ELECTRONICS WORLD

AUDIO DESIGN

Inside professional mixers

SCIENCE

Computers in archaeology

PC ENGINEERING

Virtual instruments reviewed Real-time PC operating systems

High Technology Data AcQuisition Boards FOR AEROSPACE,ATE, R and D,

 MEASUREMENT AND TEST
NEW MODEL PC74 DATA ACQUISITION BOARD

DT 2811 COMPATIBLE

The Status data acquisition program which is supplied with analog input boards provides data acquisition at maximum board throughput and features a graphic interface, pulldown menus and context sensitive help. Status has We market high performance multifunction data acquisition boards for laboratory test, measurement and control applications. The multi-channe! analog input may be used for signal analysis, data logging, sensor and transducer interfacing and voltage measurement. advanced data processing features such as FFT (Fast Fourier Transforms) and Chirp Z transforms, cursor read-out of voltage and time, zoom and pan operations and access to the boards analog output and digital I/O lines. All screen displays can be plotted. Maths co-processors supported.

	Speed	Bits	Single-ended	Differential	$\begin{array}{\|l\|l} \hline \text { Analog } \\ \text { 12-bit } \end{array}$	$\begin{aligned} & \text { out } \\ & 8 \text {-bit } \end{aligned}$	16-bit	LMA	Digital I/O	$\underset{\text { gain }}{\substack{\text { Programmable }}}$
PC-30	25 KHz	12	$16 \mathrm{i} / \mathrm{ps}$	---	2	2	-	NO	24 lines	No
PC-30B	30 KHz	12	$16 \mathrm{i} / \mathrm{ps}$	---	2	2	-	YES	24 lines	No
PC-30C	100 KHz	12	$16 \mathrm{i} / \mathrm{ps}$	-	2	2	-	YES	24 lines	No
PC-30D	200 KHz	12	$16 \mathrm{i} / \mathrm{ps}$	---	2	2	-	YES	24 lines	No
* PC-30DS	200 KHz	12	$16 \mathrm{i} / \mathrm{ps}$	---	2	2	-	YES	247 ines	No
** PC-30DS/4	2000 KHz	12	$16 \mathrm{i} / \mathrm{ps}$	---	2	2	-	YES	24 lines	No
PC-30PGL	200 KHz	12	$16 \mathrm{i} / \mathrm{ps}$	$8 \mathrm{i} / \mathrm{ps}$	2	2	-	YES	24 lines	1. 10, 100, 1000
PC-30P(GH	200KHz	12	$16 \mathrm{i} / \mathrm{ps}$	$8 \mathrm{i} / \mathrm{ps}$	2	2	-	TES	24 lines	1, 2, 4, 8
PC-26	25 KHz	12	$16 \mathrm{i} / \mathrm{ps}$	----	-	-	-	NO	No	No
PC-74HA	30 KHz	12	$16 \mathrm{i} / \mathrm{ps}$	$8 \mathrm{i} / \mathrm{ps}$	2	-	-	NO	16 lines	1. 2, 4.8
PC-74LA	30 KHz	12	$16 \mathrm{i} / \mathrm{ps}$	$8 \mathrm{1} / \mathrm{ps}$	2	-	-	NO	16 lines	T, 10, 100,500
PC-74HC	80 KHz	12	$16 \mathrm{i} / \mathrm{ps}$	$8 \mathrm{i} / \mathrm{ps}$	2	-	-	YES	16 lines	1. $2,4,8$
PC-74LC	80 KHz	12	$16 \mathrm{i} / \mathrm{ps}$	$8 \mathrm{i} / \mathrm{ps}$	2	-	-	YES	16 lines	1,10,100,500
PC-32/H	2.5 KHz	16	$16 \mathrm{i} / \mathrm{ps}$	8i/ps	-	-	I	NO	No	1. 2, 4, 8
PC-32/L	2.5 KHz	16	$16 \mathrm{i} / \mathrm{ps}$	$8 \mathrm{i} / \mathrm{ps}$	-	-	1	NO	No	1. 10, 100, 500
PC-33/H	$2,5 \mathrm{KHz}$	16	$16 \mathrm{i} / \mathrm{ps}$	$8 \mathrm{i} / \mathrm{ps}$	-	-	-	NO	No	1.2,4.8
PC-33/L	2,5KHz	16	$16 \mathrm{i} / \mathrm{ps}$	$8 \mathrm{i} / \mathrm{ps}$	-	-	-	NO	No	1. 10, 100, 500
PC-34	-----	--	---	----	-	-	1	NO	No	----
PC-66	-----	--	---	----	12	-	-	NO	No	---
PC-66A	----	--	---	----	8	-	-	NO	No	---

* Has 16 simultaneously sampled inputs
** Has 4 simultaneously sampled inputs

CONTENTS

FEATURES

INSIDE MIXERS

\qquad 280
A top-end mixing console should represents the highest form of audio design. Sounderaft's chief designer Doug Self describes the technology of acoustic excellence.

CHIPPING AT THE PAST

 286Archaeology is ripe for atomation. A typical dig involves thousands of positional measurements required to produce a 3-D image of the site. Archaeologist Helen Geake and technology writer Elisabeth Geake bring past and present logether.

THE SILICON TRAIL
IC design can be implemented in silicon in a variety of ways. Nigel Howell explains the pros and cons of different approaches.

OS9000: REALTIME PC 295
Lack of a real-time OS for the PC has held back industrial application. but Microware 's Stephen Montgomery says OS-9(O) will change all that.

PC REVIEW - MAXSIM. \qquad 300
Maxsim is designed to model and analyse the performance of systems in frequency and time domains. John Anderson tries it out and explains his reservations

PC REVIEW - BLUE CHIP DMM \qquad .304 Blue Chip Technology:s intelligent DMM is one of the new breed of virtual instruments for the PC. offering voltage and current measurement, chart recording and data logging.

PC REVIEW - PCL860 4.5 DVM
How well does the Fairchild 4.5 digit voltmeter board stand up to scrutiny? Allen Brown investigates.

ON THE RIGHT TRACK.
311
Yachtsmen are increasingly looking to GPS for guidance. How have the manafacturers responded?

INTERFACING WITH C

 320Howard Hutchings continues his definitive series on the use of the C programming language by electronics engineers.

AUTOMOTIVE AUTOMATION

\qquad 336
The car makers have always heen able to produce a product which could move as fast as their marketing departments wanded. Electronics has given the motor industry something else to sell on. By Tom Woodford.

FM RADIO: A BETTER TUNE
 345

John Linsley Hood continues his short series on FM receiver design, looking at the waly in which component development has influenced techaique.

REGULARS

COMMENT
Researching priorities.
RESEARCH NOTES .. 269
Half-baked universes. supercool scientists, better CCD. and mega-mega atomic memories.

UPDATE 275
Teraflops for euro-supercomputers, rise strategy soaking up the sun. 20,0)(0) lasers on a chip. Phes a special report from the ISSCC. San Francisco.

APPLICATIONS

Adding a range switch to a DPM. function generator and turning off mosfets.

CIRCUIT IDEAS. 331
Digital phase meter. fuse blown indicator, composite feedback amplifier, battery life extender, precision pulse width generator and high frequency switch.

LETTERS.. 340
Back to the future. social worries, supporting Unix.
dead duck grouse, testing times, diode nonsense. and unsound models.

NEW PRODUCT CLASSIFIED.

351New products at-a-glance.

RF CONNECTIONS

356Exploiting the spectrum above 3() $\mathrm{GHz} \%$ mobile comms confusion and working in the rain.

In next month's issue. As ,et only the military superpower, have made use of Over-The-HorizonRadar. The Australians are now planning to spend nearly $£ 400$ million on an HF radar system to protect their sparsely populated rortheri coastlines.

The impetus behind the radiating monster is civilian; the Australian government hopes to use the radar to detect illegal aircraft running drugs into the Northern Territories. However, the massive pulsed HF power.spells bad rews for communications systems operating around 14 MHz .

Some programmers are more powerful than others.

The CP1128 is qualified by all major device mańufacturers - like A.MD, Lattice, Samsung and TI.
This means that you can feet secure that you'll be programming exactly as the manufacturer specifies and you won't get field failures from poorly programmed devices.
It programs over 2000 different devices - GALs, PALs, EPROMs, ERASICs, EPLDs \qquad
Nothing's worse than finding that your șhiny new programmer won't work with the device you need. We've added more than 600 devices during the last 4 months and we're, working hard to keep up with the manufacturers.
We offer an absolutely free, lifetime, software update service.
When you use a BP programmer you get on demiand support for new devices as wè produce the software. The new software costs you nothing and we'll continue tơ support you as long as you own the programmer.
Last, but not least, the CP1128 costs less than $£ 1000$.
It costs $£ 985$ and has a yéars guarantee. Like we've' always said - power, reliability and value for money.

CONSULTING EDITOR
Philip Darrington
081-661 8632

EDITOR
Frank Ogden
081-6613128
DEPUTY EDITOR
Jonathan Campbell
081-661 8638
DESIGN \& PRODUCTION
Alan Kerr
EDITORIAL ADMINISTRATION
Lindsey Gardner
081-661 3614
ADVERTISEMENT MANAGER
Jan Thorpe
081-6613130
DISPLAY SALES MANAGER
Shona Finnie
081-661 8640
ADVERTISING ADMINISTRATION
Karen Baines
081-661 8469

ADVERTISING PRODUCTION
 Una Russ
 081-661 8649

PUBLISHER
Susan Downey
081-661 8452
FACSIMILE
081-661 8956

Researching priorities

The Science and Engineering Research Council has recently been involved in the yearly flurry of indignation over underfunding allegations. In essence, SERC is faced with effective budget cuts of up to $£ 30$ million which temporarily placed the Daresbury Nuclear Structure Facility under threat of closure. The Daresbury NSF provides a synchrotron source for UK particle physicists.

Ramifications of the argument include an alleged overcommitment by SERC to international big science projects, principally CERN at Geneva, which have experienced greater cost inflation than SERC's UK commitments. Because Britain's percentage contribution is fixed by international agreement, the effect has been to reduce differentially the funds available for UK work.

It seems sensible to bring into question the entire system of UK science funding. After all, we would expect other areas of the economy to be subject to performance tests. Why not science? The fundamental question is this: is pure science a luxury or a necessity?

The Japanese funded their economic miracle by investment in applied science. Their electronics industry took over the world by concentrating on research into the humdrum. It didn't question string theories, it couldn't care less about the precision of the statement " $\mathrm{e}=\mathrm{mc}$ ". It concentrated on materials research, artificial intelligence on the production line, the movement of atoms around a semiconductor lattice. This resulted
directly in ceramic exhaust valves for vehicle engines, uniquely efficient industrial production, hegemony in advanced semiconductor supplies.

One could argue that any of these achievements is more worthy than the detecting of à neutrino, the analysis of radiation from a black hole or the knowledge that things aren't quite what they seem at the speed of light.
Neither can it be taken for granted that big science generates useful spin-offs with cost effectiveness. Although the Apollo programme resulted in non-stick frying pans, it might be said that a down-to-Earth related space programme costing the same amount of money could have resulted in earth resources technology plus non-stick frying pans. In short, the sponsoring of competent research into the tangible problems of industry seems more likely to produce useful spin-offs than indulgence in pure science.
What is the Western preoccupation with high science really about? While few of us would disagree that the reciprocity between the light-years of cosmology and the femtoseconds of subatomic particle physics is truly a source of wonder, it shouldn't be an aspect of ersatz religion which, one suspects, big science has become.

The size of a science research budget should be commensurate with the generally perceived value of the aim. After all, the really useful things in life don't require obscure explanations of their worth.

Frank Ogden

Electronics World + Wireless World

We are currently undertaking a programme of reader research. Please help us to give you the magazine that you would wish by scoring individual editorial items. Please mark your
appreciation using the scale 1 (low) to 5 on the posi-paid reader reply card located between pages $328 / 329$ of this issue. The item key can be found at the end of each article

Electronics World + Wheless World is published monthly. By post, current issue $\mathfrak{£} \cdot 2.25$, back issues (if available) $\mathbf{£} \cdot 2.50$ Orders, payments and general correspondence to L333. Electronics World + Wireless World, Quadrant House, The Quadrant, Sution, Surrey SM2 5AS. Telex:892984 REED BP G Cheques should be made payable to Reed Business Publishing Group.
Newstrade: Quadrant Publishing Services, 081-661-3240
Subscriptions: Quadrant Subscription Services, Oakfield House. Perrymount Ftoad, Haywards Heath, Sussex RH 16 3DH Telephone 0444441212 . Please notity a change ot address. Subscription rates 1 year (normal rate) $\mathrm{E} \cdot 30$ UK and £. 35 outside UK
USA: $\$ 116.00$ airmail. Reed Business Publishing (USA), Subscriptions oftice, 205 E. $42 n d$ Streel, NY 10117.
Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States
of America: Jay Feinman, Reed Business Publishing Ltd, 205 E. 42nd Street, NY 10117. Telephone (212) 867-2080. Telex 23827.

USA malling agents: Mercury Airfreight International Lid Inc, 10(b) Englehard Ave, Avenel NJ 07001 .2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
©Reed Business Publishing Ltd 1989 ISSN 0266-3244

HF-235 A landmark in HF monitoring

The HF-235 is a highly cost effective solution to the need for a synthesised HF receiver for the professional user. The HF- 235 can be used as a stand-alone general purpose monitor or in multiple unit installations where diversity or multi-channel monitoring is required.

- $30 \mathrm{kHz}-30 \mathrm{MHz}$
\star USB/LSB/CW/AM/FM/AM sync
\star All IF filters fitted as standard
\star Conventional tuning knob or keypaḍ entry
$\star 30$ memories and 2 VFOs
$\star 600$ ohm line driving
\star Optional RS-232 interface for remote control

LOWE ELECTRONICS LTD, Chesterfield Road, Matlock, Derbyshire DE4 5LE Telephone: (0629) 580800 Fax: (0629) 580020

Toroidal Transformers

As manufacturers we are able to offer a range of quality toroidal and laminated transformers at highly competitive prices.

Toroidal Price List

Quantity prices Exclude VAT \& carriage

va	Mall Order	Quantity Price Excluding VAT \& Carriage				
15	12.16	8.51	6.89	5.17	5.02	4.97
30	13.37	9.36	7.35	5.68	5.51	5.35
50	14.86	10.40	8.17	6.32	6.13	5.94
60	15.02	10.51	8.26	6.38	6.20	6.01
80	14.98	10.50	8.25	6.38	6.19	6.00
100	17.58	12.29	9.88	7.48	7.24	7.02
120	17.95	12.57	9.87	7.63	7.41	7.18
150	21.65	15.16	11.81	9.20	8.93	8.66
160	19.86	13.90	10.92	8.44	8. 19	7.94
${ }^{225}$	25.09	17.56	${ }^{13.80}$	10.66	10.35	10.04
300	28.60	20.02	15.73	12.16	11.80	11.44
400	38.49	26.94	21.17	16.36	15.88	15.40
500	42.07	29.45	23.14	17.89	17.35	${ }_{16.83}$
625	44.24	34.47	27.08	20.93	19.31	18.70
750	48.66	38.86	28.98	22.38	21.72	21.06
1000	${ }^{65.67}$	45.97	${ }^{36,12}$	27.91	27.09	26.27
1200	68.71	48.10	37.78	29.20	28.34	2748
1500	${ }^{87.58}$	61.36	48.17	37.22	36.13	35.03
2000	114.45	80.11	62.95	48.64	47.21	45.78
2500	135.87	95.11	74.73	57.71	58.04	54.35
These prices are for single primary with two equal secondaries with 8 colcur coded tly leads. Each transtormer is supplibed with a mounting kit. consisting of one steel washer, two neoprene peds. and a nul and boit. Please do not hesitate to telephone of write with your particular requirements. Available from stock in the following voltages: $6-0-6,9-0-9,12-0-12,15-0-15$, 18-0-18, 22-0-22, 25-0-25, 30-0-30, 35-0-35, 40-0-40, 45-0-45, 50-0-50, 110, 220, 240. Primary 240 volt.						
Air Link Transformers						
Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts.						

PC WAVEFORM GENERATOR

FEATURES

\star Powerful complex waveform generator
\star Four analogue outputs

* Five TTL outputs
* External trigger input
\star Up to 6 MHz clock rate
\star Comprehensive software included
* Standard waveform library
* User definable waveform library
* Full graphical editor
* Time delay, continuous \& single shot
* Example microcode and assembler also included for OEM applications.

APPLICATIONS

* Arbitrary waveform simulator
* Low cost ATE
\star Process control
* Robotics

FREE DEMO DISK ON REQUEST

We also supply a full range of DIY parts for PCs and clones. Call us for more information or a free catalogue.
Designed and manufactured by us in the UK. Full technical support from the designers!
Unit 14A, Sunrise Business Park, Blandford Forum, Dorset. DT11 8ST.
Telephone (0258) 451347 Fax
10258) 456046

Is lumpy universe theory half-baked?

The scale of the Universe is so mind-bogglingly big that it's scarcely surprising when cosmologists have to tinker around with theories to accommodate the vast weath of information being beamed down from the various orbiting observatories. But to judge from a recent paper (Nature vol. 349, no 6304) by British and Canadian researchers, some of theories are so seriously adrift that it's virtually back to the drawing boad.

What is in particular rouble is the notion of cold dark matter (CDM). a concept put forward to explain the lumpy distribution of matter in the universe. CDM. or something like it, was introduced because cosmologists could not otherwise understand how galaxies managed to form so quickly from what was originally a
very smooth, homogenous beginning we know it was smooth because echoes of Big Bang can still be detected in the form of an isotropic 3 K microwave bach ground radiation.

CDM, consisting of slow moving ghostly particles, has never been detected. but if it were to make up about 90% of the Universe, it could have drawn matter together into the lumpy structure we observe today. The presence of CDM would also satisty other cosmological problems for which a large amount of matter is a prerequisite

Hot or faster moving particles might supply some of the "missing" mass, but they don't stay in one place for long enough to explain the clustering of the galaxies.

Supercool scientists take the heat out of fast chips

Chill a container of water below $0^{\circ} \mathrm{C}$ and it will gradually freeze into a block of ice. But use a very pure liquid - and take great care - and the temperature can be lowered below its nomal freezing point without any ice crystals appearing. Researchers are now wondering if this phenomenon could be harnessed in cooling superfast and high density chips.
"Supercooled" fluids are highly unstable and will freeze suddenly if disturbed by any noise or movement. But Dr David Awschalom of IBM's Thomas J Watson Research Centre, Yorktown Heights NY has shown that, in a container only a few tens of molecules wide, many liquids can be supercooled to well below their normal freezing points and can spend weeks in this remarkably stable liquid state.
In one series of experiments Dr Awschalom and his team found that liquids trapped in tiny containers could be chilled to 40% below their normal Kelvin freezing points without solidifying. As the size of the container decreased, the freezing point progressively dropped, an effect Awschalom calls "geometric supercooling".
The containers used in the experiments
are interesting because they are not, as inight be expected, tiny glass test-tubes, but microscopic pores in blocks of special high-porosity glass.

Size of the pores is controlled during the manufacturing process; they are then filled with a variety of experimental fluids, including liquid oxygen, liquid nitrogen, alcohol, carbon disulphide and nitrobenzene.

But depressed freezing points are not the only peculiarities of geometrically supercooled fluids. Using a glass block containing tens of thousands of pores, Awschalom has discovered some unusual acoustic properties.

Ultrasonic techniques to measure the velocity and attenuation of sound waves show that although they are physically liquid. geometric supercooled fluids can have similar acoustic behaviour to solids; sound waves travel faster and experience less damping. This discovery could be of crucial importance for oil exploration where prospectors use sound waves to try to distinguish pockets of oil from rock. Awschalom thinks that supercooled oil in porous rock in arctic regions could well be masquerading as solid rock. If

Cold dark matter seems to explain so well virtually every fealure of the universe that it is often taken for granted. Smatl wonder, then, that the latest study questioning its validity has caused quite a stir
Using data from the infra red astronomy satellite Jras. the cosmologists have mapped the locations of 2000 individual galaxies and showed that, on a scale of hundreds of millions of light years, the Universe is just much too lumpy. Clusters of galaxies are lumped together into huge blobs and filaments with relatively empty voids in between.
Professor Michael Rowan-Robinson of Queen Mary and Westfield Colleges in London. one of the study's authors. says that CDM theory can explain mass distribution lp to the size of the Virgo cluster
that is true then exploration leams could be missing a lot of good deposits.

Of course that possibility is pure speculation, hut there are several more down-to-earth applications for geometric supercooled fluids. One that is particularly exciting is the prospect of their use for cooling high speed chips

As things stand, the ability to dissipate heat is probably the biggest barrier to increasing switching speed and/or processing density. As chip structures shrink and processing capacities rise, there is an ever-increasing risk of overheating.

If molecule-sized channels were to be machined into the structure of a chip, supercooled fluids could be pumped through them to remove the surplus heat. It is a process that should be aided not only by the lower temperature of the fluids, but by another strange physical property that occurs at very low temperatures, superfluidity. Superfluidity - the loss of viscosity - is also affected by the size of the container in which a fluid is confined, a subject currently under investigation.

David Awschalom believes that all these fascinating properties of supercooled liquids could eventually have widespread applications, not just in computers and oil prospecting, but in cooling and lubricating tiny gears and motors smaller than the eye can see.
of galaxies. But cold dark matter cannot be reconciled with the structure of superclusters.

He admits that most cosmologists probably do not now know in which direction to go in terms of new theories.

Rowan-Robinson himself believes that it might be possible to create a cosmological model involving both cold dark matter and hot dark matter, the hot material consisting of particles like neutrinos travelling at near to the speed of light.

Another possibility that would save the CDM theory would be to resurrect a con-
cept invented by Einstein in 1917 and later disowned. Einstein's cosmological constant implies the existence of an extra force to balance that of gravity, thus preventing the inward collapse of the Universe.

But if, like me, you get the impression that this is all a bit hard to accept, you'll appreciate an editorial in the same edition of Nature. It observes that "if cosmologists are forced to start throwing around several kinds of darh matter along with a cosmological constant, scepticism is bound to arise". Really?

Improved electrodes will mean better image for CCDs
 Solid state image sensors such as the well-

established CCDs have ousted thermionic and vacuum devices in a wide variety of applications. But just as vidicons and the lead oxide camera tubes underwent continuous development and improvement. the same is now proving true of solid state image sensors, particularly in the search for new electrode materials.

CCDs can be found everywhere; from the home camcorder to the biggest astronomical telescopes in the world. In principle, the chips all consist of a series of narrow light-transmitting electrodes applied to oxidised wafers of silicon.

If light falls on the electrodes, electrons are released into the underlying silicon.

By applying appropriate voltage pulses the packages of electrons are sampled and converted into an output, and the amount of charge under each electrode is a measure of the light absorbed.

ITO replaces polysilicon

The present generation of image sensors uses polycrystalline silicon as the electrode material because it is easy to control and process. Only disadvantage is that it absorbs light which in turn reduces the sensitivity of the sensor. But that may soon become a thing of the past, thanks to research by Christ Weijtens at the Philips Research Laboratories in Eindhoven.

Weijtens' study, part of a project in the Esprit programme, has shown that indium tin oxide (ITO) can be used successfully as an electrode material to replace polysilicon.

ITO, one of the few available alternatives, is both conductive and transparent, its only problem being that it tends to cause troublesome crystal defects in the SiOx oxide layer of the sensor. Defects result not only in a loss of sensitivity but also in visible faults.

Weijtens found that one of the causes of the damage to the crystal lattice is the charging of the non-conducting SiOx layer by the very process used to deposit the ITO.

Production

First step in producing ITO electrodes consists of a magnetron sputter arrangement in which indium and tin atoms are forced out of a cathode by ion bombardment at low pressure in an atmosphere of argon and oxygen.

The indium and tin atoms combine with the oxygen to form ITO, deposited on an oxidised silicon wafer, and thereafter the electrode structure is etched using a photoresist. By applying a very thin, almost transparent, conductive layer of polycrystalline silicon prior to the ITO, Weijtens found that the charging of the SiOx layer is prevented.

Another advantage of this extra layer is that the SiOx layer is clean and well defined.

Using a final brief heat treatment at $950^{\circ} \mathrm{C}$ with subsequent heat treatment at a lower temperature, any remaining crystal defects are reduced considerably. This improves the light absorption and also the electrical properties of the chip.

Although development is still at the laboratory stage, it promises the possibility of a new generation of cheaper and considerably better image sensors.
> sIndium and tin atoms, forced out of a cathode by ion bombardment, combine with oxygen to form ITO, deposited on an oxidised silicon wafer. Electrode structure is etched using a photoresist. A thin conductive layer of polycrystalline silicon prevents charging of the SiOx layer.

COLOURJT132

HIGH PERFORMANCE COLOUR INK JET PRINTER (compatible with IBM pc, BBC micro, Nimbus etc.) * PRINTS ALL 64 SCREEN COLOURS FROM CGA AND EGA USING OPTIONAL INTEGREX SOFTWARE

* EMULATES OTHER PRINTERS (IBM3852, PJ1080A and QUADJET)
\star OVERHEAD TRANSPARENCY PRINTING
* 80 + 132 COLUMN OPERATION, A4 WIDTH
* UP TO 1280 DCTS/LINE ADDRESSABLE
* FULL VIDEOTEX CAPABILITY
* OPTIONAL BUFFERED RS232 (INTERNAL)
* HIGHLY VERSATILE

ULTRA
LOW
NOISE

EDUCATIONAL DISCOUNTS AVAILABLE
INTEGREX LTD CHURCH GRES,EY, BURTON ON TRENT
STAFFS DE11 9PT
Tel (0283) 551551
Fax (0283) 550325
Telex 341727 INTEGX

TEXTILE PRINTING

 INK CARTAIDGES NOW AVAILABLE

PRODUCT

AVO FT6/12 AC/DC Breakdown,
Leakage and lonisation
testing and non-destructive
testing.
ADVANCE-BRYANS $60020 \mathrm{X}-\mathrm{Y} / \mathrm{t}$
Recorder.
BBC GOERZ Servogor 120
2 Channel Chart Recorder
BRUEL \& KJAER 2221 Sound
Level Meter.
CEL 213 Random Noise
Generator (suitable for
White Noise Generation)
CIL PCI 6380 I/O Units for HP-IB.
CIL Multi-monitor, 10 Channel
Voltage Acquisition Unit. For
millivolt, thermocouple and
strain inputs. Includes HP-IB
interface.
CHESSELL 3066 Channel
Recorder.
CHESSELL 4001 Multi-function Data Logger/Chart Recorder. Data Logger/Cha
(Up to 30 inputs).
CHESSELL RTD Board with SIMM
Module for 4001
CHESSELL DC INPUT Board with
SIMM Module for 4001
CLARE A203C/J Flash Tester.
COMARK 6600 Autoscan Thermo-
meter providing automatic
scanning of up to 10
thermocouple inputs.
COMARK 4600 Printer for Comark
6600 Autoscan Thermometer.
DATA I/OModel 1010 Chip Dupli-
cator mainframe.
DIGILOG 300 Protocol Analyser
for data communications testing up to 19.2 kbps .
DIGILOG 420 Protocol Analyser
for data communications testing up to 72 kbps .
DIGILOG 620 Protocol Analyser
for data communications testing
up to 128 kbps .
DOWTY TRIO Multi-standard 1200 ,
$1200 / 75$, and 300 bps full duplex
V.23, V. 21 with Bell 212A, 202 and 103 options.
DRANETZ 808 Power Demand Analyser for monitoring, display and print out of V, I, PF.
DRUCK DPI 600 I.S. 2 Portable
Pressure Calibrator. 2 bar
Callbrator.
DRUCK DPI 600 I.S. 7 Portable
Pressure Calibrator. 7 bar
Calibrator.
DUX DICE 8085 Microprocessor In-Circuit Emulator
ELAN 5000 Editing Programmer for EPROMS/EEPROMS from 2716 to megabyte devices.
ELAN Universe 1000 Universal
Programmer.
ELAN Stack Modules for Elan
Universe 1000.
ERO Memocal $81 B$ Process
Calibrator and Transducer Simulator
FARNELL AP60/50 Autoranging
Bench Power Supply
provides DC up to IKW. Output
60V, 50A maximum
FEEDBACK SFG606 Sweep Function
Generator, frequency range
0.01 Hz to 1 MHz

FEEDBACK VP0602 Variable Phase Oscillator.
FIREBERD 1500 A Data Error
Analyser for evaluating commu
nications links and hardware
performance.

PRODUCT
FIREBERD 6000 Data Error
Analyser designed to analyse
evaluate and troubleshoot
digital communications systems
and equipment.
FIREBERD 40392 RS232/N.24/MIL-
188 Asynchronous interface
FIREBERD 40236 RS232 Synchronous
interface
FIREBERD 40200 RS449/V.II/
X. 21 DTE/DCE Interface

FIREBERD 40202 V. 35 DTE/DCE
interface
FIREBERD 30608 64kbps G. 703
Co/contra directional interface
FIREBERD 403802.048 Mbps G. 703
Unstructured interface.
FIREBERD 30609 2.048 Mbps G. 704
Structured interface for Framing/
CRC-4 testing.
FIREBERD 30447 T2 interface
FIREBERD 6000 Jitter Option 6007/8.
FLUKE Type 37 Digital Multimeter.
FLUKE 8010A 3.5 Digit LCD Bench/
Portable Multimeter.
FLUKE 801243.5 Digit True r.m.s.
LCD Bench/Portable Multimeter.
FLUKE 9010A Microsystem Trouble
Shooter. Suitable for locating
faults on microprocessor based
circuit boards.
GOULD 1421 20MHz Digital Storage
scilloscope
GOULD 1425 20MHz Digital Storage Oscilloscope.
GOULD Type 135 Waveform Processor
Keypad.
GOULD $400100 \mathrm{Ms} / \mathrm{sec}$ Dual Channel
Digital Storage Oscilloscope
HEWLETT PACKARD 8112A Pulse
Generator.
HEWLETT PACKARD 5385A Frequency
Counter.
HEWLETT PACKARD 54100A 1GHz
Digitising Oscilloscope.
HEWLETT PACKARD 54001A 1GHz
Miniature Active Probe.
HEWLETT PACKARD 10269B Probe
interface Assembly for 1630G
Logic Analyser.
HEWLETT PACKARD 10300B Z80
Microprocessor interface.
HEWLETT PACKARD 10305B 8086
Microprocessor interface.
HEWLETT PACKARD 10311B 68000
Microprocessor interface.
HEWLETT PACKARD 4951B/001/106
Data Communications
Protocol Analyser
HEWLETT PACKARD 4953A/001
Protocol Analyser, to include
expansion memory.
HEWLETT PACKARD 4953A RS232
Pod.
HEWLETT PACKARD 4953A RS449
Pod.
HEWLETT PACKARD 54501 A 100 MHz
4 Channel Digitising Oscillo-
cope
HEWLETT PACKARD 3780A Pattern
Generator/Error Detector.
A comprehensive error measuring
set in one portable package
MARCONI 2019A RF Signa
Generator with AM, FM and
OM for testing in the frequency
range 80 kHz to 1040 MHz
MARCONI 2022A RF Signal
Generator offering frequency,
over frequency range 10 kHz to
1000 MHz .
MARCONI 2955 Radio Communications Test Set.
MARCONI 2955A Radio Communications Test Set.

PRICES FROM
£3750
$\varepsilon 550$
$\varepsilon 290$
$£ 475$
$£ 475$
$£ 795$
$£ 475$
$£ 750$
$E 895$
£2300
5240
$\varepsilon 125$
$£ 175$
$£ 1295$
$£ 375$
$\varepsilon 650$
$£ 125$
$£ 1210$
$\mathfrak{£ 2 5 0 0}$
5985
£3000
$£ 3500$

PRODUCT
MARCONI 2955/2960 Multi-
MARCON 2955/2900 Multi-
(Various software options
available i.e. TACS. NMT,
Band III and AMPS).
MEGGER PAT2 Portable Appliance
Tester.
PHILIPS 519350 MHz Programmable
Synthesised Function Generator.
£195

POWERSENSE Single Phase Mains
Analyser, with built-in printer.
PRISM 5042 Power Supply Unit.
Voltage range $0-30 \mathrm{~V}$, current
limit 10-2200mA.
RACAL 1991 Universal Counter
suitable for direct measurement up to 160 MHz .
RACAL 1992 Universal Counter
As 1991 but with input C with
frequency range 40 MHz to 1.3 GHz
SCHAFFNER NSG200E System Main-
frame.
SCHAFFNER NSG203A Plug-in.
SCHAFFNER NSG204A Plug-in
SCHAFFNER NSG222A Plug-in.
SCHAFFNER NSG223A Plug-in.
SCHAFFNER NSG224A Plug-in
SCHAFFNER NSG225 Plug-in.
SIEMENS C1732 Multireg fast Multi-
channel Recorder, with facility of
up to 32 channels.
SIEMENS DC Current Module.

SIEMENS DC Voltage Module.

SIEMENS DC Universal Module. $£ 85$
SIEMENS C1013 Recorder £1750
STAG SE15 Eraser
STAG PP39 Universal MOS EPROM
Programmer (Includes RS232 Inter-
face).
STAG PP40 Ganged EPROM/EEPROM
STAG PP41 Ganged EPROM/EEPROM
Copier (Includes RS232 Interface)
STAG PP42 Gang/set Copier (Includes
RS232 Interface). £975
STAG ZL30A PAL Programmer.
STAG PPZ Universal Programmer
mainframe.
£1800
STAG ZM2000 Universal PROM
[950
Module for Stag PPZ.
STAG ZM2200 Logic Module for
Stag PPZ
TEKTRONIX 2225A Dual Channe
50 MHz Oscilloscope.
TEKTRONIX 2445B Four Channel £1500
150 MHz Oscilloscope.
THANDAR TG503 5MHz Pulse/
Function Generator.
THANDAR TO315 15MHz Battery
Portable Oscilloscope.
THANDAR TS3022 Bench Powe
TIME ELECTRONICS 2003 Voltage Calib- E225
rator.
TIME 9000 Series Various.
TREND DT100 RS 232 N. 24 Data Communi-
cations Test Set
TREND DT105 RS232N. 24 Data Communi-
cations Test Set
TR10 LA1910 GPIB Bus Analyser
Analyser for IEEE-488 Bus
WAVETEK 191 20MHz Pulse/Function
Generator.
WAYNE KERR 4210 LCR Component Meter
For measu
deviation.
WAYNE KERR 4250 LCR Component Meter
For measurement of L. C, R, D, Q, \%
deviation
WAYNE KERR Capacitor Tweezers for
WEIR 4000T Stabilised Twinpack Power

Ring (0763) 247251
First Rental Limited
PO. Box 19, Newark Close, York Way,
Royston, Herts, SG8 5HH
Fax: (0763) 242106

Computers and Peripherals also available.
Prices quoted exclude carriage charges and V.A.T and are subject to availability.

Prices quoted are for one-off quantity and exclude warranty.
All products sold are fully tested and callibrated to manufacturers specification, and wil be eligible for manufacturers maintenance contract where appropriate.
?

Atomic power drives megamega memories

Last year IBM scientists Don Eigler and Erhard Schweizer achieved something of a publicity scoop by printing the company logo with individual xenon atoms on a nickel substrate. Now Hitachi scientists have now taken the technology another stage forward by detaching individual atoms from what was previously a uniform flat surface. For the electronics industry the eventual result could be memories a million times denser than current devices

It was perhaps appropriate for IBM to be making the running in the original work, since its scientists had previously won a Nobel prize for inventing the enabling technology. Moving individual atoms around and, even more surprisingly, being able to produce an image of the result is an incredible feat considering that the smallest speck of visible dust may contain around 10^{14} atoms.
The secret lies in a device called the scanning tunnelling microscope (STM) which has revolutionised our ability to study matter down to atomic dimensions.

This tunnelling effect (also exploited in
the tunnel diode) is critically dependent on the gap between a pair of charged conductors: increase the gap and fewer electrons can traverse it. If one of the conductors is placed in a feedback loop so that the electron flow remains constant, then it will hover at a specified distance from the other conductor.

Microscopic tracking

In the case of a practical STM the movable conductor is made in the form of a very fine needle that floats over the fixed specimen. And because it is forced to maintain a precise spacing, the needle when moved sideways, will track the microscopic hills and valleys of the specimen in a manner analogous to the stylus of a record player. The only cifference is that the STM needle can track hills and valleys on the atomic scale without ever touching them.
"Peace "91 HCRL" written in molybdenum disulphide by removing sulphur atoms.

Last year's spectacular result came about when Eigler and Erhard developed the STM beyond that of a mere passive, diagnostic tool. Using higher voltages on the probe and cooling their samples to near absolute zero they managed to nudge 35 xenon atoms into specified locations in the nickel lattice.
Hitachi scientists have now taken STM technology another stage forward by doing almost the reverse, detaching individual atoms from the uniform flat sur face.

What's more, they've proved they can do it at room temperature, a significant achievement.
As with the IBM work the method involved scanning the surface of the substrate using a voltage and spacing to give a clear picture of that surface, but without changing it. The STM needle was then moved even closer - a mere 3 Angstroms - and given a pulse of a higher voltage. A tungsten probe floating over a surface of molybdenum disulphide was used in the experiment and when the surface was subsequently checked using the STM in its diagnostic, or picture-taking mode, it was found that each pulse had removed a single sulphur atom from the molyjdenum disulphide.
Although further studies will be necessary to understand the atom detachment mechanism, Hitachi researchers believe that the atoms are removed by field evaporation, a phenomenon in which atoms fly into the surrounding space when the interatomic binding energy is overcome by a strong electric field.
Excising individual atoms with high precision has the same practical goal as all research on atomic manipulation: higher density memories and atom-scale active devices. In memory terms alone a Hitachi spokesman suggests that STM technology might improve storage capacity by a factor of $10^{\text {' }}$ compared to today's 4Mbit drams.

Research Notes is written by John Wilson of the BBC World Service science unit.

Editorial survey: use the infomation card to evaluate this article. Item A.

1993 aim for Europe Tflops supercomputer

A group of European academics and computer engineers is close to completing a design for a supercomputer which can process 1 Teraflop/s (1×10^{12} floating point operations/s).

European Teraflop Initiative, which includes academics from Cern and the University of Edinburgh as well as companies like Parsytec and Meiko, believes it can build a working machine by 1993 . This is despite a recent EC report which found that Europe would have to invest about $£ 750$ million each year to catch up with the supercomputer technology lead built by the US and Japan.

The working group has welcomed the report's call for funding, especially for developing a market for European-built supercomputers. But members feel that the expertise needed to make the machine and write sofiware already exists.

ETI's machine will use about 50000 microprocessors all running in parallel.

One of the engineers working on the design said that the biggest problem would be finding a suitable micro. "To build a computer with 10000 processors you need to have very small nodes, with less than 10 glue logic chips per node. This would be very hard with the [Intel] i860," he said.

But he expected it to be more workable with the Hl version of the transputer.

$\$ 6.5 \mathrm{~m}$ chance to soak up the sun

A three-year programme has been drawn up by the Solar Energy Research Institute (Seri) to develop large area, high efficiency, multi-junction thin film solar electric generating modules that convert sunlight directly into energy.

Under the programme Solarex and Seri will share the $\$ 6.5 \mathrm{million}$ cost of developing advanced modules demonstrating a stable conversion efficiency of 12%. The contract also targets development of a small area ($1 \mathrm{~cm}^{2}$) device with a 14% conversion efficiency.

Unlike typical single-junction solar cells, multi-junction solar electric devices are constructed of several solar cells placed on top of one another, each being
designed to capture a different portion of the solar spectrum.

Multi-junction structures have already demonstrated impressive gains in stability over earlier single-junction devices.

Risc strategy

Mips Computer Systems has unveiled its plans for the R4000 risc microprocessors. The 64-bit devices, when they eventually appear as silicon, will use an eight-stage pipeline to execute two code instructions every clock cycle.

The company has plenty to say about the technical points of its device; its cache page lock mode, addressable memory range and pipeline stage bypass circuitry among others. But the most interesting features are very much more basic.

There will be two versions of the chip. One is housed in a 450 pin grid array and the other in a 180 lead package.
Something which will certainly be left off the smaller size is the dynamic real world delay compensation circuitry. The 450 pin device will have two connections shorted together on the circuit board, allowing the chip to measure and accommodate variations in the signal delay between the chip die and the board. If a chip maker produces a "faster" package than another, the user won't have to worry about the difference.

20000 lasers on an IC

Scientists at IBM's Zurich Research Laboratory have developed a technique to build 20000 lasers on a round semiconductor 2 -in across. It is claimed to be the first time anyone has been able 10 massproduce and mass-test semi-conductor lasers on a complete wafer.

In the new process narrow trenches 0.005 -in deep are etched into the AlGaAs

semiconductor wafers to form laser mirrors. Previously mirrors were formed individually for each laser by cleaving the semiconductor crystal, and the lasers had to be individually tested. Now IBM can fabricate and test thousands of lasers at once on an uncut wafer.

Shown above is a water with 5000 lasers. Enlarged pictures show an array of six individual lasers and accompanying photo diodes, and a single laser and photo diode

Chip ship: The space Industries sheet float zone furnace is used for high-temperature supercouductor materials processing research in microgravity enviroument aboard the Nasa KC-135 parabolic aircraft. The industrialised Macintosh-based system is controlled by National Instruments' LabView?

LASERS - SCOPES - AVOS - SOLAR MOTORS — FLOPPY DRIVES HEATERS - PRINTERS - FIELD TELEPHONES - MEGGERS - ETC ETC all at unrepeatable prices

4 COLOUR PRIMTER PLOTTER Sharp ref IP16 made for use with their MZ800 but adaptable to many other computers. Brand new and complete with pens, paper, leads, and instructions. $£ 25$ plus $£ 5$ insured delivery.
AVO-METER Ex British Telecom this is a 19 range 20 K o.p.v. top grade instrument, covers AC \& DC voltages, current and resistance, very good condition, fully working and complete with leads $£ 9.50$, leather carrying case $£ 2$ extra (batteries not included but readily available).
12 VOLT 1.9 AMP-HOUR rechargeable battery by Jap YUASHA brand new, charged ready for use $£ 6.50$ each. Solar charger to house this and keep it ready $£ 29.50$.
EPSON FLOPPY DRIVES 7 models in stock, all double sided all brand new and with manual, model nos SMD2801H, SMD280H, SMD180B, these are $31 / 2^{\prime \prime}$ and SD540, SD521L, SD580L, these are $51 / 4^{\prime \prime} £ 49.50$ any model.
100 WATT MAINS TRANSF ORMERS all normal primaries:- $20-0-20$ voll $2 \frac{1}{2} \mathrm{~A} 30 \mathrm{volt}$ $31 / 2 A, 40$ volt $21 / 2 A$ and 50 volt $2 A$ all upright mounting, all $£ 4$ each, good quantities in stock.
COLOUR MONITORS 12 " high resolution in black metal case with mains p.s.u. built in, unused, but line rejects so will require servicing, hence offered at the very low price of £69.00 plus $£ 5$ delivery
PHILIPS 9" HIGH RESOLUTION MONITOR black and white in metal frame for easy mounting, brand new still in makers packing, offered at less than price of tube alone, only $£ 15$ plus $£ 5$ delivery - good discount for quantities.
16 CHARACTER 2 LINE DISPLAY screen size $85 \mathrm{~mm} \times 36 \mathrm{~mm}$, Alpha-numeric LCD dot matrix module with integral micro processor made by Epson their ref 16027AR brand £8 each, 10 for $£ 70,100$ for $£ 500$.
INSULATION TESTER WITH MULTIMETER internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges. $A C / D C$ volts, 3 ranges $D C$ milliamps, 3 ranges resistance and 5 amp range. These instruments are EX British Telecom, but in very good condition, tested and gntd. OK, probably cost at least $£ 50$ each, yours for only $£ 7.50$ with leads, carying case $£ 2.00$ extra.
110 WATT POWER SUPPLY ASTEC switch mode, 230 V mains input; 38 V at $21 / 2 \mathrm{~A} \& 5 \mathrm{~V}$ 3A outputs, encased and fitted on panel mounting plate with mains input socket and on/ott switch, made for use with computers or other top grade equipment. You can have it at a fraction of its proper price. Brand new and guaranteed. Sample £12.00 post paid - 3000 available \& good discount to quantity buyers.
BRUSHLESS D.C. 12V FAR tiny, only 60 mm square, good air mover but causes no interference $£ 8.00$
2WW LASER Helium Neon by PHILIPS. full spec, £30, power supply for this in kit form with case is $£ 15.00$, or in larger case to house lube as well $£ 17.00$.
MAINS 230V FAN best make "PAPST" $41 / 2$ " square, metal blades $£ 8.00$.
BAITERY MOTORS 12 models in stock in large quantities ranging from tiny model aircraft one at 25 p each to $1 / 3 \mathrm{hp}$ made to drive the famous Sinclair C5 car, you can have this at $£ 17.50$.
SOLAR MOTORS $11 / 2-9 V$ precision made to operate from low current off solar cells $£ 1.50$, solar generator to drive this $£ 7.00$, has provision for battery back up when sun is not shining!
COPPER BOARD for making you pcb $174 \times 100 \mathrm{~mm} \times 2 \mathrm{~mm}$ thick double sided and brand new. 50p each, $£ 40$ per hundred. $£ 350$ per thousand.
AIR SPACED TRIMMER CAPS 2-20 pf ideal for precision tuning uhf circuits 25p each 10 for $£ 2.100$ for $£ 15$.
1Khz. TONE GENERATOR this is PP3 battery operated and has a 1 Khz output that can be continuous or interrupted at a rate variable by a panel mounted control. Also on the front panel are separate output sockets for monitor or headphones, and a battery condition indicator. Constructed on a pcb and front panel size approx $105 \times 50 \mathrm{~mm}$ ex equipment but in as new condition $£ 2$ each.
OSCILLOSCOPE 301B developed for testing transmission lines, it makes and displays pulse echoes to tind shorts and breaks in cable networks, this uses a $3^{\prime \prime}$ CRT to display the type of fault and a LCD to read out the distance from the fault. The instrument is powered by 12 V of rechargeable nicads located in base, and it generates 1.5 kv internally. It is housed in a high impact plastic case size approx $91 / 2^{\prime \prime}$ $\times 91 / 2^{\prime \prime} \times 5^{\prime \prime}$. Ex British Telecom in very good condition and working order, $£ 49.50$ plus $£ 5$ insured delivery.
FIELD TELEPHONES just right for building sites, rallies, horse shows etc, just join two by twin wire and you have two way calling and talking, and you can join into regular phone lines if you want to. Ex British Telecom in very good condition, powered by batteries (not included) complete in shoulder slung carrying case. £12.50 each.
MAINS ISOLATION TRANSFORMER stops you getting "to earth" shocks. 230 V in and 230 V out. 150 watt upright mounting $£ 7.50$.
MINI MONO AMP on pcb size $4^{\prime \prime} \times 2^{\prime \prime}$ with front panel holding volume control and with spare hole for switch or tone control, output is 4 watt into 4 ohm speaker using 12 V or 1 watt into 8 ohm using 9 V . Brand new and perfect only $£ 1$. each or 12 for £10.
EVER LASTING BATIERIES well nearly, Lithiam, have a shelf life of over 5 years so are ideal for fire alarms and similar circuits which must always be ready but get little maintenance, bargain offer 4×3 Lithiam batteries for $£ 1$.

