

Presentation graphics and analysis for technical users.

Your technical data requires more muscle and sophistication than basic graphics and ploting packages can provide. It's simply a matter of using the right tool for the job. In addition to publication-quality graphies you need powerful analysis cools and capabilities. such as Graftool`s \square Intelligent Data Cursor to read out data points on curves \& surfaces \quad Linear \& non-linear curvefitting © Unlimited 100 m \& rotation - Multiple axes in linear. log. or probability scales Advanced data handling. allowing over 268.000 .000 data points - Powerful scientific spreadsheer which can directly read your Lotus or ASCII files

- Unrestricted placement of graphs \& text - Direct compatibility with Microsoli Word \& WordPerfect.

With Graftool. all this power and flexibility are at your fingertips, while pop-up menus and push-buttons bring an case of use previously unheard of in technical graphics software.

GRAFTOOL - the right too! for your technical solutions. To get more information or to place an order call Adept Scientific today!

6 Business Centre West. Avenue One. Letchworth, Herts.. SG6 2HB Tel: $(0+62)+80055$ Fax: $(0+62)+80213$

CONTENTS

FEATURES

COVER: EXTRA

TERRESTRIAL RELAYS904
$E W+W W$ is 80 this year. To mark the occasion we reach into the archives to republish, in full, Arrhur C Clarke's seminal article whict laid the ground for modern thinking on satellites.

CROSS QUAD QUIZZING
.932
The linearised cross-quad can be used as a stable precision differential output voltage-to-current converter. Terrence Finnegan provides an operational analysis.

A GEM OF TECHNOLOGY?

\qquad . .936
Why is so much money being spent on replacing GaAs with diamond? Chris Robbins has the explanations.

CATCHING THE BUS
.944
Bus-based computing developed to get around the limitations of single chip systems. Rob Causey reports on limits imposed by the buses themselves.

SEMICONDUCTING CERAMICS . .963
New materials promise rechargeable batteries with virtually infinite recharge lives, says Rob Deverson.

STRUCTURED ANALOGUE ELECTRONICS.......... 965
David Grundy and Julian Raczkowicz promise easy chip building through standard hardware and software.

RDS ON THE ROAD
Commercial acceptance is still limited. but Philip
Darrington looks at RDS in practice.

DESIGN BRIEF: MEASURING DETECTORS. 976
RF level measurement looks deceptively simple. Ian Hickman outlines the circuit complexities.

REGULARS

\qquad
History is bunk?
UPDATE \qquad392

Training investment "a priority" says IEE president, CT-2: a dead line? Oplical heterodyne receiver tunes in thousands of channels. HDTV hard sell to Europublic

RESEARCH NOTES

\qquad 898
How acoustic wave detectors may save the ozone, Solving traffic jams with zener diodes. Ulysses uses radio to probe sun's atmosphere, and the unseen attraction of VDU's.

CIRCUIT IDEAS \qquad 916
DC mains inverter. A different bridge, AC stabiliser, Lowcurrent transducer driver, Programmable pulse train generator.

CIRCUITS, SYSTEMS AND DESIGNS 939
ICs simplify design of single-sideband receivers.
APPLICATIONS948

SL6140 as tuned amplifier, Low-power FM IFs,
Curvature-corrected thermometer.

NEW PRODUCTS .952
$E W+W W$'s round-up of all that's new electronics.

LETTERS

Cyclotron resonance, Cross words on the IAR 8051. Analogue watch. Cuk champion. Telepoint - not telepointless, Levitation or Jevity.

UPDATE SPECIAL .980
Astro-1 astronaut Ron Parise tells Dom Pancucci how his mission was salvaged despite crippling computer failure.

In next month's issue. Audio tone controls could never be digitised... or could they? Audio designer Bill Hardman explains how a fistful of DSP chips go together to create a $1 / 3$ ocrave equaliser.

ELECTRONICS WORID SOFTWARE DISCOUNT SCHEME

Get 25\% discount on all Labcenter electronic design software. Offer prices start at $£ 51.75+$ VAT

Schematic: Isis SuperSketch, Isis Designer PCB layout: PCB II, Ares Ares Autoroute

Simply collect the coupon from this issue, and December., Ordering details will appear in the December issue.

MEMORY

COMPAg MEmORY UPGRADES Call tor latest pricing on upgrades for
EESKRO $386 / 286 \mathrm{~N} / 386 \mathrm{~S} /$ SYSTEM PRO 48 OESKPRO $386 / 286 \mathrm{~N} / 386 \mathrm{~S} /$ SYSTEM PRO 486 and COMPAO PORTABLE
portable memory upgrades
TOSHIBA - All Models COMPAO - SLT/LTE ZENTH - All Models NEC - All Models SHARP - PC6620
SANYD - $17 / 18$ NB
MAC APPLE MAC MEMORY
MAC || Ci/llfx/\|cx/\|x • MAC || s//MAC CLASSIC/MAC LC •
LASERWRITER II/NTX/MAC PORTABLE

PORTABLE COMPUTERS

TANOON LT/286 12MHz/20MD
 TANDDN LT/3365X 16 MHz 40 M

HP - LS/ 12
APPLE Mac Porable
AST. Exec. Notebook
EPSON - LI286E/LT386SX
IBM - LASX
PPLE MAC COMMOY

TANDON NB/ $3865 \times$ X- $3016 \mathrm{MHZ} / 30 \mathrm{MD}$
TANOON NB/386SX-60 16MHz/60MB
BONOWELL B310V $286 / 40 \mathrm{MD} / 3 / 5 / 1 \mathrm{Mb} / \mathrm{VGA}$ \& ITE
SANYO MBC $17 \mathrm{NB} 286 / 20 \mathrm{Mb} / 3.5 / 1 \mathrm{Mb} / \mathrm{VGA}$
SHARP $6220286 / 20 \mathrm{Mb} / 3.5 / 1 \mathrm{Mb} / \mathrm{VGA}$
ZENITH MASTERSPORT 286
ZENITH MASTERSPORT 386SL
ZENTTH MASTERSPORT 385SL
ZENITH MASTERSPORT 386SX

£1 down!

That's ALL the deposit you need to place on a system or other order worth $\mathbf{f 1 0 0 0}$ or more!
This offer is open to Businesses be they Limited/PLC/Partnerships and even Sole Traders!
Why waste Valuable Cash Resources? Why use up your Credit Card limit?
There's no need to pay in 30 days for capital purchases any more!
Ask for details on the Digitask "LEASEASSIST SCHEME". We'll help you streamline \& automate painlessly!

- OHer subject to status. Full details on request.

SYSTEM ENHANCEMENTS

INTEL ABDVEBOARO PLUS 512 K (Up to 2 Mb)
INTEL ABDVEBDARD PLUS 82 Mb (Up to 8 Mb)
HYPERACE II 16 MHz
HYPER 386SX AT PS /2 50/60
HYPER 386SX PS / $250-286 / 502$
486 UPGRAOE MODULES
Available now for COMPAO DESKPRO 386 (All models) IBM PS/2 Models 70 and 80 - And most general 386 -based AT compatibles without external cache. for prices and lechnical assistance. please call.

Panasonic Personal Computers NOTEBOOK NEWS

 80386SX 20MHz 60Mb Hard Disk 3Mb RAM standardLIMITEO OFFER PRICE £1995

NOW WITH ONE YEAR ON SITE WARRANTY

1

History is bunk?

EDITOR
Frank Ogden
081-661 3128
DEPUTY EDITOR
Jonathan Campbell
081-661 86.38

DESIGN \& PRODUCTION
 Alan Kerr

EDITORIAL ADMINISTRATION
Lindsey Gardner
081-661 3614

ADVERTISEMENT MANAGER
Jan Thorpe
081-661 3130

DISPLAY SALES MANAGER
Shona Finnie
081-661 8640

ADVERTISING ADMINISTRATION
Kathy Lambart
081-661 3139

ADVERTISING PRODUCTION
Neil Thompson
081-661 8675
PUBLISHER
Robert Marcus

FACSIMILE
081-661 8956

Looking back over the years, one might be _easily forgiven for thinking that the Luddites were right. The history of electronics is a fascinating story. a mix of science and pragmatism where physicists Hertz and Maxwell laid down challenging hypotheses which were eagerly taken up by practical experimenters.
The likes of Marconi. Round and Fleming were full of optimism about their new toys. They saw only the benefits - and of course the financial rewards - promised by the technology. It appears that they never gave a moment's thought to the possibility that their inventions could be anything other than benevolent.
The politicians of the day took a broader view. They saw how long-distance communications could be used to build the Empire. Marconi's beam stations provided reliable links over which instructions to the local High Commission could be relayed and acted upon within hours. The response could be equally swift. Long after we granted this plundered warehouse its independence - an act for which nobody was grateful since it was never ours to take in the first place - we maintained our dominance in the third world through a yoke of debt, mosily incurred by the former empire in the purchase of trivial technology.
The Northern hemisphere persuaded the Southern half to sell its resources in return for arms and colour TVs. These two commodities were all that brutal, selfish regimes needed to oppress their populations: a television set sits in virtually every overcrowded room in every shanty town the world over. The torrent which pours out is always one of acquisition, false values and unattainable dreams.
This surely can't have been in the minds of the inventors whose efforts led to broadcast systems.
A cynic would find it hard to take comfort from the legacy of electronics. Computers
shackle as many people as they free, automaked production simply finds quicker ways to consume scarce world resources while mass communications displace individual ideas. This last misdeed is perhaps the most serious since we shall never know what we have lost.
In spite of this unpromising history. I personally believe that electronics still has much te offer. We look to it to reduce the vast appetite for world energy while computers have uses other than to automate Big Brother. Remote sensing satellites have much to tell about the way the planet deals with our refuse, about the manner in which the ocean currents influence climates and the global foodstore. Spaceborne electronics has a great deal yet to do and it is with pride that EW +WW reprints one of the most important papers in the history of electronics. "Rocket Relays" by Arthur C Clark. first published in the Autumn of 1945.

We learn from our past that we must apply conscience alongside technology: the combination stands a much greater chance of contributing to the greater good than technology alone. History is not bunk and on this, the 80th anniversary of $E W+W W$ and in deference to Henry Ford, I am particularly aware of it. Frank Ogden

Reader survey letter

Apologies to Frank Ogden are due. Many of you will recently have received questionnaires from the editor seeking your views on Electronics World. The document, which Frank Ogden was instrumental in creating, was subsequently infested with typesetting and printing errors. He was not responsible for these; please think no less of him and spare him your acerbity. Robert Marcus, publisher.

Electronics World + Wireless World is published monthly By posi, currenk issue $£ 2.25$, back issues (if available) £2.50. Orders, payments and general correspondence to L333, Electronics World \ddagger Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telex:892984 REED BP G Cheques should be made payable to Reed Business Publishing Group
Newstrade: IPC Marketforce, 071 261-6745.
Subscriptions: Quadrant Subscription Services. Oakfield House, Perrymo.unt Road, Haywards Heath. Sussex RH16 3DH. Telephone 0444441212 . Please notify a change of address. Subscription rates 1 year (normal rate) £30 UK and £35 outside UK.
USA: \$116.00 airmail. Reed Business Publishing (USA). Subscriptions office, 205 E. 42 nd Street. NY 10117 Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine. Paris 75008 . United States of America: Ray Barnes, Reed Business Publishing Ltd, 205 E. 42 nd Street. NY 10117. Telephone (212) 867-2080. Telex 23827.

USA mailing agents: Mercury Arfreight International Lid Inc. 10(b) Englehard Ave. Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
R Reed Business PJblishing Ltd 1991 ISSN 0266-3244

REGULARS

UPDATE

Training investment "a priority" says IEE president

If Britain is ever to regain its position as a successful manufacturing nation, it must dramatically review its approach to the education and training of its workforce.
This was the message given by Mr Brian Manley in his inaugural address as president of the Institution of Electrical Engineers.
The present position. he warned, is unacceptable: "Our schools fail 50% of our children, the number of young people wishing to follow an engineering career is falling and we have one of the worst trained workforces in Europe." he said.
On the subject of secondary education the IEE president criticised a system that persuaded only some 19% of pupil to stay on at school to the age of 18 and called for an end to the partitioning of academic education and vocational education and
training. "Our continuing failure to provide an adequate education to the large majority of our young people is nothing short of a national disaster," he said.
For students up to the age of 16. Manley advocated a single national curriculum incorporating both academic and vocational studies: a modular structure which would allow early leavers to "top-up" at a later date and a system of credit accumulation and transler which would help children who move from one school to another.
Post 16 education. Manley continued. must move away from the present narrow system of A levels to a broader range of studies with the inclusion of vocational subjects.
Employers should also be legally required to provide day release to enable early school leavers to study for advanced qualifications.

All these changes would require substantial increases in the number of teachers particularly in science and mathematics as
"a matter of the utmost urgency".
On the issue of vocational training.
Manley drew attention to the fact that Britain falls far behind nations such as Germany in the skills of its workforce. Some 60% of British workers possess no qualification of any kind.
"The link between productivity and the skill of the workforce is well established, he said.
Skill shortages have made the UK vulnerable to competiton from low wage countries making low margin products.
Mr Manley is a Partner in Manley Moon Associates, a Cambridge based management consultancy.

CT-2: a dead line?

> The news that Phonepoint, last of the four original telepoint services, has been abandonned might seem to spell the death knell for CT-2. But it may yet survive.

Twenty years from now when everyone is carrying around a personal
communicator in their pockets, maybe a Trivial Pursuits question will ask what was the name of the first pocketphone'? Perhaps the answer will be the CT2.
Friends will look on in amazement as you recall a pocketphone which would not receive calls outside the home and which would only work if you were within 200 metres of special green and blue triangles. Perhaps only the $£ 200$ price would have impressed them.

The world wants a telephone it can carry around in the pocket. But CT2 isn't going to be the one. It was strangled at birth by the prospect of new and more sophisticated competitors.
There can be little doubt that the British idea for a digital cordless telephone. the CT2, and the original plan of offering low cost mobile communications to everyone has landed on the rocks. Two and a half years after their introduction the pocketsized handsets are a collectors" iten.
Few retailers would stock models despite the obvious performance advantages of the digital technology over existing analogue cordless telephones. "If people were asking for CT2's we 'd have stocked them. No one ever asked," said an assistant in one London telephone stockist.
CT2 and the low cost mobile communications it would offer has fallen foul of over inflated aspirations which had less to do with its technical capabilities and more to do with the government's desire to milk the booming mobile communications market of the late 1980s for all that it was worth.

CT-2 for go-anywhere communications: not yet ready to throw in the towel.

The government's plan to offer mobile communications to the masses through launch of a new service called telepoint based on the CT2. like the cellular telephone
only cheaper and less exclusive, nose-dived. In 1989 four operators were licensed, three bravely launched services despite the lack of suitable handsets. The take-up of the service by the public was alnost imperceptable and carlier this year two of the three were forced to scrap their services disappointing a small but faithful band of subscribers.
The last operator to offer a telepoint service was BT-backed Phonepoint and even it now admits that the original 1989 launch was severely premature. At that time says. Roger Best, managing director of Phonepoint, " a saleable product had not been created as it should." Phonepoint had planned a new launch for later this year with new handsets from US communications giant Motorola, lower prices and a $£ 3 \mathrm{~m}$ advertising campaign, now of course abandonned.
The future for CT2 may look dead, but the world's telephone manufacturers have not given up on it completely. American and Japanese manufacturers have at last

There is no doubt the world wants a telephone it can carry round in the pocket. But no-one is yet sure what it will look like.
recognised the CT2 for what it is. Not a revolution in mobile communications, but that first important technological step towards a pocket telephone which no one can alford to be without.
By the end of the century more sophisticated personal communicators will slip into our pockets. Like the British personal communications networks (PCN) operating in the empty spaces of the 1.8 GHz frequency band or US systems based on digitally coded radio signals. These will have the capacity to support the tens of millions of users and literally billions of pounds will be spent on their development.
The CT2 has neither the technical capatility nor financial backing to compete with PCN at the turn of the century. What it does have is a five or six year head start which means that it could still find its place as the preferred cordless handset for office PABX systems and in the home.
Richard Wilson

HDTV hard sell to europublic

European electronics companies want to sell the public the new idea of widescreen. 16:9 aspect ratio TV sets as a stepping stone to HDTV. But they are adopting different compromises in the upgrade path.

Most want to see the mac system succeed. So does the European Commission, because if it fails. Europe's investment in the Eureka HDTV system. HD-mac, goes down the pan.
But crass mistakes made by the EC in past legislation left the satellite broadcasters free to transmit in pal. This guarantees a quick audience, but pulls the rug from under mac and HD-mac. So the EC is now trying to buy itself out of the hole of its own making with one billion ECUs of public money.
At the same time the terrestrial broadcasters want a widescreen, improved definition TV system which is compatible with conventional 4:3 pal. The electronics companies want to proteet their interest here, too. But in developing the new system. pal Plus. they risk jeopardising their investment in mac and HD-mac.
These convoluted issues erupted into open conflict at the recent Funkaussustellung in Berlin. And, confusing the issue still further, technical problems at Berlin made demonstrations of wide screen mac less impressive than the first working demonstration of wide screen pal Plus.
By next year the Eureka 9.5 team will have spent over $£ 500$ million pounds on preparing an HDTV system for the Olympics. The Vision 1250 consortium, with 32 member companies and broadcast authorities. employs 1000 research engineers and is pledged to broadcast the Olympics to 1000 HDTV sets across Europe. This year, 1991, the EC will contribute 10 million ECUs to

The ITV Association's HDTV production vehicle supplying material for the Berlin show EU95 Eureka demonstration.
the Eureha EU-95 HDTV project. The Vision 1250 members each pay 40.000 ECUs a year.
The EU-95 HDTV system is a 1250 line version of the 625 line mac system developed for satellite. Peter Bogels, President of the EU-95 HDTV directorate. admits that the whole pack of cards will collapse if satellite broadcasters. like BSkyB, continue to transmit in pal. The EC's Directive of 1986 was intended to force all satellite broadcasters to use mac. but left loopholes for lower powered transmitters at lower frequencies.
"There was a flaw, a hole in the law, that let people start pal transmissions". said Bogels at Berlin. "Now we have to find a solution". Despite the magnitude of the EC's mistake no one in the HDTV directorate can say who in the EC was responsible.
EC Telecommunications Commissioner.

Filippo Maria Pandolfi has been trying for a year to repair the damage. Recently he secretly met Rupert Murdoch, main shareholder in BSkyB in Brussels. In Berlin he joined with German Telecommunications Minister. Christian Schwarz-Schilling to announce the EC's latest plan. This doubles. to one billion ECUs, the amount of European tax payers money available for simulcasting, simultaneous broadcasting of pal programmes in mac until January 1994. Any new broadcaster now starting in pal must switch to mac in 1994 and will not be paid the sweetener to simulcast.
Pandolfi has now asked a Working Group to report by 15 September to report on whether there will be enough satellite transmitters in orbit to cope with simulcasting.
German broadcasters ARD. ZDF, RTL Plus. Sal I. Pro 7. Tele 5. Premiere and

VPRT have already started lobbying against l'andolti's plan. At Berlin they issued a statement saying "No" to the proposal because "it is not fair for the EC to make this law, and not friendly for the consumer or for owners of satellites or receivers in Europe".
Although demonstrations of the 1250 line HDTV system at Berlin were impressive, parallel demonstrations intended to show how the IID-mace signals can allso be received on 625 line wide screen "Cinevision" sets were disappointing.
No effort was made to explain why this was so to the million visitors expected to attend. In fact most demonstrators did not seem to know where their signals were coming from and why the 625 line mac pictures were fuzzy with ringing echoes on vertical detail.
Nokia vaguely blamed "the cable". Nordmende blamed the difficulty of satellite reception at the Berlin showground with other equipment causing echoes - clearly an absurd answer. Fortunately a Thomson engineer, seconded to Vision 1250, was able to explain all. clearly.
IID-mac programmes were uplinked from Berlin to the Kopernicus satellite, and received at Usingen. Berlin then received from TV-Sat. But the signals were distributed by cable round the enormous exhibition site. The distribution system uses the hyberband, a band of the German and French cable networks in the slot around $300-400 \mathrm{MHz}$, which was previously unused because of fears that leahage would interfere with terrestrial services. With improved cable technology, this band has now been divided into 12 MH Iz channels for HD-mac distribution.
The cable system at the Berlin exhibition site is lat from perfect. Poor terminations
introduce short group delay echoes. These were exacerbated when a mechanical digger cut through the cable the day before the show opened and the cable was clumsily joined. Whereas the digital equalisation circuits in a full-blown IIDTV sel can compensate for spurious short echosignals. other sets cannot.
Sadly, many visitors will have left the show wondering what all the fuss about max quality is all about.
They will have wondered even more after seeing the first demonstration of a wide screen pal system, pal Plus. which Grundig. Nokia. Philips, Thomson and Eturopean broadeasters have been developing in parallel with HD'TV. This gave better pictures than the mac demenstrations.
To avoid undermining mac's credibility, pal Plus designers stress that their system is intended only for terrestrial use. But they admit it could be used by satellites.
To transmit pal Plus. the broadcaster feeds a 625 or 1250 line wide sereen signal through a filter. This reduces the number of picture scanning lines by a quarter. The remaining three quarters are transmitted as a picture which appears on a conventional $4: 3$ aspect ratio TV set as a letterbox picture. with black borders at the top and bottom.
To be more specific, of the 576 active lines making up the visible portion of a 625 line pal picture, 4.32 are left to define the $16: 9$ wide soreen aspect ratio tetterbox image.
The filtered information is converted into a digital "helper" signal, much like teletext. This helper code is buried in the black borders of the letterbox picture ats a blacker-than-black signal which conventional tv sets treal ats pure black. So the helper code is invisible on conventional sets, if correctly adjusted.
A pal Plus receiver will decode the hetper

Engineering add-on

In the review of the Electrical Engineering Application Pack for use with MathCad (October issue), supplier details were unfortunately ommited.
The pack (£75) and MathCad($(£ 375)$ are both available from Adept Scientific, 6 Business Centre West, Avenue One, Letchwort, Herts SG6 2HB. Tel: 0462 480055 , fax: 0462480213.
signal and use it to rebuild a 625 line picture which fills the full area of a $16: 9$ wide aspect screen. Demonstrations given at Berlin prove that the "helped" signal is clearer than the original.
There is none of the cross colour patterning and shimmer that normally spoils pal pictures. The picture is bright and a lot sharper than conventional pal. On at $4: 3$ set the black borders show no signs of the helper signal. Resolution on the $16: 9$ pal Plus screen was better than on a $4: 3$ standard pal set receiving the same source signal.

So far the pal Plus encoders and decoders are the size of a refrigerator but the group promises integration into a set-top box by 1995. By a neat coincidence this is a year later than the "Big Bang" which Peter Bogels promises for IIDTV. Thomson has also promised to integrate an HDTV decoder into a set-top box.
The depressing news all round was that punters at large seemed largely uninterested in any hind of $16: 9$ widescreen. Hopefully this was only because they were blinded by the light of the vast tiers of $4: 3$ sets that abound in Berlin. Barry Fox.

Optical heterodyne receiver tunes in thousands of channels

As part of the Race programme, Siemens has developed a low noise wide-band receiver for heterodyne optical communications.
Radio broadcasting made the transition from direct to heterodyne reception in the
The Siemens heterodyne receiver for optical communications. It uses a tuneable laser sto convert down to 140 MHz .

thirties and every effort is being made to duplicate this in optical communications. Heterodyne reception permits the use of more sensitive modulation methods and hence multi-channel operation with reduced channel spacing.
This increases the capacity of optical fibres more than a thousand fold.
Optical balanced receivers - such as continuously tunable laser diodes used as local oscillators - are key components for they largely determine the performance of optical heterodyne systems.
The heart of the receiver developed at Siemens' research laboratories in Munich is a chip on which two monolithic integrated photodiodes are connected in series. The optical input signal modulated by the local oscillator, via a directional coupler, is converted by the photodiodes into an intermediate frequency signal. The subsequent stages of the balanced receiver employ a three-stage high impedance circuit.

The first stage acts as a low-noise preamplifier for the output signal of the photodiodes. The second stage has an equalizer circuit to level the frequency response. The third stage matches the output impedance to 50Ω. The thermal noise - equivalent to a noise figure of 0.36 dB in commercial RF amplifiers - was achieved without unwanted ripple in the frequency response curve.
The prototype module exhibited a sensitivity of -59 dBm with a $140 \mathrm{Mbit} / \mathrm{s}$ heterodyne system employing frequency shift keying. This performance is claimed to be only 2.5 dB above the theoretical limit.
Initial results indicate that, at the present state of development, more than 1000 subscribers could be served by a central transmitter with broadband television services via fibre-optic systems and that the theoretically predicted increase in transmission capacity appears to be achievable.

EASY-PC, SCHEMATIC and PCB CAD

Options:
1000 piece Symbol Library £38, Gerber Import facility £98

$\begin{array}{ll} \text { DIGITAL } \\ \text { SIMULATION } & \\ \hline 195 \end{array}$	ANALOGUE SIMULATION £195	SMITH CHART CAD £195
(iner		
- At last! A full featured Digital Circuit Simulator for less than £1000! - PULSAR allows you to test your designs without the need for expensive test equipment. - Catch glitches down to a pico second per week! - Includes 4000 Series CMOS and 74LS Libraries - Runs on PC/XT/AT/286/386/486 with EGA or VGA. - Not Copy protected.	- NEW powerful ANALYSER III has full graphical output. - Handles R's,L's,C's, BJT's, FET's, OP-amp's, Tapped and Untapped Transformers, and Microstrip and Co-axial Transmission Lines. - Calculates Input and Output Impedance, Gain \& Group Delay. - Covers 0.001 Hz to $>10 \mathrm{GHz}$ - Runs on PC/XT/AT/286/386/486 with EGA pr VGA. - Not Copy protected.	- Z-MATCH II simplifies RF matching and includes many mone features than the standard Smith Chart. - Handles transmission line transformers, stubs, discrete components, S Parameters etc. - Supplied with many worked examples. - Superbly easy to learn and use. - Runs on IBM PC/XT/AT/386/486, CGA,EGA,VGA. - Not Copy protected.
For full info' Phone, Fax, or use enquiry card! Number One Systems Ltd.		
REF: WW, HARDING WAY, ST.IVES, HUNTINGDON, CAMBS, ENGLAND, PE17 4WR. Telephone: 048061778 (7 lines) Fax: 0480494042 International: $+44-480-61778$, Fax: $+44-480-494042$ ACCESS, AMEX, MASTERCARD, VISA Welcome.		

It TAKES LESS THAN A Week to fall in love

 just a phone call away. Buy disect irom Electronics World + Wireless Wor!d and we know that you won't be disappointed. And in the unlikely event that you are, simply return the goods and we will refund the purchase price.*
SC 1 10A miniature portable oscilloscope

The SC110A from Thurlby-Thandar is a full feature, single trace analogue oscilloscope packaged into the size of a benchtop multimeter. Fitted with a $32 \mathrm{~mm} \times 26 \mathrm{~mm}$ screen miniature CRT, the bright, sharp image provides resolution and detail associated with much larger instruments. UK designed and built, the internal switch mode power supply draws just 195 mA from four C sized batteries (not supplied). The instrument will operate from 4 to 10 V DC.

The specification includes a Y bandwidth of $D C$ to $10 \mathrm{MHz}, 10 \mathrm{mV} / \mathrm{div}$ sensitivity and an adjustable brightline trigger with AC/DC/TV coupling from both internal and external sources. The X timebase is adjustable from $500 \mathrm{~ms} / \mathrm{div}$ to $100 \mathrm{~ns} / \mathrm{div}$ in 24 steps. The case measures $25 \times 5 \times 15 \mathrm{~cm}$ and the instrument weighs about 1 kg . SC110A £249+VAT (£292.58).

[^0]

PL320K laboratory triple power supply

PL320K laboratory triple power supply

This power supply from Thurlby-Thandar combines three, totally independent power supplies within a single unit: $0-30 \mathrm{~V}$ at $2 \mathrm{~A}, 0-30 \mathrm{~V}$ at 1 A and $4-6 \mathrm{~V}$ at 7 A for logic supply. The 30 V supplies will operate in a bipolar tracking mode for $\pm 30 \mathrm{~V}$ operation or in a series mode to provide 0 to 60 V output. Both supplies incorporate independent remote sensing and independent precision voltage/over-voltage/current-limit preset. Three 3 3/4 digit led panel meters indicate current and voltage to an accuracy of 0.05% fsd. Output stability is typically 0.01% for 90% load change. PL320K $£ 359+$ VAT ($£ 421.83$).

TD201 digital storage adaptor

The TD201 digital storage adaptor from Thurlby-Thandar is a low power, single channel digital storage unit which adds digital storage capability to ordinary analogue oscilloscopes. The maximum sampling rate of 200 kHz permits fast transients to be captured while the lowest rate can extend the sampling period to over an hour. The unit stores over a thousand points on the X axis with 256 levels in the Y axis. The internal batteries (not supplied) allow data retention for up to four years. Other features

TS3022S laboratory dual power supply

TS3022S laboratory dual power supply

This laboratory quality power supply from ThurlbyThandar provides two fully floating $0-30 \mathrm{~V} 2 \mathrm{~A}$ outputs for parallel, series or independent operation. Each supply has its own metering of voltage and current by LCD display; with the output switch to off, the display can be used to preset the voltage and current limits prior to connection of the load. Coarse and fine controls permit output voltage adjustment to within 5 mV of a predetermined value. The current limit control employs a log law for precise adjustment down to 1 mA . Load regulation is typically within 0.01%. Both supplies incorporate remote sensing. TS $3022 \mathrm{~S} £ 299+\mathrm{V}$ AT ($£ 351.33$)

TD201 digital storage adaptor
 include an AC/DC sensitivity down to 5 mV , selectable pre-trigger, roll and refresh modes and a plot mode. The case measures $25 \times 5 \times 15 \mathrm{~cm}$ and the unit weighs about 1 kg . The TD201 provides the ideal solution for those wanting a well specified and easy-touse DSO at the lowest possible cost. TD201 $£ 195+$ VAT ($£ 229.13$)

How to order

To order equipment with your credit card, phone Lindsey Gardner on 081-661 3128. Alternatively, to order by post, fill in the coupon on the right. All prices include postage, packing and delivery but exclude VAT. Inclusive price in brackets.

ORDER FORM

Please send model number(s).
Total order price £.................... (please include VAT)
Debit my credit card Expiry date \square VISA/MASTERCHARGE/AMEX/DINERS CLUB
or enclose cheque/PO made out for the total order price
Name (with initials)
Address
\qquad
\qquad
Signature
Contact phone number (if possible)

REGULARS

RESEARCH NOTES

How acoustic wave detectors may save the ozone?

Researelors at Sandia National Laboratories have developed a prototype sensor system to allow them to dereet and measure gaseous chemicals almost instantaneously. The team hopes to use the technology as the basis for a portable sensor system for monitoring ozone-damaging chlorinated hydrocarbons.
Sandia's sensor is based on coated surface acoustic wave (saw) devices, a relatively new class of sensors that measure the behaviour of acoustic waves in solids. When acoustic waves interact with solids. liquids or gases, their properties are altered in measurable ways that can provide information about the materials that the waves encounter.
Engineers have devised a way of analysing data obtained from saw devices that identifies chemicals of interest more quickly
and casily. They do this by obtaining two independent responses from a single sensor and then analysing the two responses to produce a unique "signature" for a specific chemical.
Surface acoustic wave devices consist of two interdigital transducers formed on a piezoelectric substrate such as quartz. When an alternating voltige is applied to the input transducer, an alternating mechanical strain is generated, launching the acoustic wave. The wave travels along the surface, interacting with a thin film formed on the device surface before being converted back into an electrical signal by the output transducer. If the film has absorbed chemicals from the surrounding environment, the velocity and/or attenuation of the acoustic wave will be altered.

Using an acoustic wave sensor's ability to detect methanol in real-time.

Prior to use, a coated saw device is calibrated by simultancously monitoring wave velocity and attenuation as it is exposed to a range of concentrations of various chemicals of interest. Because the responses are independent, each chemical generates a unigue set of values when attenuation is compared to velocity. Once a chemical is identified, a comparison of either the velocity or amplitude shift to the calibration curve for that substance can be used to determine concentration.
Using saw sensors coated with polymers, the team is developing aportable sensor system to monitor ozone-damaging chlorinated hydrocarbons. The system has also been used to identify organics such as toluene, acctone, methanol, ethanol. isopropanol and hexane - chemicals commonly used in industrial processes.

Solving traffic jams with zener diodes

Why does the building of a bypass road too often result in worsened congestion when the obvious effect would be an improvement" Two US researchers may have cast some light on this annoying paradox of urban living - by looking at peculiarities of certain electric circuits. Joel Cohen of New York's Rockefcller University and Paul Horowitz of Harvard describe an electrical analogue (Nature. Vol 352 No 6337) where the removal of a component actually reduces its impedance. This is not, as you might be imagined, some clever trick with tunnel diodes, but a very simple arrangement of very ordinary (if somewhat idealised) components.
Take Fig. 1a. a bridge arrangement of IS resistors and IV zener diodes. Being symmetrical it can be thought of as two paralleled diodes in series with two

BEC Model B APM Board

Whiderac
£ 100 CASH FOR THE MOST NOVEL
DEMONSTRATABLE APPLICATION!
BBC Model B type computer on a board. A major purchase allows us to offer you the PROFESSIONAL version of the BBC computer at a parts only price. Used as a from end graphics system on large networked systems the architecture of the BBC
board has so many slmilarties to the regular BBC modei B that we are sure that with a blt of experimentation and ingenulty many usetul appllcations will be found for this boardil in is supplied complete with a connector panel which brings all the VO to 'D and BNC type connectors - all you have to do is provide +5 and $12 \vee$ DC. The APM consists of a single PCB with most major 5502. PAM. The ic's are too numerous to ilst but indude a 6502. RAM and an SAA5050 ieletext chip. Three 2712 EPROMS comaln the custom operating systiem on which we
have no data. On application of DC power the system boots and provides diagnostlc information on the video output. On board DIP switches and jumpers select the ECONET address and enable the lour extra EPROM sockets for user software. Appx. dims: main board $13^{\prime \prime} \times 10^{\circ}$. VO board $14^{\circ} \times 3^{\prime \prime}$. Supplied lested Only £29.95 or 2 for $£ 53_{\text {® }}$ MONITORS
MONOCHROME MONTTORS
THIS MONTH'S SPECIAL!

[0There has never been a deal llke this onel Brand spanking new \& boxed monitors TromNEC, normally seling at about £1401 rellability. $9^{\prime \prime}$ green screen composite Input able hightow Impe dance Input and output or dalsy-chaining. 3 from controls and 6 at rear. Standard BNC sockets. Beauthul high contrast screen and attractive case with arying ledge. Perrect as a ma CALL FOR OSCOUNTS OWHGHEA OUNWDESI COLOUR MONTTORS
Decca $16^{\circ} 80$ budget range colour monitor. Features a PIL tube, beautitul teak style case and guaranteed 80 column resolution, features usually seen only on colour monitors costing 3 tlmes
our pricel Ready to connect to most computers or video outputs. 75 our composite Input with integral audio amp \& speaker. Fully tested surpius, sold In little or hardiy used candition with 90 day Telebox ST, and other audio visual uses. E99(E) 3/E275(G) 20", 22" and $26^{\prime \prime}$ AV SPECIALS
Superty made UK manutacture. PIL all solid state colour
monitors, complete with composite video \& sound tive teak style case. Perlect for Schools, Shops, Oisco, Clubs. In EXCELLENT litte used condition with full 90 day guarantee 20"....£135 22"'.... 155 26"....§185 (F)

CALL FOR PRICING ON NTSC VERSIONSI
H-DEFINITION COLOUR MONTORS Brand new 12" mutlinput high definitlon colour moniters by Microvitek. Nice tight
$0.31^{\prime \prime}$ dot pitch lor supert clanty and moder metal black box styling. Operates
from any 15.625 khz sync . GGB wdeo from any 15.625 khz sync RGB video
source, with either Individual $\mathrm{H} \& \mathrm{~V}$ syncs such as CGA IBM PC's or RGB analog
 with composite sync such as Atar, Com-
modore Amiga, Acom Archimedes \& BBC. Measures only 14 12^{*} square. Free data sheet Including connectlon information.
Will also tunction as qually TV with our RGB Telebox. Will also tunction as qually TV with our RGB Telebox

Onty

£145
Brand new Centronic 14" monitor for IBM PC and compatibles at a lower than ever pricel Completely COA equivalent. Hi-res Mitsubushl 0.42 dot pltch giving 669×507 plxels. Big 28 Mhz
bancwidth. A super monitor In altractive style moulded case. Full 90 day guaramee. Only E129 (E) NEC CGA IBM-PC compatible. High quality ex equipment tully tested with a 90 day guarantee. In an attractive two tore ribbed grey plastic case measuring $15^{\prime L} \times 13^{W} \mathrm{~W} \times 12^{\prime \prime} \mathrm{H}$. A errin
purchase enables us to pass these on at only.... $\mathrm{E} 79(\mathrm{E})$ V22 1200 BAUD MODEMS Master Systems 2/12 microprocessor controlled V22 full duplex 1200 baud modem. Fully BT spproved unlt, provides standard V22 high speed data comm, which at 120 cps, can save your
phone bill and connect time by a staggering 75% Ultra sllm 45 phone binh. Full featured with LED status Indicators and remote effor diagnostics. Sync or Async use; speech or data switching,
bullt In 240 v mains supply and 2 wire connection to BT. Units bullt In 240 v mains supply and 2 wire connection to BT. Units
are In used but good condition. Fully tested prior despatch, with data and a full 90 day guarantee. What more can you ask for and at this pricel

IBMKEYBOARD DEALS

A replacement or backup keytroard, switchable for IBM PC
PC-XT or PC-AT. LED's for Caps, Scroll \& Num Locks Standard 4 keytoard layout. Made by NCR for the English 8 US markets. Absolutely standard. Brand new 8 boxed with manual and key tempiate for user slogans on the functlon keys. Attracllve beige,grey and cream finish, with the usual reiractable legs undermeath. A generous length of curiy cord, terminating in the standard 5 pln DIN plug. A beautitul clean piece of manutac Brand new and boxed 84 key PC/XT type keyboards in standard BM grey with very attractive motted finish and "clicky" solid tee keys. 10 tunction keys on side. Engllsh layout and $£$ sign. Green E20.25 (B) 5/E135 (D
CALL FOR DISCOUNTS ON HIGHER OUANITIES!

FLOPPY DISK DFIVES BARGAINS GALORE!

 NEW 51/4 inch from $£ 29.951$
Massive purchases of standard $51 / a$ orives enables us

(unless pime product at industry beating low proesi All units and are tully tested, allgned and shipoed to you with a 90 day guarantee and operate from $+5 \&+12 \mathrm{vdc}$, are of standard size and accept the standard 34 way connector TANDON TM100-2A IBM compatible DS
£39.95(C) TEAC FD-55-F 40 . DS hall helght. State 40 or $80 T$ E79.00(C)

TEAC FD-55 halt helght series in your choice of 40 track double sided 360 k or 80 track double sided 720 k . Ex equip-
ment fully tested In excellent condition with 90 day warranty. ment fully tested In excellent condition with 90 day warranty.
Order TE-36 for 360 k E29.95(C) or TE-72 Ior 720 k E39.95(C).

CHOOSE YOUR 8 INCH

Shugart 8001801 SS returbished 8 tested
Shugert 851 double sided returbished \& tested Mitsublshi M2894-63 double sided switchable SPECAL OFFERSII
$£ 150.00(\mathrm{E})$
$\mathrm{E} 225.00(\mathrm{E})$
C250.00(E)
Dusl $8^{\prime \prime}$ drives with 2 megabyte capadty housed in a smant case with bult In power supplyi
Ideal as exterior drivesl \quad Only $\mathbf{E 4 9 9 . 0 0}$ (F)
End of line purchase scoop! Brand new MEC D2246 8- 85
megabyte of hard disk storagel Full CPU control and industry standard SMD Interface. UI tra hi speed transter and accoss time Standard SHD merface. UI tra hi speed transier and access ime

 A fandon TM502 full halgit ST 506 Intertace Use lit hard drive on your present driver card or as a starter Into Winchester land - see the driver card ilsted below. In excelien used condition, guaranteed for 90 days.
.E39.85(C)

Hard disk driver card, complete with cables ready your PC or compabibie. Supports two Winchesters......E29.85
 No Break Uninterruptable PSU's

Brand new and boxed 230 volts unimterruptable power supplies
from Densel. Model MUK 0565-AUAF Is 0.5 kva and MUD $1085-\mathrm{AHBH}$ is 1 kva . Both have sealed lead acld batteries. MUK are Intemal, MUD has them In a matching case. TImes from Interrupt are 5 and 15 minutes respectively. Complete with fuli

RECHARGEABLE BATTERIIES

 LEAD ACID
Maintenance tree sealed long

ع13.95(A) 12 volts
6 volta
12 volt 12 volts
12 volts 3 amphours EXTRA HI-CAPACITY NICKEL CADMIUM
 readlly a vallable Potasslum Hydroxide. In
banks of 10 cells per $8^{\circ} \mathrm{H} \times 24^{\circ} \mathrm{L} \times 5.5^{\circ} \mathrm{D}$ wooden case. Each cell measures $8^{\circ} \mathrm{H} \times 1.75^{\circ} \mathrm{L} \times 4^{\prime \prime} \mathrm{D}$. Can be easlly separaled. Ideal for all standby power appllcatlons. Ex MoD, llke new..E49.95 (E)

SPECIAL INTEREST

3 phase 400 hz . 15 kva output. As new.

Tho $0-18$ vac bench PSU. 30 amps. New
Fujtisu M3041600 LPM band printer
DEC LS/02 CPU board
Rhode \& Schwarz SBUF TV test transmitier Calcomp 1036 large drum 3 pen plotter Caicomp Thurlby 160 B logic analyser Thurby 1.5 kw 115 v 60 hz power source
Toktronix R140 NTSC TV test signal standard Sony KTX 1000 Videotex system - brand new ADOS 2020 VDU terminals - brand new Sekonic SD 150H 18 channel Hybrid recorder Trend 10-1 Data transmission test set

Superb Quality 6 foot 40u 19" Rack Cabinets

Massive Reductions Virtually New, Ultra Smart Less Than Half Price! Top quality $\mathbf{1 9}^{\prime \prime}$ rack cabinets made in UK by Optima Enclosures Lid. Units teature designer, smoked acryilc lackable front door, full heightlockable hall louvered back coor and removable side panels. Fully adJustable Internal lixing struts, ready punched for any conliguration of equlpment mounting plus ready mounted integral 12 way 13 amp socket switched mains distribution strip make these racks some of the most versatile we have ever scld. Racks may be stacked slde by side and therefore are $77-1 / 2^{\circ} \mathrm{H} \times 32-1 / 2^{\prime \prime} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$. Order as:
Rack 1 Complete with removable side panels....... $£ 275.00$ (G) Reck 2 Less side panels $£ 145.00$ (G)

POWER SUPPLIES

ower One SPL200-6200P 200 watt (250 w peak). Seml open $+24 v$ 4a (6 a peak). All outputs fully regulated with over voitage protection on the $+5 v$ output. AC Input selectable for $110 / 240$ Power One SPL 130. 130 watts. Selectable for $12 v(4 A)$ or $24 v$ (2A). $5 v$ @ 20A. $\pm 12 v$ @ 1.5A. Switch mode. New. E59.95(B) A stec AC-8151 40 walts. Switch mode. $+5 v$ @ $2.5 a .+12 v @ 1$
e19.95(B)
 $1 \mathrm{a},+15 \mathrm{v} @ 1 \mathrm{a}$. RFE and tully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. E24.95(C) Conver AC130. 130 watt thegrade VDE spec. Switch mode. +5 ع49.95,-5v@1a,土12v@6a.27×12.5 $\times 6.5 \mathrm{cms}$. New Boshart 13090 . Switch mode. Ideal for drives $\&$ system. $+5 \mathrm{v@} 6 \mathrm{a}$ 12v@ @.5a, 12v@0.5a,-5v@ 0.5a. E29.95(B)

COOLING FANS

seectly 110 or $\mathbf{2 4 0}$ volts for AC fans
312 Inch AC ETRI sllmiline. Only $1^{\prime \prime}$ thick.

10 incen $A C$ round. $31 / 2$ thick. Rotron 110 V
10 ince As above but 230 volts
$60 \mathrm{~mm} \quad$ DC 1^{-1} thick. No. 812 for $6 / 12 \mathrm{v} .81424 \mathrm{v}$
30 mm DC 5 v. Papst 8105 G 4 w .38 mm . RFE
DC 12v. 18 mm thick.
DC 12 v . 12w $11 / 2^{-1}$ thic
DC $24 \mathrm{v} 8 \mathrm{w} .1^{-1}$ thick.

THE AMAZING TELEBOX!

Converts your colour monitor into

TUNER!

Brand tew high quality, fully cased, 7 channel UHF PAL TV tune system. Unit simply connects to your TV aerial socket and colour it yoo monitor tuming same into a abulous colour TV. Dont wort If your monitor does'm have sound, the TELEBOX even has an
Imtegral audio amp for driving a speaker plus an auxillary outpu lor Headphones or HI Fi system eic. Many other features: LED Status Indicator, Smart moulded case, Mains powered. Built to BS salety specs. Many other uses for
Supplod BRAND NEW with full I year guaramee.
relebox ST tor composite video input monitors.......... $532.95(\mathrm{~B})$ Telebox STL as ST but with Integral speaker...........£36.50(B) RGB T RGB or analogue RGB moltoryinc monitors with RGB and composite symc. Overseas versions VHF \&HF call

BRAND NEW PRINTERS

EC Starwiter Model FP-1500-25 dalsywheer printer

 or its rellability. Diablo type prim mechanism giv Diablo/Oume command capabillty cpl tn Pica, 163 in Ellte. Friction or tractor feed 2950 DED DPG21 miniature ball poim pen printer plotter mechanism 50 with inll 40 characters per line. Complete with data sheet whic Includes drcult diagrams for simple driver electronics......£49(B) 86500 Centrontcs 150 eries. Always known for their rellabilty 375 cps with 4 forts and choice of Interfaces at a lantastic pricel 950 150-4 Serial up to 9.5 paper, tan fold tractor............. 99.00 (E) 225 CALL FOR THE MANY OTHERS IN STOCK 5525 VISIT OUR SHOP FOR BARGAINS

LARGE QUANTITIES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE - CALL NOW!

Defmy

Fax-081-679-1927
Telex- 894502

paralleled resistors. If a current of 0.5 A is passed through the network the diodes will drop IV and the parallel resistors will drop 0.25 V . Total voltage drop amounts to 1.25 V

Now add a zener of 0.375 V across the arms of the network (Fig. 1b) and see what happens. Experience suggests that ANY extra component would have the effect of reducing the voltage drop across the network. In practice, the reverse happens and the voltage rises to 1.375 V .
What actually happens is that the IV zeners in Fig. Ib do not conduct at all. All the current flows through the two IS resistors and the 0.375 V zener.
At half an amp, this amounts to $0.5+0.5+$ $0.375=1.37 .5 \mathrm{~V}$

Experience suggests that adding an extra component will reduce the voltage drop across the network. In fact it rises.

(a)

(b)

Cohen and Horowitz point out that such counter-intuitive puzzles exist right across the spectrum of physics wherever non-linear components are found, including thermal and hydraulic systems.
Where it does not apply is in all-linear systems: purely resistive systems behave exactly as expected according to Kirchhoff: Laws.
But - and this is the interesting point - the paradox results do apply to traffic flow which. in many respects, is a perfect analogue of electron flow in wires.
The authors cite earlier work showing that non-congested traffic behaves like a current tlowing through a linear resistor, while congested traffic turns the road into at decidedly non-linear impedance.
So if you take a congested city network and build a relief road or a bypass. the congestion may end up being worse than before! You may be doing to the existing network exactly what the 0.375 zener diode is doing in Fig. Ib, increasing traflic flow impedance. Cohen and Horowitz do not altempt to provide any easy answers to modelling traffic flow. But they do warn against assuming that physical networks will behave in the way common-sense appears to indicate.
The next task is to find a way of specifying the general conditions in which such paradoxes can ocecur.

