ELECTRONICS

WORLD

+ WIRELESS WORID

AUGUST 1991 £1.95

DESIGN
Power
conversion
without tears

SCIENCE
The hydrogen
economy

RADAR
Parasitic image reception

REVIEW'
Smith charts on the PC

CONSUMER ELECTRONICS
CD-I: VISION OF THE FUTURE?

Dataman Introduces Omni-Pro at £395

S3-The Best-Seller . £495

Wouldn't you like an EPROM Programmer that is Elegant? Stunning? Superb?

These are words used by engineers to describe S3. They often say S3 makes their expensive lab-programmer look stupid. How can we disagree". When designing S3 we tried to turn a boring bench-instrument into something more exciting: a compact, intelligent tool which could be used for New Product Development. with facilities such as Editing and Memory-Emulation. We made S 3 smatl enough to slip in a pocket and battery-powered so that it would retain data and contiguration, because we were sure engineers would want one each. And they do! S3 is now the best-selling programmer in the U.K.
S3 is likely to fill needs that you never knew you had! We can send you an S3 today on FREE TRIAL - 30 DAYS SALE-OR-RETLRN.

Optional S3 Modules..

EPILDS. CMOS PAI.S 295
32 pin EPROMS
40 pin EPROMS .. 175
$8748 / 49$ \& 135
$87.51 / 53$
 $\begin{array}{r}1+5 \\ \hline 15\end{array}$

Optional S3 Developers Package

Software and lnside information for engineern who wish to studly and customixe $S 3$. No Secres! Editor/Ássembler (SDE see below). Circuit Diagrams. Lint of Calls and BIOS Source Code
$t 195$

S3 as a Development System..

The FREE Terminal Program which comer with S. 3 provides Full Remote Control from your $\mathrm{P}^{\mathrm{C}} \mathrm{C}$ All keyboard functions are supported - such an Editing, Byte and Block Shifting. Split \& Shuftle. Seek and CheckSum. ST is also at Memory Emulator - it will substitute ROM or RAM in-circuit. You can try your program hefore committing it to PROM.

S3 as a Programmer..
$\$ 3$ will program virtually any EPROM or EEPROM that will go in the socket. Without recharging. you cian program I 1 (XX) modern last PROMS or $1(M)$ ancient slow PROMS. ()peration is continuous with a mains supply: $S .3$ can be used while recharging. $S 3$ does not monopolise your computer for copying, editing or programming PROMS. S. 3 unes latest high-spered programming methods and supports FI.ASH EPROMS. Program. Data and Configuration are retained while curned-off $S 3$ has a ROM BIOS. but runs its main program in RAM. Softuare can te upgraled instantly from a PROM in the socket. SOFTW ARE UPGRADES ARE FREE:

What you get with S3...

Mains Charger. Ring-Bound FactoFile Mamual. Emblation Lead (plugs into your ROM socket). Write-lead (hooks-up your uP? Write-line when emulating RAM in a ROM soket). FREEE Software L'pgrades by BBS. Technical Support by Ptone. Fax and BBS and a fllle three year guarantee.

Omni-Pro

$£ 395$

Programs BIPOLARS, PROMS, PALS, GALS, EPLDS, PEELS, IFLS, EPROMS, EEPROMS AND MICROCONTROLLERS. Tests SRAM, DRAM AND TTL/CMOS logic

Omni-Pro uses a short slot PC card to make fast parallel transfers of data. It is controlled by software with a professional look and feel. The latest quich-programming methods are supported. Any of the usual tille-transmission formats can be used Omni-Pro is compatible with all popular PLD compilers producing JEDEC files.

Omni-Pro comes with this Universal Guarantee: it WILI, program all the parts you need. Or you can have your money back.

What you get with Omni-Pro...

An Excellem Manual in Ptain English. A quality topin TEXTOOL Double-Width Socke. FREE Technical Support by Phone. Fal or BBS FRIEE Softuare Upgrader by BI3S and a FLLL YEAR'SGUARANTEE

SDE Assembler £195

Develop your New Product in an advanced Software Development Environment.

Dataman's SDE comprises a two-window Editor, fast Macro Assembler. Linker, Librarian, Serial Comms and an intelligent Make facility which automatically reassembles ONLY those files you have edited. links them and downloads to your Memory-Emulator or Programmer. SDE works very well with S3.

The Editor is pretty smant: it can tell you the Absolute Address of any line of the Source-File. The Assembler is pretty smart too: if it fïnds a mistake it puts you back in the Editor at the right place to fix it. SDE's Multi-Processor version supports all common micros - please ask for list The Disatssember version creates Source Files from Ohject Cole (e, g. from a ROM).
SDE IS NOT COPY-PROTECTED.
SDE Multi-processors \& Disassemblers.
SDE Multi-processors
SDE Single-processor.
Strobe Eraser £175

Wipes EPROMS before you can say "Jack Robinson".

Our Flashy New Eraser wipes EPROMS clean in seconds. You can do it to chips on the bench. chips in-circuit or even chips in the Programmer. Tidy up your workshop tomorrow. Recycle all those old Memory Chips!

UK customers - please add VAT

VISA ACcon AMERICAN

[^0]
CONTENTS

FEATURES

VISION OF THE FUTURE: \qquad .6 .36 "CD-I will be the most significant mass market electronics product since the compact cassette." Thus speaks the Philips marketing department about interactive video technology based on compact disc. Karl Schneider looks behind the corporate optimism.

DEVELOPING SITUATIONS. $6+3$
The chips are down. Changes in microprocessor development systems have mirrored changes in the microprocessors. But today microprocessors are being designed with on chip facilities that help the designers of development systems. We have gone full circle. Steve Rogerson traces the events.

IOW COST EMLIATION?
Does Flash Designs* novel combination of emulator, hardware breakpoint and history ram provide low cost debugging? It's getting there says John Anderson.

8051 REVISITEI). \qquad6.2

In line with the theory that small is heautiful. Philips has brought out a cut-down version of the venerable 8051 : the compatible 87C75I.

PC REVIIW - Z-MATCHII. .65 .5
As a PC based Smith chart program, this low cost software from No 1 Systems offers plenty, but you have to go a long way to beat a sharp pencil and an eraser says lan White.

PC REVIEW - ECD..
This shareware circuit component calculator comes straight from the bargain basement. Mike Tooley opens his wallet.

THE HYDROGEN ECONOMY.
Everyone recognises the need to move away from fossil fuels. Electrolytic decomposition of water using energy from alternative sources produces hydrogen. However, can this form the basis of a new economy?

VAL.VI: AUDIO DRIVER.. .. 676 Valves might offer advantages for audio power output, but transistors come into their own in the gain stages. John Linsley Hood describes a design for a transistor driver module logether and phase splitting circuit.

PARASITIC PICTURE......

 ..674) Living close to a radar installation. Michael Green has been able to conduct a series of fascinating experiments into passive radar reception using stray pulses from his high powered neighbour.

DESIGN STUDY: POWER INVERSION \qquad DC to DC inverters can provide the multiple supply raits often required in complex equipment. They can also allow a secondary SMPS to function outside its normal input voltage limits. Brian Frost outlines the practical design process involved in high frequency power inversion.

THE HIDTV CONFIDENCE TRICK. .647
A leap in quality for the viewer or a manufacturers' conspiracy to boost flagging markets? Charles W Smith takes a critical look at the hopes and hype surrounding HDTV.

UNRAVELLLING;
MAXWELI.'S
WAVES. \qquad .7r
The precise physical nature ol ${ }^{\circ}$ e-m waves remains a mystery to many people but not. quite clearly, to Martii Nissinen who clarifies the subject for everyone else.

REGULARS

COMIMENT....
.627
Men. machines and the human condition
('P) ATI: .628
Pal TV may suffer euro-death. NEDC report says that UK electronics is on the rocks. EMC testing goes underground.

RESEARCH VOTES

Millions of bits in a plastic pinhead, Galileo in a jam, Aussic undercurrents. dead stars tick to lively heat and technology down the pan.

PICTI RES FROM TIIE PAST
The period up to the start of the first world war saw the spark transmitter era drawing to a close to emerge as the better controlled thermionic technology.
I.ETIERS
. .665
No time for games, looking at the future, what of CFA?. HDTV nonsense, chaotic aerials, Light conversation. SOS and a short circuit.

CIRCUIT IDEAS.
673
Better triggering for oscilloscopes, frequency doubler for square waves, voltage tuned crossover filter, multiple outputs from a single D to A .

APPLICATIONS...683
Programmable gain amplifier. switched input op-amp. pure sine waves from a digital source, multimode monitor processor.

NEW PRODUC"1S... 687
The regular round-up of everything that's new in electronics.
BROADCAST
7117
There is now an almost indecent rush to get into HDTV. Should we not wat for the technology to settle? Asks Pat Hawker.

In next month's issue. Flux gate magnetometery provides an incredibly sensitive magnetic field measurement method. The simple solid state technology, described both in principle and practical detail by author Richard Noble, is precise enough to form the basis of an electronic compass or measure accurately variations in the Earth's magnetic field due to solar activity.

Panesonio
 Personal Computers NOTEBOOK NEWS 80386SX 20MHz 60Mb Hard Disk 3Mb RAM standard

£1895

NOW WITH ONE YEAR ON SITE WARRANTY

Yed anorlect crackivg ded from Divinesk Pronesmic: Chock out these features:

 SN1r RUM Stundand exp to SMh Interinally 1.44Xls 3.5" Floppy Imax
 (imedudes mituen

Bhack ont White Io firmexale Void hach lit
(Cil) screetl
 Inchules Carning Cises:

DIGITASK - NEW PRODUCT UPDATE 40MHz 386 TECHNOLDGY!
-Amazing 9.5 mIPS! • Norton ver 5 -461 - AMD TAUE 40whz 386 Processor-e Socketed for 80387 /WELTEK Sync/Async Copro • BUS Speed selectable 6/8/12 MH2 - ETEO Chipset - 7x16 bit + 1x8 bil Expansion Slots on board Oiagnostics • Up to 32mb on board RAM
 board) - AMI Blas with password protection - XI Sized Multilayer construction © USA Researched \& Manulactured. This board is FASTER than a 48633 with most soltware! It represents amazing value for an American board at just ... 5759 ! (excl RAM)

"SOLUTION" 3865X-16

This mUST be the most cost ellemtive SX mainboard on the markell

- 16 Mit2 80388 processor • Solfware CPU speed select 8/16M12 - 2374 MIPS Norton 18.7 - Socketed for 803e7SX co processor - 1 mb Memory fited as standard Memory expandable to 5ub on board (SIMMS) On Board: 2 Serial. I Parallel. Floppy drive interlace \&
 slots - AMI BIOS - Full sypport for MS-OOS/PC DOS/XENIX /UNIX/OS-2/NOVELL/PC-MOS - XT SIzed US manulactured.

Simply Amazing Value al $£ 279$!
GOLD 3865X-20C fwith Cache!) - Imel 20MHz $3865 \times$ Processor o Builbin 32 K Cache memory 4.17 MIPS Morton 23 - Sollware speed select on CPU $8 / 20 \mathrm{MHz}$ • intel 803878 X co-processor support 8×16 bit expansion slots \bullet Up to 32 mb on board RAM [SIMM] - AMI BlOS - XT Sized - USA Researched \& Manufactured - TWO YEAR Worranly o Full support of DOS/OS-2/UNIT/XENIX/PICK/PC-MOS/NOVELL As lar as we know this board is unique-being the lirst $3865 \times$ to use Cache Memory to improve perlormance. Providing real value running as last as a 3860X clocking at 25MH2!

Priced at just . . . ©299! (excl. nam)
RMb MCA $16 / 32$ Memory Expansion Board lor IBM PS/2 Models $50 / 502 / 558 \mathrm{X} / 60 / 70 / 80$ and Microchannel compatible systems, Contigures automatically to a 16 or 32 bit BUS. Up to 8 mb expansion using 256K and/or Imb SIMMs. Supports conventional (back fill). Extended. Expanded and EMS 4.0. RAM disk, prinispool and disk cache sofiware supplize.

Just E129 (OKb)
ISA (AT-BUS) 32ub Memery Upgrade Board Ior PX/XT/AT/PS-2 Mode 30 and compatibles. Expands almost any ISA BUS machine up to 32 mb using 256K. IMb or amb SImms. Soltware conliguration no iumpers or switches to sel. Sypports conventional. expanded. extended, and LIM EMS 4.0 - PC Mag says: expanded, extended, and Lam EnS 40 - PC mag says:
Up to 40 times faster than Inted Above Board plus on EMS 4.0 Test.

Just E129 (OKb)

dIGITASK AXIOM RANGE SUPER SYSTEM SAVERS

AXIOM 386SX-16/124

- 386SX Processor. socketed for 387 SX clocking at I6MHz - AMEAICAN mainboard - I Mb RAM slandard expandable to 5 Mb on board. - Extended UK 102 Key Keyboard - $3.5^{\prime \prime} 1.44 \mathrm{Mb}$ internal floppy drive. - FAST 124 mb Internal HARD DISK ORIVE [18ms IDE!. - 14^{-1} VGA Colour Monitor. - Microsolt MS.OOS 4.01 and GW BASIC. - AMI BIOS.

£1193! Amazing Value!

AXIOM 386-40/124/CACHE

- AMO 386 -40MHZ TECHNOLOGYI - Socketed for 387/WEITEC co processors. - Up to 32 Mb RAM on bcard - 128K Cache standard expandable to 250 K on board. AMI BIOS. - Extended UK 102 Key Keyboard - 3.5^{-} 1.44 Mb internal floppy drive. - FAST 124 Mb internal HARO DISK DRIVE [18ms IDE]. - 14 VGA Colour Monitor - Microsoft MS-00S 4.01 and GW BASIC.

Price including 4Mb RAM fitted
\&1920
We'll say it again-this machine will speedlist FASTER THAN A 486/33 with cache using 386 based soltware!

Any configuration from Mono to Super VGA from 20 Mb to 700 Mb MFM, RLL. SCSI. ESDI or IDE Small footprint to Mini or full size Tower and with any upgrade to suit your requirements. Backed up by unrivalled technical support both pre and post sale

TWINHEAD SUPERNOTE!

$386 \mathrm{~S} \times 16 \mathrm{MHz} / 40 \mathrm{Mb} / 2 \mathrm{Mb}$ RAM/1.4Mb Floppy Drive VGA Paper White LCD Screen/2 serial, 1 parallel, MS-DOS \& GW BASIC inc. battery and charger. OIMS: $280 / 220 / 49 \mathrm{~mm}$. Weight approx 3 Kg inc battery.
PRICE inc Carry Case £1495 Amazing Valuet

NEW!
 EInC OR $286 / \mathrm{N}$ and $386 / \mathrm{N}$ Economicat Personal Computers

286N/12.40
(40Mb) VGA COLIUR 2977
386Nsx/16-40 (40mb) VGA COLOUR 3137

SPECIAL!
MONO VGA
30 .20 30MU IMU RAM 10 MH ,
$975 \quad 1.275$

PS/2 SYSTEM UNITS

50260 MD IMO RAM 10 MHz 55SX 60Mb 2Mb RAM 16 MHz 65 SX 120 MD 2 Mb RAM 16 MHZ 70.M61 60 Mb AMb RAM 20 MH 2 70486 200Mb 4 Mb RAM $25 \mathrm{MH}_{2}$ 5486120 MD dMO RAM 25 MH 95 AKD 320 MD 8Mb RAM 33MHz

IBM PS/ 1
30MO 512K RAM 14"VGA 10 MHz
799

Tel (0293) 776688

Dipitasm Business Systems Lio Unit 2 Gatwick Metro Centre Business Systems Lit. Unit 2 Gatwick Merir
Balcombe Road. Horley. Surrey RH6 9GA
Telepnone (0293) 776688 Fax (0293) 786902 Telex 878761 DIGIT G

Men, machines and the human condition

EDITOR
Frank Ogden
081-661 3128

DEPUTY EDITOR

Jonathan Campbell
081-661 86.38
DESIGN \& PRODUCTION Alan Kert

EDITORIAL ADMINISTRATION
Lindsey Gardner
081-661 3614
ADVERTISEMENT MANAGER
Jan Thorpe
081-661 3130
DISPLAY SALES MANAGER
Shona Finnic
081-6618640
ADVERTISING ADMINISTRATION
Kathy Lambart
081-661 3139
ADVERTISING PRODUCTION
Una Russ
081-6618649
PUBLISHER
Glyn Moody
FACSIMILE
081-6618953

REED BUSINESS
PUBLISHING
GROUP

Readers trying to make sense of "Design brief: 60 W Cuk Converter" in last month's issue will have had their work cut out. The gremlins which live in the dark places of every computer system went on the rampage and reduced an excellent article to gibberish. PostScript maths setting appeared in place of the diagram scans, some diagrams were truncated while others didn’t appear at all. We will be pleased to send out a correct version of the document to anybody who wants one: please see p. 629.

All our computing practices are designed to make sure that this sort of thing can never happen, even in the event of equipment failure... yet it did. In this instance, the consequences were upsetting for the author, disappointing for the reader and a general embarrassment for all concerned.
It seems rather ironic that the same issue carried a detalled report on the A320 air crashes of last year, effectively a verdict on the wisdom of using computers in the primary flight control systems of passenger aircraft. Author David Learmount of Flight International stated quite properly that computers were not implicated in either incident. Further, rational analysis suggested that the incorporation of electronics into Class 1 systems does not increase the chances of failure above those applicable to purely mechanical alternatives.

It is therefore doubly ironic to report the Lauda Air crash of a Boeing 767, due almost certainly to the failure of its digital engine control system, shortly after we published an official bill of health on fly-by-wire. We are fairly sure that the electronics failed - for
whatever reason; the pilot reported that one of two engines had gone into reverse thrust while the aircraft was flying at cruise. The three engine computers, which must each independently agree on the need for an action before it can take place, were specifically programmed to forbid reverse thrust selection except while the aircraft is on the ground and in the landing phase.
It simply couldn't happen... yet it did.
In fairness to Boeing, this type of engine control has been around for 10 years without reports of airborne reverse thrust activation. Yet there remains a sense of unease when we are forced to depend for our lives on anything as capricious as computer software running in hardware prone to alpha strikes. glitches and supply transients.
Electronics hardware on its own is certainly as reliable as the mechanics it replaces or assists. The real problem arises when electronics has to rely on people to write the software to make it work.
Most people will be familiar with computers operating outside aviation and the dull, mechanical stupidity which occasionally results: million pound gas bills. mistaken identities and general systems failure. Computer operators will know the commonplace frustration of a machine which locks up for no apparent reason. The error can be traced to human factors in nearly every case; software bugs, miskeying or corrupted data are part of the human condition. We can't be completely sure of anything which we build.
Aeroplanes don't have Ctrl+Alt+Del keys. Perhaps they should.

Frank Ogden

[^1]
REGULARS

UPDATE

Pal TV in EC death pact

A new euro-directive on satellite TV spells death for pal - but by wasting away rather than murder. A recent meeting of eurotelecomms ministers was presented with a set of outline proposals - the Draft Directive followed belatedly three weeks later.
Commissioner Pandolfi's proposals go a long way towards solving the commission's basic dilemma: how to achieve an orderly progress, through D 2 mac, towards HDTV, while acknowledging the interests of existing pal audiences and broadcasters.
The solution is an elegant mixture of stick and carrot. D'mac will be mandatory for new channels from the beginning of 1992. For consumers, it will be an added-value service by providing wide-screen pictures for those sets able to receive them. This includes some $4: 3$ sels, which have the capacity to "letterbox", as well as the new generation of $16: 9$ screen models. D^{2} mac`s capacity to broadcast simultaneously in widescreen and $4: 3$ mode will accommodate the remainder of existing TV sets.
To ensure the creation of an adequate receiver base - and availability of any services to all viewers - all satellite receivers and all TV sets over 22in screen size (from
1993) will have to be fitted with D^{2} mac decoders. A subsidy fund would encourage existing broadcasters to duplicate some of their channels - especially movies and sport - in widescreen D²mac. As for pal, existing receivers should be able to receive existing channels for at least five years.
Initial proposals were that pal should be dropped once the percentage of installed receivers with D'mac reached a certain level (probably 70\%). However, Commissioner Pandolfi has already backed off from forcing this point through. No mandatory cut-off for pal is now included.
There has been an initial welcome for the proposals among broadcasters, satellite operators and manufacturers and a cautious confidence that they could form the basis for a Memorandum of Understanding. This would provide a framework for action by the industry, paralleled by a Directive, binding on member states.
For SES-Astra, Koen van Driel described the proposals as "a good compromising job" by Commissioner Pandolfi, "We as a company wholeheartedly support that," he added.
He welcomed the link between D²mac and

Mine of information: Pitching your tent 200 m underground might seem like the perfect solution for campers who hate rain. But ICL have made camp deep in a Cheshire salt mine for the much more serious reason of testing sensitive electromagnetic monitoring of computer systems. They don't have to worry about mosquitoes either.

16:9 wide aspect-ratio: "A good consumer benetit", he commented.
The proponents of mac, such as Philips ${ }^{\circ}$ Peter Groenenboom, seem pleased with progress, and relaxed about the laissez-faire attitude to pal. Groenenboom, chairman of Philips HDTV steering committee, and an implacable opponent of pal has said: "The very best thing is to put an end to pal in the Directive - but life has its complications and you cannot run away from realities."
He praised the efforts of Commissioner Pandolfi in achieving what he called "order" over the last three months. The mac lobhy appears to be relying on the inclusion of new satellites as well as new channels in the D'mac requirement to ensure that pal's life expectancy equals the satellites carrying it. For most Sky channels, and others on Astra 1A, that could mean between 1998 and 2000 before they must switch to D'mac.]
BSkyB initially maintained a strict nocomment policy on the proposals, possibly covering some intensive behind-the-scenes bargaining over size of any subsidy.
However Rupert Murdoch, in Brussels for publication of the Draft Directive, expressed support for the 16:9 D'mac and pledged to introduce it as soon as possible.
The proposals were presented to the telecomms ministers of member states who have now entered an intensive period of argument over them. Britain's minister of state for telecommunications, John Redwood, has already declared his opposition not only to the compulsory termination of pal transmissions. now shelved, but also to the compulsory introduction of D^{2} mac. It would. he said. "impose unnecessary costs on consumers...and depress the market for satellite broadcasts." He also re-opened the subject of digital TV. firmly rejected as too undeveloped by the EC working group. Germany, now with a million pal dish owners of its own, robustly supports the EC line. even including the termination of pal. These differences are of less significance than those already overcome by the once bitterly opposed industry factions. Agreement will have to be reached by the autumn, since the new Directive is due to apply in January 1 1992. Already production plans for D-mac equipment are well advanced.

Peter Willis

Service is key to manufacturer survival

In the 1990). according to a recent report* from the National Economic Development Council. it is service than will distinguish between winners and losers. The key is for manufacturers to form choser links with suppliers and customers which. the report claims. can cut costs by up 10.30% and improve competitiveness.
Syucezing suppliers for short-lerm gain should be serapped. says the report. as it is far beter to build a long term relationship so that in the short and long term both manufacturer and supplier will be wimers.
Successful companies and prolucts mast now offer more thatn price, delivery and quality, delivering products that provide the most cost-effective solution to customers over the required operational life".

£9.5m fillip for UK chip research

The DTI and the Science and Engineering Research Council have made $£ 9.5 \mathrm{~m}$ available to support two innovative research and development programmes in information technology. The programmes are aimed at encouraging greater participation by smaller firms and giving research consumers a bigger say in determining the areas where technological advances are required.

DTl funding for each programme will be worth $\mathbf{f} 4 \mathrm{~m}$ and the Serc will be making an additional $£ 1.5 \mathrm{~m}$ available to higher education institutions for collaborative research in design automation.
The Advanced Silicon Technology Programme ains to improve the targeting of silicon chip research by defining requirements that cannot be addressed by current technology, and. by working closely with silicon research groups develop novel solutions. The areas expected to be addressed include: parallel processing; neural networks; high-speed/low-power; "silicon-on-insulator" techniques, and extended functionality.
The VLSI (very large silicon integration) Design Automation Programme should increase productivity and expertise in the design of electronic systems by giving UK systems companies improved tools and techniques for designing high complexity silicon chips. The programme will specifically look at high-level design, novel architectures and niche-area tools.
Both programmes complement the much larger European Esprit and Jessi programmes. These typically involve large ($£ 10 \mathrm{~m}$) projects from the mainstream silicon manufacturers and cad tool vendors.

The procedure starts at the design stage and customers should be involved from the beginning so that design hats the customer in mind. Suppliers too need to be committed at this very early stage u hich means there has to be a degree of openness and trust belu cen mandiacturer and supplier. Ideally products should be designed using joint teams.
But the report warns: "You canmot creale new relations with all suppliers overnight. Concentrate on the largest suppliers, and those components which are absolutely critical to your success".
This inevitably laads to at reduction in the number of suppliers and avoidance of multiple sources for the same product - hough the report acknowledges the dangers here

Also small and medium sized companies
thay not be able to put in the initial time. elfort training and finance to switch over to at new waly ol operating. But the report says that all companies can benefit from using at least some of the techniques it covers. and small companies have the added advantage of creativity and flexibility which the report says should be nurtured.
Suggestions are backed by a guide in how to implement the strategies as well as brief examples trom large and small companies Stage ; include amalysing the real cost of manufacture which includes the whole desigu phase, costs of unreliable deliveries, excessive inventories, poor quality and poor service, and inatecurate invoicing.
'Hinning tosedher in l/K electronices. Narional

Over 850) air force veterans who played a vital part in development and operational use of radar during World War II gathered in Coventry for their first major retuion in more than 45 years.
The unsung heroes of WWII, many of whom had worked in ground radar stations (known as Air Ministry Experimental Stations) at home and overseas, helped advatice radar techmology during the grim years. Veterans from Canada, Ansiralia and New Zealand joined their British counterparts at a banquet with their patron, Sir Bernard Lovell, FRS, as guest of houowr, and a special service in Coventry Cathedral. Three of the city's hotels held exhibitions of WWII radar equip nent, photographs and memorabilia. The reumion was largely the result of persistent efforts of a team of people over several years, led by Harry Jurd, chair of the organising committee, himself a radar operator in the North African and Italian campaigns.

Cuk converter and Labtech notebook

Two articles in the last issue - review of Labtech notebook and the article on the 60 W Cuk converter - were victims of a particularly malicious electronic publishing gremlin.
Two text boxes in the Labtech review which should have contained explanatory text instead appeared as mysterious black boxes.
In the Cuk converter article Figs. I and 2 were missing and the maths equations were corrupted and appeared in the wrong places.
We sincerely apologise to readers for these annoyances.
Any reader wanting the lost figures and correct maths for Cuk should write to $E W$ $+W W$ and we will happily send a copy of the correct, original article.

The text for the two Labtech review boxes is given below.

Dongle disappointment: First disappointment occurres carly on when lopened the product box to discover a dongle, that annoying piece of hardware plugginge into the paraltel port for protect against copying) and without which the pachage will not work.
In mu case the software only sometimes worked with it.
Software manufacturers do not seem to realise that dongles are very unpopular with users.
How many manufacturers have thought about the inconvenience caused when wos or more packages are toaded up on the PC each requiring a dongle?

Requirements: PC's and compatibles (PS2 versions available): 640 K ram: hard disc: dos 2.0 or later: graphiss card. Available from Adept Scientific, 6 Business Centre, West Avenue One, Letchworth. Herts SG6 2HB. Tel: ($\mathbf{4} 62480055$.
£ 795 plus VAT includes one manufacturer's driver and RS232 capability.

EASY-PC, SCHEMATIC and PCB CAD

Options:
1000 piece Symbol Library £38, Gerber Import facility £98

DIGITAL SIMULATION
PULSAR
£195

- At last! A full featured Digital Circuit Simulator for less than £1000!
- Pulsar allows you to test your designs without the need for expensive test equipment.
- Catch glitches down to a pico second per week! - Includes 4000 Series CMOS and 74LS Libraries
- Runs on PC/XT/AT/286/386/486 with EGA or VGA.

SMITH CHART CAD Z-MATCH II £195

-Z-MATCH II simplifies RF matching and includes many more features than the standard Smith Chart. -Handles transmission line transformers, stubs, discrete components, S Parameters etc.etc..

- Supplied with many worked examples.
- Superbly easy to learn and use.
- Runs on IBM PC/XT/AT/386/486, CGA,EGA,VGA.

For full info Phone, Fax, or use enquiry card!
Number One Systems Ltd. I
The CAD Specialists
REF: WW, HARDING WAY, ST.IVES, HUNTINGDON, CAMBS, ENGLAND, PE17 4WR.
Telephone: 048061778 (7 lines) Fax: 0480494042
International: + 44-480-61778, I'Fax: +44-480-494042 ACCESS, AMEX, MASTERCARD, VISA Welcome.

REGULARS

Optical memories that won't blind you with science

Imagine an optical storage device that can hold up 10100^{x} bits of information in a single spot the size of a pinhead. Or goggles that automatically diffuse intense light to protect their wearers from being blinded by lasers.
Such devices and many others are now a step closer to reality following the discovery of the world's first polymer having an optical characteristic previously found only in a few small. expensive crystals.
This polymer is the first to exhibit the photorefractive effect, that is. illumination by light causes electrical charges within the material to move, altering its refractive index.
The discovery was made by four scientists at IBM's Almaden Research Centre. San Jose. California - W E Moerner. Stephen Decharme. J Campbell Scott and Robert J Tweig. Since the photorefractive effect was discovered 27 years ago by Bell Laboratories, applications have been limited to laboratory demonstrations in very simple geometries, such as recording simple holograms or making optical tilters. This is largely because of the expense of the crystal. Also, the strength of the photorefractive effect in crystals is limited. Although electron donor and acceptor elements are often intentionally added to a crystal to create or enhance its photorefractive effect, a rigid crystal structure will accept only relatively small amounts of doping before it distorts, losing both the required optical quality and the photorefractive effect itself.
However, IBM scientists have suspected for about three years that it might he possible to custom-design organic polymers to be up to 10 times stronger photorefractors than crystals. They also expected that such polymers would still retain the desirable properties of being cheaper and easier to make into usable forms, especially thin films.
The team started with an epoxy polymer (called BisA-NPDA), which has a refractive index that changes when exposed to an electric field. They then added an organic photoconductor material (called DEH) used in

Safe specs: protective coatings on goggles, and high density memories are two
applications of photorefractive polymers materials that change properties in response to light passing through them.
copiers and lawer printers fo serve as the charge transport agent. The resulting polymer mixture exhibited a modest shotorefractive effect - a diffraction efficiency of 0.01 to 0.001%. Mase recently a much stronger photorefractive effect - up to 0.1% diffraction efficiency - has been achieved with a mixture of DEF and another epoxy formulation (called NNDN-NAN).

When two laser beans cross within a photorefractive material, they create a pattern of electrical charge similar to a hologram that changes the optical properties of the very material it is passing through. In some cases, this effect permits one to store 100 complete holograms or images - each containing more than one million bits of information - in a tiny volume, about $3 \mathrm{~mm}^{3}$. (3r, if coated onto

goggles, a photorefractive film could disperse a laser beam so the intense light does not damage the wearer s eyes.

Photorefractive materials can also improve the optical quality of laser imaging and optical communications devices through a property called phase conjugation. Since a photorefractive hologram can contain essentially real-time information about the optical quality of the medium the light passes through
(such as turbulent air or an imperfect lens). reflecting a signal off such a hologram back through the medium reverses the effect. compensating for any distortions along the optical path.

The IBM team demonstrated this by projecting an image through a lemonade botte and using phase conjugation to return the image to its original clarity.

Amazing what modern science can do!

Galileo in a jam

Galileo, the $\$ 1.3$ billion space mission. destined to explore Jupiter in 1995 is in trouble. On April II this year. 18 months into the flight, mission controllers at Nasa's Jet Propulsion Laboratory sent a signal commanding Galileo to unfurl its 4.8 m high-gain antenna. This Iragile. gold-plated umbrellalike structure is the means by which most of the data from Jupiter should be transmitted back to Earth.
Drive motors controlling the antenna whirred into action and the structure began to unfurl. But before it could click fully open, something apparently jammed on one side of it. Subsequently attempts have been made to unfurl this vital antenna, but at the time of writing there hasn't been any success.
Nasa are now pinning their hopes on a technique more commonly employed to free jammed car parts: they're rotating the spacecraft into sunlight so as to warm up the central post. The idea is that difierential expansion could free whatever is causing the antenna to jam. If that fails, the high-gain antenna will be moved into darkness to achieve much the same elfect as a squirt of freczer acrosol on Earth.
What's more interesting from a radio engi-
neer's point of view is an experiment to try to discover what kind of shape the antenna is in and how far it is extended. Nasa plan to turn on the microwave transmitters and then plot signal strengths and radiation patterns received here on Earth. From this information they hope to discover much more about the precise orientation of the antenna than could ever be gleaned from engineering data transmitted by the two low-gain omni-directional antennas.

Yet another approach to the problem makes use of an identical spare antenna here on Earth. Inside JPL's spacecraft assembly facility at Pasadena, a team are furling and unfurling the fragile umbrella with its goldplated mesh stretched over graphite ribs. The idea is to try to recreate the fault condition and understand why the antenna in space is misbehaving. As with the spacecraft antenna itself, this backup unit is being thermally eycled, this time to try to make it jam.
The only problem with these simulation experiments is that the Galileo high-gain antenna was never designed to be unfurled and re-folded hundreds of times. So the experiments have to be undertaken very carefully indeed.
Nasa project manager Bill O'Neil is confi-

Australia's alternative national grid
 What may prove to be the longest elec-

 tric circuit in the world has been discovered underneath Australia. A big geomagnetic survey of the whole continent (Australian Science and Technology Newsletter Vol 3 no 6) reveals a 6000 km current running from Western Australia through the centre where it divides into two branches, one flowing north through Queensland into the Gulf of Carpentaria the "gap" in the top of Australia .The path of this natural current, created by the Earth's changing magnetic field,
lies about 15 km below the surface and is up to 200 km wide. It flows through natural mineral deposits and may provide scientists with useful information on what these deposits contain.

Dr Francois Chamalaun of Flinders University in Adelaide, who did the survey, says that such underground currents may eventually provide valuable clues about the formation of oil and gas formation

Maybe they could even explain why kangaroos hop!
 target for Jupiter
dent that if nothing breaks, the antenna will eventually be fully deployed. There are. after all. four years in which to keep trying. But as a final fall-back, there's an even more ingenious idea floating around JPL: that of sending up a repeater spacecraft that would receive the signals from Galileo's damaged antenna and relay them to Earth.

What makes the idea possible is the long route currently being taken by Galileo. In order to reach Jupiter with minimum rocket power, Galileo is making use of planetary gravity to accelerate it on is way. Like a giant slingshot the spacecraft swings around Venus and twice around Earth before winging its way to Jupiter. So if a 'rescue' craft were launched directly to Jupiter it could casily catch up with the beleaguered probe.

Such an expensive solution though won't be necessary for everything Galileo is planning to do. This October. for example, it will be passing the asteroid Gaspra. In the absence of the main antenna. Galileo could record all the data from Gaspra and later play it back slowly Earth via the two small antennas. Even when it reaches Jupiter. a significant part of the mission could still be accomplished in this makeshift fashion.

No fuss No mess

These are all aspects of the intelligent home.
Yet building this kind of intelligence into your customer's

homes is no longer the difficult option.

Because now, one of the most sophisticated systems is also among the easiest to install.

The SUPERSWITCH WireLess Security Alarm System is wire free, making installation quick and clean, while being difficult for intruders to defeat.

Passive infra-red movement detectors, magnetic contacts, smoke alarms and portable panic buttons protect doors, windows and rooms, communicating with the controller by radio signals, while giving regular diagnostic status checks the same way.

The portable controller can operate 3 separate zones in one house; upstairs, downstairs, even the garage.

The system provides status indications at the controller and offers 24 hour protection using portable emergency/ganic transmitters and photo-electric smoke detectors

The SUPERSWITCH WireLess systeIn is approved by the DTI and complies with BS 6799.3.

Like the entire SUPERSWITCH range, which includes electronic time controls for domestic applications, this is a rare example of advanced technology making life simpler for a change.

So now you can plan for your customers peace of mind without compromising your own

RESEARCH NOTES

What will be lost if the big antenna isn't fixed will be the detailed inspection of Jupiter and its moons.

Properly deployed, the high-gain antenna will be able to transmit about $134 \mathrm{hbit} / \mathrm{s}$ of
data from Jupiter. At the moment the low gain antennas are transmitting about $1.2 \mathrm{hbit} / \mathrm{s}$ of engineering data, which will reduce to about $10 \mathrm{bit} / \mathrm{s}$ when Galileo reaches its destination.

Dead stars tick to lively beat

A massive dead stars circling one another at up to a tenth the speed of light. with one emitling bursts of radio pulses, constitutes the most precise cosmic clock yet discovered. This binary pulsar, code-named PSR $1534+12$ will offer an exceptionally accurate tool to study gravitational radiation of the sort described in Einstein's theory of General Relativity. Such radiation has yet to be detected on Earth. though equipment with the necessary sensitivity is currently being developed.
This binary pulsar and a single rapidly spinning pulsar were discovered by Alexander Wolszezan using the huge Arecibo dish in Puerto Rico at an operating frequency of 430 MHz . In his report (Nature Vol 350 no 6.320), Wolszczan tells how the
pulsars were revealed by analysing a mass of computer data using the Comell National Supercomputer Facility. What's special about PSR 1534+12 are the strong, sharpedged pulses that allow unprecedented measurement accuracy. The period is in fact $0.0379044403665 \pm 4 \times 10^{-13} \mathrm{~s}$.
The two stars, each the collapsed remnants of gigantic stars once bigger than our Sun. are made up of neutrons squeezed to such extreme densities that one teaspoonful would weigh a thousand million tons on Earth. Because they orbit each other at such an enormous speed, it is calculated that they should lose energy in the form of gravitational radiation. Measurement of how the pulse repelition rate of the radio pulses changes with time should enable astrophysi-

Closet engineers, where are you?

Many times in this journal I've tried, almost in vain it seems, to stimulate research into closet electronics. But judging from the marketplace, sanitary engineers are even less inclined to embrace the silicon age than their automotive counterparts. Could it be, i wonder, a result of that unique British fetish for keeping water and electricity apart - like matter and anti-matter? Or is it some deep-seated (sic) fear of what might happen when things go wrong. The most likely explanation is that elec tronics engineers, brought up on wholly intelligible and utterly genteel terminology, find the language of plumbing arcanely impenetrable. You don't believe me? Just visit the local plumbers' merchant and ask for a few screws, nipples, female couplings and sex-reversers. You won't even raise a smile.
Whatever the true reason for this technological impasse, the British public are still highly suspicious of having chips in the closet. Even to this day I notice visitors emerging from my own electric WC with a bemused grin on their faces - though to be fair it's not the technological wizardry that provokes their intrigue so much as the 22 mm exit pipe.

Worried that my evangelistic enthusiasm for bathroom electronics might be waning, the Editor recently passed me a press release from the Sloan Valve Company of Illinois. Not, as one might imagine, anything to do with upper-crust thermionics, but an organisation after my own heart. R\&D engineer Rich Kamysz bemoans that "we have a lot of electronics technology in space but little in public bathrooms". Warming to his theme, Kamysz declares: "Restrooms are the last frontier in electronics." Cool it Rich; when did you ever see Captain Spock go to the toilet?
Enough preamble. Sloan Valve have made a "quantum leap" in faucet technology (look it up in a dictionary) by incorporating a patented bendy printed circuit board into their sensor-operated lavatory faucet. Still puzzled?

Basically, it is a touchless tape that dispenses water when it sense your hands in the washbasin. Infra-red technology avoids the need for taphandles that can spread germs. (Think about it: how do you wash your hands before you turn on a conventional tap?)

Hands-off taps clearly have a great future at this final electronic frontier. But why oh
cists to test Einstein's theory with a high degree of precision.
The unique characteristics of the pulsar's radiation and the polarisation of its emission will allow scientists to study another. previously unconfirmed relativistic effect called geodetic precession. the wobble of the star on its spinaxis.
As more fast "millisecond" pulsars are discovered, astronomers will hopefully be able to combine the data and rule out measurement errors due to carthbound atomic clocks and irregularities in the Earth's own rotation. The resulting improvements in timing accuracy should then make it possible to detect, unambiguously, the ripples of ancient gravity waves that warp space-time and which change the distance each pulsar pulse has to travel to reach Earth.
Whether it will be here on Earth or 1500 light-years away in space, confirmation of most of Einstein's predictions seems close at hand... relatively speaking.

Research Notes is written by lohn Wilson of the BBC World Service

Public lavatories: the final frontier for
electronics?
why does the company list amusement parks among potential users?

lob-Volt ${ }^{\circ}$ technology teaching technology

The award-winning F.A.C.E.T. trairing system from Lab-Volt intecrates software, hardware and courseware into a complete computer based training laboratory. It combines the best aspects of manual instruction with interactive, computer based learning.
F.A.C.E.T. means Fault Assisted Circuits for Electronics Training - learning through fault simulation and circuit modification. The modular hardware allows competency based teaching in all major areas of analogue and digital electronics from basics to advanced concepts. Your training department decides the curriculum.

Please complete the coupon for further information
NAME \qquad
ORGANISATION \qquad
POSITION \qquad
ADDRESS \qquad
\qquad
\qquad
PHONE \qquad

Next year promises to be the most interesting ever for the consumer electronics industry. In the audio market, Philips and Sony will batthe for succession to the old compact cassette - Philips with its digital compact cassene (DCC) and Sony with MiniDisc (MD). In TV, the new 16:9 format wide-screen sets will become familiar items in high street retailers but, at $£ 3500$ a time. one suspects not in many sitting rooms.
Consumers themselves know least about the most innovative new product to hit the market in 1992, the imeractive CD, or CD-1.
The new audio and TV formats will simply replace consumer goodies which are already a famitiar part of most homes. CD-1, however, is something new, enabling people 10 interact with sound and pictures in a way not previously possible. Its proselytising fans - chiefly Philips and Sony who pioneered the technology - are touting CD-I as the consumer electronics flagship of the 1990s. However, cynics say that the lack of popular sofiware will consign CD-I to the same graveyard as VideoDisc and quadraphonic sound.
CD-1 combines CD quality audio with video, text, graphics and animation to create a multi-media "world" through which you can chart your own path. That world could be a sophisticated computer game, a talking, animated encyclopedia, a teach-yourself guilar book or anything else that can fil onto a

VISION OF THE FUTURE?

"CD-I will be the most significant mass market electronics product since the compact cassette." Thus speaks the Philips marketing department about interactive video technology based on compact disc. But the history of consumer electronics is punctuated with brilliant inventions which failed and indifferent ones which succeeded. Karl Schneider looks behind the corporate optimism.
compact disc. The piclure is played through a conventional TV set, with the option of routing sound through a hi-fi.
For example, an early CD-l package used extensively by Philips to show off its potential is Treasures of the Smithsonian, which lets you "walk around" the Smithsonian Museum in the US. You can choose any route through the exhibits, stopping to get
more information on one that catches your interest or, in some cases, actually playing with the exhibit via a simple two-button and joystick control pad.

CD-1 players also double up as conventional CD to play standard music records.

The lechnology is a combination of conventional $C D$, deskiop computing and digital signal processing techniques. At its heart is

Learning the alphabet can be fun when you have TV's Big Bird and his Sesame Street friends as your teachers. Educational husiness could be crucial to CD-I success.
the potential 650 Mbyte random access storage capacity of a compact disc. This opens up a new world to software developers who. until now, have had to fit their packages within a few megabytes on tloppy discs.
Other media. such as video tape. can match the CD storage capacity. But they limit access to a linear journey through the software - like a train. forced to follow the path of the trach. CD's random access allows unrelated jumps around a 650 Mbyte world at will... at least in theory. In practice, the amount of freedom of movement is limited by the degree of branching written into the software: the more branching allowed, the more difficult and time-consuming (and hence expensive) the package is to write.

The first hardware

CD-I was originally developed by Philips. an extension of its pioncering work on audio CD. The lirm published a provisional specification back in 1986. But Philips quichly opened its doors to involve other consumer electronics manufacturers at an early stage. in particular Sony and Marsushita. Standards are all-important in consumer electronics. By pulling the world's three biggest consumer electronics firms into the CD-I fold Philips hope to have put CD-1 in an unassailable position as the world's consumer multimedia format.
The first CD-I players will go on sale in the US and Japan this October, followed by a European launch in the Autumn of 1992.

Philips CD-I player includes bitsiream CD audio and photo compatibility

The industry got its first view of fully-working consumer CD-I players in May, just five months before they are due to be in the shops.
Wide variations in the styles of the players refleet the hybrid nature of CD-I. bridging the divide in most sitting rooms between the TV and VCR on the one hand and the hi-fi stack on the other. Philips player looks just like a VCR, styled to sit comfortably under a TV. Matsuslita's offering, branded with the Panasonic name, is packaged to match the company's mini audio systems. Typically. Sony has shot off at a tangent and slarted off with a portable CD-I player measuring $135 \times 54.5 \times 160 \mathrm{~mm}$, with a four inch LCD colour screen.

None of the CD-I players shown so far can provide full-screen, full-motion video (FMV) (see box). The ability to display normal TV quality moving pictures over the whole TV screen is important because it would make it possible to show feature films and pop videos on the CD-I format. as well as widening the possibilities for CD-I-specific soltware developers.
Originally FMV was supposed to be included in CD-I at its launch. But FMV reguires more than 100:1 data compression of the digital video signal before the CD-I player can deliver pictures off a disc tast enough. Developing the complex compression and decompression algorithms and chips turned out to be more difficult than anticipated. So the initial US and Japanese launches will be without FMV. However, the manufacturers maintain they will have FMV ready for the European debut of CD-I. US consumers will be able to upgrade their pre-FMV players with a simple plug-in module, they say

Software is the key

With or without FMV, everyone agrees that the availability of eye-catching, innovative

MOVING PICTURES FAST

CD-I is due to be extended to include full screen, full motion video (FMV) next year To do this requires highly sophisticated techniques to reduce the huge anommt of data that would otherwise be needed. A single TV picture contains about 1 ME of raw information and for FMV, 25 or 30 such frames have to be displayed each second. So compression ratios of several hundred to one have to be achieved to squeeze this data through CD-I's 170kbyte/s pipeline.

The MPEG compression protocol adopted for CD-I uses a combination of three techniques:
Discrete cosine transforms are used to store data in the frequency domain rather than as at signal. When the data is coded in this way, as much high frequency information as possible is thrown away.
Differencing techniques make use of the fact that many individual pixels on a screen do not change between two consecutive frames. So once one frame has been stored, the next frame can be generated by just coding the changes from the first frame.
Motion vectors reduce the amount of data needed when part of a picture is simply moved as a block between one frame and the next - for example when a car is moving across the screen. Once the data to display the car has been stored, the only extra data needed is that required to say how far and in what direction the car has moved between irames.

software will be the key factor in deciding the success or failure of CD-I. A CD-I player is merely a black box, a piece of enabling technology. The software will decide the commercial fate.
No one knows this better than Philips. In the early 1970s the company led the way in the development of a home video cassette recorder, only to lose out to the technicallyinferior VHS format. The simple truth was that the average video hire shop had shelves full of VHS tapes, a much smaller set of Betamax movies and probably hadn't even heard of Philips' eventual offering - Video 2000.

