Bench PSU special reader offer - 25\% discount

WORLD

Austria Asch. 68.00 Denmark DKr. 69.00 Germany DM 18.00 Greece Dra. 1300.00

New SSB
demodulator
Applying Peltier devices

Stand-alone data logger Stereo/mono indicator Wide-band isolator Designing adaptive filters

Extended Circuit Ideas section

Quickroute Makes it Easy

SPECIFICATION

- Modern user interface with dockable fool bars \& active buttons
- Multi-sheet schematic capture at the press of a button.
- Power rail \& data bus support
- 32 Bit mixed mode analogue \& digital simulation
- Support for a range of SPICE .MODEL statements.
- Copper flood fill
- Netlist import \& export
- CAD/CAM file import/export. Gerber Viewer.
- PCB Design with 1-8 layer autorouter
- WMF, DXF, \& SPICE file export
- 1000+ Library Symbols
- Engineering Change \& Design Checking

FREE DEMO

Download a free demonstration version from our web site at hitp://www.quickroute.co.uk

30 DAY MONEY BACK GUARANTEE

It's not hard to see why Quickroute is so easy to use! We've integrated mixed mode simulation, schematic capture, PCB design with autorouting and CAD-CAM support into one integrated environment. Best of all, prices start at just $£ 99.88$ inclusive* for the complete system with support for 300 pins - less than the price of some simulators alone!

Quickroute 4.0 features a modern user interface with active buttons and dockable tool bars. Frequently used tools can appear on floating tool pallettes for quick access, and with tool-tips and on-line help you can be sure of getting information on Quickroute's features fast.

To create a schematic in Quickroute 4.0, simply click on the symbol browser and select and place symbols onto the design area. Use the 'intelligent' wires, power rails and data bus elements to quickly wire up your schematic and simulate the design as required. When completed, simply press a button to capture the schematic, a PCB rats nest will then appear (no messy netlists required!).

Use the multi layer autorouter, and/or
 manual routing to complete your PCB together with copper fill, etc as required. Finally print your design, or create CADCAM files suitable for manufacture (we even include a Gerber viewer for checking).

But it doesn't end there! Quickroute 4.0 includes engineering change for automatic updating of your PCB from the schematic, netlist import \& export so that you can link to other EDA packages (including many simulators), DXF, SPICE, and WMF file export together with over 1000 library symbols.

Call us now and find out why Quickroute 4.0 Makes it Easy!

	Pice	uk Inclusive Pice*
QR4 300 Pin	$\S 79.00$	$\S 99.88$
QR4 800 Pin	$\S 149.00$	$£ 182.13$
QR4 Full	$\S 249.00$	$\S 299.63$

*Includes UK P\&P and VAT. Phone for EC/World prices.
-"Design cycle figure shows screen shots from different projects. Prices \& specification subject to change without notice.

FREEphone ref 12 08007312824

FAX 01614760505 TEL 01614760202
Quickroute Systems Lid Regent House Heaton Lane Stockport SK4 1BS UK
Copyright (C) 1998 Quickroute Systems Ltd. All rights reserved. All trademarks are the property of their respective owners.

Cover - Hashim Akib

186 FOUR BIRDS ON ONE DISH?

Receiving up to four satellites using multiple lnbs has four advantages over the motorised dish option. Cyril Bateman describes what the benefits are and how to achieve them.

194 STAND-ALONE DATA LOGGER

On one battery, Pei An and Pinhua Zie's tiny data logger monitors a sensor for up to a month without intervention. It needs a pc only for downloading and post-processing.

214 WIDEBAND ISOLATOR

If you know anything about circulators and isolators, you will realise the importance of Ian Hickman's 0 to 500 MHz design. If you don't, this article is for you too.

221 ADAPTIVE FILTERS EXPLAINED

A clear explanation of this complex topic by Zilog, with a bias towards easily implemented dsp solutions.

225 STEREO AUDIO MONITOR

When recording stereo in the studio, signal phase and amplitude relationship are important. Robert Kesler's Dotscope gives an at-a-glance indication, and more.

234 USING PELTIER DEVICES

You may know what Peltier devices are and what they do, but do you know how to apply them properly? Richard Lines does.

Reader offer

Electronics World readers: obtain a 25% discount on this sturdy dual read-out bench power supply. Turn to page 224.

Load this month's free CD-ROM into your PC or Mac to find a wealth of dsp information, including not only data, but also applications and software fools (sorry ROW - UK readers only).
I-

HOT BIRD 2, 3, 4 AND 5 WIDEBEAM

Thinking of buying a motorised dish to increase you viewing options? Take a look at Cyril Bateman's alternative first.

Regulars

- - 0 - - - - - -

179 COMMENT

Devices for increasing the range.

181 NEWS

Mobile phone health risk, New on-line product source, Graduate starting salaries, Is Boolean logic dead?

247 NEW PRODUCTS

Over four pages of densely packed product information, selected by Phil Darrington.

202 CIRCUIT IDEAS

- $1 \mathrm{~dB} /$ step attenuator
- Lineariser for Pt100
- Remote control
- Class AB setting up
- Electric fence
- Circuit break finder
- LCD supply
- Valve radio upgrade
- Pulse polarity indicator

APRIL ISSUE
ON SALE 5 MARCH

PROTEUS

Schematic Capture

Now Foatures

Gomponent Auto-Placer

 Pinswap/Gateswap Optimizer Background Reyeneration of Power Planes Enhanced Autorouting with Tity Pass Full Control of Schematic Appearance Extensive New Gomponent LibrariesAvailable in 5 levels - prices from $£ 295$ to $£ 1875$ + VAT. Call now for further information \& upgrade prices.

-Non-Linear \& Linear Analogue Simulation. © Event driven Digital Simulation with modelling language. © Partitioned simulation of large designs with multiple analogue \& digital sections. ©Graphs displayed directly on the schematic.

-Produces attractive schematics like you see in the magazines -Netlist, Parts List \& ERC reports. OHierarchical Design oFull support for buses including bus pins. Exlensive
componenUmodel libraries. Advanced Property Management. - Seamless integration with simulation and PCB design.

Simulation

The $\mathrm{V}^{\text {in }}$ cencrution

Devices for increasing the range

EDITOR

Martin Eccles
01816523128

CONSULTANTS

Ian Hickman
Philip Darrington
Frank Ogden

EDITORIAL ADMINISTRATION

Jackie Lowe
0181-6523614

E-MAIL ORDERS

jackie.lowe@rbi.co.uk

ADVERTISEMENT MANAGER

Richard Napier
0181.6523620

DISPLAY SALES EXECUTIVE

Joannah Cox
0181-6523620
ADVERTISING PRODUCTION
0181-6523620
PUBLISHER
Mick Ellioft

EDITORIAL FAX
0181-6528111
CLASSIFIED FAX
0181-6528938
NEWSTRADE ENQUIRIES
01712617704

ISSN 0959-8332

SUBSCRIPTION HOTLINE

 01622778000SUBSCRIPTION QUERIES
rbp.subscriptions@rbi.co.uk Tel 01444445566 FAX 01444445447

For a full listing of
RBI magazines:
http//www.reedbusIness.com

REED
BUSINESS
INFORMATION
sometimes wonder how many original Wireless World readers are still around these days. Plenty I hope, like me who enjoy the current 'combination magazine', but still remember the original $W W$ as an inseparable part of the engineering lab scene of the sixties and seventies.
It had a great blend of wisdom and a caustic sometimes irreverent - wit, along with superior test gear projects for enthusiasts. Test gear that actually worked and could be built in the lab as 'homers'.
So on the bench in my loft I still have a working WW signal generator with frequency meter and an audio millivoltmeter. Testimony to my misdirected from my Employer's viewpoint - zeal and the need in those days for making what you definitely could not afford to buy. Products from Global low-cost markets had not yet arrived.
As for wit and wisdom, they frequently came in equal measure from the prolific pen of 'Cathode Ray', who was actually MG Scroggie, the celebrated author of classics such as the 'Foundations of Wireless' and the 'Radio Laboratory handbook' . I found a particularly thought-provoking paragraph on the first page of the former, entitled, 'What Wireless Does', as follows.
'People who remark on the wonders of wireless seldom seem to consider the fact that most people can broadcast speech and song merely by using their voices. We can instantly communicate our thoughts to others, without wires or any other visible lines of communication and without even any sending or receiving apparatus outside of ourselves. If anything is wonderful, that is. Wireless, or radio, is merely a device for increasing the range...'

Blimey! What a lot of juice in that lemon. For a start, my staff and I - and anybody else for that matter - on the same office site can jolly well relearn to talk to each other face to face, rather than using electronic mail. They will probably get a real message across quicker!
We can have better communication in general. Managers to their staff, people to people. We might even become interesting and entertaining speakers again if we rediscover this 'wonder' and stop being electronic 'paper tigers'.
Secondly, and on the other hand, what an incredible saga it has been - and still is - for the

Electronics industries that have dedicated themselves to "merely increasing the range.'
From the late twenties to the late fifties, every major country had its own radio industry: true engineering and style setting giants: major employers who dominated their semi captive markets.

The arrival of the transistor with its 'nomadic', one per person end equipment possibilities and world wide compatible battery supplies created an overnight global radio market with victory going to the lowest-cost, highest-quality designs. Europe and America fell to the East. Where are the great names now?

Almost forty years later and turning to the 'new age' consumer (nee communications) market, Europe bit back and has taken the world lead in digital handheld phones and indeed in digital video and audio communications amongst others.
So somewhere along the road we have learnt to do things differently - and better - on the European scale. But how about the UK? Well, the great UK radio industry which had all but fizzled out in the sixties was largely replaced by generously funded defence work. And this was replaced by... what? Well. Ahem... By inspired take-over and investment from the 'colonists', both end-equipment and components.
The first wave came from the USA, then Japan, Korea, Germany and Scandinavia. What's their secret and what qualities have they brought to bear that we couldn't manage?
Having worked over thirty years in electronics and semiconductors for UK, American and Japanese companies I can hazard a few guesses. How about a pioneering spirit to develop new products for new markets? A monastic dedication to getting things right in detail and quality approach to keeping them right? A pragmatic, non hierarchical type of organisation that gives everybody something to go for, and rewards them for getting there? Detailed senior management involvement in the business to give knowledge and confidence to invest for the long haul?

There's a perennial 'stuck bit' in the UK electronics psyche. Anyway, lets be pleased that we are now a vigorous part of a multicultural, UK, European and world-wide electronics business which is constantly striving to develop new 'devices for increasing the range'. And let Electronics World maintain a critical watch that we succeed!

Jim Duckworth, Executive General Manager Electronic Components Group, Hitachi Europe Ltd and Deputy Managing Director - Hitachi Europe Ltd.

[^0]

For all your Power Distribution Olson offer a varied choice

Mobile phones - safe or not?

Mobile phone manufacturers and governmental research agencies have been criticised by a UK researcher for their inadequate response to the growing - but as yet unproven - belief of the health risks of mobile phones.
Roger Coghill, who runs a bioelectromagnetics laboratory in Pontypool, believes the public should be warned explicitly about possible health risks from mobile phones in light of recent research.
Last week, Australian doctor Andrew Davidson published study results in the Medical Journal of Australia which show a rise of more than 50% in brain tumour cases in Western Australia between 1982 and 1992. Davidson believes this may be
due to growth in analogue mobile phone usage during the period.
"Davidson has put his finger on something important,"said Coghill. "There is no doubt that there are some significant bio-effects from overuse of these devices. There are seven million mobile phone users in the UK all putting the most radiative electrical appliance ever devised next to the most sensitive organ in the human body."
So far, the European Commission is yet to carry out a research programme into the health risk of mobile phones because it has still to decide how it will be funded. Leo Koolen, of the EC's
telecommunications directorate, told
EW that the programme is likely to
come under the European Union's Fifth Framework R\&D programme, which will not begin until next year. Ben Greenebaum of the World Health Organisation said that its international agency for research on cancer is planning a major epidemiological study, but that, "you're talking a number of years" before it is completed.
Meanwhile, Coghill has launched an independent court action against a local mobile phone distributor for contravening the 1987 Consumer Protection Act. "The law says that you may not sell a product that is unsafe unless [the manufacturer] warns the public of the risk," said Coghill, who wants to see warning labels put on all mobile phones.

62000 components and products to go on-line

Catalogue distributor CPC is trialling an on-line 'Internetrelated' catalogue service as part of a f10m expansion in its Preston-based business. The move is a response to growth in the company's consumer spares distribution business
"There are exciting plans for new routes to market as well as new markets to look at in 1998," CPC's managing director Chris Haworth commented.
The company is believed to be
acting as a pilot site for a BT on-line sales service. Haworth would not give any more details of the service except to say it would be introduced later this year.
Haworth decided some time ago not to introduce a cd-rom version of the company's catalogue - as other distributors had done. Instead, CPC would move straight to on-line transaction services.
As part of its six year expansion
plan CPC has purchased land where
it will build a $56000 \mathrm{sq} . \mathrm{ft}$ warehouse, with fully automated order handling, this year. The six acre site, next to CPC's existing site at Fulwood, will have potential for further expansion of the company's warehousing capacity. A second 60000 sq . ft warehouse is scheduled to be built after the year 2000 .
"We have enjoyed a compound rate of expansion of almost 20 per cent for the past ten years," said Haworth.

In brief

New ferroelectric ram backer

Ramtron has added to the list of licensees for its patented ferroelectric ram, or FRAM.
Asahi Chemical Industry joins Fujitsu Hitachi, Samsung, SGS-Thomson and Toshiba in licensing FRAM. The two companies will develop jointly the technology for Asahi to produce in densities up to 64 kbit . Asahi's semiconductor business currently produces custom devices for mobile telecoms.
Products suited to use the memory include mobile phones, handheld pcs, industrial control systems and medical electronics.
The FRAM arena is forecast to be worth $\$ 10 \mathrm{bn}$ by 2000 .

Lion's share for satellite tv

Digital satellite television will for a short while eclipse digital terrestrial television (dtt), forecasts analysts Datamonitor.
Even though there will be up to 1.4 m European households with dtt by the year 2002, the satellite broadcasters will have control of the digital market with a 65% share and 13 m digital subscribers.

Digital tv on apc?

Hitachi and Intel are collaborating on developing technologies for pcs to receive terrestrial based digital television signals.

MMIC business acquired

TriQuint Semiconductor has signed an agreement to acquire the monolithic microwave integrated circuit (MMIC) operations of the defence systems and
electronics group of Raytheon for $\$ 39 \mathrm{~m}$. TriQuint is making the acquisition to address such applications as satellite, local multipoint distribution systems and point-to-point digital radio.

FTC unsettles Intel and DEC

The US Federal Trade Commission is investigating the $\$ 700 \mathrm{~m}$ patent settlement between Intel and Digital Equipment because of possible antitrust implications. The move could delay the deal.

First V-Chip television

Canadian firm Tri-Vision Electronics and Samsung claim to have developed the world's first V-Chip enabled television. The V-Chip TV allows the the content of television programs viewed in the home to be controlled..

Graduate demand not reflected in pay

S
tarting salaries for technical and Scientific graduates do not reflect the difficulty that UK high-tech employers are having filling vacancies - according to the Association of Graduate Recruiters (AGR) While the association's latest survey into graduate salaries and vacancies found the median salary offered to new graduates grew 6.4 per cent to £15500 in 1997. the organisation reports other methods are being used to attract high calibre recruits. "At the moment the salaries they're offering don't seem
to reflect the shortage in the IT and engineering sectors." said Roly Cockman. the AGR's chief executive.
But engineering firms are making increasing use of sponsorship schemes and industrial placements. according to the survey.
Siemens' sponsored student programme currently pays students between $£ 1500$ and $£ 3000$ a year while at university. And about 30 per cent of BT's graduate recruits complete industrial placements with the company while still at college.

BT's head of graduate recruitment. Hugh Smith. says that although graduate salary increases at the firm have been stable "a certain amount of creativity is coming into starting packages for graduales".
The company offers its graduate recruits interest-free loans to cover university debts. as well as a $£ 400$ gift to cover "relocation" expenses. But the AGR says most employers appear reluctant to offer signing-on bonuses. or "golden hellos". until competitive pressures force them to do so.

Single switch corrects power-factor

Power factor correction - ensuring input current is in phase with supply voltage - is a legal requirement on many classes of mains-fed power supplies.
The currently favoured topology is a controlled boost converter in front of the main off-line switching regulator. The boost converter aligns input current and voltage waveforms and provides a semi-regulated supply for the following switcher.
This solution works well. and is easy to bolt on to existing mains power supplies. It is also complex, requiring two separate control loops and at least two power switches.
The search is on for a single switch topology that will correct power factor as well as regulate the output voltage.

How it works

The circuit is essentially a boost. followed by a forward converter. Its operation is described in four phases.
The explanation assumes that the input voltage is essentially constant through a converter cycle and that capacitor voltages are almost constant.
Phase 1, the switch is closed. current builds up in L_{B}. At the same time. voltage stored in the capacitors reverse biases D_{2} and drives increasing current through the associated inductors and the transformer via the switch. Power is transferred to the output circuit.
The switch's on time is constant through the mains cycle. This makes mains current follow the voltage waveform because inductor current is proportional to input voltage x on-time.
Phase 2. the switch opens. L_{B} flies back making a voltage that forces a charging current into the capacitors via D_{2}. Current in L_{1} and L_{2}. developed in phase 1 , now decreases. this
time flowing into C_{2} and C_{1} respectively. again via the transformer. Power is still transferred to the output circuit.

Phase 3 begins when currents L_{1} and L_{2}, and hence the transformer current. reach zero. Power stops being transferred and the output capacitor feeds the load. The boost inductor continues to push current into C_{1} and C_{2} until phase 4 begins when its energy is depleted.
Phase 4 is a high impedance idle state. varied in duration to control the output voltage. No input current flows, C_{1} and C_{2} are charged ready for the closing of the switch with the return of phase 1 .

One single-switch contender is a new design from the University of Central Florida.
"We hatve talked to power supply makers and have got the message that having only one switch is important, it is the driving force at the moment," said co-designer Dr Issa Batarseh.
The team has both modelled and built a prototype. Results are encouraging. Batarseh said: We have a measured power factor of 0.98 in a 50 to 100 W design with an efficiency of 87 per cent. The next step is to make a 250 W version."

