ELECTRONICS

WORLD

+ WIREIESS WORLD

OCTOBER $1990 \quad £ 1.95$

TECHNOLOGY
Still video photography

SOFTWARE
Asic design on a PC

CAD/CAE
What, why and how much?

Denmark Dhr. 63.00 Germany Du1 12.00 Holland DFI 1, 50
 \title{
GLASNOST
 \title{
GLASNOST
 COMPUTING IN THE EASTERN BLOC
}

Small in Size,

Big on Features,

Model ME $3230 £ 89.00$

SOAR's newest range of feature packed analog Bargraph DMM's offer exceptional performance which is backed up with enhanced accuracy and custom LSI circuit technology.

All models have an adaptor mode which enables Plug-in use of Soar's optional series 9300 adaptors for extended measurement capabilities of AC/DC current, capacitance, temperature and transistor checks.
Look at these features:
m ${ }^{3 / 4}$ digit readout.

- Custom LSI circuit design.
- Accuracy up to 0.35%.
- High speed sampling.

Auto or manual range selection.

- Data hold.

Diode test.

- Continuity beeper AND MUCH MORE.

FREE CATALOGUE

- Over 220 full colour pages.

All prices listed.

- Complete technical data included.

For further details or full colour test and measurement equipment catalogue contact the sole U.K. distributors:

BIOPHYSICS REPORT

845
Researcher Roger Coghill reports on the latest biophysics developments.

Abstract

EASTERN BLOC COMPUTING 848 After years of seclusion behind the Iron Curtain, the computer industry is now emerging into a harsh commercial world. Will the plagiarist technology survive? By Robert Farrish.

CAD: AN INCOMPLETE ANSWER? 855
Cad tools for electronics design seem like the perfect answer to every problem. Each software solution has its drawbacks which require recognition by practical design engineers.

CAE FOR MIXED ASICS......................... 856
Mixed signal asic chips offer complete systems solution. Low cost cad tools are catching up with the semiconductor technology. By Fred Etcheverry.

SHAPING UP THE NETLIST
861
Netlists are crucial in linking schematics to circuit processing. Tony Wong explains the connection.

CAD special feature starts p85

REVIEW - EASY-PC............................ 865
John Anderson delivers his verdict on the new cheaper and faster Easy-PC. It's definitely not cad but its not bad either.

CAE SOFTWARE SURVEY 868
Computer aided design tools for electronics have largely replaced soldering irons and draughting tape. Andrew Gothard has put together a buyers ${ }^{\text { }}$ guide highlighting 48 leading software packages.

STILL VIDEO - STILI HERE? 873
Video recording technology has replaced film for moving pictures. The latest still video technology provides high definition pictures. Will it oust 35 mm ? George Cole reports.

CROSSOVER DISTGRTION
Michael McLoughlin presents a design essay on the elimination of audio crossover distortion in power amplifiers.

INTERFACING WITH C
 890

Designing filters in software can provide characteristics which are difficult to achieve or simply unobtainable in analogue form. Howard Hutchings describes several varieties in exemplary C listings.

REVIEW — PEEL. 912
Designing custom logic devices on a PC. Is this the best way to program the new programable logic families? By Stephen Franks.

RF ATTENUATOR918

A digitally controlled RF attenuator uses pin diodes as compensated resistive tracking elements in a pi-network under computer control.

COMMENT
Dat's a fact of life which the record industry can't change.

RESEARCH NOTES

Wall climbing robot, moons revealed by Fourier, self induced repairs, big sum and hope for Hubble.

UPDATE 841
Solid state detergents for the world's fastest transistors, VDU safety standards, eastern bloc telecomms cut off and a UK science boost.

CIRCUIT IDEAS

APPLICATIONS

898
A to D conversion using voltage to frequency technique, balanced input audio amplifier and high speed, high gain instrumentation.

LETTERS

NEW PRODUCTS CLASSIFIEI) 904
PIONEERS ... 908
W H Eccles, the first physicist of wireless. This magazine "could blush with shame" for having stigmatised Eccles" proposal as "too academic" in giving valves the standard names diode, triode. etc.

BROADCAST 922
There is much mileage left in the old PAL television standard. The Germans have proved the point by offering a compatible stretch to HDTV.

In next month's issle. Semiconductor technology has reached the point where homodyne reception for FM signals has acquired commercial importance, for instance ir the radio paging market. Ian Hickman describes tooth the system and its modern implementation.

Affordable, stand alone, PCB fault-

 diagnosis equipment.

The most economical way yet to improve the speed and efficiency of PCB servicing and manufacturing defects analysis.

A 280 logic trace.
showing part of the tes sequence

- 24 and 40 pin Variants.

Providing a host of features for rapidly testing digital IC's in circuit.

Save and Compare
Data from a known good PCB can be saved enabling a
suspect board to be compared
in minutes without circuit
documentation.

- Automatic Circuit

Compensation. An IC is tested
in the way it is connected. No need to program each test.

Phone for your free data and information pack now!

- SearchMode To identify unmarked IC's and give an equivalent for replacement. - Manufacturing Defects

Analysis Rapid access to circuit information to locate production faults.

Out of Circuit Testing.
ZIF sockets make the units
ideal for goods inward
inspection and checking a device is functional before soldering

THURLBY THANDAR

For Digital Multimeters

Whatever your need in DMMs. Thurlby-Thandar can supply it.
With prices starting at just $£ 39+$ VAT. the range includes both hand-held and bench models. Display resolution varies from $3^{1 / 2}$ digits up to $5^{1 / 2}$ digits and accuracies are from 0.5% up to 0.01%

Some models offer True RMS AC frequency measurement. conductance measurement and digital interfacing

1905a

This low-cost $51 / 2$ digit bench DMM combines exceptional resolution and accuracy with computing power and data logging. It costs £349 + VAT

Contact us now for full details of all our DMMs.
Thurlby-Thandar Ltd
Glebe Rd., Huntingdon, Cambs. PE18 7DX
Tel: (0480) 412451 Fax: (0480) 450409

Many Radjo Amateurs and SWLS are puzzled. Just what are all those strange signals you can hear but not identify on the l.f. and h.f. frequencies? A few of them, such as c.w., RTTY, and Packet you'll know - but what about the many other signals?

Hoka Electronics have the answer! There are some well known CVV/RTTY decorders with limited facilities and high prices, complete with expensive PROMS for upgrading, etc., but then there is Code 3 from Hoka Electronic!
It's up to you to make your choice - but it will be easy once you know more about Code 3.
Code 3 works on any IBM-compatible computer with MSDOS having at least 640 kB of RAM.
Code 3 hardware includes a complete digital FSK Converter with built-in 230 V ac power supply and RS232 cable, ready to use. You'll also get the best software ever made to decode all kinds of data transmissions. Code 3 is the most sophisticated decoder available, and the best news of all is that it only costs $\mathbf{£} \mathbf{2 4 9}$ plus VAT!
The following modes are included in the base-program (with the exact protocols).

Packet Radio AX 25, 50 to 1200 Baud Hell: Synchronous/asynchronous all speeds Fax: Weather charts, photographs with grey scales at $60,90,120,180,240 \mathrm{rpm}$ Morse: Automatic and Manual with speed indication
Press DPA: F7b spec., 300 Baud ASCII Wirtschafldienst: F7b spec., 300 Baud ASCII Sport Information: F7b spec., 300 Baud ASCI Autospec Bauer: ITA 2 including both modes Spread 21 and Spread 5
Duplex ARD AMrac ITA 2
TWINPLEX F7b-1 and F7b-2 Duplex ARO ASCII

Baudot: ITA 2 plus all types of Bit inversion at any speed
ARO: CCIR 4/8, CCIR 825 mode A ARO-S: ARO 1000 S ARQ-Swe: CCIR 518 variant ARQ-E: ARO 1000, ITA 2-p Duplex ARQ-N: ITA 2 Duplex ARQ-E2: CCIR 519 ITA 3 ARQ-6: 5/6 character 90 and 98 TDM 242: CCIR $2422 / 4$ channels TOM 342: CCIR $3422 / 4$ channels FEC-A FEC 100(A) ITA 2-P FEC Broadcast FEC: 3-FEC CCIR 025, 476-4 mode B Sitor Amtor
FEC-S: FEC 1000S ITA 3

All modes in preset and variable uder-defined speedrates and shifts.
Three options are available to use with the Code 3 and consist of:
1: OSCILLOSCOPE, this facility displays the measured frequency versus time, including split-screen, storage and non-storage modes at $£ 25$.
2: PICCOLO MK VI (Everybody wants this facility, but it's only on offer from Hoka), the well-known multitone-mode at £60.
3: LONG-TIME AUTO-STORAGE in ASCII (up to several days) £25.
Plus many other special codes. Send for details, price on application.
Along with the many facilities listed, the analysis section of the Code 3 offers you a wide choice of unique facilities such as: a built-in low frequency spectrum-analyser for shift measurement and tuning, plus precision speed measurement up to 0.001 Baud resolution. Other toolfacilities include Speed Bit analysis, Speed Measurement, Character Analysis, Auto-correlation of MOD and RAW signal, Bit Analysis. All these state-of-the-art features are included in Code 3 to assist the experienced user.

All options are available from the main menu, saving or loading to or from hard or floppy disk in Bit form (no loss of unknown signals), hard copy with printer, on-screen tuning indicator and very easy to use Help-files.
Warning. The actual use of parts of this program may be illegal in some countries and any liability in this respect is disclaimed.
To order, phone us for more details or send cheque, payable

HOKA Electronics
Teiko Clockstraat 31
NL-9665 BB Oude Pekela The Netherlands
Tel: (31)5978 12327 Fax: (31) 597812645
Please specify disk size $31 / 2$ or $51 / 4^{\prime \prime}$ when ordering!
All prices ex. VAT and shipping, but including 6 month software updating free of charge!

First-ever climbing robot

Watching a robot climb a perfectly smooth vertical wall and then head off along the ceiling is a somewhat uncanny experience. It conjures up the notion of a very much oversized housefly, apparently defying the force of gravity.

What's even more uncanny, viewed from the point of view of an electronics engineer, is that the robot doessit of necessity contain a single piece of silicon. Reliability is the explanation offered by Professor Valery Gradetsky. Head of Laboratory at the Institute of Problems in Mechanics, in Moscow, who built a prototype recently demonstrated at London's South Bank Polytechnic.

It's all in fact part of a research programme involving scientists and engineers from both institutes who've been working on this collaborative project for over three years now.
The point about the absence of silicon is that the robot works using pneumatic power and pneumatic control signals fed along its multi-pipe umbilical. The unit shown in the picture weights 7 kg and walks using five steel and rubber suckers. It can move up, down, sideways or rotate. Using the attached spray gun it can also paint the wall or ceiling with great precision - a wonderful tool for graffiti artists!

Professor Frank Evans of the South

Bank Polytechnic points out that this robot, which can carry twice its own weight. has a number of other potential uses, primarily in the construction industry. Being devoid of electronics (except in the static control box), the robot can work in areas of high electro magnetic fields, high temperatures or high levels of nuclear radiation. Cleaning and inspecting operational transmitters and nuclear power plants are two obvious applications that spring to mind.

The point about the absence of electronics isn't, of course, to belittle the role silicon will play in the future development of this climbing robot: merely to suggest that we could all sometimes do with being reminded that silicon isn't the answer to every engineering problem. Gradetsky's point about reliability is also worth bearing in mind when considering the largest robot capable of traversing the ceiling. It weighs 70 kg and can carry its own weight?
Further developments, involving the interchange of academic staff between London and Moscow will concentrate (one hopes!) on the development of equally reliable control and guidance systems. These will allow the robot to interface, not just with its manuallyoperated control box. but with computerised guidance systems. In that

way. what is currently able to make a good job of painting the factory walls will eventually be able to undertake complex tasks on, under or over the factory production line.

Fourier transforms yield new moons

By mathematically teasing apart an intricate string of bright spots along a narrow outer ring of Saturn, astronomers at Stanford and Cornell Universities have detected evidence of undiscovered moons circling the plant. These add to Saturn's 18 known moons. According to the team \mid Nature, Vol. 345, no 62771, the bright spots represent waves of higher-density clumps in the rings produced when the tiny new moons periodically sail close to the rings in their orbits.

An analysis was undertaken of a composite series of images containing about 140° of the narrow F ring of Saturn taken by the Voyager 1 spacecraft on its Saturn flyby in 1980. The Fring, about 80 orokm above the planet and detached by about $350 \% \mathrm{~km}$
from the main rings, is the outermost of the multitude of concentric Saturnian rings. The ring consists of material ranging from clust-sized grains to foot-ball-sized chunks of water ice.

In their analysis, the astronomers first plotted the complex waxing and waning in brightness of the ring along its length. Their plot immediately revealed two very narrow, bright, clumps which moved within the ring. The scientists then analysed the other brightenings along the ring using a last Fourier Transform, to separate the pattern of brightenings into its periodic components.
The FFT revealed that the brightenings consisted of a complex of five periodic waves. Some of these waves could have been produced by orbiting
moons that periodically swoop close to the ring. leaving a signature of their passing each time as their gravitational field produces a clumping of material.

One of the regular waves detected in the analysis was due to the known moon Prometheus, whose orbit brings it near the F ring and which is believed to help confine the ring. Two other waves were apparently due to the interaction, or beating of waves of different frequencies and did not directly result from the gravitational influence of moons.

However, the scientists postulate that one of the remaining waves was produced by an undiscovered moonlet, presumably smaller than the Voyager spaceeraft could detect directly. Such a moon would have to be less than about

10km in diameter and have an eccentric orbit, passing close to the F ring occasionally, to have caused such disturbances.

The final wave could not be explained easily. The wave's characteristics were such that the moon that causes it would have to lie well within Saturn's ring system, where it would have caused perturbations that have not been detected by scientists studying
the rings. Or else, the moon's orbit would have to be more elliptical than is explained in the Saturnian system.

The existence of the new moons, as well as other complex features of Saturn's rings cannot be confirmed until the Cassini probe to Saturn reaches the planet. This orbiter is scheduled for launch in 1996, will reach Saturn in 2002 and make observations until $20 \% 6$.

Self-induced wiring repairs

Researchers in the USA have invented a process in which a defect in wiring between ICs can induce its own repair |Applied Physics Leetters $11.06 /$ 18.166.90].

Until now, near-open circuit defects have often proved difficult even to locate. The new self-induced repair process, recently patented by C Julian Chen of the lBM T J Watson Research Centre, involves a novel variation of electroplating. When a sufficiently high current is passed through a wire with a constriction, more heat is generated at that location than elsewhere on the wire, because the thinner the wire, the greater its electrical resistance and the slower the heat dissipation. As a result of the temperature rise that occurs, a deposition process is induced and the constriction becomes plated with metal such as copper that is transferred from cooler parts of the wire through the plating solution, or electrolyte. So little material is needed to fill up a constriction that there is no appreciable effect on the rest of the wire.
There are a number of advantages of the new process. For example, it is self-locating - the position of a defect along a wire need not be known. All that is necessary is to apply an AC source to the ends of the wire.

The process is also self-terminating - when an incipient open-circuit or constriction becomes sufficiently plated, its resistance drops, no further excess heat is generated at the defect location and deposition ends. Also. multiple constrictions on the same wire can all be repaired at the same time. The most severe defect heats the most and gets plated the most until all the defects have comparable resistance.

Finally, the process produces highquality plating, with a very good continuity between the original and plated materials. In addition to its use in

An electrolytic solution to defect repair in /C interconnection wiring?
repair of constrictions and incipient open circuits, the process is the basis of a two-step procedure for the repair of complete open circuits and for making customised interconnections. That procedure begins with the application of a thin film of organometallic material over the area where repair or a new interconnection is desired. A focused laser beallo then draws the exact path of the new line on the film, thereby decomposing the film and leaving a thin metallic residue in the shape of the desired line as an initial interconnection. The remaining undecomposed organometallic film is removed with a solvent. The circuit needing repair or customisation is then placed in the same kind of electrolytic cell as used for repairing constrictions and the selfinduced repair is then carried out.

Chen believes that the self-induced repair process could even be applied to the repair of defects in interconnection wiring between components on inte-grated-circuits themselves, in addition to the wiring between them.

Some sum

Two mathematicians, Dr Arjen Lenstra and Dr Mark Manasse of Bell Labs. New Jersey and the Digital Equipment corporation of Palo Alto. California have successfully factored a 155 digit number into its three constituent primes. In so doing they used a thousand interlinked computers, crunching away steadily over a five week period-all to prove that messages encoded in 150 digit codes are not as secure as is generally thought. Many codes used by banks and the military depend on very big prime numbers chosen in secret and multiplied together.

Hitherto, factoring such huge numbers would have taken centuries, but has been speeded up using a method called a number field sieve, developed by Professor John Pollard in Britain.
If you feel like checking Bell Labs' sums, the figures - subject to errors in data transmission - are as follows:

13,4(17,807,929,942,597,099. 574. $024,998,205,846,127,479$.
$365,820,592,393,377,723,561$,
$443,721,764,030,073,546,976$.
$801,874,298,166,903,427.690$.
(131, 858, 186,486, ()50, 853,753,
$882,811,946,569,946,433,649$. 0)06,084,097.

$$
=
$$

741,640,062,627,530,801. 524.787,141,901,937.474, $059,940,781,097,519,023$, $905,821,316,144,415,759$. 504,705,(0)8,()92,818,711, $693,940,737$.
$7,455,602,825,647,884,208$. 337,395,736,2(0),454,918, 783,366,342,657.

2,424,833.
though I must say if it took that much effort to appropriate a few bob from my bank account. I'd feel the villains had earned their crust. Manasse says that to crack the above number (the so-called Fermat number which equals $2^{512}+1$) would cost $\$ 200$ million in commercial computer power.

MICRO-CAP III, ${ }^{\text {™ }}$ the third generation of the top selling IBM ${ }^{(1)}$ PC-based interactive CAE tool, adds even more accuracy, speed, and simplicity to circuit design and simulation.

The program's window-based operation schematic editor make circuit creation a breeze. And super-fast SPICElike routines mean quick AC, DC, Fourier and transient analysis - right from schematics. You can combine simulations of digital and analog circuits via integrated switch models and macros. And, using stepped component values, rapidly generate multiple plots to fine-tune your circuits.

We've added routines for noise, impedance and conductance - even Monte Carlo routines for statistical analysis of production yield. Plus algebraic formula parsers for plotting almost any desired function.

Monte Carlo analysis

Modelling power leaps upward as well, to Gummel-Poon BJT and Level 3 MOS - supported, of course, by a built-in Parameter Estimation Program and extended standard parts library.

There's support for Hercules, ${ }^{(®)} \mathrm{CGA}$, MCGA, EGA and VGA displays. Output for laser plotters and printers. And a lot more.

Naturally, you'll want to call or write for a free brochure and demo disc.

For further information please contact your nearest dealer listed below.

ACES LId, ACES House, St Georges Avenue, Poole, Dorset, BHIS +ND 020272353
ALTA SHSTEMS; John Cashmore House, Eagle Industrial Estate. Bagnall Street, Great Bridge. Tipton. West Midlands, I)Y ${ }_{4}{ }^{-B S}$ $02152: 2161$
EXCITECI COMPITERS L.TB. I'nit 5, Aphat Business Park, Travellers Close. Weiham Green, Hafield. Herts. .N. $)^{-1 T}$ $0-00^{-2} 2053^{-1}$
GECS LTD. Cunard Building, Liverpool. I. 3 1ER $05123616 \mathrm{~K}^{-}$
, W/CRO-CAP III is a negistered trademark of Spectrum Softurane. Hercules is a negistened trademark of Hercules Computer Technology: IBY is a registeredt inademark of Internutional Business Machines. Inc

Hope for Hubble?

Since long before its launch, the NASA/ESA Space Telescope has experienced a catalogue of problems. but over its first two months in space it looked as if the technical hitches were being overcome one by one. They all appeared to be operational problems of the sort that could be overcome by careful reprogramming of computers: first, the antenna that became entangled in a cable and later, the oscillatory motion that threatened to blur the pictures. In photographic parlance it was a bit like teaching a novice to use a Hasselblad.
By the middle of June, even the usually succinct ESA press statements were beginning to betray a touch of excitement. The Faint Object Camera (FOC) had successfully taken its first engineering test pictures. One of these pictures (opposite) shows a group of stars in the open cluster NGC 188. about four degrees from the Pole Star. Approximately 5000 light years away, this is the oldest known open cluster, having an estimated age of 12 thousand million years - more than half the age of the Universe. The other picture (for comparison) shows the same cluster photographed through the unavoidable turbulence of the atmosphere by a good ground-based telescope.
According to ESA Project Scientist Dr Peter Jacobson, "It was extremely exciting to take the first real openshutter FOC exposures looking through the telescope after having waited all these years." Sadly, that optimism proved to be misplaced when, only a week or two later, NASA announced that the Hubble Telescope
had a design fault that couldn't be corrected from the ground.

The problem appeared to be that the curvature of one of the mirrors probably the secondary mirror didn't quite match that of the other. The result is a defect well known even to elementary students of optics; spherical aberration. Quite how a $\$ 2$ billion optic came to have a problem more usually associated with a Box Brownie isn't entirely clear, but what it means is that instead of being ten times sharper than ground-based pictures, the snaps taken in space will only be marginally better.

Such a reduction in definition means, according to early estimates, that roughly half the telescope's planned work will be impossible. Ruled out will be searches for faint stars, black hoes

and planets elsewhere in the Universe: in fact some of the more fascinating work that astronomers had been hyping themselves up for

What won't be affected is the work that doesn't depend on sharp imaging - spectroscopy for example. Studies into the chemical composition of distant stars and gas clouds will still therefore be possible.

It isn't the end of the Hubble Space Telescope, though. Already NASA is considering the possibility of servicing it in orbit on a shuttle flight, possibly as soon as 1993. One idea is to fit what amounts to spectacles over some of the experimental packages such as the FOC. That way the defect could be corrected.

Whatever the eventual outcome, the loss to science is measurable in millions

Principle of the ESA Faint Object Camera, which is made up of two separate cameras with vidicons and image intensifiers. One magnifies by a factor of two; the other by up to twelve.
of dollars. And the cost of sending up an astronomical optician would probably be two orders of magnitude greater still. This, coming only a few months after the partial failure of the European Hipparcos star-mapping satellite, must inevitably make astronomers everywhere begin to doubt the hitherto unquestioned benefits of putting their eyes in the sky.
Research Notes is written by John Wilson of the BBC World Service

C in the pilot's seat

A new control station for unmanned aircraft is to be developed by the Royal Aerospace Establishment.

Unmanned aircraft (UMAs) intended for reconnaissance have been under development by the RAE for many years and this new station will make fullest use of the facilities offered by the aircraft's telemetry channels to control, navigate and interrogate the craft. UMAs are effectively radiocontrolled model aircraft with several cameras.

The control station is to be a VMEbased system (VME provides the bandwidth needed), having three colour displays with touch-screen overlays, an LCD display and tracker ball. Telemetered data will be displayed and graphics will be extensively used; for example, a digital map will allow the operator to navigate the UMA and to display its track. The touch-screen and tracker ball will control the aircraft via the telemetry link. An operator will not have to "fly" the UMA, since the aircraft is stable and needs only to be directed; the system is effectively an enhanced autopilot which will respond to the operator's commands while maintaining stability.

Software engineers from Signal Computing of Guildford, a member of the BASYS Group, will assist the RAE to design the control station, all the software being written in C and in modular form to simplify future expansion or maintenance and to be consistent with the RAE preference for C in control applications.

Existing ground control station for unmanned aircraft at the RAE. The new design will include better displays and allow the operator faster and more complete control.

RAE's experimental unmanned aircraft. Picuures Crow'n copywright.

Serc computer will boost UK's science capability

Installation of the first lintel iPSC/860 parallel processing "supercomputer" in Europe by the Science and Engineering Research Council (Serc) will provide a significant boost to British Science. Serc, which has installed the computer at its Daresbury laboratory, says the cost-effective, high-performance machine will allow researchers to tackle new problems previously felt to be impracticable.

The iPSC/860) is theoretically capable of performing 1.9 billion floating point operations per second. which is greater than the rate of significantly more
expensive conventional computers.
Within the iPSC $/ 860$), each of the 32 processors is an independent computer built around the Intel i860 chip. Over the last three years, Daresbury Laboratory's Advanced Research Computing Group (ARCG) has established a lead in programming parallel computers for scientific applications using the secondgeneration Intel iPSC/2 and other machines. Serc says it is to extend this lead, and to help British universities and polytechnics undertake new research, that it has purchased the new
machine. The high performance of such computers is achieved at a reduced cost by using off-the-shelf components as opposed to computers such as the Cray which use special electronic devices to gain speed.

In addition to the ability to carry out cost-effective computation Serc says new applications include pharmaceutical and polymer modelling; engineering applications (finite-element analysis and computational fluid dynamics) and research on bulk materials and surfaces.

Clouds throw light on Earth's magnetism

Clouds, so often the bane of earthbound observations, will be the subject of intense scrutiny by scientists over the next few months. But these are not the usual white fluffy sort, heralding wet weather and wellingtons, but clouds of luminescent ions "seeded" from a satellite which researchers hope will answer fundamental questions about the earth's atmosphere and magnetic field.

The seeding will be carried out over the next nine months as part of a programme of experimentation by the US Combined Release and Radiation Effects (Crres) satellite launched in July. The intention is to form a series of clouds by injecting chemicals into the atmosphere. The chemicals ionised by the sun's UV will elongate as luminescent indicators along the earth's magnetic fietd lines, making them visible.

Half the 14 experiments will be carried out at altitudes ranging from 1200 to 21000 miles, with the rest at between $240-300$ miles. Scientists are hoping to reveal more about the magnetosphere - the layer above the ionosphere at around 620 miles upwhich is filled with energetic charged

particles.
When a cloud of energetic particles from a solar flare hits the magnetosphere, a geomagnetic storm can occur, disrupting power systems and long-distance communications. This can have a severe effect on complex satellites carrying delicate electronics and sensors, and other geostationary space-craft which are susceptible to damage from solar
energetic particles, limiting operational life-span. Crres should show up how these effects occur.

As the basis for the research Crres is carrying 24 canisters of chemicals such as barium, lithium, calcium and strontium, and for each experiment, one or two canisters will be ejected by the spacecraft. Approximately 25 minutes later, after the canister and spacecraft are far enough apart to

Superfast devices are not just crystal gazing

1BM is claiming a development that could bring closer the production of extremely fast transistors based on silicon enriched with germanium. Researchers at IBM's Thomas J Watson Research say they have developed a greatly improved method of growing thin crystal layers of

germanium on silicon. The process could bring forward the practical production of silicon-germanium crystal alloys.
Earlier this year IBM announced it had fabricated, from silicon enriched with a few percent germanium, the wortd's fastest experimental transistor, operating at 75000 GHz , or nearly twice as fast as the previous record.

However the problem with growing conventional germanium crystals to more than three atoms thick is that they tend to clump or ball-up. rendering the product useless for electronics. But 1BM scientists say they have discovered a way to coax the germanium to lie flat on the silicon.
The process starts with a thin layer of silicon, then before growing the germanium a single atomic layer of antimony is added. The antimony rises to the surface and forces the germanium to grow flat underneath it in a mechanism christened surfactantmediated epitaxy.

The antimony acts as a surfactant.
changing the surface properties of the silicon and making it chemically more stable, so that germanium can grow more smoothly.

Epitaxy is the growth of one crystalline layer on top of another. Growing the germanium-silicon crystals using molecular beam epitaxy. IBM has successfully produced flat layers of germanium 10 atoms thick on silicon, with a perfect match between the crystal structure of the germanium and the silicon. Earlier, the researchers successfully used arsenic as the surfactant to grow layers of germanium on silicon and believe they will eventually find a broad range of surfactants that work well in their surfactant-mediated epitaxy pocess. The new process makes feasible the use of silicon-germanium crystals in a wide range of applications. Combined with silicon, germanium-silicon alloys could offer potential applications in transistors, lasers, photo detectors and diodes.
prevent contamination, the canister will release its chemical vapours, creating ionised luminous clouds initially about 6) miles in diameter.

By observing the motion of the clouds, scientists will be able to measure electric fields in space, to monitor how these fields interact with charged particles to form waves and to improve understanding of how the Earth extracts energy from the solar wind. These clouds will be studied by instruments on the ground, in specially equippd aircraft and aboard Crres itself. Crres releases will be augmented by releases from sounding rockets to conduct further experiments.
The programme is a joint venture of Nasa, through its Marshall Space Flight Center, and the Department of Defense's (DOD) Air Force Space Test and Transportation Program. Nasa's role in the mission is the release of tracers; the DOD experiments will measure the natural radiation in space and its effects on microelectronics.

The satellite was built by the Ball Aerospace Systems Group, Colorado. The scientific instruments and investigations are being supplied by scientists from institutions throughout the United States, Europe and South America.

All VDUs must meet new safety levels

An EC Council "Display Screens Equipment" directive ($90 / 270 / \mathrm{EEC}$) laying down minimum satety and health requirements for work with VI)Us, must be adopted by all member states by December 31. 1992 (HMSO). LI56, \#4.).
Workstations put into service after this date must meet the requirements. but those already in service will have four years in which to comply.
Employers will be obliged to carry out an analysis of workstations "to evaluate the safety and health conditions to which they give rise for their worker, particularly as regard possible risks to eyesight, physical problems and problems of mental stress."

Workers will be able to request eye tests before and while they work on VDUs, with "corrective appliances" introduced if necessary.
On radiation the directive states: "All radiation with the exception of the visible part of the electromagnetic spectrum shall be reduced to negligible

Eastern Europe telecomms bonanza in the balance

Thawing of relations with Eastern Europe, the cause of so marry jitters in an electronics industry facing defence spending cuts, could be the making of Western communications, according to an industry analysis. But the lack of comnercial infrastructure, which supports Western telecoms growth, could dampen hopes for early commercial private circuits, alternative networks and value-added services in the cast.

The conclusions are part of an assessment of telecoms growth in Eastern Europe carried out by Communications and Information Technology (CIT) Research. CIT says that the opening up of Eastern Europe holds out the twin prospects of significantly increased international traffic and modernisation of old telecoms equipment. Both could prove particularly attractive to Western companies coping with over-capacity and escalating R \& D costs.
But against this should be weighed the fact that the relative discipline of government defence contracts was being exchanged for the disorder of a vastly expanded civilian market.

A comparison of Western and Eastern European communications shows two
markets virtually unrecognisable as the same industry. CIT estimates the total West European telecomms market was worth ECUI23billion in 1989, making it one of the largest industries in Europe.

A rough valuation of the telecomms market in Eastern Europe produces a figure of only ECUI(bbillion. Even applying Western costs and tariffs, the value of the Soviet and East European business would only be ECU25billion.

Only 30% of the combined GDP of the USSR and Eastern Europe is derived from service related industries (both public and private), whereas the proportion in Western Europe is 60% twice as high. However, CIT says that more encouraging in the short term are opportunities in manufacturing, where Eastern Europe can offer space, labour, and plant capacity, and in basic telephony for the domestic and small business markets. CIT notes that the economies of Eastern Europe must develop communications if they are to become productive and competitive, but they must simultaneously develop the high business users of telecoms services - the banks. insurance companies, retailers, and so on - to support the syster.

Course notes

The Royal Television Society is running part II of its course of training for engineers starting January 71991. This second part deals with special applications of television engineering in a series of lectures taking place one evening a week at the IBA in London. The 25 lectures and a book based on the lectures offer a valuable training opportunity for new engineers.

Essential areas such as video amplification, the TV camera, NTSC and PAL colour signals are covered and up-to-date information on terrestrial, satellite and cable systems is presented. New technologies such as HDTV are also examined.

For further details contact Mandi Startup, Royal Television Society, Tavistock House East, Tavistock Square, London WCIH 9HR Tel: 071 3871970.

RF EQUIPMENT

LOW NOISE GASFET PREAMPLIFIERS
Aligned to your specified frequency in the range $5-1000 \mathrm{MHz}$. Masthead or local use
TYPE 9006 NF 0.6dB. Gain $10-40 \mathrm{~dB}$ variable. In the range $5-250 \mathrm{MHz}$ £85
TYPE 9006 FM. As above. Band $\| 188-108 \mathrm{MHz}$ £85
Two stage Gasfet preamplifiers. High Q filters. Tuned to your specified channels in bands IV or V. 75 ohms
TYPE 9002 NF 0.7 dB . Gain 25dB adjustable
£112
TYPE 9003 NF 0.4dB. Gain 25dB
£150
UHF two stage Gastet preamplifiers. High Q filters. Aligned to your specified frequency in the range $250-1000 \mathrm{MHz}$. 50 ohm .
TYPE 9004 NF 0.7dB. Gain 25dB adjustable
TYPE 9005 NF 0.4dB. Gain 25dB
TYPE 9035 Mains power supply unit for above amplifiers £48 TYPE 9010 Masthead weatherproof unit for above amplifiers ... £13

TYPE 9006
TYPE 9002
UHF LINEAR POWER AMPLIFIERS
Tuned to your specified frequency in the range $250-470 \mathrm{MHz} .24 \mathrm{~V}+$ DC supply.
TYPE 9123300 mW input, 3 watts output $£ 320$
TYPE 9124 2-3 watts input, 25 watts output

TYPE 9113
TYPE 9252

PHASE LOCKED LOOP FREQUENCY CONVERTERS

TYPE 9115 Converts your specified input channels in the range 20 1000 MHz to your specified output channels in the range 20 1000 MHz .1 mV input, 10 mW output (+10 dBm). Low noise Gasfet front end, NF0.7dB. AGC controlled. Gain 60dB adjustable -30 dB Will drive transmitting amplifiers directly

TMOS WIDEBAND LINEAR POWER AMPLIFIERS
TYPE 9246. 1 watt output $100 \mathrm{KHz}-175 \mathrm{MHz} 13 \mathrm{~dB}$ gain
£165

TYPE 9176

TYPE 9271

TYPE 9247. 4 watts output $1-50 \mathrm{MHz} 13 \mathrm{~dB}$ gain £185
TYPE 9051.4 watts output $20-200 \mathrm{MHz} 13 \mathrm{~dB}$ gain £185 TYPE 9176. 4 watts output $1-50 \mathrm{MHz} 26 \mathrm{~dB}$ gain TYPE 9177. 4 watts output $20-200 \mathrm{MHz} 26 \mathrm{~dB}$ gain TYPE 9173. 20 watts output $1-50 \mathrm{MHz} 10 \mathrm{~dB}$ gain TYPE 9174. 20 watts output $20-200 \mathrm{MHz} 10 \mathrm{~dB}$ gain TYPE 9271.40 watts output $1-50 \mathrm{MHz} 10 \mathrm{~dB}$ gain

TYPE 9259

TELEVISION LINEAR POWER AMPLIFIERS
Tuned to your specified channels in bands IV or V.24V + DC supply.
TYPE 9252. 10 mW input, 500 mW output $£ 280$
TYPE 9259. 500 mW input, 3 watts output £320
TYPE 9262500 mW input, 10 watts output
£580
TYPE 9263. 2 -3 watts input, 15 watts output
£440
TYPE 926610 watts input, 50 watts output. Integral forced air cooling and output transistor protection £1,745 See below for Television Amplifiers in bands I and III.

TYPE 9105

TYPE 9158/9235
TMOS RF LINEAR POWER AMPLIFIERS
Tuned to your specified frequency in the range $20-250 \mathrm{MHz}$, or your specified channels in bands I or III. $24 \mathrm{~V}+$ DC supply.
TYPE 9105. 10 mW input, 1 watt output
£250
TYPE 9106500 mW input, 10 watts output
£310
TYPE 9155. 1 watt input, 30 watts output £360
TYPE 9458. 5 watts input, 50 watts output. Integral forced air cooling and output transistor protection £590

COMPLETE TELEVISION RETRANSMISSION SYSTEMS AVAILABLE
All prices exclude p\&p and VAT.

BIOELECTROMAGNETICS AT SAN ANTONIO

At a time when reduced scientific research funding is depleting laboratories everywhere, it is pleasing to report an annual research conference where delegate numbers increased by over 40% on last year. The latest Bioelectromagnetics Society meeting, held this June in San Antonio, Texas, reflects increasing interest in this fledgling science which interfaces electronics with biology.

Bioelectromagnetics looks at organic life from the viewpoint of electronic physics, rather than the more traditional electrochemistry; it is concerned with, for example, how electromagnetic fields may prove hazardous to the cells of which we are all composed.

Only in the early 1980s did it become apparent that even very weak EM fields can significantly inhibit the ability of white blood cells (e.g. Tlymphocytes) to defend our bodies from foreign invasion. Unfortunately. research since then has been patchy and no one has yet offered a proven mechanism by which such effects are engendered.

Cyclotron resonance

Researchers worldwide have been exploring how charged particles (ions) can interrupt or proliferate the essential cell division without which we cannot repair the 500 million or so cells which die in any adult each day. Physicists find it difficult to accept that weak EM fields can interact with living fields.

One solution, called ion cyclotron resonance (ICR), proposes that, at certain frequencies at which, for example, the charge-to-mass ratio q / m is set equal to that for ionised potassium K^{+}, specific biological effects like calcium efflux are observed, provided that the direct-current magnetic tield (B_{0}) is also taken into account. The general formula

$$
f_{\mathrm{o}}=\frac{\mathrm{q}}{2 \pi \mathrm{~m}} \mathrm{~B}_{\mathrm{o}}
$$

> Electromagnetic fields can be both hostile and benevolent to life. Roger Coghill reviews the papers presented at the BEMS meeting held in June

describes this and would equal 14.9 Hz when the Earth's DC magnetic field is 38μ T. However, the hypothesis faces considerable difliculties: the mass used in the calculation is "naked", that is it does not include any water molecules; the cyclotron resonance orbit at 15 Hz is too long: and the energy associated with any ICR interaction is extremely small because the energy of a particle in cyclotron resonance varies as the square of the radius of the orbit.

It may be that the ion is precessing, and the rate of precession is influenced by an interacting AC magnetic field from some external source; Doctor Lednev of the USSR's Academy of Science reported experimental support for this refinement of the ICR hypothesis. Until biophysicists can identify a sound predictive model or mechanism for these bio-effects, researchers cannot be sure in which direction to orient their work; is it frequency, field strength, power density, or some other factor - or even a combination of all?
This search for a mechanism has been accelerated by recent pronouncements of the US Environmental Protection Agency that power-frequency EM fields at least may be carcinogenic
and it was reliably reported that radio and microwave frequencies were only excluded from the statement at the last moment on political grounds.

Biosynthesis

Meanwhile, other research is inexorably piling up the evidence, not only for hazardous consequences from EM exposure, but also for therapeutic applications. Martin Blank and Reba Goodman from Columbia University presented evidence of the electromagnetic stimulation of biosynthesis, which is another way of saying that EM fields can cause cells to make proteins. After analysing these new proteins the researchers found them to be more highly charged, both positively and negatively, than controls. If the same impact occurs in haemapoiesis (the making of blood) then there could be agglutination problems, and in fact one epidemiological survey by Milton Zaret has already identified cardiovascular problems associated with "electronic smog". Even in biology there is no such thing, it appears, as a free lunch.

A team from Oregon State University tantalisingly described their protocol for measuring melatonin levels in female lambs raised beneath a 500 kV transmission line (the highest in the UK is 400 kV). It had been observed that power-frequency EM fields can significantly depress the normalty high nocturnal levels of the pineal hormone melatonin, which mediates the seasonal breeding reproductive response. The question was: would the power lines delay the onset of puberty"? Since the experiment is still in progress, no results are yet available from this crucial research.

On a happier note, a team including Ross Adey from Pettis V.A Hospital, Loma Linda, reported their work on bone cell proliferation stimulated by very weak electric fields. Here, too, the protein and its RNA message were increased substantially, the effect peaking at around 14 Hz . By itself this is not a novel finding, since similar work has

already been reported both in vivo and in vitro; it is the probing of the mechanisms by which these effects occur that such studies are important.

Another positive effect of EM fields was reported by Richard Bentall of Bioelectronics Corporation, Maryland. He tested guinea pigs with a new form of electronic "bandage" which emits 26 MHz pulsed RF energy, and found an 18% improvement in their wounds' ability to resist splitting open again (dehiscing).

His prototypes may lead to major benefits in post-operative surgery, especially since the final size of the wound scars was also reduced in the actively treated group.

Brain control

For those of us who believe that the cell cycle and many related bio-effects are ultimately under cerebral control, one paper by Lisa Higgs and her colleagues
> "Physicists find it difficult to accept that weak EM fields can interact with living fields."

at Colorado University's Department of Psychiatry will prove significant. They treated 18 awake patients in a double-blind crossover trial with 20 minute bursts of low-energy emission therapy (LEET). Although no effect was observed on beta, delta, or theta waves, their 28 -channel EEG machine recorded significant changes in alpharhythm activity in the exposed group during the eyes-closed condition and these particular brainwaves were decreased by up to 50% in amplitude.

Dosimetry

In the field of dosimetry there were inevitably a few surprises as field theorly and current theory continue to converge: for example, where voltage sources are used to excite antennas. Carl Durney and colleagues from Utah University defined an electric circuit representation that is equivalent to Maxwell's equations, in which mesh currents are directly related to magnetic fields, and voltages to electric fields. The equivalent circuit consists of a parallel RC combination along each edge of a Yee cell and an inductance cutting across each corner of the Yee cell, and is valid both in the time domain and the frequency domain and in any frequency range, including the optical.

Other papers in the dosimetry section included a presentation by Walter Reed Army Institute of Research (WRAIR) of photonic electro-optical probes for measuring E-fields inside biological subjects during exposure to a single EMP pulse. By contrast, Om Ghandi presented his prototype meters for the assessment of hazards up to 100 MHz , including a contact current meter $(0-300 \mathrm{~mA})$.

Another BEMS section addressed the possible hazards from MRI machines. Here, the results were ambivalent, with the Lawrence Berkeley Laboratory reporting no significant alteration of the blood/brain barrier's permeability, while in another paper they detected alterations in calcium metabolism of rat thymus lymphocytes. Another team from Western Ontario found that time-varying magnetic fields at ELF frequencies alter $\mathrm{Ca}^{2}+$, whereas RF and static (0.15 T) fields do not. Since positively charged calcium is an indispensible concomitant of normal brain function, and since occasional curious side-effects have been noted following MRI brain scans, the finding may prove significant.

It is difficult to do justice to the 160 papers from eight countries (including Russia and China) which were presented at this BEMS annual meeting. One is very conscious that its members are probing some of the most fundamental mechanisms of organic life, and that electronic physics rather elec-tro-chemistry may ultimately solve some of biology's major remaining mysteries.

After years of
seclusion behind the
Curtain, Eastern
Europe's computer
industry is emerging
into the harsh light
of commercial
reality. Robert Farish
of Computer Talk
surveys a world
previously hidden
from Western eyes

COM PUTING EASTER

TTechnological development did not completely stand still in the industries of Eastern Europe while they were under communist control. As companies now fall over themselves to sell into these markets, it is worth reflecting on the state of the computer industry behind what used to be the Iron Curtain.

Years of concentration on military or prestige projects has led to severe under-investment in all types of civilian hardware manufacture and a widening technological gap with the West. A shortage of hard currency and Western bans on the export of all but the most basic computer technology have created a chronic shortage of microprocessors, reflected most obviously in a lack of minicomputers and workstations.

When they can afford one, large commercial or academic organisations will have a communist-made mainframe for number-crunching applications. Almost all other work is performed on PCs, which have been freely exportable for sometime now. The few minicomputers in existence are usually manufactured in the GDR or the Soviet Union, are expensive, inflexible and handicapped by an export ban on multi-user operating systems like Unix.

The most technologically advanced states in Eastern Europe are the Soviet Union, the German Democratic Republic, Czechoslovakia and Hungary; education has been a priority in these countries and the number and quality of graduates in pure sciences, engineering and mathematics is extremely high.

This has inevitably shaped software development in these countries. A background in advanced mathematics has influenced the writing of some very efficient software, programs typically having a very good speed/nemoryspace ratio. Applications have a tendency to use memory space very

IN THE BLOC

concisely and, since they are forced to use PCs with very limited memory and low clock speeds, programmers have learned to get the maximum out of every line of code.
But, without the pressure of a commercial environment, programmers found themselves with a task, a limited budget and generous amounts of time. This often led to the pursuit of many dead-end projects; and to the fact that many hundreds of well educated com-puter-science graduates are now kicking their heels in universities across the continent.

Microprocessors

Eastern Europe needs chips more desperately than almost any other Western export. Archaic manufacturing techniques and dated plant meant that the old Eastern bloc was unable to manufacture microprocessors of sufficient capacity or in large enough quantities.

The communists tried hard, but largely failed in their attempts to copy Western designs. Since they are bound by no international copyright agreements, they have been attempting to manufacture versions of c-mos and n-mos processors throughout the 1980s. Iskra, the most widely used Soviet made personal computer, uses the K1810VM8 processor which, to all intents and purposes, is a domestically produced Intel 8086.

Cocom, the Co-ordinating Committee on Multilateral Export Controls, restricts the export of most chip technology to the Soviet Union and Eastern Europe. This shadowy, Paris-based body does not publish its own lists; the "Cocom list" is, in effect, only what companies can glean from published material put out by their own governments - in the UK, the Department of Trade and Industry - which get their advice from Cocom. Since the relaxation in the Cocom regulations last July, the DTI says that chip exports will now
be easier (particularly to East Germany, since the West German government will be vouch for their destination), but heavy restrictions are still in force.
The reasoning behind the ban is to prevent the sale of products which could have military uses. Since virtually all electronics components could have military applications, Cocom also decides on how "bundled" the technology is. Thus IBM is able to sell some of its 3090 mainframe computers to the Soviet Union, whilst Intel is still prevented from selling its relatively modest 8080 chips there.

Western microprocessors do get into the Soviet Union and have done so for many years. Countries of the Pacific rim are not bound by Cocom (which includes all the members of Nato plus France, Australia and Japan) and a Soviet can buy virtually anything on the streets of Singapore of Taipei. The problem has not been one of access but of cash; to buy chips this way communist organisations not only took big risks but needed large amounts of hard currency. This has made any kind of volume imports unrealistic.
Since the Soviet Union does not release production figures for microprocessor technology, it is difficult to measure the success of attempts to clone Western designs. However, published Soviet sources show comprehensive copying of TTLS, ECL, CMOS, PMOS, IIL and NMOS technology (see tables). An Intel spokesman confirmed that he had seen copies of the 8080 and 8086; Intel still exports no chips to Cocom listed countries.
East Germany is technologically the most advanced state in the region. State-owned Kombinat-Mikroelektronik boasts the largest chip production of any organisation in a communist country; in the last decade it ploughed half of its R and D resources (a total of 15 billion Ostmarks) into developing a one-megabit memory chip. The huge
> ". . . education has been a priority in these countries and the number and quality of graduates in pure sciences, engineering and mathematics is extremely high."

electronics conglomerate KombinatRobotron has managed to produce small numbers of Intel 80286 clone chips. Intel confirms this, but the says that this product is based on a multiple chip set. Yet these projects painfully expose the inadequacies of Eastern European high-technology industries, since neither processor ever went into mass production.
Most factories are not automated and a lack of cad tools means R and D is very slow. These countries simply do not have the machines to produce up-to-date microprocessors. There is a desperate need for PC processors equivalent to the Intel 80386 for cad applications, yet only in the last few years has volume production of 64 K memory chips begun.
Jeff Grammer, Eastern European manager of Californian-based Chips and Technologies, visited a factory which was part of the Buran Soviet space-shuttle project and now wants to earn some hard currency. He says that most of the processes, including injection moulding, were done by hand. "They may be able to switch over their military technology, but they have a hell of a long way to go," he says.

