fully-clockwise equal to $100 \% \mathrm{am}$. If the internal modulation oscillator is run with a low output swing at $I C_{9 \mathrm{~A}}$, such as 4 Vpk -pk, setting up is critical and amplitude control poor, due to inadequate drive to the lamp used to stabilise the loop gain. With the arrangement shown, giving $16 \mathrm{Vpk}-\mathrm{pk}$, control is tight with little amplitude bounce at switchon. A 4 Vpk -pk output is picked off by $I C_{9 \mathrm{~B}}$, which is driven from the frequency selective network rather than the output of the maintaining amplifier. $/ C_{9 B}$'s output has the advantage of the selectivity of the Wien network - though it amounts to 2.5 dB at third harmonic relative to the fundamental, every little is worth having.
The measured total harmonic distortion at $I C_{9 \mathrm{~B}}$'s output is 0.01%-almost entirely second harmonic - is presumably due to the IC, as any due to the lamp should be odd order. The result is a little puzzling, as the opamp spec shows 0.003% thd typical. Nevertheless, the performance is quite creditable for such a cheap, simple circuit.
As an alternative, an external modulation source could be connected, which naturally should not exceed IVpk-pk, or the modulation index will exceed 100% when R_{18} is at maximum.
Since it is easily incorporated and could come in useful, a dsbsc (double side-band suppressed carrier) mode is also included.
Switching S1 to dsbsc doubles the gain of $I C_{7 \mathrm{D}}$ to give a bipolar drive at the modulator's Y_{1} modulation

Fig. 3(a). CW output at 10 MHz into a 50Ω load (viz a spectrum analyser). Scope settings $0.2 \mathrm{~V} / \mathrm{div}$, $0.5 \mu \mathrm{~s} / \mathrm{div}$.
3(b). Spectrum of (a). Centre frequency 10 MHz , $20 \mathrm{kHz} / \mathrm{div}, 3 \mathrm{kHz}$ if bandwidth, video filter off, $10 \mathrm{~dB} /$ div, ref level (top of screen) 0 dBm .

(a)

(a)

(b)

(c)

(c)
input. R_{16} with R_{22} permits zeroing of any offset at the output of $I C_{7 \mathrm{D}}$, and R_{23} can then be adjusted for maximum carrier suppression in the dsbsc output.

Circuit testing

Tests on the circuit, still in breadboard form, show (Fig. 3a) the maximum cw output at 10 MHz , while the same signal displayed on a spectrum analyser (Fig. 3b) indicates a level of 0 dBm into 50Ω downstream of the source resistor R_{10}.
Of the two, I believe the spectrum analyser shows the true picture, the scope indicating about $1.1 \mathrm{vpk}-\mathrm{pk}$ or over 4 dB more than this. But you can't believe a XIO probe, with its 4 in earth lead, even at as "low" a frequency as 10 MHz .
In fact, the scope trace is included solely for comparison with the am case.
Examining the same 10 MHz output, but this time with 100% am and the same scope settings as before, shows that the peak to peak voltage has increased slightly. This is confirmed by the spectrum analyser picture (Fig. 4b).
With 100% modulation, had the peak voltage been the same as before, the carrier component in the scope trace would have been exactly -6 dBm , ie 6 dB below that in Fig. 3b. The fact that it is barely 5 dB down indicates that while the levelling loop tries to control the peak level of the output, it is also partly sensitive to the mean rf level. Shortening the time-constant $C_{15}\left(R_{9}+R_{12}+R_{35}\right)$ compared to the period of the modulation waveform, would result in mean level control and the carrier level would remain unchanged with modulation depth. But this would limit the highest usable modulating frequency to many octaves below the lowest usable radio frequency - at least in am mode. Restriction-free range for both modulationand carrier-frequency operation is a priority so the present scheme with (near) peak level control has been retained.

AM and dsbsc modes

At 100% modulation, the second and third harmonic sidebands are only about 26 dB and 40 dB down respectively (Fig. 4b) on the wanted fundamental sidebands. The second harmonic modulation is severe enough to be noticeable (Fig. 4a) as a reduction in amplitude of the negative-going peaks of the envelope relative to the positive. As it is the negative peaks which are sensed by the detector circuit, this largely explains the deviation from true peak-level control exhibited by the levelling loop, mentioned above.

A good circuit simulator can:

- illustrate difficult regimes such as start up and spurious signal injection,
- show up mistakes.
- help with design optimising,
- catalyze new circuit ideas and add to your stock-intrade solutions,
- save time.

A good simulator must:

- befriendly.

SpiceAge is:

- user-friendly - it is intuitive, ergonomic and it
 conforms to Windows ${ }^{\text {TM }}$ standards,
- friendly in operation - the progress of an analysis can be checked in realtime, adjustments made, restarted or aborted. Batch processing (when you get the bad news after a long wait) is not our idea of friendliness,
- supported by friendly engineers - we believe there is no such thing as a silly question. It's your questions that have helped us to produce intuitive interfaces and clear documentation,
- accountant-friendly - the combination of a short learning curve, low first cost and optional modest maintenance makes SpiceAge easy to justify. $£ 868.75$ + VAT is the most you can pay for a copy of SpiceAge for Windows,
- constantly being invested in. You have the confidence of buying from a family firm that has specialised in circuit simulation since 1982,
- not just a friendly face - you may have seen the SpiceAge circuit simulator program before but let us bring you up to date with some of its remarkable facilities. Please contact:
Those Engineers Ltd., 31 Birkbeck Road, LONDON NW7 4BP. Tel: 081-906 0155, Fax: 081-906 0969.

Low Cost Andlog Simulation

 ICAP/4Lite - Schematic Entry, SPICE and Waveform Display for $£ 400$

ICAP/4Lite, features schematic entry, powerful analog and mixed signal simulation, and extensive device libraries, all integrated in one easy to use environment. With ICAP/4Lite you can simulate all types of designs including Power, ASIC, RF, Mixed Mode, Control Systems, and Mixed Technologies.
Forget those other low cost and not quite SPICE systems. They cannot compare to ICAP/4Lite...

- SPICE 3F based Simulator - AC, DC, Transient, Temperature, Operating Point
- UNLIMITED CIRCUIT SIZE
- Integrated Schematic Entry
- High Performance 32-bit Simulator
- Real time waveform display
- Over 500 Device Models Included
- Inexpensive upgrade path
- Windows and Windows NT
- Works w/other schematic entry programs
- Affordable Prices - $£ 400$

Call or write for free information to:
Technology Sources Ltd
Falmouth Avenue
NEWMARKET, Suffolk CB8 OLZ, UK

Ph: 0638-561460 Int| + 44-638-561460
Fax: 0638-561721 |ntil + 44-638-561721

Fig. 5(a). Output at 200 MHz in dsbsc mode with 20 kHz modulation. $0.2 \mathrm{~V} /$ div vertical (but effectively uncalibrated at this frequency, on account of the probe earth lead inductance), $20 \mu \mathrm{~s} /$ div horizontal.

5(b). Spectrum of (a). Spectrum analyser settings as Figure 3(b) except centre frequency is 200 MHz .

Fig. 6. 10 MHz output with 100% amplitude modulation at 1 MHz , measured upstream of the 51Ω output resistor R_{10}. $0.2 \mathrm{~V} /$ div, vertical, $0.2 \mu \mathrm{~s} /$ div horizontal.

(a)

(b)

The levelling loop is really quite effective (Fig. 4c), compressing a 6 dB reduction in input level to a 0.2 dB reduction at the output. Similarity of Figs. 4 b and c shows that the second and third order distortion sidebands arise not in $I C_{1}$ nor (according to its spec sheet) in $I C_{2}$, but in ICs 3 and 4 , both of which are running just a few dBs below their 1 dB compression point. An improvement would be to modify the detector circuit to sense the positive peak, or better still use a peak-to-peak detector.
In all modes -cw , am and dsbsc $-R_{29}$ provides the function of a $0-10 \mathrm{~dB}$ output attenuator, though, for the reasons indicated, with am the modulation should be adjusted for the desired depth before the output level is set.

At 200 MHz in the dsbsc mode, the Y_{1} input of the modulator is taken both positive and negative, on alternate half cycles of the 20 kHz modulating frequency (Fig. 5a) So phase of the rf reverses twice per cycle of the modulation. The corresponding spectrum (Fig. 5b) shows that the carrier is only 15 dB down on the 199.980 MHz and 200.020 MHz sidebands - despite adjustment of R_{23} for maximum carrier suppression.
The residual carrier is a component in quadrature with that controlled by R_{23} and is not affected by the nulling procedure. It is presumably due to capacitive feedthrough in, or around, $I C_{2}$. As expected in this mode, second order distortion sidebands are way down, much lower than third order.
In dsbsc mode, output level is set solely by R_{29} - the "output attenuator". Any external modulation input should be set to $1 \mathrm{Vpk}-\mathrm{pk}$ and modulation depth control R_{18} to maximum. In this mode, "modulation depth" is meaningless. Whatever the modulation input level, the loop will always try to set the peak output level to that demanded by R_{29}.

Surprising operating frequency

The circuit will operate with input carrier frequencies down to about 1 MHz . For lower frequencies, all the capacitors in the rf path, such as C_{1} and C_{3} etc, should be increased in value. Similarly, the external modulation facilities, while not dc coupled, should work down to a few Hz .
Highest usable modulation frequency is set by the frequency responses of $I C_{7 \mathrm{C}}$ and $I C_{7 \mathrm{D}}$, and $I C_{8}$. Response of the modulator's Y input (like its X input) extends up to 500 MHz .
An unexpected result was produced by a 10 MHz carrier 100% amplitude modulated at 1 MHz , monitored at the junction of C_{15} and R_{10}. The modulation envelope seems a very respectable sine wave (Fig. 6).
Finding that the LM13600 worked quite happily at this frequency was no surprise, its typical 3dB bandwidth is 2 MHz . But the TL084 will typically swing only $\pm 2.5 \mathrm{~V}$ into $2 \mathrm{k} \Omega$ at 1 MHz , even on $\pm 15 \mathrm{~V}$ rails. So how was $I C_{7 \mathrm{C}}$ coping on $\pm 12 \mathrm{~V}$, with a load of around 500Ω ? A quick check with a scope at $I C_{7}$ pin eight showed that its output - a sine wave swinging entirely positive from 0 V upwards - was distinctly poor. The positive peak was nicely rounded but the negative peak at 0 V was distinctly pointed, though this does not show up very well in the scope trace.
You can't get a quart out of a pint pot after all!

Extending the range

For my requirements, the design is adequate and only remains to be recast in a tidier form than the present breadboard.
But clearly the usable modulating frequency range could be greatly extended by substituting more modern, faster, op-amps in place of $I C_{7 \mathrm{C}}$ and $I C_{7 \mathrm{D}}$, and using a faster variable gain amplifier.
To go with current feedback op-amps, the ultimate choice for the variable gain amplifier is obviously yet another $A D 834$. AM or dsbsc could then be produced with modulating frequencies up to hundreds of MHz . .

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

BALLANTINE $6125 C$ PROG TIMEJAMPUTUOE TESTSET. HALCYON $500 B / 521$ U UNIVERSAL TEST SYSTEM

 AIL TECH S33X- 11 CALIBRATOR 1 HP SS SCI HP3SSD ATEN
ML RD TENULINE BU GI HOW ODE ATTENUATORS (NEW)

 KETO DPI PHASE METER I HZ TO IOOKHZ (NEW)

$$
\begin{aligned}
& \text { RACAL DANA GOOD MICROPROCESSINGODVM, } \\
& \text { RACAL DANA } 9303 \text { TRUE RMS RF LEVEL METER }
\end{aligned}
$$

RACAL DANA 9302 RF MILLIIVOLTMETER 10 KHZ TO II 1500 MHZ ..
RACAL 963 TWO TONE GENERATOR SYNTHESIZED........
WA oNE KERRCT496LCR BRICE BATTERYPORTAELE..
WA oNE KERR CT 496LCR BRIDGE BATTERY PORTABLE
TEKTRONIX S28A VIDEO WAVEFOMMONITOR-.....

SIEMENS W2108 LVEL SAYROSAAMM AUUTMATTC MODULATION METER 2GHZ 260 DRANETZ 26 A MANS DISTURBANCE ANALYZER FTTED WITT
 MARCON1 6950/6910 POWER METER IOMHZ TO 20GHZ............. 6850

 BULK PURCHASE SPECIAL
BECKMAN DM 10 DIGITAL MULTIME TER WITH CASE/PROBES..... 650
SOLARTRON 7045 HIGH SPECIFICATION BENCH DEM.

ITH 30 DAYS WARRANTY
86 Bishopgate Street, Leeds LSI 4BB
Tel: $(0532) 435649$ Fax: $(0532) 42688$ I

SECOND USER TEST EQUIPMENT \& COMPUTERS

Broad Product Range? No. Problem DC to Light? No Problem
 BS5750 Registered? No. Problem Onsite NAMAS Lab?
 Sale -Or Return?
 No. Problem
 No. Problem No Problem FulleWarranty? No Problem No Problem

\author{

- Analytical \& Environmental - Calibrators
 * Communications Test
 - Component Analysers
 - Computers \& Peripherals
 * Digital Design \& Test
 - Electrical \& Power
 - EMC Test
 * Frequency Counters
 - Noise Source / Measure
 Oscilloscopes
 - Power Meters
 - Power Supplies
 Radio Comm
 - Recorders \& Data Acquisition
 * Signal Analysers
 * Signal Sources
 - Voltmeters \& Multimeters
}

Call now or check the card for your monthly copy o: Canton Direct- Europe most comprehensIve guide to scone user Test Equipment and Computers

2-6 Queens Road, Teddington, TW11 OLR

Zcarston
The Intelligent Alternative to New

Call or write for our free catalog!

Danbar Sales Company
14455 N. 79th St. \# C, Scottsdale, AZ 85260 USA Phone (602) 483-6202 Fax (602) 483-6403

Wanted: Test Equipment Immediate cash paid

Wandel \& Goltermann TSA-1 Transmission System Analyzer, 100 Hz to 180 MHz , spectrum analysis, selective level, demodulation, \& phase jitter.
$\$ 2250.00$
Same as above but includes network analyzer. $\$ 2750.00$

Wandel \& Goltermann PS 19 Level Generator, 80 Hz to $25 \mathrm{MHz}, 0.1 \mathrm{~Hz}$ resolution, level displayed in $\mathrm{dB} / \mathrm{dB}$ or in $\mathrm{dBm} / \mathrm{dBmO}$.
$\$ 2850.00$
Wandel \& Goltermann SPM-19 Selective Level Meter, 50 Hz to 25 MHz , high frequency accuracy; maximum resolution 0.1 Hz , absolute or relative level measurements.
$\$ 3850.00$
Wandel \& Goltermann SG-4 Storage Display Unit provides digital image storage for use with the SPM-16 \& the SPM-19. Stationary, flickerfree image.
\$1500.00

Racal-Dana 1996 Universal Counter

 DC to $1.3 \mathrm{GHz}, 1 \mathrm{nS}$ single shot time interval resolution, 9 -digit resolution in 1 second, full GPIB programmability, phase, slew, and duty cycle measurement.Special \$ 950.00
Racal-Dana 9300
True RMS Voltmeter, analog, ac voltmeter, 5 Hz to 60 MHz and a dynamic range of 10 uV to 316 v .

$\$ 350.00$

Racal-Dana 9302

True RMS Millivoltmeter, 10 kHz to 1.5 GHz amplitude range 1 mV to 3 V full scale, LCD readout.

\$ 650.00

Racal-Dana 9303

True RMS RF Level Meter, frequency range 10 $\mathbf{k H z}$ to 2 GHz , level range of 30 uV to 3 V . Basic accuracy of 1%.

Special $\$ \mathbf{9 5 0 . 0 0}$
Racal-Dana 9919 UHF Frequency Counter 8 digit, 2 input channels; input (A) 80 MHz to 1 GHz (B) 10 Hz to 100 MHz .
\$ 550.00

Anritsu MS 420B Network/ Spectrum Analyzer, 10 Hz to 30 MHz , 100 dB dynamic range, buill in synthesizer. Measures frequency spectrum, magnitude, phase and delay, 10 Hz to 30 kHz resolution $\mathrm{BW}, \mathrm{lin} / \mathrm{log}$ sweep, sweep markers, CRT readout, IEEE-488 interface, 75 Ohm .

\$2750.00

Tektronix 492 Spectrum Analyzer 50 kHz to $21 \mathrm{GHz}, 80 \mathrm{~dB}$ dynamic range, has option 02 , digital storage. Please call for complete specs.
$\$ 7750.00$

Hewlett-Packard 6227B

0 to 25 V, 0 to 2 A. Contains two identical, independently adjustable power supplies. A front panel switch selects either independent or tracking operation. New boxed.
$\$ 900.00$
Danbar Sales Company is pleased to oller you quality used test equipment at affordable prices. All equipment is guaranteed for 90 days. All prices listed are in US dollars. We accept Visa and Mastercard. Please call or write for our catalog.

CIRCLE NO. 134 ON REPLY CARD

Hately Antenna Technology
 GM3HAT CROSSED FIELD ANTENNA
 ELECTROMAGNETCD DELAY-LINE RADIATOR
 100 Watt
 EMDR I
 $£ 189$
 The newest and most popular design of Crossed Field Antenna is the ElectroMagnetic Delay-Line Radiator in which three wires constitute a double circuit, in which half the power is phase advanced to initiate a MAGNETIC field, and half the power is delayed to induce an ELECTRIC field. The two fields being therefore adjusted to be in synchronism all along the cable through every RF cycle, create an electro-magnetic RADIO WAVE EMISSION which moves away to space at the velocity of light. A process we have called POYNTING VECTOR SYNTHESIS; Refs. EW+WW March 1989, and December 1990, authors F. M. Kabbary and M. C. Hately and B. G. Stewart.
 The EMDR antenna is non-resonant but radiates energy all along its length. The voltages and currents are low in value and safe, so that an amateur, or commercial station, with a restricted site may have it placed anywhere, e.g. inside a loft space, lying on the tiles over a roof, or taped to the outside of a balcony or walkway of a block of flats. At the input to the PHASING UNIT, the system presents a pure resistance of 50 ohms to the source at any of the NINE HF BANDS available to holders of the Class A licence; i.e. 1.8 MHz through to 29.7 MHz . The EMDR receives also.
 The EMDR I is 8.5 metres long (28ft) and is useful for stations on upper floors. For use from ground floor to taller buildings there is also a longer version the EMDR 2 being 15.5 metres long (52 ft) priced $f 199$ inclusive of VAT and postage.
 LEAFLET or VIDEO DOCUMENTARY
 65 Deposit
 In order to explain the THEORY and OPERATION of the Crossed Field Antennas, a leaflet is available on application (telephone 0224316004 any day 08.30 to 21.30) free of charge. Alternatively a full length video documentary will be lent for a returnable deposit of $\mathbf{6 5}$. This contains practical demonstrations and recordings of two-way contacts. Send a cheque or Postal Order to:-
 Hately Antenna Technology gmzat
 I Kenfield Place, ABERDEEN, ABI 7UW, Scotland, G.B.

FEATURES

- $16 / 32$ bit 68307 CPU for fast operation - Up to 1 Mbyte of EPROM space onboard - Up to 512 K byte SRAM space onboard - 32 Kbyte SRAM fitted as standard
- RS232 serial with RS485 option - MODBUS \& other protocols supported - Up to 22 digital $1 / O$ channels
- 2 timer/counter/match registers
- IC port or Mbus \& Watch dog facilities
- Large Proto-typing area for user circuits
- Up to 5 chip selects available
- Program in C, C_{++}, Modula-2 \& Assembler
- Real Time multitasking Operating System
- OS9 or MiNOS with free run time license option
- Manufacturing available even in low volumes
A full range of other Controllers available CIRCLE NO. 136 ON REPLY CARD
P.C. 'C' STARTER PACK AT ONLY 2295

The Micro Module will reduce development time for quick turnaround products/projects and with the P.C. 'C' Starter pack allow you to start coding your application immediately, all drivers and libraries are supplied as standard along with MINOS the real time operating system all ready to pun from power on.
The 'C' Starter pack includes: A Micro Modute with 128 Kbyte SRAM, PSU, Cables, Manuals, C compiler, Debug monitor ROM, Terminal program, Downloader, a single copy of MINOS, Extensive example software, and free unlimited technical support all for $\mathbf{£ 2 9 5}$.

Cambridge Microprocessor Systems Limited
Unit 17-18 Zone 'D', Chelmsford Rd. Ind. Est. Great Dunmow, Essex. U.K. CM6 IXG

CIRCLE NO. 137 ON REPLY CARD

CIRCLE NO. 138 ON REPLY CARD

Letters to "Electronics World + Wireless World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Split decision

I think there is scope for confusion in Norm Dye and Helge Granberg's article concerning hybrids (Using RF Transistors: Combined efforts bring power pay-offs, August, 1994). In particular, the rat-race and Wilkinson hybrids are classed as 90°, or quadratic couplers (p. 696). I thought that a quadratic coupler or hybrid was one which split a single input into two outputs differing in phase (from each other) by 90°; or combined two inputs, differing in phase by 90°, into a single output.
The line coupler and branch line coupler come into this category, but the rat-race and Wilkinson do not. It would have been helpful if Figs. 4, 5 and 6 could have been labelled to show the relative phases of inputs which enable the hybrids to operate with the particular input and output ports. This would have indicated the differences clearly.
In the two diagrams of the hybrid shown in Fig 3, the phase of the output on the right hand side should be -90° not 90°, and in the description of the operation of the rat-race, I think it helps to substitute "combiner" with "splitter" at one point, but I still remain slightly confused.
If any reader wants to know the
theoretical bandwidths and other characteristics of these and other hybrids when splitting or combining, I would recommend they refer to 'Hybrid networks and their uses in rf circuits' (The Radio and Electronic Engineer, Vol 54, No 11/12. pp.473489, Nov/Dec 1984.