AMSTRAD 3.5 FLOPPY DRIVE Reterence FD9 brand new and perfect, £45
ATARI 64XE COMPUTER at 65 K this is quite powertul so suitable for home or business, unused and in perfect order but less PSU, only £19.50, Handbook £5 extra.
CAR SECURITY ALARM protect your car (or other valuables) with an ultra-sonic alarm, complete transmitter receiver and piezo shrieker, cased new and ready to go once PP3 battery is fitted was $£ 40$, now yours for $£ 10$.
9" CATHODE RAY TUBE Philips M24/306W, which is not only high resolution but is also X Ray and implosion protected, regular price over $£ 30$, you can have them at $£ 12$ each and you will receive the deflection coils as well tubes -are guaranteed unused.
80 Watt MAIMS TRANSFORMERS two available in good quality, both with normal primaries and upright mounting, one is 20 V 4 A the other 40 V 2 A only $£ 3$ each or 10 for £27 carriage paid.
PROJECT BOX size approx $8^{\prime \prime} \times 4^{\prime \prime} \times 41 / 2^{\prime \prime}$ metal, sprayed grey, louvred ends for ventilation otherwise undrilled made for GPO so best quality, only £3 each or $£ 10$ for <27.
12V SOLENOID has good $1 / 2 z^{\prime \prime}$ pull or could push it modified, size approx $1 / 2^{\prime \prime}$ long by $1^{\prime \prime}$ square, $£ 1$ each $0^{\circ} 10$ for $£ 9$.
WATER VALVE 230 V operated with hose connections, ideal for auto plant spray or would control air or gas into tanks etc, $£ 1$ each or 10 tor $£ 9$.
5 21/2A POWER SUPPLY UNIT 230 V mains operated, mains filtered and DC voltage regulated with mains on/off switch and indicator, $£ 6$ each or 10 for $£ 50$.
HANG UP PHONE wori't clutter up your desk or workbench, current model, has push button dialling, last number recall, internal alarm etc., Ex B.I. in good condition and fully working ready to plug in. $£ 5$
HIGH VOLTAGE CAPS if you use these ask for our I-30 Kv Capacitor list, we have over $1 / 4$ million in stock and might save you a lot of money
TWIN $360 K 5.25$ INCH FLOPPY DISK DRIVE with power supply built into a professional white case complete with mains lead. Connections are via a 37 pin ' D ' socket, full connection details supplied. Brand new by famous Japanese maker £59.50.
ELECTRONIC BUMP \& GO SPACESHIP sound and impact controlled responds to claps and shouts and reverses or diverts should it hit anything! Kit with really detailed instructions, will make ideal present for budding young electrician. Should be able to assemble but you may have to help with the soldering of the components on the PCB. Complete kit $£ 8.95$.
$500 V$ BRIDGE MEGGER developed for G.P.0. technicians the Ohmeter 18 B is the modern equivalent 0^{4} the bridge meggar. 9 V battery operated it incorporates a 500 V generation for insulation testing and a null balance bridge for very accurate resistance measurement. On the front panel there is a $3^{\prime \prime} \times 3^{\prime \prime}$ panel meter calibrated in megohms to inf. and a small scale to indicate balance showing the exact setting of the four controis in the variable arm of the resistance bridge. Ex B.T. in quite good condition with data\&tested. Yours for a fraction of original cost $£ 45+£ 5$ insured delivery.
TRAVEL MECHANISM goes backwards and forwards, could be used to animate a display or position a device, battery or p.s.u operated, distance of travel $4^{\prime \prime}$ and speed of travel depends on applied voltage $11 / 2 \mathrm{~V}$ very slow 12 V max is quite fast. $£ 5.00$.
SOUMD SWITCH has countless uses, one could be to control the above travel mech. Signals of 10 Hz to 20 kHz picked up by its electret mike and FEI amplifier and further amplitied to be able to control relay motor etc up to $1 / 2$ amp. supplied ready to work from 6V. Price only L 2 .
EXPERIMENTING WITH VALVES don't spend a fortune on a mains transformer we can supply one with standard mains input and secs. of $250-0-250 \mathrm{~V}$ at 75 mA and 6.3 V at 3 A. price $£ 5$.
15Watt 8ohm 8" SPEAKER \& 3" TWEETER made for a discontinued high quality music centre, give real hi.fi. and for only £4 pair.
TIMES TEN IONISER using transformers and novel circuitry. our ioniser emits at least ten times as many ions as does any other kit on offer, nor do we know of a ready built model that is as good, you don't need a tester to see it it is working just bring your hand close to it and feel the stream of neg ions. It's a kit complete with case, nothing else to buy yours for $£ 14.50$.
ULTRASONIC TRANSMITTER/RECEIVER with Piezo alarm, built into preformed case, is triggered by movement disturbing reflected signal, intended for burglar alarm, car alarm etc. has many extras, time delay, auto reset, secret off device etc. A £40 instrument yours for $£ 10$.
MOVEMENT ALARM goes off with slightest touch, ideal to protect car, cycle, doorway, window, stairway, etc. etc. Complete with piezo shrieker ready to use. Only £2 (PP3 battery not supplied).
STEREO HEADPHONE extra lightweight with plug $£ 2$ each or 10 pairs for $£ 18$. Prices include V.A.T. Send cheque/postal order or ring and quote credit card number. Add $£ 3$ post and packing. Orders over $£ 25$ post free, unless postage quoted separately.

M\&B ELECTRICAL (WW)
12 Boundary Road, Hove, Sussex BN3 4EH Telephone (0273) 430380 Fax (0273) 410142

Portable products and wireless communications are now the two big areas of electronics activity for leading technologists, judging by the International Solid State Circuits Conference (ISSCC) held earlier this year.
As a result, flat-panel displays, ultralow power memory and technological options for personal wireless communication are all hot issues for current R\&D.

Looking first at displays, no less an authority than IBM's TJ Watson Research Centre is saying that full-colour, flatpanel, thin-film transistor (TFT) liquidcrystal displays are the future for computer and television viewers, replacing the bulky and power-hungry cathode ray tube. IBM believes that 1991 will be the year in which these panels will be manufactured in quantities of more than a million.

A keynote speaker from Toshiba supported that view. Perhaps it is no coincidence that IBM and Toshiba have a joint venture to manufacture large, colour active-matrix LCDs. First factory comes on-stream this Spring.

Amorphous or polysilicon

According to an ISSCC panel, there are two main technology options for building large flat panels. One is to use amorphous silicon TFTs and the other is to use polysilicon TFTs.

Disadvantage of amorphous silicon is that drive currents are typically 1000 times smaller than with the n-channel sin-gle-crystal mosfet driver chips needed to operate the display. For a mega-pixel display, several thousand connections need to be made to the active matrix, increasing costs and presenting reliability problems.

On the other hand, polysilicon TFTs offer drive currents about one tenth those of single-crystal devices and both n-channel and p-channel devices are avaitable. This makes it possible to integrate cmos driver and interface circuitry directly on the glass with the display. greatly reducing the number of external chips and connections.
But Nippon Telephone and Telegraph (NTT) believe that the amorphous silicon approach could come up against a technical barrier at IM pixels per panel. NTT's view is that for larger denser, panels the move must be made from amorphous silicon to polysilicon, integrating the active matrix, driver, interface and defect-tolerant circuits on the same glass substrate.

IT'S GOING TO BE A WIRELESS WORLD

Low temperature polysilicon processing would have to be mastered.

Sharp's assessment is that whereas both approaches are feasible, polysilicon seems the best solution for high resolution displays, though Hitachi think that integrating driver and interface circuitry onto the glass will be more effective in reducing the number of chips and connections than the overall replacement of peripheral circuits by polysilicon TFTs.

Whether amoprphous silicon or polysilicon becomes the dominant technology. drive requirements will differ from CRTs. CRTs are scanned and require a serial analogue input; active matrix displays write a line at a time and require parallel imputs. If polysilicon drivers are to be

> The ISSCC, held every year in February in San Francisco, is the premier world forum for announcing advances in microelectronics. 1991 conference papers described new integrated circuits and gave a good indication of where electronics leaders are directing their R\&D. David Manners reports on progress to a portable and wireless world.

integrated with the displays then new circuit design techniques may be required.

Better memory

Much consideration was given at the ISSCC to the conflicting pressures on selecting different types of memory store, principally in relation to the new generations of portable computer.

The problem is essentially that if you use disks, you need bulky revolving mechanisms requiring hefty batteries. It follows that the resulting machine is heavy, large and has just a two or three hour battery life.

Memory chips give the advantages of lightness. cheapness and 40 to 60 hours of battery life; but your removable storage medium - a card rather than a floppy is compatible with precious little.

No one seems to have resolved this dilemma yet, although it was pointed out by speakers from Intel that it is possible to produce a chip which is non-volatile, can be erased electrically rather than by UV, and because like dram it needs only one transistor to make a memory cell capable of storing a binary digit, has the potential to be both dense and cheap.

The chip is called a flash eeprom (electrically erasable programmable read only memory) and it currently costs about $£ 7$ 10 for a I Mbit device, allowing a credit-

Many Radio Amateurs and SWLS are puzzled.

Just what are all those strange signals you can hear but not identify on the l.f. and h.f. frequencies? A few of them, such as c.w., RTTY, and Packet you'll know - but what about the many other signals?
Hoka Electronics have the answer! There are some well known CW/RTTY decoders with limited facilities and high prices, complete with expensive PROMS for upgrading, etc., but then there is Code 3 from Hoka Electronic! It's up to you to make your choice - but it will be easy once you know more about Code 3.
Code 3 works on any IBM-compatible computer with MSDOS having at least 640 kB of RAM.
Code 3 hardware includes a complete digital FSK Converter with built-in 230 V ac power supply and RS232 cable, ready to use. You'll also get the best software ever made to decode all kinds of data transmissions. Code 3 is the most sophisticated decoder available, and the best news of all is that it only costs £249 plus VAT!
The following modes are included in the basic-program (with the exact protocols).

Packet Radio Ax 25, 50 to 1200 Bd Hell: Synchronous/asynchronous, all speeds Fax. Weather charts, photographs with 16 grey scales at $60,90,120,180,240 \mathrm{rpm}$ Morse: Automatic and Manual speed with wpm indication
Press DPA: F7b spec., 300 Bd ASCII Wirschaftdienst: F7b spec.. 300 Bd ASCII Sport Information: f7b spec., 300 Bd ASCII Autospec: Mk's I and II with all known interleaves
OUP ARQ: Artac ITAZ
TWINPLEX F7bl ... F7b6 Simplex ARO
ASCIITA 5 all speeds, parity
Baudot: ITA 2 plus all types of Bit inversion, at
any speed
All modes in preset and variable user-defined baud rates and shifts.
Five options are available to use with the Code $\mathbf{3}$ and consist of:
1: OSCILLOSCOPE, this facility displays the measured frequency versus time, including split-screen, storage and non-storage modes at $\mathbf{£ 2 5}$.
2: PICCOLO MK VI (Everybody wants this facility, but it's only on offer from Hoka), the well-known multitone-mode at $\mathbf{£ 6 0}$.
3: ASCII 'SAVE TO DISC' Store all decoded text to Disc as ASCII. £25.
4: COQUELET (Another multi/tone system. Only on offer from HOKA !). £60.
5: SPECIAL ARQ/FEC. Various other ARQ/FEC systems. $\mathbf{£ 8 0}$.
Plus many other special codes. Send for details, price on application.
Along with the many facilities listed above, the analysis section of the Code 3 offers you a wide choice of unique facilities such as: a built-in AF frequency spectrum-analyser for shift measurement and tuning, plus precision speed measurement up to 0.0001 Baud resolution. Other analysis facilities include Speed Bit analysis, Speed Measurement, Character Analysis, Auto-correlation of MOD and RAW signal, Bit Analysis. All these state-of-the-art features are included in Code 3 to assist the experienced user.
All options are available from the main menu, saving or loading to or from hard or floppy disk in RAW Bit form (no loss of unknown signals), hard copy with printer, on-screen tuning indicator and very easy to use online Help-files.
To order, phone us for more details or send cheque, payable to:
HOKA Electronics HOKA Electronics (UK)
Feiko Clockstr. 31
NL-9665 BB Oude Pekela
The Netherlands
Tel: 010-31-5978-12327
Fax: 010-31-5978-12645
84 Church Street
84 Church Street
Langford, Biggleswade, SG18 90A, Beds
Tel: 0462-700644
Fax: 0462700893
Please specify disk size $31 / 2$ or $51 / 4^{\prime \prime}$ when ordering!
All prices ex. VAT and Shipping; price includes a free 6-month software update and life-time tech. support.

Everything you want ...

to make life easier. TDS2020 is an ideal way to save time and money designing equipment.

As a High Performance 16-bit Control Computer its on-board Assembler and Forth high level language make programming and debugging a pleasure, yet give the execution speed you need in a real-time system.

As a Data Logger Module you've little to add to its 10-bit 8 -channel analog to digital converter, real time clock and non-volatile RAM of up to half a megabyte.

You will also like the price. Call for full details.

Triangle Digital Services Ltd

 223 Lea Bridge Road, LONDON E10 7NE Tel 081-539 0285Fax 081-558 8110

TELECOMMUNICATIONS EQUIPMENT TEST GEAR, COMPUTERS, ETC

monthly sale catalogues of surplus, SECONDHAND AND REDUNDANT EQUIPMENT AVAILABLE ON ANNUAL SUBSCRIPTION OF $£ 5$. ITEMS INCLUDE:

SCOPES, SIGNAL GENERATORS, POWER SUPPLIES, POWER METERS, DVM'S, COMPUTERS, VIDEO MONITORS, SCIENTIFIC INSTRUMENTS, PRINTERS, MULTIMETERS, COMMUNICATIONS RECEIVERS, COMPONENTS, CONNECTORS, SEMI-CONDUCTORS, ETC....

PLEASE NOTE: ALL EQUIPMENT IS SOLD AS SEEN AND THEREFORE, MAY NOT BE IN WORKING ORDER. LOTS CAN BE DESPATCHED BY POST AT COST PROVIDING THE ITEMS ARE NOT TOO LARGE OR HEAVY.

> B. BAMBERELECTRONICS, 5STATIONROAD, LITTLEPORT, ELY, CE6 1QE TEL:ELY (0353) 860185.
card-sized 1 Mbyte memory card to be made for $£ 56$ - 80 .

Cheaper flash memory

$£ 80$ is a heavy price for a removable storage medium, but to bring down future costs Intel is projecting a very quick climb up the density scale for flash chips to 4 Mbit in 1992 and to 16 Mbit in 1994.

As if to demonstrate that such a timescale is possible, Mitsubishi gave a paper at the conference describing a 16 Mbit flash eeprom which could be made in a similar manner, and so for much the same cost, as a conventional eprom (erasable programmable read only memory - erased by exposure to ultra violet).

Credit-card-sized memory cards (sometimes called solid-state discs) with up to 24 eeprom chips, suggest the possibility of a removable storage medium providing 48Mbyte of non-volatile but electrically erasable and alterable memory.

As well as being useful for removable memory storage, it was argued at an ISSCC evening session that flash chips could become suitable for fixed, internal storage in computers. The justification was that cost-per-byte of flash chip storage was on a steeper learning curve than the cost-per-byte of hard-disk storage. An Intel panellist projected that by 1996 , with the 64 Mbit chip generation, the cost of flash would be less, byte-for-byte, than the cost of hard disk.

Communications

The ideal for personal communications, summarised at ISSCC by NTT, will be when: "Anyone can communicate instantly with anyone else anywhere else". The medium for achieving this ideal is advanced cordless telephony using radio waves.

Combining analogue and digital

[^0]
Storing analogue wavefo ms directly

Chips for computer memory storage are not the only new kinds of storage chios under current examiration.

For the first time, a chip has beer presented which stores analogue waveforms without any need for conversion into digital form. Silicon Valley start-up company Inlormation Storage Devices described a technique to store 16 s of analogue waveforms at 8 MHz using 128 K eeprom cells.

The technique eliminates A-tc-D and D-
to-A cor verters in storing analogue signals and is said to allow storage of eight times more intormation than can be achieved by digital techniques. In other words, using digital technology, a 1 Mbit chip would be needed to ofter equivalent storage to ISD's 128 K device.

The chip can interface directly to a microphone or loudspeaker without the need for other active components and reproduction is claimed to be better than telephone quality.

Short cut: direct storage of analogue waveforms without need for A-to-Ds.

Advent of chips to accomplish this aim has seen prices of equipment drop dramatically - a process which will continue.

According to UK's Shaye Communications, at an ISSCC evening discussion session, 1991 will see an explosion in the market as manufacturers produce standardised products based on the cordless telephone 2 (CT2) system. Overcrowding of the frequency spectrum has meant these "phones are moving from the 45 MHz band to $9(02-928 \mathrm{MHz}$.

At the moment the US cordless telephone system uses analogue techniques, but digital systems are needed to cope with the demands on available channels.

Two systems are proposed for a digital system in the USA: time-division multiple access (TDMA) amd code-division multiple access (CDMA).

TDMA uses quadrature phase shift keying (QPSK) and CDMA uses frequencyhopping spread-spectrum techniques. which are also used for Europe's proposed group special mobile (GSM).

By using microcells, according to the
panel, wireless private branch exchanges (PBX s) could become a reality during the 1990s. Such PBXs would need to operate in the $\mathrm{GH} \%$ range and would allow communication from anywhere in a building to anywhere in the outside world.
All in all, the message from 1991 ISSCC was a little different from the traditional ISSCC message of "Look what we can do". This year it seemed to be saying "Look what we can do for you". Instead of technology for its own sake, the world's electronics leaders are at last focusing their thinking on serving the shape of a future world, where electronic products are pocketable and wireless.

Editorial survey: use the information card to evaluate this article. Item B.

INSIDE MIXERS

Alarge mixing console arguably represents the most demanding area of audio design. The steady advance of digital media demands that every part of the chain that takes music from performer to consumer must be near-perfect. as the comfortable certainty that everything will be squeezed through the guality bottleneck of either analogue tape or vinyl disc now looks very old-fashioned.

Competition to sell sudio time becomes more cut-throat with every passing week, and it is clear that advances in console quality must not harm cost-eflectiveness. The only way to reconcile these demands is to innovate and to keep a very

A top-end mixing console should

 represents the highest form of audio design. Soundcraft's chief designer Doug Self describes the technology of acoustic excellence.clear view as to what is really necessary to meet a demanding specification: in other words the way forward is to use conventional parts in an unconventional way, rather than simply reaching for the most expensive op-amp in the catalogue.
Technical problems that must be overcome in a professional mixing console are many. A large number of signals flow in a small space and they must be kept strictly apart until the operator chooses to mix them; crosstalk must be exceedingly low.

Soundcraft's Series 3200 mixing console, which the company claims to be possibly the best-performing instrument ever built.

Up to 64 input channels, each with many stages, all have the potential to add distortion and noise to the precious signal. Even summing these signals together, while sounding trivially easy, is in practice a major challenge. In short, requirements are much more demanding than those for the most expensive hi-fi equipment, because degradation introduced at this stage can never be retrieved.

Major functions of consoles are largely standardised, although there is much scope for detailed variation. Figure 1 shows the system diagram, and the technique of multi-track recording is explained in the panel.
Figure 2 shows a typical input channel for a mixing console. The input stage provides switchable balanced mic and line inputs; the mic input has an impedance of $1-2 \mathrm{k} \Omega$, which provides appropriate loading for a 200Ω mic capsule, while the line input has a bridging impedance of not less than $10 \mathrm{k} \Omega$. This stage gives a wide range of gain control and is followed immediately by a high-pass filter (usually -3 dB at 100 Hz) to remove low-frequency disturbances.

The tone-control section (universally known in the audio business as "EQ" or equalisation) typically includes one or more mid-band resonance controls as well as the usual shelving Baxandall-type high and low controls. Channel level is controlled by a linear fader and the panpot sets the stereo positioning, odd group numbers being treated as left, and even as right. The PFL (prefade-listen) switch routes the signal to the master module independently of all other controls; a logic bus signals the master module to switch the studio monitoring speakers from the normal stereo mix bus to the PFL bus, allowing any specific channel to be examined in isolation.

Figure 3 shows a typical group module and Fig. 4 the basics of a master section; a manual source-select switch allows quality checking of the final stereo recording and two solid-state switches replace the stereo monitor signal with the PFL signal whenever a PFL switch anywhere on the console is pressed.

Fig.1. System diagram of complete mixing console, showing division into inputs, group monitor contributions and master modules. Routeing matrix determines which group of inputs shall be fed to a given track on the multi-track tape machine. Several channels share one effects device.

AUXILIARY SENDS; FOLDBACK AND EFFECTS.

The auxiliary sends of a console represent an extra mixing system that works independently of the main groups; the number and configuration of these sends have a large effect in determining the overall versatility of the console. Each send control provides a feed to a console-wide bus; this is centrally summed and then sent out of the console.

Sends come essentially in two kinds: prefade sends, which are taken from before the main channel fader, and postfade sends, which take their feed from after the fader, so that the final level depends on the settings of both. There may be anything from one to twelve sends available, often switchable between pre and post. Traditionally, this means laboriously pressing a switch on every input module, since it is most unlikely that a mixture of pre and post sends on the same bus would be useful; the 3200 minimises the effort by setting pre/post selection for each bus from a master switch that controls solid-state pre/post switching in each module.

Prefade sends are normally used for "foldback"; i.e. sending the artist a head-

Microphone inputs

The microphone preamplifier is a serious design challenge. It must provide from 0 to 70 dB of gain to amplify deafening drum-kits or discreet dulcimers, present an accurately balanced input to cancel
phone feed of what he/she is perpetrating, which is important if electronic manipulation is part of the creative process, and essential if the artist is adding extra material that must be in time with that already recorded. In the latter case, the existing tracks are played back to the artist via the prefade sends on the monitor sections.

Postfade sends are used as effects sends; their source is after the fader, so that the effect will be faded down at the same rate as the untreated signal, maintaining the same ratio. The sum of all feeds to a given bus is sent to an external effects unit and the output of this returned to the console. This allows many channels to share one expensive device (this is parricularly applicable to digital reverb.) and is often more appropriate than the alternative of patching a processor into the channel insert point.
"Effect returns" may be either modules in their own right or a small subdivision of the master section. The returned effect, which may well now be in stereo, the output of a digital reverb., for example, is usually added to the stereo mix bus via level and pan controls. EQ is also sometimes provided.
noise pickup in long cables and generate minimal internal noise. It must also be able to withstand $\$ 48 \mathrm{~V}$ DC suddenly applied to the inputs (for phantom-powering internal preamps in capacitor mics) while handling microvolt signals. The Soundcraft approach is to use standard

parts, which are proven and cost-effective through quantity production, in new configurations. The latest mic preamplifier design, as used on the 3200 , is new enough to be covered by patent protection.
It is now rare to use input transformers to match the low-impedance ($150-200 \Omega$) microphone to the preamplifier, since the cost and weight penalty is serious, especially when linearity at low frequencies and high levels is important. The lownoise requirement rules out the direct use of op-amps, since their design involves compromises that make them at least 10 dB noisier than discrete transistors at low impedance.
This circuit, shown in Fig.5, therefore uses a balanced pair of low-noise, low- R_{b} p-n-p transistors as an input stage, working with two op-amps to provide loaddriving capability and raw open-loop gain to linearise signal handling. Preamplifier gain is spread over two stages to give a smooth $0-70 \mathrm{~dB}$ gain range with the rotation of a single knob. This eliminates the switched 20 dB attenuator that is normally required to give the lower gain values, not only saving cost and complication, but also avoiding the noise deterioration and CMRR degradation that switched attenuators impose. The result is an effective input stage that is not only quieter, but also more economical than one using specialised low-noise op-amps.

EQ

Since large recording consoles need sophisticated and complex tone-control systems, unavoidably using large numbers of op-amps, there is a danger that the number of active elements required may degrade the noise performance. A typical mid-band EQ that superimposes a $\pm 15 \mathrm{~dB}$ resonance on the flat unity-gain characteristic is shown in Fig. 6. A signal is tapped from the forward path, put through a state-

Fig.3. Block diagram of typical group module, showing switching between direct output and tape replay for monitoring purposes.
variable band-pass filter which allows control of centre-frequency and Q , and then added back. To improve noise performance, the signal level at all locations (in all conditions of frequency, Q , and boost/cut) was assessed, and it proved possible to double the signal level in the filter over the usual arrangement, while maintaining full headroom. The noise

Fig.4. Block diagram of master module, with tape send/replay switching and automatic PFL switching.

generated is thus reduced about 6 dB .

Panpot

To give smooth stereo panning without unwanted level changes, the panpot should theoretically have a sine/cosine characteristic; such components exist, but they are prohibitively expensive and so most mixing consoles use a dual linear pot. with its law bent by a pull-up resistor, as shown in Fig.7a. This not only gives a mediocre approximation of the required law, but also limits the panning range, since the pull-up signal passes through the wiper contact resistance (usually greater than the end-of-track resistance) and limits the attenuation the panpot can provide when set hard left or right. This limitation is removed in the Soundcraft active panpot shown in Fig. 7 b by replacing the pull-up with a negative-impedance-converter that modulates the law-bending effect in accordance with the panpot setting, making a close approach to the sine law possible. There is no pull-up at the lower end of the wiper travel, when it is not required, so the left-right isolation
using a good-quality pot. is improved from approx -65 dB to -90 dB . This has also been made the subject of patent protection.

Summing

One of the main technical challenges in console design is the actual mixing of signals. This is done almost (but not (puite) universally by virtual-earth techniques. as in Fig.8a. A summing amptifier with shum feedback is used to hold a long mixing bus at apparent ground, generating a sort of audio black hole; signals fed into this via mixing resistors apparently vanish, only to reappear at the output of the summing amplifier, as they have been summed in the form of currem. The elegance of virtual-early mixing, as opposed to the voltage-mode summing technique in Fig.8b, is that signals cannot be fed back out of the bus to unwanted places, as it is effectively grounded, and this can save massive numbers of buffer amplifiers in the inpuls.
There is, however, danger in assuming that a virtual earth is perfect; a typical opamp summer loses open-loop gain as fre-

Fig.7. Standard panpot circuit at (a) showing how pull-up resistor draws current through wiper contact resistance, which is usually greater than the end resistance of the pot., limiting maximum attemuation. Arrangement at (b) uses NICs to replace pull-up to modulate law with panpot setting. Left/right isolation increased from-65dB to-90dB.

Fig.5. Low-noise microphone amplifier with wide gain range and balanced line output. Transistors in first stage avoid noise problem of op-amps.

Fig.6. Parametric mid-band EQ stage. $E Q$ and centre frequencies are independenily variable, being set by the parameters of the state-variable filters.
quency increases, making the inverting input null less effective. The 'bus residual' (i.e. the voltage measurable on the summing bus) therefore increases with frequency and can cause inter-bus crosstalk in the classic situation with adjacent buses running down an IDC cable.

Increasing the number of modules feeding the mix bus increases the noise gain: in other words the factor by which the noise of the summing amplifier is multiplied. In a large console, which might have 64 inputs, this can become distinctly problematic. The Sounderaft solution is to again exploit the low noise of discrete transistors coupled to fast op-amps, in contigurations similar to the mic preamps.

These sum amplifiers have a balanced architecture that inherently rejects supplyrail disturbances, which can otherwise affect LF crosstalk performance.

As a console grows larger. the mix bus systera becomes more extensive, and therefore more liable to pick up internal capacitive crosstalk or extermal AC fields. The 3200 avoids internal crosstalk by the use of a proptietary routeing matrix construction which keeps the unwanted signal on a bus down to a barely measurable 120 dB . This is largely a mater of keeping signal voltages away from the sensitive virtual-earth buses. Further improvement is provided by the use of a relatively low value of summing resistor; this also keeps

Fig.8. Virtual-earth summer at (a) effectively eliminates cross-talk, since there is almost no signal at the summing point. Voltage-mode circuit at (b) allow's crosstalk. Balanced virtual-earth summing circuit at (c) requires a separate inverter for each channel to provide the antiphase signal.
the noise down, although since it drops as the square-root of the resistor value, at best, there is a clear limit to how far this approach will work before drive power becomes excessive: $4.7 \mathrm{k} \Omega$ is a reasonable minimum value.

External magnetic fields, which are poorly screened by the average piece of sheet steel. are rejected by the balanced nature of the 3200 mix buses, shown in Fig.8c. The operation is much the same as

THE TECHNIQUE OF MULTITRACK RECORDING

Multitrack recording greatly enhances the flexibility of recording music. The availability of a number of tape tracks (anywhere between 4 and 32 on one reel of tape) that can be recorded and played back separately allows each instrument a dedicated track, the beauty of this being that one mistake does not ruin the whole recording; only a single part need be done again. The multitrack process is in two basic halves; recording individual tracks (or "tracklaying") and mixdown to stereo.

Recording. Normally only one or two parts are recorded at once, though it quite possible to dedicate five or six tracks to a drum kit. The initial sound, whether captured by a microphone or fed in directly from a synthesiser line output, is usually processed as little as possible before committing it to tape; subsonic filtering and perhaps compression or limiting are used, but most effects are carefully avoided because they are usually impossible to undo later. You can easily add reverberation, for example, but just try removing it.

Recording is performed via the input modules, this being the only place where microphone preamps are fitted. The inputs are mixed together into groups if required; performers doing backing vocals might use four or five microphones, but these would almost certainly be mixed down to a stereo pair of groups at the recording stage, so that only two tape tracks are taken up. A bank of switches on each input module determines which group shall be fed; this is known as the routeing matrix. Combined group outputs are then sent to tape; however a "group" is usually used even if only one signal is being recorded, as this is the part of the console permanently connected to the multi-track.

It is clearly essential that new parts are performed in time with the material already on tape and also that the recording engineer can make up a rough impression of the final mix as recording proceeds. Thus continually replaying already-recorded material is almost as important as recording it in the first place. During recording, the tape tracks already laid down are replayed
a balanced input; each group has two buses. Which run physically as close together as possible and the group reads the difference between the two. effectively rejecting unwanted pickup. The two buses are fed in antiphase from each input, effectively doubling the signal level possible for a given supply voltage. Overall mixing noise is reduced by 3 dB , the signal level is 6 dB up and the noise, being uncorrelated for each bus, only
through "monitor sections" which are usually much-simplified inputs giving limited control; this keeps the more flexible inputs free for material that is actually being recorded. One of the major features of the 3200 is that the monitor sections are unusually capable, having facilities almost identical to the inputs and allowing much more accurate assessment of how the mix is progressing, reducing learning time for operators.

Mixdown. When the tracklaying process is complete, there are 16 or more separate tape tracks that must be mixed down to stereo. Major manipulations of sound are done at this mixdown stage; since the multitrack tape remains unaltered, the resulting stereo being recorded on a separate twotrack machine, any number of experiments can be performed without doing anything irrevocable.

Multitrack replay signals now enter the console through the input channels, so that the maximum number of facilities are available. Linear channel faders set the relative levels of the musical parts, while the rotary panpots (panoramic potentiometers) define the placement of instruments in the stereo sound field by setting the proportion of signal going to left and right mix buses. The monitor sections are now redundant, and can therefore be used either as extra inputs to the stereo mix, perhaps for keyboards, or to return effects.

Virtual mixing. The advent of computerbased sequencers has given rise to the term "virtual mixing". Keyboard/synthesiser parts of the musical masterwork are not committed to multitrack, but instead stored in the form of MIDI sequencer data. This can be replayed at any time, providing means of synchronising it to the acoustic parts on the multitrack exist; this requires one tape track to be dedicated to some form of timecode.

Advantages are, firstly, that this gives almost any number of extra "virtual tracks", and secondly that the synthesiser parts suffer minimal degradation as they avoid one generation of tape storage.
increases by 3 dB .
The obvious method of implementing this is to use two summing amplifiers and then subtract the result. In the 3200 , this approach is simplified by using one symmetrical summing amplifier to accept the two antiphase mix buses simultaneously; this reduces the noise level as well as minimising parts cost and power consumption. Theconfiguration is very similar to that of the balanced mic amp., and there-

(a)
fore gives low noise as well as excellent symmetry.

Solid-state switching.
There are two main applications for electronic switching in console design. The first is "hard" switching to reconfigure signal paths, essentially replacing relays with either jfets (Fig. 9a) or 4016-type analogue gates which. since they are limited to 18 V rails and cannot handle the full voltage swing of an op-amp audio path, must be used in current-mode, as shown in Fig.9b. Note that when gate 1 is off, gate 2 must be on to ensure that a large voltage does not appear on gate 1 input. Full-voltage range gates do exist but are very expensive.

Fig.9. Hard switching with jfets in voltage mode (a) and with analogue gates in the current mode (b), which prevents gate elements from being driven outside their voltage capabilities.

Secondly. there is channel muting; this not a hard switch, since an unacceptable click would be generated unless the signal happened to be at a zero-crossing at the instant of switching: the odds are against you. The 320%) therefore implements muting as a fast-fade that takes about 10 ms : this softens transients into silence while preserving time-precision. It is implemented by a series-shunt jfet circuit, with carefully synchronised ramp voltages applied to the fet gates.

Performance factors

Primary requirements of modern consoles are very low noise and minimal distortion. Since a comprehensive console must pass the audio through a large number of circuit stages (perhaps over 100 from microphone to final mixdown) great attention to detail is essential at each stage to prevent a build-up of noise and distortion; the most important trade-off is the impedance of the circuitry surrounding the op-amp. for if this too high Johnson noise will be increased, while if it is too low an op-amp will exhibit non-linearity in struggling to drive it.

The choice of device is also critical, for cost considerations discourage the global use of expensive chips. In a comprehensive console like the 3200 with many stages of signal processing, this becomes a major concern; nonetheless, after suitable optimisation, the right-through THD remains below 0.004% at 20 dB above the normal operating level. At normal level it is unmeasurable

Editorial survey: use the information card to evaluate this article. Item C.

FIBRE-OPTICS EDUCATOR

Versatile training equipment for education and industry.

FIBRE-OPTICS POWER METER

dBm and $\mu \mathrm{W}$ scale; battery life 500 hours.

FIBRE.OPTICS MONITOR

For continuity testing and voice comms.

For further details contact:
ELLMAX ELECTRONICS LTD.
Unit 29, Leyton Business Centre,
Etloe Road, Leyton, London, E10 78T.
Telephone: (081) 5390136.

CHIPPING AT THE PAST

1f you saw any of the Down to Earth archaeology programmes on Channel 4 before Christmas, you will be aware that archaeology these days is pretty high-tech. Electronics and computers are a routine part of all but the smallest excavations.

They are used throughout a project, from electronic surveying and metal detecting before digging begins to reconstruction with computer-aided design and 3D animation programs when the dig is finished.

Now archaeology has beaten electronics and engineering, and become the first discipline to use the Gridpad computer in anger. The Gridpad, described in the panel, is a hand-held computer without a keyoard; instead, it has a brass stylus for writing on its A5-sized screen. It recognises handwriting and can store drawings and signatures as bit-maps in its IMbyte memory. Its maker, GRiD Computer Systems, believes it to be unique.

The machine is waterproof and fairly rugged (it will survive being dropped) and was designed to be used like a clipboard. But it also has a nine-pin serial port, so can collect data automatically from electronic instruments.

Richard Trainer, of Loughboroughbased Tangent Technology Designs (TTD), thought it would be ideal for collecting data from theodolites, which are used extensively by archaeologists. A survey must be done as a site is excavated, mainly to record unexcavated conditions to show where the excavation is to be done. After a dig, the soil is replaced carefully or, more often, the hole is filled with foundations for a building and it is difficult to see where the dig took place.

Theodolites are set up at reference points related to grid references. They measure two angles and a height is measured with a marked staff; from this, the distance of test points can be worked out

Archaeology is ripe for automation. A typical dig involves thousands of positional measurements required to produce a 3-D image of the site. Archaeologist Helen Geake and technology writer Elisabeth Geake bring past and present together.
by trigonometry. Nowadays, some projects use electronic distance measurers (EDMs), which eliminate one of the measurements and one of the calculations. The lucky few have combined electronic theodolites and EDMs.
But frequently, in archaeology, that is where the technology stops and the longsuffering people doing the survey must write down the raw data by hand and calculate the coordinates of the test point later. Waterproof paper is used when it rains!

Fortunate ones, on better-funded projects, have been using Psion Organisers or Husky Hunters in the field with their electronic theodolites and EDMs. The Psion, a very small, simple, hand-held comptiter, costs around $£ 80$ and is used like a programmable calculator: you tap in the raw
data by hand, whereupon it calculates 3D coordinates and stores them. The Husky Hunter, a larger and more sophisticated hand-held computer, can download data from an electronic theodolite and store the raw data as well as the coordinates. These systems represent the first stage of automation.

Map generation

A big problem with both the Psion and the Husky Hunter is that they generate coordinates, not a map. Even skilled archaeologists admit that it's easy to record particular points wrongly and even to enter the wrong setup data at the beginning of the day, without finding out until the coordinates have been plotted.

But the program written by TTD for the Gridpad plots a map on its screen as the raw data is collected, so it is much easier to spot mistakes as they are made. This feature is important because virtually all archaeology is destructive; digging is a once-only exercise. And there is never enough time for a dig, so anything that saves time is to be welcomed.

Only the edges of features are surveyed, such as the outline of a stone pavement. Using conventional methods, the survey coordinates are plotted onto a dimensionally stable plastic film called Permatrace. Then details such as individual paving stones are drawn on by hand. These must then be digitised if the map is to be stored on a computer - work which is usually saved for the winter. But because the Gridpad has a digitising screen, drawings can be done on the screen, which automatically digitises them.

Trainer said "If you take the Pad on site, you don't need to digitise. By the time the site has been excavated, all the data will have been digitised." One tenth of the York Archaeological Trust's postexcavation staff are currently employed in digitising - a significant expense.

If any surveying has been done in the past. this data can be loaded into the Pad at the stan of the survey to avoid repetition. TTD software also allows zooming in and out and panning and can glue logether the work done by two people on adjacent areas of a site. "It's like taking a cad package out with you," said Trainer.

A rather more glamorous aspect of archaeology than surveying is finds - the itens recovered from the excavation, which fall into two categories: bulk finds, such as pottery sherds. flint and bone: and small linds, which are usually the interesting things such as jewellery and coins.

The only record made of most bulk finds is in which layer of earth they were found. since the conventional method of recording a small find is to survey its position in the ground and then to put it in a marked plastic bag for cleaning and cataloguing.

With the Pad and TTD's software, the position of a small find can e marked directly onto the map shown on the Pad's screen. using the brass stylus. Then a description can be written onto the screen. which is stored in a file associated with the point on the map.

The advantage of all these time-saving

GRillPad's screen, showing a map of a lumulas, with contours.

Raw data is entered by means of a stylus and is then digitised as the work proceeds. GRillPad then plots a map of the dig on screen.

While it is difficult to raise money for a dig (and harder still in a recession. when little property development is going on), the post-excavation funds which usually finance the map-making stage are even more scarce. Post-excavation work is as important as the dig itself; if the dig is not published, it is worse than not digging at all, as digging is destructive.

Andy Copp of York University is a supervisor at Sution Hoo. in Suffolk, at the site of the famous Saxon ship burial and associated cemetery. He commented: "At the moment, we may be recording the minimum amount of necessary information [during an excavation]." If it took less time to process the information collected, archaeologists would be able to gather more evidence about the past.

Copp also pointed out that faster processing of the data might allow archaeologists "to take the work one stage further and draw reconstructions of buildings. This would involve both |site| plans and the finds to see if you could, for example, identify post-holes which belong to the same building. You could use AutoCAD".

The beautiful, sophisticated reconstructions seen on the Down To Earth programme were produced by an alternative to AutoCAD-3D animation. Imagic, a TV graphics animation house, used Soft Image software running on Silicon Graphics’ Iris workstations to give the viewer the impression of, for example, walking around a reconstructed house. This technique could be the next development in archaeology: IMAGIC is working on a couple of projects commissioned directly by archaeologists.

50000 points

Trainer is not an archaeologist himself, but a software engineer. He spent about a year and a half writing the code for the GRidPad in C and Pascal, with advice from archaeologists. one of whom is his wife. He estimates that the Pad can store the equivalent of more than 50,000 points. "It would be hard to make more than 1,500 measurements in a day, so the Pad could store about a month's work," he said, though he expected most people to download their data to a host computer at the end of every day.

Trainer said some archaeologists have bought laptop computers for use on site, but they are rather delicate, not waterproof and could easily run out of battery power before the end of the day.

One of the major reasons that it is taking so long to automate archaeology, of course, is cost. Most projects set money aside for EDMs and computing resources, but will they be persuaded to part with money for the Gridpad? The Pad and sottware cost around $£ 3,000$ together and a

An electronic clipboard is probably the most accurate description of the GRiDPad. It is about the size of an A4 pad, with a screen about A5 size and looks like an Etch-aSketch. A brass stylus, attached to the Pad by a wire, is used to enter data, text or sketches simply by writing on the screen.

Liquid crystal "ink" appears where the stylus has been; any mistakes can be crossed out with a vertical line, whereupon they disappear and the correction is written instead. The stylus acts as a mouse too, when it is tapped gently on the screen.
The screen itself is made of two layers, a conventional LC screen and a layer which detects the position of the stylus. This upper layer consists of glass with an undulating surface and a conducting compound, antimony oxide, in the "valleys"; when the stylus touches the screen it completes a circuit. To detect its position, 5 V is applied across the screen horizontally, then vertically. GRiD says the screen is difficult to scratch and should not wear out.
The Pad can recognise handwriting in the form of block capitals and numbers, even if they touch; if a character is unclear, the software will choose the most likely one. GRiD says some users have to alter their handwriting a little to help the Pad along.

It converts handwritten symbols to Ascii
characters, using a combination of two methods, segment-then-recognise and recognise- then-combine. In the first, the computer combines the strokes that go to make up a character and recognises the whole character at once. In the second method, the computer identifies strokes as they are written and gradually builds up a picture of which character is intended. The technique used here is called elastic matching.

Jeff Hawkins, an ex-neural biologist who designed the algorithms for the GRiDPad, said it "works on one character at a time. But the algorithm is so fast that we take a guess at the character and try to match it with a template, grouping several strokes together."

At the heart of the Pad is a standard PCcompatible with an 80 C 86 processor running at 10 MHz and 1 Mbyte of system ram, and it can be converted to an ordinary laptop machine by plugging in a keyboard and monitor. It can be programmed like this, or programs can be loaded via an RS-232C 9pin serial port and the LapLink program stored in rom. Instead of floppy disks it has two removable IMbyte ram cards. The screen has a resolution of 640×400 for both display and pen position sensing, which is marginally coarser than VGA.
suitable theodolite and EDM, such as Zeiss's Elta 6 Total Station, is about £8,000. Total Station is much more accurate (to 3 mm over 1 km) than necessary for this type of equipment, but it is comparatively simple for an electronic theodolite.
The TTD and Total Station system was designed to be easy to use. "It takes about a day to learn," claimed Trainer. "It prevents a lot of mistakes because you can see what you're doing and there are pulldown menus and help messages." Gridpad may be able to help archacologists over the computer phobia which many of them suffer from, but Trainer warned that the Pad could introduce problems not seen before: "Essentially we are getting rid of paper and that produces phobias."

Data on site

So far, the system has been tried out in Israel and Gloucester. At Tel Jezreel in Israel, the British School of Archaeology in Jerusalem and Haifa University are working together on a large and complex excavation. The site measures 200 m by 600 m ; it is mainly iron age, with a palace built by Jeareel, who is mentioned in the Bible, and includes a chalcolithic village (from the fifth millenium BC) and a
church and village built by the Crusaders. "Gridpad made the work much easier," says Trainer. "We surveyed the site in three days; it would have taken months without the EDM, Pad and software."

Gloucester City Council's assistant archaeology director, Malcolm Atkin, has used an early version of the system to build up a contour survey at two sites. One was the Norman castle in the city a rather confined urban site. The other, in contrast, was in the countryside, plotting areas where a magnetometer was to be used.

Atkin said that on the latter site everything could be done from one position, so the archaeologists didn't have to wander all over the fields with tape measures. But he said the main advantage of the system was its speed: "We're always under pressure of time and we need absolute accuracy. It will make an enormous difference to our work."

Editorial survey: use the information card to evaluate this article. Item D

Leader Video Monitors and

 Generators
THURLBY THANDAR

The Leader range of video instruments represents the state of the art for both broadcast and nonbroadcast applicat ons.

Our illustration shows just five models from the large range. They are (left tc right):

5851 V Fully featured PAL/NTSC vectroscope
5861 V Fully featured PAL/NTSC waveform monitor
£1,505
408P $\begin{aligned} & \text { Advaาced pattern gen } \\ & \text { with Genlock }\end{aligned} £ 2,443$
5871V Combined Vectorscope and waveform monitor
£3,664
LC399A Patterngenerator PALB

Thurlby-Thandar Ltd., Glebe Rd., Huntingdon, Camts. PE18 7DX. Tel: 10480) 412451 Fax (0480) 450409 Telex: 32250

CIRCLE NO. 140 ON REPLY CARD

82500 $\mathbf{2} 5000$ $\mathbf{£} 3500$ $\$ 7500$

MARCONL INSTRUMENTS

2017 slgnal generator μ-controlled GPIB 2019 synthesized signal generator (GPIB opt) 2356/2357 level oscillitor/levelver/transmitter, pair 2370 spectrum analyser 110 MHz $2380 / 82400 \mathrm{MHz}$ spectrum analyse 2431 A 200 MHz trequency counter $2438(3031) 520 \mathrm{MHz}$ universal counter timer 2501 RF power meter 0.3 W DC-1 GHZ 2503 KF power meter $10100 \mathrm{WDC-1} \mathrm{GHz}$ 2833 digital in-line monitor
2870 data communications tester
2955 test set with GP1B option (1 only in stock) 6460 microwave power meter with head 6421 $6460 / 1$ microwave power meter with head 642 0568 2-4GHz signal source TF 1245A O-Meter with 1246 and oscillat ors TF $20028 / 2170 \mathrm{~B} 88 \mathrm{MHz}$ signal generator TF2011 FM signal generator $130-180 \mathrm{MHz}$ TF2013 FM signal generator 800-960MH /FM signal generato

TF 2163 S UHF attenuator $\mathrm{DC}-1 \mathrm{GHz} 0-142 \mathrm{~dB}$ TF2175 RF power amplither $2-500 \mathrm{MHz} 27 \mathrm{~dB}$ gain TF2300 modulation meter TF2300 modulation meter
TF2304 modulation meter, automatic
TF2331 distortion meter
TF2500 audio trequency power meter
TF2600B video voltmeter $1 \mathrm{mV}-300 \mathrm{~V}$ isd
TF2807A PCM multiplex tester
F2905/8 sine squared pulse \& bar generato
TF2910/4 video non-linear distortion analyse TF2950 mobile radio test set
TF893A audio power me
TM4520 inductor set

HEWLETT PACKARD

1710 trequency down-converter for 8640 B sig gen ${ }^{\text {gen }}$ 3400 A mill -voltmeter $10 \mathrm{~Hz}-10 \mathrm{MHz}$ true RMS $\begin{array}{r}5750 \\ \mathbf{~} 250\end{array}$ 3581 A audio wave analyser $15 \mathrm{~Hz}-50 \mathrm{kHz}$ 382 AlP P band attenuator $12.4-18 \mathrm{GHz} 0-50 \mathrm{~dB}$
400 FL mV -Meter $100 \mathrm{HV}-300 \mathrm{~V} \mathrm{Is} .20 \mathrm{~Hz}-4 \mathrm{MHz}$ 200 FL mV. Meter $100 \mathrm{~V}-30 \mathrm{~Hz} \mathrm{MHz}$ $35 \mathrm{~A} / 8482 \mathrm{H}$ microwave power meter 4329A hugh-resistance meter . 4342 A -meter $22 \mathrm{kHz}-70 \mathrm{MHz}$ Q-range $5-1000$ 4342A Q-meter 22 kHz -70MHz. Q-range 5-1000. 5005 B signature multi-meter, programmable 53638 time interval probes 5384 A 225MHz system frequency counter GPIB 62668 power supply $0-40 \mathrm{~V}$ 0-5A 6516 A power supply 0-3kV @ 6mA 440A (002) HPIB A4 colorpro plotter 8165 A function generator $1 \mathrm{MHz}-50 \mathrm{MHZ} \mathrm{GPIB}$
\qquad 8405 A vector voltmeter. Voltage \& phase it
8553 B 110 MHz spectrum analyser plug-in 8600A dignal marker generator for 8601 A 8614 A signal generator $800 \mathrm{MHz}-2.4 \mathrm{GHz}$ 8620 A sweeper mann frame \& 8621 B plug-1n units 8640 B signal generator options 1.2 and 3 8656A signal generator $0.1-990 \mathrm{MHz}$ 8673 B signal generator $2-36.5 \mathrm{GHz}$

STOCK EXAMPLES T\&M EOUPPMENT

A WA Pype F242A auto distortion \& noise meter ANRITSU MN95D hbre-optic attenuator 0-65d AVO RM160/3 megohmmeter
AVO RM215L. $2 \mathrm{ac} / \mathrm{dc}$ breakdown tester to 12 kV BRANDE NBURG Alpha II 807R 0-30 kV BRUEL \& KJAER 4416 response test unit BRUEL \& KUAER 2609 measuring amplifte
BOONTON $102 B$ AM/FM signal generator FARNELL SSG520 signal generator AM/FM $10-520 \mathrm{MHz}$ FARNELL AMM automatic modulation meter $\mathbf{\Sigma}^{2} 325$ FLUKE 8020B handheld DMM $£ 125.8840$ A(09) $51 / 2$ DMM GIGATRONICS GU1240A signal source $0.01-4 \mathrm{GHz} \quad\{1250$ GIGATRONICS GU1240A signal source $0.01-4 \mathrm{GHz}$
GOULD J3B audio oscillator

-

 EKKRONIX 7 L 18 spectrum analyser plug-in unitTEXSCAN VS 60 C 1000 M H ? sweep generator TEXSCAN VS $9015 \mathrm{MHz}-2400 \mathrm{MHz}$ sweep generator
TOA PM-30R RF volt-meter $1 \mathrm{mV}-10 \mathrm{~V}$ isd WAYNE KERR 3245 inductor analyser

PLE ASE NOTE ALL OUR EQUIPMENT IS NOW CHECKED ENT LABORATORY TO BSECIFICATIONS BY INDEPEND to this standard can be supplied at very reasonable cost. All items guaranteed for 3 months (90 days) and 7 -days "return
tor full refund warranty. URGENTY REQUREO FOR STOCK high end test equipment. Cash watting for first-quabty
second-Luser Instruments. ALL PRICES SUBECT TO ADOInIONAL VAT. arker
\qquad 11602 B transistor fixture tor S -parameter test set E 395

GOULD OS4035 dilgital storage oscilloscope $\mathbf{5} 50$
$\mathbf{5} 225$
$\mathbf{5}$ PHILIPS PM5534 standard Dattern generator NTSC PHILIPS PM5545 colour encoder PAL PHILIPS PM5597 VHF modulators $£ 250$. PM5598 UHF PHIIPS PM6613 250 MHz Cor PHILIPS PM8202 recorder with $9874 / 01$ digits RACAL 9081 signal generator $5-520 \mathrm{MHz}$ synthesized RACAL 9082 signal generator 1.5520 MHz symh in sized

RACAL 9084 synthesized signal generator to 104 MHz RACAL 9105 RF micro wattmeter $0.02 \mu \mathrm{~W}-200 \mathrm{~mW}$ RACAL 9300 RMS voltmeter -80 dB to +50 RACAL 9301 RF milli-voltmeter RACAL 9301 A RF milli-voltmeter RACAL Store 7DS instrumentation tape recorder SCHLUMBERGER 4010A mobile radio test set SCHLUMBERGER 4021 mobile rado test set
SHIBASOKU $217 A 33$ SECAM colour bar generato SHIBASOKU 217 A 33 SECAM colour bar generator
SOUND TECHNOLOGY 1000 FM stereo sig gen Band SOUND TECHNOLOGY 1000 A FM stereo sig gen Band
TEKTRONIX 4658 100MHz oscilloscope
TEKTRONIX 2336 rugedized 100 MHz oscilloscope TEKTRONIX 576 transistor curve tracef TEKTRONIX TDR 1503 C options 3 and 4 Ne TEKTRONIX 4696 colour ink-jet printer (with 4510A)

CIRCIE NO. 144 ON REPIY CARD

MICROPROCESSOR DEVELOPMENT TOOLS

EMULATORS - SIMULATORS - COMPILERS - ASSEMBLERS - DEBUGGERS - PROGRAMMERS

77 C 828085 Z8 $6800080518086641803201068 \mathrm{HC11} 87 \mathrm{C} 75263016502$ Z80 V20 6809740 Series V40 80188 etc.

8051 DEVELOPMENT SYSTEMS

ROM EMULATOR

- ROM sizes from 16 kbit
- Full screen editor
- High speed parallel download
- Split and shuttle capability
- Battery back-up shuffle

NEW MTSUBISH1740 SERIES
Integrated:

- Assembler
- Editor
- Emulator with Real Time Trace

UNIVERSAL TOOLS

- Universal Assembler
- Compilers
- Simulators
- Dis-Assemblers
- Programmers for PROMs, PALs etc.