VideoDisc, Philips' analogue laser disc format for movies, suffered a similar fate. Early forecasts predicted more than five million units a year by 1990; total sales of the players never even reached the 5000 unit mark.
Scarred by these memories, Philips has taken the lead in building a network of deals and joint ventures designed to ensure that there are plenty of titles ready when the players hit the streets.
In the US Philips set up American Interactive Media, a joint venture with its
own music subsidiary Polygram. Since 1986 AIM has been developing the new skills needed to write CD-I software, and the company expects to have 50 titles on sale in the US by the end of this year.
In Europe, Philips has just formed Philips Interactive Media Europe, with a mission 10 have at least 50 CD-1 titles ready in each of the six main European languages in time for next year's European launch. Rather than developing software by itself. the new company will scour Europe searching for firms or people with ideas that can be turned into CD-I titles. PIME has been given a blank cheque to fund these projects - another sign of Philips determination not to get caught without sofiware.
Other deals include a joint publishing venture with Robert Maxwell's Maxwell Communications to make travel and lan-guage-learning software and a deal between AIM and Nintendo, the world's number one home computer game firm, to produce souped-up CD-I versions of some of Nintendo's most successful games.
In the short term, almost all the CD-I software on the market will come from companies set up on the initiative of hardware
manufacturers. But the long term aim is to encourage the development of a strong, independent CD-l publishing industry. To this end Philips has embarked on a programme to make it easier for firms to break inio CD-I title production.
Philips has its own CD-I production studio in Dorking which it is using as a facilities house, allowing outside firms access to its equipment and, more importantly, its CD-I software experts. The company is also making available a series of authoring tools for use on Sun, Apple Macintosh and IBM PC computers which turn text, images, sound and control instructions into CD-1 code. The most ambitious package, called MediaMogul, is designed to enable people with no computing experience to produce complete CD-I titles from scratch.

Unopposed system?

The establishment of CD-1 as a standard and the hand-building of a new software industry are particularly crucial because CD-I does not have the market to itself. Commodore, the US games computer maker, has already launched a rival system called CDTV based on its Amiga computer. Like CD-I, the soft-

CD-I IN THE CLASSROOM

This page shows screen images from Spin UK's Education Demonstration Disc. The disc is aimed at pupils aged 11 to 14 taking the Mathematics and Science National Curriculum. The disc encourages children actively to participate in the learning process

SCREEN 1

SCREEN 2
by allowing them to view audio-visual essays and then test their knowledge using interactive simulations.

CD-1 employs a remote control or a mouse in order to point and click on icons displayed on the screen.

SCREEN 3

SCREEN 4

Screen 1 shows the initial screen which represents a classroom. The background contains a blackboard for text on the left and display screens for images on the right. The midground contains a table with three books. The foreground contains a bar with the fol-

SCREEN 5

SCREEN 6

THE SOFT SELL

Until this vear there were only two CD-I soft ware titles that anyone had seen working fully - a golf game and the Smithsonian museum guide. But at last new packages are beginning to come off the production line of AlM, the joint venture company set up by Philips and Polygram to develop and commission CD-I software. Other companies will have titles ready before the end of the year.

Children's titles feature strongly in the cat alogue of AIM discs ready now. There are two Sesame Street packages, which use Muppet characters to teach children about numbers and letters. Children can learn the alphabet with Big Bird in his nest, read a story with Bert and Ernie or play number games with the Count in his castle.

With Cartoon Jukebox children can colour in characters in animations based on nursery rhymes, with a separate segment that lets them isolate each instrument and voice in a

Dixieland band to see how each part fits into the whole. Children's Musical Theatre allows children to compose a song by choosing from a total of 15,000 possible lyric changes, and then watch it being performed in either rock, classical or country style by a group of animated performers.
A far more ambitious title, Sandy's Circus Adventure, is an interactive storybook that lets children decide the way the adventure unfolds, by choosing from a selection of possible outcomes at key junctions in the story.
For adults there are serious titles, such a teach-yourself photography course that includes 25 interactive workshops on different photographic techniques using examples from three leading photographers. A novel camera simulator turns the TV screen into a camera viewfinder and lets you take practice shots of a selection of still or moving images, adjusting the field of view and shutter speed
to see how they affect the resulting image
But the main emphasis is on entertainment. Caesars World of Gambling features blackjack, slot machines, craps tables and a roulette wheel, with full sound effects but without the financial risk. The programme can keep track of the winnings and losses of up to 12 players, and gives tips on how to improve your game for persistent losers.
By far the most impressive game shown so far is Escape From Cyber City, a futuristic action adventure game in which the player has to battle his or her way out of a city full of robots, mutants and other nasties.
Other titles which are in production and are due out this year include a backgammon game, a gardening guide, jigsaw puzzles, atlases, a guide to astrology, an interactive TV game show and a host of new role playing games.
lowing icons: bookmark, calculator, pencil, magnifier, go back, pause, play, help and tutor help.

Science

Screen 2 shows the result of clicking on the

SCREEN 7

SCREEN 8

Science book in order to open it. The screen is a menu allowing access to various sections. Screen 3 shows the result of clicking on the Eye Structure icon; by pressing Play the AV essay starts. Screen 4 shows an image from midway through the essay. As the audio

SCREEN 9

SCREEN 10
commentary proceeds the images in the video screens change, and keywords are added progressively to the blackboard. The pupil will be able to click on a keyword to receive more information on the topic.
Screen 5 shows an image from the Eye Focus essay; in this section a full screen display is used to allow the illustration of complex images.

Mathematics

Screen 6 shows an early shot from an essay explaining the use of distance versus time graphs. The relationship between the two variables is demonstrated by showing a car travelling along a road. In Screen 7 the concept of the graph is introduced in order to relate distance to time as the car travels at a constant speed.

In screen 8, at the end of the essay, two graphs are superimposed in order to predict when the car will overtake a walker.
Screen 9 ilustrates the interactive simulation which follows the graphs essay. It shows the pupil opening one of the film cans in order to insert a film clip into the strip on the left. Once the film has been assembled it can then be played with the display showing moving video in the right hand window and a simultaneous animated graph in the left hand window.

Languages

Screen 10 shows a shot from an essay on the electromagnetic spectrum. In this part of the disc the pupil is able instantly to switch between the three languages shown.

CD-I hardware is based around Motorola's 68000 family of microprocessors, controlled by a variant of the Microware OS9 real time operating system. The microprocessor controls data flow around the system and interprets CD-I commands in real time.
Surrounding the microprocessor are four sets of dedicated chips, each handling a different job. CD drive interface and control chips run the $C D$ mechanism, recognising different types of data on the disc and controlling the flow of data from the disc. They separate out control information from the data stream, which is then passed on to two sets of digital signal processing chips, one for audio and one for video. The last set of chips perform I/O, controlling a wide range of possible peripherals including infra-red remote controls, joysticks, keyboards and displays.
At present it takes around 100 separate chips to perform all these tasks: Motorola aims eventually to integrate all these functions onto a single seven millimetre square
ware comes on standard five inch compact discs. but coded in a way that is incompatible with CD-I. CDTV will also play standard audio CDs. The hardware went on sale in the US in April and is already in some branches of Dixons in the UK.
Because it is based on older technology, CDTV is inherently more limited and runs incompatible, less sophisticated sofiware. More importantly CDTV is a proprietary system. Commodore is the only company making players. With standards so important in consumer electronics. this could deter customers. It atso makes it harder for Commodore to persuade software firms to write for CDTV.
chip, containing around two million transistors and costing less than ten pounds. In addition, each player has a minimum of 1 Mbyte of ram for fast-access memory.
Each compact disc can store about 650 mbyte of information, held in blocks each just over 2 Kbyte long. These blocks come in two types. Type one, for control and text data, carries header information to identify the data type, 2048 bytes of data and then some error correction information. The second type, used to carry audio and video information, does without the error correction data to give 2230 bytes for storage. The two types of data can be interleaved at will on a single CD track, so control data, text, audio and video information can all be read from the disc simultaneously.
The main limiting factor for CD-I applications is the rate at which this data can be read from the disc as it rotates at a constant speed: for CD-I this rate is set at $170 \mathrm{Kbyte} / \mathrm{s}$. Writing CD-I software is a balancing act,
trading off picture quality, sound fidelity and frame rate to fit within the data rate. To make this possible, the CD-I standard includes four methods for picture encoding and three for sound encoding.
Picture encoding methods range from DYUV which can code 16 million different colour tones to show photographic quality pictures, to run-length encoding which can handle just 128 colours and is ideal for simple animation. The four sound encoding techniques give music quality ranging from full CD digital audio to AM radio broadcast quality, suitable for speech. So, for example, full CD quality music can be played while accompanying text is overlayed on a still background.
Alternatively, one could have a slide show of high quality still pictures with a spoken soundtrack in a choice of several languages. A third option would be to show a partscreen TV-quality video sequence with AM broadcast-quality music.
with CD-1 is that CDTV is in the shops now, whereas CD-I is not.
Intel, the US microprocessor firm, is also believed to be considering a consumer version of its digital video interactive (DVI) format, al present used only for commercial applications.
By the time CD-I is launched in Europe, consumers could find themselves faced with three incompatible interactive multimedia formats to choose from. Some observers see a rerun brewing of the VHS, Betamax. Video 2000 battle fought in the late 1970 s .
Is there a mass market at all for consumer multimedia? Certainly with the existing software and at the expected starting price for a player of around $£ 700$ lew people expect more than a minority of techies to splash out on CD-I in the first year or so. The market after that is in the hands of the sofiware developers. Some say what is needed is a "killer application", a winning CD-I title that is strong enough by itself to persuade punters to buy a player.
The education business could provide a firmer foundation. Interactive video scems a near ideal teaching medium, demanding from the student an intellectual involvement denied to passive video aids. Take a chemistry lesson for example. The branching in a CD-l presentation might depend on student predicting the results of a chemical experiment. Presented images might show the formation of a coloured precipitate if correct. or a clear solute if wrong. etc.
Should the price falls sufficiently, CD-I could take off through its conventional CD capabilities. People looking to buy a CD player may be persuaded to pay a premium to get CD-I thrown in as well, as long as the premium is not too high.

Take the Sensible Route!

BoardMaker is a powerful software tool which provides a convenient and fast method of designing printed circuit boards. Engineers worldwide have discovered that it provides an unparalleled price performance advantage over other PC-based and dedicated design systems by integrating sophisticated graphical editors and CAM outputs at an affordable price.

NEW VEREION

In the new version V2.40, full consideration has been given to allow designers to continue using their existing schematic capture package as a front end to BoardMaker. Even powerful facilities such as Top Down Modification, Component renumber and Back Annotation have been accomodated to provide overall design integrity between your schematic package and BoardMaker. Equally, powerful features are included to ensure that users who do not have schematic capture software can still take full advantage of BoardMaker's net capabilities
BoardMaker V2.40 is a remarkable $£ 295.00$ (ex. carriage \& VAT) and includes 3 months FREE software updates and full telephone technical support.

A UTOROUTER

BoardRouter is a new integrated gridless autoroute module which overcomes the limitations normally associated with autorouting. YOU specify the track width, via size and design rules for individual nets, BoardRouter then routes the board based on these settings in the same way you would route it yourself manually.
This ability allows you to autoroute mixed technology designs (SMD, analogue, digital, power switching etc)in ONE PASS while respecting ALL design rules.

CFDLESS ROUTHG

No worrying about whether tracks will fit between pins. If the track widths and clearances allow, BoardRouter will automatically place 1, 2 or even 3 tracks between pins.

FULLY REFENTRANT

You can freely pre-route any tracks manually using BoardMaker prior to autorouting. Whilst autorouting you can pan and zoom to inspect the routes placed, interrupt it, manually modify the layout and resume autorouting.
BoardRouter is priced at $£ 295.00$, which includes 3 months FREE software updates and full telephone technical support. BoardMaker and BoardRouter can be bought together for only $£ 495.00$. (ex. carriage \& VAT)

Tsien (UK) Limited Cambridge Research Laboratories 181A Huntingdon Road Cambridge CB3 ODJ UK
Tel 0223277777
Fax 0223277747

Full analogue, digital and SM support - ground and power planes - 45 degree, arced and any angle tracks with full net-based Design Rule Checking.

Optimized placement by displaying ratsnest per component. Lines indicate the unrouted nets.

HIGHLIGHTS

- Net list import from OrCAD, Schema etc.
- Graphical and manual netlist entry
- Top down modification for ECOs
- Forward and back annotation
- Component renumber
- Effortless manual routing
- Fully re-entrant gridless autorouting
- Simultaneously routes up to eight layers
- Powerful component placement tools
- Copper fill
- Curved tracks
- Extensive Design Rule Checking
- Full complement of CAM outputs
- Support and update service
- Reports generator
- Gerber, PostScript \& DXF output
- Full SMD support

Don't just fake our word for it. Call us foday for a FREE Evaluation Pack and judge for yourself.

Telequiloment D755-50Mcis oscilloscopes - tested CW probes - manual - $£ 250$

 Marconi T F2008-AM. FM signal generator - Also sweeper - 10 KCls - 510 MC s - from $£ 350$ tested to $£ 500$ as new with manual - probe kit in wooden carrying box $-£ 50$.HP DC Current source type $6177 \mathrm{C}-£ 200$.
HP Frequency comb generator type 8406A - $£ 400$.
HP Sampling Voltmeter (Broacband) type 3406 A - 5200
HP Sampling Voltmeter (Broacband) type 3406 A .
HP Vector Vollmeter type $8405 \mathrm{~A}-\Sigma 400$ to $£ 600$.
HP Oscllioscope malntrame type 182C $£ 200$ - 180A £100-180C £120-1800 £140
HP Frequency counter type $5325 \mathrm{~B}-40 \mathrm{GHzS}-£ 5500$.
HP Syntheslser/signal generalor type 8672A-2 to $18 \mathrm{GH}_{2} \mathrm{~S}-\mathrm{£} 6000$
HP Network Analyser type 8754A - HP 8502 A test sel - E 4000 .
HP 8505 A network analyser $-500 \mathrm{Kc} / \mathrm{s}-1.3 \mathrm{GHz}+$ HP8502A test set $-£ 5500$.
HP 8640 A signal generator - OPT $001-002-5 \mathrm{Mc}-102 \mathrm{~s}$.
HP 8640 A signal generator - OPT $001-002-5 \mathrm{Mc} / \mathrm{s}-1024 \mathrm{MC} / \mathrm{s}-£ 1000$.
HP Oscillographic recarder
HP Oscillographic recorder lype 7.
HP Plotter fype $9872 \mathrm{~B}-4$ pen - $£ 300$.
HP Power Meter type 431C to 18 GHz with c type head 8 waveguild head - $£ 150$ to $£ 20 \mathrm{C}$ HP Sweep Osclllators type $8690 \mathrm{~A} \& \mathrm{~B}$ - plug-ins from 10 Mc cs to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R HP SIgnal Generators type 612-614-618-620-628-frequency from 450Mc/s to 2. GHz HP Signal Generators type $8614 \mathrm{~A}-8616 \mathrm{~A}-800-2400 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 600 \cdot \mathrm{E} 400$.
HP Network Analyser type $8407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-8$ HP Network Analyser type 8407A $+8412 \mathrm{~A}+8601 \mathrm{~A}-\mathrm{R} 00 \mathrm{KC/s}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{\$ 1000}$
 HP 432A-435A or B Power Meters + Powerheads - $10 \mathrm{Mc} / \mathrm{s}-40 \mathrm{GHz}-£ 200$ - $£ 650$.
HP Down Converter type $11710 \mathrm{~B}-.01-11 \mathrm{Mc} / \mathrm{s}-£ 450$ HP Pulse Modulator rype $11720 \mathrm{~A}-2.18 \mathrm{GHz}-£ 1000$ HP Modulator type 8403A - $£ 100-£ 200$.
HP PIn Modulators for above-many different frequencies - $£ 150$ HP Power Meter type 435A (no nead) - $£ 1$ HP Counter fype 5342A - 18 GHz - LEO readout - L 1500 HP Signal Generator type 8640B - Opt001 + 003-5-512Me/s AM FM - $£ 1200$ HP Frequency synthesiser type $3320 \mathrm{~A}-.01 \mathrm{~Hz} 1013 \mathrm{Mc} / \mathrm{s}$ - 0 pt 001 - E 250 HP Time synthesiser pulse generator type $5359 \mathrm{~A} /-10 \mathrm{Mc} / \mathrm{s}-£ 400$ HP 37555-3756A - 90 Mcis Switch - $โ 500$
HP Distortion Analyser type $331 \mathrm{~A}-£ 150$.

HP Frequency Counter type $5340 \mathrm{~A}-18 \mathrm{GHz} £ 1000$-rear output $£ 800$
 HP 8410-A - B - C Network Analyser $110 \mathrm{MC} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and displays Used in this set up -84 na $-8412-8413-8414-8418-8740-8741-8742-8743-8746-8650$. P.O. HP Slgnal Generator type $8660 \mathrm{C}-1-2600 \mathrm{MOS}$ S. AM FM $-£ 3000$
HP SIgnal Generator type $8656 \mathrm{~A}-0.1 .990 \mathrm{M} / \mathrm{s}$. AM/FM $-£ 2250$
HP SIgnal Generator type 8656A-0.1.990M / S. AM/FM- $£ 2250$.
HP 3730 B - HP3736B Down Conventor Main lame - $1.7 \mathrm{GHz}-4.2 \mathrm{GHZ}$ PI - $£ 500$
HP Counter Maintrame rype $8345 \mathrm{~A}-£ 400$.
HP 8699B Sweep PI- 1 1-4 GHz £750-HP8c90B Maintrame $£ 250$
HP Digital Voltmeter type 346 A
HP Multimeter rype $347 \mathrm{~A}-£ 300$
HP Multi-FX LCR Meter fype 427
HP 9000-216 Computer \rightarrow HP9121 Dual Disc Drive - $£ 350$.
Tektronlx Oscllioscope type $2465-300 \mathrm{Mc} / \mathrm{s}+$ Book $\&$ Probe
Racal'Oana digltal multimeter type $5001-£ 250$.
Racali/Dana Intertace type $9932-£ 150$
Racal/Dana Interface type $9932-£ 150$
Racal'Dana G FIB
Racal'Vana GPIB Inlerface fype $9934 \mathrm{~A}-\mathrm{E} 100$.
Racal'Oana TImericounter type 9500 (9515 OPT42) - 1250Mcis - 5450
Racal Frequency standard geverators type MA259-600 KC/s - $1 \mathrm{MC} / \mathrm{s} \& 5 \mathrm{MC} / \mathrm{s}-£ 200$ Racal HF Drive Unlt 16 to 25M1/s type 1724 - brand new - $\{200$ Racal MF Drive Unit type $1720-1 \mathrm{Mc}$ to ROMM/s - $£ 150-\mathrm{E} 250$.
Racal Dana 9301A-9303 RF Millyultmefer - $1.5-$-2GHz - $£ 350-\mathrm{C} 750$
RacaliDana Counters 9915 M - 9916 - 9917 - 9921 - $£ 150$ 10 £450. Fitted FX standards.

EIN 310 L . RF Power Amp - $250 \mathrm{KMz}-110 \mathrm{Mc} / \mathrm{s}-500 \mathrm{DS}-£ 250$
Adret Signal Generator type
Gould Oscilloscopes type 0 S $300-20 \mathrm{Mc} / \mathrm{s}$ - as new - with book and prodes - $£ 180$
Marconl AF Power Meter type 8938- $£ 300$.
Marconi Brldge type TF2700- $\mathrm{Cl}^{2} 50$
Marconl Attenuator type TF2163S - IGMz - £250.
Marconi/Saunders Signal Sources type +60588 - 6070 A - 6055B - 6059A - 400 to 18GMzS. P. O.R. Marconl TF2015 Signal Generators - 10Mnz-520MCS - AM FM - 2250
scillators - $£ 100-£ 300$
Marconl mlerowave 6600 A sweep osc. malnkame with $6650 \mathrm{PI}-18.26 .5 \mathrm{GHz}$ or $6651 \mathrm{Pl}-26.5-40 \mathrm{GMz}$ M1000 or Pl only $£ 600$.
 Marconl 6700 B sweep mainframe + PI $6790 \mathrm{~A}-.01$ Thurlby convertor 19 -GP - LEEE-488-โ150
Pullips loglc multimeter rype PM2544- 1100
Microwave Systems MOS/3600 Microwave frequency stabilizer - 1 10 18 GHzs \& 18 10 ACGHzs - 1000 Mlcrowave Systems MOS5 Minowave frequency stabilizer - 110 18GHzs \& 18 to 40 GH 2 s - $โ 200$ Bradley Oscilloscope callorator rype 156-£150
Bradley Osclloscope calbrator rype $192-£ 500$
Tektronix Plug-ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7010-7S12-S1-S2-S6 - S52 - PG506-SC504-SG502-SG503-SG504-DC503

Altech Stoddart recelver type 17/27A - $01-32 \mathrm{MCLS}-£ 500$
Alltech Stoddart recelver type $37 / 57-30-1000 \mathrm{Mc}$ - -5000
Alltech Stoddart receiver type NM65T - 1 to 10 GHz - $£ 3000$
Gould J3B Test oscillalor \rightarrow manual - $£ 200$.
Ferrograph recorder test sers - RST2 $-£ 100$
Ferrograph recorder test sets - RST2 - 100
Image intensifiers-ex MOD - tripod fitting for long range night viewing - as new- $£ 4500-£ 2000$ Thermal imaging Equipment - high definition - complete in transifcase - $£ 1000$.
Don 10 Telephone Cable y $1 / 2$ mile canvas containers or wooden dtum - new - Mk2.3 or 4. P.O.R. B \& K 2019 A nalyser - 2305 level recorder - 2425 meter - 4220 pistop phones elc. P O P ACL. Field intenslty meter receiver type SR - 209-6. Plugs-Ins prom \$ MCis to 4 GHz - P.O.A SInger EMA910-11 data evaluation unit - EMA910-10 FX selection units - EMA910-12 FX selection units1GHz.26 5M-3Hz total FX coverage- $£ 2000$
Systrom Donner Counter Model $6053-3 \mathrm{Gnz}$ - $£ 300$.
Systrom Donner Counter Model $6057-18 \mathrm{Ghz}$ - $\$ 800$

Chiark Air Masts - Heary Duty - Type Scam - 40tion 704 - $£ 200-\mathrm{E} 600$.
Tektronlx 491 spectrum analyser $-1.5 \mathrm{GHz}-40 \mathrm{GHz}$ - as new $-£ 1200+$ manual Tektronly Mainitrames - 7603-7623A-7633-7704A-7844-7904-TM501-TM503-TM506-7OR Tektronlx Oscllosccpes - 465B-466-475-475A-485-2215-2235. P.O
Knott Polyskanner Knott Polyskanner
Alltech 136 Preciston test $\mathrm{RX}+13505$ head $2-4 \mathrm{GHz}-5350$
Altech 136 Precisiqn test $\mathrm{RX}+13505$ head 2-4GH2
SE Lab Eight Four - FM 4 Channel recorder - $\mathbf{2 0 0 0}$
Ailtech 757 Spectrom Analyser -00122 GHz - Digital Storage + Readout - $£ 5000$ Oranetz 606 Powe line disturbance analyser - $\mathbf{- 5 0 0}$
Precislon Anerold barometers- $900-1050 \mathrm{Mb}$ - mechanical dignt readout with electronic indicator - battery powered Housed in polished wood carrying box-tested- $£ 100-£ 200$ - $£ 250$. MK 1, 2 dr 3.

Teklronix Spectrum Analysers 7 Lel2 10-1800mcis -7L13 $10-1800 \mathrm{mc}$.
B a K Sound Le vel Meler type 2206- small - lightweight - precision - $1 / \mathbf{2}^{\prime \prime}$ microphon filled brief type carning case with windsheld $\&$ battery \rightarrow books \rightarrow pistol prio handle 88 K 2206 Meter - Mike - Book - less carrying case etc. - 1145 . Carr CB. DISCOUNT ON OUANTITY.

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. TeI. No. (0274) 684007. Fax 651160.

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

ALL PRICES PLUS VAT AND CARRIAGE
86 Bishopsgate Street, Leeds LS1 4BB Tel: 0532435649 Fax: (0532) 426881

CIRCLE NO. 129 ON REPIY CARD

FIBRE-OPTICS EDUCATOR

Versatile training equipment for education and industry.

FIBRE-OPTICS POWER METER

dBm and $\mu \mathrm{W}$ scale; battery life 500 hours.

FIBRE-OPTICS MONITOR

For continuity testing and voice comms.

For further details contact:

ELLMAX ELECTRONICS LTD., Unit 29, Leyton Business Centre, Etloe Road, Leyton, London, E10 7BT. Telephone: (081) 5390136

Developing situations

Abstract

The chips are down. Changes in microprocessor development systems have mirrored changes in the microprocessors. But today microprocessors are being designed with on-chip facilities that help the designers of development systems. We have gone full circle. Steve Rogerson traces the events.

T-oday's microprocessor development system (MDS) is a much different animal from the early 8bit machines, but then again microprocessors themselves have come a long way since then. The whole history of MDS has been driven not by its own dynamic but by the technical changes in microprocessors and the demands of a much more open marker.
The original thit microprocessors had no dedicated development systems. They didn't need them. they were very simple and slow and had small programs. It was only with the introduction of 8bit devices that the increased complexity meant that some form of MDS was needed. In those days the tool of the trade for digital circuits was the logic analyser.
The early microprocessor manufacturers started to sell their own development syslems for their own chips. So if you had an Intel chip. you had to have an Intel development system. They were expensive bulky devices and totally dedicated to one task. And the engineer with two microprocessors
from different companies had to have two of the beasts. Large instrumentation companies like Tektronix and Hewlett-Packard also produced sone MDS machines.
Tektronix became the leader in these alternatives that were based on Vax type machines. Compiler and assembler software was developed for the Vax and an emulator system would be used for debugging.

The Blue Box

The antiques from the manufacturers were originally paper tape based with information being fed in by teletype machines. The first to switch to floppy disk drives was the Blue Box from Iniel. probably the most famous of all the carly development systems and typical of most of them.

The Blue Box was really a dedicated form of PC and could have five or more 8 in floppy drives piled up on top of it . Later ver-

Microprocessor development environment, as seen by Applied Microsystems.

sions had the option of a hard disk drive but the high expense of this limited the take up. It was a Multibus I based product and things like in-circuit emulators took the form of one or two plug-in cards.

The result was a large Blue Box with a big fat cable that plugged into the target system. Software was written using an editor on the system. The user would then have to assemble it and download the program through the emulator. The system was tested in the target. P'rom programmers were also dedicated to the Blue Box. They were separate units connected by a socket in the back of the box.

Emulator progress

The next stage was when some companies started making emulators that were independent of the host computer and with the advent of the PC this potential became realised in the early 1980 s. This was really the biggest change. It broke the monopoly that the chip manufacturers had in development systems.
Emulators started to take the form of PC plug-in cards. Later products were developed for CAD machines like the Sun workstation. A large number of Blue Boxes ended up in skips.
The first emulators were test instruments for the production and service environment and it took about two years before development facilities such as breakpoints started to appear. A breakpoint is the point where the emulator is programmed to stop the chip working. The trigger can be anything from a variable taking a certain value to more complex things like a loop having been performed a set number of times when a variable in at a certain value. Trace memory lets the user trace the way the microprocessor
has executed the code up to and including the breakpoint.
A number of firms have emerged to service the PC based MDS business. This has led to a major change in attitude by the chip makers.

At first the emulator manufacturer had to wait for silicon to appear before designing the MDS. Today the chip makers approach the emulator firms before they have silicon. For example Motorola gave all the necessary information to build an emulator for the 68020 to Applied Microsystems before the chip was launched. This was obviously an advantage for both companies. It meant Applied Microsystems had its product out early and Motorola could tell its potential customers that it had the development tool ready.

Intel did a similar exercise with the 1960. even supplying the bond-out technology. something it once would have guarded jealously (bond-out technology is a way of setting complex and sequential breakpoints on events that occur outside the cache). In fact the chip makers actually go out and encourage people to use their once closely protected tools. This is partly because chip makers no longer want to do it all themselves and partly because having a range of development tools available helps sell the chips.

Software development

Initially the Blue Box ran on Isis, Intel's own operating system, and the forerunner of CP/M. When PCs appeared they were cheaper than the Blue Box so some firms started to produce Isis simulators that let the

PC run lsis programs. Such simulators were still widely used as recently as four years ago.
But it was really about 1986 when the PC became the preferred development system and serious programs for development started to appear. Improvements such ats colour and windows have boosted this popularty but it is really the software changes that have given the real impetus to development.
As chips moved up to 16 bit. the project that needed to be tackled had grown enormously. The size of the address bus had been doubled. and there was a larger amount of code that the microprocessor could access. The speed was increasing. All of which put the MDS companies in a whole new ballgame. For example, if in a system a certain variable takes the value of, say. 10 then this might mean the system has failed. So the easiest way to determine fature is 10 set that as a breakpoint. You can then stop the chip and see how it did it and trace what happened leading up to the failure. A lot of 8 bit machines had no sophisticated debugging facilities. If something went wrong it was literally a matter of looking through the listings to find the problem. But because lobit chips are so much more complex it is inefficient to do it that way. Using a logic analyser and a monitor is a possibility but an emulator has to combine the facilities of both and be transparent. A monitor interferes because its operation has to be built into the code.
Another task the software has taken on successfully has been improving the user interface and windows has been one of the
great steps forward. One window. say. can show the source code in C. another will show variables relevant to the task being performed. And another may have a set of commands. Previously you just saw a load of machine instructions but in the last five years giant strides have been made to improve this interface.
This is illustratted in the cost ratto of an MDS. Ten years ago the soliware and hardware cost about the same. Now soltware costs about four times as much as the hardware. and this is only partly due to hardware cost lalling - as said the PC was cheaper that the Blue Box. The main reason is thatt. despite some hardware improvements. much more development effort is in software.

Early systems were command line driven. The user typed in a command and if it was wrong then it would shou an appropriate message on screen. Now s!stems are available that if you start to type a command then all the options are shown along with lull syntax and help facilities.

Source level debugging

One of the biggest improvements has been source level debugging. Before this came along users had to dehug in hex, so trying to lind out what was wrong was difficula. Bua today most code is written in C' and not assembler. With source level debugging you see the full code on sereen complete with breakpoints. The user sees the whole high level language line rather than just a line of assembler. There are still some systems without this feature, but it would he an unwise engineer who would buy one.

RANGE WITH NO LIMITS

Many new MDS products have come on to the market in recent times. This account is by no means exhaustive but will give an idea of the range of types of equipment that potential users can get their hands on.
One interesting item is the METAi from Crash Barrier. This consists of an editor, assembler, serial communications and debugger and is for use on a PC. A disassembler and various utilities are supplied as separate programs as is an eprom emulator package. (For more details on METAi, see EW+WW, February 1991.)
Pride of place in the Nohau family goes to a twinned pair of in-circuit emulators - the Emul $51-\mathrm{PC}$, for 8051 products, and the $68-\mathrm{PC}$, for 69 HC 11 chips. Both consist of a board that plugs in the back of the PC. There is also an optional board with extra trace functions and trigger capabilities. The pod is connected to the board by 1.5 m
of ribbon cable.
This architecture means there are no external boxes or power supplies to clutter the workbench and no serial channel to slow down the emulation process - a 16 K object and symbol file can be loaded in 4s.

The user interface has pulldown menus, mouse support and on-line help facilities. Windows give up-to-date information on variables, symbols, registers and memory areas. The 51-PC allows for source-level debugging in C, PL/M or Pascal, and the 68-PC in C or Modula-2. The screen window will show either the source or the assembly code. Breakpoints can be marked directly in the source code window.

The optional trace board makes it possible to record the program flow in real time. Up to 16 K source lines can be captured, and a trace filter can be used to trace only selected functions or, say, only interrupt
functions.
Also from Nohau, Mutek and MQP is Ecal, an assembly language development system for $4,8,16,32$ and 64bit microprocessors. It is a crossassembler that contains editor, macro assembler, linker, loader and source level debugger.

The Softaid CodeStalker incircuit emulator for 32 bit processors runs in all 386 modes - real, protected and virtual 8086. Zero wait state operation at 33 MHz is standard. Breakpoints can be set on C source lines, trace data displayed in the original source, and all debugging performed in the same context as the code was written. A fibre optic link lets programs be downloaded at 250Mbyte/s.

Top of Applied Microsystems range is the EL3200 in-circuit emulator which has recently been upgraded to let it work with Intel's i960 32bit RISC microprocessor. It works on a

Sun, PC or Decstation and includes C compiler, assembler, disassembler, and source level debugger. It also supports full symbolic debugging for assembly language.
The firm also has available its EM series emulators for 8bit chips and its ES1 800 units for the 8 or 16 bit 68302 microcontroller.

Chip maker Intel no longer does its Blue Box but it does have a range of development tools ranging from in-circuit emulators to evaluation boards, including an emulator for the 1960. Its breakpoint capabilities include execution address, instruction type, bus read/write /access, and data value. It works on a PC and provides emulation at up to $20 \mathrm{MHz}(25 \mathrm{MHz}$ optional).

The firm also has a range of software debuggers for the 1960 which have full symbolic debugging with source level display to allow C or assembly

Nohau's 68-PC ICE for 69HC11 chips offers pull-down menus, mouse support and on-line help facilities.

For some products though you have to work at assembler level. On chips like the 286 and 386 about 95% of MDS work is done with the high level languige, but for single chip microprocessors like the 805l it is more half and half assembler and C. It really depends on the application.
For example, take an 8051 operating an ABS braking system. Here everything has to be done very quickly and C is a bit distant to do that. For processing large amounts of data using the 386 the MDS needs to be quich but not real time.
Bassically with a single chip. if you press a button something happens immediately but data processing does not have to be in real time so the simulation to check it also does not have to be real time.
If the user loads the code into a real chip and lets it go, the only way to keep track of what it is doing is in real time. An in-circuit emulator works by taking out the chip and plugging in a pod: the pod replicates the chipexactly and runs the code exactly.
The chip in the pod will be a special bit of silicon with fast memory next to it to capture each clock on the bus so that when you stop it. you can sece exactly what is happening and has happened.
This is tairly complex electronically but it does let the user see what is happening in real time and, for many applications, this is what is needed. However if you have a picture processor that does not have to be in

real time, you can then run through the program, instruction by instruction. th is not real time but it is cheap. It is really a softuare motel that you can buy on a disk.

Evaluation boards

Another option for users is the evaluation hoard which contains the processor and a bloch of memory. The input and output pins from the processor are brought out to connectors on the edge of the board. It allows a user to play with code and test benchmarhs to see if the basics of design are right. It suits empirical exereises and it has also found use in colleges for educational purposes.
Evaluation boards are not true develop-
ment lools but they are cheap and important and some people have laken them a long way. When you run code though them they will not provide the same facilitios ans an incircuit emulator. This is because the software is also running other things from the board such as a monitor. so there is a certain amount of intrusivencos.
While changes in development systems have followed changes in silicon. there is now a certain amount of reciprocity. When looking att code the user wants to go somewhese and stop. Hardwate in the form of an emubator looks at what has happened. But some of that hardware is now being pout on the silicon, for example registers and facilities to let the chip ran one instruction at at
code debugging. Breakpoints can be defined symbolically using module names, procedure names and line numbers.

Evaluation boards and educational tools are also available from Flight Electronics including boards for the 68020 and Inmos transputer.

A software analysis workstation from Cadre comprises głobal trace, local trace, performance measurements and verification tools and works with assembly and high level languages. It will show how code behaves during real-time execution in the target system. It supports 8,16 and 32 bit microprocessors.

Zax sells the ICD and ERX series of emulators covering a range of microprocessors including the Z80, 68000, 80186, 80286, 80386 and 60030. The ICD has 25 and the ERX 70 resident debugger commands. Upgraded versions of the ERX have more than 100 commands.

Development tools from Smart

Communications include: the Promulator that will emulate any ROM up to 8Mbit and has the facility to download a 512 kbit file in less than 10s; SCMA crossassembler for 8 bit
microprocessors; simulators for writing and testing software before the hardware is reacly; disassemblers for recreating software, automatically substituting defined label names, and inserting supplied commands; cross-compilers supporting C and Pascal tor microprocessors and controllers; in-circuit emulators for the 8051, $68 \mathrm{HC1} 1$, TMS77C82 and MELPS 740 ranges; and a range of other development tools for the 8051 and MELPS 740.SDE from Dataman is a universal dssembly language development system, a PC-based editor, macroassembler, linker, loader and source level debugger in one system.

Microprocessor source code can be generated in the dual window editor, and then the
written code can be assembled, linked and loaded into the target system with a single key press. The PC-82 from Citadel can program single chips without using adhapters. It can handle PALs, eproms to 4 Mbit , proms, $8751 \mathrm{~s}, 8748 \mathrm{~s}$, GALs and PEELs. It is for use with a PC and the software includes a screen editor, hex and extended hex to binary conversion programs, two and four-way file splitters, and hardware test programs.
Stag's VSDS software development system contains a dual window editor, serial communications package and source level debugger. Its nacro assembler can assemble more than 50 different
microprocessors. There is a single universal linker for instruction sets supporting named segments and unrestricted external arithmetic
NEC has recently introduced a development kit for the V25 single-chip microcomputer that can be used with any PC
compatible computer. It comprises an in-circuit emulator, real-time trace board, C compiler, and high-level cross debugger. It allows symbolic debugging of the software and functional evaluation of the target hardware.
One of the leading development systems is Trace 32 from German firm Lauterbach Datentechnik and available from Noral Micrologics. It can be used with a PC or workstation and provides in-circuit emulation, state and timing analysis, chip programming, and simulation functions. Noral also makes and designs its own in-circuit emulator, the SDT-X which supports more than 308 to 16 bit microprocessors from ten manufacturers.
In-circuit emulators from American Automation support more than 150 microprocessors. High level C debugging is available and trace and performance analysis options are also possible.

Tile Vieu	Proust.	Go	Show	Uatch	Debut.	Conf is	
Fint print cycles oldest							
		B	UDM LLHB	LKPP	SS		
PRAME BS BBBB /// OOLOH AEXC YY							
: ADDRESS DATA S1 BEIE RCI CCDFI SNTD MM							
1 TYPE 863218 0 KKAF T CC							
dec : hex	hex	\#\# \#\#\#\#		\#18	10		
7 P FYFYO2F0	04EC8355	1180098	08110018	01001	11		
8 F	1106685?	110080	801 19010	1881	11		
9 F	?1580008	118080	89118818	(1001	11		
10 F	59FFFFF	118808	08111010	08001	11		
12 F FrFro300	88110688	11 日8B8	00118918	1081	11		
13 F	FPGCE808	11 8990	80119018	81001			
14 F	8959FFFF	118898	68118018	(1001	11		
15 F	C3C95FC7	118883	80111818	80301			
17 F FrFrgerg	83×58955	119880	80118018	(1001	11		
18 F	315784EC	119888	88110918	81801	11		
19 F	14FF83F	11 8อยช	80118018	81801	11		
W1t)							
Keol) AUTOBRK	CALLSTACK	CAUSE	PCHECK	CTRACE	PLUSH	INACTIUITY	<tab ${ }^{\text {d }}$
Module:REURS Line:\#40							
F1:Hely F2: Ren	s F4:\%um	$\mathrm{FH}: \mathrm{Cu} \mathrm{F}^{\prime}$	Sinext F7	: Gu-Har	k Fh:Ste	Fg:Sel-Brk	step

time or go to a certain point. There is even information on the chip about where the registers are and how to operate them.

All this is designed in when the chip itself is designed. This means that debuggers are being built that can use these on-chip facilities. Eventually there will be extra interfaces on the chips so that these extra bits can be accessed directly. Now the code has to be modified slightly to allow for them, so they are a bit intrusive.

Getting into the chip itself is essential especially with products like the 486 with large on-chip cache memory; a lot of material is processed without ever coming outside the chip. This process will become much more important and in the future we will see a lot more of the debug facilities being designed into the chips. This is not a luxury.

Intel's in-circuit emulation of the 486 allows simpler debugging of what would otherwise be an extremely complex task.

It will become essential as chip speeds improve. In-circuit emulators of current designs will not be able to handle 100 MHz chips and by the year 2000 people are predicting that 250 MHz products will be available. At these speeds the cable of the in-circuit emulator will stop it working properly. The time a signal takes to go back and forwards will be too slow. This is even true with fibre optic links which are starting to appear. The only way out is to put much more on the silicon itself

Buying a system
When buying an MDS there are a number of features you can look for, but it is really a matter of horses for courses: difierent pcople have different requirements. For example the level of sophistication needed to design a coffee machine is peanuts compared with that for, say, a missile guidance system. One essential though is that it should have an integrated environment. It is painfully slow to go into editors, linkers and so on. separately. The best systems let the user access other parts from the editor itself.
Source level debugging is also important and the system should be able to single step through the source code and set the breakpoints. Modern emulators for 32 bit applications need large amounts of code that need to be downloaded quickly, so beware machines that use serial communications the best use fibre optic links.

Biomation's logic analyser, aimed at topend risc and cisc applications, uses a high resolution GUI for control. One of the few packages making use of a GUI, Biomation's goal has been to increase productivity through intuitive graphics. In the UK the package is available from Instrumatic.

American Automation, Lea View House, Two Rivers Estate, Station Lane, Witney, Oxon O×8 6BH. 0993 778991.

Applied Microsystems Corp., Chiltern Court, High St, Wendover, Aylesbury, Bucks HP226EP. 0296625462.

Cadre, PO Bor 1309, Beaverton,
OR97075. 01018005474445.
Citadel Products Itd, 50 High 5t, Edgware, Middlesex HA8 7EP. 0819511848.

Crash Barrier, 18 Oxford St,
Wellingbcrough, Northants NN8 4HY. 0933224366.

Dataman, Station Road, Maiden Newton, Dorset D72 0AE. 030020719.

Flight Electronics Ltd, Flight House, Ascupart SI, Soethampton SO1 1LU. 0703 227721.

IAR Systems Lid, Garden Studios, 11-15 Betterton St, London WC2E 989. 071379 0344.

Instrumatic UK Ltd, First Avenue, Globe Park, Mariow, Bucks SL7 IYA. 0628 476741.

Intel International (UK) Ltd, Pipers Way, Swindon, Wiltshire SN3 1RJ. 0793 696000.

MQP Electranics Ltd, Unit 2, Park Road Centre, Malmesbury, Wiltshire SN16 0BX. 0666825146.

Lauterbach Datentechnik GmbH,
Fichenstrabe 27, 8011 Hofolding,
Germany. 0104981049075.
Mutek (MSS) Ld, Farleigh House, Frome Road, Bradford on Avon, Wiltshire BA15 1LE. 022166501.

NEC Electronics (UK) Ltd, Cygnus House, Linford Wood Business Centre, Sunrise Park Wayr linford Wood, Milton Keynes MK14 6NP. 0908691133.

Nohau UK Ltd, Station Mill, Alresford, Hampshire SO24 9/G. 0962733140.

Noral Micrologics UK, Logic House, Gate St, Blackbern, Lancs BB1 3AQ 0254 682092.

Smart Communications, 2 Field End, Arkley, Barnet, Herts EN5 3EZ. 081441 3890.

Softaid Inc, 8930 Route 108, Columbia, MD21045. 01013019648455.

Stag Microsystems Lid, Martinfield, Welwyn Garden City, Herts AL7 1JT. 0707 332148.

Zax Corporation, 2572 White Road, Irvine, CAs2714. 01017144741170.

Write in Assembler?

Then you can vastly increase your productivity by moving up to our METAi range of PC-Based
Development Tools. We have support for almost every micro- controller under the sun, from 4-bitters through DSPs and 80286/68K.
"Editor...incredibly useful. METAi ...can assemble source code for any processor
...without compromising on speed. o..excellent backup and tech support."

Electronics \& Wireless World, Feb '91
All our tools are fast,clean and powerful, from our Macro Meta Assembler to our £295 ASIC-based Universal EPROM Emulator, with its unique comms link and breakpoints. Call or fax now for full data by return fax or post.

Crash Barrier Ltd, 18 Oxford Street, Wellingborough, Northants, NN8 4HY, United Kingdom Tel: (0933) 224366, Fax: (0933) 441877, Modem: (0933) 224377 V22(bis), HST, V32(bis)

ANSI C-Compilers

True processor specific, and not just modified generic, C-Compilers are now available.

$$
\begin{aligned}
& 1802,1805,6301,64180,6502,6800 \\
& 6801,6802,6805,6809,6811,68000 \\
& 8051,8085,8086,8096, \mathrm{Z80} \ldots
\end{aligned}
$$

Matching Assemblers, Linkers and Development Systems with High Level Debugging are also available to see you through your complete software and hardware design cycle.

Call us now for your FREE active demonstration disk.

Lee View House, Two Rivers Est., Station Lane, Witney, Oxon. OX8 6BH.
Tel: (0993) 778991 Fax: (0993) 702284

PRICE \& PERFORMANCE LEADER IN EMULATION.

A NEW addition to American Automation's range of Universal Emulators is our EZ-PRO 1.5 Development Station. The EZ-PRO 1.5 measures only 8.8 cm high x 29 cm deep x 35 cm wide, and provides large scale system support at a very modest price.
The EZ-PRO 1.5 Development Stations comes with a high speed serial interface for connection to the host computer, a control processor with its own program memory, a full 64 K of high speed emulation memory and options of up to 4 K of trace memory. The software and the hardware is fully compatible with the already well established powerful EZ-PRO 2.1 Development Station that supports over 150 microprocessors.

Each emulator comes complete with an assembler, linker and debugger, and for those working with high level language, a C-Compiler option is available with full Hi -level debugger support.

american automation

Tel: (0993) 778991

QUALITY SIGNALS FROM QUALITY PRODUCTS

General Purpose Low Pass, High Pass \& Universal Active Filter Modules

To meet the need for easily incorporated filtering elements in such as experimental rigs, test signal conditioning, servo loop modification or instrument design, Fern Developments offers a range of Active Filter Modules.

They are "ready-to-use", encapsulated, compact filter units, each containing a basic filter function and adjustable by user for cut-off or centre frequency. Adjustment is simple, generally requiring the addition of 3 or 4 external resistors, sometimes a capacitor; all in acordance with simple design equations or tables of values given in the data sheets.

All low pass and high pass filters in this range offer the choice of Bessel, Butterworth or Chebychev responses selectable by the user.