Computers

It is ironic that IBM, that great symbol of US international influence, designed most of the mainframe computers used in communist Eastern Europe. For

Academy of Sciences BESM-6 mainframe, last of this range of scientific computers, in the machine room of Moscow University.
commercial purposes, the standard designs were Western copies and by far the most widely pirated architectures were IBM's. For the last quarter of a century the communist bloc has been manufacturing clones of Western computers: copies of IBM, Dec, and Hew-lett-Packard designs became the standard for enterprises throughout the continent. The extent of this enormous exercise in technology piracy was enormous.

The cold war has always limited the amount of Western high technology exportable to the Soviet Union and Eastern Europe. Controls in force for most of the 1980s were introduced in 1979 after the Soviet invasion of Afghanistan. Designed as sanctions, these were particularly severe.

Last July, Cocom announced significant relaxations. Cocom developed a scale for measuring computing power called PDR (processing data rate). Before that date, the limit for systems sold to the Soviet Union and Eastern Europe was $78 \mathrm{Mbit} / \mathrm{s}$. So severe was this restriction that only moderately powerful personal computers and very slow larger systems could legally be sold there.

Now that systems up to $275 \mathrm{Mbit} / \mathrm{s}$ can be exported, a debate is now in progress in the Soviet Union as to whether at this stage any of its domestically produced computers are worth saving. In East Germany, Hungary, and Czechoslovakia, market forces are already coming up with the answer: no one is buying inferior copies now they can get the real thing.

Yet until last year, the communist world was effectively cut off from the mainstream of world computing and, somehow, computers needed to be
produced.
Thirty years ago, all Soviet computers were entirely home-grown. In the mid 1950s, there were two centres producing them in any volume: the Academy of Sciences at Moscow University and the Ministry of the Radio industry (Minradioprom). The Academy of Sciences originated the BESM computer (Bol'shaia Elektronaia Schetnaia Mashina - large electronic calculating machine) which was scientific in orientation, while the Ministry produced the Minsk and Ural computers for industrial or routine data-processing purposes.

In the late 1960s, the Academy of Sciences lost much of its influence to the industrial ministries. The BESM line of computers was terminated with the BESM-6 and with it went much of the research and development momentum the project had generated. At the same time Minradioprom, which had no designs to replace the Minsk and the Ural, got top-level backing for what became known as the Riad project, the aim of which was to reverse-engineer the IBM System/360 family of mainframe computers. This range of computers was the Unified Series (abbreviated ES) and over the years the ES
> ". . . the practice of reverse-engineering Western design became normal procedure for all mass-produced Soviet and Eastern European computers."
range was expanded with each major IBM mainframe release. This exercise became so extensive that computer historians Richard Judy and Bob Clough estimate that more ES machines are installed worldwide than any other mainframe family except IBM.
Subsequently, the practice of reverse-engineering Western designs became normal procedure for all massproduced Soviet and Eastern European computers. Only in highly specialised areas like military or space technology did the Soviets continue significant investment in the development of their own designs.
In the late 1960s, the Ministry of Instrument Making, Automation Equipment and Control Systems, (Minpribor), began work on copies of another US company's computers. In 1965 the Digital Equipment Corporation (DEC) began production of the world's first mass-produced minicomputer, the PDP-8. By the mid 1970s, Minpribor had a range of minicomputers called the ASVT, which emulated the PDP-8.
Later, a similar policy was adopted for personal computers: Agat, for example, is a clone of the Apple Macintosh (see table). However, a combination of the huge lead times in Soviet manufacturing and the absence of any domestically mass-produced disk drives, hard disks or fast processors means that the capabilities of these machines are extremely limited. Richard Handyside, UK Managing Director of cad/cam specialists Autodesk, says that no Soviet-made PC yet has a hard disk: "For four years we have been looking for a completely Soviet-built PC to run AutoCad (the company's main cad product) at trade shows and we still haven't found one", he says.

Despite the fact that many Soviet/ Eastern European built PCs are not fully IBM PC-compatible, one rationale for the policy of reverseengineering was to standardise the computer architectures used across the entire communist bloc. Bulgaria became a big manufacturer of mainframes, while the East German electrical and electronics conglomerate Kombinat Robotron became the biggest Eastern European manufacturer of DEC look-alike minicomputers.

Robotron's most recent DECcompatible release is the K-1840 supermini, which emulates DEC's first 32bit computer released in 1977, the VAX 11/780.

The K-1840 super-mini is a source of
both pride and embarrassment to Robotron. On the one hand, the company needs to publicise the machine's capabilities, since it would like to sell software developed on it to DEC users in the West, and on the other hand the company is being forced to field awkward questions about its history.
Unlike IBM, which occasionally sold equipment behind the Iron curtain, DEC has not sold anything to socialist countries for half a decade. Only with the relaxation of export regulations this summer has it begun to establish Eastern European offices. How then do the East Germans explain the existence of the K-1840?

A Robotron spokesman denied that the company had ever illegally acquired or copied the VAX 11/780. "Robotron developed this computer independently. The similarity is created by the use of similar parameters and the functionality of the operating system," he said.

Incredible as it might seem, the communist bloc has always maintained the fiction that these computers were based on domestic designs; developers have even been awarded state prizes for their achievements. Yet the Soviet computing community has long been aware of the origins of the machines they use. Vladimir Butenko, a software developer based at Moscow University, got his first programming experience on an ES mainframe. He says it is rumoured that the technicians dismantling IBM machines. sometimes could not work out what certain parts did. Rather than leave them out they still put them in the ES even though they wouldn't do anything.

It is not possible for Western companies to prevent copies of their machines from being made. Western patents are not enforceable in Eastern Europe. where there is little commercial law. Since there is no concept of intellectual property in the Soviet Union, 99% of all Western software there is pirated.

There is a fundamental flaw in the attitude that catching the West means simply getting hold of its most up-todate technology: the infrastructure in the USSR is too inefficient and too primitive for this technology to be mass produced. In the West, companies called plug-compatible manufacturers (PCMs) also make IBM-compatible mainframes. They have traditionally competed with IBM by making their machines cheaper and more powerful. usually having their clone machines on the market within six months of an IBM product release. In contrast, the

Vladimir Butenko of Moscow University is trying to compete with IBM in the Western database management market, which is already saturated.
time lag for the last generation of Riad machines was over seven years. (See Table)
Moreover, most Soviet computer professionals have little time for the ES computers, which are said to be unreliable, costly and difficult to get spare parts for. When western PCs first began to find their way onto the black markets of the communist bloc, it was not uncommon for factories to buy them as a replacement for an ageing Soviet-built mainframe.
A future possibility for the region is as a centre for computer assembly. Mariusz Jaworski fled his native Poland in 1984 with the secret police on his trail after he had been found illegally importing PCs into the country. He now runs SET, a flourishing business out of West Berlin which imports parts from Taiwan for assembly in a factory in Poland. He says a fully qualified electronics engineer in Poland earns one fiftieth of his equivalent in the US or Taiwan, and less skilled labour is equally cheap.
"East Europe could be the new Pacific rim. When these people know they will earn real money they will work hard for it", he says. PC assembly plants can now be found in most Eastern European countries.

Hungary also offers a few clues as to how the region's computer industry might develop in the future. In the 1960) the premier, Janos Kadar, struck a deal with Moscow. In return for the total suppression of all political opposition he persuaded Moscow to allow him to pursue a more liberal economic policy, which culminated in a major re-orientation of the Hungarian economy in 1968.

As a result, Hungary is further down
the road to economic reform than her neighbours. Private companies have been allowed to function for a decade and legislation allowing co-operatives in 1981 has created a sizeable non-state sector. Not being classified as one of the "commanding heights" of the economy has enabled the computer industry to develop relatively unhindered by state interference.
Hungary is in the early stages of selling PC hardware to the West. Like all former Eastern bloc countries, it has a relatively large number of highly educated engineers who are paid only a fraction of what their equals in the West earn. Budapest-based manufac-

Marusz Jaworski, a Pole exiled for smuggling PCs, runs a West Berlin company importing components from Taiwan for Polish computers.

turers Controll and Muszertechnika have taken advantage of this fact to use a disproportionately large number of engineers in their PC assembly and support operations. Muszertechnika is unique among Eastern European hardware companies; no other organisation has refined its sales in the West to such an extent. The company now has subsidiaries in four non-communist countries and offices in three others. Each operation sells a different range of products and occupies a separate market niche.

Most impressive is the US overseas section. Because Cocom banned the export of all products using IBM's Micro Channel Architecture (MCA) the high-end models of the IBM PS/2 PC range were not sold in Eastern Europe. Yet despite this, Muszertechnika has developed an MCA add on board for the machine. Its M-DCB/2 SCSI controller board enables a PS/2 to act as a NetWare file server. Having found a gap in the market where there is as yet no rival product, the company is selling between 500 and 1000 M DCB/2s every month.

Despite being the largest company of its kind in the country, Muszertechnika's operation is dwarfed inside the huge factory where it is based; the previous occupier was a state-owned scoreboard manufacturer which had gone bankrupt and Muszertechnika was the only company able to afford the rent. The company now makes scoreboards as well as computers.

Muszertechnika symbolises the transformation that is slowly taking place in Hungarian industry. Inside the shell of an inefficient and ponderous state enterprise, a new type of company is growing. Instead of producing high volumes at low quality, it is a high-tech company taking advantage Hungary's strengths: engineering and computing expertise.

Vice President of Muszertechnika. Tibor Hejj, agrees: "We are a small country and small countries can only compete in world markets if they have some added value. and added value is hi tech."

Software

In Eastern Europe there undoubtedly exists an extraordinary reserve of computing talent. After a while you become used to hearing, and begin to believe, that an entire factory was automated using the tiny Commodore64 PC . or that the emergency system at a nuclear power plant is controlled by a twenty-year-old Soviet-made minicomputer.

". . . you become used to hearing, and begin to believe, that an entire factory was automated using the Commodore 64."

Some have staked careers on this, as yet untapped, Soviet resource. Nathan Schor is a Database programmer from Boston with twenty years experience. Last year, he gave up a lucrative living to visit Moscow in search of programs and applications he could sell in the West. For Westerners like Schor, the Soviet Union recreates all the buzz and excitement of the advent of the PC in the late 197()s.

Last March he was on the hunt for anti-virus programs written by young hopefuls at Moscow State University or the plethora of software-writing cooperatives which have sprung up in the capital.
But in the USSR and other centrally planned economies in Eastern Europe there is a crucial difference: the absence of the computer user. The concept of the computer user evolved in the West during the 1960)s when package software was first sold. An entire industry then developed around the production of software which any computerliterate third party could use.

In the USSR and Eastern Europe this never happened; the overwhelming majority of software written is only usable by its inventor. In a world where no market exists and labour is cheap. organisations simply employ a programmer to devise a system for them.

There are exceptions. Robotron has
joined forces with the Berlin Academy of Sciences to develop a production planning application it calls Leitstand, which is a computerised version of the production planning chart used by manufacturing companies. The program, which runs on a PC, schedules each machine job, taking into account exactly how long it will take. A UK buyer of Leitstand, Roger Goldsmith of Oxbridge Communication Systems, says it is possible the concept could become universal. "The traditional approach to production planning software is to produce rough data. Leitstand gives an exact picture of what every machine will be doing," he says.

Yet Robotron, which employed 65 000 people, is now being dismembered. As its various parts are either written off or sold off, old relationships are severed and old channels of investment dry up. Most Western analysts believe that very little of this once huge operation will be worth saving. Tragically. fragile projects like Leitstand may now be lost.
Slousovice, a large agricultural cooperative in Czechoslovakia, has had an independent software department for many years. Using knowledge developed inside the company, it now sells PC-based software for cancer screening and drug design. One of its young programmers, Jiri Kripac, has written an application for AutoCad the cad package from cad/cam specialists AutoDesk. Solid Model allows 3-D shapes to be generated, dissected and viewed in different planes without the need for an additional shapes memory.

This concentration on industrial design is no coincidence. There are strong domestic motivations for concentrating on manufacturing in both Czechoslovakia and the GDR. Prior to

JV Dialogue training centre in Moscow. JVD combines the talents of six Soviet

 programming organisations and the management skills of a Chicago company.
the 1989 November Revolution. the Czech government had a program called CAD 2000 aimed at boosting automation in the countrys factories. the intention being to install 2000 cad workstations by the year 1990. Despite the revolution, many workstations were installed and cad/cam specialist Richard Handyside of AutoDesk says that CAD 2000 was a "qualified success".

The USSR is furthest removed from Western markets. Programmers all get their first experience at universities and most stay attached to these institutions; because of the huge cost of Western PCs, it is often the only way to get access to a computer. Once they graduate. many find jobs as "engineers" or "support staff". In reality, this usually means drawing a state salary for occasionally showing their faces and spending most of their time on personal projects.

Every Soviet programmer has an application he wants to sell, but none has more than an inkling of what this involves. Vladimir Butenko heads a co-operative at Moscow University which developed an operating system now in use at most of the oil rigs in the USSR. Butenko has spent a year developing a database management system which he wants to sell in the West. He puts his lack of success down to the inability of Western companies to recognise a product superior to IBM's DB2 database. For him it was not an issue that the database market in the West is saturated and that the world's largest computer company will spend millions of dollars marketing a product like DB2.

Because of its strong academic bias. the Soviet system also produces many prodigies. Schools and universities regularly hold competitions to find the best programmers.

Eighteen-year-old Ilya Kireenko finished second out of 600 entrants in the Leningrad software competition. He was subsequently recruited by the Novintech joint venture, which is developing Russian add-on products for Ashton-Tates Dbase and Pagemaker from Aldus. In the last stage of the competition, each finalist had to write, debug and prepare documentation for a program in a single day. At a computer show held in Moscow last month (March), Ashton-Tate used Kireenko to check out the more promising software offered them by Soviet programmers.
Programmers the world over have a tendency to be slightly eccentric and the Soviets are no exception. It is a

A press of fascinated Russian programmers at the A.shton-Tate Dbase and Pagemaker software stand in Moscow's Comtek'90 computer show.
programmer's instinctive tendency to lose himself in his work, ignoring the timetable used by the rest of humanity. This is exaggerated in a country where life beyond the computer screen has so little to offer.

A generation of programmers who are now in their late twenties got their first experience using university mainframe computers. Since the number of users who have access to a mainframe is limited, the only way to get practice was to use them at night. The habit has stuck and the Moscow programming fraternity is still largely nocturnal. Peter Kvitek, who took part in the Microsoft debugging session, has his bed next to his terminal. He says the middle of the night is the best time to contact other programmers because you can be sure they will be up working.

The creative but rudderless Soviet programming community is reflected in the structure of the few operational computing joint ventures with Western companies. JV Dialogue is a federation of six Soviet organisations and Management Partnerships International of Chicago. The company has to be defined in terms of its ethos rather than its products: people are selected for their skills. their ideas and their total trustworthiness. Put these elements together and Dialogue believes that the chemistry between the individuals will produce something creative, and ultimately something marketable.

A similar approach is taken by the Euro-Soviet joint venture Interquadro. Advertising Manager Sergey Grib says that the company looks for individuals with initiative and accepts that large numbers of projects will not make any money. He admits that it is very difficult to focus the talents of his prog-
rammers and says the best solution is to send them abroad to instil some understanding of Western markets.
The majority of Soviet programmers, however, can only dream of working for a successful joint venture. For most, the only alternative to a university is to work for a co-operative. An ideologically acceptable alternative to private companies. co-ops occupy the substantial grey area between the state sector and the black market. Most act as computer resellers, buying PCs or components from the West and selling them with an operating system and some simple software.
In a state starved of Western technology, the money to be made from this activity can be huge. Until recently a mark up of 1000% was not uncommon. For a Cocom-listed machine, the profits can be even larger.

For programmers, the co-ops pay better wages than state companies and allow access to modern machines. In return for doing routine repair and maintenance work, they can feed and clothe their families properly and continue to develop their pet applications on relatively powerful processors.

The disadvantage is that almost all forms of contract in the Soviet Union are Linreliable. Alex Martinuk, a Moscow programmer, agreed to write a computer horoscope for a co-op and was given an old Amstrad PC to work on. He says the program took him four months to write but when it was finished the co-op refused to pay him. "Good co-ops are not easy to find." he says.

But he adds that it doesn't pay to argue too much. Because potential profits from Western PCs are so huge, many co-ops guard their stocks with automatic weapons!

Tools for the professional engineer and programmer

80XX in circuit emulation
Excellent sofiware, a truly capable user interface and up to 64 K of emulation memory combine to give an advanced 8031/51/32/52 and 8053 PC based emulator. A large trace buffer, unlimited break pointsand a single step mode make debugging easy and fast. Prices from $£ 685$ to $£ 875$

PAL programming

The best sub-floon PAL programmer available, the PLD|lOO is pin programmable and handles over 1000 different devices. New PALs are supported withour free lifetime update service. The PLDIlOO is approved by most PAL/PLD manufacturers, carries a one year warranty and costs $£ 785$.

PC BIOS support
If you need to have your own PC BIOS - for securily. quality control or just because you need custom facilities - you need these tools. A complete, documented BIOS for AT or XT with source and a 300 page manual priced from \mathbf{f}^{90}

EPROM emulators

The EPR2 is an EPROM emulator with a difference. It has truly excellent support software and a simple but complete user interface that operates with your PC. Your target system can be developed faster and yousave time and frustration. Prices from £ 385

Universal cross assembler
ECAL is a highly polished and well produced cross assembler with a straightforward user interface. It supports all known processors and gives ultra fast assembly supported by more features than packages at ten times the price. There are many hundreds of happy users and the latest release costs only $£ 495$

Processor emulators

We offer emulators for processors from the common to the really obscure - from the 805t to the 77C82. Dedicated development systems are available for the Mit subishi 747 series. the Dallas DS5000, the Phillips 80C552 range and several others. Please call for details

Analogue PC layout
This is the first PC layout pack age specifically for the analogue designer. It gives you the capabilities you really need to turn out first class work. Ideal for microwave (with buill in impedance calculations). HF and high power syslems it costs £820

EPROM programmers

The Expro 40 universal pro grammer can program EPROMs. single chip micros as well as a range of PALs and most bipolar PROMs and is compatible with all PCs and clones. Complete with driver sofiware and interface card the Expro 40 is $£ 485$

Mutek (MSS) Ltd. Frome Road, Bradford on Avon BA15 1LE 02216 6501/2

CIRCLE NO. 127 ON REPLY CARD

. KESTREL ELECTRONIC COMPONENTSLTD.

it All items guaranteed to manufacturers spec.
\& Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	$100+$
Z8530	1.00	0.50	2732A	2.00	1.50
Z80A CPU	0.80	0.65	2764A.25	2.00	1.35
Z80B CPU	0.90	0.70	27C128.25	2.40	1.95
Z80A CTC	0.50	0.35	27128A.25	2.10	1.60
Z80B CTC	0.75	0.55	27256.25	2.20	1.70
Z80A P10	0.60	0.50	27C256.25	2.10	1.60
Z80B (CMOS) CTC	1.00	0.80	27C512.25	3.00	2.60
74LS02	0.13	0.06	6116LP.150	1.00	0.70
74LS32	0.13	0.07	6264LP.150	2.00	1.60
74LS83	0.16	0.10	62256LP.120	3.60	3.10
74LS123	0.18	0.12	$6821 P$	0.70	0.50
74LS125	0.14	0.10	6850P	0.68	0.48
74LS138	0.14	0.09	$8251 A$	1.10	0.80
74LS148	0.30	0.20	$8255 A$	1.20	0.95
74LS154	0.28	0.15	82C55A	1.30	1.00
74LS174	0.16	0.10	6502P	2.20	1.56
74LS244	0.22	0.14	6522P	2.00	1.45
74HC32	0.12	0.09	6551A	2.80	1.75
74HC86	0.16	0.12	LM324	0.16	0.10
74HC132	0.20	0.14	74HCT125	0.18	0.13
74HC153	0.18	0.12	74HCT373	0.30	0.18

All memory prices are fluctuating daily, please phone to confirm prices
178 Brighton Road,
Purley, Surrey CR2 4HA Tel: 081-668 7522. Fax: 081-668 4190

Cad: computer aided destiny?

PC cad originally grew out of mainframe, mini and workstation applications, and the trend has been to adapt cad tools from the more powerful computers to a PC environment. But the close interactive nature of work on a PC has also spawned a range of cad applications which are PC-specific.

First though it is useful to define cad. In mechanical drafting with 2-D, and some 3-D, cad the only advantage is reduction in rote, similar to wordprocessors in the office.

Such programs are more computer aided engineering (CAE) than cad. True cad is only where capture of the design is subsequently used for analysis, for example finite element analysis.

Synthesis: generation of new designs of electronic circuits and systems can be achieved through a number of cad strategies. Designs may simply be automated versions of hand-design methods using explicit mathematical formulae or, at worst, the solution of fully constrained simultaneous equations. Or they can be cad-exclusive, only really practicable with cad, such as Kalman filters, stochastic estimators etc.

A further approach is the optimal system, aiming for optimisation of design against a specific penalty function. Typical examples include filter design, optical systems and aeronautical engineering.

Analysis: performance evaluation is one of the key measures of a successful cad package with interaction allowing

> John Anderson shows that PC cad may give designers all the answers. But trouble looms if we stop asking questions.

designs to be changed and effects evaluated.
Currently, interaction is limited to local domains such as a resistor value in a filter or the addition of a gate in a PLA. But this will eventually extend to a much higher level - ultimately the end product and different design strategies could then be evaluated on their global effects.

Simulation: in many companies breadboard prototypes have been replaced by circuit simulation and relatively low cost manufacture of autorouted PCBs.

Current Developments

On the testing side criteria can now be generated by the cad design process itself, producing, for example, logic test vectors for proving programmable logic systems. Similarly, estimates of circuit or system reliability can be obtained from cad, including aspects such as reduced reliability due to component self-heating.
In life-support and critical-control applications, design correctness can be

determined only by cad and this is an area of expected high growth. At the same time mathematical validation of designs will percolate into mainstream commercial products because it may be the only way to handle a design synthesised, analysed and simulated on computer.

Cad can also have a potent effect on quality. In the simple example of schematic capture, most postprocessors can produce a design-rule check, looking for shorted nets, unconnected input pins and other drawing errors. But with cad, design-rule checks on PCBs are possible ensuring precise correspondence with the schematic as well as checking intertrack clearances.

Key to the future for cad, and in particular its use by the electronic designer, is vertical and horizontal integration.

Some integration has already taken place. Even circuit schematic capture includes several layers of integration; vertically to the PCB layout, through the netlist, and upward through backannotation (transferring PCB changes directly back to the circuit diagram). Horizontal integration includes the bill of materials generated automatically by most schematic capture post. processors.

Pitfalls and education

So in theory, cad is making available the best engineering practice on the desk tops of most designers. But there are drawbacks. A poor engineer is still going to produce a poor result, and without a good "feel" for the engineering to help identify a bad solution, "mistakes" could be converted directly to hardware-remember no breadboard.

Though the underlying science remains unchanged, algorithms of implementation which determine results, are now part of the proprietary cad product and unknown to the user. So output from a cad program should be fully analysed and simulation-tested before converting to hardware.

Will young engineers, confronted with increasingly powerful cad tools, check whether, for example, a resistor value of $1.2 \mathrm{G} \Omega$ is right and how or why the cad program produced that result?

It is worth remembering the story of the optical-lens optimisation cad program which produced a perfectly good optimisation except that one surface of the lens passed right through the other. The engineer who did not spot this design shortcoming actually asked the lens manufacturer to make it!

Databases control progress

For a specified design problem there will be many solutions, each with an associated set of attributes. Using cad it is possible to optimise on any number of criteria. Clearly it is useful to optimise on cost. But this can also be extended to weight, dissipation, speed, availability of components etc.

However, critical to all optimisations is an accurate and comprehensive database for every component, and this could prove a hurdle to cad. Without rigorous adherence to data transfer standards there is little hope for integration, except from a single vendor.

Within certain areas data formats are well defined even if not standard they are convertible, such as the Orcad netlist format or drawing interchange DXF format. But these domains are limited.

PC likely to stay

Improvements in computational power are already available through parallel computing using the transputer, or Risc-based workstations. But no matter how much greater the performance of these machines, it is the ubiquity of the PC which encourages the proliferation of cad programs for it and keeps the price down.

Until a higher performance computing standard is established the PC, or variants of it, will remain the mainstrean cad base (measured by the number of units installed).

From the software aspect there is still plenty of scope for better algorithms. Typically, a small improvement in operation of an algorithm can deliver an order of magnitude improvement in performance without any change in computing power.

Eventually integrated cad packages will provide design engineering tools ranging from hardware definition Ianguages (HDLs) for product definition, system synthesis, and analysis through to simulation and production test.

Components of such systems are already available but integration will only be possible with establishment of a unified inter-process data representation. This might come about through negotiation between vendors (unlikely), committee decree or the establishment of de facto standards by the dominant manufacturers.

But in moving to a terminal-based design and prototyping environment cad must never be shrouded in so much secrecy, in terms of its algorithms, that the engineer will not be able to understand the design limitations.

CAE for digital

> Computer simulation for mixed-signal and analogue asic design assists development and helps engineers to anticipate future problems. Fred Etcheverry discusses the current crop of CAE tools.

analogue/ asics

Adesigner who chooses asics is confronted with a dilemma: to bread-board or to simulate. Breadboarding can usually test the circuit in real time in the system environment, but many asic vendors argue that simulation can anticipate manufacturing tolerances, flag overstressed components and spot worstcase conditions that would elude most bread boards. For example, while Advanced Linear Devices offers its customers a bread-board kit, Plessey has discontinued bread-boarding and has moved to simulation.
By understanding the features of CAE tools, the design engineer will be better able to decide whether to bread-

board or to simulate; whether to prepare the design on resident CAE tools for the asic vendor or approach the asic vendor with a functional block diagram.

Simulation

Currently, analogue design tools have many of the helpful features of digital tools for schematic capture, simulation, layout and test. Analogue simulators permit the designer to interact with the simulation by mouse-manipulated icons and computer-prompted forms over the displayed schematic. Designers may work hierarchically - top down design - simulating complex devices such as op-amps, or descend to the component level for a more accurate detail simulation. Sources and probes can be placed on the schematic at nodes anywhere in the simulated circuit; various analysis modules can be enabled by forms; and the simulation can be stopped, modified and restarted. Examples of such simulators are Analogy's Saber, the Dazix (Daisy/ Cadnetix) VLAB with Apex and Valid Logic's Analog Work Bench (left).

Most analogue simulators are "Spice-compatible"; that is, they pass Spice-like files. Spice (Simulation Program with Integrated Circuit Emphasis) is a pioneer analogue simulator developed at U.C. Berkeley in the 1970s. It uses equation models and can simulate at the device or "detail" level. or it can simulate any model for which an equation can be written, solving the equations using an iterative NewtonRaphson algorithm.
This algorithm, however, contributes to a major Spice defect: often, solutions do not converge and will simulate anomalous oscillation. "Spicederivative" simulators are a form of enhanced Spice which use algorithms that ensure a high degree of convergence. Non-Spice simulators use a completely different method, but are usually Spice-compatible.
Since analogue simulators achieve detail accuracy by massive number
crunching, current simulators permit quick approximations of complex subcircuits by behavioural or functional modek. This is often referred to as "mixed-mode behavioural/detail level" or "mixed level". Analogue simulators permit "system" or "mixed-media" simulation of off-chip devices such as transformers, power supplies, tape heads and even non-electrical chemical, mechanical or hydraulic devices.
A serious problem with Spice is that detail-simulation time grows exponentially with increase in circuit size and complexity. To simulate accurately in a reasonable time, it is often necessary to port analogue simulations from a work station to a mainframe: Spicecompatibility assists interfacing.

CAE tools

CAE tools help the design engineer to develop test procedures during design and simulation. Testing of analogue and mixed-signal and mixed-media asics must be an integral process from design to manufacture. An exhaustive "test vector" cannot be generated; exercising each component will not guarantee success. Intergraph offers Analogue Waveform Editor, which can capture and modify signals from IEEE488 analogue and digital instruments for use as design and test stimuli.

Analogue analysis modules are important tools for layout, testing and analysis of the design's "manufacturability". They allow the designer to improve yield and to become aware of each asic's vulnerability, assisting in the design of test stimuli that will examine the most probable causes of failures.

Statistical analysis modules permit the designer to explore the effects certain compenent tolerances have on the final IC. While running the simulation from the schematic, the designer may tighten some tolerances to increase yield or loosen others that have little effect on final performance, so making costeffective trade-offs.

Parametric plotting modules show the variation of parameters as a family of curves. Sometimes this is called a "what-if?" analysis which allows the designer to optimise circuit performance and keep the operating points well away from the "ragged edge".

Stress-analysis modules flag any components that approach or exceed maximum ratings during simulation. By keeping well within the safe operating areas, the designer can increase yield and long-term reliability.

Mixed-signal analysis

While there are many good analogue CAE tools on the market, integrated mixed-signal simulation is presently a challenge. Essentially, there are two approaches - extended-library simulation or coupled partitioned simulation.

Analogue circuits with a few digital components can be simulated by extending the libraries of present analogue tools to include digital behavioural models. Many vendors include a few simple logic devices in their analogue libraries. Since these are behavioural models, however, they cannot be simulated at the detail level and and may lack sufficient accuracy. Montage, a mixed-signal behavioural modelling simulator from Sierra Semiconductor, runs more than 1000 times faster than Spice. Sierra Semiconductor, however, guarantees that asics designed with certain restrictions will simulate accurately enough to produce successful chips.
Digital circuits with a few analogue components can be simulated by extending their libraries to include piece-wise linear approximation models of analogue components.

Circuits containing large numbers of loosely coupled analogue and digital components can be simulated by coupled partitioned simulators. In this method, the digital and analogue sections of the circuit are partitioned into separate simulators, the schematic being captured by both analogue and digital simulators, so creating separate netlists for each simulator. The simulators then pass signals representing the analogue/digital interface.

This solution has been partially successful for loosely coupled signals. "Loosely coupled" means that the outputs of both simulators are independent of the other, so that outputs fed from one simulator to the other must represent much lower impedance than the inputs that they drive to avoid loading effects; mixed-signal feedback loops are not permitted. Ted Corman, Senior Engineer at Viewlogic, and Michael Wimbrow, a software engineer at MicroSim, report coupling a Viewsim digital simulator with a MicroSim PSpice analogue simulator to create a successful mixed-signal simulation', which, they claim, can handle tight coupling. The advantage of coupled simulators is that they can use existing analogue and digital libraries.

Testing

Not only can CAE tools assist in the development of test criteria during the design phase, but they can even assist in building test capability on the chip. Testing mixed-signal and mixed-media asics requires more complicated testing than either digital or analogue, and an interesting scheme explored by National Semiconductor is to separate the analogue and digital sections of the
chip - hardware partitioning. On-chip multiplexers then permit the analogue or digital connections to be brought out to the existing I/O pins.

According to Kenneth Dubowshi, National asic engineering section head, and Tom Wong, National strategic marketing manager, this scheme permits individual testing of analogue and digital ${ }^{3}$. These multiplexers can also be used to bring out buried nodes if an analysis module during simulation reveals that the node should be a critical test point. I/O pins are conserved by sequencing the multiplexer by an on-chip counter, pulsed and reset from only one pin. A disadvantage of this system is that the whole chip is not tested together, although this can be addressed by using simulation analysis to determine how each partition must perform to ensure total circuit success.

Simulation analysis can be used to specify and reduce the number of critical test signals during the design phase. An interesting scheme, described by Peter Bishop of ES2, is to design a test fixture on the chip ${ }^{4}$ to provide post-fabrication testing in the target system and provide an in-service go/no-go test.

Tests developed during simulation analysis can be interfaced to ATEs While several ATE machines are available for analogue or digital, the mixedsignal test market is presently dominated by Teradyne's A500 line. This may soon change, since LTX, which once dominated mixed-signal testing, is returning to the market with its new Synchromaster ${ }^{5}$. Both companies support CAE interfacing tools such as Teradyne's debugging and control tool, IMAGE. Integrated Measurement Systems (IMS) has just introduced the Logic Master XL, a mixed-signal verifier. An advantage of hardware partitioning is that it permits the use of existing "single-signal" ATEs.

Anyone testing analogue and mixedsignal asics must also consider the effects of the chip's final hardware configuration and field environment. Analogue and mixed-signal asic customers have a tendency to become locked-in to a particular manufacturer who supports their tools and understands their field requirements.

CAE/process interface

There are problems with the interfacing of different vendors' CAE tools and different asic vendors' processes: one is that, while there are digital CAE tool standards, there are few analogue standards; another is that analogue tends to
be more process-dependent than digital. One suggestion to solve the first problem is to expand device-modelling languages now used for digital to encompass analogue and the second problem is now solved by each asic vendor providing libraries specific to its foundry process.

Competition, however, is driving asic vendors to increase libraries, port them to new processes, support transparent second sourcing, interface to customer tools and shorten development time. All of these goals are more difficult for analogue and mixed-signal than digital.

Plessey Semiconductor of Scotts Valley. California, formerly Ferranti Interdesign, is a pioneer in analogue and mixed-signal asic manufacture. In the early 197()s. the company developed Kit Parts, which was a hardware package of subcircuits and discretes used by customers to bread-board circuits. The company would then lay out their customers successful circuits on their Monochips.

According to Phil Welsh. strategic market manager, CAE tools have reduced the turn-round time from the customers' input, which is now a block diagram, to first silicon; design iteration has been significantly reduced. The company or customer develops the design on an Analogue Workbench, using the company's Macrocell library. Complex analogue and mixed-signal designs are then ported to a mainframe Spice compiler and simulated to detail level before being set in silicon.

Phil recommends caution in using third-party tools, since analogue and mixed-signal CAE is more dependent on a particular silicon technology than digital, and not all so-called Spicecompatible tools look the same. Usually, the first silicon performs to customer specifications, but redesign is often caused by a disparity between customer specs and field requirements. Phil emphasises again the need for system-level simulation of the chip's interactive hardware.

The consensus of CAE design engineers is that all major CAE tool vendors will soon have integrated mixed-signal interactive simulators; recent mergers and acquisitions have joined diverse talents. With the development of analogue interface standards. integrated simulators may be constructed from the best of many vendors' tools.

Geoffrey Sampson. a principle engineer at NCR Microelectronics, described an ideal and a "dream" simulator. According to Mr Sampson,

Multiple graphs and graph types on Analogy's Saber display. Left half shows motor shaft speed against PWM output and A-to-D values. On right is a zoomed portion of mixed-mode display.
this ideal simulator would be a true integrated design system for analogue, digital and mixed-signal. It would consist of a Spice-compatible analogue simulator that could interface to existing analogue model libraries, a digital simulator and libraries and a simulation controller to handle the coupling and synchronisation of the simulators. The dream simulator would be able to extract simulation models automatically from devices under test and be able to run in real time while interfaced to the whole system.

The market for integrated CAE tools is even greater than that of mixed-level asics. While the publication Electronics Trends predicts a 40% annual compound growth in mixed-signal asics, an integrated tool set will find additional use in solving clock-rate problems in faster digital. Probably, future tools will be general-purpose mixed-signal.

When one realises that shrimking electronic appliances into asics increases reliability, decreases cost and encourages new markets which simulates new tool development, the future of mixed-signal asics appears awesome.

Exciting new ideas in mixed-signal asics are popping up everywhere. Sierra Semiconductor is placing eeproms and D-to-A converters on asic which can be individually programmed to trim off-sets and adjust op-amp gains ${ }^{6}$. Imagine a programmable asic
with on-chip multiplexers, driven by uarts that receive serial data from a test/program pin. This asic could be one of a kind, or it could be used for field testing before mask production.

Preconditioning audio, by A-to-D signal processing, to compensate for hearing impairments is now a leadingedge in biomed. research. Before 2000, a hearing-impaired person might be diagnosed by their response to a com-puter-prompted audiometer. An asic audio preconditioner embedded in a moulded hearing aid might then be programmed, simulated and tested according to an aural prescription.

References

1. Corman, Tedd and Michael U. Wimbrow. Coupling a Digital Logic Simulator and an Analogue Circuit Simulator. VLSI System Design. February 1988, p. 38.
2. Dubrowski, Ken and Thomas Wong. VLSI System Design. September 1988, p. 60 .
3. Bishop, Peter. Mixed analogueue and digital functionality on a single asic. Electronics \& Wireless World. May 1989, p. 489. 4. Dumn, Peter. LTX. Teradyne in MixedSignals Duel. Electronic News. April 10. 1989 p. 1.
4. Sampson, Geoffrey. An Ideal MixedMode Simulator. VLSI Sysiems Design. November 1988, p. 70.
5. Lindsay, Gordon. Non-volatile digilin asic. Electronics \& Wireless World. May 1989, p. 493.

Use Award Winning EASY-PC

Fast Professional Quality Output - Affordable Price

Write ,'Phone or Fax for full details:-
 Number One Systems Ltd. I

The CAD Specialists
REF:WW, HARDING WAY, SOMERSHAM ROAD, ST.IVES, HUNTINGDON, CAMBS, PE17 4WR, ENGLAND.
Telephone: 048061778 (6 lines) Fax: 0480494042 ACCESS, AMEX, MASTERCARD,VISA Welcome.

The netlist describes to a computer how components which make up a circuit connect together. It forms an essential part of virtually every serious electronics cad package. The diagrain shown here was generated by PADS-PCB.

Arequired logic function is usually described in the form of equations or an interconnection list (netlist) made up of components or basic elements and connections that describes the connectivity of a circuit. The description format is used as input to the database, and verification and debugging techniques such as logic synthesis, simulation and testing can be implemented by passing the netlist from the database to cad software.

For example, in an SDS (structured design system), once schematic diagrams have been created and stored in the database, the logic capture stage can be completed by extracting a netlist from the schematic with the NLE (Netlist Extractor) program. Buses are checked and resolved into individual nets and global signals are processed as needed. The extracted netlist is then written back into the data-base.

However each cad system has its own netlist format, with several formats used in commercial cad systems.

Shaping up the netlist
 Bener

In the input file, a Nor gate is defined before the circuit is described using the three Nor elements.

In the first statement N 1 is the name of the element and the word in the bracket, its type. A and B are input pins of the gate which connect to the input terminals $\operatorname{In} A$ and $\operatorname{In} B . Q$ is the output pin of the gate and is connnected to terminal E, which is input to pin A of gate N3. A single statement defines the connectivity of an element and the statements are in equation

Netlist formats

Themis. This is an event-driven mixedlevel simulator from Prime CAD/CAM its netlist describing a circuit in the manner shown in Fig. 1, with the netlist part of the input file as follows:

ELMT:Nl:(NOR) $A=I N A B=I N B$ $\mathrm{Q}=\mathrm{E}$
ELMT:N2:(NOR) $A=I N C B=I N D$ $\mathrm{Q}=\mathrm{F}$
ELMT: N3:(NOR) A=E B=F $\mathrm{Q}=$ OUTPUT

> Netlists are crucial in linking schematics to circuit processing. Tony Wong shows why format is the fundamental factor.

Fig. 2. Classic example circuit.

Fig. 3. A two-by-four decoder circuit. SDL shows detail but nodes
must be defined.
form, so it is easy to write and debug the connectivity.
Classic. As an example of Classic, from Plessey Semiconductors, consider a circuit consisting of five Nand gates and a clock-signal-input (clk) to two of the gates (Fig. 2)

$$
\begin{aligned}
& \text { A1: NAND2 }[\mathrm{D}, \mathrm{D},+] \\
& \mathrm{A} 2: \text { NAND2 }[\mathrm{R}, \overline{\mathrm{D}}, \mathrm{CLK}] \\
& \mathrm{A} 3: \text { NAND2 }[3, \mathrm{D}, \mathrm{CLK}] \\
& \mathrm{A} 4: \text { NAND2 }[\overline{\mathrm{Q}, \mathrm{Q}, \mathrm{R}]} \\
& \mathrm{A} 5: \text { NAND2 }[\mathrm{Q}, \overline{\mathrm{Q}}, \mathrm{~S}]
\end{aligned}
$$

Each component gate is on a single line. In the first line, AI is the gate and Nand2 is the gate type - a two-input Nand gate known to the circuit compiler. D is the output to Nand gate AI and + indicates that an unused input is connected to the positive supply. In general a gate is described by its name, type and then its inputs and outputs. the latter being defined in the square bracket with the output always in first position.

Comparing with Themis. Classic is simple to understand with no need to define the input/output pin of the gate, avoiding complexity in description. SDL. Figure 3 shows a two-by-four
decoder schematic circuit with the netlist format of the SDL structured design language description (SilvarLisco software) shown as:

NDO = NANDI.Y, .DO;
$\mathrm{N} 1=\mathrm{NAND} 3 . \mathrm{B}, ~ N O T 1 . A, . \mathrm{X}$, NAND4.A;
N3 = NAND2.B, NOT2.A, Y, NAND4.B;
N2 $=$ NAND2. A. NAND1.A. NOTI.Y;
N4 $=$ NAND1.B, NAND3.A. NOT2.Y;
ND3 $=$ NAND4.Y, .D3;
ND2 $=$ NAND3.Y, D2;
NDI = NAND2.Y. .D1;
Netlist statements are based on the nodes (N1,N2,N3,N4) in circuit. Each statement starts from a node and describes all connections with that node, with the two inputs of the Nand gate given as A and B, and input of the Not gate as A. Y is the output for both types of gate.

In the first statement, NDO is an output link connecting output Y of Nand to output terminal DO.

In the second statment, N 1 is a node with four branches: to input B of

Nand3; to input A of Not 1 ; to input terminal X; and to input A of Nand 4. The same format is applied to nodes N2,N3 and N4, describing the circuit in detail, but in addition to defining gate inputs and outputs, also needing definition of nodes and output limits (ND0, NDl etc).

Redboard. Racal-Redac's Redboard PCB design software (Fig. 4) defines

Fig. 4. Redboard format for this circuit is IC4 6 R2 I
inputs and outputs to the element by a number. IC4 is a gate type, recognised by referring to the database and 6 is the output pin of the Nand gate connected to pin 1 of resistor R2. Each element in the connection list describes a connection path in the format:
(name of components (pin number)
The format has two fields. If two components are connected to each other, it is only necessary to specify the name and output pin of the first component and then the name and input pin of the second component in sequence, e.g.

$$
1 \mathrm{C}+6 \mathrm{R} 2 \mathrm{I}
$$

The connection list entry for a connection net with three pins Fig. 5 is

1C4 6 R2 1 RI I
Ella. Figure 6 is an Electronic Logic Language (Ella) network of a bit-level half-adder. The explicit Ella description of this network, called the function declaration is.

```
FN HALF ADDER =
    (bool :inp2)-> [2] bool :
    BEGIN
        MAKE NOT : nl n2.
            AND : al a2 a3,
            OR : ol.
        JOIN (inp1, inp2) }->\textrm{al}
            inpl-> nl,
                inp2-> n2
                (inp1, n2) }->\mathrm{ a3.
                (inp2, nl) }->\textrm{a}2
                (a2,a3) }->\mathrm{ ol,
        OUTPUT (ol, al).
END.
```

First line is the function specification, indicating the half-adder has two inputs and two outputs of type bool. Remainder of the function describes the network. The Not, And and Or gates are

Fig. 5. IC4 6 R2 1 RII
specified in the Make statement, and these gates must already be defined or picked up from a library. Interconnections around the network are defined by a list within a Join statement, for example, inpl and inp2 are joined to And gate al. Output from the halfadder is given in the Output statement, and corresponds to output from gates ol and al.

Futurenet

In some cad systems such as Orcad, a Netlist program is provided which reads either a hierarchy, flat file, one sheet file structure, or an annotation file. The program generates a netlist in a number of selectable formats, such as Spice, Pcad, Salt, and Edif. But there is another format called Futurenet which is now being implemented in some new generation cad systems.

Most netlist formats support special pin numbering conventions. So, if the libraries have pin names as text, they must be converted to whole numbers, depending on the desired netlist format; Futurenet can carry out this sorting. In Orcad, Futurenet has two connectivity output formats, Pinlist and Netlist.
Pinlist is a part-oriented list so that each pin of a part will be listed with the net to which the pin is attached.

Netlist is a net-oriented netlist giving for each net, the part pins that are attached. The following is a portion of a Pad-PCB Futurenet netlist format :-
(SYM, $1-1,2$
DATA, 2, J1
DATA, 120 , JO39 - 24
)
(SIG,,***132114, 1-1,
PIN, 1 - 1, 2, J1, 25, 1
PIN, 1-1, 1, J3, 25, 1
(Sym is the key word for parts data, J 1 is reference designation, and JO39-24 is part type. In this case, these part types must match the ones in the Pads-PCB library. (Sig is the key word for connections data followed by the signal name or bus signal name. In the next two lines, the last two fields give the net node. In this case, signal name 132114 contains the net J1.1, J3.1. This netlist format may require pin numbers instead of pin names in the library source file. But there are options which can be used when generating a Futurenet netlist such as the program to assign a Futurenet-compatible power attribute to power supply pins not in Futurenet format.

Another option is to specify the module's ports (input, output, and bidirectional) in Futurenet format with specific attribute values. In the PadsPCB program, there is the capability to accept a Futurenet format file as an input. The Orcad system can generate a Futurenet netlist output file so users of Orcad can transfer the Futurenet output file to the Pads-PCB system.

The received file will be converted to Pads-PCB via the subdirectory and the Futurenet-in routine in the system.

Users of Schema Capture can also use the Futurenet output facility to transfer Futurenet files.

Futurenet output is limited by available system memory. IC design and fabrication has become increasingly complicated with the move towards to VLSI and to reduce production costs companies are resorting to joint ventures. IC system design may be performed by one company while logic design and cell libraries will be dealt with by others. Similarly, the chip

Fig. 6. Example half-adder described by Ella
could be manufactured in more than one location.

Unfortunately, because over the past few years there has been such a large growth in the number of cad/cae system and workstation packages, dissimilar systems are likely to be employed in each company. This may mean that only limited design tools can be used for joint ventures; making compatible netlist formats essential to make manufacturing more flexible. Although cad tools tave helped speed development, most are poor at accommodating data exchange between different tools. This will only be solved by defining a standard format for data communication between cad systems.

References

1. SDL (The Structured Design Language). Reference Manual Document No. M-0042, Sivar-Lisco, July 1984.
2. Pads-PCB Reference Manual, (FutureNet).
3. SDS (The Structured Design System) Reference Manual, Document No.M-0013, Silvar Lisco, January. 1985.

BOOK REvIEW

Signals: the science of telecommunications, by John R. Pierce and A. Michael Noll. If anyone should experience a need to recommend a book on electrical communications for the completely innocent, then this is the one.

Pierce and Noll have both been at Bell Labs and, probably as a consequence, the book concentrates on telephony and the applications of radio and television that are relevant to the field of communications.

It begins with an historical survey of development, quickly going on to describe the theory and techniques of telecommunications. Chapter 3, for example, provides a clear insight into the theories of Fourier and Shannon, including vocoders. Treatment throughout the book is at a level consistent with a readership of O and A-level students and indeed anyone who is interested in, but not educated in, electronics and the science of communications.

Where necessary, the essential mathematics and core concepts are presented in boxes in the text - an effective device to convey information without disrupting the flow of narrative, since the authors have produced what is effectively the story of electrical communications in an exceptionally readable form. The Scientific American Library, W.H. Freeman \& Co. Ltd, 247 pages, hard back, £16.95.

J.A.V. ELECTRONICS LIMITED THE COMPLETE PCB/SCH CAD SOLUTION Annoucing Protel Easytrax 2

Save $£ 100.00$ now at $£ 148.75$ + VAT Limited Period Only

Protel Easytrax 2 is a very affordable, easy to use precision design tool that generates professionally accurate PCB artwork. With support for a wide range of displays, plus Photoplotters, Pen Plotters, Laser and Dot Matrix Printers all as standard. With pull down menus for ease of use and a comprehensive library of Through-Hole

NEW FEATURES
Autorouting Capability
Curved Tracking
PostScript Printing
24 Pin Printer Support
Imperial and Metric Grids

Devices the designer can easily create new

Easytrax makes PCB layout easy. Concentrate on your design - not on learning complicated program commands.
Also available Protel Autotrax 1.5 professional PCB CAD with full autorouting and Design Rule Checking.