IN-CIRCUIT EMULATORS
68 HCl 177 C 828051 8086 NEC V Series 68000 Z80 8018880186 and more

SMART communcations

2 Field End, Arkley, Barnet, Herts EN5 3EZ. Telephone: 081-441 3890

There are three basic strategies available to execute an IC design in silicon: the programmable logic device (PLD), the full custom device, and the application specific IC (asic).

Taking the PLD first, this relies on eprom technology and is implemented using a matrix of logic gates. As each device has to be programmed individually and for large numbers of latches, this method is unpractical and expensive.

Also, because the internal silicon layout is fixed, gate utilisation is limited and so less circuitry can be accommodated on a single device.

Another approach, at the other extreme of the spectrum, is a full custom device. Each design is hand-crafted to optimise silicon use and hence improve speed.

But these devices take a long time to design, due to complexity, and hence are costly to produce. To be cost-effective, manufacturing volumes must be high to cover initial design and tooling costs.

A trade off between these two options is the semi-custom asic which combines the complexity of a full custom IC with the simplicity of a programmable design.

For asics, software has been developed to enable a unique design to be produced out of a library of gates, with the possibility of fairly cheap manufacture in low volumes and the capability for reasonably complex design.

Two sorts of asic

There are two main asic categories from which a designer can choose - the gate array or the standard cell.

A gate array is manufactured on a master silicon wafer which contains a matrix of logic devices. All the designer does is connect these logic gates together in a unique pattern.

In this way the master wafers of logic gates can be mass produced beforehand and customisation is only completed at the final stage of production. Production costs are reduced and there is a faster turnround in device completion.

But this solution does have a drawback in that there are many redundant logic gates because the design routeing can only occur along fixed channels. Silicon (and money) is wasted as a result and the performance of the device is limited.

Standard cell

The alternative approach is to use the standard cell, where the full asic design is

THE SILICON TRAIL STARTS HERE

> IC design can be implemented in

silicon in a variety of ways. Nigel Howell explains the pros and cons of different approaches.
constructed from predefined building blocks which have been tested beforehand by the manufacturer. Designers simply select the combination of blocks required and connect then together.
Advantages are that because each block has been previously tested, there is a high probability that the completed design will work first time. Also less silicon is used because there are no areas of redundant silicon.

However, tooling charges are more expensive because a full mask set is required in production.

The cost of producing a customised silicon circuit is dependent on which of the technologies is used (Table 1) and how many devices are required.

Obviously, for low volume batches, the PLD solution would be the most costeffective since it entails little initial cost layout on production and only incurs costs at the programming stage for high volumes.

However, a lot of CPU time will be needed and this could prove expensive.

There is little to choose between gate arrays and standard cells. But due to the initial costs of tooling, the gate array method is slightly cheaper for lower volumes and as the volume increases, less redundant silicon makes the cost of standard cells more competitive, until it becomes the cheapest method.

If a design has been proven and it has been shown that there is a market for high volume production, then in the long-term it may be cost-effective to produce a full custom IC.

Advantages of this approach are that less silicon will be used, and the speed of the device will increase accordingly.

Table 1. Comparing the route to silicon

parameter	PLD	Gate array	Standard cell	Full custom
No of gates (complexity)	102	103	103	103
Design time	2	$4-13$	$6-26$	$1-2$
(years) Manufacture time (weeks)	0	$1-8$	$6-12$	$8-16$
Practical "call off" volumes Circuit	$1-10,000$	$5000-50,000$	$50,000-200,000$	$200,000+$
	Reasonable	Good	Very Good	Excellent

Once the mask-set for production has been fabricated, manufacturing of devices will be fairly cheap and the pros of this method will outweigh the cons.

Non-recurring engineering

A parameter not yet considered when deciding which route to silicon to take is the non-recurring engineering (NRE) charge. NRE is a charge made at the outset of production, which covers technical support, tooling and mask manufacture. It cannot be avoided in asic and so must be considered.

The only time it is reduced to zero is when the PLD option is used.

For gate-array, standard-cell and full custom options, the NRE charges roughly vary 1:20:100 in proportion, respectively, reinforcing the opinion that full custom is only really viable for high volume manufacture.

NRE charge also varies depending on the point that the customer enters the design process.

As asics are becoming cheaper and more complex with the advance of technology, companies are beginning to choose them as a low risk method of committing a design to silicon.

Differing customer involvement

Once the decision has been made to produce a design using asic there are five basic levels at which the customer may enter the production process (Fig. 1) though these options may not apply to all manufacturers.
Level 1: the customer merely supplies the manufacturer with a specification and the rest of the work will be carried out on his behalf, from circuit design through to prototype production.

Level 2: the circuit diagram and specification are prepared by the customer and the rest of the process is completed by the manufacturer-from schematic capture to prototype production. Schematic capture is the process of transferring the circuit diagram onto a software database, using one of the packages discussed later, such as Idea by Mentor Graphics. This is then used during manufacture.

Level 3: At this level the schematic capture and simulation is performed on an acceptable cad system-engineering workstation and the schematic files and simulation listings are given to the manufacturer to complete the process.

Level 4: the customer must not only complete all the previous tasks but also perform the design verification on a powerful computer such as a Digital Vax. By entering at this level, the NRE charges

Suppliers such as Micro Circuit Engineering can offer a low-volume prototype at relatively low cost.
would be reduced and the overall costs reduced.
Level 5: silicon layout is performed, leaving only the actual production to complete.

Some companies allow less points at which the customer may enter the design process, others more.
Some companies may be involved only in the design process, some only in manufacture.

For example, Rapid Silicon is a company that will produce an asic design solution to a specification given by a customer but will not fabricate the design, only helping with its creation.

In other words, Rapid will perform the tasks outlined between levels one to five but will not produce the physical integrated circuit.
For this final stage the company will help select a suitable silicon vendor and arrange to have it produced. Rapid will design the circuit on one of a choice of computer-aided design packages developed especially for this purpose.

Suitable design packages

Manufacturers supply a list of packages that are suitable for their design process and also a library of available functions. Some packages are shown in

It would be too lengthy to discuss each of these systems' merits and faults, so I will explain briefly the facilities generally
available,
Mentor Graphics's Idea system can be used as an example. Mentor Graphics is an American Company who claim to be the largest supplier to the industry.

Idea has the ability to create a schemat-

Table 2. Suppliers of design packages

Workview

Viewlogic Systems Inc

Scald

Valid Logic Systems Inc

Logician

Daisy Systems Corporation
Sunews
Sun Microsystems
Dash
Future Net Corporation
Orcad
Orcad Systems Corporation

Design Engineer

Intergraph Ltd
Phase 182
Integrated Silicon Design
BX
MCE Idea Mentor Graphics
ic and also simulate its use. Sample pulses and waveforms are displayed simultaneously on the same screen. The package is menu driven based on hierarchical methods and is, as most are, devised around the edif (electronic design interchange format).

Schematics can be entered in Boolean, programming language or diagrammatical format for good flexibility and the package has the ability to incorporate libraries of functions supplied by silicon vendors to allow it to be made specifically compatible with that vendor.

Though the exact forms vary, these features appear on most packages.

Final stages

Once the design has been produced by this means it must be verified using a more powerful computer such as a Vax, Mach-1000 or Hichip simulator. Autoplacement and routeing procedures required before production can begin will also be carried out at this stage.

Finally, the software design can be manufactured using advanced production systems. It is becoming possible I produce several different designs on a single silicon wafer, reducing the cost of producing a custom chip, as several companies can
share the production costs for one wafer (in very low volume fabrication).

The European electron beam (E -beam) system used by Texas Instruments is an example of how the multi-design wafer is produced.
A wafer can be manufactured without a mask set. But this can only be used for low volumes, because of the time factor and as volume increases, a mask set must be produced.
There are about 300 silicon foundries worldwide - a list of those available in Britain (Table 3) is published by the DTI. Micro Circuit Engineering, a supplier from Tewkesbury, offers a low-volume prototype service at a relatively low cost. It produces the physical prototype as a gate array in a turnround time of four weeks.

Editorial survey: use the information card to evaluate this article. Item E

Table 3 principal UK manufacturers

Hitacni

Watford, Hertfordshire, WD1 7TB
Intel Corp
Swindon, Wiltshire, SN3 1RJ

International Microcircuits
Alencon link, Basingstoke, Hants,
RG21 1RD

MCE

Ashchurch, Tewkesbury, Glos., LG20
8TB

Motorola

Aylesbury, Bucks, HP20 2NF

National

Horne Lane, Bedford, MK40 1TR

NEC

Linfordwood Business Centre, Milton
Keynes, MK14 6NP
Texas Instruments
Bedford, MK41 7PA

KESTREL ELECTRONIC COMPONENTS LTD

is All items guaranteed to manufacturers' spec. $\dot{\sim}$ Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	100+		1+	100+
28530	0.60	0.30	2732A	2.00	1.50
Z80A CPU	0.80	0.65	2764A-25	2.00	1.30
Z80A CTC	0.50	0.30	27C128-25	2.40	1.68
Z80B CTC	0.60	0.40	27128A-25	2.10	1.42
Z80A P10	0.60	0.40	27256-25	2.10	1.42
Z80B (CMOS) CTC	0.80	0.50	27C512-25	3.00	2.60
Z80A DMA	0.95	0.80	6116LP-100	1.00	0.65
741504	0.12	0.07	6264LP-100	2.00	120
74LS27	0.11	0.07	62256LP-100ns	3.60	2.45
74LS83	0.16	0.10	74HC194	0.16	0.10
74LS86	0.12	0.07	74HC244	0.18	0.14
74LS109	0.16	0.11	74HC356	0.16	0.12
$74 \mathrm{LS138}$	0.16	0.11	74HC541	0.28	0.20
74 LS 148	0.18	0.10	74HC574	0.30	0.20
74 LS 151	0.18	0.10	74HC640	0.50	0.30
74LS154	0.28	0.15	74HC40105	0.20	012
74 LS 244	0.22	0.16	8251A	1.10	0.80
74LS273	0.22	0.16	8255A-5	1.20	075
7415373	0.20	0.14	6502P	2.00	1.56
7415374	0.20	0.14	6522 P	2.00	135
74LS399	0.18	0.10	74HCT373	0.18	014
74LS645	0.58	0.38			
All memory prices are fluctuating daily, please phone to confirm prices					
178 Brighton Road,					
Purley, Surrey CR2 4HA					
Tel: 081-668 7522. Fax: 081-6684190					

Finally... an exceptional PCB and Schematic CAD system for every electronics engineer!

BoardMaker 1 is a powerful software tool which provides a convenient and professional method of drawing your schematics and designing your printed circuit boards, in one remarkably easy to use package. Engineers worldwide have discovered that it provides an unparalleled price performance advantage over other PC- based systems.
BoardMaker 1 is exceptionally easy to use - its sensible user interface allows you to use the cursor keys, mouse or direct keyboard commands to start designing a PCB or schematic within about half an hour of opening the box.

HIGHLIGHTS

Hardware:

- IBM PC, XT, AT or 100% compatible.
- MSDOS 3.x.
- 640K bytes system memory.
- HGA, CGA, MCGA, EGA or VGA display.
- Microsoft or compatible mouse recommended.

Capabilities :

- Integrated PCB and schematic editor.
- 8 tracking layers, 2 silk screen layers.
- Maximum board or schematic slze - 17×17 inches.
- 2000 components per layout. Symbols can be moved, rotated, repeated and mirrored.
- User definable symbol and macro library facilities including a symbol library editor.
- Graphical library browse facility.
- Design rule checking (DRC)- checks the clearances between items on the board.
- Real-time DRC display - when placing tracks you can see a continuous graphical display of the design rules set.
- Placement grid - Separate visible and snap grid 7 placement grids in the range 2 thou to 0.1 inch.
- Auto via - vias are automatically placed when you switch layers - layer pairs can be assigned by the user.
- Blocks - groups of tracks, pads, symbols and text can be block manipulated using repeat, move, rotate and mirroring commands. Connectivity can be maintained if required.
- SMD - full surface mount components and facilities are catered for, including the use of the same SMD library symbols on both sides of the board.
- Circles - Arcs and circles up to the maximum board size can be drawn. These can be used to generate rounded track corners.
- Ground plane support - areas of copper can be filled to provide a ground plane or large copper area. This will automatically flow around any existing tracks and pads respecting design rules.
Output drivers :
- Dot matrix printer.
- Compensated laser printer.
- PostScript output.
- Penplotter driver (HPGL or DMPL).
- Photoplot (Gerber) output.
- NC (ASCII Excellon) drill output.

Produce clear, professional schematics for inclusion in your technical documentation.

PCB layout editor provides full analogue, digital and surface mount support - ground and power planes (hatched or solid)- 45 degree, arced and any angle tracks.

595Despite its quality and performance. BoardMaker 1 only costs $£ 95.00$. Combine this with the 100% buy back discount if you upgrade to BoardMaker 2 or BoardRouter and your investment in Tsien products is assured.

Don't take our word for it. Call us today for a FREE demonstration disk and judge for yourself.

Tsien (UK) Limited
Cambridge Research Laboratories
181A Huntingdon Road
Cambridge CB3 ODJ
Tel 0223277777
tsien
Fax 0223277747

Simulation is an indispensable mol for planning all marner of systens, and Robotics is no exceptior. Workspace fron Robot S rulations af Newcatla run: on a F_{C} and allowing zngineers to evaluate dififerent robots, experiment with desitens cif factory workcels or calculate zycle fines.

Virtual instruments reviewed Real-time PC operating systems

PC use in industry and science has never really managed to match its widespread popularity in the business community, primarily because of the limited availability of a low cost true realtime operating system.
But now a new real-time multi-tasking operating system is available for the 386 PC and single-board computers, combining many of the individual advantages and benefits of several operating systems in a single modular package.
Microware's OS- 9000 real-time operating system, modelled on the OS-9 operating system, brings VME-style, real-time system software to the PC and to the embedded 80386 microprocessor CPU.

It will allow the carrying out of more than one task at a time - in real-time and will address the whole 4Gbyte memory range as a single contiguous block, giving access to more than 640 K without resorting to inelegant techniques such as block switching (OS/2 can also do this see box).

One of the major shortcomings of dos is its inability to address more than 1Mbyte of memory in "real-mode". But OS 9000 's true 32 -bit addressing can access the full 4Gbyte and increase practical program size above $450-500 \mathrm{~K}$.
Coupled with multi-tasking, OS-9000

OS-9000: real chance for real-time PCs?

Lack of a real-time OS for the PC has held back industrial application, but Microware's Stephen Montgomery says OS9000 will change all that.
offers the PC user another enhancement over the crop of windows packages currently available; that of multi-user capability.

Most of the time a PC is idle, waiting for external input in the form of operator interaction or line response from

CURRENT PC SYSTEMS

[^1]But it has not been accepted in the market and now even Microsoft is determined to see it dead and buried by concentrating on the dos related windowing package Windows 3.0.
Windows 3.0 is the company's latest offering which is in fact more of a graphical user interface (GUI) than a multi-tasking operating system, claiming no real-time capability.
Other operating systems for the 80×86 family exist in both PC and stand-alone form, each providing specialised features. Some of them provide just a fast kernel - basically a library of system calls that are linked in to provide basic task scheduling.

Others provide full-blown operating system capability and development environments along the lines of OS/2 and IRMX. Yet more sit in the middle.

Such names as Flexos from Digital Research, QNX, LynxOS and Desqview fall into these categories and suit particular applications.
hardware. Mainframe users are familiar with multi-user environments and their processors are utilised at a far greater percentage level.
Dos supports multiple monitors, since it makes the video memory start-address es generally unique, but that is only in single-application, single-user mode.
Combine multi-tasking with the ability to communicate efficiently with more than one video terminal and a multi-user system results. This is made even more effective by the re-entrant characteristic of OS- 9000 modules, which reduces memory requirements.
A further advantage is that several users sharing one machine also share the same data locally, so individual machines do not have to be networked together.
OS-9000 can be loaded into a standard 386 PC-AT, replacing dos and instantly providing a large number of performance benefits and opening up the power of the 80386 microprocessor.

It can be ported onto any circuit containing an 80386 microprocessor, with the same modules and application program that would run on the PC, simply by altering the device drivers and device descriptors to match the target hardware.
This is significant where larger companies, such as British Telecom, design-in the 80386 in massive quantities.
But the most appealing benefit is in providing real-time, multi-user, multitasking capability on the PC, something VME users have been familiar with for
vears. The capability is performed in realtime and is acheved by commolling the execution of tasks with a kernel which implements task switching and interprocess commmalication.

Execution time is assigned to tasks, in round-robin fashion by time-slicing.

L'nlike Micoosof Windows. CPL'time is assigned rather than supervised and so tasks do not have torelinguish the CPL' of their own volition. In this way true multi-tasking is possible rather than at simple sharing of the processor.

Various refinements allow tuning of the execution cycle to weight CPL attention in favour of the most critical and important processes and tasks may not be rom all all if their status is sleeping, suspension or watiting.

Interprocess communication mechanisms provide a powerful and versatile choice of methools for passing data between processes, whether single bits or large blocks of data (and all the steps between), and for synchronising the execution of separate tasks.

Findamental to implementation of real-time systems is prionity-based preemptive task switching (the system designer can designate tasks as high priorities that most execute inmediately the become active, replacing the currently executing task which loses the remainder of its time slice).

OS-900 supports this facility.
It also supports a wide range of PC. hardware and peripheral devices: ESD) and SCSL disks and tapee. PC: floppy disk. graphics, serial and parallel $1 / 0$ and networking.

Modularity

System designers do not always use all the hardware in a particulat project: so whe should they load the full sute of operating swetem software ()S-9000 is built of optional modules. each one reemtant, so that mbly one cops is regutired to support a mumber of similan devices.

Core of the operating sistem (Fig. 1.) is the real-tinte kernel which contools scheduling of tasks and handles ancillary semices such as memory management and inter-process commmonation.

The versatile, unified, handware independent l/O svstem, able to be customised and extended to suit application, comprises ant/O manager, tile managers and device drivers which process $I /()$ semver requests at different levels.

Becanse of reentrancy. just one copy

Fig. 1. Modular architecture of the OS-9000 operating system
of the $/ / 0$ manager is requined on the system, one copy of each file manager for each class of device (disk, tape etc.) and one device driver for each type of device.

A separate device descriptor, containing specific / () device details, is necessaty for each individual unit. But if a device driver does not exist for a piece of hardware a new driver can be quickly written in Cfrom scratch or based on ant existing one.

An additional feature of the svatem is that modules can be installed and removed dynamically while the swstem is running - an aid to system tevision and lesting - perhaps where network calls catl be made to disk for proving. and then to the actual network.

All memory modules, position-independent and rom-time locatable. comatan a header detailing type of module, its revision momber, and other information. The svstem attomatically checks the revision mombers and uses the latest, simpli-
fing development ensuring that the intended version is used.

Graphics under OS-9000

Gaphics stupport is available with rave (real-time atudio/ visual emvomments). a multimedia development tool and userinterface that greatle simplifies design of realistic man/machine interfaces for reatione process control svstems. It combines high quality audio atod video. computer generated graplios and customised memas in the same user interFace and so allows real-worlal stimuli to be incorporated into a control system. The method results in a more intuitive interface requiring less operator "brain power" and consequently improving accuracy and safety of a system.

Development support contained within the rave package allows use of cameras, microphones and PC paint packages at a level easily understood by graphics artists and industrial psycholo-

Fig, 2, Real-time audio environment (rave) operating under OS-9000 on a PC.
gists. It also releases software engineers from the task of MM1 screen design - a task that can be time-consumning, laborious and unappealing.

Networking

As far as networking goes Fthemet. based predominantly on the National Semiconductor chipset, is the prime commmencation medium with ICP/IP serving as the main protocol.

OS-900) supports this Ipe of networking with the Intemet dedicated file manager which again is installed in a system only as reguited, providing a BSI 4.3 I'nix socket-style interface to the TC.P/IP protocols.

Development environment

()S-90)() provides a complete range of resident and cross-development tools covering languages. Ca is currenty available, with others planmed for fume release and a macro assembler is also available. (Oher wols include debuggers for system-state and C source-level debugging: and a screen oriented text editor.
(OS-9, the equivalent Motorola based operating system, is supported by several homdred hardware and software products and this is expected to happen to OS-OOOO, resulting in an extensive range of packages.

With ()S-9000, the operating system installed torm the application is the same as the one used to develop under. When development is complete, the tools ave stripped off, leaving the bave operating system together with the application code.

Implementation phase can be bypassed since the final solntion grows from the start by addition of new morlules. This, together with the modularity requirements of the system, promotes efficient code writing throngh structured programming. An additional benefit is that tools can be loaded into any system temporanily for field testing and modification - extending to rom-based systems where even debuggens can be loaded for testing the system.

Beyond the PC

While the $386 \mathrm{I}^{2} \mathrm{C}$ is eminently capable of rumning the software, it may not be the final target.

Cost or reliability reasons may dictate tansfer of the developed application onto a stand-alone, custom-rlesigned single board computer. At this stage it is a straightforward task to port ()S-9000 and the application code onto a suitable custom boad for final delivery. The main work reguired will then be in replacing the device drivers and descriptors for the changed hardware and producing the boot rom to configure the system at startup (not necessary if the same hardware is used or the system does not require any peripheral hatedware).

Applications

Typical applications where real-time multi-tasking is required include process contool, industrial control of plants. data logging and commmonication, measurement of processes etc., intelligent products such as pointof-sale terminals and weighing machines.

A typical application is where several spes of plant montoring equipment are compled together with a muttiple-stage manufacuring process in a complicated machinery/assembly operation, for example in a paper mill in a classical real-time application.

Sensors monitor the moisture content. tension, thickness and weight of the paper as it passes through the wet and doy processes and cause adjustments to be made in process flow speed, pulping rate, water addition and drying temperature.

L'se of a single controller will reduce the possibility of problems occurring between different intelligent machines due to complexity of several separate sensor/controller processors.

Basing the whole system on one machine will not only allow greater optimisation to be achieved for production
rates but will simplify implementation of fail-safe and back-np mechanisms since data on the whole system is held locally in one machine and can be dhplicated relatively simple.

Prodhction data and operating history is then easily fed to a background database for process evaluation.

A more homizontal application of an operating sostem of this type is illustrated bo a lage pointof-sale terminal mamufacturer.

Here the application criterion is not so much for enormous processing capability as commonality of equipment across several product ranges.

By standardising on one multipurpose operating system, hardware and software developments are extended across the products by a centual core of designers with access to a single libraty of code modules. As a result once a device driver. for instance, is written it can be used agan and again in different circumstances without the duplication of effort that would result if different operating systems had been employed.

The future

So where will ()S-9000 be when everybody has outgrown the 386 and moved on to the 486 and eventually the $586{ }^{5}$ as it is written almost entirely in (i, allowing quick porting to new processors the answer should be right there with them.

Not only that, but if the 386 is not powefnt enough for a particular application, code already designed can be transported to another processor with only minor modification and a recompilation. At present this can be toward the 32 -bit Motorola 68020,30 or 40) but will shortly be towad the 88000 rise chip.

Portability provides a highly appealing design option; the operating system can be selected and application code written before the final choice of processor is mate - and that could be a standard PC, or a custom single-board computer containing one of a momber of cisc or risc devices.

W'ith somany advantages over the current PCo operating systems I believe (S 9000 is set to become the real-time operating ssistem of the future, and will open up use of the PC: to a whole new range of real-time applications.

[^2]

Simulating the system

> Maxsim is designed to model and analyse the performance of systems in frequency and time domains. John Anderson tries it out and explains his reservations

Maxsim is a simulation system providing performance analysis in both the frequency and time domains. The modelling system relies on describing the format of the various system blocks in a simple Ascii file, which is then interpreted, checked and simulated.

Program installation

Software is supplied on a single disk, together with a thick, spiral-bound, photocopied manual. The software comprises the single application file, a number of example files and a few graphics files. An install file copies the program to your hard disk, though you could do this yourself; there is no copy protection. Rather strangely, the latest version of Maxsim insists that the program should reside in a different directory to the data files so, if you copy the files across yourself, follow
the instructions carefully.

Bode plot for 8 th order Chebyches low-pass filter.

Maxsim is written in Turbo Pascal with auto screen-sensing facility, allowing it to be used with a number of popular screen standards.

Entry of the transfer function

Typing Maxsim executes the program. After the sign-on message, you can select the file to be simulated from the files with the extension.DAT. Once the file has been selected, the program moves to a simple Ascii editor to give you the chance to set up the system for simulation. An example is shown in the box.
When the system file has been set up, the program checks the formulation for errors of syntax. There may be some errors which cannot be detected until the system calculation routine, which may then cause the program to abort.

Frequency simulation

In the frequency domain, magnitude and phase information is derived from either automatic or user-defined frequency range and increment. This process was quite slow, taking several seconds to produce the data set on a 8 MHz . AT. Once generated, the data may be displayed as any one of the Bode, Nyquist, inverse Nyquist or Nichols charts. As all the data is available at this stage, screen plotting is fast.

Time simulation

A reduced subset of the built-in components may be simulated in the time domain. Why capacitors and inductors are excluded from this is not clear, since it obviously limits the use of the package when compared to other performance simulators such as Spice. Time simulation follows the same procedure as for the frequency simulation, the steps of the time simulation slowly accumulating until the dataset is complete, at which

SIMULATION MODELS

General system models

Integrator, simple gain, adder, secondorder phase shifter, sampler, pure time delay, multiplier, divider, phase shift.

In time domain

Limit, backlash, friction, dead zone, noise generator, digital filter, stiction, switch.

In frequency domain

Resistors, capacitors, inductors, voltage amplifiers, mutual conductance,
transformer, delay line, operational
amplifier, transistor, fet.

Stimuli

Frequency: frequency sweep, linear, log or spot frequencies.
Time: step, ramp, square, triangle and sine wave, or from a user-specified 50 -point curve.
point it may be plotted.
An interesting option is to be able to set the type of numerical integration used in the simulation, from rectangular and trapezoidal to a fourth-order Adams Bashforth. It is not clear why an engineer would want to do this, but it could prove useful in the teaching enviromment, where the sensitivity of the various algorithms to step length could be conveniently demonstrated.
A wide range of input stimuli is available for the time-domain simulation, including step, pulse, ramp, sine, triangle and user-defined functions, defined by data. In the time domain, the input driving function can be defined by the user in a file arranged as a table of up to 50 values, stored as two columns. The first values are the increasing time samples and the second values are the corresponding function amplitudes.

Examples and help

Examples of electronic, mechanical and multi-loop control systems are presented to give a sound base for simulating your own system. The help system, although context sensitive, is very limited and gives litle assistance. An indication of this is that the route out of the program is not properly sign-posted. It turned out that, at one particular level, the user must press the " Q " key, which is fine once you know, but the exit from any program should be a simple matter. The help

Time response for 8th order Chebychev low-pass filter.

The editing enviromment

facility within the editor was rather better and inchuded examples of data file layout and syntas. However, there was a bug in the program which prevented invoking the help system within the editor a second time.

HARDWARE NEEDS

Minimum is a PC or PC-AT running MS.DOS version 3.0 or later. CGA, EGA, VGA or Hercules graphics card.
Optional Epson-compatible printer, HP plotter or HP-compatible laser printer.

Using Maxsim

The program can handle systems of up to 50 nodes per sub-system and of up to 50 sub-systems per node. As the program was rather slow even with the modest systems provided in the demonstration set, it is likely that large systems at the limit of what can be handled with this program will take many hours to run.

Once the rather strange user interface was mastered, the generation and testing of complicated systems was accomplishied in short order. However, there were a number of occasions where the data provided to the program by this novice user was not wholly sensible, and the program handled this in the worst possible way by printing an error number and returning

Nyquist diagram for a second-order servo
to the operating system. An example of this operation is that the program aborts if less than there spot freguencies are entered. There can be little exomse for this bad behaviou from a computer program. particularly one which has reached version 3. The mandiacturer is well aware of these deficiencies and is working to improve matters.

Plotting

(iraphical output of frequency and time response is available from amy node in the system, which might be particularly useful if you are investigating possible saturation effects of amplifiers or devices inside a complex series of feedtack loops. Built-in drivers enable the plots to be presented on an E.pson-compatible
printer, III plotter or IIP-compatible laser printer. Both time and frequency graphs can be expanded using a $\% 00 \mathrm{~m}$ facility to show specific items in more detail. It is only possible to show one grapla on the screen at at time (an exception is a Bode magnitude/phase plot), so performance comparisons at the various nodes of the system must be done with the ploted results.

Manual

Altiongh produced on a low budget, the manual is well written and very comprehensive. It not only covers the operation of the program. but also provides an introducion to control engincering as well as some worked examples, which start with simple concepts such as lead-

EXAMPLE

As an example, an 8 th-order low-pass Chebychev filter with a 2 dB ripple in the pass band. It is made up of four 2nd-order sections, each as below. The transfer function for the first block is P1. For the first block, $G=1 /\left(0.565+0.266 s+s^{2}\right)$. This polynomial fraction is represented in Maxsim simply as a phase shifter block:

P1 $1,2,1,0,0,0.0565,0.266,1$

The interpretation of this syntax is: nodes 1 and 2, numerator coefficients for s^{0}, s^{1} and s^{2} orders, and three further coefficients for the second-order polynomial in s in the denominator. The remaining three blocks are defined in a similar manner, ending in a normalising gain block. Bandwidth is $1 \mathrm{rad} / \mathrm{s}$.

Combining this with the further blocks shown below gives the complete 8thorder filter.

P2	2,3,	$1,0,0$,	$0.3271,0.225,1$
P3	3,4,	$1,0,0$,	$0.7098,0.150,1$
P4	4,5,	$1,0,0$,	$0.9804,0.052,1$
K1	5,6,	0.01286	

Since the blocks are general system blocks, simulation can be performed in the time as well as the frequency domain. Not surprisingly, the time response of this system for a step input shows a considerable overshoot.

SUPPLIER

Maxsim System Simulation for the PC costs $£ 425$ excluding vat for a single copy.

Adrian Morris Engineering Ltd, 60 Southway, Totteridge, London
lag compensation and PII) (proportional integral derivative) control. Other topics are non-linear systems and state feedback.

In simulating complex, non-linear. real-world systems, many of the niceties of linear analysis are lost and the only. way to ascertain the performance of the system is by simulation. I lowever, this alone is not enough in that it does not determine the sensitivity of the system to the various gains, phase shifts and nonlinear attributes. Another related aspect of some non-linear feedback systems is a mode of operation called jump resonance, where the frequency response depends on the direction of the input sweep and the input amplitude. Maxsim only offers increasing frequencies.

Conclusions

Maxsim has the feel of a mother anateur product with a number of rough edges. Its main abilities are in frequency response analysis and to some extent the time domain, the reasons for its low level of interest in the time domain being "historical", according to the maker. Its slow performance and limited features make it seem poor value for moner.
lts redeeming feature is that it can tackle very complex multi-loop systems which competing products cannot handle. The system descriptor file uses a simple format which, in principle, could even be generated from a circuit netlist. U'sed in this way, Maxsim starts to look like a circuit simulation package such as Spice, but its limited library of electronic components and inability to handle time domain response for discrete components limits its usefulness for the eleetronics engineer. Its real forte is highly complex multi-loop non-linear systems, although with systems of this complexity beware the onset of mathematical problems such as chatos and the deviation of real and simulated performance due to finite number length representation.

The cost of $£ 425$ is rather steep for a product with this limited specification, but then there are not many multi-loop simulators to choose from!

Editorial survey: use the information card to evaluate this article. Item G

CIRCIE NO. 105 ON REPLY CARD

A two year guarantee on all our second-hand Test and Measurement equipment!

To give you the confidence that you really did save money by buying second-hand, we are the only company to offer you the protection of a two year parts and labour guarantee on all the Test and Measurement equipment we supply.

Dealing in equipment from the leading manufacturers such as Hewlett Packard,
Tektronix, Marconi, Philips, Gould, etc., we can offer you the best in test. Call us now for more information.

0800521231
 International Callers No. 44344869226

Capella-Technos, Park House, The Pavilions, Iownmill Road. Bracknell, Berkshire, RC12 IQS. Fax 0344869230

VALVES			- SPECIAL QUALITY			Prices are correct at time of press but may fluctuate Please phone for firm quotation. V.A.T included.					
A 4065	240	Ef37a	2.45	PFL200*	2.80	28000	345	6CL6	2.75	${ }^{12} 1296$	1.9
A2293	7.00	EF39	1.40	Pl36	1.60	28014	3.75	6CW4	740	12AT7	125
A2900	12.75	Ef80	0.65	PL8)	1.30	z803U	21.15	${ }_{6 C \times 8}$	460	12AU7	0.95
ARS	1.0	EF83	390	PL 82	0.70	2900T	950	${ }_{6} 6$ CY5	1.15	${ }^{124 \times 7}$	9.50
ARP3	1,4	EF85	090	PL83	0.70	1A3	190	606	250	12BA6	2.95
ARP35	1.50	EF86	1.45	PL84	0.90	${ }^{124}$	0.95	${ }_{6}^{6 F 6 G}$	2.90	${ }^{128 E 6}$	2.40
ATP4	090	EF89	1.60	PL504	1.25	1RS	1.20	6F6G8	290	128 ${ }^{\text {¢ }} 7$	536
812H	6.90	EF91	1.50	PL508	2.00	154	120	$6 F 7$	2.80	12 E 1	19.95
CY31	2.40	Ef92	2.15	PL509	535	155	0.85	6F8G	1. 75	12 J 5 GT	1.80
Daf70	1.75	EF95	1.40	PL519	585	$1 T 4$	0.75	$6{ }^{6} 12$	1.60	12k7GT	1.15
DAF96	1.35	EFS6	0.65	PL802	650	1U4	1.25	${ }^{65} 14$	1.15	12K8GT	125
det22	32.80	EF183	0.75	PYB0	0.90	2×24	380	6f 15	140	1207GT	1.15
DF92	0.95	EF184	0.75	PY81	0.75	3AA	1.30	${ }_{6 F} 68$	3.10	${ }^{12517}$	1.25
DF96	1.15	EF812	0.75	PY81/800	0.85	3AT2	3.40	$6{ }^{\text {F } 23}$	0.75	125.37	1.40
DH76	1.15	Efl200	185	PY82	0.75	3828	17.50	6724	T.15	$12 \mathrm{SK7}$	1.45
OL92	1.70	E H90	0.85	PY88	0.60	${ }^{306}$	1.15	$6 F 33$	10.50	12507G	2.20
DYB6:87	065	El32	0.85	PY500A	2.10	3 E 29	21.85	6 FHB	18.80	12 Y 4	0.70
OY802	0.70	El34	3.25	ouvosin	5.95	3S4	1.70	6GA8	0.65	13 D 3	2.80
E92CC	1.95	E134*	9.50	Qovo3/10	7.50	4832	35.00	6GH8A	1.95	13 D 6	0.90
E180CC	9 \% 0	El82	0.70	Qavo3/20		5R4GY	485	$6 \mathrm{H6}$	1.50	19405	185
E1148	0.75	El84	135		27.50	5 LaG	1.85	604	195	$19 \mathrm{G3}$	11.50
EA76	1 50	EL86	1.45	OQVOE/40		SV4G	190	6uy	3.10	$19 \mathrm{G6}$	10.35
EB34	1.15	EL90	1.75		2850	5Y3GT	3.45	$6{ }^{5}$	2.30	19+5	38.00
E891	0.50	EL91	6.50	00vobi40		573	485	6.6	180	2001	0.80
EbC33	2.20	EL95	1.80		46.00	524G	220	$6{ }^{6} 6$	2.20	20E1	1.30
EBC90	120	El504	2.30	avo3/12	740	633012	0.80	6.6w	2.80	20P1	050
EBC91	1.15	EL519	7.70	0Y4.400	101.50	6487	1.85	6.E6C	9.15	25L6GT	190
EBFb0	0.75	EL821	7.50	SP61	3.20	6act	1.80	6USEC	9.15	25ZAG	180
E8F89	0.80	EL822	11.50	TP205/400	88.30	6AG5	060	6uve	6.35	8542	1,40
EC52	0.65	Ellbose	6.50	TT21	47.50	6AK5	1.90	6K7	2.20	B5A2.	255
EC91	5.20	EM80	1.50	TT22	45.00	6ak8	2.85	6KD6	13.75	5728	5635
EC92	5.55	EM97	285	Tr-125A	85.30	6AL5	0.60	616	780	807	3.45
ECC81	1.25	EY5	0.90	TY 4004	94.20	6ALSW	150	6L6GC	9.60	${ }^{807}{ }^{\circ}$	430
ECC82	0.95	EY81	1.10	Uabc80	0.75	GAMS	6.50	$6 \mathrm{LGGT} /$	2.90	8L1A	13.50
ECC83	1.50	EY86/87	0.75	U8F80	0.95	6amb	1.60	6L18	0.70	812A	32.00
ECC8A	0.60	EY88	0.65	U8F99	0.95	6AN8A	3.80	6 6.D20	0.70	${ }^{813}$	2350
ECC85	0.75	EZ80	0.80	UCC84	0.85	64.05	1.75	6106	9.15	813*	44.00
ECC88	1.25	E2al	0.80	UCC85	0.70	6405W	2.90	601G	1.50	${ }^{8298}$	1600
ECC189	1.20	GM4	11.05	UCH42	4.60	6AS6	1.15	$6547{ }^{\circ}$	1 B0	8298*	2400
ECC804	0.65	GN4	630	UCH81	0.75	6457G	4.95	6SG7	180	966E	14.95
ECF80	125	GY501	1.50	UCLE?	1.60	6au6	0.90	65.17	2.50	931A	1895
ECF82	1.60	Gz32	2.80	UF41	1.85	64X4GT	1.30	6Sk7	185	9314.	2880
ECFP02	1.80	G233	4.20	uf80	1.50	6AX5GT	1.30	6SL7GT	435	${ }^{954}$	1.10
ECF804	4.50	G234	2.80	UF85	1.45	6BA6	1.75	6SN7GT	4.35	955	1.10
ECH35	2.75	G237	3.95	UL84	1.50		2.25	6 SO 7	320	956	1.20
ECH42	1.65	KT77••	16.10	UM80*	230	6BE6	1.75	6SA7	4.60	6060	1.9
ECH81	125	M $\times 12001$	29.50	UM84	1.30	${ }^{\text {6BE6 }}{ }^{\circ}$	220	6V6GT	1.50	6080	730
ECH84	0.50	N78	9.90	UY82	1.10	6BG6G	2.65	6×4	1.50	6136	280
ECL80	0.75	OB^{2}	1.70	UY85	0.85	6 6 J6	1.75	${ }^{6 \times 5 G T}$	0.75	${ }^{61468}$	10.50
ECL82	0.95	$\mathrm{PCLP}^{\text {P }}$	0.95	VR105/30	2.75	6807A	395	${ }_{6}^{6 \times 6 G}$	280	6336A	33.35
ECL85	0.95	PCL84	0.85	VR150/30	2.75	${ }^{68 R 7}$	4.80	674	1.75	9001	1.40
ECL86*	1,20	PCL. 86	0.80		4.95	68w6	610	72a	1.90	900	650
ECLLB00	17.50	PCLB05/85	095	Y 121210	11.50	${ }^{68 W}{ }^{\text {c }} 7$	150	${ }^{906}$	2.15	9003	50
EFF	380 3.90		5.50 1.10		${ }^{0.75}$	${ }_{6 C \mathrm{CH}}^{6 C 4}$	120 750	${ }_{12 \mathrm{C}}^{112}$			
COLOMOR (ELECTRONICS LTD.) 170 Goldhawk Rd, London W12 Tel: 081.7430899 Fax: $081-7493934$. Open Manday to Friday 9 a.m-5.30 p.m.											

CIRCIE NO. 107 ON REPLY CARD

Extremely useful: Blue Chip's DMM board provides the major functions of a multimeter with the data logging facilities of a data acquisition system.

Good psychology: most people assimilate analogue readouts faster than the digital equivalaent. This zirtual instrument prozides both.

Voltage and current on screen

Abstract

Blue Chip Technology's intelligent IDMM is one of the new breed of virtual instruments for the $P C$, offering voltage and current measurement, chart recording and data logging. Mike Tooley has been using it for some time and presents his comments

Avirtual instrument is simply the emubation of a comemtional piece of ess cguipment based on a microcomputer systom fitted with atm appropriate expansion card which, in turn. is driven by suitable softwate. Such combinations offer an increasingly cost-effective solution to the use of traditional stand-alone items of lest gear.

At first sight, the concept of a virtual instrumen display may appear to be something of a gimmick. Attempting to cmulate the fromt pancl of a conventional item of test equipment on the twodimensiomal screen of a PC is, after all. something of an artificial exercise when one realises that nome of the ustaal mamitally operated comtols is atrailable! (of course, monse control adds another (if at times combersome! dimension to this and at least it provides the nser with a means of pointing to, and clicking on. the required finction.

Behind this is the reasoning that an engineer is much more at home with something that he recognises as part of the uswal range of workbench lest eguipment. Tell him that you will exchange a P(: for such stakart items as a by: oscilloscope or chat recorder and yon are likely whe given a prowe dusty answer!

The justification, of course, is that virtual instroments provide a tremendons degree of added functionality: not only will they give conventional readings of weryday parameters such as woltage. cur-
rent and resistance, but will store these talues for later amalysis and export to software packages such as loctus 1-2-3. Furthermone, vitual instruments may be readily programmed so that they can form the basis of attomatic test equipment systems.

Cost effectiveness

A conventional intelligent digital multimeter such as the Fluke $88+40 \mathrm{~A}$, or Koithley 197 will set you back between £50 and £750. Add to this basic price an extra flat on foon for an IELEX-488 "option" and you have a sizeable outlay. Furthermore, when you purchase suth an instrument you pay for a case, a power supply, a fiom pancl fitted with controls and displays, one or more printed circuit boards. the labour to put it all together. werheads incured with development. marketing and distribution.
Remember, however, that you already. have a case, display and power supply alreadly siting on you bench in the form of your PC(.) With a virtual instrument product, therefore the first there items are no longer reguired: in other words, a greater propertion of your cash can be directed towards the functionality of the instrument in question.

Blue Chip Technology DMM-VIP

This recenty introduced intelligent digitat multimeter (DMM-VIP) mpersems the "state-offetheart" in virtual-instrument products. DMM-VIP hardwate consists of
a full-sized 8-bit bus PC expansion card, which employs a mixture of surfacemounted and standard technology. The card is fitted with two standard 4 mm banana sockets (for signal input) on the industry-standard 0.75 in pitch, together with a male 9-way D-type connector for control of an optional external scanner. Board layout is uncluttered and, in many cases, users will not need to change the settings of the configuration jumpers fitted.

Chart recording and data logging

One of the outstanding advantages of the DMM is that it incorporates a chart recorder display, which closely emulates a conventional chart recorder, with moving "chart" and "pen". Chart speed (sampling rate) is adjustable to a maximum of 25 samples per second.

The data logging function, which is available when the chart recorder display is selected, allows the user to log the acquired data in a named disk file, data being stored in standard comma-delimited format which is compatible with most software packages such as Lotus $1-2-3$ and Wordstar. On completion of measurements, data may be replayed by the chart recorder display, analysed by other packages (a spreadsheet, for example) or dumped to a line printer in chartrecorder format.

If single-channel operation is not acceptable, an external scanning unit is available to increase the capacity of the basic DMM, chart recorder and data logger to a maximum of 32 channels per instrument. Each channel of the DMM can be set up for a different function and range.

Specification

DMM-VIP offers an impressive specifica-

SUPPLIER

DMM-VIP is available from Blue Chip Technology, Hawarden Industrial Park, Manor Lane, Deeside, Clwyd CH5 3PP. Phone 0244 520222; fax 0244531043 ; Telex 61471.

The package costs $£ 495$ (excluding vat) and the optional sequential scanner costs $£ 149$ for each group of eight channels (subject to a maximum of $£ 32$).
tion, which compares favourably with all but the more expensive of conventional bench instrmments. It measures direct and alternating voltage (each in four ranges from 900 mV full-scale to 300 V full-scale), direct and altornating current (each in three ranges from 90 mA fillscale to 2 A full-scale), resistance (in seven ranges from 2(0)2), capacitance (in four ranges from $2 n F$ to $2 \mu \mathrm{~F}$ in four ranges) and dBm . Accuracy of the direct-voltage ranges is between $\pm 0.02 \%$ and $\pm 0.09 \%$ of reading, while in AC: ranges it lies between $\pm 0.5 \%$ and $\pm 1 \%$ of reading. AC ranges provide true-RMS indications and the input is rated at $400 \mathrm{VDC} / 400 \mathrm{~V}$ peak AC : maximum.

Accuraty on the resistance ranges varies from $\pm 0.06 \%$ on the three lowest ranges to 1% on the $20 \mathrm{M} \Omega$ range. On capacitance, accuracy is $\pm 2 \%$ to $\pm 5 \%$. Instrument display provides 4.5 digits and count headroom before overrange indication is generated amounts to 29,000 counts.

Base address of the instrument is selectable within the PC, $1 / 0$ map between 20 hex and 3E.Ohex - a total of six addresses within the $1 / 0$) map is required. The instrument may be configured to interrupt levels of between IRQ2 and IRQ7.

Documentation

The DMM-VIP is provided with a 78 page, A.-format, spiral-bound handbook, which describes installation and applicat tion of the chart recorder and DMM, seven appendices providing reference data on clocks and timing, $1 / 0$ addresses, interrupt levels and calibration. It is laid out in a logical manner and will be of value to the newcomer to virtual instruments as well as providing more specific details on measuring techniques. Sections are included for "experienced users" and the handbook also includes a "Quick-Start Guide" for people who may be in a hurry to get the system up and rumning.

Installation and programming

The board is factory configured to an I/O base address of 0300 hex , interrupt request level 3 and internal clock. Default values in the setup software match these settings; all that is required of the user is to press the REIURN key in response to the setup questions. Fitting the board and installing the software is therefore simplicity itself and, provided the few basic instructions are

Abstract

CPERATING ENVIRONMENT DMM-VIP requires an IBM$\mathrm{PC} / \mathrm{XT} / \mathrm{AT} / 386$ (or compatible) with one 8 -bit bus slot free and a standard mouse. A minimum of 640 K of ram is needed, together with EGA or VGA graphics (either colour or monochrome).

followed, the user should be presented with a fully functional frout-panel display in mitutes.

Programming the DMM-VIP is very easy, thanks to the driver software provided with the package. The technician or engineer with only a modicum of software knowledge will be able to control the instrument from packages such as Microsoft QuickBASIC or C.

Operation

DMM-VIP' has been in regular use in my workshop over the last two months, installed in a DSC. Turbo AT-compatible fitted with l Mbyte ran, Microsoft bus mouse and EGA colour display. During that time, I have used the unit in a variety of tasks, ranging from the purely mindane to the abstruse. I was able successfully to "automate" a number of measurements of RF transistor parameters (with data logged and exported to a popular public-domain spreadsheet). I also found the chart-recorder facility useful when observing the temperature rise within a complex heat-sink used with a prototype power amplifier - a task which would otherwise have required the mamal plotting of a graph.

For many of the mundane measurements, however, I must admit to being tempted (at least initially) to retum to my bench DMM, even though the mouse/screen interface was found to be somewhat more workable than I was originally prepared to give it credit for.

Conclusion

The Blue Chip Technology DMM-VIP offers a full range of DMM specifications in a package which cannot be faulted for versatility. It must surely represent outstanding value at less than $£ 500$.

[^3]
AN RF SPECTRUM ANALYSER FOR ONLY £345?

The 107 SPECTRUM PROBE converts a standard 1 MHz scope into a 100 MHz spectrum analyser.

- 70 dB dynamic range
- 40 dB spurious rejection
- $50 \mu \mathrm{~V}$ sensitivity, $+/-2 \mathrm{~dB}$ flatness
- lkVDC, lv/+15dBm@100MHz Max signal
- $\pm 5 \%$ frequency axis linearity

APPLICATIONS

- RF Radiation. When used with a short antenna, the local RF field can be monitored. Check for emission from computers, switching PSU's etc.
- Servicing. The low capacity input of the Spectrum Probe allows circuit probing without affecting circuit operation, allowing rapid evaluation of performance and problems.
- Mains-borne RF. The high voltage input rating of the Spectrum Probe allows direct measurement of RF noise. Signal lines and ground lines can equally be checked.
- Education. This low-cost, easy-to-use probe is ideal for teaching RF techniques and the frequency domain.

Available only from Laplace Instruments Lid at £345

LAPLACE INSTRUMENTS LTD

Masters House, Bexton Road, Knutsford, Cheshire WAI 6 OBU. Tel: 056550268 plus VAT ($£ 396.75$) including mains adaptor, manual, equipment case, BNC adaptor and postage. Full unconditional refund if returned within 15 days undamaged.

CIRCLE NO. IIH ON REPLY CARD

Is the simple, low cost alternative to
paper plots. Able to preview plot images
50 PLOTVIEW allows paperless plotting and replotting - avolding delays, improving efficieny

PLOTVIEW

Has up to 25 separate plot files previewable simultaneously on screen and a 200 m function which allows any part of the plot to be inspected in detail

Easy to integrate, PLOTVIEW is ideal for system builders and can be customised to sult their individual needs.