Filter reference	Mode	Attenuation rafe dB/octave	Frequancy seting range Hz	$\begin{aligned} & \text { Price } \\ & \text { B-OfF } \end{aligned}$
EF 10	Low Pass	12	1 to 300	C28.00
EF11	Low Pass	18	1 to 300	c32.00
EF12	Low Pass	12	100 to 30 K	¢28.00
EF13	Low Pass	18	100 to 30 K	532.00
EF14	Low Pass	24	1 to 300	¢36.00
EF15	Low Pass	24	100 to 30 K	536.00
EF20	Mugh Pass	12	1 10 300	$\underline{28.00}$
EF21	Mggn Pass	18	1 to 300	£32.00
EF22	Hugh Pass	12	100 то 30к	¢28.00
EF23	High Pass	18	100 10 30\%	£3200
EF24	Mign Pass	24	1 to 300	£38.00
EF25	High Pass	24	100 to 30 K	£38.00

Fither refertance	Mode	Attenuation rate dBroctave	Frequency setting renge Hz	Price
EF40	LP/HP/BP/BS (Universal)	Depending on mode selected	0.1 to 200	£34.00
EF41	LP/HP/BP/ES (Universal)	Oepending on mode selected	10 to 20 K	£34 00
EF42	LP/HPRPIBS (Universal)	Depending on mode selected	100 to 200k	£38.00
EF43	LP/MP/BP/BS (Unversal)	Depending on mode selected	0.001 to 100	£38.00
EF44	LP/MP/BP/BS (Unversal)	Depending on mode setected	1 to 1k	£34.00
EF45	LP/HP/BP/BS (Unversal)	Depending on mode setected	100 to 30k	E34.00
EF60	Low Pass Hugh Pass	24	$\begin{aligned} & 0.2 \text { to } 2 K(M P) \\ & 1 \text { to } 10 \mathrm{~K} \text { (LP) } \end{aligned}$	¢40.00
EF61	Low Pass Migh Pass	24	3 to 30k	¢ 40.00

Volume Discounts on All Models 1-4 List Price
5-9 Less 5\%
10-24 Less 10\%
25-99 Less 20\%
100-200 Less 30\%
200-up on Quotation

High Slope Active Filter Modules
EF 16 (ANTI-ALIAS)
This low pass module is based on a new class of monotonic passband, equal ripple stop band filter functions. Referred to as an LSM (least square monotonic) filter it provides sharp cut-off, high stop band attenuation and improved group delay response. A prime use for this module is as an anti-aliasing filter in AD conversion applications.

- Frequency cut-off range 2 Hz to 20 kHz
- Minimum stop band attenuation 60 dB

Stop band attenuation roll-off $100 \mathrm{~dB} /$ octave
EF 16X (POST PROCESSING)
This low pass module is intended for use as a post processing Filter, ie to follow analogue to digital conversion in a signal processing system
Its specially shaped passband compensates for the distortion introduced during the digital to analogue conversion.

The EF 16X compliments the EF 16 when the latter is used as an anti-alias Filter.
Both have the same format in terms of dimensions, pin connections, frequency range and stopband attenuation response shape.
EF26
This high pass filter is based on a conventional elliptic design laving an equal ripple pass band, sharp cut-off and high stop band attenuation. It has many applications such as the removal of low frequency interference mains or rectifier hum from signal paths. It can be used with the EF16 to form a band pass unit. Roll-off rate is $80 \mathrm{~dB} /$ octave, stop band attenuation 60 dB and cut off frequency range 2 Hz to 20 kHz .

Eurocard Mounted EF16, 16X and EF26

To simplify connection both filters can be supplied mounted on a standard single Eurocard fitted with a 32-way connector. The card accommodates 4 sets of frequency determining resistors which can be switched, either locally or remotely, in a binary format to provide a maximum of 15 cut-off frequency settings

Price 1-4-OFF	
EF16, EF16X, Module	$£ 69.00$
Module Mounted On Eurocard	$£ 149.00$
EF26, Module	$£ 69.00$
EF26Mounted On Eurocard	$£ 149.00$

Volume Discounts

As Above
All Above Prices
Exclude VAT

Voice Frequency Filters Types EF117, 118, 118A, 119

These modules are designed primarily for use as voice frequency channel fitters in telecommunications. They provide separate band pass, low pass and high pass units, enabling the user to select the most costeffective arrangement. Common specification points are an attenuation in the stop band of $>$ 40 dB , with a pass band insertion loss of nominally 0 dB .

Other basic specifications are:

- EF117 - Band Pass 300 Hz to 3.4 kHz
- EF118-Low Pass d.c. to 3.4 kHz
- EF118A - Low Pass d.c. to 1.8 kHz
- EF119 - High Pass 300 Hz to 50 kHz

Volume Discounts
As Above

Price 1 1-4-OFF	
EF117	$£ 58.00$
EF118	$£ 38.00$
EF118A	$£ 35.00$
EF119	$£ 30.00$

fig. 1. Cheap ICE: The "promulator" accepts code from a standard eprom blower (left) to run on the target board (right). Flash Designs has added trace facilities to create an ICE-like environment

For engineers on a tight budget. the problem of effective debugging of programs on a microprocessor target is a difficult one.
The classical tool is the dedicated in-circuit emulator or ICE, giving a host computer control over all address, data and control lines of the device. At the other end of the hardware/software testing spectrum is debugging with test proms, and these extremes of functionality are also separated by a wide range of costs: an ICE can cost thousands and an eprom only a few pounds.

In the middle ground is a growing number of products based around the idea of an eprom emulator (or "promulator") - a ram which can be rapidty programmed with a yuick blow algorithom as if it were a prom. but at the processor acts as if it were an eprom. Development cycle time is improved compared with eprom programming and erasure.
It is into this market that Flash Designs has introduced its Flash Emulator and Turbo Trace, a host prom programmer used as the route to program the promulator ram with additional hardware to provide hardware breakpoints. history ram and trace. These latter functions are only available on expensive ICE products, and should provide the key to finding that most elusive bug.
Flash Emulator and Turbo Trace, in a

EMULATING the big boys

Does Flash Designs' novel combination of emulator, hardware breakpoint and history ram provide low cost debugging? It's getting there says John Anderson.

$90 \times 140 \times 30 \mathrm{~mm}$ plastic box adorned with various switches and umbilicals, is professionally finished - though ergonomics are seriously impaired by siting the most important displays and operating buttons at the side of the box. Emulator. Turbo Trace, prom programmer and Microsoft Windows 3 can all be included as mart of the package.

The manual is a 30 page loose-leal affair which, though comprehensive, has a rather haphazard layout with no step by step description of the way the product functions.

Further, there is no worked examples for the first time user, necessitating a call to Flash Designs for help. Their assistance was expert and helpful. but as the market grows for this device. a better manual will be required, it only to reduce the number of inane questions which Flash Designs will have to answer. but which should be covered in the manual.
A Stag Stratos PC-based eprom programmer was used as the review system and the PC display screen shown in Fig. 2 is that of the programmer software.

Target code is prepared and, with the emulator connected to the target rom socket on one hand and the prom programmer on the other, code is down-loaded to the target. On a hardware level, at this point the program is run in the target by automatically releasing the rese line to the processor.

The two hardware breakpoints are entered as the first four bytes in memory using the prom programmer edit memory function. Breakpoints are entered into the hardware by, again, "programming the prom", this time with the emulator in the program rather than emulation mode.

Once breakpoints are hit, the address (16 bits). data (8 bits) and four other lines are recorded in the trace history memory. Trace data may be forward from or up to the breakpoint address and history data may be accessed by the eprom programmer soltware by "reading the prom" into memory. The resu't can be reviewed by looking at the ram image using eprom programmer soltware.

The emulator takes all its power from the target prom socket - typically 395 mA total -

P1－help F2－save F3－new file F4－import data F＇expard F10－contract Esc－exit

SPECIFICATION

IBM PC，AT based eprom programmer； the unit was reviewed in conjunction with the Stag Stratos eprom programmer system．
Emulates 2764 through 27101 eproms Access time 100 ns
Power required： 70 mA from target for emulator／ 325 mA from target for turbo trace．
Power can be supplied from an external power supply．
Algorithms： $50 \mathrm{~ms}, 1 \mathrm{~ms}$ or quick pulse $100 \mu \mathrm{~s}$ to $1 \mu \mathrm{~s}$ ．
Turbo Trace： 8 K bytes fast static ram for trace history．
Trace width 32 bits．
Breakpoints on 16 bits address plus a qualifier bit．
Trace Modes：Trace forward from address（with logic probe＝don＇t care， logic true or write true）
Trace up to address
although this can be provided by an external power supply．

Window on the task switch

Using Windows 3 as a software develop－ ment and ICE environment is potentially attractive．In principle the multitasking Windows allows hot key switches between editor，assembler，compiler，linker，program－ mer and trace work areas．In theory all could be running concurrently（time sliced）．

But at a practical level this is not really a sensible proposition．As indicated earlier， one of the reasons for moving from eprom to dedicated ICE is speed of the development process．Unless a 33 MHz 386 or 25 MHz 486 machine is being used with several megabytes of memory，the time to task－ switch is prohibitive．On a standard AT，task switch times are around 20s！
One further weakness is that the prom pro－ grammer software，and for that matter the cross assembler or cross compiler are not written for Windows 3 and so do not offer the ability to have all active windows on screen at the same time．
A good operational compromise is to use a simple terminate and stay resident（TSR） editor，such as Borland SideKick to allow viewing of the assembler listing in a win－ dow while the prom programmer software is running．But it must be used with care as activating the hot key during access to the eprom（emulator）could cause damage．

Novel solution

Ram－Blow Emulator and Turbo Trace is a novel combination of emulator，hardware

> Windows update：Flash Designs has announced that its latest software has Windows compatibility．Re－ sizeable Windows allow control of up to four emulator pods．
GOTO SEARCH BLOCK RAM＿EDIT LOGIC CHECKSUM

Address	00	010	020	030	04	05	06			09	0	0 A 0	OB	OC	OD	OE	Or			
00000	00	41 D	D5 F	F0 F	FF	FF	FF	FF	00	42	7	74 F	F0	FF	FF	FF	FF		．Afe	．Bt \equiv
00010	00	430	00 F	F0 F	FF	FF	FF	FF	00	44	49	90 F	F0	FF	FF	FF	FF		．C．	．DÉE
00020	00	458	80 F	F0 F	FF	FF	FF	FF	00	46	60	04 F	F0 F	FF	FF	FF	FF		．EC＝	．F．三
00030	00	460	04 F	F0 F	FF	FF	FF	FF	00	47	7 F	F0 F	F0 F	FF	FF	FF	FF		．F．三	． $\mathrm{G}=\mathrm{=}$
00040	00	48	04 F	F0 F	FF	FF	FF	FF	00	48	0	04 F	F0	FF	FF	FF	FF		．H．三	．H．三
00050	00	49	90 F	F0 F	FF	FF	FF	FF	00	49	99	90 F	F0	FF	FF	FF	FF		．IÉ＝	．IÉ＝
00060	00	4A 8	80 F	F0 F	FF	FF	FF	FF	00	4B	B 05	05 F	F0	FF	FF	FF	FF		．JC $=$	．K．三
00070	00	4B 0	05 F	F0 F	FF	FF	FF	FF	00	4 C	C	F0 F	F0	FF	FF	FF	FF	FF	．K．$=$	． $\mathrm{L} \equiv \equiv$
00080	00	4D 0	04 F	F0 F	FF	FF	FF	FF	00	4D	D 0	04 F	F0	FF	FF	FF	FF	FF	．M．$=$	． $\mathrm{M} . \equiv$
00090	00	4E 7	70 F	F0 F	FF	FF	FF	FF	00	4 E	E 7	70 F	F0	FF	FF	FF	FF	FF	． $\mathrm{Mp}=$	． $\mathrm{Mp} \equiv$
000A0	00	4F F	F4 F	F0 F	FF	FF	FF	FF	00	4 F	F	F4 F	F0	FF	FF		F	F	． 0 ¢	． 0 \％
000B0	005	507	74 F	F0 F	FF	FF	FF	FF	00	44	49	90 F	F0	FF	FF	FF	FF	F	． $\mathrm{Pt} \equiv$	．DEE
000C0	00	45	80 F	F0 F	FF	FF	FF	FF	00	46	60	04 F	F0	FF	FF	FF		FF	．EC＝	．F．\equiv
000D0	00	460	04 F	F0 F	FF	FF	FF	FF	00	47	7 F	F0 F	F0	FF	FF	FF		FF	．F．$=$	． $\mathrm{G}=\equiv$
000E0	00	48	04 F	F0 F	FF	FF	FF	FF	00	48	80	04 F	F0	FF	FF	FF	FF	FF	．H．$=$	．H．$=$
000F0	00	49	90 F	F0 F	FF	FF	FF	FF	00	49	99	90 F	F0	FF	FF	FF		FF	．IÉE	．IÉ＝

F1 help F3 toggle hex／ASCII edit F5 search again
F7 toggle edit／display mode F9 select feature F10 return to Main Function Memu
breakpoint and history ram and provides a low cost route to debugging．Data must be transferred via a standard eprom progran－ mer，and it is from here that both the cost advantage，and the user interface weakness stems．
Not surprisingly，eprom programmer soft－ ware is orientated toward programming eproms，and although quite amazing func－ tionality is provided through the program－ mer，it can be quite hard work to program and use．

Flash Designs have promised that a PC card will be available soon to provide direct computer control．The move could be a wel－ come adjunct，improving the user interface and ensuring that this product is not just a flash in the pan．

Fig．2．How the user views the debugging operation on the PC．

SUPPLY DETAILS

Several products are in the Flash emulator range．The reviewed product was the top of the range：Ram－Blow 1MByte memory emulator with trace and breakpoint，code number RB1MEG + TR． £698＋VAT．
Entry level products start with a 256 K emulator priced at $£ 199$ ．
Supplier is Flash Designs Ltd，St Andrews House，PO Box 167，Crawley RH11 9YE． Tel： 0293551229.

HF-235 A landmark in HF monitoring

The HF-235 is a highly cost effective solution to the need for a synthesised HF receiver for the professional user. The HF-235 can be used as a stánd-alone general purpose monitor or in multiple unit installations where diversity or multi-channel monitoring is required.
$\star 30 \mathrm{kHz}-30 \mathrm{MHz}$
\star USB/LSB/CW/AM/FM/AM sync
\star All IF filters fitted as standard
\star Conventional tuning knob or keypad entry
$\star 30$ memories and 2 VFOs
$\star 600$ ohm line driving
\star Optional RS-232 interface for remote control

LOWE ELECTRONICS LTD, Chesterfield Road, Matlock, Derbyshire DE4 5LE Telephone: (0629) 580800 Fax: (0629) 580020

CIRCIE NO. IO3 ON REPIY CARD

Micro AMPS

ICE 751
An emulator/programmer for the Philips 24 pin skimny DIP 8051; the 87 C 751 ($£ 480$). The ICE751 provides the cheapest way to emulate and program these devices.
ICE51 ${ }^{\text {TM }}$ A low-cost emulator for the industry standard 8051 ($£ 225$). This product is also available in kit form.
PEB552 The official Philips 80C552 evaluation board for this highly integrated 8051 variant ($£ 225$). Optional debug monitor and 87C552 programming adapter are available.
BASIC A PC-based cross-compiler that enables code COMPILER written for the 8052AH-BASIC processor to be compiled for the standard 8051 or 8052 ($£ 295$). Interpreted Basic is also available on the ICE51.
80518051 Architecture, Programming and ApplicaBOOK tions (£49.95). A recommended book for readers who require a text on the 8051 and interfacing techniques. This book is supplied with a PC-based cross-assembler and simulator for personal or educational use only.
OTHER Contact us for information on these and many other related products such as ' C ' compilers, $I^{2} \mathrm{C}$ tools and drivers.

ICE51 is a trademark of Intel.

Micro AMPS Ltd

 66 Smithbrook Kilns, Cranleigh,Surrey, GU68JJ
Tel: $+44(0)+83-268999$ Fax: $+44(0) 483-268397$

FRUSTRATED? BECAUSE YOU CAN'T SEE WHERE YOUR TARGET SOFTWARE'S GOING?

NOW YOU CAN SEE WHATS GOING ON DOWN BELOW WITH

${ }^{5} 3$ c C^{30}
Universal μ p debug三TURBO TRACE
SPECIAL OFFER TO EW \& WW READERS:$\mathbf{£ 1 0 0}$ off
EMULATOR \& TRACE PACKAGE: VALID TO 30-09-91
\square SEND INFORMATION ON SPECIAL TRACE/EMULATOR OFFER \square SEND Brochure and Price list
NAME. \qquad COMPANY
ADDRESS.

TELEPHONE
DATE
FLASH OESIGNS LTD., ST ANDREWS HO., P.O.BOX 167, CRAWLEY, W.SUSSEX.

The 87C751 is ideally suited to applications where small space and low cost are crucial. The restriction of 2 Kbyte code space and 64byte ram may be too great for some applications. The device has no memory expansion capability, having only 19 1/O lines: the core is in the form of a factory masked rom or reprogrammable eprom. The eprom variety can be either one time programmable (OTP) or quartz windowed crasable.
The programming algorithm for the eprom part is conventional. However, the method used to program the eprom array is not. The 87 C 751 expects a configuration pattern to be applied on the reset line to force the device into a specific mode: see Table 1. A normal reset, high to low, will put the device into a conventional run mode, therefore no special

Table I. Program/Verify Modes	
Operation	Serial Code
Program user eprom	296 H
Verify user eprom	296 H
Program encryption array	292 H
Verify encryption array	292 H
Program security bit 1	29 AH
Program security bit 2	298 H
Verify security bits	29 AH

Table 2. Special function register memory map

SFR address (hex)	Name
80	PO
81	SP
82	DPL
83	DPH
87	PCON
88	TCON
8A	TL
8B	RTL
8C	TH
8D	RTH
90	P1
98	I2CON
9A	I2DAT
A8	IE
B0	P3
D0	PSW
D8	I2CFG
E0	ACC
F8	I2STA

8051 revisited

In line with the theory that small is beautiful, Philips has brought out a cut-down version of the venerable 8051: the compatible 87C751. Richard Marriott reckons that the new chip means big business.

reset logic is required for production. To program and verify the device, the $1 / 0$ port pins are used as address and data paths. Port P_{1} is used as the program and verification data and P_{3} is used as the address path. How do you get the 11 -bit address of a 2 Kbytes eprom into an 8 -bit port? Easy, the most significant three bits are multiplexed with the least significant three bits. The multiplexer input is the $A S E L$ input on port pin $P_{0,0}$.
Figure 1 shows the pin assignments on the 24-pin skinny DIP. The address lines $\left(A_{(} . A_{11}\right)$, the data lines ($\left.D_{0} . . D_{\mu}\right), V P P, O E-$ $P G M$ and ASEL refer only to the programming mode. These lines are not normally available. The alternate function for the pins is conventional.
There are architectural differences between the 8051 and the new chip. Apart from the differences in pin number and

Fig. 1. Pin configuration

packaging the changes may be summarised as:

2 K bytes eprom, 64 bytes ram
$I^{2} \mathrm{C}$ serial port (no UART)
19 I/O lines
No external memory expansion. except via the $I^{2} \mathrm{C}$ bus
One counter/timer operating in mode 2 but extended to 16 bits
Single level interrupt structure
Fixed interval timer

Because of these differences, the instruction L.JMP, ICALL, and Movx have no meaning. Otherwise the 87C751 is fully code compatible with the 80 C 51 and operates at up to 16 MHz .

Interrupts

The Interrupt Priority (IP) register and the 2 level interrupt system of the 80 C 51 are eliminated. Simultaneous interrupt conditions are resolved by a single level, fixed priority as shown in Table 3. The interrupt enable register (IE) is modified as shown in Table 4.

Special Function Registers (SFR)

Special lunction registers are on-chip memory locations with special functions within the 751 device. The special function area of the 80 C 51 is from 80 h to fth but not all of the addresses are occupied. Unoccupied addresses are not implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have no effect. The SFR map for the 87C751 is shown in Table 2. The SFRs that are bit addressable are marked with an asterix.

Table 5. TCON controls for the counter/timer.

7 GATE	$\begin{aligned} & 6 \\ & \mathrm{C} / \mathrm{T} \end{aligned}$	$\begin{aligned} & 5 \\ & \mathrm{TF} \end{aligned}$	$\begin{aligned} & 4 \\ & \mathrm{TR} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \text { IEO } \end{aligned}$	$\begin{aligned} & 2 \\ & \text { ITO } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { IE1 } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { IT1 } \end{aligned}$
GATE	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Timer/counter is enabled only when $\mathbb{N} T_{0}$ pin is high, and TR is 1 Timer/counter is enabled when $T R$ is 1.					
C / T	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Counter operation from T_{0} pin. Timer operation from internal clock/					
TF	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Set on overflow of TH. Cleared when processor vectors to interrupt routine, by reset, and by writing 0 .					
TR	1 0	Timer/counter enabled. Timer/counter disabled.					
IEO	1	Edge detected on $\mathbb{N} T_{o}$					
ITO	1 0	$\mathbb{N} T_{1}$ is edge triggered. $\mathbb{N} T_{1}$ is level sensitive					

Counter/timer subsystem

The 87C751 has one timer/counter. Its operation is similar to mode 2 operation of the 80 C 51 , extended to 16 bits. The controls for the counter/himer are centralised in a single register called TCON (Table 5.).
These flags are functionally identical to the corresponding 80 C51 flags, except that there is only one timer and they are combined into one register
A second timer. called rIMER 1 is available. In $\mathrm{I}^{2} \mathrm{C}$ applications this timer is dedicated to time generation and bus monitoring. In non$I^{2} \mathrm{C}$ applications it is available for use as a fixed time base, It provides a period of 1024

machine cycles when used for this purpose.

$I^{2} \mathrm{C}$ serial comms subsystem

The $87 \mathrm{C} 7511^{2} \mathrm{C}$ subsystem is a single bit hardware interface and uses two physical I/O port pins, namely Serial CLock (SCL) and Serial DAta (SDA). It includes more than just the absolutely minimum hardware in an effort to simplify the sofiware overhead.
In particular, hardware for stretching $S C L$ is included, and the time that $S C L$ is stretched is bounded by hardware to prevent bus hang up in case of faulty software or certann kinds of faulty hardware. The $1^{2} \mathrm{C}$ subsystem consists of four SFRs: I2CON. I2DAT. I2CFG and I2STA. Prices for one oft quantities range from $£ 8$ to $£ 12$.

An application note. AN422, can be obtained from Philips Components or its distributors. This note describes in detail the bus operation and programming. Altematively, a copy of the $1^{2} \mathrm{C}$ master and slave software on diskette can be obtained from Micro Amps.

Tools

A low cost in-circuit emulator for the 87 C 751 which handles both program development and programming of the devices is available. This, plus a fully operational $1^{2} \mathrm{C}$ master and slave driver logether with associated sofiware is also available from Micro Amps Lid on 0483268999.

THE ORIGINAL SURPLUS WONDERLAND!

MONITORS

MONOCHROME MONTTORS
THIS MONTH'S SPECAALI
 There has neverbeen a deal like this onel
Brend apanking new a boxed monitors from NEC, normally selling at about $\{1401$ These are over-engineered tor ultra will ability. 9° green screen composileinpu with etched non-glare screen plus switchfor daisy-chaining. 3 front controls and 6 at rear. Standard BNC sockets. Beautitul high contrast screen and attractive case with
carrying ledge. Pertect as a main or backup monitor and for quantity usersi $£ 39.95$ each (D) or 5 for $£ 185$ (G)

CALL FOR DUSCOUNTS ON HIGMER QUANTIIES! COLOUR MONTTORS
Decce $16^{\prime \prime} 80$ budget range colour monitor. Features a PIL tube beautlifl teak style case and guaramieed 80 column resolution features usually seen oniy on colour monitors costing 3 times our pricel Ready to conrrect to most computers or video outputs 75×2 composite input with Integral audio amp \& speaker. Fully tested surplus, sold In limie or hardly used condition with 90 day Telebox ST, and other audio visual uses. $\quad \mathbf{8 9}(\mathrm{E}) 3 / 2275(\mathrm{G})$ $20^{\prime \prime}, 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS
Supertly made UK manufacture. Pll all solld state colou monitors, complete with composite video \& sou nd inputs. Attra
ilve teak style case. Perlect for Schools, Shops, Disco, Clubs. EXCELLENT iltie used condition with full 90 day guarante $20^{\prime \prime} \ldots . . £ 135$ 22"....£155 26"...£185 (F) HI-DEFINITION COLOUR MONITORS Brand new 12^{*} muttilnput high definition cour monitors by Microvitek. Nice tight modem metal black box styling clanty and from any 15.625 khz sync RGB video source win either knd syid HGB video such as CGA IBM PC's or RGB analog
 modore Amiga. Acom Archimedes 8 BBC modore Arriga. Acom Archimedes 8 BBC. Measures only 14°. Will also function as quality TV with our RGB Telebox.
£145
Brand new Cemtronic 14° monitor for IBM PC and compatibles at a lower than ever prioet Completely CGA equlvalent. Hi-res Mitsubushi 0.42 dot plich giving 669×507 pixels. Big 28 Mhz 90 day guarantee. Only $£ 129$ (E) NEC CGA BMM-PC compatible. High quality ex equipment tully ested with a 90 day guarantee, in an attractive two tone nibbed grey plastic case measunng
purchase enables us to pass these on at only.... E 79 (E)

Scoopl 14" Colour
 Multisync/Multifunction

 quality Japanese manufactured multisync, multifunction protessional grade monitor at an unheard of low pricelf The most computer systems including: IBM PC/XT/AT/PS2 (CGA EGA. PGA VGA modes) Atan, Archimedes (up to SVGA ROMmodore, BBC and many morr. Many other features Include posite and sync on green Inouts; auto 15 to 36 khz operation 0.31 mm tube dot pith; tinted non giare etched screen o 30 mhz bandwith makes this Item an absolute snipll Current makers list price over 5900 ! Each supplied with connection data. fully lested in used good condition, some may have screen nean
No Break Uninterruptable PSU's

Brand new and boxed 230 voits unimerruptable power supplies from Dentei. Model MUK 0565-AUAF is 0.5 kva and MUD $1085-\mathrm{AHBH}$ is i kva. Both have sealed lead acid batteries. MUK
are internal, MUD has them in a matching case. Times from are internal, MUD has them in a matching case. Times from
interrupt are 5 and 15 minutes respectively. Complete with full interrupt are 5 and 55 minules respectivaly. Complete win ful

V22 1200 BAUD MODEMS

Master Systems $2 / 12$ microproces sor controlled V22 full duplex
1200 baud modem. Fully BT approved unit, provides standard V22 high speed data comm, which at 120 cps , can save you phone bill and connect ime by a slaggening 75% Ulira slim 45 error diagnostics. Sync or Async use; speech or data switching; bullt In 240 v mains supply and 2 wire connection to BT. Units are In used but good condition. Fully tested pflor despatch, with data and a full 90 day guaramee. What more can you ask for and at this pricell

IBMKEYBOARD DEALS

coment or backup keyboard, switchable for IBM PC PC-XT or PC-AT. LED's for Caps, Scroll 8 Num Locks. Stardard 4 keytoa rd layout. Made by NCA tor the English 8 US makkets. emplate for user slogans on the function keys. Attractive boige,grey and cream finsh, with the usual retractable legs undemeath. A generous length of cully cord, terminating in the standard 5 pin DIN plug. A beautiful clean piece of manulac-
E39 (B) $5 \mathbf{5 1 7 5}$ (D) Brand now and boy dractay BM grey with very attractive morted finish and "dicky" solld feel keys. 10 tunction keys on side. English layout and £ sign. Green lops, Scrofl 8 Num locks.

CALL FOR DISCOUNTS ON HIGHER QUANTIIESI

FLOPPY DISK DRIVES
BARGAINS GALORE! NEW 51/4 Inch from $\mathbf{2 9 . 9 5 !}$
Massive purchases of standard $5 \mathrm{~V}_{4}{ }^{-}$drives enabies us present prime product at industry beating low pricest All units
(uniless stated) are removed from often brand new equipment and are fully tested, allgned and shipped to you with a guarantee and operate from $+58+12$ volc, are of standard size and accept the standard 34 way connector TANDON TMIOO-2A IEM compatible DS CANON, TEC etc. DS half height. State 40 or 80 E39.95(C)

* Speciald / * TEAC FO-SS halt height senes In your choice of 40 track double stided 360 k or 80 track double sided 720 k . Ex equipment fully tested in excellent conditlon with 90 day warranty.
Order TE-36 for 360 k E29.95 (C) or TE-72 for 720 k E39.95(C) CHOOSE YOUR 8 INCHI

Shugart 8001801 SS refurbished 8 tested
Shugarl 851 double sided relurbished 8 tested
Shugarl 851 double sided relu tbished 8 tested hard or sott sectors- BRAND NEW

E150.00(E)
$E 205.00(E)$
E250.00(E) SPECIAL OFFERSII
Dual $8^{\prime \prime}$ drivea with 2 megabyte capacity housedin a smart cas with bullt in power supoly

Only E499.00 (F)
Ideal as exterior drives।
End of line purchase scoop! Brand new NEC D2246 8" 85 megabyle of hard dlsk storagel Full CPU control and Industry
standard SMD interlace. Ultrahi speed transter and access time eaves ine good old ST 506 Intertace standing. In mint condition
MAINS SUPPRESSORS \& FILTERS
Roxburgh SDC 0212 amp malns RFI filter. Has an extra wid requency range of 150 khz to 30 mkz . Can type, scider Jug connection. Quality manufactured to BS 613 standards. Dims $1-1 / 2^{\circ} \mathrm{D} \times 1-3 / 4^{\circ} \mathrm{H}$........... $£ 3.95$ or 3 for $£ 10$ (A) 10 for $£ 28$ (B) Roxburgh SDA 013/25. Similar to above rated at 1-1/2 arps Dims $1-1 / 2^{\circ} \mathrm{D} \times 1-3 / 4^{\circ} \mathrm{H}$. E .25 or 3 tor $\mathrm{E8} .50$ (A) 10 for E25(B) Suppression Devices SD5 A10. Extra compact gerneral pur pose suppressor. Plastic moulded case with single boit fixing and snap connectors. Rated at 230 vac 5 amps. Dims $1-3 / 4$ 亿
$\times 1-1 / 8 \mathrm{~W} \times 5 / 8^{\circ} \mathrm{H} \ldots \ldots . . \mathrm{E3.85}$ or 3 for $\mathrm{E10}$ (A) 10 for $£ 28$ (B) $\times 1 / 27 . E 3.85$ or 3 for $£ 10$ (A) 10 for $£ 28$ (B)
Belting-Lee type 121273 amp malns RFI filters. Has a buill In mains cable (Engllsh coding), and a three pin miniature non reversible socket and a malling plug, to go to the equipment. Ioeal
Dims $3-1 / 8^{\circ} \times 2.5^{\circ} \times 1.5^{\circ}53 .95$ each or 3 for $£ 10$

Maintenance tree LEAD ACID

volt 12 volts 3 amp/hours
12 volts Centre tapped 1.8 amp hours. RFE. $£ 5.95$ (A EXTRA HI-CAPACITY NICKEL CADMIUM

- Whather high capacity Chloride Alcad 12 eadily avallable Polassium Hydroxide is banks of 10 cells per $8^{\circ} \mathrm{H} \times 24^{\circ} \mathrm{L} \times 5.5^{\circ} \mathrm{D}$ wooden case. Each cell for all standby power appolications. Ex MOD, like new..E49.95 (E)

SPECIAL NTEREST

Trio 0.18 voc bench PSU. 30 amps. New

Trio 0.18 vdc bench PSU. 30 amps. New
DEC VAX11/750 inc. 2 Meg Ram DZ and tull docum entation, in brand new condition
Fujitsu M3041 600 LPM band pninter
DEC LS/02 CPU board
Calcomp 1036 large drum 3 pen plotter
Thurby LA 160B logic analyser
Tektronix R140 NTSC TV test signal standard Sony KTX 1000 Videotex system - brand new ADDS 2020 vOU terminals - brand new Sekonic SD 150H 18 channel Hybrid recorder Trend 1-9-1 Oata transmission lest sel

Superb Quality 6 foot 40u
19" Rack Cabinets Massive Reductions
Virtually New, Ultra Smart! Less Than Half Price! Top quavity 19 rack cabinets made in UK by Optima Enclosures Ltd. Units teature door, full height lockable hall louvered back door and re movable side paness. Fully adjustable Internal ilxing siruls, ready punched tor any configurabon of equipment mounting plus ready tion stip make these racks sone of the most versable we have ever sold. Racks may be stacked side by side and therefore require only two side panels or stand singly. Overal dimensions are $77-1 / 2^{2} \mathrm{H} \times 32.1 / 2^{\circ} \mathrm{O} \times 22^{\prime \prime} \mathrm{W}$. Order as

Cock 1 Complete with removable side panels...... 575.00 (G)

POWER SUPPL|ES

rame giving $+5 v 35 \mathrm{a}$, -5 v 1.5 a watt (250 w peak). Seml open rame giving $+5 v 35 a$, $-5 v 1.5 a,+12 v 4 a(8 a$ peak). 12 v 1.5 a , protectlon on the +5 v output. Ac input selectable for $110 / 240$ vac. Dims $13^{-} \times 5^{-} \times 2.5^{-}$. Fully guaranteed RFE.
885.00 (B) Power One SPL 130.130 watts. Selectable for 12 V (4 A) or 24 V (2A). 5v@20A. $\pm 12 v @ 1.5 A$. Switch mode. New. E50.95(B) Astec AC-8151 40 watts. Switch mode. +5v@2.5a. $+12 \mathrm{v} @$
$2 \mathrm{a} .-12 \mathrm{v} @ 0.1 \mathrm{a} .6-1 / 4^{-} \times 4^{-} \times 1-3 / 4^{-}$New
$\mathbf{\Sigma 1 8 . 9 5 (B)}$ Greendale 19ABOE 60 watts switch mode. +5 v @ 6a,112v @ la.+15v@1a. RFE and fully fested. $11 \times 20 \times 5.5 \mathrm{cms}$. 24.95 (C) @15a,-5v@1a, $112 \mathrm{v} @ 6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms}$ New (49.95(C)

Boshert 13090.Switch mode. Ideal for drives 8 sysiem. $+5 \mathrm{v} @ 6 \mathrm{a}$. $+12 v @ 2.5 a,-12 v @ 0.5 a .-5 v @ 0.5 a$. $\quad 29.95(\mathrm{~B})$

COOLING FANS

 4 inch AC $110 / 240 \mathrm{~V} 112^{\circ}$ thick.
10 inch $A C$ round. $31 / 2$ thick. Rotron 110 v
10 inch As above but 230 volts
DC 5 v . Papst 8105 G 4 w .38 mm . RFE $92 \mathrm{~mm} \quad D C 12 \mathrm{v} .18 \mathrm{~mm}$ thick.
4 inch
DC $12 \mathrm{v} .12 \mathrm{w} 11 / 2^{2}$ thick

THE AMAZINGTELEBOX!
Converts your colour monitor into a

Brand new high quality, fully cased. 7 channel UHF PAL TV funer system. Unit simply connects to your TV aerial socket and colour
video monitor tuming same Into a fabulous colour IV. Dont worty it your monitor does'th have sound, the TELEBOX even has an integral audio amp tor driving a speaker plus an auxillary output for Headphones or Hi Fi system etc. Many other features: LED Status indicator, Smart moulded case, Mains powered, Built to BS safety specs. Many other uses for TV sound or
Supplied BRANO NEW with futl 1 year guarantee. Supplied BRANO NEW with futl 1 year guarantee edebox ST for composile video inpul monitors........ex.95(B) Telebox STL as ST but with Integral speaker............ $£ 34.95(\mathrm{~B})$
Tedebox RGB tor analogue AGB monitors........... $\mathrm{C65} .95(\mathrm{~B})$ RGB Telebox also suitable tor 18 m multisylnc monitors with RGB

BRAND NEW PRINTERS

TEC Starwriter Model FP1 500-25 daisywheel printer renowned

 lor its reliabilly. Diablo type print mechanism gives supert registration and quality. On board microprocessor gives futDlabto/Qume command capability. Serial RS 232 C with full handshake. Bidirectional 25 cps . switchable 10 or 12 pitch. 136 cpl in Pica. 163 in Elite. Friction or tractor feed. Full ASCIl
including \mathbb{C} sign. Fom and riboon Diabio compatlble........ $\mathbf{S 1 8 9 (E)}$ DED OPG21 miniature ball point pen pniter plother mechanism E290 with tull 40 characters per line. Complete with data sheet which E 150 Includes dircull diagrams for simple driver electronics.... $\mathbb{E 4 8 (B)}$) contonnuous use - real work horses in any environment. Fast 150 cps with 4 lonts and choice of Interfaces at a fantastic pricel 159-4 Serial up to 9.5° paper, fan fold tractor........... C99.00(E) $152-2$ parallel up to 14.5^{2} paper, tractor or sisheel..... 1449.00 (E

VISIT OUR SHOP FOR BARGAINS

LARGE QUANTITIES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE - CALL NOW! Defly

ALL ENGUIFIES
081-679-4414
Fax-081-679-1927

-ELECTRONILS:

tandard Condibons

Has the Smith chart met its Match?

As a Smith chart program Z Match II offers plenty, but you have to go a long way to beat a sharp pencil and an eraser says Ian White.

Given the right software, modern PCs with high-resolution graphics displays have the potential to combine both the numerical accuracy of the digital computer and the intuitive "feel" of a Smith charl on the screen.
What the user wants from a Smith-chart program is everything that the paper chart could give (and I do mean everything). plus some genuinely useful enhancements that only the computer can provide.

Enlanced numerical accuracy can almos be taken for granted. but more useful than precision is the ability to deal with the fuzzy parameter values encountered in real-life RF engineering.
The problem for the soltware engineer is to provide all of this through an input inter-

Fig. 1. Smith chart display by Z-Match II, showing the cursor at an impedance of $(30+j 40) s 2$.

face consisting of a keyboard and a mouse.
It is with these criteria in mind that I opened the Z-Match 11 package from Number One Systems, well-known for their Analyser nodal analysis program and EasyPC printed circuit and schematic drawing package

On the screen

Z-Match II begins with a display of the familiar Smith chart surrounded by numerical and text information. Figure 1 shows the crosshair cursor positioned at normatised coordinates of ($0.60+\mathrm{j} 0.80$), which in a 50 S

Fig. 2. Admittance-chart dual of Fig. 1. The cursor is at the same position white the chart has beer inverted behind it. Note the changed numerical information around the dispiay.
system corresponds $10(30+j 40) \Omega$. Normalised and absolute impedances hoth appear at the botton right-hand comer of the display, and the abooltite result can be renormalised by changing the system impedance $Z_{\text {(}}$ (botom left). The normalisation menu can also change the frecuency and the velocity factor of any tramsmission line. A "velocity lactor" greater than unity is

ANATOMY OF A REVOLUTION

RF engineering calculations are either very simple or absurdly complicated. Back in the days of the slide-rule, calculations involving reactive impedances and transmission lines were complex in every sense of the word, and experimentation was often the quickest route to a practical solution. Philip Smith changed all that.

By plotting impedances of the form ($\mathrm{R}+\mathrm{jX}$) on his own ingenious set of axes, Smith managed to simplify almost every impedance calculation into a series of geometrical constructions using a ruler and compasses.

The Smith chart was a revolution: suddenly all manner of RF engineering problems became soluble in numerical terms, and the test of a true RF engineer was how well he knew his way around a Smith chart.

More than that, the Smith chart was - and still is - a visual aid to engineering intuition. Doodling on the chart can quickly lead
towards the right solution for the problem at hand. "Starting from here, if I add some series... er.... capacitance that'll take me around to ...there. And then I could match that impedance more easily by...
Equally, a few freehand pencil lines can quickly show when the best option is to rub) everything out and think again!
The Smith chart suffered a setback when computers and programniable calculators came along, with their promise of accurate numerical results without the aid of a really sharp pencil.
But ten-digit precision is of little value in the real world of RF engineering where device characteristics are often ill-defined and subject to variations.

The other major shortcoming of purely numerical methods is that the peephole of a one-line numeric display gives no view of a problem as a whole.
interpreted to mean the dielectric constant of the line instead. and the velocity factor is calculated from ($1 / \mathrm{Ve}$)
Given these "environment" parameters. ZMatch 11 can then display the series inductance or capacitance associated with the reactive term. the standing wave ratio (SWR) and the reflection coeflicient (magnitude and phase angle).
A constant-SWR circle is just a key-press away. Also displayed are wavelengths from the plotted point towards the generator and lowards the load, which are required for transmission-line calculations; on a primted chart these would be measured on a scale around the periphery.
As an alternative to wavelengths the display can easily be changed to metres. according to the frequency and velocity factor supplied.
The cursor can be moved around the chart in a variety of ways. Straightforward X-Y moventent takes the cursor quickly to your starting point. A change of mode will then move the cursor around circles of constant resistance/conductance, reactance/susceptance or SWR, the same as one would draw using a pencil and compasses. The main keys for cursor movement are the block labelled 1-9 on the PC's numeric keypad, allowing the cursor to be driven one-handed.

One delight of a computerised Smith chart such as Z-Match II is that all the numerical displays follow the movement of the cursor. On a 16 MHz 80386 SX machine with a coprocessor there is no noticeable time-lag.
Even more comenient is the facility 10 switch from impedance to admittance chart with a single key-press. On a printed chart this requires the plotted point to be mirrorimaged through the centre of the chart. and all the scale calibrations need to be changed to their reciprocals.
In Z-Match 11 the cursor stays still and the whole chant is mirror-imaged from left 10 right (Fig. 2.). The impedance values change automatically 10 admittances, and the corresponding inductance or capacitance value (top left) changes from the series to the equivalent parallel form. Series-to-parallel impedance transformations are thus simplified to a single key-press.

Computer enhancements

A computerised Smith chart can automate many operations that would be tedious on a paper chart. and can also provide facilities unicyue to itself.

Automated operations include calculation of the length and characteristic impedance of a transmission-line transformer to match the impedance at the cursor point to the system impedance $\left(Z_{0}+j 0\right)$. if such a match is possible. Z-Match II also takes account of trans-mission-line loss in one simple operation, and can read files of impedances calculated by the Analyser II program and plot them on the chart for further analysis.
The real showpiece of Z-Match II is the facility to design small-signal RF amplifiers
from a set of device S-parameters. This normally requires tedious calculations involving matrices of complex numbers, followed by a session with the Smith chart to design the neworks to match the required input and ouput impedances to the system Z_{0}. With ZMatch II the calculation is virtually instantancous and the required values of $Z_{i n}$ and $Z_{\text {out }}$ for maximum power transfer are ready-plotted on the chart (Fig. 3): match these to Z_{0} and the design is complete.
Also ploted in Fig. 3 are the contours on which the output impedance should lie in order to obtain gains of 12 dB and 14 dB .

On a Smith chart these are circtes (like almost everything else) and Z -Match II plots them easily on request. If an amplitier is only conditionally stable. yet more circles are attomatically plotted to show which input and output impedances will result in instability.
Ahtough the S-parameter analysis can only be done for one frequency at a lime, the speed of the program makes it quite simple to check a design for stability over a wide range of frequencies. The only hold-up is the lime required to type in the new S-parameters, so it would have been useful to provide an interface to device data files which are distributed by many semiconductor manufacturers in an industry-standard format.

User interface

So how does Z-Match 11 perform against our list of criteria?
Well, we have a representation of the Smith chart with some very useful computer enhancements; but does Z-match II do everything that its paper predecessor could? Sadly, it doesn't - the user interface lets it down.

Since reaction to a user interface can be

SYSTEM REQUIREMENTS
 IBM PC conpatible
 384 K free ram
 CGAEGAN'GAMCGA, preferably colour (reviewec an colour VCA). Maths
 coprocessor will be used if available.

SUPPLIER DETAILS

Z-Match II trom Number One Syslens Ltd, Harding Way, Sommersham Road, St Ives, Huntingdon, Cambs PEI? 4 NR. Tel: 048061778.
£195.00+V.さT
highly individual 1 asked other Smith chart users to try Z-Match 1I. But reactions of occasional and expert users were the same as my own. Criticisms centred on two areas: the lack of an adequate "pencil-and-paper" simulation and the inconsistency between the control menus and the short-cut function keys.
One of the great advantages of the paper Smith chart is that the pencil lines leave a trail to remind you how the present position was arrived at. Z-Match II just moves its cursor. leaving nothing behind but your own fading memory.
Likewise the paper-and-pencil char comes with an absolutely essential feature called an eraser: but Z-Match It has no pro-

Fig. 3. Z-Match II has analysed a small-signal amplifier from the device 5 -parameters, and has plotted the input and output impedances: required to achieve the maximum available gain. Also plotted are constant-gain circles for 12dB and 14 dB .

gressive UNDO facility to provide a route back to the way you came in. Also. although a single keystroke will draw a constantSWR circle. for example, you are then sluck with it; a second keystroke won'l take it away again.

Another essential feature which is only half-implemented in Z-Match II is the facility 10 mark the current point with a cross before moving away from it. You can leave several such markers; but you cannot jump quickly and accurately back to them, and they all disappear when you tlip between impedance and admitrance chats. The keyboard is not a natural metaphor for a pencil. though the mouse can be. as many successful cad packages have demonstrated. But even the latest version of Z-Match Il can use the mouse only to drag the cursor in the $\mathrm{X}-\mathrm{Y}$ directions.

Taken together, all these shortcomings suggest that the designers of Z-Match II have missed an essential point about the Smith chart: it is not just a calculating engine - it is also meant for drawing on.

Z-Match II has a good menu system, accessed by pressing FIO. The available options appear at the top of the screen. each with its short Help message that changes as the highlight is moved along.

Selecting an option will either produce a sub-menu or take the desired action.

Once you know your way around, the faster alternative is to use the short-cut function keys FI-Flo with Shilt and Ctrl. But these keys are organised in a way that bears no relationship to the menu structure. Quite clearly the function keys came first and just grew with the prototype program, while the more logical menu structure was added later.

One final problem was an incompatibility with the VGA adaptor and/or the mouse driver of the Amstrad PC2286. Although not necessarily the fault of Number One Systems, failure to check that software works with a current Amstrad PC is a surprising omission.

Not the answer

At the high end of the RF design sotiware marke there are several extremely powerful circuit analysis programs such as Touchstone and Super-Compact which use the Smith chart for input and output. Yet there is also a market for lower-cost PC sofiware which provides a handy implementation of the original Smith chart, with improved numerical accuracy and graphics displays. Z-Match II could have filled that niche, but unfortunately it shows all the classic symptoms of software that was developed to satisfy its own programmers.

Sonse people may like Z-March II. marvelling that a PC can model a Smith chart; but that isn't quite the point. It is still not too late for Number One Systems to ask practising RF engineers what they really want in a low-cost PC Smith chart, and then write a Z Match III to satisfy the true needs of the market.

Circuit design improved by second thoughts?

Abstract

ECD, a bargain basement circuit component calculator has been given a much-needed facelift since it was last reviewed. Has it improved? Mike Tooley compares notes.