- If you have a serious commercial interest in this design. Batarseh can be contacted on: 0014078230185

B^{2}
 B^{2} Spice $_{8}{ }_{B}$ Logic 2

New Features Outstanding Performance

- Even more simulation options.
- Perform full temperature and parameter sweeps.
- New graphical functions.
- New libraries of parts including the entire Texas Instruments library.
- Nothing extra to pay for the libraries...they are all included in the price.

As always..

- Everything you would expect from a professional quality SPICE simulator.
- Fully integrated and interactive.
- No limit no maximum circuit size
- Free technical support.
- 30 day money back guarantee.
B^{2} Spice for analogue simulation $£ 199$
B^{2} Logic for digital simulation $£ 199$
Special bundle price $£ 295$
\mathbf{B}^{2} Spice Lite (ideal for first time users) $£ 42.75$
Prices quoted exclude VAT
Existing users. If you have purchased a copy within the last 12 months you are entitled to a free upgrade.

Software for design engineers

B^{2} Spice \& B^{2} Logic will give you the accurate results you need quickly and easily.

This software is used by thousands of designers, research institutions and universities around the world. But the best way to be certain that it's right for you is to try it, which is what we're are giving you the opportunity to do, risk free for 30 days.

For more information \& to order call:
 01603872331

http://www.paston.co.uk/spice email: rd.research@paston.co.uk

RD Research
Research House, Norwich Road, Eastgate, Norvict NR10 4HA Postage \& packing £4.50. All rademarks are ack $=\mathrm{m}$

New logic

"Boolean logic is inefficient," claims scientist Karl Fant. Is he serious? Very. His company is taking an asynchronous approach to circuit design which uses a logic structure called null convention technology, reports Richard Ball.

AUS company is challenging one of the cornerstones of modern electronic design Boolean logic. The firm, Theseus Logic, proposes an asynchronous logic approach to circuit design that does not use Boolean logic.

Theseus promises lower power and better electromagnetic performance from its circuits, much like existing asynchronous techniques, such as those from UK start-up Cogency, or Manchester University's Amulet project.
However, Theseus' designs use an alternative logic structure called null convention logic, or NCL. This describes different gate structures from conventional logic.
"Boolean logic is inefficient," claims Karl Fant, chief scientist at Theseus and driving force behind NCL. "Asynchronous circuits using boolean logic have local delay sensitive tracks." This could lead to races and glitches in the logic. The reason for this is that Boolean logic, "is not symbolically complete", says Fant. This is due to the function of a circuit still depending on time, represented by the clock.
For a logic circuit to be symbolically complete, it should have no dependence on time and therefore require no clock. Also, propagation delays of individual elements and the wires linking them should have no effect on the circuit

Attempts have been made for
several decades to reduce the time dependency of Boolean logic circuits and produce effective asynchronous circuits.
Many of the projects being done today, including Amulet, the asynchronous ARM processor, use the concept of Sutherland's micropipelines. These link blocks of Boolean logic and each block waits for the result from the previous one. Data 'ripples' through the circuit
Fant argues that this is the wrong approach. His NCL technique for time-independent circuits uses a new class of logic function. Basically, NCL adds the null class to the logic to indicate to a function that no data is present on that wire or signal. To make NCL symbolically complete, it needs to be a four value system - true, false, intermediate and null.

In a commercial electronic circuit, four values are impracticable. There are two data states, one represented by a 0 V level, the other by 5 V or whatever the supply is.
In NCL, one voltage has to be null to tell the function that no data is present yet. The other voltage represents valid data. So to indicate true or false as well, there must be two wires for each signal, one for true, and one for false Only one can show data at a time, to indicate true or false. The diagram of the full adder in NCL shows how each input and output
to the function, in this case A, B, Z, carry in or carry out, has two wires.
This adds an overhead in terms of tracks or wires, but is compensated for by fewer logic functions.

When a particular logic function, the adder for example, has yet to complete its task, then both outputs from that function, Z and COUT, will indicate a null value on both their wires. When the function is complete, one wire from each of the outputs indicates a true value, and the next logic block in the chain can start its function

The simplest NCL gate, Fig. 1, has a number of inputs and an output. The output only indicates a true data value when the threshold count is reached. In the case shown, the output is set when three or more inputs show true.

For complex reasons, in order

The NCL circuit symbol for the feedback function is shown on the right of Fig. 2.
Circuits can be built up using blocks of NCL gates linked together with the two wire signals. The links between logic blocks are less prone to races and glitches than are conventional asynchronous circuits.
In order to prove the ideas, Theseus has manufactured test circuits. The latest, a $0.5 \mu \mathrm{~m}$ cmos Asic, performs a two-dimensional discrete cosine transform using 170000 transistors.
The chip was designed via industry standard tools. "It ran at 30 MHz ," said Fant. "We expected about 70 MHz , but the router was not used effectively."
Tests on the circuits showed that supply voltages could be altered while the circuits were in operation, from 0.5 to 9 V . This allows both speed and power

Fig. 3. A full adder is implemented easily in NCL - and the representation is simpler than with the Boolean alternative.
for NCL to work in real circuits, the output must be held if any, but not all, of the inputs go null. Feedback provides this hysteresis, Fig. 2.
As soon as four inputs show data, the output is set, and three more inputs are also set. Now, the output only becomes null when all the inputs are null.

Threshold gate
Fig. 1. Simplest null convention logic gate - essentially a threshold gate. Output is true when three or more inputs are true.

Fig. 2. How NCL is implemented in real world circuits with feedback to produce hysteresis. Output becomes true when all four inputs are true. But it will only revert to null when all four inputs are null.
consumption to be adjusted.
Unlike other asynchronous circuit techniques, NCL can be prototyped using programmable logic, much like synchronous circuits. "The general opinion in the industry is that you can't do asynchronous circuits on fpgas," said Fant.
To prove his point, Fant implemented an FFT butterfly function on a Xilinx XC4010. Although slow, it ran first time managing a few megahertz

Fant says these tests prove that NCL can be used with existing design methods and tools, including synthesis.
The company is now looking to license the technology and carry out custom designs. To help further prove its feasibility, Theseus is working with Sanders a Lockheed Martin company - to develop NCL circuits for the F-22 fighter aircraft testbed.

Is this the AND of as

Couple all the power of the latest Windows PCs mot just the fraction that you can squeeze down an R $\$ 232$ connection) to the latest synthesised receiver design techniques, and you will get the ultimate in wide range: all mode programmable radio reception and digital signal processing: or WiNRADio ${ }^{\text {re }}$ as you earthlings call it.

A complete communications system on a full-ength ISA PC Card, with software for Windows 3, NT or 95? And starting at just $£ 275$? Yes, it's all perfectly logleal...

Use WiNRADiO ${ }^{\text {TM }}$ scanning PC communications receiver systems for...

-Broadcast Media monitoring -Professional and amateur radio communications - Scanning
.Spot frequency and whole spectrum monitoring . Surveillance (and recording) • Instrumentation

Model No

Receiver type (both)
Construction
Frequency range Modes
Tuning step size Dynamic range IF bandwidths

Scanning speed IF shift (passband tuning) DSP in hardware IRQ required
Max on one motherboard Spectrum Scope Visitune Published software API Audio output on card Task Manager/scheduler Audio Recording/Playback Signal Strength Recorder Logger
Price (ex VAT)

WR-1000i

WR-3000DSP

PLL-based triple-conv. superhet

ISA card	ISA card
$0.5-1300 \mathrm{MHz}$	$0.15-1500 \mathrm{MHz}$
$\mathrm{AM}, \mathrm{SSB} / \mathrm{CW}, \mathrm{FM}-\mathrm{N}, \mathrm{FM}-\mathrm{W}$	$\mathrm{AM}, \mathrm{LSB}, \mathrm{USB}, \mathrm{CW}, \mathrm{FM}-\mathrm{N}, \mathrm{FM}-\mathrm{W}$
$100 \mathrm{~Hz}(5 \mathrm{~Hz}$ BFO)	$100 \mathrm{~Hz}(10 \mathrm{~Hz}$ for SSB and CW)
65 dB	85 dB
6 kHz (AM/SSB),	$2.5 \mathrm{kHz}(\mathrm{SSB} / \mathrm{CW}), 9 \mathrm{kHz}(\mathrm{AM})$
$17 \mathrm{kHz}(\mathrm{FM}-\mathrm{N})$	$17 \mathrm{kHz}(\mathrm{FM}-\mathrm{N})$,
$270 \mathrm{kHz}(\mathrm{FM}-\mathrm{W})$	$270 \mathrm{kHz}(\mathrm{FM}-\mathrm{W})$
$50 \mathrm{ch} / \mathrm{sec}(\mathrm{FM})$	$50 \mathrm{ch} / \mathrm{sec}(\mathrm{FM})$
no	$\pm 2 \mathrm{kHz}$

New! Digital Suite Software option - only £69+vat (requires a SoundBlaster 16 compatible sound card), and currently features facilities that include:
O WEFAX I HF Fax

- Packet Radio for HF and VHF

O Aircraft Addressing and Reporting System (ACARS)
O Audio Oscilloscope, real time Spectrum Analyzer with calibration cursors
O Squelch-controlled AF Recorder and Playback
O DTMF, CTCSS decode and analyse
World Station Database - only $£ 39+$ vat
$300 k+$ entries, integrates with the $1000 / 3000$ systems phone, fax or secure web form.

For a free information pack and software emulation demo disk contact Broadercasting Communication Systems http://www.broadercasting.com tel: $+44(0) 1245495896$
email: info@broadercasting.co.uk
fax: +44 (0)1245 287057

WimRamio und Vaitume ma trademancs at
WinRatio Communcatioss

> Motorised dishes are versatile, but using multiple Inbs on one dish instead has three advantages. It's cheaper, it allows viewing from more than one satellite simultaneously and switching between satellites is instantaneous. As a bonus, there's no noisy motor to reduce system reliability. Cyril Bateman explains how it's done.

Four birds
 on one dish?

Publicity for the UK's long promised upgrade to digital television via satellite, suggests that in addition to a new set-top decoder box - costing perhaps a subsidised $£ 200$ - viewers may also need to upgrade to a universal lnb, if they already have an old satellite receiving system.
Less well publicised is the fact that this UK digital service from Sky is planned to be supplied from a totally new satellite. ${ }^{1}$ Due to be launched in January 1998, this satellite is Astra 2, located at 28.2° east.
UK satellite viewers have receiving dishes directed to the present Astra 1 range of seven satellites, located at 19.2° east. Other non-Sky digital services are planned or already transmitted from the Astra high frequency satellites $1 \mathrm{E}, 1 \mathrm{~F}$ and 1G.
In the UK, a typical Sky dish is 60 cm in diameter and has a half power beamwidth less than 3°. This is too narrow to receive signals from both Astra 1 and 2 satellites. The larger 80 cm dish, common in northern counties, has a beamwidth of only 2°. In the UK only one dish per domestic property is
allowed without planning permission.
These Astra 1 satellites comprise only a small proportion of satellites that can be received in UK. In direct competition with Astra, Eutelsat has eight satellites broadcasting television programs. ${ }^{2}$ The most popular of these, called Hot Bird, are located at 13° east, but others can be found at 16° east, 10° east and 7° east.
A number of transponders located near 1° west, are popular with enthusiastic viewers. In general programmes from 1° west, are targeted to the Scandinavian countries. Much of the movie film content is transmitted in its original English soundtrack, but many programs require a D2Mac decoder for reception.
In total some 250 satellites are located in geo-stationary orbit in the Clarke belt, of which 30 can be received in the UK.

Multi-satellite reception

How then can both the existing Astra I and the imminent Astra 2 transmissions, be received, together with say 13° east
and 1° west?
The obvious choice is a steerable or motorised dish assembly. While this would enable all 'visible' satellites to be received, it requires a more expensive receiver, positioner electronics and a motorised dish mount. It would receive only one satellite at a time, taking perhaps one minute to rotate the dish to a program from a different satellite.
At less cost, many viewers have already installed a second lnb and receive two satellites on one dish, usually Astra 1 at 19.2° east and Hot Bird at 13° east. This method has two advantages, instantaneous satellite switching and with two receivers, simultaneous viewing or taping of two programmes, from the same or different satellite. I have used just such a system ${ }^{3}$ ever since I installed my dish December 1990, Fig. 1.

Since these satellites are distanced by more than 6°, with a dish half power beamwidth less than 3°, just how is this reception from two satellites possible?
Satellite dishes are simply parabolic reflectors. In comparison, consider that most common parabolic reflector, found in the car headlamp. Two bulb filaments are used. The one at the reflector focus generates the main beam. A second filament offset above this focus point, generates a deflected or dipped beam.
In reverse fashion, this reflector can be used to focus light from the sun, into a tiny intense point of light. Aimed a little off-line from the sun, another less distinct, displaced focus will be seen.
Radio waves reflect from metal surfaces in a similar manner. A satellite dish concentrates the in-line received signals to a point at the entrance to the lnb. Slightly off-line signals are focused away from the lnb feed horn, so are not received.

Satellite dish forms

Two main forms of satellite dish are used. The concentric-fed style dish, visibly shaped like a parabola, is used mostly for motorised systems. While providing the highest possible sig.

The new technique in a nutshell

Traditionally, a satellite dish is first roughly aligned using a compass bearing for azimuth, then with an inclinometer for elevation. Final alignment is used to attain maximum signal on a spectrum analyser or field strength meter.

This compass bearing must allow for the Earth's local magnetic deviation, and the compass reading can be disturbed by adjacent metalwork.

Compared to alignment of a terrestrial uhf television antenna, which receives some signal almost regardless of its orientation, a satellite dish receives no signal at all until it is within a couple of degrees of its true alignment, in both azimuth and elevation.
The required azimuth and elevation can be obtained using published tables, or computer programs. Alternatively it can be manually calculated using,

$$
\text { elevation }=\arctan \frac{\cos X-0.151269}{\sin X}
$$

Here, $X=\arccos (\cos Y \cos Z)$ where Y is the satellite longitude minus receiver
longitude and Z is the receiver latitude

$$
\text { azimuth }=\arctan \frac{\tan Y}{\sin Z}
$$

Don't forget to add magnetic deviation to this.
With a concentric-fed dish, setting true elevation is straightforward, by comparing line-of-sight to the inclinometer. But this is not so for the more commonly used offsetfed dishes. A few offset-fed dishes have approximate elevation angles inscribed, but establishing the optimum elevation angle for such dishes relies almost exclusively on trial and error adjustment, while keeping an eye on the field strength meter. Unless the azimuth has first been set correctly, the meter measures nothing at all.

A starting location for a second inb can be calculated using engineering formulae, but these require knowledge of the dish dimensions and assume it has a true parabolic shape. Final positioning relies on trial and error location using a field strength meter.

A more precise method, needing neither calculation nor specialist equipments, can be based on observation of the dish reflecting an image of the sun. While for true elevations this method can only be applied for a few days each spring and autumn, true azimuth can be assured throughout the year, whenever the sun shines. This method applies to both concentric and offset dishes, and regardless of variations of dish shape or size.

This article explores both methods.

Fig. 3. Accurate raytraced top view of Technisat dish, as measured and used for tests. Increasing effects of beam deviation and coma, with deflection angle, are clearly visible.

nal gains, the metal work of the lnb intrudes into the received signal path, forming a shadow on the dish surface.
The offset-fed dish is used for low-cost fixed Sky dishes. It is effectively a segment taken from a true parabola, of focal length roughly equal to the shortest distance from lnb to dish. At first glance it looks quite unlike any normal parabolic reflector. Its main advantage is that the lnb does not intrude into the received signal path, so there is no dish shadowing, Fig. 2.
Typical signal gains of 33 dB for $45 / 50 \mathrm{~cm}, 35 \mathrm{~dB}$ for 60 cm , 37 dB for $75 \mathrm{~cm}, 39 \mathrm{~dB}$ for $90 \mathrm{~cm}, 40 \mathrm{~dB}$ for 1 m and 41 dB for 1.2 m offset dishes are obtained. ${ }^{4}$ These provide acceptable reception with signal contours at 51 dBW for $60 \mathrm{~cm}, 49 \mathrm{dBW}$ for $75 \mathrm{~cm}, 47 \mathrm{dBW}$ for 90 cm and 45 dBW for 1.2 metre dishes.

Multi-Inb dish behaviour

With a car headlamp, light from its focus is reflected as an in-line, parallel beam. Light originating slightly away from
this focus becomes a slightly off-line, diverging dipped beam.
Due to the reflector's curved surfaces, this dipped beam is bent through a less than expected angle. The degree that these angles differ, called the beam deviation factor, depends on the ratio of the reflector's focal length to its aperture or diameter. This factor increases with deflection, Fig. 3.

Used to receive light from a slightly off-line source, the reflector's curved surfaces now exaggerate the angle the focus is deflected by the reciprocal of the beam deviation factor. The focal point becomes slightly diffused, due to coma effects, reducing gain. Radio waves are reflected in the same way as these light waves.

Most good radio-engineering handbooks provide equations or graphs, which allow many factors to be estimated. ${ }^{5}$ But all require known and accurate measurements of the dish and many offset dishes are not true parabolas. With an already erected satellite dish, taking measurements might be extremely inconvenient - especially if its location requires using one hand for safety, on a ladder.

Aligning the dish
Traditionally, satellite dishes are first roughly aligned using compass and inclinometers to approximately the correct angles. Compass reading must be compensated for magnetic deviation and can be affected by local metalwork, especially window frames, lintels or the dish assembly. With an offset dish, the required elevation angles are not easily assured. Consequently final alignment using signal strength meters is inevitable.
While this traditional method works well when aligning to just one satellite, finding the location for a second offset Inb requires allowance for the beam deviation factor together with some trial and error searching using a signal-strength meter.
My present dish was originally aligned using these methods. While professional installers can justify the needed equipment, many interested experimenters cannot.

An alternative alignment method

To prevent the sun's reflected rays damaging the lnb, satellite dishes are deliberately coated with a mat, optically nonreflecting paint. If the sun's reflection from the dish could cause damage, might it also be used to align, or measure a dish's behaviour, for off-line reception?

