1 CHz spectrum analyser - £75 reader discount

WORLD
INCORPORATING WIRELESS WORLD

Medical imaging technology

New generation motor drives

Electronics in music

Mobile phones: where next?

Measuring RMS via Internet

Austria Asch. 70.00 Denmark DKr. 70.00 Germany DM 18.00 Greece Dra. 1400.00 Halland Df1. 12.95 Italy L. 9400.00 Malta Lm. 1.80

MARCH $1999 £ 2.55$

Design rf mixers

Self debates amplifier classes

Now the Wre3100e external WINRADIO arrives!

> " WiNRADIO'm now brings you a complete choice in personnel computer controlled radio scanning and reception solutions.."

With either the internal or external versions, you can couple all the power of the latest Windows PCs (not just the fraction that you can squeeze down an RS232 connection) to the latest synthesised receiver design techniques, and you'll get the ultimate in wide range, all mode programmable radio reception.

VisiTune ${ }^{\text {TM }}$ spectrum tuning display

Your choice of virtual front panel

New external WiNRADIOTM

(WR1000e, WR1500e and new WR3100e) provide complete comms systems connecting either via the basic RS232 - or with an optional PCMCIA adaptor, for high speed control. Power from existing 12 v supplies, or our optional NiMH rechargeable 12 v battery pack.

Use WiNRADiO scanning PC comms receivers for...
Broadcast . Media monitoring . Professional \& amateur radio communications. Scanning. Spot frequency \& whole spectrum monitoring . Instrumentation Surveillance (and recording)

If you want the ultimate receiver-in-a-PC with full DSP, then you need the WR3000-DSP with its hardware for real-time recording, signal conditioning and decoding applications. (DSP is available with the ISA card version only).

Take a look at WiNRADiO's Digital Suite Software..

For WR1000/1500/3100 internal or external

1. WEFAX / HF Fax
2. Packet Radio for HF and VHF
3. Aircraft Addressing and

Reporting System (ACARS)
4. Audio Oscilloscope, real time Spectrum Analyzer
5. Squelch-controlled AF Recorder
6. DTMF, CTSS decode

ONLY $£ 81.05$ inc VAT
The DSP applet provided with the WR3100 spectrum monitor ISA card ($£ 995+$ VAT) allows continuous control of audio bandwidth and other signal conditioning functions

(requires SoundBlaster 16 compatible sound card)

Model Name/Number
Construction of internals
Construction of externals
Frequency range
Modes
Tuning step size
IF bandwidths
Receiver type
Scanning speed
Audio output on card
Max on one motherboard
Dynamic range
IF shift (passband tuning)
DSP in hardware
IRQ required
Spectrum Scope
Visitune
Published software API
Internal ISA cards
External units

WR-1000
WR-1500
WR-1000i/WR-1500i-3100DSP- Internal full length ISA cards
WR-1000e/WR-1500e-3100e - external RS232/PCMCIA (optional)

$0.5-1300 \mathrm{MHz}$	0.15-1500 MHz	$0.15-1500 \mathrm{MHz}$
AM,SSB/CW,FM-N,FM-W	AM,LSB, USB, CW, FM-N,FM-W	AM,LSB, USB,CW,FM-N,FM-W
100 Hz (5 Hz BFO)	100 Hz (1 Hz for SSB and CW)	100 Hz (1 Hz for SSB and CW)
6 kHz (AM/SSB),	2.5 kHz (SSB/CW), 9 kHz (AM)	2.5 kHz (SSB/CW), 9 kHzz (AM)
17 kHz (FM-N), 230 kHz (W)	17 kHz (FM-N), 230 kHz (W)	17 kHz (FM-N), 230 kHz (W)

WR-3100

.15-1500 MHz

100 Hz (1 Hz for SSB and CW)
$2.5 \mathrm{kHz}(\mathrm{SSB} / \mathrm{CW}), 9 \mathrm{kHz}$ (AM)
17 kHz (FM-N), 230 kHz (W)

PLL-based triple-conv. superhet
$10 \mathrm{ch} / \mathrm{sec}$ (AM), $50 \mathrm{ch} / \mathrm{sec}$ (FM)
200 mW
8 cards 8 cards 3-8 cards (pse ask)
$65 \mathrm{~dB} \quad 65 \mathrm{~dB} \quad 85 \mathrm{~dB}$
no $\pm 2 \mathrm{kHz} \quad \pm 2 \mathrm{kHz}$
no - use optional DS software
no no
yes yes yes
yes yes yes
yes yes yes (also DSP)
£299 inc vat £369 inc vat £1169.13 inc vat
$£ 359$ inc vat £429 inc vat

```
200mW
3-8 cards (pse ask)
\pm2 kHz
YES (ISA card ONLY)
yes (for ISA card)
yes
yes
£1169.13 inc vat
    £1169.13 inc (Hardware DSP only internal)
```

> For your free info pack and software emulation demo disk contact Broadercasting Communication
> Systems - and please note all available information is also available 24 hours a day on the web.

http:/lwww.broadercasting.com - FREEPHONE: 08000746263 - PHONE: 01245348000
EMAIL: info@broadercasting.co.uk - FAX: 01245287057
Unit B, Chelford Court, Robjohns Road, Chelmsford, Essex CM1 3AG
E\&OE WiNRADiO and Visitune are trademarks of WiNRADiO Communications

179 COMMENT

We Brits will put up with anything.

181 NEWS

- The end of the PC as we know it? - C++ enhancements for hardware design
- Infra-red pc link - new standard - Electronics job prospects on the up - CRTs still shine brightest

186 IMAGING ALL THE PEOPLE

There are currently three main imaging technologies used in medicine.
Roy Rubenstein examines their uses and discusses their potential.

188 CLASS A TO 300W

Colin Wonfor's range of hi-fi audio amplifiers includes what is probably the most powerful single-ended Class-A design of its type ever produced.

190 CLASS DISTINCTION

Doug Self explores the inadequacies of the popular audio power amplifier classification system. His work reveals that there are amplifier class types that have not yet been explored.

196 HIGH-PERFORMANCE

 MOTOR DRIVESJohn Wetroth and Damian Anzaldo give an overview of modern control technology, highlighting two mixed-signal chips for the next generation of motor drives.

202 ELECTRONIC EFFECTS IN MUSIC

Richard Brice looks at various ways in which intentional electronic signal distortion is used to enhance music.

208 UPWARDLY MOBILE

Mobile phones are marvellous - within their own mobile world. New developments will integrate them seamlessly into the mainstream network and add full multimedia capabilities. Andrew Emmerson reports.

212 SPEAKERS' CORNER

John Watkinson expands on the topic of how motional feedback is used to improve a loudspeaker's performance.

215 HANDS ON INTERNET

Measuring rms is the focus of Cyril Bateman's web sleuthing this month There's also tips on finding data.

Interested in rms measurement? Cyril Bateman presents a variety of circuit options on page 215.

220 RF RECEIVER MIXERS

In the first of three articles explaining rf mixers, Joe Carr looks at their operation and demonstrates the basic single-ended diode mixing configuration.

224 ZERO DISTORTION?

Perfect amplifier fidelity is thought to be unattainable. But Ian Hickman explains that you could indeed make a distortionless amplifier, if only...

234 CIRCUIT IDEAS

- One telephone - two lines
- Faster charging for xenon flash
- High-Q, programmable notch filter
- Linear pwm demodulator
- Low loss active diode
- Regulator shutdown in battery systems
- Parallel port as microprocessor bus
- Monitor catalytic converters
- Positive/negative voltage reference.
- $1 \mu \mathrm{~s}, 16$-bit a-to-d converter
- Three two-gate oscillators
- Zero-crossing detector
- Monitor with $0.1^{\circ} \mathrm{C}$ resolution

246 LETTERS

Radio 4's noisy floor, Fence EMC, Ionisation chamber, Lost charge, Barretter remembered, Oxide diodes, Vision by radio, Competition winners.

251 NEW PRODUCTS

New product outlines, presented by Phil Darrington.

Cover artwork: Jamel Akib

Steve Bush reports on new CRT technology on page 181.

Our exclusive reader offer gives you over $£ 80$ discount on a 1 GHz spectrum analyser. This superb instrument attains its low price by making use of the display facilities of your existing oscilloscope. Page 231 for more details.

Details of this month's cover CD rom are on page 232.

Telnet Tel: 01203650702

Hewlett Packard
8920A R/F Comms Test (various options) $£ 4995$
8922 BGH G.S.M. Test £POA
Rohde \& Schwartz
CM5 54 Radio Comms service monitor (0.4 to 1000 MHz) $£ 6250$
CMTA94 GSM Radio Comms Analyser £7500
Schlumberger - Stabilock
4031 Radio comms test ($\mathbf{0 . 4}$ to $\mathbf{1 0 . 0 0 M H z}$) $£ 4995$4040 'High accuracy' Radio comms test$£ 2995$
Wandel \& Goltermann
PFJ-8 Error \& jitter test set $£ 12500$
PCM4 PCM Channel measurement set £POAMarconi2305 Modulation Meter$£ 1995$
Racal
6111 GSM test sets £POA
Hewlett Packard 8642AHigh Performance R/F Synthesiser -0.1 to 1050 Mhz$£ 8500$
Textronix 2467B400 Mhz - 4 channelshigh writing speed oscilloscope$£ 8500$
OSCILLOSCOPES
Beckman $9020-20 \mathrm{MHz}$ - Dual channel
Hewlet Packard 54100 D - GHz DigitizingHewlett Packard 54200A - 50MHZ DigitizingHewlett Packard 54201A - 300MHz DigitizingHitachi VI52/V212N222/V302B/N302FN353F/N550B/V650FHitachi VI 100 A - 100 MHZ . 4 channel
Intron $2020-20 \mathrm{MHz}$. Dual channel D.S.O. (new)
watstu SS 5710/SS 5702
Kikusui COS $5100-100 \mathrm{MHz}$ - Dual channel
Lecroy 9450A - $300 \mathrm{MHz} / 400 \mathrm{MS} / \mathrm{s}$ D.S.O. 2 channel
Meguro MSO 1270A - 20MHz - D.S.O. (new)
Meguro Milips $3055-50 \mathrm{MHz}$. Dual channel
Philips PM $3335 \cdot 50 \mathrm{MHZ}-$ D.S.O. Dual channel
Philips PM 3335 - 50 MHZ - D.S.O. Dual
Philips $3295 \mathrm{~A}-400 \mathrm{MHz}$ - Dual channel
Panasonic VP574 I A - 100 MHZ D.S.O. Dual channel
Tektronix $455-50 \mathrm{MHZ}$ - Dual channel
Tektronix $465-100 \mathrm{MHZ}$ - Dual channel
Tektronix $464 / 466-100 \mathrm{MHZ}$ - (with AN. storage
Tektronix $475 / 475 \mathrm{~A}-200 \mathrm{MHz} / 250 \mathrm{MHz}$
Tektronix $468-100 \mathrm{MHZ}-$ D.S.O.
Tektronix $2213 / 2215-60 \mathrm{MHz}$ - Dual channel
Tektronix $2220-60 \mathrm{MHZ}$ - Dual channel D.S.O
Tektronix 2225 - 50 MHZ - Dual channel
Tektronix $2235-100 \mathrm{MHZ}$ - Dual channel
Tektronix 2245A-100MHZ - 4 channel
Tektronix $2440-300 \mathrm{MHz} / 500 \mathrm{MS} / \mathrm{s}$ D.S.O
Tektronix $2445 \mathrm{~A}-150 \mathrm{MHz}-4$ channel
Tektronix $2445-150 \mathrm{MHZ}$ - 4 channel + DMM
Tekkronix 7000 Series (100 MHZ to 500 MHZ)

SPECTRUM ANALYSERS

```
Avcom PSA-65A
Anritsu MS 62B -2 to 1000 MHz
```

Anritsu MS 610 B - 10 KHz to 1700 MHz
Advantes $/$ TAKED $10 \mathrm{KHz}-2 \mathrm{GHz}$
Advantes ITAKEDA RIKEN - $4132 \cdot 100 \mathrm{KHz}-1000 \mathrm{MHz}$ Hewlett Packard 3561A - Dynamic Signal Analyser

All equipment is used - with 30 days guarantee. Add carriage and VAT to all goods. Telnet, 8 Cavans Way, Binley Industrial Estate, Coventry CV3 2SF.

Hewlet1 Packard 8756A87757A Scaler Network Analyser from $£ 1000$ Hewlett Packard 853A Mainframe + 8559A Spec. An. (0.01 to 21GHz) IFR A $7550-10 \mathrm{KHz}-1 \mathrm{GHz}$ - Portable
Meguro - MSA $4901-30 \mathrm{MHz}$ - Spec. Analyser
Meguro - MSA $4912-1 \mathrm{MHz}$ - IGHZ Spec.Analyse
Tektronix 495 P Spec analyser prog. - 1.8 GHz
Tektronix $469 \mathrm{P}-1 \mathrm{KHz}$ to 1.8 GHz
Wiltron $6409-10-2000 \mathrm{MHz} \mathrm{R} / \mathrm{F}$ Analyser

MISCELLANEOUS

ENI - 550 L Power Amplifer ($1.5-400 \mathrm{MHz}$) - $50 \mathrm{w} \quad £ 1500$
Farnell AP 30250 - Power Supply 30v-250amp
FR 1200 - Radio comms lest set
Hewlett Packard 6033A - Autoranging System PSU (20v-30a)
Hewlett Packard 6033A - Autoranging System PSU (20v-
Hewlett Packard 6632A - System Power Supply (20v-5A
Hewlett Packard 3784A - Digital Transmission Analyser
Hewlett Packard 3785A - Jitter Generator \& Receiver
Hewlett Packard 5370B - Universal Time Interval Counter
Hewlett Packard 8660D. Synth'd Sig. Gen ($10 \mathrm{KHz}-2600 \mathrm{MHz}$)
Hewlett Packard 4192A - LF Impedance Analyser
Hewlett Packard 16501A - Logic Analyser System Expander Frame HP 339A Distortion measuring set
HP 3488A - Switch/Control unit
HP 4279 A - 1 MHz - C-V meter
HP 436A Power meter + lead + sensor various available
HP 435A + 435B Power meters
HP 8656A Synthesised signal generator
HP 8656B Synthesised signal generator
HP 37900D - Signalling test set
HP 5385A - 1 GHZ Frequency counter
HP 8901B - Modulation Analyser
HP 8903 B and E - Distortion Analyser
HP 5359A - High Resolution Time Synthesise
Keylek MZ-15/EC Minizap ESD Simulator (15kv - hand held) Marcon 2610 True RMS Voltmeler
Philips 5515 TN - Colour TV Function Gen 50 MHz

Leader 3216 Signal generator 100 KH	$\varepsilon 1500$
1500	

Leader 3216 Signal generator 100 KHz - 140 MHz - AM/FM/CW with built in FM
Racal $9087-1.3 \mathrm{Ghz}$ Synthesised Signal Generator, low noise
Systron Donner $6030-26.5 \mathrm{GHz}$ Microwave Freq Counter
Tektronix 1751 PAL Waveform/Vector Monitor
Wiltron 6747A-20-10MHz-20GHz - Swept Frequency Synthesiser

Tel: 01203650702

 Fax: 01203650773
EDITOR

Martin Eccles
01816523614

CONSULTANTS

Ian Hickman
Philip Darrington
Frank Ogden
EDITORIAL ADMINISTRATION
Jackie Lowe
0181-6523614
EDITORIAL E-MAIL ADDRESS
jackie.lowe@rbi.co.uk

ADVERTISEMENT MANAGER
 Richard Napier
 0181-6523620

DISPLAY SALES EXECUTIVE
Joannah Cox
0181-6523620

ADVERTISEMENT E-MAIL ADDRESS

joannah cox@rbi.co.uk

ADVERTISING PRODUCTION

 0181-6523620
PUBLISHER

Mick Elliott
EDITORIAL FAX
0181-6528111
CLASSIFIED FAX
0181-652 8938
NEWSTRADE ENQUIRIES
01712617704
ISSN 0959-8332

SUBSCRIPTION HOTLINE 01622778000

SUBSCRIPTION QUERIES
rbp.subscriptions@rbi.co.uk Tel 01444445566
Fax 01444445447

For a full llsting of
RBI magazlnes:
http//www.reedbusiness.com

REED
BUSINESS
INFORMATION

We Brits will put up with anything

In Britain we have grown accustomed to paying more than our European neighbours for most things. How many of us have marvelled at the lower cost of food and drink in French supermarkets? Even cars manufactured in this country will consistently cost us ten per cent more to buy than they would on the Continent.

Apples and Volvos are one thing, but when someone points out that as a nation we are paying more for our telephone calls than people in almost any other country in the world, then you know someone is taking the mickey.

Surely not, after all this is Britain - a country which has prided itself over the last dozen or so years on having one of the most open and highly competitive
telecommunications markets in the world
We are told that free-market competition will inevitably drive down prices by forcing companies to be more competitive. But it has not worked in the UK's deregulated telephone market, and what is more worrying for phone users is that the future telephone market in this country looks like it could become less, not more, open.

It seems that after a dozen years of free-market competition for both fixed-line telephones in the home and for mobile phones, the British telephone user has been ripped-off. That was the view of the man who up until 12 months ago was responsible for ensuring fairness reigned in the UK's telephone market.

Of course, BT and other telephone operators hotly dispute the merest suggestion that the cost of calls may be unjustifiably high. But in December some of those particular chickens came home to roost when the new industry regulator at the Government's Office of Telecommunications - Oftel for short - accused BT and mobile phone operators Vodafone and Cellnet of overcharging customers and ordered them to slash the price of calling mobile phones by 25 per cent.

Remember that the deregulated UK telephone market has more public telephone operators and more mobile phone companies than nearly any other country outside of North America.

Deregulation of telephone services has not worked as effectively as we might have expected. After more than a decade, too much competitive power still remains in the hands of too few companies. Market leading operators like BT, Vodafone and Cellnet literally call the shots and the regulator Oftel seems less than determined to act, despite last December's 25 per cent price cut.

If we thought that the last change of government would shake things up a bit and create a situation where the industry regulator has real teeth and the will to use them, then may be we will have to think again. It now seems that far from becoming more open the UK market is about to take a backward step, incredible as that may seem.
Oftel may have ordered BT to slash its call-charges, but it is not prepared to tackle the relatively high cost of telephone services by opening up the market to even greater competition, as is happening in the US and soon to start in mainland Europe.

It is the level of cut-throat competition allowed in the US, which has driven telephone charges down and Internet usage up. It seems that the European Union traditionally bastion of monopolistic telephone operators is changing the colour of its spots with drastic plans to

Electronics World is published monthly. By post, current issue
$£ 2.45$, back issues (if available $£ 3.00$). Orders, payments and general correspondence to L333, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. T|x:892984 REED BP G. Cheques should be made payoble to Reed Business Information Lid Newstrade: Distributed by Markefforce \{UK) Lid, 247 Tattenham Court Rood London WIP OAU 0171 261.5108.
Subscriptions: Quadrant Subseription Services, Oakfteld House Perrymount Road, Haywards Heath, Sussex RH 16 3DH. Telephone 01444445566 . Pleose notily change of oddress.
Subscriplion rates 1 year UK $£ 36.002$ years $£ 58.003$ years $£ 72.00$. Europe/Eu 1 year $£ 51.002$ years $£ 82.003$ years $£ 103.00$ ROW 1 year $£ 61.002$ years $£ 98.003$ years $£ 123$ Overseas advertising agents: Fronce and Belgium: Pierre

> The cost of using the telephone and the Internet will plummet across Europe, but not in the UK.

open up the provision of telephone lines to greater competition.

The cost of using the telephone and the Internet will plummet across Europe, but not in the UK.
Oftel is dismissive about EU plans to compel market leading operators to rent lines to rival firms at cost prices. This is what already happens in the US and the benefits to the customer are obvious. But if Oftel gets its way then it will not happen here - potentially making a mockery of the UK's deregulated telephone naarket
Oftel's argument is that the provision of telecommunications services is a high cost activity, requiring high levels of investment. If the market is divided up between too many smaller operators the ability to invest will be threatened.
This may be a valid objection if it were not for the fact that the competitive US market seems to break the rule. Not only does it have the lowest telephone charges in the world, but its operators are the most advanced at introducing broadband services like ADSL and cable modem technology.
Oftel seems to accept that the provision of telephone services will remain the preserve of a small number of operators then the pressure to drive down the cost of telephone connections will be considerably less than in most other countries of the world

We must be grateful for Oftel's recent moves on the UK's high telephone charges, but it seems that the regulator's long term view of the telecoms market is more than a little short-sighted.

Richard Wilson, Editor Electronics Weekly

[^0]
TELFORD ELECTRONICS

Old Officers Mess, Hoo Farm, Humbers Lan Phone: (00 44) 01952605451 Fax: $(0044) 01952677978$ e-mail: telfordelectronics@telford2.demon.co.uk Web: htp.//www telford-electronics com Carriage: $£ 10+$ VAT @ 17.5% to be added to all UK orders Overseas orders welcome - Please call ALL OUR EQUIPMENT HAS A 30 DAY GUARANTEE (EXCEPT CLEARANCE ITEMS WHICH ARE SOLD AS-IS)

McROWAVE
JFW Stepped Attenuators 0 -10dB in 1 dBB Steps DC.26Hz
HP5342A 18GHz Frequency Counter 8800.00
HP8405 Vector Voltmeter.................................. $£ 250.00$
HP8502A Transmission/Reflection Test Set $500 \mathrm{KHz} \cdot \uparrow \cdot 3 \mathrm{GHz}$
£750.00
HP87438 Reflection Transmisslon Test Unit 2-12,46Hz. 6600.00
Maury Microwave Sliding Termination up to 20GHz $£ 660.00$
HP11720A Pulse Modulator 2-18GH2....................... 5720.00
HP11722A Sensor Module................................. 8600.00
HP116910 Directioral Coupler 8600.00
HP116920 Oirectional Coupler 5700.00
HP3350 120d日 Attenuator OC -16Hz....................... 8300.00
Wiltron 560 Scaler Analyzer c/w oetectors \& SWR Bridge.
£15
Semi Rigid Co-Ax:al Cable Type: UT141/A 0-20Gitz. 3 metre
Oiscounl aty: $100 \mathrm{ocs}=$ ¢ 500.00PRICE EACH LENGTH ¢10
Continental Mlcrowave Transmitter Control VML-TR240 $1 / 1$
Olpital Microwave 12GHz XX/RX (NEW) $E 1200.00$
HP H752A Directional Coupler 3dB............- = - 1150.50
HP11720A Pulse Modulator 2.18GHz....................... 8720.50
HP1 1722A Sensor Module............................ 6600.50
HP33304A Proorammable Attenuator 18GHz 0-11dB $£ 175.00$
HP33305A Programmable Attenuator 18GHz 0-110dB... £175.00
HP33320A Attenuator 11dB............................. $£ 250.00$
HP333208 Attenuator 21dB \qquad £250.00
HP33322A Atteruator 120dB $£ 250.00$
HPS328 Frequency Meter $\mathrm{E200.00}$
HP536A Frequency Meter 3.7-12.4GHz $£ 200.00$
HP84108
HP8414A
DATATELECOMS
Ancrisu
BT (fulcrum) T1020 Network Transmission Performance
Analyzer.. 5500.00
Cushman CE24 FX Selection Level Metar.....- - .-........ 5400.00
Oatalab DL1000 Programmabie Transient Recorder........ 5250.00
GN EImi EPR31 PCM Slgralling Recorder........- \quad E5000.00
HP1350A Graphics Translator.......-..................... $£ 200.00$
HP16310 Logic Analyzer....................................... 8650.00
HP3336A SynthesizeddLevel Generator...................81300.00
HP35868 Selective MeterIromm $£ 850$

Abstract

 HP6264B $0-20 \mathrm{~V} 0.20 \mathrm{~A}$ HP6181C DC Current Source 0 0-100V $0-250 \mathrm{~mA}$ Farnell TSV70 MK2 Stabilised Power Supply $£ 180.00$ Powesline Type. LAB532 5V-5A $+15 \mathrm{VV}-0.5 \mathrm{~A},-15 \mathrm{~V}-0.5 \mathrm{FA}$. $0-30 \mathrm{~V}-2 \mathrm{~A} . \mathrm{E} 200.0$

HP89038 Audio Amalyzer
HP3708A Noiss \& Interference Test Set
HP3561A Dynamise Signai Analyzer HP8980A Vector Analyzer.
Takeda Riken TR4 172 Sper
 Til............. 85000.00 HP89901A Modulation Analyzer....
HP5370A Univiversal CounterTlime Phillps PM6680 $\quad \begin{array}{r}\text { Hen } \\ 8850.00 \\ \hline\end{array}$ Thmer option Hinh Resolution Programmable Counter/
 Philips
Philips PM6666 PM666 Oprticn Counter
fixted Timer/Counter

 $88 k 2033$ Slignat Analyzer..... 88K 2636 Me asuring Amplitier. B\&K 5935 Dual Microphone Supply.... $\begin{aligned} & \text { E4000.00 } \\ & \text { HP1 }\end{aligned}$ HP182T + HP8558B Spectrum Analyzer 100KHz-1.5GHz............ HP334A Distorion Anayzer.... HP339A Oistortion Measurrng Set
HP3585A 25 KHZ Spectrum Analizer HP358EA 25 KHz S Spectrum Analyz
Marconl 2305 Modulation Meter. Marconl $2382+2380400 \mathrm{M} \mathrm{HZ}$ S Marconl 2501 True RMS Voltmeter.... Marconi TF2370 110 MHz Spectrum Analyzer R8S URE RMS Vollmeter.
\qquad
 Rektronlx 0 OA4084 Programmable Distontion Analyzer....... $£ 50000000$ SigNaL genehators

Adret 71008 300KHz- 650 MHz Cushman CE12 Two Tone Geral

 Cushman CE12 Two Tone Ge verator...........Fannell OSG2 Synthesized $0.1 \mathrm{MHz}-110 \mathrm{KHz}$. Flann 4311A 12 -18GHz. Fluke $6010 \mathrm{~A} 10 \mathrm{~Hz} \cdot 11 \mathrm{MHz}$ Syntheslzed.
HP117108 Down Convertor (HPe640B) HP1 1710B Down Converfor (HPE6640B). HP3325A Synthesized Generalor 1 Hz -21MHz HP4204A Oscillator 10 Hz - +MHz . HP654A Test 0 scillator 10MHz.
$\mathrm{HP8005B}$
$\mathrm{HP8005A}$
$0.3 \mathrm{~Hz}-10 \mathrm{~Hz}-200 \mathrm{MHz}$.
HP8015A 1Hz-50MMZ Pulse

HP8165A Programmable Signal Source. HP8620C + HP862228 0.01-2.4GHz Sweepe | HP8642M $0.1-2100 \mathrm{MHZ}$. |
| :--- |
| HP8557A |
| 1 |

HP8684B 5.4-12.56Hz...
Marconn 2019 A 80KHz-1040MHz.
Marconi $202210 \mathrm{KHz}-16 \mathrm{~Hz}$ Marconi 2022 10KHZ-16HZ Marcont 6057 Signal Source $5.5-8.5 \mathrm{GHz}$
Marconil 6059 A 12-186Hz Signal Source
 Systron Donner 1702 Audio-1
Tektronix $5040.001-240 \mathrm{MHz}$...
Tentronix F 6501 A . 2 MHz Fuction Wavetek 1080 1-1000M Hz Sweeper Wavetek 157 Programmable Wavetor Wavetek 159 Wavelorm Generator 1
Wavetek 171 Synthesizerffunction Waveretek 185 Sweepelff unction $0.5 \mathrm{M}-\mathrm{I}$ Wavetek $2001+1-1400 \mathrm{MHz}$
Wavetek 907 A 7.12 .46 Hz
Wihton $6100+62238$ Sweeper 4.12 .46 Hz . ystron Oonner 1720 Sianal Soure $50 \mathrm{MHz-18GHz} \mathrm{\quad}. \mathrm{\quad 5200000}$ $+692 a+6093 A$ (x2) lGHz Pulse Generator System..

MISOELLANEOUS

L. X. UGHTWAVE EOUIPMENT:

LOT59018 Temperature Controller
PDA6424 Photo Dlode Ampllifier
LDX 3772 Laser Dloce Controtife
LDX 32078 Precision Current Sourc
3M Fibre Splice Preparation Kit
Cossor Optical Cabie Fault Locator Type. OFL 108L Laser Precision Iype: DB2900 Single Mode Variable Attenuator Schlumberger Type: S 17780 OTOR + $\$ 177823$ Plug-ln Soiomat MP M M 4000 Matrix Processsor ccw Software. Porlabie nutrichannel, tatalogger, alamm monitor. Battery/Mains
Kane-May. Km4003 Air Veincity 0 -30 in metres/seconds Air Temperature (C) -30 to +200 C . Battery Operated. ortatlow MK11 Partabe diteonal heam towmeter. Made by Micronics Combustlon Anatzarer Environmental monitor Typ bacharact
300NSX. Kane-May. Combustlon Analyzes Type: 9004
Kane-May. Combustlon Anatyzer Type: 9004
Kane-May. Temperature Sensor Type: 1204 CN 8004
Kane-May: Temperature Sensor Type: 1204 CiN 8004
Temperature 8 Hurnidity Sensor GGA -26 Thermo-Ane +KME01 Intratrace
Caselta: Aerosol Monitoring Systern Type: AMS950 Ranges $0-20 \mathrm{mg} / \mathrm{m} 0-200 \mathrm{mg} / \mathrm{m}$
CEL 493 ctw . CEL 296 Octave \& filird octave scan filter sel * CEL 284/2 Callibrator
Hoftrmann SWM3 Flow Meter
CEL $281+281$ Keypad + Programmable Noise Dosemeter vectranics Exotox 75 Ambilog + Charger. Portable atmosphere
HP4275A Mutti-Frequency LC.R. Meter.
HP4193A vector Impedance Meter

HP8568B Spectrum Analyzer High Pertormance \quad| 51,000 |
| :---: |

\qquad
NEW STOCK

 PP8756A Scaler.Network Analyzer. HP436 Power Meter \& HP8481 Sensor. HP8111A 20N Hz Proogrammable Pulse Generator.......... $£ 1,2000,00$
 Phlips PM5786B Pulse Generator 1 Hz -125MHz IIse.... $£ 2,000.00$ 2ns to 0.1 s

The range of 'FM-Controllers' provide most of the features required for embedded control at a very low cost
FEATURES FM-200 Controller

- 68 K Micro-Controller 14 MHz clock
- 512 Kbytes Flash EEPROM
- 512 Kbytes SRAM Battery Backed
- 2 RS232 Serial Ports
- 1 RS232/RS485 Serial Port
- Real Time Calendar Clock (Y2K Compliant)
- Watchdog \& Power fail detect
- 10 Digital I/O Lines
- 2.16 bit Counter/Timers
- ${ }^{2}$ C Bus or M-Bus
- Expansion Bus
- Size $100 \times 80 \mathrm{~mm}$

OTHER FEATURES

Up/Download removable card for data logging and or re-programming

- STE VO Bus, 68000 and PC Interface
- Designed, Manulactured and supported in the UK

OPTIONAL EXTRAS
Additional extra features to the FM 200

- LCD Port Graphics or Alphanumeric Up to 32 Digital vo Channels
- Key Pad Port 64 Keys 8×8
- 8 Channels 8 bit analogue in
- 2 Channels 8 bit analogue out Backed
Backed
- Up to 512 Kbytes of Flash EEPROM
- 1 Mbyte EPROM Space
CAMBRIDGE
MICROPROCESSOR
SYSTEMS LIMITED
Units $17-18$, Zone D Chelmsford Road Industrial Estate, Great Dunmow,
Essex UK CM6 $1 \times G$ Tel. $+44(0) 1371875644$ Fax: +44 (0) 1371876077

DEVELOPMENT

The PC Starter Pack provides the quickest method to get your application up and running

Operating System

- Real Time Multi Tasking
- Unlimited copy licence

Languages

- 'C', Modula-2 and Assembler
- Full libraries \& device drivers provided

Expansion

- Easy to expand to a wide range of peripheral and I/O cards

Support

- Free unlimited telephone, FAX, email and Internet support

Custom Design

- CMS will design and manufacture to customers requirements

CRTs still shine brightest

The good old cathode ray tube seems still to have some tricks up its sleeve to beat off the advance of potential rivals.
CRTs continue to out-perform all contenders when it comes to brightness and colour. Now the latest technology from Philips Display Components is claimed to improve picture quality even further.
"It can produce a smaller spot at higher brightness," said Fritz Gehring, responsible for the Philips development. "This will give you a brighter, crisper picture."
What Gehring and his team have done is develop a semiconductor replacement for the hot cathode electron-emitter, which has featured in crts since they first appeared more than a century ago.
Philips is calling it ACC, for avalanche cold cathode.
A conventional crt cathode is a metal surface, coated and electrically heated to red hot to excite electrons within the material sufficiently to allow them to be pulled off by a local electric field.
These electrons are then focused, deflected and further accelerated, forming the electron beam that writes the picture on the phosphors at the front of the tube.
By modulating the local extraction field, the beam strength is altered to produce a grey scale in the image.
The ACC electron source works in a completely different way.
It consists of a buried diode junction, made just below the surface of a silicon chip, as in the junction diagram. The p-type material is biased negative, reverse-biasing the junction, but the voltage applied is high enough, at 5 V , to push electrons through the junction by Zener action.
These electrons, flowing from the p type material, accelerate as they cross

Electrons are emitted from two buried cathodes, each $1 \mu \mathrm{~m}$ wide and $25 \mu \mathrm{~m}$ Iong. Potentials of -30 V on the inner disk and $+\mathbf{3 0 V}$ on the outer $100 \mu \mathrm{~m}$ diameter ring produce a field that causes the electrons to leave as a single beam. One of these ring structures, on separate chips, would be required for each electron gun in a colour tube.
the barrier. Some have enough energy to escape from the material surface into the vacuum beyond.
"The junction is less than $1 \mu \mathrm{~m}$ below the surface and you get a lot of field strength," said Gehring. "With a single atom layer of caesium on the surface to lower the work function, we get between five and ten per cent of the electrons flowing through the junction emitted."
He added: "This gives us a lot of electrons per square mm , in comparison [with thermionic emission]."
Adjusting the junction current varies the number of electrons emitted.
The electrons are 'hot', flying out of the surface. Gehring said: "In comparison, the thermionic electrons in a crt are only evaporating out."
An electrostatic lens, made on the surface, forms the fleeing electrons into a beam where they can be deflected and further accelerated.
For a colour display, three ACCs are needed. "We can get six to ten

Principle of the Avalanche Cold Cathode (ACC)

thousand cathodes from a wafer," said Gehring, "The final system cost, in a monitor for instance, will be the same as the conventional approach, but the image will be better."
The future of the ACC is currently uncertain. "We are not sure if it will be introduced,"said Gehring, explaining: "Lifetime and reliability need to be assessed."
Steve Bush, Electronics Weekly

A buried zener diode junction has the potential to out-perform traditional thermionic electron sources in cathode ray tubes.

Electronics job prospects on the up

The electronics industry is optimistic about employment prospects despite the overall job trend being at its lowest since 1994.

According to the latest Manpower Survey of Employment Prospects, the electronics industry is leading the manufacturing sector with 26 per cent of electronic employers forecasting increased job prospects for the first quarter of 1999. Against this, nine per cent anticipate a decrease which gives a balance of 17 per cent. While this is above the national average it still represents a downswing of 21
points on the same quarter in 1998.
The survey also shows evidence that the economy is faltering with the overall job trend being similar to that which proceeded the recession in the early 90 s.
Over 2000 employers were questioned in December 1998 by Manpower about their intentions for staffing levels for the first quarter of 1999 . For this period 16 per cent predicted an increase in job levels and 16 per cent forecast a decrease. The balance of 0 per cent is 10 points lower than the same period in

1998 and also the largest year on year downswing since 1991.
The most optimism came from the telecoms sector, which showed a balance of 19 per cent.
Sir Clive Thompson, president of the Confederation of British Industry, has warned of the likelihood of recession in the manufacturing industry this year.
A recent survey by the Chartered Institute of Purchasing and Supply indicated that the slowdown in manufacturing business may be easing although output and new order levels remain near their all-time lows.

C++ enhancements announced for hardware design

Belgium's inter-university Dmicroelectronics centre, has developed a version of $\mathrm{C}++$ for designing hardware
The $\mathrm{C}++$ programming language is used to directly generate hardware description language (HDL) code ready for synthesis to logic gates.
"We didn't change anything in C," said Marc Engels, director of IMEC's telecom department, which developed the system. "We designed a set of

C++ classes of basic objects." These enable a parallelism not normally found in $\mathrm{C}++$.
"We have now done three chips with the system, and there are no hits on area and performance," Engels claimed.
These devices are a DECT equaliser, $10 \mathrm{Mbit} / \mathrm{s}$ cable modem and part of an MPEG-4 compression chain. "This silicon is all processed and working," said Engels.

Such a development system offers two essential benefits, not available using a traditional design environment.
First, if hardware and software use the same programming language, then making trade-offs between the two is easier. "And we can co-simulate the whole thing in C which gives you an incredible speed," said Engels.
Second, the object oriented nature of C++ makes it good for design reuse.

Hyundai to buy LG Semicon chip fab

A
fter fighting tooth and nail for months against merging with Hyundai, LG will sell Hyundai its semiconductor division. The deal followed a meeting between the Korean president and the president of LG. The company will now sell LG Semicon outright to Hyundai.

The question now is which of the two shelved UK fab sites - Hyundai's in Fife or LG's in Newport - will be used. "Our Korean people say that the smart money is that the LG fab is the one to be canned," said Richard Gordon of analysts Dataquest.

The Welsh Development Agency tried to dampen down such speculation but Cardiff West MP Rhodri Morgan said the company or the South Korean government should repay the $£ 30 \mathrm{~m}$ spent at Newport if the Fife site goes ahead instead.

At Newport, an LG executive told us: "We've had no instructions from HQ. We're still in talks with Hyundai to

Infra-red pc link: more speed, less haste

Throughput of the proposed $16 \mathrm{Mbit} / \mathrm{s}$ IrDA standard plotted against number of frames sent in each transmission window. One hundred and twenty seven frames per window will be allowed, but 60 looks like a better bet, particularly under typical (BER 10-8) conditions. The long turn-around times (Tta), mandated by the current generation of low cost transducers, will also have to be reduced if the 16Mbit/s data rate is to be met.

$A^{\text {d }}$dded flexibility in proposals for a new 16 MHz IrDA infrared communications standard may reduce rather than increase data throughput. This is the finding of research at Bournemouth University.
IrDA ports, which were originally only to be seen on handheld computers and portable digital assistants, are increasingly appearing on desktop computers and peripherals like printers - so much so that Windows 98 includes an IrDA protocol stack as standard.
The initial specification drawn up by the Infrared Data Association, IrDA, called for a maximum data rate of $115.5 \mathrm{kbit} / \mathrm{s}$. This was subsequently raised to $4 \mathrm{Mbit} / \mathrm{s}$ and now there are proposals to further raise this to 16Mbit/s.
For various good reasons, a IrDA transmitter can only send for up to 500 ms before it must switch to receiving. In this time, called a window, it sends multiple frames of up to 16,384 bits.

It's in the protocol... IrDA is a flexible standard that is becoming widely adopted. Moving to $16 \mathrm{Mbit} / \mathrm{s}$ requires changes to the link access protocol (IrLAP) to allow more than seven frames per window. Proposed is 127 but less may be best. The last change to the IrDA specification boosted operation from $115.2 \mathrm{kbit} / \mathrm{s}$ to $4 \mathrm{Mbit} / \mathrm{s}$ by adding a second physical layer (IrPHY)with pulse position modulation.

The $115.5 \mathrm{kbit} / \mathrm{s}$ and $4 \mathrm{Mbit} / \mathrm{s}$ standards allow a maximum of seven frames, but at $16 \mathrm{Mbit} / \mathrm{s}$ these could be sent well within the 500 ms . To make full use of the time, up to 127 frames have been allowed in the proposal.
What the Bournemouth research has shown is that, allowing for reception errors, using all 127 frames will slow data transmission in many situations. "A window size of around 60 frames looks like it will give better throughput," said Bournemouth researcher Peter Barker.
A second issue arises with the increase in data rate. To allow a terminal's receiver to come out of saturation (caused by its own transmitter) there is a period called the turn-around time allocated between finishing transmission and starting reception. The maximum available is 10 ms ; most terminals use 1 ms .
Making full use of the turn-around time makes an extensive dent in the data transfer rate at $16 \mathrm{Mbit/}$. "IrDA is a low cost technique and so-called 'zero turn-around time' transducers are expensive. Some cheaper alternatives are needed to make full use of $16 \mathrm{Mbit/s}$ IrDA," said Barker.
Bournemouth's analytical technique is probabilistic, using random errors in the raw receive data stream and taking into account the duration of re-sends necessary to correct them and the likelihood of these needing further correction.
The research at Bournemouth is sponsored by BT Laboratories.

Surplus always wanted for cash!
 TV SOUND \& VIDEO TUNER CAble compatible.

 THE ORIGINAL SURPLUS WONDERLAND!this month's selection from our vast ever changing stocks wanted for cash!
aining all electronics ready to plug into a host of video monitor made by makers such as MICROVITEC, ATARI, SANYO, SONY, viee output will also plug directly into most video recorders, allowing hannels. TELEBOX MB covers vitually all television frequencies VHF and UHF including the HYPERBAND as used by most cable for direct connection to most makes of monitor or desktop computer video systems. For comploto compatibility - even for monitors with-
out sound - an integral 4 watt audio amplifier and low level HI FI TELEBOX ST for composit sidandard. TELEBOX STL as ST but fitted with integral speaker TELEBOX MB Multiband VHF/UHF/Cabie/Hyperband tuner $£ 69.95$ lape service. Shipping on all Teleboxe's, code (B) with composite any IBM type computer. Supplied complete with simple working

FLOPPY DISK DRIVES $21 / 2^{\prime \prime}-14^{\prime \prime}$

 present prime product at industry beating low pricesl All units (unlessstated) are BRAND NEW or removed from often brand new equipment and are fully tested, aligned and shipped
day guarantee. Call for over 2000 unlisted drives $31 /{ }^{\prime \prime}$ " Panasonic JU363/4 720K or equivalent RFE $31 /{ }^{*}$ Mltsublshl MF355C-L. 1.4 Meg. Laptops only
$31 / 2^{*}$ Mitsublshl MF355C-D. 1.4 Meg. Non laptop $51 /{ }^{-\prime}$ Teac FD-55GFR 1.2 Meg (for IBM PC's) RFE 5\%" BRAND NEW Mitsubishi MF501B 360K $8^{\circ \prime}$ Shugart $800 / 8018^{\circ}$ SS refurbished 8 tested $8^{\prime \prime}$ Shugart 8518° double sided refurbished \& tested $8^{\prime \prime}$ Mltsublishi M2894-63 double sided NEW
$8^{\prime \prime}$ Mltsubl shi M2896-63-02U DS slim line NEW

HARD DISK DRIVES

.

