

PC82 UNIVERSAL PROGRAMMER

£449.00

- Universal programmer - the complete designers kit.
- Over 1,500 devices - call for list on FREE disk.
- EPROM, EEPROM, Flash, BPROM, GAL, PAL, MPU etc.
- Serial EEPROM, EPLD, MACH, MAX, MAPL, CMOS EPAL.
- Device testing - 74XX, 40XX, 45XX, DRAM, SRAM,
- PAL vector test
- Clear menu driven software
- Text mode only, suits any video card.
- 40 pin Zero insertion force socket.

- Device testing - $74 \times \mathrm{X}, 40 \mathrm{XX}, 45 \mathrm{XX}$, DRAM, SRAM.
- Small half card to install in PC may be left in place.
- Secure round cable and locking D connectors.
- Proven reliability - over 100,000 units sold.
- Programmer pod size $-260 \times 140 \times 38 \mathrm{~mm}$.

ADAPTERS FOR THE PC82

From $£ 85.00$

- Extend programming facility for special devices.
- Allows alternative socket types eg PLCC.
- Multi-gang adapters for fast programming of EPROMS, GAL, PAL and popular CPU types.

FEATURES ALL PROGRAMMERS

For the IBM PC, install the interface card and programming socket, load the menu-driven software and you have a complete design system at your fingertips. The programmers will run on any compatible IBM machines such as XT, AT, '286, '386 or ' 486 . Whether it be an Amstrad or Compaq the system will work. All features are software-driven and supplied on $51 / 4^{\prime \prime}$ disks, these may be copied onto your hard disk using the DOS copy command. All control of the programmer, programme voltages etc are menu-driven by selecting manufacture, type number, and selection of a suitable speed algorithm. Blank check, read \& modify, verify, programme, auto programme, security blow etc.
FREE SOFTWARE UPDATES as new devices become available.

FILE CONVERSION FACILITIES

- HEX to BIN File conversions for Intel, Motorola and Tektronics.
- 2 way/4 way Bin file splitter for $16 / 32$ bit data.
- Dump file toConsole, modify and re-programme.

E2000 BULK FAST ERASER

£199.00

- Same advanced UV source as the M1 but 4 lamps.
- Very large capacity 64×32 pin chips or one double Eurocard.
- All other features as M1.
- Low profile steel case finished in powder coat.
- Size $365 \times 240 \times 65 \mathrm{~mm}$ high.

PC84-1 to -8 ROM PROGRAMMERS From $£ 139.00$

- Low cost EPROM programmer - devices up to 1 Mb CMOS and NMOS. - One to eight gang versions.
- To program 2716 to 271000 .
- 32 pin Zero insertion force sockets.

ORDER INFORMATION

Please include $\mathbf{£ 7}$ for carriage by overnight courier ($\mathbf{£} 20$ for exports) and VAT on all UK orders. ACCESS, VISA or CWO. Official orders welcome from Government bodies and local authorities.

CITADEL PRODUCTS LTD DEPT WW
 50 HIGH STREET, EDGWARE MIDDLESEX HA8 7EP

CONTENTS

FEATURES

GPS 982
Global Positioning Satellite systems will be integrated into many different electronics systems. In a major new series GPS hardware designer Philip Mattos explains the practical aspects from the design of patch aerials to data extraction and digital map display

DEVICES FOR FREQUENCY SYNTHESIS

 999Frequency generation is at the heart of RF design. Demands on spectrum mean that frequency slots must be re-used and frequency agility is a must for user equipment. Tim Stanley airs the semiconductor options for frequency synthesis.

DIY LSI: NUTS AND BOLTS
1015
Dave Nicklin and Nick Sawyer describe the main differences between FPGAs and EPLDs, in terms of both their respective architectures and design methodologies.

APPLYING THE HEAVY BOOT TO EPROM BUGS
 989

Trace and emulation, optional eprom programmer and wide device range: if you need it all, Martin Cummings shows how Seeker could be what you are missing.

DEVELOPING THE

TM S320C10 FOR $£ 50$?
Signal Research's low cost and easy-to-use DSP development package is a must for any designer working with the first generation of TI DSP devices says Alan Brown.

IT'S A DIRTY JOB BUT

NOW A PC CAN DO IT
Take the PC_{e} bus and a handful of plug-in cards and what have you got? A powerful machine running PC software but not frightened of getting its digits dirty, says Chris Nabavi.

DESIGN-IT-YOURSELF LINEAR ASIC.
 \qquad 1023
 Send for your FREE sample of a remarkable new linear asic design system from Zetex Semiconductor. Low cost, low volume linear asics at your finger tips.

EXTENDED C INTERFACING

\qquad 1026
Howard Hutchings' Interfacing with C presented the basics of linking C to real world signals. Now John Edwards examines some of the technical points from the original series and extends them.

SINGLE D-TO-A EQUALISATION

\qquad 1048
D-to-As are not cheap. But they can be worth it to cut out "dirty" mechanical contacts or to give remote control and repeatable settings. Erik Margan's ingenious design uses a single D-to-A back to front.

REGULARS

Abstract

COMMENT .971

The very idea of connecting disease with power lines.
UPDATE \qquad972

Is the new 68060 the last member of Motorola's 68000 microprocessor family? The progress of electronics under your bonnet; The BBC transmits a full digital HDTV signal in the bandwidth of a standard analogue PAL channel; Diamond films make it to the big time.

RESEARCH NOTES
Taking the uncertainty out of explosives; Crystal thinks it's a liquid or is it the other way round? Lights that make the radio fade; Place in the sun for new battery materials? Diode turns blue at room temperature.

LETTERS 1005
Crossed eyes; 200 what amplifier; Alternative route to dat; Attraction of electricity without magnetism; Keeping an ear to the ground; CFA - no tricks; Unreal mic pre-amp.

CIRCUIT IDEAS .
PLL motor-speed controller; Audible compass; Threecolour bar graph; Phase-linear crossover.

APPLICATIONS

Battery charging; Low-distortion amplification; Clock distribution by ECL.

NEW PRODUCTS 1039
$E W+W W$'s round-up of all that's new in electronics and engineering software.

CIRCUITS, SYSTEMS \& DESIGNS 1044
Thermal tester verifies transistors; Divider displays uncanny accuracy; Decode overlapped eprom, ram and i/o; Amplifier handles duplex line.

DESIGN BRIEF 1050
Ian Hickman puts the Siemers IL300 optocoupler to work in a low-drift high-lineraity isolator.

WHITE NOISE 1053
Hot Carrier generates some heat inside the structured world of electronics.

In next month's issue: Compressing the waves. Speec compression, with the aim of increasing perceived loudness, forms part of nearly every audio communications system. A new system, which works by compressing the waveform on a cycle-by-cycle basis represents a genuine advance on speec' processing technology. JANUARY ISSUE IS ON SALE DECEMBER 31

£99 8051 'C' COMPILER £99

- Preprocessor, compiler, optimiser
- Integer implementation
- Inline assembler
- Assembler level simulator and monitor
- Single chip.to fully expanded memory
- Micro C is not a re-worked small C
- Other code generators available: $68 \mathrm{HC11}, 6809$, 8085
- Low cost cross assembler available: 8031/8051, 6800/01/03/05/09/11, 8085/8096

£99 8051 BASIC COMPILER £99

- Integer BASIC compiler
- Supports single chip mode
- Specific functions to access 8051 SFRs and internal memory
- 8051 cross assembler included
- Line editor included, accepts text files
- High level debugger runs on PC
- Generates INTEL hex format output
- Standard Basic commands supported
- Output suitable for 87C751

8051 ICE (ICE51 ${ }^{\text {TM }}$)

- Low cost 8051 In-Circuit Emulator
- Low power, 5 volt operation
- Plugs directly into the 8051 processor socket on target hardware
- 32 K Bytes of battery-backed RAM for program/data
- Single stepping and break points
- Assign memory and SFRs
- Upload/download INTEL hex files
- PC host software communicates via serial port
- Monitor file supplied in assembly form
- On-screen disassembly of code
- $\quad \mathrm{I}^{2} \mathrm{C}$ drivers available
- Real time clock version available
- Low cost 87C751 In-Circuit Emulator
- Emulation cable plugs into the 87C751 processor socket on target hardware
- On-board programmer for DIL devices
- PLCC adaptor available for 87C751
- Programs 87C752 DIL and PLCC devices through optional adaptors
- Monitor uses only 48 bytes of program memory
- Upload/download INTEL hex files
- Assign memory and SFRs
- Set break points
- $\mathrm{I}^{2} \mathrm{C}$ drivers available
- On-screen disassembly of code
- PC host software communicates via serial port

8051 BOOK

Architecture, Programming and Applications (£49.95). This book includes a free assembler and simulator for personal or educational use

PEB552
The Philips evaluation board for the 80C552 processor variant, a monitor and programming adaptor are available for this product

MACH 1

An RTX2000/1 PC based evaluation board featuring the RTX2001 RISC Forth processor capable of sustaining up to 12 MIPS

ICC2000

An 8 channel intelligent communications card using the RTX2001 RISC Forth processor capable of sustaining up to 12 MIPS

$I^{2} \mathbf{C}$

Quick Basic development tools available which includes $\mathrm{I}^{2} \mathrm{C}$ monitor program, $\mathrm{I}^{2} \mathrm{C}$ connector/cable assembly and parallel I/O demo board

The 8051: An Introductory Course

This is a one day course aimed at customers who need to become familiar with the MCS51 (8051) microcontroller family, and designed to give a detailed look at the generic 8051 processor facilities.

EDITOR
Frank Ogden
081-6523128
DEPUTY EDITOR
Jonathan Campbell
081-6528638
CONSULTANT
Derek Rowe
DESIGN \& PRODUCTION Alan Kerr

EDITORIAL ADMINISTRATION
Lorraine Spindler
()81-6523614

SALES MANAGER
Patrick Irwin
081-652 3732

SALES EXECUTIVES

Pat Bunce
081-6528339
ADVERTISING PRODUCTION
Shirley Lawrence
081-6.528659
PUBLISHER
Robert Marcus
EDITORIAL FACSIMILE 081-6528956

CLASSIFIED FACSIMILE 081-6528931

ARE WE HARD TO GET?

Just one phone call to our Circulation Actionline brings instant assistance. Some readers have experienced problems in finding copies of $E W+W W$ on newstrade shelves - so we've decided to do something about it. If you have any difficulty purchasing your copy, call our Circulation Actionline. We will follow up your complaint and, more importantly, make sure yon can obtain your copy.
Call Karen Baines on 081-652 8469 and let us tackle your supply problems

Focusing on power lines

Last month's issue carried an article "Natural radiation focused by power lines" written by consultant and amateur scientist Tony Hopwood. Mr Hopwood postulated that most rare of things, an original idea and, like the best ones, it was simple.
The principal components of natural background radiation are low velocity charged particles. They arise from natural radioactive decay products, solar eruptions and molecular ionisation by high energy cosmic ray photons. There is general agreement that charged particle radiation is particularly active, biologically speaking. For instance, radioactive radon gas derived from decaying uranic elements in granite induces lung cancer through alpha particle emission. There is no dispute about this.
Mr Hopwood, a man long interested in solar geomagnetic activity, predicted that interaction between the magnetic field surrounding power lines might deflect charged particle radiation (of all origins) into radiation belts focused either side of the cable run. Armed with a portable thin walled G-M counter he looked for confirmation of his hypothesis.
He claims in his article that he has found it. Having made "hundreds of readings" of background radiation in an orthogonal traverse below power lines, he reports an averaged increase of 100 per cent in background radiation at a critical distance from the power line centre, a distance which seems to relate both trigonometrically to the height of the line and electrically to the intensity of the magnetic field.
What makes Mr Hopwood’s idea so
interesting is that it does not conflict with known physics and neither does it require a new explanation for disease pathology.
I have always taken the view that statistical, and its near relation hearsay, evidence connecting powerlines and other sustained non-ionising field exposure to disease has occurred too frequently to be ignored. After all, it should be remembered that the whole business arose out of medical epidemiologists researching childhood leukaemia clusters. But I have never been terribly happy with some of the explanations put forward for the apparent effects: low energy cyclotron resonance in calcium ions for example. This might be a factor but it is not half as compelling as, say, a simple increase in whole body radiation exposure.
Occam's razor works in favour of Tony Hopwood.
When we published the article last month, National Power referred journalists to the findings of an enquiry into the effects of non-ionising radiation carried out by Sir Richard Doll. His repon said that there was no proven link. I ann inclined to Sir Richard's view but this would be to miss the point. The Doll Report considered scientific work on the direct effects of low frequency exposure which would of course not show the effects contained in Mr Hopwood's hypothesis.
Proving or debunking Mr Hopwood's ideas would be about as cheap as environmental health research could be. Sir Richard Doll may not have the last word on power line related disease until this is undertaken.

Frank Ogden

[^0]
68060 the last instruction to 68 k processor family?

America's biggest semiconductor maker Motorola has released details of the next addition to its long-established 68000 cisc line, possibly the last in this family.
The company recently announced it had produced silicon for the first PowerPC risc microprocessor. Developed along with IBM, this is a single chip implementation of IBM's RS/6000 risc chipsets and will be used in future desktop and portable machines from IBM and Apple.
Motorola teamed up with the two computer makers because it had manifestly failed to gain acceptance for its earlier risc microprocessor, the 88000 family, as a standard engine to power high-performance computers.
Now in its second generation, the 88 K has had some success in high-end servers and niche graphics processing applications and Motorola spokesmen react defensively to any suggestions that it may be "de-
emphasised": "I bet some of the smaller spare makers would be very happy with the revenues we get from the 88000° said the company's Clive Gay.
The advent of the Power PC has led to doubts about the future of the 68000 cisc processor, currently the brains in Apple's computers. The same family was also found in Unix workstations a few years ago, but most computer makers in that line have moved towards rise microprocessors such as the sparc (Sun Microsystems), or PA-risc (Hewlett Packard/Apollo). However, Motorola insists that at least three future generations of 68000 will be built, the first of which will be the 68060 due to sample in the latter part of next year.
It been set the target of tripling the performance of its predecessor the 68040 and has incorporated many risc-like features to do so.
These include a superscalar
implementation allowing instructions to be executed in a single cycle, multiple pipelines, independent execution units and a dedicated unit to predict and prefeteh instructions that are required following a branch.
The 68060 has a Harvard architecture, where separate paths are provided to the execution units for data and instructions Each path has a separate 8 KByte cache memory, allowing insiructions and data to be accessed simultaneously by the instruction units.
The 060 , which will contain two million $0.5 \mu \mathrm{~m}$ transistors. has independent instruction and data memory management units. The full addressing range is 4GBytes, and each MMU can support demand-paged virtual memory operating systems with either 4 or 8 K Byte page sizes. They also provide write protection on a page by page basis.

Electronics in the driving seat

Stricter emission controls continue to be the driving force behind vehicle electronics, but the emphasis - as seen at last October's Motor Show - is changing to communications between subsystems.

Safety is being linked to engine management, and most of the components for the era of drive-by-wire are in place or in development.

Although electronic fuel injection for petrol engines is celebrating its 25 th anniversary (the Bosch Jetronic system was introduced in 1962 to help Volkswagen meet the first Californian emission limits), diesel engines are only now beginning to catch up. One example is the new BMW diesel, due in the showrooms in January. Electronic injection/ignition is also a key factor in the use of compressed natural gas (CNG) to tuel vehicles.
Even small cars now incorporate engine management units. The new Nissan Micra, launched at the show, has a 16 -bit microcomputer control unit, as well as an anti-lock braking system linked to the computer-controlled continuously-variable automatic transmission.

Elsewhere, ABS is being linked to engine management systems to improve traction control. Bosch's new electronicallymanaged suspension and four-wheel steering systems also interact with ABS. In future, the ABS wheel-speed sensor may also provide information lor map-matching in car navigation systems.

Leaving horsepower aside, prizes for
sheer computing power in engine management go to Saab with its new 32-bit Trionic system. It carries out two million calculations per second and. for every 500 cm travelled at 50 mph , produces enough information to fill an office binder. The need for this awesome numbercrunching capacity, says Saab, is because smaller engine management systems - 8 or 16-bit - can only cope when the engine is in a steady state at more or less constant speed and load. Control of fuel injection and ignition timing goes somewhat to pieces n transient conditions - acceleration or

Saab's 32-bit Trionic engine management computer meets 1999 Californian emission levels and even cleans up exhaust from other cars; it is fitted to new 90002.3 litre turbo models

Cache coherency is maintained between main memory caches by snooping the external bus. The bus snooper has priority over the execution units.

A new feature is an instruction fetch controller that operates in front of the main instruction pipeline. It has its own fetch pipeline that calls up instructions before they are needed by the instruction controller and its object is to keep the instruction execution pipeline loaded.
According to Jack Browne, Motorola‘s director of 68 K operations: "Branches occur 80 per cent of the time, so if we can improve our branch prediction, we can improve the overall performance."
A branch target cache allows the instruction fetch pipeline to detect and change the instruction stream before the change of flow affects the instruction execution controller. It is examined for a valid branch entry after each instruction fetch address is generated in the fetch pipeline.
If a cache hit does not occur, the fetch

Continued over page

deceleration - and calculations become approximate until the speed settles down again. Too much fuel is used and emission levels rise.
The Saab Trionic system fitted to the 90002.3 Turbo is designed to exercise precise control in all conditions; it even checks for accelerator movement during each individual fuel injection pulse and adjusts the timing accordingly. The result is an integrated system capable not only of meeting proposed 1999 California emission control levels but also of cleaning up other cars` exhausts, as a video demonstration showed.
A new Trionic-equipped car, emitting hydrocarbons at 10 ppm and nitrogen oxides at 0.01%, had the exhaust from a 1950s Saab 2 -stroke, belching out 2000 ppm of hydrocarbons and 1.5% nitrogen oxide, fed into its air intake. Levels from the new car's exhaust immediately shot up but within a few seconds settled back to their original figures.

By 1995, it has been predicted that electronics will comprise 15% of a new car's cost. A good proportion of that will be elsewhere than under the bonnet.
One of the most imaginative recent developments has been Lotus
Engineering's work on noise cancellation, using inverted noise feedback played through the standard car stereo speakers following processing by a DSP system. This has now reached production stage. with a system manufactured by Hitachi
being fitted as an option in the Nissan Bluebird in Japan. Lotus is now working on road noise and exhaust noise cancellation.

Driver aids, or what the industry calls MMI (man/machine interface) mosdly rely on electronics. Bosch demonstrated a new reversing aid called Parkpilot, a set of ultrasonic sensors mounted on the rear bumper and connected to a dashboard display which let you know when you are getting too close to the car behind, or a bollard or a wall.

A more ambitious project - said by Lucas to be close to the market - is intelligent cruise control, an adaptation of microwave technology designed for missile seeker heads. A front-mounted sensor locks on to the velicle in front and then regulates speed to maintain a safe distance from it. Such developments currently raise more questions than answers. (What do you do if a juggernaut is too close behind you?) The next task agreed by all is to address the integration of all these devices, and develop hierarchies of control.

Fight to drive

There is much jockeying for the right to do the integrating. Lucas and Bosch are established motor industry developer/suppliers but Philips claims to be slowly evolving into a car components company. Through a joint venture with Acustar of America it is developing car information systems, integrated instrument panels on which to display them and
multiples systems to replace the everincreasing quantities of wiring which would otherwise be required. Progress so far can be seen in the new Renault Safrane - a double-DIN CD/radio/cellular-phone panel, linked to a control stalk on the steering column and an information display below the windscreen. In its more recognised role, Philips was showing a prototype of the first in-car DCC unit, clue next spring.
Car navigation progresses slowly. Blaupunkt has at last brought to market on its Stockholm model - the long-awaited TIM traffic memo function, which stores on a speech chip any RDS traffic messages broadcast while the driver is out of the car. Four minutes-worth, constantly renewed, can be held, covering a user-selectable period of three hours.
Carin, the Philips route guide. has stalled in the UK for want of suitable digital maps. Those which do exist cannot distinguish between, for instance, a railway bridge and a level crossing. On the continent,
however, parts of Germany and France have been mapped and Carin is promised by Philips as standard equipment on a continental luxury car (my guess would be a Renault) in the autumn of next year.
A Ford approach to vehicle location uses satellite global positioning system (GPS) which would enable the driver to summon breakdown assistance without leaving the vehicle, and would also help police to track stolen vehicles.
Peter Willis.
pipeline continues fetching instructions sequentially. If a hit does occur, the current instruction stream is discarded and a new stream is fetched starting at the location indicated by the branch target cache.
A feature of the instruction execution controller is two integer execution pipelines. A floating-point execution unit is also included.
The on-chip floating point unit performs in hardwate all the floating point instructions of earlier 68000 devices. Furthermore, it emulates in software IEEE-compliant exception handlers, and unimplemented data type and data format handlers.

As far as users of the new device go, Motorola claims that it will continue to dominate the embedded control market. This includes games machines such as Sega and Atari, telecommunications and automotive applications. Furthermore, there is still some mileage in the CPU stakes as Apple's Blueprint for the Nineties manifesto promises to adopt the 060 as an upgrade to its existing 040-based machines.
David D'Arcy, Electronics Weekly

Boom time for CD-ROM

Germany is also expected to set the pace for growth in the CD-rom market for PC systems.

German sales of CD-rom drives, which currently account for around 24% of the total $\$ 68.2$ million European market, will increase rapidly 10 around $\$+7$ million by the year 1996, according to a report from intemational market research publisher. Frost and Sullivan.
The UK, curtently the second largest markel, worth $\$ 15.2$ million, will grow at a slower rate but will maintain its overall position by 1996 when it will be worth $\$ 35.6$ million.

Cad asic start-up

Oxford Semiconductor has been formed to design and supply asics. Based in Abingdon, Oxfordshire, the new firm will also develop computer aided design (cad) tools to work in existing cad vendors' frameworks for asic design, and offer system level design services, including project managemen. The firm will buy silicon from a variety of asic foundries.
Oxford Semiconductor's managing director, Tim Cook, was formerly with venture capitalist Wardsend Associates, which has provided most of the finance for the company. Jalil Orace, previously with Harwell Instruments, is lechnical director and James Lewis, from Logical Integration, is marketing director.

HDTV in standard tv channel

B$B C$ Engineering and Thomson CSF Laboratories have co-operated and succeeded in transmitting digitally in a standard television channel, using a high spectral efficiency modulation lechnique
The technique, in which a digital TV signal was broadcast in a standard 8 MHz 7V channel from a low power transmitter at Crystal Palace to a number of test sites in South London and Surrey, is part of a programme intended to bring digital HDTV to the public via terrestrial transmission networks
The modulation technigue which was
developed in France by Thomson conveys about $60 \mathrm{Mbit} / \mathrm{s}$ in a single 8 MH U UF TV channel. The system transmits two separate $30 \mathrm{Mbit} / \mathrm{s}$ signals, one broadcast with horizontal polarisation, the other with vertical polarisation. Each signal consists of an OFDM (Orthogonal Frequency Division Modulation) ensemble of about 500 closely spaced carriers, all digitally modulated using 64QAM. In principle, with the addition of other work being carried out on digital compression, this would allow two HDTV programmes to be transmitled in one 8 MHz . TV channel.

Digital laser disc development

Pioneer, the Japanese consumer and industrial electronics firm, is developing digital versions of its recordable 12 n . Lasef disc system,aimed at professional users such as TV companies.

Yuichiro Yokoyama, head ol business planning for Pioneer's industrial systems division, said the company intended to produce two different versions of the system: a high-end studio quality version for TV material, using JPEG image compression technology to condense individual lrames, will be ready in 1995. A slightly lowerquadity version, using MPEG-2 tompression, is scheduled for 1994.

Applying synthetic diamonds

A
T\&T is claiming to have won the tace to offer the first commercial application of synthetic diamond films in electronic heatsinks. The company has developed a synthetic diamond film that can be bonded electrically and has a themal conductivity of more than 10 W per degree Kelvin.cm. In some applications, it can better the 22 W per degree Kelvin.cm conductivity that natural
diamond offers.
The new synthetic diamond sub-mounts will be in production before the end of the year under licence from AT\&T. Companies offering it will include chemical vapour deposit diamond specialists such as GE Sumitomo Electric and Drukker, of the US, Japan and Holland respectively.

X-band mmics: Harris Microwave Semiconductor integrated X-band GaAs mmic is 100% tested on wafer for dc and rf performance.
Applications for X-band, which range from 8 to 12 GHz , include the growing markets for airborne radar and commercial telecommunications.
With a rated minimum output power of 29.0 dBm for driver and power applications, the directly cascadable HMM-11130 offers a complete mmic-based solution for mic hybrid replacement. Features that aid the design process include direct cascadability without interstage matching and an on-chip gate resistor network for simple bias point selection.

COMPUTER SCOOPS

PC-AT 386 20-DX FULLY LOADED FOR £499!

20 Mhz DX processor 2 megs RAM. Exp 10 meg 40 meg hard drive
1.2 meg $5-1 / 4$ " floppy 32 K cache exp. 64 K

Installed VGA card Enhanced 102 key k/board Complete with MS-DOS 4.0 2 serial 1 parallel ports 8 free slots- 6 off 16 bit!

A COMPLETE IBM PC COMPAT

 SYSTEM FOR ONLY £99!!Just plug in and go - fully expandable - the Display PC-99! System supplied Complete with $12^{\prime \prime}$ mono monitor, 84 key keyboard, 360k 5-1/4" floppy disk drive 28K RAM, 2 serial and 1 parallel port plus DOS with manual. Many other features include 7 slot backplane, all metal sase, 150 watt PSU and US made mother-
board. In very good used condition with 90 day guarantee. At the unique price of Optional FITTED extras: 256K RAM £15; 640K RAM £39. $12^{\prime \prime}$ CGA colour monitor with card $£ 39$. 2nd $5-1 / 4^{\prime \prime} 720 \mathrm{~K}$ floppy
(or 360 K if preferred) $£ 29.95 .20$ rbyte hard drive $£ 99$

FLOPPY DISK DRIVES

$51 / 4$ " from £22.95-31/2" from £21.95!

 Massive purchases of standard $51 / 4^{\prime \prime}$ and $31 / 2^{n}$ drives enables us (unless stated) are removed from often brand new equipmen and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from standard voltages and are of stand ard size. All are IBM-PC compatible (if $31 / 2^{\prime \prime}$ supported) 3.5" Panasonic JU364 720K3.5" Mitsubishi MF353C-L. 1.4 Meg. Laptops only*
3.5" Mitsubishi MF353C-D 3.5" Mitsubishi MF353C-D. 1.4 Meg. Non laptop 5.25" Teac FD-55(36). 360K hall height.

- Data cable included in price.

Shugart 800/801 SS refurbished \& tested Shugart 851 double sided refurbished \& tested hitsubishi M2894-63 double sided sw
hard or soft sectors- BRAND NEW
Dual $8^{\prime \prime}$ drives with 2 mbyte capacity housed in a smart case with built in power supply! Ideal as exterior drives! $£ 499.00$ (F) End of line purchase scoop! Brand new NEC D2246 8" 85 megabyle of hard disk storage! Full CPU control and indusiry leaves the good old ST506 intertace standing In mint condition and comes complete with manual Only

THE AMAZING TELEBOX:

Converts your colour monitor into a
QUALITY COLOUR TV!
£21.95(B
£29.95(B E29.95(B) £29.95(B) ع22.95(B) £24.95(B)
£175.00(E) £275.00(E 99.00(F) ccess time

£299(E)

UR TV!!

1992 Summer Issue of Display News now available - send large SAE - PACKED with bargalnsl

Fuiltsu M 3041600 LPM band printer FUjitsu LS 02 CPU board
Rhode \& Schwaiz SBUF TV test transmitter 25-1000mhz. Complete with SBTF2 Modulator Caicomp 1036 large drum 3 pen plotter
Thurlby LA 160e logic analyser
.5 kw 115 v 60 hz power source
Anton Pillar 400 Hz 3 phase frequency converter 7 Newton Derby 400 Hz 70 Kw converter ADDS 2020 VDU terminals - brand new HP 7580A 18 in han
Kenwood DA-3501 CD tester laser pickup
BRAND NEW PRINTERS
Microline 183. NLQ 17×17 dot matrix. Full width. $\quad £ 139$ (D) Hyundai HDP-920. NLQ 24×18 dot matrix fuli width. $£ 149$ (D $\begin{array}{ll}\text { Qume LetterPro } 20 \text { daisy. Qume QS-3 interface. } & £ 39.95 \text { (D) } \\ \text { Centronics } 152-29 \times 7 \text { dot matrix. Full width. } & £ 149 \text { (D) }\end{array}$

MONITORS

MONOCHROME MONITORS
THIS MONTH'S SPECIAL.
 here brand spanking new \& boxed monitors Ther NEC, normally selling at about $£ 140$ These are over-engineered for ultra relia bility. ${ }^{\text {etched green screen composite input with }}$ non-glare screen plus switchable high/low impedance input and output to
daisy-chaining. 3 sockets. Beautiful h ont controls and 6 at rear. Standard BNC sockets. Beaul high contrast screen and attractive case with quantity users! $\quad £ 39.95$ each (D) or 5 for $£ 185$ (G) COLOUR MONITORS
HI-DEFINITION COLOUR MONITORS

SAVE £59-ONLY £100 WHEN BOUGHT WITH THE 386 ABOVE!
14 " Philips Model CM8873 VGA multisync all the way up to 34 Khz with $640 \times$ 480 resolution. This one has everyand digital/analog. Unusual for a profesect CGA, EGA or VGA and digital/analog. Unusual for a profes stonal monitor, sound is also provided, with a volume control.
There is also a special "Text" switch for word processing, spreadsheets and the like Compatible with virtually all computers including IBM PC's, Amiga, Atari, BBC, Archimedes etc. Good used condition (possible minor screen burns) 90 day guarantee $15^{\prime \prime} \times 14^{\prime \prime} \times 12^{\prime \prime}$ (possible minor screen burns) 90 day guarantee. KME 12" high definition colour monitors. Nice tight $0.28^{\prime \prime}$ dot pitch for superb clarity and from any 15.625 khz sync RGB video source with RGB analog and composite sync such as Atari, Commodore Amiga, Acorn Archimedes
\& BBC. Measures only $13.5^{\prime \prime} \times 12^{\prime \prime} \times 11^{\prime \prime}$. Also
functions as quality TV with our RGB Telebox. Excellent used condition with 90 day guarantee. In nice two tone beige and brown case. Only
Brand new Centronic $14^{\text {n }}$ monitor for IBM PC and compatibles at a lower than ever price! Completely CGA equivalent. Hi-res Mitsubishi 0.42 dot pitch giving 669×507 pixels. Big 28 Mhz bandwicth. A supe monitor in attra Go day guarantee. Only
NEC CGA
quality ex-equipment fully tested with a 90 day ity ex-equipment fully tested with a 90
daarantee. In an attractive two tone ribbed grey plastic case measuring $15^{\prime \prime} \mathrm{L} x$ $13^{\prime \prime} \mathrm{W} \times 12^{\prime \prime} \mathrm{H}$. The front cosmetic bezel has been removed for contractual rea- $\mathbf{\Sigma 7 9}$ (E)
sons. Only.........
 20', 22" and 26" AV SPECIALS Superbly made UK manufacture. PIL all solid state colour moniaak style case. Perfect for Schools, Shops,Disco, Clubs EXCELLENT little used condition with full 90 day guarantee. 20"....£135 22".....£155 26"....£185 CALL FOR PRICING ON NTSC VERSIONS!

Superb Quality 6 foot 40u 19" Rack Cabinets Massive Reductions Virtually New, Ultra Smart! Less Than Half Price! Top quality 19 " rack cabinets made in UK by Optima Enclosures Litd. Units feature designer smokec acryic lockable front door, fult height lockable haff louvered back
door and removable side panels. Fully addoor and removabie side panels. Fully ad-
iustable internal fixing struts. ready punjustable internal fixing struts, ready punched for any conigur 13 amp socket switched mains distribu 0 toon strip make these racks some of the most versatile we have ever sold. Racks may be stacked side by side and therefore require only two side panels or stand singly. Overall dimensions are $77-1 / 2^{\prime \prime} \mathrm{H} \times 32-1 / 2^{\prime \prime} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$. Order as: Rack 1 Complete with removable side panels.......£275.00 (G)

COOLING FANS

3 Inch

92 mm
$31 / 2$ inch $A C 230 \mathrm{v} .18 \mathrm{~mm}$ thick
$31 / 2$ inch $A C$ ETRI slimaline. Only 1^{11} thick.
inch AC $110 / 240 \mathrm{v} 112^{\prime \prime}$ Only $3 / 4^{\prime \prime}$ thick
10 inch $A C$ round. 31,2 thick. Rotron 110 v
10 inch As above but 230 volts
$50 \mathrm{~mm} \quad D C 1^{\prime \prime}$ thick. No. 812 for $6 / 12 \mathrm{v} .81424 \mathrm{v}$.
30 mm DC 5 v. Papst 8105 G 4 w .38 mm . RFE
92 mm

एलाध

LONDON SHOP
open Mon-Sat9.-..30
215 Whithorse
Sone
South Norsood
London, SE25.

Free dial-up database!
1000. of items On Line
v21, V22 \& v22 bis
$\mathbf{0 8 1 - 6 7 9 - 1 8 8 8}$
-
 hange prices \& specifications without prior notice Orders subject to stock Quotations wilingly giver for higher quantities than those stated Bulk surplus always wanted tor cash

RESEARCH NOTES

Taking the uncertainty out of explosives

An optical detonator system for rockets and explosives that requires no electrical circuitry is the latest advance to come out of Los Alamos National Laboratories in New Mexico. The advantage - a fairly obvious one - is the virtual elimination of accidents. Electrical detonators are universally employed for everything from quarry blasting to firing explosive bolts on satellites, but they are not without their risks. As Dr Dennis Paislcy of the Los Alamos Detonation Systems Group puts it: "Once you put electrical wires against an explosive charge, you can easily induce clectric current into the wires from stray electromagnetic fields and accidentally

either fire the detonator or disable it".
Electrical detonation systems are usually extremely well designed, employing complex safety interlocks and well-screened circuitry. Even so there have been cases of rockets going off unbidden or of launches having to be cancelled because of the risk of malfunction during a thunderstom.
The answer, says Paisley, is to use optical fibres which are effectively immune from natural or other interference. No naturallyoccurring events (and few human generated ones) can deliver enough optical power to fire an explosive inadvertently.
Paisley's team, consisting of David Stahl. Nelson Montoya and Mel Garcia, is now going one stage further: putting explosives inside a Faraday cage with no metal intrusions. This excludes all electromagnetic fields and eliminates the risk of induced currents in metal parts. The only connection is a quarti fibre terminated in an aluminium cap (which if necessary can be part of the Faraday cage).
To fire the explosive the group seids a high power laser pulse along the fibe. At its Optical explokion: Aluminium cap propelled to the speed of a micrometeorite by laser.
other end the pulse generates a plasma which propels the aluminium cap (400 $600 \mu \mathrm{~m}$ in diameter) at a speed of $4000 \mathrm{~m} / \mathrm{s}$ into the explosive. The energy is enough to cause detonation, even of the most modern shock-proof explosives.
The optical detonator was originally developed for military applications. But it could well find uses in the mining industry and in oil exploration. The Los Alamos team identifies several benefits in addition to reducing the risk to those workers directly handling explosives. The fact that the system is completely immune to electromagnetic interference means other activities need not be prohibited during blasting. Workers nearby can continue to use welding gear, operate mobile radios and operate electrical switchgear.

When questioned about the high cost of using an expensive laser system, Dennis Paisley points out that many explosives systems cost hundreds of millions of dollars and often involve risks to dozens of lives (just think of the Space Shuttle). Also, the laser end of the detonator is infinitely reusable: all that goes up in a puff of smoke is a few metres of quartz optic fibre.
As well as improving safety in the explosives industry, the Los Alamos optical detonator has a secondary use in space research. The fact that the fibre can propel a tiny metal disc at extraordinary speeds means that it can simulate the micrometeorites that are such a hazard to spacecraft. Understanding how structures behave when shot at by microscopic projectiles flying at $4000 \mathrm{~m} / \mathrm{s}$ will provide valuable data for designing tomorrow's space vehicles

Crystal thinks it's a liquid (or is it the other way round)?

Uing an ultra-fast laser system, scientists at the University of Rochester NY have heated a lead crystal above its melting point so quickly it does not have time to melt! Even though the crystal reaches $700 \mathrm{~K}, 100^{\circ}$ above its normal melting point, the crystals remain solid for a few critical picoseconds. The delay may not sound long, but it is enough time for the researchers to take a
"snap-shot" of the material's supetheated crystal structure - something rarely seen before in a metal.
Superheated solids, though less familiar than superheated liquids, have been studied for many years now. Some materidls, like quartz, are relatively easy to superheat up to several hundreds of degrees above their normal bulk melting points: their high
viscosity slows down the propagation of the solid/liquid interface.

Metals are much more difficult to superheat because they are far less viscous in the liquid form - though in the past some have been superheated, remaining solid a few degrees above their normal melting points. As long ago as 1939 , Russian scientists superheated a crystal of tin by 2°

An ultra-fast laser is used to heat the sample and also to trigger the electronic camera.
by heating one part of the crystal while simultancously cooling another. Superbeating metals by more than a few tens of degrees above their melting points is nevertheless difficult.

But by using an ultra-fast Nd:yag laser.
the Rochester team (Phys Rev Lett Vol 69 No 8) managed to catch a lead crystal in the midst of this transition from the ordered crystal state of a solid to the disordered state of a liquid. The temperature indicated that the crystal lattice should long since have
broken down, but the atoms had not yet adapted to the temperature change. During the 180 ps laser pulse a few atoms had begun to vibrate out of position, but not enough to have destroyed the lattice and transformed the solid into a liquid.

One key to the success of the experiment was the type of material used. The team used a lead crystal cut in such a way that the exposed surface had atoms packed more closely than usual. Because of the tight packing in this $\mathrm{Pb}\{111\}$ structure the atoms could not move out of place so quickly when heated.
To detect this picosecond superheated state, the researchers split their laser source into two beams: one to heat the sample and the other to activate the electron gun used to take the picture.
Electrons bombarded the sample just a few picoseconds after the sample was heated by the first part of the laser beam. They then bounced off the surface atoms to form a "rellection high-energy electron diffraction" pattern (rheed). an image of the crystal lattice. All before the crystal had time to realise that it shouldn't be a lattice any more!

Lights that make the radio fade

Back in the (good) old days when we all listened to LF and MF radios, the most common sources of interference seemed to be power tools and fluorescent lights. That of course has all changed with the advent of FM and digital signal technology ... or has it? According to P Melançon and J Lebel of the Communications Research Centre in Ottawa (Electronics Letters, Vol 28, No 18), the fluorescent light has oncc more become the enemy of radio communicators, though not in a way that anyone could expect.

The problem came to light when researchers were investigating multipath propagation over indoor paths at 910 MHz . Multipath is generally acknowledged to be the main source of inder fading, though usually at a slow rate (less than 5 Hz) and often the result of people moving around within the building. What puzzled the Canadian researchers was their discovery of rapid fading at a frequency of 120 Hz , twice that of the Canadian power line frequency.

By a process of elimination - involving setting up a CW signal generator and monitoring its signal over a variety of direct and indirect paths inside a building -
the researchers were eventually able to implicate the arrays of lights that covered the ceilings.

Their first experiment involved placing a directional horn antenna 30 cm from a fluorescent tube and using the horn to generate a signal varying between 0.5 and 10.0 GHz . A receiver horn pointed at the light and used to detect reflected signals showed a very marked 120 Hz modulation of the signal amplitude that peaked in intensity at a signal frequency of 2 GHz . Just to prove that the effect had nothing to do with signals generated directly by the lamp itself, the Canadians checked it out with a passive receiver and also by the use of aluminium screens.
After further experiments simulating the sort of signal paths that might be employed by users of indoor communication equipment, the team concluded that the problem had nothing at all to do with faulty fluorescent fittings; these particular ones proved to have a very quiet RFI profile. The truc source of the varying reflections turned out to be the excited gas inside the tubes.

In effect the gas acts as an electrical conductor and reflects radio signals in
much the same way as the excited gas that comprises the aurora. But because the gas in a mains-driven fluorescent tube conducts in bursts at twice the frequency of the mains, it also reflects radio signals in bursts. Reflections from a fluorescent tube are thus strongly modulated at twice the mains frequency, ie 120 Hz in Canada.
The researchers say that this effect is dependent on the size of the tube and the geometry of the fitting. They also say that, while the fading that results from the resulting multipath is not like normal slow fading, it does degrade the average signal-to-noise ratio and also superimposes a strong 120 Hz modulation on any signal especially around 2 GHz - being transmitted within a building containing fluorescent lights.
In their latest paper, Melançon and Lebel suggest that if received signal amplitudes need to be kept within specified limits, AGC systems must be designed to compensate for fading at 120 Hz . Better still might be to install fluorescent lights with RF ballasts... unless someone knows of any problems that occur when a radio signal acquires a spurious modulation at tens of kHz .

SILICA SYSTEMS OFFER YOU

- FREE OVERNIGHT DELIVERY: On all hardware orders shipped in the UK mainland
- TECHNICAL SUPPORT HELPLINE: Team of technical experts at your service. - ESTABLISHED 14 YEARS: Proven track record in professional computer sales
- 12 MILLION TURNOVER (with 60 staff): Solid, reliable and profitable
- BUSINESS + EDUCATION + GOVERNMENT: Volume discounts available 081-308 0888 - THE FULL STOCK RANGE: All of your requirements from one supplier.
- FREE CATALOGUES: Will be mailec to you with offers + software and peripheral details. - PAYMENT: Major credit cards, cash, cheque or monthly terms.

Before you decide when to buy your new Amiga computer, we suggest you think very carefully about require additional peripherals or software, or help and advice with your new purchase. Anc, will the company you buy from contact you with details of new products? At Sllica Syslems, we ensure that you
will have nothing to worry about. We have been established for almost 14 years and, with our unrivalled experience and expertise, we can now claim to meet our customers requirements with an understanding FREE literature and begin 10 experience the "Sis

MAIL OROE

LONDON SHOP: 52 Tottenham Court hoad, London, WIP OBA Tel: $071-5804000$ LONOON SHOP: \quad Selfridges (tst froor), Oxtord Street London, W1A 1AB Tet 071.629 1234 SIOCUP SHOP: $\quad 1-4$ The Mews, Hatherley Rd, Sidcup, Kent, DA14 4DX Tel: $081-3028811$ ESSEX SHOP Keddies (2xd foor, High Street, Southend-on-Sea, Essex,

PLJASE SEND A 64 PACE AMIGA COLOUR CATALOCUE

Place in the sun for new battery materials?

Awhole new technology for harvesting sunlight has been opened up by discovery of composite materials with valuable light properties. Mark Thompson and graduate student Lori Vermeulen of Princeton University have identified a series of materials that look to be much more efficient than photovoltaic cells at converting light into energy. They can also store energy until required and in that way imitate the way green plants intercept and store sunlight.

The materials are layers of zirconium phosphonate and viologen compounds, which react to light by acquiring electrical charges. Sunlight causes electrons to leave the "donor" and become part of the "acceptor" compound. The resulting charged compounds are then ready to react with a second set of substances to convert the energy into a usable form.
The critical part of the process is keeping the newly acquired charges separate for long enough to allow conversion into some form of extractable energy. Previously researchers have faced considerable difficulties in trying to maintain this "charge-separated" state because it normally reverses in the presence of air. Thompson and Vermeulen prevent the reversion with the tight meshwork structure of the zirconium and viologen compounds.

In classic style, the discovery was accidental.

In July last year, Lori Vermeulen took a sample of the material on a slide from

Thompson's lab and walked down the road to use the X-ray diffraction equipment in another building at Princeton. As she walked, the material, looking like a smear of wet white chalk-dust turned blue. She returned and repeated the walk with two new slides, one covered up and the other exposed to sunlight. The exposed material again turned blue.

The colour was immediately recognized as significant by Thompson: "Blue is not the normal run-of-the-mill colour of these compounds. When they decompose, they turn yellow, brown or red, but they don't turn blue". The colour indicated that some of the charge-separated electrons were not going back to their original state. In other words, energy was being stored.

Some electrons do eventually return, since the bright blue colour fades to pale blue after

Diode turns blue at room temperature

Ateam at Sony Corporation Research Centre in Yokohama has developed a CW laser diode that produces a deep blue output (Electronics Letters Vol 28 No 19). So far, the prototype works at liquid nitrogen temperatures $\left(-196^{\circ} \mathrm{C}\right)$. But there is no theoretical obstacle to producing a room-temperature version with wide application in data storage and retrieval systems - operating at the blue (short wavelength) end of the visible spectrum allows the laser to handle higher data rates.
The new Sony laser is the result of research into II-VI semiconductors, materials based on elements in groups II and VI of the periodic table. Doped II-VI semiconductors, because they have a wide band-gap, are capable of generating shorter wavelength radiation than the more usual III-V semiconductors such as gallium arsenide or its derivatives.
Research on wide gap II-VI semiconductor lasers is of quite recent
origin. The first $\mathrm{ZnCdSe} / \mathrm{ZnSe}$ pulsed laser reported last year (Appl Phys Lett 1991, 59. 1272) operated at room temperature and produced light in the blue/green part of the spectrum. Its success was largely the result of improved p-type doping techniques.