Dick Manton

Surrey

Listening post

Contrary to Jerry Mead's view (Letters, Nov 93) an open mind is not "the most valuable tool in any scientific research project". Of greater importance are a critical mind, lots of hard work and a thorough knowledge of the technology of the relevant fields usually called "theory" but mostly based on fact.
An open mind is important for researchers to realise that their endeavours may be misdirected, but I feel sure Jerry would not suggest we need to keep an open mind on the phlogiston theory or the concept of a flat earth.
Jerry says he ranks "developmental listening" (whatever that is, he does not say) "as being as valid in the design of an amplifier as the quest for product safety, long term reliability, applications suitability and an acceptable cost of

Radar replication

George Pickworth's account of the coherer is an outstanding example of the way that technical history is enhanced by modelling ancient hardware. I should like to suggest an expansion of his work.
It seems generally accepted that the first working radar was made by Christian Hulsmeyer in 1904. His patent describes a spark transmitter and a conventional coherer mounted one above the other - the decoherer was coupled to an alarm bell which rang when a signal was received. A description of the apparatus appeared in Wireless World under the title 'The Telemobilscope'.
There seems little doubt that the device would not work if installed on board ship if for no other reason than that the coherer would almost certainly be reset by vibration (it is interesting to note that the large induction coil was mounted in gimbals to keep the whole assembly vertical; Hulsmeyer's is certainly the first radar to use a stabilised antenna.
A demonstration given in Rotterdam in 1904 seems to have persuaded members of a maritime convention that the Telemobilscope worked and had a range of around 3 km , yet examination of the patent specifications casts-considerable doubt on Hulsmeyer's claims.
Replication is the only way to establish if Hulsmeyer deserves his place in the first chapter of so many books published since WWII.
Harold W Shipton

St Louis

USA
production". But while safety, reliability, suitability and cost are important engineering constraints in the design of audio amplifiers, they are secondary to output power, sensitivity, frequency response and distortion - all of which are vital to audible performance.
Back in January 1978, in Wireless World, Peter Baxandall claimed to have designed an amplifier that "was not listened to at all, but subsequently came top in an independent subjective assessment of many competitive designs from various countries"; and that "Quad.. adopt the attitude that if you understand what you are doing thoroughly enough, there is no need for listening tests during the design and development of amplifiers"
Jerry may argue that this is ancient history but in the intervening years I have heard no plausible reason why this should not still be true.
Like Doug Self (Letters, January, 1994), I have little confidence in Jerry Mead's experimental procedure which shows scant regard for established testing methods. He would do well to take up some of the recommendations given in Lipshitz and Vandekooy's excellent paper ('The great debate: subjective evaluation', J Audio Eng Soc, Vol 29, No 7/8, July/August, 1981).
It is too easy to trick, even experienced, listeners into believing that they hear non-existent artefacts during audio testing. Late last year I took part in a listening test to determine the audible effects of different audio cables. The test was inconclusive, and though no-one demonstrated any real consistency in identifying the correct cable the best results were from one subject who readily admitted he was guessing.
For the test proper we listened to some modern music with which I was unfamiliar. It was spectrally fairly simple in that it had little dynamic nature and few transients, but it sounded sweet enough.
After the test I asked if I could play a CD of my own. The more transient nature of the piece clearly showed that the sound was distorted and was very unpleasant - those who owned the gear probably thought so too, judging by their reaction.
The equipment was based around an ME pre-amp and power amp,
designed, I am told, to exhibit fairly high levels of distortion (a few percent). With classical music, it was quite obvious and there was no doubt that a $\$ 100$ personal cassette player could easily deliver superior performance.
My point is that the perceived performance of any audio equipment depends strongly on the music played. It also shows the futility of increasing the distortion levels in audio equipment to suit the personal tastes of a few, since this can only be done at the cost of reducing the suitability of that equipment for general use.
I have been following the debate over the subjectivists' claims for many years. Perhaps the most annoying aspect is how often they claim to have discovered new 'sonic' artefacts - usually due to poor experimental method - with new theories sought to explain those artefacts while ignoring perfectly valid theories which are already tried and tested.
Such ignorance will continue to attract scorn and their claims are likely to be dismissed with 'facility and derision' for some years to come.
Phil Denniss
University of Sydney
Australia

Crossover critic

In discussions about the merits of precious-metal loudspeaker cables, I cannot recall anyone raising the issue of crossover networks.
The path between amplifier and listener contains an easily measured performance limiter - the impedance of the crossover network - rising to several ohms. It is likely to exceed the cable loop impedance at only a few hundred hertz either side of the crossover point and the result is frequency-dependent drive-unit damping which significantly affects transient response.
Based on this I have a number of questions:
Why is the 'golden ear' brigade (who appear to detect small changes in cable impedance) not clamouring for systems having the minimum of impedance between amplifier and drive unit?;
why are cable manufacturers not insisting on the removal of filters

£1 BARGAIN PACKS

In fact...cheaper than $£ 1$ because if you buy 10 you can choose one other and recelve if free!
$1 \times 12 v$ Stepper Motor. 7.5 degree. Order Ref: 910. 1×10 pack Screwdrivers. Order Ref: 909 . 2×5 amp Pull Cord Celling Switches. Brown. Order Ref: 921
$5 \times$ reels Insulation Tape. Order Ref: 911
$4 \times 14 \mathrm{~mm}$ Ball-races. Order Ref: 912 .
$2 \times$ Cord Grip Swltch lamp Holders. Order Ref: 913 $1 \times$ DC Voltage Reducer. 12v-6v. Order Ref: 916 1×10 amp 40 v Bridge Rectifler. Order Ref. 889 Lightwelght Stereo Headphones. Moving coil so superior sound. Order Ref: 896
$2 \times 25 W$ Crossovers. For 4 ohm loudspeakers. Order Ref: 22
$2 \times$ Nicad Constant Current Chargers. Easily adapt able to charge almost any nicad battery. Order Ref: 30 18v-0-18v 10va Mains Transformer. Order Ref: 813 $2 \times$ White Plastlc Boxes. With lids, approx. $3^{\prime \prime}$ cube Lid has square hole through the centre so these are deal for light operated switch. Order Ref: 132.
$2 \times$ Reed Relay Kits. You get 8 reed switches and 2 coll sets. Order Ref: 148.
12v-0-12v 6va Malns Transformer. PCB mounting Order Ref: 938
$1 \times$ Blg Pull Solenoid. Mains operated. Has $1 / 2^{\prime \prime}$ pull. Order Ref: 871.
$1 \times$ Blg Push Solenold. Mains operated. Has $1 / 2^{\prime \prime}$ push Order Ref: 872.
$1 \times$ Mini Mono Amp. 3W into 4 ohm speaker or $1 W$ Into 8 ohm. Order Ref: 495
$1 \times$ MInI Stereo 1W Amp. Order Ret: 870
15v DC 150 ma PSU. Nicely cased. Order Ref: 942. $1 \times$ In-Flight Stereo Unit is a stereo amp. Has tw most useful mini moving coil speakers. Made for BOAC passengers. Order Ref: 29.
passengers. Order Ret: 29 . Scaled 0-100. Order Ref: 756 .
$2 \times$ Lithium Batterles. 2.5 V penilght size. Order Ref: 874 ,
$2 \times 3 \mathrm{~m}$ Telephone Leads. With BT flat plug. Ideal for phone extenslons, fax, etc. Order Ref: 552
x 12V Solenoid. Has good $1 / 2^{\prime \prime}$ pull or could push if modified. Order Ref: 232
$4 \times \ln$-Flex Switches. With neon on/off lights, saves leaving things switched on. Order Ref: 7
$2 \times 6 \mathrm{~V} 1 \mathrm{~A}$ Mains Transformers. Upright mounting with fixing clamps. Order Ret: 9.
$2 \times$ Humidity Swltches. As the air becomes damper the membrane stretches and operates a micro switch Order Ref: 32.
5×13 A Rocker Switch. Three tags so on/off, or changeover with centre off. Order Ref:' 42.
Minl Cassette Motor, 9v. Order Ref: 944.
$1 \times$ Suck or Blow-Operated Pressure Swltch. Or it can be operated by any low pressure variation such as water ievel In tanks. Order Ref: 67
$1 \times 6 \mathrm{~V} 750 \mathrm{~mA}$ Power Supply. Nicely cased with mains input and 6V output lead. Order Ref: 103A.
2 x Stripper Boards. Each contains a 400V 2A bridge rectifier and 14 other diodes and rectiflers as well as dozens of condensers, etc. Order Ref: 120
12 Very Fine Drills. For PCB boards etc. Normal cost about 80p each. Order Ref: 128
$5 \times$ Motors for Modal Aeroplanes. Spin to start so needs no switch. Order Ref: 134
needs no switch. Order Ref: 134. as speakers. Order Ref: 139.
$6 \times$ Neon Indlcators. In panel mounting holders with ens. Order Ref: 180
$1 \times$ In-Fiex Simmerstat. Keeps your soldering iron etc always at the ready. Order Ref: 196
$1 \times$ Mains Solenoid. Very powerful as $1 / 2^{\prime \prime}$ pull, or could push if modified. Order Ref: 199.
$1 \times$ Electrlc Clock. Mains operated. Put this in a box and you need never be iate. Order Ref: 211.
$4 \times 12 \mathrm{~V}$ Alarms. Makes a noise about as loud as a car horn. All brand new. Order Ref: 221
$2 \times\left(6^{\prime \prime} \times 4^{\prime \prime}\right)$ Speakers. 16 ohm 5 watts, so can be joined in parallel to make a high wattage column. Order Ref 243.
$1 \times$ Panostat. Controls output of boiling ring from simmer up to boil. Order Ref: 252
$2 \times$ Oblong Push Switches. For bell or chimes, these can switch mains up to 5A so could be foot switch i fitted in pattress. Order Ref: 263
$50 \times$ Mixed Silicon Diodes. Order Ref: 293.
1×6 Dlgit Mains Operated Counter. Standard size but counts in even numbers. Order Ref: 28
$2 \times 6 \mathrm{~V}$ Operated Reed Relays. One normaliy on, other normally closed. Order Ref: 48
$1 \times$ Cabinet Lock. With two keys. Order Ref: 55
$61 / 2^{\prime \prime} 8$ ohm 5 watt Speaker. Order Ref: 824.
1 x Shaded Pole Mains Motor. $3 / 4^{\prime \prime}$ stack, so quite powerful. Order Ret: 85.
2×5 Aluminium Fan Blades. Could be fitted to the above motor. Order Ref: 86
$1 \times$ Case. $31 / 2 \times 21 / 4 \times 1^{3 / 4}$ with $13 A$ socket pins. Order Ref: 845.
$2 \times$ Cases. $21 / 2 \times 21 / 4 \times 13 / 4$ with $13 A$ pins. Order Ref: 565. $4 \times$ Luminous Rocker Switches. 10A mains. Order Ref: 793.
$4 \times$ Different Standard V3 MIcro Switches. Order Ref: 340.
$4 \times$ Different Sub Min Micro Swltches.. Order Ref:

BARGAINS GALORE

Infra Red Controller. Made from Thorn TV sets but suitable fo bargain, £2. Order Ref 2P304.
Hall Effect.
Hall Effect. Give positive or negative pulses when magne passes over. Mounted on small PCB, 2 for $£ 1$. Order Ref 1032. Digital Multil Tester. 30 range, model no 3800 , normal price $£ 40$
our price $£ 25$. Order Ref 25 P 14 . Brand new and guaranteed. our price $£ 25$. Order Ref 25P14. Brand new and guaranteed. Ref 5P240.
Three More Transformers. Order Ref $4 \mathrm{P8} 1$ is a $12 \mathrm{~V}-0-12 \mathrm{~V} 40 \mathrm{~W}$ damp mounted, price $£ 4$ each less 10% for 10 or more. Orde Aef 5P236 is a 43 V at 2.4 A . trame mounted, heavy construction s a 12 V 3 A frame mounting We have tested this and find it quite suitable for 50 W lamps. Multi Voitage Auto-Transformer. Could be used to give 350 W at 115 V for operating regular 115 V equipment or It could give this some current at $85 \mathrm{~V}, 120 \mathrm{~V}$ or 130 V . Another use for it is to boos the output from a long line. Could give a 30 V or 50 V boost up to
300 W . Probably has many other uses for its outputs are 85 V . 300 W . Probably has many other uses for its outputs are 85 V ,
$115 \mathrm{~V}, 120 \mathrm{~V}, 130 \mathrm{~V}, 200 \mathrm{~V}, 220 \mathrm{~V}$ and 240 V . A big transformer, price £4. Order Ref 4P79.
I You Use An Invertor to operate radios or TV and slmilar requency controlled equipment. then it is advisable to know the frequency of the invertor, otherwise this and/or the equipment it meters which eiectronically display the frequency of the supply providing it is between 45 and 55 Hz . Really top class instrument, price £15. Order Ref 15P19.
Mains Klaxon Type Alarm. Very loud output but adjustable.
Completely encased, shelf or wall mounting, £5. Order Ref 5P226.
12V 10A Swlith Mode Power Supply for only $£ 9.50$ and a little bit of work because you have to convert our 135W PSU,
Modifications are relatively simple - we supply instructions Simply order PSU Ref 9.5P2 and request modification details, price still $£ 9.50$.
Speed Controller for 12 V DC Motors. Suhable for motors with horse powers up to one third and drawing currents up to 30A on a well thed circuit which appeared in the Model Engineer some ime ago. The complete kif with case and onvoft switch is available, price £18. Order Ref: 18P8.
Flg 8 Flex. Fig. 8 flat white pvc, flexible with . 4 sq . mm cores
Ideal for speaker extenslous and bell circuits. Also adecuately deal for speaker extensious and bell circuits. Also adequately coll E_{1}. Order Ref: 1014.
Friedland Underdome Bell. Thelr ref: 792. A loud ringer but very

neat, $3^{\prime \prime}$ diameter, complete with wall fixing screws, $£ 5$. Order Aet: neat, $3^{\prime \prime}$ diameter, complete with wall fixing screws, 55 . Order Aet | $12 v ~ 10 a m p ~ S w i t c h ~ M o d e ~ P o w e r ~ S u p p l y . ~ F o r ~ o n l y ~$ |
| :--- |
| 9.50 and a |
| iltie bit of work because you have to convert our 135 W PSU | Modifications are relatively simple - we supply Instructions. Simply

order PSU Aet: 9.5 P2 and request modification details. Prlce stll 9.50

Medicine Cupboard Alarm. Or It could be used to warn when any cupboard door Is opened. The light shining on the unit makes ent 33 Order Ret: 3P155.
Don't Let it OverflowI Be it bath, sink, cellar, sump or any other hing that could flood. This device will tell you when the water has isen to the pre-set level. Adjustable over quite a usetul range. Neatly cased for wall mounting, ready to work when battery fitted Neatly case
ory Powerful Main Motor. With extra long ($21 / 2^{\prime \prime}$) shatts extending out each side. Makes it ideal for a reversing
arrangement for, as you know, shaded pole motors are not eversible. £3. Order Fef: 3P157.
Solar Panel Bargaln. Gives 3v at 200 mA . Order Ref: 2 P324.
> £1 Super Bargain
> 12 V axial fan for only £1, ideal for equipment coollng, brand new, made by West German company. Brushless so virtually everiasting. Needs simple transistor drive circuit, we include diagram. Only $£ 1$, Order Ref: 919 .
When we supply this we will include a list of approxi-
mately 800 of our other $£ 1$ bargains.

40W-250W Lignt Dimmers On standard plate to put directly in place of fush switch. Avallable in colours, green, red, blue and switch plate, £3, Order Ref. 3P174
45A Double Pole Mains Swlich. Mounted on a $6 \times 31 / 2$ aluminium plate, beautifully finished in gold, with pilot light. Top quality, made y MEM, $\mathbb{E 2}$, Order Ref: $2 P 316$.
plate, will give more or less light, or to turn, just finger on front plate, will give more, or less light, or off. Silver plate on white
background, right size to replace normal switch $\mathbf{5 5}$, Order Ret. 5 5230.

> Motorise that Trolleyl You could with Sinclair C5 $1 / 3$ rd hp 12 v battery motor :tili avaliable, price £21. Order Ref: 21P1 1224 DC Solenold. The construction of this is such that it will
push or pull. With 24 V this is territically powertul but is still quite
good at 12 V . $£ 1$. Order Ret: 877 . bon't Stand Out In The Cold
has a flat BT Socket one Cold Ond 12 m telephone extension lead has atlat 8 B
Ref: $2 P 338$.
20W $5^{\prime \prime} 4$ Ohm Speaker mounted on baffle with front grille, $\Sigma 3$, Order Ref: 3 P145. Matching 4 ohm 20 W tweeter on separate
baffle, $£ 1.50$. Order Rel: 1.5 Fg .

This is a multi range voltmeter/ammeter
 and 7106 to provide 5 ranges each of the A-D amps. Supplied with full data sheet Secial snip price with full data sheet. Spe £ 12 , Order Ref: 12P19.

Telephone Extenslon Wire 4 core correctly colour coded,
intended for permanent extensions, 25 m coil, E2, Order Ref. 2P339.
Migh Power Swlith Mode PSU. Normal mains input, 3 outputs: +12 V at $4 \mathrm{~A},+5 \mathrm{~V}$ at 16 A and -12 V at 12 A . Completely enclosed in plated steel case.
Phillps 9" High Resolution Monitor. Black and white in metal frame for easy mounting. Brand new, still in maker's packing,
offered at less than price of tube aione, only $£ 15$, Order Ret:

Hlgh Current AC Mains Relay This has a 230 v coil and changeover switch rated at 15 A
plastic cover. £1, Order Ref. 965 .

BARGAINS GALORE

Ultre Thin Drills, actually 0.3 mm . To buy these regular and the price to you is $£ 1$ per pack, Order Ref: 797B. You Can Stand On it! Made to house GPO telephon equipment, this box is extremely tough and would be idea for keeping your small tools in, internal size approx $101 / 2^{\prime \prime} \times 4^{1 / 22^{\prime \prime}} \times 6^{\prime \prime}$ high. Complete with carrying strap, price $£ 2$ Order Ref: 2P283B
Ultra Sonic Transducers. Two metal cased units, one . Price $£ 1.50$ the pair, Order Ref: 1.5P/4.
Power Supply with Extras. Mains input is fused and filtered and the 12 V DC output is voltage regulated. Intended for high class equipment. this is mounted on a PCB and, also relays and Piezo sounder,£3. Order Ref: 3P80B
insulation Tester with Multimeter. Internally generates oltages which enable you to read insulation directly in megohms. The multimeter has four ranges, AC/DC volts; ; ranges DC milliamps, 3 ranges resistance and 5 amp range These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, probably cost at leas 50, yours for only $£ 7.50$ with leads, carrying case $£ 2$ extra This instrument
quarantead okay Supplied complete with circuit diagram quaranteed okay. Sup
Mains Isolation Trans former. Siops you getting 'to earth shocks. 230 V in and 230 V out. 150 watt, $\mathbf{8 7 . 5 0 \text { , Order Rel }}$ 7.5P/5 and a 250 W version is $£ 10$, Order Ref: $10 \mathrm{P97}$. Malns 230 V Fan. Best mak
blades, 88 , Order Ref: 8 P8
blades, £8, Order Ref: 8P8.
2MW Laser. Hellum neon by Philips, full spec. £30, Order Ref: 30P1. Power supply for this in kit form with case is $£ 15$ Order Ref: 15P16, or in larger case to house tube as we £18, Order Rer: 18P2. The larger unit, made up, tested and ready to use, complete with laser tube $£ 69$, Order
12 v 80hm apeaker, oniy $£ 1.50$ and waterproof.
Solar Charger. Holds 4AA nicads and recharoes
hours, in very neat plastic case £6, Order Ref: 6P3.
Ferrite Aerlal Rod. $8^{\prime \prime}$ long $x^{3} /{ }^{\prime \prime \prime}$ " diameter, made by Mullard Complete with two coils, 2 for £1, Order Ref: 832 P. Air Spaced Trimmer Caps. 2-20pi, ideal for precision tuning UHF circuits, 4 for £1, Order Ref: 818 B
Modem Amstrad FM240 As new condition but customer return, so you may need to fault find, $£ 6$, Order Ref. 6 P34 and with Power Unit. 13.5V at 1.9A or 12 V at 2 A encased and with eads and output plug, normal mains input $£ 6$ B0W Mains Tran
with Marmal Transformer. Two available, good quality, both with normal primaries and upright mounting, one Is 20 V 4 A $\Sigma 3$ each.
Project Box. Size approx. $8^{\prime \prime} \times 4^{\prime \prime} \times 41 / 2^{\prime \prime}$ metal, sprayed grey,
louvred ends for ventilation otherwise undrilled. Made for GPO so best qually, only $£ 3$ each, Order Ref: $3 P 74$
Sentinel Component Board Amongst hundred of other parts, this has 15 lCs , all plug in so do not need soldering Cost well over £100, yours for £4, Order Ref. 4P67 Sinclair 9V 2.1A Power Supply Made to operate the 138K Specirum Plus 2, cased with input and output leads Originally listed at around $£ 15$, are brand new, our price is oxperimenting with Valve
Expermenting with Vaives. Don't spend a fortune on a mains transformer, we can supply one with standard mains Order Rel: 5P167.
15W 8 Ohm $8^{\prime \prime}$ Speaker * $3^{\prime \prime}$ Tweeter. Made for a discontinued high quality music centre, gives real hi-fi and only $£ 4$ per pair, Order Ref: 4P57.
Water Pump. Very powerful, mains operated, $£ 10$, Order
Ref: 10 P 74 . Ref: 10P74
O-1mA Full Vision Panel Meter, $\mathbf{2}^{3 / 4^{n}}$ square, scaled $0-100$ but scale easily removed for re-writing, $\varepsilon 1$ each, Order Ref 756.
Vu

VU Meter. Illuminate this from behind becomes on/of indicator as well, $11 / 2^{\prime \prime}$ square, 75 each, Order Ref: 366. Amstrad Keyboard Model KB5 This is a most comprehen full numerical and qwerty. Brand new, still in maker's 1 packing, £5, Order Ref. 5P202.
1 RPM Motor. This is only $2 W$ so will not cost much to run Speed is ideal for revolving mirrors or lights. $£ 2$. Order Ref. 2 P328.
Unusual Solenold. Solenoids normally have to be energised to pull in and hold the core, this is a disadvantage where the appliance is left on for most of the time. We now have magnetic solenoids which hold the core unfil a voltage is
applied to reiease it. £2, Order Ref. 2P327. Malns FIlter. Resin impregnated, nicely cased, pcb mounting. £2, Order Ref. 2P315.
200VA Mains Transformer. Secondary voltages $8 \mathrm{v}-0-8 \mathrm{~V}$. So you could have 16 v at 12 A or 8 v at 25 A . Could be ideal for car starter charger, soil heating. spot welding, carbon rod welding, or driving high powered amplifiers etc. £15, Order Ref. 15 P51.
Prices include VAT. Send cheque/postal order or ring Orders over £25 post free.