$31 /{ }^{*}$ FUJIFK-309-26 20 mb MFM I/F RFE
$31 / 2^{*}$ CONNER CP 302420 mb IDE I/F (or equiv.) RFE
CONNER CP 304440 mb IDE I/F (or equiv.) RFE

$3 \%^{\prime \prime}$ WESTERN DIGITAL 850 mb IDE I/F Now
$5 \%^{*}$ MINISCRIBE 342520 mb MFM I/F (or equiv.) RFE
MINISCRIBE 342520 mb MFM I/F (or equiv.) R - HP 97548850 Mb SCSI RFE tested - HP 97548850 Mb SCSI RFE tested NEC D 224685 Mb SMD interiace. New
FUJITSU M2392K 2 Gb SMD I/F RFE tested

$6,000,000$ items EX STOCK

 VIDEO MONITOR SPECIALSOne of the highest specification monitors you will ever see At this price - Don't miss itl! Mhsublish| FA3315ETKL

 ENT Iitle used condition.
TiA \& Swival Base $E 4.75$
 vGA cable for IBM PC included Extermal cables for other types of computers CA
$17 " 0.28$ SVGA Mitsubishi Diamond Pro monitors
Full multis ync etc. Full 90 day guarantee. $£ 325.00$ (E) Full multisync etc. Full 90 day guarantee. $£ 325.00$ (E) Just In - Mlcrovitec $20^{\prime \prime}$ VGA (800×600 res-) colour mo
Good SH condition - from $£ 299-$ CALL for Inio PHILIPS HCS35 (same style as CM8833) attractively styled 14" colour monitor with both RGB and standard composite 15.625
Khz video inputs via SCART socket and separate phono jacks. Khz video inputs via SCART socket and separate phono jacks.
Integral audio power amp and speaker for all audio visual uses. Will connect direct to Amiga and Atart BBC computers. Ideal for all
video monltoring / securlty applications with direct connection to most colour cameras. High quality with many features such as
 PHILIPS HCS31 Ulira compact 9 "colour vidoo monitor with standard composite 15.625 Khz video inpul via SCART socket. Ideal fully fested \& guaranteed (possible minor screen bums). In attractive square black plastic case measuring W $10^{\circ} \times \mathrm{H10} 0^{\circ} \times 1312^{\circ} \mathrm{D}$.
240 V AC mains powered.
Only $£ 79.00$ (D)
\square Only £125 (E) 20" 22" and 26" AV SPECIALS
Superbly made UK manulacture. PlL all solid state colour monitors,
complete with composite video \& optlonal sound input. Attractive complete with composite video \& optlonal sound input. Attractive
teak style case. Perfect for Schools, Shops, Disco, Clubs, etc.In 20"....£135 22"....£155 26"....£185 (F) DC POWER SUPPLIES
Virtually every type of power 10,000 power supplies Ex Stock

LOW COST PC's

Always over 1000 PC's from stock

1000 's of spares and accessories
Call or see our web sife for info

Superb quality 6 foot 40 U Virtually New, Ultra Smart Less than Half Price!

Top quality 19° rack cabinets made in UK by Optima Enclosures Lid. Units feature

 designer, smoked acrylic lockable front door, and louvered removable side panels. Fully adjustable internal fixing struts, ready punched or any configuration of equipment mounting socket switched mains distribution strip make have ever sold. Racks may be stacked side by side and therefore require only two side panels to stand singly or in multiple bays. overall dimensions are: $7711 / 2^{\circ} \mathrm{H} \times 3212^{\circ} \mathrm{D} \times 22^{\circ} \mathrm{W}$. Order as:OPT Rack 1 Complete with removable side panels. $£ 345.00$ (G) Over 1000 racks, shelves, accessories 19 " 22 " $\& 24^{\prime \prime}$ wide 3 to 46 U high. Available from stock !!.

32U - High Quality - All steel RakCab

with top and side door and double skinned top sectood for fitting of integral fans to the sub plate etc. Other features include: fitted cable / connector access etc. Supplied in excellent, slightly used

A superb buy at only 2245.00 (G)

 42 U version of the above only £345-CALL
BATTERY SCOOP - 50\% off !!

 the most amazing savings on these ultra high spec 12v DC 14 Ah rechargeable batteries. Made by Hawker Energy Ltd, type SBS15 leaturing pure lead plates which offer a far superior sheif \& guaranteed 15 year service life. Fully BT \& BS6290 approved. SuppliedBRAND NEW and boxed. Dimensions 200 wide, 137 high, 77 deep each ! Our Price $£ 35$ each (c) or 4 for $£ 99$ (D) RELAYS - 200,000 FROM STOCK Save EEfE's by choosing your next relay from our Massive stocks coverling types such as - Milliary, Octal, Cradlo, Hermetfcally Sealed, Contactors, Time Delay, Reed, Mercury YOUR NEEDS. Many obsolete types from stock. Save Efex's

LOW COST RAM \& CPU'S

niel SBC 486/125C08 Enhanced Multibus (MSA)

 ota 3220-05 AO 4 pen HPGL fast drum plotters Motorola VME Bus Boards \& Components List rio 0-18 vdc linear, metered 30 amp bench PSU New Fujitsu M3041R 600 LPM band printerFujlitsu M3041D 600 LPM printer with network Interface Perkin Elmer 299 B Infrared spectrophotometer Perkin Elmer 597 Inirared spectrophotometer GG Electronlcs 1035 TELETEXT Decoding Margin Meter LightBand 60 output high spec $2 u$ rack mount Video VDA Taylor Hobson Tallysurf amplifier / recorder Taylor Hobson Tallysurf amplifier / recorder
ADC SB200 Carbon dioxide gas detector / monitor
\qquad ANRITSU MS9001B1 0.6-1.7 UM ootical spectrum analys ANRITSU ML93A optical power meter
ANRITSU Fibre optic chracateristic test set
VISION ENGINEERING TS3 Dynascopic microscope
R\&S FTOZ Dual sound unit
R\&S SBUF-E1 Vision modulato
R\&S SBUF-E1 Vision modulator
WILTRON $6630 \mathrm{~B} 12.4 / 20 \mathrm{GHz}$ RF sweep generator TEK 2445150 MHz 4 trace
TEK 1502 Portable TDR (time domain reflectometer)
PHILPS PW1730/10 66KV XRAY generator \& accessories £PO
CLAUDE LYONS 12A 240 V single phase auto. volt. regs £325

INTEL 'ABOVE' Memory Expansion Board. Full length PC-XT and PC-AT compatible card with 2 Mbytes of memory on board. Card is fully selectable for Expanded or Extended (286 processor and above) memory. Full data and drlver disks supplied. RFE. Fully tested and guaranteed. Windows compatible. $£ 59.95$ Half length 8 blt memory upgrade cards for PC AT XT expands memory either 256 k or 512 k in 64 k steps. May also be used to fill in RAM above 640 k DOS limit. Complete with data. Order as: XT RAM UG. 256k. £34.95 or $512 \mathrm{k} £ 39.95$ SIMM SPECIALS				
1 MB $\times 9$ SIMM 9 chip 120 ns Only E8.50 1 MB $\times 9$ SIMM 3 chip 80 ns $£ 10.50$ or 70 ns £11.95 1 MB $\times 9$ SIMM 9 chip $80 \mathrm{~ns} £ 10.50$ or 70 ns E11.75 4 MB 70 ns 72 pin SIMM -with parity- Only $£ 35.00$ INTEL 486-DX33 CPU E19.95 INTEL 486-DX66 CPU £59.00 FUL RANGE OF CO-PROCESSOR'S EX STOCK-CALI FOR $I M$ MOTOROLA 25 Mhz 68040 (XC68040RC25M) CPU'S $£ 59.00$ shipping charges for RAM / CPU upgrades is code B				
SOFIVARE DPECALS				
NT4 WorkStation, complete with service pack 3 and licence - OEM packaged. Special Price ONL Y $£ 99.00$ Microsoft - Windows for Workgroups 3.11 \& DOS 6.22. Supplied on $31 / 2^{\circ}$ disks with licence \& concise documentation. $£ 39.95$ DOS 5.0 on $3 \% 2^{\circ}$ disks with concise books C / W QBasic. $£ 14.95$ Wordperlect 6 for DOS supplied on $31 /{ }^{\prime \prime}$ disks with manual E24.95 shipping charges for software is code B				

DISTEL on the web !! - Over 16,000,000 items from stock - www.distel.co.uk

ALL MAIL \& OFFICES Open Mon - Fri $9.00-5: 30$
Dept ww, 32 Blggin Way Dept WW, 32 Biggin Way Upper Norwood
ONDON SE19 3XF

LONDON OONDON SHOP pen Mon- Sat 9:00-5:30 South Norwo
On 6BA Bus Routo

DISTELC
our web site www.distel.co.uk
email adminedstalcouk

ALL 家 ENQUIRIES
ook. Discounts for volume. Top CA

The end of the pc as we know it?

The future of the pc could be set in 1999. Many believe it is a different future from the one expected between 1968 and 1998.
The expectation was, that sometime around 2000 , pcs would have gigahertz processors accessing a gigabyte of wide-bandwidth DRAM.
Now the future could be pes so cheap that they could be free to the user - and so easy to use they'll be usable by everyone.

Going, going... Has PC evolution ended with 450 MHz processors and 128 Mbytes of DRAM?

From racing up the hertz and bytes trail, Intel and Microsoft are said to be diverting their focus towards the never-have adopters, those technological laggards representing about 70 per cent of the western world who have never bought a pc.
At the same time, pc manufacturers are discussing with Internet service providers and telcos the possibility of subsidising pe sales in the same way as mobile phones are funded in a move towards the 'free pc '.
And pc retailers - which include
supermarkets these days - are linking with pc assemblers to provide cheap machines and subsidise their selling price by doubling them as advertising channels.
The moves to commoditising the pc look irresistible, and the strongest influence towards commoditisation is the move to cheap processors.
New Celerons at 400 MHz are being introduced at $£ 100$. At 333 MHz they are under $£ 50$.
With AMD and Cyrix selling equivalent processors even cheaper, the most expensive component in a pc is now a commodity.
Many remember in the mid-eighties the shock at seeing Intel selling commercial processors for $\$ 1000-\mathrm{a}$ price which, up to then, had been reserved for military processors.
Intel was pricing for a monopoly market, not pricing to cost. It has taken some fifteen years for processors to get back to being priced on cost.
What does this mean for the future of the pc? Some might say it's the end of the over-complicated, ultra-fragile concoctions of Microsoft and Intel which continually crash, refuse to do what you want, and purvey incomprehensible error messages.
Does Bill Gates wake up laughing every night at the hair-tearing frustration his products cause to users every day?
Commoditisation might mean that pcs will be tailored to the needs of consumers - easy to use, performing simple functions like e-mail, word processing and web browsing efficiently and reliably, sending error messages in clear comprehensible English, and which don't crash.
Commoditisation might mean that these machines will get cheaper to produce by 30 per cent every year, like other electronics goods, and that manufacturers will pass on these cost reductions to consumers.
Commoditisation might mean the end of the creeping obsolescence of pcs as new, more powerful models running new software make last year's machine old hat.
Commoditisation could even mean the end of evolution of the PC at 450 MHz processors, 128 Mbyte of DRAM and 10Gbyte hard disk drives.
Will it? If pcs are just going to provide e-mail, word processing and web browsing, then they can be made on a single chip and sold as cheap
consumer items called 'information appliances'. Or they can be incorporated into tvs, set-top boxes, or even telephones.

However, if pcs are to handle large amounts of graphics - as in games playing and in new features such as videophone, speech control and translation - then the pc's technological evolution is not yet ended.
Accepting voice instructions like 'find me the most economical flight to reach Rome by 2 pm on Jan 22 nd from Gatwick' and delivering the output in speech, or accepting dictation in one language and displaying it in another, are applications which will require huge amounts of processing power and memory.
If these sorts of uses are what people want - and many think they are - then the evolutionary future of the pc is assured. Having supercomputer-type power in the home will be justified.
But many people won't want these uses, requiring only e-mail, web browsing and word processing.
For these people, the over-elaborate Intel/Microsoft model can be junked and, if clever financing arrangements like those for mobile phones can be devised, simplified PC/IT technology will at last get into the majority of homes.
It has taken a long time. Back in the 70s the French government tried to kick-start the process with the
'Minitel' data terminal, and the UK tried to do the same with Teletext.
Like many government schemes of that era, people liked them, but no one could find a way to make money from them.
Then came the runaway success of the mobile phone and everyone was carrying around sophisticated technology. But would mobile phones have succeeded if they'd been sold at cost?
Now it's the turn of the set-top box which is following the subsidised route pioneered by the mobile phone. As well as extra entertainment, they provide telecoms and datacoms via the tv - e.g. e-mail, web-browsing and even word processing.
Next may come the subsidised even free - pc. Will it be the vehicle which finally turns on the non-techie majority to IT? Or has the pc's future already been overtaken by events. David Manners, Electronics Weekly

SPEEIAL OFFERS	
IWATSU 55571060 MM Iz 4 chanmel oscillo	
RACAL RAI 772 HF frecemeri	650
RACAL RA 2170 recelver * FSKK sdippor	1300
RACAL RAITL. 30 MHz recemer1	50

86 Bishopsgate Street, Leeds LS 4 B:
Tel: (+44) 1132435649
ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY • PRICES PLUS CARRIAGE AND VAT
CIRCLE NO. 107 ON REPLY CARD

Technical products

The Electromail CD-ROM Catalogue provides a virfual technical superstore, product encyclopaedia, and a help line with round-the-clock service - the moment you slip it into your computer
Il's quite amazing just how much you can get out of it. Products from batteries to bearings, fuses to fans, semi-conductors to computers, hand to power tools. On-line advice, and access to a full library of data sheets, providing detailed information on almost every product in our range. But the best thing about Electromail, is that it's open just when you want to go shopping. 24 hours a day. 365 days a year.

And in most cases your order will be despatched on the very

ELEGTROMIAIII

Abstract

Crientor
same day you order (failing that, the next working dayl.
The Electromail CD-ROM Catalogue offers you more products and services than any of the alternatives. Send for your copy and get a head start in your business, your home or hobby ... and at just $£ 3.99$ with free delivery, it's not worth struggling on without it!

Tel 01536204555 or Fax 01536405555
When ordering by fax or phone quote stock no. 322.9973 and have your credif card details handy. Aliernafively, you con open your own Electromail account - please ask for details.

There are several different techniques currently doing the doctor's rounds in the medical diagnostic imaging market. Roy Rubenstein examines their progress.

t's a mixture of wonderment, excitement and - when all is well - immense relief. Such are the emotions an ultrasound scan evokes when parents gain the first glimpse of their child - even if the image is of questionable quality.
Ultrasound is just one of several approaches that comprise the diagnostic imaging market, valued worldwide at $\$ 14.6 \mathrm{bn}$. The others are computed tomography (CT), magnetic resonance imaging (MRI) and X-ray. There's more on these in the panel on the right.
While their underlying technologies differ, all share several common elements: a source - an X-ray tube or an rf coil in a magnetic field, for instance; a detector that senses what happens to the source as it travels through the body; and circuitry to create a digitised image from the detected data.
Once digitised the information is treated like any other data: it can be stored, transmitted or
processing prior to viewing.
"This is a fantastic time to work in the field," said Dr Kirby Vosburgh, director of the electronic systems laboratory at General Electric's research and development centre in Schenectady, New York. "Not only have there been significant advances in the physics and materials - much higher power X-rays, more sophisticated transducers and more successful magnetic configuration in MRI - but there have been massive increases in computational power, displays and in storage."
The result has been a transformation in medicine in the last 25 years. "Lots of diseases which were then undiagnosable now have highly successful treatments," said Vosburgh.
While the techniques have their own characteristics, there are no hard rules as to when each is used. "For different applications there is certainly some overlap," said Dr Guy Sohie, a US medical systems
specialist. Ultrasound and MRI are used to look at soft tissue, whether it is to find internal injuries or to scan a brain, CT is used for both bones and soft tissue while X-ray uses include skeletal injuries and breast cancer.
Jan-Kees van Soest, chief technology officer at Philips Medical Systems, stresses that MRI is the most universal diagnostic tool, capable of imaging 'almost anything'. It is also a non-ionising technique - unlike CT and X-rays. The complementary nature of diagnostic techniques also means that they can be used in tandem. For head injuries CT can help view the skull while MRI scans brain tissue. "The two high-resolution images can then be blended; where they don't match, landmarks can be looked for and stretched [to fit the two]," said van Soest.
The various imaging techniques are now at a level that they are proving valuable aids during non-
invasive and minimally-invasive surgery. "Their greater sophistication allows more subtle, specific surgical approaches," said Vosburgh.
He cites GE's latest 'double doughnut' vertical MRI system, which is used while removing brain tumours. "It allows surgeons to see below the knife; you can even watch the bones holding the scalpel."
Another development is pain management, selectively injecting highly localised anaesthetic. Other MRI uses include the implanting of radioactive seeds to treat prostate cancer. Here the key is to accurately distribute the seeds over a volume to best 'denature' the tissue. MRI is also being used to focus ultrasound, acting as a virtual scalpel, to burn tissue within the body. Temperatures of $100^{\circ} \mathrm{C}$ can be achieved within seconds.
For all designers of diagnostic equipment, one driving factor is cost reduction. "All health-care systems are under horrendous pressure to reduce costs," said Sohie especially when an MRI machine can cost between $\$ 2 \mathrm{~m}$ to $\$ 3 \mathrm{~m}$.
Increasing machine efficiency, enabling it to treat more patients, is one obvious requirement. "In radiology, the biggest delay is developing the X -ray film and once the film is viewed a further X-ray may be needed," said Sohie. This has resulted in the development of flat panel detectors.
According to van Soest, Thomson, Siemens and Philips are collaborating on developing flat detectors to better compete with Japan.
Another way to improve efficiency is to use advanced imaging software and pattern recognition techniques.
"Mammography is a difficult field,

Diagnostic imaging techniques

Ulirasound

Ultrasound is ideal for viewing soft tissue. Current state-of-the-art machines are fully digital. This includes the beam-forming which transmits and receives the ultrasonic waves. Another development is colour Doppler flow imaging. By measuring frequency shifts in the ultrasound, movement can be detected and shown using a colour code. This is a particularly effective way of showing blood flow. 3D ultrasound images are another advancement.

Magnetic Resonance Imaging (MRI)

MRI uses electromagnetic resonance of atoms to image cross sections of the body. The various body locations are distinguished by subjecting them to various magnetic fields. This makes the atoms resonate at different frequencies, resulting in highresolution images. As such, MRI, unlike X -rays, can detect both soft tissue and bone.

Computed tomography (CT)

CT typically involves a single X-ray detector and a single source which circle the body. X-ray provides a portrayal of the density of matter and is therefore ideal for viewing hard material such as bones. Advances in CT include the number of slices that can be processed in a single scan. Intensive computation is needed to calculate the intensity at each point of the 2D slice after it has been exposed from all the various directions. Hence the name.

X-Ray

X-ray involves projecting the human body onto a plate. Because X-ray machines are widely used and relatively cheap, much work is being undertaken to extend their capabilities. This includes volumetric X-ray, essentially an extension of CT using a twodimensional detector. This allows for a full volumetric reconstruction of the image, as opposed to reconstruction of separate slices. Of particular importance is the arrival of direct X-Ray: flat panel detectors which produce a direct digital image which is more faithful to the anatomy.
detecting a cancer growth is not easy to see on an X-ray," said Sohie. "If you make the doctor more successful, you save a lot."
van Soest agrees: "The earlier you detect a lesion the better." However, he stresses that current techniques give resolutions no finer than 2 to 3 mm . "That represents millions and

Dynamic Imaging

Dynamic Imaging is not your average diagnostic imaging company.

Unlike the large multinationals that characterise the field, Dynamic Imaging, employing 75 people, is based in Livingston, Scotland and specialises in ultrasonic systems.
Its latest system is a mobile one that improves image quality by a factor of ten. This allows small blood vessels in fingers and legs to be viewed.
"It's particularly suited to spotting sports injuries and for looking at joints," said Allan Findlay, the company's engineering manager.
A second area the company is targeting is breast imaging and, in particular, guiding a needle when performing a biopsy.
To achieve the improved resolution, Dynamic Imaging has extended the operating frequency from the typical 3.5 MHz to beyond 20 MHz .
millions of cancerous cells"
Vosburgh cites recent pattern recognition software that is proving a valuable tool for radiologists: "It helps identify areas of interest [on an X-ray film], acting like a 'spellchecker for radiologists'." Another development helping to reduce cost is the increasing use of commodity technologies: communication and pc technologies through to database software. This not only addresses cost: it is also reducing the very long product cycles that characterise diagnostic machines.
So what significant developments are in the pipeline? Vosburgh believes that as imaging accuracy improves, automated surgery will become possible. But he believes this is still at least five years away. van Soest suggests that future advances in MRI will allow functional processes to be monitored. "This will allow chemical content to be viewed, potentially nipping disease in the bud."

Features:
all versions
Single-ended Class A throughout, short and open-circuit protection, 0.01\% maximum distortion and 10 Hz to 65 kHz bandwidth.

The first time I designed this amplifier was in the late seventies. At the time, the only ClassA designs were push-pull types or valve based. Some had very large inductors to provide the output bias. None was single ended and solid state throughout.
At the time, the problem was that the output devices did not have sufficient safe-operating-area parameters to insure long-term stability. In the late eighties, I redeveloped the design using much better devices. But the biggest single ended version was still only 25W. It had massive heat sinks and only three output devices.
Although not powerful enough to drive modern loud speakers, the design proved to be clean and simple design with excellent performance.

In the early nineties, I looked at the design yet again and set out to build the most powerful ever range of class-A amplifiers. That was some challenge.
I started with the 25 W stereo version using much better components and five output devices. This was a massive improvement on the earlier designs. The heat sinks for each channel had 40 mm fins and measured 300 mm high by 300 mm deep. Total power consumption was about 500 W - all of which had to be dissipated as heat.
The next step was a 50 W version, followed by $100 \mathrm{~W}, 200 \mathrm{~W}$ and 300 W mono-blocks. The largest has a power consumption of about 1500 W per channel.

Circuit detail

The input stage is a standard long-tail

	20W	50 W	100W	200w	300 W
Tr	BD140	BD140	BD956	2SA968	MJE350
T_{r}	BD139	BD139	BD955	2SC2238	MJE340
Tr_{2}	TIP29C	TIP29C	2SC2238C	2SC2238	TIP47
Tr_{10}	TIP29C	TIP29C	2SC2238C	2SC2238	TIP47
Tr_{3}	2SC2547	2SC2547	2SC3467D	2SC3467D	2SC3467D
Tr_{4}	2SC2547	2 SC 2547	2SC3467D	2SC3467D	2SC3467D
$T r_{6,8,11}$	2SC2547	2SC2547	2SC3467D	2SC3467D	2SC3467D
Tr $\mathrm{ra}_{12,5}$	ZTX450	ZTX450	ZTX450	ZTX450	ZTX450
R_{6} feedback (Ω)	18 k	28 k	39 k	47k	47k
Gain	18	28	39	47	47
R_{18} const $t_{\text {ret }}(\Omega)$	0.42	0.83	0.94	1.02	1.24
$R_{10} \mathrm{l}_{\text {limit }}(\Omega)$	0.21	0.42	0.48	0.52	0.63
$R_{3}(\Omega)$	3k9	6k2	9 kl	12k	15k
R_{3} power (W)	0.103	0.145	0.223	0.300	0.375
Heat sink (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	0.248	0.109	0.062	0.040	0.033
Redpoint EF range	$300 * 300 * 40$	$1300 * 700^{*} 40$	$300 * 1000 * 40$	$300 * 1500 * 40$	$300 * 1800 * 40$

pair or differential input pair Tr_{3} and $T r_{4}$, with a constant current source $T r_{6}$ and T_{r} in the common emitters. Output from this stage drives the p-n-p transistor $T r_{1}$ with its collector current controlled by T_{r} and T_{11}. In turn, the output of Tr_{1} drives the emitter-follower stage $T r_{2}$. Again, $T r_{10}$ and $T r_{11}$ provide constant current. All this so far is in Class A.
For every five output fets, one emitter follower Tr_{2} is needed to provide sufficient drive current to the gates of the fets in dynamic conditions. If this rule is not followed, frequency roll off becomes excessive.
Each output fet has a separate constant current source via a current limit resistor connected as a source follower. The simple current limit senses the voltage across the R_{10} resistors and shunts the drive to the fets T_{2}. This shuts down the output positive voltage swing, protecting the fets. To protect the speakers a series fuse is recommended.
Set all output current adjust potentiometers, R_{15}, so that the wiper voltage is the same as the emitter voltage on T_{7}, the Darlington constant current driver. Then adjust current limiting via each R_{15} according to the output device and power level required.
The dc offset can be fine-tuned to a few tens or less millivolts by adjusting R_{11}. Settings should be made after the amplifier has settled, and rechecked after about half an hour.
This circuit is designed for simplicity. It uses standard, readily available components or equivalents and is basically self-explanatory. I used natural

convection and very large heat sinks for cooling. Using a fan defeats the object of minimising amplifier noise contribution..
The power supply needs to be either regulated or have large reservoir capacitors, somewhere around $120000 \mu \mathrm{~F} / 5 \mathrm{~A}$ for each main power rail. The +15 V +HT supplies need about $10000 \mu \mathrm{~F}$. This means about $250000 \mu \mathrm{~F}$ for the
positive and negative HT rails of the 300 W versions to achieve the best performance.

In summary

Be warned. These amplifiers get very hot, and can cost a fortune to repair if you are careless.
A drawback of this form of Class-A
is poor ripple rejection, so you need a
smoothed power supply and intolerance to non-standard loads. In addition, the lower power versions are not sufficiently powerful to drive speakers with a sensitivity of less than 88 dB and the output is intolerant of non-standard loads.
But the sound reproduction quality is fantastic.

Requirements and components for the 20 to 300 W range of Class-A amplifiers.										
	20W/88	20W/4	50W/8s	$50 \mathrm{~W} / 4 \Omega$	100W/8,	100W/4 Ω	200W/8,	200W/4 Ω	300W/8 8	$300 \mathrm{~W} / 4 \Omega$
Input power/channel	201.21		457.65		802.63		1237.01		1531.37	
RMS o/p (V)	12.60	8.90	20.00	14.10	28.30	20.00	40.00	28.30	48.98	34.64
RMS o/p (A)	1.58	2.23	2.50	3.53	3.53	5.00	5.00	7.07	6.12	8.66
Max o/p (W)	19.91	19.85	50.00	49.77	99.90	100.00	200.00	200.08	299.76	299.98
$I_{\text {quiescent }}(\mathrm{A})$	5.00	5.00	7.60	7.60	8.89	8.89	10.28	10.28	10.18	10.18
$P_{\text {w }}$ Darlingtons Tr $_{7}(\mathrm{~W})$	100.00	100.00	228.00	228.00	400.16	400.16	617.02	617.02	763.87	763.87
Darlingtons needed	5	5	15	15	20	20	25	25	30	30
Darlington $P_{\text {dis }}$ each (W)	20.00	20.00	15.20	15.20	20.01	20.01	24.68	24.68	25.46	25.46
Recommended Tr $_{7}$	TIP141		TIP142		TIP142		TIP162		TIP162	
T_{13} power total (W)	100.00	100.00	228.00	228.00	400.16	400.16	617.02	617.02	763.87	763.87
Fets needed	5	5	15	15	20	20	25	25	30	30
Tri3 fet $P_{\text {dis }}$ each	20.00	20.00	15.20	15.20	20.01	20.01	24.68	24.68	25.46	25.46
Recommended Tr_{13}	IRFP048		\|RFP 140		IRFP240		IRFP250		\|RFP264	
+ve HT (V)	20	20	30	30	45	45	60	60	75	75
-ve HT (V)	20	20	30	30	45	45	60	60	75	75
HT +15V	35	35	45	45	60	60	75	75	90	90
$\mathrm{I}_{\text {quiescent }} \mathrm{Tr}_{2,10}(\mathrm{~mA})$	10	10	10	10	10	10	10	10	10	10
$\mathrm{P}_{\mathrm{w}} \operatorname{Tr}_{2}(\mathrm{~W})$	0.55	0.55	0.75	0.75	1.05	1.05	1.35	1.35	1.65	1.65
$P_{w} \operatorname{Tr}_{10}(\mathrm{~W})$	0.55	0.55	0.75	0.75	1.05	1.05	1.35	1.35	1.65	1.65
$I_{\text {quiescent }}{T r_{1,9} \text { (mA) }}^{\text {a }}$	1	1	1	1	1	1	1	1	1	1
$\mathrm{P}_{\mathrm{w}} \operatorname{Tr}_{\text {r }}(\mathrm{W})$	0.055	0.055	0.075	0.075	0.105	0.105	0.135	0.135	0.165	0.165
$\mathrm{P}_{\mathrm{W}} \mathrm{Trg}_{9}(\mathrm{~W})$	0.055	0.055	0.075	0.075	0.105	0.105	0.135	0.135	0.165	0.165
Optimumil load (Ω)	2.52		3.40		4.5		5.5		6.8	
Optimum load power (W)	63.00		68.00		127.35		220.00		333.06	

Doug Self explores the inadequacies of the popular audio power amplifier classification system and puts forward an enhanced method to cover all existing designs. His work reveals that there are amplifier class types that have not yet been explored.

Class distinction

Power amplifiers are usually distinguished by their operating class $-\mathrm{A}, \mathrm{AB}$ or B , and so on. Unfortunately this classification scheme only begins to address the problem, as amplifiers come in many more than three kinds. There is current-dumping, Class-G, error-correction, and so on. Amplifiers that work in quite different ways are all called ' B ' or ' AB ', and there is still confusion between B and AB in many quarters.
Traditionally, further letters such as G, H, and S have been used to describe more complex configurations. It occurred to me that rather than proliferating amplifier classes on through the alphabet, it might be better to classify amplifiers as combinations of the most basic classes of device operation.
It may be optimistic to think that this proposal will be adopted overnight, or indeed ever. Nevertheless, it should at least stimulate thought on the many different kinds of power amplifier and the relationships between them.

Class structure

At the most elementary level, there are five classes of device operation, as outlined in the panel. More sophisticated amplifier types such as Class-G, Class-S, etc., are combinations of these basic classes. Class-E remains an rf-only technology,? while Class-F does not apparently exist.

All the operating classes above work synchronously with the signal. The rare exceptions are amplifiers that have part of their operation driven by the signal envelope rather than the signal itself.
Krell 8 has produced Class-A amplifiers with a quiescent current that is rapidly increased by a sort of noise-gate sidechain, but slowly decays. An interesting study of a syllabic Class-G amplifier with envelope-controlled rail switching was presented in ref. 9.

Combinations of classes

The basic classes mentioned in the panel on the right have been combined in many ways to produce the amplifier innovations that have appeared since 1970. Since the standard output stage could hardly be simplified, all of these involve extra power devices that modify how the voltage or current is distributed.
Assuming the output stage is symmetrical about the central output rail, then above and below it there will be at least two output devices connected together, in either a series or parallel format. Since these two devices may operate in different classes, two letters are required for a description, with punctuation - a dot or plus sign - between them to indicate parallel or series connection.

Five basic classes

Class-A. The device conducts 100% of the cycle. This includes Class-A pushpull, where at full output, device current varies from twice the quiescent current to almost zero in a cycle, and Class-A constant-current mode, also known as single-ended Class-A. Any intermediate amount of current swing clearly also qualifies as Class-A, so unlike Class-B there exists an infinite range of variations on Class-A operation.

Class-AB. Conducts less than 100\% but more than 50% of the cycle. This is essentially over-biased Class-B, giving Class-A operation up to a certain power level, but above that at least twice as much distortion as optimal Class-B. Once more there is a range of variations on Class-AB, depending on the amount of overbias chosen.

Class-B. The device conducts very nearly 50% of the cycle. The exactness of the 50% depends on the definition of
'conducts' because with Class-B optimally adjusted for minimum crossover distortion, there is always some conduction overlap at crossover, otherwise there would be no quiescent current. This will be 10 mA or so for a complementary feedback pair stage, or about 100 mA for an emitter follower version. With bipolar transistors, collector current tails off exponentially as $V_{\text {be }}$ is reduced, and so the conduction period is rather arguable. So-called 'non-switching' Class-B amplifiers, which maintain a small current in the output devices when they would otherwise be off, such as the Blomley ${ }^{1}$ and Tanaka approaches ${ }^{2}$ are treated as essentially Class-B.

Class-C. The device conducts less than 50% of the cycle. It is frequently written - indeed I have written it myself - that Class-C is inapplicable to audio and never used therein. A little more thought showed me that this is untrue. The bestknown example is Quad currentdumping, a scheme specifically
intended to allow the high-power output stage - the 'current-dumpers' - to be run at zero quiescent. ${ }^{3}$
An emitter-follower output stage with no bias has a fixed dead-band of approximately $\pm 1.2 \mathrm{~V}$, so clearly the exact conduction period varies with supply voltage; $\pm 40 \mathrm{~V}$ rails and a 1 mA criterion for conduction give 48.5% of the cycle. This looks like a trivial deviation from 50%, but crossover distortion prevents direct audio use.

Class-D. The device conducts for any percentage of the cycle but is either fully on or off. Class-D usually refers to a pulse-width modulation scheme where the mark/space ratio of an ultrasonic squarewave is modulated by the audio signal. ${ }^{4,5,6}$ However, in this case I am concerned only with the onoff nature of operation, which can be of use at audio frequencies, though not of course for directly driving the load. The conduction period during a cycle is not specified in this definition of Class-D.

Parallel or series connection

In parallel, i.e. shunt, connection, output currents are summed, the intention being either to increase power capability, which does not affect basic operation, or to improve linearity.
A subordinate aim is often the elimination of the Class-B bias adjustment. The basic idea is usually a small high-quality amplifier correcting the output of a larger and less linear amplifier. For a parallel connection the two class letters are separated by a dot, i.e. ' \bullet '.
In a series connection the voltage drop between supply rail and output is split up between two or more devices, or voltages are otherwise summed to produce the output signal. Since the collectors or drains of active devices are not very sensitive to voltage, such configurations are usually aimed at reducing overall power dissipation rather than enhancing linearity. Series connection is denoted by a plus sign between the two Class letters.
The order of the letters is significant. The first letter denotes the class of that section of the amplifier that actually controls the output

Table 1. Sub-class definitions.

Parallel

$\begin{array}{ll}A \cdot B & \text { Sandman Class-S scheme } \\ A \cdot C & \text { Quad current-dumping } \\ B \cdot B & \text { Self Load-Invariant amplifier } \\ B \cdot C & \text { Crown and Edwin types } \\ B \cdot C & \text { Class-G shunt. (Commutating) } 2 \text { rail voltages } \\ B \cdot C \cdot C & \text { Class-G shunt. (Commutating) } 3 \text { rail voltages }\end{array}$
Fig. 1

Fig. 2
Fig. 3
Fig. 4

Series

A+B 'Super Class-A'
Fig. 5
A + B Stochino error correction
Fig. 6
A D A possible ap class-A
B+B Totem-pole or cascade output. No extra rails
$B+C \quad$ Classical series Class-G, 2 rail voltages
$\mathrm{B}+\mathrm{C}+\mathrm{C}$ Classical series Class-G, 3 rail voltages
$B+D \quad$ Class-G with outer devices in D
B+D Class-H

Fig. 1. Sandman 'Class-S' scheme. Resistors $R_{3,4,5,6}$ implement the feedback loop controlling amplifier A_{2} so as to raise the load impedance seen by A_{2}.

Fig. 2. Edwin type amplifier; standard Class-B except for the unusually low driver emitter resistors. Effectively $B \cdot C$.

Fig. 3. A Class-Gshunt output stage, composed of two emitterfollower output stages with the usual drivers. Voltages $V_{\text {biax } 3,4}$ set the output level at which power is drawn from the higher rails. $B \cdot C$. her

voltage. Such a section must exist - if only because the global negative feedback must be taken from one specific point and the voltage at this point is the controlled quantity. The shunt configurations are dealt with first; see Table 1.

Class $A \cdot B$. Class $A \cdot B$ describes an output stage in which the circuitry that actually controls the output is in Class-A, while a second Class-B stage is connected in parallel to provide the muscle.
The best-known example is probably the Sandman output configuration, in which the high-power amplifier A_{2} is controlled by its own negative feedback loop so as to increase the effective load impedance until it is high enough for the ClassA stage to drive it with low distortion. ${ }^{10}$
In Fig. 1, A_{1} is the Class-A controlling amplifier while A_{2} is the Class-B heavyweight stage. As far as the load is con-
cerned, these two stages are delivering current in parallel. The aim was improved linearity, with the elimination of the bias preset of the Class-B stage as a secondary goal.
If A_{2} is unbiased and therefore working in Class-C, A_{1} has much greater errors to correct. This would put the amplifier into the next category, Class $A \cdot C$.

Class $A \cdot C$. The power stage A_{2} is now working in Class-C, the usual motivation being the reduction of power dissipation because current is flowing for less of the cycle. The absence of any bias for a Class-B-type output stage puts it in into Class-C, as conduction is less than 50% - though probably not much less.
If the bias voltage is dispensed with then a number of problems with setting and maintaining accurate quiescent conditions are eliminated. A good example of such use of Class-C is the Quad current-dumping concept. Here, the use of feedforward error-correction allows the substantial crossover distortion from a heavyweight Class-C - i.e. underbiased ClassB - stage to be effectively corrected by a much smaller Class-A amplifier. ${ }^{3}$

Class B-B. At first there seems little point in using one ClassB stage to help another, as they both have inherent crossover distortion. However, since reducing the current handled by an output stage reduces both crossover and large-signal distortion, the concept can be useful.
An example is my load-invariant amplifier, which can be considered as two Class-B output stages collapsed into one. ${ }^{12}$

Class B•C. Here, the controlling stage A_{1} is Class-B, accepting that some crossover distortion in the output will be inevitable. This approach appears to have been introduced by Crown (Amcron) around 1970. ${ }^{13}$
Once more two stages are combined; the drivers - usually compound - are required to deliver significant power in Class-B, while the main power devices only turn on when the output is some way from the crossover point, and are in Class-C.
Similarly, the 'Edwin' type of amplifier, Fig. 2, was promoted by Elektor in 1975. ${ }^{14}$ It was claimed to have the advantage of zero quiescent current in the main output devicesthough why this might be an advantage was not stated; in simulation linearity appears worse than usual.
Another instance of $\mathrm{B} \cdot \mathrm{C}$ is Class-G-shunt. ${ }^{11}$ Figure 3 shows the principle; at low outputs only $\operatorname{Tr}_{3,4}$ conduct, delivering power from the low-voltage rails. Above a threshold determined by $\mathrm{V}_{\text {bias } 3}$ and $\mathrm{V}_{\text {bias4, }} D_{1}$ or D_{2} conducts and $T_{6,8}$ turn on, drawing from the high-voltage rails.
Diodes $D_{3,4}$ protect $T r_{3,4}$ against reverse bias. The conduction periods of the Class-C devices are variable, but much less than 50%. Class-G-Shunt schemes usually have A1 running in Class-B to minimise dissipation, giving $\mathrm{B}^{\cdot} \mathrm{C}$; such arrangements are often called 'commutating amplifiers'.

Class B•C•C. Some of the more powerful Class-G-shunt public-address amplifiers have three sets of supply rails to further reduce the average voltage-drop between rail and output.
The extra complexity is significant, as there are now six supply rails and at least six power devices. It seems most unlikely that this further reduction in power consumption could ever be worthwhile for domestic hifi, but it is very useful in large PA amplifiers, such as those made by BSS. Three letters with intervening dots are required to denote this mode, Fig. 4.

Series connection category

In the second group of configurations, voltages are summed by series connection. The intention is usually the reduction of total power dissipation, rather than better linearity.

Fig. 5. The
'Super-Class-A' concept.
Amplifier A_{1} runs in Class-A, while high-power Class-B $\operatorname{amp} \mathrm{A}_{2}$ drives the two floating supplies up and down.
Denoted as $A+B$.

Fig. 6. The
Stochino errorcorrecting system voltage-sums the outputs of the two amplifiers using transformer $W_{1,2,3} \cdot A+B$.

Since the devices are not usually operating in the same class, two letters are again required for a description, and I have used a plus-sign between them to indicate the series connection.

Class A+B. Figure 5 shows the so-called 'Super-Class-A' introduced by Technics in 1978. ${ }^{15}$ The intention is to combine the linearity of Class-A with the efficiency of Class-B.
The Class-A controlling section A_{1} is powered by two floating supplies of relatively low voltage, around $\pm 15 \mathrm{~V}$, but handles the full load current. The floating supplies are driven up and down by a Class-B amplifier A_{2}. This amplifier must sustain much more dissipation as the same current is drawn from much higher rails, but it need not be very linear as in principle its distortion will have no effect on the output of A_{1}.
The circuit is complex and costs more than twice that of a conventional amplifier. In addition, the floating supplies are awkward. This seems to have limited its popularity.
Another $\mathrm{A}+\mathrm{B}$ concept is the error-correction system of Stochino. ${ }^{16}$ The voltage summation - the difficult bit - can be performed by a small transformer, as only the flux due to the correction signal exists in the core. This flux cancellation is enforced by the correcting amplifier feedback loop. Complexity and cost are at least twice that of a normal amplifier; Fig. 6.

Class A+D. The 'Super-Class-A' concept mentioned above can be extended to $\mathrm{A}+\mathrm{D}$ by running the heavyweight ampli-

Fig. 4. Simplified diagram of a three-rail 'commutating' series-Class-C power amplifier, denoted as $B \cdot C \cdot C$.

fier in the usual high-frequency pwm Class-D configuration. ${ }^{17}$ Alternatively, an A+D amplifier can be made by retaining the Class-A stage but powering it from rails that switch at audio frequency between two discrete voltages. Recall that this definition of Class-D does not mean high-frequency pwm.

Class B+B. Sometimes called a totem-pole stage to emphasise the vertical stacking of output devices, this arrangement shares the power dissipation between two devices. However, a parallel connection does the same thing more simply and with lower voltage losses
Class $\mathrm{B}+\mathrm{B}$ has been used to permit high power outputs from transistors with limited $V_{\text {ceo }}$, but this is rarely necessary with modern devices. The concept is usually regarded as obsolete, Fig. 7.

Class B+C. The basic series Class-G with two rail voltages i.e. four supply rails, as both voltages are positive and negative - is shown in Fig. 8. This configuration was introduced by Hitachi in 1976 with the aim of reducing amplifier power dissipation. ${ }^{18,19}$
Musical signals spend most of their time at low levels, and have a high peak:mean ratio, so dissipation is greatly reduced by running from the lower $\pm V_{1}$ supply rails when possible.
When the instantaneous signal level exceeds $\pm V_{1}, \operatorname{Tr}_{6}$ conducts and D_{3} turns off, so the output current is now being drawn from the higher $\pm V_{2}$ rails, with the dissipation shared

AUDIO

between $T r_{3}$ and $T r_{6}$. The inner stage $T r_{3,4}$ normally operates in Class- B , though AB or A are equally possible if the output stage bias is increased
In principle movements of the collector voltage on the inner device collectors should not affect the output voltage, but practical Class-G is often considered to have worse linearity than Class-B because of glitching due to diode commutation. However, glitches if present occur at moderate power, well away from the crossover region.
Class $\mathrm{B}+\mathrm{C}+\mathrm{C}$ An obvious extension of the Class-G principle is to increase the number of supply voltages, typically to three. Dissipation is reduced and efficiency increased, as the average voltage from which the output current is drawn is kept closer to the minimum.
The inner devices will operate in Class B / AB as before, the middle devices will be in Class-C, conducting for significantly less than 50% of the time. The outer devices are also in Class-C, conducting for even less of the time. Three letters with intervening plus signs are required to denote this.
To the best of my knowledge three-level Class- G amplifiers have only been made in shunt mode. This is probably because in series mode the cumulative voltage drops become too great. If it exists, such an amplifier would be described as operating in $\mathrm{B}+\mathrm{C}+\mathrm{C}$.