The latest blue laser, generating light at a wavelength of 447 nm , also employs advanced doping techniques. But it makes use of different II-VI compounds created by molecular beam epitaxy. The chemistry in this case is $\mathrm{ZnSe} / \mathrm{ZnMgSSe}$, and when immersed in liquid nitrogen, the device begins to lase at a threshold current density of $225 \mathrm{~A} / \mathrm{cm}^{2}$. The Sony team says that this result was achieved in spite of not having a good ohmic contact between the gold/palladium electrode and the p-type cap layer. If this problem can be overcome, then it should be possible to make a practical true-blue roomtemperature CW laser diode.

Before, between and after (right to left) exposure to UV. The layered viologen compound left in the dark, exposed to sunlight for $2 h$, and irradiated with a UV lamp for $2 h$.
about five hours. But since publication of their Nature paper, the two scientists have made another version of the material which seems more able to capture and store sunlight. What is more, it can be made from cheap and readily-available starting materials.

Vermeulen has also made a version of the material that looks as if it is porous meaning it should be possible to pump energy-harvesting molecules through the pores. She plans soon to test this strategy for extracting the stored energy. If the porous compounds are successful, they will certainly be much less expensive than semiconductor-based solar power systems.
Other plans are to use the materials in memory applications. If they can be made transparent to laser light (for write and read operations), the potential in high density non-volatile memories is considerable.

Research Notes is written by John WIIson of the BBC World Service.

Within budget. Without compromise.

The value of this 100 MHz digital scope is easy to see.

Take a close look at the HP 54600 oscilloscope, and you can't help but notice certain things.

It looks and feels like an analogue scope, with dedicated knobs and a display that responds instantly to your control changes. Yet it has all the digital power that analogue can't give you - high accuracy, automatic measurements, hard copy output and programmability. And superior viewing of virtually any waveform, even at low rep rates and slow sweep speeds.

But what really stands out is that the HP 54600 gives you this performance for just §1860 (4-channel) and $£ 2160$
(2-channel version)* And that's a value worth looking into.

For more information, or sameday shipment, call HP DIRECT, 0344362867 . And we'll send you a data sheet.

HP 54600 Digital Oscilloscope	
No. of channels	$\mathbf{2}$ or $\mathbf{4}$
Bandwidth	$\mathbf{1 0 0 ~ M H z}$
Timebase accuracy	$\pm \mathbf{0 . 0 1 \%}$
Vertical accuracy	$\pm 1.5 \%$

There is a better way.

「价
 HEWLETT
 PACKARD

[^1]
SYSTEMS

The Navstar Global Positioning System. now known as GPS, dates back 10 1973. following the US Navy Transit satellite system, operational since 1964, the Timation high tech research programme, and the US Air Force 621 B programme. The first GPS signals from space came from the Navigation Test Satellite, in June 1977.
The initial constellation of GPS satellites. intended to prove the GPS concept, were launched from 1978 to 1985, will 2-D navigation lirst possible in October 78, and 3-D in December 78, both only for a lew hours a day. These were launched by rocket from Vandenberg Air Force Base, California.
The Block II operational GPS satellites were launched from 1988 onwards, initially on the space shutte, but following the Challenger disaster there was a considerable delay, and the launches were rescheduled on McDonnellDouglas Delta Rockets. As of July 1992, there are four Block I satellites still functioning, numbers $3,11,12$ and 13 , following the death

A complete GPS receiver with map display position output. Everything apart from the frontend converter is engineered in software running on an Inmos transputer. The system, which provides both PAL and NTSC composite video, will provide the main design example used in this series on GPS.
of number 9 in early 1991 due to a motion wheel bcaring failure. and number 6 in spring 1992 due to a power system failure. There are $1+$ Block I] satellites available $(2,14,15,16$. 17. 18, 19, 20, 21, 23, 24, 25, 26, 28).

Current satellites in service provide 2-D coverage 24 hours a day, and aboul 21 hours of 3-D coverage, depending on latilude and antenna used for marine/air use. Land use, in town or in sough terrain, is much less available, as the visible horizon, assumed as 5° at seil, is more like 25°, but 2-D coverage is still available almost 24 hours a day.
There have been two other major delays since the Chatlenger disaster. The first was caused by a breakdown in the automatic solarpanel controls on number 24 , the second by
lubrication failures on the momentum wheels both in space and on ground tests. On both occasions delays were inserted to ensure the future reliability of the system... but the lubrication failures were actually caused by earlier delays: the time the satellites had been waiting on the ground to be launched. The system is expected to be declared operational in 1995, and the US government has guaranteed its availability without direet user fees for ten years from that point.

Why GPS?

A new navigation system was needed for many reasons. GPS has many features that make it desirable over older systems. It is global including space in orbits much below the GP'S satellites themselves; it offers continuous coverage, in contratst to the earlier transit system which gave a lix every few hours: it is unjammable by an enemy in time of war, and finally, it offers height as well as latitude and longitude.
Both Loran and Decea suffer from limited coverage, especially in developing countries and the Southern Hemisphere. In fact Decea coverage is largely limited to North West Furope, South Africa, the Gull and Australia. Neither can give a user's height, and their accuracy can be as bad as 500 metres, although repeatability is much better than that.
They are also not suitable for high dynamics vehicles such as lighter aireraft, nor are they effective in lowns, due to excessive interference from mains-powered equipment generating low frequency interference.
Explaining the GPS requires a back ground knowledge of simpler terrestrial systems and the Transit satellite system. The features detailed are those where parallels can be made from the GPS system.
Loran and Decca systems work by transmitting signals from several ground stations, the hyperbolic systems, so called because the position lines on a chart take the form of hyperbola. Until the advent of the microprocessor, the position was found by looking up overprinted position lines on a chart.

Loran

The mobile calculates the propagation delay from each of the transmitters, and thus the distance, and from this calculates its position. This may be done from just two transmitters. It sounds simple, but is not the whole story. Firstly, as the exact moment transmission is not known on the mobile, an absolute propagation time cannot be found directly. This is solved by locking the transmitters together, so that their relative relationship is known. The time differences (TDs) can then be measured at the mobile (Fig.1). Calculating a position from the TDs requires three signals (Fig. 2). However if the user crosses the line joining two transmitters, outside the transmitters, known as the baseline extension, the accuracy deteriorates very badly, being insoluble on the line. To cover for this problem, the minimum effective chain of transmitters is four.
The next problem is how to prevent multiple
transmitters from interfering with each other, an aspect handed differently in the two systems. L.oran uses a single frequency, and each transmitter sends a group of pulses. (Fig. 3). As a pulse greup takes less than 10 ms and is repeated never faster than about 50 ms , several transmitters can operate in the same area
with carefully allocated time separations.
Different chains of transmitters can be idenlified by the repetition rate of the groups (Group Repetition Interval, GRI). If collisions occur in the time domain, because of the different GRIs, the next eycle will not collide. The eight pulses of a group have a pattern of

$T_{1}-T_{2}$ in microseconds, Transmitters about 200km apart

Fig .1. Hyperbolic systems before the microprocessor used an overprinted chart to lookup the lines of position, having read the relative delay from the receiver. The drawing shows the overlay for a pair oi transmitters, after subtracting the delays in iransmitter start time that are inserted to ensure the signals due not overlap each other.

Fig. 2 Hyperbolic 2-D positioning with two sets of overlays. The receiver is positioned where the

8 bursts of 100 kHz at 1 millisecond intervals
9th 2ms later Master Tx only

Fig. 3. The Loran-C system operates in burst mode to allow many transmitters to share the same frequency, leading to a very simple radio tront end to the receiver. Master transmitters are identified by a 9 th pulse, which can be blinked to indicate system problems. The actual chain in use is identified by its repetition rate.
phase inversions to minimise the effect of other (CW) interfering signals that may distort the phase.
As Loran means Long Range Navigation. the signal can be very weak at the extremities of range, and then problems arise with interference between ground wave and shy wave signals.
This problem is handled by specifying a particular carrier wave zero crossing as the timing point, and making it carly in the pulse so that the sky wave has not yet arrived. The particular carrier wave is identified by shaping the
amplitude envelope of the transmitted waveform. The receiver then ratios the peak-implitudes on receive to identify a particular cycle.

Decca

Decca, on the other hand, operates an almost continuous transmission from each transmitter. and separates/identifies them by carrier frequency. In each chain there is a transmitter at multiples of $5,6,8$ and 9 of a reference frequency around 14 kHz . Thus carriers are at 70. 84, 112, 126kHz.

Decca is a short range system. so normally
adjacent chains do not interfere greatly, but in order to cover abnormal propagation, the $14 \mathrm{kH} /$ reference is marginally different on each chain, and common or almost common frequencies are given large geographical separations.

Originally Decca was a continuous wave system, but the reason now for the word "almost" is that interruptions were introduced to allow the user to identify a particular cycle of the carrier wave. Before this. Decca had an ambiguity of a multiple of four miles, the lane problem. In addition to the interruptions, the

SPREADING THE SPECTRUM

S°
pread spectrum is as the name implies. Rather than simply applying data to a carrier as in $\mathrm{AM}, \mathrm{SSB}$, or FM , where the modulation sidebands are scarcely wider than the data they contain and concentrated in a small group near the carrier frequency, the energy of the carrier is deliberately spread out over a wide band, so much so that it disappears below the thermal and atmospheric noise. Essentially, there is now no detectable signal.
This could be achieved by band-limiting, modulating with low bit rate data, and upmixing the signal from a noise diode. However, this would be irrecoverable as the receiver would not have access to the same noise source to reverse the operation. A truly random noise source would result in a flat spectrum.
In a practical system the spreading operation is done using a pseudo-random noise source, a pair of fed-back shift registers that each generate a maximal length sequence. This operation can be repeated at the receiver. The use of two sequences, a Gold code, results in low cross-correlation between the satellites, and low auto-correlation at erroneous offsets with itself, and thus is almost as good as the truly random noise diode.
This pseudo-random sequence results in the well known Sync function, $\operatorname{Sin}_{f} x / x$ where the spectrum is as shown in Fig. 5 of the main text; the first nulls are spaced away from the carrier by the clock rate of the generating shiftregisters.
A more detailed look at the spectrum would show that it is a comb of frequencies, each spaced 1 kHz apart. The 1 kHz spacing arises through the repetition time of the entire sequence, which is one millisecond. In order to recover the signal, this comb must be gathered together into a single carrier again, which is done in the receiver by re-applying the noise sequence in a digital mixer.
A simple way to understand spread spectrum modulation in the context of GPS is to use a worked example.
Consider a code 11010010. It has eight "chips", and appears random. If we wish to transmit some data, we could transmit the whole code for a 1, and then the same code inverted for a zero. Thus:

Note that if we exclusive-OR this pattern with a locally generated copy of the code, we get:

0000000011111111

Thus if, for maximum noise performance, we pass the output through a filter with the same bandwidth as the data rate, we recover our 1,0 , despite the inversion. in this case, such a filter would give amplitudes of 0 and 8 respectively for the two data bits. Note that 8 is the power gain due to correlation; the transmitted signal had peak amplitude of 1 . The amplitude of our recovered signal here is as transmitted, as there is no loss.

In real life, there is a loss due to limited bandwidth, limited sampling rates, thermal noise, and imperfect synchronisation between received and locally-generated codes.

Note that if the code is mis-aligned by more than one chip, no signal is recovered. Using 0,1 as the input levels, the result averages to 4,4, as would random noise. The shape of the amplitude/synchronisation response is critical to accurate tracking. It is the accuracy of the tracking in the time domain that controls the positional accuracy of the receiver.

Correlating a square wave against a square wave yields a triangular wave:
The best results are given by an early/late tracker, using the late signal subtracted from the early to give an error signal to control the tracker. The response is then dependent on the sampling rate, and the radio receiver bandwidth.
A receiver exists using this technology that can track the satellite signal to a resolution of 6 cm . This means it can immediately resolve carrier ambiguities which crop up every 20 cm

Correlation response of a squared pulse.

Recovering a spread-spectrum signal relies on the fact that it can be de-spread when multiplied by the same spreading code again. More than one chip of the code in fiming error means no signal, and a single correlator does not know which way to adjust to find the peak.
without post processing or p-code.
Note that this simplified example has ignored the carrier frequency itself. Thus the receiver must have two tracking loops. One as in the example, achieves timing measurement and correlation gain by removing the spreadspectrum code, leaving a narrow-band carrier

Error signal that advances or retards tracker. Differencing the signals from two correlators that have a small time offset yields a error signal that can control a tracker to keep the receiver in lock with the transmitter.

transmitters cach transmit all the 4 frequencies logether for a short time. By mixing these in the receiver. the $14 \mathrm{kH} / 2$ reference can be gencrated. giving a super-lane width measured in tens-of-miles. Thus the three resolutions. interruptions. 14 kHz phase and carrier phase interloch to resolve all the ambiguities.
The Omega system is another quasi-contintous wave system, using frequencies around 10 kHz that propagate around the earth. This gives global coverage but accuracy only to the miles level.
carrying BPSK data. The second removes the carrier using a phase-locked loop, with the data as its output.

Who uses it, and why

Until recently spread spectrum was the unique preserve of the military, who liked its covert nature, as the signal cannot be detected by conventional means. Radio amateurs were prevented from researching it by the terms of their licence. In the last few years, with the de-licensing of low-power transmitters in the USA, and proposals for new cellular phone and satellite-phone applications, it has become much more popular. I have even worked on a remote signalling application using spread-spectrum down power cables. Spread spectrum allows two new dimensions in the fight for spectrun efficiency. While it uses a wide band in the frequency domain, many users can occupy the same band. Within that band, their signals can be separated by the code they use, by the centre frequency, and even on the same code, can be separated in the time domain. This latter feature is made possible by the fact that the spread spectrum signal has within it accurate time signals, the code epochs.

In the cellular-phone area, the signal reaches the vehicle after bouncing off several buildings. Thus several copies of the signal reach the receiver. A conventional receiver must use the strongest, and the others count as interference, ie are detrimental. A spreadspectrum receiver can track several of the signals, re-time them and add the energy in each.
As the power needed for spread-spectrum is so much lower than traditional modulation methods, it is very suitable for portable transmitters. This is a trade-off between the number of users and their power output.

An additional set of channels can even be gained under existing narrowband signals. The spread-spectrum signal is too low in energy density to affect the narrow band receiver, and the act of de-spreading the signal in the receiver actually spreads the energy of the narrow band transmission out, so that both systems can co-exist on the same frequencies, subject to the near-far problem described below.

As receiver frequencies get higher, narrowband systems either need filters with

Transit

The Transit svstem uses only a single transmitter, based in space. Using it wice, moving on a known orbit, is equivalent to two tramsmitters. This means fixes are not immediate. and the user's motion between observations must be accurately known.
Transit does not use ranging, but rather Doppler shift caused by the satellite s motion. Measuring the frequency of a single received signal gives a result distorted by satellite doppler and user reference error. By using two transmission frequencies. the reference error
can be removed and a true doppler shift found. Knowing the velocity of the satellite, this doppler frequency gives a cone of position around the line of motion of the satellite, and the intersection of the cone with the carths surface gives a line of position. Repeating the operateon a few hours later. when the satellite's line of motion hats changed significantly due to the curvature of its orbit, gives a second intersecting line of position. This produces an actual position for a stationary user. or for a mobile user after compensation for his own motion in that time.(Fig. 4)

> Error signal vs. receiver bandwidth. The shape of the error signal is dependent on the separation of the two correlators and the bandwidth of the receiver. Initial acquisition and tracking have different requirements, and there is no benefit in using a wide bandwidth receiver if the correlator spacing is wide. Acquisition uses a wide separation for a good pull-in range, while tracking uses a narrow separation for maximum gain inside the loop, and hence minimum tracking noise.

tighter percentage bandwidths, or more stages of down conversion. Spread-spectrum allows very simple analogue receiver design followed by a simple AD converter. All the narrow band work can then be done in the digital section, be it asic circuitry or as a software engine in a fast processor.

Spreading problems

There is one drawback with general use of spread-spectrum, and that is known as the near-far problem. It doesn't affect GPS, as all the transmitters are in space, and thus "far", except when local pseudo-satellites, or pseudolites, are used, as has been proposed for precision landing at airports. For general use however, when a receiver is near to an alien transmitter, that transmitter's signal will not be buried below the thermal noise, but may saturate the receiver and prevent its reception of the desired signal. This is easily handled in satellite communications by allocating widely separate bands to the up and down links as is done for narrowband
links.
In terrestrial systems this is less achievable as, near the base station, the mobile receiver would be drowned, and would also drown the base station. Current systems such as GSM already have dynamic control of transmitter power. A more sophisticated version of this would solve the problem where trequency bands can be allocated to a single network, as far as the base station is concerned. However the car parked alongside may still be drowned, as the base station must transmit high power to reach a remote mobile operating simultaneously, in the same band, on a different code.

Data extraction. Two stages of bandwidth reduction give considerable signal to noise ratio improvement. The one millisecond filter in the correlator collects 1000 code chips together, a 30 dB gain for a 1 kHz data bandwidth. The data extractor then filters over a matched 20 ms , synchronised to the data edges, reducing the bandwidth to 50 Hz , a further 13 dB of gain.

Fig. 4. The Transit satellite system operates by measuring the Doppler shift caused by the satellite's motion. As multiple satellites are not usually available, the same one can be used twice with a time separation, but the vessel's course and speed meanwhile must be accurately known. Fixes are infrequent, as there are one to two hours between each low-orbit satellite pass

GPS uses the time-delay ranging of the hyperbolic systems for positioning, plus the doppler (or integrated doppler) measurements to smooth the tracking of the time delay, and also to derive user velocity. Its time delay is measured from the code tracker of the spread spectrum demodulator (see box). The spectrum and modulation are shown in Fig. 5.

The GPS system, structure and signals.

 The GPS system has a network of transmitters just like the terrestrial systems, but on satellites in space. Just as the terrestrial systems overcame their problems like baseline extension and transmitter separation and identification by careful design, so too does GPS.The GPS equivalent of the baseline extension problem is the GDOP. geometric dilution of precision. When the currently visible satellites are badly positioned, the accuracy deteriorates. When insufficient satellites are visible, there is no service. To best cover the earth with best accuracy for the longest period of each day, considerable effort was put in to the orbit configuration, or constellation.
The satellites orbit at height of 20.200 km , twice per sidereal day (23 hours and 56 minutes). This means that they cover the same ground track each day, four minutes earlier each day. The early plans called for three orbit planes of six satellites plus three spares, 60° inclination to the horizon. However when all the satellites in use are in a single plane, and the user passes through that plane, the accuracy is badly degraded. This happens far less if the satellites orbit in more separate planes, so the current plan is six planes of three satellites, with a spare in alternate planes. At the same time, the inclination was reduced from 60 to 55°.

The satellites all transmit continuously on the same frequency so, like the Decca system, a method of separation and identification is required. As the carrier frequency is 1575 MHz , the ambiguity would occur every 20 cm , so a solution is required here too.

A single method fixes all three problems. The transmission uses spread spectrum mod-
ulation. This means that the carrier wave is phase inverted by a pseudo-random code. This code runs at a 1.023 MHz rate, and spreads the carrier energy over a 2 MHz bandwidth, thus reducing the power density below the front end noise of the receiver. To recover the signal, it is multiplied by a replica of the code used in the satellite.

The code has a length of 1023 bits and thus repeats every millisecond. This results in a range ambiguity of 300 km , acceptable in most circumstances, and may be resolved further from the transmitted data bits ($6000 \mathrm{~km} / \mathrm{bit}$), with total resolution from the data-content.

By giving each satellite its own code, only the signal from the selected satellite is gathered into a narrow bandwidth and detected. Thus many satellites can cocxist without interference, and may be individually identified.
The actual power level available to the receiver is a minimum of -160 dBW , or -130 dBm , to the civilian user with a OdBi gain antenna. For comparison, the thermal noise in a receiver of 1 MHz bandwidth is $k T B$, where k is Boltzmans constant, T the absolute temperature, B the bandwidth. This yields -114 dBm for the thermal noise plus say 1 dB for receiver noise factor. Thus the signal is some 17 dB below the noise.
The correlation process (see box) allous a gain of 30 dB , bringing the signal to noise ratio up $10+13 \mathrm{~dB}$, in a bandwidth of 1 kHz . It is at about this level that the receiver must first lock onto the signal. It can then narrow the bandwidth further in a carrier loop to 50 Hz to extract the data, representing another 13 dB . At 26 dB signal-to-noise ratio, error free reception of the system data can be achieved without dilficulty. The limiting feature is not in tracking the signal, but in acquiring initial lock, both in the time and frequency domain.

Added sophistication

The single satellite signal is extended in three ways in order to add facilities to the system or improve its accuracy. Firstly, data is added to the system by a second level of binary phase shift keying (BPSK) modulation at a 50 baud
rate. If not provided over the satellite itself, a separate terrestrial transmission would be needed in order to inform the user of the satellites' own position, and transmission times. This is feasible, and is used for surveying work with post processing, but would not be feasible mid-ocean in real time.
Secondly, each satellite also transmits a second, much faster code and, thirdly, it also transmits on a second frequency.

The second code, known as the P , or precise code, is reserved for the military. Its original purpose was to give a much better accuracy than the commercial system since its 100 ns code chips should produce better receiver tracking accuracy than the commercial $1 \mu \mathrm{~s}$ code bits.
This design feature has been overtaken by receiver technology in the intervening 15 years. Receivers can now track the carrier wave, which has a 600 ps period. In any casc, it is not the receiver tracking error that dominates system error, but ionospheric distortion and deliberate degradation by the US DoD known as Selective Availability (SA).

However the p-code signal has a further function. It can be switched to another code in times of war. This is known as anti-spoofing mode, and it prevents the enemy from generating spoof signals that would deceive GPS receivers into giving erroneous positions.

Because the p-code is chipping ten times faster, it also has ten times wider bandwidth. This makes it even harder to jam, and, if receivers could sample fast enough, would allow greater correlation gain over the same integration period.
The reason for a second frequency, L2, is that the inevitable ionospheric delay to the signals is mathematically related to the frequency. Thus by timing two signals known to have been transmitted from the same satellite at the same time, the receiver can calculate the delay incurred in the ionosphere, and compensate.
The second frequency does not carry the clear access (C/A) code, only the p-code, so is not in principle available to commercial users. Only survey sets need this accuracy, so the current trend is to provide two modes: one that uses the p-code, and another that uses a squaring technique rather than correlating with a locally generated satellite code. The squaring method is only used when the anti-spoofing mode on the satellite is enabled, as it incurs considerable (about 6 dB) signal-to-noise ratio loss.

Extra-terrestrial concerns

There are many receiver tasks which do not arise with the hyperbolic systems. Some are new, caused by the motion of the satellites versus the "fixed" terrestrial transmitters. Others always existed but, because of the improved accuracy of GPS, are now relevant. Previously they could be ignored.
On the benefits side, Loran and Decca were designed before microcomputers existed. All GPS receivers have a powerful microprocessor, often more than one.
The motion of the satellites is handled by
transmitting from the satellites themselves the coefficients of equations deseribing their orbits. The receiver can then calculate the satellite position precisely at any given time. Here hangs a problem: what time? We do not want the position of the satcllite when we received the signal; rather when it was transmitted. Without knowing the satellite's position, we cannot work out the propagation time.
This circular argument is difficult for man. simple for computer, as the computer sees this not as a circular argument but a recursive one: it simply repeats the calculation, getting more and more accurate, until the error is insignificant. With the satellite travelling around $5 \mathrm{~km} / \mathrm{s}$. the initial estimate may be 350 m out.
Having calculated the satellite's position, we ask "relative to what?" GPS uses earth-centred earth-fixed (ECEF) coordinates, in order to tie in cleanly to latitude-longitude-altitude. But if the calculations were all done in this mode. the signals would not be travelling in straight line. as during the 70 ms or so that the signal is travelling from the satellite to the user, the ECEF coordinate frame has rotated. This must be accommodated in calculating the satellite position. The error is not insignificant: in 70 ms the user on the surface of the earth moves some forty metres in an casterly direction simply due to earth rotation. The apparent satellite position has moved about four times that in a westerly direction. due to the greater radius at the satellite.

Fig. 5. GPS combines the benefits of terrestrial systems with continuous availability, satellite systems for global coverage, at the cost of many satellites and a complicated receiver to decode a complex modulation scheme. Spread spectrum allows all 24 satellites to transmit continuously on the same frequency.

The biggest correction made by the user is for ionospheric distortion. This did occur on advanced Loran sets, where the sky wave was used with correction tables (Additional secondary factors, ASF), but with GPS it accounts for around 30 m of the error budget. so is very important.
Even relativity is considered in the system design. The satellite system clocks are run a little slow in order to allow for the apparent
increasc in frequency as the signal approaches the earth caused by the interaction of the sigral and the gravity gradient. The receiver also performs a mathematical calculation provided in the GPS spec to correct for the varying speed of light due to gravity.

Next month: Radio architecture and data extraction

Many Radio Amateurs and SWL's are puzzled. Just what are all those strange signals you can hear but not identify on the Short Wave Bands? A few of them such as CW, RTTY, Packet and Amtor you'll know - but what about the many other signals?

Hoka Electronics have the answer! There are some well known CW/RTTY decoders with limited facilities and high prices, complete with expensive PROMS for upgrading etc., but then there is CODE3 from Hoka Electronics! It's up to you to make the choice - but it will be easy once you know more about Code3. Code3 works on any IBM-compatible compuier with MS-DOS 2.0 or later and having at least 640 k of RAM. The Code3 hardware includes a digital FSK Convertor unit with built-in 230 V ac power supply and RS232 cable, ready to use. You'll also get the best software ever made to decode all kinds of data transmissions. Code3 is the most sophisticated decoder available and the best news of all is that it only costs $£ 299$!

- Morse - Manual/Auto speed follow. On screen WPM indicator
- RTTY/Baudot/Murray/ITA2/CCITT2 plus all bit inversions - Sitor - CCIR 625/476-4, ARO, SBRS/CBRS FEC, NAVTEX etc - AX25 Packet with selective callsign monitoring, 300 Baud - Farsimile, all RPM/IOC (up to 16 shades at 1024×768 pixels) - Autospec - Mk's I and Il with all known interleaves - DUP-ARQ Artrac - 125 Baud Simplex ARO
- Twinplex - 100 Baud FFBC Simplex ARO
- ASCli- CCIT 6 , variable character lengths/parity

- ARO6-90/98-200 Baud Simplex ARO
 - Sl-ARO/ARO-S- ARO 1000 simplex

- SWED-ARO/ARO-SWE -CCIR 518 variant
- aro-E/ARO1000 Duplex
- ARO-N - ARO1000 Duplex variant
- ARO-E3-CCIR 519 variant
- ARO6-70-200 Bavd Simplex ARO
- POL-ARO- 100 band Duplex ARO
- TDM242/ARO-M2/M4-242-CCIR 242 with $1 / 2 / 4$ channels
- TDM342/RRO-M2/M4 - CCIR $342-2$ with $1 / 2 / 4$ channels

FEC-A - FIC 100A/FEC101
FEC-S-FEC1000 Simplex

- Sports info. - 300 Beud ASCII F7BC
- Hellscreriber-Synch./Asynch
- Sitor RAW - (Normal Sitor but - F7 BBN - 2 -channel FDM RTTY

COMING SOON: Packtor

All the above modes are preset with the most commonly seen baudrate setting and number of channels which can be easily changed at will whilst decoding. Multi-channel systems display ALL channels on screen at the same time. Split screen with one window continually displaying channel control signal status e.g. Idle Alphas/Beta/RQ's etc., along with all system parameter settings e.g. Unshift on space, Shift on Space, multiple carriage returns inhibit, auto receiver drift compensation, printer on, system sub-mode. Any transmitted error correction information is used to minimise received errors. Baudot and Sitor both react correctly to third shift signals (e.g. Cyrillic) to generate ungarbled text unlike some other decoders which get 'stuck' in figures mode!
Six Options are currently available extra to the above standard specification as follows: 1) Oscilloscope. Displays frequency against time. Split screen storage/real time. Great for tuning and analysis. £29. 2) Piccolo Mk 6. British multi-tone system that only we can decode with a PCI £59. 3) Ascii Storage. Save to disc any decoded ascii text for later processing. f29. 4) Coquelet - French multitone system, again only on offer from Hoka! f59. 5) 4 Special ARQ and FEC systems i.e. TORG-10/11, ROU-FEC/RUM-FEC, HC-ARQ (ICRC) and HNG-FEC. £69.6) Auto-classification. Why not let the PC tell YOU what the keying system is? $£ 59$.

NEW VERSION 4.00 JUST RELEASED - Now with improved user interface and even more features!
Please add $£ 5$ to the above prices for Carriage by fully insured First Class postal delivery (default mode).
Call or write for our comprehensive information leaflet - there is just not enough room here to tell you everything about Code3! Professional users - please ask about our new CODE30 DSP unit available soon! (Piccolo down to -12dB S/N!!). Prices start from $£ 1250$.

AMSTRAD PORTABLE PC'S FROM £149 (PPC1512SD). £179 (PPC15120D). £179 (PPC1640SD). $£ 209$ (PPC1640DD). MODEMS E30 EXTRA.NO MANUALS OR PSU.

HIGH POWER CAR SPEAKERS. Stereo par output 100 w each 40 hm impedance and consisting of $61 / 2^{\prime \prime}$ wooter $2^{\prime \prime}$ mid range and pair £30.00 Order ref 30P7R
MICROWAVE CONTROL PANEL. Mains operated, with touch swithes Complete with 4 digit display, digital ciock, and 2 relay outputs one for power and one for pulsed power (programmable) deal for all sorts of precision hmer applications etc. Now only $£ 4.00$ ref 4 P151
FBRE OPTIC CABLE. Stranded optical fibres sheathed in blach VVC Five thetre length 5700 ref 7 P299
2 V SOLAR CELL. 200 mA outputideal for tick
15P42R
PASSIVE INFRA-RED MOTION SENSOR
Complete with daylight sensor, adustable lights
deg coverage. Manual overide factlity com
plete with wall brackets, bulb holders etc Brand
new and guaranteed Now only $£ 19.00$ rel
19P29
ack of two PAR38 butbs for above unit $£ 1200$ ref 12 P 43 R
VIDEO SENDER UNIT Transmit both audio and video signa trom either a video camera, udeo secorder or computer to any standard TV set within a $100{ }^{\prime}$ rangel (tune TV to a spare channel) 12v DC op $£ 1500$ ref 15P39R Sutable mains adaptor $£ 500$ re FM $191 R$
FM TRANSMITTER housed in a standard working $\ddagger 3$ A adapter MINATURE RADIO TRANSCEIVER
walke takkies with a range of up to 2 kiometres. Units
measure $22 \times 52 \times 155 \mathrm{~mm}$ Complete with cases $£ 30.00$ ref 30P $12 R$
FM CORDLESS MICROPHONE.Small hand held unit with a 500^{\prime} range! 2 transmit power levels reqs PP3 ba 12 BAND COMMUNICATIONS RECEIVER. 9 sho
bands, FM, AM and LW DX/local switch, funing eye mains or battery Complete with shoulder strap
CAR STEREO AND FM RADIOLOw cost stereo system giving 5 watts per channel. Signal to noise ratio better than 45 db , wow and thitter less than 35% Neg earth $£ 19.00$ ref 19P30
LOW COST WALIKIE TALKIES.Pair of battery oper
aled units with a range of about 200° Our price $£ 800$ a
palr ret $8 P 50$ R
7 CHANNEL GRAPHIC EQUALIZERplus a 60 watt power ampl $20-21 \mathrm{KHZ} 48 \mathrm{R}$ 12-14vDC negative earth. Cased $£ 25$ NICAD BATTERIES. Brand new top quality $4 \times$ AA's $£ 4.00$ re 4 P44R. $2 \times$ C's $£ 4.00$ ref 4 P73R, $4 \times$ D's $£ 9.00$ ref 9P $12 R$. $1 \times$ PP3 £6.00 ref 6 P35R
TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ultimate equivalents book Latest editon $£ 20.00$ ref 20P32R
CABLE TIES. $142 \mathrm{~mm} \times 32 \mathrm{~mm}$ white nylon pack of $100 £ 300$ ref 3P104R. Bumper pack of 1.000 ties 514.00 rel 14P6R
GOT A CARAVAN OR BOAT?

NEW 80 PAGE FULL COLOUR LEISURE CATALOGUE
2,500 NEW LINES FREE WITH ORDER ON REQUEST OR SEND $£ 1.00$
GEIGER COUNTER KIT.Complete with tube PCB and all components to build a battery operated gesger counter $£ 39.00$ ref 39P1R
FM BUG KITNew design with PCB FM BUG KIT.New design with PCB embedded coil! Transmits to any FM radio 9 v battery req'd $£ 5.00$ ref 5 P 158 R
COMPOSITE VIDEO KITS. These convert composite video in COMPOSITE VIDEO KITS. These convert composite video intor
separate H sync, V sync and video $12 v D C$ E800 ref 8 P39R SINCLAIR C5 MOTORS 12v 29A (full load) $3300 \mathrm{rpm} 6^{\prime \prime} \times 4^{\prime \prime} 1 / 4$ Of shat New $£ 20.00$ ref 20Prer
As above but with fitted 4 to 1 inline teduction box (800 pm) and toothed nylon belt drive $\operatorname{cog} £ 40.00$ ref 40P8R
ELECTRONIC SPEED CONTROL KITior c5 motor PCB and all components to build a speed controller ($0-95 \%$ of speed) Uses puise width modulation $£ 1700$ ref 17P3R
SOLAR POWERED NHCAD CHARGER.Charges 4
AA nicad
$6 \mathrm{AP3R}$.
AGORN DATA RECORDER ALF503 Made for BBC computer but suitable for others. Incurdes mains adapter, leads and book VIDEO TAPES T
VIDEO TAPES. Three hour supenor quatity lapes made under ucence from the famous JVC company Pack of 5 lapes New low
price EA .00 ref 8 P 161 PHLLPS LASER. 2MW HELUM NEON LASER TUBE. BRAND NEW FULL SPEC 540.00 REF 40P10R. MAINS POWER SUPPLY KIT E20.00 REF 20P33R READY BUIL AND TESTED LASER IN ONE CASE $£ 75.00$ REF 75P4R. 12 TO 220 V INVERTER KITAs supplied it will hand le up to about 15w al 220 v but with a larger transtormerit wilt handie 80 watis. VERO EASI WIRE PROTOTYPING SYSTEMideal for desig ing progects on etc. Complete with tools, wire and reusable board New low bargatn price only $£ 2.00$ ref B2P 1
HIGH RESOLUTION 12" AMBER MONITOR12v 1.5A Hercules compatible (TTL input) new and cased $£ 22.00$ ref 22P2R VGA PAPER WHITE MONO monitors new and cased 240 v AC. $£ 59.00$ ref $59 \mathrm{P}_{4 \mathrm{R}}$
25 WATT SIEREO AMPLIFIER STK043. With the addition of a handiul of components you can build a 25 watt amplifier. $£ 400$ ref 4P69R (Circuit dia included).
BARGAIN NICADS AAA SIZE 200MAH 1.2V PACK OF E4.00 REF 4P92R, PACK OF 100 E30.00 REF 30P16R

FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm}$ £ 1.00 ref BD827R 12V 19A TRANSFORMER. Ex equipment but otherwise ok. Our price $£ 20.00$
ULTRASONIC ALARM SYSTEM. Once again in stock these units consist of a detector that plugs into a 13A socket in the area to protect The eceiver plugs into a 13A socket anywhere else on the same supply ideal for protecting garages, sheds etc. Complete system E2500 ret B25P1 additional detectors $£ 1100$ re! B1tP1 IBM AT KEYBOARDSBranón new 86 key keyboards $£ 15.00$ ref

AMSTRAD MP3
 UHF/VHF TV RECEIVER/CONVERTER CONVERTS COLOUR MONITOR INTO A TV!

£9.00

286 MOTHER BOARDS. Brand new and tested complete with echnical manual £49.00 ref A49P1
UNIVERSAL BATTERY CHARGER.Takes AA's, C's, D's and PP3 nicads Holds up to 5 batteries at once. New and cased, malns operated E 6.00 ret 6 P36F
IN CAR POWER SUPPLY. Plugs into agar socket and givas $3,4,5,6,7.5,9$ and $12 v$ outputs at 800 mA . Complete with universa spider plug $£ 5.00$ ref 5 P167R
RESISTOR PACK. 10×50 values (500 resistors) all $1 / 4$ watt 2% metal film $£ 500$ ref 5P170R
CAPACITOR PACK 1.100 assored non electrolytic capacitors 2.00 ref 2P286R

CAPACITOR PACK 2. 40 assorted electrolyuc capacitors $£ 2.00$ Of 2P287R
plug $£ 300$ rel 3P92R
Phg £300 ret 3P92R £8.00 ref 8P52R

AMSTRAD 16400 D base units
BRAND NEW AND CASED
TWO BUILT IN 5 1/4" DRIVES MOTHER BOARD WITH 640K MEMORY KEYBOARD AND MOUSE

MANUAL
OUR PRICE JUST

£79!!!!

 COPPER CLAD STRIP BOARD 17 " $\times 4$ " of 1 " pitch "vero" board £4.00 a sheat ref 4 P62R of 2 sheets for $£ 700$ rat 7 P22R 50 METRES OF MAIN CABLE 53002 CO 50 METRES OF MAINS CABLE $£ 3.002$ core black precut in 4 CORE SCREENED AUDIO CABLE 24 METRES 52.00 Precut into convenient 12 m lengths Fet 2P365R Precut into Convenient 12 m lengths Rei 2P365R$61 / 2 " 20$ WATT SPEAKER Built in tweeter 4 ohrm $\varsigma 500$ ref ${ }_{5 P}$ SPOSR
WINDUP SOLAR POWERED RADIO! FMAM radio takes techargeable batteries complete with hand charger and solar pare 14P200R

PC STYLE POWER SUPPLY Made by ALTEC 110 V or 240 V input +5@15A,+12@5A.-12@5A,-5@3A Fuly cased withtan, onior swich, ALARM PIR SENSORS Standard i2v alarm type sensor will internace to most alarm oaners 1600 II 16 P200
MODEMS FOR THREE POUNDS!
Fully cased UK modems designed for dial up system (PSTN) no data TELEPHONE HANDSETS
TELEPHONE HANDSETS
Bargain pack of
E3 00 ref 3 P146R
DATA RECORDERS
Customer returned mans battery units built in mic dear or Computer or genera pose audio use Pnce is $£ 400$ ref $4 \mathrm{P}, 00 \mathrm{R}$ SPECTRUM JOYSTICK INTERFACE
Plugs into 48 K Spactrum to provide a standard Atari type joystick port Our price $£ 400$ ref 4P101R
ATARI JOYSTICKS
OK RCH POWER SUPP IIES
Superbly made fully Casp LIES
Fused and shat casel Our price is $£ 400$ ret 4P103R

BULL ELECTRICAL 250 PORTL AND ROAD HOVE SUSSEX BN3 5QT TELEPHONE O273 203500

 MAIL ORDER TERMS: CASH PO OR CHEOUE WITHORDERPLUS E3:00 POSTPLUSVAT. PLEASE ALLOW 7 - TO DAYS FOR DELIVERY

SPEAKER WIRE
SPCAKER Wher 2 P79a DISC DRIVES
Customer returned units mixed capacities (up to 144 M) We have not sorted these so you pust get the next one on the shelf Price is only IICROSCOPE 1200 X MAGNIFICATION
Brand new complete with shrimp hatchery, shrimps, prepared slides, inght etc. E29 00 ret J29P 4
LIGHT ALARM SYSTEM
Small cased alarms that monitor a narrow beam area for sudden changes in light level Complete with siren that sounds for a preset tme when unit is thiggered $£ 7.00$ ref J7P1
JOYBALLLS
Back in stock popular Commodore'Atan equiv freplace standard joystick) \&5 00 ref J5P8
720 K 3 1/2' DISC DRIVE
20K 3 1/2' DISC DRIVE
Brand new units made by JVC complete with tech inio HSt $£ 19$ 00! CAR BATTERY CHARGER
Brand new units comp
CUSTOMER RETURNED SPECTRUM +2
Complete but soid as seen so may noed attention $£ 2500$ ref J25P1 r 2 tor E 4000 ref J4CP4
CUSTOMER RETURNED SPECTRUM +3
Complete but sold as seen so may need attention £2500 ref J25P2 HEX KEYBOARDS
HEX KEYBOARDS
Brand new units approx $5^{\prime \prime} \times 3^{\prime \prime}$ only $£ 1.00$ each ref CD42R
PRONECT BOX
$512 \times 31 / 2^{\prime \prime} \times 1^{\prime \prime}$ black ABS w
SCART TO SCART LEADS
Bargain price leads at 2 for $£ 3.00$ ret 3P147R
SCART TO D TYPE LEADS
Standard Scart on one end. Hi density D type on the orter. Pack of ten leads only $£ 7.00$ ref 7P2R
OZONE FRIENDL Y LATEX
$250 \mathrm{~m} /$ bottie of hquid nubber sets in 2 hours idealfor mounting PCB's fixing wires etc $£ 2.00$ each ref 2P379R
OUICK SHOTS
OUICK SHOTS
Standard Atari comparble hand controller (same as joysticks) ou Phce is 2 for $£ 2.00$ ref 2P380R
VIEWDATA SYSTEMS
VIEWDATA SYSTEMS
Brand new units made by TANDA TA complete with $1200 / 75$ built in modem infa red remote controlled qwerty keyboard BT appproved
Prestel compatible Centronicspnnter port RGB colour and composPrestel compatible Centronicspnnter port RGB colour and compos supply and fully cased our pnce is only $£ 20.00$ rel 20P1R

AC STEPDOWN CONVERTOR

Cased units that convert 240 v to $110 \mathrm{v} 3^{\prime \prime} \times 2^{\prime \prime}$ mith mains input lead and 2 pin A merican output socket (suitable for resistive loads only) our price $£ 2.00$ ref 2P381R

CURLY CABLE

Extends from $8^{\prime \prime}$ to 6 feet! D connector on one end, spade connectors on the other ideal for joysticks etc (6 core) $£ 1.00$ each ref CD44R COMPUTER JOYSTICK BARGAIN
Pack of 2 joysticks only $£ 200$ ret 2P382R
BUGGGI TAPE RECORDER
BUGGING TAPE RECORDER
Small hand held cassette recorders that only operate when there is sound then turn ofl 6 seconds after so you could leave it in a room al
day and ust record any thing that wassaid Price $£ 20.00$ ref 20 P 3 R NEW SOLAR ENERGY KIT Contains 8 solar cells, motor, tools tan etc plus educationaibo
Ideal for the budding enthusiast 1 Price is $£ 12.00$ set 12P2R
286 AT PC
286 MOTHER BOARD WITH 640K RAM FULL SIZE METAL CASE, TECHNICAL MANUAL, KEYBOARD AND POWER SUP PLY 5139 REF 139 P ((no $1 / 0$ cards or drives included) Some metal work req-d phone for detalis.

35MM CAMERAS Customer retur

28 mm lens 2 for EB .00 ret 8 P 200
STEAM ENGINE Standard Mamod

ef 30 P 200

TALKING CLOCK
LCD display, alarm, battery operated
push of a button and when the
alarm is due The siarm is switchable

HANDHELD TONE DIALLERS

Small units that are designed to hoid over the mouth piece of a telephone to send MF dialing tones. Ideal for the remote control of answer machines $£ 500$ red 5P209
AMAZING TALKING COINBOX!
Fully programmable taking, lockable coinbox BT approved, retal price is $£ 79$ ours is just $£ 29!$ ref $J 29 P 2$

ANSWER PHONES $\{15$

Customer returned units mith 2 faults one we tell you how so fix the other you do your self! E 18 ref J 18 P 2 or 4 for E 60 ref J60P3 BT approved (retail pnce £79.95" each)
Complete cased brand new drives with cattidge and sotware 10 times faster than tape machines works with any Commodore 64 setup The orginal price for these was $£ 49.00$ but we can offer them 10 you at only $£ 2500!$ Ref 25P1R
90 WATT MAINS MOTORS Ex equipment but ok Good general pupose unit $£ 900$ ref FgP.
HH FI SPEAKER
HI FI SPEAKER BARGAIN Onginally made for TV sets they consist of a 4" "0 watt 4R speaker and a 2"140R iweeter. If you want
two of each plus 2 of our crossovers you can have the lot for £5 00 two of each
tef F5P2
VIDEO TAPES E180 AFTY TAPES FOR $£ 70.00$ REF F70P1
360K $51 / 4^{\prime \prime}$ Brand new drives white front $£ 20.00$ Ret F20P1 EMERGENCY LIGHTING SYSTEM
Fully cased complete with 2 adjustable flood ights All you noed is a standard 6v lead acid battery Our price is رust $£ 10$ ref J10P29 AMSTRAD 464 COMPUTERS
Customer returned units complete with a monitor for fust $£ 35$! Thase units are sold as faulty and are not returnable

IN SUSSEX? CALL IN AND SEE US!