Protel Software available from The Sole UK Distributor
J.A.V. Electronics Limited, Unit 12a Heaton Street, Denton, Manchester, M34 3RG

Tel: 061-3207210 Fax: 061-335 0119
CIRCIE NO. 123 ON REPIY CARD

The MPE POWERLOGIC DEVELOPMENT SYSTEM.

* PC PLUG IN
* Programs Lattice Gals 16V8 and 20V8
* Programs Altera EPLDs-EP310, 320 and 600
* Integrated logic equation assembler
* Easy to install
* Menu driven
* Now with alternative CYPRESS 22V10 option.
* Only £495

EPROM PROGRAMMERS

* PC Plug-in
* Programs EPROMS from 2716 to 27101
* 1 or 4 gang available.
* adaptors available extra for single chip micros
* 1 gang $£ 185.00$

4 gang £225.00
8 gang and production programmers also available 8751 adaptor $£ 75.00$

MicroProcessor
Engineering Ltd
133 Hill Lane Southampton SO1 5AF

TEL: 0703631441

LeBURG EPROM Emulator

* Cuts development time.
* PC Plug in.
* Emulates 2 EPROMs at once
* Emulates all 28 pin types
* Supports 8 and 16 bit bus widths
* Expandable to 32 bit bus width.
*£495

CATALOGUE of more hardware and cross-support software available on request.

Easy-PC is a low-cost PCB schematic and layout drafting program which first appeared last year (reviewed EW\&WW July $1989 \mathrm{pp} .715-718$). Since then the developer, Number One Systems, says it has speeded up drawing, extended the symbol library, and cut the price without losing professional output. The result is a computer-based 2D drafting aid which performs well. But users looking to make large improvements in their quality control and productivity may be disappointed.

The package comes as two 5.25 in and one 3.5 in floppy disks with an At ring-binder manual carefully laid out with tutorials for each program. Also included is a very useful listing, by layout, of the library symbols and a key-code summary sheet which is essential for the beginner.

There is no copy protection and installation should be simple; just create a directory and copy the files into it. In fact I found the software would not run with my EGA card (ATI EGA Wonder), needing a VGA card, though this should be no great drawback as most PC's have adopted V(iA as standard.

Programs and library take about 725 k of disk, with reasonable data compression so that hard disks will not become overloaded with storageintensive bit-image files.
Set-up allows the user to contigure the colour scheme, drawing defatts, and other attributes, though the colour scheme is limited. It allows only three combinations of four colours and is a serious drawback with a PCB having the maximum of eight layers.

Main menu options

Five option choices displayed on the screen include editing a schematic or layout, creating a symbol for a schematic or layout, or exit to dos.

Text or graphics modes are selected automatically depending on what is being displayed. The initial menu and selection of options is in text mode while pictorial information is presented in graphical mode. Switching between modes can be disconcerting as, with most VGA screens, the source synchronisation is momentarily lost causing the display to jump.

Commands are initiated by the left

Drafting made Easy

> John Anderson delivers his verdict on the new cheaper and faster Easy-PC. It's definitely not cad - but it's not bad either.

mouse buthon or return key, and exit by the right mouse button or the escape key. Actions are selected either through the mouse or by a direct key combination.
Using the mouse the cursor is moved to one of three small white squares at the top of the screen, bringing down a

Problems solved?

Number One Systems' technical support is informed and helpful and when assed about some of the problems experienced agreed they had trouble with EGA cards but that these could oormally be resolved by running in CGA mode.

Easy-PC does not produce an, connectivity information such as netlists and this is not likely to be changed. But a new driver for HP Laserjel 2 will be available soon.

The technique for producing powerplanes as ineermediate layers was explained to me, usinc thick tracks to produce an area plane, and then selecting the ajpropriate pad to effect connection to, or insulation from, a laye: It sounds clumsy and I haven't tried it yet.

Conversion from other systems is possible at the Gerber plot file level where a utility, avai able separately, can convert a Gerber plot file to 三asy-PC format.

Number One is working on a new product with connectivity and autorouteing, but this will be an uf market product and as such not competing with this version of Easy-PC.
menu and allowing selection of an item. The method means there is nore active space for drawing, but access is slow. which can be a muisance because the $X Y$ working co-ordinates are lost.

Direct key combinations allow actions to be initiated with function keys. and/or specific alpha-key sequences, and a fast zoom and pan are simply selected by numeric keys 0 to 7 used to set the zoom level.

Speedy and flexible

One of the improvements promised by this latest version of Easy-PC is a much improved redraw speed. In practice even large complex PCBS and schematics are redrawn within a second or two. Panning across the screen is by redraw, rather than copy and part update, which makes the speed of the redraw algorithms crucial.
()It the whole. operation speeds are reasonably fast, though access to the pull-down menus does slow down the rate at which the software can be driven.

Schematic and layout component editing, available from the main menu, allow custom components to be built and the same interface is used for editing components, schematic or PCB
Schematic entry is all but identical to P(BB layout, indeed some items look to have been left over. For example pads placed on the schematic layout turn out to be intended to be used as the wire junction indicator.

There is no bus-type line either, not needed as there are no net labels or generated netlist.

Editing facilities include block move, flip, copy, save and delete (though no undelete) and a high speed repeat facility which allows a track to be repeated at a different place - particu-

a professional-looking board design, as shown in the two lower pictures. The package has been speeded up and reduced in cost since it was first reviewed in July 1989.

Circuit drawing and PCB layout with the Easy-PC. Tof left and right schematics are samples of the sojitware's capability; no bus lines can be drawn and there is no netlist extraction. Nevertheless, Easy-PC does provide
larly useful in laying out a memory plane.

Plotting

The only auxiliary files are associated with outputting to a printer, plotter or photoplotter. PCB files are in a proprietary format rather than ASCII, preventing integration of additional support software to analyse drill details, for example, before plotting.
Circuit diagram plotting is accomplished with a separate program, Easyplot, and a word of warning before using it; make a note of the exact name of the PCB to be plotted. If you don't there is no exit from the program, no way to get a directory to choose the file, with rebooting the only way forward.
With the correct filename, the program gives adequate control over the final output, including rotation and limited scaling, though the speed of output is rather slow

Quality of the result is good with a close correspondence to that presented on screen.

Not true cad?

This software package does little with the PC to aid design. Although schematic capture and PCB layout are integrated in that they are accessed from within the same program, and share the same user interface, they are not integrated operationally.

There is no netlist generation or checking, no bill of materials, and no design rule checks.

Cad packages should improve productivity and overall quality, and though Easy-PC will certainly produce a tidy plot of schematic and PCB, it does not tackle the productivity and quality aspects that are required from PCB cad.

It is low cost, with drivers for HPGL and Gerber, and as a computer based 2-D drafting aid it performs well. But as an introduction to PCB work on a computer it represents little more than electronic tracking tape, offering the professional user none of the productivity and quality advantages possible with PCB cad software

Libraries are comprehensive and
simple to use, but the user interface is quirky, with its white-square pull-down scheme rather than the industrystandard heading-banner.

With regular use its limitations and idiosyncrasies can become irritating, and work against the job that it is attempting to do.

However, its price recommends it to the educational and hobbyist market. If budgets can stretch it is worth locking at alternative products which can autoroute, generate and check netlists and offer the cad facilities that help get that PCB right first time.

Easy-PC, schematic capture and pc layout software costs £98+VAT Minimum hardware is a PC or PC-AT, running dos 2 or later, with a CGA, EGA or VGA graphics card. 512 k is the minimum memory required. Optional mouse, printer, platter and photoplotter. Number One Systems Ltd, Harding Way, Somersham Road; St Ives, Cambs PE17 4WR. Telephone: 0480 61778

The Archer 780 8BC

The SDS ARCHER - The 280 based single board computer chosen by professionals and OEM users.

* Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer, EPROM \& battery backed RAM.
* OPTIONS: on board power supply, smart case ROMable BASIC, Debug Monitor, wide range of I/O \& memory extension cards.

The Bowman 68000 sBC

The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.

* Extended double Eurocard with 2 parallel \& 2 serial ports, battery backed CMOS RAM, EPROM, 2 countertimers, watchdog timer, powerfail interrupt, \& an optional zero wait state half megabyte D-RAM.
\star Extended width versions with on board power supply and case.

Sherwood Datao fystems Itd

Unit 6, York Way, Cressex Industrial Estate, High Wycombe, Bucks HP12 3PY. Tel: (0494) 464264

CIRCLE NO. 1\% ON REPLY C.ARD

HALGYON ELECTRONICS

Computers, test equipment, video monitors, amateur radio gear, oscilloscopes, scientific instruments, connectors, printers, power supplies, communications, disk drives, multimeters, component bridges, frequency counters, signal generators, semi-conductors, integrated circuits, etc

HITACHI CM2073A 30120 RGB LIN 14 MICROVITEC 1456 DGB CGA NEW 14 MICROVITEC 1456 TLLIN BBC Etc NEW MEGGERSMEGGER BRIDGES From SEAVOGOR 281 8.PEN PLOTER A3 KW VESPA Mk2 PSU HBOOK OLIVETI ETV5OO MONTTORS bARCO GD33 14 RGB ANALOGUE MON P4000 \& EP 8000 EPROM PROGRAMMERS EA XENON FLASH COMPLETE IVV UNCASED RACAL RAIT72 GEN COV RECEIVER CONRAC 7211 HIRES RGB MONITOR IT GREEN SCREEN MONTTORS From 24 VIDEO MONTORS B8W SOUND FIOM SA1 RECEIVER 95 KHZ 2 -700KHZ OSCILLOSCOPES DUAL TRACE FTOM OSCILIOSCOPES SINGLE TRACE FOO CREED 2300 PUNCH READER DIAL SIGNAL GENERATORS AF TO 5 GHZ From LCR BRIDGES F'om GALLENKAMP MAGNETIC STIRRER DITO WITH 500 W HOT PLAT ? B8W MONTOR WITH PULSECROSS ETC PLESSEY INVERTERS 50V DC TO 240V SINE 375W Is 5 SONY UMATIC VT2030 - RF

PRINCETON HXO 9 COL MON IBM APPLE ETC §12 T100 103 CARDS tom MUIRHEAD M100 COMMS RX $100 \mathrm{KHZ} \cdot 30 \mathrm{MHZ}$ FARNELL E350 O.350V 100MA VAR PSU 8 is UNSTEAO NEB ACDC EEETRONC METER BATI SCHLUMBERGER 4000 FMCW 300H2.520MHZ perifle data loggefs for NEWBURY TERMINALS S509L NEW NEWBURY TERMINAL 8092 NEH GETRONICS VISA 95 TERMNALS DTHER TERMNALS FTO QUINOX COMPUTERS DEC RXO2M-MD TWIN DISK DRIVES TECTRONIX 834 PROG DATACOMMS TESTER GOERI RECORDING MULTMETER BATT OP ANALOGUE CLAMPMETERS From POLAROIDIBMPALETEMAGERECORDER?2-10 E59 AVO $8 S$ MM2 586 From VARIABLE OUTPUT PSU 5 from ECTRONIX 520 PAL OR NTSC VECTORSC RESISTANCE \& CAPACITANCE DECADE BOXES REQUENCY COUNTERS From UPA CAVIDERM CDS PTH TESTER ST OCTARA 32 XX23 TX215 CHART RECORDER RS610-528

FERPITE F SOLENOIDS. SHADED POLE MOTORS. RING CALL FOR DETAILS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.
 R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG.
5 mins from Tally Ho Corner

Telephone: 081-445 2713/0749

Where office workers have adapted to the new technologies with reluctance, engineers have leapt on to the bandwagon. From the first mechanical and architectural drafting packages, to the most complex electronics simulation software, cad has become an essential part of engineering life.
Trying to give an overview of such a diverse market is difficult and the survey which appears in the following pages is not comprehensive; no survey could be. But it is representative, and will give potential purchasers, a good feel of what is available, and where you can buy it.
So what can you get for your money? At the bottom end of the market come the basic drafting packages - some costing less than $£ 1(0)$. These allow drawing of PCB layouts, or curcuit diagrams, very much as the job might be done manually, but using a mouse and screen.

Routing software, costing anything between $£ 2(0)$ and $£ 15(\%)$, is the next step. The job can be done manually, connecting points on screen, or, in the more expensive packages, automatically, with the computer checking against pre-detined $P C B$ design rules. This type of layout software can often cope with highly complex multilayer and surface mount boards. But beware, even the most advanced workstationbased routers will not give 100% guaranteed completion. All leave a certain amount to the artifice of the designer, who may have to tweak the layout, or detine areas where the design rules can be violated.

Adding facilities for drawing of a circuit on the screen, then having the computer pass it on to the routing software automatically (schematic capture) will probably cost as much as the router itself.

However the PC market is catching on to that word so much loved by the marketeers - integration, meaning that many vendors are now offering suites of software, offering as many features as the user will buy software modules, all designed to work together.

Having designed the circuit diagram on-screen, it makes sense to ask the computer to find out whether it will work before you go ahead and build it; enter the circuit simulator. Spice, the daddy of all analogue packages, weighs in at between $£ 60(0)$ and $£ 30(1)+$ giving some idea of the range of contigurations available, just in this single product. Most recent options include active filter synthesis, and optimisation for arbitrary transfer functions.

With any simulator it is worth think-

Buyer's cae guide

$£ 8000$ or $£ 80$? Andy Gothard looks at the difference.

ing how well the package will model your circuits - will it look at component tolerances, and proluce a worst case analysis? Are facilities like Monte Carlo statistics available?

In many ways, digital simulation is simpler because "on/off" circuits are easier to model. But, once again, it is worth considering the package's ability to cope with worst case timings, feedback loops and combinational logic, which can often cause problems.

One of the hardest jobs is simulating mixed-signal circuits, a task which the makers of Spice say it can now perform under dos. For those who need it , there is also a large range of niche simulation efforts so that, for instance, transmission line effects on digital PCBs can be modelled. To accompany the digital simulator, it is also possible to buy logic capture packages, which will accept inputs in many forms such as gate level description. Boolean equations, and, less often, state diagrams.
Once the electronics have been designed further levels of choice open up because the computer can perform thermal analysis, produce a bill of materials, and cost the job. In a fully integrated system, the design suite will talk to the machinery producing the PCB (plotters, drills, and so on), the packaging, the asics and PLDs.
There is obviously a lot that has to be weighed up before the right CAE packages can be selected to do the best job in a particular application. When you've waded through all these decisions, you can start thinking about designing your own products..

Acquisition-PC

Newly-released signal analysis and acquisition system.

ALS-View

Menu-driven, high performance tool designed to eliminate PCB re-plots.

Ares/Ares Autorouter

Advanced Routing and Editing Software. New high performance PCB design. EMS support is more or less essential for complex
multilayers (640k soon runs out). Very powerful interactive routing facilities and object-avoiding ground-planes.

Boardmaker

Rules-based PCB design package for manual or autorouting. The router is gridless and uses the design rules and track widths to determine route placement. It is fully re-entrant and will simultaneously route on up to eight layers. Extensive design rule checking is employed to maintain user conlidence and ultimate manufacturability.

Codas II

Highly integrated, interactive package for designing and simulating feedback control systems. It includes time domain, frequency domain and root locus design environments, continuous and discrete time (computer control) systems and non-linear capabilities.

Curvef

Polynomial curve-fitting designed for use with ECA-2. Transfer curves of components can be simulated by the

			\&	会	发	发												亳
Fastcad Easyad			$\begin{aligned} & £ 599 \\ & £ 125 \end{aligned}$	PL／640	Various	Drawing Schematic								CNC	－		－	
OrcadVST	25	11	5995	Dos2．01DDMAT／640	OrcadMOD OrcadPLD OrcadFCB	Digital cracuit simulation					M	B		\bigcirc				D
OradPLD		1		As above	VST，MOD，PCB，SDT	PLD design						K						D
OradPCB	25	1	£1495	As above	VST，PL，SDT，MOD	PCB layoutrouter	B	－	B	>8	B	B		CNC AW				
OrcadSDT	25	1		As above	PLD，VST，PCB，MOD	Schematic capture （PCB）					M	B			－		－	
PSpice	24		$\begin{aligned} & £ 59510 \\ & £ 3100 \end{aligned}$	Dos2．1640	Schern cap packages．Hiwire	Analogue，digitala and mixed sig simulation					B	B	－		\bigcirc			ADM
Linesim				PC		Transmission line andysis					M	B						ADM
Promise		1		PC	PSpice	Cravitoplimiser					B	B						A
ALS－View				PC	PSpice	Craut oplimier					B	B						A
ALS－View		1		PC	PCB	PCB plot					M	B		AW				
Solo 1400	23	7，15	£12k	ATDOs3．2coprocest		Integrated asic design package					B	B		\bigcirc			－	AD
Roting ROS40	27	17	£8617 upwards	286	Elmat	Circuil design parts lists， BOM，elc											－	
Protel Traxstar	26	9		ATEMS	Aulotrax Schematic	Autorouter	A		B	＞8	M	B						
Proler Schematic			£499	AT／640	Traxstar Autortax	Circuit desschem cap					M	B			－		－	
Protel Easytax2			¢199	AT－MAC	Schemaic	PCB designiouter	B	－	B	＞8	M	B		$\begin{aligned} & \text { CNC } \\ & \text { AW } \end{aligned}$	－			
Proel Tramiew			$£ 349$	AT		Edits Gerberfles \＆ aperture table					M	B						
Protel Autotrax			$¢ 999$	ATHD	Traxstar Schematic	PCB layoutrouter \＆ schem capture	B	－	B	＞8	M	B		$\begin{aligned} & \text { CNC } \\ & \text { AW } \\ & G \end{aligned}$	－		－	
Hiwre	31	16	¢695	6400052.1	PSpice Smatwork Orcad Schema Cadnetix	Schen design，PCB hayoul，roviter	B	－	8	>8	B	B	－	$\begin{aligned} & \text { CNC } \\ & A W \\ & G \end{aligned}$	－	－		
Smarwork			£695	512 Dos 2.1	Hiwire Orcad PSpice	PCB layout，router， 2 W	B	－	T	$1-2$	B	B		$\begin{aligned} & \text { CNC } \\ & A W \\ & G \end{aligned}$	－			
Schema			32	640D0s3．2ATNGA	Autocad	Schem capture，PCB layout，simulation，PLD	B	－	B	>8	M	M		$\begin{aligned} & \text { CNC } \\ & \text { AW } \end{aligned}$	－		－	M
PCS	6	6	$£ 100$	380\％coproc support		Design o process control systems												
Codas－11	6	6	$£ 475$	512 coproc support		Feectback control systs												
EE Designer	2	2	£4000	XT／AT386	Maxrouse PSpice	Fully integ electionics design，sim	B	－	B	>8	B	B		$\begin{aligned} & \text { CNC } \\ & \text { AW } \end{aligned}$ G	－	-0	－	
Acquistion－PC	11	11	£960	PC		Signal anal and acquisi＇n												
Boardmaker	19	19	$\begin{aligned} & \text { £295 ro } \\ & \text { £495 } \end{aligned}$	XT／640HD／Herc－VGA		PCB design，orvter	B	－	B	>8	M	B		$\begin{aligned} & \text { CNC } \\ & \text { AW } \end{aligned}$				
vsDesigner	28	4	£419	PC／640－EGAM		Real lime CASE tool					M	B						

Notes：
Frgures in column five refer to memory requirements．

polynominal facilities allowing fast building of device models. Graphics editor with cursor controlled co-ordinate index.

Design Engineer

Lower cost schematic-capture package leading on to a full range of electronic, mechanical, electrical and publishing packages running on Intergraph's Unix Clipper workstations and servers.

Easy-PC

British design-award winning PCB cad program providing for circuit and schematic diagrams. Exceptionally functional, quick to learn and use, fast zooming and planning. Providing output to pen plotter, photoplotter, NC drill. Technical hotline support. Resolution $0.01 \mathrm{~mm}, 30$ routing layers, blind and buried feed-throughs.

ECA. 2

Frequency and transient response of nonlinear circuits with up to 500 nodes. Worst case and Monte-Carlo analyses. Can be invoked from within Vutrax.

EE Designer

Fully integrated system for electronics design. The entire suite is written by Betronex, ensuring smooth interfaces between schematics, simulation, PCB layout, manufacturing outputs etc.

Fastcad-2D/Easycad

Fastcad and Easy cad were written by Mike Riddle, originator of the best selling general purpose cad package, Autocad. Easycad is a true subset of Fastcad which provides multiple interactive windows and a wide range of cad functions. Add-in packages can be seamlessly added. Both packages support DXF and can export to Pagemaker, Ventura and Wordperfect 5.

Fastfoto/Fastmark

Image storage and retrieval system, with fast powerful searching on a wide range of user-defined criteria. Input via video, scanner, etc. Suitable for documents and photographs, storage of thousands of compressed images on optical disk.

Hiwire

Integrated design package with rip up and retry autorouter, schematic design and PCB tayout.

Isis Supersketch

Circuit drawing package. Since its database operates at a higher level than a general purpose cad program (ie it deals in components, wires, terminals etc, rather than simple geometric objects) it is far quicker and easier to use. Features automatic wire routing and object oriented 21) drawing.

Isis Designer

No-nonsense schematic-capture package

Modern schematic capture packages provide a bill of materials and automatic component annotation. This screen from Isis Designer.
designed for use with most popular EDA software. Intelligent diagram editor speeds diagram entry, and Bom report is configurable. Component finder works across the whole design. Designer + adds two systems for hierarchical design, automatic annotation and database-driven ASCII data import facility.

LCA-1

Digital simulation of circuits described by netlist, schematic or Boolean expressions. Propagation delays and their fast/slow uncertainty bands are fully modelled and may be asserted as a class (eg 4000) Series or TTL LS). Normal graphical output can be stored in text files to provide ATE test patterns.

Linesim

Predicts transmission line behaviour in digital circuit boards and cables. Intended for optimisation of traces and terminations, and technology choice before layout begins.

Orcad/VST

Allows designer to try out circuits before fabrication. Feedback and combinational logic supported. Includes stimulus generator, design tinker and compiler.

Orcad/PLD

Programmable logic device design tool. Creates detailed logic from high-level descriptions, eg Boolean equations, procedural state machine programs, truth tables or schematics.

Orcad/SDT

Uses a hierarchical organisation of large worksheets by partitioning them into smaller parts - over 200 hierarchical levels. Can create and store over $1(0)$ keyboard macros. Schematic data can be transferred as netlists in more than 30 formats.

Pads-PCB

Suite of software providing schematic capture, PCB design, autorouting including rip up and retry, push and shove. Standard outputs. Three levels are provided; Pads Designer ($£ 695$), Pads PCB ($£ 1895$) and Pads $2000(£ 7995$)

Pads-2000

Full FCB design and layout, auto-place, auto-route, push and shove interactive router plus drill, plot and DXF interfaces. $1 \mu \mathrm{~m}$ database resolution. Full Ecoprocessing with Pads Logic schematic capture as front end.

Pads-Logic

Logic capture system which interfaces to Pads-PCB and other cad, logic simulators and circuit analysis packages. It uses a true multi-sheet database and advanced hierarchical capability.

PCB Eagle

PCB design system handling board layouts up to 64 -in, at a resolution of 1 mil. and with up to 255 layers. The easy-to-use graphics intertace includes many user-configurable features and autopanning, continuous zoom, DRC/ERC are provided. Numerous plotter and printer drivers (including Gerber) included at no extra cost.

PCB II

Simple, very low cost, PCB drafting. Operation similar to Supersketch, but since each was designed for a specific task, the overall result is better than one package designed for both PCB and circuit drafting.

PCS

A realistic simulation of typical process plant under three-term control. It incouporates many features found in the

COMPUTER AIDED ENGINEERING

real world, making it ideal for illustrating controller operation, tuning and plant hehaviour

Plot-D/Print-D

Output utilities allowing ECA-2, LCA-1 and Curve-F to produce high quality graphics output on either HPGL plotters or Laserjet and Epson dot-matrix printers.

Promise

Fast electronic circuit optimiser. Frequency response can he tailored, transient characteristics enhanced or DC conditions fixed in a few minutes.

Protel Traxstar

Grid-hased costed maze autorouter with full rip up, re-route and smoothing capability Works with Protel Autotrax files.

Protel Schematic

Streamlines drafting operations, improving productivity design proctice and documentation. Used on its own or with Autotrax and Traxstar to form a powerful PCI) cad system. including circuit design checking. Evaluation packs available

Protel Easytrax2

Newly released entry-level low cost package. Now includes autorouting, curved tracking, postscript, imperial and metric grids and 24 -pin printer support. Also available on the Mac.

Protel Traxview

Utility program for editing and viewing Gerber files and Aperture tables. Includes panelisation.

Protel Autotrax

Version 1.5 now includes curved tracking.
imperial and metric grids, additional routing strategies, Postscript printing and improved external polygon fill. Also available on the Mac.

Pspice

The Pspice family includes the circuit analysis and circuit synthesis packages. The circuit analysis package contains the Pspice circuit simulator and its options, and the circuit synthesis package contains the filter synthesis product, filter designer. Pspice is the only simulator to run both analogue and digital processes concurrently under dos. It has virtual memory capacity. filter synthesis and an optimiser for arbitrary transfer functions.

Rotring RDS40

Generation of circuit diagrams and associated documentation. Automatic cross-referencing, wiring lists, terminal diagrams, parts lists, hill of materials project costing, ident, lahels and cabinet layout

Sauna

Provides 21) and 31) thermal analysis. Typical applications include temperature and heat flow mappings on heatsinks, PCBs and within enclosures. Natural and forced convection models are supported. No prior knowledge of heat transfer is required, but for advanced users. a more tlexible finite element version, Sauna-MS, can be supplied.

Solo 1400
Design asies for manufacture in 1.7 or $1.1 \mu \mathrm{~m}$ cmos. Includes comprehensive cell libraries, including analogue to allow design of mixed analogue/digital devices.

Smartwork

The original low-cost PCB artwork software, for entry-level two sides PCB artwork, using netlists from most popular schematic software

SpiceAge

Provides electronic circuit simulation for design and education by performing $D C$. AC. time-dependent and Fourier analyses on linear and non-linear circuits using programmahle signal stimuli or imported waveforms stored on file. This popular program now has a licence hase exceeding 67(K).

Tanspag

Netlist translation utility that allows popular schematic capture programs to produce a Spiceage description file. Takes as input a Tango compatible netlist. Thus programs such as Isis, Protel, Schema, Orcad. Tango and Boardmaker now have commonality with Spiceage.

Vutreca/Vutralca

Allows the Vutrax schematic editor to download data to either ECA-2 (analogue) or LCA-I (digital) simulators. Facilities include default tolerancing, automatic model building and full tri-state open collector modelling with wire gate synthesis.

Vutrax and S\&A

Provides a common circuit description. Feeds analogue and digital simulators and at full-feature design suite that includes 3-D visualisation and CNC output.

1. ARS Microsystems	7. Gothic Crellon	13. Number One Systems	West Hampstead	Irvine	30. Thermal Solutions
Doman Road	3, The Business Centre	Harding Way	London	CA92718	3917 Research Park Dr B-1
Camberley	Molly Millars Lane	Somersham Road	NW6 10S	USA	Ann Arbor
Surrey GU15 3DF	Wokungham	St ives	071-435 2771	+1714.7703022	M1 48108
0276-685005	Berks RG11 2EY	Huntingdon			USA
	0734.776161	Cambs PE17 4WR	19. Tsien	25. Orcad Systems	
2. Betronex		$0480-61778$	Cambridge Research Laboratories	1049, SW Baseline Surte 500	31. Wintek Corp
Wells Yard	8. Intergraph		181A Huntmgdon Road	Hillsboro	1801 South Street
High Street	Delta Business Park	14. Picdar	Cambridge CB3 00J	Oregon	Lafayette
Ware	Swindon	Woodland Court	0223.277777	USA	IN 47904-2993
Herts SG12 9AS	Wuts SN5 7XP	Soothouse Spring		+1503-640 5007	USA
0920-469131	0793-619999	St Albans	20. CAD Software		+1317.742-8428
		Herts AL3 6NR	119, Russell Street	PC ENGINEERING NON-DISTRIBUTING	
3. CADSoft UK	9. JAV Electronics	0727-47488	Littleton	MANUFACTURER LIST 2	
PO Box 5	Unit 12A Heaton Street		MA 01460		32. Auto Metrix
Kilmacolm	Denton	15. Rapid Stricon	USA	26. Protel Technotogy	Fordorook Business Centre
PA13 4JI	Manchester M34 3RG	Rapid House	+1508-4869521	GPO Box 204	Marlborough Road
Scotland	061.320 7210	Denmark Street		Tyechno Park	Pewsey
0505872338		High Wycombe	21. CADSoft Computer	Dowsings Point	Witshire SN9 5NU
	10. Labcenter Electronics	Bucks HP11 2ER	Rosenweg 42	Hobart 7001	067263650
4. Computer Solutions	14, Marrıer's Drve	0494-26271	D-8261 Plerskurchen	Tasmania +6102 730100	
Canada Road	Bradford		West Germany		
Byfleet	B09 4JT	16. Riva	+49-8635810	27. Rotring UK	
Surrey KT14 7HQ	0274.542868	3. Bentley industnal Centre		430, Strathcona Road	
0932-352744		Bentiey	22. Computamation Systems	Wembley	
	11. Laplace Instruments	Farnham	4. Lake Street	Middx	
5. Export Software	Masters House	GU10 5NJ	Leighton Buzzard	HA9 8QP	
23, St Georges Road	Bexton Road	0420-22666	Berks		
Cheltenham	Knutsford		0525-851583	28. Sage Soltware	
Gloucester GL50 3DT	Chestire	17. SSi Microcad		Maryland	
0242.222307	WAI6 OBU 0565-50268	Fordbrook Business Centre Martborough Road	23. ES2 Mount Lane	USA	
6. Golten and Verwer		Pewsey	Bracknell	29. Tatum Labs	
33. Moseley Road	12. Loyd Doyle	Witts	Berks RG12 30Y	3917 Research Park Dr. B-1	
Cheadle Hulme	Russell House	0672-63000	0344-525252	Ann Arbor	
Cheshtre	Molesey Road				
SK8 5 $\mathrm{HJ}^{\text {d }}$	Walton on Thames	18. Those Engineers	24. Micro SIM	USA	
061-485 5435	Surrey KT12 3PJ	106A Fortune Green Road	20, Fairbanks		

Consumers switched to video for home movies rather than the 8 mom cine camera because, unlike video tape, film is expensive, can't be reused and the results can only be seen after processing. Yet in still-picture photography film reigns supreme

Now electronics companies are challenging that position with still video cameras (SVCs) claming 10 offer similar advantages over conventional tilm photography.

They will record pictures on a reusabte magnetic disk; and shots can be viewed on a ΓV set or even sent down a telephone line or put into a computer. But there are drawbacks; SVCs are expensive at the moment (most domestic versions cost around $£ 5(0)$, picture quality is much poorer than film, and there is a battle over a still video format.

However, the first consumer SVCs went on sale in Japan at the end of 1988, and in December 1989. Canon launched the lon, the first (and at the time of writing, only) European domestic SVC. Recording is on to still video floppy disks in these systems.

Still video floppy

The still video floppy is a 47 mm (2 in) single-sided disk which looks like a

Table 1. Still video floppy specifications

Data capacity	1.5Mbyte (uniformảtted) 0:8Mbyle (formatted)
Recording density	64 kBPI (kilobits per inch)
Jacket dimensions	$60 \times 54 \times 3.6 \mathrm{~mm}$
Weight	8.7 g
Disk diameter	47 mm
Total disk thickness	$40 \mu \mathrm{~m}$
Magnetic layer thickness $4 \mu \mathrm{~m}$	
Magnetic coating	Metal powder
Coercivity	1250 Oersteds
Remanence	1800 Gauss
Total number of tracks	52 (1-50 video, 52 cue, 51 blank)
Track capacity	16Kbyte
Video tracks radii	15.1-20mm
Cue track radius	14.9 mm
Track width	$60 \mu \mathrm{~m}$
Track pitch	$100 \mu \mathrm{~m}$

Still video still here?

miniature version of a standard 3.5in floppy (sce Fig. 1). Each disk. which stores up to 50 shots, sits inside a hard plastic jacket with an erasureprevention tab which can be broken oft to prevent accidental recording. The disk is composed of a polyester base topped with a metal powder which provides a very high information packing density (see Table 1).

Still floppy disks are designed to store a mix of amalogue video, FM audio and digital data, stored on-dish as a series of concentric tracks (Fig. 2). Tracks are read by a fixed head com-

History

Back in 1981 Mavica (MA.gnetic VIdeo CAmera), the first SVC unveiled by Sony, looked like a conventional 35 mm SLR film camera, with pictures recorded on a magnetic floppy disk. But Sony used the prototype to persuade other companies to join forces and develop a standard still video system, so in February 1983, 20 electronic, film and photographic companies formed the Electronic Still Image Video Camera Committee.

By May 1984 the group had grown to 32 companies and the basic specifications for a video floppy system (VFS) were agreed. These stated that the image quality was to be acceptable both for consumers watching on-screen pictures, and for printing.

That same year, professional photo-
graphers tested SVCs at the Los Angeles Olympics and several companies, including Sony, Fuji and Canon, began marketing professional SVCs costing thousands of pounds. In April 1985, Fuji introduced its TV-Photo system in Japan. Photographers shot pictures on conventional film which was processed in the normal way. But the images were transferred to a still video floppy and viewed on a TV screen, so that photographers could choose the best.
In April 1986, the committee, by this time numbering 42 companies, agreed on optional sound and digital recording systems and in July 1988, it announced an improved "Hi-Band" version. Sony's Mavica, the first still video camera.

posed of amorphous silicon, gliding across the disk's surface to read, write or erase tracks. The head has two gaps $1(0) \mu \mathrm{m}$ apart to allow the recording or playback of two tracks simultaneously.

Recording the video signal

All SVCs use a CCD image sensor. with most composed of around $4(0)(0) O$ pixels. For comparison, a Polaroid print resolves around 10 million pixels and a 35 mm frame some 20 million pixels. The VFS video floppy system (see History) video signal is analogue and is thus split into 525 -line (NTSC) and 625-line (Pal/Secam) systems. NTSC still video recordings won't play on Pal equipment and vice-versa. In NTSC SVCs the disks spin at 360)(rpm, in 625 -line systems $30(0)$ rpm, corresponding to one field period of the respective systems. In Pal this gives the outermost disk track a relative writing speed of $6.28 \mathrm{~m} / \mathrm{s}$ and the innermost track a speed of $4.74 \mathrm{~m} / \mathrm{s}$.

The video signal is composed of a luminance signal and two colourdifference signals ($R-Y$ and $B-Y$), the three signals frequency modulated and multiplexed on to a single track. Luminance signal peak white is 7.5 MHz and sync tip 6.0MHz, giving a carrier deviation of 1.5 MHz (see Fig. 3). The two colour difference signals have carriers with centre frequencies of 1.2 and 1.3 MHz and deviations of 0.7 and 0.5 MHz respectively.

To maintain picture quality during demodulation, the VFS system uses a line sequential recording method which records the two chrominance signals on alternate lines - a method also used by the Secam TV system. Standard VFS format has a horizontal resolution of around 350 lines (see Table 2 for format comparisons), though with some cameras it may be possible to remove the chrominance carriers and

Fig. I. Appearance of the VFS floppy disk

Fig. 2. Still video track format
extend the lower luminance sideband to produce monochrome pictures with a slightly improved resolution.
VFS format offers field and frame recording modes, with field recordings occupying just one track, so that up to 50 field recordings can be made on one disk. The penalty is a loss of vertical resolution.

In the frame mode, two tracks are used for each recording, giving better picture quality, but reducing the num.

Fig. 3. Standard VFS frequency spectrum
ber of stored pictures to 25 . Some SVCs offer only a field mode, while others give users a choice. Still video floppies can store a mix of field and frame recordings and users can record, erase or reuse specific tracks.

Hi-Band VFS

Hi-Band VFS (Hi-VFS) improves picture quality by raising the frequency of the luminance carrier and widening the carrier deviation to $7.7-9.7 \mathrm{MiHz}$ (Fig. 4). This improves the signal-to-noise ratio by around 2 dB and increases luminance bandwidth from 4.5 to 6.5 MHz , giving a theoretical horizontal resolution of over $50(0)$ lines. To improve picture quality, some companies, like Fuji, have produced Hi Band cameras with CCDs of around one million pixels.

Hi -VFS is one-way compatible in that Hi-Band cameras can play standard recordings, but ordinary VFS cameras can't play Hi-Band recordings. Some Hi-Band cameras offer both recording modes, although Canon's Ion only makes Hi-Band recordings. Unlike the Super VHS and Hi-Band 8 mm video systems, which require specialised tape, conventional still video floppies can be used for both standard and Hi-Band recordings.

Fig. 4. Hi-Band frequency spectrum
Data recording
It's also possible to multiplex data on to the video track along with the video information, allowing text or numbers to be added to the picture. Four groups of data can be added.

First, field/frame identification - this uses two bits which are inserted at line 8 and are used by an SVC to identify the type of recording. Second, the track number uses seven bits inserted at line 28 and is used for locating shots. Third, the date uses 19 bits inserted at line 76 and can be in the form of year, month, day, or hours, minutes and seconds. Last, the user's area is inserted at line 158 and provides 27 bits in the field mode and 54 bits in the frame mode. This last allows the manufacturer to add particular information.

Table 2. Format comparison (Pal)

1:272. 1:544 and 1:1088. These give around 5 s of 10 kHz sound, 10 s of 5 kHz sound and 20 s of 2.5 kHz sound respectively. After compression. the signal undergoes D/A conversion before being further processed. For playback, the reverse process is carried out.

SVCs offering an audio facility may offer an automatic or manual mode. In the auto mode, the sound is recorded about 0.5 s after the shutter is depressed, while in manual, sound can be added several minutes after the shutter has been released. Some still video decks will allow audio dubbing too.

Data track

The VFS specification also includes provision for data-only tracks. Figure 6 shows the track format. Each sector is composed of 4096 bytes of data and 1699 bytes of error correction. For
such as the exposure value of the shot, fast shutter speed, recording mode and so on. Because this information isn't standardised, a disk recorded on one SVC may not display all of its information on another make of camera.

The data stream phase modulates a 204.54 kHz carrier and data can only be added during a video recording - it can't be dubbed on afterwards.

Audio recording

An optional soundtrack for still video pictures might at first appear odd, but it's worth remembering that most still images are destined to be viewed on a TV set rather than as a hardcopy print. Research carried out by still video companies has found that some people find it a strange experience to watch silent still pictures on a TV screen.
The audio facility allows users to add narration, music or sound effects. Since the video tracks are already hard pushed to store luminance, chrominance and data signals, and because of the possibility of cross modulation, the audio tracks are recorded separately. This means that up to 12 frame or 25 field recordings can be accompanied by sound.

To record sound in the equivalent of one disk rotation (i.e. 1/5)s for Pal), time-base compression is employed. The recording process is shown in Fig. 5. The NR compressor is a $2: 1$ companding noise reduction system, and for time compression the signal is digitised and stored in a ram. Compression ratio is the difference between the read-out rate and the actual length of the sound period, and there are three ratios available in the Pal system:

Fig. 5. Audio recording with still video
 companies were displaying domestic SVCs and talking about a big European launch in 1989. But that was before Fuji unveiled a rival digital still video

Fig. 6. Track format for data
system that may well supersede VFS. The Fuji SVC recorded shots on to a 16Mbit scram card. around the size of a credit card. Toshiba later announced a similar system and the two companies joined forces to form the Fuji-Toshiba IC card system.

The IC system offers a number of advantages over VFS - the cameras have no moving parts, which makes them more reliable; the digital images are not confined to specific TV standards: it allows casier interfacing with computers: picture quality is better: and there is no loss in quality when images are copied or transmitted.

Most industry observers felt that the IC system wouldn't reach the market for several years at least, but just before Christmas 1989 Fuji launched a professional IC card system in Japan. The system comprises a camera, memory card, player and DAT recorder used as a file system for storing over fon still images on a two-hour tape. (Incidentally, Sharp and Aiwa have also produced DAT still video storage systems.) The IC camera has a 40 o(o) pixel CCD and its pictures are claimed to have a horizontal resolution of over $5(k)$ lines.

The memory card stores 12 field or six frame images digitally compressed on to an array of 18 individual 1 Mbit sram chips (9Mbit cards are also) available). Fuji and Toshiba say that improved compression systems should eventually increase the number of stored images to 50 .

Main drawback to the IC card system is its cost - the Fuji system costs over $£ 20000$ and each card is over $£ 200 \%$. But its supporters saty that as memory prices fall, it will become a viable commercial system. At the very least, the IC system has caused most VFS supporters to postpone European laun-

ION, Canon's Hi-band-only SVC with RF unit, AC coupler and battery charger.
ches and probably persuaded some consumers to hold off buying an SVC. At present. most still video companies are consigning their efforts to the Japanese, American and professional markets.

Still video applications

By using a still video transceiver, still images can be sent down telephone lines around the world. This was used to good effect during the unrest in China last year. When the authorities cut off conventional communication lines, some photographers sent their

RC -170 from
Canon, a compact autofocus SVC which can take 20 pictures per second
pictures by telephone. And because still images can be put into a computer (Canon's lon stands for Image On-line Network), supporters claim it's ideal for desktop publishing and organisations that may need to store numerous images, such as advertisers, the police. hospitals and businesses.

Outlook

Eighteen months ago, still video was launched with great fanfare in Japan. but sales have been disappointing. This is because there are several drawbacks to the system. First. despite being promoted as a television product, users want hardcopy prints to carry around. What's more, print quality nowhere near matches 35 mm film, or even 110 film.
Most video printers use ink-jet or dye-thermal transfer systems which are very expensive. NEC recently launched a "low priced" home video printer costing fl300, but still video needs a network of High Street printing shops. A still video camera just launched in Japan incorporates a black-and-white printer and doubtless well see the still video version of the Polaroid camera.

There's no doubt that still video faces an uphill struggle to establish itself on the domestic scene, but then the Japanese companies like nothing better than a good challenge.

THE ORIGINAL SURPLUS WONDERLAND!