Class B+D. Since the outer power devices in a Class-G-series amplifier are not directly connected to the load, they need not be driven with waveforms that mimic the output signal. In fact, they can be banged hard on and off so long as they are always on when the output voltage is about to hit the lower supply rail.
The outer devices may be simply driven by comparators,
rather than via a nest of extra bias generators as in Fig. 8. Thus the inner devices are in B with the outer in D. Some of the more powerful amplifiers made by NAD - like the Model 340 - use this approach, shown in Fig. 9.

The technique known as Class- H is similar but uses a charge-pump for short-term boosting of the supply voltage. In Fig. 10, at low outputs $T r_{6}$ is on, keeping C charged from the rail via D.
During large output excursions, Tr_{6} is off and Tr_{5} turns on, boosting the supply to T_{3}. The only known implementation is by Philips ${ }^{20,21}$ which is a single-rail car audio system that requires a bridged configuration and some clever floating-feedback to function.
Full circuitry has not been released, but it appears the chargepump is an on/off subsystem, i.e. Class-D

In summary

The test of any classification system is its gaps. When the periodic table of elements was evolved, the obvious gaps spurred the discovery of new elements; convincing proof the table was valid.
Table I is restricted to combinations that are, or were, in actual use, but a full matrix showing all the possibilities has several intriguing gaps; some, such as $\mathrm{C} \cdot \mathrm{C}$ and $\mathrm{C}+\mathrm{C}$ are of no obvious use, but others like $\mathrm{A}+\mathrm{C}$ are more promising - a form of Class-G with a push-pull Class-A inner stage. Glitches permitting, this might save a lot of heat.
The amplifier table really gets interesting when it becomes clear that there are gaps in the entries - things that could exist but are not currently known.

Fig. 7. A totem-pole or cascade series output. Resistors $\mathrm{R}_{\boldsymbol{d}}$ divide the voltage between rail and output in half, and drive the outer power devices. Inner and outer devices turn on and off

Fig. 8. Class-Gseries output stage. When the output voltage exceeds the transition level, D_{3} or D_{4} turns off and power is drawn from the
higher rails
through the outer power devices. $B+C$.

References

1. Blomley, P., 'A New Approach to Class-B.' Wireless World, Feb. 1971, p. 57.
2. Tanaka, S., 'A New Biasing Circuit for Class-B Operation,' Joum. Audio Eng. Soc. Jan/Feb 1981, p. 27 (Non-switching Class-B)
3. Walker, PJ., 'Current Dumping Audio Amplifier,' Wireless World, Dec 1975, p. 560.
4. Attwood, B., 'Design Parameters Important for the Optimisation of PWM (Class-D) Amplifiers,' JAES Vol. 31 \#11, Nov. 1983, p. 842.
5. Goldberg \& Sandler, 'Noise Shaping and Pulse-Width Modulation for an All-Digital Audio Power Amplifier,' JAES, Vol. 39, \#6, Feb. 1991, p. 449.
6. Hancock, J., 'A Class-D Amplifier Using MOSFETS with Reduced Minority Carrier Lifetime,' Journ. Audio Eng. Soc. Vol. 39, \#9, Sept. 1991, p. 650.
7. Peters, A., 'Class-E RF Amplifiers,' IEEE Joum of Solid-State Circuits, June 1975, p. 168.
8. Atkinson, J., 'Krell KSA-50S Amplifier Review,' Stereophile, Aug. 1995, p. 165.
9. Funada \& Akiya, 'A Study of High-Efficiency Audio Power Amplifiers Using a Voltage Switching Method,' Journ. Audio Eng. Soc. Vol. 32 \#10, Oct. 1984, p. 755 (Syllabic Class-G).
10. Sandman, A., 'Class-S: A Novel Approach to Amplifier Distortion,' Wireless World, Sept. 1982, p. 38.
11. Raab, F., 'Average Efficiency of Class-G Amplifiers,' IEEE Trans on Consumer Electronics, April 1986, p. 145.
12. Self, D., 'Load Invariant Audio Power,' Electronics World, Jan. 1997, p. 16.
13. Linsley-Hood, J., 'The Straight wire With Gain?' Studio Sound, April 1975, p. 22. (Crown).
14. Unknown, 'Edwin Amplifier,' Elektor; Sept. 1975, p. 910.
15. Sano et al, 'A High-Efficiency Class-A Audio Amplifier,' preprint \#1382 for 61 st AES convention, Nov. 1978.
16. Stochino, G., 'Audio Design Leaps Forward?' Electronics World, Oct 1994, p. 818. (Error correction).
17. Jeong et al, 'A High-Efficiency Class-A Amplifier with Variable Power Supply,' (ClassA+Class-D), preprint \#4257 for 100th AES convention, May 1996.
18. Sampei, et al, 'Highest Efficiency \& Super Quality Audio Amplifier Using MOS Power FETs in Class-G Operation,' IEEE Trans on Consumer Electronics, Vol. CE-24, \#3 Aug. 1978, p. 300. (Class-G).
19. Feldman, 'Class-G High Efficiency Hi-Fi Amplifier,' Radio-Electronics, Aug. 1976, p. 47.
20. Buitendijk, P., 'A 40W Integrated Car Radio Audio Amplifier,' IEEE Conf on Consumer Electronics, 1991 Session THAM 12.4, p. 174. (Class-H).
21. Philips, 'TDA1560Q 40W Car Radio High Power Amplifier,' Philips Semiconductors' data sheet, April 1993.

Fig. 9. Class-G output stage with outer devices in Class-D. Described as $B+D$.

Fig. 10. The Class-H principle applied to a bridged output stage for automotive use. $B+D$.

High-performance motor drives

John Wettroth and Damian Anzaldo provide an overview of modern motion control technology and highlight two mixed-signal devices designed for use in the new generation of motor drives.

D
irect current drives are the oldest servo drive scheme and are still widely used. The DC drive shines in applications with large torque variations or in low power applications. It is also good for variable speed
control because it can easily achieve good torque and speed response with high accuracy using simple control schemes.
Field orientation of the motor is achieved using a mechanical commu-

The authors are with
Maxim Integrated
Products in the US.
John is a senior
scientist and Damian is a field applications angineer.

Fig. 1. Block diagram of a low power DC drive for a battery powered medical product. A buck converter controlled by a d-to-a converter drives an H bridge with low side current sensing. The \boldsymbol{H} bridge is disabled periodically and back-EMF is sensed using the motor as a tachometer. A simple microcontroller provides the control and measurement functions.

tator with brushes. Simple commutation makes for a lower cost controller, but it also makes for an expensive and less reliable motor.
Control however, is very straightforward; varying current controls torque and speed is controlled by voltage, minus back emf. A typical block diagram of a simple $D C$ drive for a portable medical device is shown in Fig. 1.
The main drawback of this technique is the limited reliability of the brushed DC motor. As AC drive systems improve, they are eroding even the special areas where DC drives have prevailed.
Note that there is a class of motors called 'brushless DC motors' that can be confusing to sort out. These aren't actually DC motors, but an AC motor with an embedded electronic commutator making them look to the outside world like a DC motor.
Brushless DC motors are common in high run life, constant speed applications like small fans. They represent the simplest type of AC drive covered in the next section.

AC drives

The evolution of AC variable speed drives is mainly driven by the desire to emulate the performance of a DC drive

with its fast torque response and speed accuracy, while using low cost, reliable and most importantly brushless, AC motors. It is ironic that even today, the highest tech motors and controls still compare their performance to that of a $D C$ drive.
Most motor control systems are physically built as two or more separate units. The first unit is called a motor or motion controller. This section generates the command signals and gets overall system feedback. It is usually implemented as a proportional-integral-derivative, or PID, controller that tracks position and velocity or velocity and acceleration.
The second unit is called the drive. This unit takes a velocity or torque command as input and operate the motor. The drive is often further divided into a control portion and a power portion with the power portion colocated with the motor.
What all the boxes do in a sophisticated motion control system can be confusing since both the motion controller and the drive contain a digital signal processor or some other form of processor. To make matters worse, there is also another computer that feeds commands to the motion controller.
To clarify the situation of what all these processors are doing; the digital signal processor in the drive is intimately involved with the details of commutating and controlling the current and voltage in the motor. The
motion controller runs the real time servo-positioning portion of the customer's application code. It provides command signals to the drive usually in the form of analogue signals.
The motion controller is often located in a personal computer as an ISA or PCI plug-in card. The pc's processor runs the final customer application code and user interface. Its job might be for example to interpret G -codes for a computer numerical control program and feed X, Y and Z values to the motion control card over the bus. These values would ultimately control the axes of a CNC milling machine.
While the entire motor control market is buoyant, it is the drive portion where tremendous development is taking place in algorithms, semiconductors and signal processors. The drive is what really allows for the efficient variable speed or servo operation of a low-cost AC motor, Fig. 2.

AC inverter drive

Inverter drives are the simplest form of AC drives. All AC drives contain an inverter output stage as the final power output amplifier. The inverter operates by generating multi-phase AC signals for the motor under the control of a pulse-width modulator. The motor sees a low variable frequency drive that is generated by a high-frequency class-D style amplifier.
Typical pulse-width modulation, pwm, frequencies used are in the high audio range up to about 25 kHz . These
higher frequencies have advantages acoustically but cause problems with EMI and parasitic losses.
Supply for the DC inverter is rectified line power. The inverter switches this high voltage DC using high-voltage saturated switches such as insulat-ed-gate bipolar transistors, i.e. IGBTs.
The speed of the motor is proportional to frequency. Voltage is also variable and a fixed voltage-to-frequency ratio is maintained as frequency is changed to maintain torque. Temperature corrections are also used to compensate for copper losses.
Inverter drives vary significantly in sophistication. When they are operated open loop, they are usually fine for simple industrial requirements but open-loop operation presents problems at low speeds and with loads of variable torque.
The trend is towards higher pwm frequencies and lower sine wave distortion to meet EMC standards such as IEEE 519 and European CE requirements. More advanced control techniques such as those that follow are more common today as the cost of these techniques fall and the shortcomings of a straight inverter drive are felt in other areas.

Flux-vector control

Simply adding a resolver and closing a velocity loop around an inverter drive will improve steadystate velocity accuracy but will do little to improve transient behaviour

Fig. 2. Block
diagram of the common elements of a complete $A C$ drive motion control system.
Details vary somewhat. Variable frequency inverters for example are typically operated open loop and don't include a dsp in the drive. Simple fixed speed drives will often include command generation with a front panel keypad/display. The command signals from the controller to the drive vary somewhat, too. The command may be velocity or torque and may be transmitted as an analogue voltage or using one of several common serial digital interfaces.
as load torque is varied.
Synchronously measuring stator currents, voltages and rotor position and then applying some significant calculations can independently control the torque and flux of an AC motor. This technique, called flux-vector control, is used to control the position and magnitude of the stator flux relative to the position and magnitude of the rotor flux.
Independent control of flux and torque is inherent in DC motors. Fluxvector control brings this independent control to AC motors. Low-cost realtime data acquisition required for this method is made possible by a new class of a-to-d converters like the MAX125 described later.
The trigonometric transformations required are made possible by highspeed digital signal processors. A block diagram of a vector-controlled drive is shown in Fig. 3. A detailed description is beyond the scope of this article.
Flux-vector control offers very high levels of performance across a wide power range, comparable to that of DC drives. It has the disadvantage though of requiring a sensor for rotor position that is costly and can require additional maintenance.
A refinement to flux-vector control which maintains nearly all the benefits but eliminates the position feedback sensor is called 'sensorless flux-vector control.' This method measures stator currents and voltages and infers rotor
position from a precise mathematical model of the motor.
Sensorless control involves still more precise data acquisition and dsp calculation. Several vendors claim further proprietary refinements of vector control scheme.

Mixed signal ICs for motor control

A block diagram of sensorless fluxvector control drive is shown in Fig. 4. This diagram highlights a simultaneous sampling a-to-d converter that is tailored to the motor control market.
The converter provides 14 -bit conversion accuracy with fast aperture times that allow precise measurement of stator parameters in the latest motor controls.
Maxim's MAXI25 and MAX126 are 14-bit, multi-channel data-acquisition systems designed for AC motor drive control, Fig. 5. These devices contain four simultaneous-sampling track/hold amplifiers. Having four such amplifiers allows four input channels to be sampled simultaneously, preserving relative phase information of the four input signals. This is not possible in a system using a single track/hold amplifier.
For applications demanding optimum motor speed control and good regulation at close to zero speed, additional velocity and position sensors can be digitised using spare channels. Being highly integrated, these devices improve system performance while
lowering overall cost and reducing board space.
As motor control software becomes increasingly burdened with system tasks, improvements in a-to-d converter accuracy, sampling time and aperture delay can relieve the processor of software overhead. The MAX125 and MAX126 have DC accuracy specifications of 14-bit resolution combined with ± 2 lsb inherent linearity error. Monotonicity is guaranteed.
This accuracy reduces processor maths in motor control applications involving precision vectors. Aperture delay of the devices is specified at 5 ns with channel matching of 500 ps , eliminating phase errors between sampled signals.
Conversion time for both ICs is $3 \mu \mathrm{~s}$ with a track-and-hold amplifier acquisition time of $1 \mu \mathrm{~s}$, allowing fast throughput per channel at rates of 250ksample/s for one channel, $142 \mathrm{ksample} / \mathrm{s}$ for two channels, $100 \mathrm{ksample} / \mathrm{s}$ for three and 75 ksam ple/s with four channels.
Combining high accuracy with improved track-and-hold amplifier performance, these controllers free the system designer from bandwidth limitations and computation errors that result from intensive software needed to support lower resolution a-to-d converters.
The input signal range of the MAX125 is $\pm 5 \mathrm{~V}$ and the MAX126 is $\pm 2.5 \mathrm{~V}$. The inputs are fault protected to $\pm 16.5 \mathrm{~V}$. Input fault protection

Fig. 3. Block diagram of the flux vector control drive. A dsp calculates coordinate transformations that change the $d-q$ current and slip angle to $x-y$ and u - vectors. The pulse-width modulator provides the w vector and drives the inverter. A resolver provides feedback of the rotor position.

structures allow input voltages to $\pm 16.5 \mathrm{~V}$ without adversely affecting conversions on other channels.

Track and hold with 8 MHz bandwidth

The track-and-hold input tracking circuitry has an 8 MHz small-signal bandwidth. This makes it is possible, using undersampling techniques, to digitise high-speed transient events and measure periodic signals with bandwidths exceeding the a-to-d converter's sampling rate. For this application, anti-alias filtering is recommended to avoid high-frequency signals being aliased into the frequency band of interest.
The ICs have a buffered internal 2.5 V reference with an initial accuracy of $\pm 1 \%$ and temperature coefficient of $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. For applications requiring operation over a wider temperature range an external reference can be used.
The parallel digital interface of the devices has data-access and busrelease timing specifications that are compatible with most popular digital signal and $16 / 32$-bit processors. As a result, direct digital interfacing is pos-
sible without resorting to wait states.
Both ICs have eight modes of operation plus power-down. These modes are programmed through the bi-directional parallel interface.
An internal microsequencer can be programmed to perform four simulta-
neous channel conversions of selected input banks per sample. Once programmed the converter continues operating in this mode until reprogrammed or power is removed. Digitised data are stored in memory to be read out via the parallel interface.

Fig. 4. Block diagram of the sensorless flux vector control drive highlighting a new 14-bit a-to-d converter from - the MAX125. It simultaneously samples four inputs to maintain phase information for motor control. It provides an additional bank of four inputs that make it ideal for other polyphase power applications such as synchronising two systems. It also off-loads the digital signal processing by including a microsequencer that automatically initiates and stores a-to-d converter readings internally.

Quad 12-bit d-to-a converter with serial i/o
The MAX525 comprises four 12 -bit, digital-to-analogue converts and four precision output amplifiers intended for motion control applications, Fig. 6.

This device has a double-buffered input organised as a 16 -bit input register followed by a d-to-a converter register, allowing the input and d-to-a converter registers to be updated independently or simultaneously with a single software command. These features and a three-wire serial interface facilitate optically isolated industrial control designs.
Accuracy of the MAX525 is 12-bit resolution with an inherent non-linearity error of $\pm 1 / 2 \mathrm{lsb}$. Linearity matching is specified at $\pm 1 \mathrm{lsb}$ and gain-error matching at ± 2 lsb, ensuring matched tracking amplitudes in three-phase sine wave generation applications.
Precision amplifiers internally buffer the 525 's d-to-a converter outputs. The amplifiers slew at $0,6 \mathrm{~V} / \mu \mathrm{s}$ and settle to $1 / 2$ least-significant bits in $12 \mu \mathrm{~s}$.
The output voltage swing extends from 0 V to V_{DD} providing rail-torail outputs. Also, the inverting input of each output amplifier is accessible which provides greater flexibility in output gain setting and
signal conditioning.
A typical application for this feature is a digitally programmable current source. Here, the amplifier output drives the base of an n-p-n transistor and the amplifier feedback pin monitors a sense resistor within the current loop. The output amplifier acts as an error amp comparing the d-to-a converter output to the current loop sense voltage.
The 525 has two reference inputs each input internally connected to a pair of d-to-a converters. The reference inputs accept DC and AC signals ranging from 0 V to $\mathrm{V}_{\mathrm{DD}^{-1}}-1 \mathrm{~V}$.
Both reference inputs have a $10 \mathrm{k} \Omega$ guaranteed impedance. When the two are driven from the same source the effective minimum impedance is $5 \mathrm{k} \Omega$. When driving the reference inputs simultaneously at 2.5 V , a reference with load regulation of $6 \mathrm{ppm} / \mathrm{mA}$ would typically deviate by 0.025 of a least-significant bit. A MAX873 voltage reference could be used in this application.
The 525 has an internal power-onreset which clears all registers and d-to-a converters to zero upon initial power up. In addition, hardware clear, designated CL, and power-down lockout, PDL, functions are provided. The PDL function disables software shutdown and can also be used to asynchronously wake up the device.

The software shutdown feature reduces supply current to $10 \mu \mathrm{~A}$. In power-down mode, the device's serial interface remains active and data in the input registers is retained.
A unique feature of the 525 is its user-programmable output, designated UPO. This logic output can be used to control an external device via the 525 's serial interface. A DC motor control application using UPO is a motor disable switch that operates a motor shutoff relay if the power mosfet fails. The shutoff relay disconnects power to the motor.
A high-side driver switch controlled via a microprocessor output port typically drives the relay. To free up processor port pins the high-side driver can be controlled by the UPO pin by way of a serial-interface program command.
The 525 operates from a single 5 V supply with a current requirement of 0.98 mA or less

In summary

Motor control is a refined and rapidly growing field. Advanced control techniques demand high performance, specially tailored semiconductors. The MAX125 and MAX525 are examples of these advanced ICs, which will enable designers to develop the next generation of advanced motor controls.

Fig. 6. Block of the MAX525 quad 12-bit, voltageoutput d-to-a converter with serial interface.

The Alternative Oscilloscope

Pico Technology provides an alternative to costly, bulky and complicated oscilloscopes. Our range of virtual instrumentation enables your PC to perform as an oscilloscope, spectrum analyser and digital multimeter.
∇ Upto $100 \mathrm{MS} / \mathrm{s}$ sampling and 50 MHz spectrum analysis
∇ A fraction of the price of comparable benchtop DSOs
V Simple Windows based user interface

The practical alternative Connection to a PC gives virtual instruments the edge over traditional

> "...the most powerful, flexible test equipment in my lab."
oscilloscopes: the ability to print and save waveforms is just one example. Advanced trigger modes, such as save to disk on trigger, make tracking
 down elusive intermittent faults easy. Combining several instruments into one small unit means it is lighter and m ore portable. When used with a notebook computer, field engineers can carry a complete electronics lab in their PC.

The low cost alternative Virtual instruments eradicate the need for bewildering arrays of The Pico range of PC based
 oscilloscopes work with your switches and dials associated with traditional benchtop scopes. PicoScope for Windows software. Controlled using the standard Windows interface, the software is easy to use with full on line help. Installation is easy and no configuration is required; simply plug into the parallel port and it is ready to go. We provide a two year guarantee and free technical support via phone, fax or E-mail.
\qquad Call for a PRDC demo dis
 PC - anything from a <dustbin-ready 8086 to the 259 Picoscopentium. The PicoScope software utilises This gives you a larger cleare display than any scope, at a fraction of the price. The savings don't stop there: All those expensive upgrades needed for traditional oscilloscopes: such as FFT maths, disk drives and printers are already built into your computer. The PC has made computing affordable, now Pico has made test equipment affordable too.
Seeing is understandira
Call for a FREE demo disk or visit our web site.

Fax: (0)1954 211880 Tel: (0)1954 211716
E:mail: post@picotech.co.uk http:www.picotech.com
Broadway House 149-151 St Neots Road Hardwick Cambridge

Riphard Brice looks at various ways in which intentional electronic signal distortion is used to enhance music - article three in the series 'Music and electronics'.

Electronic effects in music

The contribution of electronics to the recording and reproduction of music is not solely limited to its capacity to transmit the musical performance. Electronics engineers have contributed - and continue to contribute - the means by which modern music is created. This is an act which is a part of the common ongoing creative enterprise we call 'art'.
I don't think it's stretching the truth too much to say that a host of today's trade names will become the Stradivarius or Broadwood of tomorrow. Nowhere is this contribution clearer than in the design of electronic musical effects.

Echo and reverberation

A true echo is only heard when a reflected sound arrives a twentieth of a second or more after the direct sound first reaches our ears. Compare that with the sound that accompanies the voice of a priest or of a choir as their effusions stir the roar of reverberation in the atmosphere of a vast, medieval cathedral.
Reverberation is made up of echoes too, but by a mass of echoes following more swiftly than those of a discrete echo.
Clearly most recording studios are not large enough for an echo to be a natural consequence of their design. Neither are most cavernous enough to possess the acoustics of a cathe-
dral. And a good thing too for it is far easier to add artificial reverberation and echo electronically than it is to eliminate the natural form.
Electronics thereby underpins the philosophy embraced by most modern recording studio designers - aim for a dry natural acoustic and augment this with artificial reverberation, as required.
Artificial echo was originally accomplished by means of a tape delay device as illustrated in Fig. 1, the signal being fed to the record head and the 'echo' signal picked off the replay head which was situated separately and 'downstream' of the record head. The distance between the two heads and the tape speed determined the delay.
On commercial units, the tape speed was usually made continuously variable so as to realise different delay times. This arrangement, obviously, only produced a single echo. In order to overcome this limitation, to this simple device a circuit was added which allowed a proportion of the output of the replay head to be fed back and re-recorded. By this means was an infinitely decaying echo effect performed.
By altering the degree of feedback - known in this context as re-circulation - differing reverberant 'trails' could be achieved. Just as the early microphones had, in their time, fathered the vocal style of crooning - because they per-

Fig. 1. Early machines produced an echo whose delay time was determined by tape speed and the gap between the record and replay heads. Next generation echo machines fed back some of the replay head output, allowing multiple echoes.
formed best when capturing slight sounds very close to the diaphragm - so the tape-based echo unit spawned an entire vocal technique too.
Modern digital delay devices have shunned tape techniques but accomplish the same effect by delaying suitable digitised audio signals written into, and read out of, a ran-dom-access memory store, Fig. 2. Alternatively hybrid digital/analogue techniques are utilised which exploit 'bucketbrigade' delay lines.
Both these techniques have all the obvious advantages of a purely electronic system over its electromechanical precursor. But there is one exception. Often, the rather poor quality of the tape transport system in the early devices introduced a degree of randomness - in the form of wow and flutter - into the replay system which help ameliorate a 'mechanical' quality which the resulting echo otherwise has.
Digital devices exhibit this quality quite distinctly - particularly at short delay times when the tail takes on a characteristic 'ring'. This unwanted outcome manifests itself more clearly still when the initial delay shortens. When a simple delay and re-circulation technique is employed to synthesise a reverberant acoustic, it can take on a very unnatural quality indeed.
Better results are obtained when a number of unequally spaced delay points, or taps, are used and these separate signals fed back in differing proportions, i.e. weightings, for recirculation.
Top quality delay and artificial reverberation units go so far as to introduce quasi random elements into the choice of delay taps and weightings so as to break up any patterns which may introduce an unnatural timbre to the artificial acoustic. Fortunately digital techniques have come so far that reasonable results are obtainable at very low cost. Artificial delay and reverberation are almost always incorporated in the audio system via the audio console effect send and return. ${ }^{1}$

Guitar amplifiers - distortion and fuzz

Usually an effect to be guarded against in both design and operation of any audio circuit is the severe amplitude distortion known as clipping. But for guitarists, this effect is amongst their stock-in-trade. 'Grunge' has re-established this sound in recent years.
Known variously as fuzz, overdrive or plain distortion, the manner in which the circuit overloads becomes an integral part of the sound timbre. So much so, that for guitarists, a whole mythology surrounds this subject.
The first commercially available unit intended for the purpose of generating severe waveform distortion was the

[^1]

Table 1. Even harmonics tend to be musically related to the original input tone, whereas high-order, odd harmonics are musically unrelated to the original guitar signal.

Harmonic

Fundamental 2nd (1st overtone) 3rd 4th 5th 6th 7th b-flat' (nearest note)
8th c" 9th d"
10th e"

11th f" (nearest note)
12th g"
13th a"
14th b-flat"
15th b"
16th c"'
17th C\#"'
18th d"'
19th d\#"'
20th e"'

Musical note
C
c
g
g
c'
e'
g'
$e^{\prime \prime}$

Comment
octave
twelfth (octave + fifth)
fifteenth (two octaves)
seventeenth (two octaves + major third)
nineteenth (two octaves + perfect fifth)
dissonant; not in natural scale three octaves
major 23rd (three octaves + second)
major 24th (three octaves + third)
dissonant; not in natural scale major 26th (three octaves + fifth) dissonant; not in natural scale dissonant; not in natural scale major 28th
four octaves
dissonant; not in natural scale major 30th
dissonant; not in natural scale major 31st

Gibson Maestro Fuzztone amplifier. \dagger In developing the Fuzztone, Gibson crossed something of a Rubicon in audio electronics design. Before it, the role of the audio amplifier was not intended to be a feature of the sound; indeed many of the amplifiers were intended to be 'distortionless'. But guitarists pushed the equipment to its limits in search of expressive potential and thereby uncovered corners of the performance-envelope unforeseen by the equipment's designers.
Ironically, often it was precisely at these boundaries that the greatest potential for artistic utterance was found, thereby establishing the sonic signature of a particular perfor-

Fig. 3. From a) to d), original signal, sluggish transition into overload, fast transition into overload and finally, the result of an asymmetrically overloaded amp.
mance limitation as a de facto standard for acolytes and imitators alike.
In turn, manufacturers have been forced to continue to build equipment which is deliberately designed to expose a design limitation or else find a way of simulating the effect with more modern equipment. Hence the inclusion of the
a

sine wave input

gentle transition into distortion
c

rapid transition into distortion
d

assymetrical distortion

Fig. 4. Using digital sound processors, distortion can be carefully controlled by passing the linear pulse-code modulated signal through a look-up table stored in read-only memory with any desired transfer-function.
apparently objective subject of amplifier design in this article on creative effects.
Relieved of a duty to be accurate, instrumental amplification is very difficult to analyse objectively. However a few observations may be made with some certainty: Firstly, most amplification is not usually designed with a deliberately modified frequency response. This is more usually a function of the designer's choice of loudspeaker and housing. Amplifiers - both low-level and power-level - are more usually engineered for their distortion characteristics.

Difficult to see - easy to hear

Research has been done to connect various transfer curve characteristics with subjective perceptions. Once again the ear proves to be a remarkably discerning apparatus. So that, in spite of the fact that all distortion mechanisms perform roughly the same 'function', each commercially available amplifier has its own distinctive sound and loyal adherents - some units having acquired an almost cult status.

While many of these differences might be difficult, if not impossible, to analyse, a number of distinguishing characteristics are obvious enough. Firstly, the forward gain of the amplifier has an effect on the rate of discontinuity between the linear and non-linear portions of the transfer characteristic.
A unit with a low forward gain and a small degree - or no - negative feedback will show a sluggish transition into the overload region. Such a unit will produce a distortion on a sine wave input like that illustrated in Fig. 3b. On the other hand, unit with a high forward gain and a good deal of negative feedback, and thus a faster transition into the non-linear region, will produce an output waveform more like that shown in Fig. 3c.
Secondly, the character of the distorted sound depends to a large measure on the degree of asymmetry imparted to the output waveform by the overdriven amplifier stage. An asymmetrically distorted waveform - like the one in Fig. 3d - has a far higher proportion of even harmonics than the waveform shown in Fig.3c, which has a high proportion of odd harmonics.
Even harmonics tend to be musically related to the original input tone, whereas high-order, odd harmonics are musically unrelated to the original guitar signal, Table 1. This suggests that an amplifier producing a symmetrical overload characteristic will tend to sound 'harsher' than a unit yield-

Fig. 5. There are complex digital circuits for producing distortion, but simple analogue alternatives like this one are often preferred.

ing asymmetrical distortion, and subjectively this is indeed the case.

Why valves?

Valve amplification is almost certainly preferred for its asymmetrical transfer characteristic and for its longer transition band from 'non-distorting' to 'distorting' regimes. This gives the instrumentalist a wider and more controllable tonal and expressive palette. This characteristic is enhanced by very limited amounts of negative feedback.
More elaborate semiconductor-amplifier counterparts, due to a high level of derived linearity and very high forward gain, tend to elicit a rasping, strident tone when in overload. Unfortunately, the designer has little or no option when faced with the design of a solid state amplifier.
Being of essentially Class-B design, these amplifiers cannot function without large amounts of negative-feedback therefore the designer of such an amplifier is forced to adopt up-stream electronics to try to emulate the gradual distortion characteristics of a valve amplifier.
With the advent of digital electronics, this philosophy has blossomed. Inside digital sound processors, distortion can be carefully controlled by passing the linear pulse-code modulated signal through a look-up table stored in read-only memory with any desired transfer-function - Fig. 4.
Nevertheless analogue alternatives are often preferred and may be extremely simple. A design which has been used for some years, and which has appeared on many professional recordings, is illustrated in Fig. 5. Effectively the transistor pair creates a high gain amplifier - enough to drive the output signal well beyond the supply rails.
The collector load on the second stage is split. This reduces the overall gain back to around unity and provides an adequately low output impedance. Control of the ac emitter load of the first transistor alters the gain of the amplifier and therefore the depth and character of the distorted output.

Wah-wah

Wah-wah is a dramatic effect derived from passing the signal from the electric guitar's pickup through a medium-Q band-pass filter, the frequency of which is adjustable usually by means of the position of a foot-pedal as illustrated in Fig. 6.

The player may the use a combination of standard guitar techniques together with associated pedal movements to produce a number of instrumental colours from an almost percussive strumming technique to a lead guitar style - usually in combination with fuzz effect - in which the guitar almost 'cries' in a human-like voice.

Pitch shifting

Pitch shifting is used for creating 'instant' harmony.
Simple pitch shifters create a constant musical interval above or below the input signal. You might think that such a limitation was pretty devastating. However, various automatic transpositions produce acceptable results. For instance, a harmony at a perfect fifth produces the scale in Fig. 7. This scale is usable except for the F-sharp.
Harmony at a perfect fourth is even better, Fig. 8. It has only one note that is not present in the key of \mathbf{C} major, like the harmony at the perfect fifth. But the note is B flat which is a prominent 'blue' - i.e. blues scale - note in C major. For this reason, it is often acceptable in the context of rock music.
The instant transpositions of perfect fourth up - or its lower octave equivalent, perfect fifth down - are the most common transpositions employed in simple pitch shifters, with the exception of octave transpositions. Guitarists in particular most often employ a pitch shifter in one or other of these two roles.

Table 2. For pitch shifting, natural ratios of input versus output clock are preferred since they are related by simple numerical ratios.

Interval	Frequency ratio
Octave	$2: 1$
Fifth	$3: 2$
Fourth	$4: 3$
Major third	$5: 4$
Minor third	$6: 5$
Major sixth	$5: 3$
Minor sixth	$8: 5$

Fig. 7. Scale representing harmony at a perfect fifth.

Fig. 8. Harmony at a perfect fourth is even better than that of the perfect fifth in Fig. 7.

Fig. 9. In pitch shifting, the short-term store is re-used again and again, i.e. it is a circular buffer.

Fig. 10. A common problem encountered in microphone technique is the accidental establishment of multiple path lengths between sound-source and microphone element

Fig. 11. Early flangers were based on magnetic tape, the flanging effect being produced by manually slowing one of two synchronous tape recorders. In this electronic version, a low-frequency oscillator simulates the hand.

Fig. 12. The principal feature of the vocoder is its two inputs one for an instrument and another for a microphone.
simple numerical ratios, Table 2. Note that most pitch shifters allow for a bypass route so that the original sound can be mixed with the harmony in a desired proportion before the signal leaves the unit.
Another application of the pitch shifting technique described in the last section is in creating audio effects which, to the uninitiated, sound nothing like pitch shifting as all. Instead effects such as chorus, flanging and so on, create a swirling, thickening texture to a sound.

Flanging, phasing and chorus

A common problem encountered in microphone technique is the accidental establishment of multiple path lengths between sound-source and microphone element, which creates a 'comb-filter' effect whereby successive bands of frequency are reinforced and cancelled, as illustrated in Fig. 10.

Although such an eventuality is extremely undesirable in the context of recording speech or sung sounds, the phenomenon produces an interesting acoustic effect - a kind of hollow ring.
Even more interesting is the effect as the microphone is moved in relation to sound source and reflecting body. This causes the frequency bands of reinforced and cancelled output to change. Imparting on the captured sound a strange, liquidity - a kind of 'swooshing, swirling' ring.
Of course, such an effect is not practically obtainable using moving microphones." Instead it relies on utilising an
electronic or electromechanical delay-medium to recreate an acoustic delay.
This effect has come to be known as flanging. It came about due to the slight lack of synchronisation between two "locked" tape recorders; an effect which was exacerbated by rubbing a hand against the supply-reel flange of one of the tape recorders in order to slow it down in relation to the other.
A modern flanger dispenses with a tape mechanism to create the delay and, instead, a digital lag circuit is almost always employed. A low-frequency oscillator, or lfo, replaces the flange-rubbing hand.
The amplitude of the lfo signal controls the depth of the flange. This is equivalent to the amount of 'de-synchronisation', and it is controlled as shown in Fig. 11. The speed of the flange controls the frequency of the lfo and the degree of the effect is controlled in a mixing stage as shown.
Attempts at non tape-based analogue flange techniques involved the use of adjustable, cascaded all-pass filters providing the necessary delay elements. These circuits only produce a very small amount of delay per circuit. Even with a relatively large numbers of delays cascaded together, the delay was small in comparison to that required for a full flange effect. Because of this, these devices produced a particular, gentle effect, sonically apart and worthy of its own name - 'phasing'; a term based on the fact the circuits produce phase-shift, rather than full delay.
In a modern digital processor, the terms phasing and flanging really describe the same effect; the term phasing being used to describe very light degrees of flanging with delays up to about 1 ms . Flanging uses delay variations in the region 1 ms to 7 ms .
Chorus is the next term in this continuum. In a chorus effect, the feedback fraction and the minimum delay-time are limited so as to ensure the depth of the comb-filter effect is much less pronounced than in the flanger or phaser. In a chorus effect the delay typically varies between 20 to 40 ms .
Phasing and flanging and chorus find their metier in the hands of guitarists. Or should I say feet? Usually, this effect is incorporated in a pedal. This refinement facilitates switching the effect in and out without the guitarist having to take his or her hands off the instrument.

Vocoder

The vocoder is a device which allows the unique expression of the human voice to modulate an instrumental sound which may be monophonic or, more often, polyphonic. In order to understand the vocoder, it's worthwhile taking a few minutes to understand the production of vocal sounds.
The fundamental sound source involved in vocal production is a rather low frequency complex tone produced when air from the lung travels up the windpipe and excites the vocal folds in the larynx. The source of sound energy is known as the glottal source because the space between the vocal folds, and between which the air from the lungs is forced, is known as the glottis.
The vocal tract, comprising the pharynx (throat) the nose and nasal cavities and the mouth, subsequently modifies the spectrum of this glottal source. The vocal tract's shape can be varied extensively by moving the tongue, the lips and the jaw. In so doing, the spectrum of the glottal source is modified as it is filtered by the various resonances formed in the discrete parts of the vocal tract. Each of these resonances is known as a formant and each is numbered; the lowest frequency formant being termed the first formant, the next the second and so on.

[^2]The principal feature of the vocoder is its two inputs - one for an instrument and another for a microphone. The block diagram for a simple instrument is given in Fig. 12. Vocoder operation relies on the amplitude envelope of the vocal formants modulating the instrumental inputs via audio signal multipliers: these are voltage-controlled amplifiers in an analogue vocoder.
In circuitry terms this involves splitting the vocal signal and the instrumental signal into a number of frequency bands by means of band-pass filters. The greater the number of bands, the better the performance of the vocoder function. In a digital vocoder, the frequency spectrum can be split into a great many bands by means of a wave filter.

Following the band-dividing filters, the vocal signal path passes to a number of amplitude envelope-detector circuits, i.e. peak rectifiers in an analogue circuit). These envelope signals are then used as the variables applied to each of the multipliers following every band-dividing filter in the instrumental signal path. In this way, the frequency spectrum of the speech is 'imprinted' on the instrumental sound.

A physiological analogy

You can draw a physiological parallel by saying it is as if the lungs and vocal folds were replaced with the instrumental sound while the function of larynx, mouth and nasal cavities remain the same.
Not only is the Vocoder capable of some exotic 'colouristic' effects. An example of this is found in Laurie Anderson's O Superman. But the physiological analogy may also have suggested to you an application whereby the instrumental input
can be a synthesised tone similar to that produced by the lungs and vocal folds.
If that synthesised tone - or tones - is under MIDI control, the vocoder can be used as an artificially enhanced voice always in tune and able to sing in perfect harmony with itself. In this variation, the vocoder is worthy of the separate name 'harmoniser'

Note that the harmoniser is not a pitch shifter. If harmonisation was achieved as described above - and it can be for certain effects - the vocal formants would be transposed along with the pitch; producing an effect termed 'munchkinisation'.

Talk-box guitar effect

Lying somewhere between the wah-wah pedal and the vocoder is the talk-box guitar effect.
The talk box exploits the unique and expressive acoustic filter formed by the various resonances of the vocal tract and mouth to modify the sound of an electric guitar. This is done by driving a small loudspeaker with the amplified guitar signal, feeding it through a horn and into a plastic tube. The tube is then clipped or gaffer-taped up the microphone-stand into a position so that it can be fed into the mouth of the guitar player.

The resulting sound is recorded via the microphone feed. Talk boxes feature in the recordings of Aerosmith, Frampton and Joe Walsh among others.

Reference

1. Brice, R. (1988), Music Engineering, Newnes.

Why Settle for AM when you can afford High Quality FM!

We can offer the lowest prices on high quality FM Radio Data Modules both in the UK and overseas !
Our qualified engineers offer full technical support from simple advice to system design $\&$ integration.
For a free catalogue, wall chart or quotation Just e-mail sales@radtec.demon.co.uk. alternatively fax or telephone quoting ref: WWRMI
 Telephone $+44(0) 1992576107$
Fax $+44(0) 1992561994$
http://www.radio-tech.co.uk
Radio-Tech Limited
Your official Radiometrix Distributor

Antrim Trans formers Ltd

Large standard range + custom designs on 15 core sizes approved to EN60742 (KEMA agreement 919691)
Large standard range + custom designs on 23 core sizes approved to UL506 \& C22.2 No.66-1988 (UL file no.E179800)
Medical isolation transformers approved to EN60601-1
Audio grade, 100 V line, valve output $\&$ valve psu transformers

Lead time typically 3 weeks, minimum batch size of $\mathbf{1 0}$ off

Rapid quotation \& prototype service

Mobile phones are

 marvellous - within their own mobile world. New developments will integrate them seamlessly into the mainstream network and add full multimedia capabilities. Andrew Emmerson reports.
Upwardly mobile

In Britain and many other countries, the modern mobile phone has reached a high standard. Prices are affordable, performance is generally excellent and radio coverage is remarkably good in most locations.
The sole aggravation is that mobile phones are poorly integrated into the main public telephone system; they have separate numbers, they behave differently and hinder 'reachability".
It's precisely this shortcoming that the next generation of

What UMTS is not

UMTS is not just another radio access system; it embraces fixed telecommunications as well and creates an opportunity for complete fixed-mobile convergence.
Nor should UMTS be seen as merely 'GSM-plus'; it is much more than a mere enhancement for GSM and offers major new functionality above and beyond second generation digital radio.
UMTS is not a replacement for GSM either; the two networks will coexist, leaving GSM to remain in place for customers who are satisfied with its simpler capabilities.
mobile communication systems addresses - with the added bonus that existing GSM hand portables will not be rendered obsolete overnight. The whole point of these so-called thirdgeneration technologies is that they will enhance, not replace, existing systems.
The name given to this third generation mobile system is UMTS - the Universal Mobile Telecommunications System. It will build on the success of the capabilities of today's digital GSM, or Global System for Mobile Communication, networks to create a new, much broader and more feature-rich mobile radio system.
There's one key feature which underpins the whole concept of UMTS that's radically different from existing systems, as Nigel Lobley, team leader in the mobility engineering unit at BT's Martlesham Heath laboratories site near Ipswich, explains.
"Up to now mobile communication networks have always been conceptually separate from the existing wire-line telephone system. Your mobile phone has a different number from your fixed phones and people can easily have three different numeric identities depending on whether they happen
to be at home, at work or on the move. UMTS is different; not only does it embrace speech, data and multimedia, it also actually integrates fixed and mobile communication in a seamless way to achieve something that is far more valuable to users," says Nigel.
This integration of connectivity is what differentiates UMTS. The system will also support interconnection with wireless LANs and other kinds of radio network.
The driver for UMTS is the growing market for mobile 'reachability' and the increasing requirement for multimediatype data communication. UMTS will support user applications in both real-time and non real-time modes, using a single method of connection and integrated networks that support both wireless and wired access.
As Nigel elaborates, "UMTS takes the fixed phone into the mobile environment. You'll be able to personalise your service package to work in a uniform, seamless manner across networks and operators independently of the different radio access mechanisms actually used. We call this concept the 'virtual home environment'; it means you can use your phone, radio-enabled palmtop computer or whatever the same way wherever you happen to be.
"You won't worry about dialling codes that vary between networks and locations - such as for accessing your voice mailbox or for call return. All this will be handled for you by intelligence in the network and terminal. The fact that full rollout of UMTS won't happen overnight will not concern you either; UMTS phones will be dual-band and will revert to GSM networks where UMTS service is unavailable."

