RF ENGINEERING

Yagi model highlights the unexpected

PC REVIEW

Mistakes in your netlist?

SCIENC=

DESIGN

Computer controlled sine generator

AUDIO

Just 0.00015\% distortion from an op-amp?

드르르를
 Motorola's MC33 I 02 sleeping
 beauty of an amplifier

Dataman's new S4 programmer costs £495 You could have one tomorrow on approval*
 If you've been waiting for $S 4$ we have
 Your microprocessor can write to S4

some good news. It's available now. S4 is the 1992 successor to Dataman's S3 programmer, which was launched in 1987. The range goes back through S2, in 1982, to the original Softy created in 1978.
Like its predecessors Softy 4 is a practical and versatile tool with emulation and product development features. S4 is portable, powerful and self-contained.
Design and manufacture are State of the Art. S4 holds a huge library of EPROMS, EEPROMS, FLASH and One Time Programmables. Software upgrades to the Library are free for the life of the product, and may be installed from a PROM by pressing a key. 54 makes other programmers seem oversized. slow and outdated. S4 is now the preferred tool for engineers working on microsystem development.

Battery Powered

S4 has a rechargeable NICAD battery. On average, you can do a week's work without recharging. On a single charge, up to a thousand PROMS can be programmed - and charging is fast: it only takes an hour. Normal operation can continue during the charging process.

Continuous Memory

Continuous Memory means never losing your Data, Configuration or Device Library. You can pick up S4 and carry on where you left off, even after a year on the shelf. If the NICAD battery loses all of its charge, RAM contents are preserved by the LITHIUM backup battery.

Remote Control

S4 can be operated via it's RS232 Serial Port. The standard D25 socket connects to your computer. Using batch files or a terminal program, all functions are available from your PC keyboard and screen.

Free Terminal Program

You could use any communications software to talk to S4. But the Terminal Driver program, which we include free, is the best choice. It has Help Screens to explain S4's functions and it sends and receives at up to 115200 baud - that's twelve times as fast as 9600 baud. At this speed a 64 kilobyte file downloads in 9 seconds. There is a memory resident (TSR) option too, which uses only 6 k of your precious memory, and lets you "hot key" a file to S4. Standard upload and
 as well as read. If you put your variables and stack in S4's memory space, you can inspect and edit them. You can write a short monitor program to show your internal registers.
S4's memory emulation is an ine xpensive alternative to a full MDS and it works with any microprocessor. Many engineers prefer it because their prototype runs the same code that their product will run in the real world.

Dimensions \& Options

S4 measures $18 \times 11 \times 4 \mathrm{~cm}$ and weighs 520 grams. $128 \mathrm{k} \times 8(1 \mathrm{MB})$ of user memory is standard, but upgrading to
$512 \mathrm{k} \times 8$ is as easy as plugging in a 4MB low-power static CMOS RAM. The stated price includes Charger, EMUlead, Write Lead, Library ROM, Terminal Driver Software with Utilities and carriage in U.K. but not VAT.

*Money-back Guarantee

We want you to buy an S4 and use it for up to 30 days. If it doesn't meet with your complete approval you will get your money back, immediately, no questions asked.
download formats include: ASCII, BINARY, INTELHEX, MOTOROLA and TEKHEX.

S4 loads its Library of programmables from a PROM in its socket, like a computer loads data from disk. Software upgrades are a vailable free. Download the latest Device Library from our Bulletin Board.

Microsystem Development

With S4 you can develop and debug microsystems using Memory Emulation. This is an extension of ROM emulation, used for prototype development, especially useful for single-chip "piggy back" micros. When you unpack your $S 4$ you will find an Emulator Lead with a 24/28/32 pin DIL plug and a Write Lead with a microhook. Plug the EMULead in place of your ROM. Hook the Write-Lead to your microprocessor's write-line. Download your assembled code into S4. Press the EMULate key and your prototype runs the program. S4 can look like ROM or RAM, up to 512 K bytes, to your target system. Access-time depends on S4's RAM. We are currently shipping 85 ns parts.

CIRCIE No. 101 ON REPLYCARD

Call us with your credit card details. Stock permitting, we are willing send goods on 30 days sale-or-return to established U.K. companies on sight of a legitimate order.

Customer Support

Dataman's customer list reads like Who's Who In Electronics. Dataman provides support, information interchange, utilities and latest software for S4, S3, Omni-Pro and SDE Editor-Assembler on our Bulletin Board which can be reached at any time, day or night.

Station Road MAIDEN NEWTON
Dorset DT2 0AE United Kingdom
Phone 0300-20719
Fax 0300-21012
Telex 418442
BBS 0300-21095
Modem 12/24/96 V 32 HST N, 8,1

CONTENTS

FEATURES

COVER：ELECTRICITY

WITHOUT MAGNETISM \qquad 540
The theory was established 170 yeirs ago，but Harold Aspden argues thall modern materials combined with．trigh frequency operation have opened ip commercial generation of electrici－y directly from heat．

FXPERT TOUCH TURNS DAMNED

 LIES INTO STATISTICS549How appropriate is your statistical analysis？Don Bradbury finds an expert that is happy to provide the answers．

aUto－validation for

NEATER NETLISTS
34
John Anderson reports on software that could mean checking for netlist errors becomes just that little bit easier．

SPLIT PERSONALITY OF HYBRID

DIRECTIONAL COUPLERS

\qquad
Splitting power equally between a directional coupler＇s normal load and one of the coupled ports creates a hybrid circuit．Dick Manton looks at the hybrid＇s operation and application．

POPOV：RUSSIA＇S MARCONI？ \qquad
If Popov had been less of physicist，would he have beaten Marconi to long distance wireless，asks KA Ioffe？

CHITIVGMMENNATESTIVG
DOWV I（）Sl／F ．．．．．．．．．．．．．．．．．．．．．．．． 5 ．
Reducing the size of antenna test ranges can cut costs and save time．Mike Christieson shows how results can compare well with full－sized set ups．

STAYINGIN（ONTROL IN IV
IIL－PASCFIIIFR RC OSC II VIOR ．．．- ．
Dan Stiurca restores initial conditions in an all－pass filter
RC oscillator to enable amplitude to be controlled．
DESIGNIVG．A（OMFUTER（ONTROHIEB）
SINF WAVE GENERATOR ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．＂
David Ryder outlines the design process behind a PC computer－driven 8－bit audio sinewave synthesiser．

SCALAR INALYSER（IVES
MEASURED RETURNS （1，）2
Stephen Gledhill explains how sweep oscillators built around scalar analysers provide a powerful system for analysis of microwave devices．

PROFESSIONAL S̀ERVICE DFFER：THE SLEEPING BEAUTY OF AN INTELLICENT OP－AMP hungry parts of the circuit．Automatic recognition of activity usually requires additional components，but Motorola has produced a device which thir ks for itself．$E W+W W$ offers readers the chance to sample the MC33102．．．free．

REGULARS

UPIAIE \qquad．．i32

Semiconductor makers fight for your desktop， $1 / 2$ billion programme goes out on HDTV，Memory chips are full of bugs．Cosmic help for Martian water diviners，Light route for the BBC，New material promises non－toxic systems

RESFARCH NOTES． 38

Scientists quantify designer lamp UV hazard，Look out！ It＇s a twister，Expert calls for more EMF／cancer studies， Great balls of electricity！

UPDATE SPECIAL \qquad 544
Peter Willis reports on the worlds of difference of DSR and dab

DESIC \mathcal{V} BRIEF \qquad ラーリ
Possible 0.00015% distortion and high impedance made the OPA2604 audio op amp irresistible to lan Hickman． First he validated the figures then put the device to work．．

CIRCUITS，SYSTEMS \＆DESICNS \qquad ．．．．．． 78
Square－wave oscillator spans DC to 20 MHz ，Multiple technologies produce fast clock，Non－linear load extends PLL frequency range．

CIRCUIT IDEAS
Ringing－choke inverter，Programmable－window comparator，Measuring transfer functions，Chopper saves relay power．

NEM PR：）OIITS i1 What＇s new electronics and engineering software．

APPIIC 1710 ＇S \qquad 506，

Switching audio amplifier uses power mosfets，Precise +10 V to -10 V adjustable voltage，Halogen lamp converter．

IFIIIRS．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．60）．
Dangerous idea，Not pursuing a lost course，Egyptian CFA update，Coherer anomaly，Class－A push－pull amplifier changes，Filter questions ．．．and answers．

Rf COVVF TIONS
116
Spectators at Warc 92 watched as emerging technologies battled to wrest spectrum away from the establishment．Pat Hawker and Peter Willis report．

UHITEAOMSF \qquad 6,1,
Hot Carrier generates some heat inside the structured world of electronics．

In next month＇s issue：Direct digital synthesis provides the fas：settling，low noise alternative to phase lock techniques current y used for programmable frequency generation．August EW $+W W$ carries the first part of a major zeries dealing with the smart way to design the heart of an effective radiocomms systems．Plus，obtain your free copy of Easytrax PCB layout program． AUGLST ISSUE IS ON SALE FROM JULY 30

PRODUCT PROFILE

- D2-MAC/PAL satellite receiver.
- 98 preselections.
- Menu control for user-friendly operation.
- Full remote control.
- Parental lock.
- Eurocrypt scrambling/conditional access system.
- Internal Smart Card reader for conditional access.
- Headphone Connection
- Dual-band LNC Switching.
- D2-MAC processing includes :
- Digital Hifi sound processing
- Automatic language selection
- Digital video processing compatible with future High Definition TV broadcasts (HD-MAC)
- Wide Screen picture processing
- TXT reception.
- PAL processing includes :
- 6 mono sound channels (main and multilingual)
- 3 stereo sound channels
- PAL encoding.

Various connection possibilities:

- 2 Euroconnectors for TV and Video.
- S-VHS output.
- 2 Dish antenna inputs.
- Magnetic polarizer control.
- Audio outputs CINCH.
- Terrestrial antenna loop through.
- PAL Baseband output.

Driving through the smog

EDITOR
Frank Ogden
081-6523128
DEPUTY EDITOR
Jonathan Campbell
$081-6.528638$

CONSULTANT
 Dereh Rowe

DESIGN \& PRODUCTION
Alan Kerr
EDITORIAL ADMINISTRATION
Lorraine Spindler 081-6523614

ADVERTISEMENT MANAGER
Jan Thorpe
$081-6523130$
SALES MANAGER
Shona Finnic
(081-6528640

CLASSIFIED SALES EXECUTIVE

Pat Bunce
081-6528339
ADVIERTISING ADMINISTRATION
Kathy Lambart 081-6.523139

ADVERTISING PRODUCTION
Shirley Lawrence
081-6528659
PUBLISHER
Robert Marcus
FACSIMILE
0) $81-6.528956$

CLASSIFIED FACSIMILE
081-6528931

Iam quite sure that there are plenty of lessons about making the best use of limited resources that the developed world could learn from the remaining two thirds. But it won't, choosing instead to pursue its own hi-tech solutions to eco problems - that is if it finds the will to do anything at all.
One doesn't like to be totally negative about the possibilities of using technology to cut consumption and pollution but history should make us sceptical. Take the US experience with motor vehicles for example. A recent report by the National Rescarch Council, a US government quango, points out that "technically achievable improvements" a phrase which translates to the use of special. lightweight materials coupled with very advanced electronic engine management systems, could raise the current average fuel consumption of 29 mpg to 36 mpg by 2006 at a cost of $\$ 2500$ per vehicle. This of course does not take into account impending tightened US emission controls which make the vehicle economy targets harder, if not impossible to meet.
When it comes to developing vehicle engines, pollution, economy and performance are directly at odds.
Back in the 60s when choking brown Los Angeles smog spurred legislators into action. electionics seemed like a saviour. Close control of ignition and injection (coupled 1o a general reduction ir car size) improved consumption from an average of around 16 mpg to the 29 mpg tigure of today. Precise charge control allowed the use of catalyst converters, reducing mass emissions per mile to about one tenth of their previous level.
So this use of technology reduced petro! consumption? Not a bit of it. It actually increased from 6.7 to 7.2 million barrels per day over precisely the same period.

What did the combination of electronics and exhaust catalysts do for the environment? Not a lot really. Increasing traffic volumes meant that average speeds have fallen: catalysts have relatively little action in cleaning up slow running (low temperature exhausi) engines in the traffic jams which are the feature of cities the world over. Although no hard figures are available for net emission quantities, a 90% net increase in tralfic coupled with inefficient catalyst action has marginalised the possible improvement.
We in Europe have always been driven to choose smaller cars because of the relatively high cost of petrol: the corresponding US price has actually fallen below that existing before the 1973 oil erisis in real tems. However. our curo-legislators have decided that vehicle emission control shall be based on electronics technology and exhaust catalysis. At a stroke, they have condemmed us to using 10% more fuel than we need otherwise have done because. paradoxically. this exhaust clean-up method requires a 5 to 10% rich burn from stochiometric composition. It also costs absolute engine power if nothing clse is changed.

Technology in general and electronies in particular has signally failed to stem petrol consumption or clean up city smog. A tax incentive switch to the trusty old 100% mechanical diesel engine would have done more for both consumption and emission control - these engines consume just 65% of the fisel while producing 25% emissions of their petrol equivalent, horsepower for horsepower.
The fact is that real action on consumption and pollution only happens when their presence causes hardship to the consumers and legislators. All other talk of action is just talk.

Frank Ogden.

[^0]
REGULARS

UPDATE

Semiconductor makers fight for your desktop he announcement that Texas Instruments
 processor socket on the computer

Tand Cyrix have signed a long term product cross-licence agreement signals the start of a major fight to control the deskiop computer marke. The first product coming from this agreement will be a Cyrix designed 486 chip produced on the Tl production lines.
Intel is fighting in the courts to prevent Cyrix manufacturing the processors at the centre of every IBM compatible computer. but it looks likely to lose since TI already has a licence to manufacture Intel products.
Although the TI/Cyrix chip has a 486 designation, it doesn't include the floating point structure of the 486 DX . However, it can deliver around twice the performance of the fastest 386 SX device while retaining full software compatibility.
Intel is publicly confident about the challenge to its effective monopoly of the top end IBM business, possibly because the company's technologists have come up with an answer to keep its processors in a prime product slot. They have designed a special co-processor chip - Intel calls it Overdrive which fits into the emply 487 DX co-
motherboard.

Looking for a cache

The upgrade device contains integer processing core and instruction cache elements which run at double the system clock speed effectively intereepting and bypassing the existing 486SX processor. Unlike floating point co-processors which only handle a limited range of instructions. the Overdrive element speeds up all application software. The amount of processing speed-up is determined by the hit rate on the internal cache; the co-processor is limited in external instruction fetch to the existing system clock rate. A $25 \mathrm{MH} z$ system (50 MHz internal) device costs $£ 459$.
In a second development, Intel has redesigned its top of the range 486 DX product to use the clock doubling circuitry of the Overdrive co-processor. The new device, coded 486DX2, is intended for sale to OEMs for incorporation into new machines rather than to provide an upgrade path for existing 486DX users. While it is theoretically pin and function compatible
with existing products, direct replacement is likely to cause problems with time critical software loops, bus contention and timing for example. External cache, memory and house keeping design must take account of the higher processing speed. Once again, the effective performance boost will be determined by the cache hit rate.

Tl and Cyrix are not alone in going for the Intel business. AMD has been manufacturing a range of improved performance 386 devices. Their selling point over the corresponding Intel parts include low power and fully static operation for the notebook computer market. They also undercut substantially on price.

Chips and Technologies produce 386 equivalents which, part for part, deliver some 40 to 50 per cent more performance than the Intel original for a given clock speed. Like the TI/Cyrix design, the C\&T speed improvement comes from an independently derived internal architecture arrived at for legal reasons - with pincompatible device function.

If the semiconductor companies are fighting a design war for the existing

Cosmic help for Martian water diviners

Workers at Los Alamos National Laboratory will use a neutron detector to discover the location of water on Mars. They believe there is water under the surface which may be made available to future astronauts working on the planet.
A future Mars Observer mission will make neutron measurements from orbit allowing scientists to search for

Neutron spectrometry fests for water in simulated Martian soil
locations of water as well as carbonates. The test could provide clues to previous life on Mars.
"Space is filled with high-energy cosmic rays that mostly are protons, like the ones produced in linear accelerators" says Roger Bryd, a researcher it Los Alamos' Space Plasma Physics Group. "When they bang against the surface of Mars, they cause a series of nuclear reactions down to a depth of a metre or so and produce a complex set of neutrons at various energies."
Some of these neutrons find their way out of the soil and, by measuring the spectra of the particles, the orbiting remote detectors can analyse the composition of the soil.

To test the technology, the researchers are bombarding a barrel holding more than a ton of simulated Martian soil with a beam of protons from the half-mile-long linear accelerator at the Los Alamos Meson Physics Facility. The beams are 800 MeV , or about 10,000 times more powerful than a médical X-ray.
The neutrons profuced by this simulated cosmic shower are then funnelled down a pipe to strike a detector 28 m away. Measurements inclide spatial distribution of the neutrons in the barrel and the time it took them to reach the detector. Researchers then compare these measurements to neutron spectra predicted by computer codes previously developed.

Martin Cheek
desktop computer market, there are plenty of battles ahead 10 replace dated IBM PC architecture.

Aces low

The Ace consortium made up of companies such as Compaq. Microsoft. SCO. DEC and Mips Computers were all set to produce a standard workstation-on-a-desktop based on the Mips rise R4000 device. This would rival the Sun Microsystems inspired Spare powered workstations. The Ace consortium blew apart a couple of months ago in an explosion of self interests: this leaves the field open for Spare architecture and its. silicon manulacturers such as LSI Logic and Fujinsu.

Meanwhile cooperation between IBM and Apple Computer looks likely to bear fruit carlier than anticipated. Samples of the PowerPC microprocessor, a single rise chip implementation of the IBM 6000 series rise workstation processor core, will be available from Motorola as early as this Autumn, well ahead of the development schedule. The architecture will use an Apple designed operating system capable of running Unix, Apple and Microsoft based applications. Given the existing desktop presence of Apple and IBM. it positions this group to challenge the current Sun/Spare domination of the workstation business. Frank Ogden

$£ 1 / 2$ billion programme goes out on HDTV

Camcorder, camera add husiness equipment maker Canon is leapfrogging conventional TV and jumping straight to HDTV and the new digitall TV systems. Following recent break throughs in research the company hats cormmitted $¥ 100$ billion (nearly $£ 500$ million) over the next ten years to the development and manufacture of a large flat panel high definition screen to hang on the wall.
The screen uses ferroelectric, rather than conventional twisted nematic, liquid crystal technology. As so often happens, the technology was invented in Europe, but only a Japanese company has been prepared to invest in commercial realisation. Although hard to make in any size, once the basic production problems for FE-LCDs have been solved, there is theoretically no limit on screen size. This, and the commercial failure of the giant conventional-lubed HDTV system launched in Japan last November, led Canon to abandon work on all other types of LCD screen.
Last Octoher, at the Tokyo Data Show. the company demonstrated a 38 cm FE-I.CD screen for use with computers, and plans to
start selling these next year. Canon ha now displayed still images of near 1 IIDTV resolution on a modified sereen. The next target is 10 display moving video, ol HDTV quality, on a one metre screen. The technology will not be ready for sale until the erid of the decale because there is a world of difference betueen the display demands of computer and HDTV. But Canon is playing a long-tem game and the company's researchers have convinced its managers that FE-LCD will be the hey technology for the nex decatk.
Ferro-clectric material is bistable exhibiting two states of dielectric constant. It can only be switched between the wo states. one or the other. This makes it ideal for computer screens and mon-volatile semiconductor memories but unsuitable for TV which relies on a wide ranging scale of grey and colours. Now. says Ichiro Endo. Director ol Canon`s Researet Centre in Atsugi, the new FE-L.CD display system will more than match conventional I.CD display technologies.
Like conventional, twisted nematic L.CD
Continued over page...

New material promises smaller, non-toxic systems

Aluminium nitride looks as though it might displace beryllium oxide as the chosen substrate for high performance hybrid packaging. Fears about the known carcinogenic properties of beryllia dust have prompted a search for alternatives to a material which, although a ceramic with outstanding insulating and dielectric properties, exhibits a thermal conductivity close to that of metallic aluminium.
Beryllia finds extensive use in such things as RF power modules for portable telephones, power transistors and other applications which require a combination of electrical insulation with heat conductivity. Standard alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ substrates possess acceptable dielectric properties when pure but the material is a very poor heat conductor - about one sixth of BeO. AlN has about two thirds the thermal conductivity of beryllia. Although hybrid circuit makers would like to use the grey-coloured AlN substrate more widely, it presents considerable difficulties in production. The high firing temperature $1900^{\circ} \mathrm{C}$ as opposed to 950° for aluminaglass composites - makes effective metalisation difficult and expensive. Special inks based on molybdenum/manganese will stand the firing temperature but are not as easy to work with as the $\mathrm{Au} / \mathrm{Ag} / \mathrm{Pt} / \mathrm{Pd}$ compounds used at lower temperatures. Steve North of ceramic specialists Oxley Developments
estimates that hybrid substrates built using AIN cost up to 10 times more than the cheapest alumina based process. However. this doesn't tell the whole story: "We would expect to use aluminium nitride substrates in systems which have particular thermal problems. For instance we see an emphasis on optoelectronics where you are able to drive semiconductor lasers that much harder and applications where thermal performance is critical."
Direct bonding of thin alumina substrates to a copper header with a eutectic can increase the heat dissipating qualities of the cheaper material although the reliability tends to be lower: differential expansion between the silicon die, the alumina substrate and the copper header with thermal cycling can lead to loss of thermal contact with the silicon. The result is overheating and chip death. AIN substrates by contrast possess, after firing. roughly the same coefficient of expansion as silicon.
Although the AlN processing temperatures are high, the material lends itself to conventional ceramic substrate manufacturing techniques. For instance, the pre-fired form is flexible and can be easily punched, stamped and pressed from sheet. Like other ceramic forms, it shrinks about 16% on firing. Individual layers can be assembled and, after pressing and firing. become a single unit with conducting vias. The lower dielectric constant, some 85 per

Oxley: new ceramic developments
cent of pure alumina, makes it attractive to RF and microwave designers although the material purity needs to be very high to avoid losses at frequencies atove 1 GHz .
Oxley has applied its new substrate material in a range of electrically programmable capacitance trmmers for use in such things as crystal clock modules. The trimmer unit incorporates a series of weighted capacitor elements on a common groundplane connected by bonding wires to a cornmon point. Starting out at maximum capacitance, fuse elements are selectively blown until the desired capacitance is reached.
materials. FE-LCD changes the polarisation of light. Control of the change is by electrical field which alters the alignment of the liquid crystal molecules. With overlying polarising filters and colour filters, this creates variations in light intensity and colour. If the LCD material is separated into small cells, each individually switched, the variations can be made to display a picture.
But, whereas conventional LCD materials require a continuous lield to maintain alignment, bistable FE-L.CD has a memory. Once the molecules of a cell have been switched, they remain switched until a fresh lield is applied. This saves on electric power because only those parts of the picture which move need be switched. It also gives a strong contrast (at least 40:1) between light and dark areas, which makes computer text very easy to read.

There is also no flicker because there is continuous seanning of the picture. The high contrast gives a wide viewing angle: $\pm 50^{\circ}$ in the horizontal direction and $\pm 40^{\circ}$ in the vertical direction. The switching voltage is low, around 10 V DC, so there is no X-ray or electromagnetic radiation, and no static electricity to colleet dirt on the sereen. Switching power consumption is around 10 W for a 38 cm sereen. Focus is as crisp at the comers and edges as at the centre.

The FE material is a mixture of twenty different low viscosity lluorine-containing chiral liquid crystals; the actual composition is a closely guarded industrial secret. This is sandwiched between two very thin, very closely spaced glass sheets. Switching is by a simple criss-cross of transparent indium tin oxide strip electrodes deposited on the plates. Because the strips are close to the
material they can directly control it without the need to provide each cell with its own control tramsistor as in the active matrix thin film transistor LCDs currently used for TNLCD computer and TV sereens.
In practice close spacing is very hard to realise. and this is what turned all the other companies in Japan off the idea of FE-LCD. The glass plates can only be one mm thick and spaced apart by $1.5 \mu \mathrm{~m}$, around one fortieth the thichness of a human hair. For consistent image contrast, the spacing must be accurate to $\pm 0.05 \mu \mathrm{~m}$, one thousandth the width of a hair. Canon has solved this problem by coating the glass plates with a molecular layer of insulating material and peppering the gap with transparent spheres of insulating material which act as spacers. The plates are held in position against domestic shocks by an air cushion mount.
Because there is no need to provide each cell with a control transistor, the cells can be made very small. The latest prototype has a cell pitch of 0.2 mm , with each cell representing a pixel made up from four smaller cells.
For monochrome display each quarter cell is clear. For colour, one quarter cell is covered with a red filter, one with blue, one with green and one is unfiltered clear white The 0.2 mm pitch lets the 38 cm screen display a matrix of 1280 by 1024 pixels. Each pixel displays a range of four shades of monochrome grey or 16 colours, built from varying switched combinations of the four components. This already comes close to the spatial resolution of HDTV. Canon`s HDTV widesereen will use a stretched screen format with 1920 pixels in each of 1152 horizontal lines.

Memory chips are full of bugs

$\mathbf{S}_{\mathrm{E}}^{\mathrm{c}}$
Cientists at the Centre for Molecular -Electronics at Syracuse University, NY, are exploring artificial intelligence using a technology based on bacteria. Their aim is to create a computer memory chip from bacteria.
The research, which has taken place over the last eight years, involves a bacterium called Halobacterium halobium. Robert
Birge, director of the centre has focused on this bug, found in salt marshes, because of its ability to harvest light energy.
When exposed, the bacteria creates a protein called bacteriorhodopsin, which releases a small electrical charge.
"Upon the absorption of light, an 'instantaneous' shift of electron density occurs with the negative charge moving along the polyene chain toward the nitrogen atom," explains Birge. A shift in electron density interacts with nearby negatively charged residues and activates a rotation which is complete in less than one picosecond. Rotation makes the organism a biological analogue of high electron mobility transistor devices.
Interaction with light makes the creatures
able to be flipped off and on, the foundation for a digital technology. Light producing bacteria also produces its own energy supply through photosynthesis.
The combination of these two natural properties has led to experiments with the aim of creating computer memory chips. A laser is used to stimulate the substance by a laser in a container with five cubic centimetres of protein. In this way Birge claims to control the on/off function of the electrical charge and record information.
Currently, Birge is attempting to store a single bit of information in a minicube measuring $3 \mu \mathrm{~m}$ on a side, A 5 cm rectangle could theoretically have a capacity of up to 18Gbytes and with an access speed of picoseconds rather than the nanoseconds of current storage technology. He estimates a potential price per rectangle of $\$ 200$.
The potential capacity offers the possibility of holographic associative memory techniques. Serial memories take an input data block or image and scan the entire memory of the data block matching the input independently of the central processor. Human brains operate in a

The results are dramatic when the sereen is used to display computer image displays. with colour resolution four times better than standard VGA sereens. But TV innages require an 8-bil grayscale.

In a dither

The company already uses a dither technicule colour printers. The printer analyses the colour required, compares it with the colours available and switches a jumble of single colour pixels to create a mix of colours which fools the eye into seeing colours which are not in theory available from the sereen. The same technique is used for FE-LCD because it depends on the availability of small pixels which blend together even when viewed from a distance.
Canon's R and D laboratory believes it is close to finding a new mix of FE materials and configuration of electrodes which will switel to intermediate optical states, like conventionat TN materials, but still be bistable. This will let the sereen display a seale of grey, as well as a wider range of basic colours from which to build more subtle gradations by dither.
R and D Director Ichiro Endo says his leam will to have a working system ready to demonstrate by 1993.
Fxisting analogue HDTV systems rely on signal bandwidth compression techniques which treat stationary and moving parts of the picture differently. updating the image only where necessary as it moves. This fits neatly with the operation of a bistable FELCD sereen. The incoming signals need only switch the sereen's pixels where necessary.

Barry Fox
neural, associative mode and many computer scientists believe implementation of large capacity associative memories will be required to achieve substantial artificial intelligence.

MC

Programmable hologram with bacteria filling

EASY-PC, SCHEMATIC and PCB CAD

Options:-500 piece Surface Mount Symbol Library £48,
1000 piece Symbol Library £38, Gerber Import facility £98.

DIGITAL SIMULATION 	ANALOGUE SIMULATION £195	SMITH CHART CAD £195
 - At last! A full featured Digital Circuit Simulator for less than £1000! -PULSAR allows you to test your designs without the need for expensive test equipment. - Catch glitches down to a pico second per week! - Includes 4000 Series CMOS and 74LS Libraries. 74HC/HCT libraries only $£ 48.00$ each. - Runs on PC/XT/AT/286/386/486 with EGA or VGA.	 - NEW powerful ANALYSER III has full graphical output. - Handles R's,L's,C's, Bipolar Transistors, FET's, OP-amp's, Tapped and Untapped Transformers, and Microstrip and Co-axial Transmission Lines. - Plots Input / Output Impedance, Gain, Phase \& Group Delay. - Covers 0.001 Hz to $>10 \mathrm{GHz}$ - For PC/XT/AT/286/386/486 with EGA or VGA. - Very fast computation.	-Z-MATCH II simplifies RF matching and includes many more features than the standard Smith Chart. - Handles transmission line transformers, stubs, discrete components, S Parameters etc. - Supplied with many worked examples. - Superbly easy to learn and use. - Runs on IBM PC/XT/AT/386/486, CGA,EGA,VGA. - Ideal for Education and Industry.
For full info Phone, Fax, or use enquiry card!Number One Systems Ltd. $\quad$$\bullet$ TECHNICAL SUPPORT FREE FOR LIFE! \bullet PROGRAMS NOT COPY PROTECTED. \bullet SPECIAL FRICES FOR EDUCATION. REF: WW, HARDING WAY, ST.IVES, HUNTINGDON, CAMBS, ENGLAND, PE 17 4WR. Telephone: 048061778 (7 lines) Fax: 0480494042 International: + 44-480-61778, Fax:+44-480-494042 ACCESS, AMEX, MASTERCARD, VISA Welcome.		

REGULARS

RESEARCH NOTES

Scientists quantify designer lamp UV hazard

The effects of radiation of all types on the human body has come in for a lot of scrutiny recently - there now seems to be little between DC and gamma rays that does not cause some harm! Latest radiation source to come under the inquisitor's magnifying glass is the quarti-halogen lamp, the sort commonplace in homes and oflices.

What is causing concern is the
combination of the high operating
temperature and quarth envelope, allowing through a significant amount of ultraviolet radiation.

Writing in a recent edition of Nature (Vol 356 No 6370), Silvio De Flora and
Francesca D`Agostini describe experiments in which they took a variety of hariess mice - a type commonly used in cancer tests and exposed then for 12 hours per day at a distance of 50 cm from a 12 V 50 W quarth lamp equipped with a dichroic mirror. A similar set of mice was exposed to the same type of lamp, but with a 2 mm thick sheet of glass to lilter out the UV radiation, while a third group of mice was kept under ordinary room lighting. After a year, the control mice remained healthy, as did the mice exposed to the filtered quartz lamp. By contrast, the mice exposed to the unshaded quartz lamp began to develop skin eruptions as carly as three months. By the end of the 12 month experiment, some of the mice had up 1020 overlapping sores, some benign and some cancerous or pre-cancerous. De Flora and D`Agostini admit that it’s difficult to extrapolate from nuice to humans, but they point out that the doses of UV received by the mice were not far below those to which some people are exposed in the work enviromment.
Two things are worrying: the fact that UV in sunlight is already known to cause a particularly aggressive form of skin cancer called melanoma and secondly that the radiation emitted by quartz lamps extends to much shorter (and biologically more active) wavelengths than sunlight. The earth's ozone layer, of which there's still mercifully some left, tillers out all solar UV radiation below 290 mm . By comparison, the UV from halogen lamps goes down - albeit in small quantities - as low as 250 mm . This difference is highly
significant because in diseases where the damage caused by different types of UV has been measured directly, the peak effect occurs at around 270 nm .
How much need we worry about the latest findings? Colin Driscoll, head of the Optical Radiation Group at the National Radiological Protection Board, says that the NRPB drew attention to this potential danger about three years ago, and he points out that someone working very close to a quartz desk lamp could casily exceed the maximum recommended limits for UV exposure. On the other hand, someone using sucli a lamp domestically for, say, half an hour a week is unlikely to undergo any significant exposure
Fortunately, as the ltalian experiment. confirm, there's a simple answer: a UV filter fitted in front of the lamp. Even a mm sheet of ordinary glass is a very eflective filter of the wavelengths that cause the most damage. Colin Driscoll agrees with De Flora and D'Agostini when they argue that such filters should be fitted compulsorily to all yuartz lamps in general use.

Look out! It's a twister!

AUniversity of Mississippi physicist, Professor Henry Bass, has developed a smoke alarm-sized gadget that detects imminent twisters. If you live in North Surrey where hurricanes hardly happen, this may seem the ultimate in unnecessary technological gimmickry, but I'm assured that down there in the Deep South, you really do have to watch out for these meteorological wreckers as they sweep up "tornado alley".
Bass and his colleagues hope that the new device can be manufactured for less than $\$ 50$, thus making it something everyone can afford. Essentially it's a noise-operated device that is finely tuned to the recognisable sound of an approaching tornado. For those of us who have never been fortunate enough to savour this acoustic experience first-hand, Bass describes it as being like an old freight train or a jet aircraft landing with reverse thrust.
The mode of operation of the new device is quite simple: the sound is picked up by a microphone mounted outside the house and then analysed by a microprocessor in the "black box". If a tornado is within earshot, the system lets you know.
Earlier models apparently gave all sorts of false alarms, responding to jet aircraft and presumably steam locomotives. The latest device only sounds off if the noise is increasing in amplitude at the right rate. Bass says that it does occasionally respond to old slow propeller-driven aircraft, but that shouldn't be

much of a problem in practice. Very few people, thinks Bass, will want to be flying ancient aircraft during the sort of weather conditions that generate tornadoes.

There is one problem. According to a spokesperson from the university: "When Henry Bass's alarm goes off, you'd better run like hell; it means the tornado is about to enter your back yard". Thirty seconds warning may seem like a complete waste of time, but apparently people in the American south get radio and TV warnings so regularly that they tend to ignore them, often with dire consequences. Thirty seconds warning that a tornado is about to strike for real is just enough time - says Professor Bass - to crawl under the bed.

BEFORE YOU LEAP.

A product can always benefit from being smaller, faster, cheaper or simply more efficient.

But the route to these improvements is often through new technology. And what worries engineers is the amount they have to invest on the way before their new design passes the test.

So we turned the tables by developing the Falcon Programme with its guarantee of fast yet low-cost ASIC development.

It works like this:
Firstly, we provide you with a software package. It allows you to design analog/digital arrays using 5 or 2 micron digital, or 3 micron mixed technologies, and, most important, lets you verify the design/performance yourself.

Additionally, we can help you design at a functional level by providing you with a range of

Micro Circuit Engineering
components for breadboarding critical analog functions.
As a result, you'll end up with a high degree of confidence that your design is going to work before you take the step of commitring yourself to a prototype.

When you are at last satisfied and send us your prototyping brief, we again keep costs down by manufacturing in batches, with many customers sharing the expense.

Your prototyping is then returned to you in as little as 28 days.
Finally, once the design is proven, we can provide you with production parts in any volume whatsoever, from very low to very high. We can also ensure that they meet any screening level under BS9450 approval.

So if you want it guaranteed right first time, make sure you talk to Mike Goodwin this time.

A Smiths Industries Company

Expert calls for more EMF/cancer studies

Studies into the biological effects of electromagnetic fields were given new impetus by the recent publication of a big review by an Advisory Group of the National Radiological Protection Board (NRPB). Chaired by the famous epidemiologist Sir Richard Doll (who proved the link between smoking and cancer) and inclucling Professor E H Grant of King`s College, London and Professor N E Day of the MRC Biostatistics Unit in Cambridge, this advisory group is by far the most authoritative panel ever to have weighed up all of the evidence.
The official purpose of the Group was to

"review work on the biological elfects of non-ionising radiation relevant to human health and to advise on research priorities" More specifically, its first object has been to review experimental and epidemiological evidence suggesting a carcinogenic (cancer causing) cflect of electromagnctic fields. Much of this evidence is contained in the draft document issued by the US Environmental Protection Agency and has already received considerable publicity (See $\Gamma W+W W$. April 92).
Previous experimental work on the nature of environmental exposure to electromagnetie fields and also on the direct biological effeets of such fields has been reviewed previously by the NRPB and was summarised briefly by Sir Richard Doll at a recent news conference.
Doll said: "Experimental evidence neither excludes nor supports the idea that electromagnelic fields could cause cancer. They do not cause mutations in cellular DNA. but there is weak and inconclusive evidence to suggest that fields produced by frequencies above 100 hll . might, in some circumstances. act as tumour promoters". Doll added that lower freguencies have only been directly implicated for their possible effects on secretion of melatonin, which may have an effect on the risk of breast cancer.
The bulk of the latest report concerns epidemiological studies that have hinted at a connection between magnetic fields from poner lines and the incidence of cancers. both in children at home and in adults at work. This latter category has generated the greater number of studies - some 60 in all attempting to search for a link with

Great balls of electricity!

Not withstanding recent reports of a black lozenge-shaped UFO over Southern England, most UFO sightings turn out to be aircraft, satellites and weather balloons. But according to John Derr of the US Geological Survey, some UFOs are actually mysterious balls of electricity that float in the air near earthquake epicentres.

There is now growing evidence (see last month’s Research Notes) that underground stress generates radio signals immediately before quakes. Some seismologists believe that occurrences of ball lightning could be a related effect.

Derr's study into three medium-sized earthquakes that took place during 1951 and 1952 in New Mexico revealed an unusually high number of UFO reports within 100 km of their respective epicentres. Derr describes a typical sighting as consisting of an orange ball of
light (though some reports claim the colour to be green or blue) which floats slowly through the air.

This study deliberately eliminated reports where the sighting had an obvious explanation or where its authenticity was in some doubt. The latter category included reports from people whose sanity was questionable and accounts of close encounters with little green men
Of the remaining 150 UFO reports, nearly all referred to objects resembling ball lightning and more than half had a close geographical and temporal association with earthquakes.
Some earth scientists are naturally rather sceptical about this latest finding. and il would certainly be hard to prove any direct causal connection between quakes and UFOs. Nevertheless it is an interesting idea and not beyond the bounds of possibility
leukatma and cancer of the brain
Nearly all of these reports, says Doll. claim that these diseases are slightly more common among workers in the electrical and electronic industries, though few studies have actually correlated the incidence of disease with directly measured levels of radiation. Are welders who are known to have substantially increased exposure to electromagnetic fïclds are no nore likely than anyone else to get leukaemia

The only discase that does seem to have a weak positive connection with employment in the electrical industry is cerebral cancer. though Doll is cautious about implications.
"We conclude that an occupational hazard of this disease may exist, but that the present evidence does not identify the cause."

Evidence relating to childhood cancers. says the Group, is even more difficult to assess. There is less of it and. in general. studies have nol been adequately controlled. Eight studies were reviewed by the group. four from the US, two from the UK. one from Sweden and one from Taiwan.
Professor Day says that most of the studies suffer from serious methodological flaw's, such as lack of comparability between cases and controls. There have also been few direct measurements of the electromagnetic fields affecting the experimental subjects. These, and other, problems are sufficient, says Prolessor Day, to generate biases at least as strong as the observed effects: that is, an increased risk of childhood cancer of between 50% and 100%.

The Advisory Group of the NRPB, having sifted all the evidence. concludes that there is currently no hard evidence linking ordinary levels of exposure to EM radiation below 100 kHz with cancer. With higher frequencies, they saly, there is more room for doubt. On one thing there is no doubt at all: the need for further research.
In a BBC World Service interview. Sir Richard Doll said: "There are three types of study that have to be carried out. We have to extend the experimental studies to see if we can find any possible ways in which electromagnetic fields might be able to caluse cancer. Secondly, we musi do a really large-scale study with proper controls to see if there is any suggestion of an increased rish from exposure in childhood. Thirdly. we must study the occupations where it has been suggested that there might be an increased risk of either leukiemia or brain eancer in adults to find out the extent to which people are exposed, so that we can make comparisons belween heavily and lightly exposed people and see if there is any rish in industry"
A national sludy of childhood cancer has now been launched.

[^1]Get Your Data Acquisition System Right... The First Time!

D$A Q$ Designer from National Instruments, is a free system configuration software tool for the PC that takes you step-by-step through your application, asking you questions, and recommending the right $P C$ plug-in data acquistion boards, signal conditioning products, cable assemblies, and software packages. With DAQ Designer, you contigure yous system with exactly what you need the first time!

NATIONAL INSTRUMENTS ${ }^{\circ}$
 The Sofheare is the Instrament

Call for Free DAQ Desienner Soltware

National Instruments U.K. Corporation U.S. Corporate Headquarters 21 Kinglisher Court, Hambridge Road
Newbury, Berkshire, RG14 5SJ
Tel: 10035) 523545
Freephone: 0800289877
Fax 10635) 523154
CIRCIE NO. 139 ON REPLY (ARI)

|EEE-488 Monitor/Anclyser

Simplifies GIIB System Development

Capabilities

- Inexpensive ensy-to-use monitor madyerer for any
IF:E-- -88 application
- Use with portahle PC for
convenient, portable
bus analysis
- Ciprores bus attivity all speed. up to $1 \mathrm{MI} \%$
- Backeground operation shares host PC wifl GPIB
- Emulates hoth Talker and Listener devices
- Triggering and patten
generation
- Capiure size limited only by available PC memory

Call for Free 1992 Catalogue
NATIONAL INSTRUMENTS

21. King fisher Court

Hambridge Road
Newbury, Berkshire
RG1455J
Tel: 0635523545
Freephone 0800289877 Fox: 0635523154

Corporate Headquarters USA $[512$] 794-0100
Branch Offices: AUSTRALA 038799422 • BELGUM 027570002 CANADA 5196229310 • DENMARK 45767322 • FRAHCE 14865337 GERMANY $0897145093 \cdot$ TIALY 024830 ' 892 . JAPAN 0337881921 NETHERLANDS 0172045761 - NORWAY 0: 846666 - SPAIN 91896067 NETHERLANO
SWEDEN 08
984470
• SWITZRLAND 05645
48
58
30 • U.K.K. 0635523545

INSTRUMENT CONTROL AND DATA ACQUISITION SOFTWARE

LabVIEW 2 - For the Macintosh Graphical Programming Environment

ACQUISITION - Integrated libraries for GFIB, RS-232. and VXI instruments, ard AD-D/A-DIO plug-in boards

ANALYSIS - Extensive libraries for data
reduction digital signal processing, digital
fillering, and statistical analysis
PRESENTATION - Flexible high-performance graphical user interface and report generation

CALL FOR FREE DEMO DISK

LabWindows ${ }^{\text {- }}$ For DOS computers Program Development Tools For C and BASIC

- Mational

INSTRUMENTS
National Instruments UK
21 Kingisher Court
Newbury. Berkshire
RG145S.J.
Freanhone 080028987
Fax: 0635523154
Corporate Headquarters USA
Tel (512) 794-0100

ELECTRICITY without MAGNETISM?

Straight thermocouples produce electricity very inefficiently. Harold Aspden and' fohn Scott Strachan claim to have invented a generator system which performs many times better. Is it true thermocouple action or is there a piezoelectric factor producing the power? This article is based on their hypothesis developed from a practical experiment which, they say, produced unexpected amounts of power.

Physicists know that thermoelectric bimetallic circuits have nothing practical to offer in design of devices aimed primarily at converting heat to electricity. Too much heat is lost by thermal conduction through the metal conductors linking the junctions in the circuit. Also, though an EMF is developed in the circuit when the junctions are at different temperatures, the power it can apply to current flow is swamped by heat conduction along the curren flow path.

Semiconductors can increase the EMF tenfold and decrease the heat conductivity a thousand fold. But the result is a device that is still poor in efficiency and, worse still, which cannot sustain a high power throughput rate for its size and cost. Such thermoelectric heat pumps, though commercially marketed as electronic circuit components, have a limited utility.
But instead of trying to avoid that heat conduction, why not try to harness it?
In the Thomson elfect, a temperature gradient in a metal causes the free electrons to migrate under thermal pressure so as to set up an EMF in the axis of heat flow. Some $87 \mu \mathrm{~V}$ of EMF is set up per ${ }^{\circ} \mathrm{C}$ of temperature difference.

The Aspden hypothesis
On the face of it the Thomson effect is a scientific curiosity with no specific practical application because it goes hand in hand with the standard design property of a substance known from its heat conductivity.
That, at least, is how things stood until we hit upon the idea of using audio or low radio frequency electronics to set up transverse current oscillations across bimetallic surface coatings on a dielectric substrate
The Thomson elfect has a positive coefficient in some metals and a negative one in others (as if electrons are the heat carriers in one and positrons or holes in the other). We believed that advantage could be taken of this by constructing a dielectric sheet material coated with vapour-deposited layers of aluminium and nickel, metals of opposite-polarity Thomson coefficients. A temperature difference between two opposite edges of the sheet material means that a current will flow one way in the nickel and the other way in the
aluminium. The current will circulate - powered by the heat transfer - and would cross the bimetallic junctions at the interface, but in opposite directions.
The Thomson effect promotes current circulation: the task then is to draw power from the EMF set up normal to the sheet by Seebeck action resulting from excess of Peltier cooling on the hot side over Peltier heating at the other (see box below right).

All heat flow through the metal from the hot side would be intercepted. somewhere in its passage through the metal layers, by Peltier cooling - cooling promoted by a transverse current from discharge of the capacitor built from the dielectric sheets and their metal coatings.

Heat would also be blocked from casy transfer to the cold side by a staggered arrangement of heat sink contacts with the bimetallic coatings, forming an alternating sequence of capacitor plates in what would be a series-connected capacitor stack.
On the charge cycle, the cooled state of the junction on the heated side would result in a lower reverse transfer of energy by Peltier heating so that over a full AC excitation cycle a net output power would be delivered.

The capacitor dielectric may possibly be involved thermodynamically owing to its own special properties and serves as a thermal barrier to direct heat transfer through the main hody of the device.

"Astonishing" performance

John Scon Strachan built a working system based on these principles. To stimulate oscillation of the capacitor current in what must owing to the Peltier EMF - be a capacitor with a negative resistance, a piezoelectric oscillator system operating at 500 kHz was built into the system powered by the heat-generated electrical output. The piezo material comprised the PVDF dielectric material sandwiched between the bi-metal plates. In September 1988, the first device was finished and ready for test.
One face of the device was cemented to a heat sink so that to extract power the upper

Device details

The device demonstrated, 5 mm in thickness and 8 cm square, comprises a capacitor assembly bounded by two aluminium plates. One plate is in contact with a heat sink at room temperature, the other supports a small piece of ice from a domestic refrigerator. As the ice melts it absorbs room heat to power 500 kHz oscillations which deliver output power through a ferrite transformer and a rectifier to spin an electric DC motor.
When the ice has melted a battery is connected to its output leads and this revolutionary solid-state electronic heat engine operates in reverse mode. The water left on the aluminium plate freezes almost instantly.