Applying the heavy boot to eprom bugs

Trace and emulation, optional eprom programmer and wide device range: if you need it all, Martin Cummings shows how Seeker could be what you are missing.

Trace Technology describes Seeker as a universal emulation system for 8 -bit microprocessors. In fact it is a curious combination of eprom emulator and logic analyser, currently supporting over 20 processors.
Eprom emulation allows replacement of the target board's eprom with Seeker's memory containing the program. Once in, modification is much easier than re-burning an eprom. In addition, when the program is running, Seeker monitors 40 bits of information - including data and address buses - and will produce a trace of this information leading up to or surrounding an event.
Full control over the program and processor control signals means it is also possible to dump or modify memory, i/o locations or to go inside the processor and have access to the contents of all internal registers. The result is full emulation, even where the target has a soldered in processor chip. All that is needed is a socketed cprom and access to a few other signals somewhere on the board.

Intelligent hardware

Seeker is a box of circuitry - mainly memory and logic although its $Z 8$ processor makes it intelligent in its own right. Main connection to the target board is a 28 -pin header on the end of about 450 mm of flat cable that replaces the eprom. The header is supplied plugged into a sacrificial socket so that when the incevitable happens and pins break off, only the socket needs to be replaced. Of a further 26 connections on another flat cable, some interface to the processor control signals, others to any address bits that do not exist at the eprom socket and up to eight external bits can monitor, for example. i/o signals.
The package comes well equipped with miniature probes for each individual signal, so connecting them, though laborious, is made as painless as possible. Trace will also supply adaptors configured for particular microprocessors with all the connections taken to a header that plugs into the processor socket if one is fitted. The adaptors are only small PCBs to assist connection, and have no active circuitry and so are relatively cheap.
An IBM-compatible acts as a tile server and user interface. and connects to it via a serial port - almost any PC with a serial port will suffice. A mains adaptor is supplied to pro-

Help and manuals

On-screen help is pro sided. Often a message explains what to do next and the pull down help menu is always available - giving brief details about most commands and functions and almost as helpful as the manual.

The manual itself is about 40 double-sided A5 ring bound pages, combin ng text with p enty ot screen dumps and associated explanations. Although a little erse in places it cove's all the commands and, in jeneral, gives sufficient information for an engineer to ncrease speed quickl.
vide the 9 V needed by the unit. Unfortunately a serial cable to the computer is not supplied, though the manual gives clear instructions for the connections to be made for either 25 or 9 pin ports and only a three wire connection is needed. In general, connections are straightforward and the manual

Taking a look at the address symbols loaded into Seeher.

PC ENGINEERING

Viewing and modifying code.

The basis of this is four conligurable events, thee 16 -bit counters and some logie that connects them to the break peint and trace memory enable. The contiguration and logic is presented graphically on screen (see picture) and as such is very casy to understand and use.

Events are delined by the pattern presented on the 4 o-bit trace imputs - that means any combination of address, data, control and external bits. Unigue values can be detined or wildcards used for bits or nibbles. In addition, And/Or logical' operators can be used and ranges of numbers included to create a complex defintion of the event or events to be delected. For example an event could be as simple as "event 1 if address $=10 \mathrm{CD}$ " or more complex such as "event \uparrow if address $=10 \mathrm{CD}$ \& data $=00-0 \mathrm{~A}$ \& control $=m w^{*}$.
Several arrangements of the logic connecting the four events to the break point and trace bulfer are possible. The logic is not lully conligurable by the user who can merely select one of the four configurations for events to cause a break and one of the six definitions of trace enable. But the predefined combinations are fairly complex in their own right, providing all sorts of possibitities and it is only the most extreme of circumstances that will not be satisfied by one of them. An elapsed time counter cim be gated on and off by wo of the events.

One example of a configumation would be a break being lorced if either event one or four oceurs after esent two but before event three. The clapsed time counter would acenmutate time between event 1 wo and three, and the trace buffers would store all cyeles. At any lime. on demand, a slatus window can be displayed giving the current counter values, elapsed time and whether the target is running or not.

The trace buffer is 2048 by 40 bits. Each cycle gives values for data, address. the eaternal signals and the type of eycle (reat/write/instruction fetch etc.) together with an identity number for the cycle within the race butfer. Numbers. except the eycle number, are given in hex and although the display is slighty configurable it seems a shame that values in binary camnot be displayed.

Ploughing through the trace buffer can be mind numbing. Encouragingly, the bulfer can be searched for an event (defined as above). Supplied as part of the sof ware is a disassembler for each supported processor. so the race bulfer can be converted from hex numbers back into ansembler. Where an ansembler or compile provides a symbol table, it can be loaded, and symbols automatically appear in the disassembled code as labels against the appropriate addresses. Several symbol file formats are supported - desperate users can even type in their own. Symbols come in useful elsewhere because they can be used in place of address values when constructing event delinitions.

Printing

Tucked away in the latter pages of the manual is a rather curious comimand that captures the sereen to a text file. It actually deals with a lithe more than the sereen, so that if for example you have just scrolled through the trace buffer. then the tile will capture everything viewed, not just the current sereen. The file is given a title header with a date and lime stamp which helps to identily the most recent if several dumps have been made as the debugging progresses.
The manual never explains quite what should he done with this lile so I used my initiative and copied it to the printer: it would seem that this is the only way to get a print.

But it does mean that the trace file can be viewed and edited before printing although I am mot convinced of the need for this. Unusmally, there is no direct print facility.

Weighing up the benefits

The overall impression of Secker is of a device with some powerful features that could be invaluable in tracking down

5YSTEM DETAILS

Processors supported:

780	8031	6800	58 HC 11	63 C 3	28671
28400	80C31	6802	58 HC 811	63 C 9	28681
284C00	8051	¢803		$63 \mathrm{C9E}$	28681
284C01	80 C 51	E805E		63C3R	Z86C91
284C02	8032	6809		63C3X	Z8800
マ84C50	80 C 32	E809E		63C3Y	Z8801
284C011	8052				Z8802
284C013	80C52				
284C015	80C154				
	80 C 51 FA				
	80 C 552				
	85 C 154				

Target board requirements:
Target processor must be supported
Jne or more eprom suckets
Ancess to control signals
Mininum bus cycle not less than 280ns
Target code formats supported:
Sinary
ntel hexExtended Inte I hex
motorola S19
motornla S28
motorula S37
Tektronix hex
Extenced Tektronix hex
Eproms supported:
$\begin{array}{llll}2516 & 2716 & 2532 & 2564 \\ 2764 & 27128 & 17256 & 27512\end{array}$
271282725627512
Symbol file formats supported:
IAR SYMBOLIC
AVOCET SYM
TRACE
HITECH MAP
HITECH SYM
2500AD MAP
ADDRESS SYMBOL
SYMBOL ADIJRESS
INTEI. M51

Configuring an
 event.

PC ENGINEERING

Seeker can single-step, showing the processor status at each step.
the more elusive bugs infesting real-time microcontrollers. The product is wrapped up in a competent but unglamorous package together with software and a user interface that has clearly been written by engineers, for engineers - without the scrutiny of a marketing man. Perhaps we have all been spoilt by seductive windows, icons and user-machine interfaces that have taken many man years to develop.
What marks the package out from the crowd is the number of different microprocessor families it can handle at its price.

While this is undoubtedly an advantage I wonder in practice how many companies and engineers need to chop and change devices that much. Most organisations stick with one device, the investment in learning and software a significant disincentive to quick change. Maybe Seeker goes a little way to reducing that disincentive.

If the trace facilities appeal, then you will probably be comparing Seeker with a logic analyser. If it is eprom emulation that is needed then this can be achieved at much lower cost, and to be fair there arc other Trace Technology products that fill that niche.

However for users who need both, together with the option of an eprom programmer and the ability to deal with a wide variety of eight bit devices, then Seeker is worth a second look.

SUPPLIER DETAILS

Trace Technology, Unit 4, Shuttleworth Road, Elms Industrial Estate, Bedford MK41 OEP, UK.Tel: 0234 266455
$£ 1950+$ VAT

TELEVISION TRANSMITTERS AND TRANSPOSERS

* High stability crystal locked output
\star Phase lock loop and saw filter technology
$\star 5 \mathrm{~W}, 10 \mathrm{~W}, 15 \mathrm{~W}$ and 30 W systems also available
\star Transposers can up or down convert in bands I, III, IV or V.

RESEARCH COMMUNICATIONS LTD

Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG, UK Tel: (UK) 0303893631 (Overseas) 44303893631
\star Up to 50 Watts RF output
\star Studio, Satellite or RF input
\star Single channel, Bands I, III, IV or V
\star Pal System B,G,H or I
\star Automatic Output Protection
\star Output Power Meter
\star Integral forced air cooling
\star Integral power supply
\star Dimensions 4 Units high 19" panel
\star Prices from $£ 2,650$ (5W) to £4,950 (50W) ex-works \& ex-VAT

Developing the TMS320C10 for $£ 50$?

Signal Research's low cost and easy-to-use DSP development package is a must for any designer working with the first generation of
 TI DSP devices says Alan Brown.

Cheapness and simple architecture have turned the TMS320C/O and its eprom version from Texas Instruments, into a hugely popular digital signal processor. It was one of the fïrst DSPs and is now used in products ranging from small scale control systems to adaptive fillters for telecoms systems. Untortunately up to now suntable dos sofiware development tools have been rather expensive. But a complete sofiware development package from Signals Research of Edinburgh, weighing in at around $£^{5} 50$, could change that.
SR s package consists of a cross assembler, a linker and a software simulator for either the $C 10$ or the $E / 5$. Run it on a PC and it represents a complete software development facility, remarkahly straightforward to use.

Assembling and linking

The cross assembler is a normal two pass utility which recognises the assembler directives found in Tl's own prod-

Simulator display has a major part given over to the code being executed. The current line of execution is highlighted.

Plotting input and output data files on the simulator. Up to four graphical outputs or inputs can be plotteduseful when checking if the program is operating as expected.

Colours can be configured.
uct - differences are minor. The cross assembler is also able to produce the relocatable code useful in large program creation based on modular design. As expected, two output files are produced, the assembly listings (.LST) and an objeci module (.OBJ).
The linker on the other hand operates differently to the Tl product. No command file is required as the object modules for linking are entered ino the command line in the order of linking. The three output liles are a map file (.mar) containing the address allocations for each object module; code file

SYSTEM REQUIREMENTS

PC with hard disc
MS-dos 3.x
VGA/EGA or Hercules graphics
Mouse (optional)
Suitable text editor

SUPPLIER
 DETAILS

$£ 50$. Signals
Research Ltd, 113/9 Bellevue Road, Edinburgh, EH7 4DG.
(.COD) which is the executable code. and a symbol file (.SYM) for use by the simulator. The linker needs the normal information relating to data and program offset values.
The only facility missing from the package is a dedicated lext editor - which would be especially useful if it had an attached help file specific io the product. In essence the help file would consist of the user manual on disc. The mannal itself is reasonably informative. gives information relating to the assembly language instructions for the TMS320C $/ 0$ and also provides detailed information on the operation of the simulator. But it would be more atcesssible as a help file where a search could be performed on a highlighted word.

Simulated treats

The package includes a well designed soltware simulator - a treat to use - that works with either VGA/EGA or on a Hercules monitor using the supplied Herc utility.

After loading an output file from the linker into the simulator, the symber option will carry the symbols from the source file which appear in the simulator's main memory window. A major part of the display is given over to the code being executed and the current line of execution is highlighted. When examining memory this area is given over to the memory display.
The simulator can be monse driven, with an attractive feature being the array of drop-down menus at the top of the screen - extra commands are available at the base of the screen. The two regions on the screen used for error emending purposes are a parameter watch facility and a trace option.

Simulating input data through any of the porss is achieved by attaching disc files directly to the ports - remarkably casy to set up from an option in the fo menu. Input and output data tiles can be in any format (hex, decimal ete), or the graphics facility allows data to be plotted as it comes out of a port(s).
Up to four graphical ouputs or inputs can be plotted in an appealng facility that proves useful when checking if the program is operating as expected. Contents of all the processor registers are shown by the simulator which comes with al variety of operating options: single stepping, break points, background processing to name just a tew.
For the colour conscious the display can be changed and the conliguration of the simulator can also be saved.
My only reservation about the simutator is its apparent inability to simulate the effect of either the BlO or INT pins going low. These pins are used for polling and interrupt purposes respectively and their usage is quite important in the design of a TMS320C10 system.

Must have one

Any designer working with the first generation of TI DSP devices should have the TMS320/X DSP development package. Ease of use, low cost and completeness as a soltware development package make it a beguiling product. The processor, with its uncluttered architecture, is a good teaching tool and the package will interest educational institutions making the most of a limited budget.
TMS.320C10 still has a lot of mileage left in it and this package will further its appeal especially for the user taking a first tentalive step into the world of DSP.

CS-4000 Series

Accuracy is a function of quality. So it's reassuring to know that all Kenwood products represent the highest standards of quality design and manufacture. Just as important, is the excellent value for money they offer. Now you can have the very best quality at a very affordable price. Here's a few examples from the extensive Kenwood range.

CS-5000 Series
The CS-4000 Series is a
range of low cost 20/35 MHz dual trace oscilloscopes with comprehensive triggering features, and like all Kenwood 'scopes, comes complete with probes. Here excellent value starts at £295.

The CS-5000 Series offers bandwidths from 40 MHz to 150 MHz in high performance, real time units that feature cursor readout, B sweeps, and multi-channel or standard width range models. Easily affordable, at prices starting at $£ 570$. The DCS-9300 Series of multi-channel, digital storage oscilloscopes have real-time capability, cursor readout, large memories and full GP-IB control. Excellent value from $£ 2,355$ Kenwood's affordable quality also extends beyond oscilloscopes to power supplies, audio and video instruments, multimeters, counters, RF generators and millivolt meters.

KENWOOD
TEST \& MEASURING INST ZUMENTS

IT'S A DIRTY JOB but now a PC can do it

> Take the $P C_{e}$ bus and a handful of plug-in cards and what have you got? A powerful machine running PC software but not frightened of getting its digits dirty, says Chris Nabavi*.

Walk round almost any industrial plant and you will see PCs being used for plant monitoring, data gathering and process control. In effect, the ubiquitous PC is taking over more and more tasks for which it was not originally intended.

The attraction of the PC is its widespread acceptance. If a system can be made "PC compatible", its design becomes easier to implement and maintain. Good quality compilers and other software development tools can also be obtained at modest prices and the system can be upgraded and modified much more easily.
But a disadvantage of using a $P C$ in an industrial environment is that it has been designed as a desktop unit. In particular, the card format is unsuitable for three reasons:

- The mother board is often difficult to access and ISA expansion cards come in different lengths, relying on the connector as the main means of mechanical support. This makes them unable to withstand vibration.
- Long thin shape of the standard ISA expansion cards with the bus connectors on the long edge makes them awkward to fit in an industrial housing such as a rack.
- Direct connector (ie one that uses gold plated PCB fingers) is not as reliable as a two part connector of the type normally specified for industrial environments.

Over the last few years, some manufacturers have attempted to follow a middle road, offering a measure of PC compatibility, but remaining suitable for industrial applications. Several companies offer STE cards which claim to be "PC

[^2]

The ${P C_{e}}$ bus allows all the software options and convenience that make PCs such a popular choice, while forming the basis for machines much more suited to the industrial environment.

Bus definition

PC_{e} bus signals are electrically and functionally identical to those of the ISA standard. The 62 pin connector corresponds to the 8 -bit connector in the older XT style PCs, and a 36 pin auxiliary connector corresponds with the upper data byte and other additions used in 16-bit PC-ATs. To map the 98 pin ISA bus onto the 96 pin DIN41612 connector of the PC_{e} bus, two signals have to be sacrificed; these are one of the triplicated +5 V supply pins and the -5 V supply.
Since modern chips tend to use less power than when the PC-XT bus was first defined, the loss of one of the three +5 V supply rails imposes no real penalty. The cards are also smaller, and the connector is better, so the remaining two +5 V lines are quite adequate. Loss of the -5 V rail is also not important as it is rarely used on modern cards and can be easily generated from -12 V on any card that needs it. For example, Sherwood Data Systems has designed a PC_{e}-to-ISA card adapter to allow ISA cards to be used in a P_{e} system (mainly for development purposes). This adapter card has a -5 V regulator on it so that the full ISA bus specification can be met.

Mapping of the ISA signals onto the 96 pin DIN connector was quite cleverly thought out by the bus originators. Pin out of most PC chip sets has been designed to allow routing to
the ISA bus without the need for numerous cross-overs, simplifying board layout and conserving space. So the $P C_{e}$ bus follows the same pin sequence as far as practical. The main 62 pin XT connector is mapped on to the outer two rows of the $\mathrm{PC}_{\mathrm{e}} 96$ pin connector, and the romaining signals are mainly on the inner row. This scheme allows many cards to be designed with the two row 64 pin version of the DIN41612 connector and a simple XT style system can be built using 64 pin connectors with a consequent saving in cost and complexity. Since the 64 pin and the 96 pin connectors are compatible, XT and AT versions of PC_{e} cards can be mixed in a system, just as in a conventional $P C$
The $P C_{e}$ bus signals are shown in Table 1. Note that a few of the signals are sometimes known by different names. For example on $X T$ systems IRQ9 is IRQ2 and the signal -REFRESH is provided by -DACKO. The AT signal OW is also known as -SRDY or ENDXFR, and CLK is sometimes called BCLK. The signal timing and electrical drive specifications are all identical to those on the standard ISA bus.
Anyone wishing to design PC_{e} cards should refer to one of the many ISA reference books or to the IEEE P996 standard itself for complete descriptions of the signals (see bibliography).
compatible". But the problem with such eompromises is that it is diffieult, if not impossible, to obtain a sufficient level of compatibility to run a wide range of standard PC software.
Modem PC programs tend to make heavy use ol interrupts and often assume that certain hardware resources are available in precisely defined ways - particularly in graphies and communications software. Older, more general buses such as STE and VME were not developed with this in mind and impose restrictions on system design making it impossible to obtain proper PC compatibility

Available PC_{e} products

$P C_{e}$ cards available include $8086,286,3865 X$ and $486 S 1 C$ based CPUs, multifunction i/o cards, flat panel and CRT based VGA display boards, optoisolated industrial interfaces, prototyping cards, CPS (satellite positioning) cards and touch screen interfaces.
To build the equivalent of a standard PC-AT, first designs on the market needed three cards: a processor card; a display card and an i / o card. Processor cards contain the microprocessor, bios rom, ram, keyboard controller and system- and bus-controller chips.
But a more recent design, based on the pcChip, has a complete PC-XT on a single Eurocard. The level of integration is now so high that an LCD/CRT display driver, three serial ports, a parallel port, rom and ram discs, real time and time of day clocks, keyboard interface and loudspeaker can all be included on one Eurocard along with the CPU, main memory and bios eprom. The card has a $P C_{e}$ bus interface on it, though it is often used by itself. By adding small riser cards, other options such as conventional disks or a PCMCIA interface can be added.
Industrial applications may benefit from one of the special cards designed for real world interfacing. These include high- and low-voltage opto-isolated sensing and switching for industrial plant control. A variety of back-planes and different types of card-frames and racking systems are also available.

Table 1. PC_{e} Bus signal pin out

Pin	Row a	Row b -MASTER	Row c -IOCHCHK
1	OVL	RSTDRV	SD15

One other approach is still to use standard PC cards, hut provide a beter mechanical framework so that compatibili1) is assured within an industrial housing. Unfortunately such "industrial" PCs tend to be both expensive and unwieldy.

Enter the $\mathrm{PC}_{\mathbf{e}}$ bus

But a simple solution now availatle - already being adopted in the UK and Germany - is to use the standard ISA signals as found on all standard PC cards, and map them ono a high quality: 96 pin DIN41612 male connector. The card itself is the popular single Eurocard which measures $100 \times 160 \mathrm{~mm}$. In the UK. the bus is known as the $P C_{6}$, bus (in Gemany it is also called the VG96 hus, though striculy speaking, this is simply a name for the 96 pin connector). Unlike the standard PC based on a mother-board with plug-in expansion cards. the PC_{6} system uses separate cards for ath the electronies and a back-plane without any active eomponents.

The bus detinition is an informal one, but since the signals are the same as those of the ISA standard, adopted as the IEEE Py96 bus, all the signal meanings, timings and other characteristics are fully and formally defined. Ensuring a design conforms 10 the standard is also straightforward since the semiconductor industry now offers a large range of PC chip sels. designed for use in conventional PCs, but ideal for PC_{e} bus systems. Such chip sets handle bus interfacing and result in a compact. low chip-count design. Without them. obtaining the required level of integration on a single Furocard would be impossible.

The faet that VLSI PC chip sets developed for the high volume desktop PC market can be used. allows PC, systems to achieve a high level of perlormance and functionality but at a price normally associated with consumer products.

How compatible?

PC compatibility means different things to different people. Obviously, PC_{e} cards are not compatible in the sense that they cannot be plugged into a conventional PC. But for most users the important question is whether software developed for a standard desklop PC will run without change
On this aspect. experience has been built up on PC_{e} bus based systems with a wide selection of common PC software, including compilers, word processors. cad software. Even more importanly, the bus handles the highly critical packages Deskview and Windows which run the processors in virtual mode and involve memory management.
Sofiware perlorms as expected. But then it should, as the cards use standard PC circuits, and the card shape and connector type cannot allect operation of the software. PC_{e} systems have been run with hoth Microsoft MS-dos and Digital Research DR-dos

Look - no disks

Conventional PCs use hard and floppy disks. But for industrial applications, rom-hased systems with no moving parts are oftien more atractive, and so processor cards able to incorporate applications software in an extra large bios rom in the form of a rom disc have been designed. The rom acts just like an ordinary disk (except that it is read-only), and a suitable autoexec tile will prompt the system to load and run applications antomatically on power up, allowing the sustem to be dedicated to a particular task or set of tasks. Unless required by applications software, there is no need for a heyboard or display since the bios can he set to ignore errors generated during the power on system lest (posi) which would otherwise occur. Battery-hacked ram dishs can be used when a solid state writable medium is recuired.

Standard future

Reaction of users to the PC_{e} bus and the cards developed so far has been favourable. Eurocards have always been popu lar and are well supported by rack and case manufacturers and suppliers of ancillary equipment such as power supplies.
Systems can be made very small. with just a single card. or can be designed for expansion up to 21 cards in a full 19 in rack.

In Germany the bus standard has been adopted by several large manulacturing companies and is now spreading to othcr countries. As yet, there does not seem to be a move to have the PC_{e} bus adopted formally. But many of the existing standards were used in indusiry for some time hefore being formalised. In the case of the PC_{e} hus, the fact that it is simply an existing formal standard on a different connector and card format should mean that there will he none of the usual misunderstandings and inconsistencies normally experienced with informal bus standards.

Bibliography

1. IEEE Inc. "Personal Computer Bus Standard P996", 1990 2. E. Solari. "AT Bus Design". Annahook's 1990
2. Choisser and Foster. "The XT-AT Handbook", Annahooks 1989-91

A 386SX based $P C_{e}$ processor card from Sherwood
Data Systems.

EUROASIG-EDAE 93-22 to 25 FEBRUARY 1998 GNIT PARIS - IA DEFENSE

When ASICs can be seen, intelligence can be felt.

The 6th EUROASIC in 1993 will bring together all of the specific circuir designers and manufacturers, CAD tool suppliers, service companies, integrators, and designers/manufacturers of cards.

The 4th EDAC (European Design Automation Conference) is joining forces with this exhibit on. More than 500 participants from 25 countries will be corring to this event orcanized by European ASIC professionals in co-operation with the IEEE (Institute of Electrical and Electronic Engineers) and other European scientific instiktions.

In the current climate of European mergers, the association of a leading exhibition with an internationally-renowned conference will make EUROASIC-EDAC 93 the top European exhibiticn-conference for ASICs.

For all information, contact

SEPIC EUROASIC-EDAC 93 , Communications Dapartmert,
1, rue du Parc F-92593 Levallois-Perret Cedex
Tel. 33 (1) 49685465 - Fax 33 (1) 49685466

EURQ9 ASIC

Exhibition 23-25 February 1893

Conference 22-25 February 1893

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Marconi TF2008-AM-FM signal generator - Also sweeper - $10 \mathrm{Kc} / \mathrm{s}-510 \mathrm{Mc} / \mathrm{s}$ - from £350

 ested to $£ 500$ as new with manual - probe kit in wooden carrying boxHP Frequency comb generator type 8406A - £400
HP Samplling Voltmeter (Broadband) type 3406A - $£ 200$
HP Vector Voltmeter type $8405 \mathrm{~A}-\$ 400$ to $£ 600$-old or new colour
HP Syntheslser/signal generator type $8672 \mathrm{~A}-2$ to $18 \mathrm{GHz} £ 4000$
HP Osclllographlc recorder type 7404A-4 track- $£ 350$
HP Plotter rype $9872 \mathrm{~B}-4$ pen - $£ 300$
HP Sweep Osclllators type $8690 \mathrm{~A} \& \mathrm{~B}+$ plug-ins from 10 Ma 's to 18 GHz also $18-40 \mathrm{GHz}$. POR HP Network Analy ser type $8407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 500-£ 1000$ HP Down Converter type $117710 \mathrm{~B}-.01-11 \mathrm{Mc} / \mathrm{s}-£ 450$
HP Pulse Modulator type 11720A-2-18
HP Modulator type $8403 \mathrm{~A}-£ 100-$ - 200 .
HP PIn Modulators tor above-many different frequencies - $£ 15$ HP Counter type $5342 \mathrm{~A}-18 \mathrm{GHz}-$ LED readout $-£ 1500$ HP SIgnal Generator type 8640B - Opt001 + 003-.5-512 MC/'s AM/FM - 11000 HP Amplifier type 8447A-1-400MC/S $£ 200-$ HP8447F. 1-1300 MC/s $£ 400$ HP Frequency Counter type $5340 \mathrm{~A}-18 \mathrm{GHz} £ 1000$ - rear output $£ 800$ HP $8410-\mathrm{A}$ - B-C Network Analyser 110 MC /s to 12 GHz or 18 GHz -plus most other units an displays used in this set-up - 8411A-8412-84+3-8414-8418-8740-8741-8742-8743 8746-8650. From $£ 1000$
HP Signal Generator type $8660 \mathrm{C}-1-2600 \mathrm{Mc} / \mathrm{s}$. AM. FM - $£ 3000.1300 \mathrm{Mc} / \mathrm{s} £ 2000$ HP Signal Generator type 8656A-0.1-990 M//s. AM/FM- £2000.
HP 8699 B Sweep PI-0.1-4GHz £750-HP8690B Maintrame $£ 250$
Raca/Dana 9301 A-9302 RF Millivoltmeter - $1.5-2 \mathrm{ZHz}$ - $£ 250-£ 400$
Racal/Dana Counters 9915 M - 9916 - 9917 - 9921 - $£ 150$ to $£ 450$. Fitted FX standards
Racal/Dana Modulatlon Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}$ - $£ 250$
Racal - SG Brown Comprehensive Headset Tester (with artificial head) Z1A200/1 - £350.
Marcont A F P Wid Meter type 3700 - 150
Marconi RCL Bridge type IF £250-£350. $400 \mathrm{Mc} /$ s to 18 GHz .
Marconi TF 1245 Circuit magnificaton meter +1246 \& 1247 Oscillators $-£ 100-$ - 300 Marconl microwave 6600 A sweep osc., maintrame with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$. 40 GHz - $£ 1000$ or Pl only $£ 600$
Marconi distortion mater type TF2331- $£ 150$, TF2331A - $£ 200$
Mlcrowave Systems MOS $/ 3600$ M 1 crowave frequency stabilizer - 1 GHz 10 4 i (GHz $£ 1 \mathrm{k}$ Tekrronlx Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12 S1-S2-S6-S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508-DO501 WR501-DM501A-FG501A - TG501-PG502 -DC505A - FG504 - P.O.R.
Alltech Stoddart recelver type $17 / 27 \mathrm{~A}-01-32 \mathrm{Mc} / \mathrm{s}-£ 2500$
Alltech Stoddart recelver type $37 / 57-30 \cdot 1000 \mathrm{Mc} / \mathrm{s}-£ 2500$
Alttech Stoddart receiver type NM65T-1 to 10 GHz - $£ 1500$
Gould $J 3$ B Test osclllator + manuai- $£ 200$.
Infra-red Binoculars in fibre-glass carrying case - tested - $£ 100$. Infra-red AFV sights $£ 100$ ACL Field intensity meter recesiver type SR-209-6. Plugs-ins from $5 \mathrm{Mc} / \mathrm{s}$ to 4 GHz - P.OR Tektronlx 491 spectrum analyser- .5 GHz -40GHz-as new - $£ 1000$ - TM501-TM503

```
TM506-7904-7834-7104
```

Knotter
Alltech 136 Precislon test $\mathrm{RX}+13505$ head $2-4 \mathrm{GHz}-£ 350$.
SE Lab Eight Four - FM 4 Channel recorder - $£ 200$
Alltech 757 Spectrum Analyser - 00122 GHz - Digital Storage + Readout $-£ 3000$ Dranetz 606 Power line disturbance analyser - $£ 250$.
Precislon Anerold barometers- $900 \cdot 1050 \mathrm{Mb}$ - mech anical digit readout with; eiectronic indicato - battery powered. Housed in polished wood carrying box-tested - $£ 100-£ 200-£ 250.1,2$ or 3 HP141T SPECTRUM ANALYSERS - ALL NEW COLOURS TESTED WITH OPERATING MANUAL
HP $14 \mathrm{TT}+8552 \mathrm{~A}$ or B IF-8553B RF-1kHz-110 MC/s-A IF- $£ 1300$ or BIF- $£ 1400$ HP $141 \mathrm{~T}+8552 \mathrm{~A}$ or BIF - $85548 \mathrm{RF}-100 \mathrm{kHz}$ - $1250 \mathrm{MC} / \mathrm{s}-\mathrm{A} \mathrm{IF}-£ 1400$ or BIF- $£ 1500$. HP $141 \mathrm{~T}+8552 \mathrm{~A}$ or B IF- 8555 A RF-10 MC/s-18GHZ-A IF - $£ 2400$ or B IF- $£ 2500$. HP141T+8552A or B IF-8556A RF - 20Hz-300kHz-A IF-A IF- $£ 1200$ or B IF - $£ 1300$ HP8443A tracking generator/counter $-100 \mathrm{kHz}-110 \mathrm{MC} / \mathrm{s}-£ 500$ HP84458 tracking pre-selector DC- 18 GHz - $£ 750$
HP ANZ UNITS AVAILABLE SEPARATELY - NEW COLOURS - TESTED.
HP 141 T mantrame - $£ 550-8552 \mathrm{~A}$ IF - $£ 450-8552 \mathrm{BIF}-5550-85538 \mathrm{RF}-1 \mathrm{kHz}-110 \mathrm{Mc} / \mathrm{s}$ £550-8554B-RF-100kHz-1250MC/S- $6650-8555 A-R F-10 \mathrm{MC} / \mathrm{s}-18 \mathrm{GHz}-£ 1550$ HP 3580 A LF-spectrum analyser - 5 kHz to 50 kHz - LED readout - digital storage - $£ 1600$ with instruction manual - internal rechargeable battery.
Tekironix 7 D20 plug
$£ 500$ - manual $-£ 50$
Datron 1065 Auto Cal digttal multimeter with instruction manual - $£ 500$
Racal MA 259 FX standard. Output $100 \mathrm{kc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}-5 \mathrm{MC} / \mathrm{s}$ - internal NiCad battery - $£ 150$ Aerlal array on metal plate $9^{\prime \prime} \times 9^{\prime \prime}$ contaning 4 aerials plus Narda detector - $100-11 \mathrm{GHz}$. Using N type and SMA piugs \& sockets - ex eqpt - $£ 100$
EIP 451 microwave pulse counter $18 \mathrm{GHz}-£ 1000$
Marcont RF Power Ampllfier TF2175-1.5MC/s to 520Mc/s with book - $£ 100$
Marconi 6155 A Signal Source - 1 to 2 GHz -LED readout- $\mathrm{£60}$
Schlumberger 2741 Programmable Mlcrowave Counter - $10 \mathrm{~Hz} 1071 \mathrm{GHz}-\mathrm{E} 750$
chlumberger 2720 Programmable Unlv
HP 2225CR Thlnkjet Printer - $£ 100$.
TEK 576 Callibration Fixture - 067-0597-99 - $£ 250$
HP 8006A Word Generator - $£ 150$
Texscan Rotary Attenuators - BNC/SMA 0-10-60-1000BS - $£ 50-£ 150$
HP 809 C Slotted Line Cartiages - various frequencies to $18 \mathrm{GHZ}-£ 100$ to $£ 300$
HP 532-536-537 Frequency Meters - various trequencies - $£ 150-$ - 250
Barr \& Stroud variable filter EF3 0.1 Hz -100kc/s + high pass + low pass - $£ 150$
S.E. Lab SM215 Mk 11 transfer standard voltmeter - 1000 volts.

Alitech Stoddart P7 programmer - £200
H.P. 6941 B multiprogrammer extender $£ 100$

Fluke Y2000 RTO selecior + Fluke 1120A IEEE-488-translator + Fluke 2180 RTD digital
thermometer +9 probes. $£ 350$ all three items
H.P. 6181 DC current source. $£ 150$
H.P. $59501 \mathrm{~A}-\mathrm{HP}$. 18 isolated $\mathrm{D} / \mathrm{A} /$ power supply programmer
H.P. 3438 A digital multimeter.
4.P. 61707 CDC Current source $£ 150$
H.P. 62078 DC power supply.
H.P. 7418 ACIDC differential voltmeter standard (old colour) $£ 100$

Filuke 80 high voltage divider
Fluke 431C high voltage DC supply
Tektronlx M2 gated delay calibration fixturee 067-0712-00
Tektronix precision DC divider calibration fixture. 067-0503-00
Tektronix overdrive recovery calibration fixture . 067-0608-00
Avo VCM163 valve tester + book £300
H.P. 5011 T logic trouble shooting kit. $£ 150$

Marconl TF2 163S attenuator - 1GHz. £200
PPM 8000 programmable scanne
Fluke $730 \mathrm{~A} C$ transter standard.
B\&K 4815 calibrator head.

B\&K 4812 calibrator head.

Farnell power unit H60/50 - $\$ 400$ tested
H.P. FX doubler 938A or 940 A - $£ 300$.
H.P. sweeper plug-Ins - $86240 \mathrm{~A}-2-8.4 \mathrm{GHz}-86260 \mathrm{~A}-12.4-18 \mathrm{GHz}-86260 \mathrm{AH} 03-10-$
$15 \mathrm{GHz}-86290 \mathrm{~B}-2-18.6 \mathrm{GHz}$. $86245 \mathrm{~A} 5.9-12.4 \mathrm{GHz}$
$15 \mathrm{GHz}-86290 \mathrm{~B}-2-18.6 \mathrm{GHz} .8625 \mathrm{~A}$
Telequipment CT 71 curve tracer $-£ 200$
H.P. 461A amplifier-1kc-150 Mc/s - old colour - $£ 100$
H.P. 8750 A storage normalizer.

Tektronlx oscllloscopes type 2215A - 60Mc/s - c/w book \& probe - $£ 400$
Tektronix monltor type 604 - $£ 100$
Marconi TF2330 or TF2330A wave analysers - $£ 100-£ 150$
HP5006A Signature Analyser $£ 250$ + book.
HP10783A numeric display. £150
HP 3763 A error detector. $£ 250$.
Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-\mathrm{\Sigma} 800$.
Racal/Dana slgnal generator $9082 \mathrm{H}-1.5-520 \mathrm{Mc} / \mathrm{s}$ - $£ 900$
Claude Lyons Compuline - line condition monitor - in case - LMP1 + LCM1 $£ 500$
Efratom Atomlc FX standard FRT - FRK - .1-1-5-10 Mc/s, £3K tested
Racal 4D recorder - $£ 350-£ 450$ in carrying bag as new.
RF PI adaptor - $£ 1500$
Alltech - precision automatic noise figure indicator type 75 - £250
Adret FX syninesize 2230A-11
Tektronlx-7S12-7S14-711-7S $11-\mathrm{S} 1-\mathrm{S} 52-\mathrm{S} 53$.
Marconl TF2512 RF power meter - 10 or 30 watts - 50 ohms - $£ 80$
Marconl multiplex tester type 2830
Marconl digital simulator type 2828A
Marconl channel access switch type 2831
Marconl automatic distortion meter type TF2337A - £150.
Marconl mod meters type TF2304-£250.
HP 5240A counter -10 Hz to $12.4 \mathrm{GHz}-£ 400$
HP 3763 A error detector.
HP 8016A word generato
HP 489A micro-wave amp - $1-2 \mathrm{GHz}$
HP 8565A spectrum analyser-.01-22GHz- $£ 4 \mathrm{k}$
HP 5065A rubidium vapour FX standard - $£ 5 k$.
Fluke 893A differential meters - $£ 100$ өа.
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - $£ 1 \mathrm{k}$
Takeda Rlken TR4 120 tracking scope + TR1604P digital memory
EG\&G Parc model 400 counter/timer $A+B+C$ inputs $-18 \mathrm{GHz}-£ 1 \mathrm{k}$
Sysiron Donner 6120 countertime A+B+C. 9083 signal source - two tone - 250 .
Systron Donner signal generator 1702 - synthesized to 1 GHz - AMFM
Systron Donner microwave counter 6057-18GHz - Nixey tube - $£ 600$
Racal/Dana synthesized signal generator 9081 - $520 \mathrm{Mc} / \mathrm{s}$ - AM-FM. £600
Farnell SSG520 synthesized signal generator - $520 \mathrm{Mc} / \mathrm{s}-£ 500$
Farnell TTS520 test set - $£ 500$-both $£ 900$
Tektronix plug-ins - AM503 - PG501 - PG508 - PS503A.
Tektronlx TM515 mainframe + TM5006 mainframe.
Cole power line monitor T1085-£250.
Claude Lyons LCM1P line condition monitor - $£ 250$
Rhodes \& Schwarz power signal generator SLRD-280-2750 Mc/s. £250-£600
Rhodes \& Schwarz vector analyser - ZPV $+E 1+E 3$ tuners $-.3-2000 \mathrm{Mc} / \mathrm{s}$
Bell \& Howell TMA3000 tape motion analyser - £250.
Ball Etratom PTB-100 rubidium standard mounted in Tek PI
Ball Efratom rubidium standard PT2568-FRKL
Trend Data tester type $100-£ 150$.
Farnell electronic load type RB1030-35
Falrchlid interference analyser model EMC-25
Marconl 2442 - microwave counter - 265 GHz - $£ 1500$
Racal/Dana counters -9904-9905-9906-9915-9916-9917-9921-50Mc/s-3GHz
100- $\mathbf{4 5 0}$ - all fitted with FX standards.
B\&K 7003 tape recorder - $£ 300$
B\&K 2425 voltmeter - $£ 150$.
\&K $4921+4149$ outdoor microphone.
Wlitron sweeper mainframe 6100- $£ 500$.
PP2008 VHF oscillator $-10-500 \mathrm{Mc} / \mathrm{s}-£ 200$
HP3747A selective level measuring set.
HP3586A selective level meter
HP5345A electronic counter
HP4815A RF vector impedance meter c/w probe. $£ 500-£ 600$
Marconi TF2092 nolse receiver. A, B or C plus filters.
Marconi Tr2091 noise generalor A , or
HP180TR HP182T maintrames 5300 - 5500
HP180TR, HP182T maintrames $£ 300$
Bell \& Howell CSM2000B recorders.
HP5345A automatic frequency convertor - $0015-4 \mathrm{GHz}$
Fluke 8506A thermal RMS digital multimeter
HP3581A wave analyser
Phillps panoramic receiver type PM7800-1 to 20GHz
Marconi 6700A sweep oscillator $+6730 \mathrm{~A}-1$ to 2 GHz
wiltron scaler network analyser $560+3$ heads. $£ 1 \mathrm{k}$.
R\&S signal generator SMS $-0.4-1040 \mathrm{Mc} / \mathrm{s}-£ 1500$.
HP8558B spectrum ANZ PI-. $1-1500 \mathrm{Mc} / \mathrm{S}-\mathrm{o} / \mathrm{C}-£ 1000$. N/C - $£ 1500$ - To fit HP180 series malnframe avallable $-£ 100$ to $£ 500$.
HP8505A network ANZ +8503 A S parameter test set + 8501A normalizer - £4k HP8505A network ANZ + 8502A test set - $£ 3 \mathrm{~K}$.
Racal/Dana 9087 signal generator - $1300 \mathrm{Mc} / \mathrm{s}-$ โ2k
Racal/Dana VLF frequency stand ard equipment. Tracor receiver type 900A + difference meter type 52 F -rubidium standard ype 9475 - $£ 2750$. Marconi
$4.2 \mathrm{GHz}-£ 800-£ 1000$
HP8444A-HP8444A opt 59 tracking generator $£ 1 \mathrm{k}-£ 2 \mathrm{k}$
B\&K dual recorder type 2308
HP8755A scaler ANZ with heads $£ 1 \mathrm{k}$
Tektronlx $475-200 \mathrm{Mc} / \mathrm{s}$ oscilloscopes - $£ 350$ less attachments to $£ 500 \mathrm{c} / \mathrm{w}$ manual, probes etc. HP signal generators type $626-628$ - frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$.
HP 432A-435A or B-436A - power meters + powerheads - $10 \mathrm{Mc} / \mathrm{s}-40 \mathrm{GHz}$ - £200-£280 HP37308 down convertor- $£ 200$
Bradley oscilloscope callbrator type $192-£ 600$
Spectrascope SD330A LF realtime ANZ - $20 \mathrm{~Hz}-50 \mathrm{kHz}$ - LED readout - tested - $£ 500$. HP8620A or 8620C sweep generators - $£ 250$ to $£ 1 \mathrm{k}$ with IEEE.
Barr \& Stroud varlable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{ke} / \mathrm{s}+$ high pass + low pass - $£ 150$
Tektronix 7 LL 12 analyser -. $1 \mathrm{Mc} / \mathrm{s}-1.8 \mathrm{GHz}-£ 1500-7 \mathrm{~L} 14 \mathrm{ANZ}$ - $£ 2 \mathrm{k}$ Marconi TF2370 spectrum ANZ-110Mc/s- $£ 1200-£ 2 \mathrm{k}$. Marconi TF2370 spectrum ANZ +TK2373 FX extender $1250 \mathrm{Mc} / \mathrm{s}+\mathrm{trk}$ gen - $£ 2.5 \mathrm{k}-£ 3 \mathrm{k}$ Racal recelvers - RA17L-RA1217-RA1218-RA1772-RA1792-P.O.R. Systron Donner microwave counter
HP8614A signal gen $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$ old colour $£ 200$, new colour $£ 400$ HP8614A slgnal gen $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$ old colour $£ 200$, new colour $£ 400$
HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$ old colour $£ 200$, new colour $£ 400$.
items bought from hm government being surplus. price is ex works. s.a. . for enouiries. phone for appointment or for demonstration of any items. availability or price change. vai and carr., exira. ITEMS MARKED TESTED HAVE 30-DAY WARRANTY. WANTED: TEST EQPT - VALVES - PLUGS \& SOCKETS - SYHCROS - TRANSMITIING \& REGEIVING EQPT. EIC
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No. (0274) 684007. Fax 651160.

THE RF DESIGN REVOLUTION

3: Devices for frequency synthesis

> Frequency generation is at the heart of RF design.
> Virtually all radiocomms systems operate on channelised frequency allocations. Demands on the spectrum require that frequency slots must be reused; frequency agility is a must for user equipment. Only frequency synthesis can provide this. By Tim Stanley.

Direct digital synthesis provides advantages over its phase-locked equivalent - phase continuity while fast-lirequency-hopping for instance. DDS systems exhibit phase noise performance determined mainly by the reference oscillator. a vast improvement on phase locked loops.
The most significant problem with DDS is the presence of unwanted spurious frequencies (spurs) in the output spectrum. These arise through non-linearity and quantisation error in the dac.
At some frequencies, these spurs may appear close to the required carrier and are therefore difficult to filter out. With the Plessey SP2002 DDS system chip and most others, only the eight most significant bits of the accumulator are processed so that. regardless of the accuracy of the dac, the output voltage generated for any sampled poim can only be approximate. This truncation error and any additional inaccuracy introduced in the dac lead to the generation of spurs in the output spectrum of the DDS. The spur amplitude can be reduced by increasing the number of accumulator bits used to determine the output. and by improving the dac accuracy.
The lirequency of the spurs can be predicted. and in systems with reasonably wide-spaced channels it is possible, by careful choice of clock frequency, to ensure a minimum frequency separation of the closest spur at all the required luning points.
Assume that an SP2002 system is required to tune over the frequency range 100 to 120 MHz in 50 kHz steps. Using a clock frequency of 1638.4 MHz will give a minimum frequency increment using the LSB input of the tuning bus of 0.762939453 Hz . Bit 16 of the tuning bus produces a tuning increment of exactly 50 kHz . Tuning any frequency between 100 and 120 MHz doesn't require any bits less
significant than bit 16 . Since no spurs will be produced closer to carrier than the incremental frequency of the least significant input bit used, this scheme will guarantee that no spurs occur at less than $50 \mathrm{kH} /$ from carrier. This topic is covered in the excellent series of articles on DDS by lan Hickman ($E W+W W$, Aug-Nov 92).