Countdown to airtime

Commercial availability of UMTS is not far off. Japan is committed to launching its third generation networks in just two years time, while most European countries - Britain included - are targeting the year 2002. By this time service providers will need to have planned and tackled all the requirements of switching and routeing, i.e. Internet Protocol and ATM. They will also need to have sorted out all aspects affecting network intelligence, processing, management and the operational support systems.
To describe this as a major challenge would be understatement. While a common vision of third generation mobile networks is shared by all operators and equipment manufacturers, there is less agreement on the precise wireless access technologies that will enable users to make their calls.
Squabbles over intellectual property rights make it look unlikely that a single unified air interface will be agreed, although total agreement looks probable over the network interface. The end result for users is that mobile telephones should work globally but some enhanced features will not work in all territories.
Finding radio frequencies for the new service is no trivial matter either. The WARC 92 allocated three frequency bands in the region $1.9-2.2 \mathrm{GHz}$ to accommodate future terrestrial and satellite mobile services. Of this allocation, the ITU has designated 155 MHz for third generation mobile services, under its IMT-2000 initiative. This has already been declared woefully inadequate for supporting a technically adequate and commercially viable service in mature or mass-market conditions. It remains to be seen how this aspect is managed.

UMTS Forum's website is at http://www.umts-forum.org

Useful list of abbreviations, to be found at ETSI's website - http://www.etsi.fr.

Need more information?

The official IMT-2000 website for international mobile communications is at http://www.itu.int/imt
ETSI's website is at http://www.etsi.fr
UMTS Forum's website is at http://www.umts-forum.org
The GSM MoU site is at http://www.gsmworld.com

It would be easy to dismiss UMTS as just another cellular system to confuse customers, with a few extra bells and whistes. Nigel Lobley denies this emphatically, however and sums up, "The combination of a far more feature-rich multimedia mobile service plus the uniform method of use and service presentation is an extremely attractive and powerful proposition that 'power user' customers will readily perceive; it's also something that service providers can customise and differentiate in order to win market share. UMTS is the key technology that will enable phone companies to integrate their fixed and mobile networks and create something that

Third time lucky?

UMTS is one of the so-called 'third-generation' mobile radio systems. Devout hopes were held out that the third generation might finally bring about a consensus for creating a single global technical standard for mobile radio to replace the mutually incompatible regional schemes in use at present.
Immense work is in hand to achieve this, although it appears that practical hurdles will mean that technical interoperability on in international scale will be less than 100 per cent. For many users this will not be a major problem.
meets customer needs far more closely than before. Soon the universal pocket communicator may no longer be just a dream."

Change for change's sake?

When many mobile phone users have yet to change up to GSM - the current 'second-generation' technology - you might ask why telecomms operators around the world are expending so much energy on devising next-generation systems. The answer lies in the user imperative - the expanding number of mobile radio customers, their continually maturing aspirations and the sheer range of new applications for mobile communication.
In fewer than fifteen years, the market for cellular radio has seen total shift from a high-cost, low-volume operation to mass-market affordability. All branches of business and commerce now find mobile communication essential, while a whole new generation of students, job entrants and other young people make a low-cost mobile phone their primary means of contact. Some of them don't even have a fixed-line phone.
Coupled with this transformation is the data wave. Voice and even simple data are old hat; users expect to be able to send and collect e-mail on the move, and to consult the Internet. Broadcasters and newspaper people may need to send photographs in high-resolution, while the emergency services are already sending moving pictures of incidents back to base.

THE WORLDS

 समाइड C:15.With the world's lowest switching losses. So they're the world's first way to replace MOSFETs. And they're just part of the world's broadest line of IGBTs from International Rectifier. For a free copy of our CD-ROM iractive ${ }^{\circledR}$ call +44 (0)171 8233224 .
For technical assistance call +44 (0)1883 733309 or the Fax-on-Demand system on +44 (0)1883 733420.

Available in UK from:
Abacus Polar
Arrow-Jermyn
Farnell
Future Electronics
RS Components
Solid State Supplies
International
Ior Rectifier

vNVNV.irf.gom

Power amplifier circuit boards

 $£ 42$ per pairfully inclusive or $£ 25$ each

Professionally designed and manufactured printed circuit boards for Giovanni Stochino's no compromise 100W power amp are available to buy.

These high-quality fibre-glass reinforced circuit boards are designed for Giovanni Stochino's fast, low-distortion 100W power amplifier described in the August 1998 issue. Layout of the double-sided, silk screened and solder masked boards has been verified and approved by Giovanni.
This offer is for the pcbs only. The layout does not accommodate the power supply scheme shown in the article. Note that a copy of the article and a few designers' notes are included with each purchase, but you will need some knowledge of electronics and thermal management in order to successfully implement this design.

Giovanni's high-performance power amplifier mounted on its heat sink.
Please send me__pcbs @ £25 each or $£ 42$ a pair.
lenclose my cheque for $£$ ent for $£$
Please debit my credit card
Card type MasterCard/Visa.
Card number
Signature
Address
Chequery date
Cost to: PCB Offer, Electronics World, Quadrant House, The Quadrant,
Sutton, Surrey, SM2 5AS. Please alow 28 days for delivery.

Please send me \qquad cbs @ £25 each or £42 a pair.
I enclose my cheque for £
\qquad
Card type MasterCard/Visa.

Card number
Expiry date
\qquad
\qquad
Signature

Specifications

Power into 8Ω load			100w
Small-signal bandwidth before the output filter			$2 \mathrm{OHz}(-0.1 \mathrm{~dB})$ 1.3MHz (-3dB)
Unity goin frequency before the output filter			22 MHz
Output noise $\langle B W=80 \mathrm{kHz}$, input terminated with 50Ω Measured out put offset voltage			$42 \mathrm{~N} / \mathrm{rms}$
			+32mV
Distortion performance			
$\mathrm{V}_{\text {out }}$, pk-pk	1 kHz	20kHz	
5	0.0030\%	0.0043\%	
10	0.0028\%	0.0047\%	
20	0.0023\%	0.0061\%	
40	0.0028\%	0.0110\%	
80	0.0026\%	0.0170\%	
Slew rate			
Positive slew-rate	+320V/ $/ \mathrm{s}$		
Negative slew-rat	-300V/ps		

SBEAMEBS! CORNER

Motional feedback II. Last month's Speakers' Corner showed how feedback improves the performance of certain loudspeakers. Here, John Warkinson expands on the topic.

In a real low-frequency loudspeaker the main sources of distortion will be the drive unit itself and the non-linear air spring due to the enclosure. In principle, motional feedback can reduce the effect of both.
The performance of any feedback mechanism is limited by the accuracy of the feedback signal. If the feedback signal does not represent the cone motion accurately, then the cone motion cannot be controlled accurately.
Designers have found various ways of measuring the cone motion. It doesn't matter whether the displacement, velocity or acceleration is measured, as these parameters can be exchanged in signal processing circuitry by integration or differentiation.
One approach is to use an accelerometer. Fig. 1 shows that this is simply a small inertial mass mounted via a force sensor on the cone. The force sensor is typically a piezo-electric crystal requiring a high input impedance amplifier.
An alternative is to measure the cone velocity using a separate moving coil as shown in Fig. 2. This is mechanically complicated and expensive, but, when well engineered, the
coil voltage is directly proportional to the velocity.
Some low-frequency drive units designed for sub-woofers have dual coils so that a stereo amplifier can drive a single unit. The two channels are simply mechanically added in the coil former.
Amateur designs have appeared ingeniously using one of the dual coils as a velocity feedback coil. While this works, the efficiency is low because half of the magnetic energy in the gap is wasted. There is also a possibility of mutual inductance between the two coils that are effectively an accidental transformer.

Sensing drive current

Figure 3 shows another possibility, which uses a relatively conventional drive unit. Here, a sense resistor samples the current passing through the coil, and the voltage across the coil is measured. If the coil resistance is known, the voltage across the coil due to ohmic loss can be calculated from the current. Any remaining voltage across the coil must be due to back emf, which is proportional to the coil velocity.
A suitable signal processor can extract the back emf, which can then

be used in a feedback loop. One difficulty with this method is that as the temperature of the coil changes, its resistance will change, causing an error in the emf calculation.
One solution is to connect a length of the same type of wire used in the coil in series with the main coil so that it experiences the same heating current. The voltage across this compensating coil can be sensed to allow for temperature changes. The compensating coil may conveniently be fitted at the end of the coil former but it is important that it is screened from the magnetic circuit.
The back emf extraction approach seems attractive, but it does rely heavily on the linearity of the main magnetic circuit and coil. The integral of the flux cutting the coil must be independent of coil position or the back emf measurement isn't accurate.
This technique can't be used to linearise a cheap drive unit because these invariably have position dependent flux problems. As a result it only works in drive units which are already quite linear.

Accelerometer benefits

The attraction of the accelerometer approach should now be clear. The addition of the accelerometer to the drive unit is fairly simple, and its operational accuracy is independent of the drive unit so that a less-thanperfect driver can be linearised.
The degree of linearisation achieved with motional feedback is a function of the open-loop gain available. The more gain that can be used, the smaller the residual error will be. The natural conclusion is that the ideal gain is infinite, like an operational amplifier.
Unfortunately this can't be
achieved because real drive units have a sub-optimal phase response. Negative feedback will fail in the presence of phase shifts within the loop, because these can result in positive feedback if the loop gain is above unity when 180° of shift has occurred.
An earlier Speakers' Corner explained how a real woofer has a fundamental resonance. Below this frequency it is stiffness controlled, above it is mass controlled. There is a change in phase response of 180° as the resonant frequency is traversed. The rapidity of the phase change is a function of the Q factor of the resonance. This is affected by the design of the drive unit and by the nature of the enclosure and its filling.
Clearly if the feedback loop contains a speaker whose phase response can reverse, an equivalent but opposite phase compensation circuit must be included in the loop so that the feedback will remain negative at all frequencies.
Once the phase reversal of the drive unit is compensated, the feedback can be used to flatten the response of the driver well below its natural resonance.

The low-frequency response is now determined electronically. It cannot be set arbitrarily low, however, as the drive unit may not have enough displacement to reproduce very low frequencies. Thus a motional feedback speaker may have a small enclosure, but it will have to contain a drive unit that would be considered disproportionately large in a conventional speaker.

The end of the road

One of the problems with motional feedback is the overload condition.
If the cone meets resistance, feedback will cause the driver to receive an increasing signal to overcome the resistance. If this resistance is due to the driver reaching the end of its travel then the result could be damage.
The solution is that the input signal has to be limited in some way so that the feedback loop is never asked to follow an impossible signal. In this way high gain can be safely used at all times.
The amplitude limit will have to be frequency dependent as the displacement rises at 6 dB per octave as frequency falls.

Fig. 2. Adding a coil to the speaker to provide the motional feedback signal is complicated and expensive, but if it is done well, the feedback coil's voltage is directly proportional to the coil's velocity.
 drop in a coil.

MARCONI TF 2019A

Synthesised Signal Generators 80Hz to 1040Mhz AM/FM, Memories, LCD A REAL Anchor Special ONLY £750

Frequency Counters
Racal Dana 9903/4
7 segment 30 Mhz £24
Racal Dana 9916
8 segment 520 Mhz f65
Racal Dana 9918
9 segment $560 \mathrm{Mhz} £ 75$

Signal Generators

HP 8683A
2.3-6.5 GHz AM/FM

NOW ONLY £499

Marconi TF2015
10-520Mhz NOW ONLY £95
Marconi TF2171 Synchronizer for 2015 NOW ONLY £95 BOTH TF2015 and TF2171 ONLY £180

Conference Equipment

Choice of 4 types from ONLY $£ 35$ UNICOL
Stands Choice from ONLY £45 KODAK SAV 1030 Carousel Slide Proj ONLY $£ 175$ KODAK EKTAPRO 3000 Carousel Slide Projectors NOW ONLY £225

Video Equipment

Panasonic AG6200 VHS ONLY $£ 99$ Panasonic AG6810 Hifi Duplication machines VHS NOW ONLY £99

SONY VO5630 Low Band Umatic ONLY £225 PANASONIC AG6100 VHS Players ONLY $£ 100$

Audio Equipment

Sonifex
Cartridge Decks Only $£ 75$ Marantz
Cassette decks. Choice of 2 Only $£ 45$

Oscilloscopes
HP 1741 A 100 Mhz Storage Dual Time base only $£ 350$
TEK 465B 100Mhz Dual Trace/ Timebase Now Only $£ 295$
TEK 465M scope as 465B but built only for Military. Only $£ 350$
TEK 475 200Mhz Dual Trace/Timebase Now Only £395
TEK 2445 150Mhz Four Trace/2 Time base with Cursors, etc. Now Only £495

TEK 2445A 150Mhz Four Trace/2 Time bases with Cursors, etc Now Only £995
TEK 2465300 Mhz Four Trace/2 Timebase sNow Only £1250

WATSU SS-6711 100Mhz Four Trace Dual Time base Now Only £345 NICOLET 2090-111
1 Mhz Digital Scope, Cursor ctrl Now Only £ 150 GOULD OS 3600 with
DM3010 DMM fitted, 60 Mhz Dual trace, Dual Timebase Now Only $£ 350$
TEK T822R 20Mhz
Dual trace, single timebase ONLY £225

Miscellaneous
NEOTRONICS DigiFlam850
Portable Flammable Gas Det CW Inst/charger
NOW ONLY £ 145
EIP 451
uWave Pulse Counter To 18 Ghz , Auto sweep Variable sample rate. £350
GIGA Pulse internal counter 2-8Ghz ONLY £150

FARNELL SSG 520
Synthesised Signal Generator foMhz - 520Mhz AM-FM-Sinad ONLY £425
FARNELL TTS520 Transmitter Test Set which Matches SSG 520 (above) ONLY £425
BOTH SSG520 and TTS620 For ONLY $£ 795$

AVO Model 8 Mk 5/Mk 6 Multimeters . . THE Standard

NEW EQUIPMENT

DTA20 Oscilloscope 20Mhz Twin trace incl probes ONLY £225

DTA40 Oscilloscope 40 Mhz Twin Trace incl probes ONLY £299

DTS40 Oscilloscope 40 Mhz
Digital Storage twin channel Cursors + readouts
Incl. Probes. ONLY £399
DSM3850A Multiscope
Digital Scope, Multimeter, Logic anal in one box. 5" LCD panel. Incl case ONLY £399
AMM255 Automatic Mod Meter 1.5Mhz to 2Ghz, LCD IEEE488 ONLY E495
SGG50 Synth Clock Gen. To 50Mhz, LED display ONLY $£ 125$
Black Star Meteor 100 Counters With fitted TXO option to 100 Mhz REDUCED NOW - ONLY $£ 50$

COMPARE OUR PRICES WITH THE COMPETITION
SEE HOW MUCH YOU CAN SAVE AT ANCHOR

Racal Dana 1991 60Mhz NanoSecond Counters with Maths f'ctns, etc SPECIAL ONLY £295

ANCHOR SUPPPIIBS LITD

The Cattle Market Depot Nottingham NG2 3GY, UK

Tel: (0115) 9864902
Fax: (0115) 9864667
http://www.anchor-supplies.ltd.uk sales@anchor-supplies.ltd.uk

MAIL ORDER A PLEASURE

Also at

Peasehill Road, Ripley, Derbys
All prices are EX VAT and Carriage

The focus of Cyril Bateman's web sleuthing this month is measuring rms - but first some tips on finding data...

So-called data-mining software packages are intended to help you search for technical data. These search engines tour the Internet looking only for Web page content that matches the chosen search criteria. As with a conventional search engine, such as AltaVista, you can then access the data miner's much smaller and targeted database.
PartMiner is a free software package that is downloadable from the partminer.com page. ${ }^{3}$ It can be run as a background task while you work. This parts locator is primarily designed as an aid for component buyers, but it
also has facilities useful to engineers. It works by visiting on-line component distributors, to check their inventory and price levels.
Partminer.com is linked to the The Electronic Design Technology and News network. The EDTN design resources section ${ }^{4}$ comprises a reference library of 4000 application notes, an application note searcher, an EDA tools search facility and an IC selector.
My application note search on thermocouples initially found 22 hits. Curiously a later repeated search found only 12 hits.

Measuring alternating waveforms

Whether intended for performance verification or application, every electronic design shares a common need - the measurement of voltages. While direct voltage or current is easily measured, alternating waveforms are usually first converted to dc then measured via a dc instrument.
Alternating voltage meters and converters can measure a waveform's peak, average or rms values. Of these, a waveform's rms value - which is related to its capacity to heat up a load

Where to look

1) Microsoft Windows Family.
2) AllChars for Windows.
3) PartMiner.
4) Electronic Design Technology Network.
5) National Semiconductor.
6) Analog Devices.
7) Burr Brown Corporation.
8) Maxim Integrated products.
9) Linear Technology Corporation.
http://www.microsoft.com/windows/euro.asp
http:///reeweb.digiweb.com/computers/AllChars
http://www.partminer.com/partminer/information.html
http://www.edtn.com/centers/descenter.html
http://www.national.com
http://www.analog.com
http://www.burr-brown.com
http://www.maxim-ic.com
http://www.linear-tech.com

- is the most useful.

Most average or peak responding meters are calibrated as rms equivalent, assuming a sinewave is being measured. If the required waveform is sinusoidal or has a recognisable and regular shape, mathematical conversion between these values is simple. When the
waveform is irregular or contains unknown harmonics though, alternating waveform measurements can become a trap for the unwary.

While all digital multimeters can measure low-frequency ac, by 1 kHz most have significant errors which can also be amplitude dependent. Some time ago, I built a true rms

Fig. 1. One early precision ac-to-dc converter that works to at least 100 kHz using relatively modest devices. With feedforward compensation, amplifier slew rate is improved to some $10 \mathrm{~V} / \mu \mathrm{s}$.

Want a Euro on your keyboard?

Now that Europe is using the new 'Euro' currency, you might wonder how your computer can print this new symbol. Windows 98 has built in support, with a limited range of fonts. Other members of the Windows family require operating system and font updates. Patches for Windows 95 and NT4 can be downloaded ${ }^{1}$ As yet, Windows 3.1 is not upgradable for the Euro sign, but there is some third party support listed in

Microsoft's Euro page FAQ. ${ }^{1}$ Alternatively, pending the promised support from Microsoft, you could download a freeware utility from the AllChars for Windows page. ${ }^{2}$ Running in the background, AllChars can be quickly activated when needed to provide a great many special characters. It is compatible with most Windows software. AllChars is available for 32 -bit and 16 -bit operating systems.

Visit this Microsoft page to download the free updates your system needs to become 'Euro' capable.
meter, accurate from dc to 2 MHz , but I now need to be able to measure higher frequencies. While I could measure the peak amplitudes with an oscilloscope, the waveshape made converting these to rms much too difficult. So before committing to a new purchase, I decided to use Internet to explore other options.
Using the three search sites featured in my February 1998 Internet article, together with this month's partminer.com site, I found several useful tutorials, as well as application notes and data sheets.

Optimised measurements

Low-frequency voltages and currents can be rectified to dc for measurement using simple diode circuits. With diodes connected in the feedback loop of a high-gain amplifier, their threshold voltage is overcome, allowing millivolt level signals to be measured.
The 30 -year-old National Semiconductor briefing note LB-8, discusses accurate methods to measure millivolt level sinewave signals up to 100 kHz , using relatively slow op-amps. ${ }^{5}$ This note describes a precision, averageresponding ac-to-dc converter. Built using LM101A op-amps with feedforward compensation and IN914 diodes, it attained 1\% accuracy at 100 kHz , Fig. 1.
This circuit's high-frequency performance is determined in part by the switching speed of the diodes used and the op-amp's loss of gain in overcoming the diodes threshold voltage.
Synchronous detection systems which perform full wave rectification without using diodes offer improved accuracy at high frequencies and with millivolt signals. Two widely used examples - the Motorola MC1330 and Mullard TCA270 - working at 39.5 MHz , were responsible for greatly improving video detector performance in domestic solid state colour televisions in the early seventies.
The AD630 commutating modem

Root-mean-square

The above circuits all respond to the average level of the detected signal. They can be adjusted or calibrated to indicate the peak or rms equivalent values, of a rectified sinewave.
The ratio of volts peak to volts rms, called the 'crest factor' of the waveform, is important. A sinewave has a crest factor of 1.414. Given a

IV peak input signal, an average reading meter will be adjusted to read 0.707 V rms. This meter will then over-read by 11% when measuring a 1 V peak symmetrical square wave, i.e. a unity crest factor.

Since the rms value of a waveform is defined as its heating value in a load, calorimetric methods could be used. These would provide the most

IC from Analog Devices, ${ }^{6}$ simplifies synchronous detection. I mentioned this chip in the October 1998 issue, where it was used to recover a wanted signal from overwhelming background noise.
The AD630 is essentially two switch-selectable, identical op-amps. Output from the selected input amplifier is directed to the communal output buffer. The device can be used as a precision rectifier absolute value detector. With some -100 dB of input channel crosstalk at 10 kHz , this chip is optimised for wide-dynamic-range, low-frequency use. At higher frequencies I find it outperforms the traditional diode feedback op-amp arrangement, Fig. 2.
Burr-Brown offers a similar arrangement, but intended for high frequencies, which they call a SWOP-amp. ${ }^{7}$ Their OPA678 features a 200 MHz bandwidth and 4 ns input switching.

Fig. 2. The AD630 balanced modulator/demo dulator integrated is easily configured to provide a nodiodes, full-wave synchronous rectifier. The phase shifting circuit compensates for signal delays in the AD524 preamp, ensuring precise waveform coincidence. This 'ideal' behaviour is clearly seen in the attached oscillogram.

Fig. 3. Using only standard devices from the early seventies, this true rms detector was usable to 500 kHz . Accuracy was typically 2% for a $20 \mathrm{~V} k$-pk input

Fig. 4. While using
two expensive components, this true rms detector provides an exceptional 80 dB dynamic range and a constant bandwidth, which is limited to 2 MHz by the AD636. The AD600 variable gain ' X^{\prime} amplifier has a 35 MHz bandwidth.
accurate measurements for laboratory use, but can be slow and cumbersome.
A quick responding and portable electronic version of the calorimetric method has been devised. It has two identical heating elements each coupled to a temperature sensor and mounted in an insulated, isothermal enclosure. The heating effect of the unknown waveform, applied to one heating element, is temperature matched by
a known de supply to the comparison element.

These techniques were used in 1965 to produce the Hewlett Packard HP3400A voltmeter, which provided accurate rms measurements from 1 mV to 300 V at frequencies to 10 MHz .

To reduce costs, semiconductor makers explored simpler integrated circuit methods to solve the rms equation. One early method was to first square then integrate the
voltage waveform, and finally to compute the square root of this running average. Known as an 'explicit' computation, this system works well with low crest factor waveforms. But it has problems coping with the dynamic range of the squared signal peak amplitudes, of high crest factor waveforms.
To eliminate this problem, the method of 'implicit' computing was devised, in which the near constant output value is used to divide the

squared signal prior to its integration.
In 1973, National Semiconductor published a true rms detector application note using five op-amps and diodes with four transistors. ${ }^{5}$ Called Linear Brief 25, this application note can downloaded from National's Web site, Fig. 3. A similar arrangement but integrated into one 16 -pin dual-in-line package, was later marketed as the LH0091 true rms to dc converter.
The 500-page 'non-linear circuits handbook', first published in 1974 by Analog Devices, still appears in the company's literature list. It explores all aspects of the various methods, used to measure or compute the rms of any waveform.
Today, most commercially available integrated circuit rms to dc converters are based on this implicit computation method, as typified by the $x x 536 \mathrm{~A}$ and $x \times 636$ converters available from both Analogue Devices ${ }^{6}$ and Maxim. ${ }^{8}$
Depending on input signal magnitude, these parts can accurately convert waveforms having a crest factor of six at frequencies up to 1 MHz . The informative 'RMS-to-DC
Converters Ease Measurement Tasks' application note can be downloaded from the Analog

Devices Web page.
If you need a wider dynamic signal range than offered by these packages, the AD636 can be used together with the $A D 600$ low noise variable gain amplifier. This combination provides a constant 2 MHz bandwidth with 80 dB dynamic range and a 2 MHz upper frequency limit. It produces a decibel-scaled output voltage.
I have used just this combination for one of my test meters. Due to the very wide gain bandwidths of this configuration though, much care is needed with your layout, Fig. 4.

Analog Devices' data sheet for the $A D 834$ describes how to use two of these extremely fast, four-quadrant multiplier chips, to produce a 1 kHz to 500 MHz rms-to-dc converter. ${ }^{6}$ Designed to accept a +15 dBm maximum input, the accuracy of the circuit at small signal levels is limited by the inevitable offset voltages. Correct physical construction and layout is critical to realising the potential of this very high speed circuit, Fig. 5.
Linear Technology has devised an integrated circuit solution for the calorimetric techniques. ${ }^{9}$ The company's LT1088 - a 14-pin DIL device first listed in their 1990 databook - is still available. It provides both 50 and 250Ω matched
heater pairs together with matched diodes which are used to sense both heaters temperature.
This circuit, used with six opamps, replicates the rms-to-dc functions used in the Hewlett Packard HP3400A meter. This sensitive, thermally based true rms-to-dc converter integrated circuit provides conversion from dc to 10 MHz with less than 1% error and a voltage gain of 10, Fig. 6.
The LT1088 converter is capable of exceptional performance. It has a 300 MHz 3 dB bandwidth and 2% accuracy at 100 MHz . Its heater systems can handle extreme crest factors of $50: 1$, it has a 35 V peak maximum heater input together with a $20: 1$ dynamic range.
Full details can be found in the company's application note 61. This publication highlights how easy it is to implement the design using modern components - relative to the problems that Hewlett Packard faced when implementing the same design in $1965 .{ }^{9}$

In the first of three articles explaining rf mixers, Joe Carr looks at their operation and demonstrates the basic single-ended diodemixing configuration.

ixer circuits are used extensively in radio frequency electronics. Applications include frequency translators - in radio receivers - demodulators, limiters, attenuators, phase detectors and frequency doublers.

Fig. 1a) The basic linear mixer is actually a summer; b) is the linear mixer's symbol.

Defecting receiver radiation

There is a number of possibly apocryphal legends from World War II of receiver local-oscillator radiation back through the antenna circuit being responsible for an enemy detecting the location of the receiver, so this effect is rather important.
One such legend is from British airborne radar history. According to one source of doubtful authority, German submarines sailing on the surface learned to listen for Beaufighter centimetric radars using a receiver that was poorly suppressed.
The aircrews then learned that they could locate the submarine with just the radar's receiver tuned to listen for the submarine receiver's local oscillator. Anyone with first hand knowledge of this matter please let me know.

There is a number of different approaches to mixer design. Each of these approaches has advantages and disadvantages, and these factors are critical to the selection process.

Linear versus non-linear mixers

The word 'mixer' is used to denote both linear and non-linear circuits. And this situation is unfortunate because only the non-linear is appropriate for the rf mixer applications listed above.
So what's the difference? The basic linear mixer is actually a summer circuit, as shown in Fig. 1a). Its schematic symbol is shown in Fig. 1b). Some sort of combiner is needed. In the case shown, the combiner is a resistor network. There is no interaction between the two input signals, F_{1} and F_{2}. They will share the same pathway at the output, but otherwise do not affect each other. This is the action one expects of microphone and other audio mixers.

If you examine the output of the summer on a spectrum analyser, Fig. 2, you will see the spikes representing the two frequencies, and nothing else other than noise.
The non-linear mixer is shown in Fig. 3a), and the circuit symbol in Fig. 3b).
While the linear mixer is a summer, the non-linear mixer is a multiplier. In this particular case, the non-linear element is a simple diode, such as a 1N4148 or similar devices.
Mixing action occurs when the non-linear device, such as diode D_{1}, exhibits impedance changes over cyclic excursions of the input signals. In order to achieve switching action one signal must be considerably higher than the other. It is commonly assumed that a 20 dB or more difference is necessary.
Whenever a non-linear element is added to the signal path a number of new frequencies will be generated. If only one frequency is present, then we would still expect to see its harmonics. For example, F_{1} and $n F_{1}$ where n is an integer. But when two or more frequencies are present, a number of other products are also present. The output frequency spectrum from a non-linear mixer is,
$\pm F_{o}=m F_{1} \pm n F_{2}$
where F_{O} is the output frequency for a specific (m, n) pair, F_{1} and F_{2} are the applied frequencies and m and n are integers or zero, i.e. $0,1,2,3$..
There will be a unique set of frequencies generated for each (m, n) ordered pair. These new frequencies are called mixer products or intermodulation products. Figure 4 shows how the output would look on a spectrum analyser. The original signals F_{1} and F_{2} are present, along with an array of mixer products arrayed at frequencies away from F_{1} and F_{2}.
The implication of equation (1) is that there will be a large number of (m, n) frequency products in the output spectrum. Not all of them will be useful for any specific purpose, and may well cause adverse effects.
So why do we need mixers? There are other ways to generate various frequencies, so why a frequency translator such as a heterodyne mixer?
The principal answer is that the mixer will translate the frequency, and in the process transfer the modulation of the original signal. So, when an amplitude-modulated signal is received, and then translated to a different frequency in the receiver, the modulation characteristics of the AM signal convey to the new frequency essentially undistorted. Those of you who know that there is no such thing as a 'distortionless' circuit, please refrain from snickering. Perhaps the most common use for mixers, in this regard, is in radio receivers.

The receiver mixer

The vast majority of radio receivers made since the late twenties have been superheterodynes. The process of heterodyning is the translation of one frequency to another by the use of a mixer and local oscillator, or LO, Fig. 5a).
The antenna picks up a radio signal of frequency F_{RF}, and mixes it with a local oscillator signal F_{LO}. This produces a number of new frequencies in the spectrum defined by equation (1), but those of principal interest are the cases where $(\mathrm{m}, \mathrm{n})=(1,1)$, i.e. the sum and difference frequencies $F_{\mathrm{RF}}+F_{\mathrm{LO}}$ and $F_{\mathrm{FR}}-F_{\mathrm{LO}}$.
An intermediate-frequency filter will select one of these second-order products, and the other is rejected. Why would receiver designers use this approach?
The principal reason is that it is very much easier to design the receiver using this approach. It is much easier to provide the gain and selectivity filtering needed to make the receiver work properly at a single frequency. This frequency, regardless of whether the sum or difference product is used, is called the intermediate frequency, or IF , or F_{IF}. The high gain stages, and the bandpass filtering, are all provided in the IF stages.
At one time, it was universally the practice to select the difference frequency, but today the sum frequency is often selected. It is quite common to find high-frequency shortwave receivers with a dual conversion scheme in which F_{RF} is first up-converted to the sum frequency, and then a new mixer down-converts it to a lower second intermediate frequency.
In the remainder of this article, F_{1} and F_{2} will be expressed much of the time as $F_{\text {RF }}$ and F_{LO} in view of the receiver being the most common use for mixer devices.
The sum or difference second-order products are selected for the IF, but the other frequencies don't simply evaporate. They can cause serious problems. But more of that later.

Simple diode mixer

Figure 5b) shows a block diagram circuit for a simple form
of mixer. Although not terribly practical in most cases, the circuit has been popular in a number of receivers in the high uhf and microwave regions since World War II
The two input signals are the rf and local oscillator. The oscillator signal is at a very much higher level than the rf signal. It is used to switch the diode in and out of conduction, providing the non-linearity that mixer action requires.
There are three filters shown in this circuit. The rf and local oscillator filters are used for limiting the frequencies that can be applied to the mixer. In the case of the rf port it is other radio signals on the band that are being suppressed.

Fig. 2. Spectrum display of the output of a linear mixer, demonstrating the summing effect.

Fig. 3a) Unlike the
linear mixer, which is essentially a summer, the non-linear mixer is a multiplier; b) is the non-linear mixer's symbol.

Fig. 4. Spectrum display of the output of a non-linear mixer.

Fig. 5a) Block diagram of a superheterodyne receiver; b) basic single-ended unbalanced mixer circuit.

Fig. 6. Image frequency for high-side injection mixer. Image response is due to the fact that two frequencies satisfy the criteria for the intermediate frequency.

Double-balanced mixers. Both $F_{\text {RF }}$ and $F_{\text {LO }}$ are suppressed in the output. The single-balanced mixer will also suppress even order local-oscillator and rf harmonics, $2 F_{\mathrm{LO}}, 2 F_{\mathrm{RF}}$, $4 F_{\mathrm{LO}}, 4 F_{\mathrm{RF}}, 6 F_{\mathrm{LO}}, 6 F_{\mathrm{RF}}$, etc.). High port-to-port isolation is provided.

Spurious responses

The IF section of a receiver will use one of the second-order products in order to convert F_{RF} to F_{IF}. Ideally, the receiver would only respond to the single radio frequency that meets the need. Unfortunately, reality sometimes rudely intervenes, and certain spurious responses might be noted.
A spurious response in a superheterodyne receiver is any response to any frequency other than the desired F_{RF}, and which is strong enough to be heard in the receiver input. Most of these 'spurs' are actually mixer responses, although overloading the rf amplifier can cause some responses as well.
The mixer responses may or may not be affected by premixer filtering of the rf signal. Candidate spur frequencies include any that satisfy the following equation,

$$
\begin{equation*}
F_{\text {spur }}=\frac{n F_{L O} \pm n F_{I F}}{m} \tag{2}
\end{equation*}
$$

Image

The image response of a mixer is due to the fact that two frequencies satisfy the criteria for F_{IF}.
Figure 6 shows how the image response works. The frequency that satisfies the image criteria depends on whether the local oscillator is high-side injected, in which case $F_{\mathrm{LO}}>F_{\mathrm{FR}}$, or low-side injected, when $F_{\mathrm{LO}}<F_{\mathrm{RF}}$.
In the high-side injection case $(\mathrm{m}, \mathrm{n})=(1,-1)$, shown in Fig. 6, the image appears at $F_{\mathrm{RF}}+2 F_{\mathrm{IF}}$. If low-side injection, $(\mathrm{m}, \mathrm{n})=(-1,1)$, is used, then the image is at $F_{\mathrm{RF}}-2 F_{\text {IF }}$. The image always appears on the opposite side of the LO from the RF, so will be $F_{\mathrm{LO}}+F_{\text {IF }}$ for high-side injection and $F_{\mathrm{LO}}-F_{\text {IF }}$ for low-side injection.
Consider an actual example based on an AM broadcastband receiver. The IF is 455 kHz , and the receiver is tuned to F_{RF} of 1000 kHz .
The usual procedure on AM broadcast-band receivers is high-side injection, so,

$$
F_{\mathrm{LO}}=F_{\mathrm{RF}}+F_{\mathrm{IF}}=1000 \mathrm{kHz}+455 \mathrm{kHz}=1455 \mathrm{kHz} .
$$

The image frequency appears at,

$$
F_{\mathrm{RF}}+2 F_{\mathrm{IF}}=1000 \mathrm{kHz}+(2(455 \mathrm{kHz})=1910 \mathrm{kHz} .
$$

Any signal on or near 1910 kHz that makes it to the mixer rf input port will be converted to 455 kHz along with the desired signals.

Fig. 7. Another set of images occurs when (m, n) is $(2,-2)$ for the low side or $(-2,2)$ for the high side - so-called half-If response.

The problem is complicated by the fact that it is not just actual signals present at the image frequency, but noise as well. The noise applied to the mixer input is essentially doubled if the receiver has any significant response at the image frequency.

Pre-mixer filtering is needed to reduce the noise. Receiver designers also specify high intermediate frequencies in order to move the image out of the passband of the rf pre-filter.

Half-IF. Another set of images occurs when (m, n) is $(2,-2)$ for low-side or $(-2,2)$ for high side. This image is called the half-IF image, and is illustrated in Fig. 7. An interesting aspect of the half-IF image is that it is created by internally generated harmonics of both $F_{\text {RF }}$ and $F_{\text {LO }}$. For our AM broadcast-band receiver where $F_{\mathrm{RF}}=1000 \mathrm{kHz}$, $F_{\mathrm{LO}}=1450 \mathrm{kHz}$ and $\mathrm{F}_{1 \mathrm{~F}}=450 \mathrm{kHz}$, then the half-IF frequency is $1000+(450 / 2)=1222.5 \mathrm{kHz}$.

IF feedthrough. If a signal from outside passes through the mixer to the IF amplifier, and happens to be on a frequency equal to $F_{\text {IF }}$, then it will be accepted as a valid input signal by the IF amplifier. The mixer RF-IF port isolation is critical in this respect.

High-order spurs

Thus far we have considered only the case where a single radio frequency is applied to the mixer. But what happens when two radio frequencies $-F_{\mathrm{RF} 1}$ and $F_{\mathrm{RF} 2}$ - are applied simultaneously? This is the actual situation in most practical receivers. There is a large number of higher order responses - i.e. where m and n are both greater than 1, defined by $m F_{\mathrm{RF} 1} \pm n F_{\mathrm{RF} 2}$.

The worst case is usually the $2 F_{\mathrm{RF} 1}-F_{\mathrm{RF} 2}$ and $2 F_{\mathrm{RF} 2}-F_{\mathrm{RF} 1}$ third-order products because they fall close to $F_{\mathrm{RF} 1}$ and $F_{\mathrm{RF} 2}$ and may be within the device passbạnd.

Although any of the spurs may prove difficult to handle in some extreme cases, the principal problems occur with the third-order difference products of two rf signals applied to the rf port of the mixer, $2 F_{\mathrm{RF} 1}-F_{\mathrm{RF} 2}$ and $2 F_{\mathrm{RF} 2}-F_{\mathrm{RF} 1}$.

Figure 8 illustrates this effect for our AM broadcast bandreceiver. Suppose two signals appear at the mixer input: $F_{\mathrm{RF} 1}=1000 \mathrm{kHz}$ and $F_{\mathrm{RF} 2}=1020 \mathrm{kHz}$. This combination is highly likely in the crowded AM broadcast band!
The third-order products of these two signals hitting the

Fig. 9. Noise balance deteriorates if local-oscillator harmonics are present.
LO harmonic spurs. If the harmonics of the local oscilla- tor are strong enough to drive mixer action, then signal clustered at $\pm F_{\text {IF }}$ from each significant harmonic will also cause mixing. Figure 9 shows this effect. The passband of the premixer filter is shown as dotted line curves at $F_{\mathrm{LO}} \pm F_{\mathrm{IF}}$, $2 \mathrm{~F}_{\mathrm{LO}} \pm \mathrm{F}_{\mathrm{IF}}$ and $3 \mathrm{~F}_{\mathrm{LO}} \pm \mathrm{F}_{\mathrm{IF}}$.

LO noise spurs. All oscillators have noise close to the LO frequency. The noise may be due to power supply noise modulating the LO , or it may be random phase noise about the LO. In either case, the noise close to the LO, and within the limits imposed by the IF filter, will be passed through the mixer to the IF amplifier.

What's next?

In part two of this three-part series on of mixers, Joe looks at intermodulation distortion, third-order intercept point, mixer losses, noise figure and noise balance, and gets into actual circuits by considering the single-ended unbalanced active mixer circuit.

Perfect amplifier fidelity is thought to be unattainable. But lan Hickman explains here that you could indeed make a distortionless amplifier, if only...

Zero distortion?

wisdom says beauty is in the eye of the beholder, and surely high-fidelity audio is in the ear of the hearer. If a system sounds good to you, then it is good - for you.
Strangely, the reverse also seems to hold true. If you are an ardent advocate of this or that particular amplifier architecture, then that sort of amplifier will sound best to you.

Distortion background

In the earliest days of wireless, distortion was not an issue; inadequate sensitivity and sound output were the main concern of designers. But in the later 1930s, once battery valves with their 2 V filaments, and balanced iron-armature loudspeakers had been replaced by mains superhets with a few watts of output, distortion became an important consideration.
Output triodes, such as the 4 V directly heated PX4 used in my father's pride and joy - a Cossor model 365 - were much favoured for their purity of tone. True, they were far from distortion free, but the distortion they introduced was mainly second harmonic.
This introduces not only second harmonics of all the tones present, but also sum and difference terms. However, the distortion was only severe on very loud passages, with the volume control turned well up, and the ear soon became used to
it. At all other times, distortion was minimal, certainly much less noticeable than the muddy sound produced by the sound tracks of movies of the era.
Later, pentodes as output valves became popular with designers, perhaps because the extra gain they provided enabled adequate performance to be achieved with a line-up including one less valve. But pentodes were said to exhibit larger amounts of third-order distortion. This brings not only third harmonics, but third-order intermodulation products, producing, it was said, a shriller tone.
The designer's answer was the incorporation of a vicious tone control. This enabled the listener to chop off such treble response as had managed to survive the selectivity of the intermediate-frequency transformers - and most listeners did. A common view was that the 'mellow position' of the tone control was best for music, and the 'bright position' for speech, which was otherwise often so muffled as to be difficult to follow.

The current scene

Nowadays, power amplifiers are available that contribute only very small amounts of distortion - far less than anything that has been available in the past. Yet specialist designers are still seeking ever lower levels of distortion in the power amplifier - an obsession which may seem perverse, in view
of the blithe way they ignore distortion in pick-ups and particularly loudspeakers.
Perhaps the reason is that a quoted power-amplifier distortion level of nought point umpteen noughts one is seen as a selling point, whereas loudspeaker manufacturers trumpet their wide frequency response but, wisely, do not quote distortion levels.

The fringe

In addition to the more orthodox school of power-amplifier designers, there is a fringe world of would-be audio gurus who strenuously maintain the superiority of this or that type of amplifier, usually with no recourse to quoted performance measurements. Thus there are those who swear by valve amplifiers in general.
Others are even more specific, expounding the virtues of triode valve single ended amplifiers in particular. After all, they only produce a little second harmonic, which isn't important, is it? And they don't produce any of those those terrible third-order products.
The more extreme exponent of this school even advocates the abandonment of negative feedback, though what reasoning there is behind this view is usually not stated. At least with no negative feedback, transient intermodulation distortion due to overload of intermediate stages when the output stage clips, cannot occur.

Benefits of negative feedback

As is well known, negative feedback reduces not only the gain, but also gain variation with frequency. It flattens the frequency response. It also reduces noise and hum, assuming of course that these have originated within the loop. But probably its most highly regarded effect is the reduction of distortion that it can offer.
The higher the 'gain within the loop', the greater is the reduction of distortion. The gain within the loop is given by the open-loop gain minus the gain reduction effected by the application of the negative feedback, or nfb.
A large degree of nfb, evidenced by a large gain reduction when the loop is closed, reduces the distortion substantially: $D_{\mathrm{f}}=D_{\mathrm{o}} /\left(1-\beta A_{0}\right)$. Thus if the open loop gain A_{0} is 1000 and the feedback fraction β is $-1 / 100$, the distortion with feedback D_{f} will be one eleventh of the open loop distortion D_{0}, while the gain has fallen from $\times 1000$ to $\times(1000 / 11)$.
It looks like a pure performance improvement, apart from the need to make up for the lost gain with a preamplifier. But as pointed out in that excellent text of reference 1 , in certain circumstances nfb can make the distortion worse. By way of demonstration, the reference's author reproduced a graph from ref. 2, shown here as Fig. 1.

No such thing as a free lunch

The logic seems inescapable. If an open-loop amplifier displays only second harmonic distortion, then a modest amount of $n f b$ will result in the introduction of third and higher harmonics not previously there. For with only a modest amount of nfb , the improvement is limited so there must still be some second harmonic $2 f_{0}$ at the output.
A fraction of the $2 f_{0}$ content will be fed back to the input and thus be applied, along with the original input f_{0}, to the non-linearity. This, being a second-order effect, will result in the production of sum and difference products between f_{0} and $2 f_{0}$. The result is a small sum term at $3 f_{0}$, and by the same
argument, some of this will be fed back and produce an even smaller component at $4 f_{0}$, and so on.
The lesson seems clear; if you are considering negative feedback, use lots, or none at all. However, this seems to go against my own experience, and that of many a designer. It is common knowledge that even a modicum of nfb is highly beneficial in many instances. For instance it is commonly used to improve the fidelity of a tranny portable from shocking to poor.