Laboratory testing reveals a 70% of Carnot efficiency factor in energy conversion.
exposed face had to be cooled rather than heated relative to the heat sink on the underside. Instead of feeding in a measured amount of heat from an electrically powered resistor the device was operated by placing a melting piece of ice from a domestic refrigerator upon its upper face.
Almost unbelievably, the device performed immediately and was astonishingly effective. spinning ar electric motor connected to its output leack. There was no electrical input for test or other purposes. Electronics in the device were atl powered by the electricity generated by the small piece of melting ice.

If an ice cube were placed on the surface with the motor disconnected it took seven times as long to melt as it did with the motor connected - hinting that the conversion efficiency had to be extremely high. Unfortunately that efficiency could not casily be measured because the device was powered by cold rather than heat! But what could be measured was enough to suggest that the device was operating on principles that were not quite those we originally had in mind.

We had built an electronic device that more than met our objectives but we did not fully comprehend its operating principles. The device delivered power by operating at 50) 人 Wiz. It had no more than a $20^{\circ} \mathrm{C}$ temperature drop across its 8 cm square heat surfaces yet was delivering useful output electrical power that scaled up to levels of $\mathrm{kW} / \mathrm{m}^{2}$.

Cold spot explains high EMF

Diagnostic tests and extensive theoretical analysis carriced out as we tried to reverse engineer out own product. showed that the thermoelectric EMF being produced by the aluminium-nickel junctions was about 20 times greater than textbook data indicated. Since the factor of merit of a thermoelectric device increases as the square of this EMF and the metals used were good electrical conductors, the finding indicated a major discovery.
Eventatlly, it was reasoned that this was not some new strength in activating the thermoelectric power of bimetallic junctions, rather a technique for avoiding a weakness that had beset the normal metal thermoelectric devices. The difference was that we were operating at a high frequency and interrupting the current flow at that frequency. whereas a conventional thermocouple circuit is invariably DC operation.
Classical thermodynamic principles say the thermocleatric EMF across a junction should be of the order of $260 \mu \mathrm{~V} /$ degree of absolute temperature (Kelvin) - the high EMF we realised in our experimental device. But tests on an aluminium-nichel thermocouple circuit operating under normal DC conditions reveal only a lraction of this power.
Perhaps the higher levels of thermoelectric EMF obtained in semiconductors hold the key. Semiconductors suited to thermocouple use have a resistivity decreasing with increased temperature - the converse behaviour to base metals. At a point in the junction interface between two metals at which Peltier cooling is

STRACHAN-ASPDEN ELECTRONIC HEAT

ENGINE: Bimetallic coated dielectric
layers, C, are assembled in a capacitor sta =k and interleaved with uncoated dislectric layers. The circulating $D C$ current i in each coating is powered by the EMF set up by the Thomson effect and AC oscillations allowing a transverse $A C$ current i are powered by the EMF set up by the Seebeck effect. Upon superimposition of these current conponents there is a cooling junction cu-rent $2 i$ at the hot side $\left(T^{\prime}\right)$ for one $A C$ ha f cycle and a heating current $2 i$ on the coll side (T) during the other half cycle.
Result is an AC thermoelectric pile of pavel form having very low internal resistance to $A C$ current throughput.

occurring there is a concentrated cooling action confined to that interface which must, of necessity, cool rapidly.
If some points in the interface surface cool faster than others, conductivity will probably increase at those points and current will follow the path of least resistance: the more current flowing at a Peltier cooled spot in the juncticn surface, the greater the rate of cooling.

The action escalates and in the normal situation of DC flow the current will tend to form a filamentary flow path and cross the junction at a temperature far lower than that believed to exist at the externally heated junction. The result is that the actual effective junction temperature drops until it almost equals that at the Pelticr heated junction and so very nearly sup-

The Peltier effect

Peltier, in 1834, advanced on Seebeck's work by establishing that a current across a b metallic junction can cause either local heating or cooling at a junction, according to the direction of current flow.
Peltier discovered that flow of current across a junction between two different metals will cruse cooling at one junction and heating at the other. The effect is proportional to the current strength and reverses when the carrent reverses.

THOMSON EFFECT:

Even with no current flow, a temperature difference between the ends of a metal strip will set up an electric potential of the order of $87 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The effect is positive in some metals and negative in others.
presses all current flow.
In short, the normal DC all metal thermocouple strangles itself by choking off almost all its power capacity.

The way to avoid the situation seems to be to switch the current on and off so rapidly that the current filaments cannot form for long enough to be trapped in the cold spot positions - the analogy is spot fomation on the mercury pool in the old-fashioned mercury are rectifiers. Current tends to break up into filamentary flow paths and maybe that is just what is happening even in metals. so that the current must be kept moving across any boundary surfaces.

Second device

Whatever the truths of this phenomenon, a second device was built relying on this discovery and the principles exploiting the Thomson effect. It also worked immediately and performed as well as the lirst system. However, this device was intended for diagnostic testing and efficiency measurement and included no piezoelectric oscillator or magnetised tape and had no staggered construction features.

Output was gated through a low impedance
switch under the control of a function generator feeding negligible switch control power. Design was simple (see fligure) in the extreme. relying on the Thomson effect to circulate current and the Seebeck and Pellier Elfeets to sel up a thermally induced negative resistance in the low resistance AC throughput channel of the capacitor stack. The device operated over a wide range of frequencies but optimum performance was at 1 kHz and a 70% of Carnot efficiency was measured for generation of electricity from heat supplied at water temperatures. The efficiency is not deemed opt1mum and can almost certainly be improved.

Status of the invention

No R \& D project funded by a government body or a corporation led to this technological breakthrough; it is the product of individual effort addressing the challenging question of alternative energy sourecs. To see the potential for generating electricity efficiently from heat, look at the heat wasted at water temperatures in the steam condensers of electric power plants. Or contemplate selting up a small temperature differential between the inside and outside of a greenhouse by trapping the ambient radiation (even under cloudy conditions) to realise that a thermoelectric panel fitted in that structure could become a source of electricity.

A US patent application on the device has been granted - the US patent examiner first declared that it was impossible for a melting piece of ice to generate electricity as suggested in the patent specification. But he did accept the evidence presented and the patent was allowed.

Now it remains to be seen whether the

About the inventors

Dr Harold Aspden is a visiting senior research fellow in the Department of Electrical Engineering at the University of Southampton. He is a former Director of European Patent Operations in IBM but retired to pursue private research in the energy field.
John Scott Strachan is a research scientist, formerly with the Pennwalt Corporation researching piezoelectric applications of PVDF material, now engaged on research as a director of Optical Metrology Ltd and located at the Technology Transfer Centre at King's Buildings of the University of Edinburgh
invention will attract interest and be developed to its true potential.

There are problems. The dielectric PVDF material with the bimetallic coating is no longer available commercially, as far as we know. The aluminium coating was bonded to the PVDF by a nichel layer and technological progress has allowed the industry PVDF material to be manofactured in a single coating stage, making the intervening nickel layer unnecessary. So the essential bimetallic material used in prototype test construction can not be casily obtained and this scales up the R \& D funding requirement for the invention to develop further. As a result development is currently in limbo owing to the curious situation where technological advance in one industry has bloched progress in an entirely different field.

SUPER THERMOCOUPLES - THE MAGAZINE'S VIEW

Editor Frank Ogden and consultant Derek Rowe write: If the authors' observations are correct, there is definitely a mechanism worth investigating although the generating effect may have more to do with the highly piezo-active nature of PVDF plastic than with thermo-electricity.
During lenthy conversations with the authors, it emerged that the generating device comprised a stack of up to 1000 PVDF metalised film discs effectively connected in series with the whole assembly - which forms a giant piezo-active capacitor - connected across a ferrite transformer via an SCR. The gate of the SCR is driven via a small feedback winding on the transformer. The authors report that the assembly selfoscillates when subjected to a heat gradient orthogonal to the bi-metal layers. Surplus power can be drawn off by rectification from the top of the thyristor. A $20^{\circ} \mathrm{C}$ temperature gradient across the stack causes it to deliver a rectified output of around 50 mA at 2 V .
Strachan emphasises that the device requires a kickstart to commence oscillation; he originally employed a separate piezo oscillator element physically attached to the top of the stack. He also states that the oscillator frequency is determined by resonance between transformer primary inductance and the intrinsic stack capacitance.
Trapping highly piezo-active material between metals of differing thermal expansion coefficients could produce enough stress to power a commutating system. This doesn't
explain the authors' observation that power flow could be reversed leading to a Peltier style cooling effect. How they achieved this with the general arrangement shown in our drawing isn't too clear.

Our interpretation of the authors' test circuit

MORE SPEED, LESS SPACE !
 Hi-performance \mathbf{A} to \mathbf{D} conversion on a card less than half standard size. The new AIN-24 from Blue Chip Technology.

$4 \mu s$ CONVERSION RATE
24 CHANNELS

- 32K ONBOARD CACHE RAM

DIRECT MEMORY ACCESS
. 80 KHz TRANSFER RATE
12 BIT RESOLUTION
SOFTWARE SELECTABLE GAIN
d DOS DRIVER SOFTWARE

CIRCLE NO. 110 ON REPLY CARD

TWIN TWIN PPM

Comprising two PPM9 boards, featuring inherent stability with law under micro-processor control, the unit gives simultaneous monitoring of A / B on red/green and M / S on white/yellow pointers. Together these provide complete information about stereo signals. Manufactured under licence from the BBC.
PPM10 In Vision PPM and Chart Recorder generates a nigh quality colour video display emulating the well known coaxial twin movements, long regarded as a most satisfactory way of monitoring stereo audio levels and mono compatibility. The eye can judge the level displayed, at a glance, from the angle of pointers, without needing to refer to scale markings.
Advanced Active Aerial $4 \mathrm{kHz} \cdot 30 \mathrm{MHz}^{}$ *Stabilizers and Fixed Shift Circuit Boards for howl reduction *10 Outlet Distribution Amplifier 4 *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifier *Peak Deviation Meter *PPM5 hybrid and PPM8 IEC/ DIN $-50 /+6 \mathrm{~dB}$ drives and movements *Broadcast Stereo Coders *Philips DC777 Short Wave Car Combination: discount $£ 215+$ VAT.

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh,
Surrey GU6 7BG.
Telephone: 0483 275997. Fax: 276477.

COMMERCIAL QUALTTY VHF/UHF RECEIVER

The IC-R7000, advanced lechnology, continuous coverage communications receiver has 99 programmoble memories covering aircraft, marine, FM broadccst, Amateup radio, televisian and weather sotellite bands. For simplified operation and quick funing the IC-27000 feotures direct keyboord entry. Precise frequencies can be selected by pushing the digit keys in sequence of the frequency or by luning the main luning knob FM wide/FM narrow/AM upper and lower SSB modes with 6 tuning speeds $0.1,10,5,10,12.5$ and 25 kHz . A sophisticated scanning system provides instant access to the most used frequencies. By depressing the Auto M switch the IC-R7000 automatically memorises frequencies in use whilst it is in the scan mode, this allows you to recall frequencies that were in use. Readoui is scon mode, this allows you to recall frequencies display. Options include he clearly shown on a dual-colour fluorescent display. Options include the
RC. 12 infra-red remote controller, voice synthesizer and HP. 2 headphones.
)

Post to: Icom (UK) Ltd. Dept WW Sea Street Herne Bay Kent CT6 8LD Tel:0227 741741 (24hr). Fax: 0227360155

[^2]iCall sign:

DSR or DAB worlds of difference

News that digital radio transmissions have begun on two German satellites may have prompted memories of the BBC's demonstration of digital broadcasting, using a coach driving round Birmingham a year or so ago. But the systems are quite different, with virtually nothing in common.
The system the BBC was demonstrating is dab (digital audio broadcasting), a Eureka project of some complexity, not expected to deliver a working service until 1995. When it arrives, dab will provide high-quality interference-free reception in all sorts of currently-difficult conditions, including built-up areas and even tunnels. Dab is being developed particularly with in-car use in mind. Receivers will probably be low-cost.
Digital satellite radio (DSR), by contrast, is here already. but without the advantages of mobile or portable reception - or of lowcost receivers. However, it does offer what will probably remain the finest medium for transmission of studio quality sound. Its proponents describe it as a no-compression, no-compromise system. In effect, it transmits the full stream of digital information read off a compact disc, which, when it reaches the receiver, is put through a digital-to-analogue conversion, in the same way that the relevant part of a $C D$ player
handles the information picked up by its laser optic scanner.

German development

DSR was developed in Germany, with the involvement of Telefunken. The service currently broadcasting from Kopernikus 1 and, duplicated on TV-Sat 2, provides 16 channels on a single frequency. The system has a capability for four such 16 -channel packages, and existing programmes comprise eight "classic and culture", five pop/rock music and three news and information. All are broadcast round-theclock, or nearly so.

Access, on the receiver, can be direct to a particular channel, or via a system of programme classification. Choose from up to 15 types - news, sport, classical, rock, jazz ete: the receiver will select the right type of programme and also indicate on its

Kopernikus and IV-Sat beams, centred on Germany, can be received in the UK, with $I V$-Sat offering the best option for most $U K$ listeners. Its concentrated beam has a large central area in which reception on its 38 cm square antenna is possible. Kopernikus has a more diffused beam, covering the whole of the UK and a large part of Ireland, but requiring large dishes.
led display other channels carrying the same type.
When the chosen category of programme ends on one channel, the receiver will search for it on the other channels.
Reception of DSR is, exactly like satellite TV, by means of a fixed antenna, pointed at the satellite. Both the Kopernikus and TVSat beams are centred on Germany, but both offer possibilities for reception in the UK.
TV-Sat will be the best option for most UK listeners. Its concentrated beam has a large central area, in which, according to TechniSat, reception on its 38 cm square antenna is possible. This takes in the SouthEast of England as far west as Chichester, and as far north as Hull. Most of the rest of the mainland can be reached with either a 60 or an 80 cm dish, but the footprint does not take in the west of Scotland, south-west Wales or Cornwall.
Kopernikus has a more diffused beam, covering the whole of the UK and a large part of Ireland, but requiring large dishes -$100-150 \mathrm{~cm}$.
Receivers are far from cheap. About half a dozen are on sale in Germany, including models by Telefunken, Philips and Grundig. Typical prices are $£ 500-800$. So far only two manufacturers have indicated an intention to

bring models into the UK. and they as it happens are respectively the cheapest and the most expensive.
TechniSat, which uses its own D-10-A chip processor, originally developed in East Germany, charges around $£ 300$ for its 5000 DSR. Swiss company Revox is more tentative about the UK market. Its II7 tuner due to enter production this summer. would retail in the region of $\mathrm{f} 10000-1200$. Despite these prices, this hind of digital tadio is relatively easy to transmit, and to decode. using straightorward PCM coding. However, its high transmission bit-rate. 20.48 Mbit/s (in two parallel data streams. cach carrying eight stereo chamels), makes it an extravagant user of bandwidh.

DSR takes up $1+\mathrm{MHz}$ (on a 27 MH . ransponder channel) for its 16 chamels, which compares with a proposed 7 MHz for a 20 -chamel dab service.

Dab on the road

Impressive though DSR sounds, it is hard to see a commercial luture for it without access to the in-car market.
But it may operate viably as a sort of wholesate broadeaster, providing highquality feeds to cable stations and to local. terrestrial broadeasters. It is precisely the problems DSR avoids which dab is being developed to overcome. Dab (occasionally. and confusingly, referred to as DSB. digital sound broadcasting is a Europe-wide Eureka project. No 147. involving broadcasters. including the BBC , and manufacturers. Most of the German participants in DSR are also working on dab. Dab aims to provide a robust sigmal capable of surviving difficult multipath conditions where refleced signals from tall buildings and hills currently create interference.

As the BBC tests on its bus trip showed, dab is well advanced, and is capable of giving perfect reception even when the vehicle is passing through a tunnel. Indeed. such are its design characteristics that as well as being picked up on a moving receiver. Dab can happily be broadeast from several adjacent or overlapping transmitters - cven moving ones.

A proposal under consideration is that dab might be broadeast from a number of low earh-orbit satellites, passing in succession across the sky. The hey to this versatility is a very low transmission bit-rate - so low that the reflected signals can arrive in time 10 be combined with the same part of the main signal, thereby reinforcing it. rather than confusing it. In digital terms. interference starts to become a nuisance where the delay between main and reflected signal becomes greater than one-quarter of the interval between symbols. By the time the delay is equal to the symbol period it can become impossible to decode the signal.

With Nicam, which has a symbol period of 2.7μ s (a symbol consists of iwo bits), a delay of 0.7μ s - equivalent to a reflection from a building 100 m behind the antenna -

DSR receivers are far from cheap and supplies into the UK are going to be limited.
can create interference. That is why Nicam is fine for-fixed, elevated TV aerials. but would be hopelessly confusing for a whip aerial attached to a car travelling through a built-up area.
A working dab system would have to be able to cope with even greater delays reflections from up 105 km away in mountairous arcas. This would imply a symbol period of around 140) s . or around $7.3 \mathrm{ksymbol} / \mathrm{s}$, about one 50 th the rate of Nicam and far too slow to convey music. The challenge to dab is to make this possible.

Coping with delays

Two distinet lechniques have been developed and combined to achieve this. One is compression. crudely summarised as reducing the bit-rate by leaving out those you don"t need. Any audio signal. such as a piece of music. includes sounds which are inaudible to the human car. as a result of being masked by louder sounds at similar frequencies.
The phenomenon is known as the masking threshold. and sounds which fall below the threshold can be dispensed with, without affecting the perceived quality of the signal. Variants of the technique are already in use on digital compact cassettes and on Sony's mini dise system. The initial low bit-rate system. Known as mascam (mashing pattern sub-band coding and multiplexing) has now evolved. along with other systems, into an international standard. CDII172 Layer II. A 20kJIz audio signal now requires only 128 hbits - a sixth of that used by Nicam.

The second trick is 10 split thes signal onto a number of separate carriers. each of which carries is pant of the message at a low enough data rate 10 resist multioath interference. Thus, if the bits in a $128 \mathrm{bbit/s}$ signal were assigned sequentially 1020 carriers, this would give cach of them a rate of only $\boldsymbol{n} .4 \mathrm{kbits} / \mathrm{s}$.

In prattice, additional data is included. and the number of carriers per sound channel is much higher. The system developed to achieve this, and to fit the carriers into as narrow a frequency band as possible is hnown as COFDM, coded
orthogonal frequency division multiplex. Data on the different carriers remains separated, until reassembled in the receiver, despite being carried on the same frequency band.

Spectrum-efficient spectrum

Combination of COFDM and compression has enabled the broadeasters and manulacturess in the Eureka 147 project 10 develop a spectrum-efficient sound broadcasting system.

The currently-proposed system would protide five stereo radio services. modulated onto around 1500 Iow data-rate carriers. taking up 1.5 MH of spectrum. This is the proposed European standard. With a $250 \mathrm{kH} /$ guard band separaling each 1.5 MHz . four such blocks could give 20 programmes in $7 \mathrm{MH} \not$. Dab)s ability of the reflected signal to combine with the main signal not only sohes a problem. but brings positive advantages. It is this feature that would permit reception from non-geostationary low-orbit satellites, or from a geostationary satellite boosted by terrestrial relay tramsmitters ("active deflectors" in dab parlance) which would assist reception in difficult areas such as cidy centres. Similarly. a national network, operating on a single frequency from overlapping terrestrial transmitters becomes a possibility. Clearly, dab receivers will have to have large powers of number-crunching. Philips has suggested that the dab receiver of the future will consist solely of two VI.SI chips. With virually no mechanical parts and volume prosluction. unit cost could be very low, and this is one of the Eureha project's declared objectives. For developing countries a dab scryice is likely to be a cheaper proposition that a VHIF-FM network.

Athough dab could be ready by 1995. there remains the problem of finding frequency space for it. The recent Ware 92 decided to allocate 1452-1492 MItz for satellite transmission, but this will not become fully available umtil 2007. A future conference will look at the issue of complementary terrestrial broadeasting and annerer will consider terrestrial digital breadcasting on VIIF.

For the time being. DSR has the field 10 itself. a partial alternative to dab - but not a competitor.

Peter Willis

11 amplifier or comparator circuit doesn`t always need to deliver its maximum possible performance. Many battery powered applications spend their time waiting and watching for
activity which, when detected, turns on other high current. high performance circuits.
The new Motorola MC $33 / 02$ op-amp recognises this requirement and incorporates boll low current. Low performance and high current, high performance states in the device elarateristics. It also possesses the intelligence to determine the level of performance required at any particular time.
Motorola refers to the ability to switch between these states as "Sleep-mode" operation. In the sleep state, the

MC33102 cardinal parameters			
Characteristic	Sleep	Awake	Unit
Supply current	45	750	$\mu \mathrm{A}$
Input offset voltage	0.15	0.15	mV
Output current	0.15	50	mA
Input offset drift	1	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Gain bandwidth 20 kHz	0.33	4.6	MHz
Slew rate	0.16	1.7	$\mathrm{v} / \mathrm{\mu s}$
Input noise 1kHz	28	9	$\mathrm{nV} / \mathrm{NHz}$

Fig. 1. The typical output current required to cause the device to switch states. It varies as a function of temperature and supply voltage.
device still functions an an operational amplifier but with the curtent consumption reduced to typically $45 \mu \wedge$ per amplifier until an input signal is deteeted that requires the amplilier to source or sink 160 AA or more. Once this condition is detected by the amplifier, it changes to the awake state within a few microseconds. Each amplifier consumes approximately $750 \mu \mathrm{~A}$ in this state but enjoys a ten-fold improvement in width and slew rate.
When the input signal is removed. the amplifier returns to the sleep state after a delay time. An on-chip delay circuit prevents the amplifier from returning to the sleep mode at every zero crossing of the output voltage waveform. This same delay circuit also climinates crossover distortion which is a problem in most conventional low power amplifiers. Freguencies as low as one hert/ can be processed without the amplifier returning to the sleep mode condition.
Incredibly, this is achieved without any external timing components. The pin out is of the same form and number as any other operational amplifier.

Applications details
The MC $33 / 02$ was designed primarily for applications where hagh performance is required only part of the time. The two state feature of this device enables it to conserve power during idle times. yet be powered up and ready for an input signal. Possible applications include laptop

Output voltage swing versus frequency

Voltage gain margin vs capacitance

Phase margin

Pinout
computers, cordless phones, battery operated equipment and baby alarms.

When a signal is applied to the amplifier ceatusing it to source or sink sufficient current (see Fig. 1) the device will automatically switch to the awake mode. This takes about 10 ons for a 600Ω load rising to 20μ s for a $10 \mathrm{k} \Omega$ load. In the high bandwidth state, the device will swing 27 V peak to peak into a $6000 \Omega 2$ load for a $\pm 15 \mathrm{~V}$ supply. A first stage PNP differential amplifier exhibits low noise characteristies in both operational modes while an all NPN ouput stage behaves symmetrically for both source and sink with ΛC waveforms.
The MC33/02 will begin to function at power supply volages as low as $V_{s} . \pm 1.0 \mathrm{~V}$ at room temperature although the output swing will be limited to a few hundred millivolts. The input voltage must range between the power rail voltages and, specifically, must never go more than 0.3 V below the negative power rail. Also, exceeding the common mode voltage range may cause phase reversal.

When power is initially applied, the part may start to operate in the awake mode as the internal capacitors charge up. Without further signal, it will revert to standby in about one and a half seconds. Bringing up the power rails stowly prevents premature switching to the awake state.

The amplifier is designed to switch from standby to full operation whenever the output terminal tries to deliver more than $160 \mu \mathrm{~A}$ to the load. The outpul switching threshold voltage is thus determined by the load resistance.

Large value load resistors require a large output voltage to switch but reduce unwanted transitions to the awake state. The importance of this concerns circuit configurations requiring a large closed loopgain. Care should be taken that the input oflee multiplied by the gain can produce an ouput offise voltage large enough to trigger the awake state when coupled into low vatue loads.

Since mode switching depends on output current. capacitive loads will trigger the change. Generally peaking, about 100$)_{p}{ }^{F}$ in the maximum which can be connected across the output withoul the device changing state.

To obtain your free MC33102 sample and data sheet, please complete and send off the reply coupon between pages 584 and 585. Please make sure that you answer fully the questions printed on the card.

Look out for next month's professional reader service offer

$$
\begin{aligned}
& \text { Qustom metalwork - } \\
& \text { good \& quick! } \\
& \text { Plus a wide range of rack-mounting } \\
& \text { cases etc. from stock. } \\
& \text { Send for our new rardrotcatalogue. }
\end{aligned}
$$

Radio Facsimile Terminal WX-2000 The WX 2000 is a stand alone radio facsimile terminal designed to produce hard copy images from various facsimile services including Weather charts,
Maps. News media and even Satellite plctures from NOAA, GOES and Maps. News media and even Satelite pictures from NOAA, GOES and
METEOR etc. The WX-2000 simply requires an audio slgnal from a shortwave or satellite receiver capable of receiving facsimile signals. The bullt-in high resolution (8 dots per mm) thermal Hne printer produces crisp images with high resolution. The WX-2000 is also capable of simulating grey scale which is ideal for Automatic Plcture Transmission by weather satellites.
In addltion to the basic functions, the WX- 2000 provides full operational controls such as Auto Start, Sync, Adjustment, Position Alignment, Tuning LED etc to produce the highest quality images. The power requirement is $12-13.5 \mathrm{~V}$ DC © 3A, this makes the WX-2000 Ideal for both on land and off shore applications.
Printing method: Thermal line printer 8 dots per mm
Printing scale: $2(\mathrm{~B} / \mathrm{W}$) or 16. selectable
Audio Input: FM $1900+1-400 \mathrm{~Hz} 0.7 \mathrm{~V} / 600 \mathrm{OHM}$
AM $2400 \mathrm{~Hz} 0-1 \mathrm{~V} / 600 \mathrm{OHM}$
Full detal/s Auto start: APSS type
Synchronisation: Independent type
Reception speed: $60,90,120 \& 240 \mathrm{rpm}$, selectable Collaboration factor: 576 or 288 Power requirements: $12-13.5 \mathrm{~V}$ DC © 3A Slze: $310 \mathrm{~mm}(\mathrm{~W}) \times 70 \mathrm{~mm}(\mathrm{H}) \times 200 \mathrm{~mm}$ (D)

CIRCIE NO. 113 ON REPLY CARD

Logic Analysis breaks the $£ 1,000$ barrier

The Thurlby LA3200 and LA4800 logic analysers set new performance standards for low-cost logic analysers.

- 32 or 48 channels	- Multi-level triggering
- 100MHz asynch. capture	- Non-volatile data storage
- 5 ns glitch capture	- Disassemblers for popular $\mu \mathrm{Ps}$

The new LAs incorporate a vast array of features as standard and options are available to connect to a very wide range of target systems. Contact us now for full technical details:
THURLBY ${ }^{\wedge}$ THANDAR
Thurlby-Thandar Ltd., Glebe Road, Huntingdon, Cambs. Tel: (0480) 412451

CIRCIENO. 114 ON REPIY CARD

20MHz Function Generators from $£ 595$

The Thurlby-Thandar 2001 represents the state of the art in bench function generators. Sine, square and triangle waveforms are available up to 20 MHz with frequency, amplitude or offset displayed digitally. Full gating and start/stop phase control is incorporated. The model 2002 adds a highly sophisticated sweep generator offering precise setting of sweep limits, sweep triggering and pen lift control. We offer a wide range of function generators from a very low cost 200 kHz unit up to a fully programmable model with GPIB.
Contact us now for full technical details.
THURLBY- THANDAR
Thurlby-Thandar Ltd., Glebe Road, Huntingdon, Cambs. Tel: (0480)412451

What does my data actually mean? Even statisticians faced with an overwhelming choice of statistical analysis probably welcome a little help from an "expert" from time to time.
But most industrialisıs, executives, scientists, engineers, and even mathematicians are only involved with statistics on an amateur basis. Some may have had formal training in the subject, but statistical techniques have evolved at such a rate in recent years that an amateur's expertise is rapidly out of date.

Unfortunately, inappropriate statistical technique can give totally misleading results. What would be ideal would be to have an expert on tap to help ensure avoidance of an incorrect choice of test, and this is the aim of Statistical Navigator Professional (SNP) from The Idea Works, Columbia, Missouri. Written using Borland's Turbo Pascal and the hypertext (see box) expert system shell Knowledgepro from Knowledge Garden, it offers advice on appropriate forms of statistical analysis for research projects, dissertations and published articles.

How appropriate is your statistical analysis? Don Bradbury finds SNP is an expert that is happy to provide the answers.

The package even goes so far as to suggest software to carry out the analysis, aiming the user at such well established programs as SPSS, SAS, Systat and Statgraphics among others.
The expert system is described by its aathors as a "thought tool". But users should bear in mind that there is no substitute for a little of the old grey matter - after all, you have to ask a live expert the right questions to prompt the appropriate responses. In just the same way if you misinform the expert system it will probably not give the answer you need.

Main menu allows

 users to decide on two different operation modes

Graduated terminology

Lach of familiarity with statistical terminology can frequently be a problem - any user fully understanding the questions would probathly be sufficiently expert to manage without the software. But SNP altempts to overcome this dilliculty by providing a choice of four diflerent levels of interrogation.
The lirst level assumes a good understanding of the subjeet and offers a wide choice of common statistical mehools. such as calusal analysis. measures of association, and scaling and classifieation. From here lhe user can go direetly to obtaining a recommendation from the system.

SYSTEM REQUIREMENTS

IBM-compatible PC
512 K free ram
One floppy drive
Hard disk
All common graphics modes supported
Mouse speeds navigation of the menus.
Install batch file has to be applied in the form INSTALL C SN 5 cotor, where C is installation drive and 5 (or 3) is the floppy disk size
Zipped files on the five 5.25 in install disks are "exploded" by PKWare's Pkunzip
SNP can be run under Windows using the dos command prompt
Expanded/extended memory not currently supported (SNP periodically "gathers memory" as required; a delay not too protracted on reasonably quick hardware). cedure. things to different people.

Consult or browse

 or printed oul.
Hypertext linking

 allows detailed information to be accessed on specific problems.
UIEWING REPORT

In the window be low you can wiew the report file from this consultation. Press Escape when done; Use Pglp a PgDn to Manuever in UIEN MODE.

For those less sure of their ground. wanting to select a general category of analysis. level two starts with a briel list of common questions. allowing selection of the option that best describes the objective. The expert system then guides the user to an appropriate general category of analytical techniques.
Thirdly, the enquirer can peruse several lists of questions. more detailed than the shorter list. with answers allowing the expert system to define the problem more fully.
Finally, for those who need just the most basic assistance, $S N P$ offers a natural language interface where the user can enter a statement. in English. from which the system tries to identify suitable catcgories of statistical analysis.
In this mode. SNP attempts to recognise key words or phrases by which it can identily an intended analytical pro-

I made several entries in this mode - conlining myself to the sort of statement a novice statistician mightuse - and the expert sysum gencrally came up with something meaningful that was uscful as a starting point.

Whichever method is used, the outcome is identification of a category of anatytical techniques. But if the result is not good enough. any of the other methods of interrogation can be used as well. The process can continue untila aser is confident that the recommendation is appropriate - a useful option as the expert system is given the chance to investigate various forms of terminology commonly used in research literature. In specialist lields, statements can mean different
$S N P$ main menu lists a choice of browst or const tit and in the latter mode. users are guided to a selected form of statistical analysis. Screens reguire input of an objective. assumptions being made, and the intended readership of the analysis. The report provided by the system can be saved to dish lor later use so that the consultation does not have to be completed in one session. Reports may be viewed on sereen

In constiet mode SNP offers such a weight of information - and unavoidably uses so much statistical jargon - that users need to know al least what the terms mean. Athough liberally sprinkled with excellent hypertext linhs to key terms. the too-frequent recourse to looking up terms not only slows progress but is also a litte frusirating.

Running the system on cuite powertul hardware does nor provide conspicuously rapid progress. There are noticeable delays in production of help screens and submenus, for example. so there is a tendency to avoid looking up too many references or using too many of the hypertext threads to subordinate material.
But for looking up the odd reference or two. they are really excellent and useful.

CONTINUED OVER PAGE

Micro AMPS

* Preprocessor, compiler, optimser
* Integer implementation
* Inline assembler
* Assembler level simulator and monitor
* Includes 8086 compiler for the PC
* Single chip to fully expanded memory
* Micro-C is not a re-worked small C
* Other code generators available:
$68 \mathrm{HCl11}, 6809,8085 / \mathrm{Z} 80$
* Low cost cross assembler available: 6800/(01/03/05/09/11 8031/8051 8085/Z80 8086/96
* Over 350 pages of documentation on disk
* Integer BASIC compiler
* Supports single chip mode
* 8051 cross assembler included
* High level debugger runs on PC
* Standard Basic commands supported
* Specific functions to access 8051 SFRs and internal memory
* Line editor included, accepts text files
* Generates INTEL hex format output
* Output suitable for 87C751
* 8052AH-BASIC compatible compiler available

8051 ICE (ICE51 ${ }^{\text {TM }}$)

* Low cost 8051 In-Circuit Emulator
* Low power, 5 volt operation
* Plugs directly into the 8051 processor socket
* 32k bytes RAM for program/data
* Single step and break points
* Assign memory and SFRs
* Upload/download INTEL hex files
* $I^{2} \mathrm{C}$ drivers available
* Real time clock version available
* PC host software communicates via serial port

87C751 ICE (ICE751)

* Low cost 87C751 In-Circuit Emulator
* Plugs into the target 87 C 751 socket
* On-board programmer, PLCC adapter available
* Monitor uses only 48 bytes of program memory
* Upload/download INTEL hex files
* Assign memory and SFRs
* Break points
* $\mathrm{I}^{2} \mathrm{C}$ drivers available
* PC host software communicates via serial port

IC135] is a travemash of Intel Corp

The 8051, An Introductory Course

* 1 Day course aimed at introducing the User to the 8051 microcontroller
* Discussion of the 8051 Architecture and instruction set
* Use of I/O, Timers, SFR's and Memory
* Each User will have the use of a PC and ICE51 to carry out the Workshop exercises
* Course run every month with a maximum attendance of 8 people
* Fee includes the 8051 Book described opposite
* A voucher worth $£ 50$ to spend on any of our 8051 products

OTHER PRODUCTS

* 8051 BOOK - The 8051 Architecture, Programming and Applications ($£ 49.95$). This book includes a free assembler and simulator for personal or educational use
* PEB552 - The Philps evaluation board for the 80 C 552 processor variant, a monitor and programming adapter are available for this product
* MACH1 - An RTX200/1 PC based evaluation board
* ICC2000 - An 8 channel 10MIPS PC based intelligent communications card using the RTX20001 processor
* FORTH + + - A low cost RTX2000/1 compiler.

66 Smithbrook Kilns, Cranleigh, Surrey, UK, GU6 8JJ Tel: + 44(0)483 268999, Fax: + 44(0)483 268397

Report of an SNP interrogation.

UIEUING REPORT
In the window below you can view the report file from this consultation. ress Escape when done: Use Pulp \& Faln to Maniever in UIEW MODE.

```
```

Report Uiewer:

```
```

Report Uiewer:
f the system over time so that fluctuations exceeding chance can
f the system over time so that fluctuations exceeding chance can
be detected. This monitoring can be combined with feedback or
be detected. This monitoring can be combined with feedback or
feedforward control schemes to influence the process and keep it
feedforward control schemes to influence the process and keep it
closer to its desired outcome. When the output variable itself is
closer to its desired outcome. When the output variable itself is
monitored, fluctuations beyond reasonable bounds can trigger control
monitored, fluctuations beyond reasonable bounds can trigger control
efforts. This is called feedback control.

```
```

efforts. This is called feedback control.

```
```



```
```

 The quality control chart for attributes takes several
    ```
```

 The quality control chart for attributes takes several
 common forms, including an overtime plot of the number of
common forms, including an overtime plot of the number of
defective parts, the proportion of defective parts, the
defective parts, the proportion of defective parts, the
number of defects per item or subgroup, or the number of
number of defects per item or subgroup, or the number of
defects per unit. Whenever the plotted value exceeds the
defects per unit. Whenever the plotted value exceeds the
control limits on the high side cobviously there is no
control limits on the high side cobviously there is no
problem if there are fewer defects than desired) the
problem if there are fewer defects than desired) the
process will be interrupted.

```
```

process will be interrupted.