Satellite positions easily received in the UK

While the Astra satellite, owned by SES, is the best known to UK viewers, its seven satellites at 19.2° east, providing some 90 analogue and 220 digital tv channels, are just the tip of an iceberg. Over 30 satellites exist above Europe, eight being owned by Eutelsat.
SES is currently building three satellites, Astra $2 A$ and $2 B$ destined to locate at 28.2° east and Astra 1 H at 19.2° east.
Eutelsat has seven satellites building, some intended to replace and upgrade existing satellites at $16,13,10$ and 7° east. A major carrier of telecommunications and link transmissions, not all Eutelsat capacity provides tv channels. Its three satellites, which comprise the Hot Bird cluster at 13° east, serve over 60 million home, cable and collective households, making Eutelsat one of the
largest operators world wide.
Many satellites are positioned or aligned such as to require larger than normal satellite dishes. Others, allowing for local trees or buildings, will be below the usable horizon. Just how many of these 30 satellites can be easily received in the UK using low cost dishes ?
Obviously the Astra 19.2° location can be received throughout the UK. At my home in Norfolk, I could receive from 28.5° east to 27.5° west, encompassing all 30 satellites, but some require a larger dish or non-standard Inbs.
In practice, using my present dish and Inb suitably re-aligned, viewable strength signals can be received from 28.5° east, 19.2° east, 16° east, 13°
east, 10° east, 3° east, 1° west, 5° west, 8° west, 18° west. Many of these require decoders or decoder cards not available in UK. Some are Secam only transmissions while others are completely non-English language. This leaves the new Astra at 28.2° east, existing Astra at 19.2° east, Eutelsat at 13° east, and Intelsat/Thor 2 at 1° west as the most desirable.
Eutelsat at 16° east and 10° east, being mostly clear PAL transmissions, might interest those of you with linguistic abilities. However these intermediate 3° locations impose practical difficulty when using a multi Inb fixed dish for reception, due to the physical sizes of the Inb feedhorn needed and the signals' focii.

For a few days each spring and autumn, the sun's elevation coincides with, and shines through, the Clarke Belt, causing a temporary loss of satellite television reception. It is possible to predict the time when sun and satellite azimuths coincide and it is possible to make the dish temporarily optically reflective by washing it with soapy water. For these few days, this is an elegant, practical solution.
Many offset-fed satellite dishes may not be true parabolas, so observation of the sun's reflection provides the most accurate and simple solution. Precise lnb locations simply plotted onto a card and used to pre-assemble suitable lnb mounts result in little final adjustment. This method can be used to align one or multiple satellites.
You need only know the time and date when the sun will reach the required azimuth and elevation. For convenience I have listed these for Manchester, this city being a median site for the UK. The exact times for your location will differ from Manchester time by perhaps a minute, causing a small, consistent error for each satellite.
For convenience, these times can also be applied a couple of days before and after the stated dates, Table 1.

An all year round solution?

The Earth traverses the sun in 23 hours 56 minutes, so each degree of azimuth takes approximately four minutes. Old time sundials depend on the sun being near due south at midday throughout the year. So like the sundial, can we also use the sun for all year measurements, not just for a few days?

To facilitate observations of the sun's reflections, I assembled a simple lightweight open-fronted viewing box. It was 50 cm wide by 15 cm tall and 11 cm deep at its centre, having a curved back of radius 10% less than the distance from lnb to dish. To this curved back I attached some white card. The whole box was temporarily supported, immediately in front of the lnb cap.
All dishes used to receive off-line signals exhibit a diffused focus due to coma. Most of this originates from the dish extremities. By off-line I mean focussed, but with an offset lnb, as opposed to on-line, where the lnb is at the centre of a symmetrical parabolic dish. Hot Bird in Fig. 2 is on line.
Sensitivity to these diffused signals is reduced since they are on the limits of the Inb's viewing angle. As a result, the focus of the rf waves seen by the Inb is defined more sharply than the visual image. Plotting both the hot spot and the coma is useful in that it helps you guess what improvement you are likely to get from adjusting the Inb on test.

Fig. 4. Sketched Sun reflections,
10 October, 1997 found using
Technisat dish.
The dark centre hotspot is most important, but the effects of coma are most obvious.

What is a low-noise block?

The low-noise block, or Inb, mounted on the satellite dish, comprises two main parts. These are a mechanical feed horn and waveguide for frequencies from 10.7 to 12.75 GHz , and the first down frequency converter electronics of a double superheterodyne receiver. The first local oscillator in the Inb runs at a fixed frequency while that of the second local oscillator in the receiver varies.
Astra analogue television channels use horizontal and vertical polarisation alternately. Inside the Inb waveguide, two fixed 'pickup' probes couple the relevant polarised if signals to low-noise if amplifiers. A nominal 13 V or 17 V power supply, fed via the coaxial output cable, determines which signal polarisation is used. Signals from all either vertically or horizontally polarised transmissions are sent to the receiver, but not both simultaneously.
Depending on the satellite's azimuth with respect to your location, some beam rotation occurs in transit. This ranges from near -20° for Astra 2 to $+2^{\circ}$ for 1° west. In practice, the easiest way to accommodate
this is to adjust the inb for best reception while tuned to one polarity signal, then switch the receiver polarity and rotate the Inb for minimum signal.
Low-noise blocks intended for offset dishes receive over a 70° cone of reception, sensitivity then being typically 10 dB down, to minimise unwanted side pickup. This angle giving an F / D typically 0.8 vertically and 0.65 horizontally.

The original Inb oscillators ran at 10 GHz . Receivers covered 950 MHz to 1750 MHz , permitting reception from 10.95 to 11.75 GHz . When the Astra 1D satellite was launched, enhanced Inbs containing a 9.75 GHz local oscillator were introduced, together with receivers featuring an extended tuning range. This satellite transmitted frequencies down to 10.7 GHz ,

The Astra 1E, 1F and 1G satellites using the 'high-band' frequencies saw the introduction of the 'universal' Inb having dual first local oscillator frequencies of 9.75 and 10.6 GHz . Oscillator frequency is selected by the presence or absence of a 22 kHz switching tone which is output
by the receiver and superimposed on the Inb supply voltage. Consequently the first intermediate frequency sent by the Inb to the receiver covers frequencies from 950 to 2150 MHz . This demands high quality double-screened air-spaced 75Ω coaxial cable.
These high-band frequencies are for digital rather than analogue transmissions. Many are already in use, but targeted to mainland Europe - not the UK. For its UK viewers, Sky has reserved 14 of the 32 transponders on Astra 2A, each capable of up to 10 television channels using digital compression techniques.
While most satellite transmissions use horizontal or vertical polarisation - some including the original BSB satellite - use circular polarisation. This is mostly right handed.

Following the BSB/Sky merger, the original BSB satellite was renamed Thor, and moved to 0.8° west to serve Scandinavian countries. Circularly polarised transmissions cannot be received using a commercial vertical/horizontal voltage-switched Inb.

Fig. 5. Swedish Microwave software shows a simple representation of dual Inb positions. All the software's simulations adopt similar, simple, graphical presentations of results.

I mentioned earlier that twice each year, for a few days, the sun tracks the Clarke Belt. Its reflection from a dish indicates precisely the changing elevation needed for each satellite. With my dish aligned on 13° east, the sun's reflections for our four target satellite positions on 10 October 1997 indicated a change in lnb height of some -18 mm for 1° west to +22 mm for 28.2° east, Fig. 4 .
Compared to the azimuth changes of $\pm 18^{\circ}$, elevation changes are small - less than the receiving area of an Inb. With allowance for beam deviation, the tabled elevations could be converted into lnb height changes with sufficient accuracy. Simple trigonometric calculations based on the measured distance from the Inb to the dish centre and some final adjustments on test, could suffice.
Your main task then is to accurately determine the time when the sun's azimuth matches that of the required satellite, for any day of the year. For any given day, the easiest way to calculate satellite azimuth from your location and the sun's time to this azimuth is to use a dedicated satellite program. Two such programs can be downloaded from Internet.

Free software tool for dish alignment

Swedish Microwave ${ }^{6}$ provides a freeware package called SMWLink that can be used to quickly calculate antenna alignments for any needed satellite or any two satellites, in a doubled-up system. Results are demonstrated graphically to eliminate confusion between positive and negative azimuth values, fig. 5.
A piece of software called Satmaster Pro ${ }^{7}$ can be used to calculate solar times and all other information needed to align your dish. Its tabular results are less user friendly than the Swedish Microwave package. All equations and calculations used are fully explained in the book Guide to Satellite TV. ${ }^{4}$
Alternatively, the sun's time to an azimuth could be manually calculated using solar tables. Remember though that a satellite's claimed location is maintained with respect to the centre of the earth. Azimuth and elevation for a dish vary according to your local latitude and longitude. Requiring three dimensional trigonometry, I much prefer the simpler software approach.
For convenience, the Table 1 and Table 2 optimum timings for several dates were calculated using Satmaster Pro. Based on Manchester and GMT, they are acceptably accurate throughout the UK, and remain so for a couple of days either side of the given dates in Table 2

Table 2. Satellite alignment times for 1998, solar azimuth only. Based on GMT at Manchester.
Satellite Astra 2 Astra 1 Hot Bird Thor 2
Location $28.2^{\circ} \mathrm{E} \quad 19.2^{\circ} \mathrm{E} \quad 13^{\circ} \mathrm{E} \quad 0.8^{\circ} \mathrm{W}$

5 April	$10: 18$	$10: 53$	$11: 16$	$12: 07$

3 May | $10: 27$ | $10: 58$ | $11: 18$ | $12: 02$ |
| :--- | :--- | :--- | :--- |

7 June	$10: 41$	$11: 08$	$11: 26$	$12: 04$

5 July	$10: 47$	$11: 14$	$11: 31$	$12: 10$
2 Aug.	$10: 40$	$11: 09$	$11: 29$	$12: 11$
6 Sept.	$10: 14$	$10: 49$	$11: 11$	$12: 03$

Putting it into practice

Having determined the mounting positions for the extra lnbs, how does reception of more than one satellite work in practice?
Modern satellite receivers have selectable inputs for two lnbs and recent designs have an inbuilt system called DiSEqC, designed to control motors and external switches.
This Digital Satellite Equipment Control system was devised by Eutelsat ${ }^{2}$ as a means of controlling all necessary satellite dish ancillaries using pulsed 22 kHz tones, fed along the coaxial downlead. This removes the need to run multiple coaxial leads, power and control cables from a receiver/positioner to the dish, simplifying installation.
Older receivers can be suitably equipped using switches made by specialist suppliers. Receivers unable to provide the 22 kHz tone needed to switch a universal lnb between its low and high bands can be equipped with external tone generators. Switches and tone generators are produced by Global Communications ${ }^{8}$ and SFM Engineering. ${ }^{9}$
Satellite transmissions have a footprint. A receiving dish in the outer regions of this footprint needs to be bigger in order to deliver the same signal strength. Maps indicating power contours, available from all satellite operators, are included in both software packages, Fig. 6.

Off-line reception will be reduced depending on the degree of mis-alignment. For convenience, the graphs and equations ${ }^{5}$ needed have been combined into a table of losses for various dish combinations and angles. Used with the relevant contour map, these indicate the expected signal level to be received, and hence predict the quality of reception, Table 3.
A noisy but watchable analogue picture will be attained

Fig. 6. One of many signal strength contour maps available from the satellite operators. Eutelsat's Hot Bird family reaches an extremely large potential audience.

Table 3. Beam deviation at a nominal 10° deflection angle, also Gain / Loss predictions for Offset Satellite Reception, both relating to Focal Length/Dish Diameter.

Dish	Beam deviation factor								Beam offets versus decibel losses by f/d ratios				
F/D	Transmit	Receive	1 dB	2 dB	3 dB	4 dB	5 dB						
0.45	0.85	1.18	3.90°	6.50°	7.90°	9.30°	10.20°						
0.50	0.86	1.16	5.30°	7.80°	9.50°	11.20°	12.30°						
0.55	0.88	1.14	6.30°	9.30°	11.30°	13.30°	14.60°						
0.60	0.89	1.12	7.40°	10.90°	13.30°	15.60°	17.20°						
0.65	0.91	1.10	8.60°	12.70°	15.40°	18.10°	19.90°						
0.70	0.92	1.09	9.90°	14.60°	17.70°	20.80°	22.90°						
0.75	0.93	1.08	11.30°	16.60°	20.10°	23.70°	26.10°						

with signals 3 dB lower than recommended - even to 6 dB using the best low noise receivers and lnbs. Digital signals are more critical. With signals above the minimum, a noise free picture results. With a lesser signal all reception ceases, so it is essential to ensure digital signals have sufficient strength, allowing for the effects of rain and cloud

In reality

Just how do these calculations compare with actual measurements?

Using my old Technisat dish, original Marconi lnb with a 70 mm diameter horn and an $H S 101$ signal strength meter, I carefully re-aligned the dish to Astra 1 and set the meter sensitivity to read +1 dB . I then re-aligned the dish to 13° east, and with the meter sensitivity unchanged, manually moved the lnb to maximise Astra 1 signals. The meter indicated a loss of 0.8 dB , Table 4.
While centred on 13° east, I measured this optimised physical Inb displacement used to receive Astra from 19.2° east, a satellite alignment difference of 6.2°, as 73 mm horizontal, 12 mm vertically higher.
Similarly with the dish aligned to 1° west, I measured the loss of Astra 1 signal as 3 dB , confirming the theoretical predictions, Table 3.
With the dish aligned to 13° east, the new Grundig lnb secured to an adjustable mount set to receive 1 west, I measured a reduction in strength of 4 dB . I believe this is in part due to its smaller, 56 mm feed horn collecting less of the dif-

| Table 4. Satellite transmissions used for dish signal strength tests. | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Satellite | Channel | Language | Frequency | Polarisation | Elevation |
| 1 west - Thor 2 | Kanal 5 | Swedish-English | 11.341 GHz | Vertical | 28.91° |
| 1 west - Thor 2 | TV Norge | Norwegian-English | 11.421 GHz | Horizontal | 28.91° |
| 13 east -Hot Bird | RAI UNO | Italian | 11.366 GHz | Vertical | 27.33° |
| 13 east -Hot Bird | Eurosport | German | 11.390 GHz | Horizontal | 27.33° |
| 19.2 - Astra 1 | Eurosport | English | 11.258 GHz | Vertical | 25.2° |
| 19.2 - Astra 1 | TNT | English | 11.023 GHz | Horizontal | 25.82° |

fused coma signals than did the larger feed horn. It would seem advisable to use larger lnb horns for such extreme deflection angles, with smaller horns used for small deflection angles.
Even so with a semi-clouded sky, the unencrypted Pal signals from Sweden 5 and TV Norge were noise free, while all signals from Astra are completely noiseless except under the most adverse weather conditions.
In the short term, re-aligning my dish on 10° east would benefit the 1° west signals by some 0.5 dB while leaving the Astra 1 signals almost unchanged. For this my lnb mounts would have to be rebuilt.
Astra 2 planned signal contours are intended to permit reception using a $45-50 \mathrm{~cm}$ dish. This equates to a signal some 2 or 3 dB stronger than direct reception of Astra 1. Hence Astra 2 should be receivable on a second offset lnb on your existing dish which remains aligned on Astra 1. A minimum sized Astra 1 dish cannot provide good reception of Hot Bird transmissions.

Receiving both analogue and digital satellite television

While the straightforward method of receiving both analogue and digital television is to use a steerable dish, this has the disadvantage it can receive only one satellite at a time. Astra viewers must choose whether to receive either analogue from 19.2° east or digital from 28.2° east. This prevents any possibility of viewing one source while taping the other, or parents watching one choice with children the other.
Installing two dishes in the UK, requires planning permission ${ }^{10}$ as does an extra large dish.
The objective of this article was to examine the possibility of receiving all major satellite positions of interest on
one fixed dish. The voltage and 22 kHz switching arrangements used mean that it is not practicable to supply both analogue and digital receivers from one low-noise block. But all interesting satellites other than the new Sky Astra 2 , support both analogue and digital transmissions.
Perhaps the most straightforward and flexible method is to use the twinoutput, low-noise and digital-ready Inbs now available. These provide essentially two totally independent Inbs, each with selectable horizontal or vertical polarisation and low or high band. These are now available in both small and large feed-horn versions.
For this investigation I bought a

Grundig ${ }^{11}$ AUN10T, which is a universal, twin-output, 56 mm diameter small feed horn model, recently introduced. It has a 0.7 dB noise figure.
Grundig assures me that leaving one output awaiting a digital receiver and hence for now unconnected is perfectly acceptable. This unconnected output must however be covered to prevent water ingress.
Note that two different Inb types are available, both having two outputs The dual output versions look identical, but provide H channels only from one output with V channels only from the other, so are less suitable for the options described in this article.

Aligned to 13° east, a one size larger dish is needed to provide noise free signals from both Astra 1, Astra 2 and 13° east. Depending on your location, this might also be possible with the dish aligned to 10° east. Both alignments would permit acceptable reception up to 1° west, using a fourth inb.
From my results it seems feasible to receive all four desirable satellites using offset lnb's mounted on a dish at least one size larger, but preferably two sizes, than the minimum size Astra 1 dish needed for your location. Unfortunately, until Astra 2 is actually working, its reception cannot be proven experimentally.

Any dish system aligned to receive satisfactory signals from 13° east, would also supply signals from 16° east and 10° east. The main problem is physically positioning the Inbs, rather than one of ensuring sufficient signal strength. An increase of dish diameter to, say, 90 cm , with its resultant increased lnb displacements, would facilitate reception of these satellites while increasing signal level for all channels.
In principle, all satellite dish installations are subject to planning control, particularly should you live in a National Park, one of the conservation areas or a listed building. At present though, a 70 cm dish size is permitted without planning permission, increased to 90 cm for western and Northern counties. Your local planning office will supply details applicable to your local area.
In France, which almost invariably receives much stronger signals, a 1 m dish is permitted. Negotiations between Eutelsat and the last Government were expected to relax the
above size restraints, but at the time of writing, the June 1995 restrictions are still in force. ${ }^{10}$
Having performed this investigation on 1 March, I now plan to install a fourth Inb on my dish and align this system using the sun's reflection.