Super clean chips are green

Amethod for drying silicon wafers and glass plates, devised at Philips Research Laboratories in Eindhoven, could open the way for ultra-clean chips with no environmental effects. The method relies on the Marangoni effect where the flow along a liquid surface is induced by local variations in surface tension. due to a gradient in either temperature or concentration along the surface. Marangoni drying is of particular interest in IC production, where there are extreme demands for cleanliness, becoming increasingly more severe with the ever shrinking IC dimensions.
Manufacturing methods in the modern electronics industry for products such as ICs, liquid erystal displays and printed circuit boards, often rely on wet processing steps, usually ending with rinsing in water and subsequent drying.
During drying, dissolved or dispersed contaminants occurring in even the purest water. are left on the product's surface, with detrimental effects to further steps and final product quality.
A product withdrawn from a water bath after rinsing. is covered by a water film of about $10 \mu \mathrm{~m}$ thickness.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Tekironix
probes.
Marconil TF2008-AM.FM signal generator - Also sweeper - $10 \mathrm{KC} / \mathrm{s}-510 \mathrm{Mc} / \mathrm{s}$ - from $£ 350$ Marconi TF2008 - AM. FM signal generator - Also sweeper -
tested to $£ 500$ as new with manual - probe kit in wooden carrying box - $£ 50$ tested $10 £ 500$ as new with manual - probe
HP DC Current source type 6177 C - $£ 200$
HP Frequency comb generator type 8406 A - $£ 400$
HP Sampling Voltmeter (Broadband) type 3406 A
HP Vector Voltmeter tyee 8405 A - $โ 400$ to 5600
HP Synthesiser/signal generator type $8672 \mathrm{~A}-2$ 10 $18 \mathrm{GHzS}-\mathbf{~} 6000$
HP 9640A signal generator - OPT $001-002-5 \mathrm{MC} / \mathrm{s}-1024 \mathrm{MC} / \mathrm{s}-£ 1000$
HP Oscillographic recorder type 7404A-4 track - 2350
HP Plotter type $98728-4$ pen - โ300
HP Sweep Oscillators type 8690 A \& B + plug-ins trom $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$. P O O HP Slgnal Generators lype 612-614-618-620-628-frequency from $450 \mathrm{Mc} /$'s to 21 GHz HP Network Analy ser type $8407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{~K} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 1000$
MP 432A-435A or B Power Meters + Powerheads $-10 \mathrm{Mc} / \mathrm{s}-40 \mathrm{GHz}-£ 200-£ 650$
HP Down Converter type 11710B-.01-11 MC/s - โ450
HP Pulse Modulator type $11720 \mathrm{~A}-2.18 \mathrm{GHz}-£ 1000$
HP Modulator type B403A - $£ 100-£ 200$
HP Pin Modulators lor above-many different frequencles - $£ 150$
HP Power Meter type 435A (no he ad) - £ 150
HP Counter type 5342 A - 18GHz - LED readout - $£ 1500$
HP Signal Generator type 8640B - Opl001 + 003-.5.512MC/s AM/FM - £1200.
HP Spectrum Display type 3720A £200-HP Correalator type 3721A £150
HP 37555 - 3756 A - 90MC/s Switch - $£ 500$.
MP Amplitier type 8447A - $1-400 \mathrm{MC} / \mathrm{s} £ 400$ - HP8447F $1-1300 \mathrm{Mc} / \mathrm{s} £ 800$.
HP Frequency Counter type $5340 \mathrm{~A}-18 \mathrm{GHz}$ £ 1000 - rear output $£ 800$
HP Programmable pulse generator type 8161 A - $£ 1500$.
HP 8410 -A - B-C Network Analyser 110 Mc 's to 12 GHz or 18 GHz - plus most otrer units and displays used in this set-up -8411A-8412-8413-8414-8418-8740-8741-8742-8743 -8746-8650. P.O.R
MP Signal Generator Iype 8660C-1-2600MC/S. AM/FM - $£ 3000$
MP Signal Generator type 8656A-0.1-990MC/s. AM/FM - $\mathbb{E} 2250$
HP 3730 B Maintrame 2200
HP 8699B Sweep PI-0.1-4GHz £750-HP8690B Maintrame $£ 250$
HP Digital Voltmeter type $3456 \mathrm{~A}-£ 900$
Racal/Dana digital multimeter type 5001 - $\mathbb{£ 2 5 0}$
Racal/Dana Interface type 9932 - โ 950 .
Racal/Oana GPIB Interface type 9934A - 1100
Racal/Dana Timer/counter type 9500 (9515 OPT42) - 1250Mc/s - $£ 450$
Racal/Dana 9301 A-9303 RF Millivoltmeter-1.5-2GMZ- $£ 350$ - $£ 750$
RacalDana Counters 9915 M - 9916 - 9917 - 9921 - £150 to £ $£ 50$. Fitted FX standards
Racal/Dana Modulation Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}-£ 250$.
Racal - SG Brown Comprehensive Headset Tester (with artificial head) Z1A200/1 - £450. EIN 310L. RF Power Amp - $250 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-500 \mathrm{Ds}-£ 250$
Marconl AF Power Meter type 893B- 1300
Marconi Bridge lype TF2700- 1950
Marconi/Saunders Signal Sources type-60588-6070A-6055B-6059A-400 10 18GHzS POR
Marconl TF 2015 Signal Generators - $10 \mathrm{MHz}-520 \mathrm{Mc} / \mathrm{s}^{-}$- AM/FM - 250
Marconl TF1245 Circuit magnification meter +124681247 Oscillators - $£ 100-£ 300$
Marconi microwave 6600A sweep osc mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$. 40 GHz - $£ 1000$ or Pl only $£ 600$.
Marconi disiortion meter type TF2331- โ150. TF2331A - 2000
Marconi 6700 sweep maintrame- E 200
Thuriby convertor 19-GP-IEEE-488- 1150
Philips togic multimeter type PM2544- £100
Microwave Systems MOS/3600 Microwave frequency stabilizer - 110 18GMzs \& 18 to 40 GHzs〔1000
Bradiey Oscilloscope callbrator type $156-£ 150$
Bradley Oscillos cope calibrator type 192- โ500
Tektronix Plug-ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12 Tektronix Plug-ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-701-DD501
S1-S2-S6-S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508-DD501 S1-S2-S6-S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508-DO501-WR501-OM501A-FG501A-TG501 FG502-OC505A-FG504-P.O.A
Aittech Sioddart receiver type 17/27A-01-32MC/S - £5000
Aittech Stoddart receiver type $37 / 57-30 \cdot 1000 \mathrm{Mc} / \mathrm{S}-£ 5000$
Ailtech Stoddart receiver type NM65T-1 $1010 \mathrm{GHz}-\mathbb{5 0 0 0}$
Ailtech Stoddart receiver type NM65T - 2 to
Gould J38 Test oscitlator + manual - £.00
Image Intensitiers - ex MOD - tripod fiting for long range night viewing - as new - โ1500-£2000 Don 10 Telephone Cable - $1 / 2$ mile canvas contaners or wooden drum - new -Mk 2.3 or 4 Don 10
P O.R
Infra-red BInoculars in fibre glass carying case - tested - £100ea. also Infra-red AFV sights
Infra-red
£100ea
ACL Field Inlensity meter recerver type SR-209-6. Plugs-ins from 5MC/s 10 4GHz - P.O.R Systron Oonner Counter Model 6057-18Ghz - 1800
Clark Alr Masts - Heavy Duty - Type Scam - 40H or 70H - £200-£600
Tektronix 491 specirum analyser $-1.5 \mathrm{GHz}-40 \mathrm{GMz}$ - as new - £1200 \& manual
Tektronix Mainframes - 7603-7623A - 7633 - 7704A - 7844 - 7904 - TM501 - TM503 TM506
KnotlPolyskanner WM100 + WM5001 WM3002 + WM4001 - § 1000
Ailtech 136 Precision test $R X+13505$ head $2-4 G M Z-£ 350$
SE Lab Elght Four - FM 4 Channel recorder - §200
Allech 757 Spectrum Analyser - 00122 GHz - Digual Siorage + Readout - 5500 Oraneiz 606 Power line disturbance analyser - $£ 500$
Precision Aneroid barometers- $900-1050 \mathrm{Mb}$ - mechanical digit readout with electronic indicator - battery powered Housed in polished wood carrying box-lested - $£ 100-£ 200-\Sigma 250$ MK1. 2 of 3 B\& K Sound Level Meter type 2206 small - lightwerght - precision - $1 / 2^{\prime \prime}$ microphone - in foam protected filled brief type carrying case with windshield \& battery + books + pistol grip handle -lested- £170. Carr: $£ 8 .-8 \& K 2206$ Meter + Mike + Book - less carrying case etc $-£ 145$. Carr £8. DISCOUNT ON OUANTITY
MP 141 T Spectrum Analysers. All new colours supplied with instruction manuals
HP $141 \mathrm{~T}-8552 \mathrm{~A}$ or $\mathrm{B}-\mathrm{B} 556 \mathrm{~A}-20 \mathrm{~Hz}$ to $300 \mathrm{kHz} £ 2000 \mathrm{~A}-£ 2200 \mathrm{~B}$.
HP $141 \mathrm{~T}-8552 \mathrm{~A}$ or $\mathrm{B}-8553 \mathrm{~B}-1 \mathrm{kHz}$ to 110 MC 's. $£ 1800 \mathrm{~A}-£ 2000 \mathrm{~B}$.
HP 14T T-8552A or B - B554B-100kHz to 1250Mc/s $£ 2050 \mathrm{~A}-£ 2250 \mathrm{~B}$
HP 141 T -8552A or B-8555A-10 MCs to 18GHz © $\mathrm{B} 250 \mathrm{~A}-£ 3450 \mathrm{~B}$
HP 141 T -old colour mainframe : 8552A. $85538-1 \mathrm{kHz}$ to $110 \mathrm{Mc} / \mathrm{s}$ Instruction manuals §1500
HP 3580A LF-spectrum analyser - 5 kHz 10 50 kHz - LEO readoui-digital storage - $£ 1600$ with instruction manual or $£ 1750$ with internal rechargeable battery
HP53528-40GHz counter - Liquid crystal readoul with instruction manual - $\mathbf{5 0 0 0}$
Spectrascope : 1 SO335 (S.A.) realtme LF analyser - 20 Hz to 50 kHz - LED readout with manual E850
Tektronix 7020 plug-In 2-channel programmable digitizer - $70 \mathrm{Mc} / \mathrm{s}$ - for 7000 manintrames โ500-manual $£ 50$
Datron 1065 Auto Cal digital multimeter with instruction manual - $\mathbb{5} 750$ Racal MA 259 FX standard. Output $100 \mathrm{kc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}-5 \mathrm{MC}$'s - internal NiCad battery - with manual. £150
Tektronix $2235100 \mathrm{Mc} / \mathbf{s}$ oscilloscope + two probes + manual $£ 800$
Tektronix $2235100 \mathrm{Mc} /$ s oscilloscope + Two probes + manual $£ 800$
items bought from hm government being surplus. price is ex works. sae. for enduiries. phone for appointment or for demomstation of any items. avallability or price chamge. vat amocarr. extra
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No. (0274) 684007. Fax 651160

Fig. 1. Using a vapour of water-soluble organic compound directed at the product surface to absorb water.

Conventional spin drying reduces this film thickness by a factor of about ten, but the equipment usually generates small contaminating particles that are deposited on the surface. The method may also lead to stress-induced damage of fine surface structures.
But when a vapour flow of a water-soluble organic compound, such as isopropyl alcohol, is directed at the product surface at the point where it emerges from the rinsing bath, the vapour wilt absorb in the water.
This leads to a larger concentration increase at the top of the meniscus (against the product) than further down where the dissolved vapour can more easily diffuse away from the surface.
The concentration gradient set up along the meniscus results in a surface tension gradient, in turn, inducing a Marangoni flow of water back into the rinsing bath.
Marangoni drying does not result in environmental pollution. consumes little energy and. when an organic compound with a tow vapour pressure is used. does not require expensive safety measures. But most importantly its application warrants the highest yet attainable level of cleanliness.

Ulysses uses radio to probe sun's atmosphere

1nvestigations of the sun's fiery outer atmosphere intensified when the Ulysses spacecraft passed behind the sun earlier this year. Ulysses. which is slightly above the plane of Earth's orbit, appeared to pass just above the sun and radio waves transmitted from the spacecraft travelled through and became distorted by the innermost region of the-corona.
While interference from the conjunction temporarily degraded communications with the spacecraft, the alignment created an ideal situation for radio science experiments, according to Dr Edgar Page, ESA science coordinator.
At closest approach, the signals from Ulysses crossed through the sun's corona at four solar radii, almost three million kilometres from the centre of the sun. Scientists are interested in studying the innermost layers of the corona, where gases are particularly thick and dense. Subtle changes in the character of the radio waves reaching Earth from the spacecraft can provide information on the hot gases through which the waves have passed.
The solar corona experiment, one of two radio science experiments using the spacecraft's two radio transmitters, is studying the density, velocity and turbulence of the solar atmosphere.
Dr Michael Bird of the University of Bonn, Germany, is the experiment's Principal investigator
This radio probing of the corona has
provided an opportunity to obtain information in solar regions where no spacecraft has previously flown, a flight path which is particularly favourable scientifically because the radio waves travel through a region of the corona in which the solar wind is thought to originate.
The mission operations tean at the Jet Propulsion Laboratory reported routine manoeuvring of the spacecraft was not possible for about 15 days during the solar conjunction. The spacecraft was therefore placedin a mode to operate autonomously during the conjunction. The automatic conjunction mode allowed the spacecraft to carry out pre-programmed computer instructions necessary to maintain normal housekeeping operations.
Ulysses is presently travelling just above the ecliptic plane - the plane in which the Earth and sun orbit - on its way to Jupiter.
On 8 February 1992, the spacecraft will tly by the planet at a closest approach of about $375,000 \mathrm{~km}$. above the cloud tops, using the gravitational pull of Jupiter to swing Ulysses out of the ectiptic plane and onward to the poles of the sun.
Ulysses, a five-year mission to study the poles of the sun, is managed jointly by Nasa's Office of Space Science and Applications and the European Space Agency. The spacecraft will begin its primary science objectives in June 1994, when it reaches 70° south solar latitude.

The unseen attraction of VDUs

Athought-provoking contribution on the subject of VDUs and their possible health hazards has recently been provided by Walter Wedberg of the University of Bergen in Norway. Writing in Nature (Vol 352 no 6332) he points out that the electrostatic charges associated with CRTs not only attract particles and aerosols to the sereen, but also to the operator's face.
What is significant about this is that such electrostatic fields can negate the protective effect of thermophoresis - a repulsive force due to temperature gradients near the skin. Wedberg's own research conducted in Norwegian offices shows that a combination of the charge on a VDU sereen and triboelectric (frictional) charging can lead to electrostatic charges of around $100 \mathrm{~V} / \mathrm{cm}$ near an operator's face.
Since most airborne particles carry some
sort of charge. the inevitable consequence of this is that particles are attracted quite strongly to the operator's face. Wedberg has analysed such particle deposits with an electron microseope and found them to vary in size from $0.05 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$. Deposition rates are, moreover, some five times greater on a charged surface compared to an identical neutral surface.
Wedberg s hypothesis is interesting because it could tie in with suggestions from other workers that alpha-radiation from radon decay products is responsible for some of the heabth complaints associated with VDUs. If the claims relate to particles electrostatically attracted to the sereen, then it would be easy to dismiss such claims; alpha-radiation after all has only a tiny range compared with the usual distance between the sereen and the operator. If. on the other
hand, the alpha-emitting particles are located on the operator's actual skin, then the argumen becomes much more plausible.
Wedberg concludes by suggesting that if static electricity can have such a powerfut influence in negating the protective effects of thermophoresis. it may well influence human health 10 a greater extent than has hitherto been recognised.

A point not mentioned by Wedberg, but one which amplifies the force of his argument is the thought that harmfut airborne particles include not only atphaemitters but also a whole host of viruses, bacteria and allergens such as pollen.

What then is to be done? Two thoughts come to mind: lirst what about re-examining the much-debunked ioniser which does at least reduce charge levels? Secondly, if Wedberg is right about particles adhering to the skin, what about the simple expedient of regular visits to the washroom? John Wilson

Calculations.

When number-crunching time comes, does work grind to a screeching halt? Want a better way to do technical calculations than a spreadsheet or calculator - an obstacle clearer instead of an obstacle creator?
You need new Mathead 3.0. the crunch-your-numbers and deliver-results-in-a-second calculation software.
As in-depth as you want. as routine as you need. Mathcad 3.0 does everything from averages to FFTs, from percentages to matrices. Almost every function you'll ever need is built in for rapid, effortless calculations.
New Electronic Handbooks make it easy to click and paste hundreds of standard formulae, useful data, even entire calculations into your documents. And a full range of add-on Applications Packs helps you solve problems specific to your profession.

Mathcad's new easy to learn and use Windows 3.0 interface has you up and running in hours-not days. And it's fast! Simply key in your data and that's itMathcad does all the work for you. It does the calculations. It automatically updates results when you change a variable in the live document. It graphs in 2-D or 3-D. And it prints results in presentation-quality documents, complete with equations in real math notation. In the blink of an eyenumbers crunched-and then you're back to work.

Mathcad 3.0's powerful new features:

- New easy to learn and use Microsofi Windows 3.0 interface
- New Electronic Handbooks and Applications Packs provide solutions for Electrical. Mechanical, Civil and Chemical Engineering, Statistics. Advanced Math and Numerical Methods - Performs symbolic calculations more easily than any other product
- Does exponentials, integrals, matrices. and more
- Produces 2-D and 3-D graphics
- Prints high-quality documentation

Mathcad 3.0 joins versions of Mathead for PC DOS, Apple Macintosh ${ }^{3}$ and Unix workstations.
$T \mathrm{M}$ and © siznify manutucturere straden uark or $\underset{\text { requisered Irallemath reppectively. }}{ }$

For more information or to place an order call or fax Adept Scientific-the authorised UK distribution and support centre for Mathcad from MathSoft Inc. Call today!

(0462) 480055

Adept Scientific

6 Business Centre West
Avenue One, Letchworth Herts.. SG6 2HB, UK
Tel: (0462) 480055
Fax: (0462) 480213

> The answer is Mathcad

> MathSoft, Inc.

Extra-Terrestrial

In October 1945 Wireless World (as Electronics World + Wirless World was then called) published an article which broached for the first time the idea of satellite communications. Written in clear and concise language by innovative thinker and scientist Arthur C Clarke, the article caused a sensation when it appeared. At that time the V2 rocket was leading edge technology and there was as yet no direct experience of radio waves passing between earth and outer space.
As part of the celebration of $E W+W W$'s 80th Anniversary, and as probably the most famous article ever to have appeared in our pages, we have decided to republish that original article in full. Our hope is that readers can once again sense the pioneering excitement of Arthur C Clarke's question: "Can rocket stations give world-wide radio coverage?".?

Can Rocket Stations Give World-wide Radio Coverage?

Arthur C Clarke

Relays

Athough it is possible, by a suitable choice of frequencies and routes, to provide telephony circuits between any two points or regions of the earth for a large part of the time, long-distance communication is greatly hampered by the peculiarities of the ionosphere, and there are even occasions when it may be impossible. A true broadcast service, giving constant field strength at all times over the whole globe would be invaluable, not to say indispensable, in a world society.
Unsatisfactory though the telephony and telegraph position is. that of television is far worse, since ionospheric transmission cannot be employed al all. The service area of a television station, even on a very good site, is only about a hundred miles across. To
cover a small country such as Great Britain would require a network of transmitters, connected by coaxial lines, waveguides or VHF relay links. A recent theoretical study ${ }^{\prime}$ has shown that such a system would require repeaters at intervals of tifty miles or less. A system of this kind could provide television coverage. at a very considerable cost, over the whole of a small country. It would be out of the question to provide a large continent with such a service, and only the main centres of population could be included in the network
The problem is equally serious when an attempt is made to link television services in different parts of the globe. A relay chain several thousand miles long would cost millions, and transoceanic services would still be impossible. Similar considerations apply to the provision of wide-band frequency modulation and other services, such as highspeed facsimile which are by their nature restricted to the ultra-high-frequencies.
Many may consider the solution proposed in this discussion too far-fetched to be taken seriously. Such an attitude is unreasonable, as everything envisaged here is a logical extension of developments in the last ten years - in particular the perfection of the long-range rocket of which V2 was the prototype. While this article was being written, it was announced that the Germans were considering a similar project, which they believed possible within fifty to a hundred years.
Before proceeding further, it is necessary to discuss briefly certain fundamental laws of rocket propulsion and "astronautics". A rochet which achieved a sufficiently great speed in flight outside the earth's atmosphere would never return. This "orbital" velocity is $8 \mathrm{~km} / \mathrm{s}(5 \mathrm{miles} / \mathrm{s})$, and a rocket which allained it would become an artificial satellite. circling the world for ever with no expenditure of power - a second moon, in fact. The German transatlantic rocket Al0 would have reached more than half this velocity.
It will be possible in a few more years to build radio controlled rockets which can be steered into such orbits beyond the limits of the atmosphere and left to broadcast scientific information back to the earth. A litule later, manned rockets will be able to make similar flights with sufficient excess power to break the orbit and return to earth.
There are an infinite number of possible stable orbits, circular and elliptical, in which a rocket would remain if the initial conditions were correct. The velocily of $8 \mathrm{~km} / \mathrm{s}$ applies only to the closest possible orbit, one just outside the atmosphere, and the period of revolution would be about 90 min . As the radius of the orbit increases the velocity decreases. since gravity is diminishing and less centrifugal force is needed to balance it.

Fig. 1. Variation of orbital period and velocity with distance from the centre of the earth.

The cover of Wireless World's October 1945 issue gave little clue to the presence of Arthur C Clarke's pioneering article within.

Fig. 1 shows this graphically. The moon, of course, is a particular case and would lie on the curves of fig I if they were produced. The proposed German space-stations would have a period of about lour and a hall hours.
It will be observed that one orbit, with a radius of 42.000 km , has a period of exactly 24 hours. A body in such an orbit, il its plane coincided with that of the earth"s equator, would revolve with the earth and thus be stationary above the same spot on the planel. It would remain fixed in the sky of a whole hemisphere and unlike all oher heavenly bodies would neither rise nor set. A body in a smaller orbit would revolve more quickly than the earth and so would rise in the west, as indeed happens with the imner moon of Mars.
Using material ferried up by rockets, it would be possible to construct a "space-station" in such atn orbit. The station could be provided with living quarters. laboratories and everything needed for the comfort of its crew, who would be relieved and provisioned by a regular rocket service. This project might be undertaken for purely scientific reasons as it would contribute enormously to our knowledge of astronomy, physics and meteorology. A good deal of literature has already been written on the subject?
Although such an undertaking may seem
fantastic, it requires for jts fulfilment rockets only twice as fast as those already in the design stage. Since the gravitational stresses involved in the structure are negligible, only the very lightest materials would be necessary and the station could be as large as required.
l.et us now suppose that such a station
were built in this orbit. It could be provided with receiving and transmitting equipment (the problem of power will be discussed later) and could act as a repeater to relay transmissions between any two points on the hemisphere beneath, using any frequency which will penetrate the ionosphere. If directive arrays were used. the power requirements would be very small, as direct line of sight transmission would be used. There is the further important point that arrays on the earth, once set up. could remain fixed indefinitely.
Moreover. a transmission received from any point on the hemisphere could be broadcast to the whole of the visible face of the globe, and thus the requirements of all possible services would be met (Fig. 2).

It may be argued that we have as yet no direct evidence of radio waves passing between the surface of the earth and outer space: all we can say with certainty is that the shorter wavelengths are not reflected back to the earth. Direct evidence of field strength above the earth's atmosphere could be obtained by V2 rocket technique, and it is to be hoped that someone will do something about this soon as there must be quite a surplus stock somewhere! Alternatively, given sufficient transmitting power, we might obtain the necessary evidence by exploring for echoes from the moon. In the meantime we have visual evidence that trequencies at the optical end of the spectrum pass through

A project which goes part of the way towards the goal envisaged in this article has been put forward by Westinghouse in collaboration with the Glen L Martin Co of America. The radius of coverage would be increased from 50 to 211 miles by beamed radiation from an aircraft nying at a height of $30,000 f$ and equipped with television and FM transmitters.

Fig. 3. Three satellite stations would ensure complete coverage of the globe.
with little absorption except at certain frequencies at which resonance effects occur. Medium high frequencies go through the E layer twice to be reflected from the F layer and echoes have been received from meteors in or above the F layer. It seems fairly certain that frequencies from, say, $50 \mathrm{Mc} / \mathrm{s}$ to $100,000 \mathrm{Mc} / \mathrm{s}$ could be used without undue absorption in the atmosphere or the ionosphere.

A single station could only provide coverage to half the globe, and for a world service three would be required, though more could be readily utilised. Fig. 3 shows the simplest arrangement. The stations would be arranged approximately equidistantly around the earth, and the following longitudes appear to be suitable:-

30E - Africa and Europe
 150E - China and Oceana
 90W - The Americas

The stations in the chain would be linked by radio or optical beams, and thus any conceivable beam or broadcast service could be provided.
The technical problems involved in the design of such stations are extremely interesting ${ }^{3}$ but only a few can be gone into here. Batteries of parabolic reflectors would be provided, of apertures depending on the frequencies employed. Assuming the use of $3000 \mathrm{Mc} / \mathrm{s}$ waves, mirrors about a metre across would beam almost all the power on to the earth. Larger reflectors could be used to illuminate single countries or regions for the more restricted services, with consequent economy of power. On the higher frequencies it is not difficult to produce beams less than a degree in width, and, as mentioned before, there would be no physical limitations on the size of the mirrors. (From the space station, the disc of the earth would be a little over 17 degrees across). The same mirrors could be used for many different transmissions if precautions were taken to avoid cross modulation.
It is clear from the nature of the system that the power needed will be much less than that required for any other arrangement. since all the energy radiated can be uniformly distributed over the service area, and none is wasted. An approximate estimate of the power required for the broadcast service from a single station can be made as follows:
The field strength in the equatorial plane of a $\lambda / 2$ dipole in free space al a distance of d metres is ${ }^{4}$

$$
e=6.85 \frac{\sqrt{P}}{d} \text { volts } / \text { metre }
$$

where P is the power radiated in watts.
Taking d as $42,000 \mathrm{~km}$ (effectively it would be less) we have

$$
P=37.6 e^{2} \text { watts }
$$

(e now in $\mu \mathrm{V} / \mathrm{m}$)

Fig. 4. Solar radiation would be cut off for a short period each day at the equinoxes.

If we assume e to be $50 \mathrm{mV} / \mathrm{m}$, which is the FCC standard for frequency modulation, P will be 94 kW . This is the power required for a single dipole, and not an array which would concentrate all the power on the earth. Such an array would have a gain over a simple dipole of about 80 . The power required for the broadcast service would thus be about 1.2 kW .

Ridiculously small though it is, this figure is probably much too generous. Small parabolas about a foot in diameter would be used for receiving at the earth end and would give a very good signal/noise ratio. There would be very little interference, partly because of the frequency used and partly because the mirrors would be pointing towards the sky which could contain no other source of signal. A field strength of $10 \mathrm{mV} / \mathrm{m}$ might well be ample, and this would require a transmitter output of only 50W.
When it is remembered that these figures relate to the broadcast service, the efficiency of the system will be realised. The point-topoint beam transmissions might need powers of only 10 W or so. These figures, of course, would need correction for ionospheric and atmospheric absorption, but that would be quite small over most of the band. The slight falling off in field strength due to this cause towards the edge of the service area could be readily corrected by a non-uniform radiator.
The efficiency of the system is strikingly revealed when we consider that the London Television service required about 3 kW average power for an area less than fifty miles in radius ${ }^{5}$.
A second fundamental problem is the provision of electrical energy to run the large number of transmitters required for the different services. In space beyond the atmosphere, a square metre normal to the solar
radiation intercepts 1.35 kW of energy ${ }^{6}$. Solar engines have already been devised for terrestrial use and are an economic proposition in tropical countries. They employ mirrors to concentrate sunlight on the boiler of a low-pressure steam engine. Although this arrangement is not very efficient it could be made much more so in space where the operating components are in a vacuum, the radiation is intense and continuous, and the low-semperature end of the cycle could not be far from absolute zero. Thermo-electric and photo-electric developments may make it possible to utilise the solar energy more directly.
Though there is no limit to the size of the mirrors that could be built, one fifty metres in radius would intercept over $10,000 \mathrm{~kW}$ and at least a quarter of this energy should be available for use.
The station would be in continuous sunlight except for some weeks around the equinoxes, when it would enter the earth's shadow for a few minutes every day. Fig. 4 shows that state of affairs during the eclipse period. For this calculation, it is legitimate to consider the earth as fixed and the sun as moving round it. The station would graze the earth's shadow at A, on the last day in February. Every day, as it made its diurnal revolution, it would cut more deeply into the shadow, undergoing its period of maximum eclipse on March 21 st . On that day it would only be in darkness for one hour nine minutes. From then onwards the period of eclipse would shorten, and after April 11th (B) the station would be in continuous sunlight again until the same thing happened six months later at the autumn equinox, between September 12th and October 14th. The total periced of darkness would be about two days per year, and as the longest period of eclipse would be little more than an hour there should be no difficulty in storing enough power for an uninterrupted service.

Conclusion

Briefly summarised, the advantages of the space station are as follows:

Appendix - Rocket Design

The development of rockets sufficiently powerful to reach "orbital" and even "cocape" velocity is now only a matter of years. The following figures naly be of interest in this connection.
The rocket has to acquire a final velocity of $8 \mathrm{~km} / \mathrm{s}$. Allowing $2 \mathrm{~km} / \mathrm{s}$ for navigational corrections and air resistance loss this is legitimate as all space-rockets will be launched from very high country) gives a total velocity needed of $10 \mathrm{~km} / \mathrm{s}$. The fundamental equation of rocket motion is

$V=\operatorname{Vog} \operatorname{cog}_{8} R$

where V is the final velocity of the rocket, v the exhast velocity and R the ration of initial mass to final mass (payload plus struc ture). So far v has been about 2 $2.5 \mathrm{~km} / \mathrm{s}$ for liquid fuel rockets but new designs and fuels will permit considerably higher figures. (Oxy-hydrogen fuel has a theoretical exhaust velocity of $5.2 \mathrm{~km} / \mathrm{s}$ and nore powerful combinations are known). If we assume v to be $3.3 \mathrm{~km} / \mathrm{s}, R$ will be 20 to 1 . However, owing to its finite acceleration, the rocket loses velocity as a result of gravitational retardation. If its acceleration (assumed constant) is $\alpha \mathrm{m} / \mathrm{s}^{2}$, then the necessary ration K_{k} is increased to

$$
R_{\psi}=R \frac{\alpha+\xi}{\alpha}
$$

For an automatically controlled rocket α would be about $5 g$ and so the necessary R would be 37 to 1. Such ratios cannen be realised with a single rocket but can be attained by "step-rockets" ${ }^{\text {, }}$, while very much higher ratios (up to 100 to 1) (an be achieved by the principle of "cellular construction" ${ }^{3}$.

Epilogue - Atomic Power

The advent of atomic power has at one bound brought space travel half a century nearer. It seems unlikely that we will have to wait as much as twenty years before atomic-powered rockets are developed, and such roxkets could reach even the remoter planets with a fantastically small fuel/mass ratio - only a few per cent. The equations developed inthe appendix still hodd, but v will be inc reased by a factor of about a thousand.
In view of these facts, it appears hardly worth while to expend much effort on the buidding of long distance relay chains. Even the local networks which will soon be under construction may have a working life of only $20-30$ years.
(1) It is the only waly in which true world coverage can be achieved for all possible types of service.
(2) It permits unresiricted use of a band al least $100.0000 \mathrm{Mc} / \mathrm{s}$ wide, and with the use of beams an almost unlimited number of channelswould be available
(3) The power requirements are extremely smatl since the efficiency of "illumination" will be almosi 100%. Moreover. the cost of the power would be very low.
(4) However great the initial expense. it would only be a fraction of that required for the world networks replaced. and the running costs would be incomparably less.

References

1. "Radio-Relay Systems". CW Hansell. Proc IRE. Vol 33. March. 1945.
2. Rockets. Willy Ley (Viking Press. N. Y.)
3. Das Problem der Befahrung des

We ltramms. Hermann Noordung.
4. Frecurency Modulation. A Hund (McGraw-Hill)
5. "London Television Service."

MacNamara and Birkenshaw. ILEE. Dec. 1938 .
6. The Simn. CG Abbot. (Appleton-Century Co)
7. Journal of the British Interplanetary Soriest. Jan.. 1939.

BOOK REVIEW

Capacitance theory of gravity Morton F Spears

The book Capacilance Theory of Cravity by Morton F. Spears is an attempt by a U.S. electronic engineer, a former MIT graduate of MIT who has built his own successful high-tech communication business, to discover the true nature of gravitational force. Engineers are, of course, entitled to ponder on such fundamental issues, in spite of the resentment and scorn which relativistically-minded physicists and mathematicians confer upon intruders into their domain.
As is normal when an outsider offers his thoughts on the question of gravity, the argument is ignored and, often in frustration, the author commits his ideas to an essay in book form, hoping that it will sit on university library shelves until its merit is recognized. If the work doesn't warrant even a small dose of the kind of glory that was bestowed upon Albert Einstein, then at least the author hopes someone, somewhere, will point out the flaw in the reasoning. Spears ascribes the mutual gravitational attraction of particles to a capacitative effect, taking strength from the fact that there is an analogy between mutual attraction of plates in a charged capacitor and the fact that a corresponding mutual attraction can be induced between spherical objects immersed in a fluid dielectric medium.
The phenomenon of gravity poses two challenging questions, which Spears tries to answer. Firstly, there is the task of relating the form of the gravity force law with electrical or electromagnetic action and, secondly, there is the daunting question of explaining why the gravity force between two electrons is so minute in relation to the mutual electric force. Spears' approach to the first is his capacitance theory, by which he ascribes a notional spherical form to an electron or proton and deduces its capacitance in relation to its radius.
Perhaps the concept of capacitance having a role in gravitational theory is new, but certainly the idea of charge containment on a conductive sphere as a particle form subject to Coulomb-related forces which feature in gravitational action has its historical antecedents. All such theories are
beset by the task of explaining why electric fields do not interact with gravity. Spears does not discuss this background, which leaves the reviewer feeling that a reader would be better informed by a study of the chapter on Gravitation in Sir E. T. Whittaker's book The History of the Theories of Aether and Electricity.
Spears' book will find little sympathy with the physics community, who will join the reviewer in judging this work principally on the treatment of that second question, namely the showing that the gravitational Gdependent force can be derived in precise numerical terms from the charge and radius properties of the electron and the proton. Using the now-standard units in which force is expressed in newtons, Spears exploits a numerical coincidence to show how on page 44 the gravitational interaction can be the same in his CTG (capacitance theory of gravity) as in Newtonian theory. Sadly, there is something amiss with his primary equations by which he appears to have overlooked a dimensional balance. If the same theory is translated into the classical cgs system of units, those equations no longer give that numerical result on which Spears relies. Somehow in his analysis he has lost a dimensional parameter, because equation (4.9), vital to his thesis, declares that the gravitational force is proportional to the dimensions of coulombs squared and this seems not to be a typographical error.
As is so often the case with projects of this kind, no one skilled in judging physical theory has taken an interest or understood the proponent's thesis well enough to focus on this fatal problem. There is a need to topple the Einstein doctrine and put gravity on a better foundation. It may be that an engineer will see this task to a conclusion, but Spears' capacitance theory of gravity is not the way forward. Harold Aspden

ISBN: 0-9629933-0-1
Published by Morton F Spears

PSST...

Powerful Software Saves Time!

ANNOUNCING ISIS DESIGNER VERSION II

Our popular range of schematic capture products has been upgraded to give 'one button' integration to other CAD software. A special script language allows you to add your own options to the menus so that you can, for example, compile a netlist, convert it to the desired format and then invoke another DOS program all from one menu selection.
Other new features include full network compatibility, sophisticated support for PCB design including automatic property assignment and sheet global net properties, improved editing facilities, a full screen library maintainance tool and much more.

ARES - Advanced Routing

ARES £275
A netlist based, multi-layer PCB design package that can integrate with ISIS or other schematics software Includes connectivity checker, design rule checker, power plane generator and automatic back-annotator.
ARES AUTOROUTE \qquad £475
Our new autorouter uses an advanced, multi-strategy algorithm to achieve very high completion rates, yet when driven from ISIS, there is remarkably little setting up to do - Package, Router-Strategy and DRC data can all be read from the netlist.

- Topological Route Editor (another Labcenter innovation)
- Unlimited user configurable pad, track and via styles.
- Full surface mount and metric support.
- 10 copper +2 silk layers.
- 1 thou resolution.
- 30×30 inch max board size.
- Up to 5000 pins, 50000 trace segments using EMS 7 AM.
- Object oriented 2D drawing for silk screen graphics.

Drivers for dot matrix, pen plotters, lasers, POSTSCAIPT, Photoplot (Gerber), NC drill (Excellon).
Graphics export in IMG, BMP or EPS formats.

Budget Price CAD Software

ISIS SUPERSKETCH \qquad from only $\mathbf{\Sigma 6 9}$
Our highly popular schematic drawing program is still the only budget package designed specifically for drawing circuit diagrams. It has all the editing features of ISIS DESIGNER and our Graphical User Interface makes it exceptionally easy to learn and use
Diagrams produced with SUPERSKETCH can be rendered on all common printers/plotters including POSTSCRIPT and graphics export to most DTP and Wordprocessing packages is also possible
An extended device library containing TTL. CMOS, Memory, Microprocessor and Analogue ICs is available for $£ 30$.

PCB II only $£ 69$
An exceptionally easy to use manual PCB drafting package offering most of the features of ARES but without the netlisting capabilities.
PCB II shares the same user interface as ISIS SUPERSKETCH and both packages plus the extended device library are available for just $£ 149$

E I e c c t r o

COMBINATION PRICES

ISIS DESIGNER \& ARES SIS DESIGNER \& ARES AR ISIS DESIGNER $+\&$ ARES ISIS DESIGNER + \& ARES AR Prices inc UK delivery, exc VAT

Call for demo packs Tel: 0274542868 Fax: 0274481078

14 Marriner's Drive. Bradford. BD9 4JT

£1 BARGAIN PACKS

In fact, cheaper than £ 1 because if you buy 10 you can choose one other and receive it free.

13A spurs provide a fused outlet to a ring main where devices such as a clock must nof be switched off. Order Ref 2 In flex switches with neon on off lights. saves leaving things switched on Oider Ref
6 V IA mains transformers upright mounting with fixing clamps. Order Ref. 9
$61 / 2 n$ speaker cabinet ideal for extensions, takes our $61 / 210$ speaker Order Ref
1230 wat! reed switches. it's surprising what you can make with hese - burglar alarms. secret switches, relay, etc Order Ref. 13 225 watt loudspeakers two unit crossovers. Order Ref 22 Nicad constant current chargers adapt to charge almost any nicad battery Order Ref 30
2 Humidity switches. as the air becomes damper the membrane stretches and operates a microswitch Order Ref. 32
5 I3A rocker switch three tags so on off. or change over with centre off Order Ref 42
124 hr time switch. ex-Electricity Board. automatically adjust for lengthening and shortenting day Original cost £40 each Order Ref

Mini uniselector, one use is for an electric ugsaw puzzie. we give circuit diagram for this. One pulse into motor moves switch throug one pole. Order Ref 56
2 Flat solenonds - you could make your multi-tester read AC amps wh this Order Ref 79
Such or blow operated pressure switch, or it can be operated by any low pressure variation such as water level in water tanks Order Ret 6
1 Mains operated motors with gearbox Final speed 16 rpm .2 watt rated Ordet Ref 9
6V 750 mA power supply. nicely cased with mains input and 6 V utput leads. Order Ref 103A
Stripper boards, each contains a 400V 2A bpidge rectifier and 14 ther diodes and rectufiers as well as dozens of condensers. etc. Order Ret 120
Om Iwin screened flex with white pvc cover Order Ret. 122
2 Very fine drills for pcb boards etc Normal cost about 80 p each Order Ref. 128
2 Plastic boxes approx 3in cube with square hoie through top so deal for interrupted beam switch eic Order Ref. 132
5 Motors for model aeroplanes. spin to start so needs no switch Order Ref 134
6 Microptione inserts magnetic 400 ohm also act as speakers Order Ref 139
4 Reed relay kits, you get 16 reed switches and 4 coul sets with notes on making c 0 relays and other gadgets. Order Ref 148 6 Satety cover for I3A sockets - prevent those inquisitive little fingers from getting nasty shocks Order Ret 149
6 Neon indicators in panel mounting holders with lens Order Rel 180

Nex simmerstat keeps your soldering iron eit always at the ready Order Ref 196
Mains solenoid very powerful as $1 /$ in pull or could pushtr modifled Order Ref 199
10 Keyboard switches made for computers but have many other apphcations Order Ref 201
Electric clack mains operated put this in a box and you need ever be late Order Ref
12 V alarms make a noise about as loud as a car horn All brand new Order Ref 221
bin x Ain speakers 4 ohm made from Radiomobile 50 very good quality Order Ret 242
. 6 in \times Ain speakers 16 ohm 5 watts so can be joined in parallel to make a high wattage column Order Ref 243
Panostat. controls output of boiling ring from simmer up to bo Order Ret 252
50 Leads with push on ${ }^{1}$. in tags a must tor hookups mains onnections etc. Order Ref 259
Oblong pust switches for bell or chumes these can switch main up to 5 amps 50 could be toot switch if fited inio paitress Order Ref 263
Mini I watt amp for record player atiached to unit that will also hange speed ot record player motor Order Ret 268 3 Mild steel boxes 7 ppro $\times 3 i n \times 3 i n \times \operatorname{lin}$ deed - standard lectucal Order Ret 283
50 Mixed silicon diodes Order Ref 293
6 digit mains operated counter standard suze but counts in even numbers Order Ref 28
In flight stereo uni: Has 2 most usetul monimoving coll speakers ExBOAC Order Rel 29
6V operated reed retays one normally on other normally closed Order Rel 48
enangeover contacts Coll operated by $12 y$ C or 24 V AC Order Ret 50
2v DCD mounting relay 2 changeover Order Ret
Dolls house switches or use them for any other low yoltage polication Order Ref bl
Magnefic brake for stopping a motor or rotating tool Order Rei
66
Ime reminder Set it for anything up to 60 minutes Order Ret
1 Shaded pole mains motor ain stack so quite powerful Order Ref 85

Order Rel

BARGAINS GALORE

RESISTORS TEN A PENNY and they are top class 5% carbon forl types either ${ }^{1} \%$ or $1 / 3$ wath rating You can buy at this silly price on condition

 (until they are put in curcut of cqurs)/ so they are ideal tor alarms nod
simila devices that do not draw dent but do rely on it always being avalable 4 panels that is 8 battenes allogether $£ 2$ onder ret 2 P2588 POWER SUPPLY WITM EXTR AS output 12 v lamp manns imput is tused and filtered and 12 voutput is volf age regulated very well made on DCD and a Preposounder Made tor expensive equipment bui nevet installed price £3 order ref 3 P80B
12 VOLt 1.9 AMP-HOUR rechargeable battery by Jad YUASHA brand new charged ready for use $£ 650$ each Solar charger to house this and keep

100 WAIT MAIMS TRANSFORMERS all normal primarles 20020 volt $21 / 2 \mathrm{~A} 30$ volt $31 / 2 \mathrm{~A} 40 \mathrm{vol}$, $21 / 2 \mathrm{~A}$ and 50 voll 2 A all upright mounting all E 4
each good quantuties in stoch
COLOUR MONITORS 12 " high resolution in black metal case with mains Dus is delivery
PHILIPS 9" HIGH RESOLUTION MONITOR black and white in metal fiame for easy mounting brand new still in mahers packing offered al less

16 CHARACIER 2 LIME DISPLAY Screen SIze $85 \mathrm{~mm} \times 36 \mathrm{~mm}$ aida numentic LCD dor matrox module with integral micro processor made by Epson theif rel l6027ar brand $\varepsilon 8$ each lolor L 70.100 for E 500 INSULATION TESTER WITH MULTIMETER internally generates vollages which enable you to read insulation directly in megohms the muthmel has tour ranges $A C O C$ volts 3 ranges $D C$ milliamps 3 ranges resistance and 5 amp range These instruments are EX Bulish Telecom $€ 50$ earch yours for only $£ 750$ with leads carnung case $£ 200$ extra. BRUSHLESS O.C. I2V FAM tiny only 60 mm square good all mover hut 0 interference $£ 800$
2MW LISER Hehum Neon by PHILTPS full spec E30 Dower supply for this in kit form with case is $£ 1500$ or in larger case to house tube as well
 maims zzoy fam best mat paps ah
MAINS $230 Y$ FAN best make 'PAPST' $41 / 2$ " square metal blades $\mathrm{C8} 00$ SOLAR CHARGER holds 4 AA nicads and recharges these in 8 hirs in ver neat plastic case $£ 600$
 paralielfor extra currenf 100 mA £1 400 mA £2 700 mA £2 75 IA £3 5 SOLAR MOTORS $11 / 2-9 \mathrm{~V}$ precistion made to operate tom low current off solar cells $£ 150$ solar generator to drive this $£ 700$ has provision fo AIR SPACE O TRIMMER CAPS 220 pl deat

1Khz. TONE GENERATOR this is PP 3 battery operated and has a 1 Km output that can be continuous or internfoted at a rate variable by a panel mounted control Constructed on a pcb and front panel sıre approx MANS ISOLAIION TRANSFORMER stods you getting to earth shochs

MINT MONO AMP on DCb size $4^{4 "} 2^{\prime \prime}$ with tront panel holding volume into 4 ohm speakel using 12 V or 1 watt into 8 ohm using 9 V Brand new

5 RPM GOW MAINS ORIVEN MOTOR ANO GEARBOX this

 POWER SUPPLY UNITS mams in de out based $45 v 100 \mathrm{~mA}$ repulated 10RROIOAL MAINS TRANSFORMER with iwer Outouts 63 v 2 amps and AMSTRAO POWER UNII 135 al 1 mosed ATARI 64 ATARI G4XE COMPUTER at 65 K this is quite powertul sn sutahle for home g' cathooe ray tube phulips M24 306W whit is not only high
unce over
inused
both wit
80 Wall MAINS TRANSFORMERS Two avallable in good quality both win mat pumatres and upight mounting, one is 20 V 4 the othti 40v 2 PROJECT BoX sure appros 8 - 8 - $\$$ metal spraved prey lowvied
 Waten vaive 230 o oderated with hose cunnections ideal tor auto plant HANG UP PHONE won t l lutter up youl desh or workbench current mode in Rood condition and fully working ready to olur in : E?
HIGM VOLTAGE CAPS it you use thece ask for our 120 ky Capacior list
ELECTRONIC BUMP \& GO SPACESMIP
\square

SOO
SOOV BRIOGE ME GGER develoded for G P Technicidns the Ohmeter
 hudge for very accurate resistiance measuremert En BI in quite good

EXPERTMESTING WITH YALYES

15Watt 8ohm i SPEAKER \& 3 TWEETER made for a diru ut tinued hiph
B.T. TELEPHOME IEAO 3 m long and with 81 flat olugideal to make xtension for phone Fax etc 50 peach $£ 40$ per $100 £ y$ per 1000 WhYER PUMP very powerful and with twin outlets nam ereated STuD10 100 by Amsitrad the ultmate disco controt panel has tour eparately controlled and metered channels iwin cassettes AM FM radio siereo audo ampititer phono \& C D inputs etc etc. etc regular pric
over $£ 400$ we have a tew still in maker's packing brand new and suaranteed yours for E99
ROTARY POSIIION CONTROLLER Tor aerials. ventilators dampers theostats dampers or applications requiring 180 degrees clochwise and tive tef AR30W 3 S regulat price owet 970 Drand new 515 each 12 VOIT 8 AMP MAMMS TRAMSFORMER $£ 4$ waterproot metal box tor same

10 WATI SWITCHMOOE POWER SUPPLY 230v mains operated outputs

 $38 v 2^{1}$ in and $5 v 3 A$ we have a lot of these and need the space so you10 VA MALMS ITRANSF ORMERS all $D C D$ mounting all $£ 1$ each 10 for $£ 9$ 00 for $\overline{875}$ for output 12-0-12v ordet rel WAI 200 20v order ref wa3 WAA
O. 1 TAA FULL VISION PAMEL ME TER 3/4" square scaled 0-100 bit scale 10 tor $£ 9$ l00 lor $£ 75$
PANEL AMP-METERS $80 \times 70 \mathrm{~mm}$ Beautitul instrumenis $£ 5$ each 10 mpa order ref WA6 5 amp order ref 8

M

EGE WISE PAMEL METER ideal when short ot panel space only 40 4 mm atso have bult in led 500 uaf sdd scaled 05 el each 10 to yibratimg reed frequency panel meter a" square $55.65 \mathrm{~h} /$ only £
P.C.B. DRILLS 12 assorted sires befween 75 and 15 mm El the lot LOW PRICEO fielo TELEPHONES Ex.GPO models nol quile so nice bokng but quite efticient and have the big advantage that the inging of battenes These phones have the normal type of rotany dial built in and can still be connected into a normal B I system Tested guartanteed in good order puce only $£ 950$ each Order Ret $9 P 5$ MANO GENERATORS as lifted in the above tield telephones this hand approximately soy denending on tope and has an AC output of approximately 50 depending on how quickly you wind if it you want a a 60 watl bult quite successfully The hand generator complete wit

MMSTRAO 3^{3} FLOPPY ORIVE cased and with bull- in power supply so d ell contaned extra drve for you il you use 3" discs real bargain $£ 35.0$ dry bat teries can be recharge dut not with a normal dc charge 1 must he a perrodic current reversal type we can supply the hat wit THE COMPUTER GRAOE CAPACITOR ideal tor low volt high cutrent ELIP YOUR BOYS INTO ELECTRONICS let them leain by expeniments with SUPER MUITI-METER Ex Brilish Telecom this is a 19 range 20 K o py ery rood condition fully wotking and cumplete with leads $£ 950$ leathe canying case L2 extra tuattenes nof micluded but eadiva available) ludents it shows how 10 make solar curculs and electrical circuits no increase the woltare or curtent how to use solat power to woth a radio
alt wilator cassette playet and to chatge nicad battenes The lut comprises 8 smlar cells one solar motor tan blades to tit motor an ell wetten instuction manual maties this a lovely tutle present Pure

M\&B ELECTRICAL SUPPLIES LTD
12 Boundary Road, Hove, Sussex BN3 4EH
Telephone (0273) 430380 Fax (0273) 410142

Applications for short range infrared control and data links have grown from the occasional TV to include a wide range of products: light dimmers, toys, music centre, garage door controls, slide projectors, intruder detection, automobile alarms and teaching aids to mention just a few.
Although infra-red links have become commonplace to circuit designers, the characteristics and constraints of the component elements of these links have seldom been explained. This article covers the main design considerations of such links and. with the free devices supplied with this copy of Electronics World, provides some interesting circuits for experimentation. Emphasis has been placed on the BPW4ID photo diode and ZME4। infra-red emitter as these were specifically designed for such application.
Generally, infra-red links consist of a lightemitting diode radiating at a wavelength of 850 to 970 rm whose output is detected by a silicon photodiode or phototransistor. The led's output needs to be modulated not only to include the required transmission data but also to provide a means of rejecting the relatively immense levels of \mathbb{R} light falling on the detector from other sources. The modulation is invariably digital, using either simple oscillators or coding ICs.
Light detected by the photodiode is converted to an electrical signal that is amplified and then decoded to recover the transmitted information.

David Bradbury, head of applications at the UK semiconductor company Zetex, explains how to get the best out of the sample opto-transistor diode pair supplied with the UK copies of this month's issue.

All but the simplest systems use specialist ICs for decoding. Such links are usually low cost, do not require licensing, cause little interference and are affected by few interference sources.
The main difficulty with most IR link designs is to ensure signal to noise ratios adequate for reliable operation. This entails maximising the light output from the transmitter and minimising noise generation and pick up in the receiver's detector and amplifier.