M\&B ELECTRICAL SUPPLIES LTD
 Pilgrim Works (Dept. WW),
 Stairbridge Lane, Bolney, Sussex RH17 5PA
 Telephone (0444) 881965 phone for Fax
 Callers to 12 Boundary Road,
 Hove, Sussex

letters

which severely limit any improvement their superblyconstructed products may give?; why are amplifier designers, offering 'damping factors' of thousands measured at the output terminals, not concerned that you are lucky to get a damping factor of five measured at the drive unit?, and why do loudspeaker manufacturers care so little about the transient response of their products that they sacrifice damping for the sake of convention in the placement of filters?
Current technology allows systems to be constructed with one power amplifier for each driver, tailored to the needs of bass, middle, treble units. All crossover networks can be organised at the amplifier inputs, with each drive unit connected direct to an amplifier output. Such systems achieve maximum frequency-

Busman's $I^{2} \mathbf{C}$ kits

Following publication of
'Busman's guide to $I^{2} \mathrm{C}^{\prime}(E W+$ $W W$, June, pp.479-485), we are offering $E W+W W$ readers the Cameo development board at the reduced cost of $£ 99$ plus vat and delivery (total cash-with-order price including $£ 5$ delivery and $£ 18.20$ vat is $£ 122.20$). The board normally costs $£ 187.41$ (inc vat). An information pack giving full details of the board's functions can also be obtained by sending a C4 sae with a $£ 0.57$ stamp.
As readers will appreciate, the Cameo board allows design and development of 8051 programs, and contains the powerful Philips 80 C 552 plus monitor prom and up to 32 K of user ram. Our offer, which lasts until the end of December, includes a user manual, circuit diagram, and disc with
Cameo WorkBench comms and example programs. Now for the mistakes. Readers should also note that:
Page 481, Fig. 1, the test for the last data byte sets SDA high for both true and false. There should be an ACK for every byte except the last data byte (Set SDA low ACK if yes).
Page 482, for communications with the Cameo board, the comms program need not be procomm, any $R S 232$ comms package will do.
Page 482, the internal registers on frequency synthesiser TSA6057 are shown in hex, but the base 16 figures after each data byte should be in subscript to avoid confusion: eg 40_{16} instead of 4016 .

M B Button

Technical Director TDR Ltd
29 The Dawneys
Crudwell, Malmesbury
Wiltshire SN16 9HE
Tel 0666-577464
independent damping, and incidentally allow complete overload protection for the drivers So if you really can tell the difference between bell-wire and gold-plated super conductors, then the improvement with this arrangement will be absolutely dazzling.
Wal Hensby
Essex

Historical insight

RL Tufft's reference to speakers driven by moving-iron and balanced-armature (iron) movements (Letters) made me wonder if he also remembers the inductor-dynamic-movements, twoiron armatures, producing somewhat better low-frequency response than the other two types.
Back in the late 1920s and early thirties, many of us used to make our own cones, or other diaphragms with suitable frames or mountings for the speaker assembly. We described our interest as high quality sound reproduction, as we did when we progressed to moving coil drives, initially with dc-energised magnets, often at 6 V from accumulators or from dc mains supply at $200-230 \mathrm{~V}$.
We aspired to owning a PG Voight MC speaker unit - energised in those days by dc - though a very fine example with a permanent magnet came from Ferranti, the Ferranti Ml. It received a good review in Wireless World at that time, with pretty even response up to at least 2000 cps .
Ex BBC engineer PR Turner, with a Mr Hartley, produced an interesting unit, a permanent magnet with plastic, brown Bakelite sheet, handmade into a cone. This worked well, with good low frequency output, in a suitable enclosure, and plenty of hf.
The Hartley Turner MC improved units allowed quite high quality sound to be reproduced from the main medium-wave BBC transmitters. Unfortunately, after dark, a filter was needed to reduce the effect of the accompanying 10 kHz whistle caused by the carrier beating with an adjacent transmitter - unless located fairly close to the desired transmitter.
From late 1937 a somewhat better source became available, sound from Alexander Palace and its television signals. The result was good and I must thank the 'magic" of Alan Blumlein at EMI labs, Hayes, for that pleasure.
I am still an enthusiast for highquality sound reproduction and have my custom-made speakers, making changes from time to time. I keep a pair of Peter Walkes ELS63s just for reference.
Finally, I must mention my interest in Douglas Self's work. I often wonder what is his opinion of the Quad 405-2 circuitry. I have

Discrete behaviour

Douglas Self is correct (Letters, August 1994). The circuits described in the references of my previous letter (June) are unsuitable for a discrete amplifier. But I would like to point out that in my original letter I described an output stage of an amplifier which consisted of discrete components and a CA3046 transistor array. This output stage uses the nonlinear common-mode loop technique.
Unfortunately, my letter was too long and this part was not published.
As an alternative, instead of the harmonic mean I have used a different non-linear function which gives similar results but is easier to implement. In the non-linear network (see figure) the output current is
approximately proportional to $\exp \left(-c . i_{1}\right)+\exp \left(-c . i_{2}\right)$, where $c=q R_{\text {sense }} / k T$ and i_{1} and i_{2} are the currents through the output

Non-linear network. The transistors are all part of the CA3046
transistor array. transistors. The common-
mode loop forees the output current of the network to remain constant.
I would be happy 10 send Douglas Self the complete amplifier
schematic and a short description.
Marcel van de Gevel
Haarlem
The Netherlands
modified slightly some that I have and, frankly, find these amplifiers difficult to fault. Again I have another high grade mosfet unit as a comparative assessment.
I moved to Scarborough in 1989 from the south but have not yet encountered anyone who appears to be a contemporary of mine. I look forward to making more contacts.
Harry Dix
Scarborough

Big science squashes little projects

I agree with R Burfoot (Letrers, July) that during the past few years, the electronics industry has declined But it would be grossly unfair to blame the Ministry of Defence. If it had not been for government contracts, inertial navigation, radar and many other major developments might not have taken place.
The tax-payer's money was spent wisely and the national investment has already been returned a thousand-fold.
So what can we do now to halt the decline in electronics?
One answer might be for Government to award contracts for small-but-promising civil projects studies in robotics, laser technology, artificial intelligence, navigation etc
But are today's government research funds being wisely spent? The UK, like the USA, has embarked on prestigious but costly research programmes in big science.

As a consequence, small industries have been starved of funds.
To take an example from the US, where the government spent \$2billion on an 86 km tunnel for the super-conducting super collider only to have the project eventually cancelled by Congress. Surely, there are better ways of spending taxpayers money than seeking a Grand Unified theory or looking for new particles, gravity waves, black holes and dark matter.
The hard fact is that in the short term, big science projects - worthy as they are - are most unlikely to create work or generate wealth. While we wait, our industry is dying.
John Ferguson
Camberley

Fourier dice

Of course R H Pearson (Letters, August) is quite right - formally, but in my letter (June) 'Fourier's theory' was loosely used as a collective noun for the many design theories - with and without computer aid - that revolve around simple harmonic vibrations and circular functions.
Although mathematically versatile, these concepts fail to do full justice to the wealth of nuances shaping the signals produced by everyday reality sound and vision alike.
Hence most reproduction sounds/looks a pronounced artificiality.
H G Groenevelt
Rotterdam
Netherlands

Tektronlx Das 9100 Logic analysers. Complete - $£ 700$.
Nicolet 800A Logic Analysers - $48 \mathrm{Ch}-16$ Bit - $£ 450$.
HP7580B-7585B Drafting Plotter $-£ 1,000$.
Bradley 127 DC Voltage Calibrator - £250.
Bradley 125B AC Calibrator + Ration Transformer 1255 + PI $1254850 \mathrm{C} / \mathrm{s}$ $60-400-1 \mathrm{KC} / \mathrm{s}-£ 250$.
Marconi 6460/1 Power Meters + Heads RF various - £250 ea
Marconi 6460 Power Meters + Heads RF various - $£ 150$ ea.
Marconi CT499 MkII RF Watt Meter Absorption 1-3-10-30-100W - 50ohm+700hm
Convertor Adaptor - £350. Includes AF Adaptors Low Loss.
HP59500A Multiprogrammer Interface.
HP6940B Multiprogrammer or HP6941B - £100-£200.
Datalab DL1200 Waveform Recorder - $£ 300$.
Solatron 1170 FX Response ANZ-Led - $£ 300$.
Solatron 1170 FX Response
HP59401A Bus System ANZ.
STC Optical Fibre Reflectometer OFR6 - £300.
STC Optical Fibre Reflectometer OFR6-£300.
HP3497A Data Acquisition Control Unit - $£ 300$
HP3497A Data Acquisition Control Unit - £300.
Redifon Synthesized Receiver R1001-CW-AM-USB-LSB-PIC-STORE-Led
Readout-15KC/s-30MC/s- 8600 .
Racal LA1117 Piccolo Modem - £150.
Redifon RFS11 Pre-Selector - Post Selector -
1MC/s-32MC/s - E200.
Sayrosa $3-39 \mathrm{MC} / \mathrm{s}$ Programmable Freq Syn-Type
$607+607 \mathrm{~B}-\varepsilon 200-\mathrm{f} 300$
$607+607 \mathrm{~B}-£ 200-£ 300$.
Racal TA1816 1 Kw Solid State Transmitter - MA1034 + 3 Pare Amps - £1,000.
H.C.D. Research Ltd Precision Oscillator $15195000 / 1000 \mathrm{KHz}-£ 250$.

Nimbus 400 Hz Convertor Mains - 240AC-500C/s Inpui-Output $115 \mathrm{~V}-400 \mathrm{~Hz}$ -
$500 \mathrm{~V} / \mathrm{A}$ Programmable 0-125V. G500 FPL - £300. G200R as above -
200V/A - £200.
Hedinair + Montford Environmental Ovens etc. Big+Small - £200-£1,000.
ICL Clean Unez Unit - £300.
HP6943A Multiprogrammer extenders - $£ 300$.
HP6525A DC P.U.O.-4000V-50M/A - £350.
Polaroid + CR-9 Cameras for Oscilloscopes - $£ 100$.
HP3710A IF-BB Transmitter, HP3702B IF/BB Receiver +
3705A Phase Detector - £250.
Moor \& Reed Frequency Convertor 400C/s 3 Phase Type SFC 6K/3AXR- Solid State-20Amps/Mains $240 \mathrm{VAC}-50 \mathrm{C} / \mathrm{s}$ Input - $£ 600$.
HP7586B Plotter Large Quantity Accessories Pens etc - HP-IB-RS2320 - £1 000
Benson 16 BZ80 Asynchrome Interface + Accessories \& Pens etc - $£ 600$.
Benson 16 BZ80 Asynchrome Interface + Accessories
Imtec 6000 Microfilm Reader \& Printer, A4-A2 sizes -
Imtec 6000 Microfilm Reader \& Printer
Plain Paper - Various Lenses - $£ 750$.
Plain Paper - Various Lenses - $£ 750$.
Fluke Y5020 Current Shunt - $£ 150$.
Fluke Y5020 Current Shunt - 2107 FX Analyser - $£ 250$.
B\&K 2107 FX Analyser -
B\&K BFO 1022-£200.
B\&K BFO 1022- £200.
Tektronix Spectrum ANZ-1L5-50HZ-1MC/s - £150-
Tektronix Spectrum ANZ-1L5-50
$1 \mathrm{~L} 20-10 \mathrm{MC} / \mathrm{s}-4200 \mathrm{MC} / \mathrm{s}-£ 250$.
FARNELL P.U. AP60-50-60V-50Amps - £1,000.
Tracor 527E Frequency Difference Meter - £350.
HP8900B Peak Power Calibrator - $£ 250$.
B\&K 2425 Electronic Voltmeter - $£ 200$.
HP4437A 600 ohms Attenuator - $£ 150$.
HP6177C DC Current Source - £250.
B\&K Two Channel Level Recorder - $£ 400$.
Tektronix $221360 \mathrm{MC} / \mathrm{s}$ O scilloscope - £300-2213A - £350.
Tektronix $221560 \mathrm{MC} / \mathrm{s}$ Oscilloscopé $\rightarrow £ 350$.
Tektronix 2445 150MC/s Oscilloscope - $£ 1,200$.
Tektronix $2246100 \mathrm{MC} /$ s Oscilloscope - $£ 1,000$.
Tektronix 2225 150MC/s Oscilloscope - $£ 800$.
Tektronix 2245 100MC/s Oscilloscope - $£ 700$.
Tektronix 491 Spectrum ANZ 10MLS-40GHC - £1,000.
Farnell P.U. H30/100-£500.
Schlumberger S1 4922 Radio Code ANZ - $£ 400$.
Aerial Array on metal plate $9^{\prime \prime} \times 9^{\prime \prime}$ containing 4 aerials plus Narda detector. 10011 GHZ using N type and SMA Plugs \& Sockets - ex equip - 1100.
Marconi TF2175 Power Amplifier - $1.5 \mathrm{MC} / \mathrm{s}-520 \mathrm{MC} / \mathrm{s}+$ Book - $£ 100$.
Marconi TF2175 Power Amplifier - $1.5 \mathrm{MC} / \mathrm{s}-520 \mathrm{MC} / \mathrm{s}+\mathrm{Book}-£ 100$.
Schlumberger 2741 Programmable Microwave Counter - $10 \mathrm{HZ}-7.1 \mathrm{GHZ}$ - $\mathbf{\Sigma} 750$
Schlumberger 2741 Programmable Microwave Counter - $10 \mathrm{HZ}-7.1 \mathrm{GHZ}$ - $£ 750$
Schlumberger 2720 Programmable Universal Counter - $0-1250 \mathrm{MC} / \mathrm{s}-£ 600$.
Schlumberger 2720 Programmable Universal Counter-0
Tektronix 576 Calibration Fixture - $067-0597-99-£ 250$.
Tektronix 576 Calibration Fixture-067-0597-99- £250.
Texscan Rotary Attenuators BNC/sMA - 0-10-60-100DBS - $\mathbf{£ 5 0 - £ 1 5 0}$
Texscan Rotary Attenuators BNC/sMA - $0-10-60-100 \mathrm{DBS}-£ 50-£ 150$.
HP809C Slotted Line Carriage - Various frequencies to $18 \mathrm{GHZ}-£ 100-£ 300$.
HP809C Slotted Line Carriage - Various frequencies to $18 \mathrm{GHZ}-£ 100-£$
HP532-536-537 Frequency Meters Various Frequencies - £150- $£ 250$.
S.E. Lab SM215 Mkll Transfer Standard Voltmeter - 1000 Volts.
Altech Stoddart P7 Programmer - £200.
HP6181 DC current source - $£ 150$.
HP59501A HP-IB Isolated D/A Power supply programmer.
HP3438A Digital Multimeter - $£ 150$.
HP6177c DC Current Source - $£ 150$.
HP6207B DC Power Supply - £100.
HP741B AC/DC differential voltmeter standard (old colour) - £100.
HP6209B DC Power Unit - £100.
Fluke 431C High voltage DC supply.
Tektronix M2 Gated Delay Calibration fixture - 067-0712-00.
Tektronix Precision DC Divider Calibration fixture -067-0503-00.
Tektronix Overdrive Recovery Calibration fixture - 067-0608-00.
HP5011T Logoc Trouble Shooting Kit - £150.
PPM 8000 Programmable Scanner.
Fluke 730 A DC Transfer Standard.
Fluke 730A DC Transfer Standard.
B\&K 4815 Calibrator Head - $£ 150$.
B\&K 4812 Calibrator Head - 150 .
HP FX Doubler 938A or 940A - £300.
HP461A Amplifier 1KC-150MC/s - Old Colour - $£ 100$.
Altech Precision Automatic noise figure indicator type $75-£ 250$.
Adret FX Synthesizer 2230A - $1 \mathrm{MC} / \mathrm{s}-\mathrm{E} 250$.
Marconi TF 2512 RF Power Meter - 10 or 30 Watts - 50 ohms - £80.
Marconi 2830 Multiplex Tester.
Marconl 2828A Digital Simulator.
Marconi 2831 Channel Access Switch
Marconl TF2337A Automatic Distortion Meter - $£ 150$.
MP489A Micro-Wave Amp-1-2GHZ-£500.
HP489A Micro-Wave Amp-1-2GHZ - $£ 500$
Fluke 893A Differential Meters - $£ 100$ ea.
Fluke $893 A$ Differential Meters $-£ 100$ ea.
EG\&G Parc Model 4001 Indicator 4203 Signal Averager PI.