References

1. Société Europé enne des Satellites (Astra) http://www.astra.lu.
2. European Telecommunications Satellite Organisation (Eutelsat) http://www.eutelsat.org.
3. Bateman, C, Doubling Up, What Satellite, July 1991 pp.29-31
4. Stephenson, D, 'Newnes Guide to Satellite TV,' pub. Newnes, Oxford
5. 'Reference Data for Radio Engineers,' pub. Newnes, Oxford
6. Swedish Microwave http://www.smw.se
7. Satmaster Pro 5.1
http://www.arrowe.u-net.com/sm.htm
8. Global Communications, 01621744322
9. SFM Engineering, 01407742436
10. Town and Country Planning (General Permitted Development) Order 1995.
11. Grundig Microwave Technology Ltd, 01813249400

The Low Cost Controller That's Easy to Use

 FeaturesThe K-307 Module provides the features required for most embedded applications

Analogue	4 Channels in 1 Channel out
Diginal	- 36 Digital in or out \& Timers
Soriol	- RS-232 or RS-485 plus 12C
Disploy	- LCD both text and graphics
Keyboard	- Upto 8×8 matrix keyboard
Memory	- $>2 \mathrm{Mbytes}$ available on board
Low Power	- Many modes to choose from

Development
The PC Starter Pack provides the quickest method to get your application up \& running
Oporating Systom - Real Time Multi Tasking
Longuoges - 'C', Modula-2 and Assembler
Expension - Easy to expand to a wide range of peripheral cards
Other Features
Real Time Calendar Clock, Battery Back Up, Watch Dog, Power Fail Detect, STE I/O Bus, 8051 interface, 68000 and PC Interface

Cambridge Microprocessor Systems Limited

Units 17-18 Zone 'D'
Chelmsford Road Ind Est
Great Dunmow Essex CM6 1XG
E-mail cms@dial.pipex.com
Phone 01371875644

PLUG IN AND MEASURE

TiePie introduces the HANDYSCOPE 2
A powerful 12 bit virtual measuring instrument for the PC

The HANDYSCOPE 2 , connected to the parallel printer port of the PC and controlled by very user friendly software under Windows or DOS, gives everybody the possibility to measure within a few minutes. The philosophy of the HANDYSCOPE2 1 S

> "PLUG IN AND MEASURE"

Because of the good hardware specs (two channels, 12 bit, 200 kHz sampling on both channels simultaneously, 32 KWord memory, 0.1 to 80 volt full scale, 0.2% absolute accuracy, software controlled AC/DC swtch) and the very complete software (oscilloscope voltmeter, transient recorder and spectrum analyzer) the HANDYSCOPE 2 is the best PC controlled measuring instrument in its category.

The four integrated virtual instruments give lots of possibilities for performing good measurements and making clear documentation. The software for the HANDYSCOPE 2 is suitable for Windows 31 and Windows 95. There is aiso software available for DOS 3.1 and higher.

A key point of the Windows software is the quick and easy control of the instruments. This is done by using.

- the speed button bar. Gives direct access to most settings
- the mouse. Place the cursor on an object and press the right mouse button for the corresponding settings menu.
- menus. All settings can be changed using the menus.

Some quick examples:
The voltage axis can be set using a drag and drop principle. Both the gain and the position can be changed in an easy way. The time axis is controlled using a scalable scroll bar. With this scroll bar the measured signal (10 to 32 K samples) can bezoomed live in and out.

The pre and post trigger moment is displayed graphically and can be adjusted by means of the mouse For triggering a graphical WYSIWYG trigger symbol is available This symbo indicates the trigger mode, slope and level. These can be adjusted with the mouse.

The oscilloscope has an AUTO DISK function with which unexpected disturbances can be captured When the instrument is set up for the disturbance, the AUTO DISK function can be started Each time the disturbance occurs. It is measured and the measured data is stored on disk. When pre samples are selected, both samples before and after the moment of disturbance are stored

The spectrum analyzer is capable to calculate an 8 K spectrum and disposes of 6 wndow functions Because of this higher harmonics can be measured well (eg for power line analysis and audio analysis)

The voltmater has 6 fully configurable displays. 11 different values can be measured and these values can be displayed in 16 different ways. This results in an easy way of reading the requested values Besides this, for each display a bar graphis available.

When slowiy changing events (like temperature or pressure) have to be measured, the transient recorder is the solution. The time between two samples can be set from 0.01 sec to 500 sec , so it is easy to measure events that last up to almost 200 days

The extensive possibilities of the cursors in the oscilloscope, the transient recorder and the spectrum analyzer can be used to analyze the measured signal Besides the standard measure ments, also True RMS, Peak-Peak, Mean, Max and Min values of the measured signal are available

To document the measured signal three features is provided for. For common documentation three lines of text are available These lines are printed on every print out. They can be used e.g for the company name and address. For measurement speafic documentation 240 characters text can be added to the measurement. Also "text balloons" are avalable, which can be placed within the measurement. These balloons can be configured to your own demands.

For printing both black and white printers and color printers are supported. Exporting data can be done in ASCII (SCV) so the data can be read in a spreadsheet program. All instrumentsettings are stored in a SET file. By reading a SET file, the instument is configured completely and measuring can start at once. Each data file is accompanied by a settings file The data file contains te measured values (ASCli or binary) and the settings file contans the settings of the instrument. The seltings file is in ASCII and can be read easlly by other programs.

Convince yourself and download the demo software from our web page: http./lwnw.tiepie nl
When you have questions and $/$ or remarks, contact us via e-mail suppor@tepre.n

Total Package
The HANDYSCOPE 2 is delivered wh theo 1.1/1 10 switchable oscilloscope probe's, a user manual, Wndows and DOS software The price of the HANDYSCOPE 2 Is $£ 29900$ excl VAT.

TiePie enginenng (UK), 28 stephenson Road, Insdustrial Estate, St. ives Cambndge PE17 4WJ, UK Tel. 0148-4600028, Far 0148-460340 TiePie engneering (NL)
Kopersiagersstraat 37, 8601 WL SNEEK, The Netheriands Tel +31515 415416; Fax +31515418819

Stand-alone data logger

> You can leave this small, cheap, autonomous and battery-powered data acquisition box almost anywhere, quietly gathering data ready for later retrieval and post processing on a pc. Pei An and Pinhua Xie explain its how it works.

In environmental monitoring applications, parameters such as temperature, humidity, or water level or pollution need to be monitored continuously over long periods. A conventional pc-based data acquisition system can be used for such an application, but it may not be ideal. Firstly, such a system involves a computer and a data logger, making it expensive. Secondly, the physical size is large. Thirdly, power assumption will be high, and this implies that a powerful battery pack is required in applications where there is no mains supply.
A stand-alone data logger is a useful device for such an application. Firstly, it is dedicated. Its only task is to acquire data and save the data into its memory. It can be connected
to a computer any time to allow its collected data to be transferred and analysed.
Such a data logger can be made small in size and with ultra-low power consumption. Such a stand-alone logger's small size allows it to be placed in any location. It can collect data continuously over a long period of time without having its battery changed.
This article describes a design of such a data logger. It has one analogue input channel with an input range of 0 to 2.5 V and the a-to-d conversion accuracy is 12 -bit. It has an onboard memory capable of holding 1000 a-to-d conversion results.

When data is to be downloaded, the logger connects to a

Fig. 1. A stand-alone data logger is used to acquire analogue data from the external world. The logger connects to a host computer via its RS232 port for initial configuration. After that it can be disconnected from the computer and placed in a designated location to acquire data. After the data acquisition session is completed, it is connected to the host computer again for data downloading. The logger only measures analogue voltage. A sensor, amplification and signal conditioning circuits are required to complete the system.

pc via an RS232 serial port. When driven by a lithium PP3sized battery it could capture data for a month or so unattended.

It is possible to build this logger into an enclosure the size of a small calculator. The complete system is illustrated in Fig. 1. Bear in mind that different sensors and signal conditioning and amplification circuits may be needed for different applications.

How data logger works

The data logger has three operating modes. These are the initialisation mode, the data logging mode and the data downloading mode.
In initialisation mode, the user specifies the start time of data logging and scanning interval - i.e. the period between two consecutive data loggings. This is done by plugging the data logger to the RS232 port of a host computer.
After the initialisation, the logger enters data logging mode. It can now be disconnected from the computer and
placed to a designated location. The data logger converts analogue signal into digital data at a fixed interval and stores the data into its memory.
Data logging is terminated either by pressing the reset button on the logger or when the total number of stored data exceeds 1000 . At this point, the logger is connected to the host computer once more for data downloading. During downloading, the data stored in the data logger are transferred into the computer.

Hardware details

Figure 2 shows the logger's block diagram. The system comprises five units. They are,

- Central controller based on the PIC/6C84
- LTC/285 analogue-to-digital converter
- 24 LC 16 memory unit ,
- RS232-to-ttl converter
- power supply

Fig. 3. Complete circuit diagram of the stand-alone data logger. A PIC16C84, an LTC1285 a-to-d converter and a 24LC16B 2Kbyte electricallyerasable prom are used in the circuit, which may be constructed on a single-sided board.

Fig. 5. Pin-out and internals of the LTC1285 12-bit a-fod converter. It has a threewire serial i/o bus, so hardware design is easy.

Table 1. In this application, lines of the PIC controller are designated as follows.

Line Port A	Pin	Description
RA ${ }_{0}$	18	Serial data input to the PIC (connected to Tx of the PC's RS232 port)
RA_{1}	17	Serial data output from the PIC (connected to Rx of the PC's RS232
port)		
RA_{2}	1	Not used
RA_{3}	2	Not used
RA_{4}	3	Not used
Port B		
RB_{0}	6	Not used
RB_{1}	7	Not used
RB_{2}	8	Control of the logger status led (output)
RB_{3}	9	Serial clock of the $1^{2} \mathrm{C}$ bus (SCL) for the 24LC16B (output)
RB_{4}	10	Serial data of the $\mathrm{I}^{2} \mathrm{C}$ bus (SDA) for the 24LC16B (input and output)
RB_{5}	11	Serial data output ($\mathrm{D}_{\text {out }}$) from the LTC1285 (input)
RB_{6}	12	Serial clock (CLK) of the LTC1285 (output)
RB_{7}	13	enable (-CS) of the LTC1285 (output)

The complete circuit is given in Fig. 3. The system utilises only three key ICs, namely the controller, the a-to-d converter and the memory. The LTC1285 a-to-d converter has a serial peripheral interface, or SPI, for all i/o operations. The 2 K eeprom has a 2 Kbyte capacity. It communicates with external devices using an $\mathrm{I}^{2} \mathrm{C}$ bus. The PIC16C84 manage the gathering of data from the a-to-d converter and the storage of it in the eeprom. It also looks after communication with the host computer via the RS232 port.

Central control unit. The central control unit is based on a Microchip PIC16C84 peripheral interface controller. This device is a relatively recent addition to Microchip's range. It has has an electrically erasable memory to store program, making it particular useful for product development. This is why we adopted it for this application.
The pin-out and internal block diagram of the 16 C 84 is shown in Fig. 4. Pins 14 and 5 connect to the positive and negative rails of a power supply. The supply voltage range is 2 to 6 V . Power supply current is typically 2 mA at 5 V and 4 MHz clock frequency. This drops to several tens of microamps when the IC is in standby mode.
Pin 4 is the master clear. It must be held high in normal operation. Pin 15 and 16 connect to a crystal or ceramic resonator up to 4 MHz . The 16 C 84 has a 1024 word 14 -bit wide electrically erasable prom to store instructions and a 64 byte eeprom to store data. There are 15 special function registers and 36 byte-wide general purpose registers.
There are two i / o ports. Port A is brought out on RA_{0-4} while port B is on RB_{0-7}. Each individual line can be configured as an input or output. As an output, any line is able to source 20 mA and sink 25 mA . Line RA_{4} has a secondary function. It is used for the timer/counter modules. Also, RB_{0} doubles as an external interrupt input.
The PIC has only 35 single-word instructions, which makes programming it easy to learn. In this application, the PIC works in the crystal-oscillator mode. A 4 MHz ceramic resonantor - a three pin device - is used, Fig. 3. Input/output lines of the PIC are committed in as in Table 1

Analogue to digital converter unit. The analogue-to-digital converter core is a Linear Technology LTC1285CN8 12bit a-to-d converter using successive approximation conversion, Fig. 5. It requires a power supply of 2.7 V to 6 V on pins 4 and 8 and a reference voltage on pin 1 .
Typical supply current is $260 \mu \mathrm{~A}$ at a 6.6 kHz sampling rate and with a 2.7 V power rail. When in standby mode, the supply current drops to several nanoamps. The 1285 has a differential analogue input on pin 2 and 3 and the analogue input leakage current is typically $1 \mu \mathrm{~A}$.
The converter communicates with other circuitry through a three-wire SPI serial interface. These three wires are - CS/SHDN, CLK and $\mathrm{D}_{\text {out }}$. On going low, pin 5 selects the chip and initiates data transfer. If the pin goes high, the converter enters standby mode.
Pin 7 is the clock input. It synchronises the serial data transfer and determines conversion speed. At the falling edge of the clock signal, each bit of the 12 bits of an a-to-d conversion result is sent out from $D_{\text {out }}$ pin.
The operating sequence of the 1285 is shown in Fig 6. Data transfer is initiated at the falling edge of the chip select, pin 1 . Following chip select's falling edge, the second clock pulse enables data output $D_{\text {out }}$. A null bit (logic 0) appears first on $D_{\text {out }}$ pin 6. At the next 12 falling edge of the clock, the 12 bits of the a-to-d conversion result appear on $\mathrm{D}_{\text {out }}$ one by one.
In the present circuit, $-\mathrm{CS}, \mathrm{D}_{\text {out }}$ and CLK connect to RB_{7}, RB_{5} and RB_{6} of the PIC. The PIC sets $\mathrm{RB}_{7}(-\mathrm{CS})$ and RB_{6} (CLK) as output lines. Line RB_{5} is set as an input.

Memory unit. The memory unit uses a 24 LCl6B 2 Kbyte eeprom from Microchip. The memory is organised is 2 Kbyte memory locations. It is possible to erase and write to the memory up to a million times.
The chip requires a 2.5 V to 5 V power supply with a typical current consumption of 1 mA in active mode and $10 \mu \mathrm{~A}$ in standby mode. It has an $\mathrm{I}^{2} \mathrm{C}$ bus for data transfer operations and it operates as a slave device on the bus, Fig. 7.
Lines A_{0-2} have no function and can be left open. Pin WP is for write protection and is normally tied to the ground to enable write operation. Lines SCL and SDA are the clock and data lines of the $\mathrm{I}^{2} \mathrm{C}$ bus.
Data can be written to and read from the rom via the $\mathrm{I}^{2} \mathrm{C}$ bus. The write operation has two modes - byte-write mode and page-write mode. The former writes a single byte to a memory location. The latter writes 256 bytes to a block in one go. The read operation has a current-address-read mode and a random-read mode. Byte-write mode and the randomread mode are used in this application. Their timing sequence is described below, Fig. 8 .
Following a start condition on the $\mathrm{I}^{2} \mathrm{C}$ bus, an eight-bit slave address byte is clocked into the memory from the controller. The slave address from bits 7 to 0 is:

$$
1,0,1,0, B_{2}, B_{1}, B_{0} \text { and } R /-W \text {. }
$$

Bits 7 to bit 4 are the permanent address of the 24 LC16 memory. Bits B_{2-0} specify one of the four memory blocks. When $\mathrm{R} /-\mathrm{W}$ is high, the operation is a read operation, otherwise it is a write operation.
After the slave address bits are transferred into memory, an address byte is transmitted to it which specifies a particular memory location in the selected memory block. This address is written to the address pointer of the 24 LCl and its value ranges from 0 to 255 .
If the operation is a write operation, the eight bits of data are sent to it next. In random-read mode, after writing to the address pointer, a start condition is generated again and it is followed by sending slave address bits with the $\mathrm{R} /-\mathrm{W}$ bit set to 1 , to signify reading. Now, the data stored in the memory is sent out bit by bit.

List 1. These nine bytes are sent to the PIC controller in the logger from the pc immediately after initialisation.
byte 1: data logging launch time, year (0-99 decimal)
byte 2: data logging launch time, month (1-12 decimal)
byte 3: data logging launch time, day (1-31 decimal)
byte 4: data logging launch time, hour (1-24 decimal)
byte 5: data logging launch time, minute (1-59 decimal)
byte 6 : scanning rate $(1=1$ second, $2=1$ minute, $3=1$ hour $)$
byte 7: delay number high byte, Dh
byte 8: delay number mid byte, Dm
byte 9: delay number low byte, D1

Fig. 6. Timing sequence of the LTC1285. After-CS falls, the converter enters the data conversion stage. The falling edge of the third clock pulse causes $D_{\text {out }}$ to output bit 11 of the conversion result. The following 11 clock pulses causes $D_{\text {out }}$ to output bit 10 to bit 0 .

Fig. 7. Details of the 24LC16 $2 k$ byte eeprom. It has an $I^{2} C$ bus comprising a clock line, SCL, and a data line, SDA.

Fig. 8. Timing sequence of the $24 L C 16$ eeprom. See details of the $I^{2} C$ bus operation in the panel.

List 2. When the logger is to off-load its data, it send this sequence to the pc first,

 followed by the stored data.byte $1:$ data logging start time, year ($0-99$ decimal)
byte $2:$ data logging start time, month (1-12 decimal)
byte 3 : data logging start time, day (1-31 decimal)
byte 4: data logging start time, hour (1-24 decimal)
byte 5 : data logging start time, minute (1-59 decimal)
byte 6: scanning rate ($1=1$ second, $2=1$ minute, $3=1$ hour)
byte 7: total number of data logged, lower 8 bits, Dl
byte 8: total number of data logged, upper 8 bits, Dh

In the present circuit, SCL and SDA are controlled by the PIC via $\mathrm{RB}_{3,4}$. Both lines are pulled high by $R_{4,5}$ to form an $I^{2} \mathrm{C}$ bus. The PIC permanently sets RB_{3}, the SCL line, as an output line. Depending on the $\mathrm{I}^{2} \mathrm{C}$ operation in progress, SDA on RB_{4} is set as an input or an output.

