ELFCTRONICS

APRIL 1994 £1.95

SIARING HIERE

 New wave microwaveDESIGN\&TEST Test generator for better video links

DATACOMMS Eight bit wireless duplex data link APPLICATIONS New chips for audio noise reduction

DESIGN

Using op-amps from VLF to VHF

REVIEW
DAP: better way to PC data acquisition?

COMPONENTS

The right capacitor for the job?

SPECLAL Half price Spiceage for Windows - = $=$ Level One, £49.99. UK only. See inside for deteils

The PC82 Universal Programmer and Tester is a PC-based development tool designed to program and test more than 1500 ICs. The latest version of the PC82 is based on the experience gained after a 7 year production run of over 100,000 units.

The PC82 is the US version of the Sunshine Expro 60, and therefore can be offered at a very competitive price for a product of such high quality. The PC82 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the PC82 for their own use!

The PC82 can program E/EPROM, Serial PROM, BPROM, MPU, DSP, PLD, EPLD, PEEL, GAL, FPL, MACH, MAX, and many more. It comes with a 40 pin DIP socket capable of programming devices with 8 to 40 pins. Adding special adaptors, the PC82 can program devices up to 84 pins in DIP, PLCC, LCC, QFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS $40 / 45$ series, DRAM (even SIMM/SIP modules) and SRAM. The PC82 can even check and identify unmarked devices.

Customers can write their own test vectors to program non standard devices. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user.

The PC82's hardware circuits are composed of 40 set pin-driver circuits each with TTL I/O control, D/A voltage output control, ground control, noise filter circuit control, and OSC crystal frequency control. The PC82 shares all the PC's resources such as CPU, memory, I/O hard disk, keyboard, display and power supply.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all PC compatibles from PC XT to 486 .

The pull-down menus of the software makes the PC82 one of the easiest and most user-friendly programmers available. A full library of file conversion utilities is supplied as standard.

The frequent software updates provided by Sunshine enables the customer to immediately program newly released ICs. It even supports EPROMs to 16 Mbit .

Over 20 engineers are employed by Sunshine to develop new software and hardware for the PC82. Not many competitors can boast of similar support!

Citadel, a 32 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

* More sold worldwide than any other of its type.
* UK users include BT, IBM, MOD, THORN EMI, MOTOROLA, SANYO, RACAL
* High quality Textool or Yamaichii zero insertion force sockets.
* Rugged screened cabling.
* High speed PC interface card designed for use with all PC models from XT to 486.
* Over 1500 different devices (including more than 100 MPU's) supported.
* Tests and or identifies a wide range of logic devices.
* Software supplied to write own test vectors for custom ICs and ASICs etc.
* Protection circuitry to protect against wrong insertion of devices.
* Ground control circuitry using relay switching.
* One model covers the widest range of devices, at the lowest cost.
* No need to tie up a slow parallel port.
* Two year free software update.
* Speed optimised range of programming algorithms.

NOW SUPPLIED WITH SPECIAL VALUE ADDED SOFTWARE (worth over $£ 300$ if bought seperately):

* MICROTEC disassemblers for Z8, 8085, 8048. 8051, 6809 \& 68HC11

Our stocked range of own manufactured and imported Sunshine products include:

* Super fast EPROM Erasers.
* 1, 4 \& 8 gang EPROM 8Mbit production programmers.
* Battery operated portable EPROM programmers.
* "In circuit" Emulators.
* Handy pocket IC testers.

ORDERING INFORMATION

PC82 complete with interface card, cable, software and manual
only
£395

Please add $\mathbf{f 7}$ carriage (by overnight courier) for UK orders, $\mathbf{f} \mathbf{2 0}$ for export orders, and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO.
Official orders are welcome from Government bodies \& local authorities.

Free demo disk with device list available.

* NATIONAL SEMICONDUCTOR OPALjr PAL/PLD development software.
* BATCH SOFTWARE for production programming.

CITADEL PRODUCTS LTD
DEPT. WW, 50 HIGH ST., EDGWARE, MIDDX. HA8 7EP.

Phone now on: 081951 1848/9

CONTENTS

FEATURES

NEW WAVE MICROWAVE.-... 276 Burgeoning demand for wireless and personal communications equipment is forcing microwave IC technolcgy forward at a rapid pace. Mike Hosking looks at how advances in integration are affecting the traditional approach to microwave system design.
Cover Illustration: N Lloyd
PULSE AND BAR GENERATION FOR VIDEO \qquad
Video amplifier performance can be analysed at a glance. John Cronk demonstrates how a single. casily generated test waveform can instantly reveal a variety of sysuem deficiencies.

SMPS DESIGN

 290It seems logical that, in an SMPS design, letting inductor current fall to zero during the switching cycle is undesirable. Duncan Smith explains this and other aspects of switched mode power circuitry.

MOTOR CONTROL VIA PC \qquad297

Designed as an educational tool, lecturer Peter Hale's PCbased motor controller could well have many practical applications. Incorporating safety features, it provedes precise control of a 180 W motor via pulse-width modulation.

DATA ACQUISITION PROCESSING \qquad
Software and hardware for acquiring and processing data on a PC can become involved. Allen Brown looks at a
package called DAP which has been specially developed 10 ease the data acquisition task.

EASY PATH TO 8-BIT RADIO LINKS

\qquad 308
Radio data transmission need not be a complex business. Steve Winder describes a simple encoding/decoding scheme based on standard logie parts.

RF TRANSISTORS

314Power amps, components and their matching systems are are the very essence of RF power amplifier design.
Norm Dye and Helge Granberg discuss choice of matching networks for various power levels, frequency if operation and output device type.

CHOOSING CAPACITORS

In his overview of capacitor technology. Tony Wong provides an insight into the correct diclectric for the job.

TIME VIA MODEM ... 330
Traditionally, the cheapest way of obtaining time information with absolute accuracy has been to tap into radio-code broadcasts. For applications where off-air reception is impracticable, the NPL is now offering a modem-based service to anyone with a PC. John Chambers explains.

LOOKING INTO REAL TIME 346
Industrial real-time control systems based on VME hardware are fast and flexible but they are also very expensive. William Dickinson describes a non-VME 68020 alternative capable of running the industry-standard real-time operating system OS-9.

COMMENT

Help with hypocrisy
UPDATE
Lower power stars at high-power chip conference: Road tolling in Euro tussle: Technical doubt dogs fifth channel; Westland problems; Fully static display promises electronic book; Machine vision for people?; 686 chip in 1 Gips PC?

HALF PRICE SPICEAGE OFFER............................. 271 Full details of our special software. Please use the printed card located between p320/321.

RESEARCH NOTES

 272Hotter superconduction; Robots with attitude; Optical net for roadside comms; Blue lasers using polymer films: Leaky containers in space.

LETTERS

Mac man; Window fan; Mathcad not incomparable; Cable communication; Dab it... Off; Sparks fly over early radio; Ham fist; Reproducible losses; Bass-is for upset.

DESIGN BRIEF
High frequency operation with amazing dc performance... Low frequency operation with amazing dc performance.

Just how different can the latest designs of operational amplifier get? Ian Hickman looks at a pair of voltage mode devices with current mode performance.

CIRCUIT IDEAS

332Switched-gain amplifier mininises drift: OTA analogue divider; Pulse-width sequencer; Automatic cable and connector tester; Cheaper, low-voltage ultrasonic microphones.

NEW PRODUCT CLASSIFIED

335Comprehensive round-up of the industry's new products presented in the industry's most readable format.

APPLICATIONS .340
High-voltage bridge driving: Remote controller via micro; Noise reduction without encoding: A-to-D converter for high-qualify audio.

In next month's issce: Ultia low distortion audio oscillators are centra to the measurement and comparison of audio electrenics systems. Ian Hickman presents a design wh ch del vers $<0.005 \% \mathrm{THD}$ typically 0.0005% - -ver the range 20 Hz to 20 kHz . Get the undistorted facts about sound design.
MAY ISSUE IS ON SALE FROM APRIL 28.

RF TELEVISION EQUIPMENT

TELEVISION TRANSMISSION MODULES
Type 9169 VOLTAGE TUNABLE TELEVISION MODULATOR
Bands I or III or IV or V. Output 50mW. Sound channel£375 Type 9169A, as above with video channel only£ $£ 350$
Type 9269 phase lock loop vestigial sideband television modulator with sound channel. RF output 10 mW on your specified channel in bands I, III, IV or V
£650
TYPE 9115B TELEVISION TRANSPOSER
Phase lock loop. Up to 10 adjacent channels in bands I, III, IV or V. RF output 10 mW

TELEVISION LINEAR POWER AMPLIFIERS
Tuned to your specified channel in bands I, III, IV or V
Type 9252 10mW input, 500 mW output $£ 353$
Type 9254 50mW input, 2 watts output............................... $£ 395$
Type 9259500 mW input, 3 watts output............................ $£ 378$
Type 9263 2-3 watts input, 12 watts output......................... $£ 638$
Type 93643 watts input, 22-25 watts output................... $£ 1245$
Type 926610 watts input, 50 watts output. Integral forced air cooling and output transistor protection£1919
Type 936750 watts input, 150 watts output. Integral forced air cooling and output transistor protection£3950

TELEVISION LNAs
Type 9006 Band I or Ill. NF 0.6 dB . Gain 40 dB .75 chms .. 105
Type 9002 Up to 10 adjacent channels in bands IV or V. NF 0.7 dB . Gain 25 dB .75 ohms
£135
Type 9035 mains power supply unit for above preamplifiers. Local or remote use
Type 9010 masthead weatherproof unit for above preamplifiers
£16
TELEVISION TRANSMITTERS AND TRANSPOSERS
Studio, satellite or RF input. Single channel. Bands I, III, IV or V. PAL system B, G, H or I. Automatic output protection circuitry Integral forced air cooling and mains power supply. Front panel power meter. 19" units for rack mounting.

transmitters	transposers	OUTPUT POWER
9505	. 9605	5 watts £2,650
9510	. 9610	10 watts $£ 2,950$
9515	. 9615	15 watts $£ 3,250$
9530	. 9630	30 watts $£ 3,480$
9550	. 9650	50 watts $£ 4,950$
95150	. 96150	. 150 watts £9,950

RESEARCH COMMUNICATIONS LTD
Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG, UK Tel: (UK) 0303893631
Fax:(UK) 0303893838 Fax: (Overseas) 44303893838

EDITOR

Frank Ogden
081-6523128

DEPUTY EDITOR

Martin Eccles 081-6528633

CONSULTANT
Derek Rowe
DESIGN \& PRODUCTION
Alan Kert
EDITORIAL
ADMINISTRATION
Lorraine Spindler 081-6523614

ADVERTISEMENT
MANACER
Richard Napier
0ع1-652 3620
DISPLAIT SALES
EXECUTVE
Malcolm Wells
081-652 3620
ADVERTISING
PRODUCTION
Paul Burgess
081-6528355

PUBLISHER

Susan Downey

EDITORIAL \&

CLASSIFIED FACSIMILE
081-65289.56
SUBSCRIPTION
HOTLINE
05227 2 1665
Quote ref INJ

SUBSCRIPTION
 QUERIES

0444445566

NEWSTRADE

DISTRIBUTION
Martin Parr
0816528171

BACK ISSUES

Available at $£ 2.50$
081-652 3614
ISSN 0959-8332

Help with hypocrisy

Isit here writing this to the sounds of raging hypocrisy. Arms for Iray, arms for Malaysia. Backhanders for everyone. Revolting! Disgusting!
"Nothing to do with me and its certainly nothing to do with you. So we will slap on a public interest immunity statement just in case."

It is actually concerns us all because prosperity is something that most people care about. Our society depends on technology to earn money. There is nothing else in the economy which can begin to compare with it. Most highly industrialised countries - with the exception of Japan and the new Pacific states - still greatly depend on defence to drive their research and development. Much of the relative prosperity in the UK can be traced back ultimately to our defence manufacturing activities. It is also certain that we would not have an indigenous electronics industry if it were not for military spending.

So, when we read in the papers that we have given Malaysia a $£ 200 \mathrm{~m}$ low technology darn in exchange for $£ 1000 \mathrm{~m}$ high technology defence contracts, we should be holding street rather than lynching parties. Congratulate the politicians who negotiated the deal rather than castigate them. I'm serious. It is only
strong technology based industry which can deliver high per capita GNP. Arms, petrochemicals, nuclear technology and all the other politically incorrect things are what separate us from a rural peasant economy.

What I greatly object to is that our politicians also realise this but are too spineless to admit it.
I'm not suggesting for a moment that we shouldn't try to diversify from defence; I am a longtime supporter of the view that GEC and other major defence contractors have shortchanged this country in all sorts of ways, but mostly by turning their collective backs on the civil hi-tech business which the Japanese and the Koreans have made their own. I sincerely hope that Lord Prior and his chums eventually get the ir comeuppance... but not before they have had a chance to take money off the Malaysians and others. Because if they don't, Aerospatiale and Dassault will. And if that means trade for "aid", so what? No one else makes a big deal about it and neither should we.

Wouldn't you rather see jobs and tax revenue in this country before any other? Of course. And politicians should stop equivocating and have the courage to admit it.

Frank Ogden

[^0]Gubscriptions office, 205 E. 42nd Street. Nץ 10117.
Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd. Co5 E. 42 d Street. NY 10117. Telephone (212) 867-2080. -elex 23827.
USA mailing agents: Mercury Airfreight International Ltd Inc, - O(b) Engehard Ave. Avenel NJ 07001. 2rid class postage paid at Rahwa/ NJ Postmaster. Send address changes to above. Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate, Carlisle, Cumbria, CA2 7NR Typeset by Marlin Graphics 2-4 Powerscroft Road, Sidcup, Kent DA14 5D-

Reed Business Publishing Ltd 1994 ISSN 09598332

Low power stars at high power chip conference

The theme of this year"s International Solid State Circuits Conference recently held in San Francisco was low power cireni and system techniques. Not only was there an entire session on low power technology. the low power trend carried over to notable watt-burners such as the latest generation microprocessors. Four of the seven papers in the microprocessor session discussed modifications to existing devices to slash their power consumption.
But some of the most innovative papers concemed anatogue signal processing with two emerging themes. First. engineers are striving to develop analogue functions. principally the amplifier. which can provide high precision while operating from very low supply voltages - as low as IV Secondly, at these supply voltages necessary for portable equipment - the
incoming data has to be passed quickly into the digital domain to alleviate problems caused by noise
Entire signal processing systems could be built on single chips operating from a IV supply. This was the conc!usion of a paper from Hitachi Contral Research Laboratories. By developing two novel amplifiers, the firm’s Tatsuji Matsuya showed how these could be applied to build anatogue and digital systems operating from a 1.2 V supply
High-gain high-speed analogue amplifiers are difficult to design for low voltage operation. The traditional high speed cascode amplitier fails at low supply voltages because of its series connected cascode transistors. Non-cascode amplifiers do not provide sufficient voltage gain. Mansuya built a double feed-forward phase
compensated amplifier to overcome this problem. This amplifier circuit was used to build a three-stage sample-ind-hold amplifier for a 9 -bit pipelined $\mathrm{A}-\mathrm{to}$-D converter. At 2 MHz sampling rate the converterdissipated 4 mW

Matsuya atso developed a self-current cutoff sense amplifier for use in low voltage stams. The intention was 10 reduce the DC power dissipated by ram sense amplifiers - : barrier to high-speed low voltage operation. In Matsuya s design the latching circuit automatically cuts of the DC after sensing. giving 5% of the consumption of conventional current-mirror amplifiers. The Hitachi engineers built a 16 K bit sram with a 32 ns access time and 1.2 V power supply. Dissipation was 2mW. Simon Parry. Electronics Weekly

Road tolling in Euro-tussle

The Government is going ahcad with plans for electronic tolling on Britain's motoruays regardess of whelher a European technical system specification can be drawn up by the end of the year. Manufacturers are being asked by we Government to submit proposals for electronic tolling systems that could be tried on UK roads this year.

But the absence of European stanctards for the transmission protocol and in-vehicle terminals has created uncertainty over which technology the UK will opt for. Europe already has a handful of non-compatible systems working in Italy, Austria. Sweden and Norway. The German government is considering no fewer than en proposals.

ineluding GSM-based systems, infra-red. microwave and global positioning technology. According to Philip Blythe at the transpert operations research department al Newcastle University "everything is undecided". Two options for a short range system are a passive low cost in-vehicle tag with all accounting done at the roadside and an invehicle terminal with a smart card as demonstrated by Saab Combitech as part of the Adepe EC transpont rescarch programme.
Peek ple is developing a UK version of Combitech. which is claimed to be Europe's only working multi-lane system. A representative for Peek expects the UK govermment to opt for a multi-lane nonstopping system using 5.8 GHz microwave

Happy birthday, capacitors: Next year is the 250th anniversary of the Leyden jar, the earliest form of capacitor, seen in action in this 1777 painting, The Electrical Experiment, by Charles Amédée Philippe Van Loo.
In the centre of the painting a woman stands on an insulating support with a rod in her left hand nearly touching a globe rotating against a leather cushion to produce a charge. Sparks jump between the globe and the rod.
Because the human body is a good conductor, the rod in her right hand is also charged. This is dipped into the water filled glass held by the boy. The glass is a Leyden jar with the glass acting as the dielectric and the water and boy's hand as the inner and outer electrodes.
The painting shows the capacitor being charged. The boy is going to bring his free hand closer to the rod, which will result in an electric spark jumping between the rod and his finger as the capacitor discharges through his body.

The painting is in the Arkhangelskoye Museum in Moscow and $E W+W W$ would like to thank Curator Leonid Kryzhanovsky for loan of the photograph.

links between transceivers on overhead gantries and in-car smart card temmals.
According to Peek all that is left is the fine-tuning, whether there will be two or one microwave sensors per lane and whether cameras used to spot offending vehicles will be CCD based or infra-red.
But not all suppliers are so convinced. According to GEC Marconi, which has already delivered working systems in Italy and Singapore, maintains that the 5.8 GHz frequency is not a certainty for the UK.
Blythe is more optimistic. He expects France. Germany and the UK to force the pace of a European standard. A short range system using 5.8 GHz is most tikely. It will provide communications link and an HDLC based layer-two protocol between overhead gantries and vehicle.
The Adept multi-lane system supports $200 \mathrm{Kbit/s}$ data throughput across three lanes. This would be sufficient to offer full vehicle ID as well as debiting the smart card. if that is what the government has in mind. Each motorist would pay for mileage by buying a pre-paid smart card. Inserted in a dashboard terminal this would pick up the microwave signals from gantries across the motorway. Richard Wilson,
Electronics Weekly

Technical doubt dogs fifth channel

It is now up to Peter Brooke and his Department of National Heritage to decide whether Britain leads Europe into the new age of digital television, or adopts oldfashioned analogue technology for a brand new is service. The Independent Television Commission will not re-advertise the licence for a fifth tv channel, and has passed the buck to the DNH.

The BBC has publicly said that the analogue frequencies reserved for analogue Channel Five should now be used for digital tv. The ITC says it is "very doubtful" that technical tricks proposed by companies that want to start an analogue service will avoid
interference. But the ITC has received too many similar proposals to be able to ignore them. "We are obliged under the Broadeasting Act 1990 to do all we can to establish a filith terrestrial channel, and there is a strong case for re-advertising." says James Conway of the ITC. "Only the Government can release us from that obligation. We now need a clear steer on what the Government wants us to do" It was hoped that so-called spare frequencies found by an alliance of MAI. Pearson and Time-Warner could have supplied the answer. These included chamel 48 in Glasgow and channel 28 in London.

But the local oscillator of a TV set is 39.5 MHz above the channel being watched. This causes spurious interference signals. British TV channels are 8 MHz apart so the oscillator's interference is only $0.5 \mathrm{MH} / z$ away from the programme that is five channels higher than the one being watched. This causes a herring-bone interference pattern on the screen.
In London, channel 28 would suffer interference from sets tuned to ITV on channel 23. In central Scotand, channel 48 is five chanmels up from ITV.
And five channels up from channel 28 is channel 33 used by BBC2. Barry Fox.

> Secret problems: Westland Helicopters had interference problems with navigation equipment and it hit on the idea that it was caused by static on the blades discharging through the tail.

> After doing loads of tests with an electric field meter rented from Livingstone Hire,
> they discovered the interference had nothing to do with static.
> Chris Soundy, avionics systems engineer, said: "We did a whole set of readings and the theory wasn't valid. We now know what was wrong but I'm not allowed to say."

Fully static display could lead to electronic book

Anew liquid crystal display for a portable computer plays a remarkable trick. When the power supply is switched off. the screen freezes and continues to display the last image, with no loss of clarity. This means that a battery-powered unit can run at least ten times longer on a single charge than any other unit currently available. The display`s developers. Thorn EMI`s Central Research Laboratories, believes that its electromic paper will finally make electronic books a viable competitor for printed paper.

CRL has already licensed the technology to a Japanese company with expertise in the mass production of LCDs. CRL has now built a 13 cm sereen to prove that the idea works and promises a product prototype in six months.
CRL's new screen is monochrome, and relies solely on reflected ambient light. So no power is wasted on backlighting. The image is pure black on white, like paper. so no power is needed for dithering. Unlike conventional LCDs. the screen can be

Machine vision for people?

n an attempt to give sight to the blind. researchers at MIT and the Massachusens Eye and Ear Infirmary are developing an ultra-small vision chip that could be placed inside an eye. The result of five years work. the chip is based on similar technology used in the electronic eyes of robots. which detect and process light. The vision chip will be used in patients that have lost sight due to retina degeneration.

The photosensitive chip grabs light via electrodes on the chip's surface and then sends out electrical impulses that replace the messages once sent by the rod and cone cells. The strength of the impulses fluctuates with the intensity of the light source.

According to Dr Joe Rizzo. a researcher at

MEEI, the spatial density of the photosensitive elements in the chip are similar to that of the rods and cones in a human eye. Dr Rizzo said the chip will not give a high level of resolution, but would let people see light and dark spots and perhaps their location.
However, it is still not known how ganglion cells in the brain would cope with the electrical impulses. Ganglion cells conduct information from the retina to the brain and would have to perform the same function for the signals produced by the chip. The first test for the vision chip is set for this spring when the researchers will implant the chip in a rabbit. But it could be years before the chip is tested on a human.
viewed from a very wide angle. Also the screen consumes power only when the image is changing, eg when the user is scrolling through pages of text or data. This reduces battery drain by a factor of at least ten, and usually twenty. Quite magically, the prototype screen retains a clear, frozen image even when all power is disconnected and battery drain is zero. Barry Fox

686 chip in 1Gips PC?

Peisonal computers operating at IGips could be possible next year when Intel starts volume shipments of the 686 microprocessor, codenamed P6
Vin Dham, vice-president of microprocessors at Intel, says the 686 successor to the Pentium (586) is a six million transistor, 300 Mips microprocessor. It will be in volume production next year.
Starting with the second generation $0.6 \mu \mathrm{~m}$ Pentum, announced a couple of months ago. special functions for linking microprocessors together will be a feature of future Intel processors. The IGips PC comes from linking four P6s together in one computer.
Dham said that 25% of the Pentium's production is for 66 MHz devices. The new $0.6 \mu \mathrm{~m}$ version will top 100 MHz .

"Hi Vision HDTV is dead, long live digital"

I's official, well sort of. Japan's analogue IHDTV system, the 1125 line Hi Vision. wats obsolete even before its official launch as a public service in 1991. Although the director at Japan`s Ministry of Post and Telecommunications withdrew the statement the next day, he still admitted that the rest of the world is going digital and Japanese companies will be making the products.

He caused uproar with the "/hi lision is dead" ammouncement, but it was a fact well hnown but not acknowledged by the country"s electronic and broadcasting industries.
For proof, just visit the Tokyo studio complex of the Japanese state broadeaster NHK where one floor is devoted to analogue 1125-line hdiv production. Visitors are shown demonstrations using high power projectors producing clear pictures whose quality approaches film.
But the downstairs lobby tells a more realistic story. Statl and visitors can watch holv, but only on sets with picture quality so poor that 525-line sets beside them look better.
Ihi Vision was first used commercially at the 1984 Olympics. Sony then developed a hdtv recording and editing system, which it loaned to Hollywood movie studios as a replacement for film. But Hollywood didn't buy. finding film cheaper and easier to use uith better picture quality.
An alliance of US manufacturers is now close to finalising a standard for an all
digital hdiv system for usc in the US.
In Europe, analogue IID-Mac effectively died when Sky began broalcasting in old fashioned Pal in 1989. Japan was isolated in its commitment to an analogue future. The rest of the world was clearly going to go digital.
Since the service launch. NHK hats transmitted eight hours a day of hdte from a satellite. But the first year saw only 15,0000 $/ / i-1$ ision sets sold. They were expensive (about $£ 6.500)$ and large enough to fill the average Japanese sitting room. And many of the wide screen sets convert the high definition signal into 525 -line with definition no better than a conventional domestic TV set.

- Every delay makes an analogue Chamel Five look less attractive. Last September, at a meeting in Bonn, European manufacturers and broadcasters signed a Memorandum of Understanding to create the Digital Video Broadcasting Project for Europe. The aim of the DVB form is 10 draft European standards for digital television and there are now over 100 members from 12 countries. The DVB agreed its first draft at a meeting in Geneva in January. The target is a standard based on video compression technology and microchips already agreed by the Motion Picture Experts Group of the international standards organisations. This will speed receiver development and keep costs down. Barry Fox

1993 Young Woman Engineer of the Year: Helen Marsham on the job as third cable engineer for Cable \& Wireless' marine division. Her work, which won her the joint IEEIE/EEF award, includes the operation, maintenance and calibration of submarine optical fibre transmission test equipment.
Joint runners up were Kathryn Connor, manufacturing team leader with British Aerospace Defence Dynamics, and Deborah Hodges, a senior engineer at Westinghouse Signals.
The Mary George Memorial Prize for the entrant showing particular promise as an incorporated engineer went to Heather Arthur, a high voltage electrical diagnostician with the Ministry of Defence.

Solid state car lights

Hewlett-Packard hats developed a lightemitting diode that burns up to four times brighter than conventional devices.
The diodes emit more light because their substrate structure is based on transparent aluminum iridium gallium phosphide (AllrGaP), rather than light-absorbing gatlium arsenide.

HP hopes the automotive industry will adopt the devices. using red-orange AllnGap diodes in car`s indicators and brake lights. Becaluse they have a 10 million hour
lifespan (the lifespan of incandescent lights is 2000 10 20,000 hours). the new leds will certainly out-live the car.
HP also hopes to attract cellular telephone makers with its amber and green leds. Because the new diodes consume just 5% of the power of standard bachlights, HP claims they will greatly extend the battery life of cellular phones. The first telecommunication products with the new leds should be on the market within a year. while it may take two years for the athomotive industry to adopt.

France plans optical highways

Erance`s government is to spend billions of pounds over the next 20 years crisscrossing the country with highways of optical fibre cable. The decision to go ahead has been taken because of fears of future domination of Europe's information autoroutes by US companies.
The super highways will bring into every French office and home the full capabilities of interactive multimedia services. Asynchronous transfer mode technology will be used to transmit voice. data and video over the switched networks of optical fibre run into office and apartment blocks.

Initially, franchised operators of the services will have to link into the France Telecom network, for as long as that monopoly lasts. In making the commitment, the French government is pledging future governments to continue and finish the project.

Industry and telecommunications ministers have been lobbying the prime minister Edouard Balladur, using as a lever the success of the wired Minitel service, with six million terminals installed. But Minitel is outdated, because it is slow and cannot handle interactive video.
Jacques Toubon, one of the planners of the information highways, said: "There is no time to lose. In two years it will be too late. Already the US is putting itself in a dominant position. They will use our infrastructure to resell us cultural products made in the US and already paid for in their market."

Samsung tops chip chart
 Korean chip maker Samsung overtook Toshiba to become the world's top

 mos memory chip maker, the first time in more than 12 years that a non-Japanese company has held the top spot. Market research firm Dataquest said Samsung grabbed the lead after an incredible 66% jump in sales from $\$ 1.5$ bn in 1992 to $\$ 2.5 \mathrm{bn}$ in 1993. Samsung ended a long Japanese reign that began in 1982 after Intel was toppled from the top of the mos memory market.
Radar reunion

Anyone involved with radar during WWII is invited to attend a reunion weekend in Blackpool from 20 to 22 May. In the three years the reunion event has been running, the organisers have found more than 3000 people who operated, maintained, installed, built and designed the ground and airbome radars. Those interested should contact Harry Jurd. 9 Chelmer Court, Basingstoke RG2 1 2DT. Tel: 025625980 .

Optical systems "not immune to RFI"

R
Pesearchers have questioned the conventional wisdom that optical systems are immune to electromagnetic interference. Because light beams in photonic systems are typically modulated with electrical signals. the interfaces provide a way for electromagnetic energy to enter the system.

John Daher, a senior research engineer at GeorgiaTech, said: "These interfaces provide a path for external electromagnetic lields to disrupt operation of the photonic device, so it's a myth to say that installing a photonic system means you don't have to worry about electromagnetic interference.

Researchers tested electro-optic. acoustooptic. magneto-optic and charge coupled devices with interference from RF and microwave fields. They found that in some cases the interference seriously disruped the operation of the equipment
For magneto-optic devices, Dalher said that "at high RF levels up to half the pixels would be switched to the wrong state and that would cause severe performance degradation.
A commonly used CCD sensor was
affected by jusi luW of energy. Higher levels brought about complete loss of synchronisation.
In acousto-optic devices the interference caused the optical signal to spreat out spatially, which could potentially ciluse interference in adjacent detectors. And in an electro-optic system, the rf energy caused the
oplical waveguides to heat up attering the refractive index and distupting the operation. In one case electromagnetic interference stopped a laser operating.
Daher said the results show engineers must still use hardening technicues to shield electronic components in photonic systems.
"One implication from this tork is that you can"t let your guad down just hecause you are using an optical system," he commented.

Shopping with RF: The tiresone business of unloading a supermarket trolley to pass the items individually over a barcode reader may become a thing of the past. RF interrogation developed by British Technology Group and the South African research organisation CSIR could allow the contents of a trolley to be read in seconds, and an entire store in minutes.

It works by putting a small chip, called Supertag, with a printed that aerial on each item. External aerials flood the area with multiple polarised RF signals which are then modulated and returned on the tags afixed to the product. The readers are capable of multiple identification using an anti-clash

Aerind array with chip in the middle: CISR needs to manufacture the mini RF transponders for just $1 p$.
communications function. So far they have achieved speeds of 50 items a second at a range of 4 m .
CISR eventually hopes that the tags will cost just Ip each but most industry observers clamint this to be unrealistic

Get working with SpiceAge for just $£ 49.99$.

The facilities provided with Level 1 include

- Non-linear quiescent calculations (voltages, currents and dissipations anywhere in the circuit) - Small signal AC analysis (gain, phase, group delay, impedance plots). Several presentation settings are available including complex plane plotting and dynamic normalisation of gain. - Transient analysis now with optimising which speeds up the calculations by skipping over steady state periods. The transient analysis accepts any waveform from any number of programmable signal sources built into SpiceAge and displays the results as waveform of voltage, current or dissipation vs time. Presentation options include y - x plotting (Lissajous rings) and the ability to spool the data to file for further processing.
- Fourier analysis which allows you to find the harmonics in
the transient waveform (for example to assess distortion) or to do this on an imported waveform. A Hanning window option is available and you can also do inverse Fourier transforms provided the phase information is retained.
- An advanced polynomial component behaviour description method which makes the modelling of op-amps more realistic than many spice models.
- On disk help file included.

Please note. This level is limited to 16 nodes including ground.

> SpiceAge for Windows Level 1 is just 849.99 (half normal price). The manual, for those who need more than the extensive on-disk help systems, is an extro 845 including VAT. These prices are valid in the UK only and with Access, Visa or CwO payment. For other countries, pleose contact Those Engineers (Tel +44 819050155, FAX +44819060969) for special detafls.

Please use the special order form locafed between pages 320 and 321. Allow up to 28 days for delivery. All enquiries relating to this offer should be addressed directily to Those Engineers Ltd, 31 Birkbeck Road London MYZ 48P. -081-906 0969.

Superconducting surge that is beyond belief

Two French superconductor teams have announced development of different materials that allow superconduction at dramatically increased temperatures. But the claimed temperature rises are so big, that nobody really believes them yet.
Ever since the discovery by Bednorz and Müller in 1986 of high temperature superconductors there has been a steady stream of papers claiming new materials with an ever higher critical temperature. Critical temperature T_{c} is the temperature below which the material loses electrical resistance and excludes magnetic fields.
All the high-temperature (relatively speaking) superconductors so far developed are brittle ceramic materials containing calcium, barium, yttrium, strontium, thallium or mercury combined with copper oxide. Until last December, most researchers accepted the existence of reproducible hightemperature superconductivity at around 133 K (about $-140^{\circ} \mathrm{C}$). And it had taken five years to creep up to that point from 125 K .
But the French breakthroughs appear to change everything.
The first (Science, Vol. 262, p. 1850), from a team led by Michel Laguës, claims a new and spectacular record for a material belonging to the BiSrCaCuO family. It has eight CuO_{2} layers spaced 0.338 nm apart
and appears to become superconducting below 250 K . which is roughly the temperature of a good domestic freezer. The snag - at least for any practical applications - is that the effect is only apparent for currents of around 10A.
The other French advance (P hws Lett. Al 84 pp. 215-217, 1994) by J. L. Tholence et al at Grenoble is to make a multi-layer compound based on the earlier record-breaking mercury cuprate superconducting at 235 K .
At the time of writing, the physics community is still debating the significance of these results. No-one can doubt the credibility of the two research teams; both are highly reputable. But a sudden upward leap in record T_{c} after half a decade of slow steady progress seems hard to understand.
Commenting on the situation (Nature. Vol. 367 No 6458). Paul M. Grant of the Electric Power Research Institute in Palo Alto, California, points out that neither of the latest research groups has demonstrated reproducible electrical or magnetic behaviour over many temperature cycles without hysteresis. Measurement over repeated temperature cycles, he says, is a test most superconductivity experimentalist referees would demand.
But this year is certain to see publication, either of experimental confirmation of these

Fig. 1. Experimental results of Laguës' group indicate superconductivity beginning at the temperature of a good domestic freezer. Lower curve 10-9A, upper curve 10-8A.
results, or of yet more spectacular claims.
It is a field which Bednorz and Müller remind us is by its very nature empirical. It is also a field with huge commercial potential.

Robots with attitude - science fiction or fact?

The suggestion that machines will one day be more intelligent than humans is a frightening one. But Professor Kevin Warwick. Head of the Department of Cybernetics at the University of Reading, is one of a growing body of respected scientists who believe not only that it will happen, but that it will happen in the next sixty years.

Machines displaying human levels of intelligence are generally looked on as pure science fiction. Even those working in artificial intelligence point to mathematical or theoretical reasons to explain why it will never happen.

But Professor Warwick has been increasingly arguing that artificial intelligence machines can already make decisions based on what they've learned, rather than on how they've been programmed. Robots working on this principle are currently operating in industry and, within certain limits, can already outperform humans in terms of decision making.
Where machines have made less progress is in handling creativity and emotion. But
that does not mean that computing systems will never paint masterpieces or weep when they make a mistake. Prof. Warwick acknowledges that AI systems do not yet appear very intelligent when simulating biological functions. He compares presentday machines with the intelligence of a slug or a fly - a far cry from human brains.
But a fly does have some intelligence, a lot more than, say, a motor car. For one thing it can take avoiding action when something is about to hit it.
Progress in artificial intelligence may appear slow, but Prof. Warwick argues that the most advanced systems are already remarkably intelligent. So will they ever bridge the gap between the performance of a fly's brain and that of Einstein or better?
Already there are plans in Japan to build an AI system that replicates the intelligence of a cat, with results expected, says Warwick, within the next five or six years. The programme is not intended merely to perform as a sort of advanced mouse-trap. but to embrace a whole range of feline behaviour. It could well be awkward. obstinate or aggressively territorial - a
considerable advance on an artificial fly. From feline intelligence, Warwick believes the step may not be too large to simulate the intelligence of an ape. Warwick argues persuasively that a machine that can interact intelligently with its environment is not just simulating intelligence: it is intelligent.
He goes further and says that many human functions such as emotion and selfawareness are probably less complex than we imagine. A machine may never behave in exactly the same way as a human brain, but it could well perform the same functions or feel the same feelings. Indeed, Warwick believes that machine intelligence will probably overtake human intelligence within our lifetime.
So will our lives in the future be ruled by machines? Will an army of computers take control of the world?
Professor Warwick says that the threat of nuclear war pales into insignificance compared with the threat from superintelligent machines. He points out that highly inteiligent animal species (including humans) have always tended to treat less
intelligent ones bady. So there's no reason to expect that super-imelligent machines, will act benignly towards our descendants.
The laws of Darwinian evolution and survival of the fittest may apply to machines just as much as they do in the jungle. So, as with subjects such as medical ethics, perhaps we ought now to be selling up committees to consider just how far ai researchers should be allowed to go. It could be just as important as deciding the limits for genetics researchers.
Professor Warwick believes that if we don't address this mater, our children almost certainly must.
One possible lesson from the jungle might be 10 avoid making machines that are too intelligent in too many activities at the same time. Highty specialised animals have not usually becone too prolific.

Part of Reading University's research into machine intelligence, this robot has been taught two insect-like instincts - when switched on you must keep on moving, and second, when moving you must not bump into any obstacles. Japanese scientists say we could have robots with catlevel intelligence by the year 2000.

Optical technology brings microwaves to the motorway

Gemman optical engineers have
announced an advance that could bring closer the possibility of practical and cheap microwave commmacations systems.
Tomorrow's advanced microwave radio systems - whether for picocell telephony or for intelligent vehicle highway systems will depend on units transmitting in the upper reaches of the microwave spectrum. Freguencies around $60 \mathrm{GH} z$ have been eamarked because of the bandw idth available and the amospheric absorption that occurs. This enables the same frequencies to be available 10 other users relatively close by.
The snag is that any system that manages to keep in regular louch with a vehicle as it travels along a motorway needs a large number of low-power transmitters. Thousands of individual highly stable of generators would obviously be expensive and would need lengthy power and feeder cables.

But it would be equally impracticable to generate one large signal at some central
point and distribute it by a wavegaide system to thousands of anternas.

A solution fong conlemplated for generation of multiple low-power microwave signals is to modulate a beam ol light with the required of and then sent it along optical libres to various transmitter sites. At each site it would be simultaneously demodulated and radiated.

The same source of light could leed any number of fibres, so it should be possible to have an equally unlimited number of precisely synchronised if sources - ideal for distribution along a motorway.
The one problem is that dispersion along the optical libre would degrade the signal. An optical signal of 155 (nm (intra-red) modulated at 60 GHz would degrade unacceptably after little more than 100 m .

But a group from the Alcatel SEI AG Research Centre in Sluttgart look to have demonstrated (Electromics Letters, Vol 30. No 1) how this can be overcome. They describe a system that will distribute a 60 GHz signal to more than 1000
transmitting sites with a spectral line-width too mamow to measure.

The central equipment generates a 15 GHz signal of high purity which is then freguency doubked to 30 GHz . This if signal then drives a lithium niobate Mach-Zehnder interferometer that amplitude-modulates the output of a 1550 nm infra-red laser.

The resulting beim, consisting of two infra-red signals separated by 60 GH 7 is distrinuted through a fïbre-optic system where it is boosted along the way by erbium-doped libre amplifiers. At the end of each fibre the two optical signals are mixed logether 10 generate the required $60 \mathrm{GH} \neq$ rf.

As the 60 GH z signal is a difference signal, the effects of fibre dispersion and laser jither are completely eliminated
In claiming that broadening of the spectral line width of the resulting of is too small to measure, the Stuttgart team add that this is the first time that a 60 GHz signal has been generated and distributed to more than a thousind different base sfations.

Red light means 'go' for blue laser

A cheap solid state laser that emits in the blue region of the spectrum is still the dream of many researchers. But until that dream becomes reality, an economical frequency doubling technique that allows infrared lasers to produce blue light could open up blue light applications everything from colour copying and colour displays to optical storage systems such as cd-rom drives.
The attraction of blue light is that the shorter the wavelength, the more information a device can handle. Now a team led by Dr Thomas Penner at the Eastman Kodak Company in Rochester, NY, has developed a potentially cheap and efficient way of doubling frequency (Nature, Vol. 367 No. 6458).
Frequency doubling in the optical domain is not of course new; there are many inorganic crystals, such as lithium niobate and potassium titanyl phosphate that possess the necessary non-linearity.

But they are inefficient because of low power confinement and a tendency to disperse the radiation.

As Penner puts it: "Bulk single crystals often require megawatt pulses from high powered lasers to produce milliwatts of harmonic light" - hardly the safest way tc build a cd-rom drive!

Penner's team has adopted a new approach, hoping to overcome some of these problems by dispensing with inorganic crystals and making use of multiple Langmuir-Blodgett (monomolecular) tilms of organic polymers. The films not only provide the non-linearity. but also act as an optical waveguide to confine the radiation. The result is a long interaction length that makes possible the generation of harmonic light with an efficiency several orders of magnitude greater than previously possible.
Much work still remains to be done before a practical and cheap blue emitter reaches the market-place. But Penner and his team have proved that all the complex optical and physical requirements of an efficient second harmonic generator can be incorporated into a polymer film structure made from inexpensive materials.

No space for a leak

The dreaded blue glow that signalled the demise of a "soft' valve was depressingly familiar back in the days when thermionics ruled. It happened when a faulty seal allowed air to enter the envelope and become ionised. So it is fascinating to hear
today of what amounts to the opposite problem affecting the very modern world of space missions - components that fail when they lose their gas and become evacuated. To tackle the fault, the European Space Agency (esa) has asked the Electronic

Intentionally gas-filled components in orbiting satellites have been known to leak their gas into the surrounding void, causing failure. Researchers at Kent University are using the vacuum equipment shown here to research this problem - the inverse of 'soft' thermionic valves.

Engineering Laboratory at the University of Kent to study the electrical breakdown of hermetically sealed space components that leak their intended gas filling into the vacuum of space. Working with the Belgian company Space Applications Services, the Kent project will work towards providing engineering guidelines that will avoid the failure which has caused the premature demise of equipment on several space missions.
The problem arises because many electronic and electro-mechanical components are encapsulated in hermetically sealed enclosures filled with inert gas at atmospheric pressure at the time of manufacture. This is done both to avoid contamination and also to prevent damaging discharges - the sort that occur in neon tubes, at pressures well below atmospheric.

But during space missions, components are exposed to a virtual vacuum for ten years or more. Over this period. if the hermetic sealing is inadequate. the original gas filling leaks away until the internal pressure in a component is low enough for discharge to take place, often destroying the component.
Perhaps the Kent group will have to reinvent the valve.

Research Notes is written by John Wilson of the BBC World Service.
"... there is no doubt that running under Windows puts it ahead of the field and makes it a visually attractive package." Electronics World + Wireless World July 1993
High Quality PCB and Schematic Design for Windows 3/3.1 and DOS

- Supports over 150 printers/plotters including 9 or 24 pin dot-matrix, DeskJet, LaserJet, Postscript, and HPGL. Professional Edition imports GERBER files, and exports GERBER and NC-DRILL files.
- Up to 200,000 pads/track nodes depending on memory. Simple auto-router and schematic capture tools with SPICE compatible net-list output.
- Low cost DOS version (reduced features) also available. Ring for full details!

"Quickroute provides a comprehensive and effective introduction to PCB design which is a pleasure to use" Radio Communication May 1993.

- Design and for DOS with reduced features ($£ 49.00$). All prices inclusive. Add $£ 5 \mathrm{P}+\mathrm{P}$ outside UK.

CIRCIF NO. 106 ON REPLY CARD

PIC DEVELOPMENT TOOLS
 microchip PIC

 16C5x, 16C71/84, 17C42 and now 16C64

Assembler - Emulator - Programmer
\checkmark For PIC 16C71 or 16C84
\checkmark Runs at target speed
\checkmark Emulation with break points, single step and trace
\checkmark Easy to use windowed environment
\checkmark Software and Hardware break points
\checkmark I/O trigger breaks
\checkmark Real time logic I/O capture
on $45(0)$
\checkmark Built in programmer
\checkmark Macro assembler included
\checkmark Free MT16 //0 monitor board
Also a full range of programmers from single site to 8 gang - including SOIC parts Also multi-device and universal programmers

Microwave engineering now finds itself within mainstream electronics design, mainly through the boom in wireless and personal communications. The semiconductor companies have responded with integrated components which take much of the rigour out of system design. Mike Hosking begins an extended series which explains the engineering behind the new microwave technology.

[^1]
1: basic concepts, circuits and devices

The actual starting point of the microwave region varies somewhat in detinition, but can conveniently be stated as commencing from about 1000 MHz and extending to 30 GHz . This equates to wavelengths from 30 cm to 1 cm . Millimetric waves. Sub-millimetre waves extend to 300 GHz (1 mm) and on to sub-millimetre bands, often referred to as far infra-red. This part of the spectrum supports applications such as intersatellite communication links, atmospheric studies and astronomy. However, the scope of this series will be restricted to microwave and millimetre bands.
Microwave development in earlier times was mostly defence driven and GaAs integrated circuitry a defence technology. The basic semiconductor and tube devices are still around, although tube applications below the millimetre bands, except for high power. have now been mainly replaced by solid state. The GaAs fet now dominates the semiconductor field to above 100 GHz . A derivative, the high electron mobility transistor (hemt) has revolutionised receiver noise figures. Development pressure has changed from defence to com-
mercial markets for personal communications, mobile computing, traffic sensing and control and navigation systems.
Digital switching and modulation rates now extend to several GHz or Gbits. Thus high frequency circuit design must now be applied to circuit layout and impedance matching in these digital systems.
There are two main reasons for using microwaves: antenna considerations and wider bandwidths. Apart from general broadcast antennas and mobile communications, most other systems are concerned with focusing the microwave signal into a narrow beam for efficient transmission in a particular direction. This may only be achieved by increasing the number of wavelengths which will fit into the dimensions of the antenna. A small, directional antenna means high frequencies.
As an example, the half-power beamwidth of a low-sidelobe directive antenna is approximately $70 \lambda / d$ in degrees, where λ is the wavelength and d is the aperture dimension in the plane of the beamwidth. So a domestic satellite TV receiver operating at 11.9 GHz and having a dish antenna 600 mm in diameter
would have a beamwidth of about 3° However, to achieve this same beamwidth at 100 MHz would require an aerial dimension of 70 m . On the other hand, a 600 mm antenna for an inter-satellite link operating at 300 GHz could deliver a beamwidth of only 0.12°.
Thus, practical systems requiring directive beams must operate at these microwave frequencies. One could carry this logic further and propose still smaller wavelengths in the infra-red bands. However, aiming such narrow beams would be a problem and infra-red does not penetrate clouds, rain, fog or smoke.

Basic concepts

Microwaves are the one region of the e-m spectrum where physical dimensions of the components and circuits are the same order of size as the wavelength itself, typically centimetres and millimetres in this case. Thus, as well as any intrinsic electrical properties which a component might possess, its actual size and shape also dictate the way in which it behaves in a circuit. If we reflect that, at lower frequencies, an 'inductive' or 'capacitive' effect is produced by the way in which an inductor or capacitor alters the phase difference between voltage and current, then a similar effect may be produced by perturbing the electric and magnetic fields of a microwave circuit. Thus, the actual shape and size of sections of circuit can make them appear as inductive or capacitive components.

The problem which has to be solved is that of relating transmission line geometry to an equivalent component value, and vice versa. Again, due to the wavelength size, it is no longer convenient to think in terms of voltage and current. These do not have unique values in a circuit: they are a function of position and are not directly measurable at these frequencies. Instead, power and impedance are the most usual circuit parameters to be determined, with circuit design and analysis being based on the determination of the electromagnetic field configuration at particular points in the circuit.
This has an interesting corollary. Lowerfrequency electronics, where size and shape are not taken into account, is thus really an approximation (albeit a good one) to the more rigorous field analysis.

A further feature of high frequency circuits is the phenomenon of skin effect. At dc, the current in a conductor is distributed uniformly throughout its cross section but, with an alternating signal, there is a tendency for the current to concentrate towards the surface. This effect increases with frequency until, at microwave frequencies, the current is contained within a thin 'skin' at the conductor surface. Typically, skin depth is less than $1 \mu \mathrm{~m}$: it is important to ensure that conductor thicknesses are several times the skin depth (mainly applicable to integrated circuits) so as to avoid excessive conductor loss.
Lastly, the microwave signals have to be "guided" from point to point, either over a short distance within a microwave circuit or over a relatively long distance. Random shape,

Fig. 1. Variation of skin depth with frequency.