Transmitter leds

The ZME4I IR led supplied with this issue was designed with remote control applications in mind. It emits with a $\pm 30^{\circ}$ half-
power beam width which eases transmitter aiming requirements. It has a peak current rating of 3.5 A and at a continuous current of 100 mA (the DC limit is 130 mA) it emits useful $15 \mathrm{~mW} / \mathrm{sr}$. The performance of this led is competitive with other similar cost devices on the market.
Over their intended operational range, IR leds give a liglt output that is proportional to operation current. Fig. 1 shows this relationship for the ZME41 with the output given in $\mathrm{mW} / \mathrm{sr}$ (a steradian, sr , is the solid angle subtended at the centre of a sphere of radius r by an area of r^{2} on its surface). This graph shows the advantage gained by running the led at as high a current as possible. Using pulse widths of 10μ s and a duty cycle of 0.01% it is permissible to use peak currents up to 2A with the ZME41. Raising the lens gain of the led's package will give further improvement in output but this will be at the expense of a reduction in beam width.

IR Detector

The BPW4I photodiode was also designed primarily for remote control use. It incorporates a planar P type-Intrinsic-N type (PIN) chip structure with a Si-nitride anti-reflection and passivation coating. The PIN construction gives high IR sensitivity and low capacitance for high speed operation.
In order to exploit the behaviour of uncorrelated noise generators, the chip's signal-tonoise performance has been enhanced by making it as large as economically viable
($7.5 \mathrm{~mm}^{2}$). Signal current from a photodiode is proportional to its area whereas its noise output is only related to the area's square root - hence the bigger the better.

It is not unusual in remote control applications for background illumination from daylight or room lighting to be 1000 times greater than the desired signal incident on the detector. Regardless of source, this unwanted illumination causes the detector to pass current and so generate noise. Since the desired signal is solely IR, receiver noise levels can be reduced by using an optical filter to eliminate all but IR light. The BPW4I photodiode incorporates a particularly effective filter, yielding the spectral response shown in Fig. 2 (given along with the spectral outputs of common light sources). Note that although the filter is an excellent sunlight filter, it can do little with tungsten lamps whose output peaks in the infra-red (hence their low efficiency).
Photodiodes behave like a standard diode wired in parallel with a light dependent cur-

Fig. 2. Spectral response of The BPW41 with some common light sources.
rent generator. This allows the device to be used in two distinct modes. Firstly, if it is used with a high impedance load, the current generator forward biases the diode to produce an output voltage that varies as the log of the incident light level. Commonly used for power generation, this mode of operation (photovoltaic) is not of much use for IR

Fig. 1. Emitter current versus infra-red radiant intensity for the ZME41 diode.
links because large steady-state light sources can easily swamp low level signals.
If the photodiode is reverse-biased, it produces an output current closely proportional to light level. In this mode (photoconductive) it exhibits a high output impedance that varies little with light level. Reverse biasing alsoreduces the diode's capacitance, improving high frequency performance. With a suitable load circuit, this mode of operation works well in IR links.

Detector Load Circuits

From Fig. 1, it can be calculated that when pulsed at 2A the ZME4I will produce a light intensity of around $0.2 \mu \mathrm{~W} / \mathrm{cm}^{2}$ at a range of 10 m . With a sensitivity of typically $45 \mu \mathrm{~A} / \mathrm{mW} / \mathrm{cm}^{2}$, the BPW41 will generate a photocurrent of around 9nA at this illumination level. When used with an appropriate load circuit, photodiodes like the BPW4I can provide usable s-to-n ratios with signals of this order even in the presence of much stronger light sources.

As shown in Fig. 3, a single resistor is the simplest load that is commonly used. Several factors affect the choice of resistance. At the low end, its value is restricted by the need to keep the gain required from A at a value where the amplifier's interference rejection, stability and noise contribution do not compromise system performance.

At the high end, R's value is restricted by bandwidth limitations and overload problems from background light sources. Background light can cause enough photocurrent to forward bias the diode, leading to severe losses in sensitivity. These problems limit the use of simple resistive loads to applications where light levels can be expected to be low, for example in inexpen-
sive TVs and lamp dimmers. Values in the range of 100 to $300 \mathrm{k} \Omega$ give good sensitivities, turn-over frequencies in the 30 kHz to 100 kHz range and will work in rooms that are reasonably but not brightly lit.

Since most background light sources are either steady-state or have outputs which flicker at low frequencies, a load which is low impedance at these frequencies but high impedance at the desired signal frequency would be ideal. Such characteristics can be achieved with an inductor.

Take in Figs 4(a,b)
The inductive load shown in Fig. 4a can provide a signal frequency impedance of $100 \mathrm{k} \Omega$ while giving a very low resistance path for background lighting photocurrent. Consequently it will operate over a wide range of light levels.
Figure 4b illustrates the circuit's output waveform. It consists of a damped sine-wave whose frequency is dependent on the inductance used and the sum of the photodiode capacitance, the inductor's stray capacitance as well as the indicated capacitor. This ringing can cause multiple pulse detection if delays are not included in the receiver logic. Also there are some practical difficulties in winding a suitable inductor ie. size, cost, self capacitance and saturation current.

Inductors have been used in remote con-

Fig. 3. A commonly used single resistor is the simplest load.
trols where good sensitivity and high background light tolerance has been required but the problems highlighted have limited the popularity of this approach.

The optimum characteristics provided by the inductive load can be obtained without the disadvantages mentioned by using an active circuit. Two configurations of the same basic active load circuit but with differing output polarities are given in Figs. 5(a) and (b).

In Fig. 5a, photocurrent from the BPW41 raises the base voltage of the low noise ZTX 384 via the $330 \mathrm{k} \Omega$ resistor until the transistor's base-emitter voltage reaches about 0.7 V and it starts to conduct. An equilibrium point is quickly reached where the

Fig. 4. Inductive loading in (a) provides a signal frequency impedance of 100 ks while giving a very lowresistance path for background lighting photocurrent. Output is shown in (b).
transistor holds its collector voltage at around 0.8 V by acting as a current generator that matches the photodiode current. This equilibrium is maintained
for DC or slowly varying photocurrents thus providing the photodiode with a low impedance load at these frequencies.

The base-emitter capacitor restricts the speed at which the transistor can respond to changes in photocurrent. Consequently, the current matching equilibrium is not maintained for rapidly changing photocurrents, giving the photodiode a high impedance load at high frequencies. For the component values shown in Fig. 5a, the load impedance presented to the photodiode changes from around $1 \mathrm{k} \Omega$ at $D C$ to approach $250 \mathrm{k} \Omega$ at 50 kHz .
The load impedance of this circuit falls a little at high light levels but the main disadvantages of the circuit in Fig. 5a are noise and interference rejection. Although at first sight it appears that high-frequency inputs to T_{r} are shorted by C_{1}, this does not apply to the small noise voltage generator within T_{r} and voltages electromagnetically induced in the wiring loop made by T_{rl} 's base-emitter and C_{1}. These low level signals are amplified by the transistor. The voltage gain of the transistor is given approximately by:

Voltage gain $=\frac{\boldsymbol{R}_{f}}{r_{r}}=\frac{\text { collector load impedance }}{\text { intrinsic emitter resistance }}$
where $\quad r_{e}=\frac{26}{I_{e}} \quad\left(I_{p}\right.$ in mA$)$
These unwanted signals cause little problem

with low background light levels. For instance, in a dimly lit room yielding $5 \mu \mathrm{~A}$ of photocurrent, the voltage gain given to these signals will be around 50, leaving their level too low to be of consequence.
Unfortunately, at light levels approaching direct sunlight, the resulting background photocurrent of 1 mA will raise the circuits voltage gain up as high as 10,000 making the noise and interference significant.
However, the problem is easily dealt with. The extra emitter resistor included in the active load circuit of Fig. 5b changes this behaviour dramatically. The voltage gain of the circuit now approximates to:

$$
\text { Voltage gain }=\frac{R_{c}}{r_{e}+R_{e}}
$$

At ImA the voltage gain of the circuit has ben reduced to less than 160 , leaving the noise contributions from other sources larger than those generated by the load circuit. The added resistor does increase the low frequencyimpedance of the circuit a little but it will still operate in direct sunlight.
Even with a $250 \mathrm{k} \Omega$ load, signal photocurrents of 10 nA will yield a voltage too small to be directly usable. Thus, in practical IR links all of the load circuits discussed will be followed by some kind of amplifier. These must have a high input impedance, a frequency response tailored to the desired sig-

Fig. 6. A 70 cm range infra-red system intended for parts counting.

Fig. 5. Two configurations of the same basic active load circuit but with differing output polarities.

 between headphones and a television or nusic centre.

amplifier stage. Consequently the range can be easily extended by either raising the amplifier gain by adding further stages or by increasing the received signal level using a lens with the transmitter led. An experimental system using both techniques operates at over 40 m .

TV remote control

Figures 7a and bshow a simple IR remote control transmitter and receiver respectively. The circuits utilize a Plessey chip set for coding and decoling and code verification.
The transmitter consists merely of a matrix keyboard, an SL490 IC. clock frequency setting components and the led driver. An T092 style E-line darlington provides 2A drive pulses for the leds, the pulse width being set to about 15μ s by the simple CR base drive components. Note that only 21 of the possible 32 key codes are switched because the receiver decode ignores some codes.

The receiver is rather more complex. A BPW4I used with a PNP active load circuit is followed by a simple low-noise amplifier. During signal reception, the output of this amplifier will be negative going signal pulses superimposed on background noise. The coded signal is separated from the noise using a peak detector which provides posi-
tive going pulses for the decoder IC. an ML922. This IC was designed for use as a TV controller, providing latehed BCD outputs via pins 12, 13, 14 and 15 for channel selection, a mute output and three analogue control outputs.

Monophonic audio link

Infra-red audio links are often used at international conferences to provide language translations to all those attending. The circuits shown in Figs 8a and billustrate a sin-gle-channel audio link intended to allow the use of monophonic headphones with a television or music centre without trailing leads. Its frequency response is from 50 Hz to 8 kHz and depending on the environment it will give a range of about 8 m .
The link uses frequency modulation to avoid potential linearity and amplitude variation problems.
Figure 8a gives the transmitter circuit. The input signal is first amplified and given 55μ s pre-emphasis. The processed signal is then AC coupled to two current generators used to control the frequency of a sure-start multivibrator centred at 70 kHz . One phase of this multivibrator is buffered by a ZTX650 to drive two stacks of three leds. The markspace ration of the multivibrator is $1: 1$ so the peak current in the leds cannot be as high as
in the low data-rate remote control and detector systems, being set to just 300 mA . The output of the transmitter is an IR carrier wave, frequency modulated by the audio signal source.
The receiver uses a BPW41 photodiode to detect the transmituer's output. This is fed through a high-gain amplifier to the Schmits trigger input of a cmos phase-locked-loop IC. The oscillator of this iC is adjusted until it locks onto the transmitter carrier. Subsequent frequency modulation of the carrier is followed by this oscillator and the control signals generated by the IC's phase comparator reproduce the audio input supplied to the transmitter.
Output from the phase comparator is fed through a de-emphasis network which not only corrects for the pre-emphasis given to the signal at the transmitter. but reduces high-Irequency noise too. Atter de-emphasis, tre signal is amplified to a level suitable to drive even low impedance headphones.

Further intormation on the semiconductor devices mentioned in this anticle may be obtained directly from Zetex ple.

A two year guarantee on all our second-hand Test and Measurement equipment!

To give you the confidence that you really did save money by buying second-hand, we are the only company to offer you the protection of a two year parts and labour guarantee on all the Test and Measurement equipment we supply.

Dealing in equipment from the leading manufacturers such as Hewlett Packard, Tektronix, Marconi, Philips, Gould, etc., we can offer you the best in test. Call us now for more information.

‘ 0800521231
 International Callers No, 44.344869 2e

Capella-Technos. Park House, The Pavilions. Downmill Road. Bracknell. Berkshire. RC12 IQS. Fax 0344869230

ALL-MODE WIDE-BAND IC-R7100 RECEIVER

THE IC-R7100 FEATURES:

- 25 to 2000 MHz continuous
coverage allowing you to recelve VHF, UHF amateur, marine, CB utility bands. FM and IV broadcasts
- All-mode capability
- 900 memary channels in 9 banks.
- 20 scan edge memory channels.
- Dual scan with over 40
combinations.
- High sensitivity and reliabie frequency stability
- 0.1, 1, 5, 10, 12.5, 20, 25, 100 kHz and 1 MHz funing steps available - Built-in 24 -hour system clock with 5 ON/OFF timers.
- Effective 20dB attenuator for
strong signals.

Post to: Icom (UK) Lid. Dept WW Sea Street Herne Bay Kent CT6 8LD Tel:0227 741741 (24hr). Fax: 0227360155

[^1]
REGULARS

CIRCUIT IDEAS

DC mains inverter

Eor low voltages and high currents. power Fosfets possess significant advantages over bipolar types. This 12V input. 240V.

500 W inverter is intended to demonstrate their ease of use and will find application in power tools. lighting and universal motors.

A standard push-pull inverter runs at 25 kHz . with regulation obtained from the voltage-mode SG3525A pulse-width modulator from SGS-Thomson. Currentlimit shutdown is achieved by sensing the current in the centre tap of one of the transformers (not both. since they are identical), an op-amp comparator driving the shutdown IC input. Threshold of current limit at the comparator is reduced when the inverter input is very low to compensate for delay in shutdown.
On a practical note, the high primary-side currents render a ground plane more or less essential and copper tape primaries definitely essential, although 1 mm enamelled copper will suffice for the secondaries.

Paul Bennell

Stoke Gifford
Bristol
$250 \mathrm{~V}, 500 \mathrm{~W}$ inverter using power mosfets. Equivalents to the SGS-Thomson device are obtainable from Linear Technology, Motorola, National Semiconductor, Sprague and Unitrode.

A different bridge

This circuit simulates a Wheatstone bridge (Fig.1) by an operational transconductance amplifier and avoids the need for matched resistors while providing a better signal from a strain-gauge transducer.An OTA, as shown in Fig. 2, gives a current output $I=G\left(V_{+}-V_{-}\right)$, in
which G is transconductance, variable by means of R_{b}, the biasing current control. If G is adjusted to be $G=1 / R, V o=I R=V$, the second amplifier output being zero in this case, simulating a balanced bridge; a small variation in the value of \mathbf{R} produces a linear output.

Responses of the two circuits for the same reference voltage and variation in resistance $\partial \mathrm{R}$ is given for comparison. In the prototype, the OTA was a CA3080 and the op-amp an ADS24.
Promit Biswas
New Delhi

Fig. 1. Standard Wheatstone bridge needs matched resistors.

Fig.2. Novel bridge arrangement using operational transconductance amplifier avoids need for matching and provides better output from a strain gauge.

AC stabiliser

0
riginally designed to stabilise the supply to an over-sensitive refrigerator, this arrangement will handle a 220 V supply at 20 W to 2 kW .
Two circuits are offered for resistive and reactive loads, the second being a modification of the first. Figure 1 shows the layout of the resistive-load version. When the mains goes negative with repect to the diode D_{4}, all the current passes through D_{5}, control not being effective during this half-cycle. On the positivegoing half-cycle, D_{4} voltage increases, but no current passes since it is not yet triggered. Current through Tr_{1} and R_{7} charges C_{2} to around 5 V , at which point the $n-p-n / p-n-p$ pair fires, discharging C_{2} and triggering the thyristor by the voltage across R_{9}. Duration of current cut-off through the thyristor is determined by D_{1}, $R_{1,2,3}$. Figure 2 is a graph of the relevant currents and voltages.

Components $\mathrm{D}_{3,2}, \mathrm{R}_{8.5 .5} \mathrm{C}_{1}$ provides a supply voltage to the control circuit proportional to the mains voltage. When the mains voltage increases, the supply to Tr_{1} decreases, extending to cut-off time of the thyristor and vice versa, average current remaing unchanged. Zener D_{2} reduces the effect of the rectifier on the rest of the external circuit.
Figure 3 shows the modification for reactive loads, which works symmetrically on both half-cycles, its operation being sketched in Fig. 4. Figure 5 details the precautions necessary to avoid affecting the local mains supply by HF disturbances. Transistors $\mathrm{Tr}_{1,3}$ may be $\mathrm{BC109s}$, MPSA06s or similar and Tr_{2} a BC212. MPSA56 or the like. The resistor R_{13} should be of 2 W rating and R_{8} a I W type. Valery V Vershinkin
Avdeyevka
USSR

Fig. 1 Resistive load version of AC mains stabiliser

Fig. 5: Interference suppression circuits

Fig.2. Modification to reduce current drawn by oscillator, while retaining same output.

Fig.1. Standard oscillator for use with three-terminal piezo transducers.

Low-current transducer driver

Astandard oscillator driving a threeteminal piezoelectric transducer (Fig.I) may be extended by a few extra components to give the same output while drawing much less current.
Figure 2 shows the circuit, in which the diode DI forces the oscillator to run at 50% duty cycle - the optimum ratio. Values are
uncritical and the circuit is happy with a supply of 5 V to 30 V . Beware reducing currem demand by increasing the collector resistor too much, since in that condition starting becomes unreliable
Mark Byrne
Devizes
Wiltshire

Correction

In the July issue, the Circuit Idea by PR Narayana Swamy contained errors, for which we apologise to readers. The word inputs at the top left should read as follows:

Word 1 A323	Word 2	B323
A222		B222
A121		B21
A020		B020

Also ICI and IC3 are 740)s.

Programmable pulse train generator

When an input triggers this circuit, the reuired number of pulses from 2 to 256 automatically appear at the output. Nand sections IC ${ }_{1,2, b}$ form the input triggers into very narrow load signals which enter the the input data (the pulse number) into the 4 -bit binary counters IC_{23}. Data being loaded, the B_{0} output of IC_{3} is 1 and allows an oscillator $\mathrm{IC}_{1 \mathrm{c}}$ to function and to step the two counters down until they are both at zero, at which point the B_{0} output is 0 and the oscillator stops, having produced a number of output cycles dependent on the input data plus one count since the counters go to 0 . Oscillator components $\mathrm{R}_{1}, \mathrm{C}_{1}$ determine the output frequency.

Yongping Xia

West Virginia University
Morgantown, WV, USA

Number of output cycles of oscillator depends on data applied to presettable counter data inputs.

Lab-Volt ${ }^{\circ}$ technology teaching technology

The award-winning F.A.CE.T. training system from Lab-Volt integrates software, hardware and courseware into a complete computer based training laboratory. It combines the best aspects of manual instruction with interactive, computer based learning.
F.A.C.E.T. means Fault Assisted Circuits for Electronics Training - learning through fault simulation and circuit modification. The modular hardware allows competency based teaching in all major areas of analogue and digital electronics from basics to advanced concepts. Your training department decides the curriculum.

Each F.A.C.E.T. module comprises a number of clearly identified circuit blocks with highly accessible circuit nodes. Connections are made with iumper leads.

Please complete the coupon for further information NAME

ORGANISATION
POSITION
ADDRESS
\qquad

PHONE

Taking the numbness out of PC number crunching

 "Making mathematics more exciting and enjoyable is the drivingforce behind the development of the Derive". So begins the 240
page manual for this esoteric program. But does it succeed? Don
Bradbury reports on the package, from Soft Warehouse in
Honolulu, Hawaii. It might sound like fun but it does demand a
certain amount of mathematical expertise.

Derive offers a series of modules covering arithmetic, algebra, calculus, vectors, and matrices. Input screens allow appropriate equations or formulas to be enteredand solved, simplified or built on thrqugh an extensive range of functions and constants.
The author option is used to enter new expressions and modify and build on certain library expressions derived from a particular module. The completed expression - provided it is syntactically correct - is transferred to the main window where it may be manipulated or graphed as appropriate.
A derive.in file contains an extensive set of default values, but it can be edited directly with any ascii line editor to set more appropriate values for work and hardware.

On-line help for the program is available as a menu option - though it serves mainly to direct the user to the relevant part of the manual. Correcting entries makes use of a Wordstar-like editor and is quite easy to do.

The program will run in 512 K of ram but to squeeze maximum quality from a graphic plot, if you set the number of grids too high, (to improve the plot contour resolution) then it may run out of memory. Modern memory-hungry operating systems mean that you cannot push graphic quality too far without facing memory constraints. Undue demands on memory may cause the program to chug along for some time on a complex problem before deciding it cannot complete the requested task - a situation I faced on a mid-power 16 MHz 80286 machine, without a maths coprocessor. But this is the sort of software which benefits greatly from powerful hardware.
Limitations are mainly felt while calculating graphic output, and here perfectly adequate plots may he had with quite low grid settings, say between 40 and 60 . In such cases the calculations are completed fairly quickly, even on wimpish hardware. But it is best to arrange an expression, and select plot viewpoint first with a coarse setting in the graphics mode until satisfied with the output, then select better definition with a higher grid setting.

Program operation

The screen is divided into two main areas. The botom status line shows the percentage of computer memory currently available, the editor's present mode (insert or over-write), and the module in use in the main window;arithmetic, algebra, or whatever is selected.
Above, is a message line showing what the program is currently doing. During prolonged calculations the program can look as if it has locked up, but keystrokes stored in the keyboard buffer during that time will be executed when calculations are finished. So it's best to keep a constant eye on the message line and then wait until the menus are automatically returned.
This happens particularly when graphic plots are being constructed. Derive can plot hidden lines or omit them (the normal mode), and in the latter case there is often a substantial delay while hidden lines are ploted. The program might, with advantage, have been made to recognise that hidden lines need not be plotted.
Finally, two top-level command lines show the menu
in use. This may be an extensive list. sometimes up to nineteen items long, and since selected options do not display a sub-menu as the list is traversed. each option used must be commitued to memory. But this is a rapid process paricularly for the mosi commonly-used options.

File formats

Mathematical expressions created within the program's environment can be saved and viewed or modified with a standard ascii text editor. Options allow saving of outpul in various formats. If Mry format is selected data can be entered into Derive for continued work. BAS format is suitable for inclusion in a Basic program, FOR files use the Fortran format, and PAS files can be used with Pascal programs.

Files on the program distribution disk are in MTH or DMO format. Either may he read into the algebra window, or the program can be started by appending a file's name to the command line. Thus derive plot3d starts the program directly with a series of expressions from the plot 3D.mTH file which are suitable for demonstrating three dimensional graphing. Another option allows the merging of a diflerent mTH file with that already in the algebra window.

Alt, or just a selection of the expressions created with a Derive window can be saved to a printer or disk file, but, unlike MTH files, these PRT files cannot be read into the program.

Expressions

Most modes of expression entry 10 a window are straight forward. Standard operators and normal precedences are used, hut parentheses do not include other than standard () brackets. The * symbol can be substituted by a space, so that $2(3+5)$ is equivalent 10 $2^{*}(3+5)$, for example. and the care symbol indicates a power expression. Other conventions are clearly indicated in the manual.
A frequent requirement is to reuse expressions within others. Any expression in the current list (they scroll upwards as others are added to a window) may be recalled by highlighting, and then, if necessary, split into parts for further application. This is a great time saver when needing to build more complex expressions from simpler ones, although the blild command allows direct modification of any highlighted expression.
Standard conventions are also used for various functions such as ABS to return an absolute value, SQRT for a square root, and so on. On the PC, a SQRT entry displays as the standard symbol and may, along with other symbols, be entered by means of mnemonic characters in an Alt mode.
Greek letters are entered in the algebra window by using the equivalent English character in combination with the Alt key.
Finally the order of expressions in a window may be rearranged or they can be removed attogether to reduce the clutter of no-longer-required entries.
Many mathematical computer programs can substitute numerical values into formulas, and a few can

solve equations to obtain numeric solutions. But Derive can also combine and simplify formulas, and can solve, algebraically as well as numerically, an equation for one variable in terms of the other variables. In this it claims to be unique. The Algebra.dmo file provided can be used to demonstrate such capabilities.

Derive is able to simplify univariate and multivariate polynomials, rational and extended-rational expressions (the latter having fractional powers of variables), algebraic expressions, and elementary transcendental expressions. ic algebraic and elcmentary functions exponential. logarithmic, trigonometric hyperbolic. and their inverses.
White applying the SIMPLIFY command to such
"Near traingular waves" plotted by the package.

Windows showing simplifications and solutions for both example and authored expressions.

Three-window display showing two plot orientations
expressions, it is often beneficial to split up the expression into parts because it can take an inordinate length of time to carry out the expansions and cancelling of common divisors necessary. Such a process can run the computer out of memory because intermediate results have to be stored in ram. If this seems to be happening it may be necessary to ESCAPE from the calculation and apply the command again after breaking down the expression into smaller parts.
In the algebra mode variables can be reordered using the mavage orderivg commands, but if changing the variables order does not give the desired form of the
simplified expression, you can rearrange the order manually with the BUILD or AUTHOR commands.
A Calculus module has commands and functions for performing symbolic limits, differentiation, integration, Taylor polynomial approximations, series summation, and extended products.

Plotting

Derive can plot univariate and bivariate expressions, the resolution and colour choice of which is dependent on the display mode selected or made available.
Graphic plots can be zoomed, scaled, centred, and modified in certain other ways. They may be rotated to alter the viewpoint (particularly useful in 3D plots) using eye, lengith, and focal commands. The latter sets the focal point of your field of vision.

The sum of it
Derive is a powerful mathematical tool though it might have been made to support expanded memory with advantage - but judicious use of the housekeeping commands, and restrained application of the plotting power of the program, will permit excellent work to be carried out.
At around $£ 150$ it must be considered very good value

Supplier

The Core Store Ltd., The Studio, Hawthorn Cottage, Marbury Road, Comberbach, Northwich, Cheshire CW9 6AU, Phone 0606891980. Price $£ 145$ + VAT

Talent omputers

Disks
380Mb ESDI disk drive £400
52Mb 3.5" IDE disk drive £170
32Mb 3.5" RLL disk drive £85
20Mb 3.5" MFM disk drive £70
Mother Boards386sx 20MHz 0Kb RAM £160
Video Cards
256 Kb VGA card XT/AT £30
512Kb VGA card XT/AT £65
1024 Kb VGA card AT £100
Disk Controllers
IDE with FD, 2S, 1P, 1G £30
ESDI WD1007A-WHA $£ 50$
8-bit RLL and MFM £30

Tel 0533-376909 Fax 0533-376770

For all your computer requirements call Paul on (0533) 376909

Prices exclude VAT and Postage

Computer Systems

Quality Computers at affordable prices.

All computers custom built to your specification.
Prices start from
AT-16MHz $£ 430$
SX-20MHz £520
$\mathbf{3 8 6 - 2 5 M H z} \quad £ 660$
$\mathbf{3 8 6} \mathbf{- 3 3 M H z} £ 760$

Microprocessor Development Tools

EMULATORS - SIMULATORS - COMPILERS - ASSEMBLERS - PROGRAMMERS

77 C 828085 Z 86800080513201068 HC 116301650287 C 751680528068098096740 Series 7720 MIPS R2000 etc..

SMAG NNIVEBEAL ASBENBLEA BOM BNTLANOR

2 Field End, Arkey, Barnet, Herts, EN5 3EZ Telephone : 081-441 3890

 CIRCIE NO. 104 ON KEPLY CARD
ADVANCED ACTIVE AERIAL

The aerial consists of an outdoor head unit with a control and power unit and offers exceptional intermodulation performances: SOIP +90 dBm , TOIP +55 dBm . For the first time this permits full use of an active system around the if and mf broadcast bands where products found are only those radiated from transmitter sites.

- General purpose professional reception $4 \mathrm{kHz}-30 \mathrm{MHz}$
-10 dB gain, field strength in volts/metre to 50 Ohms .
- Preselector and attenuators allow full dynamic range to be realised on practical receivers and spectrum analysers.
- Noise -150 dBm in 1 Hz . Clipping 16 volts/metre. Also 50 volts/metre version.

* Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$. * Stabilizer and Frequency Shifters for Howl Reduction * Stereo Variable Emphasis Limiter $3 \star 10$-Outlet Distribution Amplifier $4 \star$ PPM10 In-vision PPM and chart recorder \star Twin Twin PPM Rack and Box Units. \star PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN $-50 /+6 \mathrm{~dB}$ drives and meter movements \star Broadcast Stereo Coders. \star Stereo Disc Amplifiers \star Philips DC777 short wave car combination: discount $£ 205+$ VAT.

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh, GU6 7BG Telephone: 0483 275997. Fax: 276477

400MHz $£ 2500$

the new price-performance standard for Logic Analysers

the TA4000 series

- 32, 48 \& 80 channel models
- 400 MHz max. asynchronous
- 100 MHz on all channels
- 8 level, 20ns trigger sequencer
- Sub 5ns glitch capture
- 8, 16 \& 32 bit disassemblers
- Price range $£ 2,495$ to $£ 3,995$

THURLBYA, THANDAR

Glebe Road. Huntingdon, Cambs. PE18 7DX
Tel: (0480) 412451 Fax: (0480) 450409

CIRCLE NO. 107 ON REPIY CARI)

HALCYON ELECTRONICS

Test equipment, video monitors, amateur radio gear, printers, power supplies, communications, disk drives, multimeters, oscilloscopes, scientific instruments, connectors, component bridges, frequency counters, signal generators, computers.
RECHARGEABLE SEALED LEAD ACIO BATTS 6V IOAH LONG LIFE. EX NEW EOUIPT \qquad $£ 9.50$ HAMEG HM $4 D 8$ 4OMHZ DIGITAL STORAGE SCOP ces MICROWAVE $1-20 G \mathrm{~Hz}$ ATTENUATORS, DIRECTIONAL OETECTORSICOUPLEAS, NOISE SOURCE, SIGNAL 2 TRACE WITH HMBI48-2 GRAPHIC PRINER 995 PIN MODULATORS. CARAIAGES, TERMINATIONS EODYSTONE RECEIVERS FFOM EA9 10 E125 MOVING \& ADJUSTABLE SHORTS, ETC EDOYSTONE ROUNOSPKR, ELLACK S.METER E399 EA HP 86290 A -H08 RF PLUG-IN, 2 -22GHZ OTHEA COMNS RECEIVERS FTOM 249 to 195 HP B614A \& 8616A MICROWAVE SIG GENS GEN RADIO $1531 A$ XENON STROBOTAC 449 HP 616B, 618C, 6208 , 626AA $628 A$ SIG GEN FAANELL E350 PSU'S 0.350 V 6.3 V S
CITOH 8510 DOT MATRIX PRINTERS RS232 APPLE 2E+, 128K, TWIN DISK DRIVES ETC STORNOMATC 900 MOBULE RT. COMPLETE
MARCONI TF 2451236 METE MARCONI TFT2451246 Q METER〔49 TEK 1 LIO SPEC ANAL PL.IN, $1-36 \mathrm{MH} \mathrm{H}$ E35 MARCON TF2303 AMFM MOD METER 520 MHz C95 ROBIN 4112 PHASE EARTH LOOP TESTER E95 ROBIN 5402 DIG GTAL RCCB (ELCB) TESTER MARCONI LODESTAR $2464 A$ AUTO DF RECEIVER $£ 39$ GRAVOGRAPH IM3 ENGAAVING MC. LINE NEW TEKTRONX T4OBN. DFF. TDO1 LOGIC ANAL
OSCILLOSCOPES OUAL TAACE SISTATE E39 GRAVGGRAPH 1 IM3 ENGRAVING MC. LIKE N
POA CLARK \& SMTH BCCAST RCVAS L.M. FM Hom se PHILIP HARRIS BEAM ANMLYTICAL BALANCES

Visit our bargain corner in shop.

Many valuable items at knock-down prices.

WAYNE KERR CTA92 UNIV LCR BRIDGES	¢65	FERROGRAPH AA TAPE RECORDER	39
RACAL DANA 9341 digital lch bridge	295	SULLIVANGRIFFITHS TAPPED INOUCTANCES	539
AVO CZ 45775 COMPONENT COMPARATOR	575	REDPOINT 6E-1, HSINKS 1.5 CW OTY	POA
MARCONI TFZ300 FWAM MODULATION METER	¢195	Stag PP41 EPROM PROGRAMMER	¢495
TEK 545A, 545B, 585, 535A, 551,535A Fro	From 549	MARCONI TF2330 WAVE ANALYSER	¢150
UV SOURCE SHUTTER OP, TIMER, 200W 240 V		COHU $3010-500 \mathrm{~V}$ dC VOLTAGE STD. Int ref.	F. $¢ 125$
NEOTRONCS OTOX91 OXYGEN ANAL PRTABLE	E $¢ 995$	MICROWA ANALYTCAL BALANCE	£49
LEAKSEEKER 46 PORTABLE GAS DETECTOR		LYONS WG716 16MHz WORO GENERATOR	5245
TEKTRONIX 834 PROG DATACOMMS TESTER	¢395	PRESTEL ALCATEL TERMSKB ${ }^{\text {PS232 }}$ ETC	¢45
AVO 8'S Mk?,5 \& 6 Fm	Fromes5	BSt LAB OVENS $22 \times 49 \times 14$ WIEBNAL $210^{\circ} \mathrm{C}$	$£ 195$
VARIABLE OUTPUT PSU'si HV LV Fror	From 335	TEKTHONIX 4662 PLOTTEAS, GPIB \$ AS 323	¢179
TEKTRONIX 520 PaL OR NTSC VECTORSCOPES			
METROHM VE S00V ELECTRONIC MEGGERS		LEADEP LBO-YC ALIGNMENT SCOPE	
OTHER MEGGERSMEGGER BRIDGES FTO	Frome 10	SIGNAL GENERATORS. AF TO 216 Hz	From S19

423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383.

PLD package says bye bye to breadboard

John Anderson finds Abel-4 to be the embodiment of software description of hardware - it works well too.

Abel-4 is an integrated suite of programs taking design of logic systems on PLD.D. from concept through to final programmed device, Abel (advanced Boolean expression language) is in effect a second generation PLA compiler and makes the carly products such as Palasm looh clumsy.

Key to operation of the package is that it allows circuit operation to be described behaviourally, through a hardware description language (HDL). This is a descriptive tool which uses sofiware akin to Pascal or C to deseribe operation of the hardware of the design. It can then be compiled and processed as if the work were development of a computer program rather design of a hardware device.

Easy installation

Main Abel-4 software is provided on five dises (though it is delivered in a huge box!) with options such as device fitting supplied on separate discs.
Installation is simple and professional, with most aspects completely atutomated - and it did ask before overwriting the at Toexec and config files. The program is protected with a dongle on the parallel port (oh dear, not another one - there must be a better way) and be warned this package is extremely hungry for dise space. The basic Abel-4 pachage needs nearly 2 Mbytes , with a further 3 Mhytes required for the "SmartPart" device database and another 500 Khytes for work area on the hard dise.

Integrated design environment

Operation is through an integrated design environment reminiscent of language development tools such as Turbo Pascal or Quick Basic. There is a top banner with pull down text menus - but strangely no mouse support - and the program will operate in either 25 or 43 row mode.
The total development process is quite complex. but as the only original work required of the designer is to define operation of the device in HDL ., Abel- 4 makes the rest of the task a fairly simple almost transparent procedure.

For example a considerable number of intermediate files are produced during compilation. optimisation and simulation. but these are all handled automatically by the program, with the user only specifying basic HDL. text.

On entry to the program. the ascii editor is involed.

One minor moan here is that there is no file directory facility. so if you cannot remember the name of the lite you want, the only way to view those available is to exit or shell out of the program. The Abel-t editor can be replaced by another ascii editor of choice. though I found the built in one adequate for the relatively small example programs.

Fig. 1. Edit environment with pull down compile menu - though strangely no mouse support.

Fig. 2. Once the HDL file is ready, compilation translates the design description into a set of Boolean equations

Take the Sensible Route!

BoardMaker is a powerful software tool which provides a convenient and fast method of designing printed circuit boards. Engineers worldwide have disc overed that it provides an unparalleled price performance advantage over other PC-based and dedicated design systems by integrating sophisticated graphical editors and CAM outputs at an affordable price.

N wvension

In the new version $V 2.40$, full consideration has been given to allow designers to continue using their existing schematic capture package as a front end to BoardMaker. Even powerful facilities such as Top Down Modification, Component renumber and Back Annotation have been accomodated to provide overall design integrity between your schematic package and BoardMaker. Equally. powerful features are included to ensure that users who do not have schematic capture software can still take full advantage of BoardMaker's net capabilities.
BoardMaker V2.40 is a remarkable $£ 295.00$ (ex. carriage \& VAT) and includes 3 months FREE software updates and full telephone technical support.

A UTOROUTER

BoardRouter is a new integrated gridless autoroute module which overcomes the limitations normally associated with autorouting. YOU specify the track width, via size and design rules for individual nets, BoardRouter then routes the board based on these settings in the same way you would route it yourself manually
This ability allows you to autoroute mixed technology designs (SMD, analogue, digital, power switching etc)in ONE PASS while respecting ALL design rules.

लRIDITI ROUTME

No worrying about whether tracks will fit between pins. If the track widths and clearances allow. BoardRouter will automatically place 1,2 or even 3 tracks between pins.

FMLIYBEENIRANT:

You can freely pre-route any tracks manually using BoardMaker prior to autorouting. Whilst autorouting you can pan and zoom to inspect the routes placed, interrupt it, manually modify the layout and resume autorouting.
BoardRouter is priced at $£ 295.00$, which includes 3 months FREE software updates and full telephone technical support. BoardMaker and BoardRouter can be bought together for only 5495.00 . (ex. carriage \& VAD)

tsien
Tsien (UK) Limited
Cambridge Research Laboratories
181A Huntingdon Road
Cambridge CB3 ODJ UK
Tel 0223277777
Fax 0223277747

Full analogue, digital and SM support - ground and power planes - 45 degree, arced and any angle tracks with full net-based Design Rule Checking.

Optimized placement by displaying ratsnest per component. Lines indicate the unrouted nets.

HIGHLIGHTS

- Net list import from OrCAD, Schema etc.
- Graphical and manual netlist entry
- Top down modification for ECOs
- Forward and back annotation
- Component renumber
- Effortless manual routing
- Fully re-entrant gridless autorouting
- Simultaneously routes up to eight layers
- Powerful component placement tools
- Copper fill
- Curved tracks
- Extensive Design Rule Checking
- Full complement of CAM outputs
- Support and update service
- Reports generator
- Gerber, PostScript \& DXF output
- Full SMD support

Don't just fake our word for it. Call us today for a FREE Evaluation Pack and judge for yourself.

Compile, simulate and optimise

Once the HDL file is ready, compilation translates the design description in the form of state diagrams and truth tables into a sel of Boolean equations. Other operations carried out during compilation include translation of test vectors and generation of a test vector file, replacement of all operators with equivalent operations using only Nol/And/Or and Xor, and Oring together of equations that cause multiple assignments to the same identifier.

Simulation allows correction of design errors either at an early stage when simulation of equations allows debugging of the design before even selecting a device or assigning pins. Or simulation of the Jedec file simulates design with the selected device.
Simulation output can be displayed in a table: waveform format using IBM PC character graphics; waveform format using ascii characters. and the macro cell format which shows the internal nodes and outputs.
Optimisation produces an intermediate file used by the device selector. Action of the optimiser is 10 reduce the logical equations based on user defined constraints.

Few weaknesses

The program is very strong in most aspects of its operation, although a few weaknesses are apparent.

Context sensitive help is available though the index to the help file seems poor: it takes nearly 10 s on a PC-AT to get the help information required. To put this in context 10s is longer than the time taken for a complete compilation.

A key area in PLD designs is liming problems through differing propagation delays in the device. Some warnings are given in the manual, together with a discussion about elimination of hazards using redundant gates, but Abel-4 does not provide estimates of propagation delays.

However, with the exception of the help facility, all

HDL's in designing PLDs

With an HDL-based design process, production of a tested (in the simulation sense) design can be achieved from concept, entirely on computer. The process can be represented by the following procedure:

Design_concept
 REPEAT BEGIN
 REPEAT
 Produce/Edit_HDL file
 Compile
 UNTIL no errors
 Simulate_equations
 IF simulation=OK THEN BEGIN
 Optimise
 Device_selection; Generate_JEDEC_file
 Simulate_JEDEC:
 END
 END
 UNTIL design=OK
 Program_Device
 Document

Although this procedure is not necessarily the exact process that would be employed - for instance the target design may not be realisable and the design concept may need to be changed or subdivided - it shows a compact and deterministic design process is possible for PLDs using HDL.

aspects of the program ran at a perfectly adequate rate, compiling and optimising in only a few seconds. This speed of design means that for a user who knows the sofiware well, a dramatic increase in productivity is possible.
Creative aspects of the design process are concentrated in the generation of the HDL file, and the mundane production of the Boolean description can be made completely transparent to the designer.

Workstations

Several workstations, including Sun. Apollo and DEC Vax can run the package. So anyone starting on a PC then needing to migrate to a more powerful platform, can have the same software environment maintained with the HDL files generated on PC simply exported to the new platform.
On workstations, an alternative route (though not

Fig. 3. Final Jedec file for a 4-bit counter.

Fig. 4. Help is contertsensitive - but it can be a long time coming
(Below) Abel takes high-level descriptions in source files and converts them into programmer load files. Before you can create a load file that contains the fusemap of a particular logic design, you must create a source file that reflects that logic design.

Fig. 5. Pix simulation with waveform output is one of the display choices.

Prototypes manufactured directly in your own Lab in only a few hours
 LPKF offers a complete solution: Professional periphery for every CAD System.

Time spec sheet of a 4 layer multilayer milling inner layer: 45 min pressing: $\quad 120 \mathrm{~min}$ drilling: $\quad 10 \mathrm{~min}$ through plating: 105 min milling outer layer: 60 min operating time: 5 hrs. 40 min

For prototype production LPKF Mill/Drilling Request info material or call: machines have proven its merits in thousands of installations all over the world. CAD data can be downloaded from any CAD system and prototypes are manufactured automatically either through the mill/drilling machine or by means of our latest laser technology.
The CONTAC through plating system and the MULTIPRESS completes the system.

Suitable for any CAD system!
reviewed here) to generating the HDL file is to use the Dash schematic capture program to produce the design concept in schematic form. This can then be translated direcily 10 an HIDL file.

Professional feel - and price
The package is a very professional logic designer's environment, offering a seamless route from the HDL description of the device through to programming of the final product. In effect it provides a silicon compiler translating conceptual designs to silicon with no imervening hardware steps
All aspects are impressive. with the possible exception of the price. The cost is realiy too high for the

Supplier details

ABEL-4 design software is available from Instrumatic
UK Ltd. First Avenue, Globe Park Marlow SL7 IYA.
Phone 0628476741
Price: Abel4 ms-dos includes I year update support £1695
F180-DOS fitter for Altera 1800 architecture $£ 295$
Versions for Sun and Apollo are priced from $£ 2950$

Hardware specification

PC running MS-dos Version 3 or higher
Standard monitor and keyboard
640K ram (384 K minimum)
Hard disc drive
3.5 in or 5.25 in floppy drive

Parallel port (for dongle)
Serial port (for programmer interface)
occasional user, or the amateur, and there might be an argument for Data $1 / O$ producing a reduced performance version at a lower price.
Abel-4 is undoubtedly the embodiment of sofiware representation of hardware, with description, compilation. simulation and programming, all on a PC, replacing the archaic methodology of design, breadhoard and test.

The AR3000 now extends your listening horizons. Frequency coverage is from 100 KHz to 2036 MHz without any gaps in the range. All mode: USB, LSB, CW, AM. FM (narrow) FM (wide). 400 memory channels are arranged in 4 banks $x 100$ channels. 15 band pass filters before the GaAsFet RF amplifiers ensure high sensitivity throughout the entire range with outstanding dynamic range and freedom from intermodulation effects. An RS232 port is provided to enable remote operation by plugging directly Into most personal computers. ACEPAC3 is an exclusively developed multi-function IBM-PC based program to further increase the versatility of the AR3000. A sweep fac!lity provides a spectrum analysls graph. The very latest version displays frequencies in X axis and squelch opening percentage on each frequency in the programmed frequency search range This indicates "how active' the frequencies are in the programmed search range. In addition to the graphic display, ACEPAC3 can produce a detalled numerical list from the graphic information. One memory file has 400 channels divided into 4 banks of 100 channels. More than one memory file can be created to increase the memory storage capability. If you make Just one extra memory file you can store 800 memory channels!
R.R.P. Inc VAT AR3000 $£ 765$ ACEPAC- $3 £ 119$

FARADAY: THE FATHER OF POPULAR SCIENCE

Lectures so popular they were standing-room-only and words now part of everyday science are testaments to a popular brilliance. Greg Grant gives us a glimpse of Faraday the communicator.

Michael Faraday's education. as he readily admitted. amounted to litule more than the three Rs. Yet at only 33 he became a Fellow of the Royal Society. But what also sets Faraday apatt was that he was the first technocrat as concerned with the communication of scientific and technological ideas as with their creation and development.
In the twenty years between discovery of the Noth Magnetic Pole and the Great Exhibition, he transformed electricity from a gentlemanly curiosity into a serious scientific discipline. But it was in communication of these achievements. and those of science in general, that Faraday made an even greater impact.
The communicative medium of the period was the lecture, and Faraday made himself a master of the genre through slieer application and dedication. He had been a regular attender at other peoples' lectures. particularly those delivered at the City Philosophical Society and the Royal Institution.
While listening, he would note the most
important words and sentences, and the names of substances new to him. Later, in the privacy of his lodgings. he would write up the evening s topic from his observalions.
Books too were a powerful influence on him one particular example being "The Improvement of the mind", by hymn writer Isaac Watt. With its insistence on careful observation, the importance of known facts and the snares of rash imprecise speech. Watt's tome was the periect guide for anyone contemplating a career in science, let alone lecturing in the subject. After his death. Faraday himself would be lauded in another self-improving tract. Samuel Smiles" late-Victorian classic "Self Help".

Self improvement
Having given his first lecture in the spring of 1810. Faraday persuaded his friend Edward McGrath to part with two hours of his time per week, dedicated to the improvement of Faraday's grammar, punctuation and spelling. Ganging from the fact that the pro-

> Faraday giving a Christmas lecture in the presence of The Prince Consort. Lecturing was the main communicative medium of the period, and Faraday did it masterfully. Whenever he lectured, the Royal Institution's auditorium was full.

cess continued for the next seven years this must have been badly needed. Faraday was also aware of the power of illustrations. He took lessons in drawing from a French emigre tutor, M Masguerier - hence the painstakingly accurate sketches in his laboratory notebooks, especially those of lines of magnetic force.
In 1820, he published "Analysis of native caustic lime of Tuscany", his first scientific paper, and a result of his accompanying his employer Sir Humphrey Davy on a tour of the continent. Over the next four years he published many papers, including some in the Quarterly Journal of Science.
Faraday also continued his lecturing throughout this period - particularly on inorganic chemistry - and seven years later. collected his investigative experiences and experiments together and published them under the title "Chemical Manipulations". This weighty, 600 page publication was highly successful, remaining a standard work on laboratory methods and techniques for many years.

Pomer of words
Undoubtedly one of the most significant aspects of Faraday's communicative efforts, was his coining of new descriptive terms and expressions for physical and electrochemical phenomena he had either observed or discovered.
However his efforts were not always grected with universal approval. He was criticised, most effectively by William Whewell. for his use of the word "pole" as a descriptive noun. Moreover the article that took Faraday to task. "Employment of notations in chemistry", appeared in the Royal Society's journal.

The piece nevertheless impressed Faraday and he wrote to its author asking for assistance. At this time Whewell was Professor of Moral Philosophy at Cambridge; he was also the man who removed the stigma associated with the term Natural Philosopher, by the simple expedient of inventing another descriptive noun for the same activity. The new term he gave to those who instigated the world about them was Scientist, which he took from the Latin scientia, or knowledge.

Birth of clectrolysis

Faraday had carried out electro-chemical experiments with Davy. and had watched him liberate a number of hitherto unknown metals by passing an electric current through molten compounds. This technique Faraday and Whewell called elecrolysis - an expression based on the Greck word lysis meaning a loosening, and the liquid or solution in which such loosening takes place, was termed an electrolyte.
Electric current was introduced into the electrolyte through metal rods connected to the terminals of a battery and these became electrodes,from the Greek hodos, meaning route (cf exodus) because they formed the pathway for the electric current.

In 1834 Faraday proposed that the positive terminal be called the anode and the negative terminal the cathode, from the Greek prefixes ana meaning up, and kara meaning down. Just as a flow of water traveis from a high point to a low point, it was thought that electric current flowed from positive to negative.

In electrolysis, parts of one molecule appear to travel towards the positive electrode and parts of another towards the negative. These travellers Faraday called ions. from the Greek ienai, meaning to go.
By 1838 Faraday and Whewell had developed what amounted to a new electrical vocabulary and words such as paramagnetic. diamagnetic and ferromagnetic could now be used to describe magnetic characteristics of specific materials.

Unique mind

One of the principal reasons why Faraday was an excellent communicator was his cast of mind. A deep spiritual faith gave him a visionary rather than a mathematical view of nature, and he thought in pictures. seeking annotations for these images, rather than pursuing abstract explanatory indicators known as mathematics.
For example Faraday's treatment of William Gilbert's lines of force was to trace them out in space as it were, on sheets of paper with either iron filings or a compass ncedle.
Another old concept that appealed to his imagination was that of an atmospheric medium or "ether". Faraday tended to see his magnetic fields as lines of elastic stress in such a medium - a force field extending from its point of origin and becoming less
effective with distance. Here we glimpse his quietly-determined advocacy of the unity of forces, his instinctive feeling that electricity, magnetism and indeed light itself were but different manifestations of the same phenomenon.
These beliefs go some way to explain the astringent distrust with which he and his ideas and achievements were viewed by his more mathematical colleagues.
There were some notable exceptions to this generalisation such as Lord Kelvin and James Clerk Maxwell.
Maxwell realised that there were no inherent differences in the explanatory methods of Faraday on the one hand. and mathematical physicists on the other. In the first paper of the series he wrote on the electromagnetic theory of light. Maxwell recorded a mathematical treatment of Faraday's lines of force.