RS232/tll translator unit. The function of this unit is to perform voltage conversions between RS232 and ttl logic levels. From the circuit diagram, you will see that the Rx line - i.e. the line from which the logger receives data, RS232 voltage level - is converted into a ttl voltage level using a simple clamp based on R_{1} and zener diode D_{1}. This converter does not have an inverting action.
The Tx signal - the signal output from the logger, RS232 voltage level - is generated by a circuit consisting R_{2}, R_{3} and $T r_{1}$. The circuit requires a positive and a negative power supplies. The former is from the +5 V power supply of the data logger board. The latter is 'stolen' from the RS232 port of the computer. The DTR, or data-terminal ready, line in the pc's RS232 port is set low which outputs a -10 V level. The pin-out of the pc's RS232 port connector and its functions are given in Fig. 9.

Supplying power

Fig. 9. Pin-out of the RS232 port on IBM compatibles. In this application, only the Tx transmit output from the PC, the $R x$ input and the DTR output are used.

(a) 9-pin male socket viewed from the back of the computer

$\begin{array}{lllllll}14 & 15 & 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25\end{array}$ (b) 25 -pin male socket viewed from the back of the computer

Pin functions of the RS232 connectors

25 pin 9 pin	Name	Directlon (for pcs)	Description	
1		Prot	Protective ground	
2	3	TD	Output	Transmit data
3	2	RD	Input	Receive data
4	7	RTS	Output	Request to send
5	8	CTS	Input	Clear to send
6	6	DSR	Input	Data set ready
7	5	GND	-	Signal ground (common)
8	1	DCD	Input	Data carrier detedt
20	4	DTR	Output	Data terminal ready
22	9	RI	Input	Ring indicator
23		DSRD	I/O	Data signal rate detector

As Fig. 3 shows, the power supply is a PP3 9 V battery, regulated to +5 V using an $H T 1050$ regulator. This is a 5 V fixed voltage regulator with a maximum supply current 30 mA . It offers a very low dropout voltage of 100 mV and a quiescent current of $3.5 \mu \mathrm{~A}$.
The 5 V supply is converted into 2.5 V by the TLE2425
2.5 V voltage reference for use by the a-to-d converter.

Our stand-alone data logger implementation is constructed on a single-sided pcb and is housed in a slim ABS box.

Software for the PIC

The PIC software divides into three main procedures. The first is the initialisation procedure, the second is the data logging procedure and the third is the data downloading procedure, Fig. 10. Their functions are described briefly below:
After pressing the reset button, the initialisation procedure is activated once the PIC detects a serial byte AA_{16} sent by the host computer at its RA_{1} pin. After this, the procedure receives nine initialisation bytes, as described in List 1
Delay period in second is calculated using the following,

$2.6 \times\left(256 \times 256 \times \mathrm{D}_{\mathrm{h}}+256 \times \mathrm{D}_{\mathrm{m}}+\mathrm{D}_{\mathrm{l}}\right)$

To carry out the initialisation, the host computer must send AA_{16} and the nine bytes through its RS232 port.
After the PIC receives the ninth byte, it automatically enters the data logging mode. Firstly, the data logger is in the sleep mode until the launch time of data logging is reached. While the PIC is not logging data, the PIC, a-to-d converter and the memory are all in sleep mode.
The PIC wakes up and makes the TLC1285 converter perform an a-to-d conversion. The resulting bits are read into the PIC serially. After reading 12 data bits, the PIC writes the value into the 24 LC 16 B eeprom.
Next, the PIC goes back to sleep. It waits for a time period as specified by the scanning interval and then starts another data logging cycle. There are two ways to terminate the data logging. One is to press the reset button anytime. The other is that the number of data stored in memory exceeds 1000 .
Data downloading to the pc is activated once the PIC detects an RS232 serial byte 55_{16} sent by the host computer from its RB_{1} line, after the reset button is pressed. Following this, the data logger begins to output data. The first eight bytes are data headers and the logged data follows, List 2. The total number of data stored by the data logged is calculated using $D_{h} \times 256+D_{1}$
The bytes succeeding those are data bytes. Two bytes rep-

Continued over page

Fig. 10. Flow chart of the PIC control program.
Three main procedures are involved. The initialisation procedure, the data logging procedure and the data downloading procedure.

What is $I^{2} \mathrm{C}$ bus?

Devised by Phillips, $1^{2} \mathrm{C}$ stands for inter-IC-communication. It is a data bus that allows integrated circuits or modules to communicate with each other.
The bus allows data and instructions to be exchanged between devices via only two wires. This greatly simplifies the design of a complex electronic circuits. There is a family of $1^{2} \mathrm{C}$ compatible devices available for various applications. They include i/o expansion, a-to-d and d-to-a conversion, time keeping, memory and frequency synthesis, etc.

Principle of the $I^{2} \mathrm{C}$ bus. The $1^{2} \mathrm{C}$ bus consists of two lines: a bi-directional data line called SDA and a clock line called SCL. Both are pulled up to the positive power supply via resistors. An $I^{2} \mathrm{C}$ bus system is shown in Fig. A .
A device generating a message is a 'transmitter' while a device receiving a message is the 'receiver'. The device controlling the bus operation is the 'master' and devices controlled by the master are 'slaves'.
The following communication protocol is defined:

- a data transfer may be initiated only when the bus is not busy
- during the data transfer, the data line must remain stable whenever the clock line is high.
Changes in the data line while the clock line is high is interpreted as control signals. The following bus conditions are defined, Fig. B.
- Bus not busy: both data and clock lines remain high
- Start data transfer: a change in the state of the data line from high to low while the clock is high, defines the start condition
- Stop data transfer: A change in the state of the data line from low to high while the clock is high defines the stop condition.
- Data valid: The state of the data line represents valid data after a start condition. The data line is stable for the duration of the high period of the clock signal. The data on the line may be changed during the low period of the clock signal. There is one clock pulse per bit data. Each data transfer is initiated with a start condition and terminated with a stop condition. The number of data bytes transferred between the start and stop conditions is not limited. The information is transmitted byte-wise and the receiver acknowledges with a ninth bit.
- Acknowledge bit: Each byte is followed by an acknowledge bit. The acknowledge bit is a high level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. The acknowledge bit is a low level put on the bus by the receiver. A slave receiver which is addressed is obliged to generate an acknowledge bit after the reception of each byte.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is at a stable low state during the high period of the acknowledge related clock pulse. A master receiver must signal an end to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave.

How the bus operates. Before any data is transmitted on the bus, the device which should respond is addressed
first. This is carried out with the seven-bit address byte plus R/-W bit transmitted after a start condition. A typical address byte has the following format:

```
Fixed Address bits + Programmable address
bits + R/-W bit (in total 8 bits)
```

The fixed address depends on the IC and it can not be changed.* The programmable address bits can be set using the address pins on the chip. The last bit is the $\mathrm{read} / \mathrm{write}$ bit which indicates the direction of data flow. The byte following the address byte is the control byte which depends on the IC used. Following the control byte are the data bytes. The serial data has the format shown in Fig. 8.
*Although some $I^{2} \mathrm{C}$ devices have inputs that can modify the address depending on their logic state, allowing more than one of the same ic to be used on the same bus - Ed.

Fig. A. An $I^{2} C$ bus consists of only two data lines: serial clock, SCL, and serial data, SDA. $I^{2} C$ compatible devices connect to the bus using these two wires, making hardware design simple.

Fig. B. Timing sequences for Bus Not Busy, Start, Stop and Acknowledgement.

```
List 3. Outline of how to send initialisation data to the logger using Turbo Pascal 6.
Procedure init_logger
{initialize data logger)
begin
    ; {send AA=10*16+10 byte to start initialization);
    Port[RS232_address]:=10*16+10
    delay(1000); {a short delay}
    Port[RS232_address]:=start_year; delay(1000);
    Port[RS232_address]:=start_month; delay(1000);
    Port[RS232_address]:=start_day; delay(1000):
    Port[RS232_address]:=start_hour; delay(1000);
    Port[RS232_address]:=start_minute; delay(1000);
    Port[RS232_address]:=scanning_inteval; delay(1000);
    Port[RS232_address]:=delay_h; delay(1000);
    Port[RS232_address]:=delay_m; delay(1000);
    Port[RS232_address]:=delay_1; delay(1000);
```

End'

List 4. Routine for downloading data from the data logger into the pc.

Procedure readdata;
Function data:byte
\{to read data from COM port with valid-data-received detection)
begin
; \{check if a new valid data is received)
repeat until (Port[RS232_address+2] and 1) $=0$
\{check if a valid serial data is received by the COM port)
data:=port[RS232_address]; (read the received data)
end;
begin
port[RS232_address]:=5*16+5; \{to start data downloading pro-
cedure) yearx:=data;
monthx:=data;
dayx : =data;
hourx:=data;
minutex:=data;
scan_intervalx:=data;
number_lowbyte:=data;
number_highbyte:=data;
Total_number:=number_lowbyte+number_highbyte*256;
for $i:=1$ to total_number do
begin

```
            d1:=data;
```

 d2:=data;
 data_from_logger[i]:=(d1*256 + d2)* \(2.50 / 4096\)
 end;

List 5.

Procedure Write_interrupt_enable(RS232_address,
Output_byte: integer);
\{to enable interrupt identification register on certain conditions
output_byte=1, to generate an interrupt flag when a valid
serial data is received)
begin
Port [RS232_address+1]: =Output_byte;
end;
resent a 12 -bit a-to-d conversion. The upper four bits are sent first, then the lower eight bits.

The procedure causes the PIC to output 2000 bytes - which is in effect 1000 data words. While the PIC is doing so, it does not generate any handshake signals. The host computer must be able to detect each valid received byte and to read it. This is easily achieved on modern computers.

The program list of the PIC control software is lengthy and it is not possible to include it here, but it is available from the authors, as described in the Technical Support panel.

PC link software

This section describes how a personal computer controls the data logger and presents some hands-on programming examples. Turbo Pascal 6 programming language is used.
The following Pascal procedure shows how to send initialisation data to the data logger via its RS232 port. A Pascal command
"Port [RS232_address] :=DATA"
is used to output the variable DATA from the RS232 port. The RS232 port address (RS232_address) should be supplied to this command.
There are various ways of finding the RS232 address. You will notice that initialisation starts by sending a AA_{16} byte to the stand-alone data logger. A short delay is need between each data transmission, List 3.
The following procedure downloads data from the data logger. The download procedure starts with a Pascal command ,

$$
\text { "Port[RS232_address]: }=55 \mathrm{~h} \text { " }
$$

Next the pc reads data from the data logger, List 4.

When the computer reads serial data from the RS232 port, it must be able to detect when a valid serial data is transmitted from the data logger to the computer. This is achieved by enabling the selected COM port to generate a valid-datareceived identification.
After a valid data transmission is completed, bit 0 of the interrupt-identification register of the selected COM port goes low. The register has an address of: RS232_address +2 . The way to do the checking is shown in 'Function data:byte' in List 4.
To enable the COM port to generate a valid-data-received identification, the procedure in List 5 is used before calling the above procedure. The variable output_byte should be 1 .
After the program reads all the data from the data logger. It saves the data into a dos text file. The data can be analysed by spreadsheet packages such as the Microsoft excel.
The complete program list of the pc link software is lengthy. It is available from the authors if required

Technical support

Designers' kits containing all the necessary components to construct a complete standalone data logger are available from the
authors. This includes a pre-programmed PIC. Source code for the PIC and the computer linker program are also available. Please make your enquiry to Dr Pei An, 11

Sandpiper Driver, Stockport, Manchester SK3 8UL, UK. Tel/Fax/Answer:+44-(0)161-477-9583. Alternatively, e-mail to pan@fs1.eng.man.ac.uk.

Have you got the capacity
to resist this
inducement?

ELECTRONICS WORLD
 incorporating wintiss wotis

Subscribe to Electronics World for 3 years but pay for just 2!

Please enter my subscription for:

(tick one of the following)

	UK	Europe	Rest of World
I year	$\square £ 34$	$\square £ 49$	$\square £ 59$
2 years $\square £ 54$	$\square £ 78$	$\square £ 94$	SAVE 20\%
3 years	$\square £ 68$	$\square £ 98$	$\square £ 119$
I year FREE!			

In every monthly issue

Detailed circuit diagrams
New product reviews

- Informative design-oriented explanations
- CAE software
\square and more
.....!

Full money back guarantee

If you're not completely satisfied with Electronics World within the first 60 days we'll refund your money in full - no questions asked.

Please allow 28 days for delivery of your first issue.
\square Please tick here if you do not wish to receive direct marketing promotions from other relevant companies.

Three ways to pay

1 I enclose a cheque for ε \qquad made payable to Electronics World.Please charge my Visa/Mastercard/American Express/Diners Club (please delete as appropriate)
Card Number \square
Expiry date
Signed Date
3
Please invoice me/my company. Purchase Order No. \qquad
Name
Job Title Company
Address

Tel. No.
Company VAT registration number
Return your completed form to:
Electronics World Subscriptions, FREEPOST RCC 2619, PO Box 302, HAYWARDS HEATH, UK, RHI6 3BR

> Marconi 2955 Radio Communications Test Set £2250
> Marconi 2955A $£ 2500$
> Marconi 2958 (TACS) $£ 2750$
> Marconi 2960 (TACS + Band III) $£ 2750$
> Marconi 2960A (TACS) £2950

HEWLETT PACKARD 8920A -
R/F Communications
Test Set
(Fitted with Various Options) $£ 4995$

SCHLUMBERGER - STABILOCK 403I -
Radio Communication
Test Set
(0.4 to 10.00 MHz) $£ 4995$

WANDEL \& GOLTERMANN PFJ-8 Error \& Jitter

Test Set (Al/ Options Fitted) £12500

HEWLETT PACKARD 3585A Spectrum Analyser (20Hz - 40MHz) $\mathbf{£ 5 0 0 0}$ HEWLETT PACKARD 3582A Spectrum Analyser (Dual Chann 25.5KHz) $£ 2000$

HEWLETT PACKARD 436A -

Power Meter + Lead + Sensor
(Various Available) from $£ 995$ 435A + 435B Power Meters Also Available

ROHDE \& SCHWARZ CM5 54 Radio Communication Service Monitor (0.4 to 1000 MHz) £6250

HEWLETT PACKARD 8753A Network Analyser (300KHz to 3 GHz) with 85046A 'S' paramer....Test Set 69950

ADVANTEST 4133B - Spectrum Analyser (IOKHz - 20GHz)..... $£ 7250$ ADVANTEST 4131B - Spectrum Analyser ($10 \mathrm{KHz}-3.5 \mathrm{GHz}$) $£ 4750$

HEWLETT PACKARD 4278A IKHz/IMHz Capalitance Meter $£ 3500$ HEWLETT PACKARD 4278A IMHz C-V Meter $£ 4500$

\qquad
HEWLETT PACKARD 3325A Synthesiser/Function Generator.....£|500
HEWLETT PACKARD 4275A = LCR Meter
Multi-Frequency (IOKHz-IOMHz)....... 63000
HEWLETT PACKARD $3562^{\circ}{ }^{\prime}{ }^{\prime}-$
Dual Channel Dynamic Signal Analyser
($64 \mathrm{MHz}-100 \mathrm{KHz}$)............................. 6250

HEWLETT PACKARD 8350B -

Carriage \& VAT to be added to all goods.
Please telephone for further details on:
0|203650702 Fax: 0|203650773 Mobile: 0860400683
Telnet, 8 Cavans Way, Binley Industrial Estate, Coventry CV3 2SF

The Electronics Industry: winning strategies for the new millennium

MARCH 17th 1998, NEC, BIRMINGHAM

Falling prices, rising costs, shorter product life cycles, open technology standards, fierce global competition, increasingly sophisticated customers

Despite these challenges, restructuring and recent merger activity, the electronics industry remains one of the world's largest and fastest growing industries.

At this conference, aimed at senior executives, delegates will gain valuable industry insight into existing and future trends and hear from leading experts in the electronics industry.

Key issues include -

■ why volume and speed will be key to the electronics industry

- future electronic manufacturing products and services: emerging business models
- manufacturers and suppliers - winning partnerships for the 21 st century
- operating in a global market place - strategies for success in new overseas markets
- electronics in a digital age - how is the industry growing and where will the opportunities be?

NEPCON
Electronics
17.19 MARCH 1998 NEC BIRMINGHAM, UK

Speakers include:

John Butcher, Chairman, Institute of Directors
Professor Jagdish Sheth, Emory University
Keith Dunne, BancAmerica Robertson Stephens
William David Richardson, Texas Instruments Europe

Bob Leach, Cadence Design Systems
Simon Tarsh, PA Consulting
Enrique Farne, Flextronics
Peter Smitham, Schroder Ventures

PLEASE SENO ME A FULL BROCHURE ON THE ELECTRONICS CONFERENCE, BIRMINGHAM
NAME
JOB TITLE
COMPANY
ADDRESS
COUNTRY
FAX

DELORES BRONI
THE ECONOMIST CONFERENCES
15 REGENT STREET
LONDON SWIY 4LR
UNITED KINGDOM
TEL: (44.171) 8301076 (direct)
FAX: (44.171) 9310228 or
(44.171) 4093296
email: deloresbroni@eiu.com
Visit The Economist Conferences online at http://www.economistconferences.com

> The Economist Conferences

Open line break finder

ADC-42 WINNER

Time-domain reflectometry or capacitance measurement are, in most circumstances, successful methods of finding breaks in cable pairs. But, if the lines are loaded at intervals with inductors to improve frequency response, those methods are often useless at the frequencies used.
This problem is overcome in this arrangement by the use of a very low-frequency capacitance measurement, in practice a long $C R$ with a capacitance multiplier for magnification. A $15 \mathrm{~s} C R$ eliminates the line inductances and the multiplier confers better accuracy on an expanded scale.

Figure 1 shows the multiplier using a Miller circuit, where the effective value of the capacitor is increased by the gain of the transistor. There is, however, leakage to cope with and the Fig. 2 circuit is a bridge arrangement to balance out dc leakages.

Figure 3 is the practical circuit. Discharge the line capacitance and adjust $V R_{1}$ until voltmeter D is reading just below the knee of the curve in Fig. 2a), point Q, logging the reading which is the balance point to be made before any further readings. You may like to practice this procedure using a $0.1 \mu \mathrm{~F}$ capacitor.
With S_{2} set to 'balance', set the volur
the voltmeter to point Q . Switching to 'measure', temporarily closing S_{1} zeros the meter and discharges the cable; releasing the switch, the fixed offset of the bridge causes the meter reading to rise slowly as long as the cable is charging. When the meter stops moving, log the reading.
Ranges are 3. 10 and 30 km , corresponding to 1.5 .5 and 15 s to reach full scale with a 30 mV offset and a constant 1 mA current. Accuracy is better than 5%, which is sufficient to place the fault near enough for a tdr method to be used. if necessary.
As regards components, K_{1} is a normally-open dual reed relay; $V R_{3}$ adjusts the op-amp gain to make full-scale reading match analogue voltmeter scale on calibration: $V R_{4,5,6}$ are for scale adjustment; and the $2 N 3906$ is in a constant-current circuit to measure charging time using a low-leakage $18 \mu \mathrm{~F}$ capacitor.