Fig. 2. E-field patterns of various forms of microwave transmission line are influenced by boundary conditions. in the rectangular guide, the E-field is paralleted to the narrow dimension for the dominant mode. Generally, $a=2 b$. For the coaxial line, characteristic impedance is a function of ratio b/a. In microstrip and coplanar waveguides, phase velocity is modified by the proportion of field in air and dielectric. This leads to an effective dielectric constant different from ε_{r}
size of wire or circuit layout cannot be used for this purpose as, due to the short wavelength, the signal would radiate. Also, the wire or circuit would appear to the electromagnetic fields as some strange impedance inevitably causing mis-match, reflections and inefficient transmission. This applies both across a circuit board and from antenna to system front end. Hence, even in non-microwave circuits such as high-speed switching or computing, a microwave approach must be taken with the design and layout. Radiation and reflections will manifest themselves as unwanted coupling and interference.
As frequency increases, the alternating cur-
rent in a conductor concentrates increasingly closer to the surface. The current density is a maximum at the surface and gradually decreases with penetration distance into the conductor. Skin depth is defined as that distance for which the current density has decreased to $1 / \mathrm{e}$ of its value at the surface, where $e=2.7182$. It is a function of both conductivity and frequency and is given by:

$$
\delta_{\mathrm{s}}=\left(\frac{2}{\omega \mu \sigma}\right)^{\frac{1}{2}}
$$

ω being the radial frequency $=2 \pi f ; \mu$ the permeability $=\mu_{0} \mu_{\mathrm{r}}$ and σ the conductivity. Fig.

Fig. 3. There are various ways of designing microwave circuitry. For instance each circuit function may be treated as a separate component fabricated in microstrip, say, packaged in its own enclosure with input, output and supply connectors and with its individual microwave and environmental specification. In (a), left, are multithrow switches in packaged microstrip, incorporating pin diode active devices. Photo (b) shows microwave mixer and detector modules. (M/A Com Ltd).

1 shows the variation of skin depth with frequency for two commonly used conductors of copper and gold.
In order to avoid excessive attenuation through conductor losses. the conductor thickness must not be less than the skin depth (δ_{3}) and, in practice, should be at least 58 s thick. This isn't a problem with waveguides and coaxial lines, but may be significant with thin film or integrated circuits.
Historically, the rectangular and circular waveguide. together with coaxial line were the first types of transmission line and still have specialised application: their properties will be reviewed later in the series. Integrated circuitry in high-volume applications uses the planar forms of microstrip and coplanar waveguide (CPW). There are other variants of
the types shown in Fig. 2, but they are muen less commonly encountered. All of these transmission lines force the fields to conform to certain boundary conditions and patterns to propagate down the line. These field paterns are termed modes and, for any particular type of transmission line, are dependent on the detailed geometry and frequency of operation. Planar forms of microwave circuit use mainly microstrip but increasingly CPW at millimetre wavelengths.

Circuit building blocks

Transmitter applications, such as those for communications or radar systems would require the following circuit blocks: oscillators and/or up-converters to generate the microwave signal; phase, frequency, ampli-

Integration with a difference

Microwave circuit design uses changes in the dimensions of the transmission line to change the phase relationship between the E and H fields, thereby creating inductive and capacitive effects. Lengths of the line itself can also be used to perform impedance transformation. Thus, such circuit elements must be a significant fraction of a wavelength in extent (in fact, anything up to a half wavelength) and this places a lower limit on the size of an integrated circuit.

Microwave circuits confine and manipulate electromagnetic fields. Thus, adjacent components in an integrated circuit cannot be placed arbitrarily close together, or else unwanted coupling of the fields will occur. Typical separations might be two to three times substrate thickness. Again, this imposes a size constraint.
Impedance matching is important in microwave circuit design, no always for reasons of maximum power transfer, but often in order to avoid multiple reflections within a circuit. This is especially important, for example, in high-speed pulse or fast switching circuits.
Microwave integrated circuitry is almost always analogue in operation combining a range of different functions. Thus, there is no equivalent to the digital LSI incorporating thousands of identical elements with built-in redundancy.
The next article in this series will focus on particular techniques of microwave circuitry using microstrip and will show how many of the particular components are designed.
tude and electro-optic modulators; filters of different types; controllable attenuators and phase shifters; controllable switches for signal routing: isolators and circulators: low and intermediate power amplifiers. The receiving side might additionally include: low-noise amplifiers; mixers (down-converters) and detectors; limiters. In addition. many signal processing and switching applications operate well into microwave frequencies or bandwidths, to perform such functions as: IF amplification, delaying. on/off switching, correlation, matched filtering. spread spectrum.
There are a number of design approaches to microwave circuitry. For instance each circuit function may be treated as a separate component fabricated in microstrip (say). packaged in its own enclosure with input, output and supply connectors and with its individual microwave and environmental specification. Fig. 3a shows an example. a selection of single pole multi-throw switches using pin diodes as active devices.
Typically, the circuits may be fabricated on PTFE/ceramic substratcs having a relative permittivity of about ten. The radial tracks are 5082 transmission lines about 1.3 mm wide. They incorporate PIN diode chips which are bonded in series-shunt configurations to the tacks. These diodes, the subject of a future article, can be switched between high and low impedance states. This is done by applying a de bias current routed to the devices by the small air-cored chokes jusi visible.

The top component is a single-pole fourthrow switch. completely packaged and tested as a self-contained component building block. They have SMA connectors for the microwave signals. Careful positioning of the diodes. together with design of the central junction is important. It affects matching. wide-band performance (often multi-octave. i.e. 2 to 18 GHz), insertion loss and isolation. The lower two components are also multithrow switches, but are designed to be used as drop-in modules in stripline circuits.
Fig. $\mathbf{3 b}$ is a selection of mixer and detector modules in waveguide, coaxial and integrated circuit form. Normally, the waveguide mixer would cover the full band corresponding to its size, i.e. 8.2 to 12.4 GHz . The coaxial detector could typically cover an eleven-octave band from 10 MHz to 20 GHz . Depending on the application, the diodes used are either silicon, gallium-arsenide Schottky barrier or point contact types.
These circuits use active devices bonded onto the microstrip circuit in either chip or packaged form. Such components are then referred to as hybrid ones. More complex subsystems may then be assembled by interconnecting appropriate individual modules. Below about 40 GHz , semi-rigid. copper jacketed coaxial cable is often used as the connecting transmission line.
As an alternative, many individual functions may be located within a single package and possibly on the same microstrip substrate. Fig. 4 shows a multistage fet amplifier operating in the 2 to 6 GHz range, assembled from 16 indi-
vidual microstrip circuits and presented as a single packaged component.
Most of the microstrip circuitry in each of the stages consists of input and output matching networks for the fets. logether with biasing. Substrate material is alumina with a relative permittivity of about 9.8 . The interdigital circuit elements are called Lange directional couplers and have the important property of being able to operate over a multi-octave bandwidth.

A more varied circuit such as a complete receiver front end could also be made in this way. It might include low noise pre-amplifier, filters, mixer, local oscillator and IF amplifier. Such integrated components are still hybrid in that they contain discrete active devices bonded into passive microstrip circuitry.

A higher level of integration requires a fully monolithic microwave integrated circuit (mmic). It happens that semi-insulating GaAs has good transmission line properties and so may be used as the microstrip substrate on which passive microwave circuit elements may be designed and fabricated. However. instead of incorporating discrete active devices as in hybrid circuits, the substrate itself may be selectively doped, etched and processed to produce active regions: fets and Schottky barrier diodes. for example. This construction is effective well into the millimetre wave region.
A design example is shown in Fig. 5 a which is a complete transceiver on a GaAs substrate operating at 2.4 GH for wireless lan application. The circuit is approximately 5 mm square on a 0.125 mm thick substrate and includes the main building blocks, shown in Fig. 5b: high-power and low-noise amplifiers, filters. switches, oscillator, down converter, as well as numerous minor components.

Fig. 4. Multi-stage hybrid amplifiers in ceramic microstrip transmission lines. (M/A Com Ltd)

Semi-insulating GaAs forms the substrate material, with the active devices being created by localised doping and processing. Lumpedelements are used for the reactive components in the form of small chip capacitors, airbridges and printed spiral inductors. An onchip fet local oscillator can be voltage tuned from 2102.2 GHz to track different input frequencies. A 5 dB noise figure is achieved from the receiver. Output transmit power can be switched between 20 dBm and $1(1 \mathrm{dBm}$. or $100-$ 10 mW . Another advanced feature of the chip is the very low standby current of $<0.5 \mathrm{~mA}$ for the whole device.
So. which design approach to adopt? As usual. the answer is a trade-off between production quantity. yield and initial design investment. Many companies worldwide specialise in the design of discrete components
suitable for small quantity applications, prototype systems or in cases where short-term changes to the design may be required.
The integrated approach is used where a larger production quantity is required, for which the performance requirements will remain stable. Such applications might typically apply to a system production run for a missile or satellite sub-system. Although GaAs mmic technology has existed for more than a decade and many successful devices have been produced for specialised systems. there have been few large-scale applications. Such applications are necessary in order to amortise the high manufacturing investment and relatively low yield of such circuits. They are beginning to come through with mobile and associated communications, satellite TV and global communication services.

Fig. 5. Photo a, left, shows an example of an advanced GaAs mmic: a 2.4 GHz transcejver for wireless lan application. Semi-insulating GaAs forms the substrate material, with the active devices being created by localised doping and processing. Lumped-elements are used for the reactive components in the form of small chip capacitors, air-bridges and printed spiral inductors. An on-chip fet local oscillator can be voltage tuned from 2 to 2.2 GHz to track different input frequencies. $A \overline{5 d B}$ noise figure is achieved from the receiver. Diagram b shows main building blocks of the transceiver. (GEC-Marconi Materials Technology)

M \& B RADIO (LEEDS)

ALL PRICES PLUS VAT AND CARRIAGE
86 Bishopsgate Street, Leeds LSI 4BB Tel: (0532) 435649 Fax: (0532) 42688 I

CIRCIE NO. 108 ON REPLY CARD

Field Electric Ltd.

Tel: 0438-353781 Fax: 0438359397 Unit 2, Marymead Workshops, Willows Link, Stevenage, Herts, SG2 8 AB. IBM \& Compaq colour $14^{\prime \prime}$
16 bit VGA controller card
£140 $+C / P$
$£: 8 \mathrm{C} / \mathrm{P} £ 375$
44Mb Laptop Hoppy disk drives new
16 bit Ram cards with Ram from
72 pin Simms for PS2 Compaq Dell etc
Parallel \& Serial data switches up to 8 w ع16 C/P £3
$825 \mathrm{C} / \mathrm{P}$ £3

Compaq entranced a keyboards to 8 ways - Ring for details
4Mb SIpp Motherboard with various chips
E11C/PE5
MC68451L10: MC6801OFN1O: SRM2264C12 etc
C power supplies up to 600 W . in stock - Prices start from
BM 3363 optical disk drive
£60 C/P £6
02 key AT enhanced keyboard with PS2 type plug 813.95 \& $8100 \mathrm{C} / \mathrm{P}$ £20 adpt-plug
Toshuba ex PS2 to 5 pin Din
ع3 25 C/P 350 Toshba external $5.25^{\prime \prime} \mathrm{FD}$ drivePA7225E new $£ 3.25 \mathrm{C} / \mathrm{P} £ 3.50$ 386 S× $16 / 20$ Motherboards various sizes and types mosi with VGA /iprial 1.50 parallel ports etc
 SCSI hard disk drive's new CDC 344 M E350.00 C/P £1O. Now and boxed 286/16 Motherboards, on b \qquad

TEST AND MEASUREMENT EQUIPMENT

Sorensen SRL 40-12 0-40 VDC 0-12A metered 115 VAC input
Marcon TF 124 SA circuit magnification meter
KSM SCT-200 15 power supply 0-200V O-15A
HML 411 high voltage $0-20 \mathrm{KV}$ cap charger new
Lambda LK $342 A$ FMV $0-36 \mathrm{~V} 5.2 \mathrm{~A}$
Schlumberger 4000 Precision Sig: Gen
Schlumberger 4900 RF AF Measuring Unit
Wyse 60A Terminals new 8 boxed with keyboards
Oatatruck 7 short haul multplexer
HP 2671 A Proep
Fluke 335A DC voltage standard differential voltmeter null detector
Marcon TE 2330 $20^{\prime \prime}$ monitor
Marcon TF 2600 vave analyzer
Marconi TF 2904 colour gain and delay test set
Narconi TF 2600A video voltmeter
Farnell B30/20 0-30VD 540 logic analyzer (system 5000)
AEI Gauss meter FBDC (r) 20A
HP 432A Power meter and wath probe
FMI Rotary attenuator 27/11
All Fequency meter $\times 532 \mathrm{~B}$

Ma VISA Official orders, credit card telephone orders accepted with Access, Amex, Diners, Visa cards. Overseas enquiries welcome

All prices inc VAT unless stated. Stock list available

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM: Pragrams 24,28,32 pin EPROMS, EEPROMS FLASH and Emulators as standard, quickly, reliably and at low cost.
Expandable to cover virtually any programmable part including serial EEPROMs, PALs, GALs, EPLDs and microcontrollers, in many different packages.
DESIGN: Not a plug in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

MQP ELECTRONICS Ltd
Park Road Centre Malmesbury, Wiltshire. SN16 OBX. UK TEL. 0666825146 FAX. 0666825141

ASK FOR FREE INFORMATION PACK

IRELAND 1-2800395 GERMANY 089/460207 NORWAY $0702-17890$ | ITALY | 0292103554 |
| :--- | :--- | $\begin{array}{ll}\text { FRANCE } & 169301379 \\ \text { SWEDEN } & 0859032185\end{array}$ SWEDEN 0859032185

Also from ELECTROSPEED UK

Mac man

How curiously out of touch are many of the views and opinions expressed in $E W+U W$ these days on the subject of computers. I am not sure I like being regarded as structured but lifeless (Comment. March), while the idea that programning is an underclass to electronics and that creativity. elegance and innovation are foreign 10 software is truly bizarre.
Then we have the notion that reverting to some incomprehensible command line interface just to save a few kilobytes or milliseconds is a great idea.
If exposure to graphical interfaces is limited to the rather inefficient, poorly structured and unattractive Windows, then perhaps these views are understandable. Fortunately, like dos. Window's is not long for this world.
For a proper gui with a usercentred approach that actually allows you to get your work done. buy a Macintosh - not a partial simulation.
All this nostalgia for lean. mean programs written in assembler completely ignores the fact that if written like this, software would take so long to develop and be so hard to debug that nothing would ever see the light of day.
Yes. I too remember the first personal computers and how emall their application programs were. I also recall the narrow scope of the ir abilities. Menory is cheap, my time is not.
Lastly, there is just no room for more than wo or perhaps three major players in desktop computing. The Archimedes. tine performer though it is, has missed the boat as have so many other platforms. Without a large body of first-rate software. constan innovation and global distribution there is no hope for the success of any computer. nor matter how technically interesting.
Incidentally, I designed circuits long before I designed software.

Joel M Sciamma

Windlesham
Surrey

Window fan

The main complaint of May, Silson and Standen (Letters. December 1993), that Microsoft Windows is slower than dos is quite true. But they barely touch on how much easier it is to use Windons applications compared to similar dos packages. After all, double-clicking a mouse button on an icon is easier that changing to the directory containing the required program. and then trying to remember its name before typing it. The idea that

Windews is only an aid for children is nothing more than intellcetual snobbery.
All too often we engineers and programmers forget that we are no longer in the majority of pe users. Secretaries, clerks, accountants. managers and directors have no need - and often no desire - to learn the ins and outs of dos. For them. Windows is good because it is easy to use. If their only concern was for speed, multiprocessor systems would be mueh more popular than they are.
Rather than stand and criticise. engineers should provide software that people can use and understand readily. without dictating the terms of its use too greatly. If this means providing programs to run under Windows as well as ones to run under dos, we must do so or face an inevitable loss of sales and respect from our customers.

Jason W Ross

Gillingham

Kent

Mathcad not incomparable

The conclusion reached in your review of Mathcad ("Mathcad 416 bits of difference". February, pp.127-129), that it is the best tool for small scale linear modetling. is unjustified. The article did not consider any other product. What about Spice, Maple. Theorist, and my favourite Mathematica? These are all important tools for engineers and should not be unfairly dismissed without comparison.
For example Mahematica with Neddel, can easily determine the characteristics of $L C R$ circuits and solve differential equations.
Their cost is such that fiw have the luxury of purchasing more than one. So you should be very careful before you allow your pages to carry a "best buy" tag for any one product without a full and considered review. Or 1 fear that the credibility of $E W+W W$ will suffer.

Richard Thomson

Edinburgh

Cable communication

Gareth Connor (Letters. $E W+W W$. March) makes a number of points about the "sound" of cables.
As a professional broadcast engineer, 1 used to be sceptical of the claims made for cables, believing there were a whole lot of other problems to be dealt with first. But I was recently given silver and ptie to make up some cables and was most surprised to find they sounded superior to a commercial product - very litte time and money
was involved so I don't feel I have all axe to grind.
Connor asked: "If the signal has already pussed through several thousand metres of cables. pebs and connectors. what difference will a mere dosen or so metres of exotic cable make?"
Thousands? Hundreds, yes. But broadcast and recording studio signals are invariably balanced. and (excepting microphone cables) balanced at a far higher level than the ir domestic counterparts. Far greater immunity to rfi snould be the result.

Professional cables also tend to be driven by proper line-sending amplifiers rather than a single emitter follower or op-amp. So the driving amplifier is less likely to suffer rfi driven back into its feedback loop.
Professional cables may be longer, but they are better driven and terminated.
On the subject of silver and pte. I cannot think of any reason why
silver should be better, as the improvement in conductivity over copper is so small.
But the good physical reason for

Dab it...

Your comprehensive survey of dab (Comment, EW + WW, February 1993) reminds me of Cassandra, who was able to foretell the future and was also doomed to see it happen.
Anyone with a modicum of understanding of politics within Europe and the prevailing economic climate, can see that dab is down at the first fence and unlikely to get up.
The BBC is already thought to be having serious doubts, so the technology will certainly follow the fate of D2-MAC and RDS. Only three countries might be interested in funding dab - assuming industry is ready to provide the hardware: UK, France and Germany. The others will watch which way the wind blows.
Germany simply cannot afford it for at least three years and has said so. A commitment by the DBP to the established and technically-successful DSR has already been demonstrated, since it provides an excellent distribution vehicle for the extensive cable network in that country. Germans are already calling it SuperRadio since it is on a par with cd quality and recognised as such by the fidelity-conscious listener. Sixteen stations already function on one transponder and two more have now been designated for extension of the service.
France, as always, will continue to go its own way. No one but the French can receive the French digital radio service.
And, as always, the UK's policy will be left to an eventually-privatised BBC. We know what will happen then - Nothing. At the present rate, there won't be any engineers left to implement it.
Will we never learn? The public still resists even fm and will never be persuaded of the virtues or otherwise of dab.
That could be a blessing in disguise. The decision will be influenced by factors quite out of the control of those who think they have settled on Eureka 147 as a European standard.

Reg Williamson

Kidsgrove
Stafts

.Off

As one of the "few readers of Hi-Fi News" mentioned in Norman McLeod's excellent article ("Dab - delivery, delay or debacle?", $E W+W W$, February, pp.160-165) I want to point out that truncation of sound was introduced specifically for car users. The BBC's acknowledged first priority with dab is to get it right for mobiles, with the rest to follow.
The antidote (though not for cars) is the digital satellite service DSR.
This is a service that has been a secret over here until recently and is still under wraps as far as the national media are concerned - not to mention the BBC.
However it is a benchmark by which to judge others, regardless of its outmoded technology, wasteful use of bandwidth etc.
For instance, when R3 fri broadcasts a live European Broadcasting Union concert, it may be cempared with up to three German dsr regional transmitters broadcasting simultaneously on the Bundespost's TVSat2.
They are usually louder and clearer, especially on winter evenings when satellite reception improves after dark.
With due respect to the BBC, dab and musicam, we few static audio fans will sit in our carefully prepared dens praying that the Bundespost "bird" doesn't die before we do.

Hugh Haines

Sunderland
using ptfe is that it has a very low value of $d \approx 0.0005$. known to correlate strongly with dielectric absorption (read any literature on sample and hold circuits for a-to-d convertors).
Many cables use pre as an insulator, which has a far worse value. $d \geq 0.01$ - you don't see many pve capacitors around. This difference in d and consequent diclectric absorption could well result in smearing of transients.
I was glad to see that Comor felt that the claims about silver and ptfe should be investigated, until I realised he was being sarcastic. Nevertheless, I intend to conduct some (double) blind tests to see if I can find any physical explanations.
Nobody suggests that the colourful vocabulary used by wine
connoisseurs to describe the
subjective sensations of drinking a fine wine should be supplanted by gas spectrograph measurements. So why do sensible engincers get into such a tizzy when the topic changes to audio and music. It is a purely subjective and personal experience anyway?
Morgan Jones
Southampton

Sparks fly over early radio

I was interested to read George Pickworth's article, The spark that gave radio to the world. ($E W+W W$. November 1993, pp.937-942) on the technology of spark transmission.
I too have built scale size spark transmitters of all the main varieties and this combined with my fairly extensive collection of original documents, manuals and publications leads me to question several of his statements.

Firstly, the question of "arc versus spark" was indeed a matter of controversy at the time. But even when arcing did occur momentarily. it produced unwanted effects ${ }^{1}$ notably severe spark gap crosion and even more interference than usual.
A sparh system relied fundamentally on the shock excitation of cither an aerial earth system or coupled tuned circuits. So any actual arcing would cause the tuned circuit to be too tightly coupled to the supply and reduce the efficiency of the transmitter.
Early operators often noticed that highly-quenched systems calused less interference and in practice were casier to read. In fact the quenching referred to arcing rather than sparhing: the circuit was shoeked and then left to oscillate as freely as possible. This became a major selling point for the quenched gap German Telefunken system.
The next problem arises over the Slaby/Wien quenched gap. I must take issue with its description as a "magnetic" device. This was put forward at the time as a theory of operation. But a study of its origins and derivation ${ }^{2}$ will show this to be unlikely. Magnetic effects are proportional to current and we have here a high voltage. low current device. My own fceling, based on theory and practice, is that thermal and electrostatic effects were much more important in the quenching process. The spark rose up to the outer groove because of the heat it generated. Model gaps showing increased erosion at the top of the electrodes strongly support this idea. Also the quenched gap is the most difficult type to scale due to local heating concentrating in the relatively small and semi-sealed spark gap.
Slaby and Wein ${ }^{2}$ derived the
quenched gap from work based on plain gaps in serics. This alone produced a worthwhile improvement in efficiency. With such an arrangement, magnetic fields would have virtually no effect.
It would be fascinating to get an actual measurement of fields involved in the discharge. though a sparh transmitter, like a car, is a very unfriendly place for modern electronics!
A further query eoncerns the various forms of the Marconi-type dish or rotary gap discharger. It appears that in the low frequency acexcited stations of the period there was little attempt to synchronise sparh gap with the supply frequency. as implied in text ${ }^{2}$ and shown as oscilloscope-style drawings. But more importantly, experiment with the model transmitter shows a great increase both in efficiency and
"purity" of received signal when the gap runs synchronously with the 50 Hz ac supply. A higher supply voltage would somewhat reduce this effect, but the improvement in signal quality would remain.
The Marconi company claimed on several occasions that its larger stations were not "spark". But the only discharger ever used by them which could be anything else was the original plain dise cischarger. With a dc supply some very unstable forms of arc could have resulted but with negligible contribution to rf output. Doubtless ${ }^{+}$Marconi reverted to stud electrodes to improve readability with magnetic detectors in particular. But the magnetic detector was a device working on signal peaks ${ }^{5}$ and so even a relatively smoothly modulated signal would be less audible.

A study of true are transmitters soon shows that generation of large amounts of if energy means going to

20 watt synchronous gap spark transmitter, circa 19911/13. The spark would excite at about 1 kHz . The receiver was a pyrites/tungsten electroytic detector with 2-circuit tuning.
considerable lengths, including: a powerful transverse magnetic field: rotating electrodes at a constant distance. and a hydrogen or hydrocarbon atmosphere ${ }^{6}$.
Not one of these, except perhaps a form of rotating electrodes was present in any spark transmitter. So. except possibly at very low frequencies, the contribution of arc generated signals to the output of a transmitter was vanishingly small. Certainly a system as used by Marconi at Clifden in $1907 / 8^{7}$ was not an are transmitter. The spark frequency was probably mainly determined by the time constants of the low frequency chokes and other components in the keying circuit. Normal practice was to relate these component values to the spark frequency. A model plain-dise discharger produced good power output but poor signal quality with 500 Hz excitation - in fact showing the symptoms of poor quenching.
In the US a few years later.
Federal Wireless faced problems ${ }^{8}$ in scaling up the Poulsen arc that made clear that a metal to metal arc burning in air simply will not generate a worthwhile amount of power, ceven at 40 kHz or so. Sustained oscillations above audio frequencies are not attained ${ }^{9}$.
The fundamental point is that are transmitters were not shock excited. rather they relied on the negative resistance characteristics of an electric arc.
In modern terms, the output waveform of Clifden (for example) would have been an overmodulated carrier but with lower peak signal levels than the studded gap. Stations using crystal or valve detectors would be quite effective but magnetic detectors would have been disadvantaged - hence the modifications carried out by
Marconi,
C C Wright
Auckland
New Zealand

References

I. Wireless Telegraphy. R Sianley, pp. 194/196. Library Press 1914/23. 2. Radio Telegraphy. C C F Monchton, pp.133/134. Constable. 1908.
3. Admiralty Handbook of Wireless Telegraphy, HMSO, 1921 edition. 4. Electronics and Wireless World. p.522. June 1991.
5. Electronics and Wircless World. p.666. August 1993.
6. The Continuous Wave. H J

Aitken, p.117. Princeton, 1985.
7. Electromics and Wireless World.
p.522, June 1991.
8. The Continuous Wave, op cil. p. 116/126.
9. The Continuous Wave, op cit. p. 117 .

Ham fist

Why should radio amateurs be expected to work at the same level as professional r\&d labs ("New challenge for amateur radio". Comme'm. December 1993)? No one expects amateur pitots to fly $7+7$ s or weekend golfers to come in at nine under par.
Amateurs that DO work at this level will. as you pointed out. be professionals using the amateur licence as a flag of convenience and this is no more amateur radio than is the hobby of radio dx-ing.
The 1950s and 60 s were, by your own admission. "boom periods" in amateur radio. Bur do you recall the thickness of the amateur call book in 1960'? Thin, wasn't it. There are less radic amateurs now. with many who would have been radio hams in 1960 entering other branches of hobby electronics like computing and electronic music. So it stands to reason that most amateur transmitting licence holders today are hom radio amateurs, they are radio dx-ers.
Radio dx-ing is. effectively, a collecting hobby with radio being secondary. The hobbyist scans the bands for new rarc calls like the philatelist scans the markets for new rare stamps. It is this hobby, not amateur radio, that depends on the Japanese transceiver with its attendant retailers and service departments (whocver heard of a radio amateur taking a set to a dealer to be mended for heaven's sake?).
So what have the remaining radio amateurs been doing - amaten radio of course. Coaxing ex pme sets to work on the vhf bands. Taking advantage of the ch boom and getuing the cheap multi-mode transceivers going on $14-70 \mathrm{MHz}$. Making straightorward, simple equipment and learning much for our own amusement, but hardly breaking into new fromtiers.
What gives our hobby the right 10 survive? Purely the fact that it is instructive, harmless and fun. In a free country no other reason is, needed and governments who expeet us to fight their wars for them would to well to remember that!
Long live amateur radio, may it continue to be not a scrap of use to anybody.
Stephen Dyke
Sandy
Bedfordshire
I feel that we are both on the vame side - Ed.

Reproducible losses

After upgrading my photocopier, I wanted to sell the old one - a Sharp SF-740 in perfeet working order but was surprised to be told that
toner for it was no longer available. I was also told that this can happen with some machines when they are only five years old. Parts are not interchangeable and one retailer said they throw away three perfectly good machines each week as supplies were no longer available. Maybe electronics hobbyists should visit their local copier shops and, for a few pounds, try to buy these machines for their motors, switches. power supplies and even microprocessors - not to mention lenses, prisms and mirrors.
All copiers work on the: electrostatic principle. using a black fusible toner. Yet it appears that toner from one make of machine will not work in another. Would it be possible to modify machine A to work with toner intended for machine B by altering the electrostatic charges on the wires? Or an agency could be set up to supply toners for obsolete machines.
It does seems absurd that we are willing to discard perfectly good machines that have an environmental cost in their manufacture.
Perlaps some $E W+W W$ readers have some ideas as to how this situation can be remedied.
John de Rivaz
Truro
Cornwall

Bass-is for upset neighbours

May I express my interest in your bass special Buss from all :mgles. pp. 100-122. $E W+U W$. February) as it in a subject 1 know well - up to and including a speaker cone that tore itself to strips before my eyes!
The result is a "beautitul sound" but very anti-social! Like Mr Macaulay, I finally abandoned my sub-woofer as I just couldn 't use it with any pleasure. Not that there are many sources of 20 Hz wounds unless you rely on oft-repeated dises and tapes.
So do be warned, you have to live with the consequences. I get a wry smile when I contemplate the front picture of that issue... I know just how he feels.
Ronald G Young
Peacehaven
East Sussex

Circuit analysis

Hyland's oscillator circuit (Circhit Ideas $f I(\%)$ winner. Jan sary) is certainly neat and interesting.
But with its "botom" stage being a phase non-inverting common emitter, the title "cascode" is hardly appropriate. Rather it has some similarity to a long-tailed pair with input to base A, output from B.

Arts and spacecraft

Artificial intelligence researchers have failed to shed light on the nature of intelligence by teaching computers to play chess. What they should be doing is building computers with hard-wired networks for the arts. Arts disciplines reflect the structure of the human body. Each transducer (ear. eye etc) has an associated art discipline (singing. drawing etc).
To process signals from the outside world the brain must have evolved a signal processing network for each transducer. A simple model of the brain is a set of arts processing networks (music, dancing network etc) together with a centre for emotion (providing motivation) and one for memory. If a network is stimulated by a set of regular - say symmetric signals we experience beauty.
In contrast, science is not internal to the mind (subjective) but external (objective). So the brain has not evolved networks to process scientific disciplines.
The idea can be extended to imagine possible alien intelligences. On a planet with little light for example, an alien may have evolved sonar to help navigate (like bats). To process signals from its sonar receiver, it would need a sonar signal processing network inside its brain. So the alien's art disciplines could be sonar-based. Sonar opera for example. John R Owen

Output impedance at the point shown is also not necessarily low at all. Essentially it is the parallel resonant mpedance of $L_{1} C_{i}$ (not $L_{1} C_{2}$ as misprinted), depending on the $l C$ ratio and Q factor of the tuned circuit, shunted directly by the output load, and to some extent hy transistor saturation. The components shown, and a Q factor of 50 , would give a tuned impedance of about 5052 - hardly low.
On the other hand, the emitter of the lower transistor would provide perfectly good low imperdance output. probably best via a resistor of a fen $\mathbb{K} \Omega$. It may then be necessary to bleed some current from the + ve rail to the emitler to prevent the transistor being cut off during part of the cycle.
When operating at high
frequencies, a few pF shunted across R_{3} may be needed, of the order of 0.25 of C_{6}, of the lower transistor.

Gerald Pasch

London NW2

Know?

I am interested in transmitting and audio 1930-55 but am having difficulty finding relevant literature. Does any $L i U+W W$ reader have surplus literature, data books etc that I could use?
I also urgently need three VT4c/2II valves (mod spec) for a ww2 transmitter currently' undergong restoration. Any assistance would be mucis appreciated. M / Evans
37 Foxwell Street
Worcester WR5 $2 E T$

...Kan do?

I need a $30-40(0) \mathrm{Hz}$ range simple pll oscillator circuit with an output power of $4 W$ or more, cither pulsed or harmonic. with a TTL reference
signal.
For my requirement, there is no point buying a costly $(0-2 \mathrm{MHz}$ commercial synthesiser with -70 dB harmonic distortion or phase noise.
Can any $E W+4 W$ reader help me?

S Kan

13 bis rue de la valle
St Remy les Chevreause
France

Light inconstant

Recent independent research in
Australia and Russia indicates that the speed of light has undergone a precipitate decrease. Since the first measurements by Roemer in 1676. thousands of readings using sixteen different methods, have given consistenly lower values, changes not due to observational error or limitations of equipment.
Michelson measured c between 1879 and 1926 and noted a steady decrease. In 193I DeBraly reported that: "invariably, new determinations give values that are lower than the last". Statistical regression analysin by Barry Setterfield and others has shown that many "constants". cg Planck 's. the gyromagnetic ratio. Boltzmann's. Rydherg's etc have all displayed a trend that could be expected by a falling c.
The implications are far-reaching in atstronomy, the red shift, geology. the rate of radionctive decay, the atomic clock, biology, physiology, the fossil record ete. and are part of increasing evidence indicating that the age of the universe may be thousands of years, not billions. (See "The facts of Life: Shattering the myth of Darwinism". Richard Milton, 1992 and "Science versus evolution". M Bowden, 1991.)

Amnon Goldberg

London

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

NEW LOW PRICE - NEW COLOUR HP141T SPECTRUM ANALYSERS TESTED

HP141T +8552 A or BIF $-8553 \mathrm{BRF}-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-$ A IF $£ 600$ or B IF - $£ 700$.
HP141T + 8552A or B IF - 8554B RF - $100 \mathrm{kHz}-$ $1250 \mathrm{Mc} / \mathrm{s}-\mathrm{A}$ IF $£ 800$ or $\mathrm{BIF}-£ 900$.
HP141T + 8552A or B IF - 8555A RF - $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}$ - A IF $£ 1400$ or B IF - $£ 1600$. The mixer in this unit costs $£ 1000$, we test every one for correct gain before despatch.
HP141T + 8552A or B IF -8556A RF $-20 \mathrm{~Hz}-300 \mathrm{kHz}-$ A IF $£ 600$ or B IF - $£ 700$.

HP ANZ UNITS AVAILABLE SEPARATELY NEW COLOUR - TESTED

HP141T Mainframe - £350-8552A IF - £200 - 8552B IF - £300-8553BRF $-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 2 \mathrm{CO}-8554 \mathrm{~B}$ RF $-100 \mathrm{kHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 400.8555 \mathrm{~A}$ RF $-10 \mathrm{Mc} / \mathrm{s}-$ 18 GHz - f 1000 .
HP8443A Tracking Generator Counter - 100 kHz $110 \mathrm{Mc} / \mathrm{s}$ - £300-£400.
HP8445B Tracking Pre-selector DC $-18 \mathrm{GHz}-£ 400$ £600.
HP8444A Tracking Generator - £750
HP8444A Opt 059 Tracking Generator - $£ 1000$.

SPECIAL OFFER - 14 ONLY HP140T (NON-STORAGE)

Mainframe Plus 8552A IF Plug-In Plus 8556A RF PlugIn 20 Hz - 300 kHz Plus 8553B RF Plug-In 1 kHz $\mathbf{1 1 0 M c} / \mathrm{s}$. Tested with instructions $-\mathbf{£ 7 0 0}$.

Marconi TF2008 - AM-FM signal generator - also sweeper - $10 \mathrm{Kc} / \mathrm{s}$ - $510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250$ - tested to $£ 400$ as new with manual - probe kit in wooden carrying box
HP Frequency comb generator type B406A - f 400
 HP Network Analyzer type 8407A +8412A +8501A -100Kc/s - $110 \mathrm{Mc} / \mathrm{s}-£ 500-£ 1000$. HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{Mc} / \mathrm{s} £ 200-\mathrm{HP} 8447 \mathrm{~F} .1-1300 \mathrm{Mc} / \mathrm{s} £ 400$
HP Frequency Counter type $5340 \mathrm{~A}-18 \mathrm{GHz} \mathrm{f} 1000$-rear output f 800
HP 8410 - A - B - C Network Analyzer $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 78 GHz - plus most other units and displays used in this set-up -8411a-8412-8413-8414-8418-8740-8741-8742-8743-8746-8650 From E1000.
Racal/Dana 9301A-9302 RF Millivoltmeter-1.5-2GHz- $£ 250-\mathrm{f} 400$
Racal/Dava Counters $9915 \mathrm{M}-9916-9917-8921-\mathrm{f} 1500$ to f 450 . Fitted FX standards
Racal/Dana Modulation Meter type 900
Marconi RCL Bridge type TF2700-f150
Marconi/Saunders Signal Sources type - 6058B-6070A-6055A - 6059A-6057A - 6056 £ $250-\mathrm{f} 350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz
Marconi TF1245 Circuit Magnification meter + 1246 \& 1247 Oscillators - $£ 100-£ 300$
Marconi microwave 6600A sweep osc., mainframe with $6650 \mathrm{PI}-18-265 \mathrm{GH}$; or $6651 \mathrm{PI}-26.5$ $40 \mathrm{GHz}-£ 1000$ or Pl oniy $£ 600$.
Marconi distortion meter type TF2331- £150. TF2331A - 200.
Tektronix Plug-Ins 7A13-7A14-7A18-7A24
Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1 -S2 - S6 - S52 - PG506 - SC504 - SG502 - SG503 - SG504 - DC503 -DC508 - DD501 Gould J3B test oscillator + manual - E 200
Tektronix Mainframes - 7603-7623A - 7613-7704A - 7844-7904 - TM501 - TM503-TM506 7904-7834-7104.
Altech 757 Spectrum Analyser - 00122 GHz - Digital storage + readout - $\mathbf{E 2 0 0 0}$.
Marconi 6155A Signal Source - 1 to 2 GHz - LED readout - E400.
Barr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass $-£ 45 \%$
Marconi TF2163S attenuator -1 GHz . $\mathbf{C 2 0 0}$
Farnell power unit H60/50- 400 tes
Farnell power unit H60/50-£400 tested.
Racal/Dana 9300 RMS voltmeter - f 250
HP 8750 A storage normalizer - f 400 with lead
Marconi TF2330-or TF2330A wave analysers - $\mathbf{~ 1 0 0 - 6 1 5 0}$
Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 500$
Racal/Dana signal generator $9082 \mathrm{H}-1.5-520 \mathrm{Mc} / \mathrm{s}-\mathbf{f} 600$
Tektronix - S $12-7 \mathrm{~S} 14-7 \mathrm{~T} 11-\mathrm{TS} 11-\mathrm{S} 1-\mathrm{S} 52-\mathrm{S} 53$
Marconi mod meters type TF2304- E 250 .
HP 5065 A rubidrum vapour FX standard - f 2.5 k .
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-\mathbf{2 4 G H z}$ - LED readout - f 1 k .
Racal/Dana So83 signal source - two tone - f250
Systron Donner - signal generator
Rhodes \& Schwartz power signal generator SLRD-280-2750Mc/s - f250-f600
Ball Efratom rubidrum standard PT256B-FRKL.
Farnali electronic load type RB1030-35.
Racal/Dana counters -9904-9905-9906-9915-9916-9917-9921-50M1/s-3GHz-E100 E450-allitted with FX standards.
HP4815A RF vector impedance meter c/w probe - $£ 500-\mathrm{f} 600$
Marconi TF2092 noise receiver
Marconi TF2092 noise receiver. A, B or C plus filters

Marconi TF2091 noise generator. A. B or C plus filters
HP180TR, HP 182T mainframes $£ 300$ - E 500
Fluke 8506A thermal RMS digital multimeter. $£ 400$
Philips panoramic receiver type PM7900-1 to $20 \mathrm{GHz}-\mathrm{E400}$
HP8505A network ANZ + 8503A S parameter test set + 850 A normalizer - $£ 4 \mathrm{k}$.
Racal/Dana VLF frequency standard equipment. Tracer receiver type 900A + difference meter
type 527 E - rubidium standard type 9475-£2750.
HP signal generators type $626-628$ - frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$.
HP 432A - 435A or B-436A - power meters + powerheads - Mc/s - 40GHz - £200-£ 1000
Bradley oscilloscope calibrator type $192-$ f600.
Barr \& Stroud variable filter EF30.1
Barr \& Stroud variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{KC/s}+$ high pass + low pass - f 150
Marconi TF2370 spectrum ANZ + TK2375 FX extend
MP8614A signal generator $800 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ extender $1250 \mathrm{Mc} / \mathrm{s}+$ ist gen -E 1.5 k
HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour f 400 .
HP 3325A syn function gen $20 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 1500$.
HP 3336A or B syn level generator - $£ 500-\mathrm{E} 600$.
HP 3586B or C selective level meter-£750-£ $£ 000$.
HP 3575 A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}-£ 400$.
HP 3575A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}-£ 400$
HP 8671A syn microwave $2-6.2 \mathrm{GHz}-\mathrm{f} 2 \mathrm{k}$.
HP 8683D S/G microwave $2.3-13 \mathrm{GHz}$ - opt 001 - $003-\mathrm{f} 4.5 \mathrm{k}$.
$\mathrm{HP} 8660 \mathrm{~A}-\mathrm{B}-\mathrm{C} 5 \mathrm{yy} \mathrm{S} / \mathrm{G}$. $\mathrm{AM}+\mathrm{FM}+10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to HP 8640 B S AM-FM 512.
HP 8640B S/G AM-FM $512 \mathrm{Mc/s}$ or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or 003 - $\mathbf{E 8 0 0 - \mathrm { E } 1 2 5 0}$
HP 8622B Sweep Pl O1- $2.4 \mathrm{GHz}+\mathrm{ATT}-\mathrm{F} 1750$
HP 86290B Sweep P1 $2-18.6 \mathrm{GHz}-\mathrm{f} 1250$
HP 86290 B Sweep PI $2-18 \mathrm{GHz}-\mathrm{f} 1000$
HP 86290 B Sweep PI $2-18 \mathrm{GHz}$-モ1000.
HP 86 Series PI's in stock - splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-$ C250-f 1 k .
HP 8620C Mainframe - £250. IEEE - $£ 500$.
HP 8615A Programmable signal source- $1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}$ - opt $002-\mathrm{f} 1 \mathrm{k}$.
HP 8601A Sweep generator $1-110 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 300$
HP 4271B LCR meter 1 MHz digital meter. 16063A test adaptor - $\mathbf{6 8 5 0}$.
HP 4342 A Q meter 22 kHz - $70 \mathrm{Mc} / \mathrm{s} 16462 \mathrm{~A}$ - qty of 10 inductors - $\mathbf{~} 850$.
HP 3488A HP - IB switch control unit - $\mathbf{5 5 0 0}$ + control modules various - $\mathbf{6} 175$ each.
HP 3561A Dynamic signal ANZ - $£ 3 \mathrm{k}$.
HP 8160A $50 \mathrm{Mc} / \mathrm{s}$ programmable pulse generator - f 1400
HP 853A MF ANZ $+8558 \mathrm{~B}-0.1-1500 \mathrm{Mc} / \mathrm{s}-£ 2500$.
HP 8349A Microwave Amp 2 - 20GHz Solid state - P.O.R
HP 3585A Analyser $20 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 4 \mathrm{k}$
HP 8569 A Analyser 01 - 22 GHz - $\mathbf{6} 5 \mathrm{k}$.
HP 3580 A Analyser $5 \mathrm{~Hz}-50 \mathrm{kHz}-£ 1 \mathrm{k}$
HP 1980 B Oscil loscope measurement system- f 600
HP 3437 A System voltmeter - f 300
HP 3581C Selective voltmeter - 5500
HP 5370 A Universal time interval counter - E450
HP 5335A Universal counter - $200 \mathrm{Mc} / \mathrm{s}$ - $\mathrm{f500}$.
HP 5328A Universal counter $-500 \mathrm{Mc} / \mathrm{s}$ - $£ 250$
HP 6034A System power supply - $0-60 \mathrm{~V}-0-10 \mathrm{amps}-6500$
HP 3960A 3964A Instrumentation tape recorders - $£ 300-£ 500$
HP 5150A Thermal printer- $£ 250$.
HP 1645A Data error analyser - 150.
HP 4437A Attenuator-f150
HP 4437A Aftenuator - f150.
HP 3710A - 3715A - 3716A-3702B-3703B-3705A-3711A-3791B-3712A-37938
HP 3730 A + B RF dink analyser - P.O.R.
HP 3552A Transmission test set-E400.
HP 3763A Error detector - $£ 500$.
HP 3764A Digital transmission analyser - 6600 .
HP 3770 A Amp delay distortion analyser - E 400
HP 3780A Pattern generator detector-E400.
HP 3781A Pattern generator- $\mathrm{C4} 400$.
HP 3781 P Pattern generator (bell) - $£ 300$
HP 3782 A Error detector $-£ 400$.
HP 3782B Error detector (beli) - $£ 3$
HP 3785A Jitter generator + receiver
HP 8006 A Word generator - $\mathbf{£ 1 0 0}$.
HP 8016A Word generator - £250.
HP 8170A Logic pattern generator - $\mathbf{〔 5 0 0}$.
HP 59401 A Bus system analyser - $£ 350$.
HP 59500A Multiprogrammer HP - IB - $£ 300$
Phillips PM5390 RF syn-0
Phillips PM5519 Colour T V pattern - AM - FM - 11250
Phillips PM5519 Colour T.V. pattern generator - £250.
S. A. Spectral Dynamics SD345 spectrascope 111 -LF ANZ - 250
Tektronix R7912 Transient waveform digitizer - programmable - f 400
Tektronix 7912 ransient waveform digitizer - programmable -
Tektronix 496 Analyzer $1 \mathrm{kHz}-1.8 \mathrm{GHz}-\mp 3.5 \mathrm{k}$.
Tektronix TR503 + TM503 tracking generator $0.1-1.8 \mathrm{GHz}-\mathrm{f} 7 \mathrm{k}$.
Tektronix 576 Curve tracer + adaptors - 9900
Tektronix 577 Curve tracer + adaptors - $\mathbf{£ 9 0 0}$.
Tektronix 1502/1503 TDR cable test set - $£ 1000$
Tektronix $7 \mathrm{LL5} \mathrm{LF}$ analyser $-0-5 \mathrm{Mc} / \mathrm{s}-$ - 8800 . OPT $25-\mathrm{E} 1000$
Tektronix AM503 Current probe + TM501 mi/frame- 1000 .
Tektronix 501 - SC502-SC503-SC504 oscilloscopes-£75-£350
Tektronix 501 -SC502-SC503-SC504 oscilloscopes-£75-£350.
Tektronix $465-465 B-475-2213 A-2215-2225-2235-2245-2246-£ 250-£ 1000$
Kikusui $100 \mathrm{Mc} / \mathrm{s}$ Oscilloscope COS6100M-£350
Farnell PSG520 Signal generator - $\mathrm{E400}$.
Nicolet 3091 LF oscilloscope - $£ 1000$.
Racal 1991-1992-1988-1300 Mc/s counters - f500-£900
Tek $2445150 \mathrm{Mc} / \mathrm{s}$ oscilloscope - $£ 1400$.
Fluke $80 \mathrm{~K}-40 \mathrm{High}$ voltage probe in case - $\mathrm{BN}-\mathrm{f} 100$
Racal Recorders Store 4-4D-7-14 channels in stock
Racal Store Horse Recorder $\&$ control- $\mathrm{E400}$
EIP 545 microwave 18 GHz counter - $£ 1200$.
Fluke 510A AC ref standard-400Hz-£200
Fluke 355A DC voltage standard - $£ 300$.
Schlumberger 5229 Oscilloscope - $500 \mathrm{Mc} / \mathrm{s}-\mathbf{£ 5 0 0}$.
Solartron 1170 FX response ANZ - LED dislay - $£ 280$
Wiltron 610 D Sweep Generator- $5108 \mathrm{DPI}-8 \mathrm{GHz}-\mathrm{f} 400$
Wiltron 610 D Sweep Generator + 61084D PI- $1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500$
Time Electronics 9811 Programmable resistance
Time Electronics 2004 D. C voltage standard - $£ 1000$.
HP 8699P Sweep P1 YiG oscillator $01-4 \mathrm{GHz}-\mathbf{£} 300.8690 \mathrm{BMF}-\mathbf{f 2 5 0}$,
Schlumberger 1250 Frequency response ANZ - 62500.
Dummy Loads \& power att up to 2.5 kilowatts FX up to 18 GHz - microwave parts new and ex etc.
B\&K Items in stock - ask for list
W\&G Items in stock - ask for list.
Power Supplies Heavy duty + bench in stock - Farneli-HP-Weir-Thuriby-Racal etc. Ask for list
ttems bought from hm government being surplus. price is ex works. sae for emquiries. phone for appointment or for demonstration of any items, avaliability or price change vat and carriage extra items marked tested have 30 oay warranty. wanted: test equipment-valves-plugs and sockets-syncros-transmitting and receving eouipment etc.
Johns Radio, Whitehall Works, 84 Whitehall Foad East, Birkenshaw, Bradford BD11 2ER, Tel: No: (0274) 684007 , Fax: 651160

Pulse and bar generation in an instant pulse, and a linear sawtooth. Applying the output of this simple circuit to a video link reveals major system deficiencies at a glance. By John Cronk*

The generator design described here produces a waveform at television line frequency having a sync pulse, a rectangular pulse, a sine-squared

The value of pulse and bar test waveforms are well established in television broadcast engineering. It is usual to transmit the pulse and bar and other hidden test signals continuously on certain lines during the field blanking period of the standard CCIR 625 line system I television waveform. A special oscilloscope with a line counting selector circuit is required to view this. and a special graticule is used to aid instant checks on the video quality.
The waveform generator described here will deliver the standard IV peak to peak output across a 758 load that can be fed into amplifiers, equalisers, of links, coax lines and so on. Because every line of this generator"s waveform is similar, i.e. no half lines or frame pulses. the output can be viewed on an ordinary oscilloscope.
This simple circuit falls stightly short of regular pulse and bar generators, but the difference in cost will make it acceptable in many workshops. The output is de coupled, but note - zero is sync bottom, rather than black level As most equipment has an ac coupled input circuit after the temmation resistor, this should not be troublesome. An output capacitor was not used as the additional time constant could interfere with the push button test. The 75Ω output is short circuit proof.