```
```



```
defects per unit. Whenever the plotted value exceeds the
```

```
defects per unit. Whenever the plotted value exceeds the
```

References:
Box and Jenkins, 1976:Chpts. 12,13
Statistical Nauigator Professional-_Browse Mode-_[Pglp][Pgim]_,
SMPRO - BROUSE. Statistical Amalysis Strategies
STATISTICAL AMALUSIS STMATEGIES COTSIDERED BU \quad Page 2 af" 2
STATISTICAL MAUIGATOR PROFESSIONRL
Statistical analysis strategies considered by Statistical Mauigator
Professional are as follows:

- Exploratory Data Amalysis.
Causal Analysis.
Hypothes is or Sigmif icance Tests.........
Measures of Agreement or Reliability.
Measures of Agreement or Reliability.
Scalling \& Classification.
Univariate Description..
Univariate Description.......
ARIMA Models.
ARIM Mode
Smoothing.
Quality Control.
Spectral Analysis.......................
spectral Analysis.
Suruival fmalysis.
Markou Models.
Changing Measurement Models
Changing Measurenent Models..............
Panel Amalysis.........................s.

SNP suggests a strategy for the best analysis of data.
spectral Analusis.

More than one approach

It is worth pointing out that a single statistical appraisal of a data set is unlikely to produce a complete analysis. There may well be two or more tests to apply before a satisfactory conclusion can be reached. But unlike some programs, $S N P$ suggests the four procedures that appear the most suitable given the information the user provides. The procedures are ranked in order of likely suitability for the problem, and the four best are identified out of what might be a substantial array.

A detailed report is then given showing SNP's recommendation and an appropriate selection can be made from the list of recommended analysis software. Finally, a point-bypoint explanation is given of just how appropriate, or otherwise, a particular technique is for the problem.

Hypertext

Hypertext refers to presentation of text or graphics in a layered arrangement. The top layer contains the main body of information while lower tiers hold subsidiary detail, referenced by hypertext phrases. Detail information overlays the top layer screen until removed by users and it too may contain reference to still lower levels of detail. Any number of layers is theoretically possible.

Consultation type

The main screening menu is presented as a cheice of the four basic consultation methods; general types of analysis, list of research questions, a different list of questions organised by major category of analysis, and the natural language procedure.

In the first category, nine divisions are itemised and a user must decide whether to apply causal analysis, significance tests, measures of association or reliability, scaling and classification, process and control analysis, or exploratory data analysis. The final category is "none of these, let's try another approach" - a comment typical of SNP. The package tries hard not to let the relatively inexperienced feel high and dry, in what is a relatively esoteric subject, by inviting consideration of a different method of investigation.

A further attraction is that the list of possible approaches is not just a menu, it is also a link to other screens achieved through hypertext threading. Hypertexted information on the subject is selected by using either a mouse, or by function key F3 to locate the item and then F4 to select. If no information is needed on the subject, the broad category of analysis is selected by entering the number of the category in the list.

Common phrases

The "list of common phrases describing research objectives" mode of interrogation is mainly provided because of potential terminology difficultics. Workers in one discipline will recognise stoch expressions common to their work, but others may not.
For example one phrase reads "develop and test causal models"; another, "assess the impact of an independent variable on a dependent variable"; and a third, "compare the value of one group with a known population value".
As before, the last option is "none of these appear appropriate, let's try another approach", so, again, there is some continuity for the hesitant.

Most workers will be able to associate with one or two of these expressions, and it will be fairly obvious in most cases which of them best describes the problem in hand. If it is still not clear, remember that other options will let you supplement one conclusion with another, and thus buik confidence in the overall methodology finally selected.

The natural language interface is the last category, and here, it has to be admitted, there may be some ambiguity. But it is a useful option, not to be lightly dismissed, and its use can add weight to conclusions drawn by other modes of attack. Usually it will be the mode chosen by the novice since it is probably the least specific approach.

Objective versus aim

The program also concerns itself with the "audience receptivity" of a selected analytical technique. After it has been given all the information concerning objectives and assumptions, SNP proceeds to calculate scores for each analytical technique.

Four best-fit approaches satisfying the objectives are given, and from these the user is asked to indicate the extent to which an "audience" expects or prefers to sec the analysis
used with respect to their problem. A $0-10$ score is requested, and audience receptivity is then graphically indicated.
The four best techniques are again hypertexted, and any unfamiliarity with a particular approach can be quickly described and cross-referenced by following the threads.
The comprehensive manual, after describing in detail all of the foregoing processes, proceeds to add weighty material on specific topics of interest and relevance to the subject, and it includes notes concerning the on-line, context-sensitive help system (summoned by Fl), specific statistical techniques which are extensively discussed, a broad list of references, and an index. Well-bound and paper-backed, the manual constitutes a reference that would surely find a welcome home in appropriate establishments.

Wide appeal

There is little point in delving further into the mysteries of statistical analysis of data sets as tackled by this excellent program.
It is enough to say that $S N P$ will be found invaluable in many laboratories, schools, scientific institutions and government departments. In fact anywhere that does not have access to a specialist in the subject.

At only $£ 130$, the package will be valued by any PC user working in a relevant field of activity and after just a little time gaining familiarity, applying the program becomes second nature.

Within an organisation, SNP will probably be handed to someone who has the time and natural inclination to wrestle with such problems. The package will surely transform that person into the resident specialist, becoming the reference point for others less familiar with statistics.

The package tries hard not to let the relatively inexperienced feel high and dry.

SUPPLIER DETAILS

Statistical Navigator Professional, $£ 130$, is sold by The Core Store Ltd., The Studio, Hawthorn
Cottage, Marbury Road, Comberbach. Northwich, Cheshire CW9 6AU. TEL: 0606891980 , who also provide support for the program within the UK.

R.S.T. LANGREX R.ST. SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.

Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers.
Where still available.
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD
1 Mayo Road, Croydon, Surrey CRO 2QP. Tel: 081-684 1166
Telex: 946708
Fax: 081-6843056

- Plugs directly into parallel printer port
- Requires no external power or expansion slots
- BNC input connector
- Supplied with software to use as a voltmeter \& oscilloscope, plus Turbo C and Pascal drivers

> Pico Technology Limited Broadway Hotse, 149-151 St. Neots Road, Hartwick, Cambridge CB3 7QJ Tel. 0954211716 Fax. 0954211880

Auto-validation for neater netlists

John Anderson reports on software that could mean checking for netlist errors is just that little bit easier.

SUPPLIER
 DETAILS

The software currently works with netlist files for Seetrax Ranger 1 software, and runs on a standard PC text mode only. For more information contact Markie Enterprises, 60 Park Drive, Ascot, Berks SL5 OBE.

Syntax checking program Wirechek was born to help overcome the problems encountered in tracking down errors in hand-written netlists.
David Marhie, developer of the sofiware, had been working with the Seetrax Ranger 1 PCB package, and wanted to introcluce a degree of automation into the validation process
He designed Wirechek to be used as a filter for netlist errors prior to PCB layout to screen before committing to copper. The program could prove most useful for schematics captured as netlists by hand and for checking all nodes of a design for floating inputs etc.
Sone PCB cad programs offer this facility as standard Protel Autorax for example. But for those packages that do not. Markie's program is a useful tool.
On start up, a set of text windows is displayed, and the program is controlled by moving a cursor through the static set of options presented in the text windows. Cursor movement can be controlled by cursor heys or a mouse. Function key FI gives brief context sensitive help.
Wirechek comprises two parts; the input parser and syntax

REPDRTED ERRORS

Some of the syntax errors reported by the program in its basi= mode are:
Invalid component pin number
Pin number greater than maximum allowed, currently 255
String representing pin number longer than three characters
No component name found - "." read before any component name
Duplicate link name - remainder of line ignored
Duplicate entries of component pins
Onlv one connection on link
Neither valid link name nor continuation found
Multiple outputs on link
Input/s not driven
Unused pin connected to link
Output connected to supply rail
Open Collector output with no passive pull up Warning if more than 10 inputs connected to link Warning if tri-state port is connected to.an output Warning if input/output port is connected to an output Component name not found in cross-reference file Component not defined in data file
Pin number greater than highest pin number on component
Pins not connected to any link
checker and a library of components.
Checking reads in the netlist and checks the pins of the device against the library model: any pins remaining once the whole file has been scanned represent unconnected nodes. If any of these are inputs, then they are floating and a warning is generated. After completion, the program produces a report file detailing errors and warnings.
The component library is stored in simple ascii format, and can be supplemented as required.
Wirechek can be run from floppy drive, but the performance is rather slow because of the atmost continuous disc accesses required.
In practice this program could be organised as a simple filter with a command line interface. But it is its syntax checking function that is important, and clearly there are applications where it could save time and improve quality.

It will be interesting to see if Markie develops the program to work with, and translate, other netlist formats.

LOW COST RANGER1 PCB DESIGN FROM SEETRAX
 - Circuit Schematic
 - Circuit Capture
 - PCB Design
 - Host Of Outputs All-In-One Design System $£ 100$
 Fully Integrated Auto Router $\lesssim 50$
 Ask Us About Trade-In Deals Call Now Fôr Demo Disk on 0705591037
 Seetrax CAE • Hinton Daubnay House Broadway Lane • Lovedean • Hants • PO8 0SG Tel: 0705591037 • Fax: 0705599036
 REDUCED
 PRICE!
 What The Press Said
 Pay by Visa or Access ns,

CIRCLENO. $1 \not 44$ ON REPLY CARD

ROM EMULATORS

CAIL, WRITE OR FAX FOR MORE INFORMATION:

Tel: 0235832939 Fax: 0235861039

Split personality of hybrid directional couplers

> Splitting power equally between a directional coupler's normal load and one of the coupled ports creates a hybrid circuit. Dick Manton looks at the hybrid's operation and application.

Uses of directional couplers in monitoring forward and reverse power have already been reviewed (Sorting out the plumbing with directional couplers. EW + WW, June, pp. 468-470). Here we are going to concentrate on circuits splitting power equaily between the directional coupler's normal load and one of the coupled ports to create what are called hybrids or, sometimes diplexer circuits.

Fo-- instance the BBC uses a high-power hybrid, consisting of inductors and capacitors to combine the power of two 250 kW transmitters into its Droitwich low-frequency antenna. Printed circuit hybrids are used throughout the communications industry for combining and splitting low or medium power in the VHF and UHF frequency ranges. Tiny copper-tape-wound hybrid transformers, potted in resin. have various uses in low power circuits below 100 MHz .

In a hybrid network, power fed into any port is split equally between the two adjacent ports (Fig. 1) and, provided that the loads are per-

fectly matched, no power reaches the opposite port. But this is not the whole of the story as there is always a definite and important phase difference between the input and two output voltages. The result is that there are two distinct classes of hybrid: quadrature and sum-and-difference

Quadrature types have two output voltages

Fig. 2. Symbols showing phases: (a) quadrature type; (b) 0-180 or sum-anddifference type, (c) 0-180 type with some balanced terminals.

Table 1. Theoretical bandwidths of principal types of hybrid.

differing in phase by 90°, and two planes of symmetry. The $(0-180)^{\circ}$ or sum-and-difference type has the two oulpur voltages either in phase or 180° out of phase with each other, depending on which port is used as the input. Symmetry is limited to one plane.
If the paths between ports are labelled according to phase change in proceeding from one port to the next (Fig. 2), the properties of hybrids can be seen more clearly. Some types have ports which are halanced, or not directly connected to ground, so voltage phases are somewhat ambiguous and alternative phases have to he given (Fig. 2c).
In this article we shall consider only applications where a single modulated or unmodulated signal is involved - multiple-frequency applications will be considered in a later article - and, unless stated otherwise, assume a $50 \Omega 2$ system where all output ports of the hybrid are terminated by 5052 resistive loads. In most circuits, account should be taken of the phasing of hybrids and so separate circuits are shown for quadrature and 0) 1800° hybrids.

Splitting transmitter or antenna power

When power is split hetween two loads (Fig. 3) simply by a transformer and T-junction, there is a high probability that failure of one load or its removal will result in a large change in the amount of power arriving at the remaining load. In the limit, an open-circuit a quarter-wavelength away from the T-junction would result in no power reaching the remaining load. A hybrid with a balancing load used to split the power overcomes this difficulty. Equal-amplitude forward waves, with phases appropriate to the hybrid, always reach each termination and any reflected power is split equally between the transmitter and the load on port D.
Any change in voltage applied to one load. brought about by a change in the other, results from a mismatch of the load D or the transmitter. The worst voltage reflection coefficient that can be presented 10 a transmitter by a single fault on a load is $50 \% ~(V S W R=3)$.
Equal loads, arranged to be fed with equal quadrature currents (Fig. 3b and 3c), will receive their correct relative currents regardless of mismatch. A matched load is always presented to the transmitter and all reflected power is transferred to load D.

Fig. 3. Hybrids used as power splitters: (a) simple split; (b) quadrature feed with quadrature hybrid; (c) quadrature feed with 0-180 hybrid.

Fig. 5. Multiplexed amplifiers using (a) quadrature type hybrids; (b) 0-180 type hybrids.

Combining the power of two transmitters
Output power of transmitters operating on the same frequency can be combined (Fig. 4) into a single matched load A by approprately locking their phases and feeding them into ports B and C of a hybrid. In this way the two transmitters remain isolated and independent of each other. If V^{\prime} is the input voltage of each transmitter, 0.71 V arrives initially from each transmitter at ports A and D. But phases are such that these voltages add at port A and subtract at port D.
One transmitter can be removed aftogether. without power from the other transmitter reaching its terminals, provided that the loads
on por*s A and D are matched. But in this case the remaining power would be divided equally between ports A and D.
In general, where equal cophased input voltages would add in load A (Fig. 4b), the powers in loads A and D are given by

$$
\begin{aligned}
& P_{A}=0.5\left(P_{B}+P_{C}\right)+\sqrt{ }\left(P_{B} P_{C}\right) \cos \theta \\
& P_{D}=0.5\left(P_{B}+P_{C}\right)-\sqrt{ }\left(P_{B} P_{C}\right) \cos \theta
\end{aligned}
$$

where θ is the phase difference between P_{B} and P_{C}.

Multiplexing amplifiers

The above principles may be combined where multiple low-power amplifiers are used

$3 d B$ coupler - quadrature type. Equations relating to the design of coupled transmission lines were given in the last issue of $E W+W W$. In the 3 dB coupler the voltage coupling factor $k_{\max }=1 \wedge 2=0.707$ and the coupled electrical length is $\lambda_{\sqrt{ }} \sqrt{ } 4$. Greater useable bandwidth can be obtained by overcoupling the lines to give k max $=0.725$ (2.8 dB coupler). These types of hybrid are useable in the frequency range 30 1000 MHz .

Hybrid circuits

Three of the example hybrid circuits given here are derived from ordinary directional couplers and are quadrature. The remainder do not have any familiar low-coupling equivalents and are all $0-180^{\circ}$ types. Indications of bandwidths for stated parameter variations are given in Table 1.

Capacitively-coupled transmission lines - quadrature type is a very narrow-band hybrid which can be used between 10 MHz and 100 MHz .

Maxwell bridge - quadrature type is a useful hybrid for frequencies below 30 MHz , with the disadvantage that, without the use of transformers, not more than two ports can be connected to ground.
(Fig. 5) 10 form a medium-power transmitter. Some power from the drive oscillator will reach each amplifier, regardless of its input impedance and if one amplifier fails, half of the remaining power will continue to be delivered to load A. If the two amplifiers are identical, then the drive will see a matehed load. Also, any reflection from the load on the second port A will be absorbed and cannot be rereflected. Only a single pair of amphifiers is shown, but the process can go on being repeated in powers of two as far as is practicable.

Varying amplitude and phase of a signal If ports B and C are terminated by identical networks and port D is terminated by a matched load, the input will be mateled (Fig. 6). But the voltage at D will be dependent on the input impedance or return-loss of each network. In the simplest case the networks can be switches, opened and closed to give phase changes of 180°. Ganged variable capacitors will change the phase of the signal by 90° as each reactance changes between $-j \omega$ and $-\mathrm{j} 50) \Omega$.

Similarly, ganged variable resistors will form an attentator which increases towards ∞ (dB as each resistance approaches $50 \Omega 2$. Networks with suitably designed return-loss characteristics can be used to provide any desired voltage/frequency characteristic across the bandwidth of a channel.

Fig. 6. Amplitude and phase variation using (a) quadrature type hybrids; (b) 0-180 type hybrids.

Rat-race or Lorenz ring - 0-180 type normally consists of a ring of transmission line with a characteristic impedance of 70.7Ω. It has a good bandwidth and is useful in the frequency range $30-3000 \mathrm{MHz}$. (A 50Ω transmission line version has three arms $0.152 \lambda_{L}$ long and one arm $0.652 \lambda_{L}$, but its bandwidth is inferior to that of the 70.7Ω version).

Bridged T-0-180 type has a good bandwidth and is useful for frequencies below 30 MHz . One load has to be isolated from ground.

Wilkinson-0-180' type can be derived from the rat-race, but because cancellation of signals at port D does not rely on a half-wavelength of line, its bandwidth is greater. The disadvantage is that the load on port D needs to be 1002 and balanced, but it is easy to fabricate and useful in the frequency range $30-3000 \mathrm{MHz}$. $(A 0 \Omega$ line version needs shortcircuited transmission line stubs on ports B and C and a capacitor across load D.).

Transformer - 0-180 type is an excellent hybrid for frequencies up to 100 MHz . It is degraded only by transformer periormance. In its simpler version one load has to be 25Ω.

Waveguide magic $I-0-180$ type has a theoretically perfect performance over the useable trequency range of the waveguide, although in practice it may be degraded by mode break-up at the junction.

HP141T/85528/8554B 1250MHz system HP182T/8559A 21 GHz system HP35660A dynamic analyser $244 \mu \mathrm{~Hz}-102 \mathrm{kHz}$ HP3580A $5 \mathrm{~Hz}-50 \mathrm{kHz}$ opt 01 . Digital readout mode As above but without option, mechanical readou HP 3582 A dual-channel 25 kHz analyser HP3585A 40MHZ analyse Hz analyser TEKTRON|X 7 L 120.1 MHz -1.5 GHz in 7403 N frame ANRTSU MS62B $10 \mathrm{kHz} \cdot 1700 \mathrm{MHz}$ ANRTSU MS68B $10 \mathrm{kHz}-44 \mathrm{GHz}$

MARCONI INSTRUMENTS

2019 synthesized signal generator $10 \mathrm{kHz}-1040 \mathrm{MH}$
$2091 \mathrm{C} / 2092 \mathrm{C}$ white noise receiver/transmitter, pair
$201710 \mathrm{kHz}-1024 \mathrm{MHz}$ AM/FM signal generator
201710 kHz -1024MHZ AM/FM signal generator
$2380 / 82400 \mathrm{MHz}$ spectrum analyser
23881 GHz active probe
2347100 MHz timer/counter
2501 RF power meter 0.3 W DC. 1 GHz
2503 RF power meter to 100 W OC-1 1 GH I
$2828 \mathrm{~A} / 2829$ digital simulator/analyser
2830 multiplex tester
2833 digtal in -line montor
2870 data communications tester
2955 mobile radio test set 175 W version
2956 NMT cellular adaptor, latest issue soffware
6460 microwave power meter wth he
67008 sweep oscillator $8-124 \mathrm{GHz}$
OA 2805 A PCM regenerator test set
TF 1245 A O-Meter wth 1246 and 47 oscillators
TF 2006 FM signal generator $10-1000 \mathrm{MHz}$
TF2162 audio frequency attenuator
TF2163S DC-1 GHz attenuator
TF 2370110 MHz spectrum analyse
TF 291014 non-linear distortion (video) analyser TF2914A TV insertion signal analyser
TF2910 TV interval timer
\qquad

URGENTLY REQUIRED -
'HIGH-END' test Equipment
by brand names. TOP prices paid for HP, TEK, MARCONI ett. PLEASE CALL.

36 EASTCOTE LANE, S. HARROW, MIDDLESEX HA2 8DB TEL: 081-422 3593. FAX: 081-423 4009

TEST EOUIPMENT

AIM 501 low distortion oscillator GP1B/RS232 ANRTSU MS62B \& 688 specticam analysers-see above AVOCB154/5 electrolytc $\&$ tant' cap' bridge BRANDENBURG Alpha 11507 R 0-5k FARNELL PSG520 signal generator AM/FM $10-520 \mathrm{MH}$ FLUKE 8010A digital multi-mete
HAMEG HM605 60 MHz dual-trace oscilloscope KIKUSUI COS5040TM 40 MHz dual trace oscilloscope LING DYNAMICS LA500 (500W vibrator amplifier) MHILIPS PM9355 current probe
PHILIPS PM5190 synthesized function generator 2MHz PHLLIPS PM5534 standard pattern generator NTSC PHILIPS PM5545 colour encoder PAL PHILIPS PM5597 VHF modulators $£ 250$. PM 5598 UHF PHILIPS PM6652 1.5GHz timer/counter GPIB PHILIPS PM8202 recordet with $9874 / 01$ temp unit RACAL DANA 9008 A automatic modulation meter RACAL 9081 signal generator $5-520 \mathrm{MHz}$ synthesized RACAL 9082 signal generator $1.5-520 \mathrm{MHz}$ synthesized RACAL 9105 RF micro-wattmeter $002 \mu \mathrm{~W}$-200 mW
RACAL 9300 RMS voltmeter -80 dB to +50 RACAL Store 44 -channel tape recorder
RACAL 9341 LCR databridge component tester
ROHDE \& SCHWARZ CMT54 mobile radio test set GPI SCHAFFNER 200C/222/223 interference generator SCHLUMBERGER 1250 frequency response analyser
SCHLUMBERGER 4010 mobile radio test set IEKTRONIX 7 L 121.8 GHz spec an' plug-in TEKTRONIX 16 dggital photometer
TEKIRONIX 1485 R full spec' TV waveform monitor TEKTRONIX. 465 100MHZ dual trace tester
TEKTRONIX 465 as ahove
TEKTRONIX 7623 A 100 MHz storage main-frame
TEKTRONIX 7613/7A19/7B10 storage scope system TEKTRONIX 7904/7A19/7A15A/7B70/7B71500M Hz
TEKTRONIX 7A13, 7B53A, 7A18, 7B85, 7B87, 7CTIN TEKTRONIX AFG5110 arbitrary function generator THURLEY PL320T-GP $0-30 \mathrm{~V}$ 2A twice psu GPIB. YOKOGAWA 3061-21 6-channel chart recorder

116028 transistor fixture for S-parameter test 11710 frequency down-converter for 86408 141 A 100 MHz storage (analogue) oscill oscod 334A distortion meter 35660 A dynamic signal analyser $244 \mu \mathrm{~Hz}-102 \mathrm{kHz}$ 3580 A audio spectrum analyser $15 \mathrm{~Hz}-50 \mathrm{kHz}$ LED version 3582 A audio frequency specturm analyser
3585 A 40 MHz spectrum analyser 400 FL MV-Meter $100 \mathrm{HV}-300 \mathrm{~V}$ fs. $20 \mathrm{~Hz}-4 \mathrm{MHz}$ 4275/001 LCZ meter
5005B signature mult-meter, programmable 5328A 100 MHz counter with DVM and HPIB options
5328 A 100 MHz counter with High-performance DVM opt 5363 B time-intermal probes 6516A power supply 0-3kV @ 6 mA 6825A bipolar power supply/amp -20 to +20 vdc 0-2 A 70300A tracking generator plug-in unit
70907A extemal mixer
70158 analogue X - Y recorder with timebase 8405 A vector voltmeter, voltage \& phase to 1000 MHz 8406A comb generator
8503A S-parameter test set
8505 Anetwork analyser including 5750 A 8503 A $8554 \mathrm{~B} / 141 \mathrm{~T} / 85528$ spectrum analyser system to 1250 MHz 8559 A 182 T 21 GHz spectrum analyser system 8590 A 1500 MHz spectrum analyser GPIB option 8600 A digital marker generator for 8601 A 8614A signal gene rator $800 \mathrm{MHz-2} 4 \mathrm{GHz}$ 8640 A signal generator 5.520 MHz AM/FM 8656 AM/FM synthesized signal generator $0.1-990 \mathrm{Mhz}$ 8901 B modulation analyser options 01/02/01 8903 B audio analyser options 001/010/051

Ruspers marcon:

> If Popov had been less of a physicist, would he have beaten Marconi to the prize of long-distance wireless communication? Khatskel A Ioffe of the Popov Central Museum of Communications in St Petersburg reports.

Alexander Stepanovich Popov (1859-1906), born into a priest's family in an industrial settlement of the Northern Urals, was expected to enter the Church. But his passion for exact sciences instead took him to the Department of Physics and Mathematics at the University of St Petersburg. Later, in the 1890s, as an instructor at the Officers’ Torpedo School at Kronstadt ${ }^{1}$, he became a wellknown name amongst the physicists in St Petersburg.
Since his student days,

A S Popov (1859-1906). A photo of the early 1900s. According to his contemporaries, Popov's broad Russian face with a thin, short beard and overhanging brows would suddenly light up with a smile and an attentive look at his questioner. He was an exceptionally hardworking, honest and sympathetic man^{17}.

Popov had concentrated on the emerging subject of electrical engineering. But it was as a lecturer that Popov was able to demonstrate his particular gift for staging original experiments to clarify a point.

To demonstrate dynamo/motor convertibility, for example, he interconnected two mov-ing-coil galvanometers. Giving the rectangular coil of one galvanometer a push caused that of the other to move in the opposite sense. Students could clearly see how moving the first galvanometer's coil induced a current in it to oppose the motion, while this current also flowed in the second galvanometer, connected in series, to produce the reverse effect.
Popov was also a passionate experimenter
and spent nearly all his free time in the laboratory, closely following the latest developments in electricity and demonstrating them in his lectures. He was particularly impressed by Nikola Tesla's (1856-1943) experiments in transmitting electrical power into space using a high-frequency, high-voltage transformer and in 1891 manufactured a transformer from Tesla's diagrams to use in demonstrations. Brush discharge from the end of the transformer secondary attained a length of nearly a metre: the high-voltage field produced a glow in evazuated glass tubes distributed among the students, much to their delight.

Following publications by Galilco Ferraris (1847-1897) on rotating magnetic fields, Popov gave a public lecture on this theme in 1892, demonstrating devices in which two coils at right angles to each other and on a common centre had, at the centre, a magnetic needle on a pivot. When alternating currents with equal amplitudes and 90° phase shift were passed through the coils, the needle rotated.

In 1893, Popov built an original device to show the formation of a full AC cycle in slow motion, simulating the operation of an alternator by substituting for the magnetic field ${ }^{2}$ an electric field applied to an electrolyte

Investigating Hertz

After the publication in 1888-89 by Heinrich Rudolf Hertz (1857-1894) of his experiments with electromagnetic waves, Popov gave a

Fig. 1. Popov's receiver (1895) for "detection and registration of electrical oscillations."
series of public lectures in 1890 entitled: "The latest researches on the relations between optical and electrical phenomena". during which he demonstrated Hertz's experiments.
Even at that lime. scientists were beginning to have ideas for the practical use of Hertaian waves. For example, O D Khvolson (18521934). professor at the University of St Petersburg and member of the Russian Physico-Chemical Socicty to which Popov also belonged, wrote: "Herlis experiments are still on a laboratory scale only; however, it is impossible at the present time to determine what will develop from them further and whether they constitute the origins of new
branches of electrical engincering ${ }^{* 3}$. The editorial board added in a footnote: "For example, wireless telegraphy similar to optical". Also, the newly developed feasibility of wireless telegraphy was discussed in 1892 by W Crookes (18.32-1919) and in 1893 by N Tesla.

All this was known to Popov who was searching for a more convenient and reliable way than Hertz's ring resonator of indicating the presence of electromagnetic waves. In the spring of 1893 , he built a device he called a radiometer, whereby clectrical oscillations brought into motion a lightweight spider with four platinum leaves at its ends. But he was not satisfied with the result. Fortunately. "The Work of Hertz"4, a lecture published in 1894 by Oliver Joseph Lodge (1851-1940), came to his aid. His attention was attracted by Lodge`s experiments with the coherer - a glass tube containing metal filings whose conduction dramatically increased under the ation of electromagnetic waves and was retumed to its initial value by shaking or tapping. The effect had been described by Edouard Branly (18461940) in 1890 . When placed in a circuit comprising a battery and a galvanometer, the coherer enabled Lodge to detect Hertzian waves by deflection of the galvanometer.

Coherer detection

In repeating hodge's experiments. Popov carried out, early in 1895. a series of investigations into various metal powders and coherer designs. Eventually, he decided in favour of a horizontally arranged glass lube, about 1 cm in diameter and about 8 cm long, almost haltlilled with partiatly oxidised iron fillings rest-

Fig. 2. Popov's lightning recorder. The unit was presumably presented at the 1900 Universal Exhibition in Paris, where Popov was awarded a gold medal for his instrument. Now in the keeping of the Popov Central Museum of Communications.

ing on two stripline platinum clectrodes pasted to the inside of the tube and brought out at opposite ends. The ends were stopped with corks.

The coherer was sensitive and stable and, after achieving reliable detection of Hertzian waves using the technique, Popor was able to go further and set himself the goal of building a device to detect successive clectromagnetic waves automatically. For this, he placed a telegraphic relay in the receiving circuit with an electric bell. The bell indicated the presence of a wave by ringing and, at the same time, tapped the coherer to prepare it for the next wave.

The result was a device which Popov termed an "instrument for detection and registration of electrical oscillations" (Fig. 1). A tube containing filings is mounted between terminals M and N with a light spring pressure. Above the tube is a bell which taps gently against the middle of the tube, the tube protected by a rubber ring. Direct current flows from a $4-5 \mathrm{~V}$ battery $P Q$ through the tube $A B$ and the winding ol a relay and is normally insulficient to pull in the relay armature.

But il the tube is subjected to an electromagnetic wave, the powder resistance decreases and the current increases to activate the relay. This completes the circuit via the nor-mally-open contact C and the bell rings. Tapping the tube decreases its conduction. with the result that the relay opens the bell circuit.
Each electromagnetic wave is thereby indicated by a short ringing signall. rhythmic signals being produced when waves arrive one after another. Inductance in the relay. bell windings and the spirally wound leads of the coherer eliminated the disturbing effect on the fïlings ol possible sparks arising from breaking the circuit.

While testing the instrument, Popov found that when a vertical wire 2.5 m long was connected at A or B. it responded in the open air to oscillations produced by a large Hertz vibrator with its spark gap in oil and provided with 40 cm square sheets, $60-70 \mathrm{~m}$ apart. Popov believed that the instrument was suitable for wireless communication; as he wrote: "With further improvements in my apparatus, it can be applied to signalling at a distance using fast electrical oscillations as soon as a source of such vibrations is found possessing sufficient energy ${ }^{\circ 5}$
Popov noticed that his instrument respondcd. cven at large distances, to clectromagnetic disturbances in the atmosphere. This was best observed if one of the electrodes of the coherer was connected to a lightning rod or just a vertical wire and the other electrode to a conductor taken to earth. Atmospheric disturbances were not only signalled by the bell but also recorded by an electromagnetic marker of the Richard Bros system connected in paratlel with the belt. This enabled Popov to use his instrument for both metcorology and lecture demonstrations.
He reported all this in 1895 to the Russian Physico-Chemical Society at St Petersburg ${ }^{\text {b }}$
and then described his instrument in detail in his article entitled "An Instrument for the Detection and Registration of Electrical Oscillations ${ }^{\bullet 5} \cdot 7$. Figure 2 shows the general view of an aetual Popov instrument, adapted for meteorological observation.

Popov and Marconi

In Popov's experiments, we see many of the features needed for communication. There is a radiator - in the form of Hertz's vibrator fed from an induction coil and functioning as a transmitting aerial: the coherer-type indicator featured: aerial and earthing: signal amplification using a battery and a relay: an attomatic tapper actuated by the received wave to prepare the coherer for the next one; signal indication by a bell and/or an electromagnetic recorder; and protection of the coherer against interference from sparks due to the cireuitbreaker.
Taken as a whole. Popov's experiments constitute a fairly rough embodiment of signalling by means of electromagnetic waves. He did not take out a patent for his invention.

Popov's work soon came to be associated with that of Guglielmo Marconi (1874-1937) which was being made publie in the press.

In the autumn of 1896, a short newspaper report from England described Marconi`s work on signalling at a distance, but did not disclose details of the equipment.

Presuming that Marconi was working along the same lines as himself, Popov returned to his experiments, encouraged by the understanding by the Department of Navy of the paramount importance of signalling without wires for its operations. In March 1897, he gave a public lecture in Kronstadt "On the feasibility of wireless telegraphy" in the presence of the leaders of the Russian Navy, demonstrating his instruments in conjunction with the Morse telegraph.

For excitation, he used a I lertz vibrator with 30 cm -diameter balls. Later, in April, Popov demonstrated experiments in the Kronstadt harbour. Thanks to an improvement in his coherer (fine steel beads instead of iron fillings) and to the use of a more sensitive relay, he managed a range of about one kilometre.
June 1897 saw the publication by Sir William Henry Preece (1834-1913) of the details of Mareoni's instruments. Popov could see that Marconi’s receiver was essentially identical with his and pointed to this in The Electrician. At the same time, he noted that: "Marconi was the first to have the courage to take his stand on a practical ground and reached large distances in his experiments... ${ }^{10}$. At a later date, Popov said "Whether my instrument had been known to Marconi or not, which seems to be more probable, it was, in any event. my combination of a relay, tube and electromagnetic tapper that served as the basis for his first patent for a new combination of already known devices. It is beyond all question that the first practical results in telegraphy over considerable distances have been reached by Marconi before others ${ }^{\prime 11}$.

Fig. 3. Popov's telephone-type receiver manufactured by Kronstadt Workshop about 1901. This is a modification of

Naval wireless

In the summer of 1897, Popov achieved a range of 5 km between two ships, using a vertical receiving wire 16 m long. The same ycar. Eugène Ducretet (1844-1915), a Parisian engineer and factory owner, initiated correspondence with Popov to discuss the design of equipment and. as a result, Dueretet started the manufacture of wircless stations of the PopovDucretel system ${ }^{12}$. Using this equapment, the first radio transmission from the Eiffel Tower took place in 1898. and in 1899 Popov carried out successful tests on the Black Sea Navy's warships. Later in 1899, Popov patented a telephone-type radio receiver for the reception of Morse telegraphic signals using a coherer requiring no coneussion (Fig. 3) ${ }^{1 \frac{3}{2}}$.

Early in 1900. Russia`s liest practical radio communication system was built and put into operation under Popov`s leadership. With a range of 47 hm . it served reliably for three months during the rescue of the ironclad Apraksin whizh had run onto rocks in the Gulf of Finland and been holed. Transmissions between the islands of Kuutsalo and Hogland in the Gulf ised Ducretet's transmitters and Popov's lavoratory-made telephone-type receivers. Acrial masts at both ends of the line were 48 m high, thus ensuring line-of-sight transmission ${ }^{1 / 4}$.
In 1900. Popov started the training of wireless specialists for the Russian Navy, and in the same year. in Kronstadt, he organised Russia:s first production of wireless cquipment and was put in charge of installing wireless stations on Russian warships.
From 1883 to 1901. Popov stayed at the Officers 'lorpedo School at Kronstadt where. at different times. he taught mathematics.
physics, electricity, dynamos and electric motors and wireless telegraphy. But in 1901 he was invited to occupy the Chair of Physics at the Emperor Alexander III Electrotechnical Institue of Si Petersburg.

Popov and the democratic movement

His career in the Electrotechnical Institute coincialed with the growth of a democratie movement in Russia, which also involved his studerits. The govermment had to grant higher educational institutions the atuonomy to elect their Director and in September 1905 , Professor Popov became the first elected Director of the Electrotechnical Institute.
As the student movement grew, the government imposed repressive measures such as a ban on public meetings on the premises of educational institutions.

In response, Popor signed the following statement of the Council of his Institute: "In the ofinion of the faculty of the lnstitute, the freedom of assembly constitutes a vital need and an inalienable right of the whole population. cspecially in the hard times we are going through. Therefore, the Council recognises that not only is it not in a position. but also it has no moral right, to prevent the arranging of public assemblies on the premises of the Institute by any means whatsoever, including the closing of the same. Any forced intrusion by authorities into the life of the Institute cannot give appeasement, rather it will only worsen the situation. Appeasement of educational institutions can only be attained by way of major political reforms capable of satisfying the public opinion of the whole country... ${ }^{15}$.
As a result. Popov was forced to carry out his duties as the Director of the Institute
amidst persistent anxiety experiencing serious trouble with the municipal bodies.

He was unable 10 endure the ordeals of those hard times and died suddenly of a brain haemorrhage on the last day 1905 (by the Julian calendar used in Russia until early in 1918 . i.e.. on the 13 th January $19(06$), at the age of 46 .

Popov the physicist

So why did Popov lag behind Marconi during their carly wircless experiments?

It seems that, in the mind of Popor the physicist. the range of interaction of a source of waves (the transmitter) with an indicator of such waves (the receiver) was associated too closely with the laws of optics. For this reason. he could think of no other way of increasing range than by increasing the power of the wave generator.
Marconi was lucky to hit on the use of a transmitting acrial and an carth conductor connected to the generator. then tuning the receiving aerial to the transmitting aerial - a radical advance. There remained simpler problems 10 solve, such as the use of a telegraphic hey 10 obtain a complete combination of devices for wireless telegraphy.
Confirming this view is a memor by SM Aisenstein (1884-1962), a distinguished Russian radio engineer and businessman. Recollecting Popovis lecture given in December 1901 in Moseow al a Congress of Electrical Engineers. Aisenstein sadi: ${ }^{\prime}$ Nfer the lecture many members of the Congress asked questions. One of them ashed Professor Popor what he thought about the latest news in the daily press that Marconi hat succeeded in sending a message across the Atlantic. Professor Popov replied with a smile, saying that he had just explained to the audience that wireless communication uses electromagnetic waves which. as has been proved theoretical-
ly and experimentally, have the same propagation properties as light, and therefore such communication as across the Atlantic he found impossible to believe.

It would be necessary to erect masts or lowers on both sides of the Atlantic, of such immense height that the top of one would be visible from the top of the other! He added also that as the letter "S" was only composed of three dots. he thought that it could be regarded as some stray atmospheric, and it would be very wise therefore to await the result of further experiments before drawing any conclusions from the very brief notice in the daily press ${ }^{6}$.
Of course, at the dawn of wireless, no one knew about the propagation of radio waves at different ranges - and sometimes, those who were less fettered by knowledge tried anyway and were successful.

Translated from the Russian by $L \mathbf{N}$ Kryzhanovsky.

References

1. Kronstadt is a port and fortress on the Isle of Kotin in the Gulf ol Finland. 29 km west of St Petershurg.
2. The above-mentioned and some other of Popors instruments of this kind are in the keeping of the Popor Central Museum of Communtations in St Petersburg. See Kh.A. Iolic. "AS Popov", Instruments", Artefach of Science and Technology. 198t (Nauka, Moscow. 1986). рр. 1.39-164
3. OD Khvolson, "The Hertz Experiments and their Significance". Elckurichestoo, 1890, No 5. p. ()
4. OJ Lodge. "The Work of Herta". The Electrician, 1894, Vol.33, pp.153, 186, 204 5. AS Popov, "An Instrument for the Detection and Registration of Electrical Oscillations" Journal of the Russian Plysico- Chemical Socicts. 1896. No 1, Physicat Part. pp.1-14.
5. "Protocol of Sitting 151 (201) of the Physies Division of the Society, 25th April 1895°, Iommal of the Russian Physico-Chemical Society. 1895. No 8. Physical Part. p.259.
6. AS Popov. "An Insirument for the Detection and Registration of Electrical Oscillations: in the Atmosphere". Elektrichestvo. 1896. Nos 13-14. pp.177-180.
x WH Preece, "Signalling through Space without Wires". The Electricidu. 1897, June 11, pp.216218.

9 AS Popolf (Popov). "An Application of the Coherer: To the Editor". The Electrician. 1897. December 10, p. 235.
10 AS Popov, "To the Editor". Nowove Vremua (a St Petersburg newspaper). 1897, June 22, p. 3. 11. AS Popov. The Paper "Wireless Telegraphy" presented at a Joint Conference of the 6ih Diviston of the Russian Society of Technology and the Ist All-Russian Congress of Electrical Engineering held on 29 December 1899. PhesicoMathemattical Anmual. 190(). No 1, pp. 100)-121. 12. E Ducretet. "Sur la telegraphic hertzienne sans. fil avec le radio-conducteur de M. Branly et les dispositifs de MM. A. Popoff et E.Ducretet". Séances de la Soniété fransuise de Physique. Sćance du 21 Janvier 1898. pp.51-61. 13. AS Popov, "(A Telephone Receiver of Telegrams sent by Means of a Source of Electromagnetic Waves by the Morse System Russian Patent No. 6060 issued 30) November 1901 . applied It July 1899 .
14. Verified by calculation at the suggestion of LN Kryzhanovsky to illustrate the nemoir (ref 16) of SM Aisenstein.
15. Minute-book of the Council of the Emperor Alexander III Electrotechnical Institute of St Petersburg. Protocol No 21 of 15 th October 1905. In the keeping of the State Historical Archives. St Putershurg Region. F990-D2704, sheets 36-37. 16. AJ Young, "Obituary" (of SM Aisenstein), The Marconi Review: 1962, 4th Quarter, pp.243 249.
17. Alexander Stepanovich Popov in his Contemporaries Characterisations and Reminiscences (USSR Academy of Sciences Press, Moncow and Leningrad, 1958). pp.86, 90. 191.

PROFESSIONAL SERVICE OFFERS AUGUST AND SEPTEMBER

AVAILABLE FREE WITH ELECTRONICS WORLD, AUGUST ISSUE.

The remarkable HA-5020 current feedback amplifier from Harris Semiconductor is a video designer's dream. It features $800 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 100 MHz unity gain bandwidth, an input impedance of $20 \mathrm{M} \Omega$ and an output current delivery of 35 mA .

This offer applies to the UK and Scandinavia only, first 1000 requests.

AVAILABLE FREE WITH ELECTRONICS WORLD, SEPTEMBER ISSUE.

Abstract

Look up the rave review for Easytrax 2 PCB layout software in October 1991. Martin Cummings wrote: "The look and feel of this package is that of a well tried and tested professional piece of software". You can obtain your shareware full working copy, as reviewed, free of charge on a 5.25 in HD disk with this issue. Subsequent registration costs just $£ 15$ (normally $£ 25$) if made within 90 days of receipt.

Boar Maker

Finally... an upgradeable PCB CAD system to suit any budget

BoardMaker1 - Entry level

PCB and schematic dratting

Easy and intultive to

- Ground plane fill
- Copper highlight and cleararce checking
BoarDMaker2 - Advanced level
- All the features of BoardMalert plus
- Full netlist support - OrCad. Schema, Tango, CadStar
- Full Design Rule Chacking - mechanical \& electrical
- Top down modificaticn from the schematic
Corponent renumber with back annotation
Report generator - Database ASCII, BOM
NEW - Thermal power plane suppoil with full DRC

BoardRouter - Gridless autorouter

- Simallaneous muiti-layer rouing
SMD and analogue suppor
Output drivers - Included as standard
- Printers - 9 \& 24 pn Dot narrix, HPLaseriel and PostScript
- Perplotters - HP, Roland, Huston \& Graphtec
- NC Drili plus annotzted drilit drawings to HPGL, Gerter and DXF (BM2)

KESTREL ELECTRONIC COMPONENTS LTD

is All items guaranteed to manufacturers' spec.
is Many other items available.
'Exclusive of V.A.T. and post and package

| | $1+$ | $100+$ | | $1+$ | $100+$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EPROMS | | | STATIC RAMS | | |
| 2764A-250 | 1.48 | 1.20 | 62256LP-100 | 3.00 | 2.15 |
| 27C64-150 | 1.65 | 1.25 | 62256LP-70 | 4.20 | 2.45 |
| 27C128-150 | 1.85 | 1.55 | 6264LP-100 | 1.50 | 1.35 |
| 27128A-200 | 1.45 | 1.25 | 6116LP-100 | 0.75 | 0.65 |
| 27256-250 | 1.45 | 1.30 | 628128LP-80 | 12.60 | 11.50 |
| 27C256-200 | 1.85 | 1.45 | | | |
| 27C512-150 | 2.50 | 1.90 | DRAM | | |
| 27C010-150 | 3.10 | 2.35 | 4164-10 | 1.00 | 0.81 |
| | | | 41256-100 | 1.05 | 0.85 |
| MODULES/SIMMS | | | 511000-100 | 3.40 | 2.85 |
| $256 \mathrm{~K} \times 9$-70ns | 11.60 | 8.30 | 44256-80 | 3.50 | 2.95 |
| $1 \mathrm{M} \times 9-70$ | | | | | |
| (3 chip) | 27.60 | 23.60 | | | |

$74 \mathrm{LS}, 74 \mathrm{HC}, 74 \mathrm{HCT}$ Series available Phone for full price list

All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road,

Purley, Surrey CR8 4HA

Tel: 081-668 7522. Fax: 081-6684190.

HALCYON GLECTRONICS

Test equipment, video monitors, amateur radio gear, printers, power supplies, communications, disk drives, multimeters, oscilloscopes, scientific instruments, connectors, component bridges, frequency counters, signal generators, computers.

LIST AVALLAELE, BUT 1 1DO's OF UNLISTED BARGAINS FOR CALLERS
QUALITY ELECTRONIC EQUIPMENT BOUGHT. ALL PRICES EXC. OF P\&P AND VAT
423, KINGSTON ROAD, WIMELEDON CHASE, LONDON SW2O $85 R$ SHOP HOUSS 9-5.10 MON-SAT. TEL 081542.6383.

CUTTING ANTENNA TESTING DOWN TO SIZE

Aceurate and repeatable antema measurements are notoriously difficult to make. Of course, if facilities of a professional test range or anechoic chamber are available, testing is much casier and the comparative case of measurement enables enough variability in parameters 10 reveal one or two surprises. For example, the gain of a yagi, its F:B ratio, best pattern and best math all happen at different frequencies: and the front-1ohack ratio becomes negative above the director resomant frequency. But the cost of such facilities is high and their use must necessarily be limited to special projects.
Can useful measurements be made with more modest equipment operating in a less controlled environment?
The physical size of many antennas places a limit on test-range size reduction. Some of the most common types, referred 10 as "wire antennas" are structures made from linear elements, as opposed to apertures and lenses: monopoles, dipoles, yagis and the various lypes of long wires are examples of these. In many cases, the final design is large, even though the gains are modest, because the wavelengths are in the order of metres or tens of metres. It is these mid-frequency antennas that we will look at here.
Mahing the test range "bench sized" means it is not possible to operate at the final design frequency unless it happens to be above about 1Gliz. This means that the antenna must be modelled at a higher frequency, the dimensions optimised and then sealed to the reguired frequency.

Reducing the size of antenna test ranges can cuts costs and save time. Mike Christieson shows how results can compare well with full-sized set-ups.

A convenient modelling frequency is about 1.5 GHz (wavelength 20 cm) hecause the elements are a handy size and the frequency is not so high that effects peculiar to the microwave bands become significant.

Feed point impedance

In essence the procedure is all very simple. An antenna under test transmits to or receives from a fixed antenna some distance away. Rotating the test antenna in two planes and plotting the signal strength at various frequencies produces a radiation pattern.
But even if an antenna has exactly the recuired radiating characteristics, it is very difficult to get power to or from it if the feed point impedance is unknown. So it is important to have a measure of the feed point impedance and it may be convenient to change some element dimensions to give a different impedance or improve constancy over a band of frequencies. Measurement of a complex impedance is difficult at any frequency without specialised equipment and at higher frequencies becomes a real limitation.
Simplest method of overcoming the problem is 10 connect a feeder, usually a coaxial cable, of known impedance and use a directional coupler to measure the return loss or VSWR. Of course, the result is not an absolute measurement of impedance. But it does give an idea of how near it is to the feeder impedance at a fraction of the cost and complexity of a network analyser.

Using these techniques, radiation pattems in both the E and H planes; forward gain over a

Interpreting polar diagrams

Polar diagrams are simply a way of representing the radiation pattern of an antenna. But choice of scales and resolutions can make the same antenna appear to have different characteristics.
Normally, the angular scale runs from 0 to 360°, although for antennas with a very narrow beam-width, like a dish, only a few degrees either side of zero are shown.

Angular resolution must be small enough that narrow lobes are not missed, and therefore depends on the antenna directivity.

The real opportunity for misleading plots is in the choice of radial scale representing power. If a linear scale is used, anything more than about 10 dB below the main lobe disappears and the main lobe appears very sharp. Conversely, if a scale of, say, 70 dB is used, most antennas appear to have significant side lobes. A scale of about 30 dB or 40 dB gives the best compromise between being able to see the side lobes but not those at an insignificant amplitude.

Another interesting fact is that, if an antenna has a significant back lobe of say -10 dB , completely removing it would increase the forward gain by less than 1 dB . Of course, if the application required good front-to-back ratio for interference suppression, this would be well worthwhile. As with all graphical results, the scales should be read carefully to see what is actually being shown before conclusions are drawn.

Fig. 1a. Basics of a practical modelling range. A computer controls all parameters and saves hours of work.

Fig. 1b. Full size testing can lead to big problems of time and cost.
band of frequencies; front-to-back ratio over a band of frequencies: and feed point return loss can all be measured.

Modelling range concepts.

An antenna modelling range consists of a lowpower transmitter - with selectable frequency and with an output reasonably constant over the frequency band of interest: a recciver that can track the transmitter frequency and provide an output representing signal strength: a means of rotating the test antenna and measuring its angular position; and a system for collecting and displaying the results.

A suitable band is $1.2-1.8 \mathrm{GHz}$ (for the reasons already described) and this defines many of the system characteristics, the main one being range length, ic the distance between the two antennas.

It is well documented that, to give a good approximation to a plane wavefont, the minimum distance L must be $=2 D^{2} \lambda$ where D is the apparent antenna aperture diameter.

The concept of aperture is obvious for some antennas. For example, D is the physical diameter of a dish or horn. But for a yagi it is not so clear and not directly related to any physical dimension, though it zan be calculated from the gain of an antenna.
For any antenna, $G=4 \pi A / \lambda^{2}$, where A is the apparent aperture area and G is the isotropic gain (expressed as a numerical ratio).

Since $A=\pi D^{2} / 4$, and substituting in the original equation:

$$
L=\frac{2 G \lambda}{\pi^{2}}
$$

This mears that the higher the gain of the
antenna under test, the longer the range needs to ber. In this investigation a maximum antenna gain of 13 dB is likely. giving a range length of 2.5 m at 1.5 GHz , quite suitable fer bench-top operation.

Reflections

Reflection is the major problem that limits most radiation parameter measurements, both on modet and real antennas. Most objecis reflect radio signals - particularly those with high conductivity such as metal - meaning that the energy at the receiving antenna is the sum of the direct signal plus that reflected by the environment. If reflections are strong, they can completely change the apparent radiation pattern.

To reduce these effects, the range must be as fir away from objects, particularly metal, as

Fig. 2. Set of comparative results from the investigation, showing (black) a run with the model inside, (red) with the model outside and (blue) the 135 MH / antenna. Plot at (a) shows the polar diagram at 1480 MHz and 133 MH , at (b) the diagram for 1400 MHz and 126 MHz and at (c) that for 1600 MHz and 144 MHz . That at (c) indicates the negative front-to-back ratio caused by increasing the frequency beyond director resonance, turning them into reflectors - the effect seen at (d), which is power from the forward lobe for the three case; (e) shows power from the rear lobe and (f) is the return