Tecktronix Plug-In AM503-PG501-PG508-PS503A-PG502.
Cole Power Line Monltor T1085-£250.
Claude Lyons LCM1P Line Condition Monitor - $£ 250$.
Bell \& Howell TMA3000 Tape Motlon Analyser - £250.
HP5345A Automatic Frequency Convertor -.015-4GHZ - £350.
HP32008 VHF Oscillator $-10-500 \mathrm{MC} / \mathrm{s}-\mathrm{E} 200$.
Sencore SC61 Waveform ANZ-Microprocessor $60-100 \mathrm{MC} / \mathrm{s}$ - $£ 350$.
Schlumberger 3531D Date Acquisition System- £300.
Marconi 6700A Sweep Oscillator with 1-2GHZ PI 6730A - £400.
B\&K 2218 Sound Level Meter - $£ 600$.
EIP 331 18GHZ Counter-Microwave - Led - $\mathbf{\Sigma} 700$.
EIP 351D 18GHZ Counter-Microwave - Led - £800.
EIP 451 18GHZ Counter-Microwave - Led - £900.
EIP 545 18GHZ Counter-Microwave - Led - $£ 1,200$
Systron Donner 6054D 18GHZ Counter - Led - £800.
Systron Donner 6057 18GHZ Counter - Microwave - Nixey - £600.
HP5340A 18GHZ Counter Microwave - Led - £1,200.
HP5340A 18GHZ Counter Microwave - Nixey - $\mathbf{\Sigma 8 0 0}$.
Systron Donner 6061 18GHZ Counter Microwave - Nixey - $£ 500$.
Systron Donner 6061 18GHZ Counte
Austron 6014 FX Multiplier - $£ 250$.
Austron 2004 Receiver Loran - $£ 250$.
Austron 1201A Linear Phase Recorder - £250.
Austron 2010A Disciplined FX Standard - $£ 250$.
Mlcrotel MSR-903 Microwave Receiver - .03-18GHZ - AM-FM - £2,000.
Microtel MSR-903 Microwave Receiver -. 1-18GHZ - AM FM - £2,000.
Microtel MSR-903A 18GHZ FX Counter for Above - $£ 1,000$.
Alltech NM17/27 EMI/Field Intensity Meter $-.01-32 \mathrm{MC} / \mathrm{s}-\mathrm{E1}, 000$.
Ailtech NM37/57 EMI/Field Intensity Meter-30-1000MC/s - $11,000$.
Alltech NM65T EMI/Field Intensity Meter - $1 \mathbf{- 1 0 G H Z}-£ 1,000$.
Fluke 5205A Power Amp - £1,200.
B\&K 1623 Tracking Filter.
B\&K 2607 Measuring Amp.
B\&K 2134 Sound Intensity Analyser
B\&K 280 Microphone Power Supply.
B\&K 4408 Two Channel Microphone Selector.
B\&K 4910 Stroboscope.
B\&K 1606 Pre-Amp Vibration.
B\&K 4420 Distribution Analyser
B\&K 1014 B.F.O. Oscillator.
B\&K J2707 Power Amplifier.
B\&K 2305 Power Ampifier.
B\&K 2305 Level Recorders.
B\&K 2307 Level Recorders.
Bak 2615 Charge Amplifi.
B\&K 2615 Charge Amplifier.
Fluke 9010A Micro-systems
Fluke 9010A Micro-systems trouble shooter \& many Pods - £350 + Pods or Probe Racal/Dana 5002 Wide Band Leval Meter.
Racal/Dana 5006 Digital Multimeter
Racal/Dana 5005-S -4622 Digital Multimeter.
AVO RM215 - L/2 AC/DC Breakdown Leakage \& Ionisation Tester - £400-£450 Fluke $80 \mathrm{~K}-40$ High Voltage Probes - New in Case - 1100.
Watkins Johnson 340A-4 RX LF-1-800KC/s AM-FM-CW - Led Readout- $£ 750$.
Watkins Johnson DMS - 105A Demodulator-AM-FM-SSB - Led Readout - £600. Watkins Johnson RS-111-1B-40 VHF Receiver-30MC/s-1000MC/s - AM-FM-CW- Pan Display - $£ 700$.
Watkins Johnson 373A-2 HF Rec eiver - $0.5-30 \mathrm{MC} / \mathrm{s}$ -
AM-FM-CW - £ $400-£ 500$.
Watkins Johnson Receivers from $1 \mathrm{KC} / \mathrm{s}$ to $10,000 \mathrm{MC} / \mathrm{s}$ also Tuning Heads-
Amps-Counter Readouts - Signal Displays - Distribution Amps - HF Multicouplers -
IF Demodulators - Signal Monitors etc.
Racal MA1720 TX Drive Units $1-30 \mathrm{MC} / \mathrm{s}-£ 500-\mathbf{\Sigma 7 5 0}$
Racal MA1723 TX Drive Units $1-30 \mathrm{MC} / \mathrm{s}-£ 1,000-£ 1,500$
Racal MA1724 TX Drive Units $1.6-25 \mathrm{MC} / \mathrm{s}-£ 500$.
Racal RA1792 HF RX-100KC/s-30MC/s - $£ 1,000$ Back Lighting
Racai RA 1772 HF RX-15KC/s-30MC/s $-£ 600$.
Racal RA17L HF RX. $5 \mathrm{MC} / \mathrm{s}-30 \mathrm{MC} / \mathrm{s}-£ 100-£ 250$
Rlessy PR2250G \& H-HF RX LF to $30 \mathrm{MC} / \mathrm{s}-\mathrm{Memory}$-Led Readout - $£ 650-£ 1,000$.
Plessy PR2250G \& H-HF RX LF to
B\&K 2609 Measuring Amp - 250.
B\&K 2609 Measuring Am
B\&K 1613 Fitter - £100.
B\&K 4215 Artificial Mouth - £250.
B\&K 4215 Artificial Mouth - £250.
B\&K 4219 Artificial Voice $-£ 250$.
B\&K 4220 Piston Phone $-£ 120$.
B\&K 4220 Piston Phone - $£ 120$.
Dynamic Sclences R-1250 Tempet Receiver -
$100 \mathrm{HZ}-1000 \mathrm{MC} / \mathrm{s}$ - AM-FM - $£ 2,000$
HP3406A Sampling Voltmeter (Broadband) - New Colour - $£ 200$.
HP7404A Oscillograph Recorder - 4 Track- £350.
HP9872B Plotter - 4 pen - £300.
HP11710B.01-11MC/s - Down Convector for 8640B - £350.
HP11720A Pulse Modulator $-2-18 \mathrm{GHz}-£ 1,000$.
HP8403A Modulator $-0.4-12.4 \mathrm{GHz}$ ($8731-8735 \mathrm{~B}$) Modulators - $£ 100-£ 250$.
HP Pin Modulators for above - Various frequencies $-0.4-12.4 \mathrm{GHz}-£ 150$.
HP8699B Sweep Plug-in-0.1-4GHz - Using Yigs-Solid State - $£ 300$.
HP8690B Mainframe - E250. All PI available $-.1-40 \mathrm{GHz}$ Sweep.
Racal-SG Brown Comprehensive Headset Tester
(with artificial head) Z1A200/1 - £350.
Marconi 893B AF Power Meter - £200.
Microwave Systems MOS/3600 Microwave Frequency Stabilizer -
$1 \mathrm{GHz}-40 \mathrm{GHz}-\mathrm{E} 1,000$.
ACL SR-209-6 Field Intensity Meter Receiver - Pl's - 5MC/s-4GHz - P.O.R.
Altech 136 Precision Test RX+13505 Head-2-4GHZ - £350.
SE Lab Eight Four FM 4 Channel Recorder - £200.
Datron 1065 Auto Cal Digital Multimeter \& Instruction Manual - £400.
Datron 1061 Auto Cal Digital Multimeter \& Instruction Manual - £400.
Racal MA259 FX Standard - Output $100 \mathrm{KC} / \mathrm{s}-1-5 \mathrm{MC} / \mathrm{s}$
Internal Nicad Battery - $£ 150$
Edwards E2M8 Rotary Vacuum Pumps - Brand New \& Boxed - 5500 ea
Fluke 9100A Troubleshooter \& Pods - New Boxed - $£ 750-£ 1,000$.
HP1140 \& 1743 Oscilloscopes $100 \mathrm{MC} / \mathrm{s}-£ 300-£ 450$.
Tektronix PI 7A19-7A29-3A-4-6-7m11-
Tektronix 7000 Series Oscilloscopes We can supply all variations of Main Frames
and Plug-ins for this range from stock up to $1 \mathrm{GHz}-£ 300-£ 3,000$.

All items in this advert are in stock at time of printing, most ltems are held In quantity at both our warehouses which is probably the largest stock of electronic surplus in the UK.
Bulk and trade buyers from UK and abroad are welcome by appointment to bring own transport for quick purchasing and loading of listed and non-listed items. Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradtord BD11 2ER. Tel. No. (0274) 684007. Fax (0274) 651160.

Issue 12 of $\mathcal{D i s p l a y ~ N e w s ~ n o w ~ a v a i l a b l e ~ - ~ s e n d ~ l a r g e ~ S A E ~ - ~ P A C K E D ~ w i t h ~ b a r g a i n s ! ~}$
LONDON SHOP Open Mon-Sat 9:00-5:30 15 Whitehorse Lane South Norwood
LONDON SE25
DISTEL © The Original FREE On line Databas Info on 1000's of item
V21, V22, V22 BIS V21, V22, V22 BIS
0816791888
ALL MAIL \& OFFICES Open Mon-Fri 9.00-5:30
Dept EWW. 32 Biggin Wa Upper Norwood LONDON SE19 3XF
ALL $\mathbf{B P}^{\circ}$ ENQUIRIES
0816794414
FAX 0816791927

NEW PRODUCTS CLASSIFED

Please quote "Electronics World + WIreless World" when seekIng further Information

Asics

$0.6 \mu \mathrm{~m}$ PLDs. Altera's new FLEX 8000A family of programmable logic devices is a redesign of the earlier Flex 8000 family, in a new $0.6 \mu \mathrm{~m}$ triple-layer metal cmos sram process. There are seven family members, from 2500 to 16000 usable gates, all of them drop-in compatible with the earlier types. Performance improvement over the 8000 family is 75%, from 43 MHz to 70 MHz . Altera UK Ltd. Tel., 0628488811 ; fax, 0628 890078.

A-to-D and D-to-A converters

500ksample/s a-to-d. Sampling at 500 k samples per second and using only 75 mW from a single 5 V supply, Linear's LTC1278 12-bit analogue-todigital converter offers a sinad ratio of 70 dB and thd of 74 dB at the Nyquist frequency. Integral and differential non-linearity errors are $\pm 11 \mathrm{sb}$, there are no missing codes over the whole temperature range and drift is $45 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. With $\pm 5 \mathrm{~V}$ supplies, the device provides $\pm 2.5 \mathrm{~V}$ output. A 5 mW

40Msample/s A-to-D. Harris claims the first 10-bit, $40 \mathrm{Msample} / \mathrm{s}$ analogue-to-digital converter with a simple and reliable pipeline architecture. The HI5702 uses the company's HBC10 BiCMOS process to overcome the power v. accuracy compromises of cmos and bipolar solutions and exceeds the performance of any previous device while using about 0.5 W less power than its bipolar competitor. The device operates from one 5 V supply and offers a maximum integral non-linearity error of 2LSB, with a differential error of 1 LSE, digitising a 10 MHz 2.5 V pk-pk differential or singleended input to 10 -bit linearity at a minimum 53 dB s:n ratio (51 dB sinad at 10 MHz). An evaluation kit, the H15702-EV, includes clock driver circuitry, a reference voltage generator and a choice of input drive circuitry, together with demo board, sample, data sheet and user's guide. Harris Semiconductor UK. Tel., 0276 686886; fax, 0276682323.
shutdown feature is included, with rapid wake-up. Linear Technology (UK) Lid. Tel., 0276 677676; fax, 027664851.

Low-power a-to-d converters. Harris's 5V H15810 12-bit sampling a-o-d converter has a $10 \mu \mathrm{~s}$ conversion time, sampling at 100,000 samples per second. Analogue input bandwidth is 1 MHz and integral linearity is 2lsb over the industrial temperature range. Parallel data outputs are of the three-state bus driver type and there is a selectable choice of resolution. The H15813 is a $3-6 \mathrm{~V}$ type with a track/hold amplifier, $25 \mu \mathrm{~s}$ conversion time and 40,000 samples/s. Thame Components Ltd. tel., 0844 261188; fax, 0844261681.

Discrete active devices

Power transistors. Motorola's
MJ3281A and MJ1302A are PowerBase complementary silicon power transistors for audio, disk head positioning and other high-power linear uses. They are rated at $200 \mathrm{~V} / 15 \mathrm{~A} / 250 \mathrm{~W}$ and their f_{T} is typically 30 MHz . Motorola Inc. Tel., 0908614614 ; fax, 0908618650.

SM igbt/Hexfred package. SMDCoPacks, introduced by IR, combine an insulated-gate blpolar transistor and a Hexfred fast-recovery epitaxial diode in one surface-mounting package, thereby saving about 40\% of the cost of separate devices and up to 70% of the size. First available are IRGBC20KD2-S/MD2-S, rated at 10A and 13A respectively. Internationa! Rectifier. Tel., 0883 713215; fax, 0883714234.

Dlode arrays. Rohm surfacemounted diode arrays contain up to four devices in one package, the range including common-cathode, common-anode and isolated devices. Dlode types offered are 0.1-4A Schottky barrier devices, small-signal Schottky types with 0.37V forward drops, 4 ns switching arrays and band switching arrays with 1.2 pF capacitance at 1 MHz and resistance of 0.9Ω at 100 MHz . Pin diodes are available in packs of two devices. Flint Distribution. Tel., 0530 510333; fax, 0530510275.

Linear integrated circuits

Digitaily controlled pot. The Xicor Audio E2POT X9314, in an 8-pin dip, is a digitally controiled potentiometer with a logarithmic taper to replace the mechanical type in audio circuitry. 'Wiper' position is controlled by asserting chip select, choosing

direction and pulsing the device until the position is reached at one of 32 steps per pulse. Position is then stored in internal memory. Resistance of the X9314 is $10 \mathrm{k} \Omega$. Micro Call Ltd. Tel., 0844261939 ; fax, 0844261678.

20 MHz function generator.

Producing accurate, high-frequency sinusoidal, square, triangular and pulse waveforms with few external components and in response to a 2 digit code, the Maxim's MAXO38 also produces a sync. output. Frequency is controlled by a $2-700 \mu \mathrm{~A}$ current and an external capacitor. An external modulating voltage provides pwm or sawtooth waveforms. Maxim Integrated Products UK Lid. Tel., 0734845255 ; fax, 0734843863.

Jfet op-amp for capacitive loads. Linear Technology says its LT1457 is the first jfet-input op-amp to be optimised for driving large capacitive loads, the dual C-Load device being able to handle at least 10 nF loads whthout oscillation. Input offset is $450 \mu \mathrm{~V}$ in a plastic dil and $1200 \mu \mathrm{~V}$ in SO-8, drifting at $4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$; Input bias current is 50 pA ; voltage noise $13 \mathrm{nV} / \sqrt{\mathrm{Hz}}$; and slew rate $4 \mathrm{~V} / \mu \mathrm{s}$. Linear Technology (UK) Lid. Tel. 0276 677676; fax, 027664851

900 MHz mixer/exciter. Designed as a linear up-converter for American and Japanese digital cellular radio, Motorola's MRFIC2101 900MHz transmit mixer and exciter is suitable for analogue cellular and other 900 MHz systems such as GSM and ISM. There is a double-balanced mixer and a local-oscillator buffer to

Laser diodes. Two laser diodes from MPS have power stabilisation, slow start and a heat sink. CJ51F (1 mW) and CJ52G (5 mW) continuous diodes are complete with optics and electronics, but are only 22 mm long and 12 mm in diameter. Power supply needed is 3V. MPS Electronics. Tel., 0702 554171 ; fax, 0702553935.
reduce LO power and eliminate the need for an external LO balun. The device has a fast power-down control. Motorola Inc. Tel., 0908 614614; fax, 0908618650.

Logic building blocks

Low-voltage logic. Designed expressly for relatively lowperformance applications such as paim-tops and point-of-sale equipment, two families of 3.3 V lowvoltage cmos by TI, LV-HCMOS and LVC, are said to be equivalent to the 74 F series in 5 V tIl. The $0.8 \mu \mathrm{~m}$ LVC family consists of gates and MSI and 8 -bit Widebus devices with a standby consumption of $20 \mu \mathrm{~A}$ and 7 ns propagation delay. Texas Instruments. Tel., 0234 270111; fax, 0234223459.

Memory chips

Configurable flash memory. AMD's Am29F400 4Mbit 5V-only flash memory is user-configurable in 512 by 8 or 256 by 16 form. Eleven sectors of unequal size can be erased

RF and microwave VCOs. Vari-
L's range of voltage-controlled oscillators are meant for use in battery-powered equipment, accepting supplies of $3 \mathrm{~V}, 5 \mathrm{~V}$, 12 V or 15 V . Frequencies covered are $25-50 \mathrm{MHz}$ to $3-$ 4.8 GHz , phase noise varying between $82 \mathrm{dBc} / \mathrm{NHz}$ to $118 \mathrm{dBc} / \mathrm{NHz}$. Packaging includes surface-mount, flatpack, SMA and TO-8. Acal Electronics Lid. Tel., 0344727272 ; tax, 0344 424262.
individually, in multiples or all together. Boot sectors at top or bottom of the address map cope with different microprocessors, the devices having T or B as a suffix. Selected sectors can be protected and embedded algorithms detect and correct erase errors. Advanced Micro Devices (UK) LId. Tel., 0483 740440; fax, 0483756196.

16Mbit dram. Toshiba has a 50 ns , 16 Mbit dram in a 300 mil SOJ package. The TCS5116400BSJ-50 is based on a $0.5 \mu \mathrm{~m}$ process and features hyper-page mode operation. Toshiba Electronics (UK) Ltd. Tel., 0276 694600; fax, 0276691583.

1 Mbit srams. One megabit srams by IBM in the IBM $04 X X X$ family operate at up to 167 MHz in second-level cache applications supporting highperformance microprocessors, with a pipeline access of 4 ns or flowthrough of 8 ns . Versions with burst mode are available for use with PowerPC and

Pentium processors. The srams are in 64 K word by 18 bit or 32 Kword by 36bit form and features include single-clock read/write, self-timed write and lowvoltage itl i/o interfaces. Blue Micro Electronics. Tel., 0604 603310; fax, 0604603320.
$16 \mathrm{Mb}, 500 \mathrm{Mbyte} / \mathrm{s}$ drams. NEC's 16 Mb and 18 Mb Rambus dynamic random access memories offer a 2 ns access time and a peak data transfer rate of $500 \mathrm{Mbyte} / \mathrm{s}$. The μ PD 488130 and $\mu \mathrm{PD} 48817016 \mathrm{Mb}$ and 18 Mb capacity Rdrams incorporate a Rambus interface communicating over a byte-wide channel, called the Rambus Channel, to give a transfer rate of one byte in 2 ns. If four such channels are used in a system, bandwidth is 2Gbyte/s. Each Rdram has two independent sense amplifier caches to increase data transfer to the arrays and reduce latency. Packaging is a 32 -pin vertical SM type. NEC Electronics (UK) Ltd. Tel., 0908691133 ; fax, 0908670290.

Microprocessors and controllers

8 -bit risc microcontroller. With 2048 12-bit words of one-time
programmable program memory, 73 8 -bit bytes of static ram for data and up to 2:1 code compaction referred to non-risc types, Microchip's
PIC16C58A runs at 20 MHz with a
$200 n s$ instruction execution time and is claimed to be the fastest available in its class. On-chip peripherals include an 8 -bit clock/counter with a programmable prescaler, start-up timer, watchdog timer with RC oscillator and $12 \mathrm{i} / \mathrm{l}$ lines. Arizona Microchip Technology Ltd. Tel., 0628 850303; fax, 0628850178.

Fast 8051 controller. While drop-in compatible with the 8051, Dallas's DS87C520 runs over eight times as fast. It also has 16 Kbyte of eprom and 1.2 Kbyte of sram. The 8051 core has been redesigned to use only four clocks per cycle instead of twelve, running at 33 MHz to give a peak execution cycle of over 8 Mips , no change in software or development tools being needed. Power management allows the user to reduce power by 80% by slowing the clock. Dallas Semiconductor Corporation. Tel., 021782 2959; fax, 0217822156.

Low-voltage, 4-blt controller. The μ PD 753108 microcontroller, an addition to NEC's $1.8-6 \mathrm{~V} 4$-bit range, is provided with a 24 by 4 bit lcd driver. All 75XL devices have an instruction cycle time of $0.95 \mu \mathrm{~s}$ at 1.8 V and $0.67 \mu \mathrm{~s}$ at 6 V , although NEC point out that, since the instruction set is more powerful than that of the earlier 75X series, fewer instructlons are needed for the same tasks. NEC Electronics (UK) Lid. Tel., 0908 691133; fax, 0908670290.

8 -bit cmos microcontroller. Zilog's Z86C04 cmos device is one of the 28 microcontroller family, with 1 Kbyte of rom and 124byte of general-purpose
ram and packaged in either an 18-pin dip or 18 -pin SOIC. Temperature range is $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$. Power consumption is 50 mW and the unit is provided with brown-out protection, fast instruction points of $1.25 \mu \mathrm{~s}$, and stop and halt modes. Fourteen i/o lines are at cmos levels, eleven of them being digital, Schmitt-triggered inputs. Clock speed is 8 MHz . Gothic Crellon Ltd. Tel., 0734 788878; fax, 0734776095

150 MHz processor. As well as reducing the prices of its 100 MHz and 133 MHz Orion R 4600 processors, IDT has released the 150 MHz version, which is claimed to outperform the Pentium at the price of a 486DX. The device has the Flexbus, which is a software initialisation mechanism allowing bus interface frequency to be tailored to suit system requirements. Five-volt version are now available, with 3.3 V models arriving later in the year. Integrated Device Technology. Tel., 0372 363734; fax, 0372378851.

Mixed-signal Ics

Engine-knock detection. Harris's HIP9010 is a mixed-signal device known as an engine knock signal processor, to be used in knock detection subsystems in vehicle ignition control systems. It amplifies and filters the output of a piezoelectric transducer during a short interval about top-dead-centre, so that the signal can be separated from engine noise. Analogue gain and filter characteristics are changed digitally by the system microcontroller to accommodate varying engine conditions. Harris Semiconductor UK. Tel., 0276 686886; fax, 0276682323.

Optical devices

Minlature camera. Henderson has announced a new range of pcb mounting cameras of both the pinhole type and those using the range of interchangeable lenses from 3.6 mm to 16 mm . Camera units are on a single board measuring 42 mm square and are sensitive down to 0.5lux. A range of housings is available, and a remote 12 V supply that feeds the unit through a multicore cable. Henderson Security Electronics Ltd. Tel., 9684 274874; fax, 0684294845.

Laser sensor. A laser photoelectric sensor from Keyence, the LZ-155 series produces a spot 0.05 mm in diameter with a positioning accuracy of 0.005 mm horizontally. Detection distance is up to 60 mm , at which distance the spot is vislble even on a black surface. The device is intended for positioning and counting very small objects, for which a multi-turn potentiometer adjusts sensitivity. Keyence UK Ltd. Tel., 0908 696900; fax, 0908696777.

Oscillators

Custom crystal oscillators. ACT announces a facility for manufacture of temperature-compensated crystal oscillators with many choices of
operating temperature and stability within the flmits of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and $\pm 5 \%$ to $\pm 0.5 \%$. There are six package styles, including hermetically sealed metal. Lead times are down to 20 days. Advanced Crystal Technology. Tel., 0635 528520; fax, 0635528443.

Power semiconductors

Lamp driver. Microlinear's ML4874 drives small cold-cathode fluorescent tubes used as backlighting for liquidcrystal displays. The device drives the tubes differentially, taking less power than is the case with single-ended drives and expending less power on stray capacitance in the Icd housing. Efficiency is 95%, obtained by the use of a resonant threshold detection arrangement. Ambar Components Ltd. Tel., 0844 261144; fax, 0844 261789.

TSSOP power mosfets. The new Litefoot power mosfets from Siliconix come in n-channel and p-channel form and are small enough to fit on any standard PCMCIA card, being only half the size of others on the market. Power dissipation is 1.5 W with no heat sink besides the PCB and breakdown lies between 12 V and 30 V . On resistance for a single pchannel device is $75 \mathrm{~m} \Omega$ and that for a single n-channel type $50 \mathrm{~m} \Omega$. Single, dual and complementary devices are available. Siliconix/Temic Marketing. Tel., 0344485757 ; fax, 0344427371.