Linearity may be tested in a video system by accurate reproduction of the sawtooth. It should have the same amplitude as the bar and a straight line ramp to the point. Any amplitude limiting will be obvious.
The bar provides a peak white 700 mV reference above the black level. Any tilt would indicate poor middle frequency response and corner rounding a poor HF^{2} response. Also reflections due to incorrectly terminated cables will be apparent.
It is well known that video circuits can exhibit faults with pulses that are not apparent

[^2]

Block diagram of waveform generator. The complex waveform is built-up from individual componente generated by a chain of 555 monostables. A couple of the devices provide a fixed delay. This scheme could have been implemented in many other, purely digital, schemes. The timer chain shown here works perfectly well... an example of simplest is best.
with sinewalves. It is for this reason that the sine-squared pulse proposed by Macdiarmid in 1951^{1} is so useful. It is a carefully dimensioned pulse referred to as $2 T$ that, for an ideal CCIR 625 line system I, should pass through an ideal $5.5 \mathrm{MH} z$ low pass filter without distortion. That is, without loss of amplitude. ringing or overshoot. The 2 T sine-squared pulse represents the fastest transient that can oceur in the video signal and which contains no redundant frequency components. Some distortion in a video system is permissible, typically, a $20 / 6$ variation in the amplitude of the $2 T$ pulse. This is specifically refermed to a the K factor.
When tirst proposed, the sine-scpured pulse was quite difficult to generate using valve technology: it required triggering a surprisingly powerfal pulse which was then shaped in a multi-element filter. The circuit offered here is muels simpler, but still produces an acceptable shape. This pulse was tested by using a double beam. 25 MHz oscilloscope and

The complete waveform built up from individual components. Note that the narrow pulse section represents the fastest transient which should be able to pass through a standard PAL system without attenuation. Any reduction in amplitude relative to the long pulse indicates poor system HF response.
observing the pulse before and after a $75 \Omega 2$ CCIR recommended ten element low pas fillter. There was no measurable difference before and after the filter.
When the whole waveform in displayed on an oscilloseope, the $2 T$ pulse thould have the same amplitude as the bar. Low amplitude indicates poor high frequency response. or excessive amplitude, overpeaking. In bort, the waveform is ideal for rapidl setting up the gain and frequency response of vileo equipment.
A push button inhibiting the bar from the waveform provides a useful test for de rebtoration and line clamps. Suppressing the bar makes a significant change to the average

A: Comprising sync, rectangular and sine-squared pulses together with a linear sawtooth, this test waveform provides a wealth of information about video amp performance. It forms the source signal for the following tests.

B: Output of a correctly terminated and adjusted amplifier, showing slight ringing on the left and right-hand plateaus.

C: In a video amplifier with poor hf response, amplitude of the fast pulse is the first to suffer.

D: Video amplifiers with poor mid-frequency response cause the fast pulse to disappear and significant rounding on rising and falling edges.

E: Output of a video amplifier with excessive hf gain shows some over and undershoot on the fast pulse.

F: An amplifier with excessive high and mid-frequency gain causes significant over and undershoot on all fast edges. Over and undershoot recovery is slow.

G: Distortion in the form of excessive hf loss caused by passing the video signal through 2 km of RG58 coaxial cable. Attenuation is approximately 36 dB at 5 MHz .

H: partial correction with a simple video amplifier showing over-correction of mid-frequencies and under-correction of $H F$.

These photographs illustrate how useful the pulse and bar generator is for testing video amplifier performance. Test equipment used is a 25 MHz oscilloscope with compensated $\times 10$ probe.
video level. This can be demonstrated by observing the black level on the oscilloscope. first with ac coupling, then with dc coupling when the button is pressed.

Description of the circuit

Ubiquitous 555 timers produce the pulses in all stages. $I C_{1}$ is connected as an oscillator with adjustable mark and space. The $4.7 \mu \mathrm{~s}$ off-period is the sync pulse and the on-period, the line duration, forms a DC platform which
is the black level on which the bar and sawtooth are added.
The next IC is a triggered monostable multivibrator used 10 delay the trigger pulse to $/ C_{3}$ similarly configured which generates the $25 \mu \mathrm{~s}$ pulse for the bar. The falling edge of this pulse triggers another short delay $\left(I C_{4}\right)$ which then triggers $I C_{5}$, the $2 T$ pulse generator. The falling edge of this pulse triggers $I C_{6}$, the timing capacitor of which is charged through a pnp transistor connected as a constant curient regulator. This produces a linear ramp across the capacitor.

The wanted pulses are fed through amplitude adjusting trimmer potentiometers to the bases of the output emitter followers. The long pulse from $/ C_{1}$ turns $T r_{2}$ on, so it operates linearly during the bar and sawiooth period. A
second emitter follower Tr_{3} without bias, adds the sine-squared pulse to the output.

The fast rising edge of the 3μ s pulse from $I C_{5}$ is applied to an L / C circuit which determines the shape and duration of the sinesquared pulse (200 ns hall amplitude duration, or HAD). A germanium diode absorbs the unwanted negative half of the sine-wave and the remaining low amplitude ringing is cleaned up by the unbiased emitter follower.
The $1 k \Omega$ resistor in the output circuit pre vents the emitters of $T_{r_{2}}$ and $T_{r_{3}}$ running open circuit; normally the 75Ω source and external termination resistors provide the de path.
The pulses at the output of the 555 s have risetime faster than required for the CCIR video specification. However the high value series resistors together with the stray capaci-

I: Results of the test signal displayed on a monitor via a short piece of coaxial cable. Effects of the fast pulse are evident as a vertical stripe just right of centre.

K: Monitor screen showing a display from a closed-circuit camera. The camera is connected via short cabling and hf response is adequate.

J: As you would expect, using 2 hm RG58 cable to feed the monitor significantly affects hf response. Definition is lost and the stripe has disappeared.

L: As in K this monitor is displaying output from a camera but 2 km of RG58 cable is degrading the signal. Use of the pulse and bar signal allows a correcting amplifier to be set up in minutes, without ambiguity.

Broadcast television insertion signals

During the field blanking interval, lines 16-20 even frames, and 329 to 333 on odd frames, may contain identification, test and control signals. Lines 16 and 329 may contain international identification and control signals.
Lines 17, 18, 330 and 331 international test signals.
Lines 19, 20, 332 and 333 national test signals.
There are two usual national test signals. First line 19 and 332 comprise a $10 \mu \mathrm{~s}$ white bar, a full amplitude (2T) negative pulse, (2T) positive pulse, a composite pulse (10 Tc) containing chrominance and luminance information, and a five-riser staircase with colour sub-carrier at constant phase and amplitude.
The second test signal on lines 20 and 333 contains a half-amplitude luminance bar with sub-carrier superimposed, and an extended burst of sub-carrier for the second half of the line. The $2 T$ pulse and $10 \mu \mathrm{~s}$ bar enable the K rating to be obtained, while measurement of line-time non-linearity may be made by passing the staircase waveform through a filter. The 10 T c pulse permits assessment of chrominance-
tance of the circuit board integrate the pulses. slowing the transitions and causing slight rounding of the corners. Two small trimming capacitors are added to restore the pulse edges.
The power supply requirements are modest, a stabilised voltage between 9 and 12 V at

100 mA with a low impedance is sufficient Construction notes
Care should be taken with routing the base connections to the output transistors which are at fairly high impedance and therefore prone to pick up unwanted pulses. Wide conductors should be used for the ground and power rails to minimise stray coupling due to common conductor impedance. The only high tolerance components required are the 330 pF capacitor and $220 \mu \mathrm{H}$ inductor in the sine ${ }^{2}$ pulse forming network; all other critical values are adjustable.
Miniature ceramic trimpots were chosen for stability. Multi-turn types, although not essential, would give a precision feel to setting up.
The suggested capacitors are polystyrene types, which are more stable than ceramic components. Incidentally, it was found that the decoupling capacitors on pin 5 of the ICs were not essential but they were fitted anyway.
The diode across the 2T pulse network must have a low V_{f}, if an alternative to the OA5 germanium diode is to be used.

Commissioning

The duration of the sync pulse and line period should be set carefully, but there is more tolerance on the other timings determined by fixed components. $\pm 2 \mu \mathrm{~s}$ is allowable, and the excess can be accommodated by the $9 \mu \mathrm{~s}$ spare at the end of the line period.
The important 200 ns HAD of the sine-
squared pulse is determined by the $220 \mu \mathrm{H}$ inductance and the 330 pF capacitor and is not likely to require adjustment. The pulse amplitude trimpots should be set as accurately as possible. The aim is for IV peak-to-peak with the standard 70:30 picture to sync ratio when the output is terminated with a 75Ω load.
Finally, the waveshape should be examined The rise and fall times of the pulses at the output of the ICs are less than required. The amplitude control resistors and stray capacitance slow down these transits and the nonlinearity of the output transistors should clean up the sync pulse bottoms. The two pulse shaping trimmers may be adjusted. The $5-60 \mathrm{pF}$ integrating trimmer will slow the transitions and round the corners of all the pulses except the 2 T pulse, while the $2-10 \mathrm{pF}$ differentiating trimmer will sharpen the corners of the sync pulses. Adjust both trimmers for best waveshape with minimum ovefshoot. The specified rise and fall time for the line sync pulses is between 200 and 300 ns.

Bibliography

1. Macdiarrmid, I.F., A testing pulse for television links, Proc. IEE vol. 10I, Part III No 72, pp. 258-270 (1954).
2. Weaver, L. E., Television Video Transmitter Measurements. Marconi Insts. Ltd. (CCIR Filter) Thomson network P.29.
3. IBA Technical Reference Book 2 (1977).
4. Wood A. Pulse and Bar Testing. CQ-TV

Magazine No 142, P.42. (1988).

FREE TO SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only. Trade advertisers should call Pat Bunce on 081-652 8339

All adverts will be placed as soon as possible However, we are unoble to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using th s servce, we also reserve the r ight to reject odverts which do not fuffil the terms of this offer

Please send your completed forms to:
Free Classified Offer: Electronics World, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

COMPUTERICS

8271 BBC DISC CONTROLLER CHIP EX EQPT $817 \mathrm{~A}-20(2 \mathrm{~K} \times 8)$ EEPROM Ex EQP
 27C64-25 used/wiped
 D41256C-15 $256 \mathrm{~K} \times 1$ PULLS
 £1.50 $100+£$

80C31 MICRO
P8749HMICRO
P8749H MICRO
MK48ZO2-20 ZE
USED 41256 -15
USED 4164.15
BBC VIDEO ULA

100 nF $63 V$ X7R PHILIPS SURFACE MOUNT 30K avalable
 avalable ETHERNET 4 PAIR TRANSCEIVER CABLE.... 1 BEI $30 / 4000$ box ETHERNET 4 PAIR TRANSCEIVER CABLE. BELDEN TYPE 9892 STICHED MODE PSU 40 WATT UNCASED E60 for 50 metres AVAILABLE $+5 \vee 5 A,+12 V 2 A .12 V 500 \mathrm{~mA}$ FLOATING
SIM RS 361.018 Each parr foll screëned + overall branded $£ 9.95$ ($\mathbf{(2)}$ screen $£ 300$ tor 305 metre drum + plus PVC outer sheath ON 305 metre drum
$330 \mathrm{nF}+0 \% 250 \mathrm{~V} \times 2$ AC RATED PHILIPS 60 K
AVAHLABLE 220R 2 5W WIREWOUND RESISTOR 6OK AVAILABLE CMOS 5555 TIMERS $2 / 51$ 2/3 LITHIUM CELLS AS USED IN COMPACT CAMERAS $£ 2.50$ CM7126CPLCMOS 31/2 DIGITLCD DRIVERCHIP 36 CORE $7 / 102 \mathrm{~mm}$ OVERAL PASSIVE INFRA RED SENSORCCHIP + MIRRCR + 2 FOR \quad. EUROCARD 21 -SLOT BACK PLANE 96/96.WAY £2 each PROTONIC 24 VARIBUS" 16 7" $\times 5$ " FIBREGLASS MUL TILAYER PRH PCB
EUROCARD 96 -WAY EXTENDER BOARD $290 \times 100 \mathrm{~mm}$ £ 10 ea
"PROTONIC 24"CJ Z̈ SUPPORT ARMSIEJEC'ORS DIN 4161296 .WAY ABAC SOCKET PCB RIGHT ANGLE $£ 1.30$ DIN 41612 96-WAY ABB/C SOCKET WIRE WRAP PINS $£ 1.30$ DIN 4161264 -WAY ACC PLUG PCB RIGHT ANGLE DIN 4161264 -WAY AB SOCKET WIRE WRAP (2 -ROW BODY)
BT PLUG"+LEAZD
13A MOULDEED PLUG +2 m lea
MIN. TOGGLE SWITCH 1 POLE CIO PCB type IT
LCD MODULE sim. LMO18 but needs 150 to 250 V AC for display
40×2 characters $182<35 \times 13 \mathrm{~mm}$,
6-32 UNC $5 / 16$ POZIP AN SHENT REG
NUTS
WIT̈̈CH CHANGEOVEF
$£ 1 / 100$
$1.25 / 100$
RS232 SERIAL CABLE D25 WAYMALE CONNECTOAOS . $2 / \boxed{\text { 2 }}$ 25 FEET LONG 15 PINS WIRED BRAID + FOIL SCREENS CD DiSpLA A SIm Hitach LMO16L... INMAC LIST PRICE $£ 30$ LCD Displar sim Hitachi LMO16L. HUMIDITY S'NITCH ADJUSTABLE WIRE ENDED FUSES 0.25A NEW ULTRASONIC TRANSOUCERS 32 kHz Also avallable 28 slot varı-bus backplane same size POWERFUL SMALL CYLINDRICAL MAGNETS BNC 50OHM SCREENED CHASSIS SOCKET OMALL MICROWAVE DIODES AE 1 OC 1026A 180 VOLT I WATT ZENERS also $12 \mathrm{~V} \& 75 \mathrm{~V}$ VN10LM
RELAY $5 V$ 2-pole changeover looks like RS $355-741$ marke
STC 47 WBost STC 47WBBost

INIATURE CO.AX FREE PLUGRS 456.071

400 m 0 SiW thick film resistors (yes four hundred megonms)
STRAIN GAUGES 40 ohm Foil type polyester backed balco grid

 HALL EFFECT IC UGS3040 + magne
1 pole 12 -Way rotary Swith
AUDIO ICS LM 380 M M 386 TDA 2003 555 TIMERS $£ 1741$ OP AMP ZN4 14 AM RADIO CHIP COAX PLUGS nice ones J.......
COAX BACK TO BACK JOINER
4×4 MEMBRANE KEYBOARD
NDUCTOR $20 \mu H 15 A$
1.25" PANEL FUSEHOLDERS

CHROMED STEEI. HINGES $14.5 \times 1{ }^{\prime \prime}$ OPEN 12V 1.2W small w/e lamps fit most modern car: MONO CASS. HEAD I1 ERASE HEAD THERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$ THERMAL FUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C} 240 \mathrm{~V} 15 \mathrm{~A}$ TRANSISTOR MOUNTING PADS TO-5:TO-1: TO-3 TRANSISTOR COVERS CB PINS FIT 0 1" VERO TO-3 micas + bushes Large heat shrink sleeving pa
IEC chassis plug filter 10 A IEC chassis plug filter 10A
POTS SHOZT SPINDLES $2 K 5$ 10K 25 K i M 2 U 5 Ok U/S TRANSDUCERS EX-EOPT NO DAT M335Z 10MV/degree LM2342 CONST. CURRENTIC BNC TO 4MM BINDING POST SIM RS $455-96$ BUTTON CELLS SIM. AG 10/AG12

AVEL-LINDEEERG MOUULDED TRANSFORMER TYPE OBBIO $15+15 \mathrm{~V}$ 10VA OTY. AVAILABLE .. $£ 2$ ea BANDOLIERED COMPONENTS ASSORTEVRS. Cs, ZENERS LCD M
KYNAR WIRE WRAP WIRE
 'LOVE STORY' CLOCKWORK MUSICAL BOXMECHANISM MADE BY SANKYO

DIODES AND RECTIFIERS
 DIODES AND RECTIFIERS

10/£1

miscellaneous

KEYTRONICS
TEL. 0279-505543
FAX. 0279-757656 р 0 воX 634
BISHOPS STORTFORD HERTFORDSHIRE CM23 2RX

1N54073A 1000
1N4148.
1N5401 3A 100 V
BA158 1A 400 V fast recove
BY 1271200 V 12 A
BY 254800 V 3 A
6A 100 V SIMILAR MR75 1
A A GOOV ERIDGE RECTIFIER
4A 100 V ERIDGE
6A 100V BRIDGE
25A 200 VBRIDGE $£ 2$
25A 400V BRIDGE 2.50
2KBP02 IN LINE 2A 200V BRIDGE REC
SCRS
PULSE TRANSFORMERS $11+1$
2P4M EQUIV C106D
TICV106D 800 mA 400 C SCR $3 / 2$
MEU2I PROG. UNIJUNCTION
TRIACS \qquad TXAL 2258 A 500 V 5 mA GATE BTA $08-400$ ISO TAB 400 V 5 mA GATE TRAL22300 30A 400VISOLATED STU TRIAC 1 A 800 V TLC 381 T 16 k AVAILABLE

DIACS 4/E1
$5 / £ 2100 / \Sigma 30$
£1 ea
$500 / \Sigma 2$
FOR $£ 1$ £15/100

CONNECTORS

D25 IDC PLUG OR SOCKET	£1
34 -way card edge IDCCONNECTOR (disk drive type)	11.25
CENTRONICS 36 WAY IDC PLUG	£2.50
CENTRONICS 36 WAY IDC SKT	¢4.00
BBC TO CENTRONICS PRINTER LEAD 1 5M	¢3
CENTRONICS 36 WAY PLUG SOLDER TYPE	£4
USED CENTRONICS 36W PLUG + SKT	£3

PHOTO DEVICES

HIBRIGHINESS LEDS CQX 24 RED

2N5777 OTOTO TRANSISTOR
TIL 81 PMOTO TRANS
TIL 38 INFRA RED LED
4N25 OP 12252 OPTO ISOLATOR
PHOTO DIODE 50P
MEL12 (PHOTO DARLINGION BASE NiC
LED's RED 3 or 5 mm 12 I 1
LEO'S GREEN OR YELLOW 10 II
LEO'S GREEN OR YELLOW $10 / £ 1$
FLASHING RED OR GREEN LED 5 mm 50 p
FLASHING RED OR GREEN LED 5 mm 50 p
HIGH SPEED MEDUM AREA PHOTODIODE RS651HIGH
995.

STC NTC BEAD THERMISTORS

G22 220 R , G13 1 K G G23 2 K , G24 20K, G54 50K. G25 200 K , 1 ea
RES $20^{\circ} \mathrm{C}$ DIRECTLYHEATED TYPE FS22BW NTC BEAD INSIDE END OF 1" GLASS PROBE RES A13 DIRECTLY HEATED BEAD THERMISTOR 1kres ideal for
audio When Bridge Oscillator
CERMET MULTI TURN PRESETS $3 / 4^{*}$
10 R 20 R 100 R 200 R 250 R 500 R 2 K 2 K 22 KS 5 K 10 K 47 K 50 K
100 K 200 K 500 K 2 M
14/16/18/20/24/28/40-WAY DIL SKTS
£1 per TUBE
8-WAY DII SKITS
32-WAY TURNED PIN SKTS. 7 k availa SIMM SOCKET FOR 2×30-way SIMMS $\ldots 3$ for $£ 1$

SOLID STATE RELAYS

$£ 10$
POLYESTER/POLYCARB CAPS
$330 \mathrm{nF} 10 \% 250 \mathrm{~V}$ AC $\times 2$ RATED PHILIPS TYPE 330 . $£ 20 / 100$ $1 \mathrm{n} / 3 \mathrm{n} 3 / 5 \mathrm{n} 6 / 8 \mathrm{n} 2 / 10 \mathrm{~mm} 1 \% 63 \mathrm{~V} 10 \mathrm{~mm}$

20/£1 100/23 $10 \mathrm{n} / 15 \mathrm{n} / 22 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} / 66 \mathrm{n} 10 \mathrm{mmm} \mathrm{rad}$
$100 / 55$
$100 / 5350$
100 n 250 V radial 10 mm
100 n 600 V Sprague axal $10 / \mathrm{I} 1$
${ }_{2} \mu_{2} 160 \mathrm{~V}$ rad $22 \mathrm{~mm}, 2 \mu 2100 \mathrm{~V}$ rad $15 \mathrm{~mm} \quad 100 / \mathrm{g6}$ (I)
$10 \mathrm{n} / 33 \mathrm{~N} / 47 \mathrm{n} 250 \mathrm{VAC} \times$ rated $15 \mathrm{~mm} . \quad 100 / \mathrm{m} 10$
$1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC...

RF BITS

MARCONI MICROWAVE DIODES TYPES DC2929. DC2962,
DC4229F 1/F2
XTAL FILTERS 21 Mi
55 MO
ALL TRIMMERS

SMALL MULLARD 2 to 22pF 3 FOR 500 £10/100

CERAMIC FILTERS $4 \mathrm{M} 5 / 6 \mathrm{M} / 9 \mathrm{M} / 10 \mathrm{M} 7$
FEED THRU CERAMIC CAPS 1000pF .. 60pea
6 VOLT TELEDYNE RELAYS 2 POLE CHANGEOVER
(BFY51 TRANSISTOR CAN SIZE)
2N2222 METAL
E2
P2N2222A PLASTIC
10/E1
PLESSEY ICS EX-STOCK
SL350G SL360G SL362C SL403D SL423A
SL521B SL523C SL541B SL850C SL 1021 A
SP8655 SP8719DG
MONOLITHIC CERAMIC CAPACITORS
$10 \mathrm{n} 50 \vee 2.5 \mathrm{~mm} \ldots$
100 n 50 V 25 mm or 5 mm
100 n ax short leads
100 n ax long leads
100 n 50 V dil package $03^{\prime \prime}$ ra
$4 / \Sigma 1$

2: Switching power converters can be designed to operate in discontinuous mode but most text books only discuss continuous designs. Duncan Smith discusses both here, showing that there are valid arguments for each.

Switched-mode supplies are usually designed to so that the inductor current - never falls to zero, i.e. they operate in continuous mode. In discontinuous operation. current in the inductor falls to zero betore the end of a switching cycle. The inductor is said to dry out, Fig. 1 . This can occur by design, or when the load drops below a minimum level.
The essential difference between the two modes is that in continuous conduction the output voltage is always controlled by the feedback. In discontinuous mode, another state is introduced where there is no feedback directly controlling the output level. In both modes, output voltage is maintained by limearly varying the duty cycle.
Further, when either contiguration has a low
load current, the regulator can miss cycles to maintain the output level. causing interference. Pulse skipping occurs when the duty cycle can not fall any further to maintain the output voltage, Fig. 2.
Generally, because of switching losses, it is better to design a high output regulator to run continuously. Low ounput levels are best catered for with discontinuous operation. Complete converters on a chip, such as the LT1073, run continuously, but in bursts. This combines high efficiency and low output power capability.
Running in continuous mode often results in a large inductor value, producing a low input ripple current. but the inductor is physically large. In addition, the response to load tran-

(a) Switching waveform

(b) Continubus inductor current

(c) Discontinuous current

Slope compensation

There is a conflict of interest when choosing the amount of slope compensation added to a current-mode controlled power supply. On the one hand, optimum current-mode control needs to be provided, on the other, stability problems in the inner current contral loop need to be prevented.
In most current-mode controllers it is peak inductor current that is controlled, not the average output current. As a result, perfect currentmode control is not achieved. As the duty cycle alters, the difference between peak and average current varies. The average current increases with increasing duty cycle.
Slope compensation corrects for this by forcing average inductor current to be constant regardless of duty cycle. This occurs when the slope of the added ramp is equal to half the down slope of the inductor current. The inductor now acts as a voltage-controlled current source.
Severe regulation problems can be caused by an instability of the inner current control loop. This can arise with any current-mode circuit topography that allows for duty cycles more than 50%. Above this level, any action that changes the current through the inductor, such as a fall in input supply, result in the variation getting larger. As this is an open loop problem, neither the current nor voltage feedback paths can correct for it.
Addition of a decaying slope removes this instability by reducing the variation in the current each cycle, effectively damping the rising oscillation. To guarantee stability between 50% and 100% duty cycle, the amount of slope compensation needs to be greater than half the down slope of the inductor current.
Allied to the above is the problem of inductor current ringing. The circuit behaves as a series-resonant RLC circuit, peaking the gain at half the switching frequency. This may also lead to sub-harmonic oscillation.
Ringing is triggered by line and load transients, but can be damped by adding a ramp that falls at the same rate as the inductor current. Slope compensation at this level will reduce the current ringing within one cycle; this is similar to critically damping the RLC circuit.
Another problem is sub-harmonic oscillation of the voltage feedback loop. It is identifiable by significant differences in the duty cycle between successive cycles.
Two conditions cause the outer voltage feedback loop to oscillate at half the switching frequency. The first is the introduction of positive feedback due to gain peaking in the inner current feedback loop; the second is an excess of gain and phase shift in the error amplifier. The effect is as seen with ringing inductor current and open-loop instability.
Curing the problem is the same as before. At a compensation slope of $m_{\mathrm{C}}=-0.5 m_{\mathrm{L}}$ the point of instability moves out to 100% duty cycle. Nevertheless, the fact that the amplifier gain is not zero at half the switching frequency will cause oscillations to occur long before 100% duty cycle is achieved. To guarantee stability the slope compensation must be increased to $m_{\mathrm{C}}=-m_{\mathrm{L}}$ so that loop gain becomes independent of the duty cycle.
The actual amount of slope compensation introduced is a compromise between perfect current-mode control and immunity from noise. When the ratio of ripple current to average current through the inductor is low, small quantities of noise can cause large pulse width variations. Effects of this noise can be reduced by increasing the amount of slope compensation.

Fig. 2. Onset of pulse skipping. This happens when loading becomes so light that duty cycle cannot be made small enough to cope.
sients is impared because of the lower slew rate of the inductor. If a low value inductor is chosen. as in the discontinuous case, currents are higher and maximum output power is limited. The converter enters discontinuous mode when the current falls below the minimum load. This may not always be desirable because of increased switching losses and ripple currents.
In continuous mode, maintaining stable
operation over a wide range of loads and input voltage variations in continuous mode can sometimes prove to be difficult. This is due to the complexity of its transfer function, i.e. multiple poles.

Discontinuous mode converters involve high switching currents, due to their small inductor values. Usually, this results in lower efficiency as the switching losses are higher. Output power is frequently limited to keep switching
currents down, hence the inductor can not tranfer enough energy to meet high load requirements. Operation in discontinuous mode is ideal when low power levels are required, as then both output and switching currents have low values.

However, the SGS-Thomson $L 4963$ is a complete switched-mode regulator designed to operate in discontinuous mode. It can deliver up to 1.5 A at 5 V . Boost converters are some-

Fig. 4. Operating current-mode controllers with continuous inductor current causes a number of problems. Most of these can be removed by slope compensation, the effect of which is evident here.

Diode switching

During the time the diode takes to turn off, the device is conducting even though reverse biased. This leads to unwanted dissipation in the diode. The faster the turn-off time, the more dissipation will be shifted to the switching transistor.
A slow turn-on time can have more serious consequences than slow turnoff. A large amount of power can be dissipated in the diode if it switches on slowly. As the device turns on, not only will current be flowing, but also the forward voltage drop across the device
will be high, at volts rather than millivolts. This can also lead to a high voltage turn-on spike in boost/flyback circuits, which appears across the switching transistor. It is thus in series with the output voltage.
Under such conditions, breakdown voltage of the transistor can be exceeded as it turns off, and the diode turns on. The size of the voltage spike is related to the final current value and the rate of current rise - i.e. the inductor value.
times designed to operate discontinuously for stability reasons. A pole is removed from the transfer function so there is less phase lag introduced, simplifying compensation and improving transient response.
Discontinuous mode is often ignored in textbooks, while data sheets for switch-mode power ICs contain design examples. If the operation of the circuit in discontinuous mode is catered for in the design, and in the component ratings, then there is no reason not to run in this mode. In fact discontinuous mode can be an advantage if space is a problem, due to the smaller inductor.

Current-mode SMPS

Current-mode PWM regulators have an advantage over traditional SMPS designs. They give an immediate response to input line variations, can provide pulse-by-pulse current limiting, and are simpler to stabilise. Operation in both continuous and discontinuous modes is possible, though the former is more common.
As discussed earlier, the common pulsewidth modulated converter compares an error signal with a ramping reference to control output voltage. In a current-mode PWM converter an additional inner feedback loop is added. Fig. 3. Current through the switching device is sensed. This sample is used as the reference signal by the PWM comparator, and is compared with error amplifier output.
Control voltage from the error amplifier now directly determines the peak inductor current. To obtain the best regulation and fastest response, the loop should control average current through the inductor. In practice, control of the peak current is simpler. It is analogous to controlling the average inductor current as it is directly proportional to it.
In continuous mode the inductor can be looked at as a voltage controlled current source, eliminating its pole in the response and reducing the transfer function control loop to a single pole. Now, the regulator is simpler to stabilise since the dominant pole consists of the output capacitor in parallel with the load. This can improve dynamic regulation of the output voltage by opening up the regulator bandwidth. This speeds up response to load variations. In addition, the method instantly corrects for variations in input voltage.

There are problems with fixed-frequency current-mode controllers operating with continuous inductor current. These problems are open-loop instability with duty cycles above 50%, Fig. 4, sub-hamonic oscillation, ringing inductor current, and sensitivity to noise.
Most of these problems can be overcome by adding slope compensation. This is achieved by adding a ramping voltage, derived from the switch control oscillator, to the current waveform. More commonly the ramping voltage is subtracted from the error amplifier signal. Optimum current mode control is achieved with a voltage that slopes at a rate equal to half the down slope of the inductor current. In discontinuous operation, no sub-harmonic oscillations can occur.

Fig. 5. Highly
integrated ICs allow a switch-mode converter to be built using very few components, as this 3 to 5 V step-up supply shows. Output current is 100 mA maximum.

Soft-start circuits

On powering up into a load, both linear and switched-mode regulators take a large current surge from the input supply to charge capacitors on the line. This can cause the input supply to drop, or worse, collapse completely. In turn, this can lead to false microprocessor resets, failure to power-up - especially with partially full batteries - or even the system pulsing on and off. With switched-mode supplies this problem is made worse as large peak currents are taken to store energy in the inductor.

The purpose of the soft-start circuit is to slowly ramp up the converter output supply, producing a gradual increase in current demand. This results in an orderly system power up. A typical method is to clamp the error amplifier output to a slowly ramping voltage, from an RC circuit for example. until the amplifier output has reached a nominal value. The soft-start circuit then turns off, allowing the control loop to operate nomally.

Component selection

Component selection is a very important part of the design of a switched-mode supply. When prototyping, it is advisable to use sturdier devices than envisaged in the final system. Down-grading of the parts to reduce cost can be undertaken once peak voltages and currents have been measured using the final PCB layout. In this way, stray and parasitic inductances can be accounted for.
A design will often work with devices found lying around in the laboratory but to obtain the best performance, using the correct components is important. That said, it is rare that efficiency is the overriding criterion. Often the ratio of cost to performance is more important. Similarly, rather than obtaining 98% efficiency, generating the required voltages from an input supply is usually more important - as long as your supply does not turn out to be unreliable due to component stressing. So what parameters should be considered?

Capacitor. The main output capacitor should be chosen to have a low equivalent series resistance, or ESR, and series inductance. This limits the voltage step at the output when delivering the stored power to the load and capacitor. Generally, the larger the physical size of the capacitor the lower the ESR. A good rule of thumb is that at least ten times
the calculated capacitance is required to obtain an acceptable ESR. A good capacitor will not come cheap. but a large output voltage transient spike could do more costly damage. As an alternative an inductor and capacitor output filter can be used. This reduces the size of the main output capacitor.

Switching elements. The switching elements, i.e. the diodes and transistors, must be able to handle the highest voltages in the converter. This makes high breakdown voltages necessary. It is easy to get large voltage spikes that can destroy a device. The higher the breakdown voltage the less the likelihood of the device being damaged by a switching spike. The penalty is cost.
Any switching devices used must have fast rise and fall times, otherwise power will be lost during switching. Low on resistances for mosfets, or saturation voltages for diodes and bipolar transistors, are necessary to reduce the power losses. Mosfet $/_{D}{ }^{2}$ is affected by $\mathrm{R}_{\mathrm{DS}(o m)}$. diode I_{F} by I_{F} and bipolar transistor IC by $V_{\text {CEwat }}^{\prime}$.

Diode. Important diode parameters are switching time. forward voltage, breakdown voltage. and leakage current. Forward voltage of the diode determines the loss in the device when it is fully conducting: the higher the current flow the higher the voltage drop. Further, using a diode with a greater current handling capability than necessary results in a lower forward voltage.

Diode reverse breakdown voltage is important in inverting or voltage boosting power supplies. The diode must handle the maximum output to input differential voltage, plus any voltage switching spikes. Diode reverse breakdown has a detrimental effect on regulation. Selecting a diode with a reverse voltage rating of at least twice the differential voltage is a good starting point.
General purpose rectifier diodes are not suitable for suitching even moderate currents quickly. Fast, small signal diodes can be used with caution in low current designs. Schotky diodes have a low forward drop of typically 0.3 V . and switch on and off quickly. However. they suffer from lower reverse breakdown voltages and higher leakage currents thar conventional diodes. Leakage currents lower the efficiency of micro-power designs.

Mosfet driving

To drive a mosfet gate successfully, the total gate charge must be known. This is normally on the data sheet, quoted in nano-coulombs, nC . Take for example the IRF730. This has a maximum total gate charge, Q_{g}, of 35 nC . Maximum drive current required at a frequency f is $i_{\max }=Q_{g}$.f. For the IRF730, maximum drive current is $\pm 3.5 \mathrm{~mA}$ at 100 kHz .
Total gate charge is derived from the equivalent input capacitance, which is non-linear. This varies with both V_{CS} and $V_{D S}$, and is made up of contributions from the gate-source capacitance and the non-linear Miller capacitance across the drain and gate, $C_{\text {ris }}$. On most data sheets, $C_{\text {rss }}$ is called the reverse transfer capacitance.
Equivalent input capacitance is,

$$
\epsilon_{\mathrm{i}}=C_{\mathrm{iss}}+\left(1+A_{\mathrm{v}}\right) C_{\mathrm{rss}}
$$

where A_{v} is voltage gain. Effects of $C_{\text {rss }}$ can therefore not be ignored. If only $C_{i: s}$ is considered then the drive current requirements will be grossly underestimated, derived from $Q_{\mathrm{iss}}=C_{\mathrm{iss}} V_{\mathrm{GS}}$.
The closer $C_{\text {rss }}$ is in value to $C_{\text {iss }}$ then the higher the drive current requirement will be. If no value, or graph, is given for Q_{g}, or for switching times, then the device is possibly not intended for use in switching circuits. In this case it is better to select another type.
Emitter follower or common emitter stages are capable of driving the gate at low frequencies, say 10 kHz or less. By 100 kHz however, they are often unable to discharge gate capacitance, although they may still be able to charge it. This leads to unwanted dissipation and possible device damage due to the slow turn-off.
Push-pull gate drive stages become essential as the operating speed of the switcher increases. Obviously, depending upon the mosfet chosen and the operating speed, $H C$ logic devices with totem-pole output stages can be used. A $74 \mathrm{HCO8}$ gate can source or simk 4 mA , while $A C$ series logic is capable of driving to $\pm 20 \mathrm{~mA}$.
In boost/flyback converters, another capacitive problem can occur due to the capacitive coupling between the drain and gate, i.e. $C_{\text {rss }}$. As the inductor voltage rises at turn-off, gate voltage also increases due to capacitance between drain and gate. This can rise above the gate breakdown voltage, destroying the device, so a zener diode gate clamp is essential.

Bipolar devices. Unless switching frequencies of a few tens of kilohertz and low currents are required it is not worth considering using bipolar devices for the main power switch. Mosfets do a better job. To achieve a reasonable saturation voltage, $V_{\text {CE(sat) }}$, base currents of at least a tenth of the maximum collector current need to be used. Efficiency of the design can be reduced dramatically. Power loss during the transistor switch on and off time occurs as a result of charge storage in the base region.
As an illustration, the first SMPS I designed while a junior engineer resulted in a once proud transistor being reduced to a charred lump of plastic. I didn't attempt to design another for five years! This was alleviated on the next incarnation by using a Baker clamp around the device to stop junctions being driven into saturation.

Mosfet. A large number of problems found with bi-polar transistors are overcome by using a mosfet. Its two main advantages are switching speed and ease of driving. Mosfets have drawbacks though. The gate-source junction is more easily damaged by high voltages than its bipolar counterpart and zener protection diode is essential.
Secondly, the quoted drain-source resistance is given for a specified gate-source voltage, which is often higher than you might think. A logic level mosfet may turn-on at 1.8 V . To achieve the desired $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ however, the gate must be driven to 4 V . This is quite a contrast to the 0.6 V or so needed for a bipolar device.
Another much quoted advantage of mosfets is that they are voltage driven and therefore require next to no gate current. This is not the complete story. Used as simple switches this is the case, i.e. dc drive. But at the speeds required of a SMPS this is not so, and ac drive current is required. A mosfet input is essentially capacitive, and this capacitor must be charged up. Equally importantly it must be discharged to make the device switch within the desired time (discussed further in one of
the panels). The mosfet with the lowest $C_{i s}$ and $C_{\text {rss }}$, and the highest forward transconductance, g_{fs} should be chosen.

An integral diode across the drain and source is inherent in any mosfet structure. Normally it is not turned on and causes no problems. Its breakdown voltage and current capability are in general on par with those of the mosfet itself. However should the diode be turned on, its reverse recovery time is often an order of magnitude larger than the switching times of the mosfet. For example, the IRF730 mosfet will switch in around 35 ns , but the integral diode's reverse recovery time, t_{rr}, is 600 ns , during which time it will be dissipatıng power.

Inductor. The inductor is the element of a switched mode supply that causes the most difficulties in both calculation and construction. Looking at the various IC manufacturer data sheets, the most common method used to define the inductor is to base its value on the desired current change - i.e. ripple current through the inductor while the switching element is on. For continuous mode, this is usually set to around a fifth of the maximum allowable switch current. For a particular peak switching current, the regulator will give close to maximum output power. However, the main requirement of the inductor is that it must be able to store the required flux without saturating at the current level produced while the switch is on.
The following guide-lines are also useful when choosing an inductor. Inductance should be low enough to store the required energy at worst case conditions, i.e. minimum input voltage and switch on time. It should also be high enough so that the maximum current ratings of the switch and the inductor are not exceeded at worst case, during maximum input voltage, again at switch on time. In addition, the inductor must have a low resistance to limit power losses, which is achieved using thick wire.

Where electro-magnetic interference, EMI.
is important, a toroidal or pot core should be used. With these core forms, most of the flux is contained in the core and does not leak out. There are many inductor manufacturers and it is generally easier and cheaper to buy a ready made device. Most manufacturers quote maximum allowed current, resistance and frequency.

Parasitics

Parasitic inductance and capacitance do not affect the input-to-output voltage transter function of a conventer, but lead to stressing of the switching elements. In general it is parasitic inductance rather than capacitance that causes problems, especially in flyback converters.

Stray and parasitic capacitances tend to increase turn off and on times, leading to power dissipation in the switching elements. However, junction capacitances of semiconductors can cause problems, as with $C_{\text {rss }}$ in a mosfet. Compared with standard devices, Schottky diodes have a high capacitance.

A 2 mm diameter wire in free space has an inductance of around $1.3 \mu \mathrm{H}$ per metre. or $0.4 \mu \mathrm{H}$ per foot. Looking at parasitic inductance, what sort of voltage level can be generated'? If maximum current flowing is 5 A . and the mosfet can switch off in say 50 ns , then the rate of change of current, $\mathrm{di} / \mathrm{dt}$, is $100 \times 10^{6} \mathrm{~A} / \mathrm{s}$. Any stray inductance around will convert this rate of change of current to a voltage spike. The voltage can be derived from the formulae for inductance,

$$
\mathrm{I}^{\prime}=L . \mathrm{di} / \mathrm{dt} .
$$

As a result. $13{ }_{n} \mathrm{H}$ per centimetre of inductance (or 33 nH per inch) times $100 \times 10^{6} \mathrm{~A} / \mathrm{s}$ produces a spike of $1.3 \mathrm{~V} / \mathrm{cm}(3.3 \mathrm{~V} / \mathrm{in})$. This voltage adds to the output level and can cause breakdown of the switching element. In addition, stray inductance can render a fast switching diode useless as it will slow the turn-off speed of the device.

Similar problems occur in transformer-cou-
pled designs where leakage inductances can create large voltage spikes. causing voltage breakdown in devices. Energy associated with these leakage inductances also has to be dissipated by the switching elements. These unwanted inductances can be minimised by maintaining tight magnetic coupling between the windings and the judicious use of $R C$ snubbing networks.

Layout

Layout of a switched-mode power supply is very important, and is even more so at high frequencies and powers. The first point is to keep all tracks as short as possible. This is especially important around the high current switching circuitry.
Input supply should be bypassed with good quality electrolytic and ceramic capacitors placed as close as possible to the switching mosfet and inductor. Output decoupling/filtering capacitors should again be as close as possible to the switching circuitry.
While laying out the circuit it is worth while considering possible parasitic/stray induclances, and modifying it to try 10 minimise them. Likewise watch out for capacitive pick up due to adjacent trachs being too close together. This can be a problem when unwanted signals get back into the feedback loop. Heavy-current tracks should be kept as wide
as possible to lower resistance, and it is worthwhile considering the use of board with a thicker copper layer.
Ground return paths can be a problem: there is little point mounting the decoupling capacitor next to the mosfet and having its ground connection some distance away. Further, it may be wise to separate signal and high current paths. and have a single point connection linking them. A complete ground plane is ideal. If a ground plane is not an option, the ground copper area should be naximised wherever possible. Ground returns should be linked at a single star connected grounding point.

Designing circuits

There is currently a variety of complete monolithic switched-mode converters available. making it relatively easy to design a switching power supply. Three simple examples are shown in Figs 5 to 7. These illustrate how few external components are required.
In the first design, Fig. 11 , a 3 to 5 V step-up converter hased on the Linear Technology LTIO73 is shown. The second, Fig. 12, is an inverting circuit based on the Maxim MAX6.34, while the third, Fig. 13. is a stepdown converter. Other devices are available from companies such as SGS-Thomson, Texas Instruments and National

Semicenductor - to name but a few. Cheap inductors suitable for low power circuits are available from Toko, and Coiltronics.

References

AN246, U3842 Provides Low-cost Currentmode Control, Designers' guide to power products, Application Manual, 2nd edition, June 1992, SGS-Thomson Microelectronics. Power MOS in switching - an evaluation method and a practical example, Technical note, pp. 63-74 Power mos devices - data book (1st edition), SGS-Thomson
Microelectronics.
Fish P. J., Electronic noise and low-noise design, Macmillan New Electronics series, Macmillan 1993, London, ISBN 0-333-57310-2. Study of a model for mosfet gate-charge, Techncal Note, p.75-83,
Power mos devices - data book, 1st edition, SGS-Thomson Microelectronics.
Mospower applications handbook, R. Severns (ed), Siliconix, Santa Clara, California, ISBN 0-930519-00-0.
U.97- modelling, analysis and compensation of the current-mode converter, Application note, Linear IC databook, 1987, Unitrode Integrated Circuits.

SEETRAX CAE - RANGER-PCB DESIGN

Ranger1 $£ 100$

* Schematic capture linked to PCB
* Parts and wiring list entry
* Outline (footprint) library editor
* Manual board layout
* Full design rule checker
* Back annotation (linked to schematic)
* Power, memory and signal autorouter - 150

All systems upward compatible. Trade-in deals available.
Call Seetrax CAE for further information\derno packs. Tel 0705591037

Fax 0705599036
Seetrax CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hampshire, PO8 0SG

All trademarks acknowledged.

Ranger $2 £ 599$

- All the features of Rangerl plus "
* Gate \& pin swapping (linked to schematic)
* Track highlighting ". "". "
* Auto track necking
* Copper flood fill ${ }^{*}$
* Power planes (heat-relief \& anti-pads)
* Rip-up \& retry autorouter

- . Ranger $\mathrm{E}_{\mathrm{C}} 500$

Ali the features of Ranger2 plus ${ }^{*}$

* UNIX or DOS versions
* 1 Micron resolution and angles to $1 / 10$ th degree
* Hierarchical or flat schematic
* Unlimited design size **
* Any-shaped pad
* Split power planes
* Optional on-line DRC
* 100% rip-up \& retry," pušh \& shové ${ }^{*}$ autorouter * *

Outpiuts to:

* 8/9 and 24 pin dot-matrix printers
* HP Desk/Laser Jet, Canon BJet, Postscript (R3 only)
* HP-GL, Houston Instruments plotters
* Gerber photoplộters
* NC Drill Excellon, Sieb \& Meyer
* AutoCAD DXF.

POWERFUL SCHEMATIC CAPTURE, PCB DESIGN AND AUTOROUTING ALL FOR JUST $\mathbf{3 3} 35 .$.

PROPAK AR provides all the features you need to create complex PCB designs quickly and easily. Draw the circuit diagram using the powerful facilities of ISIS DESIGNER + and then netlist into ARES AUTOROUTE for placement, autorouting and tidy up. Advanced real time design rule checks guarantee that the final PCB will correspond exactly with the schematic thus saving you from costly layout errors and time consuming debugging.

- Attractive, easy to use graphical interface.
- Object oriented schematic editor with automatic wire routing, dot placement and mouse driven place/edit/move/delete.
- Netlist generation for most popular CAD software.
- Bill of Materials and Electrical Rules Check reports.
- Two schemes for hierarchical design.
- Automatic component annotation and packaging
- Comprehensive device libraries and package libraries including both through hole and SMT parts.
- User definable snap grids (imperial and metric) and Real Time Snap to deal with tricky SMT spacings.
- Manual route editing features include Auto Track Necking, Topological editing and Curved tracks.
- Autorouting for single, double and multi-layer boards.
- Non autorouting PROPAK is available for just $£ 250$ if you do not need or want the router.
- Full connectivity and design rule checking
- Power plane generator with thermal relief necking.
- Graphics support to 800×600 Super VGA
- Output to dot matrix and laser printers, HP and Houston plotters, Postscript devices, Gerber and Excellon NC machines plus DXF and other DTP file formats.

CADPAK

Two Programs for the Price of One

ISIS SUPERSKETCH

A superb schematic drawing program for DOS offering Wire Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more.