By asing a DDS in conjunction with a phase-locked loop synthesiser, as shown in Fig. 1, it is possible to design the PLL so that the loop bandwidth is less than 50 hHz . thus removing any spurs from the final outpu. The PLL can also be used to increase the output frequency of the system to any desired value.
For a system requiring very close channel

Plessey's SP2002 direct waveform synthesiser processes only the eight most significant bits of the accumulator.
spacing. the hybrid DDS/PLL approach may not be appropriate since very narrow loop bandwidth may be required to suppress the close-in spurs generated by use of the low signilicance input bits, thus slowing down the loop response time. In these circumstances the use of frequency division, using widely available prescalers, can provide a better solution. The frequency divide reduces the spur level but has the possible disadvantage also of reducing the output frequency and channel step size. By combining the frequency division with mixing, the output frequency can be

shifted to any desired point in the spectrum but the reduction in step size will remain.
The combination of mixing and dividing is very flexible and an almost infinite range of possibilities exists, but the method may require considerable additional hardware in the form of amplifiers and filters to produce a workable systen.

Fully-Integrated DDS

The SP2002 perhaps leads the field in DDS devices, being claimed by Plessey-GEC as the only fully integrated DDS IC to operate into the UHF output frequency range. This device comprises dual 8-bit dacs on-chip for sine wave outputs. Sine and cosine look-up tables are also integrated to provide quadrature outputs.

Operating at its highest speed, the device is clocking some 2000 to 3000 gates at nearly 2 GHz : consumption is 5 W using a 4.5 V supply. The block diagram is shown in Fig 2: a typical application circuit in Fig 3.

The Stanford STEL 2173 is another DDS device (termed a "numerically controlled oscillator" by the manufacturer) in the same
league as the $\$ P 2002$. Although it requires an external dac, it provides 0 to 400 MHz output frequency range with 32 -bit frequency resolution - equivalent to 0.23 Hz at 1 GHz . cloch frequency. The maximum clock frequency is quoted as 1GHz. Stanford states that spectral purity in a complete system is mainly determined by the characteristics of the chosen dac. Frequency hopping can be achieved in 16 ns , although this will be lengthened by the dac delay. A 2-bit phase modulator is incorporatcd on-chip.
For quadrature outputs, two devices would have 10 be used, phase modulated to 0° and 90°. Lower cost 600 MHz and 800 MHz clock frequency versions are available. A block diagram is shown in Fig. 4 and a typical application circuit in Fig. 5.

To maximise spectral purity, connections between dac and DDS chip should use transmission line elements of equal length. The analogue output of the dac should be isolated from the clock and other signals by close control of ground loops. Grounding and decoupling should be done with the objective of optimising the step response of the dac.

Table 1. Direct Digital Synthesisers
Manufacturer / Type No. / Technology / O/P Freq.range / Step / Clock Freq. / Hop speed / Noise / Spurious / Harmonics / Supply / Package / Price / Comments

GEC-Plessey / SP2002 / Si Bipolar / 0-400MHz
10.5 Hz @ 1 GHz clock / up to $1.6 \mathrm{GHz} / 25 \mathrm{~ns}$
(1.6 GHz clock) $/-135 \mathrm{dBc} / \mathrm{Hz}$ at 10 kHz from carrier / -45 dBc typ. worst product / -43 dBc typ. worst (3rd) / 4.5 V 1.1 A typ. / PGA 68 pin grid / 1. 24: £629.13, 100-999: £420.98. Prelim data.

Stanford / STEL 2173 / GaAs / 400MHz max / $0.23 \mathrm{~Hz} @ 1 \mathrm{GHz}$ clock/1GHz max/16ns +dac delay /-/-55dBc typ / -5V 1.2A@1.2GHz clock / Die or 132 pin CQFP / 1 - 9 : £ 1159,25 - 99 : £1004 / Prelim data.

Stanford / STEL 1180 / cmos / 25MHz max / $0.014 \mathrm{~Hz} @ 60 \mathrm{MHz}$ clock / 60MHz max / ? (Auto. chirp facility) / 5 V 4 mAMHz clock / 68 pin PLCC / 1-9:£128,25-99: £111

Stanford / STEL 1177 / cmos / 15MHz max / $0.014 \mathrm{~Hz} @ 60 \mathrm{MHz}$ clock / 60 MHz max / 67 ns + dac delay $/-1-75 \mathrm{dBc}$ typ $/ 5 \mathrm{~V} 4 \mathrm{~mA} / \mathrm{MHz}$ clock $/$ /1-9: £223, $25-99 £ 193$

Harris / HSP $45106 / \mathrm{cmos} / 20 \mathrm{MHz}$ max /
$0.010 \mathrm{~Hz} @ 40 \mathrm{MHz}$ clock / $40 \mathrm{MHz} \max / 25 \mathrm{~ns} @$ 40 MHz clock / -90dBc / $5 \mathrm{~V} 256 \mathrm{~mA} @ 25.6 \mathrm{MHz}$ clock / / 1 off: $£ 68.30,100$ off: $£ 35.94$

Harris / HSP 45102 / cmos / 20MHz max /
$0.009 \mathrm{~Hz} @ 40 \mathrm{MHz}$ clock $/ 40 \mathrm{MHz} \max / 25 \mathrm{~ns} @$ 40 MHz clock / -60dBc / $5 \mathrm{~V} 99 \mathrm{~mA} @ 33 \mathrm{MHz}$ clock / 28 pin SOIC / 1 off: $£ 34.00,100$ off: $£ 17.90$ / Low cost.

Sciteq / DDS-1 / ?/ / 11 MHz max / 0.005Hz @ 25 MHz clock / 25 MHz max / $<1 \mu \mathrm{~s} / /-60 \mathrm{dBc} /$ +5 V 150 mA and $-5.2 \mathrm{~V} 100 \mathrm{~mA} / 1 \mathrm{X} 1$ " ceramic / 1 off: $\$ 350,100$ off: $\$ 150 /$ "The only DDS with 11 bit AM facility"

A spectral plot of the NCO output after conversion by a Tri-Quint TQ6/14 dac is shown in Fig. 6. In this case the clock frequency is programmed to 234.567 MHz . The maximum non-harmonic spur level observed over the entire useful output frequency range in this case is -44 dBc . The spur levels are limited by the dynamic range of the dac. One should note that when the output frequency exceeds 25% of the clock frequency, the second harmonic frequency will be higher than the nyquist frequency (50% of the clock frequency). The image of the hamonic at the frequency F_{c} $2 \mathrm{~F}_{\mathrm{c}}$. which is not harmonically related to the output signal, will become intrusive since its frequency falls as the output frequency rises. eventually crossing the fundamental output when its frequency crosses through $\mathrm{F}_{\mathrm{c}} / 3$. It would be necessary to obtain a dac with better dynamic linearity to improve the spur levels.
The dynamic linearity of a dac is a function

Fig. 2. Nearly 3000 gates are clocked at 1.6 GHz to make the SP 2002 from GEC-Plessey Semiconductors the fastest fully integrated Direct Digital Synthesiser, providing sine wave outputs into the UHF range. High resolution, low phase noise and fast frequency hopping are some of the advantages of DDS over conventional Phase-Locked Loop synthesis.

Table 2. Phase locked loop
synthesiser chips
Manufacturer / Type no. / Technology / Input freq. / Step size / Ref. Freq. / Supply / Input sens. / Package / Price / Comments GEC-PLessey / NJ88C33 / cmos / 150MHz max. / $37 \mathrm{kHz} @ 150 \mathrm{MHz}$? / 52 MHz max $/ 5 \mathrm{~V}$ 2mA / DP14, MP14 / 1-24: £5.19, 100-999: £3.58 / Prelim. data

Swindon Silicon Systems / SSSB 139 / Si / 4 GHz max. / Fin/ 67 / 200 MHz max / 5 V 155 mA typ. / ECL / 28 pin LCC / 1-24: £86, 100 499: £60

Phillips / TSA 5511 / PLL / Si Bipolar / 64MHz to $1.3 \mathrm{GHz} / 50 \mathrm{kHz}$ at $1 \mathrm{GHzo} \mathrm{o} / \mathrm{p} / 4 \mathrm{MHz}$ max. / 5 V 35 mA typ / 40 mV at 1.3 GHz / SOT 102. 109 or $163 / 1-29: £ 2.28,100-999: £ 1.45 /$ IsquaredC bus. For TV tuners. Prelim. spec.

Phillips / UMA 1014T / Bipolar / 50MHz to $1.1 \mathrm{GHz} / 5 \mathrm{kHz}$ to 100 kHz throughout range. / 3 to $16 \mathrm{MHz} / 5 \mathrm{~V} 115 \mathrm{~mA}$ typ. / $50 \mathrm{mV} @ 1.1 \mathrm{GHz}$ / Plastic; SO16 SSOP20 / 1-29: £6.783, $100-$ 999: $£ 4.76$ / isquaredC bus. Low power. For cellular radio. "Objective" spec.

Phillips / UMF 1009T / cmos / 18 MHz max / ? / $16.8 \mathrm{MHz} \max / / 5 \mathrm{~V} 2.5 \mathrm{Ma} \max / 0.5 \mathrm{vp}-\mathrm{p} /$ SO16 Plastic / ? / IsquaredC bus. / Low power Integrated ref. osc. / Prelim. spec.

Fujitsu / MB87006A / cmos / 17MHz max / ? / ? 5 V 3.5 mA typ. / ?/ 16 pin DIP, SOP / $£ 1.55$ /

Siemens / PMB 2306 / cmos / 220MHz max / $13 \mathrm{kHz} @ 220 \mathrm{MHz}$? / 50 MHz max. / 5 V 3.5 mA typ. / $180 \mathrm{mV} / \mathrm{P}$-DSO-14/1-25: £5.00, 100 -249: $£ 4.50$ / "Extremely fast phase detector". High i/p sens. Prelim. spec.

Siemens / TBB 206 / cmos / 90MHz max / $22 \mathrm{kHz} @ 90 \mathrm{MHz}$? / 30MHz max / 5 V 2.5 mA typ. / 50 mV / P-DIP-14, P-DSO-14 / 1-99: £3.60, 100 - 249: £3.32 / High i/p sens. / Low power. "Extremely fast phase detector". Preliminary data.

Siemens Semiconductors, Siemens House, Windmill Road, Sunbury-on-Thames, Middx, TW16 7HS, Tel 0932 752615, Fax 0932 752632

GEC Plessey Semiconductors, Cheney Manor, Swindon, Wilts, SN2 2QW, Tel 0793 518000, Fax 0793518411

Fujitsu Microelctronics Ltd, Electronic Components Div, Hargrave House, Beimont Road, Maidenhead, Berks, SL6 6NE, Tel 0628 76100, Fax 0628781484

Stanford Telecom, UK Agents: BFI Ibexsa Electronics Ltd., BFI lbexsa House, Burnt Ash Road, Quarry Wood Estate, Aylesford South, Kent, ME20 7NA, Tel 0622 882467, Fax 0622 882469

Harris Semiconductor Litd, Riverside Way, Wattchmoor Park, Camberley, Surrey, GU15 3YQ, Tel 0276 686886, Fax 0276682323

Sciteq Electronics Inc, UK Agents: Lyons Instruments Ltd., Ware Road, Hoddesdon, Herts, EN11 9DX, Tel 0992 467161, Fax 0992 444513

Swindon Silicon Systems Ltd, Radnor Street, Swindon, Wilts, SN 1 3PR, Tel 0793614039, Fax 0793616215

Phillips Semiconductors, Distributor: Macro, Burnham Lane, Slough, SL1 6LN, Tel 0628 604383, Fax 0628 666873/66807

Typical SP2002 DDS output spectrum. The spur amplitudes produced tend to be affected by the output frequency rather than the clock frequency. The trace shows the worst case spur levels at an output frequency of 100 MHz with a clock frequency of 400 MHz and 1600 MHz and, as can be seen, in both cases the worst case spur level is very close to the theoretical limit of -48 dBc . This remains close to -48 dBc at all output frequencies up to about 125 M Hz but degrades above this frequency to about -45 dBc at $200 \mathrm{MHz},-40 \mathrm{dBc}$ at 300 MHz and -31 dBc at the maximum output of 400 MHz . A difficulty in determining the worst case spur for any output frequency is that there is often a "close-in series" and another further out which must both be examined separately to find the spur of the greatest magnitude.

RF ENGINEERING

Fig .6. STEL2173 typical output spectrum using the application circuit of Fig. 5. Particular attention must be paid to the wiring between the DDS controller chip and the outboard dac. Any variation in phase delay between the bits presented to the converter will manifest itself as increased spur levels in the output spectrum.. Frequency span $0-400 \mathrm{MHz}$ Reference level +0 dBm Resolution bandwidth 10 kHz Scale log $10 \mathrm{~dB} / \mathrm{div}$ Output frequency 234.567 MHz Clock frequency 1 GHz .

Fig. 7. Simplified block diagram, and (Fig. 8.) typical application circuit for 60 to 80 MHz , of the new NJ88C33 Phase-locked Loop IC from GEC-Plessey. The device can be used for synthesis up to 150 MHz without pre-scaling, requiring only $2 m A$ typical supply current at 5 V .

Fig. 5 The STEL2173 is used with a high-speed D to A converter, such as the TriQuint TQ6112, for a phase-coherent, fast switching frequency synthesiser. The spurious components at the output of the low-pass filter are about 55 dB below the primary output component. With a clock frequency of 858.9935 MHz (ie 0.2 $\times 232 \mathrm{~Hz}$), the frequency steps obtainable are exactly 0.2 Hz . The output frequency may be programmed from DC to over 400 MHz - depending on the low-pass filter. In order to keep the sampling components above the Nyquist frequency at a level compatible with the other spurious components, the lowpass filter needs to have at least 55 dB attenuation above FC_{C} - Fo, where Fc is the clock frequency and Fo is the highest output frequency desired.

Harris has recently added to its range of NCOs for use up to about 40 MHz output, with the HSP 45106. Frequency resolution is 32 bits $(0.01 \mathrm{~Hz}$ at 40 MHz$)$ and programmable phase control register allows control to better than 0.006 degrees. For applications at these frequencies, the range provides a cost-effective solution - the HSP 45102 is offered as a low-cost device at $£ 17.90$ (100-off price), 69 dB of spurious-free dynamic range is claimed to be attainable.
both of its static linearity and its dynamic characteristics, such as settling tine and slew rates. At higher output frequencies the waveform produced by the dac will have large output changes from sample to sample. For this reason, the settling time of the dac should be short in comparison with the clock period. As a general rule, the dac used should have the lowest possible glitch energy as well as the shortest possible setting lime.

Phase-Locked Loops

For many applications, and particularly those in battery operated/portable equipment, conventional PLLs are still the obvious choice for programmable frequency generation. Development of new devices with ever reducing power requirements continues.

GEC-Plessey`s N. 888 C 33 offers $\mathrm{I}^{2} \mathrm{C}$ bus pro-

Fig. 8. The GEC-
Plessey NJ88C33 evaluation board provides a reference oscillator, a 60 to 80 MHz VCO and a simple loop filter to complete a minimal frequency
synthesiser loop.
The two units allow
analysis of different
loop variables as well as the selection of comparison
frequencies for fast
frequency-lopping
loops.
grammability and is usable up to 150 MHz input without external pre-scalers. It needs just 15 mW to power the device which uses a digital phase comparator. Envisaged applications include cordless telephones (CT2, DECT). cellular phones (GSM. PCN. ETACS) and sonar buoys. Block and application diagrams are shown in Figs. 7 and 8.

Another device exploiting the low-power advantages of cmos is the Siemens' PMB2306. Special PLL features include an input sensitivity of 180 r 1 V up to 220 MHz and extremely fast phase detector for frequency hopping applications. Phillips TSA55// is a low-cost bipolar single-chip synthesiser for use from 64 MHz to 1.3 GHz offered at $£ 1.45$
in 100-off quantities, intended primarily for terrestrial and satellite TV tuners. Features include $I^{2} \mathrm{C}$ bus transceiver and device address selection for picture-in-picture capability using duplicate circuits. Fig. 9 shows the device architecture.

BARGAINS - Many New Ones This Month

THIS MONTH'S SNIP is a 250 Watt Toroidal Transformer which has tapped mains input and 3 secondaries: 230 v 1 amp 20 v and 6 v but if these voltages are not quite what you want it is very easy to add an extra winding, 4 turns adds or subtracts 1 volt. You can also use this as a 250 watt isolation. Price only $£ 10$ but it's heavy so please add $£ 2$ carriage if not collecting. Order Ref. 10P97 ANOTHER SNIP Extra lightweight stereo headphones. Superior sound quality as these were made for a world-famous airline. Adjustable headband makes these extra comfortable and they come complete with washable foam earpieces. Suitable for use with all types of cassette players and radios, good long lead terminating with 3.5 mm jack plug. Yours for only $£ 1$ per pair, Order Ref. 878. 6-12V AXIAL FAN is a Japanese-made 12 v DC or battery-operated brushless axial fan, 93 mm square. Its optimum is 12 but it performs equally well at only 6 v and its current then is only 100 mA so it could be made into a hand-held dry battery-operated cooler. Or, onyour desk operated by a psu or in the car using the lighter socket. Snip price only £4. Order Ref 4P65. Mains power unit to operate this at variable speeds $£ 2$. Order Ref. 2P3
FM CORDLESS RADIO MIKE, hand-held battery-operated protessional model, has usual shaped body and head and is tuneable to transmit and be picked up on the FM band of any radio. Yours for only $£ 8.50$, Order Ref. 8.5P1

4 MORE SPEAKERS:

Order Ref. 1.5P11 is Japanese-made $61 / 2^{\prime \prime}, 80 \mathrm{hm}$, rated at 12 W max. This is a very fine reproducer. The makers are SANYO. Yours for $£ 1.50$
Order Ref. 900 is another Far East-made $61 / 2^{\prime \prime}, 40 \mathrm{hm}, 12 \mathrm{~W}$ max speaker Very nicely made, using Japanese Hitachi tools and technique, only $£ 1$
Order Ref. 896 is $61 / 2^{\prime \prime}, 6$ ohm, 10 W , exceptionally good sounder and yours for only $£ 1$
Order Ref. 897 is another $80 h \mathrm{~m}$ speaker rated at 5 W but its unusual feature is that it has a built-in tweeter. Still only $£ 1$
MULTI-CORE CABLES all with $8 A 230 \mathrm{~V}$ cores so suitable for disco and other special lighting effects. With earthable woven screen and thick pvc outer. 3-core, 30 p per metre, 16 -core, 50 p per metre, 18 -core, 80 p per metre, 25 -core, £1 metre and 36 -core, $£ 1.50$ per metre
ULTRA THIN DRILLS Actually 0.3 mm . To buy these regular costs a fortune However, these are packed in half dozens and the price to you is $£ 1$ per pack Order Ref. 797B.
YOU CAN STAND ON IT! Made to house GPO telephone equipment, this box is extremely tough and would be ideal for keeping your small tools. Internal size approx. $101 / 2^{\prime \prime} \times 41 / 2^{\prime \prime} \times$ $6^{\prime \prime}$ high. These are complete with snap closure lip and shoulderlength carrying strap. Taken from used equipment but in good condition, price £2, Order Ref. 2P283B
BUILD YOUR OWN NIGHT LIGHT, battery charger or any other gadget that you want to enclose in a plastic case and be able to plug into a 13A socket. We have two cases, one $3^{1 / 22^{\prime \prime}}$ $\times 2^{1 / 4^{\prime \prime}} \times 134^{\prime \prime}$ deep, $£ 1$ each, Order Ref. 845. The other one
 SAFETY LEADS curly coii so they contract but don't hang down. Could easily save a child from being scalded 2 -core, 5 A , extends to $3 \mathrm{~m}, \mathbf{~ 1} 1$, Order Ref. 846, 2 -core, 13A, extends to $1 \mathrm{~m}, ~ £ 1$ each, Order Ref. 847,3 -core, 13 A , extends to 3 m , E 2 each, Order Ref. 2 P290.
POWER SUPPLY WITH EXTRAS mains input is fused and filtered and the 12 V dc output is voltage regulated. Intended for high-class equipment, this is mounted on a PCB and, also mounted on the board but easily removed, are 2 12 V relays and a Piezo sounder. £3, Order Ref. 3P80B.
ULTRASONIC TRANSDUCERS 2 metal cased units, one transmits, one receives. Built to operate around 40 kHz . Price $£ 1.50$ the pair, Order Ref. 1.5P/4. 100W MAINS TRANSFORMER normal primary 20-0-20 at 2.5A, £4, Order Ref. 4P24. 40V at 2.5A, £4, Order Ref. 4P59.50V at 2A, £4, Order Ref. 4P60. PHILIPS 9^{-}HIGH RESOLUTION MONITOR black \& white in metal frame for easy mounting, brand new, still in maker's packing, offered at less than price of tube atone, only £15, Order Ref 15P1
16-CHARACTER 2-LINE DISPLAY screen size $85 \mathrm{~mm} \times 36 \mathrm{~mm}$, Alpha-numeric LCD dot matrix module with integral microprocessor made by Epson, their Ref. 16027AR, £8, Order Ref. 8P48
INSULATION TESTER WITH MULTIMETER internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges. AC/DC volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. These instruments are ex British Telecom, but in very good condition, tested and guaranteed OK, probably cost at least £50 each, yours for only $£ 7.50$, with leads, carrying case £2 extra, Order Ref. 7.5P/4.
MAINS 230V FAN best make "PAPST" $41 / 22^{\prime \prime}$ square, metal blades, £8, Order Ref. 8P8.
2MW LASER Helium Neon by PHILIPS, full spec. £30, Order Ref. 30P1. Power supply for this in kit form with case is $£ 15$ Order Ref. 15P16, or in larger case to house tube as well $£ 18$, Order Ref. 18P2. The larger unit, made up, tested and ready to use, complete with laser tube $\mathbf{2 6 9}$, Order Ref. 69 P 1.
1/3 HP 12 V MOTOR - THE FAMOUS SINCLAR C5 brand new, £15, Order Ref $1 / 3$ HP 1
15 P 8.
SOLAR CHARGER holds 4 AA nicads and recharges these in 8 hours, in very neat plastic case, £6, Order Ref. 6P3
FERRITE AERIAL ROD $8^{\prime \prime}$ Long $\times 3 / 8^{\prime \prime}$ diameter, made by Mullard. Complete with 2 coil formers. 2 for $£ 1$. Order Ref. 832B.
AIR SPACED TRIMMER CAPS 2-20 pf ideal for precision tuning UHF circuits, 4 for £1, Order Ref. 818B.
FIELD TELEPHONES just right for building sites, rallies, horse shows, etc., just join two by twin wire and you have two-way calling and talking and you can join into regular phone lines if you want to. Ex British Telecom in very good condition, powered by batteries (not included) complete with shoulder-slung carrying case, £9.50, Order Ref. 9.5P/2
MAINS ISOLATION TRANSFORMER stops you getting "to earth" shocks 230 V in and 230 V out. 150 watt upright mounting, $\mathbf{\varepsilon 7 . 5 0}$, Order Ref. $7.5 \mathrm{P} / 5$ and a 250W version is $\mathbf{\Sigma 1 0}$, Order Ref. 10P79.

Telephone Order Hotline Monday to Friday until 9.00pm on 0273-430380

JUST ARRIVED

Infra Red Receiver Controller made by Thorn to channel switch their T.V. receivers. Mounted on panel with luminous channel indicator, mains on/off switch, leads and plugs all yours for $£ 2$, Order Ref. 2P304

ASTEC 135-WATT PSU

 230 v or 115 v input with outputs of $+12 v$ at $4 A-+5 v$ at 16 A and -12 v at $1 / 2 \mathrm{~A}$ completely enclosed in plated steel case. Brand New and yours for $£ 9.50$.MINI MONO AMP on PCB. Size $4^{\prime \prime} \times 2^{\prime \prime}$ with front panel holding volume contro and with spare hole for switch or tone control. Output is 4 watts into 4 -ohm speaker using 12 V or 1 watt into 8 -ohm using 9 V . Brand new and perfect, only £1 each, Order Ref. 495.
AMSTRAD POWER UNIT 13.5 V at 1.9 A encased and with leads and output plug, normal mains input £6, Order Ref. 6P23.
ATARI 64XE COMPUTER at 65 K this is quite powerful, so suitable for home or business, unused and in perfect order but less PSU, only $£ 19.50$, Order Ref 19.5P/5B.

80W MAINS TRANSFORMERS two available, good quality, both with normal primaries and upright mounting, one is 20V 4A, Order Ref. 3P106, the other 40 V 2 A , Order Ref 3P107, only $£ 3$ each.

PROJECT BOX size approx $8^{\prime \prime} \times 4^{\prime \prime} \times 4^{1 / 2^{\prime \prime}}$ metal, sprayed grey, louvred ends for ventilation otherwise undrilled. Made for grey, louvred ends for ventilation otherwise Ref 3P74.
12V SOLENOID has good $1 / 2^{\prime \prime}$ pull or could push if modified, size approx $1^{1 / 2^{\prime \prime}}$ long by $1^{\prime \prime}$ square, £1, Order Ref. 232.
500 V BRIDGE MEGGER developed for GPO technicians the Onmeter 18B is the modern equivalent of the bridge megger 9 V battery operated, it incorporates a 500 V generator for insulation testing and a null balance bridge for very accurate resistance measurement. Ex B. T. in quite good condition with data \& tested. Yours for a fraction of original cost, $£ 45$, Order Ref. 5P167.
15W 8-OHM $8^{\prime \prime}$ SPEAKER \& $3^{\prime \prime}$ TWEETER made for a discontinued high-quality music centre, gives real hi-fi, and only £4 per pair, Order Ref. 4P57
SOLAR students. It shows how to make solar circuits and electrical circuits, how to increase the voltage current, how to use solar power to work a radio, calculator, cassette player and to charge nicad batteries. The kit comprises 8 solar cells, one solar motor, fan blades to fit motor and metal frame to hold it to complete a free-standing electric fan. A really well written instruction manual makes this a lovely little present. Price £8, Order Ref. 8P12B
BT TELEPHONE LEAD 3 m long and with B.T. flat plug ideal to make extension for phone, fax, etc. 2 for £1, Order Ref. 552.

WATER PUMP very powerful with twin outlets, an ideal shower controller, mains operated, £10, Order Ref. 10P74. Ditto but with a single outlet, same price \& order ref. Please specify which one you require.
0-1MA FULL VISION PANEL METER $2^{3} / 4^{\prime \prime}$ square, scaled 0 756.

PROJECT BOX a first-class, Japanese two-part moulding size $95 \times 66 \times 23 \mathrm{~mm}$. Held together by 2 screws, takes a battery and a PCB and is ideal for many projects. To name just a few, the washer bottle monitor, the Quicktest and the model railway auto signal, described in September's issue of Everyday Electronics. This is nicely finished and very substantial. You get 2 for £1. Order Ref. 876
HOLD IT MAGNETIC BASE embedded in a circular metal shallow disc, diameter approx. $65 \mathrm{~mm}\left(2^{\left.1 / 2^{\prime \prime}\right)}\right.$, is the most powerful magnet. We have yet to find anyone who can remove this with his fingers. Ideal for adding extra shelves inside a metal case or to glass without drilling. Its uses, in fact, are innumerable. Price E2 each, Order Ref. 2P296.
ELECTRONIC BUMP \& GO SPACESHIP sound and impact controlled responds to claps and shouts and reverses or diverts should it hit anything! Kit with really detailed instructions, will make ideal present for budding young electrician. Should be able to assemble but you may have to help with the soldering of the components on the PCB. Complete kit, £8.95, Order Ref. 9P9. OPD DUAL MICRO DRIVE UNIT This is a twin unit, each unit having its own motor, record/playback head and PCB with all electronics. In addition to being a direct replacement in the OPD this can also be used with the Spectrum or the QL. We have a copy of the procedure necessary and will gladly supply a photostat of this if you require it when you purchase the unit. The price is £5, Order Ref. 5P194

2V 2A MAINS TRANSFORMER upright mounting with nounting clamp. Price $£ 1.50$, Order Ref. 1.5P8.
AM/FAHADIO CHASSIS with separate LCD module po display time and set off alarm. This is complete with loudspeaker but is not cased. Price £3.50. Order Ref. 3.5P5.
2, 3 AND 4-WAY TERMINAL BLOCKS the usual grub screw types. Parcel containing a mixture of the 3 types, giving you 100 ways for £1, Order Ref. 875.
$12 / 24 V$ DC SOLENOID constructed so that it will push or pull, plunger is a combined rod and piston. With 24 V is terrifically powerful but is still very good at 12 V and, of course, with any intermediate voltage with increasing or decreasing power. It has all the normal uses of a solenoid and an extra one, if wired in series with a make and break, this could be a scribing tool for marking plastics and soft metals. We welcome other ideas and will give a $£ 25$ credit voucher for any used. Price $£ 1$. Order Ref. 877 2M 3-CORE LEAD terminating with fat pin instrument socket, $\mathbf{~ 1}$, Order Ref. 879. Ditto but with plug on the other end so that you could use this to extend an instrument lead. £1.50, Order Ref. 1.5P10.

Prices include VAT. Send cheque/postal order or ring and quote credit card number
Add $£ 3$ post and packing. Orders over $£ 25$ post free. You can order up to 9 pm Monday to Friday on

0273430380
M \& B ELECTRICAL SUPPLIES LTD
12 Boundary Road, Hove, Sussex BN3 4EH
Telephone (0273) 430380
Fax or phone (0273) 410142

LETTERS

Crossed eyes

I have read Pat Hawker"s articles "The handheld that endangers eyes" and "RF exposure puzzle remains". $\left(E W^{\prime}+W W \cdot\right.$ RF Connections. October 1992), several times. They present viewpoints which appear to share a common theme: uncertainty and lack of firm evidence. What was the intention? If it was to connect eye damage risk to hand-portable radios, that was certainly not achieved by data in the text.

The Kuster and Balzano study referred to is not definite, stating at need to revise health safety regulations for handheld equipment but without giving any indication of what a realistic limit would need to be in practice. Using the worst Kuster and Balzano figures quoted an SAR of $40 \mathrm{~mW} / \mathrm{g}$ - a sample of tissue (assumed mainly water) in such a field would need to be exposed continuously for over eight minutes in vacuo for the rise in temperature of 5 K mentioned as an established caluse of eye damage. Even a bloodless eye lens. immersed in fluid, must lose heat at a sufficient rate for the $40 \mathrm{~mJ} / \mathrm{s}$ of heat involved to reach equilibrium with a far smaller temperature differential.
Presumably the furnace workers ${ }^{\circ}$ eye damage accumulated over a period of time, a factor not addressed in the case of RF. It is worth remembering that, in bright sunlight. the radiant energy incident on a 5 mm pupil is not far short of 20 mW and you do not have to be looking straight at the sun for this to be the case. Lens mass must surely
not exceed 200 mg (my own guess). resulting in a quite natural radiation incidence. and presumably SAR. of around $100 \mathrm{~mW} / \mathrm{g}$.
Lack of epidemiological data is notable with personal radios in use by military, police and commercial interests for many years in large numbers. Risks of a serious nature would surely have been noticed by now. I am not claiming there is no risk but if there is. it is by no means established in your article which does not display the kind of logical consistency needed to form a clear objective view of important maters such as these.
You are quite right to bring these varied viewpoints to our attention hut your big mistake is to come to a sweeping conclusion not supported by the article. The title "The handhelds that endanger eyes" screams such a conclusion at the reader. It is a sensational headline and will alarm many people unnecessarily.

A / Honk

Epsom

200 what amplifier?

Andrew Hefley's design article "High Fidelity, Low Feedback. 200 Watts". (EW + WW . June 1992). raises a number of issues fundamental to the design of practical high performance amplifiers.

The concept that T'ID occurs in amplifiers with open loop
sandwidths less than 20 kHz has long been discredited and replaced with the requirements of adequate slewing rate for low 20 kHz THD. Within this single constraint, a design with increased available loop gain. for feedback, below 20 kHz is effective in reducing THD and IMD in most audible mid-range
frequencies. The importance is apparent when we acknowledge that -nodern ribbon loudspeakers are zapable of THD of 0.01% and that the power amplifier should not be a weak link by adding significantly to this. Hefley's design ignores the fact and deliberately wide-bands open loop response to well beyond even 20) H з. effectively wasting gain which could otherwise be used for mid-range distortion reduction. Indeed. a performance metric of 20 kHz THD is better served by exchanging bandwidth for open loop gain to below 203H1z by increasing $R_{25 .} R_{2 n}$ to 27 K or greater. The effect is not only to reduce output stage transeonductance errors, at which global feedhack is very effective but also reduce modulation of 2nd stage current and input differential signat by an order of magnitude. resulting in lower open loop THD.
A further distortion mechanism not well addressed in Hefley's design is common mode distortion due to finite tail resistance of the input differential stage. Common mode voltage, set by the closed loop gain requirement or sensitivity to the amplifier is greater than differential imput voltage by the amount of toop negative feedback. Any distortion it

Alternative route to dat

I would like to propose a simple alternative to the design mentioned in the article "Improved pre-amps put dat back on the road", $(E W+W W$, October 1992), where a basic differential amplifier is complimented by an inverter. The input common mode signal is nearly zero. A simple way of maintaining the DC output around $1 / 2 V_{c c}$ is obtained.

The gain is halved, so resistor values of R_{3} need to be doubled, while noise behaviour is nearly the same compared to the published circuit. Noise contribution of $I C_{I}$ is negligible.
Nanno Herder
Netherlands

Fig. 1. Alternative mic preamp design

generates will be more significant the higher the feedback. as current variation in the tail due to common mode voltage modulates transconductance of the stage. Predominantly even order distortion. it is partially balanced out in Hefley's design in the following complementary common emitter stage. But the simple expedient of replacing K_{7} and R_{8} with quality current sources is far preferable to an imperfect cancellation technique. Of further benefit here would be to take both outputs from the input stage to a fully complementary differential of folded cascode second stage. as it would with improving PSRR.

A third area of concern with Hefley"s design becomes apparent by considering its use with an appropriate size of power transformer for the application. A $100 \mathrm{~W} / \mathrm{ch}$ amplifier should function effectively with a power transformer of no more than 300 VA in combination with the 10,00$)(\mathrm{HF}$ filter capacitors. The typically poor transformer regulation permits substantial extra amplifier power output under low duty transient conditions - in line with the demands of modern musical programming. While Hefley's design provides RC filtering of power supply impedance interactions. this filtering is ineffective at very low frequencies where power envelope demands substantially modulate supply voltage. Increased gain before the intrusion point, in this case the input stage collector(s), is not an option here as it would compromise input signal handling and distortion. A more elegant solution is to reduce the intrusion using a fully differential or folded cascode second stage. effecting a typical 46 dB improvement using standard components.
Finally, Hefley makes two. fundamentally flawed, statements "A side effect of a high open loop

gain is that wide bandwidth is very difficult to achieve with two gain changes". But examples exist of well designed. albeit elaborate, single gain stage op-amps with folded cascode and current mirror loading achieving 110 MHz GBW which translates to 20 kHz . bandwidth and 74 dB gain - wide bandwidth and high gain.

Also: "Install multiple output devices to keep the current excursion low for each device so as to stay within a linear range of gain". In a typical class $A B$ output stage, the greatest transconductance error occurs near zero (output current) crossing, the high current output being linearised by the emitter resistors. No matter how many output transistors are used. they must. in a conventional output stage, all traverse zero crossing at which r_{e} is of little value. Apart from elaborate correction circuits. global and nested feedback is very effective here as long as the excess gain does not drop substantially as with an unbiased output stage.
Greg Ball
Australia

Attraction of electricity without magnetism

I am pleased to be able to say, thanks to the article "Electricity without Magnetism". (EW + WW, July 1992) being published such interest has now been aroused that a small stock of defunct material has come into Strachan`s possession. enough to build a new
demonstration prototype comprising 1300 junction pairs connected in a 100×13 configured series-parallel array. Without any additional input other than ice this demonstrably delivers 0.60 V continuously to drive an electric motor when small pieces of ice are melting on its non-ambient heat sink surface. This corresponds to 6 mV per junction for a $20^{\circ} \mathrm{C}$ temperature differential, or $300 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ as a thermoelectric EMF temperature differential obtained from an aluminium-nickel bimetallic combination. Warm water flowing over the same surface drives the electric motor, and a pool of water
left on the surface freczes extremely rapidly if the motor is replaced with a small battery to feed input power.

Research interest attracted by the article has reactivated the $R \& D$ and should allow us to confirm the physical nature of the action involved.
I have also been questioned by several readers about the heading given to my article. It was in fact an $E W+W W$ ' initative to alter the original title "Electronic Heat Engine", presumably resulting from an editorial deletion of introductory text. The latter had introduced Strachan-Aspen's invention as a way of generating electricity from heat without using a traditional steam turbine and electromagnetic generator.
While the Editor's opinion. expressed in conjunction with the article, stresses the view that the piezo-electric substrate material used may be the seat of the action. no doubt having regard to its pyroclectric properties. I do believe enhancement of the Peltier effect by dynamic excitation will prove to be the correct interpretation. In this regard, the hypothesis of cold spots choking the performance of conventional bimetallic thermocouples is supported, not only by our avoidance of the effect by rapid interruption of current flow. but by diagnostic tests probing effects of magnetic fields on junction current. Note that stray junction tields from residual magnetism of nickel are presented in the device described.
H Aspden
Southampton

Keeping an ear to the ground

I have discovered a completely new communications medium. where there is no interference, no broadcast stations and in fact no transmissions of any sort. I have listened and called CQ for weeks at a time, all to no avail. I have tentatively transmitted at very low power levels. 2 mW , walked 200 m away and have received my own test signals.

Experimental apparatus needed is extremely simple - even my children use it - and I cannot understand why something so simple does not seem to be used by anyone else.

Main tests were carried out in the village of Harpenden, near Luton airport (IARU locator, 1091 TU . ordnance survey grid TLII) and initially were simplex. one-way communication.

My transmitter is constructed from an old radio. adding a feu bits from my junk box. and aerials (two needed for each transmitter) are made from copper pipe, both

approximately 4 ft long. These 1 trimmed and placed strategically 168 ft apart in my garden. Unfortunately power levels generated were low. 2 W into a few ohms and I found impedance of the "new ether", due to local conditions. to be approximately 1000Ω. I could not fit the transmitter and antennas satisfactorily so I found that actual power transmitted was
approximately 2 mW . But. even with these minimal power levels, because there were no other transmissions at all. I was able to transmit approximately 200 m ! After such success from so basic equipment my initial calculations show almost all the UK could be covered by one 50 W transmitter placed in the Midlands. Antennas could run both East and West, placed in the North and Irish Seas, giving complete UK coverage. Calculations show significant signal levels would appear throughout the World with a focus point in New Zealand. To demonstrate the theory take 9ft of resistance wire (900Ω), and place across a 9 V DC battery. A current of approximately 10 mA would be expected to flow. If voltmeter probes are placed across the central 3 ft of resistance wire, a 3 V reading would be expected (using Ohms law). To extend, use a 9 V AC signal generator and expect to see similar volt meter AC signals.

If a signal generator is replaced with an audio amplifier. (where 900Ω resistance acts as a loud speaker), we would expect to hear. with the voltmeter turned into headphones, reduced volume signals (approximately one-third). Mismatch of audio amplifier to resistance wire is high and ideally a matching transformer should be employed.

Consider an ohmmeter switched to a $\mathrm{k} \Omega$ setting with probes 4 ft long on wires loft long. If these probes are inserted into the ground. depending on distances between probes, the ohmmeter would be expected to show a resistance. Precise values of resistance depend on soil conductivity. length and distance of probes, amount of dissolved salts and absorbed water in soil. Take a poor sample of soil. with slorter probes and greater distance apart and assume the measured resistance between these two probes is 900Ω. Take the experimental equipment. (ie audio amplifier) and replace $900 \Omega 2$ of resistance wire with two ohmmeter probes - not forgetting to disconnect the ohm meter - and we will have a circuit consisting of an amplifier with its loud speaker replaced by two probes going into the ground. The probes represent. together with the ground loading, a resistance of 900S.

Examine between these two probes to find similar signal conditions, as experienced with the 900Ω resistance wire. By putting headphone terminals a few feet apart in the soil. audio signals transmitted will be received from the audio amplifier.

Signals are proportional to distance (ie resistance) between transmitting probes and receiving probes. We are in fact using the earth as a simple single sheet resistor.

No carrier wave is needed, tuned resonant circuits or high gain antennas are required, only audio amplifier and speaker leads buried a significant distance apart in the soil are required. A receiver can be provided signal strengths are high enough - an ordinary pair of
carphones, hut greater distances have been achieved by using an auder amplifier where amplifier input is also just lwo probes taken from the ground.
l'ing catremely simple transecisers saudio amplifiers) it is possible to communicate through the Earth itself. Could it not he used for frammission and broadeast even of signals and communications data? Simple experimental texts have proved the viability, but mathematicu of spherical sheet conductors. combined with skin effect is beyond me. I will leate it to other while listening and trampmitting mont mechends. Andrew Ainger
forthordshme'
Somry Mr Aingor, vour idea is not now. It tive emerged in the early 50s but this doesn't mean that it wouldn't be reassessed using carrier fec hnicures.
Editor

CFA - no tricks

In care Mr Donaldron (EW + WH: Letters, ()etober 1992), ,hould think we are members of the " \downarrow leight-ofhancl" brigade. may 1 correct a slip in our "CFA working assumptions" article (EH + WW'. December 1990)
explatning how we believe a halfwave dipole radiates.
Figure 11 , in the arlicle, is correct but acempanying text hould have read "enered from the feeder a quater of a cyele earlies..." The calculation then becomes:

$$
\begin{aligned}
& 0=\frac{r}{r}-\frac{\pi r}{2 r}-\frac{\lambda}{4 r}-\frac{r}{r} \\
& 0=-\frac{\pi r}{26}+\frac{\lambda}{4}
\end{aligned}
$$

So

$$
r=\frac{\lambda}{2 \pi}
$$

the distance from conductors at which the ration wate is PoyndingVector yyntherised.
I wonder how mans careful readers ypotted that with the (correctly drawn) diagram the cxplanation made nomense because at the distance erroneouly calculated, the position for charges at the moment shown would not even have been located on the wires.
Yes, we are trying to dibpel ant sleighteof-hand we see in textboohs. With our (FFA. the current to top plate of the D)-field system indeed creater magnetism of an opposite direction but it is located clone-in near the wire since there flue paths are of low reluctance.

Magnetic flux used in the
interaction one is the widely spreat field catused by widely spread diplacement current of the D-plate system. If it were not widespread, it would be much more difficult to adjust the phase relationship. An interaction cone of $1 / 100$ of a
wavelengtt requires phase aceuracy in adjustment of belter than $1 / 100$ of a cycle, woch an 3. 66°.
MC Hately
Hatels Antenna Technology Abreleen

Unreal mic pre-amp

I seriously doubt claims of superior microphone preamplifier performance (in terms of highfidelity) made by Adrian Pickering and May Hadley. (EW + WU . October 1992). The denign is fundamentally flawed because it makes no allowances for real-lite behaviour of moving-coil microphones. Preamplifier gain is set by the impedance of the microphone assumed by Pickering and Hadles to be a constant $200 \Omega 2$ at all audio frequencies - clearty unrealistic. Performance of their preamplifier must be much more sensitive and unforgiving of microphone characteristic: than most (it now all) other designs. They
fail to address this, apart from an unsupported statement qualify ing established practice als a "mylh" While their preamplifier may attain a low noise ligure and be adequate for voice recording, frequency response with a real life microphone must be far from high-fidelity.
The basis of their extreme design seems to be a need to avoid the thermal noise of resistors: "Any resistances in the input generate their own thermal noise and". for this reason, "should be avoided". A fallacy, because thermal noise must be calculated for the equivalent impedance of the circuit, adding a $1 \mathrm{k} \Omega$ resistor in parallel with the mierophone actually lowers thermal noise (although it also lowers the signal). In addition, the $\mathrm{tk} \Omega$ load provides a reasonable (possibly not optimal) degree of damping for the movement of the microphone membrane. In contrast, self-induced Foucault's currents in the shortcircuited microphone will definitely over-damp the microphone's response, and should result in a muffled sound. Plus. the very stiff membrane of the short-circuited microphone will result in a very poor coupling of sound wave energy and in a low microphone sensitivity. PC Meunier
Cambridge

The world is at your fingertips with ICOM's new IC-R9000 radio communications receiver with continuous all mode, super wideband range of 100 KHz to 1999.8 MHz anc a unique CRT display that shows frequencies, modes, memory contents, operator-entered notes and function menus. The revolutıonary IC-R9000 features IF Shift, IF Notch, a fully adjustable noise blanker and more. The Direci Digital Synthesiser assures the widest range, lowest noise and rapid scenning. 1000 multi-function memories store frequencies, modes, tuning steps and operator notes. Eight scanning modes include programmable limits, automatic frequency and time-mark storage of scanned signals, full, restricted or mode-selected memory scanning priority channel watch, voice-sense scanning and a selectable width around your tuned frequency.