PASSIVE

Passive components

High power factor capacitors. Type 6124 and Type 7124 from Tecate are metallised polyester and metallised polypropylene capacitors intended for use in equipment such as lighting, snubbers and small motors where power factor correction is needed. Standard tolerances are $\pm 5 \%, \pm 10 \%$ and $-5+100 \%$, dissipation factor being 1% maximum. Both types have an optional thermal cut-off and a bleeder resistor to discharge the capacitor to lower than 50 V in a minute. Voltage ratings are $160-250 \mathrm{~V}$ ac in values of $1-3 \mu \mathrm{~F}$ (6124) and 160$500 \mathrm{~V} / 1-25 \mu \mathrm{~F}$ (7124). Tecate Industries Inc. Tel., 0101619 4484811; fax, 0101619 448-0912

Transient suppressors. Semtech has transient voltage suppressors in the SL series which exhibit only 5pF capacitance. They are designed for use on data lines and handle 300W peak pulse power with a response time of 1 ps . Reverse standoff voltages are $5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ and 24 V breakdown 6-26.7V and maximum clamping voltage at $1 \mathrm{~A}, 9.8-43 \mathrm{~V}$. Semtech Lid. Tel., 0592 773520; fax, 0592774781.

Tantalum capacltors. Components in AVX's TAZ range of high-reliability tantalum capacitors intended for use in medical implantable devices are now reduced in size. The capacitors
are qualified to Weibull C failure rates and are available with low leakage current and nine configurations of termination and finishes. AVX Ltd. Tel., 0252336868 ; fax, 0252346643.

Trimmer capacitors. For those applications not involving high if power, Jackson's C824 series of air spaced trimmers use a low-loss composition front panel and aluminium rotors and stators. Maximum capacitances are 10 pF to 100 pF and minimum for all types is 5 pF , with a linear capacitance/angle relation. Working voltage is 350 V . Jackson Brothers Ltd. Tel., 081-681 2754; fax, 081-681 3728.

Dlelectric filter. AVX announces the PDFC series of dielectric filters mean for use in telecomms, particularly in the DECT sector. Frequency range is $1.8-2 \mathrm{GHz}$, insertion loss 3 dB and, for compatibility with the newest equipment, size is 6.5 by 5.5 by 3 mm . Filters to provide lower insertion loss and improved stop-band attenuation are available to order. AVX Ltd. Tel., 0252336868 ; fax, 0252346643.

Connectors and cabling

Protected jack connectors. Murata announces a series of modular jack connectors with built-in varistors for surge and noise suppression in ISDN terminal equipment. Built-in inductors ensure noise reduction over a wide frequency range. They are rated at 50 V dc at 200 mA , have a typical impedance of 600Ω at 100 MHz , a varistor voltage of 250 V between line and earth and a $-25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ operating range. Murata Electronics (UK) Ltd. Tel., 0252 811666; fax, 0252811777

Displays

DVM module. DMS-40LCD by Datel Is a series of 4.5 -digit LCD meters contained in plastic dips measuring 0.9 in by 2.1 in by 0.43 in , with 0.4 in characters. The devices have dual inputs to allow signal input of $\pm 200 \mathrm{mV} / \pm 2 \mathrm{~V}, \pm 2 \mathrm{~V} / \pm 20 \mathrm{~V}$ or $\pm 20 \mathrm{~V} / \pm 200 \mathrm{~V}$. Power needed is one

TV test patterns

Contained In a hand-held case, the OZAN television test pattern generator is powered by a 9 V battery, although a mains unit is supplied for continuous bench use. It is connected to the rf and line sockets of television receivers and video recorders. Four PAL test patterns - colour bars to the BBC 95% or EBU 100% luminance, grey scale with eight 14.3% steps, cross hatch and red purity - and a 1 kHz audio tone are generated, the RF video and audio coming from a 75.2 coaxial socket on channel 36 with audio set to the 6 MHz sub-carrier (5.5 MHz for other standards). Two 75 sa phono sockets provide composite video at 74Ω and the audio line out at 1 ks .

Colour Icd. Sharp's LQ6RA54 is a 5.5 in thin-film transistor Icd module in which the pixels are arranged in a stripe rather than in the delta formation of RGB elements, easing the problems of writing graphical information. A black mask reduces internally reflected light by over 80% over previous types and surface reflections are avoided by means of a polariser. Vertical viewing angle is switchable to either above or below the display centre line. Hero Electronics Ltd. Tel., 05254055015 ; fax, 0525402383.

5 V line at 2.5 mA or 9 V at 1.5 mA . Backlighting is available. Datel (UK) Ltd. Tel., 0256 880444; fax, 0256 880706.

Bargraph DMM. Lascar has a largedigit bargraph multimeter that is provided with a 3.5 -digit display visible from 10 m , even in low light, by virtue of its led backlighting. Connection of the DMM 977 to the display is by IDC connector. Lascar Electronics Ltd. Tel., 0794 884567; fax, 0794884616.

Filters

Two-port saw resonators. Saw resonators in RF Monolithics's RP and $A S$ series, which have nominal phase angles of 180° and 0° respectively, now exhibit a frequency tolerance of $\pm 75 \mathrm{kHz}$, Five of the devices are avallable for low-power UHF transmitters in applications including the DTI MPT1340 at 418 MHz and the pan-European ETS-$300-220$ at 433.92 MHz . Insertion losses are typically 5.7 dB and 6.3 dB at the two frequencies.
Quantelec Ltd. Tel., 0993776488 fax, 0993705415.

Instrumentation

EMC probe, An active near-field probe by Seaward locates the source of radiated emissions, completing the company's emc test package to the requirements of the EC Directive on Electromagnetic Compatibility. The probe will localise emissions from pcb-mounted components, cables and case apertures and joints in the frequency range $1 \mathrm{MHz}-1 \mathrm{GHz}$. Although the probe was designed for use with Seaward's spectrum

Microwave

Sweepers/synthesisers. GigaTronics offers the GT 9000 microwave synthesiser and the GT 9000 Synthesised microwave sweeper. They are improved versions of earlier instruments, offering a 2 20 GHz range. Phase noise of the 9000 S at 2 GHz is $-95 \mathrm{dBc} / \mathrm{VHz}$ at 10 kHz offset. output power +13 dBm from 10 MHz to 20 GHz and harmonics at 6 dBm are less than -65 dBc . Pulse mod. is standard and AM, FM and scan mod. are options. The 9000 S is the same, but with analogue and digital frequency and power sweeping. Sematron UK Ltd. Tel., 0734 819970; fax, 0734819786.

100 MHz logic analyser.

The TA320S self-contained logic analyser by TTi has 32 channels and a 100 MHz acquisition rate. Display is by supertwist lded capable of

Eight-channel dso
Two instruments in the Yokogawa DL5100 series of digital storage oscilloscopes, OL5180 and DL5140 offer 1Gsample/s sampling and 500 MHz bandwidth on all channels, with a 4Kword/channel memory and 8bil resolution. The display is a 640 by 480 dot colour ift Icd, an interesting feature being the colour accumulation, in which pixels vary their colour according to the number of times they are written. A history memory acquires and reads out up to 120 sets of waveform data and either measured or saved to disk in the internal 3.5 in drive. All 120 scans can be viewed simultaneously. The instruments incorporate an intel i960 32-bit risc processor for automatic measurements and computation, up to 19 standard parameters being measured automatically. Martron Instruments Ltd. Tel., 0494 459200; fax, 0494535002.
analyser, it is now suitable for most analysers with minor mods. Seaward Electronic Ltd. Tel., 091-586 3511; fax, 091-586 0227.

Simm tester. ITM has introduced the TA1011 Test Head for the Excel 1000 bench-top production memory tester from TMI Inc., which carries out 100% testing of virtually all memory modules, including 30 -pin and 72 -pin simms with page-mode up to 40 bits wide and organised in configurations from 64 K by 9 to 16 M by 9 ; lt also handles 2 K and 4 K refresh-type drams. The system is controlled by a PC AT and a bus interface for the PC is supplied. Instrumentation Test \& Measurement Ltd. Tel., 0202 872771; fax, 0202871052.

NEW PRODUCTS CLIASSIFIED

Please quote "Electronics World + Wireless World" when seeking further information
displaying high-res. graphics or 40column text and control and data entry is by a combination of soft keys and an alphanumeric keypad. There is also an RS-232 interface to transfer data to and from a computer. The instrument has thirty-two data channels at up to 25 MHz and eight at 100 MHz for asynchro nous working. Events down to 5 ns in length can be captured. Optional dissassembler pods, each with its own internal software, support a range of popular microprocessors. State and timing displays are selectable and data can be grouped under user-defined names. Search-and-compare facilities are provided, as is non-volatile storage of acquisitions and set-ups. Thurlby Thandar Instruments Ltd. Tel., 0480412451 ; fax, 0480450409

RF counter. HP53181A by H-P is one of the company's lower-cost instruments for frequency measurement to 225 MHz or up to 3 GHz with optional second channels Period measurement is performed quickly and there is a limit-testing feature with an analogue display mode for pass/fail testing. An HP-IB port provides SCPI(1) compatlble programming and an RS-232 talk-only interface gives printer control or data transfer to a computer at more than 200 formatted measurements per second. Hewlett-Packard Ltd. Tel., 0344362277 ; fax, 0344362269.

1 GHz spectrum analysers. Two

 spectrum analysers by Promax, the $A E-366$ and $A E-566$, cover the 1 1000 MHz frequency range (1750 MHz with an optional converter) and cost $£ 2094$ and $£ 2800$ respectively, the 566 having its own tracking generator and a normalising function to reduce errors caused by connections. Display dynamic range is 70 dB and measuring range $15-130 \mathrm{~dB} \mu \mathrm{~V}$, the display being log. or linear in the vertical direction. Best resolution bandwidth is selected automatically. Alban Electronics Ltd. Tel., 0727 832266; fax, 0727810546ELF fleid meter. Over $5-200 \mathrm{~Hz}$, Holaday's hand-held H1-3627 three axis magnetic field meter measures 0.2 mG to 20 G , which makes it very suitable for power frequency field measurement. Outputs from three orthogonal sensing coils combine vectorially, the result being indicated by an analogue meter which has a recorder output. Batteries are rechargeable. Holaday Industries. Tel., 0628478155 ; fax, 0628476871

Literature

RF/wireless communication. Anglia's RF/Wireless Communication Components Designer's Data Book is now available, covering a large range of components. At the end of the book, three articles describe the use of ICs for digital links, attenuator and amplifier Ics for digital systems and Ina/mixer ICs. Anglia Microwaves Ltd Tel., 0277630000 ; fax, 0277631111

PC instrumentation. Intelligent Instrumentation, a Burr-Brown company, has published the 7th edition of Handbook of Personal Computer Instrumentation. Topics
covered include signal conditioning, wiring, shielding and data acquisition, together with notes on techniques and applications. The range of Il's hardware and software is described The handbook is free to 'qualified individuals'. Intelligent
Instrumentation. Tel., 0923 896989; fax 0923896671.

VIsual C for embedded processors Since Intel has abandoned embedded C compilers and assemblers, Hitex
has produced a guide to the use of the Micro soft C8 Compiler and Visual Workbench for use with embedded processors. It shows how to integrate emulator debuggers into the Workbench to allow rapid swapping between editing and debugging, in addition to many programming tricks needed to address peripherals such as real-time clocks. Embedding Microsoft C is available free. Hitex (UK) Ltd. Tel., 0203 692066; fax, 0203692131.

Low-cost Spice. ICAP/4Lite by Intusoft is a low-cost anabgue and mixed-signal circuit simulator, based on the company's professional version of Spice. Instead of providing all the traditional Spice facilities and limiting the size of circuit - a common method of producing a cheaper version - Intusoft has allowed unlimited circuit size and reduced the available facilities. The software performs analyses of frequency response, DC conditions, transients and temperature. It also has a schematic entry program to produce a complete Spice netlist, both compatible with the Intusoft professional version. Spice simulation is based on the 32-bit IsSpice4, which gives a real-time waveform display with interactive component changes, printed or displayed inside IsSpice 4 or in a reduced version of IntuScope, a graphical analysis program. The ICAP/4Lite package includes schematic entry, IsSpice4 simulator and IntuScope, with a library of over 500 parts. Technology Sources Ltd. Tel., 0638561460 ; fax, 0638561721.

COMBIOS for Windows. COMBIOS for Windows provides all the functions found in COMBIOS for DOS, allowing users to develop applications to implement driver buffered serial comms on up to 64 ports. Features include serial ports at any i/o address, all input channels buffered up to $40 \mathrm{Kbyte} /$ port, the provision of standard baud rates and data formats and a GUI. It supports any serial RS 232 comms port using the 8250 or 16450 uart and any RS 422/485 port that will enable the transmitter using the uart out 1 line. The facility is independent of language and is not TSR. Amplicon Liveline Ltd. Tel., 0800525335 (free); fax, 0273570215.

Strain-gauge selector. In 52 pages, the HBM catalogue provides comprehensive data on a range of strain gauges and advice on their use in stress analysis and in various types of transducer. Components and materials for use with the gauges are described in an accessories section. HBM United Kingdom Ltd. Tel., 081 420 7170; fax, 081-420 7336.

Power supplies

SwitchIng controller. The MAX1771 step-up switching controller from Maxim provides 90% efficiency over a $30 \mathrm{~mA}-2 \mathrm{~A}$ load, by virtue of its currentlimited, pulse-frequency-modulated control, which also takes only $100 \mu \mathrm{~A}$ current from the supply. Switching frequency is 300 kHz and an n channel mosfet switch takes loads up to 24 W . From inputs of $2-16.5 \mathrm{~V}$, output is preset to 12 V , adjustable by two resistors. Maxim Integrated Products UK Ltd. Tel., 0734 845255; fax, 0734843863.

PSU approval. Gardners's LCS40 switched-mode power supply has been awarded the Industry Approvals EN 60950, UL 1950 and CSA 22.2. It is the first in a new family meant for the medium-volume European market, providing any (reasonable) combination of inputs and outputs at a fair cost. Inputs are $85-265 \mathrm{~V}$ ac and $120-370 \mathrm{~V} \mathrm{dc}$ and operating frequency is $47-440 \mathrm{~Hz}$. Gardners Ltd. Tel., 0202 482284; fax, 0202470805.

Triple psu. The Calex Model 3.15.1000 low-noise linear power supply provides $\pm 15 \mathrm{~V}$ at 100 mA to drive amplifier and data conversion circuits and 5 V at 1 A for logic. Output nolse is typically 2 mV rms and there is overvoltage and short-circuit protection. Input-to-output isolation is 1500 V rms. The supply is for mounting on a pcb, measuring 3.5 by 2.5 by 1.5 in . Calex Electronics Ltd. Tel., 0525 373178; fax, 0525851319

Dc-to-dc converters. New low-profile versions of the Cosel Z series of converters, the $Z \cup$ series are available from XP In 15 W and 25 W form, total package height being 8.5 mm . In common with the standard Z units, the ZU models have input ranges of $9-18 \mathrm{~V}, 18-36 \mathrm{~V}$ and $37-72 \mathrm{~V}$ 500 V input-to-output isolation and short-circuit protection, but also have output trim and remote on/off. Stabilisation is 0.1% typical, regulation 1% max. for single output types and noise and ripple 40 mV typical. XP plc. Tel., 0734 845515; fax, 0734843423.

Mobile AC. When plugged into the cigarette lighter socket of, for example, a car, Powerline's PAC1400 provides up to 140 W of continuous ac power or up to 200 W for about five minutes; 400 W start-up surge can be given for 100 ms . This output is sufficient to power a laptop computer or to recharge power packs. The car battery is fully protected. Powerline Electronics Ltd. Tel., 0734868567 ; fax, 0734755172.

Translent protection. A wide range of Claude Soule modules to protect power circuits and data lines against
transients is now available from Europa. They are DIN rail-mounted, leaded or boxed and protect against rfi, voltage surges or both. Three series, 8748,8777 and 8776 protect peripherals such as strain gauges in industrial equipment, coaxial video lines and antenna feeders respectively. Europa Components \& Equipment plc. Tel., 081-953 2379; fax, 081-207 6646

Bendy battery. Uitralife's new U3VF X primary lithium cell is pliable, under 1 mm thick and available in virtually any shape. Five versions cover the $70 \mathrm{mAh}-2500 \mathrm{mAh}$ range, weight being $1 \mathrm{~g}-67 \mathrm{~g}$. After 10 years, 80% of capacity remains. The cells are suitable for building-in or as standalone units when encased in a plastic jacket or hard case. Suvicon Ltd. Tel., 021643 6888; fax, 0216432011

Radio communications products

Antenna switching relays. Among their other functions, Teledyne's TO-5 and Centigrid relays are suitable for switching between built-in cellular telephone antennas and car antennas. Teledyne claims its TO-5 device to be the smallest and most reliable sealed relay available. The Centigrid type is an industrial subminiature,
hermetically sealed armature relay
Teledyne Electronic Technologies Tel., 081-571 9596; fax,081-571 9637.

RF power amplifiers. Models 604L and 607L from ENI cover the frequency range $500 \mathrm{kHz}-1 \mathrm{GHz}$ and $800 \mathrm{kHz}-1 \mathrm{GHz}$, with linear outputs of 4 W and 7 W and gains of 40 dB and 43 dB respectively. They can cope with any load vswr, from open-circuit to shor-clrcuit, without damage. Holaday Industries. Tel., 0628 478155; fax, 0628476871.

Coaxial switch. The Toesel Model TS 360-00 is a fail-safe spdt coaxial switch consuming 220 mA at 28 V . It is a break-before-make type and has position-indicator contacts rated at 60V/350mA maximum, $4 \mathrm{~V} / 10 \mathrm{~mA}$ minimum. Higher power is optional; a special dielectric material allows the switch to handle 1 kW at 1 GHz , against 200 W at 1 GHz for the standard type. Switching time is 100 ms and life is about a million operations. Anglia Microwaves Ltd. Tel., 0277630000 ; fax, 0277631111.

Transducers and sensors

Hostile-media pressure transducer

 For use in wet and corrosive media the Sensit p-192 pressure transducer offers pressure ranges of 1-40 bar gauge reference at a sensitivity of $4 \mathrm{mV} / \mathrm{bar}$ at full pressure and a maximum of $\pm 1 \%$ of full-range error from all causes. Offset voltage is 1 mV . Kynmore Engineering Co. Ltd Tel., 071405 6060; fax, 071405 2040.Angular measurement. The Cline Labs Angular Measurement System is a battery-powered standalone system needing no external power or extra electronics. It consists of a gravityreferenced clinometer, digital readout and a cable to connect the two. Angular range is $\pm 60^{\circ}$ or $\pm 19.9^{\circ}$ to a resolution of 0.1° or 0.01° with linearity varying between $\pm 0.1^{\circ}, 1 \%$ of angle and monotonlcity, depending on the range of angles being measured. Frequency response is 0.5 Hz . Kynmore Engineering Co . Ltd. Tel., 071405 6060; fax, 0714052040.

COMPUTER

Computer peripherals

Magneto-optical storage. With a 1.3Gbyte capacity and average seek time of under 40 ms , Sony's RMOS570 magneto-optical drive is meant for digital photography and other data-intensive application. Recording density is not constant over the whole disk, but increases on the outer tracks, the increases occurring in zones; inside each zone the density is constant. Maximum data transfer rate is 2Mbyte/s and a 1 Mbyte buffer memory improves performance by reducing mechanical movement. Sony Computer Peripherals \& Components. Tel., 0932 816000; fax, 0932817001.

PCMCIA mass storage. Solid-State

File Cards by IBM form an effective alternative to hard disks in portable computers. They are in PCMCIA Type 1 and Type 2 form, both with a PCMCIA-ATA interface. 3.3 mm thick types have capacities of $3 \mathrm{Mb}, 5 \mathrm{Mb}$, 10 Mb and 20 Mb , while the 5 mm thick Type 2 has either 30 Mb or 40 Mb . The cards use a single 5 V supply at less power than disks and are not, of course, subject to the relatively long access time of disks. An integral controller and dram buffers eliminate the need for flash memory blocks to be erased before new data can be stored. Blue Micro Electronics. Tel., 0604603310 ; fax, 0604603320.

Software

Data acquisition for Windows Version 4.1 of The Windmill data acquisition software suite for Windows now supports Network DDE in Windows for Workgroups, allowing other Windows applications on other workstations to use data collected by Windmill. Windmill charting and logging modules are now controllable by other applications supporting DDE, for example by Visual Basic
programs. Data acquisition from plugin cards, bench-top units or other sources is at the rate of $50 / \mathrm{s}$ down to 1/hour. Windmill Software Ltd. Tel., 061833 2782; fax, 061833219

8 CAVANS WAY,
BINLEY INDUSTRIAL ESTATE,
COVENTRY CV3 2SF Tel: 0203650702 Fax:0203650773 Mobile: 0860400683
(Premises altuated close to Eastern-by-pass in Coventry with easy
access to M1, M6, M40, M42, M45 and M69)

Multi i/o via the serial port

Abstract

Providing 64 lines, this i/o interface compensates for a relatively slow serial link to the host PC by having its own 68000 family microprocessor. J. N. Ellis describes how the interface has a range of uses from switching a led to managing a control system.