Exceptionally easy and quick to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest.

PCB II

High performance yet easy to use manual PCB layout package. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more.

Alan Chadwick writing in ETI (January 94) concluded "At $£ 79$ I thought this was an excellent buy.

ISIS ILLUSTRATOR

Schematic Drawing for Windows

Running under Windows 3.1, ISIS ILLUSTRATOR lets you create presentation quality schematic drawings like you see in the magazines. Furthemore, when the drawing is done, transferring it to another document is just a matter of pasting it through the Clipboard.

Now used by a number of prominent technical authors to illustrate their latest books and magazine articles.

Call us today on 0274542868 or fax 0274481078 for a demo pack state DOS or Windows. Multi-copy and educational discounts available.
Prices exclude p\&p ($£ 5$ for U.K) and VAT. All manufacturers' trademarks acknowledged.
14 Marriner's Drive, Bradford, BD9 4JT.

Motor
 Deriving its basic control signals from a PC with i/o card, this precise driver for a 180 W dc motor involves a number of power control concepts including PWM, speed feedback and protection mechanisms. Being modular, it makes a useful teaching aid, as lecturer Peter Hale* explains.

Speed control of motors is used extensively in industry. Crames, ship winches and conveyer belts tor example all use motors whose speed is timely controlled.

Both ac and de motors can be used in speed control but each has its own advantages. AC motors are imexpensive hut their controllers inverters - lend to be complex and expensive. DC motors on the other hand are relatively expensive but their controllers are inexpensive and simpler
The main advantage of dc motors is that their speed is easy 10 control. In anddition, speed changes are smoother and they offer better torque characteristics. Where only a portable do supply is available and accurate speed control is needed, de motors are the hest alternative. An example is tork lift trucks. Although they operate on low voltage, the chopper control principle is still used
Controlled power rectifiers make it possible to link a de machine to an ac mains supply regardless of whether the supply comes from the national grid or on-site generators. To this end speed control packages are readily availahle. This article discusses one such packinge using pulse width modulation. PWM techniques.
I designed this system primarily as a teaching device for engineering undergradates, to enable them to learn basic techniques of electronic design. Since it is a teaching aid, the lCs used in the controd electromics are not dedicated motor-controt solutions
The entite system is closed loop. A microcompuler controls motor speed and receives back information about angular velocity and the temperature of the molor ficld windings. There are four distinct parts 10 the system. Two modules carry the power electronics signal processing sections while the remaining two comprise transducers and the controlling C program, Figs 1, 2.

Power electronics module

Elements of the the power module are prescnted in Fig. 3. A constant 220 V is

Characteristics of dc motors

This curve and equations show that torque is directly proportional to armature current.

$$
\begin{aligned}
& T \propto I_{F} I_{A} \\
& \text { or. } T \propto \Phi I_{A} \text { viz. } T=K \Phi I_{A}
\end{aligned}
$$

where I_{F} is field current and Φ is flux per pole in weber. $K \Phi$ is constant for constant current.
Torque as a function of armature current in a dc motor.

Speed of a dc motor falls predictably as torque increases according to these relationships.

$$
N=\frac{60}{2 \pi}\left[\frac{V_{A}}{K \Phi}-\frac{R_{A} T}{K \Phi^{2}}\right]
$$

where N is speed rev $/ \mathrm{min}, V_{\mathrm{A}} / K \Phi$ is no-load speed and R_{A} armature resistance. This equation can be written as,

$$
N=\frac{60}{2 \pi}\left[\frac{V_{A}-I_{A} R_{A}}{K \Phi}\right]
$$

$K \Phi$ is constant while $J_{\mathrm{A}} . R_{\mathrm{A}}$ is small, typically $<5 \%$ of V_{A}. Hence motor speed is approximately proportional to applied armature voltage V_{A}.

Speed falls

approximately
linearly with
torque.

This equation shows the increase of mechanical output power with rising torque.

$$
P=\left[\frac{V_{A} T}{K \Phi}-\frac{R_{A} T^{2}}{(K \Phi)^{2}}\right]
$$

It assumes a separately excited field, i.e. a field with a voltage applied that remains constant regardless of armature voltage. A constant field voltage produces a constant field current and hence a constant $К \Phi$.

Mechanical output power against torque.

Fig. 1. Key elements of this modular controller for a 180 W dc motor are a mosfet power interface, pulse-width modulator driver and transducer feedback. Being PC based, user interfacing is easy to develop and low cost.
applied to the field and the power mosfet supplies a chopped dc voltage across the armature. The maximum applied chopped armature voltage should be about 180 V dc.

The relay's purpose is to remove the field voltage following a shut down. If the computer detects excessive field temperature or speed then a function named SHUTDOWN in the controlling C program is called. This routine removes armature voltage by switching off the mosfet. It then de-energises the relay to remove field voltage. It is important to note here that, for separately excited fields, the armature voltage should never be in situ when field voltage is absent.
The push switch provides a kick, necessary to energise the relay. In this way, power is provided to the signal processing electronics via the transformer and the four voltage regulators.

Fig. 2. Details of the 180w dc motor used. A constant supply of 220 V dc is applied to the field while a variable voltage feeds the armature to control speed.

Power ground GND_{2} is optically isolated from the computer ground GND_{1} and must remain so. Figure 4 shows the field voltage and armature voltage when the motor was running at $965 \mathrm{rev} / \mathrm{min}$.

Signal-processing module

There are many different ways to carry out the signal processing. I have chosen frequency-tovoltage conversion since is one of the

Fig. 4. Field and armature voltage for the 180 W dc motor using the controller in Fig. 3. Speed, altered by varying the armature pulse width, is $965 \mathrm{rev} / \mathrm{min}$.
techniques that is of interest to students.
Figure 5 shows the signal-processing module. Control input, on the left, feeds a Bytronics card which is an i / o interface mounted inside a PC. Its timer-zero output produces 50% duty cycle pulses at a typical frequency of 100 Hz . This pulse train is derived via PC software and transmitted to the power electronics via the opto-isolator.
Signal for input to pin 1 of the frequency-to-

Learning goals

Students taking on the task of reproducing this system have the potential to learn some important techniques in electronic design. Among them are,

- programming in C
- analog to digital conversion
- optical isolation concepts
- converting frequency to voltage
- voltage conversion (dc to dc)
- comparators
- oscillators
- amplifiers and buffers
- driving a power mosfet
- power supplies
- transducers
- dc machines

Fig. 3. Power control for a dc motor is greatly simplified by the use of a high-voltage mosfet. The relay is added to remove field voltage when the shut-down command is received.

Fig. 6. Waveforms found in the signal processing section, Fig. 5. Pulses in the top two traces, from circuit points $W F_{1}$ and $W F_{2}$ respectively, are derived from the PC and changed to a dc level by a frequency-to-voltage converter. In turn, this level is used to control the width of pulses fed to power mosfet. Third photo down shows inputs to comparator $\mathcal{I C}_{7}$, at around 6.4 V dc , and bottom is final PWM output.

Fig. 5. Signal processing circuitry is optically isolated from the i/o card which is a PC plug-in. Under PC control, the upper part of the circuit develops PWM to drive the fet in the power section. Both lower op-amps control the shut-down relay.

Further examples of pwm in action

Using pulie-width modulation, an inverter operčting from a fixed-voltāge dc supply can generate an ac output that is variable both in amplitude and frequency. In the diagran is a circuit for producing three-phase output from a single-phese ac supply. Load is switched alte nately between the positive and negative rails of the do supply. By controlling the switching instants of the power devices, an output waveforn with the desired frequency and amplitude can be produced
Powe- nosfet switching speeds allow switchirg frequencies outside the audible range. - y oically, the switching frequency is an order of magnitude hig eer than the output -requency. This make; output filtering a practical proposition so nverters can be made with virtually no harmonic and rfi problems. Audible acoustic noise is also elin nated, making such systems acceptable in domestic and office enviror reents.
Tradi-icnally, PWM has been generated by inputting a triangle wave and sinusoidal reference into a comparator. T in method is gradually being replaced by digital waveform generation The digital method has the advantages of freedom from dift, absence of dc components in the outout and perfect phase balance.
Digital techniques also allow non-sinusoidal waveforms to be prodiced. An examp e of the need for this is when output of the inverter needs to be increased by adding a third harmonic to the phase volage waveform.

Fig. 7. Feedback used to determine the speed of the motor is processed by this tachometer circuit which turns frequency into a dc level. Pulses representing rotor speed are derived from a disk on the motor shaft whose black stripes are detected by a reflective opto sensor.

Fig. 8. Motor temperature, derived from an AD590 sensor potted into the motor field winding, is fed to one input of the PC i/o card. A second input receives speed feedback from the motor tachometer circuit.
voltage converter is offset by the mid-left opamp. Output of the converter is a dc voltage directly proportional to the frequency of the timer output. A further op-amp amplifies this signal for driving the non-inverting input of the comparator.
Inverting input of the comparator comes from the oscillator, top left, so a PWM waveform is obtained at the output of the comparator. This signal drives the gate of the power mosfet. The oscillator is a relaxation type with two time constants, namely T_{1} determined by the 22 nF capacitor and $6.8 \mathrm{kS} \Omega$ resistor, and T_{2} by the same capacitor and forward bias resistance of the diode. This produces a waveform with a periodic time of 160μ s, i.e. 6.25 kHz , which is the constant switching frequency of the power mosfet.
Figure 6 shows the waveforms of the signal processing module. Output from the comparator in Fig. 5 controls switching of the relay in Fig. 3. The first waveform is integrated by the RC combination before the comparator inverting input, giving about 1.2 V dc at the input. A reference of about 0.6 V is set at the comparator non-inverting input via the $5 \mathrm{k} \Omega$ potentiometer. As a result, when this waveform is present, comparator output is low and the relay is energised. When the waveform is not present, i.c. when timer zero is disabled. comparator output goes high and the relay is de-energised. In this situation, the live line is opened, removing power from the entire system.

Transducers

Speed of the dc motor is monitored by the computer. The tachometer shown in Fig. 7 is fed by a reflective opto-switch placed about 4.6 mm away from a disc connected to a motor

Mosfet versus bipolar in motor drives*

Due to the high switching losses associated with bipolar transistors, mosfets have clear advantages in motor drives switching at 20 kHz or more. However, for PWM drives operating at 1 to 2 kHz , mosfets must be compared with bipolar transistors on the basis of conduction losses and cost.
Conduction losses in a mosfet can be reduced to any desired level by using a device with a large enough die, or by paralleling devices so the issue is mainly one of cost. Consider an application needing 400 V transistors and where maximum load current is 5 A . The nearest equivalent to a power mosfet is a Darlington transistor with an integral freewheeling diode. A bipolar device rated at 8 A will generally have a gain that is just adequate at 5 A . Such a device would typically have a guaranteed maximum $V_{C E}$ value of $2 V$ when carrying 5A.

Features relevant to motor drives of mosfet versus bipolar transistors

IRF350

Integral free-wheel diode No snubber needed Low switching losses Can be driven directly from buffered logic High overload capability Avalanche operation

Bipolar device

Some Darlingtons have diode Snubber often required
High switching losses
New hase drive and snubber designs needed for different power rating Limited overload capability Usually no avalanche capability

The IRF350 is a 400 V power mosfet with a drain-source on resistance of $300 \mathrm{~m} \Omega$ at $25^{\circ} \mathrm{C}$. At $100^{\circ} \mathrm{C}$, its resistance rises to 0.5Ω. This means that peak forward voltage drop at 5 A and $100^{\circ} \mathrm{C}$ is 2.5 V , wtich is roughly equivalent to that of the bipolar Darlingtor. However, switching and base-drive losses will be lower for the mosfet. Further, the Darlington may need a snubber to make sure that it operates within its safe operating area during switching.
Advantages offered by mosfets increase when base/gate drive requirements and the ability to withstand adverse operating conditions are considered. While bipolar transistors need both positive and negative base current to achieve respectable switching times, mosfets can be driven directly from buffered logic.
Additionally, surge current ratings for mosfets are approximately four times their average current rating. The IRF350 for example can withstand 60A surges, representing a 1200\% overload.
If a mosfet-based motor drive needs upgrading to deliver more power, it is usually a matter of simply replacing the mosfets. In a bipolar-based design, base-drive and snubber circuits will probably need altering to suit the new transistor. Mosfets such as the IRF350 need no snubber.
*This information is derived from a comprehensive application note ertitled Using Hexfet III in pwm inverters for motor drives and ups systems, from International Rectifier.

Fig. 9. This software, written in C, runs on a PC to control motor speed. As well as controlling motor speed using tacho feedback information, it monitors winding temperature and provides user interfacing.

Critical software timing

The-e are two global variables in the soft:vare, Fig. 9 - COUNT and i. Var able COUNT in line 183 of MIFJ.C controls the sampling interval of the field temperature. I set his variable to 55 , which gave one minute intervals. Variable COINT is in the TEMP function.
Variable i, in line 194 of MIFV.C, cortrols the total run time of the moor. For example testing for 'if i>91' will produce a run cycle of 90 mir utes. Variable i is also in the TEMA function.
Notor speed at which SHUTDOWN is called is limited by setting a var able called $a v$. This local var able is in the angular-velocity AN $\exists V E L$ function.
There is a further local variable cal ed av in the TEMP function. Not to be confused with $a v$ in ANGVEL, this variable sets the upper limit of fiell winding temperature at which SH JTDOWN is called.
The software is set so that ternperature is sampled once per mi ute and 90 samples are taken. Yoı can set your own parameters by assigning values to global variables CCUNT and i.
Data is stored in an array A[i] and a $£$ raph of field temperature as a function of time is drawn following a r -BHIT after a 90 minute run.
shaft. There are 32 reflective strips on the disc printed on to a matt black background. Output of the tachometer is 15 V de for $1500 \mathrm{rev} / \mathrm{min}$.

In Fig. 8 is the circuit for processing the transducer signals. Here, the $33 \mathrm{k} \Omega / 10 \mathrm{k} \Omega$ resistors divide tachometer potential to give 3.5 V at $1500 \mathrm{rev} / \mathrm{min}$. This voltage forms input to channel four of the $A D C O 8 / 7$ analogue-todigital converter.

Temperature of the field windings is monitored by the computer. Temperature transducer $A D 590$ is a constant current source type with an output of $1 \mu \mathrm{~A}$ per kelvin. It is potted in epoxy within the field windings of the motor. A precision $1 \mathrm{k} \Omega$ resistor to ground effects current-10-voltage conversion from $1 \mu \mathrm{~A} / \mathrm{K} 10 \mathrm{lmV} / \mathrm{K}$.

Gain of the differential amplifier is 33.33 . Level at the buffer output is set to 273.2 mV by the $5 \mathrm{k} \Omega$ potentiometer on the left. Output of the $A D 590$ is 273.2 mV when temperature $0^{\circ} \mathrm{C}$. Hence at $\left(0^{\circ} \mathrm{C}\right.$, output of the differential amplifier is 0 mV and at $100^{\circ} \mathrm{C}$ it is 3.33 V . From differential amplifier, the temperature signal is fed to channel 5 of the A-to-D converter. A negative voltage rail, needed for the differential amplifier, is provided by the /CL7660) voltage converter.

Control software in C

Called MIFV, the C control program has nine user defined functions. Its source code is about

11 Khyte and the compiled version, in EXE form, is about 43 K byte.
Figure 9 is a flowchart for the whole process. User-defined functions are.

MAIN
OUTPLT
INPUT
AGAIN
CONFIRM
ANGVEL
TEMP
SHUTDOWN
GRAPH
Very simply, the program works as follows. INPUT is called so that the desired motor speed can be entered by the operator via an onscreen menu.
Next. output is called to set up the timer on the PC card. Routine AGAIN now invites the operator to change motor speed or exit. Should exit be requested. shutdown is called. Meanwhile temperature of the field windings is monitored together with motor speed. If either exceeds user defined limits then SHUTDOWN executes.

Field temperature and motor speed are constantly written to the screen. In my system. maximum field temperature is set at $100^{\circ} \mathrm{C}$ and maximum speed at $1500 \mathrm{rev} / \mathrm{min}$. Graph Fig. 10 shows how field temperature rises in the dc motor for a stationary armature in a worst case condition.
In summary the program first invites you to select any one of 40 discrete motor speeds. It then monitors field winding temperature and motor speed, closing down the system should temperature exceed, say $100^{\circ} \mathrm{C}$ or speed rise above $1500 \mathrm{rev} / \mathrm{min}$. Shut down also occurs when 'exit' is requested from the menu. The SHLTDOWN routine removes armature voltage followed by field voltage. Finally, a graph is drawn and control returns to DOS.
Port B of the Bytronics i / o card carries data from the a-to-d converter. Port A is used for control with bit 7 feeding the converter output enable and bit 6 starting conversion. Bits 2 to 5 form address lines A to C respectively. These address lines are also needed to control the converter.
A ${ }^{\circ} 286$-based PC with a 10 MHz clock gives about 40 discrete motor speeds. Any computer used will clearly need graphics dump software.

Motor control software on disk

A disk is available containing the C motor control program covered in this article. It includes a 10 Kbyte C source file, 6 K of object code and a 42 K execution file. A copy of the disk can be obtained by sending £10 to EW\&WW, Quadrant House, The Quadrant, Sutton, Surrey SM2 $5 A S$.

Technologies change

Ericssons TBT is used in over 50 combtries world-wide

Our commitment to Training does not

Commitment to training is essential in the rapidly changing communications world. At Erissson the importance of training has long been recognised. Since the early 1980s Ericsoon has developed Technology Based Training (TBT) which allows personnel to be trained where and when the user needs it.

Ericssons TR' presents complex and difficult training material in an interesting and exciting way. It is a self-paced, interactive. user-friendly and cost effective method of emhancing technical competence.
Ericsson's generic range of IBM PCTM compatible courseware includes the following courses:-

- Introduction to Telecommunications
- ISI)N Orerview and ison Advanced
- OSI \& Data Networks and OSI Advanced
- X. 25 and Related Protocols and X. 25 Aclvanced
- C7 Signalling System Part 1 and Part 2
- Inderstanding Modems
- PCM Principles
- Cellular Mobile Radio
- X. 400 () Marvien

For further information please contact your local Ericsson office or

Marketing Department,

Ericsson Systems Expertise Limited,
Adelphi Centre, Upper George's Street, Dun Laoghaire, Co. Dubin, Ireland Tel: + 35312800455 . Atter 5pm: +35312843030 . Fax: + 35312805914.

DESIGN AND BUILD YOUR OWN OPAMP WITH OPAMP CREATOR FOR JUST £30 + VAT.

You have heard about SpiceAge for Windows being able to simulate all manner of useful conditions in a circuit. Now with OPAMP CREATOR, you can invent or model opamps, some ideal, others with maybe large offsets and nonlinerarities to check how your circuit behaves. OPAMP CREATOR works via DDE with Level 3 (or higher) of SpiceAge for Windows to create a library circuit that conforms to your defining parameters. The model synthesized is usually as accurate as SPICE models (which may be used in level 7 or higher) but because it exploits SpiceAge's special polynomial pragmas to give account of non-linear behaviour, it calculates typically 5 times faster.

Do you really need such an expensive opamp or were you just lucky when it worked that once?
These are just some of the questions SpiceAge users are now finding out for themselves. For more information, contact Those Engineers, specialists in circuit simulation since 1982.
Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP. Tel 081-906 0155, FAX 081-906 0969

CIRCLE NO. 117 ON REPLY CARD

PCB \& SCHEMATIC CAD	DIGITAL SIMULATION	ANALOGUE SIMULATION	SMITH CHART CAD
EASY-PC $£ 98$	PULSAR $\mathbf{E 9 8}$	ANALYSER III $£ 98$	Z-MATCHII £195
- Design Single sided, Double sided and Multilayer boards. - One software package for Schematics and PCB's. - Standard output includes Dot Matrix / Laser / Inkjet printers, Pen Plotters, Photo-plotters and NC Drill. - Award Winning EASY-PC is in use in over 18,000 installations in 80 Countries World-Wide. - Runs on PC/XT/AT/286/386 with Herc, CGA, EGA, VGA. - Optional libraries S.M. Components etc. From £38.00	- At last! A full featured Digital Circuit Simulator for less than £1000! - Pulsar allows you to test your logic designs without the need for expensive test equipment. - Catch glitches down to a pico-second per week! - Includes 4000 Series CMOS and 74LS Libraries. - Runs on PC/XT/AT/286/386/ 486 with EGA or VGA. Hard disk recommended. - 74HC / HCT Libraries optional at $£ 48.00$ each.	- NEW powerful ANALYSER III has full graphical output. - Handles R's,L's C's, Bipolar Transistors, FET's, Op-Amp's, Tapped and Untapped Transformers, and Microstrip and Co-axial transmission Lines. - Plots Input and Output Impedances, Gain. Phase and Group Delay. - Covers 0.001 Hz to $>10 \mathrm{GHz}$ - Runs on PC/XT/AT/286/386/486 with EGA or VGA displays. - Very fast computation.	- Z-MATCH II takes the drudgery out of RF matching problems and includes many more features than the standard Smith Chart. - Provides quick accurate solutions to many matching problems using transmission line transformers, stubs, discrete components etc.etc.. - Supplied with comprehensive user instructions including many worked examples. - Runs on PC/XT/AT/386/486, CGA, EGA, VGA. - Ideal for both education and industry.
For full info' Phone, Fax or use Enquiry card!	Number One Systems Ltd. The Electronics CAD Specialists		Technical support free for life! Programs not copy protected. Special prices for Education. : +44-480-494042
Prices Exclude P\&P and VAT		ACCESS, AMEX, MASTERCARD, VISA Welcome.	

CIRCLE NO. 119 ON REPLY CARD

KESTREL ELECTRONIC COMPONENTS LTD

i All items guaranteed to manufacturers' spec.
is Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	$100+$
EPROMS				STATIC RAMS	
2764A	2.50	2.20	62256ALP-10	3.00	2.30
27C64-150	2.30	1.90	6264ALP-10	1.85	1.40
27128A-250	2.40	2.10	6116ALP-10	1.10	0.70
27256-250	2.40	1.90	6522P	2.40	1.80
27C256-150	2.90	2.30	65C02P2	2.90	2.50
27C512-150	3.30	2.50	65C21P2	2.90	2.50
27C010-150	5.80	4.00	65C22P2	2.80	2.40
MAX232	1.35	0.95	146818AP	2.20	1.65
D8748H	4.20	3.20	75176BP	1.60	0.80
D8749H	4.40	3.40	Z80A CPU	1.33	0.99
80C31-12	2.60	2.10	Z80A CTC	1.20	0.75
80C39P	2.80	2.20	Z80A DAR7	2.10	1.40
82C55-2	1.95	1.58	ULN2803A	0.70	0.46

$74 \mathrm{LS}, 74 \mathrm{HC}, 74 \mathrm{HCT}$ Series available
Phone for full price list
All memory prices are fluctuating daily, please phone to confirm prices
178 Brighton Road,
Purley, Surrey CR8 4HA
Tel: 081-668 7522. Fax: 081-6684190.

THE DEFINITIVE 'OFF-AIR' FREQUENCY STANDARD

- Usevides $10 \mathrm{MHz}, 5 \mathrm{MHz}$ \& 1 MHz
* Use it for callbrating equigment that rel es on quartz crystals. ICXOs

VXCOs. oven crystals

* Phase locks 10 DRCITWICH (rubidium controlled and traceable to NPL)
* For ADDED VALUE also phase locks io ALLOUIS (cesium controlied
and traceable to OP - French eq to NPL)
* Sine wave ootion of $10.5 \& 1 \mathrm{MHz}$ Nomina
- Sine aiz or

Output frequencies -
10MHz. 5 MHz , MHz Short term stability-better than $1 \times 10^{8}(1 \mathrm{sec})$ Typoral- $4 \times 10^{9}(1 \mathrm{sec})$ Long term - tends to

IDEAL BEGINNERS SCOPE, SCOPEX $4 S 66 \mathrm{MHz}$ SINGLE TRACE, INT/EXT TRIG, TRACE LOCATE, BRIGHT LINE AUTO, 10 mV SENSITIVITY, $1 \mu \mathrm{~S}-100 \mathrm{mS} / \mathrm{cm}$, etc. $£ 95$
AVO 85 MK 2586
AVOVALVE TESTERSML 2.4 CT160
PHILIPS PM 3065100 M HE DUAL TRACE \& T/B LEADER LBO-9C ALIGND ENT SCDPE E750 AVO COMPONENT COMPARA PHLLPS PM3232 10MHZ DUAL TRACE \quad £195 MARCONI TF2701 LCR BRIDGE TELEQUTPMENT DG725NHZ DUAL TRACE DEL T/B $£ 185$ MARCONI TF1313 LCR BRIDGE 0 25\% GOULD OS 255 15MHZ DL AL TRACE TELEQUIPMENT D61A 1OMHZ DUAL TRACE FROM $£ 99$ TEK 834 PROG DCANNER SURFACE UN
 TELEQUIPMENTO 10111)MHz DUAL TRACE TEKIRONIX 221560 MHz JUAL TRACE DEL T/B EKTRONIX 453A 5OMHZ DUAL TRACE DEL T/B P 8405A VECTOR VIME TER 1 GHz
§165 7SEG 12 "x9' DISPLAYS DIGITEXSIGNALEX LESSEY TCT 10 SIG GEM/ANAL $50-300$ BDS TELEQUIPMENT D67A 254Hz 2T DEL TB HiTACHI VC 601510 MHz DIGITAL STORAGE HP1340A X-Y DISPLAYS OERTLING VZO SINGLE PAN BAL $01 \mathrm{mg} / 200 \mathrm{~g}$ VACUUM PUMPS $15 \& 2 \mathrm{~m}^{3}$ hr $\mathrm{m}^{17 \mathrm{hr}}$ INGSHILL NS 154015 V 4 AA PSUS CASED AS 125 \& 149 GOULD 24004 4PEN CHART RECORDER MARCONI TF2304 AMFM VOD METER PORTABLE £249 PHILIPS PM6456 FM STEREO GENERATO MARCON TF2330 WAVE ANALYSER 2OHZ-50KHZ \& 149 MARCONI TF2300 FMIAM MODULATIONMETER H.P S315A 1GHz FICTR OTS \& 283 EVELL TM 38 MICRO $V-M E T E R 3 M H z$
 £249 RADOMETER AFM2 MOD METER 7 MHz -1GHz £395 CITOHCX6000 6PEN A4 PLOTTER CENT/RS232 £95 GENERAL RADIO 1531 A XENON STROBOTAC 215 FISONSFI-MONITORS MORY SNIFFERS 595 COMMODORE PETS D/DRIVES PRINTERS 149 COMARC 2303 MV SOURCES DUAL RANGE £69 INTRONIFG422 FUNC GENO $1 \mathrm{~Hz} \cdot 2 \mathrm{MHz}$
¢99
£15 $£ 10$

HALCYON ELECTRONICS
 423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383. FAX 081-542 0340

CIRCIE NO. 120 ON REPIY CARD

R.S.T. LAMEREN SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country

Over 5 million items in stock covering more than 6,000 different types, including CRT's camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers.
Where still available.
Obsolete items a speciality. Quotations by return. Telephoneitelex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD

1 Mayo Road, Croydon, Surrey CRO 20P
Tel: 081-684 1166
Telex: 946708
Fax: 081-684 3056

The right acquisition for PC data gathering?

Amplicon's DAP series of data acquisition hardware and software provides the complete development environment for specific data acquisition and processing applications. Allen Brown offers a developer's guide to a developer's system.

One of the principal uses of the PC in the engineering laboratory is to acquire signals from systems. The variety of analoguc acquisition expansion cards. which are commercially available, indicates healthy growth. There are many companies which supply hardware and sofiware for this market and the new entrant to the subject wiil probably be overwhelmed by the variety offered.
Two types of users of PC data acquisition systems can be identified. The first type of user would expect to purchase an analogue acquisition card, complete with operating software and have the whole thing up and running within half an hour. This is equivalent to an off-the-shelf product which performs a range of general purpose functions.
The second type of user would be interested in a tailor made product they would customise from a set of proprietory tools. This user would find a splendid product available from Microstar Laboratories (supplied by Amplicon) which has the collective title of the DAP Series (Data Acquisition Processor). The product consists of PC expansion card hardware and a comprehensive suite of software development tools.

DAP expansion cards

When using a traditional expansion card with analogue and i/o facilities only, all processing must be performed by the CPU in the PC. Not an ideal state especially if the PC is executing several concurrent tasks. An alternative approach is to transfer the intelligent processing from the PC onto the expansion card itself. This design principle underlies the DAP Series of products for intelligent data acquisition.
The hardware includes a range of intelligent expansion cards which have digital and analogue i/o facilities together with a microprocessor controller. The cheapest card (DAPSOOH I) has a sample rate of 75 kHz with an Intel 80138 whereas the top of the range card (DAP3200el102) has a sample rate of 312 kHz and features a 80486 SX 32 -bit microprocessor. All the cards have Intel processors apart from the DAP2400e which hosts the Motorola 56001 digital signal processor.
Many data processing tasks can be greatly specded up by using a DSP processor and for such applications the DAP2400e is worth considering. However it must be recognised that for intensive numerical processing requirements. this family of expansion cards is up against some formidabic opposition... Burr Brown and Loughborough Sound Images for example.

Each DAP expansion card is supported by its own onboard memory. For example, the DAP3200e is furnished with 4 K byte of dynamic ram which can be used for either data or program storage. As expected from a range of data acquisition cards, each has several multiplexed analogue i/o and digital i / o channels. One of the recognised problems of using expansion cards for data acquisition is the physical positioning of the $1 / 0$ pins which are hidden at the back of the PC and are not always easy to access. To alleviate this problent the expansion card can be connected to a bench top printed circuit board via a ribbon cable. The printed circuit board allows easy access to all the i/o lines with room to add load resistors as recuired. It also has a small patch area for the user to add extra gates which can be powered from the PC. The choice of DAP expansion cards represents a comprehensive range of options allowing the potential user to tailor their requirement with a specific board.

Software development tools

Having an cxtensive range of intelligent PC expansion cards would be of little value without suitable software development support products. Each DAP expansion card can host a real-time, multitasking operating system called DAPL. Being

An example of the DAP programming language ($D A P L$) written with the DAPview for Windows option.

Top of the range performance. The 32-bit
DAP3200e/102 samples at 312 kHz . But it carries a top of the range price: £3379.
resident on the card, this system may be accessed directly by downloading ascii command files from the PC to the expansion card. The programming of the expansion card is therefore performed by using the programming language. Like any other, DAPL can be structured with conditionals and constructs with the provision for error checking. It has a vast range of high level instructions referred to as the command list. The list consists of five command groupings

- data processing
- input contiguration
- output configuration
- function defïnition
- system control.

The data processing group has over eighty commands ranging from FFTs and proportional integral differential (PID) controllers to signal generators. The user`s program would therefore consist of a sequence of instructions from the command list. However the user has an alternative method of using the DAPL instructions. Microstar Laboratories also supply real-time plotting software called DAPview which allows interactive communication between keyboard, screen and expansion card. When DAPvieu is up and running the user can enter. via the keyboard. instructions from the command list which are transferred to the expansion card (where appropriate) and executed. By this means the user has an easy method of changing process parameters such as gain. sampling rate and output control signals. In fact it is quite possible to configure the expansion card purely from within DAPvien which is obviously attractive for the casual user. The software offers real-time graphics in various modes (line. bar and scatter plots), control over grids, screen colours, log or linear scaling and a number of other functions.
Microstar Laboratories has take the product development one step further by supplying an enhanced version called DAPricw Plus. This version contains an on line text editor for generating command files to control the DAP expansion

PRICES

DAP3200e/102 32-bit main board	$£ 3379$
MSTB003-01 analogue terminator board	$£ 122$
MSCBL 006-01 connecting cable	$£ 51$
Windows toolkit software	$£ 97$
Advanced development toolkit for C	$£ 265$
DAPWindows application software	$£ 249$

SUPPLIER DETAILS

Amplicon Liveline Ltd
Centenary industrial Estate
Hollingdean Road
Brighton
East Sussex 0273-608331
card. To futher the appeal of DAPview PLUS it is possible to implement a turnkey solution which will operate without user interaction.

DAP and Windows

A supplier of soltware to run on a PC today must take into account the potential demand for the product to run under Windous. Microstar has addressed this in a number of ways. Firstly by providing a Windows toolkit and secondly by providing DaisyL ab - Windows application software which will be available in a few months.
The Toolkit makes use of the now infamous Dynamic Link Library (DLL). This means that the resident DAP expansion card can be accessed by using any Windows development language such as Visual Basic. Visual C^{++}and Excel. Microstar Laboratories also supply an advanced development toolkit which integrates with Mierosoft C. However with the shifting emphasis towards C^{++}using object oriented design. it would probably be more appropriate for Microstar Laboratories to offer a choice of development toolkits
One of the main problems of any software running under Window's is the time consuming interrupt latency (time lost as the processor switches from task to task) an ever present burden in multitasking processing. However by using the DLLs the processing can be off loaded to the expansion card. Therefore custom realtime data acquisition and control software can be developed in run very efficiently under Windows.
The user that gets on well with DAPview will also appreciate a dedicated Windows version - DAPview for Windows. It operates similarly to the dos version except in a Window. This provides the opportunity of multitasking processes within the Windows environment.
DaisyLab, the other Windows software for $D A P$. is amed primarily at engineers who are not strongly inclined towards programming. It is designed around a graphical user interface which enables the user, with relative case, to access the DAP expansion cards directly from Windows through the use of icons. A separate review will be published in a future edition of $E W+W W$

User manuals

The series is well supported by a set of user's manuals, no less than live with the above products. The DAP manual contains a detailed discussion of all the entries in the command list and individual examples of use. There is a glossary defining many of the words which are pecutiar to the product range. For example a Pipe is a first in. first out dynamic data buffer between tasks. It needs to be dynamic in size because the data in and data out rates may vary: it would be quite difficult to glean this definition from other parts of the manual. The systems manual gives a detailed account of DAPrien and DAPriew plus together with examples of use when programming in C. QuickBasic. Pascal and Fortran.

The hardware manual discusses the detail of DAP expansion cards and the applications manual provides examples of the programming language DAPL. Finally, the Windows toolkit manual discusses in detail how to integrate the control of DAP expansion cards (using DLLs) into either Visual Basic. $\mathrm{C} / \mathrm{C}^{++}$. Turbo Pascal or Excel programs.
The DAP product series is a well engineered concept aimed at custom data acquisition systems. It will appeal directly to the engineer involved in designing specific purpose systems. All the tools are present for constructing closed loop control systems using PID control methods and multichannel data acquisition. It is however not for casual use but more for a minimum system for specilic applications. After all. minimum systems are easier to test, maintain and modify by other designers if necessary. DAP is well suited for this purpose.

only £99.00

FLOPPY DISK DRIVES

51/4 "from £22.95-31/2" from £21.95! Massive purchases of standard $51 / 4^{\prime}$ and $31 / 2^{\prime 2}$ drives enables us
to present prime product at industry beating low prices! All units (uniess stated) are removed from often brand new equipmen and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from standard voltages and are of stand ard size. All are IBM-PC compatible (if $3 / \mathbf{R}^{\prime \prime}$ supported).
3.5" Panasonic JU363/4 720K or equivalent
3.5" Miteubishi MF355C-L. 1.4 Meg. Laptops only* $£ 29.95(\mathrm{~B})$ 3.5" Mitsubishi MF355C-D. 1.4 Meg. Non laptop $£ 29.95$ (B) 5.25" EXTRA SPECIAL BRAND NEW Mitsubishi MF501B 360K. Absolutely standard fits most computers $£ 22.95$ (B) Data cable included in price.
Shugert 800/801 SS refurbished \& tested
Shugart 851 double sided refurbished \& tested \quad £275.00(E Mitsubishi M2894-63 double sided switchable hard or soft sectors- BRAND NEW with built in power supply! Ideal as exterior drives! $£ 499.00(F)$ End of line purchase scoopl Brand new NEC D2246 8' 85 megabyte of hard disk storagel Full CPU control and industy standard SMD interface. Ultra hi speed transfer and access time leaves the good old ST506 inlertace standing. In mint condition and comes complete with manual. Only........................E299(E)

THE AMAZING TELEBOX!

Converts your colour monitor into a

TV SOUND
 TUNER

The TELEBOX consists of an attractive fully cased mein powered unit, containing all electronics ready to plug into a ros of video monitors made by manufacturers such as MICROVITEC, ATARI, SANYO, SONY, COMMODORE PHILIPS, TAT UNG, AMSTRAD and many more. The composite video output will also plug directly into most video recorders, allowing reception of television receivers (TELEBOX MB). Push bution controls on the front panel allow reception of 8 fully tuneable 'off air' UHF on the front panel allow reception of dB). Puneable off air UHF colour tele ision or video channels. TELEBCX MB covers Vir HYPERBAND as used by most cable TV UHF including the and RGB video outputs are located on the rear panel for direct connection to mostmakes of monitor For complete compatibility even for monitors without sound - integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard.
Telebox ST for composite video input monitors
S32.9 Telebox STL as ST but with integral speaker \quad £36.50 Telebox MB as ST with Multiband tuner VHF-UHF-Cable \& hyperband For overseas PAL versions stat 5.5 or 6 mhz sound specification. $£ 69.95$ Telebox RGB for analogue RGB monitors (15 khz) Shipping code on all Teleboxes is (B)
RGB Telebox also suitable for IBM multisync monitors with RGB analog and composite sync.

No Break Uninterruptable PSU'S
 Brand new and boxed 230 volts uninterruptable power sucplie from Densei. Model MUK 0565-AUAF is 0.5 kva and MUD 1085-AHBH is 1 kva. Both have sealed lead acid batteries. MUK are internal, MUD has them in a matching case. Times from interrupt are 5 and 15 minutes respectively. Complete wilh full operation manuals..........MUK......E249 (F) MUD......5525 (G)

640k RAM expandable
with standard SlMMS with standard SIMMS 12 Mhz Landmark 1.2 meg 5-1/4" floppy 1.4 meg 3-1/2" floppy

EGA driver on board

BRAND NEW AND BOXED!
 Only $£ 249.00$

The Philips 9CM073 is suggested for the PC286 and the CM8873 for the PC386. Either may use the SVGA MTS-9600 If a surtable carc is installed. We can fin 3 is
for the PC286 and $£ 39.00$ for the PC386.

- POWER SUPPLIES

 frame giving $+5 v 35 a,-5 v$ 1.5a, $+12 v 4 a(8 \varepsilon$ peak), $-12 v$ vem $1.5 a$, +24 v 4 a ($6 \mathrm{a}+5 \mathrm{v} 35 \mathrm{a},-5 \mathrm{v} 1.5 \mathrm{a},+12 \mathrm{v} 4 \mathrm{a}$ (8e peak), -12 v 1.5 a , protection peak). All outpuls fully regulated with over vohage vac. Dims $13^{\prime \prime} \times 5^{\prime} \times 2.5^{\prime \prime}$. Fully guaranteed RFE. $\quad \mathbf{8 5 5 . 0 0}$ (B) Power One SPL130. 130 watts. Selectable for 12 v (4A) or 24 v (2A). 5 v (8) 20A. $\pm 12 \mathrm{v}$ 1.5A. Switch mode. New. $£ 59.95$ (B) Astec AC-8151 40 watts. Switch mode. $+5 v$ - $2.5 a .+12 v$ © $1 \mathrm{a},+15 \mathrm{v}$ (3) 1a. RFE and fully iested. $11 \times 20 \times 5.5 \mathrm{cms}$. $£ 24.95$ (C) Conver AC1 30.130 watt hi-grade VDE speci. Switch mode. $+5 v$ © 15a,-5v 1a.土12v © $6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cr} \mathrm{s}$. New. $£ 49.95$ (C) Boshert 13090 . Switch mode. Ideal for drives $\&$ system. $+5 v$ © 6 a. $+12 v$ © $2.5 \mathrm{a},-12 \mathrm{v}$ © $0.5 \mathrm{a},-5 \mathrm{v}$ © 0.5 a .
Famell $\mathrm{G6} / 40 \mathrm{~A}$ Switch mode. 5 v © 40 a .Ercased
E 95.95 (B) Famell G24/5S As above but 24 v © 5 a .

BBC Model B APM Board

 £100 CASH FOR THE
WIN 9100
 chast:

 MOST NOVEL demonstratable APPLICATION!BBC Model B type computer on a board. A major purchas allows us to offer you the PROFESSIONAL version of the BBC computer at a parts only price. Used as e front end graphics systern on large networked systerns the arc רitecture of the BBC
board has so many similarities to the regular BBC model B that board has so many similarities to the regular BBC model B that useful applications will be found for this board!! h is supplied useful applications will be found for this board! in is supplied
complete with a connector panel which brings all the $1 / O$ to and BNC type connectors - all you have to do is provide +5 and ic's socketed. The ic's are too numerous to list but include a 6502, RAM and an SAA5050 teletext ship. Three 27128 EPROMS con ain the custom operating system on which we have no data, On application of DC power 1 1e system boots ar d provides diagrostic information on the vid 30 output. On board enable the four extra EPROM sockets for sser software. Appo. min Only £29.95 or 2 oo $£ 553_{0}$ SPECIAL INTEREST

Fulitsu M 3041600 LPM band printer
 DEC LS/02 CPU board
 Rhode \& Sct warz SBUF TV test transmiter

f 470
$\varepsilon 2950$

Calcomp 105:. Complete with SBTF2 Modulator
Calcomp $10: 6$ large drum 3 pen plotter
Thurby 1.5 kw 115 v 60 hz power source
Anton Pillar 400 Hz 3 phase frequency
Newton Derby 400 Hz 70 Kw converter
Sekonic SD 150 H 18 channel Hybrid recorder
HP 7580A. A1 8 pen high speed drum ploter
ERAND NEW PRIMTERS

Microline 183. NLQ 17×17 dot matrix. Fell width.

 Hyundal HDP-920. NLQ 24×18 dot matrix full width Qume Lette-Pro 20 daisy. Qume QS-3 interface. Centronics 152-2 9×7 dot matrix. Full width

 20.89

2 meg RAM expanded by slots
20 Mhr with 32k cache Expandable to $64 k$ 40 meg hard disk
1.2 meg 5-1/4" floppy VGA card installed

2 serial \& 1 parallel ports MS-DOS 4.01 Co-processor socket - Enhanced 102 keyboard Kwik Disk Accelerator
Software - FREE BRAND NEW AND BOXED! only£425.00 MONITORS
 14 Forefront Model MTS-9600 SVGA mutrisyne with resolution of $1024 \times 768.0 .28$ pitch. Text switch for word processing eic 386 or PC switch included. Ideal for the Also compatibe with BBC, Amiga, Atari (including the monochrome high resolution mode). Archimedes etc. In good used condition (possible minor screen bums). 90 day guarantee. $15^{\prime} \times 14^{4} \times 12^{\prime}$. Only............ $£ 159(E)$
 14 Phips Model CW8873 VGA mulisync with 640×480 resolution. CGA, EGA or VGA, digital/analog, switch selectable. Sound with volume control. There is also a special "Text" switch for word processing, spreadsheets and the like. Compatible with IBM PC's, Amiga, Atari (excluding the monoctrome high resolution mode), BBC, Archimedes atc. Good used condition (possible minor screen bums) to day guarantee. $15^{\prime} \times 14^{\prime} \times 12^{\prime}$. Only $£ 139(E)$ Philips 9CM073 similar (not identical) to above for EGACGA C anc compats. 640×350 resolution. With Text switch wilh amber er green screen selection. $14^{*} \times 12^{\prime \prime} \times 13-1 / 2$
KME $10^{\prime \prime}$ high definition colour monitors. Nice tight $0 \geq 8^{\circ}$ dot pitch for superb clarity and modem styling. Operates from any 15.625 khz
sync RG8 video source, with RGB analog and sync RG8 video source, with RGB analog and composite sync such as Atari, Commodore only $135^{\circ} \times 12^{\circ} \times 11^{\prime}$. Also works as quality Teleto $x 12 \times 17$. Also 10 as qualy $7 V$ win our MGB KME Good used condition. 90 day guarantee. Only. 1125 (E) Brand rew Centronic 14' monitor for IBM PC and compatibles Mitsuber than ever price! Completely CGA equivalen. AiMitsubshi 0.42 dot pitch giving 669×507 pixels. Big 28 Mhz bandwsth. A super monitor in attractive style moulded case. Full NEC CGA 12^{*}. PM
quality ex-cquipment fully testatible. High day guarantee. In an attractive two tone ibbed grey plastic case measuring $15^{\circ} \mathrm{L} x$ been eemoved for contractual 269 (E)

Supersly made 'UK manufacture. PIL all solid
onters, complete with composite video \& sound inputs. Attrac in EXCELLENT little used condition with full 90 day guarantee 20'....£135 22"....£155 26"...£185 (F)

1 FOR PRICING ON NTSC VERSIONS
Superb Quality 6 foot 40u 19" Rack Cabinets

Massive Reductions Virtually New, Ultra Smart Less Than Half Price! Top quality 19° rack cabinets made in UK by Optima Enclosures Lid. Units feature designer, smoked acrylic lockable front door, full height lockable half louvered back door and removable side panels. Fully ad
punched for any configuration of equipment mounting plus ready
mou 7 ted integral 12 way 13 amp sockel switched mains distribufion =trip make these racks some of the most versatile we have ever sold. Racks may be stacked side by side and therefore requre only two side panels or stand singly. Overall dimensions are $7-1 / 2^{\prime} \mathrm{H} \times 32-1 / 2^{\prime} \mathrm{D} \times 22^{\prime} \mathrm{W}$. Order as.
Rack 1 Complete with removable side panels....... $£ 275.00$ (G)
Racr2 2 Less side panels.
SAE - PACKED with bargalnsl

[^3]
Easy path to 8-bit radio links

Radio data transmission needn't be a complex business. Steve Winder describes a simple encoding/decoding system based on standard logic parts.

Serial data transmission over radio links, such as the Radiometrix devices described by Ian Hickman (Feb 93) is easily achieved with cheap, dedicated devices. The Motorola MC/45026 encoder and the MC145027 decoder are one such chipset. With an MCI45026 in the transmitter and an MCI45027 in the receiver it is possible to transmit a 4 -bit word, complete with error checking and a 5 -bit tri-state address key.
Applications exist for eight-bit word trans mission, for instance sending data from an
analogue-to-digital converter. While it is possible to use a microprocessor to generate codes for transmission, this requires development time and capital investment. A solution using standard logic, combined with the Motorola chipset, was chosen.

The encoder IC will transmit the address and data word twice if its enable pin is momentarily taken low, but will continually transmit data if its enable pin is held low. The decoder IC will output a VALID DATA pulse after it has received two correctly addressed messages
that contain the same data. The circuits described in this note were required to behave in an identical manner to the stand-alone chipset, except that eight bits are transmitted. It is possible to extend these circuits to provide transmission of more bits.

Transmitter circuit

The circuit given in Fig. 1 uses two MC145026 encoders. Transmission begins when the INPUT ENABLE pin, connected to OR gate $2 / 4 / C_{5}$, is taken low. The other OR gate input is low, so its output falls to logic 0 and triggers the monostable, $/ C_{4 b}$. This monostable then produces a logic 0 condition for 22 ms which enables transmission from the encoder $/ C_{1}$. This encoder activates its internal clock generator, and then transmits an address and data word twice.
While the first encoder is transmitting data its clock generator continues to operate. The clock pulses appear at pin 12. These pulses are used to trigger the monostable $/ C_{3 a}$. The monostable is continually re-triggered and its output remains high while clock pulses are present at its input. When the encoder has finished its transmission cycle it stops generating clock pulses. This allows the monostable out-

put to retum low after a period of 47 ms , set by C_{3} and R_{5}.

Monostable $/ C_{3 \mathrm{~b}}$ is triggered by the falling edge of $/ C_{3 a}$ output, 47 ms after the first encoder $/ C_{1}$ has finished its transmission. The output of $I C_{3 \mathrm{~b}}$ goes low for 22 ms which enables transmission of data from the second encoder, $/ C_{2}$.