loss and VSWR. The plots show the remarkable coincidence between model and full-size antennas and the narrow band over which $F: B$ ratio is maximum.
possible: range length must he short, if necessary slighly below the ideal minimum value; and the fixed aniema must have directivity so that only the antennat under test is within its beam-widith. Reflections from behind the antema under test should be limited, since these are also within the fixed antenna's beam-width.
Using a fixed antenna with directivity has one disadvanlage: many directional antennas perform well only over a small frequency band and care must be taken that the results are only the characteristics of the antenna under lest and not the sum of boit antemas. One solution is to use a wide-band directional antenna such as a log-periodic dipole array.

Practical modelling range

The range, outlined in Fig. 1a was designed to demonstrate and measure antenna characteristics as an aid to teaching in Universities and Technical Colleges. It consists of two freestanding towers about 1 m high, made from plaslic but with metal bases comaining the system electronics. For various reasons, the antenna under test is the transmitter and the fixed antenna the receiver.
A desk-top computer controls the system, records the results and displays them as polar plots and frequency responses. The signal comes from in RF generator in the transmitter tower bise which has a synthesizer with a step size of 125 kHz . Output power is 1 mW , fed via an internal fixed attenuator so that the source impedance is near to 50Ω.

The receiver in the other tower base is a sin-gle-conversion superhet with a synhesised local oscillator, hut no RF selectivity, as there is no image response problem. Fixed altenuation gives an input impedance near to 50Ω. Logarithmic amplifiers in the 38 MH 7 IF give a voltage oulpul from the receiver proportional to the log of the input power, which is then digitised. Systen dynamic range is 70 dB so that both transmitter and receiver must be fully screened to prevent signal leak-through.
In the receiving antenna, an arraty of four five-element loy-periodics have their outputs

a) At design frequency

b) Below design frequency

c) Above design frequency

d) Forward lobe gain

e) Rear lobe gain

connected to a microstrip combiner, and the array may be turned for either horizontal or vertical polarisation.
A computer controls, or has access to, transmitter frequency, receiver frequency, motor drive, antenna position and receiver output. Softuare automates the generation of polar and frequency plots over various scales and also allows data to be superimposed or recorded on disk. To plot return loss as a function of frequency, a microstrip directional coupler can be placed in the feeder to the test antenna. In this configuration, the receiver is connected directly to the coupler directional ports.

Case study test results

To evaluate accuracy of the modelling concept, a six-element yagi was designed and modelled on the system. A scaled version was then made, centred on 135 MHz , and its performance measured in a field using a signal generator, a spectrum analyser and a large amount of patience.

Data was taken by hand from the 135 MHz yagi and converted to the modelling system file format so that real and model data could be superimposed (from the modelling system in a typical laboratory environment with a clear area round the system; and a second set from the modelling system in the open air at least 5 m from any other object and 2 m off the ground). Range length in both cases was 1.2 m , but one measurement was taken in the open air at a range of over 3 m to investigate the effect of the rather short range length. There was little difference.

A fairly simple method-of-moments computes program assisted with initial yagi design and, for simplicity, all directors were the same length. The driven element was a half-wave folded dipole with a half-wave 4 : 1 impedance reduction balun. It appeared to operate best slightly low in frequency but, rather than trim the elements, the full sized version was built to the original dimensions. Computer predictions gave a forward gain of 10.7 dBi and a feed impedance of 37Ω.

Measurements

A seven-acre field with the test antenna mounted on a 4 m mast served as the range with the receiving antenna, a wide-band dipole, mounted at a similar height, at a distance of 28 m (Fig. 1b). A signal generator provided the input and a spectrum analyser was connected to the receiving dipole via a wide-band amplifier located near to the dipole. Angular position came from a calibrated disc attached to the test antenna mast.

Due to the difficulty of fixing the antenna to a metal mast, only horizontal (E plane) patterns were plotted. Angular position intervals were 5°, the signal amplitude resolution 0.5 dB and frequency plots were made at 1 MHz steps. Equipment for this type of measurement is expensive and the measurements take about five hours. Had it been necessary to trim any elements and make more readings, the timescale could have run into days rather than hours.

f) Return loss and VSWR

RF ENGINEERNG

Fig. 3 Three-dimensional plot of model antenna at 1480 MHz , showing E-plane and $t i$-plane.

Fig. 4. Three different models at 1480 MHz , the black being a dipole, the red a three-element yagi and the blue a six-element yagi. Gains shown are 0, 6.5dB and 10 dB , against $0,6 \mathrm{~dB}$ and 9dB for the full-sized version.

Yet at similar set of measurements using the modelling range took less than 15 minutes
Correlation belween plos taken from model and full-size antennas is striking - there have been accusations of a "fix". But the results are genuine and show that the concept works providing that all dimensions, including element and boom diameters as well as lengths and spacing. are scaled

Results show that antemas call be optimised on the modelling range and be expected to give the same performance when scaled to a lower frequency.
There are several limitations however: at low frequencies. it becomes dilficula to scale thin-wire elements correctly: it is almost impossible to model lumped reactive elements such as coils. traps and capaciors; although a perfect ground plane can be simulated with a metal plate. a non-perfect ground is very difficult to make; and antennas such as co-lin-
cars, rhombies and long wires are still large and could present problems in a resiricted environment.

Interpretation of results

It is interesting to sce what the results say about the behaviour of yagi antennas. Close inspection of the plots reveals something about the compromises in yagi design; notice how the power in the lorward beam (Fig. 2d) varies with frequency - a slow rise 10 maximum gain followed by a sharp drop. caused by the directors parssing through resonance and becoming reflectors. This is emphusised by the polar diagram at 1600 MHz (Fig. 2c) with a negative from-io-back ratio.
At 1480 MHz , where the polar diagram has the cleanest pattem. the forward gain is not at its maximum - this occurs below the oplimum pattern frequency, but here the front-to-back ratio is becoming poor. Increasing size of the
back lobe characterises the antenna near to 1400 MHz .
A plor of power from the rear of the antenna shows that the maximum front-to-back ratio occurs over a narrow frequency band. But front-to-back ratio does not tell the whole story as there may be a small back lobe with nulls either side.
The band over which the return loss is reasonable is also quite narrow. but more importantly, maximum gain, maximum front-toback ratio, optimum pattern and best match are all at different frequencies!

To add a further complication. the E and H ploss are different, partly because the antenna has no physical thickness in the H plane.
One conclusion from the investigation is that, with care, antenna modelling can give useful results without high cost or complexity. The other is that yagi design is not simply "tume for maximum forward gain."

ANCHOR SURPLUS LTD THE CATTLE MARKET NOTTINGHAM NG2 3GY
 TEL: (0602) 864902 \& 864041 FAX: (0602) 864667

TECHTEST 250 VHF/UHF SIGNAL GENERATORS
LOW BAND, HIGH BAND, UHF, FM/AM. EPROM CONTROLLED, SYNTHESISED, 200CH. 12-VOLT MAINS. Phone for info. £99

PHILIPS PM3217 50MHz OSCILLOSCOPES

 CALIBRATION VERIFIED $£ 325$HP 1476 100MHz OSCILLOSCOPES
DUAL TRACE AND TIMEBASE
CALIBRATION VERIFIED $£ 599$
MARCONI TF2015 SIG GEN WITH 2171 SYNCHRONISER $10 \mathrm{MHz}-510 \mathrm{MHz}$ AM FM $£ 325$
MARCONI TF2016 SIG GEN WITH 2173 SYNCHRONISER
$10 \mathrm{kHz}-120 \mathrm{MHz}$ AM FM $£ 275$
MARCONI TF2008 SIG GENS $10 \mathrm{kHz}-520 \mathrm{MHz}$ AM FM CALIBRATION VERIFIED £325
RACAL 9082 DIGITAL SIG GENS AM FM
$1.5 \mathrm{MHz}-520 \mathrm{MHz}$ CALIBRATION VERIFIED $£ 499$
HP VHF 8660A SYNTHESISED SIG GEN FRAME WITH 86632A AM FM MODULATOR \& 86601A RF SECTION $0.01 \mathrm{MHz}-110 \mathrm{MHz} £ 575$
BOONTON 102D SYNTHESISED DIGITAL SIG GENS AM FM $0.45 \mathrm{MHz}-520 \mathrm{MHz} £ 599$
FARNELL LA520 WIDE BAND LINEAR AMPLIFIERS
$1.5 \mathrm{MHz}-520 \mathrm{MHz} £ 95$

RF TEST KIT

MICROWAVE INCL. ALL ADAPTORS, ATTENUATORS, NOISE SOURCE. IN METAL CASE WITH LEADS AND RF POWER HEADS. Phone for details. £145

> SAYROSA 252 AUTOMATIC MODUL ATION METERS
> l.5MHz-2GHz AM FM (SAME AS FARNELL AMM) CALIBRATION VERIFIED £125

HP 4951A PROTOCOL ANALYSER WITH HP18179A INTERFACE MINT CONDX £525

Service/User Manuals . . . 1000's in stock . . .
Send 30p SAE marked MANUALS CATALOG

Staying in control in an all-pass filter RC oscillator

Combine the purity of an all pass filter oscillator with the fast settling of a digital function generator. Impossible? No, says Dan Stiurca.

Fig. 1 Basic LC resonator demonstrating the ability to restore initial conditions.

Automatic level control harmonic oscillators incorporate an ALC loop consisting of an active element with linear controlled gain. The DC input drive must have a very small ripple to avoid excessive distortion of the oulput waveform. Standard reetification and filtration of the output waveform used to generate this DC drive results in an amplitude setting time of several hundred cycles for a 0.1% distortion'. Moreover, in many cases, the ALC loop will become unstable.
To overcome the contradictory requirements of fast amplitude transients and small distortion, proposals include use of amplitude sampling ${ }^{1.3}$, multiphase oscillators ${ }^{4}$ and multiphase rectifiers ${ }^{5}$. But a new solution, where the amplitude is set by correction of the initial conditions at one of the oscillator's capaciters (proposed by Pahor et al ${ }^{5}$ then improved by Vannai of al 7) has been applied to Wienhridge oscillators ${ }^{8}$ and tried on twin-T bridge oscillators".
The circuit proposed here also controls amplitude by restoring initial conditions bul for an all-pass filter RC oscillator. Since both the frequency selecting components aro grounded, this circuit is more practical than Wien or win-T networks. The conceptual circuit of Fig. 1 can be used to realise the procedure of establishing and restoring the initial conditions. Assuming, for instance, an ideal resonator (infinite R) and supposing that, it the initial moment. switel S, is momentarily closed and switch S_{2} is momentarily opened. undamped oseillations with the angular frequency
$\omega_{0},=\frac{1}{L C}$
and the amplitude
$V_{C M}=\sqrt{V_{\text {RLF }}^{2}+\left(\frac{I_{\text {REF }}}{\omega_{01} C}\right)^{2}}$
will occur.
But any real resonator has losses (finite R)
and a special control circuit, as in Fig. I. is necessary to sustain the oseillations. Each period, this circuit. activated by the current I_{R}. interferes with the resonator for a short time. Closing S_{1} and opening S_{2} causes the control circuit to restore the initial conditions $V_{\text {REF }}$ and $I_{\text {REF }}$. So, the circuit will have practically undamped sustained oscillations with the amplitude determined by equation ${ }^{2}$. If it measures the current in the inductor, the current source $I_{\text {REF }}$ can be omitted and, at the moment of restoration, the capacitor voltage must be set in accordance with the results of measurement and the amplitude requirements. The full circuit of the fast amplitude control with allpass filter RC oscillator is shown in Fig. 2. It includes an RC resonator, a control circuit and some buffer amplifiers (op amps A_{4} to A_{8}). The resonator circuit is based on two first order all-pass filters (op amps A_{1} and A_{2}) followed by an inverting slage with A_{3}. The transfer function of the filters is:

$$
\begin{equation*}
F(p)=\frac{-p+\omega_{0}}{p+\omega_{0}} \tag{3}
\end{equation*}
$$

where
$\omega_{0}=\frac{1}{R_{01} C_{0}}$
The magnitude of this is always 1 and the phase angle is given by
$\phi=-2 \arctan \left(\frac{\omega}{\omega_{0}}\right)$
Hence, the phase shift equals 90° at the angular frequency ω_{0}; consequently this will be the oscillating frequency of the resonator. It may be obscrved that, at the frequency $\omega_{0 \text {, }}$, the phase angle between $V_{p, 1}$ and $V_{p z}$ is 90°.
The fass amplitude control circuit includes a polarity comparator $C M_{1}$. a window comparator with CM_{2} and CM_{3}, an analogue switch S_{n} and a source of reference voltage $Y_{\text {REA }}$ bulfered by A_{5}. All the outputs of the comparators are open collccoor type. The resistors R_{l}, R_{2} and P_{1} set the smalt voltages $V \partial_{l}$
and loz and thus the time duration of control circuit activation.

The waveforms illustrating the circuit operation are presented in Fig 3. When V_{p}, is between $\mid \partial_{1}$ and $I \partial_{2}$ and $V_{p_{2}}$ reaches its positive peaks. the control circuit interferes with the resonator for a short interval, t_{n}. Momentarily, it choses the switch $S w$ and the voltage $V_{p 2}^{\prime}$ equals $V_{\text {REF }}$; thus the oscillator starts every period with the same initial conditions. sustaining a practically constant amplitude:

$$
\begin{equation*}
V_{i m}=I_{k 1 /} \sqrt{2} \tag{6}
\end{equation*}
$$

At the slep change in l'REF, the dead time will be at most one cycle, until the condition

$$
V_{p 1}=0
$$

(7)
is achieved. This dead time is not essential in many applications, especially if the amplitude transient is absent.

The errors induced at the noment of control circuit activation by the op amp's offiel voltages can be minimized by making some de adjustments. Fïrst, without connecting frequency selecting capacitors, trim P_{2} to nullify the de voltage at the output of A_{l}. This ensures the zero offset for $L_{p_{2}}$, and so the zeros of V_{p} ? coincide with the positive peaks of $V_{p /}$. Then connect the capacitors and trim P_{l} to centre the comparator's output voltage pulses around the moment when I_{p}, reaches its positive peaks.

The practical values for components and the lype of ICs used in the oscillator are indicated

Fig. 3 Steady-state waveforms in the fast amplitude control circuit, illustrating circuit operation.

Fig. 2 All-pass filter RC oscillator with fast amplitude control. The resonator circuif consists of two first order all-pass (op amp) filters followed by an inverting stage with another amplifier. The circuit also contains a control circuit and some buffer amplifiers.
in Fig, 2. The resistors are 1% metal film: the frequency selecting capacitors are $1 / 6$ matched, polystyrene type and the supply voltage is $\pm 15 \mathrm{~V}$, apart from (1$) 4($ hon $(\pm 7.5 \mathrm{~V})$.
Measured chatacteristica for the breadhoard morlel. in the frequency range $5 \mathrm{H} /-5 \mathrm{kH} /$. for $V_{0}>1 V_{\text {min }}$ are:
level flatness: better than 0. 8 :
harmonic distortion: 0.13% as A_{4} output: 0.24% at A_{3} output.

At lower amplitudes, the harmonic distortion increases due to the increase in the relative width of the control pulse. The upper liequency limit is determined by the minimum

Fig. 4 Modulation of the reference voltage and a) the oscillator output 1 voltage; bi the $V_{p 2}$ voltage
pract cable width of the control pulse.
The response at step changes in 1 Ret is given in Fig.4. V RLF is modulated between 1 and $7 V$ and the time scale is $1 \mathrm{~ms} /$ div. The response delay is not more than one period, and no amplitude transients appear.

References

I. Vannerson E.. Smith K.J.. A Low Diburtion Osciltator with Fatst Amplitude Stabidization. Int.3.Electronics. 1975. Vol.39. No.t. +65-472. 2. Meyer-Ebrecht D.. Sehnelle Amplitudenregelung harmonischer O,zillatorem. Philip Res.rep.Suppl., 1974. Vo. $6, ~ 1-85$. 3. Tong G.L... Audio Modulation Section for an RI Synal Generator. Hewlet-Pachard Journal. Dec.. 1985, 31-35.
4. Ryaler A.D. Multiphase Lom Diturtion Oceil?ator. Wirelens World, Jan. 1981. 59-60). 5. Filanovshy I.M.. Fast Amplitude Stabilization of an RC Oscillator. Wireles World, July 198? $52-5=$
6. Puhor J.. Fettich J.. 「avee M.. A Hamonic Oci.lator with Low Harmonic Distortion and Stable Amplitude. Int.J.Esectronics. 1974. Vol. 37, No.6. 765-768
7. Vannai N.. Pap I... RC Omillator with Extremely Low Harmonic Distortions. Periodica Polytechnica. (Hungary) Vol.2t. Vo.1-2. 1980. $59-65$.
X. Filanovshy I.M., Oneillatorn with Amplitude Con rot by Restoration of Capacitor Intital Conditions. IEE Proceedings. Vol.1.34. Pt.G. No.I. Feb.1987. 31-37.
9. Filanovshy I.M.. Osciltators with Amplitude Control in a Twin-T Bridge RC-Oscillator. Proc 18th Midwest Symposium on Circuils and Sybems. Louinville, KY, IISA. Aug. 1985. 129432

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Tekiron probes

pres.
tench
tested to $£ 500$ as new with manual - probe kit in wooden carrying box.
HP DC Current source type 6177C-£200
HP Frequency comb generator type 8406A- ${ }^{4} 400$
HP Sampling Voltmeter (Broadband) type $3406 \mathrm{~A}-£ 200$.
HP Vector Voltmeter type $8405 \mathrm{~A}-£ 400$ to $£ 600$
HP Vector Voltmeter type 8405A - $£ 400$ to $£ 600$
HP Synthesiser/signal generator type 8672A-2 to 18GHzS old or new colour £4000. HP Osclllographic recorder type 7404A-4 track - $£ 350$.
HP Plotter tyoe $9872 \mathrm{~B}-4$ pen- $£ 300$ HP Plotter type 9872B-4 pen- $£ 300$
HP Sweep Oscillators type $8690 \mathrm{~A} \&$ B + plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$ P.O.R. HP Signal Generators type $612-614-618-620-628$ - frequency from $450 \mathrm{Mc} / \mathrm{s}$ to 21 GHz HP Network Analyser type $3407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{KC} / \mathrm{s}-110 \mathrm{MC} / \mathrm{s}-£ 500-£ 1000$.

HP Pulse Modulator type
HP Modulator
HP Modulator type 8403A - £100-E200
HP Pin Modulators for above-many difterent frequencies - $£ 150$
HP Counter type $5342 \mathrm{~A}-18 \mathrm{GHz}$ - LED readout - $£ 1500$
HP Snal Generatar ype 8640B-Op1001+ $003-5-512$ MC/S AM/FM - $£ 1200$.
HP Spectrum Display type 3720A $£ 200-H P$ Correalator type 3721A $£ 150$
HP $37555+3756 \mathrm{~A}-90 \mathrm{Mc} / \mathrm{s}$ Switch - $£ 500$.

HP Frequency Counter type $5340 \mathrm{~A}-18 \mathrm{GHz} \mathrm{£} 1000$ - rear output $£ 880$
HP 8410 - A - Network Analyser 10 Masto 12 ZHz or 18 GHz - Plus most other units and
displays used in this set-up -8411A-8412-8413-8414-8418-8740-8741-8742-8743
$-8746-8650$ From 1000
HP Sigal Ceneror tor
HP Signal Generator type $8660 \mathrm{C}-1$-2600MC's AMFM- $£ 3000.1300 \mathrm{Mc}$'s $£ 2000$
HP Signal Generator type 86
HP 3730 M Mainframe $£ 200$.
HP 8699B Sweep PI -0.1-4GHz £750-HP8690B Mainframe £250
HP Digital Voltmeter type 3456A - $£ 900$.
Racal/Dana digital multimeter type 5001 - $£ 250$.
Raca//Dana Interface type 9932 - $£ 150$
Raca/Dana GPibinterface type $£ 154$ - $£ \div 00$
Raca/Dana 9301A-9303 R RMilivoltmeter - $1.5-2 \mathrm{GHz}$ - $£ 350-£ 750$
Racal/Dana Counters 9915M - 9916-9917-9921- £150 to £450 Fitted FX standards
RacalDana Modulation Meterype $-009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}-£ 250$
Racal - SG Brown Comprehensive Headset Tester (with artificial head) Z1A2001 - 1450
EIN 10 L. RF Power Amp - $250 \mathrm{KHz}-110 \mathrm{MC} / \mathrm{s}-50 \mathrm{Dbs}-£ 250$
Marconi Bridge type TF2700- $£ 150$
Marconi/Saunders Signal Sources type-6058B-6070A-6055B-6059A-6057B-6056P.O.R. $400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz

Marconi TF1245 Circuit magnifcation meter +1246 \& 1247 Oscillators- $£ 100-$ - 300
Marconl microwave 6600A sweep osc... mainframe with $6650 \mathrm{Pl}-18-26.5 \mathrm{GHz}$ or $665 \mathrm{PI} \mathrm{Pl}-265-$
40 GHz - $£ 1000$ or Pl only $£ 600$
Marconi distortion meter type TF2331- 150, TF2331A - $£ 200$
Thurlby convertor $19-\mathrm{GP}-$ IEEE $-488-£ 150$
Phillips logic multimeter
Microwave Systems MOS $/ 3600$ Microwave trequency stabitizer - 1 to $18 \mathrm{GHzs} \& 18$ to 40 GHzs $؟ 1000$
Bradley Oscilloscope calibrator type 156 - $£ 150$
Tektronix Plug-ins 7A13-7A14-7A:8-7A24-7A26-7A11-7M11-7S11-7D10-7S12
S1-S2-S6-S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508-DO501 WR501-DM501A - FG501A - TG501 - PG502 - DC505A - FG504 - P.O.R
Alltech Stoddart receiver type 17/27A-01-32Mc/s- $£ 2500$
Alltech Stoddar receiver type $37 / 57-30-1000 \mathrm{Mc} / \mathrm{s}-\mathrm{\$ 2500}$
Aittech Stoddart receiver type NM65T-1 to $10 \mathrm{GHz}-£ 1500$
Gould $J 3$ B Test oscillator + manual - $£ 200$
image Intensifiers - ex MOD - tripod fiting for long range night viewing - as new - £1500-£2000 Don 10 Telephone Cable - $1 / 2$ mile canvas containers or wooden drum - new - Mk $2-3$ or 4 , Infra-red Binoculars in fibre-glass carrying case-tested - $£ 100$. Infra-red AFV sights $£ 100$ ACL Field intensity meter receiver type SR-209-6. Plugs-ins from $5 \mathrm{Mc} / \mathrm{s}$ to 4 GHz -P.O.R. Systron Donner Counter Model $6057-18 \mathrm{GHz}$ - $£ 800$
Tektronlx 491 spectrum analyser $-1.5 \mathrm{GHz}-40 \mathrm{GHz}$-as new - $£ 1200$ or $10 \mathrm{Mc} / \mathrm{s} 40 \mathrm{GHz}$.
Tektronix Mainframes $-7603-7623 \mathrm{~A}-7633-7704 \mathrm{~A}-7844-7904-\mathrm{M} / \mathrm{T}$
Tektronix Mainframes - 7603-7623A-7633-7704A-7844-7904-TM501-TM503-
TM506-7904-7834-7104
TM506-7904-7834-7104
Knott Polysk
Alltech 136 Precision test RX +13505 head $2-4 \mathrm{GHz}-\mathrm{E} 350$.
SE Lab Elght Four - FM 4 Channel recorder - $£ 200$
Alltech 757 Spectrum Analyser -00122 Hz - Digit
Alfech 757 Spectrum Analyser - 00122 GHz - Digital Storage + Readout $-£ 5000$
Dranetz 606 Power line disturbance analyser $-£ 250$ Oranetz 606 Power line disturbance analyser - $£ 250$.
Preciston Aneroid barometers- 900 - 050 Mb - mechanical digit readout with electronic indicator

- battery powered. Housed in polished wood carrying box-- battery powered. Housed in polished wood carrying box - tested - $£ 100$ - $£ 200-$ - $250,1,2$ or 3 B \& K Sound Level Meter type 2206 small - lightweight - precision - $1 / 2^{\prime \prime}$ microphone - in foam
protected filed brief type carrying case with windshield \& battery + books + pistol grip handle tested - $£ 170$. Carr: $£ 8-$ - $\& \% 2206$ Meter + Mike + Book - less carying case etc $-£ 145$. Carr E8. DISCOUNT ON QUANTITY
HP 141 T Spectrum Analy sers. All new colours supplied with instruction manuals
HP $141 T-8552 \mathrm{~B}-8556 \mathrm{~A}-20 \mathrm{~Hz}$ to 300 kHz , £2000.
HP 141T-8552B-85538-1 kHz to $110 \mathrm{Mc} / \mathrm{s}$. £1750
HP 141T-8552B-8554B-100kHz to $1250 \mathrm{Mc} / \mathrm{s}$, §2250
HP 141T-8552B-8555A-10 MC/s to 18 GHz . £3000.
HP 141T-old colour maintrame $+8552 \mathrm{~A} ; 8553 \mathrm{~B}-1 \mathrm{kHz}$ to $110 \mathrm{M} / \mathrm{s}^{2}$ Instruction manuals - § 1250
or 8552 B £ 1500 .
HP 3580A LF-spectrum analyser - 5 KHz to 50 kHz -LED readout - digital storage - $£ 1600$ with instruction manual - internal rechargeable battery
Spectrascope 11 SD335 (S.A.) realtime LF analyser - 20 Hz to 50 kHz - LED readout with manual - £500 tested

Tektronix 7020 plug-in 2-channel programmable digitizer - $70 \mathrm{Mc} / \mathrm{s}$ - for 7000 mainframes -
£500-manual - £50.
Datron 1065 Auto Cal digital multimeter with instruction manual - $£ 500$
Racal MA 259 FX standard Output $100 \mathrm{kc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}-5 \mathrm{MC} / \mathrm{s}$ - internal NiCad battery - $£ 150$ Tektronix TR503 tracking generator-10 Mc/s to $1800 \mathrm{Mc} / \mathrm{s}+$ manual - $£ 1500$ Aerial array on metal plate $9^{\prime \prime} \times 9^{\prime \prime}$ containing 4 aerials plus Narda detector $-.100-11 \mathrm{GHz}$. Using N type and SMA plugs \& sockets - ex eqpi- -100
EIP 451 microwave pulse cou nter 18 GHz - $\mathbf{£ 1 5 0 0}$.
Marconi RF Power Amplifier TF2175-1.5MCs to $520 \mathrm{MC} / \mathrm{s}$ with book - $£ 100$
HP 8614A Signal Generator 800 M/Is to 2.4 GHz -old colour - $£ 300$. New colour - $£ 600$.
HP 8614A Signal Generator 1.8 GHz to 4.5 GHz - old colour- $£ 200$. New colour - $£ 400$ HP 8620A or 8620C Sweep Generators - $£ 400$ or $£ 900$.
Marconi 6155 A Signal Source -1102 GHz -LED readout - $£ 600$.
Schlumberger 2741 Programmable Microwave Counter- 10 Hz to $7.1 \mathrm{GHz}-£ 750$.
 HP 37203A HP-1B Extender- $£ 150$.

HP 5363 B Time Interval Probes - $£ 150$
HP B900B Peak Power Calibrator - $£ 100$
HP 59313A AD Convertor - 150
HP 593064 Relay Actuator - $£ 150$.
HP 2225CR Thinkjet Printer - $£ 100$
TEK 178 Linear IC Test Fixture - $£ 150$
TEK 576 Callbration Fixture -067-0597-99- $£ 250$.
HP 4437 A 600 Ohm Attenuator - $£ 100$.
HP 8006A Word Generator- $£ 150$
HP 1645A Data Error Analyser - $£ 150$
Texscan Rotary Attenuators - BNC/SMA 0-10-60-100DBS - $£ 50-£ 150$.
HP B09C Slotted Line Carriages - various frequencies to 18 GHZ - $£ 100$ to $£ 300$

HP 3200 BHF Oscillator - $10 \mathrm{MC} / \mathrm{S}-500 \mathrm{MC} / \mathrm{S}-£ 200$
 £150.
Krohn-Hite Model 3202 R filter - low pass, high pass.
Krohn-Hite 4100 oscillator
Krohn-Hite 4141 R oscillator

Krohn-Hite 6880 programmable distortion ANZ-IEEE-488
Krohn-Hite
3750
Krohn-Hite 3750 filter, 10 w pass, high pass $-.02 \mathrm{~Hz}-20 \mathrm{kHz}$
Parametron D150 variable active titter, low pass - high pass - $1.5 \mathrm{~Hz}-10 \mathrm{kHz}$. $£ 100$.
S.E. Lab SM215 Mk 11 transfer standard voltmeter - 1000 volts.

Fluke 4210 A programmable voltage source
Alltech Stoddart P7 programmer - $£ 200$
Fluke 8500A digital multimeter
H.P. 3490A multimeter
H.P. 69418 multiprogrammer extender $£ 100$

Fluke Y2000 RTD selector + Fluke 1120 A IEEE-488-translator + Fluke 2180 RTD digital
thermometer +9 probes $£ 350$ all three iterns
H.P. 6181 DC current source $£ 150$
H.P. $59501 \mathrm{~A}-\mathrm{HP}$-1B isolated D/A/power supply programmer
H.P. 3438 A digitial multimeter.
H.P. 62077 DC current source
H.P. 62078 DC power supply.
H.P. $741 \mathrm{BAC/DC}$ differential voltmeter standard (old colour) $£ 100$.
H.P. 6209 DCD power unit.

Fluke 887 AB AC + DC differential voitmete
Fluke 431 C high voltage OC supply.
H. P. 1104 A triger count DC supply
T. .

Tekrionix M2 g ed day calibration fixture. 067-0712-00
Tektronix precision DC divider calibration fixture 067-0503-00
Tektronix overdrive recovery calibration fixture. 067-0608-00
Avo VCM163 valve tester + book $£ 300$
Marconi TF2163S attenuator - 1 GHz $£ 200$
Marconite 8000 programmable scanner.
PPM 8000 programmable scanner
H.P. 9133 disk drive $+7907 \mathrm{~A}+912$
H.P. 9133 disk drive $+7907 \mathrm{~A}+9121$ twin disk.
Fluke 730 ADC transter standard.

B\&
B\& 2113 audio frequency spectrometer - $£ 150$
B\&K 4815 calibrator head
B\&K 4812 catibrator head
B\&K 4142 microphone calibrator - $£ 100$
B\&K 1022 band FX OSCillator - $£ 100$
B\&K 1612 band pass filter set - $£ 150$
B\&K 2107 frequency analyser - $£ 150$
B\&K 1013 BFO- $£ 100$
B\&K 1014 BFO- $£ 150$
Brk 4712 FX response tracer - $£ 250$
B\&K 2603 microphone amp- $£ 150$.
B\&K 2604 microphone amp - $£ 200$.
B8K 2019 analyser - $£ 350$
Farnell power unit H60/50- $£ 400$ tested
H.P. FX doubler 938A, also $940 \mathrm{~A}-£ 300$

Racal/Dana 9300 RMS voltmeter - $£ 250$
A.B. noise figure meter $1178-£ 400$.

Ailtech $360 \mathrm{D}: 1+3601+3602 \mathrm{FX}$ synthesizer $1 \mathrm{MCl}-2000 \mathrm{MC} / \mathrm{s}$. $£ 500$
H.P. sweeper plug-ins -86240A-2-8.4GHz-86260A-12.4-18GHz-86260AH03-10-
$15 \mathrm{GHz}-86290 \mathrm{~B}-2-186 \mathrm{GHz} 86245 \mathrm{~A} 59-124 \mathrm{GHz}$
$15 \mathrm{GHz}-86290 \mathrm{~B}-2-18.6 \mathrm{GHz}$. $86245 \mathrm{~A} 59-12.4 \mathrm{GHz}$
Telequipment CT71 curve tracer- $£ 200$
H.P. 461 A amplifier - $1 \mathrm{kc}-150 \mathrm{Mc} / \mathrm{s}$ - old colour - $£ 100$
H.P. 8750A storage normalizer.

Tektronix oscilloscopes type $2215 \mathrm{~A}-60 \mathrm{Mc} / \mathrm{s}-\mathrm{c} / \mathrm{w}$ book \& probe - $£ 400$
Tektronix monltor type 604 - $£ 100$
Wiltron 560 network scaler +2 heads + book $-£ 1000$
Marconi T-2330 or TF2330A wave anatysers - $£ 100-£ 150$
HP5006A Signature Analyser $£ 250+$ book
HP 10783A numeric display
HP 239A oscillator - $£ 250$.
Aillech 7009 not - $£ 250$
Aillech 7009 hot-cold standard noise generator
HP 3763A error detector £250.
Cushman CE-15 spectrum analyser - LED Readout - $1000 \mathrm{MC} /$ / $\mathrm{\Sigma} 650$
Tektronix 5L4N Spectrum analyser - $0-100 \mathrm{k} /$ / $£ 500$
HP 1742A 100MC S OScIlloscope. $£ 250$
Tektronix 7104 - 7A29-7A24-7B15-7B10- £2K
Racal/Dana signal generator $9082-1.5-520 \mathrm{Mc} / \mathrm{s}-£ 800$
Raca/Dana signal generator $9082 \mathrm{H}-15-520 \mathrm{Mc} / \mathrm{s}-5900$
Claude Lyons Compuline - line condition monitor - in case -LMP1 +LCM1 $£ 500$
HP 1815B T. D. R. sampler +1817 A head - 1104 A trigger +1106 B TD mount $£ 500$
Texscan AL-51A spectrum analyser $-4-1000 \mathrm{MC} / \mathrm{s}-£ 750$
Efratom Alomic FX standard FRT - FRK - 1-1-5-10MC/s. £3K
Muirhead fax receivers K649 - TR4 - solid state - speed - 60-90-120-240-auto- IC 288-576 - auto. £250 with book.

HP8350A sweep oscilloscope mainframe + HP 1 1869A RF P1 adaptor - $£ 2.5 \mathrm{~K}$.
Alltech - precision automatic noise figure indicator type $75-£ 250$.
Adret FX synthesizer 2230A - 1Mc/s. $£ 250$
Tektronix-7S 12-7S14-7T11-7S11-S1-S52-S53
Rotek $610 \mathrm{AC} / \mathrm{DC}$ calibrator. $£ 2 \mathrm{~K}$ + book
Tektronix $7 L 12$ analyser-1 MC/s-1.8GHz $£ 1500$
Clark Scam Heavy Duty 40^{\prime} Telescopic Pneumatic Masts - retracted $7^{\prime} 8^{\prime \prime}$ - head load $4010{ }^{\prime \prime}$
Wih or without supporing legs $\&$ erection kit - in bag + handoook - $£ 200-\mathrm{E} 500$.
Clark Scam Heavy Duty 70' Telescopic Pneumatic Masts - retracted $13^{\prime} 5$ - head load 90105 with or without legs + erection kit + handbook $-£ 500-£ 800$.

With the price of PCs falling to the levels of commodity components, it becomes very attractive to harness their processing power to control applications.
outlines the design process behind a computer-driven
8 -bit audio sinewave synthesiser.

The mose importan practical features of a gen-cral-purpose AF sine generator are spedy. accurate selting and constant amplatude. A computer add-on using digital synthesis from a standard fom oflers a low-cost solution. and the hey board can be set up a required to enter or recall freguencios directly, or vary currem frequency in a chosen ratio. A rotary-encoder. Which can be operated withoul loohing, sa useful supplemenary control.
Low hamonic com tent is of some importance when texting frepuen-y-depentent circuits. While eight bit quantisation ,ets a limit on sampling aceuracy. computation shows that some sels of hatmpling points are much better than others: optim.om sampling allow THID on be hep generally below (0.05t/e by a simple allias-filuer.

Digital interface

The sose IBM-compratible computer is loaded with
 card accessed by a si ple program wrillen in Basic. The present prograr uses only a few keys: the number heys enter targe treguency while the actual ontput frequency alwa? $\stackrel{\text { within }}{ } 0.05 \%$ of target is comimuensly dicplay ed.
The + and - hevis increment or decrement the smalles available frequency step while $1: 10 \mathrm{Ft}$ jump to programmed prese freguencies listed on sereen. Fy captures cament frequency to any one of FI-F. 155 to FK change current frequency by an octave or a semitone. up or down. Flo. the ampli-tude-correction moxe enters corrections and/or make diah liles.
The card was mondified to use a 10 MH , coumer clock, by adding a Vero-mounted erystal pachage. and replacing the sins 3 (socketed) triple counter by all sest-2 The present seheme use only one counter section, and wo I/O ports, here ports B and
(of the "number two 8255 device on the card: byte $B O-B 7$, and bits $C(0-C 3$ are set as outpuls, and bits C-C -7 are sel as inpuls.

The synthesiser core

The cireuit of Fig. 1 accepts an inpul octave Fin of 5 tolok $\mathrm{H} \%$ corresponding to a 10 MHz divisor range of $10(0)-1999$. allowing setting to $\pm 0.05 \%$ or better. The input-stage PLL multiplies Fn by 128, to 640)1280hlf, from which all working octaves are derived.

The site waveform is read from a 2048 byte rom, say a 27/6; the bytes to be stored. decimal integers 0)-255, can be calculated in Basic by the expression
$S(N)=128+1 \mathrm{NT}(127.5 * \operatorname{SIN}(2 * \mathrm{PI} * \mathrm{~N} / 2048))$. $\operatorname{loop} \mathrm{N}=0$ TO 2047
(1)

The centre level 127.5 represents a DC component to be balanced out. The samples are symmerrical, and despite quantisation errors, even harmonies sum 10 e ero over the eycle.
The memory addressing logic, basically a switchable binary divider, uses three small programmable logic devices. PlD $/$ is a programmed as 7 -bil synchronous counter for the PLL. combined with a

SPECIFICATION

Frequency range 11 octaves, 9.77 Hz to 20 kH = with setting to $\pm 0.05 \%$, using 1000 frequencies per octave.
Settirg time 20 ms .
Amplitude controlled to $\pm 0.05 \%(\pm 0.005 \mathrm{~dB})$ THD inder 0.05% to 10 kHz (under 0.1% to 20 kH)
Output 1 V rms.
B0-B5
dec
selector switch; the control inputs $B(0)-B 5$ switch the separate output $K L$ amongst divider stages, selecting 4 to 128 times the Fn frequency in octave steps.
PLD2 and PLD.3 together form an ll-bit synchronous counter, addressing the memory $P L D 3$ is a straight 6 -bit divider using a carry. $C Y$, from PLD2. Another output inverts $K L$ as an update for the 373 latch so that memory data lines have half a KL period, a minimum of $0.39 \mu \mathrm{~s}$, to settle before conversion. The eighth PLD 3 output, not shown, is used to buffer the signal Fn into the PLL.

Address-jumping and offsets

With only 1280 kHz available, the maximum frequency using 2048 samples per cycle is 625 Hz . The five highest output octaves there-- fore use address- jumping, to select only 1024 . $.512,256.128$ or 64 of the 2048 samples per cycle. PLD2 provides this function, controlled by $B O-B 2$.
For example 20 kHz is got as 1280/64, with addresses A5-A 10 only being read. The 64 samples must differ in address by 32 , but need not start at address 0; a start offset can be set on the uncycled lines $A O-A 4$, and the choice can significantly modify the spectrum of spurious (odd) harmonics which arise from quantisation. High order harmonics are suppressed by the filter, and output THD is minimised by choosing an offset which minimises low harmonics, especially the 3 rd , 5 th and 7 th. For the filter described later, the best and worst choices for 64 samples per cycle give 0.05% and 0.20% THD (ignoring D-to-A errors). Similar variations oceur for other values of reduced sampling per cycle.

Table 1. Frequency ratios, offsets, etc, for the 11 octaves. Output distortion figures are for the lowest frequency of each octave. The last three columns show pre-filter harmonic levels in $d B$ below the fundamental. Calculations allow for measured D-TO-A errors.

Table 1 shows optimum offsets: a choice of sign is available since it is mathematically immaterial whether the memory is cycled backwards or forwards, and this allows PLD2 to incorporate an optimum offset selection (as well as the jumping logic), with the aid of a fixed -3 offset in the rom, obtained by using $2 * \mathrm{PI} *(\mathrm{~N}-3)$ in the bracket of equation 1 .

Specifying the converter

The 0.5 LSB errors of an 8-hit package D-to-A would cause the harmonic spectrum to depart unacceptably from that calculated: such packages also generate significant ceven harmonics, because the weights of low bits atre slightly affected by switching high bits and the symmetry is lost. This situation can be remedied by using a much higher specification D-10-A converter and throwing away the lower order bits. Alternatively, a hand crafted version of an 8 -bit converter can be made using combinations of precision high stability resistors.

Fig 1. Digital circuits. Squarewave Fn and control-byte B0-B7 are from computer I/O card.

Fig 2. Filter. Op-amps are TL071-type, supply ± 5 V. R-values are switched by B0-B2 via 4051 devices.

10-A appears as a 5 V p-p source of internal resistance $4 \mathrm{k} \Omega$, and $D C$ content +2.5 V . The gain is adjusted to give IV RMS at the filter output; the balance and gain-setting resistors can conveniently include 10 -turn pre-sets, roughly 2% of the total required.

Amplitude correction

The fundamental content of the quantised signal varies by about three parts in 10,000 according to number of samples and offset. Further variations arise from ripple in the andlogue filter response over the working octave.
As shown in Fig. 1, bits B5-B7 from the computer I/O card switch resistors for vernier gain-control in 0.1% steps with an accuracy of $\pm 0.05 \%$. A 4053 device, V ee pin to -5 V , provides the switching elements. This correction

PROGRAMMING THE PLDS

The Philips 18 V 8 PLD is a cmos sum-of-products device having 10 inputs, and eight output macrocells, which can be individually programmed as combinational or registered using Dtype flip-flops. When any output is made a register, for example as a counter stage, input pin 1 is pre-empted as the clock, and input pin 11 is pre-empted as an active low output enable, here tied low on all PLD, along with unused inputs.
Each output has eight programmable AND terms: unprogrammed ANDs have no effect. Free inputs, and all outputs, are available in both senses as AND components. The clock input is not available, and for the $K L$ inversion in PLD3, the $K L$ signal is paralleled to a free input. For a registered output, the OR combination of the ANDs used is its data-bit, $D B$, determining the state it will take up on the next rising clockedge.
Counter $D B$ expressions basically use components fed back from outputs. For example if the outputs are $Q 0, Q 1$, etc, a counter can be set up by programming: $D B O=/ Q O D B 1=/ Q 1^{*} Q O+$ $Q 1^{*} / Q 0 D B 2=/ Q 2^{*} Q 1^{*} Q 0+$ $Q 2^{*} / Q 1+Q 2^{*} / Q 0$ and so on; higher outputs use more terms. The carry output CY of PLD2 is $S 4^{*} S 3^{*} S 2^{*} S 1^{*} S 0$, so that $/ C Y$ serves for $/ / S 4+/ S 3+/ S 2+$ $/ S 1+/ S 0$), and PLD3 can reach the 11 th bit SA without running out of AND terms.
If a term 10 (actually a combination of terms in $B O-B 2$), is ORed: $D B O=$ $1 Q 0+10$ then when 10 is high, $Q O$ is held high, and $D B 1$ becomes $/ Q 1$ merely; that is Q1 switches on each rising clock-edge as $Q O$ formerly did; Q2, Q3 etc also switch twice as often, and each alternate memory address is jumped, i.e. only 1024 samples are read per output-cycle. PLD2 includes a full set of J-terms, derived from $B O-B 2$; in the highest octave $S 0-S 4$ are all unswitched, and $C Y$ rests high.
Simply leaving PLD2 unswitched outputs high would result in offsets $1,3,7,15,31$ for the reduced samplesets. However the 18 V 8 has enough room for the uncycled states of SO and $S 1$ to be set high or low. For example the 31 offset can be varied between 28 and 31. With a fixed offset of -3 in the rom, the choices are sufficient to program into PLD2 an optimum selection of offsets, as shown in Table 1. The PLD programming equations are available on the disc from the author. See note, bottom right, this page..
can also cater for small DVM frequency errors, so that the DVM. at the output of a circuit under test, reads directly (160.01 dB) although the absolute signal level varies slightly. The software reads (or makes) a disk file of gain corrections; if more than one DVM is in use, each may have its own. Semitone intervals are convenient. 132 settings in all.

Filter

Although the alias components, even in octave 7. are remote and small, the low level spurious harmonics us to half KL sum lypically to 0.28% and for low THD, the filter must be to some extent programmable. It must also have small passband ripple. A switched-capacitor filter would add signilicant distortion, and inevitably some clock-breakthrough.
Figure. 2 shows one solution, an analogue state variable two-integrator loop. The fourth op-amp allows the use of inverting inputs only thus minimising distortion. The $10 \mathrm{~h} \Omega$ resistors are preferably selected to be equal, within say 0.1%. An cutput buffer and/or attenuator could he added.
The corner frequency $F_{\text {, }}$ is programmable from 50 kH z downwads in octaves, by switching resistors R. via two $705 /$ devices (l 'ep pins to -5 V), at the virtual earth side under control from hits $B()_{-} B_{2}$ at the $1 / O$ board. The resistance values may be the same as those used for the digital to analogue converter.
The capacitors C will then be about 380 pF , say 3.30 pF prolystyrene padded up, ideally to be equal but R_{q}, the trimmer pot in the filter feedhach loop will compensate for small errors.
With F, at 50 kHz , octave $7,10-20 \mathrm{kHz}$, is located at 0.2 to $0.4 F_{c}$, and the switched resistors with their binary relationships allow the same relationship doun to octave 0, Table 1. The filter amplitude-ripple can then be kept within $\pm 0.1 \% / \%$ or so by setting Q, via R_{q}, at about 0.74. As Table 1 shows, the lowest four octaves use the same filter setting, and so distortion rises (though filter-ripple is less): calculated THD figures are for the lowest frequency of each octave. summed over odd hammonics up to about six times F_{1}. At the top of an octave they are roughly halved.

PLL multiplier

The circuit for this section (Fig. 3) uses information derived from Philips application note $93.986499(4) 11$ which analyses loop stability. The shunt resistor R_{p} at pin 13, $P C 2$ output, discharges its parasitic capacitance. $R_{/}$, about 47 k for the $H C+(046 \mathrm{~A}$, is chosen to set the $640-1280 \mathrm{kll} /$ octave within the allowed pin 9 range of 1.1103 .9 V .
Pll, jitter shows as excessive or unstable output hamonies, especially the 3 rd. For low distortion, the starting-point was the rather large $R_{3,} C_{3}$ product, found experimentally, needed to filter $P C 2$ pulses adequately from the VCO, pin 9.

It turned out that an unconventionally small C_{2} / C_{3} ratio could then be used without instability. limiting the setting-time penalty: the lead resistor $R_{\text {f }}$ is not critical.

Fig 3. PLL components and fast settling circuit.
Measured DC injection from the resistor
ladders (b) settles the loop more quickly

Fig 4. Encoder circuit for rotary knob frequency control.

The settling time for a near-octave jump is about 150 ms . It can be reduced to about 20 ms for any jump by step $D C$ injection into the loop with an amplitude and sense which minimises C_{2} voltage change. The additional circuitry shown to the right of the PLL loop detail in Fig. 3 replaces R_{4}. This is a 4 -bit resistor D-to-A driven by $8255 \mathrm{I} / \mathrm{O}$ card outputs $\mathbb{C} O-C 3$ gives () -3.8 V via 4.3 k , divided hy R_{+a} to the actual pin 9 range, say 1.6 V .

The CO-C3 nibble described in Basic is INT(30)())(DIV-14.5) where DIV is the $10 \mathrm{MH} L$ divisor, $1000-1999$.

Rotary encoder

A hnob-operated rotary encoder, such as the Boums ENAlJ optical encoder, like an analogue potentiometer. can be used without looking and can also have a special law set by the software. For example, slow turning can give minimum frequency-steps and rapid turning targe steps. The EN device gives 128 counts per revolution.

Figure. 4 shows cmos hardware to tramslate the ENAIII signals, two bit Gray code, to pos-itive-going directional pulses on $1 / O$ card input lines $C 4$ and $C 5$. clockwise and anti-clock wise unused inputs $C 6, C 7$ are tied low. The 4013 pin 13 output is clocked low by encoder B high, but set again by the subsequent A high and vice versa for the pin 1 output. For consistent reading the 4013 output pulses need to be shortened to a fixed length: the $4 \mathrm{n} 7 / 100 \mathrm{k} \Omega$ combination give about 0.45 ms at the Schmidt outputs.

A 5.25 in IBM format disk with the Basic sourcecode, and some supplementary information can be supplied by the author. The fee is a $£ 10$ cheque, pavable to ()xam, sent to A.D. Rvder, Woodside (rott, ladybridge Lane, Bolton BLI 5ED.

BASIC COMPUTER INTERFACE

Listing l is an extract from the Basic source code. Bits C4 and C5 are here read by the $\operatorname{INP}(438)$ statement (which ignores the CO -C3 nibble); the IF clause saves the reading. Without the input loop 330-340, each main loop M-cycle takes about 0.39 ms ; the 11 N -cycles add about 0.21 ms , total 0.60 ms . To be seen, but only seen once, an input pulse should be longer than 0.39 but shorter than 0.60 , e.g. 0.45 as above. The timings are for Qbasic-compiled code on an 8086 PC , and will vary for other systems. The INKEY\$ in line 380 allows keyboard input for preset frequencies, etc.
The 10 M -cycles set 6 ms normal response-time. A spin of the encoder will generate pulses, RTN $<>0$, over a series of 6 ms intervals, and lines 630-640 then delay action until rotation has stopped ($\mathrm{RTN}=()$); the accumulated count RAC , which can range from ± 1 to ± 70 or more, is passed to a subroutine.

Once read in, RAC can be used as required. For positive RAC, the present subroutine changes the current frequency in the ratio $\operatorname{EXP}\left(\mathrm{RAC}^{\wedge} \mathrm{IND} / 150\right)$). For a single step. $\mathrm{RAC}=\mathrm{I}$, the 1500 denominator gives the smallest available change: for $\mathrm{RAC}>1$ the index variable, IND, sets the response to rapid rotation; for example, if IND is 1.5, an RAC of +70 gives a ratio of 1.4. half an octave. For negative RAC the ratio is inverted, as $\operatorname{EXP}\left(-A B S(R A C)^{\wedge} I N D / I 500\right)$.

[^3]
SIGNALOGGER - PC Data logging interface for your Pc

لـ 8 channels
 $\sqsupset \mathrm{V}, \mathrm{mA}$ or thermistor inputs
 J 2 alarm outputs

Use with any PC, including notebooks
\lrcorner No power or batteries required

- Comprehensive software included featuring:
- X-Y, Y-T, bargraph plots
- Amplitude density histograms
- Timed, triggered and exception sampling modes

THE COMPLETE PACKAGE

The SIGNALOGGER - PC is supplied complete with all cables, software and hardware to begin work immediately. You can acquire data, store to disk, display results and produce statistical reports and graphical printouts on any PC.
Price $\mathbf{£ 3} \mathbf{8 5}$ +VAT Complete
Systems complete with PCs to your specification can be supplied. Ring for details

Audio op amp with its head in the clouds?

Low distortion and high impedance make the OPA2604 audio op amp irresistible By Ian Hickman.

Any reasonably priced plastic dual dil op-amp is worthy of further investigation if. like the Burr Brown OPA2604. it boasts a THD +N (total harmonic distortion plus noise) of 0.0003% typical at $3.5 \mathrm{~V}_{\text {RMS }}$ output into a 1 kS) load at 1 kHz .
Low distortion is in part due to the device's special distortion rejection circuit. Fig. 1 though details on this in the data sheet are sparse.
Audio buffs will know that if $n \%$ of distortion has to be accepted. second order rather than third order is preferred. Of course, if an amplifier has $n \%$ of pure second order distortion, it can be coupled push-pull with another identical amplifier to achieve a combined overall distortion of much less - say $\mathrm{p} \%$.
The $\mathrm{p} \%$ will be all third order, but it should be so much lower than the $n \%$ of second that it will still be preferable. $O P A 2604$ is a single ended device, not push pull, so this distortionreducing scheme is not applicable. But where selection can be made from a batch of devices. a distortion of well under 0.0002%, and probably under 0.00015% can be achieved.
Perfornance verification lests (see box) suggest that the dual op-amp output at pin seven has less distortion than the output at pin one. But with a sample size of just two specimens. this can only be conjecture.

High impedance in the clouds

High input impedance of the OPA2604 $\left(10^{12} \Omega-8 \mathrm{pF}\right.$ differential and $10^{12} \Omega-10 \mathrm{pF}$ common mode) is another attractive feature.

Input bias current is 100 pA , which is not a lot. and the offset current is $\pm 4 \mathrm{pA}$ (all figures quoted are typical). So I speculated that perhaps the device could be used to measure the varying electrostatic potential induced in an elevated conductor, by vertical fields caused by clouds and other causes.
In practice. 10 m of wire strung around the purlins in a loft proved to have a capacitance to ground of about 100 pF . Induced voltages would appear in series with this, so that a $10 \mathrm{M} \Omega$ path to ground would give a low frequency cut off of $160 \mathrm{H} \angle$ - much too high to see the expected slow variations. Yet a DC path to ground is needed, for the input bias current.

To extend the LF cut-off downwards, circuit Fig. 2a was devised. The $20 \mathrm{M} \Omega$ resistor at the non inverting input pin three is bootstrapped via the $10 \mu \mathrm{~F}$ capacitor. This, with the other 20 MS resistor gives an LF cut-off of 0.0008 Hz .

Unfortunately, the circuit exhibits a huge response peak at a fraction of 1117 . Redrawing the circuit with the op-amp's input capacitance included (Fig. 2b) shows it to be a Salen and

Key second order lowpass circuit, the Q being $1 / 2 \mathrm{X}$. where X is the square root of the ratio $10 \mu \mathrm{Fe}(10 \mathrm{pF}$ plus circuit board strays).
Bootstrapping was therefore extended to DC, Fig. 3a, raising the effective resistance of the 2 i$) \mathrm{M} \Omega$ resistor at pin three to $20 \mathrm{G} \Omega$, giving an LF cut-off with a 100 pF antenna of 0.08 Hz .

Mains pick-up

Connecting the antenna revealed the next problem: op-amp output was a 50 Hz . waveform which would have exceeded $\pm 15 \mathrm{~V}$ but for ciipping at the rails. The wire in the loft was obviously running too near mains wiring.
I reduced the problem by substituting a similar length of wire slung out of the upstairs front window of my laboratory, the far end supported on a step ladder.
There were still several volts peak to peak of 50 Hz at the op-amp's output, but the level was reduced and the expected variations amplified by a factor of 10 (Fig. 3b). Lowpass SVF was ats in Fig. Ib, except that the 1 MS input resistor was changed to $100 \mathrm{k} \Omega, R Q$ raised to $220 \mathrm{k} \Omega$ and the capacitors changed to $1 \mu \mathrm{~F}$ each, giving a 1 Hz cut-off frequency. A further top cut cireuit preceded the $\times 10$ gain stage, leaving just 20 mV of residual 50 Hz ripple at the output.

Verifying performance

V
erifying performance of devices such as the OPA2604 is an interesting task as good measurement practice demands a stimulus ten times better than the device under test.
To verify that an oscillator's THD really is 0.00003% would require a distortion meter with inherent internal distortion of less than 0.000003% - well below noise.
But it is possible to test the OPA2604 using an ingenious circuit given in the device's data sheet. The circuit is arranged (Fig. la) so that while the gain to the signal (both the fundamental and any harmonic components present) is just unity, the 40 dB attenuation in the NFB path multiplies the device's internal distortion by a factor of 101. Measuring a distortion of 0.03% is certainly well within the capabilities of my THD meter, and all that is needed to be in business is to obtain a test signal with a THD well below this.
Two 10 Hz to 10 MHz video oscillators were available to me, with distortions $(1 \mathrm{kHz})$

of 0.08% and 0.05%. The first of these was used, as the short-term frequency stability (sideband phase noise) was better - an important consideration given the extreme narrowness of the THD meter's notch on the more sensitive ranges. The 0.08% distortion, nearly all third harmonic, was cleaned up using a high Q second order lowpass filter section based on the State variable filter, Fig. lb. With unity gain at 0 Hz , peak is 30.5 dB at 1 kHz , while at 3 kHz the gain is about -18 dB .

Resultant distortion at the filter's output should thus be 48.5 dB lower than 0.08%, or about 0.0003% if the distortion in the TL084 op-amp used to realise the SVF is zero. In fact, distortion measured on the 0.01% full scale deflection range of the THD meter was 0.0015% (with the 20 kHz bandwidth limiting filter selected) and possibly lower.

Limit of measurement is set by the relatively poor short term frequency stability of the video oscillator, based on an RC oscillator circuit, making it difficult to hold

Fig. I(a). Ingenious circuit used to test the OPA2604, and (b) the sine wave clean-up circuit.

A typical loos segment of the output is shown in Fig. 4. upper trace.
Some of the short term trace variations will be due to allasing of the $50 \mathrm{H} / \mathrm{d}$ dee to the low sampling rate. but large slow variations are clearly evident. The sudden increase in noise at the right hand side of the trace is unexplained.

Intruder alarm

During the 100 os taken to record the trace, the experimenter had to stand stoch still, as any
movements produced large deviations on the trace. For comparison, Fig. 4, lower trace. shows the output of the circuit under exactly the same conditions, except that the antenna had been disconnected. The arrangement would undoubtedly make an effective intruder alarm of the movement detector variety. For this purpose. a short antenna of about 0.5 m is much more eflective, since with a long wire out of the window. only the small part near the moving object is affected.

Fig. II(a). Using circuit Fig. 1a and the low distortion 1 kHz test signal from Fig. I(b) the output at pin one was set to 10 Vpk -pk (3.5V RMS). Residual distortion was measured as 0.035%, and its waveform is shown in (b).
the fundamental exactly in the notch.
Using the circuit of Fig. la and the low distortion 1 kHz test signal from Fig. Ib, the output at pin one of the first sample was set to 10 Vpk -pk (3.5 V RMS), Fig. II upper trace. Residual distortion was measured as 0.035%, and its waveform is shown in the lower trace. Clearly, distortion is nearly all second harmonic, but with a trace of third, and translates to a figure for the OPA2604 of 0.00035%, in good agreement with the claimed typical figure. The other op-amp in the dual, output at pin seven, gave an equivalent 0.00012%, while the corresponding sections in the second sample gave 0.0004% and 0.00027% respectively.
Interestingly, with these last three op-amp sections, the residual reduced to a pure sinewave, showing that the distortion was all second harmonic - as noted in the data sheet.

Fig. 3(a). Bootstrapping extended to $D C$, raising the effective resistance of the 20 MS resistor at pin three to 20GS2, giving an LF cut off with a 100 pF antenna of 0.08 Hz . (b) Following low pass filter and amplifier stages.

Fig. 4(a). Typical 100s segment of output and 4(b) with the antenna disconnected.

PROGRAMMING FLEXIBILITY FOR PROFESSIONALS

HARDWARE FEATURES
PC-BASED PROGRAMMERS UK DESIGN, MANUFACTURE AND SUPPORT NO MESSY INTERNAL CARD

- PLUGS DIRECTIY INTO PARAILEL PORT (LPTI-3) EASIIY TRANSPORTABLE BETWEEN MACHINES WORKS WITH XT, AT, 386, \& 486. EVEN LAPTOPSI INCREDIBLY FAST PROGRAMMING TIMES FLEXIBLE DESIGN MEANS NO ADAPTORS NEEDED FOR MOST DIP PACKAGES UPGRADES BY FLOPPY

SOFTWARE FEATURES

MENU DRIVEN
FLEXIBLE FILE LOADING (HEX, BINARY, JEDEC) READS, VERIFIES, BLANK CHECKS, BIT TESTS, OVER-PROGRAMMES AND AUTO-PROGRAMMES CAN MODIFY PARAMETERS OF EXISITING MEMORY DEVICES AND STORE IN USER DATABASE HANDLES SECURITY FEATURES OF ALL DEVICES AUTOMATIC PAL IO GAL CONVERSIONS FULL BUFFER EDITING CAPABILITIES TEST VECTOR SUPPORT

SPEEDMASTER 1000
IDW COST UNIVERSAL PROGRAMMER EPROMS, EEPROMS, FLASH EPROMS, NVRAMS, SERIAL EEPROMS, PAIS, GAIS, PEELS, EPLDS SJJPER FAST PROGRAMMING eg 27C256 ($32 \mathrm{k} \times 8$) IN 4.5 Seconds
JEDEC. TEST VECTOR SUPPORT FOR PAIS - includes pal development software - UP TO 40 PIN DIPS WITHOUT ADAPTOR £445

M/CROMASTER 1000
ALL FUNCTIONS OF SPEEDMASTER 1000 MICROCONTROLLERS FROM TI lincluding TMS370 SERIES, TMST7C82), INTEL, ZILOG MICROCHIP (PICS), MOTOROLA, PHILIPS AND OTHERS

£575

SPEEDMASTER 8000 8 WAY GANG/SET PROGRAMMER - MASTER SOCKET

- EPROMS, EEPROMS, FLASH EPROMS - UP TO 32 PIN

FC OR STAND ALONE MODE
SUPER FAST PROGRAMMING e g $8 \times 27 \subset 256$
$(32 K \times 8)$ IN 6 Seconds

MOP ELECTRONICS SYSTEM 200

 UNIVERSAL DEVICE PROGRAMMING SYSTEM```
- Fast and reliable programming
- Low cost
- Expandable system - buy only what you need
Virtually all programmable devices covered
- Easy to upgrade
- Manufacturer approved algorithms
- Efficient and attractive software interface
- Special batch mode for production
- Not a plug-in card
```