CAMEL SERVICES LTD.
 Telephone OXFORD 108651512678

Fig. 1. PCL-860 pop-up display within a Windows environment.

PCL-860: DVM performance on a PC

How well does the PCL-860 4.5 digit voltmeter PC'expansion

 card measure up? Allen Brown plugs in to find out.Explosive growth in expansion cards Efor the PC means that now the electronics engineer can quite casily have a machine dedicated to data acquisition and measurement: drop in the appropriate card and the $\mathrm{P}^{\prime} \mathrm{C}$ is transtormed into a logic analyser, a digital 'scope or a host of other devices.
One such card is the P(CL-xbe DVM from Fairchild - a full length expansion card providing a facility for measuring voltage and resistance.
Four woltage ranges span $200 \mathrm{~N}^{\prime}$ (resolution $10 \mathrm{mV}^{\prime}$) to $200 \mathrm{mV} \mathrm{V}^{\prime}($ resolution $10 \mu \mathrm{~V}$) for both DC and AC inputs with an accuracy of $\pm 0.003 \%$. Resistance is measured

by using a four wire arrangement where two of the wires provide a current source.

Minimum resistance range is 20$) \Omega$ (resolution $\mathrm{Im} \mathrm{I}_{2}$) and the maximum is a rather limited $20 \mathrm{k} \Omega$ (resolution $1 S 2$).

As with the majority of expansion carts, the PCL-860 has a switch setting to allow users to choose their own PCI/O addeess with appropriate wait states to coable the card to be used with high speed PC.s. It has a 16 -bit $A-(t-1)$ convert er and a bandwidth of IOkII\%.

Installation

Installation of the card is very straight forward, though it is advisable to insent the banama plugs in the card's bracket sockets first. They are a very tight fit and resulted in the bracket bending when the card was in place.

The PCL-860's own device driver (installed in the PC's CoNFIC.SYS file) allows a pop-up display to be evoked by pressing the two shift keys. An attractive display panel (Fig. 1.) shows the deviee settings and four function boxes activated by cursor keys.

Function bexes offer the vatious option setting on the card, for exampleAC or DCN and display rate - display rate is adjusted br accessing the FI NC . box and has a maximum value of $10 / \mathrm{s}$. But in these days of multitasking from ends, the PCL-860 requires a dedicated dos window (COMMAND.EXE) which can take up a lot of memony. An example (shown in Fig. 1.) is where the host multitasking emironment is Windows $/ 386$.

For British kevorards, the PCI-860 requires a terminate and stay resident (TSR) rontine which must be evoked once entry into the command window has been made. But the DVM becomes
once entry into the command window has been made. But the DVM becomes inactive when the window is put into background mode, which is a little disappointing.

Adding to its functionality, the PCL860 can be driven from a number of high-level languages and Fairchild provides sample programs written in C, Basic and Pascal.
A set of command instructions allows the user to configure the card and control its operation from within a program, and the extensive C sample programs give a good insight into the programming possibilities held out by the PCL--860).

Data can be imported from the card and further processed or stored on disk for future analysis.

A standard set of leads and terminators is provided and the accompanying manual is quite well written with many diagrams to assist

PCL-860 data

IBM XT/AT or 386
Dos 3.x
Colour or monochrome monior Supplier: Fairchild Ltd, Eastpoint, Burgoyne Road, Southampten SO2 6PB. Tel 042121-6527. £349 plus vAT.
understanding operation of the $\mathbf{P C}(1-860)$ from a programmer's perspective.
Chapter six covers calibration procedures, effected by using a calibration software routine and manually adjusting the board's potentiometers. The method is not particularly appealing since autocalibration procedures have been around for several years now.

Reservations

My reservations on the PCL-860 focus on four aspects; I must question whether a 16-bit A-to-D converter is adequate for a DVM. I also do not like the way resistance is measured using two wires for a current source. If lead resistance needs to be considered, then four wires are necessary (there is no reference to lead resistance in the manual).

There is no option for measuring current, which is a standard feature on most DVMs. Lastly, at $£ 350$ the board is not cheap.

But putting my reservations aside, the product performs well within the specifications laid out in the manual and if a user has a requirement for a PC based DVM with these specifications, then the PCL-860 is a product worth considering.
Editorial survey: use the information card to evaluate this article. Item I.

One phone call brings the WORLD to your door.

If you have trouble finding us in your newsagent, why not consider a subscription? One phone call to Lindsey Gardner will bring Electronics World delivered directly to your home.

The cost? Just £20 for 12 issues.
The magazine arrives in a protective sleeve and should arrive in the same pristine condition of a shop-purchased copy. If it isn't, then we will replace it free of charge.

Please call Lindsey on 081-661 3614. Alternatively, complete the coupon below

NAME

- ADDRESS \qquad

[^4]

Psst... PowerfulSoftware Saves Time

ISIS - Intelligent Schematics

ISIS SUPERSKETCH - our highly popular schematic drafting package. Still only $\mathbf{5 6 9}$ (basic library).
ISIS DESIGNER - no nonsense schematic capture with Netlist, Bill of materials and ERC reports. Excellent value at $\mathbf{£ 2 7 5}$.
ISIS DESIGNER + - Design Management Tool with Hierarchical Design, Auto Annotation and ASCII data import. Unrivalled features for just $£ 475$.

- Auto wire router - Auto dot placement. - Auto label generator - Auto component finder - Object oriented 2D drawing - Comprehensive libraries. - Integral Device Editor. - Output to dot matrix, pen plotters, lasers, POSTSCRIPT - Export to DTP in IMG or DXF - Runs on any PC compatible with mouse

ARES - Advanced Routing

PCB II - an exceptionally easy to learn PCB drafting package - ideal for the computer-phobic and only $\mathbf{£ 6 9 .}$ ARES - advanced PCB design with netlist integration, 10 routing layers, EMS memory support, DRC, auto ground planes and more. Attractively priced at £275.
ARES AUTOROUTE - our new autorouter uses an advanced multi-strategy algorithm to achieve very high completion rates. E475 price tag includes ARES.

- Topological Route Eclitor - Unlimited user configurable pad, track and via styles - Surface mount \& metric support.
1 thou resolution
30×30 inch max board size
- Object oriented 2 D drawing for silk screen graphics
- Drivers for dot matrix, pen plotters, lasers, POSTSCAIPT. gerber, NC drill

COMBINATION PRICES
SUPERSKETCH \& EXT LIB \& PCB II £149 DESIGNER \& ARES
£500 DESIGNER \& ARES A DESIGNER + \& ARES OESIGNER + \& ARES AUTOROUTE $£ 850$
Prices inc UK delivery, exc VAT

Call for demo disks today - 0274542868.

14 Marriner's Drive, Bradford. BD9 4JT

Custom metalwork - good and quick!

Plus a wide range of off-the-shelf products including:

- Nine sizes of standard 19" rack cases
- New "clam" case in any depth - Elght-card 1 U Eurocard case - Audio, video and data patch panels - Rack blanking and ventilation panels
All use the unique IPK extrusion, giving strength and rigidity with no fixing screws in the front panel; cases can be tailored to your requirements. Rack mounting strips, cable trays etc. from stock.

$$
\text { ITMK Broadcast Systems } \begin{aligned}
& \text { I Darwin Close Reading Berks RC2 OTB } \\
& \text { Tel: (0734) } 311030 \text { Fax: (0734) } 313836
\end{aligned}
$$

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK
Tektronix 475 - 200 Mc/s oscalloscopes - tested from $£ 400$ less attachmenis to $£ 700$
C.W manual probes etc. Tektion 1×475 - $250 \mathrm{MC} / \mathrm{s}$ - Complete kit with probes - E 75

Telequipment D755-50Mc/s oscilloscopes - testeo CW 2 probes + manual - $£ 250$
Marconi TF2008 - AM. FM signal generator - Also sweeper - $10 \mathrm{KC} / \mathrm{s}$ - $510 \mathrm{MC} / \mathrm{s}$ - - from $£ 350$ tested to
500 as new with manual - probe kit in wooden carrying box - $£ 50$
HP Signature analyser ype 5000 A - $£ 300$.
HP Frequency comb generator type $8406 \mathrm{~A}-£ 40$
HP Sampling voltmeter (Broadband) type $3406 \mathrm{~A}-£ 200$
HP Vector voltmeter type $8405 \mathrm{~A}-£ 400$ to $£ 600$

HP Oscillos cope mainframe type 181TR - $£ 400$.
HP Frequency counter type $53528=40 \mathrm{GHzS}-£ 5500$.
HP Synthesiser/signal generator type 8672A-2t0 18GHzS- $\mathbb{7} 7500$.
HP Vector impedance meter and probe type 4193A - £1500.
HP Network analyser type 8754A + HP8502A test set - $£ 5000$
HP Mainltrame type 8620 A or $\mathrm{C}-£ 600-£ 1200$

HP B640A signal generator - OPT 001 -002-. 5 MMC ' $1024 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 1000$
Aacal Dana digtial multumeler thpe 500
Racal/Dana GPIB milefiace rype 9934A- 100
RacalDana timertcounter type 9500 (9515 OPT A2) - $1250 \mathrm{Md} / \mathrm{s}$ - $£ 750$
Racal Thermionic store 4 recorder - $£ 300$.
Racal frequency standard generators type MA259-600Kc/s - 1 MC \& $5 \mathrm{MC} / \mathrm{s}$ - $£ 200$
Marconi AF power meter rype 8938- $£ 300$.
Marconl brige type TF2700-£150
Marconl atrenualor Mpe TF2163S-1GHz- £250,
MarconiSSaunders signal sources types-6058B-6070A-6055B-6059A-400 to 18GHzS. P.O.R
huillis converior 1o-GP. IEEE-4.8-2
Microwave systems MOS $/ 3600$ microwave trequency stabilizer - 11018 GHz \& $181040 \mathrm{GHz}-£ 1500$ Microwave systems MOS5 microwave trequency stab㠶er - 1 to $18 \mathrm{GHzs} \& 181040 \mathrm{GHzS}-£ 300$. Bradiey oscilloscope callibrator type 156- $£ 150$
Bradley oscilloscope callirator type 192 - $£ 600$
Tekironix curve tracer rype 577 - $£ 1000$
Tektronix plug-ns -7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7010-7S12-S1-S2 -S6 - S52 -PG506-SC504 -SG502 - SG503 - SG504 - DC503-DC508 - DD501 - WA501 - DM501A FGG501A - TG501 - TR502 - PG502 - DC505A - FG504. P. O.A
Racal HF drve unit 1.6 to 25 MCl 's ype 1724 -brand new- $£ 350$
hacal MF dive unit type $1720-1 \mathrm{MC}$ to $29 \mathrm{Mc/s}$ - $£ 150-_250$.
Aillech Stoddan recelver type 17727A -.01-32MCS - £5000
Aillech Stoddan receiver type NM65T- - 110 10GIGS- 53000
HP Ocillographic recorder tyoe $7404 \mathrm{~A}-4.1$ rack $-£ 350$
MP Plotter type $98728-4$-pen - 5300 .
Marconi TF2015. SIGGGEN - 10MHz-520MC/S - AMFM-E250
HP power meter type 431 C to 18 GHz with C type head \& waveguide head - $£ 150$ to $£ 200$ HP sweep oscillalors type 8690 AAB + plug.ins from 10 MC 's to 18 GHz also 18-40GHz $2 . \mathrm{OR}$ Marconl TF $1245 A$ clrcult magnlfication meter -124681247 oscillators - $£ 100$ to $£ 300$.
AP signal generators Type 612-614-618-620-626-628-frequency foom 450Mc/s10 21GHzs. HP 8614 A - HP 8616 A signal generators - $800-2400 \mathrm{MC} / \mathrm{s}-1800-4500 \mathrm{Mc}$ - $-\Sigma 500$ - 400 Gould 338 test osclilitor - $£ 250+$ manual.
Ferrograph recorder test sels - RST2 - $£ 200$
Hacal/Dana $9301 \mathrm{~A}-9303 \mathrm{RF}$ millivoltmeters $1.5-2 \mathrm{GHz}-£ 350-£ 750$
HacalDana counters 9915 M - 9916 - 9917 - 9921 - $£ 15010$ §450 Fmed FX standards
HP 8407A $-8412 \mathrm{~A}+8601 \mathrm{~A}$ network analy ser $-100 \mathrm{KCLs}-110 \mathrm{MC} / \mathrm{s}-£ 1000$
HP 8410 B network analyser - 110 Mc 's to 12.4 GHz or 18 GHz plus most other units and displays used in
this 501-up 8413A-8414A-8418A-8740A-8743A-8750A P.O.R.
HP 141 T malntrame plus - 8556A-8553B-8554B-P.O.R. -8555A-8552A-8552B plug-in untis HP 181TR mainframe - £400-HP 182T maintrame - £500. HP 141 T maintrame - $£ 500-£ 1000$. HP 432A-435A or B-436A power meters + Powerheads - $10 \mathrm{Mc} / \mathrm{s}-40 \mathrm{GHz}$
HP 478A - p486A - K486-8481A-8481B. P.O.R
Image intensifiers - ex MOD - tripod diting for long range night viewing - as new - E 3000 EA Thermal tmaging Equipment - high definition - trom $£ 2500$ - complete in transit case.

S.A.E.tor felatht - Intra-red spolilghts and infta-red filters P.O.R.
 s. Fx standard- $£ 500$

ACL Field Intensity Meter Recelver type SR-200-6. Plug-Ins trom . $5 \mathrm{~mm} / \mathrm{s}$ to 4 GHz - P. QR

Marconi TF 2361 Sweep Generator ++ TM96930-300MC/S + TM9694-220MC/s-100CMC/s - £350 HP 117108 Down Convertor - $01-11 \mathrm{Mc} / \mathrm{s}$ - $£ 450$
AP 86408 Signal Generator ODt $001+003-512 \mathrm{MC} / \mathrm{s}=£ 1200$
Singer EmA 910-11 data evaluation unit - EMA 910-10 FX selection unhs + EMA 910-12 FX selection Singel EMA Si1.50GMZ toral FX coverage - $£ 2000$
Marconid distortion meter type TF2337A - £ 150
H.P. pulse modulator type 17720A-2-18GHz. P.O.R
H.P. modulator type 8403A - £100-§200
H.P. pin modulators tor above, many different trequencies - $£ 150$
M.P. 4354 power meter (no head) - $£ 200$.
M.P. $5342 \mathrm{~A}-18 \mathrm{GHz}$ counter - $£ 1600$

Tektronix 308 data analyser - £350
Systron Doonner model 6053 counter 3 BGHz - E 300 .

H.P. $745+746 \mathrm{~A}$ AC calibrator + high voltage ampititer $-£ 300$.

Phillips 3217 - 50 MC s S scillosccope with probes $\&$ book $-£ 30$
Marconi microwave 6600 A sweep osc mainframe with $6650 \mathrm{Pl}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5-40 \mathrm{GHz}$ c1000.
H.P. 8660B signal generator mainframe $=£ 1000$.
H.P. 86608 signal gener rator $-1-1300 \mathrm{Mc}$ /s. 86602 A -ext modulator PI $866318-£ 1500$
H.P. 8650 C signal generator - 1 - 1300 MCL . $866022 \mathrm{~B}+\mathrm{AM}$ - FM modulator PI $86632 \mathrm{~B}-£ 2500$
H.P. 3720 A spectrum display - $£ 200$ - HP3721A Corfealator - $£ 150$.

H.P. $37555+3756 \mathrm{~A}=90 \mathrm{M}$ C/s swich $-£ 500$.
H.P. 331 A distorion analyser £150.

Marconl TF2331 distortion meter - $£ 150$
H.P. ampllifier type 8447A - 1 -400MC/s - $£ 400$. MP8447F-. 1-1300MC/s - $£ 800$
H.P. trequency counter $5340 \mathrm{~A}-18 \mathrm{GHz}-£ 1000$. Rear output $-£ 800-20 \mathrm{GHz}$ opt $-£ 1100$
H.P. spectrum analyser plug-in $8557 \mathrm{~A}-.01-350 \mathrm{Mc} / \mathrm{s}-£ 500-$ OPT $001-£ 400$
H.P. spectrum analyser plug-in $8558 \mathrm{~B}-.1-1500 \mathrm{Mc}$ s $-£ 1500$

Clark air masts. Heavy duty. Scam-40t or 70 th - $£ 200-£ 1000$
Gould K105 logic anz - $£ 500$ with twin disc.
Tektronix 491 spectrum analyser - 10 Mc cis 40 GHz - $£ 1000$
Tektronix 491 spectrum analyser - $1.5 \mathrm{GHz}-40 \mathrm{GHz}-£ 1000$
Tektronix 491 spectrum analyyser- $1.5 \mathrm{GHz}-40 \mathrm{GHz}-$ as new $-£ 1200$
Tektron \mathbf{X} DC508A -1.3 GHz counter + TM500 mantrame -P.O.R
EIP microwave counter 371 - source locking -18 BHz - $£ 1200$
Tektronix maintrames - 7603 - 7623 A-7633-7704A-7844-7904 - TM501 - TM503 - TM506 PO.R.
Hems bought from Hila Government being surplus. Price is ox-works. S. A.E. For enquiries phone fo appointment or for demonstrathon of any items, availability or price change vaT ane Carr. extr
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No. (0274) 684007. Fax 651160.

With 48 years' experience in the design and manufacture of several hund ${ }^{\circ}$ ed thousand transtormers we can supply
GUDIO FRELUUNGY TRANSFOMMERS OF EXEBY TMPE

YOU NAME IT! WE MAKEIT!

OUR RANGE INCLUDES
Microphone transformers (all types). Microphone Splitter/Combiner transformers. Input and Outfut transformers. Direct Injection transformers for Guitars. Multi-Secondary output transformers. Bridging transformers. Line transformers. Line transformers to 5. T. Isolating Test Specification. Tapped impedance matching transformers. Gramophone Pickup transiormers. Audio Mixing Desk transformers (all types). Min ature transformers. Microminiature transformers for PCB mounting. Experimertal transformers. Ultra low frequency transformers. Uitra linear and other transtormers for Valve Amplifiers up to 500 watts. Inductive Loop transformers. Smoothing Chokes. Filter, Inductors. Amplifiers to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers. Speaker rratching transformers (all powers). Column Loud-speaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHL Y COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Bany standard types are in stock and normal dispatch times are short and sensible
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES. MIXING DESK MANUFACTURERS. RECORDING STUDIOS. HI-FI ENTHUSIASTS. BAND GROUPS AND PUBLIC ADDRESS FIRMS Expor is a speciality and we have overseas clients in the COMMONWEALTH. EEC. USA, MIDDLE EAST, etc
Send for our questionnaire which. when completed. enables us to post quotations by return

PO Box 36, Ipswich IP1 2EL, England Phone: 0473252794 \& $0473219390-$ Telex: 987703G Fax: 0473236188

CIRCIE NO. 109 ON REPLY CARD

TEKTRONIX

7704A Main Frame Oscilloscope 250 MHz
7904 Main Frame Oscilloscope 500 MHz
TM506 Main Frame Oscilloscope
2815 Opti Fibre Scope New and Boxed + Used Ones
2225 Digital Storage Scope
7603 Main Frame Scope
SC502 Scope 15 MHz
5223 Digitalizing Scope
106 Square Wave Generator
191 Constant Amplitude Signal Penetrator
134 Time Mark Generator
TG501 Time Mark Generator
DM501
DM561A Digital Multimetre
SM502 506 Main Frame
DM5010 Programmable Digital Multimeter

S1 \& S2 SAMPLING HEADS
Plugins

Plug ins			
7A13	7B50	7D02	7B53A
7A18	7B50A	$7 D 20$	
7A24	7B71	$7 S 11$	
7A26	$7 B 80$	$7 S 14$	

Send $£ 1.00$ for list of test equipment
J. \& M. Computers Eight Acres,
Gt Totham Road, Wickham Bishops Witham, Essex
Tel: Maldon (0621) 892701
F'ax: (0621) 891414
J \& M Computers specialize in all redundant Electronic Equipment working or not, i.e.
Computer equipment and peripherals
Components (resistors to IC's)
Test equipment
Modems
Printed circuit cards
Redundant stocks
End of job lots
Cable
Factory clearances
If you have redundant equipment now or in the future, would you
contact us. We would be pleased to price and collect it at our own
expense.

ON THE RIGHT TRACK

Marine electronics is becoming big business. Small hoat owners have never had a better opportunity to pour money into high technology than at this year's Boat Show. The satellite based global positioning system (GPS) is emerging as a clear winner for electronic navigation against the traditional land based systems of Decca and Loran.
The big boost for GPS has been its increased coverage with 18 of the planned 24 satellites in operation. This allows users to take a fix for more than 23 hours in any 24 hour period. By the end of this year, shuttle launches permitting, all the satellites should be up and giving an around-the-clock service.

Navigating a small boat is no longer a matter of the wet finger held aloft. Technology has made inroads and Steve Rogerson reports on the latest equipment seen at the Boat Show

There has been a dramatic fall in price for GPS systems. Four years ago a unit could easily cost $£ 10,000$. As recently as last year the price was in the $£ 2500$ bracket. At this year's boat show there were sets available for as little as $£ 1300$ with predictions that the price will drop below $£ 1000$ by the end of the year. They are still more expensive than the land based equivalents, typically $£ 600$ to $£ 700$ for a Decca and as low as $\mathbf{£ 5 0)}$) for Loran, but some pundits were predicting that within five years the price differential will have disappeared completely.
GPS has also been given an increase in popularity in a strange spin-off from the Gulf crisis. When the GPS satellites first went into orbit, the US Government
became concerned about the 10 to 15 m positioning accuracy achieved by civilian sets. The worry was that it could be integrated into a guided missile system or otherwise used for military purposes.

The US authorities responded by putting a scrambling system on the satellite signals that reduced the accuracy to only 100 m : military units were fitted with a descrambler. But with the large deployment of troops into a featureless desert. every unit and section was to be given a GPS receiver. The trouble is that not enough military units could be sent to the area in time and so civilian units were pressed into service. This led to the US Government switching off the scrambler

Navico's Star Pilot GPS costs $£ 2395$ and has a 128×160 pixel display, which is responsible for the elevated price. Vessel's track is displayed.
system - called SA for selective availability. The US has said SA will go back on after the Gulf crisis is over, but that decision will surely depend on the progress of the Russian Glonas system.

This is again a satellite based system with no SA equivalent plamed. Russia is approaching mamufacturers with a view to producing versions in the West and at

DIFFERENTIAL GPS

GPS systems can be made more accurate using a technique called differential GPS. For this to work a second GPS receiver is needed at a known fixed position. The mobile GPS takes readings from the fixed station as well as the satellites to improve the fix. With GPS descrambling, it is possible to get accuracies within a few centimetres, ideal for surveying applications. Even with the SA switched on, accuracy can be within 20 m at a limited range. The 20 m accuracy can only be achieved within 30 km of the fixed base station, and reduces to 100 m at 160 km . Some manufacturers are thinking of setting up their own base station networks for differential GPS if the US turns SA back on.
least one US firm is making a hybrid GPS/Glonas unit. If cheap Glonas systems come on the market, then it seems inconceivable that the US would switch SA back on, thus reducing the positioning accuracy for civilian users: doing so would kill sales of the US system hardware stone dead.
Chris Carter from Navstar put it this way: "If a good, commercially viable Glonas receiver is put on the market and the US implements SA, then Glonas would outsell GPS, which would be commercial suicide for the US manufacturers." But Brian Gram, a consultant for Navico. said that Glonas is too sophisticated for the leisure industry. He didn't envisage that low price Glonas sets will come in, at least not as low as GPS.

Satellite systems enjoy virtual global coverage. In contrast. Loran only covers the American coast states. Norway. Iceland, the north of Scotland, the

NEW GPS RECEIVERS

Companies showing new navigation products all went for the GPS system with price as the selling point. The winner at $£ 1300$ wasthe Pronav GPS100 available from three UK distributors - Regis Electronics, SM International and Marine Electronics Services. It measures just $159 \times 100 \times$ 51 mm and weighs about 0.7 kg . But the firm must have been looking at last year's price lists when it made its claim that it costs around $£ 600$ less than its nearest rivals. Try telling that to Marconi which had a range of Koden GPS units priced between $£ 1350$ and $£ 1900$ including the GP910. Like the Pronov product, it has an accuracy of 15 m . And Shipmate was showing its RS5500 unit at less than $£ 1500$ with an accuracy of 8 m . Not really in the price war at $£ 2395$ was Navico with its Star Pilot GPS
receiver, but most of the extra cost clearly went into its large 128×160 pixel supertwist Icd display Accuracy is 15 m . Cetrek was doing something different. A GPS system is made up of a black box, antenna and display, but the firm was selling its black box for $£ 1295$ for owners of its chart based navigator. This is a cartridge system with each cartridge containing details of a particular area of coastline. The GPS system links into It to show sailors where they are on the display. The chart system itself costs $£ 3000$. Even more different was the Navstar XR4-PC.This is a computer expansion card intended for the OEM market and people who want to value add to systems. It turns an IBM XT or AT-compatible computer into a GPS development system.

Mediterranean, Saudi Arabia, Japan and part of the South China Sea. Further transmitters are planned for India but it still leaves large areas of the globe uncovered including most of the British Isles.

Decca has all of the British Isles covered, along with most of Scandinavia and the north European coast. There are further systems in Canada, Japan, the Gulf. India. Bangladesh. South Africa and Australia. Land-based systems are also more prone to weather and time-of-day interference and their range and accuracy are not as good though Decca, at 25 m . does beat a scrambled GPS. Loran, at 200 m , is not a contender.

Political problems also come into play. The Decca system was taken over by the British Government about three years ago

Philips's ap Navigator six-channel standalone GPS at $£ 1950$, which displays data received from wind instrument systems, with lay lines for true speed over ground.
although Decca still manages it. The problem is that the Government is only guaranteeing transmissions until early 1997. after which Decca may not exist unless a private firm takes over the transmitter chain. The Government intended to back the Loran system, assuming that it would get funding from the European partners.

However, other countries are updating their Decca chains and seem unlikely to sanction extra money for Loran. Navicoss Grant summed the commercial possibilities this way: "In five year's time GPS will have very low price systems and be the main player. Loran will be in Europe and be sustained for European military reasons as an alternative to GPS and Glonas.
"But GPS is so universal and accurate that it will be in the hands of the US with no commercial back-up if European countries do not put up the money. It will be a problem getting fishermen to scrap Decca. but GPS is so accurate that some fishermen are already asking for it."

[^5]
A 20MHz top quality oscilloscope for $£ 270$?

This special cffer, only available through Electronics World + Wireless World, represents untelievable value.

We rave assured ourselves that the PModel 102! osci loscope from Japanese inst urnent manufacturer, Leader Electrcnics, more than meets its published specification ard is of an exceptionaly high build quality. Our judgemert is backed by an unequivocal guarantee.

At $£ 270$ (inclusive of test probes, packagng and delivery but excluding VAT) the instrument is an absolute bargain.2) VHz dual channel operation

- Varable trigger hold-off

O 5 m /dv $\mathrm{Y} 1, \mathrm{Y} 2$ sensitivity at 20 MHz
O $1 \mathrm{mi} /$ div $\mathrm{Y} 1 / \mathrm{Y} 2 \times 5 \mathrm{mag}$ at 7 NHz
-230ns'div to 0.2s/div sweep rate
O DC to $500 \mathrm{kHz} X$ bandwidth
X / Y. operation using Y channels
OX> phase shift $<3^{\circ}$ at 20 kHz
-8c7x 10 cm display area
Cal bration accuracy better than 3\%

- 1 kHz internal calibrator
- Special video signal trigger modes

Ofisz-time <17.5 ns

- Craticule illumination

TwJ 10 probe kits ticluded
inequivocal guaraniee

RE RAEDEK ELECTRONICS

BANNERLY ROAD, GARRETTS GREEN, BIRMINGHAM B33 0SL, ENGLAND
Tel 021-784 8655
Fax 021-789 7128

TETRODES • THYRATRONS - TRANSMITTING
TRAVELLING WAVE • TRIODES • SOCKETS \& ACCESSORI=S

R.F. Power Transistors

MOTOROLA • GENERAL ELECTRIC • R.C.A. • JOHNSON
THOMSON-CSF • REGENCY • WILSON • T.R.W. • MSC • ACRIAN TOSHIBA • NEC • MITSUBISHI • PHILIPS • AMPEX • MULLARD

Also in Stock

THYRISTORS • MICROWAVE DIODES • ZENER DIODES • CRYSTAL OVENS • R.F. POWER MODULES R.F. CERAMIC CAPACITORS • RECTIFIERS • RECTIFIER STACKS • JAPFNESE 2SC TRANSISTORS JAPANESE IC's • VIDEO ACCESSORIES (MOTORS, HEADS, BELTS etc) • R.F. HEATERS CATHODE RAY TUBESICURRENT AND OBSOLETE TYPESI • MICROWAVE OVEN MA JNETRONS) HOME AND INDUSTRY LINE OUTPUT TRANSFORMERS (FOR A LARGE RANGE OF MONITORS) • VACUUM CAPACITORS

CIRCLE NO. 120 ON REPLY CARD
 precision. Double sided circu including SMD. Cad stem inclu every Cad
For ever
(Gerber intertace).

$$
55^{5} 4^{5}+\sin ^{s}
$$

'Meadows' Coppid Beech Lane Wokingham Berks RG115PJ Tel:0344 86042055046 Fax: 411346 Tlx: 849462 Tellac G

NEW TO THE WORLD OF TV?

 or in need of updating?Then why not attend
"INTRODUCTION TO TV PRINCIPLES FOR ENGINEERS ${ }^{\dagger}$
** Next course: $23^{\text {rd }}-26^{\text {th }}$ April ${ }^{* *}$ to be held at the
CROSSMEAD CONFERENCE CENTRE, EXETER
\dagger Free textbook, worth $£ 47.95$, with each place
Write or phone for details.

JAMES BRICE ASSOCIATES

TRAINING SERVICES FOR THE TELEVISION INDUSTRY
\square
JBA
2, COURT GARDENS, STOODLEIGH TIVERTON, DEVON EX169PL

Tel. \& Fax. 03985515

Adding a range switch to a DPM

Although many low-cost digital panel meter chips now exist, they are commonly designed for a single range and have no provision for different voltage ranges. When input switching is needed, one solution is to use solid-state devices in a divider arrangement, but this does mean that the switch resistance has to be taken into account when designing the divider. Since the resistance is not accurately known and varies with temperature and power supply voltage, the method is not ideal.
In the circuit shown, which is taken from the Maxim 1990 Applications Handbook, using the differential inputs of the MAX138 panel meter module removes the IR voltage drops across the analogue switches in series with the precision resistors. The second set of analogue switches has no current flowing in it and simply connects the 138 input low pin to the bottom of the divider resistor in use, so that the voltage drop in the current-carrying swith is not seen.

A negative supply voltage is needed by the analogue switch if it is required to pass positive and negative inputs. Since the 138 contains a charge pump to generate negative voltages. low-current switches such as the DG509A shown can use
this supply, available at the 138 's V-pin, at currents up to 0.5 mA .
Maxim Integrated Products (UK) Lid, $2 / C$ Horseshoe Park, Pangbourne, Reading RC8 7JW.

Function generator with linearisation

When a complex or discontinuous function must be generated, it is now common to use an A-to-D converter feeding digital addresses to a rom, which provides a unique code to a D-to-A converter to give
an analogue output. Any function is obtainable with the correct rom programming.
Analog Devices's AD7569 (below) contains both data converters, so that with this device, a Sierra Semiconductor SC22102 rom and a quad Nand such as the 4093 to carry out logic and timing functions. a three-chip function generator can be made, as described in Application Note E1369 and shown in Fig. 1. Input and output ranges are pin-programmable. Since input impedance is low and bias current rather high, it is expected that an input buffer will be used. Data from the A-to-D and to the D-to-A use a common

THURLBY THANDAR

For Digital Multimeters

Whatever your need in DMMs, Thurlby-Thandar can supply it.

With prices starting at just $£ 39+$ VAT, the range includes both hand-held and bench models. Display resolution varies from $31 / 2$ digits up to $51 / 2$ digits and accuracies are from 0.5% up to 0.01%

Some models offer True RMS AC, frequency measurement, conductance measurement and digital interfacing.

1905a

This low-cost $51 / 2$ digit bench DMM combines exceptional resolution and accuracy with computing power and data logging. It costs £349 + VAT.
Contact us now for full details of all our DMMs.
Thurlby-Thandar Ltd.
Glebe Rd., Huntingdon, Cambs. PE18 7DX. Tel: (0480) 412451 Fax: (0480) 450409

> IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG. 5 mins from Tally Ho Corner

$$
\begin{aligned}
& \text { Telephone: } \\
& \text { 081-445 2713/0749 }
\end{aligned}
$$

CIRCLE NO. 111 ON REPLYCARD

EPROM PROGRAMMERS

MODEL 200 - $£ 295$ (other models from $£ 195$)

- Includes MSDOS driver sottware, serial cable, comprehensive manual, 32 pin ZIF socket and universal object file editor/converter.
- Programs virtually all EPROM devices currently available including microcontrollers (nearly 6001).
- Emulation capability with our E512 or the Greenwich Instrument emulators. - Easy to sot up-not a plug in board. - 12 Month Guarantee. Money back if not completely satisfied.
- Designed, manufactured and supported
in the UK.

8 PIN SERIAL EEPROM ADAPTER Reads $\&$ programe 0 (50 - $1^{2} \mathrm{C}$ (M8571, X2402), 5306, 2506

As used tor security devices in many car fedios
mobile radios, cellular phonea a cecurity
systoms.
We also sell Bipolar and Gang Programmers, EPROM Emulators and
Erasers and a universal cross-assembler for IBM PCs and compatibles.
Write or phone today for Free Information Pack
Tel: (0666) 825146
Fax: (0666) 825141 MOP ELECTRONICS, PARK ROAD CENTRE,
 MALMESBURY, WILTSHIRE, SN16 0BX UK Scandinavian customers please contact: Digitron A/S, Alosund, Norway Phone 071-45 890 Fax 071-45 453 German customers please contact: Synatron, Grasbrunn B. München, Germany Phone 089/4602071 Fax 089/4605661

Fig.1. Three-chip function generator.

Fig.2. Waveforms in the function generator. Circled numbers refer to Fig.l.

Fig.3. Using the generator to linearise signals from a transducer.
port and it is therefore convenient to use a rom with multiplexed address/data bus, the SC22102 eeprom being such a device. Both converters are 8 -bit devices, so accuracy is 0.4%.

Clock pulses at a maximum frequency of $250 \mathrm{kHz}, ~ A-10-\mathrm{D}$ triggering and write/read control is provided by the four gates in the 4093. Waveforms, identified by circled numbers, are shown in Fig. 2.

No setting up is needed unless the sampling frequency is to be precise, in which case R_{1} should be set so that T_{1} is at least 500 ns longer than the BUSY signal of the AD7569 and T_{2} then set to give the correct frequency.
Programming the rom is simple and the author points out that he built a programmer to plug into he Centronics port of a personal computer (a 12 year old PET with a modified operating system).
One application is that of the linearisation of transducer signals: Figure 3 shows the principle. If the non-linearity of the

signal is 2% and the correction applied to the signal from the function generator's A-to-D is 2%, then the resolution to which correction is applied is the 0.4% of the function generator multiplied by 2%,
which is 0.008% or around 14 bits. The application note gives full details.

Analog Devices Ltd, Station Avenue, Walton on Thames, Surrey KT1 2 1PF

Turning off mosfets

A mosfet's input capacitance amounts 10 several thousand picofarads, which must be charged to 5 or 10 volts to turn the mosfet on and discharged to lurn it off. Turn-on is relatively simple, but to drive the input voltage below the gate/source threshold voltage needs some kind of active network, which normally consists

Fig.I. Common mosfet drive arrangement.
of several discrete devices, as seen in Fig. 1. Motorola's Engincering Bulletin EB142 describes an integrated device to perform the function rather better and at lower cost
In the circuit of Fig.1, the gate capacitance is charged to the level of the input less the diode drop, the base of the MPSA55 being clamped off by the diode. When the input goes low, the transistor
turns on 10 discharge the mosfet input capacitance rapidly. The zener protects the gate from overvolage.

Motorola's MDC100)A/B/C (Fig.2) is ant integrated equivalent to that in Fig. 1 , except that the p-n-p transistor is replaced by a complementary pair to form a silicon controlled rectifier, which discharges the mostet gate capacitance faster; the protection zener is also incorporated. A circuit symbol for the device is shown in Fig. 3. When the input goes low, the SCR turns on rapidly, the gate capacitance being discharged until the SCR turns off at the point where the mosfet gate charge is 100 low to provide holding current for the mosfet. Mosfet gate voltage at this point is less than IV and the time to discharge 1000 pF from 9 V to IV is 15 ns .
Figure 4 shows the MDC 1000 A used in the PWM switch of a power converter, in which current is taken from the emitter of an output transistor in the MC3406()A oscillator and passed to the mosfet via the MDC1000). The 300 ohm resistor limits current to the turn-off device and the 680 pF capacitor provides a little extra urgency at turn on
Motorola Lid, European Literature Centre, 88 Tanners drive, Blakelands, Milton Keynes MK145BP.

Editorial survey: use the information card to evaluate this article. Item K

Fig.2. Integrated drive using complementary pair.

Fig.3. Circuit symbolfor MDCIO00.

Fig. 4 below. MDC1000 used in PWM switch of power converter.

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

HP 141 T 8554 L 8552 A 0.1101200 MHZ analys 141 T)
HP 182 A 8558 B Spectrum Analyser 0.1 10 1500
MHZ HP 180 TR 8558B Spectrum Analyser 0.1 10 1500
$M H 2$ HP 8551 Spectrum Analyser 10 MHZ to 40 HP 8553B Analyser Plugins Tektronix 491
New + Book alyser 1.5 to 40 G Analyser RA 200 Digital Audio Response Texscan 9900 Sweep Analyser $450 \mathrm{M}-2$
Tektronix $7 \mathrm{DO} / \mathrm{DF} 2$ Logic Analyser Oscitloscopes ${ }^{\text {Tekfronix } 245 \text { GPIB } 250 ~ M H Z ~} 4$ Trace Tektronix 2455250 MHZ \& Trace Tektronix 5223 Digitizing Oscillosope 5B25/N Tektronix 222550 MH Z Dual Trace ektronix 7603 7A187A1878653 Tektronix 475 A 250 MHZ Oual Trac order Tektronix 5403 5A48 455185 BA2 A Chan Philios 321750 MHZ Oual 1 Tace las new probes etc Telequipment D83 Dual Trace 50 MHZ relequipment 075550 MHZ Dual Trace rigger Gould OS 350060 MHZ Dual Traç ould OS260 30 MH2 Dual Trace Cossor CDU150 35 MHZ Duz Trace Storage Timebase Tektronix T922R Dual Beam Rack Mount Generad T/M 427181 MHZ LCR Meter 5345A Timer Counter 1 1P 3400 A TOR With Genrad HP 3465A Digital Voltmeter HP 8112A Programmable Pulse Generators Kathrein MFK80 TV Field Strength Test Sc Racal RA17L Communications Receivers
Racal RA117 Communications Receivers

Speciar omers
Yuasa NP $38 / 1212$ volt $38 / \mathrm{amp}$ Brteries RS 500 VA 240 V Primary 110 V secondary

```
RS 500VA 240V Isolating Transformers
```

HP 85 Desktop Computers
Marconi TF995 1.5 MHZ 10220 MHZ AM FM SI
GENS Orake ESA 3240 E Satellite Receivers
Drake ESR 3240 E Satellite Reccivers
Fluke 770 VM Case Cal Certificate
Tektronix 141 A Pal Colour Test Generator
Tektronix 1485 C Waveform Monitor
Tektronix 1481 C Video Waveform Monitor
Tektronix 1481 C Video Waveform Mon
Philips 5334 TV Sweep Generator
Marconi TF2162 MF Arenuator DC 101 MHZ
Marconi TF2432A 560 MHZ Freq Counter
Marconi TF2432 560 MHZ Frea Counter
Systron Donner 6053 Freq Counter 20 HZ
3GHZ
IWATSU SCT104 Freq Counter 1 GHZ 9 Oigir
lekifonix OM501/TM501 Digital Multimeter
Farnell TM8 RMS 1 GHZ Sampling IEEE Met
Ferrograph RTS $2 /$ ATU1 Audio Testset
Wayne Kerr B421 Aulobalance Componen
Bridge
Wayne Kerr 8900 Autornatic Bridge
Wayne Kerr B900 Automatic Bridge
Burndept Absorption Wartmeters 0 to 500 MH
0 hm 3 ranges -010100 MW .010300 MW . 01
Watts RHF/UHF PMR Calibeators
Signal Generators
Signal Generators
Marconi TF 2008 10 KHZ to 520 MHZ AMFM
Box Marconi TF2015A 10 KHZ 10110 MHZ AMFM
Marconi TF2016A 10 KHZ to 110 MHZ AMFM
Marconi TF2015/2171 Synchronizer 10 MHZ to
MHZ ${ }^{\text {Farnell SSG } 520520 \mathrm{MHZ} \text { Synthersized }}$
Sweep Philips PM6456 Stereo Generator
HP 606 EA 50 KHZ 10 65 MHZ Stg Gen
HP 6168 1.5 GHZ to 4.2 GHZ Sic/Gen
HP 61883.8 GHZ to 7.2 GHZ SigGen
HP 61883.8 GHZ to 7.2 GHZ Sig
HP 651 B Test Oscillator
Marconi TF2331A Distortion Factor Meter
B\&O Wow and Flutter Meter WM2
Woelke ME 120 C Wow and Fluter Me
Marconi TF 2300 AMFM Mod Meter

ALL PRICES PLUS VAT AND CARRIAGE
86 Bishopsgate Street, Leeds LS1 4BB Tel: 0532435649 Fax: (0532) 426881

CIRCIE NO. 124 ON REPLY CARD

WE HAVE THE WIDEST CHOICE OF USED OSCILLOSCOPESIN THE COUNTRY	
Texromix zusa fou trace hown	
	OV:
ca0	
TELESupmen 0 DFs Dual free soun	
	guod eorhint order - physicalty nol Dratiam
GOULO OS 300 - HIGH OUNATY - 2OUH2 Dual Irace	
	5
	Nalve Dasa hot Mcluob
	S
	WEW ETUIFMENT
	eisit
	MANEG OSCILIOSCDP! H2053 Ouel Tract 20dhe Dughtal Storage i610 All of her models arailable - all osciloscopes supolited mith 2 orthes
Taphuir	
	${ }^{293}$
	Dof frouelcr counic ioume
	0
(1)	
MP 1411 Spectpum Analyser System with 8553 a \|l Fuge-hin IKHz 110 MH2	
MARCON II 2370 Soectrum Inalisser 110MW?	
This is a very small sample of stock. SAE or telephone for LST of OVER 700 ITEMS. Please check availability before ordering. CARRIAGE all units £16. VAT to be added to lotal of goods and carriage.	
WART OF READIN	
V/SA	G, BERKS RG6 1PL
	Fax:0734 35169

CIRCIENO. 123 ON REPLY CARD

Industrial computers

The fiextble solution

- PC/AT/386/486 compatible
\triangle Steel cased
\triangle Splash/dust proof
$\triangle 8088$ to 80486 CPU
\triangle Any disk combination
\triangle Up to 10 free slots
Send, or call today for details. Telephone 0244520222
Hawarden Industrial Park, Manor Lane, Deeside, Clwyd, CH5 3PP Fax 0244531043

INTERFACING WITH C

PART 13

Kalman filters are not exclusively the preserve of mathematicians. In this part of his series on C, Howard Hutchings brings the subject down to earth by describing a practical filter used for measuring temperature in the presence of noise.

If you are not confused, then you are misinformed

Kalman filters - predicting uncertainty

Kalman filtering is an important computer application and a specialist area. Connecting a PC to an external device is an effective means of acquiring a realistic understanding of this method of digital-signal processing. The aim is to remove random fluctuations and to establish trends. In this sense, the Kalman filter is a digital estimator designed to remove noise, although this is not clear from the literature Most books are written by specialists who seem to think Kalman filters exist for the purpose of manipulating mathematical equations. This makes getting started very difficult. I think in terms of specifics rather than generalisations. Show me a problem, signpost a solution, and let me demonstrate that it works. In this way, I feel comfortable and I am happy to take more ambitious abstractions on board.

Your comprehension of the subject may fall under one of the following profiles:
(1) You already use Kalman filters successfully and the terms digital filter, state variable, mathematical model, autocorrelation, variance, meansquare error, and random noise are well understood.
(2) You have heard of Kalman filters, but never found the time to fully understand them.
(3) You have never heard of them, but the prospect of predicting order out of apparent chaos has a certain perverse appeal.

Numerous military, industrial, and scientific applications exist. Undoubtedly, many of the remarkable technological achievements of the past 30 years are due in part to Kalman filter theory. A few of the more spectacular include:

- the navigation of the Apollo spacecraft - this involves mid-course correction culminating in the control of the lunar lander;
- the guidance and control of Exocet missiles which are skimming a few feet above the waves in the presence of noisy sea swell;
- satellite navigation as an aid to precise ship docking and manoeuvre; - and tracking radars and the control of auto-pilots.

Despite the complexity of the engineering system, the fundamental problem remains of how to recover the characteristics of a deterministic signal corrupted by stochastic noise. Here deterministic means exact or predictable, whereas stochastic describes a
process made up of random events. These appear unpredictable to an observer, but can be characterized by statistical methods. I will describe my experiences when interfacing an Ana\log Devices temperature transducer AD590 to a digital computer IBM PC clone, through a 12 -bit a-to-d converter. The signal was deliberately corrupted by random noise before being processed in real-time through a Kalman filter written in C. Finally, the processed output was displayed graphically through an EGA card and colour monitor.

By way of a comparison, the processed output will be shown with no filtering at all, as well as the effects of a 5 -term moving averager. Remember this is reality, not a game played on a blackboard where everything works perfectly first time. Be prepared to get it wrong before you get it right and learn to try a little harder next time. By deliberately selecting a relatively modest system to control and monitor, it will be possible to see what is going on without being overwhelmed by detail and complexity.

To help you to participate fully in the discussion, it is first necessary to introduce a few terms from elementary statistics. Fig. 8.1 represents a continuous random-signal voltage which may take any value in the range $\pm 5 \mathrm{~V}$, for example.

Fig. 8.I. Quantifying random signals using the probability density function.
To learn a little more about the characteristics of this signal, it makes good sense to ask for what fraction of the total observation time T_{0} does the signal occupy a particular voltage range? For example, the tram-lines drawn in Fig. 8.1 indicate the time spent in the range δy and they enable us to compute the sum:
$q=\lim _{T_{0} \rightarrow \infty} \frac{\left(\delta t_{1}+\delta t_{2}+\delta t_{3}+\delta t_{4}+\ldots\right)}{T_{0}}$
Examination of this expression will soon make evident that q tends to zero as the observation time T_{0} becomes infinite. However, the division of q by δy as the interval between voltage ranges shrinks to zero does tend to a definite limit. This is sufficiently impor-
tant to be given a special name - the probability-density function symbolized by $\rho(y)$. Much of the subsequent work will rely on some comprehension of the terms mean value, variance, and mean-squared value as a way of describing the characteristics of a random signal. It is appropriate to advertise the first and second moments of an amplitude distribution for both continuous and sampled data signals, as in the box below. A few words on notation will also be relevant. It is customary to identify the operation of evaluating the mean or expected value of a data set by E. Thus, the mean or expected value y is giver by $E[y]$.

Characterizing stochastic noise - Noddies' guide to statistics

Most of us have a good idea of what is meant by the average value, but the concept of stationarity may not be quite as clear. For example, the mean or expected value is the usual arithmetic average summed over all the samples, then divided by the number of samples. How would the mean value be affected if the sample number were increased? If the statistical properties remain unchanged, then the signal would be characterized as stationary
stochastic. This could be of considerable significance to any prospective population planner anxious to predict future trends. How far back in time should he go to be confident of his figures? In signal-processing terms, this problem has already been addressed using a 2 -term moving averager. Instead of processing all the terms, the average is computed using a moving mean. Because of the small number of samples, expect considerable variation in the calculated mean. Clearly, the variation between samples is an important parameter in random-signal analysis. This is quantified by statisticians as the variance.
To compute the variance, first subtract the mean value from the signal, then square the result and evaluate the average. With knowledge of the variance σ^{2} and the mean value y, the mean square value
$\overline{y^{2}}$ can be predicted using $\overline{y^{2}}=\sigma^{2}+$ $(\bar{y})^{2}$. It is interesting that electrical engineers have been using this result for years to compute the total average power of complex waveforms. Consider how to evaluate the total average power of a signal made up of a DC component, together with an AC (or time-varying) component, developed across a 1Ω resistor. Obviously, the square of the mean value is the power

Statistics of a random variable

Continuous signals

Obtaining the mean value from the amplitude distribution.

First moment of y

$$
\bar{y}=\int_{b}^{a} y \rho(y) d y
$$

Evaluating the mean-squared value. Second moment of y

$$
\overline{y^{2}}=\int_{b}^{a} y^{2} \rho(y) d y
$$

Electrical analogy

$\overline{y^{2}}=\sigma^{2}+(\bar{y})^{2}$
where $\overline{y^{2}}$ is total average power and σ^{2} is average AC power.

Alternative notation

$E\left[y^{2}\right]=\sigma^{2}+E[y]^{2}$
If the DC component is zero, the variance is equal to the mean-square value.
in the DC component, whilst the variance represents the AC power. Examine the relationship closely. Observe that, when the mean value is zero, the square root of the variance (defined as the standard deviation) is equal to the root mean-squared value (r.m.s) of the waveform. The noise generators shown in Figs. 8.7 and 8.8 are designed to produce a randomnoise voltage with a bell-shaped distribution curve. The theoretical Gaussian curve of a random signal with mean value \bar{y} is shown pictorially in Fig. 8.2. There are some interesting and important points to note about the idealised mathematical model, which characterizes random behaviour in terms of the parameters \bar{y} and σ. Use the normal distribution curve to apply scientific method to predict the likely behaviour of apparently unrelated events.