Fig. 1. Measuring the rise time of a long CR avoids the problem of inductance found in high-frequency methods of detecting line breaks. The Miller circuit magnifies the capacitance.

Fig. 2. Bridge circuit balances out leakages in line capacitance. At (a), the meter characteristic; point Q is the meter reading point.
 the readings, so the low-pass filter shown at the bottom of Fig. 3a) was used to avoid the problem. The filter capacitor is equal to one scale unit, with the result that one unit must be subtracted from readings.

J H Knox

Northwest Territories
Canada

Fig. 3. Practical circuit and filter to reduce induced noise.

Temperature
 dependent positive feedback reduces
 non-linearity and augments gain in resistive
 temperature measurement.

Positive feedback linearises temperature measurement

Temperature-dependent resistor $P_{t}-100$ is in common use for temperature measurement. presenting 100Ω at $0^{\circ} \mathrm{C}$ and 138.5Ω at $100^{\circ} \mathrm{C}$. The plot shows its characteristic. in which is implicit an error of $0.7^{\circ} \mathrm{C}$ at $50^{\circ} \mathrm{C}$. This circuit reduces the error to about $0.05^{\circ} \mathrm{C}$.
Excitation current for R_{t} is determined by R_{1} and $V_{\text {ref }}$ and is, in this case, 0.83 mA . low enough to prevent the sensor self-heating. Negative feedback to the main amplifier. op-amp $I C_{16}$, comes via R_{f}. while $R_{2.3,4}$ form the positive feedback path.
When the sensor is cool, the positive feedback is less than the negative feedback, so that the output is low and stays low until the sensor warms up and the two feedback voltages become equal. Voltage divider $R_{3,4}$ sets the amount of positive feedback. R_{4} being set initially to $15 \mathrm{k} \Omega$.
To adjust the circuit. calibrate at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, at

which points the output of the prototype was -0.3334768 and -1.5008071 . Calculate the output required at $50^{\circ} \mathrm{C}$ $\left(-0.9166916\right.$ in the prototype) and adjust R_{4} to obtain that voltage. These adjustments are a little interactive.
The plot shows the improvement in linearity from around 0.007% to a barely discernible 0.0005%, and gain is much increased.
Fung Tak Sang
Singapore
(A85)

(A85b)

Ladder step
attenuator is economical,
accurate and remains accurate at higher
frequencies. There is a fixed minimum of 20 dB , with 1 dB steps above that.

Economical 1dB/step attenuator

Step attenuators, commonly used in gain or loss measurement. come in several forms. each with its own pros and cons: bridged-tee types are economical. but have a tendency to introduce errors at higher frequencies; those using tee or pi pads are complicated to switch: ladder attenuators. such as the one shown here. are simple and economical although they do impose a fixed minimum attenuation.
This is a 75Ω design with 1 dB per step; this allows the use of fewer resistors than would a $10 \mathrm{~dB} /$ step type.
In the 0 dB position. attenuation is 20 dB . provided by the input pad. the 1 dB steps being incremental above the 20 dB to a maximum of 30 dB . Because of the input pad. input resistance of the attenuator remains within 0.5Ω of the 75Ω characteristic impedance in all positions and the
output impedance stays within 1Ω of 75Ω.
With the resistor values shown, attenuation is within 0.03 dB of nominal: most are standard values and others can be made up from parallel resistors. Metal-film types of 1% tolerance are suitable and E96 values would give negligible error.
To obtain 50Ω or 600Ω attenuators, scale the values shown to two-thirds or eight times. If an increased variation in input resistance with switch position can be tolerated. the loss in the input pad can be reduced to 10 dB .

Ben Sullivan

Waterlooville

Hampshire
(A83)

NOW AVAILABLE

RANGER 2
 for Windows 95

The Complete, Integrated
Schematic \& PCB Layout Package
Windows Ranger 2
For Windows 95 \& NT

- New Hierarchical Circuit
- Split Devices • Gate \& Pin Swap
- New Edit Devices in Circuit
- Copper Fill - Power Planes
- Autorouter • Back Annotation

Windows Ranger 2 with Specctra SP2 Ranger \& Specctra Autorouter provide the most cost effective PCB Design system available. A powerful, intuitive system at an outstanding price!

Windows Ranger 2 Upgrade

Upgrade your existing PCB Package to Windows Ranger 2.

Ranger 2 Outputs: Full Windows Outputs Plus - HP-GL

Gerber
NC Drill
AutoCad DXF

Demo disc available $£ 5.00$ (Prices exc VAT/P\&P)

C
 CHELMER VALVE COMPANY

If you need Valves/Tubes or RF Power Transistors e.t.c. ...then try us!
We have vast stocks, widespread sources and 33 years specialist experience in meeting our customers requirements

Tuned to the needs of the Professional User
Chelmer Valve Company, 130 New London Road, Cheimsford, Essex CM2 ORG, England
\%44-01245-355296/265865 Fax: 44-01245-490064

MARCONI 2370

 Spectrum Analyser (as new)
$\mathbf{3 0 H z}-110 \mathrm{MHz}$ Frequency range
1Hz Resolution/phase lock tuning
Digital storage with dual display Built-in tracking generator 9 digit frequency counter $£ 750$ t cariniges cat
Includes 30 day unconditional warranty M\&B Radio, 86 Bishopgate Street, Leeds LS1 4BB Tel: (+44) 01132435649 Fax: (+44) 01132426881

(A87)

Setting up Class $A B$ quiescent current without dismantling the amplifier.
Reservoir ripple current is a measure of the current drawn and may be measured instead.

Class AB set-up

Setting up the quiescent current in a Class AB output stage particularly when no monitoring point is provided, usually requires unsoldering joints to get the meter in series. If the power supply to the amplifier is a conventional mains type with rectifier and reservoir capacitor, this method avoids all that. Ac ripple voltage on the capacitor is proportional to the current drawn and may therefore be used to indicate the quiescent current setting.
To do this, reduce the current in the output stage to zero by setting the potentiometer or shorting the bias network. Connect a resistor across the reservoir of a value to draw a current equal to the required quiescent current, measuring the ripple voltage with an ac millivoltmeter. Now disconnect the shorting resistor and the short on the bias network if you used one; set the potentiometer to give the same reading on the millivoltmeter as before.

S J Kearley

Address not known
(A87)

Infrared remote remote control

When infrared remote control for an audio system is not remote enough, for example when you wish to adjust volume from extension speakers in another room, this circuit detects the ir signal from the controller and transmits it via a twisted pair to another transmitter led near the amplifier.
When quiescent, output Q_{7} of $I C_{1}$ is high and $T r_{2}$ is off When the photosensor D_{1} detects the ir signal from the remote controller, $T r_{1}$ resets $/ C_{1}$ to turn $T r_{2}$ on. Current through the sensor develops a signal voltage across R_{2}, which is amplified by the op-amp and $T r_{4}$, modulated current being driven into the $7 / 0.2$ twisted pair into Led d_{1} near the amplifier.
After about Is after the controller pulses have finished,
the oscillator formed by the first op-amp has applied enough pulses to the counter ic to drive its Q_{7} pin high, which switches off $T r_{2}$ and returns the circuit to its quiescent state. Led $_{2}$ confirms the operation.
Diode D_{1} and $L e d_{1}$ are made by Sharp and are obtainable from RS Components. They are used in this circuit because the sensor diode has a filter to prevent ambient light causing current to flow and drain the battery.
Using the Sharp devices allows only $3 \mu \mathrm{~A}$ to flow in daylight. If these devices are not used, place the sensor in a position to reduce the ambient light falling on it.
S / Kearley
(A86)

 Kits contain everything you require to setyour micrpcontroller projects up and running fast!

C51, C16x, C251 C compilers with numerous microcontroller language extensions for the fastest, tightest code.
D HISIM CPU and peripheral simulator HiTOP remote debugger RTX TINY real-time executive Comprehensive programming examples

With our low cost emulator rental, training courses and hands-on user guides also available, you can be assured of meeting project release dates and budget targets everytime.

So let us give you a helping hand, ask for our comprehensive Keil information pack, including CD-ROMs !

[^1]| | |
| :---: | :---: |
| | |
| | |
| | test equid |

Dual Channel High Speed

$\boldsymbol{\nabla}$ 100, 50 or $20 \mathrm{MS} / \mathrm{s}$ sampling.
$\boldsymbol{\nabla} 50,25$ or 10 MHz spectrum analysis.

- Advanced trigger modes - capture intermittent one-off events.
- Less than half the cost of a comparable benchtop scope

$$
\begin{array}{ll}
\text { ADE 200-100 } & £ 549.00 \\
\text { ADe 200-50 } & £ 499.00 \\
\text { ADe 200-20 } & £ 359.00
\end{array}
$$

Supplied with cables and power supply.

$A D C-100$

Dual Channel 12 bit resolution

The ADC-100 offers both a high sampling rate $100 \mathrm{kS} / \mathrm{s}$ and a high resolution. Flexible input ranges ($\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) make the unit ideal for audio, automotive and education use.
ADC-100
with PicoScope software $£ 199.00$
with PicoScope \& PicoLog software $£ 219.00$

$400-40 / 42$

Single Channel - low cost
$\nabla 20 \mathrm{kS} / \mathrm{s}$ sampling.
$\nabla 10 \mathrm{kHz}$ spectrum analysis.
$\nabla \pm 5 \mathrm{~V}$ input range.
ADC-40 8 bit resolution $£ 59.00$ ADe-42 12 bit resolution $£ 85.00$

11

Call for free demo dlsk or download our web site: http://www.plcotech.com All prices exclusive of VAT.
Broadway House, 149-151 St Neots Rd, Hardwlek, Cambridge. CB3 7QJ UK Tel: (0)1954 211716 Fax: (0)1954 211880 E-mail: post @picotech.co.uk

Current-controlled current source

To maintain a high output impedance, the current source uses local positive feedback and a single resistor controls the gain $I_{\text {out }} / I_{\mathrm{a}}-I_{\mathrm{b}}$. If $R_{1}=R_{4}=R$ and $R_{2}=R_{3}$, then,

Pulse polarity indicator

ToTo show whether a pulse is positive or negative going, a common-cathode, seven-segment display indicates H or L .
For positive-going pulses, segments $\mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{f}$, and g are driven through R_{1-5} to illuminate the segments to give H . A negative-going pulse is inverted by the CD7400 to drive segments d , e and f for an L , the bottom two diodes isolating the e and f segments.

Raj K Gorkhali

Kathmandu

Nepal

Electrifying farm animals

ignition coil to produce the h -v pulses. The 230 V ac input is rectified by diode D_{1} and charges capacitor C_{1} through R_{1}. Counter/timer $I C_{1}$, a 555 , fires $S C R_{1}$ through R_{4} and C_{2}, discharging C_{1} through the transformer primary, D_{2} clamping the negative-going pulses to ground. Varying the value of R_{1} alters the energy of the spark.
Spark gaps of 3 mm and 4 mm are placed in series to the barrier wire and ground respectively, so that normally the spark flashes across to ground but goes across to the barrier wire when it is touched.
Circuit ground must go to an earth terminal and, since this could interfere with other installations, an isolation transformer should be used to provide the 230 V ac input. C W W Palihawadana
Dehiwala
Sri Lanka
(A88)

Warning

This circuit must be fed by a 240 V safety isolating transformer. Even then it remains potentially lethal so apply and insulate the circuit with utmost care. If you intend using this generator to feed an electric fence, also observe any regulations and guidelines applicable in your country regarding animal welfare and safety in relation to electric fences.

COLOMOR (ELECTRONICS) LIMITED

170 Goldhawk Road, London W12 8HJ
Tel: 01817430899 Fax: 01817493934 Email: sales@colomor.demon.co.uk
Visit our new web site at: http://www.colomor.demon.co.uk

OSCILLOSCOPES

TEKTRONIX 7633 with 7A18 7B53A NEW ... 250.00
GOULD OS 250 Dual Trace 20 MHz ...00
GOUD OS 1100 Dual Trace 30 MHz \& 110.00
PHILIPS PM3217 Dual Trace 50 MHz .
Hp 180D with 1801A 1820 C £300.00 ع30.00
IWATSU SS-5711 Dual Trace 100 MHz E120.00

Hp 5248L
$£ 100.00$
Hp 5328A UNIVERSAL COUNTER 7633 with 7A18 7B53A
Hp 8616A SIGNAL GENERATOR.
Hp 5354A FREQUENCY COUNTER
Hp 3310A FUNCTION GENERATOR
£150.00

Hp 8375A DIGITAL MULTI-METER
Hp $141 T$ SPEC ANALYZER.
 £250.00 $\Sigma 10000$

PRISM 7301 WIDE BAND AMP
MARCONI TF 2171 SYNCRONIZER. £150.00
_.P.O.A.

MARCONI TF 2173 SYNCRONIZER .
$\quad £ 175.00$
MARCON TF 2015 signo Generator $10 \mathrm{MHz}-520 \mathrm{MHz} \quad £ 175.00$ MARCON TF 2016 Signol Generator $10 \mathrm{KHz}-120 \mathrm{MHz}$ ع190.00
MARCON TF 2300 Modulation \& Deviation Meter
MARCONI TF 2300R Modulation \& Deviation Meter
MARCONI TF $1152 \mathrm{~A} / 1$ WATMETER 50 Ohms $10 \& 25 \mathrm{~W}$
$£ 50.00$
\& ……............ $£ 80.00$
MARCONI TFT Microwave RF Power Meter 3MW or 3 W 18 \& 12 GHz 125.00
RACAL DANA 9904 Universal Timer Counter 50 MHz .
RACAL DANA 9913 Frequency Counter 200 MHz .
RACAL DANA 9914 Frequency Counter 200 MHz .
. $£ 45.00$

RACAL DANA 9914 Frequency Counter 200 MHz $£ 50.00$

RACAL DANA 9916 Frequency Counter 520 MHz VARTA Nicad Charger Type CC 306C 14 hr timer chorge current 0-306c £ 40.00

Hp 3.5 mm 26.5 GHz ATENUATOR 40.00

Hp 33321 B Switchable Attenuator 0.70 Db in 10 dB steps $£ 35.00$ £100.00
Hp 8761B SPDT RF SWITCH DC. 18 GHz 60.00

Hp 33311 B COAXIAL SWITCH DC -18 GHz £60.00 NARDA 768 -20 DC-11 GHz 20 W 60.00

OMNI SPECTRA SMA LEAD WITH CHARTS TO 18 GHz ANDREWS FSJ 450 HELIAX
ANDREWS LDF 250 .. $£ 200$ per mir

DISCOUNT FOR REELS

Carriage : $£ 10.00+$ VAT @ 17.5% to be added to all UK orders Overseas customers please contact sales for carriage costs.

486 DX 2-66 Motherboards, from
Rose PC Switching Boxes, from new
Marconi Digital Analyser 2829
Marconi Digital Analyser 2829
Marconi Multiplex Tester 2830
Krohn-Hite 3343 Filter
Hewlett Packard 8470A 8412A
£130.00

Hewlett Packard 5345A
Wallis Insulation Tester T30
Hughes Scan Conversion Memory 639
Tektronix DAS9100
£85.00

Lambda LK344A FMV 0-60VDC 4AIX
ATI Mach 64 PCI 2mb SVGA Card
Hauppauge Windows TV Card ISA 16 Bit
$9^{\prime \prime}$ Colour VGA Monitors from
Adaptec 16 Bit ISA SCSI Cards from
17" Dell Ultrascan SVGA Monitors from
SOUND TECHNOLOGY 1510 A TAPE RECORDER
\& AUDIO TEST SET WITH MANUAL
OVERSEAS ENQ WELCOME. TELEPHONE ORDERS ACCEPTED
PAYMENT C/C, P.O., CHEQUE etc. C/P. DETAILS PLEASE RING. ALL PRICES INC. 17.5% VAT UNLESS STATED.
WE STOCK A LARGE SELECTION OF EQUIPMENT
IF YOUR REQUIREMENT IS NOT LISTED PLEASE RING. $£ 60.00$

Radio Technology Direct

Top quality, top technology, top sevice. That's our commitment to you. We build both standard and custom modules and ship direct. We've been doing so for 20 years. No-one is better. Every product is made in England, with pride.
Here are some of our products. To order, just ring us direct (credit cards accepted).

If you want something you don't see here, ring us. We can almost certainly help.

RSX450 Intelligent

- 500 mW output
- 9600 baud on air data rate
- Fully synthesised
- Fully ETSI approved

TT/R Low Cost Modules

- 100 mW output
- Separate TX and RX modules
- UHF operation
- Crystal controlled
- Fully ETSI approved

TR ${ }^{8} 80$

Dc supplies for fluorescent lamps

Q oth these methods of driving fluorescent lamps use the SC3525 switched-mode power supply control ic, the first Dvarying its frequency instead of the normal duty cycle variation.

$12 \mathrm{~V}, 18 \mathrm{~W}$ inverter. This will accept $11-15 \mathrm{~V}$ dc input and drives the tube by means of a half bridge, itself fed by the controller at a fixed duty cycle. Starting is by the inductor L and the two capacitors across the tube, which form a resonant circuit to produce a high voltage, some of the resulting current going through the tube cathode for preheating. As the tube strikes, its resistance shunts the capacitors and damps the resonant circuit, the
reactance of L now limiting lamp current and providing some regulation against changes in input voltage. Further regulation is brought about by shifting the controller's oscillator frequency in response to input voltage, which is applied via a $100 \mathrm{k} \Omega$ resistor and 8.2 V zener. Reflected lamp impedance is only a few ohms, so careful layout and capacitors with low equivalent series resistance are needed.