Several i / o designs taking advantage of the microcomputer's easy-to-use serial port have appeared, one as recently as June ${ }^{1}$. Many provide two eight-bit parallel ports and involve a dedicated parallel-interface chip.
This RS232 interface differs in that it provides up to eight, 8 -bit ports, each programmable as an input or output, from one serial port. It incorporates a high-performance microprocessor, which makes operating it easy.
Text commands can be used directly from a terminal emulator to provide interactive control. Alternatively the interface may be programmed via a programming language on a host PC. In this case, the same text commands can be used, provided that the programming language allows access to the host PC serial port.
Since this unit operates via a standard RS232 link, virtually any type of PC with a serial port can be used. A basic operating system is available in eprom. An additional benefit of using a microprocessor is that programs - compiled 68000 machine code - could also be downloaded into ram. Alternatively, they could be programmed into rom, and used to operate the ports autonomously. This extends the scope of the interface to use as a programmable controller.

Almost 32 K -byte of space, provided by a 256 K -bit ram, is available to store small routines. A 1 M -bit device ram providing 128 K byte could be used. In fact, decoding circuitry described will drive the full 1 M-byte address space of the MC68008 in 128 K -byte segments.
In principle, additional ram could be added using 1 M -bit chips up to 512 K -byte, but some consideration to the circuitry would be needed. While 32 K is regarded as tiny these days, it is adequate for many machine-code programs.
One application for which this interface is eminently suitable is eprom programming. The multiple ports allow for two or three address ports, catering for 16 or 24 -bit addressing. Another one or two ports can transfer data in 8 or 16 -bit widths, and further port can provide program and verification control signals.
Large eproms can be programmed with this unit, but the RS232 handshaking routines will need careful design to prevent loss of data. Little extra hardware is required. A zero inser-tion-force socket and jumper pins for selecting the half-dozen or so non-standard pin-outs between different size eproms are needed, together with a selection of logic-controllable programming voltages, for example 12.5, 21 or 24 V , or 16 V for pals.

Interfacing details

This is a straightforward microprocessorbased design incorporating the often overlooked MC68008, Fig. 1. The device is an eight-bit external-bus version of the 68000 . It is able to provide much more powerful control capabilities than the 6502 or $Z 80$, which are still often used in controllers.
A clock signal drives the processor at 8 MHz , corresponding to 2 MHz system clocking. A ' 138 decoder chip provides eight, 128 K -byte address spaces which are filled

Fig. 1. At its most basic, this i/o interface operates 64 i/o lines from PC initiated commands communicated via R5232. Having its own 68000 family processor however, the card can become a versatile programmable controller capable of autonomous i/o.
from zero upwards by a rom, at 40000_{16} and up by ram, at $\mathrm{C} 0000_{16}$ and up by the i/o ports, and $\mathrm{E} 0000_{16}$ and up by the universal asynchronous receiver transmitter chip - a 68681 .
Additional ram can be added at unused spaces $60000_{16}-$ BFFFF $_{16}$, but further address
and data buffering may be needed. Static ram keeps the design simple and avoids introducing wait states. The memory map summary is:

Address Use 00000-1FFFF

20000-2FFFF
40000-5FFFF
60000-BFFFF
C0000-C0007
C0008
E0000-E001F
rom expansion ram
ram expansion
i/o ports
control byte
uart

Fig. 2. In hardware terms, connecting an eightbit d-to-a converter like the ZN428 to the interface involves little more than linking pins to i/o lines.

Fig. 3. Capable of delivering up to an amp at 12V, this high-side power switch incorporates current limiting for protecting the circuit in the event of an overload.

Memory map

Two RS232 terminals are provided by the 68681 . Each RS232 socket is driven by 1488 and 1489 serial interface chips. To avoid wasting pins, DIN sockets are used as opposed to the usual 25 pin D type.
Each eight-bit, parallel i/o port comprises an HC373 latch with an LS244 buffer. Decoding these chips is performed using the R/-W line. A read activates the selected 244 buffer, while a write activates the selected latch, allowing data written to an output port to be read back. This configuration was chosen in preference to other parallel i / o ICs for three reasons - soft-

ware setting up is minimal, drive current is greater, and additional timers and control signals are unnecessary.
To allow each port to be used as an input or output, a ninth decoded HC373 latch controls each output enable pin on the eight i / o port latches. A control byte is written to a 'ninth' port address to select input or output functions on each i/o port. The bit number in this control byte corresponds to the port number of the eight i/o ports: bit 0 controls port 0 , etc.
Writing a zero in a bit location allows the corresponding port to become a latched output. Writing a one to that bit turns the output latches off enabling that port to become an input, although inputs can be read from an output port.
It is not a good idea to 'force' an output port to be driven by something else as an input. Should this be essential, it can be accomplished by inserting an open-collector buffer between the latch and the input chip with a suitable pull-up resistor. If any port is required only to be an input or an output, the redundant chip need not be used. The control port is out-put-only, so if the control byte is needed, it will have to be copied to memory.

Hardware considerations

Initially, the bit rate is set to 9600 baud. It can be changed by software but only through a 68000 -code program. Power supplies of 5 V and $\pm 12 \mathrm{~V}$ are needed. I considered whether to use RS232 interface chips with on-board voltage generators, but I rejected this idea as the devices are expensive. In addition, many applications need $\pm 12 \mathrm{~V}$ anyhow.

Control software

An eprom-resident controller program will receive simple ascii commands to read and write to the ports. It will also provide a rudimentary file handling system, in which the i/o routine is a separate file called io. This must be started by typing 'run io' from the terminal emulator after switching on, or sent by a program running on the host PC.

To write to a port, the command $W x, y$ is typed on the terminal emulator, or sent by a controlling program. Value x is the port number and y the data in hexadecimal form. The first command is usually to port 9 , to set the output status of the other eight ports. Thus, to set ports $0-3$ as outputs and $4-7$ as inputs, the first command would be w8,f0. Port numbers are counted from zero and the command is not case sensitive.

Fig. 4. Few components are needed to switch a 6A mains load.but care is needed to ensure safe isolation.

To read from a port, the command $R<x\rangle$ is typed. Data is returned using hexadecimal ascii text of the form $(x)=y$. A menu is available, command M , with help, H , and quit, Q , to quit the i / o routine. Once quit, the minimal operating system software is in the main command mode to receive, send or run programs. It can even provide a list (dir) of programs in memory. To re-run the i / o program, just resend the command 'run io'.

Rudimentary file transfer

Although non-standard, the file-transfer protocol is reasonably simple. Command 'Re(ceive) <filename>' initiates receiving of a file, which should be given a filename. Filenames can be up to 32 characters, and can be anything, including spaces. The module takes text until new line characters carriage-return/line-feed, or 32 bytes - whichever is first - as the filename.

Once the filename has been received, binary data should be sent. A break should be sent to complete the file transfer. Terminal emulators usually carry out these tasks, but if not, you could write a routine to execute the 'send break'. There is no error checking and file lengths are arbitrary.
File transmission from the interface requires a 'send <filename>' command, at which point the name of the file in memory should be supplied. Transmission is initiated when the receiver indicates it is ready by issuing 'OK' through the serial link. This is to stop transmission until the host PC is ready to receive. It may have to be programmed to do this.

Programs sent as a file are run by typing 'run <filename>'. Unless control software is needed to operate the ports at speed, it is likely that normal operation through an RS232 interface via a program on the host PC will suffice. Control software must be 68000 machine code and written as PIC.

Figure 2 shows how to connect a digital-toanalogue converter. Figure 3 is a 12 V power switch and Fig. 4 a mains-power switch using an opto-isolator. Logic for the i/o latches is cmos, rather than ttl, to provide a full $0-5 \mathrm{~V}$ swing. This simplifies additional circuitry.

Examples of further drive and input circuits that could be used with this interface were published in the article mentioned in the reference.

Reference

Teliki, W., Applied i/o Design for the PC, , EW\&WW, June 1994, p. 452.

Control software in eprom
 Operating software can be obtained

 by sending a $64 \mathrm{~K}, 150 \mathrm{~ns}$ eprom with cheque or postal order for $£ 8.00$ to J. N. Ellis, c/o Tavistock Electronics, Pixon Lane Industrial Estate, Tavistock, Devon. Alternatively, a programmed eprom is available for $£ 18$. Readers interested in a pcb, contact Mr Ellis.
THE clock for your computer

The ADC-60 brings the accuracy of a time standard to your computer. It provides a data source which can be used by any system which has a serial port such as a PC, MAC or mainframe. The ADC-60 offers improved reliability by using both the British MSF and German DCF time standards. If one of the signals cannot be received the other source will automatically be used.
Other ADC-60 Features include:

- LCD display showing current time and date together with the lock status of the unit.
- Provides GMT or Local time outputs together with the date
- Serial output in ASCII or BCD format
- Includes 2 software packages, the first is a TSR which runs under DOS, the second runs as a minimised window in Microsoft Windows
Contact us today for further information on this superb product

AMDAT
 4 Northville Road, Northville Bristol BS7 ORG Tel: 0272699352 Fax: 0272872228

UPGRADE YOUR 486!

ARIES Electronics Upgrade Socket (for PGA DX4), or Upgrade Adapter (for SOFP DX4), allows you to upgrade from 486 to DX4 seamlessly, thus taking advantage of its faster speed.

Aries Electronics (Europe)

Unit 3, Furtho Court, Towcester Road Old Stratford, Milton Keynes MK19 6AQ Tel: +44 1908260007 Fax: +44 1908260008

Quickroute 3.0

PCB \& Schematic Design System for Windows 3.1

Announcing a new range of affordable, powerful Windows based PCB and schematic design packages from POWERware.

DESIGNER £99*

PCB and schematic design with all the new 'Easy-Edit' features and an Auto router!

DESIGNER + £149*

For larger PCB and schematic designs, adds Gerber and NC-Drill support.

PRO £199 *

Schematic capture, with integrated rats-nest generation and auto-router. Export net-lists for design checking.

PRO + £299 *

Advanced schematic capture for management of larger schematics. Gerber import facility for flle exchanging.

For more details, contact POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK.

* Prices exclude VAT, post \& packing

Tel/Fax 0614497101

from

Programmable Logic Handbook
Geoff Bostock
Logic circuit designers are increasingly turning to programmable logic devices as a means of solving problems. This book, for the established electronics engineer, student and technician, is a thorough introduction to programmable logic. Geoff Bostock will take you to a level where you, as a designer, can take full advantage of the growing product range of ASICs and other selfprogrammable arrays used in computer and control systems.
Paperback 256 pages.
Price $£ 19.950750608080$

Understand Electrical and Electronic Maths
 Owen Bishop

People who find maths difficult often have, as a result, difficulty
in grasping electrical and electronics theory. This book has been written to help such students to understand the mathematical principles underlying their subject so that they can go on with confidence to tackle problems in practical circuits. Paperback 256 pages. Price £14.95 0750609249

CIRCUIT MANUALS

Ray Marston
A series of books dealing with their subjects in an easy-to-read and non-mathematical manner, presenting the reader with many practical applications and circuits. They are specifically written, for the design engineer, technician and the experimenter, as well as the electronics student and amateur. All the titles are written by Ray Marston, a freelance electronics design engineer and international writer.

Op-amp Circuits Manual Paperback 224 pages
Price £13.95 0434912077
Audio IC Circuits Manual
Paperback 168 pages
Price £13.95 0434912107
CMOS Circuits Manual
Paperback 192 pages
Price £13.95 0434912123
Electronic Alarm Circuits
Manual
Paperback 144 pages
Price $£ 13.950750600640$
Timer/Generator Circuits Manual
Paperback 224 pages
Price £13.95 0434912913
Diode, Transistor and FET Circuits Manual
Paperback 240 pages
Price £13.95 0750602287
Instrumentation and Test Gear
Circuits Manual
Ray Marston
Modern instrumentation and test gear circuits of value to the industrial, commercial, or amateur electronic engineer or designer make up this book. Almost 500 outstandingly useful and carefully selected practical circuits are in here. This is one book you must have if you need access to practical working circuits ranging from simple attenuators and bridges to complex digital panel meters, waveform generators, and scope trace doublers. Paperback 400 pages.
Price $£ 16.950750607580$

Logic Designers Handbook

 Andrew ParrEasy to read, but none the less thorough, this book on digital circuits is for use by students and engineers and provides an accessible source of data on devices in the TTL and CMOS families. It's a 'Designers Handbook' that will live on the designer's bench rather than on the bookshelf. The basic theory is explained and then supported with specific practical examples. Paperback 488 pages.
Price £25.00 0750605359

Digital Audio and Compact Disc Technology
Luc Baert, Luc Theunissen \& Guido Vergult
Essential reading for audio engineers, students and hi-fi enthusiasts. A clear and easy-tofollow introduction and includes a technical description of DAT (digital audio tape). Contents includes principles of digital signal processing, sampling, quantization, A / D conversion systems, codes for digital magnetic recording, principles of error correction, the compact disc, CD encoding, optoelectronics and the optical block, servo circuits in CD players, signal processing, digital audio recording systems, PCM, Video 8, R-DAT and S-DAT. Paperback 240 pages.
Price £16.95 0750606142
NEWNES POCKET BOOKS
A series of handy, inexpensive, pocket sized books to be kept by your side and used every day. Their size makes them an ideal 'travelling' companion as well.

Newnes Electronics
Engineer's Pocket Book
Keith Brindley
Hardback 319 pages
Price £12.95 0750609370
Newnes Electronics Assembly Pocket Book
Keith Brindley
Hardback 304 pages
Price £10.95 0750602228
Newnes Television and Video
Engineer's Pocket Book
Eugene Trundle
Hardback 384 pages
Price 112.950750606770

Newnes Circuit Calculations
Pocket Book
T Davies
Hardback 300 pages
Price $£ 10.950750601957$

Newnes Data Communications

Pocket Book
Michael Tooley
Hardback 192 pages
Price £12.95 0750604271

Newnes Telecommunications
Pocket Book
JE Varrall \& EA Edis
Hardback 400 pages
Price £12.95 0750603070
Newnes $\mathbf{Z 8 0}$ Pocket Book
Chris Roberts
Hardback 185 pages
Price £12.95 0750603089

Newnes 68000 Pocket Book
Mike Tooley
Hardback 257 pages
Price $£ 12.95 \quad 0750603097$
Newnes Electrical Pocket
Book
21 st edition
E A Parr
Paperback 526 pages
£12.95
0750605138
Newnes Electric Circuits
Pocket Book Linear IC
Ray Marston
Hardback 336 pages
Price £12.95 0750601329
Newnes Guide to Satellite TV
D J Stephenson
A practical guide, without excessive theory of mathematics, to the installation and servicing of satellite TV receiving equipment for those professionally employed in the aerial rigging/TV trades. Hardback 256 pages.
Price 517.950750602155
Newnes Practical RF
Handbook
lan Hickman
Pressure on the RF spectrum has never been greater and it's people with knowledge and skills of RF design who are now in demand in the electronics industry to design, produce, maintain and use equipment capable of working in this crowded environment. This practical introduction to modern RF circuit design will equip you with the necessary RF knowledge and skills to enable you to compete effectively in the industry. Paperback 320 pages. Price £16.95 0750608714

Troubleshooting Analog

Circuits

R A Pease

Bob Pease is one of the legends of analog design. Over the years, he's developed techniques and methods to expedite the oftendifficult tasks of debugging and
troubleshooting analog circuits. Now, Bob has compiled his 'battle-tested' methods in the pages of this book. Based on his immensely popular series in EDN Magazine, the book contains a wealth of new material and advice for Digital/Analog electronics engineers on using simple equipment to
troubleshoot. Paperback 217 pages.
Price £14.95 0750616326
PC-Based Instrumentation and Control
M Tooley
Do you need information to enable you to select the necessary hardware and software to implement a wide range of practical PC-based instrumentation and control systems? Then this book is for you. Paperback 320 pages.
Price £14.95
0750616318

Electronic Circuits Handbook

 M TooleyProvides you with a unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without recourse to theoretical texts.
Paperback 345 pages.
Price £24.95 0750607505

Communication Services via Satellite

G E Lewls

DBS is already with us, and will create a serles of new technical problems for
engineers/technicians in television and communication services. This book gives you the solutions to these problems by:
explaining how the system functions; describing several actual systems and giving several analyses and design rules. You can't afford to be without this invaluable technology update if you're a systems design engineer, service engineer or technician. Paperback 400 pages
Price £25.00 0750604379

Digital Logic Design Brian Holdsworth

As one of the most successful and well established electronics textbooks on digital logic design, this book reflects recent developments in the digital fields. The book also covers new functional logic symbols and logic design using MSI and programmable logic arrays. Paperback 448 pages.
Price £19. 500750605014

The Circuit Designers
Companion
T Willams
This compendium of practical wisdom concerning the realworld aspects of electronic circuit design is invaluable for linear and digital designers alike Hardback 320 pages.
Price $£ 25000750611421$

Credif card orders

 accepted by phone 0816523614Return to: Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

s:	
Qty Title ..ISBN...............Price	
Understanding Electrical \& Elec Maths $0750609249 . . .14 .95$	
Timer/Generator Circuits Manual.............. 043491291 3...13.95	
Instrumentation \& Test Gear Circuits Man .. 075060758 0....16.95	
Newnes Elec Assemby Pk Bk 0750602228 10.95	
Newnes TV and Video Eng Pkt Bk 075060677 0.... 12.95	
	Newnes Circuit Calculations Pkt Bk........... 075060427
Newnes Data Communications Pkt Bk....... 075060308 9...12.95	
Newnes Telecommunications Pkt Bk $075060307060 . . .12 .95$	
Newnes 68000 Pkt Bk $0 . .0750603097$	
Newnes Electrical Pk Bk $075060513812 .95$	
Newnes Electric Circuits Pocket Bk............ 075060132 9... 12.95	
Newnes Guide to Satelite TV $0750602155 \ldots . .17 .95$	
Newnes Practical RF Handbook 075060871 4...16.95	
PC-Based Instrumentation and Control 0750616318 \%...14.95	
Communication Services via Satellite7506 0437 9.... 25.00	

PLEASE ADD $£ 2.50$ FOR POSTAGE

Add VAT at local rate
NB ZERO RATE FOR UK \& EIRETOTAL
Business purchase: Please send me the books listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. will attach my business card/letterhead and have signed the form below. Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resaleable condition for a full refund

Remittance enclosed $£$
Cheques should be made payable to Reed Book Services Ltd
Please debit my credit card as follows:
Access/Master BarclayNisa Amex Diners

Credit Card No \qquad Exp date
NAME (Please print)
ORGANISATION
STREET
TOWN
COUNTY \qquad POST CODE \qquad COUNTRY
DATE \qquad TELEPHONE NUMBER

SIGNATURE

VAT RATES
6\% Belgium, 25\% Denmark, 5.5\% France, 7\% Gemany, 4\% Greece, 4\% Italy, 3\% Luxembourg, 6\% Netherlands, 5\% Portugal, 3\% Spain. FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR
REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)
VAT NO.
If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to recieve further details about books, journals and information services.
Reed Business Publishing - Registered Office - Quadrant Hse The Quadrant Sutton Surrey SM2 5AS Registered in England 151537

Please mention Electronics World + Wireless World when seeking further information.

Wideband op-amp delivers broadcast-quality video

A PAL and NTSC frequencies, the Aopa628 op-amp has a differential gain error of 0.015% and a differential phase error of 0.015° when driving a backterminated 75Ω cable.
As the device data sheet describes, these specifications are made possible using a classical op-amp architecture involving true differential and fully symmetrical inputs. Separated power supply pins for the input and output stages also eliminate the effects of package and wire-bond parasitic effects.
In performance terms, the device has other interesting features. These include unitygain stability with a bandwidth to 160 MHz , 90 dB spurious-free dynamic range and a $2 \mathrm{nV} / \mathrm{NHz}$ noise figure. The two-tone thirdorder intercept is 60 dB and gain is flat within 0.1 dB to 30 MHz .
Both Spice models and evaluation boards exist for the OPA628. The data sheet carries in-depth details of the device's performance together with discussions on many aspects including driving capacitive loads, thermal considerations, input protection and pcb layout. The three application circuits shown here are included in the note but there is no further specific information on their operation.
Burr Brown, 1 Millfield House,
Woodshots Meadow, Watford,
Hertfordshire WD1 8YX. Tel. 0923
33837, fax 092333979.

At unity gain, the $2 f$ curve is roughly the same as the $3 f$ curve shown here. Increasing gain to $2 \mathrm{~V} / \mathrm{N}$ causes the 2 f curve to rise but the 3 f curve shape and position remain virtually unchanged.