Ifirst reviewed this particular software package (available as "shareware") in the May 1990 EW + WW (Electronic Circuit Designer. pp. 422-424).

Since that review, many readers throughout the world have become interested in the program and are now putting it to good use in a variety of applications - from allenuator design to VSWR calculation, from decihel conversion to microstrip design.

Now, as a result of user comments. ECDesigner hats been greatly enhanced.

Arguably the most significant change (and the one which caused me most soul-searching in the original review) was that the software would not operate as a stand-alone executable file. Instead, it required the services of the crude and somewhat outdated GWbatsic interpreter.
To overcome this tlaw. Version 3.4 is supplied in a compiled format. using Microsoti's excellent Quichbasic 4.5. and includes support for EGA/VGA graphies. The program now offers more options, several useful additional facilities and, for good measure, the overall structure of the program has been greatly improved with a more logical arrangement of menus and sub-menus.

Reason for registering

Electronic Circuit Designer is largely selfdocumenting, but Diatom supply a "User"s Guide" to registered users. and this document has been much revised for the better

The guide now comprises a very neally presented 31-page manual with the necessary formulas. circuitry and background information required to make use of the individual programs. It is one of the best I have ever seen supplied to complement a "shareware" product and speaks highly of Diatom's commitment to supporting the product - and is yet another good reason to register the soltware.

Options

As before, the package can be used with many different types of circuits - passive and active filters. operational amplifiers. power supplies, timer circuits etc - with the user simply selecting the circuit from the main menu (using up and down arrow keys) and then. in most cases, making further selections from a sub-menu.
Overall structure of the package has been modified to provide more logical distribution of main-menu and sub-menu options:

[^2]
SHERWOOD Data ©ystems

V25 Industrial controller family

EEPROM or FLASH memory Up to 64 Digital I/O lines 2 serial ports RS232/485 LCD 8 keyboard interfaces Real time clock option Optional DC-DC converters

Battery backed RAM 8 analog sense Inputs Single Eurocard Processor expansion bus Watchdog and power fall Optional debug monitor
for information contact:
Tel: O494464264
Sherwood Data Systems Ltd..

Fax: O494 445374

KESTREL ELECTRONIC COMPONENTS LTD

is All items guaranteed to manufacturers' spec s Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	100+
28530	0.60	0.30	2716	2.60	1.70
Z80A CPU	0.80	0.65	2764A-25	1.60	1.28
Z80A CTC	0.50	0.30	27C64-25	1.80	1.35
280 BCTC	0.60	0.35	27C128-25	2.20	1.45
280A PIO	0.60	0.40	27128A-25	1.80	1.38
280B (CMOS) CTC	0.70	0.45	27256-25	2.20	1.40
Z80A DMA	0.95	0.65	27C256-25	2.20	1.55
Z80A DART	1.20	0.90	$6116 \mathrm{LP}-120 \mathrm{~ns}$	2.00	1.00
1488	0.16	0.12	6264LP-100	1.60	1.10
1489	0.16	0.12	62256LP-100	3.60	2.45
LM324	0.25	0.14	628128LP-120	24.00	POA
LM339	0.25	0.14	ICL7660CPA	1.00	0.80
ILQ-74	1.20	0.85	8085A	1.80	1.30
ULN2803A	0.55	0.35	80C85	2.20	1.60
6502 P	2.20	1.56	8155	2.20	1.60
6522 P	2.20	1.56	82C43	1.70	1.25
65C02P2	3.60	3.00	8251A	1.10	0.80
65C21P2	3.00	2.60	8253-5	1.40	0.95
65C22P2	3.10	2.66	8255-5	1.40	0.95
ICM75551PA	0.42	0.34	8259A	1.50	0.80
MM58174AN	4.50	3.70	74 LS374	0.25	0.14
$74 \mathrm{HCTO4}$	0.12	0.09	74LS399	0.10	0.06

All memory prices are fluctuating daily, please phone to

confirm prices

178 Brighton Road,

 Purley, Surrey CR2 4HATel: 081-668 7522. Fax: 081-6684190.

Many Radio Amateurs and SWLS are puzzled. Just what are all those strange signals you can hear but not idemtify on the l.f. and h.f. frequencies? A few of them, such as c.w., RTTY, and Packet you'll know - but what about the many other signals?

Hoka Electronics have the answer! There are some well known CW/RTTY decoders with limited facilities and high prices, complete with expensive PROMS for upgrading, etc., but then there is Code 3 from Hoka Electronic!
It's up to you to make your choice - but it will be easy once you know more about Code 3.
Code 3 works on any IBM-compatible computer with MS-DOS having at least 640 kB of RAM.
Code 3 hardware includes a complete digital FSK Converter with built-in 230 V ac power supply and RS232 cable, ready to use. You'll also get the best software ever made to decode all kinds of data transmissions. Code 3 is the most sophisticated decode available, and the best news of all is that it STILL only costs $\mathbf{£ 2 4 9}$ plus VAT!
The following modes are included in the basic-program (with the exact protocols)

Packet Radio Ax 25, Any speed up 10480 bsud Hell: Synchronous/asynchronous. all speeds Fax: Weather charts, pholographs with 16 gey scales at $60,30,120,180,240 \mathrm{rpm}$
Morse: Autorr atic and Manual speed with wam indication
Press OPA: F7b spec., 300 Bd ASCII Wirtschaftdienst: F7b spec. 3008 dASCII Sport Information: F7b spec., 300 Bd ASCII Autospec: MK's I and II with all known interleaves
OUP ARQ: Artac ITA2
TWINPLEX F7bl ... F7b6 Simplen ARO
ASCII ITA 5 all speeds, parity
Baudot: ITA 2 plus all types of Bit inversion, at any speed

SITOR Automatic Mode A and B (ARO and FEC) ARQ: CCIR 476. CCIR 625 mode A ARQ-6: -90/98 spec. ARO variant ARQ-S ARJ 1000 S
ARQ-Swe CCIR 518 variant
ARQ-E: ARO 1000. ITA 2-p Duplex ARQ-N: ITA 2 Duplex
ARQ-E3: CCIR 519 ITA 3
POL-ARQ spec. ARO-variant
IDM 242. CCIR 242 1/2/4 channels
TIM 342. CCIR 342 1/2/4 channels
FEC-A FEC 100(A) ITA2-P FEC Broadcas1 FEC CCIR 625 476-4 mode B Sitor both collective and selective FEC. FEC-S FEC 1000S ITA 3

All modes in preset and variable user-defined baud rates and shifts.
Six options are available to use with the Code 3 and consist of
1: OSCILOSCOPE, this facility displays the measured frequency versus time, including split-screen, storage and non-storage modes at $£ 25$.
2: PICCOLO MK VI (Everybody wants this facility, but it's only on offer from Hoka), the well-known multitone-mode at $\mathbf{£ 6 0}$.
3: ASCII 'SAVE TO DISC' Store all decoded text to Disc as ASCII. £25.
4: COQUELET (Another multi/tone system. Only on offer from HOKA!). £60.
5: SPECIAL ARQ/FEC. Various other new ARQ/FEC systems. $£ 80$.
6: AUTO-CLASSIFICATION Stop wasting time on uncrack-able systems! Let option 6 classify the system for you. Average answer in 10 seconds! $\mathbf{£ 3 5}$.
Plus many other special codes. Send for details, price on application.
Along with the many facilities listed above, the analysis section of the Code 3 offers you a wide choice of unique facilities such as: a built-in AF frequency spectrum-analyser for shift measurement and tuning, plus precision speed measurement up to 0.0004 Baud resolution. Other analysis facilities include Speed Bit analysis, Speed Measurement, Character Analysis, Auto-correlation of MOD and RAW signal, Bit Analysis. All these state-of-the-art features are included in Code 3 to assist the experienced user.
All options are available from the main menu, saving or loading to or from hard or floppy disk in RAW Bit form (no loss of unknown signals), hard copy with printer, on-screen tuning indicator and very easy to use online Help-files.

To order, phone us for more details or send cheque,
payable to:
HOKA Electronics
Feiko Clockstr. 31
NL-9665 BB Oude Pekelà
The Netherlands
Tel: 010-31-5978-12327
Fax: 010-31-5978-12645
Please specify disk size $31 / 2$ or $51 / 4^{\prime \prime}$ when ordering!
All prices ex. VAT and Shipping; price includes a free 6 -month software update and life-time tech. support.
the only main-menu option that does not have its own sub-menu is that associated with class-A amplifier design.

Sixteen main-menu options in the previous version ol the program have been reduced to just ten: passive filters (15 submenu options): active filters (9 options): power supplies (6): operational amplifier design (5): class-A transistor amplifier design* (no sub-mentu): 555 timer circuit design (3): basic electronics (19): communications electronics (12): attenuator pads* (14), and quit to dos. (Options marhed *are only accessible to registered users)
New features include star-delta and deltastar conversions and the new main-menu option"communications electronics" groups together topies such as RF inductors. VSWR. transmission lines, Gaussian noise bandwidth, dB conversion, stripline and microstrip design.

Readers should reler to the previous review for details of the function of each of the major sub-programs.

A uselul attribute of the sofiware is that the Escape key permits return to the main menu from any where in the program.

Registered versions of the software are supplied with a batch file (ECD.BAT) containing the password giving full access to the program's facilities. Without this file, users
are unable to make use of the class-A amplifier design and attenuator design sub-programs though other facilities are unaffected.
The disk supplied to registered users now contains only two files, ECD34.EXE and ECD. Bat but note that the executable program file amounts to a massive 320656 byles!).

During intialisation of the program, the user is presented with a copyright screen and a ment that allows selection of the video graphies mode (either text. CGA, or EGA/VGA).

System requirements

Electronic Circuit Designer is supplied on either 3.5 or 5.25 -in disks and should run on almost any IBM PC or compatible system. As before, I successfully installed the package on a number of systems including a standard AT-compatible machine (DSC Turbo), an Amstrad PPC512, an Olivetti M-24, and an Atari-ST with a Condor/Beta Systems Supercharger. In all cases, the software was installed and operated without hitch.

Supplier details

Version 3.4 package (with printed manual) costs $\$ 25$ plus $\$ 7$ for surface mail or $\$ 15$ for air mail postage to the U.K. Diatom Software is at PO Box 262, Northfield, Ohio 44067, USA. Telephone USA (216) 4682230.

Operating software purely in text mode means on-screen circuit graphics are not available. But this is no real problem pronieded the wer has a copy of the excellent manmal supplied.

Impressive improvements

I was very impressed by the original package and, with a lew minor reservations, I concluded that it would certainly "cam its keep". But this latest version is undoubtedly an improvement on the original sofiware.
It is casier to use, offers more options than before, and has several minor imperfections removed. Users will find it very difficult to fault the pachage which must now be considered to be a real bargain all $\$ 25$.

Electronic Circuit Designer will undoubtedly repay this modest investment many limes over

"VALVES. TRANSISTORS

We are one of the largest stockists of valves etc in the U.K.

CALL of PHONE

for a most courteous quotation.

0817430899
 COLOMOR

 ELECTRONICS170, Goldhawk Road, London, W12 8HJ
FAX 081-749 3934

Plus a wide range of stock products including: - Nine sizes of standard 19 " rack cases - New "clam" case in any depth - Eight-card $1 \cup$ Eurocard case - Audio, video and data patch panels - Rack blanking and ventilation panels

All use the unique IPK extrusion, giving strength and rigidity with no visible fixing screws.
Rack mounting strips, cable trays etc. from stock.

IPK Broadcast Systems 3 Darwin Close Reading Berks RC2 OTB Tel: 10734) 311030 Fax: $(0734) 313836$

HGH POWER AMPLIFER For your car, it has 150 watts output. Frequency response 20 HZ to 20 KHZ and a signal to noise ratio better than 6Odb. Has buitin shon circuit protection and adjustabio input level to suit youe axisting car stereo, so needs no pre-amp. E57.00 Order rel 57P). HGGH POWER CAR SPEAKERS. Stereo pair output 100 wach. HIGH POWER CAR SPEAKERS. Sterso pair Outpul 10 ow erch. 4ohm impedance and conssting of $61 / 2 "$ woofer 2 mid range and
1"weeter. Ideal to work with the amplifer described dowe Prica per 1 "nearter, Ideal 10 work with
pair $£ 30.00$ Order ret 3097 .
$2 K V 500$ WATT TRANSFORMERS Suirabte tor high vohage experiments or as a spare for a microwave oven etc. 250 A AC input. 10.00 ref 10P93

MICROWAVE CONTROL PANEL Mains operaled, with touch switches Complete with 4 digit display, digital clock, and 2 relay oulputs one for power and one for pulsed power (programmable). FIBRE OPTIC CABLE.Stranded opbical fibres sheathed in black FBRE OPTIC CABLE. Stranded 901 Cl
PVC. Five metre length $£ 7.00$ ret 7 P2
PVC. Five metre length $£ 7.00$ ref 7 P29 12 V SOLAR CELLLEOTMA Outputideal
PASSIVE INFRA-RED MOTION SENSOR.Complete with dayight sensor, adjustabie lights on timer (8 socs
15 mins), 50 ' range with a 90 deg coverage
Manual overide tacify. Complete with wail
brack ets, buib holders otc.
anteed.
\&25.00 red 25P24.
anterd. 125.00 red $25 P 24$.
Pack of two PAR38 bubs
Pack of two
red $12 \mathrm{P}_{4}$
-VIDEO SENDER UNIT
and video signals trom pither a video camera and video signals trom either a video camera, ndeo recorder or computer to any standarg TV set within a 100^{\prime} range! (tune TV to a spare
channet). 12v OC oD. $£ 15.00$ ref 15P39. Suitable mains adaptor 55.00 ret 5P191

FM TRANSMITTER noused in a standard working I 3 A adapter (bug is mains-diven). $£ 26.00$ ref 26 P2 .
(bug is mains-diven). £26.00 ref 26P2.
-MINIATURE RADIO TR ANSCEIVERS. A pair of walke talkies with a range of up to 2 kilometres. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. with a range of up to 2 kilometres. Units
Complete with cases. $£ 30.00$ ret 30 P t2.
-FM CORDLESS MICROPHONE. Small hand-held unit with a 500 ' range! 2 transmit power levels reas
PP3 battery. Tuneable to any FM receiver. Our price
$£ 15$, rel 15P42A.

10 BAND COMMUNLCA TIONS RECEIVER. 7 S bands, FM, AM and LW DXlocal switch, tuning 'eye' mains millel or battery. Complete with shoulder strap and mains lead
NOW ONLY \&19.0011 REF 19P14.

WHSPER 2000 LISTENANG AD.Enables you to har sounds that would otherme be inaudibl Complete with headphones. Cased S5 00 rel 5P179.
CAR STEREO AND FM RADIOL ow cost stereo system giving 5 watts per channel. Signal to noise ratio better than 45db, wow and flutter less than 35% Neg earth. E25.00 ref 25P21
LOW COST WALIKIE TALKIES. Pair of batter
LOW COST WALIKIE TALKIES. Pair of battery poerated units with a range of about 150°. Ourprice 88.00 a pairred 8P50
7 CHANNEL GRA power ampl $20-21 \mathrm{KHZ}$ 4-8R 12 -14V OC negative earth. Cased. E25 rot 25P14.
MCAD BATTERIES. Brand new top quafity. $4 \times$ AA's $-\square$ E4.00 rol 4P44. $2 \times \mathrm{C}$'s $£ 4.00$ ref $4 \mathrm{P} 73.4 \times \mathrm{D}^{\prime} \mathrm{s} \mathrm{E} 9.00$ rel 9P12, $1 \times$ PP3 E6.00 ret 6P35
TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ultimate equivalents book. Latest edition £20.00 ret 20 P 32.
CABLE TIES: $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nyton pack of $100 £ 3.00$ re 3P104. Bumper pack of 1.000 ties $£ 14.00$

VIDEO AND AUDIO MONITORING SYSTEM

$£ 99.00$
Brand new units consisting of a camera, 14 cm monitor, 70 matres of cable, AC adapler, mounting bracket and owners manual. 240 V AC or 12v DC pperation complete with buit in 2 way intercom. 599.00 rel $99 P 2$
1991 CATALOGUE AVAILABLE NOW IF YOU DO NOT HAVE A COPY PLEASE REQUEST ONE WHEN ORDERING OR SEND US A $6^{\prime \prime} X 0^{\prime \prime}$ SAE FOR A FREE COPY.

GEIGER COUNTER KIT.Complete wht tube, PCB and all compo nents to build a battery operated geiger counter. E39.00 ref 39P1 FM BUG KIT. New design with PCB embedded coll. Transmits to any FM radio. 9v battery req'd. $£ 5.00$ ref 5P158
FM BUG. Built and tested superior 9v operation. £14.00 ref 14P3 COMPOSITE VIDEO KITS. These convert composite video into separats H sync, V sync and vidoo. 12v DC. $£ 8.00$ ref 8 P39 SINCLAIR C5 MOTORS $12 v 29$
OP shatt. Now. E20.00 rel 20 P 22
As above but with fitted 4 to 1 intine reduction box (800 mm) and As above but with fited 4 to 1 inline reduction
toothed nylon bell drive cog $£ 40.00$ ref 40 OP

SINCLAIR C5 WHEELS 13° or 16° da including treaded tyre and inner tube. Wheets are black, spoked one piece p
wheel $£ 600$ ret 6P20, $16^{\prime \prime}$ wheel $£ 6,00$ ret 6P21.
whel $£ 600$ ret $6 P 20,16^{\prime \prime}$ wheel $\mathrm{£6,00} \mathrm{ret} 6 \mathrm{P} 21$.
ELECTRONIC SPEED CONTROL KI Pior c5 motor. PCB and all components to build a speed controller (0.95% of speed). Uses pulse width modulation $£ 17.00$ ref $17 \mathrm{P}_{3}$
SOLAR POWERED NCAD CHARGER.Charges 4 AA nicads in 8 hours Brand new and cased E6.00

6 P 3
MOSFETS FOR POWER AMPUFIERS ETC. 100 wat? Mosife pair 2SU99 and 2SK343 £4.00 a pair with pin out into rel 4P51. Also avahable is a $2 S K 413$ and a $2 S .1118$ at C 4.00 rel 4 P 42
12 VOLT BRUSHLESS FANA $1 / 2^{-}$square brand now ideal for boat, car, caravan etc. E5.00 ref 5P206
ACORN DATA RECORDER ALF503 Made for BEC computer but suitabler othere Includes mains adapter, leads and book. £ 15.00 rol $15 P 43$
VIDEO TAPES. Three hour superior quality tapes made under licence from the tsmous JVC compary. Pack of 10 tap $\$ \Sigma \Sigma 0.00$ ref 20 P 20.

PHIUPS LASER. 2MW HELUM NEON LASER TUBE. BRAND NEW FULL SPEC £ 40.00 REF 40P10. MAINS POWER SUPPLY KIT [20.00 REF 20 P33 READY BUILT AND TESTED LASER IN ONE CASE $£ 75.00$ REF 75 P4.

SOLDER 22SWG resin cored solder on a $1 / 2 \mathrm{~kg}$ reel. Top qualing £4.00 a reel rel 4P70
600 WATT HEATERS Ideal for air or liquid, will not corrode, liests foryears coiltype construction $3^{\prime \prime} \times 2^{\prime \prime}$ mounted on a 4^{-}dra metal phere for easy fixing, $£ 3.00$ ea rel $3 P 78$ or 4 for $£ 10.00$ ref 10P76.
TIME AND TEMPERA TURE MODULE A clock, digital thermometer (Celcius and Farenheit ($0-160$ deg F) programmable too hot and too cold alarms. Runs tor at least a year on ore AA battery. c9.00 ral 9P5.
Remote temperature probe for above unit $£ 3.00$ ref $3 P 60$
GEARBOX KITS ideal for modeis ere. Contains 18 gears (2 of each size) $4 \times 50 \mathrm{~mm}$ axies and a poweful $9-12 \mathrm{y}$ motor. All the gears atc are push fit $£ 3.00$ for complete kit ref 3 P93
ELECTRONAC IICKET MACHINES Those units contain a magnotic card reader, two matrix printers, motors, sensors and
 E1200 rel 12P28.
JOYSTICKS. Brand new with 2 fire buttons and sucfion feet these units can be modified for most computers by changing the connector orc. Price is 2 for $£ 5.00$ rel SP174.
GAS POWERED SOI
GAS POWERED SOLDERING IRON AND BLOW TORC Top quality twol with interchangeable heads and metal body. Fully adjustable, ,uns on lighter gas. $£ 10.00$ fof 10 P 130
SMOKE ALARMS
SMOKE ALARMS Ionization ype 5 year warranty complete with batery only £5.00 ref 5P206
ANSWER MACHINES BTapproved remote message playback. intergral push button phone, power supply and tape. Exceptional value at $£ 45.00$ rel 45 P 2
CAR IONIZER KIT Improve the air in your car clears smoke and helps to reduce fatigue. Case required. $£ 12,00$ ret 12 P8
6V 10AH LEAD ACIDsealed battery by yuasha ex equipment but in excellent condition now only 2 for 510.00 ref 10 Pas
12 TO 220V INVERTER KITAs suppled it will handio up to about 15 w at 220 v but with a larger transtormer it will handie 80 watts. Basc kit $£ 12.00$ rof $12 P 17$. Larger transformer $£ 12,00$ ref $12 \mathrm{P}_{4} 1$
VERO EASI WIRE PROTOTYPING SYSTE MIdeal tor designing projects on etc. Complete with tools, wire and reusable board. Our price $£ 6.00$ ref 6P33
MCROWAVE TURNTABLE MOTORS. Ideal for Mndow displays are C5 00 ret 5 PH65.
STC EWITCHED MODE POWER SUPPLY 220 v or 110 V inpu givind $5 v \operatorname{sit} 2 \mathrm{~A},+24 v$ a1 0.25 A , +12 v at 0.15 A and +90 v at 0.4 A E6. 00 giving 5 v s
TELEPHONE AUTODIALLERS. These units, when triggered will automatically dial ary telephone number. Originally made for alam paners. BT approved $£ 12.00$ ret 12P23 (please state te iephone no req'd).
25 WATT STEREO AMPLIFERC. STKO43. With the addrion of a handtul of components you can build a 25 watt amplifer. £4.00 re 4P69 (Circuit dia included)
UNEAR POWER SUPPLY Brand now 220 v input +5 at $3 A^{2}+12$ it $1 \mathrm{~A}, 12$ al 1A. Shon circuit protected. $\mathbf{~} 12.00$ ref 12P21
MANS FANS Snal type construction. Approx $4^{\prime \prime} \times 5^{\circ}$ mounted on a motal plate for easy fuxing. New $\mathbb{\Sigma S} .00$ 5P166
mots plate for easy fuxng. New $£ 5.005$ 5 166 .
POWERFUL IONZER KIT. Generates 10 uimes more ions than commerclal unitsl Complete kit including case $£ 18.00$ ref $18 P 2$. MHN RAOIO MODULE Only 2 " square with ferrite aerial and tunot Superhet Req's PP3 battery. $£ 1.00$ ref BD716.
HGGH RESOLUTION MONITOR.g' black and white Philipts tube in chassis made for OPD computer but may be suitable for others cro.00 rol 20 P26

BARGAIN NICADS AAA SIZE 200MAH 1.2V PACK OF 10 £4.00 REF 4P92, PACK OF 100 £30.00 REF 30 P1 6

CB CONVERTORS. Converts a car radio into an AM CB regriver Cased with circuit diagram. £ 00 ref 4 P48
FLOPPY DISCS. Pack of $1531 / 2^{\prime \prime}$ DSDD $£ 10.00$ ref $10 P 88$. Pack of 10 51/4" DSDD 8500 ret SP158.
SONHC CONTROLLED MOTOR One elick to stant, wo click to reverse direction, 3 cliok to stopl £3,00 each ref 3P137
FRESNEL MAGNIF YING LENS $83 \times 52 \mathrm{~mm} £ 1.00$ ref BD827 LCD DISPLAY, $41 / 2$ digits supplied with connection data $£ 300 \mathrm{re}$ $3 P 77$ or 5 for $£ 10.00$ rel 10 P78
ALARM TRANSMATTERS
ALARM TRANSMITTERS. No data avaliable but nicoly made complex transmitters $9 v$ operation. $£ 4.00$ each ref 4 P81
$100 M$ REEL OF WHTE BELL WRREfigue 100M REEL OF WHTE BELL WREfigure 8 pattern ideal for intercoms, door bells ete £3,00 a reel rel 3P107.
TRANSMTTER RECEIVER SYSTEMoriginaly made for nurse call systems they consist of a pendant styte transmitter and a
recoiver with telescopic aerial 12 v .80 different channels $£ 12.00$ ref

BULL ELECTRICAL
250 POATLAND ROAD HOVE SUSSFX BN3 5OT TELEPHONE 0273203540 MAIL ORDER TERMS:CASH PO OR CY =OUI WITH ORDER PLUS £2. 50 POST PLUSVIT PLEASE ALLOW $10-14$ DAYS FOR OELIVEAY

${ }^{12 P 26}$

CLAP UGHT. This device wurns on a lamp at a finger 'snap' etc. nivaly cased with built
$\& \& 00$ each ret $4 P B 2$.
ELECTRONIC DIPSTICK KIT.Contains all you nod to build an eliectronic device to give a 10 tovel hquid indicator. $£ 5.00$ (ex case) rel SPIos.
UNIVERSAL BATTERY CHARGER.TAkes AA's. C's, D's and PP 3 nicads. Holds up to 5 bateries at once. Now and cased, man operatod. C 6.00 rel 6 P36.
ONE THOUSAND CABLE TIESI75mm $\times 2.4 \mathrm{~mm}$ white nylon cable fes onty ES.00 ref SP18
PC. MODEMS 120075 baud moderns designed 10 plug inlo a PC complete with manual but no sottware $£ 18.00$ ref 18P 12 ASTEC SWITCHED MODE POWER SUPPLYBOmm $\times 165 \mathrm{~mm}$ (PCB size) gives +5 at $3.75 A+12$ at $1.5 \mathrm{~A},-12$ at 04 A . Brand new E12 00 rof 12P39.
VENTLLATED CASE FOR ABOVE PSUWith IEC finered sock Al and poum smitch. E5 00 ret SP190
IN CAR POWER SUPPLY. Plugs into digar socket and gives
3.4.5,6,7 5,9, and $12 v$ ouppone al soomA. Complete with universal 3.4.5,6.75.9. and $12 v$ ouppon
sider pug E5.00 rof 5P167. SUSOR pug ES. RETURNED
位信 ypa good ior eparas or rapaic m. 00 each ret 2 P292.
dRILL OPERATED PUMP Fiva of 3 P140.
PERSONAL ATTACK ALARM. Comprete with buth in toreh and vanity mirror. Pocket sized, req's 3 AA banteries. $£ 3.00$ rel 3 P135 POWERFUL SOLAR CELL 1 AMP . 45 VOLTBny $£ 5.00$ rot P192 (other sizes avaliable in cataiogue)
SOLAR PRONECT KIT.Consists of a solar cell, specia! DC motor
plastic fan and turmables etc plus a 20 page book on solar energy! rice is $\mathrm{E8} .00$ ret 8P5
RESISTOR PACK. 10×50 values (500 esistors) sll $1 / 4$ wall 2% metal film $£ 5.00$ ret $5 P 170$
CAPACITOR PACK 1.100 assorted non electrolytic capacitors £2.00 red 22286
CAPACITOR P
CAPACITOR PACK 2. 40 assoned electrolytic capaators $£ 2.00$ - 22287.

QUICK CUPPA? 12 V 1 mmarsion heaier with iead and cigar inghter Plug $\{300$ or 3 P92
LED PACK .50 red leds. 50 green leds and 50 yellow ieds all $5 m m$ 88.00 rel $8 P 52$

FERRARI TESTAROSSA. A true 2 channel radio controlited car with forward, reverse. 2 gears plus wirbo. Working headigites. E2200 $21222^{2} 6$
ULTRASONIC WIRELESS ALARM SYSTEMTwo Units, one a sensor which plugs imo a 13 A socker in the area you wish to protect. The other, a central alarm unit plugs into ary other socket alsewere in the building. When the sensor is triggered (by body movement etc) the alarm sounds Adjustabio sensitivity. Price per pair $E 20.00 \mathrm{rat}$ 20P34. Additional sensors (max 5 per stamm unit) E11.00 ref 11 P6
WASHNG MACHINE PUMP. Mains coerated new pump. Not sett phiming E5.00 ref SP18.
IBM PRINTER LEAD. (D25 to centronics plug) 2 metre parallel. 55.00 ref 5P186

COPPER CLAD STRIP BOARD $17 \times 4^{\circ}$ of $11^{1 "}$ pitch vero" board. $£ 4.00$ a sheet rot $4 P 62$ or 2 sheots tor $E 7.00$ rol $7 P 22$
STRIP BOARD CUTTING TOOLE2.00 rel 2 P352.
$31 / 2$ disc driva. 720 K capacity made by NEC $£ 60.00$ rol 60 P 2 TV LOUDSPEAKERS. 5 watt magnetically screened 4 ohm $55 \times$ 125 mm . £300 a pair rot 3P109
TV LOUOSPEAKERS. 3 wath 8 ohm magneficaly screned $70 \times$ 50 mm £3.00 a pair red 3 P108.
BBC TRACKBALLS Once mgain in stock only $£ 4.00$ ret 4 P86
CROSS OVER NE TWORKS 8 ohm 3 way Japanese made units
Excollont units avaliable at onty $£ 2.00$ for a pair ref 2 P 363
SPEAKER GRILLS set of 3 matching grils of diflerem diameters.
2 packs for $\mathfrak{E S} .00$ (6 ginils) rof 2P364
50 METRES OF MAINS CABLE $£ 3.002$ core black preaul
Convenient 2 m longths, Ideal for fopairs and proiects. rol 3 P91
4 CORE SCREENED AUDIO CABLE 24 METRES E2.00 Precut into convenient 1.2 m lenglhs. Ref 2P365
TWEETERS $21 / 4$ "DIA 8 ohm mounted on a smart metal plate for easy fring 000 Ce 2P365
*asy fxing $E 2.00$ MHE $2 P 66$
COMPUTER MWE Onginally made for Future PC's but can be
adapped to othar machines Swiss made £8.00 ref 8P57. Atan ST
adapted for other machines
conversion $k n ~ £ 2.00$ ref 2 P362.
$61 / 2^{\prime \prime}$ 20 WATT SPEAKER Buit in tweeter 4 chm E5 00 ref $5 P 205$ $5^{\prime \prime} \times 3^{\prime \prime} 16$ OHM SPEAKER 3 for $£ 1.0011$ ret CD213
ADJUSTABLE SPEAKER BRACKETS ideal for mouning speak ers on internal or extemaicore
E5.00 ree $5 P 207$ 5.00

PIR UGHT SWITCH Replaces a standard light swich in seconds light operates when anybody comes immin detection range (4m) and
stays on tor an adustable ime (15 secs to 15 mins). Complete mith stays on tor an adiustable tme (is secs 10 ts mins). Complete wh dayhight sansor. Unit also unctions as a dmmer sw
max. Not suitable for flourascems. $£ 14.00$ ref 14 P 10
2 MEG OISC DRIVES $31 / 2$ disc drives made by Sony housed in
2 MEG OISC DRIVES 3 1.2 dicc dives made by
a $51 / 4^{-}$frame 1.2 meg formatred. 866.00 rer 66P1
CUSTOMER RETURNED 2 channel full function radio controled
CUSTOMER RETURNED
WINDUP SOLAR POWERED RADO! FMAM radio takes io
chargeable batteries complete with hand charger and solar panel chargeab
14 P 200
CUSTOMER RETURNED TV/RADIO/CLOCK Made by Aba, may need attenton good value at $£ 2800$. rel 28 P 20012 or 240 V
240 WATT RMS AMP KIT Stereo $30-0-30$ psu required $£ 40.00$ re 40 P200
300 WAIL AMS MOne AMP KIT E55.00 Psu roquired ref 55P200 ALARM PIR SENSORS Stancand 12 V alarm tyo 3 ansor mill intar.

ALARYPANELE 2 zone cased keypal eniry entry exit time delay
ele 518.00 ret 18 P 200
 28 mm hens 2 for 88.00 rel $8 P 200$ STEAM ENGINE Standard Mamod 1332
engine complote with boiler piston ete $£ 30$
rot 30 P200
thiking clock
What mirnecen me say??
What now 14.00 rat me sal

Capt. H.J Round's soft triode of 1914, developed with Marconi's. The cathode was a Wehnelt oxide-coated type; the grid a tine mesh around the filament; and the anode a concentric cylinder. The protuberance on top is a wad of asbestos, intended to emit gas and prevent the tube becoming hard. Heat had to be applied to the wad externally.
advance so far described in our pages": the triode valve developed by H.J.Round and Marconis. Lee de forest hat come up with his triode design several years cartier. but had not exploited it. Indeed. Marconis asserted that it was an infringemen of Fleming's work on diodes. but had 10 confess that Marconis had also been guilty of an infringement. This meant that both Marconis and de Forest were banned from making triodes by American courts. The Round-Marconi triode enabled development of the equipment shown. which was a wireless telephony set by Marconi's which was satid to have a range of up to 45 miles and drew about 12 mA from a 500 V dry battery.

During the war. WWV was prevented from priming anyhing about valves and, indeed. anything much about anything. Progress on the amateur side forged abead during this period. hut only in the USA. since all amat teur licences had been confiscated here in 1914.

Marconi's "practical standard set for wireless telephonv". a conibined transmitter/receiver using the Round-Marconi triode amplitying valve with 500 V on the anode.

ANTRIM TRANSFORMERS LTD

UNIT 3A/9 25 RANDALSTOWN ROAD
TEL: (08494) 28734

ANTRIM NORTHERN IRELAND BT41 4LJ
FAX: (08494) 68745

TOROIDAL TRANSFORMERS

STANDARD

TO BS 415
TO IEC 65
HIGH QUALITY
LOW COST
SEE OPTIONS

OPTIONS
SCREENS
IEC 742 VERSIONS BS 3535 VERSIONS SPLIT PRIMARIES GOSS BANDING POTTED CENTRES AUDIO GRADE LOW STRAY FIELD LOW NOISE

CONTROL GEAR

0-380-415V I/P 24V RANGE
110V RANGE
240V RANGE 100VA OUTPUT 200VA OUTPUT 400VA OUTPUT TO IEC 742 TO BS 3535
FLEXIBLE LEADS < 5\% REG.

LOW PROFILE

<1 U HIGH 160VA RANGE 225VA RANGE AUDIO GRADE TO BS 415
TO IEC 65
SPLIT PRIMARIES $120+120 V \mathrm{I} / \mathrm{P}$ $110+110 \mathrm{VI} / \mathrm{P}$

RANGES

CONTROL GEAR *
TH LIGHTING * 100V LINE
AUTOTRANSFORMER * INVERTERS *

STANDARD RANGE \star AUDIO GRADE \star FULLY POTTED * 160VA LOW PROFILE \star 225VA LOW PROFILE

TH LIGHTING

11.8V OUTPUTS

TO IEC 742
TO BS 3535
220V RANGE 240V RANGE
THERMAL CUTOUT
FLEXIBLE LEADS 50W TO 200W
LOW TEMP. RISE

CUSTOM DESIGNS

12VA-3kVA
MULTIPLE PRIMARIES
SCREENS
GOSS BANDING
POTTED CENTRES
FAST QUOTATION SERVICE
FAST PROTOTYPE SERVICE DESIGNTO MOST STANDARDS FLEXIBLE LEADS

M $6 \times 25 \mathrm{~mm}$ BUSH

No time for games

I was interested to read your Comment ($\mathrm{EW}+\mathrm{UW}$. June 1991) on stand-alone computers. It may well be that your failure to memtion the most versatile of them all. the Alari ST and STE ranges may be due to the simple fiac that you have had no experience with them.
It is unfortunate that the Atari has this image of being a games machine. but this is cotally unjustified.
After my retirement in 1985, with absolutely no experience of computers. I spent a long time looking around for one to use. primarily as a word processor. The hlatant user-unfriendliness of MSdos soon became apparent and was more than off-putting.
But the Atari ST. then just appearing. was clearly head and shoulders above everything else with its wimps and Gem interface.
The rawest lyro, and that ineluded me then, could get into using one within a few hours. Such features as windows. now belatedly and expensively available on IBMs. were inherent in the Atari` $O S$ and built-in to a rom. No longer did the OS have to reside on disk, as with dos.
I took to it like a duck to water.
In addition to its WP versatility. graphics are a doddle and the machine will emulate practically every other (OS going. I regularly use it with dos prorammes such as Analyser II and I can emulate CP/M and even the Zxo.
At Keele we have dozens of them. sinee they are ideal for the educational environment: and in the music department, where digital music technology is hig. Whey are used exclusively - they come already equipped with a midi interface.
Now that I use all types of computers. with a variely of OS. there is no doubt in my mind. that the Atari ST and STE ranges are the most versatile of them all.
There is an enormous variety of moderately priced software often costing a fraction of dos equivalents plus an equally large collection of free software, which includes the WP used to write this letter.
It has always irritated the Atari ST user that the company itself does not seem to have the same faith in its
product. Interestingly. I believe that in Germany the Atari actually
outsells the IRM and its clones as a stand-alone computer, and all the best sofiware comes from there.
Reg Williamson
Staffordshire

Amiga offering

I must respond to your your remarh
("Comment" EW + WW. June 1991) that "Until Windows 3... the only machine with a built-in intuitive user interface was the Macintosh".
The Commodore Amiga series has

Looking at the future...

In John de Rivaz's letter on Benjamin Franklin ($E W$ + WW April 1991) he states that unless readers interested in alternative physics can come up with a mechanical time machine. Franklin's dream of time travel remains unfulfilled.

Why a mechanical time machine? The assumption that if time machines are ever achieved, they will be mechanical, may be somewhat questionable.

Time, the fourth dimension as it is sometimes called due to mathematical extrapolation, is to me an interesting subject.
I wonder how many other $E W+$ $W W$ readers share this interest?
Experiments with very accurate atomic clocks flown for some length of time in passenger aircraft do show that time is affected by travel at speed, by a very small amount, as predicted by Einstein.
But does the direction of travel relative to the earth's spin for example affect the results?

Do many short journeys. on a shuttle flight that has travelled the same distance in a week but between two nearby cities, give the same results as a long-haul jet flying intercontinental at the same average speed?
What about round trips and rotating machines? Does high speed circular motion also slow down time?
Perhaps the assumption that time machines will be mechanical is not surprising when one follows the above train of thought. A mental picture of a gigantic gyroscope-like

...and the past

Do you know of anyone who would like a copy of Volume I No 1 of the Journal of the Institute of Wireless Technology, dated October 1926?
I recently offered to donate it to the library of the Institution of Electronic and Radio Engineers
machine with rotating magnets. cogs, wheels and motors comes to mind.
However. in my view, the discovery in 1911 of the phenomenon of superconductivity. may eventually lead to a practical time machine. Room temperature superconductors (RTS) look extremely likely to be achineved in the next few years - already materials which superconduct at 240 degrees K have been demonstrated. When perfected, inevitably someone will make a Faraday cage with the material, able perfectly to isolate the space inside from the electromagnetic continuum oputside. Anyone inside would be "electromagnetically decoupled".
Could then high velocity electromagnetic fields be set up rotating on the inside surface of the Faraday cage, mimicking circular motion, and hence slow down time?
Science fiction perhaps, but wouldn't such a machine be useful. Keeping food fresh for months without freezing. looking after the family pet when on holiday. the uses are fimitless.

Slowing time down means that inside the cage travel is effectively forwards in time with respect to the outside.

Devising a machine to go
backwards in time seems to me to be much more difficult. in fact impossible.
Hugh Pincherie
Barnet
Herts
(now merged with the IEE). but it was of no interest to them.
It seems a pity to consign it to the waste bin.

R Phillips

22 The Fairway
Wembley
Middlesex
HAO 3LI
offered a well-designed wimp interface since its introduction six years ago.
Furthermore, unlike the Mac it has true multi-tasking, and a commandline as well as a mouse interfice: there are many jobs for which the mouse is not appropriate. and the Mac can be a very frustrating machine to use.
One end of the larger Amiga models (2000, 3500) has a standard PC bus. so that hy adding an XT or AT hoard one can have an Amiga and a PC in the same casc, with easy file transfer. A Mac card has also been shown in prototype form and is expected to be available this Autumn while Unix is already available - if you must have it - as is Ethernet.
Of course like any multi-tasking machine, it needs plenty of memory (say 4 Mbyte) to work happily, and a good multi-scamning monitor is essential.
Given these characteristies. the Amiga is hard to beat for image analysis. viden digitising. graphic design and DTP. and
presentation/multimedia.
The only snag is that there is as yet little electronic design software in native Amiga format, though there are good general cad programs.
I believe the Archemedes also has a wimp interface. hut this is a rare machine and I have not used one.

Don Cox

Cleveland

CFA questions
 Opponents of crossed field antennas

 suggest that some other part of the system is radiating. Could not an experiement be done where a small transmitter is placed at the centre of the structure eliminating the feed wires altogether?It is also claimed that the structure produces waves much smaller than conventional plane-wave theory.
How are experimenters getling on with testing this observation?

David Gibson

Leeds

HDTV flare-up
 As one who has work ed for some

 years in the television development laboratory of one of Denmark's largest electronies companies. I too was able to welcome the introduction of the "flat" square

Circieno. Ill on repiy card

AOR Aet Room 2, Adam Bede High Tech Centre
(UK) Ltd Terby Road, Wirksworth, Derbys. DE,4 4BG

The AR3000 now extends
y istening
list horlzons. Frequency coverage is from 100 KHz to 2036 MHz without any gaps in the range. All mode: USB, LSB. CW, AM. FM (narrow) FM (wide). 400 memor $\begin{aligned} & \text { en } \\ & \text { channels are }\end{aligned}$ arranged in 4 banks x channels. 15 band pass filters before the GaAsFet RF amplifiers ensure high sensitivily throughout the entire range with outstanding dynamic range and freedom from intermodulation effects. An RS232 port is provided to enable remote operation by plugging directly into most personal computers. ACEPAC3 is an exclusively developed multi-function IBM-PC based program to further increase the versatility of the AR3000. A sweep facility provides a spectrum analysis graph. The very latesi version displays frequencies in X axis and squelch opening percentage on each frequency in the programmed frequency search range. This indicates how active' the frequencies are in the programmed search range. In addition to the graphic display. ACEPAC3 can produce a detalled numerical list from the graphic information. One memory file has 400 channels divided into 4 banks of 100 channels. More than one memory file can be created to increase the memory storage capability. If you make just one extra memory fille yout can store 800 memory channels!
R.R.P. inc VAT \quad R 3000 \& $765 \quad$ ACEPAC- 35119

Toroidal Transformers

As manufacturers we are able to offer a range of quality toroidal and laminated transformers at highly competitive prices.

Toroidal Price List

Quantity prices Exclude VAT \& carriage
Mall Order
Quantity Pri
12.16
13.37
14.86
15.02
14.98
17.58
17.95
21.65
19.86
25.09
28.60
38.49
42.07
44.24
48.66
65.67
68.71
87.58
114.45
135.87
8.51
9.36
10.40
10.51
10.50
12.29
12.57
15.16
13.90
17.56
20.02
26.94
29.45
34.47
38.86
45.97
49.10
61.36
80.11
95.11

6.89
7.35
8.17
8.26
8.25
9.88
9.87
11.81
10.92
13.80
15.73
21.17
23.14
27.08
28.98
36.12
37.78
48.17
62.95
74.73

5.17
5.68
6.32
6.38
6.38
7.46
7.63
9.20
8.44
10.66
12.16
16.36
17.88
20.93
22.38
27.91
29.20
37.22
48.64
57.71

5.02	4.87
5.51	5.35
6.13	5.94
6.20	6.01
6.19	6.00
7.24	7.02
7.41	7.18
8.93	8.66
8.19	7.94
10.35	10.04
11.80	11.44
15.88	15.40
17.35	16.83
19.31	18.70
21.72	21.06
27.09	26.27
28.34	27.48
36.13	35.03
47.21	45.78
58.04	54.35

These prices are for single primary with two equal secondaries with 8 colour coded fly leads. Each transtormer is supplied with a mounting kit, consisting of one steel washer, two neoprene pads, and a nut and bolt.
Avase do hestiate to te ephone or write with your particular requirements.
Avalable from stock in the following voltages: 6-0-6, 9-0-9, 12-0-12, 15-0.15, $18-0-18,22-0-22,25-0-25,30-0-30,35-0-35,40-0-40,45-0-45,50-0-50,110,220,240$. Primary 240 volt.

Air Link Transformers
Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts. Tel: 0279724425 Fax: 0279726379
picture tube. The present day discussion revolves around HDTV and the exaggerated geometry of the 16:9 format.
Anyone who hass seen such a pictures tube will surely agree with me that the most reasonable name for such a monster is the "squat flare" picture box.
Stephen Theobald
Vrist
Denmark

Power line plea

In $E W+W W$ Fehruary 1990 a very interesting and informative topic on non-ionising radiation. with the heading "Killing Fields" was discussed and references given to case studies.
We, as a local area ounside the municipality of Port Elizabeth, are facing the same consequences mentioned. because the municipalaity want to erect two 1.32 kV overhead power lines through our area passing 3 m from boundaries and 23 m from houses.
So far we have managed to delay erecting these lines, hut we need its much information as possible regarding the negative health effects caused bzelectromagnetic fields emmitted from these lines.
We have to defend our case in court and any additional relerences willhe most welcome.
Any technical information will be useful because it can be interpreted by us.

A Friend

Theescombe Local Area
Association
c/o P() Box 10707
Linton Grange
6015
Port Elizabeth
Republic of South Africa

Diary note?

EW + wh does not have a diary listing trade shows, exhibitions or specialist colloquiums. I understand that this omission is because these are so well advertised in the "freebee" trade sponsored technical press. Yel I for one would appreciate a diary column of what is going on.
In 1989, I used to receive
Electromics Weekl!, not to mention others such as Electronics Times. Micronare Ionarnal, Electromis Product Dessign and New. Electronics. I've made two moves of job and residence since then and now receive no freebies. There must be many others, consultants and the like, who move either willingly or through redundncy from firm to firm.

When a move takes place it takes many months to be re-instated on
the controlled circulation lists.
Nor are you likely to be accepted unless the personal profile you are asked to fill in suggests you can generate large numbers of purchase orders from the address to which the magazine is to be mailed.
I've also found that some large employers refuse to distribute freebies in their internal mail and consign the fot to the skip.
Sol for one would weicome a subscription journal that contained a trade diary column.
What do others think?

WH Powell

Warwickshire

Chaotic antenna design

I read with interest your recent article on "Chaos in Electronics" by Jinn Lesurf (EW + WW. June 1991 pp467-472). I an involved in similar work at the University of York although we are more interested in non-linear loads to antennas.
It occurs to mee that your readers might he interested in information concerning the modelling of currents in arbritary (3-D) antenna designs. This has traditionally been done in the frequency domain. But recent advances in computer power. and development of suitable time domain integral equation methods. has meant that currents can be modelled in the time domain. allowing non-linear as we.l as linear loads to be attached at any point on the antenna design .
In more general terms, this allows the user todefine a 3-D or 2-D antenna consisting of any number of straight wire segments (ie a wire grid) subject to a few limitations.