De-to-dc converter for compact lamps. Supplying 300 V de for a compact lamp, this converter accepts 12 V input and, since the lamps exhibit a degree of supplyvoltage regulation, is a simple tracking type. Loss caused by reverse recovery in the output rectifier is avoided here by applying a half-sine reverse voltage. Choose the transformer turns ratio to suit the supply voltage and the capacitor C to resonate with the
transformer at a frequency to make the half cycle just occupy the fet's off period. If the half cycle is too short, there will be undue stress on the transistor and diode; if too long, it is chopped by the fet's turning on.

Paul Bennett

Bristol
(A47)

ONCE IN A LIFETIME OFFER ON BRAND NEW OSCILLOSCOPES

DTV 1003 channel 8 trance 100 MHz Oscilloscope DC-100MHz (-3db) Bandwidth. Twin timebase with delay. Size: $146 \mathrm{~mm} \times 360 \mathrm{~mm} \times 384$, Weight 10 kg . Including Probes, Leads and Manual. ONLY £399 + £9.95 UK Del + VAT

DTA 20/DTA $40 . . .20 / 40 \mathrm{MHz}$ Twin channel 4 trace Oscilloscope
Size: $140 \mathrm{~mm} \times 335 \times 375 \mathrm{~mm}$, Weight: 7.3 kg . Including Probes, Leads and Manual. DTA 20 ONLY £225 + £9.95 UK Del + VAT DTA 40 ONLY £299 + £9.95 UK Del + VAT

DTV 40MHz Dual Channel Digital Storage Scope
On screen readout with cursors. DC-40MHz (-3db) Bandwidth. 20MS/sec max Digital sample rate giving an effective 4 MHz B/W. Including Probes, Leads and Manual ONLY £399 + £9.95 UK Del + VAT

DSM 3850A Hand Held Digital Storage Oscilloscope Handheld LCD Display 2 channel $50 \mathrm{MS} / \mathrm{sec}$. Auto range 4 digit DMM/Capacitance/Frequency Counter. Battery operation or external 7.5-9VDC ie. AC Adaptor (Not supplied). RS232 comes in black carrying pouch complete with 2 scope probes: DMM Leads, Manual
ONLY £399 + £9.95 UK Del + VAT

SPECIAL OFFER ON GGTV GAMERAS

SPECIAL OFFER

A-721-S Micro Camera $32 \times 32 \times 32 \mathrm{~mm} £ 85$ A-721-P Pin Hole Micro Camera $32 \times 32 \times 32 \mathrm{~mm} £ 85$

Any 3 of the A-721-S or P for only $£ 150$!

A-1011 $48 \times 48 \times 58 \mathrm{~mm}$ A-1211 $68 \times 53 \times 115 \mathrm{~mm}$ 921-D Dome $87 \times 55.5 \mathrm{~mm}$ PC Cam Inc. PSU \& Leads VTG1 Video Time Generator Mounting Brackets

Was £99 Now £83
Was $£ 99$ Now $£ 83$ Was £125 Now £95
Was $£ 99$ Now $£ 83$ Was $£ 125$ Now $£ 106$ Was £5.95 Now £5

SPECIAL OFFER

A-921-S Camera with AUDIO $30 \times 30 \mathrm{~mm} £ 95$ A-921-P Pin Hole Camera with AUDIO $30 \times 30 \mathrm{~mm} £ 95$
Any 3 of the A-921-S or P for only $£ 175$!

QUADS REDUCED!

Multi-Vision Processors
Quad 1 Was £249 Now £223
Quad 2 Was £575 Now £535
Quad 3 Was $£ 695$ Now $£ 652$

All Camera Equipment is Guaranteed for 12 Months.
A Full Mail Order Service is Available. To Receive Our Free Catalogue Please Send a SAE (48p)

These are just a few of our bargains. We have an extensive range of electronic test equipment at our Nottingham \& Ripley branches. Please phone with your requirements.

The Cattle Market,

NOTTINGHAM NG2 3GY
Tel: (0115) 9864902
Tel: (0115) 9864041
Fax: (0115) 9864667
Peasehill Rd, Ripley Derbyshire DE5 JG
Tel: (01773) 570139
Tel: (01773) 570137
Fax: (01773) 570537

All Electronic Test Equipment is Guaranteed for 30 days
Nottingham Depot: Monday - Friday: 9.00am to 6.00 pm
Saturday 8.00 am to 4.00 pm
Ripley Depot: Monday - Friday: 8.30am to 5.30 pm Saturday 9.00 am to 5.00 pm Sunday 10.00am to 4.00 pm
NO APPOINTMENTS NEEDED, CALLERS ALWAYS WELCOME.
email: sales@anchor-supplies.Itd.uk Web: http://www.anchor.supplies.Itd.uk Please note: That the goods in this ad are only on offer at our Nottingham Depot Please see our Ripley Depot Advert in this magazine for their Special Offers
ANCHOR SUPPLIES LTTD

Battery lcd voltage supply

Providing a dot-matrix led supply in battery-powered equipment can be wasteful of battery life; it should be adjustable for contrast, it must be stable and it must be around 4.5 V below the positive supply. This circuit meets these conditions, line regulation being shown by the graph for a load of $22 \mathrm{k} \Omega$,
The clock, whose frequency as shown is 200 kHz but is not critical, may already be present in the rest of the circuit, but if not may be generated by an HCI4 or similar gate ic. Temperature coefficient is 0.1 V for $7^{\circ} \mathrm{C}$. Removing the clock signal powers the circuit down.
David Stephen
Aylesbeare, Devon

Running dot-matrix lcds from a battery supply is an awkward business and heavy on battery current. This little circuit avoids the problem.

(A71)

Voltage tuning from a variable capacitor

If you need to incorporate an fm band into an old am I receiver, there is the problem of tuning if you use a voltage-tuned fm tuner and the old tuning capacitor is to be retained. This is an easy way of doing it.
An astable flip-flop using $/ C_{1 \text { a }}$ oscillates at $25-150 \mathrm{kHz}$, tuned by the old capacitor and C_{2} in parallel. The resultant square wave is differentiated by C_{3} and R_{2} to give
variable-frequency 4μ s pulses at the output of $I C_{\text {lc }}$. These go to the op-amp integrator to give a voltage level dependent on the setting of the variable capacitor.
The low end of the range is set by R_{5} and the span by $R 9$. Vlastimil Novotny
Harrachov
Czech Republic

555 switched-mode power supply

In yet another form of existence, this 555 becomes a switched-mode psu, since it has all the necessary components on board.
Having said that, it has been a problem that the dis-

charge transistor seemed to be fully occupied with timing. But driving the timing directly from the output pin frees the transistor to drive the inductor in a standard smps configuration. This makes for an efficient design, since the switching m :s ratio varies and also stops the oscillator completely when there is a low load current; there is therefore a low supply current in that condition.
As shown, the circuit comfortably delivers 20 V at 20 mA . With a stabilised input supply, there is no need for the 5.6 V zener and, if it is omitted, the output will be the 15 V from the other zener plus twice the supply voltage divided by three. The zener can be varied to suit the output requirement.

Jack Paterson

West Lothian College
Livingston
Scotland

Control Essentials from Milford Instruments

BASIC Stamps - low cost alternative to PLCs
BASIC Stamps are small, law cost re-programmable contrallers running easy-loprogramme BASIC. They can source/sink up to 20 mA and support buttans/keypads/LCDs/LEDs/Comms/Serial Driver Chips etc. Once programmed from the PC, Stamps are fully autonomous and will find many uses in ATE equipment, aneaffs and as an alternative to expensive PLCs.
BSI-IC
£25

BS2-IC BSI-IC

$31 / \mathrm{O}$ lines
Up to 80 programme lines 2,000 lines $/ \mathrm{sec}$ Comms to 2,400 baud B52-1C
16 1/O lines
Up to 500 programme lines
SPI, DTMF etc
Develapment kirs from $£ 79$ which include application nates, saftware, cable and Stamp

Data Logging
BS2-KC based Data collectian board with real-time clock/calendar, up ta 32 kBytes EEprom, dual 12 -bil $A D C$ and user development area. Kit camplete with extensive manual and ready logo soffware routines that may be user customised. $£ 65$

Serial LCD Modules

- banish led hassle

Three quality, backlit LCD modules each fitted with an easy-to-use serial driver board. Simple 3 -wire interface ta PC, micro or Stamp $1+5$ vdc, Gnd and signall. Enhanced driver board supports full.screen height numerals, slandard characiers and soffware switchable backlight. RS232 interface of 2,400 ar 9,600 baud.
Standard driver boords (without lcd) and bulk driver chips for OEM use also available.

£125

DC Servo Control
DC Malor control chipsel for use with incremental encoders.
RS232/RS485 interface capability, Pasitianal control, Velocity contral and Trapezoidal profiling,
Programmable PI.D filter
32-bit position, velocity and acceleration Evaluation board available
£29
To order or request further information, please call Milford Instruments at 01977683665 , fax 681465

ne Autorouter wensrect

MultiRouter is "the best Autorouter that I have seen costing less than £10,000!" R.H. - (Willingham, UK)

- Award Winning MultiRouter uses the latest 32 bit, Shape based, Rip-up and Re-try Technology.
- From single sided to 8 layers!
- 100% Completion where other autorouters fail!
- 100% routed 140 Components on a $210 \mathrm{~mm} \times 150 \mathrm{~mm}$ board in less than 10 minutes! (75 MHz Pentium)
- From £295! - Could Easily Pay For Itself On The First Project!

Prices exclude VAT\& P\&P

Number One Systems
 Write, fax, phone or e-mail for full information.

UK/EEC: Ref: WW, Harding Way, St.Ives, Cambridgeshire, ENGLAND, PE17 4WR. e-mail: sales enumberone.com Telephone UK: 01480461778 (7 lines) Fax: 01480494042
USA: Ref: WW, 126 Smith Creek Drive, Los Gatos, CA 95030 Telephone/Fax: (408) 395-0249

Wideband isolator

Abstract

Circulators and isolators are a type of directional coupler with intriguing properties. They are common at microwaves, but they become bulky and expensive at uhf. They would be useful at much lower frequiecies, but they have simply not been available. Ian Hickman's new design covers 0 to 500 MHz .

circulators and isolators are examples of directional couplers, and are common enough components at microwave frequencies. They are three-port devices, the ports being either coaxial- or waveguide-connectors, according to the frequency and particular design.
The clever part is the way signals are routed from one port to the next, always in the same direction. The operation of a circulator - or isolator - depends on the interaction, within a lump of ferrite, of the rf field due to the signal, and a steady dc field provided by a permanent magnet. This is something to do with the precession of electron orbits - or so I gather from those who know more about microwaves. Circulators can be used for a variety of purposes, one of which is the subject of this article.
Figure 1a) outlines a three-port circulator, the arrow indicating the direction of circulation. This means that a signal applied at port A is all delivered to port B , with little coming out of port C. Ideally, no signal will come from port C if the device's 'directivity' is perfect.
What happens next depends on what is connected to port B. If this port is terminated with an ideal resistive load equal to the device's characteristic impedance - usually 50Ω in the case of a circulator with coaxial connectors - then all of the signal is accepted by the termination and none is returned to port B. This means that the 'return loss' in decibels is infinity.
But if the termination on port B differs from $(50+\mathrm{j} 0) \Omega$,
Fig. 1. a) A three port circulator. b) $A n$ arrangement using a circulator to measure the return loss of a device under test.

then there is a finite return loss. The reflected, i.e. returned signal goes back into port B and circulates around in the direction of the arrow, coming out at port C . Thus the magnitude of the signal appearing at port C , relative to the the magnitude of the input applied to port A is a measure of the degree of mismatch at port B.
Because of this characteristic, a circulator with the aid of a source and detector can be used to measure the return loss - and hence the vswr - of any given device under test, as in Fig. 1b). This assumes that the detector presents a good match to port C . If not, it will reflect some of the signal it receives, back into port C - from where it will resurface round the houses at port A .
Given a total mismatch, i.e. a short or open circuit at port B, then all of the power input at port A will come out at port C - but strictly via the clockwise route - bar the usual small insertion loss to be expected of any practical device.
Because it is a totally symmetrical device, the circulator in Fig. 1b) could be rotated by 120° or 240° and still work exactly the same. It doesn't matter which port the source is connected to, provided the device under test and detector are connected to the following two in clockwise order.
An isolator is a related, if less symmetrical, device. Here, any signal in Fig. 1b) reflected back into port C by the detector is simply absorbed. It is not passed around back to port A. As a result, an isolator would actually be a more appropriate device for the vswr measuring set-up of Fig. 1b), although for some applications circulators are preferable.
Microwave circulators with high directivity are narrow band devices. Bandwidths of up to an octave are possible, but only at the expense of much reduced directivity. Circulators and isolators are such useful devices, that it would be great if economical models with good directivity were available at uhf, vhf and even lower frequencies. And even better if one really broadband model were available covering all these frequencies at once.

The answer to a long felt need

Though not as well known as it deserves, such an arrangement is in fact possible. It filled me with excitement when I
first came across it, in the American controlled-circulation magazine RF Design. ${ }^{1}$
This circuit uses three CLC406 current feedback op-amps - from Comlinear, now part of National Semiconductor and operates up to well over 100 MHz . The upper limit is set by the frequency at which the op-amps begin to flag.

What the article describes is nothing less than an active circuit switchable for use as either a circulator or an isolator, as required. It has three $50 \Omega \mathrm{BNC}$ ports, and operates from, say, 200 MHz , right down to dc, Fig. 2
While at the leading edge of technology when introduced and still a good op-amp today, the CLC406 has nonetheless been overtaken, performance-wise, by newer devices. In particular, the $A D 8009$ from Analog Devices caught my interest, with its unity-gain bandwidth (small signal, non-inverting) of 1 GHz .
Of course, if you demand more gain or apply large signals, the performance is a little less -700 MHz at a small signal gain (0.2 V pk-pk) of +2 , or $440 \mathrm{MHz}, 320 \mathrm{MHz}$ at large sig. nal gains (2 V pk-pk) of $+2,+10$. Still, it seemed a good contender for use in an up-dated version of the circuit described above.
But before going on to describe it, it might be as well to analyse the circuit to show you just how it works.

How this circulator/isolator works

A feature of this circuit is that it works down to dc. As a result, its operation can be described simply with reference to the partial circuit shown in Fig. 3. Here, the voltages may be taken as dc, or as ac in-phase, or antiphase where negative.
Instead of assuming an input voltage and trying to derive the output voltage, or vice versa, a useful trick in circuit analysis is to assume a convenient voltage at some internal node, and work forwards and backwards from there. The results then drop out fairly simply - even by mental arithmetic in some cases.
So assume the voltage at the non-inverting input of $I C_{2}$ is 100 mV . Then the voltage at the output of $I C_{1}$ must be 423.5 mV . Also, due to the negative feedback, $I C_{2}$'s output will do whatever is necessary to ensure that its inverting input is also at 100 mV .
Figure 3 shows what the output of $I C_{2}$ will be, for the cases of a short circuit, or 50Ω, or an open circuit at the port. The short-circuit case is obvious: the resistor at $I C_{2}$'s inverting input and its feedback resistor form an identical chain to that at the non-inverting input. Thus the output of $I C_{2}$ is at +423.6 mV , like $/ C_{1}$, the overall gain is +1 , but note that the op-amp is working at a gain is excess of +3 .
In the open-circuit case, the net voltage drop across the two 100Ω resistors in series is 323.6 mV , so the output of $I C_{2}$

Fig. 3. Partial circuit, explaining circuit operation.
must be at $323.6 / 200 \times 323.6 \mathrm{mV}$ negative with respect to the inverting input. Thanks to the careful choice of resistor values, this works out at -423.6 mV .
With a 50Ω termination at the port, a line or two of algebra on the back of an envelope may be needed. Let the voltage at the port be v. Now equate the current flowing from $I C_{1}$ output to the port, to the sum of the currents flowing from there to ground via 50Ω and to the inverting input of $I C_{2}$ via 100Ω.
Voltage v drops out immediately, defining the current

Fig. 4. Circuit diagram of a wideband isolator, usable from OHz to 500 MHz .

Fig 5a). Bandwidth extension for the AD8009 achieved (for a gain of +2) by adding capacitance from the inverting input to ground.
b) The effect of these three values of capacitance on the pulse response. Horizontal scaling is 1.5ns/div while vertical scaling is $40 \mathrm{mV} / \mathrm{div}$.

flowing through the input and feedback resistors of $I C_{2}$, and hence the voltage at $I C_{2}$'s output.
It turns out - again thanks to the ingenious design of the resistive network between each of the op-amps - that the voltage at the output of $I C_{2}$ is zero and the corresponding voltage at the device under test port is 130.9 mV . Since this is precisely the voltage at a port which produces 423.5 mV at the output of the following op-amp, clearly it is the voltage that must be applied to the source input port A - not shown in Fig. 3 - which drives $I C_{1}$. Hence the gain from port A to B (or B to C , or C to A) is unity, provided that both the two ports 'see' 50Ω.
Also, if the second port sees an infinite vswr load, the gain from the first to the third port is unity. Effectively, all the power returned from the second port circulates round to the third. At least, this is the case with a circulator.
As Fig. 2 shows, in the case of an isolator, any incident power reflected back into port C is simply absorbed, and does not continue around back to port A .

An updated version

Having obtained some Analog devices AD8009 wideband current-feedback op-amps, I was keen to see what sort of performance could be achieved with such an up-to-date device. Clearly, it could simply be substituted for the CLC406 in the circuit of Fig. 2.
But, after careful consideration, it seemed that all the applications I had in mind could be met with an isolator. Now if you are is willing to forego the ability to switch the circuit to operate, when required, as a circulator, then not only are substantial economies in circuit design possible, but also one or two dodges to improve performance at the top end of the frequency range can be incorporated.
So at the end of the day, my circuit finished up as in Fig. 4. You can see immediately that as an isolator only, the circuit needs but two op-amps. Also obsoleted are a switch, and a number of resistors, while port C is simply driven by an L pad.