MONITORS

MONOCHROME MONTTORS

THIS MONTH'S SPECAALI

rohere has nover been a deal like this onel Brand mpanking new \& boxed monitors from NEC, normally selling at about $£ 140$ hese are over-englneered for ultra ellabilly. $9^{\prime \prime}$ green screen composite inpu able highlow impedance input and outpu daisy chalning. 3 trom comtrols and 6 at rear. Standard BNC sockets. Beautifil high contrast screen and attracture case with carrying ledge. Perfect as a maln or backup monitor and to
quantity users) $£ 39.95$ each (D) or 5 for $£ 185$ (G) CALLFOR DISCOUNIS OWHIGHER QUANTIIESI Zenith KVM-1240-EA brand new \& boxed 12^{-}amber fat screen with optional swivel and ill base. Sunfex filter with dank tilnt.
Standard ITL PC compatilele. 18 mhz banowidth. Very aftractive Standard ITL PC compatible. 18 mhz banowidth. Very aftractive state of the art" tapered grey case. Standard 9 pln D plug (supplied) on 1 metre cord and malns cord terminated with IEC connectior. 240 volts complete with operations manua. An ab
solute gith at: $\quad E 59$ (D) $10 \varepsilon 500$ (G). Swiveltilt base $£ 4.95$. Very high resolution, tully cased 14° green or amber monitor with non glare screen and swivel/Allt base. The very latest technology at the very lowest pricel Fully compatble and
plug compallbte with all HBM PCs and clones fitted with a high res Hercules or equivalent card Enables supert graptics and resolution, al at a give away price. Has mary extra leatures Including aux $+5812 v$ DC outputs io power at least 2 disk dives,
If your PC power supply is getting hotl Supplied BRAND NEW and boxed. State whether amber or green screen required Amber $\frac{.799}{}$ Green Whput. Adjustable tor bilt. Requires 12 vdc. Brand new and boxe
 Motorola M1000-100 5° black 8 white compact chassis measurapplicabons. Accepts standard composite or ind vidual H 8 syncs. Needs 12 vic at only 0.8 a. Some units may have mino screen blemishes. Fully lested with 30 day guaramee and tu data Fuly cased as above in attractive moulded desk standin swivel. Dim $12 \times 14.5 \times 26 \mathrm{~cm}$.
JVG 751 ultra compact chassls monitor for 12vdc 0.7 a . Difm 11 $\times 14 \times 18 \mathrm{~cm}$. Simpte DIY data 1 diduded to convert to composite uldeo input Full data. BRAND NEW 20^{-0} Block \& white monitors by Arlek, Cotron 8 Natonal. A solid state, fully cased monitors ideal lor all types of AV or CCIV
applications. Standard composile video inputs with imegral audio amp and speaker. Sold in good used condilion- tully tested with 90 day guarantee. COLOUR MONTTORS
Decca $16^{-8} 8$ budget range colour monitor. Features a PIL tube beautithl teak style case and guaranteed 80 column resolution teatures usualy seen only on colour monitors costing 3 times
our pricel Ready to connect to most computers or video outputs. our pricel Ready to connect to most computers or video outputs.
75.2 composite input with inegral audio amp \& speaker. Fully ested surplus, sold in little or hardly used condition with 90 . Fuly ull RIB guarantee. Ideal for use with wideo Telebox ST, and other audio visual uses. \quad Ce9(E) 3/E275(G) HL-DEFAMTION COLOUR MONTIORS
Brand new Centronic 14" moritor for BM PC and compaibles at a lower than ever proel Complelely CGA equivalem. H-res bancwidth. A super moritor in attractlve style moulded case. Full 90 day guaramee. Only $\mathbf{1 4 9}$ (E)
$20^{\prime \prime} .22^{\prime \prime}$ and 26° AV SPECIALS
Supertly made UK manufacture. PIL all solid state colour monitors, complete with composite video 8 sound inputs. Atrac tive teak style case. Periect lor Schools, Shops, Osco, Clubs.
In EXCELLENT litte used condilon with tull 90 day guaramee
$20^{\prime \prime} \ldots . . £ 15522^{\prime \prime} \ldots . £ 17026^{\prime \prime} \ldots . . £ 185$ (F)

COMPUTER SYSTEMS

TATUNG PC2000. Big brother of the lamous Elisteln. The resolution Green 12^{*} moritor. Sculpured 92 key keyboard and plimh unt contalning 280A CPU and all controt cricuits. PLUS integral TEAC 5.2580 track double sided disk dirves. Generous ther teatures include dual 8^{*} IBM format dilsk drive suppon Serial and parallet outputs, full expansion port. 64 K ram and ready to un sottware. Supplied complete with CPM, Wordsta
and Basic. Brand new and covered by our famous 90 day guaramee and backup. Normal price of this urit Is over §14001

V22 1200 BAUD MODEMS

We got a tremendous buy on further stocks of this popular
Mester Sy 1200 baud modem - we can now bring them to you at hat laed edvertioed price \& Fully BT approved urit, provides standard V22 high speed data comm, which at 120 ops, can save your phone bill and connect time by a slaggerng 75% U Uitra silm 45 mm high. Full fealured with LED status indicators and remole error dagnostics. Sync or Async use; speecth or data switcilng: buill in 240 y mains supply and 2 wre connection to BT. Units are in used but good condtilon. Fully tested pror despatch, with data and a full 90 day guaramtee. What more can you a
and at tivs pricell
ONLY $£ 69$ (0)

A replacement or backup keyboard, switchable for IBM PC ANALOG CONVERTERS

PC-XT or PC-AI. LED's for Caps.Scroll \& Num Locks. Standard 84 keyboard layout. Made by NCR lor the Englls sh US mankets. Absolutely standard. Brand new 8 boxed witt, manual and key lemplate for user slogans on the function keys. Aftractive beige, grey and cream inish, with the usual retractable legs standard 5 pin DiN plug. A beautful clean piecce of manutac turers surplus. What a deall

I

 IBM IBM grey with very atiractive motted finish and "dicky" solid foel Engllshlayout and $£$ sign. Green
CALL FOR DISCOUNTS ON HIGHER QUANITIESI

FLOPPY DISK DRIVES

BARGAINS GALORE!
NEW $51 / 4$ inch from $£ 29.95$!
Massive purchases of slandard $51 / /^{\circ}$ drives enables us to (unless stated) are removed from otlen brand prow ail unit and are fully lested, allgned and shipoed to you with a 90 day and are tully lested.aligned and shipeod and accept the standard 34 way co
$E 29.95$ (C TANDON TMICO-2A lBM compatble OS
TANDON TM101-4 80 Irack DS
GANON.TEC etc. DS hall height. State 40 or $801 \quad E 49.95$ (C) TEAC FD-55-F.40-80 DS hali height. BRAND NEW E79.00 (C) 31/2 INCH BRAND NEW AT E19.95II
Never betore seen price for a $31 / 2^{2}$ drive. Standard size believe
track SS, nun from $+58+12$ vidc with standard power connec CHOOSE YOUR 8 INCHI Shugert 851 double sided refuntished \& tested untsublionl M2re9-63 double sided switchable hard or soth sectors BRAND NEW SPECIAL OFFERSII
Duel $8^{\circ \prime}$ drivee with 2 megabyte capadty housed in a smart case with bullt in power supplyl

Only C 499.00 (F)
End of Hne purchese ecoop! Brand new NEC 02246 8" 8s megabyte of hard disk storagal Full CPU control and industry standard SMD Intert ace. Ulira hi speed transfer and access time leaves the good old ST506 intertace standing. In mimt condition

MAINS SUPPRESSOAS \& FILTERS

hoxburgh SDC 0212 amp mains RFI fher. Has an extra wide requency range of 150 khz to 30 mhz . Can type, sotder lug connection. Quality manulactured to BS 613 standards. Dims Qoxbu x Dims $1-1 / 2^{\circ} \mathrm{D} \times 1$ 1325. Similar to above rated at $1-1 / 2$ amps. Suppreselion Devices SO5 A10. Extra compact general purpose suppressor. Plastic moulded case with single boll fixing and snap connectors. Rated at 230 vac 5 amps. Dims 1-3/4i 1-1/8W $\times 5 / 8^{\circ} \mathrm{H}$...........E3.05 or 3 for ع. 10 (A) 10 for E28 (B) Benling-Lee type $L 21273$ amp mains RF1 filers. Has a bullt in rans cable (English coding), and a three pln miniature non-re versible socket and a mating plug. 10 go to the equipment. Ideal tor those who are bugged by RF interlerence. Very compact

RECHARGEABLE BATTERIES

LEAD ACID

Mant
 nance tree eepled long the. Type a300 12 volts 3 amp hours

2 volte 12 volts 3 amp /hours
6 volts 3 amphours
2 volte Cemre tapped 1.8 amp hours. RFE

$813.95(\mathrm{~A}$
E
$8.95(\mathrm{~A}$

Quality 12v 4ah cell pack. Originally made for the Techricololo udeo company. Contalns 10 GE top quality D ricad cells in smail robust Brand new.
E19.es(B) equipment. Brand new.
Ex equipment NICAD cells by GE. Removed from equipmen

SPECIAL INTERISST Advance 61207 pin A3 plother HPGA. New

Trto $0-18$ vdc bench PSU. 30 amos. New
DEC VAX11/750 inc. 2 Meg Ram DZ and ull documentation, in brand new condtion DEC VAX Station 100
DEC LS/02 CPU board
Calcomp 1036 large drum 3 pen plotter
Thuriby LA 160 B logic analyser
Tektronics R140 NTSC TV test signal standard
Sony KTX 1000 Videotex system - brand new
ADOS 2020 VDU lerminals - brand new
Trend $1-9-1$ Data transmission test set
Trend 1-1 Oata transmission test sel c225.00(E) E250.00(E)

ADA-200 analog to digital and convarter pack. od full of features: Interfaces to input 8 output by sottware selec
tion: Inegral Input/output fitters and address decoder, input pre-amp; over-level delecter, trigger signal delecter dircuit expansion avallability and more. Inout level 25 mv to 50 vpp Max. sampling frequency is 44 khz and input gain variable to puter allowing pur, allowing conversion of analognals to digital data for processing by the computer plus conversion back to analog
signals. The 26 page manual supplied includes data on the correct connecton to various CPU's Including the 8080, Z-80, 6800,6502 and 6809 lamilies plus data and schematlcs for use modification of VO fller cut-off Prequencies. Complete with 50 way rocon cable and edge connector to go to the computer and POWER SUPPLIES atated. Meny types ranging from 3v to 10kv always in stock. Fine OP-9610 20 watts switch mode. $+5 v$ @ $2 \mathrm{a} .+12 v @ 0.1 \mathrm{a}$, 12v@ $0.1 \mathrm{a} .5^{\prime \prime} \times 3^{-} \times 1-1 / 2^{\prime \prime}$. $\mathrm{E} 15.95(\mathrm{~B})$ ane AC-8151 40 watts. Switch mode. $+5 v$ @ 2.5a. +12v@ 2a. 12v@0.1a.6-1/4 $\times 4^{-} \times 1-3 / 4^{\prime}$. E19.95(B) Greerrate 19ABOE 60 watts swich mode. +5 v @ $6 \mathrm{a}, \pm 12 \mathrm{v}$ @ Conver AC130. 130 watt higrade VDF spec. Switch mode. +5 V Booher $13090 . \pm 12 v @ 6 a .27 \times 12.5 \times 6.5 \mathrm{cms}$ E49.95(C) $6 a,+12 v @ 25 a-12 v @ 0.5 a,-5 v @ 05 a$ E150.00(E) Farnel G6/40A. Swith mode. 5 v @ 40a. Encased E95.00(C)

3 Incl
$31 / 2$ inch
4 inch
10 inch
62 mch
92 mch
4 inct

COOLING FANS

THE AMAZING TELEEOX!

Converts your colour monitor into a

QUAUTY COLOUR TVII

Branc new high qualty, fully cased, 7 channel UHF PAL TV tune sysiem. Unit simply connects to your TV aerial socket and colour udeo moniltor turning same into a fabulous colour TV. Dont worty imegral audio amp for driving a speaker plus an auxillary output lor Headphones or HI FI system etc. Many other features: LED Status Indicator, Smart moutded case. Mains powered, Bullt to Suppiled BAAND NEW with full 1 year guaramiee
Teleton. ST for composite video Input monitors.........E2.95(B)
 overseas verston piease call. SECAMNT SC not available.

BRAND NEW PRINTERS

TEC Sterwither Model FP'500-25 dalsywheel printer renowned or tis rellability. Diablo type print mechandsm giv Dlabto/Qume command capability. cpl In Pica, 163 in Elite. Friction or tractor leed incluoing \mathbb{C} sign. Fort and nibbon Diablo compatible DED DPGO1 miniature ball point pen primer ploterer mechanism with ull 40 characters per ilne. Complete with data sheet which inctudes dircuit diagrarms for simple driver electronlcs...... £40(B) centronics 150 erres Aways known for their rellabily in cps with 4 forts and cholco of interfaces at a tantastic pricel E $205150-4$ Serial up to 9.5° paper, tan fotd fractor...............E $\mathbf{E} 0.00$ (E)
 $\varepsilon 50152-2$ paralle up to 14.5° paper, tractor or $s /$ sheet..... 140.00
\& 375 CALL FOR THE MANY OTHERS IN STOCK. Visit our Shop - Technical help always on hand
plus many un-advertised specials. You can buy a
colour television for as litle as £z9! Come and
join the gang at 215 Whitehorse Lane!

LARGE QUANTITIES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE - CALL NOWI
DEFLHT'

ALL ENQUIRIES
$081-679-4414$
Fax-081-679-1927
Telex- 894502

(0) HITACHI OSCILLOSCOPES

The highest quality. The Hitachi name is synonomous with quality and reliability and is backed by an extended warranty on every model

The keenest pricing. With prices starting from $£ 319$. VAT for a 20 MHz dual trace model, the price-performance ratio can not be bettered

The largest range. Totallirig 26 models the Hitachirange covers every bandwidth from 20 MHz to 200 MHz plus DSOs to $200 \mathrm{MS} / \mathrm{s}$
And immediate delivery. We can supply any model from stock. Our sales engineers can arrange an on-site demonstration. Ask for full details of the Hitachi range

Thurlby

Thurlby-Thandar Lid., Glebe Road, Huntingdion, Cambs. Tel: (0480) 412451

DSOs - a low cost alternative from Thurlby

If you already have an oscilloscope and are looking for a high performance DSO, look at the DSA511 and DSA524 digital storage adaptors. Both offer exceptional performance and versatility at very low cost - from $£ 445$.

- $10 \mathrm{MS} / \mathrm{s}$ or $20 \mathrm{MS} / \mathrm{s}$ sample rate, 1 K or 4 K stores
- 20 MHz or 35 MHz storage bandwidth
- Dual Channels, 2 mV per division sensitivity
- Full digital control and waveform transfer
- Multiple save memories, waveform processing,

There's much more to say, so send for the full data

Thurlby

Thurlby-Thandar Lid., Glebe Road, Huntingdon, Cambs. Tel: (0480) 412451

Custom metalwork - good and quick!

Plus a wide range of off-the-shelf products including:

- Nine sizes of standard 19" rack cases

New "clam" case in any depth

- Eight-card 1U Eurocard case
- Audio, video and data patch panels

Rack blanking and ventilation panels
All use the unique IPK extrusion, giving strength and rigidity with no fixing screws in the front panel; cases can be tailored to your requirements Rack mounting strips, cable trays etc. from stock.

IPK Broadcast Systems
3 Darwin Close Reading Berks RC2 OTB Tel: (0734) 311030 Fax: (0734) 313836

MOP SERIES II NOW PROGRAMS MORE DEVICES

- STILL from only $£ 195$!
- Up and running in minutes
- High speed algorithms
- Low cost upgrades
- 12 Month Guarantee
- $2 \& 4 \mathrm{Mb}$ devices
- 8-pin serial EEPROMs (X2402, 9306 families)
- Programs 24/28/32/40
 pin EPROMs, EEPROMs and Micro-controllers
- Adapters for other devices scheduled for imminent release include 28 (both Zilog and SGS), the 68705 family and TI 77C82
- Easy to use menu driven software for MS-DOS included in the price with much improved pop up help facility in colour
- Uses Serial port so requires no expansion slots - cable included in price
- Money Back Guarantee if not completely satisfied
- Designed, manufactured and supported in the UK

We also sell Bipolar and Gang Programmers, EPROM Emulators and Erasers, and a universal cross-assembler for IBM PCs and compatibles.

Write or phone today for Free Information Pack Tel: (0666) 825146 Fax: (0666) 825141
\qquad MIOP ELECTRONICS PARK ROAD CENTRE NIALMESBURY
WILTS
SN16 0BX

Reducing crossover distortion

Several disadvantages dog reduction of crossover distortion in Class B amplifiers where a separate output transistor is used for each direction of current. The classical solution is to use an amplified diode - a potentiometer with its three terminals connected to the three leads of a transistor - as a voltage source hung between the bases of the two output transistors.

As a result, these transistors continue to operate fairly well during crossover. But this arrangement needs initial adjustment, which can go wrong, and the circuit hovers on the brink of thermal runaway. Preventing runaway can involve an over-large heat sink. However before looking alt alternative methods of reducing crossover distortion we should consider its measurement.

Measurement methods

Harmonic analysis is not a good method of displaying crossover distortion, because it conceats the causes. Better results are achieved by filtering out the fundamental, or by using the subtraction method

> Michael McLoughlin presents the undistorted facts on why the amplified diode has had its day

To use the latter, attenuate the amplifier output until it is reduced to the size of the input signal, and display the difference. For example, in Fig. 1, comnect R_{8} to F, find the voltage difference between A and G, and muttiply by 11 - the amplifier gain.

Whatever method is used, the distortion is more easily revealed if the output signal is smatl. So it seems sensible to take all measurements with an output signal of IV peak. (IV RMS is a nuisance on the oscilloscope!)

Fig. I. Basic Class B amplifier without the amplified diode. At switch-on A jumps to 2.0 V and F rises rapidly to 2.7 V , leaving quiescent currents as marked (assume a median gain of 300 for the BC109).

104 Hz seems to be a sensible test frequency, as crossover distortion is worse at higher frequencies. At an alternative of 20 kHz many loudspeakers offer an impedance of more than twice their nominal figure, reducing output current and crossover distortion. So the standard signat for measurement should be a sinusoidal output of 1 V peak at 10 kHz . All oscillograms in this article follow this standard.

Trace A. Unmodified distortion: The output from point F (Fig. 2 top trace), clearly shows crossover distortion. All further traces rely on the subtraction method as described above and for Fig. 1 this gives trace A. In fact the crossover distortion of trace A appears with some fundamental, due primarily to the imperfect marching of the potentiometer (R_{8} and R_{9}) to the amplifier gain. But the crossover distortion is easy to pick out and draw, because of its shape and its agreement in time with the jumps of the top trace.

Fig. 2. Crossover distortion. The duration of any spike measured at 10% of its height is marked in us. The top trace shows output volts. The other traces align in phase.

Fig. 3. Class B amplifier with low crossover distortion (trace E). High gain in the feedback loop means leads must be kept short to avoid 4 MHz oscillation; lead $B B$ is particularly sensitive. The $47 n$ and $2 \Omega 27$ also help with stability. While experimenting display output from F to check for HF oscillation.

Trace B. Single diode: A voltage jump of 1.4 V or so is needed at DE to effect crossover. This jump can easily be halved by inserting a silicon diode between D and E, hatving the amplitude of the crossover distortion

Trace C. Negative feedback: The normal way to reduce distortion is to increase feedback. Remove the feedback network $\mathrm{R}_{5}-\mathrm{R}_{4}-\mathrm{C}_{2}$, and join Tr_{1} emitter directly to F. This provides 100% voltage feedback to the input transistor. The voltage gain of the amplifier is lost, but that is easy to

Fig. 4. Base volts required for collector current, with a typical BC109C. The line keeps the same slope, but may rise or lower by up to 10 mV with a different BCI09C, a different type of silicon transistor, or a $5^{\circ} \mathrm{C}$ change. Germanium lowers the line by about 450 mV .

make up with an earlier ctass A stage
The logic of the subtraction method is now easy to follow. In terms of volts F should follow A about like a slave; any difference is the distortion. So crossover distortion now appears as change in $\mathrm{Tr}_{1} \mathrm{~V}_{\mathrm{BE}}$. That can be measured by using a difference amplifier (AC variety) attached at A and F (attach its positive input to the left of F). Result is a ten-fold fall in crossover distortion.

On trace C the crossover distortion appears as two spikes. These derive from capacitor C_{3} in Fig. 1, there to reduce HF gain, preventing the HF oscillation that would otherwise occur. At high frequencies the transistor delays translate into large phase lags. turning negative into positive feedback.

With C_{3} in position Tr_{2} base acts like a virtual earth at HF so Tr_{2} voltage gain falls at 6 dB per octave

But C_{3} also prevents points DE from rising rapidly in voltage. Rapid tise at DE pumps current down through C_{3} into Tr_{2} base, inhibiting rapid rise at DE. So Tr_{2} collector is slew-rate limited by C_{3}. That will delay crossover, causing distortion as follows

Trace D. Reconnecting the 6dB capacitor: Suppose a sinusoidal voltage is applied at A. and it has risen to 0 V . Now DE should jump upwards instantly by 0.7 V , but because of C_{3} the points DE take time to effect that jump. While the jump is taking place F stays at 0 V , but the signal at A continues to slew upwards, causing a growing error between the volts at A and those at F. When the jump at DE is finally completed. the crippling current flowing down through C_{3} suddenly stops. The circuit reverts to type, with F slavishly jumping to the new voltage at A .

To summarise: a ramping voltage
difference opened up between \mathbf{A} and F, and then was suddenly chopped. That difference is the crossover distortion and explains each spike: a ramp which is suddenly chopped.

On trace C the chopping is slower than the ramp.

Once the cause has been traced, the spike can be tackled. Disconnect the upper end of C_{3} from D, and connect it instead to F. Normally F follows D about, so C_{3} upper plate is effectively connected as before. But during the crossover jump, F is stationary. The upper plate of C_{3} no longer follows the rapid voltage change at Tr_{2} collector and no disturbing current is now pumped down through C_{3} which has been disconnected from the action.

But feedback is also disconnected during the DE jump, so C_{3} is not needed to cut HF gain.

Reconnecting C_{3} in this way yields a further thirty-fold reduction in spike amplitude.

Trace E. Revised amplifier with the changes so far proposed yields the amplifier in Fig. 3. Trace D shows the behaviour of $\operatorname{Tr}_{1} V_{B E}$ during the cycle. The sinusoid visible is merely the $V_{B E}$ needed at Tr_{1} to drive the amplifier through its signal cycle (see below).

So the crossover distortion for the modified amplifier can easity be separated out. trace E. At this low level a new type of distortion appears; a square wave exactly out of phase with the signal cycle. Remembering that the influence of a spike is proportional to its length, then the spikes can now be ignored. The square wave is the residual crossover distortion.

To tackle the square wave, its cause must first be identified. It comes from transistor $\mathrm{V}_{\text {BE }}$, as shown in Fig. 4. From the formula in Fig. 4 one may readily deduce in sequence three results. Firstly, to multiply collector current by a factor F, the $\triangle V$ needed on the base is $60 \log _{10} \mathrm{~F}(60)$ is usually written for $59, \Delta V$ is in $m V$)

For small increases of collector current (F near 1) it then follows that $\Delta \mathrm{V}$ may be calculated instead by assuming constant V_{BE} and a resistor $\mathrm{R}=25 / 1$ in series with the emitter. I is emitter current in $m A$.

Finally deduce that 1 mV extra on the base increases I_{C} by 4%, a rule that may be used up to about 5 mV .

The variations listed in Fig. 4 do not atter the slope of the line, and therefore have no effect on these formulae. which are quite accurate, of the 2% variety

To study crossover refer to Fig. 3. Under quiescent conditions Tr_{3} is on (to supply Tr_{1}) so E is at 3.4 V . For crossover E must drop 0.7V to 2.7 V , so current in R_{6} increases from 5.6 mA to 6.3 mA which is a 12.5% increase requiring 3.1 mV extra on Tr_{2} base. Tr_{1} must provide an extra $3.1 \mu \mathrm{~A}$ to drive up by 3.1 mV the PD across R_{3}. and of course Tr_{2} base will take an extra $2.3 \mu \mathrm{~A}(0.7 \mathrm{~mA} / 300)$. Tr_{1} must provide an extra $5.4 \mu \mathrm{~A}$ in all. 0.8% of its present current, requiring 0.2 mV step on its base.

That step of the input signal brings about crossover, and has no effect on the output. So the step is lost, duly appearing as distortion in trace E.

It is not much harder to show that a total swing of 2 mV is needed at Tr_{r}, base to drive the amplifier through the signal cycle, traces C, D and F. But note that the battery fell to 7 V under the load. When +IV (the upper peak) is applied to the speaker. E has risen to 4.4 V , so 2.6 mA flows in R_{6}. ImA of this is needed by Tr_{3} base so Tr_{2} passes just 1.6 mA .

Next work out $\mathrm{Tr}_{2} \mathrm{I}_{\mathrm{C}}$ max; then use the F formula. .

Trace F. Current source: Point E in Fig. 3 needs to drop 0.7V for crossover. and 0.7 mA extra from Tr_{2} will produce that drop in R_{t}.

Fig. 5. Current source to replace R_{6} in
Fig. 3. The left circuit was used, but right circuit is better when there is significant dissipation.

But suppose R_{6} is replaced by the 5 mA current source shown in Fig. 5. Then when $\mathrm{Tr}_{2} \mathrm{I}_{\mathrm{C}}$ rises quite slowly from just below 5 mA to just above 5 mA , point E must instantly drop through 0.7 V . The difference between I_{C} and 5 mA is base current for the transistors, and it must now change from one base to the other, requiring that 0.7 V instant jump at E . Tr_{2} enforces this rapid jump by extracting charge from point E.

Previously 0.7 mA change in Tr_{2} current was required for crossover. Now
hardly any change in Tr_{2} current is required, so hardly any voltage will be required at Tr_{1} base either. and the square wave of trace E will disappear.

Trace F is the crossover distortion when the current source of Fig. 5 is inserted (C_{3} may need to go to $33(\mathrm{pF}$). In the figure no jump is apparent but on the oscilloscope a jump of about 0.01 mV can just be seen - a twentyfold reduction on trace D. Two small short spikes are left; the first of these shows there is a short time when the circuit stops lifting the output voltage.

A well known type of current source is the bootstrap, joining BB of Fig. 3 by a capacitor to the mid point of R_{6}. But here that is worse than useless because during crossover BB voltage is not moving. Tying the centre tap of R_{6} to BB would actually impede the voltage change taking place at that centre tap. In this type of circuit any current source should be active.

Aural evaluation

Crossover distortion can most easily be heard if the signal is a low frequency sinusoid, say 200 Hz , especially if the distortion can be removed at will by switching in an amplified diode. But the real issue is whether it can be heard on programme material of speech and music.

Listening quite carefully to IV peak speech/music with the circuit of Fig. I. reveals a quiet irregular hiss, which stops when the signal falls silent.

The hiss is more audible when a solitary male is singing - a low frequency signal can produce more harmonics within the audio band - but is less evident when he is talking. The jumps are at no fixed frequency. With Fig. 3 no crossover distortion at all could be heard.

When Fig. 3 is supplied with programme material. the 0.2 mV steps of trace E are still visible via the difference amplifier, bobbing about in an irregular fashion. But can they be heard?

Listening to them in isolation, at a constant repetition rate, at a frequency to which the ear is sensitive (such as 1 kHz , with the speaker connected via 100k to a signal generator delivering 2V p-p square wave at this frequency. in a quiet room, then the answer is yes - if one's ear is within one foot of the speaker.

But this test is ridiculously severe. The frequency has been held constant, the genuine signal which always accompanies crossover distortion has been

Fig. 6. Audibility test when the 5 mA current source replaces R_{6}. Components chosen by experiment to show just the spikes from trace F of Fig. 2.

Fig. 7. Crossover distortion. Margam used an output of 6 V peak at 2 kHz , and Quad 405 output was IV RMS at 13.2 kHz . At crossover these signals have respectively 1.2 and 1.9 times the slew rate of the standard IV peak 10 kHz signal. The above graphs could without criticism be allowed to exceed trace F by those factors.
removed, and the ear is unnaturally close to the speaker.
So for most purposes Fig. 3 might be sufficient. It already includes two improvements in the 100% voltage feedback and reconnected C_{3}.
If R_{6} is replaced by a current source, crossover distortion reduces to two short pulses. (trace F). Pulses of that shape were simulated by the circuit of Fig. 6. In a quiet room nothing could be heard, unless a 2 in diameter speaker was used. and pressed hard against the ear. Even then the sound was on the lower limit of audibility. No-one would hear such sounds at a normal distance from a speaker, and against the background of genuine programme material.

John Vanderkooy and Stanley Lipshitz displayed the crossover distortion of the Quad 405 current dumping amplifier, by using the filter method ${ }^{1}$. More recently, Eric Margam of Ljubljana has displayed the crossover distortion of a typical class B amplifier, using the subtraction method ${ }^{2}$. Their results are shown in Fig. 7. Tak ing height and
duration into account the Quad 405 spikes do 28 times the damage of trace F, and Margam's spikes are 167 times worse. Squaring the amplitudes to compare power would give much more spectacular figures.

R_{4} is a menace

Imagine a diode dropped into Fig. 1 between D and E. During crossover F is stationary, and 0.2 mV change at A is required to produce the crossover jump at DE. The calculation to that effect appears at first sight unaffected by the presence of $\mathrm{R}_{5}-\mathrm{R}_{4}-\mathrm{C}_{1}$. In fact Tr_{1} acts like a transistor of constant $V_{B E}$ with a resistor of 38Ω in series with its emitter. But R_{4} is in series with that 38Ω, and almost doubles the 0.2 mV change required to effect the crossover jump. Figure 3 eliminates R_{4}

Passage to Fig. 3 meant 100% feedback of the output voltage. Feedback could instead be increased by adding a transistor in the $\mathrm{Tr}_{1}-\mathrm{Tr}_{2}$ area to increase loop gain. That is difficult, and adds components instead of subtracting them. A third disadvantage is that R_{4}
would be left in position
It is now possible to say that during crossover the input impedance found at A in Fig. 3 is low, perhaps 11 k $(300 \times 38 \Omega)$. If further loss of signal at crossover (above 0.2 mV) is to be avoided, the output impedance of the preceding class A amplifier should be under 1 k .

Summary

The crossover distortion found in Fig. I was improved by dropping in a diode, using 100% voltage feedback. reconnecting the 6 dB capacitor, and feeding the gain stage from an active current source. The middle two suggestions might seem original. But recent IC power amplifiers do seem to reconnect the 6 dB capacitor. They offer to the user just one compensation terminal, with instructions to connect it via a suitable capacitor to the output terminal. That is just what Fig. 3 would require, whereas Fig. I requires two points to be brought out for compensation.

In any event, it might appear that the
amplified diode has had its day. Without its aid the tolerably quiet distortion audible as trace A has been reduced about 53 dB to the level of trace F by a series of changes that requires just one more component. Similar improvements could be expected in expanded versions of Fig. 1.

References

1. Vanderkooy, J., and Lipshitz, S.P., Wireless World, July 1978. pp. 83-85: see Figures 4c, 5a, 6 a
2. Margam, E. Electronics and Wireless World, July 1987. pp. 739-742

BUILD YOUR OWN FILM-NET DECODER

CITY SATELLITE SYSTEMS LTD \& MONTIQUE CONSUMER ELECTRONICS UK LTD OFFERS YOU THE OPPORTUNITY TO BUILD YOUR OWN HQ MONTIQUE DA 100 SIGNAL ANALYSER FOR ASTRA SATELLITE TRANSPONDER No. 11.

THIS EXCITING PROJECT INCLUDES:

* FILM-NET MAIN DECODER P.C.B.
* VIDEO PROCESSING VIDEO P.C.B.
* PARTS LIST
« WORKING THEORY AND DETAILED TEST PROCEDURE
* HQ P.C.B. THROUGH PLATED, SOLDER RESIST, DOUBLE SIDED, COMP IDENT
\star DIMENSIONS MAIN P.C.B. $250 \mathrm{~mm} \times 125 \mathrm{~mm}$, VIDEO P.C.B. $110 \mathrm{~mm} \times 125 \mathrm{~mm}$
ONLY £34.99 + P\&P POWER SUPPLY EXTRA £7.99, 12 V 1 AMP REGULATED. CONTACT CIT Y SATELLITE SYSTEMS LTD ON 081-503 5326 OR SEND CHEQUES TO 272 BARKING ROAD, EAST HAM, LONDON E6 ILB. ACCESS, VISA, AMEX AND SHOP CALLERS WELCOME.

No. 1 in Satellite ty.

CITY SATELLITE SYSTEMS LTD

$081-5035326$
272 Barking Road, East Ham, London E6 1LB
CIRCIE NO. 114 ON REPL Y CARD

/ALVES			*SPECIAL QUALITY			Prices are correct at time of press but may fluctuste. Please phone for firm quotation. V.A. T. included.					
A1065	2.40	Ef37A	2.45	${ }^{\text {PfL2000 }}$	2.mo	28004	3.45	${ }_{6}^{6 C L} 6$	2.75	12ATB	1.05
A2293	7.00	Ef39	1.40	PL36	1.00	28014	3.75	$6 \mathrm{CW} /$	7.40	12AT7	125
A2900	12.75	Ef80	0.68	plat	1.30	2803 L	21.15	${ }_{6} \mathrm{COXP}^{8}$	4.60	12AU7	0.55
AR8	1.40	Ef83	3.0	PL82	0.70	z900T	9.50	${ }^{\text {ech }}$ 5	1.15	12AX7	1.50
ARP3	1.45	Ef85	0.80	PL83	0.70	1A3	1.90	606	2.50	$12 \mathrm{Ba6}$	2.96
ARP35	1.50	EF86	1.45	plea	0.30	1 L 4	0.85	${ }^{8 F 6 G}$	2.50	128E6	2.40
${ }^{\text {ATP4 }}$	0.0	EF69	1.00	PL504	1.25	125	1.20	${ }^{68668}$	2.00	128H7A	5.36
${ }^{\text {B12H }}$	6.00	Ef91	1.60	Pl.508	2.00	154	120	$6{ }^{6} 7$	2.50	12 E 1	19.55
CY31	2.40	Ef92	2.15	Pl509	5.35	155	0.05	6f8G	1.75	${ }^{12 J 56 T}$	1.00
Daf70	1.75	Ef95	1.40	PL519	5.85	174	0.75	6 F 12	1.60	12 K 7 T T	1.15
DaFs ${ }^{\text {d }}$	1.35	Ef96	0.08	Pl802	6.0	1 Ua	1.25	${ }^{6} 514$	1.15	12 KPGT	1.85
DET22	32.00	EF183	0.75	Prso	0.50	${ }^{2 \times 2 A}$	3.80	6F 15	3.40	1207 GT	1.15
Df92	0.8	EF184	0.75	Pral	0.75	344	1.30	${ }^{66517}$	3.10	12SH0	1.25
DF96	1.15	EF812	0.75	PY81/800	0.5	3AT2	340	${ }^{65} 23$	0.75	125J1	1.40
D H76	1.15	EFL200	1.5	PY82	0.75	3828	17.50	6F 24	1.15	12517	1.45
D. 92	1.70	EH90	0.5	PYB8	0.00	306	1.15	6 F33	10.50	12507 C	2.20
DY8883	0.es	EL32	0.58	PY5c0a	2.10	$3 E 29$	21.05	${ }^{65} \mathrm{H} 8$	18.00	12 V 4	0.70
Or802	0.70	EL34	3.25	OOV03310	5.\%	354	1.70	GGAB	0.85	${ }^{1303}$	2.00
E92CC	1.85	EL34*	3.50	covoz310	7.50	4832	35.00	6GHBA	1.58	${ }^{1308}$	0.50
E180CC	9.0	ELa	0.70	covos/20a		5R4GY	4.35	$6{ }^{6} 6$	1.60	19 AOS	1.05
E1148	0.75	Elba	1.35		27.50	5 Lag	1.5	$6{ }^{6}$	1.5	19G3	11.50
EA78	1.60	El96	1.45	Covor/4as		5 V 4 G	1.50	cuawa	3.10	1966	10.35
E日34	1.15	EL90	1.5		23.50	5 Y 3 GT	3.45	E55	2.30	1945	38.00
E891	0.60	EL91	4.50	COV06/40A		573	4.45	66GT	1.60	2001	0.00
EbC33	2.20	El95	1.00		45.00	5246	2.20	© 6	2.20	$20 E 1$	1.30
EBC90	1.20	EL504	2.30	ovo3/12	7.40	6304	0.80	*uw	2.00	2091	0.60
EBC91	1.15	El519	7.70	QY4.400	101.c0	6487	1.0	ELECC	8.15	2516GT	1.90
E8F50	0.75	EL-221	7.50	SP61	3.20	6AC7	1.00	6usec	9.15	25ZAG	1.80
EBF89	0.m0	E. 822	11.50	TB205/400	3.30	${ }^{\text {bag }}$	0.00	6106	8.35	85A2	1.40
EC52	0.05	Elleose	4.30	T21	47.50	64k5	1.90	6K7	2.20	85A2*	2.55
EC91	5.20	EMe0	1.50	$\pi 22$	45.00	baks	2.05	6KD6	13.75	572 E	55.35
EC92	5.58	EM87	2.55	Tr-125A	-3.30	${ }^{64} 45$	0.60	${ }^{6} 16$	7.00	807	3.45
ECC81	1.25	EY51	0.40	Tr-400A	94.20	6AL.5W	1.50	8LGGC	3.60	807*	4.30
ECC82	0.85	EY81	1.10	UABC80	0.5	gams	8.50	8L6GT/C	2.90	811A	13.50
ECC83	1.50	Ev8687	0.75	UBFEO	0.95	6amb	1.60	6.18	0.70	812A	32.00
ECCB4	0.60	EY88	0.es	UBF89	0.95	banaa	3.80	6 620	0.70	813	20.50
ECCas	0.75	E290	0.60	Ucces	0.5	6405	1.75	6LO6	8.15	$8^{813^{*}}$	44.00
ECC88	1.35	EZ81	0.00	ucces	0.70	640.05w	2.50	607G	1.50	8298	15.00
ECC189	1.20	GM4	11.05	UCH42	4.60	6AS6	1.15	6Sa7*	1.20	829E*	24.00
ECC8OA	0.08	GN4	8.30	UCH81	0.75	6AS76	4.95	6SG7	100	${ }^{\text {85EE }}$	14.95
ECFEO	1.25	Grs01	1.50	UCL82	1.60	6auc	0.50	6S57	2.50	931A	13.95
ECF82	1.50	Gz32	2.00	UF41	1.6	6AXAGT	1.30	6Sk7	1.5	${ }^{931}{ }^{\text {a }}$	28.80
ECF802	100	Gz33	4.20	UF80	1.0	6ax5ct	1.30	6SLIGT	4.35	954	1.10
ECF803	4.50	G234	2.00	UF85	1.45	6BA6	1.75	6SN7GT	4.35	955	1.10
ECH35	2.75	G237	1.95	UL84	150	6846.	2.20	$6 \mathrm{SO7}$	3.20	956	1.20
ECH42	1.t5	* $77 \times$	1510	UM\%0*	2.30	68E6	1.75	6SR7	4.40	6080	1.\%
ECH81	1.25	M $\times 120001$	23.50	UMBA	1.30	${ }^{\text {6BE6 }}{ }^{\circ}$	2.20	6VEGTY	1.50	6080	7.30
ECM84	0.00	N78	9.80	UY82	1.10	68G6G	2.E5	${ }^{8 \times 4}$	1.50	${ }^{6136}$	2.00
ECL90	0.75	$\mathrm{OB2}^{1}$	1.70	Ur95	0.85	${ }^{68,16}$	1.5	${ }^{6 \times 5 G 6}$	0.75	${ }^{61468}$	10.50
ECLB2	0.8	PCLE2	0.56	VR105/30	2.5	6807a	3.55	6 6\%G	2.20	6336A	33.35
ECL85	0.95	PCLBA	0.65	VR15035	2.75	68R7	4.00	8274	1.75	3001	1.40
ECL86*	120	${ }^{\text {PCLCOS }}$	0.00	X66	4.5	${ }^{68 W 6}$	6.10	72A	120	${ }_{9003} 90$	6.50
ECLL 800	17.50	PCL 805185	0.95	Y11210	11.50	${ }^{\text {b8W\% }}$	1.50		2.15	3003	8.50
EFF9	3.80	PP500510	5.40	7749	${ }_{1750} 0$	6C4 BCH	1.20 750	$11 E 2$	19.50 3.50		
VALVES AND TRANSISTORS PEID TELEPHONE, CAGLE TYPRE DTO FRELD TELEEAONES TVFE "J'. Tropical, in motal cases. To-mine MAGNETO SWITCH-BOARD. Can work with every type of magneto telephones. POSTAGE AND PACKING CHANEES: $\mathrm{c} 1-\mathrm{C3} .75 \mathrm{p}$. over C20 but behow 2 kg C2.06 over 2 kg at Coti NEW HEADSETS win buili-n microphones CAROL HP 339M it E10.00 Meadphone imp 4-18 ohms. Microphone imp at 600 ohms. E-0 at f15.00 Maadphone Imp 416 ohms. Microphone imp at 200 Shms. Surplus VIDKCON P8211 and others at C18.00. 											
COLOMOR (ELECTRONICS LTD.) 170 Goldhawk Rd, London W12 Tel: 081.7430899 Fax: 081.7493934 . Open Monday to Friday 9 a.m - 5.30 p.m.											

Toroidal Transformers

As manufacturers we are able to offer a range of quality toroidal and laminated transformers at highly competitive prices.

Toroidal Price List

Quantity prices Exclude VAT \& carriage							
va	Mall Order	1.5	$6+$	16 +	25 +	50 +	100
15	9.72	8.75	6.42	6.08	5.49	5.10	4.85
30	10.3	9.27	6.80	6.44	5.82	5.41	5.15
50	10.96	9.86	7.23	6.85	6.19	5.75	5.48
60	11.28	10.15	7.44	7.05	6.37	5.92	5.64
80	11.80	10.69	7.84	7.42	6.71	6.24	5.94
100	12.80	11.59	8.50	8.05	7.28	6.76	6.44
120	13.26	11.95	8.76	8.30	7.50	6.97	6.64
150	14.60	13.39	9.82	9.30	8.41	7.81	7.44
180	15.46	13.91	10.20	9.66	8.73	8.12	7.73
225	18.22	16.40	12.03	11.39	10.29	9.57	9.11
300	20.18	18.16	13.32	12.61	11.40	10.59	10.09
400	26.52	23.87	17.50	16.57	14.98	13.92	13.26
500	26.88	24.19	17.74	16.80	15.19	14.11	13.44
625	30.06	27.05	19.84	18.79	16.98	15.78	15.03
750	38.42	34.58	25.36	24.01	21.71	20.17	19.21
800	43.96	39.56	29.01	27.48	24.84	23.08	21.98
1000	53.54	48.19	35.34	33.46	30.25	26.11	26.77
1200	59.08	53.17	38.99	36.92	33.38	31.02	29.54
1500	88.82	61.94	45.42	43.01	38.88	36.13	34.41
2000	84.12	75.71	55.52	52.58	47.53	44.16	42.05
2500	109.96	98.96	72.57	68.72	62.13	57.73	54.98

These prices are for aingle primary with two equal secondarie with s" colour coded fly leede.
Available from stock in the following voltages: 6-0-6, 9-0-9, 12-0-12, 15-0-15, $18-0-18,22-0-22.25-0-25,30-0-30,35-0-35,40-0-40,45-0-45,50-0-50,110,220,240$. Primary 240 volt.

Air Link Transformers
Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts. Tel:0279724425 Fax:0279726379

Audio filter eliminates 5 kHz whistle on HF

This filter completely eliminates the 5 kHz adjacent-channel whistle on short waves.

Reducing the audio or RF bandwidth will have the desired effect, but produces frequency distortion; synchronous detectors can help when there is an interfering channel on one side of the carrier only.

The filter has three sections: lowpass, high-pass and twin-tee notch. The low-pass section is a Sallen and Key filter with deliberately poor damping, so that it boosts the gain at about 3 kHz , where the twin-tee would otherwise impose too much attenuation. Overall response is tlat to within 6 dB from about 200 Hz to 3 kHz . On the graph, (0dB represents the gain at 500 Hz : actual system gain is 3 .
Michael A. Covington
Athens
Georgia
USA

Controllable triangle/square generator

This arrangement affords electronic control of the well known triangularwave generator in which a capacitor is alternately charged and discharged at constant current

Figure 1 shows the proposed circuit, in which an operational transconductance amplifier (OTA) varies the current into A_{1}. For an ideal OTA, frequency of oscillation is given by $\mathrm{f}_{\mathrm{o}}=\mathrm{g}_{\mathrm{m}}\left(\mathrm{R}_{2} / 4 \mathrm{R}_{1} \mathrm{C}\right)$, where $\mathrm{g}_{\mathrm{m}}=\mathrm{I}_{\mathrm{B}} / 2 \mathrm{~V}_{\mathrm{T}}$, I_{B} being the bias current of the OTA and V_{T} the voltage equivalent of temperature ($\sim 25 \mathrm{mV}$ at 300 K). Substituting, $\mathrm{f}_{\mathrm{o}}=\mathrm{I}_{\mathrm{B}} \mathrm{R}_{2} /\left(8 \mathrm{~V}_{\mathrm{T}} \mathrm{R}_{1} \mathrm{C}\right)$.

The macromodel of the OTA's bias current input port shown in Fig. 2 indicates that $\mathrm{I}_{\mathrm{B}}=\left(\mathrm{V}_{\mathrm{B}}+V-V_{D}\right) / R_{B}$, where V_{B} is the control voltage, so that the frequency of the triangular wave at X and of the square wave obtained at Y are linearly proportional to both control current I_{B} and control voltage V_{B}. Figure 3 shows results obtained using the CA3080 OTA and 741s. Muhammad Taher Abuelma'atti Fatheya Abdullah Hassan University of Bahrain

Fig. 1

Fig. 2

Fig. 3

NEW DIMENSIONS

IN CAE
Over 15,000 engineers around the world use SCHEMA CAE products to improve their PC Board, ASICs and PLD designs. Why? There is no more comprehensive or cost effective software available for the PC. Call today for your FREE demo disk and see for yourself how SCHEMA can increase productivity in design and manufacturing.
SCHEMA III schernatic capture SCHEMA SUSIE logic simulator
SCHEMA PLD pld design/selection
SCHEMA PCB board layout \& routing

CIRCLE NO. 119 ON REPLY CARD

The world is at your fingertips with ICOM's new IC-R9000 radio communications receiver with continuous all mode, super wideband range of 100 KHz to 1999.8 MHz and a unique CRT display that shows frequencies, modes, memory contents, operator-entered notes and function menus. The revolutionary IC-R9000 features IF Shift, IF Notch, a fully adjustable noise blanker and more. The Direct Digital Synthesiser assures the widest range, lowest noise and rapid scamning. 1000 multi-function memories store frequencies, modes, tuning steps and operator notes. Eight scanning modes include programmable limits, automatic frequency and time-mark storage of scanned signals, full, restricted or mode-selected memory scanning priority chonnel watch, voice-sense scanning and a selectable width around your tuned frequency.
 Icom (UK) Lid. Tel: 0227 363859. Telex: 965179 ICOM G N.E. For Wales and the West contact: M.R.S. Communications Ltd. Cardiff. Tel: 0222224167.

[^0]Nome/oddress/postcode

Job Title:
Tel:
Post to icom (UX) Led Dept. WW, FREEPOST, Herne Boy, Kent CT6 8BR CIRCIENO. $11 \bar{B}$ ON REPLYCARD

Mid-frequency tone control

Adding a mid-frequency section to an This circuit provides $\pm 10 \mathrm{~dB}$ adjustactive Baxandall tone control is nor- ment in the range $450 \mathrm{~Hz}-2 \mathrm{kHz}$, at a mally difficult, and the interleaving of constant -3 dB bandwidth of 350 Hz . poles and zeros does not allow a Since P_{4} is grounded, digital control of passive network, particularly one that the mid range is possible.
is adjustable in frequency. Nesting of Tony M. Manov
stages increases noise (and expense). Sofia, Bulgaria

Single-chip alarm

One c-mos Schmitt IC, the CD4584, generates a "beep" delayed by times switchable from 15 seconds to 120 minutes. Alarm audio frequency, period, duration and delay are all changeable

Resistors $\mathrm{R}_{1}-\mathrm{R}_{10}, \mathrm{C}_{2}$ and IC_{c} provide the time delay. The capacitor charges through D_{2} and the selected resistor but, since R_{12} is large, $I C_{a}$ input is high and therefore IC_{1}, output also high, so D_{3} is reverse biassed. During this time. $I C_{c}$ output is high, this level setting $I C_{c}$ output low via D_{4} and, via $D_{5}, I C_{d}$ output low. The output of IC_{f} is low, cutting off Tr_{1}.

As C_{2} charges past $I C_{c}$ trigger point, IC_{c} output goes low and $\mathrm{IC}_{\mathrm{c}}, \mathrm{R}_{15}$ and C_{3} oscillate with a period of Is, since D_{4} and D_{5} are reverse-biassed. When IC_{e} output is low, Led $_{1}$ is off and IC_{f} input is clamped at zero volts. When IC_{c} output goes high, Led, lights and D_{6} is reversed, so that $I C_{f}, R_{17}$ and C_{5} oscillate at 1 kHz .

As $I C_{c}$ output goes low, C_{4} discharges through R_{14} and, when the input voltage of IC_{d} reaches its lower trigger point, IC_{d} output stops oscillation in IC_{e} and IC_{f}.

When break-before-make switch SW_{a} is moved, the short open-circuit condition is expanded in time by D_{1}. C_{1}, R_{13} and $I C_{b}$ to 5 s to discharge C_{2}. Yongping Xia
West Virginia University
Morgantown
USA
 TELECOMMUNICATIONS

Feedback offer an extensive range of Telecommunications equipment．

From basic introduction to Analogue systems ．．．to advanced Digital and Microwave techniques．

Each equipment is supplied with a comprehensive training manual．

The Feedback MST532 is designed to train the microwave engineers industry and education so desperately need．
The system is geared to industrial application and can also be used for testing and systems development．
No sophisticated test equipment is required．
For further information on the Microstrip Trainer and the Feedback Telecommunications range contact：

包Feedback

Feedback Instruments Limited Park Rd，Crowborough，E．Sussex，TN6 2QR，England．

$$
\text { Tel: } 0892 \text { 653322, Telex: 95255, Fax: } 0892663719 .
$$ Tel： 0892 653322，Telex：95255，Fax： 0892663719.

Radar \＆ Fibre－Optics Training Equipment

A full range of professional training equipment now available from a leading manufacturer including：
－Radar \qquad
\qquad
Fibreoptic \qquad
\qquad
\qquad
\qquad
Analog \＆Digital Comms
\qquad
\qquad
Microwave
\qquad
\qquad
Telephony
\qquad

Simulators
\qquad

Several of these high quality products have been winners of the prestigious Worlddidac awards，Geneva，Switzerland，with our Radar Trainer taking this years Gold medal．

Contact：

Lab－Volt（UK）Ltd

2 Stephenson Road Industrial Estate
St．Ives，Cambridgeshire PE17 4WJ
Tel：（0480） 300695 Fax：（0480） 61654

Peak/trough detector for noisy signals

This circuit detects the highest and lowest points of a periodic waveform. It copes with noisy signals of varying amplitude and period, and DC offsets. and was originally designed to process biomedical signals from a respiratory sensor.

Amplifiers $\mathrm{IC}_{\text {la, } 2 \mathrm{a}}$ in $\mathbf{F i g}$. I form resettable peak and trough detectors, $\mathrm{IC}_{1 \mathrm{ll}, 2 \mathrm{~h}}$, buffering the output. Hysteresis voltages set by the resistor chain are subtracted $\mathrm{IC}_{\mathrm{ic} .2 \mathrm{c}}$, outputs from which are $-\left(V_{p}-V_{h+}\right)$ and $-\left(V_{1}+V_{h-}\right)$
respectively. The output of comparator ICld goes positive when $V_{i n}<\left(V_{p}-V_{h+}\right)$, that of $1 C_{2 d}$ going positive when $V_{i n}>\left(V_{1}+V_{n-}\right)$, and the spike produced by this rising edge resets the opposite peak detector.

Figure 2 shows circuit action on a noisy signal. A peak or trough is accepted as such when the input changes from its highest or lowest value by more than the hysteresis voltage, thereby conferring noise immunity Reset pulses occur when V_{p} or V_{1} are
stable and can be used to clock subsequent circuitry.
S. Young

Newmarket
Suffolk

Symmetrical TTL decade counter

This counter divides the clock frequency by ten, producing a symmetrical output. It is synchronous and may be synchronised using CL, since the normal sequence includes zero

The configuration can be generalised to allow other moduli. Bit in drives LD which necessarily loads to 1; that and the bits below it form a prescaler, the modulus of which can be varied from 2 to $2^{n-1}+1$. Higher bits are unchanged by the load operation, forming a binary counter.
Rob Kirkby
Woodbridge
Suffolk

Fig. 2.

$$
2-
$$

DON'T MISS THESE BARGAINS!