Wide appeal

Whenever Faraday lectured, the Royal Institution's auditorium was full. It was he who began the popular lectures for children, still held at Christmas every year and now, reaching a far wider audience through television.
One lecture in this series. "The chemical history of a candle" became justly famous, subsequently being translated into almost every European language.
Another piece that enjoyed wide popularity was "Lectures on the various forces of matter" and both are excellent examples of Faraday's method and technique. In the first case he began simply. using the most common of household articles, a candle. In the second, he did exactly the opposite, plunging his young audience into a wide-ranging elaboration of the laws of nature.
But for me, Faraday's masterpiece is his lecture on Wheatstone's telegraph, delivered to his alma mater The Royal Institution on Friday 11 June, 1858. He subtitled the lecture an "Argument in favour of the full recognition of science as a branch of education", and his description of experimental techniques are crisp and fascinating. Comments on Wheatstone's workmanship are the sort that could only be made by someone with similar skills - Faraday's dexterity with his hands was the result of his apprenticeship as a bookbinder, as well as his continual experimentation in his own laboratory.
As a result his advocacy of science as a distinct branch of education is powerful. indeed irrefutable, as his belief that science teaches an individual to be "neglectful of nothing'.
Many of us - more I suspect than would care to admit - write as much to explain things to ourselves as to others. Was the driving force behind Faraday's skill as a lecturer and demonstrator the fact that he regarded such activities as furthering his own knowledge as much as that of others? I like to think so.

UNIDEN SATELLITE RECEEVER Brand new units (model 8008) $£ 60.00$ ref $60 P 4 \mathrm{R}$ also some 7007 s also $£ 60.00$ ref 60P5R
SPECTRUM +2 COMPUTER Built in data recorder, 128K. psu and manuals $£ 59.00$ ref $59 P 4 \mathrm{R}$
SPECTRUM +3 COMPUTER Built in disc drive. 128 K . psu and manuals $£ 79.00$ ref 79P4R
AMSTRAD CPC464 COMPUTER No manuals but only E79.00 rel 79P5R
AMS TRAD CPC6128 COMPUTER Again no manuals but only £ 149.00 ref 149P4R
AMSTRAD GT65 Green screen monitor $£ 49.00$ ref 49P4R AMSTRAD PORTABLE PC'S FROM $£ 149$ (PPC1512SD) [179 (PPC1512DD). \&179 (PPC1640SD). 2209 (PPC 1640DD). MODEMS £30 EXTRA.NO MANUALS OR PSC1.
PSU

AMSTRAD PC BARGAINH!II!
PC 1512 DD COMPLETE WITH CGA COLOUR MONITOR, 2 OISC DRIVES, MANUALS ETC ONL Y $£ 249.00$ REF 249P4R
HHGH POWER CAR SPE AKERS. Stereo pair Output 100 w each ${ }^{4}$ 4ohm inpedance and consisting of $61 / 2$ wooler 2^{-1} mid range and 1 " tweeter todeal to work with the
pals $£ 3000$ Order ret 30 P 7 R .
2KV 500 WATT TRANSFORMERS Suitabie lor high wohage axperimenss or as a spare for a microwave oven etc. 250 VAC input E10 00 ref 10P93R
MICROWAVE CONTROL PANEL Mans operated with touch switches Complete with 4 digit display. digital clock, and 2 reiay outputs one for power and one tor pulsed power (programmable)
Ideal for all sors of precision timer apphcations etc. $\mathbf{E 6 . 0 0}$ el 6 P 18 P Ideal ior all sorts ol precision timer app hcations etc. $£$.
FIBRE OPTIC CABLE. Stranded optical thbres sheathed in black PVC. Five metre length $£ 7.00$ iel 7P29R
12 V SOLAR CELL. 200 mA ourput ideal tor
thickie charging etc.
§15.00 ref 15P42
PASSIVE INFRA-RED MOTION SENSOR.
Complete with dayiligh sensor, adjustable hghts on imer (8 secs - 15 mins), 50 range with a 90
deg coverage Manual ovenide ticiity. Com.
\qquad phete with wall brackets, bult holders eitc. Brand new and guaran 100d. 25500 ref 25 P24R
Pack of two PAR38 bulbs for above unit $£ 12.00$ ret 12 P43 4 VIDEO SENDER UMT Transmil both audio and video signals trom either a video camera, video recorder a computer to any
standard TV set within a too' rangel (une TV to a spare channel) $12 v D C$ op $£ 15.00$ rel $15 P 39 R$ Suitable mains adaptor E5.00 oef 5P191R
FM TRANSMTTER housed in a standard working $13 A$ I adapter (bug is mains driven) \&26.00 ret 26P2R MINATURE RADIO TRANSCEIVERS A
walkie takies mith a range of up to 2 wilometros. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases. $£ 30.00$ rot 30 P 12 R FM CORDLESS MICROPHONE. Small hand hed unit with a 500 rangel 2 transmit power leveis reqs PP3 batiory Tuneabie to any $F M$ receiver Our price £15 15P42AR
10 BAND COMMUNICATIONS RECEIVER. 7 shon Hin bands FM. AM and LW DX local switch. tuning eye' mains - batley Complete with shoulder strap.

WHISPER 2000 LISTENNG AID.Enables you to hear sounds that would otherwise be inave complete with headphones. Cased E5.00 rel SP179R.
CAR STEREO AND FM RADIOLow cost stereo system giving 5 watts per channel Signal to noise ratio betler than 45db. wow and thuther bess than 35%. Neg earth. $£ 25.00$ rel 25P2!R LOW COST WALKIE TALKIES Pair of ballery ope ated units with a range of about 150° Our price $\varepsilon 8.00$ a pair rel 8P50R
7 CHANNEL GRAPHC EQUALIZERDINs a 60 watt E power ampl 20-21KHz
NICAD BATTERIES. Brand new top quabity. $4 \times$ AA's $£ 4.00$ ret
 5600 rof 6 P 35 F
TOWERS INTERNATONAL TRANSISTOR SELECTOR GUIDE. The uhimate equivalents book. Latest ecition $£ 20.00$ ret 20P32R
CABLE TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nylon pack of $100 £ 3.00$ ret 3P104R. Bumper pack of 1.000 hes $£ 14.00$ ref 14P6R

VIDEO AND AUDIO MONITORING SYSTEM

Brand new units consisfing of a camera, 14 cm monitor. 70 metres of cable, AC adapter, mounting brackel and owners manual 240v AC or 12VDC operation complete with buith in 2 way imercom. 599.00 rel
99P2R.

1991 CATALOGUE AVAILABLE NOW IF YOU DO NOT HAVE A COPY PLEASE REOUEST ONE WHEN ORDERIN HAVEA COPY PLEASE REOUES A FREE COPY.
GEIGER COUNTER KIT.C Omptele with tube. PCB and all compo. ents to buld a batrory operated geiger counter $£ 39.00$ rot $39 \mathrm{P} \uparrow \mathrm{R}$ FM BUG KIT.Now design with PCB embeddad

EM BUG Rult and tosted suparior 9v operation $£ 14.00$ ret 14P3R COMPOSITE VIDEO KITS. These conver composito video into
 SINCLAIR CS MOTORS $12 v 29 A$ (tull bad) $3300 \mathrm{pmm} 6^{*} \times 4^{*} 1 / 4^{*}$ OP shat. Now. $£ 20.00$ ref 20 P 22 R
As above but with fitted 4101 inime reduction box (800 pm) and sothed myton bett drive cog $£ 40.00$ nol 40 P 8 R
SINCLAIR C5 WHEELS 13 or $16^{\prime \prime}$ da including treaded tyre and iner tube Wheels are black. spoked one piece poly carbonate $13^{\prime \prime}$
ELECTRONIC SPEED CONTROL KI For C 5 motor. PCB and all components to build a speed controller ($0-95 \%$ of speec). Uses SOAR POWERED NCAD CHARGER
OLAR ROW
AA nicad
6PPA
MOR

AT 286 MOTHERBOARD

640K RAM
UPGRADABLE TO 4 M
AT CASE AT POWER SUPPLY AT KEYBOARD MANUAL NO I/O CARDS

£139

ANSWER MACHINES BT approved remote message playback. Intergral push butron phone power supply and tape Exceotional value at $£ 45.00$ ef $45 P 2$ R
CAR IONIZER KIT Improve the air in your call clears smoke and heps to reduce tatigue. Case required. $£ 12.00$ rel 12 P 8 R 6V $10 A H$ LEAD ACIDsealed battery by yuasha ex equipment buil in exoeflent concition now only 2 tor $£ 10.00$ ret 10P95R
12 TO 220 V INV VRTER KITAS supplidid it will handio up to about 15 w al 220 vbu with alarger transtormarit will 1200 ret $12^{\mathrm{P} 41 \mathrm{R}}$. VERO EASI WIRE PROTOTYPING SYSTEMIdeal tor dosigning projects on etc. Complete with tools, wire and reusable board ing projects on erc. Comple
Our price $E 6.00$ nof 6 P3 3 R
MICROWAVE TURNTABLE MOTORS, Iceal for mindow dis. plays otc $£ 5.00$ rel SP165R.
plays otc STC. SO SWITCHED MODE POWER SUPPLY 220 V or 110 v input giving Svat $2 A,+24 v$ at $0.25 A,+12 v$ at $Q .15 A$ and +90 at $0.4 A \mathrm{~A} 6.00$ al 6 PS
HHGH RESOLUTION 12" AMBER MON TORT $2 v$ 1.5A HerCU les compatibie (TTL input) new and cased $£ 22.00$ ret 22P2R VGA PAPER WHITE MONO monitors new and cased 240v AC. 559.00 ief $59 \mathrm{P}_{4} \mathrm{R}$
25 WATT STEREO AMPLIFIERC STKO43. With the addrion of a handtul of components you can buld a 25 wan ampliter. $£ 4.00$ ret 4P69R (Cirauit da incuded)
UNEAR POWER SUPPLY Brand new 2zovinout +5 at $3 A,+12$ at $1 \mathrm{~A} .-12$ at 1 A . Shor circuit protected. \& 1200 ret 12P21R MAINS FANS Snail ype construction. Approx 4"x5" mounted on a Tretal platat for easy fixing. New $\mathbb{} 5.00$ 5P166F POWERFUL IONIZER KIT. Generates 10 times more ions tha commercial units! Complete kit including case £18.00 ret 18P2R. MIN RADIO MODULE Ontr 2 " square with ter rite aerial and whe Supamet Req's PP3 batery $E 1.00$ rof B0716
HIGH RESOL UTION MONTOR.s" biack and whe Phillips twoe in chassis made for OPD computer but may be suilabie for others
$£ 20.00$ red 20 P 26 R . E20.00 red 20P26R
BARGAIN NICADS AAA SIZE 200MAH 1.2V PACK OF E4.00 REF 4P92R, PACK OF 100 £ 30.00 REF 30P16R CB CONVERTORS. Converts a car radio into an AM CB receive Cased with oravii diagram. $£ 4.00$ red 4 P48R
FLOPPY DISCS. Pack ol 15312 " DSDD 510.00 rof 10P88R Pack of 10 51/4- OSDD 55.00 ref 5P 168 R .
ONUC CONTROLLED MOTOR One chck so start. two chick reverse diection, 3 chck to stov! 53.00 each raf 3P137R FRESNEL MAGNIF YNG LENS $83 \times 52 \mathrm{~mm}$ £ 1.00 rof 8D827R
 BN3 501 TELEPHONE 027320300 MAIL ORDER TERMS: CASH PO OKGHEQU WITH ORDERPLUS E2.5OPOSTPLUS VAT. PLEASE ALLOW TOTA DAYS FOR DELVERY

LCD DISPLAY. $41 / 2$ digits supplod
3P77R or 5 tor $£ 10.00$ ref 10P78
ALARM TRANSWMTTERS. No data avaliable but nicely
TRANSMTTER RECEVER SYSTEMoriginaly made for nurse call systoms they consist of a pendart style transmitter and a ${ }_{12 \mathrm{P} 26 \mathrm{R}}$
CLAP UGHT. This device wrns on a lamp at a inger 'snap' erc nicoly cased with built in battery operated figm Ideal beos side light erc nicoly casod of 4 P82R
ELECTROAIC DIPSTICK KIT.Contains all you nead 10 build an etectronic devico 10 give a 10 hevel liquid indicator $£ 5.00$ (ex case) ${ }_{\text {ret }}$ SP194R
URYVERSAL BATTERY CHARGER Takes AA's. C'S, D's and PP3 nicads. Hohts up to 5 batrenies at once. Now and cased, mains oper ated. 56.00 ret 6 P36
ONE THOUSAND CABLE TES $775 \mathrm{~mm} \times 2.4 \mathrm{~mm}$ white nyion cable tios only $E 5.00$ ret 5P181R
PC MODEMS 1200,75 baud moderns designed to plug into a PC complete with manual but no sottware $£ 18.00$ rof 18P 12R AS TEC SWITCHED MODE POWER SUPPL $800 \mathrm{~mm} \times 165 \mathrm{~mm}$ (PCB size) gives +5 at $3.75 \mathrm{~A},+12$ at $1.5 \mathrm{~A},-12$ Al 0.4 A Brand now £1200 rof 12P39R
VENTILATED CASE FOR ABOVE PSUWith IEC Finered socket and power swite $\mathbb{5} .00$ rol 5P190R
IN CAR POWER SUPPLY.Prigs into cigar socket and gives 3.4.5.6.7.5,9, and $12 v$ outpurs at 800 mA Comporto with universal spoder plug 1500 ret 5P167R
CUSTOMER RETURNED smitched mode power supphes. Mred

DRILL OPERATED PUMP. Fits any dril and is soll priming $₹ 300$ Yot 3P140R.
POWERFU
POWERFUL SOLAR CELL IAMP . 45 VOLTbnly $£ 500$ ret SP192R (other sizes avahabte in catalogue)
SOLAR PROUECT KIT.COnsists of a solar
SOLAR PROUECT KIT. COnsisis of a solar cell, special DC motor plastic tan and turmables etc plus a 20 page book on solar energy Price is CB .00 ref $8 P 51 R$
RESISTOR PACK. 10×50 values (500 resistors) all $1 / 4$ watl 2% metal fim 55.00 rel SP1 70 R.
CAPACITOR PACK 1.100 assoned non etectrolytic capacitors £200 ref 2P286R
CAPACITOR PACK 2.40 assoned electrolytic capactors $£ 2.00$ rul 2P287R
QUICK CUPPA? 12 vimmersion heater with lead and cigar lighter pleg 53.00 red 3P92R
LED PACK. 50 red lods 50 green leds and 50 y ellow leds all 5 mm \&8 00 rel $8 P 52 \mathrm{R}$
FERRARH TESTAROSSA. A true 2 channel rado controlled car with torward, reverse. 2 gears plus turbo Working headights. E2200 red 22P6R
ULTRASONC WIRELESS ALARM SYSTEMT wo units, One a sensor which plugs imo a 13 a socket in the area you msh to profect. The other, a coniral aiarm unit plugs into any other sacket oisewers in the building. When the sensor is tiggered (by body movernont otc) the alerm sounds. Adjustable sensitivit Price per
pair $£ 20.00$ rof 20034 R . Adduional sensors (max 5 per alarm unit) pair $£ 20.00$ rof 2003
WASHING MACHINE PUMP.Mains operated new pump Not self priming $£ 5.00$ rel 5 P18R
IBM PRINTER LEAD. (D25 to centronics plug) 2 metre parallet. E5.00 rat 5P 186R
COPPER CLAD STRIP BOARD $17^{\prime \prime} \times 4^{4 "}$ of 17 pitch "vero" board £4.00 a sheot fol 4 CE2R or 2 sheels for 5700 rol 7P22R
STRIP BOARD CUTTING TOOLS. 200 rel $2 P 352 R$.
$31 / 2$ disc drive 720 K capacity made by NEC $£ 60.00$ ref 60 P2R TV LOUDSPEAKERS. 5 watt magneticaly screened $4 \mathrm{ohm} 55 \times$ 125mm. £3.00 a peir ref 3 P109R
SPEAKER GRILLS sel of 3 matching grils of different diameers 2 packs for $£ 2.00$ (6 grils) rof 2P364R
50 METRES OF MAINS CABLE $£ 3.002$ core black precut in Converient 2 m lengths ideal for rapairs and projpas ret 3 39: Precut into convenient 1.2 m longths Rot 2 P365R
TWEETERS $21 / 4^{4}$ DTA 8 ohm mourted on a smatt metal plate tor TWEETERS $21 / 4$ PA8 on
COMPUTER MLE Originally made for Future PC's but can be adapted tor other machines Swiss made $£ 8.00$ ret 8P57R. Atari ST converion kit $£ 2.00$ rol 2 P362
 ${ }_{5 P 205 R}$

ADUUSTABLE SPEAKER BRACKETS Ideal tor mounting
speakers on imernal or external corners, uneven surtaces otc. 2 tor speakers on imer
PIR LGGT SWITCH Replaces a standard light smith in soconds bght operates when anybody comes within detection range (4m) and stays on tor an adjustabis ome (15 secs to 15 mm ns). Complete with daylight sansor. Unit also functions as a dimmer swit
CUSTOMER RETURNED 2 channel till function radio controlied cars onvy $\varepsilon 8.00$ rel 8 P200R
WINDUP SOLAR POWERED RADIC! FMAM radio takes re chargeable Datiories comperte with hand charger and solar pane 14 P2000R
240 WATT RMS AMP KIIT Stecreo $30-0-30$ psu requirod E40.00 ret
400 YAII AMS WONO AMP KIT E5s-60 Pmurequirgd rel 55 P200
 ace to moss alarm paneis. $\{16.00$ rel 16P200
ALARM PANELS 2 20n
Otc. $\mathbf{~} 18.00$ ret $18 P 200$
35MM CAMERAC-USIT
280 m (6ns 2 for E 8.00 ref 8 P 200
STEAM ENGINE Standard Mamod 1332 ongine comp
rell 30 P200
TALKING CLOCK
Whincere can we sayen

FAX 027323077
K 14
SOME OF OUR PRODUCTS MAY BE UNLICENSABLE IN THE UK

CROSS-QUAD QUIZZING

The linearised cross-quad can be used as a stable precision differential output voltage-to-current converter. Terrence Finnegan provides an operational analysis of this unusual circuit which works by positive/negative feedback.

One aspect of the linearised cross-quad circuit seems to be unique. ha is essentially a volage-to-current converter, whose transfer characteristic is lincarised by a combination of both positive and negative feedback. I know of no other which uses positive feedback in this way.
Operation is stable provided that the current outputs at the collectors of Q_{1}, and Q_{2} (Fig. 1) are both fed into virtual earth nodes. The AC voltages at these collectors will then be nearly zero and will not provoke instability.
The circuit is complex, but can be analysed by considering the voltage existing at the emitter of Q_{3} - proluced by the difference between two currents: the first current is generated in Q_{3} by the voltage at its base fed in from the collector of Q_{A}. and the seeond current is coupled directly into its emitter througl R. fed in by the emitter of Q_{\perp}.

It so happens that these two currents cancel and the emitter of Q_{3} turns out to be a virtual earth. Q_{3} thus provides the loop gain and the voltage at its collector (which is also) the emitter of Q_{l}) is in phase with the input and larger in amplitude. This makes the output current, i, also in phase with the input and not at $I 80^{\circ}$. as one might expect att first sight.

Cascode Q_{2}, Q_{4} also provides gain, but its main role is to provide the differencing and linearising needed to make i_{2} equal in amplitude to i_{1} and 180° out-of-phatse. Hence i_{2} is in anti-phase with the input voltage.
i_{1} and i_{2} are therefore equal in amplitude. in opposite phase and have low distortion. The circuit transconductance is given accurately by $G_{m}=1 / R$. provided that R is latger than about 10OS otherwise the loop gain is insufficient.

Detailed operation

The simple looking circuit is surprisingly difficult to analyse with accuracy and what follows is a first order analysis based on a study of the observed operation. The following assumptions apply:

1. The transistors are matched and have a high current gain. so that the base currents cill be neglected:
2. The DC current in $Q_{1} . Q_{3}$ is equal to that in $Q_{2} . Q_{4}$ and this current is supplied by current sources in the emitter circuits. Therefore the transistors all operate att the same transconductance. g_{m}. and g_{m} is a non-linear operator accounting for all trintsistor non-linearities.
3. Initially, point B is assumed to be a virtual earth, although the analysis will eventually prove this to be true.

Analysis starts by dividing the circuit into two parts. as shown in Fig. 1 , and then considering the operation of the cascode $Q_{2} \cdot Q_{4}$.

Fig. 1. The circuit is divided into two parts, to analyse the operation of the cascode Q_{2}, Q_{4}.

Voltage af B is zero

Fig. 2. Linearised cross-quad circuit, together with some waveforms at appropriate points.
Q_{f} has an unknown positive voltage, V_{A} input att its base. emitter load resistor R, and a collector load resistor equal to $\mathrm{I} / \mathrm{g}_{\mathrm{m}}$, given by the emitter input resistance of Q_{2} in com-mon-base mode acting as the collector load.
The output signal current. i_{2}, flows in both Q_{2} and Q_{4} and to a first order is given by: i_{2} $=V_{A \cdot K_{m}}\left(1+g_{m} R\right)$. The voltages I_{C} and V_{i} are therefore: $V_{C}=-V_{A} /\left(1+g_{m} \cdot R\right)$ and. $V_{D}=$ $V_{A} \cdot g_{m} \cdot R /\left(1+g_{m} \cdot R\right)$.
Turning attention now to the other hall and considering operation of the cascode Q_{l}.
$Q_{3}: Q_{3}$ has a voltage $I_{C} \cdot$ input at its base and a voltage $I^{\prime} /$ driving its emitter through resistor R. Since $V_{B}^{\prime}=0$, the current through R is given by: $i_{R}=V_{D} / R=V_{A \cdot S_{m}}\left(1+g_{m} R\right)$.

Voltage ${ }^{\prime}\left(\cdot\right.$, applied to the hase of Q_{3}, will generate the output signal current i_{i} in both Q_{1} and Q_{3}, andl $i_{1}=g_{m} V_{C}=-V_{A} \cdot S_{m} /\left(I+g_{m} R\right)$.
This equals the signal current i_{R} flowing in R and is opposite in sign.
The two currents therefore cancel and the external emitter current of Q_{3} is aro. confirming the assumption that point B is a vir-
that earth. We also see that $i_{1}=-i_{2}$, Finally, the loop will set the voltage I_{A} relative 10 $I_{\text {in }}$ so that current i can flow through Q_{1}. This requires that $g_{m}\left(V_{A}-V_{m}\right)=i_{j}$, since $V_{A}>I_{i m}$. Hence, $g_{m}\left(V_{A}-V_{i 11}\right)=V_{A} g_{m} /\left(1+g_{m}, R\right)$, from which $I_{A}=I_{i n}\left(I+g_{m} \cdot R\right) / g_{m} \cdot R$

Substituting this value for V_{A} in the expressions for i_{1} and i_{2} gives: $i_{1}=-i_{2}=$ $I_{i n} / R$.

The circuit transconductance is therefore independent of the transistor parameters. provided that they are matched. More detailed calculations show that the actual match conditions needed are: $g_{m^{2}}=g_{m^{2}}$ and $g_{m}=$ g_{n+t}. The circuit can therefore be constructed from matched pairs if necessary.

Measured waveforms for I_{A}, V_{C} and V_{D} are shown in Fig. 2. with the input set to 30 mV peah-to-peak. V_{C} is heavily distorted and difficult to quantify, However. $I^{\prime} /$ is equal in magnitude and phase to $V_{\text {in }}$ ats pre-

Table 1. High speed instrumentation amplifier performance.

Input notise voltage dernsity	$\mathrm{G}=1(\mathrm{KW})$	1.2nV/l/,
	($\mathrm{i}=\mathrm{I}(\mathrm{CO})$	$3.60 \mathrm{~V} / \mathrm{H}$,
	($\mathrm{F}=10$	$30.1 \mathrm{mV} / \mathrm{H}$ /
Bandwidth	($i=50 \mathrm{C})$	HW0kly,
	($i=100$	IMH/
	($\mathrm{i}=10$	1.2MH,
Slew rate		Hov/as
Common-mode rejection	$\mathrm{C}=10 \mathrm{~m})$	1,36d3
Distortion	($i=10 \%$	0.03\%

Fig. 3. The cross-quad is represented by the fransconduclance amplifier U_{2}, having $G_{m}=1 / R_{1}$, which feeds currents $-i_{f}$ and $+i_{i}$ into the inpul stage.
dicted and V_{i} is in-phase with $V_{i n}$ and slightly larger in amplitude. The voltage at print B is very small and is not shown.

High speed instrumentation amplifier

The circuit finds use ats a precision differential output volage-to-current converter and is used by PMI (see reference) ats described in Application Note AN-105 to implement a fow-noise high speed instrumentation amplifier.

The cross-quad is implemented by the Mat-()4 matched yuad to give precision performance and acts to provide differential current feedback into the input stage. OP-17 atsts ats an overall nulling amplifier to complete the feedbach loop. The collectors of the cross-quad both feed into low impedance nodes, thus meeting the stability criterion discussed carlier. Resistor pairs R_{s}. R_{y} and $R_{\text {/o. }} R_{\text {// }}$ form voltage dividers to attenuate the output feedbach and mateh the limited input range of the cross-quad.

The matehed dividers also guarantee that the output voltage is at ground with zero input voltage. The REF507. provides bias for the input slage and is used instead of a zener to give a low dynamic resistance reference. The input stage bias current is about $380 \mu \mathrm{~A}$ per side. The operation of this amplifier can be studied by first simplifying the circuit to that shown in Fig. 3. Here the cross-quad is represented by the transconductance amplilier U_{2}, having $\mathrm{G}_{\mathrm{m}}=I / R_{1}$. which feeds currents $-i_{f}$ and $+i$, into the input stage.
The differential output voltage, $l_{\text {, }}$, from the collectors of Q_{1} and Q_{2} is nulled out by the servo action of the overall feedback loop. Since the collector current att Q_{l} and Q_{2} due to the signal $V_{i \prime}$ is nulled to /ero, the emitter voltages al Q_{1} and Q_{2} must follow the base voltages exacily (to generate no collector current) and $I_{i n} / R_{2}$ must cqual i_{f}.

But. from the output circuit. $i_{f}=$ ($\left.V_{\text {out }} / R_{/}\right) \cdot\left(R_{N} / R_{5}+R_{9}\right)$ and the overall gain is therefore given by:

$$
V_{\text {cum }} / N_{m}^{\prime}=\left(R_{l} / R_{2}\right) \cdot\left(R_{s}+R_{\varphi} / R_{s}\right)
$$

Using the resistor values shown in Fig. 4. $V_{\text {cum }} / V_{\text {in }}^{\prime}=50399 / R_{2}$

In its application note, PMI gives a gain of $33.000 / R_{2}$ for their values. This does not quite agree with the calculated gain value of $34.297 / R_{2}$, which should apply with their values.

I suspeet that the difference is due to the high zener resistance of Z_{l}, which allows

Fig. 4. Low-noise high speed instrumentation amplifier (PMI application note AN-105) shown here, with some minor changes, is implemented by using the linearised crossquad circuit as a precision differential output voltage-to-current converter.
some leedback into the opposite side of the cross-quad, thus reducing the overall gain from the theoretical value. However there is no doubt about the impressive performance as Table 1 shows:

PMI reduces the gain by increasing the value of R_{2}, from 33 R at a gatin of $100(0)$ to 3h. 3 at at gain of 10 . This increases the input noise as the Table shows and it would be better 10 alter the gain by proper choice of $R_{/} . R_{Y}$ and R_{y}. while keeping R_{2} to a low value, say 50002.

Reference

Application Note AN-105: Precision Monolithics Inc. (now Analog Devices)

ANCHOR SURPLUS LTD THE CATTLE MARKET NOTTINGHAM

NG2 3GY
TEL: (0602) 864902 \& 864041
FAX: (0602) 864667

TEKTRONIX 2455B 250MHz FOUR-CHAN' SCOPE

Fully tested, calibration verified. Truly excellent "as new" condition, with manual.

GOULD OS300 S1

NEW - BOXED with manual, CCT's and two $\times 1 \times 10$ switchable probes. Tested \mathcal{E} calibration verified. DC-20MHz minimum.

Philips PM3217 scopes 50MHz tested \&r cal' verified with Philips manual.

Still only

Marconi TF 2910/4 non-linear distortion analyser, no info, one only, so only:
Rheometrics SA200 signal analyser, digital, no info, one only, so only:
\&175
Racal Dana 9915 UHF Freq' Counters
\&195
Racal Dana 9904M Universal Counters
£195
$1 \mathrm{M} 6 \mathrm{Megohmeter}\left(1 \mathrm{M} \Omega-10^{9} \mathrm{Meg} \Omega\right.$)
Spectra 40600 Laser Alignment System.
Beautiful lens system incl. monitor
£1000
Metals Research Quantimet QTM System.
With acc. \& cabinets, monitor etc.
£1000
Service/User Manuals . . . 1000's in stock ...
Send 30p SAE marked MANUALS CATALOG
Newsletter/Stock List... Updated monthly ... Send 30p SAE marked NEWSLETTER
WE ALSO BUY YOUR TOP QUALITY SURPLUS EQUIPMENT. TRY US . . . YOU WILL NOT BE DISAPPOINTED!

All prices plus VAT \& carriage.

INTERFACING WITH C

by

HOWARD HUTCHINGS

Interfacing with C can be obtained from Lindsey Gardner, Room 1333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group.
Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-661 3614 (mornirgs only, please) A disk containing all the example listings used in the book is available at $£ 25.50$ + VAT. Please specify size required.

C HERE!

If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

Forget gallium arsenide and indium phosphide: forget superconductors, Josephson junctions. optical computing, bioelectronics, sub-micron VHSIC, quantum-effect devices, and all the other wondrous technologies predicted to bring the computing millennium. It may not be any of these exotic approaches that make the grade when the 21 st century dawns.
There is another teclonology, that all being well, jusi might be the magical one destined to revolutionize the hardware of tomorrow. That teclnology is based on plain old common or garden diamond. Well, it will be if the current research into its synthesis and application pans out. Worldwide there are now more than 100 laboratories working in the field. In Japan alone, in excess of $\$ 100$ mittion a year is being spent on diamond research.
But enough of these speculations and superlatives, where does the story really

Huge sums are being

 invested in research for developing artificial diamonds as a replacement for gallium arsenide in IC design. Chris Robbins traces the history of the research, and explains why diamond chips can be more effective.begin? Well, like most branches of modern science and technology, it goes back a long way. The first really reliable account of true synthetic diamond dates from February 1955 when the American Gencral Electric Company's F.P Bundy announced the results of the research they'd been involved in since the early 50s. The diamonds they produced were small, around 0.1 mm , and required enonmous pressures and extremely high temperatures (50.000) atmospheres and nearly $20000^{\circ} \mathrm{C}$) to make them. Even those extreme conditions weren't enough by themselves, so a moten nickel catalyst was used to help transform graphite into diamond.

At that time the integrated circuit (IC) had not been invented, the transistor itself was still a relative newcomer, whilst germanium ruled the semiconductor world and silicon was a difficult and little known upstart. But there was certainly no competition from GE's tiny diamonds, had anybody even sug-

A GEM OF TECHNOLOGY?

gested it though the similarity between diamond. germanium and silicon hadn't gone unnoticed). GE's success didn't lead to a major breakthrough in electronics, instead it launched a new synthetic diamond abrasives business. Mundane perhaps, but profitable. and important. In fact, so important to US defence industries that diamonds were classified as a special strategic material.
Perhaps the earliest known attempt at synthesis occurred In Glasgow in 1880. One J.B. Hannay is supposed to have made artificial diamonds from lithium and paraffin. These were heated in a sealed iron gun barrel until it glowed a dull red. Hydrogen from the paraflin was supposed to have combined with the lithium leaving carbon under great pressure to crystallize out as diamonds. Although most of his experiments failed. some tiny diamond-like crystals were produced.
It all sounds very much like Victorian alchemy, though curiously, recent research has also made use of lithium in the form of lithium fluoride as substrate on which to 'grow' diamond. Even. Hannay's diamonds were supposedly examined using X-ray crystallography over half a century later and passed as the genuine article.

Thirteen years after Hannay's attempts, French chemist Henri Moissan also claimed to have made diamonds. The recipe this time involved burnt sugar and molten iron. This wasn't quite as ridiculous as it sounds; the sugar supplied the necessary carbon, whilst the iron could have acted as a catalyst. The mix was prepared at a temperature of just over $3000^{\circ} \mathrm{C}$ in Moissan's own invention, the electric are furnace. To generate the requisite high pressure, the carbon-iron mix was rapidly cooled by quenching in cold water: the theory being that the carbon would separate out as diamond crystals. But did it work? Well it was a nice idea, and in several respects the process bore a striking resemblance to GE's successful process. But like so many early claims it was later discounted.

But a couple of years carlier in 1891, something did come out of E. G. Acheson's attempts to produce diamond. It was not diamond though, but silicon carbide, the third hardest substance after diamond and one of the materials which later formed the basis of the huge abrasives industry. Later still it found useful, if not gainful employment, as a crystal in the elementary 'cats whisker' detectors (primitive point contact semiconductor diodes) of carly radios.
In fact. when used as a semiconductor for

Diamond film layers developed by Plessey's Caswell facility in 1989, provide a durable and transparent window for IR detection in missile targeting systems.

WHY USE DIAMONDS?

The answer is simply that of all known materials capable of being employed as a semiconductor, it's the best - in theory at least. Its d electric constant is half that of gallium arsenide (GaAs); electron mobility is greater than silicon and more than twice that of GaAs, whilst the contrast in hole* mobilities is even greater; thermal conductivity is at least four times that of copper (the current best); breakdown voltage is fifty times that of GaAs; power handling is some 2500 times greater.

In terms of area efficiency, when it comes to making complementary devices, it's also a winner, being three times better than silicon and six times better than GaAs, or in other words a whole lot more can be squeezed onto a chip. It is unconditionally stable in virtually any environment - ICs would not need any protective packaging, and they'd
work quite happily at $600^{\circ} \mathrm{C}$ and even higher temperatures. What's more, unlike devices made from "conventional" semiconductors, dianzond ICs would be highly resistant to radiation damage - a very real asset when it comes to nuclear reactors, satellites and spacecraft, and one that has not gone unnoticed by the US DoD (Department of Defense).
Diamond's potential for the kind of densely packed logic ICs that go into computers, is perhaps easier to grasp by combining its relevant parameters in the form of a figure of merit. If silicon is allowed the privileged status of reference material and allocated the value 1, then diamond works out at 32 . By comparison, the currently highly favoured GaAs is, surprisingly, a shade less than 0.5 .
fabricating logic ICs, its ligure of merit rates it some six times better than silicon and 12 times better than GaAs. Not only but also. silicon carbide was the material in which the Lossev effect was discovered way back in 1923. An intriguing scientific novelty for many decades, some 40 years later it was developed to give the now ubiquitous light emitling diode, without which no present day remote control TV would be complete. So. Acheson's experiments weren't a complete waste of time.
At the turn of the century, the real thing still posed something of a problem. Namely. where did it come from? It was generally agreed that to make diamonds intense heat and pressure were required, hence the form taken by carly experiments. But where were these conditions to be found In nature? Sir William Crookes' answer was meteorites, or as he put it on more than one occasion: "a meteorite freighted with jewels has fallen as a star from the sky". whilst the vertical "pipes" in which diamonds were usually found were said to be holes made by meteorites.

It was a nice try. A bold and somewhat poetic explanation, even if a mite off course. They were found in meteorites it was true, but the real explanation lay a bit closer to home - the interior of the Earth itself - and the pipes were simply the filled in necks of old volcanic vents.

While most workers in the long history of synthetic diamond concentrated on the stressful approach, one man In the late 1940s adopted a more laid-back technique. He was William Eversole of the American company Union Carbide. His idea was to deposit diamond from methane by passing it over heated diamond dust. in a process that would nowadays be described as chemical vapour
deposition (CVD). Although the method sounds a bit like alchemy, it actually worked. But Eversole's success was rather limited since only about one percent of carbon from the methane was laid down as diamond. the other 99 percent turned out to be graphite. However the method was proven and patents were granted, albeit over a decade later.
Eversole was not the only one to have been interested in making diamonds the "easy" way.

In the mid 60s another American. John Angus, also took up the CVD cause. Although by this time the commercial manufacture of synthetic diamond, using GE's process, was well established, GE had continued to develop it, and experimentally had pushed it to even greater extremes. By the mid 60 s. pressures had reached upwards of 120.000 atmospheres and temperatures of $3000^{\circ} \mathrm{C}$. But such extreme conditions required extremely expensive and sophisticated equipment, shortened its useful life. and of course increased the cost of the end product.

The Japanese researcher Masayaki Kondo. amongst others, had explored a slightly less fraught approach, concentrating instead on lower temperatures and pressures, but with more efficient catalysts to enhance diamond formation.

By the mid 60s, using this approach. Kondo had managed to make microscopic diamonds at an almost comfortable $800^{\circ} \mathrm{C}$ and 38.000 atmospheres.

Moderately successful though this and other attempts were, they weren't going to be the way for diamond to make it big in electronics. CVD on the other hand was, or more precisely seemed likely to. But by the mid 70s most Western scientists had gone

off the idea, not least because one of the Russian proponents of the method had fallen foul of the scientific establishment by his supposed discovery of a new "polymer" form of water. Tut, tut!
Japanese workers, however, took the Russian work at its face value. attempted to
duplicate it, and succeeded. As ever, it took a while for the West to catch on, so it wasn't until well into the 80s that efforts in the West began to get under way again. But by then the Japanese had quite a head start, and it showed in the enormous number of diamond related patents they had acquired in

Pilkington Electro-optic Materials has combined high-energy plasma and chemical vapour deposition to coat variety of surfaces with polycrystalline diamond.
the meantime; nearly 500 in the period 198387 alone.
Despite the growing interest in diamond, research funding in the West is still considerably less than Japan's. One estimate puts total American expenditure at around $\$ 20$ million a year, or one fifth of Japan's. Even so. in the last few years, considerable advances have been made in both Britain and America. In 1989 for instance, Plessey in Britain announced the development of a plasma enhanced version of the CVD process, capable of growing two inch diameter diamond films from methane. By the following year in America, four inch films were considered routine, and at least three laboratories were working to produce huge diamond films up to twelve inches across.
The latest news, at the time of writing, is that GE have made ultra-pure gem quality diamonds as large as one carat, using a combination of CVD and their well developed high pressure and temperature process. If results are to be believed they are even better than the real thing. At this rate, the interior of the average PC, could well bear a sparkling resemblance to Aladdin's cave a decade hence.

Micro AMPS

ICE 751

ICE51 ${ }^{\text {TM }} \quad$ A low-cost emulator for the industry standard PEB552

BASIC COMPILER

An emulator/programmer for the Philips 24pin skinny DIP 8051; the 87C751. The ICE751 provides the cheapest way to emulate and program these devices.
BEBS2
BASIC
COMPILER The official Philips 80 C 552 evaluation board for this highly integrated 8051 variant. Optional debug monitor and 87C552 programming adapter are available.
A PC-based cross-compiler that enables code written for the 8052AH-BASIC processor to be compiled for the standard 8051 or 8052 . Interpreted Basic is also available on the ICE51.
$8051 \quad 8051$ Architecture, Programming and ApplicaBOOK

OTHER tions. A recommended book for readers who require a text on the 8051 and interfacing techniques. This book is supplied with a PC-based cross-assembler and simulator for personal or educational use only.
Contact us for information on these and many other related products such as ' C ' compilers, $\mathrm{I}^{2} \mathrm{C}$ tools and drivers.

ICE51 is a trademark of Intel.

Micro AMPS Ltd
 66 Smithbrook Kilns, Cranleigh
 Surrey, GU6 8JJ

Tel: $+44(0) 483-268999$ Fax: $+44(0) 483-268397$

> IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.
> R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG. 5 mins from Tally Ho Corner

Telephone: 081-445 2713/0749

Circuits, Systems \& Standards

First published in the US magazine EDN and edited here by lan Hickman.

ICs simplify design of single-sideband receivers

Single sideband (SSB) transmission offers many advantages over FM and full carrier double sideband modulation schemes - more efficient spectrum use, better signal-to-noise ratios at low signal levels. and better transmitter efficiency. Unfortunately. SSB systems have historically required the use of expensive multipole filters. Today, however, some new RF and digital ICs allow you to circumvent the need for these filters. You can use these ICs to good advantage in developing a cost-effective SSB receiver. Good SSB receiver design requires that you know a little about the three basie methods of single sideband generation.
All three methods use a balanced modulator to produce a double sideband, suppressed carrier signal. The undesired sideband is then removed by high Q multipole filters (the filter method), by phase and amplitude nulling (the phasing method), or by the Weaver method. The reciprocal of the generator functions is used to develop sideband detectors. Generators accept audio inputs and produce the SSB signal: detectors receive the SSB signal and reproduce the audio signal. The sideband signal is typically in the radio frequency (RF) range, so you can amplify it and apply it to an antenna or use it as a subcarrier. It's worth noting that all three methods of removing a sideband are complementary: an SSB signal produced by the Weaver method can be reproduced by the phasing method. etc.
In a generation and detection technique using the traditional filter method, the generator (Fig. 1a) produces a double sideband signal, and the balanced modulator nulls the carrier. A high Q crystal type bandpass filter then removes the undesired sideband. The transmit mixer then converts the SSB signal to the desired output frequency. The detection scheme (Fig. 1b) simply reverses the operation. A receive mixerconverts the input frequency to the intermediate frequency (IF).
The filter has a narrow response and passes only the required SSB bandwidth. The product detector demodulates the signal.
This SSB signal generation method has one major drawback. The filter is tuned to one fixed frequency. As a result. you will need to incorporate a number of transmit and receive mixers to satisfy applications involving multifrequency operation.

Phasing method not suited to voice band

Figure 2 shows block diagrams of generator and detector circuits for implementing the phasing method. In the

Alternatives to the filter method of SB generation and detection

Although some years old now, this article contains some useful ideas in addition to a basic review of methods of SSB generation and detection. The article describe the Weaver method amongst others. The beauty of that particular scheme is that incomplete suppression of the unwanted sideband causes no out of band interference, as it overlays the wanted sideband. I.H.
detector (Fig. 2a), the input signal feeds in phase to two RF mixers. A local oscillator ($L O$) supplies a second signal to the mixers in quadrature. Summing the differentiated output of one of the mixers with the output of the second mixer produces an audio output. In most cases, the mixers will have an output in the audio passband (300 10 3000 Hz). Running the passband through the differentiator circuit imposes a 90° phase shift over more than three octaves. As a result, it is

Fig. 1. In the traditional filter method, the generator (a) produces a doublesided signal, and the balanced modulator nulls the carrier. The detector (b) simply reverses the generation procedure to develop the audio output.

Fig. 2. The quite difficult to use the phasing method for voice band input signal SSB applications. The phasing method employs a generator feeds in phase
to two RF
mixers in the phasing. method
detector (a). A local oscillator (LO) supplies a second signal to the mixers

in quadrature.

In the

generator (b),

a divide-by-4
flip-flop
provides the
sin(yt) and cos(y) signals for the mixer.
(Fig 2b) that duplicates the circuit elements found in the detector. Note that in the generator, the differentiator (phase shifter) is located between the audio input and the mixer. In the generator circuit, a divide by 4 flip-flop provides the $\sin (\mathrm{yt})$ and $\cos (\mathrm{yt})$ signals for the mixer. As a result, the clock signal's frequency must be four times the RF output frequency.

Versatility in datacomms systems

You can use the phasing method for FSK, PSK, and quadrature PSK data communications systems. In an FSK situation, for example. you can alternately key two discrete frequencies to correspond to ones and zeros. By tuning the receiver at the halfway point. you can let these two frequencies represent the upper and lower sideband signals. When you implement rectification and filtering. you can use the simultaneous upper/lower sideband detection concept to drive both clock inputs of a flip-flop.
This type of FSK receiver can exhibit better sensitivity characteristics than traditional FM receivers. In addition. the scheme uses discrete frequencies, so you will not have to employ a broadband phase shifter, simple discrete RC networks will suffice. The Weaver method (Fig. 3) eliminates the difficulty of having to maintain an accurate broadband phase shifit in voice communications systems. A derivation of the phasing technique, the Weaver method does require more circuit elements (four mixers as opposed to two, for example) in both the generator (Fig. 3a) and the detector (Fig. 3b).

Low frequency subcarrier vs phase shift

The basic difference between the two schemes is that the Weaver method uses a low frequency (1.8 kHz) subcarrier in quadrature, rather than a broadband, 90° audio phase shift. The desired sideband folds over the 1.8 kHz subcarrier, and its energy appears between 0 and 1.5 kHz . The undesired energy appears at least 600 Hz away (above 2. 1 kHz). As a consequence, you can reject the undesired sideband with a simple lowpass filter.
It is much easier to design a filter with a steep lowpass response than it is to achieve the accurate phase and amplitude balance that the phasing method requires. As a result, the Weaver method will have much better sideband rejection than that obtainable with the phasing method. Once you have chosen the manner in which you wish to develop the SSB signal, you are ready to add the other circuits that help to complete an SSB receiver. You will need yuadrature dual mixer circuits for the first slage when using the Weaver method.
Figure 4 illustrates two methods of obtaining quadrature LO signals for dual-mixer applications. Both circuits are inherently broadband circuits; they are far more flexible than designs using passive LC circuits (which fail to maintain a quadrature relationship when the operating frequency changes), and they do not require adjustments. In addition, the circuits shown in Fig. 4 are not limited to SSB applications; you can also apply them in FSK. PSK, and quadrature-PSK digital communications systems.
In Fig. 4a's circuit, a divide-by-4 dual flip-flop generates all four quadrature signals. Mosit of the popular dual flipflops will work in this circuit; the choice depends on the application. This example employs the HEF4013 3 cmos device, which consumes little power and maintains excellent phase integrity at cloch rates ranging to several MHL . As a result, it will work quite well at the ubiquitous 455 kHz intermediate frequency.
For higher clock rates (to 120 MHz), the fast TTL 74 F 74 is a good choice for the flip-flop. Tests on this device at 30 MHz operating frequencies show good results - greater than 20 dB SSB rejection. At frequencies in the neighbourhood of 5 MHz , use of the 74F74 will result in sideband rejection of nearly 40 k BB . The ultimate low frequency rejection is mainly a function of the audio phase shifter. You can improve performance by employing resistors and capacitors with tighter tolerances in the phase shifter.

Fig. 3. There is
no need to maintain accurate phase shift when using the Weaver
method in voice systems. It does require more circuit elements than the phasing method-four mixers in both the generator (a) and the detector (b),
for example.

Match clock and operating frequencies

The circuit shown in Fig. 4b illustrates a differem technique for producing a broadband quadrature phase shifi for the L.O. In this case. the clock and operating frequencies are identical - an advantage when compared with the flipflop circuit, beculuse you do not need the high speed components Phase accuracy, however, is more difficult to achieve.
A phase locked loop (PLL) will maintain a quadrature phase relationship when the loop is closed and the VCO voltage is 0 V . The DC amplifier enhances the accuracy of the quadrature output by providing gain for the VCO control circuit. PLL circuits tend to be noisy, however, and noise can be a problem. Sideband noise is troublesome in both SSB and FM systems, but SSB transmission is less sensitive than freguency modulation to phase noise in the LO.
After developing the L.O signals. you have to provide some drive circuitry. The circuil shown in Fig. 5a provides an effective means of driving the 74F74 (or other TTL gates) with an analogue L.O. Assuming you are using 50Ω input and oupput impedances, the NE5205 amplifier provides approximately 20 dB of gain from de 10450 MHz External component requirements are minimal. Thelks value of the resistor is about optimum for pulling the input voltage down near the logic threshold. A OdBm ourpur level will drive the NES205 and 74F74 to 120 MH . By cascading iwo NE 5205 s. you can increase the sensitivity without sacrificing the wide bandwidth.
Figure $\mathbf{5 b}$ shows the intertace circuitry between the 74F74 and the NE602 mixers L.O ports. The total resistance establishes a conservative current drain - about 10 mA from the $74 F 74$ ouputs: the voltage divider tap optimises the operation of the NE602s. The low signal source impedance helps maimain phase accuracy. For DC isolation. use a miniature ceramic device for the isolation capacitor.

Amplifying and switching functions

The use of active mixers like the NE602 will provide conversion gain - lypically 18 dB . In more traditional applications, which use passive diode ring mixers, you experience a conversion loss typically 7dB3. Consequently, the detected audio level will be about 25dB higher when you use the active mixer approach. This fact means that you can significantly reduce the noise and gain requirements of the first audio stage and eliminate the microphonic effect. This is a great advantage in direct conversion receivers.
Traditional direct conversion receiver designs use passive audio LC filters at the mixer output and low noise diserete jfets or bipolar transistors in the first audio stages. Because of the conversion loss associated with passive mixers. these amplifiers must have a very high audio sensitivity, so they readily respond to mechanical vibration and produce microphony. The conversion gain available from an active mixer allows you to use a simple NE 5534 op amp stage (Fig. 6), set up as an integrator to eliminate ultrasonic and RF instability.
You can use an HEF4053 cmos analog switch to provide the sideband select function. This triple double-pole switch drives the phase network and engages one of two amplitude balance potentiometers - one for each sideband. The buffer op amp shown with the two sideband select sections reduces the total harmonic distortion, maintains amplitude integrity, and prevents changes in the resistance values of the filter network due to switch resistance. If the gain distribution within both legs of the receiver is consistent, you can eliminate the amplitude balance potentiometers in less demanding applications.

(b)

Fig. 4. You need quadrature dual mixers whether you are using the phasing or the Weaver method. The
mixer in (a) maintains good phase integrity at clock rates ranging to several $\mathbf{M H z}$.
Clock and operating frequencies are equal in the mixer circuit (b), which gives an advantage over the flipflop design.

Fig. 5. You can effectively drive the 74F74 and other ITL gates with the circuit shown in (a). The total resistince in the interface circuit (b) establishes a conservative current drain (approximately 10 mA) from the 74F74, and the divider tap optimises NEGO2 operation.