Function generators use analogue trigonometric synthesiser

Via pin-strapping, the AD639 function generator provides all the standard trigonometric functions and their inverses. According to the device data sheet, its law conformance and total harmonic distortion surpass figures previously attained using analogue shaping techniques. Also in the data sheet are a number of application circuits. Two of them are described here, namely a gated function generator and a four-quadrant sine multiplier
Compared with using rom look-up tables and d-to-a conversion, the device is also faster; in sine mode, bandwidth is typically 1.5 MHz . Unlike other function synthesis circuits, the AD639 provides a smooth and continuous sine conformance over a range of -500° to $+500^{\circ}$. When generating a sine wave, law conformance is within 0.02% and distortion levels of -74 dB are attainable for triwave to sine wave conversion.
The device generates a basic function representing the ratio of a pair of independent sines:

$$
W=U \frac{\sin \left(x_{1}-x_{2}\right)}{\sin \left(y_{1}-y_{2}\right)}
$$

Differential angle arguments are proportional to the input voltages X and Y scaled by $50^{\circ} / \mathrm{V}$. Using the 1.8 V on-board reference any of the angular inputs can be preset to 90°. This provides the means to set up a fixed numerator or denominator (sin $90^{\circ}=1$) or to convert either sine function to a $\operatorname{cosine}\left(\cos \theta=\sin \left(90^{\circ}-\theta\right)\right)$. Using the ratio of

Capable of generating trigonometrical functions including sin, cos, tan, cosec, sec, cot, arcsin, arccos and arctan, the AD639 can produce a sine wave with 0.02% law conformance.
sines, all trigonometric functions can be generated.
Amplitude of the function is proportional to a voltage U, which is the sum of an external differential voltage ($U_{1}-U_{2}$) and an optional internal preset voltage, U_{p}. Control pin UP selects a $0 \mathrm{~V}, 1 \mathrm{~V}$ or 10 V lasertrimmed preset amplitude which may be used alone ($U_{1}-U_{2}=0$) or internally added to the $U_{1}-U_{2}$ analogue input.
At the output, a further differential voltage Z can be added to the ratio of sines to obtain the offset trigonometric functions versine $(1-\cos \theta)$, coversine $(1-\sin \theta)$ and exsecant ($1-\sec \theta$). A gating input is available enabling or disabling the analogue output. This pin also acts as an error flag output in situations where a combination of inputs
will cause the output to saturate or to be undefined.
In the inverse modes, the argument can be

Output of the function generator is gatable. These traces show a 2 V gating waveform, top, and the resulting sine-wave output at 2 V rms.

the ratio of two input signals. This allows the user to compute the phase angle between the real and imaginary components of a signal using the arctangent mode.

Wide-range waveform generator. This is an inexpensive signal generator, providing voltage control of frequency from 20 Hz to 20 kHz and a preset sine amplitude of 2.8 V (within 0.1 dB of 2 V rms). This output may be further modulated by an input of up to $\pm 2.8 \mathrm{~V}$ to input U 2 , or gated off by an input of +1.5 V or more to input GT; the

Fig. 1. Top waveform is the difference voltage between the triwave and squarewave. Resulting output is shown in the bottom trace.

Fig. 3. Spectrum of cosine output at 1 kHz for the AD639-based quadrature oscillator.

Fig. 2. Timing relationships between all outputs of the quadrature oscillator.
oscillograph shows the gated response. If required, a further input can be summed into $\mathrm{Z2}$. The sine output can be set to 10 V amplitude by connecting UP to VR and grounding U1.
An AD654 is used to generate the triwave which appear across timing capacitor C_{f}, and is buffered, amplified and level-shifted by A_{1} and A_{2}. Using a spectrum analyser, P_{3} and P_{4} are adjusted to minimise even- and oddharmonic distortion, respectively.
The triwave linearity is not good enough to realise the inherent capabilities of the AD639, but total harmonic distortion is in the -50 dB to -60 dB range.
Op-amp A_{3} provides further gain for a $\pm 10 \mathrm{~V}$ triwave output. The square-wave output is taken directly from the AD654 and is unbuffered. It swings between ground and +15 V ; if pins 2 and 5 of the AD654 are connected to -15 V , this output is 30 V pkpk.
Scaling with the linear input (shown) is $10 \mathrm{kHz} / \mathrm{V}$, calibrated using P_{1}. Frequency can be controlled manually using a potentiometer and the V output of the AD639, P_{1} has sufficient trim range to provide a full-scale frequency of 20 kHz with the 1.8 V peak input. The alternative input
scheme provides a log-sweep response with an approximate scaling of $10^{V} \mathrm{kHz}$ (where V is in volts). The range is now from about 10 Hz to 100 kHz ; the frequency should be set to 1 kHz with $V=0$, using P_{2}. Frequency is now sensitive to variations in both temperature and the +15 V supply, but stability will be adequate for many applications.
Because of the exceptionally wide angular range of the numerator function of the AD639, it is possible to generate sinewave outputs with $2,3,4$ or 5 times the triwave frequency using cosine mode for even multiples of the sine mode for odd multiples. For example, to multiply the output frequency by 3 , use the sine function with the X input driven to $5.4 \mathrm{~V}\left(\pm 270^{\circ}\right)$. Distortion remains low; all harmonics are typically under -50 dB , even for the frequency quintupling mode.

Sine/cosine oscillators. Quadrature

 oscillators generate a pair of sinusoidal outputs displaced by 90°, and are invariably based on a state-variable loop comprising two integrators and a sign-inverter. This approach however needs additional circuitry to control the amplitude of the oscillation. In addition, a trade-off arises between the settling-time of this control circuitry and the distortion level, which is particularly troublesome at low frequencies. Amplitude balance of the two outputs depends on the matching of two time-constants and two tracking analogue multipliers or multiplying d-to-a converters are needed if the frequency is to be programmable.These problems are avoided using a function-shaping technique based on a triwave oscillator. Only one time-constant is required, so its frequency is more easily controlled.
Amplitude control is eliminated by using the scheme shown. The two outputs have accurate amplitudes of 10 V , without the need for an external reference source. Alternatively, they can be individually controlled by external voltages, without any effect on frequency. Variable-amplitude sine and cosine outputs can be added using the Zinput to provide continuously-variable phase control of the output.
The triwave oscillator has an AD630. This device alternates the sign of the 1.8 V reference from one of the $A D 639$ s to generate a square-wave output of $\pm 1.8 \mathrm{~V}$ amplitude. An integrator, formed by R_{1}, C_{1} and the op-amp, generates the triwave.
Amplitude of the triwave is determined by the ratio of R_{3} to R_{4}, and is nominally $\pm 1.845 \mathrm{~V}$. This is 2.5% higher than needed at inputs of the 639 s , providing the adjustment range needed minimise distortion. In many applications, all adjustments can be eliminated. To do this, make $R_{2}=R_{4}=5 \mathrm{k} \Omega$, omit $P_{2,4}, R_{5,7}$, and replace $P_{1,3}$, and $R_{6,8}$ with short circuits.
Frequency is nominally $1 / 4 C_{1} R_{1}$, and is 1 kHz with component values shown. A
variety of methods may be used provide external control of frequency, including the use of another AD630 in series with R_{1}, or a multiplying d-to-a converter.
Sine output is generated using the triwave directly. Potentiometers P_{1} and P_{2} should be adjusted using a spectrum analyser for minimum odd-order and even-order harmonics, respectively. The cosine is generated by using the difference between the triwave the square-wave, as shown in the upper wave form of Fig. 1. This composite voltage first generates a sine-
function over range 0 to $+180^{\circ}$, then over the range 0 to -180°, to produce the function shown in the lower wave form, which can be seen to be 90° out of phase with the triwave.
The complete set of wave forms available from this generator are shown in Fig. 2. Potentiometers P_{3} and P_{4} are adjusted for minimum odd-order and even-order cosine harmonics, respectively. Fig. 3 shows the cosine spectrum for a well-adjusted circuit. Due to the finite transition time back to the baseline in the drive voltage to the cosine generator, a brief spike occurs at the zero-
crossing of this output.
Frequency components will be beyond the bandwidth of the output amplifier in the AD639, and the energy contained in these spikes will not generally be troublesome. They may be further reduced, if necessary, by adding a capacitor between pins 14 and I5, to roll off the AD639 output response.

Analog Devices, Station Avenue, Walton-on-Thames,Surrey KT12 1PF. Tel. 0932 253320, fax. 0932247401.

Switching with igbts reduces lamp ballast size

Nearly all insulated gate bipolar transistors, igbts, are high-power devices, but there is a pair of medium-power, low-cost devices in TO-92-style packaging. These are the n-channel ZCNO545 and the p-channel ZCP0545.
The circuit is an 11W off-line fluorescent lamp ballast using two ZCN0545A igbts. Efficiency of the circuit is such that it allows the TO92-format E -line igbts to replace the TO220/TO126 bipolar or mosfets commonly used in this application. This both lowers component costs and gives a reduction in circuit size - critical in integral lamp/ballast designs.
The 300 ns turns-off capability of the ZCNOS45A would allow operation at up to 100 kHz but the working frequency of the design was set at 40 kHz to minimise losses and hf interference.
By controlling the phase of the current flowing in the igbts so that cross-conduction
does not occur, switching losses have been virtually eliminated. Also the low effective $R_{\mathrm{DS}(\text { on) }}$ of the ZCNO545A keeps conduction losses to around 60 mW in each device.
The first curves below show the voltage
and current waveforms of the igbts. Curves in the lower graph show an expanded view of the criticad turn-off behaviour of the ZCNIZCP0545A pair. Note in particular that the drain current falls to zero before the

Inside the igbt

This relatively new type of transistor has a mosfet input device followed by a bipolar amplifier. The high input resistance is ideal for direct drive from microcontrollers. In addition, igbts have a low $R_{\text {DS(on) }}$. For a given chip size and $B V_{D S S}$, the on resistance of an igbt is less than 10% that of a standard high-voltage mosfet at high current.
Like a bipolar darlington, the igbt needs a drain-source voltage of 0.7 V before current flows. If the drain-source terminals are reverse biased, the drain-source diode of the input mosfet cannot conduct since the baseemitter junction of the output bipolar transistor is in series. In many applications this provides a very useful reverse blocking capability.
Switching speed is dominated by the characteristics of the bipolar transistor, which can be optimised for either speed or saturation voltage. The ZCN0545 and ZCP0545 are designed to be very fast at switching on in less than 20 ns - and their off time is less than 300 ns . This makes them suitable for switching applications up to 100 kHz .
Since the structure of igbts includes an scr, they have a drain current which, if exceed-
ed, will cause the device to latch up. Latchup can lead to device destruction in some applications. Consequently, the pulsed drain current rating of the igbt should not be exceeded. This rating is temperature sensitive, falling as temperature increases.

Equivalent $R_{\mathrm{DS}(o n)}$ of an igbt on the other hand does not change significantly with temperature. Standard mosfet resistances double as temperature is raised from ambient to the device upper limit.

Output characteristics of the ZCN0545 and ZCP0545 igbts are illustrated on the right. These curves show typical I_{D} versus $V_{\text {DS }}$ for a 5 V logic level gate drive.
To indicate the improvement the igbt structure gives over standard mosfets, graphs of the typical performances of two mosfets with an identical chip size, the ZVN0545 and ZVP0545, have been plotted for comparison.

In each graph, the top curve shows characteristics of a ZC type medium-power igbt while the lower curve illustrates a similarly-sized mosfet. For a given chip area and voltage rating, on resistance of the ight is less than $\mathbf{1 0 \%}$ that of a mosfet. Upper graph is n-channel, lower p-channel.

Voltage and current waveforms for the fluorescent lighting ballast circuit, left, and an expanded view of critical turn-off behaviour of the igbt used. Because drain current falls to zero before drain voltage rises significantly, switching losses are low.
drain voltage rises significantly, giving low switching losses.
Gate drive for the igbts come from a cur-

Benefits of igbts in telephone hook switches

To withstand normal telephone operating voltages and lightninginduced transients, transistors with breakdown voltages of $250-400 \mathrm{~V}$ are needed for telephone hook switches, diallers, etc. Normal currents can rise to about 150 mA , or much higher on transients.

This 'feature-phone' interface shows the lower igbt being used as an earth recall switch. it provides as high an input impedance as the - often used mosfet but lower onvoltage at high supply currents. Electronic hook switching is

provided by the upper p-channel igbt. Its controlled gate drive limits drain current during transients. Expensive p-channel mosfets or npn/pnp bipolar pairs are normally used.
Suppressors used must not
operate below 200V. Devices selected normally allow 270 V worst-case peaks during transients. Having a drain-source breakdown rating of 450 V , the igbt shown simplifies design. Transient protection is aided by D_{5} and BD_{1}.
rent transformer connected in series with the ballast inductor. This transformer controls the switching frequency of the circuit and zener diodes $Z D_{1,2}$ set gate drive voltage for both igbts. A diac is used to give an initial kick to start the circuit and the transformer T_{1} and vdr control line borne transients and interference. Two strike circuits can be used. The simplest - and lowest cost - is to use a single capacitor which gives the circuit an instant start characteristic. However this has the disadvantage that the lamp strikes before the heaters heat up fully, leading to tube-end blackening and some reduction of tube life when switched on and off frequently.

Using a two capacitor/ptc-thermistor starter combination improves matters. At tum-on, a 10 nF capacitor forces a high heater current to flow until the series connected ptc warms. Resistance of the ptc increases rapidly, causing the voltage across the tube to rise until the tube strikes. Since the tube strikes only after its heaters reach working temperature, life is extended. However this starter option is more expensive and gives a noticeable tum-on delay of around 1-2 seconds.

Zetex Semiconductors, Fields New Road, Chadderton, Oldham OL9 8NP. Tel. 061 627 4963, fax 0616275467.
‘OFF-AIR’ FREQUENCY STANDARD

LIST AVAILABLE BUT 1000's OF UNLISTED BARGAINS FOR CALLERS. ALL PRICES EXC. OF P\&P AND VAT QUALITY ELECTRONIC EQUIPMENT ALWAYS WANTED

CIRCLE NO. 147 ON REPIY CARD

Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT

RF EOUIPMENT

WIDEBAND AMPLIFIERS
TYPE 9301 100KHz-500MHz. NF 2dB at 500 MHz . Gain 30 dBOutput $12.5 \mathrm{dBm}, 18 \mathrm{~mW} .50 \mathrm{ohms}$STYPE 9302 10MHz-1GHz. NF 2dB at 500 MHz . Gain 30 dB . Output $12.5 \mathrm{dBm}, 18 \mathrm{mw}$. 5ohms ...YPE 9008 Gasfet. 10MHz-2GHz. NF 2.5 dB at IGHz. Gain 10dB.Output $18 \mathrm{dBm}, 65 \mathrm{~mW}$. 50 ohms....TYPE 9009 Gasfet. 10MHz-2GHz. NF 3.8 dB at 1 GHz . Gain 20 dB .Output 20dBm, 100 mW . 50 ohms….................... 175PL.............
WIDEBAND LINEAR POWER AMPLIFIERS
TYPE 92461 watt output. $100 \mathrm{KHz}-175 \mathrm{MHz}$. 13 dB gain 240 19TYPE 92481 watt output. $100 \mathrm{KHz}-300 \mathrm{MHz}$. 10 dB gain
TYPE 93061 watt output. $10 \mathrm{MHz}-1.2 \mathrm{GHz}$. 15 dB gain... £260
TYPE 92494 watts output. 100KHz-300MHz. 17dB gain $£ 420$
TYPE 92474 watts output, 1-50MHz, 13dB gain. £260 26
TYPE 90514 watts output. 20-200MHz. 13dB gain
TYPE 91764 watts output. 1-50MHz. 26dB gain. £395
TYPE 91774 watts output. 20-200MHz. 26dB gain 395
TYPE 917320 watts output. 1-50MHz. 17dB gain $£ 450$
TYPE 917420 watts output. $20-160 \mathrm{MHz}$. 10 dB gain $£ 450$
TYPE 927140 watts output. 1-50MHz. 16dB gain $£ 795$
YPE 917240 watts output. 20-160MHz. 10dB gain £795
TYPE 966060 watts output. 25-75MHz. 17.5dB gain $£ 950$
UHF LINEAR POWER AMPLIFIERS
Tuned to your specified frequency in the range $250-470 \mathrm{MHz}$TYPE 9123500 mW input, 5 watts output.£385
TYPE 9124 2-3 watts input, 25 watts output 545
TYPE 91268 watts input, 50 watts output 1645

Prices are ex-VAT\& ex-P\&P.

TELEVISION LINEAR POWER AMPLIFIERS

RF output powers available from $1 / 2$ watt to 150 watts.
GASFET LNAS 5 MHz-2GHz. Two-stage. High Q filters. Masthead or local use TYPE 9006 Freq: $5-250 \mathrm{MHz}$. BW up to 40% of CF. Gain $10-40 \mathrm{~dB}$ variable. 50 ohms. NF 0.6 db
TYPE 9004 Freq: $250-1000 \mathrm{MHz}$. B/W up to 10% of CF. NF 0.7 dB . Gain 25 dB . 50 ohms.£185
TYPE 9304 Freq: 1-2GHz. BN up to 10% of CF. NF 0.7 dB . Gain 20dB. 50 ohms $£ 250$
TYPE 9035 Transient protected mains power supply for above preamplifiers £65
TYPE 9010 Masthead weatherproof unit for preamplifiers 18
PHASE LOCK LOOP FREQUENCY CONVERTER
TYPE 9115 Up/down converter. I/p \& o/p frequencies 20MHz-2GHz. B/W up to 50 MHzNF 0.7dB. Gain 60dB variable. 0/p up to 10 mW , +10dBm. AGC $£ 750$PHASE LOCX SIGNAL SOURCES 20-2000 MHz
TYPE 8034 Freq. as specified in the range $20-250 \mathrm{MHz} .0 / \mathrm{p} 10 \mathrm{~mW}$ $£ 250$
TYPE 9036 Frea. as specified in the range $250-1000 \mathrm{MHz} .0 / \mathrm{p} 10 \mathrm{~mW}$ e350
TYPE 9038 Freq. as specified in the range $1-2 G H z .0 / \mathrm{p} 10 \mathrm{~mW}$. $£ 420$0/p 10 mW $£ 465$
TELEVISION TRANSMISSION MODULES

TYPE 9169 Voitage tunable TN modulator. Bands I or III or IV or V. $0 / \mathrm{p} 50 \mathrm{~mW}$. Sound channel $£ 395$
TYPE 9269 PLL TN exciter. Single channel. Bands I, III, IV or V. $0 / \mathrm{p} 10 \mathrm{~mW}$. $£ 750$Y. 0/p 10 mW£750

RESEARCH COMMUNICATIONS LTD

Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG Tel: 0303893631

Fax: 0303893838

Do you have an original circuit idea for publication? We are giving $£ 100$ cash for the month's top design. Other authors will receive $\mathbf{£ 2 5}$ cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

E 100 WINNER

One chip air-flow monitor
 n 800Ω thermistor has combined

Anegative and positive temperature coefficient and can therefore accept voltage excitation; the lamp filament prevents thermal runaway, but allows sensitivity to heat dissipation in the air stream.
With normal flow, the thermistor

possesses high resistance and passes a low current to node 11 of the 3046 transistor array. The triple curent mirror therefore turns off the output transistor. If air-flow drops, the temperature rises, reference current and current through the monitor increase and the output transistor conducts and saturates.
The supply voltage and load resistor R_{c} should be chosen to provide the required output levels; limits for the 3046 are 15V and 10 mA collector current. Trim reference current to take account of varied ambient temperature.
John A Haase
Fort Collins
Colorado
USA

Air-flow monitor provides a fwo-level indication.

Monostable flip-flop pulses down to 10 ns

Cince there is no monostable member of Othe $74 S$ series of tll logic, a monoshot comparable in speed with the rest of the family must be made from gates. This circuit produces pulses less than 10 ns wide and with 2.5 ns transitions.
The falling edge of a 7 ns pulse to the first gate triggers the circuit to give the 10 ns output when $R=300 \Omega$ and $C=22 \mathrm{pF}$. This is rather better than the performance of ecl monoshots, which give a minimum output pulse width of 10 ns
The two spare gates could be used to invert input and output or in a second circuit.
I K and S R Kaul
Bhabha Atomic Research Centre Bombay
India

Spare pair of two-input Nand gates performs the function of the monostable flip-flop missing from the 745 ttl series.

YOU COULD BE USING A 1GHz SPECTRUM ANAIYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilioscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $£ 100$ monthly star author's fee together with $£ 25$ for all other ideas published.
Our judging criteria are ingenuity and originality in the use of modern components with simplicity particularly valued.

Guitar fuzz box uses radio chip

Fuzz boxes to produce the 'heavy metal' Found from guitars rely on limiting the input signal to generate odd harmonics. GEC Plessey's SL6652 is a low-power IF/AF circuit meant for fm cellular radio, naturally containing a good limiter.
The circuit shown needed no special screening or layout and gave good results without any decoupling problems, the only initial drawback being a harshness in the sound. Resistor R_{7} and C_{9} solved that problem and two professional guitarists have approved the results. In this application, the SL6652 draws about 1 mA so two AA batteries last a long time.
To use the circuit, turn the fuzz box volume control to minimum and slowly increase the volume, while strumming the guitar, until the correct drive level for the amplifier is obtained. The guitar volume control now functions as a 'sustain' control.
As regards the hyper-fuzz switch - try it and see!
Dave Mapleston and Steve Newton GEC Plessey Semiconductors

Limiter section of FM radio chip produces 'heavy metal' sound from a guitar.

Triggered sawtooth generator from a phase-locked-loop IC

O
ne phase-locked loop IC generates triggered linear sawtooth waveforms, referred to ground, of constant amplitude and positive-going. Alternative methods involve several ICs and multiple power supplies.
In the absence of a trigger pulse, the vco section of the pll holds pin 7 at ground, a current I_{c} appearing at pin 6 , determined by the value of R_{4} and the voltage at pin 9 . This current through $R_{5,6}$ sets the voltage on pin 6
lower than V_{T}, the transfer voltage of the vco inverters.
Trigger pulses are buffered by the ex-or phase comparator and increase the pin 6 voltage to change the state of the vco flipflop, in which condition pin 6 is now grounded and I_{c} now appears at pin 7 , where it charges C_{T}. When the charging ramp on pin 7 reaches V_{T}, the flip-flop again changes state and the capacitor discharges into pin 7. The circuit is now stable until the next
trigger pulse. The vco output at pin 4 goes high during the ramp.
Ramp duration is around 1 ms for these values, but can be set to last from a few microseconds to several seconds by varying C_{T}, R_{4} and the voltage on pin 9 .