$500 V$ BRIDGE MECGER developed for G.P O. Technicians the Ohmeter 18B is the modern zquivalent of the bridge meggar. 9 V battery operated it incorporates a 500 V generation for insulaticn testing and a null balance bridge for very accurate resistance measurement. On the front panel there is a $3^{\prime \prime} \times 3^{\prime \prime}$ panel meter calibrated in megohms to inf. and a small scale to indicate balance showing the exact setting of the four controls in the variable arm of the resistance oridge. ExB T. in quite good condition whit data\&iested. Yours for a fraction of original cost $£ 45+£ 5$ insured delivery WhY STAY BUACK a White we can supply a RGB input, IBM compatible, high resolution colour monitor with power supply and in a blach metal case for only $£ 8950+£ 5$ insured delvery
TRAVEL MECHAKISM goes bachwards and torwards. could be used to anımate a display ar position a device, battery or p.S.u operated, distance of travel $4^{\prime \prime}$ and speed of travel depends on applied voltage ! $1 / 2 \mathrm{~V}$ very slow 12 V max is quite last $£ 5.00$.
SOUMO SWITCH tras countless uses, one could be to control the above travel mech. Signals of 10 Hz 1020 kHz picked up by its eloctree mike and 「'/ amplifere and furcther amplied to be able to control relarmuro ect up to 42 amp supplied ready to work from 6V Price only EZ.
EXRERIMEMTING WITH VALVES don't spend a fortune on a mains translonmer we can suoply one with strmdard mains inout and sees of-250-6.250V at 75 mA and 6.3 V at 3 A price E 5 . 15 Watt tohm \&" SPEAKER \& $3^{\prime \prime}$ TWEETER made for a discontinued higi quarity music centre. give real hi, It. and for only E4 parr.
MANY EXPERIMENTS MEED RELAYS here's your chance to stoch up at a bargain price 10 relays all with different coll voltages. $3 \mathrm{~V} 8 \mathrm{~V} 6 \mathrm{~V} 12 \mathrm{~V} 24 \mathrm{~V} \& 48 \mathrm{~V}$ DC, 230 V 110 V 48 V 24 V AC yours for C 5 the 10 230V AC from 12V OC inverter kit with trans formers gives 60 watts $£ 16$ without transformers gives 15 watts $£ 12$
WANT TO EXPERIMEMT WITH DISC ORIVE You can have a double sided JAP made model, brand new for only $£ 10$! Why. because it was made for a very compact unit and consequently uses a small non standard disc (We stock these at $£ 2$ each) it requires 5 V 300 mA power supply (we can supply) The dnve is nicely cased and has output and input leads. originally listed at over £100. so it's a real bargan
MODERS \& MULTIPLIERS often need high valtage caps We have good stocks of two uselul sizes. axial tubular . 33 uf at 1000 V and upnght pcb mounting 012 ufat 2000 V 15 p each $£ 12$ per 100 or C100 per 1000. your choice of mus

TEN TIME IOMISER using transformers and novel circuiry, our ioniser emits at least ten times as many ions as does any other kut on offer. nor do we know of a ready built model that is as good, you don't need a tester to see if it is workng jusil bring your hand close to it and leel the stream of neg ions. It's a kit complete with case. nothing else to buy yours for £14 50
TWIM $51 / 2$ OISC ORIVE cased and with internal power supply. Product of a lamols lap maker this is IBM XT compatable 360 k double sided - trand new $£ 59.00$
ULTRASOMIC TRANSMITTER/AECEIVER with Piezo alarm, buit into preformed case, is trgeered ty movement disturbing reflected signal. intended for burglar alarm, car alarm etc needs sligh modilication as is too sensitive. has many extras time delay, auto reset, secret off device etc. A £40 instrument yours for £10.
110 WAT POWER SUPPLY ASTEC switch mode. 230 V mans input. 38 V at $21 / 2 \mathrm{~A}$ \& 3 A outputs. encased and fitted on panel mounting plate with mains input socket and on/off switch made for use with computers or other top grade equipment. You can have it at a fraction of its proper price Brand new and guaranteed Sample £12 00 post paid - 3000 available \& good discount to quantity buyers
BRUSHLESS O.C 12V FAM tiny. only 60 mm square. good air mover but causes no interlerence $£ 800$ 2WW LASER Hellum Neon by PHILIIPS, full spec. $£ 30$ power supply for this in kit form is $£ 1600$, or in larger case to house tube as well $£ 1700$
MAIMS 230 V FAM best make "PAPST" 41/2" square, metal tlades $\mathrm{C8} .00$
BaTTERY MDTORS 12 models in stoch in large quantities ranging from liny model aircratt one at 25 p each to $1 / 3 \mathrm{~h} p$ made to drive the famous Sinclar C5 car, you can have this at $£ 1750$
SOLAR MOTORS $1 / 2-9 \mathrm{~V}$ precision made to operate from low current ofl solar cells C 150 . solar generator to drive this $£ 700$, has provision for tattery back up when sun is not shiming ELECTRONIC MEGGER \& MULTIESTER the megger indicates insulation value to inf. Mulititester has 4 ranges $A C / O C$ volts. 3 ranges $D C$ milliamps. 3 ranges resistance and 5 amp range Trese instruments are Ex British Telecom. but in very good condition. tested and gitd OK. probably cost a least $£ 50$ each. yours for only $£ 750$ with leads, carrying case $£ 200$ extra
100 WATT MAIKS TRAKSFORMER 230 V primary, $20 \mathrm{~V}-0-20 \mathrm{~V}$ at $2 \frac{1}{2}$ amps secondary made for GPO ao to top quality $£ 4.00 .2000$ available at quantity discount
COPPER BOARO for making you pcb $174 \times 100 \mathrm{~mm} \times 2 \mathrm{~mm}$ thick double sided and brand new 50 p each. £40 per hundred, £350 per thousand
AIR SPACEO TRIMMER CAPS 2-20 pi ideaf for precision tuning uht circuits 25 p each 10 for $\mathbb{L} 100$ or C 15 .
1Whz. TOME GEmERATOR this is PP3 battery operated and has a IKhz output that can te continuous or interupted at a rate variable by a panel mounted control. Al so on the front panel are separate output sockets for montor or headphones, and a battery condition indicator Constructed on a jeb and front panel size approx $105 \times 50 \mathrm{~mm}$ ex equipment but in as new condition $£ 2$ each
OSCILLOSCOPE 3018 developed for testing transmission lines, it makes and displays pulse echoes 10 hind shorts and breaks in cable networks. this uses a $3^{\prime \prime}$ CRT to display the type of fault and a LCD oread out the distance from the fault. The instrument is powered by 12 V of rechargeabte nicads lacated in base and it generates 1.5 kv internally it is housed in a high impact plactic case size approx $91 / 2^{\prime \prime} \times 91 / 2^{\prime \prime} \times 5{ }^{\prime \prime}$. Ex British Telecom in very good condition and working order. © 4950 plus 5 insured delvery.
FIELO TELEPHONES just right for building sites, rallies, horse shows etc. ןusi join two כy twin wre and you have two way calling and talking, and you can join into regular phone hines if you want to Ex British Telecom in very good condition. powered by batteries (not included) complete in shouldei slung carying case. El2.50 each
MAIMS ISOUTION TRANSFORMER stops you getting "to earth" shocks. 230 V in and 230 V out 150 watt upright mounting $£ 7.50$
Pnces include V.A.T Send cheque/postal order or ring and quote credit card number Add £3 post and packing. Orders over $£ 25$ post free, unless quoted separately

M\&B ELECTRICAL
12 Boundary Road, Hove, Sussex BN3 4EH Telephone (0273) 430380 Fax (0273) 410142

Quality Toroidal Transformers

A large, standard range of (152000VA) high quality products are available conforming to BS415 (EC65) class 2 requirements. Custom design options include -

Audio grade - low noise
Autotransformers

Inverter transformers

Current transformers

Metal banding

Potted centres

Tape screens

We also manufacture other standards including:

EC742, EC601 (BS5724), UL506, UL544, CSA222

Agents wanted worldwide

Contact	or tel	0849428734
	fax	0849468745

Antrim Transformers Ltd 25 Randalstown Road, Antrim, Co. Antrim, N. Ireland BT41 4LD

Interfacing with C

An accompanying set of 49 source code C listings presented with this series is now available on disk, price $£ 25.50+$ VAT. We will shortly be publishing a book "Interfacing with C" written by Howard Hutchings and based on the series, but containing additional information on advanced processing techniques. We are now accepting advance orders, price £14.95.
Prices include post and packaging.
Please make cheque or company order payable to Reed Business Publishing Group and send to Lindsey Gardner, room L301, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Credit card orders can be phoned through on 081-661 3614 (mornings only).

INTERFACING WITH C

PART 6

After an initial look at digital filtering last month, Howard Hutchings continues with a description of the design process for several types of filter

To implement the signal-processing characteristics of the analogue firstorder, low-pass filter described in Fig. 5.8 , re-examine the form of the impulse response $h(n)$. This was simply the sequence $0.5,0.25,0.125,0.0625$, truncated after the fourth term for ease of calculation. We propose to use the mathematical models introduced in Part 3 to describe this behaviour more completely. The time-domain model of the impulse response of the filter is

$$
\begin{aligned}
\mathrm{h}(\mathrm{t})= & 0.5 \delta(\mathrm{t})+0.25 \delta(\mathrm{t}-\mathrm{T}) \\
& +0.125 \delta(\mathrm{t}-2 \mathrm{~T})+0.0625 \delta(\mathrm{t}- \\
& 3 \mathrm{~T})+\ldots
\end{aligned}
$$

To establish the complex frequencydomain model, we must take the Laplace transform of the impulse response:

$$
\begin{aligned}
\mathrm{H}(\mathrm{~s})= & 0.5+0.25 \mathrm{e}^{-\mathrm{sT}}+0.125 \mathrm{e}^{-2 \mathrm{st}} \\
& +0.0625 \mathrm{e}^{-3 \mathrm{sT}}+\ldots .
\end{aligned}
$$

Finally, using the z-transform to model the delayed weighted samples, we can write

$$
\begin{aligned}
H(z)= & 0.5 z^{11}+0.25 z^{-1}+0.125 z^{-2} \\
& +0.0625 z^{-3}+\ldots
\end{aligned}
$$

Recognising that this is an infinite geometric series, we may express $\mathrm{H}(\mathrm{z})$ in closed form:

$$
H(z)=0.5 /\left(1-0.5 z^{-1}\right) .
$$

This is simply the transfer function $Y(z) / X(z)$ of the filter in the z-domain

The relationship between the processed output $Y(z)$ and the input sample $X(z)$ is given by

$$
\begin{aligned}
& Y(z)=X(z) H(z) \\
& Y(z)=0.5 X(z) /\left(1-0.5 z^{-1}\right) .
\end{aligned}
$$

Cross-multiplying gives the result:

$$
Y(z)\left(1-0.5 z^{-1}\right)=0.5 X(z)
$$

So the recurrence relationship describing the behaviour of the filter is

$$
y(n)=0.5 x(n)+0.5 y(n-1)
$$

where $x(n)$ is the current input, $y(n)$ the current output and $y(n-1)$ the previous output. Figure 5.13 shows the processing operations.

Fig. 5.13. The delay element in the feedback loop retains the weighted processed output $y(n)$ for one sampling interval. It then releases it to the summation element, where it is added to the current weighted input. To produce the processed output $y(n)=0.5 x(n)+0.5 y(n-1)$

Recursive software

A computer performs calculations such as these with ease. Realising the filter recursively has the advantage that only a finite number of iterations are necessary to process the signal completely. despite the filter or system being characterised by an infinite impulse response.

Fig. 5. It. Flow-chart for recursive realisation of low-pass digital filter.

Listing 5.2. Iow-pass digital filter.
 $y(n)=0.5 x(n)+0.5 y(n-1)$
\#include<stdio.h>
\#include<conio.h>
\#define BASE 768
maih()
\{
unsigned int contents,output,old_output: outp(BASE,1);

SELECT I/P CHANNEL
start:outp(BASE + 2,0);
START CONVERSION
contents $=\operatorname{inp}($ BASE +2$)$;
READ I/P PORT
contents $=0.5 *$ contents;
output = contents + old_output;
outp(BASE + 4,output);
old_output $=0.5 *$ output;
RECURRENCE RELATIONSHIP
$y(n)=0.5 * x(n)+0.5 * y(n-1)$

goto start;

Using Listing 5.2 in conjunction with the signal-processing system shown in Fig. 5.1 produces a real-time low-pass digital filter, which samples every 160 ss. Figure 5.15 shows the effect of processing a square wave of frequency 2501 tz .
Comparing the processed output $y(n)$ obtained by recurrence with that obtained by using convolution indicates a certain lack of correlation after the fourth term, these retatively small numerical inconsistencies being due, in this case, to the truncatted impulse response. However, this theoretical example serves as a useful illustration. identifying a few of the practical hazards inherent in finite word arithmetic.

When the signal and multiplier coefficients are represented in terms of binary digits, any numerical processing is likely to be subject to error. A principal source of inaccuracy is the integer output of the A-to-I) converter. which may be in error by as much as $\pm 0.2 \%$ of full-scale for an 8 -bit converter. Clearly, 12 -bit and 16 -bit devices will improve any quantisation error, possibly at the expense of conversion time.

Potentially more hazardous is the inaccurate specification of the coefficients of recursive filters, where rounding errors may result in the system poles moving outside the unit circle. resulting in instability and a badly behaved system. An acceptable approach is to specify multiplier coefficients to four or five decimal figures. * Exceeding the dynamic range of the system will result in non-linear processing, a confused output and a collapse of the digital filter.

Poles and zeros

When the current output depends on past output samples in addition to current and past input samples, the filter is termed recursive. A digital filter may be realised in recursive form whenever the transfer function has poles at locations other than the origin of the z-plane. As we have seen. such a filter is characterised by an impulse response that contains an infinite numher of terms. The recurrence relationship

$$
y(n)=A x(n)+B y(n-1)
$$

provides a useful recursive method of implementing a simple low-pass filter. To gain greater insight into the behaviour of the system it is necessary to augment our mathematical toolkit

Fig. 5.15. Oscilloscope display of squarc-wave input to A-to-l) at 250Hz. and output from I)-to-A. Sampling interval $160 \mu \mathrm{~s}$.
and exploit the concept of poles and zeros already hinted at under the guise of transforms.
Z-donain model. The characteristics of a linear digital system may be described in terms of the transfer function $\mathrm{H}(\mathrm{z})$. It is a general property of such systems that there are certain values of the complex variable z which make $H(z)$ tend to infinity, and values of z that make $H(z)$ zero. These values are known respectively as the poles and zeros.
Poles and zeros represent critical frequencies where something dramatic happens to the transter function; as a result of poles and zeros, the function changes as z varies. Unfortunately, I cannot justify this statement without reference to a bookcase of relatively advanced mathematical text books, which is not my intention. However, if you are prepared to accept this in good faith, then what follows will provide a reasonable insight into the frequency response of digital tilters.
No real system can have more zeros than poles. To ensure that the system remains stable, the designer must ensure that the poles are located on, or preferably inside, the unit circle. Clearly, the locations of the poles and zeros dictate the behaviour of the system. In an attempt to dispel this fog of mathematical abstraction, consider what we already know. To model time advances or delays it is expedient to use the operator z. Applying the operator to the advertised recurrence relationship, we may write

$$
Y(z)=A X(z)+B Z^{-1} Y(z)
$$

So the transfer function $H(z)$ can be expressed as

$$
H(z)=Y(z) / X(z)=A z /(z-B)
$$

Fïg. 5. 16. Transfer function $H(z)=A z /$ ($\mathrm{z}-\mathrm{B}$) on r-plane (a) and on "rubbershect" model (b).

Describing $H(j \omega)$ as a complex number is simply a succinct method of describing the amplitude and phase characteristics in a single expression. To extract the magnitude of the frequency response we multiply $\mathrm{H}(\mathrm{j} \omega)$ by $H *(j \omega)$, its complex conjugate, before taking the square root of the product. For this particular example, the magnitude of the frequency response is given by the expression

$$
\left.|\mathrm{H}(j \omega)|=\underset{\left.(\omega \mathrm{T})\right|^{0.5}}{\mathrm{~A} / \mid \cos (\omega \mathrm{T})}-\mathrm{B}\right)^{2}+\sin ^{2}
$$

The phase response of the filter - or to be precise the argument of $\mathrm{H}(\mathrm{j} \omega)$. conveniently written as $\operatorname{Arg}[\mathrm{H}(\mathrm{j} \omega)]$ is simply the angle of the numerator

Fig. 5.17. Spectrun of digital filter is repeated version of low-pass response from $\omega=0$ to $2 \pi /$ T. Aliasing occurs beyond Nyquist frequency.
minus the angle of the denominator
To use these formulae effectively pay particular attention to the geometrical meaning of the complex number $z=e^{j \omega T}=\cos \omega T+j \sin \omega T$. Notice that the magnitude is always unity, and the angle $\omega \mathrm{T}$ depends upon ω (T is simply the reciprocal of the sampling frequency $1 / f_{s}$. So the locus of z will be a unit circle, centred at the origin of the z-plane. Since the highest frequency we can successfully process without aliasing is half the sampling frequency, the range of interest is usually $(0<\omega<\pi / T$, which corresponds to a semicircle. Figure 5.17 shows the magnitude and phase response of the low-pass filter described by the recurrence relationship

$$
y(n)=0.5 x(n)+0.5 y(n-1)
$$

This example demonstrates how to design a digital filter using z-plane poles and zeros. The performance of the filter may then be determined geometrically, without recourse to analysis using complex numbers. The simplicity of this method makes it particularly attractive, and with practice quickly sketching the amplitude response from the pole-zero pattern becomes routine.

Hig. 5. 18. Z-plane diagram of low-pass filter $H(z)=(z+1) /(z-0.5)$ ensures zero transmission at Nyquist frequency. since zero is at $z=-I$.

Consider how we might improve the low-pass characteristic of the filter considered previously. Examination of the amplitude response suggests limited attenuation around the Nyquist frequency. Since our intention is to design a low-pass filter, and the Nyquist frequency is the highest frequency we can successfully process, greater highfrequency attenuation is required. Placing a zero on the circumference of the unit circle located at $z=-I$ guarantees maximum attenuation at this frequency. thereby improving the lowpass characteristic. Figure $\mathbf{5 . 1 8}$ shows the pole-zero diagram.

To deduce the amplitude of the frequency response geometrically

Fïg. 5.19. Sketching frequency response from pole/zero diagram.
requires that we calculate $|\mathrm{H}(\mathrm{j} \omega)|$ or in plain English. the magnitude of the zero vector divided by the magnitude of the pole vector. for values of frequency from $f=0$ to the Nyquist frequency ($f=f_{s} / 2$).

The resultant phase response is given by the argument of the zero vector minus the argument of the pole vector. Using these rules we can produce a reasonable amplitude and phase response of the digital filter relatively painlessly. Figure 5.19 illustrates the process.

To become proficient in this method of predicting the filter's behaviour (i.e. designing in the z-plane) try moving the position of the pole and then the zero.

How does the frequency response vary? I hope you found that moving the pole along the negative real axis modified the filter's behaviour, transforming it into a high-pass characteristic. Cascading a low-pass and a high-pass filter would produce band-pass characteristics, although greater selectivity could be obtained by making the poles complex.

Band-pass digital filters

For reasons of simplicity we have deliberately avoided any reference to complex poles. We will now relax this constraint and demonstrate how greater flexibility can be incorporated into filter design, by the inclusion of complex poles. As an illustrative example we propose to design a band-pass filter with characteristics similar to those of a series resonant circuit. In keeping with earlier work, we will identify the transfer function and impulse response before writing a real-time C program. The design will intentionally use simple coefficients with a primitive micro-processor-based system in mind. A careful choice of pole-zero locations ensures simple analysis.

The digital filter will be designed on its own merits. The poles are located at half the Nyquist frequency (i.e. 0.25 times the sampling frequency) where $\omega \mathrm{T}=\pi / 2$ radians, and at a radius of 0.5 .

Fig. 5.20. As an example of design with complex poles, the pole/zero diagram has simple coefficients to streamline the arithmetic.

Since the poles are complex, they will be represented as the conjugate pair $\pm \mathrm{j} 0.5$. This ensures a resonant frequency at a quarter of the sampling frequency. Additionally we choose to suppress the DC component by placing a zero at $z=1$. The inclusion of a zero at $z=-1$ ensures complete attenuation of any component at the Nyquist frequency
Referring to Fig. 5.20, we may write the transfer function directly as

$$
\begin{aligned}
& \mathrm{H}(\mathrm{z})=\text { location of zeros/location of } \\
& \text { poles } \\
& =[(z+1)(z-1)] /[(z+j 0.5)(z-j 0.5)] .
\end{aligned}
$$

Putting $\mathrm{H}(\mathrm{z})=\mathrm{Y}(\mathrm{z}) / \mathrm{X}(\mathrm{z})$ we obtain the transfer function in terms of the input and output signals:

$$
Y(z) / X(z)=z^{2}-1 /\left(z^{2}+0.25\right)
$$

Cross-multiplying gives the result

$$
z^{2} Y(z)+0.25 Y(z)=z^{2} X(z)-X(z)
$$

To obtain the recurrence relationship we must convert from transforms to sequences:

$$
y(n+2)=x(n+2)-x(n)-0.25 y(n)
$$

Expressing in terms of the current output:

$$
y(n)=x(n)-x(n-2)-0.25 y(n-2)
$$

The recurrence relationship is implemented in software form by the C program Listing 5.3. It is always advisable to dry-run your programs before attempting any real-time testing, complete with A-to-D and D-to-A converters. The program shown is particularly instructive because it incorporates an impulse response test. Unit-sample 1. 0, 0, (1, . . is input term-by-term from the keyboard and the processed response displayed on the monitor. Contrast this recursive method of obtaining the impulse response with the method of convolution outlined in Part 4 . Obviously, recursive methods are suitable for a real-time digital signal processor.
Listing 5.3 Impulse response testing using recurrence.


```
double c,d,e,f
k = 0;
print(("Input impulse from keyboard`n");
start:scanf("%d",&a);
|/P UNIT IMPULSE
    FROM KEYBOARD
d = a - c - 0.25 f;
printf("Sample No :%d't",k);
printf("%f"n",d);
k = k + 1;
DIFFERENCE EQUATION
y(n)=x(n)-x(n-2)-0.25y(n-2)
c}=\mathbf{b
b}=\mathbf{a}
f=e;
e = d;
goto start;
i
```


Real-time band-pass filter

The required recurrence relationship and software structure has already been successfully tested. Reorganising Listing 5.3 as a real-time band-pass filter in conjunction with the digital processing circuit shown in Fig. 5.1 is straightforward. Listing 5.4 shows the anatomy of the program, well littered with comments.

Listing 5.4

Fig. 5.24. Oscilloscope display of input (1kHz sine wave) and I)-to-A output. Sampling interval is $250 \mu \mathrm{~s}$.

Running the program in real time gave a sampling rate of $250 \mu \mathrm{~s}$ and a sampling frequency of +kHz . Since the poles of this system are located at a quarter of the sampling frequency we mast expect a maximum output or resonance in the region of 1 kllz . Figure 5.24, the photograph of the oscilloscope display, identifies the sinusoidal input to the A-to-D converter together with the processed output. which conlirms the theory. Applying a square wave of 10000 lz to the linear processor resulted in a sinusoidal output, because all the harmonies apart from the fundamental had been removed, so providing further evidence of the selectivity of this band-pass filter.

Modifying the program to process AC signats using the computer system shown in Fig. 5.21 requires care, parti-

Fig. 5.21. System block diagram of the band-pass filter represented by the recursive relationship $y(n)=v(n)-v(n-2)-0.25 y(n-2)$.
cularly if the A-to-D and D-to-A employ offset coding. For example, an 8 -bit A-to-I) conditioned to accept signals in the range -5 V to +5 V maps +5 V to 255 and -5 V to 0 . while a simitarly conditioned D-to-A maps 255 to $+5 \mathrm{~V}, 128$ to 0 V and $010-5 \mathrm{~V}$. To avoid the idiosyncracies of this type of coding, an ordered approach is required. In keeping with our carlier work I shall call data captured by the A-to-D "contents" and the data to be processed by the program $x(n)$, where $x(n)=($ contents $/ 128)-128$. Before writing the processed output $y(n)$ to the

D-to-A the following modification is introduced:

```
output=128*(y(n)+1).
```

(a) $\begin{aligned} & y(n) \\ & 1.0\end{aligned}$
1.0
0
-1.25
0
0.3125

0
0.3125
0
0
0
-0.078125
0
0.0195313
001

Fïg. 5.22. Response from impulseresponse test in digital filter design program. Values are at (a) and timedomain transient response (b) oscillates at 0.25 sampling frequency.

Fig. 5.23. Flow chart for Listing 5.4.

Table 5.1

ble 5.1								
\mathbf{n}	$\mathbf{x}(\mathbf{n}-\mathbf{2)}$	$\mathbf{x (n - 1)}$	$\mathbf{x (n)}$	contents	$\mathbf{y}(\mathbf{n}-\mathbf{2})$	$\mathbf{y (n - 1)}$	$\mathbf{y (n)}$	output
0	0	0	0.593	204	0	0	0.593	204
1	0	0.593	0	128	0	0.593	0	128
2	0.593	0	0	128	0.593	0	-0.741	33
3	0	0	0	128	0	-0.741	0	128
4	0	0	0	128	-0.741	0	0.185	151.71

Table 5.1 is a convenient method of representing the history of the input signal as it is processed by the filter. The amplitude of the input signal was deliberately restricted, in this case to +3 V , to avoid generating numbers outside the dynamic range of the D-toA (0 to 255). If you fail to recognise the significance of this, look again at the synthetically generated impulse response sequence. An input of unity generated an output of -1.25 in the third term of the sequence. Filters with a larger O -factor would exaggerate this effect, requiring correspondingly greater attenuation in the amplitude of the imput signal.

The bilinear transform

The elementary band-pass filter examined previously provided an introductory but limited model of z-plane design methods. The transfer function of the digital filter simply evolved from the locations of the poles and zeros. Rather than restrict the design in this way it may be advantageous to adopt the characteristics of well proven analogue filters such as the Butterworth or Chebychev designs, based on s-plane models.

The bilinear transform is an algebraic method which translates the splane characteristics of an analogue transfer function into a unique set of z-plane poles and zeros, from which we may determine the digital transfer function and difference equation. Under the transformation, the coordinates of the s-plane poles and zeros are translated onto the z-plane, preserving the desired amplitude characteristics at the expense of some frequency distortion.
The transform may be written as

$$
s=(z-1) /(z+1)
$$

which is bilinear in the sense that both the numerator and denominator are linear in z.

Pre-warping. As a prelude to any design, consider the problem of relating the cut-off frequency of the prop-
osed digital filter to the cut-off frequency of the analogue prototype. Remember that s is a complex variable capable of characterizing any waveform; if we restrict our attention to sinusoids the analysis may be simplified by substituting $\mathrm{s}=\mathrm{j} \omega$, and expressing the bilinear transform as

$$
j \omega=\left(\mathrm{e}^{\mathrm{i} \omega \mathrm{~T}}-1\right) /\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{~T}}+1\right)
$$

Symbolizing the cut-off frequency of the analogue prototype as ω_{c} and the cut-off frequency of the equivalent digital filter as Ω_{c}, we can establish the required relationship as follows

Fig. 5.25. Substituting $z=\boldsymbol{e}^{j \omega t}$ transforms the $j \omega$ axis of the s-plane onto circumference of unit circle in z-plane.
roll-off sharply at the cut-off frequency and to fall to zero at very high frequencies. Any digital design should follow the analogue prototype as closely as possible, emulating the flat characteristics in the pass-band, a fall in gain of -3 dB at the cut-off frequency, followed by a fall to zero at half the sampling frequency (not infinity as in the case of the analogue filter).
$j \omega_{\mathrm{c}}=\frac{\exp \left(j \Omega_{\mathrm{c}} \mathrm{T} / 2\right)\left[\exp \left(j \Omega_{\mathrm{c}} \mathrm{T} / 2\right)-\exp \left(-j \Omega_{\mathrm{c}} \mathrm{T} / 2\right)\right]}{\exp \left(j \Omega_{\mathrm{c}} \mathrm{T} / 2\right)\left[\exp \left(j \Omega_{\mathrm{c}} \mathrm{T} / 2\right)+\exp \left(-j \Omega_{\mathrm{c}} \mathrm{T} / 2\right)\right]}$
$j \omega_{\mathrm{c}}=\frac{\mathrm{j} 2 \sin (\Omega \mathrm{~T} / 2)}{2 \cos (\Omega \mathrm{~T} / 2)}$
$\omega_{c}=\frac{\tan \left(\Omega_{c} \mathrm{~T}\right)}{2}$
With knowledge of the parameters of the digital filter Ω_{c} and the sampling interval T, straightforward substitution produces the cut-off frequency of the analogue prototype ω_{c}, a technique known as pre-warping.
Expressing the transform in its inverse form

$$
z=(1-s) /(1+s)
$$

and substituting $\mathbf{s}=j \omega$, so that

$$
z=(1-\mathrm{j} \omega) /(1-\mathrm{j} \omega)
$$

provides a demonstration of how the j ω axis in the s-plane is transformed onto the circumference of the unit circle in the z-plane. Figure 5.25 is the relevant diagram. If you have the time, progressively increase the angular frequency from zero towards infinity, and observe the effects of this mapping. It helps to understand the reality behind the abstraction.

The analogue Butterworth amplitude characteristic is designed to be maximally flat at low frequencies, to

The magnitude-squared expression of an nth-order Butterworth filter is defined by the expression

$$
|\mathbf{H}(\mathrm{j} \omega)|^{2}=1 /\left[1+\left(\omega / \omega_{\mathrm{o}}\right)^{2 n} \mid .\right.
$$

Normalising the expression by writing $\omega_{\mathrm{o}}=1 \mathrm{rad}^{-1}$ leads to a more tractable expression with a -3 dB cut-off frequency of $1 \mathrm{rad}^{-1}$. Therefore, we may write the normalised magnitudesquared response of a second order filter as

$$
|H(j \omega)|^{2}=1 /\left(1+\omega^{4}\right) .
$$

The general form of an all-pole second-order filter is given by the transfer function

$$
H(s)=1 /\left(a s^{2}+b s+c\right)
$$

To calculate the magnitude-squared function, it is usually easier to evaluate $\mathrm{H}(\mathrm{s}) \cdot \mathrm{H}(-\mathrm{s})$ initially, before substituting $s=j \omega$:

$$
|\mathrm{H}(\mathrm{j} \omega)|^{2}=\mathrm{H}(\mathrm{~s}) \mathrm{H}(-\mathrm{s})
$$

where $s=j \omega$.

$$
\begin{aligned}
H(s) H(-s) & =\frac{1}{\left(a s^{2}+b s+c\right)} \frac{1}{\left(a s^{2}-b s+c\right)} \\
& =1 /\left[a^{2} s^{4}+\left(b^{2}-2 a c\right) s^{2}+c^{2}\right] .
\end{aligned}
$$

Substituting $\mathrm{s}=\mathrm{j} \omega$, we obtain the fre-quency-domain model

$$
|\mathrm{H}(\mathrm{j} \omega)|=1 /\left[\mathrm{a}^{2} \omega^{2}+\left(\mathrm{b}^{2}-2 \mathrm{ac}\right) \omega^{2}+\mathrm{c}^{2}\right] .
$$

Comparing coefficients with the Butterworth magnitude response, we may write

$$
\begin{aligned}
& \mathrm{a}^{2}=1 \\
& \mathrm{~b}^{2}-2 \mathrm{ac}=0 \\
& \mathrm{c}^{2}=1 .
\end{aligned}
$$

Hence, the second-order normalised Butterworth transfer function is given by

$$
H(s)=1 /\left(s^{2}+1.414 s+1\right)
$$

By inspection of the transfer function, we notice that the Q -factor is $1 / \sqrt{ } 2$, which gives the best approximation to an ideal brick-wall response, as shown in Figure 5.26 for a variety of Q-factors.

Fig. 5.26. Butterworth filter designed using the bilinear transform. Curve of $Q=1 / \sqrt{ } 2$ gives best "brick-wall" response.

Design example. Our intention is to design a second-order low-pass filter based on a Butterworth prototype. The digital filter will have a cut-off frequency of 1 kHz , together with a sampling frequency of 2.5 kHz .

As the complexity of the filter increases, so the time taken to complete the various additions, subtractions and multiplications escalates. Real-time signal processing requires that all the calculations associated with each input sample are completed. before the next one becomes available. Since the software implementation of each design is likely to be unique, it is not possible to be prescriptive. The suggested sampling frequency provides a useful start for second-order Butterworth design exclusively in C.

Pre-warping, we may write the cut-
off frequency of the analogue prototype as

$$
\omega_{\mathrm{c}}=\tan \left(\Omega_{\mathrm{c}} \mathrm{~T}\right) / 2
$$

Substituting for the angular cut-off frequency Ω_{c} and sampling period T gives the numerical result

$$
\begin{aligned}
& \omega_{\mathrm{c}}=\tan [(2 \pi \star 1000) /(2 * 2500] \\
& =\tan (1.256) \\
& =3.0777
\end{aligned}
$$

Hence, we may conclude that the cut-off frequency of the analogue prototype is $3.0777 \mathrm{rads}^{-1}$.
Denormalising, we replace s by s / ω_{c} in the Butterworth transfer function. modifying the analogue prototype so that

$$
\mathrm{H}(\mathrm{~s})=9.4722 /\left(\mathrm{s}^{2}+4.3518 \mathrm{~s}+9.4722\right)
$$

To obtain the digital transfer function $\mathrm{H}(\mathrm{z})$, we apply the bilinear transform, substituting $s=(z-1) /(z+1)$. The transfer function is

$$
H(z)=\frac{9.4722}{\left[\frac{z-1}{z+1}\right]^{2}+4.3518\left[\frac{z-1}{z+1}\right]+9.4722}
$$

$$
\begin{aligned}
H(z) & =\frac{9.4722(z+1)^{2}}{(z-1)^{2}+4.3518(z-1)(z+1)+9.4} \\
& =\frac{9.4722 z^{2}+18.9444 z+9.4722}{14.842 z^{2}+16.9444 z+6.1204}
\end{aligned}
$$

Converting from transforms to sequences, we obtain the recurrence relationship

$$
\begin{aligned}
y(n)= & 0.6 .389 x(n)+1.2779 x(n-1) \\
& +0.6389 x(n-2)-1.1430 y(n-1) \\
& -0.4129 y(n-2)
\end{aligned}
$$

Software-based multiplication is a thief of time. Disregarding any normalising or off-set coding, the recursive structure of this filter required five multiplications per input sample. No doubt combining assembly language with C offers greater potential for throughput, but at the expense of program complexity and development time. The moral is obvious - if you want it fast, keep it simple.

NOTATION

$a=x(n) b=x(n-1) c=x(n-2)$
$d=y(n) e=y(n-1) f=y(n-2)$
unsigned int contents;
outp(BASE,1);
1.

SELECT I/P CHANNEL

for (;i)

outp(BASE + 2.0);
START CONVERSION
contents $=\operatorname{inp}($ BASE +2$)$;
$a=0.00392 *$ contents;
NORMALISE INPUT
$d=0.6389 * a+1.2779 * b+0.6389 * c-$
$1.1430 * e-0.4129$ *;
outp(BASE + 4, (int) 128 * ($1+\mathrm{d}$));
WEIGHT AND SCALE: OFFSET BINARY CODING
$\mathbf{c}=\mathbf{b}$;
$\mathrm{b}=\mathrm{a}$;
$f=e$;
$e=d ;$
SHUFFLE DATA
\}
Despite our best efforts the computational efficiency of this program could not achieve a sampling interval better than $400 \mu \mathrm{~s}$. For the purpose of comparison, remember, the straight-wired 1/O program, Listing 5.1, provided a benchmark of $25 \mu \mathrm{~s}$.

Listing 5.5

ノ*****************************

* BUTTERWORTH SECOND-ORDER
* DIGITAL FILTER FS $=2.5 \mathrm{KHz}$
* CUT-OFF FREQUENCY $=1000 \mathrm{~Hz}$
\# include<stdio.h>
\#include<conio.h>
\#define BASE 768
main()
\{
float a,b,c,d,e,f;

The next part in this series deals with the use of C for finite impulse response filters. The author provides practical programming examples for audio echo and reverberation, effects which are difficalt to reproduce in analogue form.

ELECTRONICS WORLD
 + WIRELESS WORID

Simple DFM for 0 to 20 kHz

Two chips from Teledyne Semiconductor provide a means of constructing a low-cost digital frequency meter suitable for audio frequencies. Application Note 37 details a battery-powered (single 9 V) frequency meter running at three
conversions per second, using an oscillator frequency of 48 kHz for maximum rejection of stray AC pick up.
The TSC7136 dual-slope analogue-to-digital converter directly drives a $31 / 2$ digit non-multiplexed LCD display, so
no digital conversion is required. It derives its input from the TSC9400 frequency-to-voltage converter.
Semiconductor Supplies International Lid, Dawson House, I28-130 Carshalton Read, Sution, Surrey. SMI 4RS

Ultra-rapid NiCd charger.

There are many portable equipment applications using nickel cadmium batteries in which charging can be a problem. The difficulty becomes apparent when the voltage of the batteries to be charged exceeds that of the charging source, typicatly a 12 V car battery. This note suggests a design for an ultra-fast nickel-cadmium battery charger capable of completely charging eight to 12 batteries at 1.2 to 1.8 Ah in 30 to 45 minutes. This is currently possible due to the use by battery manufacturers of new sintered electrode technology which allows rapid charging cycles.

Specifications

10 to 14 V input voltage; 1 to 3.5 A constant output current; 20 V maximum output voltage; automatic shut-off; supply reversal protection; full output protection.
A nickel-cadium battery must be charged with a constant current and is completely charged when it receives 140% of rated ampere hour charge. The variation of the battery voltage as a function of the charge depends upon the state of the charge as well as the temperature. When charging is completed. the

Fig. 1 NiCd battery charging characteristics
temperature rises rapidly and. if the battery charger is not shut off. the batteries are destroyed.

This design provides for these requirements by including a constant-current regulator and a switch-mode converter to increase the charging voltage when the voltage of the batteries under charge exceeds 10 V . The end-of-charging detection system uses the principle that,
when fully charged, the battery temperature increases concomitant with a decrease in battery voltage (see Fig.1)

This regulator uses a MTP3055E power mosfet which has a variable operating point for adjustment of the charging current. This current is relatively independent of the drain-source voltage when $V_{\text {bs }}$ exceeds 2V

Continued over page -

The converter is used to increase the charging voltage so that the current regulator always has an input of at least 2 V . It uses the Motorola UC3843 produced specifically for automotive applications. This chip works in conjunction with a second MTP3055E, a MBR745 Schottky diode and a $25 \mu \mathrm{H}$ inductor. The operating frequency is 100 kHz .

A MOC8102 optocoupler monitors the voltage applied to the current regulator and brings this information to the error amplifier of the UC3843. When a decrease in voltage is sensed. the UC3843 reacts to maintain the minimum voltage at the input of the current regulator. This reduces power dissipation in the linear current regulator to a minimum. The output voltage of the switch-mode converter is therefore floating and stays at 2 V above the voltage of the batteries to be charged.

If at some instant the batteries to be charged are not connected. the output voltage can exceed 40 V . Should this happen. a 2 N 5061 thyristor. sensitive to overvoltage. immediately turns off the converter.

The combination of the MC34181 operational amplifier and the 2 N 5061 thyristor provides control of output voltage and automatic shut off at full charge. The MC34181 j-fet op-amp is used as a comparator in the battery charger. Its inverting input is connected to the battery voltage minus the drop provided by the llV zener diode. The non-inverting input is at a lower voltage due to the 4.7Ω resistor blocking the amplifier in its low-level state. The output from this comparator also drives a led. indicating that charging is taking place.

When the voltage of the batteries under charge decreases (which happens at full charge) the non-inverting input does not have time to vary due to the large 20s time constant. However. the inverting input varies rapidly due to its small time constant. forcing the op-amp to toggle, shutting off the led and turning on the thyristor. The switchmode converter then turns off and charging is completed.

The MBR 1635 diode is used to protect the battery charger against polarity inversions. If the output of the charger is short circuited, the output current is still limited but the regulator receives 12 V . causing it to heat up. Short-circuits should therefore be avoided or be of short duration.
Derived from Motorola application note EB126
Motorola, Motorola House, 69 Buckingham Street. Aylesbury. Bucks HP20 2NF. Phone 0296395252.

18-bit D to A converter for $x 8$ over-sampling

The PCM61P is an 18-bit, pin compatible replacement for the widely used 16 -bit PCM56P. The addition of two extra bits reduces the level of both harmonics and noise in CD audio applications using the PCM56P. The PCM61P includes an internal reference and output op-amp.

The device is capable of 8 -times oversampling (single channel). Manufacturer Burr-Brown says that it meets its specifications without an external output de-glitcher. The device block diagram is shown in Fig. 1.

Maximum clock rate

The 16.9 MHz stated maximum clock rate for the device is derived by multiplying the standard audio sample rate of 44.1 kHz by 16 (for 16 x oversampling) multiplied by audio word bit length in use, in this case 24 . Thus 44.1 kHz x 16 x $24=16.9 \mathrm{MHz}$. Note that this clock rate accommodates a 24 -bit word length, even though only 18 bits are in actual use.

MSB error adjustment procedure

The MSB error of the PCM61P can be adjusted to make the differential linearity error (DLE) at bipolar zero (BPZ) essentially zero. This is important when the signal output levels are very low, because zero crossing noise (DLE at BPZ) becomes very significant when compared to the small code changes occurring in the LSB portion of the converter. Static adjustment of DLE at BPZ can be made with extra circuitry shown in Fig. 2.
Burr-Brown International Ltd, 1 Millfield House, Woodshots Meadow, Watford, Herts WD1 8YX. Phonc 0923 33837.

Fig. 2

Fig. 1

Note: (1) MSB error (Bipolar Zero differential linearity error) can be adjusted to zero using the external circuit shown in Figure 2

High voltage Schottky efficiency

Although the low forward voltage drop of Schottky rectifiers has long been exploited to improve efficiency in converters rated at up to 15 volis, their use in converters in the $15-36$ volt region has been limited by the lack of higher voltage devices.

Motorola's application note AR322/D outlines a multi-output converter operating at high frequencies from a preregulated 120 V DC supply. Using MBR $1060 / \mathrm{MBR} 10100$ devices, it provides $\pm 36 \mathrm{~V}$ at 2 A max and $\pm 15 \mathrm{~V}$ at 3 A max. If conventional $p-n$ junctions are used as rectifiers in the same output stages, a trade-off between output voltage and efficiency exists.
While p-n-junction devices may be selected which meet the reverse voltage requirements, the forward voltage drop is high over a range of currents and, as a result, so too are the rectifier losses. However, if the peak reverse voltage requirements fall within ratings, Schottky rectifiers can reduce rectifier losses.

In this example, 100 V Schottky rectifiers are adequate for the 36 V outputs while 60 V devices suffice for 15 V .
Motorola Lid. 88 Tanners Drive, Blakelands, Milton Keynes MKI 45 BP. Tel. 0296395252

LED smoke detection

A smoke detector based on the CS-235 chip from Cherry Semiconductor uses a pulsed infrared led as the light source and a silicon photodiode as the light detector. The CS-235, along with passive external components, controls the system timing and signal processing.

Low average current is attained by pulsing the system once every 10s for 20 ms . Bias is applied to the signal processing circuitry for this time inter-
val. During the second half of the pulse (the last 10 ms) the 1 R led is pulsed and the unit samples for an alarm level smoke condition.
After the first alarm, the sampling rage increases to two seconds. Finally,
after three consecutive alarms, the logic drives the output latch to activate the alarm. This latch can sink 100 mA maximum and will clamp the V_{cc} pin 105 V . Clere Electronics L.id, Kingsclere. Newbury, Berks.
$\quad \mathrm{C} 2=100 \mu \mathrm{f}(24 \mathrm{~V})$

APPLICATIONS SUMMARY

Filter design the

easy way

In Application Note 27A from Linear Technology, the emphasis is on simplifying filter design procedure. It discusses two methods of designing bandpass filters from switched-capacitor building blocks - one using traditional nonidentical sections and the second involving identical sections

Design tables are included, one of which Linear Technology claims enables anyone to design Butterworth bandpass filters.

One of three design examples in the note is this eighth-order bandpass filter for 10.2 kHz . Linear Technology, Microcall, Thames Park Road, Thame, Oxfordshire $\mathrm{OX} 93 \times \mathrm{D}$. Tel. 0844261939.

Fault finding with an ammeter

A current meter sensitive enough to measure the resistance of a PCB track is an invaluable fault-finding aid. For example, finding a short-circuited decoupling capacitor on a dense logic board is very time consuming by conventional methods, but with a sensitive current meter finding even a partially-shorted capacitor should take no longer than a few seconds - without track cutting.

This application relating to the TLIO1A ammeter is outlined in a note from Transducer Laboratories. Among other uses suggested for the meter are cable-length determination and cable voltage-drop measurement. Transducer Laboratories, Guildford Road, Farnham, Surrey GU9 9P2. Tel. 0252 733732.

Power Hall device simplifies brushless motors

Design of small brushless motors is simplified by the availability of power Hall-effect ICs. Sprague's UGN5275/7 latching Hall-effect sensors can sink 300 mA continuously and besides power-output transistors include a Hall voltage generator, an op-amp, a Schmitt trigger, and a voltage regulator. As a result, little more than one IC is required for commutation

This circuit is the only one in the device data sheet, but guidelines for application are given. Sprague Semiconductors, Balfour House, Churfield Road. Walton-on-Thames, Surrey KT12 2TD. Tel. 0932253355.

APPLICATIONS

Compander for radio mics

Wire-less audio systems are finding increasing use in live performances, as well as in communications equipment where mobility is required. Designing such systems presents a difficult challenge; in particular, how to maintain adequate audio performance in view of power supply and current consumption limitations.
To reduce transmission noise, the audio signal is usually compressed at the transmitter and expanded at the receiver by using a telecommunications industry-standard compander IC, which has barely adequate audio performance by professional standards. This article describes a companding system utilising the SSM-2120 dynamic range processor,
which offers improvements over the other techniques in terms of noise, distortion and feedthrough.
Transmitters are battery powered, and hence impose severe constraints on supply voltages and current consumption; receivers are often AC powered, so bipolar supplies are more easily accommodated. Since the SSM-2120 requires split supplies, a voltage doubler circuit is necessary for the transmitter, though in some cases this may not be feasible. In this event, however, the SMM-2120 is still useful in the receiver expander circuit to complement any compressed signal, and improve overall system performance.

Compressor and limiter circuits

The design described is intended for $\pm 9 \mathrm{~V}$ DC battery power and includes a third-order high-pass filter for the elimination of subsonic noise and lowfrequency pops that would cause compander overload or mis-tracking.

Figure 1 shows the connection of the SSM-2120 (U_{3}) VCA ${ }_{1}$, rectifier, and control amplifier as a compressor, the VCA being connected in the feedback loop of the preamplifier U_{1} to control the gain. The compressor is designed for a $2: 1$ compression characteristic; if the input rises by 6 dB , the output level will only increase by 3 dB . The gain compression can therefore be expressed as:

$$
=\frac{\mathbf{R}_{2} \cdot \mathbf{R}_{4}}{\mathbf{R}_{1} \mathrm{R}_{3}}
$$

as long as the rectifier input currents are limited by R_{5} and R_{6}, and the rectifier has a $\sim 10 \mu \mathrm{~A}$ reference current.

The SSM-2120 rectifier and VCA have a dynamic range in excess of 100 dB , resulting in exceptional tracking of the expander/compressor in the compander system.

Small-signal averaging time for a $10 \mu \mathrm{~F}$ integration capacitor is 25 ms , while the attack time to within 3 dB of the final value is also about 26 ms and is almost independent of signal level increases for level changes in excess of +10 dB . Decay rate is $3 \mathrm{~ms} / \mathrm{dB}$. The high-pass filter keeps frequencies below 90 Hz from the input of the rectifier, reducing the low-freqency distortion caused by the VCA control circuit.