What do you mean by distortion?

If an amplifier shows only even-order distortion, and a lot of it at that - say 10% - then it must be true that a little nfb will

Fig. 1. Effect of different amounts of negative feedback on an amplifier with predominantly second harmonic distortion. (Reproduced by courtesy of Newnes)

Fig. 2. Anode characteristics of a typical 6/5 triode.
introduce an appreciable amount of third harmonic, as per Fig. 1. And if you subscribe to the view that a given amount of third-order distortion sounds worse than the same percentage of second, which I would not dispute, then heavy nfb sounds a good idea, subject to the usual stability criteria.
But how many amplifiers really show nothing but second harmonic distortion? How about a big output triode like a PX4 or even the much beefier $300 B$? This latter device is frequently advertised in these pages at a mere $£ 50$ or so. Add a suitable output transformer, power supply and driver stages, and for only one or two hundred pounds you could build yourself a single ended class A leviathan - with or without nfb to taste.

Fig. 4. Showing the $1.12 \mathrm{~V} \mathrm{pk} / \mathrm{pk}$ 1kHz input in Fig. 3, with the output superimposed on it. Span 0 to $10 \mathrm{kHz}, 10 \mathrm{~dB} / \mathrm{div}$ vertical, 30 Hz resolution bandwidth, $2 \mathrm{~s} /$ div sweep rate.

In practice though, second-order distortion effects seldom appear on their own. I do not have characteristics of a large triode output valve to hand, but Fig. 2 shows those of a small amplifier triode, the $6 J 5$, copied more or less exactly from reference 3. Two different values of load line are shown, the exact load chosen being, as usual, a compromise between power output and distortion.
Note the two volt increments of grid bias, and the load line distances A, B, C, etc., cut off between them. If $A=B=C$, etc., then the change in anode current for each 2 V step is constant, and the stage is perfectly linear. This is clearly not the case.
Now suppose that $A-B=X$ and that $B-C$ also equals X, and so on. Then by the algebra of finite differences - closely related to differentials - the second differences of anode current are constant. As a result, only second-order distortion is present.
If however, X is not constant over the whole range of grid input voltages, then third-order and or higher order distortion will be present.

Suck it and see

Not having a large triode to hand, or even a $6 J 5$, I still wanted to look at the effect of a modest amount of nfb, like 10 dB , on second harmonics. So I built up the circuit of Fig. 3, with a diode to provide a deliberate amount of second harmonic distortion built in.
Figure 4 shows the input and output, in stored traces. The input was a 1.12 V peak to peak 1 kHz sinewave from a very low distortion oscillator, ref. 4. Its trace is visible in Fig. 4 reaching to top of screen at one division in from the left, and remaining below the spectrum analyser's noise floor thereafter.
The gain of the HP3580A spectrum analyser was then adjusted so that the fundamental component of the circuit's output was superimposed on the stored input trace. You can see that, at -20 dBc , the distortion is indeed principally second harmonic, as would be expected from a diode. But there are substantial harmonics up to the fifth, whilst the sixth and seventh are also visible above the analyser's noise floor, which is almost 90 dB down.
Table 1 gives the levels of the harmonics, relative to the fundamental, as the amplitude of the fundamental is decreased in 10 dB steps.
Thus, for example, for each 10 dB reduction in the fun-

Fig. 6. Showing the performance of the circuit of Fig. 5, with and without 10 dB of negative feedback. Span 0 to 10 kHz , $10 \mathrm{~dB} /$ div. vertical, 30 Hz resolution bandwidth, $2 \mathrm{~s} / \mathrm{div}$ sweep rate.
damental, the level of the second harmonic falls by 10 dB relative to the fundamental - a reduction of 20 dB in absolute terms. Likewise, for a 10 dB reduction in input level, the third harmonic falls by 30 dB in absolute terms, as expected. For in general, for every 1 dB reduction in input level, the level of the nth harmonic falls by $n \mathrm{~dB}$.
Now 10% second harmonic was a bit much for the experiment I had in mind. Even triode output valves without feedback generally have their power output rated at the 5\% distortion level. So the circuit was modified as shown in Fig. 5
With the negative feedback not connected, the $25 \mathrm{k} \Omega$ potentiometer was adjusted so that the gain from A to B was unity, and the input amplitude set to $1.12 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ as before. The output spectrum was measured and stored, appearing as the trace slightly offset to the left in Fig. 6.
Next, the $4.7 \mathrm{k} \Omega$ feedback resistor was connected, reducing the gain by 10 dB . The input was increased to restore the previous output level, the spectrum measured and recorded as the trace slightly offset to the right in Fig. 6.
Application of a modest 10 dB of negative feedback can be seen to have reduced the level of the second harmonic by about the expected 10 dB , but the reduction in third harmonic is nearer 15 dB . This is presumably due to the third harmonic component, generated from the second harmonic by the mechanism discussed earlier, combining with the third harmonic component that was present originally.
However, besides demonstrating the reduction of distortion by negative feedback, the main conclusion I drew from the experiment and the triode characteristic mentioned earlier, is an important one. It is that in the real world, second harmonic distortion in a single-ended stage is always accompanied by third, albeit often at a lower level.
By contrast, although a well balanced push-pull stage may exhibit some odd-order distortion, it can achieve very low levels of second-harmonic distortion - even before the application of any nfb .

The ideal amplifier

There may be those who deny that second-harmonic distortion is always accompanied in practice by third, saying that I just haven't looked hard enough. But if it is indeed possible to make an audio amplifier with no third harmonic distortion, using a big thermionic triode or whatever, then a fortune awaits its inventor. And this is so, however bad the second-harmonic distortion may be, as I shall demonstrate.
Figure 7 shows the outputs of two amplifiers, the distortion in each consisting solely of 10% second harmonic, driven in antiphase. Also shown is the difference between them, which is the voltage which would be applied to a floating bridge-tied load loudspeaker, or BTL. This looks very like a sinewave and the reason is not far to seek.
The shortfall on the negative peak of one amplifier is compensated for by the peakier output of the other. You might imagine that this would reduce the 10% of second harmonic distortion in each amplifer to 1% or less of third across the loudspeaker. While this might sound like a good bargain, in practice things are even better.
The flattening and peaking of the fundamental is due to the second-harmonic component. And the positive and negative peaks of this are of course equal in amplitude. So the sharpening of one peak compensates exactly for the flattening of the other.
Consequently, the second harmonic distortion just does not appear across the loudspeaker, and the same applies to any other even-order harmonics. Notice however, that the
while the amplitude across the load is ± 2 arbitrary units, the swing at the output of each individual amplifier falls short of -1 unit but exceeds +1 unit.
Thus the presence of the second-order distortion eats away slightly at the maximum available power output, if clipping is to be avoided. If even a small degree of clipping be allowed, it will affect equally both positive and negative

Figs 7, 8. The upper waveforms are simulations of the outputs of two amplifiers, the distortion in each consisting solely of 10% second harmonic, driven in antiphase. Also shown is the difference between them, which is the voltage which would be applied to a BTL loudspeaker. Fig. 8. Waveforms in the lower diagram are as Fig. 7 , but show the sum of the two distorted outputs. This consists purely of the second harmonic component with respect to ground. But as it is a common-mode signal, it does not appear across the speaker terminals, assuming the speaker is floating.

$$
\begin{aligned}
& x:=-10,-9.98 . .10 \\
& y(x):=\cos (x)+0.1 \cos (2 x)
\end{aligned}
$$

amplifiers show only even order distortion - 2nd, 4th, 6 th etc. harmonics).

Figure 8 shows the two distorted outputs again, together, this time, with their sum. This appears as a common-mode component at the outputs, which will not affect the loudspeaker, assuming that it is operated as a floating BTL. The arrangement of a distortion free amplifier is shown in Fig. 9.
The arrangement only succeeds on the crucial assumption that the two amplifiers individually exhibit zero odd-order
distortion. This is probably more likely to be achievable - if at all - if each amplifier is single ended. For a push-pull arrangement will usually convert even-order distortion in each half of the pair, into odd order distortion in their output.
Each amplifier in Fig. 9 could consist of a large triode, bipolar transistor of fet. For matching, the triode would require an output transformer. Having lower operating impedance levels, a bipolar transistor or fet stage could use choke coupling, or some other high impedance arrangement, such as a constant current source.
The possibilities are endless - provided only that you can design that elusive but essential odd-order-distortion-free amplifier. If you can, negative feedback is not needed, so there can be no nfb-induced transient intermodulation distortion in the event of overdrive.

References

1. 'Valve and Transistor Audio Amplifiers,' J. Linsley Hood, Newnes 1997, ISBN 0750633565.
2. Article by P. J. Baxandall, Wireless World, December 1978, pp. 53-56.
3. 'Radio Designer's Handbook,' F. Langford-Smith, Newnes 1997 (reprint), ISBN 0750636351.
4. 'Low-Distortion Audio Oscillator,' Hickman's Analog and RF Circuits, Newnes 1998, ISBN 0750637420.

HOW DOES YOUR EQUIPMENT MEASURE UP? AT STEWART OF READING THERE'S ALWAYS SCOPE FOR IMPROVEMENTI,

GOULD OS300 Dual trace 20 MHz . Lightweight.

GOULD OS 1100 Dual trace, 30 MHz delay, very bright. Supplied with
manual and 2 probep. C201
TEKTRONIX 2215 - Dual Trace 60 MHz

468 Digital Storage Dual Trace 100 MHz DelayE550 466 Analogue Storage Dual Trace 100 MHz Delay . . 5250 485 Dual Trace 350 MHz Delay Sweep............... E 750 475 Dual Trace 200MHz Delay Sweep............... $£ 450$ 465 Dual Trace 100 MHz Delay Sweep................ $£ 350$ | HC 3502 | $5 m V$-20/Div: 0.2 Lu secs- |
| :--- | :--- |
| Dual Trace 20 MHz | 0.5 Secliviv $X-Y: X 5$ | Dual Trace 20 MHz 0.5 Sec/Div; $X-Y$ Y: $X 5$

Magnifier; TVSync etc.

PHILIPS PM3296A Dual Trace 400 Hz Dual TB Delay Cursors IEEE...e2250 TEKTRONIX 2465A 4Ch 350 MHz Delay Sweep Cursors etc. TEKTAONIX $2445 / 2445 \mathrm{~A} / \mathrm{B} 4 \mathrm{Ch}, 150 \mathrm{MHz}$ Delay Sweep Cursors etc.................................... $£ 900$ TEKIRONIX TAS 465 Dual Trace 100 MHz Delay
Cursors............ $£ 900$
TEKTAONIX 2235 Dual Trace 100 MHz Delay Cursors....................... $£ 900$
TEKTRONIX 2235 Dual Trace 100 MHz Delay
Cursors...... Cursors... 5500
|WATSU SS5711 PHILIPS $30552+1$ Ch 50 MHz Dual TB................ $£ 475$

NOW THIS IS RIDICULOUS!!!

MARCONI 2019 Synthesised AM/FM Sig Gen 80 KHz -1040MHz LCD Display Keyboard entry.

MARCON 2017 Phase Lock AMFM Sig 1024MHZ... MARCONI 2O22AMC Synthesised AMIFM S........................... MARCI-1GHz H.P. 8672 A Synthesised Sig Gen 2-18GHz....... $£ 6000$

H.P. 8640 A AM/FM Sig Gen

$500 \mathrm{KHZ}-1024 \mathrm{MHz}$ $500 \mathrm{KHz}-512 \mathrm{MHz}$ Version - $£ 250$ FARNELL PSG1000 Syn AMFM Sig Gen $10 \mathrm{KHz}-1$
1GHz Portable... 1GHz. Portable... 520 MHz Portable.. §450 RACAL 9081 Syn AMFM Sig Gen 5-520MHz.............. 400 MARCONI TF2015 AMFM Sig Gen 10-520MHz. £175 MARCONI 6311 Prog Sweep Gen 10 MHz -20GHz. $£ 4000$ H.P. 3325 A Syn Function Gen 21 HMz PHILIPS PM5134 Sweep Func Gen $0.001 H z$.20MHz......... $£ 3500$ PHILIPS PM5132 Sweep Func Gen $0.1 \mathrm{~Hz}-2 \mathrm{MHz}$. $£ 200$ MARCONI 2305 Modulation Meter $500 \mathrm{KHz}-2 \mathrm{GHz}$....... FARNELL AMM2000 Automatic Mod Meter, 10 Hz . RACAL 9008 Automatic Mod Meter $1.5 \mathrm{MHzz}-2 \mathrm{GH}$. .5200

STEWART of READING

110 WYKEHAM ROAD, READING, BERKS RGG 1 PL Telephone: $(0118) 9268041$ Fax: $(0118) 9351696$
Callers welcome 9 am- 5.30 pm Monday to Friday (other times by arrangement)

Sinelsquare. Meter. Battery Operated
(Batteries not supplied)......................
CLASSIC AVO METER
A Digital AVO DA 1163.5 digit Complete with Batteries
\& Leads Only 80

ANALOGUE MULTIMETER Model HC260TA ACOC volts DC current 10 amps; 17 ranges; Continuity volts DC Current 10 amps; 17 ranges; Continuity
Buzzer: Transistor Tester

BRANDNEW OSCLLLOSCOPES - NEVER USED

Handheld LCD display. 2 Channels $50 \mathrm{~ms} / \mathrm{s}$. Auto range 4 Digit DMM/Capacity/frequency counter. Battery operation or external 7.5-9.5V DC ie. AC adaptor pouch complete with 2 scope probes; DMM leads; Manual. For only £400

All Mag TV Trig etc unused and boxed with 2 probes

$100 \mathrm{KHz}-100 \mathrm{MHz}$ FM $0-100 \mathrm{KHz}$; Output - 19 dB . 99 dB AM $0-60 \%$; 32 preset memory; Digital display frequency and output Unused $£ 750$
Used £450

USED EQUIPMENT - GUARANTEED. Manuals supplied ordering. CARRIAGE AF STOCK. SAE or telephone for lists. Please check availabllity before ordering. CARRIAGE all units E16. VAT to be added to total of goods and carriage.

PLUG IN AND MEASURE
 12 bit $20 \mathrm{kH}+\mathrm{H}-5 \mathrm{MH}$ 200 KHZ $100 \mathrm{mVolt}-1200 \mathrm{Volt}$

TiePie introduces the HANDYSCOPE 2 A powerful 12 bit virtual measuring instrument for the PC

The HANDYSCOPE 2, connected to the parallel printer port of the PC and controlled by very user friendly software under Windows or DOS, gives everybody the possibility to measure within a few minutes. The philosophy of the HANDYSCOPE 2 is:
"PLUG IN AND MEASURE"
Because of the good hardware specs (two channels, 12 bit, 200 kHz sampling on both channels simultaneously, 32 KWord memory, 0.1 to 80 volt full scale, 0.2% absolute accuracy, software controlled $A C / D C$ switch) and the very complete software (oscilloscope, voltmeter, transient recorder and spectrum analyzer) the HANDYSCOPE 2 is the best PC controlled measuring instrument in its category.

The four integrated virtual instruments give lots of possibilities for performing good measurements and making clear documentation. The software for the HANDYSCOPE 2 is suitable for Windows 3.1 and Windows 95. There is also software available for DOS 3.1 and higher.

A key point of the Windows software is the quick and easy control of the instruments. This is done by using:

- the speed button bar. Gives direct access to most settings.
- the mouse. Place the cursor on an object and press the right mouse button for the corresponding settings menu.
- menus. All settings can be changed using the menus.

Some quick examples

The voltage axis can be set using a drag and drop principle. Both the gain and the position can be changed in an easy way. The time axis is controlled using a scalable scroll bar. With this scroll bar the measured signal (10 to 32 K samples) can be zoomed live in and out.

The pre and post trigger moment is displayed graphically and can be adjusted by means of the mouse. For triggering a graphical WYSIWYG trigger symbol is available. This symbol indicates the trigger mode, slope and level. These can be adjusted with the mouse.

The oscilloscope has an AUTO DISK function with which unexpected disturbances can be captured. When the instrument is set up for the disturbance, the AUTO DISK function can be started. Each time the disturbance occurs, it is measured and the measured data is stored on disk. When pre samples are selected, both samples before and after the moment of disturbance are stored.

The spectrum analyzer is capable to calculate an 8 K spectrum and disposes of 6 window functions. Because of this higher harmonics can be measured well (egg. for power line analysis and audio analysis)

The voltmeter has 6 fully configurable displays 11 different values can be measured and these values can be displayed in 16 different ways. This results in an easy way of reading the requested values. Besides this, for each display a bar graph is available.

When slowly changing events (like temperature or pressure) have to be measured, the transient recorder is the solution. The time between two samples can be set from 0.01 sec to 500 sec , so it is easy to measure events that last up to almost 200 days

The extensive possibilities of the cursors in the oscilloscope, the transient recorder and the spectrum analyzer can be used to analyze the measured signal. Besides the standard measurements, also True RMS, Peak-Peak, Mean, Max and Min values of the measured signal are available.

To document the measured signal three features is provided for. For common documentation three lines of text are available. These lines are printed on every print out. They can be used e.g. for the company name and address. For measurement specific documentation 240 characters text can be added to the measurement. Also "text balloons" are available, which can be placed within the measurement. These balloons can be configured to your own demands

For printing both black and white printers and color printers are supported Exporting data can be done in ASCII (SCV) so the data can be read in a
spreadsheet program. All instrument settings are stored in a SET file. By reading a SET file, the instument is configured completely and measuring can start at once. Each data file is accompanied by a settings file. The data file contains the measured values (ASCII or binary) and the settings file contains the settings of the instrument. The settings file is in ASCI and can, be read easily by other programs.

Other TiePie measuring instruments are: HS508 ($50 \mathrm{MHz}-8$ bit), TP112 ($1 \mathrm{MHz}-$ 12bit), TP208 (20MHz-8bit) and TP508 (50MHz-8bit).

Convince yourself and download the demo software from our web page: http://Muw.tiepie.nl.
When you have questions and / or remarks, contact us via e-mail: support@tiepie.nl

Total Package

The HANDYSCOPE 2 is delivered with two 1:1/1:10, switchable oscilloscope probe's, a user manual, Windows and DOS software. The price of the HANDYSCOPE 2 is $£ 299.00$ excl. VAT.

TiePie enginering (UK), 28 Stephenson Road, Insdustrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK Tel:01480-460028; Fax: 01480-460340

TiePie engineering (NL
Koperslagersstraat 37
8601 W SNEAK
The Netherlands
Tel: +31515415416
Fax +31515418819

NOW AVAIL ABLE

RANGER 2

The Complete, Integrated
 Schematic \& PCB Layout Package

Windows Ranger 2

For Windows 95 \& NT

- New Hierarchical Circuit
- Split Devices • Gate \& Pin Swap
- New Edit Devices in Circuit
- Copper Fill - Power Planes
- Autorouter • Back Annotation

Windows Ranger 2 with Specctra SP2
Ranger \& Specctra Autorouter provide the most cost
effective PCB Design system available. A powerful, intuitive system at an outstanding price!

Windows Ranger 2 Upgrade
Upgrade your existing PCB Package to Windows Ranger 2.

SPECLAL OFFER Ranger 2 Lite E 35 (Prices exc VAT/P\&P)

Demo Software -download from
http://biz.ukonline.co.uk/seetrax

Call 01730260062

Fax $01730267273 \begin{aligned} & \text { old Buriton Limeworks, Kiln Lane, } \\ & \text { Buriton, Petersfield, Hants. GU31 }\end{aligned}$

for Windows 95

Demo Software - available from our Web Address

CIRCLE NO. 120 ON REPLY CARD

ADVANCED ACTIVE AERIAL

The aerial consists of an outdoor head unit with a control and power unit and offers exceptional intermodulation performance: SOIP +90 dBm, TOIP +55 dBm . For the first time this permits full use of an active system around the If and mf broadcast bands where products found are only those radiated from transmitter sites.

- General purpose professional reception $4 \mathrm{kHz}-30 \mathrm{MHz}$
- 10dB gain, field strength in volts/metre to 50 Ohms.
- Preselector and attenuators allow full dynamic range to be realised on practical receivers and spectrum analysers.
- Noise -150 dBm in 1 Hz . Clipping 16 volts/metre. Also 50 volts/metre version.
\star Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$. * Stabilizer and Frequency Shifters for Howl Reduction \star Stereo Variable Emphasis Limiter $3 \star 10$-Outlet Distribution Amplifier $4 \star$ PPM 1.0 In-vision PPM and chart recorder \star Twin Twin PPM Rack and Box Units. * PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN $-50 /+6 \mathrm{~dB}$ drives and meter movements \star Broadcast Stereo Coders *

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG: Telophone: 01483 275997. Fax: 276477.

CONTROL \& ROBOTICS
 tom
 Milford Instruments

BASIC Stamps-- Re-Programmable - BASIC language - RS232 Serial ports - 8 or 16 I/O lines - SPI/DTMF
- Fast development

Scenix
Fastest 8-bit micro
50MIPS
Flash Eprom
18/28 pins
PIC16C5x

PIC16C5x pin replacement

Serial LCDs

- RS232 Serial interface - 2×16 to 4×40
- Simple 3-pin connection
- Integral Keypad option
- Large Numerics option
- Driver chips available for OEM use

3-Axis Machine

- Stamp 2 based
- Drills PCBs
- 3-Axis movement - Stepper drive
- 4 thou resolution
- Win 3.1

Servo Controller

- Control up to 8 servos
- RS232

Commands

IR Decoder

- Uses any remote - 7 digital outputs - Toggle/momentary - Re-Programmable

Reader offer

 1GHz spectrum analyser Easy to connect and use The adaptor connects to the oscilloscope via two BNC connectors using true 50Ω impedance for minimal vswr. A calibration button allows a standard -30 dBm 50 MHz marker signal to be superimposed for precise amplitude and frequency checks.
TSA1000 1GHz spectrum analyser

Designated the TSA1000, this spectrum analyser is in the form of an adaptor that converts any standard oscilloscope into a 1 GHz spectrum analyser.
The instrument has a dynamic range of 70 dB with a typical accuracy of 1.5 dB . Its frequency range is from 400 kHz to over 1 GHz , and its bandwidth - i.e. selectivity - is 250 kHz .
A built-in crystal-controlled marker provides a precision means of frequency and amplitude calibration. The centre frequency can be adjusted over the full $0-1 \mathrm{GHz}$ range using a ten-turn control, and is displayed on a large 3.5 -digit liquid-crystal display.

Scan width is fully variable between 10 MHz and 1 GHz , and the scan rate can be set anywhere between 10 Hz and 200 Hz .

The TSA1000 is supplied with an operating manual describing the basics of spectrum analysis and EMC measurements. Its normal price is $\mathbf{\Sigma 5 8 1}$ including VAT in the UK. Electronics World readers can obtain it for just £499 - including VAT and carriage.

TSA1000 key specifications	
Frequency range	400 kHz to 1000 Mhz
Centre adjust	0 MHz to 1000 MHz
Bandwidth	250 kHz (-6dB typical)
Meter accuracy	1% of reading +1 MHz
Calibration marker	50 MHz fundamental, harmonics to 1 GHz
Scan width	1 MHz to $100 \mathrm{MHz} /$ div
Scan speed	0.5 ms to $35 \mathrm{~ms} / \mathrm{div}$
Amplitude	
Input impedance	50Ω
Amplitude range	-70 dBm to 0 dBm nominal
Amplitude scale	Logarithmic, $10 \mathrm{~dB} / \mathrm{div}$
Amplitude linearity	Typically $\pm 2 \mathrm{~dB}$
Amplitude flatness	Typically $\pm 1.5 \mathrm{~dB}$ 4 MHz to 1000 MHz
Max. input level	$+10 \mathrm{dBm}$
Calibration marker	$-30 \mathrm{dBm} \pm 1 \mathrm{~dB}$ at 50 MHz
Oscilloscope requirements	
Oscilloscope mode	$X-Y$ mode, DC coupling; bandwidth not critical
X-Input sensitivity	$0.5 \mathrm{~V} / \mathrm{div}$
Y-input sensitivity	0.5V/div

Designed and manufactured to IEC $1010-1-+5$ to $+40^{\circ} \mathrm{C}, 20 \%$ to 80% RH operating range $260(\mathrm{~W}) \times 88(\mathrm{H}) \times 235(\mathrm{D}) \mathrm{mm}, 1.4 \mathrm{~kg}$
Runs from $220 / 240$ or $110 / 120 \mathrm{~V}$ at $50 / 60 \mathrm{~Hz}$ - Full operating ranges $198-264 \mathrm{~V}$ or 99-132V - Power consumption 8VA max

Use this coupon for your order
 Please send me:

TSA1000 Spectrum analyser(s) at the fully-inclusive price of $£ 499$.
Name:
Address:

Tel no
Total £
Cheques payable to REED BUSINESS INFORMATION
Or debit my visa, master, access or switch card
Card type:
Card No:
Expiry date: Switch iss no
Please post this order to TSA1000, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Overseas readers can still obtain this discount but details vary according to country. For more information, write or e-mail jackie.lowe@rbi.co.uk. We endeavour to dispatch as soon as possible, but please allow 28 days for delivery.

Electronics World ten-year index

A genuine £20's worth.
The Electronics World softindex on CD contains information covering issues from January 1988 to May 1998. There are over 1300 references to articles and over 800 circuit ideas listed. Items can be selected by subject or author. The softindex runs in Windows $3 . x$, Windows ' 95 and NT.
To install, open the folder called Index on the CD and run the file callied Setup.exe either by double clicking on it or by typing d:lindexisetup.exe in the Run box accessible via the Start button in Windows 95/8.
The program follows the usual Windows conventions. There's plenty of on-screen help. Items in the index are fully cross-referenced - click on dates preceded with the > symbol to jump that reference. To go back, click on the Link button.
You can append your own notes to each of the sections of the index - click on the Notes button.

Spice CAD software

A working version of Spiceage from Those Engineers is included on the CD. This version is limited to 200 nodes and file saving is inhibited, but otherwise the program is fully working. Spiceage is in a folder, the name of which you will probably guess. The file to run for installing Spiceage is called Setupeval.exe. There's a readme.txt file if you need help with installing. Those Engineers can be reached on 01819060155.

Spice models

In the folder called IRSpice, you will find the complete library of spice models from International Rectifier - over 300 files.

Need data via fax?

International Rectifier's European fax-on-demand service provides automated document delivery by
means of a touch-tone phone. The system is available 24 hours a day; 7 days a week all year round and contains data sheets, application notes, design tips and other useful documents. To use the system call ++44 (0)1883 733420 - standard rate - and follow the easy to use voice menu system. Document numbers can be obtained from the system, our shortform catalogue or via our website <www.irf.com>.

Data and applications information

In the folder misnamed ZetexISpice, you will find an applications handbook covering discrete components and linear ICs from Zetex. There are 28 pdf-format application notes in the subfolder called 'An' and 40 design notes in the 'Dn' subfolder. Four further subfolders contain hundreds of data sheets on ICs, sensors and through-hole and surface-mount discretes. There are copies of the Acrobat reader V3.01 for Windows 3.1 and 95 on the CD in case you do not already have a copy. Spice models are available via Zetex's Web site http://www.zetex.com.

MARCH PA month's free

Internet trial

Evaluate one of the favourite paid-for Internet service

Demon Internet

 providers - Demon - free for a month. For full details of the offer and an installation guide, open the Demon folder and view or print the Write file called
Design analogue FPGAs

Design the analogue equivalent to an fpga. To find Windows software for designing and simulating a Trac circuit, look in the Zetex\Trac folder. There's a readme file and the Trac CAD software installation file, Start.exe.

CROWNHILL ASSOCIATES LIMITED The Old Bakery, New Barns Road, Ely, Cambs. CB4 7PW
 Tel: +44 (0)1353666709 Fax: +44 (0)1353666710

Low cost professional quality Smart Card Systems CHIPDRIVE EXTERN
Intelligent programmer for Smart Cards using the International Standard $\mathrm{T}=0$ or $\mathrm{T}=$ protocols also Memory and Secure Memory using $\mathrm{I}^{2} \mathrm{C}$, 2-wire \& 3-wire interfaces. Supplied with software to read and write to most popular secure smart cards, inc GSM, PAY PHONE and ACCESS CONTROL cards. $\mathrm{T}=0$ or $\mathrm{T}=1$ @ 3.579 MHz RS232 @ 9600-11500 bps Internal Supply / NI-MH $£^{569}{ }_{\text {+ } \text { vat }}$ Size: $100 \times 70 \times 80 \mathrm{~mm}$ Weight 660 Gram Supplled with CARDSERVER API for easy development of SmartCard
Applications using Visual Basic,
Delphi or $\mathrm{C}++$. Supplied with Sample Memory cards and Secure Smart cards.

CE Compliant

Chip Drive Intern

3.5" topy bay version of the chilporive

Applications are available to provide SmartCard controlled access of data on Hard Drives or "PC-LOCK", to control access to the whole PC Fully Compatible with TOOLBOX for systems development.
Supplied with CARDSERVER API $\mathbf{£ 8 5 . 0 0}+\mathbf{£ 5}$ P\&P + VAT

CE Compliant

CHIPDRIVE - micro

Fully Compatible with TOOLBOX for application development. Featuring the same functionality as Chip Drive Extern but in a small neat low cost package, similar in size to a smart card. Supplied with

CHIPDRIVE Developer Kit

CDK consists of: CD ROM containing cardserver.dII. Applications and Source code examples. CHIPDRIVE-micro a selection of Smart Cards offering protected memory, processor and memory cards. Typical uses are Control access, Pay Phone cards and Data transport. PIN codes for the cards are supplied along with data sheets and programming data for use with cardserver.dII. A useful application with source codes shows how the CHIPDRIVE can be used to identify any Smart card inserted, giving manufacturer into, and memory map if available. Applications produced with the developer kit will operate under Windows $3.11 / 95 / \mathrm{NT}$ and are compatible with the whole CHIPDRIVE family. The CDK uses easy to use 16 bit or 32 bit DLLs with just one
 function call to the 'CardServer' to identify the card or carry out any instruction. Cardserver is a powertul Background task which relieves the application programmer from device and card administration. Featuring automatic protocol and card type detection Allowing several applications to access one terminal dependent only on the type of card inserted.

SUPPLIED WITH CHIPDRIVE MICRO £99.95
plus $£ 5 p \& p+$ VAT
(Includes Smart cards)
http://www.towitoko.co.uk
http://www.crownhill.co.uk
http://edsim.cambs.net
SMARTCARDS Available from Stock: GemPlus, Atmel, Xicor, Siemans, SGS Crownhill and more... SLE4442, 4432, 4418, 4428, 4404. ATB8SCxxx, AT24c01-16. GPM103, GFM1K, $2 K$, 4K, GPM416 Phone Cards, Loyalty Cards

IHE SMARTEST SOLUTION

Crownhill can offer a broad range of smart cards from just $£ 1.00$ and Smart Card sockets for just £1.45 ea, PIC Microchip based Smart Cards now available from just $£ 3.50$ ea......DEVELOP YOUR OWN SMART CARD!
Crownhill can supply over 150 different types of IC from more than 12 silicon suppliers, which can all be incorporated into smart card format. Some cards are available from stock, most are manufactured to the customers'specification.

Sharp Tools for Embedded Systems

CCS - PIC C Compilers

Develop PIC applications faster than you ever thought possible with CCS PIC C compilers. Generates fast efficient native PIC code. Built in library support for timers, serial comms, PWM, ADC, I2C etc. I/O
libraries use hardware support where available or else use software generated modules.
DOSWindows Development Environment
Write interrupt service routines in C
Supports in line assembly language
Automatic linking of multiple code pages
Supports BIT and BYTE variables at absofute positions

PCW - Windows IDE for PIC 16C5X, 16CXX, 12CXXX, 14000-IR£270 PCM - DOS IDE \& Command line for PIC 16CXX, 12C6XX, 14000-1R£95 PCB - DOS IDE \& Command line for PIC 16C5X, 12C5XX - IR£95

BASIC Stamp Computers

BASIC Stamps are small computers which are programmed in PBASIC, a powerful BASIC dialect that includes many enhancements specifically designed for embedded control. PBASIC programs are downloaded directly from a PC to the BASIC Stamp where they are executed from on board EEPROM.

- DOSWindows Development environment.

Program directly from PC.

- Reprogrammable up to 10,000 times.

VO pins can source/sink up to 20 mA .
Easily interiaced to ADCs, LEDS, motors, relays.
Bult in functions for Serial, PWM, pulse in/out etc.
BASIC Stamp 1 - 8 IIO, 2400 baud serial, 16 pin SIP Module - IR£29 BASIC Stamp 2-16 MO, 50 K Baud serial, 24 pin DIP Module - IR£42 - Starter Kits from IRE79 (All prices exclude V.A.T. and delivery)

For further information on CCS PIC compilers, BASIC Stamps and other sharp tools, please phone, email or visit to our web site.
-w Email - info@pond.ie Web - www.pond.ie

CIRCLE NO. 124 ON REPLY CARD

for High Quality Audio Tubes

The CVC Premium range offers continuity of supply of high grade audio valves. Based on the best from world-wide sources, processed by us to suit audio applications. Pre-amp types tested/selected for LOW NOISE, HUM and MICROPHONY. Power valves are given controlled BURN-IN to improve stability and to select-out those with weaknesses. MAJOR BRANDS also supplied as available.

A selection of CVC PREMIUM Audio Tubes											
PRE-AMP TUBES		1 POWER TUBES		POWER TUBES		ISOCKETS ETC.					
ECC81	5.00	EL34G	7.50	Icaremus		B9A romen wecar	1.60				
ECC82	5.00	Et34 mescan	8.00	6336A	46.00	B9A fra m res bam Putad	3.00				
ECC83	5.00	EL34 garge Dav	8.50	6550A	11.00	Octal ron a rear	-188				
ECC85		EL84/6805	470	6550WA or WB	13.50	Octal fen a ersit com Pbice	4.20				
ECC88	5.00	EL509/519	13.00	7587A	11.00		3.30				
ECF82	5.00	E84L7189A	6.50	807	9.00		*0000				
ECL82	5.00	KT66	9.50	811A	11.00	4 Pin ammorta m atal	11,00				
ECL86	5.00	kT/7	12.00	812A	34.00	4 Pin Smbor ra zllmad					
EF86	5.50	KT88 simandul	12.50	845	3000	Goltiniod 5 Pin No A0?	1500				
E8OF Gatan	10.00		21.00 500	RECTIFIER TUBES			300 450				
E81CC Gout mor	6.80	KT88 fout lionimel	60.00			7 Pin focesace 	4.505.00				
E82 CC geatan	8.00	PL509/519	9.00	EZ80	4.00						
EB3CC Gan in	7.50	2 A 318 cos 8 Pm	14.50	EZ81	4.50	Screening Can					
E88CC Cind on			22.00	GZ32	11.00	(tafcces er)					
6EU7	6.00	300B	50.00	G233	9.50	Anode Connecter					
6SL7GT		${ }_{6} 633 \mathrm{C}-\mathrm{B}$	27.00	GZ34	650	$\text { 有泪 } B=1$					
6SN7GT	4.50	6L6GC	6.50	G237	6.50						
		6L.6WGC/5881	8.00	5U4G	500		1.702.00				
7025	650	6VGGT	500	5VagT	4.50	Retainer fro \%6Wco mat					
		${ }^{6080}$	11.50	${ }_{5}$ SYGGT	400						
		61468	10.50	524GT	4.50						
...and a few "Other Brands" (inc. Scarce types).											
5AR4/GZ34 MULLARD 5RAGY RCA STC 5RAWGY CHATMAM USA 5U4GB act on of 5Y3WGT Snvanta 6AS7G aCa or 5 mamens 6AU6WC snvania	20.00	6B4G RAMTHEDN 6BW6 armasf 6BK7 GT sutvana 6CG7/6FO7 5nvanua 6CL6 ACA or GE 6 CWA aca 6SL.7GT stc	27.00	6SN7GT aAmAA 12ATJWA ntillaso 12AY7 es.sn rana 12AZ7 Gs 128H7A ge or RCA 12BY7A GE 12 E Isc	5.50	13 E 1 sTC 805 cempon 584.2A GFC 6080W runcso 6550A GE 6146B GF	$\begin{aligned} & 110.00 \\ & 50.00 \\ & 15.00 \\ & 12.50 \\ & 22.00 \\ & 17.00 \end{aligned}$				
			5.00		5.00						
	10.00		8.50		7.75						
			7.50		7.50						
	5.00		5.00		13.00						
	12.00		11.00		9.00						
	3.50		550		12.50						
ASK ABOUT ANY THPES NOT ON THIS UST all paices in uk pounos Ploase note carnage extre + VAT (EEC onty) - When ordering stare if matching requrea (add E\$.00 per tubel. Paymont by CREDIT CARD \{ACCESS. VISA, MASTERCARD) or BANKERS DRAFT. TRANSFER or CHEQUE (UK ONLY). FAX or POST your ORDER - We sthill send PROFORMA INVOICE it necessary.											
Valve Amplifiers sound better still fitted with CVC PREMIUM Valves! Chelmer Valve Company, 130 New London Road, Cheimsford, Essex CM2 ORG. England.											
\%r 44 (0)1245355296/265865 Fax: 44 (0)1245490064											

CIRCUIT IDEAS

Over $£ 600$ for a circuit idea?

New awards scheme for circuit ideas

- Every circuit idea published in Electronics World receives $£ 35$.
- The pick of the month circuit idea receives a Pico Technology ADC42 - worth over £90 - in addition to $£ 35$.
- Once every six months, Pico Technology and Electronics World will select the best circuit idea published during the period and award the winner a Pico Technology ADC200-50 - worth £586.

How to submit your ideas

The best ideas are the ones that save readers time or money, or that solve a problem in a better or more elegant way than existing circuits. We will also consider the odd solution looking for a problem - if it has a degree of ingenuity.
Your submission will be judged on its originality.
This means that the idea should certainly not have been published before. Useful modifications to existing circuits will be considered though provided that they are original.
Don't forget to say why you think your idea is worthy. We can accept anything from clear hand writing and hand-drawn circuits on the back of an envelope. Type written text is better. But it helps us if the idea is on disk in a popular pc or Mac format. Include an ascii file and hard-copy drawing as a safety net and please label the disk with as much information as you can.

One telephone - two lines

f you have two telephone lines, this circuit allows the use of one 'phone, automatically switching lines when one is in use. Connection is normally to line 1 and the circuit switches incoming calls to line 2 if that rings. Putting the receiver down briefly changes lines.
The circuit is controlled by a PIC12C508 and, since the logical process is wholly in the PIC, it is easily adaptable for individual needs. It is line powered and takes $5-10 \mu \mathrm{~A}$ normally or $20-30 \mu \mathrm{~A}$ when in use and, since this is much less than that taken by most telephones, several switches may be used.
The PIC is an eight-pin controller with an internal 4 MHz oscillator; it runs here on interrupts generated by its watchdog timer at 144 ms intervals. It executes a short burst of code and returns to "sleep"; this method of timing is not accurate but power is low.

Since power comes from the line, whose voltage may peak at 100 V , most ic regulators were out and zeners or reference diodes need bias of several tens of microamps - far too much. The PIC needs 1 mA for startup, but operates at 3-6V. Current is acceptable at 4 V .
A green led is used as voltage reference, working well at $l \mu A$. The power supply does not work until $V_{d d}$ is at least 0.7 V and bias current flows through R_{3}, the 0.7 V being provided by a slow charging current through R_{6} through the PIC to the $V_{\text {dd }}$ pin and the R_{3} current by lifting the phone to connect R_{3} to $V_{\text {ss }}$. GPl on the PIC acts as an input to detect online/offline and as a negative bias for the green led, this increasing when the

attached 'phone is off the hook to ensure reliable reset for the PIC at startup. The PIC drives a latching double-pole changeover relay, an 8 ms pulse at 3.5 V minimum from the power supply.
Three inputs go to the PIC. Firstly, a ring on line 2 is detected by the ac optoisolator, which uses the PIC's internal pull-ups, a simple arrangement but so sensitive that software has to reject false signals.

Secondly, the line-current sensing reed switch detects an off-hook 'phone. And thirdly, resistors $R_{5,6}$ detect line voltage of 10 V off hook and $40-50 \mathrm{~V}$ on hook.
If readers would like details of the short PIC program, e-mail g.rutter@thefree.net and quote

'Phone switch.'

GGR Rutter

London NW2
C14

Faster charging for xenon flash

This circuit reduces the time taken to recharge a xenon flash capacitor using a resistor by about ten times.
In the modified current source the $680 \mathrm{k} \Omega$ resistor reduces current supplied while capacitor voltage is low since the 470Ω resistor is supplying plenty of current.
As capacitor voltage rises, current through the 470Ω falls and that through the BUV46 rises to keep the transistor power dissipation in the safe area.

Neville Ward

Norwich
Norfolk

From about three
seconds to recharge a flashgun capacitor, this circuit reduces the time to 0.3s.

BUV46

 on $5^{\circ} \mathrm{C} / \mathrm{W}$
High-Q, programmable notch filter

Ten-year index: now to May '98

Hard copies and floppy-disk databases both available

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past ten years.
The index covers from 1988 to May 1998, volumes 94 to 102 inclusive. It contains almost 2000 references to articles. circuit ideas and applications - including a synopsis for each.
The EW index data base is easy to use and very fast. It runs under Windows 3.1, 95 or NT4 (Dos available by request).
The 3.5 in disk-based index price is still only $£ 20$ inclusive. Please specify whether you need DD or HD format. Existing users can oblain an upgrade for $£ 16$ excluding postage by quoting their serial number with their order.
A hard copy of all ten years is available for $£ 10$ excluding postage.

Phofo copies of Electronics World articles from back issues are available at a flat rate of $£ 3.50$ per article, $£ 1$ per circuit idea, excluding postage.

Hard copy Electronics World index
Indexes on paper for volumes 1.00,101, and 102 are available at £2 each, excluding postage.
values. If $R_{2}=R_{3}=n R_{1}$, the output is, for $n=1$, a multiplier; for $n>1$ the nth power output and, for $n<1$, the nth root.
This arrangement is used in the circuit shown in Fig. 2 to give a programmed notch at high Q. One multiplier provides a dc output and the other takes the dc as input and converts it back to the input frequency.
The low-pass filter and a 5 MHz local oscillator then form a band-pass filter having an effective Q of 5000
and a 5 MHz centre frequency, the low-pass section determining the bandwidth of $2 f_{\mathrm{c}}$.

Kamil Kraus

Rokycany
Czech Republic
C13
Fig. 1. A logarithmic amplifier used as a multiplier, which will also provide nth root or nth power output. Two such circuits are used in Fig. 2 to form a very high-Q notch filter, which is programmable.