The second encoder generates clock pulses while transmitting data. Using similar monostable circuits as described for the first stage. $I C_{4 \mathrm{a}}$ maintains its output at logic 1 until 47 ms after the clock pulses stop. The output of $I C_{4 \text { a }}$ is connected to the input of an OR gate, $2 / 4$ $I C_{5}$, to which the INPUT ENABLE is also connected. The output of this OR gate is used to trigger the monostable $I C_{4 b}$. If the input enable pin has returned high, the monostable will not be re-triggered. If the input enable pin is low, the pulse from the second stage counter will cause the first monostable to re-trigger and the full eight bits will be re-transmitted. This makes the overall circuit behave in an identical manner to a single encoder.
The encoder clock rate is set by resistors R_{1} to R_{4} and capacitors C_{1} and C_{2}. The values chosen give a 1.9 kHz clock. This gives reliable data transmission over a narrow band radio channel. The clock rate could be increased to 4 kHz by changing the capacitor values to C_{1} and $C_{2}=4.7 \mathrm{nF}$. Resistor values are unchanged.
The monostable pulse width periods could be shortened. The encoder IC transmit enable pulse is set by the 22 ms monostable period. this must not be reduced below 65 ns .

Reducing the transmit enable pulse width will have no affect on the transmit time; the encoder clock starts as soon as the pulse goes low. The time between transmissions should be at least 27 clock periods long, i.e. three data bits. This is set by the monostable period of 47 ms . It should not be reduced below 15 ms at the 1.9 k Hz clock rate. Using a 4 kHz clock rate, this period could be reduced to a minimum of 7 ms .

A inicroprocessor supervisory IC. the MAX 70%, is used to reset the monostables on power-up. This is to ensure that no invalid data transmission occurs at the start of circuit operation.
Unused gates should have their inputs tied low.

Receiver circuit

The receiver circuit is simpler, see Fig. 2. Two MCI 45027 decoders are connected in parallel to the output of the receiver. Four messages are received from the transmitter, two addressed to one decoder followed by two addressed to the other. Each decoder is set to an address that matches the corresponding encoder at the transmitter end.
When the first decoder $/ C_{7}$ receives a valnd address, the following data stream is decoded. After receiving a second identical message the data is delivered, together with a valid data pulse. This pulse triggers a monostable, $/ C_{9_{a}}$. so that the circuit remembers that the first word is valid.
The second decoder IC then decodes data from the third and fourth messages. If these
messages are identical. the data and a valid data pulse are produced. This VALID DATA pulse is logic and-ed with the output from the monostable. A valid data state will be present when both words have been received correctly . The decoder timing components are set for a 1.9 kHz encoder clock rate. If the clock rate is increased to 4 hHz these components should be changed to: $R_{10}=R_{12}=27 \mathrm{k} ; R_{11}=R_{13}=240 \mathrm{k}$; $C_{9}=C_{12}=15 \mathrm{nF}$ and $C_{10}=C_{13}=33 \mathrm{nF}$. The monostable period of $/ C_{9 a}$ is 330 ms which may be decreased to 100 ms if the period between data streams is reduced below 47 ms . Reducing the value of $C_{1,5}$ to 100 nF will accomplish this.

Extending the circuit

It is possible to extend the circuit to transmit a greater number of bits, in multiples of four.
In the encoder circuit, $I C_{1}$ and $I C_{3}$ form a module which can be repeated, each monostable ' B ' output triggering the next encoder. Circuits using $I C_{2}$ and $I C_{4}$ would remain at the end of the encoder chain, feeding back a trigger pulse to the first encoder if the INPUT ENABLE pin is held low. The spare OR gates could be used to combine up to two more encoder stage outputs.
The decoder circuit could be modified by adding further decoder ICs and monostables as required. Only one half of a monostable IC is required for each decoder IC added to the circuit. Unused AND gates could be used to combine the additional monostable outputs, for a valid data indication.

£1 BARGAIN PACKS

In fact...cheaper than $£ 1$ because if you buy 10 you can choose one other and receive it free! $1 \times 12 v$ Stepper Motor. 7.5 degree. Order Ref: 910
1×10 pack Screwdrivers Order Ref 90 1×10 pack Screwdrivers. Order Ref: 909 2×5 amp Pull Cord Ceiling Switches Brown. Order Ref: 921
$5 \times$ reels Insulation Tape Order Ref: 911 $4 \times 14 \mathrm{~mm}$ Ball-races. Order Ref: 912
$2 \times$ Cord Grip Switch lamp Holders. Order Ref: 913 $1 \times$ DC Voltage Reducer. 12v-6v. Order Ref: 916 1×10 amp 40 v Bridge Rectifier. Order Ref 889 Lightweight Stereo Headphones Moving coil so superior sound. Order Ref: 896
$2 \times 25 W$ Crossovers. For 40 hm loudspeakers. Order Ref. 22
$2 \times$ Nicad Constant Current Chargers. Eas ly adapt able to charge almost any nicad battery. Order Ref: 30 10 m Twin Screened Flex. White pvc cover. Order Ref $2 \times$ White Plastic Boxes. With lids, approx. $3^{\prime \prime}$ cube Lid has square hole through the centre so these are ideal for light operated switch. Order Ref: 132 $2 \times$ Reed Relay Kits. you get 8 reed switches and 2 gadgets. Order Ref: 148 . making relays and otper gadgets. Order Ret: 148 $1 \times$ Big Pull
$1 \times$ Big Push Solenoid. Mains operated. Has $1 / 2^{\prime \prime}$ push. Order Ref: 872
$1 \times$ Mini Mono Amp $3 W$ into 4 ohm speaker or $1 W$ into 8 ohm. Order Ref: 268
$1 \times$ Mini Stereo 1 W Amp. Order Ref: 870
$1 \times$ In-Flight Stereo Unit is a stereo amp Has two most useful mini moving coil speakers. Made for BOAC passengers. Order Ret: 29.
$1 \times 0-1 \mathrm{~mA}$ Panel Meter. Full vision fact 70 mm square Scaled 0-100. Order Ref: 756
$2 x$-tithium Batteries 2.5 V penlight size. Order pet: 874.
$2 \times 3 \mathrm{~m}$ Telephone Leads With BT flat plug ldeal for phone extensions, fax, etc Order Ref: 552 $1 \times 12 \mathrm{~V}$ Solenoid. Has good $1 / 2^{\prime \prime}$ pull or could push if modified. Order Ret: 232.
$4 \times$ In-Flex Switches. With neon on/off lights, saves leaving things switched on. Order Ref: 7
$2 \times 6 \mathrm{~V} 1 \mathrm{~A}$ Mains Transformers. Upright mounting with fixing clamps. Order Ret 9 .
$2 \times$ Humidity Switches. As the air becomes damper the membrane stretches and operates a micro switch. Order Ref 32
5×13 A Rocker Switch. Three tags so on/off. or changeover with centre off. Order Ret: 42
$2 \times$ Flat Solenoids. You could make your multi-tester read AC amps with this. Order Ref 79
$1 \times$ Suck or Blow-Operated Pressure Switch Or it can be operated by any low pressure variation such as water level in tanks Order Ref 67
$1 \times 6 \mathrm{~V} 750 \mathrm{~mA}$ Power Supply. Nicely cased with mains input and 6V output lead Order Ref: 103A
$2 \times$ Stripper Boards. Each contains a 400V 2A bridge rectifier and 14 other diodes and rectifiers as well as dozens of condensers, etc. Order Ref: 120
12 Very Fine Drills For PCB boards etc. Normal cost about 80 p each. Order Ref: 128
$5 \times$ Motors for Model Aeroplanes. Spin to start so needs no switch. Order Ref: 134
$6 \times$ Microphone Inserts. Magnetic 400 ohm. also act as speakers. Order Ret: 139
$6 \times$ Neon Indicators. In panel mounting holders with ens. Order Ret: 180
always at the ready Order Ref your soldering iron etc always at the ready Order Ref: 196
$1 \times$ Mains Solenoid. Very powerful as $1 / 2^{\prime \prime}$ pull, or could push if modified. Order Ret: 199
$1 \times$ Electric Clock. Mains operated. Put this in a box and you need never be tate. Order Ref: 21
$4 \times 12 \mathrm{~V}$ Alarms. Makes a noise about as loud as a car horn. All brand new. Order Ref 221
$2 \times\left(6^{\prime \prime} \times 4^{\prime \prime}\right)$ Speakers. 16 ohm 5 watts, so can be joined in parallel to make a high wattage column. Order Ref:
243 . 243.
x Panostat Controls output of boiling ring from simmer up to boil. Order Ref: 252
$2 \times$ Oblong Push Switches
$2 \times$ Oblong Push Switches For bell or chimes, these can switch mains up to 5A so could be foot switch if fitted in pattress Order Ref: 263
$50 \times$ Mixed Silicon Diodes. Order Ref: 293
1×6 Digit Mains Operated Counter Standard size but counts in even numbers. Order Ret: 28 $2 \times 6 \mathrm{~V}$ Operated Reed Relays. One normally on, other normally closed. Order Ret 48
$1 \times$ Cabinet Lock. With two keys. Order Ref: 55.
$1 \times$ Magnetic Brake. For stopping a motor or rotating tool. Order Ref: 66
$1 \times$ Shaded Pole Mains Motor. $3 / 4^{\prime \prime}$ stack. so quite powerful Order Ref: 85
2×5 Aluminium Fan Blades. Could be fitted to the above motor. Order Ref: 86

$1 \times$ Case. $3^{1 / 2 \times 2^{1 / 4} \times 13 / 4}$ with

Ref: 845 $4 \times$ Cases. $2^{1 / 2 \times 21 / 4 \times 13 / 4}$ with 13A pins. Order Ref 565 . Ref 793
$4 \times$ Different Standard V3 Micro Switches. Ordet Hef: 4×0
340
$4 \times$ 413
3

BARGAINS GALORE

Medicine Cupboard Alarm Or it could be used to warn when any cupboard door is opened. The light shining on the unit makes the beil ing. Completely built and neatly cased requires only a battery. £3. Order Ref: 3P155
Don't Let It Overflow! Be it bath, sink, cellar, sump or any other thing that could flood This device will tell you when the water has risen to the pre-set level. Adjustable over quite a usetul range. Neatly cased for wall mounting, ready to work when battery fitted. £3. Order Ref: 3P156.
Very Powerful Mains Motor With extra long ($21 / 2^{\prime \prime}$) shafts extending out each side. Makes it ideal for a reversing arrangement for, as you know, shaded pole motors are no reversible $£ 3$. Order Ref: 3P 157 .
Solar Panel Bargain Gives $3 v$ at 200 mA . Order Rei 2P324.

12 V axial fan for only $£ 1$ Super Bargain
brand new. made by West German company cooling. less so virtually everlasting. German company. Brushless so virtually everlasting. Needs simple transistor drive circuit, we inctude diagram. Only $£ 1$. Order Ref 949. When we supply this we will include a list of approximately 800 of our dther $£ 1$ bargains

40W-250W Light Dimmers On standard plate to put directly in place of fush switch. Available in colours, green, red, blue and yellow. $£ 2.50$, Order Ref $2.5 \mathrm{P9}$. Or on standard $3 x$ cream metal switch plate, £3, Order Ref. 3P174
45A Doubre Pole-Mains Switch Mounted on a $6 \times 31 / 2$ aluminium piate, beautifully finished in gold, with pilot light Top quality, made by MEM, £2, Order Ref: 2P316
Amstrad $3^{\prime \prime}$ Disk Drive Brand new and standard replace ment for many Amstrad and other machines, $\mathbf{\Sigma 2 0}$. Orde Ret: 20P28
Movement Alarm. Goes off with the slightest touch. Ideal to protect car. cycle doorway, window. starway, etc Complete with Piezo shrieker, ready to use, coly E2, (PP3 batery not supplied), Order Ref: 2P282.
Touch Dimmers 40W-250W, no knob to turn. just finger on front plate will give more, or less light, or off. Silver plate on Qrder Ret 5P230.

Motorise that Trolley
You could with Sinclair C5
Stitl available, price £18. Order Ref: 18P7

12/24 DC Solenoid. The construction of this is such that it will push or pull. With 24 V this is terrifically powerful but is still quite good at 12V. £1, Order Ref 877
Don't Stand Out In The Cold Our 12 m telephone extension lead has a flat BT socket one end and flat BT plug other end E2. Order Ref. 2P338.
20W 54 Ohm Speaker mounted on baffle with front grille £3 Order Ref: 3P145 Matching 4 ohm 20W tweeter on separate baftle, $£ 1.50$, Order Ref: 15 Pg

```
This is a multi range voltmeter/ammeter using the A
D converter chip 7106 to provide 5 ranges each of
volts and amps. Supplied with full data sheet. Special
    snip price of f12. Order Ref: 12P19
```

Telephone Extension Wire 4 core correctly colour coded intended for permanent extensions. 25 m coil. £2, Order Ref 2P339.
High Power Switch Mode PSU. Normal mains input, 3 outputs: +12 V at $4 \mathrm{~A},-5 \mathrm{~V}$ at 16 A and -12 V at $1 / 2 \mathrm{~A}$.
Completely enctosed in plated steel case. Brand new. Our Completely enctosed in plated steel case. Brand
special offer price of $£ 9.50$. Order Ret: 9.5 P 1 .
High Current AC Mains Relay This has a 230 v coil and changeover switch rated at 15A with PCB mounting with clear plastic cover. £1. Order Ref 965
Ultra Thin Drills, actually 0.3 mm To buy these regular costs a fortune. However, these are packed in half dozens and the price to you is $£ 1$ per pack. Order Ref 7978. You Can Stand On It! Made to house GPO telephone equipment. this box is extremely tough and would be idea for keeping your smal toos in, internal size approx Order Ref 2P283B.
Ultra Sonic Transducers. Two metal cased units, one transmits, one recerves. Built to operate around 40 kHz Price $£ 150$ the pair Order Ref $1.5 \mathrm{P} / 4$
Power Supply with Extras. Mains input is tused and filtered and the 12 V DC output is voltage regulated. Intended tor high class equipment, this is mounted on a PCB and, also mounted on the board but easily removed, are
relays and Piezo sounder, £3, Order Ref: 3 P80B
Colour TV Or Monitor Tube Mullard Ref. No. A17590X 2000. brand new, still in makers packing, £25, Order Ref 25P16.
Philips 9" High Resolution Monitor. Black and white in metal frame for easy mounting. Brand new, still in maker's packing, offered at less than price of tube alone, only $£ 15$ Order Ref: 15P1.
Insulation Tester with Multimeter Intemaliy generates voltages which enable you to read insulation directly in megohane- Ftre muttmeter has fouk ranges. AC/DC xolts, 3 cemplition, tested and guaranteed OK, probabi costlat leas £50, yours for only $£ 7.50$ with leads, carrying case $£ 2$ extra, Order Ref: 7.5P/4
Mains Isolation Transformer. Stops you getting "to eath $75 \mathrm{P} / 5$ and a 250 W version is $£ 10$. Order Ret: 10 Pg 7

BARGAINS GALORE

Mains 230V Fan. Best make blades, £8, Order Ref: 8P8.

2MW Laser. Helium neon by Philips, full spec. £30, Order Ref 30 P . Power supply for this in kit form with case is $£ 15$ Order Ret 15P16. of in larger case to house tube as we ready to use, complete with laser tube £69. Order Ret: 69P1 12v 8 ohm speaker, only $£ 1.50$ and waterproof.
Solar Charger. Holds 4AA nicads and recharges these in 8 hours, in very neat plastic case £6, Order Ref. 6P3
Ferrite Aerial Rod. 8 " long $\times 3 / 8^{\prime \prime}$ diameter. made by Mullard Complete with two coils, 2 for £1. Order Ret 832 P
Air Spaced Trimmer Caps. 2-20pt. ideal for precision tuning UHF circuits. 4 for £1, Order Ref: 818B
Modem Amstrad FM240 As new condition but customer eturn, so you may need to fault find. E6. Order Ref. 6P34 Amstrad Power Unit. 13.5 V at 1.9 A or 12 V at 2 A encased and with leads and output plug, normal mains input $£ 6$ Order Ref 6P23
Atari 65 XE . At 65 K this is quite powerful. so suitable for home or business, unused and in perfect order but less PSU, only £19.50, Order Ref 19.5P/5B.
80W Mains Transformer. Two available, good quality, both with normal primaries and upright mounting one is 20 V 4 A Order Ref. 3P106, the other 40V 2A. Order Ref: 3P107, only £3 each
Project Box. Size approx. $8 \times 4^{\prime \prime} \times 4^{1 / 22^{\prime \prime}}$ metal, sprayed grey, GPO so best quality, only $£ 3$ each. Order Ref: $3 P 74$
Water Valve. 230 V operated with hose connections, ideal for auto plant spray or would control air of gas into tanks etc. .1 each, Order Ret: 370.
Sentinel Component Board Amongst hundred of other parts, this has 15 ICs, all plug in so do not need soldering Cost well over $£ 100$, yours for $£ 4$. Order Ref. 4P67.
Sinclair 9V 2.1A Power Supply Made to operate the 138 K Spectrum Plus 2, cased with input and output leads. Originally listed at around $£ 15$, are brand new, our price is only E3, Order Ref. 3P151
Experimenting with Valves Don't spend a fortune on a mains transformer, we can supply one with standard mains nput and secs. of $250-0-250 \mathrm{~V}$ at 75 mA and 63 V at 3 A . E 5 Order Ref: 5P167.
15W 8 Ohm 8 Speaker \& 3 Tweeter. Made for a only £4 per pair. Order Ref: 4P57
Water Pump Very powerful, mains operated. £10, Crder Ref: 10P74.
0-1mA Full Vision Panel Meter. $2^{3 / 4} 4^{\prime \prime}$ square. scaled 0.100 but scale easily removed for re-writing, $£ 1$ each. Order Ret 756
Vu Meter. Illuminate this from behind becomes on/off indicator as well, $11 / 2^{\prime \prime}$ square, 75 each. Order Ref 366 Amstrad Keyboard Model KB5 This is a most comprehenSive keyboard, having over 100 keys including, of course, ull numerical and qwerty Brand new, shl maker packing, E5. Order Ref. 5P202.
1 RPM Motor. This is only $2 W$ so will not cost much to run, Speed is ideal for revolving mirrors or lights. £2. Order Re 2P328
OPD Dual Micro Drive Unit This is a twin unit, each with motor, record playback head and PCB with all electronics and the much coveted Ferranti IC8446. Can also be used with the Spectrum or the QL. Data supplied. 55 . Order Ret 5P194.
12 volt 10 amp DC. From our 150 w switch mode have to make mods but we can help. £9.50. Order Ref. 9 5Bt 15 V PSU. Mains operated nicely cased, adequately smooth dc output. £1. Order Ref. 942.
Mains Filter. Resin impregnated, nicely cased, pcb mount ng. £2. Order Ret. 2P315.
Unusual Solenoid. Solenoids normally have to be energl sed to pull in and hoid the core this is a disadvantage where sed op magnetic solenoids which hold the core until a voltage is applied to release it £2. Order Ref. 2P327
200VA Mains Transformer. Secondary voltages $8 \mathrm{v}-0-8 \mathrm{v}$ So you could have 16 v at 12 A or 8 v at 25 A . Could be ideal for car starter charger, soil heating, spot welding, carbon rod welding or dr
Ret. 15P51.
Prices include VAT. Send cheque/postal order or ring and quote credit card number. Add $£ 3$ post and packing

INTERFACING WITH C

by
HOWARD HUTCHINGS

[^4]
C HERE!

If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

troubleshooting analog circuits Now, Bob has compiled his 'battle-tested' methods in the pages of this book. Based on his immensely popular series in EDN Magazine, the book contains a wealth of new material and advice for Digital/Analog electronics engineers on using simple equipment to troubleshoot. Paperback 217 pages
Price £14.95 0750616326

PC-Based Instrumentation and

Control
M Tooley
Do you need information to enable you to select the necessary hardware and software to implement a wide range of practical PC-based instrumentation and control systems? Then this book is for you. Paperback 320 pages
Price £14.95 0750616318

Electronic Circuits Handbook M Tooley
Provides you with a unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without recourse to theoretical texts.
Paperback 345 pages
Price £24.95 0750607505

Communication Services via

Satellite

GELewis

DBS is already with us, and will create a series of new technical problems for
engineers/technicians in television and communication services. This book gives you the solutions to these problems by:
explaining how the syster functions; describing several actual systems and givinc several analyses and design rules. You can't afford to כe without this invaluable technology update if you'e a systems design engineer service engineer or technician.
Paperback 400 pages.
Price £25.00 0750604379

Digital Logic Design

 Brian HoldsworthAs one of the most successful and well established electronics textbooks on digital logic design, this book reflects recent developments in the digital fields. The book also covers ne N functional logic symbols and logic design using MSI and programmable logic arra,s.
Paperback 448 pages
Price £19.50 0750505014
The Circuit Designers
Companion

T Wiliams

This compendium of praztical wisdom concerning the nealworld aspects of electronic circuit design is invaluable for I near and digital designers alit:e.
Hardback 320 pages
Price 2500075 C 611421

> Gredif end orders accepted by phone 0816523614

USING RF TRANSISTORS

Single-ended, parallel, or push-pull power?

How do you select the best power amp configuration and circuit components, and design appropriate matching networks? Norm Dye and Helge Granberg show how frequency spectrum, band-width and power level influence choice, ànd discuss the pros and cons of different component strategies. From the book RF Transistors: principles and practical applications.

\qquad
Norm Dye is Motorol 's product planning manager in the Semiconductor Products Sector and Helge Granberg is Member of Technical Staff Radio Frequency Power Group (Semiconductor Products) at Motorola. Their if transistors book includes practical examples from the frequency spectrum from 2 MHz to microwaves, with special emphasis on the uhf frequencies.
RF Transistors: Principles and practica! applications is available by postal application to room L333 EW+WW, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

Cheques made payable to Reed Books Services. Credit card orders accepted by phone 081652 3614).

288pp HARDBACK 0750690593 Cost $£ 19.95+$
Postage $£ 2.50$ Postage $\mathbf{E 2 . 5 0}$

Optimum performance of a device is usually produced by single-ended narrow band amplifiers. Such circuits, are ideal when power gain or other information needs to be compiled for at specific application or where an amplifier is to be used for a single frequency
Up to about 500 MHz . lumped constant matching networks can be used, while stripline designs are common at 1000 to 20000 MHz and higher. Strip-line concepts are actually the most practical at uhf and microwave frequencies. For vhf and lower uhf. etched airline inductors - resembling lumped-constant elements - may be the hest choice for inductance, particularly for production repeatability. Proper techniques make possible bandwidths of an octave or more.
Higher power levels, not possible with single transistors, can be reached by paralleling - a technique widely used at microwaves where push-pull designs for higher power levels become too critical. But many problems can be encountered too (such as extremely low impedance levels and uneven power sharing if the devices are not closely matched) and so the technique is not usually recommended without special guidelines

At low band and up to ulff, push-pull circuits offer certain advantages over the other two circuit configurations. The most important is probably suppression of even-order harmonics, though that depends on the matching of the two devices. Other advantages are wider bandwidths. higher input/output impedances, and less critical bypassing especially in the output circuitry.

Lumped circuits in single-ended rf amps If a single-frequency or relatively narrow-band rf amplifier is the choice. one designed with lumped constant $L C$ elements is probably the most economical and easiest to design especially since the capacitances, and in some cases the inductances, can be made variable.
Circuits using lumped-constant elements for impedance matching the device's input and output to 50Ω are widely used for transistor test circuits up to about 300 MHz (or up 10 $900-1000 \mathrm{MHz}$ for low power designs). The
variable elements allow both adjustment for optimum performance and compensation for transistor parameter tolerances occurring from unit to unit.
Good emitter grounding is essential (Fig. 1a). and a lower ground plane should be provided. at least in the immediate area of the transistor mounting. A continuous ground plane may also be a good idea. depending on the exact circuit layout. just to provide low inductance grounding points for the capacitors. through feed-throughs to the top of the printed circuit board.
Foil pads usually provide appropriate locations for element interconnections to be soldered down. But since all $L s$ and C s are surface mounted, at higher power levels and at continuous operation some circuit elements could heat up enough to melt the solder - a definite disadvantage in ff power amplifier design. though it may be lessened with suitable air flow.

Distributed circuits

In a typical uhf or microwave common-base amplifier circuit (Fig. 1b) impedance matching can be achieved completely with microstrip transmission lines.

Design of these (and common emitter) circuits, reguires that the exact dielectric constant $\left(\varepsilon_{\mathrm{r}}\right)$ of the substrate material be known.

Maximun ripple tolerable within a specified bandwidth determines the number of reactive elements (n) needed to match the input and output to 50Ω. Inductors are formed by stripline of specified widths and lengths. and capacitors by open stubs at specific points on the lines. A $3-4 \mathrm{~dB}$ difference is experienced in ripple between $n=1$ and $n=4$, but after this there is only 0.5 dB change up to $n=\infty$.

Manually, the reactive elements can be designed as Chebyscheff lumped-constant matching networks, which are then converted to microstrip format. But numerous computer programs are now available to calculate the line and stub dimensions directly.

Prototype line and stub dimensions can be modified by cutting off' metal or adding copper foil with its specially-developed conductive adhesive backing. Unlike lumped

Fig. 1. Single-ended rf ampliffer circuit configurations.
In (1a), lumped constant matching limits use to relatively narrow band applications and frequencies up to vhf or low uhf. Although shown as a class C configuration, with proper biasing arrangements it can be biased to classes $A, A B$, or B as well. (1b) is a typical uhf or microwave common-base circuit where impedance matching is achieved wholly with microstrip.
(1c) represents a wideband amplifier circuit where transformers are used for impedance matching. It is usable up to uhf in small signal designs.
circuit lower-frequency designs, feed-throughs to the circuit board bottom ground plane are not needed since the capacitors are formed with stubs (shown in the schematic Fig. Ib as a, b and ($)$. Exceptions are shorted-stubs and ground returns for the imput if choke and collector supply by-pass capacitors.

For stability reasons, the base-to-ground inductance must be at its minimum. Fortunately, modern transistors make this relatively easy. A package configuration should be chosen with base leads connected directly to the mounting flange which in turn is grounded to the heat sink along with the circuit board ground. Common-emitter amplifier configurations also usually call for minimum emitter-to-ground inductance, but for a different reason: preventing loss of gain. Again dual-cmitter packages (such as SOE) and/or packages with 'wrap around' emitter metallisation (no external emitter leads) will minimise the effect of common element inductance.

Quasi-lumped elements

Wide band amplifier circuits using transformers for impedance matching (Fig. 1c) are best suited to low frequency operation up to power levels of 50 W . Or perhaps up to 500 MHz in small signal use ($100-200 \mathrm{~mW}$) where the impedance levels are high.

The conventional wide-band transformers, (T_{1} and T_{2}) are limited in bandwidth compared with transmission line types. But this is not the main problem. 50-70W amplifiers up to 30 MHz have been designed using this configuration.
However, good bypass of the transformer ground-return is difficult, even with multiple capacitors of mixed values used in parallel. Impedance levels are extremely low and rf currents particularly high at these points.
Circuits biased to any class calling for a positive base voltage will face the same problems on the input side. The input transformer ground-returns cannot be dccoupled and would have to be similarly bypassed to ground.
Good quality chip capacitors will improve the situation. But then connections to a solid ground become even more important than in other circuits (e.g. Fig. la).

High power paralleling

Higher power outputs than can be obtained from a single transistor can be achieved by

RF ENGINEERING

paralleling transistors in of power amplifiers. Paralleling is usually done with the highest power devices available for a given application, otherwise it would be cheaper and simpler to select a higher power single device.
Impedance levels (cspecially at the input) become extremely low if the devices are directly paralleled. To avoid the resultant lossy matching-networks into $50 \Omega 2$ and difficult designs, the customary first step is to perform an impedance transformation to an intermediate level such as $10-25 \Omega$. These intermediate impedance points for each device are then paralleled and the resultant transformed to 50S2 by additional matching networks (Fig. 2a) Paralleling more than two devices is rarely attempted.
The larger the number of transistors paralleled. the more impracticable the situation. In addition to the intermediate impedance dropping lower, all transistors must be closely matched in power gain and output capacitance. Also, for class A or AB , $V_{\mathrm{BE}}\left(\right.$ forward) and h_{FE} must be matched unless the devices are individually biased.

Intermediate impedances for each device
must be identical too, which is difficult to achieve except in microstrip designs.

But paralleling many transistors in low power applications can be feasible: for example if the desired power output is moderately low (say $2-5 \mathrm{~W}$) and the aim is to use inexpensive $1 W$ devices in a TO-39 or similar header.
Transistor paralleling can be used for lowband applications up to microwaves and is commonly seen in L-band radar equipment.

Paralleling mosfets

Many designers who have tried to parallel mosfets have, to their surprise, experienced some unusual and seemingly inexplicable behaviour. Devices can "blow' when biased to a low idle current, or if not biased, when rf drive is applied.
But the explanation is that the parallel configuration forms an oscillator comparable to the emitter-coupled multi-vibrator known from bipolar circuit technology.
Mosfets have a high enough unity-gain frequency that the inductance formed by the gate/source bonding wires, the leads, and their

Power amp pros and cons

Lumped circuits

Advantages: Adjustable components allow a transistor's best performance to be reached at a specific frequency; no special components required; relatively inexpensive.
Disadvantages: Not suitable for continuous operation at high power levels; limited power output capability; limited frequency range; poor repeatability for mass production.

Distributed circuits

Advantages: Easy design procedure; low number of components; good repeatability for mass production.
Disadvantages: Limited to a narrow frequency spectrum without redesign; expensive substrate material; power handling capability limited at cw (used mostly for pulsed operation at higher power levels).

Quasi-lumped elements

Advantages: Broad band performance (three-five octaves); inexpensive; good repeatability for mass production; can be designed to achieve peak performance from the transistors.
Disadvantages: Limited power output capability; critical circuit layout for optimum performance (large signal); limited frequency range; requirement for special components.

Paralleling bipolar devices

Advantages: High power output is possible by using two or more devices; circuit repeatability is good in microstrip designs; does not require 180° phase shift in input and output.
Disadvantages: Requires closely matched devices and tight passive component tolerances; no even order harmonic suppression; at lower frequencies the design is more critical than pushpull.

Paralleling mosfets

Advantages: High power output is possible by using two or more devices; no intermediate impedance matching required; excellent power sharing even with poorly matched devices. Disadvantages: Limited high frequency operation due to necessary gate isolation.

Push-pull amplifier configurations

Advantages: Even order harmonic suppression; easier input/output matching over single-ended and parallel designs due to higher impedance levels; emitter/source grounding and collector/drain by-passing less critical; automatically combines the power outputs of two devices.
Disadvantages: Requires matched devices; creating the required 180° phase shift becomes more critical at increasing frequencies, making the configuration impractical at high frequencies such as microwaves.
external connection together with the device’s internal capacitances form a resonant circuit which permits oscillations to occur. Oscillations are usually at a resonant frequency beyond the pass band of the intended amplitier, as high as $400-500 \mathrm{MHz}$ for higher power devices and up to 1000 1500 MHz for lower power ones. High currents can flow at the oscillating frequency resulting in the destruction of the device.
Unless the designer accidentally detects the oscillations (usually with a spectrum analyser) and takes corrective action, devices can be lost and many headaches experienced.
Mosfets can be paralleled, but their gates must be isolated and the Q value of the resonant circuit lowered, with resistors (Fig. 2b) or comparable values of low- Q inductive reactances. Obviously, either method affects the device's high frequency performance. An $R C$ or $L C$ low-pass filter is formed between the outside input terminal and the gates because the C is the device's $C_{\text {iss }}$. This limits frequency of operation of the configuration to vhf at best, where the input impedance levels are still relatively high even with the isolation components added.
Fets have higher input/output impedance values, so the impedance-matching procedure described for bipolar transistors is not needed (Fig. 2a). Intermediate-matching may provide the gate-isolation necessary, though this has not been pursued by the authors.
The isolation scheme limits the high frequency performance of an amplifier. For example, with devices rated for a power output of 150 W , a resistance or comparable value of low Q inductive reactance of $3-5 \Omega$ would be required at the gate of each transistor. limiting the maximum frequency of operation to below 100 MHz . With smaller devices (301040 W), these resistance or reactance values would be of the order of 10 to 20Ω.

Mosfets are suitable really only for applications up to low vhf, and gate isolation is only applicable to push-pull circuits.

Push-pull amplifiers

Push-pull circuits offer certain advantages over single-ended and parallel transistor designs. They can be designed as a narrow band system using lumped constant elements or using microstrip techniques at higher frequencies. But such designs are rather critical, calling for extrene symmetry between each side.

Wide band designs, using transformers for impedance matching, are much more tolerable because of their ability to have 'floating" centre taps. The floating tap, whether in the input or output transformer, means that a physical centre tap is not needed - there is a 180° phase shift across the transformer winding in either case.

In a centre-tapped design the ground reference is well defined. But any imbalance in the two winding halves will be reflected to the transistors, resulting in an amplitude difference in the drive signals to each side of
the balanced circuit or unequal loads on the transistors in the output.
In the input of a push-pull amplifier, a transformer with a floating (or physically nonexistent) centre tap provides a much more balanced drive to the two transistor inputs. The return ground path for the 'on' transistor, with a floating transformer, is created by the input capacitance of the 'off' unit.
Assuming the input capacitances of both devices are equal. and since the rf voltage amplitude across the whole winding is twice that from one side to a centre tap, amplitudes to both the on and off transistors are equal in each case. No change in the input return loss should occur either.
The same conditions exist in the output, except we do not rely on the output capacitance of the off transistor, which is at the power supply voltage potential (dc). The on unit is at ground so a voltage close to the dc supply is always superimposed by the rf voltage swing across the output transformer primary.
Peak voltages as high as five times the dc supply across the transformer winding are common. This voltage (collector-collector or drain-drain) is twice the peak rf voltage from the collector/drain of a single device to ground, representing a $4: 1$ difference in impedance.
Symmetry is more important in the output matching of a push-pull circuit than in the input matching. In addition to the well known suppression of even harmonics, the balance affects the amplifier's stability, efficiency, and susceptibility to mismatched loads. One of the best ways to reach a good balanced condition in wide-band transistor output matching is with a separate collector/drain structure.
Push-pull circuits with only lumped constant elements are not really feasible because creation of the exact 180° phase shift becomes too critical and every unit would have to be individually adjusted in production. A hybrid design (Fig. 3a) is a much better choice. Initial matching to an intermediate impedance is achieved with $L C$ networks (as in Fig. 2a) while the 180° phase shift is produced with simple and reliable 4:1 and 1:4 transmission line transformers.
The intermediate matching networks can also be microstrips, such designs being common in uhf amplifiers.
Another possibility is to bring the impedances of each device directly to 5052 , so that a $1: 1$ balun could provide the phase shift.
Figure 3b shows an amplifier circuit best suited to low frequency applications up to 50 100 MHz . The upper frequency limit is determined by the types of transformers used. For conventional types, the upper frequency limit is usually $30-50 \mathrm{MHz}$, though some conventional if transformers will perform up to $200-300 \mathrm{MHz}$.
Both circuits shown in Figs. 3a and 3b are for class C , though with proper base forward biasing they can be converted to linear amplifiers (class A or AB).
Transmission line transformers used in the

Fig. 3. Push-pull circuit configurations.
(a) shows how part of the impedance matching is achieved with individual matching networks such as microstrips. Transformers are used for further impedance matching and generation of a 180° phase shift.
(b) represents a straight-forward push-pull circuit using conventional transformers to provide the phase shift and input/output impedance matching.
in (c), 4:1 and 1:4 transmission line transformers are used to provide the functions above. With the impedance ratios shown, the circuit is useful for operation from high supply voltages where the output impedance is relatively high.
circuit of Fig. 3 b would extend the bandwidth. But the circuit would become fairly complex because impedance ratios such as $16: 1$ and 25:1 would be required - especially in high power and low voltage applications.
In a typical push-pull amplifier designed with mosfets (Fig. 3c), since their impedances are higher than those of bjts in general (at least up to unf!, impedance matching is easier. The configuration shown is directly adaptable for a 200 W vif amplifier, although the capacitors compensating for leakage inductance in the transformer have been omitted. Even without low frequency operation, transformer T_{1} should be loaded with suitable magnetic material to provide the isolation necessary between the fet gates.
$h_{\mathrm{FE}} / g_{\mathrm{FS}}$ should be matched in all push-pull circuits, and in mosfet circuits all the $V_{\mathrm{gs}}(t h) \mathrm{s}$ must be matched too if biased from a single voltage source. For devices with g_{FS} of 46mhos. a difference of 50 mV is acceptable. Since the drain idle current is directly related to g_{FS} vs $V_{\mathrm{gs}}(t h)$, matching becomes less critical with lower power devices (30-40W) where values of $g_{\text {FS }}$ are in the 1 mho range. In these cases differences of $100-150 \mathrm{mV}$ between the $V_{\mathrm{gs}}(t /$) s can he tolerated.

Impedances and matching networks

Many designers of rf equipment, used to vacuum tubes or solid state small signal circuits, are not familiar with solid state rf power designs and the importance of various

Fig. 4. A typical model of a mosfet that could be used for Spice parameter extraction. The model would be very similar for bipolar transistors. Most of the values must be obtained from the transistor manufacturer and must be derived according to geometry and process profile.

LG1 - Package lead inductance. LGi2 - Wire bound inductance.
C1 - Package lead capacitance.
RG - Poly gate sheet resistance plus gate metal rumers to bond pads.
RSI - Metal finger and material theet resistance.
RS2 - Wire bond pad and metal runner resistance.
CGS - Source plus chamel capacitance under poly gate.
CDG - Gate metal to drain MOS capacitance.
CDS - Drain - source and intrimsic diode capacitance.
LS - Source wire bond and laad inductance.
RDI - Resistance of epitaxial layer.
RD2 - Resistance of substrate matrerial.
C2 - Package and lead capaciance.
L.D) - Package lead inductance.
factors in developing suitable hardware.
At rf power, design guidelines are far more critical than those for low power and small signal design. The same rules apply in each case, but the physical layout of rf power circuits is much more sensitive because of the low input and output impedance levels involved. The important factors are deviceimpedance dependence on operating frequency, voltage, and power level.
As a rule, for a given voltage of operation and power level, the normalised input impedances and output impedances of unmatched devices are divided by a factor of approximately two with every octave of increasing frequency.
But inductive reactances increase at the same rate. making impedance matching much more complex at the higher frequencies. The effect applies to both bjts and fets, except that the input impedance of the fet is higher by an order of magnitude: at very low frequencies it approaches infinity since the gate represents only a pure capacitance.

On the other hand, a bipolar tramsistor has a base-emitter diode junction which must be forward biased to turn the transistor on. So the
base input impedance, even at low frecpuencies, depends on the conduction angle and base forward bias.
When of transistors are characterised by the manufacturer - with impedance values measured along with other parameters such as power gain, linearity and efficiency - the unit is usually inserted inoo an optimised test circuit (see box characterising of values in practice). Various methods can be used to determine transistor impedances. but the indirect method is by far the most common.
In some instances, especially at uhf and microwaves, load pull contours are plotted on a Smith chart to indicate the device's behaviour at multiple frequency points. All Smith chart data of impedances given in the data sheets are in serial form but it is often advantageous (especially for low frequency designs) to convert it to parallel form to determine the actual resistive and reactive components. This is carried out with formulas:

$$
R_{\mathrm{p}}=R_{\mathrm{s}}\left[1+\left(X_{\checkmark} / R_{\checkmark}\right)^{2}\right] \text { and } X_{\mathrm{p}}=R_{\mathrm{p}} /\left(X_{\checkmark} / R_{\mathrm{s}}\right)
$$

where R is the resistive component and X is the reactive one. If X is not very large

Characterising of values in practice

Connections to the transistor are made with as short lead lengths as possible and clamping is used for temporary device mounting, allowing a number of units to be tested with easy insertion and removal.

The test circuit should have the necessary elements for fine adjustment of the input return loss to its maximum and power output to a specified level, while maintaining desired efficiency. After the test and adjustments, the transistor is removed from the test circuit and resistive terminations are connected to the circuit's input and output. A special probe consisting of a lead frame of the same type as the transistor is clamped in the circuit in place of the transistor. Connections are made with short lengths of precision coaxial cable - such as the semi-rigid type - from the probe to a network analyser. The numbers obtained from the analyser are the conjugates of those given in data sheets.

Several devices are usually tested and measured to ensure consistency of parameters. Since the values measured may be extremely low, errors in the form of stray inductances may limit accuracy to about $\pm 20 \%$ and in most cases are only guidelines for a designer.
compared to R. in most cases a fairly accurate composite impedance (Z) can be obtained:

$$
\left(R_{5}^{2}+X_{5}^{2}\right)^{0.5} \text { or }\left(R_{\mathrm{p}}^{2}+X_{\mathrm{p}}^{2}\right)^{0.5}
$$

S-parameters are standard with small-signal class A devices, and sometimes with class A power devices. But power devices are seldom characterised with S-parameters because most experts question their accuracy and usefulness under large signal conditions. except for class. A and stability calculations.
Spice parameter modelling - a newer approach to describing rf transistor behaviour using a model suitable for use with computer aided design (cad) programs - is claimed to give more accurate results.
Again. this is more likely to be true for linear operation rather than for non-linear operation. The Gummel-Poon model of a bipolar transistor (used in Berkeley Spice) is a linear model and would not be applicable to large signal, non-linear bipolar transistors. It also does not include package parasitics. A macromodel can be created for high power non-linear parts but the problem is determining a model that would apply for more than one set of operating conditions.

A mosfet model (Fig. 4) draws together data involving die parameters, package stray inductances and capacitances and wire bond inductances. Data are generated by the device die designers working with applications engineers who characterise the device.

Building the model is time consuming, and its accuracy in multiple applications is questionable - explaining why such data are not presently included in most device data sheets.

For the output, impedance levels are more or less dictated by supply voltage and power output. Output impedances with cach type of device are capacitive at lower frequencies, but turn inductive when the wire bond inductances become dominant - determined by the device`s output capacitance.
Output impedance matching into 50Ω is usually casier than input impedance matching due to its usually higher level. It also remains capacitive up to higher frequencies than input impedance. At low frequencies the output impedance can be determined with a fair accuracy as

$$
\left(V_{(C-}^{\prime} V_{\mathrm{SAT}}^{\prime}\right)^{2} / P_{\mathrm{OUT}} \quad \text { (bipolars) }
$$

or

$$
\left[V_{\mathrm{DV}}-V_{\mathrm{DS}}(O N)\right]^{2} / P_{\mathrm{OUT}}
$$

(fets)

But beyond 100 MHz or so-depending on the device's electrical size - the complex impedance values must be taken into account. The nature of the output impedance and its matching is more critical than the input impedance since it also detemines the overall efficiency of operation. Input matching only relates to the input return loss.

One of the problems facing a circuit designer is design of high frequency matching networks. Developing networks that will accomplish the required matching, harmonic

Practical design example

Assume an amplifier with an output power, $P_{\text {out }}$ of 125 W at 100 MHz is to be designed. Supply voltage is 28 V , and the power gain required is 40 dB . Browsing through various device data books shows that the 40 dB gain requirement at 100 MHz can be met with two stages if mosfets are used. For example, the MRF174 has an indicated power gain of 14 dB at a frequency of 100 MHz , meaning that 5 W are required to drive it to a $P_{\text {out }}$ of 125 W .
As a driver, the MRF134 will do nicely with its 27 dB power gain at 100 MHz . So these two stages should satisfy the 40 dB gain requirement.
Next, we need to select the matching network configuration. From the data sheets we find that the MRF134 output impedance is $20.1-\mathrm{j} 46.7 \Omega\left(P_{\text {oul }}=5 \mathrm{~W}\right)$ and input impedance of the MRF1>4 is $1.33-\mathrm{j} 2.98 \Omega$ at 100 MHz . Converted to parallel form these are $130-\mathrm{j} 55\left(Z_{\mathrm{p}}=140\right)$ and $8.0-j 3.6\left(Z_{\mathrm{p}}=8.8\right) \Omega$ respectively.
Output impedance of the driver is relatively high so the most suitable networks are Figs. 5b and 5e. Figure 5b may prove to be the more versatile since C_{1} and C_{2} can both be made variable elements, whereas low value $L s$ are difficult to make adjustable except with a very limited range.
The Q is defined as $R_{1} / X_{C 1}$ and since $R_{1}=130 \Omega$, Capacitor C_{1} would need to become extremely small if the Q is to be kept low.
On the other hand, a high Q means instability problems may be encountered and the bandwidth narrows.
A Q of 5 will give $X_{C 1}$ as 26Ω or C_{1} as 60pF. As established earlier, $X_{\text {Cout }}=55 \Omega$ $(28 \mathrm{pF}), R_{\mathrm{L}}=8.8 \Omega$. Then:

$$
\begin{aligned}
X_{C 2} & =8.8 \sqrt{\frac{130 / 8.8}{\left(5^{2}+1\right)-(130 / 8.8)}} \\
& =10.1 \Omega, \text { or } 158 \mathrm{pF}, \\
\text { and } & \\
X_{L 1} & =\frac{5 \times 130+(130 \times 8.8 / 10.1)}{26} \\
& =29.4 \Omega, \text { or } 47 \mathrm{nH} .
\end{aligned}
$$

We now have the values for all three elements as

$$
\begin{aligned}
C_{1}(\text { actual }) & =C_{1}-C_{\text {out }} \\
& =32 \mathrm{pF} .
\end{aligned}
$$

Capacitor C_{2} is 158 pF and inductor L_{1} is 47 nH .

Fig. 5. Narrow band IC matching networks applicable up to uhf. Although shown for output matching only, all configurations can be reversed. They can also be used for interstage matching depending in the impedances involved. In certain cases, the component values may be physically or electrically impracticable.
Network (a) is applicable only when R_{1} is less than 50S2. When R_{1} approaches 50S2, the reactance of C_{1} approaches infinity.
Network (b) is the P_{I} network widely used for matching at higher impedance levels and may be impracticable where R_{1} is small. For values of R_{1} less than 50Ω, the inductance of L becomes impracticably small while the capacitances of both C_{1} and C_{2} become very large. Networks (c) and (d) have very similar characteristics. Jn both, R_{1} must be less than 50S. But these configurations often yield the most practical component values where low values of R_{I} must be matched.
Network (e) is a " T " network, useful in matching impedances of greater than 50Ω and, is especially applicable to small signal circuit design. Laboratory tests show that this network yields very high efficiencies when used for output matching in transistor if power amplifiers.
suppressitn, bandwidth, using components having realisable values can take many hours of design time without a cad capability. Design of matching networks involves an infinite number of possibilities, and tabulation of all possible network solutions would be virtually impossible. But a smail number of commonly used matching networks (Fig. 5) can be used for matching in transistor of power amplifier circuits, with a wide variety of source and load impedances.
All netwarks are reversible, but in general the R_{L} side is more suitable for matching into
a higher impedance. They can also be used for interstage matching, but with modifications since R_{L} becomes a complex function. Another approach is to use the intermediate impedance values discussed earlier.
Finally, the component values must be examined to see if they remain within practical limits. R_{1} and $C_{\text {out }}$ represent the complex input or output impedance of a transistor. They are shown in series form for Fig. 5(a), (c) and (e) and in parallel for (b) and (d). But each network can be converted to either form for a particular application.