Fig. 6. You can
reliably obtain 35dB rejection levels using this circuit in direct conversion applications Add an inexpensive 2pole crystal or ceramic filter and you will realise the required 70 dB sideband rejection levels

Fig. 7. Using the phasing filter technique, you can design a complete, yet simple, SSB receiver. The
antenna
connects directly (via a bandpass filter) to the inputs of the NE602s' mixer stage.

rejection greater than 70 dB . Using the circuit shown in Fig. 6. you can reliably obtain rejection levels of 35 dB . Add an inexpensive 2-pole crystal or ceramic filter, and you can meet the 70 dB requirement. Fig. 7 shows a complete SSB receiver that uses the phasing filter technique. The block labelled "direct conversion phasing SSB
receiver" is Fig. 6's circuit. The antenna connects (via a bandpass filter) directly to the inputs of the NE602s. The direct conversion phasing SSB receiver circuit has a 10 dB signal/noise sensitivity of 0.5 V and a dynamic range of about 80 dB . Single tone audio harmonic distortion is less than 0.05%. and two tone intermodulation products are

Fig. 8. To minimise power drain, you can use HEF4066 cmos analog switches in the subscriber stage of this experimental Weaver receiver circuit.
more than 55 dB down at RF input levels only 5 dB below the 1 dB compression point.
The sideband rejection is about 38 dB at a 9 MHz operating frequency. You can also use the same quadrature dual mixer in a Weaver method receiver. Fig. 8 shows an experimental Weaver receiver circuit. The subcarrier stage here can use HEF4066 cmos analog switches to minimize
power drain. A 1.8 kHz subcarrier requires a 7.2 kHz clock frequency. In the Weaver method circuit, a common 3.6864 MHz crystal combines with the HEF 4060 oscillator and $\div 512$ circuit to provide the required clock signal. When you use switched capacitor filters for the lowpass audio circuits, a single clock generator (with appropriate dividers) suffices for all circuit timing signals.

Electronic Circuits, Systems \& Standards
Edited by lan Hickman, published by Butterworth Heinemann Newnes. ISBN 075060068 3. price £20.

Since its appearance in 1956 the US-based EDN has established itself as a leader in controlled circulation electronics magazines. Now this "best" of EDN - with useful information on components, equipment, circuits, systems and standards is available in a 216 page hardback publication

Available from bookshops, or direct from EW +WW, Room L333, Quadrant House, The Quadrant, Sutton Surrey SM2 5AS. Cost £20 plus $£ 1.50$ post and packing. Cheques payable to Reed Busaines Publishing Group

CATCHING THE BUS

During the summer, Brighton-based company Amplicon started selling a PC data acquisition card controlled by its own 8086. This is the same processor used at the heart of many PCs; the company had designed a computer within a PC.
Andrew Shephard, Marketing engineer at Amplicon, said that the action was like a coprocessor chip, where the numeric coprocessor does the number crunching leaving the main micro to run the system. "The addin card could be doing a number of things, sampling and analogue to digital conversion. which the on-board processor deals with. The host PC doesn't have to do anything about it."
Putting a PC processor on a PC add-in card is just a logical extension of what has gone before. "People want to acquire data at $100 \mathrm{KH}_{z}$. Each channel might want a filler. When you're açuiring at 100 kHz and doing a Foutier transtorm on the board you need a fair amount of processor power to keep it up," says Shephard.
Building a computer in a number of sections and linking the pieces together has become an accepted technique for boosting the performance of a sysiem. Using a single board computer (SBC) to acquire and process data would tie up the main microprocessor with control tasks. slowing down its number-crunching activities. By splitting the job between an i/o board and the SBC, engi-

Catching the right bus.

STEbus. The STE bus was developed to provide rugged 8 -bit computer systems for industrial control. It gets its name from the standard size for boards which is slightly longer than the normal eurocard, hence StreTched Eurocard or STEbus.
A great deal of attention has been paid to the electrical characteristics of the boards. A well-designed STElbus card will have very good isolation between the power and signal lines, so that spikes in the electrical supply do not affect processing or storage of data.
Despite the availability of more sophisticated buses, STE boards carrying 16-bit microprocessors have been designed because the cost of the whole system is still cheaper than using a 32 -bit bus.

SBus is the name Sun gives to the bus it designed for its Unix server computers. The first specification is for 32-bit communications, although there are revisions to extend it to 64 -bits.
The bus is beginning to be used in other applications because of the proliferation of Sparc risc micros away from workstations. The bus is designed to avoid TTL line drivers, reducing the power consumption of the system. Sun also set out to produce mechanical specifications which would make it easier to use surface mount devices as they become available.

Futurebus Plus is the result of the US Navy deciding it no longer wanted to pay inflated prices for bus-based computer systems. It gave a basic specification and a deadline to a committee of computer and chip makers and the result is a standard approved by the IEEE. The first products will go on sale during the first half of next year.
The Futurebus plus specification will create the most sophisticated commercial bus-based computers yet built. The 64-bit bus is designed to transfer data at up to $100 \mathrm{Mbit} / \mathrm{s}$, which has caused a number of
problems for component and connector manufacturers.
Other computer buses use ground pins on connectors to provide return paths for signals.

The speed of transfers and resulting sharp signal edges forced the use of ground planes running through the edge connectors to prevent ground bounce and ringing distorting signals.

Component manufacturers have also had to design their products from a very basic level to meet the needs of the specification. Boards will use "Backplane Transceiver Logic" devices instead of standard analogue components to create clean signals at the interfaces with connectors.

Most CPU boards will be built around 32 bit risc microprocessors at first, with full 64 -bit computers going on the market when the microprocessors are available. Futurebus will probably be used to link together a number of less sophisticated systems, such as VME computers, acquiring data from and controlling the "peripheral" machines.

Vmebus. The Virtual Machine Eurocard standard or VME was designed to provide a bus to link together boards big enough to carry 32-bit computers but based on the existing eurocard standards for physical size and connections. It is used in applications ranging from Sun's Unix servers to the electronic point of sale tills found in large supermarkets.

The standard provides for data to be transferred in 32-bit words at $40 \mathrm{Mbit/s}$. The cards usually have two connectors into the system backplane and many have sockets in their front panels for links to non-VME peripherals allowing, for example, data acquisition connections.

The standard specifies that one connector is used for essential communications with the bus but leaves the use of the second to the system designer. A number of board makers have taken advantage of
neers can condition and control the data rate from the i / o board, leaving the micro free 10 process the data.
A number of bus slandards have been developed to help split up system tasks. This has also helped cut the cost of the equipment needed because the engineers only have to include funclions they need, instead of buying a preconfigured system.

The PC bus was designed for personal computing and never thought of as the basis for instrumentation, industrial control, image processing or many of the other thousands of tasks it is now being used for. But engineers are now so familiar with cheap PCs that they are trying to use the bus for anything and everything.
There are a number of problems with the bus. One is that it was designed for low speed data transfers and simply is not fast enough to handle the kind of 100 kHz acquisition lask described by Shephard. Another is that the PC is electrically very noisy and likely to interfere with weak signals coming from sensors. The physical size of the

Radstone Technology has added image processing to its mainstream VME products. The first module is a three-board subsystem designed to capture and manipulate images in realtime.
Image processing is seen as the only active part of the VME market this year. Radstone's Colin Neal believes that the bus will be used increasingly for the application because it can move blocks of data around more quickly than its rivals. Until the PC makers can produce chip-level picture manipulation, which really means multimedia computers, the faster bus will win out.
add-in cards is also a restriction for tasks which need a lol of chips, such as image processing, with its voracious appetite for memory.

At some point, even the low cost and easy system development loses its attraction, requiring a move to dedicated busbased computer systems.

Image processing is one of the fastest growing parts of the oth-
this and used the space for the so-called P2 connector to attach modules onto the VME card without passing through the backplane. This lets them increase the memory capacity of the board, or add secondary functions such as digital signal processors or dedicated communications processors.

A number of revisions due to be included next pear will provide for 64-bit transfers (VME64) by sending data on signai lines originally intended for sending addresses.

A typical transfer will involve sending a 32-bit address word and a 32-bit data word during one clock cycle and then a number of other 32-bit data words.

PCbus. As the name implies, the PCbus is the main communications link inside IBM-compatible personal computers. However, a number of variations have been developed over the years to allow PC makers to use more powerful microprocessors and peripherals as they became available.
The original XT bus was an eight bit link, designed around intel's 8086 micro. When the US chip company introduced its 16 -bit i286, the AT bus was developed to allow all the old dos software and XT add-in cards to be used in the new machines. There are now also two 32 -bit buses, Eisa and MCA, used in PCs. MCA computers have different sized slots for add-in cards to the other buses and so cannot use XT or AT boards.

The PCbus differs from other standards such as VME and STE because the CPU card itself carries the slots which give the outside world access to the computer. This so-called "motherboard" arrangement is typical for desktop computers, but rare in most industrial and scientific applications in which PCs are now being used.

The most noticeable difference this produces is the arrangement of the two connectors on PCbus cards.
Unlike backplane systems, which usually only have connectors on
one side, PC cards have two links on orthogonal sidesof the card. One plugs into the motherboard and the other allows the computer to connect with the outside world.

Multibus II was designed for the same reason as VME, to allow a whole computer to sit on one card. The main difference between the two was the semiconductor company behind the standards, Intel drove Multibus II while Motorola was pushing VME.

Both standards provide 32 bit huses and both use Eurocard as the standard board size, although the different connectors used by Multibus II made the cards slightly wider. The IEEE standards covering the two specs were both agreed at the same time, nearly five years ago.

During that time, although Intel has pushed its PC architecture into every corner of the electronics industry, it had little success in the busbased markets. While VME grew into a $\$ 500$ million commercial standard, most of the Multibus applications were in military systems.

But digital telecomms is set to change all that. Matra has based its next generation of PABXs, the kind of telephone exchanges used in large buildings, on Multibus II.

Two other Telecomms equipment makers, Alcatel and Ericsson have demonstrated prototype systems to their customers over the last few months.

The Multibus Manufacturers Group has made progress in this market by developing the "hot repiacement" features of the bus. This allows system users to take oui a faulty board without interrupting the operation of the rest of the computer. With the telecomms sector predictec to be the fastest growing market for the European electronics industry over the coming years, Multibus II could finally achieve the same status as its rival.

PROGRAMMING FLEXIBILITY FOR PROFESSIONALS

HARDWARE FEATURES

PC-BASED PROGRAMMERS
UK DESIGN, MANUFACTURE AND SUPPORT NO MESSY INTERNAL CARD
PLUGS DIRECTIY INTO PARALLEL PORT (LPTI-3) EASII TRANSPORTABLE BETWEEN MACHINES WORKS WTH XT, AT, 386, \& 486. EVEN LAPTOPS! INCREDIBLY FAST PROGRAMMING TIMES
FLEXIBLE DESIGN MEANS NO ADAPTORS NEEDED
FOR MOST DIP PACKAGES
UPGRADES BY FLOPPY

SOFTWARE FEATURES

MENU DRIVEN
FLEXIBLE FILE LOADING (HEX, BINARY, JEDEC) READS, VERIFIES, BLANK CHECKS, BIT TESTS, OVER-PROGRAWMES AND AUTO-PROGRAMMES CAN MODIFY PARAMETERS OF EXISTTING MEMORY DEVICES AND STORE IN USER DATABASE HANDLES SECURITY FEATURES OF ALL DEVICES AUTOMATC PAL TO GAL CONVERSIONS FULL BUFFER EDITING CAPABILITIES
TEST VECTOR SUPPORT

SPEEDMASTER 1000 LOW COST, UNIVERSAL PROGRAMMER EPROMS, EEPROMS, FLASH EPROMS, NVRAMS, SERIAL EEPROMS, PALS, GAIS, PEELS, EPIDS SUPER FAST PROGRAWMING e.g. 27C256 (32kx8) IN 4.5 Seconds JEDEC. TEST VECTOR SUPPORT FOR PALS INCLUDES PAL DEVELOPMENT SOFTWARE UP TO 40 PIN DIPS WTHOUT ADAPTORS

£395

M/CROMASTER 1000 All FUNCTONS OF SPEEDMASTER 1000 MICROCONTROLERS FROM TI. lincluding TMS370 SERIES, TMS77C82), INTEL, ZIOG, MICROCHIP (PICS), MOTOROLA PHHIPS
£550 AND OTHERS

SPEEDMASTER 8000 8 WAY GANG/SET PROGRAMMER
MASTER SOCKET
EPROMS, EEPROMS, FLASH EPROMS UP TO 32 PIN
PC OR STAND AIONE MODE
SUPER FAST PROGRAWMING e.g. 8×27с256
($32 \mathrm{~K} \times 8$) IN 6 Seconds

$£ 595$

ICE TECHNOLOGY LTD
UNIT 4, PENISTONE COURT, STATION BUILDINGS, PENISTONE, SOUTH YORKSHIRE S30 6HG TE $(i+44) 0226767404$ FAX (+44) 0226370434

CIRCLE NO. 127 ON REPLY CARD

Field Electric Ltd. Tel: 081-953 6009. 3 Shenley Road, Borehamwood, Herts. WD6 1AA. Fax: 081:207 6375, 0836640328

Philips HCS115 Viewdata terminals. Pulse/tone selectable; memory; full size k board: modem; autodial; colour VDU; etc. £95+VAT e/p £15.50
HT12 fully 286 compatible: hall size mother board; Intel 286 CPU; running at 12/16 20MHz; zero wait state: 1 Mb RAM supplied; up to 4Mb. AMI BIOS; set-up disk. New \& boxed. £115+VAT c/p £6.00.
$386 s x$ halt size mother board same as above but expandable to 8 Mb . New 8 boxed Sola mini UPS. 500watt + line conditioner \& inverter $\mathbf{8 9 5}$ Ine VAT c/p please ring. Chloride Powersafe batteries. 12V DC 24Ah sealed lead acid. £19.95 c/p £9.00 New, marked cases.
$3.5^{\prime \prime}$ floppy disk drive Chmon BBC compatible, new $£ 35$ c/p $£ 4.00$
3.5^{n} floppy disk drive NEC IBM compatible. Full height unit. $£ 39.95$ new \& boxed.
$1.6 \mathrm{Mb}, \mathrm{c} / \mathrm{p} \mathrm{E} 3.00$.
Switch mode power supplies 240 V AC input 5 V DC 40 amp £29; 12V DC 10amp £46; $5 \mathrm{VDC} 40 \mathrm{amp}-12 \mathrm{VDC} 4 \mathrm{amp}+15 \mathrm{VDC} 11 \mathrm{amp}$ ع48.
NEC $9^{"}$ mono monitor composite video input, switchable high-Iow impedance input \& output for daisy-chaining. BNC sockets. Built-in carry handle. £29.95 c/D £7.50. EGA 8-bit display cards $£ 17 \mathrm{c} / \mathrm{p}$ £2.00.
H.P. 4328A millohmmeter $£ 450 \mathrm{c} / \mathrm{p} \mathrm{E} 11.00$
H.P. 3400 A RMS voltmeter $£ 225 \mathrm{c} / \mathrm{p} £ 11.00$.
H.P. 3330 B auto synthesizer $£ 550 \mathrm{c} / \mathrm{p}$ piease ring.

Tektronix 191 constant amplitude sig.gen. $£ 175 \mathrm{c} / \mathrm{p}$ £12.00
Tektronix 191 constant amplitude sig.gen.
Tektronix 178 linear IC test fixture
E125.
Tektronix 067-502 standard amplitude calibrator $£ 120 \mathrm{c} / \mathrm{p} £ 12.00$ HML Model 411 cap. tester 20kV new $£ 300$
Leader LBO-5810A dual trace programmable 25MHz o'scope £200 c/p £18.00
 Hewlett Packard 606B signal generator $£ 75.00$. Hewlett Packard 612A UHF signai generator Hewlett Packard 86A personal computer new $\mathbf{\varepsilon 9 5 . 0}$ Hewlett Packard 5000A logic state analyser $\mathbf{\Sigma 6 0 . 0 0}$. Hewlett Packard 3450B multi-function meter £65.00 Hewlett Packard 693D sweep oscillator £175.00 Hewlett Packard 651 B test oscillator $\mathbf{\Sigma 7 5 . 0 0}$ Hewlett Packard 9868 I/O expander $\mathbf{\Sigma 5 5 . 0 0}$. Tektronix 7B53AN dual time base plug-in E100.00 Tektronix 7 B70 time base plug-in $£ 100.00$. Tektronix $7 \mathrm{DO1}$ logic analyser plug-in $£ 100.00$. Singer spectrum analyser 20 Hz to $35 \mathrm{kHz} £ 275.00$ Singer Alfred o'scopec/with sweep network analyser 7051 £175.00 Datron 1030A RMS voltmeter E65.00. Datron 1030 RMS voltmeter $\mathbf{\Sigma 6 5 . 0 0}$
Wavetek voltage controlled generator Model Ill $\mathbf{\varepsilon 6 0 . 0 0}$ Paratronics Model 532 logic state analyser 32chn £165.00 All above prices $+171 / 2 \%$ VAT. Please ring for c/p rates.

We would like the opportunity to tender for surplus equipmen Official orders credit card telephone orders accepted with Access, Amex, Diners, Visa cards. Overseas enquiries welcome c/p rates U.K. mainiand only.
Piease ring for $\mathbf{c / p}$ rates not shown. All prices inc. V.A.T. uniess stated. Stock list available.

EPROM PROGRAMMER OR UNIVERSAL PROGRAMMING SYSTEM FOR YOUR PC? From Low Cost EPROM PROGRAMMER

The Model 160 programs virtually every EPROM and costs $£ 195$ + VAT To UNIVERSAL PROGRAMMING SYSTEM
The Model 200AP programs EPROMs, serial and parallel EEPROMs, Flash memories, Micro-processors and controllers, PALs, GALs and Bipolar PROMs and costs $£ 345+$ VAT (adapters where required from $£ 75$).

All our programmers are designed, manufactured and supported by us in the UK.
Programming times are faster than most of our competitors, e.g. using the parallel port of your PC they program 2764s in 4 seconds and take less than one minute to blank check, program and verify 1 Megabit Flash Memories (and this time includes download time).

> We also sell Gang Programmers, EPROM Emulators and Erasers and a universal cross-assembler for IBM PCs and compatibles.

Write or phone today for Free Information Pack: Phone: (0666) 825146

Fax: (0666) 825141

CIRCLE NO. 115 ON REPLY CARD

MOP ELECTRONICS LTD., PARK ROAD CENTRE, MALMESBURY, WILTSHIRE, SN16 OBX UK

Seandinavian distributor:	Dightron A/S. Alesund. Nonway	Phene 071-45 8s0 Fex 071-45 453
German distributor:	Synatron GmbH, Grasbrunn B.	Phone 089/4602071

CIRCLE NO. 116 ON REPIY CARD
erwise quiet VME market, according to companies working in the area. It also takes advantage of real-time operating systems such as OS/9 for image processing on VME.

VME supplier Radstone's Colin Neal believes that the company's new imaging products will receive a boost when VME64 is accepted as a standard at the start of next year. "Imaging and graphics are the applications which need lots of bandwidth," he says.

Although the performance of VME systems is not being blocked by the bus bandwidth yet, there is agreement in the industry that next year will be a time of fast change. "There is quite a lot of activity to extend the life of VME. The new revision of the VME spec will formally include 64-bit transters. Another type of transfer doubles the throughput again, up to $160 \mathrm{Mbyte} / \mathrm{s}$. This will open up other applications as well as providing upgrade paths," says Neal.

Ken Newton, the UK managing director of Force Computers, agrees with Neal's analysis of VME64. "Basically it will give VME a mid-life kick," he says. "It will give VME a boost in any application where you're going to move blocks of data around". Newton says that this would include commercial printing as well as image processing and telecomms.

Newton believes that the biggest change to come next year will be the arrival. after two years of discussions, of real Futurebus+ products. This is a new standard which, in its most basic form, provides bus bandwidths of $100 \mathrm{Mbytes} / \mathrm{s}$. It was designed to provide a bus system to link together other bus systems, such as VME.
"We're going to announce several new products in the first half of next year and I know we're not the only one. Next year is the time when Futurebus should be renamed Nowbus," says Newton.
He believes that people were unjustifiably impatient with progress towards the standard. "It takes a long time to make a significant technical change. There were so many people working on different parts of the standard," he says.
Until Futurebus products start to ship in large numbers next year, Force is relying on VME cards based on Sparc microprocessors instead of Motorola's 68000 family. Newton believes that his customers have looked at the 68040 SBCs and at Sparc and are saying "We want a rise solution... Maybe there's going to be a better upgrade path with Spare. There's also an element of the 040 being late." he says.
Newton believes that the VME market will continue to grow, even after Futurebus takes off. "Our estimate is that it is worth about $\$ 500$ to 600 million worldwide now and will peak sometime after 1995 at $\$ 1$ billion," he says. Futurebus is not expected to compete with VME for applications. Several European telephone companies are said to have expressed an interest in using it as the basis of the exchanges needed to handle the
number of calls routed through fibre optic trunk routes. It will probably be used by at least one computer company as the backbone of its next generation of minicomputer system, linking together networks of PCs and workstations and communicating with mainframes. DEC has been heavily involved with the delinition of the standard since the IEEE committees lirst began meeting.

Force's conversion to Spare is thought by some in the bus-based computing industry to herald a move towards the rise processor. At the recent Sun User show, the US company Perlormance Technology showed products promising the use of SBus to develop a wider range of computer systems. "People weren't really walking around talking about it, they were doing it," salys one observer.

The point about the use of the Spare chip is very similar to the reasons for using the PC bus. Engineers are used to developing systems on workstations and it is easier for them to leave the design on the same platform than to recode into C and recompile. If engineers can build a target system using the same architecture as their development hardware, they will.

But if VME and the PC bus are gaining ground now and Futurebus will take off next year, what has happened to all the old favourites? Has STE died under the relentless march of the PC? Will anyone ever build a Multibus II system?

For years, the biggest supplier of STEbus boards in the UK has been Arcom. Many of the system's detractors have pointed to Arcom's recent launches of PCbus products as evidence of the demise of the old 8-bit standard. But according to a spokesman for the company, the new products were introduced to allow customers to build up multilevel systems with boards from one supplier.
"The PC is not suitable for rough tough environments," he says. "If you want a low cost vehicle for that, STE bus is ideal. The

SBCs provide a rugged modular industrial environment for dos based systems".
The company expects its STEbus market to hold up for a few more years because of the limitations of the PCbus spec. The signal lines and power supplies are too vulnerable to electronic interference for use in industrial control unless the computer is heavily screened.
Arcon also considers the rise of unix as an operating system, even in real time applications, to be a significant factor in shaping the bus-based computing market. This month it will become one of the first companies to start selling a VMEbus SBC based on Intel's i486 microprocessor.
Arcom believes that the board will be used to run embedded dos or realtime unix software. Although at first sight neither operating system ought to have a place in a realtime VME system, the software concerned may not be controlling a critical application and so Unix's long context switch times and dos' ambiguous timing are not a problem.
Arcom's spokesman says that the company has no intention of moving away from STE. "We're increasingly involved with boards for people to do their own systems. We're trying to make the three standards (PC, STE and VME) compatible. We're looking for some kind of standard signal conditioning for all three buses," he says.
The model of a bus-based system where different buses are selected for different parts of the system is not new. But over the last few years, the PCbus has not been limited by performance but by software. VME's barriers were as a result of processing power and not bus bandwidth.
But recent changes in approach, to the increased use of add-in cards in PCs and arrangements like VME64, have moved the goals posts. As designs based on these new formats mature, the shape of systems is bound to change.

BETWEEN TWO BUSES

Frantisek Michele looks at the strengths, weaknesses and differences of the two most popular open architecture systems.

0f all the possible open bus architectures, the Motorola oriented VMEbus and the Intel Multibus II seem to be the logical options for implementing high performance computer systems. Although they take different approaches to solving the same problems, both are sound architectural choices because they provide high bus bandwidth and make provisions for multiple bus masters and multiprocessor systems.

Both VMEbus and Multibus II meet these needs, but deciding which is better for a
given system is not an easy task. Not only does each bus have unique characteristics, it has vendor and supplier proponents who make the decision even more difficult.

Data transfer rates

Traditionally, the data transfer rates of peripheral controllers have been comparable to the transfer rates of the peripheral devices attached to that controller. Hard disk con-

Continued on page 970

REGULARS

APPIICATIONS

SL6140 as tuned amplifier

Used in a 50)2 circuit. Plessey": SL6140 AGC amplifier exhibits a gain of 1.5 dB - a figure that can be increased by tuning or matching the inputs and outputs, athough the bandwidth is then reduced by a tigure dependent on the tuned circuit Qs. This application. found in the company"s 1991 Professional Products data book, describes a single-ended amplifier in such a conliguration.
SL6I40 is an integrated broadband AGC amplifier, giving its 15 dB of gain at 400 MHz into 50 ohms. 45 dB into 1 kohm and up to 55 dB with tuned input and output. AGC control range is typically 75 dB .
Figure 1 shows the circuit, in which a parallel tuned circuit is across the differential inputs. Input is capacitively coupled to one input. the other being decoupled. The coupling capacitor C_{l} is also part of an impedance match from 50S2 to the high input impedance of the amplifier: the Smith chart in Fig. 2 is normalised to 50) 2.
One methad of tuning the ouput is given in Pig. 1. where the paralleh tuned circuit lies between one open-collector output and $\mathrm{V}_{\text {at }}$ with the other taken straight to $\mathrm{V}_{\text {ci }}$. Output capacitive coupling and the tuned circuit provide a high-impedance load for the

Fig.1. Tuning and matching inpuls and outputs affords increased gain in the Plessey SL6140 AGC amplifier - in this case 35dB power gain at 100 MHz .

Fig.2. Inputimpedance matching network, of which C, forms a part, looks like 50ohms to the source (chart normalised to 50ohms)
amplifier to increase gain: power gain in the circuit shown is 35 dB . Input and output coupling trimmers optimise gain. but too high a reflected impedance at the amplifier terminals could give rise to oscillation. Gain is traded for bandwidth.
The other method of tuning the output is

shown in Fig. 3, where trinsformer coupling is used. Since both outputs are now in use. gain is up by foll3.

GEC Plessey Semiconductors, Cheney Manor, Swindon, Wiltshire SN2 2QW. 0793518000 .

Fig.3. Using both outputs allows increased gain by $6 d B$.

Low-power
 FM IFs

Motorola's MC3.371/3372 low-poner. narrow-hand FM IF ICs are primarily meant as second if and audio output stages in dual-conversion communications receivers. sypically accepting a 10.7 MH , signal from the first If and working at 455 hlz to a quadrature detector. There is an oscillator on-chip and also active fitter. squetch switch and log signal-sirength meter drive. MC337 should have an L.C circuit in the discriminator. white 3372 uses a ceramic resonator. Figure 1 shows the internal circuit of the MC 337, taken from the data shee MC337/ID.
A typical application is shown in Fig. 2. The Colpits oscillator is a crystal-controlled type using either fundamental mode crystads or overtone types for higher frequencies up 10) 100 MHz : inductor L_{2}, and $R_{1 /}$ are needed for stahility. After the 2()dB power gain. douhte-halanced mixer, at ceramic filter is the recommended type, having a bandu idth of $\pm 2 \mathrm{hliz}$ 10 $\pm 15 \mathrm{hHz}$ and feeding the 92 dB limiting iF amplifier.

Different timiter and detector arrangements are needed in the two devices. to take account of the different fitter types. but in both types the value of the damping resistor across the fither determines handwidth, separation and audio output level. Recovered audio from the demodulator goes to a low-pass filter amplifier, which is followed externally by more fithering. de-emphasis and volume control before being amplified by, for example, an MCI $3(1) 60$ low-power device.
Metering output from the IF amplifier is proportional to the log of If input signal: the resistor R, to ground produces a $3 . \mathrm{V}$ output for metering. Diode l), is an AM detector to provide indication of noise or tone. feeding the squelch switch whose level is set by $\mathrm{V} R_{l}$. Alternatively. the amplifier may be used with the meter ompulto ace as a carrier-level-triggered swith, $R_{\text {, }}$ acting as level-setting resistor.
Motorola Lid, European Literature Centre, 88 Tanners Drive, Blakelands, Milton keynes MK14 5BP. Telephone 0908614614.

Fig.1. Functional block diagram of the MC3371 low-power, single-conversion FM IF. This uses a parallel tuned circuit at the demodulator, the MC3372 using either this or a ceramic resonator. The devices work as second IFs and output stages in communications receivers.

Fig.2. Typical 10.7MHz application for MC3371. In this arrangement, an AM detector operates the squelch switch, but this can also be used as a carrier-level-generated squelch byieeding it with the received signalstrength indicator (RSSI) output.

Curvature-corrected thermometer

National Semiconductor's L.M.363 is a true instrumentation amplifier that needs nothing extra to provide linkdetermined gains of $10,1(0)$ and $10(0)$: the precision is achieved by on-chip trimming for offset voltage and gain. Despite its openloop gain of 140 dB and (GB product of 30 MHz . the novel two-stage design renders it stable for all closed-loop gain settings.
Main features are $12 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ input noise. an offset of typically. $50 \mu \mathrm{~V}$ at a gain of 100 $(0.5 \mu \mathrm{~V}$ at $\mathrm{G}=10)$. of fiset dritt of $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ at $\mathrm{G}=100$. 130 dB common-mode rejection ratio and 2 nA bias current. Two differential shield drivers eliminate capacitance problems and output force. sensing and reference pins allow other gain settings.
Figure 1 is the simplied circuit diagram. in which input is applied to the bases of $Q_{1,2}$. appearing across their emitters. If $R_{=}=$ $R_{7+\beta+\varphi}$ a differential current of $\mathrm{V}_{1 \times 2} / R_{\text {, thows }}$ between emitters. The op-amp maintains equal collector currents via Q_{4}, so that emitter currents unbalance by the amount of inter-emitter current. If R_{5+n} is $R_{\text {r }}$. differential voltage across Q_{3} emitters is now $\mathrm{V}_{\mathrm{IN}} / R_{i}\left(R_{y}\right)$ which. divided by the attenuation factor $R_{4} /\left(R_{3}+R_{4}\right)$. is the output-to-reference voltage and overall gain is

Fig.1. Skeleton circuit diagram of National Semiconductor's LM36.3 instrumentation amplifier. Iwo-sfage amplifier yields exiremely high open-loop gain and gain/bandwidth product, but remains stable at all closed-loop gains.

Fig.2. Curvature-corrected thermometer using LM363 with extra op-amps for full Kelvin sensing without increasing drift and offsef. Maximum error is 0.01%.
$\left(R_{s}+R_{f}\right) / R_{f} * R_{1} / R_{1}$.
Figure 2 is the circuit of a curvaturecorrected platinum thermometer. using the 363 and a couple of LM308s, giving $0.01{ }^{\circ} \mathrm{C}$ error from $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. Trimming arrangements ensure that $/$ ero, gain and nonlinearity correction are not interactive and one calibration operation will suffice. The 308s give Kelvin sensing in the sensor ($100 \Omega 2$ at $0^{\circ} \mathrm{C}$) without being involved in drift and offeet mechanisms and the $A 2$ opamp biases the sensor with a fixed current. National Semiconductor (UK) Ltd, The Maple, Kembrey Park, Swindon, Wiltshire SN2 6UT. Telephone 0793 $61+1+1$.

HALF PRICE MEMORIES . . . GUARANTEED
 . . . Recycled, quality i.c's for next day delivery WHY PAY MORE?

\star Ultrasonically cleaned
\star UV erased and tested

* Handled in accordance with BS5783
* Packed in antistatic tubes or boxes
\star Original OEM brands
We are major suppliers to colleges, Universities, R\&D Departments and OEMs who recognise our commitment to quality. Export orders welcome.
UK Orders please add $£ 2$ Carriage and VAT to total.

3 WAYS TO ORDER

By 'phone 0480891119
(8am-7pm Mon-Fri) All major Credit Cards occepted

By Post - send cheque or Banker's Draft to: Abracadabra Electronics Ltd, 25 High Street, Ellington, HUNTINGDON, Cambs. PE18 OAB
By Fax: Official orders to 0480890980 (24-Hour Service)

EXTENSIVE STOCKS

*DRAMS	$l-25$	$25+100+$	
$41256-10$		$£ 0.95$	0.80
4	0.70		
$4164-15$	$£ 0.55$	0.45	0.35

4164-15
*SRAMS
62256LP-10
$\begin{array}{llll}£ 1.90 & 1.70 & 1.50\end{array}$
6264LP-15
6116 LP-15
*EPROMS

27 C1000-15 | | | 3.50 | 3.10 |
| :--- | :--- | :--- | :--- | 2.90

27C512-15 $\quad £ 2.20 \quad 1.99 \quad 1.80$
27C256-25 £1.20 $\quad 1.10 \quad 1.00$

27128-25 \quad £1.00 $0.90 \quad 0.80$
2764-25
2732-25
2532-5v
2716-45
£0.79 $0.69 \quad 0.59$
$\begin{array}{llll} & 10.55 & 0.45 & 0.39\end{array}$
$\begin{array}{lll}£ 3.50 & 3.10 & 2.90\end{array}$
$\begin{array}{lll} & 10.90 & 0.80 \\ 0.70\end{array}$
$\begin{array}{lll} & 10.80 & 0.70 \\ 0.60\end{array}$
$£ 2.50 \quad 2.40 \quad 2.30$
$\begin{array}{llll} & 10.80 & 0.70 & 0.60\end{array}$

Many other items in stock, for FREE List use reader enquiry service or 'phone now.
CIRCLE NO. 118 ON REPLY (ARD

n.s. LANGREX R.S. SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.

Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes,
rectifiers, tetrodes, thryatons, transistors,
transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers.
Where still available.
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD
1 Mayo Road, Croydon, Surrey CR0 2QP.
Tel: 081-684 1166
Telex: 946708
Fax: 081-684 3056

REGULARS

NEW PRODUCTS CLASSIFIED

Asic
Asic toolset. Compass toolset is a suite of tools and libraries for asic design; from a system level analysis tool and HDL synthesis through to back end tools for generation and verification of test programs and physical layout. Latest release, V8 R2, includes a bonding diagram editor to allow creation and management of bonding diagrams. Automatic floor planning is an option in the chip compiler and assistant. Compass Design Automation, 0908665930.

Boundary scan service. Nettag is a Jtag-compatible boundary scan service for system-level testing of manufactured asics. It performs

Looking down: Citizen led lamps are avallable from Pedoka.
automatic insertion of boundary scan circuitry and four or five dedicated tes pins as well as automatic serialisation of parallel functional test patterns. Netlist and functional test vectors will generate the boundary scan test. Gould AMI, 0272238014

Booster pack. XPlus simulation booster package is for high quality asic, multiple asic and system designs. The booster links the XPlus environmental software with XP hardware accelerators including the XP100 with a capacity of 256,000 gates running at 2.5 million events/s. XP200 has a four million gate capacity. Zycad, 0932353957.

A-to-D \& D-to-A converters
14bit. ADC00145 14bit 5MHz converter has a hybrid $40-\mathrm{pin}$ hermetically sealed package containing a 200ns unit with a precision track and hold amplifier. 30.5 by 55.9 mm . It contains two internal precision references and timing circuits so that only a single command input is needed to initiate the conversion cycle. Three bipolar and four unipolar link selectable analogue inputs from ± 2.5 to -10 V . DDC (UK), 063540158

8bit flash adc. Harris HI5700 monolithic 8 bit cmos flash converter has a rate of 20 Msample /s. Parallel architecture eliminates external sample and hold circuit. Integral and differential linearity is typically ± 0.75 LSB and differential phase 0.8° and 2%, respectively. Consumes 500 mW from a single 5 V supply. Jermyr Distribution, 0732740100.

Discrete active devices

SM transistors. Zetex transistors come in SOT223 surface mount packages and can dissipate up to 2 W The package has a thermal junction to case resistance of less than
$15^{\circ} \mathrm{C} / \mathrm{W}$. Operating range is -55 to
$+150^{\circ} \mathrm{C}$. Peak current capability is up to 8 A and the range includes npn and pnp types. Celdis,
0734585171.

High voltage mosfet. A low-gatethreshold high voltage mosfet comes in a SOT89 (TO243AA) package. Called the Supertex TN2540N8, it has a drain-to-source breakdown voltage of 400 V minimum, an on resistance of 12Ω maximum, and a gate threshold voltage of 1.8 V maximum, making it TTL compatible. Applications include solid state relays, telecommunications and medical equipment. Kudos Thame, 0734351010.

Linear integrated circuits

GaAs attenuator. Directly

 cascadable without inter-stage matching, HMR11000 GaAs MMIC attenuator operates from DC to 18 GHz . Range is from 35 dB at DC to 15 dB at 18 GHz . Cascading allows greater attenuation. VSWR is 1.3:1 at 18 GHz . Attenuation is varied by applying two analogue voltages, from -3 to $O V$, at less than $30 \mu \mathrm{~A}$ current. Consumption is 500 mW . Anglia Microwaves, 0277630000. 8blt I/O. ZN540 analogue I/O systemon a chip includes a successive approximation A-to-D converter with $5 \mu s$ conversion time and double buffered latch outputs. The two D-toAs have double latch inputs and up to $1.25 \mu \mathrm{~s}$ settling time and 2.5 V temperature compensated band-gap reference. Main data interface is an 8 bit bidirectional data ous and eight control lines. Programmable clock prescaler allows input clock speeds up to 12.8 MHz . GEC Plessey Semiconductors, 0793518000

Video buffer amp. Max 405 180MHz precision video buffer amplifier has a guaranteed $450 \mathrm{~V} / \mu \mathrm{s}$ slew rate on $\pm 5 \mathrm{~V}$ supplies. It is for Pal, Secam and NTSC systems and has a differential phase error of 0.01° and differential gain error of 0.03\%. Unadjusted DC gain is greater than $0.99 \mathrm{~V} / \mathrm{V}$ over -40 to $+85^{\circ} \mathrm{C}$ with loads as low as 50 . Input capacitance is 0.6 pF . Maxim Integrated Products, 0734845255.

Voltage regulator. TA7900S is a 5 V voltage regulator for automotive microcomputer systems. Output is 5 V $\pm 5 \%$ without adjustment. Typical line and load regulation is 0.1%. A poweron reset timer can reset any systems being supplied; the reset signal will also be transmitted if the output falls below 92\% of set level. Toshiba Electronics, 0276694600

Power semiconductors

1W power transistor. High-gain 1W microwave power transistor MRW54602, is for use in large signal output and driver amplifier stages operating in the 1 to 4 GHz range. internal compensation and diffused ballast resistors. It is for Class A common emitter power amplifier applications. 20 V DC power supply. All gold metallisation. Hermetic package is suitable for commercial military and space communication applications. Motorola, 0908614614

Memory chips

Cache ram. A $32 \mathrm{~K} \times$ 9bit cache ram provides a zero wait slate secondary cache for the 50 MHz i486 microprocessor. The IDT71589 uses internal logic to solve i486 timing problems normally handled by adding wait states. It includes a burst mode synchronised to the system clock. A synchronous write capability and a late write abort feature allow zero wait write cycles to be supported while reducing speeds required of supporting Pals, cache controllers, and cache tag rams. Integrated Device Technology, 0372377375.

Asynchronous fifos. Previously only available in $25 n \mathrm{~ns}$ versions, the IDT7200 256×9 bit, IDT7201 512 x 9 bit, and IDT7202 1 K by 9 bit families of asynchronous fifos, in 15 and 20 ns versions, can be used as buffers or in graphics and networking applications handling large amounts of data. 300 and 600 mil plastic DIL and PLCC packages. Integrated Device Technology, 0372377375.

1Mbit sram. 1Mbit cmos srams with access speeds down to 17 ns can have 1,4 or 8bit wide organisations The byte-wide models have either single or dual chip enable and the 4bi unit can be configured with common or separate l/O. Increased speed and lower power consumption are achieved by eliminating address transition detection and redesigning output buffers. Micro Call, 0844 261939

Microprocessors and controllers

Microcontroller. A Hitach

microcontroller has been optimised for telephony applications and uses a dual-tone multifrequency receiver as well as its CPU, 512 by 4bit ram, timers, I/O ports and program memory. It is based on HMCS400 series architecture and has 48 bidirectional I/O pins, four dedicated input pins, two synchronous serial interfaces, 11 bit prescaler, and four 8bit timers. Dialogue, 0276682001

Low power processors. Fully static cmos NEC V20HL and V30HL microprocessors can work at clock speeds from DC to 16 MHz . Consumption at 16 MHz is less than 100 mA - calculated at $6 \mathrm{~mA} / \mathrm{MHz}$ for intermediate clock speeds. Pin and function compatible with 8088 and 8086 devices. 40 -pin DIL, 52 -pin QFP and 44-pin PLCC packages. Impulse Electronics, 0883346433.

4bit microcontrollers. The SGS
Thomson series of Cops 4bitmicrocontrollers is being second sourced. Officially called the ET9400 series, it includes versions with 512 , 1 K or 2Kbyte of rom, up to 128byte of ram and up to 23 I/O lines. Cmos and nmos variants are available and other on-chip features include led driving. serial l/O ports, tristate outputs, and clock generation. Impulse Electronics, 0883346433.

Single-chip microcomputer.

Mitsubishi M37450 single-chip microcomputer - mask rom, romless and eprom/OTP versions - can be
supplied in various packages including 64 -pin dil and 80-pin quad configurations. Clock speeds are up to 10 MHz with a $0.8 \mu \mathrm{~s}$ minimum instruction time at this speed.
Dissipation is 30 mW from a 5 V supply. RCS Microsystems, 081-979 2204.

Optical devices

Fibre amps. Erbium-doped fibre amplifiers for light-wave voice, data and cable transmission can also be used as boosters. They use one or two high-power 1480nm pump laser modules, in-line optical isolators for optical isolation at input and output, wavelength division multiplexers to branch out the signal to multiple receivers, and erbium-doped fibre. AT\&T Microelectronics, 0344865927.

Led light source. T470 is for use on optical fibre systems from local area to long haul networks. 9 V battery provides 40 h of operation without recharging. Useable with wavelengths of 850,1300 and 1550 nm with an output power between -20 and 30 dBm . It can be used with $50 / 125$, $62.5 / 125$ or $8 / 125$ multimode and single mode fibres. BICC Cables, 0244688400.

Fibre optic chip set. A 50Mbit/s chip SP9960 encoder and led driver can accept either ECL or TTL data and output the result at either the large or small led driver output. SP9921 is a circuit for clock and data recovery from a Manchester encoded signal. It has ECL outputs and input signal detection from lock detect output. SL9901 is a transimpedance amplifier to interface between a detector diode and a decoder in a fibre optic receive system. GEC Plessey Semiconductors, 0793518000.

SM leds. Citiled CL150 chip type led lamps from Citizen Electronics measure 3.2 by 1.6 mm with a 1.2 mm depth. Standard luminous intensity is 2.4 mcd . They come in red and green with a power dissipation of 65 mW .
Rated current is 20 mA and minimum life expectancy is 500 h at $25^{\circ} \mathrm{C}$ ambient. They can operate from -25 to $+80^{\circ} \mathrm{C}$. Tape in reels of 3000 pieces. Pedoka Electronics, 0462 422433.

Oscillators

Quartz oscillators. Quartz crystal ostillators made to customer specifications can be incorporated in various electronic devices including pass and stop band discrete component filters, monolithic crystal filters, electromechanical filters, clock oscillators, temperature compensated and voltage and oven controlled crystal oscillators, and dual in line oscillators. Specialtel-LEM, 0661 72497.

Creatures of the sand: Rhophase's semi-rigid PTFE cable.

Passive components

Tantalum capacitor. TAJ0805 moulded chip tantalum capacitor can have a C/V from $4.7 \mu \mathrm{~F} / 2 \mathrm{~V}$ to $0.1 \mu \mathrm{~F} / 20 \mathrm{~V}$. It has totally compliant leads and measures 2.1 by 1.4 mm . Height is 1.2 mm . It is expectec to be used in medical applications and in communications equipment. AVX, 0252336868.

SM resistors. KDI/Triangle NPC tantalum surface mount resistors have rated powers from 2 to 15W and frequency bandwidth from $D C$ to 18 GHz . They are made using a sputtered tantalum nitride process. Gold or lead/tin terminations. Sizes range from 0.02 by 0.04 in to 075 by 0.15 in . Typical thickness is 0.1 in . Anglia Microwaves, 0277630000.

Trimmer pot. Model 3224 4mm multiturn surface-mount trimmer potentiometer has a footprint meeting EIA, EIAJ and VRCI board layout standards. It is an 11 turn device with a rotational life of 200 cycles. Contact resistance variation is within 1%, temperature coefficient is less than 100 parts in one million per ${ }^{\circ} \mathrm{C}$. Resistance tolerance is 10% from 1052 to 2Ms2. Bourns Electronics, 0276692392.

Trimming pots. Miniature carbon trimming potentiometers, the Bourns 3316 series, are 6 mm in diameter and have a cross slot rotor design for automatic adjustment equipment. Legs are angled. Pin design stops the trimmers falling out of the board after
insertion. 13 resistances from 100Ω :o 1Ms2. Power rating is 0.1 W. Jermyn Distribution, 0732740100.

Small relay. The TQ relay measures 14 by 9 by 5 mm and has two changeover contacts. It comes in monostable or bistable latching versions and has gold plated bifurcated contacts. Surface mount versions available. Maximum switched load is 100 W DC. Power consumption is 140 mW (mono) or 280mW (bi). Matsushita, 0908 231555.

Electrolytic capacitors. VR series miniature electrolytic capacitors now operate over 6.3 to 450 V (250 V was the previous maximum). Capacitance range is 0.1 to $22,000 \mu \mathrm{~F}, \pm 20 \%$ at $120 \mathrm{~Hz}, 20^{\circ} \mathrm{C}$. From 6.3 to 100 V . leakage current after 1 min is 0.03 CV or $4 \mu \mathrm{~A}$; from 160 to 450 V it is less than 0.1 CV or $40 \mu \mathrm{~A}$. Operating range is -40 to $+85^{\circ} \mathrm{C}$. Nichicon (Europe), 0276685393.

Solid state relays. Relays in the Crydom E series have an optically isolated I/O to 4 kV rms and an AC (90 to 280 V) or DC (3 to 32 V) control signal voltage. Recommended minimum load current is 50 mA and their must operate voltage is $3 \mathrm{~V} D \mathrm{DC}$ or 90 V AC. Must release voltage is IV DC and 10V AC. Response time at 50 Hz is 10 ms and the operating range is 25 to 65 Hz and -40 to $+100^{\circ} \mathrm{C}$. Unitel, 0438312393.

Thin capacitors. MLC surface mount capacitors can be inserted beneath
plastic leaded chip carriers, being only 0.58 mm thin. They are for use in smart cards, single board computers, memory expansion boards, and graphics boards. They are made with nickel barrier terminations and have capacitances from 0.1 to $0.33 \mu \mathrm{~F}$ in 25 and 50V. Vitramon, 0628524933.

Connectors and cabling

PCB receptacles. BNC straight or right angled bulkhead mounting PCB receptacles comply with forthcoming EEC requirements on electromagnetic interference. This is achieved using diecast bodies rather than the normal polyester types (although polyester versions are also available). Receptacles come with serrated washers and locknuts. Coax Connectors, 081-948 7047.

Fibre optic cable. SL series external grade fibre optic cable has a Kevlar. reinforced all-dielectric construction. It is enclosed in athermo-plastic resin tube which is thermally and environmentally stable and filled with a thixotropic gel. Further protection is providec by corrugated steel armouring and a polyethylene outer jacket. Fibre Optech, 0767600800.

Zif connector. Zero insertion force connector, DL Drawer, has an integral cam design that uses the movement of the drawer or subassembly to mate and un-mate the connector halves. Tested to 100,000 mating cycles. Crimp contacts, wire wrap or solder tails. Gold over nickel plated copper alloy contacts. ITT ElectroMechanical, 025623356.

DiN connector. Peanut-sized highdensity Din connector made by Erni is available in 50 ways with contacts set on a 1.27 mm pitch in a two-row format. Length is 42 mm including mounting lugs. PCB height is 5 mm . Depth of a mated pair is 12 mm . Standard or reverse configurations with straight or right-angle spills and surface mount versions are available. Radiatron Components, 081-891 1221.

Microwave cable. Semi-rigid PTFE microwave cable has a pliable copper outer conductor and multi-ply laminate dielectric. It is for communications and military use and is available in $0.085,0.141$ and 0.250 in diameters. All appropriate semi-rigid connectors can be accepted. Rhophase Microwave, 053663440.

Displays

Flat screen. VGA compatible 5 in flat screen monochrome monitor, compatible with 3U high instrumentation systems, is available in kit form or as a standard 3 U Eurocassette. It can be driven from either 12 or 15 V DC with a maximum
power consumption of 15 W Maximum resolution is 640 by 480 pixel. Phosphors include P4 white, P31 green and LA amber. Digitran, 0763261600.

20in monitor. 17M2000 20 in

 multifrequency colour monitor has full autoscanning capability and scanning range of 15 to 37 kHz . Three input connector types - BNC for analogue video via coaxial cable, nine-pin Dtype for EGATTTL, and 15-pin D-type for VGA can be mounted on the back panel or recessed below the cover. Kent Modular Electronics, 0634 830123.
Filters

Audio filter. Yamaha YM3414 twochannel eight-times over sampling digital audio filter comprises three linear phase FIR type filters connected in vertical stages. First filter is 225 order, the second 41 order and the third 21 order. There is an inbuilt 19 by 18 bit multiplier and accumulator. Pass band ripple of within $\pm 0.0001 \mathrm{~dB}$ at 0 to 20 kHz and stop band attenuation of at least 100 dB at 24.1 kHz and higher. BarlecRichfield, 040350111.

Three-phase filters. Arcotronics three-phase suppression filters come in four types rated at $440 / 250 \mathrm{~V}$ up to 400 Hz . Type AA has an IP65 splashproof housing and a leakage current less than 30 mA . AB has a high frequency dense housing with max 3.5 mA leakage current. $A D$ is compact and provides high attenuation against common and differential mode interference. Leakage current is less than 3.5 mA . $A E$ is similar to $A D$ with a leakage current less than 10 mA . STC Mercator, 0493844911.

RFI filters. Large case Arcotronics filters for RFI suppression, in metal cases with ground terminals connecled, have voltage ratings of 250 V up to 400 Hz . F.Al types for higher frequencies have Faston or screw terminations and are generalpurpose devices for asymmetric RFI generated by switches and sliding contacts. F.AM power line filters are for attenuating symmetric,
asymmetric, periodic or pulse shaped interference. STC Mercator, 0493 844911.