WWW.soffcopy.co.Uk

Ordering details

The EW index data base price of $£ 20$ includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders Postal charges on hard copy indexes and on photocopies are 50 p UK, $£ 1$ for the rest of the EC or $£ 2$ worldwide. For enquires about photocopies, etc., please send a sae to Softcopy Ltd. Send your orders to Softcopy Lid, 1 Vineries Close, Cheltenham GL53 ONU.
Cheques payable to SoftCopy Ltd, please allow 28 days for delivery.
e-mail at SoftCopy@compuserve.com, tel 01242241455

Linear pwm demodulator

Dulses from a pwm demodulator are converted to an analogue output that is directly proportional to the pulse width.
Positive and negative edge detectors were described in June 1998, p. 475. Here, the positive edge detector resets the counter and the negative edge detector triggers an eight-bit latch fed by the counter which, in turn, feeds a digital-to-analogue converter to produce the output analogue.

K Balasubramanian

Husseyin Camur
European University of Lefke
Turkish Republic of Northern Cyprus B98

Simple and linear pulse-width-toanalogue converter.

Low-loss active diode

Since all diodes lose power as heat, this circuit was developed to reduce the loss and consequently the size of heat sink necessary. In the original large 400 Hz , six-phase power supply, each diode dissipated 18W. With this active diode design, the loss is reduced to 3.6 W .
Cmos comparator LMC7211 by National Semiconductor senses that the anode voltage is high with respect
to the cathode, its output turning the fet hard on. All power mosfets conduct in the reverse direction, although the V_{f} of the body diode inhibits the use of the effect; in lowvoltage fets the problem is less. As the anode voltage falls at each half cycle, the fet turns off again.
The isolated supply comes from a photovoltaic coupler, the only high peak current needed being to turn the
fet on. This can be supplied by the charge from C_{1}.
If a large current is needed to charge a reservoir capacitor at startup, the body diode prevents short-term overheating since its V_{F} is 0.7 V .

Colin Wonfor
Bay Designs Consultants Dunfermline,
Scotland,

Active diode circuit reduces power dissipation in a large power supply from 216 W to 43.2 W .

Positive regulator shutdown in battery systems

n portable equipment, a linear regulator often runs from the battery voltage, voltage monitoring circuitry shutting the regulator down if its output reaches the drop-out voltage. This disconnects the load, which allows the battery voltage to recover slightly, which causes the monitor to turn the regulator back on and so on...
The diagram shows a way of avoiding this chatter. The MAX709L is an inexpensive microprocessor supervisor used here to monitor the regulator output; when this reaches the supervisor's internal threshold of 4.65 V , the supervisor's reset output turns the regulator off and removes
the supply to the supervisor, reset remaining low. Close the switch momentarily before applying power.
Other versions of the supervisor with different thresholds are
available.
Nigel Brooke
Maxim Integrated Circuits
Reading
C20

To prevent chatter when battery voltage falls below the threshold of the voltage monitor, the regulator turns off and remains off.

Parallel port as microprocessor bus

With any modern pc, this circuit may be connected to the parallel port to form a complete, eight-channel, $2 \mathrm{kHz} /$ channel data acquisition system costing less than $£ 35$. It is based on the National Semiconductor
LM12458 programmable 'datac', which has a 12-bit-plus-sign analogue-to-digital converter, an eight-channel multiplexer, a 32word fifo buffer and a programmable ram to allow control of input and watchdog modes.
The 12458 is intended to run with a
microprocessor and with the circuit shown connected to the pc parallel port, the chip 'sees' the pc as a microprocessor bus. The ram in the 12458 is first programmed and conversions timed by an oscillator driving flip-flops to give the required sampling frequency.
A 74LS221 dual monostable sends a pulse to the pc, triggering IRQ7 to signal that data is ready to download from the fifo - the 74 HC 573 latches an address to allow the
selection of different registers in the 12458 for read and write.
A software virtual device driver handles communication with the circuit in a Windows environment; this software and a board layout may be obtained from David.Burke@UCD.IE.

David Burke

University College
Dublin
C25

(C25)

PROTEUS including NEW SIMULATOR

PRO

 PICE 3F5

"the

$B=S$ all-round PROGRAM
EWW CAD Review Round Up September 1998

simulation

- Berkeley SPICE3F5 analogue simulation kernel.
- True mixed mode simulation.
- New analysis types include multi-plot sweeps, transfer curves, distortion and impedance plots.
- Active Components: Switches, Pots etc.
- Over 1000 new library parts with SPICE models.
- Greater ease of use.

"a constant high level of capability ${ }_{\text {throughour" }}$
 EWW CAD Review Round Up September 1998

Schematic Capture

- Produces attractive schematics like in the magazines.
- Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Full support for buses including bus pins.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

PCB Design

- Automatic Component Placement.
- Rip-Up \& Retry Autorouter with tidy pass.
- Pinswap/Gateswap Optimizer \& Back-Annotation.
- 32 bit high resolution database.
- Full DRC and Connectivity Checking.
- Shape based gridless power planes.
- Gerber and DXF Import capability.

Available in 5 levels - prices from $£ 295$ to $£ 1625$ + VAT. Call now for further information \& upgrade prices.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 01756753440 . Fax: 01756 752857. EMAlL: info@labcenterco.uk 53-55 Main St, Grassington. BD23 5AA. WWW: htip:/www.labcenter.co.uk

Fully interactive demo versions available for download from our WMW site.
Call for educational, multi-user and dealer pricing - new dealers always wanted.
Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

£50 Winner

Monitoring catalytic converter operation

Vehicles fitted with catalytic converters must achieve complete combustion to avoid damage or degradation of the converter. This circuit indicates rich or lean running by a bicolour led on the dashboard.
An oxygen sensor fitted to the exhaust detects an excess or deficiency of oxygen, denoting lean or rich running, its output consisting
of a rectangular wave between 0.8 V (rich) and 0.2 V (lean) at very high impedance and at a frequency of around 1 Hz . In Fig. $1, I C_{1}$ takes the sensor output and produces a square wave, D_{1} showing the fact; the preset copes with various sensor levels. Oscillator $I C_{2}$ drives the bicolour led in a $50: 50$ duty cycle, which turns on both leds and gives the effect of yellow.

Dashboard led indicates rich or lean running of a vehicle's engine, avoiding damage to its catalytic converter.

After filtering, output from $I C_{1}$ modulates the oscillator duty cycle according to the action of the sensor, causing either the red or green led to glow - red for rich, green for lean. A steady throttle opening shows both leds to give yellow.
The sensor output appears on only one of the possibly four wires at high impedance and care is necessary to avoid deforming the signal.
Figure 2 shows an oscillator to simulate the sensor action, which may be used for testing the circuit.
One further point - the exhaust pipe can reach temperatures in the region of $600^{\circ} \mathrm{C}$!
κ V Samson
Thornton Cleveleys
Lancashire
C22

HP New Colour Spectrum Analysers
HP141T + 8552BIF +8553 B RF $-1 \mathrm{KHZ}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 700$. HP141T $+8552 \mathrm{BIF}+8554 \mathrm{BRF}-100 \mathrm{KHz}-1250 \mathrm{M}-\mathrm{C} 900$. HP $141 \mathrm{~T}+8552 \mathrm{~B}$ IF +8556 A RF $-20 \mathrm{~Hz}-300 \mathrm{KHz}-\mathrm{E} 700$. HP141T + 8552B IF + 8555A $10 \mathrm{MC} / \mathrm{S}-18 \mathrm{GHzS}-£ 1200$. HP8443A Tracking Gen Counter $100 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}$ - E200 HP8445B Tracking Preselector DC to 18 GHz - £250. HP8444A Tracking Generator ${ }^{-5-1300 \mathrm{Mc} / \mathrm{s}}$ - £450. HP8444A Tracking Generator $5-1300 \mathrm{Mc} / \mathrm{s}-£ 45$.
HP8444A OPT 059 Tracking Gen - $5-1500 \mathrm{Mc} / \mathrm{s}-£ 650$. HP8444A OPT 059 Tracking Gen - 5-1500M
HP35601A Spectrum Anz Interface - $£ 500$. HP35601A Spectrum Anz Inter
HP4953A Protocol Anz - £400.
HP4953A Protocol Anz - £400.
HP8970A Noise Figure Meter +346 B Noise Head - $£ 3 \mathrm{k}$ HP8970A Noise Figure Meter +346 B Noise Head - $£ 3 \mathrm{k}$.
HP8755A + B + C Scalar Network Anz PI - $£ 250+$ MF 180C Heads 11664 Extra - $£ 150$ each.
HP8920A RF communication test set - $£ 1500$
HP8901A+B Modulation meter AM-FM - From $£ 1000$ A HP8903A+B Audio anz from- $\mathbf{£ 1 0 0 0}$. A.
HP8656A+B $100 \mathrm{Kc} / \mathrm{S}-990 \mathrm{Mc} / \mathrm{S}$ AM-FM S/G from $£ 1000 . \mathrm{A}$. HP8657A+B 100Kc/S $2060 \mathrm{Mc} / \mathrm{S}$ AM-FM S/G - From £2,000.A. HP3709B Constellation ANZ £1.5k.
HP11715A AM-FM Test Source - E500.
FARNELL TVS70MKII PU 0-70V 10 amps - $£ 150$.
TEK 475 Oscilloscopes $200 \mathrm{Mc} / \mathrm{s}$ - $£ 300$.
TEK 475A Oscilloscopes $250 \mathrm{Mc} / \mathrm{s}$ - E350.
MARCONI 6500 Network Scaler Anz - $£ 500$. Heads available to 40 GHz many types in stock.
HP3580A $5 \mathrm{~Hz}-50 \mathrm{KHz}$ Spectrum ANZ $£ 750-£ 1000$.
HP3582A . 02 Hz to 25.6 KHz Spectrum ANZ $£ 1.5 \mathrm{k}$.
TEK 7L.12-100KHz-1800Mc/s - E1000.
TEK 7L18-1.5-60GHzs - £1000.
TEK2445 $150 \mathrm{Mc} / \mathrm{S} 4$ ch oscilloscope - book 2 probes - $£ 400$.
TEK2445A $150 \mathrm{Mc} / \mathrm{S}$ 4ch oscilloscope - book 2 probes - 650.
TEK2 465-2465A-2465B Oscilloscopes from- £1250.
TEK2430 $150 \mathrm{Mc} / \mathrm{S}$ DS oscilloscope - $\mathbf{E 1 , 2 5 0}$.
TEK2430A $150 \mathrm{Mc} / \mathrm{S}$ OS oscilloscope - $£ 1800$.
TEK2440 $500 \mathrm{Mc} / \mathrm{S}$ DS oscilloscope - £2000.
TEK $2467400 \mathrm{Mc} / \mathrm{S} 4 \mathrm{ch}$ oscilloscope - CPOA .
Mixers are available for the above ANZs to 60 GHz
HP8673D Signal Generator $.05-26.5 \mathrm{GHz}$ - f 15 k .
Systron Donner 1618B Microwave AM FM Synthesizer
Systron Donner 1618
$50 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz} £ 2 \mathrm{k}$.
ADRET 3310 A FX Synthesizer $300 \mathrm{~Hz}-60 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 600$.
ADRET 3310 A FX Synthesizer $300 \mathrm{~Hz}-60$
HP Plotters 7470A 7475 A . Up to $£ 250$.
HP Plotters 7470A -7475A. Up to $£ 250$.
HP3730A + 3737A Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$. HP3730A + 3737A Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$.
HP Mierowave Amps $491-492-493-494-495-1 \mathrm{GHz}-12.4 \mathrm{GHz}$ E250 each.
HP6034A System Power Supply 0-60V 0-10A - £500.
HP6131C Digital Voltage Source $+-100 \mathrm{~V} 1 / 2$ Amp.
HP3779A Primary Multiplex Analyser - E200 qty.
HP3779C Primary Multiplex Analyser - £300 qty.
HP5316A Universal Counter A+B.
Marconi TF2374 Zero Loss Probe - $£ 200$.
Marconi TF2305 Modulation Meter - $£ 1000$.
Racal/Dana 2101 Microwave Counter - $10 \mathrm{~Hz}-20 \mathrm{GHz}$ - with book as new $£ 2 k$.
Racal/Dana 1250-1261 Universal Switch Controller $+200 \mathrm{Mc} / \mathrm{s}$ Racal/Dan
PI Cards.
Racal/Dana 9303 True RMS Levelmeter + Head - E450. Racal/Dana 9303 True
IEEE Interface - 5500.
IEEE Interface - $\mathbf{£ 5 0 0}$.
TEKA6902A also A6902B Isolator - $£ 300-£ 400$.
TEKA6902A also A6902B Isolator - $£ 300-£ 400$.
TEKFG5010 Programmable Function Genr $20 \mathrm{Mc} / \mathrm{s}$ - $£ 600$.
TEKFG5010 Programmable Function Genr $20 \mathrm{Mc} / \mathrm{s}$
TEK CT-5 High Current Transformer Probe - $£ 250$.
TEK J16 Digital Photometer + J6523-2 Luminance Probe £300.
HP745A+746A AC Calibrator - $£ 600$.
Marconi TF2008 - AM-FM signal generator - also sweeper $10 \mathrm{Kc} / \mathrm{s}-510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250$ - tested to $£ 350$ as new with manual - probe kit in wooden carrying box.
HP Frequency comb generator type $8406-£ 400$.
HP Sweep Oscillators type $8690 \mathrm{~A}+\mathrm{B}+$ plug-ins from $20 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$.
HP Network Analyser type $8407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{~K} / \mathrm{s}$ - $110 \mathrm{Mc} / \mathrm{s}$ - $£ 500-£ 1000$.

HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{Mc} / \mathrm{s}$ E200-HP8447A Dual -

KP Am E300.

HP Frequency Counter type $5340 \mathrm{~A}-18 \mathrm{GHz}$ £800. HP $8410-A-B-C$ Network Analyser $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and displays used in this set-up 8411a-8412-8413-8414-8418-8740-8741-8742-8743-8746-8650. From $£ 1000$
Racal/Dana 9301A-9302 RF millivoltmeter - 1.5-2GHz - qty in stock E250-£400.
Racal/Dana Modulation Meter Type 9009-9008-8Mc/s $9.5 \mathrm{GHz}-\mathrm{E} 150 / \mathrm{E} 250$.
Marconi RCL Bridge type TF2700-£150.
Marconi/Saunders Signal Sources type - 605B-6070A-6055A 6059A-6057A-
6056 - $\mathrm{E} 250-\mathrm{E} 350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi Microwave 6600A I sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5-40 \mathrm{GHz}-\mathrm{E} 750$ or PI only £600. MF only $£ 250$.
Tektronix Plug-ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1-S2-S6-S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508-DD501-WR501-DM501A-FG501A-TG501-PG502-DC505A-FG504-7B80 $+85-7 B 92 A$
Gould J3B test oscillator + manual -E 150
Tektronix Mainframes - 7603-7623A-7613-7704A-7844-7904-TM501-TM503-TM506-7904A-7834-7623-7633-7844-78547104.

Marconi 6155A Signal Source-1 to 2GHz - LED - E400.
Barr \& Stroud Variable filter EF3 0.1 Hz -100Kc/s + high pass + low pass - $£ 150$.

Racal/Dana 9300 RMS voltmeter - $£ 250$.
HP 8750A storage normalizer - £400 with lead + S.A. or N, A
Interface. Board ftted.
TEKTRONIX - 7S14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52 S53-7M11.
Marconi mod meters type TF2304 - C250.
Systron Donner counter type 6054B-20Mc/s - 24GHz - LED readout- $£ 1 \mathrm{k}$.
readout - E k.
Racal/Dana counters-99904-9905-9906-9915-9916-9917-9921. $50 \mathrm{Mc} / \mathrm{s}-3 \mathrm{GHz}$ - $£ 100-£ 450$ - all fitted with FX standards.
 HP180TR. HP181T, HP182T mainframes $£ 300-£ 500$.
Marconi 6700A sweep oscillator -18 GHz Pls available.
Marconi 6700A sweep oscillator - 18 GHz Pls available.
Racal/Dana VLF frequency standard equipment. Tracer receiver type 900 A + difference meter type 527 E + rubidium standard type $9475-£ 2750$.
HP432A-435A or B-436A-power meters + powerheads to 60 GHz - £150-£1750-spare heads.
HP8614A signal gen $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour - $£ 400$. HP8616A signal gen $1.8 \mathrm{HGz}-4.5 \mathrm{GHz}$, new colour $£ 400$. HP3336A or B syn level generator - $\mathbf{5} 500$ - $\mathbf{E 6 0 0}$.
HP3586A or C selective level meter - $£ 500$.
HP8683D S/G microwave 2.3-13GHz-opt 001-003-E1k. HP8640B S/G AM-FM $512 \mathrm{Mc} / \mathrm{s}$ or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or 003- C800-£1250.
HP86222A+B Sweep PI -01-2.4GHz + ATT $£ 1000-£ 1250$.
HP86290A+B Sweep PI-2 - 18 GHz - £1000- £1250. HP86 Series PIs in stock - splitban from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}$ £250-£1k.
HP8620C Mainframe - £250. IEEE.
HP8615A Programmable signal source - $1 \mathrm{MHZ}-50 \mathrm{Mc} / \mathrm{s}$ - opt 002-f1k.
HP8601A Sweep generator $.1-110 \mathrm{Mc} / \mathrm{s} £ 250$.
HP8349A Microwave Amp 2-20GHz Solid state - £1500.
HP1980B Oscillascope measurement system- $£ 300$.
HP3455/3456A Digital voltmeter - £400.
HP5370A Universal time interval counter - £1k HP5335A Universal counter-200Mc/s-£1000. HP5328A Universal counter - $500 \mathrm{Mc} / \mathrm{s}$ - E 250 .
HP6034A Power supply - $0-60 \mathrm{~V}-0-10 \mathrm{amps}$ - E 500 . HP3710A 37 15A-3716A-3702B-3703B-3705A-3711A-3791B-3712A-3793B microwave link analyser.
HP3552A Transmission test set - £350.
HP3763A Error detector - $£ 500$.
HP3764A Digital transmission analyser - f 600 . HP3770A Amp delay distortion analyser - £400. HP3770B - £450.
HP3780A Pattern generator detector - £400.
HP3781A Pattern generator - $£ 400$.
HP3782A Error detector - $£ 400$.
TEKTRONIX 577 Curve tracer + adaptors - $£ 900$, TEKTRONIX 1502/1503 TDR cable test set - £400. Racal 1991-1992-1998-1300Mc/s counters - E400-£900. Fluke $80 \mathrm{~K}-40$ high voltage probe in case - BN - $£ 50-\mathrm{f} 75$. EIP545 micorwave 18 GHz counter - $\mathbf{£ 1 2 0 0}$ Fluke 510 A AC ref standard -400 Hz - E 200 . Fluke 355A DC voltage standard - C300.
Wittron 610 D Sweep Gen +6124 C PI-4-8GHz-£400. Wiltron 610D Sweep Generator $+61084 \mathrm{D} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ $1500 \mathrm{Mc} / \mathrm{s} \mathrm{£} 500-10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}-\mathrm{f} 1000$. HP9699B Sweep PI YIG oscillator .01 - 4 GHz - £300. 8690B MF-E250. Both E500.
Dummy Loads \& Power att up to 2.5 kilowatts FX up to 18 GHz - microwave parts new and ex equipt - relays attenuators - switches - waveguides - Yigs - SMA - APC7 plugs - adaptors etc. qty. in stock
B\&K Items in stock - ask for list.
Power Supplies Heavy duty + bench in stock - Farnell - HP Weir - Thurlby - Racal etc. Ask for list. Large quantity in stock, all types to $400 \mathrm{amp}-100 \mathrm{Kv}$.
Marconi 6960/69608 Power meter P head - E600-900. Marconi TF2955 radio test set - $\mathbf{E 1 2 0 0}$.
Marconi TF2958 radio test set - $\mathbf{£ 1 3 0 0}$.
Marconl TF2960 radio test set - E1400.
Marconi TF2015 S/G 10Mc/s - 520Mc/s AM/FM - E100. Marconi TF2016A S/G $10 \mathrm{Kc} / \mathrm{s}-120 \mathrm{Mc} / \mathrm{s}$. AM/FM - $£ 100$. Marconi TF2171 Digital syncronizer for 2015/2016-£50 Marconi TF2018 S/G 80Kc/s-520Mc/s. AM/FM - $£ 500$. Marconi TF2018A S/G 80Kc/s-520Mc/s. AM/FM - $£ 600$. Marconi TF2019 S/G $80 \mathrm{Kc} / \mathrm{s}-1040 \mathrm{Mc} / \mathrm{s}$. AM/FM - E500. Marconl TF2019A S/G $80 \mathrm{Kc} / \mathrm{s}-1040 \mathrm{Mc} / \mathrm{s}$. AM/FM - $£ 650$. Marconi TF2022E S/G $10 \mathrm{Kc} / \mathrm{s}-1.01 \mathrm{GHzs}$. AM/FM - E1260. Marconi TF6311 Microwave Sweep S/G $10 \mathrm{Mc} / \mathrm{s}-20 \mathrm{GHz} \mathrm{c} / \mathrm{m}$ TF 6501 amplitude Anz. plus heads $10 \mathrm{Kc} / \mathrm{s}-20 \mathrm{GHz}$. Heads TF6501 amplitude Anz. plus heads $10 \mathrm{Kc} / \mathrm{s}-20 \mathrm{GHz}$. Head avallable
Farne:l S/G ESG $100010 \mathrm{~Hz}-1000 \mathrm{Mc} / \mathrm{s}$. AM/FM - $£ 800$ TF2370 Spectrum Anz's $30 \mathrm{~Hz}-110 \mathrm{Mc} / \mathrm{s}$. Large qty to clear as received from Gov - all sold as is from pile complete or add $\mathbf{£ 1 0 0}$ for basic testing and adjustment. Callers preferred Pick your own from over sixty units.
A. Early Model - Grey - Rear horizontal alloy cooling fins - qty of 5 - $\mathbf{£ 7 5 0}$ lot - singly - E200.
B. Late Model - Grey-Vertical alloy cooling fins - $£ 300$. Marconi TK2373 Extender to 1.25 GHz - $£ 300$ - $\mathbf{〔} 400$. HP3325A Synthesized function generator - £1000- £1500. HP3325B Synthesized function generator - E2500. HP8405A Vector voltmeter - late colour - $£ 400$. HP8508A Vector voltmeter - $£ 2500$ HP8505A Network Anz $500 \mathrm{KHz}-1.3 \mathrm{GHz}$ - $£ 1000$. HP8505A +8502 A or $8503 A$ test sets- $£ 1200-£ 1500$. HP8505A $+8502 A$ or $8503 A+8501 A$ normalizer - E 1750 E2000.

HP8557A. $01 \mathrm{Mc} / \mathrm{s}-350 \mathrm{Mc} / \mathrm{s}-8558 \mathrm{~B} 0.1$-1500Mc/s - $8559 \mathrm{~A} .01-$ 21 GHz 180 T or $180 \mathrm{C}-\mathrm{D}-\mathrm{T}$ E500- E 2000 .
TEK 492 Spectrum Anz-OPT $2-50 \mathrm{~K} / \mathrm{s}-21 \mathrm{GHz}-\mathbf{E 2} .5 \mathrm{~K}$.
TEK492P S.A. opt $1-2-3-50 \mathrm{Kc} / \mathrm{s}-21 \mathrm{GHz}$ E 4 k .
TEK 495 S.A. $100 \mathrm{~Hz}-1.8 \mathrm{GHz}-\mathrm{E} 3 \mathrm{k}$.
TEKTRONIX - HP Oscilloscopes - $100 \mathrm{Mc} / \mathrm{s}$ - 465 -4658-17401741 etc - $£ 300$ - qty in stock.
Phillips $321750 \mathrm{Mc} / \mathrm{s}$ oscilloscopes - $\mathbf{1} 150-\mathbf{e} 250$.
Phillips $3296 \mathbf{3 5 0 M c} / \mathrm{s}$ IR remote oscilloscope - $£ 500$.
Hitachi VC6041 Dig storage oscilloscope - $40 \mathrm{Mc} / \mathrm{s}$ - $£ 500$. TEK TRONIX 2445 + DMM - $250 \mathrm{Mc} / \mathrm{s}-£ 800$.
R\&S APN 62 LF S/G 0.1 Hz - 260 KHz with book - 5500 .
Wavetek-Schlumberger 4031 Radio communication test set £POA
LIGHT AND OPTICAL EQUIPMENT
Anritsu ML93A \& Optical Lead Power Meter.
Anritsu ML.93B \& Optical Lead Power Meter.
Power Sensors for above MA96A - MA98A - MA913A Battery Pack MZ95A.
Anritsu MW97A Pulse Echo Tester.
PI available - MH914C 1.3 - MH915B 1.3 - MH913B 0.85 -
MH925A 1.3 - MH929A 1.55-MH925A 1.3GI - MH914C 1.3 SM .

Anritsu MW98A Time Domain Reflector.
PI available - MH914C 1.3 - MH915B 1.3-MH913B 0.85 -
MH925A 1.3 - MH929A 1.55 - MH925A 1.3GI - MH914C 1.3SM.

Anritsu MZ100A E/O Converter.

+ MG912B (LD 1.35) Light Source + MG92B (LD 0.85) Light Source
Anritsu MZ118A O/E Converter.
+MH922A 0.8 O/E unit + MH923 A1.3 O/E unit.
Anritsu ML. 96 B Power Meter \& Charger.
Anritsu MN95B Variable Att. 1300.
Barr \& Stroud LS 10 Light Source.
BT Power Unit 850-1300-1500.
Photo Dyne 1950 XR Continuous Att. 1300-1500. Photo Dyne 1800 FA. Att.
NKT Electronic QAM30 Att Meter (MN3032TX) 1300 out. Electo Optic Developments FO-500 TX Laser. Cossor-Raytheon 108L Optical Cable Fault Locator 0.1000 M 0.10 kM .

Intelco 220 Single Mode Att 1532.
TEK P6701 Optical Converter 700 MC -S-850.
TEK Orionics 7000 Type PI OTDR-103A
HP81512A Head 150MC/S 950-1700.
HP84801A Fibre Power Sensor 600-1200.
HP8158B ATT OPT 002+011 1300-1550.
HP81519A RX DC-400MC/S 550-950.
STC OFTX-3 Laser source.
STC OFRX-3.
STC OFR10 Reflectometer.
STC OFSK 15 Machine jointing + eye magnifier.
Anritsu MS555A2 Radio communication anz - $£ 1500$ Anritsu MG3601A Syn S/G 0.1 - $1040 \mathrm{Mc} / \mathrm{S}$ AM-FM - EPOA Anritsu ME453L RX Microwave ANZ. Anritsu ME453L TX Microwave ANZ. Anritsu MH370A Jitter Mod Oscillator. Anritsu MH370A Jitter Mod Oscil
Anritsu MG642A Pulse Patt Gen. Anritsu MG642A Pulse Patt Gen.
Anritsu SA MS 2601A $10 \mathrm{KHz}-2.2 \mathrm{GHz}-\mathbf{£} 2500$ Anritsu SA MS $2601 \mathrm{~A} 10 \mathrm{KHz}-2.2 \mathrm{GHz}$ - £2500.
Anritsu SA MS 710F $100 \mathrm{KC} / \mathrm{S}-23 \mathrm{GHz}$ - £POA. Anritsu SA MS 710F 100KC/S - 23
Complete MS65A Error Detector.
Complete MS65A Error Detector.
System MS02A Timer \& Digital Printer.
Anritsu ML612A Sel Level Meter.
Anritsu ML244A Sel Level Meter.
Advantest TR98201 Signal Gen.
Advantest TR9402 Digital Spectrum ANZ.
Siemens D2108 Level Meter.
Siemens D2150 Bit Error Meter.
W\&G PCM3 Auto Measuring Set.
W\&G SPM14 Sel Level Meter.
W\&G SPM 15 Sel Level Meter.
W\&G SPM 16 Sel Level Meter.
W\&G PS 19 Level Gen - E1k.
W\&G DA20+DA1 Data ANZ.
W\&G PMG3 Transmission Measuring Set
W\&G PSS 16 Generator.
W\&G PSS16 Generator.
W\&G PS14 Level Generator.
W\&G PS 14 Level Generator.
W $\& G \mathrm{GLM}$ B Phase Jitter $\&$ Noise $-£ 500$
W\&G DLM3 Phase Jitter \& Noise $-£ 500$
W\&G DLM4 Dara Line Test Set $-£ 750$.
W\&G DLM\& Dara Line Test Set - 7
W\&G PS 10 \& PM10 Level Gen.
HP5352B Microwave counter Opt 010--005. 46 GHz brand new $£ 5000$.
HP8342A+5344A Microwave counter + Syn 18 GHz - f 1600 . HP8112A Pulse Gen 50Mc/S - f1400.
HP8660 C\&D S/G AM/FM - Phase $01-110 \mathrm{MC} / \mathrm{s}-1300 \mathrm{MC} / \mathrm{s}$ $2600 \mathrm{MC} / \mathrm{s} \mathrm{E} 1-£ 3 \mathrm{k}$.
HP4274A LCR Meter + Adaptor.
HP8754A Network ANZ $4-1300 \mathrm{MC} / \mathrm{s}+8502 \mathrm{~A}+$ cables. MP8754A Network ANZ H26-2600MC/s + 8502A + cables. HP8116A Pulse function Gen $£ 2200$.
HP3588A S. A. $10 \mathrm{~Hz}-150 \mathrm{MC} /$ s opt 001.003.
HP54100A DIG Oscilloscope 1 GHz - P.O.R.
HP54100A DIG Oscilloscope 1 GHz - P.O.R.
HP54501A DIG Oscilloscope $100 \mathrm{MC} / \mathrm{s}$ - P.O.R.
TEK OF150 Fibre Optic TDR.
HP1630-1639-1650 Logic ANZs.

VAT AND CARRIAGE EXTRA. ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VAIVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel: (01274) 684007. Fax: 651160

Adjustable positive/negative voltage reference

egative voltage references are not common. Most are positive types of 5 V or 10 V . This circuit provide either polarity and may be adjusted from -10 V to 10 V .
$A+10 \mathrm{~V}$ fixed reference with a temperature coefficient of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ provides the input to the variable-gain amplifier whose gain is variable from -1 to 1 . Its output is determined by

$$
V_{\text {oul }}=V_{1}\left(1+R_{2} / R_{1}\right)-V_{\text {ref }}\left(R_{2} / R_{1}\right),
$$

so that if $R_{1}=R_{2}$ and $V_{\text {ref }}$ is $10 \mathrm{~V}, V_{\text {out }}$ is $2 V_{1}-10$.
Moving the slider of the preset from bottom to top varies V_{1} from 0 V to $10 \mathrm{~V}, V_{\text {out }}$ changing from -10 V to 10 V
Resistors $R_{1,2}$ must be matched and care should be taken to ensure low input offset voltage and drift in the op-amp. Both types suggested have input offset of $10 \mu \mathrm{~V}$, drift of $0.2 \mu \mathrm{~V} /$ month and drift with temperature of $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

\checkmark Manoharan

Naval Physical \& Oceanographic Laboratory
Kochi India
C24

Not only providing a rarely found negative voltage reference, this circuit is fully adjustable from -10V to 10 V .

$1 \mu s, 16$-bit analogue-to-digital converter

ᄃ or fast a-to-d conversion, a flash device is the best choice. But the cost of such a device of more than six bits becomes excessive, since each extra bit doubles the complexity.
On the other hand, successiveapproximation converters are somewhat slower, but a one-bit increase in capacity only increases conversion time by the period of the internal clock, so that a 10 -bit, 10 MHz converter converts in around $1 \mu \mathrm{~s}$ and $1.6 \mu \mathrm{~s}$ for 16 bits.
By combining a 20ns 6 -bit flash converter with a 10 -bit successive-
approximation type, to obtain a 16 -bit converter, conversion time is still about $1 \mu \mathrm{~s}$.
As analogue input is applied to the flash converter, output appears in 20 ns and forms the six most significant bits, the ten least significant bits coming from the successive-approximation a-to-d converter. The start-conversion input to the successive-approximation converter triggers it. Output from the d-to-a converter is compared with the analogue input and the comparator output used to control the s-a a-to-d
converter. After ten clock periods, the s -a produces an end-of-conversion signal and sets the latch to produce the combined digital output.
Conversion time of the circuit is therefore that of ten periods of the s-a a-to-d converter internal clock, whether the converter is an s-a type or a counting a-to-d converter.
K Balasubramanian

H Camur

European University of Lefke
Turkish Republic of Northern
Cyprus
C32

SC input

Using a fast digital to analogue converter for the most significant bits and a slower one for the least resulfs in a combined circuit that is still acceptably rapid but less complex and cheaper.

 Interfacing with

EIECIRONICS WORID
 + WURIESS WORD

Without an engineering degree, a pile of money, or an infinite amount of time, the revised 289-page Interfacing With C is worth serious consideration by anyone interested in controlling equipment via the PC. Featuring extra chapters on \mathbf{Z} transforms, audio processing and standard programming structures, the new Interfacing with \mathbf{C} will be especially useful to students and engineers interested in ports, transducer interfacing, analogue-to-digital conversion, convolution, digital filters, Fourier transforms and Kalman filtering. Full of tried and tested interfacing routines.
Price £14.99.
Listings on disk - over 50 k of C source code dedicated to interfacing. This 3.5in PC format disk includes all the listings mentioned in the book Interfacing with \mathbf{C}. Note that this is an upgraded disk containing the original Interfacing With \mathbf{C} routines rewritten for Turbo C++ Ver. 3. Price $£ 15$, or $£ 7.50$ when purchased with the above book.

Especially useful for students, the original Interfacing with C, written for Microsoft C

Version 5.1, is still available at the special price of $£ 7.50$. Phone 01816523614 for bulk purchase price.

Use this coupon to order

Please send me:
Title Price Qty Total
Enhanced Interfacing with C book @ $£ 14.99$
Enh. Interfacing with C book + disk @ £22.49
Interfacing with C disk @
Original Interfacing with C book @
Postage + packing per order UK
Postage + packing per order Eur
Postage + packing per order ROW
Total

Name
Address

Phone number/fax

Make cheques payable to Reed Business Publishing Group Ltd
Or, please debit my Master, Visa or Access card.

Card type (Access/Visa) Card No
Expiry date
Mail this coupon to Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Suprey, SM2 5AS, together with payment. Alternatively fax full credit card details with order on 01816528956 or e mail them to jackie.lowe@rbp.co.uk. Orders will be dispatched as quickly as possible, but please allow 28 days for delivery

Zero-crossing detector

Output voltage from this simple zero-crossing detector is at $V_{\text {cc }}$; at all other times it is at $V_{\mathrm{CE}(\text { sat })}$ of $T r_{2}$ or Tr_{3}
With a positive input large enough to turn $T r_{1}$ on, output is held low and when it is sufficiently negative to turn $T r_{2}$ on, output is still low. Only when neither transistor conducts, the input being close to zero, is the output high.
On a positive-going edge, gain is
set by the beta of $T r_{1}$ and on a negative-going edge by the beta of Tr_{3}, so that rise and fall times should be fairly equal with typical transistors. The input resistors may be adjusted for the required switching threshold
Gregory Rubinstein
Bogotá
Colombia
C28

Temperature monitor with $0.1^{\circ} \mathrm{C}$ resolution

Controllable gain and zero offset give a linear output to a digital meter of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, using a surface-mounted transistor as the sensor to obtain a rapid response at low cost.
Resistor R_{G} determines the factor by which normal V_{BE} is increased - in this case from $-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ to $-10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ while operating from the constant-current sink formed by the $L M 317 L Z$ voltage regulator with a 619Ω load. The 1.25 V reference from the op-amp follower is also used as a current sink, adjusted by the 100Ω trimmer.
If R_{Z} is now made $1.5 \mathrm{k} \Omega$, meter voltage is zero at $0^{\circ} \mathrm{C}$ and, since both ends of the meter are referred to V_{cc}, it is insensitive to battery voltage between 6.5 V and 9 V . Resolution using a digital meter is $0.1^{\circ} \mathrm{C}$ from $-50^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Power used is less than 40 mW .

John A Haase

Colorado State University
Colorado
USA
C31

'THE RACK RANGE' MAINS DISTRIBUTION PANELS FOR 19"RACK MOUNTING HORIZONTAL

Letters to "Electronics World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS E-MAIL jackie.lowe@rbi.co.uk

Radio 4's noisy floor

Charles Coultas is correct that the 'Today' program on BBC Radio 4 suffers from an excessively high noise floor in his February issue letter.
This has been going on for some time. Listening on precision speakers, it is easy to determine that the source is an inadequate air-conditioning installation. The blade passing frequency of the blower adds a dominant tone to the broad-band noise and the comb filtering due to standing waves in the ducting can be clearly heard.
There is no doubt that the studio concerned doesn't meet the BBC's own standards. I have a high regard for the BBC's technical staff and it is inconceivable that they don't know about the problem.
This suggests that the reason nothing has been done is political or financial. This is consistent with the BBC refusing to reply to Mr Coultas' justifiable complaint - a deplorable attitude.
I suggest that Mr. Coultas write to the Director General and to the Radio Times.

John Watkinson

Burghfield Common

Charles Coultas asks what the 'rumble' is on BBC Radio 4 long wave in the February issue Letters column.
This sounds to me like the longwave version of the Radio Data System, RDS. This encodes binary data for transmission on the BBC Radio 4 carrier at 198 kHz . In brief, the data, at $25 \mathrm{bi} / \mathrm{s}$, is biphase modulated onto a 25 Hz digital carrier which then phase-modulates the 198 kHz carrier at $\pm 22.5^{\circ}$. The combination of low data-rate and low angle of modulation is supposed to ensure that there is no interference with the audio signal but perhaps this is what Mr Coultas was detecting?
There are 30 blocks of 50 bits of data, which are repeated every minute. The last block before the minute contains data and time information. All blocks include a cyclic redundancy check word
For an example of a typical receiver design, see: GEC Plessey Semiconductors, "Low-cost 198 kHz Radio Data Receiver", Application note AN86. This was published in Electronics World, 99 (1692), pp. 960-1, Nov. 93.

The long-wave RDS does not carry the same information as the

VHF system, which uses a higher data rate. This takes a bit stream at 1187.5 Hz , and generates from this a DPSK signal (i.e. it is differentially encoded and bi-phase modulated). This signal generates raised-cosine pulses that are
DSBSC modulated onto at 57 kHz sub-carrier.
This was also described in Electronics World a few years ago, in an article by S.J. Parnell,
'Decoding RDS', Electronics \& Wireless World, 95 (1636), pp. 148-152, Feb. 89.
David Gibson
Design Engineer, Microsystem Solutions
Leeds

Charles Coultas' letter in the Feb 99 issue mentions a low frequency rumble on the today programme.
I too have heard it while sitting in the Radio Theatre (formerly
Concert Hall). It sounds like an underground train, which it almost certainly is as the Bakerloo line must pass close to Broadcasting House.
Mystery solved?
John Winn
Upminster

A window of misunderstanding

Mr Dennis (February, 1999) also demonstrates a certain lack of understanding.
At no time did I say that I was trying to run Windows 95 on a 33 MHz 386 and 4 MB of ram; that would have been, as I said, a bit limiting!
I 'upgraded' from that to the new one, which has a 32 MB ram and runs at 166 MHz .

Philip Darrington

Appledore
Kent

Shocked, I am

Regarding EMC and the problems experienced by Mr Elvis, there are several answers to his problems.
Firstly the EMC legislation is hardly worth the paper it is written on. I have experience on this for my own pet hate is EM pollution.
In this area, electric fences are extremely popular during the grazing seasons with the result that the long and medium wave broadcast bands are rendered useless.
These fence energisers resemble a

Ionisation chamber

In my letter in the October 1998 issue, entitled 'Radiation answers,' I mentioned the use of an ionisation chamber. I synthesise here below how the chamber works.
The chamber, outlined in the sketch, consists of a cylindrical metal box, at the centre of which a very highly insulated electrode is brought.
A high DC potential is applied between the box and the electrode by a high impedance supply in series with a large resistor. The voltage applied - in contrast with Geiger-Muller counters - is far from the break-down voltage of the gas inside the box, but high enough to set up a strong field. This voltage causes any ion existing within the box space to be captured by the electrodes. Symmetry is very important.

The tiny current arising from ion capture is measured across the load resistor by an electrometer amplifier and is directly proportional to the number of ions captured.
The device is very simple, but versatile. A radioactive sample could be enclosed in it and its total radiation over the spherical space surrounding (or 4π) will be measured.
Altematively, a suitable window of very thin metal sheet or metallised

plastic can be used as an input window, replacing part of a wall or of the bottom. This alternative is suitable for measuring larger radiation sources. Changing the window type and thickness offers wide discrimination between radiation types and energy.
There is a wide scope for clever solutions in the design of the chamber itself to avoid current leaks and to limit the field gradient at the passage of the central electrode. The electronics associated will be also challenging.
Unfortunately I am not a specialist in radiation measurement, but information on this topic can be found in open literature and textbooks on the subject. You should be able to find dimensions, voltages, tips for insulation and characteristics of the devices.
I have seen an ionisation chamber being used in a radioactive laboratory that was no larger than a fountain pen. It was in form of a pen, and intended to be carried in a pocket.
Inside it, gold covered quartz fibre acting as central electrode was charged at high voltage against the walls when 'zeroing' the device. During measurement, the quartz fibre also acted as an electrometer: its deflection against a small internal graduation was checked by means of a small lens system at the lip of the 'pen'. It was mostly a safety device, of modest precision, but very simple indeed.
Finally, there are other potential radiation sources that I did not mention in my earlier letter. Uranium salts are commercially available at specialist chemical suppliers. They should be easily purchased in small quantities.
As a pure chemical, the radiation will be only that of uranium, as quoted in literature, with the exclusion of the rest of the decay chain.
Health and safety can be cared for by using one of the oxides, which are almost totally insoluble. Even so, you should avoid breathing in the powder. Even better will be pure thorium oxide, which is a refractory untreatable oxide. The same safety precautions apply.

Dr G Imarisio

Menton
France
capacitor-discharge ignition system: most will produce a 'fat' spark and it is claimed that the premier models will 'energise forty miles of fence and kill back vegetation'
Some years ago I wrote to the European Parliament regarding the interference that these fences cause I also highlighted their lack of compliance with the EMC Directive, and requested that it be made compulsory for low pass filters to be fitted.
I am sorry to report that the response was pathetic and derisory. Although I did receive a large folder of waffle, it was evident that farmers must not be upset at any cost.
On a practical basis it would appear that equipment can easily be made to comply with the directive. But once you connect wires to it, it is a different story.
Help is at hand though, in the form of the book 'EMC for product designers' by Tim Williams. I have no connection with the author, but I would recommend the book as good grounding in the subject.
Finally Mr Elvis's relay problem can be solved by fitting
recirculating diodes across the coils. Standard or slow recovery types are best. The 1 N 400 x range is both suitable and economic.
D Benyon
Bude
Cornwall

Missing charge

In the January issue's letter column, Mr Cox, seeks a physical level explanation for the 'lost' energy when two capacitors share a charge, and then uses an idealised zero-resistance model which does not conform to physical reality. A proper calculation shows the energy dissipated in the switch and interconnection resistance is half the original energy - a value that is unaffected by the precise resistance value.
If the resistance is zero, the initial current is infinite, and the timeintegrated power, which is the energy dissipated in the resistance is still a finite $1 / 2 \mathrm{CV}^{2}$.
Consequently both energy and charge are conserved to the great comfort of physicists everywhere.
Dr A M B Shaw
Baldock
Hertfordshire

Brian Cox's thought experiment has instantaneous voltage changes across its capacitors. Charge in a capacitor is proportional to the product of the voltage and capacitance, or:

With a fixed capacitance, the rate of change of charge is proportional to the rate of change of voltage, or

$d q / d t=c . d v / d t$

Rate of change of charge is current, so Mr Cox's experiment invokes infinite current. It is not possible to connect the capacitors directly without loosing energy in the resulting bang.
The two capacitors may be connected without a bang using a series inductor which does allow instantaneous voltage changes across its terminals. Doing so causes the voltage across C_{1} to drop as charge flows across, building up current in the inductor.
The current reaches a peak when the capacitor voltages are equal. Energy stored in both capacitors is then a quarter of the original value, and the remaining half is stored in the magnetic field of the inductor. The current then falls to zero as the voltage across C_{1} drops to zero and the voltage across C_{2} rises to the starting value.
This oscillatory process then reverses, repeating ad infinitum since my thought experiment ignores loss components of resistance, radiation, dielectric, hysteresis, etc. But at least it doesn't cause a bang.
Chris Ward
Via e-mail
Did you write in? Brian Cox's letter on capacitor discharge in the lanuary issue prompted an unprecedented level of response. Bryce Smith's letter on light gates also had a surprising effect on you. All of the replies were good reading, and some were so
comprehensive as to merit the title 'article'. Space permitting, more response to Brian's letter will be published later. Many thanks to all of you who have written in. Ed.