VIEWDATA RETURNSE6 made by Tandata, indudes 1200.75 modem, k/bd, RGB and comp op, printer port. No PSU.E6 MAG6P7
IBM PC CASE AND PSU ideal base for building your own PC Ex equipment but OK. £14.00 each REF: MAG14P2
SOLAR POWER LAB SPECIAL You get TWO $6^{\circ} \times 6^{\circ}$ 6v 130 mA solar cells. 4 LED's, wire, buzzer, switch plus 1 relay or motor. Supert value kit just $£ 5.99$ REF: MAG6P8
SOLID STATE RELAYS Will switch 25A mains Input $3.5-26 \mathrm{v}$ DC $57 \times 43 \times 21 \mathrm{~mm}$ with terminal screws $£ 399$ REF MAG4P 10 300DPI A4 DTP MONTOR Brand new, TTLECL inputs, 300DPI A4 DTP MONTOR Brand new, TTLECL inputs, 15°
landscape, 1200×1664 pixel complete with circuit diag to help you landscape, 1200×1664 pixel complete with circuit diag to hel
interface with your projects. JUS $£ 24.99$. REF MAG25P1
interface with your projects. JUST £24.99. REF MAG25P1
ULTRAMINI BUG MIC $5 \mathrm{~mm} \times 3.5 \mathrm{~mm}$ made by AKG, $5-12 \mathrm{~V}$ electret condenser. Cost $£ 12$ ea, Our? fourfor $£ 9.99$ REF MAG10P2 RGEICGA/EGATTL COLOUR MONTORS 12" in good condition. Back anodised metal case. £99 each REF MAG99P1 GX4000 GAMES MACHINES returns so ok for spares or repar $£ 9$ each (no games). REF MAG9P1
C64 COMPUTERS Retums, so ok for spares etcE9 ref MAG9P2 FUSELAGE LIGHTS 3 foot by 4^{*} panel $1 / 8^{*}$ thick with 3 panels that glow green when a voltage is applied Good fornight lights, front panels, signs, disco etc. $50-100 \mathrm{~V}$ per strip. $£ 25$ ref MAG25P2
ANSWER PHONES Returns with 2 faults, we give you the bits for 1 fault, you have to find the other yourself. BT Response 200's E18 ea REF MAG18P1, BT Response 400's 525 ea REF MAG25P3 Suitable power supply $£ 5$ REF MAG5P 12
SWITCHED MODE PSU ex equip, $60 \mathrm{w}+5 \mathrm{v}$ @ 5 A , -5 ve . 5 A , $+12 v \in 2 A,-12 v \in .5 A \quad 120 / 220 \mathrm{v}$ cased $245 \times 88 \times 55 \mathrm{~mm}$ IECinput socket E6.99 REF MAG7P 1
PLUG IN PSU 9V 200 mA DC 22.99 each REF MAG3P9
PLUG IN ACORN PSU 19v AC 14w. £2 99 REF MAG3P 10 POWER SUPPLY fully cased with mains and o/p leads 17 vDC 900 mA output. Bargain price $£ 5.99$ ref MAG6P9
ACORN ARCH MEDES PSU $+5 v$ (1) 4.4A. on/off sw uncased selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ E 7 REF MAG7P2 GEIGER COUNTER KIT Low cost professional twin tube, complete with PCB and components. £29 REF MAG29P SINCLAIR C6 13° wheels complete with tube, tyre and cycle style beaning E6 ea REF MAG6P10
AA NICAD PACK encapsulated pack of 8 AA nicad batteries (tagged) ex equip, $55 \times 32 \times 32 \mathrm{~mm}$. E3 a pack. REF MAG3P 11
13.8V 1.9A psu cased with leads. Just £9.99 REF MAG10P3 360K 6.26 brand new hall theight floppy dives IBMcompatible industry standard Just £6.99 REF MAG7P3
PPC MODEM CARDS. These are high spec piug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance price is $£ 5$ REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Onginally made fo hi soec satellite equipment but perfect for all sorts of remote contro projects. Our clearance price is just $£ 2$ REF: MAG2
TOWERS INTERNATIONAL TRANSISTOR GUIDE. A very useful book for finding equivalent transistors, leadouts, specs
etc. $€ 20$ REF: MAG20P1 etc. E20 REF: MAG20P1
SINCLAIR C6 MOTORS We have a few left without geamoxes. These are $12 v D C 3,300 \mathrm{pm} 6^{\prime \prime} \times 4^{*}, 1 / 4^{\prime}$ OP shaft $£ 25$ REF: MAG 25 UNNERSAL SPEED CONTROLLER KTT Designed by us for the above motor but suitable for any 12 V motor up to 30 A Complete with PCB etc. A heat sink may be required. £ 17.00 REF: MAG17
VIDEO SENDER UNTT. Transmits both audio and video signals from either a video camera, video recorder, TV or Computer etc to any standard TV setina 100' range!(tune TV to a spare channel) 12 V DCop. Pnce is£15 REF:MAG15 12v psuis $£ 5$ extraREF; MAG5P2 *FM CORDLESS MICROPHONE Small hand held unit with a 500 ' range! 2 transmit power levels. Reqs PP3 9v battery. Tuneable 500 range! 2 transmit power levels. Reqs MAG15P1
LOW COST WALKIE TALKIES Par of battery operated units with a range of about 200 '. Ideal for garden use or as an educational with a range of about 200 . Ideal for garden use or as an
toy. Price is $£ 8$ a pair REF: MAG 8P1 $2 \times P P 3$ req'd
*MINATURE RADIO TRANSCENERS A pair of wailie talkes with a range of up to 2 klometres in open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases and earpieces. $2 \times \mathrm{PP} 3$ req'd E3000 pair REF: MAG30.
COMPOSTE VIDEO KT. Converts composite video into separate H sync, V sync. and video, 12vDC. E8.00 REF: MAG8P2. LQ3500 PRINTER ASSEM BLIES Made by Amstrad they are entire mechanical printer assemblies including primthead, stepper motors etcetc in fact everything bar the case and electronics, a good stripper £5 REF: MAGSP3 or 2 for £8 REF: MAG8P3
SPEAKERWIRE Brown 2 cofe 100 foot hank $£ 2$ REF: MAG2P1 LED PACK of 100 standard red 5 m leds E5 REF MAG5P4 JUG KETTLE ELEMENT good general purpose heating ele ment (about 2 kw) Ideal for heating projects 2 for $£ 3$ REF MAG3 UNVERSAL PC POWER SUPPLY complete with flyleads, switch, fan etc. Two types avalable 150w at £15 REF:MAG15P2 ($23 \times 23 \times 23 \mathrm{~mm}$) and 200 w at £20 REF: MAG20P3 $(23 \times 23 \times 23 \mathrm{~mm})$ "FMTRANSMITTER housed in a standard working 13A adapter!! the bug runs directly off the mains solasts forever! why pay C 700 ? or price ts E26 REF: MAG26 Transmits to any FM radio.
*FM BUG KIT New design with PCB embedded coil for extra stability. Works to any FM radio. $9 v$ battery req'd. E5 REF: MAG5P5 *FM BUG BUILT AND TESTED superior design to kit. Supplied to detective agencies. 9v battery req'd. E14 REF: MAG14 TALKING COINBOX STRIPPER onginally made to retail at E79 each, these units are designed to convert and ordinary phone into a payphone. The units have the locks missing and sometimes broken ninges. However they can be adapled or their onginal 100 WATT MOSFET PAIR Same spec as $2 S K 343$ and $2 S .1413$ ($8 \mathrm{~A}, 140 \mathrm{~V}, 100 \mathrm{w}$) 1 N channel, 1 P channel, E3 a pair REF: MAG3P2 VELCRO 1 metre length of each side 20 mm wide (quick way of fixing for temporary jobs etc) £2 REF: MAG2P3
MAGNETIC AGTTATORS Consisting of a cased mains motor with lead. The motor has two magnets fixed to a rotor that spin round inside. There are also 2 plastic covered magnets supplied. Made for remotely stiming liquids! you may have a use? E3 eachREF:MAG3P3

BUCL'S
 BUCEETOK BOARD
 100MHZ DUAL TRACE OSCILLOSCOPES JUST $£ 259$ RING FOR DETAILS

MASSIVE

warehouse clearance
FANTASTIC £20.00 REDUCTION
REFURBISHED PC BASE UNITS COMPLETE WITH KEYBOARD
from onvy29.00
AMSTRAD 1512 BASE UNITS guaranteed PERFECT WORKING ORDER.

AMSTRAD 1512SD

1512 BASE UNIT, 5.25" FLOPPY DRIVE AND keyboard. All you need is a montor and POWER SUPPIY. WAS £49.00

NOW ONLY $£ 29.00$
REF: MAG29

AMSTRAD 1512DD

1512 BASE UNIT AND KEYBOARD AND TWO $5.25^{\prime \prime} 360 \mathrm{~K}$ DRIVES. ALL YOU NEED IS A MONTOR AND POWER SUPPLY WAS $£ 59.00$

$$
\text { HOW ONLY } £ 39.00
$$

SOLAR POWEK PANELS

3FT X IFT IOWATT GLASS PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$ NOW AVAILABLE BY MAIL ORDER £33.95
(PLUS 5200 SPECIAA PACKAGING CHARGE)
IOP QUALITY AMORPHOUS SILICON CELLS HAVE ALMOST A timeless lifespan with an infinite number of possible APPLICATIONS, SOME OF WHICH MAY BE CAR BAITERY CHARGING, FOR USE ON BOATS OR CARAVANS, OR AN WHERE A PORTABLE 12 V SUPPLY IS REQUIRED. REF: MAG 34

FREE SOFTWARE!

Brand new, UNUSED top qually Famous brana licensed software discs. Available in $5.25^{\prime \prime}$ DSDD or 5.25° HD only. You buy the disk and it comes with tee BRAND NEW UNUSED SOFIWARE. We are actually selling you the fioppy disc for your own "MEGACHEAP" storage facilliles, it you happento get software that you want/need/like as well........ you get a "MEGA BARGAIN" too!
DSDD PKT10 52.99 REF: MAG3P7 PKT100 $\$ 16.00$ REF: MAG 16
££££££WE BUY SURPLUS STOCK££££££
TURN YOUR SURPLUS STOCK INTO CASH
IMMEDIATE SETTLEMENT. WE WILL AL SO QUOTE FOR COMPLETE FACTORY CLEAR ANCE

1994 CATALOGUE

PLEASE SEND 45P. A4 SIZED SAE FOR YOUR FREE COPY. MINMUM OOODS ORDER ES 00 TRADE ORDERS FROM OOVERNMENT, SCHOOLS,
UNVERSITES, \& LOCAL AUTHORTTES WELCOME ALLOOODS SUPPLED SUBNECT TO OUR CONDITIONS OF SALE AND UNESS OTHERWISE STATED GUARANTEED FOR :O
DAYS RGHTS RESERED TO CHANGE PRICES \& SFECHICATIONS WITHOUT PRICR NOTICE ORDERS SUNECT TO STOCX
TIES HOHER THAN THOSE STATED

BULL ELECTRICAL
 250 PORTLAND ROAD HOVE SUSSEX BN3 5QT
 MAIL ORDER TERMS: CASH PO OR CHEQUE

 WITH ORDER PLUS E 3.00 POST PLUS VAT.PLEASE ALLOW 7-10 DAYS FOR DELIVERY
TELEPHONE ORDERS WELCOME

$$
\text { TEL: } 0273203500
$$

VISA

TOP QUALTTY SPEAKERS Made for HI FI tel
these are 10 watt 4R Jap made 4' round with large shielded magnets. Good quality general pupose speaker E2 each REF: MAG2P4 or 4 for £6 REF: MAG6P2 TWEETERS 2^{*} diameter good quality tweeter 140 R (ok with the bove speake) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: WAG3P4 AT KEYBOARDS Made by Apricot these quality keyboards need ust a smallmodicavontorun on anyAT. 1 or 2 foreign keycaps! Price E6 REF: will have to put up with 1 or AG6P3
XT KEYBOARDS Mixed types, some returns, some good, some foreign etc but all good for spares! Price is $£ 2$ each REF:MAG2P6 or 4 for E6 REF: MAG6P4
PC CASES Again mixed types so you take a chance next one off the pile $£ 12$ REF:MAG12 or two the same for $£ 20$ REF: HAG20P4 COMMODORE MICRODRNE SYSTEM mini storage
device for C64's 4 times faster than disc drives, 10 times faste than tapes. Complete unit just £12 REF:HAG12P1
SCHOOL STRIPPERS We have quite a few of the above unts which are 'returns' as they are quite comprehensive units they could be used for other projects etc. Let us know how many you inimum 10)
HEADPHONES 16P These are ex Virgin Atlantic. You can have 8 pairs for E2 REF: MAG2P8
PROX MATY SENSORS These are small PCB's with what look like a source and sensor LED on one end and lots of components on the rest of the PCB Complete with fly leads. Pack of 5 E3 REF: MAG 3P5 or 20 for $£ 8$ REF: MAG8P4
SNOOPERS EAR? Original made to dip over the earpiece of telephone to amplify the sound-it also works quite w
running along the wall! Price is $£ 5$ REF: MAG5P7
DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price just $£ 5$ REF: MAG5P8 Worth it just for the very manuals or price just $£ 5$ REF: MAG
comprehensive manual! 5.25° only.
comprehensive manual! 5.25° only.
DOS PACK Microsoft version 5 Original software but no manuals hence only £3 REF: MAG3P6 5.25° only
FOREIGN DOS 3.3-German, French,italian etc $£ 2$ a pack with manual $5.25^{\prime \prime}$ only. REF:MAG2P9
CTM644 COLOURMONTOR Made to work with the CPCA64 home computer. Standard RGB input so will work with other machines. Refurbished $£ 59.00$ REF:MAG59
PIR DETECTOR Made by famous UK alarm manufacturer these are hi spec, long range internal units. 12 v operation. Slightmarks on are hi spec, long range internal units 12 V operation. Slightmak
case and unboxed (although brand new) £8 REF: MAG8P5 WINDUP SOLAR POWERED RADIO AM/FM radio complete with hand charger and solar panel! E14 REF MAG14P1
COMMODORE 64 TAPE DRIVES Customer returns at $£ 4$ REF: MAG4P9 Fulty tested and working units are £12 REF: MAG12P5 COMPUTER TERMINALS complete with screen, keyboard and RS232 inpuvoutput. Ex equipment. Price is $£ 27$ REF: MAG27 MAINS CABLES These are 2 core standard black 2 metre mains cables fitted with a 13A plug on one end. cable the other Ideal for proects low cost manufacturing etc. Pack of 10for£3REF:MAG3P8 Pack of 100 E20 REF: MAGZOP5
SURFACE MOUNT STRIPPER Onginally made as some form of high frequency amplifier (main chip is a TSA5511T 1.3 GHz synthasiser) but good stripper value, an excellent way to play with synthasiser) but good stripper value, an excellent
surface mount components $£ 1.00$ REF: MAG1P1.
surface mount components $£ 1.00$ REF: MAG
MICROWAVE TIMER Electronic timer with relay output suitable to make enlarger timer etc E4 REF: MAG4P4
MOBILE CAR PHONE $\mathbf{8} 5.99$ Well almost! complete in car phone excluding the box of electronics nommally hidden under seat. Can be made to illuminate with $12 v$ also has built in light sensor so display only lluminates whendark Totally convineng! REF: MAG6P6 ALARM BEACONS Zenon strobe made to mount on an extemal bell box but could be used for caravans etc. 12 v operation. Just connect up and it flashes regularly) 55 REF: MAG5P11
FIRE ALARM CONTROL PANEL High quality metal cased alarm paned $350 \times 165 \times 80 \mathrm{~mm}$. With key. Comes with electronics but no information. sale price 7.99 REF: MAC8P6
SUPER SRE HEATSINK Supert quality aluminium heatsink. $365 \times 183 \times 61 \mathrm{~mm}, 15$ fins enable high heat dissipation. No holes! $365 \times 183 \times 61 \mathrm{~mm}$, 15 fins enable
sale price E 5.99 REF: MAG6P 11

REMOTE CONTROL PCB

REMOTE CONTROL PCB These are receiver boards for garage door opening systems. You may have another use? £4 ea REF: MAG4P5
6"X12" AMORPHOUS SOLAR PANEL $12 \mathrm{v} 155 \times 310 \mathrm{~mm}$ 130mA. Bargan price just $£ 5.99$ ea REF MAG6P12.
FIBRE OPTIC CABLE BUMP ER PACK 10 metres for $£ 499$ ref MAG5P 13 ideal for experimenters! 30 m for $£ 1299$ ref MAG13P1 LOPTX Line output transformers believed to be for hi res colour monitors but useful for getting high voltages from low ones! $£ 2$
REF: MAG2P 12 bumper pack of 10 for $£ 12$ REF: MAG12P3.

SHOP OPEN 9-5.30 SIX DAYS A WEEK

PORTABLE RADIATION DETECTOR £49.99

A Hand held personal Gamma and X Ray detec tor. This unit contains two Geiger Iubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 K eV to over 1.2 M eV and a measuring range of 5-9999 UR/h or $10-99990 \mathrm{Nt} / \mathrm{h}$. Supplied complete with handbook

REF: MAG50
ANCHOR SURPLUS LTD THE CATTLE MARKET NOTTINGHAM
NG2 3GY
TEL: (0602) 864902 \& 864041
FAX: (0602) 864667

SPECIAL OFFERS FOR FOUR WEEKS ONLY

> HEWLETT PACKARD SPECTRUM ANALYSERS
> $20 \mathrm{~Hz}-300 \mathrm{KHz}(\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{~B}+8556 \mathrm{~A})=£ 625.00$
> $1 \mathrm{KHz}-110 \mathrm{MHz}(\mathrm{HPl41T}+8552 \mathrm{~B}+8553 \mathrm{~A})=£ 650.00$
> $100 \mathrm{KHz}-1250 \mathrm{MHz}(\mathrm{HPl41T}+8552 \mathrm{~B}+8554 \mathrm{~B})=£ 1250.00$
> $10 \mathrm{MHz}-18 \mathrm{GHz}(\mathrm{HP141T}+8552 \mathrm{~B}+8555 \mathrm{~A})=£ 1750.00$ ALL SYSTEMS TESTED WITH VERIFIED CALIBRATION
MARCONI TF2019 Signal Generators $80 \mathrm{KHz}-1040 \mathrm{MHz}$ Synthesised $£ 1250$
HEWLETT PACKARD 8616A MicroWave Generators $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$ £175.00
GIGA GRIIO1A MicroWave Synthesised Generators 12.0 GHz - 18 GHz £450.00
BIRD 4381 Digital RF Analyser £175.00
HEWLETT PACKARD 5256A Frequency Converters 8 GHz - 18 GHz for HP Counters $£ 75.00$
SOLARTRON 1310 Frequency Response Analysers for Audio Analysis $£ 175.00$
KEMO DP1 Digital Phase Meters $1 \mathrm{~Hz}-100 \mathrm{KHz}$ £175.00
FLUKE 1952B Universal counter timers 7 digit LED tested to 80 MHz $£ 65.00$
FLUKE 1953A Universal counter timers 8 digit LED tested to 175 MHz £75.00
RACAL DANA 9904 50MHz Universal Counter TimersLED Readout with TXO Reference Oscillators now only £75.00
RACAL DANA 9915M 600MHz UHF Frequency Counters8 Digit LED Readout with TXO£125.00
SYSTRON DONNER 6053 UHF Digital Frequency Counters 20 Hz to 3000 MHz Tube Readout £275.00
FERROGRAPH RECORDER TEST SET $£ 95.00$
RACAL DANA 9009 MODULATION METER to 1.5 GHz $£ 125.00$MARCONI TF2807 PCM MULTIPLEX TESTER £75.00MARCONI TF2808/2 PATTERN GENERATOR AND S.L.M.S£75.00
ALL EQUIPMENT IS FULLY TESTED WITH VERIFIED CALIBRATIONAND COMES WITH OUR 30 DAY UNCONDITIONAL WARRANTY.

DESIGN BRIEF

Differentiating op-amps

Demonstrating how different op-amps can be, Ian Hickman investigates two high-performance devices - one optimised for DC and low frequencies, the other a high-speed device with a 1.7 GHz gain-bandwidth product.

In an ideal op-amp, bandwidth, open-loop gain, differential and common mode input impedance, CMRR and PSRR would all be infinite. Input offset voltage, input bias current and output impedance on the other hand would all be zero. In practice however, designers have to select from a wide variety of op-amps all with their parameters optimised differently
The following contrasts two bipolar op-amps. Both have input-offset voltage temperature coefficients in
the microvolt range. Otherwise they are dissimilar and suited to very different tasks.

Op-amp excels at rf
Features of the Comlinear CLC425 op-amp are a 1.7 GHz gain bandwidth product, a typical input offset voltage of $100 \mu \mathrm{~V}$, and a $360 \mathrm{~V} / \mu \mathrm{s}$ slew rate. It also has a low input noise of $1.05 \mathrm{nV} / \mathrm{VHz}, 1.6 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$, although its $1 / f$ corner frequency is around 500 Hz .

Among the uses of the device are ultrasound and

Fig. 1. Gain versus frequency (a) for the CLC425 in inverting and non-inverting modes. In (b) is the circuit used for evaluating of the CLC425 low-noise wideband bipolar op-amp. The device produces a voltage gain of 10 , but as the input is terminated with $51 \Omega 2$ and a 51Ω source resistance Rout is included in series with the output, insertion gain is 5 or just 14dB. Diagram (C) shows the test set-up.

(c)

instrumentation sense amplifiers and magnetic tape and disk pre-amplifiers. Applications extend to rf instrumentation since the device has a non-inverting gain of ten. $\pm \mathrm{ldB}$, up to 350 MHz , Fig. 1a. In fact, while its ac performance is reminiscent of a current feedback op-amp, it works with voltage feedback, providing vastly improved dc characteristics. These include a $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ input offset-voltage temperature coefficient.
This amplifier is a 'decompensated' type. While not uncompensated, it is not as heavily internally compensated as would be necessary for use at closed loop gains down to unity. The minimum gain recommended for stability is ten.
I mounted a sample of the device on the company-s evaluation board. This is a well laid out, platedthrough board measuring 4 cm square. It is designed to take PC mounting SMA sockets and leaded components. However. I used 10 nF chip decoupling capacitors in parallel with tantalum types as these could be mounted closer to the device pins.

Resistors R_{f} and R_{g} were 470Ω and 51Ω respectively. Fig. 1b, setting a demanded gain of $521 / 51$, which is 20.2 dB . This gives an insertion gain, board in to board out, of 6 dB less than this. Figure 1c shows the test set-up used for subsequent measurements.
Figure $2 \mathbf{a}$ is a double exposure, the right hand trace showing a -40 dBm 100 MHz test signal applied directly to a spectrum analyser. The corresponding zero hertz marker is one division in from the left-hand side. In the second trace, which is offset one division to the left. the same signal is applied via the amplifier on the evalustion board indicating a gain of a shade over 14 dB . Zero hertz is at extreme left-hand side of the display.

Figure $\mathbf{2 b}$ shows another double exposure. On the right is output from the amplifier when the +5 V and -5 V supplies were turned off, the external attenuator having been set to 0 dB instead of 30 dB . There is 38 dB of isolation at 100 MHz through the amplifier when powered down.

Even more interesting is the left-hand trace. Here

the amplifier is powered up but has had its input and nutput ports interchanged. Again the external attenuator was set to 0 dB instead of 30 dB . This indicates a reverse isolation of about 55 dB and a ratio of forward to reverse gain of around 70 dB .
An obvious application for the CLC425, with its low noise and flat gain versus frequency, is as a preamplifier to extend the input senstivity of a spectrum analyser. Spectrum analysers are designed to cope linearly with a welter of frequencies at their input, so as to display them all faithfully while adding the minimum of additional spurious signals due to intermodulation products. Consequently they usually employ a straight-into-the-first-mixer architecture which, while maximising linearity, results in a noise figure in the range 20 to 25 dB .

When a signal applied to the analyser is known to be free from large unwanted signals, the sensitivity of the analyser can be extended by adding a low noise preamplifier at the input. To evaluate the effect of adding the circuit shown in Fig. 1, a low deviation fin test signal was applied. The 100 MH z test signal was frequency modulated with a 50 kHz sinewave, with a modulation index of 014 . This gave a peak frequency deviation of 8 kHz and a peak phase deviation of only 8°. At this low modulation index, the second-order fm sidebands of the signal are almost 50 dB down on the

Fig 2. Right-hand trace in (a) is a $100 \mathrm{MHz}-40 \mathrm{dBm}$ test signal applied directly to a spectrum analyser. Horizontal scaling is $20 \mathrm{MHz} /$ div., OHz is one div in from left-hand side. Vertical scaling is $10 \mathrm{~dB} / \mathrm{div}$. referred level OdBm, IF bandwidth 300 kHz . No video filtering is used. The left-hand trace is as above but the signal is fed via the amplifier board, demonstrating an insertion gain of just over 14dB. In the right-hand trace of (b), parameters are as above but amplifier $\pm 5 V$ supplies are turned off and the external attenuator set to $O d B$ instead of 30 dB . This shows 38 dB of powereddown isolation. In the lefthand trace, an external attenuator is set to $0 d B$ instead of 30 dB with the amplifier powered up but input and output ports interchanged. This shows $55 d B$ reverse isolation and a 70 dB ratio of forward to reverse gain.

Fig. 3. At not much over -110 dBm in the right-hand trace, second order fim sidebands of the 100 MHz -60 dBm test signal (see text) are barely visible above noise. Horizontal scaling is $100 \mathrm{kHz} /$ div., vertical is $10 \mathrm{~dB} / \mathrm{div}$ referred io -30 dBm . Video filtering is set to maximum and IF bandwidth is 10 kHz . A 50 kHz modulating frequency is applied. In the left-hand trace, via the $14 d B$ gain of the CLC425 amplifier board, second FM sidebands are clearly visible and their level readily measured.

Fig. 4. Unity-gain bandwidth of the TLE2027 versus capacitive load, (a), and full power bandwidth (b) showing that the device covers the audio band and beyond.

Fig 5. Circuit used to test the TLE2027 driving capacitive loads (a). In the upper trace of scan (b), the device is driving $23 \mathrm{~V} p k-p k$ into $1 \mu \mathrm{~F}$ at 318 Hz . Lower trace shows $T H D$ is 0.06% -but due to what? In (c), upper trace, the op-amp is trying to drive $23 V p k-p k$ into $1 \mu \mathrm{~F}$ at 500 Hz . In the lower trace, is the effect of the op-amp's internal current limiting circuitry.

Upper trace, (d) is the TLE2027 driving 23V pk-pk into a 380 S 2 resistor at 500 Hz . Even at 0.005%, lower trace, residual is still mainly fundamental.
carrier, the amplitude of which is virtually unchanged from the unmodulated condition. At not much over -110 dBm , the second fm sidebands in Fig. 3, righthand trace, are barely visible above the analyser's noise floor. Note also that there is smoothing of the noise floor by the video filter, which takes it almost half a division above the graticule base-line.
Insertion of the amplifier board between the external attenuator and the analyser's input, left-hand trace, rescues the signal and makes measurement easy. A bespoke design using discrete transistors could doubtless achieve an even lower noise figure. And the analyser's noise figure is so high that a second preamplifier stage similar to Fig. 1 could be usefully cascaded. But for an amplifier with 50Ω input and output, high reverse isolation and a small-signal flat response from dc up to a few hundred megahertz, the circuit shown provides an instant solution.
Operating from $\pm 5 \mathrm{~V}$ supply rails, the device's maximum output swing for a THD of less than 1% is maintained at over 7 V peak-to-peak up to 10 MHz .

Settling time to 0.1% is a shade over 20 ns .

Penalties for enhanced dc performance

The second op-amp in question is the Texas TLE2027. which has a higher-specification counterpart, the TLE2027A. Made using the company's Excalibur technology, this device contains no fewer than 62 transistors - all bipolar devices except for one fet.
Internally, this device is compensated for gains down to unity .It features an open-loop gain of 153 dB $(45 \mathrm{~V} / \mu \mathrm{V})$ which, with its 15 MHz unity gain frequency, corresponds to an open loop gain roll-off starting at below 1 Hz . Contrast this with a gain rolloff in the other device starting at around 100 kHz .
Direct-current characteristics are excellent, the typical input offset, temperature coefficient and drift being respectively $10 \mu \mathrm{~V}, 0.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and
$0.006 \mu \mathrm{~V} / \mathrm{month}$ for the premium ' A ' version. As far as ac characteristics are concerned, the TLE2027 is clearly aimed more at audio frequencies.
For a source resistance of 50Ω, equivalent inputvoltage noise of the CLC425 may be reduced by increasing the power consumption of the IC slightly, to below $\ln \mathrm{V} / \sqrt{ } \mathrm{Hz}$ (the device has a bias pin). With a 100Ω source resistance, noise of the TLE2027 is $2.5 \mathrm{nV} / \mathrm{JHz}$. However, with its $1 / f$ corner frequency of 500 Hz , the CLC425's noise has already risen to $8 \mathrm{nV} / \mathrm{NHz}$ at 100 Hz as against only $3.3 \mathrm{nV} / \mathrm{NHz}$ at 10 Hz for the TLE 2027.

An unusual feature of the TLE2027 is its wide phase margin, enabling it to tolerate large capacitive loads,
Fig. 4a. Reactance of 10 nF at 7 MHz is a mere $-\mathrm{j} 2.3 \Omega$. and the device's internal current limit is of the order of $\pm 35 \mathrm{~mA}$! In fact with $\pm 15 \mathrm{~V}$ supplies, the maximum output voltage of a little over 25 V peak to peak into a load resistance of $2 \mathrm{k} \Omega$ is maintained over the full audio band and beyond, to 30 kHz - Fig. $\mathbf{4 b}$.
With capacitive loading, the peak-to-peak swing

Time base $=1 \mathrm{~ms}$
 $\mathrm{CH} 1 \mathrm{~V} / \mathrm{DIV}=5 \mathrm{~V}$
 $\mathrm{CH} 2 \mathrm{~V} / \mathrm{DIV}=1 \mathrm{~V}$

Time base $=500 \mu \mathrm{~s}$
$\mathrm{CH} 1 \mathrm{~V} / \mathrm{DIV}=5 \mathrm{~V}$
$\mathrm{CH} 2 \mathrm{~V} / \mathrm{DIV}=1 \mathrm{~V}$

Time base $=500 \mu \mathrm{~s}$ $\mathrm{CH} 1 \mathrm{~V} / \mathrm{DIV}=0.5 \mathrm{~V}$ $\mathrm{CH} 2 \mathrm{~V} / \mathrm{D} I \mathrm{~V}=100 \mathrm{~V}$

available will clearly depend upon the load reactance, i.e. upon both the size of the capacitance and the frequency of operation. I was particularly interested in the device`s ability to drive large capacitances. which turned out to be amazing. when a year or so ago I designed an RCL bridge.

The design was based on the transformer-ratio-arm principle but the circuit was realised with op-amps in place of transformers. This principle has a unigue advantage over any other parameter measurement technique. The arrangement needed an op-amp that would drive capacitive loads of $1 \mu \mathrm{~F}$, and even up to $10 \mu \mathrm{~F}$ albeit with a small voltage swing.
Most op-amps I looked at would only cope with up to 100 p F loading. Even when driving that capacitance. some need a series 47Ω resistor between the output and load. But with Fig. 4a showing the TLE 2027 driving up to $10 \mathrm{n} F$, this device proved suitable.
Figure 5a, upper trace, shows the TLE 2027 driving 23 V ph-pk into $1 \mu \mathrm{~F}$ at 318 Hz - twice $10^{3} \mathrm{rad} / \mathrm{s}$ - in the circuit of Fig. 5b. The lower trace indicates residual total harmonic distortion, which visibly contains both second and third harmonic components. It amounted $100.0 .07 \%$.
Frequency was raised to 500 Hz while leaving amplitude unchanged. At this frequency impedance of the $1 \mu \mathrm{~F}$ capacitor falls to 320Ω. Fig. 5c. upper trace. This resulted in the op-amp current limiting over the negative-going flank of the sinewave. Current-sink limiting of the device is 35 m A against a 40 mA maximum current source capability
Current limit does not occur at the peak voltage, as would be the case with a $320 \Omega 2$ resistive load. but over the part of the waveform where the slope $\mathrm{dV} / \mathrm{dT}$ is greatest. This is due to the current drawn by a
capacitor being 90° phase advanced.
In the lower trace of Fig. Sc. the THD meter residual has been adjusted to show that response is perfectly linear over that part of the cycle where the op-amp is not in current limit. This residual indicated 10% distortion. but clearly the waveform has a component at the fundamental. When this was completely nulled out the true distortion was measured as 6.3%
I repeated the 500 Hz measurement with the capacitance replaced with a $470 \Omega 2$ resistor. In this case, current limiting was not quite reached. Residual distortion is not shown as it was identical to that in Fig. 5b. It was not only identical in amplitude and waveform shape but also in phasing - a fact that clarted alarm bells ringing, since the phase of the load current was different.
The video generator supplying the drive - the same one used to provide the 50 kHz . modulation in Fig. 3was replaced with an oscillator whose THD at 500 Hz is less than 0.0005%. Voltage across the resistor is shown in Fig. 5d. upper trace. The 'residual' shown in the tower trace was 0.005%. This residual is largely fundamental.
There was insufficient resolution or the THD meter`s wire-wound phase and quadrature trimmers to achieve a complete null of the fundamental. This suggests that distortion in the TLE 2027 op-amp is little if any greater than the residual distortion of the distortion meter itself. From other tests. I know this to be about 0.0016%.
This is a remarkable performance for an op-amp supplying 23 V pk-pk at a load current not much below the current limit value - given the $2 \mathrm{~h} \Omega$ gain setting chain at the non-inverting input in parallel with the 47082 load.

8 CAVANS WAY,
BINLEY INDUSTRIAL ESTATE,
COVENTRY CV3 2SF
Tel: 0203650702

Fax: 0203650773

Mobile: 0860400683
(Premises situated close to Eastern-by-pass in Coventry with easy
access to M1, M6, M40, M42, M45 and M69)

OSCILLOSCOPES	
Gould $400-20 \mathrm{MHz}$ D S $O 100 \mathrm{Ms} / \mathrm{s}$	¢1000
Gould $4072-100 \mathrm{MHzD} \mathrm{SO} 400 \mathrm{Ms} / \mathrm{s}$	$¢ 2000$
Gould OS4000, OS4200, OS4020, OS245	from ¢125
Hewlett Packard 1707A, 17078-75MHz dual ch	from E 275
Hewlett Packard 1715A - 200 MHZ with DMM dual ch	¢650
Hewlett Packard 1740A, 1741A, 1744A, 100 MHz dual c	£350
Hewlett Packard 1745A - 100MHz dual ch (DMM)	¢450
Hewlett Packard 182C-100MHz 4 ch	¢350
Tektronix 2201 -20MHz D S O dual ch	¢675
Tektronix 2215-60MHz dual ch	¢450
Tektronix $2235-100 \mathrm{MHz}$ dual ch (portable)	¢800
Tektronix 2246-100MHz 4 channel (as new)	¢995
Tektronix $2335-100 \mathrm{MHz}$ dual ch (portable)	$¢ 750$
Tekironix $465 / 465 \mathrm{~B}-100 \mathrm{MHz}$ dual ch	from £350
Tektronix $475-200 \mathrm{MHz}$ dualch	[450
Tektronix $468-100 \mathrm{MHz} \mathrm{D} \mathrm{S} \mathrm{O} \mathrm{dual} \mathrm{ch}$	1850
Tektronix $7313,7603,7613,7623,7633,100 \mathrm{MH}$	from £300
Tektronix $7704-250 \mathrm{MHz} 4 \mathrm{ch}$	from ¢65C
Tektronix $7834 / 7844-400 \mathrm{MHz} 4 \mathrm{ch}$	from $\mathrm{C75C}$
Tektronix 7904-500M Hz	from $\mathrm{E85}$ C
Philips $3070-100 \mathrm{MHz} 2+1$ channel + cursors as new	¢90C
Philips 3206, 3211, 3212, 3217, 3226, 3240, 3243. 3244, 3261, 3262 (2ch +4 ch)	125 to ¢350
Solartron Schlumberger CD1740-20MHz 4 ch	£25

| Eilech $727-20 \mathrm{GHz}$ | |
| :--- | :--- | :--- |

$〔 400$
800
5400

5600
〔650
¢500
5350 - Philips PM 5770 Pulse gen - $1 \mathrm{MHz}-100 \mathrm{MHz}$ Philips PM 8272 XYT chart recorder Photodyre 800 Fibre optic attenuato Projectina Ch9345 Microscope Racal Da oe $310040-130 \mathrm{MHz}$ synthesiser
Racal Da in 5002 Wideband level
facal Da a 5003 Digral mimeter Racal Da 19900 Microprocessing tmer/CO
Racal Da 9009 Modulation meter
Racal Racal Dana 9081 Synth sig gen 520 MHz
Racal Dana 9084 Synth sig gen 104 MHz Racal Dana 9242D Programmable PSU 25V-2A Racal Dana 9303 True RMS/AF level meter Racal Dana 9341 LCR databrioge Racal Dana 9500 Universal tumer/counter 100 Mr Real Rohde \&Schwarz BN36711 DigitalQ meter Solartro Schlumb 1170 Freq response analys? Tektroni: 834 Data comms analyser. W\&G SPM12 Level meter $200 \mathrm{~Hz}-6 \mathrm{MHz}$ W\&G SPM60 Level meter $6 \mathrm{KHz}-186 \mathrm{MHz}$ W\&G PSEO Level generator $6 \mathrm{KHz}-18.6 \mathrm{MHz}$ W\&G SFM6 Level meter $6 \mathrm{KHz}-186 \mathrm{MHz}$ Watanabe WTR2113 pen plotter Wayne merr B424/N LCR Component meter set Wayne Ferr 4250 LCR meter (as new) Wayne Ferr 642 Autobalance universal bridge Weller [300/D801 Desoldering station Weller $[700$ Desoldering station Wilton 50 Scalar network analyser +2 heads SPECI AL OFFERS - Phoenix 5500A Telacoms analyser, ex demo as new with 12 months caltbration. 12 months guarantee
fitted with V 24 intertace. A variety of intertace oppions avalable Ring/F ix for detalls Navtel 9440 Protocol anal seer. ex. demo as new $£ \boxed{0} 00$ new - cost now $£ 3500$. Navtel 941 PCB based proto
analyser ex demo as new $£ 3000$ new - Cos' now $£ 1500$.

CIRCIE NO. 112 ON REPLY CARD

Low cost data acquisition for IBM PCs \& compatibles

or as an advanced data logger. Installed in seconds they simply plug into the parallelport (except the ADC-16 which connects to the serial port). They require no power supply and take up no expansion slots. Each comes with a comprehensive manual C, Pascal and Basic drivers are included for users who wish to write their own software Software supplied on 3.5"disk.
PicoScope

Pico Technology Ltd. Broadway House, 149-151 St Neots Road, Hardwick, Cambridge. CB3 7QJ. TEL: 0954-211716 FAX: 0954-211880
Phone or FAX or sales, ordering information, dala sheets, technical support A1 piees exclusive oi vit

Quality Test \& Measurement Equipment

Celluar Radio Interface	HP 8958A	£6500
Data Error Analyser	HP 1654A	£150
Data Generator	HP 3762A	
Error Detector	HP 3763A	- Pair £600
Frequency Counter	EIP 548A	£2200
Function Generator		
Schtumberger	4431	£2500
Graphics Tablet	HP 9111A	£110
Impedance Analyser LF	HP 4192A	£6500
Logic Analyser	HP 1630D	£1000
Oscilloscopes	HP 541000	£POA
Tektronix	2230	£2200
Tektronix	11802	£POA
Phillips	PM3055	£520
Phillips	PM3267	£370
Tektronix	2215	£450
Tektronix	7854	£150
Telequipment	D34	£150
Plotters	HP 7440A	£500
	HP 7470A	£220
	HP 7550A	£1000
	HP7475A	£400
Probes	HP 1120A	£250
	HP 1121A	£250
	HP/ Tek	£50
Protocol Analyser	HP 4953A	£2500
Pulse Generator	Lyons PG-2B	£250
Resistive Dividers	HP 10020A	£120
S-Parameter Test Set	HP 8515A	£POA
Spectrum Analyser	HP 3580A	£1250
Tx/Reflection Test Set	HP 8502A	£800
Waveform Synthesiser	HP 8770A	£POA
Word Generator	HP 8016A	£150
0702530809 OR FAYUS ON: 0702530819		

Ceramic capacitors deliver high values. These Murata low ESR, self-healing types, optimised for filtering in DC/DC converter and SMPS applications, have values to $100 \mu \mathrm{~F}$ and voltage ratings of 50 or 100 V depending on capacitance.

For some applications the choice of capacitor technology is irrelevant but in most cases there are benefits to taking a more careful look at dielectric characteristics.
Tony Wong discusses features and disadvantages of the most popular dielectrics.

Capacitors - simply devices capable of stonng electrical energy - are widely used throughout the electronics industry. There is a wide variety of different lypes available today. each with their own combination of features and drawbacks. This article presents a round-up of capacitor technologies looked at from a design-engineer"s viewpoint.
Capaciters generally need to be as small as possible. Since most needs are for low-voltage devices. much of the emphasis in capacitor manulacture is on producing thin and uniform dielectric.
Capacitor technologies currently in widespread use fall into three categories. depending on their loss. Mica, glass, ceramic and polystyrene types form the first. These types exhihit low loss and good capacitance stability. Paper, plastic film and high- Q ceramic types, the second category, exhibit medium loss and medium stability.

Aluminum and tantalum electrolyte types have the best capacitance per unit volume characteristics. This class of capacitor involves extremely thin anodic oxide layers with a high dielectric constant.

Liquid electrolyte usually connects the oxide layer. Solid tantalum types however use man-ganese-dioxide semiconductor.

Electrolytic capacitors

These devices provide high capacitance in the smallest space at the lowest cost. Electrolytic capacitors are polarised. If connected incorrectly. the insulating oxide film is not formed

World's smallest trimmers. These devices, with values to 20 pF , measure 2.3 by 3.2 mm and are under 1.5 mm high. Having a ceramic rather than plastic stator enhances long-term stability, according to Murata.
and there is no capacitance. Reverse connection eventually causes overheating and then failure. Electrolytic capacitors divide into two main categories - namely aluminium and tantalum.

Aluminium electrolytic capacitors. These capacitors can withstand a reverse voltage of up to 1.5 V without noticeable effect on their operating characteristics. Excess voltages applied for short periods will cause some change in capacitance but will not lead to failure
Aluminium electrolyte capacitors are made with a built-in pressure relief mechanism. This is designed to open and slowly release gas pressure that may build up if the device overheats during operation. A further disadvantage of aluminiam electrolyte capacitors is their relatively high leakage current. This is cause by the oxide film not being a perfect insulator.

Tanialum capacitors. Tantalum capacitors tend to have as much as three times better capacitance/volume efficiency than aluminium electrolytic capacitors. They fall into the following three categories.
There are two main types of solid electrolyte tantalum capacitors in common use - hermetically sealed and epoxy dipped. Hermeticallysealed types have dc voltage ratings up to 125 V . They are mainly used when low leakage current, low dissipation factor, reliability and stability with time and temperature are required. Epoxy-dipped tantalum capacitors have dc working ratings up to 50 V . Applications are mainly in commercial and industrial equipment where low cost, small size, high stability, low dc leakage and dissipation factor are important.
Liquid-electrolyte tantalum capacitors, also called "wet-slug' tantalum capacitors have dc working ratings up to 150 V . Their main application areas are industrial and military equip-

Table 1. EIA Class I dielectrics for ceramic capacitors - what the codes mean.

Significan figure		Multiplier		Tolerance	
code	value	code	value	code	value
C	0.0	0	-1	G	± 30
M	1.0	1	-10	H	± 60
P	1.5	2	-100	J	± 120
R	2.2	3	-1000	K	± 250
S	3.3	4	-10000	L	± 500
T	4.7	5	+1	M	± 1000
U	7.5	6	+10	N	± 2500
		7	+100		
		8	+1000		

Example: for M7G dielectric is $\mathrm{P} 100 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$: for P 3 K dielectric is $\mathrm{N} 1500 \pm \mathrm{ppm} / 250^{\circ} \mathrm{C}$.
Table 2. Code descriptions for EIA Class II dielectrics.

Lower limit ${ }^{\circ} \mathrm{C}$	Upper limit ${ }^{\circ} \mathrm{C}$	Maximum capacitance change
code value	code value	code value
$X \quad-55$	245	A ± 10
Y Y -30	465	B ± 1.5
Z 10	585	C ± 2.2
	6105	D ± 3.3
	7125	E ± 4.7
		F ± 7.5
		P ± 10
		R ± 15
		S ± 22
		T 22/-33
		U 22/-56
		\checkmark 22/-82

Example: for $Z 5 \mathrm{U}, \Delta C$ is 22% to -56% from +10 to $+85^{\circ} \mathrm{C}$: for $\mathrm{Y} 5 \mathrm{~V}, \Delta C$ is 22% to -82%, from -30 to $+85^{\circ} \mathrm{C}$.

Table 3. Characteristics of the three most common dielectrics used in ceramic capacitors.

capacitors.	NPO/COG	X7U (mid K)	Z5U (high K)
	$<0.1 \%$	$<2.5 \%$	4%
Dissipation factor	$< \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0 \pm 0.15 \% \Delta \mathrm{Cmax}$	$22 /-56 \% \Delta \mathrm{Cmax}$
Temperature coefficient	-55 to $125^{\circ} \mathrm{C}$	-55 to $125^{\circ} \mathrm{C}$	10 to $85^{\circ} \mathrm{C}$
	$100 \mathrm{G} \Omega$	$100 \mathrm{G} \Omega$	$10 \mathrm{G} \Omega$
Insulation resistance	$2.5 \times$ rated voltage	$2.5 \times$ rated voltage	$2.5 \times$ rated voltage
Dielectric withstand			

Tantalum chip capacitors with resin coatings, like these from Matsuo, are said to offer improved mechanical protection combined with enhanced moisture and solder heat resistance.
ment where small size, stable electrical characteristics and long service life are important.
Foil-based tantalum designs have the lowest capacitance per unit volume. They are allso the least encountered, being best suited to the high voltages primarily found in older equipment. Some types are capable ol handling de working voltages up to 300 V . Since this type of capacitor requires more manufacturing operations than the two oher types, it is relatively expensive. The operating temperature range is $-55^{\circ} \mathrm{C}$ $10+125^{\circ} \mathrm{C}$.
In summary, the circuil designer uses foil tantalum capacitors in circuits involving high voltages or where there may be a substantial reverse voltage.
Wet-slug tantalum capacitors generally exhibit the lowest de leakage. However, the conventional silver-can design is not tolerant to reverse voltage. This type is of capacitor is commonly found in aerospace applications. In can withstand reverse voltage up 10.3 V and will operate under higher ripple currents and temperature up to $200^{\circ} \mathrm{C}$.
Solid-electrolyte designs are least expensive. Often used in consumer equipment, they are
physically small and capable of withstanding 15% of rated de working voltage in reverse direction. They also exhibit good low temperature performance and are free from corrosive electrolytes.

Ceramic capacitors

Produced in discoidal and ubular form, ceramic capacitors have very high dielectric constant values. Dise ceramic types feature capacitance values up to $4.7 \mu \mathrm{~F}$ and take up much less space than paper capacitors. For tubular ceramics. with values of 1 to 500 pF , applications are the same as for mica equivalents but again they take up less board space.
Ceramic capacitors are often used for temperature compensation. The temperature coeflicient lor these components is classified into three most popular temperature characteristics. Differences between these characteristics and the technique of how to read the specitication is discussed later.

Mica capacitors

Mica for capacitor use is expensive and values are normally limited to about $0.1 \mu \mathrm{~F}$. A modified form of mica capacitor is the silvered mica type. Such capacitors have a constant capacitance with change of temperature and are less likely to change in value with age. They generally have a high working voltage rating and perform well in high frequency circuits.

Paper capacitors

Disadvantages of paper capacitors include variation in capacitance with temperature change and a shorter service life relative to most other types. Paper capacitors are olten used for medium capacitance values of approximately 0.001 to $l \mu \mathrm{~F}$.

Polymer types

There are two types of polymer dielectric used for capacitors - polar and non-polar. Generally, non-polar types produce devices that are frequency independent and polar types vice versa.
Polysiyrene film types fall into the non-polar catcgory. They have excellent electrical characteristics. The polymer has an oriented crystalline structure, making it possible to manufacture the film in very thin and tlexible strips. Solvents affect the tilm so scaled encapsulation is needed.
Power factor of polystyrene film capacitors is low over a wide frequency range but the electrodes degrade perfomance with higher values as frequency increases. In a typical example, at 1 MHz , values between 10 and 100 nF might have a power factor between 0.005 and 0.02 whereas at 1 kHz , the power factor will be as low as 0.0003 . A device under InF will typically rise from the same stauting power lictor at 1 kHz to only 0.001 at 1 MHz .
Two other types of polymer film dielectrics are in common use - polyethylene-terephthalate and polycarbonate. All round, these two are similar in performance but polycarbonate has a lower loss angle and smaller change of capacitance with temperature. It is also possible to manulacture polycarbonate in a thinner film so
devices are generally smaller.
Plastic film capacitors with metallised electrodes have superseded metallised paper types. Capacitor versus volume ratios are roughly the same but film types offer better electrical characteristics and higher, more stable insulation resistance.

Electrical properties

In order to understand the characteristics of a capacitor, its electrical properties need to be considered.

Dissipation factor. This is the tangent of the angle by which the current lags relative to the 90° vector of voltage over the capacitor.
Normally, measurements are made at $25^{\circ} \mathrm{C}$ and 1 kHz with a test voltage 1 V rms or less. Power factor is the cosine of the phase angle between the voltage and current vector, $\cos \theta$. For low-loss dielectrics, $\tan \delta$ and $\cos \theta$ are approximately equal, and can be used to express diclectric loss. In a `low-loss" capacitor, the dissipation has a small value.