This grid of wires can then be illuminated with a chosen electric field and the currents at each wire segment at a given time can then be calculated, giving I(r.t), the current as a function of postion and time. The grid of wires can model dipoles. dipole arrays, loops, arhritary 3-D shapes, etc.
All coupling between wires is included in the calculations.
$f(\mathrm{r}, \mathrm{t})$ can be used to calculate the radiated field, the radar cross section, or other parameter. It is also possible to calculate the impulse response $Y_{\text {in }}$ of any given antenna design using this method

Once $I(r, t)$ and $Y_{i n}$ have been calculated it is possible to assertain the effects of linear and non-linear loads (ie. diodes!) which can be attached at any point in the antenna. using a Norton equivalent type model.
Note that it is impossible to calculate the effects of non-linear
loads using the frequency domain model.

To give a typical example of the use of this type of system. imagine a simple dipole antenna. The technique can be used to calculate the 1 at any number of points along the antenna length, for a time t. This can be done for a range of t so that if we have a central impulse V at time $t=0$. the current or voltage pulse can be seen travelling along the dipole arms. reflecting off the ends and moving back towards the centre.

We can then model the efliects of any combination of diodes, resistors. capacitors and inductors attached at various points on the antenna and "see" directly the effects on the current pulses.
A suite of programs in C has been developed which can be run either on an IBM PC - although a minimur of $286 / 386$ performance is needed - or on Unix workstations. such as Sun Sparc 1/2.
It is henelicial for us to reach a wider audience with this technique and it would be useful if I was able to sell some of the software I have developed to interested partics.

Ian R Frost

University of York
Electronics Departmen

Light conversation

I agree with Frank La Tella's opinion $1 E W+W W$ "Letters" June 1991) that "Nobody ever said (Einstein included) that Special Relativity is intuitive or that it makes sense...". But his statement that "Light does not obey the Newtonian principle of addition of velocities..." requires some clarification.
The speed of light as measured at its source, is c as predicted by Maxwell's equations of e-m theory. But to measure the velocity of light from the source, observers muse take into account their own velocity. relative to the source. The following example explains why.
Suppose a transmitter radiates a signal of frequency F. Velocity of the wavefront, as measured at the source, will be c. The wavelength will be λ where:
$F . \lambda=c$
If a mobile receiver approaches the transmitter at a speed V. its receiver intercepts the approaching wavefront at a speed $(c+V)$. The frequency and wavelength of the received signal will be f and β. where frequency
$f=F .\left(c^{c}+l^{\prime}\right) / c^{\prime}$
and wavelength
$\beta=\lambda . /(c+b)$
which is not inconsistimnt either with Newton's Law, with Maxwell's e-m theory or with common sense.

An observer who measured the speed of the wavelront would measure ($c^{+}+\mathrm{V}$).
To determine the value of c the ohserver's own velocity would also have to te measured (V) with respect to the source.
John Ferguson
Camberly

Electronics SOS

I enjoyed reading the article on electronic yacht navigation by Steve Rogerson in April $E W+W W$ ("On the right Track". pp 311-312).
However it did contain some half truths and missed some points.
It is not true that Loran does not cover most of the British Isles. Loran receivers of suitable quality can give good results around the UK. The generally low-quality equipment offered to yachters may not cope south of Scotland hut the transmissions are there - and they are likely to be there for the foresceable future as it is inconceivable that Europe would allow itself to become dependent on GPS which is totally under US government control.
But a wider problem is raised by use of this sort of equipment. Yachters are beconing increasingly reliant on electronic navigation and neglecting basic skills such as dead reckoning. This would not matter if the electronic navigation aids on sale were all reliahle.
Sadly they are not. In particular yacht electronics is often very vulnerable to disruption from interference or power supply problems. Inevitably gimmicks such as enormous numbers of "waypoints" or glossy advertising sell equipment more elfectively than rugged design - especially to a leisure market unable to judge quality in the way that professional users can.
Unfortunately the EC directive on electromagnetic compatibility is likely to be postponed as it would have forced manufacturers to raise their standards. As matters stand I fear there may be an increasing number of "Decca assisted" strandings and mayday calls in the coming years.

Mike Brettle

Potton Marine Equipment Bedfordshire

Short circuit

In the diagram for Mr Barker's
"Switching oscillator" $(E W+W W$, Circuit Ideas June 1991), the + and inputs for A_{2} are reversed.

Michael Covington

University of Georgia
USA

THE HYDROGEN ECONOMY

Abstract

Everyone recognises the need to move away from fossil fuels. Electrolytic decomposition of water using energy from alternative sources produces hydrogen. Is this the basis for a new energy economy? Report by James Kloeppel of the Georgia Institute of Technology, and Steve Rogerson.

Easy to produce and non-polluting. hydrogen could be the ideal fuel for the future. As a gas, it could be piped to homes and businesses for heating and cooking purposes, or converted into electricity by fuel cells. As a cryogenic liquid, hydrogen could launch rockets or fly aircraft. Or locked as a solid in metal hydride storage canisters, it could propel cars and lorries. And all with virtually no impact on the environment.
Bill Livesay, an energy specialist from

Georgia Tech, reckons that by shifting from an economy based on fossil fuels to one dependent upon clean-burning hydrogen gas, cities could once again be free of smog, acid rain, oil spills, and global warming. But this utopia is not ours simply for the asking. He warns: "We have some serious work to do."

Mercede-Benz's active research programme is aiming to develop a car that operates from a hydrogen energy source.

A lesson not learned

The oil crises of the 1970s sparked a number of significant advances in energy conservation and the development of alternative fuels. In the US, encouraged by government to reduce dependence on overseas oil, many responded by lowering thermostats, installing storm windows, adding insulation and weather stripping, and by driving less. Car manufacturers introduced new models with dramatically improved fuel efficiency, while handsome tax benefits promoted the use of other fuels. such as solar energy, to heat homes and businesses. The US successfully tightened its belt and, for awhile, the government broadened its vision.
What happened next was a classic example of supply and demand. As cars became more fuel-efficient and people learned to conserve energy at home and work, the demand for oil fell. With decreasing demand. oil supplies again rose and the cost of a barrel of crude dropped near its former level.
Unfortunately, as the world oil markets once again stabilised, the movement towards greater efficiency and renewable energy sources stalled. In fact many people, believing the energy problem had been solved altogether. reverted to old habits.
Today, in the wake of spiralling petrol prices and renewed concern over maintaining an unbroken supply of crude oil, spurred by the recent war in the Gulf, a painful reminder has been brought home. The world's supply of oil is indeed limited, and people can neither afford to waste this fuel nor wait to develop other sources of energy. World stores of energy are being depleted at an alarming rate.
Livesay maintains that over half the US supply of oil and natural gas has already been consumed. The remaining deposits. at

For many the thought of using hydrogen as a fuel conjures up visions of the fiery crash of the Hindenburg, a hydrogen filled zeppelin that burst into flames while landing in New Jersey in 1937. Tragically 36 passengers and crew members lost their lives in the accident raising serious questions about safety.

As a car fuel hydrogen may prove much safer than petrol. Because hydrogen is so buoyant, when leaks or spills do occur, the gas will disperse rapidly into the atmosphere, unless of course it leaks into the passenger compartment of the car when any spark could spell diaster. Petrol on the hand evaporates slowly and the heavier than air hydrocarbons in the vapour tend to accumulate until an ignitable mixture develops.

In the case of the Hindenburg, the terrible fire that burned for more than an hour was fed by diesel fuel and debris from the wrecked airship. The hydrogen had been consumed within a minute of the accident.

In a car crash, hydrogen may prove far less flammable than petrol. A few years ago, the Billings Energy Research Corporation fired armour piercing incendiary shells into two tanks, one filled with petrol and one with fully charged metal hydride. The hydride tank slowly burned through a puncture in its side. The petrol tank exploded.
current levels of consumption, are projected to last a mere 30 years with world supplies running out 20 years after that. "Currently. the US has no national strategy to deal with this impending disaster" he says.

Energy in water

In a way, hydrogen already fuels much of the planet. The chlorophyll found in green plants uses sunlight to split water absorbed by the roots into hydrogen and oxygen. Oxygen. a waste product in this case. is released to the atmosphere. But the hydrogen is retained and combined with carbon dioxide to form simple carbohydrates. the beginnings of an elaborate energy chain.

The electrolytic eraching of water was first demonstrated in the early 1800 s, but nearly a century passed before the process went into commercial production. Even then. electrolysis plants were used to generate oxygen. not hydrogen. The liberated hydrogen was usually treated as a mere byproduct with little practical use. Today, the electrolysis of water is still used primarily as a source of high-grade oxygen for medical and industrial applications, and to replenish oxygen supplies on submarines.

Solar cells have long been plagued by problems associated with the storage and transmission of the energy they produce. In addition, variables such as time of day, season, and local weather conditions can cause major fluctuations in the amount of energy being received. and converted, at any given place and time. Hydrogen. produced by elec-

cult to fill and properly maintain. Although liquid hydrogen is useful for launching rockets or flying large aircratit where trained lechnicians handle the complex fuelling operation. it probably never will become practical as a fuel for ground transportation.

One potential solution for vehicular fuel storage involves the use of metal hydrides. specially formulated alloys that soak up hydrogen much like a sponge absorbs water. Metal-hydride storage canisters can absorb pressurised hydrogen gas and then release it as needed following the application of heat whict would normally be supplied by the hot engine exhatust. Some of these materials. like iron-titanium, lanthanum-nickel, and special magnesium alloys, can actually hold more atomic hydrogen than an equivalentsized cryogenic llask, and without the need to refingerate (see box for more details).

A fair number of metal hydrides exist, but the ideal alloy for hydrogen storage has yet to be developed. Desirable features include the ability to store vast amounts of hydrogen at low charging pressures, fast release of the gas al low operating temperatures, light weig't. and reasonable cost. Existing hydrides require trade-offs among these parameters.

Iron-litanium, for example, is inexpensive and can release hydrogen at a low temperature $\left(38^{\circ} \mathrm{C}\right)$. But this material is extremely heavy and possesses a relatively low hydrogen capacity. To provide a range of 300 miles for an average-sized car. a 90 -gallon tank weighing nearly a ton would be needed.

Gaseous hydrogen is supplied to the left side of a membrane where the atoms part company with electrons. The protons traverse the membrane to combine with electronegative oxygen to form water. The surplus electrons from the hydrogen side have to go round an external electrical circuit doing work on the way.

Magnesium alloys are far lighter and can hold mach more hydrogen. The same car would need a stomge tank less than half the size and only a quarter the weight of an irontitanium tank. But magnesium hydrides require a much higher pressure to charge up. and a much higher operating lemperature around $344^{\circ} \mathrm{C}$. This temperature cannot be reached and maintained by mere engine exhaus.

More researeh into metal hydrides is needed to exploit the potential for enomous storage density and convenient use.

Bach in the F^{970})s, a number of designs using iron-litanium storage canisters were developed. including a hydrogen powered car buill at Georgia Tech. These lests were largely successfut. In one experiment, the Billings Energy Research Corporation converted a 19 -passenger bus for the cily of Riverside. Califormia. This was the first hydrogen-fuelled vehicle placed in regular passenger service. The bus performed impressively, though the iron-titanium storage tanh had to be recharged every 200 miles.

In another test, a Post Otilice delivery van was converted to hydrogen fuel and operated for a year. The metal-hydride storage tank again functioned flawlessly. On an equal energy basis. this vehicle proved 21% more

fuel-eflicient than one powered by petrol.
The missing link may have been found at last.

The solar advantage

Despite its many advantages, hydrogen has been slow 10 gain universal acceptance as an alternative fuel. One reason is that like most

Hydrogen fuel cell

A typical hydrogen fuel cell is a specialised membrane manufactured from organic sulphonate compounds. This material allows proton travel across it - a bil like semiconductor electron holes moving through a crystal lattice. When the hydrogen comes into contact with this membrane, the proton nucleus enters leaving its electron on the surface. When the proton reaches the other side, it comes into contact with oxygen.

Now any good hydrogen proton likes nothing better than to react with oxygen to form water, but for this it needs its electron, still stuck on the other side of the mentbrane. The electrons meanwhile have started concentrating, building up a charge; for most fuel cells this charge reaches a maximum of about 1 V . This is collected on a metal plate which is connected to a wire. The wire takes the electrons around to the other side of the membrane to reunite them with their protons in a flood of water.
But before the electrons reach the other side they can do work such as driving a
motor or other device. So far conversion efficiencies between 60 to 80% have been attained for membrane fuel cells.
Fuel cell inefficiency manifests itself as heat. Hydride decomposition to gaseous hydrogen is endothermic - it gets cold. Between the two, hydrogen vehicles have the resources for built-in air conditioning.
Fuel cells may be run backwards to produce hydrogen for the next journey while the vehicle is parked. This process takes about eight hours. For hydrogen cars to become a reality, petrol stations will eventually have to sell hydrogen for a ten minute refill.
The attitude of the giant oil companies and the governments they finance will pose a significant problem. If, to preserve, the status quo, they will go to the lengths of staging a war to protect the supply of cheap oil from Kuwait, then one fears that they will find a way to stop water powered cars from break ing a monopoly on road traffic.

SR
new technologies, the current costs of producing hydrogen are quite high. Liquid hydrogen. for example, costs nearly four times as much as petrol to produce on an equal energy hasis. But as the price of diminishing fossil fuels climbs ever higher. and as additional researel and development combined with potential mass production bring the cost of generating hydrogen down. hydrogen is bound to become cost-effective.

Another reason for hydrogen's slow acceptance can be traced to concerns regarding the energy effectiveness of the proposed solar-1o-hydrogen conversion process.

Bill Livesay comments: "Just a few years ago, it actually took more energy to make a solar cell than you could everget out of it during its lifetime. Too much energy was consumed in growing the erystal. slicing it into waters. and in all the other little processing steps that were required. As a result.

Energy efficiency of a hydrogen fuel cell is almost double that of an IC engine.
the conversion of solar energy into hydrogen was not energy-effecive.

Fortunately. this is no longer the case. Recent advances in materials and solar technology have yielded solar cells that are casier 10 produce and considerably more efficient to operate. Conversion rates for some of today"s photovoltaic cells approach 31%. more than Iwice what they were in the mid1970 s. Though much additional work needs to be done, the development of advanced solar cells has brought the electrolytic production, storage, and distribution of hydrogen much closer to commercial reality.

While some energy experts believe nuclear power should become the next target, this cannot necessarily be viewed as a long-term solution to the energy problem. In addition to producing mountains of radioactive waste. a major drawbach by itself, uranium. like petrol, is a limited resource.
Nor does Livesay see processes such as the gasification of coal. conversion of biomass, production of hydrogen from natural gas (hydrogen currenily can be produced more cheaply from natural gas than from water) as legitimate solutions.
He said: "It really mahes very litte sense to take one non-renewable resource like coal. natural gas, or petrol, and make another energy medium. Not only are you bound to lose because of the inefficiencies involved, but you are still consuming a limited resource. In the long term. there simply

Storage of hydrogen

The safest way of storing hydrogen is within a metal cylinder tank, normally manufactured from aluminium because of its high thermal conductivity, with a valve on top. Inside the tank are metal granules made from an alloy of iron, titanium and manganese. This granulated material reacts chemically with hydrogen (sharing electrons) to form a loosely bonded compound which looks like a white powder.
Because of the loose bonding, the application of a small amount of heat is enough to release the jydrogen. This is a better system than compressing the gas into a regular vessel for a number of reasons.
First simple compression requires a high pressure within a vessel of about three times the internal volume for a given quantity of gas.
is no other option: we have to use solar energy. Uhtimately, new thermochemical, photosynthetic. or direet photo-electrolytic processes may prove more cost effective and energy efficient in producing hydrogen than solar cells ard electrolysis. But the technology already exists to construct energy-saving. solar-powered electrolysis plants. and timeliness is a major factor. Decades will be required to convert our existing infrastructure from petrol and natural gas to hydrogen.

Secondly the gas, combined as a metal hydride, is safer. Compressed hydrogen is very flammable and potentially explosive.
The metal hydride is non-flammable and non-explosive.
Metal hydride acts like a sponge which can be used over and over again. Refilling has more in common with inflating a tyre than filling a petrol tank.
For example, a typical car sized tank measuring 12 in tall by 14 in wide and 36 in long could contain enough hydride to run a car for about 250 miles.
A hydrogen recharge to 90% would take 10 minutes. However, to go to 95% would take 20 minutes and for $100 \% 45$ minutes. For this reason the design is usually made to be fully charged at 90%.

As promising as a hydrogen economy looks, no new technology can conceivably support energy consumption at present rates. To solve present and future energy problems, a profound commitment is needed. a commitment society has not been willing to make. By sheer necessity, there will have to be a gradual change in habits and lifestyles to match sustainable levels of renewable energy sources. The days of cheap, plentiful energy will soon be gone forever.

HALF PRICE MEMORIES
 GUARANTEED
 Recycled, quality i.c's for next day delivery WHY PAY MORE?

ALL DEVICES SUPPLIED ARE

EXIENSIVE STOCKS - NEXT DAY DELIVERY

Ulitrasonically cleaned UV erased and tested Handled to BS5783 Packed in antistatic

Original OEM brands
Also available: SOJ/Flat Pack

FREE CATALOGUE

3 WAYS TO ORDER
By phone 1480891119
(80m-7pm Mon-Fri)

2
By post - send cheque or bankers droff to: Abrocodobro Electronics Lid, 25 High Street, Ellington, HUNTINGDON, Combs PE'8 OAB

By Fax: Officiol Orders to 0480890980 24 HOUR SERVICE

REMOTE CONTROL...

wherever and whenever it's needed

Radio linking is the 1990's answer to the question of data transference and remote control ... cutting out the need for fixed cables and direct connections. At Wood \& Douglas we've developed this technology to a fine art with a range of compact, radio link modules capable of simple, highly efficient application across a wide spectrum of commercial and industrial uses. Where standard modules are not applicable we custom-build to precise requirements.
Over the past ten years we've successfully applied radio linking over such diverse areas as water leak detection, remote control of cranes and other industrial equipment, medical and veterinary monitoring, data logging, fuel and power control, automated warehousing . .
the list is endless.
In short, give us the problem ... and we'll give you wireless control, wherever and whenever it's needed.

Lattice House, Baughurst, Basingstoke, Hampshire RG26 5LL England Telephone: 0734811444 . Fax: 0734811567

EPROM PROGRAMMER OR UNIVERSAL PROGRAMMING SYSTEM FOR YOUR PC? From Low Cost EPROM PROGRAMMER

The Model 160 programs virtually every EPROM and costs $£ 195$ + VAT

To UNIVERSAL PROGRAMMING SYSTEM

The Model 200AP programs EPROMs, serial and paraliel EEPROMs, Flash memories, Micro-processors and controllers, PALs, GALs and Bipolar PROMs and costs $£ 345$ + VAT (adapters where required from $£ 75$).

All our programmers are designed, manufactured and supported by us in the UK.
Programming times are faster than most of our competitors, e.g. using the parallel port of your PC they program 2764s in 4 seconds and take less than one minute to blank check, program and verify 1 Megabit Flash Memories (and this time includes download time).

We also sell Gang Programmers, EPROM Emulators and Erasers and a universal cross-assembler for IBM PCs and compatibles.
Write or phone today for Free Information Pack: Phone: (0666) 825146

Fax: (0666) 825141

CIRCIE NO. 118 ON REPIYCARD

> IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG. 5 mins from Tally Ho Corner

Telephone:
081-445 2713/0749

REGULARS

Better triggering for oscilloscopes

Goldstar OS7020 oscilloscopes exhibit a slight limitation in their triggering facility which causes the sweep generator to trigger only on alternate leading edges (both positive and negative-going) of the signatl. Short pulses of low repetition frequency may therefore be diflicult to examine in some cases.

This circuit avoids the problem and needs no extra components. Simply cut the tracks close to pins 1 and 2 of U601. the 74LS74. remove the earth link to pin I of U602, the 74LS 14 near C_{622} and rewire as shown using the two spare inverters. These are used to delay the clock signal to the blanking and sweep flip-llop, its reset being re-routed to ensure that it is removed before the next trigger at the clock input.

Any additionat delay caused by the inverters is negligible compared with that due to the trigger and horizontat amplifiers.

H. Maidment

Wilton

Frequency doubler

One-third of a 74 HCl 4 is used to double the frequency of an inpul square wave.

The iwo differentiators $\mathrm{C}_{1,2}$ and $\mathrm{R}_{1,2}$ convert the input to narrow spikes. only the neg-ative-going ones being selected by the diodes. Since the inputs to the differentiators are in antiphase, a negative-going pulse is present across C_{3} whenever the inpul changes state. At the output of the second inverter, the positive pulse lass for a time determined by the time constant of $\mathrm{C}_{3} \mathrm{R}_{3}$. which is adjustable.

Yongping Xia

West Virginia University
Morgantown WV USA
While we are not short of Circuit ideas to publish, it would be agrecahle to see some fresh input from the vast, untapped bank of talent that our thousands of readers represent. Please don't be reticent; we pay a moderate fee for all Ideas published. So send them to Circuit ideas, $E W+W W$, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. We will be happy to consider them.

Voltage-tuned crossover filter

With this circuit, the crossover frequency is variable to suit any loudspeaker, f_{c} varying over a $5: 1$ range for a supply voltage change of $3.5-5 \mathrm{~V}$. High-pass and low-pass outputs are always in phase.
Since the g_{m} of unbuffered cmos inverters varies with $\mathrm{V}_{\text {dd }}$, connecting input and output together forms a resistor that varies from around 500Ω to $5 \mathrm{k} \Omega$ for a V_{dd} change of 5 V to 3 V . Loading an inverter output by a cmos resistive element produces an inverter gain of $\left|A_{v}\right| \approx g_{m} R_{L} \approx 1$, since $\mathrm{R}_{\mathrm{L}} \approx 1 / \mathrm{g}_{\mathrm{m}}$. In this case, gain varies from 0.95 to 0.99 for a $\mathrm{V}_{\text {dd }}$ change of 3.5 V to 5 V . The element also provides a $0.5 \mathrm{~V}_{\text {dd }}$ bias for other inverter inputs.

The filter formed by $\mathrm{IC}_{1 \mathrm{a}, \mathrm{c}}$ and C_{1} has the same phase characteristic as an all-pass filter. Paralleling $\mathrm{IC}_{2 \mathrm{a}, \mathrm{b}}$ gives a gain of 2 , the output being summed at A with the output of $\mathrm{IC}_{2 \mathrm{c}}$ to give unity gain and 0° to -180° phase shift with frequency. Inverting the low-pass signal in IC Ic_{c} and summing at B gives the high-pass function which is in phase with the low-pass output.

The $33 \mathrm{k} \Omega$ resistor increases high-pass attenuation when V_{dd} is less than 4 V to -40 dB , but could be left out by using a tuning range of 4 V to 5.5 V to give a $3: 1$ frequency range. Ian Hegglun
Manawatu Polytechnic
New Zealand

Multiple outputs from one D-to-A

Four channels of precision, buffered voltage are obtained from the output of a single D -to-A converter, using the circuit shown which uses fewer components than the conventional method; in particular, there is only one expensive converter against the usual four or more.

A differential multiplexer, IC_{5}, directs the converter output to each of four low-leakage capacitors and the output buffers in $I C_{6}$, all these components being inside the feedback loop of the op-amp IC_{4} to reduce offset by
the closed-loop gain of the op-amp, which is 101.

A small amount of offset at up to $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ is still in effect due to the presence of op-amp IC_{4}.

Multiplexer IC_{5} provides the low current leakage and low charge injection (4 pC) needed by the sample-and-hold circuits, the charge injection producing $40 \mu \mathrm{~V}$ offset on each capacitor. When this error is summed with IC_{4} offset and that of a buffer amplifier reduced by feedback, total offset is $100 \mu \mathrm{~V}$
or about 0.65 LSB
With this offset, each hold capacitor takes 2.6 s to discharge 1 LSB at room temperature; at higher temperatures, this time decreases rapidly and a higher clock rate is needed, although it may mean that several cycles are needed to set up the capacitor voltages after a change.
Jay Scolio
Maxim Integrated Products
Sunnyvale
California

1.3 GHz Frequency Measurement

The new TF820 from Thurlby-Thandar represents a performance breakthrough in low cost frequency meters.
With a maximum frequency capability of 1.3 GHz , a resolution of 0.1 Hz , a full 8 digit display and a choice of battery or mains operation the TF820 is the ideal multi purpose frequency meter.
If very high frequency operation is not important to you the 200 MHz TF8 10 is otherwise identical and costs only $£ 129$ (+vat).
We offer a wide range of counters from simple hand-held units to full universal timer-counters. Contact us now for full technical details.

THURLBY ${ }^{\prime}$ THANDAR circieno. ni on repiycard

Thurlby-Thandar Ltd., Glebe Road, Huntingdon, Cambs. Tel: (0480) 412451

Serial Data Protocol Analysis from £79

The Thurlby DA100 is a very low cost protocol analyser for solving problems with asynchronous serial data systems, particularly RS-232.
It provides baud rate analysis, data word format analysis, data monitoring, triggered data capturing, and test data generation.

The DA100 uses a standard oscilloscope as its display device, connecting to it via a single cable. Alternatively an optional LCD display device can be fitted. An optional RS-232 breakout-box is also available. Contact us now for full technical details:

Thurlby-Thandar Ltd., Glebe Road, Huntingdon, Cambs. Tel: (0480) 412451

A two year guarantee on all our second-hand Test and Measurement equipment!

To give you the confidence that you really did save money by buying second-hand, we are the only company to offer you the protection of a two year parts and labour guarantee on all the
Test and Measurement equipment we supply.
Dealing in equipment from the leading manufacturers such as Hewlett Packard, Tektronix, Marconi, Philips, Gould, etc., we can offer you the best in test. Call us now for more information.

0800521231
International Callers No. 44344869226
Capella-Technos, Park House, The Pavilions, Downmill Road, Bracknell, Berkshire, RG12 1QS. Fax 0344869230

The world is at your fingertips with ICOM's new IC-R9000 radio communications receiver with continuous all mode, super wideband range of 100 KHz to 1999.8 MHz and a unique CRT display that shows frequencies, modes, memory contents, operator-entered notes and function menus. The revolutionary IC-R9000 teatures IF Shift, IF Notch, a fully adjustable noise blanker and more. The Direct Digital Synthesiser assures the widest range, lowest ncise and rapid scanning. 1000 multi-function memories store frequencies, modes, tuning steps and operator notes. Eight scanning mades include programmable limits, cutomatic frequency and time-mark storage of scanned signals, full, restricted or mode-selected memory scanning priority channel watch, voice-sense scanning and a selectable width around your tuned frequency.

ICOMIsom (UK) Lid. Tel: $\mathbf{0 2 2 7} \mathbf{7 4 1 7 4 1 \text { . Telex: } 9 6 5 1 7 9 \text { ICOM } G |}$ N.B. Ior Wales and the West contact: M.R.S. Communizations LId. Cardiff. Tel: 0222224167.

Pleose send infarmation on Icom products \& my neorest lcom dealer.
Name/address/postrode:

Job Title:
Tel:
Post to lcom (UK) Lrd Dept. WW, FREEPOST, Herne Bay, Kent CT6 8BR

Transistor-driven valve amplifier

Valves offer advantages for audio power output, but transistors come into their own in the gain stages. John Linsley Hood describes a transistor driver module with a suggested phase splitter for push-pull working

There is a continuing. somewhat nostalgic interest in the use of valves in audio amplifiers. Although they do not provide a cost-effective route to high audio quality, valves do have the advantage that they exhibit a more linear input transfer characteristic than bipolar devices and can consequently offer a lower open-loop distortion figure.
They can also drive diflicult loudspeaker load impedances rather better than some solid-state designs and have a rather more graceful approach to overload.

The ability of power-output valves to dissipate considerable amounts of heat also allows valve audio amplifiers to operate in class-A. which avoids the gencration of high-order cross-over type distortion products. However, these qualities are mainly aspects of the (necessarily) transformer-coupled output stage, rather than of any preceding gain stages, where the benefils from the use of valves are much less.
It occurs to me that the simple four-transistor classA amplifier circuit, which I described in Wireless World in 1969. would make a very effective ouputstage driver module.
I have shown the basic layout of such a hybrid amplifier in Fig. 1, and the driver module in Fig. 2. Since, apart from the input DC-blocking capacitor the driver circuit is DC-coupled from input to output, the setting of the input DC level at T_{i}, will control the DC output level to allow adjustment of the output-valve grid bias.

Some input phase-splitter arrangement will, of course, be necessary to drive the two output valves in push-pull and to allow overall loop negative feedback
to be applied from the output transformer secondary, and I have shown possible layouts for such a circuit, based on very lowdistortion, wide-bandwidth, L.M83.3 opamps, in Fig. 3.

The bandwidth of the circuit of Fig. 2 is very wide and certainly extends to the 10 MH z region. If it is necessaty to introduce a step in the gain/frequency curve to secure IIF loops stability in the linal amplifier, this can be done by at network R / C in paratlel with R_{6}. of which the values will depend mainly on the output transformer leakage reactance. L.F break points are determined by the values of C_{1} and C_{3}, and can be made as low as necessary for L.F loop stability. Transient performance of the circuit of Iig. 2. is excellent and its distortion, att the onset of clipping, is of the order of 0.02% at $\mathrm{KKH} /$. and is almost entirely second-hatmonic. As is normal in class-A gatin stages, the distortion decreases linearly as the output voltage swing is reduced

Fig. 2 (above). Transistor class-A driver module. Circuit is directly coupled and VR1 sets bias on valve output stage. Network CxRx ensures stability in complete amplifier.

Fig. I (below). Two suggested layouts of phase splitters to provide push-pull drive to the oatput valves via the Fig. 2. driver circuil.
Fig. I. Layout of one channel of transistor/valve amplifier.

(b)

Where can you find information about the technologies of the '90s?

> Our information-packed books will give you the clear view of cpen systems, PC networking, the electronics industry and the new scanner technology.

OPEN SYSTEMS: THE BASIC GUIDE TO OSI AND ITS IMPLEMENTATION by Peter Judge

A concise, clear guide to this complex area of computer standards, untrammeled by jargon and with appropriate and comprehensive analogies to simplify this difficult topic.

LOW COST PC NETWORKING by Mike James
The growing importance of networking has made this a vital handbook for any business setting up a network or trying to run one. It shows how networking revolutionises the way we use PCs and the tasks that they perform.

HITCHHIKERS' GUIDE TO ELECTRONICS IN THE '90s
by David Manners
David Manners, senior editor on Electronics Weekly newspaper, explains how the electronics industry works, examines its key products, and discusses its central role in the '90s.

THE SCANNER HANDBOOK
by Stephen Beale and James Cavuoto

An authoritative and informative guide to the selecting, installing and using of scanners. It offers practical tips and advice, covering in detail each stage in document production with scanned images.

Order Form

Please send me the following:

Oty Title	Unit Price	P\&P Total
Open Systems	12.95	1.00
Low Cost PC Networking	16.95	1.00
Guide to Electronics in the '90s	12.95	1.00
The Scanner Handbook	19.95	1.00
TOTAL		

Choose one option:

- I enclose a cheque for E. . payable to Computer Weekly
\square Charge my credit card account £........... to pay Computer Weekly
\square Amex
\square Acces
- Visa
\square Diners

My card number is \square
My card expires on

Full despatch address/credit card registered address:

Name ___ Initials___
Position ___ Postcode \quad
Company \quad
Address ___

Return to Computer Weekly Publications. Quadrant House, Sutton, Surrey SM2 5AS or ring 081-685 9435 and place your credit card order. Bulk prices on request. Allow 28 days for delivery. Ret: EW191

PARASITIC PICTURE

T© TV viewers living near an airport. the presence of 500 kW RIF pulses on 591MH1 is a muisance. Having connected an osciltoscope to the viden stage of a portable TV to obtain a perfectly synchromised display from the 4μ s transmitter pulse, it was possibte to measure the distance to strong permanent echoes, which appeared every five seconds ats the radar aterial rotated. By calculation it was evident that these echoes came from a prominent group of hills in the Pemmine Chatin (Winter Hill. Lancos.
An ex-shipping PPI wats obtained, al Deccal 101, with a mechamically rotated scan coil assembly. This was originally driven by a semi synchronous drive from the radar atrial: the drive was removed and replaced with a servo system of constamt speed. By coupling the radar video input through a drive stage from the TV and constructing a syme pulse generator triggered from the lirst video pulse received - the ratlar transmitter's outgoing signal - a recognisable PPl picture of the Figde Coast area was produced, albeit with poor display and drive synchronisation.
However the idea was proved and a design/eonstruetion program started which has resulted many years tater in a system which will give a good plan picture of the surrounding area and deteet aircralt and helicopters to a range of 60 nautical miles (nm).

System details

The system currently in operation consists ol an octagonal omnidirectional receiving aerial, leeding a 23 dB gain masthead amplifier. The signal is carried to the receiver over low-loss coax and is posi tine amplified. The RF stage consists of a peak tuned Multard EL.C lots tuner driving a conventional T'V IF strip and video detector stage. These circuits are followed by a video amplifier and TIL sync pulse and gate generator. The syne pulse is the system master timing circuit and controls the swept gain, range ring generator, main video gate and dellection sweep generator: the Deceal fol circuits have been replaced as unsuitable for conversion for ranges over 24nm.

It should be reabised that the liring of the

Living close to a radar installation, Michael Green has been able to conduct a series of fascinating experiments into passive radar reception using stray pulses from his high-powered neighbour.
main radar transmitter at the CAA site is not periodic, but stagered for purposes of determining movement from fixed targets (moving large indication MTI) and preventing what are known as blind speeds within the MTI. Because of this it is not possible to produce simply a llywhed spe syne pulse: direct detection of the transmitter pulse provides a better synce signal. This caln cause problems. During the rest time alter the tramsmitter has fired and the bast echoes have been received from maximum range. the sync pulse generator can be triggered by noise. srong echoes or another radar on an adjacent freyuency.

The purpose of the swept gatn in this system is 10 de-sensitise the receiter 7.50) s or

60mm alter the tramsmitter has fired thus preventing false triggering, the level being set (o) allon the locally produced power pulse to breat through to initiate a sean sequence.
The receiver video output is led to two swith selectable separate amplifiers. One is a conventional video amplifier while the othe differentiates the signal such that only the leading edge of the echo is displayed, this being similat to the original ratin clutter cercuit. The differentiated display gives a beller contrast as much of the receiver noise is suppresed. but callses premature fades as the target approaches maximum range.
Accurate range rings atre generated by gating the output of a crystal eloch. The gating sequence commences upon receipt of a sync

Mk III display system: Decca 101 display and, on top, the digital display drive generator

pulse. The clock's divided output produces rings at 5 and 10 mm up to the maximum displayed range of 60 mm . The circuit is so arranged that the duration of the 10 mm pulse is twice that of the 5 nm thus producing a brighter ring at 10 nm interspaced with 5 nm rings. A potentiometer circuit can then be used to reduce the voltage output of the range ring generator to lessen the otal britliance, which may be used to remove the 5 nm rings if required.
CRT spot deflection commences from the centre of the PPI at a linear rate upon receipt of a sync pulse. the rate of travel being almost equal to $12.4 \mu \mathrm{~s}$ per radar mile $(6.2 \mu \mathrm{~s}$ to target, and 6.2μ s to return to source). Thus if the displayed range is set to indicate 10 nm radial range, the spot would travel from the centre of the CRT to the edge in $10 \times 12.4 \mu \mathrm{~s}$ or $124 \mu \mathrm{~s}$. At a maximum displayed range of 60 nm the deflection time would be $744 \mu \mathrm{~s}$. Target echoes received during this sweep cause the intensity of the spot to be increased to give a "bright up". Thus as the deflection sweeps and the trace rotates radially, a map or plan is drawn of the surrounding area. Conventional circuitry is used to produce a linear current sawtooth
of maximum 70 V , the rise time and duration of this sawtooth being dependent upon the range selected.

Facing North

By far the most complex problem so far tackled is display drive synchronisation. ic when the main transmitter acrial points North, the display should also indicate North.

Several synchronisation methods were tried using both analogue and digital techniques to determine the centre of the beam. This proved impracticable as the system triggered to side lobes and if the detector was suitably attenuated to prevent this, synchronisation became sporadic.
The present system is a compromise. It was noted during experiments how consistent was the rotation rate of the transmitter's aerial, even during periods of high winds. This allows the servo system to be replaced with a stepper motor driven from a free-running crystal timebase divided by a switch selectable divide by " N " counter. This rotates the mechanical scan coil mechanism. Accurate positioning is achieved by momentarily pressing a button to cut the motor
drive, and visually aligning the scan to a known permanent echo (PE), in this case the gas holders at the Blackpool end of the M55 motorway. This may seem crude, but was a system widely employed in marine radars and by Decea on their 424 airfield precision approach radar.
Once again it should be stressed that this is not a usable system but an experiment. Other shortfalls include the range and azimuth inaccuracy due to the offset between the receiver and transmitter sites and MTI, the ability to remove fixed PE clutter and only display aircraft targets.
Work is in hand to produce a more sophisticated system.
As can be seen from the accompanying picture, an isotropic aerial is not wholly suitable. Note the ring at 5 nm and the reflection of the PE's to the East on the right of the display. both caused by side lobes of the main beam which would not be seen from a directional receiving aerial. A more modern PPI has been procured with an XY tixed coil scan. and efforts will be directed at producing a rotating 50 cm Yagi with a high gain and narrow beam angle, positioning data being sent using a sin/cos synchro resolver.

Fig. 2. Bi-static picture (60 nm) received at 6 Downham Place, from transmissions of Marconi 264 radar at the CAA ST Annes site. Blackpool Airport radar approx 1 nm SE>St Annes radar approx 4 nm SE.

Fig. 3. Uncancelled radar picture from Blackpool Airport 10 cm radar. Max range 50 nm .
again not state of the art but state of the pocker.

View from here

The two photographs show the bistatic reception of the signals received from the CAA's 50cm Marconi 264 radar at St Annes (Fig. 2) and the Blachpool Airport Cossor 78710 cm picture (Fig. 3). Breaking the bistatic picture down, the PEs are due North from the Lake District, due East at $15-20 \mathrm{~nm}$ from the Pennine Chain. South-West to 60 mm from the North Wales coast and North West at 55 nm from the Isle of Man. Two aircrati can be identified by their afterglow tails at a range of 36 and 37 nm on bearings of 270° and 280° respectively. The line of echoes bearing 005° most prominensly crossing the 20 nm range-ring and again at 50 nm are caused by multiple echoes between the radar aerial and the previously mentroned gasholders. The five echoes appearing on the Blackpool Airport radar picture, $15-20 \mathrm{~nm}$ distant on a bearing of 290° are gas exploration rigs operating in Morecambe Bay, not distinguishable on the bistatic picture due to side lobe clutter.

References

Henry Hislop. Displaced Radar Sysiems, $E W+W W$, March 1990.
J Schoenenberger and J R Forrest. The Radio and Electronic Engineer, February 1982.

INTERFACING WITH C

by

HOWARD HUTCHINGS

Interfacing with C can be obtained from Lindsey Gardner, Room L.333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS. Please make cheques for $£ 14.95$ (which includes postage and packing) payable to Reed Business Publishing Group. Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-661 3614 (mornings only, please).

A disk containing all the example listings used in the book is available at $£ 25.50$ + VAT. Please specify size required.

C HERE!

If you have followed our serics on the use of the C programming language, then you will recognise its value to the practising engineer.
But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?
The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.
To complement the published series, Howard Hutchings has written additional chapters on D-toA and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.
This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.
Source code listings for the programs described in the book are available on disk.

REGULARS

Programmable-gain instrumentation amplifier

To ensure maximum resolution in an A-to-D converter, a data acquisition system with analogue inputs of different amplitudes must provide a method of bringing them to the same amplitude. This circuit automatically adjusts the gain of an instrumentation amplifier as each channel is selected.

Two Max 359 differential multiplexers are driven in parallel by the channel-select line. the first selecting the channel and the second connecting the correct amount of feedback around the Max400 op-amp. The circuit shown in the figure is a four-channel differential amplifier with four gain settings, one of which is unity. An eight-channel system may be made using eight-channel versions of the Max359 and the use of separate drives for the two multiplexers would allow any gain to be allocated to any channel. Table 1 shows how the resistor chain varies the gain. K_{T} being the total resistance. Binary values are shown, but any gain settings can be used. within reason.
To determine resistor values, assign a simple value to R_{4}, say $5(\mathrm{~h}) . \mathrm{R}_{7} / \mathrm{R}_{4}=8$, so $\mathrm{K}_{\mathrm{T}}=40$ and $\mathrm{R}_{3}+\mathrm{R}_{4}+\mathrm{R}_{5}=10$. R_{3} is 5 , so $\mathrm{R}_{3}+\mathrm{R}_{5}=10-5=5 . \mathrm{R}_{3}=\mathrm{R}_{5}=2.5, \mathrm{R}_{2}=\mathrm{R}_{6}=$ 5 and $\mathrm{R}_{1}=\mathrm{R}_{7}=10$.
Note that switch resistance in IC_{2} causes little voltage error since there is no signal current.
Leakage current in the switches is not

Automatically adjusting the gain of a multichannel instrumentation amplifier for a variety of input signals affords maximum A-to-D resolution in a data acquisition system.
much of a problem. Since the system is differential, currents largely cancel and only the difference in the two leakage currents in a pair of switches can cause error.
As a matter of interest, the Max 329 exhibits an order less leakage than the Max359.
Maxim Integrated products, 21 C
Horseshoe Park, Pangbourne, Reading RC; 7/W. 0734845255

Table 1. How resistor chain varies gain

Ch Switches closed	Desired gain	Formula	
1	$S_{1 A^{\prime}} S_{1 B}$	$1=$	
2	$S_{2 A} S_{2 B}$	$2=$	$R_{T} /\left(R_{2}+R_{3}+R_{T}+R_{5}+R_{6}\right)$
3	$S_{3 A^{\prime}} S_{3 B}$	$4=$	$R_{T} /\left(R_{3}+R_{4}+R_{5}\right)$
4	$S_{4 A^{\prime}} S_{4 B}$	$8=$	R_{T} / R_{4}

Switched-input op-amp

With a bandwidth of 185 MHz , a settling time of 9 ns and an input switching time of Gus, OPA675/6 devices from Burr-Brown are intended for use in multiplexing. synchronous demodulation and programmablegain amplification.

The component consists of two indepen-

Fig. 1. Basic layout of Burr-Brown
OPA675/6 switchedinput amplifier, which has independent input stages.

Fig. 2. Essential circuitry of OPA675/6 amplifier. Current is switched between "tails" of long-tailed pairs by logic signals at A or B.

Fig. 3. Fast programmable-gain amplifier with 200 MHz bandwidth.
dent differential-input amplifiers. switched by ECL (675) or T"TL. (676) external logic signals to drive a common output amplifier. Low distortion (down to -6IdB second harmonic referted to carrier) and crosstalk (100 dBC at 100 kHz , -68 dBC at 10 MHz) make the device amenable to RF and video signals. Figure 1 shows the arrangement.

Taking the 675 ECL case. Fig. 2 shows a simplified layout. The amplifier is a "classi-
cal" high-speed op-amp. but with two selectable differential input stages. A diflerential ECL signal applied to A and B lums on either Q_{5} or Q_{6}, which steers the tail current of the long-tailed pairs to $Q_{1.2}$ or $Q_{3.4}$, the pair taking current behaving as a conventional op-amp input stage and the other as a virtual open-circuil, passing only about 100 pA . The two inputs can be treated entirely independently, with separate feedback networks; feedback on the inoperative amplifier hats no effect except to represent a load on the output stage. A small compensating capacitor is needed.

Standard logic levels are required at the input-select pins and, since only 350 mV is wanted, simpler high-speed driver circuitry can be used and the low level reduces nowise coupling into other analogue circuits on the board. If $V_{B B}$ is applied to one input, a sin-gle-ended selection signal will suffice.

Input offset is low enough for many applications. but is trimmable by a variable resistor, which affects both inputs. Independent trimming reguires that trim current be summed, as shown in the circuit of Fig. 3, which is a "very fast" programmable-gain amplilier offering gain selected for OdB or 24 dB . using TTL channel-select signals. The

Fig. 4. Video receiver noise blanker, using ITL logic for channel selection.
circuit in Fig. 4 is a receiver noise blanker - in effect, a wide-band gated video amplifier; the potentiometer is adjusted to prevent blanking pulse feedthrough.
Burr-Brown Int. Ltd, I Millield House, Woodshots Meadow, Watiord,
Hertiordshire WD1 8YX. 92333837.

Pure sine waves from digital source

Using three ICs - a ITT. counter, an eightchannel multiplexer and a fourth-order lowpass filter - this arrangement generates sine waves from 1 kHz to 25 kHz with a THD of less than -80 dB . The 74 HC 163 counter drives the DG508 multiplexer at eight times the Max270 filter cut-off frequency. Two potential dividers on the multiplexer inputs form an eight-step approximation to a sine wave at the output. over sampled by eight times to extend the first hamonic to seven times the fundamental to ease the smoothing requirement. First, choose the filter cut-oft frequency by connecting its $D_{0.6}$ inputs selectively to 0 V or 5 V , the seven logic lev-

Fig. 1. Three ICs generate a sine wave with better than -80dB total harmonic distortion, the frequency being that of the filter cut-off.
els providing 128 frequencies between 1 kHz and 25 kHz : with all at OV, the cut-off is at 1 kHz . An uncommisted amplifier in the filter lC allows the output level to be varied by the 100 k potentioneter. The clock frequency must now be set at eight times the cut-off frequency. All harmonics in the output, caused by the step nature of the multiplexer
output, disappear below the noise floor of a spectrum analyser, as shown in the screen dump of Fig. 2.

Maxim Integrated Products (UK) Itd,
21 C Horseshoe Park, Panghourne,
Reading RG8 7IW. Telephone 0734 845255.

Fig.2. After the fourth-order filter, all harmonics caused by the digital method of generating the waveform disappear. Smaller harmonics are the result of slight inaccuracies in the two potential dividers.

Fig. 1. Simplified block diagram of the MC1383 multimode sync controller which automatically accommodates varying sync forms and frequencies for computers and broadcast use.

Multimode monitor processor

All signal processing for an RGB monitor which responds to various scan frepuencies and which is adaptable to multiple syncs is provided by Motorola's MC1383.

Automatic horizontal syne frequency tracking is compatible with most personal computer and broadeast standards between 15.5 kHz and 40 kHz and the vertical output sync pulse is automatically corrected for polarity. Additionally, the 50 MHz video system includes contrast and brightness controls and an atomatic beam limiter. The chip has its own 5 V regulator.