Fig. 8.2. Theoretical Gaussian curve for random signals normalised in terms of mean and standard deviation.
(1) The curve is symmetrical about the mean.
(2) The probability of a voltage lying between two given values is simply the area under the curve between the appropriate limits (Fig. 8.3). For example, the area between the mean value \bar{y} and $(\bar{y}+\sigma)$ is obtained from Table 1 . So it can be concluded that the probability of the signal lying between the mean and one standard deviation above the mean is 0.341 . Because the curve is symmetrical, it follows that the probability of the noisy signal having a value within one standard deviation each side of the mean will be 0.682 . (3) The Gaussian curve is almost zero beyond $(\bar{y}+3 \sigma)$. In other words, the probability of the signal being more than plus or minus three standard deviations away from the mean is very small.
A simple example will help you make the necessary connections. A noisy instrumentation signal is sampled by a 3-bit a-to-d converter. Analysis of a large number of samples gives the 8 -level amplitude distribution shown in Fig. 8.4.
(1) Evaluate the mean or expected value $E[y]$.
(2) Calculate the mean-square value $E\left[y^{2}\right]$.
$\left.\begin{array}{l}\text { Area under Gaussian curve } \\ y \\ y \\ 0\end{array} \begin{array}{c}\text { Area } \bar{y} \text { to } \bar{y}+y \\ (3 \text { sgt figs) }\end{array}\right\}$

Table 1

Fig. 8.3. Shaded area is related to numerical values of Table 1.

Fig. 8.4. Eight-level amplitude distribution.
(3) Determine the standard deviation σ.
(4) Confirm the total average power is the sum of the variance (average AC power) and the power in the DC component.

The average value is given by:

$$
\begin{aligned}
& E[y]=\sum_{m=1}^{n} \rho_{m} y_{m} \\
& =0.01 \times 0+0.03 \times 1+0.11 \times 2+0.19 \times 3 \\
& +0.30 \times 4+0.20 \times 5+0.13 \times 6+0.03 \times 7 \\
& =4.01
\end{aligned}
$$

The mean-square value is obtained by evaluating the second moment of the
amplitude distribution, using:
$E\left[y^{2}\right]=\sum_{m=1}^{n} \rho_{m} y_{m}{ }^{2}$
$=0.01(0)^{2}+0.03(1)^{2}+0.11(2)^{2}+0.19(3)^{2}$
$+0.30(4)^{2}+0.20(5)^{2}+0.13(6)^{2}+0.03(7)^{2}$
$=18.13$
The standard deviation is a measure of the overall spread of the signal about the mean. It is defined as the square root of the variance.

$$
\begin{aligned}
& \sigma^{2}=\sum_{m=1}^{n}\left(y_{m}-\bar{y}\right)^{2} \rho_{m} \\
& =(0-4.01)^{2} \times 0.01+(1-4.01)^{2} \times 0.03 \\
& +(2-4.01)^{2} \times 0.11 \\
& +(3-4.01)^{2} \times 0.19+(4-4.01)^{2} \times 0.30 \\
& +(5-4.01)^{2} \times 0.20 \\
& +(6-4.01)^{2} \times 0.13+(7-4.01)^{2} \times 0.03 \\
& =2.05
\end{aligned}
$$

Hence, the standard deviation is given by $\sqrt{ } 2.05=1.43$

The aim is to verify that the meansquare value (total average power) is the sum of variance (average AC power) and the square of the mean (power in the DC component).

$$
E\left[y^{2}\right]=\sigma^{2}+(E[y])^{2}
$$

$18.13=2.05+(4.01)^{2}$ which confirms the anticipated result.
Tracking a time-varying signal in the presence of noise optimal estimation
Before the characteristics of an optimum recursive estimator or a scalar Kalman filter can be established, it is necessary to quantify the measurement criterion upon which the best possible estimate of the noisy variable is made. This problem was investigated almost two hundred years ago by Karl Frederick Gauss in connection with the prediction of planetary orbits, based on noisy or uncertain observations. Gauss adopted the method of least squares to find the best approximation to a function from a range of experimental data.

Real-time estimation based on a
minimised mean-squared error criterion remained intractable until about 1960, when R. E. Kalman, and others, demonstrated how the algorithm might be implemented recursively. Consider the elementary recursive algorithm:

$$
y(n)=a y(n-1)+b x(n)
$$

Here a and b are constants subject to the constraint $a+b<1$ to ensure the filter remains stable and well-behaved. A weighted version of the current input $x(n)$ is being added to a weighted version of the previous output $y(n-$ 1). Provided the values of a and b are chosen carefully, any abrupt or sudden changes in the input will be smoothed out. This will leave only the long-term trend. Anyone familiar with digital filters will have recognised this as a simple first-order low-pass filter, whose output will "track" or follow a slowly changing input signal whilst ignoring the high-frequency noise, as in Fig. 8.5.

Fig. 8.5. Elementary first-order low-pass digital filter removes H F noise, allowing output to follow slowly changing input signal.

This is a useful starting point towards understanding the mechanism of a Kalman filter. However, a couple of small but important modifications need to be introduced. Instead of a and b being constants, allow both to be functions of n. So, the recursive algorithm may be written as:

$$
\hat{y}(n)=a(n) \hat{y}(n-1)+b(n) x(n)
$$

You may have noticed the subtle change in notation. The "cap" or "hat" over the y terms are intended to represent an estimation. In other words, the current predicted output is made up of two weighted terms - the previous estimate and the current noisy measurement. The relative weighting of each will depend on the confidence the filter places in its own prediction, or in the observation. The next step is to establish the best estimate $y(n)$, in the sense of the minimised mean-square error,

$$
E\left[(\hat{y}(n)-y(n))^{2}\right]
$$

In doing so, the relationship between $a(n)$ and $b(n)$ will be established, and the need to incorporate a model of the signal into the Kalman filter will be demonstrated. The mathematical details are contained in Appendix 1.

Applied optimal control

To design a Kalman filter, it is necessary to know the characteristics of the signal and the anticipated values of signal and measurement noise. A convincing practical example, which requires a relatively modest mathematical toolkit, is the measurement of temperature using the Analog Devices AD590. This 2-terminal integrated circuit transducer produces an output current proportional to absolute temperature $\left(1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}\right)$ in the range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. An attractive feature of the data sheet is the thermal circuit model and the time constants for both the F (metal case) and H (ceramic) packages (Fig. 8.14). The comprehensive data sheet also provides a variety of applications circuits. Here, the 2-trim circuit was selected which gave an output of $100 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ over the range $0^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}$. The differential equation which models the dynamic characteristics of this transducer is given in Appendix 2, along with the model showing transformation from continuous to sampled data.

Fig. 8.6. Measurement of temperature using the AD590.

To complete the hardware description, combine the output of the transducer with the random-noise generator shown in Fig. 8.7, then process through the 12 -bit a-to-d AD574A contained on the Blue Chip analogue input card AIP-24, which is conditioned in the range $0-10 \mathrm{~V}$. Adapt the circuit shown in Fig. 8.8 to overcome any difficulty in obtaining the 5837 .

Fig. 8.7. This noise generator, combined with the Fig. 8.6 circuit, provides an exercise in Kalman filter design.

Real-time Kalman filter

The input to the Kalman filter will be a sequence of numbers - actually a string of 1's and 0's from the a-to-d which represent the noisy transducer output. The operation of the filter will be to process the data sequence in real-time, before presenting the reordered data to the outside world. To simplify the design and description of the digital-signal processing operation, it is customary to adopt the graphical symbols shown in Fig. 8.9. Apart from the time-varying gain block $b(n)$ in the feedforward loop, the mathematical operation of each symbolic block should be self-explanatory.

Fig.8.9. System block diagram of the Kalrnan filter representing the recursive relationship $\hat{y}(n)=a \hat{y}(n-1)+$ $b(n)(x(n)-a c \hat{y}(n-I)]$.

$50-5000 \mathrm{~Hz}$ WHITE NOISE-Both signal and nolse levels are continuously and Independently varlable from zero to maximum in simple nolse generator developed to demonstrate re-
covery of low-level $500-\mathrm{Hz}$ slgnal from nolse. Clrcult gives maximum nolse output into 1500 ohm load; for lower load impedances, reduce nolse level to prevent oscillation. Opamps re
quire $\pm 15 \mathrm{~V}$ supply, which can be simple voltage doubler without regulation.-J. E. Morrls, Simple Noise Generator, Wirelest World, Apri 1977, p 62.

Simplifying the design - the steady-state Kalman filter

The Kalman gain is a time-varying parameter whose value cannot exceed unity. The magnitude of the gain reflects the confidence the filter places in the current measurement. When the gain is small, the filter is suspicious of the new data and places more confidence in its prediction. When the gain is large, the filter is less dubious of the new measurement. As shown in the appendix, the gain is related to the error covariance $\rho(n)$, or meansquared error, in this single variable example by this recursive expression:

$$
b(n)=\frac{\rho(n)}{\left(\rho(n)+\sigma_{v}{ }^{2}\right)}
$$

where $\sigma_{v}{ }^{2}$ is the measurement noise variance.

The recursive nature of the algorithm guarantees that the gain $b(n)$ converges to a steady value after very few iterations. Ignoring any initial transient, it is possible to pre-compute the steady-state gain using the method shown in Appendix 3. This has the effect of reducing the Kalman filter into a simple low-pass digital filter. The processed output is simply the weighted sum of the current noisy input and the previous output. The careful choice of coefficients using the methods outlined in the appendix ensures that
any sudden changes in the input will be smoothed out. This will leave only the long-term trend or low-frequency component. Additional insight into the smoothing operation is achieved by convoluting the impulse response $h(n)$ with an input signal $x(n)$. The timeextended impulse response is a reminder that many input samples must be taken into account when forming the current estimate of the processed output. Try cycling a noisy DC signal through the filter and observe how the processor establishes trends.

To understand the reality behind the abstraction of optimal filtering, it is helpful to design and use your own Kalman filter. The results are really quite remarkable. The C program with graphics advertised in listing 1 implements a linear first-order Kalman filter in terms of the characteristics of the AD590 and the sampling interval T. Use the minimised mean-squared error criterion to process the noisy measurement in real-time and display the filtered output on the monitor. The incorporation of a delay loop in the data capture routine establishes a sampling interval of 50 ms . This is in agreement with the model and makes the signal-processing operations observable. Appendix 4 should be a useful source of reference when identifying the relevant parameters in the program. The results of my experiences
using the program, transducer, and random-noise source are shown in the screen dumps of Figs. 8.10 to 8.13.

Listing 1

* FIRST-ORDER KALMAN FILTER \#include<stdio.h>
\#include<graph.h> \#include<conio.h> \#define BASE 512 \#define START 0 main()
\}
int x, y; ;
float word, old, new, input;
unsigned int lower_bits,upper_bits,flag;
outp(BASE,0);

Appendix

(1) Relationship between $a(n)$ and $b(n)$

The aim is to establish the relationship between the coefficients of the recursive algorithm

$$
\hat{y}(n)=a(n) \hat{y}(n-1)+b(n) x(n)
$$

Here the first term is a weighted version of the previous "best" estimate, in the sense of the minimised meansquared error. The second term is a weighted version of the current measurement. Enumeration of the error by

$$
e(n)=\hat{y}(n)-y(n)
$$

allows the mean-squared error to be written as

$$
E\left[(\hat{y}(n)-y(n))^{2}\right]
$$

The two time-varying parameters $a(n)$ and $b(n)$ are chosen to minimise the mean-squared error. Write the meansquared error as:
$\rho(n)=E\left[(a(n) \hat{y}(n-1)+b(n) x(n)-y(n))^{2}\right.$
Differentiate with respect to $a(n)$ and $b(n)$ before equating to zero:

$$
\begin{aligned}
\frac{\partial \rho(n)}{\partial a(n)} & =2 E[a(n) \hat{y}(n-1) \\
& +b(n) x(n)-y(n) \mid \hat{y}(n-1)
\end{aligned}
$$

and
$\frac{\partial \rho(n)}{\partial b(n)}=2 E[a(n) \hat{y}(n-1)$

$$
+b(n) x(n)-y(n)] x(n)
$$

which is a minimum when
$a(n) \hat{y}(n-l)+b(n) x(n)-y(n)=0$
Substitute $x(n)=c y(n)$ to write:

$$
a(n)=\frac{y(n)}{\hat{y}(n-1)}[1-c b(n)]
$$

since

$$
\frac{y(n)}{y(n-1)}=\frac{Y(z)}{Y(z) z^{-1}}=z=e^{s T}=a
$$

the required relationship is

$$
a(n)=a[1-c b(n)]
$$

(2) Modelling the dynamic characteristics of the transducer

The mathematical model is based on the Analog Devices AD590 2 terminal IC temperature transducer. For supply voltages between +4 V and +30 V , the electrical characteristics are equivalent to a constant-current generator producing $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$. In manufacture, the chips'
thin-film resistors are laser-trimmed to calibrate the device to $298.2 \mu \mathrm{~A}$ at $298.2^{\circ} \mathrm{K}\left(+25^{\circ} \mathrm{C}\right)$. Due to its highimpedance current output the device is insensitive to voltage drops over long wires, making it ideal for remotesensing applications. Any wellinsulated twisted pair is sufficient for operation 100's of feet from the conditioning circuitry. With reference to Table 8.2, it is possible to model the dynamic characteristics of the transducer using the first-order linear differential equation:

$$
\tau \frac{d v}{d \ell}+v=k(T+w)
$$

where τ is the time constant of the transducer in seconds
v is the output voltage in volts
T is the monitored temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$
k is the steady-state gain (0.1)
w is the random white noise
Fig. 8.14. Extract from Analog Devices data sheet. Time response of AD590 to a step change in temperature is determined by thermal resistance and thermal capacities of the chip, $C_{C H}$, and the case $C_{C} . C_{C H}$ is about $0.04 \mathrm{Ws} /{ }^{\circ} \mathrm{C}$ for the AD590. C C varies with the measured medium. In most cases, the single time constant exponential curve of Fig. 8.14 is sufficient to describe the time response.

The use of the Laplace transforms allows the deterministic transfer function to be expressed as:

$$
\frac{V(s)}{T(s)}=\frac{k}{s \tau+1}
$$

Clearly, the pole is located at $s=-1 / \tau$. Under the z-mapping $z=e^{s T}$, the pole is translated from the left-hand stable region of the s-plane to a point on the positive real axis of the z-plane located inside the unit circle, where $z=a$. The transfer function of the digital system becomes:

$$
H(z)=\frac{k}{z-a}
$$

$$
\text { where } a=e^{-T / t}
$$

To obtain the recurrence relationship, convert from transforms to sequences using:

$$
\frac{V(z)}{T(z)}=\frac{k}{z-a}
$$

cross-multiplying

$$
\begin{aligned}
& V(z)(z-a)=k T(z) \\
& v(n+1)-a v(n)=k T(n)
\end{aligned}
$$

Expressed in terms of the current output, this is:

$$
v(n)=a v(n-1)+k T(n-1)
$$

Fig. 8.15. Characteristics of the filter modelled as recursive digital filter.

Rather than apply a deterministic input, enquire how this model will modify the characteristics of white noise. With reference to Fig. 8.15, the sampled output can be expressed as:

$$
v(n)=a v(n-l)+k w(n-1)
$$

The autocorrelation function $r_{v v}(k)$ of the processed output is computed on a sample-by-sample basis using:

$$
r_{\nu v}(k)=E[v(n) \cdot v(n+k)]
$$

When $k=0$, the mean-square value of the output noise is:

$$
\begin{aligned}
& r_{v v}(0)=E\left[v(n)^{2}\right] \\
& =E\left[(a v(n-1)+k w(n-1))^{2}\right] \\
& =a^{2} r_{v v}(0)+k^{2} r_{w w}(0)
\end{aligned}
$$

This may be written as:

$$
r_{v v}(0)=\frac{k^{2} r_{w w}(0)}{1-a^{2}}
$$

To obtain the autocorrelation function, follow this procedure and compute the coefficients for $k=1,2,3, \ldots$ etc:

$$
\begin{aligned}
r_{v v}(1) & =E \mid v(n) \cdot v(n+1)] \\
& =E|v(n)(a v(n)+k w(n))| \\
& =a r_{v v}(0)
\end{aligned}
$$

Similarly, when $k=2$:

$$
r_{v v}(2)=u^{2} r_{v v}(0)
$$

Since the ACF is an even function, the coefficients are symmetrical about the origin, as shown in Fig. 8.16.

Fig. 8.16. Effect of digital filter on a random input may be determined by autocorrelating the processed output. Notice mean-square value is given by $r_{v(}(0)$.
(3) Evaluating the steady-state gain b(n)

With the aid of the signal and measurement model shown in Fig. 8.17a and the model of the optimum recursive estimator in Fig. 8.17b, it is possible to express the mean-squared error as:
$\rho(n)=E\left[(\xi(n)-s(n))^{2}\right]$
$=E[(a \hat{s}(n-1)+b(n)(x(n)-a c \hat{s}(n-1))$
$\left.-s(n))^{2}\right]$

Fig. 8.17. Models of signal and observation process (a) and optimum recursive estimator - Kalman filter (b).

Assume the linear observation model $x(n)=c s(n)+v(n)$ and the dynamic signal model $s(n)=a s(n-1)+w(n-$ 1). Then substitute and express the mean-squared error as:

$$
\begin{aligned}
\rho(n)= & E[(a(1-c b(n)) e(n-1) \\
& \left.-(1-c b(n) w(n-1)+h(n) v(n))^{2}\right]
\end{aligned}
$$

Because $e(n-1), w(n-1)$ and $v(n)$ share no common characteristic, their averaged cross products or crosscorrelation coefficients will be zero.

$$
\begin{aligned}
\rho(n) & =a^{2}[1-c b(n)]^{2} \rho(n-1) \\
& +[1-c b(n)]^{2} \sigma_{w}^{2}+b^{2}(n) \sigma_{v}^{2}
\end{aligned}
$$

substituting

$$
\rho(n)=\frac{b(n) \sigma_{v}^{2}}{c}
$$

and rearranging

$$
\begin{aligned}
& b(n)\left(\sigma_{v}^{2}+c^{2}\left[a^{2} \rho(n-1)+\sigma_{v}^{2}\right]\right) \\
& =c\left[a^{2} \rho(n-1)+\sigma_{k}^{2}\right]
\end{aligned}
$$

Hence the gain of the Kalman filter is given by:

$$
b(n)=\frac{c\left[a^{2} \rho(n-1)+\sigma_{v}^{2}\right]}{\sigma_{v}^{2}+c^{2} \sigma_{n}^{2}+c^{2} a^{2} \rho(n-1)}
$$

The object of this unpleasant algebra has been to establish the relationship between the steady-state gain b and the parameters a and c. Ignore the initial transient and assume $h(n)$ has converged to a steady value b, when the mean-squared error is a time invariant. This is represented algebraically as

$$
\rho(n)=\rho(n-1)=\rho
$$

The required result using this relationship is:
$b^{2}\left(a^{2}\left(\sigma_{v}^{2}\right)+b\left(c^{2} \sigma_{k}^{2}+\sigma_{v}^{2}\left[1-a^{2}\right]\right)-c \sigma_{k}^{2}=0\right)$
Fig. 8.18. Engineering approximation used to establish standard deviation of random signal.

The steady-state gain in achieved by solving the quadratic for b. Of course, this result could have been achieved recursively simply by deducing (remember a deduction is a scientific guess) the initial mean-square error. As an example let $\rho(n-1)=1010$. This large value indicates low confidence in the deduction, although it does initialise the system and get the filter started. Confirm for yourselves that $b(n)$ approaches the limiting value b after a couple of iterations.

(4) Identifying the parameters

As already indicated, the output from the temperature transducer is a linear voltage with a sensitivity of $100 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Since 10$)^{\circ} \mathrm{C}$ maps to $4(095$ at the output of the a-to-d (effectively unity after division in the program), select the measurement coefficient c to be 0.01 . The numerical value of the sampled signal pole is obtained from the expression $a=e^{-t / 5}$. With a sampling interval of 50 ms and a transducer time constant of 13.5 s , this gives $a=0.9963$. Notice from Fig. 8.18 that a Gaussian noise voltage spends 99.5% of its entire lifetime within three standard deviations of the mean.
This means that, practically, the overall variation of the noise voltage may be represented by a figure of between four and six standard deviations. Adopt an engineering rule of thumb to allow the standard deviation σ to be interpreted as being $\mathrm{V}_{\mathrm{p}-\mathrm{p}} / 5$. It is convenient to estimate the peak-to-peak noisy voltage to be 5 V . In other words, the variance σ^{2} will be unity. The estimated noise parameters are $\sigma_{v}{ }^{2}=1$ and $\sigma_{w}{ }^{2}=1-a^{2}=0.00738$, which give a steady-state gain b of 0.0098 as well as a Kalman filter equation:
$y(n)=0.9963 y(n-1)+0.06198[x(n)$ $-0.009963 y(n-1)]$

PROGRAMMING

This may be expressed as an elementary first-order low-pass recursive filter:
$y(n)=0.99620 y(n-1)+0.0098 x(n)$
Evidently, this is marginally unstable since $0.99620+0.0098>1$. However, the Kalman filter is robust and an acceptable compromise is to modify the coefficients as shown:
$y(n)=0.99 y(n-1)+0.009 x(n)$
Deliberately detune the filter by adjusting the coefficients and observe the radical change in the processed output. Remember that, theoretically, no other estimator can produce a better estimate of the noisy signal. It is a powerful way of proving that Kalman filters really do reduce the effects of noise. It should also give you the confidence to examine more ambitious projects, using signal vectors and matrix theory.

References

(1) S. M. Bozic. Digital and Kalman Filtering. Edward Arnold 1979.
(2) G. C. Dean. An introduction to Kalman filters. Measurement and Control. Vol 19. March 1986.
(3) B. Hill. Recursive Kalman Filters. Practical Computing. April 1983.
(4) H. J. Hutchings. Linear Systems and Random Inputs. Electronics \& Wireless World. April 1988.
(5) J. Lobdill. Kalman Mileage PredictorMonitor. Byte. July 1981.
(6) P. A. Lynn. An Introduction to the Analysis and Processing of Signals. MacmilIan 1982.
(7) M. Schwartz and L. Shaw. Signal Processing Discrete Spectral Analysis, Detection and Estimation. McGraw-Hill 1975.

Asyst in the lab: help or hindrance?
 Eastern bloc telecomms
 RADIOCOMMS TALKING
 ELECTRONICS WORLD FOR $£ 1$ ONLY

Due to circumstances beyond our control

 there have been difficultes with the newstrade distribution of the January issue. If you have not been able to get hold of, your copy please contact Lindsey Gardner (mornings only) on 08166.13614 Copies available for only $£ 1$ incl. p \& p.
Where can you find information about the technologies of the '90s?

Our information-packed books will give you the clear view of cpen systems, PC networking, the electronics industry and the new scanner technology.

OPEN SYSTEMS: THE BASIC GUIDE TO OSI AND ITS IMPLEMENTATION by Peter Judge
A concise, clear guide to this complex area of computer standards. untrammeled by jargon and with appropriate and comprehensive analogies to simplify this difficult topic.

LOW COST PC NETWORKING by Mike James
The growing importance of networking has made this a vital handbook for any business setting up a network or trying to run one. It shows how networking revolutionises the way we use PCs and the tasks that they perform.

HITCHHIKERS' GUIDE TO ELECTRONICSIN THE '90s
by David Manner:
David Manners, senior editor on Electronics Weekly newspaper. explains how the electronics industry works, examines its key products, and discusses its central role in the '90s.

THE SCANNER HANDBOOK by Stephen Beale and James Cavuoto

An authoritative and informative guide to the selecting, installing and using of scanners. It offers practical tips and advice, covering in detail each stage in document production with scanned images.
Order Form
Please send me the following:

Qty Title	Unit Peice	P\&P
Open Systerns	12.95	1.00
Low Cost PC Networking	16.95	1.00
Guide to Electronics in the '90s	12.95	1.00
The Scanner Handbook		
TOTAL	19.95	1.00

Choose one option:

\square I enclose a cheque for $£ \ldots \ldots .$. payable to Computer Weekly
\square Charge my credit card account $£ \quad \square$ to pay Computer Weekly
\square Amex $\quad \square$ Access $\quad \square$ Visa $\quad \square$ Diners

My card number is | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Full despatch address/credit card registered address:

Name __ Initials __
Position
Company
Address

My card expires on \qquad

[^6]Return to Computer Weekly Publicatıons. Quadrant House. Sutton. Surrey
SM2 5AS or ring 081-685 9435 and place your credit card order Bulk prices on equest. Allow 28 days for delivery Rel: EW 191

THE ORIGINAL SURPLUS WONDERLAND!

MONITORS

MONOCHROME MONTTORS

THIS MONTH'S SPECIALI

There has never been a deal like this onet Brand spanking new \& boxed monitors
from NEC, normally selling at about 140 These are over-engineered for ultra rellability. 9^{-9} green screen composite Input
with etched non-glare screen with etched non-glare screen plus switch tront controw and 6 at rear Standard BNG for daisy-chaining. 3 romi comist scren and attrattindard BN carrying ledge. Perlect as a main or backup monitor and for quantity usersi $£ 39.95$ each (D) or 5 for $£ 185$ (G)

CALL FOR DISCOUNTS ON HIGHER OUANTITESI Zenith ZVM-1240-EA brand new \& boxed $12 "$ amber hat screen
with optional swivel and till base. Sunflex filter with dark tint Standard TTL PC compatible. 18 mhz bandwidth. Very attractive state of the art" lapered grey case. Standard 9 pln D plug (suppled) on 1 metre cord and mains cord terminaled with IEC swiveltill base. An absolute gift at: $£ 50$ (D) 10.2500 (G)

COLOUR MONTTORS

Decea 16" 80 budget range colour monitor. Features a PIL tube, beautitul teak style case and guaranteed 80 column resolution, our pricel Ready to connect to most computers or video outputs. 552 composite input with integral audio amp \& speaker. Fully ested surplus, sold In iftle or hardly used condition with 90 day Telebox ST, and other audio visual uses. $\quad \operatorname{co9}(\mathrm{E}) 3 / 275(\mathrm{G})$ $20^{\circ \prime}, 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS
Superbly made UK manufacture. Pll all solld state colour neniors, complete with composite video \& sound inputs. Attrac In EXCELLENT little used conditlon with full 90 day guarantee 20"....£135 22"....£155 26"....£185 (ค)

HLDEFINITION COLOUR MONTTORS

 Brand new 12" mutlinnput high definition colour monitors by Microvitek. Nice tight0.31° dot pltch for superb clarity and modern metal black box styling. Operates from any 15.625 ktz sync RGB video source, with either individual H\& V syncs
such as CGA IBM PC's or RGB analog with composite sync such as Atari, Com
 modore Amiga, Acom Archimedes \& BBC. Measures only 14 cant $£ 145$
Brand new Centronic $14^{\prime \prime}$ monitor for MBM PC and compatibles Mltsubustri 0.42 dot pitch giving 669×507 pixels. BIg 28 Mhr bandwith. A super monitor in attractive style moulded case Full 90 day guarantee. Only 129 (E)
NEC CGA IBM-PC compatible. High quality ex equipment fully ested will a 90 day guarantee. In an attractive two grey plastlc case measuring $15^{\circ} \mathrm{L} \times 13^{\circ} \mathrm{W} \times 12^{\prime \prime} \mathrm{H}$. A terrfic
purchase enables us to pass these on at only.... $\Sigma 79$ (E)

SCoopd 14" Colour
 Multisync/Multifunction

quality Japanese manulactured multisync, multifunction professional grade monitor at an unheard of low pricell The Electrohome ECM1311 with Its host of Inputs will connect to most compuler systems including: IBM PC/XT/AT/PS2 (CGA EGA, PGA, VGB modes) Atan. Archlmedes (up to SVGA) Commodore. BBC and many more. Many other feabures Include: RGB analog \& TIL inputs, separate horizontal, vertical, com posite and sync on green inputs; auto 15 to 36 khz operation;
0.31 mm tube dot pitch; tinted non glare etched screen 830 mhz 0.31 mm tube dot pitch; timted non glare etched screen \& 30 mhz
bandwidh makes this ltem an absolute snipll Current makers Hat price over $£ 900$! Each supplied with connection data. fully lested in used good conditlon, some may have screen
blemishes. Complete with full 90 day RTB guarantee. Quantity discounts available. Will al so function as quality IV with our RGB Telebox. Full Technical Manual £15.
Only

V22 1200 BAUD MODEMS

Master Systems $2 / 12$ microprocessor controlled V22 full duplex 1200 baud modem. Fully BT approved unit, provides standard V22 high speed data comm, which at 120 cps , can save your
phone bill and connect time by a staggering 75% Ultra sllm 45 phone bill and connect time by a staggering $75 \% 1$ Ultra silm 45
mm high. Full featured with LED status Indicators and remote error diagnostics. Sync or Async use; speech or data switching; built in 240 v mains supply and 2 wire connection to BT. Units are in used but good condition. Fuly tested prior despatch, with and at this pricell day guarantee. What more can $\mathbf{\Sigma} 69$ (D)

IBMKEYBOAFDDEALS
A replacement or backup keyboard, switchable for IBM PC 4 keytrat Absolutely layout. Made by New it bexe Engilsh 8 US markets emplate standard. Brand new \& boxed with manual and key beige,grey user slogans on the function keys. Attractive underneath cream inish, with the usual retractable legs standard 5 pin DiN plug. A beautiful clean perminating in the urers surplus. What a deall Eeautul clean plece of man (B) $5 / \Sigma 175$ (D) Brand new and boxed 84 key PC $/ X$ T type keyboards in standard BM grey with very attractive mottled finish and "clicky" solid feel keys. 10 function keys on side. Englishiayout and £ sign. Green EDs for Caps, Scroll \& Num locks. E20.95 (B) 5/E135 (D)

CALL FOR DISCOUNTS ON HIGHER OUANTITES!

FLOPPY DISK DFIVES
 BARCAINS CALORE! NEW 51/4 Inch from $\mathbf{E 2 9 . 9 5 1}$

Massive purchases of standard $51 / 4$ drives enables us to (unless stated) are removed from otten brand new equl units and are fully testod,aligned and shipped to you with a 90 day guarantee and operate from $+58+12 \mathrm{vdc}$, are of standard size and accept the standard 34 way connector TANDON TM100-2A IBM compatible DS CANON,TEC etc.DS halt helght State 40 or $80 \mathrm{~T} \quad \mathrm{E} 38.95$ (C) TEAC FD-55-F.40-80 DS half height. BRAND NEW E7s.00(C

* Specials

TEAC FD-55 half height series in your choice of 40 track double sided 360k or 80 track double sided 720k. Ex-equipment fully iested in excellent condition with 90 day warranty Order TE-36 for 360 k E 29.95 (C) or TE-72 for 720k £39.95(C CHOOSE YOUR 8 INCHI
Shugart 800/801 SS refurbished \& tested Shugart 851 double sided refurbished 8 tested Mit subishl M2894-63 double sided switchable

$$
\begin{aligned}
& \text { SIS- BHAND NEW } \\
& \text { SPECAAL OFFERSII }
\end{aligned}
$$

Dual $8^{\prime \prime}$ drives with 2 megabyte capadity housed in a smart cas with bullt In power supplyi Only $\mathbf{1 4 9 9 . 0 0}$ (F)
Ideal as exterior drives| Ideal as exterior drivesl
End of line purchase scoop! Brand new NEC O2246 8- 85 megabyte of hard disk storagel Full CPU control and industry standard SMD interface. Uitra hi speed transler and accoss time leaves the good old ST506 interfaces standing. In mint condition
and comes complele with manual. Oniy......................E399(E)

MAINS SUPPRESSORS \& FILTERS

Roxburgh SDC 0212 amp mains RFI filter. Has an extra wide frequency range of 150 khz to 30 mhz . Can type, solder lug $1-1 / 2^{-} \mathrm{D} \times 1-3^{-1} 4^{-H}$ manufactured to BS 613 standards. Dims Roxburgh SDA 013225. Simllar to above rated at for E28 (B)
 Supprestion Devices SD5 A10. Extra compacl general purpose suppressor. Plastic moulded case with single bolt fixing and snap connectors. Rated at 230 vac 5 amps . Dims $1.3 / 4 \mathrm{Z}$ Belling-Lee type L21273 amp mains RFI filters. Has a bulli In malns cable (English coding), and a three pin miniature non-re versible socket and a mating plug, to go to the equipment Ideal

for those who are bugged by RF Interference. Very compact

REOHARGEABLE BATTERIES

 LEAD ACIDMaintenance free eealed long life. Type 4300.

12 volts 12 volts 3 amphours

6 volte 6 volts 3 amphours
12 volts $C e n t r e ~ t a p p e d ~$
1.8 amp hours. AFE. 12 volt 12 volts 38 amp hours. $7-1 / 2^{-} \mathrm{L} \times 6^{\circ} \mathrm{S}$
Quality 12v 4 ah cell pack. Originally mada for the Technicolol
video company. Contains 10 GE top qually D nicad cells In a smart robust case with a DC output connector. Ideal for portable equipment. Brand new.
Ex-equipment NICAD cells by GE. Removed from equipment
and in good, used condition: D size 4ah 4 for E5(B)

SPECIAL INTEREST

6 for E8(B)

LARGE OUANTITIES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE - CALL NOWI

Disply
Electronics:

Low-cost digital phasemeter

To make a phase meter with a typical error of 0.2%, the ICL 7107 digital voltmeter IC can be pressed into service to display the phase difference of two signals in degrees.

Two LM311 comparators convert the inputs to cmos-compatible square waves. The leading edge of the square at IC_{1} output sets FF_{1} and removes the inhibit from FF_{2}, that from U_{2} setting FF_{2} which resets $\mathrm{FF}_{1}, \mathrm{FF}_{2}$ in turn being reset. Output at Q_{1} is therefore a pulse whose width is directly proportional to phase difference between the inputs.

Resistors R_{5} and R_{6} form a voltage divider to provide a voltage reference of 1.02 V for the 1CL7107, the height of the pulses from Q_{1} being set by R_{3} and R_{4} to $3.6 \mathrm{~V}_{\text {ref }}$ at position I of the range switch. The average voltage of the pulse train is $\left(3.6 \mathrm{~V}_{\text {ref }} \times\right.$ duty cycle) and the display reads ($1000 \times$ average $/ \mathrm{r}_{\text {ref }}$), which is 3600) x phase difference $/ 360^{\circ}$, or $10 \times$ phase difference.

The decimal point of the display is arranged to give a reading in degrees, so that the resolution is 0.1° over the range

0 -199.9. For the range set by resistors $\mathrm{R}_{1,2}$, measurement resolution is 1° over 0 360°. Measurement accuracy is better than 0.2% over 1 kHz to 250 kHz , falling off at lower frequencies.
M.S. Nagaraj

ISRO Satellite Centre
Bangalore India

"Fuse-blown" indicator

When the fuse blows, Ledl indicates the fact. Normally, the red led, D_{1}, is in parallel with the green led D_{2}, the voltage drop across D_{1} preventing Led ${ }_{1}$ from illuminating. A blown fuse removes the current through Led_{2}, the voltage across Led, allowing it to light. Resistor $\mathrm{R}=\mathrm{DC}_{\mathrm{in}} / 0.01$, unless $\mathrm{DC}_{\text {in }}$ is 5 V , in which case $\mathrm{R}=470 \Omega$. T. Cottignoli

Taranto, Italy

Composite-feedback amplifier

An amplifier with a defined output impedance can be implemented rather more easily than in the circuit given by A.J. Chamberlain in the October 1989 Circuit Ideas by the use of a modified version of the Howland current-pump circuit shown left.

Voltage feedback to inverting and non-inverting inputs cancels, leaving only current feedback and, therefore, a high output impedance. To produce a specific output impedance, reduce the amount of feedback to the non-inverting amplifier input by the appropriate amount. For example, changing $R_{2 b}$ to $22 \mathrm{k} \Omega$ gives a $\mathrm{Z}_{\text {out }}$ of 300Ω.
Two current pumps can be driven in antiphase, a resistor
being connected between the non-inverting inputs to produce an amplifier with a floating output giving +24 dB with 24 V rails and +16 dB with 6 V rails.

D. Austin

Birmingham

Battery life extender

Since primary batteries are usually discarded when their output voltage has dropped below about two thirds of the initial volage, any means of reducing the
consequent waste of money and resources is worth considering. The problem is to ensure that the performance of batterypowered equipment does not suffer at a

reduced battery voltage.
In this circuit. a TLC37()2 comparator senses when the battery output has reached a level determined by $\mathrm{R}_{1} / \mathrm{R}_{2}$: resistor R_{3} provides a degree of positive feedback to avoid oscillation. At this point, the three-gate oscilator driving a 74HC4053 capacitive multiplier increases the output to 150% of the battery voltage. which enables the battery to continue in service until its voltage has dropped to less than 50\%.
The multiplier is similar to the 7660 capacitive doubler but, instead of charging a capacitor and placing it series with the battery. Two capacitors $\left(C_{1}\right.$ and C_{2} are charged in series and placed in series with the battery but in parallel with each other. Although the oscillator shown runs at around 100 kHz , frequency is not important. C_{1} and C_{2} being adjusted to suit.
Efficiency of the circuit is about 90% at 2 mA , falling 1080% at 5 mA . Several switch packages can be used in parallel to improve efficiency.
$\operatorname{Ian} M$. Wiles
IPR Technology
Basingstoke
Hampshire

REAL POWER AMPUFER Foryour car, it has 150 wetts outpu Frequency response 20 HZ to 20 KHZ and a signal to noise ratio beller than 60 . Has bultin shon cirauit protection and adjustable input level to suit youe existing car stereo, so needs no pre amp. Works into speakers ret 30P7 describedbelow. A real bargain atonly £57.00 Order ret 57P1.
REAL POWER CAR SPEAKERS. Stereo pair outpur 100 w each. 4onm impedance and consisting of $61 / 2^{\prime \prime}$ woofer $2^{\prime \prime}$ mid range and 1 " 'weoter. Ideal to work with the ampliter desc cibed above. Price per pair $£ 30.00$ Order rel 3097
PERSONAL STEREOS CUStomer returns but complete with a pair of stereo headphones very good value at $£ 3.00$ rel 3 P83. We also have customer feturned units with a buitt in FM radio at $£ 6.00$ ret 6P34
2KV 500 WATT TRANSFORMERS, Sultable for high voltage experiments or as a spare lor a microwave over etc. 250 v AC Input. £10.00 ref 10 Pg 3
MICROWAVE CONTROL PANEL, Mains operated, with touch switches. Comphete with 4 digit display, digntal clock, and 2 relay outputs one for power and one for pulsed power (programmable). Ideal for all sonts of precison imer applications atc. $£ 6.00$ ret 6 P18 FBRE OPTIC CABLE. Stranded optical hbres sheathed in black PVC. Five metre length $£ 7.00$ rel 7 P29
$12 V$ SOLAR CELL. 200 mA output ideal for

trickle charging atc
$£ 1500$ ret $15 P 42$

PASSIVE INFRA-RED MOTION SENSOR. Completer with dayight sensor, adjustabie hights on imer (8 seccs. -15 mins), 50 range with a 90 dog coverage. Manual overido tacily. Com. piole with wall brackets, bub holders otc. Pack of two PAR38 bulbs for above unit $£ 12.00$ ret 12 P 43
VIDEO SENDER UNIT. Transmit Doth audio and video signals from gither a video carnera. video rocorder a computer to amy standard TV set within a 100 rangel (tune TV to a spare channel). 12v DC op. £15.00 rel 15P39 Suiabio mains adaplor $£ 5.00$ ret
FM TRANSMTTER housed in a standard working 13A adapter
MINATURE RADIO TRANSCEIVERS
walkie takies with a range of up to 2 wilometres Unity measure
rel $130 P_{12}$
FM CORDLESS MICROPHONE. Small hand neld lid unit with a 500 ' rangel 2 trans mit power lavels reqs PP3 battery Tuneabie to any FM recaiver. Our price E15 tel 15P42
10 BAND COMMUNCATIONS RECEIVER. 7 shor
bands, FM, AM and LWDXAlocal switch, uning 'eye mains , Or battory. Comp
WHISPER 2000 LISTENING AID. Enables you to hear sounds that would otherwise be inaudiblel Complete with headphones. Cased ES .00 rol 5 S 179
CAR STEREO AND FM RADIO. Low cost stereo system giving 5 watts per channel. Signal to noise ratio betier than 450 b, wow and flutter foss than 35% Neg eanth. $\mathbf{5 5} 500$ ret 25 PP 21
fiutter oss than 35% Neg eant, $£ 5.00$ ret 25P21,
LOW COST WAUKIE TALKIES. Pair of battery
operated units with a
7 CHANNEL GRAPHC EQUALIZER plus a 60 watr power amp! 20.21 KHZ 4.8 R 12-14vDC negaive earth Cased £25
NICAD BATTERYS. Brand new top quality $4 \times A A \cdot s .54 .00 \mathrm{ref}$ $4 \mathrm{P} 44.2 \times \mathrm{C}^{\prime} \mathrm{s} \Sigma 4.00 \mathrm{AP73.4} \mathrm{\times D} \mathrm{'s} \mathrm{£9.00} \mathrm{ref} \mathrm{9P12.1} \mathrm{\times} \mathrm{PP} \mathrm{3} \mathrm{โ6}$.
TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ulimate equivalents book. Latest edition $£ 20.00$ ref GUIDE.
${ }^{201032}$ CABLE TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nyion pack of 100 £ 3.00 ret CABLE TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nyion pack of $100 £ 3.00$ ret

BUILD AN IBM COMPATIBLE

 PC!| AT 12 meg tumo 286 mother board | £115.00 | pel |
| :---: | :---: | :---: |
| 1 meg memery for above board | £55.00 | pc2 |
| 4 meg memory for above board | §214.00 | pe3 |
| AT keyboard | £49.00 | PC4 |
| AT power supply and pc case (complete) | £115.00 | pc5 |
| AT controlier card mith $2 \times$ serial, $1 \times$ paralial | | |
| Floppy and hard controlier + mono | | |
| Display driver. | £74.00 | pc6 |
| $1.2 \mathrm{meg} 31 / 2^{\prime \prime}$ disc drive | £74.00 | pc 7 |
| $1.44 \mathrm{meg} 51 / 4^{\circ}$ drive | £66.00 | pc8 |
| Amber monitor 12 | ¢99.00 | pc9 |
| 40 meg hard disc | £270.00 | c10 |
| 100 meg hard disc. | £595.00 | pc1 |

munimum system consisting of mother board, 1 meg of memory, case, power supply, 1.44 meg tioppy. interiaces, and monitor is
£525.00 inc VAT (single drive mono 286) E525.00 inc VAT (single drive mono 286)

1991 CATALOGUE AVAILABLE NOW IF YOU DO NOT HAVE A COPY PLEASE REQUEST ONE WHEN ORDERING OR SEND US A $6^{\prime \prime} X \theta^{\prime \prime}$ SAE FOR A FREE COPY.

GEIGER COUNTER KIT. COmplete with tube, PCB and allcompo nents to build a battery operated geiger counter. £39.00 ref 39P1
FM BUG KIT. New design with PCB embedded cail Transmits to ny FM rado. $9 v$ battery rea'd. $£ 5.00$ ref SP158
TV SOUND DECODER. Nicely cased unit, mains powered 8 channel will drive a small speaker directly or could be fed into HI FI arc. Our pnce $£ 12.00$ ret 12P22
COMPOSITE VIDEO KITS. These convert composite video into separate H sync. V sync and vidoo 12vDC. £8.00 ref BP39. SINCLAIR C5 MOTORS 12v 29A (tull load) $3300 \mathrm{pm} 6^{\prime \prime} \times 4^{-1} 1 / 4^{\prime \prime}$ OfP shath New $\mathbf{E 2 0 . 0 0}$ rel 20 P 22.
As above but with htted 4 to 1 intine reduction box (800 mpm) and SINC nylon belt drive cog $£ 40.00$ ret 40P8.
inner tube Whe is are black, spoked one piece p
wheel $£ 6.00$ ref 6 P20, 16 " wheel 16.00 ret 6 P21 ELECTRON components to build a speed controller (0.95% of speed) Uses pulse moth modulation. $£ 17.00$ rel 17P3. SOLAR POWERED NICAD CHARGER. CTarges 4 AA
6P3.
MOSFETS FOR POWER AMPLIFERS ETC. 100 wat mosie pair 2S199 and 2SK343 \&4 00 a pair with pin out iffo ref 4P51. Also avaliable is a 2 SK413 and a $2 \mathrm{~S} \cdot 118$ at $£ 400$ ref 4 P 42
10 MEMORY PUSH BUTTON TELEPHONES. These are 'cus. tomer retums'so they may need sight attention. BT approved $£ 6.00$ each ref 6P16 or 2 for $£ 1000$ ret 10P77
12 VOLT BRUSHLESS FAN $41 / 2$ squafe brand new ideal for boat, car, caravan etc 8800 each ref BP26
acorn data recorder ALF503. Made for B8C computer but suitable for others. Includes mains adapter, leads and book. £15.00 rel $15 P 43$
VIDEO TAPES. Three hour supenor quality tapes made under licence from 1 he famous JVC company. Pack of 90 tapes $£ 20.00$ rel 20P20
ELECTRONIC SPACESHIP. Sound and impact controlied, responds to claps and shouts and reverses when it hits anything. Kit with c
assembly instructions $£ 10.00$ ref 10P81

PHILPS LASER. 2NW HELUM NEON LASER TUBE. BRAND NEW FULL SPEC C40.00 REF 40P10. MAINS POWER SUPPLY KIT REF 20P33 READY BUILT AND TESTED LASER IN ONE REF 20P33 READY BUIL
CASE 575.00 REF 75 P4.

SWITCHED MODE POWER SUPPLY (Bosher) +5 at $15 A_{4}+12$ at $3 \mathrm{~A} .-12$ at $2 \mathrm{~A} .+24$ at 2 A .220 or 110 vinput Brand new $£ 20.00$ ref 20P30
SOLDER 22SWG resin cored solder on a $1 / 2 \mathrm{~kg}$ reel. Top quality £4.00 a reel ref 4P75
600 WATT HEATERS. Ideal tor air or liquid, will not corrode, lasts for years coilty pe construction $3^{\prime \prime} \times 2^{\prime \prime}$ mounted on a 4^{-1} dia metal plate for easy fixing $£ 3.00$ ea rel 3 P78 or 4 for $£ 10.00$ rot 10P76. TIME AND TEMPERATURE MODULE A clock, digital ther mometer (Celcius a nd Farenheit ($0-160 \mathrm{deg}$ F) programmabie too hot and too cold alarms. Runs for at least a year on one AA battery £9.00 ref 9P5.
Remote temperature probe for above unit $£ 3.00$ ref 3 P60
GEARBOX KITS ideal for models etc. Contains 18 gears (2 of each size) $4 \times 50 \mathrm{~mm}$ axies and a powerful 9.12 v . notor. All the gears etc are push fit. $£ 3.00$ for complete kit ret 3 P93
ELECTRONIC TICKET MACHINES. These units contain a magnedic card reader, two matnx printers, motors, sensors and loads of electronic components etc ($12^{\prime \prime} \times 12^{\prime \prime} \times 7^{7}$) Good value at £1200 rel 12P28
JOYSTICKS. Brand new with 2 hre buttons and suction feet these unis can be modified for most computers by changing the connector etc. Price is 2 for $£ 5.00$ ret 5P174
QUALITY PANEL METERS, 5OUA movement with 3 different scales that can be brought into view with a lever! $£ 3.00$ each rel 3P81.
CAR IONIZER KIT. Improve the alr in your car! clears smake and heips to reduce fatigue Case required. $£ 12.00$ ref 1298 METAL DETECTOR. Fun tight weight device tor sur-
ied treasurel 33 " long with tune and fine ture contiois £ 10.00 rel $10 P 101$
6 V IOAH LEAD ACID sealed battery by yuasha ex
equipment but in excelient condition now ony 2 for
§10.00 ref 10P95
12 TO 220 V INVERTER KIT. As supplied it will
hande up to about 15 w at 220 v but with a targer transiomer it will handwe 100 watts Basic kit $£ 12.00$ ref 12P17. Larger transformer £1200 ref 12P4
VEROEAS! WIRE PROTOTYPING SYSTEM Ideal tor designing projecis on elc Comple wh lools, wire and reusable board Our price $\$ 6.00$ ret 6P33
MICROWAVE TURNTABLE MOTORS. Complete with weight sensing ebectronics that would have varied the cooking time. Ideal for window displays otc $£ 500$ rel SP165.
STC SWITCHED MODE POWER SUPPLY 220 v or 110 v input giving $5 v$ at $2 A_{1}+24 v$ at $0.25 A_{1}+12 v$ at $0.15 A$ and +9 Cv at 0.4 A § 12.00 rel 12P27
CAMERA FLASH UNITS. Require a $3 v$ DC supply to flash. $\mathbf{E 2 . 0 0}$ each rel 2P38 or 6 for $£ 10.00$ ret t0P101 (ideal multi-llash photog TELEPHONE AUTODIALLERS. These units, when triggered will automatically dial any telephone number. Originally made for alarm panels. BT approvec E12.00 per 12P23 (piease state telephone no reg'd).
25 WATT STEREO AMPUFIER ie STK043. With the addivion of a handful of components you can buld a 25 watt amplifer. $£ 4.00$ ref 4P69 (Circuit dia inchuded).
MINATURE DOT MATRIX PRINTER assembly 24 column $5 v$ (similar to RS type). $£ 10.00$ each ref 10P92
LINEAR POWER SUPPLY Brand new $220 \mathrm{ving} t+5$ at $3 A_{i}+12$ at 1A. -12 at 1A Shon circuit protected $£ 1200$ ref 12P21 MAINS FANS. Snail type construction. Approx 4"x5" mounted on a metal plate for easy fixing. New $£ 5.00$ 5P166. POWERFUL IONIZER KIT. Generates 10 times more ions than commercial unitsl Complete kit including case $£ 18.00$ ref 18 P 2 MINI RADIO MODULE. Only $2^{\prime \prime}$ square mith territe aerial and winer.