System 200 is one of the most versatile programming systems available. At the heart of the system is the award-winning Model 200A programmer. Designed to quickly connect to the serial or parallel port of any PC compatible, the Model 200A is controlled by PROMDRIVER, widely acclaimed as the best driver software available for any programmer.

- EPROMs, EEPROMs and FLASH memories up to 3Mbit and beyond
- Microcontrollers from most manufacturers including 8748 Family
- 8751 Family (including 87C751/2 and 87C552)
- Z8 Family
- PIC16C5X Family
- Emulators
- 8-pin Serial EEPROMs

PALs, GALs, EPLDs etc

- Bipolar PROMs

Write or phone today for Free Information Pack: Phone: (0666) 825146 Fax: (0666) 825141


MOP ELECTRONICS LTD PARK ROAD CENTRE, MALMESBURY,
WILTSHIRE SN16 0BX UK
European Distributors: Digitron, Norway Tel 071-17890
Synatron, Germany Tel 089/4602071; Elexind, Italy Tel 0292103554


CIRCIENO. 129 ON REPIY CARD

# Circuits, Systems \& Standards 

First published in the US magazine EDN and edited here by Ian Hickman.

## Square-wave oscillator spans DC to 20 MHz

## Digitally controlled clock source

This circuit makes a useful digitally controlled clock for switched capacitor filters. Its spectral purity (close-in phase noise) will not be exceptionally good, but for this application that is not too important, though in other applications it could be a disadvantage. IH

The digitally controlled oscillator of Fig. 1 is useful as a clock source for switched-capacitor filters, and it costs less than \$1 (OEM qty). During operation, the voltage at node $A$ oscillates between the hysteresis thresholds at the input of $/ C_{2 A}$. a Schmitt-trigger inverter. The D-to-A converter, $/ C_{l}$, sets the oscillation frequency by controlling the current into pin four ( $I_{0}$ ), which sets the charge rate for capacitor $C_{l}$.
To understand how the circuit oscillates. first assume that $C_{I}$ is discharged (node $A$ voltage is 5 V ). Note $B$ is at OV, so diode $D_{l}$ is reverse biased. The current into pin four of $I C_{l}$ determines the linear charge rate of $C_{l}$; this current ranges from $4 \mu \mathrm{~A}$ to 4 mA . depending on the D -toA converter"s input code $D$ and reference current $I_{\text {REF }}$. $C_{I}$ charges until node $A$ 's voltage ramps below the lower
switching threshold ( $l^{\prime} T I$ ) of $I C_{2 A}$.
The output of inverter $I C_{2 A}$ then switches high, although it clamps briefly at the voltage level of node $A$ plus the diode's forward-voltage drop. The inverter can deliver more than 50 mA in this state, overdriving the D-to-A converter's output current and rapidly discharging $C_{l}$. When node $A$ rises to the inverter's upper threshoid $V_{T I}$, node $B$ returns to 0 V and the cycle repeats.
Inverter $/ C_{2 \beta}$ buffers the capacitor-discharge current and provides a negative-strobe output; $I C_{2 C}$ provides a positive strobe. Flip-flop $/ C_{3}$ provides a square-wave output at onehalf the strobe frequency (Fig. 2). The strobe period $T$ equals $T_{1}+T_{2}$ (within the converter's 8-bit accuracy) for frequencies below 200 hHz . and for values of $C_{1}$ greater than 1000 pF :

$$
T=\frac{C_{1}\left(V_{T H}-V_{T L}\right)}{l_{R F F} D}+60 C_{1} \ln \left(\frac{5-V_{T L}}{5-V_{T H}}\right)
$$

where $D=($ digital input $) / 256$.
For $C_{l}$ values below 1000 pF , you must account for stray capacitance. The following will add stray capacitance directly $10 C_{1}$ : converter output, 12 pF ; inverter input, 5 to 10 pF ; diode, 2 pF . An IC socket will contribute additional capacitance. For strobe frequencies greater than 200 kHz , effects of the inverter output's rise and fall times and its
fig. 1. This digitally controlled clock oscillator provides linear control below approximately
200 kHz and has a maximum frequency higher than 20 MHz .

propagation delay $T_{P D}$ should be included:

$$
\begin{aligned}
T & \approx\left(C_{1}+C_{D A C}+C_{2 A}+C_{D}\right)\left[\frac{V_{I I I}-V_{T I}}{I_{R L I} D}+6(1) \ln \left(\frac{5-V_{I I}}{5-V_{I I I}}\right)\right] \\
& +T_{R I S t}+T_{F+I I I}+T_{P I}
\end{aligned}
$$

where C'DAC is the converter's output capacitance, $C_{2 A}$ is. $I C_{2 A}$ : input capacitance, and $C_{D}$ is the diode's capacitance.
Figure 3 shows the oscillator operating at a strobe frequency of 20 MHz . Capacitance at node $A$ is 30 pF (including 10pF from the oscilloscope prohe). Notice that the fast-moving node $A$ waveform overshoots both switching thresholds, producing an amplitude of 3.5 V . Frequency vs input $D$ becomes non-linear at higher frequencies because of propagation delays, rise limes. and fall times in the inverter. At 20M1Iz, for example, the converter controls less than half of the waveform period at node $A$.
Although the oscillator is capable of high speed. its operation is more stable below 200 kHz . You can set the converter's $I_{\text {REF }}$ as low as $100 \mu \mathrm{~A}$ and sel $C_{l}$ as high as you like - resulting in an operating frequency with no signilicant lower limit. For higher accuracy and greater dynamic range, you can replace the DAC-(0) with a 10 or 12-hil D-to-A converter.

Michael Jachowski, Precision Monolithics Inc, Santa Clara, Ca


Fig. 2. Idealised waveforms from Fig. 1 illustrate the oscillator's operation for frequencies of 200 kHz and below.


Fig. 3. Waveforms of Fig. 1's circuit operating at 20 MHz . The strobe pulse width (node B) equals the sum of the rise time, fall time, and propagation delay for inverter IC ${ }_{2 A}$.

## Multiple technologies produce fast clock

By combining saw, GaAs, and high-speed bipolar devices you can achieve an ECL-compatible clock oscillator (Fig. 1). Heart of the circuit is the saw-stabilised network that surrounds $Q_{1}$, the DXL240I GaAs fet from Gould Dexcel Div (Santa Clara, Ca). The $/ 1+3$ saw oscillator from RF Monolithics (Dallas, Tx) has $180^{\circ}$ of phase shift at resonance and couples the energy from $Q$ is drain to its gate. $L_{l}$ and $C_{l}$ tune $Q_{I}$ s drain to $11+3 \mathrm{MH} z$;

## L band generator

Many RF-type ideas for designs tend to go to magazines specialising in RF and microwave, but EDN does get its fair share. This example shows a clock generator whose frequency is controlled by a surface acoustic wave device. Needless to say, at this frequency, extreme attention to the detailed layout will be essential to obtain the desired results. IH


Fig. 1.
Combining saw,
GaAs and ECL
devices, to implement a fast stable oscillator.
$L_{2}$ and $C_{2}$ tune $Q_{1}$ 's gate to 1143 MHz . These networks also maintain proper phase relationships for oscillation at 1143 MHz . The frequency of oscillation and temperature drifts are strictly determined by the saw characteristics. High quality saw devices typically have Qs in the neighbourhood of 6000 and frequency-drift rates as low as $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
An ultra-high-speed bipolar ECL-compatible decision IC, the Sony CBXI 107Q, functions as a comparator and ECL-level translator. $C_{I}$ couples $Q_{I}$ 's output to the CBX1107Q's non-inverting data input. $R_{l}$ acts as a load
resistor and supplies bias voltage to pin one of the decision IC. The inverting data input of the CBXI 107 Q is directly connected to the bias voltage, $V_{B B}$. which configures the IC as a high speed analogue comparator with input levels around $V_{B B} \cdot R_{2}, R_{3}$ and -2 V supply provide the proper termination and voltage level for ECL-compatible logic from the CBXI $107 Q$ 's data outputs.

Michael A Wyatt, SSAvD Honeywell Inc, Clearwater, Fl.

## Non-linear load extends PLL frequency range

## Wide range <br> PLL

The widely second-sourced 4046 PLL chip has a limited frequency range when used, as is usual, with a fixed timing resistor. This useful circuit removes that limitation.

Fig. 1. By connecting the nonlinear load Z to pin 11 of the PLL chip IC, the PLL's frequency range can be extended by a factor of 50, as compared with that possible by using a fixed resistor $\left(R_{4}\right)$.

APLL chip such as the 74 HC 4046 in Fig. 1 uses an external capacitor and resistor to set the frequency range for an internal voltage-controlled oscillator (VCO) By replacing the fixed resistor $R_{4}$ with a non-linear one, the VCO's frequency range can be extended by a factor of 50 or more. For the component values shown, when pin 11 connects to $\mathrm{R}_{4}$, the range is 17 to 300 kHz ; in contrast, when the pin connects to the non-linear load, the range is 2 kHz to 2 MHz .
Capacitor $C_{l}$ and the current through pin 11 control the PLL's output frequency. Higher current produces a higher frequency. When $V_{/ I}$ equals 0.5 V , for example, the high- $\beta$ transistor $Q_{I}$ is off and the resistance from pin 11 to ground is $R_{2}+R_{3}$. As $V_{I I}$ es, $Q_{l}$ turns on and draws more current from pin 11. Thus, the effective impedance, $Z$, is

$$
Z=\frac{\frac{R_{2} R_{3}}{\beta\left(R_{2}+R_{3}\right)}+R_{c}}{\frac{R_{3}}{R_{2}+R_{3}}-\frac{V_{B E}}{V_{11}}}
$$

where $\beta$ is the transistor's beta and $V_{B E}$ equals 0.75 V .
Basel F Azzam and Christopher R PauI, Coherent Communications, Hauppauge, NY.

## Electronics Circuits, Systems \& Standards

Since its appearance in 1956 the US-based EDN has established itself as a leader in controlled circulation electronics magazines. Now this "best" of EDN - with useful information on components, equipment, circuits, systems and standards - is available in a 216 page hardback publication.


Available direct by postal application to $E W+W W$, Quadrant House, The Quadrant, Sutton, Surrey,SM2 5AS. Cost $£ 20$ plus $£ 1.50$ post and packing.Cheques payable to Reed Business Publishing Group.

Edited by lan Hickman, published by Butterworth Heinemann Newnes ISBN 075060068 3. Price $£ 20$.


BBC Model B APM Board

£100 CASH FOR THE MOST NOVEL
DEMONSTRATABLE APPLICATION!
BBC Model B type computer on a board. A major purchase allows us to offer you the PROFESSIONAL version of the BBC system on large networked systems the architecture of the BBC board has so many similarites to the regular BBC model B that we are sure that with a blt of experimentation and Ingenuity many complete with a connector panel which brings all the VO to ' D and BNC type connectors - all you have to do is provide +5 and c's socketed. The Ic's are too numerous to llst but Indude a 6502, RAM and an SAA5050 teletext chlp. Three 27128 EPRo no data, On appilcation of DC power the system which we provides diagnostic information on the video output. On board DIP switches and jumpers select the ECONET addnass and enable the four extra EPROM sockets for user software. Appx. dims: main board $13^{\circ} \times 10^{\circ}$. VO board $14^{\circ} \times 3^{\circ}$. Suppled tested Only £29.95 or 2 for $£ 53_{\text {® }}$ MONITOFS
MONOCHROME MONITORS

## THIS MONTH'S SPECIALI

10There has never been a deal llke this onel Brand apanking new \& boxed monltors from NEC, normally selling at about $£ 140\}$ These are over-engineered for ultra
reliabllity. $9^{\prime \prime}$ greenscreencompositelnput with etched non-glare screen plus switch. able highhow Impedance Input and output for dalsy-chalning. 3 front controls and 6 at rear. Standard BNC
sockets. Beautiful high contrast screen and attractive case with carrying ledge. Perfect as a main or backup monitor and fo CALL FOR DISCOUNTS ON HIGHER QUANIIIES! COLOUR MONITORS
Decca $16^{\prime \prime} 80$ budget range colour monitor. Features a PIL wbe, beautitul teak style case and guaranteed 80 column resolution, features usually seen only on colour monitors costing 3 times
our pricel Ready to connect to most computers or video outpuits. $75 \Omega$ composite input with integral audlo amp \& speaker. Fully $75 \Omega$ composite input with integral audio amp \& speaker. Fully full RTB guarantee. Ideal for use with video recorder or our Telebox ST, and oiner audio 20' AV SPECIALS Superbly made UK manulacture. PIL all solid state colour monitors, complete with composite video \& sound Inputs. Attrac
 20".... 1135 22".... 8155 26".... 185 (f) CALL FOR PRICING ON NTSC VERSIONS! HI-DEFINITION COLOUR MONITORS Brand new $12^{*}$ mutliinput high definition $0.31^{\prime \prime}$ dot pltch for superb clarity and modem metal black box styling. Operates
from any 15.625 khz sync RGB video source, with either Individual $H \& V$ syncs such as CGA 18M PC's or RGB analog with composie sync such as Alan, Commodore Amiga, Acorn Archimedes \& BBC. Measures only $14^{\prime \prime}$ square. Free data sheet Including connection Information
Wil also function as quality TV with our RGB Telebox.


## Master Systems 2/12 microprocessor controlled V22 full duplex 1200 baud modem. Fully BT approved unit, provides standard

 V22 high speed data comm, which at 120 cps , can save you phone bill and connect tme by a staggering $75 \%$ l Uitra silm 45 mm high. Full featured with LED status Indlcators and remote error diagnostics. Sync or Async use; speech or data switching, bullt In 240 v mains supply and 2 wire connection to BT. Units are in used but good condition. Fully tested prior despatch, with data and a full 90 day guarantee. What more can you ask' for and at this pricellONLY 569 (D)

## IEMKEYEOARDDEALS

A replacement or backup keyboard, switchable for IBM PC PC-XT or PC-AT. LED's for Caps,Scroll \& Num Locks. Standard Absolutely standard. Brand new $\&$ boxed with manual and key template for user slogans on the function keys. Attractive beige,grey and cream finish, with the usual retractable legs underneath. A generous length of curly cord, terminating in the standard 5 pln DIN plug. A beautiful clean piece of manufac turers surplus. What a deall
Brand new and boxed 84 key PC/XT type keyboards in standard IBM gray with very attractlve mottled finlsh and "clicky" solid fee keys. 10 function keys on side. English layout and £ sign. Green
LEDs for Caps, Scroll \& Num locks. 29.95 (B) $5 / \mathrm{E} 135$ (D)

CALL FOR DISCOUNTS ON HIGHER QUANIITES!
FLOPPY DISK DRIVES
BARGAINS GALORE

## NEW 51/4 inch from $£ 29.951$

## Masslve purchases of standard $51 /{ }^{* *}$ drives enables us

present prime product at Indusiry beating low pricesi All units
(unless stated) are removed from often brand new equlpment and are hully tested,aligned and shipped to you with a 90 day guarantee and operate from $+5 \&+12 \mathrm{vdc}$, are of standard size and accept the standard 34 way connector.
TANDON TM100-2A IBM compatible DS
TANDON TM100-2A IBM compatible DS $E 39.95(\mathrm{C})$ CANON,TEC etc.DS half height. State 40 or 80T $E 79.00$ (C) TEAC FD-55-F.40-80 DS half height. BRAND NEW E79.00(C)
TEAC FD-55 halt height series In your choice of 40 track double sided 360 k or 80 track double sided 720 k . Ex-equipment fully tested In excellent condition with 90 day warranty.
Order TE-36 for 360 K E29.95(C) or TE-72 for 720k $£ 39.95$ (C)

CHOOSE YOUR 8 INCH:
Shugart 800/801 SS refurbished \& tested
Mhtubl ini M2894-63 double sided switchable
hard or sofl sectors- BRAND NEW
SPECAAL OFFERSI!

Dual $8^{\prime \prime}$ drives with 2 megabyte capadty housed in a smart case

E150.00(E)
E225.00(E)
E250.00(E)

Ideal as exterior drivesi
End of ine purchase scoop! Brand new NEC D2246 8" 85
megabyte of hard disk storagel Full CPU control and Industry standard SMD Interface. Ultra hi speed transfer and access time leaves the good old ST506 interface standing. in mint condition and comes complete with manual. Only.................E399(E) AFFORDABLE 10 Mb WNCHESTERS A fantastlc deal - 10 mb (10rmatted) Winchester for £39.951 hard drive on your present driver card or as a starter into hard dive on your present driver card or as a starter into
Winchester land-see the driver card Ilsted below. In excellent used condition, guaranteed for 90 days.
Hard disk dilver card, complete with cables ready to plug into

## No Break Uninterruplable PSU's

## Brand new and boxed 230 volts unintertuptable power supplles

 from Densel. Model MUK 0565-AUAF is 0.5 kva and MUD $1085-$ AHBH Is 1 kva . Both have sealed lead acid batteries. MUK are Internal, MUD has them In a matching case. Times from interrupt are 5 and 15 minutes respectively. Complete with full AECHAARGEABLE BATTERIES LEAD ACID12 Maintenance free sealed long life. Type A300. Maintenance free sealed
12 volts 12 volts $3 \mathrm{amp} / \mathrm{hours}$
6 volts
6 volts 3 amphours 12 volts
12 volis 6 volts 3 amphours
Centre tapped 1.8 an

## EXTRA HI-CAPACITY NICKEL CADMIUM

(Hyex banks of 10 cells per $8^{\prime \prime} H \times 24^{\circ} 6 \times 5.5^{\prime \prime}$ D wooden case. Each cell tor ${ }^{\circ} \mathrm{H} \times 1.75^{\circ} \mathrm{L} \times 4^{*} \mathrm{D}$. Can be easlly separated. Ideal for all standby power applications. Ex MoD, llke new..E49.95 (L Newton Derby frequency changer 3 phase 50 hz to
Trio 0-18 vde bench PSU. 30 amps. New Fujitsu M3041 600 LPM band printer
DEC LS/02 GPU board
Rhode \& Schwarz SBUF TV test transmitter 25-1000mhz. Complete with SBTF2 Modulator Calcomp 1036 large drum 3 pen plotter Thurlby LA 160 B logic analyser
1.5kw 115 v 60 hz power source

Tektronix R140 NTSC TV test signal standard Sony KTX 1000 Videotex system-brand new ADDS 2020 VDU terminals - brand new
Sekonic SD 150H 18 channel Hybrid recorder
Trend 1-0-1 Data transmission test set

Superb Quality 6 foot 40u 19"Rack Cabinets

Massive Reductions Virtually New, Ultra Smart! Less Than Half Price! Top quality $19^{"}$ rack cablnets made In UK by Optima Enclosures Lid. Units feature
designer, smoked acrilic lockable tront designer, smoked acrylic lockable iront
door, full height lockable half louvered back door and removable side panels. Fully adju'stable Internal fixing struts, ready punched for any configuration of equipment mounting plus ready mounted Integral 12 way 13 amp sockel switched mains distribuIlon strip make these racks some of the most versatile we have ever sold. Racks may be stacked side by side and therefore are $77-1 / 2^{\circ} \mathrm{H} \times 32-1 / 2^{\circ} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$. Order as: $\begin{array}{ll}\text { Rack } 1 & \text { Complete with removable side panels...... } \mathbf{E 2 7 5 . 0 0} \text { (G) } \\ \text { Aack } 2 & \text { Less side panels }\end{array}$ Pack 2 Less side panels .................................... 145.00 (G)

## POWER SUPPLLIES

rame grin SPL200-5200P 200 watt (250 ( peak). Seml open $+24 v 4 a(6 a$ peak). All outputs fully regulated with over voltage protection on the $+5 v$ output. AC Input selectable for $110 / 240$ Power Sn SPI 130.130 . $\mathrm{C85.00}$ (B) (2A). $5 v$ @ 20A. $\pm 12 v$ @ 1.5A. Switch mode. New. E59. 95 (B)
 Greendale 19ABOE 60 watts switch mode.+5v @ $6 \mathrm{a}, \pm 12 \mathrm{v}$ @
$1 \mathrm{a},+15 \mathrm{v} @ 1 \mathrm{a}$. RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. $244.95(\mathrm{C})$ Conver AC130. 130 watt hi-grade VDE spec. Switch mode. 45 @ $15 \mathrm{a},-5 \mathrm{v} @ 1 \mathrm{a}, \pm 12 \mathrm{v} @ 6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms}$. New. Boshert 13090. Switch mode.Ideal for drives 8 system. $+5 \mathrm{v} @ 6 \mathrm{6a}$, $\begin{array}{ll}\text { E29.95(B) } \\ \text { Farnell G6/40A. Switch mode. } 5 \mathrm{v} @ 40 \mathrm{a} \text {. Encased } & \text { E95.00(C) }\end{array}$

## COOLINEFANS

Pease specify $\mathbf{1 1 0}$ or $\mathbf{2 4 0}$ volts for AC tans.


## THE AMAZINGTELEBOX!

QUAUTY COLOUR TVII

rand rew high quality, fully cased, 7 channel UHF PAL TV luner system. Unit simply connects to your TV aenal socket and colour
vdeo monitor tuming same into a fabulous colour TV. Dont worry your monitor does'nt have sound, the TELEBOX even hats an for Headphones or Hi Fi system etc. Many other features: LED Status indlcator, Smart moulded case, Malns powered, Built to BS safety specs. Many other uses for TV sound
Suppled BRAND NEW with full 1 year guarantee
Teebor ST for composite video input monitors......... $£ 32 \$ 15(\mathrm{~B})$ Telebor STL as ST but with integral speaker..........E36. Teletbox RGB for analogue RGB monitors............958 RGB 1 elebox also suitable for IBM multisylnc monitors with RGB

## BRAND NEW PRINTERS

for is rellability. Diablo type print mechanism gives supert registraion and quality. On board microprocessor gives full Dhablome command capabilty. Serial RS-232C with full
handshake. Bidirectlonal 25 cps , switchable 10 or 12 pitch, 136 Includiag $\&$ sign. Font and ibbon Dlablo compatible........ E199(E) DED DPG21 miniature ball point pen printer ploter mechanism with full 40 characters per line. Complete with data s

includes circuit diagrams for simple driver electronics | eet which |
| :--- |
| ....49(B) | Centronics 150 series. Aways known for their rellabilty in 650 cont nuous use - real workhorses in any environment. Fast 150 £ 375 Cps with $159-4$ Serial up to $9.5^{\circ \prime}$ paper, fan fold tractor............... £ 99.00 (E) 875 150-4 Serial up to $9.5^{*}$ paper, tractor, roll or s/sheet.....E129.00(E CALL FOR THE MANY OTHERS IN STOCK.

## VISIT OUR SHOP FOR BARGANS

LARGE QUANTITIES OF OSCILLOSCOPES AND TEST GEAR GLWAYS AVAILABLE - CALL NOWI

MAIL ORDEA \& OFFICES Open Mon-Fi 9.00.5.30 Dept WW, 32 Biggin Way; Upper Nowood, London SE19 3XF.	LONDON SHOP 100's of bargains! Open Mon-Sat 9-5.30 215 Whitehorse Lane. South Norwood, London. SE25.	DISTEL © The Original Free dlal-up dalabase! 1000's of items +info On Line V21, V22 \& V22 bis 081-679-1888	ALL ENQUIRIES 081-679-4414   Fax-081-679-1927 Telex- 894502




# INTERFACING WITH C 

by<br>HOWARD HUTCHINGS

[^4]
## REGULARS

## CIRCUIT IDEAS

## Ringing-choke inverter

Mosfets possess advantages over bipolars in the already simple and robust ringing-choke inverter, in that they confer even greater reliability and the possibility of higher frequency and therefore smaller inductive components. This one gives a regulated 300 V output from an input of 12 V and can easily be modificd for other inputs and outputs.
At switch on, the mosfet is off. lis gate-source capacitance of about 1000 pF charges through $R_{/}$, furning the mosfet on and causing an increase in $L_{/}$current ( $L_{1,2,3}$ are on the same ferrite core). When the gate voltage rises enough to turn $D_{3}$ on, the current in $L_{1}$ is limited. inducing a voltage in $L_{3}$ to turn the mosfet off: this is a positivefeedback action which gives a rapid turn-off to reduce losses. This generates a voltage across $L_{2}$ which is rectified and smoothed 10 give the 300 V output. The gate-source capacitance now recharges and the whole thing starts again.
Voltage divider $R_{2.3}$ and the offset zener $D_{4}$ provide the regulator input: if $D_{+}$and therefore $T_{2}$, conduct, the mosfet stays off. Zeners $D_{1,2}$ limit the mosfet's gate-source voltage and $D_{3}$ determines $L_{1}$ peak curren.
D F Conway Browns Bay Auckland
New Zealand


12-300V inverter using a mosfet output stage for even more reliability. Bipolar transistor regulates output.

## Programmable-window comparator

Adual buffered D-to-A converter and a dual four-input cmos comparator can be configured to form a comparator having independently, digitally programmed window centre voltage and width. Three outputs indicate whether the input is inside, above or below the window
The 8222 and the three op-amps generate $V_{x}$, which is the window centre voltage, and $V_{y}$, half of the window width, from data in the 8222 latches, DAC A working in a bipolar manner and $D A C B$ in unipolar mode. Signals $\overline{\mathrm{DAC-A} / D A C-B}, \mathrm{LDAC}$ and $\overline{\mathrm{WR}}$ come from, for example, a microprocessor address bus.
Sampling comparators in the LTC-1040 drive outputs out ${ }_{1,2,3}$. If the algebraic sum of the signals at $A_{\mathrm{A}_{\mathrm{N}}-4}$ is positive, out goes high:
$V_{I N}-V_{X}-V_{Y}>0$
$V_{I N}>V_{X}+V_{Y}$
outl is therefore high if $V_{I N}$ is higher than the upper window limit. In a similar way, $\mathrm{OUT}_{2}$ goes high if $V_{I N}$ is lower than the lower window limit and out ${ }_{3}$ is high when out $_{1}$ and $\mathrm{OUT}_{2}$ are low, ie when $V_{I N}$ is

Comparator with digitally programmed window upper and lower limits, giving an accuracy over $\pm 10 \mathrm{~V}$ input of within $0.01 \%$.
higher than the lower limit and lower than the upper limit. With the RC components on pin 16 of the 1040 , sampling takes place at $1000 \mathrm{~s} / \mathrm{s}$.
Without using the manufacturer's DAC
calibration method, accuracy is within
$\pm 0.1 \mathrm{~V}$ over a range of $\pm 10 \mathrm{~V}$.
Frantisek Michele
Brno
Czechoslovakia


## Measuring transfer functions

In a frequency-swept transfer-function analyser for use with an oscilloscope. it is necessary to maintain the level of the swept oscillator constant at all relevant frequencies - a problem that often exercises designers. In my design, the problem is largely eliminated
Since a square wave is composed of an infinite series of harmonics, the fundamental being predominant. the LF response of a circuit to a square wave indicates its response to the fundamental. As Fig. 1 shows, if $A$ is fed with a square wave, its LF response $V_{O L}$, which is the flat part, accounts for the transfer function at that frequency. If, therefore, a series of period-modulated square waves is applied to a circuit, the relative amplitudes of the flat parts of the response gives the frequency response to all the fundamental frequencies of the input series.
This the core of my transfer-function scanner. It produces a series of square waves that are frequency-modulated in steps. rather than continuously. Figure 2 shows the essentials. A 555 timer provides the clock, which drives the 4017B decade counter. This, via the $4066 B$ analogue switches, connects $C_{l-n}$ in the second 555 timer $(Z)$. The output is therefore a number of stepped frequency changes, the step duration being fixed by the clock and the square-wave frequency in each step by $R_{/} C$. Figure 3 is a more detailed diagram,


Fig.1. The shape of a squarewave after passing through a filter is determined by the filter characteristics. This provides the basis for a simple audio network analyser


Fig. 2. Essentials of the transfer-function scanner.
in which values may be chosen for any partıcular application. In the circuit described, the frequencies inside the steps varied in a $1-2-4$ sequence from 100 Hz to 12 kHz and the capacitors $C_{1-8}$ from 100 nF to 800 pF . Resistor $R_{c}$ is 72 k and $R_{d}$ is 30.5 k .

Figure 4 shows some results. At (a) is a
screen shot of a high-pass filter circuit, showing a clear representation of the effect, with the measured response on the right. $\mathrm{Al}(\mathrm{b})$ is a low-pass response and the output of the transfer-function scanner itself at (c).
TC Liao
Beijing Peoples's Republic of China


Fig. 4. The results from various filter types. The circuil in Fig. 3 produces a step-frequency mdoulated squarewave output which, when applied to a filter input, produces output voltages and waveforms of the types shown below. The swept frequency oscillogram requires a degree of interpretation - the RMS voltage output does not correspond to external envelope shape.


## Chopper saves relay

## power

Relays need more power to turn on than
N they do to stay on, That being so, you can save about $40 \%$ in drive power by chopping the drive.

With a low input, the output of $/ C_{1}$ is high. $T_{r}$, is ofl and the relay de-energised: capacitor $C_{2}$ is discharged via $D_{2}$ and the output of $I C_{B}$ is high. On a high input $/ C_{A}$ goes low, switching on $T_{r}$, and the relay at full power, but only until $C_{2}$, charges through $R_{3}$. At this point, $I C_{B}$ outpuitges low. cutting off $D$; and enabling the ascillator formed by $\left.C_{4}, R_{I, 2, I}\right)_{I}$ and (, . This chops the drive $10 T r$, and the relay at a markspace ratio and therefore average power set by $R_{I}$ and $C_{1}$. The transistor dissipates very little power, since it acts almose purely as a swilch.

## Yongping Xia

Torrance
California
USA


When the relay is solidly on, the oscillator
chops the drive to apply greatly reduced holding power, saving battery life.

## FRESH IDEAS

While we are not short of Circuit Ideas to publish, it would bee agreeable to see some fresh input from the vast, untapped bank of talent that our readers represent. We pay a useful fee for all ideds published. So send them to Circuit Ideass, Room L333, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

- AMSTRAD PORTABLE PC'S FROM $£ 149$ (PPC1512SD). £179 (PPC1512DD). £179 (PPC1640SD). £209 (PPC1640DD). MODEMS $£ 30$ EXTRA.NO MANUALS OR PSU.

HIGH POWER CAR SPEAKERS. Stereo pair Output 100 w each 4ohm impedance and eonsisting of $61 / 2^{1 "}$ woofer 2 " mid range and 1 "tweeter. Ideal to work with the ampitherdescribed above. Price per $2 \mathrm{KV}-500$ WATT TRANSFORMERS Suitable for high voltage experiments of as a spare for a microwave oven etc. R50v AC input. Now only $\& 4.00$ ret 4 P 157
MICROWAVE CONTROL PANEL.Mains operated, with touch switches. Compore with 4 dignt-dispray. digital clock, and 2 relay outputs one for power and one for pulsed power (programmable) Ideal for all sorts of precision umer applications etc. Now only $£ 4.00$ ref 4P151.
FIBRE OPTIC CABLE. Stranded optical fibres sheathed in black PVC. Five metre leng1h $£ 700$ ret 7P29R
12V SOLAR CELL. 200 mA output ideal for trickle
charging etc. 300 mm square Our price $£ 15.00$ re
PASSIVE INFRA-RED MOTION SENSOR
Complete with dayight sensor, adjustable lights on timer ( 8 secs- -15 mins), 50 range with a 90 plete with wall brackets bulb holders etc. Brand new and guaranteed Now only $£ 19.00$ ref

## 19P29

Pack of two PAR38 bulbs for above unit $£ 1200$ ref 12P 43R VIDEO SENDER UNIT Transmit both audio and video signals from either a video camera. video recorder or computer to any
standard TV set within a 100' range! (tune TV to a spare channel) 12v DC op. $£ 15.00$ ref 15P39R Suitabie mains adaptor $£ 5.00$ re

## 5Pig1R

FM TRANSMITTER housed in a standard working $13 A$ adapter (bug is mains diven). £26.00 ret 26 P 2 R MINATURE RADIO TRANSCEIVERS A walkie talkies with a range of up to 2 kilometres. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases $£ 3000$, it
ref 30 P 12 R ref 30P12R
FM CORDLESS MICROPHONE.Small hand heid unit with a 500 range! 2 transmit power levels reas PP3 battery. Tuneable to any FM receiver. Our price $£ 15$ ref 15P42AR
12 BAND COMMUNCATIONS RECEIVER. 9 shor bands, FM, AM and LW DXIlocal switch, tuning 'eye' mains $0 \cdot 0$ ? or battery Complete with shoulder strap and mains lead NOW ONLY E19.00!! REF 19P14R.
CAR STEREO AND FM RADIOLow cost stereo system giving 5 watts per channel. Signal to noise ratio better than 45 db . wow and flutter less than . $35 \%$. Neg earth. $£ 19.00$ ref 19P30 LOW COST WALIKIE TALKIES.Par of battery operated units with a range of about 200 . Our price $£ 800$, 7 a pair ret 8P50R
7 CHANNEL GRAPHIC EQUALIZER lus a 60 watt power amp 20-21KHZ 4-8R 12-14vDC negative earth Cased $£ 25$ ref 25P $14 R$. NICAD BATTERIES. Brand new top qualty. $4 \times$ AA's $£ 4.00$ ref 4P44R $2 \times \mathrm{C}$ 's $£ 400$ ret 4 P73R, $4 \times \mathrm{D}$ ' $£ 9.00$ ref 9P12R. $1 \times \mathrm{PP} 3$ £6.00 ret 6P35R
TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ultimate equivalents book Latest edition $£ 20.00$ ref 20P32R.
CABLE TIES. $142 \mathrm{~mm} \times 32 \mathrm{~mm}$ white nylon pack of $100 £ 300$ ret 3P104R. Bumper pack of 1.000 ties $£ 14.00$ ref 14P6R
GOT A CARAVAN OR BOAT?