In the block diagram of Fig.1, the syne input control monitors and atutomatically corrects sync polarity: if no horizontal or composite syncs are used. a synce separator derives them from the composite video input. An external capacitor on pin 1 is the integrating capacitor in the verlical polarity correction system and can be used to determine polarity and hence the mode of PC graphics standards.

A current-controlled oscillator runs at 32 times line frequency and is locked to the external sync by a phase-locked loop, in which the internally generated horizontal frequency obtained by dividing the oscillator by 32 is compared with horizontal sync signals, the loop's buffered output being a current for oscillator control.

Sampling the oscillator current control in external resistors at pins 11 and 13 and comparing the resulting voltage with 5 V gives programmable, frequency-dependent horizontal output control, while the ramp and comparator blocks allow control of picture position and drive pulse position. Horizontal output stage turn-off delay is compensated by the secondary plase detector and comparator 2. Figure 2 shows a typical applicat tion.

Motorola Ltd, European Literature Cenlre, 88 Tanners Drive, Blakelands, Milton Keynes MK 14 5BP.

Fig. 2. Typical application of the MC1383.

ENGINEERING \& SCIENTIFIC PC

Total Solutions for PC-based Data Acquisition \& Control

DATA ACQUISITION \& CONTROL CARDS

	SOFTWARE PACKAGES
PCLS. 700	PC.LABDAS Data Acquistion 8 Comrol
PCLS 709	Lablech Notebook with ICONView Lablech Acoure
PCLS 804	Easyest
PCLS.704*	Asystant Plus
PCLS 704 G	Asystant GPIB
PCLS 705	Unkelscose Wavetorm Analysis
PCLS-706	Lablech CHROM Plus
PCLS. 707	Lablech Control with ICONView
$\begin{aligned} & \text { PCLS. } 708 \\ & \text { PCLS. } 709 \end{aligned}$	DaDisp Waveform Spreadsheet (V2.0 also available) Control EG
PCLS 805	Snapshor Wavetorm Acquisition (7 Modules available)

423, KINGSTON FIOAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383.

CIRCLE NO. 134 ON REPLY CARD

REGULARS

ACTIVE

A-to-D and D-to-A converters

12-bit adcs. The Max 178 and 182 cmos 12-bit $60 \mu \mathrm{~s}$ A-to-D converters have integral track and hold and precision voltage reference. The only difference is that the 178 has a single input and the 182 a 4 -to-1 multiplexer. Gain, offset and linearity errors are calibrated to give a total unadjusted error of less than ± 1 LSB over the full operating temperature range. Offset nulling during each conversion cycle reduces zero errors to below
± 0.1 LSB. Internal reference has 0.3% absolute accuracy. Maxim Integrated Products. 0734845255.

A-to-D converter. The TLC1225 adc has $12 \mu \mathrm{~s}$ conversion speed with flexible analogue input configurations, output formats and supplies. It has 85 mW maximum power requirements, 12 -bit integral linearity and 12 -bit plus sign resolution. It uses the successive approximation method for conversion and accommodates unipolar and bipolar operations. Data is generated as a parallel word and it interfaces directly to a 16 -bit data bus. Texas Instruments, 0234223252.

Discrete active devices

Power mosfet. Initially designed as a smart circuit breaker for the power distribution system of the space station Freedom, the IX10 size 10 mosfet is, at $303.7 \mathrm{~mm}^{2}$, some seven times larger in die area than the industry standard. Its $R_{\text {ds }}\left(\frac{n}{}\right)$ values range as low as $0.016 s 2$ at 200 V allowing currents of 200A or greater in a single chip. IXYS, 0101408453 1900.

Mosfets predriver. A high-side predriver for n-channel power mosfets has a built-in voltage multiplier, overcurrent and over-temperature circuitry, latch-off circuitry and a fault status output. The Micrel MIC5010/1 has a voltage multiplier to boost the gate voltage which is generated on chip by a tripling charge pump. Mogul Electronics, 0732741841

Double rectifier diodes. Two ranges of double rectifier diodes can stand electrostatic discharges and voltage spikes without damage. The BYV32E and 42E have a reverse recovery time of less than 25 ns . Reverse voltage ratings are 100,150 and 200 V . They
can take spikes up to 30 mJ . Forward voltage drop is less than 0.85 V at maximum rated current. Philips Components, 071-580 6633.

RF power transistors. The BLT50, 56, 80 and 86 RF power transistors come in industry standard $6.7 \times 7.3 \times$ 1.7 mm SOT223 surface-mount packages. They can dissipate 1 W of power. The 50 and 56 are for use at 470 MHz with ratings of 7.5 and 12.5 V , respectively. The equivalent 80 and 86 figures are 900 MHz , and 7.5 and 12.5 V . Philips Components, 071-5806633.

IGBT chips. Fast switching IGBT chips for use in TO220 and TO218 packages retain the drive characteristics of power mosfets but permit up to five times the current carrying capacity for the same chip size. For example, an 800 V 3A power mosiet has a comparable ch p size to a 1 kV 3A IGBT device. Switching frequency is 30 to 40 kHz . Siemens, 0932752313.

Digital signal processor

DSP boards. Frequency domain array processor (FDAP) boards use VLSI array signal processing rechnology and custom merrory modules to achieve performances of 400 million operations per second. The memory modules support FDAP boards with up to 1.5 Mb of 12 ns static ram on a single 6 U VME card. Complementary $1 / 0$ adapter cards are also being developed. Array Microsystems, 01017195407925.

32-bit DSP. The TMS320C30-40 32bit digital signal processor has a peak performance of 40 million floating point operations per second and operates from a 40 MHz clock. Instruction cycle is 50 ns . Features include 2 Kword dual-access ram. 64word program cache, DMA controller, two serial ports and two timers, and dual 32 -bit data buses. Texas Instruments, 0234223252.

Linear integrated circuits

Softener chip. The Dallas MSC micro softener chip protects microprocessors from losing data regardless of power conditions and softens the MPU to let software updates or other changes be made in the field without removing
components. This periphera chip uses a lithium supply back-up and

Micrel's pre-drivers from Mogul
contains additional I/O facilities for sensors, 32 extra port pins, provis-on or trouble reporting, voltage detector, watchdog timer to monitor software execution, and a built-in memory tester to validate the memory's contents. Dialogue, 0276682001.

Coaxial transceiver. The Signetics NE8392A is a coaxial line driver and receiver compatible with several standards of local area ne'work. It is connected between the coaxial cable and data terminal equipment and consists of a receiver, transmitter. collision detector, heartbeat
generator, and jabber timer in a single component. Jermyn Distribution, 0732 450144

Switching regulators. The LT1073 family of fixed and adjustable output single-cell micropower switching regulators come in eight-pin SO or mini DIL packages. They have $95 \mu \mathrm{~A}$ quiescent current and operate from 1 to 12 V input supplies. They can operate as step-up boost or stepdown buck regulators. Linear Technology, 0932765688.

Voltage converter. The Max660

monolithic charge pump voltage inverter converts a positive input voltage in the 1.5 to 5.5 V range to a negative voltage of the same nominal magnitude. It is pin compatible with the ICL7660 but with lower voltage losses and higher output current capability. It also has a frequency control pin to help select capacito
size and quiescent current. Maxim Integrated Products, 0734845255.

Switching regulators. A family of fixed and adjustable output single-cell micropower switching regulators with $95 \mu \mathrm{~A}$ quiescent current can operate from 1 to 12 V input supplies. The LT1073-5 and 1073-12 have internal gain setting application resistors to deliver 5 or 12 V , respectively, with 5% accuracy using a single external inductor, a diode and a capacitor. They can deliver 5 V at 40 mA from a 1.2 V battery or 100 mA from 2.4 V . Micro Call, 0844261939.

Feedback amplifier. Using thin film resistors and wafer level trims, the LTC LT1223 current feedback amplifier has a 3 mV maximum offset voltage and $3 \mu \mathrm{~A}$ maximum input bias current. It guarantees 50 mA of output drive and operates on ± 4.5 to $\pm 18 \mathrm{~V}$ supplies. The 100 MHz bandwidth and $1000 \mathrm{~V} / \mathrm{\mu s}$ slew rate remain fairly constant over a wide range of closed loop gains. Micro Call, 0844261939.

Power supply controller. The

 ML4818 IC is for soft switching control using phase modulation topology. This combines the lossless switching attributes of a resonant topology with the efficient power transfer and constant frequency operation associated with square wave PWM topologies. It has four 1.5A outputs and comes in a 24 -pin moulded DIP power package. Micro Linear, 0101 4084535220.Feedback amplifier. The EL2120 current feedback amplifier from Elantec is a wideband unit with differential gain of 0.01% and 0.03° differential phase margin. The output disable switch is rated at 45 ns . It operates on supplies from ± 5 to $\pm 15 \mathrm{~V}$ and has a bandwidth of 100 MHz which is relatively independent of the gain setting. The bandwidth is flat to 25 MHz , to an accuracy of 0.01 dB , while the slew rate is $700 \mathrm{~V} / \mathrm{us}$. Microelectronics Technology, 0844 278781

Satellite chips. Two full custom asics can replace up to 300 discrete components used in satellite receiver manufacture. The SP1 09900 includes a complete stereo audio processing system from the frequency synthesised tuning control through on-chip filtering, a highly linear FM demodulator, to a full Panda 1 noise reduction system. The SP109911 is a mixed signal chip consisting of a low impedance video amplifier with selectable de-emphasis and twin outputs that can drive a 7582 load. Pace Micro Technology, 0274 532000.

Bus controller. The SN75C091A is an SCSI bus controller that meets the ANSI X3.131-1986 standard and has features including multiphase commands, a byte stacker amd multiple host data paths. It can perform initiator and target roles. The 20 MHz unit allows operation in asynchronous or synchronous mode with a $5 \mathrm{Mbyte} / \mathrm{s}$ transfer rate. Texas Instruments, 0234223252.

Resonant mode ICs. The

UC3861/64/65 family of ICs are for the control of zero current switched and zero voltage switched quasiresonant convertors. The primary control blocks include an error amplifier which compensates the overall system loop and drives a voltage controlled oscillator. The oneshot generated pulses of a programmed maximum width can be modulated by the zero detection comparator. This circuitry facilitates true zero current or voltage switching over various line, load and temperature changes. It also accommodates the resonant components' initial tolerances. Unitrode, 081-318 1431.

Memory chips

Flash memory. The 28F001BX 1 Mbit flash memory device is for updatable bios in PCs and updatable firmware in minimum chip embedded applications. It has an 8 Kbyte boot block section with a hardware lock-ou feature. Other memory segmentation includes two 4Kbyte parameter blocks and one 112 Kbyte main block. Intel, 0793696000.

Static rams. Four $64 \mathrm{~K} \times 4$-bit fas

Leader LCD-300 multi-purpose instrument from Thurlby-Thander
synchronous static rams have a late write-abort feature that is controlled asynchronously. The MCM62980 and 62981 are non-pipelined synchronous data ram and parity ram, respectively The 62982 and 62983 are pipelined versions of the same device. Memory cycle time of 12 ns for the pipelined units lets cache memories operate with no wait states at up to 83 MHz line transfer rates. These figures are 15 ns and 66 MHz , respectively, for the non-pipelined versions. Motorola, 0908614614

Microprocessors and controllers

8 -bit microcontrollers. The 8 -bit microcontrollers in the F2MC range have uses in printers, keyboards, copiers, servo-control systems. medical equipment and video systems. The MB89710A series has an optimised instruction set that lets most available commands be carried out as single-byte OP code. Features include 8 to 32 Kb rom, 512 b to 1 Kb ram, uart, PWM, 8 -bit ADC and more than $50 \mathrm{l} / \mathrm{Os}$. Fujitsu Microelectronics, 062876100.

Monolithic CPU/FPA/MMU. A

 combined 32 -bit CPU, floating point accelerator and memory management unit, the R3400 runs at 25,33 or 40 MHz in a 175 -pin package. It uses MIPS RISC architecture. A full complement of development systems and soffware is available including compilers, operating systems and applications software. Performance Semiconductor, 0101-408 7348200.
Optical devices

Laser diode. A solid state laser diode acts a light source for electronics and telecommunications work and
provides a 1 mW output at 670 nm multimode with an amplitude stability of $\pm 3 \%$. Beam divergence is typically 0.5 mrad and the beam profile at exit has a diameter of 3 mm circular while polarisation is linear at 1:60. The selfcontained package measures $45 \times$
25 mm with collimator and all optics. Spindler \& Hoyer, 0908262525

Oscillators

Crystal clock oscillators. The SQ06100 and 6300 crystal clock oscillators are available in low profile ceramic surface mount packages. The 6100 is screenea to MIL55310 for military use while the 6300 is for professional applications.
Frequencies available are from 0.313 to 20 MHz and stability is from ± 50 to 1000 ppm including variation with emperature, voltage load and time. STC Components, 0279626626.

High frequency oscillators. The SQV5100 oscillators are for use in optical fibre telecommunications systems being developed for the European and US markets. They come in frequencies from 425 to 650 MHz . Frequency is stabilised by a SAW delay line using specialised mounting and packaging to minimise drift with time and temperature. They come in a surface mounting metal case with pins in DIL format. STC Components, 0279626626

Programmable logic

 arraysFPGA programming. Users of Actel's field programmable gate arrays can make use of HDL hardware description language and design synthesis using libraries supporting Synopsys" design compiler. Designers can work with
either VHDL or Verilog HDL languages using high level constructs and descriptions, then synthesise the design with a choice of Actel library elements. Gothic Crellon, 0734 788878.

Passive components

Glass tuselinks. A range of $20 \times$ 5 mm glass fuselinks from Belling Lee are colour coded for easy identification. For use on PC boards, they comply with IEC requirements and meet BS4265, CEE4 and Semko standards. They are for 250 V AC operation at up to $70^{\circ} \mathrm{C}$ with no derating. Either quick acting (L3160) or anti-surge (L3170), they come in 22 ratings from 50 mA to 6.3 A . Townsend Coates, 0533769191

Power inductor kit. A power inductor development kit includes 16 Coiltronics toroidal power inductors from 20 to $500 \mu \mathrm{H}$ in several current ratings. Using ferrite and iron powder technology, these inductors exhibit low power dissipation and high Q characteristics. Microelectronics Technology, 0844278781.

Crystals

Custom quartz units. Custom quartz units are available from 3 to 25 MHz in the fundamental range and up to 100 MHz in overtone. Adjustment tolerances are down to $\pm 5 \mathrm{ppm}$ with temperature stability down to $\pm 3 \mathrm{ppm}$. Operating temperature ranges cover commercial and military requirements. Piezo Products, 0425479337.

Displays

Display chassis. An oem colour display chassis provides 1280×1024 pixel resolution non-interlaced on a 15 in FST tube. The HR15 has a power consumption of less than 100W in a module measuring $355 \times$ $290 \times 450 \mathrm{~mm}$. Dot pitch is 0.26 mm , horizontal scan frequency range 30 to 70 kHz , vertical range 40 to 80 Hz , and video bandwidth more than 110 MHz . ABA Electronics, 0264335025.

Bright leds. Measuring 5mm in diameter, a range of Camden leds are available in red, green, yellow and amber. They are TTL compatible and all colours are intensity matched at 80 mcd . Viewing angles vary from 35° for amber to 55° for red. Current rating is 20 mA and voltage rating 2.1V. Verospeed, 0703641111.

Filters

Noise suppressor. The 9081 mains voltage noise suppressor filter is for use with mains power supplies to cut
out spikes from motors or contactors. It comes in a plastic moulded case with flying leads for mains I/O. Case size is $41 \times 25 \times 13 \mathrm{~mm}$. Input specification is 264 V 2 A maximum, 25 to 700 Hz . Amplicon Liveline, 0273 570220.

SM filter array. A surface mounting filter array cuts the number of components needed for suppressing electromagnetic interference on digital I/O lines and digital circuit boards. The BLA81 has eight filtering circuits in a single block measuring 12.5×4.5 $\times 1.2 \mathrm{~mm}$ with individual filters on a land pitch of 1.27 mm . It is available in bulk or taped and reeled. Murata Electronics, 0252811666.

Instrumentation

Decade boxes. Three six-decade resistance boxes and one five-decade capacitance box use rotary switches which provide an instant readout of the set value. The resistance boxes range from $1 \Omega 2$ to $1.11111 \mathrm{MS} \Omega$ and 10Ω to 11.1111 MS 2 with accuracies of $\pm 1 \%$ or $\pm 0.1 \%$ each. All have power ratings of 0.6 W . The capacitance box goes from 100 pF to $4.111 \mu \mathrm{~F}$ in 100 pF steps with an accuracy of $\pm 5 \%$. Alpha Electronics, 0942873434.

Field strength meter. A field strength metering device records electrical and magnetic fields simultaneously using one probe and covers the long, medium and short wave range from 75 kHz to 30 MHz . The measurement data can be transmitted up to 1 km via a bidirectional optic fibre cable to an IBM PC for analysis. Recording equipment is in a 1 kg field probe similar in shape and size to a Sputnik satellite. The signals from the sensors are processed vectorially. A constant voltage is supplied by a frequency compensator, HF amplifier and mean value detector to an a-to-d convertor. An asynchronous transceiver converts the digital data into serial signals. Asea Brown Boveri AG, +56 768307.

Wattmeter. The EW604 wattmeter offers power measurements between 250 mW and 10 kW with a frequency range from DC to 20 kHz . It has 5 to 1000 V capacity and a 50 mA to 10 A current range with 5 ks 2 V and $<60 \mathrm{~ms}$ burdens, respectively. There are independent overload indicators for voltage and current ranges which come on when the value exceeds the selected parameter by 50%. It is housed in an ABS casing lined with graphite for electrical screening, measures $330 \times 118 \times 238 \mathrm{~mm}$, and weighs 1.9 kg . Feedback Instruments, 0892653322.

V and I source. The Yokogawa 7651 programmable DC voltage and current source can be used as a general-purpose test instrument or for transducer excitation. Accuracy is to
within $\pm 0.01 \%$ on voltage and $\pm 0.02 \%$ on current. Resolution is 100 nV on the 10 mV range and response time is less than 10 ms . It can generate voltages up to 30 V and currents to 100mA. Marton Instruments, 0494 459200.

Spectrum analyser. The Tektronix 2712 spectrum analyser is available with EMC test software providing testing from 1 kHz to 1.8 GHz . Data can be acquired, displayed and printed for tests in FCCNDE radiated VDE magnetic, VDE conducted, FCC conducted, and radiated power. The software lets the user configure the tests with correction factors based on antenna factors, cable loss, site attenuation and preamplifier factors. Microlease, 081-427 8822.

GSM analyser. The CTMA94 GSM radio communication analyser meets the TDMA measuring requirements for frequency hopping and digital modulation. There are two software packages: K96 for generating specific test sequences which can be called up from other programs; and the K97 for generating random bit sequences and inserting them into the RF signal of a GSM traffic channel. By evaluating the demodulated bit stream it is possible to determine the bit error rate of a receiver. Rhode \& Schwarz, 0252811377.

Combination. The Leader LCD300 is a portable battery or mains instrument that combines the functions of a digital storage oscilloscope, digital multimeter and logic scope in a $240 \times$ $44 \times 165 \mathrm{~mm}$ package that weighs 1.2 kg . The digital storage section has two channels with 30Msample/s and 10 MHz bandwidth. All parameters are displayed on an LCD with 128-point (7-bit) vertical resolution and 180 or 1800 word resolution on the horizontal axis, including set-up and measured values. Thurlby-Thandar, 0480412451.

Digital oscilloscope. The Hitachi VC6145 digital storage oscilloscope is a four-channel unit with a speed of $100 \mathrm{Msample} / \mathrm{s}$. Sampling can be carried out simultaneously at 25Msample/s on all four channels. Four 1000 word save memories with battery back up let data be captured in the filed and brought back for analysis. Stored data can be transmitted to an HPGL compatible plotter via an RS232C interface. A built-in frequency counter covers :he range 20 Hz to 100 MHz . ThurlbyThandar, 0480412451

Literature

ISDN guide. An illustrated free guide to ISDN published with help from the National Computing Centre has 100 A6 pages covering an introduction to telecommunications, an explanation of ISDN, a look at its features anc benefits. and a diges: of applications and products. DCE Video
Commun cations, 0296432971

Production equipment

Bonding tape. K273 tape is a thermally conductive bonding system for mounting electronic components without mechanical fasteners. It consists of a thermally conductive type MT Kapton film with a thermally conductive thermosetting acrylic adhesive on each side that provises instantaneous attachment. It comes self wound in roll form with release paper. It is also available in die cut parts. Intertronics, 0865842842

Photonic alignment. The NanoTrak automatic alignment system for single mode fibres and integrated optics is for aiding applications like fibre launching and endfire coupling as well as more complex procedures such as attaching fibres to waveguide devices and aligning fibre arrays to multichannel devices. It also helps researchers involved in fibre sensing

Hitachi VC6145 digital storage oscilloscope from Thurlby-Thander

Coiltronics power inductor kits from Microelectronics Technology.
applications and experiments conducted over several hours. Photon Control, 0223420071

Power supplies

1kVA UPS. The MP8 Micropower on line UPS measures $190 \times 451 \times$ 263 mm and will provide at least 8 min of $240 \mathrm{~V}, 50 \mathrm{~Hz}$ power at full load. It is designed for lans, epos, multiple PCs, workstations, Unix/Zenix, cad/cam, wordprocessors, fax machines and telephone consoles. Noise level is less than 45 dB . Avel-Lindberg, 0708 853444.

Programmers

Eprom programmer. The Model 200A eprom programmer can be connected to the parallel port of a PC to increase programming speed. For example, a 1 Mbit eprom can be blank checked, programmed and verified in slightly more than 100 s. It supports more than 750 devices including eproms up to 4 Mbit , eeproms and all popular microcontrollers. MQP Electronics, 0666825146.

Switches and relays

Protection device. The MultiFuse MF-BP is a solid-state temperature coefficient fuse for protecting against short circuits in rechargeable NiCd batteries and lithium cells. It is resetable when the overcurrent condition is removed. Its cold resistance is less than 100 ms) Bourns Electronics, 0276692392.

Photoelectric switches. A range o Electromatic photoelectric switches can detect shiny, transparent or other highly reflective surfaces like bottles and metal cans. There are seven reflectors with a range up to 3 m and
they use polarised optical light rather than infra-red. The light source is AlGaAs led 660 nm which casts a 65 mm diameter light spot at 2 m . Carlo Gavazzi, 025229324.

Pressure switch. The MPL900 miniature plastic-body pressure switch responds to pressure, vacuum or differential applications and handles air or gas. Pressures can be set by the user or preset at the factory from 0.1 to $150 \mathrm{mbar}(15 \mathrm{kPa})$. Contact arrangement is SPDT. The operation on rising or falling pressure is in the mode of a single-pole change-over contact that can handle 5 A resistive or 2.5A inductive load on $220 / 240 \mathrm{~V}$ $A C$ in industrial and domestic applications. EuroSensor, 071405 6060.

Transducers and sensors

Pressure transducer. The AB-HP is a general purpose pressure transducer capable of more than 160 million operating cycles to full rated pressure. It conforms to MIL810B for shock and vibration resistance. Applications include liquid level measurement, process control and engine motor control. Accuracy is down to 0.25% and the sensors are available in 0-6 to 10,000 psig. Control Transducers, 0234217704.

Precision thermometer. The P60 precision thermometer is housed in a durable water and dust resistant case with IP65 protection. Sensitivity is to
$0.1^{\circ} \mathrm{C}$ from -39.9 to $+139.9^{\circ} \mathrm{C}$. Accuracy is $\pm 0.3^{\circ} \mathrm{C}$. The digital display head is moulded in ABS plastic and is fitted with an acrylic window over the 12.5 mm LCD. It has an automatic 30s cut out. ETI, 0903 202151.

Miniature transducers. The D5

 series of miniature transducers can measure linear displacement from ± 0.63 to $\pm 5 \mathrm{~mm}$ and can discriminate down to $1 / 100$ th of the range. They operate on the linear variable differential transformer principle with a magnetic core in the windings. They weigh 14 g and have a standard linearity of 0.5%, with 0.1% available as an option. RDP Electronics, 0902 457512.Pressure sensor. Sensym has increased the sensitivity of its current piezoresistive semiconductor sensors by developing different techniques for micromachining the silicon diaphragm. The first two products manufactured using this process have temperature-compensated calibrated full-scale outputs at 10 mbar (1 kPa). The SCXL004DN provides a 40 mV output with 1 kPa applied pressure from a 12 V supply. The 100 LP 10 D is an amplified version providing a 1 to 6 V output for 0 to 1 kPa applied pressure. Sensortechnics UK, 0788 560426.

COMPUTER

Computer board level products

Graphics subsystem. Stride is a family of PC graphics cards for realtime 3D animation, pre-press DTP. simulation and computer-aided design. It provides 24 -bit colour at resolutions up to 1536×1280 interlaced. Using dedicated hardware for rendering images with Gouraud shading and antialiasing, it can process 35,000 true colour shaded polygons a second. The package is based on the 32-bit TMS34020 graphics processor. Akebia, 081-546 4908.

Data acquisition boards. Low power versions of the PC14T, PC27 and PC36AT data acquisition boards for use in laptop PCs have been introduced and are available from Amplicon Liveline They are, respectively, analogue data acquisition, digital I/O with counter timer, and 24 -line programmable 1/O boards. All are supplied with demonstration software written in Turbo Pascal and Basic. Source code is included. Amplicon Liveline, 0273 570220.

386-40 board. A 38630 MHz board runs at 9.5 mips and is claimed to be faster than a 486-33 board with most software. Bus speed is selectable from 6,8 or 12 MHz and it has 7×16 bit and 1×8-bit expansion slots. There is up to 32 Mb of on-board ram. It has on-board diagnostics. Digitask, 0293776688.

Risc subsystem. The 7RS 107 risc subsystem module provides designers with a ready built fully tested R3000/3010 CPU module. It is built round the IDT9R3000 microprocessor and IDT79R301 floating point accelerator and is available in operating speeds from 12 to 33 MHz . Measuring $127 \times 127 \mathrm{~mm}$ and using 96 -pin connectors, the module includes 64 Kbyte of instruction and data cache as well as one-word-deep read and four-worddeep write buffers. Integrated Device Technology, 0372377375.

Text-to-speech card. An expansion card for IBM PCs lets users hear each word or command as it is typed. The package comes with software, manual and loudspeaker and it can be used with text based software package like Wordperfect or Wordstar. Pitch can be varied by adjusting a trimmer on the board. Target applications include audible text verification, study and training aids, narration of displays, and as an aid for people with visual and speech disabilities. Logicom Communications, 081-756 1284.

Risc subsystem module from IDT implements R3000 architecture.

Development and evaluation

Software simulator. The S400SIMPC software simulator allows development, testing and debugging of H 400 code in an IBM PC environment. Windowing techniques let line code be tested by observing. the output response to inputs without stopping the simulator for monitoring or changing the I/O states. Dialogue, 0276682001.

Software simulator. The design of systems based on the uCOM75x single chip microcomputer can be simplified using a software simulator with a standard PC compatible computer. The simulator needs no external hardware and provides facifties such as program code, I/O port, register, and on-chip peripheral status interface windows. User definable function keys and dropdown menus are provided to simplify keyboard input. NEC Electronics, 0908691133.

Mass storage devices

Memory cards. The Intel 4Mbyte Flash memory card is based on an array of nonvolatile chmos memory devices in TSOP with an on-card asic that buffers address anc data lines and provides system control logic and timing. Read access time is 250 ns and a 5 V supply is needed in read mode. For erasure and writing a 12 V supply is required. It is for portable computers and industrial equipment requiring removable storage. Jermyn Distribution, 0732450144.

Computer peripherals

Removable Winchesters. Sintrom has introduced the Stowaway range of removable Winchester disc drives that can be built in to Compaq. IBM PCs and compatibles. They are available in 40, 100, 120 and

212Mbyte versions. Access times are down to $16 \mathrm{~m} / \mathrm{s}$ and data transfer rates $4.75 \mathrm{Mb} / \mathrm{s}$. Sintrom Electronics, 0734 311088.

Msdos/O59 link. PCi is a hardware and software transparent link that lets msdos based PCs connect to multitasking real-time computers running under OS9. The hardware comprises Topaz token passing industrial local area network controllers. These plug-in modules provide 1Mbits high integrity multidrop highways over long distance with real time response. The software link is a file manager that lets OS9 tasks read and write data. Syntel Microsystems, 0484535101.

Software

Technical calculations. MathSoft has introduced an improved version of its Mathcad package that adds support for Microsoft Windows, electronic handbooks for access to standard formulae and constants, and symbolic calculations for computer algebra. Mathcad 3.0 performs calculations used by engineers and scientists. Adept Scientific, 0462 480055.

CAE package. Betronex has introduced version 2.4 of its EE Designer package for schematic capture, circuit simulation and PCB layout. Users with existing designs on other systems with Gerber outputs can import and modify them on this package. The back-annotation facility lets schematic diagrams and circuit simulation be produced from the imported layout designs. Betronex, 0920469131.

DSP code writers. Two programs have been introduced: ProCoder is for the automatic generation of production quality machine code for fixed point DSP devices: and MultiProx is for the automatic generation from a system diagram of C programs to run on multiple processors. Both are options for Comdisco's signal processing WorkSystem. Available for use on workstations such as Sun, HewlettPackard, Apollo and Digital. Comdisco Systems, 0454614256.

HEPA program. A program in the HEPA (high efficiency RF power amplifier) series optimises RF power amplifier design across a userspecified frequency band. The program modules predict transistor capability, that is amplifier efficiency against output power and frequency. and design a circuit for a specified RF output power and frequency band. It can also stimulate the circuit to yield voltage and current waveforms and frequency spectrums, DC input power, RF output power, efficiency, and power dissipation in each circuit component. Design Automation, 0101-617862 8998.

USED 41256-15......................................60p WAY D PLUG, PUSH BUTTON SWITCH, DIN SOCK	
ED 4164.15 ex equipment	
1001-202 NEW M M EPROM 86	
FLOPPY DISC CONTROLLER CHIPS 1771 I.... 110 ea ELECTRET MICROPHONE NSERT	
6384-8 .-.......	
USED EPROMS ERASED AND BLANK CHECKED ${ }^{\text {d }}$ HALL EFFECTIC UGS3040 + magnet	
${ }^{276-45 U S E D} . .$.	
2114 EXEOPT SOP 4116 EX EOPT $\ldots . .$.	
S264-15 8k STATIC RAM	
	${ }^{25}{ }^{\text {P PANEL }}$ FUSEHOLDE
£1.25 CHROMED STEEL HINGES $14.5 \times 1^{\prime \prime}$ OPEN ….... $£ 1$ each	
REGULATO	
317 ME	
METAL 12 V 1 A _	
7905/12/15/24 plastic \quad -	
SA VARIABLE	
CRYSTAL OSCILLATORS	
$5092 . . .$.	
CRYSTALS	
TRANSISTORS LM3352 TEMP SENSOR $10{ }^{\circ} \mathrm{C}$ PERMV	
BC107 BCY70 PREFORMEDLEADS full spec \qquad £1 £4/100 £30/000 PAPST 18-24V FAN 120 MM WORKS OK ON 12 V ONC TO $4 M M$ BINDING POST SIM RS 455-961	
POWER TRANSISTORS	
25C1520 sim BF259 [1/	
TEXTOOL ZIF SOCKETS	
	1a G00V BRIIDGE
MISCELLANEOUS PULSE TRANSFORMERS 1:1+11.25	
TRIACS DIACS 4/E	
\cdots Hz	

CONNECTORS

D25 IDC SCCKET FUJITSU ….................................... £2
34 -way carc edge IDCCONNECTOR (disk drive type)
CENTRONICS 36 WAYIOC PLUG \quad....................... 1.25
CENTRONICS 36 WAY IDC SKT $£ 4.5$
BBC TO CENTRONICS PRINTER LEAD 1.5M CENTRONICS 36 WAY PLUG SOLDER TYPE …........... £4 USED CENTRONICS $36 W$ PLUG + SKT \mathfrak{E}
USED D CONNECTORS price per pair $0960 \mathrm{p} . \mathrm{D}$
50 p oa

WIRE WOUND RESISTORS

W21 or $\operatorname{sim} 2.5 \mathrm{~W} 10$ of one value I1 20R 22R 27R 33R 47R 56R 2 SR 91R 1 120R 1 B0R 390R 430R 470R 680R 820R 910R 1 K15 1K2 1K5 1 K8 2K 4 2K7 ЗК3 ЗКО 5К0
RO5 (50 milli-ohm) 1\% 3W
W22 or $\operatorname{sim} 6 W 7$ OF ONE VALUE
RHOTC DEVICES
HI BRIGHTNESSTEOSCOX24RED SLOTTED OPTO-SWITCH OPCOA OPB815 2N5777
TIL81 PHOTO TRANSISTOR
TIL38 INFAA RED LED
4N25, OP1.2252 OPTO
PHETO DINDE 5OP.
MEL 12 (PHOTO DARLINGTON BASE n / c) 50p
LED's RED 3 or 5 mm 12/E1
LED's GREEN OR YELLOW 10/ 1 100/ع6 FLASHING RED OR GREEN LED 5 mm 50 p 100/2 HIGH SPEED MEDIUM AREA PHOTODIODE RS65 995.

STC NTC BEAD THERMISTORS

G22 220R, G13 1K, G23 2K. G24 20K, G54 50K, G25 200K, RES $20^{\circ} \mathrm{C}$ DIRECTLY HEATED TYPE £ 1 ea FS22BW NTC BEAD INSIDE END OF 1 " GLASS PROBE RES $20^{\circ} \mathrm{C}$ ' ${ }^{\circ} 00$ R ideal for audio Wien Bridge Oscillator 22 CERMET MULTI TURN PRESETS $3 / \mathbf{4}^{\prime \prime}$ 10R 20R 100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50 K 100 K 200 K 500 K 2 M

IC SOCKETS

6 pin 15/乏1 8 pin 12/E1 14/16 pin 10/玉1 18/20 pin 7/\&1 22/24/28 pin 4/E1 40 30p SIMM SOCKET TAKES 2×30 WAY SIMMS $£ 1$
SOLID STATE RELAYS 40A 250 V AC SOLID STATE RELAYS \qquad
POLYESTER/POLYCARB CAPS

RF BITS
TRW 50wat 500hm DUMMY LOADS £50 TRIMMERCAPS

SMALL MULLARD 2 to 22pF .. 4/50p

SMALL MELARD 25 pF black 15 to 20 pF
TRANSISIORS 2N4427 ..60p

FEED THRU CERAMIC CAPS 1000 pF
MINIATURE RELAYS Suitable for RF
5 volt coil 1 pole changeover
5 volt coil 2 pole changeover
12 vot coil 1 pole changeover .. 1
MONOLITHIC CERAMIC
CAPACITORS

10n 50 V 2.5 mm $100 / 84.50$	
100 n ax long leads ..100/55	
STEPFER MOTOP	
2 CENTRE.TAPPED 9 VOL	EPS

TECHNOMATIC
Techno House 468 Church Lane, London NW9 8UF Tel: 081-205 9558 Fax: 081-205 0190

Mon-Fri: 9.15-5.30. Sat: 10.30-4.00

All prices ex VAT. Prices and specification are subject to change without notice. Please add carriage (a) £8.00 (Courier, 2 days) (b) $£ 4.00$ (c) £2.00 (d) $£ 1.50$ Next day delivery at extra charge

All products listed in this ad are for IBM PCs or 100% Compatibles. Please check suitability with manufacturer prior to purchase. Goods are not offered on trial basis.
MINIMUM TELEPHONE ORDER VALUE £10 before carriage \& VAT

MEMORY MODULES			
IBM			
PS/2 30/286	512 KB	30 F 348	¢54(b)
PS/2 30/286	2 MB	$30 \mathrm{F5360}$	£110(b)
PS/2 ADAPT 6450367	2 MB	6450372	\&209(b)
PS/2 70 E61 121	1 MB	6450603	£63(b)
502 55SX 65SX P70	2 MB	6450604	\&112(b)
PS/2 70A21 A61 821861	2 MB	6450608	£112(b)
PS/2 55SX 03106165 SX	4 MB	34F2933	£249(b)
PS/2 80-041	1 MB	6450375	¢80(b)
PS/2 80111311121321	2 MB	6450379	1125(b)
PS/2 80 A21 A31	4 MB	6451060	£319(b)
PS/2 5050 L 5 SX 60	2-14 MB	6450609	£349(b)
COMPAQ			
386/20E 2025 25E 286E	1MB	113131	\&75(b)
386 S	1MB	113646	275(b)
386/20E 2025 25E 286E	4MB	113132	\&245(b)
386 S	4 MB	112534	£245(b)
386/20E 25E	1MB	113644	8119(b)
386 S	1 MB	113633	£119(b)
386/20E 25E	4 MB	113645	£299(b)
386S	4 MB	113634	£299(b)
386/33 H86/25 SYS PRO	2MB	115144	ع136(b)
486/25 SYSTEM PRO	8 MB	116561	2729(b)
DP286.386N \& 386s	1 MB	118688	265(b)
DP386N \& 386s M20	2MB	118689	2109(b)
DP286/386N \& 386s	4MB	118690	£279(b)
PORTABLE LTE286	1MB	117081-1	889(b)
PORTABLE LTE286	2MB	117081-2	¢149(b)
PORTABLE LTE286	4MB	117081-3	ع479(b)
PORTABLE SLT286	1MB	110235	ع135(b)
PORTABLE SLT286	4MB	110237	ع479(b)
PORTABLE SLT386	1MB	118303	¢130(b)
PORTABLE SLT386	2MB	118304	2259(b)
PORTABLE SLT386	4MB	118305	ع469(b)
$386 / 161 \mathrm{Mb}+$ Exp Bd	1 MB	108069	ع215(b)
386/16	2M8	108069-71	¢349(b)
$386 / 164 \mathrm{Mb}+$ Exp Bd	4MB	108072	\&449(b)
TOSHIBA			
T1000/E \& XE/SE/LE	1MB	PA8311	ع120(b)
T1000/E \& XE/SE/LE	2 MB	PA8312	£179(b)
T1000LE/T2000SX	1MB	PA8316	\&129(b)
T1000LE/T2000SX	2MB	PA8317	£199(b)
T1000LE/T2000SX	4MB	PA8314	£399(b)
T1200XE	2MB	PA8306	£115(b)
T1600T	2MB	PA8302	¢115(b)
T3100SX	2MB	PA8308	E115(b)
T3100SX	4MB	PA8310	£299(b)
T3100	512 KB	PA8340	ع81(b)
T3100	2MB	PA8341	£115(b)
T3200SX	2 MB	DA8307	\&115(b)
T3200SX	4MB	PA830911	£299(b)
T3200	3MB	PA7137	¢190(b)
T5100	2MB	PA8301	£115(b)
T5200	2MB	PA8304	£115(b)
T5200	8MB	PA8313	POA
ZENITH			
$386 / 202533$ 33E$386 / 202533$$386 / 20253333 E$386 Sx 2866 P PISLIMSPORT 286SUPERSPORT RASX $286 E$ Exp CardSX 286E Exp CardSX $286 E$ Exp CardSX Alpha Exp CardSX Beta Exp Card	1MB	ZA-3800-ME	ع40(b)
	2MB	ZA-3600-MG	180(b)
	4MB	ZA-3800-MK	£160(b)
	2MB	ZA-605-1	180(b)
	1 MB	ZA-180-95	\&169(b)
	1 MB	ZA-180-66	ع175(b)
	2MB	2A-180-64	£229(b)
	4MB	ZA-180-71	£489(b)
	2 MB	ZA-180-86	£229(b)
	2MB	ZA-180-87	£229(b)
Dell			
200 Series	2 MB		879(b)
300 Series	4MB		2168(b)
325/P Series	4MB		£168(b)
325/D Series	2MB		£160(b)
325/D Series	4MB		£290(b)
425/486-33 Series	2 MB		£160(b)
425/486-33 Series	4 MB		¢290(b)
Sanyo			
17/NB	2MB		£179(b)

Memory modules, kits, efc, available for AST, Olivetti, NEC and many more manufacturers. Please phone for requirements.

EPROM WRITERS

A short card for PC/AT bus is available in two models, for 1 eprom and 4 eproms. TexTool ZIF socket/s mounted in an external metal case connects to interface card through a flat cable. Menu driven software includes all standard programming functions. All 27 XXX single rail eproms up to 512 K can be programmed.
Intel/Motorola HEX code converter inc.
EPROM WRITER Card EPROM WRITER Card
1 Eprom £79(b) 4Eproms £119(b) Software on $5.25^{\prime \prime}$ disc - $£ 3$ extra for $3.5^{\prime \prime}$ disc UV ERASERS
UV1B (6 Eproms) £49(b) UV1T 6 Eproms) with timer $\mathbf{~ 5 9 9 (b)}$

CO-PROCESSORS	
INTEL	
$8087-8 \mathrm{MHz}$	E78(b)
$8087-10 \mathrm{MHz}$	E99(b)
80287-8/10/12	E72(b)
80287 -XL	E72(b)
80387SX-16	E109(b)
80387-DX-16	E165(b)
80387-SX20	E120(b)
80387-DX-20	ع175(b)
80387-DX-25	E185(b)
80387-DX-33	£195(b)
80487-SX	2354(b)
ITT	
2C87-8/10/12	ع88(b)
3C87SX 16	ع89(b)
$3 C 87 S \times 20$	ع99(b)
3C87-16	\&125b)
3C87-20	E139(b)
3C87-25	ع149(b)
3C87-33	E169(b)

STATIC RAMS (b)		SPREADSHEETS	
116LP-150ns	£3.00	Lotus 123 Rel 3.1	ع302(a)
264LP-150ns	£3.50	Lotus 123 Rel 2.3	£245(a)
2256LP-120ns	£6.50	MS Excel v. 3	£229a)
2256LP-100ns	£9.00	Quattro Pro v. 3	E175(a)
		Supercalc 5d	£74(a)

SIMMS \& SIPS (b)		
	SIMMS	SIPS
$1 \mathrm{MB} \times 9.60 \mathrm{~ns}$	¢58	-
$1 \mathrm{MB} \times 9-70 \mathrm{~ns}$	¢ 46	¢54
$1 \mathrm{MB} \times 9-80 \mathrm{~ns}$	£38	£43
$1 \mathrm{MB} \times 9-100 \mathrm{~ns}$	£34	£40
$4 \mathrm{MB} \times 9-80 \mathrm{~ns}$	£160	-
$256 \mathrm{~K} \times 9$-80ns	£11	£14
$256 \mathrm{~K} \times 9-100 \mathrm{~ns}$	£11	£14
DRAMS (b)		
4164-120ns		£1.40
4164-100ns		£1.60
41464-100ns		$\varepsilon 2.00$
41256-120ns		$\varepsilon 1.60$
41256-100ns		$\varepsilon 1.80$
41256 -80ns		£2.20
44256-100ns		£4.50
44256-80ns		$£ 5.00$
44256-70ns		£6.00
$1 \mathrm{Mb} \times 1-100 \mathrm{~ns}$		£4.00
$1 \mathrm{Mb} \times 1-80 \mathrm{~ns}$		£4.50
$1 \mathrm{Mb} \times 1-70 \mathrm{~ns}$		£5.00

H.P. COLOUR INKJET

HP Paintjet 1yr OSM $\mathbf{\text { E615(a) }}$ HP Paintijet XL 1yr OSM £1099(a)

HP PLOTTERS	
7440 A	$\mathbf{£ 4 2 5 (a)}$
7570 A	$\mathbf{£ 1 9 7 9 (a)}$
7475 A	$\mathbf{~ £ 6 0 5 (a)}$
7575 A	$\mathbf{£ 2 8 1 9 (a)}$
7550 A	$\mathbf{£ 2 2 1 9 (a)}$
7576 A	$\mathbf{£ 3 6 4 9 (a)}$

ROLAND PLOTTERS	
DXY1100	$\mathbf{£ 5 0 5 (a)}$
DXP2500	$\mathbf{£ 2 3 6 9 (a)}$
DXY1200	$\mathbf{£ 6 4 5 (a)}$
GRX300AG	$\mathbf{£ 2 7 9 9 (a)}$
DXY1300	$\mathbf{£ 8 4 5 (a)}$
GRX400AG	$\mathbf{8 3 6 7 9 (a)}$
NEW A4 Sketchmate	$\mathbf{£ 3 4 5 (a)}$

consumables in stock CIRCIENO. 145 ON REPLYCARD

We stock a wide range of
competitively - priced IBM PCs
or compatible products
Please send for our comprehensive catalogue
Tel: 081-205 9558

OPERATING SYSTEMS

DRDOSV. 5 £42(b)
DR Multi-User DOS £375(a)
WORDPROCESSORS
Wordperfect $5.1 \quad$ £230(a) MS Word for Windows £255(a)

INTEGRATED	
MS Works v. 2.0	$\mathbf{£ 8 6 (b)}$
Smartware il v. 1.5	$\mathbf{£ 3 9 3 (a)}$
Symphony v. 2.2	$\mathbf{£ 3 7 2 (a)}$

GRAPHICS	
Corel Draw 2.2	$\mathbf{E 2 3 0 (a)}$
Harvard Graphics v. 3	$\mathbf{£ 2 3 2 (a)}$
Micrografx Designer v. 3.1	§355(a)

DATABASES	
DBASE IV 1.1	£347(a)
MS Word for Windows	£385(a)
Foxpro S/U 2.0	£352(a)
Paradox 3.5	£287(a)
Superbase 4 Windows	£372(a)

LASER PRINTERS

HP LaserJet III
£1035(a) HP LaserJet IIIP \quad £749(a) HP LaserJet IIID $\quad \mathbf{~ 1 7 2 9 (2 x a) ~}$ HP LaserJet IIISi $\quad \mathbf{£ 2 7 7 9 (2 x a)}$ Canon LBP4 £665(a) Canon LBP8 III
Epson EPL 7100
(incl FREE 0.5 Mb kit) £699(a) Epson EPL 7500 £1199(2xa) NEC SW 2S60P $\quad £ 1239(2 x a)$
 Panasonic KXP4450i

(2yr OSM)

£1049(a)
Panasonic KXP4455 (2yr OSM) Panasonic KXP4420 (2yr OSM)
£1599(2xa) Sharp JX9700
(16ppm) £679(a) All laser prices include 1 £1549(a) Maintenance

LASER RAM UPGRADES		
HP	IIP/IHP/III/IID	11/10
1 Mb	¢75	£89
2 Mb	£119	¢119
4 Mb	£209	¢209
CANON	LBP4 LBP8 II	LPBP811/TR
1 Mb	$£ 139 \mathrm{E} 99$	£139
2Mb	£249 £125	£249
PANAS	ONIC 4420	44500
1 Mb	£95	£95
2 Mb	£145	¢149
4 Mb	£239	£239
EPSON	EPL7100	GQ5000
0.5 Mb	£79	£79
1.5 Mb	¢139	£139
Carriag availab	code (b) upgra for Texas Micr	des also
Laser/T	Shiba PG6	
POSTSCRIPT FOR HP		

[^3]
Design study: power inversion

Fig. 1 Popular solutions: the bridge configuration and...