Hardware

Stick-on feet. Square, domed, flatdome and round polyurethane stickon feet are available in various colours. To fix, peel the foot from the backing material and stick it on. They can be used for reducing component vibration or protecting delicate surfaces. Moss Plastic Parts, 0865 841100.

Shoes. Electrostatic footwear from Otter is ergonomically designed to eliminate generation of triboelectric charges in electronics workplaces. They are lightweight and made from box-calf leather with a polyurethane sole. Volumetric resistance is between 0.1 and 1 MS . Teknis, 0344 780022.

Instrumentation

20 MHz scope. 930220 MHz digital storage oscilloscope uses standard analogue controls and can be switched to an analogue scope. It can freeze displays, display one channel while storing another, capture fast events, display ultra-slow moving waveforms, store events before or after a trigger event, and transfer data to an external plotter. Dual triggering

Pretty pictures: electronic design automation gets a boost from Solbourne's latest workstation.

lets asynchronous signals be displayed. Beckman Industrial, 0384 442394.

Digital multimeter. DT9000 digital multimeter measures 200 mV to 1 kV DC, 2 to 750 V AC, $200 \mu \mathrm{~A}$ to 20A DC and $A C, 200 \Omega$ to $3 \mathrm{M} \Omega, 1 \mathrm{pF}$ to $20 \mu \mathrm{~F}$, and 10 Hz to 200 kHz . Voltage autorange operation for $A C$ and DC and resistance measurement can be specified. Results are displayed on a 17 mm LCD (1999 counts). Features include reading hold function, REL mode for relative measurement, analogue signal or bar graph proportional to reading value, and diode and transistor hFE tests. Electronic \& Computer Workshop, 0376517413.
$\mathrm{X}-\mathrm{Y}$ recorder. Yokogawa 3023 is an A3 size $X-Y$ recorder using hightorque DC servomotors to give $200 \mathrm{~mm} / \mathrm{s}$ slewing speed and 7.6 G acceleration in the γ axis and $2000 \mathrm{~mm} / \mathrm{s}$ and 5.1 G in the x axis. Basic accuracy is $\pm 0.2 \%$ and error between ranges is less than 0.1%. One and two pen versions and there are 16 calibrated input ranges with sensitivities from $50 \mu \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{~V} / \mathrm{cm}$. Martron Instruments, 0494459200.

Laboratory recorder. Yokogawa

LR8100 recorder can produce eight high speed traces with pens operating at up to $1600 \mathrm{~mm} / \mathrm{s}$, a performance achieved by the use of digital sampling and stepper motor drivers. A built-in printer lets date, time and measured data be printed alongside the recorded traces. Martron Instruments, 0494459200.

Function generator. HCG305 function generator has frequency burst and sweep facilities and a range from 0.01 Hz to 10 MHz . It generates sine, triangle, square. ramp and pulse waveforms. Sinewave flatness is within 0.2 dB from 0.01 Hz to 100 kHz and within $\pm 2 \mathrm{~dB}$ above this range. Distortion is 0.5% or less. Multitest. 0480403617.

100MHz scope. CS5175 Kenwood 100 MHz dual-channel four-trace oscilloscope has delayed timebase. Input sensitivity is variable between $1 \mathrm{mV} /$ div and $5 \mathrm{~V} /$ div ir $1-2-5$ steps. A signal delay line allows display of leading edges. Crosstalk between channels is 40 dB or lower at 1 kHz . Thurlby-Thandar, 0480412451.

Antennas and receivers.

Schwarzbeck EMC antennas, artificial mains/line-impedance stabilisation networks and EM1/EMC measuring receivers are available in the 9 kHz to 1 GHz spectrum. Antennas include high power transmitting types for testing immunity to RF fields in the 22 to 150 and 30 to 300 MHz bands. Receiving antennas are available as broadband and tunable devices. Schaffner EMC, 0734697179.

Literature

Optical devices. Laser diode instrumentation and other optical devices are covered in a free 76-page technical brochure. It contains technical articles and product information. Instruments covered include low noise laser diode drivers, thermoelectric controllers, and accessories. Lambda Photometrics, 0582764334.

Power Iransistors. A bipolar power transistor selector guide and cross reference (SG48/D) covers 700 off-the-shelf devices and spans all applications categories including application specific devices such as audio and CRT deflection families. Motorola, 0908614614.

Quartz crystals. Standard quartz crystals and ovenised oscillators are covered in a 136-page technical guide. It gives details of SEl's manufacturing capability and research and development and technical specifications. Salford Electrical Instruments, 0706367501.

Connectors. A 127 page catalogue covers the Connectel range of DIN41617, $41612,41652 /$ sub-D, and 41651 connectors. Also included are recent developments in DIN41612 press-fit connectors. Weidmuller Klippon Products, 0795580999.

Power supplies

Uninterruptible power. 900 series has a VA range of $10,15,20,30,40$, 50,60,90, and 120kVA. An on-board computer continuously monitors 52 parameters and reports operational status to its load computer or any suitable PC or dumb terminal. AvelLindberg, 0708853444.

Switching supply. Pioneer Magnetics PM3187 multiple output switching power supply incorporates a 0.99 power factor correction and the equipment is housed in a 5 by 8 by 12.25 in enclosure. 1340W output over the 90 to 264 V AC range with no input strapping or switching required. Line to load regulation is $\pm 0.25 \%$ and voltage stability is $\pm 0.1 \%$. FR Electronics, 0202897969.

2kW supplies. Miniature power supplies furnishing 1.5 or 2 kW to a densely populated telecommunications rack have been added to the Eta range. Esma units operate at about 80% efficiency and measure 20.3 by 27.9 by 12.7 cm . Input voltage tolerance is 170 to 264 V and outputs can be $2,5,12,15,24$, 28 or 48 V . A current distributing function allows parallel operation and three-phase input. Pascall Electronics, 081-979 0123.

6W DC-DC converters. The PM900 Computer Products series of
converters has a field demonstrated MTBF of $680,000 \mathrm{~h}$. They deliver 5 to 6 W of output power from a 2 by 2 in package. Input voltages are 5, 12, 24 or 48 VOC and outputs 5,12 or 15 V DC, or dual outputs of ± 12 or $\pm 15 \mathrm{~V}$ DC. All have a Pi input filter with six sided continuous metal shielding to VDE0871 curve B. Efficiency is at least 60%, line regulation $\pm 0.02 \%$, and load regulation either ± 0.02 or $\pm 0.04 \%$. XP, 0734845515 .

Radio communications products

Mobile radios. Three PMR mobile radio products in VHF high and low band and UHF and have multichannel capability. Model 1 has four channels, CTCSS and simple five-tone signalling. Model 4 has ten channels, five tones and CTCSS. Top of the range is Model 3 with an alphanumeric display and keyboard pad. A personal recorded status message can be left when the vehicle is unattended and automatically interrogated by the control network. Securicor PMR Systems, 0761 413174.

Transducers and sensors

Displacement transducer. FS5000 fast linear displacement transducer has a measuring stroke of 254 mm and a body length 24 mm longer than the stroke. Shock resistance is 50 g and resolution 0.004 mm . Accuracy is 0.15% of stroke and 0.1% is optionally available. Control Transducers, 0234217704.

VIbration sensor. Series 1000 vibration sensor is for machine monitoring. It is made of stainless steel and mounting arrangements include a quick-fit fixture and male and female thread fittings. Operating range is -25 to $+120^{\circ} \mathrm{C}$ and typical output is $100 \mathrm{mV} / \mathrm{g}$ via a TNC electrical connector. Monitran, 0494 816569

Displacement transducers. Six models with spring-loaded probes have been added to the $D 5 / G$ range of miniature precision displacement transducers. The probes have a low friction bearing that can accep mechanical side loading. Five measurement ranges are ± 0.25 to $\pm 5 \mathrm{~mm}$ with linearity performance better than 0.5\%. RDP Electronics, 0902457512.

CCD linear sensor. ILX503 reduction type high-resolution CCD linear sensor has an array of 2048 pixels, each measuring $14 \mu \mathrm{~m}$ square. The sensor can read documents up to B4 dimensions with a resolution of 400 dotin. Total transfer elficiency is typically 97%. Sony, 0784466660

COMPUTER

Computer board level products

G64 communications card. SYN ASP5 communications card for the G64 bus. based on the 82C684 quad universal asynchronous receiver and ransmitter, gives four asynchronous serial ports and 20 digital I/O lines. All serial channels can be individually configured to produce any on-board mix of RS232, RS422 and RS485 interfaces without changing any driver chip. Data rates, programmed by sottware, are up to 115.2 Kbaud . Syntel Microsystems, 0484535101.

Computer systems

Unix workstation. S4000DX (Design Xcellerator) Sparc Unix workstation desktop system has a 256 K byte second level cache memory and a 36 MHz clock speed, and uses the SGA20 Sbus graphics accelerator card to give a performance of 530 K two-dimensional vectors per second. It can support up to 128 Mbyte of memory or 1Gbyte of internal disc storage. Solbourne Computer, 0793 491333.

Development and evaluation

Futurebus+ developer. Designed to provide an environment for the Futurebus+ system developer, the Microrack development unit suppors a 128bit wide data bus with central arbitration. SMT RC termination networks minimise signal skew by equalising line lengths across the data bus. The backplane is housed in a hard metric conductive RFIscreened KM25 subrack, 18SU high and 85SP wide. There are 13 slot positions for 300 by 300 mm daughter boards on a 6 SP pitch. BICC-Vero Electronics, 0489780078

Mass storage devices

Memory cards. Credit-carc size memory units are Jedia 4 and PCMCIA compatible and have memory capacities up to 4Mbyte. The range includes sram, eprom and maskrom versions in 8 or 16bit formats. They allow the storage of programmes or data in a rugged format and give a secure method of transportation. Hakuto Intemationa, 0992769090.

Optical storage. A single optical disc drive has been developed that can operate with worm and rewritable optical discs. The SMO-E511uses 5.25 in discs to store up to 650Mbyte of information in worm or magnetooptic format. The drive can read magneto-optical discs recorded on other ISO standard disc format. Sony, 0784466660.

Peripherals

Laser printer. Epson's PostScript EPL7500 printer is device independent. Standard ram is 2Mbyte expandable to 6 Mbyte. It uses microart printing to control the flow of toner so that sharp edged letters and lines can be printed with consistent toner density. Toner density can also be controlled by hand. STC Electronic Services, 0279626777
.Hard disc lock. FastLock Plus software is a PC access control system oreventing the system being booted from a floppy diskette or being circumvented through the keyboard. A log-on screen is presented to all people trying to use the PC. Before log-on can be achieved, a personal account name and password have to be entered. GuildSoft, 0752251155.

Smash and grab: the 11000 price barrier smashed by MicroEye 2C grabber and delivery board.

Software

Engineering windows. A range of Windows 3 engineering software packages operate across various data acquisition and control hardware platforms. Written originally for the Microlink 3000 , the software can also support hardware from Arcom, Metrabyte and Data Translation. Biodata, 0618346688.

Neural network. Autonet Windows applications generator automatically builds, trains and validates a neural network without assuming any user expertise in the technology. It uses a combination of statistical data analysis and expert system rules to generate an optimal neural network for decision and prediction problems Using the optional C code package, networks developed can be embedded directly into an application. Recognition Research, 061-449 8628.■

HAMEG OGCILLOScOPE OFFER FROMBK.

B.K. ELECTRONICS are offering the readers of Electronics World the choice of five quality HAMEG dual trace oscilloscopes, plus a graphic printer with a 5% special discount off of the list prices, including free delivery within the U.K. Overseas readers should contact us for an individual quotation for air mail delivery. All oscilloscopes are supplied with two probes, a very comprehensive Operator's Manual and a two year warranty, including parts and labour, carried out by Hameg (UK) Lid in there extensive calibration and repair laboratory

WHY CHOOSE HAMEG?

For more than 30 years, Hameg has been engaged in the manufacture of oscilloscopes in West Germany. With a broad range of successful instruments, Hameg is known throughout the world as a supplier of attractively priced oscilloscopes based on innovative technology that continues to set new standards of quality and performance. An outstanding example of this is the new generation of digital storage oscilloscopes which has enabled tens of thousands of users to enter the world of digital storage technology for the first time. The price/performance attributes of Hameg's analogue oscilloscopes continue to be second to none on the international market. The recently introduced HM1005 is proof, once again, that high performance oscilloscopes need not be expensive. This also explains why Hameg today sells more oscilloscopes in Europe than any other manufacturer of test equipment.
 Mains Supply - $110 / 220,240 \mathrm{~V}$ AC, $50 / 60 \mathrm{~Hz}$

The HM2O3-7 is Western Europe's best selling oscilloscope because it responds thoroughly to customer demands for reliability, superior performance and ease of operation.
PRICE E321.0O + E56.18 V.A.T. FREE DELIVERY
HM GO4 GOMHz UNIVERSAL

SPECIFICATION

* Sweep delay
- Delay line
- Trigger LED indicat * Caliliarator: $1 K H z \& 1 \mathrm{k}$

With its variety of operating and trigger modes. the HMGO4 is a new innovative general purpose oscilloscope satisfying a wide range of exacting requirements in laboratory, education, production and service

PRICE E579.00 + E101.33 V.A.T. FREE DELIVERY

HM 1005 100MHz MULTI-FUNCTION
 SPECIFICATION

 * Timebase A. ${ }^{2} .5 \mathrm{~s}$ - $5 \mathrm{nn} / \mathrm{cm}$ *Trigering oc - - 130 MHz

- Oelay ine Leoindicator
* Overscan LED indicator
* Active TV-Sync-Seperator

The HM1005 is a multi-function oscilloscope loaded with features such as true 3 channel operation, a genuine second time base, and even a separate second trigger facility. Up to 6 traces can be displayed for evaluating waveform relationships.
PRICE Eフ52.00 + E131.60 V.A.T. FREE DELIVERY
U.K. OELIVERY FREE, export enquirles welcome. VIsa/Access or cheque with order, payable B.K. Electronics. Othicial orders are most
welcome torm schools and colieges, Govt. Depts., PLCs etc. Send large (A4) S.A.E. for Hameg lechnical brochure. Credit card orders are accepted by 'phone, fax or post. Dellvery normally within seven days.

HM 205-3 2OMHz DIGITAL STORAGE

FREE DELIVERY SPECIFICATION

* 2Channels * Anandwidth stomage: DC - 2MHz - Timebase Analogue:15-20ns/ * Timebase Digital: $5 \mathrm{~s}-1 \mu \mathrm{~s} / \mathrm{Cr}$ - ActiveTV-Sync-Samp - Max samplingrate: $2 \times 20 \mathrm{M} \mathrm{Hz}_{2}$ * Component tester * Component tester Now with a maximum sampling rate of 20 MHz and an improved storage depth of 2048×8 bits per channel, the new HM205-3 has achieved a truly unique standard of performance. The HM2O5-3 is Europe's best selling digital storage oscilloscope.

PRICE E579.00 + E101.33 V.A.T. HM 4O8 4OMHz DIGITAL STORAGE
 SPECIFICATION

* Chammels
- Digital storage (and analogue) *imebase analogue: $1 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ - Sens:Ch. 1. Ch. 2, 1mV/cm
- Bandwidth analogue DC - $\triangle O M H$ * Bandwidth analogue DC - $\triangle D \mathrm{MH}-1$
- Bandwidth storage DC - 2 MHz * Max sampling rate: $\triangle \square \mathrm{MHz}$
* Max storage capacity 4096×8 Bit - Max storage capacity $4096 \times$
- Dot piner
- Active TV - Sync - Separator

With the introduction of the HM408 dual channe digital storage oscilloscope. Hameg is once again setting an urprecedented standard for highest performance at lowest cost. The user friendly design combines easy and convenient operation with a wide variety of analogue and digital functions
PRICE E1423.00 + E249.00 V.A.T. FREE DELIVERY HM 8148-2 GRAPHIC PRINTER
 SPECIFICATION * Non-impact printer - Euit-in real time clock - Zooming Sarme size as oscilloscope
which sits neatly on top.

Harneg's versatile HM8148-2 Graphic Printer meets the expanding need in the world of electronics for producing fast and accurate documentation of measurement data. With both Hameg digital storage oscilloscopes (HM205-3 and HM408, the existing Hameg bus transfers stored waveform data to hard copy output
PRICE E752.OO + E131.GOV.A.T.
FREE DELIVERY
B.K. ELEGTRONICS

UNITS 1i5 COMET WAY, SOUTHEND-ON-SEA Tel. 070e-5e757e Fax. o70e-4eoeas

REGULARS

Cross words

John Moseley spoiled an otherwise informative and interesting review of the IAR 8051 C Cross compiler ("Harmony in C". May 1991. pp.389-394) hy persistently sniping at the program's "user interface" The criticism is misdirected because almost all cross compilers and assemblers for microcontrollers share a similar minimalist command-line-driven interface.
Instead of pointing this out, the review seemed obsessed with the notion that the IAR product has a uniquely horrible user interface. More importantly the criticism has fundamental flaws because a command-line-interface is appropriate for a product of this type.
Programmers often prefer command line interfaces to IDEs (integrated development environments), not wanting to use a different editor for every compiler or assembler. Good programmers do not spend vast amounts of time in an edit-compile-link-dehug frenzy portrayed as typical in the review.
Early design and code phases of ${ }^{\circ}$ the development cycle are obviously edit only. The final integrate, dehug and test phase should revert to the edit step quite rarely because the program should be 99.9% good by this stage. The mechanies of invoking a separate compiler. linker and loader are awkward. and certainly require help from the manual, hut the steps are routinely automated with a batch file.
Moseley asserts that because a nice window and mouse oriented IDE is available for Turbo Pascal. such an interface is easy to implement. Comparisons with Turbo Pascal are inevitably misleading because of the difference between the markets for the two programs. Borland devotes massive resources to wrapping friendly interfaces around its development tools because it is operating in the mass market.
Additionally Borland has the luxury of concentrating on a single platform; code that inflements windows and mice does not port from one platform to another as readily as core compiler technology

Cyclotron resonance

Harold Aspden makes a powerful case for his cyclotron resonance theory of cancer from power lines $(E W+W W$, "Power lines, cancer and cyclotron resonance", September 1991, pp. 774-775).
But one thing missing from his article is any data on how long it takes for the resonance to build up in the hydroxyl and hydroxonium ions in the human body when exposed to electric fields from power transmission lines. In most circumstances people will be moving around, physically, within the field. If the induction time is relatively slow - of the orders of minutes or hours - this kind of resonance might not have time to build up.
If Dr Aspden is correct one might predict that individuals who spent considerable periods relatively stationary in the fields (for example, sleeping in a house under power lines) would be far more at risk than people simply working underneath them. Perhaps this movement factor in the exposure is why the data linking high voltage fields and disease has been so difficult to establish.
A second point is that it is not clear how resonance of hydroxyl or hydroxonium ions could result in diseases such as cancer.
Mammalian cells all have a standing voltage of between 30 and 90 mV (inside negative) across their cell walls - the "membrane potential". This potential, although small, is associated with an extremely powerful electric field, because the distance over which the voltage changes is less than $10^{-8} \mathrm{~m}$. The field is powerful enough to force charged molecules in the cell wall to orientate in a particular way, ie to line up with the field.

These molecules control many functions of the cell, including certain aspects of growth and development. Reductions in the membrane potential can allow realignment of the charged molecules in the wall and alter how they work. Cancer cells often have abnormally low membrane potentials. and it may be hypothesised that this reduction in wall field. by relaxing the molecular alignments in the cell wall, may disrupt control mechanisms exerted by the wall molecules on cell growth and function. Interactions of the external field from power lines and the cell wall field could make ions in the cell walls particularly vulnerable to the cyclotron resonance effects, resulting in disruption of the wall structure and opening up the way for cancers to develop.

I Millar

University of London

I think that by concentrating effort on code generation technology and producing products with simple user interfaces porting easily to different platforms. IAR and companies like it are using resources wisely and providing good service to the engineering community.

Bill Forster

Wellington
New Zealand

On-line support

Barry Fox's criticisms of British Telecom's Phonebase on-line UK telephone directory`s lack of userfriendliness are certainly justified $(E W+W W$. "BT mudde points to communications crisis", July 1991).

But he is wrong to object to the choice of the CCITT V23-standard $1200 / 75 \mathrm{bit} / \mathrm{s}$ data-rate.
Of course, it would be even more convenient if Phonehase were equipped (like many private bulletin boards) with auto-selecting modems able to aceept all the common data rates. from $30(0) / 300$ to at least 240()/24() bit/s. But the V. 23 option is one of the most cost-effective solutions for this application evident from the fact that, just actoss the Channel. it is currently being used to make some 52 million Minitel calls for a total of 1.6 million hours every month to access France Telecom's equivalent "annuaire ćlectronique"
Here in Belgium, the public
videotex server RTT Videotex has just introduced the first stage of its on-line directory service, coded "AE" in French and "ETB" in Dutch. initially covering the 0.3 (Antwerp) and (665 (Mons) areas. RTT-VTX subscribers can search for either the telephone number. by entering the required surname and loceal authority area of residence. or for the name and address of an individual subscriber by entering the ir telephone number. The seareh can be extended to phonetically similar names and/or associated areas if required.
Although RTT-VTX provides subscribers with gate-ways to various private databases coded in Télétel. including those available to French Minitel users, its default system is compatible with the British Prestel system. except that the character set includes lower-case accented characters instead of fractions etc.
However, although the information printed in Belgian telephone directories includes these accented characters. the AE/ETB software does not (yet?) recognise or display them.
Perhaps at least its user interface could provide a model for other Prestel on-line directories.
Alan F Reekie
Brusse/s
Belgium

Common basic problem

As a teacher of basic electronics at college level, there is a small point which has hothered me for some time concerning the bipolar transistor in a common base mode. shown in Fig. I. In reviewing a number of American electrical engineering texthooks, I lind none that adequately explains how forward collector current can flow in the saturation region - second quadrant Fig. 2. For transistor action to occur and majority carriers to spill over from the hase region to the collector region, it would seem that the collector-base diode would need to be reverse-biased: yet in a simple common base contiguration with the

Fig. 1. Bipolar transistor in commonbase mode.
flow. But I would like to hear some expert confirmation, or correction of this hypothesis.
I have also been intrigued by the collector characteristics for common base which appear in various texts. About half the books I reviewed showed the family of curves "stepped" in the second quadrant, as

Fig. 2. Stepped curves... (From "Electronic Devices and Circuit Theory", Robert Boylestad and Louis Nashelsky, Second Edition, 1972, p. I26, Prentice-Hall Inc, Englewood Cliffs, NJ.)

Fig. 3. ...or convergence. Which is right? (From "Fundamentals of Electrical Engineering", Leonard S. Bobrow, First Edition, 1985, p. 364, Holt, Rinehart and Winston, Inc., 111 Fifth Avenue, New York, New York, 10003, USA.
base solidly grounded, this diode is clearly forward biased in the second and third yuadrants.
With the base solidly grounded and both the emitter-batse and collector-base diodes forward biased. the emitter-base loop would appear to be independent of the collector-base loop.
If base resistance is considered. the picture becomes clearer. Enitter current flowing in base resistance raises the potential of the internal P N junctions with respect to the base terminal: when this potential exceeds the collector supply voltage. the collector is reverse-biased.
allowing forward collector current to
shown in Fig. 2. The others showed all curves converging at about 0.8 V . as in Fig. 3. It is hard to see how both versions can be correct.

Frank W Smith

University of Tennessee at Chattanooga
USA

Analogue watch

Your Comment September issue ("Analogue changes") is a timely reminder of the importance to electronic engineers of having a working familiarity with analogue techniques. My lifetime career has been in the communications industry
and some of your older readers may remember that I have made some minor contribution in the specialised area of high quality audio design.
One of my responsibilities was the provision of music grade circuits for the broadeast authorities and I remember vividly the time when a young graduate was assigned to me for field experience.
1 decided to send him out to line up such a circuit. Sensing some hesitation when asking him to plot a response curve in dB I was prompted to ask if he understood dB notation.
His reply: "Well. I think so...but I did that in my first year, so you can't expect me to know now, can you?"

I have been told that many universities running electronics courses do not include a nalogue techniques at all.
This is a gross error. To me, digital techniques are an adjunct and not a replacement for analogue. In wide areas of signal processing, they have freed designers from many problems in the analogue domain. But digital signal processing is a human invention and at the end of it all. there has to be a reversion back to analogue; here is where an understanding of the many problems is vital. such as interfacing to transducers.
I find. an increasing tendency to assume that for every design problem. there is a digital answer. There may well be, but it may prove quite uneconomic and unnecessarily complex.
Reg Williamson
Kidsgrove
Staffs

Cuk champion

I must congratulate Terrence Finnegan on his assessment of the benefits of the Cuk converter. compared to the more traditional power converter topologies. However. Brian Pollard, in his letter, ($E W+W W$ September 1991). raises points that require to be addressed.
As one of the few people who has actually built integrated magnetic Cuk converters into real equipment. I feel I am in a position to dispel these often repeated myths. Although the initial design of a Cuk converter is more complex than the more conventional type, requiring real knowledge of magnetics and control theory, the final product does indeed deliver all that is claimed.
The first myth is that the energy
transter capacitors are plysically large. When the Cuk topology was first proposed some 17 years ago. capacitors were indeed a limiting factor. and physically large polycarbonate or polyester types had to be used. not for their high value of capacitance, but for their low ESR. This is no longer the case due to advances in multilayer ceramic capacitor technology.
Now, because of their very low ESR. tens of amps can be carried with low loss, in a small volume. (Mr Pollard is probably using them in the input and output filters of his Buck converter for exactly this reason). It is important to realise that the energy transfer capacitors are for just that, transferring energy; they are not for bulk energy storage. As the energy is transferred in a few microseconds, and considerable droop is permitted, relatively small values of capacitance is required. resulting in small in-rush and rebalance currents.
The second myth is that efficiency of a power supply is dependent on quality of the components. and is independent of the choice of topology. TS Finnegan showed in the first part of his article, as others have elsewhere, that choice of topology determines the altainable efficiency at the outset. Using the same components in different configurations produces quite different losses. Although the basic Cuk converter is shown to be superior to other topologies in this aspect. it is when the integrated magnetics solution is considered that the full benefits are realised.
Because of zero ripple in both the input and output inductors. very much reduced values of inductance are required. The magnetic structure is therefore small. resulting in low iron losses; and the number of turnsrequired is reduced. allowing heavy gauge wire to be used. (without eating into the window area), further reducing copper loss.
Another benefit of the lower inductance values found in the integrated version is the effect of simplifying the loop stabilisation. The small inductance of the input choke, coupled with low capacitance of the energy transfer capacitor. causes the complex poles and unpleasant right half plane zeros to move up in frequency. well above the usable bandwidth of the power supply. Damping of the energy transfer capacitor is simple, and may not be required at all.
Mr Pollard claims there is no

AP182C/85588 $0.1-1500 \mathrm{MHz}$
HP182T/8559A21GHz system
HP85990A 1500 MHz GP1B
MARCON TF F 3370110 MHz analyse
 ANRITSU MS628 SIT00 M Hz analyser

AARCON 23828300 MHz an ser-

AVO RM160/3 megohmmeter
AVO RM215L. 2 ac/dc breakdown tester 1012 kV
BRANDENBURG Alohall 507RO 5 kV
BRANDENBURG Alpha II 507R 0-5kV
BRUEL \& KAER 4416 response test unit
BOONTON 102 AM/FM sigl gen
BRUEL \& K AER 4416 response test unit
BOONTON $102 B$ AM/FM IsIgnal generator
FARNELL PSG520 signal generator AMFM
FARNELL PSG520 signal generator AM/FM $10-520 \mathrm{MHz}$
GIGATRONICS GU1240A signal source 0.01
PHILIPS PM5190 synthesized function generator
PHILIPS PM5534 slandard pattern generator NTS
PHILIPS PM5534 sfandard pattern gener
PHILIPS PM5545 colour encoder PAL
PHILIPS PM5597 VHF modulators $£ 250$, PM 5598 UHF
PHILIPS PM5580 I.F. modulator
PHILLPS PM6652 1.5GH2 timer/Counter GPIB
PHILLPS PM8202 recorder with $9874 / 01$ temp
RACAL 9081 signal generator $5-520 \mathrm{MHz}$ synt unized
RACAL 9082 signal generator $1.5-520 \mathrm{MHz}$ syntheslized
RACAL 9105 RF microwatmeter 002 .
 1710 frequency down converter for 8640 B stem
MHz storage lan
SOLD 3580A audio spectrum analyser $15 \mathrm{~Hz}-50 \mathrm{kHz}$ SOLD 400 F . $\mathrm{m} \psi$ Meter $100 \mu \mathrm{~V}-300 \mathrm{~V}$ is. 20 Hz 4 MHz 135 A mutifirequency LCR meter HPIB SOLD 4342 A Q-meter $22 \mathrm{kHz}-70 \mathrm{MHz}$. O-range 5 1000 SOLD 5005 B signature multi-meter. programmable
5300 A 5302 A 50 MHZ counter-timer 5328 A 100 MHz frequency counter/DVM option 53638 intie- -nterval probes
6516 power supply $0-3 \mathrm{kV}$ @ 6 mA 70300 A tracking generator plug.in unit 70907 A external mixer 7015 B arslogue X - Y recorder with timebase
8405 A vector volimeter, voltage \& phase to 1000 MHz 8406 A comb generator 8503A S-narameter test 8505A network analyser
8553 B 11 MHz spectrum analyser plug-rn
8556 I 141 T -systemat 8556 A 141 T -system based spectrum analyser plug-In
$8558 \mathrm{~B} / 1: 182 \mathrm{C} 1500 \mathrm{MHz}$ spectrum analyser systern
8559 A $8559 \mathrm{~A} / 1: 122 \mathrm{~T} 21 \mathrm{GHz}$ spectrum analyser systern 8566 A scectrum analyser 8590 A 1500 MHz spectrum analyser GPIB optron 8600 A disital marker generator for 8601 A
8614 A sisnal generator $800 \mathrm{MHz}-2.4 \mathrm{GHz}$ 8614 A siknal generator $800 \mathrm{MHz}-2.4 \mathrm{GHz}$
8620 A sweeper main frame $\& 86218$ plug.in units
86222 A sweep generator 86222A sweep generator plug. -I 10 MHz - 2.4
8640 A siqnal generator $5-520 \mathrm{MHz}$ AM/FM 8640 B signnal generator options 1.2 and 3 SOLD 8750A storage normaliser
8954A tr masceiver interface

PLEASE NOTE: ALL OUR EQUIPMENT IS NOW CHECKED TO MANUFACTURERS' SPECIFICATIONS BY INDEPEND ENT LABORATORY TO BS5750. Certificates of calibration to this :tandard can be supplied at EEKTRONIX 7613/7A19/7B10 storage
TEKTRONIX 7A13. 7A26. 7B53A. 7A18.
TEKTRONIX FG504 function generator TEXSCAN VS60C 1000 MHz sweep generat
 TOA PM $30 R$ RF volt-meter 1 mV -10V Isd YOKOGAWA 3655 analysing recorder
YOKOGAWA 3061.216 -channel chart recorder second user
TIONAI. VAT

CIRCLE NO. 145 ON REPLY CARD

With 48 years' experience in the design and manufacture of several hundred thousand transtormers we can supply:
aUDIO FREQUENGY TBANSFORMERS OF ENEBY TYPE

YOU NAMEIT! WE MAKEIT!

OUR RANGE INCLUDES
Microphone transformers (all types). Microphone Splitter/Combiner transformers. Input and Output transformers. Direct Injection transformers for Guitars. Multi-Secondary output transformers. Bridging transformers. Line transformers. Line transformers to B.T. Isolating Test Specification. Tapped impedance matching transformers. Gramophone Pickup transformers. Audio Mixing Desk transiormers (all types). Miniature transformers. Microminiature transformers for PCE mounting. Experimental transformers. Ultra low frequency transformers. Ulira linear and other transformers for Valve Amplfiers up to 500 watts. Inductive Loop transformers. Smoothing Chokes. Filter, Inductors. Amplifiers to 100 volt line transformers (from a few watts up to 1.000 watts), 100 volt line transformers to speakers. Speaker matching transformers (all powers), Column Loud-speaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible.

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS. BAND GROUPS AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH. EEC, USA, MIDDLE EAST, etc.

Send for our questionnaire which, when completed, enables us to post quotations by return.

OWTER $\left.\begin{array}{l}\text { TRANSFORMERS } \\ \text { TRAN }\end{array}\right\}$
PO Box 36, Ipswich IP1 2EL, England. Phone: 0473252794 \& $0473219390-$ Telex: 987703G Fax: 0473236188

Electronics Workbench

The electronics lab in a computer!

A simple, intuitive and very powerful teaching teol, Electroaics Workbench ${ }^{\text {w }}$ lets studento design and test both analog and digital electromic circuits, without the delays and exqense of a laboratory. Availabic in three peckages: Professional: Full functionality, unlimited aumbers of components in a circult, with colour coding for circuit tracing EGA/VGA graphic support.
Personar Plus: Full functionality, unlimited number of camponents in a circuit, with monochrome graphics support.
Personar: Full functionality, 20 components or less in a circuit, with monochrome graphics support.

Electronics Wortbench" is produced by Inseractive Image Technologies LLd Electronics Workbench ${ }^{\text {m }}$ is available now through:
5 LJ Technical Systems Ltd.

Francis Way,

Bowthorpe Industrial Estate, Norwich NR59JA.
Telephone: (0603) 748001.
Fax: (0603) 746340.

PCB CAD/CAE SOFTWARE FROM

Protel Autotrax Basic Ver. 1.61 offers the same excellent professional quality as Protel Autotrax Extended but with out full autorouting and autoplacement. Includes CNC Drill, Photoplot and DXF export. Pads Import and EDF netlist support. Upgradeable to Protel Autotrax Extended.

Protel Autotrax Extended new Ver. 1.61 is a precision design tool that improves productivity for occasional and expert user alike. With full autorouting and autoplacement.

Please contact our Sales Office for Evauation pack and full details of latest Versions

For MS/ Dos \& MAC

Protel Traxstar new Ver. 1.38 is a costed rip-up and re-router option to Autotrax. Now includes redesigned rip-up algorithm, improved smoothing and new file re-start and file continue options.

Protel Easytrax 2 at $£ 75.00$ \# is the low cost entry level package to the Protel Range. Upgradeable to Autotrax.

Protel Schematic Ver. 3.30 is a cost effective, high performance program for creating Schematic Diagrams. Netlist Generation.

The Sole UK Distributor for Protel CAD Software. Main Dealers for Roland A3 - A0 Plotters.

J.A.V. ELECTRONICS LIMITED

Unit 12a Heaton Street, Denton, Manchester, M34 3RG. Tel: 0613207210 Fax: 0613350119
Price quoted is a cash with order price and excludes delivery and VAT. \# Limited Period Only
CIRCIENO. $1 \not 22$ ON REPIY CARD

CIRCLENO. IBOONRIPLYCARD

FIBRE-OPTICS EDUCATOR

Versatile training equipment for education and industry.

FIBRE-OPTICS POWER METER

dBm and $\mu \mathrm{W}$
scale; battery life 500 hours.

FIBRE-OPTICS MONITOR

For continuity testing and voice comms.

For further details contact:

ELLMAX ELECTRONICS LTD.,
Unit 29, Leyton Business Centre, Etloe Road, Leyton, London, E10 78T. Telephone: (081) 5390136 Fax: (081) 5397746 ELECTRONICS

CIRCLE NO. 13 ON REPIY CARD
evidence that there is an advantage in volume. weight, and cost in using the Cuk topology. Dr Cuk has himself shown prototype power supplies that he has designed for the Boeing Corporation, and for the Hughes Aircraft Corporation. These are built in the form of hybrids, and have a power density of $50 \mathrm{~W} / \mathrm{in}^{3}$. It is the integrated magnetic approach that makes this power density possible at moderate switching frequencies. To get this power density with conventional topologies requires switching frequencies in the MHz region, with all the attendant problems that this brings.

The difficulty in manufacturing the integrated magnetic element that Mr Pollard highlights is indeed perceived to be a fundamental drawback to producing a low cost power supply. Costs incurred depend on the level of mechanisation that can be employed. Although it is a more complicated structure to produce, it replaces two much larger inductors and a transformers. The total number of windings to be produced is the same, and if these are wound as self supporting bobbinless windings and assembled on one core later. I cannot see why they should cost more than three much larger windings required for the conventional topologies, assembled on to three separate cores. Without bobbins it becomes more difficult to terminate the windings, and an additional terminal carrier may have to be used. The slightly added complexity in producing the magnetic element is more than compensated for by the benefits that it brings.
The new EMC directive from the EC, originally due for implementation in 1992. (but now delayed until 1994), will have dramatic impact on all electrical equipment offered for sale. It will be an offence to sell equipment that has not passed a rigorous EMC test by an accredited test house.
The vast majority of power supplies currently on the market will not pass this test without substantial additional filtering. Wound component manufacturers, and the suppliers of filters, are excited with the prospect of increased sales to manufacturers of Buck and Flyback converters.

Mr Pollard states that the input filtering requirements of the Cuk are similar to that of the Buck. This is most definitely not the case. Even the non-integrated version of the

Cuk, with its non-pulsating input current. is much easier to filter than the Buck, with its pulsating input current. With the integrated
structure, and near zero ripple, the task of filtering the residual differential-mode input current noise is almost trivial. Very small components are required for the Cuk. while substantial inductors and capacitors. (and damping), are needed for both the Buck and the Flyback converter. In addition, Dr Cuk has demonstrated that by splitting the input inductor into two windings, with the appropriate ratio, a very effective common-mode noise filter is obtained at no extra cost.
Mr Pollard wonders why, with all its apparent advantages. the Cuk converter is not more widely used.
There are several reasons, the main one being that the technology is relatively new, and is still undergoing rapid improvements. Perhaps engineers were frightened off by a bad experience several years ago when the dynamics were not fully understood. or perhaps it is just because designers are unwilling to risk a design that is perceived to be too radical, preferring instead to stick to well tried and tested topologies.
The increasing pressure from the market place for higher power densities and improved efficiencies, coupled with the new EMC regulations, will force designers to consider alternative topologies, andthe Cuk converter would seem to be an obvious candidate.

Alastair / Stanley

Aberlady

East Lothian

Challenging viewpoint

Anyone trying to call the invariant-velocity-of-light dogma into question. is invariably attacked by Einstein's supporters who will use any method to defend the prevailing view (cf subsequent correspondence to John W Ecklin's letter, March 1991). The fact that light is a physical phenomenon, behaving as it does independently of Einstein's theories seems to make no difference.
Light travels very fast and that is one of the problems behind performing measurements with high accuracy. especially if moving light sources or moving observers are involved. So Doppler shift

Telepoint - not telepointless

With regard to Mr Peter Johnsonn's letter that appeared in your September issue ("Telepointless"), I am writing as a member of the Phonepoint team to answer to Mir Johnsonn's claim that the telepoint system is ill-conceived. Phonepoint fills the gap for a mobile communications system, positioned between pay-phones and cellular, offering convenience and cost effectiveness. We do not see the fact that telepoint is at present only one-way as a detriment to its success. It is a low-cost service to meet the needs of telephone users who do not want the expense of cellular equipment and calls. Making it a two-way public service would require adding intelligence to the system, driving up the cost. For those who demand twe-way telepoint, we will be offering an integrated pager and handset, and users can then decide whether they want to call back on telepoint.
Phonepoint is backed by some of the world's most powerful telecomms companies (BT, Northern Telecom, France Telecom, Deutsche Bundespost), and so is in a strong position to invest in the emerging telepoint technology and support the common air interface (CAI) launch. Telepoint cannot be dismissed on the grounds of cost. Handsets will be priced close to $£ 100$, with the complete package of handset, private base station and subscription for around $£ 300$. Call charges will be the same as making a call from a public payphone. On the subject of competition, we have always maintained that four players were too many for a start-up technology like telepoint, and produced much fragmentation of effort. This has been proved with Phonepoint and Hutchison the only two operators intending to launch a public service.
I hope my letter will answer many of Mr Johnsonn's queries.

Susan Sherring

Phonepoint
London

I still say it will never sell - Ed.

measurements are used, whereas in fact distance measurement would be the most suitable.
Doppler wavelengih/frequency shift measurements are indirect methods and can be rejected as invalid by Einstein's supporters who say that the product of frequency and wavelength is always equal to c.
But distance/time measuremens would be possible using satellites.
Consider satellites A. B and C moving in the same orbit around the earth. A and B moving in the same direction with constant relative distance and with the same velocity. and C moving in the opposite direction. C satellite emits radio or light pulses continuously and A and B catch these signals and register their arrival time in computer data registers.
The local time registrations of each pulse in each satellite is continuously transmitted to Earth and the time differences of received data is calculated.
When C satellite approaches A and B, the time $A-B$ will be: $t_{1}=S /\left(c+h, v^{\prime}\right)$ and when receding $t_{2}=S /(c-k \cdot v)$, where $k=0$) if Einstein's
invariant light hypothesis is valid and $k=1$ if the emission theories ($c^{\circ}=\left(c^{\prime}+v^{\prime}\right)$ is valid. S is the relative distance between A and B .

Calculated time difference will be $1,-1$, equal to :
$\mathrm{dt}=2 \cdot S \cdot k \cdot v /\left(a^{2}-k^{2} \cdot v^{2}\right)$ or $d t=$ 2.S.k.w/ ${ }^{2}$ approximately.

Inserting figures - where $v=$ $30,1000 \mathrm{~km} / \mathrm{h}$ or $8333 \mathrm{~m} / \mathrm{s}$, $\mathrm{c}=$ $3 \times 10^{k} \mathrm{~m} / \mathrm{s}$ and $S=100 \mathrm{~km}-k=1$ gives approximately 18.5 ns. If the distance is increased to 1000 km , the difference will be 185 ns . or nearly $0.2 \mu \mathrm{~s}$, easy to detect and establish. As everyone can see, if Einstein's hypothesis were true, the time difference would te zero.
Who will believe on that?
By this experiment, the question of the velocity of light and the velocity of radio wave propagation would be solved once and for all, relegating this tiresome question and Einstein's theories to the lumber room of failed scientific ideas where it belongs.

Ove Tedenstig

Maersta
Sweden

Clearer signal

Further to my letters published under the heading "Signally strange" $E W+W W$ February and March 1991 and readers letters, I now realise that some of the trains of exponential damped waves were actually generated by the tuner as the result of an initiating pulse. The effect of the pulse is essentially the same as that of the spark in a spark-lype oscillator whereby the frequency of the actual oscillations is set by the time constants of the tuned circuit while the period between each train of oscillations is set by the spark frequency. So. in the above observations, the frequency of individual oscillations comprising the train is not significant; it is the length of time between each train that is, because that corresponds to the period of the initiating pulses.
In field experimens. I have been able to demonstrate that a large capacitor discharged in the vicinity of my earth probe antenna. where it presumably generates a magnetic pulse can initiate a train of
oscillations. On my workbench I have found that trains of waves with a frequency up to l.0) Hz can be initiated by low frequency (5 to 50 Hz) square waves. The fact that a pulse or square waves can set up oscillations at the frequency to which the receiver is luned, may throw light on the origin of some of the "strange" signals.
The pulses that seem to initiate the damped wave trains do not look to be oscillatory, if they are, they consist of so few oscillations as to be non-tuneable with my basic equipment and simply breakthrough. So. assuming that electromagnetic pulses do actually initiate the trains of strange walves. the question is from where do they originate.
If pulses arrive from several sources it would be impossible for me to differentiate them; the receiver apparently responds to any pulse that happerns to be strong enough to initiate a train. If the tuner is in resonance with a steady signal, possibly originating from ELF military stations, the trains seem to be superimposed to give the

Levitation or levity?

Most scientists regard talk of anti-gravity or gyroscopic levitation as nonsense. But the minority with open minds seek, by enquiry and correspondence - some through the pages of $E W+W W$, more information.
As the author of "Anti-gravity electronics" ($E W+W W$, pp. 29-31. January 1989) and at the risk of engendering more levity, I offer the following references as an update for this minority interest:
(a) A fundamental theoretical account: "The theory of anti-gravity". H . Aspden, Physics Essays, vol 4, pp.13-19, 1991. University of Toronto Press.
(b) A claim to have demonstrated solid-state electronic anti-gravity technology: "Utilizing scalar electromagnetics to tap vacuum energy". F Sweet and TE Bearden, to be published by American Nuclear Society inproceedings reporting IECEC - 26th Intersociety Energy Conversion Engineering Conference, Boston, Mass, August 4-9, 1991. An electrically excited device weighing 6 lbs loses weight progressively as a continuing function of electrical power throughput (90% weight reduction at 1 kW).
(c) As evidence that, contrary to learned opinion, academia still has something new to learn about "gyroscopic dynamics": p. 23 of recently issued "Report of the Head of the Department of Engineering. Cambridge University, Academic year ending 1990". This lists a cooperative research effort with Smiths Industries Aerospace and Defence Systems Lid on a new design of rate gyroscope sensitive about two orthogonal input directions and having a rotor which "floats" in space. "Unexplained dynamic characteristics are being examined in order to understand its behaviour more completely and certain mechanical failures for which there is no present explanation"
H Aspden
Department of Electrical Engineering
University of Southampton
characteristic waveform (Fig. 3, EW + WW. Feb 1991). So, to observe the trains, the tuner had to te set to at frequency not occupied by a steady signal and best results were obtained with the tuner resonating at about 1.()hHz but this was not critical.

With the earth probe antenna installed in farmland near a village. Irains with a 10 or 20 ms period were conspicuous and were assumed to originate from "spikes" present on 50 Hz power lines. However. with the receiver sel up in a more remote area. about a mile from power lines. and the oscilloscope powered by a portable generator. trans were it times aperiodic, possibly caused by distant lightning discharges.
However, quite unexpectedly. at other times, trains occurred in groups of three with aboul 1.0 periox (extremely difficult to estimate with my CRO) while at other times Irains with 150 to 300 ms period (3.3 to 6.6 Hz) were occasionally observed; I suppose these could be calused by subharmonics of 50)1/ bus this seems unlikely.
I hope these notes will the of interest and at least throw some light on this intriguing subject.
George Pickworth
Kettering

Can anyone help?

I 155 request. For sentimental reatsons I would dearly love to get my newly acquired R 1155 working again. Can anyone help?
Many years ago, in the fifties I guess, Wireless World published datta on WWII radio equipment, in particular on an aircraft radio receiver type R1155A.
1 am sure I recall issues of WW detailing various modifications and a circuit diagram. Could I engage your sympathetic interest in my problem to help track down a photocopy of the circuit'?
This is something of a cride coner as all efforts up to now in radio clubs etc have drawn a blank.

Douglas Berry

Ward of Turai
Rescobic
By Fortar
Angus
Datalogger. Can any $E W+W W$ reader help me loc:ate a data-logger to help me complete some experimental work.

I've been running a simple Geiger lube experiment on a pole to measure background since last year. This has shown that if you align the tube to the magnetic field axis, It becomes a potent solar and geomagnetic disturbance logger. because the incoming particles from solar tlares are organised by the electrodynamic effect of the geomagnetic field into definite alignments which can be readily detected by an appropriately oriented detector.
My work seems to break new ground. because l'm not using the normal heavily screened tube favoured by researchers into high energy particles. My tube is unscreened except for a chunk of aluminium. so it responds to much lower energy particles, and shower products from high energy collisions.
Initially I need a datalogger which can take the digital pulse rate from a fixed or portable GM tute(s) and record it on dise or ram, for processing into bargraphs, charts etc. At the moment I run a fixed analogue system which drives an integrator chart recorder plus a digital counter which gives, me an average count over 12 h , but needs to be manually read and reset each time.
Ideally. I would like to take an hourly rate or hetter - hence the interest in a data logger.
I do have an Amstrad PCW8512 and Commodore Amiga $5(0)$ available. but nothing better than the standard Amstrad dot/matrix primter. and don't want to spend a fortune. Can anyone help?
Anthony Hopwood
Close Cottage
Holdiast
Upton-on-Severn
Worcester WR8 OQZ.
Valve output transformer. I have a hitherto secret passion for designing. building and renovating valve RF comms equipment. Unfortunately, some parts are becoming so scarce that they don't even show themselves as one of the unsold tots at the end of a radio club junk sale. Can anyone supply me with a single-ended audio output transformer, ideally with a primary impedance of about gocOOS 2 and a power handling of IW?
Frank Ogden G4/ST
Editor, EW WWW
081-661 3128.

Fig. 1. Resistance-temperature characteristic, divided into three regions: Region I, temperature region where resistance is approximately constant with temperature. Region II is the PTC, where resistance increases dramatically with temperature. Region III has typical NTC characteristics, where resistance falls with increasing temperature. In heating applications, region I is used to obtain high current and therefore heating, and region II to balance the circuit and maintain a self-regulated temperature. In over-current and over-temperature applications, region II is utilised, where the high resistance resulting from the high ambient temperature is used, essentially to cut off the current.

Fig. 2. PTC applications. The steep PTC curve is required for over-current and thermal fuse applications, where the current needs to be switched off quickly. The shallow curve, on the other hand, is more suitable for heaters, where there is a gradual reduction in current as temperature rises.

Semiconducting ceramics

It is not only silicon and germanium that exhibit semiconducting properties. New materials promise a generation of rechargeable batíeries with virtually infinite charge/discharge cycle lives. Rob Deverson explains.

Thirty years ago it was found that doping barium titanate with certain compounds caused the resistance to fall to $1-10082$ and the resulting material was semiconducting. Subsequent heating of the device demonstrated that, at approximately $130^{\circ} \mathrm{C}$, the resistance rose sharply by up to six orders of magnitude over a temperature range of up to $100^{\circ} \mathrm{C}$. The switching temperature could be tailored to match the system requirement by the substitution of compounds that either lower or raise the operating points.
Most positive temperature coefficient thermistors are based on the ceramic compound barium titanate. The material in its pure form is an insulator and is commonly used in multilayer and other miniature capacitor manufacture.
Most heating applications have PTCs which stabilise between 150 and $250^{\circ} \mathrm{C}$ and therefore require doping to create performance at this higher temperature. Alternatively, over-current protectors may be required to switch below $100^{\circ} \mathrm{C}$ and the ceramic formula is adjusted accordingly. The composition of the PTC - the relative amounts of the additives 10 pure barium titanate - must be carefully chosen to obtain the required PTC characteristic. For example, a heating application requires the PTC to balance the circuit at a given temperature.
Any fluctuation in current load or external
temperature is accompanied by a resistance charge (Fig. 1) which can cause a sudden surge in the current requirement, which may not be available. If the characteristic is fairly shallow the resistance change with temperature is gradual and no sudden effects take place. Where the application is for over-temperature protection a steep resistance rise is required to ensure no further heating takes place.
Figure 2 shows typical PTC characteristic requirements for different applications.
Conditions of application are important. A PTC which works well under 5 or 10 volts will not work under mains or similar voltages. Each application has its own PTC formulation. ensuring that the customer gets the best device for the application.