Post to: Icom (UK) Ltd. Dept WW Sea Street Herne Bay Kent CT6 8LD Tel:0227 741741 (24hr). Fax: 0227360155

[^3]
INSTRUMENTS TO Buy

FREQUENCY COUNTERS

MX1010F and MX1100F are 8-digit frequency counters offering a broad range of features.
MB1010F: 1 Hz to 100 MHz , sensitivity of 15 mV and resolution :0 0.1 Hz , data auto set, 10:1 attenuator, high impedance input £ 29.00 plus VAT ($£ 151.58$).
MX1100F: 1 Hz to 1 GHz , features as MX1010F except ranges rOMHz to 1 GHz and 50Ω impedance. $£ 160.00$ plus VAT ($£ 13 \mathrm{E} .00$). SC-130 and SC-40 are full featured, microprocessor-based, hand held frequency counters providing portability and high performance. Both insiruments provide measurement of frequency, period count and RPM plus a view facility enabling min, max, av and diffe ee ce rsadings.
SC-130: 5 Hz to $1.3 \mathrm{GHz}, 8$ digit readout, sensitivity typically - DTVV, righ impedance input, battery condition indicator. $£ 109.00$ ple VAT (1128.08).
SC-40: As SC-130 except 5 Hz to 400 MHz . $£ 89.00$ plus VAT (104.58).

MULTIMETERS

The 180 series of high performance multimeters provide adtanced features and are supplied complete with probes, battery and ribber halster. The case is dust and splash proof making it ideal in rest ervironments. Designed to meet IEC348 Class II saiety staneard. $183: 3 \frac{1}{2}$ digit large LCD display, ACV, DCV, ACA, DCA, res stance, continuity buzzer, diode test, hold, basic accuracy 0.5% £23.50 plus VAT (£39.36).
185: $3^{11 / 2}$ digit LCD, bar graph, ACV, DCV, ACA, DCA, resistance, continuity buzzer, diode test, hold, temperature ($-40^{\circ} \mathrm{C}$ to $137 \mathrm{C}^{\circ} \mathrm{C}$), cepacitance (1 pF to $40 \mu \mathrm{~F}$), frequency (1 Hz to 200 kHz), maxm n , edit, \%, compare, basic accuracy 0.3\%. £68.50 plus VAT (££0.49) 187: As 185 except auto ranging. £75.00 plus VAT (£88.13). 235: As 185 except $41 / 2$ digit true ms , basic accuracy 0.05%.
§29.50 plus VAT ($£ 105.16$).

MULTIMETERS (2)

The MX170B and MIC-6E offer low cost measurement yet reta n a ange number of features. Supplied complete with probes.
NX170B: $31 / 2$ digit LCD, compact size, ACV, DCV, DCA, res ssance, diode test, low voltage battery test. £18.50 plus VAT【21.74).
MIC-6E: $3^{11} / 2$ digit LCD, ACV, DCV, ACA, DCA, resistance, dode est, buzzer.
233.50 plus VAT (£39.36).

20MHz 2-CH OSCILLOSCOPE

The CS4025 20 MHz dual trace oscilloscope offers a comprehe7sive range of facilities including a high sensitivity vertical ampl fer כroviding from 1 mV to $5 \mathrm{~V} /$ div in CH1, ALT, CHOP, ADD, CH2 nodes with inverse polarity on CH2. The horizontal timebase ofers a 3 weep range of $0.5 \mathrm{~s} /$ div to $0.5 \mu \mathrm{~s} /$ div plus $\times 10$ sweep expansix and $X-Y$ mode. Triggering can be auto or normal from vert, $\mathrm{CH} 1, \mathrm{ZH} 2$, ire or external sources with coupling provided for AC, TV-F and TV-L. The CS4025 is supplied complete with matching probes tor玉235.00 plus VAT ($£ 346.62$).

PROGRAMMABLE POWER SUPPLIES

Tia PPS series of GPIB programmable DC power supplies oiter ich performance yet are extremely competitively priced using a 16 x backlit LCD and 14 button keypad. All functions and cond tions are easily selected and displayed. Overvoltage and overcurrent are selectable as is output enable/disable. Terminals for output and sense are provided on the front and rear to allow easy rack rrounting. 3PS-1322: 0-32V 2A (GPIB) $£ 375.00$ plus VAT ($£ 440.63$) PPS-2322: Dual 0-32V 2A (GPIB) £555.00 plus VAT (£652.13)

MX1010F MX1100F

FG 506 FG513

THE 180 SERIES

2ONHZ 2-2H OSCILLOSCCFE

PROGRANMAEEE POWER SUPPLIES

MX＝020

SC 130
Buy top quality instruments direct from Electronics World＋Wireless World and avoid disappointment．If you are not satisfied，return the goods and we will refund the purchase price＊

FUNGTION GENERATOR

The MX2020 $0.02 \mathrm{~Hz}-2 \mathrm{MHz}$ sweep function generator with LED digital d splay offers a broad range of features．Output waveforms include sine，square triancle，skewed sine，pulse and TTL．Lin and log sweaps are standard as is symmetry，DC offset and switchable output impedance from 50.2 to 600Ω ．The digital display provides readout of the generators＇frequency or can operate as separate 10 MHz frecuency counter．$£ 175.00$ plus VAT（ $£ 205.63$ ）．

LCR METER

The MIC－4070D LCJ digital LCR meter provides capacitance， inductance，resistarce and dissipation measurement．Capacitance ranges are from 0.1 FF to $20,000 \mu \mathrm{~F}$ plus dissipation．Industance－ ranges from $0.1 \mu \mathrm{H} t \mathrm{c} 200 \mathrm{H}$ plus a digital readout of dissipation． Resistance ranges irom 1 ms to $20 \mathrm{M} \Omega$ ．Housed in a rugged $A B S$ case with integral stand it s supplied complete with battery and probes at $£ 85.00$ plas VAT（ $£ 99.88$ ）

FOUR INSTRUMENTS IN ONE

The MY 9000 combines to ar nstruments to suit a broad range of applications in both education and industrial markets including development work stations where space is at a premium．
The instruments include：
1．A triple output power sLpply with LCD display offering $0-50 \mathrm{~V}$ $0.5 \mathrm{~A}, 15 \mathrm{~V} 1 \mathrm{~A}, 5 \mathrm{~V} 2 \mathrm{~A}$ with ful overcurrent protection；
2．An \＆－digit LED display $1 \mathrm{~Hz}-100 \mathrm{MHz}$ frequency counter with gating rates of $0.1-\bar{z}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz providing resolution to 0.1 Hz plus attenuation inputs and data hold；

3．A 0.02 Hz to 2 Mr z full featured sweep／function generator pro－ ducing sine，square，triangle，skewed sine，pulse and a TTL output and linear or logarifmic sweep．Outputs of 50Ω and $60 C \Omega$ impedance are standard features；
4．An auto：manual $31 / 2$ digit LCD multimeter reading DCV，DCA， ACV，$A C A$ resistance，ard relative measurement with data hold functio s ．
The MK9000 represents exceptionally good value at only $£ 360.00$ plus VAT（ $£ 423.00$

FG SERIES FUNCTION GंENERATORS

The FG500 series sweep／function generators provide two powerful instruments in one rackage，a 6 MHz or 13 MHz swéep／function generator and an intelligent 100 MHz frequency counter．The micro－ processor based irstruments offer sophisticated facilities yet remair exiremely ccmpelitixely priced．A menu driven display allows easy set up and operation．A 16 character by 2 －line LCD display provides clear and lnambiguous readout of generator out－ put and frequency measurement．
FG－505： 2 Hz to 6 NHz sweep．function with 100 MHz counter £325．C0 plus VAT（ $£ 381.88$ ）
FG－513： 2 Hz to 13 MHz sweep／function with 100 MHz counter £482．00 plus VAT（ $£ 566.35$ ）

Credit card arders accepted by phone 0816523614

Please send me the following instruments．
－ーーー－
I enclcse a cheque／postal order／eurocheque to the value of $£ m a d e ~ p a y a b l e ~ t o ~ R e e d ~$ Business Publishing Ltd or Please debit my Access／Visa／American Express／Diners Club with
I \qquad Card expiry date．．．．．．．．．．．．．．．．．．．．．．．．．．．．Signature．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Date．．
\qquad
Name．．Address．

HP 8558B

SPECTRUM ANALYZERS 100 khz TO 1500 mhz simple 3 knob operation 182T mainframe 1 khz TO 3 mhz $£ 1800$ + VAT P/P
Resolution bandwidths
Recent release in good clean tested condition

M\&B RADIO

86 BISHOPGATE STREET
LEEDS LS1 4BB
TEL (0532) 435649
FAX (0532) 426881

CIRCLE NO. 120 ON REPLY CARD

ADC-16 high resolution data acquisition system with data logger software for IBM

ADC-10, 1 channel 8 bit |ADC-11, 11-channel with scope and voltmeter software $\quad £ 49+$ VAT software $\quad £ 75+$ VAT

Pico Technolosuy Limited Broadway House, 149-151 St Neots Rd, Hardwick, Cambs CB3 7QJ Tel. 0954211716 Fax. 0954211880

CIRCUIT IDEAS

PLL motor-speed controller

T
his is a simple closed-loop controller for fractional-horsepower DC motors. although it is suggested that larger transistors will supply larger motors.

In essence, a slotted dise on the motor shaft, moving in the gap of an optical sensor, produces pulses at a frequency f_{m} dependent on the motor speed and the number of slots

in the disc. Pulse rate and the reference frequency generated by the PLL's VCO are compared in the phase comparator and, when f_{m} is less than $f_{\text {ref }}$, the phase-comparafor output goes high and Q_{1} conducts, driving the motor. the reverse being the case when f_{m} exceeeds the reference frequency. The outcome is that motor speed is that which causes f_{m} to equal $f_{\text {ref }}$. which is variable by means of the potentiometer and by altering the value of C_{1}.

The circuit will control motor speed smoothly at speeds down to 300 rpm . assuming the dise has at least ten slots in it.
M.S. Nagaraj,

ISRO Satellite Centre,
Bangalore, India

Audible compass

Instead of graduations in degrees, this compass emits a tone which varies in frequency depending on where it is pointing - high pitch for north, low for south, the difference being about an octave. It is much more stable than some other published designs.
The sensor is an RS Components Lohet // Hall-effect chip, whose sensitivity is increased by the addition of $60 \mathrm{~mm} \times 9 \mathrm{~mm}$ ferrite rods glued to its faces. Its output is amplified by $I C_{I}$ and taken to a voltage-to-
current converter having an antilog characteristic, so that equal changes in input voltage give rise to equal changes in pitch, rather than in frequency. Transistors $T r_{1}, T r_{2}$ and $I C_{2}$ form the converter, $T r_{I}$ being the current sink for the 555 current-to-frequency converter circuitry, whose output saturates $/ C_{3}$ to drive the 40 mm speaker.

To set up, adjust the pitch control and/or board orientation to obtain 4 V at the output of $/ C_{I}$. Then select C to give an
output frequency of about 1 kHz , which is two octaves above middle C.
The three op-amps are contained in one LM324.
W Gough
Department of Physics and Astronomy University of Wales Cardiff

Compass gives a tone output, its pitch indicating direction. Sensor is obtainable from RS Components.

PRODUGTION/A.TE SEcONDUSEREQUPMENT HUGE SAVINGS ${ }_{\text {pances }}^{\text {onn }}$

TEST EQUIPMENT

MARCONI 2019 Signal Generator
H.P. 3325A Function

Generator
TEK 2445 Oscilloscope TEK 2465 Oscilloscope H.P. 8640B. Signal Gen from H.P. 8447D. I. 3 GHz amp Marconi 893B. Audio power meter
Fluke 8520A. D.M.M. (GPIB)
TEK 222 10MHZ D.S.O. Battery
Portable "Hand held"
TEK AM503S Curren
MARCONI $2380 / 82400 \mathrm{MHz}$ Spectrum Analyser
Spectrum Analyser
£1,650
© 1,750
41,350
C1,995
6950
$£ 235$
$£ 250$
¢495
6995
£1,500
£4,950
63,775

MARCONI 8938 Audio Power
Meter
HP 8753 A/010 Network Analyser
HP 3325B/1/2 Function Generator HP 3585B Spectrum Analyser HP 8903B Audio Analyser HP 8566B 22 GHz Spectrum Analyser HP 8568 B 1.5 GHz Spectrum Analyser 350 MHz Oscilloscope $\mathbf{£ 2 , 4 9 5}$ Many other Makes/Models available Call for full listing. Calibration to BS5750 also available

MARCONI 2955 Radio Test

ATE SYSTEMS

MARCONI 540256 Digital768
Universal Points

MARCONI 515 Call for $\mathbf{£ 2 8 , 5 0 0}$ | used 200 hrs . |
| :--- |
| ECall |

MARCONI 510 Two systems available.
Configured to suit

MARCONI 80R 512 Test
Points
GENRAD 22721024 Driver $£ 21,900$ 224 Speed Plus GENRAD 2276XP 1088 Tes Points nsor/

SPECIAL OFFERS

All ex-stock Callers welcome
 ALTITUDE TEST CHAMBER

Temperature - Humidity - Vacuum
Can be configured to your
requirements. Call for details.
ELITE "FORMAT" Axial Lead
HELLER 715 Auto Axial Lead
HELLER D277-36 Auto DIP Lead
Processsor* $£ 1,49$
$\begin{array}{lr}\text { DEK } 1200 \text { Screen Printer } & \mathbf{E}, \mathbf{4 9 5} \\ \mathbf{E 4 9 5}\end{array}$ EDWAROSEI2F3 Coater

FISCHER 870C Betascope $\quad £ 1,350$
CEMCO Pull-Peel Test Set

CUSTOM CRI Router

CUSTOM CR2 Router EG + G 560B Lite-Mike PLANAR GB7 Gas Bonder CEMCO Solderability Tester ICI 1214 Vapour Phase Reflow Tank SOLBRAZE RD3 and RD6 "Rotadic Solder Pots from SOLDERMATIC 800 Wave solder machine $240 v$ single phase $\quad \mathbf{1 , 7 5 0}$ ICI AO Screen Cleaner 6675 ICI 6502 AR Ultrasonic Cleaner 6875 GRIFFIN Bench Oven. AMB to $+200^{\circ} \mathrm{C}$
PERN 360 ¢ 199 PERN 360 litre Burn-in Oven $A M B$ to $-40^{\circ} \mathrm{C}$6395 £295

DO YOU HAVE SURPLUS PRODUCTION/A.T.E. EQUIPMENT?

Bring your surplus assets to the expanding European marketplace through Buyers News - read by 20,000 key buyers in High Tech industries

Subscribe Now for

Your FREE Copy

Manufaturing Equipment

See laiest issue of Buyers News for fullisting and Terms \&

BUVERSNEWS Te:071-2844074(UXI Far:071-2877863(UK 148 Camden Street, London MN1 SpF

HALCYON ELECTRONICS

Test equipment, video monitors, amateur radio gear, printers, power supplies, communications, disk drives, multimeters, oscilloscopes, scientific instruments, connectors, component bridges, frequency counters, signal generators, computers

TELEQUIPMENT D67A 25MHZ, 2T, DEL T/B

 H.P. 1700 A 35MHZ DUAL TRACE GOULD OS 3300 B 50 MHz 2 TRACE DEL T/B TEK 45350 MHz DUAL TRACE DEL T/B TEK 465 100MHz DUAL TRACE DEL T/B SCOPEX 4 D25 25MHZ DUAL TRACE BECKMAN 9020 2OMHZ DUAL TRAC DATA PRECIS:ON 6000 WITH 611 PLUG-IN AND 81 DISK DRIVE UNITGOULD OS3000A 40MHZ 2 TRACE, DEL T/B HAMEG 203.5 20MHZ, 2 TRACE, COMP TESTE HITACHI VC 6015 10MHZ DIGITAL STORAGE H.P. 1340A X-Y DISPLAYS

LEADER LBO-9C ALIGNMENT SCOPE TEK 5L LN 100KHZ SPECT ANAL WTTH $5110 \mathrm{M} / F$ $2 \times 5 A+8 N, 5 B 1 O N$ TIME BASE ELEQUIPMENT D75, 50MHZ 2 TRACE DEL TR TEKTRONIX 7403N, DF1, $7 D 01$ LOGIC ANAL EK 545B, 585, 585A, 535A, 541A, 515A TEK 545:585 SERIES PLUG-INS WANDELGOLTERMANN SFM-2 LEVEL METER WANDELGOLTERMAN SPM. 3 LEVEL METER WANDEUGOLTERMAN PS-3 SIGNAL GEN MARCONI TF2304 AM'FM MOD METER PRTBLE RACAL 9059 FICTR 560MHZ MAINSBATT 9" RACKS, 20U, 31" DEEP
HP 3490A DMM ACIDCN OHMS 6-DIGIT XFORMERS SEC $30-0-30 \mathrm{~V}$ 20A, UNV PRIS C-CO WHOUSE $1 / 4 \mathrm{HP}$ REVBLE MOTORS 220 V IKRPM CONSTANT VOLTAGE TRANSF'S 150VA.2KV MARCONI TF2331 DISTN FACTO \qquad BBCB \& MASTER COMPUTERS
MARCONI TF2300 FM AM NODULATION METER TEKTRONIX 834 PROG DAㄱACOMMS TESTER TEK TRONIX 834 PROG DA:ACOMMS TESTER TEKTRONIX 520 521A PAL VISCOPES
£215 DEFIBRILATOR $50-400$ JOULES BATTMAINS
2249 FARNELL FG1 FUNC GEN . 2.2 .2 MHZ
£269 "COLLECTORS" TEST EQUIPT. VARIOUS.
£249 COMMUNICATIONS RECEIVERS, VARIOUS
E450 2OOW U.V. SOURCE WITH TIMER.
£169 1920'S WIRELESS, REED \& HORN SPKRS
£249 MCMURDO SILVER CORD, 1 ONLY
PERISCOPES MIL TARY No. 43 Mk. 3
£995 LCR MARCON TF1313A 0.1\%
E249 LCR MARCONI TF2701 IN SITU
£249 LCR MARCONI TF868B

©345 LCR COMPONENT COMPARATOR AVO | E |
| :--- |
| 125 |
| 69 |

C99 WAYNE KERR B321 LOW IND OR AVO CZ457/S
195 HP1901A -05A. O8A -17A 25MHZ PUE
SCR578N GIBSON GIRL EMERGENCY XMITTER
750 AMFNENNER 625/2 SIG GEN $1 H Z-1 M H Z$ SINISQ
9225 LEVELL TG152 3HZ-300KHZ OSC SINISQ
£ 495 LEVELL TM6B MICRO V-METER 450MHZ
From $£ 49$ LEVELL TM3B MICRO V-METER 3 MHZ
Fom E10 TUBBITUGB TUNER UNITS BRAND NEW
169 OERTLING V2O SINGLE PAN BALANCES 200GM 29 § 39
189 SAGE 2-WAY CO-AX SWITCH SAN 2120 N COM
169 UDI 2026 SONAR SCANNER SURFACE NTONS $£ 95$
249 UPA CAVIDERM $£ 895$
145 MARCON MARINE KESTREL TESTER
125 ANALYTICAL BALANCES WITH WEIGHTS DECADE RICV BOXES
EKTRONIX 520 521A PAL VISCOPES From £475 SIGNAL GENERATORS AF TO 21 GHz From £ 15

IST AVAILABLE, BUT 1000's OF UNLISTED BARGAINS FOR CALLERS ALL PRICES EXC OF P\&P AND VAT
QUALITY ELECTRONIC EQUIPMENT ALWAYS WANTED
423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS'9-5.30 MON-SAT. TEL 081-542 6383.

ADVANCED ACTIVE AERIAL

The aerial consists of an outdoor head unit with a control and power unit and offers exceptional intermodulation performances: SOIP +90 dBm , TOIP +55 dBm . For the first time this permits full use of an active system around the If and mf broadcast bands where products found are only those radiated from transmitter sites

- General purpose professional reception $4 \mathrm{kHz}-30 \mathrm{MHz}$.
- -10 dB gain, field strength in volts/metre to 50 Ohms.
- Preselector and attenuators allow full dynamic range to be realised on practical receivers and spectrum analysers.
- Noise -150 dBm in 1 Hz . Clipping 16 volts/metre. Also 50 volts/metre version.
* Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$. \star Stabilizer and Frequency Shifters for Howl Reduction * Stereo Variable Emphasis Limiter 3 * 10 -Outlet Distribution Amplifier 4 ڤ PPM10 In-vision PPM and chart recorder. * Twin Twin PPM Rack and Box Units. \star PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/+6dB drives and meter movements \star Broadcast Stereo Coders. * Stereo Disc Amplifiers \star Philips DC777 short wave car combination: discount $£ 215+$ VAT

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh, GU6 7BG Telephone: 0483 275997. Fax: 276477.

Three-colour bar graph

Using one package of green and red leds, you can get three colours - green, red and amber, the latter being a mixture of red and green used to display two sets of overlapping data.
Address lines A_{0} and A_{l} determine which of the sets of data from the bus is stored in the latches and whether red or green leds are on by activating port write pulses /PWR. If both A_{0} and A_{l} are low, both latches store the same data, all leds will be on and the colour will be amber.
Small mods to the address decoding circuit allows expansion of this idea to any number of led groups to make a bar-graph display.

J Vandana

World Friends Design Group
Tamilnadu India

Phase-linear crossover

This circuit, in which a low-pass. switched-capacitor filter is cascaded with an all-pass type. gives a tunable filter with a flat characteristic - a development originatly due to Lipshitz and Vanderkooy. Figure 1 shows the basics: a low-pass section and a high-pass characteristic obtained by a time delay and subtraction circuit. In practical designs, cascading a fourth-order Butterworth low-pass with a second-order all-pass equalises the attenuation and produces a phase-shift-free network, since an all-pass gives twice the phase shift of a low-pass of the same order.

This design uses the ML2 / / / filter block: a universal. high-frequency ($150 \mathrm{kH} \%$) dual filter consisting of two independent bi-quad switched-capacitor filters, used here in the configuration of Fig. 2. Two integrators are used. in which the resistance is simulated by switching a small capacitance to give
$V_{\text {out }}=\frac{\omega_{\text {CLK }} C_{u}}{s C} V_{\text {in }}=\frac{\omega_{\text {Cl.K. }}}{s} V_{\text {in }}$
where C_{u} is the switched capacitor.
For the circuit of Fig.2.

$$
\begin{aligned}
& V_{1}=-\frac{R_{2}}{R_{1}} V_{i n}-\frac{R_{2}}{R_{3}} V_{4} \\
& V_{5}=\frac{\omega_{C L K}}{s} V_{4}=\frac{\omega_{\mathrm{CLK}}^{2}}{s^{2}} V_{3} \\
& V_{3}=V_{1}-V_{2}=V_{1}-V_{5}
\end{aligned}
$$

Transfer functions of the universal filter are: high-pass

$$
\frac{V_{3}}{l_{m}}=-A \frac{s_{m}^{2}}{K_{n}}
$$

low-pass

$$
\frac{V_{5}^{\prime}}{V_{m}}=-A \frac{1}{K_{n}}
$$

band-pass

$$
\frac{V_{i}^{\prime}}{V_{m}}=-\lambda \frac{s_{o}}{K_{b}}
$$

where $s_{0}=s /=j /$ CLK

$$
A=R_{2} / R_{1}
$$

and

$$
K_{0}=1+\frac{R_{2}}{R_{3}} s_{01}+s_{0}^{2}
$$

Advantages are clear: cut-off is easily set by varying clock frequency: Q can be chosen by selecting the value of R_{3} : gain depends on the values of R_{2} and R_{l} and can be set by varying R_{i}.
Figure 3 is the practical circuit, in which half the ML.2/I/ is a low-pass filter feeding the other hall, the equaliser.

Kamil Kraus

Rokvcany
Czechoslovakia

Fig.1. A phase-linear network with a low-pass section and a high-pass using time delay and subtraction.

Fig.2. Configuration of ML2111 filter block, in which a resistor is simulated by a switched capacitor.

New PL Series Bench PSUs

 the UKs most popular range is now available as 32 Volt - 3 Amp

- A comprehensive range of 13 models.
- Includes all new 32V - 3A units.
- Single, dual and triple output models.
- Quad-mode switching on duals/triples.
- High current 5 V output on triples.
- GPIB and RS232 programmable models available.

The UKs most popular bench power supply series has now been improved still further. New models, new features and new voltage/current combinations are on offer. Ask for full technical details of the all new PL series.

THURLBY THANDAR
2 Glebe Road, Huntingdon. Cambs. PE18 7DX Tel: (0480) 412451 Fax: $(0+80) 45(040)$

CIRCLE NO. 126 ON REPLY CARD

CIRCLE NO. 127 ON REPLY CARD

FPGA has a structure that can best be descrithed as an "array-or-blochs" connected together via programmable intercomect. The amoun of logic that each logic block can synthesise depends on which family of FPGAs is heing used. Xilinx refers to its logic blocks as configurable logic hlocks (CLBs) and the FI'GA devices themselves are called Logic Cell Arrays (LCAs).

Structure of a CLB

The diagram, Fig. 5. shows the structure of the $X C 4000$ CLB. Each finnction generator (F and G) is a look up table that can implement any function of four variables. These mav be optionally combined together via the smaller function generator (II) to provide various permutations of up 10 mine separate logic variables. For example. the logic in Fig. 6 can all be mapped into one CLB. The worst case delay through a single CLB is belween 4.5 and 7ns depending on the speed grade of the device. Compare this with the delay of the same logic when implemented in last-TTL. The performance increase is obvious. and as all FPGAs use a cmos process they also have the advantage of drawing much less power.
A function generator is a circuit which can lathe a number of input variables and generate an output which is anty Boolean function of its inpuls. There are various ways in which a programmable function generator cin be implemented. Xilinx I.CAs use a series of lookup ables. whereas ober manutacturers use multiplexers or modified AND-OR logic 10 achieve the sime function.
CLBs also contain D-type llip-flops which allow the engineer to produce efficient synchronous designs. Many Fl'GA manufactumers do not have these dedicated thip-flops and have to construct them out of logic blocks. thereby reducing the resource availatle for the rest of the logic in the design.

Interconnect

The logic blocks within an $\mathrm{Fl}^{3} \mathrm{GA}$ are connected logether via programmable interconneet much as discrete pachages on a PCB would be comected together. The interconned structure ol LCA devices is composed of metal segments with programmable switching points to implement the desired connections.

An FPGA nomally has cither three or lour types of interconnect mechanism. Adjacent logic blocks are connecied via local interconneen. Which is very fast. General purpose intercomed covers the rest of the device and is usuatly slightly slower due to the number of interconnect points in each section. The third

2: nuts and bolts

Continuing their series on using the new programmable logic families, Dave Nicklin* and Nick Sawyer* describe the main differences between FPGAs and EPLDs, both in terms of their respective architectures and design methodologies.

Fig. 5. Structure of an XC4000 configurable logic block. Each function generator (F and G) is a look up table that can implement any function of four variables. These may be optionally combined together via the smaller function generator (H) to provide various permutations of up to nine separate logic variables.
type of interconnect is formed by paths which allow signals to traverse the entire chip casily and rapidly. These are called Longlines and Global Interconnect. The diagram in Fig. 7 shows some of the routing resources available in the $X C 4000$ family.
One analogy relates the FPGA interconnect scheme to the American road system. The direet interconnections are like the back streets round the block. They are fast but only con-
nect over short distances before joining a main street. The main strect is slower because of all the junctions onto it and crossing it, and for travelling longer distances it is often better to hop on the freeway i.e the longlines. These different types of available interconnect resource help make the routing of FPGAs to be both tlexible and efficient. In fact, the interconnect scheme is one of the major differences between FPGAs and EPLDs.

ICOMPETITION

Win a programmable logic development system

In conjunction with this series, Xilinx is offering a complete development system worth around $£ 5000$ to the winner of a simple competition to challenge readers' ingenuity.
The prize includes the DS502 LCA development system, which caters for all of Xilinx FPGA families and the DS550 development system, which caters for Xilinx XC7200 family of EPLD devices. These will be bundled together with a Viewdraw-LCA schematic entry package, and the Xilinx X-BLOX logic synthesis package (which is to be described next month). The package will enable the winner to go from concept circuit to completed design using the bundied XC4000 based evaluation board.
To enter, simply suggest the best use that can be made of the unique reprogrammability features that characterise the Xilinx sram based FPGAs. This should include suggestions for hardware that can be reconfigured either before or during operation. We look forward to receiving your suggestions, and please note that we are not looking for the best slogan to decide the winner in the event of a tie! However preference will be given to entries that perform a generally 'useful' function. It has been left to individual contestants to decide the degree of design detail presented in the competition entry.
All entries should be sent to Nick Sawyer or Dave Nicklin at Xilinx UK Ltd, Suite 1B, Cobb House, Oyster Lane, Byfleet, Surrey KT 14 7DU BY MARCH 17. We will choose the winner on the March 31 1993, and notify him/her soon after that date. The winning design will be published in the June 1993 issue of $E W+W W$.

Fig. 6. Comparison of FAST-TTL and CLB delay. The worst case delay through a single CLB is between 4.5 and $7 n s$ depending on the speed grade of the device. Compare this with the delay of the same logic when implemented in fast-TTL. The performance increase is obvious, and as all FPGAs use a cmos process they also have the advantage of drawing much less power.

Simple FPGA design

FEollowing the examination of a typical pal F based circuit last month, we offer a comparison built with FPGA of the sort that first emerged in the mid-eighties.
The circuit shown below is not dissimilar to the earlier example, but now uses the Xilinx XC2018 to perform the logic functions. Other technologies have moved on as well. The system clock is now up to 8 MHz , and the system memory is provided by 256 K bit dynamic rams for data, and a $32 \mathrm{~K} \times 8$ eprom for program storage. Once again the circuit is an imaginary protocol converter/buffer, but running at a much higher data rate, and therefore needing larger amounts of ram for storage. Because of the much higher data rates, the circuit requires data to be transferred out of the serial controller by DMA, and a very low CPU interrupt latency is required, ie the CPU needs to respond to, and act upon, an interrupt as soon as possible.
None of these concepts was new, but the idea of integrating all the required functions onto a single user programmable device was. As discussed last month, the only other course open to the designer requiring high circuit density was to produce a gate-array or other asic.
The circuit function consists of several distinct blocks of logic, which we will look at in turn to show the role of FPGA in the design process.

Address decoding. This function would normally be performed by either MSI logic or a pal as described last month, and is simply combinatorial logic. The FPGA provides the function by decoding the top four address lines, at a 'cost' of one logic block, i.e. CLB per address decode.

Memory Management. With the advent of high density memories the memory limit of 64 K in 8 -bit machines began to look a bit feeble. However most applications only had a requirement for larger areas of data rather than program storage. Some simple memory management techniques can therefore be used to get around the problem. In this design the 256 K dram is considered as 16 pages of 16 K byte each. Since we need one of these pages permanently enabled for things like stack storage, this takes up 16 K byte of the memory map. The eprom requires 32 K , so the remaining 16 K of the logical map can be mapped 13 times into the dram. The technique to do this is very simple. A register in the FPGA is written with a four bit value indicating which of the pages is to be used. When an address in the logical page range that requires translation (e.g. 8000 to BFFF hex) is detected, then the value in the register is used to form the extra two bits of physical address which are required by the dram. Obviously the control code in the $Z 80$ will keep track of which page is used at all times. The circuit is easy to implement in the FPGA, which is rich in registers. A four-bit reg-
ister is made from flip-flops to give read and write capability at a unique address in the i / o map; this also needs address decoding as described above (requirement five logic blocks). A comparator works on the top two bits of the address bus to see when translation is required (one logic block), and this controls four two-to-one multiplexers which generate the physical address for the dram (four logic blocks).

Dram control and refresh. Control of a dram consists of presenting the first half of the address on the address bus (in this case nine bits), and then activating an active low signal called RAS (Row Address Strobe). On the next clock the remaining nine bits of address are placed on the bus, and the CAS (column address strobe) is activated. The cycle is ended by pulling both RAS and CAS back high again. If the write line is low during this cycle, then data is written, if not then data is read.

The refresh timing is provided by the $Z 80$, which has a special refresh cycle after each opcode fetch. However the $Z 80$ generates only seven bits of refresh address, and so two more bits have to be provided by a two bit counter within the FPGA (two logic blocks).
The RAS address, the CAS address and the refresh address are enabled onto the address bus for the dram at the appropriate points in time by nine four-to-one multiplexers. The spare input is for the DMA address described later. This function requires eighteen logic blocks for the multiplexers, and four logic blocks for the control circuitry.

Interrupt Acknowledge. The Interrupt Acknowledge function is very important to the
response time of the CPU to an interrupt from the serial controller. The CPU can always go and read the SCC registers to see which potential source caused the interrupt, but it is much more efficient for the SCC to put a vector on the bus, and thus force the processor directly to the correst routine.

The logic necessary is not complicated, being a shift register that generates four wait states for the $Z 80$, and a delayed read signal for the SCC_{i} and is ideal to implement in the FPGA architecture taking four logic blocks.

Direct Memory Access. DMA is a way of transferring data from a peripheral to memory (or vice versa) in any computer system. The Z80 family includes a DMA, but one of the advantages of the FPGA is that spare resource can be used to perform such functions. In this case the DMA is an eighteen bit up counter whose initial value is written by the $Z 80$. When a DMA request occurs, data is taken from the SCC and written directly into memory on a flyby basis, ie the microprocessor is bypassed, and the transfer lasts only a single execution cycle. In order to "grab" the bus, the FPGA needs to persuade the micro to let go via a bus request signal (two logic blocks), and then enable the DMA acknowledge line to the SCC (one logic block) while generating a write address for the dynamic rams, using the multiplexers described above.

The required circuitry will easily fit into the chosen device, and leave some room over for expansion for any other logic functions that may be required. The example is simple, but hopefully illustrates the concepts and flexibility of the $\mathbb{F P G A}$ architecture. Next month's article will consider the same design based on EPLD.

Fig. 7. Some of the routing resource available in the XC4000 family.

State machines - what are they?

Ctate machines are systems that change Srom one (stable) state (the current state) to another state (the next state) after the application of a clock pulse. A state in this case is usually defined as being a certain set of registers holding a unique binary value. The next state is determined both by the current state, and the value of any inputs to the state machine.
Thus virtually any digital system with a clock (or clocks) can be considered a state machine, but there are normally too many variables for the designer to hold in his mind and design with. The design of a microprocessor is a very typical example of this: it may be defined mathematically in terms of its next state, but it is extremely cumbersome to do so. For this reason the day to day usage of 'state machine' is reserved for (usually) small, (usually) fast pieces of logic performing a clearly defined function.
One familiar state machine is the traffic light, though they often seem to use a very
slow clock! The basic sequence of red to red and amber to green to amber and back to red is a very simple state machine, and can of course be modified by the lights on another junction, pedestrian push-buttons and various other options. (We hope that North American and European readers are not too confused by the concept of a red and amber state!)
In the world of digital electronics the classic example of the state machine is the binary counter. After a reset (state 0, say), the next required state is 1 , then 2 etc. The last state in the sequence will then feed back to the first state, thus closing the loop and giving ar intinite sequence. A counter state machine actually 'counts' by feeding back and logically combining the present outputs in a way that will generate the next desired value after the clock has occurred. The simplest form of counter is a divide-by-2 circuit using just one register or flip-flop $(\mathrm{flip}=$ state 0, flop $=$ state 1) with its output fed back through an inverter to its input, thus causing a change to the other state every clock pulse
in longer counters, the count length (i.e., number of possible states will be determined by how many registers are present, and is given by 2^{n}. For example a four bit binary counter has up to sixteen slates, five gives 32 slates, etc. Now the counter example is
all very well, but so far we have defined no real inputs; we are assuming that the counter will just move happily from one state to the next ad nauseam, and start again when it has finished. This is a useful circuit, but not very clever or efficient.
A typical counter will also have various other inputs to the state machine, such as a synchronous reset line, and a line to tell the counter whether to count up in binary, or to count down. It may also need other outputs such as a carry out for enabling another state machine. Outputs are generated by decoding the encoded output values. Referring now to the figure we can see the state drawing for the useful 2-bit binary counter (two bits was just chosen for clarity and brevity; longer counters are no more complicated). There are four states, represented by the four boxes which contain the encoded form of the current state, i.e. the current count. Movement between states is shown by the arrows, and the values next to the arrows are the values of the two inputs to our state machine, reset (RST) and up/down (UD), followed by the required output from the state machine, i.e. the carry (CARRY).
Thus if RST is ever one, the machine will move to state 0 with the output value of 0 or 1 depending on the value of the UD input, if UD is one, the machine will cycle clockwise, and if UD is low, it will cycle anti-clockwise. If we are counting up and reach state 3 , then the CARRY line goes high indicating a carry is present, whereas if we are counting down, the CARRY line is required to go high at state 0 indicating that a borrow is required.
Shown below are the equations generated to satisty the state diagram. These are written

Other features

The latest $L C A$ devices incorporate more system level features, which are intended to assist system integration. For example, the $X(\mp())(O$ has additional logic called "fast carry logic" which allows the designer to produce optimised arithmetic functions such as adders. subtracters, counters and accumulators. The additional logic is incorporated into each CLB on the device, and every CLB can be cascaded with its neighbour using dedicated highspeed interconnect. These are resource efficient because they remove the need to use the 'conventional' logic blocks to generate a carry signal. and they are fast because of the dedicated routing path.
The device CLBs also allow designers to access the function generator look-up tables directly and use them as fast ram. This means that fast fifos, parallel shift registers and small blocks of ram can also be incorporated efficiently into an FPGA based design. In fact, if rams are used in a design the effective capac-
in a form of hardware description language called $A B E L$ which is available from the CAE company Data I/O. We will discuss this method of data entry much more in the software section next month. Note the statement showing how the states are to be encoded in the registers.

module counter

title 'counter - encoded form'
"define the inputs
clock,ud, rst \quad pin;
"define some variables for the carry output equation

zero	$=$ count
three	$=$ sount
$==$	co

xilinx property 'initialstate zero'; equations
"define a clock count.clk $=\quad$ clock;
"define the carry output carry = (zero \& !ud) \# (three \& ud);
"define the state machine
state_diagram count
state s0: if (rst) then s0 else if (ud) then s1 else s3:
ity of the FPGA, measured in gate-array equivalent gates can easily exceed the usable gate figure which characterises the part. As an example. a long shift register can be implemented using a ram (cg 256×1), and a pair of counters. This is much more efficient than using the 256 flip-flops of a normal shift register. and will increase circuit density severalfold.

The EPLD Architecture

EPLD architectures differ markedly from FPGA. The devices themselves are mostly manufactured using a cmos eprom process and therefore dissipate more power than either sram or anti-fuse FPGAs. Their structure usually consists of a relatively small number (4 to 16) of large function blocks, each of which is effectively a high-end pal. The blocks are connected together via interconnect which provides 100% interconnectivity between each and every block and sub-block. The Xilinx EPLD architecture consists of four or eight
state s 1: if (rst) then s 0 else if (ud) then s2 else 50 ;
state s 2 : if (rst) then s 0
else if (ud) then s3
else s1;
state $\mathbf{s 3}$: if (rst) then s 0 else if (ud) then s0 else 52 ;

end

The example shown uses a small number of registers to encode the state value and is therefore known as the encoded state machine format. It is well suited to the pal and EPLD types or architecture which contain relatively few registers, and wide enough gates (high fan-in) to decode the feedback signals (remember that a single state in a 16 state machine, for instance, is encoded in four registers, and will always require a 4 input gate to decode it). The FPGA with a much higher number of registers and lower fan-in is far better suited to the symbolic or one-hot form of state machine. In this format, one register is used per state, and only one register can have a high output at any time, thus cutting down on the possible feedback combinations, i.e. to feedback a single state requires only one line.
Both data entry methods are equally valid. The counter can be implemented in either encoded or symbolic form according to the target architecture, and (to a certain extent) the efficacy of the logic optimisation software.
More about this subject next month.
function blocks, each ol which contains nine sub-blocks called macrocells. It is the macrocells that contain the AND-OR logic typical of an EPLD. The function blocks are connected together by the universal interconnect matrix. Figure 8 shows the EPLD structure of a Xilinx XC7272 EPLD device which has eight finction blocks.

The Function Block

Each function block in a Xilinx EPLD contains nine macrocells. There are 21 inputs to each black from the universal interconnect n-atrix (UIM), and these feed a programmable AND array. Figure 9 shows the plan of a single function block. Each macrocell has five exclusive or private product terms which allow a degree of flexibility within each function block. There are also twelve product terms which are shared between all 9 macrocells in the function block. The product terms feed into a set of OR gates to produce the familiar "sum-of-products" expression which was detailed in last month's issue.
Most EPLDs have this basic structure in common, although the number of blocks available and the structure of the AND/OR array varies considerably between manufacturers.

The Xilinx EPLD incorporates an ALU in its macrocell. The ALU block can implement any function of two variables, as well as an ADD function with fast-carry. This enables the macrocell to implement fast adders and other arithmetic functions efliciently.

EPLD interconnect

Almost all EPLD devices provide 100% connection hetween each and every module, and i/o blocks. This allows EPLD manufacturers to characterise the maximum interconnect delay and combine it with the delay through the makrocell. Therefore the interconneet delay is effectively rero, but the logic block delays are longer than those for an FPGA. This characterisation allows the designer to know precisely the delay through each section of their logie design before committing to siticon. Timing simulation is therefore less of a necessity, and many engineers prefer to satrifice some degree of flexibility, in order to have this level of control over their design's perfornance.
Every EPI.D manufacturer provides a different style of interconned architecture. Each interconnect scheme aitns to improve the thexibility of routing, without losing the advantage of predietability. For example, the Xilinx UIM has a feature of being able to wire-Avo signals which are commoned logether on the same intercomect line. This means that very large product term funetions can be made with zero effective delay. This is an espectally useful feature for decode finctions and for complex s:ate-machine designs.

EPL D, are starting to appear in technologies other than eprom. There are a number of companies who have eeprom, and others are planning to develop llash components ats well.

These products consume less power than eproms. and may be programmed on-theboard, a major system leature.

Architectural comparisons

EPLDs pay for their predictability with a lach of tlexibility. For example, if a designer has 10 use two macrocells in series to provide a particular function. then the configuration incurs a large delay. Also, if not all the terms in a macrocell are used, then much potential functionality has been wasted.

The logic blocks in the FPGA are smatler and quicker than those of the EPLD. But it is only after the blocks have been placed and the interconnect routed that all the path delays can be calculated and the design evaluated to see it the system performance requirements have been met. For these reasons. EPLDs lend themselves 10 regular. synchronous designs such as state machines. address decoders and large binary counters. FPGAs are ideal for register rich circuits. multi-level logic applications and fast pipelined designs.
The two market segments overlap in many areas, and work is being carried out to make
each methodology more compelitive with the other. These developments are being made both in hardware and software design. Sone EPLD manufacturers are designing new families of devices which will have a variable level of predictability, depending on which type of interconnect is being used. For example. blochs connected vertically deliver a known propagation time, but connected bori\%ontally will result in a different, unspecified delay. This approach is mahing the EPLD more like the FPGA.

Another approach uses software engincering to remove unpredictability over critical paths. The designer tells the software about the fiming requirements of his design. such as clock-to-setup and pad-to-pad for the critical paths. and the logic is subsequently partitioned and routed to try and meet these requirements.
This example illustrates the extremely important role that the software plays in the design of FPGAs and EPLDs. In the next issue we shall explore the developments that are heing made in software to exploit both products to their full potential.

Fig. 8. A typical ELPD structure. This is the Xilinx XC7272 device.

Actel field programmable gate arrays

A ctel has taken a different approach to uilding configurable logic with antifuse technology, a system which builds permanent circuit links in silicon. Although this may provide speed and density advantages, once programmed, a device cannot be erased and reprogrammed. Contrast this with an FPGA based on a static ram or eprom overlay technology.
The PLICE (programnable low impedance circuit element) antifuse is a dielectric-based element consisting of an oxide-nitride-oxide structure. The ONO antifuse, sandwiched between N_{+}diffusion and $N+$ polysilicon, is placed in a dense array limited only by metal pitches.

When a programming voltage is impressed across the normally open antifuse structure, the insulating layer breaks down and a bi-directional lowimpedance connection is established by the formation of a polycrystalline structure between diffusion and polysilicon. By choosing a programming voltage, the antifuse can be programmed within one millisecond, and exhibits resistance distribution centred at 500Ω.