DC and high-frequency feedback are provided for U_{1} without sacrificing bandwidth or stability. Output current from the signal-inverting VCA is summed, along with the microphone signal current, at the virtual-ground non-inverting input of preamplifier SSM-2134, U. The $10 \mathrm{k} \Omega$ resistor at the input of the VCA limits the input current, while the $2200 \mathrm{pF}, 47 \Omega$ network provides frequency compensation for the VCA, keeping it stable. Gain is adjusted for 0 dBu with -50 dBu applied to the microphone input terminals.

Fig. 1. Compressor-limiter circuit for transmitter. High-quality passive components are recommended.

Compressor/limiter

Input voltage range (OdBu out)
-65dButo-40dBu
Attack time 26 ms

Recovery
$3 \mathrm{~ms} / \mathrm{dB}$
Gain reduction
Limiter attack time 13 ms
Limiter recovery
$1.5 \mathrm{~ms} / \mathrm{dB}$
Frequency response $(90 \mathrm{~Hz}-20 \mathrm{kHz})$
S:nratio at OdB
$\pm 0.5 \mathrm{~dB}$
THD + noise 0.05\%

Expander
Inputvoltage range $\quad-10 \mathrm{dBu}$
Attacktime 26 ms
Recovery
$3 \mathrm{~ms} / \mathrm{dB}$
Gain ratio 1:2
Frequency response $(20 \mathrm{~Hz}$ to 20 kHz$)$
Sinratio
$\pm 1 \mathrm{~dB}$
THD + noise 0.2\%

Performance of compander using Precision Monolithics SSM-2120 dynamic range processor

Precision Monolithics is at 90 Park Street, Camberley, Surrey GU15 3NY. Telephone 0276692392.

The $100 \mathrm{k} \Omega$ resistor from V_{cc} to pin 10 of U_{3} establishes the operating current for the VCA. To keep power supply current to a minimum, all pins of the unused VCA should be returned to ground. Feedthrough trim is optional and can be used to minimise the VCA control voltage feeding through to the output.

Protection limiter

This uses the second rectifier and control amplifier for separate and independent attack and decay times, along with a steeper gain-reduction slope. A threshold control sets the predetermined gain-limiting point for high input-signal levels. Gain reduction ratio is 4.6:1 and typically the onset of gain limiting should be set to +10 dBu at the output.

As in the compressor control circuit, the rectifier input current is limited by \mathbf{R}_{6} and the rectifier also referred to $10 \mu \mathrm{~A}$. Lower precision capacitors and resistors can be used in this case and, as with the compressor, the attack time is much faster than the decay.

The VCA/preamplifier was designed as a system: the VCA was put in the signal feedback loop of the preamplifier principally to prevent preamplifier overload, while keeping the overall noise low, and minimising component count.

Power consumption

The application circuit requires two power supply voltages, $\pm 9 \mathrm{VDC}$; power consumption of the circuit shown in Fig.

1 is less than 15 mA from each supply The design described will operate properly with good dynamic range as the battery voltage begins to fall below the nominal 9VDC. It is assumed that two 9 V batteries would be used, but for the smaller hand-held wireless microphones, a single 9 V battery would be sufficient. Figure 2 depicts a DC-to-DC converter that will supply the -9VDC.

The converter circuit incorporates an astable oscillator running at 25 kHz , which is followed by a capacitorcoupled level shifter and rectifier with a filter. An SE/NE555 timer is used in the "output sink" mode for maximum efficiency and longest battery life.

Receiver expander circuits

Figure 3 shows the control connection of the SSM-2120 $\left(\mathrm{U}_{3}\right)$ VCA, rectifier and control amplifier. The control circuit connection to the VCA produces a $1: 2$ gain expansion curve: if the input rises by 3 dB . the output level will rise 6 dB . Gain expansion ratio is:

$$
=\frac{\mathrm{R}_{2} \cdot \mathbf{R}_{4}}{\mathrm{R}_{1} \cdot \mathrm{R}_{3}}
$$

The rectifiet input current is again limited by a $10 \mathrm{k} \Omega$ resistor connected to pin 9 of U_{3}, and the rectifier is biased at $10 \mu \mathrm{~A}$ current though a $1.5 \mathrm{M} \Omega$ resistor connected to V_{EE}. The SSM-2126 rectifier and VCA each have a 100 dB dynamic range, resulting in accurate tracking of the compressor.
Small-signal averaging time, attack time and decay rate are identical to those of the compressor/limiter circuit.
Control-circuit gain values provide a control voltage to the VCA section $+V_{c}$

Fig. 3. Expander circuit for receiver processor.

Fig. 2. DC-to-DC converter for $\pm 9 V D C$ at 15 mA
control port (U_{3}, pin 5), which results in a $1: 2$ signal expansion characteristic. The level control sets the initial overall gain value and is adjustable from -10 dB to +20 dB .

Audio signal source

Input amplifier U_{1} acts as a buffer between the input signal source (FM receiver), the expander rectifier/control circuit, and the VCA audio signal input. If the signal-source output impedance is below $100 \Omega, \mathrm{U}_{1}$ can be omitted.

The nominal source signal level should be -10 dBu ; if signal gain or loss is required, U_{1} gain structure should be modified to provide -10 dBu to the VCA input-current limiting resistor. The $37.4 \mathrm{k} \Omega$ resistor ahead of the VCA input lim.its peak signal currents to avoid VCA distortion.

A $150 \mathrm{k} \Omega$ resistor to $\mathrm{V}_{\text {cc }}$ sets the VCA input/output current compliance range and a VCA input shunting capacitor minimises signal distortion and keeps the VCA stable by providing a highfrequency path to ground, the exact value being determined empirically.

UNCORRECTED SUPPLY

2Ndivision for Line Current
50 V /ivision for Line Volage

Line Current is drawn during a short portion of the cycle in a conventional electronic power supply. (Power Factor = .7)

WTH ML4812 POWER FACTOR CORRECTION

2Adiviaion for Line Current
50V/rivition for Line Voriege

Line Current is sinusoidal in a supply with Micro Linear's ML4812 Power Factor Correction. (Power Factor = .99)

Power-factor problems in switch-mode PSUs

Most switch-mode power supplies have a poor power factor, and as a result draw inordinately high peak currents from the mains supply. In addition. harmonics produced by the current pulses develop substantial amounts of power-line noise and distortion, and since producing the harmonics takes
power, efficiency of the supply is reduced.

These effects and a solution in the form of a new power-supply IC are discussed in an application note from Ambar Cascom. The chip - the ML4812 - controls a current-mode boost regulator that preregulates input
voltage for a conventional pulse-widthmodulated converter. A power factor better than 0.99 is achievable says Ambar. Ambar Cascom. Rabans Close, Aylesbury, Buckinghamshire HPI9 3RS. Tel. 0296434141.

Fax facts for modem designers

Communication standards are fine for users but they can cause problems for designers. For those of you considering new fax implementations, RCS Microsystems has produced an information sheet listing and outlining the relevant standards.

Addressess of standard sources are given, together with a list of fax modem products and application notes. Rockwell, RCS Microsystems, 141 Uxbridge Road, Hampton Hill. Middlesex TWl2 IBL. Tel. 01-9792204.
Data on this error-detecting fax modem forms part of a designer's information pack. Rock well's R96EFX is a 9600 bit/s modem IC that conforms to CCITT recommendations V.29, V.27ter. V. 21 Ch.2, T. 3 and T.4: it covers the binary signalling requirements of T. 30 too. Also in the designer's pack is data on other fax modem products and the information sheet mentioned here.

SPICE• AGE
 Non-Linear Analogue Circuit Simulator £245 complete
 or $£ 70$ per Module

Those Engineers have a reputation for supplying the best value-for money in microcom-puter-based circuit simulation soltware Just look at what the latest fully - integrated SPICE Advanced Graphics Environment (AGE) Dackage ofters in ease-of use, performance and facilities
SPICE AGE performs lour iypes of analysis sumply speedily and accurately

- Module 1 - Frequency response Moilule 3 Transient analysis
- Module 2 - DC quiescent analysis Module 4 Fourier analysis

Frequency response of a low pass filter circuil

2 DC Quiescent analysis
SPICE AGE analyses DC voltages in any network and is useful, for exampe. for setting transistor bias Non-IInear compo nents such as transistors and diodes are catered for (The disk library of ne.work models contains many commonly-used components - see below) This type of analysis is ideal for conlirming buas conditions and establishing clipping rrargin prior to performıng a transient analysis Tabular results are given lor each node: the reference node is user-selectable.

1 Frequency response

SPICE•AGE provides a clever hidden benefit. It first solves for circuit quiescence and only when the operating point is established does it release the correct small-signal results This essential concept is teatured in all Those Engineers' sottware. Numerical and graphical (log \& lin) impedance. gain and phase results can be generated. A 'probe node' feature allows the output nodes to be changed Output may be elther $d 8$ or volts: the zero dB reterence can be defined in six difterent ways

DC conditions within model of 741

LATEST FEATURES: define up to four independent signals with time vv voltage co-ordinates on text files and use the FFT functions to make a spectrum analyser or chain outputs to simulate circuits of unlimited size!

impulse response of low pass filser (transiont analysis)

4 Fourier analyses now with Menning window option
SPICEAGE pertorms Fourier trans forms on transient analysis data. This allows users to examine transient analysis waveforms for the most prevalent frequency components (amplitude is protted against frequency). Functions as a ted against frequency). Functions as a
simple spectrum analyser for snapshot of simple specirum analyser for snapshot of
transients. Automatically interpolates from Iransient analysis data and handles up to 512 data values. Allows examination of waveform through different windows. Powerful analytical function is extremely easy to use.

3 Translent analysia

The transient response arising from a wide range of inputs can be examined. 7 types of excitation are offered (impulse, sine wave, step, triangle, ramp, square, and pulse train); the parameters of each are user-definable. Reactive components may be pre-charged to steadystate condition. Up to 13 voltage generators and current generators may be connected. Sweep time is adiustable. Up to 4 probe nodes are allowed, and simultaneous plots permit easy comparison of results.

If your work involves designing, developing or verifyirg analogue or digital circuits, you will wonder how you ever managed without Those Engineers circuit Simulation Software.
A good range of proper y supported and proven programs is available and our expert staff are a: your service
Telephone: Charles Clarke on C71-435 2771
for a demonstration disk

Spectrum of rectengular puise train (Fourier analysis)

106a Fortune Green Road West Hampstead
London NW6 'DS
Tel:071-4352771 Fax:071-4353757
CIRCLE NO, 1.33 ON REPLY CARD

Universal $\mu \mathrm{P}$ Development STATION

etc
256K VER FROM 199 exV.A.T\&P.P.
RING FORA COPY OF OUR DEVELOPMENT TOOLS CATALOGUE. MEMORY EMULATOR FEATURES......

* MEMORY EMULATORWITHTRACE/BKPNT EXPANSION CAPABILITY
* PORTABLE MEMORY RETAIN VERSION AVAILABLE
* 256 KAND 1 MEG VERSIONS EMULATE ALL 27XXXX EPROMS. 28XXX EEPROMS \& 5XXXX SRAMS.
* DOWNLOAD YOUR CODE FASTERTHAN BLOWING EPROMS OK BYTES PER SECOND ON STAG STRATOS.

8K TRACE/BREAKPOINT FEATURES.....

* 2 STAGE HARDWARE BREAKPOINT ADDRESS
* 4 * LOGIC PROBE INPUTS + INTERRUPT OUTPUT PROBE
* FIVE STANDARD USER PROGRAMMABLE BREAK CONDITIONS Break on addr 1, trace from addr 1 to addr 2 or until buffer full.
Break on logic \& addr 1, trace
Break on write \& addr 1, trace "

$$
\text { trace every write and address } 1
$$

Trace continuous until address 1 reached.

* TRACE MEMORY read-in using READ command of PROM PROG

FLASH DESIGNS: STANOREWS HOUSE, P.O. BOX 167, CRAWLEY.
SALES:0293-611722 W. SUSSEX. RH119YE. TECH:0293-551229

A-TO-D converter using V-to-F conversion

An attractive method of A-to-D conversion is to use a voltage-to-frequency converter and to count the output frequency which, assuming that the conversion is linear, is proportional to the input voltage and can be scaled to read voltage directly. Although conversion does not compete in speed with other methods, it is accurate and its intrinsic integration permits the virtual elimination of low-frequency interference such as that at 50 Hz .

As the application note from BurrBrown points out, the result of a V-to-F conversion is a serial data stream which is easily handled in multichannel systems and transmitted over long lines with good noise immunity. Optical isolation is feasible and multiplexing is carried out digitally.

There is, however, one source of inaccuracy, commonly thought to be inherent: the plus-or-minus one count error, illustrated in Fig. 1. This shows the usual method of counting, in which
the gate period is derived from a stable oscillator which is unrelated in phase to the frequency being counted. Depending on the phase of the gate oscillator in relation to the frequency, the count in this case is either three or two. One solution to the problem is to arrange for a large number of counts during the gate time but, since speed of conversion often dictates a short gate time, the result is a requirement for very high signal frequencies, at which the linearity of V-to-F conversion can be low.

Figure 2 shows a system in which the dilemma is resolved. It is known as the ratiometric technique, in which a targe count is obtained to make the onecount error insignificant. N counts of a high-speed clock occur during an exact

Fig. 1. Potential inaccuracies in counting. Same gate period can give different counts.
integer M counts of the V -to-F converter, giving an accurate ratio of the unknown frequency to the frequency reference.

A D-type flip-flop, clocked by the VFC output, produces a gate period which is an exact number of VFC pulses in duration, so that the count in M is not subject to the one-count error. In the same gate period, pulses from the high-frequency oscillator are counted by N; since the gate period and oscillator frequency are unrelated, the one-count error is present, but is relatively small compared to the large count. The result is a ratio ($\mathrm{M}: \mathrm{N}$), which is determined by a host processor or microcontroller, together with scaling and offsetting. V-toF conversion is now carried at low frequency, where accuracy is highest.

An example of a system using the technique is shown in Fig. 3, in which the VFC1 10 converts a $0-10 \mathrm{~V}$ input to a $10-100 \mathrm{kHz}$ output by offsetting the

VFC input with a reference voltage: the 5 V references set a constant input current through R_{1} which is added to the signal input current through $\mathrm{R}_{\text {in }}$. To avoid a very low VFC frequency causing a long gate period, the offset allows 10 kHz (0 V) to be counted during the desired gate time.

Counting is carried out by the 8254 . which contains three counters and interfaces to many microprocessor
types. Counter C2 acts as a programmed divider to the 3.58 MHz clock to produce the gate signal G of 16.66 ms in Fig. 2 at the output of FF1. Flip-flop ? synchronises G to an integer number of VFC pulses to produce SG in Fig. 2. Counter C 0 is M and counter C 1 is N .

A gate period of 16.66 ms results from the need to integrate over one cycle of mains frequency (this is an American design, intended for 60 Hz
working). The frequency response of a VFC is comb-like, with deep nulls appearing at multiples of $1 / T$, where T is the gate period.

Using this circuit, speed of conversion is about 30 times faster than in the traditional method.

Burr-Brown International Ltd, 1 Millfield House, Woodshots Meadow, Watford, Hertfordshire WD1 8YX. Telephone: 092333837.

Balanced-input, high- level amplifier

The amplifier shown in the diagram provides adjustable gain and accepts audio signals from -27.5 dBu to $+(0 \mathrm{dBu}$ with more than 30 dB of "headroom" and a common-mode voltage of 340 Vpk-pk. Common-mode noise rejection is greater than 100 dB at 1 kHz and equivalent input noise is -124 dBu . Gain is adjustable in 2.5 dB steps and worst-case THD is less than 0.008%; intermodulation distortion less than 0.015%.

A true differential-input IC amplifier, the SSM-2015 from PMI uses two
identical low-noise bipolar transistors, with access to the emitters for gain adjustment. Switched resistors (R_{14} R_{24}) set the gain according to the expression $\mathrm{G}=3.5+\left(20 \times 10^{3} / \mathrm{R}_{\mathrm{G}}\right)$ for R_{9} and R_{13} of $10 k \Omega$.

This use of emitter feedback results in minimum noise and maximum CMRR, while retaining a high input impedance, and complementary bipolar transistors at the output produce a slew rate of $6 \mathrm{~V} / \mu \mathrm{s}$ with the capability of driving a $2 \mathrm{k} \Omega$ unbalanced load. Direct coupling can be used, but if normal-
mode input direct voltages are expected here, AC coupling may be needed for the following stage.

An RC filter at the input limits input voltage slew rate and reduces interface transient intermodulation distortion; it has little effect on phase response in the pass-band 20 Hz to 20 kHz . Capacitors C_{1} and C_{2} should be matched to preserve high-frequency commonmode performance.
Bourns Electronics Ltd, 90 Park Street, Camberley, Surrey GU15 3NY. Telephone: 0276692392.

High-speed, high-gain instrumentation amplifier

Burr-Brown's OAP637 is a high-speed, low-noise op-amp which operates well from high source-impedances and which is fabricated in a complementary n-p-n/p-n-p process. Gain-bandwidth product is 80 MHz and noise at 10 kHz is
$4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. Voltage offset is $100 \mu \mathrm{~V}$ maximum, drift is $0.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum and bias current 5 pA. For driving long lines or capacitive loads, typical output current is 45 mA at $\pm 10 \mathrm{~V}$. It may be used as an inverting amplifier with a

gain more than four or in a noninverting form at a gain over five, which means that feedback capacitors can cause instability, since HF gain could fall to unity.
The circuit shown is a differential instrumentation amplifier with a gain of 1000 , using a INA 106 output stage with a gain of 10 . The makers suggest that, as well as ordinary precautions in board layout, pin 8 (TO-99 package) should be connected to an AC ground for lowest pickup of external fields, although DC ground or a positive or negative rail would also serve. For lowest possible input bias current, the case (pin 8) could be connected to a circuit board guard pattern around pins 2 and 3.
Burr-Brown International Ltd, 1 Millfield House, Woodshots Meadow, Watford, Hertfordshire WD1 8YX. Telephone: 092333837.

THE DIFFERENCE BETWEEN

AND -

- IS 4 minutes

(IBM PC-AT286)

now lets you draw schematics directly on your PC and convert them to auto-routed multilayer boards in a trice

Why not order our demo kit and see for yourself.

PCB EAGLE
Layout Editor $\mathbf{E 3 3 5}$
Schematic $£ 350$ Autorouter £260
Demo Kit $\Sigma 10$ (all prices ex.VAT)

PO Box 5, Kilmacolm Scotland PA164XJ Tel: 0505872338 Fax: 0505874149

Henrys Edamaroal London, W2

 ELECTRONICS DISTRIBUTORSMETEX AND TEST LAB INSTRUMENTS YOU PAY TRADE PRICES

ALL MOAFLS WITH CONTIMUH-Y TEST [+ Wilh Capacilance + He lest. 0 with 200 KHZ Frequency counter)

METEX PROFESSIONAL

BARGRAPH SERIES

M36108 34 Digit 30 Rance 0.3% (\cdot)

M4650 4\% Digit 30 Range 0.D5\% with
Data Hold (
Data Hold (....

AUTO RANGE SERIES

33/ Digit with Data Hold and Freq. Counter
M80 21 mm Display 20 KHZ Counter $£ 50.92$
M818 17 mm Display True Rms. 400 KH 2 K
Counter
M8188 Bargraph Version
NON-BARGRAPM
m3800 32 Range $31 / 2$ Digit 05% (${ }^{+}$)
m3630 30 Range $3 / \frac{1}{2}$ Digit $03 \%(+0)$

M4500 30 Range $41 / 2$ Digit 0.05% with
 Data Hold (.0 ALSO STOCKED M 13610 M 3650 M 4650 M 3630 B M 4630 B STANDARD SERIES

- with soft carry case $31 / 2$ digit 12 mm Displays M23158 17 Range 10 ADC $£ 20.00$ M233531 Range 10A AC (DC (+) M2325 32 Range 10 ACIDC(1 M2355 32 Range 10A AC $D C \cdot$
M2365 38 Pange 104 ACIDC ($\sum 30.42$ ③4.57 £37.25

INSTRUWENTS \& POWER SUPPIIES

3000 LCR AC Bridge
M30CEA AC Millivolt Mete! 1 MHZ
2020500 KHZ Function Geverator 4162AJ 150 MHZ Fr Gen. Pus 6 Digif Counter
2603A. 1 MHZ A1 Gen. plu; 6 Digit Counter
TE200 150 MHZ RI Gen
(350 NHZ Harmonic)

YF20 Jual Scale Sound Level Meteı

120d6
225V /HS Video Head Tester
106 Digital Lux Meter - ₹ Ranges
07 Logic Probe
M625 Logic Probe/Pulser
300 AC Clamp Meter 600\&/300V/
Resis
M265 Add on AC Clamp Probe
for Dmm's
for Dmms $\quad £ 16.48$ 505DE 41 Range FET mm
501 Eiectronic Insulation Tester 500V $\mathbb{E 5 3 . 2 5}$ DM5 Wallet Autorange Dmm
504 Eleclronic Insulation Tester $10 c 00 \mathrm{~V} 70.88921$ Pen Type Autorange Dmm
KOME TR Dip Meter 1510250 MHZ
KOME TR Dip Meter 1.5 to $250 \mathrm{MHZ} \quad £ 41.88850$ Mains Phase Tester
1062 LCD Temperature \& data hold $\$ 36.722601000 \mathrm{~A}$ AC Digital clamp meter
302 K LCD Temperature Two 1/P
± 32.85 Ta00TO LCD Dmm With Dwell And 30.69 Tach Ranges 20A AC/DC $£ 49.58$. £46.83 f060 LCD Digital True Power Meter 28.65 6KW 19
£14.74 207019 Range Multimeter 10ADC *
53350 Buzz 27 Range 10A AC/DC Cap Hfe Temp. Buzz
£32.00 261 Add on insulation tester for 260
Also stocked
distribulors lor HAMEG, FLIGHT ALTAI, BLACKSTAR, THURLBY. HITACHI, CROTECH, THANDAR.
Phone for best prices. Tools, components, CB, public address. CCTV security. communications, TV. video, audio, computer accessories.
£103.20 TE220 1 MHZ Audio Generator 685.803300 Autorange Digital Cap. Meter £96.50 6100 Signal Tracer/Injector £181.00 2430150 MHZ 7 Digit Freq Counte 2450/24V 0/5A Variable PSU £166.16 $1544 / 15 V 0 / 4$ A Variable PSU 580.00 P5 203 20V PSE330 Dual Version $£ 213.00$

581.75 564.00 152.30 554.50 $E 56.00$ 1509.55
$£ 40.00$
$£ 40.00$
$£ 78.22$
$\$ 78.22$
$£ 108.40$ £108.40

Prices correct at July 90
ADD 15\% VAT
TELEPHONE YOUR ORIER WITH VISA/ACCESS OPEN 6 DAYS A WEEK FOR CALLERS

fin B E GUPGO

404 Edgware Road, London W2 1ED Instruments/Audio 071-724 3564
Seclirity/Communications/CCTV 071-724 0323 Components 071-テ̄23 1003 Fax: 071-724 0322 Trade/Education/Export 071-258 1831
Account Facilities Available for Education and Trade/Industry

Catalogues

 in colour - Instruments - Security - Supplements Components Ask Henrys firs! Ethor calle:s laroe
 Education with

A mass of protests

As a postscript to my letter ($E W+W W$, December, 1989 p. 1208) drawing attention to a controversial article in an American journal questioning relativistic mass and $E=m c^{2}$, i thought readers would like to know how that controversy is developing in that journal's own letters column.

What started it all off was the view of Lev Okrun in the June 1989 issue of Phusics Today, a magazine of the American Institute of Physics that "The famous formula $E=n c^{2}$ has to be taken with a large grain of salt".

Now Physics Today (May 1990) has published readers responses.

W Rindler of Texas
University does not dispute
Okun's conclusion but he is
". . . disturbed by the harm that

Torque talk

May I offer some input into the alpha-torque correspondence which has been appearing in your letters pages.
It has been suggested that electrons in solid copper move independently of the crystal lattice. But I think there may he

a mechanism for an interaction.
Consider a conducting rod hanging from a pivot at its upper point and touching a hath of mercuryat its other end. With a circuit producing electron flow down the rod. into the bath, and a magnetic field flowing perpendicular to it, electrons in the conductor will he forced to the left. As they cannot leave the surface. the whole conductor will be forced to the left. If the single conductor is replaced by a spohed wheel, then it will rotate - each spoke experiencing á force to the left as it makes contact with the mercury. The current can only flow radially.

If the spohed wheel is replaced by a solid copper disc. current is no longer consuained to flow along a radial path - the conduction electrons are free to move in circular paths. So the conduction electrons could be expected to move in a curved path from centre to point of contact with the mercury. leaving the lattice alone. However. the disc will rotate just as the spoked wheel did, seeming to indicate that as the electrons flow and are deflected to the left, they somehow drag the lattice to the left also. Peter F Vaughan
Lynton
North Devon
with velocity. . I don't think we should try to banish $E=m c^{2}$ from T-shirts, badges and stamps. But in the textbooks it should appear only as an example of a historical artefact, with an explanation of its archaic origin".
John Ferguson
Camberley
Surrey

Cheque on science

Harrowell is wrong in his letter ($E W+W W$, May, 1990 p. 426) in ignoring the controlling hehavioural model in scientific suppression, which is Power. (This was de Gracia's conclusion in "The Velikovsky Affair", Ed de Gracia.)

Harrowell seems to thinh that the guiding light is still Search after Truth; an indulgence that today"s salaried, mortgaged scientists eschew.

A tiny fringe of scientists (Hillman, Theocharis, Walton, Mike Gibson) still keep to the nineteenth century, amateur ideals, but scientific advance is a thing of the past. The vandals are in control. Read Professor Paul Davies in the Guardian. For Catt
St Albans.

Gyroscopes, Sagnac and relativity

While John Nuttall's article "Optical fibre gyroscopes" (EW + WW, July, 1990 pp.6018611), was interesting and informative, he makes the contentious statement that the Sagnac effect can properly be explained only in terms of General Relativity. Surely it appears completely to contravene the principles of General Relativity and indeed provides a powerful argument in refutation of Einstein's
postulates?
METHewlett
Midhurst
West Sussex

I would like to respond to some of the incorrect and misleading comments contained in John Nuttall's article "Optical-fibre gyroscopes" (EW + WW, July,
$1990 \mathrm{pp} .608-611)$ particularly concerning the Sagnac effect

It is not unreasonable to suppose that Sagnacs 1913 paper "Experimental Proof of Reality of the Ether" was specifically responding to the alleged superfluousness of the ether put forward by Einstein in 1905 . and to its alleged nonexistence suggested by others
Sagnac's paper makes it clear that he conceived the opticalgyro effect on the basis of the ether, and performed the experiment with the declared objective of demonstrating its reality

But the first response from the relativists was not until several years later, in 1921, and as far as I know Einstein never uttered a word on this topic.

Yet relativists today have the effrontery to claim that the Sagnac effect can properly be explained only in terms of relativity. This and their various clams that relativity is supported by experiment, or that it has generated practical applications (e.g. nuclear power and atomic clocks) are simply bogus and must be exposed as such.

In sustaining the phoney explanations and absurd claims, many true but inconvenient facts are either quietly suppressed or suitably distorted, and history is disgracefully re-written in a fashion that Stalin would envy.

Our only hope is that a scientific glasnost will defeat this stagnation.
Theo Theocharis
London
I would like to comment on John Nuttall's article ($E W+W W$ July 199(1), the Sagnac effect has never been adequately explained by General Relativity. At best the argument is based on an hypothesis linked with a nonrotating inertial trame, just as Special Relativity argues that light speed is constant relative to any observer if measured in a non-accelerated (non-rotating) system.

Gravitation does affect the speed of light in vacuo - light rays bend around the stars - 10 disprove Special Relativity, were it not for Einstein dodging away from the problem by arguing equivalence between acceleration and gravitation and somehow bringing accelerated
motion into a uniformly moving field system.

The same dodge is applied, less convincingly, to the Sagnac interferometer. If it rotates it is not in non-accelerated motion and, as relativists cannot abide experimental evidence that rotation can be detected as if light speed were referenced on an ether, they side-track on the assumption that the mysteries of General Relativity must hold the key.

Modern physicists following the relativity route tend to adopt Langevin's argument (C.R. Acad. Sc., 173, 831 (1921)), which renders the Sagnac experiment consistent with the behaviour of the Foucault pendulum or the inertial space property of the mechanical gyroscope.

If there is an argument based on General Relativity and its incredible mathematics then, should any relativist respond to put the case, I ask that no defence for Einstein should be offered unless the following question can be answered.

Assume that one day space technology is such that John Nuttall's optical fibre gyroscope could have its terminals on Earth but its loop wound around the orbit followed by the Earth in its motion round the sun, so that the whole gyroscope structure rotates once a year. Would it be possible to detect that $30 \mathrm{~km} / \mathrm{s}$ motion by light speed measurement within that optical fibre?

If yes, then the basis of Special Relativity is destroyed because it relies on the Michelson-Morley null test aimed at that very objective.

If no, then, inasmuch as the device described in the July 1990 issue of $E W+W W$ does function to detect rotation in laboratory devices, where does Relativity point to the radius of transition between what works and what does not work?

It is quite obvious that Einstein's theory fails and that relativists have buried their heads in the sand, hoping to avoid the implications deriving from technological progress on light speed measurement. Harold Aspden
Department of Electrical Engineering
University of Southampton

Swings and gyros

In an age when precision of mechanical measurements has reached fractions of the wavelength of light it is surprising that Dr H R Harrison (Letters, $E W+W W$, July, p. 603) would rely on observation of a toy gyroscope swinging on the end of a string to measure an effect which could profoundiy affect fundamental physics.

A proper experiment to measure the period of a pendulum with a rotating bob would consist of two gyroscopes counter-rotating, co-planar and with axles parallel, mounted in a cylinder suspended on bearings and swinging on a platform pendulum, so there could be no possibility of any precessionally engendered torques affecting the period of the pendulum. The changes in the period of the pendulum thus observed are of the order of parts in 10^{5}. Clearly this would not be observable to the naked eye.

In 1974 Dr Eric Laithwaite, former professor of heavy electrical engineering at London Imperial College of Science and Technology demonstrated a prototype antigravity machine which lost 20% of its weight when energised. The understanding of this machine has been incorporated in an apparatus developed by Scottish inventor Sandy Kidd. Dr Harold Aspden, Senior Research Fellow at Southampton University witnessed operation

FNDR geometry

Ian Hickman's voltage vector diagram for a frequencydependent negative resistance (FNDR) filter ($E W+W W$, July pp. 584-587) is highly reminiscent of the construction of a hyperbola using a rod and a piece of string. Similarly, the current vectors represent the mensuration of triangles. Could it be that negative resistance circuit design is a matter of simple geometry? And is an FNDR really an analogue circuit if the voltage across a
"supercapacitor" falls at twice the rate as that across a normal capacitor: is this the configuration of a

of this device. Kidd is now living the balance tilting upward on in Australia where it is reported the gyroscope end. this device can hover and lift seven times its own weight.

Antigravity devices of this type can be described in terms of a variable inertia principle coupled with an oscillatory motion which I have
demonstrated with a precessing gyroscope - two 30 -pound, 11 in diameter flywheels rotating in opposite directions - by weighing the gyroscope. Of course an experiment performed in air can be questioned on many counts, but I have verified this with a fully enclosed gyroscope protected from the air.

One can construct a balance using a 1 m piece of light wooden rod and balancing a "toy" gyroscope against an equivalent inert mass. Spin the gyroscope and hang it on a string by the end of one of its axles and release the apparatus, allowing the gyroscope to precess. Careful observation will show

It would be fatal for society to
limit knowledge of dynamics and rotating motion to "classical mechanics". I suggest that Dr Harrison apply the measurement precision of the late 20 th century to the understanding of rotation.

Before one can comment on an experiment one must exactly repeat it. In the Alex Jones experiment $(E W+W W$, April, 1990 p.332), the apparatus was mounted on steel bali bearings so there was no constraint, as opposed to Harrison's set up. Because gyroscopic forces are exerted against space itself, the Harrison experiment yielded a reaction force.

I can only submit that understanding of the gyroscope is dependent on the absolute rotation of the rotating wheel in relation to a stationary ether.
Bruce DePalma
President, DEC
California
superconductor?
Many such effects have been reported for biological systems - perhaps it is possible for electronics too.
BEPClement
Crickhowell
Powys

Risky business

I was serious when I asked (Letters, $E W+W W$ ', June, 1990 p.526) what were the chances of acquiring acute myeloid leukemia. I was a radio station engineer for 20 years, lived under a 750 () volt feeder for 15 years and am still an amateur radio operator.

My concern is that we have a multiplicity of warnings worded "double your chances" of a certain disease, only to find that the original risks were more than a million to one. In at least one case recently, avoiding the danger warned about led to an increased risk of a much more common ailment. For that reason, I suspect any warning which does not give at least some idea of what the chances really are.
Joel S Look
Pawtucket

ACTIVE

A-to-D and D-to-A converters

Dual 18-bit audio D-to-A. The PCM1700P claims to be the first monolithic, dual 18-bit D-to-A converter for high-performance digital audio with a maximum conversion rate of 768 kHz . Multiple over-sampling, low noise and distortion figures better than 92dB THD + noise are promised. Serial input data in BTC format produces cophase, glitch-free audio outputs of either $\pm 3 \mathrm{~V}$ or $\pm 670 \mu \mathrm{~A}$. Current output is trimmed to an absolute $\pm 2 \%$ tolerance. Burr-Brown Ltd, 0923 33837

Three-channel converter. Sony's CX20206 8-bil high-speed D-to-A converter for video band use offers separate R, G and B channels, maximum conversion speed of 35 M samples/s, and differential linearity error of $\pm 1 / 2$ LSB. Input is at TTL levels and full-scale output is typically 1 Vp -p. The 42-pin SDIP package, 5 V supply, typically consumes 360 mW . Votume price $£ 15$. Hakuto International (UK) Ltd, 0992769090.

Four-channel D-to-A board. The ADC-40 analogue output board for PC control applications has four output channels for control signals, as voltages: $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0-10 \mathrm{~V}, 0-5 \mathrm{~V}$ or control loop 420 mA . Each channel is configured independently with fast D -to-A conversion of output (up to throughput 30,000 samples/sec). Onboard DIP switches select base address. Simple call statements program the board. Instrumatic, 0628 476741

Video D-to-As. The SC1 1471 and 478 are triple 6/8-bit Brooktree architecture video D-to-As fully PS/2 compatible with 256 -location colour palettes and 15 -level overlay palettes. Colour palette ram is programmable through a microprocessor bus interface operating asynchronously from the video data bus. Pixel mask register and sync generation is on all three channels Outputs can directly drive dualterminated $75 \Omega 2$ lines to RS343A levels. Sierra Semiconductor Ltd, 0793 618492.

Discrete active devices
RFI-immunity junction fet By integrating two resistors and two mos capacitors on a single chip, the BFR200 adds a low-pass filter to the input stages of sensitive equipment, suppressing RFI signals in the 450 to 900 MHz cellular radio range. Philips Components, 0103140724324

Linear integrated circuits

Linear semi-custom IC. The CS5200 linear bi-polar semi-custom integrated circuit for operation on a 1 GHz process provides up to 25% greater packing density than other arrays in the Genesis family. Single-layer metal

BVM's 68030 multiprocessor system, the BVME380.
interconnects provide low-cost solutions, for higher-density, twolayers can be provided. 226 small $\mathrm{n}-\mathrm{p}-\mathrm{n}$, eight medium current (100 mA) n-p-n, 130 lateral p-np, and 22 substrate pnp transistors are on chip. Clere Electronics Lid, 0635298574.

Darlington amp range. Eleven siliconmonolithic Darlington amplifiers, the HPMA-02XX/03XX/04XX/20XX/21XX series, come in two types of microplastic packages: the 85straight microstrip leads; 86 -ben leads for surface mounting. 21 XX is also available in the SOT-143 package. The amplifiers act as flexible 50Ω building blocks. The 2185/86 offers highest gain at 18 dB typical at 1 GHz , the 0485/86 is top power handier with 12.5 dBm typical output at 1 dB gain compression. HewlettPackard Ltd, 0344369369.

Fast-settling amplifier. The Elantec EL2029 monolithic amplifier aims for fast clean settling with millivolt accuracy; 0.01% from a 10 V step in 200 ns , with no thermal tail, input slew or overload penalties. It has low bias currents and large voltage gain, internally compensated for closed loop gains of five or more. Inputs handled up to 10 V differential overload. Slew rate is typically $900 \mathrm{~V} / \mu \mathrm{s}$, full power bandwidth is 5 MHz . Output can drive up to 75 mA , is current limited and can drive capacitive loads of up to 100 pF METL. 0844278781.

Chopper-stabilised amplifier. Linear Technology's LTC1100 chopperstabilised instrumentation amp has an offset voltage of $10 \mu \mathrm{~V}$, drift of $100 \mathrm{nv} /$ ${ }^{\circ} \mathrm{C}$ and a bias of 50 pA . Gain linearity is 8 ppm with a drift of $4 \mathrm{ppm} / \circ \mathrm{C}$. Output typically swings to within 300 mV of the supply rails, with a 10k load. Voltage noise is $2 \mu \mathrm{Vp}-\mathrm{p}$ and CMRR is 104 dB minimum. Micro Call Ltd, 0844261939

High-speed op-amp. The OP-160 will drive large capacitive loads without oscillation. It upgrades AD846, AD844 and EL2020 applications and conforms to the industry standard single op-amp pinout, available from stock in an 8-pin Cerdip and 8-pin plastic package. Precision Monolithics Inc, 0101408 7279222.

Monolithic wideband amplifier. The Si582 is a low-gain op-amp with a -3 dB bandwidth of 180 MHz . Currentmode feedback offers a transparent, high-performance alternative to conventional amplifiers. It also features low poser dissipation (typically 150 mW), fast settling (0.05% in 12 ns) and minimal signal degradation.
Distortion is typically -60 dBc at 20 MHz , and gain flatness is within 0.4 dB from DC to 50 MHz . Siliconix Ltd 063530905.

Memory chips

On-chip eprom. NEC's uP75P1164-
bit single-chip microcomputer is
dentical to its sister mask-rom version but with field programmable rom. Advantages of on-chip eprom include elimination of minimum order quantities and delivery delays associated with mask-rom devices NEC Electronics (UK) Ltd, 0908 691133.

Microprocessors and

 controllersMulti-processor 68030 systems. The BVME380 features a 68030 CPU with up to 4Mbyte of dram and a data and instruction cache. Bi-directional interrupts and on-board mailboxes provide data and control mechanisms Up to seven CPUs are available, each running its own copy of OS-9 and communicating using the networking file manager. CPUs can access any I/O device, including disc storage. BVM Ltd, 0703270770.

Single-chip controller. The 82C710 has a serial port, a bi-directional parallel port, PS/2 drives and a floppy disk controHer. 24mA drive buffers eliminate externał butfers. A uPD765 basis ensures compatibility with IBM Bios. An analogue data separator gives transter rates up to 1 Mbyte s 48 mA floppy drive interface buffers are included. Two floppy drives can be directly supported. Katakana Ltd, 0628 75641.

IEEE 488 controller. The PATC process controller is of solid design and offers complete measurement solutions. Components are a CPU 80286/12MHz, 14 in colour monitor, VGA graphics adapter, 40Mbyte hard disk, 1Mbyte ram, extended o expanded memory and more. Main memory can expand to 8Mbytes. Rohde \& Schwarz UK Ltd, 0252 811377

Optical devices

High-sensitivity coupler. A singlechannel optically coupled isolator, the IS204, has a current transfer ratio of 100% at 1MA and a high DC breakdown voltage $\pm 5000 \mathrm{~V}$. Packed in a 6-pin DIL plastic package, it offers a ratio of 400% at a forward current of 10 mA , and will operate at $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, using a gallium arsenide infrared emitting diode. Maximum ratings are 60 mA forward, 6 V reverse, 3 A peak forward current, and a dissipation of 100 mW . Miligray Distribution Lid, 0788543550

Optoelectronic rotary pulse

emitters. The Zivy ZR series incorporates four optoelectronic rotary pulse emitters designed for rough handling and electrical interference. A rotating slotted disc triggers the count or enables determination of direction of rotation (discriminator) and/or pulse multiplication. Each incorporates an amplifier and pulse shaper. Swissinco, 0819659505

Programmable
 controllers

Remote relay control. The Isoplex 50 controls up to 16 relays via its RS232
interface and will mount on a standard DIN rail. Data integrity is boosted with checksum, message tagging and parity checking. Output relays are disabled during a fault. Baud rate is DIL switch selectable with odd, even or ignore parity on receive. Klippon MicroSystems Ltd, 0732460066.

Programmable logic

 arrayField-programmable gate arrays.
The ATT 3000 FPGA family, $0.9 \mu \mathrm{~m}$ cmos technology, has maximum flipflop toggle frequency of 140 MHz with frequencies typically 50% maximum. Packages are PLCC, PPGA, CPGA, and PQFP, with 68 to 175 leads, 2000 to 9000 gates, and 64 to 144 inputs/ outputs. AT\&T (UK) Ltd, 0344487111.

5ns PLDs. Five-nanosecond TTL compatible devices, with standard packaging and corner power and ground pins, are being offered as dropin replacements for 7 ns PLDs, with industry standard 20- and 24-pin pal
functions. 21% improvement in noise characteristics is promised. the 5 ns PLDs are said to generate less noise than any 7 or 10 ns device. Texas instruments Ltd, 0234270111.

Extended software cell. The TSC500 offers 25,000 gates and compiler memory allowing building of a flexible memory structure. Specific memory can be compiled and unique data shee and models generated. The compile memory can generate sram up to 32,768 bits, clocked ram up to 65,536 bits and rom up to 262,144 bits. Texas Instruments, 0234223252

Power semiconductors

Power mosfets. The SMP7N60 and SMP4N60 in the TO 220 package are low on-resistance 600 V power mosfets for high-voltage supplies and electronic ballasts. SMP7N60's (7A) 1.11 onresistance and SMP4N60's (4A) onresistance rating of 212 means cooler running greater reliability and smaller heat-sinks. Siliconix Ltd, 063530905

PASSIVE

Passive components

SM inductors. Delevan series 1010 , 1210, and 1818 compact inductors is designed for high-density surface mount applications and is available in standard EIA package sizes. Reliability is increased with "J" terminations Suitable for all soldering processes Inductances from $0.010 \mu \mathrm{H}$ to $150 \mu \mathrm{H}$ STC Mercator. 0493844911

High quality air coils. A series of microwave coils, providing precise inductance values, in materials such as gold, silver and copper, may be configured as spaced, coated or tinned, and alloy metal. The series offers multi octave performance, high " Q ", low loss, controlled self resonance and mechanical stability. Teknis Ltd, 0344780022.

PCB power transformers.

 Encapsulated light, small, high etficiency PCB toroidal power transformers, with power ratings from 15VA to 120VA, and two primary windings of 120 V for series or parallel connection. Maximum operating temperature is $42^{\circ} \mathrm{C}$; weight varies between 0.42 Kg and 1.9 Kg . All in thermally conductive resin within a nylon enclosure. Secondary voltages at each power rating are values frequently found in electronic circuit applications. Toroid Technology Ltd, 0816898002.
Connectors and cabling

Zip sockets for zigzag ICs. Augat's zip sockets for zigzag contact configuration ICs, have high-reliability gas-tight contact and protected entry for accurate alignment. Sockets are stackable end-to-end and side-to-side with tapered leads to allow easy insertion into a PCB. Insertion/ extraction tool can be supplied. STC Electronic Services, 0279626777

Filters

Smaller bandpass filter. The
DFC3R866P004 3-pole filter - 50\% smaller than many current types with a resonator cavity width of 4 mm and overall dimensions of $4.5 \times 14.0 \times$ 11.0 mm - has a bandwidth of $\pm 2 \mathrm{MHz}$ around a centre frequency of 866 MHz Maximum ripple is 0.5 dB , VSWR is 2.0 and maximum insertion loss is 5 dB achieved through high-Q dielectric resonators. Surface mount versions will be available. Murata Electronics (UK) Lid, 0252811666

Hardware

Waterproof housings. Polynorm ABS and polycarbonate waterproof boxes. manufactured by Rose and Rose of West Germany are obtainable in 18 sizes, from $80 \times 80 \times 60 \mathrm{~mm}$ to $160 \times$ $240 \times 90 \mathrm{~mm}$. Halogen-free, byth types are VO-self extinguishing, suitable for severe environments. Radiation Components Ltd, 0818911221

Instrumentation

$1-3 \mathrm{GHz}$ frequency counters. High speed R5361/5362 series of frequency counters span 0.2 MHz to 1 GHz (R5361) or 3GHz (R5362). An expanding/reciprocal system ensures fast frequency measurements at high resolution. The R5361 can measure 100 MHz at 1 Hz in 256 ms , and the R5362. 1500 MHz at 1 Hz in about 1.7 s Both are TR1644 compatible with the calculation unit which evaluates, deviations and scaling of results. Advantest UK Ltd, 0813361606

Programmable counter. Model 50 five-digit programmable counter and time-interval generator digital-panelmeter fransforms frequency and rate inputs into engineering units. Time base can be jumper-programmed to read in any units of measure. Its seven
segment, 0.56 in LED display is crystal controlled (0.01% accuracy) with a programrrable rate indicator and variable time interval generator. Three inputs car be accepted: +2.5 to 15 V negative transition; and 10 mV RMS to 20V RMS. Amplicon Liveline Ltd, 0273 570220.

Digital thermometer. The Therma 2 operates at -49.9 to $+199.99^{\circ} \mathrm{C}$ with a $0.10^{\text {C resolution and repeatability }}$ Accuracy is $\pm 0.4 \%$. £65.00 for instrument and probe. ETI Ltd, 0903 202151.

Logic comparator. Faster troubleshooting of digital ICs while still in circuit is tre aim of Bugtrap logic comparators. Two models, for TTL or cmos, compare the IC under test with a relerence in the zero-insertion force socket. Ary discrepancies will lighi an LED showing the faulty nodes(s), latching to capture intermittent faults. Emerson Electronic Equipment, 06285 28944.

Microwave synthesiser. The Systron Donner 17308 provides +10 dBm of levelled ou tput power from 0.01 to 26.5 GHz and (+8 dBm witr step attenuator). Maximum output of +15 dBm simplifies compression testing of components. Minimum of -100 dBm eases testing of sensitive receivers. The internal direct digita: synthesiser (DDS) allows phase tobe adjusted: 0.1 Hz resolution allows variation as slowly as 30% s. Fieldtech Heathrow Ltd, 0818976446.

Intelligent panel meter. The DPM-24/ MF is a 40000 -count instrument with a user-selectable display from - 19999 to +99999 , and some alphanumerics for menu programming. It has a buit-in Ato-D unit and microcontro ler. Universal power supply accepts 24 48 V DC ard 24-240V AC without tap changers or selector switches. ITT Instruments, 0753511799.

Multi-channel monitor. Real-time performance is promised with AT Codas and MCA Codas, compatible with AT and Micro Channel bus architectures. They support VGA monitors, and contain on-board A-to-D and D-to-A converters. 16 fastchanging analogue waveforms can be continuously monitored and recorded While displaying waveforms, data can be recorded to disk. 50 kHz maximum throughput rate. Keithley Instruments Ltd, 0734575666.

First GSM test system. The first mobile radio test system for the PanEuropean digital cellular radio (GSM) network, the 6151 GSM MS, is based on VXI-bus technology. Six plug-in modules housed in a C-size VXI chassis form a complete signalling and RF test system. A PC controller provides the user interface, Racal Instruments Lid, 0734782158.