Contact materials

Conventional electrical contacts for low voltage switch-gear, such as contactors or circuit breakers. consist of silver, copper. gold or a composite of silver and oxide materials. These materials are chosen for a number of reasons, particularly their high conductivity and mechanical properties. but each has associated drawbacks. Metallic contact elements are restricted in their use with regard to their atmospheric and design sensitivity: low temperatures are required to prevent oxidation or corrosion and contacts must be small enough to prevent contamina-
tion from the presence of air-borne particles: they must also be sufficiently large to prevent welding due to the self-heating effect at high current densities.
A new range of ceramic materials which. after suitable processing. have conductivity similar to that of most metals. has now been developed. Electrical contact elements made using the new material demonstrated superior performance to conventional composite and metallic contacts.
The ceramic elements are formed using high temperature techniques which renders the material immune to the atmosphere, mechanically very strong and electrically and mechanically resistant to the effects of arcing.
In addition, the particulate nature of the ceramic means that the surface is inherently rough and any airborne contamination can be naturally accommodated in the surface of the contact. Self-welding is also etiminated since the ceramic does not melt: therefore higher current densities and temperatures can be used with no danger of deterioration of the contacts.

Electrochromic ceramics

There is a group of metal oxides which change colour. in an electrochemical cell. from a colourless or white state (bleached) to blue or brown (coloured) as a result of a partial reduction of the compound by an electric current passing through the cell. These conventional materials are found in thin film form as smart mirrors and windows as well as displays, warnings, and other devices.

But the colour change is not strong (often filters and colour gatherers must be included to obtain a suitable reaction) and control circuitry must always be included to prevent reduction of the material to its base metal during the colouring cycle.
Now ceramic materials have been developed which are a compound of two metal oxides. These new materials demonstrate dramatic colour changes. from white or pate yellow to black or dark green. depending on their exact formulation.
Unlike the more common electrochromic materials, being a mixture of two compounds reacted to make a third, they are very stable and reduction to the metallic state is not possible using the electrochemical treatment.
So there is no requirement either for filters to detect colour change or control circuitry to prevent excessive reduction.
These superior properties of the new material permit more simple application, thereby introducing many more opportunities where a rapid and dramatic colour change is required.

Fig. 3. Sketch of typical Ni-Cd battery. A conventional Ni-Cd battery consists of the two electrodes, mixed with conductive fillers $t o$ increase the conductivity of the electrode, in a solution of potassium hydroxide. The new baltery uses sodium hydroxide, which is much less toxic, and because the electrodes are themselves electrically conductive, conducting fillers are not required. Ceramic electrodes do not change their physical dimensions with charge giving rise to a virtually infinite charge/discharge life. The result is a simple arrangement which is more efficient and directly interchangeable with primary batteries - and much longer lasting..

PTC thermistors

A thermistor is a temperature sensitive resistor - its resistance changes as temperature is increased or decreased, in a controlled manner so that, at a particular temperature the thermistor has a known resistance. There are two types of thermistors - those whose resistance decreases with temperature (NTC negative temperature coefficient of resistance) and those where the resistance increases (PTC - positive temperature coefficient).
Main characteristic of ceramic PTCs is their sharp increase in resistance at a given temperature, giving a step-like resistance - temperature performance not unlike a switch.

Longer life rechargeable batteries Experiments with the electrochromic materials revealed that they were capable of holding their electric charge providing they remained within the electrochemical cell.
Subsequent development of this observation has resulted in rechargeable battery electrodes which are chemically inert and superior to existing secondary battery materials.
Conventional nickel cadmium batteries utilize toxic cadmium metal and highly corrosive potassium hydroxide electrolyte.
During the charge-discharge cycle the cadmium reacts and changes its state between the metal and oxide, which results in a small volume change.
Over a large number of cycles (700-1000) the battery eventually becomes unable to withstand the stresses built up as a result of the volume change: it can no longer accept any charge and catastrophic destruction of the battery becomes possible. Nickel cadmium batteries have another major disadvantage in that their output voltage is slightly lower than that of conventional primary batteries, at 1.2 V compared with 1.5 V . Charge gatherers need to be included when these batteries are used, adding to their cost and reducing their range of application.
The battery obtained using Elmwood's new material (Fig. 3) results from a partial reduction of the ceramic. without any reaction (phase change) - the molecular structure of the charged and discharged electrodes is identical. Therefore there is no associated volume change and the battery has an almost infinite life.
In addition, the ceramic nature of the new electrodes suggests that they may be compatible with solid electrolytes, giving rise to an all solid battery.
Finally, the output voltage of the new battery, using less corrosive sodium hydroxide electrolyte, has been measured at up to 1.8 V , demonstrating a much greater application potential than the $\mathrm{Ni}-\mathrm{Cd}$ system and direct compatibility with primary batteries.
No phase change during cycling also translates into far longer life expectancy - a simple laboratory arrangement demonstrated a life of over 6000 cycles with no significant effect on the efficiency or voltage output. In summary, by combining the conductivity of metals with chemically inert ceramics, a rechargeable battery has been found which overcomes all of the disadvantages of conventional systems andwhich, ultimately. performs better.

Structured analogue electronics

Abstract

Analogue systems have so far defied the standard cell approach long a vailable to digital designers. David Grundy and Julian Raczkowicz promise an easy route to analogue chip building through standardised hardware and software.

On picking up any modern text book on analogue electronics it is easy 10 see why there are so few analogue designers. Almost without exception, they go directly to the circuit component level, which calls for years of experience to solve the simplest of problems. All problem solving requires a degree of experience but a novice analogue designer will almost certainly be overwhelmed by the sheer scale of the design idiosyncrasy.
There is no doubt that if high performance in terms of bandwidth, low current, noise and in the case of integrated circuit design, smallest chip size is required then some degree of specialised knowledge, however idiosyncratic. will be required.

It is our contention that not all problems are of this type. Sure enough if hig volume producers like National or Motorola want to introduce a new analogue IC for a highly competitive markepplace, the chip will have to offer the highest performance oblainable for a given current consumption and chip size. This however is not true for every analogue design. In the majority of cases a relatively small but strategically critical quantity of analogue functions are required to sit alongside a much larger quantity of digital functions. Design ease is probably more important where speed to market is paramount.
If highest performance is the goal then there is no option but to design at the component level and verify designs with Spice or its derivatives. This is time consuming.
Structured analogue electronics solves the computer aided design problem by moving away from component level to a higher level of abstraction, which can be accommodated
by software languages such as C, Ella VHDL or even Basic

Design principles of SAE

In SAE the number of unique functions are reduced to a minimum. These fundamental blocks have a simple but explicit mathematicat description which is without ambiguty, both in its statement and implementation The design process consisis of interconnecting these functions in such a manner as to satisfy the fundamental application equations.

The building blocks have to be independen of the eventual siticon technology: it should be equally applicable to bipolar. cmos or indeed bi-cmos. This in itself is a tall order and enforces the basic principle of restricting the number of functions to an absolute minimum

We hesitate to use the words "analogue computer" since this has connotations of unreliability, arising from problems associated with early analogue computers buill with thermionic valves. We prefer a notion more in keeping with Alan Turing \mathbf{s}^{2} universal machine associated with digital computing. As always with universal machines. it is necessary to define an instruction set. The structure is largely a matter of personal choice, and the following is based on our own experience of analogue design:

1. addition 2. negation 3. multiplication 4. division 5. raise to the power 6. rectification. Also the time dependent forms: 7. differentiation 8. integration.
This completes the set. We believe that most analogue signal processing (asp) problems can be solved with these eight basic instructions. Just in case anyone is thinking

Fig. 1. Basic SAE functions; (a) addition and (b) negation.
"why not use a digital computer or digital signal processing?" the answer of course is that analogue processing is expected to provide a very significant improvement in speed allied with simpler architecture, lower power consumption and a greater reduction in costs.

Instruction 1 , addition, is straight forward. It can be achieved in the usual manner with an operational amplifier as shown in Fig. 1a. Next comes negation shown in Fig. 1 b which is implicit in the previous adder, and if required as a separate function, then a single input adder will of course suffice.

So far so good... the problems start now. Progress in analoguc design standardisation can be largely attributed to the functions of multiplication. division and raising to a power. There are countless methods to implement these functions. If SAE is going to become a practical reality, then something must be done to standardise on these three functions in particular. A freely available solution rests in the characteristics of the basic p-n junction. Given the importance, we intend to digress slightly to explain just what is meant.

Logarithms: do it with diodes

Analogue designers generally struggle to remove distortion caused by the non-linear transfer characteristics of active devices. The first step is to bias the device into its most linear region and the second - usually - is to apply negative feedback. If instead of using negative feedback, etc. to linearise junction characteristics, we take a closer look at the fundamental properties, then a few surprises are in store.
The basic relationship for current and voltage. associated with any semiconductor junction ${ }^{3}$ is given by:

$$
\begin{equation*}
I=I_{0} \exp \frac{q V}{n k T} \text { or } V=\frac{n k T}{q} \ln \frac{I}{I_{0}} \tag{1}
\end{equation*}
$$

where $I=$ forward conduction current, $\gg I_{o}$; $I_{o}=$ reverse saturation current; $q=$ charge on electron; $V=$ voltage across the junction: $n=$ a constant near unity ${ }^{2}: k=$ Boltzmann's constant; $T=$ absolute temperature.

This equation holds true for all semiconductor junctions whatever the technology. be it bipolar, cmos or bi-cmos and also for all materials, silicon, germanium or gallium arsenide.

A further important attribute is its remarkable consistency, that is at least for silicon. This is due in part to the fantastic amount of effort and money that has been spent on bringing silicon to its present state of refinement. A long lasting experience of this diode equation and information gathered from other sources ${ }^{3}$ has shown, that (1) is typically accurate to 1% over at least eight decades of current.
Further to this, junctions in n-p-n transistors with high values of $h_{f e}$ connected as diodes $\left(V_{c h}=0 \mathrm{~V}\right)$ have been seen operating down tol ()$^{-14} \mathrm{amps}$. We contend that (1) can be used to resolve the fundamental problems of standardised analogue design.
The basic logarithmic behaviour of semiconductor junctions (when not being linearised) is currently used in multipliers, AGC circuits, etc. However, it is not applied consistently and often the wheel is re-invented with each new application. Also, the division capabilities of $p-n$ junctions are often not fully appreciated.
SAE proposes the extensive use of logarithms. If instead of linearising the exponential behaviour of a p-n junction, one simply converts signals into logarithmic form by use of this fundamental and consistent characteristic, then a great number of our problems will disappear. Multiplication for example can be achieved simply by addition of logarithms, division by subtraction and raising to a power by multiplication of the logarithm by the required exponent.

Practical logarithmic functions

As anyone with hands on experience of silicon junctions knows that the change in junction current compared with the rate of change of junction voltage is extremely rapid. According to (1), a room temperature plot of $\log _{10} I$ against V gives an almost lincar characteristic of:

$$
\frac{2.3 k T}{q} \approx 60 \mathrm{mV}
$$

per decade change in current or 480 mV per cight decades change in current. Such large rates of change need special handling.

A further problem is variation of current with temperature. The basic junction current has two temperature dependent terms: (i) The saturation current I_{o} has a marked nonlinear temperature dependence, and approximately doubles for every $10^{\circ} \mathrm{C}$ change in temperature; (ii) The energy based function $2.3 \mathrm{kT} / 4$ has an almost linear temperature coefficient of $+0.3 \% /{ }^{\circ} \mathrm{C}$.
The physical theory behind these temperature dependent terms is quite complex and covered to a high degree in the references. Our main interest. from the design viewpoint. is to eliminate the effects of temperature.

(b)

Fig. 2. (a) Logarithmic ampl;ifier with junction connected into negative feedback loop; (b) antilog amplifier.

A single p-n junction in isolation is of little practical value in manipulating logarithmic functions. The reason for this is that it is essential to separate voltage and current terms. In taking a logarithm, a current derived from one variable can be used to feed a p-n junction, but this value of current will of course depend upon the voltage across the junction, especially if a simple resistive feed is used. The easiest way around the problem is to connect the junction into the negative feedback loop of an amplifier as shown in Fig. 2a. Since the junction feeds into the virtual earth input of the amplifier, the current through it depends only on that provided by the source voltage E_{i} and not upon its own voltage drop.

The output voltage is in fact given by:

$$
\begin{equation*}
E_{o}=\frac{-k T}{q} \ln \frac{E_{i}}{R_{i} I_{o}} \text { for } E_{i}>0 V \tag{2}
\end{equation*}
$$

This arrangement shown in Fig. 2a provides a means of generating the logarithm of an input voltage variable E_{i}, at least for positive values.
If negative values are required then this may be achieved by reversing the p-n junction of the diode.
The complementary version of Fig. 2a is shown in Fig. 2b where the position of junction and resistor have been interchanged, this is an antilog amplifier and its output is given by:

$$
\begin{equation*}
E_{o}=-R_{i} I_{n} \exp \frac{q E_{i}}{k T} \text { for } E_{i}>0 \mathrm{~V} \tag{3}
\end{equation*}
$$

The output from Fig. 2a after inversion is now used to define the input to a positive polarity antilog amplifier as shown in Fig. 3. The ultimate output E_{0} will be an inverted replica of the input signal E_{i}. The logarithm of E_{i} will be taken by the logarithmic amplifier of Fig. 2a, and subsequently the antilog will be taken by the antilog amplifier, and the output will be the input signal E_{i}. Mathematically:

$$
\begin{equation*}
E_{c n}=\frac{-k T}{q} \ln \frac{E_{i}}{R_{i} I_{i n}} \text { for } E_{i}>0 \mathrm{~V} \tag{4}
\end{equation*}
$$

System output:
$E_{c i}=-R_{1} I_{d_{2}} \exp \frac{-q E_{c t}}{k T}$ for $E_{1}>0 \mathrm{~V}$
Substituting (4) and (5) produces:
$E_{i,}=-R_{i} I_{u_{2}} \exp \frac{q}{k T}\left[\frac{k T}{q} \ln \frac{E_{i}}{R_{i} I_{q 1}}\right]$
for matched IC diodes
($\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors with $\mathrm{V}_{\mathrm{cb}}=0$) then
$I_{o z}=I_{c_{1}}=I_{b}$
so (6) now reduces to:
$E_{0}=-\frac{R_{i} I_{v} E_{i}}{R_{i} I_{o}}=-E_{\text {, }}$
Therefore by using identical resistors for the log and antilog functions, the output voltage becomes exactly equal to the input and also completely independent of temperature. Both the saturation current and - for lack of a better name - the energy based functions of temperature, are cancelled out in the antilog process. For more complex functions, this simple log/antilog function will not suffice. The process of taking antilogs

Fig. 3. Taking logs and antilogs.

$\mathbf{E}_{1}(\mathbf{m V})$	$-\mathbf{E}_{\mathbf{0}}(\mathbf{m V})$	$\left(\mathbf{E}_{\mathbf{0}} / \mathbf{E}_{1}\right) \%$
222	231	1.04
297	310	1.043
373	390	1.045
473	494	1.044
572	596	1.041
671	701	1.044
772	805	1.042
872	909	1.042
971	1015	1.045
4040	4220	1.044
6020	6310	1.048
7040	7350	1.044

Table 1. E/E measured on SAE cells, set up as in the configuration of Fig. 3.

Fig. 4. Functional multiplier block
will usually remove the energy based functions but not necessarily the saturation current term.
To see how things work out in practice, a table of E_{d} / E_{t} measured on SAE cells, set up as in the configuration of Fig. 3, is shown in Table 1. It can be seen that $E_{,} / E_{i}$ is accurate to better than 1%, neglecting any scaling errors due to non optimisation of such things as resistor ratio's and amplifier offsets.

SAE multiplier design

Before detailing multiplier operation, it is necessary to define the range of numbers over which the circuit has to operate. This is a more complex subject than might at first be appreciated. First of all it is necessary to decide on the exact mode of operation. The off line application for example, where the conditioning of numbers and the rate at which they are presented and managed is very different to the real time environment of signal processing. A functional multiplier block is shown in Fig. 4.
The range of numbers for off line applications is, relatively speaking, an arbitrary problem. The first decision is the choice of silicon technology be it bipolar, cmos or bicmos. Having done this, the next factor is to fix the current range to be used in the p-n junctions associated with the basic logarithmic amplifiers. Since speed is not critical for off line applications, there is an inclination to opt for the lowest current possible with the attraction of long battery life for portable applications.
While operation at $10^{-14} \mathrm{~A}$ is possible, it does require amplifiers with compatible input current. This is a practical option in mos technologies but highly impractical in straight bipolar. In addition to amplifier input current problems, extremely low currents can cause difficulties in defining them accurately.
Against this background the lowest practicable current level is set by the input current requirements of bipolar operational amplifiers, about $\ln A$. This infers a minimum design signal level current of 10 nA . The upper limit is set by the accuracy of the junction equation at high levels of injection. With these factors in mind, the upper current limit is set at $10 \mu \mathrm{~A}$, a signal range of 1000 to 1 .

With a maximum signal current value of $10 \mu \mathrm{~A}$ the antilog amplifier feedback resistor can be defined once a voltage range has been established. Assume a voltage signal range of IV at both input and output. This of course is quite arbitrary, and on this basis, the feedback resistor becomes $100 \mathrm{k} \Omega$.
Moving to the penultimate stage in the multiplier, the summer, its purpose is to add the logarithms of the two numbers to be multiplied (a and b). It must provide the antilog function with the voltage required to produce $10 \mu \mathrm{~A}$ of current when a full scale input $a^{*} b$ product is provided. If we now assume that a and b are equal, then the output from each log amplifier will be similar and equal to one half of the full scale antilog amplifier requirements. The voltage requirement of a typical p-n junction for $10 \mu \mathrm{~A}$ of current reveals that this will be approximately $60 \% \mathrm{mV}$.
This infers 300 mV output from each of the two log amplifier inputs. Unfortunately this creates a dilemma, if the input \log amplifiers are operated at currents which would produce only 300 mV of output, then they would be well below the minimum for our selected range.
Since junction currents vary at the rate of 60 mV per decade, the current would be $0.1 n \mathrm{~A}$, five decades down on $10 \mu \mathrm{~A}$ and ten times more than the minimum input current requirement.
The resolution of this dilemma is not obvious. If, for example we were to increase the current in the input diodes and then simply reduce the voltage with a potentiometer, this wouk then be equivalent to exponentiating the input numbers to the power of the division ratio since the operations are being applied to logarithms.
The solution to the problem is to let the input junction run at the required current level of $10 \mu \mathrm{~A}$ maximum and then remove the excess voltage by a scaling operation. This consists of subtracting a signal from the input logarithms, which is equivalent to the mathematical process of division. The most convenient place to do this is at the input to the summer.
The net effect of all of this can best be appreciated by looking at the actual mathematical output. First of all the input to the summer:

$$
\begin{align*}
& E_{i s}=\frac{-k T}{q} \ln \frac{E_{a}}{R_{i} I_{o}}-\frac{k T}{q} \ln \frac{E_{b}}{R_{i} I_{o}} \\
& +k T \ln \frac{I_{b}}{I_{o}} \tag{9}
\end{align*}
$$

The output of the summer then becomes:

$$
\begin{align*}
& E_{o s}=\frac{k T}{q} \ln \frac{E_{a}}{R_{i} I_{"}}+\frac{k T}{q} \ln \frac{E_{b}}{R_{i} I_{u}} \\
& -\frac{k T}{q} \ln \frac{I_{b}}{I_{o}} \tag{10}
\end{align*}
$$

Adding logs is of course equivalent to multiplication whilst subtracting is equivalent to division. On this basis (10) may be rewritten as:

$$
\begin{equation*}
E_{o s}=\frac{k T}{q} \ln \left[\frac{E_{a} E_{h}}{R_{i} I_{o} R_{i} I_{o}}-\frac{I_{o}}{I_{h}}\right] \tag{11}
\end{equation*}
$$

I_{b} is the current flowing in the junction which is used to provide a source of voltage for the scaling function. It will soon become apparent why a diode has been used for this function. Taking antilogs of (11) the output becomes:

$$
\begin{equation*}
E_{o}=-R_{i} I_{o}\left[\frac{E_{a} E_{b}}{R_{i} R_{i} I_{w} I_{b}}\right] \tag{12}
\end{equation*}
$$

which simplifies to:
$-E_{\omega}=\frac{E_{a} E_{b}}{R_{i} I_{b}}$
If scaling factor $R_{i} I_{b}=I$ then
$-E_{\omega}=E_{\alpha} E_{b}$
From (14), the output voltage E_{a} is the exact product of the input signals E_{a} and E_{b} and, in addition, completely independent of temperature. Temperature correction, for the energy term, has been obtained simply by the process of taking antilogs.
The process of junction multiplication resulted in squaring the saturation current, whilst taking antilogs dropped the power by one. If no other action had been taken, the output would have varied with temperature

$E_{1}(V)$	$E_{0}(V)$	$V E_{0}(V)$	\%Error
2.64	7.03	2.65	0.38
2.55	6.50	2.55	0
2.45	6.02	2.45	0
2.33	5.46	2.34	0.43
2.23	5.01	2.24	0.45
2.11	4.49	2.12	0.47
1.99	4.00	2.00	0.50
1.85	3.47	1.86	0.54
1.22	1.50	1.22	0
1.10	1.22	1.10	0
0.69	0.48	0.69	0
0.49	0.24	0.49	0
0.42	0.18	0.42	0
0.17	0.03	0.17	0

Table 2.. Measured Multiplier results.
due to the residual $I_{\text {" }}$ term. This is the reason for using a junction to create the scaling voltage. The voltage which it provides is a function of temperature through its I_{s} dependence and this provides the necessary compensation.
The practical performance of the multiplier using SAE cells is summarised in Table 2. Inputs a and b have been strapped together to simplify testing and evaluation. This results in the multiplier performing the squaring function. A square root of the output provides a check on the accuracy which. in this case, is better than 1%, with no attempt to optimise the performance. Far from being a nuisance the basic logarithmic behaviour of the silicon diode is a powerful building block for a structured approach to design.

Raising to a power

There are certain well known circuit tricks for functions such as squaring and square rooting, but exponentiating arbitrarily is difficult. The technique is avoided as a result which is unfortunate since alternative solutions are equally problematic, particularly from the cad point of view.
A common requirement is to generate the sine function for example. There are many alternative solutions to this problem but, if a large period range is required with stable amplitude, then all forms of L/C or R/C sinusoidal oscillators will pose problems. An attractive solution is to use a power series.
The series for a sine function for example is:
$\operatorname{Sin} C=C-\frac{C^{3}}{3!}+\frac{C^{5}}{5!} \ldots$ etc
Expansion of this series clearly needs the ability to raise to a power. A scheme for achieving this is shown in Fig. 7 where it is required to raise the power of an input signal represented by voltage E_{a} to the power of a second input signal represented by voltage E_{b}. There are to be no bounds applied to E_{b} and it is entirely continuous.
First of all take the logarithm of the signal E_{a}, and the output from the first logarithmic amplifier has the familiar form:

$$
\begin{equation*}
E_{o}=-\frac{k T}{q} \ln \frac{E_{u}}{R_{i} I_{o}} \text { when } E_{o}>0 \mathrm{~V} \tag{16}
\end{equation*}
$$

The two temperature terms are once again in evidence; the energy term may be ignored since this will be removed by subsequent antilogging operations. At this stage however, it will be necessary to do something about the saturation current I_{o}, since it can't be done once exponentiation has occurred. In addition to temperature compensation, there is the problem of scaling as for the multiplier. Both factors can be accommodated by dividing the term under the log sign with a signal derived from a suitably biased junction. This will generate a voltage:
$E_{s}=\frac{k T}{q} \ln \frac{I_{b}}{I_{b}}$
The output from the summer which the two inputs subsequently drive is:
$E_{a s}=\frac{k T}{q} \ln \frac{E_{a}}{R_{i} I_{o}}-\frac{k T}{q} \ln \frac{I_{b}}{I_{o}} \cdots$
Subtraction of the logs is of course equivalent to division which results in:
$E_{u s}=\frac{k T}{q} \ln \frac{E_{u}}{R_{i} I_{b}}$
The saturation current and its associated temperature sensitivity has been removed, and in addition, a scaling term $R I_{b}$ has been introduced. The value of this function will depend upon the range of numbers to be adopted, and also on the size of the exponent. Next, the scaled and temperature compensated term, together with the voltage E_{b} (the exponent), are fed into a multiplier. The output from this becomes:
$E_{o m}=-E_{b} \frac{k T}{q} \ln \frac{E_{a}}{R_{i} I_{b}}$
The minus sign is associated with the output polarity of the multiplier, which is inverting. Since multiplying a logarithm is equivalent to exponentiating, it produces:
$E_{o m}=\frac{-k T}{q}\left[\ln \frac{E_{a}}{R_{i} I_{h}}\right]^{l^{: h}}$

(The next stage is to take antilogs. and remove temperature terms. While the energy term will fall out nicely, the antilogging process will introduce its own saturation current term, since if we recall from (3), for $I_{i n}>$ OV. that: (maths 22)

$$
\begin{equation*}
E_{b}=-I_{o} R_{i} \exp \frac{q V_{i n}}{k T} \tag{22}
\end{equation*}
$$

This can be anticipated by dividing the logarithmic term at the output of the multiplier by 1_{i}. Once more a junction can be used to generate this, and also to provide scaling for the antilog operation. Output voltage from the junction is:(maths 23)
$E_{s u}=\frac{-k T}{4} \ln \frac{I_{b a}}{I_{o}}$
The output from the summer $E_{o, m}$, which drives the antilog amplifier, is a summation of (23) and (21), and has the form:(maths

$$
\begin{equation*}
E_{u s m}=\frac{k T}{q}\left[\frac{I_{b a}}{I_{o}}\right]\left[\ln \frac{E_{a}}{R_{i} I_{b}}\right]^{E_{b}} \tag{24}
\end{equation*}
$$

Finally, the output from the antilog amp is:
$-E_{o p}=R_{i} I_{b u}\left[\frac{E_{u}}{R_{i} I_{b}}\right]^{E_{b}}$
The minus sign is associated with the output polarity, and $R_{i} I_{b a}$ and $R_{i} I_{b}$ are system scaling factors.
This completes the description of the basic building blocks. If it seems complex, you can be sure that the number of components used in creating SAE functions is absolutely trivial when compared with the number involved in equivalent digital functions.

The only instructions now remaining from the original set of eight are those of rectification, differentiation and integration. These functions are straightforward and don'

Fig. 6. (a) Suitable precision block for halfway rectification. (b) differentiation (c) integration.
require coverage here. However one or two points are still worth making. While the emphasis has been on off-line computation, there is no doubt that the main benefits arising from SAE will come from asp where real time signals are to be processed. Under these conditions. it may be easier to process signals on a polarity hasis: processing occurs before the two halves of the signal are combined prior to the antilog operation. This will call for halfwave rectification, and a suitable precision block is shown in Fig. 6a.
The time dependent forms of integration and differentiation should be used sparingly if cad problems are to be minimised. There is no doubt however, that they will be required on occasions. Fig.6b and 6c have been included to show their basic forms using operational amplifiers.

Ideally. an SAE design will comprise of a core of programmable standard cells from which any of the processing functions may be obtained. There are no time dependent forms simplifying the design functions considerably. Surrounding the core would be the time dependent programmable standard cells, for example, integrators for generating signals which increase or decrease linearly with time, or differentiators for extracting frequency information in the context of signal processing.

References

I. L. W. Nagel and D. O. Pederson. Simulation program with integrated eircuit emphasis (Spice). 16th Midwest Symposium on circuit theory. Waterloo. Ontario. April 12th 1973.
2. A. M. Turing. Computable numbers with an application to the Entscheiduns.sproblem. Proc. L.ondon Math. Soc. 42. pp 230-265. 1936-37. 3. C. T. Sah. Effect of surface recombination and channel on p-n junction and lransister
charactoristics, IRE Trans. Electronic devices. vol. ED-9. pp. 94-10x. January 1908.
4. W. Bolase and E. David. Design of temperature compensated log circuits employing transistors and operationalamplifiers. Application Report. Analog Devices. September 1969.
5. J. Gibbons and H. Horn, A circuis with Ingarithmic Transfor Response over 9 decudes. IEEE s of the circuit theory group. CT-11-3. Seplember 1964.
6. Engineering staff of Analog Devices, Nonlinear circuits handhook, pp 165-326.
7. G. B. Clayton, Operational Amplifiors. 2nd Edition. pp 163-220.

David (irundy OBE, formuerly wih Plessey Semiconducfors, is visiting industrial professor and Dr Julion Rackowicz is senior lecturer in analogue electronics at Iluddersfichd Polvechmic.

BOOK REVIEWS

AC and DC Network Theory by AI Pointon and H M Howarth is the third volume in the Chapman and Hall series "Physics and its Applications", some of which are said to be suitable for final year degree courses and postgraduate work, although this particular one seems to be intended for slightly earlier work.

Widely used theorems are treated - Thevenin, Norton, Millman -and the book begins in a fairly peaceful way by covering DC and $A C$ current theory, j notation and the complex-frequency s notation.

Mesh and nodal analysis take up a chapter, before the foregoing is used to explain the network theorems from Thevenin to star-delta, by way of superposition and reciprocity. Resonance and coupled circuits each have a chapter and the final section is on two-port networks, including transmission lines and artificial delay lines.

No great mathematical demands are made on the reader, who should find that simple calculus and a familiarity with matrices will be enough. Tkis is a dead-pan, straightforward book, with no atiempt at lightening the subject and, as such, is a workmanlike production. I saw no "It can be shown ..."s.
Chapman and Hall, 160 pages, paperback, £11.95.

The Radar Army, by Reg. Batt, is the practical man's story of radar, from the inside. Batt saw almost the whole development of military radar, joining the Worth Matravers team in Dorset in May 1940 as a junior scientific assistant.
Some of the best known names in the field were there and Batt was accepted as an equal, since these people were from the universities, not the Civil Service, where "...a junior grade would know his place". As a result, what he has to tell is not hearsay.

But the book tells not merely of the technical struggle, waged under enormous pressure, sometimes by scientists who knew nothing of electronics, but also the human background, the personalities who miraculously were able to surmount their antagonisms and commonplace differences in temperament to achieve the results we all now know.

And there is the humour. Since tracking an aircraft even as slowly moving as the Anson was found to be impossible in the early days, Batt was reduced to riding around the Dorset countryside with a sheet of aluminium strapped to his bike so that a team of visiting sceptics would be convinced that a 10 cm beam could work, even though it may have been dreamed up by "a bunch of academic nuts who knew nothing about radio". Apparently, a 25 cm transmission was considered the minimum for the purpose at that time.

This is a fascinating book for anyone interested in those unique wartime days, when people would work as a team towards a common end and the end was survival, not profit.
Robert Hale Ltd, Clerkenwell House, 45/47
Clerkenwell Green, London EC1R 0HT, hardback, 207 pages, $£ 15.95$.

BETWEEN TWO BUSES

Continued from page 947

trollers generally perform fast DMA transfers, tape controllers less fast, and serial or parallel I/O controllers - if they are bus maslers at all - are ustally very slow. In many cases, a peripheral controller is still only as fast as it needs to be for its associated class of device. Unless the engineer knows that slow DMA transfer lowers bus bandwidth and therefore overall system performance, it is too easy 10 yield to the urge to make the DMA transler as slow as is reasonable for the peripheral device in question.
Obviously, a controller must be able to transler data to and from system memory faster than it transfers data to and from the
peripheral. It the peripheral passes data to the controller faster than the controller can handle it, system performance suffers. A disk controller will incur huge delays waiting for an additional revolution of the disk if the controller misses a sector, or a tape controller will have to wait while the tape stops and repositions itself after an overrun.
As peripheral devices hecome laster, controllers have the difficult task of keeping up.

Fig. 1. Multibus II defines transfers between a device controller and memory (path A) as well as transiers between device controllers (path B)

Arcom's latest VME single-board computer uses Intel's i486 as the central processor instead of the Motorola devices at the heart of most of its rivals. The company hopes this will help it to supply boards for VME, PC and STE buses which can work with each other in large systems.

A modern controller, which moves data to and from system memory at the same time as it moves data to and from the device, must be able to sustain data throughput rates that are much faster than those of the periphcral device.
An additional problem that arises in the calculation of a controller's DMA transier rate is to determine the number of DMA devices that will be operating within the system. When a controller must co-exist with other DMA devices, its ability to heep up with its own peripheral devices is no longer sufficient.
If an SMD disk controller has to transfer data over the system bus at $3 \mathrm{Mbytes} / \mathrm{s}$ and must co-exist with a second controller of the same type, it should ransfer that same data over the bus at well over 6Mbytes/s.
Since data is usually transterred to or from the system CPU memory, there is a good argument for having all peripheral con-

trollers transfer their data as fast as possible to conserve bus bandwidth and not take time away from the CPU. This speed is particularly important with a multiuser, multitasking operating system such as unix.

Bus structures

VMEhus and Multibus II structures difler in one important respect: VMEbus is asynchronous, while Multibus II is synchronous. Although neither architecture is better than the other, both have built-in benefits and limitations.
The biggest criticism of an asynchronous bus is that it is subject to metastable conditions. Such temporary instabilities result when a signal is sampled during a transition state, so that the sampling result is not neeessarily valid. Although it is theoretically impossible to eliminate a metastable condilion, it is possible to design a reliable asynchronous bus interface that can tolerate it.
This solution is achieved by double sampling the asynchronous signals and using a synchronous state machine to control the bus. Naturally, the bus speed is adversely affeeted because the signals are sampled twice.
A more efficient way to eliminate the metastable condition in an asynchronous bus is to use an edge-driven asynchronous state machine for control. This approach not only eliminates the metastable condition, it enables the bus to run as fast as the particular components in the system will allow. The only draw-back is that an asynchronous state machine is usually more complicated and requires much more real estate to implement than a synchronous state machine.
The main advantage with a synchronous bus rests in the common system clock that control bus signals: it eliminates the possibility of metastable conditions. Against this, the timing of bus control handshaking is constrained by the speed of the system clock because signals on the bus can change only on a specilic edge of the system clock.
For example, with the 10 MHz system clock specified by Multibus II. a signal can only change states every 100 ns . That means

Fig. 2. The VMEbus also defines device memory transfers (path A) but implementing device-device transfers (path B) is left to the controller manufacturer.
a 110 ns memory is no faster than a 200 ns memory when used in the system, and such improvements in system components will often go umoticed.
VMEbus and Multibus II differ also in the manner of data transfer. The latter uses a multiplexed data and address bus, while the VMEbus uses separate data and address buses. A multiplexed bus requires considerably fewer signals to implement the same addressing range and data width as a nonmultiplexed bus. When a 4Gbyte address space is implemented with a 32-bit wide data path, the Multibus 11 requires only 32 address/data signals, while the VMEbus requires 31 address signals and 32 data signals.
However, when the non-multiplexed bus is operating in a random access lashion. it can perform faster than a multiplexed bus given the same memory access time and clock speed for the controlling logic. The reason is that on a multiplexed bus, the address cycle must occur before the data cycle, whereas. on a non-multiplexed bus, the address and data cycles take place almost simultancously. This disadvantage is exaggerated on Multibus II due to its synchronous nature.

DMA transfers

For peripheral controllers capable of performing DMA transfers on the bus, there are two different types of data that need to be handled. The first type is control/status information, which is traditionally handled with i/o transfers. Control and status information for peripheral controllers is usually $8-24$ bytes long and must be written/read by the host CPU. As a result, this intormation usually resides in registers on the controller board that are mapped into the system's i/o space

The other type of information is pure data

- the actual information being transferred to/from the peripheral - and is usually moved via DMA transters. The controller must gain access to the system bus and then perform the transfer to/from the system memory. This type of transfer generally consists of a number of similar transfers (reads or writes) to contiguous locations in system mernory.
The Multibus II specitication defines several address spaces as menory and message and provides separate mechanisms for the two types of data transfer. Control/status information is passed to/from memory in messages. while the pure data can be transferred via normal DMA. While both types of transfer involve the parallel system bus, a message is a special type of transfer that uses the message address space - Fig. 1.

Multibus II's message passing protocol serves several functions, the first of which is to act as an alternative to hardware interrupts on the bus. Although interrupts must eventually be passed to a microprocessor, the message passing protocol eliminates the interrupt lines and the interrupt-specific hardware that has to be duplicated on every device. Consequently, the number of interrupting devices is not limited to either the number of interrupt signals available or to the length of a daisy chain.

Fifos are built into a message passing coprocessor (MPC). Short-ierm transfer rates over the bus are decoupled from the access time of the system memory and, even with slow memory devices, a message can be transferred at the $32 \mathrm{Mbyte} / \mathrm{s}$ rate of the MF'C. However, to take full advantage of this speed. data transfers must be performed using the message passing protocol, because normal DMA transfers can not be used. As a result, it is necessary to suggest using the message passing protocol to move all data.

One of the disadvantages of the MPC is its complexity. A microprocessor and possibly a DMA controller are almost a necessity in order to send and receive messages. This extra hardware tends to drive the costs of dumb peripheral controllers higher than they would otherwise be.

command/status registers
IOPB queue flags and pointers
IOPB 0
IOPB 1
IOPB 2

\square

Fig. 3. The i/o parameter block queue resides in the short i/o space of the VMEhus.

Data transfers

For normal data translers. Multibus II provides two addressing modes: random access and sequential. In the first, the random access (single transfer) mode, each transfer
over the bus consists of an address cycle and a data cycle. In this type of operation, the maximum transfer rate of the bus is 20Mbyles/s, since every second bus cycle must be a data cycle.
The other mode of operation is sequential. It is intended to take advantage of the nature of DMA transfers and multiple transfers to seguential addresses. In this mode. only the first cycle of a transfer is an address cycle. and the following cycles are all data cycles. Thus, the starting address is provided by the master and after that it's the slave's responsibility to increment the address for each transfer. Since this scheme permits bach-toback clata cycles on the bus, the maximum transter rate is $40 \mathrm{Mbytes} / \mathrm{s}$.
In the VMEbus. the control/status information is passed through the short I/O space defined by the address modifier codes, while the pure data is usually transferred via normal DMA.
For random access transfers, the master must assert and de-assert both the address and data strobes for each transfer. For sequential addressing the master must assert the address strobe once, and it remains asserted while multiple data strohes are asserted. While the performance difference between two addressing modes is not as great for the VMEbus as for Multibus II, a properly designed slave board can allow
much faster data transfers with sequential addressing.

Device-to-device transfers

Another area of comparison is direct device-to-device transfers. In most applications. a controller will transfer data between itself and system memory. However, in some instances, the ability to transfer data from one controller to another can gieatly affect system-level throughput.
For example. in many systems, data is read from a disk and then writlen to a tape drive. If the disk controller could transfer data directly to the tape controller, it woutd eliminate a DMA transfer across the bus.
More important, if the tape controller could he governed by the disk controller, performance would be improved substantially hecause that eliminates operating sysiem overhead. This scheme allows the disk devices. tape drives, and controllers to remain closely synchronised and eliminates many of the mechanical delays in the peripherals themselves.
The Mullihus 11 message passing protocol defines mechanisms for device-to-device datia transfers. Although the VMEbus specification does not include anything that rules oul such transfers, it does not make provisions for them or offer suggestions about how to implement them.

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

Ford Audio's 2007 RDS radios are now fitted as standard to Escorts and Orions.

Radio data system (RDS), originally developed from the Swedish Pl system, has now been in existence for a number of years. But it is only recently that there has been any sign of its being taken up commercially. Volvo was probably the first automotive manufacturer to step in and now some of the new Ford cars have RDS radios fitted as standard.

What is RDS?

There are already several thousand FM siations in Europe and by the end of this century over 20.000 are expected to be broadcasiing. Tuning to one of them, in particular searching for a programme being transmitted on many frequencies, is already difficult for some listeners and is bound to become harder.
For some years the European Broadcasting Union has been developing a method by which each station is made unmistakably identifiable. Eventually the Swedish system was chosen from several submitted for evaluation. Since then development has continued so that the radio data system is now in place with many more facilities than were initially envisaged.

Data is now catried on all FM transmitters in the UK. An additional $\pm 2 \mathrm{kHz}$ deviation subcarrier at 57 kHz (three times the frequency of the pilot tone) is phase-locked to the pilot tone to avoid interference and is amplitude modulated by a shaped bi-phase code. the subcarrier being suppressed to prevent problems with stereo decoders.

The German ARI system also has its carrier at 57 kHz which is another reason for suppressing the RDS subcarrier, both systems being usable together, even from the same transmitter.
RDS data is transmitted in blocks of 26 bits. 16 of which carry data and the remaining 10 bits forming a checkword for sync and error correction. Four blocks combine to form one of nine types of group, each being used for a different information coment: for example the type 2 A group is for the facility known as radiolext.

Block I of any group has the programme information code. The first four of the five bits in block 2 indicate which type of group it is and the fifth bit is present to specify which version of the data is transmitted.
A stream of bits in the form 00000 is group 0 version A and 0000) is group I version B.

Block I is the main reason for RDS and is transmitted mosi frequently. Block 2 also

RDS
 on the road

> As the BBC pushes hard for commercial acceptance, with so far only limited success, Philip Darrington reports on how RDS is being implemented in practice.
carries several RDS services. Alternative frequencies are in bloch 3 and the programme service name in block 4.

Exploitable facilities

RDS offers a total of filteen facilities not all of which need be exploited; indeed in some of the earlier embodiments of the system only the non-executive functions such as station identilication were present, automatic luning and station switching for example not being used. Facilities are identified by two or three-letter codes.
Drivers are the main beneficiaries of the system since one of its main features is the possibility of automatic channel change when signals fade. Another is the presentation of traffic information regardless of which station is tuned - or even whether the radio is receiving a programme.
Facilities are:

Programme idemification ($P /$). $P 1$ is not meant to be displayed but allows the receiver to find areas in which a given programme is being transmitted and to identify the programme itself - all programmes carrying the code. If a received signal becomes unacceptable as the car moves, the receiver will use the code to search for the same programme on a new frequency with a better signal. The receiver could be cither a scanning type, muted during its search, or one equipped with memory containing a list of alternative frequencies which it would scan when necessary. This code is repeated at less than 8 s intervals to reduce the search time in a scanning receiver.
Programme service name (PS). A message of up to eight characters is transmitted and displayed by the receiver. It gives the name of the programme being transmitted by the luned station, in the form "Radio 3" for
example. The code is kept short to cut down on the expense and is not meant to do anything but provide information to the listener. The message is capable of showing characters from Latin-based languages, Greck upper-case Cyrillic, Hebrew and Arabic, although cheaper receivers will not avail themselves of all these possibilities.
Programme type ($P T Y$) is both an identification signal and a specification facility. It shows an eight-character message to indicate which of 31 types of programme is being received (pop, rock, news, education etc) and could be used to search for the desired programme type. The PTY will also allow receivers to tune to only the type of programme specified by the listener. Code number 31 is an alarm to switch the receiver out of a standby mode to receive warnings of hazards ahead.
Traffic-programme identification (TP) is a single bit which provides a switching signal to indicate to the driver that this programme normally carries traffic announcements. Again this signal could be used during a station search to select only these stations.

Alternative frequency list (AF). When receivers are equipped with memory this list of station frequencies in the area reduces switching time between stations. Two methods can be used: in method A a list of up to five frequencies relevant to the area is transmitted by each station and its repeaters; in method B all transmitters and repeaters broadcast the same set of different lists in sequence. The correct list is selected by transmitting the tuning frequency and one other in the set.

Programme item number (PIN) gives the scheduled starting time and day of the month of the programme which may be used to switch the receiver on automatically.

Enhanced other networks information (EON). EON is a newer development which updates the receiver's memory about other services on other networks which are crossreferenced by their PI codes. For example, one can listen to music on one station and

Fig. 2. An RDS network configuration

 downloading data from PCs to the coder.still be able, automatically, to receive traffic information from another - the receiver being switched in response to a series of transmitted bits. Services transmitted under the EON facility are AF. PS, TP, PTY, PIN and traffic announcements.
Traffic announcement (TA) is another sin-gle-bit code intended to switch the receiver from any audio function to the announcement, or to switch the announcement on when the receiver is in standby. The code will even switeh from a non-TA programme to one carrying the announcements.
Decoder identification ($D l$). This indicates which type of decoder operation is needed in the receiver: for example mono, stereo.

Fig. 1. Efficient method of distribution developed by RE Instruments in which one coder acts as master, distributing data to the rest. The number of dedicated lines is reduced, from 15 - in the case of three sources each connected to five coders - to three. Traditional RDS network (left) and RE instruments solution (right).

stereo recorded with artificial head etc.
Music/speech (M / S) is a single-bit code to show whether music or speech is being broadcast so that two volume controls can be switched into circuit, with the volume for each preset by the listener.
Radiotent $(R T)$ is text transmission mainly intended for home receivers. In a car it is suggested that the text display might be replaced by a speech synthesiser. The Cenelec specification dealing with RDS points out that "details of operation in this mode require further study".Up to 4 characters can be used but the message is often scrolled or displayed sequentially to avoid the need for a large display panel.
Transparent data chamel (TDC). A form ol radiotext which would provide a display similar to teletext on a television receiver. Text and graphics can be transmitted or perhaps computer programs and other data not meant for display.
Radio paging $(R P)$ is similar to an ordinary paging service, subscribers needing a special paging receiver in which the address code is held. Simple bleeps or message display are possible.

RDS networks

Dynamic data such as traffic information, as opposed to the static type such as PI, comes from many sources. There is programme material from a studio, traffic information from tralfic organisations or the police or input from news sources. Figure 1 shows a typical configuration. The coder needs to be flexible and RE Instruments RE531 is one such design that uses a PC to download data.
RE has also developed an efficient distribution system. If each data source is to be connected by dedicated lines to several RDS coders, cost and complexity have a tendency to get out of hand. In the RE method one of the coders at each transmitter acts as a master and receives all incoming data modem signals so that each data source needs only one line to each transmitter. This master then distributes data to its slaves by an IEEE488 bus, as shown in Fig. 2.

In the world of electrical retailing there's a premiere brand that has been the number one product of its kind for over a hundred years. It is a brand that changes each and every week - keeping pace with all the latest developments in the market. And it is a brand that is available direct to you from the manufacturer.

Please send me ERT for one year at a cost of $£ 60$ for $\mathbf{4 8}$ issues
\square I enclose a cheque/PO payable to Reed Business Publishing Group for $\mathbf{£ 6 0}$
Amex \square Access \square Barclaycard/Visa \square Diners Club \square
Expiry Date:
Name: Mr/Mrs/Miss (Initials must be supplied)
Job Title:
Company:
Address:

Signature:

Date:

Send to: ERT Subscriptions Department, RBPG, Oakfield House, Perrymount Road, West Sussex RH 16 3DH. Registered in England 151537. Registered Office: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Please tick here if you don't wish to receive marketing promotions from other companies

MEASURING DETECTORS

RF level measurement looks deceptnelv vmple lan Hickman outlines the circuit complexities.

Adetector of some sort is required in order to measure the amplitude of an AC signal. In the case of an amplitude modulated carrier, e.g. a radlo wave. measuring its amplitude on a continuous hasis will extract the information which it carrics.
One of the carliest detectors was the coherer. a glass tube filled with iron filings which, when an RF current passed through them. tended to stick logether. This reduced the resistance in the circuit containing a local battery causing it to operate the tape-marking pen of a morse inker.
A tapper wals also needed to re-randomise the filings after the received dot or dash, to
re-establish the initial high resistance state.
1 have never played with one of these primitive but intriguing devices. but I early gained some practical experience of a later development, the crystal detector. This permitted the demodulation of amplitude modulated waves carrying speech or music, something beyond the capability of the coherer. The crystal detector - usually a lump of galena, an ore of lead - held sway for some years, but by sometime around the mid-thirties, the standard domestic receiver was a superhet mains table radio.
The detector circuit generally looked something like Fig. 1a, where the same diode (thermionic of course) is shown used
both for demodulation and to produce a voltage for automatic gain control (AGC), a common arrangement - although often a second diode section of a double-diode- triode was used for the latter function.
This deceptively simple circuit is not a particularly desirable arrangement, being fraught with various design compromises, the unravelling of which is an instructive and (I hope) interesting exercise in practical circuit design. The first concerns the timeconstant $C_{s} R_{d}$ formed by the detector load resistor and the RF smoothing capacitor. Demodulation of the peaks of the RF envelope presents the circuit with no particular problems. However, with the typical values shown. $C_{d} R_{d}$ has a 3 dB corner frequency of 8 kHz : not much above the highest frequency components of 4.5 kHz found in medium and long wave broadcasting. Consequently. in the case of a large amplitude signal at a high audio frequency such as 4.5 kHz . the detect-

(b)

Fig. 1. The simple diode detector as fitted to AM broadcast receivers introduces high levels of distortion because the AF filter components prevent the detector from following the RF envelope.

ed output could come "unstuck" on the troughs of modulation, R_{d} being unable to discharge C_{s} rapidly enough, Fig. 1b, resulting in second harmonic and higher even order distortion products.
One could of course reduce C_{s}. but there are only six and a bit octaves between 4.5 kHz and the intermediate frequency of around 465 kHz (still in common use) in which to achieve adequate suppression of the RF ripple. A further subtle problem centres on the blocking capacitor C_{b} and the volume control R_{r}. The DC load on the detector is $220 \mathrm{k} \Omega$ but at AC the 1 MS 2 resistance of the volume control appears in parallel with it as well. C_{h} will be charged up to the peak level of the unmodulated carrier. say -5 V at its junction with C_{S}, and being large in order to pass the lowest notes, it will simply appear in the short term as a 5 V battery. At the trough of. say. 100% modulation. +4 V will appear across the volume control whilst -IV appears across R_{d}. Thus the circuit can only cope with a maximum of 80% modulation and. C_{b} being large. this limitation applies equally at all audio frequencies. In fact, the situation is rather worse than this as the AGC line contributes another AC coupled load, further reducing the $A C / D C$ load ratio and thus compounding the even order harmonic distortion which results.
A circuit very similar to Fig. la but with different component values, e.g. a $4.7 \mathrm{k} \Omega$ volume control, was used in transistor portables implemented with discrete PNP transistors, with similar problems. Thus the simple diode detector is adequate for domestic entertainment purposes, but some improvements are needed if it is to be used as the basis of a measuring instrument. Indeed, the basic diode detector circuit is so poor. that at frequencies where alternative circuits employing op-amps are feasible, they are usually preferred.
The advantage of the diode detector is that it can be used at much higher frequencies, fairly successfully where suitable circuit enhancements are used to avoid some of its limitations. Its restricted dynamic range is probably the most serious. As the cathode (when used to provide a positive output) is connected to an RF bypass capacitor across which the peak value of the RF signal is

Fig. 2. The detection efficiency of the diode detector falls sharply at low signal levels within the square law region of the diode's response, as the two graphics show. A square wave modulated carrier can be used to determine sensitivity. See text.
stored, the peak-to-peak RF input voltage must be restricted to less than the diode's reverse voltage rating. This sets an upper limit to the dynamic range, though where the detector is preceded by an amplifier, the output swing available may in practice be the limiting factor. But not always; some schotthy diodes suitable as UHF detectors have a maximum reverse voltage rating of only 5 V or even less.