Fig 2. ...push-pull configuration.

Fig, 3. Push-pull showing leakage inductances.

DC to DC inverters can provide the multiple supply
rails often required in complex equipment. They can
also allow a secondary SMPS to function outside its
normal input voltage limits. Brian Frost outlines the
practical design process involved in high frequency
power inversion.

This study started out as a need to power 50 Hz mains equipment from a car battery. The intended apparatus incorporated its own switch mode converter which derived its input from the directly rectified/smoothed mains. The application. an SMPS based NiCd charger. required a miniature step-up converter to supply the missing high voltage DC input.
For turning low-voltage DC power into medium voltage (say 100 W at up 100 to $5(0) \mathrm{V}$) there are really only two configurations in popular use, the bridge configuration (Fig. 1) and the push-pull configuration (Fig. 2). In each case, switches S_{1} and S_{2} are driven alternately with an on time that never exceeds 50% of the switching frequency to be used. This switching frequency can be up to several megahertz, depending on the type of transformer used. and the capabilities of the switches.

Most inverter designs switch at over $20 \mathrm{k} 1 \mathrm{~F} \%$ greatly reducing the size of the transformer and allowing the use of low-cost ferrite pot-core or E-core designs with much less wire. Indeed, there are now many commercial designs operating above 1 MHz .
However, leakage inductance and the attendant switching spikes can become a limiting factor.
In addition to symmerrical configurations, there are a number of single-switch designs operating at power levels below 100 W . This topology tends to use complex ways of puting Iransformer energy, stored during the switch 'on' time, back into the supply reservoir capacitor when the switch is off.
Common to all inverter designs is the
problem of protecting the power switches: and I am sure that many designers know only too well the frustration of the circuit operating for a while, only to have the fuse blow and to have lost one (or probably both) switching devices
Tris is particularly frustrating because it is often impossible to be sure just what caused the event. Inverters required to supply a wide range of loads are particularly susceptible to this due to the very uncontrolled nature of their working, although there are some common rules and points to check that can usually prevent these problems.
Figure 3 shows the push-pull conliguration of litg. 2 but using two transistors for the switching devices. and adds some parasitic components which cause real problems. When T_{r} is on, the voltage across it is simply its saturation voltage and in slowswitching (eg 50 Hz) designs, it is this voltage, multiplied by the inverter current that makes the device get hot. When Tr_{2} turns off the supply current cannot be interrupted instantly (even though the other transistor may have turned on at exactly that time) because the transformer is not a perfect component.
Depending on the its construction, there will always be a leakage inductance present -shown by the component L.e, This oecurs because there will always be a small lack of coupling between the transformer primary and secondary: this appears as an inductor in series with the transformer lead. The stray inductance stores up energy when $T r$, is on. Turn $T r$, off and the result is the voltage spike shown in Fig. 4. This spike can be

Fig. 4. High voltage spike resulling from switching off Tr

Fig. 5. Techniques are utilised to attenuate the vollage spike
high. Typical voltages in a 12 V inverter can easily top 100 V even though the width of the spike nay be less than a microsecond.
This spike must be accounted for in any inverter design. Clamping or snubbing circuits attenuate the spike. Figure 5 shows two of the usual techniques, clamping the voltage with a zener diode, or dissipating it in a resistor-capacitor network. The presence of an overvoltage spike can manifest itself in a number of ways. Bipolar transistors, traditional lavourites for high-current inverter switches, can be taken outside their safe operating area (SOA) where they are still passing current, but at a high voltage. The result is a destructive breakdown between the collector and emitter.
Secondary breakdown is more insidious than the primary breakdown which is simply

Fig. 6. Body diodes aid clamping. Mosfet body diodes are normally reversed.
exceeding the maximum voltage allowed between collector and emitter. Although high-power Darlington transistors are particularly rugged in respeet of secondary breakdown. the designer cannot be completely sure of remaining within this SOA unless the voltage across the transistor and the current flowing through it are monitored simultaneously and then compared with the data sheet graph.

The same spike problem occurs when $\mathrm{Tr}_{\text {, }}$ of Fig. 3 is replaced by a mosfet and, duc to the faster switch-off speed, the amplitude of the spike can be much greater. The same zener, or R-C network solutions can be applied to tame the circuit.
Mosfets incorporate a parasitic diode as part of their structure which may be used to clamp spikes in the half-bridge conliguration. Figure 6 shows the halli-bridge circuit implemented by two mosfets $T r_{\text {, }}$ and $T r_{2}$. Mosfe body diodes are normally reversebiased. When devices switch over. the current flowing through $T_{\text {}}$ primary causes a voltage spike to be generated by the energy stored in the leakage inductance ' $L e^{\prime}$. This would usually result in a positive-going spike (after $T r$, turns off), but its amplitude is clamped by the body diode of Tr, to the supply rail. The spike energy is returned to the supply. The inherent advantage of the bridge configuration is balanced by the difliculty of driving the upper device remote from ground.
The major attraction of power mosfets for switching is the lack of secondary breakdown: manufacturers quote a maximum current, a maximum voltage, and a maximum power dissipation. They can still suffer from thermal runaway, however. On-resistance and losses - increase with temperature which can lead to a destructive situation.

Driving the inverter

Because of the popularity of switch-mode power supplies, there are any number of control ICs that can be used to provide drive to the output devices. They tend to be design overkill in a simple square wave inverter. Figure 7 shows a hall-bridge circuit with transformer-coupled gate drive. These small transformers are readily available as thyristor pulse-transtormers and, due to the AC coupling of the primary, this bridge circuit can be driven quite adequately for example by a 5.55 timer IC connected as a square wave generator. This provides a simple drive function at low cost.

The $1525 / 2525 / 3535$ series with purpose designed functions is shown in Fig. 8. It provides pulse-width modulation control where a feedback voltage is compared with a demand voltage and used to produce an increase or decrease in the on time of each of two power outputs. A and B. At maximum, the outputs are each on for just under 50% of the oscillator cycle. This IC includes built-in reference, logic shutdown and linear functions. A purpose-designed output stage drives mosfets directly.

Fig. 7. Transformer-coupled gate drive helps provide a low cost solution.

Current-limiting design

This requires careful attention to all operating conditions. If the current limit is too slow, the power devices will fail due to surge conditions. Too fast and switching Iransient noise will trigger the current limit mechanism too readily.
Two current limit functions may be required: a primary mechanism to prevent death of the switching devices and a secondary circuit to permit stable constant output current operation. Device protection current limit must be able to remove drive to the switching devices on a cycle-by-cycle basis: if the output of the supply is shorted. the rapid rise in device current following turn-on of one device is terminated as soon as an allowed threshold has been reached. At this point, both devices are turned off and the power cycle aborted. This threshold is chosen to suit the device maximum current rating.
If this is the only current-limit mechanism, it will appear as a "fold-bach' type of characteristic where operation of the supply just beyond this point causes the output to disappear requiring that the load reduce significantly before the output re-establishes itself. The inverter design shown here uses this principle. Conventional linear current limiting can then be added by a secondary mechanism which uses an error amplifier in a conventional leedhack lechnique.

Transformer design

There are well-documented ways of designing transformers but these tend to be quite daunting. and often require data that is not readily to hand. I have evolved a few simple rules that appear well suited to SMPS design.
First, use the power and frequency to decide on the size of the core. The more power required, the higher in switching frequency for a given core size. The alternative is a larger core. For example, the RMIO core used in this design will transform about 80 W at 25 KHz , although it continues to operate at 100 W . For a given lrequency, the

fig. 8. 3525 regulator IC provides pulsewidth modulation control.
power can be doubled by doubling the core area (as measured at the centre leg of the core). As a rough guide to power handling capacity with common grades of ungapped power cores. calculate the area of the centre leg of the core in syuare millimetres to provide the power handling capacity in wallts all 25 klz .
For example, the RM10 cores have al core centre diameter of 10 mm . This is an area of just under 80 sy mim. i.e. 80 W. Next. calculate the windings. This only needs very simple calculation. Although more exact values can be obtained from the core data sheets. a good starting point at $30 \mathrm{k} / \mathrm{h} /$ is ahout $2 \mathrm{~V} / \mathrm{urn}$ for 3 C 8 material (a common power core materiall. The voltage per turn relates directly to frequency. Thus. for a 12 V inverter operating in push-pult conflguration. $6+6$ urns on the primary would suffice.

The DC inverter design

The complete circuit for the practical inverter design is shown in Fig. 9. This a complete 12 to 240 V DC inverter. capable of lighting a fol tungsten mains lamp. It is hased on the push-pull configuration which allows it to use mosfet devices without heat sinks up 10. 10 W la lads.

The two switching devices are a pair of BUZII power mosfets. driven with a gate drive voltage equal to the supply inpul. normally more han 10 V . These achieve an onresistance of less than 0.152.
The switching IC. ann 3525, provides just under 50% duty cycle athernating drive to the two mosfets: a slight underlap ensures that hoth devices do not conduct logether. Its start-up circuit ensures that the supply voltage is enough to operate the logic. and then applies an increasing duty-cycle until the inverter is operating an full duy-cycle. This avoids erratic start-up and high surges. It also provides current-limit protection.

The transformer is an RMIO pol-core. roughly equivalent to a 25 mm cabe. Some cores are intended for making incuctors and include an inside gap for controlled inductance al larger currents. These ate not suitable for power transformer operation. Ungapped ' 1 ' core types are also fine. The volage spikes generated at turn-off are clamped by the 3.3 V zeners $D_{\text {s }}$ and D_{6}. The transistor drains of the mosfeis reach twice the supply vollage in normal service. However just one overvoltage gliteh will destroy a device. Destruction occurs through hreakdown hetween drain and source, or punch-through to the thin gate axide. The two zenern D_{7} and D_{s} protect the ouptat
device gates against tramsients.
This design does not use the voltage error amplifer in the control IC. Normally, this would compare a demand control voltage with a proportion of the output voltage estahl shing a feedback control loop. In intended application where the output feeds a swithing circuit. inverter regulation wasn't required. Oup wollage is therefore simply proportional to input voltage and is designed to be roughly 240 V DC out for 12 V input.
The bayou for this type of eircuit is important. The switching frequency is about $30 \mathrm{kl} \%$, but the switching times are important. These occur in less than $0.5 \mu \mathrm{~s}$ and the layout should take this into account. Groundplanes are recommended with particular attention paid to the paths carrying the circulating switching current. These should be of the widest area for minimum inductance/resistance and. where applicable. should be returned to a common grounding point. The control circuitry in this design example is very simple hut good design dictates that grounding takes place ousside the main current paths.
R_{6} must be non-inductive to avoid voltage spihes and erratic current limiting.
The transformer is quite tolerant of the winding wire. It must sustain 5 A in the primary circuit without healing. The secondary carries a small enough current to be wound from thin wire and physical limitations of the behbin space will be important. The primary requires two of wound bifilar. This benefts in that as one power device turns on. it helps to reduce the voltage spike generated by the other device turning off. The

Fig. 10. High voltage DC to DC converters can be used to power consumer electronics equipment such as television sets fitted with direct rectification SMPS. However the degaussing circuit must be disconnected before use.
secondary is quite uncritical and can be pilewound as 120 turns over the primary.

The unit can be tested by connecting it to a 40 W 240 V tungsten lamp. It will actually drive a 60 W lamp. but only if it is operated from a variable power supply which is used to gradually increase the input voltage and so reduce the effect of the current surge that occurs due to a cold lamp. This surge is greal enough with a 60 W lamp to cause the inverter to shut down.

The efficiency is good. In fact it is so good that it is almost impossible to measure the power losi by comparing output power with input power. An easier method is to assess the power dissipated in the inverter using a
temperature-sensitive finger (being careful not to touch the output). Touch the tabs of the tets: these should be comfortable to touch. With no heatsink, this is a dissipation of about 0.5 W . The zener diodes D_{5} and D_{6} should also be no more than warm (about 0.3W). Finally, the transformer will be dissipating about $\mid W$. Total power lost in the inverter is therefore about 2.5 W excluding the few mA reguired for the control IC (efticiency over 95\%).

Modifying the design

This basic design may be readily upgraded (or downgraded). To increase the power output, choose a larger ferrite core using the
metiods described earlier. The increased primary current will require the mosfets to be fitted with a heatsink and if this current exceeds about 8 A , consider paralleling the devices. Remember to monitor the voltage spikes on the drains as the devices switch over and to modify the transient absorbing circuit if overvoltage gets within about 75% of the drain - source breakdown voltage of the mosfets.
The control IC will easily drive a wide range of power outputs and may be casily connected to implement full voltage control.a

References

1. Unitrode Lincar Integraled Circuits data book (for 3525 applications).
2. SGS power supply application mamual (for SG3525 IC).
3. Siliconix Mospower data book (for BUZII).

A kit of parts for this design study may be obtained from Dorset Design and Developments Ltd, 8 Robins Wood Drive, Ferndown, Dorset, BH22 9RZ Phone 0202-875743.

MICROPROCESSOR DEVELOPMENT TOOLS

 EMULATORS - SIMULATORS - COMPILERS - ASSEMBLERS - DEBUGGERS - PROGRAMMERS77 C 828085 Z8 $6800080518086641803201068 \mathrm{HC11} 87 \mathrm{C} 75263016502$ Z80 V20 6809740 Series V40 80188 etc.

SMAC UNIVERSAL ASSEMBLER

- Relocatable
- Caters for all micros - Z80 to RISC 2000 included
- Instruction set Compiler AND VERIFIER included - add your own micro!
- Iterative macros
- Intelligent jump facilities
- Linker and MAKE facility

ROM EMULATOR

- ROM sizes from 16 kbit to 8 Mbit !
- Full screen editor
- High speed parallel download
- Split and shuffle capability
- Battery back-up option

8051 DEVELOPMENT SYSTEMS

- Pascal C Modula2 and Assemblers
- Multitasking support
- Source level debug
- Supports ALL 8051 variants
- Programmers including support for 87C751
SIMULATORS
DIS-ASSSEMBLERS
PROGRAMMERS
- PROM's PALs PEELs etc . . . IN-CIRCUIT EMULATORS
- 68 HCl 177 C 828051 and more .

High definition television is coming. we are told. A flood of articles in the technical press speculate on prospects and limitations. and the need for improvements in large-area flicker and interlace twitter and movement resolution. as well as in definition. The Japanese are in the lead, and European research departments are beavering away desperately to avoid being left behind.
Bandwidth requirements are beyond terrestrial broadcasting and will necessitate distribution by satellite with the added complexities of dish-aerials and decoders. It is impossible to forecast a date when HDTV might reach the British public and sometimes a practical, commercial system seems no closer than it was ten years ago.

Progress in television comes at a snail"s pace. Almost 25 years have passed since we achicved pal colour television. a great German achievement (but ten ycars behind the Americans). What improvements have we seen in picture quality in that time? Chiefly, we can now see a picture with square corners instead of rounded ones.

So, who wants HDTV?

In a general sense, everyone does. We all know that. other things being equal, a big picture is better than a small one: bright is better than dull and sharp is better than fuzzy. We expect the steady advance of technology to bring a progressive improvement each time we buy a new receiver.
But ask again, who wants a jump in definition for a very substantial increase in cost? The only answer here is set manufacturers. who badly need a new product to stimulate their sales.

Everyone who's going to buy a 625 -line colour receiver has done so, leaving manufacturers with just the dribbling replacement market.
The public has no enthusiasm for higher resolution - and that is not just my opinion.

Last year the BSB satellite service was transmitted in the D-mac system, newly developed by the IBA to give improved resolution and freedom from pal's cross-colour interference.

When the service collapsed, leaving the market 10 the old technology of Sky, there was no sign that subscribers had even noticed the better picture quality.

The New Scientist wrote in in editorial: *Sky recognised that the great British public does not give a fig for marginal improvements in picture and sound quality. for creating jobs for Europeans, or for preparing the path for a future upgrade to high-definition television". People watch programmes, not definition. Fine detail does not make a comedy funnier, or a drama more dramatic.

Why HDTV means a poor picture for consumers

> Leap in quality for the viewer or manufacturers' conspiracy to boost flagging markets? Charles W Smith takes a critical look at the hopes and the hype surrounding HDTV.

Unfortunately, the prospect of improved techrical quality comes along just at the time that all our broadcasters. commercial as well as public-service, are suffering financial problems, firing their production staff, and promising a diet based on low-cost imported programmes of minimal quality.
Worse programmes could be the result but with higher resolution at a much higher price.

How many lines?

It was in 1964 that we stepped up from 405 lines to 625 and soon threw away our big old Band I acrials. With a bandwidth of 5.5 MHz , this now gave a theoretical maximun horizontal resolution of 286 cycles per line; about two-thirds the resolution attainable on 16 mm film. In television parlance. this is called 572 lines of resolution: two lines, or a complete cycle. are necessary to show the change of brightness along a line that enables us to identify a separate point.
Maxinsum resolution as broadcast can be displayed on a high-quality studio monitor. but not on ordinary domestic receivers manufactured to competitive price restraints.
The ultimate limit on perceived resolution is pitch of the apertures in the shadowmask of the picture tube. Domestic receivers have a shadowmask with about 380 apertures across the sereen. To reproduce the maximunı 572 lines would require not just finer aperture-pitch, but corresponding better response throughout the circuitry - an expensive process.

Set manufacturers have been reluctant to specify the definition their products offer. Take for example the reputable Sony, now a leading proponent of the need for a highdefinition system. In its brochure it lists 35 attributes of its present receivers but omits to specify the pitch of its Trinitron aperturegrill or the screen resolution attainable.

An exception is JVC who offer two ranges of receivers, with the better quality giving improved definition at a higher price. They quote their superior range as resolving 500 lines in the most-popular 51 cm tube size -
an improvement of 30% in resolution over the customary 380 . for about the same increase in cost.
It seems a good offer, hut there is no great rush of customers to be found carrying the improved sets away from the shops. No other manufacturer has followed JVC's example.

Video recorders

The great marketing success in electronics over recent years has been the video recorder. now found in almost every household. At 240 lines of horizontal resolution. the VHS system is capable of handling only two-thirds of the information the domestic receiver shows. No-one complains of the loss of resolution. or even seems to be aware of it. Users in general are very satisfied with their recorders believing recordings are indistinguishable from the original broadcast.
More recently Super-VHS has been intro-
casting of feature films already shot in widescreen proportions.
In cinemas the wide-screen ratios resulted from demand for larger screen sizes in the 1950s. Screens of greater width could readily be installed. But architectural limitations meant that screens of greater height could not if satisfactory sight-lines for a large audience were to be retained. This consideration does not apply to domestic television.
For the Imax giant-screen process. cus-tom-built theatres free from architectural restrictions are used and it is interesting to see what screen proportions they have chosen. Their negative size is $70.41 \times 52.63 \mathrm{~mm}$. an aspect ratio of 1.34 to 1 - precisely the same as the old Academy film aperture. and 625-line television.
There is no record of audiences pleading for restoration of the letter-box screen.
Commercial appeal of a change to wider proportions for television is the simple one that it makes for a visibly different product

> So who wants 16×9 ? There is no sign of demand from the public. On a given size of cathode-ray fube, the 16x9 proportions will actually give a picture 11% smaller than the present 4×3.
duced to give improved quality. Advanced electronies and higher-quality (and much more expensive) tape allows a specification as giving belter than 400 lines of resolution.

But the cost is rather high at about twice that of an ordinary VHS recorder and it has not yet made much impact in the market. Few retailers stock the system and once again it turns out that people are not prepared to pay for enhanced resolution. (Super-VHS has found a niche in the semiprofessional market. for recording weddings and other local events, as a source for satisfactory VHS duplicates).

Who wants 16×9 ?

Japan's HDTV proposal and the rival Eureka system developed in Europe both offer a wide-screen aspect ratio of 16×9 or about 1.8 to 1 . In fact this is the only characteristic of the new systems on which everyone agrees.
So who wants 16×9 ? There is no sign of demand from the public. On a given diagonal size of cathode-ray tube. the $16 x 9$ proportions will actually give a picture 11% smaller in area than the present 4×3.
No-one pretends there is any particular aesthetic advantage in the 16×9 proportions. as can be seen by looking round an art gallery and noting the shape of pictures adopted by artists free from technological restrictions. Neither are the wider proportions appropriate for that great standby of television, the "talking head".
The one advantage of $16 x^{9}$ proportions to television companies is the practical consideration that this will make easier the broad-
in the shop window, and therefore has attraction for the monied customer. This is necessary, because it is widely thought that the public will not notice the improved resolution. On receivers of domestic screen size, the difference is difficult to detect unless you sit very close to the sereen.

Less definition?

We have seen that popular every-day receivers do not reproduce the full resolution carried by the 625 -line transmission. Any viewer wanting higher-definition pictures can buy a receiver of monitor quality. at very much higher price, to reproduce the full 570 lines of resolution. But of course no-one does such a thing, since the usual level is found quite adequate for domestic-size receivers.

When HDTV broadcasts start, the same arguments for cost limitation on houschold receivers will still apply.
Advanced circuitry and tube resolution will be much more expensive than 625-line receivers, and HD receivers at the popularprice level will certainly not be built to reproduce the peak resolution beamed from the new satellites.
This raises the real possibility that customers buying expensive new HDTV receivers will actually end up with worse definition than if they had bought an uppergrade 625 -line receiver for a quarter of the price.
BBC executive Christopher Irwin told recently how he had visited the BBC's researeh department to see a demonstration of HDTV. He saw a picture "the like of
which I had never seen before . . . We agreed that we had seen the future." Then he was told that the HDTV demonstration had not yet been switched on and what he was looking at was a well-set-up 625-line monitor.

The 3-D alternative

The one remaining major challenge for television is reproduction of stercoscopic images to bring scenes of natural depth to our TV screens. in place of the flat simulations we are used to.
Those of us who have worked in 3-D production know the tremendous appeal of cor-rectly-aligned stereoscopic images.
If we are to have the facility for broadcasting twice the amount of information, then this could be used to transmit twin left-eye and right-eye images, each at the present standard of definition, and so give binocular 3-D viewing compatible with the information our brains are conditioned to expect.
3-D does not appeal to television engineers. for the obvious reason that they have no knowledge of stereoscopy and prefer to stick with the problems they know and the coming of 3-D television will necessitate a thorough re-thinking of production grammar.
But has the public ever been asked to express a preference? Yes. In 1989 a Study Group of the CCIR (Comité Consultatif Internationale de Radiodiffusion) organised test screenings in Germany of specimen 3-D and also HDTV programmes. to audiences made up of the general public and also of television experts.
A poll was taken of audience reaction. Among the general public. 55% thought stereoscopy was more allractive to the viewer than HDTV. and only 20% preferred HDTV. This was despite the fact that some of the stereoscopic scenes were admitted to have technical defects.
Unfortunately the opinions of audiences carry little weight in television. where there is no box-office assessment of programme appeal. There seems little doubt that what we are going to be given is high definition of the familiar that tubes in a slightly different shape.

The HDTV cost

In Japan. high-definition programmes on the NHK system have been broadcast for more than a year now. for one hour a day. No receivers have been marketed, so the new pictures have been seen only by television engineers on their laboratory receivers, or by large-sereen demonstrations in public places.
Now, at last. it has been announced that three leading manufacturers are ready 10 produce sets for public sale.
In giving this information. The Times said recently that the cost of a receiver would be more than $£ 15,000$. It added that within five years it was hoped that increased production would bring the price down to $£ 4000$.
So who wants HDTV?

Powerful Software Saves Time!

LABCENTER PUTS YOUR PC TO WORK

Why spend hours of your valuable time designing PCBs by hand or with a non-integrated CAD package when your PC can do it for you?
ISIS provides the easiest of ways to enter a circuit diagram into your computer and ARES has all the features needed to convert it into an elegant PCB layout. Both packages share the same Graphical User Interface, and the way that they integrate guarantees that your PCB will always match the original circuit.

ISIS - Intelligent Schematics

ISIS DESIGNER
£275
An easy to use schematic capture package for anyone needing to enter designs prior to further processing with ARES or other EDA software. It features our modern Graphical User Interface and an Intelligent Diagram Editor.
ISIS DESIGNER+
£475
A sophisticated design management tool - features such as an automatic annotator/packager, two systems for hierarchical design and ASCII Data Import make DESIGNER+ one of the most powerful schematics packages currently available for the PC.

ARES - Advanced Routing

ARES
. $£ 275$
A netlist based, multi-layer PCB design package that can integrate with ISIS or other schematics software Includes connectivity checker, design rule checker, power plane generator and auto annotator.

ARES AUTOROUTE

$£ 475$
Our new autorouter uses an advanced, multi-strategy algorithm to achieve very high completion rates, yet when driven from ISIS, there is remarkably little setting up to do - Package, Router-Strategy and DRC data can all be read from the netlist. As we said at the beginning, Powerful Software Saves Time.

[^4]

COMBINATION PRICES

ISIS DESIGNER \& ARES
IS DESIGNER \& ARES .. $£ 495$ ISIS DESIGNER \& ARES AR
ISIS DESIGNER + \& ARES ... $\Sigma 675$ ISIS DESIGNER + \& ARES AR ... $£ 850$ Prices inc UK delivery, exc VAT.

- Topological Route. Editor (another Labcenter innovation)
- Unlimited user configurable pad, track and via styles.
- Full surface mount and metric support.
- 10 copper + 2 silk layers.
- 1 thou resolution.
- 30×30 inch max board size.
- Up to 5000 pins, 50000 trace segments using EMS RAM.
- Object oriented 2D drawing for silk screen graphics.
- Drivers for dot matrix, pen plotters, lasers, POSTSCRIPT. Photoplot (Gerber), NC drill (Excellon)
- Graphics export in IMS format.

The universe is full of radiation and hence, full of waves. Life in the universe is largely dependent upon or made of waves. In radio communication coherent waves, which are very powerful and preferable to the more popular incoherent waves, are used chiefly.
All technically oriented people and experimenters have some view about electromagnetic waves. Those of us who have trained in technical institutions are familiar with James Clerk Maxwell's equations and have some idea of gradient. divergence, curl, etc all these being the symbols of the changes of waves or fields. describing the rate of change mathematically. Also, some knowledge of vector analysis is necessary in the calculation of waves.
The exact physical picture of EM-waves, however, has remained uncertain to many of us (personally, most handhooks always leave me a little cold). Such things as travelling, reflections and terminations are examples of the uncertain behaviour patterns of waves.
This was the background some years ago, when a friend. Stephen G. Hart, VK5HA and myself started an extensive study of the fundamentals of EM-waves. Our conclusions are the culmination of those meetings held on the 14 MHz band.
Maxwell recognised about 1865 that his unique equations provided a travelling wave solution, which led him to consider the existence of electromagnetic waves in space. Unfortunately, it took a further 25 years before Heinrich Rudolf Hertz proved this in practice (a development Maxwell himself did not live to see).
The object of this article is to identify some practically useful physical models that provide a clearer picture of Maxwell's waves
in space and on the lines. First we must delve into the world of wave equations.

Maxwell's travelling wave: the conventional view
Maxwell’s original equations give all the necessary relationships between electric and magnetic fields. Also, they define the dependence of the fields from charge and current densities. Maxwell's equations are:
The first equation says that electric field E is

$$
\begin{aligned}
& \nabla . E=\frac{\delta B}{\delta t} \\
& \nabla . H=\frac{\delta I}{\delta t}+j \\
& \nabla . D=\rho \\
& \nabla . B=0
\end{aligned}
$$

always generated by time-changing magnetic flux density B, and the second that magnetic field is equal to the two currents.
a) conduction current j and
b) displacement current.

The displacement current is generated by time-changing electric field density D. Displacement current perhaps sounds a little mystical. being a current without an associated conductor. The third equation is one product from Coulombs charge to force law, and the fourth shows that magnetic field lines are always in the form of closed loops (although not all experts agree here).
Firstly, if there is a magnetic flux density B, there must be also a magnetic lield H. and if there is an electric lied density D, there is also an electric field E. Secondly. if there is no conductor present, the current j in Maxwell's second equation is 0 . In these
conditions (evidently in space) Maxwell's equations take the following harmonic form:

$$
\begin{align*}
& \nabla . H=e \frac{\delta E}{\delta t} \tag{1}\\
& \nabla . E=-\mu \frac{\delta H}{\delta t} \tag{2}
\end{align*}
$$

Now electric and magnetic lines are closed loops (ie no charges or material are present). The constants e and μ are dimensional dielectric and permeability factors specific to the media in which the wave is travelling. They are measured experimentally, and we will consider them a little more with feeding lines.
Equation (I) states that a time-changing electric fiekd E will always generate a magnetic field $/ I$. and equation (2) states directly that a time-changing magnetic field will always generate an clectric fied E. By proceeding simultancously with these equations, the wave equations will be obtained. This is made by eliminating $/ /$ and solving E and viee versa. The results are:

$$
\begin{align*}
& \nabla^{2} E=\mu c \frac{\delta^{2} E}{\delta t^{2}} \tag{3}\\
& \nabla^{2} H=\mu c \frac{\delta^{2} H}{\delta t^{2}} \tag{4}
\end{align*}
$$

These are separate partial differential equations, but they always work together, ic one cannot exist without the other. The equaltions are similar in form, so we may continue with equation (3), or with the electric field equation. If we consider the E field existing only in the y-direction, the field is described by equation (5):

$$
\begin{equation*}
\frac{\delta^{2} E_{v}}{\delta r^{2}}=\mu c \frac{\delta^{2} E_{v}}{\delta t^{2}} \tag{5}
\end{equation*}
$$

In this equation x is distance and t is time.
This is the y-coordinate electric field wave equation. The solution of this equation for the sinusoidal function is':

$$
\begin{equation*}
E_{y}=\sin \left(x-v^{\prime}\right)+\sin \left(x+v^{\prime}\right) \tag{6}
\end{equation*}
$$

where $v=$ speed, in space $1=\left(=1 / \sqrt{(} \mu_{(0)} e_{0}\right), e_{0}$ is the dielectric constant of space and μ_{0} is the permeability of space.

Quantity $\sin (x-v)$ represents a sinusoidal wave travelling in a positive x-direction and quantity $\sin (x+y)$ represents a sinusoidal wave travelling in the opposite or negative x -direction.

The Iravelling wave solution (6) is what we were looking for. Now we are ready to look at the physical significance of this kind of wave.

Unconventional view of Maxwell's travelling wave

When the wave propagates in space the solution equation (6) is still more simplified. Only the first term is needed to describe this free wave:

$$
\begin{equation*}
E_{y}=\sin (x-c t) \tag{7}
\end{equation*}
$$

Still using the sinusoidal example, v and c have the values given above, x is distance and t is time.

The physical beauty of this Maxwell's wave solution equation is very impressive. This wave is a transuerse wave, since it is travelling in the x-direction while the electric fied is in the y-coordinate direction. Also, it is evident that if time (1) changes or increases, distance (x) will have to increase 100. The function remains constant, but it is displaced as a whole in the x-direction. The result is a little confusing and needs more clarification.

Consider one cycle of Maxwell's plane wave travelling in space. Figure 1 shows such a situation. Observer (A) sitting on the wave and advancing with the speed of the wave, recognises the unit ability vectors (the meaning of this expression becomes evident a little later) \mathbf{E}^{\prime} and \mathbf{H}^{\prime} to be constant and unchanging. The wave, after it is born. is constant. If the observer looks backwards, everything remains constant there too. This "frozen" nature of the wave is, perhaps, a surprise to many of us, since we have been accustomed to think of a sine wave as a continuously time-cycling function. The mystery of this travelling wave deepens when it is realised that the electric and magnetic fields are not travelling with the wave. No physical real property or real entity moves at the speed of light in space. In space Maxwell's travelling wave takes on more of an unknown shape - one could call it an immaterial magic wave. However. the wave has an uncanny ability to generate the real fields and energy in the material it passes by. At the same time, when the material is present with the wave, it becomes more practical. After detecting that there are real

Fig. 1. Observer A sees the Maxwell travelling wave as frozen. No physical property is moving at the speed of light or observer B, standing at the side of the wave, would see the unit vectors E^{\prime} and H^{\prime} changing in time.

E/H-fields present, they can be measured. It should be remembered that the fields. and hence voltages and currents in a material. have only an incidental role in the existence of the wave.
The study of the equations does not show what form a wave takes when it propagates in space. The other physical laws lead us to believe that this kind of wave cannot have any real concrete entity. For that reason the expression "unit ability vector" (E^{\prime} and \mathbf{H}^{\prime}) has been used instead of the real symbols. This specific singularity of Maxwell's wave in space will be more acceptable, perhaps, when considering the wave from the quantum electronics base. There it does not matter if a transfer action remains unexplained or is abstract, if the final results are in an harmony with our simpler models.

Maxwell's travelling wave on a line

Consider an open wire line connected to a dipole antenna. Also, consider that this combination is situated so that a travelling $\mathrm{E}^{\prime} / \mathrm{H}^{\prime}$ wave is passing the dipole.

Conventionally the passing wave generates an emf. to the terminals of the dipole and a current starts to llow in the conductors of the line. Here, now, we adopt our more lundamental approach, where there is an important difference. The dipole captures a part of the passing Maxwell's wave and guides this part of the wave to the line. At the same time automatic guarding is taking place around the line. Guarding "soldiers" are formed by real E-field and H -field vectors (now born in the material), and any offgoing part of the wave will be cancelled. If the distance between the conductors of the line is a small part of the wavelength. the captured wave is effectively and totally tied to the line. It should be noted that mainly the Maxwell's wave travels on line as it travels in the medium without the presence of the line, ie it travels in the medium between the line conductors. Unfortunately, however, looking from the viewpoint of the wave, the real E - and H -fields are born and they subordinate the wave under guiding. Without the guarding action no electric power transmission could be possible by any line. This kind
of gurding and guarding cannot take place in space when a free wave travels without real E- and H-fields.

Mathematically travelling line-waves are similar to waves in space. The only difference is the speed. The solution equation (7) takes the form ${ }^{2}$:

$$
\begin{equation*}
E_{v}=\sin \left(x-\frac{1}{\sqrt{\frac{l}{m} \cdot \frac{c}{m}}} \cdot l\right) \tag{8}
\end{equation*}
$$

where l is inductance/unit length and c is capacitance/unit length.
It is interesting to consider the meaning of the line constants $1 / \mathrm{m}$ and c / m and to compare them to the dielectric and permeability constants of free space. These latter constants are, as is known, e and μ respectively. c has the dimension farads $/ m$ and μ is henries/ m. so there are equal physical properties in question. The difference is how much of these properties a wave covers when it is travelling in free space or under guiding on a line. When it is said that a line has a certain amount of inductance and capacitance/unit length, it means that the line is covering the given amounts of l and c of the medium, ic e and μ, as well as i / m and c / m, are the properties of the medium, not the properties of the line. For that reason it will be understood that physically different lines handle different volumes of the same medium and hence the speed of a wave varies depending on the line construction. Also, in air the speed is always close to the speed of light.

Equation (8) describes exactly the electric field travelling on the line. The fiekds, and hence the voltages and currents, are real, but some surprising new features were discovered about what occurs on the line.

When a wave is captured and guided (by real vectors guarding) into the line. it is possible to follow the wave advancing by the voltage and current "waves" now present on the line. There are the inseparable "waves" of voltage and current following the original Maxwell's wave on the line. They represent the real E -and H -fields born by the presence of the material substance of the conductors.

Fig. 2. Observer A, sitting on the voltage and current "waves" existing in the guide, will see the voltage and current amplitudes as constant and unchanging. The frozen voltage/current train seems to be in motion with the high speed of the Maxwell wave. But it is not possible that any physical entity could move at such an extremely high speed.

Table 1. Rules for charge flows.

In Fig. 2 an observer (A) is sitting on this voltage/current combination "wave" and advancing with the speed of the wave (this speed being a little less than the free wave speed in space). It is observed that the voltage and current amplitudes are constant and unchanging. This "frozen volage/current train" seems to be in motion with the high speed of the Maxwell's wave. Are the electric field (voltage) and the magnetic field (current) really moving with such tremendous speed on line? This seems impossible. No physical entity moves at such a speed.

When the captured wave front meets the local charges on the line, the local differential E-fields and hence differential H -fields are born. The tendency of the local charge moving is always from decreasing to increasing charge density. All individual charge movements are very local. But there are billions of the differential wave-fronts following each other. so to the observer. advancing with the speed of the wave, there is a constant volage and a constant current travelling on the line. And, of course, one may believe these voltage and current "travelling" waves as real as they seem to be. This reveals some interesting and important details about the Maxwell's wave on the line.

By the real E / H-fied gencration action the wave is fixed onto the conductors of a line. This feature has more meaning in any inter-
action with fields and material. It should be noticed, once again, that the reat lields and hence the associated voltages and curtents are always incidental or side products. and not necessary for the existence of the Maxwell's wave. On the other hand, the real fields are the only way of knowing when such a wave is passing us. We are now ready to study what happens when a captured travelling wave meets the end of line with diflerent end conditions.

Practical charge moving conditions on a line

A line may guide coumtess waves simultaneously. The guided waves do not affeet each other or mix. Every guided wave generates its own private master fields with the accompanying charges. Thus every field has its own current. A current is the flow of electrical charges, but it is necessary to remember that the "flow" is the result of billions of very local changes of the charges.

Table 1 shows the charge moving rules necessary in the next study. Plus and - unit charges are used in these rules. Rule I says that when two unit + charges flow in the same direction, the resultant net current flow is two units. Rule 3 says that when two + signs are flowing in opposite directions, the resulting electric flow is 0 , ie the individual charges are continuously tlowing on. but the net flow over this cross section point of the conductor is zero. By the same analogy. rules 7 and 8 say that if the two unit charges. having opposite signs +- , are flowing in the same direction. the net flow will be 0 . and so on. Let us apply these rules to the following examples.

CASE 1. Reflection at the open end of the line

Figure 3 slows an open ended example of the line. A guided wave travelling in the medium between the conductors generates an electric and a magnetic lield. E-lield amplitude is dependent upon the instant charge density, and H-field amplitude is dependent upon the amount of net charge current flowing. The unit net current in each situation can be defined by the Table 1 rules. In the region a) there are two + sign charges moving in opposite directions. In Rule 3 the net how is 0 . The field vectors, however, are adding and so are adding the field vectors in the region b) (upper conductor). The total field at the end of the line is 2E or twice the field strength travelling toward the end of the line.
Some general conclusions may be drawn regarding the reflection action at the end of the line. First we have to recognise that the fields having the two terminating or fixing poles ate distributed between the two conductors. These half-fiedds are marked as $0.5 E$. This application of the vectors makes it possible to follow the reflection action with the vectors, as we see in this first example. In the open end reflection the incident wave turns totally back. so that both wave
halves, ic the field vector halves. return back using the same conductors as they used when arriving at the end of the line. This kind of reflection is known as the parallel retlection. The incident wave simply folds back and the folded part of the wave will travel parallel with the incident wave. It is evident that a wave having an energy content cannot stop. At the open end of the line the wave has two possibilities to go on:

1) it can radiate into space or
2) it can fold back.

Guarding field vectors don it allow radiation. so the only possibility is folding back. This is how all Maxwell waves hehave when meeting this kind of discontinuity.
This is the total parallel reflection. Partial parallel reflection takes place when the end termination of the line has a higher nominal value than the characteristic impedance of the line.
Single reflection demonstrates perfectly Maxwell's travelling wave solution equation (6). Both waves travel independently of each other, just as the equation says. This also supports the fact that waves exist and travel only in the medium surrounding the line. real fields and currents in the conductors being incidental.

CASE 2. Reflection at the shorted end of the line

Figure 4 shows the situation when the guided and guarded Maxwell's wave meets the shorted end of the line. Again, the travelling wave generates real E - and H -fields and hence a voltage and a current on the line. The wave is tied to the line by the vectors of the fields. The wave halves. ie the field halves, with associated charges, pass each other at the short as if the line would continue normally. There is a tremendous amount of room for the charges to flow and the waves to go. In fact. the charge flows cross al the middle of the short, ie the + signed charges pass the signed charges. The flows don't mix since they have their own separate wave sides which maintain them. In region a), in the middle of the short. + and - charges flow in the opposite direction. Rule 5 (Table 1) says that the total flow of current doubles at this point of the line. Electric field halves cancel each other, ie the electric field strength and hence the voltage drop down to zero at this point. The incident wave rotates around its axis 180° when it is folding back and starts the reflection. Now there is a 180° polar difference between the incident and reflected wave paths. After the reflection the reflected wave is upside down and its field halves have changed the conductors. For that reason we call this type of reflection the crossed reflection. Our approach method explains the crossed reflection mechanism completely.
This is the total crossed reflection. Partial crossed reflection is born always when termination impedance has a lower nominal

Fig. 3. A captured wave travelling from left to right generates real E- and H-fields in the conductors. In open end reflection the incident wave turns back to give a parallel reflection.

Fig. 4. In the shorted end of line case, there is a 180° polar difference between the incident and reflected wave paths. After reflection the reflected wave is upside down and its field halves have changed conductors - called crossed reflection.
value than the characteristic impedance of the line.

CASE 3. Line terminated to its

characteristic lumped resistance

Consider the specific resistive end termination as shown in Fig. 5. By using Table I and the charge-flow rules 1), 2) and 7), 8). one can explain the events when a wave meets this kind of termination. Both field
vectors (born on the line ends) cease just when they pass through the resistive material of the termination. The opposite sign charge densities are highest at the ends of the termination. Then the densities gradually decrease toward each opposite end. At the middle of the termination there is a density balance between the opposite signed charges. Rules 7 and 8 tell us that the total currents through any cross-section of the ter-

Fig. 5. In a resistive end termination we tend to say that all the energy carried to it by a wave is dissipated. But more fundamental thinking shows that no energy is consumed.
mination have the same instant value.
In everyday practice we say that this kind of resistive termination dissipates all the energy that a wave carries to it. More fundamental thinking shows. of course, that no energy is consumed. The resistive termination only transfers the wave energy to the infrared region of the spectrum. But, in any case, a correct resistive temmination is a very fateful place for any "intelligent wave".

When going through this kind of "black hole" the wave still maintains its original energy, but has lost its history and all the information it had.

Underslanding achieved
At the beginning of this article I said that our main task was to try to find some practical methods by which it would be possible to get a clearer understanding of the Maxwell's wave when it is travelling in space and on lines. These models have been given and, 1 believe, readers have got some new ideas about the subject. Naturally, there will be many claims pro and con concerning these explanations, but if so it only indicates that physical models are still exciting to many of us.

Evidently, separating the pure Maxwell's wave from the real E / H-fields and keeping voltages and currents incidental, is one point of possible disagreement by readers, and the point perhaps requires some further justification (in this magazine, for example).
Now. having safely reached the end of this article. I would like to thank my reaters, and also Stephen G Hart, VK5HA, for very innovative discussions and reflections held on the ham bands using Maxwelf's waves.

Further reading

1. Hugh Hildreth Skilling, "Fundamentals of Electric Waves", 2nd edition, John Wiley \& Sons Inc., New York, 1960. (A detailed step by step old fashioned presentation of the wave equations, an extremely good and interesting book.)
2. Hugh Hildreth Skilling, "Electric Transmission Lines", McGraw-Hill Company, 1951.
3. Rulf, Robertshaw, "Understanding Antennas for Radar,Communications and Avionics", Van Nostrand Reinhold Company, New York, 1987

CIRCLE NO. 139 ON REPIY CARI)

CIRCIENO. 140 ON REPLY CARD

Everything you want ...

to make life easier. TDS2020 is an ideal way to save time and money designing equipment.

As a High Performance 16-bit Control Computer its on-board Assembler and
 Forth high level language

make programming and debugging a pleasure, yet give the execution speed you need in a real-time system.

As a Data Logger Module you've little to add to its 10-bit 8 -channel analog to digital converter, real time clock and non-volatile RAM of up to half a megabyte.

CALIBRATION WITH THAT PERSONAL SERVICE

- Free collection and delivery
- Free results included
- Guaranteed 7 day turn round on calibration
- DC - Microwave capability
- Full traceability to National Standards
- New mechanical laboratory just opened

HITEK CALIBRATION SERVICES
Unit 14, Havenbury Industrial Estate, Station Road, Dorking, Surrey RH4 1EH
Triangle Digital Services Ltd 223 Lea Bridge Road, LONDON E10 7NE

TELEPHONE: 030675382 FAX: 030675384
Tel 081-539 0285
Fax 081-558 8110

A 20MHz top quality oscilloscope for $£ 270$?

This special offer, only available through Electronics World + Wireless World, represents unbelievable value.

We have assured ourselves that the Model 1021 oscilloscope from Japanese instrument manufacturer, Leacer Electronics, more than meets i:s published specification and is of an exceptionally rigt build quality. Our judgement is backed by an unequivocal guarantee.

At $£ 270$ (inclusive of test probes, packaging and delivery but exduding VAT) the instrument is an absolute bargain.

[^5]To place your order please send in a cheque for $£ 317.25$ (which includes VA) to the address shown. Alternatively complete the coupon with your credit card details or phone in your credit card order on 031-561 3614 (mornings only).

Oscilloscope offer, Room L333,
Electronics World + Wireless World,
Quadrant House,
The Quadrant,
Sutton SM2 5AS

Digital-TV transmission: look before you leap

When I watch on my TV what seems a reasonable and acceptable 625-line, 4:3 aspect ratio, pal picture, or listen to analogue sound on FM radio or from a 20 -year old reel-toreel tape recorder, I am sometimes puzzled why so many engineers (not to mention the sales people) seem determined to replace all this with digital HDTV, digital sound and digital tape. This is not to deny the superior dynamic range of $C D$ records (although the neighbours might view this with mixed feelings) or the freedom from some not-veryannoying (to me) artefacts of composite pal, or the "enhanced viewing experience" of 16:9 widescreen pictures (whether from hybrid analogue-digital or all-digital systems). Nor have I anything against digital as such - having for many years been a devoted user of the original "binary non-return-tozero" system popularly known as the Morse Code.

With so much hype surrounding all-digital TV systems. it was refreshing to read in IEEE Spectrum (April 1991, p72) "A crilique of purely digital HDTV* by EmeritusProfessor William F Schreiber (MIT) inserted into the staff-written "The Challenges of Digital HDTV" by Ronald E Jugen which surveys the four proposals now under investigation in the USA: the Zenith all-digital system being developed in conjunction with AT\&T: the DigiCipher system of the General Instrument Corporation: the system proposed by the Advanced TV Research Corporation under development at the Sarnoff Center and Philips Laboratories: and a second system from General Instrument Corp being developed jointly with MIT as American Television Alliance. All may or may not be good. None has yet been air-tested.
Schreiber points out the need to distinguish carefully between source coding and channel coding, arguing that "it is not true that digital transmission invariably means better compression." Because of very poor spectrum efficiency in much of the viewing area by the systems so lar proposed in the USA. extremely complex source coding is required. increasing the complexity of signal processing in the receiver. Hybrid digitalanalogue systems, he points out, with their much higher spectrum efficiency. can use
simpler source coding algorithms with correspondingly simpler receiver processing.