> BULL ELECTRICAL
> 250 PORTLAND ROAD HOVE SUSSEX BN3 5GT DEPT EW TELEPHONE 0273203500
> MALL ORDER TERMS: CASH PO OR CHEQU TH ORDER PLUS $£ 2.50$ POST-

> FAX 027323077

Precision pulse-width generator

Programmable pulse generators commonly have limited programming capability and exhibit initial timing error caused by lack of synchronism between the input trigger and the system clock. The circuit described overcomes these disadvantages. No RC timing is used and accuracy is solely dependent on clock frequency: a wide range of pulse widths is obtained by changing the clock frequency.
A PLE5P8 programmable logic element by Monolithic Memories and a 74273 octal latch compose the circuit; the clock input to the 74273 may be the system clock. Four of the five inputs to the PLE are used for state-incrementing control, the fifth serving as the trigger. The clear input of the latch functions as the reset input for the generator. Both active-high and active-low outputs are available.

When the trigger goes low, the true output of the generator goes high and begins to time-out the programmed n clock cycles; after one complete cycle, the true output goes low. In the case of re-triggering, timing continues for another in cycles and, if re-triggering continues, so does the output timing.
In the circuit shown, from 1 to 16 clock cycles can be programmed at any desired frequency, and a PLD with more inputs will allow a greater selection of timing combinations; a PLD with nine inputs will give I to 256 clock cycles, one input being used as the trigger input.

V.Lakshminarayanan

Centre for Development of Telematics Bangalore
India

High frequency switch

An emitter follower can be used as an RF switch, which will work at VHF, with a high switching speed.
Transistor Tr_{1} is an emitter follower and Tr_{2} a current switch. A voltage of 0 V at the control input cuts off Tr_{2} and therefore D_{1}, allowing Tr_{1} to function as an emitter follower. When the control voltage is $12 \mathrm{~V}, \mathrm{Tr}_{2}$ is on, D_{1} conducts and cuts Tr_{1} off, preventing signal reaching the output. Attenuation in this condition is greater than -30 dB at 80 MHz . The control input is cmos-compatible, but the circuit shown right can be used to make the circuit usable for

[^7]

USE YOUR SCOPE AS A SPECTRUM ANALYSER FOR JUST £295

Specifications. Laplace Instruments quote the following specifications for the Type 107 Spectrum Probe

FREQUENCY RANGE: 100 MHz DYNAMIC RANGE: 50dB min
VERTICAL OUTPUT: $5 \mathrm{mV} / \mathrm{dB}$ typical VERTICAL LOGARITHMIC LINEARITY: $\pm 3 \mathrm{~dB}$ TANGENTIAL SENSITIVITY: $100 \mu \mathrm{~V} \pm 3 \mathrm{~dB}$ at 50 MHz FLATNESS: $\pm 2 \mathrm{~dB}, 5 \mathrm{MHz}$ to 100 MHz LF DEGRADATION: Approx. 5 dB down below 1 MHz SPURIOUS RESPONSES: Generallly -40dB IF BANDWIDTH: 180 kHz at -3 dB MAX CW INPUT: $+15 \mathrm{dBm}, 1 \mathrm{~V}$ at 100 MHz SWEEP RATE: $6 \mathrm{~ms} / 100 \mathrm{MHz}$ typical HORIZONTAL LINEARITY: $\pm 10 \%$ RADIATION (FROM PROBE TIP): -40 dBm at 150 MHz POWER SOURCE: $220 \mathrm{~V} \pm 10 \% 50 \mathrm{~Hz} 4 \mathrm{~W}$ max
SIZE: $190 \times 25 \mathrm{~mm}$ diam. (probe)
WEIGHT: 56 gm (probe) 26 Jgm (power supply)

Spectrum Probe analysing transmitter RF output.for harmonics

The Type 107 Specirum Probe allows any standard oscilloscope to be used as a 100 MHz spectrum analyser; the vertical deflection indicates amplitude (on a logarithmic scale) while the horizontal scale gives a (linear) indication of frequency. Mike Tooley reviewed the Laplace Instruments Spectrum Probe in the November 90 issue of Electronics World+Wireless World This is what he had to say: "The ability to display signals in the frequency domain on a conventional low-cost oscilloscope should not be underestimated. Indeed, it should be stressed that the Spectrum Probe can display signals at 100 MHz far outside the bandwidth of, for example, a 10 NHz oscilloscope.

Our magazine is pleased to be able to offer the Spectrum Probe to its readers for just $£ 295, £ 45$ off the normal price. To order yours, simply fill in the coupon below and return to Lindsey Gardner, Room L333, Quadrant House, The Quadrant, Sutton, Surrey.SM2 5AS. Alternatively phone in your order on 081-661 3614 (mornings only).

SPECTRUM PIROBE ORDER FORM

Please send me the special offer instrument I enclose a cheque for £339.25 (inc VAT) payable to Reed Business Publishing Group

Please debit my credit card Access, Visa, American Express, Diners Club
Card No
Expiry date $\|_{\|} \mid$To the sum of $£ 339.25$
Daytime telephone number
Name Mr/Ms (with initials)
Address

Signature

aUTOMOTIVE AUTOMATION PART 2

vChicle management and "driveablility" is the growth area for electronic systems. Features and facilities which were not costeffectively achievable even as options by other means are becoming the standard.

Brakes. The most significant development must be anti-lock brakes, but traction control, adaptive suspension, fourwheel steering, climate control and other secondary safety systems are all now available. Secondary safety features are those which make the car easier to drive or save the driver from himself. It is arguable that ABS leads to more dangerous driving. as it enhances the belief that one is invincible.

The car makers have always been able to produce a product which could move as fast as their marketing departments wanted. Electronics has given the motor industry something else to sell on. By Tom Woodford.

ABS operates by sensing the onset of wheel locking with a rotation sensor, usually a reluctance probe and toothed wheel. The control system momentarily releases the brake at the offending wheel by triggering an electro-hydraulic actuator to "fight" the driver with opposing hydraulic pressure. This gives a disconcerting "pulsing" through the brake pedal which. in the best electronic tradition of dressing up a bug to look like a feature, is claimed to give the driver positive indication that the system is working. Most systems are three-chammel, with separate speed sensors on each wheel, but with the rear wheels sharing an "unbraking" valve.

Knowledgeable road testers in the motoring press claim that a skilled driver
can always outperform an ABS system in back-to-back tests, but we are not all skilled and it is the unexpected situation when tired at the end of a long day that kills you: similar arguments have applied for years to automatic gearboxes.
Ford pioneered ABS as a standard fitment to all current Granadas, using the Alfred Teves system. Bosch and Honda offer similar systems, which are becoming standard equipment on most upmarket executive cars.

Traction control is an interesting inte-grated-system concept. The ABS wheel rotation sensors are used to detect the onset of wheelspin under hard acceleration, the control system then applying the brakes and/or reducing engine power to maintain directional stability.

This concept was taken to extreme on the Porsche 959 supercar, where the electronic systems also operated sophisticated clutches to direct power to the wheels with most grip at all times. A heuristic system, the processor could "learn" the operating characteristics of the car to differentiate between tyre slip due to pressure differences and genuine wheelspin. This system is not quite smart enough, however, as the driver must operate a switch to tell the controller if the road surface is ice, snow or loose gravel.

Active suspension. Seen on Lotus and Williams Formula I cars, fully active suspension was also demonstrated by GKN in a fully-hydraulic system some twenty years ago. The car's conventional springs and suspension are replaced with fast-acting hydraulic rams. A whole range of accelerometers monitor vehicle movement in three planes on two axes, further sensors monitoring steering angle and vertical loads at each wheel. The processor then computes the required position for each wheel and commands the suspension rams to move accordingly. Processing and electro-hydraulic demands are quite staggering, needing a 32 -bit processor running at 20 MHz .
Advantages in adhesion and stability are equally dramatic: the car can be tailored to provide any desired handling characteristic - it can even be programmed to lean into (instead of away from) bends. Cost will keep such systems in the "of interest" league, unless there is a sudden world shortage of steel springs. It is significant that none of the FI teams now use active suspension. Nevertheless, as a demonstration of what is now achievable by electronically controlled mechanical systems in consumer applications this is a phenomenal development.

Semi-active suspension is merely inter-
> 'The imaginative engineer can add all sorts of nice touches. On the Ford Granada, the rear screen wiper is automatically started if reverse gear is selected when the front wipers are on. The 7 -Series BMW will switch the wipers to intermittent when the vehicle is stationary to avoid nasty squeaking noises'

esting by comparison. Less sophisticated, but still numerous sensors monitor vehicle movement and driver demand. The system processor triggers fast-acting valves on otherwise conventional spring/damper units to increase suspension damping from "soft" to "stiff" (or "sport") when required. Transition is achieved in less than 10 ms and such systems offer improved ride confort without the penalty of roll and float associated with soft suspension. Manual override is usually provided for the keen driver to select the firm setting when required. The systems switch automatically from soft to firm at predetermined road speeds to maintain vehicle stability. Extensions to this principle use Boge self-levelling spring/damper units to lower ride height by $10-20 \mathrm{~mm}$ at high speed to improve aerodynamic stability.

Hydractive suspension is Citroen's proprietary semi-active system and goes one stage further than demand-adjustable damping by using an additional, electrically switchable hydro-pneumatic spring. The system not only increases damping but also increases spring rate when needed. This offers further improved highspeed cornering stability.

Climate control may not seem as glamorous as ABS or ETC, but is still a significant secondary safety feature, again becoming integrated with other in-car systems; for example, to direct all air to the windscreen until the engine is warm, to avoid cold feet. More importantly, it signals the engine management system as the air-conditioring compressor is engaged, so that the idle speed can be increased to compensate for the sudden engine load.

Much research has been conducted to determine the correct differential temperatures to foot, chest and face level to prevent drowsiness and some systems contain very sophisticated processors to ensure that these differentials are maintained.

Four-wheel steering is verging on the "gimmick" category, although it is claimed to offer dramatic stability benefits in high-speed lane changing or swerving manoeuvres. In this case, the rear wheels are turned in the same direction as the front ones: low-speed manoeuvres (parking) are enhanced by turning the rear wheels in the opposite direction. Mitsubishi, among others, have demonstrated complex processor-controlled systems operating hydraulic rams to steer the rear wheels. Numerous sensors are used for the system to determine which way to steer in any set of circumstances. Since Honda have now introduced a very simple, purely mechanical system, it is unlikely that the electronic systems will have a long production run.

Bus-bar systems are, perhaps, the most significant sensible application of simple electronics in a vehicle environment. The wiring loom of a modern car, in particular up-market models laden with options, contains around $25-35 \mathrm{~kg}$ of copper. An obvious solution is already used in modern aircraft, in which a bus-bar feeds power to individual ancillaries, which are attached to the bus where required and contain a data decoder with a unique address code. The controlling switch or processor is also attached to the bus where required, and sends the "on" or "off" instruction preceded by the identity code of the addressed device.

Such a data multiplexed system has been shown to save some $30 \%-40 \%$ of copper weight alone, and at today's metal prices is highly cost-effective. Significant further benefits are available in production, for adding options to order as the car is assembled. Similarly, the addition of aftermarket options is greatly simplified. It also offers some potential for the owner to "customise" the control layout to personal preferences.

Although suitable multiplex communications protocols and hardware already exist, such as the 12C bus, the hostile vehicle environment precludes consumer ICs. Conversely, the 1553 avionics bus is somewhat of an overkill. Cars with limited bus systems are already on the market and the development of totally integrated vehicle control will depend on the extension of multiplex control to the whole car. To meet the CARB monitoring requirements will otherwise be impossible.

Instruments.
Most dashboards have sported an "electronic" tachometer since the late 1950 . with a capacitor-diode network to convert the frequency of pulses from the contactbreaker to a vollage for meder deflection.

Mos manufactures have flirted with "electronic" displays and many have discovered that. in Europe at least, drivers prefer traditional, round, amalogue instruments.. One wonders if the new monitoring systems will eliminate all but the speedometer from dashboards of the late 1990.

PCB sub-assemblien have been used for instrument panch for some years and the traditional Bowden-cable speedometer and odometer drive has been replaced by a toothed-wheel magnetic transducer. "electronic" meter and electromechanical pulse counter. The latest Rolls-Royces have made the radical break with tradition by using a fluonescent display to indicate gear selector position.

Crude monitoring systems. in particular for bulb failure. use discrete logic or a dedicated consumer microprocessor to deteet breaks in circuit continuity.

Primary safey wsems are still some way in the future. It is atso doubtitul if they will gatin user acceptance without legislative compulsion.

Servicing and reliability

Most of the current engine mathement systems have diagnostic sockers. which can be attached to an andalysing computer by the servicing dealer to check vehiele performance.

> Citroen produced an example of the "ultimate safe car". It was made of glass and had a nine-inch spike sticking out of the middle of the steering wheel. The theory was that no-one would risk an accident in such a vehicle

BMW have pioneered the "intelligent odometer", which offers the driver aled bar-graph to indicate when the next service is due. This system monitors the drising style. car duty cycle and other wearrelevam parameters to provide the user with genuinely useful information. A secondary benefit, for the dealers. is that the customer must visit a BMW service centre to have the lights re-set. This helps to maintain brand loyalty.
In theory the mid-1990s carr, equipped with the full CARB compulsory monitoring system. could detect a fituh, order its own sare parts using a data link over the carss cellphone, then telephome to book a service appointment with the dealer, hav-

ing first checked with the owner"s diary for a free date.

Entertainment, information and navigation
The very tirs in-car cectronics were prewar valve radios. which used vibrators to generate the IfT that will not meall the same to younger readers) and oceupied most of the passenger"s foot-well, where they also served as a heater. Now. they accept a cartridge of (D) and occupy most of the boot instead.

In-car entertamment is well known to most car owners and needs little further comment. Most line-fit ICE systems, have acceptable performance. only let down by playing through six or ten speakers, none of which costs more than t(0) .

The Philips/Renault ICE controls, with full remote operation available from a column stalk. should be made compulsory as a safely contribution long before monitors to detect fluorocarbon leaks: from the airconditioner.

Much has been made of the new RDS system in the UK. White invaluable to montrists for its atomatic re-tuning capabitities. the traffic information service facility will become infuriating for motorway and trunk route users. Automatically re-tuning the radio to local stations broadcasting traffic information, it will be reatly useful to hear about major local congestion problems that ole is by-passing at 70 mph . The French system, of low power transmillers on a common network, oflers only Autoroute-retated information on a single national frequency. This is close to the original BBC CarFax FM-capture concept. which would have been highly succensfut had it not been killed off by setmakers" vested interests in rival systems. Natrigation systems. such as the Blatupunkt Travel Pilot, are now becoming commercially available. Offering a mov-ing-map display, they witl guide the driver to a destination previously entered. Linked to police or motoring organisation traffic information services, such systems offer the possibility of detours to avoid congestion or the M25. Basically inertiat guidance computers using maps stored on (D) ROM, such systems may be overtaken by more recent developments using the Americam, satellite-based global positioning system (GPS).

Toys from the marketing department

How useful you find a trip computer depends on how often you get bored on the M25.

Some trip computers are obviousty included to fill up a hole in the dash. The device provided on a Rover 800 does clever things like pick up the sum of fuel
injected from the engine management sys tem and use it to display, very accurately, how much fuel you have used since you last remembered to reset it. This information is virtually useless unless you know the exact capacity of the fuel tank and have a calculator with you, since the answer you want is how much fuel is left. or (better still) how many miles to empty. Similarly, many of these devices offer an "arrival time" function. If the ETA were calculated on average journey speed this would be helpful,but calculating from instantaneous current speed gives a silly answer, with an ETA in the year 2000 every time you stop at traffic lights.

Sone convenience functions are much more useful. The PLIP remote infra-red central locking system is helpful in the dark or when the keyholes have frozen over. If you use your universal "learning" domestic remote control to store the key's IR stream you can unlock the doors from 200 yards away. This French system uses dedicated ICs hard-coded with a digital sequence. In theory vastly more codes can be accommodated than is achievable with conventional metal keys.

Once he has access to control signals from other vehicle systems, the imaginative engineer can add all sorts of nice touches. On the Ford Granada, the rear screen wiper is automatically started if reverse gear is selected when the front wipers are on. The 7 -Series BMW will switch the wipers to intermittent when the vehicle is stationary to avoid nasty squeaking noises: the intermittent wipe rate is also speed dependent and increases as the car goes faster. When reverse is selected the passenger's door mirror is dipped down a few degrees so the driver can see the kerb when parking.

Many executive saloons have an electronic timed delay on the interior lights so that they stay on after the car is entered and are cancelled as soon as the engine is started. The Rover 400 goes one better and fades the lights out gently, proving that the miracle of electronics has indeed had a hand.

The real future

While the marketing men find really useful things like interior light faders for the electronics engineers to design, the advances made in engine management appear slow and ponderous by comparison. As yet, no true closed-loop or feedback control techniques are used. Current systems function only as extremely sophisticated open-loop set-point generators, based on a small sample transposed to all units in a production run. Sensors initiate corrective action only when operating parameters are obviously exceeded, such as knocking or detonation

What is needed for the future is a different approach, measuring what is actually happening inside the engine, instead of only external symptoms. This will require the further development of existing sensors. One approach is to measure the cylinder pressure during the combustion cycle, this. among many other things, being a direct measure of the combustion process. This concept was explored by Christopher Clarke and Peter Wibberley of the leading independent consultancy in this field. Ricardos. They evolved a complex algorithm to predict several critical performance criteria from direct cylinder pressure readings taken from an engine over the relevant part of a cycle.
Figure 1 shows example cylinder-pressure diagrams measured directly on a Ricardo test engine. Predicted results were made for air-fuel ratio, EGR, unburnt hydrocarbons, $\mathrm{CO}, \mathrm{NO}_{x}$ and CO_{2} and plotted against measured data. Figure 2 shows the air-fuel ratio result, and Fig. 3 the CO_{2} plot as examples. The correlations are remarkably close, but exhibit significant "noise" or scatter, possibly due to errors in the prediction algorithms and to cycle-to-cycle in the various measured parameters. Nevertheless this is an ideal DSP application. Although the cylinder pressure sensors would be generating data at a very high rate, this would be well within the capability of current digital signal processors.
Ricardos' proposed outline of a closedloop EMS using these techniques is shown in Fig.4. A system along these lines is not currently commercially feasible. since the necessary pressure sensors are only available in prototype quantities and prices. Further research needs to prove the validity of the predictive algorithms under wider operating conditions. but the overall technique looks very promising as a significant step towards the more stringent EMS requirements of the mid 1990s. One further problem is the physical space needed to locate the new sensors with adequate access to the combustion chambers, since modern cylinder heads are totally devoted to multiple valves and spark plug; if there is adequate need a way will doubtless be found. It may be significant that at least one major engine manufacturer has already incorporated a provision for cylinder pressure sensing in their next-generation engine designs.

References

1. Wibberley. P. and Clark. C.A.. Ricardo Consulting Engincers. Lid. "An investigation of cylinder pressure as feedback for control of internal combustion engines."..SAE 894)396

Editorial survey: use the information card to evaluate this article. Item M

Fig. 1. Measurement of cylinder pressure during combustion cycle for a typical

Fig. 2.Electronics isn't perfect: measured variations between predicted and measured airlfuel ratios in a Ricardo

Fig. 3. Differences between predicted CO_{2} exhaust gas levels in a research engine

Fig. 4.Ricardo engine management system based DSP using the results of

Back to the future

I read with interest the article on Benjamin Framklin in your February issue (Pioneers: Benjam in Frank lin - primer. posimaster. scientist and statesman $E W+W W \mathrm{pp} .158-160)$. But Ifelt that his interest in the fluture was an omission. In particular 1 quote from a letter the wrote to a friend James Duborg. in April 1773
"I wish it were possible. |reference experiments in which he revived flies drowned in Madeita wine| to invent a method of embalming drowned persons. in such a manner that they might he recalled to life at any period, however distant: for having a very ardent desire to see and observe the state of America a hundred years hence. I should prefer to an ordinary death. being immersed with a few friends in a cask of Madeira, until that time. then to be recalled to life by the solar warmith of that country!".

Although somewhat fanciful. Franklin s idea hate al basis in the science of his time. The 18 th century microscopist van Leeuwenhock observed that if he dried the microscopic animals rolifers they could be revived by adding water ${ }^{2}$.

Franklin believed that extending life-span would henefil individuals and the species - in distinct opposition to opinion of his time.

The Epicurians, for example. thought that only a limited number of pleasurable experiences were possible. In the Bible there are accounts of people routinely living thousands of years in carly periods. and this gave rise to the popular belief that things were always better in the past.

However unless any of readers of $E W+W W$ who are interested in altemative physics can come up with a mechanical lime machine, Frank lin's wish remains unfulfilled. except that is for the actions of a small group ${ }^{4}$ of scientific renegades, the cryonicists.

They freeze people at the point of death in liquid nitrogen, after carefully preparing the bodies with cryoprotectants. Reasoning is that it will be possible. by nanotechnology or otherwise. for future science to repair the hodies of ageing damage - the cause of death - freezing damage, and restore them to a life of indefinite duration.

John de Rivaz

Truro

References

1. Gerald J Gruman: History of ideas
about the propagation of life. Trans Am Phil Sor. Philadelphia. Dec
2. vol 56. part 9 p. 74.
3. Gruman. op cit. p. 84
4. Gruman. op cit. p. 84
5. Alcor UK Litd. Unit 18. Potts Marsh Industrial Estate. Eastbourne Road. Westham Sussex.

Keep worrying

lanlowiting in response to GS
Brown's letter which appeared in your September 1990 edtition (Facts not pax p.817).

His comments were offersively patronising and I am amazed that anyone of professional competence could openly advocate that worrying about the effects of technology should be left to social workers. This is tantamount to championing abdication of responsibility for the negative aspects of technology.

Only human concern at all levels provides the necessary checks and halances to application of science in our imperfect world. and a restraint on an elitisu technocracy. Wherever there is any controversy about lechnology. wide ranging and healthy debate should be encouraged and how better to do this than 10 highlight the issue by publication of the facts in reputable journals of high calibre such as $E W+W W$.

Your recent series of articles on EMR and non-ionising radiation has heen brought to the attention of Justice Sir Harry Gibbs who is conducting the pover line enquiry in New South Wales.

The intormation they contained will undoubtedly be taken into consideration during formulation of policy which will affect future generations of Australians. The articles have also reached interested medical speciatists.
Many of your readers look forward to being kept informed about contentious issues. so keep up the good work.
Peter Harding
NSW

Australia

Unix supported

I was most interested to read your
Unix feature in February 1991 issue $E W+W W$ (Nothing but Unix. Dos/Unix - the price of change. Open a window on Dos and let in new life. pp. $106-114$).

While the articles were fairly comprehensive. I felt that they nonetheless perpetusted a few myths about Unix. Having used a small SCO Xenix system in a small business for the past couple of years.

I would like to take issue with the following points:

You suggest that Unix software is expensive: well. yes, hut so is dos software for networks. often more expensive on a per-user costing. and prices are falling.

Hardware to run Lnix is expensive: not necessarily. a system for. say four to 16 users is cheaper to implement with a 386 -hased machine and character terminals than with a dos network. Unix is large and unfriendly: yes. but dos is equally unfriendly, which is why most users have a graphical or textbased menuing system. Creating a text-based set of menus in Unix is a simple matter. which the supplier should implement. so that the user need never see the command line. A Unix system needs thie constant attention of qualified and therefore expensive personnel: indeed. familiarity with computers and an appreciation of the importance of back-ups and other housekeeping lasks is vital, which is why our receptionist performs these functions perfectly well and very reliably. The service contract should cope with any other problems.

I could go on. but to sum up. any small business moving from a single dos machine would do well to look at a Unix/Xenix system. It is costeffective to install. the service contract can be cheaper. and expansion is easy and cheap.

Many dos programs are also available for 386 -hased Unix/Xenix systems. at prices comparable to their dos networked counterparts. Stephen Biggerstaff
Advertech Communications IId London

Duck grouse

Your correspondent D Austin of Bimmingham was quite wrong to assume in February issue $E W+W W$ that gyroscopic inertal thrust machines are a "dead duch" (Letters. Quack technology p. 150).

He referred to the celevision documentary The Man Who Wams wh Change The World in which he says that such a device built by Scoltish engineer Sandy Kidd was claimed to work.

In my recently published book "Beyond 2001 ". tracing the history of Kidd's invention, there is a delailed description given of how this device was proved to work during tests conducted at specialist laboratories in Melbourne three years ago.

Kidd's prototype. encased in a wooden hox suspended by a Kevlar Cord from an overhead beam. registered a positive result in every one of twenty consecutive runs. the force measurement ranging from just under half-an-ounce right up to four ounces.

No one has yet been able to prove how the machine works: but work it does.
Talk of "dead duchs" therefore is grealy exaggerated.
Ron Thompson
Author "Beyond 2001"
Dundee
Scotland

Testing disharmony
 In his article on triple-tone audio

 amplifier testing (EW + WW Feb. 91. Trial by three tones). Ivor Brown appears to be unaware of the work of Paul Miller in this areat. as published in sundry amplifier reviews over the last couple of years (principally in Hi-Fi News and Hi-Fi Choice).Ahlought the frequencies and relative amplitudes used are different. Miller's technique is based on the same premise: that complex imermodulation products can reveal more about an amplifier than conventional. "static". single-1one lests.

Miller, in fact, has taken the principle a stage further. by using one constant tone and two sweep tones. sweeping at different rates. The resulting spectrum is ploted as a "ihree-dimensional" grapl. showing up quite unequivocally the hamonic and intermodulation products generated in a DC- 100 kHz bandwidth. with remarkathle clarity.

Even so. these techniques still use signals which are at hest "semistatic". and the use of fully random. or pseudo-random, tones would be an interesting further development.

On the other hand, single-tone lests are capable of showing up puite a lot of detail provided they are made sensitive enough. and. particularly. are conducted at different frequencies and power levels.

High harmortic distortion - say. above tenth order - seems to have vely strong effects on perceived sound quality, and I have found it necessary on occasion to measure down below - $10 \times k \mid B$ to find anything "wrong" with amplifiers which. on bliud auditioning, show a subtle sonic signature. This is perhaps not quite as far-fetched as it may sound.
but I would be the first to admit that it is strange we can hear such small imperfections at the end of what is often a long and complex recording chain.

In the same issue. you discuss some research on the phenomenon of absolute pitch (Singing the blues - or reds, or greens or...).

I have absolute pitch, and have always found it most peculiar that others do not. There seems to be more to it than memory of what a note sounds like, for I can also sing or whistle a note on pitch (or at least very close) without preparation, implying that I remember physically what the note feels like.

So why can singers not do this? The human voice has certain characteristics which are remarkably pitch-constant. For example I frequently accompany a singer who has certain vocal problems. always at the same frequency, and whose speaking voice is constant in its "tuning" (both true of most singers). yet she does not have absolute pitch and will often guess a note in error by up to a major third (26%).

On the other hand, when I commented on one occasion that a certain recording sounded a little flat, she replied that it sounded correct to her - and was proved right!
Richard Black
London

Amplifying diode
 The output stage in a class B audio

 amplifier consists of two halves, one for each direction of current. Each half is normally a Darlington structure, either complementary or straight, as shown in Fig. 1.In his November 1989 article ($E W+W W$ Solid-state audio power pp. 1042-1048) John Linsley Hood said that the complementary arrangement has better thermal stability.

But Les Sage disagrees. In his March 1990 letter (Audio power pp.236-237) he examines first the straight case, and notes that the electrical effect of a $1^{\circ} \mathrm{C}$ rise at either junction can be modelled by inserting a 2 mV generator at F or at G. This produces an extra 2 mV across the 0.5Ω resistor, thus fixing the increase in the quiescent current through that resistor.

Then he observes the same resistor in the complementary circuit, and concludes that a 2 mV generator at A will yield 2 mV across

the $0.5 \Omega 2$ resistor, to produce the same increase in quiescent current as before.

Thermal stability is the same for both circuits!
In his January 1991 letter (Audio amplifier bias current p.53) JN Ellis points out a slip: 2 mV generators inserted at F and at G will produce twice the voltage of the single generator at A . These voltages are handed on to the $0.5 \Omega 2$ resistor. So $1^{\circ} \mathrm{C}$ rise produces 8 mA increase in quiescent current in the straight case but only 4 mA in the complementary case, which is therefore the better arrangement.

Analysing thermal effects in $\mathrm{Tr}_{\text {, }}$ is harder, because of the feedback involved.

Neither writer produces figures for Tr_{2}, thus invalidating any comparisons of the two circuits. Further, both repeatedly assume that a 2 mV generator inserted al, say, G will devote its entire 2 mV to increasing the current through the 0.5Ω resistor: no part of the 2 V is needed to increase current in the transistors. With sub-ohmic emitter resistors, this is an invalid procedure.

To summarise, the correspondents have assumed V_{BE} remains constant as current changes. In fact the change in $V_{B E}$ may be accurately modelled by assuming that V_{BE} does not change, hut that there is in series with the emitter a model resistor of value $25 / \mathrm{l} 2$, where I is emitter current in mA .

For example. Tr_{4} has a model resistor of 0.5Ω. in series with the $0.5 \Omega 2$ shown. It is now clear that $1^{\circ} \mathrm{C}$ rise in the straight case produces 4 mV total at F and G , but only 2 mV of this falls across the real 0.5Ω resistor, to yield an increase of just 4 mA in the quiescent current.

Suppose $V_{\text {in }}$ increases enough to augment $\mathrm{Tr}_{1} \vee$ by 1 mV : collector current will increase by 0.25 mA (the model resistor is $4 \Omega 2$). $4 / 5$ of this comes from Tr_{2} base (from $\mathrm{B} \mathrm{Tr}_{2}$ model resistance is $\mathrm{H}_{f E} \times 0.5 \Omega$).

Thus 10mA flows down to D raising it by 5 mV : $\mathrm{V}_{\text {in }}$ was 6 mV .

Since the generator at A may be considered instead as part of $\mathrm{V}_{\text {in }}$ it now follows that nearly all the 2 mV at A appears across the 0.5Ω resistor. to give an increase of 4 mA in quiescent current.

The methods that follow shou that B has little effect. But compare the previous paragraph: the two circuits are back once more on level pegging.

In practice $\mathrm{V}_{\text {in }}$ is supplied by an amplificd diode (pot with its three leads connected to a transistor). This largely eliminates the gradual thermal effects of the above discussion. if it is in contact with the output transistors.
But the system is still vulnerable to rapid increases in amplifier output.

Suppose that the fully loaded amplifier is suddenly made to deliver a steady square wave of amplitude one quarter of the total supply voltage (the worst possible case). This might cause the power transistor junctions to heat $100^{\circ} \mathrm{C}$ in a few seconds, with much less effect on the other transistors involved.

Dynamic (time-related) behaviour of this kind is much more likely to trigger runaway than the gradual drifting discussed above. In the straight case, $100^{\circ} \mathrm{C}$ rise produces in effect a 200 mV generator at G .
Noting the $0.5 \Omega 2$ model resistor in series with Tr_{4} emitter, just 100 raV falls on the real $0.5 \Omega 2$ resistor. The bias current has increased by 200 mA - only an approximate answer because change in I is no longer small. An accurate method predicts 300 mA increase).

The complementary circuit fares much better, when a 200 mV generator is dropped in at B.

To see what happens, work from a less enmeshed variable. Suppose that generator B has lowered C by 1 mV . Well, the model resistor for Tr_{3} is 0.5Ω. so its emitter current will increase by 2 mA : this raises D
by 1 mV . That will send 0.25 mA back up through Tr_{1} (its model resistor is 4Ω). This 0.25 mA is joined al E by $2 \mathrm{~mA} / \mathrm{H}_{\mathrm{FE}}=0.04 \mathrm{~mA}$ from Tr_{2} base. 0.29 mA flows up through the 10022 , raising E by 29 mV . So B was a 30 mV generator.

But our real B is 200 mV , and as all goes in proportion the extra bias current through the $0.5 \Omega 2$ is not 2 mA but $200 / 30 \times 2=13 \mathrm{~mA}$.

Straight Darlington produced 300 mA . so complementary does 23 times better. Game, set and match to Linsley Hood!

This discussion handles only one of the factors that determine thermal stability. But a general conclusion can already be drawn. Any other system would be of real interest if it threw out the amplified diode. together with the dangerous thermal balancing act that it supports.

Such a system was proposed in my October article ($E W+W W 1990$ Reducing crossover distortion pp.879-882) and Mr Ellis sets out to criticise it. But he fails to offer any criticism.

Instead he relies on Reg Williamson's view that the subject of crossover distortion is long since closed. It is true that in his
November 1988 letter (The subjectivist manifesto pp.1067) Mr Williamson did refer to his June 1969 article, and he came within a whisker of saying that it had covered comprehensively the matter of crossover distortion.

By courtesy of Mr Robson of Stevenage Marconi I have been able to examine this 21 year old $W W$ article, and it makes just one point on crossover distortion: fully complementary output stages would eliminate the odd harmonics that cause most of the unpleasantness.

Magisterial and indeed prescient. but scarcely comprehensive, and certainly no criticism of the October article.
In his December letter (EW + WW 1990 Crossover distortion pp.1044) Erik Margan of Ljubljana does comment on my October article.

He observes that measuring spikes is an insufficent criterion for crossover distortion. The temporary switch-off they cause of higher frequencies is most important. But can this happen in the proposed system, where the spikes only last $1 \mu \mathrm{~s}$, and are not 167 times (as 1 wrote) but 333 times less serious than those he has tested?
Michael McLoughlin Haberdashers' Aske's School

Unsound model

I read with interest Michael McLoughlin's article on crossover distortion in the October issue ($E W$ +WW Reducing crossover distortion pp.879-882).

The article is informative and thought-provoking as far as it goes. But it has some limitations when applied to modern power amplifier topologies.

I do not think anyone would use a circuit as simple as that presented except for amplifiers of 1 or 2 W capability in non-critical applications, where it might be argued that cross-over distortion is not a significant consideration.

The major problem as I see it is that Mr McLoughlin's circuit model is not sufficiently representative of modern amplifiers in two main areas. First, nearly all modern audio power amps of average to high performance use differential pairs in their first stages. The differential (or long tailed) pair provides greater signal handling capability, linearity and common mode rejection compared to a single transistor, at the expense of some gain.

Second, Mr McLoughlin's model uses high gain small signal transistors in the output stage, which are quite different from the large and relatively slow power transistors normally found in power amps, and quite different also from power Mosfets.

Use of differential pairs is perhaps the most important with regard to Mr McLoughlin's conclusions.

For differential (long tailed) pairs the impedance seen from the emitter of either input transistor is pretty much just the intrinsic emitter resistance (r_{e}) of the other transistor, and the first stage gain has little or nothing to do with the impedance of the feedback circuit.

Under these circumstances reducing the amplifier's closed loop gain to unity would not provide as much benefit as Mr McLoughlin would have us think. The subsequent increase in feedback should reduce all distortions, as we expect feedback to do, but reducing the amp's gain to unity might have some rather undesirable effects.

For example a 50 W amp would be expected to deliver just over 28 V to an 8Ω load. If it were a noninverting amplifier with a gain of unity then the input voltage would have to be 28 V as well, requiring an input circuit of large signal handling

Truth and gyroscopes

From reading his description in February letters (Quack technology), it is clear to me that D Austin did not reproduce the experiment demonstrated by Raymond Baxter on the BBC Tomorrow's World programme. Support arms for the top were allowed to hang vertically and the centre of the support pin was assigned to be the reference point on the machine. A stop was arranged to halt the support arms moving beyond the vertical to, say, the right.

In operation, the top moved to the left, the frame to the left and, at the end of the traverse swing, the supports were again touching the stop.

The top now behaved as a simple Newtonian pendulum and
capability and much higher common mode rejection.

Another point to consider is the power supply voltage. The biasing requirements of most input stages are such that they cannot accommodate both supply voltages in their input (or output) range.

In fact most power amplifiers cannot accommodate either supply rail voltage at their inputs. To maintain a reasonable efficiency, supply voltages are kept as low as possible while still delivering sufficient voltage to obtain the required output power.

However if the amplifier's input is required to handle full output voltage of the amplifier, as it would if the amp had only unity closed loop gain, then larger supply voltages would be required for the input stage.

This implies either two sets of supply voltages, or larger supply voltages for the whole amplifier which means a less efficient amplifier and output transistors with higher power ratings and bigger heatsinks - all adding considerably to cost of the final unit.

It is revealing that all of Mr McLoughlin's measurements appear to have been done at an output level of 2 V peak-lo-peak with a total supply voltage of 9 V . and very little attention has been paid to the full power capabilities of his circuit.

In fact if the DC voltage at point F is only 2.7 V (as stated in his Fig) then we could not expect a
swung back across the machine, regaining its start attitude. A smaller pulse to the left followed.

By examining the bench marks, it was clear that the machine had translated to the left without rearward reaction. In effect, the stop was a mechanical rectifier which prevented precession to the right.

On the fifth of May, 1972, I showed Professor Laithwaite a 10 lb machine, the bearing losses of which were sustained by 10 W of electricity. The length of the first pulse was about 8 in , which took the device completely beyond its original boundaries.
I have an affidavit to that effect.

Alex Jones

Channel Islands
maximum output voltage swing of more than approximately 2 V peak (4 V peak-to-peak). This is very inefficient use of the available supply and could not be tolerated in a modern high powered amplifier.

Another point that Mr
McLoughlin has largely ignored is the different frequency compensation required for a unity gain amplifier and its effect on slew rate. Very few amplifiers can provide the same slew rate at unity gain that they might at higher gains, say 30 dB .

Inadequate slew rate is probably the dominant cause of TID. Slew rate is an important parameter that must be considered when designing a power amp and, for a given design, lower gain usually necessitates lower slew rate unless other design requirements are sacrificed. It is pointless to trade one type of distortion for another when an alternative design reduces both.

As for the output transistors, Mr McLoughlin has not allowed for the much slower response of power transistors compared to the small signal transistors he has used in his model.

When configured as an emitter follower a bipolar transistor has a 3 dB bandwidth approximately equal to its f_{T}. For a BC 109 this might be between 100 MHz and 300 MHz , and for a BC 327 it might be 50 MHz to 150 MHz .

It is unlikely that any bipolar power transistor
could manage anything more than 100 MHz , and Mr McLoughlin's circuit is less relevant to power Mosfets. This simple fact could largely account for the apparently poor crossover performance of the amplifiers tested by Vandekooy and Lipshitz, and Margam when compared to McLoughlin's simple little amplifier.

Also real life amps often use Darlingtons for the output transistors and this will contribute to the size of the crossover spikes.

Mr McLoughlin recommends use of a current source in the collector circuit of the second stage of his amplifier, to reduce the effects of crossover distortion.

Most modern power amplifier designs already use similar circuits in that position and so Mr McLoughlin's suggestion is a bit pointless. Many amplifiers use a push pull arrangement which is usually more linear and can provide more gain from the stage.

I feel that the major shortcoming of Mr McLoughlin's article lies with his failure to relate the work he has done with his amplifier to modern amplifier topologies, and there are important differences between his amplifier and modern class B power amps.

Based on this I find his conclusions are dubious, in particular his claim "that the amplified diode has had its day".

In my experience, when crossover spikes appear in an amplifier no amount of feedback will remove them, and the only acceptable course of action is to avoid them in the first place.

I cannot see that Mr McLoughlin has presented an acceptable alternative to the amplified diode. except for simple amplifiers of about IW output power. Having said that I must say that I did find the article interesting and thought-provoking. I think that reconnecting the compensation capacitor (to the output terminal) looks like a very sensible idea. Perhaps further investigation of the subject might be in order with a circuit more representative of modern Class B amplifiers.
Phil Denniss
University of Sydney Australia

LINIPLEX
 Loop Antenna

$50 \mathrm{kHz}-30 \mathrm{MHz}$

* Only 1 metre wide
* Classic loop characteristics
* Figure of eight directivity
* Deep broadside nulls
* Effective at ground level
* Sensitive only to magnetic field
* Rejects power line interference
* Weatherproof and lightweight
* Current driven push-pull amplifier
* Patent pending

PHASE TRACK LTD., 16 Britten Road, Reading, RG2 OAU, England Tel: 0734752666

motmos \cdots. the name for good value (trading sioce 1976)

FULLY IBM COMPATIBLE 286 AND 386 AT COMPUTERS
High performance 286 basic system at $£ 349$ High performance 386 basic system at $£ 779$

286: 12 MHz . (Landmark speed 16 MHz .) 80286 processor complete with 1 Mbyte of RAM, expandable to 4 Mbytes * 1.2 or 1.4 Mbyte floppy drive * stylish 101 keyboard *IDE hard drive controller (MFM and RLL options) * expansion slots * monographics card * co-processor socket * AMI BIOS with full set-up routine and diagnostics including hard drive format * comprehensive user and technical manuals; £349 plus VAT.
386: * 25 MHz . (Landmark speed 33 MHz .) 80386 processor complete with 1 Mbyte of RAM expandable to 8 Mbytes * otherwise the same configuration as above. Note: a full 386 system with 32 bit cpu. * Desktop version; $£ 799$ * Tower case version; $\mathbf{£ 8 7 9}$.

We will configure systems to your specification. For available monitors, hard drives, cards and add-ons see page 360 of this edition.

- Access and VISA orders accepted

MATMOS LTD. UNIT 11 THE ENTERPRISE PARK, LEWES ROAD, LINDFIELD, WEST SUSSEX RH16 2LX. Tel: (0444) 482091 and 483830. Fax: (0444) 484258.
SEE OUR OTHER ADVERTISEMENT ON PAGE 360

MPE PowerLogic Development System

* Half length PC plug-in
* Programs: Lallice/National. SGS CALS 16 V 8 A . 20V8A Altera/Intel EP310. 320. 600. 610 Cypress/TI C22V10, C20G10 ICT PEEL. 18CV8. 22CVIO. 22CVIOZ
* Integrated logic equation assembler for each device
* Easy to install
* Menu driven system
* from $£ 345$

EPROM Programmer Cards

* PC plug-in
* Programs EPROMs from 2716 to 27101
* Adaplers available for single chip micros
* I gang (EW701) £185
* 4 gang (EW704) £225
* 8 gang and production also available
* 8751 adaptor $\mathbf{5 7 5 . 0 0}$
* 2/4/8 Mb programmers available * (HEP 801, HEP 804. HEP 808)

CATALOGUE of more hardware and cross-support software available on request.

> MicroProcessor Engineering Limited 133 Hill Lane
> Southampton SO1 5AF

TEL: 0703631441

The LePROM EPROM Emulators

* PC plug.in

* Menu driven system
* Cuts development lime
* 1 pod emulates 2 EPROMS at once
* Total 4 pod capability
* Emulates all 24 and 28 pin types
* Supports 8 and 16 bil bus widths
* Expandable to 32 bit bus widths
* Also available LeMEG for IMb EPROMs and LeeBIG for 2 Mb EPROMs.
* from $£ 495$

CIRCIENO. 150 ON REPIY CARD

C-Compilers The American Option

Developed with 12 years experience, true processor specific ANSI and K\&R C-
Compilers, are now available complete with free Assembler and Linker.
1802, 1805, 6301. 64180, 6502, 6800, $6801,6802,6805,6809,6811,68000$, $8051,8085,8086,8096$ and $Z 80$.

ONLY £595
and now 86 C 010 only $£ 895$.
Development System support for over 150 devices is also available, complete with High Level Debugging, to see you through your complete software and hardware design cycle.
Call us now for your FREE active demonstration disk.

UK Oxford Tel: (0993) 778991 Fax: (0993) 702284

[^8]

System Request

AT Compatible Personal Computers

Desktop design with 80286/12 Mhz CPU, 1MB RAM, 1.2MB Floppy Disk Drive, Dual Display Card, Serial and Parallel Ports, Keyboard and 14" Paper White Monitor.

Prices from
$£ 479$ + vat

A full range of upgrade options is also available.
The above price excludes delivery. All machines are subject to availability and are supplied with a 12 month Return to Vendor Warranty. E\&OE.

System Request

PO BOX 40,
ROMSEY
HAMPSHIRE, SO51 8WR
Telephone 0860641855

In the first part of this article I looked at the reasons for the growth of VHF radio broadcast systems in which the carrier was modulated in frequency. rather than in amplitude, and at the evolution of receiver designs for FM transmissions.

Although workable and offered as normal commercial products, these early FM radios were not entirely without residual problems. Most annoying were the very high levels of inter-station noise and the short-term thermal drift of the tuning setting, due to the heat generated by the receiver valves.

I felt that a suitable point to end this part of the article was in 1960, when the first transistor-operated designs began to appear. since these, being cool running, offered at least the possibility of avoiding the second of these problems.

Stability of tuning

From the inception of FM broadcasting on the VHF bands. it was obvious, particularly to those hostile to the adoption of the systen in the first place, that there would be a practical problem in obtaining adequate stability of tuning. This would arise because a 0.1% drift in the resonant frequency of a 1 MHz tuned circuit, which would be relatively unimportant in the 8 10 kHz pass-band of a typical mediumwave AM receiver, would be unacceptable in an FM discriminator system intended to operate on a $\pm 75 \mathrm{kHz}$ carrier deviation.

Because of this need to operate at relatively high frequencies, most of the valveoperated FM tuner designs of the time suffered from some drift in tuning frequency, though efforts were made to minimise this irritating problem by the sensible choice of components, circuit structure and layout.

In retrospect, it is surprising that so few circuits of the time used the mean directvoltage output of the FM demodulator cir-

FM RADIO: PLAYING A BETTER TUNE

> John Linsley Hood continues his short series on FM receiver design, looking at the way in which component development has influenced technique
cuit, which is a function both of the extent and the direction of mis-tuning of an input signal, as a basis for some form of automatic frequency control. Miller capacitance circuits of the kind shown in Fig. 1 had been known and used for many years in other applications and would have allowed a useful degree of frequency control in the oscillator circuit of an FM superhet radio. It is now, of course, an easy matter to arrange this type of control by the use of a Varicap diode connected in parallel with the oscillator tuned circuit.

The use of AFC is not, in itself, a complete answer to the problem of tuning drift, unless this is fairly small anyway. In the presence of uncorrected drift, the receiver AFC circuitry may pull it into tune on an adjacent signal channel at switch-on, rather than the one to which it had been tuned when switched off.

Inter-station noise

Even after the widespread adoption of cool-running. solid-state circuitry had made short-term tuning drift a relatively minor problem, there remained the problem of off-station noise. This was particularly conspicuous in high-gain systems using amplitude-limiter circuitry, since the thermal noise of the input stage would be amplified to become a wide-band FM signal at an effective 100% modulation level.

From the point of view of the amateur constructor a simple, if rather expensive, answer to the problems of both inter-station noise and drift was to use a crystalcontrolled oscillator, its operating frequencies being appropriate to the three BBC channels broadcast in any given area. so that the radio could be switched from one channel to another without passing through the noisy inter-station region.

This was a widely adopted approach in FM receiver systems using pulse-counting demodulators ${ }^{1.23}$. for which stability of the IF output frequency was essential.

Fig.I. Vari-mu pentode used as Millercapacitance stage for AFC purposes.

However, quite apart from considerations of cost, the use of crystal-controlled oscillators lacked appeal to the conmercial manufacturer making products for use country-wide, although in 1961 STC offered a range of three-crystal packages mounted in a B9G-type glass envelope to allow a change of frequencies.

Various techniques were employed for inter-station noise muting in continuously tuned receivers, but the most common method was to derive a voltage proportional to signal strength, which could then be used to operate an audio switching circuit, as in Fig. 2. An ingenious alternative system, based on the detection of high frequency components in the demodulated output and used to operate a fet switch. was shown by Hinch ${ }^{4}$.

In its most convenient and economical form, such a facility could be included within the circuitry of the limiting amplifier/demodulator IC as, for example, in the RCA CA3089E of 1974.

The growth of solid-state technology

Techniques evolved in the 1960s for the manufacture of IC chips, in particular those for the deposition of precision patterns of metallisation on a substrate, lent themselves also to other purposes, of which one of the more unexpected was
that of the surface acoustic wave or ladder filters used as replacements for band-pass tuned circuits.

Ceramic ladder filters. From the manufacturing point of view, a significant disadvantage of an FM tuner, in comparison with a more conventional AM one, was that any FM receiver design will use a relatively large number of tuned circuits in the RF, mixer, oscillator, IF and demodulator stages.
All of these would need to be correctly adjusted during the manufacture of a commercial receiver, which would be a labour-intensive, time-consuming task. The availability of pre-tuned piezoelectric band-pass filter circuits therefore filled an urgent need, especially since the passband characteristics would be reproducible and could well be superior to those available from a conventional pair of band-pass, coupled tuned circuits.
Their method of operation, shown in Fig. 3, is based on the fact that an interlaced (interdigital) pattern of transverse conductive stripes on the surface of a thin wafer of piezoelectric material can be made to launch a surface ripple (the surface acoustic wave) in response to a specific input RF signal. This ripple passes down the wafer and induces a voltage in another interdigitated group of metallised stripes further along the wafer.

By adjusting the number of metallic stripes, the spacing between them and the extent to which they interleave, the RF pass-band of such an electromechanical filter can be very precisely controlled. It is customary to terminate the ends of the ceramic wafer with some mechanically absorbent material to avoid unwanted end reflections and the reverse face of the wafer may be similarly treated, although it is said that 95% of the energy remains within one acoustic wavelength of the surface.