Fabrication of the PLICE antifuse takes three additional mask steps on a conventional 12-mask, double layer metal, twin tub cmos technology. The antifuse element (see figure, left) has the area of a typical semiconductor contact or via and occupies $1.5 \mu \mathrm{~m}^{2}$ using a $1.2 \mu \mathrm{~m}$ process.

Architecture

Actel FPGA architecture uses antifuse elements for electrically programmable interconnections. The architecture exhibits the familiar channelled gate array organisation - rows of fine granularity logic cells interspersed with routing channels. Where it differs from a traditional gate array is that instead of including an area for custom metalisation, the channels contain wiring segments of various lengths that can be connected to the required logic by the programmable low impedance antifuses.
This architecture consists of a logic module matrix arranged in rows separated by wiring channels. Within these wiring channels are segmented horizontal tracks. Vertical interconnect tracks span the rows of logic modules and horizontal wiring channels. PLICE antifuses located between track segments and at the intersections of the horizontal and vertical tracks, connect nets together and logic module inputs to outputs. During programming, antifuses are selectively programmed to complete the connections required by the circuit applications. The figure, right, details a section of Actel's field programmable channelled gate arrays showing a subset of the tracks, antifuse elements and interconnect architecture. Inputs to logic modules span the adjacent routing channels whereas outputs span two channels in either direction. In addition uncommitted vertical tracks span several rows of modules.

ACT1 Family

The first family of Actel FPGAs consists of two members, the 1010 and 1020 offering 1200 and 2000 gates respectively. The logic modules are all identical with eight inputs and one output. The basic functionality of the module is a 4 to 1 multiplexer with a gate on one of the select inputs. This function allows implementation of basic logic functions by simply connecting relevant inputs to V_{cc} or Ground. Level sensitive latches are implemented in one module by applying feedback to the element. Edge triggered flipflops are produced by combining two modules in a master-slave configuration.

ACT2 Family

The ACT2 family provides devices up to 8000 gates, with 16 -bit counter performance in excess of $80 \mathrm{MHz}, 16$ bit accumulators over 30 MHz and system level performance to over 50 MHz .
The logic modules are again arranged in rows separated by fixed segmented routing channels. The logic modules have been enhanced slightly and consist of two types, Combinatorial (C Module) and Sequential (S Module). The C Module has been enhanced over the ACT1 module to implement higher fan-in combinatorial functions such as 5 -input AND, OR, NAND and NOR gates. In addition a wider range of ANO-OR and AND-XOR gates are available in a single module. The S Module is optimised to implement high speed flip-flops and latches within a single module and includes combinatorial logic that allows an additional level of logic to be implemented without additional propagation delay. Table 2 indicates the main teatures of this family.
For highly combinatorial designs, the S module can function identically to the C module. For register intensive applica-

LOW COST RANGER1 PCB DESIGN FROM SEETRAX

- Circuit Schematic
- Circuit Capture
- PCB Design
- Host Of Outputs All-In-One Design System $£ 100$

Fully Integrated Auto Router $£ 50$

Ask Us About Trade-In Deals Call Now For Demo Disk on 0705591037 Seetrax CAE • Hinton Daubnay House Broadway Lane • Lovedean • Hants • PO8 0SG Tel: 0705591037 • Fax: 0705599036

REDUCED
PRICE!

Pay by Visa or Access

CIRCIE NO. 128 ON REPLY CARD

"VALVES TRANSISTORS

We are one of the largest stockists of valves etc in the U.K.

CALL ов PHONE

 for a most courteous quotation.0817430899
COLOMOR
ELECTRONICS
LTD

170, Goldhawk Road, London, W12 8HJ

FAX 081-749 3934

CIRCIE NO. 130 ON REPLY CARD

Design it yourself
 linear asic

UK semiconductor company Zetex has used its new linear semicustom bipolar process to produce the first members of a standard product linear family. You too could be designing low cost, low volume linear asics. By Hans Camenzind and Dave Brotton*.

Fitling a bandgap voltage reference into an SOT23 package - which measures $0.84 \times 0.84 \mathrm{~mm}$ - requires a small chip. A knee current of 6) $\mu \mathrm{A}$ requires large resistor values which consume chip area. Totally incompatihle?' A new Zetex linear asic array uses geometries small enough to fill into an SOTZ3 pachage. It has used its own $70(1)$ series asic system to produce the ZRA family standard product voltage references using 19 transistors and $90 \mathrm{k} \Omega 2$ of resistance.

The heart of any low-voltage reference is the bandgap circuin. This hasically consists of an unbalanced transistor pair. Transistors $T_{1}, T_{r} r_{2}$ and $T_{\text {; }}$; are comected in parallel and, together. they have six emitters. The right-hand side of the pair consists of only $T r_{+}$, with a single emiter. The transistors being unequal, the pair has an olfset voltage. Fortunately, this voltage is one of the rare parameters that is not dependent on the process: it depends only on the ratio of the emitter areas:

$$
V_{B / 1}^{\prime}-l_{B K 2}^{\prime}=\frac{k T}{4} \log _{n \prime}\left(A_{1} / A_{2}\right)
$$

where h is the Boltzmann constamt. T is the absolute temperature in Kelvin, q is the electron charge, and A_{1} / A_{2} is the ration of the two emitter areas. For 6:1 emitter ratio we get at room temperature:

$$
V_{B E, 1}-V_{B E, 2}=\frac{k T}{q} \log _{n} 6 \quad=46 \mathrm{mV}
$$

This is a small voltage. but a useful one nevertheless. Note that. with T present in the equation. this voltage has a strong positive temperalure coefficient.
The offset voltage is only exact if the collector currenss in T_{1-s} and $T_{r_{-}}$are equal. This is the job of Trs a dual collector PNP transisfor (one of the many configurations made from the basic convertible transistor cell on the 7(0) Series chips). It is connected as a current mirror: the collector current of Tr_{1-3} is returned to the collector of T_{+}without changing its magnitude.
We now take this small. temperature dependent offise voltage. put it across a ressistor $\left(R_{1}\right)$ and add more resistance at both ends (R_{2} and R_{3}). If this resistor string is in a feedback loop. the voltage will adjuss itself so that there is exactly 46 mV across $R_{/}$(only then are the currents of the transistor pair balanced). This means that all resistors together drop $46 \mathrm{mV} \times$ $27=1.242 \mathrm{~V}$. still with the same positive temperature coefficien.
The $7(x)$ lineall array includes only one value of (diffused) resistor: 750S2. A single resistor gives consistent ratios. Different resistor values are created by parallel or series connection. In the diagram the ressistor values are given as multiples of basic resistors. eg 13 is $1.3 \times 0.75 \mathrm{k}=9.75 \mathrm{k} \Omega$. Note, however, that the multiplied voluage does not depend on ahorolute resistance, only on ratios. (The reason we placed the additional resistance at both ends of $R /$ is 10 give the transistors maximum operating headroom).

Going for cancellation

Diocles have a nequative temperature co-efficient and this patrameter. too, is indeperement of the process, at least to the first order. In ICs, diodes are made from tramsistors, which also makes them more accurate. If we add two such dionde-connected tramistors and connect them in series with the rexistor uring. we get a canceltation of temperature coefficients. Exact cancellation only happers in integerv of 1.25 V the bandgap voltage of siticon. Here "C dimensioned the resistor ratio) on that the delta
 that of two diodes: thus the total wotage amounts 102.5 V .
A second PNP stage Tr m $_{\mathrm{s}}$ and anl NPN darlington sutput stage. Trio and 7 Fin close the feedlack loop. Tr/w is a large tramistor capahe of hendling up 10.200 mA . thun evtending the current range hy an order of magnilude over cormpetitive devices.
Closing the feedbach loop creater a potential stability problem. Though the feedbach is neg-

DESIGN YCIUR OWN LINEAR CHIP

There are eight arrays in the 700 series. The smallest one fits into any SMD pachinge from SOT23 (upwa ds. The remaining seven chips form a smo eth progression in size: ei ch chip is approximatel, 30% larger in area t an the previous one.
Each array :ontains the same basic components and is based on an identic al are hitecture. In the centre zortion of the arrays are islands of 12 transistors each, 10 of which are covertible from NPN to PNP and two are Schottk\% NPN. These islands are wurrounded by a field of resistors. The number of resistors.and the -otal reistance is extra large which makes the IC easier o design. All devices are made with a relat vely small geometry process returning a typical $f_{!}$of 800 MHz ard 20 V operation.
Between the bonding pads along the periphery are all ther devices: large (200 mA) npn transistors, 6mA PNP devices, high value resistors and junction capacitors. Sprink ed throughout each array are low valle e cross-under resistor,.
Array design software runs on a standard $386 \mathrm{P}=$. Eact semicustom chip made by the Zetex process has an associated non-recurring enjineeri y charge of about $£ 300 \mathrm{c}_{\text {. Time to }}$ sampling is typically around four weeks. There is no low-volume limitation. A device can move to volune production in eight to ten weeks from initial design.

Closing the feedback loop with a bias string. The resistor values refer to multiples of 750Ω.

Adding the bias currents through current mirrors. The 200 mA output transistor allows exceptional dynamic range for a bandgap reference.

Knee current of the reference -less than 40uA

Temperature performance as obtained by Spice analysis.
ative, each stage adds some delay and, at some frequency, the phase lag is large enough to cause the feedback to become positive. At this point the entire circuit oscillates provided that the loop gain is greater than unity. To prevent this from happening, C_{l} is added, a 20 pF junction capacitor, which rolls off the frequency response of the loop so that gain is less than one at an added phase shift of 180°.

There is one further factor for consideration. There is a small error in the current mirror, Tr. . The current delivered by Tr $r_{-, 3}$ must supply the base current of T_{5} and this portion of the current is not returned by T_{5}. For a lateral PNP transistor, h_{FE} can be as low as 40 , giving an error of up to 5% in current, or 1.3 mV in offset voltage. We can remedy this by having T_{8} operate at exactly the same current as $\operatorname{Tr}_{5}\left(\mathrm{I}_{1}=\mathrm{I}_{2}\right)$, in which case Tr_{8} takes as much current from the right side as $T r_{5}$ takes from the left.

The circuit shows how this is accomplished. Transistors $T_{1 /}$ and T_{12} derive their currents from Tr_{7} and their currents are lowered by emitter resistors. As long as resistors and transistors are identical, the two currents match. In this diagram we also added a "pinch" resistor (R_{4}, a less accurate, but higher value resi.stor) to divert leakage current from the base of Tr_{10} at high temperature.

The final circuit diagram shows something else: there is only one resistor string, ie the multiplication of the offset voltage and the generation of the bias currents are performed by the same resistors. In addition their values need not be exceptionally high because they are only connected across approximately half the total voltage. Thus, with less than 90 kS of resistance, we were able to achieve a knee current which is significantly below that of competitive devices.

Model design

Good models help considerably in the design of this type of circuit. Circuit analysis programs such as PSpice allow the voltage to be plotted directly against temperature. You run the analysis several times, varying R_{2} (or R_{3}) until the curve no longer has a tilt to it. You will notice the characteristic bow in the curve plus an increase at the high-temperature end. The latter is noticeable primarily with lowcurrent circuits, when leakage currents start introducing small errors. We find that, with our refined models, we can predict a bandgap voltage within 50 mV and the temperature coetficient within $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. With what many people consider to be a limitation of a semicustom chip, we were able to design a voltage reference device - the ZRA 250 - which exceeded the performance of full-custom alternatives for every parameter.

ZRA250 FREE SAMPLE

To get your free ZRA family sample, simply fill in and send off the special reply card located between pages 1024 and 1025. Please make sure that you answer all the questions included on the card.

Please note that sample distribution is being handled directly by Zetex from their Lancashire headquarters.

If you've never bought a dodgy copier, telephone, answering machine, PC, printer or fax, you're lucky.

(Or you already get What to Buy for Business.)

What to Buy for Business magazine is the UK's only independent guide to business equipmert and services. Because we carry no advertising at all, we can afford to be entirely impartial.

So, whether you're leasing a photocopier or
 buying a computer system, we'll give you professional, unbiased advice. Every issue of this monthly magazine saves you weeks of time spent on desk research, visits to dealers and conversations with reps.

Thanks to our meticulous comparisons of manufacturers, brands and product features - with clear summaries and recommendations - you'll never buy a dodgy anything again.

$£ 30$ off, when you subscribe

 before November 30th, 1992.Subscribe before 30th November 1992 and benefit from our speciai introductory offer to new subscribers. The next 10 issues will onlw cost you $£ 69$. which is $£ 3()$ less than our usual rate of $£ 99$.
Just return this coupon to What to Buy for Busuness. Subscriplions Deprartment. FREEPOST, Central House. 27 Park Strect. Croydon. Surrey CR9 IWZ.

1. I enclose a cheque for toty made payable to What To Buy for Buwiness. 'ـ
2. Please debit my credit card with E 69 」 \lrcorner

」Access \quad - Barclaycard $\quad \perp$ Visa	\lrcorner Diner,	AAmex
Account number.	Expiry date	
3. Pleate invoree my company for 660 d	Signature...	
Name..	Job Title.	
Company.		
Addres	ACC30	
	What to Buy for business	
Postcode - - - . - .a.a....... Tel.......................		
Or call our subscription hotline: 0816802828		

The series of articles "Interfacing with C" by Howard Hutchings presented the basics of interfacing C with real world signals. John
Edwards examines some of the technical points raised in the original series and extends them further.

EXTENDED C INTERFACING

Revised software listings featured in this article are now included on the "Interfacing with C " disc.

See page 1031 for details.

This article follows on from practical application of the programs and theories presented in the original series of articles. Dr Hutchings excellent series dealt with many difficult but crucial topics, some of which deserve further explamation. In addition to presenting the modified and extended versions of the originals, this article also presents another aspect of digital signal processing not covered in the original article: adaptive fillering.
Referring to the original series, the first chapter deals with memory and i/o space. Listing / specifically says reading i/o space. using pointers. The 80X86 architecture has two external, though somewhat intertwined systems: the memory bus, in which all program and data resides, and the i/o bus which is used for peripherals in the case of the $\mathbb{P C}$. Each bus is designed to meet a particular requirement. The memory map can be accessed via pointers and segment/ofifet registers, while the i/o map is accessed via specific input and output machine code instructions (in and out).
C pointers do not call the input and output functions and neither can the input and output
functions access memory. For these reasons listing /./ does not read peripherals" i/o bus and though it may be safe when reading data, could potentially be disastrous when writing to memory.
As an explanation, the PC, when it loads a program, will relocate it to the most appropriate memory area and indeed a single program, when run twice, can be loaded to two different memory areas. Therefore if a program were to write to a fixed location in memory without first checking as the example does, it could overwrite any part of the program or operating system. Anyone who has written programs to write directly to the memory map like this will appreciate that alack of care could end with disastrous consequences.
A lurther situation that could potentially cause bugs concerned buffer allocation on the stack. Several of the examples in the series declared arrays locally to a function. This action places them on the stack, not always a good idea, because Microsofi C uses a defaulı stack size of $2(048$ bytes. Several of the examples use multiple local buffers of 1024 floating point words (4096 byles), plus several other variables and structures. Although the stack
casily overflowed, all the examples can and do run. The reason they appear to run correctly is that heap and program space is generally allocated from the opposite end of a memory segment to the stack. When you want to use the examples in a real application, the code and heap space will grow and very soon meet the stack in the middle. Although the system may run several times before crashing, the program will be impossible to debug because the compiler or linker will not be able to warn of potential problems.
In most C compilers there is a command line switeh to increase the stack size but a fairly major point about using the stack is that it takes time during the function call to initialise it. the stack being accessed via indirect memory references. Program execution is much more efficient if the array is declared global and pointers are used. Many sources will indicate that this is not necessarily good programming style; real signal processing sys-
tems with compact code demand performance as a higher priority.
The Discrete Fourier Transform example. program 6./. showed the application of the principle in analysing real world signals via synthesized data. Following the DFT was a description of the theory behind the FFT. which leads into the code for the FFT itself The first thing that struck me about the output of the FFT was that it was totally out of scate for the input. In order to discover the cause it was necessary to take a step back and feed in the known source data into the DFT examples and compare the FFT results with the known output of the DFT. The FFT result appeared wrong and the program frequently crashed out into dos.

Code debugging used some simple techniques to print out successive results; the appropriate lines of code still remain in the modified version to show how they were used. The debug statements were surrounded by an

IFDFF(), FVIIF:() pair and if DEBUG is defined al the top of the program or on the compile command line, the PRINTF() statement outputs successive results to the screen, bin by bin. so that errors can be spotted and bugs removed.
The largest source of the error derived from the most fundamental of C programming mistakes: C array offsets start at 0 not l. This error is typical when the original source of a progran is Basic or, more often in DSP, Fortrar. The array indexing. for loops and conditional branches were modified to remove the bug, and code worked with the test data. The importance of this is that if a 128 point array for example is indexed from I instead of 0 , the last sample will in fact be the next variable or array, which will get overwritten after 128 points.
Another potential source of error concerned the basic programming rule: wse meaningful names for variables. The names chosen had no relation to the actual use of the variable.

$a=a / 2 ;$

for $\left(t=0 ; f<a ; f_{++}\right)\{$
$c 0=\cos$ (theta)
si $=\sin ($ theta);
theta $+=$ theta_inc:
size, $\mathrm{g}=\mathrm{u}^{*} \mathrm{~d}$)
$h=g-d+f ;$
$=h+a ;$
$k=\operatorname{ar}[h]-\operatorname{arf} ;$
$a r[h]=\operatorname{ar}[h]+a$
$a[\mathrm{~h}]=\mathrm{ai}[\mathrm{h}]+\mathrm{ain}]$;
$a r[\}=c 0^{*} k+s^{*} \mid$
aid $=\cos ^{*}-\mathrm{sin}^{*} k$;
\}
thetrinc $=2.0$
or $(r=0, m=0 ; r<$ transtorm_size: $r++1)$
if $(r<m)$,
$k=a r[m]$;
$1=a[m] ;$
ai $[m]=$ ai $[r]$
$\operatorname{arfr|}=\mathrm{k} ; \quad \mathrm{ain} \mid=l_{;}$
\}
while $((s<=m) \&(s>=1))\{$
$5=2$.
\}

for $\langle=0 ; i$. transform_size; $i++1$
real_sum $=$ ar[i] $/ \mathrm{FFT}$ SIZE;
imag.sum $=a_{i[i]} / F F T$ SIZE;
n_sq_power)
I Square root improves graphic display
mo
ineto (graph_y, (init) $\left.\left(-100.0^{*} \mathrm{mms}\right)\right)$)
\#fdef DEBUG
ion (22, 20);
(real $=\%$, imag $=\%$, ar $[1]$, alin)
while (!kbhit())
\#endif
settextposition $(20,20)$;

- outtext ("Hit any key to exit...");
whie (:horit)
setvideomode(DEFAULTMODE);
axit (0)
;

COMPUTING

Example 2

(* 128 Point Real FFT *
\#include <sidio.h>
*include <math.h>
\#include <graph.h>
\#nclude <conio.h>
\#include <stdilib.h>

\#define	FFT_SIZE 128	
\#detine	HALF FFT SIZE	64
\#define	FLOAT_FFT_SIZE	128.0
\#define	LOG2SIZE	
\#define	Pl 3.14159	
\#detine	SINE TABLE_SIZE HALF_FFT_SIZE	
struct	videoconfig scre	
double	window_table[FFT_SIZE];	
double	sine[SINE TABLE SIZE].	
cosine[S	TABLE SIZE]; P	able arrays */
double	ar[FFT_SIZE], ail FFT_SIZE] $^{\text {a }}$	/t Real \& Imag data arrays *"
void main(void)		
(
int	i. j, k, num_blys, bfily cntr, g, h, u;	
int	angle, angle inc;	f* Angle to step thro $\sin \&$ cos tables $\%$
double	real tmp imag_tmp;	
int	graph_y;	
double	real_sum, imag_sum;	
double	theta_inc, theta, co, si, mean_sq_power, ims;	
double	"to, "wp;	

/* Config video mode and draw axis *
setvideomodeL DEFAULTMODE
setvideomode (HRES16COLOR):
ciearscreen(GCLEARSCREEN):
settkcolor (GRAY):
_getvideocontig(\&screen_size):
_setlogorg(screen_size.numxpixels/4, screen_size.numypixels/2);
.moveto (0,0);
-lineto $(320,0)$;
moveto $\quad(0,0)$
lineto ($0,-90$);
_settextcolor (3);
settextposition (4, 8);
outtext ("I.m.s. power":
settextposition (14, 50);
outtext ("Frequency (Hz)";
for $\left(i=0 ; i<F F T S I Z E ; i_{++}\right)\left\{\|^{\prime}\right.$ Synthetic real signal ${ }^{\prime} /$
 ai[i] $=0.0$;
\}
theta inc $=2.0^{*}$ PI/ FLOAT FFT SIZE;
angle_inc $=1$;
" Generate Sine and Cos tables *
for $(\mathrm{i}=0$, theta $=0.0 ; \mathrm{i}<$ SINE TABLE SIZE $; i++$, theta $+=$
theta_inc) \{
$\operatorname{cosine}([i=\cos (t h n t a) ;$
$\operatorname{sine}[[]=\sin (t h e t a):$
sine[i] $=\sin ($ (theta $)$:
Generate window table *
for $(\mathrm{i}=0$, theta $=0.0 ; \mathrm{i}<$ FFT_SIZE; $i+$, , theta $+=$ theta_ inc $)$ window_table $[1]=0.5^{*}(1-\cos ($ theta $)$;
Hanning window"
"Apply window to real data "/
$p=a r$
$\mathrm{p}=$ window_ table
for $(\mathrm{i}=0 ; \mathrm{i}<$ FFT_SIZE; $;++$)
"pp+ $=$ " $w p++$
num_blifs = HALF_FFT_SIZE
angle $=0$;
$h=0$;
j= HALF_FFT_SIZE;
/"First stage *
 $\mathrm{co}=$ cosine[angle]

Outpul from listing 2

Hit any key to exit..

```
si= sine[angle];
angle++:
real tmp =ar[h] -ar[j];
ar[h] = ar[h] +ar[j];
ar[|| = co'real_mp;
aij] = sitrea_.mp;
h+t;
j++;
```

angle inc $=2$;
for $(\mathrm{i}=1 ; \mathrm{i}<($ LOG2SIZE -1$) ; i++) \mid$
[Middie stages */ $k=$ num bfiys;
num_bily $s \gg=1$
angle $=0$;

$c 0=$ cosine [angie];
si $=$ sine [angle);
angle $+=$ angle n inc;
for $\left(g=k, u=1 ; g<=\right.$ FFT_SIZE; $\left.g=u^{*} k\right) \mid$

$$
u+t ;
$$

$h=g-k+b$ bly $_{-}$cntr;
$1=h+$ num_bitys:
real $_m p=a r[h] \cdot a r[] \mid$
imag_tmp $=$ ai[h] - ai[$]$
$a[h]=a r[h]+a r[j ;$
$a[i[h]=a[i[h]+a i[j ;$
arij] $=$ co*real_imp \cdot s * timag_tmp allj $=$ co 0^{*} imag_t $m p+$ sitreal_mp 1
1
angle_inc $\ll=1$;
)
$\quad \stackrel{\text { Last stage }}{ }{ }^{*}$
for $(h=0, j=1 ; h<$ FFT SIZE: $h+=2, i+=2)$
real_tmp $=a[h]-a r[j] ;$
imag_tmp $=a[h]-$ aili]
$a r[h]=a r[h]+a r j] ;$
$a i(h)=a[h]+a[i] ;$
ar[ij) = real tmp;
ai[j] = imag_mp;
\}

$$
\text { for }(j=0, i=0 ; j<\text { FFT SIZE } ; j++1)\{
$$

if $j<1$)
real_tmp $=a([i) ;$
imag_tmp $=$ a $[$ il $]$
ar[i] = ar [i];
a[ifi $=$ a $[$ [$[$];
arij = real tmp;
ai[] = imag_tmp;
\}
$k=$ HALF_FFT_SIZE;

getchi):

setvideomode(_DEFAULTMODE): exit(0);
\#ifdet DEBUG
lineto (graph y. $y_{1}\left((\mathrm{~m} t)\left(-100.0^{*} \mathrm{~ms}\right)\right)$):
settextposition (22, 20)
print $\left\{\right.$ "real $=\%$, imag $=\% f^{\prime \prime}$, arif], ami]);
while (!kohit)
getch();
\#endit
settextposition (20, 20),
outtext ("Hit any key to exit...");
while (llkbhit())
\}

Example 1 shows the modified program which was verified against the data for the DFT. This is by no means optimal, but is functional. A typical example of the easy optimisation possible was to generate a sine and cosine table at the start of the program and use this rather than the $\sin ()$ or $\cos ()$ functions to generate the iwiddle factors when performing the FFT.
Example 2 has been optimised to produce practical code. It executes a real FFT algorithm'. To give some idea of efficiency, it has been used in a real application using a TMS32()C.30 floating point DSP, processing data at up to 35 kHz . This is about one fifth the speed of an optimised assembler version.
The theory of processing real data is similar to processing complex (real+imaginary) numbers: because the input data has no complex part there are computational savings since not
all the points need to be computed. The noncomputed points do not need to be saved so there are storage savings as well.
The real data, unlike the imaginary data, of the FFT is symmetrical about zero frequency and therefore any point (k) of an N foint FFT can be computed using samples $0<=k<=$ $N / 2$, ie only using half the data. Example 2 has been adapted from an IEEE paper on the subject of real FFTs ${ }^{1}$, but the maths is not for the faint hearted. As a matter of personal interest the reader may zare to compare the processing efficiencies of the examples in this article with the originals although these examples are not fully optimised by any means.
In addition to the FFT, the real FFT example also performs a Hanning window on the data. The effect can be compared to other window functions by simply changing the cquation that initialises the window.

Fig. 1 Block diagram of the adaptive filter demonstration program.

Example 3

/ 128 Point LMS Adaptive filter test program "
\#include <stdio.h>
\#include <math.h>
\#include <graph.h>
\#include <conio.h>
\#\#include <stdlib.h>
\#ninclude <lime.h>
l' Dectare constants *

\#define	LMSSTEPSIZE	0.02	
\#deine	LMSLENGTH 128		
\#define	ECHOLENGTH $\quad 128$		
	Initalise echo path fiter coefficients ${ }^{*}$		

double echopathtaps[ECHOLENGTH]=
$-5.34266824816 E-0004,1.24568792546 E-0003,8.73278953630 \mathrm{E}-0004$, $4.37786545396 \mathrm{E}-0004,1.57576481250 \mathrm{E}-0003,-1.38557006660 \mathrm{E}-0003$, $1.90710297624 \mathrm{E}-0004,-1.85794214656 \mathrm{E}-0003,-2.00704829381 \mathrm{E}-0003$, $2.40455797115 \mathrm{E}-0004,-2.04022181601 \mathrm{E}-0003,2.71242012844 \mathrm{E}-0003$, $8.82181294290 \mathrm{E}-0004,2.06390803758 \mathrm{E}-0003,3.46115122350 \mathrm{E}-0003$, $-1.75033817834 \mathrm{E}-0003,1.86645226647 \mathrm{E}-0003,-4.19706616768 \mathrm{E}-0003$ $-2.84686649762 \mathrm{E}-0003,-1.38480747151 \mathrm{E}-0003,-4.84877083488 \mathrm{E}-0003$ $4.15691399504 \mathrm{E}-0003,-5.59004695862 \mathrm{E}-0004,5.33078655121 \mathrm{E}-0003$, $5.64663098926 E-0003,-6.64415849217 \mathrm{E}-0004,5.54512386900 \mathrm{E}-0003$, $-7.26170537971 \mathrm{E}-0003,-2.32956984257 \mathrm{E}-0003,-5.38280517195 \mathrm{E}-0003$ $-8.92656985171 \mathrm{E}-0003,4.46954409718 \mathrm{E}-0003,-4.72452163230 \mathrm{E}-0003$ $1.05439735389 \mathrm{E}-0002,7.10658444744 \mathrm{E}-0003,3.43906801399 \mathrm{E}-0003$, 1.199421 17579E-0002,-1.02552167173E-0002, 1.37716894902E-0003 $-1.31325730564 \mathrm{E}-0002,-1.39301212180 \mathrm{E}-0002,1.64388322268 \mathrm{E}-0003$ -1.37820329052E-0002, 1.81624192809E-0002, 5.87454453127E-0003, $1.37146029376 \mathrm{E}-0002,2.30328314183 \mathrm{E}-0002,-1.17097244170 \mathrm{E}-0002$, $1.26049642763 E-0002,-2.874409+1303 E-0002,-1.98723865258 E-0002$, $9.90924135116 \mathrm{E}-0003,-3.58018612026 \mathrm{E}-0002,3.19153948705 \mathrm{E}-0002$, -4.50363677305E-0003, 4.55694407950E-0002, 5.19287403766E-0002 $-6.69120481527 \mathrm{E}-0003,6.26204030713 \mathrm{E}-0002,-9.50703908154 \mathrm{E}-0002$ $-3.71802059842 \mathrm{E}-0002,-1.13988434152 \mathrm{E}-0001,-2.98431997465 \mathrm{E}-0001$ 4.24370110064E-0001, 4.243701 10064E-0001,-2.98431997465E-0001 $-1.13988434452 \mathrm{E}-0001,-3.71802059842 \mathrm{E}-0002,-9.50703908+54 \mathrm{E}-0002$ $6.26204030713 \mathrm{E}-0002,-6.69120481527 \mathrm{E}-0003,5.19287403766 \mathrm{E}-0002$, $4.55694407950 \mathrm{E}-0002,-4.50363677305 \mathrm{E}-0003,3.19153948705 \mathrm{E}-0002$, $-3.58018612026 \mathrm{E}-0002,-9.90924135116 \mathrm{E}-0003,-1.98723865258 \mathrm{E}-0002$ $-2.87440911303 \mathrm{E}-0002,1.26049642763 \mathrm{E}-0002,-1.17097244170 \mathrm{E}-0002$ $2.30328314183 \mathrm{E}-0002,1.37146029376 \mathrm{E}-0002,5.87454453127 \mathrm{E}-0003$, 1.81624192809E-0002, -1.37820329052E-0002, 1.64388322288E-0003, $-1.39301212180 \mathrm{E}-0002,-1.31325730564 \mathrm{E}-0002,1.37716894902 \mathrm{E}-0003$ $-1.02552167173 \mathrm{E}-0002,1.19942117579 \mathrm{E}-0002,3.43906801399 \mathrm{E}-0003$ $7.10658444744 \mathrm{E}-0003,1.05439735389 \mathrm{E}-0002,-4,72452163230 \mathrm{E}-0003$ 4.46954409718E-0003, -8.92656985171E-0003, -5.38280517195E-0003, $-2.32956984257 \mathrm{E}-0003,-7.26170537971 \mathrm{E}-0003,5.54512386900 \mathrm{E}-0003$ $-6.64415849217 \mathrm{E}-0004,5.64663098926 \mathrm{E}-0003,5.33078655121 \mathrm{E}-0003$ 5.59004695862E-0004, 4.15691399504E-0003, -4.84877083488E-0003, $-1.38480747151 \mathrm{E}-0003,-2.84686649762 \mathrm{E}-0003,-4.19706616768 \mathrm{E}-0003$ $1.86645226647 \mathrm{E}-0003,-1.75033817834 \mathrm{E}-0003,3.46115122350 \mathrm{E}-0003$, 2.06390803758E-0003, 8.82181294290E-0004, 2.71242012844E-0003, $-2.04022181601 \mathrm{E}-0003,2.40455797115 \mathrm{E}-0004,-2.00704829381 \mathrm{E}-0003$ $-1.85794214656 \mathrm{E}-0003,1.90710297624 \mathrm{E}-0004,-1.38557006660 \mathrm{E}-0003$
1.57576481250E-0003, 4.37786545396E-0004, 8.73278953630E-0004,
$1.24568792526 \mathrm{E}-0003,-5.34266824816 \mathrm{E}-0004$
1;
double oldimstaps[LMSLENGTH];
double Imstaps[LMSLENGTH];
double ecropath [ECHOLENGTH, Imsfite: LMSLENGTH];
int
ectrostart_index, Imsstar_index, Ir-sfilitstart_index;
main(woid);
fir. filter (double);
Ims_fliter (doubie);
ims (double);
vidzoconfig screen_size,
"Imstaps_ptr, "Imsstate ptr;doubie "echopathtaps_ptr, "echopathstate_ptr;
doubie
int
double data, replica, echo, error, Imsstep;
graph y;
void main(void)
I
for $(i=0 ; i<$ FILTER SIZE; $i++)\{$
Imstaps $[i]=0.0$;
\}
srand ((unsigned nt) time); P Randomise the seed "/
f^{*} Config video mode and draw axis */
setvideomode (DEFAULTMODE):
_ setvideomode(HRES16COLOR);
_clearscreen(GCLEARSCREEN);
setbkcolor(GRAY);
getvideoconfig(\&screen_size);
_setlogorg(screen_size.numxpixels/4, screen_size numypixels/2);
moveto (0,0);
lineto (320, 0);
moveto ($\mathrm{C}, 0$);
lineto ($0,-90$);

- settextcolor (3):
...ettextposition (4, 8);
_outtext ("Tap value");
. settexiposition $(16,60)$;
_outtext ("Filter Tap");
f Init peinters to cata *
echopathstate_pir = echopath;
echopathtaps_pr = echopathtaps;
Instaps ptr $=$ imstaps;
Imsstate_ptr = Imsifiter
Insstart index $=0$;
Imstiltstan_ index $=0$;
echostart_index $=0$,
_setcolor (14):
settextposition $(20,2)$;
_outtext ("Hit any key to exit...");
while (|kohit)) \{
cata $=($ ($($ double $)$ rand $(i)-16383.0) / 16383.0$;
ecto $=$ fir _-ilter (data); $\quad /$ Apply echo path
fitter*/


```
echopath|echostart _index] = stage_input;
j = -echostart_index;
acc=0.0;
for (i =0; i< ECHOLENGTH; i++){
            j=++j% ECHOLENGTH; / Circular buf
                "quites modubinc"
    acc += echopathtaps[i] * echopath[];
        |
echostar_index = = ;
retum acc;
}
double Ims_tilter (stage_input)
double stage_input;
double ace
double acc;
Imsfiter[lmsilitstart_index] = stage_input;
j = -Imsfiltstart_index;
acc=0.0;
for (i=0; 1<LMSLENGTH; i++){
```


variation during the call. To equalise the effects of the line, we could for example set up a filter with fixed coefficients at the start of the call. But as soon as the channel characteristics change, the transmission performance will drop because the filter coefficients are no longer optimal. The communications channel may even fall over. The solution is to use a filter that continuously adapts itself to the channel.
The block diagram for the adaptive filler test program (Example 3) is shown in Fig. 1 while Fig. 2 depicts the block cliagram for the adaptive filler update routine. The algorithm chosen is the Leeast Mean Square error solution based around the linear transversal finite impulse response filter (Fig. 3). The feedhack path allows the mean squared error between the output signal and the expected signal to be calculated and this is used to update the taps according to these equations:
$y(n)=\sum_{h=0}^{1-1} w(k) \times x(n-k)$
$\epsilon^{\prime}(n)=d(n)-n(n)$
2
$w(k)=w(k)+\mu \times e(n) \times r(n-k)$
for $h=0,1.2 \ldots . . N-1$
$e(n)$ is the error signal. $d(n)$ is the actual output and $!(n)$ is the required output. The variable μ represents a gain factor controlling convergence of the filter.
The example is most like an adaplive echo canceller. The echo filter simulates a trans-
mission line with a far end echo. The adaptive filler replicates the echo by adapting itself to match the transmission line characteristics. The echo estimation can then be removed from the received signal to leave just the signal transmitted from the far end.
The echo path filter is a practical working bandpass filler. It has a centre frequency of the sample rate divided by four and a bandwidh equal to its centre frequency. The echo path filter coefficients show as dots on the output graph and these are the targets for the adaptive filter coeflicients.
The step sife for the filter may be modified to see the effect this has on the adaptation of the filter: 100 large and the filter is unstable or it fails to converge and too small and convergence is 100 stow to be of practical benefit.

References

1. Real-Valued tast Fourier Transform

Algorithms, Sorensen et al, IEFE Trans, on
Acoustics, Speech and Signal Processing, Vol. ASSP-35. No 6, Junc 1987
2. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Englewood Clifis, NI: Prentice 1 tall, 1975.
3. L. R. Rabiner and B. Gold, Theory and

Application of Digital Signal Processing, Englewood Cliffs, NJ: Prentice Itall, 1975.

John Edwards is an applications engineer with Loughborough Sound Images.
Engewood Clitts, N: Prenticeltal, 197,

Fig. 3 Linear finite impulse response filter structure
 $+=$ Imstaps [i] * Imsilter[i]. requires modulo inc */ $a c c+=$ mstaps $[i$ ' $\operatorname{msiniler}[j]$
Imstiltstart index $=j$;
return acc;
\}
void Ims (imsstep) /*Update LMS titer */
double Imsstep:
-imsstart index. $\quad M$ Update weighis w(n) ${ }^{*}$
$j=$-imsstart_index;
i= ++j\% LMSLENGTH; $\quad /$ Circular buf requires
modulo inc */
Imsstart index = 1
J

INTERFACING WITH C

by
HOWARD HUTCHINGS
Interfacing with C can be obtained from Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-652 3614. A disk containing all the example listings used in this book is available at $£ 25.50+$ VAT. Please specify size required.

C HERE!
If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected fogether in one book, Interfacing with C ?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

BOOKS TO BUY

Analog Electronics

 Ian HickmanGood all-round electronics designers are hard to find according to the recruitment specialists There are sither bad all-rounders or good specialist (for example, microwave power supply, microprocessors specialists) Many young designers have been lured away from the
fundamentals of electronic design to more 'glamorous' digital work yet there are many simple pieces of electronic equipment for which a purely analogue realisation is still cheaper, more reliable and more appropriate than a microprocessor-based solution. Analogue staff are in desperately short supply, and in many fields telecommunications for example - analogue skills are very much in demand. Ian Hickman's latest book includes many examples from his large collection of circuits (built up over thirty years in commercial professional and defence electronics), selected for their usefulness in a wide range of applications. Hardback 300pages
Price £32-40
Circuit Designers Companion Tim Williams
This compendium of practical wisdom concerning the real-world aspects of electronic circuit design will be invaluable for

Credit card orders accepted by phone 0816523614

linear and digital designers alike. The subjects covered include grounding, printed circuit design and layout, linear ICs, logic circuits and their interface;s, power supplies, electromagnetic compatibility, safety and thermal management. How to design to production and to cost restraints is stressed throughout. The style is direct, lucid and nonacademic, aimed at the practising designer who needs straightforward, easy-to-follow advice. Hardback 320pages.
Price £26-50

Electronic Alarm Circuits Manua

 R M MarstonOne hundred and forty useful alarm circuits, of a variety of types, are shown in this volume. The operating principle of each one is explained in concise but comprehensive terms, and brief construction notes are given where necessary: Aimed at the practical design engineer, technicia 1 and experimenter, as well as the electronics student and amateur. Paperback 144pages Price £13-95

Filter Handbook

Stephan Niewiadomski
A guide to electronic filter design and implementation, clearly writen and without the enormous amount of mathematics usually found in books on this subject. Especially of interest for electronics engineers and technicians, students, enthusiasts and also radio amateurs. Hardback 208pages. Price $\mathbf{E 2 6 - 5 0}^{2}$

Microprocessor Architectures and Systems
RISC, CISC \& DSP

Steve Heath

A guide to microprocessor architectures explaining the differences, advantages and disadvantages, and design implications. With most semiconductor manuf:acturers supplying only one type of architecture, processors becoming more complex than mainframe computers, and design cycles shortening from two years to six monthe, it is vital for designers to choose the right processor Steve Heath is processor technology specialist for Motorola. Hardback 300pages. Price £31-50

Modern Electronic Tesi Equipment

 Keith BrindleyDescribes in a down-to-earth manner how the main categories of test equipment work,

Please send me the following books

I enclose a cheque/postal order/eurocheque to the value of $£$ made payable to Reed Business Publishing Ltd or Please debit my Access/Visa/American Express/Diners Club with £Card Number

Card expiry date \qquad Signature.

Date
Name.
Address
allowing the reader to compare available instruments, make an informed choice and then to use the equipment to the best advantage. Any engineer, technician, scientist, student or teacher who reads the book will have a better understanding of thie equipment and get better service from his instruments. Paperback 224pages.
Price 115-95

Servicing Personal Computers

Michael Tooley

This book sets out the principles and practice of personal computer servicing in a handy reference manual. It contains a wealth of information, including a large number of circuit and block diagrams. Various software diagnostic routines have been included together with listings and, where appropriate, actual screen dumps. Numerous photographs show typical adjustments and alignment points. It is for anyone concerned with the maintenance of personal computer equipment or peripherals, whether professional service technician, student or enthusiast. Hardback 256pages.
Price £27-00

Newnes Radio and Electronics Engineer's Pocket Book Keith Brindley

A compendium of facts, figures and formulae for the designer, student, service engineer and all those interested in radio and electronics. Paperback 328pages Price £10.95

Newnes Electronic Assembly Book
Keith Brindley. Hardback 304pages
Price £11.95

Newnes $Z 80$ Pocket Book
 Chris Roberts

Aimed at practising electronic and software engineers and technicians involved with the design, manufacture, testing of maintenance of $Z 80$ type microprocessors based equipment. It is also aimed at students following courses in microprocessor related subjects. Contents include packages, pinouts and specifications; processor operation and signal timing; internal architecture; the flags; instruction address modes; instruction set; interrupt response; programming techniques and support chips. Hardback 185pages.
Price £13-95

Newnes 68000 Pocket Book
 Mike Tooley. Hardback 257pages
 Price $£ 13-95$

Newnes 8086 Pocket Book
 lan Sinclair. Hardback 342pages.
 Price £11-95

Newnes Electrical Pocket Book 21st Edition
 E A Parr. Paperback 526pages
 Price E13-95

Diode, Transistor and FET Circuits Manual f M Marston

Specifically aimed at the practical design engineer, technician and experimenter but will also be of interest to the electronics 5.AS. PRICES INCLUDE POSTAGE AND PACKAGING. Please allow 21 days îor delivery.
student and the amateur. Subjects covered include basic diode circuits; Special diode circuits; Transistor principles; Transistor amplifier circuits; Transistor oscillators and astables; Transistor audio amplifiers; Transistor circuit miscellany; FET Principles JFET circuits; MOSFET circuits; VMOS circuits; Unijunction transistor circuits. Over 340 carefully selected and outstandingly useful practical circuits, diagrams, graphs and tables. Paperback 240pages.
Price £13-95

Digital Audio and Compact Disc Technology

L Baert, L Theuissen and G Vergult

 Essential reading for audio engineers, students and hi-fi enthusiasts. A clear and easy-to-follow introduction and includes a technical description of DAT (digital audio tape). Contents includes principles of digital signal processing, sampling, quantization, A/D conversion systems, codes for digital magnetic recording, principles of error correction, the compact disc, CD encoding, opto-electronics and the optical block, servo circuits in CD players, signal processing, digital audio recording systems, PCM, Video 8, R-DAT and S-DAT. Hardback 240pages Price £18-45
*The Scanner Handbook:

A Complete Guide to the Use and

Applications of Desktop Scanners

 Stephen Beale and James Cavuoto Desktop scanners are quickly becoming standard components in personal computer systems. With these electronic reading devices, you can incorporate photographs and illustrations into a desktop publishing program, convert printed documents into text files, and perform advance-capability facsimile transmission. The book is an informative guide to selecting, installing and using a scanner. Paperback 254pages.Price £20-95

*Computer Jargon Explained

 Nicholas EnticknapThis 176 page book provides the context to and discusses 68 of the most commonly used computer jargon terms. Extensively crossindexed, it is essential for all computer professionals, and will be useful to many business people too. Paperback 172 pages. Price £10-95

*Aliens' Guide to the Computer Industry John Kavanagh

Former Computer Weekly editor, John Kavanagh, discusses how the various parts of the computer industry inter-relate and what makes it tick. A short cut to separating the computer industry wood from the trees "Good value... an excellent snapshot" The Financial Times. Paperback 186pages.
Price £10-95

**Hitchhikers' Guide to Electronics in the "90s

David Manners

This book by David Manners, a Senior Editor on Electronics Weekly, will help DP and IT professionals identify the trends which will affect our jobs in the 1990s.
The author describes the work of pioneers such as Faraday and Edison, explains the microchip's role, and looks at the markets for electronic, business trends, and social implications for the industry. Paperback 218 pages
Price £13-95

*Open Systems:

The Basic Guide to OSI and its implementation
 Peter Judge

A concise, cleiar guide to this complex area of computer standards, untrammelled by jargon and with appropriate analogies to sımplify this difficult topic. This book is essential for users and suppliers and is required reading for all in the computer industry.
It is the best introduction to the suibject I have seen" - John Spackman, former Director, Comouting and Informaticn Services. British Telecom. Paperback 184pages
Price £13-95

Audio IC Circuits Manual

R M Marston

Contents include: audio and pre-amp circuits, dual audio pre-amp circuits, audio power amplifier circuits, high-power audio circuits, LED bar-graph displays and CCD audio delay-line circuits. Paperback 176pages. Price £13-95

Analog Circuit Design

Art, science and personalities

Edited by Jim Williams

Thirty well known contributors share some of their insights, knowledge, and perspectives on analogue design. Taken as a whole, these authors demonstrate that analogue design is less a set of techniques and methods to be rigcrously followed than a way of thinking about things. This
isn't a text ges.
nor is it really a 'tutorial' in conventional sense of the term. Instead, its primary goal is to help the reader think in an analogue way. It is the latest title in the 'EDN series for Design Engineers'. Hardback 390 pages.
Price E32-00

Troubleshooting Analog Circuits

Robert A Pease

Troubleshooting Analog Circuits is based on a series of articles that became one of EDN s most successful and well-read, and found an enthusiastic audience among electronic engineers and technicians.
Conterts: Introduction; Troubleshooting linear circuits - the beginning; Choosing the right equiprent; Getting down to the component level; Solving capacitor-based troubles; Preventing material and assembly problems; Solving active-component problems; Identifying transistor troubles; Operational amplifiers - the supreme activators: Quashing spurious oscillations; The analogue-digital boundary; Dealing with power components; Round-up of loose ends; Floobydust; Letters to Bob; Troubleshootinc charts; Appendices. Hardback 220pages. Price $221-45$

Newnes Electric Circuits Pocket Book
 Linear IC

Ray Marston

Newnes Electronic Circuits Pocket book is aimed directly at those engineers, technicians, students and competent experi nenters who can build a design directly from a circuit diagram, and if necessary modify it to suit individual needs. Hardback 336pajes.