Precision multimeter.
Schlumberger's 7171 multimeter's two integral micro-processors replace a separate computer and test gear. Ultra-low-noise circuits operate at 100 nV sensitivity on $\mathrm{DC}, 1 \mu \mathrm{~V}$ on AC . and down to $1 \Omega 2$ using four-wire resistance. A pulse-width A-to-D converter helps provide high linearity and a basic accuracy of 0.002%. Eigh programmes can be controlled from the front panel or its IEEE and RS232 interfaces. STC Instrument Services, 0279641641

PC-based digital oscilloscope. The B3160 digital oscilloscope for automatic measuring has two input channels with a bandwidth of 100 MHz and a resolution of eight bits, and may be used to store and display repetitive signals. Sampling rates are $50 \mu \mathrm{~s}$ to 50ms in three modes: real-time (low trequency inputs), random sampling (higher-frequency and periodic signals) and tolerance band (check against limits). Siemens plc, 0932752323

60W DC-to-DC "S" series converter from Davtrend.

AC-measuring digital panel meter The AC-powered UM-35AC $31 / 2$ digit panel meter for power-line voltages is single-ended with provision to offset the zero of the reading being displayed. Two ranges are 199.9VAC and 500 VAC with multi-turn, infinitely adjustable Span potentiometer and "Hold" of displayed reading. Screw erminal or PCB edge connector inputs. £35. Texmate Ltd, 048153131

Programmable digital storage. The

 DSA 524 will convert oscilloscopes into digital storage oscilloscopes, linkable to a PC. Control of front panel status and bi-directional transter of waveform data are provided by serial or optional IEEE 488 interfaces. Connection to scope is via a single BNC cable and to PC through the serial port. Special interface cards not required. ThurlbyThandar Ltd, 0480412451
Interfaces

336-line I/O card. A full-length TTL I/O card, PC/AT compatible, uses seven 82C255 devices (two 8255s in a single 64-pin "shrink DIL" package) to provide 336 programmable lines using one PC slot. 8255 programming modes are supported. Cmos based.
Selectable addresses allow two cards to provide 672 lines. 8253 counter timer included. £299. Fairchild Ltd, 0421216527

Compact amplifier module. The

S7DC amplifier is DC-operated, accepting ± 10 to 18 V or 20 to 36 V . It will excite a remote transducer over an adjustable 3 to 10V. Full transducer signal conditioning of zero and scale Output is avallable as $\pm 5, \pm 10 \mathrm{~V}$ full scale or 4-20 mA over a requency band width of 0 to 100 Hz . RDP Electronics Ltd, 090257512

PC bus interface. The SYN-NCM5 board is a PC bus interface for Topaz local area network systems, allowing PCs to integrate into the distributed system on the Topaz network. It plugs into the expansion bus, short slots, and allows the PC processor to access all on-board devices while occupying 32 bytes of system I/O space. Integral Manchester Encoded RS485/RS422 interface. Syntel Microsystems, 0484 519363.

Power supplies

UPS for PCs. The MP5's 500VA output could drive two PCs, a printer, small cad station or call-connect telephone exchange and a small fax machine. 230 V 50 Hz input outputs 230 V at 50 Hz from two 13A sockets Sine wave output has less than 3% THD with a resistive load and a load crest ratio of $3: 1$. Noise at 1 m is
$40 \mathrm{dBA} .44 .5 \times 14.3 \times 19 \mathrm{~cm}, 13 \mathrm{~kg}$ £600. Avel-Lindberg Ltd, 070885344

Single/triple output converters.

 Bulgin Power's DC40F Eurocard (100 $\times 160 \times 30 \mathrm{~mm}$) DC-DC converters, single and triple outputs, are designed for nominal 24 V ($20-30 \mathrm{~V} \mathrm{DC}$) or 48 V ($40-60 \mathrm{~V}$ DC) applications. Models span $5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$ and 48 V outputs and triple output units feature 5 V with two 12 V auxiliaries (fully floating)Eurocard screw terminals, chassismounted screw terminals, or chassis mounted screw terminals with cover. Cirkit Distribution Ltd, 0992444111.

Universal power supply. The six single-output models in the EWS range, 25 to 1500 W , offer high specification relative to cost, universal inputs for all input voltages in the lower output models, and auto-selector on high input. Common supply for all products. Meets UL, CSA and VDE. Coutant-Lambda Electronics Ltd 0271 863781 .

Converter for telecoms. The "S" series DC to DC converter, BTR 2511 approved 3 U Eurocard or TEP $1 E$ format, offers 60 W over three outputs; 5 V and ± 12 or $\pm 15 \mathrm{~V}$. Others can be provided. It will operate from nomina 12 to 50 V . One output can offer switchon surge capability of 40 W peak for 50 ms . Less than $3 W$ required at no load, switching frequency 80 kHz , nominal efficiency of 80%. Davtrend Ltd, 0705372004

Programmable voltage reference. The LT1431 programmable voltage reterence produces a stable 5 V reference. With two external resistors it can be programmed to any reference between 2.5 V and 36 V . Guaranteed initial voltage tolerance of 0.4% and temperature stability of 0.3%. On-chip divider resistors allow configuration as a 5 V shunt regulator with 1% initial voltage. Linear Technology (UK) LId, 0932765688

On-line UPS. Pioneer's On-Line UPSs are PWMs providing a stable and interference-free source of power Three tower units - $1 \mathrm{kVA}, 3 \mathrm{kVA}$ and 5 kVA - have static bypass protection connecting mains input through to load after a fault or overload. Standard equipment includes battery status indication and voltage-free contact outputs for remote status. Quadshield Lid, 0908222050

Radio communications products

Broadband circulator. Type 2722162 05991 is not limited to a preset
frequency or frequency range, needing no tuning by the customer. It simplifies luning of the final transistor amplifier stages, decoupling the transistorised drivers from the final valve output stage of the transmitter, thus protecting transistors from power reflected from valves. Output 50 W , insertion loss 0.8 dB VSWR 1.3, and isolation better than 18dB across temperature range o -10 to $+50^{\circ} \mathrm{C}$. Philips Components, 0103140724324

Transducers and sensors

Multilayer ceramic actuator.
Electrostrictive actuators for precision displacement monitoring based on multilayer ceramic technology.
Advantages over piezoelectric and magnetostrictive counterparts are said to be repeatability of movement and cost. AVX Ltd, 0252336868.

COMPUTER

Data communications products

Datacom card for IBMs. The Radacs RLC-100 radio data link controller is a 3/4-length PC/XT/AT card enabling communication with many outstations It operates the AX. 25 packet radio protocol using TheNode driver software running under dos and supports four separate radio channels. Software remains in background. CMT Ltd, 0908690690

Message-processing software. The RF-6500 uses an adaptive ARQ protocol with forward-error checking (FEC) for accuracy at rates up to 2400bps in poor conditions. FED coding adjusts dynamically to match quality. When transmission eprors increase, it switches to more powerful FEC. As conditions improve, less powerful FEC maximises throughput Error-free delivery shown with rates as high as one error in every five bits. Harris Corporation, 0101 (716) 244 5830

Development and evaluation

M50734 designers' board. The M50734 designers' board, based on the M50734SP extended microprocessor, can evaluate and nitial design all 740 series. It can connect to the target via $/ / O$ interfaces. Software loaded from the host system can be debugged. Goard includes microprocessor, 8 k of ram with battery back-up and 16 k eprom containing the monitor programme, reset circuit and watchdog timer. RCS Microsystems Ltd, 0819792204

Mass storage devices
Dat storage for PCs. Digital audio tape (dat) technology is used in the QA-600 large-capacity tape backup system: 600Mbyte of storage in a compact package. The system
combines an intelligent controller with the Systos operating system, and is the first dat offering to fit the standard PC AT-style chassis. HTEC Legend Ltd, 0703581555.

Computer peripherals

SCSI-interface disk drives. The FD235 3.5in intelligent drive has 2Mbyte or 4Mbyte storage capacity using barium ferrite-coated extra density disks. $105 \times 42 \times 162 \mathrm{~mm}$, weight 500 g . Operating from +5 V DC supply, maximum consumption is 1.75 102.0 W , standby 0.35 to 0.4 W . FD55 5.25 in version has 1.6 Mbyte capacity. $146 \times 43.8 \times 203 \mathrm{~mm}$. Multi-format capabilities ensure compatibility with other standards from 250 k upwards. +12 or +50 V DC, power consumption 4.4 W operating, or 1.4 W standby. Data Peripherals (UK) Ltd, 078557050

Software

Icon-driven data acquisition. Easyest data acquisition and analysis software, PC-compatible, integrates analogue and digital acquisition and control, analysis, and flexible graphics. Easy-to-use icon interface. A powerful sequencer automates for high productivity. Utilities for common needs are built in. Data acquired at rates up to 110000 samples per second $(65,000$ samples/s direct to disk). Keithley Instrument Ltd, 0734 575666.

PCB cad for PCs. Pads-2000 claims to be the most powerful PCB PC cad system available. Running on 80386 and 80486 machines in virtual memory it overcomes the limits of MS-Dos and is thought to be the first 32-bit PCB cad system for the PC. Layouts up to 4000 ICs, its resolution allows users to define features to an accuracy of 0.000001 in or 0.001 mm . Lloyd Doyle Lid, 0932245000

Real-time operating system. The

Data acquisition and analysis software. Easytest by Keithley.

OS-9000, optimised for I/O intensive applications, supports file sharing, secure archival procedures and multinode transparent networking. Its I/O Manager co-ordinates all data transfers. Hardware-dependent and independent modules are isolated. simplifying installation and minimising memory requirements. Networking capabilities allow the OS-9000 to act as a real-time front end. Microware Systems (UK) Ltd, 0489886699.

Spice amplifiers. Instrumentation amplifier and low-noise amplifier Spice models OP-177 and OP-77 op-amps are said to be the first to pertorm complete noise analysis simulations, simulating broadband noise and $1 / 9$ noise for voltage and current noise. Precision Monolithics Inc, 0101408 7279222

Computer board level products

Output card safety. All outputs on the DOP-24 digital output card set to either "on" or "off" atter switch-on or power failure should ensure safer machinery. 24 opto-isolated Darlington drivers allow voltages up to 24 V at 400 mA to control relays and solenoids. Base address can be set and several cards can fit into a PC. Signais terminate on a 50 -way connector. $£ 195.00$ with
documentaion and example programmes. Blue Chip Technology, 0244520222.

IEEE-488.2. The NAT4882 C-mos 68pin plastic leaded chip carrier increases performance of GPIB controller chips NEC 7210 and TI 9914, maintaining compatibility with ooth. Its enhanced command set reduces software driver overhead and code size. It has both 7210 and 9914 compatibility modes. National Instruments, 0635523545.

Computer systems

Unix workstations. R200 Unix workstations are based on the ARM 3 second-generation high-speed risc processor with embedded cache, delivering $10+$ Mips for less than $£ 5,000$. 8Mbyte ram expandable to 16 Mbyte .100 Mbyte (formatted) fastaccess internal SCSI hard disk. The diskless R2 provides 4Mbyte of ram as standard, expandable up to 8 Mbyte . Both have a 4Kbyte embedded cache Acorn Computers Ltd, 022324520.

Process controller by Rohde \& Schwarz, the PATC.

Assembly Programmers!

Lets face it. If you write in Assembler the odds are already stacked against you. You have enough problems getting clean code out without having to deal with low-wattage development software that's determined to get in your way.

Crash Barrier's METAi Development System knows its job - and its place. Having a proper retargetable linking assembler means it's faster and does more processors (several hundred variants) - and has sold more - than any other Development System in the world. UK Designed, Manufactured and Supported, full system £395; ring, fax or circle enquiry number for full data on new V5 release. Ring/fax us now and we'll fax you back full data in minutes!

Crash Barrier Ltd,
18 Oxford Sureet, Wellingborough, Northants, NN8 4HY
Tel: (0933) 224366, Fax: (0933) 441877, BB: (0933) 224377

These days, the name Eccles brings to mind the widely used Eccles-Jordan multivibrator or flip-flop circuit trigger relay, as they called it in 1919. So it is a little surprising that in a 1965 Wireless World article which commemorated Eccles's 90th birthday and in an obituary published in the journal Nature, no mention was made of the Eccles-Jordan circuit. So notable were his other contributions, mostly to the science of wireless. that there was no room for the circuit which still bears his name.

That name was one to conjure with in the first quarter of this century, said Wireless World, "in the more elevated radio-technical circles. ${ }^{-1}$ His most significant work, it added, "was on a subject at the very heart of our affairs - on radio wave propagation." This referred to his early explanation of the origin of the Heaviside layer. His other contributions included those to shortwave radio, radio broadcasting, the study of coherers, and the proposal of what became the standard names for valves: diode. triode. etc. Wireless World, the article said, could "blush with shame" for having stigmatised this proposal as "too academic".

William Henry Eccles was born near Ulverston, near Barrow-in-Furness, on the 23 rd August 1875, the son of Charles Eccles, a blacksmith and later an engineer, and his wife Annabella. He died aged 90 on the 29th April 1966.
"Because of many small illnesses in childhood his early education was largely at home," Eccles later wrote about himself ${ }^{2}$. His father taught him about thermodynamics and steam engines, and structural steelwork. which came in useful years later when he came to erect steel radio masts. A more conventional education at a private school won him a national scholarship to the Royal College of Science (now Imperial College) at South Kensington. London, where he graduated in 1898 with a first-class honours degree in physics. Although he once described metallurgy as his first love, his skill as a physicist was to lead to his being regarded by many as the first wireless physicist.

For a short time. he worked as a demonstrator at the college and attended some City and Guilds lectures on electrical engineering. These electrical lectures introluced him to radio telegraphy right at the start of the wireless age. In 1899 he joined the select band of assistants to Guglielmo Marconi.

PIONEERS

46 W.H. Eccles 1875-1966 The first physicist of wireless

He stayed with Marconi for less than two years. designing and building osciltation transformers, or "jiggers" as they were called. and he "lent a hand". to use his own words, with the design of the towers for the famous transatlantic transmissions from Poldhu in Cornwall. Much of his time, however, was spent at Poole in Dorset at the Haven Hotel, where Marconi had set up an experimental radio station. It was there that numerous demonstrations were given to potential customers.

After leaving Marconi, Eccles spent a short time with a firm making $A C$ machines before becoming the head of the Department of Mathematics and Physics at the South Western Polytechnic. Chelsea, in about 1904. This was his entry into a career in higher education which was to last until his retirement. In 1910, he was promoted to Reader in "Graphic Statics" (structural engineering design) at University College, London, where he also lectured on the theory of machines and the theory of structures.
He moved again in 1916, this time to the City and Guilds College, Finsbury. as Professor of Applied Physics and Electrical Engineering. At the age of 51, after a severe illness, he retired to become a private consultant. He was still being consulted when he was in his eighties.

Radio research

His first research into radio was to make some scientific sense out of the behaviour of coherers, those enigmatic radio detectors used in the first years of radio telegraphy. His success carned him a Doctor of Science degree from the University of London in 1901. This study of coherers was extended into a comprehensive study of crystal detectors and from there into all technical aspects of wireless. As the Dictionary of National Biography puts it, "Eccles was in close contact with nearly every aspect of the subject, as research worker, member of advisory committees, president of learned societies. writer of articles and textbooks, patentee and expert witness. For many years he was the leading (and almost the only) independent physicist working in the field of radio science. ${ }^{3.0}$

One spin-off from his crystal-diode research was the crystal oscillator. In about 1909/10, he discovered ways of making crystal detector circuits oscillate and suggested that "under certain conditions a rectifying detector could hecome a generator of oscillations and conversely a generator of oscillations could be used as a rectifier." One

1. Circuits from a one-page report, "A Method of Using Two Triode Valves in Parallel for Generating Oscillations," The Electrician, 19th September 1919. Starting with a single-triode oscillator, Eccles and Jordan explained how two triodes could be used to produce oscillations with their anode circuits connected directly, inductively, resistively or capacitively.
writer has over-enthusiastically suggested that Eccles could therefore be regarded as the grandfather of the transistor. In fact. Eccles had discovered that a contact between two pieces of galena could produce a negative resistance and that, as with electric arcs, this could generate oscillations. He did not have a prototype transistor, but he may have had a very early tunnel diode.

When the triode began to gain wider use, just before WW1, Eccles was soon studying its applications. It is said that he was one of the first to represent its action algebraically in terms of the selfand mutual-conductances of its electrodes $(1919 / 20)$ and he used the triode in a variety of circuits ${ }^{2}$. It was during this work that the Eccles/Jordan multivibrator was invented. Several circuit configurations seem to have been studied "for obtaining various types of continuously acting relay," and patents were taken out by the Admiralty in 1918. This would imply that the work was performed under Admiralty contracts during the war. Because of his Quaker beliefs, it is said, Eccles was himself reluctant to patent his inventions.

Eccles and Jordan did other fascinating work for the Admiralty. In unpublished memoirs. Eccles recalled the use of a triode to sustain the vibrations of a tuning fork. This work, published in

1919, began in 1914. The aim was to use the harmonics of a vibrating tuning fork to evade a Telefunken patent which "covered all forms of backcoupled triode circuit and dominated the future of radio" - an interesting nicety, considering the patent was held by a foe. The result was "a generator of remarkable constancy," which when "combined with a phonic motor" gave a "precision clock." This precision clock was then combined with a known method of picture transmission to give, in 1918, "a secret method for the transmission of naval signals. ${ }^{2 "}$

Another Eccles-Jordan idea was to connect two triode oscillators to produce wavelengths as short as seven metres using ordinary receiving triodes. "The apparatus was invented in 1916 at the request of the War Office and the patent was later bought by the Marconi Company and used in their short-wave beam stations," wrote Eccles ${ }^{2}$. A separate account refers to a 60 MHz short-wave transmitter designed by Eccles in 1915 and tested by the French Army for short-distance work. The signals were picked up in Syria and may have been the first indication of the long-distance possibilities of short-wave radio.

Bending round the Earth

Eccles's "most significant work" was his attempted explanation of how radio waves may be reflected by a conducting layer in the upper atmosphere and so travel round the curvature of the earth. This had been independently suggested

2. Circuits from the Radio Review,

 December 1919, showing a "trigger relay" or triggered bistable. A pulsed input to triode one would switch it on, causing triode 2 to switch off. The circuit was then stable until reset. The reset method suggested was "to interrupt for an instant the linkage bet ween the tubes, or to stop the operations of one or both of the tubes, as, for instance, by dimming its filament."in 1902 by Oliver Heaviside and by A.E. Kennelly following Marconi's success in signalling across the Atlantic. Eccles is credited with the first serious attempt to explain how this reflection may occur.

Ir 1912, he presented a paper to the Royal Society in London "On the diurnal variations of the electric waves occurring in nature, and on the propagation of electric waves round the bend of the Earth." Before trying to obtain an explanation of the events, he first needed to obtain reliable experimental data, which was not easy. He turned to naturally occurring atmospherics or "strays" as they were then called and, with the help of a colleague, "strays" were recorded at London and Newcastle. Many were discovered to occur simultaneously and to have similar relative strengths. He concluded that they originated several thousand kilometres away. Also, he pointed out that "strays" were generally weaker anc fewer during the day than the night, and that there was usually a lull jusi before dawn.

Eccles commented, "The result is so completely inexplicable by the ordinary conception of the propagation of electric waves through the atmosphere that we are compelled by its refusal to fit into the accepted scheme of things to attempt an extension of that scheme. ${ }^{2 "}$ He then expanded the Heaviside/ Kennelly concept and calculated many of the necessary parameters. He assumed air, ionised by sunlight, to be the agent responsible for "bending" the waves around the Earth's curvature.
Eccles' detailed theory sparked considerable controversy. Though incomplete and, in places, a little confused it became widely accepted, especially after supporting evidence was obtained during a partial solar eclipse. It provided the basis for the later fuller theory put forward by Edward Appleton and others.

Soon after this period came the First World War. As one of the few people with a sound scientific knowledge of

wireless, Eccles was called upon to serve his country as an adviser to all the military branches and was honorary secretary to the Conjoint Board of Scientific Societies. After the war he continued to serve in areas of public and political concern related to the rapid expansion of radio. These included Imperial communications, public broadcasting, and the relative functions of government, industry and amateurs.

Shakespeare

In 1924, at nearly 50 , he married his secretary, Nellie Florence, nearly 20 years his junior; they had no children. Throughout his life, he is said to have enjoyed music, especially Beethoven, and he loved Shakespeare. Hardly a day went by, so it was said, when he did not quote from Shakespeare. He preferred walking, riding, swimming and sailing to organised sports and "kept a small sailing boat in the Thames estuary for use in summer and a horse near town for winter. ${ }^{2 "}$ Once he was ordered to take up golf for medical reasons, a doctor's order that many

Publications by Eccles and Jordan

"A method of using two triode valves in parallel for generating oscillations," Electrician, Vol. 83, 299, 1919.
"A small direct current motor using thermionic tubes instead of sliding contacts," Electrician, Vol. 82, 670, 1919.
"Sustaining the vibration of a tuning fork by a triode valve," Electrician, Vol. 82, 704, 1919.
"A trigger relay utilizing three electrode thermionic vacuum tubes," Electrician, Vol. 83, 298, 1919, and The Radio Review, 143, December 1919.
"A method of amplifying electrical variations of low frequency," Electrician, Vol. 85, 176, 1920.
men would pay to receive. Eccles grew bored with the "waste of time" and "gave his clubs away within a month or two. ${ }^{2 "}$
He served as president of many societies, including the Institution of Electrical Engineers, the Institute of Physics and the Radio Society of Great

Britain. He was even on the committee that set up the forerunner of the RSGB in 1913, the Wireless Society of London. He wrote three books: two of the earliest authoritative texts on wireless and a popular treatment published in 1933. That he is now remembered almost entirely for having his name attached to half of a simple but popular circuit really does not do justice to a man of vision and perception who helped to steer radio through its early years.

References

1. H.F. Smith. "The Indefatigable Dr Eccles," Wireless World. September 1965. p. 436. 2. "William Henry Eccles, 1875-1966," Biographical Memoirs of the Royal Society, Vol. 17. November 1971.
2. "Eccles, William Henry," Dictionary of National Biography, 1961-1970, p. 322.

F.W. Jordan

Biographical information about F.W Jordan has proved elusive. As the police might say, any information which would assist our enquiries would be gratefully received.

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

Oscilloscopes		Marconn 2300 Mod Mater	
350MH2 Four Trace	£17		
		Marconi 6400 Microwave Power Meler	
5853582N-2			
Tekironix 2225500 MHz Dual Prace As New	${ }^{\text {E } 600}$	HP 4271	¢1000
Tekrionom 475200 MHZ	295	$10 \mathrm{HZ}-18 \mathrm{C}$	00
Tektronix 465100	[350	MP 5345A Tmer Counter	
onix 543 Mam Fram		Orgn Frea Counte	
Telequpmenn D755 50MHZ Ouai Trace	[295		25
ment DM63 Four Tr	${ }^{2375}$		
	¢175	Flune 85	
1715 A 200	¢595	S	\%
HP 1740A 100 MKZ Dual T	¢375	HP 3465AD	45
Ptulups 321750 MHZ Dual Trace As New Wuth		Tentronx DMS01 TM	95
Probes	${ }^{2} 350$		595
${ }^{\text {Hnach }} 105050 \mathrm{~F} 100 \mathrm{MHz}$ O			
Gour		Meers 7272 S	
		Te	75
	${ }_{\text {c1 }}$	THP 141T	
Tektromix 222 Digta Slorage Porable Oscillos		Analy	
	1500	felug in	
Marconn $2015 / 2171$ Sync 10 MHZ -520MHZ		Racal	
	¢450	MP 1818A 182C Time Doman Rethectometer	
Marconi 2016A 10KHZ-110MHZ AM FM			775
Marconi 2000 10KHZ-520MHZ AMFM. Sweep			500
Leadkit ${ }^{\text {Marconi } 99515 M H Z .200 M H Z ~ A M / F M ~}$	${ }_{665}$	Marconima	
520520 MHz Sym		North Allantic 225 Orgital Ph	5
234100 KHZ -110MHZ AM.		Farnell SG18 Generato GPIB INT New	(100
PMG656 Stiereo Genera		Speciar	
	${ }^{\text {¢ } 1000}$	Cuth Proes.	
Marcon $2012 \mathrm{UHF} \mathrm{FM} 400-520 \mathrm{~N}$		Kenwood CS 1021 20MHZ Do	E130
		50 OHM 300Watts 100k.200MHZ Durmmy Load	
HP B112A Programmabie Pulse Gen	c950		
		18 SWG 22 SWG Soker 5 Core 1/2 KG	
		Heat	
Systems Video Vector Scope	¢500		cas
dioo Sweep Generator		So	£450
		Fluke 61600 A Frea Slandard 0.30 MHZ	
Amber 4400 A M ultuumpose Audio Tesi Sel	£450	Teloquipment D75 Tany Workng Scopes	
Marconi 2120 Funcion Generator		Marconi Tf2604 RF Millvot Melers	
rconi 2331A Oisto			

ALL PRICES PLUS VAT AND CARRIAGE

86 Bishopsgate Street, Leeds LS1 4BB. Tel: 0532435649 . Fax: (0532) 426881

SMC Communications H F SYSTEMS
 CHANNELISED SYSTEMS

TM180 Pioneer 100W HF SSB transceiver, 6 channel, USB, base or mobile applications and a full range of accessories.

BASE ANTENNAS
SMC TDA Series trapped dipoles factory pre-tuned, easily installed, up 106 channels Rx to 1 kW .

HF MOBILE ANTENNAS
HW4 1.5-30MHz single
PRO SERIES Multi channel frequency tuned mobile whip complete with installation accessories, base mount and spring, spare channel coils available for multi frequency operation.
tapped whip antennas up to 4 frequencies $1.5-30 \mathrm{MHz}$ complete with base mount and spring.

d
FOR FURTHER INFORMATION, OR JUST ADVICE, CALL:
S.M. HOUSE, SCHOOL CLOSE, CHANDLERS FORD INDUSTRIAL ESTATE, EASTLEIGH, HAMPSHIRE SO5 3BY. TELEPHONE: [+44] ([0]703) 255111 FAX: [+44] ([01703) 263507 SMC FX

TELEX: 477351 SMCOMM G

MICROPROCESSOR IN-CIRCUIT EMULATION

SDT816 RANGE

8085, Z80, NSC800, 6502, 6800, 6802, 6808, 6809, HD64180, Z180

68008, 68000, 68010, 8086, 8088, 80C86, 80C88, 80186, 80188, 80C188, 80C186

MICROCONTROLLER RANGE

8051, 8031, 8032, 8052, 8059, 80515,
80535, 80512, 80C552, 8048, ZS8, 68 HC 11

DSP's
320C10, 320C15, 32C017

TRACE 32 RANGE

68000, 68008, 68010, 68302, 68HC001, 68070, 93C100, 93C110

68020, 68030, 32008, 32016, 32C016

RING NOW ON 0254682092

NORAL MICROLOGICS

CIRCLI NO. ITI ON REPIY CARD

CIRCIE NO. IT2 ON REPLY CARD

The Gould Peel development kit sets out to be a complete "personal PLD workstation", and certainly contains all that is needed to perform this function. Only Peel devices can be programmed (although other types can be read), so the hardware is kept simple and therefore inexpensive.

However, that does mean the user is limited to one type of device, whereas a dedicated PAL programmer (or add-on to an eprom programmer) will allow the selection of the best type of chip for the job. Even among EPLDs, not all types are interchangeable.

But anyone with a knowledge of fusible-link pals will be able to benefit immediately from the Peel kit, which is roughly comparable in price and performance to others on the market. The kit can also be made use of with little or no knowledge of pals, but be prepared to work hard while learning about the use of programmable logic: the data sheets are very comprehensive and with some effort can provide all the information required.

Easy installation

Installing the programmer could not have been made easier. The card does not have any jumpers or switches to set, and simply plugs into any free slot in the PC. It only uses I/O addresses 258 H and 259 H , so is unlikely to conflict with anything else, but the addresses cannot be changed if there is a clash.

The ribbon cable is a little short (presumably dictated by the speed and number of connections), so that it can

Peel on a PC without pain

> Gould's Peel development kït can produce complete custom logic devices on a PC. Is it difficult to use? No, says Stephen Franks, at least not when you know how

only comfortably be used with desktop PCs.

Software is equally simple to install. A self-install program creates a Peel subdirectory, copies in the files, and asks a few questions to configure the program. These settings, plus several
others, can be changed at any time using menu selections.

There should be no need to alter the CONFIG.SYS or AUTOEXEC.BAT files. Hard drives must be C: D: or E:, but it is a simple matter to copy files if you wish to use a drive letter greater than this.

One word of warning: unless you want your colleagues to think you are playing games, turn the sound off. Various noises accompany different actions, and unless your PC is equipped with a volume control you may get accusing stares from all around.

Anti-static measures are necessary. Neither the main manual nor the data sheets mention this, although both the PC card and the sample chips arrive in conductive packing.

Friendly software

The software is extremely easy to use. I found I could use all the features of the system without recourse to the manual. The various functions are grouped into device-related tasks, Jedec file-related tasks, and general utilities.

The Peel editor will be familiar to WordStar ustrs.

Help screens make software easy to use.

Device tasks: Device tasks are as expected: program device from memory, read device into memory, verify device with memory, and test device. There is a separate utilities menu that contains lesser-used facilities such as setting the security bit, or erasing the entire device.

The program function automatically erases the chip first, and the complete erase-program-verify takes only a few seconds. The "read chip" option can cope with a wide range of devices, so that it is possible to take an existing pal and copy the logic onto a Peel chip.
The test function can be used in
several modes. Apart from simply applying the test vectors and indicating the results, vectors can be applied repeatedly (but note that connection to an oscilloscope or logic analyser requires an isolated ground). There is also a single-step mode, and the ability to capture all outputs from the chip,

EEPLDs

Electrically erasable programmable logic devices (EEPLDs) marry fusible-link pals with electrically erasable prom technology, to provide a reprogrammable chip set that is pin-compatible with all the common pal range. Several manufacturers offer eeplds, and the technology has matured sufficiently for there to be second-source agreements.
Gould's Peel chip set is one of these families of EEPLDs. Each of the Peel devices can emulate several common pals, and can also offer extra configurations not avaitable in the fusible-link chips. Despite being constructed in c-mos, the propagation delays are low enough for most applications, and the 18CV8 is available in 25 ns and 15 ns versions.
While there are many members of the family, the Peel 18CV8 is one of the more popular devices. It has nine generalpurpose inputs, a clock input, and eight "macro cells", each driving a bidirectional I/O pin. Each macro cell can be individually assigned one of 12 configurations, compared to four available with a standard pal.
Inputs to the macro cells are programmed to be a logical function of any of the input, clock, and feedback terms. The logical function required should be expressed as a "sum of products" (with a maximum of eight products), so that the matrix can be programmed as required. More advanced programming sottware can rearrange the Boolean equations for you if required.
Because of the latches in the macro cells, it is impossible to discover how a
'AND' Matrix

device has been programmed simply by applying inputs and observing the outputs. As part of the programming function, chips can be read to verity that they have programmed correctly, but once this is done the read function can be disabled. This prevents copying, but does not prevent the device from being erased completely so that it can be used again.

There is more to programming these devices than eproms. You cannot express the desired function as a simple list of 1 s and 0s, and so the Jedec file standard was created to unity the description of the links to be made (or fusible links blown).
Normally you do not access such a file directly (although they are readable text files). but they are interchangeable between almost all logic programmers, and are the output files of logic "assemb-
lers" or "compiters", which can be bought separately.
The Jedec file not only contains programming information, but can also incorporate test vectors, which can be usec to test the programmed chip. These consist of a sequence of inputs - 0,1 , clock or don't care - and the expected outputs - 0 , 1 , high impedance or don't care.
Most programmers can also apply the vectors to a simulation of the design based on the Boolean equations, so you can be sure that a correctly programmed chip will pass the test.
Another common programmer feature is "fautl grading", a measure of how well vectors will perform, expressed as a percentage of the faults they will discover, compared to all possible faults.

Z80 Refresh 8 th bit regeneration logic

Z80 Refresh timing
Z80 refresh circuit and timing.

Test design

To test the development kit, I used a piece of logic I have implemented in a number of real designs, and fitted it into (part of) an 18CV8 chip. The circuit shows logic that overcomes a drawback of the $\mathbf{Z 8 0}$ processor when driving dynamic memory. The 280 generates refresh cycles, but only provides a 7 -bit refresh counter, while most dram chips require 8 bits. The circuit generates the eighth bit, and gates it with the appropriate Z 80 address bit to make it appear as if the $\mathrm{Z80}$ had produced it. The circuit as drawn can be simplified, although the method depends on what spare gates are available from other functions.

Briefly, the circuit works as follows. Latch A controls the timing, and ensures the circuit only works during refresh cycles. Latch B holds the state of A6 from the previous refresh cycle, and latch C is toggled only if A6 is currently ' 0 ', but was ' 1 ' in the last refresh cycle. Thus latch \mathbf{C} behaves as if it were the next most significant bit of the Z80's refresh counter.
To program (part of) a pal to do the same job, consider the circuit as a state machine. The action of latch A needs moditying slightly because there is no asynchronous preset available. It would be possible to use the asynchronous clear, but this line feeds all latches, and might upset another function of the chip.
Instead, the latch is only kept low for one clock cycle, and then allowed back high. The effect on output is to allow A7 to change slightly earlier than the other address lines during a refresh cycle, but this is unimportant when using drams.
So latch A, normally high, must go low on the next clock edge after RFSH goes low, and must go high one clock cycle later. The input to latch A is:

(RFSH OR !DRFSH).

For latch B, remember that the clock input drives all the latches in the chip. Whenever latch A is high, the output of latch B must remain unchanged, written:
(DRFSH \& LASTA6)
even those given as "don't care".
Jedec file tasks: Jedec file tasks allow Jedec files to be read, written and displayed. There are also options for translating the file for another device, calculating the checksum, and transmitting or receiving files. No explanation is given of the format used for transmission, which might be plain text or some proprietary protocol that will only work between two machines running Peel software.

General utility tasks

The editor: A WordStar-compatible editor comes with the package and, despite being free, contains many soph-
isticated functions, such as a spitscreen option to allow two windows into the file being edited. The editor accepts WordStar commands, or can be used with a menu accessed with F10.
The only flaw in the editor is that block operations will handle only whole lines of text, so it is impossible to move, copy or delete a block containing part of a line. This is particularly noticeable when entering test vectors which, by their very nature, contain much repetition. This apart, the editor is more than good enough.
Apeel assembler: The development kit has many functions, but it is the Apeel assembler on which most users

will concentrate, allowing the logical function required of the pal to be entered in readable form. The assembler can then create a Jedec file to program the device.

Its basis is Abel and, although simple in comparison, is perfectly adequate. Its simplicity could even be an advantage, because designs can be optimised by considering how the equations map onto the device. However, a complex design could be speeded up by using Abel or similar.

Apart from assembling the source file, the assembler allows design simulation. Test vectors must be included in the source file, supplying input sequences and the expected outputs.

A set of test vectors need not test the entire device, and it is possible to include multiple sets to check each part of the design in turn. "Don't care" and high-impedance states are fully supported.

Provided you have tested the design, you are offered the option of "grading" your test vectors - calculating the percentage of faults that your vectors will discover, compared to the theoretical maximum.

Often it is difficult to devise vectors that can test for all possible faults, and the software provides comments on

TITLE ' 280 Refresh bit 8 generator
DESIGNER: sf
DATE: 27/3/901
Z80RFSH DEVICE PEEL18CV8

"		PEEL 18 CV8		
1				
1				
"	CLK	(1	20	Vce
"	RFSH	(2	19)	DRFSH\}
"	BUSAK	< 3	18	LASTAG
"	A7	(4	17	ATRFSH
"	A6	< 5	16	newat
"		< 6	15	
1		(7	14	
"		< 8	13	
"		< 9	12	
"	Gnd	(10	11	
"				

PPIN ASSIGNMENTS

CLK	pin 1
RFSH	pin 2
BUSAK	$\operatorname{pin} 3$
A7	$\operatorname{pin} 4$
A6	$\operatorname{pin} 5$
DRFSH	pin $19=$ pos reg feed_reg
LASTAG	pin $18=$ pos reg feed_reg
A7RFSH	pin $17=$ pos reg feed_reg
WEWA7	pin $16=$ pos com feed_or

EQUATIONS

When latch A is low, latch B must be set to the current value of $A 6$. Its equation is:

(DRFSH \& LASTA6) OR (!DRFSH \& A6).

Similarly, latch C must toggle only if A6 is high, last A6 was low, and DRFSH is low; in all other cases it must remain the same. After a bit of manipulation, this becomes:
(! $\overline{\text { DRFSH }} \&$! $A 6 \&$ LASTA 6 \& ATRFSH) OR (!LASTA6 \& ATRFSH) OR (DRFSH \& A7RFSH) OR (A6 \& A7RFSH).

Finally, the result needs to be gated with the real A7. The modified A7 must follow the Z80's A7 pin unless RFSH is low, when it must be forced to be A7RFSH, written:
(A7 \& $\overline{\text { RFSH }}$) OR (! $\overline{\mathrm{RFSH}} \& \mathrm{~A}$ RFSH $)$
As an added bonus this output can also be set to a high-impedance state whenever the Z80's address lines do the same, by use of the BUSAK signal, although this ties up another input pin of the pal for a feature that might not be needed.

These equations may now be put in a text file along with other information such as the device type, macro cell configuration, pin assignments, etc.
The pal still has plenty of room for additional logic to be implemented, and in this case it would be sensible to use it to generate $\overline{\mathrm{AAS}}$ and $\overline{\text { CAS }}$ for the drams, plus any other memory-related signals. It could, however, be used to construct completely unrelated logic.
DRFSH : : RFSH \# !DRFSH
LASTAG := (!DRFSH \& A6) \# (DRFSHT \& LASTAG)
ATRFSH $:=$ (!DRFSH \& !AG \& LASTAG \& ! A TRFSH) \#
(!LASTAG \& ATRFSH) \# (DRFSH \& ATRFSH) \#
(A6 \& A7RFSH)
NEHAT = (AT \& RFSHY) \# (!RFSH \& ATRFSH)
Enable NEMAT = BUSAK
TEST_VECTORS

END 280RFSH;
how well you do. Less than 50% is "Poor": above 50% is "()K": and $1(0) \%$ gets a small fanfare. a flashy screen, and the comment "Excellent!". Both simulation and fault grading are noticeably speeded up when using a faster processor.

Other aspects

"VT" terminal emulation is provided, along with access to the DOS command line without leaving Peel. Both work, but it is hard to see why they are included. The terminal emulation is not configurable, apart from the serial line parameters such as baud rate, and a separate file utilities menu allows copying, renaming and deleting of files.
The software has been around for a few years, and as you would expect there are no major bugs. But surprisingly, I did find a couple of minor ones - perhaps no-one has bothered to report them as neither is at all significant.
The first is that at the end of the program the user is requested to remove the chip from the socket and press any key. But the key pressed is not removed from the keyboard buffer, so that D()S finds the keystroke and uses it as the first character of the next command.
The other problem is that the "total time taken" figure given after the assembler is run is not explained by the manual and the values produced varied apparently randomly from a few seconds to several hours.

Using the system

To test the system, I used a circuit fragment that I have used in TTL form in several designs (see "Test design"). Logical equations were constructed and entered using the built-in editor.

The only problem encountered was due to the block instructions, as described earlier. 1 am familiar with WordStar key sequences, and I completed several block operations before I moticed that the effects on screen were not what I had intended.
Once entered, however, the design was easy to assemble and test.

I introduced a number of common errers into the source file, and they generated reasonable error messages. However, one unintentional error did not produce any message, but merely caused the fault grading to report 0% coterage. This turned out to be as a result of my entering expected outputs as 1 s and 0 s . Rather illogically the system requires 0 and 1 for inputs, and L and H for outputs.

Documentation

Data sheets for the Peel device range, and a manual describing the software, accompany the kit. The manual is well-produced, ring-bound, with tabs to help find any given chapter, but it is so poorly laid out that it can be frustrating to use. For example the entire description of the terminal emulation consists of:
$\mathrm{Z}=\mathrm{VT}$ emulation. Allows video terminal emulation to be performed.

Since the first part appears on the screen anyway, the explanation leaves a lot to be desired. No explanation is given of why you might want the facility, which terminals can be emulated, or how to set up the emulation.

Similarly, the section on the Apeel assembler describes what buttons to press to perform simulation and fault grading, but not why these might be useful, or more importantly what to do if an error occurs.

Not only are the error messages not collected together for ease of refer-
ence, many are not described at all. If the messages were self-explanatory, this might be acceptable, but many of them are not easy to interpret. One of the faults not covered by my test vectors was described as:

Fault SA0 prod 1 input pin 2, RFSH output pin 16, NEWA7.

Given time, enthusiasm, and a knowledge of formal logic design, the message can be deciphered, but it really should be explained in the manual.
To complete the complaints, there is no index. No matter how well laid out a manual is, the absence of an index makes it much harder to use. Given the effort that has obviously gone into the writing, it is very surprising that an index has been deemed unnecessary.
So the kit is not for the faint-hearted as the manuals do assume knowledge of the subject. If you are unfamiliar with the use of these devices, you may find it advisable to locate a good introductory course to supplement the
material provided with the programmer.

This is a shame because Peel devices would be an excellent introduction to programmable logic, and if the manual were rewritten with this in mind it would become useful to many more people.

Supplier:

The Peel development kit is made by Gould Inc Semiconductor Division, and is distributed in the UK by AMS Ltd, Exfinco House, Sanford Street, Swindon, Wiltshire SN1 10Q. Telephone: 0252341500.
Cost of the system is $£ 602+$ VAT, but users who can commit to volume orders for Peel chips will be able to negotiate a discount on the development system.

C.A.D. SOFTWARE MADE EASY

ISIS - The Complete Range of Schematic Capture Products

Three packages - SUPERSKETCH, DESIGNER and DESIGNER + provide options from a no-nonsense circuit diagram drawing aid through to a highly sophisticated design management tool. All products in the range are based around the same Intelligent Diagram Editor which has been carefully refined to facilitate maximum speed of design entry.

DESIGNER and DESIGNER + can generate a wide range of netlist formats making them suitable for use with many popular PCB design and simulation packages. Whilst DESIGNER is a more than adequate schematic to netlist package, DESIGNER + adds some extremely powerful facilities such as hierarchical design and a database capability for importing and processing ASCII information like stock-codes and component costs.

Features Galore...

- Automatic or manual wire placement.
- Auto dot placement.
- Auto name generator.
- Component finder (works across multi-sheet designs!).
- Powerful editing facilities.
- Object oriented 2D drawing with symbol library.
- Comprehensive device libraries available.
- Integral device editor - create components on the fly.
- Output to dot matrix, pen plotters, lasers, POSTSCRIPT, DTP, DXF etc.

PCB Design

We also supply a range of PCB design software from manual layout through to an AutoRouting system which integrates fully with ISIS. Write or phone for more information.

PRICES
Supersketch + basic library .. $£ 69$ Supersketch + full library $£ 99$ Designer... £275
 Prices inc delivery exc VAT. Access \& Visa Welcome.

Call for FREE demo
disks - 0274542868.

14 Marriner's Drive, Bradford. BD9 4JT

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUAMTITY DISCOUNTS RIIGG US FOR YOUR REQUIREMENTS WHICH MAY BE IM STOCK

 Test Equlpment. We hold a large stock of modern and old equipment - RF and AF signal generators -Spectrum analysers - counters - power supples - chart recorders, all speeds single to multipen - XY plotters A4-A3-oscilloscopes - normal \& storage.
Tektronix $475-200 \mathrm{MC} /$ S oscilloscopes-lested from $£ 400$ less attachements to $£ 700$
C W manual, probes etc. Tektronix $475 \mathrm{~A}-250 \mathrm{MC} / \mathrm{S}$ - Complete kit with probes- $£ 750$

Marcon TF2002AS. -AM-FM signnal generator $-10 \mathrm{KC} / \mathrm{S}$ to $72 \mathrm{MC} \mathrm{S}-£ 85$ tested + probe kit $\&$ manual.
Marconl TF2002B. AM-FM signal generator-10KC/S-88MC S- 100 tested to $£ 150$ as new + probe Marconl TF2008 -AM-FM signal generator - Also sweeper - $10 \mathrm{KC} / \mathrm{S}$ - 510 MC S from $£ 350$ tesled to $£ 500$ as new + manual -probe kit in wooden carrying box - $\mathbf{~} 50$
Phililips PM3217 Oscliloscope-50MC S-dualtrace-delayed timebase - 1350 .
 Marconl TF2304. Modulation meter-AM-FM-100MC S - $£ 300$
Marconl slgnal/source type $6058 \mathrm{~B}-8-12.5 \mathrm{GHZ}$-new or used -from $£ 450$ to $£ 600$. Marconl signal'source type 6059A-12.0-18GHZ-New or used - trom $£ 450$ to $£ 600$ HP power meter.type 431C to 18GHZ with C type head \& waveguide head - $£ 150$ to $£ 200$.
 HP 3325 A synthesiser/tunction generator -brand new - $£ 2000$ or $£ 1500$ + used manual. Tektronix mainframes. -7603-7613-7633- $£ 300-£ 500$-various plug-ins-P.O.R. Marconl TF1245A circuit magnificatlon meter +124681247 osciliators - $£ 100$ to $£ 300$ HP slgnal generators. Type 612-614-618-620-626-628-frequency from $450 \mathrm{MC} / \mathrm{S}$ to 21 GHZs P.O.A. HP 8614A - HP8616A signal generators-800-2400MC/S - $1800-4500 \mathrm{MC} / \mathrm{S}$ - $£ 800-£ 600$

H.P. 8620 C mainframe- $£ 1200$ + manual.

Gould J3B test oscllator $-£ 250+$ manua
Ferrograph recorder test sels - RST2 and ATU1 - 250 .
Racal Dana 9301A-9303 RF millivoitmetes. 1.5-2GHZ- §350- 8750
RacaVDana counter/timer 9515 OPT 42-12500MC/S - E1000.
Systron donner 1702 stgnal generator - 100 HZ - 1000 MC S - AM-FM - $£ 1000$. $. ~ . ~$
H.P. $8704 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}$ network analyser - $100 \mathrm{KC} / \mathrm{S}-110 \mathrm{MC}$ S- $£ 1000$
H.P. $8410 \mathrm{~A}+\mathrm{B}$ network analysers - 110 MC S to 12.4 GHZ or 18 GHZ plus most other units and displays
. H.P. 8755 Bmain rame - 2400 - HP 1822 mainframe - $£ 500$
H.P. 432 A network analyser plug-In for above also H.P. 11664 detectors P.O.R.

Tektronix oscliloscope type $2465 \cdot 300 \mathrm{MC} \mathrm{S}$ - $£ 1400 \mathrm{C}$ W manual. Probes $£ 50$ extra

Image intensiffers - ex mod - tripod fitting tor long range night viewing - as now - $£ 3000 \mathrm{EA}$. Intensifiler tubes- $£ 50$ to $£ 250$-tested-depending on grade-first gen $\times \times 1060$
Thermal lmaging equipment - high definition - from $£ 2500$-complete in transit case Clark alr operated heavy duty masts - with legs and kit with pump. P. O.R.
infra-red binoculars in ibre-glass caryin S A.E. for details - Infra-red spotights and infra-red filters P.O.R.
H.P. 8405 A vector voltmetre- $£ 500$. H. P. 4193 A vectormetre $-£ 1750$
thems bought from HM Government being surplus. Price Is ex-works.S.A.E. For enquirles phone for appointment or for demonstration of any items, avallabillty or price change. VAT \& Corr, extre.