Various materials are employed for such ladder filters, such as barium titanate, aluminium nitride and lithium

Fig.3. Basic construction of surface acoustic wave filter.
niobate. These have acoustic velocities in the range $2000-5000 \mathrm{~m} / \mathrm{s}$ and the spacing between the adjacent metallic digits will usually be of the order of half a wavelength, depending on the design type, the pattern of metallisation depending on the transmission characteristics required. The method of construction of some types of these devices have been shown by Murray and White ${ }^{5.6}$

Filters of this general type have been available at least since the middle 1960s and are currently offered, for a variety of applications, by a number of manufacturers, such as Brush-Clevite. Murata. Philips, Toko, and Vernitron. Figure 4 shows typical pass-band characteristics for a ceramic ladder filter intended for use in a 10.7 MHz FM IF strip. The actual performance will be influenced by the source and load impedances employed, which may typically be in the range 200 330Ω.

RF transistors. At the time of the 1960 circuit design by Harvey, to which 1 referred at the end of the first part of this article, the HF transition frequency of the best available transistors was inadequate for RF amplification purposes in the 100 MHz band. The author therefore adopted a circuit which avoided the need for an RF stage, though this limited the receiver sensitivity and could have increased the leakage of unwanted radiation at the local- oscillator frequency.

Fig.2. Automatic noise muting circuit operated by IF output signal strength.

Fig.4. Transmission characteristic of FM IF ceramic filter.

Even when transistors with better F_{1} values became available, problems of instability due to internal feedback were still difficult to avoid. without complex neutralisation circuits. The use of a grounded base RF transistor stage of the kind shown in Fig. 5 avoided the problem and this method was widely used for many years in inexpensive tuner-head systems, although the high degree of damping of the input circuit reduced imagechannel rejection.

What was needed. clearly, was a transistor equivalent of the screened-grid valve, in which there was effective capacitive isolation between the input and output electrodes. The early experimental Alcatron, a germanium dual-gate junction fet described by Martin ${ }^{7}$) in 1961. clearly offered the possibility of internal electrostatic screening, although it was constructed using rather primitive alloy diffusion technology.

Although, many years before, Shockley and others had envisaged a transistor in which current flow through a depleted semiconducting channel could be augmented by an externally induced electrostatic charge, attempts to make such devices work had been frustrated by the difficulty in achieving the necessary degree of purity at the insulator-channel gate junction.

These practical problems were solved in the early 1960 s and single insulatedgate mosfet transistors became available in 1963-4. Amplifier and oscillator designs using these were described by Butler ${ }^{8}$ in 1965 and an RF/mixer stage for an FM tuner using mosfets was described by Rohde ${ }^{4}$ in 1966.

While these single-gate mosfets had excellent RF characteristics. they had a significant internal gate/drain capacitance. which meant that RF amplifier stages using these devices needed some form of neutralisation to avoid instability, unless the stage gain was kept low. Source/gate capacitive isolation was provided by the dual-gate mosfet, introduced by RCA and others a year or two later.

Figures 6a and 6b show the circuit symbol and constructional form of the dual-gate mosfet. Modern devices of this type offer signal-gate mutual conductance values in the range $2-12 \mathrm{mS}$ and gate 1 to drain capacitances as low as 0.01 pF , coupled with a relatively high output impedance of more than $50 \mathrm{k} \Omega$.

It is customary to incorporate a pair of back-to-back zener diodes on the chip to protect each gate from possible electrostatic breakdown. as indicated in Fig. 6c, though these are usually omitted in the circuit symbol.

Although the noise figure and resistance to cross-modulation of these devices

Fig.5. Low-cost tuner-head design of 1967, using self-oscillating mixer.

Fig.6. Structure and circuit symbol of dual-gate depletion-type mosfet.
are slightly worse than in junction fets when used in similar type circuitry, the enormous convenience of these devices in RF amplifier and mixer stages has made them exceedingly popular with designers. An elegant FM tuner using them was described by Nelson-Jones ${ }^{10.11}$ in 1971. This circuit also employed ceramic ladder filters in the IF stages and is, in many ways, typical of modern FM tuner design practice.

Tuner head units. Although NelsonJones took the somewhat bold step of designing his own RF and mixer stages, it was by this time. becoming increasingly common for both manufacturers and anlateur constructors to rely on specialist suppliers for complete pre-aligned tunerhead modules, based on grounded-base junction transistors, neutralised junction fets or mosfet RF stages, with either junction fet or mosfet mixers.
These head units used either ganged airspaced tuning capacitors or more often Varicap diodes, because these would simultaneously tune a greater number of tuned circuits, in the interests of better image channel rejection and s:n ratio, and would also facilitate the use of automatic frequency control. However, the reverse voltage/capacitance characteristics of these tuning diodes needed careful matching.
A very popular tuner head module at the time was the Mullard LP1186 Varicap-tuned unit. An FM tuner design based on this head unit, described by Skingley and Thompson ${ }^{12}$, used the thermal correction circuit of Fig. 7 to com-

Fig.7. Skingley and Thompson Varicapdiode thermal compensation.
pensate for the temperature dependence of the Varicap diode capacitance. This circuit also used an ingenious AF outputmuting circuit operated by amplitudemodalated components in the IF output.

IC IF and demodulator stages

The process of simplification by the use of pre-aligned tuner-head modules and ceramic-filter IF tuning blocks continued with the development of ICs for IF amplification and demodulation. Figure 8 show's the Motorola MFC40I0A IF amplifier block of 1968 and the MC1351P limiting amplifier/demodulator of 1969 is

Fig.8. Motorola MFC40IO IC RF gain block.
shown in Fig. 9.
By this time. demodulator systems such as the Foster-Sceley and ratio-detector had been superceded by this type of sin-gle-coil gate-coincidence detector circuit. RF signals are amplified by the transistor chain $\mathrm{Tr}_{1,9}$ and fed to one port, Tr_{15}, of the
transistor chain Tr_{11-17}. A second RF signat, derived from the single tuned circuit $\mathrm{L}_{1} \mathrm{C}_{1}$, is fed to the second port, $\mathrm{T}_{\mathrm{r}_{11,14}}$, via the buffer emitter follower Tr_{10}.
If there is no signal to Tr_{10}, or if this signal is in phase quadrature with the incoming RF signal (the condition that exists if $\mathrm{L}_{1} \mathrm{C}_{1}$ is toosely coupled to the RF input signal and is tuned to the same frequency) the current flow through the transistor chain is equally divided between $\mathrm{Tr}_{11,13}$ and $\mathrm{Tr}_{12.14}$ and there is no change in the current flow through R_{20}
If, however. the phase of the RF output from $\mathrm{L}_{1} \mathrm{C}_{1}$ is caused to shift away from quadrature by a change in the input frequency, there will be a change in the mean current through R_{20} and a consequent RF-frequency-dependent output signal.

This can provide a low distortion (0.3 1.5%) demodulation system for an FM signal, which only requires the adjustment
of a single tuned circuit, which could be replaced by a suitable fixed-frequency ceramic resonator.
In the circuit of Fig. 9, transistors $\operatorname{Tr}_{1,9}$ form a high-gain RF amplifier block, in which amplitude elipping is achieved by timiting the possible collector voltage swing to about $1.8 \mathrm{~V} \mathrm{p}-\mathrm{p}$. This method of amplitude limitation, by driving the transistors into saturation, is less good than the back-to-back diode technique adopted in the RCA CA 3089 E and the later CA3189E.

3089 and the 3189
A major requirement for an FM IF amplifiet/demodulator system is that there should be enough IF gain to cause limiting at an aerial input voltage of less than 5 mV , to allow adequate performance in fringe areas. In practice, this probably implies an IF input sensitivity, at the lim-

Fig.9. MC135I FM IF strip and demodulator.

Fig.10. Limiting IF amplifier gain block used in RCA CA3089E.
iting threshold, in the range $10-50 \mathrm{mV}$.
It is also desirable that the demodulator circuit should have a distortion level of 0.5% or lower, that it should be simple to adjust, that the recovered audio output voltage should be 0.5 V RMS or more to operate stereo decoder circuitry without further amplification and that facilities should be provided for AGC, AFC, interstation noise muting and some method of tuning indication.

All these needs were met, for the first time in a single $I C$, with the introduction in 1971 of the RCA CA3089E, which uses the very highly developed IF amplifier circuit shown in Fig. 10. A cascode-connected input long-tailed pair Tr_{1-5} feeds two further stages of symmetrical pushpull amplification Tr_{7-20}, which drives the gate-coincidence detector via the back-toback diode limiter mentioned above.

Each of the RF amplifier stages is also arranged to feed a current summation circuit to allow both a tuning meter and an inter-station noise mute circuit to be operated from an output voltage largely proportional to the size of the input IF signal. This circuit also provides a control voltage for an AGC system which can be used, where appropriate, with the RF and mixer stages of the tuner head. An AFC
voltage is derived from a secondary output from the gate coincidence detector.

Although this IC is still widely used, an improved version, the CA.3189E, was introduced by RCA in 1977. It gives a SdB improvement in stereo signal-tonoise ratio and an improved inter-station noise muting circuit, in which a DC signal related to the IF frequency deviation was added to the signal-sirength control voltage to improve muting operation at frequencies close to a high-level channel.

This later IC has been exceedingly successful commercially. Because of its excellent performance, it has imposed a degree of design conformity in the choice of amplifier and demodulator method used in contemporary designs, although it is still practicable to use this IC in nonstandard FM circuitry, such as a recent phase-locked loop design of my own ${ }^{13.14}$.

In the final part of this article, 1 will look at the techniques used for the broadcasting and reception of stereo signals, together with some of the recent innovations in commercial receiver design.

Editorial survey: use the information
card to evaluate this article. Item N

References

1. Wireless World pulse counting FM receiver. Wireless World July, 1964, pp. 326-333.
2. Hopkins, J. C. Wireless World. September. 1965.pp. 420-422.
3. Frost, E. D. Wireless World, December, 1965. pp. 586-590.
4. Hinch, P. Wireless World. November, 1973, pp. 547-548.
5. Murray, R. J., and White, P. D. Wireless World, March, 1981, pp. 38-41.
6. Idem. Wireless World, April, 1981, pp. 79-82.
7. Martin, A. J. V. Wireless World, May, 1961, pp. 238-241.
8. Butler, F. Wireless World. February, 1965, pp. 58-61.
9. Rohde. U. L. Wireless World, January, 1966, pp. 2-6.
10. Nelson-Jones, L. Wireless World, April, 1971, pp. 78-92.
11. ldem . Wireless World, April, 1972, pp. 179-183.
12. Skingley, J. A., and Thompson, N. C. Wireless World, April, 1974, pp. 48-60.
13. Linsley Hood, J. L. Electronics Today. March, 1987, pp. 34-38.
14. Idem. Electronics Today. April, 1987, pp. 33-37.

HALCYON ELECTRONICS

Computers, test equipment, video monitors, amateur radio gear, oscilloscopes, scientific instruments, connectors, printers, power supplies, communications, disk drives, multimeters, component bridges, frequency counters, signal generators, semi-conductors,
integrated circuits, etc.

SPECRAL OFFERS

FARNEL E35O VARIABL E STABLISED PSU'SO -350V 100MA VIA METERS, $6.3 V 2 A C T, 0-25-5-6.3 V$ 3A NEWBATCHL LNSTEAD M28 MULIVOLT METERS, BATT. OP, RANGES 1.2MV-400V AC. $120 \mathrm{MV}-400 \mathrm{~V}$ DC MCAD BUTTON CELS $100 M A H$. GV FLAT PACK STACKS, EXNEW EOUIPT EOSTACK. 10 FORE16
MICROVTECHLFSTMOWSRGBANLL COMPD SNOE149 LYONS WG716 16MHZ WORD GENERATOR REDPOINT GE. 1 HEATSIIKS $1.5^{\circ} \mathrm{CW}$ BRAND NEW E1.50 MCROWA ANALITICAL BALANCE
BBC. B COMPUTERS E139 \& E179 (DOSS) HP 5004 AIGMATURE ANALYSER
NELSON ROSS SPECTRUM ANLYSSER O-ZOKHZ COS EPSON PX4 \& TFISD TWIN FLOPPY
 DATA PRECISION 6000 WF ANAL + 681 DDRIVE 51495 IN4004 6000 OFF (THOMSON-CSF) TEXSCAN 9650 TRACKING SWEEP ANALYSER S995 HP97 SCIENTIFIC CALCULATOR, LIKE NEW RACAL DNA 9341 DIGITAL LCR BRIDGE E9S NESTAR 4722 G-PORT HUBS AVO CZ $457 / 5$ COMPONENT COMPARATOR MARCONI TFZ350 FMAM MODHLTION METER 775 BST LAB OVENS $12 \times 13 \times 14$ INTEANAL $210{ }^{\circ} \mathrm{C}$ WANOEL WANEE \& GOTERMAN TFPM-43 TFFS-42 EA E55 TEKTRONIX 4562 PLOTTERS, GPE \& RS232 OLVETT 32 MBB EXT HDRIVE HDU2432 UV DOOW SHUTTR OP TMER JHOV BaK 1019 AUTO VIB EXCITER CONT +HEAO JANKE \& KUNKEL A1O MIN. LDO. M XXER 2OK RPM JANKE \& KLNKEL AIO MN. LIQ. MXER LEAKSEEKER 46 PORTABLE GAS OETECTOR LEAS SEEKER 46 PORTABLE GAS DETECTOR
LOH 2 O2z SONAR SCANNER, SURFACE UNIT LOI 202 SOMAR SCANNER, SURFACE UNTT TEKTRONIX 834 PROG DATACOMMS TESTER IBMPOLAROIO PALETTE IMAGE RECOROER $72 \cdot 10$ AVO BS M2. 586 From VARIABLE OUTPUT PSU's FFom TEKTRONIX 520 PAL OA NTSC VECTORSCOPES METROHM $9 A$ 250V MEGGERS OTHER MEGGERSMEGGER BRIDGES From

E75 B4T LAB OVENS $12 \times 13 \times 14$ INTERNAL $210{ }^{\circ} \mathrm{C}$ C65 PASCALL BALL MLL, VARIABLE SPEED £199 OTHER PLOTTERS FTOT〔195 HP COMPUTER S825B 15263A 90032A OPT. 066 £95 E99 MICROWAVE BY H.P. KELTEC VARIAN. ETC. 066 POA cas HTACHI CH2073N301 $20^{\circ}{ }^{\circ}$ RGB 644 HHz . CACOTP ESS TECMAR OLC 50 H TAPE STREAMER ES TECMAR QIC SOH TAIE STREAMER ES5 LEADER LCG 396 NTSC PATT GENERATOR Cg95 RACAL GC RECEIVER 17T2BSSZBEFFIO ع995 CONRAC 7211 HI-RES RGB MONTIOA
 ESS 12 GREEN SCREEN MONTIORS FTOM ${ }^{\text {ES5 }}$ I2 LEADER LBO-9C ALIGNMENT SCOPE C35 LEAER LOO-SC ALIGNMENT SCOPE
E475 OUBEX OA 200 OISK DRIVE TEST UNTT £I75 OUBEX QA 200 OISK DRIVE TEST UNTT
ETS SIGNAL GENERATORS AF TO $12.5 G H Z$ EIS GALLENKAMP MAGNETC STIRRER
\star PRICE \star PERFORMANCE \star PROFESSIONALISM $\star=$ 3P SYSTEM

Systems buit to suit your requirements

BASIC SYSTEM	$\begin{gathered} \hline 886 / 12 \\ £ 345 \end{gathered}$	$\begin{gathered} 286 / 16 \\ £ 430 \end{gathered}$	$\begin{gathered} \hline 386 / \mathrm{SX} \\ \mathrm{f565} \end{gathered}$	$\begin{gathered} 386 / 25 \\ £ 795 \end{gathered}$	$\begin{gathered} 386 / 25 \mathrm{C} \\ \mathrm{E} 880 \end{gathered}$	$\left.\begin{array}{\|c\|} \hline 386 / 33 C \\ £ 1095 \end{array} \right\rvert\,$	$\begin{aligned} & 486 / 25 \\ & £ 2150 \end{aligned}$
RAM	1MB	1MB	2MB	4MB	4MB	4MB	8MB
HARD DISK	410MB	40MB	40 MB	90 MB	90 MB	135MB	180MB
$14^{\prime \prime}$ MONO TTL	£698	$£ 733$	£918	£1383	£1468	£1739	$£ 3148$
14^{n} MONO VGA	£728	£763	$£ 948$	£1413	£1498	£1769	$£ 3178$
$14^{\prime \prime}$ VGA COLOUR	$£ 853$	£888	$£ 1073$	£1538	£1623	£1894	$£ 3303$
$\begin{aligned} & \text { 14" SUPER VGA } \\ & \text { COLOUR } \end{aligned}$	£952	£987	$£ 1172$	$£ 1637$	¢1722	$£ 1993$	£3402

10% Discount on all systems until end of May 1991 BASIC SYSTEM = MOTHERBOARD, IMB RAM, FLOPPY DRIVE 1.2 OR 1.44. IDEHARD/FLOPPY, 2 SERIAL, PAR/GAMESCARD, 256 VGA GRAPHICCARD, DESKTOP CASE + 200W POWER SUPPLY, 102-KE Y KEYBOARD
All systems come with FREE 12 -month on-site maintenance FOR SYSTEM \& COMPONENT PRICES WRITE, PHONE OR FAX FOR A FREE CATALOGUE. ALL PRICES EXCLUDE 15\% VAT \& DELIVERY.

COMPUTERICS

80C31 MICRO ．． 12
BBC MICRO PART
VIDEO ULA 201647 ．．
6845 CRT
6845 CRT 201647
6845 CRT
6522 PIA
DM88LS120
AY3－1015D UART
USED 41256－15 \qquad
$9 \times 41256-15$ SIMM
8×4164 SIP MODULE NEW
HD 146818 CLOCK IC
2864 EPROM
27128A 250ns EPROM USED ．．£2 NEW
27C1001－20Z NEW 1M EPROM
FLOPPY DISC CONTROLLER CHIPS 1771 ．．．．．．．．．．．．$£ 10$ ea
68000－8 PROCESSOR NEW
．．．． 85
ALL USED EPROMS ERASED AND BLANK CHECKED
CANBE PROGRAMMED IF DESIRED
2716－45 USED
$£ 2100 £ 1$
$£ 2100 £ 1$
2732－45 USED ．． 100 100 £1．60
27C256－30 USED
．．．．．．．．．．．．．．．£2
27C512 USED
1702 EPROM EXEQPT 70 p
． $\mathrm{E2}$
． $\mathrm{\varepsilon} 3$
6264－15 8k STATIC RAM
EXEQPT

REGULATORS

LM317T PLASTIC TO220 variable
LM317 METAL
7812 METAL 12 V IA
805／12 15／24V plastic …．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．L1 $100+20 \mathrm{p} 1000+15 p$ $7905 / 12$ 15／24 plastic ．．．．．．．．．．．．．25p 100＋20p 1000＋15p
CA3085 TO99 variable reg ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2 £1
CA3085 TO99 variable reg
LM338 5A VARIABLE ．．． 88

CRYSTAL OSCILLATOR

CRYSTALS
$2.77 \mathrm{MHz}, 4.00 \mathrm{MHz}, 4.9152 \mathrm{MHz}, 20 \mathrm{MHz}, 49.504 \mathrm{MHz}, 8 \mathrm{M}$ ． 16.588 M

TRANSISTORS

BC107 BCY70 PREFORMED LEADS BC557．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．£1 £4／100 £30 1000

POWER TRANSISTORS

P POWER FET IRF9531 8A GOV
N POWER FE T IRF531 8A 60V ． ．．$£ 130$ £3．50／100

25C1520 sim BF259 ．． 2 2 $£ 1$ 100／ 22

TIP 141，2 £1 ea TIP 112 125／428 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2 £1 TIP35B TIP35C
SE9301 100V 1DA DARL SIM TIP121
2N3055 EX EOPT TESTED
§1．50 each

PLASTIC 3055 OR 2955 equiv 50 p

2N3773 NPN 25A 160 V \＆ 1.80 ．．．．．． ．．．．．．．．．． $100 £ 35$

QUARTZ HALOGEN LAMPS
A1／216 24V 150 WATTS \qquad ．．．． $\mathbf{\Sigma 2 . 2 5}$ H1 $2 V$ SOW（CAR SPOT） £1．50 14－WAY AMP ZIF SOCKET \qquad －2 1 TEXTOOL single in line 32 －way．Can be ganged（coupling
supplied）for use with any dual in line devices ．．．．．．． 2 £1．50 supplied）for use with any dual in line devices ．．．．．．． $2 £ 1.50$
28 －WAY TEXTOOL ZIF SOCKET EX NEW EQUIPMENT
40－WAY TEXTOOL ZIF SOCKET

CAPACITORS COMPUTER GRADE

$2200 \mu \mathrm{~F} 160 \mathrm{~V}$ SIC SAFCO FELSIC CO38 ．．．．．．．．．．$£ 4$（ $£ 1.20$ ） $24.000 \mu \mathrm{~F} 50 \mathrm{~V}$ £3（£1．30） $10.000 \mu \mathrm{~F}$ 100V SPRAGUE $36 \mathrm{D} . ~ £ 10$（£1）
TOROID $350 \mathrm{VA} 35 \mathrm{~V}+35 \mathrm{~V}$ AND $15 \mathrm{~V}+15 \mathrm{~V} 24 \mathrm{VA} \mathrm{£} 12$

MISCELLANEOUS

LEMAG EARTH LEAKAGE TRIP 35A 35mA TRIP C．．．．．．． $\mathrm{C9}$ FANS 240 V 120MM ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 6$（
（OTHER VOLTAGES／SIZES USUALLY AVAILABLE） （OTHER VOLTAGES／SIZES USUALLY A
AMERICAN 2＇3 PIN CHASSIS SOCKET AMERICAN 2 PIN CHASSIS SOCK
HUMIDITY SWITCH ADJUSTABLE ． BLE） HUMIDITY SWITCH ADJUSTABL …．．．．．．．． 2 £2 NEW ULTRASONIC TRANSDUCERS 32 kHz 30 ع1 12－CORE CABLE $7 / 0.2 \mathrm{~mm}$ OVERALL SCREEN
POWERFUL SMAL CYLINORICAL MAGNETS 70p／metre
P P AMP LM IOCLN NU 50OHM SCREENED CHASSIS SOCKET SMALL MICROWAVE DIODES AEI OC1026A．．．．．．．．．．．．．．．．．．．．．．．．

D．I．L．SWITCHES 10－WAY \＆1 8－WAY 80p 4 5／6－WAY 80p PLASTIC EQUIPMENT CASE $9 \times 6 \times 125$ WITH FRONT AND REAR PANELS CONTAINING PCB WITH EPROM 2764－30 AND ICS 7417 IS30 LS32 LS367 7805 REG WAY D PLUG．PUSH BUTTON SWITCH，DIN SOCKE T
VN 10LM 60V 1／2A 5 Onm TO－92 mosfet ．．．．．．．．．．．．．．．．．．．．． 41.90 MIN GLASS NEONS ．．．10，\＆1 RELAY SV 2－pole changeover looks like RS 355－741 marked STC 47WBost ．．．£1 ea MINIATURE CO－AX FREE PLUG RS 456－071 ．．．．．．．．．．． 2 £1 MINIATURE CO－AX FREE SKT RS 456－273 ．．．．．．．．． 2 £1． 50 DIL REED RELAY 2 POLE nO CONTACTS ．．．．．．．．．．．．．．．．£ $£$ PCB WITH 2N2646 UNIJUNCTION WITH 12V 4－POLE 400 m 0.5 W thick film resistors（yes tour hundred megohms） STRAIN GAUGES 40 ohm Foil type polyester backed balco grid alloy ．．．£1．50 ea 10＋£1 Linear Hall effect IC Micro Switch no 613 SS4 sim RS 304 ． 267 ．． $\mathbf{\Sigma 2 . 5 0} 100+\mathbf{~} 1.50$ OSCILIOSCOPE PROBE SWITCHED $\times 1 \times 10 \quad$ £ 12 CHEAP PHONO PLUGS ．．．．．．．．．．．．．．．．．．．．．．．．． 50 £2 1000，£10 1 pole 12－way rotary switch ．．．4／§1 555 TIMERS £1 741 OP AMP ．．． 6 ea ZN414 AM RAIDO CHIP ．． 4 COAX BACK TO BACK JOINERS ．． 4 £1
 1．25＂PANEL FUSEHOLDERS ．．． 3 £ 1 CHROMED STEEL HINGES 14.5×1 OPEN ．．．．．． \＆1 each STEREOCASSETTE HEAD ．． MONO CASS．HEAD \＆1 ERASE HEAD ．．．．．．．．．．．．．．．．．．．．50p
 TRANSISTOR MOUNTING PADS TO－5，TO－18 ．．．£3 1000 TO－3 TRANSISTOR COVERS ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $10, £ 1$ PCB PINS FIT 0．1 ${ }^{1}$ VERO ．．． 200 £1 TO－220 micas＋bushes ．．10／50p $100 \mathrm{£2}$ TO－3 micas＋bushes ．．． 10 m 1
Large heat shrink sleeving pack
…．．．．．． $\mathrm{C2}$

Potentımeters short spindies values 2 k 5 10k 25 k 1 m 2 m 5 lin_{500}
500 k lin $500 \mathrm{k} \log$ ．． 4 DAT
DIODES AND RECTIFIERS
1N4004 SD4 1A 300 V ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．100／ع1．50
IN5401 3A 100 V ．．． 100 さ 3
SA158 1A 400V last reco．．［1
BA 59 1A 1000 V fast recovery ．． 100 L £
BY127 1200V 1．2A ．．10／£1
BY254 800V 3A．．．．
BY255 1300V 3A． ．8を1
GA 100V SIMILAR MR751 ．．． 6 £1
1A 600V BRIDGE RECTIFIER ．．． $\mathbf{4} 1$
4 A 100V BRIDGE
6A 100V BRIDGE \qquad ．． 3 E 1
2 Cl
8A 200V BRIDGE ．． 2 2 1.35
10A 200V BRIDGE ．．£1．50

25A 200V BRIDGE £2 ．．10／£18

SCRS

PULSE TRANSFORMERS $1: 1+1$ ．．．．．．．．．．．．．．．．．．．．．．．．．．．．£1．25
2P4M EQUIV C106D ．． 3 £1

TRIACS

DIACS 4／£1
BT137－800 8A TO－220 ．．． 2 £1
NEC TRIAC ACO8F 8A 600V TO220 ．．．．．．．．．．．5，£2 100／£30
TXAL225 8A 500V 5mA GATE ．．．．．．．．．．．．．．．．．．2「1 100 £ 35
TRAL2230D 30A 400V ISOLATED STUD ．．．．．．．．．．．£4 each
CONNECTORS
D25 IDC SOCKET FUJITSU
34－way card edge IDCCONNECTOR（disk drive type）
． 52

CENTRONICS 36 WAY IDC PLUG ．．．$£ 2.50$
$£ 1.25$
BEC TO CENTRONICS PRINTEA LEAD 1.5 M ．．．．．．．．£
BBC TO CENTRONICS PRINTER LEAD 1．5M
USED CENTRONICS 36W PLUG＋SKT

USED D CONNECTORS price per pair
D9 60p．D15 £1．50．D25 £2，D37 £2，D50 £3．50，covers 50p ea

WIRE WOUND RESISTORS

W21 or sim 2．5W 10 of one value ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．£1 R100R15 0R21 2R0 4R7 5R0 5R6 8R2 10R 12R 15R 18R 20R 22R 27R 33R 47R 56R 62R $91 R$ I20R 180R 390R 430R 470R 680R 820R 910R 1K15 1K2 1K5 1K8 2K4 2K7 3К3 3K0 5K0
R05（50 milli－ohm）1\％3W
4 for E 1
w22（50 millh－ohm）1\％3W ．．．．．．．．．．£1
R47 R52 1R0 1R5 1R8 3R3 6R8 9R1 12R 20R 24R 27R 33R 51R 56R 62R 68R 100R 120R 180R 220R 390R 560 R 620R 910R IKO IK2 1K5 1K8 2K2 2K7 3K3 3K9 4K7 8K2 10K 15K 16K 20 K
W23 or sim $9 W 6$ ot one value
R22 R47 1 R 0 1R1 56R 62R 100R 120 R 180R 220 R 300 \＆ 390R 680R 1 KO 1 K5 5 K1 10 K
W24 or sim 12W 4 OF ONE VALUE
\＆1

R50 2R0 9R1 18R 22R 27R 56R 66R 75R 62R 100R 150 ．．．．．．．．．．．．．．．．．．． 180R 200R 220R 270R 400R 620R 1 KO 6K8 8K2 10K 15 K

PHOTO DEVICES

HI BRIGHTNESS LEDS CQX24 RED ．．．．．．．．．．．．．．．．．．．．．．．．．． 5 £1 SLOTTED OPTO－SWITCH OPCOA OPB815 ．．．．．．．．．．．． 11.30 2N5777 ．．50p TIL38 INFRA RED LED TH38 INFRAREDLED ISOL．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． PHOTO I2252 50P
MEL12（PHOTO DARLINGTON BASE nc）．．．．．．．．．．．．．．．． 50
LED＇s RED 3 or 5 mm 12 s 1 NASE nc）．．．．．．．．．．．．．．．．． 100 p
LED＇s GREEN OR YELLOW $10 £ 1$ ．．．．．．．．．．．．．．．．．．．．．．．．． 100 £
LED＇s ASSORTED RD GN YW＋INFRARED ．．．．．． 200 £5
FLASHING RED OR GREEN LED 5mm 50p ．．．．．．．． 100 £40
STC NTC BEAD THERMISTORS
G22 220R，G13 1K，G23 2K．G24 20K．G54 50K．G25 200K，RES $20^{\circ} \mathrm{C}$ DIRECTLY HE ATED TYPE ．．．．．．．．．．．$£ 1$ ea FS22BW NTC BEAD INSIDE END OF ${ }^{\prime \prime}$ GLASS PROBE RES 20 C 200R ．．． 11 e A 13 DIRECTLY HEATED BEAD THERMISTOR 1 k res． ideal for audıo Wien ．．£2 ea
CERMET MULTI TURN PRESETS $3 / 4^{\prime \prime}$
10R 20R 100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50 K 100 K 200 K 500 K 2 M ．
IC SOCKETS
6 pin $15 £ 18$ pun $12 £ 11416$ pin $10 £ 118 ' 20$ pın $7 £ 1$ 22／24／28 pin 4 £1 40 30p
SOLID STATE RELAYS
40A 250V AC SOLID STATE RELAYS \qquad £10
POLYESTER／POLYCARB CAPS

MINIATURE RELAYS Suitable for RF

$\begin{aligned} & 5 \mathrm{vo} \\ & 12 \mathrm{v} \end{aligned}$

MONOLITHIC CERAMIC

CAPACITORS
 100 n 50 V 2.5 mm or 5 mm ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．100／£6 100n ax short leads ．．．100／£3 100 n 50 V dil package 0．3＂rad ．． 100 ＇ 8

STEPPER MOTORS

2 CENTRE－TAPPED 9 VOLT WINDINGS 7.5 STEPS $£ 4$ BULK ITEMS
7912 REG 10.000 （a 12p 1000＋
CNY17－1 apto 4，000（a 12p 1000＋
PMI PKD01－FY 150 （a $\mathbf{~ c} 3.50$

KEYTRONICS
TEL．0279－505543
FAX．0279－757656
P O Box 634 BISHOPS STORTFORD HERTFORDSHIRE CM23 2RX

MAIL ORDER ONLY
MIN．CASH ORDER E3．00．OFFICIAL ORDERS WELCOME UNIVERSITIES／COLLEGES SCHOOLS＇GOVT．DEPARTMENTS

MIN．ACCOUNT ORDER $£ 10.00$
P\＆P AS SHOWN IN BRACKETS（HEAVY）ITEMS 65p OTHERWISE（LIGHT）ITEMS
ADD 15\％VAT TO TOTAL
ELECTRONIC COMPONENTS BOUGHT FOR CASH

ACTIVE

Discrete active devices

700 MHz building block. Monolithic OPA660 is a voltage-controlled current source and voltage buffer Buffer stage has a 700 MHz bandwidth, $3 \mathrm{kV} / \mu \mathrm{s}$ slew rate and rise time of 1.5 ns for 5 V step. Uses include signal-processing stages in video systems, radar,
communications and high-speed data acquisition. Burr-Brown International Ltd. 092333837

BJ transistor model. Bipolar junction transistor soltware model can simulate small and large signal performance of microwave silicon devices as well as presenting biasdependent s-parameters for linear simulation at any arbitrary bias point. EEsof 49810524005

Mosfet relays. Opto-coupled mosfet relays have bounce-free switching and provide up to 2.5 kV isolation. Standard six-pin DIL package; less than 0.5 g . It can switch up to 400 V at currents to 1 A . $A C$ and $D C$ versions. Switching times are down to $18 \mu \mathrm{~s}$ and input sensitivities up to 4 mW . NEC Electronics (UK) Lid, 0908691133.

Microwave transistors. Semelab is starting to make microwave transistors and full production is planned for later this year for the previous Acrian style devices and newly developed 2 GHz mosfet range. Semelab Ltd, 0455554711

IGBTs. Saturation voltage is typically 2.2 V and current range is 15 to 400 A . 600 and 1200 V versions. A high
shor-circuit capability, latch-up free improves ruggedness. 600 V units have a last recovery diode to improve turn-on losses and reduce RFI problems (available on 1200 V units later this year). Toshiba Electronics (UK) Ltd, 0276694600

Automotive mosfets. The 2SK943 mosfet for the automotive market is a 60 V 25 A device with a typical onresistance of 46 ms in an isolated TO220 package. Logic level compatible gate drive makes it suitable for direct interface to cmos and TTL logic circuits. Toshiba Electronics (UK) Ltd, 0276694600.

Mosfet. N-channel dmosfet has a power rating of 360 mW when mounted on a substrate 10×8 by 6 mm . The SOT23 BSS 123 cevice has a drain-source breakdown of 100 V with typical on-resistance of 5Ω Maximum pulsed drain current is 0.68 A . At 1 mA drain current, gate source threshold voltage is 2.2 V . At 25 V and 100 mA , transconductance is 120 mS . Zetex plc, $061-627<963$.

Linear integrated

 circuitsMotor driver. A 5 V voice-call motor driver IC with sense-fet outputs, the A8932CLB mixed signal IC is for positioning read and write heads in hard disk drives for laptop computers It also integrates a full-bricge current amplifier onto a single chip. Allegro MicroSystems, 0932253355.

Communications IC. Frequencies of Fujitsu Super-PLL communication ICs start from less than 0.5 GHz for cellular radio up to 2.5 GHz for digital TV. Power consumption is 10 mA They can operate from 2.7 to 5.5 V supplies at -40 to $+85^{\circ} \mathrm{C}$. Hawke Components Ltd, 0256880800.

Operational amplifier. Micropower op amp needs $1.2 \mu \mathrm{~A}$ maximum supply current and operates from single suppties ranging from 2 to 10 V . or from dual supplies of up to +5 V The output of the Maxim MAX406 can source 2 mA when powered from 9 V Eight-pin devices in plastic DIPs SO and CERDIP packages. Kudos Thame, 0734351010

Telephone IC. TEA 1085 works in line-powered sets, with a loudspeaker in the base as well as handset, to et several people listen to a conversation. 40 mW into a 50 s speaker in BTL or 20 mW in SE configuration. Loudspeaker amplifier with fixed 35 dB gain. Philips Components, +3140724173

Microprocessors and controllers

VGA display controller. VGA display controller improves Windows and Presentation Manager performance on 386 and 486 PCs and workstations. The 77C22E chip provides 16 -bit operation in all display modes and interfaces to AT, eisa and Microchannel systems. NCR Microelectronics Europe, 004989 632202.

Optical devices

FDDI chip set AMD is sampling an integrated circuit chip set for fibre distributed data interface (FDDI) lans The Supernet 2 chip set allows implementation of a complete FDD। station on an AT half-card or similar sized board. It supports $400 \mathrm{Mbit} / \mathrm{s}$ memory bandwidth. Drives fibre or copper. Advanced Micro Devices, 0483740440

Optical-fibre system. Toslink fibre optic system from Norbain can transmit signals at distances up to

FASTCache-SX accelerator card by MicroWay gives 32-bit performance to 16-bit 286 FCs

10 km . It is suitable for PCB mounting and simplex or duplex connectors. Applications include NC machines and transmitting data between factory machines. Norbain Technology, 0734 864411

Laser diodes. Optilas range has source sizes of $100 \times 1 \mu \mathrm{~m}, 200 \times$ $1 \mu \mathrm{~m}, 1 \mathrm{~cm} \times 1 \mu \mathrm{~m}$, and $0.1 \times 75 \mu \mathrm{~m}$. LDT26000 has output powers from 25mW to 1 W at 790 to 812 nm CW5 100 units are monolithic arrays with up to 10 W continuous output power. LCW100 and 200 have wavelengths from 800 to 870 nm and oulput powers from 250 to 500 mW Optilas, 0908221123

Photo sensors. TLP820 has a 5 mm detection gap, a 50 mA direct forward current and 35 V current emitter voltage. The 860 needs 1 mA maximum for led forward current. 1200 is for use as a general purpose photo interrupler with a connector and the 1224 is for use in 24 V systems and is rated to $95^{\circ} \mathrm{C}$. Toshiba Electronics, 0276694600

Programmable logic

 arraysGate arrays. CG31 units are sea-of gate devices with 130,000 to 200,000 gates. They are made in $8 \mu \mathrm{~m}$ lechnology and three versions 129,540 basic cells and 300 signa I/Os; 160,930 basic cells and 332 signal I/Os; and 201,188 basic cells and 332 signal I/Os. 70% of the basic cells are typically available to the user. Gate delay is 370 ps . Fujitsu Microelectronics Lid, 062876100.

ECL gate arrays. ECL gate arrays with an internal tlip-flop frequency of up to 4 GHz have a clock frequency of more than 1 GHz and a gate switching time of 75 to 160 ps . Internal logic of the ICs consists of basic cells that include a master and slave circuit. Fujitsu Microelectronics Lid, 0628 76100

GaAs gate arrays. Fury MB5xxx GaAs gate array units have inputs that can work with ECL. TTL and GaAs signal levels. Gate delay time is 70ps, gate power consumption 1.1 mW , and input signal frequencies are up to 1 GHz . Fujitsu Microelectronics Lid, 062876100.

Motor drive IC. LMD18200 IC can drive up to 0.25 hp DC motors; two can drive a high power stepper motor circuit. It contains four power mosfets, four fast power diodes and can drive lour large capacitive load mosfets at high speed (two being highside switches). It also provides low loss current sensing, shorted load protection and thermal shutdown and warning. STC Electronic Services, 0279626777

PASSIVE

Passive components

Resistors. A range of high precision resistors for up to 40 kV or 1000 Ms applications have resistance tolerances from $\pm 10 \%$. Epoxy coated to minimise flashover and breakdown problems. Power dissipation is 0.8 to 3 W at $20^{\circ} \mathrm{C}$. Temperature coefficient is $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from -55 to $+125^{\circ} \mathrm{C}$ Menvier Hybrids Lid, 0295256363

Capacitors. ZA series have a leakage current of 0.004 CV or $0.2 \mu \mathrm{~A}$. They are for measuring instruments and audio devices where low noise is required and operate from 6.3 to 100 V at capacitances from 0.47 to $47 \mu \mathrm{~F}$, tolerance $\pm 20 \%$ at 120 Hz , $20^{\circ} \mathrm{C}$. Operation is rated between $40^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$. Radial packages. Nichicon (Europe) Ltd, 0276695393.

Ceramic capacitors. Threaded bushing units have working voltages of $100,200,250$ and 500 V DC covering capacitances of 75 to $10,000 \mathrm{pF}$. Solder mount types go from 100 to 300 V and 47 to 6000 pF Discoidal units are rated at 500 V and 33 to 1000 pF . STC Mercator, 0493 844911.

Connectors and cabling Five way/42 way din style

connector. Erni GmbH's special size, DIN 41612 style connector has raised mounting flanges, enabling it to fit between two standard length DIN 41612 connectors on a double Eurocard in existing mounting holes. Two versions: one for use with up to 42 signal contacts rated at 4A; the second will accept up to five high current 40A contacts, or a similar number of coaxial or fibre optic contacts. Radiatron Components Ltd, 0818911221.

Wire to board. NR series low protile wire-to-board connectors insulation displacement products have a height above board of 13.1 mm . Height for crimp types (XH series) is 9.8 mm . Both have a 2.5 mm pitch and use the same base post assemblies available in top or side entry forms. Contact resistance is initially $10 \mathrm{M} \Omega$, rising to $20 \mathrm{M} \Omega$ after environmental cycling. XH 3A, can be supplied with up to 20 poles; NR, 2A, up to 13 poles. 250 V $A C / D C$ with an insulation resistance of at least 1000 MS . Takbro Ltd, 0444 245601.

High current terminal block. 30A, 500 V terminal block 8375 is designed to accept $4 \mathrm{~mm}^{2}$ cable. It has a double square profile solder pin, offering greater mechanical support than conventional units. The solder pin is copper/tin plated. Enclosed housing interlock gives 7.5 mm pitch. Wieland Electric Ltd, 048331213.

Tek FiberMaster is the only OTDR to accommodate two dual-wavelength optical plug-ins at the same time

Displays

Led display array. Gunstar array has 16,384 leds in an area $42.3 \times 42.3 \mathrm{~mm}$ in a 66×60 by 6.7 mm package. Each diode is a pixel which can independently present any alphabetic, numeric or graphic display required. MIL883 requirements. Two ceramic substrates mounted on top of each other are contained in a hermetically sealed metal package with a transparent lid. Contraves Circuit Technology, 0908222466.

Instrumentation

Cable detector. Intek TEK600 handheld detector has automatic adjustment of sensitivity and will detect dead or live cables through various materials including foil-backed plasterboard. 9 V battery. $50 \times 64 \times$ 30 mm . Detection depths are 12 to 25 mm for twin and earthed cables and 6 mm for telecomm/computer cables. Alpha Electronics, 0942 873434. Alpha Electronics 0942 873434

Battery oscilloscope. Hitachi's V209 portable. miniature and battery powered oscilloscope comes with $\times 1$ and $\times 10$ probes and has a screen area of 8 by 10 divisions. Vertical deflection factor ranges in ten calibrated steps from 1 mV to 5 V per division. Horizontal sweep times are $0.5 \mu \mathrm{~s}$ to 0.2 s in 18 steps. Feedback T\&M, 0892653322

Function generators. Thandar TG2000 units have 0.002 Hz to 20 MHz frequency ranges in eight overlapping decade ranges with adjustments via coarse and fine verniers. They also offer sine, square and triangle waveforms as well as TTL outputs. Feedback T\&M, 0892 653322.

Digital storage oscilloscopes. 4060 family of DSOs, two ard four channel versions, has 400 meg asamples/s sampling, 8 -bit vertical resolution, 150 MHz bandwidth, 16 non-volatile memories for waveform storage, onscreen signal measurement and analysis functions, and internal hardcopy capabilities. Gould Electronics Ltd, 081-500 1000.

Digital multimeters. The 175A 4.5 digit autoranging instrument has $10 \mu \mathrm{~V}$ $D C$ and TRMS AC sensitivity, resistance measurement down to $10 \mathrm{~ms}, \mathrm{DC}$ and TRMS AC current resolution from 10 nA , and a dB function with internal reference to 600Ω over a 100 kHz bandwidth. 197A is a 5.5 digit version with resolutions of $1 \mu \mathrm{~V}, 1 \mathrm{~ms}$ and 1 nA . Keithley Instruments Ltd, 0734575666.

Digital multimeter. Full rack capability in half rack size is a teature of the SI7063. The 6.5 digit unit includes pulse width conversion techniques to provide continuous averaging and linearity on 20 measurement functions at up to 1000 readings/s with no intervals between measurements and no polarity reversal errors. PPM Instrumentation Ltd, 0483301333.

OTDR. Two dual-wavelength optical plug-in modules can be accommodated in the FiberMaster optical time domain reflectometer giving flexibility of high resolution and long-range performance in single and multimode applications. Driven by Motorola 68020 32-bit technology. Tektronix UK Ltd, 0628486000.

Real-time oscilloscope. Hitachi VC6024 'scope combines real time and digital storage. 20Msample/s, real-time bandwidth is 50 MHz . In
digital storage mode it can capture repetitive events up to 50 MHz and single-shot events to 5 MHz . Memory length of 2000 words on each channel. Thurlby-Thandar Ltd 0480 412451.

Scope and monitor. 5851V vectorscope and the 5861 V waveform monitor are half-rack instruments. The vectorscope displays relative amplitude and phase of chrominance components with an accuracy of $\pm 2 \%$. The monitor measures signal amplitude, timing and frequency response. Thurlby-Thandar Ltd, 0480 412451.

DMM scanner. An eight channel scanner for BCT's PC-based digital multimeter combines Vip board and software to support eight intelligent multimeters linked to a PC. It functions as an intelligent DMM using PC graphics software, mouse and plug-in card, and can measure voltage. current, resistance, decibels and capacitance. Measurements can be stored. Scanner allows selection of a different function and range for each channel. Four scanners can be linked. £175. Blue Chip Technology, 0244 520222.

Harmonics module. The harmonics expansion module for Vip system 3 gives a solution to harmonics measurement, with the module providing simultaneous three-phase monitoring of current and voltage allowing printed and displayed information up to the 25th harmonic. Vip system 3 is contigured for harmonics analysis by inserting a plug-in expansion module into the slot at the rear of the instrument. The instrument includes an oscilloscope like waveform display. Elcomponent Ltd, 0279503173.

Measuring amplifier. MGC
measuring amplifier combines analogue and digital technologies. A patented A-to-D conversion technique ensures the analogue signal is digitised without losing information by gate-array technology. Functions include filtering, taring, and balancing of the mean point signal. It is designed to accommodate plug-in units, those available being intended for direct-voltage signals and thermocouples, strain gauge transducers and inductive transducers. Hottinger Baldwin Messtechnik, 0869321321.

Interfaces

Transducer interface. Oasis interface connects a microcomputer RS232 port to analogue signals from transducers such as load cells, strain gauges, LVDT, PH probes and oxygen probes. Input impedance is 10 or $1000 \mathrm{G} \Omega 2$ with switch selectable gain of $1,10,100$ or 1000 . 3D Digital Design and Development Ltd, 081. 8863668.

Lan interface circuit. MB86951 encoder/decoder is a serial interface cmos device for PC-based Ethernet systems. MBL8392A coaxial transceiver interface IC transceiver device is for Ethernet lan applications The MB86954 microchannel interface unit. Fujitsu Microelectronics, 0628 76100.

Multimedia interface. Rave (realtime audio and video environment) multimedia development environment and user interface for the IBM-PC is for industrial uses such as process control and instrumentation. It runs on top of the OS-9000 operating system. Microware Systems (UK) Ltd, 0489 886699.

Production test equipment

Wafer inspection. Nidek IM-7 inspects etched wafers during photolithographic processing. Its fused quartz contact surface gives pin-point accuracy of movement. Stabilised auto-focus eradicates tocusing problems, even with dark or bright visual fields and highly absorbent or reflecting surfaces. Wafer exchange time is 2.5 s/water. Manual positioning by integral joystick. Dage (GB) Lid, 0296393200.

Board testing. BoardMaster TSA ofters an open architecture test strategy for in-circuit, functional and combinational testing up to data rates of 50 MHz and offers manufacturing defect analysis, analogue/digital incircuit, emulation, simulation, combinational and functional testing. It links to all protessional simulator target systems. Rohde \& Schwarz UK Ltd, 0252811377

Digital IC tester. Designed around a 280A 8-bit microprocessor, the ABI digital tester system features dedicated LSI ICs to control keyboard and display, and handle information input/output from the device under test. It can cater for clocked devices such as flip-flops, latches, counters, and shift-registers, tri-state or open collector devices, memories, and interfacing including line drivers, receivers, and opto-isolators. STC Instrument Services, 0279641641.

Appliance tester. Seaward PAT 1000 portable unit can be used for earth continuity testing: insulation testing to 500 V DC: flash testing selectable between 1.5 kV Class I and $3 k V$ Class II; a supply voltage load test with a current limit; operation test from 0 to 3.2 kVA at supply voltage; and leakage test. A memory permits recording of up to 400 sets of tests. STC Instrument Services, 0279 641641.

Power supplies

Switching 40W. Power General Flu3 40 series of universal input, triple output, 40W switching power supplies
is available in six models with outpu combinations of $5,12,15$ and 24 V DC. UL, CSA, IEC and VDE approved. Input range is 8510265 V AC, 100 to 370 V DC. On-board input line filter exceeds VDE/FCC class B requirements by about 15dB. Dowly Power Electronics, 0722413060.

DC/DC converters. DB DC/DC

converters, with short-circuit protection facility and automatic reset have three input voltage ranges - 10 to $16 \mathrm{~V}, 17$ to 34 V and 35 to 70 V These 50W open-frame primary switched regulators offer up to three solated output lines in combinations of 5, 12, 15 and 24 V . Schroff UK Ltd, 044240471

Power supply controller. Kikusui's unit simplifies the making of automatic DC power supply systems, either via GPIB or sequential control. In GPIB mode it interfaces between host computer and power supply. Two channels; two supplies can be controlled. Setting resolution is 12bit for each output. Telonic Instruments 0734786911

High-current supply. Kenwood PD18-10 is a $0-18 \mathrm{~V}$ and $0-10 \mathrm{~A}$ unit with dual analogue or digital meters and a three-terminal floating output. Voltage setting is via a ten-turn potentiometer. Preset output voltage can be switched. Ripple and noise between 10 Hz and 1 MHz are within 0.5 mVRMS . Thurlby-Thandar Lid,0480 412451.

Computer power supplies.