NEW 80 PAGE FULL COLOUR LEISURE CATALOGUE 2,500 NEW LINES FREE WITH ORDER ON REQUEST
OR SEND $£ 1.00$
GEIGER COUNTER KIT.Complete with tube, PCB and ail components to build a battery operated geiger counter £39 00 ref 39 P 1 R FM BUG KIT.New design with PCB embedded coll Transmits to any FM radio 9 v battery req'd $£ 500$ ref 5 P 158 R
COMPOSITE VIDEO KITS. These convert compositef 14 P 3 R separate H sync, $V$ sync and video $12 v D C$ DComposite video into separate H sync. sync and video. (12v DC £ $800 \mathrm{ret} 8 \mathrm{BP3R}$
SINCLAIR C5 MOTORS 12 v 29 A (full load) $3300 \mathrm{~mm} 6^{\prime \prime} \times 4^{\prime \prime}$ OiP shaft. New. $£ 2000$ ref 20P22R. As above but with fitted 4 to 1 insine reduction
toothed nylon belt drive cog $£ 40.00$ ref 40 PBR.
SINCLAIR C5 WHEELS $13^{\prime \prime}$ or $16^{\prime \prime}$ dia including treaded tyre and inner tube. Wheels are black. spoked one piece poly carbonate. $13^{\prime \prime}$ ELECTRONIC SPEED CONTROL KITOR 5
ELEC TRONIC SPEED CONTROL KI Tior CS motor. PCB and al components to build a speed controller ( $0-95 \%$ of speed). Uses
pulse width modulation. $£ 1700$ ref 17 P 3 R SOLAR POWERED NICAD CHARGER.Charges 4 AA nic
6P3R.
12 VOLT BRUSHLESS FAN4 1/2" square brand new ideal for boat. car, caravan etc 5500 ref 5P206
ACORN DATA RECORDER ALF503 Made for BBC computer but suitable for others. Includes mains adapter, leads and book VIDEO TAPES. T
VIDEO TAPES. Three hour supenior quality tapes made under licence from the farmous JVC company Pack of 5 tapes Now low
price $£ 8.00$ ref 8 P 161 PHILIPS LASER. 2MW HELIUM NEON LASER TUBE BRAND NEW FULL SPEC 540.00 REF 40P10R. MAINS BRAND NEW FULL SPEC 140.00 REF
POWER SUPPLY KIT 20.00 REF 20P33R READY BUIL POWER SUPPLY KIT £20.00 REF 20P33R READY BU』L
AND TESTED LASER IN ONE CASE 575.00 REF 75P4R. AND TESTED LASER IN ONE CASE 775.00 REF 75P4R.
12 TO 220 V INVERTER KITAs supplied it will handle up to aboul 15 w al 220 v but with a larger transformer it will handle 80 watts Basic kit $£ 1200$ ref $12 P 17 R$ Larger transformer $\sum 12.00$ ref $12 P 41 R$. VERO EASI WIRE PROTOTYPING SYSTEMIdeal for designing projects on etc. Complete with tools, wire and reusable board
New low bargain price only 5200 ref $82 P 1$ New low bargain price only $£ 2.00$ ref B2P
HIGH RESOLUTION 12" AMBER MONITORI $2 v$ 1.5A Hercules compatible (TTL input) new and cased $£ 22.00$ ref 22P2R

VGA PAPER WHITE MONO monitors new and cased 240 V AC. E55.00 ret 59P4R
25 WATT STEREO AMPLIFIERC STKO43. With the addtion of a handful of components you can build a 25 watt amplifer $£ 4.00 \mathrm{ref}$ 4P69R (Circuit dia included)
BARGAIN NICADS AAA SIZE 200MAH $1,2 \mathrm{~V}$ PACK OF £4.00 REF 4P92R, PACK OF 100 £30.00 REF 30P16R FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm}$ £ 1.00 ref BD827R ALARM TRANSMITTERS. No data avalable but nicely made compiox radio transmitters $9 v$ operation. $£ 4.00$ each ref $4 P 81 R$ 12 V 19A TR
price $£ 20.00$
GX4000 COMPUTERS. Customer returned games mactines complete with plug in game joysticks and power supply. Retail price is almost $£ 100$. Ours is $£ 12.00$ ret $812 P_{1}$
ULTRASONIC ALARM SYSTEM. Once again in stock these units consist of a detector that plugs into a 13 A socket in the arəa to protect. The receiver pugs into a 13 A socket anywhere else on the same supply. Ideal for protecting garages, sheds etc. Complete System $£ 2500$ ref B25P1 additional detectors $£ 11.00$ ret B1 TP1 BM XT KEYBOARDS. Brand new 86 key keyboards $£ 5.00$ ref BM
BM AT KEYBOARDSBrand new 86 key keyboards $£ 15.00$ ref
386 MOTHER BOARDS. Customer returned units without a cpu fitted £22.00 ref A22P1
BSB SATELLITE SYSTEMS
BRAND NEW
REMOTE CONTROL
£49.00 REF F49P1

286 MOTHER BOARDS. Brand now but customer returns somay eed attention. Complete wath technical manual $£ 2000$ ret A2OP2 286 MOTHER BOARDS. Brand new and tested complete with technical manual. $£ 49.00$ ret A49P1
UNIVERSAL BATTERY CHARGER.Takes AA's, C's, D's and PP3 nicads. Holds up to 5 batteries at once. Now and cased, mains perated $\mathrm{f6} 00$ ret 6 P 36 R .
IN CAR POWER SUPPLY.Plugs into agar socket and gives $3.4,5,6,7.59$, and $12 v$ outputs at 800 mA Complete with universal speristig. 55.00 ref 5P167P
RESISTOR PACK. $10 \times 50$ vaiues ( 500 resistors) all $1 / 4$ walt $2 \%$
matal film ES 00 ret SP170R.
MIRACOM WS 4000 MODEMS
V21/23

## AT COMAND SET

## AUTODIAL/AUTOANSWER

FULL SOFTWARE CONTROL
TONE AND PULSE DIALLING

## £29

IBM PRINTER LEAD. (D25 to centronics pilug) 2 metre parallei. §500 ret 5P186R.
COPPER CLADSTRIP BOARD 17 " $\times 4$ " of 1 " pitch "vero" board. $£ 4.00$ a sheet ret 4P62R or 2 sheats for $£ 7.00$ ret $7 P 22 R$
STRIP BOARD CUTTING TOOL. $£ 200$ ret 2P352R.
STRIP BOARD CUTTING TOOL.\&2 00 ref 2 P352R.
50 METRES OF MAINS CABLE $£ 3.002$ core black precut in convenient 2 m lengths Ideal for repairs and projects. ret 3P91R
4 CORE SCREENED AUDIO CABLE 24 METRES $£ 200$ Precut into convenient 1.2 m lengths. Ref 2P365A
TWEETERS $21 / 4^{\prime \prime}$ DIA 8 ohm mounted on a smar metal plate for easy tixing $£ 2.00$ ret $2 P 366 R$
COMPUTER MICE Originally made tor Future PC's but can be adapted tor other machines. Swiss made $£ 8.00$ ref 8 P57R. Atari ST conversion kit $£ 2.00$ ret 2 P362R
$61 / 2 " 20$ WATT SPEAKER Bult in tweater 4 ohm $£ 5.00$ ret 5P205R
WINDUP SOLAR POWERED RADIO! FMAM radio takes rechargeable batteries complete with hand charger and solar panel 14P200R


PC STYLE POWER SUPPLY Made by AZTEC 110 v or 240 v input +5@15A,+12@5A,-12@5A.5@3A. Fuly cased with tan. on off switch, IEC inlet and standard PC fiyleads $£ 15.00$ ref $F 15 P 4$ ALARM PIR SENSORS Standard 12 v alarm type sensor will interface to most alarm panels $£ 16.00$ ref 16 P 200 ALARM PANELS 2 zone cased keypadentry, entry exit time delay

## BULL ELECTRICAL 250 PORTLAND ROAD HOVE SUSSEX

 BN3 5 OT TELEPHONE 0273203500 MAIL ORDER TERMS: CASH PO OR CHEOUE WITH ORDER PLUS E 3.00 POST PLUS VAT.PLEASE ALLOW T/, 10 OAYS FOR DELUVERY
NEXI DAY DELIVERY 28.00 .
FAK 027323077
etc. $£ 1800$ ref 18 PF 200
MODEMS FOR THREE POUNDS!
or into but only $£ 3.00$ ret 3 P19 145 R
TELEPHONE HANDSETS
Bargain pack of 10 brand new handsets with mic and speaker only
E3 £3.00 ret 3P146R

## BARGAIN STRIPPERS

valiue at $£ 1.00$ ret CDi40R

## DATA RECORDERS

Customer returned mains battery units bult in mic ideal for Computer CPeneral purpose audio use. Pnce is $£ 400$ ref 4P 100 R SPECTRUM JOYSTICK INTERFACE
Plugs into 48K Spectrum to provide a standard Atari type joystick port: Our price $£ 4.00$ ref 4P101R
ATARI JOYSLICKS
Ok totuse with the above interface pur price $£ 4.00$ ret 4 P 102 R BENCH POWER SUPPLIES
Superbly made fully cased (metal) giving 12 vat $2 A$ plus a 6 V suoph) Fused and short circuit protected. For sale at less than the cost of the case! Our price is $£ 4.00$ ref 4 P 103 R
SPEAKER WIRE
Brown twin core insulated cable 100 feet for $£ 2.00$ REF 2P79R MAINS FANS
Brand new $5^{\prime \prime} \times 3^{\text {" }}$ complete with mounting plate quite powerfull and quite Out price $£ 1.00$ rei CD41R DISC DRIVES
Customer returnedunits mixed capacities (up to 1.44M) We have not sorted these so you just get the next one on the shelf. Price is only $\varsigma 700$ ret 7 PiR (worth it even as a stripper) HEX KEYBOARDS
Brand new units approx $5^{\prime \prime} \times 3^{\prime \prime}$ only $£ 1.00$ each ret CD42R PROJECTBOX
$51 / 2^{\prime \prime} \times 31 / 2^{\prime \prime} \times+$ " black ABS with screw on lid $£ 1.00$ ref CD43R SCART TO SCART LEADS
Bargain price leads at 2 for $\mathcal{E} 3.00$ ret 3P147R
SCART TO D TYPE LEADS
Standard Scart on one end, Hidensity $D$ type on the other. Pack of ten leads only $£ 7.00$ ret 7P2R
OZONE FRIENDLY LATEX
250 m b botle of fiquid rubber sets in 2 hours. Ideal for mounting PCB's fixing wires etc $£ 2.00$ each ret 2P379R

## OUICK SHOTS

Standard Atari compatible hand controller (same as joysticks) our price is 2 for $£ 2.00$ ret 2 P 380 R
VIEWDATA SYSTEMS
Brand new units made by TANDATA complete with $1200 / 75$ built in modem infra red remote controlled qwerty keyboard BT appproved Prestel compatible, Centronics pnnter port RGB colour and composite output (works with ordinary televisision) complete with power supply and fully cased Our pree is only $£ 2000$ ret 20P1R AC STEPDOWN CONVERTOR
Cased units that convert 240 v to $110 \mathrm{v} 3^{\prime \prime} \times 2^{\prime \prime}$ with mains input lead and 2 pin American output socket (suitable for resistive loads only) our price $£ 200$ ret 2P381R
SPECTRUM + 2 UGHT GUN PACK
 CURLY CABLE
Extends from 8" to 6 feet: Dconnector on one end, spade connectors on the other ideal for ioy sticks atc (6 core) E1.00 each ret CD44R COMPUTER JOYSTICK BARGAIN Pack of 2 joy sticks only $£ 2.00$ rel 2P382R BUGGING TAPE RECORDER
Small hand heid cassette recorders that only operate when there is sound then turn off 6 seconds after soyou could leave it in a room all day and just record any thing that was said. Price is $£ 20.00$ ret 20 P 3 R IEC MAINS LEADS
Complete with 13 A plug our price is only $£ 3.00$ for TWO! ref 3 P148R NEW SOLAR ENERGY Kit
Contans 8 solar cells, motor, toois, tan etc plus educational booklet
Ideal tor the budding enthusiast! Pnce is $£ 12.00$ ret 12P2R

## 286 AT PC

286 MOTHER BOARD WITH 640X RAM FULL SIZE METAL CASE, TECHNICAL MANUAL, KEYBOARD AND POWER SUP, PLY \&139 REF 139 P1 $^{1}$ (no \% 10 cards or drives included) Some metal work regid phone ior detalls.
$351 / 1 M$ CAMERAS Customer returned units with builtin Miash and 28 mm lens 2 for $£ 8.00$ ref 8 P200 STEAM ENGINE Standard Mamod 133 engine comp
tef 30 P 200
TALKINO-GLOCK
LCD display, alarm, battery operate
Clock will announce the time at th
push of a button and when the
alarm is due. The alarm is switchable
from voice to a cock crowing IK 14.00 ref $14 \mathrm{P} 200 . \mathrm{A}$
HANDHELD TONE DIALLERS
Small units that are designed to hold over the mouth prece of a telephone to send MF dialling tones Ideal for the remote control of answer machines $£ 5.00$ ret 5P209R
COMMODORE 64 MICRODRIVE SYSTEM
Complete cased brand new drives with cartidge and sotware 10 times faster than tape machunes works with any Commodore 64 setup. The orginal price for these was $£ 49.00$ but we can offer them to you at only $£ 25.00$ ! Ref 25P1R
ATARI 2600 GAMES COMPUTER Brand new with joystick and 32 game cartidge (plugs into TV) £29.00 ref F29P1 also some with 1 game at $£ 1900$ ret F19P2.
BEER PUMPS Mains operated with fluid detector and electronic timer standard connections. Ex equipment. $£ 18.00$ ref F18P 1
90 WATT MAINS MOTORS Ex equipment 90 WATT MAINS MOTORS Ex equipment but ok (as fitted to above pump) Good general pupose unit $£ 9.00$ ref F9P1 HI FI SPEAKER BARGAIN Originally made for TV sets they consist of a $4^{\prime \prime} 10$ watt 4 R speaker and a $2^{\prime \prime} 140$ R tweeter If you want two of each plus 2 of our crossovers you can have the lot for $£ 5.00$ ref F5P2
VIDEO TAPES E180 FIFTY TAPES FOR $£ 70.00$ REF F70P 1 360K 5 1/4"Brand new drives white front. $£ 2000$ Ref F20P1

IN SUSSEX? CALL IN AND SEE US!

## REGULARS

## ACTIVE

## Asic

GaAs asic evaluator. Fujitsu's GaAs MB53 asic gate arrays now have their evaluator kit. It comes with a test chip hat contains all available circuit functions. The MB53 range is in five master sizes with from 3000 to 30000 gates, with or without ram. Gate delay s 80 ps , gate power $1.1 \mu \mathrm{~W}$ and working frequency up to 1 GHz. Fuilitsu Microelectronics Lid, 0628 76100.

3 V gate array. The CLA70000 asic gate array family is now fully characterised for 3 V operation, with a view to its use in hand-held battery powered equipment. Gate density is now over 150,000 usable gates. GEC Plessey Semiconductors, 0793 518000.

A-to-D \& D-to-A converters
Data converters for digital radio. AD7001 and AD7002 from Analog are data converters to go between audio and IF/RF stages of the new generation of digital mobile radios (DMRs), in which voice is digitised and encoded at source so that channels can be interleaved in the pan-European GSM cellular system. The devices are similar, but the 7001 uses a successive-approximation $A$. to-D converter, whereas the 7002 has a sigma-delta type, a pulse-shaping rom and further D-to-A converters for frequency and gain control and signal shaping. Analog Devices. 0932 232222.

## Multiplexed sample/hold. A four

 channel simultaneous sample-andhold with output multiplexer, the MSH 840 from Datel, will recognise a 10 V step to within $0.01 \%$ in 775 ns, input to multiplexer output. Simultaneous or single-channel sampling is available and there is provision for a channel to be digitised or put on hold and then digitised. Input impedance is $100 \mathrm{M} \Omega$. harmonic distortion -70dB at 500 kHz and slew rate $45 \mathrm{~V} / \mu \mathrm{s}$. Datel (UK) Ltd, 0256880444.
## Discrete active devices

HF transistor. Philips's BFG25AXn-$\mathrm{p}-\mathrm{n}$ transistor has a transition frequency of 5 GHz . It is meant mainly for use in battery-powered, low-power amplifiers. DC current gain is 200 and
noise at 1 GHz is 2.5 dB maximum. Gothic Crellon Ltd, 0734 7888 78.

HF power transistors. Philips's BLF547/548 mos transistors have been hotted up to give $100 \mathrm{~W} / 150 \mathrm{~W}$ output power at 500 MHz . These devices are both n-channel enhancement-mode units, working with a 28 V supply at over $50 \%$ efficiency. There are no internal matching networks, so that they cover application from VHF to UHF. The increased power is intended to reduce the number of stages needed in a transmitter. Philips Semiconductors Ltd, 0715806633

## Low-resistance mosfet. Combined

 with a drain-source breakdown of 100 V and fast switching, the $15 s 2$ on resistance of Zetex s ZVN4210A nchannel mosfet makes it well suited to medium-power switching applications Current is 0.45 A continuous. 6A pulsed. and maximum power is 700 mW . At 1 MHz and 25 V on the drain, input $C$ is 100 pF maximum and transconductance is 250 ms at 1.5 A Turn-on and turn-off delays are 4ns and 20ns. Zetex plc, 0616274963.
## Digital signal processor

DCT processing. ZR36020 ir the Zoran range of processors used in image compression is a high-speed device meant to perform 2-D forward and inverse discrete cosine transforms. In combination with an image coder/decoder, the ZR36020 forms a DCT-based image compression system to the JFEG standard. A host system controls transtorm direction and data format and, when initialised, runs continuously at up to $15 \mathrm{Msample} / \mathrm{s}$. It will process 8 by 8 data block:s in 4.2 $\mu \mathrm{s}$. Amega Electronics Ltd 0256 843166.

## Linear integrated

circuits
Fast NiCad charging. Able to charge NiCad batteries in 20 min , the
ICS1700 from Integrated Circuit Systems also increases battery life, restores lost capacity, increases charging efficiency and acceptance and minimises memory effects. Its integral risc microprocessor institutes several different methods of stopping the charge to ensure internal pressure and temperature are safe. There is provision for indication of charge status and a satety timer is included. Amega Electronics Ltd, 0256843166.

MAC chipset. DMA2281 and
DMA2286, decoder and descrambler respectively, will handle any of the


Bright leds. Leds from HewlettPackard in a material whirrsically called transparent-substrate aluminium gallium arsenide (TSAIGaAs, for not very short) are much brigt ter than the average, putting out up to $\$ 5$ candela at 20 mA and at a very narrow viewing angle. They are red ( 637 nm ), are compatible with $\mathrm{cmos} / \mathrm{mos}$ and dissipate 130 mW . Jermyn Distribution, 0732740100
new MAC television standards coming via satellite. The devices from ITT, are usable with the company's DIGIT2000 digital TV system or in other systems. DMA2281 processes D2mac, Dmac and Cmae signals at baseband, once they have been digitised by the VCU2133 video codec unit. For sound, duobimary signal is filtered and sliced to obtair low bit errors. All $\ddagger 6$ contigurations can be coped with to give up to tour channels in parallel. ITT Semiconductors, 0932336116.

2 GHz amplifier. From Elantec, the EL2075 is a voltage-feedback amplifier wish a gain bandwidth product of $2 \mathrm{GHz}, 13 \mathrm{~ns}$ setting time to $0.1 \%$ and 50 mA output over temperature. It is stable at a gain of 10, the -3dB bandwidth being 400 MHz . Input offset is $200 \mu \mathrm{~V}$, it has a $2 \mu \mathrm{~A}$ inpul bias and symmetrical differential input. Microelectronics Technology. 0844278781.

Battery management. Secuoia says its bq200t energy management unit (EMU for short) is the first BiCMOS IC designed to look after the batteries in portable equipment. It measures battery capacity, monitors rate of discharge, controls fast charging in minutes and battery conditioning. Programmable control registers alliow
for adaptive operation under microprocessor contral, but default settings enable stand-alone operation. Six outputs are usable for led driving, state indication, switch control etc. Sequoia Technology Ltd, 0734311822

## Logic building blocks

Fast comparator. Linear
Technology's LT1116 is a $12 n \mathrm{~ns}$ comparator that will sense signals at ground, although using a single +5 V supply. Input common-mode range is from zero to 2.5 V below the positive rail and offset voltage is typically 1 mV . There is active drive in both directions at the output with little cross-conduction current and the device is stable on slow transitions. An output latch is included. Micro Call Ltd, 0844261939.
3.3 V logic. With high speed and application to notebook and lap-top computers in mind, Performance have announced a 3.3 V logic family. 54/74FCT3XXX, which is in CMOS and compatible in all out pinout with TTL. Full rail-voltage swings are produced and two grades give propagation delays of $4-5 \mathrm{~ns}$ or $3-4 \mathrm{~ns}$, Power consumption is much below that for 5 V families and the devices include circuitry to reduce ground bounce and noise. Supply pins are now in the package centre, with multiple ground pins and a more practical location of signal pins. Translators to interface this family with 5 V logic are included in the range. Performance Semiconductor Ltd, 025659585.

## Mixed-signal ICs.

## Speech synthesiser. Oki's

 MSM63P74 is a single-chip speech synthesiser with a built-in 512 kbyte one-time-programmable rom forstorage. It uses an analogue/digitalconversion PCM data conversion technique for high quality. The chip is meant for short runs where many different messages are needed, speech analysis and data programming being carried out on the Oki development tool, which is offered for demonstration. Highland
Electronics Ltd, 0444245021

## Fax/modems for portables

Rockwell have two chipsets intended for high-end data/fax modems destined for personal computers. RC96AC-W is a full-featured modem with enhanced PC AT commands, operating at up to $9600 \mathrm{~b} / \mathrm{s}$, data compression allowing throughput of $38.4 \mathrm{~kb} / \mathrm{s}$. RC144AC-W is compatible with it , working at up to $14,400 \mathrm{~b} / \mathrm{s}$, or $57.6 \mathrm{~kb} / \mathrm{s}$ effectively with compression. Both sets consist of a modem datapump and microcontroller, and firmware on disk. RCS Microsystems Ltd, 0819792204.

Teletext decoder. Tl's new Multipage teletext decoder captures and stores 1000 pages in one transmission cycle and holds them in external dram for instant access. Instead of using blocks for graphics, a 260 by 480 bit map can provide higher-resolution graphics, a process which is accelerated by Multipage development software. TI says the system is simple to design into receivers: programming for fastex and TOP modes needs only about 3kbyte. Texas instruments, 0234 223252.

## Optical devices

Light sensor. Light-to-frequency conversion is used in the TSL220 Bicmos device to give greater precision and to allow direct connection to a microprocessor or digital control circuit, noise being less of a problem than is usually the case. Dynamic range is 118 dB , "dark" output is 1 Hz and in ordinary room lighting over 100 kHz . One of these devices replaces a photodiode, an amplifier and A-to-D converter. Texas Instruments Ltd, 0234223252.

LCD backlights. The Visualux range of backlighting for liquid-crystal displays uses numbers of leds bonded to a "step" on the edges of an acrylic block, their light being reflected from opposite and adjacent edges of the block to illuminate the viewing area. Edges are white to increase reflection. Service life is claimed to be up to 100,000 hours, several times the life of cold-cathode or electroluminescent devices. A variety of colours is available. Visualtec Ltd, 0268288173.

## Oscillators

SM oscillator. For surface mounting, this oscillator is epoxy-encapsulated
to relieve problems of differential expansion commonly found in ceramic packages. Resulting stability is $\pm 15 \mathrm{ppm}$ from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and $\pm 50$ ppm from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Gas contamination from the epoxy is overcome by hermetic sealing. Ageing is guaranteed at $1-2 \mathrm{ppm}$ for the first year. Frequency ranges from $1-50 \mathrm{MHz}$, current requirement being $10-30 \mathrm{~mA}$. McKnight Fordahl Ltd, 0703 848961

## Programmable logic

 arrays10ns PLD. The PLD610 from Cypress Semiconductor is a 10 ns version of the EP610 programmable logic device. It is made in 0.8 micron BiCMOS and is fast enough to make a 100 MHz counter. The PLD610 is pin and function-compatible with EP600/610/63, 85C060 and PALCE610s, and possesses 60\% more registers and more inputs than the 22 V 10 . It is supported by Abel, PLD designer, Log/ic and Cupl Ambar Components Ltd, 0844 261144.

10,000-gate FPGA. Xilinx's XC4010 is claimed to be the largest fieldprogrammable gate array, with 10,000 usable gates. It is now possible to implement an FPGA-based 32-bit microprocessor peripheral control system, this being made faster and easier by new software. Three-state buses, tast carry logic and wide edge decoders are all incorporated, all being needed for 32 -bit systems. Design changes are taken care of by a reprogramming facility, resulting in cheaper and faster development. Micro Call Ltd, 0844261939

## Power semiconductors

No power for mosfet driver. Harris's new mosfet driver, the HV400, needs no external power supply, taking its power and control signals from the system's floating PWM circuit, It is a bipolar, dielectric isolation IC, sourcing 6A, sinking 30A and driving capacitive loads of up to $0.1 \mu \mathrm{~F}$ at up to 300 kHz ; rise and fall times are 70 ns and 30 ns and can be controlled by separate pins. Harris
Semiconductor (UK), 0276686886.
Fast power mosfets. Silicon nchannel mosfets from Hitachi for motor control and power conversion switch in 90 ns for a 250 V device. DIIIHF devices are for use at voltages up to 600 V and at 30 A , all of them possessing low drive-current needs. On resistances lie between $0.075 \Omega$ and $0.35 \Omega$. Hitachi Europe Ltd, 0628 585000.

70A IGBT. Ixys says its new insulated-gate bipolar transistor,the IXSH35N100, is the highest current discrete IGBT with short-term shortcircuit capability. Maximum collector
current is 70A, minimum blocking voltage 1000 V , maximum saturation voltage 3.5 V and fall time 700 ns . Short-circuit withstand time is $\$ 0 \mu \mathrm{~s}$. Ixys Corporation, Fax: 010 1408-4350670.

SMPS controller. Unitrode's UC3875 family combine resonant and pulsewidth modulation for efficiency at high frequencies and, therefore, reduction in size. To control a bridge power stage, one half is shifted in phase relative to the other, allowing the use of constant 1 MHz PWM combined with resonant, zero-voltage switching in either voltage or current modes of operation. Duty-cycle control is 0 $100 \%$; there are four 1 A totem-pole outputs; a 10 MHz error amplifier; and soft start, with all the usual protection circuitry. Macro, 0623604383.

5 V regulator. MAX639 is claimed by Maxim to be the industry's most efficient step-down switching regulator. Quiescent current is $20 \mu \mathrm{~A}$, which confers efficiencies of more than $94 \%$ for output currents of 2 mA to 225 mA . Preset output is $5 \mathrm{~V} \pm 4 \%$, but is adjustable by two resistors, input being between 4 V and 11.5 V . Short-circuit and logic-level protection are included, as is a low-battery monitor. Maxim Integrated Products Ltd, 0734845255.

## PASSIVE

## Passive components

Trimmer pot. Bourns's new trimmer, Model 3319, is mean- for high-volume commercial and consumer use. Its single-turn carbon-on-ceramic track has a range of $100 \Omega 2-1 \mathrm{MS}$ with a tolerance of $\pm 25 \%$ at 0.2 W . Temperature coefficient is $1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Bourns Electronics Ltd, 0276692392.

Mains toroids. Toroidal mains transformers made by ILP can now be obtained from Cirkit. The transformers come in ratings from 15 VA to 500 VA , with dual primaries for 120 V or 240 V . 50 or 60 Hz , and dual secondaries for the required voltage or current provision. Each is provided with its mounting kit. Should none of the stocked range fit one's needs, specials can be wound. Cirkit Distribution Ltd, 0992444111.

## Connectors and cabling

Filter headers. Murata's new EMIsuppressed header connectors, the CUH series, incorporate miniature feedthrough capacitors to eliminate noise from cables, the only changes to existing PCB layouts being the need for ground planes. Capacitance values from 47 pF to 2200 pF are available with ground pins at each end of the connector. Murata Electronics (UK) Ltd, 0252811666.

Optical modem. Acapella, part of the ES2 organisation, has introduced ACS100, which is an asic designed to enable the replacement of dual fibre links with single ones. It allows full duplex serial transmission over the one cable at up to $38.4 \mathrm{~kb} / \mathrm{s}$ over a distance of 2.5 km . The trick is to use

## Time/frequency analysis.

TimeView is a software package designed for use with the Philips PM6680 timer/counter in time and frequency analysis in conjunction with a PC AT with 640 K of memory, Dos 3.30 and VGA/EGA mono or colour. The system takes thousands of counter/timer measurements and displays them graphically against time. It will also perform statistical analysis and FFTs. Data capture modes are free-running, repetitive and waveform-capture, and data can be stored on disk for analysis, off-line if necessary. Philips Test \& Measurement, 0923240511.

one led for both transmission and reception, with a controller to tell it which. Data is compressed by the modem before being TDMed and the incoming data is accordingly expanded. ES2, 0344525252.

## Displays

Digital panel meters. LCD and led panel meters from Amplicon Liveline provide BCD and autoranging options. There are $31 / 2$ and $41 / 2$ digit instruments giving multiplexed $B C D$ signals and optional parallel tristate outputs for voltage measurement and 4-20mA current loop two-wire process measurement with temperature display and dummy zero. Self-powered meters measure the signal from which they derive their power. Amplicon Liveline Ltd, 0273 570220.

## Filters

Dual FIR filter. To confer a flexibility not found in asic designs of finite impulse-response filter, Harris introduce the HSP43168 dual filter, which contains two 8 -tap FIR filters, used singly or in cascade,
configuration control and storage of up to 256 programmable coefficients. Modes of operation include high-/low-/band-pass and complex filtering, 2-D convolution, interpolation and decimation. Decimation filters for each tap effectively increase the number of taps by 16 times, allowing the design of a 256 -tap low-pass filter with very sharp transition. Thame Components Ltd, 0844261188.

## Instrumentation

Satellite level meter. The MS-450B satellite level meter made by Promaxis is intended to check for possible interference between the number of television satellites in, or soon to be in, operation. Frequency range is 950 to 1750 MHz , indicated digitally, and the level meter is calibrated for a 30 dB range, though the actual range is -60 dB to -10 dB for measurement of cross-polarisation. $\mathrm{C} / \mathrm{N}$ figure and possibly side lobes assist with dish alignment. Alban Marketing Ltd, 0727832266.

Electric field meter. Four sensitivity ranges from $1 \mathrm{kV} / \mathrm{m}$ to $1000 \mathrm{kV} / \mathrm{m}$ are available in the IDB model 107 handheld electric field strength and polarity meter from Bristol Industrial \& Research Associates Ltd. The unit is complete with case and battery charger. Biral, 0275847787.

Fast DSO. Gould claims its new digital storage oscilloscope to be the fastest available at less than $£ 10,000$. The 4096 digitises at 1.6 Gsamples/s, repetitive signals being captured at up to $5 \mathrm{Gsamples} / \mathrm{s}$; time resolution for transient signals is 625ps. Transients can be seen with eight points per
cycle, and then analysed by a waveform processor. There is a builtin colour plotter and IEEE-488 and RS423 interfaces allow control by and transfer to a computer. Gould
Electronics Ltd, 081-500 1000
40 MHz oscilloscope. At a
remarkably low price, Maplin have available the 704640 MHz , delayedsweep oscilloscope, with a 40 ns delay line. Cost is £499.95, which includes vat. Maplin Electronics, 0702554155.
1.3 GHz counter. For low-frequency accuracy, where long gate times would normally be needed, the TF830 counter/frequency meter measures multiple periodic times and takes the reciprocal to display the frequency to a resolution of seven digits per second of measurement time, or 0.001 ms . TF830 measures frequency to 1.3 GHz , frequency ratio and pulse width, and counts events. An RS232 interface option is offered. ThurlbyThandar Ltd, 0480412451.

## Literature

IC selector on disk. Harris has put all salient data on its ICs on a floppy disk, covering analogue and digital signal processing, data acquisition, power processing, general microprocessor, peripherals and telecomms. There is also a lis: of application notes and some other useful stuff. You can select devices in several ways, for example by A-to-D conversion time, to see a display of all the devices meeting the requirement, with specifications. It is free from Harris. Harris Semiconductor (UK), 0276686886.

Radio answering machine. To avoid mobile radio users missing messages when away from their sets, Midland LMR have introduced a built-in message storage/relay facility, described in a new brochure. In one mode, the device behaves as an answering machine and in the other as a repeater to extend talk-back range. Midland LMR (USA) 1-800/6435263.

## Power supplies

$30 k V$ bench supply. This new unit provides 30 kV at $100 \mu \mathrm{~A}$, the output being controllable from zero to full scale by a ten-turn potentiometer and indicated to a resolution of 100 V by a led panel meter. Current is displayed by a two-range meter with a resolution of $0.1 \mu \mathrm{~A}$ on the top range and $0.01 \mu \mathrm{~A}$ up to $20 \mu \mathrm{~A}$. Stability is $300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, with stabilisation and regulation of $0.1 \%$; ripple is $0.02 \%$ pkpk. Applied Kilovolts Ltd, 0273 439440.

Medical SMPS. 40W and 110 W switching power supplies with universal input, NFS $40 / 110$ by


Computer Products, are now available with approval to UL544, IEC601 and CSA 22.2-125 standarols, which means that they are usable in non-patient-connected applications under IEC601 and for patientconnected use under the other two. Since the units accept 85-264V AC input, this means that one model with international approval will suffice worldwide. Computer Products, 0234 273838.

Lithium cells. Two additions to the $L S$ range of primary lithium bobbin cells from Saft Nife are the C-type LS26500 and the D-type LS33600, both with a voltage of 3.3 V . D cells have what is believed to be the highest capacity for this size of lithiwm thionyl chloride cell at 14.5 Ah , the C cell being of 6.4 Ah capacity. Singles or battery packs are available, with various types of protection circuitry. Saft Nife Ltd, 0819797755.

## Radio communications products

Dual LNB. New from Cambridge, tาe Gemini low-noise block downconverter has dual outputs to allow the operation of two satellite receivers from one otfset or prime-focus dish. Working in Ku-band, the LNB is Astracompatible and has a polarisation system to select vertical or horizonial polarisation. Typical noise figure is 1.2 dB and cross polar rejection figure 20dB minimum. Cambridge Computer Ltd, 0294222100.

Superregen kits. Superregenerative RF receivers have not always had a good prese, and are often guilty of over-wide tront-end bandwidth, drift, an enthusiasm for picking up noise and sometımes generating it themselves. Quantelec have a design kit for receivers in the paging system market, using a delay line in the oscillator feedback, which apparently helps with most of these problems

Pressure transmitter. A British-
designed and manufactured pressure transmitter from Ellison, the PR3100 is said to be so versatile that it meets virtually all requirements in industry and science, also meeting European standards. It is a strain-gauge instrument with a two-wire $4-20 \mathrm{~mA}$ output and is built in stainless steel with temperature compensation from $-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$. Pressure range is from 250 mbar to 1000 mb . Ellison Sensors International, 0978846434.

The kit contains the delay line, a list of components, a working board and artwork to make more. The receiver has a sensitivity of -105 dBm with a front-end bandwidth of 600 kHz and draws only $430 \mu \mathrm{~A}$ from 5 V . Quantelec Ltd, 0993776488.

RF modem. DP240 high-speed universal modem has a 2400 baud data rate and is miniaturised, being supplied in the form of a printed board. It provides TTL/cmos/RS232C i/o with a 25 mA current requirement. Fixings are provided on board for a radio unit from the company's series of low-power transmitter/receiver telemetry modules, or the TCV450 UHF transceiver. Wood and Douglas, 0734811444.

## Switches and relays

High-temp relays. DX relays from
Matsushita can be used at temperatures up to $200^{\circ} \mathrm{C}$. These hermetically sealed units are available in monostable or latching versions, with two 30W changeover contacts, the thermal EMF of $1 \mu \mathrm{~V}$ making them usable in hostile surroundings such as furnaces and engine monitoring. Matsushita Automation Controls, 090823155.

Keyboard switches. Eight switching functions are offered by the Unimec 1500 series by Quiller, in alternate and momentary-action versions. The switches fit standard 15 mm keyboard matrices and ordinarily possess two normally-open and two normallyclosed contacts, so that the switching function is determined by board layout. Momentary-action types have a 1.5 million-cycle lifetime, with a travel of 1.8 mm and actuating force of 2 N . DC load rating is 6 W ( $9 \mathrm{~W} \mathrm{AC)}$ and maxima are 250 mA and 120 V Quiller Switches Ltd, 0202417744.

## No charge for toggle switches.

Types E and EK sealed miniature toggle switches by C\&K are fitted with plastic actuator bushes to dissipate up to 20 kV of charge. There are 18 PCB-mounting types of terminal in miniature and sub-miniature styles,
eight switching functions and 1,2 or 3 poles. Ratings are up to $7.5 \mathrm{~A} / 125 \mathrm{~V}$ $\mathrm{AC} / 28 \mathrm{~V} D \mathrm{C}$ or $3 \mathrm{~A} / 250 \mathrm{~V} A C$. Roxburgh Electronics Ltd, 0274 281770.

## Transducers and sensors

Doppler alarm modules. Microwave doppler modules for motion detection in alarm systems, door openers, speed measurement and any amount of other uses are made by Alpha Industries. They are said to offer advantages over ultrasonics and infrared in that they have a greater rangs, are smaller and do not waken the entire population every five minutes with false alarms. Sensitivity is 30 Hz for a $1 \mathrm{mile} / \mathrm{h}$ speed. Several types are offered: DRO2980 for $3-5 \mathrm{~m}$ range and Gunn oscillator. tuned cavity types for 10 and 24 GHz working with horns for increased range. Cirkit Distribution Ltd, 0992 444111

Miniature load cell. Very small load cells from Control Transducers come with full-scale ranges of from 1 lb to 100 lb , with $50 \%$ overload. Output is 1 $2 \mathrm{mV} / \mathrm{V}$ and bridge resistance is $350 \Omega 2$. Temperature compensation is effective from $-25^{\circ} \mathrm{C}$ to $650^{\circ} \mathrm{C}$; combined non-linearity, repeatability and hysteresis are within $\pm 0.5 \%$ of full scale. Some idea of the size is given by the practice of inserting these devices into finger joints to measure fatigue. Control Transducers, 0234 217704.

Carbon monoxide sensor. NAP-11A by Nemoto is a semiconductor CO sensor designed to operate at concentrations of $50-1000 \mathrm{ppm}$ and is "virtually insensitive" to other gases such as hydrogen and alcohol vapour. Operation is stable at $10^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ and up to $95 \%$ relative humidity. Quantelec Ltd. 0993776488.

## COMPUTER

## Computer board level products

386SX card. Fairchild's PCA-6133 AT-compatible 386 SX half-length card can be used in conventional passive backplane systems or as a singleboard computer on its own without a backplane, for building into OEM equipment where there isn't much room. There are two serial ports, a printer port, a keyboard connector, floppy and IDE hard-disk interfaces, and the 25 MHz processor can access up to 16 Mb of on-board dynamic ram. It will boot from a floppy or hard disk
or from an optional silicon disk, which emulates two floppies. Fairchild Lid. 0703559090.

PC data acquisition. DAS-1600 from Metrabyte is the successor to the established DAS-16 analogue i/o board for PC XT/386/486 computers. The new board offers advantages in speed, i/o capability, analogue output ranges, better software and a lower price. Sixteen single-ended or eight differential analogue inputs are provided. Resolution is 12 bits and sampling rate up to 100 kHz , with programmable input range. No external timing signals or software are needed and built-in 16 -bit counters can be used to count events or measure frequency.

25Mflops for PC AT. NCS have a maths co-processor for the PC AT that increases its speed of execution by more than 100 times. The DSP32C co-processor handles 25 Mflops and turns a PC into a workstation for engineering tasks. It is based on a 50 MHz version of the AT\&T DSP32C digital signal processing CPU and the package includes a maths library of $C$ and Fortran routines and examples, including FFTs, matrices, IIR and FIR convolutional filters. Also supplied is a monitor program, the AT\&T assembler and DSPASM, an assembler for source files up to 64 K . The buffered, 32 -bit port runs at 12.5 MHz . Neural Computer Sciences, 0703667775

## 330 kHz A-to-D interface for PCs.

 ComputerBoards's CIO-AD16Jr-AT 12 -bit 300 kHz A-to-D interface for PC XT/ATs is fully compatible with earlier boards from this company, but with unlimited sample set sizes and the higher speed. It offers a 16 -bit data bus, 1024-sample FIFO buffer, pre/post trigger counters and DTConnect interface. Labtech and Snapshot software support the enhancements, but earlier software is usable with reduced rates of data. Talisman Electronics, 0491671914
## Computer systems

Tough Mac. BVM says that its ruggedised Macintosh computer is the first for industrial 19 in rack mounting. A typical unit in the RackMac range of five machines is the $/ / c i$, which has a 13 in hi-res RGB monitor, processor and full-sized keyboard, all in separate, dust-proof, steel enclosures slide-mounted anywhere in the rack. The motherboard is on shock absorbers, as is the 170 Mbyte hard disk, and the cast-aluminium front panel holds the 3.5 in floppy drive and switches, so that everything is dustproof when closed. A touch-screen is available. BVM Ltd, 0703270770.

## Development and evaluation

$83 C 528$ development system. CT83C528 from Ashling affords real-


ICE for Windows. Vohau's EMUL $16 / 300-\mathrm{PC}$ is an in-sircuit emulator for the Mctorola 68HC16 and 68300 families of microcontrollers. It is PC-based, running under Wincows 3.0, the control boards fitting straight into the $P C$ chassis and using the $P C$ bus for high speed. Real-time emulation up to 16.78 MHz is offered - higher when it becomes necessary - and the unit has 1 Mbyte of both breakpoint ram and shadow ram: Nohau UK Ltd, 0962733140.
time in-circuit emulation for the Philips microcontroller series in rom (83C528), eprom (87...) and romless ( $80 \ldots$..) modes, to provide source-level debugging, automatic software test, performance analysis and prom programming. It has 32 k of rom, 512 byte of ram, an IIC bus controller and a watchdog. In addition to the usual 8051 languages, the system allows assembly-language sourcelevel debugging. Ashling
Microsystems Ltd, +353-61-334466.
TMS370 development. Jermyn have available a low-cost development tool for the Texas Instruments TMS370 family of 8 -bit microcontrollers, which includes the field-programmable types. It takes the form of one emulator board, plugged into the expansion bus of a PC XT/AT, running under dos, or an RS232-C serial interface. An interactive, windowed debugger, real-time emulation and an integrated eprom programmer are all in the one package. Jermyn Distribution, 0732 740100.

## Software

Saber 3.1. Version 3.1 of Analogy's Saber simulation system offers new and enhanced features such as a oigger component library, better simulation, Fourier and inverse Fourier analysis and extended template library. The Fourier facility now includes an FFT command that
gives a continuous spectrum, produces a time-domain display from the spectrum and offers userdefinable windowing. Analogy Europe, 0793432286.
$\mathrm{C}_{++}$for proms. $\mathrm{C}++$ toPROM is a new software package from Borland which takes the PC's .EXE files from Borland C or $\mathrm{C}_{+}+$and converts them to . BIN form for loading into prom emulators or programmers. Users have control over code placement in the target and can use memory mapped i/o at absolute addresses. The package includes all code needed to initialise the system and segment registers. Computer Solutions Ltd, 0932352744.

C clarifier. XRAY Source Explorer is a CASE product that analyses a C program and reveals its nature by providing a graphical display of its structure. The package is intended for use with embedded processors, in particular when the code has come from another source, its starting place being obscure. The result is similar to the type of diagram that is sometimes sketched after the flow chart. Sun workstations running MWM or OLWM handle the software. Microtec Research Ltd, 025657551.

Fuzzy logic. The Fuzzy Inference Development Environment (FIDE for short) is a set of software from Aptronix that will impart fuzzy logic capability to perfectly ordinary microprocessors - the first ones to be so honoured being the Motorola $68 \mathrm{HC05}$ and 68 HC 11 devices. Fide allows an entire system to be designed and simulated, including the MCU-specific hardware. Fuzzy Inference Language is used and a real-time code generator makes efficient object code and assembler source code and an analyser gives a 3-D surface view of the response function. The two companies have made the data structure by which fuzzy logic systems are represented an open, freely available standard. It is all said to be user-friendly. Motorola Ltd, 0908614614.

## SCHEMATIC DRAWING FOR WINDOWS

ISIS ILLUSTRATOR combines the high functionality of our DOS based ISIS products with the graphics capabilities of Windows 3 . The result is the ability to create presentation quality schematics like you see in the magazines. ILLUSTRATOR gives you full control of line widths, fill styles, fonts, colours and much more. When the drawing is complete, transferring it your WP or DTP program is simply a matter of cutting and pasting through the Windows Clipboard.


## ISIS - Intelligent Schematics

ISIS SUPERSKETCH (from £69)
A superb entry level schematic drawing package offering all the editing features of ISIS DESIGNER but without the netlisting, bill of materials and electrical rules check features.

Extended device library available for an additional $£ 30$.

## ISIS DESIGNER (£275)

Provides all you need to create and edit schematics prior to further processing with ARES or other EDA software Through the provision of user definable menu options and a special script language, ISIS acts as a 'framework' from which you can control all your CAD software.

ISIS DESIGNER+ (£475)
This top of the range schematics package adds hierarchical design, automatic annotation/packaging, ASCII data import and Design Global Annotation to make it one of the most advanced schematics packages available for DOS.

## Features

- Runs under Windows 3.0 or 3.1 .
- Full control of drawing appearance including line widths, fill styles, fonts, colours and more.
- Curved or angular wire corners.
- Automatic wire routing and dot placement.
- Fully automatic annotator
- Comes complete with component libraries; edit your own parts directly on the drawing.
- Full set of 2D drawing primitives + symbol library for logos etc.
- Output to Windows printer devices including POSTSCRIPT and colour printers.
- Loads ISIS SUPERSKETCH and DESIGNER files directly.


## ARES - Advanced Routing

PCB II (£69)
Our Graphical User Interface makes this PCB drafting package exceptionally easy to learn and use. Advanced features include Auto Track Necking, Gerber viewing, curved tracks, and DXF export.

ARES (£275)
This package offers multi-layer, netlist based PCB design together with Power Plane Generation, EMS memory support and back-annotation to ISIS DESIGNER+

## ARES AUTOROUTE (£475)

Adds a multi-strategy auto-router to ARES to provide the ultimate in design automation. Special strategy management features allow all design rules to be defined in ISIS so there is very little setting up to do.

Also available as ARES 386-a 32 bit version offering up to $400 \%$ faster operation, virtually unlimited design capacity and $1024 \times 768$ graphics support.

Call us todsy on 0274542868 or fax 0274481078 for demo psck. Combinatlon, multl-copy and aducatlonal discounts evallable. Prices exe P\&P and VAT.

14 Marriner's Drive, Bradford, BD9 4JT.

## REGULARS

## APPIICATIONS

## Switching audio amplifier uses power mosfets n the carly 1960 s, there was a surge of

I:interest in switch ing-audio-amplifiers as designers speculated that transistors might work where valves had failed. But they reckoned without the high frequencies at which the devices would have to switch and the losses involved. Complementary mosfets avoid these problems. They are more efficient, faster switching and need none of the base-drive current applied to bipolar types. Motorola's tmos power mosfets fulfil the function successfully. (The "T" denotes the shape of the almost vertical current path in the device.)
Application Note AN 1042 describes the


Fig. 1. Net DC level of a square wave, varying its M:S ratio in proportion to the audio input, forms the output voltage of a class $D$ amplifier, with high efficiency and no output stage crossover distortion.
Fig. 2. Achieving the waveforms of Fig. 1.
Resistor $R_{27}$ is a current sense component for current limiting.

design of class $D$ amplifiers in general, and a 70 W version in detail. Figure 1 shows the effect of the switching process and Fig. 2 the means of achieving it in broad outline.
A change-over switch connects the loudspeaker to +44 V and -44 V in turn at a high frequency - many times the highest audio frequency. Output to the speaker is an 88 V square wave.

Under the influence of the input signal, the mark:space ratio of the waveform is modified to produce a net DC level proportional to the input, as in Fig. 1. A lowpass filter blocks the high-frequency square, leaving the audio.

Feedback is needed, but not from the outpul, since its phase shift varies widely over tine range of $\mathrm{DC}-120 \mathrm{kHz}$, the switching frequency. It is taken instead from the switching output, which is the square wave.


Fig. 3. Tmos complementary mosfet output stage with DC restorers feeding a low-pass filter to eliminate switching waveform, leaving the audio component.

Input signal, via $R_{4}$, is mixed with the fedback wave, via $R_{5}$. It is then taken to an integrator whose output is zero when the switcher output is an accurate simulation of the input, otherwise generating an error voltage. The switch controller corrects the error. A four-pole Butterworth LP filter chosen for the job is maximally flat to 20 kHz , its resonances causing no trouble with the average speaker and crossover.

The mosfet output stage, Fig. 3, puts out the $\pm 44 \mathrm{~V} 120 \mathrm{kHz}$ square wave - with a duty cycle between $5 \%$ and $95 \%$ - to the lowpass filter feeding the speaker. Full turn-on is given by a $10 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ drive on the gates, supplied by a buffer working from $\pm 5 \mathrm{~V}$ rails. Series gate resistors prevent HF oscillation and the zeners act as clamps to restore the DC lost in the capacitive coupling and protect the devices against the effects of static discharge.

Output transition times are about 30 ns and current is $\pm 5 \mathrm{~A}$ down to 0.1 Hz , below which thermal runaway may be a problem.
Switching control is handled by the duty cycle controller shown in Fig. 4. A 120 kHz square wave is taken to $U_{I B}-$ an integrator in which $R_{1}$ and $C_{1}$ are the timing components - the output being a $\pm 2 \mathrm{~V}$ triangle with a better than $1 \%$ linearity, fed


## REGULATORS

78H12ASC 12V5A 78 M 055 V 0.5 A LM317H T05 CAN

LM317T PLASTIC TO220 variable ....................................... $\Sigma 1$
LM317 METAL
£2.20 812 METAL 12 V $7805 / 12 / 15 / 24 \mathrm{~V}$ plastic 7905/12/15/24 plastic $25 \mathrm{p} 100+20 \mathrm{p} 1000+15 \mathrm{p}$ CA3085 TO99 variable reg $3375 \times 1 /$ A WITHRESETOUTPUT E100 C50/100 CRYSTAL OSCILLATORS
TM000 1M8432 1M000 4M000 10M000 16M000
18M432000 20M500 56M6092 ......................... $£ 1.50$ each

## CRYSTALS

1M0 2M77 4M000 4M4336 4M9152 5M0688 6M0000
8M0000 12M000 14M31818 15M000 16M000 16M5888
17M000 20 MO 0021 M 85522 M 118449 M 50 ........ £1 each

## TRANSISTORS

BC107 BCY70 PREFORMED LEADS
full spec , ...........................
1 £4/100 £30/1000
2N3819 FETS short leads ....... £1/30 £3.50/100
POWER TRANSISTORS
P POWER FET IRF9531 8A 60 V
............................. 3/£1
2SC1520 sim BF259 .................................................. $3 / \Sigma 1$ 100/ $\Sigma 22$ TIP35B/TIP35C
SE9301 100V 1DA DARL SIM TIP121 PLASTIC 3055 OR 2955 equiv 50
2N 3773 NPN $25 A 160 \mathrm{~V}$ £1.60 .... 1.... 2 £1
$100 / \mathrm{E} 55$ 2N3055H 25A 160V £1.60 ................................. 10/โ14

TEXTOOL ZIF SOCKETS
28 WAY ZIF
40 WAY NEW .......................................
SINGLE IN INE 32 WAY CAN BE GANGED FOR USE......... 5 WITH ANY DUAL IN LINE DEVICES . . . COUPLING
(................. 2/21.50

CAPACITORS COMPUTER GRADE
2200 HF 160 V SIC SAFCO FELSIC CO38 .......... £4 (£1.20) $24,000 \mu \mathrm{~F} 50 \mathrm{~V}$....................................................... $£ 6$ ( $£ 1.30$ )
$10,000 \mu \mathrm{~F} 100 \mathrm{~V}$ SPRAGUE/PHILPS ............