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw Bradford BD11 2ER. Tel. No. (0274) 684007. Fax: 651160
Wanted: Redundant test equipment-valves-plugs-sockets-synchro's etc. Receiving \& transmitting equipment - general electronic equipment

Field Electric Ltd. Tel: 081-953 6009. 3 Shenley Road, Borehamwood, Herts. WD6 1AA. Fax: 081-2076375, 0836640328

SPECIAL OFFERS

Philips CM7000 monitor, Composite video input: RGB (mono) + audio 240vac 12" green screen new $\&$ boxed $£ 65.00 \mathrm{c} / \mathrm{p} 8.75$
Micropolis hard disk drive full height including PSU \& Rack slides. $5^{1 / 4^{*}}$ model 1325br. ST 506 1MB MFM. $\{250.00 \mathrm{c} / \mathrm{p} 9.00$
9" Nec monitor. 240 vac input, compssite video input. $\mathbf{\Sigma 2 9 . 9 5} \mathrm{c} / \mathrm{p} 6.80$
19 colour monitor, 240 Vac input, R.G.B. composite video input, ex-equipment tested with no screen burns, case size $181 / 2 \times 17^{1 / 2} \approx 173 / 4, \sum 150.00 \mathrm{c} / \mathrm{p}$ please ring
25 colour monitor, 240 Vac input, camposite video input, new, case size $241 / 2 \times 171 / 2 \times 211 / 4$ £ $195.00 \mathrm{c} / \mathrm{p}$ please ring. Both $19^{-} \& 25^{\circ}$ monitors made by Electrohome
eac $1 / 2$ height floppy disk drive FD 55 F 96 TPI single/double density $500 / 1000$ kbytes 80
rack 301 rom. $£ 35.004 .50$ ex-equiD
eac $1 / 2$ height floppy disk drive FD 5 FV 96 TPI $500 / 1000$ kbytes 80 track 300 rpm SA400 nenace new £49.95 c/o 4.50
Teac FO 55 GFR Multi Format Drive BBC Micro IBM/AT or compatible ex-equipment no
Warantee (W24.00 inc C/p disk drive $1 / 2$ height TM 25210 Mb new ex-equipment, 557.50 c 6.50

Plantronics acoustics communications headsets new \& boxed (Auralite) type headset, model star set II complete with eartips instructions etc, $\mathbf{\Sigma} 50.00 \mathrm{cp} 3.50$ qty:discounts
Coutant DC/OC converter $+5 \mathrm{VDC} \leftrightarrows$ A output input 48 VDC new, $£ 20.00 \mathrm{c} / \mathrm{p} 3.00$ giy.discounts
anano Sola Miri Ups + Inverter and Line Conditioner: Sínusoidal output wave shape. 600VA 40VAC E250 - VAT Cp details please ring.
orin TA450 5 V.D.C. Fans $120 \times 120 \times 40 £ 5.75$
Torin TA450 12 V.D.C. Fans $120 \times 12.3 \times 40 £ 5.75$
Torin TA450 24 V.D.C. Fans $120 \times 120 \times 40 £ 5.75$
All Fans New c/p 1.50 qty: discou:
$360 \mathrm{~K} 1 / 2$ height Floppy Disk Dnves IBM compatible ex-equipment. No guarantee $£ 16.50$ inc Cp . PC, XT. AT Type Cards
Colour Cards: Disk Adpt: Controller: Comms etc: WD11 C00-JU: WD1015-PL: WD16C92-PL WD2010B-PL: WD10C20A-PH: + various chips $£ 10.00$
KM4 164B-12x8 UM6845B: D24382E: - various chips £10.00.
KP-001: CXK5816PN: CIC 8236E: SS1531-CPE NMC27CP128Q: WD1010A-PL 55.00. UM8272A: CXK5816P-10L WD1010A-PL C36031AE: PAL20L8ANC: CK8236AE £10.00 V6363: 82C11: 23C07: SN74LS244N £4.00
82C431: P82C434A: P82C432A: F82C433: TMM24128AP: N825137N - various $£ 15.00$ lease Ring for EGAVGANetwork Cards - too many to list
Test \& measuremenvaudiocommurications/computer equipment always in stock. powe supplies transiormers plugs/sockets $\&$ connectors, components fans panel meters cables etc

We would like the opportunity to tender for surplus equipment Official orders credit card telephone orders accepted with Access, Amex, Diners, Visa cards. Overseas enquiries welcome c/p rates U.K. mainland only
All prices inc. V.A.T. unless stated. Stock list avallable.

In many instances, the cost of commercial attenuators cannot be justified and their compatibility with specific equipment is often restricted. This attenuator is intended for use in the computercontrolled adjustment of frequencies in the bands $30-50 \mathrm{MHz}$ and $130-175 \mathrm{MHz}$. providing about $3-30 \mathrm{~dB}$ of attenuation to a resolution of 1 dB from an input of -20 dBm . Its characteristic impedance is $50 \Omega 2$

This design is based on the standard pi-network ${ }^{1}$ with PIN diodes as the active elements and is controlled by an H-P 85 computer via the GPIO bus. In essence, the design consists of an RF module. control circuitry and computer interface, together with the software. An improvement would be the adoption of a standard interface protocol such as that for the IEEE 488 bus.

RF circuitry

Bridged-tee and pi attenuators are both able to give variable and matched attenuation over wide band of frequencies. Bridged-tee circuits need one less active element, but we chose the pi network in this design for its higher maximum attenuation ${ }^{2}$.

Analysing the equivalent circuit of a pi network between two impedancematched stages, as in Fig. 1, gives the two basic design equations.

$$
\begin{aligned}
& R_{b}=Z_{0}(1+G) /(1-G) \\
& R_{5}=1 / 2 Z_{0}(1 / G-G)
\end{aligned}
$$

where G is the ratio of the attenuator output voltage E_{2} to its input voltage E_{1}.
PIN diode. The important thing about a PIN diode is its behaviour as an almost pure resistance at RF. By applying a direct bias current, one can vary the resistance from around 1Ω to $10 \mathrm{k} \Omega$. which makes the device ideal as the controllable element in an RF attenuator.

Conductance of a diode is proportional to its stored charge $Q(t)$, which in turn is related to the diode current $\mathrm{I}(\mathrm{t})$ by

$$
I(t)=\frac{d Q(t)}{d t}+\frac{Q(t)}{t}
$$

Programmable RF attenuator

> This digitally controlled RF attenuator uses PIN diodes as tracking resistive elements in a pi network, bias currents being controlled by computer. Its attenuation range is $3-30 \mathrm{~dB}$. By

> Seamus Laverty, Noel Evans and Brian Hylands.

> Seamus Laverty and Noel Evans are at the University of Ulster and
> Brian Hylands is with Short Brothers.

Fig. I. Pi network connecting two impedance-matched stages

Fig. 2. Circuit to measure PIN diode dynamic resistance as a function of bias current
where t is the recombination lifetime of the carriers. Frequency dependence is given by

$$
\frac{O(j \omega)}{l(j \omega)}=\frac{t}{1+j f / f_{0}}
$$

where $f_{\mathrm{w}}=2 \pi \tau$.

H-P5082-3080 PIN diodes used in the attenuator have a recombination time of $130 \% \mathrm{~ns}$. which gives a break frequency of 125 kHz and ensures a linear resistance over the required frequency range. We investigated the variation of diode dynamic resistance with bias current using the circuit of Fig. 2. which shows that the individual relationships of resistance against current in milliamps can be modelled by

$$
\begin{equation*}
\mathrm{R}=22.51^{-10.0 .3 .} \tag{1}
\end{equation*}
$$

So, by replacing three resistors in the pi network by PIN diodes and biasing them with direct current to vary their RF resistance, a variable attenuator is obtained. Equation (1) provides the values of the series and parallel resistances.
Figure 4 shows a large variation in series and parallel bias currents, which highlights the problems of digital control. Since the pi network is symmetrical, the selection of matched diode

Fig. 3. Variation of diode dynamic resistance with bias current

Fig. 4. Series and parallel bias currents to obtain required attenuation
pairs allows one current source to control both parallel diodes.

Digital-to-analogue control

An 8bit D-to-A converter offers satisfactory resolution and range; we used the DAC0800 to provide I_{p}, which ranges from $12 \mu \mathrm{~A}$ to $354 \mu \mathrm{~A}$. Seriescurrent source I_{5} must operate over the range $13.7 \mu \mathrm{~A}$ to 15.15 mA with a minimum resolution of $2 \mu \mathrm{~A}$. Limiting the maximum insertion loss to 30 dB allows I_{s} in Fig. 3 to be approximated by the logarithmic law exhibited by companding D-to-A converters used in PCM systems, such as the Precision Monolithics DAC-88 chosen for this design. The transfer characteristic is an eightchord, piecewise-linear approximation to the Bell System $\mu 255$ law 3. With a maximum output current I_{c} set to 2 mA ,

the control current I_{c} for a given digital input is

$$
\begin{equation*}
I_{c}=(2 / 8031)\left[2^{c}(S+17)-16.5\right] I_{s}(\max) \tag{2}
\end{equation*}
$$

where $\mathrm{C}=$ chord number $(0-7)$ and $\mathrm{S}=$ step number ($0-15$). Output current covered the required range with a resolution of $0.4 \mu \mathrm{~A}$. 74LS241 stages configured for open-collector input buffer the digital input to the D-to-A converter

Computer control and interface

The GPIO interface of the H-P85 computer provides two 8 bit, lowpower, bidirectional ports (A and B) and two 8 bit, output-only ports (C and D), each port uses a two-wire handshake for I/O data and each can be operated in byte mode. An I/O rom and the interface configured for output ports C and D give explicit access to the A-to-D drives.

There are two sections to the software: an "absolute" calibration routine and the main routine for setting attenuation. Figure 5 shows the structure of the program.

Calibration is carried out by simply outputting the full range of currents to the attenuator, ensuring that the impedance Z_{o} is kept at 50Ω and reading in to file the attenuation obtained. When an attenuation is needed at a particular frequency during the main routine, the nearest attenuation in the appropriate file is used. To reduce computation, the output is focused on the series current supply (7bit) rather than the shunt supply (8bit). Earlier equations provide the relationship between series
and shunt currents:
$I_{p}=\frac{1}{I_{s}}\left[\frac{Z_{10}{ }^{2}+Z_{1}\left(Z_{0}{ }^{2}+k^{2} I_{s}{ }^{2 x}\right)^{1 / 2}}{k^{2}}\right]^{1 / 2}$
where $\mathrm{K}=22.5$ and $\mathrm{x}=-0.83$, as seen in equation (1); the series current is given by equation (2). Input to the parallel current source to obtain this output is

$$
\text { Input }=\frac{255 . I_{p}}{0.354}
$$

Hardware

The complete attenuator is built as a "piggy-back" arrangement, with the RF pi network mounted on the controlcurrent module, in separate boxes.
RF module. As has been mentioned, the symmetrical arrangement of the net work means that only one current source is needed to supply both parallel diodes, as shown in Fig. 6.

DC blocking capacitors were chosen to have low impedance over the range of frequencies and inductors to present a high impedance in the frequency range; their self-resonant frequency at 14 MHz is outside the VHF band.
Control current module. This circuit is shown in Fig. 7. No special precautions are needed, apart from its mounting in a separate die-cast box and the use of 10 nF feedthrough capacitors to the pi network.

Results

Figure 8 shows the range of attenuation at spot frequencies of 45 MHz and 145 MHz against input to the seriescurrent D-toA converter. Across each of the two bands 30.50 MHz and 130. 175 MHz , the response is almost flat. The test signal was kept at -20 dBm

RF DESIGN

throughout the test
Throughout most of the range, the attenuation at 145 MHz is slightly greater than that at 45 MHz , due to the increased reactance of the capacitors. At 145 MHz , however, it tails off at about 28 MHz , while that at 45 MHz continues to increase, an effect that we attribute to parasitic coupling between input and output ports.

The attenuator fulfilled its design requirements, producing ranges of 3.7 29 dB over the high band and 3.1-32dB in the low band at an accuracy better than 0.3 dB in both cases.

References

1. Lepoff. J.H. PIN diode uses and limitations. Proceedings of the RF Technology Exposition, 1986. pp.187-195.
2. Long, N.R.W. PIN diode attenuators and vector modulators at intermediate frequencies. Ihid. pp.355-363
3. Owen. F.F.E. PCM and digital transmission systems. Texas Instruments Electronics Series. McGraw-Hill, p.63. 1982

Fig. 6. PIN diode pi attenuator with blocking capacitors and isolating inductors. Both parallel diodes controlled by one current source

The authors thank Sandard Telephones and Cables (Northern Ireland) Liul and the Department of Electrical and Electronic Engineering of the University of Ulster for their support and permission to publish this work.

Fig. 8. Spot-frequency results: attenuation against decimal input to the series D-to-A converter

Fig. 7. Current-control circuit generating I_{s} and I_{p} from GPIO bus signals

orallel current (${ }_{p}$)

HDTV with a better kind of PAL?

Although BSB did not fulfil its promise to transmit wide-screen (16:9 aspect ratio) pictures on its film channel from the start of service - apparently having found that enhanced-MAC presented rather more operational problems than had been anticipated - the 4:3 D-MAC transmissions have underlined the cleaner pictures, with less triangular FM noise in the colours and the absence of cross-colour effects when received without the use of a PAL UHF modulator, that stems from the use of time-multiplexed component video, and the improved digital stereo sound.
Nevertheless, one still wonders how many viewers are, in practice, dissatisfied with the technical quality of the conventional 625-line PAL pictures of terrestrial TV; at least when this comes from good-quality electronic cameras under good lighting conditions. Established European broadcasters, though well aware of the artefacts inherent in Systems G and I PAL, broadcast in 7 MHz (VHF) and 8 MHz (UHF) channels, still believe that terrestrial TV will remain the cornerstone of TV broadcasting at least into the 21 st century. Furthermore there is growing evidence that 625 -line PAL could be further improved, and possibly expanded to the wide-screen picture format, by means of new technology.

In West Germany, an ARD/ZDF "PAL Strategy Group" has been investigating the possibility of introducing improvements to existing terrestrial services without impairing reception on existing receivers. The Group is also taking into account the future requirement to produce programmes suitable for transmission either terrestrially or via an HDTV satellite service, recognizing that, even for an HD-MAC service, some 70% of production, primarily in the form of "short-duration" programmes, will need for economic reasons to be produced in the 625/50 standard.

The German engineers, drawing in part on BBC work, have studied two possible methods of using PAL techniques that eliminate cross-effects and, in doing this, recover the full horizontal

> Although MAC is demonstrably superior, it has its operational problems. There is a lot of mileage left in the PAL system of television and Pat Hawker reports on work to improve it, including a method of widescreen transmission

definition of the source signal (normally partially notched out around the colour sub-carrier). The systems are I-PAL (Improved-PAL) developed by the German Institut fuer Rundfunktechnik (IRT); and Q-PAL (QualityPAL) based on theoretical studies by the BBC and further developed and implemented at the University of Dortmund. As described by Dr Albrecht Ziemer and Eckhard Matzel of ZDF in EBU Review - Technical (Februaryl April 1990), it is also possible to combine some of the quality improvements possible with 1-PAL or Q-PAL with an aspect ratio of $16: 9$ to provide a possible new widescreen terrestrial standard.
This system they designate "PALplus" and it is claimed that, with this system, it would be possible to transmit in terrestrial channels a $16: 9$ picture which, although wider, would have much the same resolution (lines per unit of width) as a conventional $4: 3$ PAL picture and would be free of cross-effects. Furthermore they stress that PALplus is downward-compatible; in other words, it could be reproduced by existing PAL receivers with a quality equivalent to that from conventional PAL signals. New PALplus
receivers would similarly be capable of receiving conventional PAL signals, giving conventional-quality pictures while providing improved quality widescreen pictures from PALplus signals. They consider that PALplus could thus be introduced gradually, but there would need soon to be a consensus among the major PAL broadcasters to adopt a PALplus standard.

With I-PAL, full bandwidth (5 MHz) luminance signals are transmitted in line x , with line $\mathrm{x}+1$ carrying only low-frequency luminance (to about 3 MHz) transmitted in frequency multiplex with the quadrature-modulated chrominance subcarrier. A normal PAL burst, with its phase change, is transmitted in every line. Disadvantages are that both diagonal and vertical resolution of the chrominance signal is reduced, requiring conventional PAL sets to be adjusted. Tests in Germany in 1988 showed that differential phase errors occur which can lead to unacceptable hue errors with I-PAL decoding. However, the 1-PAL approach can be modified and phaseerror compensation is possible (1-PALM).

With Q-PAL there is no requirement for a notch filter at the studio output, so that full horizontal resolution of the luminance signal is obtained. A multidimensional filtering technology is used in the transmitter and receiver to create a true three-dimensional frequency multiplex between the luminance and chrominance, permitting disturbancefree separation of the two signal components. Modulation and signal transmission is similar to conventional PAL, maintaining full downward compatibility (in fact Q-PAL improves the quality of PAL receiver pictures by the reduction of low-frequency cross-colour disturbances). The quality of PAL pictures on Q-PAL receivers is also improved by the elimination of the high-frequency cross-colour disturbances by post-filtering. Q-PAL thus lends itself to progressive step-by-step introduction.

Ziemer and Matzel believe that viewers would consider as particularly striking a change in aspect ratio from

the present 4:3 to 16:9. They write: "It is clear that existing PAL receivers must be capable of reproducing mod-ified-format images at least in the manner customarily adopted (in Germany) for the reproduction of widescreen films." That is the "letter-box" presentation with black bands above and below the image, reducing the number of lines in the vertical definition. Conventional PAL receivers have no means of modifying the deflection geometry. For the letterbox solution, IRT is currently developing a method where every fourth line (counted spatially) of the 575 active lines is removed and the remaining 431 lines pushed together. The picture is thus reduced to three-quarters of its original height, corresponding precisely to a change to 16:9 aspect ratio. Then 72 of the missing lines are inserted in each of the spaces which become empty at the top and bottom borders of the picture. An "intelligent" $16: 9$ receiver would restore the picture to its original state, but in 16:9 format.

Transmission of such a modified signal in the 7 MHz channels used in Europe on VHF still presents problems. Attempts are being made to transmit the "border" signals in the

Fig. I. Production, delivery systems and display of ATV predicted by Rzeszewski in the US.
range between black level and one-half of the synchronization pulse level, i.e. in the "blacker-than-black" range, and thus invisible to viewers with $4: 3$ sets. This technique, however, requires further subjective tests to determine whether such signals have any negative effect on overall picture quality; by now field tests should have been completed.

In Proc IEEE (May 1990) Theodore Rzeszewski of AT\&T Bell Laboratories provides an in-depth (16-page) "Technical Assessment of Advanced Television (ATV)". He categorises ATV in three main groups: Highdefinition TV (HDTV); Enhanced Definition or Extended Quality TV (EDTV/EQTV): and Improved Definition TV (IDTV) and the requirement of any new system to provide a significant improvement in quality compared with 525 -line NTSC. For eventual delivery to the home of the highest quality pictures he sees a future of fibre-based networks and pre-recorded material for home (tape and disc) players rather than broadcast distribu-
tion. He believes that such factors as relative costs, ease of acceptance, quality differences and how much improvement over NTSC "is enough" will prove decisive in selecting one system rather than another: "HDTV could have a significant market share in the late 1990)s but if EDTV or IDTV succeed sooner, then an HDTV volume market may not come until after the year $20(0)$. He places the time window for IDTV between 1990 and 1994 and EDTV/EQTV between 1990 and 1997 with "some form of ATV introduced to the consumer soon.
"In other words, the question is no longer if ATV will come but rather, when and how many versions will be introduced, and be successful." He notes that, in connection with opticalfibre networks, some people predict that it will take until the year 2000 for fibre POTs (Plain Old Telephone service) to be less costly than copper, but that others predict that an integrated services approach should be economical long before that, perhaps in the mid-199)s; "Further, a mostly fibre network approach to CATV has been estimated to break-even with copper costs before 1993." See Fig. 1.

NEW MATMOS 286 and 386 COMPATIBLE COMPUTERS

MATMOS 286 AND 386 HIGH PERFORMANCE COMPATIBLE

 COMPUTERS16MHz 286 system: $£ 399$ plus VAT
quality syctem usin the industry standard 80286.12 processor running at a Landmark speed of
 (Centronics) ports, 101 keyboard, mono graphics card, 1.2 Mbytes 5.25 inch floppy dite. floppy drive controller, hard drive controller, efght expanslon slots (3×8 bit. 5×16 bit). AMI bios with full setup routine and diagnostics including HDD formatting. Well made stylish case with space for up to thre
5.25 drives and two 3.5 inch drives: lock. front panel switches and LEDs, full user and nardware 5.25 drives
manuals.

33 MHz 386 MHz system: $£ 979$ plus VAT
Same system as above but with state-of-the art 386 motherboard. Uses full spec. Inte: 80386 -25 motherboard running at a Landmark speed of 33 MHz ; clock speed 25 MHz . This is not a $386 \mathrm{~s} \times$ but has a full 32 bit CPU. Comes with 1 Mbve of RAM upgradable to 8 Mbve . Also available in quality full height tower case at 〔1079 plus VAT Carriage on systems $£ 14$ plus VAT. See below for add-ons. Drives ect. will be installed free of charge

FLOPPY DRIVES

720K 3.5 INCH DISK DRIVE IAMAZING NEW LOW PRICE TO CLEAR WAREHOUSE! Excellent Japanese low component. half height chassis drives. Ex almost new systems, 80 track double sided E29.95 (cart £31). Easy fit kit for Amsirad 15121640, IBM XT and AT, etc, includirga adaptor board and cradle for 5.25 inch slot. 88.49 . Box of ten 3.5 " disks $£ 9.95$ (carı $f 1$). NB Drives wors with virtually all computers including Amstrads. IBM XT and AT compatibles BBC's etc. not Ataris and Amigas 20 K 3.5 inch standard quality IBM half-height chassis drive $£ 29.95$ (carr E 3.50)
2 Mbyte 52. 44 Mbyte 3.5 inch Citizen OSDA 45A 3.5 inch siltm (25 mm) drive E49.50 (carr £3). Fitring kit for 5.25 inch cavity $£ 8.49$.

External
HARD DISK DRIVES, etc
20 Mbyte Miniscribe 8225 'state of the ant hard drive with embedded controller and all cabling to 20 Mbvte Miniscribe $8225^{\text {'state of the ant hara drive with embedded controner and al cabling to }}$ 386 systems.
20 Mbyte Seagate ST 125-1 3.5 inch standard MFM drive, 28MS. Access time $\mathrm{C139}$ (carr 55) 40 Mbyte Western Digital 584R RLL halt -height 3.5 inch drive in 5.25 inch chassis $£ 199$ (carr $£ 4$).

NEARLY NEW DRIVES: Range of ex equipment and reconditioned drives, tested and juaranteed,
DISK DRIVE CONTROLLER CARDS
Range of Western Digital XT and AT hardhard and hoppy conirale cards al bargain prices. available
IBM COMPATIBLE XT MOTHERBOARDS, MEMORY, CARDS AND KEYBOARDS
 640K RAM for above © 49.95 2MH2. 80286 AT turbo processor motherboard. 8 expansion slots, AMI BIOS 599.50 (carr f4). IMEG
RAM for above $\mathbf{E 4 9 . 9 5}$ VISA

Visa \& Access phone service

Mono graphics cards, E 22.50
Multi VO board for XT systems including parallel pon, serial port, real time clock. floppy disc controller and game port $£ 29.95$ (carr $£ 2.50$)

(carr E3.50).

MONITORS - MONO

12 inch Xerox System 60 Hercule
good, user-friendly high res. display 599.95 (carr 66.50).
14 inch VGA paperwhite; smant case, tilt-and-swivel base $£ 89.50$ (carr $£ 6.50$)
MONITORS - COLOUR
Famous name 12 inch high resolution analogue RGB monitor: high definitlon 80 column, 0.28 dot pitch) modern, very stylish case with tilt-and-swlvel base. Suitable for BBC, Amiga erc. (Atari with modification) $£ 129$, or $£ 149$ converted (carr $£ 10$).
negative. Smart Euro style case. Modification necessary for full compatibility (135 (carr £12). Hitachi CAD monitors CM $1686 \mathrm{~A}: 16$ inch 64 KHz ultra high resolution E 385 ; CM1588; 15 inch ultra high res. 48 Khz . $£ 199$; 20 inch CM 207348 KHz high res. ex-demonstration $£ 199$ (carr C 25)

PRINTERS

Oliverti DY200. Modern, office quality, bidirectional dais wwheel printer. Complete with manual, daisywheel, ribbon and stand ard Centronics interface. Prints at 25 cps. variable pitch; 132 characters in 12 pitch, proportional spacing. Full IBM and Diablo emulations. $£ 89.50$ (carr $£ 6.50$). Cut sheet feeder £49.50, tractor feeder (45 (carr £4).
Laser printer special offer. Data Products LDP $12-12$ page/minute. HP Laseriet + compatible. Very well made, last printer with Toshiba engine in nearly new condition. Service and maintenance available

VGA CARDS

16 bir VGA card, 256 K , all emulations, up to 800×600, with sottware to run all major packages $\mathrm{E74.95}$ 16 bit designer VGA card, all emulations up to $800 \times 600,256 \mathrm{~K}$ RAM, upgradable to 512 K . Paradise chip-set with software to run with all major packages, 599.50 . Other VGA cards available lcarr on card

WESTINGHOUSE WPC500 MODEM CARD

Standard size card to fit inside IGM-style or similar PC and communicate at 1200 Baud, $1200 / 75$ Baud or 300 Baud. Sold 'as is', with limited details and no support $£ 9.50$ (carr $£ 2.50$). Full user's manual available at $£ 4$.

POWER SUPPLIES

Astec BM 140 IBM compatible $150 W_{;}+5 \mathrm{~V}$ at $15 \mathrm{~A} .+12 \mathrm{~V}$ at $5 \mathrm{~A},-5 \mathrm{~V}$ at $0.3 \mathrm{~A},-12 \mathrm{~V}$ at 0.5 A ; fan cooled,

THEATRE LIGHTING CONTROL (second hand)

Rank Strand Compact 120 desk - well known semi-portable memory system to control 120 channels, in excellent condition, with manul $£ 599$. Rank strand 17×20 Amp dimmer racks in cabinets. £450 each or

LOUDSPEAKERS - Ex.broadcast LS31s 15 inch plus HF, pair $\mathrm{C79}$ (carr $£ 15$
NB

- VAT and cerriage must be added to all items (quotes for carriage overscas)

Everything new uniest stated
MATMOS LTD, UNIT 11 THE ENTERPRISE, PARK LEWES ROAD. UNOFIELD.
WEST SUSSEX RH16 2LX
Please note new telephone numbers **0444482091 and 044483830 (Fax 0444 484258) * *

INDEX TO ADVERTISERS

PAGE
ABI 834
Airlink Transformers 883
Antrim Transformers 889
Audio Electronics 901
Barrie Electronics 917
Bite Computers 854
Cadsoft (UK) 901
City Satellite Systems 883
Colormor Electronics 883
Crash Barrier 907
Data Technology 839
Display Electronics 877
Feedback Instruments 887
Field Electric 917
Flash Designs 897
GH Systems 897
PAGE
Halcyon Electronics ... 867
Hoka Electronics 836
Ian P Kinlock 878
I Com (UK) 885
IR Group 847
JAV Electronics 864
Johns Radio 917
Kestrel Electronics 854
LabCenter 916
Labvolt (UK) 887
Matmos 924
M\&B Electrical 889
M\&B Radio (Leeds) 910
Microprocessor
Engineering 864
Mutek 854

PAGE
MQP Electronics 878
Noral Micrologics 911
Number One Systems 860
Omation Incorporated 885
PM Components 921
Quartzlock 917
Ralfe Electronics 882
Research Communications
844
R Henson 867
Roscoe Electronics 911
Sherwood Data Systems
867
South Midland
Communications 910
Stewart of Reading 885
Those Engineers 897
Thurlby Thandar 836,878

OVERSEAS ADVERTISEMENT AGENTS
France and Belglum: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008
United States of America: Jay Fenman, Reed Business Lid, 205 East 42nd Street, New York, NY 10017 - Telephone (212) 867 2080-Telex 23827

[^1]
CLASSIFIED
 081-661 8640

CLASSIFIED DISPLAY. 29 per single column centimetre (min 3 cm)
LINE ADVERTISEMENTS (run on): $£ 6.00$ per line, minumum $£ 48$ (pre payable)
(Please add on 15% V.A.T. for prepaid advertisements)
sent c/o Quadrant House, The Quadran

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.
 LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

SEMICONDUCTORS, al types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES RECTIFIERS, THYRISTORS, etc. RESISTORS, CFF, MF, WW, etc. CAPACITORS SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etC ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLESSCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDINS CAVE

TELEPHONE 081445 0749/445 2713
R. HENSON LTD

21 Lodge Lane, North Finchley, London N12 83G.
(5 minutes from Tally Ho Corner)

EIBWORTH:

Number one choice for C8C + +
Contact: Eric Richards FBCs
0533-792653

GOLLEDGE
ELECTRONICS
QUARTZ CRYSTALS OSCILIATORS AND FILTTERS of all types. Large stocks of standard items. Specials supplied to order. Personal and export orders welcomed - SAE for lists please. OEM support thru: design advice prototype quantitics. production schedules. Golledge Electromiss. Merriott. Somerset TA 165 NS . Tel: (4461) 73718.

VALVES FOR AUOIO, INDUSTRY, ALSOC.R.TS..I.CS.. KLYSINGONS. MAGNEARONS. TRANSISTORS. USAVALVES
 I\} BJLLINGTON VALDES Oakendene Industrial Estate. Cowfold. Nr. Horsham. Sussex RH13 8az. Fax: 0403865106 Telex: 87271 PRODSS G Telephone: 0403865105
Min U.K. order $£ 20+$ VAT. Min Export order $£ 50+$ carriage

WANTED

Electronics World \& Wireless World from January 1965 to December 1989.
I am happy to pay best prices for any consecutive issues. Can you help? If so, please contact John Paulson on:

Warrington (0925) 740437 eves after 7 pm

AGENTS WANTED WORLDWIDE

Manufacturer of quality Toroidal Transformers requires professional representation worldwide. Large standard range supplied, plus custom design options in some areas.
Please apply in writing to-
Norman Rainey,
Antrim Transformers Lto 25 Randalstown Road, Antrim, Co. Antrim N. Ireland. BT41 4LD

COMPUTER WEEKLY BOOKS ****

Hitchhikers' Guide to Electronics in the '90s
How the electronics industry works, its key products and the implications for everyone of this lifechanging industry in the 1990s.
Price $£ 12.95$ (plus £1 p\&p) ****
Aliens' Guide to the Computer Industry Lively, authoritative and jargon-free overview of how the industry works. Essential handbook for those inside and outside the industry.Ideal for new recruits.
Price $£ 9.95$ (plus $£ 1 \mathrm{p} \& \mathrm{p}$) ****
Ring Credit Card Hotline: 081 -6859435
Or send a cheque $\boldsymbol{\omega}$: Computer Weekly, 120-126 Lavender Avenue, Mitcham, Surrey CR4 3HP

KU BAND SATEL-

 LITE TELEVISION £23, World Satellite TV \& Scrambling Methods $£ 27$, Satellite Installation Guide £12, European Scrambling and haker circuits $£ 29$. 1991 Satellite Annual £33. UK post included. Airmail Europe $+10 \%$, beyond $+20 \%$. Access/ Visa/COD.Baylin Publications, 24 River Gardens, Purley, Reading. 0734414468 (Fax \& Answerphone).

FOR SALE

Most issues of 'Wireless World' from August 1947.

Reasonable offers for 380 magazines to Fairweather, Berthen, Lixwill, Hollywell, Clwyd, U.K. Tel: 0352 2780367

ARTICLES WANTED

WANTED

Test equipment, receivers,
valves, transmitters,
components, cable and electronic scrap and quantity.
Prompt service and cash. M \& BRADIO
86 Bishopgate Street,
Leeds LS1 4BB.
Tel: 0532435649
Fax: 0532426881

STEWART OF READING
110 WYKEHAM ROAD READING, RG6 1PL TEL: 073468041 FAX: 0734351696
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

WANTED

Receivers, Transmitters. Test Equipment, Components, Cable and Electronic, Scrap. Boxes, PCB's, Plugs and Sockets, Computers, Edge Connectors. TOP PRICES PAID FOR ALL TYPES OF ELECTमONICS EQUIPMENT
A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TO. Tolephone: 0438812193. Mobile: 0860 214302. Fax: 0438812387

WANTED: VALVES TRANSISTORS I.Cs (especially types KT66. KT88 PX4. PX25). Also plugs, sockets and complete factory clearance. If possible, send written list for offer by return. Billington Valves, phone 04013 865105 . Fax: 0403865106 . Sce adjoining advert.

APPOINTMENTS
 081-661 8640

DISPLAY APPOINTMENTS
E29 per single col. centimetre (min. 3 cm).

Radio Technician

For Wood Street, Police Building London E.C.2.

The apointed person who must be able to work with the minimum of supervision, will have had experience in the areas of installation, repair and maintenance of Fixed Mobile and Hand Portable VHF/UHF Radio Telephone equipment. Closed Circuit Television, Audio Visual equipment and should be the holder of a City and Guilds Telecommunications Technician's Certificate, or its equivalent.
Experience in Police communications and computer and electronics advantageous but not essential.
Hours 8.00 a.m. to 3.45 p.m. Monday to Friday
Salary between $£ 13,725-£ 15,813$ inclusive
Optional contributory pension scheme, canteen facilities, 20 days holiday plus 5 concessionary days, interest free season ticket loan scheme.
Application form and Job Description available from Civilian Personnel Office, City of London Police, 26 Old Jewry, London E.C.2. Telephone 071-601 2233/34

CITY OF

AJC/VHG
259/90

UNIVERSITY OF MANCHESTER

 Experimental OfficerCentre for Audiology, Education of the Deaf and Speech Pathology
Applications are invited for this post, available for one year in the first instance from October 1st or as soon as possible to join a busy multiprofessional team based in the Centre. The Centre provides theoretical, practical and clinical teaching for a variety of courses and postgraduate students in subjects that are equipment-intensive, and for which considerable equipment support is required. The Experimental Officer will be responsible for the organisation and management of a large acoustics laboratory, and for the necessary stock control, maintenance and servicing, calibration and equipment design necessary to service the Centre's functions. Some teaching of instrumentation is required, and there would be an opportunity to be involved with research. Salary within range $£ 11,399-£ 15,444$ (EO Grade 1) or $£ 14,038-£ 18,165$ (EO Grade 2) according to qualifications and experience. Applicants should have a suitable first degree and preference will be given to those with a background in electronics and/or acoustics. Application forms returnable by September 281990 and further details from the Registrar, the University, Manchester M13 9PL (Tel: 061275 2028) Quote ref. 259/90. The University is an Equal Opportunity Employer.

Garibaldi-RF \& Microwave

We are the specialist agency for 'Radio Frequency' design or test Engineers working from 1 MHz to light! We have hundreds of top positions throughout the UK, working on RF mobile comms (GSM, PCN, C 2), opto, satellite, mm -wave \& microwave projects. Please contact our consultant SImon Luttrell MSc on 0494792592
160 Bellingdon Road, Chesham, Bucks. HP5 2HF.

-Electronics Technician

Salary neg.
 Didcot, Oxon.

Kentech Inst uments is a highly successful small company operating from a (very) rural location in South Oxfordshire. We specialise in ultra high speed (picosecond) optical and X-ray photography and kilovolt pulse generators with sub-nanosecond risetimes.
We now require a technically competent person to assist us with development and production activities. Duties will include specialised electronic and mechanical assembly for production and development PCB layout and packaging of completed electronic designs, some electronic design work in support of development activities, tault finding and testing. As our products are generally designed to order and are rather unusual, the work will be varied and interesting.
Candidates will be expected to demonstrate a good practical knowledge of analogue electronics. An academic qualification is preterred but not necessary Experience of high voltages, microwaves, image intensifiers and an interest in Physics are desirable. A helpful industrious attitude, a sense of humour and the ability not to smoke for several hours are essential.
Terms of employment are subject to negotiation and a competitive salary and relocation package is available.
Please ring for further details and an application form or send a CV to: Paul Kellett (Technical Manager)
Kentech Instruments Lid.
Unit 7, Hall Farm Workshops,
Kentech Instruments Lid South Moreton
Didcot, OXONOX119AG Tel: 0235510748 Fax: 049125067

CAMBERWELL HEALTH AUTHORITY DULWICH IIOSPITAL. RENAL UNIT MEDICAL TECHNICAL OFFICER - GRADE 3
Salary: § 12,8:1-§ 14,730pa inc.
Are you self-mulivated? Laroking for something different? We need a Medical Technic al Officer to join a small but very progres sive team to maintain a wide range of medical equipment and ω assist in the development of new treatment techniques.
A relevant ' B ' Tech qualification is required and experience in a similar field is preferred although not essential. A full current driving licence is required. Il wours of work are 37 per week.
Infurmal enquiries welcome ω Mr Barry Tomkin, Technucal Manaker on 181619333377 ext. 3179.
Applicatlon forms and jol, descriptions are available from Unit l'erssonnel lleparment The Irulwich Hospinial, East Iulwich Grove lundun SE22 81TT. Tel: 0816933377 ext 30185/3160. Please quute ref: 101//5+1. horking towards eqtal opportinities

To Advertise in this section please contact Jan Thorpe on 0816613130 or Fax copy to her On 0816618939

ELECTRONICS

[^2]
PCN Telecommunication Engineers

You're either in or you're out.

Being in the right place at the right time is more than just a question of luck. It: a matter of making a number of conscious. informed decisions: atrd creating the circumstances for youraelf

For example. by studying the apporintments section in this week's Flectronic: Weeekly and. indeecl. by reading this advertisement. you happen to be in the right place at the right time

But, unfortunatels: in the wrong company:

Because the right company is Unitel. Brainclited of four of the worlds leading names in telecommunications and electromios - STC, IS West. Thorn FMI and Deutsche Bunclespost Telekom - we have a unique pecligrece for a young company.

Our mission?" To develop.
implement and manage the telecommunicalion system of
the future - the Persomal
Communications Network.
If youse currently working in any of the disciplines shown here and tave the ability and ambition to make the mose, you can expect a career offering unprecedented opportunties for personal and protessional deselopment. Our benefits package reflects the significance of the project and the quality approsich which I nitel represents

Make the right decision and you coukd be working in a pioncering enviroament with other professionals who have recognised the huge potential of I nitel. A team who are already in the right place at the right time

To apply: please write with full career details to Tom O' Grady. senior Human Ressurces Officer. ['nitel. Elstree Toner, Elstree W'ay: Borehamwood. Hens WID int or telephone him on 081-905 1001.

RF Systems Design
Digital Switching
Value Added Features Implementation

Project Management
Network Planning \& Modelling
Evolutionary Network Development
Point To Point Microwave Transmission

Common Channel
Signalling Systems

Standards Development

Operations \& Maintenance Planning

Phones for people, not places

You might well ask because we've been making one or two giant leaps of our own recently...

In response to developments in the electronics industry, we have made a number of changes to the magazine. The journal has been redesigned and its appeal broadened to meet the new demands of our readers.

For instance, we now carry regular reviews of PC based software tools plus features on specialist PC hardware for electronics engineers.

Our recent feature on the killing fields of electromagnetic smog aroused a great deal of interest both inside and outside the industry.
But of course the strength of Electronics World is still its editorial excellence.

We will report on the industry events of the 1990's just as we covered the first man on the moon in 1969.

Because although times may change, standards don't.

To get your discount please send this coupon FREEPOST to Andy Westwood, Electronics World + Wireless World, FREEPOST, CN 2297 Room H316, Quadrant House, The Quadrant, Sutton, Surrey SM2 5BR.
I accept your invitation to subscribe for only $£ 20$ per year.
Please send Electronics World every month to my work/ home address.
Name
Job Title
Company
Address

Postcode
\square I would like to take advantage of your special UK offer and receive a 33% discount on my subscription.
\square Please invoice me/my company.
\square I enclose payment for $£ 20$ by cheque/money order made payable to REED BUSINESS PUBLISHING GROUP.
\square Please charge my Access/Nisa/American Express Card. $\square \square|+|\square| \square||\mid \square \square$ Expiry date

Signature
Offer closes 31 st October 1990.

The Programmer that fits your Pocket - £495

S3 is a product which has shaken the industry. It is in all the big-name catalogues. It is used by all the big-name companies. That's because S3 has an elegance and fitness-for-purpose that puts it in a different league from old fashioned bench programmers. But you don't have take our word for it. You can get an S3 on NO-RISK APPROVAL and find out for yourself.

S3 doesn't only program EPROMS

 S3 programs any (E)EPROM you can put in the socket. Choose manufacturer and device from a menu and S3 will select one of 80 -odd algorithms. But programming memory devices is only a part of S3's repertoire. It's not the be-all and end-all. If you need to program EPLDs, CMOS PALS, NOVRAMS, SINGLE-CHIP MICROS and the like, S3 is still the best tool for the job. Dataman provides dedicated modules and software, which are much cheaper than any other solution because the S3 you already own acts as a "mainframe". These products don't just exists in our imagination. We have them on the shelf, ready to ship.
Software upgrades are FREE

When new programmable parts are released, Dataman provides new software to program them. This software is FREE. It is also easy to install. The original program comes in a ROM. You place it in the socket (see picture) and press the HELP button. It loads in a few seconds. And you only have to do it once. S3 retains its program - and your data - in non-volatile memory, even when switched off. We post the new program on our Bulletin Board. If you have a modem, you can download it. There are lots of other useful programs available too. Give our BB a call on 0305-251786.

Terminal Program with S3 Driver

We offer a TERMINAL PROGRAM which supports four COM ports simultaneously at speeds up the 115,200 baud. This program is useful in its own right. It also has a FRONT-END DRIVER for S3, with MENUS and HELP screens. This gives you Remote Control of all S3's functions. You can Upload and Download files, change configuration and do everything remotely that you can do with S3's keyboard. Some companies make a song-and-dance about their software drivers, - and charge you at least $£ 100$. Ours is free. Not 'free' when you buy something, but FREE to any Company requesting literature.

Universal Assembler \& Editor

S3 is also a MEMORY-EMULATOR. Use it with an Assembler and you have a complete Microprocessor Development System. It happens that Dataman sells a fast fullfeatured Editor/Assembler, called SDE, for use with S3 (or without).
 of source code. That saves the chore of printing listings when debugging. SDE comes in single or multiple processor versions. Do try it. You will like it.

Specifications and Price List

S3 has a 64 kbytes CMOS RAM butter for storing USER programs and ROM/RAM EMULATION access time is about 120 ns . There are also 8 K bytes of progiam RAM, a serfar interace at 300, 600,1200, 24004800 and 9600 files. S3 comes complete with Manual, Mains-tharger unit ROM program and emulate (E)EPROMS and FLASH program and emulate (E)EPROMS and FLASH
EPROMS. Re-charging takes 3 hours and does no prevent normal use. Typically one charge per week is prevent normal use.
enough. 53 measures
$7.3 \times 4.4 \times 1.8$ ins and weighs just over 1 lb . $\quad 495.00$ SDE Editor/Assembler/Comms single-processor $£ 195.00$ SDE Editor/Assembler/Comms multi-processor $£ 395.00$ S3 Developer's Package Reveals all S3's secrets. S3 Developer's Package Reveals all S3's secrets.
Contains Circult Diagrams, Source Code, BIOS calls and Editor/Assembler (as SDE above) for NEC 78 C 06 processor in S3. Lets you write your own custom sottware - even make S3 into a something completel, difterent. $£ 195.00$
MCS48 module for 8741/42/48/49
195.00
$\$ 125.00$ MCS51 module for 8751/52/53
$\Sigma 125.00$
32 pin module for EPROMS (inc FLASH) over $1 \mathrm{~m} £ 75.00$ 40 pin module for EPROMS over $1 \mathrm{meg} \quad £ 75.0$ EPLD (CMOS PAL) modules (set of 2) for Erasable Programmable Logic Devices. Works with manufacturer's compilers to provide selt-contained system. Receives, translates, creates and transmits JEDEC files. Loads, burns and copies parts such as 22V10, 20G10, 16R4, 16R6, 16L8, 16L8, PEEL18CV8, EP300 to EP900,
50C30 TO 50C90 from Cyress, AMD, AMI, Ahera, Gould, Texas, Intel, ICT
$\$ 250.00$
S3 IS GUARANTEED FOR 3 YRS, OTHER
PRODUCTS 1 YR,BOTH PARTS AND LABCUR. VAT MUST BE ADDED TO ALL PRICES, IN JK ONLY BUT POSTAGE IS FREE. SPECIAL OR FOREIGN
DELIVERY COSTS EXTRA DELIVERY COSTS EXTRA.

Money-back Guarantee

Our aim is to get a product into your hands. Our products sell themselves. We promise to hand your money back without question if you're not mightily pleased. Dataman products are so well thought out and downight useful - and such good value for money - that we hardly ever get any returns.

What to do next

Send your business-card or letterhead quoting where you saw this ad. That gets you LITERATURE and YOUR FREE TERMINAL PROGRAM (not just a demo - it really works!) If you're in a hurry, phone and speak to Debbie, Emma, Chris or Nigel. Some formalities are necessary, but we will waste no time in getting the goods to you. Tomorrow morning is quite possible.

Lombard House, Cornwall Rd, DORCHESTER, Dorset DTI 1RX, Phone 0305-268066
Fax 0305-264997 Telex 418442
Bulletin Board 0305251786
300/1200/2400,N,8,1 (24hr)

[^0]: Please send information on Icom products \& my nearest Icom dealer.

[^1]: Printed in Great Britain by Carlisle Web, Offset, Caxton Road, Newtown Trading Estate, Carlisle, Cumbria CA2 7NR, and typeset by Marlin Graphics, Sidcup, Kent DA14 5IDT, for the proprietors, Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. © Reed Publishing Led 1990. Electronics and Wireless World can be obtained from the ollowing: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Ldd, INIIA: A.H. Wheeler \& Co, CANADA: The Wm Dawson Subscription Service lid, Gordon \& Gotch Lut, SOUTH AFRICA: Central News Agency Ltd.; William Dawson \& Sons (SA.) Lid.; UNITEI) STATES: Worldwide Media Services Inc., 115 East 23rd Street, NEW YORK, N.Y. 10010. USA. Electronics \& Wireless World $\$ 5.95$ (74513).

[^2]: R.F.TEST ENGINEERS

 DORKING
 FAUIT FINDING ON R.F. MEASUREMENT INSTRUMENTATION. H.N.C. SAL.NEG R.F. TEST \& REPAIR URGENT INSTRUMENTAIION. MICROIVAIE. AVIONIC POSITIONS AVAII.ABLE LOTS OF
 PROSPECTS ONCINNC SMALI. TEAM TEST ENGINEERS

 EXPERIENCE IN TESTING ON CCTV. VIDEO \& SERVO SYSTEM'S ETC
 TEST \& REPAIR BENCH ENCINEER'S
 lots of positions, fault finding and component level repair. a.y MEDICAL COMMINICATIONS OPTICS CONTROL SYSTEMS M.O.D. \& COMMERCIAI EQUIPMENT
 TECHNICAL SUPPORT ENGINEER
 KNOWLEDGE OF GOMPUTER PERIPHERAI EOUIPMENT P.C. COMPATIBLES CUSTOMER LIASOV ETC
 SERVICE ENGINEER'S
 KNOWLEDGE OF DIAGNOSTIC X-RAY SCANNING SYSTEMS INSTALLATION OF EOUIPMENT IN HOSPITAL DEPARTMENTS ONC HNC. WITH A GOOD UNIEER standing of analogue digital and electro mechanical back. GROUND.
 SALARIES ON ALI JOBS ARE NEGOTIABLE ALSO CONTRACY POSITIONS MANY OTHER VACANCIES FROM JUNIOR TO SENIOR TEST, REPAIR SERVICE SUPMORT ENGINEERS HARDWARE \& SOFTWARE DESIGN DEVELOPMENT

 Phove mine hessina ma32 242810 EXE m32 221501 day 0932227145 FAX SHECTRUN TECHNCA. RECRIITALNT
 oba. TERRACE ROAD, walton on thayles, Strrey ktiz 2 sd