Large inputs

For large inputs, the relation between the detected DC output amplitude and the amplitude of the AC input is linear, that is to say that equal increments in the $A C$ input result in equal increments in the detected voltage. However, this is not to say that the detected voltage is strictly proportional to the AC input; in fact it isn't quite. For the detected output is less than the peak value of the AC input voltage by an amount roughly equal to the diode's "forward drop". So the relation, though linear at high levels, is not proportional: projected backward as in Fig. 2a it does not pass through the origin. The characteristic looks, indeed, very like the static DC characteristic of the diode.
The non-linear portion at the bottom of the curve exhibits a square-law characteristic, so that at very low inputlevels indeed, doubling
the $A C$ input results in four times the detected DC output. The diode can still be used in this region. provided due allowance for the changed characteristic is made.
In fact the only limit on how small an AC signal the diode can be used to detect is that set by noise. Obviously the less noisy the diode, the more sensitive the equipment employing it as in a simple diode/video radar receiver. A convenient, practical methed of measuring a diode's noise-limited sensilivity uses a signal generator with a pulse modulation capability. Squarewave on/off modulation is used, and the resultant detected output is displayed on an oscilloscope. Fig. 2b. The carrier level which just results in no overlap of the "grass". but in no clear space between the two levels of noise either, is called "tangential sensitivity".
This is not an exact measurement, since the measured level will depend to some extent upon the oscilloscope's intensity settiag, but in practice the variation found when a given diode is measured on different scopes by different people is not large, and since it is so simple to carry out, the method is popular and widely used.

In some applications, a diode detector may be used in the square-law region without any linearisation, or with some approximate linearisaton over a limited range, using an

Measuring head (with matched diodes)

Alternative 'high impedance' (non terminating)

Fig. 3. Accurate RF level measurement requires linearisation of the diode response. This can be done by using a dummy diode and separate RF reference source for comparison with the rectified level of the signal under test.
inverse square-law circuit. This can provide useful qualitative information, as in the diode-video receiver already mentioned. But to obtain quantative information. i.e. to use a diode as a measuring detector down in the square law region, some more accurate means of lincarising the characteristic is needed.
Nowadays. what could be simpler than to amplify the resultant DC output with an op-amp, passs it through an A to D converter and use some simple DSP on the result"? This could take into account the output of a temperature sensor mounted in the same head as the detector. logether with calibration data for the characteristic of the particular diode fitted.
However, an alternative, venerable and very elegant scheme is shown in Fig. 3. Here, two matched diodes are employed, fitted close logether in the measuring head. but screened from each other and kept at the same temperature by the surrounding metal work. A differential amplifier compares the outputs of the two diodes and controls an attenuator situated between an oseillator and a level indicator. The former works at a convenient comparatively low frequency and high level, so that high linearity is easily achieved in the latter. Further attenuation can be introduced in steps to allow for ranging down to the tangential sensitivity, either manually by the operator (in which case the need for a range change is indicated by the meter`s reading above or below the calibrated part of the scale). or automatically.
Provided the loop gain is high, the stability of the output level of the oscillator is not critical, the accuracy of the measurement depends only upon that of the level meter, the step attenuators and of course, the matching of the diodes.
Useful though this scheme is in an RF millivoltmeter working up to a few (iHz, it is mainly used for static level measurements as the speed of response is limited
Where a faster response, covering a large dynamic range is required, other schemes, no less ingenious, can be used. These will be covered next month.

KESTREL ELECTRONIC COMPONENTS LTD

All items guaranteed to manufacturers' spec.
Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	100+		$1+$	$100+$
28530 (4 MEG)	0.60	0.30	62256LP-100	3.60	2.45
Z80A CPU	0.80	0.65	6264LP-10	1.40	1.10
Z80A CTC	0.50	0.30	$6116 \mathrm{LP}-10$	1.40	0.70
Z80A PIO	0.60	0.40	2764A-25	1.60	1.30
Z80A DMA	0.95	0.65	27C64-25	1.65	1.35
Z80A DART	1.20	0.90	27C128-25	1.60	1.20
Z80A (CMOS) CPU	1.20	0.90	27128A-25	1.60	1.38
2808 (CMOS) CTC	0.70	0.45	27256-25	1.80	1.40
1488	0.16	0.12	27C256-25	1.80	1.55
1489	0.16	0.12	27C512-20	2.40	2.04
LM324	0.25	0.14	74LS75	0.16	0.12
ILQ-74	1.20	0.85	74LS83	0.11	0.08
ULN2803A	0.50	0.35	74LS93	0.14	0.10
6502P	2.20	1.56	74LS109	0.16	0.12
6522P	2.20	1.56	74LS125	0.12	0.09
65C02P2	3.40	3.00	74LS138	0.16	0.12
65C21P2	3.00	2.60	74LS148	0.20	0.16
74HCT02	0.10	0.07	74LS221	0.24	0.18
74HCT04	0.10	0.07	74LS273	0.21	0.16
74HCT125	0.26	0.23	74LS368	0.14	0.10
74HCT373	0.22	0.20	74LS374	0.19	0.14
74HCT541	0.34	0.27	8255-5	1.20	0.90

All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road, Purley, Surrey CR2 4HA

Tel: 081-668 7522. Fax: 081-6684190.

COMPUTER ICS	AMERICAN 2/3 PIN CHASSIS SOCKET $£ 2$
IMS1400P-45 .. $£ 2$	WIRE ENDED FUSES 0.25430.81
80C31 MICRO ...2	NEW ULTRASONIC TRANSDUCERS 32 kHz $\mathbf{¢ 2} \mathrm{pr}$
P8749H MICRO ..	12-CORE CABLE $7 / 0.2 \mathrm{~mm}$ OVERALL SCREEN
D8751H ….. 10	70p metre
NEW 4164-15 ...	LL CYLINDRICAL MAGNETS 3£1
USED 41256.15 ..1	BNC 500HM SCREENED CHASSIS SOCKET $2 \sqrt{2} 1$
USED 4164-15 ..60p	SMALL MICAOWAVE DIODES AE1 OC1026A 2/81
B8C VIDEO ULA .. £10	D.I.L. SWITCHES 10 -WAY $£ 18$-WAY 80p $4 / 5,6$-WAY
VIDEO ULA 201647 $\mathbf{1 1 0} \mathbf{e a}, 10+$ £8	.. 80p
6845 CRT .. £5	180VOLT I WATT ZENERS also 12V \& 75V 20
6522 PIA .. 53	PLASTIC EQUIPMENT CASE $9 \times 6 \times 1.25$ WITH $¢$ RONT
DM88LS120 ... £4.50	AND REAR PANELS CONTAINING PCB WITH EPROM
AY3-1015D UART ...50	2764-30 AND ICS 7417 LS30 LS32 LS367 7805 7EG, 9-
9×41256-15 SIMM ... £10	WAY D PLUG. PUSH BUTTON SWITCH, DIN SOCKET
8×4164 SIP MODULE NEW $¢ 8$	£1.90
HD 146818 CLOCK IC ... $£$	VN 10LM $60 \mathrm{~V} 1 / 2 \mathrm{~A} 5$ Onm TO-92 mosiet 4£1 100 £20
2864 EPROM .. $\mathrm{£}^{3}$	MIN GLASS NEONS10§1
27128A 250ns EPROM USED ¢2 NEW £2.30	RELAY 5V 2-pole crangeover looks like RS 355-741
27 C 1001 -20Z NEW 1M EPROM	marked STC 47WBost $£ 1$ ea
FLOPPY DISC CONTROLLER CHIPS 1771 ¢10 ea	MINIATURE CO-AX FREE PLUG RS 456-071251
68000-8 PROCESSOR NEW 56	MINIATURE CO-AX FREE SKT RS 456-273 281.50
HD6384-8 .. 55	DIL REED RELAY 2 POLE No CONTACTSE E
ALL USED EPROMS ERASED AND BLANK CHECKED	PCB WITH 2N2646 UNIJUNCTION WITH 12 V 4 -POLE
CAN BE PROGRA	RELAY
2716-45 USED ... $¢ 2$ 100 21	400 m 0.5 W thick film resistors (yes four hundred
2732-45 USED .. ¢2 100, 1	megohms)
2764-30 USED £2 100§1.60	STRAIN GAUGES 40 ohm Foil type polyester backed
27C256-30 USED ... 12	balco grid alloy $£ 1.50$ ea $10+£ 1$
27 C512 USED \ldots... 13.50	ELECTRET MICROPHONE INSERT $\mathbf{1} 0.90$
1702 EPROM EX EOPT .. 5	Linear Halle eftic Mieroswichno613 SS4 sim RS 304-
2114 EXEQPT 50p 4116 EX EOPT 70p	
6264-15 8k STATIC RAM C_{2}	HALL EFFECTIC UGS3040 + magnet
	OSCILLOSCOPE PROBE SWIECHE0 $\times 1 \times 10 \ldots \ldots . . .12$
GR281 NON VOLATILE RAM EQUIV 6116	CHEAP PHONOPLLIS $\quad 50 \pm 1000 ¢ 10$
Z80A SIO-O .. 1.25	rotary swithu-
TMS27PC256-25 ONE SHOT 27C256 51 ea 100 £70	AUDIO ICS LM380 LM386 TDA 2003 11 ea
8085 PROCESSOR £2 MC6802 PROCESSOR ¢2	555 TIMERS £1 741 OP AMP 6 ¢1
REGULATORS	ZN4 14 AM RAIDO CHIP \qquad 80 p
78M05 5V 0.5A ... 781	…................................
LM317H T05 CAN ...	4×4 MEMBRANE KEYBOARD
LM317T PLASTIC TO220 variable1	INDUCTOR $20 \mu \mathrm{H}$ 1.5A ... 5 ¢ ${ }^{\text {a }}$
LM317 METAL .. $\mathbf{1} 2.20$	$1.25{ }^{\text {P P ANEL FUSEHOLDERS }}$.............................. 3/£1
7812 METAL 12V 1A ... £1	CHAOMED STEEL HINGES $14.5 \times 1^{1 \times}$ OPEN S1 each
7805/12/15/24V plastic 25p 100 + 20p 1000+15p	
7905/12/15/24 plastic 25p 100+20p 1000+15p	
	STEREO CASSETTE HEAD $\mathbf{\Sigma}$
LM338 5A VARIABLE .. 88	MONO CASS. HEAD 1 ERASE HEAD 500
L3875v 1/2A WITH RESET OUTPUT ¢10a $£ 50100$	THERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$..................... $£ 1$ ©
	THERMALFUSES $220^{\circ} \mathrm{C} 121{ }^{\circ} \mathrm{C} 240 \mathrm{~V} 15 \mathrm{~A}$
1M000 1 M8432 1 M000 4M000 16M000 20	TRANSISTOR MOUNTING PADS TO-5/TO-18 ... £3 1000
56 M 6092 .. 11.50 each	TO. 3 TRANSISTOA COVERS 100 E 1 PCB PINS FIT 0.1 VERO
CRYSTALS	TO-220 micas + bushes 1050p $100 \mathrm{f2}$
1M0 2M77 4M000 4M9152 5M0688 6M0000 8M0000	TO-3 micas + bushes 15/81
14M31818 15M000 16M000 16M5888 17M000 20M000	PTFE min screened cable \qquad 10 m .
21M855 22M1184 49M50 इ1 each	Large heat shrink sleeving pack
TRANSISTORS	IEC chassis plug fiter 10A $£ 3$
BC107 BCY70 PREFORM	Potentiometers short spindles values 2 k 510 k 25 k 1 m 2 ms
	lin .. 4 E1
BC557, BC546B, BC238C, BC3088 £1/30 £3.50/100	500k lin 500k log 4/21
POWER TRANSISTORS	DATA ... £1/pr
P POWER FET IRF9531 BA GOV $3 / 1$	LM3352 TEMP SENSOR $10^{\circ} \mathrm{C}$ PER MV $£ 1$
N POWERFETIRF531 8A 60V $2 \sqrt{1}$	LM234Z CONST. CURRENT I.C. $£ 1$
25 C 1520 sim BF2593/1100/22	PAPST 18-24V FAN 120MM WORKS OK ON 12V ¢5
TIP 141/2£1 ea TIP 112125/428 2/£1	BNC TO 4MM BINDING POST SIM RS 455-961........ \&1
TIP358/TIP35C ... 1.50	BUT TON CELLSWATCH BAT TERIES SIM AG10/AG12
SE9301 100V 1DA DARL SIM TIP121281	
PLASTIC 3055 OR 2955 equiv 50p 100/235	MIN PCB POWER RELAY 12 V COIL 6V CONTACTS 2 P C/O
TEXTOOL ZIF SOCKETS	A115M 3A 600V FAST RECOVERY DIODE 4E1
28 WAY ZIF EX NEW EQUIPMENT $¢ .50$	1 N5407 3A 1000V .. 8 E1
40 WAY NEW ... 15	
SINGLE IN LINE 32 WAY CAN BE GANGED FOR USE	1 N4004/SD4 1A 300V .. 100¢3
WITH ANY DUAL INLINE DEVICES . . COUPLING	1 N5401 3A 100V .. 10 \%1
	BA158 1A 400V fast recovery $100 \mathrm{E}_{3}$
CAPACITORS COMPUTER GRADE	
2200 uF 160 V SIC SAFCO FELSIC CO38	BY255 1300V 3 A ...
24,000 F 50V .. $\mathbf{c 3}^{\text {(}} \mathbf{1} 1.30$)	6A 100V SIMILAR MR751 4ז1
	1A 600V BRIDGE RECTIFIER1
TOROID $350 \mathrm{VA} 35 \mathrm{~V}+35 \mathrm{~V}$ AND $15 \mathrm{~V}+15 \mathrm{~V} 24 \mathrm{VA}$......... ¢12	4 A 100 V BRIDGE
	6A 100V BRIDGE .. $2 \boldsymbol{5 1}$
	8A 200V BRIDGE 2E1.35
12V 50 WATT LAMP TYPE M312... 11 ea HOLDERS 60p ee	10A 200V BRIDCiE .. 11.50
24 V 150 WATTS LAMP TYPE A1/215 [2.50 each	25A 200V BRIDGE ¢2 10§18
	25A 400V 8RIDGE ¢2.50 10, 522
RS232 SERIAL CABLE D25 WAY MALE CONNECTORS	SCRS
	PULSE TRANSFORMERS 1:1+1 51.25
25 FEET LONG, 15 PINS WIRED BRAID + FOIL	2P4M EQUIV C106D3/1
IST PRICE £30	

3
 WIRE ENDED FUSES $0.25 A$ NEW ULTRASONIC TRANSDUCEES 32 kHz

OWERFU SMAL CYIMOAMA MA........... 70pmetre
BNC 500HM SCREENED CHASSIS SOCKET
SMALL MICROWAVE DIODES AE1 C102

180VOLT IWATT ZENEAS also $12 \mathrm{~V} \& 75 \mathrm{~V}$ PLASTIC EQUIPMENT CASE $9 \times 6 \times 1.25$ WITH \subset RONT AND REAR PANELS CONTANING AND ICS 7417 LS 30 LS 32 LS 3677805 REG WAY D PLUG. PUSH BUTTON SWITCH, DIN SOCKET

VN 10LM $60 \mathrm{~V} 1 / 2 \mathrm{~A} 5$ Onm TO-92 moster $\quad 451100 \mathrm{c} 20$ MELAY SV 2-pole crangeover looks like RS 355-741 marked STC 47WBost.
MINIATURE CO-AX FREE SKT RS 456-273 DIL REED RELAY 2 POLE NO CONTACTS RELA
megohms) :
STRAIN GAUGES 40 ohm Foil type polyester backed ELECTRET MICROPHONE INSERT $10+\varepsilon 1$ Linear Hall athen Hion Swichnosi3 SS4 sim RS 304HALLEFFECTIC UGS3040 + magnet_ $\begin{array}{r}\text { OSCILLOSCOPE PROBE SWIE } \\ \text { CHEAP PHONO PLUGS } \\ \hline 1 \times 10 \ldots 1000 \mathrm{E} 12 \\ \hline\end{array}$ AUDIO ICS LM380 LM386 TDA 2003 6 £1
ZN4 14 AM RAIDO CHIP
COAX BACK TO BACK JOINERS
. 80 p
$\times \quad .81$
4×4 MEMBRANE KEYBOARD ….. 51
NDUCTOR2OH H.5A
. $3 / \Sigma 1$
1.25" PANEL FUSEHOLDERS
volvo
12 V .2W small wire ended lamps fit Audi VW Saab Volv
STEREO CASSETTE HEAD
10.52
$.50 p$

MONOCASS. HEAD \&IERASE HEAD
\&1 oa
$5 / \Sigma 1$
THERMAL FUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C} 240 \mathrm{~V} 15 \mathrm{~A}$
c3 1000
TO-3 TRANSISTOR COVERS
200 \&1

PTFE min + bushes.
Large heat shrink sleeving pack
CERAMIC FILTERS $6 \mathrm{M} / 9 \mathrm{M} / 10.7 \mathrm{M}$ …..............60p 100 £20
EC chassis plug fiter 10 A
Potentiometers short spindles values 2 k 510 k 25 k 1 m 2 m 5
500 k lin 500 k log
DATA
M 3352 TEMP SENSOR $10^{\circ} \mathrm{C}$ PER MV
M234Z CONST. CURRENT I.C. BUTTON CELLSWATCH BATTERIES SM 961

MIN PCB POWER REL AY $12 V$ COIL GV CONTACTS 4 II
DIODES AND RECTIFIERS
A115M 3A 600 V FAST RECOVERY DIODE 41
iN4148
8.1 .51
$00 \% 1.50$
10.1
6.51
4

351
251
$2 E 1.35$
E1.50
10, 222

P4M EQUIV C106D
00.815

CICK STICK ON CABINET FEET RS NO 543-327 FANS 240V 120MM OTHER VOLTAGES/SiZES.......................... 66 (E1 (OTHER VOLTAGES/SIZES USUALLY AVAILABLE)

TEL. 0279-505543

FAX. 0279-757656
POBOX 634 BISHOPS STORTFORD HERTFORDSHIRE CM23 2RX

$$
2=
$$

TRIACS
DIACS 4/£1 $5 \Sigma 2100 £ 30$ $5 £ 2100 £ 30$
$2 \varepsilon 1100 / £ 35$
NEC TRIAC ACO8F BA 600V TO220 $2 £ 1$ 100/835
TXAL225 8 A 500 V 5 mA GATE
…............. 55 ea

CONNECTORS

D25 IDC SOCKET FUJITSU $£ 2$
34-way card edge IOCCONNECTOR (disk drive type)
CENTRONICS 36 WAYIDC PLUG
CENTRONISS 36 WAY IDC SKT $£ 4.00$
BBC TO CEMTRONICS PRINTER LEAD 1.5M $£ 3$
BBC TO CENTRONICS PRINTER LEAD 1.5M
CENTRONICS 36 WAY PLUG SOLDER TYPE

.. ${ }^{24}$
ع3

USED D CONNECTORS price per pair
D9 60p, D15 £1.50, D25 £2, D37 £2, D50 £3.50, covers 50p ea
WIRE WOUND RESISTORS
W21 or sim 25W 10 of one value
R100R15 0R21 2R0 4R7 5R0 5R6 8R2 10R 12R 15R
R10 0R15 0R21 2R0 4R7 5R0 5R6 8R2 10R 12R 15R
18R 20R 22R 27R 33R 47R 56R 62R 91R 120R 180R 390R 430 R 470 R 680R 820 R 910 R 1 K 151 K 21 K 51 KB 2K4 2K7 3K3 3K0 5KO
R05 (50 milli ohm) 1\% 3W 4 ior
W?2 or sim 6W 7 OF ONE VALUE
W22 or $\operatorname{sim} 6 W 7$ OF ONE VALUE 11
PHOFODEVICES
PHOTO DEVICES
HI BRIGHTAESSLEDS GOX24 AEO -.......................11
SLOTTED OPTO-SWITCH OPCOA OPB815
SLOTTED OPTO-SWITCH OPCOA OPB815 $£ 1.30$
2NLB1 PHOTO TRANSISTOR
TIL 38 INFRA RED LED
4N25, OP12252 OPTO ISOLATOR
DE 50P
MEL12 (PHOTO DARLINGTON BASE n / c) $\quad . \quad$.
LED's RED 3 or $5 \mathrm{~mm} 12 \mathrm{E} 1 \quad 100 \mathrm{s6}$
FE ASHEEN OR YELLOW 10/\&1 $100 / \mathrm{L6}$ FLASH SPEED MEDIUM AREA PHOTODIODE RS651 HIGH SPEED MEDIUM AREA PHOTODIODE RS651.
995
.. 10 en
STC NTC BEAD THERMISTORS
G22 220R, G13 1K, G23 2K, G24 20K, G54 50K, G25 200K, RES $20^{\circ} \mathrm{C}$ DIRECTLY HEATED TYPE \&1 aa FS22BW NTC BEAD INSIDE END OF $1^{\prime \prime}$ GLASS PROBE RES $20^{\circ} \mathrm{C}$ 200R..................................... I 1 oa ideal for audio Wien Bridge Oscillator
CERMET MULTI TURN PRESETS $3 / \mathbf{4}^{\prime \prime}$
10R 20R 100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 200K 500K 2 M
IC SOCKETS
6 pin 15/\&1 8 pin 12/\&1 14/16 pin 10/\&1 18/20 pin 7/\& 22/24/28 piา 4/E1 4030 p
SIMM SOCKET TAKES 2×30 WAY SIMMS \&1

SOLID STATE RELAYS
 40A 250V AC SOLID STATE RELAYS 10

POLYESTER/POLYCARB CAPS

100n, 220r $63 V 5 \mathrm{~mm} \quad 20 \mathrm{E1} 100, \mathrm{c3}$

 $1 \mathrm{n} / 3 \mathrm{n} 3 / 5 \mathrm{n} / 8 \mathrm{~m} 2 / 10 \mathrm{n} 1 \% 63 \mathrm{~V} 10 \mathrm{~mm}$. $20 / 4100 / \mathrm{E3}$ $10 \mathrm{n} / 15 \mathrm{n} / 22 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} / 66 \mathrm{n} 10 \mathrm{~mm} \mathrm{rad} .100 / E 3.50$ 1000250 V radlat 10 mm . 100n 600 V Sprague axial 10/E1 100/L6 (£1) $2 \mu 2160 \mathrm{~V}$ rad $22 \mathrm{~mm}, 2 \mu 2100 \mathrm{Y}$ rad $15 \mathrm{~mm} \quad 100$ / 10 ion $33 \mathrm{n} / 47 \mathrm{n} 250 \mathrm{~V}$ AC x raled 15 mm $1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC......... 10/2

RF BITS

TRW 50watt 500h TRIMMEF CAPS	$\begin{array}{r} £ 50 \\ -L / 50 p \end{array}$
SMALL $5 \mathrm{p} \ddagger 2$ pin mounting 5 mm centres	
SMALL MULLARD 2 to 22pF	4.50p
Larger type grey 2 to 25pF black 15 to 20	
TRANSISTORS 2N4427	p
FEED THRU CERAMIC CAPS 1000p	10/E1

MINIATURE RELAYS Suitable for RF
5 voll coil I pole changeover
5 volt coil? pole changeover
...
£1
£1
£1

MONOLITHIC CERAMIC

CAPACITORS

10 n 50 V 2.5mm .. $100 / \mathrm{s} 4.50$

100 n 50 V 2.5 mm or 5 mm
100 n ax short leads
100n ax long leads
100 n 50 V dil package $0.3^{\prime \prime} \mathrm{rad}$
$1 \mu \mathrm{~F} 50 \mathrm{v} 5 \mathrm{~mm}$
\qquad 100/25

STEPPER MOTORS
2 CENTRE-TAPPED 9 VOLT WINDINGS 7.5° STEPS $£ 4$

ADD 17112% VAT TO TOTAL

ELECTRONIC COMPONENTS BOUGHT FOR CASH

Space mission saved by home

computers

Failure of space-observatory equipment in recent missions could mean that manned observatories may once again find popularity. Astro-I astronaut Ron Parise, who was in London recently, recalls how it was only human intervention - and ingenuity - that salvaged his mission and argues that a manned Hubble may have been less of a technical disappointment.
Purpose of the Columbia space shutte Astro-I project was to take ultraviolet and X-ray readings from stars, which are impossible to measure under the Earth's atmosphere. But the mission was almost crippled by failure of computer terminals controlling the four massive telescopes.
"Debris built up on the cooler fins of the terminals and they stopped working," explains Parise. "Due to delays and postponements to the llight. the machines suffered $30(0)$ hours of run-time on the ground before we got up."
The terminals were designed by the European Space Agency for the Space Lab's avionics cooling unit. They were intended to have a clean air supply and therefore had no air filters when they were fitted to the Columbia. By comparison to the Space Lab, the shutle's air was dirty; weightlessness in the cabin gave rise to swirling clouds of food remnants, dust and dead skin coming off the astronauts and ground crews. This all contributed to the computer crash.
While ground control renotely moved the telescopes into general alignment with their targets. Parise and his colleagues had to "do some fine tuning" with joysticks similar to those used with home computer games. This was ironic: the terminals were Mitra 125 machines with only 64 Khyte of memory. Eighty per cent of this capacity was required

> Computer expert and astronaut Dr Ron Parise was one of four scientists attached to the Astro-1 project which spent eight days in orbit, observing 135 stellar objects. On a visit to London, he told Dom Pancucci how the mission was salvaged after two computer terminals controlling the payload of four massive telescopes went down.

for the operating system, leaving little room for applications. "The technology was lowend. tried and tested despite our computer problems." says Parise "Laptops would probably be better suited for our purposes and we may use them in the future."
This future extends to 1994 and the follow-up mission to Astro-1, which Parise and others have campaigned hard to keep on the flight schedule. And there are some cogent arguments in favour of sending people on such missions, according to Parise. "Manned flights are flexible, where frec-flying vehicles lead to constraints. Astro-I would not have been a success if we had not been there to adjust the telescopes. This is not the case with projects like the Hubble telescope, where problems can have

Ron Parise (centre). Equipment failures could put humans back in the space mission picture.

a catastrophic impact." Parise said. "Our payload also cost only $\$ 65 \mathrm{~m}$, which is a fraction of the total government budget and less than sending up unmanned vehicles."
Parise can see a permanent manned space observatory in the future, possibly set up next to a space station.
Parise is currently working at the Goddard space centre in the US on the material gathered from Astro-1. It will take another two years before results are produced. There is a huge database of known stellar objects held at Goddard and one of the hardest tasks is selecting which ones to observe during those precious hours in space. Parise says the process carried on right up to the muchdelayed launch of Astro-1 on December 2 last year.
Seconded to the Nasa space agency, Parise is an employee of Computer Services Corp, which claims to be the world's largest independent computer services company. CSC has 20 years of involvement in the space programme, providing mission concepts and performance analyses. The US government is its biggest customer. Parise himself helped design the hardware. software and system for the Ultraviolet Imaging Telescope used for photographing stars on Astro-1.
Apart from the imaging telescope, other instruments carried on the Columbia included a broadband X-ray telescope and two spectrometers. These last two recorded chemical composition, temperature and polarised light emissions from quasars, star clusters and supernovas, among other phenomena.
Not all Parise's time went on stargazing during last year’s trip. He organised amateur radio link-ups with two groups of school children and held random conversations with Earthbound radio enthusiasts. "The educational idea came from the scientists and we ran two space classrooms with kids on Earth. fielding questions about electromagnetic radiation and the Astro-1 work," Parise says. Trying to hold random conversations with people proved to be difficult when Columbia was travelling over highly populated areas. The resulting logjam led to chaos, with Parise attempting to hold one link with several others interrupting.
Over parts of the globe where people are more scarce, the contacts were more rewarding. As the shutle passed over Western Ausiralia and South Africa. for instance, Parise could hold conversations in a queue.

LOW COST RANGER1 PCB DESIGN FROM SEETRAX

Pay by Visa or Access

Fully Integrated Auto Router

Ask Us About Trade-In Deals Call Now For Demo Disk on 0705591037

Seetrax CAE • Hinton Daubnay House Broadway Lane • Lovedean • Hants • PO8 0SG Tel: 0705591037 • Fax: 0705599036

- Circuit Schematic
- Circuit Capture
- PCB Design
- Host Of Outputs All-In-One Design System $£ 100$

$£ 50$

CIRCIENO. 1H ON REPLY CARD

CATALOGUE
120 pages, A4. Expertly presented and illustrated Easily Referred to. Packed with valuable information
The COMPONENTS
As wide a choice as you could wish semiconductors, surface mounting, opto-electronics semiconductors, surface mounting, opto-e
Rs \& Cs, etc. etc. Top quality; fairly priced
The SUPPLIERS
Siemens, Boss, Cliff, Omeg, Lorlin, R.S, Uniross - to our top quality standards.
The service
Prompt, personal with customer satisfaction guaranteed. Access/Visa facilities
$28(X)$ St. Jude's Road, Englefield Green, Egham, Surrey TW20 0HB
Phone-0784433603 Fax-0784435216

『

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS, all ypes, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTFIERS, THYRISTORS, etc. RESISTORS, C/F, MF, WW, elc. CAPACITORS, SIIVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, elC ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, ETC ALL AT KNOCKOUT PRICES Come and pay us a visili ALADDIN'S CAVE
TELEPHONE 081445 0749/445 2713 R. HENSON LTD

21 Lodge Lane, North Finchley, London N12 8JG. (5 minutes from Tally Ho Corner)

Cooke International

Ailtech 757 Spectrum Analyser $1.0 \mathrm{MBz}-22 \mathrm{GHz}$ including Digital Read Out. Dightal Ailtoch 446 Power Signal Source with optional plug.ins
$\left.\begin{array}{l}196200-500 \mathrm{MHz} \\ 197500-1000 \mathrm{MHz}\end{array}\right\} 50 \mathrm{Watl}$ Output
Rotek 610 AC/DC/Ohms Universal Calibrator All Modes
H.P. 3490 A Digital Volt Meter 5 Digit $\mathrm{AC} / \mathrm{OC} / \mathrm{Ohms}$, 5 elf
H.P. 400 EL ACRMS Voltmeter, $001-300 \vee 10 \mathrm{~Hz}-10 \mathrm{~Hz}$
H.P. 400 EL AC RMS Voltmete
H.P. 419 A DC Null Voltmeter

MarconiTF 1313A Universal L.C.R. Bridge
Racal 9686 25MHz Dual Tiace Oscilloscope
Marconi TF 2167 Linear R.F. Amp $.05-80 \mathrm{MHz}_{2} 47 \mathrm{db}$ gain
Racal 9822 HF Frequency Meter $10 \mathrm{~Hz} \cdot 80 \mathrm{MHz} 8$ dit
Solartron AS $1164.2-0 \cdot 20 \mathrm{~V}-1 \mathrm{amp}$ Twicel Twin P. S. U.
MUCH MORE AVAILABLE INCLUDING COMPUTERS, PERIPHERALS ETC ETCIN OUR
SHOWROOM AND BARGAIN WALK ROUND STORE. PRICES FROM E5. SEND S.A.E. FOR STOCK LISTS OR PHONE.
ALLPRICES EXCLUDE VATAND CARRIAGE. OPEN MON-FRI Gam-5pm. LARGE FREE CAR PARK
Bognor Regis, West Sussex PO22 OEB. Tel: 0243545111 . Fax. 0243542457 .

B. BAMBERELECTRONICS Manufacturers Surplus Stocks

Trade/bulk buyers, Electronic Components, Test Gear, Radiotelephones,
Photographic and Video Equipment. All at knockout prices

Export and Trade Enquiries welcome

Monthly Sales

Catalogues available from
5 STATION ROAD, LITTLEPORT, CAMBS CB6 TOE
PHONE: ELY (0353) 860185

ANRITSU NETWORK ANALYSER

Model MS3401A
10 Hz to 30 MHz loss, phase and group delay, cost new $£ 10,000$ will accept $£ 6,000$ or offers.

Tel: Bernard or Adrian on 0782661501

GOLLEDGE

crystals oscillators filters Comprehensive stocks of standard items. Over
650 stock lines. Specials made to order. OEM support: design advice. protorype quanties. production schedules.
Personal and export orders welcome SAE for our latest product information sheets Merriont, Somerset, TA16 5NS fax: 046076340

NEWMARKET TRANSFORMER LTD.

Unit 15, Craven Way Industrial Estate, Newmarket, Suffolk CB8 OAP
Tel: Newmarket (0638) 662989/660799 Fax: (0638) 660799
TOROIDAL LAMINATED AND $100-110 \mathrm{~V}$ AMERICAN ELECTRICAL APPLIANCE TRANSFORMER MANUFACTURERS. VERY COMPETITIVE PRICES. FAST DELIVERY. QUALITY GUARANTEED.

PHONE OR FAX MR. DORNAN FOR IMMEDIATE QUOTE.

Testing to special quality - Military/CV, low microphony etc available on request

BILLINGTON EXPORT

Unit F2, Oakendene Industrial Estate, Near Horsham, Sussex RH13 8AZ. Callers by appointment only.
Telephone: 0403865105 Fax: 0403865106
Min. UK order $£ 50$ + VAT. Min. Export order $£ 50+$ Carriage.
Professional WEATHER MONITORING at
 SEND FOR
COLOUR BROCHURE Prices
from only E199

R\&D ELECTRONICS, UNIT 19, THE ST JOHN WOAKSHOPS, MARGATE, KENT CTO 1TE TEL: (0843) 221622

TUNGSRAM Co. Ltd.
$7,9,11,12$ and 15 inch mono monitor tubes at greatly reduced prices!
Special Offer:
M31-131 GH/TS at E5.75
Please call or Fax Hungary/Budapest 010 361/169-3036

R. F. DESIGN

We offer a full R.F. Design Service from design and development to prototype. Extensively equipped laboratory with screened room for EMC TESTING Call now:

R. ${ }^{\text {N. }}$ Electronics

1 Arnolds Court,
Arnolds Farm Lane, Mountnessing, Essex CM13 1UT Tel: 0277352219 Fax: 0277352968

FOR SALE
6 Intel MDS Series 2s. All fitted with Ethernet cards, and either ICE 51 or ICE 49 emulators. Regularly maintained. Offers invited.
Tel: 0488682365 after 6pm

RELAYS
70,000 Omron DIL 2PCO 4.5volt GSA-234P-53-1-OTS-1988

GI0,000 LOT o.n.o.
4,800 various DIL 12 volt 2PCO 61,500 LOT o.n.o.
2,500 Omron 4PCO I 2volt
LZNQ4 $\quad \mathbf{L I}, 000$ LOT o.n.o.
MUNICIPAL METALS \& ELECTRONIC SUPPLIES

08I-692-6509

CLASSIFIED

ARTICLES WANTED

WANTED URGENTLY

Marconi 2951 RT test set or similar plus any used two-way radio equipment.
Tel: 0256381528

STEWART OF READING

10 WYKEHAM ROAD
READING, RG6 1 PL TEL: 073468041 FAX: 0734351696
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPUTER etc. ANY QUANTITY.

WANTED
 Test equipment, receivers
 valves, transmitters. components, cable and electronic scrap and quantity Prompt service and cash. M \& BRADIO
 86 Bishopgate Street. Leeds LS14BE. Tel: 0532435649 Fax: 0532426881

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic. Scrap. Eoxes, PCB's, Plugs and Sockets, Computers, Edge Connectors. TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Weiwyn, Herts AL6 9TO. Telephone: 0438812193. Mobile: 0860214302 . Fax: 0438812387

Wanted: valves. Transistors. I.Cs (especially types KT66. KT88. PXt. PX25). Also capacitors. antigue tadios shop clearance considered. II possible, send writen list for offer hy return. Billington Valves. phone (4038865105. Fax: 041380510%. See adjoining advert.

APPOINTMENTS

Government Communication Headquarters

Radio Officer

Government Communications Headquarters (GCHQ) are specialists in all aspects of communications, from DC to light. We require skilled and motivated staff to undertake a wide ronge af duties to study these communications. As a Radio Officer you would be an essential part of our technical 'sam, and would be trained to undertake a wide range of duties

- We offer excellent training
- Allractive salaries (reviewed annually)
- Opporiunities for moves within the UK and overseas
- Job Security
- Good career prospects
- Challenging and vorious work
- Generous leave allowance
- Non-contributory
- Non-contribulory

To qualify you need or hope to obrain a BTEC National Diploma far HNC/HND in a Telecommunications, Electronics Engineering or similar dicipline. Special consideration will be given to applicants holding an MRGC Certificate. The C\&G 777 (advanced) or other qualification incarporating morse skills would be advantageous but not essential.
You con apply if you have a minimum of 2 years recent radio aperating experience and preferably be copable of receiving the morse code.

Age limit for experienced Radio Officers 18.45. Age limit for candidates who do not possess the full range of skills $18-40$ (depending on background and experience). Training Period: Between 29.52 weeks.

Salary after training (over 5 years) \& 13,756 - 19,998 with prospects for further promtion. Salaries include an allowance for shiff and weekend working.
GCHO is an equal opportunity employer
APPLICANTS MUST BE BRITISH NATIONALS
For further informatian and application form contact
Recruitment Office, Room A/l 108 GCHO Priors Rood, Chellenham
Glos GI52 5A or relephone (0242) 232912 or 232913

PRODUCTION/A.TE.
 SECOND USER ERUIPMENT HUGE SAVINGS Sinces

ATE/TEST

GENRAD ≥ 272
1024 Test Points
MARCONI 80X
1024 Test Polnts. Vacuum Pumb MARCONI MIDATA 540 and 530 ATE Systems Less than 2 years
HP 8590 A
10k to 18 GHH 2 Soectrum Analyser
GP1B. (Primter avalable \& 195 entra)
ZEHNTEL 3200
Periormance ffunctional lesten
New 1987 .
SCHLUMBERGER 770
SCHLUMBERGER 7720 S
256 Th Pins iom Mard Dish 2 Usee PSU's
Offers invited
SCHLUMBERGER 730
VANWELL 3260
IC Test System, Call for detals

CLEANING EQUIPMENT

ICI 4030LV28
Cleanline ll 25 tage Cleaning Plant.
ICl 2818 UV28 KERRY 300/2HPF
KERRY 300/2HPF
35line
Tank size. 250×350 and 250 mm
$240 \mathrm{~V}+$ Phase
KERRY CRD 1500/4 HP
4 Stage Ultrasonic Cleaning, Rinsing
£3,250
£2,150
£2,975
incoporating Thermal Recovery Unit and
POA

SEMICONDUCTOR

 EDWARDSEI2E3
RE Spurtering system. With S-3013 1 kW RF Power

K19,500		

${ }_{5}^{\text {Kas }} 1419-3$. cricem
ENVIRONMENTAL TEST
ACE FS 360
360 litre Temp Chamber. -20 C to 150 C
Programmable Over Under Temp Protection Ecall RINGWAY
 SAPRATIN

WANTED

We have Buyers for the following. AUTO-INSERTION Equipment. Axial, Radial and DIP's
BENCH
BENCHTOP Soldering Machines NSSEMBLY Stations eg Contact, Royonic, Blakell EAD Croppers

TURN YOUR SURPLUS EQUPMENT INTO CASHI CAL FOR DIPMENT

See iatest issue of Buyers Niews for full listing and Terms \& Condtions. Prikes exduce Vat' Buyers Premium not induded

magesammaso
Manulaturuing Equipment

BUYERS NEWS Tel: 071-284 4074 (UK) Fax: 071-267 7363 (UK)
 146 Camden Street, London NW1 SPF

APPOINTMENTS

EMC CONGI ITANT

Midlunds c. $£ 25,000$
Two leading consultancies urgently require EMC Consultants to act as the 'in-house' EMC/RFI 'guru' and advise various clients on all areas of EMC from overcoming design shortconings to setting up test farilitites you must be degree educated and be fully (including Automotive) and MOD standard in conjunction with the Namas requirements. In conjunction with the wamas requirenerctient
return your package will include an excetlent return your package will include an excetlent
basic salay and relocation where neessary.

RF'DESIGN MHAGER

Essex

Negotiable

Your chance to be responsible for the complete Rf development of a business. You will be woking for an organisation who are currently producing products to be used within the radio data field. This role will require considerable 'hanits-on' involvement coupled with your abilitites to lead a team, which will expand with the success of this company. You will probably be between the ages of $30-35$, degree qualified, and have considerable experience in the RF lield (500 $\mathrm{MHz}_{2}-\mid \mathrm{IGHz}_{2}$. In return you will receive a firstclass package and a chance to prosper with this expanding company

HOLNG DESIGN ENGIVEES Berkshire/South to $£ 16,500$ We are currently recruiting for a number of internationally established companies operating within the field of radio communications GSM, CT2, PCN). They are currently wishing o recruit a number of young RF Engineers to oin their design and development departments. For these positions you will be degree qualified Engineers who have one to two years' experience of the RF field within the years' 500 MHz to 20 Hz h return you ranges 500 MHz to 2 GHz . In return you can xpect to receive a first-class package with

RF'ENGINEKS

Midlands

Negotiable
A well-established company involved in the design and development of Mobile Communcations equipment has an immediate requirement for an innovative and enthusiastic engineer capable of $R F$ design and the ability to progress projects through the manufacturing cycle. Applicants will be qualified to degree level with at least three years experience of RF design up to 2 GHz . Of equal mportance is a strong sense of project esponsibility and the desire to see projects from inception to completion.
 10

2
0 n ELECTRONICS

TEL: 0296 393636 OR EVES/W'ENDS 029689714 THE COURTYARI), MERIIN CENTRE, GATEHOUSE CLOSE, AYIESRURY, BUCKS HPI9 3DIP

INDEX TO ADVERTISERS

	PAGE
Abracadabra	
Electronics	
Adept Scientific	IFC
Adept Scientific	
Anchor Surplus	
AOR (UK)	
Billington Valves	
BK Electronics	
Bull Electrical 931	
Buyers News 98	
Capella Technos	
Chelmer Valve	
Company	
Citadel Products	
Digitask Business	
Systems................. 890	
Display Electronics	
ERT	
trovalu	

OVERSEAS ADVERTISEMENT AGENTS
France and Belgium: Plerre Mussard, 18-20 Place de la Madeleine, Panis 75008
United States of Amerlca: Jay Fenman, Reed Business Lid., 205 East 42nd Street, New York. NY 10017-Telephone (212) 8672080 - Telex 23827

[^2]
COLOURIET 132

 COLOUR INK JET PRINTER

 COLOUR INK JET PRINTER}

Compatible with:IBM pc Archimedes Nimbus BBC Micro Amiga Apple Mac (serial version)

LOW COST
LIST PRICE from £636 + VAT

EMULATES OTHER COLQUR PRINTERS EG. IBM 3852, Canon PJ1080A, Quadjet PRINTS OVERHEAD TRANSPARENCIES

EDUCATIONAL DISCOUNTS AVALIABLE
INTEGREX LTD., OHURCH GRESLEY, SWADLINCOTE DERBYS. DE11 9PT
Tel (0283) 551551
CIRCIE NO. 102 ON REPL K CARD

IC PROGRAMMING TESTING \& ERASING SOLUTIONS

PC82 UNIVERSAL PROGR AMMER \& TESTER
£395

Universal programmer. The complete designer's kit. This will program EPROMS EEROMS, BPROMS, PALS, GALS, EPLD's, $Z 8$ and 87 XX microprocessors. A unique feature is the testing of logic parts such as 74LS393 etc. The PC82 can check and identify parts. Already programmed are the TTL \& CMOS logic test vectors. Software is supplied to write vectors for most unique chips. One of the most popular programmers in the USA

TTL, CMOS, DRAM \& SRAM TESTING

PC82 can test and verify any TTLCMOS logic chip, DRAM \& SRAM. The software will also identify a TTL chip. Do you have a few TTL chips aside not knowing whether they are working?

DEVICE GUIDE

PC82
PC84
EPROM N/CMOS 2716-27010 (1 mBit) Vpp 12.5,12.9,21.25
EPROM $27513,27011,572000 / 4000,8764-87256$, CYC2XX SERIES
EEPROM 2816,2816A,2817,2817A,2864A
EEPROM 9306,9307,9346,9356,93CS06,26,44,56,66,28256A
BPROM 32×8 to 4096×8, incl. $63 S 080,7 \mathrm{C} 28 \mathrm{X}, 29 \mathrm{X}$.
PAL 10,12,14,16, 18,20.L,R,X,P, 1,2,4,8,10 (20824-pin)
GAL 16V8,18P8,20V8,22V10
EPLD 20G10,22V10, EP310,320,600,610,900,910,5C031,32,60,90
CMOS EPAL C16L8,R8,R6,R4,C18V8;C20G10,L8,R8,R6,R4, C22V10
MPU Z8,8741,42,48,49,50,51,C51,C52,C252,TMS7742,77C82,63701
Device lesting TTUCMOS logic, DRAM \& SRAM

ADAPTERS FOR PC82
FROM $£ 95$ A wide range of plug-in adapters to expand the capability of the PC82 Various PLCC convertors \& 4 gang 28/32/ 40 pin Eprom, Gal \& Pal. Popular CPU types include PIC 16C54/5/6/7, 8796/7, 68705, 87C751/2, \& TMS320E25

FEATURES ALL MODELS

For the IBM PC, install the interface card and programming socket, load the menu-driven software and you have a complete design system at your fingertips.

EASYTOINSTALL

The programmer comes with an interface card that plugs into any free slot of your PC. There is no DMA channel to worry about and it occupies limited $1 / 0$ space. The programmer socket box is connected via a ribbon cable to the back of the interface card so that the socket box is external. After the interface card is installed the PC never need be opened again

SUITS ALL PC's

The programmers will run on any compatible IBM machines such as XT's, AT's, '386 and '486. Whether it be AMSTRAD or COMPAQ the programmers will work. The software is text only monographic so is compatible with any machine.

SOFTWARE DRIVEN

All software for the programmers is supplied on $51 / 4^{\prime \prime}$ low-density disks. The software can be copied onto hard disk using the DOS copy command. Programs are supplied for the various features and are menu-driven. All programming is done from the menu, no hardware switches are needed. Just select the type and manufacturer and the programming is done automatically. Free software updates for new types which are continually being added.
The menu-driven software is a full editing, filing and compiling package as well as a programming package. Save to disk and load from disk allows full filing of patterns on disk, to be saved and recalled instantaneously. Device blank check, checksum, program, verify, read and modity are all standard features. Hex to bin file conversions included for popular file formats including intel Motorola etc. 2 ways/4 ways bin file splitter for 16/32 bit file data. Selection of speed algorithm for FAST, INTELLIGENT, INTEL, etc.

PC86 HANDY POCKET TESTER £99
Tests all popular TTL 74/54, CMOS 40 45 \& DRAM types, can search and display type number of unknown/house marked types. Simple operation. 9 volt battery operated with LCD display.

M1 FAST ERASER 599
NO MORE WAITING FOR EPROMS TO ERASE. New advanced UV source gives under 2 minute erasure time on most types of modern EPROM. Digital down counter \& display plus added features for simple operation in use. Large capacity e.g. 13×28 pin devices. Small footprint. Designed for heavy industrial/workshop use. UK design \& manufacture.

PC84 EPROM PROGRAMMERS
1-GANG £139, 4-GANG £199 \&

8-GANG £299

PC84 -1, -4, -8 Eprom programmers only. The variant is only gang size. The - 4 and -8 gang will program multiple EPROMs simultaneously. Device sizes are from 2716 to 271000 both C and NMOS. ZIF (zero insertion force) sockets are used on all models.

ORDER INFORMATION

Please include $£ 7$ for carriage by courier, plus VAT on all UK orders. (E 20 for exports.) All pricing for programmers includes soltware. Interface card, socket box and full instructions. (Prices do not include VAT or carriage). ACCESS. VISA or CWO. Official orders welcome from Government bodies \& local authorties.

CITADEL PRODUCTS LTD
Dept. WW 50 High St, Edgware, Middx. HA8'7EP Tel: 081-951 1848

[^0]: -These straightionward conditions apply:
 The goods must be retumed within seven days of neceipt The gaads must be rewurned in their original packing
 The goods nust not be tampered with in any way The goods must be returaed in the condition they were received

[^1]: Name/address/posicode
 I

[^2]: Printed in Great Britain by Riverside I'ress. Gillingham. Kent. and typeset by Marlin Graphics, Sidcup. Kent DAIt 5IMT. for the proprietors. Reed Business Publishing Lid. Quadrant
 House. The Quadrant. Sutton, Surrey SM2 5 AS. (1) Reed Publishing Led 1991 Elpctronics and Wireless World can be obtained fron the following: AUSTRALIA and NEW ZEAIANI): Gordon \& Gotch Lid iNDIA A H Wheeler \& Co. CANADA The Wm 「atwon Subscription Service Lid.; Gordon \& Gotch Lid. SOLTH AFRICA: Central News Agency Litd. William