## QUARTZ HALOGEN LAMPS

12V 50watt LAMP TYPE M312 .... £1 ea HOLDERS 60p ea 24 V 150 WATTS LAMP TYPE A1/215 ............. $£ 2.50$ each

## NEW BITS

OPI1264A 10kV OPTO ISOLATOR £1.35 ea $100+\Sigma 1$ ea 'LOVE STORY' CLOCKWORK MUSICAL BOX MISCELLANEOUS
36 CORE $7 / 0.2 \mathrm{~mm}$ OVERALL SCREENED ...... $£ 50 / 100 \mathrm{~m}$ LITHIUM CELL 1/2 AA SIZE ............................. 2 FOR $£ 1$ PASSIVE INFRA RED SENSOR CHIP + MIRROR CIRCUIT £2 each
EUROCARD 21 -SLOT BACK PLANE 96/96-WAY £25 ea "PROTONIC 24 VARIBUS" $16.7^{\prime \prime} \times 5^{\prime \prime}$ FIBREGLASS "PROTONIC 24 VARIBU

## KEYTRONICS

TEL. 0279-505543<br>FAX. 0279-757656 P O BOX 634 BISHOPS STORTFORD HERTFORDSHIRE CM23 2RX

EUROCARD 96-WAY EXTENDER BOARD $290 \times 100 \mathrm{~mm}$ "PROTONIC 24" c/w 2 SUPPORTARMSIEJECTORS. DIN 4161296 -WAY AB/C SOCKET PCB RIGHT ANGLE
 DIN 41612 64-WAY ANC SOCKET WIRE WRA...................................... DIN 41612 64-WAY AC PLUG PCB RIGHT ANGLE...... DIN 41612 64-WAY ABB SOCKET WIRE WRA.P (2-ROW BODY)
BT PL G + IEAD
PCPARALLELPRINTERCABLE
13A MOULDED PLUG + 2 mlead
MIN. TOGGLE SWITCH 1 POLE E/OPCB troe CD MODULE sim. LM018 but needs 150 to 250 V AC for display $40 \times 2$ characters $182 \times 35 \times 13 \mathrm{~mm}$.... .............. $£ 10$ TL431 2.5 to 36 V TO92 ADJ. SHUNT REG ................. 2 2 $£ 1$ 6 -32 UNC 5/16 POZI PAN SCREWS ........... ....... $121 / 100$ PUSH SWITCHCHANGEOVER .............................. $2 / \varepsilon 1$ RS232 SERIAL CABLE D25 WAY MALE COMNECTORS 25 FEETLONG, 15 PINS WIRED BRAID + FOIL SCREENS ....................iNMAC LIST PRICE £30 STICK ON CAABINET FEET RS NO 543-327.......... 30/£1

 AMERICAN $2 / 3$ PIN CHASSIS SOCKET ...................2, 21 HUMIDITY SWITCH ADJUSTABLE ................................ $£ 2$ WIRE ENDED FUSES $0.25 A$............................ $30: £ 1$ NEW ULTRASONIC TRANSDUCERS 32kTE
12-CORE CABLE $7 / 0.2 \mathrm{~mm}$ OVERALL SCREEN
POWERFUL SMALI CYULINDRICAL................................. $3 / \Sigma 1$ BNC 50OHM SCREENED CHASSIS SOCKET ........... 2 2 21 D.IL. SWITCHES 10 -WAY 118 -WAY $80 \mathrm{p} 4 / 5 / 6$-WAY

180VOLT IWATT ZENERS also 12 V \& 75 V ….......... $20 / \mathrm{\Sigma 1}$ VN 10 LM 60V $1 / 2$ A 5 Ohm TO-92 mostet ...... $4 / \mathrm{L} 1 \quad 100 / 820$ MIN GLASS NEONS .........................................
RELAY $5 V$ 2-pole changeover looks like RS $355-741$ marked STC 47WBost
MINIATURE CO-AX FREE PLUG RS $456-071$..................................... MINIATURE CO-AX FREE SKTRS 456-273 .......... 2 21.50 DIL REED RELAY 2 POLE N/OCONTACTS PCB WITH 2N2646 UNIJUNCTION WITH 12V 4-POLE RELAY.
400 m 0.5
400 m 0.5 W thick film resistors (yes four hundred
STRAIN GAUGES 40 ohm Foil type polyester backed balco grid alloy …O...................... $£ 1.50$ ea $10+\varepsilon 1$ Linear Hall effect IC Micro Switch no 613 SS4 sim RS 304 . 267 Lina.................................... $£ 2.50100+£ 1.50$
HALLEFFECTIC UGS3040+magnet .................... $£ 1$ OSCILLOSCOPE PROBE SWITCHED $\times 1 \times 10$........... 112 1 pole 12 -way rotary switch ................................. $4 / \mathrm{\Sigma 1}$ 1pole 12-way roary swich ............................ $£ 1$ ea
AUDIO LS LM 380 LM 386 TDA 2003 ................... $6 / £ 1$
555 TIMERS $£ 1741$ OP AMF ......................... 555 TIMERS $£ 1741$ OP AMF ................................... 681
ZN4 14 AM RADIO CHIP
. COAX PLUGS nice ones
 COAX BACK TO BACK JOINERS ............................. $1 / 21.50$
$4 \times 4$ MEMBRANE KEYBOARD ..........................
$5 / 51$ INDUCTOR $20 \mu \mathrm{H} 1.5 \mathrm{~A}$.................
 $1.25^{*}$ PANEL FUSEHOLDERS 1.25" PANEL FUSEHOLDERS ......................
CHROMED STEEL HINGES $14.5 \times 1^{\prime \prime}$ OPEN CHROMED STEEL HINGES $14.5 \times 1$ OPEN ....... $£ 1$ each 12 V 1.2 W small w/e lamps fit most modern cars ........ $10 / \mathrm{/} 1$ SOMO CASS HEADEI ERA
THERMAL CUTOUTS $507785120^{\circ} \mathrm{C}$
THERMAL CUTOUTS $507785120^{\circ} \mathrm{C}$

## 5A...

 THERMAL FUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C} 24015 A-\ldots . . . . . . . . . .51$ TRANSISTORMOUNTNGPADSTO-5/ TO-18 ... £3/1000 TO-3 TRANSISTOR COVERS ............................................... 2001 TO-3 micas + bushes ................................................ $15 \mathrm{~m} / \mathrm{m}_{1}$ PTFE min screened cable
$\qquad$ Large heat snink sleeving
IEC chassis plug fiter 10 A POTS SHORT SPINDLES $2 K 510 \mathrm{~K} 25 \mathrm{~K} 1 \mathrm{M} 2 \mathrm{M} 5$ 40k UIS TRANSDUCERS EX-EQPTNO DATA
LM335Z 10 MV idegree C
LM2342 CONST. CURRENT I.C. PAPST 18 -24V FAN 120 MM T SIM RS 455 . 121 BNC TO 4MM BINDING CELSSIM. AG1/AG12 BUTNPCBPOWER REL AY $12 V$ COII $6 V$ CCNTACTS $2 P$. C/O AVEL-LINDBERG MOUULDED TRANSFORIMER TYPE OB10 15+15V 10 VA QTY. AVAILABLE ................ $£ 2$ ea
BANDOLIERED COMPONENTS ASSORTED R, ZENERS.
ZENERS MOULE 16 CHAR. X 1 LINE (SIMILAR TO HITACHILM10) ................................................... £5 KYNAR WIRE WRAP WIRE ........................................./REEL

## DIODES AND RECTIFIERS

A115M 3A GOOV FAST RECOVERY DIODE ............... 4/\&1 1N54173A 1000V ......................................................8/81 1N4004 SD4 1A 300V ............................................... 100/E3 1N5401 3A 100V..............................................................11

BY127 1200V 1.2 A
BY 254800 V 3 A
BY 2551300 V 3 A



6 6 100V SIMILAR MR75	4/21
1A 600V BRIDGE RECTIFIER	4/E1
4A 100V BRIDGE ...................	3/
6 A 100V ERIDGE	2/21
8A 200V BRIDGE	2/11.35
10A 200V BRIDGE	$\Sigma 1.50$
25A 200 V BRIDGE $£ 2$	10/518
25A 400V BRIDGE £2.50	10/¢22

T ULSE TRANSFORMERS $1: 1+1$
$\qquad$ $\begin{array}{r}\text { E1.25 } \\ \hline \text { 3/ }\end{array}$ 2P4M EQUIV C106D ................... MEU21 PA …..... $3 / 21$
... $100 / \mathrm{E} 15$

## TRIACS

DIACS 4/ 1

## NEC TRIAC ACOBF 8A 600V TO220 .......... 5/L2 100/E30

 TXAL2258A 500V 5mA GATE .................. 2/E1 100/E335 BTA OB-4BO 10 TAB …......... £ $^{90 \mathrm{p}}$ TRILC 14 B00V TIC391T 16 K AVAILAB
## 

## CONNECTORS

D25 IDC SOCKET FU.IITSU .................................... £2
34-way card edge IDCCONNECTOR (disk drive type)
CENTRONICS 36 WAY IDC........................................................ $\sum_{20}$
CENTRONICS 36 WAY IDC SKT
3BC TO CENTRONICS PRINTER LEAD D.5M
CENTRONICS 36 WAY PLUG SOLDER TYPE ................ $£ 4$

## PHOTO DEVICES

HI BRIGH'TNESS LEDS CQX24 RED ....................... 5/L1
SLOTTE OPTO-SWITCHOPCOA OPB815 .............. 1.30 2N5777.

TIL38 INRRARED LED
4N25 OF12252 OPTO IS.............................................................
50 P
4N25 OF 12252 OPTO ISOLATOR ............................. 50p
PHOTODIODE 50P PHOTO DIODE 50P.
MEL12 (PHOTO DARLINGTONBASE $n / C$ ).................. 500 p LED's RED 3 or $5 \mathrm{~mm} 12 / \mathrm{c} 1$

00/:6
LED's GREEN OR YELLOW $10 / \mathrm{L1}$...................... 100/£6
FLASHING RED OR GREEN LED 5 mm 50 p ....... $100 / \mathrm{F} 40$ FLASHING RED OR GREEN LED 5 mm 50 p ........ $100 / \mathrm{I}$
HIGH SPEED MEDIUM AREA PHOTODIODE RS651-
${ }_{995}$ HIGFEED MEDIUM AREA PHOTODIODE
STC NTC BEAD THERMISTORS
G22 220R, G13 1K, G23 2K, G24 20K, G54 50K, G25 200K, RE S $20^{\circ} \mathrm{C}$ DIRECTLY HEATED TYPE........... 11 ea
FS22BWNTCBEAD INSIDE END OF $1^{\prime \prime}$ GLASS PROBE
 RES $20^{\circ} \mathrm{C}$ 200R A13 DIRECTLY HEATED BEAD THERMISTOR 1 k res.
ideal for audio Wien Bridge Oscillator ................... $£ 2$ ea
CERMET MULTI TURN PRESETS $3 / 4 "$
10R 20R: 100 R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K
10R 20R 100R 200R 500 K 200 K 500 K 2M ................................ 50p ea IC IC SOCKETS
32-WAY TURNED PIN SOCKETS 7K AVAILABLE 3/81 6 pin 15/41 8 pin $12 / \Sigma 114 / 16$ pin $10 / 5118 / 20$ pin $7 / \mathrm{L} 1$ 22/24/28 pin $4 / \mathrm{S} 14030 \mathrm{p}$
SIMM SOCKET TAKES $2 \times 30$ WAY SIMMS .................. $£ 1$
SOLID STATE RELAYS
40A 250 V AC SOLID STATE RELAYS ....................... $£ 10$
POLYESTER/POLYCARB CAPS

$1 \mathrm{n} / 3 \mathrm{n} 3 / 5 \mathrm{n} 6 / 8 \mathrm{n} 2 / 10 \mathrm{O} 1 \% 63 \mathrm{~V} 11 \mathrm{~mm}$................... $100 / \mathscr{}$. $10 \mathrm{n} / 15 \mathrm{n} / 22 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} / 66 \mathrm{n} 10 \mathrm{~mm} \mathrm{rad}$................ $100^{\prime} £ 3.50$
 100n 601JV Sprague axial 10/乏1 .................. 100/ร6 (£1)




## RF BTS

RG179E/U 100 m PTFE RF CABLE ................. £35/100m CONHE X 500 hm PCBRIGHT ANGLE PLUG ITT/SEA.LECTRO 0510539029 22-0 4K AVAILABLE
 ALL TRMMERS ......................................... 3 for 50p TRIMMERS larger type GREY 2-25pF YELLOW 5-65pF VIOLET
SMALL 5 pF 2 pin mounting 5 mm centres
SMALL MULLARD 2 to 22 F ........... 3 FOR 50 p £ $10 / 100$
TRANSISTORS 2N4427, 2N3866 ..............................70p

FEED THRU CERAMIC CAPS 1000 pF $\begin{array}{r}.10 / £ 1 \\ . . . . . . \\ \hline 5\end{array}$

## MINIATURE REL AYS suitable for RF

5 volt coil 1 pole changeover
${ }_{\text {£1 }}^{£ 1}$
12 volt coil 1 pole changeover
£1
£1
MONOLITHIC CERAMIC
CAPACITORS
10n 50V 2.5 mm ............................................ .. 100/£4.50
100n 50 V 2.5 mm or 5 mm .............................................................................. 100
100n ax long leads ....................................................... 100/£5
100 n 50 V dil package $0.3^{\prime \prime}$ rad ............................... 100/LR
$1 \mu \mathrm{~F} 50 \mathrm{v} 5 \mathrm{~mm}$
. $6 / 100$

## STEPPER MOTORS

2 CENTRE-TAPPED 9 VOLT WINDINGS $7.5^{\circ}$ STEPS £4

## MAIL ORDER ONLY

MIN. CASH ORDER £3.00. OFFICIAL ORDERS WELCOME
UNIVERSITIES/COLLEGES SCHOOLS/GOVT. DEPARTMENTS
P\&PAS SHOWN IN BRACKETS HEAVYITEMS
ADD $171 / 2 \%$ VAT TO TOTAL
ELECTRONIC COMPONENTS BOUGHT FOR CASH

## APPLICATIONS

to the non-inverting input of comparator $U_{I D}$.
Input signals go to the inverting input of $U_{2 C}$ via $R_{4}$ and the square wave output to the LP filter also goes to this point via $R_{5}$, which is 20 times the value of $R_{4} . U_{2 C}$ integrator has a gain of 20 to put the output of $U_{2 C}$ at ground potential. The output is the error voltage and goes to the inverting input of $U_{I D} . C_{4}$ preventing spikes on the error bus.
The result at $U_{I D}$ output is a 120 kHz "square" wave with a $0 \%-100 \%$ duty cycle varying with the error voltage. To prevent the amplifier clipping and causing the error voltage to exceed limits, causing distortion, a duty cycle limiter restricts the duty cycle to within 5-95\%. There is also a currentlimiter to protect the output mosfets. reducing output voltage to zero if the current exceeds 5A.
Total harmonic distortion at 10 Hz is $0.08 \%$; at $100 \mathrm{~Hz}, 0.08 \%$; at $1 \mathrm{kHz}, 0.19 \%$; and at $10 \mathrm{kHz}, 0.31 \%$ with an output of

$\pm 30 \mathrm{~V}$ into $8 \Omega$. Signal:noise ratio is 100 dB below full power. power bandwidth is 20 kHz and efficiency is $92 \%$ at 72 W .

Motorola Ltd, European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes MK14 5BP. Telephone 0908614614.


## Precise, +10 V to -10 V adjustable voltage

An ordinary laboratory power supply is ill-suited to measurements requiring a continuous sweep of voltage from positive to negative, including a true 0 V setting. One must reduce the input to zero, change leads round and readjust for the opposite polarity, probably finding true zero elusive.
For a precision bipolar source providing a range of +10 V to -10 V in one sweep of a
potentiometer, this circuit by Burr-Brown needs two chips: a REF 10210 V reference and an INA105 differencing amplifier. In Fig.1, with the wiper of the potentiometer at the top, the circuit is a voltage follower with a gain of $1 \pm 0.001 \%$ and the output is the same as the input. With the slider at the bottom, the circuit takes the form of a unitygain amplifier and the output is $-V_{\text {in }}$
$\pm 0.001 \%$. Setting the slider to mid-travel makes the amplifier net gain zero and the output is 0 V . Control linearity depends on the potentiometer and a precision 10 -turn type would normally be used.
Should it be necessary to drive highcapacitance loads up to about $I \mu \mathrm{~F}$, use the circuit in Fig. 2. In this case, the inverting input of the op-amp must be accessible. so

# How to spend less time thumbing through books and more time thumbing through results. New Mathcad 3.0 



New Windows 3.0 inferface mokes colculation fost and effortless

New Electronic Hondbooks give instont access to hundreds of standard formulae. Just dick and poste.

Move those reference texts off your desk. Put that calculator back in your pocket. And save that cryptic spreadsheet for your budgets and bookkeeping.
It's time to get problems out of the way and make room for answers. With new Mathcad 3.0. the major new upgrade to the world's best-selling math software.
It's the all-in-one solution with a singular purpose: to put results in your hands as quickly and thoroughly as possible.
New Mathead is a workhorse that handles everything from simple sums to matrix manipulation. Effortessly. naturally
Simply type your calculations into the live document just like you'd write them on paper. And let Mathead do the work for you. It performs the calculations. Graphs in 2-D or 3-D. Autonatically updates results each time you change a variable. And prints out presentation quality documents. complete with equations in real math notation, even scanned-in graphics.
Newly upgraded Mathcad $3 .()$ now has Electronic Handbook's for instant atcess to hundreds of standard formulas. useful data. even entire
calculations. Just click and paste them from a hypertext window into your documents and they are ready to use. When you need to simplify a formula, Mathcad's symbolic calculation capabilities are available with a simple menu clich. There's no arcane programming language to learn. so you can do integrals, Taylor series, infinite sums. and more-all with point and click simplicity. The symbolic answer can be used. for both numerical calculations or further symbolic transformation. You'll also find improved equation eduing. enhanced graphing features. and more documentation options. So why waste time working with problems? Join the 150,000 users that get results-with Mathcad. - New easy to learn and use Microsoft Windows 3.0 interface - New casy to use symbolic calculations - New Electronic Handbooks with hundreds of built-in solutions

- Optional Applications Packs with adajtable templates for Electrical. Mechanical. Civil and Chemical Engineering. Numerical Methods. Advanced Maths, and Statistic:
- Improved presentation-quality documentation

- PC DOS, Macintosh ${ }^{\text {- }}$ - and

Unıx ${ }^{\text {n }}$ versions also available

For more information, a FREE Mathcad demo pack, or to place an order call or fax Adept Scientific-the authorised UK distribution and support centre for Mathcad from MathSofi Inc. Call today!

## (0462) 480055

Adept Scientific
6 Business Centre West Avenue One, Letchworth Herts. SG6 2HB, UK Tet: (0462) 480055
Fax: (0462) 480213
The answer is Mathcad

SCIENTIFIC
$\overline{7}$



Fig. 1. Two Burr-Brown ICs make a voltage source capable of swinging from +10 V to -10 V in one travel of a potentiometer. Accuracy is such that precision of voltage output is limited only by quality of the potentiometer.


Fig. 2. This circuit is on the same lines as that in Fig. 1, but drives high-capacitance loads. Since the INA 105 does not allow access to its non-inverting input, an OPA27 is used in its place.
an OPA27 is used (a special version of the INA 105 with this feature - the $2 A 660$ - is available for high-volume production). Resistors $R_{I, 2}$ should be well matehed for precision and. since output current flows in
$R_{3}$. the op-amp output is increased for a given $V_{\text {out }}$, so the voltage across $R_{3}$ should be less than IV to prevent the amplifier out put approaching the supply rail. Application Bulletin 6, 1991.

Burr-Brown International Ltd, 1 Millfield
House, Woodshots Meadow, Wattord, Hertfordshire WD1 8YX. Telephone 0923 33837.

## Halogen lamp converter

ow voltage halogen lamps are increasing in popularity because of their high efficiency and better light when compared with standard incandescent-filament bulbs. But there is a need for $220 / 12 \mathrm{~V}$ converters A new range of bipolar power transistors from Motorola, the BulXXX series, handle the unexpectedly high powers needed for the job. See Application Notc EB407.
The diagram shows the basic circuit, which is effectively a standard half-bridge self-oscillating converter with a chopper frequency in the $25-40 \mathrm{kHz}$ range, depending on the core used in the transformer. No smoothing electrolytics are needed, since the lamp has a high thermal inertia.
Operating frequency is dependent on the saturable transformer $T_{1}$ :
$f=\left(V_{p} \times 10^{4}\right) /\left(4 \times B_{s} \times A \times N\right)$,
in which $f$ is the chopper frequency $(\mathrm{Hz})$, $V_{p}$ is the output transformer primary voltage, $B_{s}$ is $T_{l}$ core saturation flux in Tesla and $A$ is $T_{l}$ core CSA in $\mathrm{cm}^{2}$. Efficiency depends on keeping $f$ constant for a given output transformer and maintaining a $50 \%$ duty cycle, so that either the transistors should be matched or the circuit tuned during final test. Or, of course, use the
BuIXXX series, which are tightly controlled for $H_{f e}$, storage and fall times, and are designed for this application.

Resistor $R_{l}, C_{l}$ and the 32 V diac $\mathrm{D}_{4}$ with $R_{4}$ start the circuit. Diode $D_{1}$ eliminates imbalance between the transistor drives in steady state. Diodes $D_{2.3}$ avoid uncontrolled transistor conduction during transients and must withstand $400 \mathrm{~V} V_{\mathrm{ce}}$ (for a

200 V line) and give a fast turn-on
Since the lamps constitute a short when cold, the transistors have to cope with a large forward-bias safe operating area (FBSOA) for a short time. The application note points out that the basic circuit is not proof against shorts, a protection circuit being given.

Output transformer $T_{2}$ is a non-saturable type with a ferrite core for $25-45 \mathrm{kHz}$ working. Self-oscillation depends on the saturable-cored oscillator transformer $T_{1}$, which also has a ferrite core with a squarish $B / H$ curve for reliable saturation. Motorola says a toroid with high permeability factor is best. Details of transformer design are all in the note.
A Mac disk "SMPSanalysis", part num-
ber $D K 401 / D$, can be obtained from Motorola.
Motorola Ltd, European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes MK14 5BP. Telephone 0908614614.

Circuit of Motorola's 220/12V converter for low-voltage halogen lamps, using the new BULXXX series of high-power, closely controlled transistors. The input protection components $D z_{1,2}$ are for transient protection and the line filter prevents RFI from the converter getting back to the line. The lower part of the circuit is the shortcircuit protector; $R_{5}$ senses current and turns on $Q_{3}$ if it exceeds its limit, thereby grounding the starting network. Capacitor $C_{8}$ delays this action to allow the lamp time to warm up.


## M \& B RADIO (LEEDS)

## THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

GENERAL TEST EQUIPMENT
Amber 4400A Multipurpose Audio Test Set Datalab DL. 1080 Programmable Transient Recorder
Genrad 1658 RLC Digibridge EMT422 Audio Threshold Monitor Systron Donner Dual PSU 0 to 40 volts 1 amp Gravitron HD05/5S Digital Scales Schaffner NSG430 Static Discharge Simulator Woelke ME 104C Wow and Flutter Meter Telonic TSM2 Rho Meter
Texscan CS76 460 to 960 Hz Sweep Generator Tektronix 521A PAL Vectorscopes Tektronix 1485 Video Waveform Monitor HP 5345 A Timer Counter HP 538180 MHz Counter HP 538180 MHz Freq Counter I watsu SC7 1041 GHz Freq Counter Racal 9904M Counter Timer Racal 9904M Counter Nimer Racal 99009 Mod Meters
Sayrosa 252 Automatic Mod Meter 2 GHz Bird 8201 Termaline 500 Wat Bird 8201 mm Auto Mod Mater Marconi 2950 RT Test Set
HP 5306 GPIB Multimeter/Counte HP 3478A LCD Digital Multimeter HP 3455A Hi Stability Digital Voltmeter GPIB HP 3400A True RMS Voltmeter HP 400 E Voltmeters
HP 400E Voltmeters
HP 432A Power Meter with Mount
Tektronix 576 Curve Tracer/172 Programmer Rank Kalee 1742 Wow Flutter Meter RFL 5950A Crystal Impedance Mete HP 3556A Posphometer
HP 8750A Storage Normalizer HP 6294A PSU 0 to 60 Volts 1 Amp

## £750

## Racal Dana 211 Logic Analyse <br> Racal/Dana Wide Band Level Meter 5002

Racal/Dana True RMS RF Level Meter 9303
SIGNAL GENERATORS
Farnell SSG1000 10 Hz to 1 GHz synthesised Farnell SSG 200010 Hz to 2 GHz synthesised arnell SSG520 AM/FM signal onerator Farnell TTS520 transmitter test set Farnell TTS 1000 transmitter test se Syncronizer 10 MHz to 520 MHz AM/FM signal generator
Marconi TF2015 signal generator
Marconi TF2016 10 Hz to 110 MHz AM/FM
€ 150
Marconi TF201 3A with rev' power trip
Philips PM 5224110 MHz
Sound Technology 1000A stereo generator Radiometer SMG1 stereo generator RS SHF 4.8 to 12.6 GHz signal generator Marconi TF2000 AF signal generator + mon' att

## RADIO EQUIPMENT

Racal RA1792 HF receivers
$£ 2000$
Racal MA1723 HF drive units
Plessey PR1553 receivers
Philips 88 MHz to 108 MHz 10 kW broadcas' TX $\quad £ 4500$
SPECTRUM ANALYSERS
HP 182T 8558 E 1 to 1500 MHz (as new)
HP 141 T Complete with 8554 B 1250 MHz Analyser
8553 B 1 kHz to 110 MHz Analyser and 8552 B IF
Section (as new condition)
HP 8555A 10 MHz to 18 GHz Analyser Plugin brand
new
HP 8592 A 50 KHz to 22 GHz Portable Analvser
HP 8406A Comb Generator £4500
HP 3582A Dynamic Signal Analyser

Marconi TF2371/1 110 MHz Spectrum Analyser £1650 Wayne Kerr RA200 Audio Response Analyser $\quad £ 450$

OSCILLOSCOPES
Tektrorux 2455250 MHz four-trace portable $£ 1650$
Tektronix 2445 A 150 MHz four-channel $£ 1500$
Tektronıx 5223 digitizing oscilloscope $£ 950$
Nicolet 4094A digital oscilloscope $\quad € 1000$
Farnell JTS 12 digital storage oscilloscope $£ 300$
Philips 321750 MHz (as new)
Philips 324450 MHz four-trace
hilips 323410 MHz storage
Philips 323210 MHz true dual trace
Gould OS 30020 MHz dual trace
Telequipment D8350MHz
Telequipment D755 50 MHz dual trace
HP 1703A storage oscilloscope
HP $1727 A 275 \mathrm{MHz}$ storage oscilloscope
Tektronix 647100 MHz dual trace
Tektronix T922R rack mounting
Cossor CDU 15035 MHz dual trace

## SPECIAL OFFERS

f. 2300
$€ 3000$
AVO 8 multimeters (Testset No.1) inc. case and
leads Clare V158 electrical safety testers Ferrograph RTS2 tape recorder testset Farnell TOPS 1 PSU
yons PG73A pulse generators
hilios PM2521 automatic multimers
Farnell C2 power supplies 0 to 30 volts 2 amps dual

Tektıonix DM501 DVM + TM501 frame | £95 |
| :--- |
| 150 |

Telequipment DM63 50MHz 4-trace storage
os:illoscope

## £25

£ 100
£125 125 £95
£ 75 £145
€4000

# ALL PRICES PLUS VAT AND CARRIAGE 86 Bishopsgate Street, Leeds LS 1 4BB Tel: 0532435649 Fax: (0532) 426881 

## CIRCLENO. 132 ON REPIY CARD

## SADELTA SIGNAL STRENGTH METERS FROM B.K. ELECTRONICS

The Sadelta Field Strength Meters have been designed to facilitate the dish alignment of satellite TV systems and aerial alignment of VHF/UHF television and radio systems. Signal levels can be accurately measured on the TC402-C and the TC90, allowing the evaluation of signal conditions for satisfactory operation. Both models have a clear LCD direct frequency readout, coupled multiturn tuning control enabling precise channel identification.
TC402-C VHF \& UHF
FEATURES
Three bands:
Low VHF: $45-170 \mathrm{MH}$
Low VHF: $45-170 \mathrm{MHz}$
High VHF: $170-450 \mathrm{MHz}$
$\begin{array}{ll}\text { Righ } \\ \text { UHF: } & : 450-862 M H z\end{array}$

- Digital display for direct frequency readout.

Built-in monitor loudspeaker AM/FM.
Signal measurement from $20 \mu \mathrm{~V}$ to 3 V
Powered by elght 1.5 V AA batterles.
Fully portable with sturdy carrying case.
Price $\mathbf{5} 259.00+$ E45.33 V.A.T
TC90 VHF-UHF- SAT.


FEATURES
Flve bands: $\mathbf{L o w}$ VHF : $\mathbf{5 5}-110 \mathrm{MHz}$

High VHF : $110-300 \mathrm{MHz}$ Hyper VHF: $300-470 \mathrm{MHz}$ | VHF |
| :--- |
| Satellite |
| $: 950-862 \mathrm{MHz}$ | Satelilte : $950-1750 \mathrm{MHz}$ Digital display for direct frequency readout. Signal measurement VHF/UHF $20 \mu \mathrm{~V}$ to 3 V Signal measurement satellite .700 Bm to -10dBm.

Audible indication of satellite signal level. (not satelilite).
Powered by rechargable battery
Price 5499.80 + $\mathbf{5 8 7} .47$ V.A.T. (complete with charger $220 / 240 \mathrm{VAC}$ ) Fully portable with sturdy carry case.
U.K. POST PAID, export enquirtes welcome. Visa/Access or cheque with order, payable B. K. Electronics. Officlal Ordera welcome from Govt. Depts., colleges, fore range. Credit card ordera are accepted by 'phone, fax or post.

# Scalar analyser gives measured returns 



> Stephen Gledhill explains how sweep oscillators built around scalar analysers provide a powerful system for analysis of microwave devices.

Evalualion of microwave components and sub systems such as titters. amplifiers. mixers, attenuators. limiters. cables anc waveguides often requires measurement of freyuency response.

Measurements can be made with just a sig nal generator and a power meter, where signa generator output is set to a number of ditierent frequencies and the power meter reading is noted at each point.

But line details such as a dip in the passband of a filter might be missed if the filter frequency response is only measured at a small number of discrete points. Increasing the resolution and meastiring the response at many more points captures the fine delail but measurement takes a long time.

The sweep generator, or sweep oscilator. was developed to overcome this problem. automatically changing the output frequency

Fig. 1 Combining a sweeper and scalar analyser into a swept irequency measurement system.
so that frequency response and return loss could be rapidly measured at many points across the frequency band
Its old CRT-based X-Y display of response was simple but had a number of draw backs Accurate calibration of either level or frequency was difficult to achieve and the single or dual input limited the range of measurements that could be addressed.
More inputs were subsequently added to the signal processing and display systems, and processing power was used to help with operation and calibration... and the scalar analyser was born.
Now, with ingenuity and extra software for signal processing and analysis, the sealar analyser is a powertul analytical tool. Modern scalar analysers have marker facilities and a colour display to ensure ease of use. Measurements are speeded up by directly controlling the associated sweeper so that settings need only need be entered on one instrument heyboard (Fig. 1).

## Insertion loss or gain measurements

The most obvious way 10 measure insertion loss or gain of a device under test (DUT) is simply to connect is hetween the output of the sweeper and a delector. Before inserting the DUT. a zero reference must be established by connecting the detector directly to the sweeper, removing effects of system frequency response errors. But the method is not very clcgant. and amplitude changes in output of the sweep generator and mismatch errors calused by the sweep generator, cables and connectors affeet measurement accuracy. Two detectors, used to measure both incident and


Fig. 2. Iwo detectors are used to measure incident and transmitted power.
transmitted power, will overcome these problems.

A power splitter divides the sweep generator signal between the DUT input and the detector - known as the reference detector. The signal from the detector is connected to one input of the scalar analyser (input A. Fig. 2) and the signal from the second detector, measuring the transmitted power, is connected to another input (input B). The "A-B" arithmetic function in the scalar analyser gives a true display of insertion loss against frequency since it shows the ratio between incident and transmitted power.

The problem with this technique is that the dynamic range of the measurement is reduced by 6 dB because of the power lost in the splitter. But source match is significantly improved, minimising effects of mismatch uncertainty where the DUT has a poor match. For measurements in waveguide systems, directional couplers with lower insertion loss can be used but directional couplers can be limited in bandwidth.

## Return loss measurement

Return loss is a measure of the quality of a termination in terms of power refleeted bach compared to power absorbed by the termination. It is a very important measurement because power is wasted if source and load are not matched.
To determine return-loss, the incident and reflected signals must be measured; the ratio of the two signals, expressed in dB , is the return loss of the DUT.
Source match can also be expressed in other terms such as voltage standing wave ratio (VSWR) or reflection coefficient ( $\rho$ ). These units are just different watys of expressing

Fig. 3. In a return loss measurement set-up, three detectors are used to measure incident, transmitted and reflected power.


## Principle of operation

A scalar analyser system comprises a sweep generator, detector and scalar analyser RF and microwave sweep generators generally incorporate three basic blocks of a voltage tuned oscillator, ramp generator and linearising circuit.
The voltage tuned oscillator is the heart of a sweep generator and the generated frequency changes according to the voltage applied.
A ramp generator sweeps the frequency of the voltage controlled oscillator through a linearising circuit. As the ramp voltage increases so the output frequency from the voltage controlled oscillator also increases.
The linearising circuit modifies the voltage/frequency law of the voltage controlled oscillator so that linear frequency increments are obtaıned. In modern instruments the linearising and swerping is carried out using digital techniques.
Scalar analysers essentially consist of detectors, an $X-Y$ display and signal processing. The detectors used are crucial to accuracy of a system. Many advances have been made in their design - flatter frequency response, higher sensitivity and a better input return loss have been the chief enhancements. Other improvements include detectors with a very wide frequency range, a wider dynamic range and improved linearity. Temperature drift effects tave also been reduced in modern detectors by employing temperature correction.
The detector converts the signal at the output of the device under test to a DC voltage which can be applied to the $Y$ - or vertical-deflection input of the $X-Y$ display used to display the response. The same ramp generator that controls the voltage controlled oscillator in the sweep generator is also ted to the $X$ - or horizontal-deflection input of the $X$ - $Y$ display so that the spot on the display sweeps in synchronism with change in frequency.
source match and there is a direet mathematical relationship between them. Charts are available to convers between units!
The aritmentic mode of the sealar analyser is used when measuring return loss so that the display shows the true ratio of incident to reflected power irrespective of any changes of sweeper output power with frequency. Refleeted power from the input of the DLIT can be routed to the third detector of the scalar analyser (input C) by using a directional coupler which (theoretically) outputs signals flowing in one direction and ignores signals in the opposite direction.

An altenative to using a directional coupler is to use a return loss bridge or"autotester" (Fig. 3). The bridge is contparable to a Wheatstone bridge: if the termination of the device being measured is exactly 5082 then it is balanced and there is no difference signal across the arms of the bridge. $A$ detector in the antotester gives a DC signal proportional to the deviation from $50 \Omega$ - a large detected signal indicates a poor matel.

To carry out a return loss measurement, a zero return lows reference point must be established. The calibration reference is produced by liast comecting a short-circuit then an open-circuit in place of the device under test.

When a short-ciscuit or open-citcuit is presented, in theory, all the incident power is reflected back. The detected value of the reteeced power is routed to the scalar analyser and data representing the level of reflected signal vis frequency is held in the store as a calibration reference.

With the calibration reference established, the DUT is connected and a second plot of reflected signal against frequency is then obtained. The difference (in dB s) between the calibration reference data and the rellected

Fig. 4. Pin diode attenuator characterisation. A programmable stimulus port changes attenuation so that frequency response and retarn loss can be measured automatically at different attenuator values.


## Microwave sweeper implementation

Special techniques are needed to design a swept microwave oscillator able to cover a frequency range of greater than one octave; ie a ratio of $2: 1$ between the high frequency and low frequency ends. Wide frequency coverage is an increasingly important requirement for many measurement applications, and several techniques have been used to provide coverage. This has given rise to different types though all systems are based around yig (yttrium iron garnett) technology.
Heterodyne sweepers: A swept frequency oscillator is mixed with a fixed frequency oscil lator to increase the overall coverage. A $2-4 \mathrm{GHz}$ oscillator can be mixed with a 2 GHz signal to cover from 10 MHz to 2 GHz for example.

Harmonic multiplier sweepers: A swept oscillator drives a switched multiplier in synchronism with a tracking band-pass filter. Higher order harmonics of the basic oscillator are thus used to generate the higher frequencies. The tracking filter reduces sub-harmonic and unwanted harmonic signals.

A third way of extending the frequency range of a microwave sweeper is to use more than one swept oscillator. The figure shows a sweeper with three separate yig oscillators which are switched in sequentially. Signal purity is high as there are no sub-harmonics and harmonics can be kept to a very low level.
Some broadband sweepers cannot carry out narrowband sweeps on high $Q$ devices because their drift and inherent FM may be large in comparison to the narrow bandwidth of the narrowband device under test. Synthesised sweepers are used for such applications.
Sweepers have improved dramatically in recent years, in terms of both specification improvements and facilities available. They used to rely on the technique of a mainframe plus different frequency plug-ins - plug-ins were used because a wide frequency range could not be encompassed with a single unit and coverage was generally confined to one waveguide band.

Advances in oscillator design and development of high frequency connectors has meant that modern sweepers can cover from 10 MHz to 26.5 GHz or even 10 MHz to 40 GHz in one unit and in a single sweep. The advances have signalled the end of plug-in sweepers.
data is the return loss. Insertion loss and return loss measurements can thus be made simultaneously.

Fig. 5. Four traces show how the frequency response and attenuation vary - the programmable stimulus port automatically sets four attenuation settings.


Multiple oscillator sweeper, the technique used in the instrument in Fig. 1.

Modern scalar analysers can be programmed to set the stimulus voltages to a device under test so that an automatic plot of return loss and attenuation can be made for a variety of stimulus voltages (Fig. 4). Plotting the frequency response at a particular applied voltage (Fig. 5) clearly shows the attenuation values and reveals any frequency response differences.

## Power sweep

Many sweeper and scalar analyser systems incorporate a power sweep for evaluation of level-sensitive devices - analysis of gain linearity and gain compression of an amplifier for example.
Output power of the device under test will stop increasing linearly as the input power is raised above a certain level. To quantify this overload or "saturation" effect a 1 dB gain compression point is used, the point at which the gain drops by 1 dB from its nominal value.

Power sweeps are traditionally made at a fixed frequency, with the output power of the sweeper swept over a specified range and the detector showing how the output of the DUT changes. Such systems are useful but, ideally, gain compression needs to be measured at frequencies across the full range of the DUT.
Making the required number of measurements can be a laborious task. But many hours of manual measurements can be saved by using a computer program which controls the level of the sweeper across the band of interest and makes automatic gain compression mea-

## Scalar or vector network analysers

Scalar network analysers (SNAs) are sometimes confused with vector network analysers (VNAs) because although they both display the swept frequency responses of devices they do so in a different way.

A scalar network analyser measures amplitude only, while a network analyser measures and displays both amplitude and phase.

Determination of the phase response of devices is an essential measurement for certain applications. Group delay also needs to be determined - important to ensure the integrity of video and data signals through communications systems.

Network analysers are considerably more expensive than comparable scalar analyser systems and require use of precision calibration kits which can be cumbersome.Temperature changes can degrade measurement accuracy so limiting the environments and applications where a traditional network analyser can be used.

Unless phase information is essential a scalar network analyser is therefore the ideal measurement tool.


Fig. 6. For automatic gain compression measurement the $1 d B$ gain compression point is measured at a number of discrete frequency points and is plotted as a function of frequency.

Fig. 7. Time domain measurements are made by analysing the signal reflected back from a discontinuity.

Fig. 8. Typical time domain measurement display of return loss versus distance. Discontinuities are shown as a rapid deterioration of return loss.

surentents at up to 512 points. A comprehensive display of gain compression (Fig. 6) is a valuable asset to the designer of wideband microwave amplifiers.

## Time domain measurement

Faults in a component or cable (ie a transmission line) cause a poor return loss because incident signals are reflected. Fortunately, modern scalar analysers have much improved diagnostics, and by using additional integral computing power, characteristics of the reflected signal can be analysed, and the physical cistance of the fault deduced.
In measurement of distance to a fault (Fig. 7) a symmetrical power divider directs the signal from the sweep generator to both the cable under test and an amplitude detector.

If there is no fault in the cable under test then no signal will be reflected back to the detector. The scalar analyser will display a tlat response if perfectly terminated by an ideal cable.

A fault - an impedance discontinuity causes a signal to be reflected back to the detector. The reflected signal will have travelled from the divider, along the cable and back again, through the divider and to the detector. So two signals are received at the detector with a phase delay between them the delay related to the distance to the fault and propagation velocity.
As the frequency is swept, a ripple pattern would be displayed by the scalar analyser which must be decoded to reveal the information incorporated in it. The fault location information (Fig. 8) is derived by fast Fourier transform (FFT).

## References

1. "Datamate", Marconi Instruments Limited, St Albans.

## Acknowledgements

Thanks to my many colleagues who have given advice and assistance, especially Tim Pegg and Bryan Harber of Marconi Instruments, and Stuart Fox of Wavetek.

## REGULARS

## IETIERS

## Dangerous idea

R N Misra`s Circuit Ideal "Use a printer port for general $\mathrm{i} / \mathrm{O}^{*}(\mathrm{EW}+$ Wh. May 1992 ) is dangerous.

Standard printer ports for PCs do not use the 8255 PPl . Instead. they use a mix of LSS240 and L.S244 IC. in a hard-wired configuration.

To be fair. some early design attempts of PC compatibles did use the 8255 but this was often because machines were a rehash of $\mathrm{CP} / \mathrm{M}$ computers, introduced 10 get into the market quickly.

Problems lie with software writers who regularly bypass bios routines lo improve performance. If bios rules were aluays followed then printer ports could be anything required - the whole idea of bios in

## Dreaming of Western work

In 1977 I graduated from Kiev Polytechnic lnstitute and have since devoted all my spare time to the design of electronic equipment. I indulge in this work on my own because there are no electronic enterprises, design offices or competent specialists in my town.
Books and magazines are my only contact with the wide world of electronics.
Over the last two years I have designed an audio universal meter which I believe offers a unique possibility for comprehensive testing of professional electronic audio equipment.
But I have now arrived at the notion that all I have done will be useless if nobody has access to it. My dream is that my design will be manufactured for the benefit of all electronic investigators.
Are there any manufacturers out there that might be interested in my design? Katkov Vladimir
Ukraine
the first place.
To sell PCs in the real world, compatibility on both the hardware and software levels is a must - just ask owners of DEC Rainbow or other early $P C s$ if you have any doubts.

Unlike the 8255 PPI , the PC printer's interface is not programmable in any waly. Try to force data into a printer port and you will most likely damage it.

A PC printer port has inputs and 12 outputs. Many prople helieve you can input data into ports using a port read lacility. This facility is often used as part of a start-up diagnostic and printer port detection. In reality a read path (LS24-4) is comnected to the output path (L.S24()) for use as a wrap-test. The problem is that output chips are always enabled and any attempt to force data into the port will have to force an LSTTL output to change level - not recommended!
Now for the good news. It is, possible to read data into a parallel printer port. Some years ago I sold a real-time clock that was plugged into a printer port and transferred data one bit at a time. Currently. my company markets two products. a weather satellite decoder and an analogue interlate that transfer 4.8. 12 or 16 bit data through printer ports for consumers who don't want. or are unable. to modify host PCs. David V Goadby Pixel-Plus Developments Nuneaton

## Egyptian CFA update

Following MC Hately. FM Kabbary and BG Stewart's crossed lield antenna (CFA) article "CFA: working assumption? ${ }^{*}(E H+W W$. December 1990) I would like to inform your readers of our progress with using the CFA.
Experiments have continued since December 1990 and our CFA has been developed to withstand 60 kW RF power at medium frequency (a success presented at the IEE Icalp Conference in Aprit 1991).

Further developments in structure.

## Not pursuing a lost course

I have read with interest Phillip Darrington's article "Pursuing A Lost Course" (EW + WW, May 1992) in which he describes Heinz Lipschutz`s proposal for a radio navigational aid for use by aircraft. Darrington suggests that hat it been adopted when proposed in 1939 it would have had a major impact on Bomber Command's wartime operations and might indeed have affected the course of the war.

But, the article contains a number of misconceptions which I feel should be corrected.
Firstly, while in 1940 and 1941 Bomber Command certainly lacked accurate means of navigating to and finding its targets, this problem was solved by Robert Dippy's Gee and Alec Reeves" Oboe inventions, both of TRE and based al Swanage. These remarkable systems came into service in 1942 and were followed in 1943 by H2S, developed by Dee and Lovell, again at TRE. Later GH. was to join the armoury of navigational aids used by Bomber Command.

When the main bombing offensive commenced from 1942, these aids gave the Commander in Chief a good means of locating his targets with precision.

It is incorrect that Gee and Oboe were jammed after a some months and. as implied, of no further operational use.

True they were jammed, but various measures were rapidly developed to counter the jamming. Bomber Command and many American bomber groups were still using Gee as their main navigational aid at the end of the war and mobile Gee stations were sited far into Europe to provide cover over the battle areas.

Oboe operating from UK and Continental stations also continued to meet precision bombing needs of No 8 Pathfinder Group and American 9th Bomber Command.

GH was being employed against special industrial targets such as oil refineries and H2S was in full use for targets beyond Oboe range. From early 1942 until the and of the war Gee in addition to its primary lask of $e n$ route navigation provided an outstanding aid for return to base and indeed saved the lives of many hundreds of air crews returning in crippled planes under bad weather conditions.

As to whether the interesting proposal of Lipschutz would have provided a navigational aid equal to Gee one can only express doubt. It would have been subject to several errors common to D/F systems and very susceptible to jamming. Nevertheless it was, for its day, an ingenious invention of a young man working very much on his own. Whether Lipschutz, had he been encouraged. could have gone on to develop his further concept of inertial navigation to an engineered product in time to be used operationally during the war, is hard to judge. Bearing in mind problems that have had to be overcome in developing effective inertial systems it would have been a very formidable task with available technology of 1940.
Sir Edward Fennessy
Guildford
phasing unit and matching unit have all been carried out. satusfying the need for 25002 matching the transmitter and 3752 matehing the CFA. Equal power sharing of 30 kW through each feeder to $\mathbf{E}$ and D)
plates of the CFA has been achieved, obtained at in-circuit pure real resistance measured direetly at the input of each $E$ and D plate.

Progress has also continued on evaluation of coupling and


Station engineer Thab Hammouda with the Tanta CFA.
equivalent circuit impedance adding more proof to the CFA theory.
(Our or WW CFA is now being used successfully to transmit a regional radios service to the Midde Nile Delta and serves a population of 15 million within a 50 km radius around Tanta Citt. The ClFA has
delivered a much wider bandwidth than a 0.25 wavelength mant radiator. with cequal or better field strength $(6.3 \mathrm{~dB}$ at 90 km (istance).

Application to bong-wave
broadeast at high power up 10 250 kW is now under way to create a new I.W tranmission for upper Egypt.

We believe our work is part of the new age of antemas which will lead to a major change in configuration of broadcast transmitting centres, especially in the medium and fong wave range.

## Mahmoud Khattab

Fgyptian Rerdio and Television Union Cairo

## DIY pollution

I would like to raise the issue of dusk to dawn dimmer lamps now available at DIY and hardware stores.
Engineers are aware of all the serious electromagnetic pollution that resulls from use of
unsuppressied, no-zero AC switching. Yet here we have a product available to the untrained that is capable of transmitting horrendous, spark-like, wide band interference.

The devices are not large enolgh fo contain the suppression necessary for comection to long lengths of outdoor cable. and untrained people installing them are unlikely to be aware of switching transtents. Nor
will they realise the necessity of live plus neutral wire runs, to prevent radiating electromagnetic field loop development.

The problem is, potentially, even more serious.

Suppose that the dimmer is incorrectly installed. then we end up with interacting noises on the domestic mains.

It is already too late for me, I'm surrounded by active DIYers. My mains receivers buzz all night, and portables will pull weaker stations only when away from all electrical wiring. My entire home is full of other people's RF pollution: the worst appears between $40-50 \mathrm{kHz}$ and $400-500 \mathrm{kHz}$. but also through the broadeast band and I have even observed it at up to 4 MHz .

I do not blame the purchasers, shops, manufacturers. electricity companies, but simply ask who is responsible for testing the goods prior to sale. and what can I do about the EMP now permeating my home"?