Computer Products power supplies include linear, switched mode. Euromodular, and bench adjustable units as well as DC-DC and AC-DC converters. Most have approval to UL CSA, VDE, ISO9001 and IEC950 standards. Verospeed, 0703641111.

Radio communications

 productsNetwork analyser. A standing-wave atio bridge makes this device suitable for simultaneous
measurement of transmission and reflection characteristics of components for mobile communications systems. R3763A covers the range from 300 kHz and has a sweep time of 0.5 ms per point. Advantest UK Ltd, 081-336 1606.

Radio ID system. ID2 measures $42 \times$ 32 mm and works by sending a two digit ANI signal at the end of each over. It is programmed by splash pads for any of 256 identities and has only five connections to the radio, taking minutes to install.
Communication Developmen
Specialists Ltd, 025683528.
Single unit tester. Marconi 2955R radiocommunications test set has all functions for transceiver testing in a single unit. It can test AM, FM and PM
mobile radio equipment to 1000 MHz including low power hand portables using selective calling, full duplex radio telephones, digital pocket pagers, base station and repeater equipment. IR Group, 0753 580000 . IR Group 0753580000

Power supplies

-48 V to +5 V DC-DC converter. Max650 produces a regulated +5 V 250 mA output from -48 V . All control functions and a $140 \mathrm{~V}, 250 \mathrm{~mA}$ pnp transistor are on chip. It incorporates a shutdown function to permit output to be disabled under logic control. Soft start reduces initial current levels and permits sate start-up at full load without overshoot. Maxim Integrated Products, 0734845255

Lower cost. AEC series low cost unregulated power supplies have A.C inputs of 110,220 and 240 V . frequencies of 47.440 Hz . Load regulation is 20% or 3 V whichever is greater for a 10-100\% load change and output ripple and noise 1 V RMS Operating temperature is $0-70 \%$ with $2.5 \%{ }^{\circ} \mathrm{C}$ derating above $50^{\circ} \mathrm{C}$. Isolation 4 kV . Ten units can be connected in series or parallel. XP plc, 0734845515

Programmers

Software upgrade. Intel Flash parts can be handled on Stratos PC-based eprom programmers using a software upgrade in the form of a floppy disc. It extends to lull E2 support in 24, 28 and 32 pin packages. Stag Microsystems Ltd, $0707332148 . S t a g$ Microsystems 0707332148

Transducers and
 sensors

Transducers. Isotran transducers are for measuring AC electrical variables such as current, voltage, power and VARs. Accuracy is typically 0.2% of full scale. There are two case sizes, either 55 or 150 mm wide DIN rail or panel mounted. Isolation is 4 kV on input to input and input to output. Glade Instruments Ltd, 0785662685.

Alarm thermometers. Therma D4C/R panel alarm thermometers are general purpose mains (240 or 110V) operated units. They are a digital indicator with an on/off high or low alarm/switch rated for 8 A loads. Led display indicates set point or the temperature, with set point adjustable from front panel. -50 to $+1150^{\circ} \mathrm{C}$ with $1^{\circ} \mathrm{C}$ resolution, repeatability and accuracy. Probes from $£ 10.00$. ETI, 0903202151.

Single-axis brushless servo. PS7X is supplied ready-to-run, containing an all-digital indexer/drive unit with built-in power supply, brushless motor with integral encoder, and 10 ft interconnection cables. The notor can handle peak torques of up to four times its continuous rating and has a top speed of 7500 rpm . Molors are
proprietary two-phase brushless designs using rare-earth magnets to create the high air gap flux density needed for optimum torque and efficiency. Parker Digiplan Lid, 0202 690911.

Displacement transducers. D5-W miniature displacement transducers, developed for submersion in liquids or gases, are hermetically sealed using electron-beam welding of the stainless steel housing. Specially designed cable attachments will withstand pressures of 2000 psi. Measurements from ± 1 to $\pm 5 \mathrm{~mm}$. RDP Electronics Lid, 0902457512

Vision systems

Image processor. Imaging system provides digital storage, real-time processing and playback of video sequences for industrial and security CCTV systems. It uses transputer technology and captures images from pal standard signals, then examines them for specific features such as moving objects or characteristic shapes. It stores the images in four 512 by 5128 -bit memories for further processing. Akebia 081-546 4908

COMPUTER

Computer-aided design Cad program modules.. Release 1.03 of the HEPA series of cad program modules is for switching RF power amplifiers and linear amplifiers driven into gain saturation. They evaluate performance from RF power transistors and design, simulate and optimise the power amplifier circuit. Claimed to be faster than Spice by a factor of 1000. Design Automation Inc, 6178628998

Computer board level products

Grabber board. Analogic FG/ALU-8 video frame grabber board for the PC/AT is capable of real-time 8 -bit ALU processing and uses a menudriven dedicated software package called Imagine. It has RS170, RS330, NTSC, pal and CCIR compatibility. Consort Electronics, 0252871717.

Digital signal processor

DSP module. SPT 156 measures $9 \times$ 11 cm and is built to the Inmos Tram format. Its dual processing design combines the 10 Mips power of the T400 or T805 transputer with the DSP capability of Motorola's DSP56001 processor. 1 or 4 Mbyte of dram as system memory and 96 Kbyte of fastsram. Sunnyside Systems Lid, 0506460345.

Image capture card. Entry level multimedia card MicroEye IC can capture a video image and

NEW PRODUCTS CLASSIFIED

incorporate it into a PC graphics display. It has been enhanced to accept single field video images from video recorders which eliminate the flicker experienced when capturing pictures from a moving video source Digithurst, 0763242955.

Solid state disc. PC form-factor plug in cards perform all the functions of conventional floppy or hard disks with access times 50 times faster than a hard disk. For use where a PC is used for fixed tasks such as machine control and monitoring, they can also let networked PCs boot without a floppy disk. Fairchild Lid, 042121 6527.

Single-board computer. XP 286 and 386 single-board computers are software compatible with the PC and AT and have full VMEbus master/slave interface and system controller functions. They run at 16 or 20 MHz . Local system memory is either 512Kbyte or 2Mbyte dram expandable by daughter card to 4Mbyte. HTEC Lid, 0703
581555.HTEC 0703581555
performance. Based on a 16 MHz 80386SX microprocessor, it keeps hardware and software compatibility with existing 16 -bit systems and lets AT users run multitasking operating environments such as Unix 386. DESQview 386 and Windows 3. Microway (Europe) Lid, 081-541 5466.

Development boardi Cmos

microcomputer development board for the Mitsubishi M50747 works with a PC running a text editor, assembler and appropriate communications software. The board carries an M50747SP extendec microcomputer, 8 K byte of battery supported ram, 16 Kbyte of eprom, reset, crystal clock and RS232 transceiver in a 100 x 160 mm board. RCS Microsystems Ltd, 081-979 2204.

Computer systems

Rack-mount computer. PC825 rackmount computers can act as low-cost SBC stand-alone controllers or file servers and data acquisition and management computers. Features

Industrial workstation. 2900-RM is rack-mounting with an integral 19-in colour screen. Complex plant mimics or trend graphs can be displayed in up to 1024×768 Super-VGA resolution. It is based on the $386 S X$ or DX processor with IMbyte ram. one 3.5 -in floppy disk and 40Mbyte hard disk with 19 ms access time. Front and rear connectors for keyboard. $110 \mathrm{~V} / 60 \mathrm{~Hz}$ or $220 \mathrm{~V} / 50 \mathrm{~Hz}$. £5000. SD-Scicon UK Ltd, 061491 3683.

Development and evaluation

In-circuit emulators. IceMaster incircuit emulators replace the Microlce and Metalce units. The IceMaster is for 8051 and 68HC11 microcontroilers and has a windowed user-interface. PC XT/AT or PS2 compatible. Reflex Technology Ltd, 0494465907.

Software

PCB autorouter. Version 7.7 of the Vutrax PCB system includes full Unix compatibility under X-Windows, a gridless autorouter and schematic capture enhancements. Vuroute is a

Pocket Rocket from LSI Logic, an evaluation board for the LR33000

Evaluation board. An evaluation board for the LR33000 embedded processor, the Pocket Rocket, board measures $8.6 \times 15.7 \mathrm{~mm}$. It can be used in hardware and software evaluation as well as for prototype assistance. It contains 1 Mbyte of dram, 128 kbyte of eprom, two seria channels and a 96 pin expansion counter. LSI Logic Europe PLC, 089 9269030.

Plug-in accelerator. The
FASTCache-SX plug-in accelerator card from Microway enhances 16bit 286 IBM compatibles with 32 -bit
include ISA, eisa or MCA motherboards, eight-slot eisa or 4 to 15 slot ISA backplanes, and four device drivers all with shock mounts. Comcen Technology, 0792589988.

Industrial PC. 2902-FS industrial PC is for desktop use and has a 19 -in screen. It uses the intel 80386 and is drip proof and fan filtered in a rugged metal case. Disc drives and controls are protected by a locking cover. VGA graphics standards give up to 1024 by 768 super-VGA resolution with 16 colours. SD-Scicon UK Ltd, 061-491 3683.
above. Keithley Instruments Lid. 0734 575666

Autorouter. The Maxroute fully interactive shove router is available from Lloyd Doyle with a PADS interface. In routeing a board it looks for ideal paths that could be made available and then clears the room fo the new route at the location. Lloyd Doyle, 0932245000.

DSP toolset. InterTools 96002, for creating and debugging software applications for embedded Motorola DSP96002 processors, is a totally integrated C environment. It can implement advanced optimisations, in-line assembly and instruction coalescing techniques. Loughborough Sound Images, 0509231843

Development tool. Microtec has released an 88 K software development tool chain to produce and debug highly optimised code. It addresses the Motorola 88100 and consists of C compiler, C source level simulator and debugger and assembler. The C compiler is fully ANSI conformant and takes full advantage of the 88100 risc architecture. Microtec Research LId, 025657551.

Schematic capture for large PCBs. An enhanced version of schematic capture sottware Pads-Logic is particularly suitable for large PCB designs. Upgrades include hierarchical design capability, design orientated database, automatic gating and pinning, and support for a range of popular simulation and cad layout tools including P-Cad, Futurenet Cadstar, P-Spice and Susie. Library of 5000 electrical devices and parts. Lloyd Doyle Lid, 0932245000.

Data logging. Solar is a real-time PC based program for recording equipment signals. It has multitasking, fail safe power-down protection, password access control, graphical trend displays, help screen facilities, on-demand reports and data export. User-definable algorithms can be incorporated for calculating values prior to storage or display. Nano Computing Ltd, 060649937

Workshop management. Scantrax,

is designed to give control over administration of the repair workshop to minimise paperwork. It uses conventional keyboard and bar-code input to record receipt of repair items, job status, technicians time and materials used. Full traceability of spares used and repair item history is retained. Orac Information Systems Ltd, 0734772233.

Data acquisition software. For 386 and 486-based PCs Viewdac gives users access to features such as high processing speed, 32-bit addressing and multitasking. It uses a window environment and runs on Dos 3.0 or
gridess rip-up and retry autorouter with specific bus, routeing and optimisation phases for conventional and surface mount designs. Computamation Systems, 0525 378939.

Editorial survey: use the infomation card to evaluate this article. Item 0.

Exploiting the spectrum above 30 GHz

Despite R\&D effort and official encouragement from the Radiocommunication Agency of the DTI. praclical civilian utilisation of the radio spectrum between 30 and 60 GHz for communications and broadcast distribution in the UK seems destined to proceed relatively slowly.

An identified practical application, however, is to link mobile cellutar radio control centres and their base transceiver sites at 38 GH \% GEC-Plessey at Coventry are to imtroduce later this year short-range 38 GHz link equipment providing two $8 \mathrm{Mbit} / \mathrm{s}$ digital channels.

But the future of $40 \mathrm{GH} /$ hroadcast distribution systems (MVDS) seems less certain, with cable operators so far showing relatively little interest, despite field trials by BTRL (British Telecom Research Laboratories), IBA and industry.

Such at least appears to be the case
from information coming out of two IEE colloquia ("Radiocommunications in the range $30-60 \mathrm{GHz}$ " and "The National Radio Propagation Programme") and the 26th Appleton lecture given by Roger Byrne (ITC. formerly IBA).
The IBA work on MVDS has included field trials in both millimetre-wave bands and the upper part of the $11.7-12.5 \mathrm{GHz}$ broadcast band reserved primarily for DBS
The $40.5-42.5 \mathrm{GH} \%$ hand promises to be the harmonised frequency band for European MVDS: at 12 GHz it is now recognised that there would be insufficient spare spectrum to provide a 20 -channel MVDS system equivalent to modern broad band cable systems.
NTL (formerty IBA Engineering Division) is now concentrating on the possibilities for the 40 CHz band. The newly-
created ITC will issue "local delivery" licences to cable operators without specifying the lechnology, thus permitting cable or MVDS or a mixture of both to be used by franchise holders.

A working group has recently been formed by the Radiocommunications Agency of the DTI to assist the DTI, ITC. industiy and potential users in formulating broad plans for the use of MVDS at 40 GHz .

SE Pike and John Lothian (NTL) have poimted out that, despite limitations due to currenty available technology and attenuation by rain and atmospheric gases (oxygen vapour) it is possible to obtain a useful cell size of about 3.8 km . Using a monolithic low noise amplifier in the receiver would increase this 105.6 km and coverage would be achieved using a transmitler with a sector horn on one side of

Mobile comms confusion may deter users

Commercial success of the existing analogue Cellnet and Vodafone networks - over I million subscribers, though with growth rates currently affected by the recession - is seen as an encouraging sign for pan-European harmonised digital systems. But at a recent IEE colloquium, Dr Christopher Queree (MVA Systematics) warned that "the complexity and range of mobile communication offerings (present and future) is confusing to users and smacks of being driven by technology".
Dr Queree's worry was that, having chosen one mobile system a user will be reluctant to take another. Some key aspects of mobile services, such as traffic information, were not valued highly, he said, partly because at the moment the quality of such information is not as high as will be needed for effective real-time fleet control.
"In strictly cost-saving terms, the returns (to the user) of mobile radio services are often not brilliant," he said, and pointed to a US study of truck tracking suggesting a return of about 1% on an investment of around 5% of tumover.

Dr Queree concluded that success (of pan-European systems) will neither be guaranteed nor easy.
PCN, being initially a UK phenomenon, is not yet seen in quite the same way. According to Dr Queree its main attraction will be to extend mobile communications to a much wider market. PCN on 1.8 GHz with its small cell size and digital technology is capable of offering specialised features not available with many of the established systems, but will require very large investment in the infrastructure of the networks, particularly if system operators each provide extensive coverage in rural areas as well as urban centres.

Mobile operation at 1.8 GHz is significantly more susceptible
than 900 MHz to Doppler shift and the consequent multipath spreading of the received pulses.

Some bench-mark figures given at the colloquium by Philip Gaskell (Unitel) indicated that, whereas in rural areas GSM900 should be satisfactory at speeds up to about $250 \mathrm{~km} / \mathrm{h}$, the equivalent speed for DCS 1800 would be about $130 \mathrm{~km} / \mathrm{h}$ suggesting that there might, for example, be problems in using the system on high-speed trains.

In hilly terrain and urban (car) areas there should be little difference in practical performance with figures of $100 \mathrm{~km} / \mathrm{h}$ and $50 \mathrm{~km} / \mathrm{h}$ respectively for both systems. Urban (pedestrian) performance at $3 \mathrm{~km} / \mathrm{h}$ (GSM900) and $1.5 \mathrm{~km} / \mathrm{h}$ (DCS 1800) were not expected to present practical problems.

Architecture for mohile terminated short-message-service providing store-and-forward transmissions of up to 83 characters on the signalling channel.

the cell, transmissions using FM.
Key factor for 40 GHz MVDS and for many local telecommunications services at around 38 GHz - or in the high oxygen absorption band around 60 GHz (with its excellent frequency-reuse potential) remains the development of mass-produced, low-cost millimetric-wave components. These include monolithic IC devices and use of such transmission-line structures as Finline, Microstrip and Dielectric Image Line rather than waveguides machined from solid metal.

TE O'Ciardha of (BTRL) reports the successful development of 39 GHz low noise amplifiers, suitable for both RF preamplifiers and local-oscillator amplifiers, using GaAs millimetre-wave monolithic MMIC technology with $0.3 \mu \mathrm{~m}$-high electron mobility transistor (HEMT) devices having a yield of about $50 \%, 15 \mathrm{~dB}$ gain and a noise temperature of 8.5 dB .

BTRL believes that such LNAs could be mass-produced within the range of consumer budgets and represents a signif icant advance in demonstrating the feasi-
bility and potential of GaAs MMICs. But BT themselves are precluded from largescale manufacture of consumer devices and production would need to involve the semiconductor industry. At present virtually all the available low-cost millimetricwave components come from overseas suppliers.

About 20 months ago a technical working party on millimetre-wave propagation was set up (chairman C J Gibbins, RAL) to serve as a forum for bringing together activities in industry, academia and government. Its aim was to encourage precompetitive collaboration and co-operation between various groups, as a channel to direct technical problems from the user community to those able to provide solutions, and as a vehicle to provide guidance on direction for future work.

Still problems to be faced

Clearly, there is still considerable work needed before full use can be made of these frequencies. Though spectrum is
available to carry high data rates, work at Roke Manor in conjunction with Bristol University indicates that short range millimetre e-wave channels show delay spreads of 50 ns - limiting transmission rates to less than $5 \mathrm{Msymbols} / \mathrm{s}$ without resort to equalisation - and that power decays more rapidly with increasing delay than at lower operating frequencies.
For hand-held transceivers, Doppler spread would seem to present problems that have not yet been fully investigated. Portsmouth Poly has been investigating indoor propagation including reflections from signals propagating through walls and floors.

Generally, the primary problem appears to remain that of cost reduction in a chicken-and-egg situation; prices won t come down until there is large-scale production and this cannot happen until there are assured markets.

Editorial survey: use the infomation card to evaluate this article. Item P.

Working in the rain

It has become clear that work on modelling millimetre-wave propagation is rather more complex than originally anticipated. Rain attenuation, particularly from very fine droplets, is proving greater than CCIR prediction's would suggest.
Rutherford Appleton Laboratory (RAL) has established experimental terrestrial links at Chilbolton over a distance of 500 m and more recently 9 km . The 500 m 37 GHz work has been extended to $57,97 \mathrm{GHz}$ and infra-red 135 and 210 GHz with the 9 km path currently at 55 GHz , to be extended also to 95 GHz .

RAL also uses its 3.075 GHz dualpolarisation rain radar at Chilbolton to develop better models of rain-drop size distribution in work directed at optimising propagation predictions, including rain attenuations, at higher frequencies than have been attempted hitherto.

Block diagram of the millimetre-wave experimental system at RAL, Chilbolton.

Meet the Embedded Controller Family

JB Designs announces a complete range of microcontrollers for embedded applications.
All RTC controllers are designed to run with MC-Net software where the family is distributed all over the plant, and have an expansion socket lor connecting the wide choice of I/0 expansion modules to precisely meet your applications requirements.

RTC31/52

8031 or 80 C52-Basic processor Up to 64 K bytes of RAM/EPROM
An RS232/RS485 port
12 parallel I/O lines
Program in Assembler, "C" or Basic Size $3.5^{\circ} \times 3.5^{\circ}$

RTC180
9 MHz 64180 CPU
Up to 96 K bytes of RAM/EPROM/EEPROM One full-duplex RS232 port and one RS485 port $8 / 10$ bit 8 channel AD converte 24 TL parallei I/O lines Use Multitasking Basic, 'C', Modula-2 or Assembler Size $3.5^{\circ} \times 4.5^{\circ}$

RTCV25

9 MHz PC compatible V25 CPU Up to 384 K of RAM/EPROM Two RS232/485 serial ports Time-of-day clock
$8 / 10$ bit Channel AD converter $32 \pi \mathrm{~L}$ parallel $1 / 0$ lines Use JPI Modula-2 or Microsoft "C' Size $3.5^{\circ} \times 5^{\circ}$

PC-AT technology applied to embed 10MHz 80 C286 AT Floppy and hard disk interface Graphic LCD interface On-board bootable solid state disk Built-in parallel and RS232/485 lines IBM AT and matrix keyboard I/F's mbedded control

> COMING SOON

If you want more details on the ULTIMATE embedded controller, then pick up the phone and call us . because we are designing for your FUTURE-TODAY!

J B Designs \& Technology Limited 15 Market Place, Cirencester. Gloucestershire GL7 2PB. UK Telephone (0285) 658122 Fax (0285) 655644

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES
RECTIFIERS, THYRISTORS, elc. RESISTORS, CF, MF WW, etc. CAPACITORS SILVER MICA, POLYSTYRENE C280, C296, DISC CERAMICS, PLATE CERAMICS etc ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, ETC ALL AT KNOCKOUT PRICES Come and pay us a visit ALADDIN'S CAVE
TELEPHONE 081445 0749/445 2713 R. HENSON LTD

21 Lodge Lane, North Finchley, London N12 8JG. (5 minutes from Tally Ho Corner)

(40)
 Cooke International

DO YOU WANT USED SCOPES, SIGNAL GENERATORS,
POWER SUPPLIES, POWER METERS, DVM's, OSCILLATORS, ATTENUATORS, TEST EQUIPMENT
Contact: Cooke International, Unit 4, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex PO22 0EB. Tel: 0243 545111. Fax: 0243542457

Open Mon to Fri 9.30am-5pm
Wide range of items available. Visit our walk-round bargain store. Send for lists.

FIELD ELECTRIC LTD

3 Shenley Rd, Borehamwood, Herts. WD6 1AA 081953 6009. Fax 0812076375 We buy \& sell Computers à Computer Hardware, Power Supplies, Test \& Measurement Equipment Special Offer 8 bit EGA cards from £18.95 16 bit WDC from $£ 8.95 \mathrm{cp} £ 1.00$ Tektronix 465 B O'scope $100 \mathrm{MHz} £ 460$ inc VAT C/P £24.00 in Cal: Mail order or callers welcome. Send SAE for List.

VALVES AND C.R.T.S
 (also Magnetrons, Klystrons, Transistors)

quote
Special prices for wholesale quantities.
Orders from government departments, overseas etc. most welcome.
Many other types in stock. Please enquire re any type not listed

CATHODE RAY TUBES						M28.13LG	¢45.00
1 CP 1	¢29.50	D 13.611 GH	559.00	F16.101GM	c75.00	M31.182GV	¢45.00
$12 \mathrm{CSP4}$	£35.00	D13.630GH	559.00	F21.130GR	c75.00	M 31.184 W	E55.00
1074 H	§45.00	D14.200GM	c75.00	F31.12L0	¢75.00	M 31.190 GR	¢45.00
30780	¢95.00	D16. ${ }^{\circ} \mathrm{OGH97}$	£65.00	LF708	c75.00	M31.191W	¢55.00
8931 (W.H)	POA	DG7.5	\$45.00	M7.120W	[19.50	M 31.325 GH	£35.00
CME822W	¢7.00	DG7.6	545.00	M14.100GM	¢35.00	M38.100W	¢59.00
CME1523W	[9.50	DG7. 32	E55.00	M17.151GVR	¢175.00	M40.120W	¢59.00
CRE	¢29.50	DG7.36	[55.00	M21 11W	¢55.00	MV6.5(Mul)	¢50.00
D9.110GM	¢45.00	DH3-91	¢50.00	M23.112GV	[45.00	SESFP31	¢45.00
D10.220GH	$¢ 45.00$	E723 (EEV)	POA	M24.121GH	\$55.00	19750	75.00
D10.230GM	[45.00	ECR35	[39.50	M24.122WA	[55.00	VLS429A	

Valves	Prices on application. Please enquire re any type not listed below.			
A2426	ECCB04 Maz	M8136 Mul	VL5631	68. 6
A2521	ECC81	M8162 Mul	2759	6BM6
C1149.1	ECC81 Spec 0	M513B	28034	6 CH 6
C1166	ECC82	Magnetrons	Y644	${ }_{6 C J}$
CCSI	ECC82 Spoc 0	PC900	1835 A	${ }_{6}^{6 F 33}$
CV TYPES: Many	ECC83	PCC89	2 K 25	6L6GC
in stock. Not aill	ECCB3 Spec 0	PO500	3 B 28	6SL7GT
listed below. Please	ECC88	PL509	$3 \mathrm{C} / 800 \mathrm{E}$	6SN7GT
inquire.	ECC88 Spec 0	Qov03. 10	3J-160E	12BH7
CV488	ECC804	OOV03-10 Mul	4.65 A	12 El
CV1881	EF39	oav03.20A	4.125A Eimac	13 EI
CV2355	EF73	QOV03.20AEEV	4.400 A	19AO5
CV4014	EF91	covob-40A	4 C 28	211
CV4024	EF92	$0 \mathrm{OVOG-40}$ A Mul	${ }_{4}^{4 C \times 2508}$	805
cv6087 CV7180	EF963 Sierrens	OY3-125	${ }^{4 C \times 250 B C}$	${ }_{8}^{807}{ }_{81}$
CX1140	EF95	Ovo4-7	$4 \mathrm{C} \times 1000 \mathrm{~A}$	813
DA42	EL34	A10	$4 \mathrm{CX5000} \mathrm{~A}$	4635
DET22	EL38	SU2150	58.254 M	5763
DET23	EL81	TT2 ${ }^{\text {¢ }}$	58-255M	6336 A
DF91	ELB1 Mul	S11E12	58.257 M	6973
E80L	EL84	TDO3.10E	${ }_{50}^{58-2589}$	8056 8122
E88CC	GY501	419	5 V 4 G	Sockets:
E180F	Klystrons	UBC41	64 K 5 W	B9A PCB
E810F	K 761 $\mathrm{KT81}$	UCL82	${ }_{684}^{686}$	- ${ }^{\text {日9A chassis }}$
ECC35 Mul	K 188/6550	UY85	68H6	Many others

Testing to special quallty - Military/CV, industrial etc avallable on request

BILLINGTON VALVES

Unit F2, Oakendene Industrial Estate, Near Horsham, Sussex RH13 8 AZ. Callers by appointment only.
Fax: 0403865106 Telex: 87271 PRODSS G
Telephone: 0403865105
Min. UK order $\mathbf{\Sigma 2 0}+$ VAT. Min. Export order C 50 + carriage

GOLLEDGE
 ELECTRONICS

CRYSTALS OSCILLATORS FILTERS Comprehensive stocks of standard items. Over 650 stock lines. Specials made to order OEM support: design advice, prototype quan ites. produc schedules

Personal and export orders welcome SAE for our latest product information sheets GOLLEDGE ELECTRONICS LTD Tel: 046073718 Merriott, Somerset, TA16 5NS Fax: 046076340

MURPHY TYPE A72 McMICHAEL SUPER VOX

MULLAND TYPE M.U. 35

For information and offers please reply to Box No. 2611

BULK BUYING LISTS

Send $£ 1$ stamps + large SAE: Municipal Metals \& Supplies (Electronics)
21 Wilshaw Street
New Cross SE14 6TN

ARTICLES WANTED

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes, PCB's, Plugs and Sockets, Computers, Edge Connectors. TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT
A. R. Sinclair, Electronics, Stockholders, 2 Normans Lane. Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 043 B 812193 Mobile: 0860 214302. Fax: 0438812387

STEWART OF READING

10 WYKEHAM ROAD
READING, RG6 IPL
TEL:073468041 FAX: 0734351696
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY

WANTED

Test equipment, receivers valves, transmitters, components, cable and electronic scrap and quantity Prompt service and cash

[^9]WANTED: VAIVES TRANSISTORS I.Cs (especially types KT66. KTR8 PX4, PX25). Also plugs, sockets and complete factory clearance. If possibie, send written list for offer by return. Billington Valves, phone (0403 865105. Fax: 0413385106 . Sce adjoining advert

Oasis Data Converters

INDUSTRIAL DATA MONITORING

Low-cost precision interfaces and multi-tasking software hardened for industrial data logging and process monitoring

INTERACTIVE PROCESS MONITOR SOFTWARE

Calibrates and filters measured data
Compensates and linearises thermocouple data Converts data to engineering units Calculates virtual chamels. derived from real Configurable displays; charts, line, bar etc Run-time display selection by operator Automatic archive to disk with run-time replay Concurrent printouts including colour charts Full range of analysis software for data files

INDUSTRIAI ANALOGUE INTERFACES

$16,32,64$ and 96 channel units 300 V isolation between channels 500 V isolation from host computer $20 \mathrm{mV}-10 \mathrm{~V}$ full scale in mine ranges 200 V full scale ranges option Direct connection thermocouple conditioning 4 -wire RTD and resistance conditioning $10 / 20 \mathrm{~mA}$ current loop conditioning 25 k samples $/$ sec on-ehannel throughput 4 k samples/sec across channel read rate

APPOINTMENTS

TECHNICAL TRANSLATORS (German to English), WRITERS AND ADVISORS

Sought for a new publication about the practice and theory of PCbased measurement and control techniques.
We need to build a team of experts who have a combination of skills:

* fluency in technical German
* ability to design measurement and control software for the PC
* up-to-date technical knowledge
* good contacts in the industry
* ability to write clearly for process engineers

If you are interested, please fax or send CV and letter to:
Elizabeth Evans
Head of New Product Development
WEKA Publishing Ltd
The Forum, 74-80 Camden Street
London NW1 0EB
Tel: 0713888400
Fax: 0713880692

Garibaldi-RF \& Microwave

We are the specialist agency for 'Radio Frequency' design or test Engineers working from 1 MHz to light! We have hundreds of top positions throughout the UK, working on RF moblle comms IGSM, PCN, CT2), oplo, satellife, mm-wave \& microwave projects. Please contact our consultant SImon Luttrell MSc on 0494792592
160 Bellingdon Road, Chesham, Bucks. HP5 2HF.

THE BRITISH LIBRARY NATIONAL SOUND ARCHIVE

ENGINEER

The National Sound Archive is the national collection for all kinds of recorded sound. The collection includes material on carriers ranging from wax cylinders to digital audio tape with an international subject coverage including various musical traditions - literature, the spoken word, and wildlife sounds. Listening, Information, and Transcription Services are provided for public access to the collections.
Applications are invited for the post of Engineer (Museum Technician III) in the Conservation and Technical Section.
You will be responsible for the maintenance of the Archive's audio equipment which includes signal processing and mixing desks, amplifiers, record tecks, tape recorders, CD and DAT players, and some video equipment. Much of the work will be done by the Engineer but maintenance contracts and call-out engineers may be used where necessary. You will also be expected to meet occasional requests for the construction of small customised devices for applications within the Archive.
Applicants should preferably have experience in the professional recording industry, and should have proven technical skills. You should be thoroughly familiar with a range of traditional analogue equipment as well as with professional and domestic digital systems. For further information telephone Peter Copeland on 071-589 6603.
Salary range $£ 11,188-£ 12,972$ including $£ 1,750$ London weighting. Annual leave 22 days (rising to 25 after 1 year's service) plus $101 / 2$ public and privilege days.
Applications (to be returned by 5 April 1991) from Personnel (Recruitment), Administration, The British Library, 2 Sheraton Street, London W1V 6BH. Tel 071-323 7331.
The British Library is an equal opportunity employer.

MATMOS 286, 386 and 486 SYSTEMS WIDE RANGE OF ADD-ONS

MATMOS 286 AND 386 HIGH PERFORMANCE COMPATIBLE COMPUTERS

16MHz 286 system: $\mathbf{£ 3 4 9}$ plus VAT
A quatity system using the industry standard $80286-12$ proces sor, unniry at a Landmatk speed of (Centronics) ports, 101 keyboard mono graphics card 1.2 Mbvie 5.25 inch illopes. Serial and parallet
(Cone fope controller, IOE hard dive controller ladd E20 for MFM or RLL unless. purchased with Matmos hat drives.). (MFM and RLL options), eight expansion slots (3×8 bit, $5 \times 16 \mathrm{bit}$). AMI bios with full setup routine and diagnostics including HDD formatting, well made stylish case with suace for up to three
5.25 drives and two 3.5 inch drives: lock front panel switches and LEDs, full manual included. 33MHz 386 system: $\mathbf{6 7 7 9}$ plus VAT
 CPU. Comes with 1 Mbyte of RAM upgradable to 8 Mbytes Also available in qualiy full heigh 32 bin case at $£ 879$ plus VAT. Carrlage on systems $£ 14$ plus VAT. See below for add-ons.

FLOPPY DRIVES

nternal
360 K 5.25 inch standard quality IBM half-height chassis drive E29.95 (cart ©3.50)
720 k 3.5 lnch NEC FD 103630 mm drive. For XT or AT's $£ 32.50$ (carf £3). Fitting kit for 5.25 inch space

C3).

Exterte 3.5 inch third height drlve for ATs E49.50 (carr E3). IBM standard flowoy disk drive cable E4
External
720 K cased Standard 720K 3.5° in smart case with cables to suit Amstrad 2286 series of machines.

HARD DISK DRIVES, etc

20 Mbrte ST125-1 Seagate $3.5^{\circ} 28$ msec. MFM hard drive: latest. fost, silent technology $£ 129$ (carr £4). to connect straight to 16 bit AT slot, 5.25 inch, half-height $£ 159$ (carr £5). £ 129 when ordered with 286 and 386 systems.
${ }^{40}$ Mbyte Western Uigital 584 R RLL halif-height 3.5 inch drive in 5.25 inch chassis 5179 (cart CA 50 Mbyte Seagate ST 157 R 3.5 inch 28 m .sec RLL $£ 209$ (carr $£ 4$) or available as hard card for Amstrad $\times 1$ or AT L22
(cart $£ 5$)
HDD cable set $£ 5.00$
HITACHI CD ROM DRIVES (Exdem.)
Internal bus CDR 3600 and 3500 . half height. 5.25 inch with card and cable $£ 259$ (carr, [5) Internal embedded SCSI CDH3650, half height. 5.25 inch C 259 (carr. Cas). C 259 (carr, $\mathrm{C5}$)
External cased AT bus COR 1502 S , haft height. 5.25 inch with card and cable C 299 (carr. $\mathbb{C 5}$) DISK DRIVE CONTROLLER CARDS
XT MFM £ 37.50 , XT RLL $£ 37.50$. AT RLL $£ 37.50$. AT MFM £49.95, AT IDE £19.50 (C3r $£ 2.50$). IBM COMPATIBLE MOTHERBOARDS, CARDS etc.
25 MHz 486 Very latest 80486 motherboard with extra 64 K cache. Landmark speed approx 100 MHz .
Floating point co-processor built into CPU. Eight expansion slots. SAE for full details. $£ 1295$ (carr E 5)

33 MHz 386 Top porformance motherboard with 64 K cache buil in. Set up disk. 8 expansion slots. AMI BIOS. 2 Memz 386 mothertoard. 80386 cpu Landmark speed 33 MHz.. accepis up to 8 Mbyte SIPPS RAM. otherwise as

E129. AI Multi IO board with 1 paraliel. 2 serial. 1 game, 2 Iilopuy, 10 OE
 C14. 50 (all carr
KEVBOARDS
XT compatible quality keyboard at very low price $\mathrm{E9.95}$ (carr E 3.50).

MOUSE | Microsoh compatible. serial with sotitware $£ 34.50$ (carl C 3) |
| :--- |

MONITORS - MONO

T2 inch Xerox Hercules papenthnte; very smart case with till-and -swivel base. particularly good. user friendly 12 Inct Hertules amber; 12 volis supply (pssu needed) modert case with ill and swivel base $£ 29.50$ (carr E 5).
MONITORS - COLOUR
14 inch 1024×768 VGA Latest multisync. VGA. 0.28 dot pitch. Uisplays up to 1024×768 at a very high quality. $£ 279$ (carif 410 inch 640 by 480 VGA good quality fully comparible (ex. dem) E 179 (care E 10) HITACHI CAD COLOUR MONITORS
20 inch multisync. CM2085M From VGA up to 64 KHz at 1280 by 1024 (ex dem). 8899
 16 Inch fixed frequency 64 kHz CM1635A

LASER PRINTER

 DIGITISERS (Exdem.)
Arachi HOG12120: 12 inch oy 12 inch PC compatible medustry standard interface. supported by all PC

cssoties for abovc avalable fiom stock.
VGA CARDS
16 bit VGA card, 256 K , all emulations, up to 800×600, with sotware to run all major packages. Oak chip set 16 bit designer VGA card, all emulations up to $800 \times 600,256$ colours with 512 K video RAM. Paradise chip-set with sotware to run with all major packages, XT switchable. $£ 99.50$.
16 bit 1024 a 768 super VGA card. Very high fesolution with 512 K and sotware. Full manuals and disks for 16 bit 1024 a 768 super VGA card. Very high resolution with 512 K and sotware. Full manuals and disks for
compatibility. Tseng chip set $£ 119$, \ddagger PAbyte $£ 139$ (cart on cards $£ 2.00$).

FAX CARD

Plug into PC expansion slot. Giving powerful fax features: ATS Cipher BT approved Group Ill intelligent receive ETHERNET CARD
POWER SUPPLIES
Astec BM 140 IBM XT/AT compatible 150 W ; +5 V at $15 \mathrm{~A},+12 \mathrm{~V}$ at $5 \mathrm{~A},-5 \mathrm{~V}$ at $0.3 \mathrm{~A},-12 \mathrm{~V}$ at 0.5 A : fan cooled, rear

VIDEO COLOUR PRINTER
HitachivY25E PAL video printer Prod sces high density photographic quallty colour prints in A6 siec from PAL
NB * VAT and carriage must be added to all items (quotes for cartiage overseas)

* Evervthing new, and guaranteed 6 months unless stared * Access and Visa relephone service Matmos Led has been trading successfully since 1976. MATMOS LTD, UNIT 11 THE ENTERPRISE PARK, LE WES ROAD, LINOFIELD WEST SUSSEX RH 162 LX. 0444482091 and 0444483830 (Fax 0444484258)
SEE OUR OTHER ADVERTISEMENT ON PAGE 343

INDEX TO ADVERTISERS

PAGE	PAGE
Airlink Transformers 268	G H Systems........... 314
American Automation	Halcyon Electronics ... 349
UK...................... 344	Hoka Electronics 278
Audio Electronics 289	ICOM UK 293
Bamber Electronics.... 278	Integrex 271
Blackmore 268	IPK 309
Blue Chip Technology . 319	IR Group................ 274
Brain Boxes............. 306	J \& M Computers 310
Bull Electrical 333	James Brice Associates 314
Camel Services 306	Johns Radio 310
Capella Technos....... 303	Kestrel Electronic
Chelmer Vaive	Components 293
Company 285	Keytronics 350
Citadel Products IFC	Labcentre 309
Colomore Electronics 303	Laplace 306
Dataman Design..... OBC	Lowe Electrical 268
Design Consultancy.... 359	M\&B Electrical 276
Display Electronics ... 343	M\&B Radio 319
E.A. Sowter 310	Matmos 360
Ellmax Electronics 285	Micro Processor
Firsî Rental 273	Engineering............ 344

overseas advertisement agents
France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008.
United States of America: Jay Fenman. Reed Business Ltd., 205 East 42nd Street, New York, NY 10017 - Telephone (212) 8672080 - Telex 23827.

[^10]
TAYLOR

P30 RANGE STEREO FM RADIO ${ }_{(88-10 \mathrm{MHz})}$ MODULATORS TRANSMITTERS \& TRANSPOSERS

P30 902P BAND 2 FM STEREO MODULATOR.

19" Rack Mounting $2 \mu 35$ mm deep
Any specified frequency $.88-110 \mathrm{MHz}$
Crystal controlled IF-RF Erequency stability $<5 \mathrm{ppm}$
Audio input. $7 \mathrm{~V} \mathrm{O} 00 \Omega$ Balanced (isolating transformer) XLR Gockets
Audio bandwidtli $40 \mathrm{~Hz}-15 \mathrm{KHz}$
Pre-c mphasis 50 as \& 75 $\mu \mathrm{s}$
Crosstalk <404B 1 KHz
L\&R volume controls with 2 anallogue level meters
Deviation level control wica analogue deviation meter
1 KHz tone generntor swituthable L or R,L\&R.
F Loop on front panel
oltage $\mathbf{2 2 0 - 2 4 0 \}$ AC $\mathbf{5 0 H z}$ ($\mathbf{1 1 0}$-120V AC no cost option F) Output level $63 \mathrm{dBmV}(1500 \mathrm{mV}) 75 \Omega$ (IEC Connector)

OPTION A Ouqut L.evel 1 Watt $\operatorname{sos} \quad £ 190.00$
OPTION B Output Frequency $\mathbf{4 2 0 - 4 6 0} \mathrm{MHz}$ $1900-920 \mathrm{MHz}$ Specify Frequency £ 80.00

P30-30VF 30WATT BAND 2 POWDR AMP WITH AGC

19" Rack Mounting $2 \mu \mathbf{4 2 5 m m}$ deep
Gain $30 \mathrm{~dB}+20 \mathrm{~dB}$ AGC. Fnables power amplifier to be sited remote from modulator linked by comx cable with attenuation up to 20 CB .
Input Impedance 75 . (IEC Connector)
Output Power 20 Watts Into 5082 (N Connector)
Voltage 220-240V AC 50Hz (110-120V no cost option F)

P30 30VFT 30 WATT BAND 2 TRANSPOSER WITH AGC

Power: Specification as P30, 30VF
Input: $88-110 \mathrm{Ml} /{ }^{2} / 420-460 \mathrm{MHz} / 900-920 \mathrm{MHz} 50 \Omega$ (N Connector) Specify Frequency
Crystal Controlled Frequency Stability <5ppm Gain 93 dB
AGC 40dM(20 dB).

P30-300VF 300 WATT BAND 2 POWER AMP WITH AGC

19" Rack Mounting $4 \mu 500 \mathrm{~mm}$ deep
Gain $42 \mathrm{~dB} \$ 20 \mathrm{c}$ B AGC. Enables power amplifier to be sited remble
Gain 42dB *20kB AGC. Enables power amplifier to be sitedaremint
Input Impedance 752 (IEC connector)
Output Power 300 Watts into 5002 (N Connector)
Voltage $\mathbf{2 2 0} \mathbf{2 4 0 \mathrm { V }} \mathrm{AC} 50 \mathrm{~Hz}$ (110-120V no cost option F)

P30-300VFT 300 WATT BAND 2 TRANSPOSER WITHAGC

Power: Specification as P30-300VF
Input: $88-110 \mathrm{MHz} / 420-460 \mathrm{Milz} / 900-920 \mathrm{MHz} 50 \Omega$
(N Connector) Specify Frequency
Crystal Controlled Frequency Stability <5ppm Gain 103dB

Dataman Introduces Omni-Pro at £395

S3-The Best-Seller . $£ 495$

Wouldn't you like an EPROM Programmer that is Elegant? Stunning? Superb?

These are words used by engineers to describe S3. They often say S3 makes their expensive lab-programmer look stupid. How can we disagree? When designing S3 we tried to turn a boring bench-instrument into something more exciting: a compact, intelligent tool which could be used for New Product Development, with facilities such as Editing and Memory-Emulation. We made S 3 small enough to slip in a pocket and battery-powered so that it would retain data and configuration, because we were sure engineers would want one each. And they do! S3 is now the best-selling programmer in the U.K.
S3 is likely to fill needs that you never knew you had! We can send you an S3 today on FREE TRIAL - 30 DAYS SALE-OR-RETURN.
Optional S3 Modules...

EPLDS. CMO	2295
32 pin EPROMS	175
40 pin EPROMS	17.5
8748/49	1125
8751/53	C125
XICOR 2212	

Optional S3 Developers Package

Software and Inside Information for engineers who wish to study and customise S.3. No Secrets! Edior)/Assembler (SDE see below). Circuit Diagrams. List of Calls and BIOS Source Code.
flys

S3 as a Development System...

The FREE Terminal Program which comes with $\$.3$ provides Full Remote Control from your PC All keyboard functions are suppored - such as Editing, Byte and Block Shifting. Split \& Shuffle, Seek and CheckSum. S3 is also a Memory Emulator - it will substitute ROM or RAM in-circuit. You can try your program before committing it to PROM.

S3 as a Programmer...

S3 will program vinually any EPROM or EEPROM that will go in the socket. Without recharging, you can program ! (X) modern fast PROMS or $1(0)$ ancient slow PROMS. Operation is continuous with a mains supply: S3 can be used while recharging. S3 does not monopolise your computer for copying, editing or programming PROMS. S3 uses latest high-speed programming methods and suppons FLASH EPROMS. Program, Data and Configgration are retained while turned-off $S 3$ has a ROM BIOS. but runs its main program in RAM. Software can be upgraded instantly from a PROM in the socket. SOFTWARE UPGRADES ARE FREE.

What you get with S3...
Mains Charger, Ring-Bound FactoFile Manual, Emulation Lead (plugs into your ROM socket). Write-lead (hooks-up your uP Write-Line when emulating RAM in a ROM socket). FREE Software Upgrades by BBS. Technical Suppon by Phone. Fax and BBS and a FULL THREE YEAR GUARANTEE.

Omni-Pro. £395

Programs BIPOLARS, PROMS, PALS, GALS, EPLDS, PEELS, IFLS, EPROMS, EEPROMS AND MICROCONTROLLERS. Tests SRAM, DRAM AND TTL/CMOS logic

Omni-Pro uses a shon slot PC card to make fast parallel transfers of data. It is controlled by software with a professional look and feel. The latest quick-programming methods are supported. Any of the usual file-transmission formats can be used. Omni-Pro is compatible with all popular PLD compilers producing JEDEC files.

Omni-Pro comes with this Universal Guarantee: it WILL program all the parts you need. (Or you can have your money back.

What you get with Omni-Pro...

An Excellent Manual in Plain English. A quality 4()pin TEXTOOL Double-Width Socket. FREE Technical Suppor by Phone. Fax or BBS FREE Sofiware Upgrades by BBS and a FULL YEAR'S GUARANTEE.

SDE Assembler
£195

Develop your New Product in an advanced Software Development Environment.

Dataman's SDE comprises a two-window Editor, fast Macro Assembler, Linker, Librarian, Serial Comms and an intelligent Make facility which automatically reassembles ONLY those files you have edited, links them and downloads to your Memory-Emulator or Programmer. SDE works very well with S3.

The Editor is pretty smart: it can tell you the Absolute Address of any line of the Source-File. The Assembler is pretty smart too: if it finds a mistake it puts you back in the Editor at the right place to fix it. SDE's Multi-Processor version supports all common micros - please ask for list. The Disassember version creates Source Files from Object Code (e.g. from a ROM).
SDE IS NOT COPY-PROTECTED.
SDE Multi-processors \& Disassemblers £695
SDE Multi-processors
SDE Single-processor..

Strobe Eraser $£ 175$

Wipes EPROMS before you can say "Jack Robinson".

Our Flashy New Eraser wipes EPROMS clean in seconds. You can do it to chips on the bench, chips in-circuit or even chips in the Programmer. Tidy up your workshop tomorrow. Recycle all those old Memory Chips!

UK customers - please add VAT

MSA AMERICAN

- 小ivand en

[^11]
[^0]: One of the chip technologies needed to achieve low-cost, lightweight portable telephone equipment is the amalgamation of analogue circuitry and digital circuitry on one chip.
 At the ISSCC, a panel session devoted to mixed-signal technology addressed the question: "Can simulation ensure first-pass silicon success?". Its conclusion was "so far, no".

[^1]: At present the designer is faced with a handful of choices of real-time operating systems to run on the 386 PC
 The largest name in the sector is intel who make the 386 chip and its iRMX operating system can be configured to run on the PC-AT. The system is fast, offering interrupt latency times down to $7 \mu \mathrm{~s}$ and task switching times of about $13 \mu \mathrm{~s}$ and has a degree of memory protection where each call is checked to ensure that memory assigned to other tasks is not corrupted.
 It runs with a pre-emptive, priority driven scheduler and can address the full 4Gbyte space of the processor. But it is, however, expensive, complex to use and unable to run dos as a task.

 Microsoft entered the PC mult-tasking and windowing market with two products; OS/2 and Windows.
 OS/2 is a multi-tasking system with preemptive scheduling and high performance file system. It has shown enormous potential as a replacement for dos and is favoured by a number of programmers.

[^2]: Editorial survey: use the information card to evaluate this article.

[^3]: Editorial survey: use the information card to evaluate this article. Item H

[^4]: \qquad Postcode
 I enclose payment for $£ 20$ by cheque/money order made payableto REED BUSINESS PUBLISHING GROUP.
 Please charge my Access/Visa/American Express Card.

[^5]: Editorial survey: use the information card to evaluate this article. Item J

[^6]: Signature

[^7]: TTL input.
 D.I Malynovsky

 Leningrad USSR

[^8]: Lea View House. Two Rivers Estate, Station Lane, Witney, Oxon OX8 6BH

[^9]: M \& B RADIO
 86 Bishopgate Street Leeds LS 14 BB . el. 053243564

[^10]: Printed in Great Britain hy Riverside Press. Gillingham, Rent, and typeset by Marlin Graphics, Sidcup. Kent DA14 5ITT, for the proprietors, Reed Business Publishing Lid, Quadrant House. The Quadrant, Sution, Surre SM2 SAS. © Reed Publishin Lid 1991. Electronics and Wireless World can be obtained from the following: AUSTRALIA and NEW ZFALAND Gordon \& Gotch Ltd, INDIA: A.H. Wheeler \& Co, CANADA: The Win Dawson Subscription Service IIdd. Gordon \& Gotch Led., SOUTH AFRICA: Central News Agency Lid, William Dawson \& Sons (S.A. 1 LId.: UNITED STATES: Worldwide Media Services Inc.. 115 East 23 rrd Street. NEW YORK, NY: 10010 USA. Electronics \& Wireless World $\$ 5.95$ (74513).

[^11]: Station Road, Maiden Newton, Dorset DT2 0AE, England

 ## Phone

 0300-20719
 Fax 0300-21012
 Telex 418442
 BBS (Bulletin Board) ... 030021095 300/1200/2400/N,8,1 (24hr)