He deflates a number of other digitaltransmission myths, such as: (1) digital modulation is the most efficient method of transmission: (2) digital systems have better interference performance than analogue systems; (3) digital transmission is more free from noise than analogue transmission; (4) ghosts are automatically removed by digital transmission (on the contrary multipath ghosts must first be removed in order to permit digital transmission at useful rates): and (5) digital transmission simplifies inter-operability with non-broadcast applications.
adequate thought. Not only has there been a complete turnabout on the feasibility of compression, but a stampede is developing in favour of digital terrestrial broadcasting, which has yet to be shown to be practical in the face of analogue channel impairments such as ghosts, noise and interference, not to mention the effect of rabbit-ear antennas."
Schreiber concludes that in spite of his criticisms, he is very enthusiastic about digital HDTV systems "certainly for compression and possibly for transmission" but remains convinced that digital transmission is suited primarily to "clean channels with well-defined signal-to-noise ratios, such as

Schreiber is much concerned with the sudden turnround of opinion in the USA. Two years ago, the industry believed that HDTV should be compatible with NTSC and that signal compression systems of any kind would downgrade quality too much to make the higher costs of HDTV acceptable to viewers. Now the belief is in the merits of "simulcasting" (entirely separate duplicated transmission of HDTV and NSTC channels) and it is agreed that signal compression can provide quality pictures at relatively low megabits (though some of the proposed systems have so far been demonstrated only from computer simulations).

He believes that there is a danger that "important decisions are being made without
direct-broadcast satellites and optical fibre". He insists that "if we are serious about using digital transmission in the over-the-air (terrestrial) channel, it will first be necessary to demonstrate conclusively that it can be made to work with adequate reliability and spectrum."
At a recent IEE colloquium "Prospects for digital television broadcasting" most but not all speakers took a reasonably sober view of digital transmission. Arthur Mason (National Transcommunications) outlined the possibilities of providing more UHF TV channels by using low-power digital transmission in the taboo channels of Bands IV and V (Spectre - Special Purpose Extra Channels for Terrestrial Resolution

BARGAINS GALORE

AVO-METER Ex British Telecom this is a 19 range 20K o.p.v. top grade instrument, covers AC \& DC voltages, current and resistance, very good condition, fully working and complete with Learns $£ 9.50$. leather carrying case $£ 2$ extra (batteries not included but readily prailable).
12 VOLT 1.9 AMP-HOUR rechargeable battery by Jap YUASHA brand new, charged ready for use $£ 6.50$ each. Solar charger to house this and keep it ready $£ 29.50$.
EPSOM FLOPPY DRIVES 7 models in stock, all double sided all brand new and with manual, model nos SMD2801H, SMD280H, SMD1808, these are $31 / 2^{\prime \prime}$ and SD540, SD521L, SD580L, these are $51 / 4 " £ 49.50$ any model.
100 WATT MAINS TRAMSFORMERS all normal primaries:- $20-0-20$ volt $21 / 2 \mathrm{~A} 30$ volt $31 / 2 \mathrm{~A}$. 40 volt $2 \frac{1}{2}$ A and 50 volt 2 A all upright mounting, all $£ 4$ each, good quantities in stock. COLOUR MONITORS $12^{\prime \prime}$ high resolution in black metal case with mains p.s.u. built in, unused, but line rejects so will require servicing, hence offered at the very low price of £49.00 plus $£ 5$ delivery
PHILIPS 9" HIGH RESOLUTION MOMITOR black and white in metal frame for easy mounting. brand new still in makers packing, offered at less than price of tube alone, only $£ 15$ plus ES delivery - good discount for quantities.
16 CHARACTER 2 LIME DISPLAY screen size $85 \mathrm{~mm} \times 36 \mathrm{~mm}$, Alphanumeric LCD dot matrix module with integral micro processor made by Epson their ref 16027AR brand $£ 8$ each, 10 for $£ 70.100$ for $£ 500$.
INSULATION TESTER WITH muLTIMETER internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges. AC/DC volts, 3 ranges $D C$ milliamps, 3 ranges resistance and 5 amp range. These instruments are EX British Telecom, but in very good condition, tested and gntd. OK, probably cost at least $£ 50$ each yours for only $£ 7.50$ with leads, carrying case $£ 2.00$ extra.
110 WATI POKER SUPPLY ASTEC switch made. 230 Vmains Input; 38 V at $21 / 2 \mathrm{~A}$ \& 5 V 3 A
-outputs, encased anaritectrnel. Brand new and guaranteed. £12.00 post paid 3000 available trod discount to quantity buyers.
BRUSHLESS D.C. 12V FAN tiny, only 60 mm square, good air mover but causes no interference $£ 8.00$
2 MW LASER Helium Neon by PHILIPS, full spec, £30, power supply for this in kit form with case is $£ 15.00$, or in larger case to house tube as well $£ 17.00$. The larger unit, made up, tested and ready to use, complete with laser tube $£ 69.00$ plus $£ 5$ insured delivery. WAINS 230V FAN best make "PAPST" 41/2" square, metal blades $£ 8.00$.
BATTERY MOTORS 12 models in stock in large quantities ranging from tiny model aircraft one at 25 p each to $1 / 3 \mathrm{hp}$ made to drive the famous Sinclair C 5 car , you can have this at §17.50.
SOLAR CHARGER holds 4 AA nicads and recharges these in 8 hrs ., in very neat plastic case $£ 6.00$
SOLAR CELLS with terminals for joining in series for higher volts or parallel for extra current: $100 \mathrm{~mA} £ 1,400 \mathrm{~mA} £ 2,700 \mathrm{~mA} £ 2.75,1 \mathrm{~A} £ 3.50$.
SOLAR MOTORS $11 / 2$-9V precision made to operate from low current off solar cells $£ 1.50$. solar generator to drive this $£ 7.00$, has provision for battery back up when sun is not shining!
AIR SPACEO TRIMMER CAPS 2-20 pf ideal for precision tuning uhf circuits 25 p each, 10 for $£ 2.100$ for $£ 15$.
1Khz. TOME GEMERATOR this is PP3 battery operated and has a 1 Khz output that can be continuous or interrupted at a rate variable by a panel mounted control. Constructed on a pcb and front panel size approx $105 \times 50 \mathrm{~mm}$ ex equipment but in as new condition $£ 2$ each.
FIELD TELEPHONES just right for building sites, rallies, horse shows etc, just join two fy twin wire and you have two way calling and talking, and you can join into regular phone lines if you want to. Ex British Telecom in very good condition, powered by batteries (Hot included) complete in shoulder slung carrying case. $£ 12.50$ each.
MAINS ISOLATION TRANSFORMER stops you getting "to earth" shocks. 230 V in and 330 V out. 150 watt upright mounting $£ 7.50$.
MINI MONO AMP on pcb size $4^{\prime \prime} \times 2^{\prime \prime}$ with front panel holding volume control and with spare hole for switch or tone control, output is. 4 watt into 4 ohm speaker using 12 hor 1 watt into 8 ohm using 9 V . Brand new and perfect only $£ 1$ each or 12 for $£ 10$. STEPPER MOTOR. By American Phillips Corporation, step angle 7.5 , coil resistance 270 hms , Operating volts $10-14$ size approximately $2 / /$ in diameter $\times 13 / 4$ in deep on a square mounting plate. This is in fact two bIdirectional motors - with PM rotors. Applying ??? pulse causes a 7.5 step angle of spindle. Number of steps through which it rotates and a speed at which it rotates is determined by the applied impulses. Properly used this provides an ideal method of speed and position control, Brand new and unused. Price $£ 5$. 5 RPM 6OW MAIMS ORIVEN MOTOR AND GEARBOX this has a in square mounting plate and is 4 in deep. It is a shaded pole motor. Price £5.
POWER SUPPLY UNITS mains in, dc out, based 4.5 v 100 mA regulated $£ 1.6 \mathrm{v} 200 \mathrm{~mA}$ regulated £1, 6v $700 \mathrm{~mA} £ 1$, $9 v 500 \mathrm{~mA}$ £2, $12 \mathrm{v} 500 \mathrm{~mA} £ 2,12 \mathrm{v} 2 \mathrm{~A} £ 5$, $24 \mathrm{v} 200 \mathrm{~mA} £ 2$. TORROIDAL MAINS TRANSFORMER with twin outputs, 6.3 v 2 amps and 12 v 1 amp , one use would be power supply, price $£ 5$.
12 V 6 AH lead acid battery by YUASHA complete in case with trickle charger, regular price over $£ 40$ brand new yours for $£ 25$.
7V LITHIUM BATTERIES on p.c.b. ready to use, £1
INSTRUMENT P.S.U. $12 v$-la mains filtered and voltage regulated on metal chassis with fuse. Price £3.
AMSTRAD FLOPPY ORIVE cased and with built-in power supply so a self-contained extra drive for you if you use $3^{\prime \prime}$ discs, real bargain $£ 49.50$ plus $£ 5$ delivery.
AMSTRAD POWER UNIT 13.5 v at 1.9 A encased and with leads and output plug, normal mains input $£ 5$ each, 10 for $£ 45$.
AMSTRAD 3.5 FLOPPY DRIVE Reference FD9 brand new and perfect, £45.
ATARI $64 X E$ COMPUTER at 65K this is quite powerful so suitable for home or business, unused and in perfect order but less PSU, only $£ 19,50$. Handbook $£ 5$ extra.

9" CATHODE RAY TUBE Philips M24/306W, which is not only high resolution but is also X Ray and implosion protected, regular price over $£ 30$, you can have them at $£ 12$ each and you will receive the detection coils as well tubes are guaranteed unused. 80 Watt MAIMS TRANSFORMERS two available in good quality, both with normal primaries and upright mounting, one is 20 V 4 A the other 40 V 2 A only $£ 3$ each or 10 for $£ 27$ carriage paid.
PROJECT BOX size approx $8^{\prime \prime} \times 4^{\prime \prime} \times 41 / 2^{\prime \prime}$ metal, sprayed grey, louvred ends for ventilation otherwise undritled made for GPO so best quality, only $£ 3$ each or $£ 10$ for $£ 27$. 12V SOLEMOID has good $1 / 22^{\prime \prime}$ pull or could push il modified, size approx $1^{1 / 2 "}$ long by $1^{\prime \prime}$ square, $£ 1$ each or 10 for $£ 9$.
WATER VALVE 230 V operated with hose connections, ideal for auto plant spray or would control air or gas into tanks etc. $£ 1$ each or 10 for $£ 9$.
LV 21/2A POWER SUPPLY UNIT 230 V man ns operated, mains filtered and DC voltage regulated with mains on/off switch and indicator, $£ 6$ each or 10 for $£ 50$.
HANG UP PHONE won't clutter up your desk or workbench, current model, has push button dialling, last number recall, internal alarm etc.. Ex B.T. in good condition and fully working ready to plug in. $£ 5$
HIGH VOLTAGE CAPS if you use these ask for our $1-30$ Kv Capacitor list, we have over $1 / 4$ million in stock and might save you a lot of money.
ELECTRONIC BUMP \& CO SPACESHIP sound and impact controlled responds to claps and shouts and reverses or diverts should it hit anything! Kit with really detailed instructions. will make ideal present for budding young electrician. Should be able to assemble but you may have to help with the soldering of the components on the PCB. Complete hut $£ 8.95$ 500 V BRIDGE MEGGER developed for G.P.O. technicians the Ohmeter 18B is the modern equivalent of the bridge meggar. 9 V battery operated it incorporates a 500 V generation for insulation testing and a null balance bridge for very accurate resistance measurement. Ex B. T. in quite good condition with date \& tested. Yous for a fraction of original cost £45 + £5 insured delivery
EXPERIMENTIMG WITRYALVES don't spend a fortune on a mains transformer we can sub one with standard mains input and secs. of $250-0-250 \mathrm{~V}$ at 75 mA and 6.3 V at 3 A . pr oe SWat 8 ohm 8" SPEAKER \& 3" TWEETER made tor discontinued high quality music centre, give real hi,fi. and for only £4 pair.
TMES TEN IONISER using transformers and novel circuitry, our ioniser emits at least ten mes as many ions as does any other kit on offer, nor do we know of a ready built model that is as good, you don't need a tester to see if it is working just bring your hand close to it and feel the stream of neg ions. It's a kit complete with case, nothing else to buy yours for $£ 14.50$.
ULTRASONIC TRANSMITTER/RECEIVER with Piezo alarm, bull into preformed case, is
triggered by movement disturbing reflected signal, intended for burglar alarm, car alarm etc. has many extras, time delay, auto reset, secret off device etc. A £40 instrument yours for §10.
MOVEMENT ALARM goes off with slightest touch, ideal to protect car, cycle, doorway, window, stairway, etc. etc. Complete with piezo shrieker ready to use. Only £2 (PP3 battery not supplied).
STEREO HEADPHONE extra lightweight with plug £2 each or 10 pairs for £18.
B.T. TELEPHONE LEAD ${ }_{3}^{3} \mathrm{~m}$ long and with B.T. flat plug ideal to make extension for phone, Fax, etc. 50 p each, $£ 40$ per 100 . §300 per 1000.
WITER PUNP very powerful and with twin outlets, mains operated, $£ 10.00$.
STUDIO 100 by Amstrad the ultimate disco control panel, has four separately controlled and metered channels, twin cassettes, AMFFM radio, stereoaudio amplifier, phono \& C.D. inputs, etc. etc, etc, regular price over $£ 400$ we have a few still in maker's packing, brand new and guaranteed, yours for $£ 99$.
ROTARY POSITION CONTROLLER for aerials, ventilators, dampers, rheostats, dampers or applications requiring 180 degrees clockwise and anti-clockwise movement. We have the Sauter MVE4 154 servo motor drive ref AR30W3S regular price over £70 brand new, £15 each.
12 VOLT 8 AMP MAIMS TRANSFORMER $£ 4$, waterproof metal box for same, $£ 4$. 110 WAT SWITCHMODE POWER SUPPLY 230 v mains operated, outputs of $38 \mathrm{v} 21 / 2 \mathrm{~A}$ and 5 v 3 A , we have a lot of t ese -mo need the space so you can have these at a fraction of their cost if you order before Oct 31 price is E6
10 VA MAIMS TRAMSFORMERS athp:b-mounting at \& ET each, 10 for $£ 9,100$ for $£ 75$, for output 12-0-12v order ref WA1, 15-0-15v order ref WA2, 20/0/20v order ref WA3, 18
$0-18 \mathrm{k}$ not p.c.b. mounting but fully shrouded same price order ref WA4.
0-1 mA FULL VISIOM PAMEL METER 23/4" square, scaled 0-
100 but scale easily removed for rewriting $£ 1$ each, 10 for
ET, 100 for 875
PANEL AMP-METERS $80 \times 70 \mathrm{~mm}$ beautiful instruments $£ 5$
each 30 amp order ref WA5, 10 amp order ref WA6, 5 amp
order ref WA7.
Xu METER illuminate this from behind becomes on/off
indicator as well, $1 / \frac{1}{2 \prime}$ square 75 p each. 10 for $£ 6,100$ for $£ 50$.
EDCEEDISE PANEL METER ideal when short of panel space only $40 \times 14 \mathrm{~mm}$, also have
built-in led, 500 ur \uparrow. wd, scaled $0-5, £ 1$ each, 10 for $£ 9,100$ for $£ 75$.
VIBRATING REED FREQUEHEY PAMEL.METER 4" square. 55-65 Hz only £9 each.
P.C.B. DRILLS 12 assorted sizes between . 75 and $1.5 \mathrm{~mm} £ 1$ the lot.

15000 of COMPUTER GRADE CAPACITOR $15 v$ ideal for low volt high current experiments 75 peach, 10 for $£ 6$, 100 for $£ 50$.
Prices include V.A.T. Send cheque/postal order or ring and quote credit card number. Add
£3 post and packing. Orders over £25 post free, unless postage quoted separately.
M\&BELECTRICAL (WW)
12 Boundary Road, Hove, Sussex BN3 4EH Telephone (0273) 430380 Fax (0273) 410142

Inhancements) by means of orthogonal frequency division multiplex (OIIDM) moctulation using for each channel a large number of carriers equally spaced in trequency, with each carrier modulated by some digital modulation method such as QPSK. The spectrum of each modulated carrier is arranged to overlap the spectrum of its neighbouring channel in such a way that the information content of each carrier is mutually orthogonal - a technique that has been shown for digital radio not only to be spectrally very efficient but also remarhably free from the elfects of multipath "ghosting".
This is promising, hut Mason made it clear that a practical Spectre system is still some way off and at only ant carly stage of development. There is still scope for considering higher-order modulation schemes such as 8PSK with trellis coding. either to improve further the error periornance, or to provide a means for upgrading to higher bit-rates in
order to carry higher-definition TV. The Spectre project is being carried out by NTL Winchester under contract to the ITC. It remains to be seen whether the system can provide gradual ("solt") degradation under. for example tropospheric lifts, or whether viewers would go suddenly from a good picture to a completely unacceptable one - the nightmare scenario of most digital transmission systems. with their go/no-go characteristics.
Such restraint was absent from the emotionally charged presentation by Brian Evans (Tantara Tek I.td) who tried to convince us that pal-quality IV could be tramsmitted to the home at $3 \mathrm{Mbit} / \mathrm{s}$, and that five such pictures could be sent at $1.5 \mathrm{Mbi} / \mathrm{s}$ througl either a satellite transponder or an 8MII\% terrestrial channel. This he believes would enable a great leap to be made into the "areas of new business opportunity which digital TV can offer ... all of a sudden

the frequency spectrum scarcity bogeyman has been vanquished and the existing USA broadcasters are running scared."
This may appeal to politicians but hopefully not to engineers. To make a headlong rush into terrestrial digital TV without even the safeguard of OFDM: with compression carried to extremes without room for effective error correction, would almost certainly leave us far worse off than with a few channels of analogue pal
Nick Wells (BBC) in a detailed survey of bit-rate reduction techniques for digital TV at 34Mbit/s and below concentrated on systems based on discrete cosine transform (DCT) coding although he believes that subband coding can give slightly better results, particularly for multi-resolution applications such as HDTV broadcasting. There is, however, a lot of momentum behind DCT while suitable VSLI for sub-band coding is not yet readily available.
He summarised the present position as: "Many different variations of DCT and subband coding are being investigated for coding (broadcast) TV at rates between 5 to $10 \mathrm{Mbut} / \mathrm{s}$ (and between 30 and $50 \mathrm{Mbit} / \mathrm{s}$ for HDTV) ... However, judging by the pictures I have seen to date the picture quality at 1OMbit/s from one or two systems might just be acceptable fordistribution applications but the quality of the $5 \mathrm{Mbit} / \mathrm{s}$ pictures is disappointing. The main impairments are loss of resolution in textured areas of the picture and block correlated noise particularly at edges ... Good quality coding of TV at these low-bit rates is a difficult goal but if this goal is achieved it will have a significant impact on most areas of the broadcasting industry."

Telecommunications Technical Officer (up to $£ 16,176$)
 Assistant Telecommunications Technical Officers (up to $£ 13,821$)

Abstract

The Radiocommunications Agency manages the civil use of the radio frequency spectrum within the UK and represents the UK internationally in this field. At our Baldock International Radio Monitoring Station, we are looking for qualified radio technicians to join our existing team.

As TTO, you will lead (and one of the ATTO's will assist in) a team studying the utilisation of the radio spectrum. Travelling widely in the UK in mobile monitoring vehicles, you will be responsible for maintaining and operating radio receivers and other monitoring equipment. At base, you will be processing, analysing and presenting the computer data collected during the monitoring exercises.

The second ATTO vacancy is with the engineering support group. You will assist the engineering team, at base, with the installation, maintenance and modification of a wide range of modern radio receiving and measuring systems, direction finders and satellite systems. In addition, you will be testing new equip-

Abstract

ment and will have the opportunity to undertake sponsored sludy. All vacancies call for qualification in a radio telecommunications subject to BTEC/SCOTVEC ONC standard. For the TTO vacancy you must also have several years' radio technology experience, and at least three years' (including relevant study) for the ATTO. A clean driving licence is essential.

The base station is in Baldock, a beautiful part of the North Hertfordshire countryside, easily accessible by road and rail and offering a wide range of housing and leisure facilities. Other benefits include a highly competitive starting salary (dependent on qualifications and experience) and assistance of up to $£ 5,000$ with relocation.

For further details and an application form, please write to Mike King, Radiocommunications Agency Personnel Section, Room 121, WaterlooBridge House, WaterlooRoad, London SE1 8UA or telephone 071-215 2327 quoting reference RDP 1/17. The closing date for receipt of applications is 14 August 1991.

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY Lae
 DEPARTMENT OF ELECTRICAL AND COMMUNICATIONS ENGINEERING Electronic Service Unit

 PRINCIPAL TECHNICAL OFFICER

 PRINCIPAL TECHNICAL OFFICER

 (VIDEO AND TELEVISION SPECIALIST)

 (VIDEO AND TELEVISION SPECIALIST)}

Applications are invited for this challenging position which will complement the other specialists in this highly regarded unit. The unit primarily provides electronics workshop repair facilities to all University departments. It also makes its expertise and services (which are almost unique within the country) available commercially to many outside organisations. Consequently the range of equipment supported is very broad indeed. Duties will include the bench repair of a wide range of video equipment comprised of professional and domestic VCRs, monitors, cameras and televisions; and the supervision and training of Technical Officers both at the bench and through the provision of in-house short courses. Applicants should be qualified to HNC Electronics level or equivalent, have sound theoretical knowledge and substantial experience in the repair of the equipment listed above. It is essential that applicants be versatile and able to pass on their knowledge.
Salary per annum: K22,055-K23,095. (Level of appointment will depend upon qualifications and experience.) Initial contract period is normally for three years but shorter periods can be negotiated. Other benefits include a gratuity of 25% taxed at 2%, support for approved research, appointment and repatriation fares, leave fares for staff member and family after 18 months of service, settling-in and settling-out allowances, six weeks paid leave per year, education fares and assistance towards school fees; free housing, salary protection plan and medical benefit schemes are available. Staff members are also permitted to earn from consultancy up to 50% of earnings annually.
Detailed applications (two copies) with curriculum vitae and the names and addresses of three referees including telephone numbers and indication of earliest availability to take up appointment should be received by: The Registrar, Papua New Guinea University of Technology, Private Mail Bag, Lae, Papua New Guinea by 15 August 1991.
Applicants resident in the UK should also send one copy to Appointments (39527), Association of Commonwealth Universities, 36 Gordon Square, London WCIH OPF, from whom further information may be obtained.

๔

ARTICLES WANTED

STEWART OF READING
110 WYKEHAM ROAD.
READING, RG6 IPL. TEL: 073468041 FAX: 0734351696
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

AGENT required

for microprocessor tools emulators and software details to Box No. 2612

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes, PCB's, Plugs and Sockets, Computers, Edge Connectors TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT
A.R. Sinclar, Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TC. Telephone: 0438812193. Mobile: 0860 214302. Fax: 0438812387

WANTED

Test equipment, receivers, valves, transmitters, electronic scrap and quantit Prompt service and cash. M \& B RADIO
86 Bishopgate Street,
Leeds LS14BB.
Tel: 0532435649
Fax: 0532426881

WANTED: VALVES. TRANSISTORS,

 I.Cs (especially types K $566, \mathrm{~K}$ T88, PXt. PX25). Also capacitors, antigue radios, shop clearance considered. If possible send written list for offer hy return. Billington Valses. phone $041138651(15$. Fax: 1111386510 ks . See adjoining adert.> PLEASE MENTION WIRELESS WORLD WHEN REPLYING TO ADVERTS

APPOINTMENTS cond.

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES
REC ${ }^{-1}$ IFIERS, THYRISTORS, etc. RESISTORS, C F , MF W WW, etc. CAPACITORS SILVER MICA, POLYSTYRENE, C280 C296, DISC CERAMICS, PLATE CERAMICS, EIC. ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, ETC ALL AT KNOCKOUT PRICES Come and pay us a visit ALADDINS CAVE
TELEPHONE 081445 0749/445 2713 R. HENSON LTD

21 Lodge Lane, North Finchley, London N12 8JG. (5 minutes from Tally Ho Corner)

$$
\begin{aligned}
& \text { Technical \& Scientific Supplies } \\
& \text { POWER SUPPLIES Dual 15-30V } 3 \mathrm{~A} \text { with 350Va C core } \\
& \begin{array}{l}
\text { trans'r } \\
\text { Used }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lens. Dallmeyur Super Six } / 119-22 \text { in focussing mount }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Other types and ranges available) } \\
& 1.5 \mathrm{~m} \text { dish aenals/covers. } 2 \text { only } \quad . \quad 160 \text { each or or }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Signal Generator, Pye SG3V 68-174MHz AM/CW/FM: } \\
& \text { Carrier and modulation meter, } 0.2 \mu \mathrm{~V} \text { to } 10 \mathrm{mV} \text {. Portable } \\
& \text { with internal Aclad batteryicharger. Used, tested } 578 \\
& \text { Cunction Blocks- - various available. ot Mullard } \\
& \text { Combis. } \\
& \text { All prices exclude enfiege and VAT } \\
& \text { HASTS AVAILABLE }
\end{aligned}
$$

GOLLEDGE

CRYSTALS OSCILLATORS FILTERS Comprehensive stocks of standard items. Over 650 stock lines. Specials made to order OEM support: design advice, prototype quan 2ibs, pratuction schedules.
Personal and export orders welcome SAE for our latest product information sheets GOLLEOGE ELECTRONICS LTD Tel: 046073718 Merriott, Somerset, TA16 5NS Fax: 046076340

intel DEVELOPMENT TOOLS

RENTAL, REMARKETING \& REPAIRS

LARGEST U.K. SOURCE OF SECOND USER INTEL TEST \& DEVELOPMENT TOOLS.
I2ICE, SERIES II,III,IV, ICE49/ 51 . . ., PDS, IUP etc.
Tel: 0905360174
Fax: 0905357676

Lyndene Micro, Lyndene House, 93 Bath Rd, Worcester, WR5 3AE

MATMOS LTD., UNIT 11 THE ENTERPRISE PARK, LEWES ROAD, LINDFIELD, WEST SUSSEX. RH16 2LX TEL: 0444482091 and 0444483830 (Fax. 0444484258)

TATUNG TCS 8000386 COMPUTER SYSTEM at $£ 469$
Full 386 (not SX) compurer system complete with 102 keyboard and manual. Includes 210 watt PSU. VO
 co proc. socker. MS.DOS 3.3 and GW BASIC.
16 MHz lock $E 469,20 \mathrm{MHz}$ with 2 Mbyte RAM ES 89

MATMOS HIGH PERFORMANCE 286 SYSTEM AT £299
A quality 286 system running at a Landmark speed of 16 MHzz clock speed 12 MHz . 1 Mbyte RAM expandable 104 Mbytes Serial and parallel ports. 101 keyboard. mono card. 1.2 Mbyte 525 drive, IDE
 AMI bios with serup and diagnostics. well made stylish case,
Mbyte hard drive E399; fitted with 60 Mbyee hard dive $£ 435$.
Top spec 386 and 486 systems

25 MHz 486 cache system
21495
Carriage on systems
C14
Carriage on systems $\mathbb{1} 14$ plus VAT. See below tor add-ons and other stock items.
FLOPPY DRIVES

Internal
350×525

720 K 3.5 -inch Cirizen OSD third height drive for $£ 29.50$ (carr, $£ 3$.
720 K 35 -inch Citizen OSDAA5 third height drive for AT/286/386 cream bezel E 32.50 (carr. E 3
As above, but XT/AT switchable © $\mathbb{3 5} .50$ (carr £ £3)

Fitting kit for 5.25 -inch space suitable all Citizen 3.5 inch drives inc. cable adaptors EB .49 (carr. tree with drives)
IBM standard floppy disk drive cable $\mathrm{C4}$.
External
Externa
720 K
E12.50
.5 inch in smart case (sulta
(sultable for ATs only) $£ 39.50$ (cart $£ 3.50$). Cable adaptor kit for AT HARD DISK DRIVES, etc
20 Mb ve Seagate ST125.13.5-inch. 28 msec . MFM hard drive $£ 109$ (carr. (4)
20 Movte Miniscribe B225 3.5-inch in 5.25 inch chassis, 24 msec. IDE hard drive with controller and all
 40 Mbyte Ouantum 40 S Pro 3.5 - inch. 18 msec. SCSI hard drive $£ 159$ - $£ 149$ in systems (carr C4)
62 Mbyte Micropolis 132445.25 -inch, 28 msec. MFM hard drive, full height $£ 149$ (E139 in systems) (carr. E5) 91 Mbyte Seagatelmprimus 942115,25 inch, 16.5 ms SCS 1 drive $\mathbf{~ C 2 2 9}$ (carr. (5) 94 Mbyte Seagatefmprimus ST2106E 5.25 inch. 16.5 msec ESDI drive with 16 bit high speed controlle
CBrd and cables $£ 289$ (carr. 55) CBrd and cables $£ 289$ (carr. ©5)
HOD cable set 55
HOD cable set E 5
DISK DRIVE CONTROLLER CARDS (carr. £2.50)
XT MFM £37.50. XT RLL £37.50. XT SCSI £29.50
AT RLL $£ 37.50$. AT MFM £49.95. AT IDE £ 12.95 , AT SCSI £37.50. AT ESDI 169

HITACHI CD ROM DRIVES (ex dem.)
External cased AT bus CDF1502S, half height, 5.25 -inch with card and cable $\mathbf{E 2 2 9}$ (carr. $\mathbf{C 5}$)
IBM COMPATIBLE AT MOTHERBOARDS, CARDS etc.
$25 \mathrm{MHz}_{2} 486$ Very latest 80486 motherboard with extra 64 K cache. Landmark speed 115 MHz . Floating point co processor built into CPU. Eight expansion slots. $£ 999$ (carr. E5)
25 MHz 386 motherboard, Bo 386 cpu . Landmatk speed 33 MHz . accepts up to 8 Mbyte SIPPS RAM, otherwise os sbove $£ 349$ (Carr. $£ 3.50$)
Mbyte RAM for 386/486 E45
12 MHz AT mothertoard, 80286 cpu , 8 expansion slots, full AMI BIOS with diagnostics etc., 80287 socker manual, Landmark speed of 16 MHz , accepts up to 4 Mbyte of SIPPS RAM on board $£ 89.00$, with IMbyte installed
80287 maths co-processor for above
c9
AT multi vo board with 1 parallel. 2 serial. 1 game. 2 floppy. IDE hard dive $£ 34.50$ AT VO card, parallel, serial, game $£ 17.50$.
Mono graphics card $£ 9.95$ tall capp. $£ 2$
MOUSE Microsolt compatible, senal with sotware £29.95 (carr, £3)
INTEL 386 PROCESSORS AND 387 CO-PROCESSORS
20 MHz 396.20 OX lall removed

20 MHz .387 .20 co-processor $£ 110$
$25 \mathrm{MHz} .387-25$
MHz. 387.25 c.poces 139
MONITORS - MONO
12 inch Xerox Hercules paperwhire: sman case with tilt-and-swivel base, particularly good, user-friendy

14 inch 1024×768 VGA Latest Hyundai multisync. VGA, 0.28 dot pitch. Oisplays up to 1024×768 at very high quality E269 (carr. E10)

HITACHI CAD COLOUR MONITORS
20 -inch multisync. CM2085 W From VGA up to $64 \mathrm{KHz}_{2}$ at 1280 by 1024 (ex dem.) 8899
20-inch fixed frequency $48 \times \mathrm{XHz}$ CM2086A1-0 (ex dem.) E299.
20 -inch fixed frequency 64 KHz CM2086A3-EX (ex dem.) 299
20. inch fixed trequency 64 KHz CM2086A3-EX (ex dem.) 16299
16. inch fixed frequency $64 \times$

LASER PRINTER

Acer LP. 76 HP Laserjet II compatible, 6 p/min., 300×300 DPI, 512 K expandable to 4.5 Mbytes, standard Centronics interface $£ 499$ (carr, £20). Auxiliary paper tray giving paper capacity of $\mathbf{4 0 0}$ sheets or two paper
sizes $£ 49$ (carr. $£ 20)$ sizes £49 (carr. C20)

VGA CARDS

16 bit VGA card. 256 K . all emulations, up to 800×600, with sothware to run all major packages. Oak chip

set. Switchable for use in XT's $\mathbf{C 6 9 . 9 5}$
 16 bit 1024×768 super VGA card. V

etc. Full manuals and disks. Trident chip high resolution with 512 K and drivers for Windows 3. Acad. VP FAX CARD Plug into PC expansion slot. Giving 1 Mbyte version £ $£ 119$ (carr. on cards $£ 2.00$) intelligent receiveltransmit, with multiple output and call scheduling. With disks, cables and full user manual ©119 (carp. ©5
ETHEANET CARD Novell compatible 16-bit f89 (carr. E2) POWER SUPPLIES
Astec BM 140 IBM XT/AT compatible 150 W ; -5 V at $15 \mathrm{~A},-12 \mathrm{~V}$ at $5 \mathrm{~A},-5 \mathrm{~V}$ at $0.3 \mathrm{~A},-12 \mathrm{~V}$ at 0.5 A ; fon cooled, rear panel switch, good value at E 19.50 (carr. E 4)
Farnell N 180 cased 180 Watt .5 V at $20 \mathrm{~A} .-12 \mathrm{~V}$ at $2 \mathrm{~A},-12 \mathrm{~V}$ at $2 \mathrm{~A},+24 \mathrm{~V}$ at 5 A and -5 V at 1 A . Professional psu. £26 95 (carr. £3)

NB * VAT and carriage must be added to all iterns (quotes for carriage overseas)

* Evervihing new. and guaranteed one year unless stated; ex-dem. products guaranteed 6 months
- Access and Visa telephone service

Matmos Lid has been trading successlully since 1976

CIRCLE NO. 143 ON REPLY CARD

INDEX TO ADVERTISERS

	PAG
-Halcyon Electronics 686	
	Hi Tech Callihration ... 705
	Hoka Electronics 659
	Icom UK 675
	Integrated Measuremen
	Systems 686
	IPK Broadcast Systems 660
	Johns Radio 64
	Kestrel Electronic
	Components 659
-Keytronics 691	
	Lab Centre
	Lab Volt (UK) 635
	Lowe Electrical 651
	-M\&B Electrical 70
	M\&B Radio 64
	Matmos

PAGE

Micro Amps 651
MQP Electronics 672
Number One Systems 630
Ralfe Electronics 705
R Henson 672
Seetrax 666
Sherwood DataSystems 659
Smart Communication 696
-Stewart of Reading 686
Superswitch 633
Taylor Brothers IBC
Technomatics 692
Thurlby Thandar 675
Triangle Digital Services
705
Tsien (UK) 641
Wood \& Douglas 672
overseas advertisement agents
France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008
United States of America: Jay Fenman, Reed Business Lid., 205 East 42nd Street, New York, NY 10017 - Telephone (212) 8672080 - Telex 23827

[^6]
Racalio alt its Best

TAYLOR

STEREO FM RADIO TRANSMITTERS \& TRANSPOSERS (88-110MHz)

P30 902P BAND 2 FM STEREO MODULATIOR.

15" Kach Mouning $2 \mu 350$ rnm deep
Any smecified frequency $8 \times$-L
Temp controlled VCO, frecuency stability 4 < Sppm
sudio input. 7 V gMMr Ba anced' (fastating transfornier) XLR Suckets Aud o bandwidth tollz-LKKHz
Prcermphasis $50 \mu \mathrm{~s}$ \& 75%
Crowitill todB IKIIz.
L\&K solume controls with 2 analogue level meters
Devisilon tevel comirul with anallogue deviation meter
iKHz sone generator swlithable Lor R, Li, is R.
IF lasep on front panel
Goltuge 220-240V AC 50Hz (110-120V AC no cost option F) Onpur level $a .3 \mathrm{HBm} \mathrm{V}$ (150 MimV) 75Ω (OEC Connector) MION G502 no cust (N Connector)

OPTION : Output level: Wall 5M2 $\quad 190.00$
OPTION 8 Output Frequency $430-460 \mathrm{MHz}$
900.920 MHz Specify Frequency

P30-30VF 30WATT BAND 2 POWER AMP WITH ACC

$19^{\prime \prime}$ Rack mounting $2 \mu 425 \mathrm{~mm}$ dexp

Galn MadB + 20dB AGC. Enables piner amplifier to be sited remuter fom mindalator linked by coas cable wirh attenuation up to 20 dK .

Inpui Inipmance 75Ω (IECC Connectar)
Ousput Power 30 Watts into 5×2 (\mathbb{N} Connector)
Votrage $220-340 \mathrm{~V}$ AC 50 Hz ($110-120 \mathrm{~V}$ no cost option F)

P30 30VFT 30 WATT BAND
2 TRANSPOSER WITH. AGE

Power: Specilication as P30.30VI.
Input: $8 \cdot 110 \mathrm{MHz} / 420-160 \mathrm{MHz} 900-920 \mathrm{MHz} 50 \Omega$ (N Cunneator) Speelfy Frepuency
Crystal Controlled Frequency Stability < 5 ppm Gain 93 dB
$4 \mathrm{GC} 40 \mathrm{dH}(\pm 20 \mathrm{~d} 13$)

P30-300VF 300 WATT BAN
2 POWER AMP WITH AG

19" Rack Mounting $3_{\mu} 500 \mathrm{~mm}$ deep

Gatn $42 \mathrm{~dB}+3 / \mathrm{dBB}$ AGC. Enaliles power amplifier to be stied remote
from inodutator linked by coax cable with attenuation up to 20dB.
Input Imprdance 75R. (OEC connector)
Output Power 300 Watts into $5052(\mathrm{~N}$ Connector)
Valtage $22 \mathrm{~W}-240 \mathrm{~V}$ AC $50 \mathrm{~Hz}(110-120 \mathrm{~V}$ eo cost option F)

Peswer: Speclication as F-W0.300VF
Input: $8 \times-110 \mathrm{MHz} / 420-460 \mathrm{NHz} 900-920 \mathrm{NHzz} 50 \Omega$ (N) Conmectori Specify Frequeney

ALL PRICES EXC VAT \& EX-WORKS

IC PROGRAMMING TESTING \& ERASING SOLUTIONS

PC82 UNIVERSAL PROGR AMMER \& TESTER
£395

Universal programmer. The complete designer's kit. This will program EPROMS, EEROMS, BPROMS, PALS, GALS, EPLD's, 28 and $87 X X$ microprocessors. A unique feature is the testing of logic parts such as 74LS393 etc. The PC82 can check and identify parts. Already programmed are the TTL \& CMOS logic test vectors. Software is supplied to write vectors for most unique chips. One of the most popular programmers in the USA.

TTL, CMOS, DRAM \& SRAM TESTING

PC82 can test and verify any TTL/CMOS logic chip, DRAM \& SRAM. The software will also identify a TTL chip. Do you have a few TTL chips aside not knowing whether they are working?

ADAPTERS FOR PC82 FROM £95

A wide range of plug-in adapters to expand the capability of the PC82. Various PLCC convertors \& 4 gang 28/32/ 40 pin Eprom, Gal \& Pal. Popular CPU types include PIC 16C54/5/6/7, 8796/7. 68705, 87C751/2, \& TMS320E25.
DEVICE GUIDE
PC82
PC84
EPROM N/CMOS 2716-27010 (1 mBit) Vpp 12.5,12.9,21,25
EPROM 27513,27011,572000/4000,8764-87256,CYC2XX SERIES
EEPROM 2816,2816A,2817,2817A,2864A
EEPROM 9306,9307,9346,9356,93CS06,26,44,56,66,28256A
BPROM 32×8 to 4096×8, incl. $635080,7 \mathrm{C} 28 \mathrm{X}, 29 \mathrm{X}$
PAL $10,12,14,16,18,20-L, R, X, P, 1,2,4,8,10$ (20824-pin)
GAL 16V8,18P8,20V8,22V10
EPLD $20 \mathrm{G} 10,22 \mathrm{~V} 10, \mathrm{EP} 310,320,600,610,900,910,5 \mathrm{C} 031,32,60,90$
CMOS EPAL C16L8,R8,R6,R4,C18V8,C20G10,L8,R8,R6,R4, C22V10
MPU $28,8741,42,48,49,50,51$, C51,C52,C252,TMS7742,77C82,63701
Device testing TTU/CMOS logic, DRAM \& SRAM

FEATURES ALL MODELS

For the IBM PC, install the interface card and programming socket, load the menu-driven software and you have a complete design system at your fingertips.

EASY TO INSTALL

The programmer comes with an interface card that plugs into any free slot of your PC There is no DMA channel to worry about and it occupies limited I/O space. The programmer socket box is connected via a ribbon cable to the back of the interface card so that the socket box is external. After the interface card is installed the PC never need be opened again.

SUITS ALL PC's

The programmers will run on any compatible IBM machines such as XT's, AT's, '386 and '486. Whether it be AMSTRAD or COMPAQ the programmers will work. The software is text only monographic so is compatible with any machine

SOFTWARE DRIVEN

All software for the programmers is supplied on $51 / 4^{"}$ low-density disks. The software can be copied onto hard disk using the DOS copy command. Programs are supplied for the various features and are menu-driven. All programming is done from the menu, no hardware switches are needed. Just select the type and manufacturer and the programming is done automatically. Free software updates for new types which are continually being added
The menu-driven software is a full editing, filing and compiling package as well as a programming package. Save to disk and load from disk allows full filing of patterns on disk, to be saved and recalled instantaneously. Device blank check, checksum, program, verify, read and modify are all standard features. Hex to bin file conversions included for popular file formats including Intel Motorola etc. 2 ways/4 ways bin file splitter for 16/32 bit file data. Selection of speed algorithm for FAST, INTELLIGENT, INTEL, etc.

PC86 HANDY POCKET TESTER £99
Tests all popular TTL 74/54, CMOS $40 /$ 45 \& DRAM types, can search and display type number of unknown/house marked types. Simple operation. 9 volt battery operated with LCD display.

M1 F AST ER ASER 199
NO MORE WAITING FOR EPROMS TO ERASE. New advanced UV source gives under 2 minute erasure time on most types of modern EPROM. Digital down counter \& display plus added features for simple operation in use. Large capacity e.g. 13×28 pin devices. Small footprin:. Designed for heavy industrial/workshop use. UK design \& manufacture.

PC84 EPROM PROGRAMMERS
1-GANG £139, 4-GANG £199 \&
8-GANG £299
PC84 -1, -4, -8 Eprom programmers only. The variant is only gang size. The - 4 and -8 gang will program multiple EPROMs simultaneously. Device sizes are from 2716 to 271000 both C and NMOS. ZIF (zero insertion force) sockets are used on all models

ORDER INFORMATION

Please include $£ 7$ for carriage by courler, plus VAT on all UK orders. ($£ 20$ for exports.) All pricing tor programmers includes sotware, interface card, socket box and full instructions. (Prices do not include VAT or carriage). ACCESS VISA or CWO. Otticial orders welcome from Government bodies \& local authorities

CITADEL PRODUCTS LTD
Dept. WW, 50 High St, Edgware, Middx. HA8'7EP Tel:081-9511848

[^0]: Station Road, Maiden Newton, Dorset DT2 0AE, England
 Phone
 0300-20719
 Fax 0300-21012
 Telex 418442
 BBS (Bulletin Board) ... 030021095
 $300 / 1200 / 2400 / \mathrm{N}, 8,1$ (24hr)

[^1]: Electronics World + Wireless World is published monthly By post, current issue • $£ 2.25$. back issues (if available) ' $£ 2.50$. Orders, payments and general correspondence to L333. Electronics World + Wireiess World, Quadrant House, The Quadrant, Sutton. Surrey SM2 5AS. Telex:892984 REED BP G Checues should be made payable to Reed Business Publishing Group.
 Newstrade: Quadrant Publishing Services, 081-661-3240
 Subscriptlons: Quadrant Subscription Services. Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444441212 . Please notity a change of address. Subscription rates 1 year (normal rate) £30 UK and £35 outside UK.
 USA: $\$ 116.00$ airmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42nd Street, NY 10117. Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine,Paris 75008. United States of America: Jay Feinman, Reed Business Publishing Lid, 205 E. 42nd Street, NY 10117.Telephone (212) 867-2080. Telex 23827.

 USA mailing agents: Mercury Airfeight International Ltd Inc 10(b) Englehard Ave Avenel NJ 07001 2nd class postage paid at Rahway NJ Postriaster. Send address changes to above.
 at Rahway NJ Postraster. Send address changes to ab
 ©Reed Business Publishing Lid 1991 ISSN 0266-3244

[^2]: Electronic CIrcuit Designer's opening screen (top) presents the main categories of circuit handled by the program. Selection leads to a number of sub-menus. (Bottom) Final screen in the active bandpass filter option.

[^3]: hP ADOBE CART
 IIP/IIPP/IIIIIDD Pacific Page Emulator

 E329(b) Adobe Cartridge for II

 E259(b) Needs 2.5Mb RAM on printer

[^4]: - Auto wire routing.
 - Auto dol placement.
 - Auto name generator
 - Powerful editing facilities
 - Object oriented 2D drawing with symbol library.
 - Comprehensive device libraries available.
 - Output to dot matrix, pen plotters, lasers, POSTSCAIPT.
 - Export to DTP packages in IMG or DXF formats.
 - Multi-sheet and hierarchical designs handes in single file.
 - Netlist output to most popular EDA software.
 - Bill of Materials and Electrical Rules Check reports.

[^5]: 20 MHz dual channel opera-ion

 - Variable trigger hold-off
 - $5 \mathrm{mV} / \mathrm{div} \mathrm{Y} 1 / \mathrm{Y} 2$ sensitivity at 20 MHz
 - $1 \mathrm{mV} / \mathrm{div} \mathrm{Y} 1 / \mathrm{Y} 2 \times 5 \mathrm{mag}$ at 7 MHz

 200ns/div to $0.2 \mathrm{~s} /$ div sweep rate
 Q DC to $500 \mathrm{kHz} X$ bandwidth
 Q XY operation using Y channels
 OXY phase shift $<3^{\circ}$ at 20 kF z
 $08 \mathrm{~cm} \times 10 \mathrm{~cm}$ display area

 - Calibration accuracy better than 3\%
 - 1 kHz internal calibrator
 - Special video signal trigger modes
 - Rise-time <17.5 ns
 - Graticule illumination

 DTwo $\times 10$ probe kits includec
 OUnequivocal guarantee

[^6]: Printed in Great Britain by Riverside Press, Gillingham, kent, and typeset by Marlin Graphics, Sidcup, Kent DAl4 5DT, for the proprietors, Reed Business Publishing Led, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Reed Publishing Led 1991. E/ectrontes and wireiess Worid can be obtained from the following: AUSTRALIA and NEW REALAND Dawson \& Sons (S.A.) Ltd.; UNITED STATES: Worldwide Media Services Inc., 115 East 23rd Street, NEW YORK. N.Y. 10010. USA. Electronics \& Wireless World \$5.95 (74513).