Quality factor, Q. The Q factor is the reciprocal of the loss factor and is dependent on trequency. A near-perfect capacitor has a Q approaching infinity. At $25^{\circ} \mathrm{C}$ with a 1 MHz test voltage of 0.1 to 3 V rms, Q should be greater than 1000 for general purpose capacitors.

Rated voltage. The maximum working voltage of a capacitor is the sum of the DC voltage plisis the AC peak voltage which may be applied continuously to its terminals. Operating a capacitor at a voltage lower than its maximum working value extend its life.

Surge voltage. There is a maximum safe voltage to which a capacitor can be subjected under any combination of circumstances over a short period of time. This is the de surge voltage rating. Normally, testing for surge voltage involves applying a signal several volts above the rated working voltage. It is applied via a $1 \mathrm{k} \Omega$ series resistor in repeated cycles of 0.5 minutes on and 5 minutes off.

Leakage current. A relatively small direct current flows through a capacior when a voltage is impressed across it. Generally, the maximum leakage current should not exceed the value given by these equations for capacitors with ratings between 16 and 100 V dc.

$$
\begin{aligned}
& l=0.01 C V \mu \mathrm{~A} \text { (max.) for } C V \leq 100,000 \mu \mathrm{FV} \\
& I=3 \sqrt{ }(C V) \mu \mathrm{A} \text { (max.) for } C V>100,000 \mu \mathrm{FV}
\end{aligned}
$$

Insulation resistance. This is a measure of the ability of the charged capacitor to withstand leakage of de current. For capacitors of tess than $0.01 \mu \mathrm{~F}$ the insulation resistance should normally exceed $100 \mathrm{G} \Omega$.

Ripple current. The sum of dc and ac current that may be applied to an electrolytic capacitor is termed ripple current. The capacitor should be able to withstand this ripple current at 120 Hz
up $1085^{\circ} \mathrm{C}$. In general, the higher the ripple current. the shorter the life of the capacitor.

Equivalent series resistance. For the purposes of calculation, all internal series resistances of a capacitor are lumped into one to represent the termination losses and dissipation in the dielectric. Equivalent series resistance, $E S R$, can be obtained from:

$$
E S R=\frac{\tan \delta}{2 \pi f C}
$$

where f is measurement frequency in hertz and C is measured capacitance in farads.

Temperature coefficient. For ceramic dielectric capacitors temperature coefficient defines the deviation in capacitance that occurs over a given temperature range. Dielectrics are classified into three most popular types based on temperature coefticient. These are designated by the Electronics Industry Association (EIA). The coefficient of higher K (ferroclectric) dielectrics is most often expressed as percentage capacitance change versus temperature. For linear dielectrics, the temperature coefficient is expressed in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Class I ceramic dielectric has a linear temperature coefficient. Linear dielectrics. i.c. those with a K of less than 150, are defined in EIA and MIL specifications. Class I capacitors are used in circuits requiring stability and low loss (high Q) over the full temperature range. Typical examples of Class I dielectric EIA designations and their equivalent material coefficient are:

ElA code material coefficient	
C0	NP0
P2	N150
P3	N1500
R2	N220
R3	N2200
S1	N030
S2	N330
S3	N3300
T2	N470
T3	N4700

ElA coding comprises three digits, the first two showing the temperature coefficient of the material and the last digit indicating the tolerance of that coefficient. Combinations of the three digils are shown in Table 1.
Dielectrics with a K of more than 500 fall into the Class II category. Thesc exhibit a nonlinear temperature coefficient and are less stable all round. Both capacitance and dissipation factor are time and frequency dependent. Applications of Class II capacitors are filtering. dc blockage, by-pass and coupling components in circuitry where stability is not an important criterion.

This class can be further divided into two groups. These are the 'mid-K' stable Class II dielectrics, which include X7R of the EIA standard, and 'high-K' dielectrics. The high-K dielectric exhibits high capacitance density and is best for applications where space is at a premium. Types such as the EIA Z5U type can be

Charge and dielectric

Charge on a capacitor, Q, is proportional to the applied voltage V, ie. $Q \propto V$ or $Q=C V$, where C is capacitance. For a single plate device capacitance is,

$$
C=\frac{Q}{V}=\mathrm{K} \times \frac{A}{t}(\text { farad })
$$

where K is relative permittivity, A is area of the electrodes and t is dielectric thickness.
For monolithic multilayer constructions, capacitance, C, becomes,

$$
C=\frac{\mathrm{K} \times A \times N}{t}
$$

where N is the number of dielectric layers.
Commercial capacitors are generally classified according to their dielectric. Most common electrolytes are aluminium, tantalum, ceramic, mica, paper and air. Their dielectric constants, represented by K, are,

Dielectric	K
Air or vacuum	1
Paper	$2-6$
Mica	$5.4-8.7$
Aluminium oxide	8.4
Tantalum pentoxide	26
Ceramic	$12-400,000$

Dielectric constant is highly significant. Charge activity is performed inside the dielectric material, causing a polarization effect. This effect arises from four mechanisms - electronic displacement, ionic displacement, permanent dipole orientation, and space-charge polarization. As a result, capacitors experience a variation in dielectric constant, and hence capacitance, under differing environments and test conditions. Characteristics of different types of capacitors and their related dielectrics are discussed in the main text.
used as replacements for tantalum capacitors.
Table 2 lists EIA Class II dielectrics at a $25^{\circ} \mathrm{C}$ reference temperature.

Compact size and large capacitance characterizes ceramic capacitors in Class III. These are used for coupling and by-pass applications. Compared with Class II, Class III dielectric has lower performance. Capacitance tolerance is larger, for example $\pm 20 \%$, and dissipation factor is higher, at around $\pm 5 \%$. In addition, insulation resistance is lower at IGS? minimum for example.

Characteristics of the three nost commonly used dielectrics are contrasted ir Table 3.

Further reading

Reference data for radio engincers, Howard W. Sams/ITT.

> With the aid of a modem, you can now access highly accurate time information via your PC. Head of the NPL's time and frequency services, John Chambers, describes the new service - Truetime.

The National Physical Laboratory maintains and distributes the national time scale. Known as UTC(NPL), this time scale is made using a hydrogen maser. It is held within 1μ s of the scale of Coordinated Universal Time (UTC) which is calculated from many atomic clocks worldwide by the Bureau International des Poids et Mesures just outside Paris.
The organisation is responsible for the 60 kHz standard time and frequency transmissions from the Rugby radio station MSF. This station is continuously monitored against UTC. The MSF signal serves the whole country and is used to control clocks in public places as well as in commercial and domestic premises. It has the added advantage of automatic change to and liom summer time. More accurate methods of time measurement, using satellite systems and evea the physical transler of clocks. are available to specialist users.
Audible methods of distributing time referred to UTC(NPL) include the telephone Timeline, operated by BT. Since February 1990 the Greenwich time signal has been originated by the BBC. Several broadcast signals are capable of carrying lime information in coded form. These include the Radio Data System (RDS) carried on vhf/fm,
the If radio-data system carried on 198 kHz , teletext. digital audio broadcasting (DAB) and the MAC satellite systems.
As a service to computer users. NPL now oflers Trmetime. giving time and date via a dial-up modem. Anyone with a V22 modem calling into the service will receive, every UTC second, a 77 -character message describing the next second, followed by a three-character seconds marker. Relative timing is indicated in the drawing. Part of the message is designed for direct display on a screen, and other parts are intended for interpretation by software in the receiving system as required

The accuracy of this method of time dissemination is limited by the uncertainty of the propagation delays through the telephone network and through the receiving modem. Nomally it will be better than 20 ms within the UK. The specification for the data line is that devised and already in use in Austria. Italy and Sweden
Whenever it is necessary to demonstrate that a clock is traceable to the national standard of time 10 within 20 ms , Tritetime can be used as it is directly related to UTC(NPL). The service is suitable for any system where a clock needs resetting when equipment is switched on, or following a power failure

UTC, GMT, and other time scales

In the UK, legal time is Greenwich Mean Time (GMT), offset by one hour in summer to give British Summer Time (BST). Historically GMT was determined so that, averaged over the year, the sun crosses the Greenwich meridian (longitude zero) at noon. It is more formally known as Universal Time (UT), and it is now derived by mathematical conversion from Greenwich Mean Sidereal Time (GMST), which measures the earth's rotation with respect to the stars Since 1967 the SI (International System) second has been defined in terms of the frequency of a particular radiation of the Caesium-133 atom. There are no gear wheels connecting it to the solar system, so a time scale based on the SI second, known as International Atomic Time (TAI),
gradually gets out of step with GMT.
From 1972 a time scale known as Coordinated Universal Time (UTC) has been used as the basis for all time signals. UTC combines the accuracy of the atomic second with most of the convenience of GMT. Seconds ticks in UTC are the same as those of TAI, but occasional extra 'leap' seconds are inserted in the UTC time scale in order to keep it within ± 0.9 s of GMT. There have so far been 18 leap seconds, all positive and another is imminent. The most recent was at 0100 BST on 1 July 1993 and the 19th will be at 0100 BST on 1 July, 1994.
In GMT, BST, UT and TAI there are still always 60 seconds in every minute. In UTC there are 61 seconds in the minutes which contain positive leap seconds.

An automatic process could call the service and set the cloch overnight. A regular call to the service win ensure that a clock in a critical application, such as logging financial transactions or in a security system, has not been altered. Truetime supplies advance notice of future summer/winter time changes and leap seconds. In applications where it is required to avoid the occasional 61 -second minutes of UTC, the DUTI code (carried by characters $55-56$ in the data line) can be used 10 generate GMT/BST more closely.
To allow the date and time of two events to be subtracted to give a time difference, it is necessary to allow for the calendar, and for step changes of one hour and of one second. The modilied Julian date, MJD, and UTC can be used to eliminate the first two of these problems. the last can be eliminated by knowledge of the cumulative number of leap seconds at each event. Although this information is not included in the data line, Truetime may include in the message sequence a six-character sequence $C K L S m m$. where n n is the cumulative known leap seconds (summed algebraically), modulo 100 . This CKLS parameter would be updated with every new announcement of a leap second. and it relates to the situation after that leap second.
Truetime seconds markers and times are based on UTC. The first part of the message is intended to give British legal time and date. When the UK is on GMT, UTC+() is sent and. when the UK is on BST. UTC +1 is sent. In the event of UK time being two hours ahead of GMT. UTC +2 would be sent.

The difference between UTC and GMT. or between UTC +1 and BST, is given to within one-tenth of a second by the DUTI code, which is a signed integer in the range ± 8. At

the start of 1994 the DUT1 code was +2 , indicating that GMT was about 200 ms ahead of UTC. To avoid the ambiguity due to the repeated hour $0100-0200$ at the end of summer time the hours. minutes and seconds are separated by ' A ' when describing the first hour and ' \mathbf{B} ' for the second. At all other times this separator is a colon.

The service uses a premium-rate telephone number is cover its costs, hut all the information apart from the full message sequence can be obtained withon the time allowed for the first unit of charge.
Anyone interested in the service is invited to write their name, address, telephone (and fax.
if avarlable) number on one side of postcard. together with brief details of their application. Send it to Time and Frequency Services (Truetime). National Physical Laboratory, Teddington. Middlesex TWII OLW. We will then tell you how to call the service. Tructime is avatiable 24 hours a day.

Further reading

Esson, L.., Leap seconds - story of the transfer from astronomical to atomic time, Wireless World, July 1981. CCIR Recommendation 460-4, Standardfrequency and time- signal emissions, Geneva, 1986.

Truetime data line format

Data is sent using the V22 1200 baud standard, with eight data bits, no parity, and one stop bit. Characters following each <carriage return> <line feed> are numbered 01-77 and listed below. Coding is ASCII. The seconds time reference is the leading edge of the start bit of the <line feed>, as shown in the diagram. Information in each line relates to the next following second.
01-10 date, changing at local midnight $Y Y Y Y-M M-D D$ 11 space
12-19 local time in the format h h:mm:ss except when 'putting the clocks back' when the letters A and B are used instead of colons for the first and second repeated hour. Note that, in the case of a positive leap second, ss can take the value 60 .
20 space
21-25 a name for the local time, currently 'UTC+ 0^{\prime} ' during GMT and 'UTC +1 ' during BST
26 day of week, from $1=$ Monday to $7=$ Sunday
27-28 week of the year, from 01 to 52 or 53 (week 01
contains the first Thursday of the year)
29-31 day of year, from 001 to 365 or 366
32-37 month, day and hour (in local time) of next one-hour time change (MMDDhh)

38-49 year, month, day, haur and minute in UTC time scale (YYYYMMDDhhmml
50-54 Modified Julian Date (MJD) - a five-digit decimal day count incrementing at 0000 UTC. As a current example, 1994 March 01 corresponds to MJD 49412
55-56 DUT1, the difference in tenths of a second between UT1 (in effect, GMT) and UTC in the range +8 through +0 to 8. A positive figure means GMT is 'ahead' of UTC.

57-59 a currently announced positive or negative leap second, at the end of the UTC month MM, is indicated by +MM or M M. 000 indicates 'no announcement'.
60-62 the number of milliseconds by which the next time reference is advanced with respect to UTC seconds markers. 63 message sequence number (see below) in the range 0-9 64-77 a 14-character field for a message line, up to ten different lines may be used in sequence, they are labelled by the message sequence number

transmission pause

78 this character is usually ${ }^{*}$, but it changes to \# if the code is deliberately advanced in order to anticipate an estimated delay
79 <carriage return>
$\mathbf{0 0}$ <line feed> - the leading edge of the start bit is the reference time for the second just described
transmission pause

DO YOU HAVE A £100 CIRCUIT? EACH MONTH'S TOP CIRCUIT IDEA AUTHOR WILL RECEIVE £100. ALL OTHER PUBLISHED IDEAS WILL BE WORTH £25. WE ARE LOOKING FOR INGENUITY AND ORIGINALITY IN THE USE OF MODERN COMPONENTS

Switched-gain amplifier minimises dc shift

Having its gain switched to one of two settings, this current-feedback amplifier presents excellent DC and high-frequency performance.
Bandwidth of current-feedback amplifiers is virtually independent of gain, but parasitics introduced by semiconductor gainsetting switches cause the bandwidths at different gains to be unequal: miniature relays can be used, but only at low speed. Here, an EL207I and an EL2070 with gains of 20 and 2.8 are in parallel, their output disable pins ensuring that only one of them is in circuit at a time. Conveniently, the disable pins are complementary, so a single gain-control line switches amplifiers. Since the DC performance of such amplifiers is poor, a number of circuit arrangements have been used to improve it.

In this case, a dc amplifier is used as an error amplifier, comparing the input with part of the output. The output of the dc amplifier, which does not appear in the signal path. corrects offset in the currentfeedback circuit. Correctly attenuated output signals are selected by the DG419 switch and set by the potentiometers, the circuit arrangement being such that dc amplifier balance is unaffected by output load, which is nominally 50Ω.
The DC error amplifier corrects current amplifier offset by injecting more offset current into the inverting inputs and, since its swing must be 1 V to 4 V for the $E L 2070$ and -1 V to -4 V for the EL2071. diodes can be used to steer the correction to the relevant amplifier input. Adjust the circuit by injecting a 10 kHz square wave at the input and setting the gain-balance presets for minimum AC at the error amplifier output. Most bifet and bipolar amplifiers are

OTA analogue divider

National Semiconductor"s LM/3600 is a dual operational transconductance amplifier with linearising diodes, the bias current of which may be varied to vary the gain of the amplifier. The circuit shows a simple and accurate analogue divider using the principle. Output current is
$i_{\text {out }}=\left(l_{\text {in }} / 1()_{\text {in } 2}\right) \mathrm{mA}$. OTA A_{1} and the three transistors convert the signal voltage inputs to currents used as source and diode bias.
To adjust the circuit precisely. set R_{1} with $y_{\text {in }}=(0)$ so that $v_{A B}=0$. Apply 10 V to $y_{\text {in2 }}$ and adjust R_{2} to give cero $i_{\text {oul }}$. Then. with equal inputs to $r_{\text {in }}$ and $y_{\text {in } 2}$, set R_{3} to give $i_{\text {out }}=$ 0.1 mA .

Signal voltage at $\square_{\text {in2 } 2}$ must be greater than zero and $\left|v_{\text {in } 1}\right|$ less than $100_{\text {in2 }}$. Ideally. $v_{\text {in }}$ should lie between -10 V and 10 V , and $\mathrm{v}_{\mathrm{in} 2}$ should be IV-I(1)V. The circuit works over the $0-100 \mathrm{kHz}$ range.

Alexandru Ciubotaru

University of Texas at Arlington
Arlington
USA

In addifion to the amplifier bias input, varying diode bias on National's LM13600 transconductance amplifiers varies the gain. This circuit uses this input to make an analogue divider, giving an output current proportional to $V_{i n 1} / V_{i n 2}$.

Will Mr Paul Lovell, whose wide-range ceramic vto appeared in the March issue, please contact $E W+W W$ s editorial office on 0816523614 ?

Automatic cable and connector tester

C
Onnected to the parallel printer port of a PC, this device tests for shorts and open circuits in connectors and cable assemblies with up to 16 ways.
Two 4067 multiplexers take a sequence of addresses from the PC port, the top half of the 8 -bit bus addressing $/ C_{/}$, which switches a 5 V test voltage to each of the 16 output lines in turn. While each of these lines is selected, the lower half of the bus addresses
$I C_{2}$, which scans the 16 inputs for a voltage. Absence of voltage indicates open circuit. while voltage on more than one line shows short circuit.
When the 5 V is found on an input. the printer port Busy line goes high and the led is lit. The top 4 -bit nibble of the 8 -bit address bus is used in the software to generate a column address, the lower nibble providing a row address to a 16 by 16

Tester connected to a PC parallel port automatically indicates open-circuits, shorts and wrong connections in connectors and cable assemblies.
matrix, in which the BUSY bit acts as data; any lines out of sequence are thereby shown. A G Birkett
London SE22

Cheaper, low-voltage ultrasonic microphones

S
mall electret microphone inserts are sensitive to at least 90 kHz , are inexpensive and only need a 1.5 V to 9 V supply; they can often replace the more expensive capacitor microphones which need a polarising voltage.

In the diagram, the supply comes via a resistor of $1 \mathrm{k} \Omega$, typically. The coupling capacitor is chosen to give a low-end roll-off in the lower ultrasonic region to avoid amplifier overload in the audio band and to provide a rising characteristic to counteract the drop in sensitivity at higher frequencies. Any further frequency-response shaping can come after the low-noise first-stage amplifier.
Les May
Rochdale
Lancashire

NEW PRODUCTS CLASSIFIED

ACTIVE

Asics

Non-volatile asic memory. Provision of non-volatile memory on asic without extra cost or complexity is offered by AMS. Where non-volatility is needed, but not reprogrammability. this one-time programmable technology avoids the use of eeproms, with their extra cost. Memory cells use polysilicon strip fuses, whose resistance changes from 5052 to $20 \Omega 2$ when programmed in, eliminating re-growth. Alternatively, metal fuses are used in some low read-current roms, which also avoid re-growth problems. Austria Mikro Systeme Intnl, 027623399.

600 MHz semi-custom array. GPS's DX series of arrays combine analogue and digital circuitry on one chip and is designed for high-current driving: bus, line and transtormer interfacing; and analogue signal processing with high speed and low skew. AGC bandwidth is 300 MHz with a control range of 20 dB and the phase-lock loop operates at 300 MHz . There are seven arrays in the series, from 630 equivalent gates and 26 analogue cells to 9405 gates/120 cells. GEC Plessey Semiconductors, 0793518510.
$0.5 \mu 3 \mathrm{~V}$ asics. VLSI's $0.5 \mu 3.3 \mathrm{~V}$ cmos gate array clocks at 200 MHz - more than 30% faster than $0.6 \mu 5 \mathrm{~V}$ arrays. Two cell-based libraries are available, offering up to 800,000 gates. These chips need only half the power of 5 V types and are in ball grid array and Tab packages with up to 672 usable pins. VLSI Technology Ltd, 0908 667595.

A-to-D \& D-to-A

converters

Fast D-to-As. Qualcomm Q2500 digital-to-analogue converters are 10 bit and 12 -bit devices working at high speed and are intended for use in direct digital synthesis systems. Q2510 is a 10 -bit type offering an update speed of 100 msps , settling time of 4.5 ns to $\pm 0.5 \mathrm{lsb}$ and low glitch impulse of $1.5 \mathrm{pV} / \mathrm{s}$. The 12 -bit Q 2520 updates in 80 ns and has a settling time of 27 ns . Both types are ttlcompatible. Chronos Technology Ltd, 098985471.

Linear integrated circuits

AC bridge interface. Needing only a few passives to set frequency and gain, Analog's AD698 is a complete signal-conditioning facility for linear variable differential transformers or any AC bridge transducer, output being scaled direct voltage. Gain and offset drifts are 20 and $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and. since both primary and secondary amplitudes are measured, the ratio determined and scaled, drifi in the primary drive voltage is eliminated. A drive voltage of $20 \mathrm{~Hz}-20 \times \mathrm{Hz}$ is provided at up to 24 V rms. Analog Devices Ltd. 0932253320

Low-noise op-amp. Comlinear claims its CLC425 1.7GHz op-amp to have the lowest input ncise available at $10.5 \mathrm{nV} . \mathrm{Hz}$ and $1.6 \mathrm{pA} \cdot \mathrm{Hz}$. It is a voltage-feedback device with balanced inputs and low drift, and gives 96 dB of open-loop gain, 100 dB common-mode and 95dB powersupply rejection ratios. Slew rate is $350 \mathrm{~V} / \mathrm{s}$ s. Comlinear Europe Ltd, 0203 422958.

Microwave diodes. RF and microwave components by M/A-Com include silicon and gallium arsenide diodes, switches. chip capacitors, inductors and tuning varactors in a variety of package styles. There is also a schottky diode crossover ring quad in sot-143. M/A-Com, 0344 869595.

Quad spst switches. All three devices in Maxim's MAX $351 / 352 / 353$ quad analogue switch series offer an on resistance of less than 35Ω, guaranteed to match within $2 \Omega 2$ between channels and to remain flat within $3 s 2$ over the signal range. The switches operate with a $10 \mathrm{~V}-30 \mathrm{~V}$ single supply or with $\pm 4.5 \mathrm{~V} \pm 20 \mathrm{~V}$ split rails. while retaining cnos compatibility. Maxim Integrated Products Ltd, 0734845255

Fast, precision op-amp. Offering 100 MHz bandwidth and $2000 \mathrm{~V} / \mu \mathrm{s}$ slewing, coupled witt a 3 mV offset and $5 \mu \mathrm{~A}$ and $3 \mu \mathrm{~A}$ input bias on inverting and non-inverting inputs respectively. National's LM6182 dual current-feedback op-amp is claimed to be the best in its ctass. It also handles 100 mA output current, driving a 2 V signal into $50 \Omega 2$ and exhibits 0.05% differential gain and 0.04 differential phase. Settling time is 50 ns to 0.1%. Nationa
Semiconductor,
010498141103499.

Wide-bend vhf/uht amplifier. A
range of laser-trimmed, hin-film wide-ba nd amplifiers fro n Philips, the OM208~ family are for use as general-purpose amplifiers for vาf and uhf. Thr эe basic modules, OM208 1/2/3 have one, wo and three stages respectively and each tyze comes in two versions, zoverins either $4 J-600 \mathrm{MHz}$ or $40-860 \mathrm{MF}$ - All take a 2 V supply, put out $105 \mathrm{cB} \mu \mathrm{V}$ for second-order and $1.5 \mathrm{~dB} \mu \mathrm{~V}$ for third-order at -60dB intermodulation distortian, and exhibit a noise fizure of 7.5 dB . Gain figures are 10-12d3, 19 dB and $29-30 \mathrm{~dB}$ for the three types. A further type, the OM956/t covers $860-2050 \mathrm{MHz}$. Jhilips Semiconductors, 010 ミ140722091.

Logic building blocks

PLL clock driver. Compatible in al ways with the Motorola 88915, IDT's IDT54:74FCT88915 is a minimalskew clock driver for use up to 133 MHz , having a built-in phaselockec loop to reduce duty-cycle distorfion, eliminate delays and proviae multiples or fractions of the input clock. Eight outputs are available. Either of two sources is pinselected and there is a frequencyselect pin for further aivide-by-two of the output frequency. IDT Europe Ltd, 0372363734.

Memory chips

4 M srams. $25 \mathrm{~ns}, 4 \mathrm{M}$ srams by Fujitsu, the MB82201 and MB82208, are rated at 715 mW and 825 mW respectively at full speed, both having an automatic switch-io-standby feature to give a consumption of 137.5 mW or less. M382201 is pin-

LCD controller. Everything needed to drive two-line by 24 . character or fo-小r-line by 12 character dot-matrix Icds is contained in Piilips's PCF2116X display controlier. It has on-chip Icd negativesupply generation with all bias voltages, an 8 -character display ram, rom and rambased character generators and display-multiplexing logic and row and column output drivers. The multiplex clock is also internal, so that the only external components needed are two 100 nF capacitors. Philips Semiconductors, 010 3140722091.
switchable from $\times 1$ to $\times 4$ organisation, while the MB82208 is organised as $512 \mathrm{~K} \times 8$, with the centre-pin supply and ground for improved noise performance. Hawke Components Ltd, 0256880800.

1Mbit drams. Available in 1 Mb by 16 and 1 Mb by 16 organisations Toshiba's 3.3 V and 5 V multibit drams come in asymmetrical and symmetrical address options. offering refresh cycles of 1024 cycles/16ms and 4096 cycles $/ 64 \mathrm{~ms}$ respectively. Access times lie between 60 ns and 80 ns , depending on voltage and address mode chosen. Toshiba Electronics (UK) Ltd, 0276694600.

Microprocessors and controllers

Display controllers. From Mitsubishi the 38000 series of 8 -bit microcontrollers includes general

3V clock oscillator. Measuring 7.5 mm by 5 mm by 2.3 mm , IQD's IQXO-66 is a 3 V surfacemounted crystal oscillator covering the $1.5-50 \mathrm{MHz}$ range and taking a supply current of $8 \mathrm{~mA}(12 \mathrm{~mA}$ over 40 MHz$)$. The devices are compatible with ATE equipment. IQD Ltd, 0460 77155.
purpose devices as well as those intended to control fluorescent and liquid-crystal displays. Rom, ram, i/o and control registers are all within the same address space to allow data transfer and operation to be performed by common instructions; in expanded and external memory modes, i/o ports become address, data and control lines. All devices have low-power modes from a 3 V supply. Display controllers interface directly with fluorescent and lc displays. Highland Electronics Ltd, 0444236000.

Eight bits at low-power. Hitachi's 300 L family of microcontrollers perform at power levels associated with 4 -bit types. The CPU clocks at up to 5 MHz , giving a 400 ns instruction cycle time, but operates at 32 kHz at low power. The $H 8 / 3814$ is a reduced peripheral set, low-cost version of the $H 8 / 3834$, offering a choice of 32 K , 24 K or 16 K of mask rom and 512 byte of on-chip ram, together with an Icd controller/driver and a 12 -channel, 8 bit A-to-D converter. Operating speed at 4 V is $0.5 \mu \mathrm{~s}$ and at $2.7 \mathrm{~V}, 1 \mu \mathrm{~s}$. C software tools include a fuzzy logic compiler. Hitachi Europe Ltd, 0628 585000.

Processor with standard cells.

Motorola's 68307, a processor based
on the 68EC000 core processor, is based on standard cells and is highly integrated. The technique will, in future, allow users to design their own processors using a core from the 68000 family. The device has three bus interfaces: a dynamically sized 68000 bus; an 8051 -type bus; and a Motorola $\mathrm{T}^{2} \mathrm{C}$-compatible M -bus. It interfaces without glue logic to boot rom, sram, and memory-mapped peripherals. Operating power is 150 mW , reducing to 0.5 mW in power down. Motorola, 0908614614.

Microcontroller for large memories. TLCS-90 microcontrollers from Toshiba are C-based 8-bit devices, capable of addressing 8 Mbyte of program and data. TMP90CO5IF has a real-time clock and two generalpurpose serial interfaces to be used as uart or clock-synchronous sio. Two dms channels handling 2byte transfer, 0.88 Mbyte at 16 MHz , are provided and two of the six general-purpose ports can be used for phase/pattern generation. There are 163 instructions, including arithmetic and 16 -bit manipulative operations. Development tools are available. Toshiba Electronics (UK) Ltd, 0276 694600.

Mixed-signal ics

Frequency synthesisers. Three auai-frequency synthesiser ics from Philips, UMA 1015M/ 1018M/ 1020M, provide low-power, low-voltage operation for all the newest mobile telephone systems, including CT1, Amps/Tacs, GSM, DCS1800 and Dect covering the $400-2400 \mathrm{MHz}$ range. Two independent synthesisers control carrier frequency generation and IF or offset loop frequency and there is an output port or digital-toanalogue converter to control other handset functions. Philips
Semiconductors, 0103140722091.

Single-chip audio Mpeg. A single ic supporting all Mpeg sampling and data rates, including free format, Texas's TMS320AV110 Mpeg audio decoder will decode mono, dual stereo and joint stereo modes, producing decompressed audio output in either 16 -bit or 18 -bit serial pcm for input to most D-to-A converters. MPEG layers one and two are supported. If buffering of the audio stream is needed, there is provision for a 256 K by 4 external dram and there is also a microprocessor interface. Polar Electronics Ltd, 0525377093.

Optical devices

Wide-body optocouplers. Three ttlcompatible optocouplers from $\mathrm{H}-\mathrm{P}$ are suited to high-speed logic interfaces. i/o buffers and line receiving in the presence of very high ground or induced noise. CNW137, CNW2601 and CNW2611 use an AlGaAs diode and high-gain detector and are contained in a 0.4 in wide 8 -pin dip in the interests of safety. Speed is 10 Mbd and maximum working insulation is 1 kV rms. HewlettPackard Ltd, 0344362867.

Photodetectors. Infrared InGaAs photodetectors by Centronic have active areas from $0.25 \mathrm{~mm}^{2}$ to $100 \mathrm{~mm}^{2}$, providing detection in the range $800-1700 \mathrm{~nm}$ at 0.998 quantum efficiency. Centronic is also offering overlaid Si and InGaAs detectors offering $350-1700 \mathrm{~nm}$ in one package with no possibility of non-uniform spatial response. Optilas Ltd, 0908 221123

Oscillators

Crystal stability with no oven. Avoiding the need for a current hungry crystal oven and a protracted warming period, GEC Plessey has brought out the OD9301 crystal oscillator, which uses a digital method of temperature compensation. Frequency stability of the 36 mm by 27 mm by 12 mm device is $\pm 0.3 \mathrm{ppm}$ from -10° to $70^{\circ} \mathrm{C}$ or $\pm 0.5 \mathrm{ppm}$ from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. It is virtually immune to supply and load variation. GEC Plessey Semiconductors, 0793 518510.

Power semiconductors

Low-current regulators. Seiko's S 8435/ 6 voltage regulators feature 0.9 V minimum operation and operating and shutdown currents of $5 \mu \mathrm{~A}$ and $0.2 \mu \mathrm{~A}$. Fixed output voltages between 1.5 V and 12 V are produced; external L and C convert the devices to step-up switching regulators. The S-8436 series uses an external transistor to boost current. Amega Electronics Ltd, 0256843166

Dual regulator. The Cherry CS8147 dual-output regulator gives 10 V at

500 mA and 5 V at 40 mA , with protection against reverse battery connection, 60 V load dump, 50 V reverse transient, shorts and thermal overload. It is provided with an enable input to put it into sleep mode, in which condition it takes $70 \mu \mathrm{~A}$. The device needs no external capacitor. Clere Electronics Ltd, 0635299910.

Power-saving regulators. Texas Instruments $T L 75$ voltage regulator series includes a disable facility to conserve battery life. Use of a 4.85 V regulator dropping out at 5.05 V and producing a minimum 4.75 V is an improvement on using a 5 V regulator which drops out at 5.2 V , extending the life of a 6 V battery. The range covers $4.85 \mathrm{~V}-10.22 \mathrm{~V}$. Flint Distribution Ltd, 0530510333

70A, n-channel mosfet. Claimed to show the lowest on-resistance of any 30 V mosfet in a TO-220 package 10 ms at 70A - the Harris RFPONO3 turns on in 80 ns and off in 125ns. Salient features include 30 V
drain/source breakdown voltage, $175^{\circ} \mathrm{C}$ junction temperature, $1 \mu \mathrm{~A}$ zero gate-voltage drain current and 3300pF input capacitance. A PSpice model for pc compatibles is available. Harris Semiconductor (UK), 0276 686886.

1200 V diodes. Hexfred is a family of ultra-fast, soft-recovery diodes, rated at 1200 V , which enable power switches to run cooler and gives lower rfi and emi and a reduction in snubber components. The diodes come in single or dual forms and are rated at 6-30A forward current with reverse recovery in $26-30 \mathrm{~ns}$. International Rectifier, 0883714234.

Step-down converters. Maxim's

 MAX730A family of pwm step-down dc-to-dc converters deliver up to 50% more output current than the previous MAX 730 series and are up to 94% efficient. They feature fixed-frequency operation at around 180 kHz and there is no noise below that frequency. Guaranteed limits of $159-212.5 \mathrm{kHz}$ avoid any risk of interference with the 455 kHz IF band. Several models in the range have 5 V outputs, others being adjustable from 1.25 V to the input voltage. Output currents up to 750 mA are available. Maxim Integrated Products Ltd, 0734 845255.Step-up converters. 30 mA at 5 V or 60 mA at 3.3 V from one 1.1 V cell can be obtained from the MAX777/778/779 family of dc-to-dc converters. Guaranteed start-up is 1 V on a 10 mA load. For 1.5 V input. output current is 150 mA at 5 V and 250 mA at 3.3 V . The only external components are two capacitors and a $22 \mu \mathrm{H}$ inductor. Output voltages are: 5 V (777); 3 V or $3.3 \mathrm{~V}(778)$; and 2.7 V 6 V (779). Maxim Integrated Products Ltd, 0734845255.

PASSIVE

Passive components

Chip inductors. Beckman's BML series of surface-mounted, multi-layer chip inductors are magnetically shielded to enable close mounting Inductance range is $0.047-220 \mu \mathrm{H}$ in 43 standard values, with tolerances of $\pm 20 \%(t 00.068 \mu \mathrm{H})$ and $\pm 10 \%$.
Beckman Industrial, 0384442393.
High-voltage trimmers. Variable capacitors with breakdown voltages of over 30 kV in values up to 200 pF , Jackson's 770 series are said to be up to 60% less expensive than the vacuum-dielectric types. They are cylindrical and are varied by the rotation of a shaft which alters the position of a plunger inside the body Rotor connection is via the single-hole mounting bush and a wire-end connection for the stator. 100 pF and 200 pF models have a non-rotating piston and constant shaft length for motorised operation. Jackson Brothers Lid, 081-681 2754/7

Smaller capacitors. FA series radiallead capacitors from Panasonic are 40% smaller than previous types from the company, covering the $68 \mu \mathrm{~F}$ to $15,000 \mu \mathrm{~F}$ range at rated working voltages of $6.3 \mathrm{~V}-63 \mathrm{~V}$, from temperatures of $-55^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$. Panasonic Industrial Europe, 0344 853827.

Snap-fit capacitors. Two new families of electrolytic capacitor from RS have snap-fit terminals for easier soldering. A general-purpose range handles voltages from 16 V to 450 V in values from $68 \mu \mathrm{~F}$ to $22,000 \mu \mathrm{~F}$, working up to $85^{\circ} \mathrm{C}$, or from $-25^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ in a reduced working voltage of 400 V . The compact range spans $68 \mu \mathrm{~F}$ to $68,000 \mu \mathrm{~F}$ with the same voltages and temperature ratings. RS Components Ltd, 0536201234

Displays

Plasma displays. A range of plasma display modules from Okaya are based on lanthanum boride cathode technology, producing high secondary electron radiation to give brightness levels up to $700 \mathrm{~cd} / \mathrm{m}$. Having no mercury, the units cope with a $-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ temperature range. They are based on a 5 by 7 matrix, and displays range from 16 -character by four-line displays to 40 -character by 12 -line types. Dot matrix panels are also available in sizes from 96 by 48 to 512 by 160 elements. Drive and control circuitry are incorporated to interface with ttl or a cpu bus.

Highland Electronics Ltd, 0444 236000

Captioned panel lamps. Panelmounted led indicators in Oxley's MIL80 range have alphanumeric characters and come in red. yellow and green, in addition to super-bright AlGaAs red. Oxley says it can match house styles. Other types in the range include wide-angle or focused, sunlight-visible models ard tlashing types. Oxley Developmerts Co. Ltd. 0229582621.

Filters

Variable filters. New versions of Kemo's VBF3/4 variable tilter instruments offer a variable slope of between 6 dB and 24 dB per octave in $6 \mathrm{~dB} / o c t a v e$ steps. They are both twochannel units with continucusly adjustable cut-off frequency and with high-pass or low-pass response on each channel. VBF3 covers 0.1 Hz 10 kHz in five ranges, while VBF4 covers $1 \mathrm{~Hz}-100 \mathrm{kHz}$. Cornecting both channels in series forms high-pass or low-pass filters with slopes of up to $48 \mathrm{~dB} / o c t a v e$. while a parallel connection allows band-stop and band-splitting arrangements. Characteristics are accurate representations of the Butterworth response. Kemo Ltd, $081 \bigcirc 583838$.

Hardware

Dip pin adaptor. Correct-4-Chip is an adaptor that accepts soic, tssop and tsop packages and is soldered onto a through-hole board in standard dip format. All three device types fit the same adaptor. including the 'skinny' type. Models are available with 4-24 pins. Aries Electronics (Europe), 0908260007

Instrumentation

PC pcb fault diagnosis. Providing control and display on a pc, ABl's System 8 printed-board fault finder locates dry joints. broken tracks shorts and malfunctioning ics. The software presents point-and-click menus and a graphica' display, interrogation of the board via an ic clip resulting in a circuit map, transparent to the user. Analysis shows expected and actual response and the PCB signature can be developed and saved for later comparison. Software tools include VI node and connections analysis, node voltage sensing and shorts detection. Complate package can include a pc or the required hardware and software for installation. ABI Electronics Ltd. 0226350145.

100 MHz oscilloscopes. Hitachi Denshi points out tha: its established V-1065A and V-1085 real-time oscilloscopes are gocd value for money at £1495 and £1966 respectively. The two and four channel instruments incorporate
sweep-time autoranging, ct reado Jt . cursor readout, auto trigge - level, selectable signal output, frəquency counting and trigger ock for viewirg irregular pulse trains Delayed swfep is provided. Hitachi Densh (UK) Ld, 081-202 4311

Stereo R, and mod anal'/ser. RäS says its $F_{A} / A S$ is the first instrument to combinə universa mod slation analysis with fm stereo/telavision Jual sound reception in the $5-1000 \mathrm{MH}$? range. Infut levels range rom $10 \mu \mathrm{~V}$ to 7 V and since the receifer can je switched off, the modulation analvser can be used over the $50 \mathrm{k}-\mathrm{Iz}$ 1360 MHz frequency range. Rhode \& Schwarz JK Ltd. 0252811377

Oscilloscope probe. $P N^{\prime} K$
oscillosccipe probes can be used at bandwidt s up to 500 MH . A new model has a retractable. springloaded tip which will not slip onto the board and, being sharply pointec. reaches nto dense y packed areas. It uses reed switches. hybnd circui.ry and a laser-trimmed ceremic res stor network or accuracy. The standard PMS221 probe is usable up to 150 MHz Test and Measuremen Mktg. 043879513.

Colour pattern generator. For zoth uhf and jht bands, Kenvood's C'G922 portable colour television péttern generator provides video and rf outputs, with a 1 kHz superimposed audio in ercarrier. JutpLts include red. grezn and blue rasters. with dot and cross-hatch patterns. TrioKenwocd UK Ltd. 0923816444

Literature

PCbus catalogue. In 136 pages. Arcom describes processor anc i/o boards. enclosures and software to enable Jcs to be used in industial control and data acquisition, all using PCbus or PCATbus. Aroom Control Systerr s Ltd, 0223411200.

Voltmeter. A two-channel instrument, Kenwood's VT176 is an analogue ac voltmeter, its large display indicating 0.3 mV 100 Vrms in 12 ranges. Input impedance is 10 MS 2 and 45pF and frequency response is 5 Hz 1 MHz . Linked and independent outputs are switch selected. TrioKenwood UK Ltd, 0923816444.

DMM/oscilloscope. Three
models in Tektronix's TekMeter range combine a 5 MHz oscilloscope with lcd readout and a true-rms digital multimeter. By containing most of the oscilloscope circuitry in one ic, size and cost is reduced, although input circuitry is separate to cope with surges up to 6 kV . Full X and Y auto-setup handles a changing waveform, so that the oscilloscope is capable of virtually hands-free operation. The Icd allows a greyscale, to simulate the varying brightness of a crt with frequency of painting. Single and dual channel models are available Tektronix UK Ltd, 0628486000

NEW PRODUCTS CLISSIFFED

Please quote "Electronics World + Wireless World" when seeking further information

LF measurements guide. Fluke's practical guide to dc and If measurement, Calibration: philosophy in practice, is in its second edition. In 544 pages, it covers standards, calibration, statistics, laboratory management and 'practical considerations'. There is a glossary and a section on metrology resources. Fluke (UK) Ltd, 0923 240511.

Power mosfet guide. IR's designer's guide to the use of hexfet power mostets describes, in 1600 pages, all the company's devices and has appendices covering test circuitry, package outlines and tape and reel data. Application notes describe the practicalities of using hexfets. International Rectifier, 0883714234.

EMC Directive infopack. An information pack on the European EMC Directive contains 32 pages of comment and reference material. It explains how to show compliance with the Directive and reviews existing. proposed and revised standards. There is a list of sources of further information. Free. Radio Frequency Investigations, 0256851193

Materials

PCB material. RO3003 from Rogers Corporation is a new material for the fabrication of printed boards that offers uniform dielectric constant, low loss, electrical and dimensional stability with temperature and good plated-through hole reliability. It is available in 18 in by 24 in sheets and in thicknesses of $0.01 \mathrm{in}, 0.02 \mathrm{in}$ and 0.03 in , with 0.50 z or 10 z copper.

Digital potentiometer. DP100BT digital encoder by Control Transducers is based on an optical encoder, producing 100 ttl-level square waves per revolution, equivalent to 4002 -bit codes. Other resolutions are available. Free designer's guide. Control Transducers, 0234217704

Rogers says it costs $25-30 \%$ less than Teflon glass-fibre material. Rogers Corporation. 010 32/9 2353611.

Production equipment

 Soldering station. Vector Components Stiron soldering station offers rapid heat recovery to cope with components that behave like heat sinks. Iron temperature is variable between $100^{\circ} \mathrm{C}$ and 400 C by means of a panel-mounted potentiometer, control being of the zero-switching type for low interference. A range of iron-clad bits includes a conical type and a 5 mm screwdriver bit. Rendar Ltd, 0243 866741.
Power supplies

100W dc-to-dc converters. Pico P series high-power dc-to-dc converters are now available from Ginsbury. The range covers 3.3 V - 100 V output and $18-380 \mathrm{~V}$ dc input. Dual isolated outputs of 100 W . Full protection is incorporated and fixed-frequency operation allows parallel operation. Ginsbury (UK) Ltd. 0634290903.

Bench power supplies. New power supplies from H -P include the HPE3630A triple-output unit and the HPE3616A O-35V supply, both in the low-cost range - less than $£ 500$. E3630A provides $0-6 \mathrm{~V}$ at $2.5 \mathrm{~A}, 1-20 \mathrm{~V}$ and 0 to -20 V at 0.5 A , all with low noise. Also announced are the HP6682A, 6683A and 6684A 5kW switching supplies, exhibiting 10 mV pk-pk normal-mode noise and 20 mA pk-pk common-mode current. A down-programmer is provided to discharge the units. in between 475 ms and 650 ms . Hewlett-Packard Ltd. 0344362867.

Supervisory module. Power-supply monitoring and battery backup are the functions of Maxim's MAX1691 microprocessor supervisory module, with its lithium battery. Features include battery switch-over, memory write protection and a watchdog function which monitors software execution by asserting reset if there is no activity on a selected i/o line. Quiescent operating current is $35 \mu \mathrm{~A}$, $1 \mu \mathrm{~A}$ in standby. Maxim Integrated Products Ltd, 0734845255.

Rechargeable batteries. Yuasa has developed a high energy-density nickel-metal hydride battery that combines a nickel positive electrode with a negative electrode containing a Mischmetal-based hydrogen storage alloy. It has around twice the capacity of conventional nicad batteries. Terminal voltage is 1.2 V . No cadmium or other pollutants are used. Yuasa Battery Sales (UK) Ltd. 0793612723.

Radio communications products

Telephone power amplifier. Iwatsu's HAB 900 MHz power amplifier for portable telephones puts out 30 dBm from 7 dBm of drive, both impedances being 50s. Four ranges are available in the $824-940 \mathrm{MHz}$ band.
Requirements are 4.7 V at 370 mA for rated power gain. Maximum supply voltage is 9 V . Advanced Crystal Technology, 0635528520

18 GHz dpdt switches. From KDI, the SWM-1100 single-pole, single-throw and SWM-1200 double-pole, st switches operate from 0.25 GHz to 18 GHz with a switching speed of less than 80 ns . They have removable sma connectors and are sealed to mil std 883. Below 10 GHz , isolation is over 61 dB and more than 52 dB up to 18 GHz , with insertion loss $1.5 \mathrm{~dB} / 2.8 \mathrm{~dB}$. VSWR is $2: 1$ and rf power 1 W with a peak of 10 W . Anglia Microwaves Ltd. 0277630000.

Broadband mixer. Covering the 2003000 MHz frequency band, the MiniCircuits RMS-30 mixer is contained in a 0.25 in by 0.31 in by 0.275 in ceramic surface-mounted package. It

PIC controller development. A development kit for the Arizona Microchip PIC16Cxx microcontroller family is based on Parallax's Basic Stamp single-board computer and includes pc software for program editing and down-loading, with all cables and documents. Highland Electronics Ltd, 0444236000.

Data in maps. DataMap DIA-PC from SciTech is a pc-based data evaluation package that links measured data with maps, plans and charts on a pc. The picture shows a North Sea map derived from an hpgl file, converted by $D I A-P C$ to latitudes and longitudes. in this case radioactivity levels and the position of a ship are shown, part of the display being zoomed. The software runs under Windows 3 or dos. SciTech, 0734758857

responds down to dc, being used for up and down conversion, bi-phase, qpsk and I and Q modulators. MiniCircuits Europe, 0252835094.

Telemetry transceiver. BiM-418-F 418 MHz data telemetry and telecommand transceiver module by Quantelec contains a low-power uhf fm transmitter and superhet receiver with data recovery, and $\mathrm{tx} / \mathrm{rx}$ antenna changeover circuits in one pcbmounted package measuring 23 by 33 by 10 mm . It provides a low-cost bidirectional datalink capable of halfduplex $19.2 \mathrm{~Kb} / \mathrm{s}$ data rates over 30 m in a building or 120 m over open ground. Quantelec Ltd, 0993776488.

Switches and relays

Six-pole relay. Three versions of the LRE six-pole, 10A relay are available: F670 is for electrical vehicles and trains, switching 1 A resistive at 72 V with a life of 1 million operations; F600, the military version carrying 1400A overload under 10A circuitbreaker protection; and FD670, a three-pole, double-break type, switching 3 A at 72 V dc or 1 A at 110 V dc. Several mounting options are on offer. LRE Relays + Electronics Ltd, 0962734433.

Cmos-compatible relays. 116C and 136 C two-pole changeover relays by Teledyne come in a hermetically sealed can and accept a cmos logic signal with no external buffering. Teledyne Electronic Technologies, 081-5719596.

Transducers and sensors

Displacement-sensing processor.
Fastar displacement sensors by Control Transducers now have a processor board, designed for rackmounting or cased. Output is unidirectional at $0-20 \mathrm{Vdc}$ or bidirectional at $\pm 10 \mathrm{Vdc}$, with adjustable zero and span. A temperature compensation circuit reduces sensor errors and allows operation over a temperature range $-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Sensor range is $19-$ 609 mm with errors down to $\pm 0.1 \%$. Control Transducers, 0234217704.