Price E13-95

Books published by Butterworth-

Heinemann except

* published by Computer Weekly, and
** published by Computer
Weekly and Electronics
Weekly.

CIRCLE NO. 132 ON REPLY CARD

CIRCLE NO. 134 ON REPLY CARD

APPLICATIONS

Battery charging

N
iCd cells are usually fairly abused devices; according to Telefunken, they only reach about 30% of their possible service life because charging is improperly done.
In theory, cells should be charged for 14 hours, after which they should be turned over to trickle charge or at least have the charge interrupted. In practice, people forget to switch over, particularly since manufacturers do not
make a point of it in their operating instructions. Even worse, but in widespread use, is the boost charge method. where the cell is charged until its temperature starts to rise: in other words. when it has been damaged by overcharging and its life has been reduced.
Telefunken has the $U 2400 \mathrm{~B}$, an IC incorporating all the facilities needed for gentle charging and all monitoring functions, Fig. 1 being
its internal block diagram, with a few extra bits.
At power-up, with no battery connected, the red led comes on. Connecting a battery with a minimum terminal voltage of 200 mV to pin 4 starts the discharge phase at pin 10 after 2 s . this being indicated by the red led flashing. When the battery voltage shows less than 500 mV at pin 6 . the green led flashes to indi-

APPIICATIONS

Fig.3. PWM comparator circuit; a variable pin 2 voltage allows matching to different battery capacities.

Fig.2. Timing of the discharge, charge and trickle charge operations. Pulse operation comes into action for a 12 h charge and trickle charge.
cate that discharge has stopped and that the charge output at pin 12 is active. After the charge period finishes (after 0.5 h . Ih or 12 h pulsed charge), trickle charging starts, indicated by the green led being on constantly; at this point, the battery has taken all it can. Figure 2 is the timing diagram.
All outputs are made inactive by anything at all unfortunate in the way of temperature, overvoltage or pressure and the timer is interrupted in all three phases and in each mode if one of these limits is exceeded. A two-stage counter notches up one at every such excess, two counts being enough to bring pin 15 into action. Depending on whether pin 15 is opencircuit or connected to $V_{\text {ref }}$, either everything stops (flashing red) or the IC tries to make the

Fig.4. Timing of charge and discharge currents in the PWM circuit.
best of a bad job (flashing red and green) to give the best charge possible even if the battery is already damaged. Pulse-width modulation of charge, discharge and trickle charge is brought about by the internal 200 Hz sawtooth oscillator. Discharge and charge outputs are switched off when the sawtooth exceeds Vref on pin 2; the resulting PWM is effective in all three modes and if pin 2 voltage is varied by means of a switched network, output current to the battery can be made to match various battery capacities. Figure 3 is the PWM circuit and its timing diagram is seen in Fig. 4.
Telefunken Electronic GmbH, Postfach 700263, Stresemannellee 28, D-6000, Frankfurt/Main 70, Germany.

Low-distortion amplification

Burr-Brown's OPA2604 offers very low distortion (THD+noise at $1 \mathrm{kHz} 0.0003 \%$), low noise (noise density down to $10 \mathrm{nV} / \mathrm{Hz}$ at 10 kHz) and a gain*bandwidth product of 20 MHz . It will drive 35 mA at $\pm 12 \mathrm{~V}$ into 600Ω and is unity-gain stable.
An interesting section of the application note is the explanation of the need for the circuit in Fig.1. It seems that distortion produced by the OPA2604 is beyond the capabilities of any commercially available test gear, so this circuit had to be dreamed up to increase the dis-

Fig. 1. Burr-Brown's OPA2604 dual op-amp generates an amount of distortion below the measurement range of commercial instruments. This circuit increases the distortion by a precise 101 times, while leaving the signal intact so that it can be measured.

Fig.2. Odd harmonics sound worse than even ones. Fet devices exhibit a square-law transfer characteristic, as against the bipolar exponential curve and therefore generate mostly even-order harmonics.

Fig.3. Layout of one section of an OPA2604. The comparatively high input-stage current of 8004 A gives higher transconductance and reduces voltage noise.
tortion by a factor of 101 to make it possible to measure it. Resistor R_{3}, added to what is a standard inverting op-amp, leaves the closedloop gain alone but rduces the feedback for error correction by 101 times. Input signal and load arrangements are normal.
This op-amp uses fets in the input and as phase-splitters in the output stage. Burr-Brown includes in the note a piece on sound quality. in which it is remarked that the reason many people believe that fet audio amplifiers sound better than bipolar types is that the fet's square-law drain characteristic generates fewer odd harmonics than the bipolar transistor's exponential transfer curve. Figure 2 is a comparison of the two types. with their FFTs. It has to be said, though, that at this level of distortion it would be difficult to discem the difference, unless one's ears were genuine 18 ct . Bipolar transistors are only used here where their graceless transfer characteristic has least leverage.
Circuit arrangement of half an OPA26()4. shown in Fig.3, is a folded-cascode input stage with a unity-gain output stage. Input current to the input junction fets is 100 pA , or about 3000 times less than that of a bipolar-input op-amp. greatly reducing current noise at higher source impedances. Output is a junction let phasesplitter driving high-speed $n-p-n$ output drivers. The two channels are entirely independent of each other. even including bias circuitry, so that cross-talk is climinated.
No particular audio circuits are given in the note, but Fig. 4 is a current-output D-to-A converter, the current being converted to voltage drive by two OPA26(4 s , the second a lowpass filter with a 20 kHz cut-off.
Burr-Brown International Ltd, 1 Milliield House, Woodshots Meadow, Wattord, Hertfordshire WDI 8YX. Telephone 923 33837.

Fig.4. Current-output digital-to-analogue converter, with an OPA2604 converting the current to a voltage and another acting as a low-pass filter.

Clock distribution by ECL

Motorola's application note AN1405 is meant for designers of cmos and TTL logic systems who feel ill when anyone mentions ECL. It is possible that such designers are not aware that their problems with keeping clock skew within reasonable limits in high-speed, high-efficiency systems can be reduced or even eliminated by the use of ECL. Motorola, in the person of Todd Pearson, has set out to put them straight.
This is not the place to retail the note verbatim, since it is a well written explanation of the benefits to be obtained and is freely obtainable. It first of all explains the three mechanisms causing clock skew: dutycycle skew, output-to-output skew and part-to-part skew: going on to detail the manner in which ECL, and in particular differential
clock interconnection, will reduce the problem.

In passing, anyone who automatically thinks of ECL in terms of power-hungry devices had better think again; at about 20 MHz , dynamic power of ECL is roughly the same as cmos and at 100 MHz it is something like one-seventh. In this case, static power is irrelevant, since clock devices are never static.

Pearson also points out that, with reduced skew. you can use more of the clock cycle in which to carry out "value-added" operations.
Motorola Ltd, European Literature Centre, 88 Tannners Drive, Blakelands, Milton Keynes, MK14 5BP. Telephone 0908614614.

MOP ELECTRONICS SYSTEM 200
UNIVERSAL DEVICE PROGRAMMING SYSTEM

System 200 is one of the most versatile programming systems available. At the heart of the system is the award-winning Model 200A programmer. Designed to quickly connect to the serial or parallel port of any PC compatible, the Model 200A is controlled by PROMDRIVER, widely acclaimed as the best driver software available for any programmer.

- EPROMs, EEPROMs and FLASH memories up to 8Mbit ${ }^{*}$ and beyond
- Microcontrollers from most manufacturers including
- 8748 Family
- 8751 Family (including 87C751/2 and 87C552)
- 28 Family
- PIC16C5X Family
- Emulators
- 8-pin Serial EEPRQM/s
- PALs, GALs, EPLDs etc
- Bipolar PROMs

Write or phone today for Free Information Pack: Phone: (0666) 825146 Fax: (0666) 825141

MOP ELECTRONICS LTD PARK ROAD CENTRE, MALMESBURY. WILTSHIRE SN16 OBX UK
European Distributors: Digitron, Norway Tel 071-17890; Synatron, Germany Tel 089/4602071; Elexind, Italy Tel 0292103554

CIRCLE NO. 135 ON REPLY CARD

TELECOMMUNICATIONS TRAINING

 A MODULAR SYSTEM

TIMS is a new telecommunications training product covering analogue and digital signal processing techniques.
It can easily be incorporated into any existing course on telecommunications in universities and colleges.
For further details contact:
ELLMAX ELECTRONICS LTD.,
Unit 29, Leyton Business Centre, Etloe Road, Leyton, London, E10 7BT Telephone: (081) 5390136 Fax: (081) 5397746

Precision C51 Tools, Fine Tun ng For All...
 , 8051 Family Devices

To get the most out of the 8051 family, the best tools are essential. The Hitex tool kit offers two 8051-dedicated in-circuit emulators, designed to locate real time bugs in the target environment.

When combined with the Keil C51 compiler our teletest 51 Professional and Junior development systems ensure efficient, high-integrity real time code, delivered on schedule.

For less demanding tasks, the telemon ROM-based debugging kits provide a powerful alternative - the common HiTOP51 user interface allowing a rapid transition to emulator debugging.

For further information, ask for our HiTOP/C51 data pack now.

[^4]
NEW PRODUCTS CLASSIFIED

ACTIVE

A-to-D \& D-to-A converters

Fast, 16-bit A-to-D. Track-and-hold amplifier, sub-ranging A-to-D converter, voitage reference, and linearity and autozero calibration are all on-chip in the AD1385 $500 \mathrm{ksample} / \mathrm{s}$, 16 -bit sampling analogue-to-digital converter. Minimum THD and signal-to-noise ratio are botn 90 dB at $5 \mathrm{kHz} ; \mathrm{S}: \mathrm{N}$ at 200 kHz is 88 dB . Differential and integral non-linearity are $\pm 0.0006 \%$ and $\pm 0.0015 \%$ FSD and maximum gain error is $\pm 0.15 \%$. Analog Devices, 0932232222.

D-to-A converter. Video digital-toanalogue converters from Fuifitsu, MB40730 and MB40760, have 10 -bit resolution, a minimum sampling rate of $60 \mathrm{Msamples} / \mathrm{s}$ and linearity error of less than 0.1%. Power dissipation is 180 mW and output is 2 V pk-pk. The ' 30 has ECL 10 KH i/o, while the ' 60 is TTL-compatible. Three voltage references are selectable for output voltage, or an external reference can be used. Fujitsu Microlectronics, 0628 76100.

Discrete active devices

Wide-band transistors. BFG
$505 / 20 / 40$ are 9 GHz silicon planar epitaxial transistors from Philips with collector/emitter and collector/base voltages of 15 V and $20 \mathrm{~V}, 18-120 \mathrm{~mA}$ collector current, power dissipation 1W, RF gain 13 dB and noise figure 1.9 dB at 2 GHz . Gothic Crellon Ltd, 0734788878.

High-voltage mosfet. Supertex LND150 is a high-voltage depletionmode mosfet with a drain-to-source breakdown of 500 V and an on resistance of $1 \mathrm{k} \Omega$. Minimum on-state current is 1 mA and typical input capacitance is 8 pF . Its gate is internally protected against electrostatic discharge up to 1 kV . Kudos Thame Ltd, 0734351010.

Low-noise microwave transistor.

B12V105 from Bipolarics is a silicon low-noise type meant for use in lowpower applications from VHF to microwave frequencies. Transition
frequency is over 10 GHz at $10-25 \mathrm{~mA}$ and power gain 19 dB at 1 GHz and 12.5 dB at 2 GHz . Noise figure is 1.6 dB or less at 900 MHz . Tekelec UK, 0753 548585.

SM pin diodes. A family of pin diodes for surface-mounting and meant for frequency-hopping radio and filters is announced by Tekelec. Two kinds of SM package are made: a rectangular ceramic type with low inductance and a cylindrical one with low capacitance. Maximum breakdown voltage is 550 V and lowest junction C is 0.15 pF . Tekelec UK, 0753548585.

Microwave power transistor.

Tekelec UK has a new power transistor, the BPT23E01, meant for 1 W linear common-emitter use in the range $1.8-2.4 \mathrm{GHz}$. At 900 MHz . power gain is 12 dB and at $2 \mathrm{GHz}, 9 \mathrm{~dB}$. Collector efficiency in Class A is 30\%. Tekelec UK, 0753548585.

Linear integrated circuits

Low-drift instrumentation amp.
With a maximum gain drift of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ voltage offset drift, Analog's AD621 is claimed to be the industry's lowest-drift amplifier. Nonlinearity is 10 ppm FSD, initial voltage offset $50 \mu \mathrm{~V}$ and gain error 0.05%. Pin-strappable gains of 10 and 100 are available and input voltage noise is $13 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$; input current noise is $0.1 \mathrm{pA} / \mathrm{NHz}$. Maximum current supply needed is 1.3 mA from $\pm 2.3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. Analog Devices, 0932232222.

Instrumentation amplifier.

Combining high accuracy with small size, Burr-Brown's INA 114 amplifier offers a $50 \mu \mathrm{~V}$ maximum offset, $0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ offset drift and 115 dB minimum CMRR. Gain is programmable from 1 to 10,000 by a single resistor. Supply range is $\pm 2.25 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ ard the amplifier has input protection to $\pm 40 \mathrm{~V}$. Burr-Brown International Ltd, 092333837.

Wide-band buffer amp. Harris's

 HFA1110 is a closed-loop buffer amplifier with a bandwidth of 700 MHz , a slew rate of $2,5 \mathrm{CoV} / \mu \mathrm{s}$ and a 7 ns settling time to 0.02%. Selectable gains of $+1,-1$ or +2 without external components and 60 mA of output current make it well suited to cable driving, and its closed-loop design renders it useful as a current-tovoltage converter in D-to-As working at frequencies up to 100 MHz . Gain flatness is 0.04 dB to 50 MHz . Thame Components Ltd, 0844261188.

16Mbit drams. Toshiba is now in full preduction of 16ME.it drams, which are organised as $16 \mathrm{M} \times 1$ bit and $4 \mathrm{M} \times 4$ bit with high-density memory applications in workstaticns in mind. Single 5 V operation is kept, but the supply is internally converted to 3.3 V for reliability. Access times available are $60 \mathrm{~ns}, 7$ Cns and 80 ns . Tcshiba Electron cs (UK) Ltd, 02:6 694600.

Logic building blocks

Clock recovery. AD's AD802-155 is used in the reciver circuit ol a datacomms link to recover clocking from the data stream, regenerating retimed data and clock with no external crystal. It is the first in a family designed for different bit rates. Output jitter is insensitive to input data pattern and is typically 2.2° RMS with maximum data transition density and $3.3^{\circ} \mathrm{RMS}$ with a 2^{23-1} pseudorandom input. It keeps lock on a featureless expanse of up to 240bit. Analog Devices, 0932232222.

Zero delay buffer.To regenerate clocks in high-speed systems where
skewing can be a problem, the Avasem 9170 uses a cmos phaselocking technique. Multiples or divisions of the original clock are also generated. Even when the original duty cycle has degenerated to $20 \%: 80 \%$, the output is a respectable $48 \%: 52 \%$. Microelectronics Technology, 0844278781.

24-bit colour palettes. 24-bit versions of Sierra's HiCOLOR fanily of colour palettes, the SC15025/0, offer up to 16.8 million colours and work with VGA and super VGA controllers. The devices are pin and function-compatible with earlier Sierra HiCOLOR units. Operating speed is up to 125 MHz and the 15026 has 15 overlay registers as well as the triple 6-bit or 8-bit D-to-As in the 15025. Sierra Semiconductor, 0793618492.

Memory chips

Microprocessors and controllers SCSI controllers. Am53C94/6 are the first of a new family of Small Computer System Interface controllers from AMD, being plug-in replacements for the standard 53C94/6 but with the company's Glitch Eater circuitry to reduce the incidence of false-clocking due to system noise. A set of development software is available. Advanced Micro Devices UK Ltd, 0483740440.

Ethernet IC. Alice is Artisoft's
response to the requirement to make new PCs ready for network use from the start. It is a lan interface chip to be used in conjunction with Artisoft's LANtastic software and is software compatible with the company's own AE-2, with Novell's NE 1000 and NE2000, supporting a wide variety of network operating systems. ISA and Microchannel buses are on the same chip. Engineering samples are now available. Artisoft, 0753554999.

Mixed-signal ICs

LD/DTMF dialler. For use with most common microprocessors, GEC Plessey's MA525 dialler provides blocks of up to 21 digits at a time from the bus interface, which can be dialled in order with correct format and timing. Access pause and timed flash are stored and redial is included. All dialling conditions and timings are programmable in both LD and DTMF modes. Either MF tone or pulse dialling are selectable for each dial sequence to allow dialling followed by MF data transfer. Gothic Crellon Ltd, 0734788878

PC sound. Sierra introduces three new chipsets for PC sound synthesis ST8000 provides Sound Blaster emulation, ADPCM, a joystick port, MIDI interface and digital audio recording and playback. ST8001 does all that and also offers the Aria synthesiser and a 512 Kbyte sound library, while the ST8002 has all these features and a 1 Mbye sound library. All are compatible with Microsoft's Multimedia Leve! 1. Sierra Semiconductor Ltd, 0793618492

Oscillators

Crystal oscillator. HCD's new HCD364 oven-controlled crystal oscillator offers 5^{40-8} frequency shift over the $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range. Phase noise is better than $-130 \mathrm{dBc} / \mathrm{Hz}$ at 100 Hz offset and $-150 \mathrm{dBc} / \mathrm{Hz}$ at 1 kHz offset.

Frequency range is $4-16 \mathrm{MHz}$ and output is sinusoidal, a TTLHCMOS version to come soon. HCD Research Ltd, 0444415008.

Programmable logic arrays

High-speed FPGAs.
QuickLogic/Cypress fieldprogrammable gate arrays, which are of 2000 to 20,000 -gate level, are claimed to exhibit the lowest resistance and capacitance of any available, that and the Quicklogic ViaLink architecture resulting in system speeds for the QL8X12 and QL12X16 of 50 MHz and internal logic speeds of up to 100 MHz . Ambar Components Ltd, 0844261144

Field-programmable arrays. TPC 12 FPGAs by TI are now fully released, together with a suite of development systems for PCs and workstations Users are able to achieve a higher gate density on one chip than in the earlier 10 series, due to the fact that there are many more logic modules available, including the sequential type as well as combinational

Network measurement. For

 measurements in digital mobile communications networks, R. \& S. offers the PCS Inpuise Response Analyser, this parameter being the best way to evaluate channel quality by sampling signals from the channel in conjunction with the ESVD test receiver. The instrument display channel impulse response in real time, with measurement of propagation delay down to $80 \mu \mathrm{~s}$ and a dynamic range of 18 dB . Rohde \& Schwarz UK Ltd, 0252811377.
modules. System frequencies up to 60 MHz are obtainable. Texas Instruments, 0234223252

Power semiconductors

Fast rectifiers. Intended for use in switched-mode PSUs, UPSs and automotive systems, Harris's RUR 3010/15/20 ultra-fast rectifiers feature current ratings of $8-80 \mathrm{~A}$, peak repetitive reverse voltages of 100 1000 V and recovery times of less than 45 ns. The 15A MUR/RUR 1510 series are faster, with a 30 ns recovery, reverse voltage of 200 V and forward current of 30A (200A surge). Harris Semiconductor (UK), 0276 686886.

Radar TX transistors. Developing 750W typical output power, the Philips MX1011BY700Y transistor is meant for radar transmitter use in the $1030-1090 \mathrm{MHz}$ range. In medium pulse, heavy-duty use, the upper limit is 1150 MHz . In short-pulse use ($10 \mu \mathrm{~s}$, \% duty cycle), output power is 650 W at 1090 MHz , with a power gain of 6 dB and 54% efficiency. Philips Semiconductors Ltd 0714364144.

PASSIVE

HV transformer. Colltronics's CTX110459 is a miniature, surfacemounted 6 W transformer, which provides 550 V peak running at 11 mA ; peak firing voltage is 1.7 kV . Input voltage is $3-20 \mathrm{~V}$ at 4 gkHz and operating range is -40 to 85° Celsius. Microelectronics Tec nnology, 0844 278781

Displays

EL flat panels. Half the thickness and two-thirds the weight of earlier types, electroluminescent flat-panel displays from Planar Systems also take less than half the power normally needed. Resolutions of from 320 by 256 to 640 by 400 are accompanied by variable contrast and brightness, integral power supply and high brightness. MTBF is over 30,000 hours. Review Display Systems Ltd, 0959563345.

Filters

Din rail-mounted filters. DRF Din rail mounted filters and suppressors from Roxburgh come in 1A, 3A and 6 A versions and are suitable for both top-hat and G-type rails. Operating frequency is $150 \mathrm{kHz}-30 \mathrm{kHz}$ at line voltage, with spike protection. DVS surge suppressors are supplied in $24 \mathrm{~V}, 49 \mathrm{~V}, 110 \mathrm{~V}$ and 240 V versions in
top-hat mountings. Roxburgh Electronics Ltd, 0724281770.

Miniature filters. RF filter designs that previously needed large tubular components are now realised in ultraminiature PCB-mounted components in a new range by Trilithic. Bandpass, low-pass and high-pass types are available in the range 30 2500 MHz in TO-5, TO-8 and SM cans and in Tchebyshev, Butterworth, Bessel, Gaussian, elliptic and linearphase forms. Trilithic Ltd, 0442 891130

Hardware

Chip emulator. Correct-A Chip sockets from Aries incorporate a user's own circuitry within the socket (of various types) to create a "semihybrid daughter board" and save up to 32 square centimetres of board space. Mother boards can be given "function sites", various plug-in functions then being applied to the sites. By using the small PCB in the socket, any IC pin can be connected to any board hole. Aries Electronics (Europe), 0908260007.

Instrumentation

VXIbus chassis. B\&K's 2817 chassis is a general-purpose mainframe for VXIbus and VMEbus modules providing 13 slots for C -size VXIbus modules or direct insertion of B-size or VMEbus modules without adaptors or any modification. Auto-jumper connection to the back-plane gives flexibility of positioning and automatically shorts unused slots. The chassis has a back-plane designed for high-speed use and a 600 W power supply with overcurrent, overvoltage, DC and AC fail and overheat detection. Bruel \& Kjaer 081-954 2366.

250 MHz oscilloscope. Model 2250 from Leader is a 250 MHz instrument with PAL, NTSC and HDTV line selectors, a frequency counter, an event trigger and digital voltmeter. Four cursors and sub-cursors are provided. Features include auto setup, automatic ranging in X and Y directions, self calibration, automatic probe compensation, on-screen calendar and comments. Leader Instruments (Europe), 0753538022.

Video output from DSO.

Yokogawa's DL1000 series of digital storage oscilloscopes are now able to provide a PAL television signal of the screen image, a facility that allows the display of an oscilloscope trace on a large TV screen or recording on video tape. One advantage of the recording option is the increase in long-term monitoring provided. It is also possible to make a printout of the recording without interrupting recording. Martron Instruments Ltd, 0494459200.

40 MHz oscilloscope. CS-5130 by Kenwood is a 40 MHz dual-trace instrument with on-screen readout and delayed timebase, the cursor reading voltage difference, time difference, frequency, ratio and phase, all shown on the screen. The tube is a 150 mm , dome-mesh type with a 12 kV PDA potential. TrioKenwood UK Ltd, 0923816444.

Arbitrary-waveform generator. In addition to to the usual sine, square and triangular waveforms and some not so usual, the Model 295 from Wavetek allows its user to draw any waveform on a screen, using a mouse or mathematical expressions, whereupon the instrument will output that waveform at up to 10 MHz . As well as the internal standard waveforms provided, another 30 are on a dos-compatible disk. Frequency accuracy is within two parts per million. Wavetek Ltd, 0603404824

Literature
Consumer ICs. GEC Plessey Semiconductors's consumer IC handbook, now available free, describes more than 100 ICs for satellite and cable TV, teletext, TV decoders and PWM waveform generators. Gothic Creilon Ltd, 0734 788878.

Microcomputer guide. Features available in Hitachi's H8/300 series of

RF seals. James Walker's Shieldseal conductive elastomers provide good contact with metal flanges to allow lowresistance current flow across enclosure joints, also sealing against moisture and other contaminants. All but the commercial grades give over 100 dB of RF attenuation, the commercial types giving 78 dB . Shieldseal is supplied in extrusions and flat sheets, or can be supplied ready-moulded to shape. Conductive adhesives are available. James Walker \& Co. Ltd, 0483757575.

8-bit single-chip microcomputers are described in a new guide, which gives details of the new H8/329 and H8/338 families, which offer 48 K rom and 2 K ram, two full uart ports and eight channels of A-to-D conversion. Hitachi Europe Ltd, 0628585000

8051 C programming. A primer on the use of C for programming embedded microcontrollers is produced by Hitex, taking into account the difficulties of accessing pripherals at specific addresses. The C51 primer is based on several years experience of a technical support line and therefore has most of the answers ready. Hitex (UK) !.td, 0203 692066.

Power supplies

Power-factor correction. Using
Coutant-Lambda's PF 450 power supply with the company's CN 280 PF and harmonic correction module produces a 260 by 150 by 50 mm unit with a power factor of 0.99 at 640 W and a universal input of 85265 V AC. The module provides alarmis for abnormal PF operation and for overvoltage and thermal conditions and current limit. Coutant-Lambda Ltd, 0271865656.

Variable power. DSL's PR series of linear power supplies provide variable voltage outputs from $2-7 \mathrm{~V}, 10-15 \mathrm{~V}$ or $20-30 \mathrm{~V}$ at up to 3840 W and 160 A continuous. They are fully protected against shorts, RF power and back EMF and there is an overwolage crowbar. DSL, $02794168<1$.

Modular DC power supp y.

California Instruments mondel 1200 DCS programmable DC supply for the ATE sector provides up to ei ght separate isolated outputs Je^{-}chassis in 5.25 in height, f'ont chassis module loading form. Each output hés self test and is fully protected. Wessex Electronics Ltd, 0272571404.

Radio communica-ions products

Small 418 MHz Rx. Short ra ge telemetry links needing sma I size and

Switches and relays

Rotary switches. Miniature switches made by Cole Instrument Corp., the 3900 series of half-inch multi-deck rotary switches are to MIL standara, being proof against flux and contamination, moisture and corrosion, and possess selfcleaning contacts to give a 0.02 S 2 contact resistance over a 25,000 -cycle minimum life. They come in various index steps from 30° to 90° with up to six poles per deck; contact rating is 1 A at 115 V AC and 28 V DC. Acal Electronics Ltd, 0344 727272.
ow power consumption will benefit from the hybrid super-regen. receiver module from Quantelec, which is $\langle 1$ by 14 by 6 mm and takes 1 mA from 5 V . It works with any 418M1Hz keyed carrier transmitter. sensitivity being 90 dBm or $25 \mu \mathrm{~V}$. Digital data is output at 5 V logic level. Quantelec Ltd, 0393 776488.

Transducers and sensors

Flame detector. Centronic's rangee of UV detectors now includes the OSl 310. whicn uses a photodiode, filter and built-in amplifier optimised for the 310 nm light emission from flames such as those from oil and gas burners, while remaining relatively insensitive to the radiation from incandescent bodies. Responsivity is $100 \mathrm{~V} / \mu \mathrm{W}$ into $50 \Omega 2$ and typical cu:rent consump:ion is 0.1 mA . Centronic Ltd, 0689842121.

Audio transducer. Star Micronics has produced the HGP-12A audio output transducer for the car and similar industries. It produces an

85dBA minimum tone of 1700 2200 Hz from 12 V and operates at temperatures between -40 and 90 height is 12 mm and diameter 16 mm Roxburgh Electronics Ltd. 0724 281770

COMPUTER

Computer board level products

Neural networking. Amplicon Liveline's NT5000 is a data capture. learning and simulation package for PC ATs. the system being trained to carry out complicated tasks without the need for programming. A combination of hardware and software the package includes a portabie processing unit with a number of analogue and digital inputs and outputs and an L.CD. to be connected to the host by RS232 Software provides a graphical network editor. colour interface using a mouse and automatic neural network generation. Amplicon Liveline Ltd, $0273608 \div 31$

GPS for PCs. Global Positioning System information is recelved and processed by Amplicon Livelıne's XR4-PC board. The board has its own antenna, which recelves puises from up to eight GPS satellites to give position within 100 m anywhere in the world, even when travelling at up to 200 mile/h. Several programs give various types of display and raw satellite information is avalable. No system memory is taken up and the board is programmable in most high level languages: a C library of functions is supplied. Amplicon Liveline L.td. 0273608331

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World + Wireless World" when seeking further information

A/D I/O for the PC. Amplicon's PC $30 P G$ is a high-speed (up to $20^{2} \mathrm{kH}$) analogue and digital input/output board for the PC AT, consisting of a 12-bit A-to-D converter with 16 singleended or 8 differential inputs and programmable gain; two 12-bit and two 8-bit D-to-A converters for either bipolar or unipolar working; 24 lines of digital i/o; and a user-configured counter/timer. Software is provided in most of the compiled languages, and Windows 3 data acquisition software is available. Amplicon Liveline Ltd, 0273608331.

Comprehensive systems card.

PSI's Mini-Module + Plus is a single board system with a large array of inputs and outputs. There are 20 digital i/os, two 16 -bit counters, two RS232 serial ports with an RS485 option, an IIC port, eight 12-bit A-to-D channels at $10 \mu \mathrm{~s}$, four 12-bit D-to-A channels, a calendar clock alarm, up to 1 Mbyte of sram, up to 1 Mbyte of rom and an LCD drive. A full PC package supports development, programming being in $C, C++$, Modula-2 or assembler. Its 68000 runs at 16 MHz . PSI Systems Ltd, 0371876088.

Development and evaluation

 8051 development. With its graphical user interface, the C-SPY/S high-level debugger and a real-time kernel, IAR's ITS8051 is described as a "total-solutions" toolkit for 8051 development. It offers memory-specific pointers and a register optimiser that uses all registers and gives appropriate priority to each variable. The compiler is claimed to give the most compact C code on the market. IAR Systems Ltd, 071-924 3334 .Transputer data acquisition.
Claimed to be the highest speed analogue interface for transputer systems, the adt 164 data acquisition module provides up to four channels of simultaneously sampled data at 1 MHz per channel, with a resolution of 12 bit in a size 4 transputer module. Data is processed on board by a T400 or 7805 transputer and stored in a 4Mbyte memory. adt 164 is compatible with TRAMs from other makers and is therefore usable with number-crunching TRAMs containing i860, DSP56001 and others for realtime signal processing. Sunnyside Systems Ltd, 0506460345.

Another GPS for PCs.The Twenty First Century GPS-PC1 is a Global Positioning System receiver card for half-card PC slots, based on the Rockwell-Collins Navcore 5 module and using a passive antenna. Tracking five satellites simultaneously, the unit gives position, velocity and acceleration information in three dimensions, all displayed on screen in choice of units. The information can be linked to other packages, such as the popular Autoroute and many navigational applications. Twenty First Century Ltd, 0794884713.

Computer systems

Windows data and control.
Windata/L is a low-speed data acquisition and control system, consisting of a PC XT/AT card, cabling, connection panel and Windows-based software. It will handle 8-32 thermocouple inputs, 16 64 voltage loop or $4-20 \mathrm{~mA}$ current loop inputs. The card also has two 12bit $\pm 5 \mathrm{~V}$ analogue inputs and $16 \mathrm{i} / \mathrm{o}$ channels. Data Translation Ltd, 0734 793838.

FPGA programmer. Activator 2 from T is a programmer for 10 and 12 series field-programmable gate arrays, using a SCSI interface to communicate with the ALS. Versions

for $386 / 486$ PCs, HP Apollo workstations and Sun 4 workstations are available. Texas Instruments, 0234223252

Computer peripherals

Rewritable optical disks. Half-height 3.5in optical drives fro n Sony in the SMO-301 range use 3.5in ISO/ANSIstandard continuous composite magneto-optical disks with a formatted capacity of 128 Mbyte Rotational speed is 3030 ppm , giving a data transfer rate of $6{ }^{\prime} 5 \mathrm{k}$ byte/s and a seek time of 40 ms . A buffer allows burst transfers at up to $4 \mathrm{Mbyte} / \mathrm{s}$. Sony Components Ltd 0784467864.

Software

PCB temperature analysis. Flogate is an interface used with RacalRedac's Visula Cad Expert PCB layout package and Flomerics's Flotherm thermal analysis package to identify hot spots on PCBs, modifications being quickly reevaluated. The combined system takes into account geometry and thermal power of a PCB and identifies air flow and heat transfer data, down loading it into Cad Expert. Flomerics Ltd, 081-547 3373.

Neural nets for Windows. NeuDesk is a Windows-based neural network package for PCs, intended to allow

STEbus analogue i/o. AD3212 analogue interface board for the IEEE-1000 standard STEbus provides 32 high-speed analogue inputs and four analogue outputs to 12-bit accuracy; inputs can be configured as 16 doubleended channels. A 32-word FIFO buffers incoming data to reduce interrupt requirements and a timer allows conversion delays between samples to be set independently. Dean Microsystems, 0344727269.
new users to evaluate the technique One master drop-down menu takes the user through an entire network development process, ending with a trained system. The package includes a validation process which terminates training when the network is optimally trained. Neural Computer Sciences, 0703667775.

£30 off Europe's best selling oscilloscopes!

Excellent quality, built to last a life time
>2 year warranty
- Each 'scope supplied with 2 sets $\times 10$ probes, manual and mains lead.

DESCRIPTION

Offer must end 31st Jan 93

PART NO.
USUAL PRICE
OFFER PRICE

HM203-7
HM205-3
HM604
HM1005

20 MHz , dual channel, $1 \mathrm{mV} / \mathrm{cm}$, component tester 20 MHz , digital storage/analogue 'scope 60 MHz , dual channel, $1 \mathrm{mV} / \mathrm{cm}$, delay time base $100 \mathrm{MHz}, 3$ channel, 6 trace, delay time base
§338.00
£312.54 £610.00 £583.83
£610.00
£ 792.00
£583.83
£765.11

T0U
 MULTIMETERS

The D-MM good value meters are now even D-MMer good value!!

The TM series of low cost meters, with 3 $1 / 2$ digit LCDs, full overload protection, strong ABS cases and packed with features. Supplied with test leads, battery and manual

TM 5315 DC current (10A) continuity and diode test
TM 5365 Capacitance and frequency (200 kHz) ranges
TM 5375 Frequency range (20 MHz) and HFE test
TM 115 AC \& DC current (10A), HFE and continuity test
TM 135 Capacitance ranges, temp. (inc probes), HF, diode and cont nuity test
TM 175 Freq. (15 MHz), capacitance ranges with HFE, diode, continuity \& LED test
TM $802033 / 4$ digit display, freq. (4 MHz), capacitance (40 uF), $\mathrm{AC}+D C$ current to 20 A
TM $803033 / 4$ digit display, freq. (4 MHz), temp. (inc probe), $A C+D C$ current to 20 A
7705 Capacitance meter, 1 pF to $20,000 \mathrm{uF}$

> 400 kHz to 250 MHz frequency range
LC display of centre frequency

- Calibration marker

SPECTRUM ANALYSER ADAPTOR

The new TSA250 will adapt any conventional 'scope into a righly cost effective spectrum analyser. With numerous applications in RF design and development work, EMC investigations, and education.
TSA250 £341.00

192 pages
> £££'s worth discount vouchers
> 100s new products.......
Books - the latest titles.
Capacitors - new range ceramic discs,
extended ranges electrolytic and polyester zypes.
Computers - new CAD PCB layout software.
Connectors - extended ranges of BNC, Jacks,
XLR and PCB types.
Filters - new narrow band ceramic and low pass TV filters.
Hardware - additions include new range
control knobs, cabinet hardware and heatsinks.
Inductors - more additions to our already extensive range.
Kits - new additions to the Velleman range. Rigs - handheld 'CB' transceiver, wavemeters, scanning receiver accessories.
Semis - new linear ICs, transistors and a
complete new range of LEDs including blue types.
Speakers - new radio mic systems
Test Equipment - new hand-held frequency meter and satellite TV dish alignment system. And much more besides.....
> Avallable at larger newsagents or directly from Cirkit.

Pdease mention this ad to ensure these prices.
Frices exclude VAT, which should be added at 17.5\%.

Postage and packing; standard $£ 1.19$, next day delivery $£ 3.92$.

Prices correet at time of going to press, but may change in line with exchange rate fluctuations.

Park Lane • Broxbourne • Hertfordshire • EN10 7NQ Telephone (0992) 444111 • Fax (0992) 464457

Circuits, Systems \& Standards

First published in the US magazine EDN and edited here by lan Hickman

Thermal tester verifies transistors

Is your device well and truly heat-sunk?

An in-situ tester for the adequacy of heat sink arrangements. Ideal for the development lab and for sample testing of production units to ensure quality is maintained.

This tester verifies the thermal interface between a power transistor and its heat sink by measuring the temperature-sensitive $V_{B E}$ of the transistor under test. The unit first calibrates dissipation of the transistor under test with a fixed. low-level current then switches on a high current for a certain time and finally returns to the original low level. Record the $V_{B E}$ at the various stages in this test to calculate the thermal resistance of the transis-tor/heat-sink interface.

To find T_{J} max, first find the decrease in $V_{B E}$ between the reading at the end of the high-power stage and the steady-state value during the low-power stage. Then, $T_{I}{ }^{\circ} \mathrm{C}$ $=$ ambient temperature ${ }^{\circ} \mathrm{C}+$ decrease $/ 2.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Similarly, the effective total thermal resistance for the transistor/heatsink assembly is (decrease $/ 2.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$) $/ 10$.
An 11.4 V input yields 10 W dissipation in the transistor under test. The tester comes up in the low-power mode and after warm-up the low-level $V_{B E}$ can be measured. Press the test switch and the 555 timer turns on the dmos switch, and the current in the transistor under test jumps to 1.1A. The timer times out in 2 min . A variety of common lab instruments can be used to record data.

Carlo Venditti, C S Draper Lab, Cambridge, MA.

Divider displays uncanny accuracy

TThe voltage divider divides V^{\prime} REF in half with uncanny accuracy yet uses no precision components: note that unlike dividers based on precision resistors, which can divide a voltage in virtually any proportion, this circuit will only divide $V_{\text {REF }}$ in half.
The circuit uses a cmos flip-flop to toggle the divider resistors, R_{I} and R_{2}, between $V_{\text {RFF }}$ and ground. R_{1} and R_{2} need not be precision resistors because the toggling action. along with C_{1}, averages any error toward $\iota e r o$.
Because the effects of the flip-flop's output transistors' onresistances and any mismatch between R_{1} and R_{2} tends to average out, the major souree of inaccuracy in this circuit is asymmetry in the flip-flop's time division. Accuracy of the circuit can be further improved by buffering the Q and $\overline{\mathrm{Q}}$ outputs with an HC-type line driver with paralleled outputs.

Exact voltage divider

Here is a solution just waiting for a problem to solve. If you need to derive a half reference-voltage point and just happen to have a clock waveform handy, but cannot afford precision resistors, here is your answer. Or you could use the flip-flop to control cmos switches likewise, to produce a midpoint voltage between any two voltages $V_{\text {REF1 }}$ and $V_{\text {REF2 }}$. IH

The device would further reduce the effects of the flip-flop"s output transistors' on-resistances.

Michael A Wyatt, SSAvD Honywell mc, Clearwater, FL.

Dividing $V_{\text {Ref }}$ in half using no precision components.

Decode overlapped eprom, ram and i/o

TFoday's large ram and eprom chips ($32 \mathrm{~h} / 64 \mathrm{~h}$ bytes and up) allow the size. complexity, and even the cost of eprombased microcontroller systems to be reduced. Using a physical memory composed of two 32 kbyte ram chips and two 32 kbyte eprom chips (Fig. 1), a 64kbyte memory can be implemented in which the ram and eprom sections overlap almost completely.
The arrangement allows ncarly full use of the aldressable space because the system's ram/eprom boundary can be set where it belongs - near the application's highest eprem location. A conventional system's boundary, on the other hand. must lie on an address location determined by the physical chip size (in bytes).
For example, for a system based on three eprom chips of 8 k byte each, the ram must begin at the 24 k byte level. Therefore, if an application requires only 17 kbyte of eprom, 7 k byte of memory must be foregone.
The system in Fig. I also includes space for eight memorymapped i/o devices, located at the top of the ram for the convenience of microcontrollers such as the 8051, which lack an $I O / \overline{\mathrm{M}}$ signal. The eight base addresses shown reserve 16 ram locations for each deviee, leaving the top 128 ram addresses inaccessible. Ram and eprom boundaries are established by using a dip switch or jumpers manually to set the fence address $B_{I 5}-B_{3}$. shown in the memory's logicalorganisation diagram (Fig. 2).
In Fig. 3, the magnitude comparator $/ C_{l}$, compares the

Flexible addressing for microcontrollers

A useful memory mapping arrangement to enable as much or as little memory as needed to be dedicated to eprom (to the nearest 256 bit boundary) with the rest available for ram, except for a few locations at the top of memory which it reserves for i/o.
IH

Fig. 1. 64kbyte memory system provides
64kbytes of
physical ram virtually overlapped by $64 k b y t e s$ of physical eprom.
FFFFF $\quad\left[\begin{array}{c}\text { FENCE ADDRESS } \\ \\ 0000\end{array}\right]$

Fig. 2. Logical organisation of the memory in Fig. 1 locates memory-mapped i/o space at the top of the ram and allows the boundary to be set between the ram and eprom by manually setting a fence address.

Fig. 3. These ICs control the memory in Fig. 1. IC C_{1} and $I C_{2}$ select the ram and eprom chips according to fenceaddress position, and $I C_{3}$ and IC C_{4} decode i / o addresses. $I C_{5}$ generates an $I O / \bar{M}$ signal

high byte of the fence address with the high-byte address lines and issues a signal - 0 for ram, 1 for rom. (Comparing only the high bytes simplifies the decoding circuit but leaves as much as 256 bytes of ram unaddressable.) Next, the two- to four-line decoder $I C_{2}$ uses the decoder signal and the A_{15} address line to activate the appropriate memory chip. The eight-input Nand gate $/ C_{3}$ and the three- to eight-line decoder $I C_{4}$ generate chipselect signals for the eight i / o devices. For active i / o devices, another eight-input Nand gate $\left(/ C_{6}\right)$ generates an $1 \mathrm{O} / \overline{\mathrm{M}}$ signal that disables the selection of ram.

Amplifier handles duplex line

Another amplifier for a two-wire line

Another approach to amplification in a two-wire line is simply to bridge a negative resistance across the line. If the return loss of the terminations is too low at some frequency, the circuit will sing around at that frequency.
1H

T-his bidirectional amplifier, able to amplify both signals of a duplex telephone conversation, uses the principle of negative resistance. Obviously, such an amplifier could casily be unstable; but $R_{/}$can be adjusted for maximum amplification and the circuit will remain stable. You might also consider replacing the $L M 324$ op amps with op amps that would distort less, such as the LMI558, LF4I2, LF353 or LF442.
Mansour Ahmadian, Technical and Engineeng University, Tehran, Iran.

Amplifier uses

 negative-resistance principle to amplify full-duplex telephone signals.

Electronics Circuits, Systems \& Standards

Since its appearance in 1956 the US-based EDN has established itself as a leader in controlled circulation electronics magazines. Now this "best" of EDN - with useful ; : information on components, equipment, circuits, systems and standards - is available in a 216 page hardback publication

Available direct by postal application to EW + WW, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS. Cost $£ 20$ plus $£ 1.50$ post and packing. Cheques payable to Reed Business Publishing Group.