I fear the situation will only worsen as sales increase.

## Graham Maynard

Newtownabbey
N. Ireland

## Coherer anomaly

In my article "The Coherer: preparing the way for wireless" ( $E W+W W$. March 1992) I, like most historians. restricted myself to saying that coherer technology is still not quite clear.

But some important acts relating to this issue were established as early as the 1890s by Popov and Marconi themselves. Both inventors found that their receivers acted even when placed in a "perfectly closed metallic box" (Popov's receiver was housed in a case of galvanised iron ${ }^{2}$ ).

Preece called this an "apparent anomaly". In both Popov"s and Marconi"s receivers. one coherer's lead extended outward from the metal case to allow comection to an aerial.

Thus, lihe any other detector type (diode or transistor), coherers respond to electrical signals. So it is essentially a varistor. its quiescent point being set in the vicinity of the kink in currentvoltage charateristic. at about threshold voltage.

The figure shows an idealised /
vs $U$ curve of coherer tand varistor). illustrating the detection process.

As a typically SiC - or Zn -based ceramic component used chiefly for protection of electrical and electronic equipment against overvoltages. the varistor is a favourite object of study for physicists since its disordered structure features the interesting conduction mechanism involving electronic tunnelling across grain boundaries, and percolation. Reseatrch results obtained are valid for both varistor and coherer.

The necessity to give the coherer a light concussion upon its response to a wave means too strong a signal results in device degradation, concussion restoring initial. non-degraded structure of the powder material.

But questions still remain open and perhaps it is time a modern study on coherers is made. Leonid N Kryzhanovsky
Popov Central Museum of Communications St Petershurg

## References

1. Preece, Signalling through space without wires, The
Electrician. June 11, 1897, Vol 39.
pp.216-218.
2. AS Popov, An instrument for
the detection and registration of electrical oscillations, Journal of the Russia Physico-Chemical Society. 1896, Vol.28, o. 1 Physics Part, pp.1-14.


Signal detection by a coherer: $t=$ time; $U_{o}=$ bias voltage; $u=$ signal voltage across coherer; $i=o u t p u t$ current

## Einstein's suspect theories

Paul Dunnet's letter ( $E W+W W$. December 1991) points out that conclusions fronı Mickelson and Morley's ether drift measurements of 1887 are debatable, but are often quoted as proof of Einstein's speed-of-light postulate

Contradictory results obtained by these scientists and Miller in 1924, are not even mentioned in most textbooks.

Sagnac's 1913 paper
"Experimental proof of the reality of the ether" is rarely mentioned but some books do admit his results are in accordance with non-relativistic theory.

The same sad story of misreporting applies to 1919 measurements of star-light deflection by the Sun. Described as a crucial test of GR theory, results appear to be "cooked", to support Einstein's rather than Newton's theory of gravitation.

Surely, it is imperative that engineering students are not misled by suspect theories supported by falsified experiment results carried out half a century ago.I sometimes wonder if research funds presently used to bolster up Einstein's theories, by searching for gravity waves, black holes, exotic particles and evolving galaxies, would be better spent repeating suspect experiments with modern electronic equipment.
Validity of Einstein’s postulates could be checked using state-of-theart pulsed lasers and electronic counters which permit accurate speed-of-light experiments. suggested by Ove Tedenstig's letter ( $E W+W W$, November 1991).
Unfortunately, the deafening silence of Academia on such matters suggests they prefer to conserve. rather than expand, the existing Body of Knowledge.
I could be wrong, of course!

## John Ferguson

Camberley

## Relative <br> clarification

Some points in John Ferguson's letter "Ether or no" $(E W+W W$. December 1991), and other such letters require clarification.
Firstly, general relativity does not require photons to have mass to interact with a gravitational field. General relativity predicts that light rays should be deviated by

## Class-A push-pull amplifier changes

You published my circuit idea "Class-A push-pull amplifier" ( $E W+W W$, October 1991).
The design aim was to provide a circuit with a performance comparable to a pure class-A amplifier, but with better efficiency.

Upon return to the circuit diagram, I realise that two changes could be made to the amplifier's output stage and there were a few
(forgivable) typography errors. The output stage involves an addition of six components ( $R_{24}$, $R_{25}, R_{26}, R_{27}, C_{8}$ and $C_{9}$ ) to the circuit, as this will give the output stage some voltage gain, providing a lager output voltage swing. $C_{8}$ and $C_{9}$ reduce DC voltage gain to unity.

Cascode connecting $\mathrm{Tr}_{1}$ to $\mathrm{Tr}_{2}$ and $T r_{3}$ to $T r_{4}$ may improve high frequency circuit performance.

The figure shows revised circuit output stages. All other circuit details remain unchanged.

Circuit performance is unknown to me. I haven't actually built it yet due to lack of time and resources. Others are invited to build and test the circuit (with or without modified output stage) if they wish to do so.
W O Richards
London

traversing curved space caused by a nearby mass. Relativity, therefore, is consistent in this regard.

Secondly, one does not have to assume photons have mass to apply laws of conservation of linear momentum, merely that they have an intrinsic momentunı. Also, it transpires it is not merely ordinary momentum which is conserved in relativistic collisions, but fourmomentum ( $E / c^{2}, \mathrm{pl}^{2}, \mathrm{p}^{2}, \mathrm{p} 3$ ), as confirmed regularly at
establishments such as Cern.
With regard to recent submissions on Doppler shifting of light frequency, perhaps after agreeing with Frank La Tella’s statement (EW + WW. June 1991), that common
sense is not based on situations where relativistic correction is noticeable, it is unwise to say that additions of velocities of incoming wave-fronts and observer is, consistent with common sense.

Addition of an observer's velocity to that of the radiation is not consistent with Maxwell's theory This theory explicitly states that velocity of electromagnetic radiation in vacuo is given by $c=1 / \vee \mu_{1}, \varepsilon_{0}$ which is constant and independent of observer velocity. Maxwell's theory is consistent with Einstein's theory of relativity but not common sense Galilean relativity which allows us to add velocities to that of light. (This inconsistency prompted

Einstein to formulate his theory of relativity)

Details of experimental confirmations of this first postulate of Special Relativity (velocity of light is the same in all frames of reference) are given in most basic physics texts; eg. Halliday and Resnick.
Correctness of Special Relativity hinges only on this postulate and second postulate which states there are no privileged inertial frames of reference - all observers have possibly different, but equally valid. views of the universe.
Absolute validity of relativity is not certain. Inconsistencies between aspects of quantum physics and
relativity may have to be resolved by adjustment to either or both theories. But, it is certain Newtonian mechanics is not an adequate description of the physical universe. There are experiments which unequivocally show Newtonian mechanics are inadequate at high speeds and energies. whereas no experiments as yet have invalidated relativity. A Myles and C Higgs Edinburgh

## Filter questions ...and answers

Prof Grundy's idea for a zero-phaseshift low-pass filter is fatally flawed. Grundy states that his filter's response of the form $1 /\left(1+\omega^{2}\right)^{N}$ has no phase shift associated with it.

The received wisdom is that any realisable filter must inevitably cause a phase shift: so is the received wisdom at fault or has prof Grundy missed something? The answer lies in the time domain response of a filter with the proposed response. and the easiest way to get there is via the $s$ plane.

Take the simplest case, where $\mathrm{N}=$ 1. To get into the $s$ plane from the frequency domain, make $\omega=s / j$ :

$$
\begin{aligned}
\frac{1}{1+\omega^{2}} & =\frac{1}{1-s^{2}}=\frac{-1}{(s+1)(s-1)} \\
& =\frac{1}{2}\left[\frac{1}{s+1}-\frac{1}{s-1}\right]
\end{aligned}
$$

Now look up a table of Laplace transform pairs - impulse response of the above $=0.5\left(e^{-1}-e^{1}\right)$. So the circuit is unstable and the response goes to infinity as time $t$ goes to infinity.

This highlights the comment about realisable filter responses. Theoretically, prof Grundy's response can be synthesised. But practically it is simultaneously an unobtainable and useless response. because it means an impulse would cause the filter output to rise indefinitely.

There is a further difficulty associated with the, admittedly ingenious, proposed method of analogue processing (assuming it is utilised to produce realisable responses). The synthesis involves raising analogue signals to a power; the means of carrying out this procedure involves taking the log of an $A C$ signal. However $A C$ signals keep going through zero, and so taking logs is a process that can only be approximated since the $\log$ of
zero is minus infinity.
The result of this approximation will be some sort of crossover distortion. Also, since the logantilog processing is carried out continuously. then any nonlinearities in the process will show up as waveform distortion.
Commercially available log converters can manage a linearity of about $\pm 0.2 \mathrm{~dB}$ and this represents a waveform envelope error of $2 \%$ hardly acceptable for audio. No doubt this could be improved , but even so. dynamic range would be a problem.

Since it does appear that this scheme could be used to synthesise realisable filters. perhaps Grundy could be persuaded to comment on how the waveform distortion problems might be addressed, and any practical results obtained.

## Brian Pollard

Watford
Prof David Grundy appears to have misunderstood the basic principles of filtering.

It is impossible to produce real time filters exhibiting zero phase shift, whether implemented digitally, by analogue techniques, or by any other means. The problem lies not with the implementation but with basic mathematics.
Impulse response for a zero phase shift low pass filter can be shown to be a sync function $(\sin t / x)$ centred on $t=0$. This is convolved across the input waveform to produce the filtered output waveform. Since part of the impulse response occurs betore $t=0$, it follows that part of the filter output must also precede the input - clearly impossitle for any filter operating in the time domain. Such a filter is neither causal, nor can be physically realised. Similar arguments also apply to bandpass and highpass filters.

It is possible to produce FIR (finite impulse response) filters with a true, linear-phase constant-delay characteristic. It is also possible to produce analogue approximations to linear phase filters; eg Bessel maximally flat delay types. equiripple linear phase types, or even finite time averaging filters which are not only linear phase but also FIR approximations..

It is also possible to produce true zero phase shift filters when all the information is available simultaneously, as in image processing. Such filters do not operate in the time domain, and so do not violate causality.

Should prof Grundy prove me wrong by producing a practical circuit with oscilloscope traces showing it predicting its own input (as well as taking the log of a negative quantity as in Figs. I and 3 of his article) I shall be the first to offer an apology, and use his circuits for compensating infinitely accurate control loops with none of the nasty destabilising phase shifts which have plagued control engineers for the last century.
Alternatively I shall give up electronics altogether, and use his circuit to predict the Stock Market.

## John D Yewen

 BedsMay I be the first to congratulate David Grundy on his ingenious April Fool article "Structured analogue design builds perfect filters" ( $E W+W W$, May 1992)

Firstly the logarithm of a negative number does not exist, so only positive half-cycles can be processed. Any attempt to take logarithms of positive and negative half-cycles separately may work on some simple waveforms but will not work in the general case.

Secondly, replacement of logantilog by a divider circuit will not work for $A C$ inputs because division by 0 will be encountered. The topology is also prone to component tolerance problems.
Stability and noise problems mean nobody in their right mind desigus a circuit or system that includes a differentiation function.

Replacement of differentiators by integrators yields DC operating condition problems - but these may be overcome in filters containing damping terms.

## Mike Rogers

Cheltenham Spa
David Grundy responds. .
First of all I should say that my interest in filters is for audio applications and all my work has been involved in considering sinusoidal signals. So my interest in zero phase shift is concerned largely with the facility this gives of combining. for example, the output of a low pass filter and its input to produce a high pass, and if needed cascading this with a low pass to produce a band pass (Fig. 3 in my article).
Zero phase shift: I have looked at the output from this type of filter and compared it with its input on an oscilloscope, and I can assure readers that there is no discernible phase shift. Indeed if there were. the
calculation simply would not work.
The reason there is no phase shift is that all input frequencies are shifted through $360^{\circ}$. My preoccupation is with collections of sine waves and moving $360^{\circ}$ along a sine wave is getting back to where you started. I recognise that this is a feature of a periodic signal, but that is my interest.
Impulse testing: I cannot comment on the impulse testing point since $I$ have not undertaken this type of measurement. The limited squarewave testing that I have carried out shows the output to be square with obviously "rounded" edges and no discernible overshoot.
Raising signals to a power: the log of zero is minus infinity as stated. But since real silicon junctions are involved the current never goes to zero due to presence of the saturation current which although small is finite.

The logarithm of a negative quality does not present any problem because the logarithmic circuitry is designed to operate in all the quadrants required - clearly a design detail.
Distortion: the distortion acceptable for audio is dependent on the application. The largest market for speech filtering is, of course, communication where demands on distortion are obviously not as great as for high fidelity. In my experience I feel that the $2 \%$ envelope distortion mentioned is pessimistic and there are obviously techniques for improving this. In the particular system under discussion, since the log and antilog procedures are carried out by the same junction construction, the absolute performance of either is not so significant in this context.
Realisable filters: though still early days I have produced filters of this type of 9th order and measured them on the bench with sinusoidal input (including two separate sources). I have found them to behave as per the mathematics in the article. The problems I have experienced have been more to do with aspects such as limited slew rates of available amplifiers, rather than fundamentals.
Practical circuits: these have already been built and for sinusoidal inputs behave in line with the mathematics outlines.

In conclusion I would once again state that the applications I envisaged for this type of filter were * primarily for continuous periodic signals, as in communications. and not for control systems.
David Grundy

## RF CONNECTIONS

# NOWALKOVERFOR RADIO ATWARC 92 

> As Warcs go, the 92 world administrative radio conference had a fairly restricted agenda. It was mainly concerned with wresting spectrum for emerging technologies away from existing users. But as Pat Hawker and Peter Willis report, the debate was far from battle-free.

The World Administrative Radio Conference 1992 (Warc-92) ended after four weeks of protracted, confused and often heated debate in Malaga. But the feeling is that for the UK the outcome was good - though the many complex footnotes added to the ITU's Radio Regulations may take a decade to interpret and assimilate.
The UK made no specific proposals of its own but prepared its stance in close cooperation with the European Cept, with additional support from EBU, ESA, etc. Cept's main proposals were accepted, though with modifications made to the suggested frequency allocations and some reservations over the form of large numbers of additional footnotes.

A last-minute all-night meeting was required before the final acts were agreed by the national delegations, which at one stage comprised some 1400 delegates from over 125 countries.
Unlike Ware-79, at which the entire international table of frequency allocations was reviewed, Warc-92 revolved around a limited agenda, though this covered important aspects of the broadcast, mobilesatellite and mobile-terrestrial services, all of which have been seeking additional spectrum.
Decisions taken at Warc open the way for several important new radio services. These include allocations for wideband HDTV and digital audio broadcasting (dab) from space, providing, for the first time, frequencies for

Astra $1 B$ under construction: Warc 92 looked at future operation of satellite broadcasting

non-geostationary and low earth orbiting satellites.

For digital audio broadcasting, the 1452 1492 MHz hand was allocated - against the wishes of the UK and Europe which were pressing for the 2.6 GHz area. But the service will be restricted to secondary status - meaning existing services will have priority - until 2007.
For more than a decade, there has been demand for significant additional frequencies for HF broadcasting, sought primarily at the expense of the fixed (point-to-point) services transferred to satellite. This demand continued to be strongly resisted by the developing countries for whom HF is still regarded as an essential low-cost service under national control.

In the event. 790 kHz has heen added to the broadeast service: 590 kHz between 10 and 30 MHz but only 200 kHz below 10 MHz (the most congested part of the HF spectrum).

## Single sideband reservations

Restrictions on the use of the tropical bands have been maintained. The additional frequencies will not become available until I April 2007 and then only for the SSB (reduced carrier) mode.

A recommendation has been made that all HF broadcasting should be changed from double to single sideband before the present mandatory date of 31 December 2015. It is no secret that some major broadcasters, including the BBC , are concerned at the high cost - and possible loss of audience of converting to SSB unless and until assured that really low-cos1 SSB receivers are available. To date, consumer receivers suitable for SSB are priced well beyond mass audiences in many developing countries.

Although UK/Cept proposed an allocation for the broadeast satellite service (BSS) around 2.6 GHz . Warc- 92 finally gave BSS 50 MHz of spectrum between 14.52 and 1492 MHz , with a planning conference to be held not later than 1998. In the UK, this allocation clashes with a considerable number of private fixed links and BSS will have only secondary (non-interfering) status until 2007. The USA and several other countries have footnotes providing for a BSS allocation around 2.6 GHz . The

1. $4.5 \mathrm{GH} \angle$ band will also be avalable for complementary lerrestrial broadeasting. A number of European countries. including the UK, have become concerned at the cost of digital audio broadeasting from a mon-geostationary satellite and are increasingly anxious to intiate muscam/coldm digital broadcasting as a terrestrial system at a relanively low VIfF frepuency. They are currently seeking a "parking" allowation, with a linture objective of digital-audio replacing FM in Band II. As a result of proposalis by Gemany and Spain. Ware-92 decided to recuest the Administrative Council of the ITU to include VHF terrestrial digital sound broadcasting in the agenda of a future radio administrative conlerence for Region 1 (and interested countries in Region 2). When the suggestion that it would be possible for the UK to utilise some part of either Band I or Band lif for terrestrial dab was put to Michatel Goddard (Radiocommunications Agency and leader of the $4(0$-strong UK delegation) he pointed to ministerial commitment to use the whole of these
"broalcans" bands for mobile communications and ancillary services. But ministerial commitment is lar from Holy Writ, and not all of Bands I and III have yed been handed over to the mobile services. The low-end of Band I could provide
national dab networks, not only for the UK but also for most European countries. It would then be possible to launch CD-quality digital sound broadcasting at an early date. at least in some areas and at relatively low cost.

Alhough it proved impossible :u Warc-9? to reach agreement on a unique worldwide allocation for wideband HDTV. Region 1 (Europe/Africa) and Region 3 (Asia/Australasia) have opted lor 21.422Gll, from 1 April 2007 (HDDTV services may be implemented in this band before then on the rasis of non-interference to existing services).
In compensation. FSS will gain access to 24.25 to $25.25 \mathrm{GH} \%$ with satellite leeder links in the range 27.5 to $30(\mathrm{GH} z$. Additionally, the 1977 Region 1 plans for 11.71012 .5 GHz . BSS will be reviewed at a luture administrative radio conference with the objective of improving spectrum use. maintaining cxisting services and providing for the needs of new countries.

This will not directly affect Astra and Eutelsat, where the proximity of satellites has created a potential for interference, since they are both on the adjacent FSS band. However, Astra has called for a similar review of orbital allocation, and the passing of this resolution could strengthen its case. Mobile satellite issues, according to Mr

Goddard, dominated much of the conference debate. The only European proposals were for a modest expansion of the existing mobile-satellite allocations in the short-term and for a substantial new allocation for beyond 2005 .

Low earth orbit proposals Ausiralia, Canada and the USA wanted significant provisions to be made for mobile-satellite services in the shorter term. In addition, the USA came to Ware-92 with an extensive list of proposals to accommodate low earth orbiting (leo) satellte systems for both below and above 1 GHz . It proved extremely difficult to reach agreement and the results are an inevitable compromise, representing some of the mosi complex regulations to have been produced by an ITU conference. The saleguards builtin to protect existing users (fixed links, mobile services, radio astromomy) may prove difficull, even impossible to surmount.

Civil leo systems are seen as offering scope for new services in the VHF/UHF band, including basic message communications and data on a store-andforward basis or in real-time for emergency operations, paging, position location, ete, in conjunction with lightweight (portable) lerminals in areas unserved or underserved

## FREE TO SUBSCRIBERS

## Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to subscribers only. Your ad will be placed in the first available issue.
This offer applies to private sales of electrical and electronic equipment only. Trade advertisers should call Pat Bunce on 0816528339
All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondance with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.


[^5]
## RF CONNETTIONS

by more conventional telecommunications systems.

A problem, however, is that a significant number of developing countries, which could benefit from the introduction of such systems, fear loss of national control over their internal and external communications.

Over 50 countries have subscribed to footnotes that appear to restrict severely the use of leosystems during satellite passes over their countries.

Leos operating below 1 GHz have been dubbed "little leos" and above IGHz "big leos", which would be suitable for mobile communications. Primary allocations. subject to the many footnotes, include 137$137.025 \mathrm{MHz}, 137.175-137.825 \mathrm{MHz}$ and 188-149.9MHz with secondary-status allocations at $137.025-137.175 \mathrm{MHz}$ and $137.825-1.38 \mathrm{MHz}$
A new worldwide primary allocation for the mobile satellite service (MSS) is 1610 1626.5 MIIz (earth-to-space) paired with $2483.5-2500 \mathrm{MHz}$, subject to the coordination procedure developed for nonGSO systems. Above 2GHz, new worldwide primary allocations for MSS, in effect from 1 January 2005, are 1980-2010MHz, 2170$2200 \mathrm{MHz}, 2500-2520 \mathrm{MHz}$ and 2670 2690 MHz .

For terrestrial mobile services, an upgrading to primary status will permit worldwide allocations suitable for FPLMTS
(the future public land mobile telecommunications systems often referred to as the 3 rd generation cellular service) in the band $1700-2690 \mathrm{MHz}$ - one of the main objectives sought by UK/Cept. 18852025 MHz and $2110-2200 \mathrm{MHz}$ will be available for the terrestrial components of FPLMTS, with sub-bands $1980-2010 \mathrm{MHz}$ and $2170-2200 \mathrm{MHz}$ allocated also to MSS and thus able to accommodate both terrestrial and space components of the FTS
Due at the beginning of the next century, they are expected to provide voice and nonvoice services, with global roaming capabilities, of especial use to areas with underdeveloped communications systems.

## Flying phones

Telephoning while travelling on a commercial airline will at last become possible following agreement on frequencies that will allow the introduction of APC services (aeronautical public correspondence for aircraft passengers) in the bands 1670 1675 MHz (aeronautical) and $1800-1805$ MHz (aircraft). Region 2 (Americas) will have APC initially in the bands 849-851 MHz and $894-896 \mathrm{MHz}$, meaning that some aircraft may have to carry two sets of equipment

Generally, it seems to be recognised that with the continuing development of broadband fibre-optic international cable
systems, the fixed satellite service (FSS) is likely to be used primarily for spur and mobile services with the bulk of traffic carried between the main hubs by fibre optics. Satellites remain the first choice for multi-point distribution.
With the design-life of satellites now in the order of 15 years, there is less scope for new generations of the established satellite systems, although the advantages and disadvantages of the transparent transponder concept versus on board processing (OBP) continue to attract attention.

Users stress the need to reduce further the cost of satellite communications, in both the earth and the space segments. This calls for improvement in spacecraft EIRP, power amplifier efficiency (both with travellingwave tubes and solid state), transponder linearity, and also antenna beam-shaping technology and polarisation-isolation performance
Mr Goddard, although clearly concerned at some aspects of this major conference, believes that although the overall results of Warc-92 are complex and far from perfect, they represent a major step forward in making provision for the number of new and expanding radio services, with the ground work laid for future planning: "Given the problems, complexities and threats, there is every reason to consider Warc-92 a success".

# Many Radio Amateurs and SWL's are puzzled. Just what are all those strange signals you can hear but not identify on the Short Wave Bands? A few of them such as CW, RTTY, Packet and Amtor you'll know - but what about the many other signals? 

Hoka Electronics have the answer! There are some well known CW/RTTY decoders with limited facilities and high prices, complete with expensive PROMS for upgrading etc., but then there is CODE3 from Hoka Electronics! It's up to you to make the choice - but it will be easy once you know more about Code3. Code3 works on any IBM-compatible computer with MS-DOS 2.0 or later and having at least 640k of RAM. The Code3 hardware includes a digital FSK Convertor unit with built-in 230 V ac power supply and RS232 cable, ready to use. You'll also get the best software ever made to decode all kinds of data transmissions. Code3 is the most sophisticated decoder available and the best news of all is that it only costs $\mathbf{£ 2 9 9}$ !
> - Morse - Manual/Auto speed follow. On screen WPM indicato RTTY/Baudot/Murray/TA2/CCITT2 plus all bit inversions - Sitor-CCIR 625/476-4, ARO, SBRS/CBRS FEC, NAVTEX atc - AX25 Packet with selective callsign monitoring, 300 Baud - Facsimile, all RPM/IOC (up to 16 shades at $1024 \times 768$ pixels) - Autospec - Mk's I and II with all known interleaves
> - DUP-ARQ Artrac - 125 Baud Simplex ARO
> - Twinplex - 100 Baud FFBC Simplex ARO
> - ASCII-CCITT 6, variable character lengths/parity

ARO6-90/98 - 200 Baud Simplex ARO

- SI-ARD/ARO-S - ARO 1000 simplex

SWED-ARO/ARO-SWE - CCIR 518 variant
ARO-E/ARQ 1000 Duplex
ARO-N - ARO1000 Duplex variant
ARO-E3 - CCIR 519 variant
ARO6-70-200 Baud Simplex ARO
POL-ARQ - 100 bsud Duplex ARO
TDM242/ARD-M2/M4-242 - CCIR 242 with 1/2/4 channels

TOM342/ARQ-M2/M4-CCIR 342.2 with $1 / 2 / 4$ channets

- FEC-A - FEC 100A/FEC10
- FEC-S - FEC1000 Simplay
- Sports info. - 300 Baud ASCM F7BC

Hellscreiber - Synch./Asynch
Sitor RAW - (Normal Sitor but without synchronisation)

- 77 BBN - 2-channel FDM RTTY

COMING SOON: Packtor

All the above modes are preset with the most commonly seen baudrate setting and number of channels which can be easily changed at will whilst decoding. Multi-channel systems display ALL channels on screen at the same time. Split screen with one window continually displaying channel control signal status e.g. Idle Alphas/Beta/RQ's etc., along with all system parameter settings e.g. Unshift on space, Shift on Space, multiple carriage returns inhibit, auto receiver drift compensation, printer on, system sub-mode. Any transmitted error correction information is used to minimise received errors. Baudot and Sitor both react correctly to third shift signals (e.g. Cyrillic) to generate ungarbled text unlike some other decoders which get 'stuck' in figures mode!

Six Options are currently available extra to the above standard specification as follows: 1) Oscilloscope. Displays frequency against time. Split screen storage/real time. Great for tuning and analysis. £29. 2) Piccolo Mk 6. British multi-tone system that only we can decode with a PCl £59. 3) Ascii Storage. Save to disc any decoded ascii text for later processing. £29. 4) Coquelet - French multi-tone system, again only on offer from Hoka! f59. 5) 4 Special ARQ and FEC systems i.e. TORG-10/11, ROU-FEC/RUM-FEC, HC-ARQ (ICRC) and HNG-FEC. £69. 6) Auto-classification. Why not let the PC tell YOU what the keying system is? £59.

## NEW VERSION 4.00 JUST RELEASED - Now with improved user interface and even more features!

Please add $£ 5$ to the above prices for Carriage by fully insured First Class postal delivery (default mode).
Cail or write for our comprehensive information leaflet - there is just not enough room here to tell you everything about Code3!
Professional users - please ask about our new CODE30 DSP unit available soon! (Piccolo down to -12dB S/N!!). Prices start from f1250


## A nation of project managers <br> have recently watched the complete closure of <br> everyone reports to at least two different

two sites near me belonging to large electronics companies, with many redundancies and transfers to other locations.

Job losses have extended across the board. Except, that is, in one department which seems to have escaped the cuts almost entirely - the project office.

What goes on in project offices? - it seems to be mainly massaging estimates and pert charts. and writing progress reports and attending meetings. Their existence is down to the exigencies of matrix management, where

# WHITE NOISE 

by Hot Carrier managers. one for technical matters and one for progress.

The drawback is that when things go wrong, most of the managers survive, with technical management being the usual scapegoat. The result is a company staffed almost entirely by project managers who long ago moved out of practical engineering. or who were never even in it.
Come the upturn. who will do the real engineering when the firm has been restructured to nothing?

## Developing an inadequacy

Flectronics companies continue to complain Ethat they are having difficulty recruiting good engineers, especially in analogue and RF techniques.
Shortage of RF engineers in particular is mainly due to the large demand from GSM/Dect/CT2/etc development and if it poses a problem now, this can only get worse. The root causes are twofold.

Universitics, polys and technical colleges are no longer teaching much analogue electronics. They are lured by the glamour (and comparative ease) of teaching digital, and avoid the difficulty and inconvenience of organising worthwhile practical analogue circuit lab experience.
In the past even where lab work was minimal, the shortcoming was more than made up for by students having an active hobby interest (and hence practical experience) in making circuits work. Even if they weren't into transmitting, they still aspired to make the ultimate communications receiver. Now they are likely
simply 10 go out and buy a Japanese 2 m handheld. In less affluent days, building homebrew equipment was the only way to get on the air

The shortage of RF engineers is good news for students: keep yourself technically up to date and be prepared to move house as desperate employens improve their offers.

But for the UK it is bad news. If products cannot be developed here then they will be developed overseas. Manufacturing is more likely to take place where the development is carried out rather than be transferred back to the UK.

We need a scheme where experienced development engineers are encouraged to spend a day a week at the local university clectronics department or technical college passing on their invaluable experience - practical experience which many lecturers often lack.
The government must step into fund such a scheme - in all our interests.

## Simple approach to advanced business efficiency

Spectrum, the Journal of the IEFE, contains a regular advertisement by GM Hughes Electronics detailing various notable advances made by the company. These are usually significant and well worth reading about. especially where they refer to technical developments in cemmunications. aircraft or space technology.
But sometimes the "advances" seem less impressive, especially where they do not relate to technical matters.

For instance, we learn that on a communications satellite programme.
substantial savings were achieved by replacing detailed inspection of incoming parts by verification of the critical parameters only. Also. determining which departments needed to sign off indixidual engineering drawings. eliminated unnecessary reviews by unaffected departments. As a development engineer, I was never responsible for organising such procedures in the companies where I worked. But the measures mentioned seem so obvious that doubtless all British companies have operated them since the earliest times... haven't they'?

## CLASSIFIED

## ARIICIES FOR SAIE

## PRODUCTION/A.TE SECOND USEREQUPMENT HUGE SAVINGS ${ }_{\text {pRices }}^{\text {ON }}$



COOKE INTERNATIONAL

## NEW EX DEMONSTRATION EQUIPMENT

Marconi 2871 Data Cammunication Analyser
Kane May Infratrace 1000
Kane May MK1202 Printer (Goes with Infratrace)
Norma D4155 Digital Wattmeter
CLEARANCE SALE
Ailtech 446 10/50 Watt Power Signal Source
with 196 a 197 Plug ins $200-1000 \mathrm{MHz}$
$-\quad £ 1200.00$
Bradley Oscilloscope Calibrator Type 192
£250.00
SPECIAL OFFER
Telequipment D83 Oscilloscope DC-50MHz with FREE Weir Minireg PSU 0-30V 0-1.5
Amps inclusive VAT and CARRIAGE All equipment is used unless stated and prices unless marked exclude VAT and carriage MUCH MORE AVAILABLE, VISIT, PHONE OR S.A.E. FOR LISTS COOKE INTERNATIONAL
Unit 4 Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex PO22 0EB TEL: 0243545111

FAX 0243542457

## TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES,
RECTIFIERS, THYRISTORS, etc. RESISTORS, CFF, MF, WW, etc CAPACITORS,
SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATECERAMICS, etc. ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, ETC ALL AT KNOCKOUT PRICES - Come and pay us a visit AL ADDIN'S CAVE

TELEPHONE 081445 0749/445 2713
R. HENSON LTD

21 Lodge Lane, North Finchley, London N12 8JG.
( 5 minutes from Tally Ho Corner)

## LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL <br> LARGE QUANTHES OF RADIO, TV AND

CLASSIFIED ADVERTISEMENT ORDER FORM

					6
1	2	3	4	5	
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30

TURN YOUR SURPLUS TRANSISTORS, ICS ETC, INTO CASH immediate settlement We also welcome the opportunity to quote for complete factory clearance Contact:
COLE:S-HARDING \& CO. 103 South Brink
Wisbech, Cambs PE14 0RJ.
STABLISHED OVER 15 YEARS
Buyers of Surplus inventory Tel: $0945584188 \quad$ Fax 0945475216

## GOLLEEDGE

CRYSTALS OSCILLATORS FILTERS Comprehensive stocks of standard items. Over 650 stock lines. Specials made to order
OEM support: design advice, prototype quant OEM support: design advice, prototype qu
ities, production schedules. Personal and export orders welcome. SAE for our GOLLEDGE ELECTRONICS TEI: 04607371

SPECIAL OFFERS	
ACE 350-litra Burn-in Oven	${ }_{\text {f } 2995}$
	${ }_{\text {¢2, }}^{\text {¢890 }}$
245 (New in Box)	
	c6,000
ON A	
ragi Sys	
621504	0
FSCHER Betascopa 870C With 25NGB2	
SCRE	
CC1 1214 Vapour Ph	
PHILPs 3320 250Ms/is	
NER	
TRoNIX	
NDELU	5495
OEL 2019 Sis	
Function generator	
RS NEWS Tel: 071-284 4074 (UK) Fax: 071-267 7363 (UK)   amden Street, London NW1 9PF	

Merriott, Somerset, TA16 5NS Fax: 046076340

Place a lineage advertisement in next months issue and it will cost, for a single insertion, only $£ 2.50$ per word

## Special rates:

6 insertion $£ 2.15$ per word/issue. (Advertisement can appear every month or every other month only) 12 insertions $£ 1.80$ per word/ issue. (Advertisement to run every month only).
WHY NOT PLACE A BOXED ADVERTISEMENT TO GIVE MAXIMUM IMPACT? $\rightarrow$

## Extras:

Spot Colour.
Lineage advertisements under $£ 50$ have to be pre-paid by credit card or cheque.

ALL RATES QUOTED ARE EXCLUSIVE OF VAT: All major credit cards accepted Please debit my card a total of $f$

Expiry Date:
Please ensure that address given is where your credit card statement goes to.
NAME.....
ADDRESS.

TEL NO.
$\qquad$

All advertisements must be received 5 weeks prior to publication date All cancellations must be received by 8 weeks prior to publication date after that. No advertisement can be cancelled.
Please send to Electronics World \& Wireless World, Classified, Room L329, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel: Pat Bunce on 081-652 8339.

## ARTICLES FOR SALE



Testing to special quality - Military/CV, Iow microphony etc available on request

## BILLINGTON EXPORT

Unit F2, Oakendene Industrial Estate. Near Horsham, Sussex RH138AZ. Cailers by appointment onlly.
Telephone: 0403865105 Fax: 3403865106
Min. UK order $£ 50$ + VAT. Min. Export order $£ 50+$ Carriage.

is the only magazine in Britain thal provides comprehensive up-10-date coverage of video and TV technology far boih the amaeur enthusiast and the frofessizal engineer So call our subscription: he ine today for your copy on 0789200255 - remembering to quote ref no. TV1.
SERVICING - VIDEO - SATELLITE • DEVELOPMENTS

##   <br>  <br>  <br>  <br> MOOEM CA.SE 9629. Sychronous 96000 bps fill dualen <br>  <br>    <br> All above tiems are used but are ia woiking orde and are offered with full <br> refund it inssatislaction lor any reasea All pnses exclude carrage and VaT. Pliase enquire - Wriêrawpone cant ime)  <br> ARTICIS WANIED

WANTED: VALVES, TRANSISTORS I.Cs (especially types KT66, K T88. PX4 ['X25). Also capacitors, anuque radios shop clearance considered. If possible send written list for offer by return Billington Valves. phone $0403 \quad 365105$ Fax: 0403865106 . Sec adjoining advert

## WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes,
PCB's, Plugs and Sockets Computers, Edge Connectors TOP PRICES PAID FOR A LL TYPES OF ELECTRONICS EQUIPMENT
A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 0438812193. Mobile: 0860 214302. Fax: 0438812387

STEWART OF READING 10 WYKEHAM ROAD READING, RG6 1PL
TEL: 073468041 FAX 0734351596
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

## WANTED

Test equipment, receivers, valves transmitters, components, cable and electronic scrap and quantity Prompt service and cash M \& B RADIO
86 Bishopgate Street, Leeds LS14BB
Tel: 0532435649
Fax: 053242688

## SERVICES

SERVICES OFFERED of an
ENGINEER
for installation, commissioning and maintenance UK overseas. Daily Rates.
MOBILE: 0831869788
TEL/FAX: 0333424797

SURPLUS MID BAND RADID EQUIPMENT SETS West Midlands Travel Limited invite offers for its surplus mobile radio equipment comprising approximately
800 W15 AM Westminster Radios, 700 MF6 AM Reporter Radios, 288 M293 AM Radios
Fixed Equipment comprising approximately 15 base stations operating on
BASE Tx 140 MHz
MOBILE Tx 107 MHz Channel Spacing 12.5 kHz MODULATION: Ampitude
All the equipment has been fully matntained by the manufacturer from its installation
Forms of tender may be obtained from
Mr. S. Evans - Purchasing Controlier West Midlands Travel Limited
© Summer Lane, Birmingham B19 3SE
Phone Number: 021622515
Fax Number: 0212121150
CLOSING DATE FOR APPLICATIONS 17 JULY 1992

## BOONS/ PUBLCAIIONS

COMPUTER BOOKS		E
Object Oriented Oesign	Grady 80och	2595
Dbject Oriented Sotware		
Construction	Bentrand Meyer	22.99
Object Oriented Design	Coad \& Yourdon	35.30
Object Oriented Analysis	$p$ Coad	22.95
Object Oriented Analysis	Coad \& Yourdon	36.40
$\mathrm{C}++$ Primer	Stanley Lippman	26.95
C++ Programming language	8jarne Stroustup	24.95
Eittel the Language	Bentrand Meyer	22.95
Postage \& Packing £1		
SAE for price lists of available computer books		
Books by mall order only		
APPLIED SOFTWARE EMGIMEERIMg		
Unit 17 Greenheys Business Centre		
10 Pencroft Way, Manchester M15 6JJ		

## FRRE PRIVIIE CLASSIFED

RACAL RA17L, Excellent Condition Cased, Spare set of valves. Full Manual £230 Tel: 053()-62565
COMPLETE SET OF WIRELESS ELECTRONICS WORID since 1953 1953-1969 in Bound Volumes. Mint Condition. Offers for Set. Tel: 1235 850724
GRAPHICS DIGITISER. CURSOR TYPE TDS HR48. Size AO. Links to an CAD System. Immaculate Motorised Raise/Lower Stand. Expensive New Offers. Tel: 0272-741918
HI-FI ENGINEER RETIRING IST JULY. Workshop Contents For Salc Instruments including Ferrograph RTS Spares. Manuals, Filing Cabinets Spares. Manuals, Filing
£l. (0) Tel: $0256-461923$
HAMEG PORTABLE SCOPF, HM207. 8 Meg 70 mm f60 Tel: 0702-522929
ELECTROHOME ECMI311 MONITOR. Source of Replacemen CRT Required. Please phone Mr Briggs on 0543-491867
SCHLUMBERGER 2721 Universa Counter, 200 MHz , Wide range of mea surements and processing. CRT display GPIB interface. excellent condition AOC. Jim (0252) 518538

This offer only applies to private sales of electrical and electronic equipment. All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service. We also reserve the right to reject adverts which do not fullil the terms of this offer.


CIRCIE NO. 138 ON REPIY CARD

## INDEX TO ADVERTISERS

21st Century Electronics .... 555
ABI Electronics Ltd .... Loose insert
Adept Scientific .............. 599
Anchor Surplus ............... 571
AOR (UK) Ltd ............... 548
Audio Electronics ............ 581
BK Electronics ................ 601
Blue Chip Technology ...... 543
Bull Electrical .................. 590
Citadel Products Ltd ........ IBC
Crash Barrier .................. 559
Dataman Designs ............ IFC
Display Electronics Ltd ..... 585
Halcyon Electronics ......... 565
Hoka Electronics (UK) ..... 612
ICE Technology Ltd ......... 581

PAGE
PAGE

ICOM (UK) Limited ........ 543
Integrated Measurement
Systems Ltd
560
IPK Broadcast Systems ..... 548
Johns Radio .................... 574
Kestral Electronic Components
Ltd
565
Keytronics ...................... 597
Labcenter Electronics ....... 595
Langrex Supplies Ltd ........ 553
Laplace Instruments ......... 578
M \& B Radio (Leeds) ....... 601
M Q P Electronics ............ 581
Maplin Electronics
OBC
Matmos Ltd
616

PAGE
Micro Amps Ltd ............. 551
Micro Circuit Engineering 537
National Instruments ........ 539
Number One Systems Ltd .. 535
Pico Technology .............. 553
Ralfe Electronics ............. 560
Satellite Solutions (UK)
Ltd ............................ 530
Seetrax Ltd....................... 555
Stewart of Reading ........... 555
Surrey Electronics Ltd ...... 543
TELEVISION ................. 615
Thurlby Thandar Ltd ........ 548
Time Electronics Ltd ........ 601
Tsien Ltd ....................... 565

[^6]
## TOTAL PROGRAMNIING SOLUTIONS FROM CITADEL




## ADAPTERS FOR THE PC82

From $£ 85.00$

- Extend programming facility for special devices
- Allows alternative socket types eg PLCC.
- Multi-gang adapters for fast programming of EPROMS, GAL, PAL and popular CPU types


## FEATURES ALL PROGRAMMERS

For the IBM PC, install the interface card and programming socket, load the menu-driven software and you have a complete design system at your fingertips. The programmers will run on any compatible IBM machines such as XT, AT, '286, '386 or '486. Whether it be an Amstrad or Compaq the system will work. All features are software-driven and supplied on $51 / 4^{\prime \prime}$ disks, these may be copied onto your hard disk using the DOS copy command. All control of the programmer, programme volt ages etc are menu-driven by selecting manufacture, type number, and selection of a suitable speed algorithm. Blank check, read \& modify, verify, programme, auto programme, security blow etc
FREE SOFTWARE UPDATES as new devices become available.

## FILE CONVERSION FACILITIES

- HEX to BIN File conversions for Intel, Motorola and Tektronics
2 way/4 way Bin file splitter for 16/32 bit data.
- Dumpfile to Console, modify and re-programme




## $\frac{\operatorname{sancharchic}}{\operatorname{lic}}$

## ORDER INFORMATION

Please include $£ 7$ for carriage by overnight courier ( $£ 20$ for exports) and VAT on all UK orders. ACCESS, VISA or CWO. Official orders welcome from Government bodies and local authorities.

CITADEL PRODUCTS LTD DEPT WW 50 HIGH STREET MIDDLESEX HA8 7EP


# Simply the best! 

THE VELLEMAN K4000. GUTSY \& GOOD LOOKING. SOUNDS GREAT! PRICE FOR PRICE, THE BEST VALUE, BEST SOUNDING, BESTLOOKING, STATE-OF-THE-ART, VALVE POWER AMPLIFIER KIT THAT'S AVAILABLE. VELLEMAN, SIMPIY THE BEST!

The Velleman name stands for quality, and the K4000 valve amplifier is supplied with everything you'll need to build it, including a 'Get-YouWorking' back-up service.

Delivering 95 watts in class A/B1, the K4000 is, without doubt, price for price, the best sounding, 'gutsiest', most handsome valve power amplifier kit available anywhere

A smooth top end, open mid range and deceptively powerful bass, give a tangible holographic sound stage. The massive, wide dynamic swing and overall sound quality means this amplifier loves music! - Any music!!
The full range of Velleman kits is available from Maplin Electronics, official appointed U.K. agents, including the Velleman K4000 (VE99H $£ 499.95$ (H), high performance valve power amplifier, (featured above). Prices of Velleman kits start from as low as £7.45 and all kits are manufactured to the same high standards and quality.
See the full range of Velleman kits in the 1992 Maplin Catalogue $£ 2.75$, or by post $£ 2.95$ (CA09K), or visit your local Maplin store. Credit Card Hotline 0702 554161. Mail Order to: P.O. Box 3, Rayleigh, Essex SS6 8LR

velleman
AVAILABLE FROM MAPLIN ELECTRONICS: OFFICIALLY APPOINTED U.K. AGENTS THE ONLY AGENT THAT GUARANTEES TO 'GET-YOU-WORKING


[^0]:    Electronics World + Wireless World is published monthly By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$. Orders. payments and general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telex:892984 REED BP G Cheques should be made payable to Reed Business Qublishing Group
    Publishing Group
    Newstrade: IPC Marketforce, 071 261-6745
    Subscriptions. Quadrant Subscription Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444441212 . Please notify a change of address. Subscription rates 1 year (normal rate) $£ 30$ UK and $£ 35$ outside UK.
    USA: \$116.00 aırmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42nd Street, NY 10117.
    Overseas advertising agents France and Belgium: Pierre Mussard, 1820 Place de la Madeleine, Paris 75008 . United States of America: Ray Barnes, Reed Business Publishing Lid, 205 E. 42nd Street. NY 10117. Telephone (212) 867-2080. Telex 23827.

    USA mailing agents: Mercury Airfreight Internatıonal Ltd Inc, 10 (b) Englehard Ave, Avenel NJ 07001 . 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
    ©Reed Business Publishing Ltd 1992 ISSN 09598330

[^1]:    Research Notes is written by John Wilson of the BBC World Service

[^2]:    iName/address/postcode

[^3]:    Listing 1. Extract from Basiz source-code for encoder
    100 DEFINT K-R
    300 'main loop; RB from encoder; K from keyboard 310 RTN=0: K=0 'reset at each main loop start 320 FOR M=0 TO 9
    330 FOR N=0 TO 10: IF INP; 438)>15 THEN RB=INP(438) ‘INP(438) reads encoder
    340 NEXT N 'input loop ends, with any encoder step saved in RB 350 IF RB>31 THEN RTN=RTN-1: GOTO 370 'anti-clockwise, bit C5 360 IF RB>15 THEN RTN=FiTN+1 'clockwise, bit C4
    $370 \mathrm{RB}=0$ 'reset RB after contributing to RTN
    $380 \mathrm{~K} \$=$ INKEY $\$$ : IF K\$<>"'" THEN K=ASC( $\mathrm{K} \$$ ) 'K saves any non-nul value 390 NEXT M 'end of ma $n$ loop

    630 IF RTN $<>0$ THEN RAC $=$ RAC + RTN 'accumulate + or - pulses in RAC
    640 IF RTN=0 AND RAC<>) THEN GOSUB 800: RAC=0 'change freq; reset RAC
    650 ' (statements follow to use K<>0, keyboard input)
    700 GOTO 300 'for a new main loop

[^4]:    Interfacing with C can be obtained from Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-652 3614.
    A disk containing all the example listings used in this book is available at $£ 25.50$ + VAT. Please specify size required.

[^5]:    Please send your completed forms to:
    Free Classified Offer: Electronics World, L333 Quadrant House, The Quadrant, Sutton Surrey SM2 5AS

[^6]:    Printed in Great Britain by Riverside Press, Gillingham, Kent, and typeset by Marlin Graphics, Sidcup, Kent DA14 5DT, for the proprietors, Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. (C) Reed Publishing Ltd 1992. Electronics and Wireless World can be obtained from the following: AUSTRALIA and NE Lt, QEALAND Gordon \& Gotch Ltd, NDIA: A.H. Wheeler \& Co, CANADA: The Wm Dawson Subscription Service Ltd.; Gordon \& Gotch Ltd., SOUTH AFRICA: Central News Agency Ltd.; William
    Dawson \& Sons (S.A.) Ltd.; UNITED STATES: Worldwide Media Services Inc., 115 East $23 r d$ Street, NEW YORK. N.Y. 10010 . USA. Electronics \& Wireless World S5.95 (74513).