Current transducers. Potted in a self-extinguishing case, Lem Heme's new range of Hall-effect current transducers handle up to 1000 A , with a bandwidth of 25 kHz and response time of $3 \mu \mathrm{~s}$. All models have a 25,000ampere-turn overload capacity, 10 mA output burden, $\pm 4 \mathrm{~V}$ output sensitivity and $\pm 1 \%$ accuracy. Dielectric strength is 3 kV rms for a minute. Zero offset is $\pm 10 \mathrm{mV}$, drifting $\pm 1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and gain variation $\pm 0.05 \%$
of reading $/{ }^{\circ} \mathrm{C}$. Lem Heme Ltd. 0695 20535.

Angular displacement sensor. Philips's KMA10/70 contactless sensor is fuliy encapsulated, needs no adjustment and is intended for use in automotive and industrial application such as active suspensions and acceleraior pedal position sensing. It is based on a magneto-resistive element, whose resistance changes in response to a moving field are detected by a hybrid signal conditioner producing a temperature-compensated $4-20 \mathrm{~mA}$ output. Angular range is $\pm 35^{\circ}$, covered at $20 \% \mathrm{~ms}$. Philips Semiconductors, 0103140722091

COMPUTER

Development and evaluation

Logic synthesis. PLSyn is part of MicroSim's Design Center and offers device-independent logic synthesis integrated with schematic capture and min/max timing simulation, with analogue devices on the same schematic. The user can describe programmable logic on tie schematic with a synthesis language, logic symbols or both - PLSyn searching a device database for the best devices for the design. Simulation of the design proceeds before and after implementation is selected. When the design is complete, the logic is automatically partitioned and fitted into the correct devices for speed, price or power consumption. MicroSim Corporation, fUSA)800 245 302

Software

Filter design and test. SigCad claims its Network Designer to be the first integrated filter design and test package. Filter approximations included are Butterworth.
Tchebychev, Inverse Tzhebychev and elliptic in low-pass, high-pass, bandpass and band-stop types. Practical implementations include Sallen and Key and biquad. Specifications are entered 'using a gui, the software fitting a response between points set by the engineer, which is then turned into a circuit, edited and toleranced. SigCad Ltd, 0203 597797.

ADVANCED ACTIVE AERIAL

The aerial consists of an outdoor head unit with a control and power unit and offers exceptional intermodulation performance: SOIP +90 dBm , TOIP +55 dBm . For the first time this permits ful use of an active system around the If and mf broadcast bands where products found are only Ihose radiated from transmitter sites.

- General purpose professional reception $4 \mathrm{kHz}-30 \mathrm{MHz}$.
- -10 dB gain, field strength in volts/metre to 50 Ohms ,
- Preselector and attenuators allow full dynamic range to be realised on prartical receivers and spectrum analysers.
- Noise - 150 dBm in 1 Hz . Clipping 16 volts/metre. Also 50 vots/metre version.
\star Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$. \star Stabilizer and Frequency Shifters for Howl Reduction \star Stereo Variable Emphasis Limiter $3 \star 10$-Outlet Distribution Amplifier $4 \star$ PPMi0 In -vision PPM and chart recorder. \star Twin Twin PPM Fack and Box Units. \star PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN $-50 /+6 \mathrm{~dB}$ drives and meter movements \star Broadcast Stereo Coders. \star Stereo Disc Amplifiers \star Peak Deviation Meter.

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh, GU6 7BG. Telephone: 0483 275997. Fax: 276477.

Ghelmer Valve Gompany

Worldwide supplier with 30 year's experience

> - Electron tubes: Transmitting, Industrial, Microwave, Audio, Receiving, Display, etc, etc.

- For Maintenance, Spares or Production.
- Semiconductors: Transistors, Thyristors, Diodes, RF, Power I/C's, etc.
- We have one of the largest stocks in the U.K.

\author{

* TRY US! \star
}

```
FAX, PHOHE, POST OR TELEX YOUR REQUIREMENTS I 30 NEW LDNDON ROAD, CHELMSFORD, ESSEX CM2 ORG, ENGLAND
```


APPLICATIONS

High-voltage bridge driving

In motor control, power mosfet half
bridges can provide efficient switching and low motor conduction losses. But to drive the top mosfet, whose gate may be at a potential hundreds of volts away from the gate on the low-side fet, either significant level shifting or isolation is needed.
Many designers use the high-side voltage to provide a bootstrap supply. According to Siliconix note AN700, this method is simple but has limitations. Level shifters need few components but suffer from noise sensitivity and need high-voltage components.
Addressing these problems, Siliconix has introduced an IC pair specifically for driving both high and low-side transistors in a power mosfet half bridge. Via special inputs and outputs, the two ICs can be connected directly. As a result, only one low voltage supply is needed apart from the high-voltage motor drive rail. Supply for the high-side IC is easily derived from the high-voltage rail.
The two ICs can withstand a potential difference of 500 V and their level shifters are said to offer enhanced noise immunity. Final output capability for driving the motor depends on the mosfets but the 9901 can source -0.5 A on its PU output and sink 1 A at PD. Drive capabilities of the $991 /$ are the same. In this instance the mosfets are 14A. 500 V devices.
Control is based on a state machine driven

Functions of the low-side IC in the mosfet bridge-driving pair shown below. It has 500 V level shifting and contains the 9901 oscillator for the high-side IC charge pump. Inputs are cmos compatible.

Potential difference between the two ICs in this half-bridge motor driver can be significant - approaching 500 V . The top

Remote controller via micro

nternal pull-downs and interrupt drivers on port pins result in a low-component count when using the $68 \mathrm{HCO5KO}$ microcontroller as the basis of a remote controller. Since the device has a software-controllable off switch and is cmos, battery drain is low.
Detziled in Motorola's AN463, this remote control transmitter needs no components for keyboard interfacing and only a buffer for driving the infra-red
diodes. By asing the $V_{\text {dd }}$ line to Jrive an extra row, the total number of keys available is 24 even though there are onlv nine input pins

Full sotware details and listings are included in the note.

Motorola European Literature Centre. Tanners D-ive, Blakelands, Milton Keynes MK 14 5BP. Telephone 0908 614614 , ax 0908618650.

by a clock of typically 1 MHz . All switching occurs on clock rising edges. Input signals $I N_{H}, I N_{\text {LO }}$ control the half bridge high and low-side mostets respectively in conjunction with enable signal, EN. This structure facilitates PWM signals for motor direction and magnitude control in full bridges.

There is a second high-side drive option, the $991 /$ which needs external charge-pump diodes. All three devices have dv/dt control and in-buile protection circuits against under voltage and shorts. Inputs of the low-side driver are cmos compatible.
Also included in the note are notes on

selecting the right mosfet, calculating the charge-pump coupling and beotstrap capacitors in the high-side IC supply and determining the gate and sense resistors. Siliconix, Easthampstead Road, Bracknell, Berkshire RG12 1LX. Telephone 0344 485747 , fax 0344304213.

Audio noise reduction without encoding

The universal appeal of companders to noise-reduction circuit designers is the amount of noise they can suppress. However, one of the main reasons why Dolby B dominates the consumer market is that it offers only 10 dB of reduction.
Although sufficient to lower cassette noise to an acceptable level, this reduction not high enough to spoil the sound of Dolby B tapes played back on a non-Dolby player. In fact, the sound of the hf boost from Dolby B encoded tapes is often preferred by listeners using medium-quality speakers.
The above statement comes from AN 386

- A non-complementary audio noise
reduction system in National
Semiconductor's latest Linear applications manual. Noise reducers such as Dolby are said to be complementary, i.e. encoding is used for recording and complementary decoding is needed for playback. This note describes reducing noise by noncomplementary means - namely dynamic noise reduction - for use with television and radio broadcasts, video tape audio and non-Dolby recordings
There are two National ICs for implementing noise reduction, the LM/894 and the LM832. Both of these can offer between 10 and 14 dB of reduction on stereo source material. Only the $/ 894$ is dealt with in the paper
Two basic assumptions are involved. Firstly, noise is proportional to system band width and secondly, the desired program material is capable of "masking the noise when the signal-to-noise ratio is sufficiently high. Dynamic noise reduction automatically and continuously changes the system bandwidth in response to the amplitude and frequency content of the program.
In the block diagram is a stereo noise reducer with separate controllable cut-off low-pass filters in the audio paths. Cut-off frequency control range is 800 to 35 kHz . Both audio inputs contribute to producing the control signal via a peak detector. Using one control signal for both channels ensures that the stereo image remains stable.
The filter, simplified, is shown together with curves for open and closed-loop response. This topology is similar to the pole-splitting frequency compensation used in many op-amps. In it, a variable transconductance op-amp drives a further amplifier acting as an integrator.
With a fixed capacitor, unity-gain frequency changes with transconductance as in (b). Putting dc feedback around both stages for unity closed-loop gain (c) results in flat amplitude response - unity gain until f_{μ} is reached. At this point, gain

Unlike complementary systems like Dolby B, this dynamic noise reducer has the potential to improve any noisy audio signal.

(a) Variable Lowpass Filter

(c) Closed Loop Response

Audio-controlled low-pass filter comprising transconductance amplifier and integrator. Closing the loop with R causes gain to remain constant, despite change in g_{m} until the roll-off frequency is reached.
(b) Open Loop Response

follows the open-loop curve, falling at 6 dB /octave.
A more detailed schematic of this section is also shown, where R_{l} and R_{i} are providing the dc feedback. Current mirrors replace the more conventional load resistors in the differential pair forming the
transconductance amplifier.
For the values given in the schematic, output voltage swing at the cut-off frequency is about IV rms. At this input voltage level, the IC exhibits $3 \% \mathrm{THD}$. However, this is the condition for minimum bandwidth when noise only is presented at the input. When signals are present. bandwidth extends out to 35 kHz .
Transconductance-stage current is over 1 mA , allowing theoretical signal swings of over 34 V rms. In practice, the device handles over 4 V mas.
Although there are other ways of forming a variable-cut-off filter, this design is said to offer advantages, especially in terms of control feed through.

Control path

The job of the control signal is to ensure that audio bandwidth is wide enough for the signal yet decreased rapidly when the signal falls. To do this, the control path must recognise the masking qualities of the signal

When no low-frequency signals are present, highamplitude unwanted signals can cause bandwidth to open. Adding a notch filter prevents this.
source. In addition the detector must be able to take advantage of characteristics of the ear to prevert audible distortion.

Left and right channels are summed and buffered. Noise levels can differ - cassette tapes are between -55 and 65 dB depending on whether Dolby B is used, while fm broadcast noise is -45 to -75 dB depending on signal strength. As a result, the control path is adjusted so that a noise input is capable of just increasing the audio bandwidth from its minimum value. In this way, any program material above the noise level increases bandwidth so that it is passed without distortion.
Combined with the control potentiometer is a $0.1 \mu \mathrm{~F}$ capacitor that helps prevent high-

TIME: $20 \mathrm{~ms} / \mathrm{DIV}$
Peak Detector Response, $500 \mathrm{mV} /$ Dlv

TIME: $0.5 \mathrm{~ms} /$ DIV
Audio Output Response, 10 kHz Tone Burst

amplitude signals without content above 1 kHz from opening up the bandwidth. For signals that do have high frequencies. control path sensitivity is increased at $12 \mathrm{~dB} /$ octave. This rapid gain in sensitivity is important since harmonic content of program material falls off quickly with increasing frequency.
In some unusual circumstances, the signal can contain only high-level, high-frequency components. These can be caused for example by the line-scan signal of a tv or the fim stereo subcarrier. Although inaudible, such signals can affect the control path and cause noise. For this purpose the notch function shown in the control-path frequency-response diagram can be optionally inserted.

Detector

Both a negative peak detector and voltage-to-current converter are included in the detector. Input resistance of this stage.
together with the coupling capacitor, form part of the control-path filter. Similarly, ourput resistance of the detector and the gain-setting feedback resistor help determine the detector time constants.
An interesting contrast between this type of circuit and a companding one can be demonstrated with a 10 kHz tone burst. Since the detector only responds to negative peaks, it takes about four input cycles to reach 90% of the final voltage on the detector capacitor - corresponding to a $500 \mu \mathrm{~s}$ time constant.

After the first two cycles, audio bandwidth will have already increased past 10 kHz . A comparison of input and output tone bursts causes only a slight loss in amplitude in the initial cycles as illustrated
In a compandor however, fast detector time constants are normally avoided. This is because rapid changes in system gain that occur while recording transient signals could cause modulation products that may not be treated complementarily on playback. As a
result there is a time lag before the system gain can change. This may be the maximum signal compression - anywhere up to 30 dB .
Failure to compress at the onset of the tone burst results in overshoot up to 30 dB higher than the final amplitude. To prevent this overshoot from overloading subsequent amplifiers, clippers are incorporated. These limit dynamic range.
A further advantage of this method of noise reduction is that the system can be bypassed. One obvious way of doing this is using a switch but the note describes more elegant methods. In alddition there are expansions on most of the topics covered here and a section on undesirable but avoidable aspects of noise reducers.

National Semiconductor, The Maple, Kembrey Park, Swindon, Wiltshire SN2 6UT. Telephone 0793 614141, fax 697650.

A-to-D converter for high-quality audio

[or engineers wanting to evaluate 18 bit - stereo a-to-d conversion, Crystal has included a complete sampling board in its CS5389 data sheet.

The device is an integrated device with dual delta-sigma converters, digital linearphase anti-aliasing, sample-and-hold inputs. and a voltage reference. It has an

A-weighted dynamic range of 107 dB together with a combined noise and distortion figure of 100 dB .
Serial data from the two 18 bit audio

channels can be output at up to 50 kHz .
Included on the evaluation board is a 74HC 595 -based serial-to-parallel converter designed for interfacing to signal processing systems.
Digital audio interfacing on the board is carried out by a CS84()2, providing AES/EBU. S/PIF, and EIAJ CP-340 compatibie output. There is a peb layout in the note, accommodating output via XLR, RCA phono and optical connectors.
Input buffering circuitry designed for the board is of general interest. In addition to providing protection, it accepts a differential or single-ended signal of either polarity, and provides a differential output regardless. It also produces the 6dB of attenuation required for scaling to professional audio levels to the device inputs. A nominal input level of 20 dBV to the CS5389 achieves full-

Above is an audio input buffer that turns differential or single-ended inputs into differential output. Below is a digital audio interface compatible with AES/EBU, S/PDIF and EIJ CP340 formats.
scale full-scale digital code.
Common-mode rejection of the system is limited by mismatch of the input buffer components. Resistors $R_{10,11}$ and C_{14} provide anti alias filtering and optimum source impedance for the converter, one channel only. Protection is afforded by the diodes.

Crystal Semiconductor, Lymes House, 2 Station Road, Frimley, Surrey GU16 5HF. Telephone 0276685761 , fax 0276 691090.

Looking into real-time

Abstract

Because of the need for real-time multi-tasking, industrial control systems are often VME based. Implementing this complex bus is usually too costly for students and experimenters but here, William Dickinson* describes a 68020-based OS-9 evaluator providing VME-grade computing power without the usual price penalty.

Motorola's MC68020 is a highperformance 32 bit processor with a 32 bit data path. It has an internal instruction cache which is a feature primariiy found in engineering workstations and industrial control systems. Processors from the 68000 family are used in the Appie Macintosh. Atari ST, Commodore Amiga, Nintendo, Sega, and many other commercial systems. They are also at the heart of most real-time industrial control systems.
In cost terms, the combination of $O S-9$ and 68000 -family processors competes with many 8 and 16 -bit processor alternatives. With a powerful processor at the heart of the system, the advanced features of $O S-9$ will reduce the software development costs of many embedded control applications without unduly
*Windrush Micro Systems

PC-based OS-9 development for under $£ 700$

Realising the appeal of Windows as a low-cost user interface, industrial-control specialist Syntel has produced a real-time, multi-tasking system allowing OS-9 development on the PC.
Communicating with OS-9 system via Windows has two significant benefits. There is no need to learn how to use special OS-9-based tools such as editors and assemblers. In addition, user interfacing hardware and software - the PC and Windows - is cheap and readily available.

In the Syntel system, a 68302-based processor card with 1 Mbyte of ram plugs into the PC . This 'context' card talks to Windows on one side and, via $O S-9$, to the outside world in real-time on the other. It has a multiprotocol networking interface. This reconfigurable interface is set up for Topaz, which is an industrialcontrol network designed especially for real-time, multitasking applications.

Further, the context card has an RS232 interface and supports a range of industry-standard i/o modules. An entry-level development system comprising the 68302 context card with 1 Mbyte ram, OS-9 Professional, C compiler and Windows Real-Time Workbench is $£ 695$ including all manuals. This is not a special price so there are no restrictions on the package. Quantity discounts are available to educational users.

GSM-Syntel is at Victoria Works, Queens Mill Road, Huddersfield HD1 3PG, telephone 0484 535101, fax 519363.

Developing OS-9 on a PC. Without the multi-tasking of Windows, displaying all these terminals simultaneously would require a lot of extra hardware.
taxing available CPU resources.
This article describes an open-architecture $68020 / 0 S-9$ evaluation platform in the form of a single board computer, or SBC . It is supplied complete with OS-9/68020 Professional and features an MC68020) running with one wait-state at 25 MHz . The system can be used as a 68020/OS-9 evaluation platform to demonstrate the processing potential of this powerful combination against VME systems at a fraction of the normal costs.

Called $\Omega m e g a-/ /$ this SBC enables you to evaluate the performance of the $M C 68020$ and OS-9 within an open-architecture hardware environment. This architecture is free from the restrictions of modern VME designs which are notorious for asics and custom devices.
With the aid of an appropriate porting package, the $\Omega m e g a-/ /$ computer can be used to port OS-9 to your embedded controller. When mounted in its purpose-designed enclosure, the board complies with BS6527 restrictions regarding EMI.

Building the system
The combined SBC/OS-9 package is intended

for use by hobbyists, students and commercial organisations for personal use or evaluation. For programming and montoring, the SBC needs a VDU with an RS232 connection or a computer with terminal emulation software. It also needs at least one 3.25 sin 720 K floppy disk drive. Via its SCSI interface, the board supports a wide range of hard dishs and tape drives.

Applications ranging from small dedicated embedded controllers 10 networked factory automation systems can be implemented in OS-9. The Professional version of OS-9 supplied for use with the SBC includes a C compiler. Basic interpreter and Pascal compiler. The Sculptor database generator. Dyharale spreadsheet and Stylograph word processor are also part of the package. You can commit the entire operating system and many of the utilities to the 512 K byte of onboard 32 bit wide rom if you wish.

Features

At the heart of the system is a 25 MHz . MCO 8020 MPU with an optional 25 MHz MC68882 floating point co-processor (FPCP). The floating point co-processor is closely coupled to the '020 and executes its instructions transparently.
Attached to this dual-processor core is l Mbyte of battery-backed static cmos ram which is 32 bit wide. This memory may be expanded up to a 4 Mbyte limit. It requires one wait-state, resulting in a 160 ns bus cycle which fully supports read-modify-write bus cycles.

External circuitry monitors the power supply rail. When the supply falls belou a preset threshold an unmaskable interupt is gencrated. Access to the ram is inhibited several milliseconds later. This prevents the random signals from the processor on power failure from corrupting the memory. It also makes it possible for memory to be used for a battery-backed ram dish, among other things.

Rom in the system may take one of two forms. The first is a simple eight-bit wide format offering case of use at the expense of performance and a 128 K byte upper limit. Altematively four 128 Kbyte roms may be used in a 32 bit wide configuration providing a total of 512 Kbyte . This option illustrates the dynamic bus sizing capabilities of the 020 which allow it 10 operate with 8 bit. 16-bit and 32-bit wide data paths on a cycle by cycle basis.
Most of the memory decoding is carried out by four pals. The tirst of these deals with function codes and decodes the co-processor and imerrupt acknowledge cycles produced by the main processor. A second decodes the memory map, a third the byte write resources of the processor. The fourth takes care of data size acknowledge to teminate bus cycles.

1/O resources

All of the resources required for a multi-user OS-9 development system are provided by Semega-/I. Included are five RS-232 serial
ports, a parallel printer port. a high speed parallel port. a floppy disk contooller and a SCSI controller for hard disks.
An $M(6890)$ multi-function peripheral device is used. It provides a serial port with programmable bit rate gencrators and several timers. Thete are also eight inputs that can gencrate vectored interrupts on positive or negative edges. The device is used for the standard OS-9 terminal port and generates vectored interrupts for the floppy and SCSI disk controliers. Additionally, it provides the system 'rick' used by the pre-emptive OS-9 seheduler and system clock. Up to 16 vectored interrupts at level six can be set. depending on the source.
A second pair of RS-232 serial ports is derived from an MCo8o8l dual asynchronous receiver/transmitter. These ports are polled in the interrupi handler to determine the source and nature of the interrupt, for example which channel and whether it was a receive or transmit interrupt.
Serial porss three and four are also derived from an MCo868/ dual receiver/transmitter. Port four may be configured as an RS-485 multi-drop transceiver using a twisted pair. The single vectored interrupt vial the multifunction peripheral device is then ‘polled` by the interrupt handler as for the other port pair.
A 16 -bit high-speed parallel interface complete with four edge sensitive handshakes for generating vectored intermpts is provided by an MC6.9230 parallel intertace/timer. The parallel fort can interconnect two computer systems or used to implement a simple $i / 0$ system comprising lamps and switches. Alternatively, it allows experimentation with interrupt handlers within OS-9 device drivers. A four-bit configuration switch interfaced via this device selects up to five vectored interrupts.
A further bidirectional parallel intertace with strobe and acknowledge allow's a Centronics

Semega-II specifications

- 25 MHz MC68020RP25 processor
- optional $25 \mathrm{MHz} \mathrm{MC68882RC25} \mathrm{floating-}$
pusint co-processor
- 8bit, 128 K byte rom system monitor (OS-9
b sot rom from Cumana)
- Expansion to 32 bit path and 512 Kbyte
o stional
- 32bit wide ram (1Mbyte battery-backed
rem, one wait state)
- Expansion capability to 4Mbyte
- Vectored interrupts from all i/o devices.
- Power-up/down sequencer to protect battery-backed ram and clock
- Level seven, non-maskable interrupt, generated 5 ms before memory shutdown
- Battery backed clock calendar
- Floppy-disk controller for up to four drives
- Simple TTL hardware SCSI initiator for qptional hard disks and tape drives - Five RS-232 serial pots for VDUs (users) or printers
- Centronics parallel printer port
- Bidirectional 16 bit parallel port with four「 andshakes
- CPU readable 4-position dil switch to control system start up, etc.
- $\mathrm{A}_{23} / \mathrm{D}_{16}$ and two interrupt levels available
for prototyping i/o hardware designs
- OS-9/68020 Professional V2.3, with C compiler, editor, assembler, linker, debugger, Basic, Pascal, Sculptor, Stylograph and Dynacalc.

Elements of the Smega-II development and evaluation platform. Within the price range of universities and experimenters, this board conobines the industrial control power of the 68020 and OS-9 but avoids the cost penalty of VME.

Real-time, multi-tasking OS-9

Specifically for 68000 family microprocessors, OS-9 is a high performance multi-tasking operating system. It combines new operating system concepts and real-time capabilities with the overall architecture of the popular Unix operating system.
However, $O S-9$ is much smaller and far more efficient. It provides key Unix features such as a tree-structured file system, device independent i/o and full multitasking facilities. In fact, most Unix applications software written in C can be easily ported to the OS-9 environment.
All speed critical portions of OS-9, including the kernel, file managers and device drivers, were hand-coded in 68000 assembly language. As a result, system performance does not suffer from compiler-generated code. This translates to greater timesharing user capacity and faster real-time response.
Standard system-wide library modules used by programming languages and applications software are provided by OS-9. The maths module includes long-integer maths, IEEE format single and double precision floating point maths, radix conversion functions and a complete set of transcendental and trigonometric functions.
OS-9 comprises several independent self-linking named objects called memory modules. A directory containing the name and address of each module is automatically maintained by the system executive. This is coordinated with the memory management system so multiple tasks can automatically share common program or data modules which vastly improves memory utilization. For example, two users on a timesharing system who are both using Basic would automatically 'share' a single copy of Basic rather than wasting memory with redundant copies.
Thanks to $O S-9^{\prime}$ s modular structure the system can be reconfigured without access to source code by simply adding or removing modules as desired. For example, if you need to add a new type of disk drive to the system you only have to add the appropriate driver and descriptor. Similarly if you want to build a rom-based system just omit the disk file manager, disk driver modules, and other unnecessary modules.
printer to be connected. Battery backed clock calendar information is provided by an OKI MSM5832/ while floppy disk interfacing is carried out by a Western Digital WD/772-02. Hard disk drives and tapes connect via a TTLbased SCSI initiator.
There are seven interrupts. Levels one to six are vectored by the $\mathrm{i} /$ o devices. Interrupt level seven has autovectoring and is used for the floppy disk controller and power fail signals. There is also a fully buffered bus expansion port for user hardware and experiments via a DIN connector. Several i/o boards including nine serial ports. colour graphics adaptor, ARCnet. IEEE488 and SCSI-2 are available from Windrush.
The version of with OS-9 supplied for use with $\Omega m e c_{a-l /}$ is fully contigured for each of the five serial ports. Centronics parallel port, clock calendar, floppy and SCSI disk controllers. Sources of all device descriptors are supplied and sources of all device drivers are available separately

Product sourcing

A six layer SBC printed circuit board and complete kit of parts for Smega-II. excluding

VDU. primer. floppy disks. hard dishs. tape drives and OS-9. is available for $£ 750$ excluding postage and VAT from Windrush Micro Systems.
Comprehensive hardware documentation. schematics. PAL source equations, parts list. etc., are supplied with the kit. The SBC, its documentation pack and the PALs are available separately. A fully-finished metai enelosure is also available.
Measuring approximately 12 by 14in, the board reguires an external power supply providing $+5 \mathrm{~V},+12 \mathrm{~V}$ and -12 V plus whatever is needed for disk drives. A 55W switch mode PSU should suffice. The Ω mega- 2 hardware is available from Windrush Micro Systems. Station Road. Worstead. Nr Walsham, Norfolk NR28 9SA. Telephone 0692404086. Fax 40409).
The software package mentioncd is available from Cumana for $£ 98$ excluding shipping and VAT. Due to its low price, the software is not eligible for hot-line support nor is it eligible for upgrade to current or future relcases. Cumana is at Pines Trading Estate. Broad Street, Guildford, Surrey GU3 3BH, Telephone (0483503121, Fax 0483503326.

Floppy and hard disk drives are also available from Cumana. Microware UK is at Leylands Farm, Nobs Crook, Colden Common. Winchester. Hampshire, SO2 1TH. Telephone 0703601990 , Fax 601991.

Further reading

MC68020 \& 11 C68ECO20 microprocessor user's manual, first Edition 1992, publication M68020UM/AD, f. 6.60 from Motorola European Literature Centre, Milton Keynes. MC68881/882 toaling point coprocessor user's manual, second edition, publication MC68881UM/AD/REV-2 1989, £16.61 from Motorola European Literature Centre. The OS-9 catalogue, $1992 / 3$ edition,
Microware.
OS-9/68000 technical manual, publication OSTG8NA 68 MO , price E 64 from Microware P. S. Dyan, The OS-9 Gum, ISBN 0-9519228 0-7, pul)lication ()S9CURUNAMO, price £27.00 from Microware
P. Dibble, OS-9 Insights, ISBN 0-918035-03-1, publication INS68SE 68 MO , price $£ 50.00$ trom Microware

WE WANT TO BUY !!

IN VIEW OF THE EXREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS
INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE.

WE PAY TOP PRICES AND COLLECT.
R.HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 081-445-2713/0749 FAX 081-445-5702.

STEWART OF READING
11(1) WYKEHAM ROAD, RミADING, RG6 1PL TEL. $0734268(141$ FAX: 0734351596 TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMIPUTER EQUIPMENT, COMPONENTS, etc. ANY QUANITYT

WANTED

Test ecuipment, receivers, valves, transnitters, components, catle transnitters, components, catle Prompt service and cash. M \& B RADIO
83 Bishopgate Street, Leeds LS1 4EB
Tel: 0532435649
Fax: 0532426881

WANTED

High-end Test Equipm n nt, only brand nemes as Hewlett-Packarc. Tektronix, Rhode \& Schwarz, Marconi etc. Top prices paid.
Please send or fax your offer to: HTB ELEKTRONIK
Alter Apeler Weg 5, 2858 Schiffdorf, West Germany TEL: 0104947067044 FAX: 0104947067049

WANTED WWII R.A.F.

Airborne Radar Equipment up to $£ 200$ for IND182, IND162, TR3151, etc No comms receivers
Details to: Early Radar Project, 6 Finmere, Brackneli, Berkshire, RG12 7Wr

FRRE C CLASSHIED

MATCHCAD V4 Complete as revewed Fch E.W. Ellll. Ulticap/Ultihoard cvaluation package (worth oft upgrade) $£ 50$ fully working. 1705818034. SPICE SIMULATORS. Top SPICE, Top Spice/plus (32 hit) \& Top VIEW mixed mode circuit simulators and graphics pest processor reviewed in Augusi 9? processor revicu
E\&WW £20) (ono)
0346582365 .
IBM PC XT, 10 MB dish, mono sereen. 640 k ram, £ 16). IIP thinkjet printer. 2225 c , stand, cover, cable. El(k).
I AM WRITING a book; working in Assa and would be very interested to hear from individuals who have personal experience of this and/or contacts working in Asia. Please send name and address $\&$ tel no to Nicki Grihault, 21 Howit1 Road. Belize Park, NW3 HI.T in the first instance so I can contact you. THANKYOU! COLLECTING/RESTORING? Newnes Radio and Television servicing. Hawker. Molloy, Poole covers 1948-1961. 73 Mar ques, 2200 models. call 10330822110. BACK ISSUES From 1957-1964 continuous any offer considered please call
0708761744 .

CLASSIFIED ADVERTISEMENT ORDER FORM

1	2	3	4	5	6
7	8	3	10	11	12
13	14	9	16	17	18
19	20	15	22	23	24
25	26	21	28	29	30

Place a lineage advertisement in next month's issue and it will cost, for a single insertion, only $£ 2.10$ per word.

Lineage advertisements under $£ 50$ have to be pre-paid by credit card or cheque.

Special rates:

6 insertions $£ 2.10$ per word/issue (Advertisement can appear every month or every other month only). WHY NOT PLACE A BOXED ADVERTISEMENT TO GIVE MAXIMUM IMPACT? \rightarrow

Extras:
Spot Colour 20%

EXAMPLE SIZE

$3 \mathrm{~cm} \times 1$ column
For 1 insertion cost is: $£ 45.00$

ALL RATES QUOTED ARE EXCLUSIVE OF VAT:
All major credit cards accepted
Please debit my \qquad card a total of $£$ \qquad

Expiry Date:

Please ensure that address çiven is where your credit card statement goes to. NAME
ADDRESS
TEL NO.
SIGNATURE
All advertisements must be received five weeks prior to publication date.
All cancellations must be recerved by eight weeks prior to publication date. After that no advertisement can be cancelled.
Please send to Electronics World \& Wireless World, Classified, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel: Pat Bunce on 081-652 8339.

CLASSIFIED

ARTICLES FOR SALE

PURCHASE FOR CASH

SURPLUS - OBSOLETE - REDUNDANT - EXCESS stocks of electronic, electrical components/accessories, part processed and/or finished products. Please submit preliminary information or lists for immediate response to:
K.B. COMPONENTS, 21 Playle Chase, Gt Totham, Maldon, Essex CM9 8UT
Telephone 0621.893204 . Facsimile 0621.893180 .

19" RACK-MOUNT EQUIPMENT?
Frames, cabinets and flight cases for rack

- and non-rack - equipment. A wide
range of accessories available.
For further information and brochure
GROVESTRFAM EN
GROVESTREAM ENGINEERING SERVICES

29. Sllverdale Road, Tadley, PHONE/FAX 0734813395

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.
Langrex Supplies Ltd,
1, Mayo Road, Croydon, Surrey, CRO 2QP TEL; 0816841166 FAX 0816843056

FREE CLASSIFIED

WANTED W.W. 2 RI155 any condition or parts search attics! Must be reasomable as retired. Could collect.
M. D. Lawnham, (171-352 4174 . DRANETE 305c Phase metor tor salc 2 Hz to 76 M Kliz. 0.01 resolution fully working with plug ins. O.I.R.O 83661 . Ask tor Mike after 7 pm. 14835487189. FAC 72 (Grundig) processor unit needed (in functioning or reparatbe condition (in functioning
please! Mucller.
Tul: (Germany) 49 2401 (01425u)
(D) ROM 750 fonts 18.0 (0) clipart full online help swatem. gel some real soffwarc on voun swem.
phonc: 1592 gT1:34.

TURN YOUR SURPLUS TRANSISTORS, ICS ETC, INTO CASH Immedate settlement We also welcome the opportunity to quote for complete factory clearance
Contact:
COLES-HARDING \& CO. 103 South Brink Wisbech, Cambs PE 14 ORJ
STABLISHED OVER 15 YEARS
Buyers of Surplus Inventory
el : $0945584188 \mathrm{Fax}: 0945475216$

Cooke International

Supplier of Quality Used Test Instruments

AVO 8 Voltmeter
HP 7034A XYT Recorder, A4 Flat Bed with Time Base, Single
Pen
£275
Marconi TF2700 Battery Operated LCR Bridge $£ 150$
Marconi TF 2015/1 AM/FM Signal Generator 10MHz-520MHz with
TF 2171 Digital Synchronizer..€ $£ 00$
Black Star Nova 200 Counter Timer $10 \mathrm{~Hz}-200 \mathrm{MHz}, 81 / 2$ digit $£ 85$
Fluke 8000A Digital Multimeter AC, DC, Ohms, Milliamps, 3½
digit.
..f75
Philips PM 3234 Dual Trace DC-10MHz Storage Oscilloscope £165 Tektronix 2230 DC-100 MHz Digita Storage Oscilloscope, Dual

Trace, Main \& Delay Time Base, On-screen Cursors \& Menus with Opt 12 RS 232 Interface
£1875
Hameg 605 DC-60 MHz Oscilloscope with Dual Trace, Main \&
Delay Timebase
.... $£ 300$
Marconi TF 2950/5 Mobile Radio Test Set, AM/FM Sig Gen, Mod
Meter, Power Meter to 25 watts, $65-180 \mathrm{MHz}, 420-470 \mathrm{MHz}$ £250 All prices exclude VAT and carriage - Much more equipment available ex-stock - Original service manuals for sale - Copy service also available Send large (A3) s.a.e. (50p postage) for lists of equipment and manuals Export, Trade and U.K. enquiries welcome Discount for bulk orders - Shipping arranged Open Monday-Friday, 9.00 am to 5.00 pm

Cooke International

Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex PO22 0EB
$\mathrm{Tel}(+44) 0243545111 / 2 \mathrm{Fax}(+44) 0243542457$

* HIGH END TEST \& COMMUNICATIONS EQUIPMENT PURCHASED *

For all your future enquiries on

 advertising rates, please contact
Pat Bunce on:
 Tel: 081-652 8339
 Fax: 081-652 8931

ELECTRONIC UPDATE

Contact Pat Bunce on 081-652 8339

OLSON ELECTRONICS LIMITED is a leading manufacturer in the tield of mains distribution panels of every shape and size to suit a variety of needs. For use in Broadcasting, Computing, Data Communications, Defence, Education, Finance, Health etc. All panels are manufactured to BS5733. BRITISH AMERICAN, FRENCH, GERMAN CEE22/IEC and many other sockets. Most countries catered for.
All panels are available ex-stock and can be bought direct from OLSON.

Olson Electronics Limited Tel: 0818852884 Fax: 0818852496
CIRCLE NO. 143 ON REPLY CARD

ENGINEERING \& SCIENTIFIC PC

The new 230 page 1994 PC-LAB catalogue covers an extensive range of PC-based data acyuisition, measurement, control, and imerface plug-in cards plus supporting software packages for engineering \& scientific applications. Also includes $19^{\prime \prime}$ rack mounting industrial PCS, custom OEM PC chassis and associated sub-systems.
Please contact integrated measurement systems for a free catalogue copy.

Tel: (0703) 771143
Fax: (0703) 704301

INDUSTRIAL PCs

Arcom's P Chus range is expressly developed for embedded control and data acquisition. providing high integrity industrial solutions with:

* full range of CPU and I / O tunctions * industrial EMC enclosures * mezzanine bus expansion * industry standard signal conditioning * Windows I/ O drivers with predictable performance.
Areom Control Systems makes pluglogether PC solutions for industry is reality!
Please torward all enquirnes to Alan Timmins at: Atcom Contral Systems Lad, Units 8-10 Clitton Road, Cambridge (B1 4WH. UK Tel +44 (0)233 41120 ($)$ Fax: 410457

A regular advertising feature enabling readers to obtain more information on companies' products or services.

FREE VXI BROCHURE

The National Instruments VXI brochure describes the company's embedded PC and GPIB controllers, MXIbus interface kits for multiple platforms, and NI-VXI, LabWindows, and LabVIEW software for developing and controlling VXI instrumentation systems.

NATIONAL INSTRUMENTS
 Tel: 0800289877

CIRCIE No. 146 ON REPIY CARD

SPICE A/D Simulation
 - Mixed Analogue and Digital
 - All SPICE 2G6 analyses
 - Behavioural Modelling
 - Graphical post-processor
 - FREE 10 transistor version
 - 640K version £395
 - 32 bit extd. mem. ver. £695
 - Schematic front-end £149

To receive your FREE working evaluation version just send a 1.44 MB HD 3.5in disk to: EW+WW Offer, CRaG Systems, 8 Shakespeare Rd, Thatcham, Newbury, Berks
RG13 4DG, Tel (0635) 873670

2nd EDITION TOKO RF catalogue
Cirkit have just published the 2nd Edition of the Toko RF Catalogue, featuring details of Tokos' extensive range of RF coils, inductors, filters and comms ICs.

The 128 page catalogue includes many new products such as; Surface mount high current inductors, surface mount multilayer inductors, helical filters at 2.5 GHz and a new section of push button and tact switches.
Cirkit Distribution Ltd, Park Lane,
Broxbourne, Herts, EN10 7NQ
Tel: (0992) 441306
Fax: (0992) 441306 CIRCLENO. 148 ON REPLY CARD

High Speed EPROM \& FLASH
Programming from your PC
\square Programs EPROMs to 4 Mbits/ 32-pins
\square Superfast 8, 16 \& 32-bit programming
\square Approved algorithms
\square Menu driven software included
\square Sophisticated editor functions
\square Easy file management
\square FREE demo disk available
Stag Programmers Limited Martinfield Welwyn Garden City,
Herfordshire, AL7 1 JT UK
Tel: (0707) 332148
Fax: (0707) 371503

* HPB56gB 10 MHz -22GHz microwave SPECIRUM analySERS * High-Pertormance features include external mixing to 115 GHz . Internal Preselection
$1.7-22 \mathrm{GHz}$. Wide resolution range $100 \mathrm{~Hz}-3 \mathrm{MHz}$. On-screen readout drect ploter output. Digital storage. RF Input from $-12310+30 \mathrm{~d} m \mathrm{~m}$. HPIB

PRICE

\qquad .£5950

- MARCONI TF2370 1250MHZ SPECTRUM ANAI YSER SYSTEM * TF2370 including TK2373 frequency extender to $1.25 \mathrm{GHz}, 100 \mathrm{db}$ dynamic range $01 \mathrm{db} \& 5 \mathrm{~Hz}$ resolution. Frequency resolution to 1 Hz Many features inc phase lock, digtal storage tracking generator Modern brown|ivery Factory New condition

MARCONINSTRUMENTS
2017 signal generator $10 \mathrm{kHz} \cdot 1024 \mathrm{MHz}$
microprocessor-controlled cavity-tuned low-noise
AM. FM. - 194ab
INCLUDING FREECA LIBRATION - $£ 2000$ each

2019 synithesized AM FM signai generator $80 \mathrm{kHz}-1040 \mathrm{MHz}$
$£ 1950$

6 to CLEAR £1500 EACH

646C 6420 power meter 10 MHz - $12.46 \mathrm{~Hz} 2.30 \mathrm{~W}-10 \mathrm{mH}$
 67008 sweep oscilator $8-12.46 \mathrm{~Hz} \& 12.4-186 \mathrm{~Hz}$
 6912 power sensor 30 kHz 2.4 .2GH tor above series 8938 audio power meter OR2805APCH regenerator test set T2390100:My spectirum analyser TF2910 4 non-linear distartion (videop) analyser TF29144 TY insertion signal anaiyser TF2910 Ninterval timer

ISTRIBUZIONE E ASSISTENZA. ITALY: TCL RADIO. ROMA. 1061890763
331 Adistortion meter
339Ad stortion meter
3405 A sampling voltmeter
355 C attenuator $\mathrm{DC}-1 \mathrm{GH}$

3325A synthesizerfuncton generator
3335A synthesizertleve generator with option 01
3552A transmission tesi set
3562A dyn amic signal analyser
3711A:3712A microwave link analy yer (MLA) with 37930 a $£ 700$
down-canverter ($1.7-4.2 \mathrm{GHz}$)
3781 A pattern generator
37824 error detector
400 FL mV-Meter 100 UV - 300 V is $20 \mathrm{~Hz}-4 \mathrm{MHz}$
$415 E$ swrmeter
4274 A multi-requency $(100 \mathrm{~Hz} \cdot 100 \mathrm{kHz})$ LCR component meter
4276A001 LCZ meter
432A478A microwave power meter $10 \mathrm{MHz}-10 \mathrm{GHz}$
432 AR 486 A uwave power meter $265-40 \mathrm{GHz}$ (waveguide)
5342A 18GHz trequency counter
5343A 6 dual power Supply $0.20 \mathrm{~V} 0-3 \mathrm{~A}$ twice
6253 dua power supp y $0.20 \mathrm{~V} 0-3 \mathrm{~A}$ iwice c
6825A bipolar power supply amp - 20 to
70300 A trackinggenerator plug - n unit
70300 A tracking ${ }^{2}$ enerator plug -in unit
70907 A external m xerfor 70000 -ser spectum analyser
735 BX - Yingle pen analogue chatr recorder
8112A pulse generator
8011 A puse generator $0.1 \mathrm{~Hz}-20 \mathrm{MHz}$
816 A sitted ine $1.8-18 \mathrm{GHz}$ with carrage $809 \mathrm{C} \& 447 \mathrm{~B}$ 8405 A vector voltmeter. voltage \& phase to 1000 MHz 8406A comb generator
8447A RF amplifier 0.1-1300MHz, 22db gann, 0.1WO/p 8505 A network analyser system including 8503 A - parameter test sel and 8501A storage normaliser 8601 A 110 MHz sweep generator
8620 C sweep generator, many plug-in units available 8671 A synthesized signal generator $2-62 \mathrm{GHz}$ $86732-18 \mathrm{GHz}$ synthes zed signal generator

ALL PRICES SUBJECT TO ADDITIONAL VAT ANDCARRIAGE

INDEX TO ADVERTISERS

Amplicon Liveline	IBC	Labscentre	296
Anchor Supply	321	Langrex	304
Bull Electrical	271	M+B Electrical	310
Citadel Products	IFC	M+B Radio (Leeds)	280
Chemar Value	339	MQP Electronics	280
Dataman Programmers Ltd	OBC	Number One Systems	303
Display Electronics Ltd	307	Pico Technology Ltd	326
Ericsson	302	Powerware	275
Field Electric	280	Ralfe Electronics	352
Halcyon Electronics Ltd	304	Research Communications	266
Intech	326	Seetrax Ltd	295
Johnart Communications Radio	284	Stewart of Reading	275
JPG	326	Surrey Electronics Ltd	304
Kestral Electronics	304	Tholnet Engineers	339
Keytronics	289	Tsien Ltd	325
			303

LIVELINES

Dual port serial communications for your PC

The PC 47,48 and 49AT boards each provide two independent serial ports for any PC/XT/AT(ISA) computer. RS232, RS422 and RS485 standards are supported and all combinations are possible with this range of low power boards.

9 pin D connectors are provided for the RS422 and 485 ports. RS232 can be connected via 9 or 25 way D connectors and charge pump circuitry ensures signal levels in excess of 7 V are transmitted.

Interrupt and base addresses are independently selectable for each port, full, half duplex and multidrop communications are fully supported and all boards use the industry standard 82C450, UART.

Designed and manufactured by Amplicon Liveline each board is supplied with a comprehensive technical manual and interrupt driven device driver software is available. Write in number 1

750 kHz professional data acquisition with

 Windows supportPC226 from Amplicon Liveline provides 16 true differential 12 bit analog inputs each with dynamically programmable gain. PC226 has sample rates up to 400 kHz multichannel and 750 kHz single channel, programmable scanning hardware, flexible triggers and a 2048 sample FIFO to ease programming in high speed applications.

PC 226 is supplied with menu driven software for DOS and Windows, LabTech Notebook drivers and comprehensive well documented libraries for most popular high level languages.

Optional software support for Microsoft Windows includes a complete Dynamic Link Library (DLL) and two icon driven packages, Signal Centre for signal capture and analysis and TRACS for process monitoring, visualisation and control
Write in number 2

48 lines TTL I/O with 16bit counter timers

PC 14AT available from Amplicon Liveline is a high quality general purpose interface board for PC/XT/AT(ISA) computers
The board has 48 lines of TTL compatible digital I/O provided as six 8 bit ports four of which can be programmed to be all inputs or all outputs and two which can be split to be 4 inputs and 4 outputs if required. There are also three 16bit counter timers which can be used to generate and measure pulses at up to 5 MHz .

An on board 4 MHz crystal oscillator is also included on PC 14AT along with LEDs showing the status of a selection of the I/O ports, these can be used as programming and debugging aids.

PC 14AT is suitable for a wide variety of interface, monitoring and control applications

and an LP (low power) version PC 14LP is available for installation in laptop computers, both boards have flexible base address and interrupt support. Write in number 3

the smallest, most powerful

persona programmer you: can bury - and only $£ 495$!

rom engine management to Antarctic survey teams, you can find S4s the world over, up and running where the competition is left far behind. S4 gets the job done in every situation you might expect - and quite a few you wouldn't!

CAPABILITIES

A 32 pin ZIF socket programs a huge library of EPROMs, EEPROMs and FLASH devices. Dataman S 4 programs devices up to 8 Mbits and the unique, loadable Library means that new parts can be added quickly without extra cost! Serial EPROMs, 40 pin EPROMs and micro-controllers are all supported with optional modules.

for same-day dispatch

- S4 EMULATION

With Dataman S4's powerful emulation system you see your code running before committing yourself to an EPROM. Simply download your code to S4, press 'EMULATE', and your target system runs $\boldsymbol{\sim}$ in real time, as jif an EPROM was plugged in.

SAREMOTE CONTROL Dātaman S4 has its own internal processor and memory, but can also be operated remotely from your PC at speeds up to 115,200 Baud. S4 is supplied with a disk containing cüstom terminal software and a pop-up TSR communications utility.

S4 - THE PACKAGE
Datamân S4 is shipped ready to use? complete with a mains charger, emulation lead, write lead, personal organiser/ instruction manual, MS-DOS communications software, spare Library ROM - and a 3 year guarantee.

[^5]
[^0]: Electronics World + Wireless World is published monthly. By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$ Orders, payments ard general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telex:892984 REED BP G. Cheques should tee made payable to Reed Business Publishing Group.
 Newstrade: IPC Markefforce. 071 261-5108
 Subscriptions Quadrant Subscription Services. Oakfield House. Perrymount Road, Haywards Heath. Susse\% RH16 3DH. Telephone 0444445566 . Please notity a change of address. Subscription rates 1 vear (normal rate) £30 UK and $£ 43$ outside UK surface mail Air mail rates are found on card bound into rates are found on card bound into issue.
 USA: $\$ 52.00$ airmail. Feed Business Publishing (UISA),

[^1]: Mike Hosking is a lecturer in
 telecommunications and microwaves at the University of Portsmouth.

[^2]: *oblan Cronk is CiW iMFO

[^3]: EEECTROTHES:

[^4]: Interfacing with C can be obtained from Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Alternativelly, you can telephone your order, quoting a credit card number. Telephone 081-652 3614.
 A disk containing all the example listings used in this book is available at $£ 29.96$. Please specify size required.

[^5]: Station Road, Maiden Newton, Oorset, DT2 OAE, UK. Telephone: 0300320719 - Fax: 0300321012 . Telex: 418442 - BBS: 0300321095 24hr - Modem: V32bis/16.8K HST 22 Lake Beauty Drive, Suite 101, Orlando, FL 32806, USA. Telephone: (407) 649-3335 - Fax: (407) 649-3310 - BBS: (407) 649-3159 24hr - Modem: V32bis/16,8K HST.