Edited by lan Hickman, published by Butterworth Heinemann Newnes. ISBN 075060068 3. Price $£ 20$.

FROM CONCEPT TO ARTWORK IN 1 DAY

Your design ideas are quickly caphered using the ULTIcap schematic design Tool. ULTIcap uses
REAL-TIME checks to prevent locic érrors. Schematic edring is painless; simply click your start and end points and ULTIcap automatically wires them for you. ULT cap's auto snap to pin and auto junction features ensure your netistris complete, thereby relieving you of tedious netlist checking.

ULTIsh ill the integrated user interiace, makes sure all your de lign information is transferred correctly from ULTIca) to ULTlboard. Good manual placement tools are vital to the progr sof your design, therefore ULTlooard gives you a powerful suite of REAL-TIME functions such as, FORCE VECTORS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout.

Now you can quickly route your critical tracks. ULTIboard's REAL-TIME DESIGN RULE CHECK will not allow you to make illegal connections or violate your design rules. ULTIboard's powertul TRACE SHOVE, and REROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vias and surface mount designs are fully supported.

If you need partial ground planes, then with the Dos extended board systems you can automatically create copper polygons simply by drawing the outine. The polygon is then filled with copper of the desired net, all correct pins are connected to the polygon with thermal reliet connections and user defined gaps are respecied around all other pads and tracks.

ULTIboard's autorouter allows you to control which parts of your board are autorouted either selected nets, or a component, or a window of the bjard, or the whole board. ULTIboard's intelligent rruter uses copper sharing techriques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.

NEM M

ULTIboard/ULTIcap evaluation system: - all features of the bigger versions - full set of manuals

- design capacity 350 pins
Price incl. S \& H, excl. VAT: Purchase price is 100% credited when upgrading to a bigger version. Also suitable for study \& hobby

JLTlboard's backannotation automatically updates your ULTIcap schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate pen / photo plots, dot matrix/laser or postscript prints and custom drill files.
CIRCIE NO. 137 ON REPIYCARD

ULTIboard PCB Design ULTicap

Schemaric Design Systems are available In low-cost DOS versioñs, fully compatible with and upgradable to the 16 and 32 bit DOS-extended and UNIX versions, featuring unlimited design capacity.
The Eancoeran quablity altermative TLtCTP

A digital-toanalogue converter is hardly a cheap

 alternative to a potentiometer. However, some readily pay the price, only to get rid of the "dirty" mechanical contact, while others are prepared to pay for remote control and repeatable settings. Erik Margan describes an ingenious design using a single D-toA back to front.
Single D-to-A equalisation

n contrast with other digitally controlled equalisation circuits, which use either a D-to-A to set the analogue voltage for driving two VCAs, or use two D-to-As to provide the required boost-cut function, the circuit described below exploits the available complementary outputs of some cmos D-to-As. like $A D 7524$, to achieve the same result with only one D-to-A.
Actually, the D-to-A is connected backwards; the complementary outputs function as inputs and the voltage reference input is used as output. This is possible due to bidirectional cmos switches in the D-to-A and the symmetrical $\pm 7.5 \mathrm{~V}$ dc power supply for the D-to-A and control logic. Since the voltage swing capability of D-to-A outputs is limited, two resistive dividers level the signal down and an opamp is used to restore gain and compensate for filter losses.

This op-amp also serves as a low-impedance driver for the filter section, thus preventing filter transfer function variations with boost/cut setting (a weak point of many equalisers using gyrators).
The second op-amp boosts or cuts the filter output by

$$
G=2+\frac{R_{m}}{R_{n}}=4
$$

multiplied by the 4-bit digital code in symmetrical offset-binary format $(0111=1000=0 \mathrm{~dB})$.
For the band-pass filter I have used a series-shunt R C network. Its transfer function is:

$$
F\left(j_{t}\right)=\frac{\frac{R_{h}}{j_{\omega} C_{b} R_{b}+1}}{R_{a}+\frac{1}{j \omega C_{a}}+\frac{R_{b}}{j \omega C_{h} R_{b}+1}}
$$

Fig. 1. Circuit diagram. Note the $\pm 7.5 V$ DC power supply for the D-to-Aand the data control logic.

With little rearrangement, it may be rewritten as:

$$
F(j \omega)=\frac{\frac{1}{R_{u} C_{b}} j \omega}{(j \omega)^{2}+j \omega\left(-\frac{1}{R_{a} C_{a}}+\frac{1}{R_{b} C_{b}}+\frac{1}{R_{a} C_{b}}\right)+\frac{1}{R_{u} C_{u} R_{b} C_{b}}}
$$

If we compare this to the nomalized biquadratic form:

$$
H(s)=A_{0} \frac{\frac{\omega_{0}}{Q} s}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}{ }^{2}}
$$

we find the filter centre frequency at:

$$
\omega_{0}=\sqrt{\frac{1}{R_{d} C_{d} R_{h} C_{h}}}
$$

From the last three equations we may calculate the filter Q-factor:

$$
Q=\frac{\sqrt{\frac{1}{R_{u} C_{a} R_{b} C_{b}}}}{\frac{1}{R_{u} C_{a}}+\frac{1}{R_{b} C_{b}}+\frac{1}{R_{u} C_{h}}}=\frac{1}{\sqrt{\frac{R_{b} C_{b}}{R_{u} C_{u}}+\sqrt{\frac{R_{d} C_{a}}{R_{h} C_{b}}}+\sqrt{\frac{R_{b} C_{a}}{R_{u} C_{b}}}}}
$$

and the attenuation at the centre frequency:

$$
=\frac{1}{R_{a} C_{b}} \cdot \frac{1}{\frac{1}{R_{a} C_{a}}+\frac{1}{R_{b} C_{b}}+\frac{1}{R_{a} C_{b}}}=\frac{1}{\frac{C_{b}}{C_{a}}+\frac{R_{a}}{R_{b}}+1}
$$

If $R_{a}=R_{b}=R$ and $C_{a}=C_{b}=C$ then

$$
\omega_{0}=\frac{1}{R C} \quad Q=\frac{1}{3} \quad A_{0}=\frac{1}{3}
$$

and this results in one-octave band-width. The filter output voltage is:
$V_{t}=\left(. x V_{\mathrm{tn}}+(1-x) V_{\mathrm{out}}\right) a_{1} A_{1} F(j \omega)$
where:
$0 \geq x \geq 1 \quad a_{1}=\frac{R_{d}}{R_{f}+R_{d}}=\frac{1}{10} \quad A_{1}=1+\frac{R_{e}}{R_{j}}=6$
The system output voltage is then:
$V_{\text {out }}^{\prime}=-V_{\text {m }}+a_{1} A_{1} G l_{F}$
So the system transfer function will be:
$\frac{V_{o w 1}^{\prime}}{V_{\mathrm{tI}}}=-\frac{1-x a_{1} A_{1} G F(j \omega)}{1-(1-x) a_{1} A_{1} G F(j \omega)}$
Of course, x is digital code dependent:
$=\frac{D_{2} 2^{7}+D_{2} 2^{6}+D_{1} 2^{5}+D_{11} 2^{4}+\overline{D_{2}}\left(2^{3}+2^{2}+2^{1}+2^{10}\right)}{2^{x}-1}$
Figure. 1 shows the circuit schematic diagram and Fig. 2 shows the frequency responses for various settings. To make the settings symmetrical, I used a 4 -bit code with the MSB inverted and tied to the lower four bits. Due to the $w /(I-x)$ law, the increment at the filter centre frequency is 1.5 dB around code 1000 , rising up to 2.2 dB at extremes. Of course, up to 8 -bit control is possible.

Other equalizing sections are connected seri-
ally. It is possible to use two separate virtualearth summing junctions for a parallel connection of sections and the D-to-A is then connected in the usual way, but the result is much more noisy. The serial system single-stage noise gain is low ($\mathrm{G}=4$, with no boost or cut), the noise of other stages is passed unaffected and the D-to-A noise (the dominant noise source) is filtered in one-octave bands, so a 10-band systenı will be as noisy as a single
wideband stage. Use low impedances wherever possible and low-noise op-amps like the dual OP227.
The maximum input signal level is $2 \mathrm{~V}_{\mathrm{pp}}$. which should allow for boost on all stages without severe distortion and a good signal-tonoise ratio. With filters one-octave wide, some mutual influence of adjacent bands is inevitable (see Fig. 3). If this is undesirable, use more elaborate filters

Fig.2. Frequency responses of a single 1 kHz equalising section at various code values $(0 \mathrm{~F}, 1 \mathrm{~F}$, $2 F, \ldots, 7 F, 89,90, A 0, \ldots, F 0)$. Maximum boost and cut is 12 dB . Because of the $x /(1-x)$ law, the steps are not equidistant; the lowest is around $1.5 d B$ and the highest is around 2.2 dB .

Fig.3. Interaction of two adjacent (one octave apart) sections at maximum boost. The resulting boost is 18 dB . If this is undesired, more selective and more complex filter types must be used.

DESIGN BRIEF

Bringing the optoisolator into line

lan Hickman looks at use of the Siemens IL300 optocoupler in a low-drift highlinearity isolator.

Carrying signals across a voltage barrier so that the signal on the output side is isolated and floating relative to the signal on the input side is a common requirement in industrial, instrumentation, medical and communications systems. Simple capacitive isolation may suffice where only AC signal components are of interest. Bu often DC coupling is needed, for example in the control loop of a direct-off-mains switching power supply.
Various solutions are possible. Isolation amplifiers are available as standard products in IC form from manufacturers such as Analog Devices and Burr Brown. Another method involves a V-to-F (voltage to frequency converter) to carry the signal across via a high voltage working capacitor, or using a led-photodiode link, followed by an F-to-V. But the V-to-F and F-to-V settling times introduces delays which can introduce an embarrassing phase shift into a control loop. The F-to- V and the $V-10-F$ could be dropped, and the input signal applied using a voltage to current converter to the led, taking the output voltage from the coupled phot-diode or transistorthough ut drift and poor linearity are problems.

Low-drift high-linearity isolator

But a low-drift high-linearity isolator is available in the form of the Siemens $1 L 300$ linear

Fig. 1. Typical application circuit for the IL300 linear optocoupler, in positive-going unipolar photoconductive mode. Although κ_{1} and κ_{2} vary with temperature, their ratio K_{3} is virtually temperature independent. Devices are coded into bands according to the spreads of K_{1} and K_{3}.

Fig. 2. Test circuit used for evaluating the IL300 operating in positive unipolar photovoltaic mode. Ideally, there should be zero resultant signal at output 2.
optocoupler. The coupler contains a led and a highly insulated output photodiode, and a second photodiode which is also illuminated by the led and so can be used in a feedback loop to control the led current. Ratio K_{l} of the feedback (servo) photodiode current to led current is specified at a led forward current l_{f} of 10 mA , as is K_{2}, the ratio of output photodiode current to led current (see the typical application circuit Fig. 1). The two photodiodes are pin devices whose photocurrent is linearly
related to the incident luminous flux. High loop gain of the NFB loop enclosing the led and the input photodiode means $/ p_{I}$ in Fig. 1 will be linearly related to $V_{i n}$, even though the light output of the led is not linearly related to its forward current.
The constant of linearity is slightly temperature dependent, but this affects the output photodiode equally, so K_{3} (ratio of $K_{/}$and K_{2}) is virtually temperature independent. Thus $V_{o} / V_{i n}=\left(K_{2}, R_{2}\right) /\left(K_{l} \cdot R_{l}\right)=K_{3}\left(R_{2} / R_{l}\right)$.

Production spreads on both K_{1} and K_{2} - and hence also on K_{3} - mean the devices are binned into two selections for K_{l} and ten for K_{2}, (see box, Bin sorting and categories) and coded accordingly.
Any semiconductor photodiode can be used in either of two modes, photovoltaic or photoconductive. Photoconductive mode provides the higher signal transfer bandwidth in the IL300 and so the device's performance is specified in this mode. But photovoltaic mode provides lower offset drift and greater linearity (better than 12 bit).

Device testing

In a circuit used to test a sample device (coded $W I$) the plan was to subtract the output from a sample of the input, leaving only the distortion produced in the device under test (Fig. 2). This "take away the number you first thought of" technique is powerful and useful - within limits. In principle, any test signal will do, but a sine-wave is the most useful as it provides information on the order of the distortion mechanism.
A 5 V pk-pk sine-wave input at 50 Hz was applied to the circuit, as shown in the Channel 1 trace in Fig. 3. The circuit is non-inverting, so an inverting amplifier A_{3} was included in the input signal sample path, to permit outphasing. After carefully adjusting the 2 K potentiometer to cancel the component in the output which represented the input, the resultant distortion (measured at output 2) is seen to be about $300 \mu \mathrm{~V} \mathrm{pk}-\mathrm{pk}$, allowing for the 40 dB gain in A_{4}. This compares with a wanted signal at output l of about $500 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$, allowing for the "gain" of one tenth from input to output l. Thus the distortion - assuming it all occurs in the optocoupler with no contribution from the op-amps - is well over 60 dB down and is visibly almost pure second harmonic, as would be expected from a device operated in single-ended mode. Note that to use this outphasing test method, the ground rails of the input and output circuits have been commoned. In practice, they would be totally separate, this being the purpose of an opto coupler.
Repeating the test with a 200 Hz input (Fig. 4) produced a large fundamental component at output 2 which could not be outphased. The effect is caused by phase-shift on the optocoupler path exceeding that through the outphasing side path, which contained
only one op-amp as against two and the optocoupler for the signal path. A twentieth of a degree more phase shift through one path than the other will cause a quadrature component 60 dB down. It cannot be outphased by the potentiometer and is one of the limits to this technique. (Adding a balancing delay in the side path - a sniff of CR - would permit complete outphasing of the test signal, provided all frequency components of the test signal were delayed equally. This is clearly easier to arrange with a sine-wave test signal consisting of just the one frequency component.)

Applying a 20 kHz 3.5 V pk-pk square-wave gives some idea of the bandwidth available in the photovoltaic mode, the input and output l waveforms being as shown in Fig. 5. To control ringing, add the 10 pF capacitor between output A_{l} in Fig. 2 and the inverting input of A_{1}. Without this capacitor, each edge of the square wave shows two complete cycles of ringing at about 100 kHz . The result agrees well with the 50 or 60 kHz bandwidth quoted by the manufacturer and shown in Fig. 6a. If the two photodiodes and the led are reversed, the latter being returned to ground rather than $+V_{c c}$, the result is a negative-going unipolar photovoltaic isolation amplifier.

Bipolar operation

A bipolar photovoltaic amplifier can be constructed using two $/ 2300 \mathrm{~s}$, with each detector and led connected in antiparallel, Fig. 7. The arrangement gives very low offset drift and exceedingly good linearity. But the bad news is that crossover distortion due to charge storage in the photodiodes severely limits bandwidth. Using matched $K_{3} \mathrm{~s}$, with a bipolar input signal centred on ground and taking a hefty 5% as the acceptable distortion limit, the bandwidth is typically less than 1 kHz .
Bipolar operation with around 50 kHz bandwidth can be achieved, with the circuit of Fig. 1, by using constant current sources to pre-bias the amplifier to the middle of its range. Internai warming of the op-amp driving current through the led is a source of zero drift in all the optecoupler circuits discassed here. It can be reduced by using an emitter follower at the op-amp's output to drive the led, shifting most of the dissipation out of the op-amp.
But in circuits using pre-bias, zero drift is also critically dependent on the quality and stability of the current sources. So photoconductive mode might be preferable with its

fig. 3. $5 \mathrm{~V} p \mathrm{pk} \mathrm{pk} 50 \mathrm{~Hz}$ input test signal to circuit of Fig. 2 (upper trace) and outphased distortion products (lower trace).

(a)

Fig. 4. As Fig. 3 but test frequency increased to 200 Hz . The residual at output 2 now contains a large component at the 200 Hz fundameni il.

TIME BASE $=20 \mathrm{uS}$ (DIV
 CHI VIDV $=5 \mathrm{~V}$

$\mathrm{CH} 2 \mathrm{~V} / \mathrm{V}=0.5 \mathrm{~V}$

Fig. 5. Input and output 1 (Fig. 2) with a 3.5V $p k-p k 20 k H z$ square-wave input.

Fig. 6. (left) Bandwidth of the IL300 optocoupler: a) in photovoltaic mode b) in photoconductive mode.

(a)

Fig. 8. Input a) and residual b) waveforms using the IL300 in the pre-biased bipolar photoconductive amplifier circuit of Fig. 7.
bandwidth in the range $100-150 \mathrm{kHz}$. Fig. $\mathbf{6 b}$.
Figure 7 shows a bipolar photoconductive isolation amplifier, using rudimentary constant voltage sources for pre-bias. Note that $I P_{2}$ tlows through a 60 K resistor. against 30 K for $I P_{1}$, to restore the gain to unity, allowing for the $2: 1$ attenuation pad at the input - twice the pre-bias voltage is needed in the output circuit. This circuit was substituted for the A_{1} and A_{2} circuit in Fig. 2 and the 50 Hz distortion test repeated. (Because the Fig. 7 circuit is invert-
ing. amplifier $A_{3,}$ in Fig. 2 is not needed and so is bypassed.) This time, the amplitude of the 50 Hz input is only $4 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$, Fig. 8a, yet the amplitude of the residual (Fig. 8b) is as large if not larger than in Fig. 3.

Further, its distinct triangularity indicates significant higher order distortion terms illustrating the slightly poorer linearity of the optocoupler in the photoconductive mode.
Clearly, zero drift will also be dependent on the quality of the bias sources, which in Fig. 7 is not very good. Better performance can be expected from a circuit using devices such as the LM3/3. An even more ingenious approach is to use a second $I L 300$ to provide the input circuit with an offset voltage tracking that in the output circuit, Fig. 9.

Improving CMRR

Whether unipolar or bipolar, all the circuits discussed so far have been single ended: ie accepting an input which is unbalanced with respect to the input circuit ground. The CMRR (common mode rejection versus frequency) achieved is simply that provided by the optocoupler itself. In the case of the $I L 300$, the figure is typically 130 dB at 50 Hz falling linearly (in terms of dB versus \log frequency) to about 60 dB at 100 kHz .
Where the signal source is balanced with respect to the input circuit ground, a much

Fig. 9. Bipolar photoconductive isolation amplifier using an additional optocoupler to convey to the input amplifier the same pre-bias voltage used in the output amplifier. (

Bin sorting and categories

K_{1} (servo gain) is sorted into two bins, each in 2:1 ratios:
$\operatorname{Bin} W=0.0036-0.0072$
$\operatorname{Bin} X=0.0055-0.0110$
K_{f} is tested at $I_{f}=10 \mathrm{~mA}, V_{\text {det }}=0.15 \mathrm{~V}$.
K_{3} (transfer gain) is sorted into bins that are $\pm 5 \%$, as follows:
$\operatorname{Bin} A=0.560-0.623$
$\operatorname{Bin} B=0.623-0.693$
$\operatorname{Bin} C=0.693-0.769$
$\operatorname{Bin} D=0.769-0.855$
Bin $E=0.855-0.950$
$\operatorname{Bin} F=0.950-1.056$
$\operatorname{Bin} C=1.056-1.175$
$\operatorname{Bin} H=1.175-1.304$
$\operatorname{Bin} l=1.304-1.449$
$\operatorname{Bin} J=1.449-1.610$
$K_{3}=K_{2} / K_{1} . K_{3}$ is tested at $l_{f}=10 \mathrm{~mA} . V_{\text {def }}=$ 0.15 V .

Bin categories

The twenty bin categories are a combination of bin sortings and indicated as a two alpha character code. The first character specifies K_{1} bins, the second K_{3} bins. For example, a code $W F$ specifies a K_{7} range of 0.0036 0.0072 and a K_{3} range of $0.950-1.056$.

K_{1}, K_{3}	K_{1}, K_{3}
$W A$	$X A$
$W B$	$X B$
$W C$	$X C$
$W D$	$X D$
$W E$	$X E$
$W F$	$X F$
$W G$	$X G$
$W H$	$X H$
$W I$	$X I$
$W I$	$X I$

The IL300 is shipped in tubes of 50 each. Each tube contains one category of K_{t} and K_{3}. The category of the parts in the tube is marked both on the tube and on each part.
greater CMRR can be achieved using a differential isolation amplifier. Additional isolation comes from the bridge connection of the amplifier on the output side, which combines the inverting and non-inverting inputs to provide a single ended output. Siemens ${ }^{1}$ has published differential input circuits operating in both the photovoltaic and photoconductive modes, the former offering a bandwidth of 50 kHz combined with a CMRR at 10 kHz of 140 dB .

Reference

1. Designing Linear Amplifiers Using the IL300 Optocoupler Siemens Appnote 50, March 1991.

WHITE NOISE by Hot Carrier

Fibres, phones and fair competition

Hot Carrier HQ is now wired for cable TV. The attraction is not so much old movies and "art" films; more that the signals are free from interference from French stations during periods of high pressure - a not unfamiliar story for those on the south coast.
But one of the most important considerations was the promise of a non-BT phone service. Before cable, the only competition for BT was Mercury - a service not widely available to private households. But with a fibre optic network in place, the extra bandwidth needed to support a phone service. on top of forty TV channels, is negligible.
As a result, the number of residential
customers scrved by the telephone networks operated by cable companies more than doubled in the first half of 1992.

Now this is all in accordance with the government's policy of competition. But while the cable TV companies are permitted to compete with BT in offering a telephonc service. BT is debarred for the present indeed for at least seven years - from the tit-for-tat offering of cable TV to its phone customers.
The government aim is to stimulate a meaningful degree of competition to BT in the domestic phone business, as fast as possible. In this context. giving the cable companies a head start is clearly no bad thing. But seven years - that's not really a

Putting the accent on electricity tariffs

Looad management techniques such as offpeak tariffs, white meters, tariff 7 and even control of off-peak loads by means of inaudible signals impressed on the BBC's long wave 198 kHz transmitter are as nothing compared to the radical steps taken by Electricité de France. There, even for domestic premises, the standing charge depends on the maximum demand. But some tariffs are much stranger, though shot through with Gallic logic. One is the tarif effacement jours de pointe or EJP. Here. in exchange for a low standing charge and half price electricity 24 hours a day, a consumer agrees to be effaced from the load on EDF's
network for up to 22 days a year, between November and March. The jours de pointe are not known in advance, can come singly or consecutive y and are signalled to the consumer by a red light, installed by EDF. glowing brightly. Consumers can still use electricity if necessary. But it will be charged at ten times the non-EJP unit charge, ie twenty times the special rate. The Hot Carrier abode has gas central heating and two standby means of powering the circulation pump - a 12 to 240 V I50W inverter and a IkW Kawasaki petrol generator. So an EJP tariff available in the UK would be just fine by Hot Carrier.

Taking the lead for greener PCBs

Many manufacturers are still happily using ozone-layer-damaging fluorocarbon-based PCB cleaning compounds while others are "thinking about doing something about it". But some have already made the break, using a no-clean approach based on new solder formulations containing special low residue fluxes. Or turning to terpenes, such as Siemens' Munich hybrid plant, in a development being supported by the German Federal Office of the Environment. Terpenes are naturally occurring extracts of various sources, including lemon peel. They exhibit extremely low evaporation losses due to their low volatility, are exceedingly effective
at absorbing flux remnants and remain reusable over long periods. Furthermore. they can be extracted as a by-product from the otherwise wasted peel of lemons grown for lemon juice in the country of origin. So not only is this material biodegradable, it would still be produced anyway, whether for PCB cleaning or not. The point is that Hot Carrier culled this encouraging piece of information from Siemens ' house magazine. A number of UK companies are avoiding the use of CFCs one way or another, but we don't seem to hear too much about it. In my experience. if you blow your trumpet, others will take up your tune. But if you don ${ }^{\circ} t$. no one else will blow it for you.

Working redundant?

Until he took voluntary redundancy Greg was a components engineer. He was only a few years from normal retirement age and had been thinking about retiring early anyway. So when the call went round for volunteers following a company "merger" he duly offered to bite the bullet. As the company's only components engineer he was a little surprised to be able walk away with a pension and a handshake. Perhaps less surprisingly the company have had to take him back two or three days a week as a consultant. So did the firm immediately start training a young engineer as eventual replacement? Not a bit of it.
Unfortunately this is just the normal approach of management in the UK. Keep the ship off the rocks and don't worry about steering the best course to the destination. British managers are becoming so used to management-bycrisis that whenever the panic lifts even slightly, in their relief their thoughts turn to not to forward planning but to golf. Happy "retirement", Greg!

Best of British?

When Siemens took over parts of the old Plessey empire, the German company agreed that all employees would be no worse off, when they came to retire, than under the terms of the various Plessey pension funds. But what about good old British GEC? No such pledge has been forthcoming from this quarter concerning the ex-Plessey employees inherited by the company following the takeover.
Representatives of employees and of MSF have been fighting for such a pledge apparently with not too much success. Now Siemens has stepped in with an offer to guarantee to top-up any ex-Plessey GEC employees' pensions to a no-worseoff level. The company fears that the wrangling could go on for years, preventing formal winding up of the Plessey fund and affecting its own exPlessey prospective pensioners. In this extraodinary scenario, at the time of writing, GEC had not even undertaken to notify ex-Plessey staff, when they retire, of their entitlement to this Siemens top-up money. So much for British fair play.

CLASSIFIED

ARTICLES FOR SALE

PHILLIPS PM3217 Dual trace 50MHz Delay sweep
FARNELL DT 12-5 12 MHz Dual channel scope
FARNELL DT12-14 12MHz Dual channel scope
TEK TRONIX 221560 MHz Dual channel scope
TEKTRONIX 475200 MHz Dual channel scope
TEKTRONIX 43450 MHz Dual channel scope
TELEQUIPMENT D755 50MHz Dual channel scope
TELEQUIPMENT D1010 10 MHz Dual channel scope
TELEQUIPMENT D1010R 10MHz Dual channel scope
TELEQUIPMENT D1011R 10MHz Dual channel scope
TELEQUIPMENT D1016A 20MHz Dual channel scope
SCOPEX 4D 10 10MHz Dual channel scope
SCOPEX 4D10A 10MHz Dual channel scope
SCOPEX 4D25 25MHz Dual channel scope
DM64 10MHz Dual channel scope
D67A 25 MHz Dual channel scope
power unit and drive unit GK203N $\mathrm{MHz}-30 \mathrm{MHz}$ c/w aerial filter unit - mains
MARCONI Universal Bridge TF2700
MARCONI UHF Attenuator $[\mathrm{C}-1 \mathrm{GHz}$ TF2163S
MARCONI 2GHz Digital frequency meter 2435
GOULD Signal generator J3B
KEMO $1.0 \mathrm{~Hz}-100 \mathrm{kHz}$ Phasemeter Type DP1 (new)
FLUKE 845AB High impedance voltmeter - null detector (new)
SIEMENS Level meter $200 \mathrm{~Hz}-620 \mathrm{kHz}$ Tvpe D2155 c/w tracking osc Type
£1250
HP 3770 Telephone line anslyzer
All our equipment is sold with a 30-day guarantee.
SAE for enquiries. Phone for appointment or for demo. of any item. P\&P included UK only. VAT excluded. for more details please contact:
TELFORD ELECTRONICS, Old Officers Mess, Hoo Farm, Humbers Lane,
Horton, Telford, Shropshire TF6 6DJ. Phone: 0952 605451. Fax: 0952677978.

Understanding \& Installing Home Systems

-How to Automate your home

£22.95

The best practical guide to date for the DIY automator. Packed full of information on automation equipment and applications. Part of a remarkable information on automation equipment and applic
range of home automation components from:

SMARTHOUSESYSTEMS
3 Buchanan Street, Largs, Ayrshire, KA30 8PP Tel: 0475672589

TO MANUFACTURERS, WHOLESALERS, BULK

 BUYERS, ETC, LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSALSEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS DIODES, RECTIFIERS, etc RESISTORS, C/F, M/F, WM etc CAPACITORS,
SILVERMICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE
CERAMICS etcELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES,

TRANSFORMERS, etc
ALL AT KNOCKOUT PRICES
Come and pay us a visit ALADDIN'S CAVE
TELEPHONE 081445 0749/445 2713 R. HENSON LTD.

21 Lodge Lane, North Finchley, London N12 8JG.
(5 minutes from Tally Ho Corner)

TURN YOUR SURPLUS
TRANSISTORS, ICS ETC, INTO CASH
Immediate settlement.
We also welcome the opportunity to quote for complete factory clearance.

Contact:
COLES-HARDING \& CO. 103 South Brink
Wisbech, Cambs PE14 ORJ. ESTABLISHED OVER 15 YEARS
Buyers of Surplus Inventory Tel: 0945584188
Fax: 0945475216

GOLLEDGE
 ELECTRONICS

CRYSTALS OSCILLATORS FILTERS
Comprehensive stocks of standard items. Over 650 stock lines. Specials made to order.
OEM support: design advice, prototype quantities, production schedules.

Personal and export orders welcome.
SAE for our latest product information sheets.
GOLLEDGE ELECTRONICS LTD
Merriott, Somerset, TA 16 5NS
Tel: 046073718 Fax: 046076340

FREF TO SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only.
Trade advertisers should call Pat Bunce on 0816528339
All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondance with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

Please send your completed forms to:
Free Classified Offer: Electronics World, 11 th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

ARTICIES FOR SAIE

STEWART OF READING
110 WYKEHAM ROAD, READING, RG6 1PL. TEL: 073468041 FAX:0734351696 TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

WANTED

Test equipment, receivers, valves transmitters, components, cable and electronic scrap and quantity. Prompt service and cash.

> M \& B RADIO

86 Bishopgate Street, Leeds LS 14 BB Leeds LS 14 BB
Tel: 0532435649
Fax: 0532426881

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes,
PCB's, Plugs and Sockets, Computers, Ecge Connectors. TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT
A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 04,38 812193. Mobile: 0860 214302. Fax: $04 \hat{8} 812387$

WANTED: VALVES, TRANSISTORS I. Cs (especially types K T6م, K T88, PX4 PX25). Also capacitors, antique radios shop clearance considered. If possible, send written list for offer by return. Billington Valves, phone 0403784961. Fax: 0403783519.

FREE CLASSIFIED

PHILLIPS ENGINEERING Development system, full spec printer, emulation pods, debugger etc. Boxes of software, assemblers compilers, unix updates $£ 550$ assemblers com

IVC VIDEO EDITING: MACHINES UMatic CR-8300E (Two), excellent condition, just serviced offers or poss exchange military radios. Tel: 0524261945.

14" COLOLR MULTISYNC MONITOR with full service manuals for only $£ 120$, please phone 0543491867 (Lichfield area).

VALVES AND C.R.T.S

(also Magnetrons, Klystrons, 4CX250/350) Minimum orcer charge of $550+$ VAT

One million valves in stock. Obsolete types a speciality! Fax or phone for quote.

Special prices for wholesale quantities.

Orders from government departments, overseas etc. most welcome.

Many other types in stock. Please enquire re any type not listed.
CATHODE RAY TUBES 400 different types in stock.

VALVES
EC158 Prices on application. Please enquire re any type not listed below.

Testing to special quality - Military/CV, low microphony etc available on request
BILLINGTON EXPORT Ltd
Unit 1E. Gillmans Industrial Estate. Billingshurst. Sussex RH14 9EZ. Callers by appointment only.
Telephone: 0403784961 Fax: 0403783519
Min. UK order £50 + WAT. Min. Export order $\mathbf{£ 5 0}+$ Carriage.

CLASSIFIED ADVERTISEMENT ORDER FORM

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30

Place a lineage advertisement in next month's issue and it will cost, for a single insertion, only $£ 2.50$ per word.

Lineage advertisements under $£ 50$ have to be pre-paid by credit card or cheque.

Special rates:

6 insertions £2.15 per word/issue (Advertisement can appear every month or every other month only). 12 insertions f 1.80 per word/issue (Advertisement to run every month only).
WHY NOT PLACE A BOXED ADVERTISEMENT TO GIVE MAXIMUM IMPACT? \rightarrow

VALVES WANTED: KT66 (£30). KT88 (£40). PX4 (£45). PX25 (£45). High prices offercd. Full wanted \& sales lists availablc. Vintage Wireless Company. 575442 Tel: $02 \% 2$ 565472. Fax: 0272 575442.

WANTED: BOUND VOLUMES of Wireess World any of vols 1-7, good price offered, swops available Eeckley Bettws
Newport, Gwent.
$(1633$
$85399) 6$.

FREE TO COLLECTOR, about 500 Wireless World issues from circa 1939 to 1985. Tel: 1245251872 . (Chelmsford).

matmos

FASTEST MATMOS IBM COMPATIBLE AVAILABLE 66 MHz VESA 32 BIT LOCAL BUS 486 DX

The Marmos 486-66 VESA is one of the fastest IBM compatible machwes currently avalabte Both the VGA ard and IDE cache cpu bus speed This completely removes the bouleneck of 16 bi ISA PC hardware 3×32 ban slots conform to the new VESA standard There are $5 \times 15 A 16$ bit slols	Spec: $486-66 \mathrm{D} \times 2$ Intel CPU 8 Meg Ram (up to 64 MB on board max) 32 bit cache controller with 4 MB (16 MB max) 212 Meg hard drive VESA 32 but VGA card using Tseng Labs acceler ator up to 1280 by 1024 Desktop case and 102 keyboard 2 seriat. 1 game and 1 parallel ports 14435 inch drive and mouse

486 CAD/DTP SYSTEM WITH I 280×1024 MONITOR

case 102 keybourd. 2 serial I parailel pors. AM| bios, Microfield Graphics 18 colour graphics controller with 2 Mbytes video RAM and
8MIPS processor Hitacha 15 -nrch w utra high resolution monitor to display 1280×1024 non-Interlaced Will drive Windows $3 / 31$. ACAD elk Cancelicd delence order limited stocks
spec based around this stunnumg graphics card

TOP SPEC. 486 SYSTEMS

Ptone for lowest price quote on a complece system to your iequirements
Carriage on systems $C 10$ See below for add ons and ouher stock tiems

MATMOS 25 MHz 386 SYSTEMS


```
LASER: Konica LP3H10 10 10 page per mmute migh qualiry laser PR
```

```
LASER: Konica LP3H10 10 10 page per mmute migh qualiry laser PR
```

 FLOPPY DISK DRIVES

1.2 Mbyte 5.25 -nch Panasonik halr height 23995 (carr (4)

IBM standard floppy disk drive cabic $\subset 3$

HARD DISK DRIVES


```
386 to 486 UPGRADE KITS
```

386 to 486 UPGRADE KITS
*)

```
*)
```



```
Ethemect ard Novell NE:2000 compln
```

Ethemect ard Novell NE:2000 compln
AT/XT CASES WITH PSU

```
AT/XT CASES WITH PSU
```



```
M,
```

M,
INTEL 386 PROCESSOR AND }387\mathrm{ CO-PROCESSOR
INTEL 386 PROCESSOR AND }387\mathrm{ CO-PROCESSOR
MONITORS

```
MONITORS
```



```
meeticer) (arat ti0)
```

meeticer) (arat ti0)
CADCOLOUR
CADCOLOUR
\$5-inch fixed frequency 64kHz Hirach. HM4115 with Microfield Graphics r8 driver card for Autocad and Windows 3/31 ac
\$5-inch fixed frequency 64kHz Hirach. HM4115 with Microfield Graphics r8 driver card for Autocad and Windows 3/31 ac
VGA CARDS AND WINDOWS ACCELERATORS
VGA CARDS AND WINDOWS ACCELERATORS
Mono graphics card (995 (all carr (2)

```
Mono graphics card (995 (all carr (2)
```



```
16-bit 1024\times768 super VGA card Very high resolurion wirth IMbyte and drivers for Wmndows. Acad. VP etc. Full manuals and disks
```

16-bit 1024\times768 super VGA card Very high resolurion wirth IMbyte and drivers for Wmndows. Acad. VP etc. Full manuals and disks
\$0,
\$0,
NCR Windows Accelerator with 2Mbyte video RAM f109 (carr (2)
NCR Windows Accelerator with 2Mbyte video RAM f109 (carr (2)
MODEM CARDS
MODEM CARDS
Hayes Compatible 24008PS nierral modem luly compatile wut MNPS Error correction Auto dia/answer and speed sensing
Hayes Compatible 24008PS nierral modem luly compatile wut MNPS Error correction Auto dia/answer and speed sensing
Works with Windows 3. Procam, Crostaik etc (69 (car {4)
Works with Windows 3. Procam, Crostaik etc (69 (car {4)
POWER SUPPLY
POWER SUPPLY
MOTHERBOAR.DS, CONTROLLER CARDS, DOS AND WINDOWS
MOTHERBOAR.DS, CONTROLLER CARDS, DOS AND WINDOWS
ALL IN STOCK AT THE BEST PRICES. PLEASE CALL OR FAX.
ALL IN STOCK AT THE BEST PRICES. PLEASE CALL OR FAX.
NB * VAT and carriage must be added to all items (quotes for carriage overseas)
NB * VAT and carriage must be added to all items (quotes for carriage overseas)
* Everything new, and guaranteed one year unless stated; ex-dem. products guaranteed 6 months.
* Everything new, and guaranteed one year unless stated; ex-dem. products guaranteed 6 months.
* Access and Visa telephone service.
* Access and Visa telephone service.
MATMOS LTD., UNIT II, THE ENTERPRISE PARK,
MATMOS LTD., UNIT II, THE ENTERPRISE PARK,
LEWES ROAD, LINDFIELD, WEST SUSSEX
LEWES ROAD, LINDFIELD, WEST SUSSEX
RHI6 2LX. 0444 48209| and 0444483830
RHI6 2LX. 0444 48209| and 0444483830
(Fax:0444 484258)

```
                                    (Fax:0444 484258)
```


INDEX TO ADVERTISERS

PAGE	PAGE	PAGE
Antex Electronics Ltd .. 1010	Hitex (UK) Ltd 1038	Ralfe Electronics 1034
Audio Electronics........ 1034	Hoka Electronics (UK)... 987	Research Communications
Bull Electrical.............. 988	ICE Technology Ltd 1034	Ltd 992
Buyers News 1012	ICOM (UK) Display 1007	Seetrax Ltd 1022
Cirkit Distribution 1043	IPK Broadcast Systems 1007	Sherwood Data 1022
Citadel Products Ltd IFC	Johns Radio 998	
Colomore Electronics	Keytronics 977	
Ltd 1022	M \& B Electrical 1004	
Dataman Designs IBC	M \& B Radio (Leeds) ... 1010	2
Display Electronics Ltd... 975	MQP Electronics 1038	Telnet 1014
Ellmax Electronics Ltd 1038	Maplin Electronics.......OBC	Thurlby Thandar Ltd.... 1014
Gerp Communications.... 997	Matmos Ltd 1056	Trio-Kenwood UK Ltd ... 994
Halcyon Electronics 1012	Micro Amps Ltd........... 970	ULTImate Technology
Hewlett Packard........... 981	Pico Technology 1010	UK Ltd 1047

OVERSEAS ADVERTISEMENT AGENTS

France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008
United States of America: Jay Fenman, Reed Business LId., 205 East 42 nd Street, New York, NY 10017 - Telephone (212) 8672080 - Telex 23827.

[^5]
Dataman's new S4 programmer costs £495 You could have one tomorrow on approval*
 If you've been waiting for S4 we have
 Your microprocessor can write to S4

some good news. It's available now. S4 is the 1992 successor to Dataman's S3 programmer, which was launched in 1987. The range goes back through S2. in 1982, to the original Softy created in 1978. Like its predecessors Softy4 is a practical and versatile tool with emulation and product development features. S4 is portable, powerful and self-contained. Design and manufacture are State of the Art. S4 holds a huge library of EPROMS, EEPROMS FLASH and One Time Programmables. Software upgrades to the Library are free for the life of the product, and may be installed from a PROM by pressing a key. 54 makes other programmers seem oversized. slow and outdated. S4 is now the preferred tool for engineers working on microsystem development.

Battery Powered

S4 has a rechargeable NICAD battery On average, you can do a week's work without recharging. On a single charge, up to a thousand PROMS can be programmed - and charging is fast: it only takes an hour. Normal operation can continue during the charging process.

Continuous Memory

Continuous Memory means never losing your Data, Configuration or Device Library. You can pick up S4 and carry on where you left off, even after a year on the shelf. If the NICAD battery loses all of its charge, RAM contents are preserved by the LITHIUM backup battery.

Remote Control

S4 can be operated via it's RS232 Serial Port. The standard D25 socket connects to your computer. Using batch files or a terminal program, all functions are available from your PC keyboard and screen.

Free Terminal Program

You could use any communications software to talk to S4. But the Terminal Driver program, which we include free, is the best choice. It has Help Screens to explain S4's functions and it sends and receives at up to 115200 baud - that's twelve times as fast as 9600 baud. At this speed a 64 kilobyte file downloads in 9 seconds. There is a memory resident (TSR) option too, which uses only 6 k of your precious memory, and lets you "hot key" a file to S4. Standard upload and
as well as read. If you put your variables and stack in S4's memory space, you can inspect and edit them. You can write a short monitor program to show your internal registers.
S4's memory emulation is an inexpensive alternative to a full MDS and it works with any microprocessor. Many engineers prefer it because their prototype runs the same code that their product will run in the real world.

Dimensions \& Options

S4 measures $18 \times 11 \times 4 \mathrm{~cm}$ and weighs 520 grams. $128 \mathrm{k} \times 8(1 \mathrm{MB})$ of user memory is standard, but upgrading to
$512 \mathrm{k} \times 8$ is as easy as plugging in a 4MB low-power static CMOS RAM. The stated price includes Charger, EMUlead, Write Lead, Library ROM, Terminal Driver Software with Utilities and carriage in U.K. but not VATT.

*Money-back Guarantee

We want you to buy an S4 and use it for up to 30 days. If it doesn't meet with your complete approval you will get your money back, immediately, no questions asked.

VISA

Call us with your credit card details. Stock permitting, we are willing send goods on 30 days sale-or-return to established U.K. companies on sight of a legitimate order.

Customer Support

Dataman's customer list reads like Who's Who In Electronics. Dataman provides support. information interchange, utilities and latest software for S4, S3, Omni-Pro and SDE Editor-Assembler on our Bulletin Board which can be reached at any time, day or night.

Station Road MAIDEN NEWTON Dorset DT2 0AE United Kingdom
Phone 0300-20719
Fax 0300-21012
Telex 418442
BBS 0300-21095
Modern 12/24/96 V32 HST N,8,1

BUYERYS EUIDE TO ELEGTRONIG GOMPONENTS 1993

[^0]: Electronics World + Wireless World is published monthly By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$. Orders, payments and general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telex:892984 REED BP G Cheques should be made payable to Reed Business Publishing Group.
 Publishing Group.
 Newstrade: IPC Narketlorce, 071 261-6745.
 Subscriptions: Quadrant Subscription Services, Oakfield House. Perrymount Road. Haywards Heath, Sussex RH16 3DH, Telephone 0444 441212. Please notify a change of address. Subscriptior rates 1 year (normal rate) £ 30 UK and £35 outside UK.
 USA: $\$ 116.00$ airmail. Reed Business Publishing (USA), Subscriptions otitice, 205 E. 42 nd Street, NY 10117.
 Overseas advert|sing agents: France and Belgium: Pierre Mussard, 18 -20 Place de la Madeleine, Paris 75008 . United States of America: Ray Barnes, Reed Business Publishing Lid, 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080. Telex 23827.

 USA mailing agents: Mercury Airfreight International Ltd Inc, 1a(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
 Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate, Carlisle, Cumbria, CA2 7NR
 Typeset by Marlin Graphics 2-4 Powerscroft Road, Sidcup, Ken: DA14 5DT
 ©Reed Business Publishing Ltd 1992 ISSN 09598330

[^1]: *As at 1 September 1992
 CIRCLE NO. 110 ON REPLY CARD

[^2]: *Sherwood Datd Systems, High Wycombe.

[^3]: 'Name/address/postcode

 ICall sign:
 .Tel: Dept: WW

[^4]: Hitex (UK) Ltd
 Sir William Lyons Road
 Science Park

 KEIL
 ELEKTRONIK
 Coventry
 CV4 7EZ
 8 0203692066
 Fax 0203692131
 hitex

[^5]: Printed in Great Britain by BPCC Magazines (Carlisle) Ltd, and typeset by Marlin Graphics, Sidcup, Kent DA14 5DT, for the proprietors, Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. (C) Reed Publishing Ltd 1992. Electronics and Wireless World can be obtained from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Ltd, INDIA: A H. Wheeler \& Co, CANADA: The Wm Dawson Subscription Service Ltd; Gordon \& Gotch Ltd, SOUTH AFRICA: Central News Agency Ltd; William Dawson \& Sons (S.A.I Ltd; UNITED STATES: Worldwide Media Services Inc., 115 East 23rd Street, NEW YORK, N.Y. 10010. USA. Electronics \& Wireless World \$5.95 (74513).