Problem ironed out

In his letter 'Filament failure' in the the January issue, Mr Ziemacki mentions the barretter but fails to realise that the essence of this device was that it used an iron filament in a hydrogen atmosphere It can be designed to work between about 200 mA and several amps by varying the gauge of wire.

A typical device maintains a constant current within perhaps 1% over a range of 95 to 165 V . The use of an iron wire means that it must be kept away from magnetic fields which could cause the filament to vibrate, with detriment to its life, its characteristics, or both.
Although barretters dissipated a
deal of heat, I always considered them more reliable than the series resistor used in valve television sets.
/C Taylor
Heywood
Lancashire

Rusty diodes

There has been discussion in recent years over the linearity of cable resistance - in particular the existence of oxide diodes and their effect on audio performance.
I have come across an application note from Microwave Associates that suggests that such non-linearity does exist in rf connectors. It is also a concern in high capacity cell phone systems.
However the company makes it plain that the non-linearity is only an issue with high capacity systems
where several transmitted and received signals share the same physical channel, and where IMD levels of $-160 \mathrm{dBc}-$ ie. 0.000001% or ten parts per billion - are required.
I think we can safely say that this has little or no relevance to hifi. The document in question is $75 . \mathrm{pdf}$ and it is available at www.macom.com. The easiest way to find it is to do a search using 'intermodulation'. Phil Dennis
School of Physics
University of Sydney
Australia

Vision by radio

I greatly enjoyed Don McLean's story of his inspired recovery of video images from early Baird 30 line television transmissions. And I have no doubt that Baird was the

And the winners are...

Here are the winners of the two competitions we ran recently. Sincere thanks for all your feedback on favourite topics. Circuit ideas were most popular, followed by audio design, and then rf design.
Audiophobes note that this issue is a little audio heavy. This is not indicative of a change of direction. I didn't anticipate that lan Hickman would offer me an article on audio distortion at the last minute. But could you have refused such an enlightening account? Ed.

Grundig oscilloscope winner:

David Paterson, Glasgow
Multimeter winners:
Dominic Steele, Altrincham
Jose Cavassi, Argentina
Factfinder winners:
Brian J Aitken, Stevenage
Gill Rickards, Charfield, Gloucestershire
John Winn, Camberley, Surrey
Peter Meinertzhagen, Sevenoaks, Kent
David Reid, Oldham, Lancashire
Doug Webster, Ampthill, Bedfordshire
Huw Jones, Llantrisanat, Mid Glamorgan
R J Philips, Bassingbourn, Hertfordshire
Peter Ferrell, Orpington, Kent.
C M Taylor, Shaw, Lancashire.
catalyst who made broadcast television a reality.

That said, I felt it was unfair to dismiss the work of other pioneers using film and silhouettes as not 'true television'. This debate has run
since the late 1920s, when the Baird lobby was economical with the truth about rival experimenters to enhance his priority claim.
To me, television is the
instantaneous transmission of

Jeez - I told you we'd be able to pick up Baird's tv signals. This one's one of them there whacky corn circles that the Brits are always on about.
moving images between two points There is no doubt that Baird's transmission of images of real objects using reflected light was technically more difficult, but true television existed before he demonstrated his advance in the art. I consider the real inventor of television was Francis Jenkins, an American motion picture technologist who laid all the foundations of practical television. More importantly, he recognised the true entertainment value and scope of the new medium. This can be clearly seen from the 1925 picture attached, which shows a television more like today's than any Baird Televisor.
In his book 'Vision by Radio', 1925, Jenkins outlined and demonstrated an the elements of a practical television system, which he said was capable of handling picture modulation signals in excess of 1 MHz to give the image quality needed for home entertainment.
Without in wishing to devalue Baird's achievements, the tight definition of 'true television' as the transmission of images lit by reflected fight is illogical. We might as well define true radio as transmitting speech and music rather than morse, so the inventor of the radio was Fessenden in 1906 - not Marconi in 1895.
Anthony Hopwood
Upton-upon-Severn
Worcestershire

I wired into this, and...

This is a brief reply to Jean-Marc Brassart's little circuit puzzle. A

neat little puzzle, but his estimation of how long it would take to solve is wocfully extravagant.
I would expect someone with an interest in electrical/electronics to solve it in less than ten minutes. I took (I think) less than 5 minutes. So I expect Jean Marc to be very surprised.
Andrej Chomyn
Via e-mail

High-voltage fuses found

In the February issue, I noticed that Mr Gentle was having problems obtaining high voltage fuses as spares for a microwave oven. He might care to contact CPC in Preston, tel. 01772 654455. This company stocks seven values of high voltage encapsulated fuses in various ratings from 500 ma to 1 A .
The devices have a rated voltage of 5 kV and they are fitted with leads ending in 6.3 mm right angle female spade connectors. The catalogue price is $£ 2.45$ for individual fuses and on small orders will also add $3.99 \mathrm{p}+\mathrm{p}$ before also including VAT This represents a significant reduction from the mentioned $£ 50.00$ he is supposed to have been quoted for the alternatives - a high proportion of the replacement cost of the complete oven.
Dave Turtle
Erith

Lighting emergency

In George Goh's emergency lighting arrticle in the January issue, details of the transformer were omitted - sorry. For 2.4 V operation, use an FX3440 core with 0.55 mm spacer or FX3670 with $\mathbf{0 . 6 5 \mathrm { mm } \text { spacer }}$ on a DT2484 coil former. For the first winding, use 500 turns of 0.18 mm wire wound neatly. Use insulating tape then bifilar wind the three turns each of W_{2} and W_{3} using 0.5 mm wire. Finally, apply the three turns of W_{4} using 0.31 mm wire.
For operation at 4 V , use either of the same cores but with 0.34 mm and 0.45 mm spacers respectively. Reduce W_{1} to 400 turns but increase $W_{3,4}$ to 4 turns. Winding W_{4} stays the same. The core spacer must made from a non-conducting material.

Measuring Yagis

In the December issue, in the article on measuring Yagis, the difference path between direct and reflected wave should have been:

$$
\left.r_{0}=\left(\left(h_{1}+h_{\mathrm{r}}\right)^{2}+(d)^{2}\right)^{1 / 2}-\left(\left(h_{1}-h_{\mathrm{r}}\right)^{2}+(d)^{2}\right)\right)^{1 / 2}
$$

In both terms of the above equation the square of the distance is used instead of the distance, in accordance with Pythagoras' law.
The receiving area of the dipole is $0.131 \lambda^{2}$. Also in this case the square of the wavelength against wavelength is used.

Marco Arecco

Via e-mail

Negative voltage converter

In Circuit Ideas, January 1999, the idea 'Negative voltage converter' will not work. The rectifier circuit needs a path to ground for positive half circles of the clock signal so that C_{1} can charge. This is prevented by diode D, but adding a second diode provides such a path.
The revised circuit charges capacitor C_{1}, when the clock signal is positive, through diode D_{2}. During the negative half cycle, when the clock signal is at ground potential, C_{1} discharges and creates a negative current flow. Diode D_{2} is reverse biased, so does not conduct. The negative current flow passes through diode D and produces a negative voltage at the output, assuming that the load provides a dc path to ground. Steve Winder
Ipswich
Suffolk
 was damaged, but I am sure the author, Mr Jayapandian, intended the diode to be there, Ed.

T \& M EQUIPMENT

ADVANTEST TR9407 fit spectrum analyser to $1 \mathrm{MHz} \quad \mathbf{£ 2 0 0 0}$ ANRITSU ME518A pCm ertor-rate test set $1 \mathrm{kbit} / \mathrm{sec}$ 150 Mbit/sec
150 Mbit/sec
ANRITSU ML93A optic al power meter with MA95A pow sensor (0.75 -1.8uM)
ANRITSU MN950 fibre-optic attenuator 0-65d £250 BRADLEY 192 oscilloscope calibrator
CHASE LFR1000 interference measuring receiver $9 \mathrm{kHz}-150 \mathrm{kHz}$ DATRON 1061 voltmeter
DRANETZ 626-PA-6006 ac neutral monitor, c/w TR2018 clamp EIP 575 source locking frequency counter 18 GHz GPIB option FLANN MICROWAVE 27072 trequency meter $73-113 \mathrm{GHz}$ FLANN precision rotary wave guide attenuator $201100-60 \mathrm{db} 18-26 \mathrm{GHz}$ FLANN precision retary wave ouide attenuator $221100-70$. $£ 750$ IFR 7550 1GHz $\mathbf{£ 7 5}$ AM/FM/SSB
IFR A.7550 £250
KEITHIEY 102 progral
KEITHLEV 192 programmable digital multimeter $£ 40$
MARCONI 2019A signal generator 10 kHz -1GHz INCLUDING FREE
CALIBRATION CALIBRATION
PHIIIPS PM5580 IF 200 MHz high-performance spectrum analyse P2750 PHILIPS PM5580 I.F. modulator (PAL I) 'PTC'"
RACAL-DANA 9082 synthesized signal generator $5-520 \mathrm{MHz}$ RHODE \& SCHWARZ UOS $5,5.5$-digit multimeter IEEE RHODE \& SCHWARZ URE rms digial volitmeter IEEE

This months special
Hewletr Packard E5200A BROADBAND SERVICE
ANALVSER, STM1 option opts 02/051/122/138/139/139 List over 240,000, we re asking 59,500 -
(CONDITION UNUSED)

- ralfe electronics -
. 36 Eastcote Lane - South Harrow - Middx HA2 808 . England -

DISTRIBUZIONE E ASSISTENZA, TTALY, TLC RADIO, ROMA (06) 87190254

HEWLETT PACKARD

SCHLUMBERGER 12544 -channel frequency response analyser $\mathbf{£ 3 5 0 0}$ SCHLUMBERGER 4922 radio code analyser
SCHLUMBERGER SRTG-GA62 selective call test set
sarsec digital storage oscilloscope
TEKTRONIX $1481 R$ video waveform monitor PAL version TAU-TRON MN302MB302N bert transmiter/receiver
$\begin{array}{r}\text { £ } 1500 \\ \\ \hline 750\end{array}$
$£ 250$
WANDEL \& GOLTERMANN PCM4 test sets . . call for details
\& options
call
VANDEL \& GOLTERMANN PCM4 pCm measuring set version 85/01, IEEE opt
WANDEL \& GOLTERMANN PF2 error ratio measuring set WANDEL \& GOLTERMANN DLM-20 data circuin test set WANDEL \& GOLTERMANN SPM31 level meter WANDEL \& GOLTERMANN WM30 level tracer WANDEL \& GOLTERMANN PFA bit error reate tester BN911/01. Opt 00.01
WAVETEK 23 £2000 WVEIE 23 synthesized function generator $0.01 \mathrm{~Hz}-12 \mathrm{MHz}$ WAVETEK 1080 sweep generator $1-1000 \mathrm{MHz}$ WAYNE KERR 322020 A bias unit (for 3245 inductance analyser) $£ 1000$ WAYNE KERR SR268 source and detector f250 WILTRON 6637 sweeper generator $2-18 \mathrm{GHz}$ (option 03) WILTRON 6659A sweep generator 10MHz-26.5GHz (options 01/10/13)
WILTRON 66408 sweep generator 26.5 -40GHz loption 031 £3500

All equipment sold calibration-checked by independent laboratories and carries un-conditional refund and 90-day guarantees.
FOR EXCLUSIVE ACCESS TO OUR COMPLETE STOCK INVENTORY AND SPECIAL BARGAIN DISPOSAL DEALS PLEASE CHECK OUR WEBSITE
$8713 \mathrm{C} 300 \mathrm{kHz}-3 \mathrm{GHz}$ vector network analyser 3585 A 40 MHz spectrum analyser 1640B serial data generator 10715A digital interferometer 1185707 mm test port cables 33320 function generator

$£ 5000$

 44000 E500 E1000 5500 $33320 \mathrm{G} / 33322 \mathrm{G}$ programmable attenuators 4 GHz with driver 11713 AA5 above but 18 GHz set
$3552 A$ transmission test set
3561A dynamics signal analyse
3586A selective level meter 6650
$\mathbf{c} 1000$

3717B communications performance analyser, call for option con

4093 B protocol tester base (P) 300)
4142B OC source/monitor (with 41421B, 41420A, 41424A)
4948A (104) in-service TIM set
8018A serial data generator
5334 B fre quency counter, option 060
83411C lightwave receiver 1001550
83440C lightwave detector $20 \mathrm{GHz} 1300 \mathrm{~nm} / 1550 \mathrm{~nm}$
8350 B sweep generator mainframe
83572 B sweeper plug-in unit (for 8350 B) $26.5-40 \mathrm{GHz}$ 8924C CDMA mobile station test set
85053B 3.5 mm verific ation kt
8657 B synthesized signal generator $10 \mathrm{kHz}-26 \mathrm{~Hz}$ 8672A synthesized signal generator $2-18 \mathrm{GHz}$ 86730 synthesized signal generator $50 \mathrm{MHz}-26.5 \mathrm{GHz}$ $86222 \mathrm{~A} 10 \mathrm{MHz}-24 \mathrm{GHz}$ sweep generater plug-in unit 862908 2-18GHz sweep generator plug-in unit 86848 signal generator $5.4 \mathrm{GHz}-12.5 \mathrm{GHz}$ 89038 audio analyser $\mathbf{t 2 5 0 0}$ - (specify your add $£ 200$ for each filter J2215A FODI portable multimode test set

ISO9002 ACCREDITED STOCKIST MEASUREMENT \& TEST EQUIPMENT

"We never expected PCB Layout power at this price..."

Easy-PC For Windows is the latest

evolution of one of the most popular affordable CAD systems available. With powerful new features and a true Windows graphical user interface, it is also one of the easiest to learn and use. Using full manufacturing outputs using Gerber, Windows printers and pen plotters it is one of the most complete systems.

Run multisheet schematics, PCB layouts and library managers in the multiple document interface and switching between each is simply case of selecting it with the mouse.

Runs under Windows $95^{\text {TM }}$ and Windows $N T^{\text {TM }}$

Number One Systems

The Electronics CAD Software Specialists

- True Windows graphical user interface
- Integrated SCM and PCB environment
- Analogue and Digital simulators
- Electromagnetic simulator
- Shape based gridless Autorouter
- No limits on anything !!
- Very competitive pricing

Download a working demo from our web site at www.numberone.com
or Email us at sales@sightmagic.co.uk

Call 01684773662 for more information or fax 01684773664

- Genuine, professional EDA software with no limitations! - and you can afford it!
- EDWin NC comes from Visionics: one of the longest established, most experienced producers of professional EDA systems, so it's fully proven in professional work.
- Now you can have this best-selling non-commercial version of the software at just 10% of the normal price, with no limits in its capabilities.
- It does just about everything you could want!

Schematics, simulation, PCB layout, autorouting, manufacturing outputs, EMC and Thermal Analysis.
Many more advanced features are available and it runs in Windows 3.x, 95 or NT.
-Where's the catch? It's for non-commercial use, but companies may order for evaluation purposes. Prices start from just $£ 49.00$ for the basic system, up to only $£ 235.00$ for the full system including all available modules!

Don't forget - Phone Today for Your 90\% Discount!

- EDWin NC BASIC: Schematics, PCB Layout Basic

Autorouter, manufacture outputs, Max. 100 component database, 500 device Library $£ 49.00$

- EDWin NC De Luxe 1: BASIC + Professional Libraries and unlimited database £ 79.00
- EDWin NC De Luxe 2: BASIC + Professional Libraries and Mix-mode simulation $\quad \mathbf{7 9 . 0 0}$
- EDWin NC De Luxe 3: BASIC + Professional Libraries, unlimited database, Mix-mode Simulation and Arizona Autorouter $\quad \mathbf{£ 1 1 5 . 0 0}$
- EDWin NC De Luxe 4: De Luxe 3 + Thermal Analyser, EDSpice Simulation, EDCoMX Spice model kit
£199.00
- EDWin NC De Luxe 5: De Luxe 4 + ED-EMA (EMC Analyser) ALL FOR ONLY £235.00 Plus Post \& Packing UK $\mathbf{£ 5 . 0 0}$; Rest of World $\mathbf{£ 1 0 . 0 0}$ (only one charge per order)
Order hotline: +44 (0)1992 570006 Fax +44 (0)1992 570220 E-mail: swift.eu@dial.pipex.com CIRCLE NO. 131 ON REPIY CARD
Swift Eurotech Ltd., Twankhams Alley, 160 High Street, Epping, Essex, CM16 9AQ, UK

Tel.: Evenings

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

PASSIVE AND ACTIVE COMPONENTS

Connectors and cabling

wire-to-board connector.
AMPMODU Wire Lock connectors from AMP are for use in the connection of solld, tinned wires to a board, assembly being simply a matter of stripping the insulation and inserting the conductor into the connector recelver, where it is held to the phosphor-bronze-plated contact. It may be removed by a standard screwdriver. There are right-angle and vertical forms with $2,4,6$ and 8 positions at 3.96 mm centres, plastic holders being supplied to retain the connector during wave soldering. Current rating is $1.5 \mathrm{~A} /$ contact and termination resistance 15 ms . AMP. Tel., 01819542356 ; fax, 0181 9547467.

Enq no 501

Data converters

DVD DAC. AKM's AK4393 is a 24 -bit, 96 kHz sampling, stereo d -to-a converter that complies with DVD standards, having a dynamic range of 120 dB and sampling at 32, 44.1 and 48 kHz as well as 96 kHz . Outputs are filtered on-chip by a switchedcapacitor filter that tolerates clock jitter of several tens of nanoseconds, since output charge packets are determined by an external voltage reference and not the clock. No exotic pll is therefore needed and neither is level conversion because the digital interface is at til levels.
Asahi Kasei Microsystems Co., Ltd Tel., 01923 226988; tax, 01923 226933.

Enq no 502

Discrete active devices

 Switching dual diode. Rohm offers the BAVgU surface-mounted dual diode package, which exhibits a peak reverse voltage of 90 V and maximum repetitive forward current of 600 mA ; at 200 mA , forward voltage is 1.05 V . Power disslpation is 225 mW and surge current rating is 4A. Junction temperatures between $-65^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ are accepted and reverse recovery time is 20 ns .Rohm Electronlcs UK Ltd. Tel., 01908 282666; fax, 01908 282528; web, www.rohm.co.jp.
Enq no 503

Displays

Serlal-to-Icd Interface. As part of the $E D E$ range of "building-block" ics by E-Lab Digital Engineering, the

EDE702 serial-to-lcd interace ic allows any size of text display to be used from only one pin of a microcontroller, instead of the usual eleven. It also eliminates the software for latching, writing and control since it provides a standard serial data interface. Other units in the range are the EDE1400 parallel printer driver that takes serial data in; the EDE1200 stepper-motor driver providing full control in any mode; and the EDE300, which controls external devices via a pc when connected to its serial port. Dannell Electronics Ltd. Tel., 01376 347415; fax, 01376 550019; e-mail, sales @ dannell.co.uk; web,
www. dannell.co.uk
Enq no 504
On-screen display module. LS Designs has a range of on-screen display modules to superimpose text directly on composite-video signals. Four units in the range provide displays from basic time and date information to serial-controlled text. They are on single-in-line boards, they need few external components and special versions can be provided for specific applications. LS Designs. Tel., 0115 9324488; fax, 0115 9325588; θ-mail, info (3) Isdesigns.co.uk; web, www. Isdesigns.co.uk Enq no 505

Hardware

Pentlum II cooler. Combining the Sunon Cap Fan with a heat sink designed by Thermalloy has enabled the thickness of this Pentium II processor cooler to be reduced to 18 mm , while its claimed performance is 150% more efficient than standard Pentium II types. Exhaust of the warm air is over 360° and the fan motor has no direct contact with the heated area to promote long life. The cooler has fixing clips.
Thermaco Ltd. Tel., 01684 566163; fax, 01684 892356; e-mail, thermaco@compuserve.com Enq no 507

Sealed, cast housings. Densitron has a new design of equipment housing that not only halves tool costs but produces a cast-alloy housing complete with heat sink and ri seal as a single piece for vhf use. The if sealing is achieved by a system of closed cells inside the housing and an automatically dispensed ri sealing gasket. The housings are nickel-plated, machined, stove-enamelled and sealed to IP54.
Densitron Europe Ltd., 01959 700100; fax, 01959 700300; e-mail, sales@densitron.co.uk; web. www.densitron.co.uk. Enq no 508

Linear integrated circults

Rail-to-rall comparators. Two SOT23-5 rail-to-rail cmos comparators by Micrel are designed to operate from 2.2-10 V and are for use where space is limited, being five-pin devices. MIC7211 has a conventional output stage and the MIC7221 an open-drain output; both exhibit a common-mode range to exceed the rail voltages. Supply current is $7 \mu \mathrm{~A}$ and response time under $5 \mu \mathrm{~s}$.
Micrel Semiconductor Europe. Tel., 01635 524455; fax, 01635 524466; web, www.micrel.com
Enq no 509

Materials

Shielding gaskets. Combination Gaskets from Warth combine ME and MS electromagnetic shielding strips bonded in parallel to a closed-cell neoprene or silicone sponge elastomer. Shielding is in excess of 128 dB between 1 MHz and 100 MHz . In addition, the gaskets provide sealing to IP65 against water and dust. Operating temperatures are $-60^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ for the silicone types. To help with mounting, pressuresensitive adhesive can be supplied. Warth International Lid. Tel., 01342 315044; fax, 01342 312969; web, www.warth.co.uk.
Enq no 510

Memory

Low-cost flash. New Atmel flash memories for use in pcs and consumer equipment are announced. AT49F512, AT49B5 12 and AT49F516 are 512 K devices and the AT49F4096A a 4Mbit type. All are suited to use in graphics cards, mass

Magnetic indicators. With an eye on aerospace and medica usage, Electrodynamics has introduced the C125 single-coil, latching, non-volatile indicator, which operates in the $-40^{\circ} \mathrm{C}$ to $134^{\circ} \mathrm{C}$ range in 100% relative humidlty and in a pressure of $30 \mathrm{lb} / \mathrm{in}^{2}$. This device is meant for fault indication in poor conditions and low ambient lighting. It comes in $3 \mathrm{~V}, 6 \mathrm{~V}$ and 12 V versions and responds to a 50 ms or longer pulse to latch the drum and exhibit a red, yellow, green or white face.
Relec Electronics Ltd. Tel., 01929 555700; fax, 01929 555701; email, sales @relec.co.uk Enq no 506
storage drives and DVD players. The 512 s are organised as 64 K by 8 , the 516 as 32 K by 16 and the 4096 as 256 by 16 , all 512 allocating 8 K for boot block and 56 K byte for main memory, while the 4096 provides a 16 Kbyte boot block with programming lockout, two 8 Kbyte parameter blocks and a 480 Kbyte main memory block. GD Technik Ltd. Tel., 0118 9342277; fax, 01189342896.
Enq no 511
133 MHz fifos. IDT's SuperSync II first-in-first-out memories are said to be the first to achieve 4 Mb density and to run at 133 MHz . They also only take 35 mA from $3.3-5 \mathrm{~V}$ rails and come in densities of $126 \mathrm{~Kb}-4 \mathrm{Mb}$. In addition to conventional bus configurations, these devices provide $\times 9 \times 16$ bus matching on read and write ports. Other features include zero-latency transmission, eight preselected default offsets for the almost-empty and almost-full flags

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information
and selectable async./sync programmable flag modes. IDT Europe. Tel., 01372 363339; fax, 01372378851.

Enq no 512

Microprocessors and controllers

Embedded Pentlum conversion.
Hitex has produced a conversion board to allow developers to incorporate the new $0.25 \mu \mathrm{~m}$ Intel Pentium MMX processor in existing and future embedded applications. The board may be plugged onto a standard Pentium processor and contains all 3.3 V to 2.5 V voltage converters and level shifters needed for the conversion. The Hitex DProbe PENTIUM emulators support the new 2.5 V form.

Hitex (UK) Ltd. Tel., 01203 692066; fax, 01203 692131; e-mail,
sales © hitex.co.uk; web,
www.hitex.co.uk.
Enq no 513
New PICs. PIC16F627/8 are new flash microcontrollers by Microchip and are Intended to provide an entry to more complex embedded control. Both have a 4 MHz clock, precision comparators, a high-speed usart and a capture/compare/pwm module. There are 1024 by 14 bits and 2048 by 14 bits of flash program memory, 224byte of data ram and 128byte of

Power

semiconductors

Rf power transistor. Ericsson's PTF10112 n-channel if enhancement-mode fet power device, which uses the Goldmos technique, is meant for use in CDMA and TDMA applications in the $1.8-2 \mathrm{GHz}$ band. Minimum output is 60 W at 1 dB compression and forms a viable altemative to MRF286 types. Gain is around 3 dB higher than bipolar equivalents and it has better stability. Minimum power gain is 12 dB at 1.95 GHz within $\pm 0.3 \mathrm{~dB}$ from 1.93 GHz to 1.99 GHz Class AB, two-tone third-order intermodulation distortion is -40 dBc at 25 W pep. Load mismatch tolerance is 10:1.Ericsson Components AB. Tel., 01793488300 ; fax, 01793 488301
Enq no 514

data eeprom. Other features are a working voltage of $2-5.5 \mathrm{~V}$, a 20 MHz maximum operating frequency, brown-out reset, a 1μ s single-cycle instruction time at 4 MHz , a watchdog timer and three others and 16 i/o pins. Both micros are supported by the MPLAB-ICE emulator and the PICstart Plus development system and come in 18 -pin pdip, soic, ssop and windowed dip packages. Arizona Microchip Technology Ltd. Tel., 01189215858 ; fax, 0118 9215835.

Enq no 515
Peripheral-rich micro. Dallas Semiconductor has announced the DS87C550 eprom high-speed microcontroller, which has an analogue-to-digital converter and pulse-width modulation on the chip. Its processor is the fastest 8051 type with extra circuitry, although still compatible with the standard 8051 Processing speed is up to three times faster at the same clock speed, using four cycles Instead of twelve to process an instruction. The a-to-d is a 10-bit type taking up to eight inputs and having a window function to allow the conversion to proceed with no processor interruption until a value of interest is found. Four pwm channels are provided, two being cascaded for 16 -bit resolution. Many more features are incorporated - registers and comparison registers, an 8 Kbyte eprom, power management, timers and radiation reduction.
Dallas Semiconductor Corporation. Tel., 0121782 2959; fax, 0121782 2156.

Enq no 516

Motors and drivers

Stepper drivers. Two new dual stepper motor drivers by Ericsson, the PBL37712/3, are based on the PBL3771 but now offer higher motor voltage, lower power dissipation and more efficient packages. Output to the motor may be up to 60 V , the 37712 providing 750 mA continuously per channel and the 37713 up to 900 mA . These are dual-channel, switchedmode, constant-current choppers one for each winding of a two-phase stepper motor and, as well as microstep operation, give full and half stepping modes; both work with the company's PBM3960 controller. Slow or fast current decay in the output stage is selectable by logic level from the controller to give better positioning and less noise at high stepping rates. Ericsson Components AB. Tel., 01793488300 ; fax, 01793488301. Enq no 517

Optical devices

Led modules. Rohm's family of high-brightness modular displays is now expanded with the addition of a compact, 256-dot, three-colour type using surface-mounted chips and complete with the driving and control circuitry. These LUM-256 modules, measuring 96 by 96 mm , provide a 16 by 16 resolution, with a dot size of 2.1
by 2.3 mm pitched at 6 mm . Colours available are red, green and orange. Modules may be stacked in either direction to form larger displays. Current taken is 1.8 A and there is an asic driver/controller with a display data memory large enough for two screens. Typical brightness is $100 \mathrm{~cd} / \mathrm{cm}^{2}$ and a fine-control allows matching between units.
Rohm Electronics UK Ltd. Tel., 01908 282666; fax, 01908 282528; web, www.rohm.co.jp.
Enq no 518

Oscillators

Voltage-controlled crystal oscillators. Compact 14 by 9 by 4 mm oscillators by C-MAC in the CFPV-1000 Series are meant for use in timing circuitry in applications such as telephone switching and transmission equipment. They provide voltage control up to $\pm 200 \mathrm{ppm}$ over the $4.096 \mathrm{MHz}-155.52 \mathrm{MHz}$ frequency range. In J-lead packages, these devices are supplied on tape and are usable with pick-and-place and reflow soldering. Standard tolerance is within $\pm 25 \mathrm{ppm}$ over the range $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ or $\pm 50 \mathrm{ppm}$ down to $-40^{\circ} \mathrm{C}$ and up to $85^{\circ} \mathrm{C}$. Ageing is under $\pm 5 \mathrm{ppm}$ in the first year and within $\pm 15 \mathrm{ppm}$ in ten years. Output drives Hcmos and ttl , with the option of $\mathrm{ecl} / \mathrm{pect}$ C-MAC Quartz Crystals Lid. Tel., 01460 74433; fax, 01460 72578; e-mall cfp ${ }^{3}$ europe.cfowww.com; web, www.cfowww.com.
Enq no 520

Passive components

Pulse transformers. Timonta's $I T$ Series high-voltage, high-insulation pulse transformers are said to be 30% smaller than conventional types. They come in through-hole and $\mathrm{s}-\mathrm{m}$ form and have an insulation rating of 3.2 kV , with small coupling capacitance. They are meant for use in the control of semiconductors and have an unlimited service life. Timonta UK. Tel., 01929 555800 fax, 01929 555801; e-mail, sales@ timonta.co.uk.
Enq no 521

Protection devices

I/o protection. Semtech's LCDA15C-6 is a transient voltage suppressor for the protection of multi-mode transceivers in telecomms, networking and wans It will protect up to six I/o lines or three pairs working at $5-15 \mathrm{~V}$ in all multi-mode levels. Capacitance is under 15 pF per line to make the device suitable for high-speed interfaces and the clamping voltage is low to avoid stressing the protected device. Surge rating is 400 W in an $8-20 \mu$ s pulse and the low inductance protects against overvoltage caused by lightning and hot plugging; esd protection is up to 25 kV
Semtech Lid. Tel., 01592 773520; fax, 01592774781
Enq no 522

Transducers and sensors

Doughnut load cells. Control Transducers' has the Model PG range of load washers for the measurement of forces such as bolt stresses, overloads, clamping forces, die loads, etc. These are selfcontained, calibrated load cells designed for fitting directly onto the component. Circuitry is a full Wheatstone bridge with the strain elements fixed to the load column in such a way as to promote maximum linearity and temperature compensation. Operating temperature range is $-10^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ with compensation extending an optional $200^{\circ} \mathrm{C}$. Repeatability is $\pm 0.5 \%$, nonlinearity and hysteresis better than $\pm 0.2 \%$, with an output of $2 \mathrm{mV} / \mathrm{V}$ up to 20 V input.
Capacity range is 100 to 100000 kg .
Control Transducers. Tel. 01234 217704; fax, 01234 217083
Enq no 519

Traceable capacitors. AVX offers the MR05/06 and TAP ranges of traceable capacitors with documented CECC release. MR series types are radlal, multilayer ceramics in epoxy cases, in three types of dielectric and two working voltages, while the TAP models are dipped tantalum components with radial leads, operating at voltages from 6.3 V to 50 V and in the $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range. Farnell Components Ltd. Tel. 0113263 6311; fax, 0113263 3411, web, www.farnell.com. Enq no 517

Circuit-breaker replacement.
Teledyne's PC Series of solid-state, optically Isolated power controllers replace conventional
electromechanical circuit breakers in some applications, reducing cost, size and weight and enhancing reliability. They come in 28 V dc at 2-15A or 270 V dc at 1-10A versions, giving low on resistance and provide complete short-circuit and current overload protection, with status outputs for trip and load voltage to allow monitoring. Teledyne. Fax, 01634863494.
Enq no 524

Switches and relays

Four relays - one package. Teledyne's EFRQ series of four-pole relays are industrial solid-state units and are effectively four relays in a single housing. The relays have scr output handling 55 A at 1.2 kV and use optical isolation between control circuits and output to reduce transients. Teledyne's Powertherm process of thermal management increases the efficiency of heat dissipation and reduces the stress caused by different expansion rates. Teledyne. Fax, 01634863494
Enq no 525
Movement switch. From Assemtech comes the MS24 movement detection switch, which is a non-mercury type intended for use in anti-tamper and interference detection. It has gold contacts and a sealed metal body. It is not sensitive to mounting position. The switch's sensitivity to vibration allows it to detect the starting of motors or other equipment. Normally, the contact may be open or closed, vibration or movement causing the contacts to open and close repeatedly, the output being damped it necessary to reduce sensitivity. It is suggested that battery-powered equipment may use the switch as a wake-up device from sleep mode.
Farnell Components Ltd. Tel., 0113 2636311 ; fax, 0113263 3411, web. ww.farnell.com.
Enq no 526

EQUIPMENT

Communications equipment

Tunnel antenna. With a view to providing better and cheaper communications in tunnels for security and emergencies, European Antennas has introduced a broad-band antenna for singlepoint mounting to cover the $400 \mathrm{MHz}-2 \mathrm{GHz}$ frequency band with 4-7dBic gain, being a lower-cost alternative to leaky feeders. It is only 420 mm in diameter and uses circular polarisation; tests have shown its range to be an improvement on earlier methods. Its plated aluminium housing and glassfibre radome withstand corrosive
pollution.
European Antennas Ltd. Tel., 01638 731888; fax, 01638 731999; web. www.european-antennas.co.uk. Enq no 527

Production equipment

Conductive storage. TBA Electro Conductive Products has announced the availability of a moulding and fabrication service for conductive storage boxes and bins, in which a customer may specity inserts and dividers and box dimensions. Materials used are conductive PP HDPE, PA6 and PS including carbon blacks.
TBA Industrial Products Lid. Tel: 0170647718 ; fax, 01706 46170; e-mail, info@tbaecp.co.uk; web, www.tbaecp.co.uk
Enq no 528

Power supplies

65W "smallest \& lightest". The Eos ZVC65NT 65 W power supply is claimed to be the smallest and lightest 65 W unit available, measuring 115 by 60 by 28 mm and weighing 250 g . Zero-voltage and current switching provides $89-91 \%$ efficiency and a $5.2 \mathrm{~W} / \mathrm{in}^{3}$ power density. There are supplies to accept $90-264 \mathrm{~V}$ ac with standard outputs of $12-48 \mathrm{~V}$, all having active power factor correction and a 15 ms hold-up time. They comply with all the relevant standards for safety and emi.
Acal Electronics Ltd. Tel., 01344 727272; fax, 01344424263.
Enq no 529
"Fastest" dc-to-dc converter. Clalmed by Semtech to be the world's fastest converter, the SC1144ABCS will meet demands for a load increase of 5 A io 20A in 500 ns . It is a selectable, four-phase controller for advanced processors, for example Intel Pentium-based servers and workstations. Oscillating at 8 MHz , the pwm controller for multi-phase buck converters gives drive for two, three or four phase working, a 5 -bit
programmable d-to-a converter giving good regulation. Output is $1.3 \mathrm{~V}-2.05 \mathrm{~V}$ in 50 mV steps and $2 \mathrm{~V}-3.5 \mathrm{~V}$ in 100 mV steps.
Semtech Lid. Tel., 01592 773520; fax, 01592774781.

Enq no 530

Radio systems

GSM transceiver. TDK has the GSM900/DCS1800 calibrated radlo transceiver module for the GSM market, as an entry module or as an upgrade to dual-band operation. It complies with GSM phase-2 specifications, meets GSM power class 4 at $2 W$ and DCS power class 1 at 1W and supports inter-band handover. Used with a base-band system, the module provides all transmit and receive circuitry for dual-band GSM. Applications include mixed systems such as a combined GSM/GPS or GSM with personal communication, in addition to
providing GSM functions in a laptop pc or notebook. This device was designed in partnership with TTP Communications of Cambridge. TDK UK Semiconductor Corp. Tel., 01814437061 ; fax, $01814437022 ;$ e-mail, europe.sales @isc.tdk.com; web, www.tdksemi, demon.co.uk. Enq no 531

Power pulse generator. Models 2430 and 2430-C Digital Source Meters are announced by Keithley for the production test of active or passive components needing transient power pulses. The instruments put out pulses with widths of $300 \mu \mathrm{~s}$ to 2.5 ms at up to 10 A at 100 V . In addition, Model C

Test and measurement

Inductance analyser. Wayne Kerr's IA3255 analyser offers the functions selected as being in most common use: $L, Z, R_{\mathrm{ac}}, R_{\mathrm{dc}}$, phase, Q, turns ratio, C and dissipation factor. Its ability to measure using a range of voltages allows the measurement of air gaps, core material and tums, the low-level dc resistance test avoiding overheating and magnetisation. There is ac drive level to 10 V , dc bias from 0.1 mA to 1 A , connection to the component by four-terminal Kelvin leads, high-speed, GPIB control, automatic level control and on-screen absolute or relative indication. Basic accuracy is $\pm 0.5 \%$ and there is self calibration for consistency. Wayne Kerr Electronics Ltd. Tel., 01243 825811; fax, 01243824698 ; e-mall, sales@wayne-kerr.co.uk.
Enq no 532

Emissions tester. Schafiner EMC has introduced a range of emissions-test equipment - Profline 6000 - comprising six equipments for those needing to test to Euro Norms, FCC and CISPR emc emission standards. Each comes with the SCR 3000 series receiver covering $9 \mathrm{kHz}-2.6 \mathrm{GHz}$, one for CISPR requirements to 1 GHz and the other for applications such as mobile telephones and microwave oven monitoring. Both are CISPR compliant and are fitted with IEEE488 and RS232 for automatic control. The receivers have internal storage of transducer factors and limit lines and also removable memory cards for data and device settings. Software is supplied.
Schaffner EMC Lid. Tel., 01189770070 ; fax, 01189792969
Enq no 535

Please quote "Electronics World" when seeking further information

has a contact check circuit to verify contact with the component being tested in under $350 \mu \mathrm{~s}$ - a facility needed in fast production test in which contacts have a tendency to degrade. Each has a 5.5 -diglt multimeter and digital i/o lines and comparators for fast parts binning when used with handlers; there is also memory for test sequences. The instruments will provide continuous voltages from $\pm 5 \mu \mathrm{~V}$ to $\pm 100 \mathrm{~V}$ dc and measure voltages to within $\pm 0.012 \%$. Current sourcing and measurement is also provided.
Keithley Instruments Ltd. Tel., 0118 9575666; fax, 0118596469.
Enq no 534
Electronic load. Start Spellman's electronic load handles inputs of $75-10000 \mathrm{~V}$ dc in either polarity and is an active, solid-state type, the load value being varied by front-panel control or remotely by an analogue $0-10 \mathrm{~V} \mathrm{dc}$ input. Power is dissipated by element cards in a backplane carrying fets, an arrangement allowing best power transfer into cooling alr. There is protection for single-card failure and fan failure, power, current and over-temperature Maximum load current is 2.5 A , input power being limited to 20 kW . The unit measures 600 by 800 by 980 mm high with its castors, and weighs 100 kg .
Start Spellman Ltd. Tel., 01798
873986; fax, 01798 872479; e-mail, hvsales@start-spellman.co.uk.
Enq no 539
Computers
Embedded pcs. Inside Technology

COMPUTER AND DATA HANDLING

of Denmark announces a family of embedded pcs based on the Cyrix MediaGX processor chip set. There are three types in the family: $586 L C D / G X m, 586 L C D G X m^{\text {Plus }}$ and 686 LCDCXm . The two 586s are based wholly on the MediaGX chip set, both using the integrated graphics controller and providing Ethernet support, DiskOnChip flash disk to 72 Mb and interfaces for ISA, PC/104 and USB. In addition, the Plus model supports Compact Flash to 48Mb, on-board PanelLink for remote display control and
SoundBlaster 16. It also has four serial ports instead of the standard two com ports. The 686 model has, in addition to the MediaGX, a C\&T 69000 graphics controller for better performance with flat-panel displays. It also copes with 300 MHz clocking and a YUV interface for direct video input.
Inside Technology A/S. Tel, 0045 45761016; fax, 0045 45761017; e-mail, inside@inside.dk; web, www.inside.dk.
Enq no 538

Computer board-level products

Analogue i/o coprocessors. Datel has two additions to the PCl-431 family, the PCI-431D/L, which are analogue i/o digital dsp coprocessor boards for the PCI bus, offering true multi-level concurrent coprocessing. A

Audlo analyser interface. As an option for the Audio Precision Portable One range of audio analysers, Thurlby Thandar can now supply a GPIB interface for both versions of the instrument. The interface controls all the operation of the instruments including the recently introduced digltal audio measurement in the dual-domain version for which Visual Basic sample source-code programs are supplied. The interface is also available as an upgrade.
Thuriby Thandar Instruments Ltd. Tel., 01480412451 ; fax, 01480 450409; e-mail, sales@ttinst.co.uk..
Enq no 537
local fifo a-to-d memory and a bidirectional PCI bus fifo allows analogue samples to be stored while dsp maths is continuing and previous data blocks are sent to the pc. Model D has sixteen single-ended, 14 -bit a-to-d channels with parallel sampling at up to $300 \mathrm{kHz} /$ channel, while the L has a similar number of of 12 -bit channels sampling at up to $600 \mathrm{kHz} /$ channel. A user clock can be
used or an on-board frequency synthesiser will give a-to-d clocking. Several on-board sub-controllers allow the dsp to process blocks while the a-to-d section samples and stores.
Datel (UK) Ltd. Tel., 01256 880444; fax, 01256 880706; e-mail, datel.Itd@ge.geis.com; web, www.datel.com. Enq no 540

Free copy of Alectronics Engineer's pocket book with every order while stocks last

Available issues

1994	1996	1998
January	January	January
April	February	February
May	March	March
July	May	April
August	June	May
November	July/August	June
December	September	July
	October	August
$\mathbf{1 9 9 5}$	November	September
February		October
April	1997	November
May	January	December
June	June	
September	August	1999
October	September	January
December	December	February

Note that stocks of some of the above issues are low and will soon sell out. Please allow 21 days for delivery.