M S Nagaraj

 ISRO Satellite CentreBangalore
India

Single-IC, wide-range triggered sawtooth generator produces a linear, ground-referred ramp from microseconds to seconds in duration. Timing is shown on the right.

Low battery-voltage indicator

[n circumstances in which battery failure might lead to loss of data - for example, in field data logging - this device will warn of impending doom by means of a flashing led.
Regulator $I C_{1}$ powers the circuit from the 9 V battery, drawing a very low quiescent current, and supplies a reference voltage via $R_{1,2}$ to the comparator. If the battery-derived input to the comparator falls to the threshold voltage set by $R_{3,4}$, 8.15 V with these values, $T r_{1}$ turns on and enables the led flasher oscillator $I C_{3}$, its flash rate being set by $C_{2}(2.3 \mathrm{~Hz}$ in this case). Changing R_{3} to a $1 \mathrm{M} \Omega$ variable component allows any battery voltage to be monitored. Circuit current consumption is 1.5 mA and 2.5 mA when the led flashes; micropower devices would reduce this considerably.

Kamru Miah

CSL
Slough

Bench filter evaluator with tuning control

C
ascading the two halves of a National Semiconductor MF10 dual cmos switched-capacitor filter IC makes a bench instrument to evaluate the effects of varying the frequency of a prototype filter section before committing yourself to a final design.
This instrument is effectively a state-
variable filter giving the characteristics of low-pass, band-pass and high-pass types with $80 \mathrm{~dB} /$ decade slopes. A summing amplifier combines high and low-pass sections to give a $40 \mathrm{~dB} /$ decade notch filter. Clock frequency is variable from 0.83 Hz to 14.7 kHz in five ranges and it would be simple to drive pins 10 and 11
directly with an external clock, via an internal/external switch.
Centre or break frequency is $f_{0}=f_{\text {clk }} / 100$, which is also the notch frequency. Outputs are buffered by the four op-amps.

P / Hale

University of Humberside Hull

Automatic gainadjusting bridge amplifier

When a measuring bridge is near balance, amplifier gain must be high to cope with the small bridge signal. When out of balance, however, the large gain is unnecessary and could lead to instability, so that a dynamic setting of gain is the ideal.
In Fig.1, the diodes in the feedback loop of a bridge difference amplifier increase their resistance at low signal levels, increasing the amplifier gain. If feedback resistance is $R+\delta R, \delta R$ being the change in diode resistance, then amplifier gain is expressed as $1+3 \delta R / 4 R$. A practical circuit using the $I N A 105$, with $R=25 \mathrm{k} \Omega$, is shown in Fig. 2.
The circuit in Fig. 3 uses the same approach to increase the low-signal gain of the classic three-op-amp instrumentation amplifier, in this case an AD524.
Kamil Kraus
Rokycany
Czech Republic

Fig.1. At low input levels, the feedback diodes have higher resistance, increasing the gain of a bridge amplifier near balance.

Fig.2. Practical circuit using the approach of Fig. 1

PCBs for Douglas Self's power amplifier series

Circuit boards for Douglas Self's high-performance power amplifier are now available via $E W+W W$.

Detailed on page 139 of the February issue, Douglas Self's state-of-the-art power amplifier is the culmination of ideas from one of the most detailed studies of power amplifier design ever published in a monthly magazine. Capable of delivering up to 100 W into 8Ω, the amplifier features a distortion figure of 0.0015% at 50 W and is designed around a new approach to feedback.
Designed by Douglas himself, the fibreglass boards have silk-screened component IDs and solder masking to minimise the possibility of shorts. Sold in pairs, the boards are supplied with additional detailed constructional notes.
Each board pair costs $£ 45$, which includes VAT and postage, UK and overseas. Credit card orders can be placed 24 hours on 081-652 8956. Alternatively, send a postal order or cheque made payable to Reed Business Publishing to EW+WW, The Quadrant, Sutton, Surrey SM2 5AS.

A better feeling about channel selection

The row of mechanically ganged pushbutton switches sometimes used for channel selection in audio amplifiers and television receivers is effective, but lacking in the feel of quality. This circuit arrangement uses momentary-action, lighttouch switches without complicated circuitry.
Pressing any switch causes $I C_{1}$ to emit a clock pulse to $I C_{2}$ and latch it, the relevant output from $I C_{2}$ going high. However, if more than one switch is pressed, the output of $/ C_{3}$ is low to inhibit all outputs and act as a mute.
The outputs could be buffered and used to drive relays, perhaps also illuminating indicator leds to confirm the selection. A P Scrimgeour London N4

Momentary-contact, unganged switches replace the mechanically ganged type to provide a lighter touch.

Powerful, Practical and Sensibly Priced

The CPU
is Motorola's 16 bit 68302 , a highly integrated 68000 processor running at 16 Mhz . This processor bas 3 full high speed serial ports operating in UART, HDLCISDLC, BISYNC or DDCMP modes. It also has DMA channels. Interrupt controller, 28 parallel I/O lines 216 bit timers with compare and capture, Watchdog timer and low power (standby) modes. (We can supply the MC68302 Data Book.)
The Memory Up to 1 M byte of EPROMs - 1 M byte of FLASH EPROM and 64 k Bytes of static RAM.
The EM68 Expandable to 16 M byte, the 'EM68 is constructed on a Multilayer PCB with full power a ground planes and has a small $7.62 \mathrm{~cm}^{2}$ footprint.
Prices range from $£ 255.50$ (1 off - 1 M Byte FLASH) down to $£ 95.00$ ($\mathbf{1 0 0}+$ No FLASH) Our Catalogue lists products based on the 64180, 80C31, Dallas 80C320, 80C552, 80 C 188 processors, and a wide range of peripheral modules, A/D, D/A, Serial, Opto, Relay, Transistor drive, Stepper drive, Thermocouple etc. with power supplies, backplanes and cases. Request a copy today.
Devantech Ltd
Units 2B-2C, Gilray Road. Vinces Road Industrial Est Diss, Norfolk IP22 3EU, UK Tel: +44 379644285 Fax: +44 379650482

ADVERTISERS PLEASE NOTE

For all your future

enquiries on
advertising rates,
please contact

Malcolm Wells on:

Tel: 081-652-3620

19＂Rack Mounting Switch Mode Power Supply By FARNELL INSTRUMENTS F2667

P．O．［B．T．］ 164
MONARCH 250C SYSTEM
990 WATTS MODULAR CONSTRUCTION
+5 volt 48 Amp
+12 volt $8 \mathrm{Amp}+$ Ringer Module Capable of Ringing 12 Telephone Bell Loads
－12 volt 5 Amp
-50 volt 8 Amp
Dimensions H125 D500 W485mm Weight 13．5KG BRAND NEW IN ORIGINAL PACKING

PRICE $£ 199.00$＋VAT
UK Mainland
Carriage £12＋VAT

R．Henson Ltd．

21 LODGE LANE
LONDON N12 8JG
TEL：081－445 2713／0749
FAX：081－445 5702
VALVES AND CRTS
ONE MILLION ITEMS IN STOCK INCLUDING MAGNETRONS，
KYLSTRONS，VALVE SOCKETS FOR AUDI RECEIVING
TRANSMITTING，OBSOLETE BRANDS SUCH AS MULLARD GECA
SPECIALITY．ALSO HUGE STOCKS OF RUSSIAN AND SOVTEKITEMS．
ASK FOR OUR 40－PAGE VALVE CATALOGUE OR CRT CATALOGUE．
VALVES W ANTED FOR CASH
ESPECIALLYKT66，KT77，KT88，PX4，PX25，VALVE HI－FIS e．g．QUAD，
LEAK，GARRARD 301．IF POSSIBLE SEND WRITTEN LIST．
BILLINGTON EXPORT LTD
1E GILLMANS IND EST，BILLINGSHURST，SUSSEX RH14 9EZ
CALLERS STRICTLY BY APPOINTMENT ONLY
TEL：O403 784961 FAX：O403 783519
MINIMUM ORDER £50．00 PLUS VAT

TOP PRICES PAID

For all your valves，tubes， s＇mi conductors and IC＇s． Langrex Supplies Ltd，
1，Mayo Road，Croydon，Surrey CRO 2 P
TEL：081－684 1166
FAX：081－684 3056

TURN YOUR SURPLUS TRANSISTORS，
ICS ETC，INTO CASH
Immediate settlement． We also welcome the opportunity to quote for complete factory clearance． Contact：
COLES－HAROING \＆CO，Unit 58 ．
Queens hoad，Wisbech，Cambs．PE132PO ESTABUSHEO OVER 15 YEARS
Buyers of Surplus inventor Tell： 0945584188 Fax： 0945475216

WE WANT TO BUY ！！

> IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY，LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT．WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE． WE PAY TOP PRICES AND COLLECT． R．HENSON LTD． 21 Lodge Lane，N．Finchley， London N12 8JG． 5 Mins，from Tally Ho Corner． TELEPHONE 081－445－2713／0749 FAX 081－445－5702．

WANTED

High－end Test，Communication \＆ Computer Equipment．Top prices paid． Please send or fax your offer to： Steigerwald GmbH Neusserstrasse 9， 80807 Munich South Germany Tel： 01049893615833 Fax： 01049893615899

WANTED

High－end Test Equipment，only brand names as Hewlett－Packard， Tektronix，Rhode \＆Schwarz， Marconi etc．Top prices paid． Please send or fax your offer to：

HTB ELEKTRONIK

Alter Apeler Weg 5， 27619 Schiffdorf，West Germany TEL： 0104947067044 FAX： 0104947067049

WANTED

Test equipment，receivers，valves， transmitters，components，cable and electronic scrap and quantity． Prompt service and cash． M\＆BRADIO 86 Bishopgate Street， Leeds LS1 4BB
Tel： 0532435649 Fax： 0532426881

」川＂川川

WANTED

 SCRAP Printed Circuit BoardsWe are by far the best buyers of PCB s cash or cheoue available

Computer Salvage Specialists Ett 1983 TEL： 0635552666 FAX： 0635582990 OPERATORS
OF THE UKS OF THE UK＇s NATIONAL dोतो

WANTED

Receivers，Transmitters，Test Equipment，Components，Cable and Electronic，Scrap．Boxes， PCB＇s，Plugs and Sockets， Computers，Edge Connectors． TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT A．R．SInclair，Electronics，Stockholders． 2 Normans Lane，Rabley Hearh，Welwyn， Herts AL6 9TO．Telephone： 0438812193. Moblle： 0860 214302．Fax： 0438812387 Telephone： 0763246939

CLASSIFIED

TEL 0816523620

ARTICLES FOR SALE

Cooke International
SUPPLIER OF QUALITY USED TEST INSTRUMENTS
ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. ALWAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE COPIES ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME, SEND LARGE "A3" S.A.E. + 50P POSTAGE FOR LISTS OF EQUIPMENT AND MANUALS.

ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS SHIPPING ARRANGED

OPEN MONDAY-FRIDAY 9AM-5PM

Cooke Internatlonal

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB

Tel: $(+44) 0243545111 / 2$
Fax: (+44) 0243542457
EQUIPMENT \& ACCESSORIES PURCHASED

ARTICLES WANTED

PURCHASE FOR CASH

SURPLUS - OBSOLETE - REDUNDANT - EXCESS stocks of electronic, electrical components/accessories, part processed and/or finished products. Please submit preliminary information or lists for immediate response to:

K.B. COMPONENTS, 21 Playle Chase, Gt Totham, Maldon, Essex CM9 8UT

Telephone 0621-893204. Facsimile 0621-893180.

FREE CLASSIFIED

WANTED Very old Philips television. Jac HEWLETT PACKARD MANUALS Janssen, Hoge Ham 117D, NL-5104 JD WANTED HPS300B, HPS 306 A, Dongen, Netherlands. Tel: +311623 HPS307A. Also HP test gear. Call 0703 18158. Fax: (office) +3113624664. 813844.

RADFORD DISTORTION MEASURING SET Series 3. I need some spare parts. Please write to me. Stefano Fax N. 0039.2.3566188.

FOR SALE MOTOROLA 68030RC25 68882RC25 Weitek 3164 and Brooktree BT458KG80, all PGA package, all at $£ 10$ each. Tel: 0234219756.

Professor" teaching
Your price paid. Tel: aid made by Acer. Your price paid. Tel: 0838200304. ANALYSER 141 T 1200 Mhz manuals £750. Marconi 110 MHz TF2370) manuals f650. Marconi synthesised V.L.F. réceiver Sub-Assy 2150 . TEK 434 Scope fl'1). 1134427869.
SWAP FOR RF Vector Impedance Meter? TF868, TF1313A LCR Bridges, Mek 551, TEKS55 (+ Plug ins), + HPl85C'scopes. IfP16S Oscillator, R210 receiver, 074632-479.

> To Advertise Here Please contact: Malcolm Wells on: Tel: 0181-652 3620 Fax: 0181-652 8956

INDEX TO ADVERTISERS

PAGE
Alternative Distribution UK 821
Amdat 863
Anchor Surplus Ltd 828
Antex Electronics 805
Aries Electronics 863
BK Electronics 805
Bull Electrical 836
Cambridge Microprocessor Systems Ltd) 848
Carston Electronics 847
Chelmer Valve Company 825
Citadel Products Ltd IFC
Crash Barrier Ltd 817
Danbar Sales Company 845
Dataman Designs BC
Devantech Ltd 876
Display Electronics Ltd 854
Glazertron Ltd 812
Halcyon Electronics Ltd 870
Hately Antenna Technology 848
Henry's Audio Electronics 825
ICE Technology Ltd 801
Integrated Measurement Systems 825
John Morrison 812
Johns Radio 797/853
JPG Electronics 821

PAGE
Kestral Electronic Components 821
Keytronics 841
Lab Center 799
Laplace Instruments 817
M\&B Electrical 851
M\&B Radio (Leeds) 847
MQP Electronics 831
Number One Systems 805
Pico Technology 871
Powerware 863
Premier EDA Solutions 832
Ralfe Electronics 880
Research Communications 871
Robinson Marshall (Europe) Ltd 833
Seetrax Ltd 849
Smart Communications 794
Stag Programmers IBC
Stewart of Reading 870
Surrey Electronics 831
Technology Sources Ltd 845
Telnet 859
The Low Power Radio Assoc. 831
Those Engineers Ltd 845
Tsien Ltd
849
Ultimate Technology Ltd 823

COMMUNIGATIONS

Permanent and contract opportunities for engineers and technicians in Systems, Networking, Design Development, Software, Test, Service, Installation and Commissioning.

We supply the best to the best I
We undersland sour true valise
Clivedor consti ancy services pic
92 Broadway,
Bracknell, Berks, RG12 1AR.
Tel 0344489489 . Fax 0344489505.
Offices in London, Manchester, Southampton, Stevenage, Crawley, Brussels

CLIVEDEN
 Technical Recruitment

ANRITSU TR4133A 100 kHz -20GHz synthes zee spectrum analyser IFR A7550 1GHz portable analyser w tacking gen opt IFR ABOOO 2.5GHz version of above
HP3580A 5 Hz -50kHz a udio spectrum analyser HP3582A dual-channel 25 kHz analyser HP85688 1.5 GHz High-performance

MARCONIINSTRUMENTS
2019 AMFM synthesized signal generator $80 \mathrm{kHz} \mathbf{- 1 G H z}$ 2019 A as above. improved spec

20220 synntesized signal generator 2438520 MHz universal countertimer 2828A2829 digtal simulatorfanalyser 2955 mobile radio test set $2955 \mathrm{~A}+2960$ cellular adapters 6059A signal source 12-18GHz 646016420 power meter $10 \mathrm{MHz}-12.4 \mathrm{GHz} 03 \mathrm{3WW}-10 \mathrm{~mW}$ 693B audiopower meter
OA2805A PCM regenerator tres set TF2910/4 non-IInear distortion (video) analyse TF2914A TV insetrion signal analyser TF2910 TV interval timer
$E 200$
E1500

£4500
 £6250
 £ 1500
 E3500
 £10000

331 A distortion meter
339A distortion meter 3400 A voltrmeler $1 \mathrm{OHz} \cdot 1 \mathrm{OMHz}$

3335A synthesizerlevel generator with option 0

 3336A level generator3552A transmission test sel
3586A solective level meter

415E swr meter

4274A mult-itrequency ($100 \mathrm{~Hz}-100 \mathrm{kHz}$) LCR component meter
4275A multi-itiequency LCR component mater
432A478A microwave power meter $10 \mathrm{M} / \mathrm{Mz}$-10GHz 432AR486A uwave power meter $26.5-40 \mathrm{GHz}$ (waveguide)
5370B universal time-interval counter
6253 A dual power supoly 0.20 V 0.3 A wice
6825 A bipolar power suoplyiamp -20 to $+20 \mathrm{wlc} 0-1 \mathrm{~A}$ 70300 A tracking generator plug-in unit
70907 A external mixer for 70000 -ser spectrum analyser 7035 XX -Y single pen analogue chart recorder
3011A pulse generator $0.1 \mathrm{~Hz}-20 \mathrm{MHz}$
8112A pulse generator
816A sloted line $1.8-18 \mathrm{GHz}$ with carnage $809 \mathrm{C} \$ 447 \mathrm{~B}$
83508 sweep generator main-frame
3405 A vector voltmeter, voltage \& phase to 1000 MHz
8620 C sweep generator, many plug-inunits avalabie 8671A synthesized signal generator $2 \cdot 6.2 \mathrm{GHz}$

22500

2000

£1000
$£ 2500$
£350
4000
§400
§600
C 2500
£225
1350
2500 £1750 £ 550 $£ 500$ $\check{2500}$ $؟ 500$ 2250

SPECIAL THIS MONTH ONLY: HP8673C synthesised signal generators covering from 50 MHz -18.6GHz. AM/FMPM. Full HPIB control. Supplied In 'as new' condition with current HP calibration. List is over $£ 59,000$.
We have two to sell this month only, for $£ 9,950$ each.

call	RACAL 9082 synthesized ANFM sig' gen' 5-520MHz
$¢ 750$	RACAL 9300 RMS voltmeter - 80 dB B $0+50 \mathrm{db}$
£50	RACAL V-STORE 16, 16-chan instrumentation recorder
£350	RACAL-OANA 9303 level meter, digital
£750	ROBERTS \& ARMSTRONG to-cable end-cut measure unit
	TEKTRONIX J16 cigital photometer
	TEKTRONIX 1503C/03/04/05/06 TDR cable tester
£1250	WAYNE KERR 3245 precision inductance analyser
£500	WAYNE KERR B905 automatic precision bridge

URGEMTY REOURED - MIIGIEST CISN PRICES PAO FOR ISESB. DI5WBC, Spectuminetwork andysers. $85801 / 2$ p portabla anabysers. Pease call us if you have high-eno captal equipmem being under -utilisec.

PLEASE NOTE: ALL OUR EOUIPMENT IS NOH OPERATION-VERIFICATION TESTED BEFORE DESPATCH BY INDEPENDEAT LABORATORY

We would be pleased to handle all grades of calibration or NAMAS certlication by same laboratory at cost price. All items covered by our 90 -day parts and labour guarantee and 7 -day 'Right to Retuse' (money back) waranty.

ALL PRICES SUBUECT TO ADDITIONAL VAT AND CARRIAGE

CIRCLE NO. 151 ON REPLY CARD

ELECTRONIC UPDATE

Contact Malcolm Wells on 081-652 3620

\qquad

Models S2200 and $\$ 2400$

Gang and Set Programmers for

The system 2000 is an ideal programmer for the production environment. Fast programming results in high throughput and rigorous verification leads to improved quality control. Single key functions and checks against misoperation facilitates its use by unskilled staff.

MQP ELECTRONICS LTD.

Tel: 0666825146
Fax: 0666825141
CIRCLE NO. 152 ON REPIY CARD

A regular advertising feature enabling readers to obtain more information on companies' products or services.

OLSON ELECTRONICS LIMITED is a leading manufacturer in the field of mains distribution panels of every shape and size to suit a variety of needs. For use in Broadcasting, Computing, Data Communications, Defence, Education, Finance, Health elc. All panels are manufactured to BS5733. BRITISH AMERICAN, FRENCH, GERMAN CEE22/IEC and many other sockets. Most countries catered for.
All panels are available ex-stock and can be bought direct from OLSON.

Olson Electronics Limited Tel: 0818852884 Fax: 0818852496 CIRCLE NO. 154 ON REPIY CARD

LabWindows/CVI Brochure

The LabWindows/CVI Brochure, from National Instruments, explains how users can build instrumentation applications on Windows PCs and Sun SPARCstations using the ANSI C programming language and LabWindows/ CVI data acquisition, analysis, and presentation libraries

NATIONAL INSTRUMENTS
For further information
FREEPHONE 0800289877
CIRCIE NO. 153 ON REPIY CARD

ENGINEERING \& SCIENTIFIC PC

The new 230 page 1994 PC-LAB catalogue covers an extensive range of PC-based data acquisition, measurement, control, and interface plug-in cards plus supporting software packages for engineering \& scientific applications. Also includes $19^{\prime \prime}$ rack mounting industrial PCS, custom OEM PC chassis and associated sub-systems.
Please contact integrated measurement systems for a free catalogue copy.

Tel: (0703) 771143
Fax: (0703) 704301

[^0]: ${ }^{\dagger}$ Maxim's MAX639 was omitted from one of the tests as the initial samples expired readily and a working replacement was not supplied. A process problem may have been the cause.