Development and evaluation

$68 \mathrm{HC1} 2$ debugger. Hot insertion is the feature of the Noral Micrologic Flex-BDM/68HC12 handheld background debug tool, allowing connection to a live, embedded target with no need for system reset in systems that must operate continuously with zero down time. It operates with all members of the family of processors and is meant for the location and fixing of problems that vanish at reset. The tool may be used with the company's Flex debugger software to give similar functions used during initial development, including viewing the original C code, reading and modifying variables and registers and single-stepping source code from all memory areas including flash and eeprom.
Noral Micrologics Lid. Tel., 01254 682092; fax, 01254680847.
Enq no 540

Mass storage

120MB floppy drive. Panasonic's 3.5in SuperDisk 120 MB floppy disk
drive is now available as an upgrade package - cables, media, mounting accessories, software and
a manual. The drive takes Imation and Maxwell disks, but is read/writecompatible with existing 1.44 MB and 720KB 3.5in disks. It measures 101.6 by 150 by 25.4 mm .
Panasonic. Tel., 0800444220.
Enq no 541

Software

Electromechanical component analysis. Densitron software for analysing the behaviour of electromechanical components uses finite element analysis to allow users to predict the behaviour of designs before they are made, pin-pointing areas likely to need modification. After programming with the design details, the software measures force and torque against displacement or current or both, modelling the magnetic field intensity to validate the choice of materials
Densitron Europe Ltd., 01959 700100; fax, 01959 700300; e-mail, sales © densitron.co.uk; web. www. densitron.co.uk.
Enq no 542

Thermal management. Fotherm v 2.1 by Flomerics now has five major improvements. There is a $1000-$ times-faster radiation exchangefactor calculator; automatic calculation and setting of characteristic velocity and length scale on a cell-by-cell basis; automatic block correction for temperature to reduce manual setting errors; a conjugate-gradient solver for pressure to improve convergence for problems involving pressurised conditions or unstable airflows; a faster solid modelling engine to ACIS v.4.0 for processing data from mcad, better graphics for low-end pcs and workstations; and a better database Flomerics Lid. Tel, 0181 9418810; fax, $01819418730 ;$ e-mail flomerics@flomerics.co.uk; web, www.flomerics.com.
Enq no 543

PUBLICATIONS

Memory. NEC has reorganised its cd-rom memory catalogue to make it easier to drive. You now get taken to the relevant device promptly. The cd
contains selection tables, data sheets and manuals, with application notes on synchronous dynamic and graphics ram. Additions this time are double-data-rate sdram and high-density 256 Mb sdram; others are mcp combining sram and flash, and combo memory having sram and mask rom. The cod has Acrobat, in case you haven't. And it is free. NEC Electronics (UK) Lid. Tel., 01908 691133; fax, 01908670290. Enq no 544

Computer measurement \& automation. National Instruments
has its 1999 Measurement and Automation Catalogue of equipment concerned with computer-based measurement. It contains tutorials on data acquisition, applications software, GPIB, VXI and communications. New products include LabVIEW, new PXI/CompactPCI modules, toolkits for the development of IVI drivers and the newest computer-based instruments. National Instruments UK. Tel., 01635 572400; fax, 01635 524395;e-mail, info.uk@natinst.com; web, www. natinst. com/uk Enq no 545

Music Engineering

The Electronics of Playing and Recording

\author{

- Highly illustrated guide to the technology of music and recording.
 - Written in an approachable style using examples of well-known songs, this book is a must-have guide for sound recording engineers and electronic engineers.
}

If you are an electronics engineer who needs specific information about music reproduction, or if you are a sound recording engineer who needs to get to grips with the electronic technology, Music Engineering is for you.
This handy volume is a technical guide to electric and electronic music, including the essential science, but concentrating on practical equipment, techniques and circuitry. It covers not only basic recording techniques and audio effects, kit such as microphones, amps and instruments, but also valve
technology, stereo and digital audio, sequencers and MIDI, and even a glance at video synchronisation and a review of electronic music.
Music Engineering lifts the lid on the techniques and expertise employed in modern music over the last few decades. Packed with illustrations, the book also refers to well known classic recordings to describe how a particular effect is oblained thanks to the ingenuity of the engineer as well as the musician.

Richard Brice has worked as a senior design engineer in many of Britain's top broadcast companies and has his own music production company. He is the only writer who can provide this unique blend of electronics and music.
Contents: Soul Man - Science and sensibility; Good Vibrations - The nature of sound; Stand By Me - Microphones and their applications; Message in a Bottle - Valve technology; Roll over Beethoven - Electric

Instruments; Wild Thing Electronic effects; Pet Sounds - Electronic synthesis; Silver Machine - Sequencers \& MIDI; Got to Get You into My Life Sound recording; Bits ' n ' Pieces Digital Audio; Space Odyssey Stereo and spatial sound; Let's Stick Together - Recording consoles; Unchained Melody Amplifiers; Shout Loudspeakers; Synchronicity Video and synchronisation; Dark Side of the Moon Electronics and the music of the 20th century.

Inclusive price: $£ 22.50$ UK, $£ 25$ Europe, $£ 28$ ROW.

To order by post, send a cheque or postal order to Jackie Lowe at Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please make your cheque payable to Reed Business Information. Alternatively, fax full credit card details to 0181652 8111, e-mail jackie.lowe@rbi.co.uk.
ISBN: 0750639032
Paperback, 256pp, 150 line illustrations.
Copies of Richard's previous book, Multimedia and Virtual Reality Engineering, are still available, inclusive hardback price: $£ 27.50$ UK, 29.50 Europe, $£ 32$ ROW.

Electronics World - reader offer

Temperature-controlled soldering stations - over 15\% discount

Electronics World readers are eligible for an exclusive discount on both the SL20 and SL30 soldering stations from Vann Draper Electronics.
Normally, the SL20 with bar-graph temperature indicator costs $£ 55$ while the SL30 with digital read-out costs £65 excluding VAT and delivery. Electronics World readers using the coupon alongside can obtain either of these stations for the prices above - but without adding delivery charges and 17.5% VAT.
Designed for servicing and manufacture, these irons feature $24 \mathrm{~V} / 48 \mathrm{~W}$ heating elements and an iron-coated bit for long life. The SL20 has a control range of 150 to $420^{\circ} \mathrm{C}$ while the 30 spans 160 to $480^{\circ} \mathrm{C}$. As standard, an 0.8 mm diameter bit is fitted, but 1.6 and 3.2 mm alternatives can be obtained by adding $£ 1.65$ inclusive to your order for each extra bit required. Please make enquiries to Vann Draper on 01162771400 , fax 2773945.

Use this coupon to order your SL20/SL30

Please send me
_ SL20(s) at the fully inclusive special offer price of $£ 55$ incl val and del
_SI3OSS at the fully indusive special offer price of $£ 65$ ind vat and del
_ Extra bits $£ 1.65$ ind vat and del
Name
Company (if any)
Address

Phone number/fax
Total amount $£$......................
Make cheques payable to Vann Draper Electronics Ltd Or, please debit my Master, Visa or Access card.

Card No
Expiry date

Please mail this coupon to Vann Draper Electronics, together with payment. Alternatively fox credit card details with order on 01162773945 or telephone 0116 2771400. Address orders and all correspondence relating to this order to Vonn Droper Electronics of Unit 5, Premier Works, Conal Street, South Wigston, Leicester, LE18 2PL. Overseas readers can also obtain this discount but details vory according to country. Pleose ring, write or fax to Vonn Draper Electronics

WEB DIRECTIONS

To reserve your web site space contact Joannah Cox

 Tel: 01816523620 Fax: 01816528938
AQUILA VISION

http://aquila-vision.co.uk
Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs. We also stock robotics boards, Linux and general interest CD-ROM's.

BF COMPONENTS

http://www.bfcomponents.co.uk
Visit the site for Milgray-Bell in the U.K. Full e-mail facility with instant links to Bell and Milgray web sites for stock interrogation.

CAMBRIDGE MICRO PROCESSOR SYSTEMS LIMITED

http://www.cms.uk.com

COOKE INTERNATIONAL

http://www.cooke-int.com e-mail: info@cooke-int.com

Contact	Stock
Enquirles	Manuals
Onder	
Location	Ond Legal Notice Snall Mail
Speclals	
Download	

CROWNHILL ASSOCIATES LTD

http://www.crownhill.co.uk
Crownhill supply low cost development tools for use with Micro-Controllers and Smart Cards. Products include Smart Card development tools, Smart cards, Micro Development tools and Bespoke Design Services.

ELECTRONICS WEEKLY

 HYPERACTIVEhttp://www.electronicsweekly.co. uk

dISPLAY ELECTRONICS

http://distel.co.uk

FELLER UK

http://www.feller-at.com
Feller (UK) Ltd. manufacture Fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to National and International Standards

FLASH DESIGNS LTD

http://www.flash.co.uk
Portable Easy-ICE - The world's fastest, Lowest Cost, Real-time Emulator + Starter kits from $£ 319$ with unique ICE connection interface for ATMEL AT89S/C, AVR AT90S, 103/603, MCS51, Dallas 80C320, Hltachi H8 + ISP programmers + 'C' Compilers

LOW POWER RADIO SOLUTIONS

http://www.|prs.co.uk
LPRS markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiometrix, Circuit Designs, RDT and Micrel. Applications for telemerry, video and remote control.

MICRO CALL

http://www.microcall.memec.com
Micro Call is a distributor for the following: Galileo,IDT (Integrated Device Technology).
M.K. Consultants (UK) Ltd
http://www.mkconsultants.co.uk
A global supplier of low power modules designed and manufactured by MK in the UK. Nobody beats our prices. That's the MK price challenge.

NEWNES - BOOKS FOR THE

 ELECTRONICS WORLDhttp://www.newnespress.com
Over 300 books and information packages for those working with electronics and engineering technology Visit our site for a free catalogue and downloads.

NATIONAL INSTRUMENTS

http://natinst.com.uk

OMEG POTENTIOMETERS

http://www.omeg.co.uk
Omeg 16 mm and 20 mm potentiometers and switched potentiometers with conductive polymer tracks. Web site has full product details, latest news, company contacts, stockists and distributors.

PCA:PHILIP COLLINS \& ASSOCIATES PTY. LTD

 http://www.pca.ccPCA manufactures Radphone 2000DX remote control systems for shortwave broadcasters and government agencies wanting worldwide control of communications receivers and transceivers from any tone phone

RALFE ELECTRONICS

professional test \& measurement

www.ralfe-electronics.co.uk

SWIFT EUROTECH

http://www.swiftdesigns.co.uk EDWin NC - Professional EDA software at 90% discountl Integrated schematics, PCB layout and simulation. Plus CAM tastic! CAM software and netlis translators for most EDA systems.

SUPRA AUDIO CABLES

http://www.jenving.se
Jenving Technology $A B$ is the manufacturer of Supra Audio Cables. OEM productions are also accepted.

VANN DRAPER ELECTRONICS LTD

http://www.vanndraper.co.uk
Test equipment from Grundig. Kenwood, Hitachi, Fluke, Avo, Glassman, Advance in a comprehensive site including oscilloscopes, multimeters, power supplies, generators, counters, soldering digital tv etc.

VUTRAX PCB DESIGN SOFTWARE

http://www.vutrax.co.uk
VUTRAX electronic schematic and pcb design system for Windows 95, 98 and NT. Limited Capacity FREE version downloads available, all upgradeable to various customised levels.

WOOD \& DOUGLAS
http://www.woodanddouglas.co.uk
wood \& Douglas Ltd is the leading independent British designer and manutacturer of quality radio products for International telemetry, data, voice \& video wireless communications.

ZETEX PLC

http://www.zetex.com
Data sheets, Application notes, Spice models, Distributor detalls and more are all available on the Zetex website. CDROM version available free by request to infodirect@zetex.com

CONNECT WTH THE UKS
 NO. 1 READ FOR ELECTRONICS

PROFESSIONALS ONTHE

Electronics Weekly HyperACTIVE is more than just a magazine on the Web. Check out the site and you'I see why thousanids of electronics ppofessionals around the world regularly \log on to www.electronicsweekly.cD.uk/
For NEWS HyperACTIVE's Daily News Service brings you the latest newsin the industry - as it breaks. For JODS HyperACTIVE has the largest and most varied collection of jobs available in the electronics market. Now we bring you the improved Jobs and Gareers service with a whole range of new and exciting features.
All this plus, the latest teshnology, market information. toolkit's, a searchabre archive, and loads more. ...
Don't miss out.
Point your browser at http://www. electronicsweckly.co.uk/ $25 \theta \quad$ register now (it's frec)
(B)

Simulation Circuit Capiture PCB Autorouting CADCAM

Imagine an electronics design system that lets you draw schematics onto the screen and then simulate them at the touch of a button. Now imagine pressing another button and seeing the schematic replaced with a PCB rats-nest. Pressing another button starts the autorouter, and finally you can click on File then Save As to create a complete set of CADCAM files.

Too easy? We hope so. Quickroute has always been designed first and foremost to be easy to use. That's why simulation, circuit capture, PCB autorouting and CADCAM support are all integrated into one package, so that you only have to learn one package.

If you would like to find out more about Quickroute, why not call us on FREEphone 080073128 24, or visit our web site on www.quickroute.co.uk. Prices start at under $£ 100$ including UK P\&P and VAT for a complete system.

(4) "modern, powerful and easy to use"
trakor Clatronic 97
\section*{FREEphone

08007312824}

Copyright © 1998 Quickroute Systems Led Regent House Heaton Lane Stockpon SKA IBS UK

PHONE 018168 1166	LANGREX SUPPLIES LTD DISTRIBUTORS OF ELECTRONIC VALVESTUBES AND SEMICONDUCTORS ANDIC. TUBES AND SEMICONDUCTOAS ANDIC.S.					$\begin{aligned} & \text { FAX } \\ & 0181684 \end{aligned}$	
	1 MAYO ROAD • CROYDON • SURREY CRO 2QP 3056 24 HOUR EXPRESS MAIL ORDER SERVICE ON STOCK ITEMS emall: langrex@aol.com						
		${ }_{\text {KT68 }} \mathrm{O}$	${ }^{10.00}$	${ }_{5746 T}^{5745}$		${ }^{6 V 6 G}$	
${ }_{\text {cla }}^{\text {cla }}$		${ }_{\text {K78 }}$				${ }_{\substack{\text { 6ve } \\ 6 \times 4}}^{1}$	5.000
	50	${ }^{\text {OAP }}$	3.00	${ }^{\text {6as76 }}$	7.50	${ }_{6} \times 5$	
	${ }_{20.00} 2.00$	${ }_{0}^{082}$	3.00 3.00	${ }_{\text {baue }}^{\text {6ALSGT }}$	2.00		
	${ }_{1}^{2.50}$	${ }^{\circ} \mathrm{O} 3$	${ }^{3.00}$	6AWE	4.00	${ }_{124 \times 7}$	
EEF50	1.50	(ectico	$\substack{2.00 \\ 200 \\ 2.00}$	${ }_{\text {ciele }}^{\text {beat }}$	${ }_{\substack{22.00 \\ 1.50}}^{2200}$	12A>A	
Eeblich	(1.500	${ }_{\text {Pli }}$	2.50 2.50 20	${ }_{\text {6EFH6 }}^{\text {6EE }}$	1.50 2.00	${ }_{\substack{128 B 6 \\ 128 E 6}}$	
ECC33	(12.00	PDP500 PL38	c.i.0 3.00 $\substack{\text { a }}$.00	${ }^{\text {cibora }}$	年 4.00	-	道
(eccer	co.3.00 3.50	P181			4	${ }^{\text {a }}$	7.00 7.000
ECCCB3	5.00	${ }_{\text {PL508 }}$	3.00	68W7	3.00	${ }_{\text {l }}^{12 \mathrm{E}=1}$	5.00
EC	${ }_{6}^{3.00}$	${ }^{\text {PLL599/5 }}$	${ }_{400}^{10.00}$	${ }_{6 C 4}^{6826}$	3.00 2.00	${ }_{805}^{5728}$	5.00
ECCR808	${ }_{\substack{15.50}}^{1.50}$	Pr500A	3.00 1.50	${ }_{\substack{\text { 6CB6A } \\ 6066 G}}$	3.00 5 500	${ }^{807}$	7.50
EC	3.50 3 3	covoz	1200	cicle	5.00	${ }_{812}{ }^{\text {a }}$	5.00
EC	3.00	-		6CH6	7. 3.00 .00	${ }_{833}^{813}$	5.500
EC	${ }_{3.50}^{3.50}$	covoc-40		(6CW4	6,00 17.50	${ }_{8726 A}^{884}$	(0.00
	$\underset{\substack{25.00 \\ 3.50}}{\substack{\text { a }}}$	UABC80	1.50 5.50 5		(10.00	${ }^{9314}$	5i.00
EF	${ }_{2}^{2.75}$	UCL.82	2.00	${ }_{6} 6$	7.50	${ }_{5751}^{2050}$	
	${ }^{4} 1.000$	UCL63	2.00 4.00	-6GK6	4.000 6.00	5763 5814 A	6.00 5.00 5,
EFF183/	${ }_{2}^{2.00}$	U141		${ }_{6.17}^{6.5 M}$	a 3.00 .00	${ }^{5842}$	
EL3	\% 15.00	UY41	4.00	${ }_{\text {6JBEA }}$		${ }^{6072 A}$	6.00 6.00
EL	${ }_{6} 8.00$	VR105/30	${ }_{3.00}^{2.00}$	¢	${ }_{27}^{27.50}$	${ }_{\substack{61468 \\ 6201}}^{\text {coid }}$	cosis
${ }_{\text {Ele }}^{\text {El3 }}$	${ }_{3.50}^{5.50}$	VR159	3.00 10.00 10		4.00 1500 1	${ }^{\text {6333a }}$	cis.
${ }_{\text {ELIL }}$	cos 2.25	${ }_{28031}^{281}$	cois		${ }^{15.500}$		${ }_{\text {ckis }}^{15.00}$
EL336	15.00	${ }_{3628}^{2021}$	${ }_{1} 1.200$		${ }_{3}{ }^{5} .000$	${ }_{7} 7027 \mathrm{~A}$	7.50 25.00
EM	12.00 15.00	${ }_{\substack{4 \mathrm{Cx} 25 \\ \text { SRAG }}}$	45.00 7.50	${ }_{\text {6SAT }}^{\text {6SC7 }}$	3.000 3.00	7799 7730 7	cision
${ }_{\text {EM }}$	4.00 7.50	(1446	coiol	6scif		7360 $7581 /$ 7588	25.00 15.50 $\substack{2500}$
	7.50 3 8.50			${ }_{6557}^{6557}$	3.00	${ }_{7587}^{7586}$	15.00 20.00 1
${ }_{\text {c }}^{6732}$ 6733737	${ }_{8}^{8.50}$		2.50 5.00	(estia			
${ }_{\text {KT61 }}{ }_{\text {K733137 }}$	${ }^{6} 5$	${ }_{5246}^{523}$	5.00	6SN7	${ }^{5} 5.00$	Prices going gin	
OPEN TO CALLERS MON-FRI 9AM-4PM. CLOSED SATURDAY This is a selection from our stock of over 6,000 types. Please enquire for types not American brands. Terms CWO/min order $£ 10$ for credit cards							

	AA	
and oul. Whert so video input is connected the no	C 2All with sold	
computer display is shown on the composite video out when the	$\mathrm{D}(\mathrm{HP} 2)$ 1.2AH	
undeo input is added the white areas on the screen are replac	D 4All with sodder togs	
the video inlage. The pcb is powered from the compute	PP3 8.4 V 110 mAH	
E19	1/2AA unth soider tags	
WATCH SUDDES ONTV "Liesgang diatv" dutortatic slide viewer with buill in high quality colour tv camera. composite video output with a BNC. pug In very good condition with lew signs of ase £108.00	Sub C with soider tags	
	AAA (HP16) 180 m	
	Nichel Metal Hydryde AA cells high capacity with no memory. II charged at 100 ma and discharged at 250 ma or less 1300 mAH capacity flower capacity for high discharge rates) £2.95	
Boand cameras all whth 512×582 prees $4.4 \times 3.3 \mathrm{~mm}$ sensor with composite video out. All need to be housed in your oum enclosure and have fragile exposed surface mount parts and require 10 to 12 uk power supply 47 MIR size $60 \times 36 \times 27 \mathrm{~mm}$ with 6 infra red leds (gives the same illumination as a small torch would) ... $£ 50.00$ +vat $=£ 58.75$		
	ecial offers please check for availability stick of $442 \times 16 \mathrm{~mm}$ ad batteries 171 mmx 16 mm dia with red \& black leads 4.8 v	
40 MP size $39 \times 38 \times 23 \mathrm{~mm}$ spy camera with a fixed focus pin hole lens for hiding behind a very small hore. $£ 57+$ vat $=866.98$	mon cell 6 V 280 mAh battery with wires Narta $5 \times 250 \mathrm{D}$	
40 MC sire $39 \times 38 \times 28 \mathrm{~mm}$ camera for ${ }^{\prime} \mathrm{C}$ ' mount lens this gives a much cleares picture than with the small lenses $£ 68.79$	bitel 866 battery pack $12 v 1.60 \mathrm{AH}$ contains 10 sub C celis	
standard 'C' mount lens $\mathbf{F} 1.616 \mathrm{~mm}$ for 40 MC …….. 26.43 tvat $=£ 31.06$	rewdrivers and drills 22 dia $\times 42 \mathrm{~mm}$ talli it is easy to pen and was manulactured in 1994, £8.77 each or £1	
waterproof camera with stylish tilt \& swivel case $£ 92.76+$ vat $=£ 109.00$ or $10+£ 89.32+$ val $=£ 104.95$	per box of 14 BCl bow $190 \times 106 \times 50 \mathrm{~mm}$ with slots to house pcb the lid contains an edge connector (12 way 8 nim pitch) and screw terminals to connect in wires and 5 stide in cable blank	
DTA 30 Hand held transistor analyser it teils you which lead is the base, the collector and emitter and if it is NPN or PNP or faulty. HMA20 hand heid MOSFET analyser identifies gate drain and source and if P or N channel DTA 30 \& HMA20 .. 38.34 each	ment comman anode led display 12 mm	
	FET low leakage current $\$ 8873$ £12.95 each $£ 9.95$	
	SL.952 UHF Limitry amplifer LC 16 surface mounting prackage with data sheet	
source and if P or N channel DTA30 \& HMA20 . E38.34 each DCA 50 component analyser with lad readout identifies transistors mostets diodes \& LEDs lead connections		
	DC-DC convertor Reliatility model V12P5 12v in 5 v 200 ma out 300 v input to output isolation with data $£ 4.95$ each or pack of 10 £39.50 Airpax A82903-C large stepping motor 14v 7.5' step 27 ohm 68 mm dia body 6.3 mm shaft $£ 8.95$ or $£ 200.00$ for a box of 30	
$\begin{array}{lll}\text { power rating } \\ \text { impeedance } & \text { 250hm } & \text { Sohm } \\ \text { Sohm } & \text { 8ohm }\end{array}$		
frequercy range $40 \mathrm{hz}-20 \mathrm{khz} \cdot 45 \mathrm{hz} 20 \mathrm{khz}$, 60 hz 2	Polyester capacitors box type 22.5 mm lead pitch 0.9 ff 250 ulc 18 p each 14 p $100+9$ p $1000+1$ uf 250 Vdc 20 each. 15 p $100+10 \mathrm{p} 1000+$ Porppropstiene luf 400 wdc (Wima MKP10)	
semsitwity 1 W/1M) 97dB 94 dB (92 d		
weight	27.5 mm pitch $32 \times 29 \times 17 \mathrm{~mm}$ case 75 p each $60 \mathrm{p} 100+$ Ptuilps 123 series solid ahmminum axial leads 33uf 10 v \& 2.2 uf 40 v	
price each for biack		
vinyl coating		
grey fell cooting		
$\Gamma^{[}=$not normally in stock allow 1 week for delvery)	$100+$ we have a range of 0.25 w 0.5 w 1 w and 2 w solid carbon resistors please send SAE for list MX180 Digtal mutimeter 17 ranges 1000 udc 750 vac 2 Matm 200 mA transistor Hfe 9 N and	
STA150 2×160 Wms (4 ohm load) 114 kgSTA 3002x190W		
	Hand held utrasonik remote control $£ 3.95$	
STA900 $2 \times 490 \mathrm{Wrms}$ (40hrm load) 15ky............ 5585.00	CV2486 gas relay $30 \times 10 \mathrm{~mm}$ dia with 3 wire terminais will also work as a neen light 20 p each or $£ 8.50$ per 100 Vartatim R300NH Streamer tape commonly used on mx machines and printing presses etc it looks tike a normal cassette with a slot cut out of the top $£ 4.95$ each ($£ 3.75100+$) Heatsink compound tube $£ 0.95 \mathrm{HV} 3-2405-E 5 \quad 5-24 \mathrm{v} \quad 50 \mathrm{~mA}$. regulator ic $18-264 \mathrm{vac}$ imput 8 pin DHI parkage $£ 3.49$ each ($100+2: 25$)	
LEDs 3 mm or 5 mm red or green 7 p each yellow 1 1p ench coble		
AAFPP7 500 mAH $¢ 0.99$		
A		
All proctucts advertised are new and umused umless otherwise stated. Wide range of CMOS TIL 74HC 74F Linear Transisors kits rechargeable batteries, capacitors, too's etc always in stock. Please add $£ 1.95$ towands P\&P forders from the Scotish Highlands, Northem lreland. Isle of Man, Isle of Wight and overseas may be subject to higher P\&P for heavy items). VAT included in all prices.		
JPG Electronics 276-278 Chatsworth Road Chesterfield S40 2BH Mastercard/Visa Orders (01246) 211202 Fax 550959 Callers welcome $9-30 \mathrm{am}$ to $5-30 \mathrm{pm}$ Monday to Sa.,turday		

Cooke International

Unit Four, Fordingbridge Site, Barnham,
Bognor Regis, West Sussex, PO22 0HD, U.K Tel: (+44)01243545111/2 Fax: (+44)01243542457

Web: http://www.cooke-int.com E-mail: info@cooke-int.com
catalogue available
IRCLE NO. 132 ON REPL Y CARD

VISA

OPERATING \& SERVICE MANUALS

Cooke International

Unit Four, Fordingbridge Site, Barnham,
Bognor Regis, West Sussex, PO22 0HD, U.K. Tel: (+44)01243545111/2 Fax: (+44)01243542457

Web: http://www.cooke-int.com E-mail: info@cooke-int.com catalogue available

CIRCLE NO. 133 ON REPLY CARD

Contact Joannah Cox on 01816523620

ELECTRONICUPDATE
A regular advertising feature enabling readers to obrain more information on companies' producls or services.

INDUSTRIAL COMPUTER PRODUCTS
The latest ICP catalogue featuring a comprehensive range of CPU boards and enclosures, complete with price list, is now available from Wordsworth.
Further details from:
Wordsworth
Tel: 01732861000

1999 Measurement and Automation Catalogue The National Instruments 1999 catalogue features hundreds of software and hardware products for your computer-based measurement and automation applications. New products include additions to our modular Compact PCl (PXI) platform, new computer-based instruments, and the latest versions of our instrumentation and automation software such as LabVIEW. Call to reserve your copy of our FREE 1999 Cataloguel

National Instruments
Phone: 01635523545
Fax: 01635523154
e-mail: info.uk@natinst.com
Website: www.natinst.com/uk

CIRCIE NO. 135 ON REPIY CARD

LCR \& IMPEDANCE METERS

The 3522 LCR HiTESTER and 35312 HiTESTER logether provide a wide range of test frequencies. The 3522 offers $D C$ and a range from 1 mHz to 1000kHz and the 3531 covers the range from 42 Hz to 5 MHz . Test conditions can now come closer to a component's operating conditions. The high basic accuracy of $\pm 0.08 \%$, combined with ease of use and low price give these impedance meters characteristics.
Γ TELONIC INSTRUMENTS LTD
Tel: 01189786911
Fax: 01189792338

ARTICLES WANTED

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.

Langrex
Supplies Limited
1 Mayo Road, Croydon Surrey CRO 2QP
TEL: 01816841166
FAX: 01816843056

WANTED

Valves \& Semiconductors All types e.g. Discrete \& IC's Good Rates Paid
CHELMER VALVE CO.
130 New London Road
Chelmsford, Essex Tel: 01245265865 Fax: 01245490064

IMMEDIATE PAYMENT

For all Surplus/Obsolete Electronic Components J.B.P. Components Phone: 01277211410 Fax: 01277260573

SERVICES

EPROM

 PROGRAMMING SERVICEAlso Microcontrollers, FLASH EEPROMS, FPGAs etc. Same day service from $£ 15.00$ inclusive postage and VAT.

RFT Electronics

 Phone 01276686889 Fax 01276686244
VALVES WANTED

Courteous, Professional Service
Ask for a free copy of our wanted list.
BILLINGTON EXPORT LTD Billingshurst, Sussex Tel: 01403784961 Fax: 01403783519 Email:
billingtonexportId@btinternet.com VISITORS PLEASE PHONE FOR APPOINTMENT

WANTED 1940-45 German military radios, crypto equipment, all periods, "spy" radio. 028R0 R.Otterstad, Hosterko BV. 10 DK- 3960 Birkerod. Denmark. Tel: 45-4581 5205.

PLEASE MENTION ELECTRONICS WORLD

WHEN
REPLYING TO ADVERTISEMENTS

ARICLIES FOR SAIE

Rack Enclosures
New and Used most sizes
16 U to 50 U side and rear panels mains distribution 19^{*} Panel mounts optima eurocraft. Prices from $£ 45$ +vat

86 Bishopsgate Street Leeds LS1 4BB Tel. 01132702114 Fax. 01132426881

SHORTWAVE BROADCASTERS
Monitor reception from within your target area
GOVERNMENT AGENCIES
Control radio receivers/transceivers worldwide
Radphone 2000DX from www.pca.cc
intel+61-2-98889777
Fax+61-2-98050253

POWER SUPPLY DESIGN

Switched Mode PSU
Power Factor Correction Inverter
Tel/Fax: 01243842520
e-mail: eugen_kus@cix.co.uk
Lomond Electronic Services

RF DESIGN SERVICES

All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS

TEL: 01223862550
FAX: 01223440853

COMPUTER AMD $K 6-2,350 \mathrm{MHz}, 6.4 \mathrm{G}$ h/drive, BMB AGP, VGA, 3D PCI sound, x 36 CD-RM, 15^{\prime} svga, accessories, software, brand new. £685. Mike 01707263953 , Herts.

100 MHz OSCILLOSCOPE with 60 MHz probe set, £580, unused (OS5100); TG230 Function generator, $£ 200$, unused: 10 MHz Oscilloscope. f50. Evenings 01264391165.

PHILIPS 5390 S

1GHz RF SYNTHESIZER
WITH SERVICE MANUAL $\mathbf{E 1 0 9 9}+$ VAT
100 KHz to 1020 MHz . -127 dBm to +13 dBm Unique video modulation + sound at $4.5 / 5.5 / 6.0 \mathrm{MHz}$, int or axt AM (to 1.02 GHz) or $F N$ (to 340 MHz)
RF sweep - 8 settings memories - IEEE intertace Anode Laboratories L.td Tel: 01353649412 Fax: 01353648128

APPOINTMENTS

Established Optical Component Engineering Company requires

INSTRUMENT

 TECHNICIANwith broad mechanical/electronic engineering experience for work on analytical instruments, vacuum coating and electronic systems. Send CV to: Optiglass Ltd,
52/54 Fowler Road Hainault, Essex IG6 3UT

ELECTRONICS, COMPUTING AND Aardman MOTION CONTROL ENGINEER

Bristol
Salary - Negotiable A world leader in 3D model animation is looking for an Electronics Engineer to join their busy team based in Bristol.
Applicants must have a thorough knowledge of electronics - preferably applied to film, video and motion control equipment. Candidates should also possess design and small scale manufacturing experience and ideally, will have experience in processing microprocessors.
Good problem solving skills are essential. Candidates should also be comfortable working on their own initiative in a pressurised environment and to strict deadlines. The post will be based in Bristol, although occasional travel may be necessary. If you would like to be considered for this post, please send your CV, with covering letter, to The Personnel Department, Aardman Animations Gas Ferry Road, Bristoll BS1 6UN.
Closing date for applications - Friday 15 January 1999.

FOR THE PICK OF Th: (TOP UK DICIA, ANALOCUZ \therefore RF DEECCM
APPOINIMENIS... PhD, MSc, 1 st, 2.1 Honours? E20k- 6.60 Kou
then visit wwwecmsel.co,uk
or call
01638
742244

ELECTRONICSAPPOINTMENTS

Calling all Hadio

Engineers

We have excellent opportunities within Research, Design and Test for Radio Engineers to work at all levels in the fields of:

GSM

Fixed Radio Access / WLL Military CIS PMR DECT TETRA Satellite Communications Mobile Switching

John Prodger mis
Recruitment
Connecting people with opportunities

We would be glad to focus our efforts on securing your next move.
Please call John Darby, ref 2984H. Tel: 01727818704 Fax: 01727838272 Email: johnd@jprecruit.com

ELECTRONICSAPPOINTMENTS

Radio Communications

mdm
 RELIABILITY ENGINEER ~ Bristol to $£ 26 k+$
 We're looking for an individual to shake, rattle and roll this company's wireless products ready for the demanding environments they'll be working in. The successful applicant will be the 'first in' in this type of role and our client seeks someone to bring in the necessary expertise. A background in radio technology would be a distinct advantage. Quote WW9811-53.
 Contact Mark Wheeler for more information.

PRODUCTION ENGINEER ~ Bristol

to $£ 30 k$
A sound knowledge of small to medium volume production and manufacturing techniques is required here. Experience of liaising with small multi-disciplined $R+D$ teams and being able to pro-actively work with outside contractors is essential. A general electronics background is required, ideally with radio communications experience. Quote WW9811-54.
∇ Contact Mark Wheeler for more information.

RF IC DESIGN ENGINEER ~ Bristol

to $£ 45 \mathrm{k}$
Make a mark for yourself and be the first IC designer in this established and fast growing Radio Systems Design House. You'll be working alongside a very fine multidisciplinary team of Engineers involved in some of the most stimulating projects around. Competent hands on skills are required including experience up to 3GHz together with some good ideas. Quote WW9712-17.
Contact Mark Wheeler for more information.

RF PA DESIGN EXPERTS ~ Bristol to £40k

Involved in projects that seem to go on forever? Stuck in a corner working on the bit your boss says you have to do? Yes? Then your salvation is at hand with this fast growing Wireless Communications company where your talents can be truly realised. Accomplished design skills up to 3.5 GHz in high power PA's ideal, receiver and synthesisers development experience very useful. Quote WW9707-56.
Contact Mark Wheeler for more information.

BENCH TECHNICIANS ~ Notts £10k - £22k

Component level expertise? Board level diagnosis? Shiny new technical qualification? This leading cellular maintenance organisation wants you!! You don't have to have communications product experience (although it would help), but you'll be keen to keep abreast of the latest technology. All this in a positive, friendly environment too! Quote WW9703-37.
Contact Mark Wheeler for more information.

DSP SOFTWARE ENGINEER ~ Bristol to $£ 34 \mathrm{k}$

For this one, you'll need to bring to the table at least a year's expertise in DSP Algorithm development, real time embedded software and an understanding of hardware design. You would be working on radio modems, linear amplifiers and many other interesting and challenging projects. A radio background is desirable but not essential. Call us today if it sounds like you. Quote WW9804-30.
Contact Mark Wheeler for more information.

TEST ENGINEER ~ Surrey

to $£ 25 \mathrm{k}$
Working within a group responsible for the design of switching software for UMTS mobile comms infrastructure, you will be involved in setting up and undertaking complex test and systems integration processes. Ideally HNC qualified, it would be useful if you had experience in mobile, cellular, GSM, etc and an appreciation of switch signalling. Quote WW 9808-86.
\square Contact Malcolm Masters for more information.

RF STANDARDS ENGINEER ~ Surrey to £30k

Working within a new group, you will be ultimately responsible for setting in place procedures, policies and strategies to comply with international regulations for mobile comms equipment. You should be qualified to HND standard and have several years experience in a similar environment, ideally in 3rd generation mobile technology. Quote WW9808-82.
Contact Malcolm Masters for more information.

DIGITAL DESIGN ENGINEER ~N. Wilts to $£ 35 \mathrm{k}$

This role has been created to work within a small team on the latest digital communications systems. You will be involved in developing VHDL code for FPGA and ASICs for radio base stations. Significant experience in digital design, VHDL and FPGA is required along with strong academic achievements. Quote WW9811-34.
Contact Malcolm Masters for more information.

CELULAR REPAR SUPERVISOR ~ N.W Lon. to £19k

Our client is a significant player in the sales and service of cellular products. They are actively looking for a supervisor from the cellular/comms/ PMR industry to repair and test a wide variety of cellular phones and run a start-up service dept. CEtG/HNC or relevant industrial experience required. Quote WW9811-46.
VContact Rich Wootten for more information.

SERVICE REPAIR TECHNICIANS ~ Surrey c.£18k

This is a great opportunity for a keen RF technician to work in a lively atmosphere for a major manufacturer of PMR equipment. You'll need to be able to service and repair to component level and have relevant mobile comms involvement. Some Band 3 and installation experience would be desirable but is not essential. Quote WW9811-52.
Contact Rich Wootten for more information.

PRODUCT SUPPORT ENGINEER ~ Berks to $£ 25 \mathrm{k}$

Our client is at the forefront of mobile telecoms, having released several of the most popular products on the market. Now it's your turn to get a slice of the action. You'll need to be able to support the introduction of complex mechanical parts into manufacture and maintain build standards in a demanding industry. HNC and electro-mech background required. Quote WW9811-09.
Contact Rich Wootten for more information.

ELECTRONICSAPPOINTMENTS

UK - Wide Vacancies

Graduate Electronics Engineer - Hampshire. Qualified to degree level, to work with the design team developing and proving new hardware and software for engine management and power conditioning systems. Training in various disciplines including embedded micro-controller design and power electronics systems to 250 kW . Salary negotiable.
Test \& Repair Engineer - Hampshire. Minimum of HNC with at least 2 years experience of fault diagnosis of analogue and digital circuits to component level. Computer literate, familiarity with Windows packages and able to work under pressure. Salary negotiable.
Project Manager - West Yorks. RF/Microwave. To ensure a development project is delivered in line with customer prototype commitments and that the product is developed to enable cost effective manufacture in volume. To $£ 35 \mathrm{k}$.
Test Design Engineer - Hampshire. Minimum of HND and knowledge of Visual Basic and/or C in a Windows environment to design, maintain and document test procedures, systems and software using Pcs and telecommunications test equipment. Familiarity with telecommunications protocols and report writing ability would be helpful.
Electronics Engineer - Cheshire. Embedded Controllers. To develop electromechanical devices for the test of PCBs using embedded controllers, analogue instrumentation and PC based software (VB, C++, Win NT/95). Must be able to fault find complex electronic systems with at least 2 years experience in a related field.
Software Development Engineer - Hampshire. For low power embedded systems using C and assembly languages. Knowledge of NEC 75X, 75XL 4 bit and 78K/0 8 bit microprocessors and digital or analogue hardware design ability would be useful. To $£ 28 \mathrm{k}$.
Senior RF Development Engineer - Hampshire. Development of low power RF circuitry up to 1Ghz and experience of LNA, oscillator, mixer and IF design. Experience of synthesiser design and low power transmitter work would also be useful. Supervision of junior engineers and project management is also envisaged as part of the role. Salary to $£ 32 \mathrm{k}$.
Electronics Design Engineer - Cheshire. Development of high frequency analogue circuits (to 500 Mhz) Degree qualified with a minimum of 2 years experience of analogue circuit design. Exposure to DFM issues and PCB design using Cadstar. £Neg.

For details of these and other electronics vacancies telephone Roy Parrick on 01703237200 or fax on 01703634207.
Alternatively E-mail to southtech@kellyservices.co.uk

KEIIY
TECHNICAL WORKing together

RECRUITMENT CONSULTANTS - AN EQUAL OPPORTUNITIES EMPLOYER

ADVERTISERS' INDEX

ANCHOR SUPPLIES 214
ANGLIA COMPONENTS OBC
ANTRIM TRANSFORMERS 207
BETA LAYOUT 210
CMS 180
CHELMER VALVE COMPANY 233
CROWNHILL 233
DISPLAY ELECTRONICS 183
ELECTROMAIL 185
EQUINOX TECHNOLOGY IBC
INTERNATIONAL RECTIFIER 210
JOHNS RADIO 241
JPG ELECTRONICS 219
LABCENTER ELECTRONICS 239
LANGREX SUPPLIES 219
M. \& B RADIO 185
MILFORD INSTRUMENTS 230OLSON ELECTRONICS245
PAUL O'NEILL DESIGNS 233
PICO 201
PS CONSULTANTS IFC
QUICKROUTE 219
RADIO TECH 207
RALFE ELECTRONICS 243
RD RESEARCH 243
SEETRAX 230
SIGHTMAGIC 249
STEWART OF READING 228
SURREY ELECTRONICS 230
SWIFT EUROTECH 250
TELFORD ELECTRONICS 180
TELNET 178
THOSE ENGINEERS 201
TIE PIE 229
VANN DRAPER 256

Setting the Standards for Embedded Solutions!

Order code: SG-ALLWRITER-1

8051 Starter System

A feature-packed Starter System for the Atmel AVR Microcontroller Family. Includes Keil IDE, C-compiler, Assembler, programmer evaluation module and sample 8051 microcontroiler.

Adaptors
Compilers
Development Systems

Educational Systems

8051/AVR

 EmulatorsEvaluation Modules

8051/AVR Microcontroller Sales

OEM Modules
Parallel/Serial Programmers

Production

Programmers

Starter Systems

Software

IcePROM

icePROM EPROM/FLASH Emulation System Fast download, 8/16/32-bit 80ns Price: from 490.00

For sales tel: $\mathbf{+ 4 4}(\mathbf{0}) \mathbf{1 2 0 4} 529000$, fax: $\mathbf{+ 4 4}$ (0) 1204535555 , e-mail: sales@equinox-tech.com, Web site: www.equinox-tech.com

Equinox reserves the right to change prices \& specifications of any of the above products without prior notice. E\&OE. All prices are exclusive of VAT \& carriage. AVR ${ }^{\text {TM }}$ is a trademark of the Atmel Corporation,

Now every $\nabla \nabla_{\text {. }}$ part has the same number

01945474747

If you're looking for ST parts and samples, you now only

[^0]: Mussard, 18-20 Place de lo Madele ine, Paris 75008 . United States of America: Ray Barnes, Reed Business Publishing Lid, 475 Park Avenue South, 2nd FI New York, NY 10016 Tel; (212) 6798888 fax; (212) 6799455
 USA mailing agents: Mercury Airfeight International Lid Inc, 10(b) Englehard Ave, Avenel N 07001 . Periodicles Postage Pold at Rahway NU Postmaster. Send address changes to abave.
 Printed by Polestar (Carlise) Lid, Newtown Trading Estate Carlisle. Cumbrio, CA2 7NR
 Filmserting by لl Typogrophics Ltd, Unit 4 Baron Court, Chandlers Woy, Southend-on-Seo, Essex SS2 5SE.

[^1]: \dagger It was this unit that was used on the Rolling Stones record Satisfaction in 1965.

[^2]: * It is practical to generate such an effect by moving loudspeakers in relation to a fixed listening or microphone position. The Leslie loudspeaker works in just such a fashion.