A word about the power supply

But before describing the operation of the rf portion of Fig. 4, a word about the power supply arrangements is called for.
Circuits under development sometimes fail for no apparent reason. This often put down to 'prototype fatigue', meaning some form of unidentified electrical abuse. I have suffered the ravages of this phenomenon as often as most.
The construction of the isolator, using op-amps in smalloutline SO8 form, chip resistors and 0805 packaged 10 n capacitors, was not a simple task. It involved both dexterity and some eye strain.
I built the circuit using 'fresh air' construction on a scrap of

copper-clad FRG used as a ground plane. The thought of having to dive back into the bird's nest to replace an op-amp or two was horrific, so some protection for the supplies was built in.
The series diodes guard against possible connection of the power supplies in reverse polarity, while the zener diodes prevent excessive voltage being applied. The types quoted will not provide indefinite protection from 15 V supplies with a 1A current limit, but they will guard against an insidious and often unrealised fault.
At switch-on, some older bench power supplies output a brief spike of maximum voltage equal to the internal raw supply voltage. And after a number of years' use, many power supplies develop a noisy track on the output voltage setting potentiometer. Depending on the particular design, this too can result in a brief spike of maximum output voltage whenever the potentiometer is adjusted. For the sake of a few extra components, it is better to be safe than sorry.

Putting it together

The two op-amps were mounted in between the three BNC sockets placed as close together as possible.
In somewhat cavalier fashion, the ICs were mounted above the ground plane, standing on leads 1,5 and 8 , and also lead 3 in the case of $I C_{1}$. These leads had been carefully bent down from the usual horizontal position on a surface mount device, the remaining leads having been bent upwards.
A 10 nF 0805 -packages chip capacitor was then soldered between the ground plane and each supply lead, leaning in towards the device at an angle of about 60° from the vertical. The leaded 100 n capacitors - also four in total, these items of Fig. 4 being duplicated - were then also fitted, to each side of the op-amp to leave space for the chip resistors.
The chip resistors were then fitted, the feedback resistors around $I C_{1}$ and $I C_{2}$ being mounted on top of the devices, directly between the bent-up pins 2 and 6 . As the body length of the 100Ω input resistor to $I C_{1}$ was not sufficient to reach the shortened spill of the BNC centre contact at Port A, the gap was bridged by a few millimetres of 3 mm wide 0.001 in copper tape. The same trick was used elsewhere, where necessary.
If you don't have any copper tape to hand, a little can always be stripped from an odd scrap of copper-clad. The application of heat from a soldering iron bit will enable the copper to be peeled from the board. This is possible with GRP and even easier with SRBP

Testing the prototype

The finished prototype was fired up and tested, using the equipment briefly described later. Performance up to several hundred megahertz was very encouraging, but it was obvi-
ously sensible to try and wring the last ounce of performance from the circuit.
Reproduced from the AD8009 data sheet, Fig. 5a) shows how a useful increase in bandwidth can be achieved by the addition of different small amounts of capacitance to ground from the op-amp's inverting input, at the expense of some peaking at the top end of the frequency range.
Figure 5b) shows the effect of those same values of capacitance on the pulse response. In Fig. 4, the op-amps are used at a gain in excess or +10 dB , so the same degree of bandwidth extension cannot be expected for sensible values of capacitance at the op-amp's inverting input.
After some experimentation, in the case of $I C_{1}$ a value of 1.8 pF was selected. In the case of $I C_{2}$. the value of capacitance was adjusted for best device directivity. This involved terminating port B with a 50Ω termination and tweaking the capacitance to give the greatest attenuation of the residual signal at port C in the 300 to 500 MHz region.
As the required value was around lpF , lower than the minimum capacitance of the smallest trimmers I had in stock, it was realised as two short lengths of 30SWG enamelled copper wire twisted together. The length was trimmed back for optimum directivity as described above, leaving just over 1 cm of twisted wire.
The transmission path from port A to B and that from port B to C both showed a smooth roll off above 500 MHz , with no sign of peaking.

Isolator performance evaluation

After using the equipment described above to optimise the isolator's performance, some photographs of the screen dis-
play were taken for the record. The upper trace of Fig. 7 shows the output of the tracking generator, connected via two 10 dB pads and two coaxial cables connected to the input of the spectrum analyser. These cables are joined by a BNC back-to-back female adapter.
The sweep covers $0-500 \mathrm{MHz}$ and the vertical deflection factor is 10 dB per division. The back-to-back BNC connector was then replaced by the isolator, input to port B, output from port C .
A second exposure on the same shot captured the frequency response of the isolator, Fig. 7, lower trace. It can be seen that the insertion loss of the isolator is negligible up to 300 MHz , and only about 3 dB at 500 MHz . The response from port A to port B is just a little worse, as this path could not use the frequency compensation provided by the 3.9 pF capacitor in the output pad at port C .
Figure 8 shows the reverse isolation from port B (as input) to port A (lower trace; with the input, upper trace, for comparison). This can be seen to be mostly 45 dB or greater, and better than 40 dB right up to 500 MHz .
Given an ideal op-amp with infinite gain even at 500 MHz , the negative feedback would ensure an effectively zero output impedance. Then, $I C_{1}$ would be able to swallow any current injected into its output from port B with none passing via R_{1} to port A.
At lower frequencies this is exactly what happens, the lower trace reflecting in part the limitations of the instrumentation. The fixed 2.05 GHz oscillator $T r_{1}$ in Fig. 6 is of course running at the analyser's first intermediate frequency. So any leakage from $T r_{1}$ back into the analyser's first localoscillator output, and from there into the first intermediate

Equipment used for the testing

With such a wideband device, any sensible evaluation of its performance required some form of sweep equipment. For general if measurements, I have a Hewlett-Packard 0.1 to 1500 MHz spectrum analyser type $8558 B$, which is a plug-in unit fitted in a $182 T$ large screen display mainframe. I bought the mainframe and plug-in as a complete instrument, tested and guaranteed, from one of the dealers in this type of second hand equipment who advertises regularly in this magazine. Being an older
instrument, long out of production, it is available at a very modest price, considering its performance.
Unfortunately, this instrument does not include a built-in tracking generator.
Those only came in with the introduction of a later generation of spectrum analyser. But it does make a sample of the 2.05 to 3.55 GHz first local oscillator available at the front panel.
Some time ago I published a circuit for an add-on for such an instrument. ${ }^{2}$ It accepts an attenuated version of the spectrum analyser's first local oscillator
output and mixes it with an internally generated continuous wave centred on 2.05 GHz .

The output, as the spectrum analyser's first local oscillator sweeps from 2.05 to 3.55 GHz , is a tracking output covering the analyser's 0 to 1500 MHz input range.

Fig. 6. Circuit of an applique box for an HP 8558B spectrum analyser, providing a $0-1500 \mathrm{MHz}$ tracking generator output. (Reproduced courtesy Electronic Product Design, July 1994, page 17.

Fig. 7. Upper trace, output of the tracking generator, attenuated by 20dB. Lower trace, as upper trace, but with the signal routed via port B to port C of the isolator. Reference level -2.5 dB ,
$10 \mathrm{~dB} /$ division, span 0 to 500 MHz , intermediate frequency bandwidth 3 MHz , video filter medium.

Fig. 8. Upper trace as Fig. 7, for reference. Lower trace, output from port A of the isolator with the input applied to port B. Spectrum analyser settings as for Figure 7 except video filter at max.

Fig. 9. Traces showing the signal at port C for various degrees of intentional mismatch at port B: with (top to bottom) return loss of 0, 14, 20 and 74 dB . Signal applied to port A as in Fig. 7 , upper trace. Spectrum analyser settings as for Fig. 8.
frequency stage, is by definition always on tune. Indeed, the purpose of $R_{4.5}$ is precisely to permit tuning of the fixed osciliator - which is not in any way frequency stabilised - to the analyser's first intermediate frequency.
The purpose of the external 13 dB pad between the analyser's first local oscillator output and the applique box, and the latter's internal pad R_{15-17} is to minimise this back-leakage. Despite these precautions, even with the input to the spectrum analyser closed in a 50Ω termination, the residual trace due to leakage is only a few decibels below that shown in Fig. 8.

Testing the isolator's directivity

My main use for the isolator is as a means of testing the vswr of various items of rf kit, such as antennas, attenuators, the input and output impedances of amplifiers, etc. To determine just how useful it was in this role, the output at port C was

recorded, relative to the input at port A , for various degrees of mismatch at port B, Fig. 9.
The top trace is the output level with an open circuit at port B. Comparing it with the upper trace in Fig. 7, it is about 7dB down at 500 MHz , this being the sum of the insertion loss from port A to port B , plus the insertion loss from port B to port C - already noted in Fig. 7 as around 3dB.
The three lower traces in Fig. 9 are with a 75Ω termination at port B providing a 14 dB return loss, a $50 \Omega 10 \mathrm{~dB}$ pad open at the far end providing a 20 dB return loss, and three 50Ω 10 dB pads terminated in 75Ω. The latter works out as a theoretical 74 dB return loss, or close to 50Ω, and the resolution of the system as measured is apparently limited to around 40 dB . A return loss of 40 dB corresponds to a reflection coefficient of 1%. Now,

$$
\rho=\frac{Z_{t}-Z_{0}}{Z_{t}+Z_{o}}
$$

where Z_{t} is the actual value of the termination and Z_{o} is the characteristic impedance viz. 50 . So $\rho=1 \%$ corresponds to $\mathrm{a} Z_{t}$ of 51Ω. The dc resistance looking into the string of three 10 dB pads plus the 75Ω termination was measured at dc as 50.6Ω.
Clearly, then, assuming this is still the case at 500 MHz , much of the residual signal in the bottom trace in Fig. 9 can be assumed to be due to the error in the characteristic impedance of the pads. These were normal commercial quality, as opposed to measurement laboratory standard.
For the rest, it is down to the limited directivity of the isolator. To maximise this, the chip resistors were all selected to be well within 1%, from the supply of 5% chips to hand. I had originally hoped to be able to select 326.3Ω resistors from the 313.5Ω to 346.5Ω spread of $330 \Omega 5 \%$ resistors. But most were in fact within 1%, hence the need for a parallel $15 \mathrm{k} \Omega$ to secure the right value.
But the interesting - and indeed vital - point is that the directivity of the system does not depend on the flatness of the frequency response. The fact that the three upper curves in Fig. 9 are so nearly identical and parallel, indicates that the isolator is useful for vswr measurements right up to 500 MHz , and perhaps a bit beyond. This is because the directivity depends upon two things.
Firstly, that the balance of the bridge of resistors at the input of $I C_{2}$ in Fig. 6 remains constant with frequency. Secondly, that the common mode rejection of the opamp remains high right up to 500 MHz . And in view of the excellent results obtained, this certainly seems to be the case.

Using the isolator

The spectrum analyser, together with its hand-made tracking generator was very useful for demonstrating the isolator's performance over the whole band up to 500 MHz in one sweep. But the arrangement has its limitations.
Apart from the back-leakage from the 2.05 GHz oscillator, already mentioned, there are two other limitations. Firstly, as the 0 to 500 MHz sweep proceeds, the frequency of the 2.05 GHz oscillator tends to be affected slightly, so that it is necessary to use a wider than usual intermediate-frequency bandwidth in the analyser. Secondly, to maintain a sensibly flat output level, the output is taken from an overdriven string of amplifiers, with resulting high harmonic content. This is normally of no consequence, since the analyser is selective and is by definition, tuned only to the fundamental. But problems can arise with spurious responses due to the presence of the harmonics.
Where a more modest frequency range up to 200 MHz suffices, the sweeper described in reference 3 can be used, in conjunction with a broadband detector - perhaps preceded by a broadband amplifier - connected to port C. A successivedetection logarithmic amplifier makes a very convenient
detector, and types covering frequencies up to 500 MHz are mentioned in reference 4.
For many applications, a swept measurement is not essential, for example when adjusting a transmitting antenna for best vswr at a certain frequency. In this case. any convenient signal generator can be used. At the higher frequencies however, it is best to keep the input to port A to not more than 0 dBm .
A receiver can be pressed into service as the detector at port C. Many receivers, for example scanners. include an RSSI facility. In many cases, these make surprisingly accurate logarithmic level meters.
Measuring the level at port C relative to that at port A gives the return loss, and hence the vswr. of the device under test connected to port B . Tuning/adjusting it for maximum return loss will provide a device under test with an optimum vswr. Return loss measurements can be cross-checked at any time by substituting an attenuator(s) and/or 75Ω termination for the device under test, as described earlier.

Could it sing?

Finally, an interesting point about this active circuit. No problem was experienced at any stage with instability. But what about the circulator of Fig. 2? Here, any reflected power at port C circulates back around to port A .
What happens if all three ports are left open circuit? Given that tolerance variations on the resistors could result in a lowfrequency gain marginally in excess of unity in each stage,
could the circuit 'sing around' and lock up with the op-amp outputs stuck at the rail?
In fact the answer is no. because as Fig. 3 shows, when a port is open circuit, the output of the following op-amp is of the opposite polarity. In this way, the voltage passed on to the next stage is of the opposite polarity to the reflected voltage at the stage's input.
Three inverters in a ring are dc stable, and at frequencies where each contributes 60° phase shift or more, the loop gain is already well below 0 dB . Of course. if all three ports are shorted, each stage passes on a voltage - possibly marginally greater - of the same polarity and lock-up is a possibility. But I can't think of any circumstances where one might want to try and use a circulator with all its ports short circuited!

References

1. Wenzel. Charles, 'Low Frequency Circulator/Isolator Uses No Ferrite or Magnet', RF Design, (Winning entry in the 1991 RF Design Awards Contest).
2. March. I. 'Simple tracking generator for spectrum analyser'. Electronic Product Design. p. 17, July 1994.
3. Hickman, I, 'Sweeping to VHF'. Electronics World, pp. 823830. October 1995.
4. Hickman, I. 'Log amps for radar-and much more', Electronics World + Wireless World., pp 314-317, April 1993.

Circuit simulation can be seriously good fun

When you have the engineering edge, enjoy your work and catch subtle circuit behaviour before it's too late, you can afford to be light hearted. Add to this technical support from practising engineers who take a genuine interest in your work and you are really laughing.

With a free evaluation kit, you can test SpiceAge on your own circuits. The kit comes with an introductory booklet to show you how.

To hear more about this and other nice touches in SpiceAge, please contact the friendly people at Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP

$$
\text { Tel } 01819060155
$$

FAX 01819060969
Email those_engineers@ compuserve.com
Web http://www.spiceage.com

The Home of $7 i$ - Finesse. Its not what you do, its HOW you do it that counts!.

Hart Audio Kits and factory assembled units use the unlque combination of circuit designs by the renowned John Linsiey Hood, the very best audiophile components, and our own engineering expertise, to give you unbeatable performanc and unbellievable value for money
We have always led the field for easy home construction to protessional standards, even in the sixties we were using were still using tagboards! Many years of experience and Innovation, going back to the early Dinsdale and Bailey classics gives us incomparable design background in the needs of the home constructor. This simply means tha building a Hart kit is a real pleasure, resulting in a piece of equipment that not only saves you money but you will be proud to own.
Why not buy the reprints and construction manual for the kit you are interested in to see how easy it is to build your ow equipment the HART way. The FULL cost can be credite
against your subsequent kit purchase.
'AUDIO DESIGN' 80 WATT POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hifi system. This kit is your way to get £K pertormance at bargai basement prices. Unique design features such as fully FET stabilised power supplies give this amplifier World Class performance with starting clarity and transparency of sound, allied to the famous HART quality components and ease of construction. Standard model comes with a versatile passive front-end giving 3
switched inputs, with ALPS precision "Blue Velvet" low-noise volume and balance controls, no need for an external preamp! Construction is very simple and enjoyable with all the difficult work done for you, even the wiring is pre-terminated, ready for instan usel. All versions are available with Standard components o specially selected Super Audiophile components and Goid Plated speaker terminals and all are also available factory assembled. K1100 Complete STANDARD Stereo Amplifier Kit,
£415.21 K1100S Complete SLAVE Amplifier Kit, K1100M Complete MONOBLOC Amplifier K RLH11 Reprints of latest Amplifier articles......
K1100CM Construction Manual with full parts lists $£ 353.62$
$£ 271.20$. $£ 1.80$

ALPS "Blue Velvet" PRECISION AUDIO CONTROLS

Now you can throw out those noisy ill-matched carbon pots and replace with the famous Hart exclusive ALPS 'Blue Velvet' range components only used selectively in the very top flight of World class amplifiers. The improvement in track accuracy and maiching
really is incredible giving better tonal balance between channels and rock solid image stability. Motorised versions have 5 v DC motor.
MANUAL POTENTIOMETERS
2-Gang 100 K Lin.
2-Gang $10 \mathrm{~K}, 50 \mathrm{~K}$ or 100 K Log $£ 15.67$
2-Gang $10 \mathrm{~K}, 50 \mathrm{~K}$ or 100 K Log

MOTORISED POTENTIOMETERS

2-Gang 20K Log Volume Control $£ 26.20$
2-Gang 10K RO Specral Balance, zero crosstalk and less than 10% loss in centre position £26.98

TOROIDAL MAINS \& OUTPUT TRANSFORMERS for EL34, 32 W VALVE AMPLIFIER

Special set of toroidal transtormers, 2 output \& 1 mains for the "Hol Audio Power" valve amplifier design described in the Oct. 1995 issue of wireless World. Total Wi 4.8 Kg . Special price for the set £99, Post $£ 8$
AJM1. Photocopies of the Article by Jeff Macaulay. ε
PRECISION Triple Purpose TEST CASSETTE TC1D.
Are you sure your tape recorder is set up to give its best? Our latest riple purpose test cassette checks the three most important tape
parameters without test equipment. Ideal when fitting new
heads. A professional quality, digitally mastered test tape at a
price anyone can atford.
Test Cassette TC1D. Our price only
. $£ 9.99$

If you want the very best sound out of vinyl discs then you need our high quality preamplifier with Shunt Feedback equalisation. The 1450 also has an advanced front end, specially optimised for low mpedance moving coil cartridges as well as moving magnet types Selected discrete components are used inroughout for ultimate sound quality. The combination of John Linsley Hood design, high quality components and an advanced double sided printed circuil board layout make this a product at the leading edge of technotogy that you will be proud to own. A recent review in "Gramophone" magazine endorsing this view. Bought in kit form our step by step structions it is very easy and satishing to assemble, or you can uy a factory assembled version if you wish
his magnificent kit, comes complete with all parts ready to with full, easy to follow, instructions as well as the Hart Guide to CB Construction, we even throw in enough Hart Audiograde Silve Solder to construct your kit!
K1450 Complete Kit .
$£ 116.58$
$£ 138.94$
K1450SA Audiophile Kit
A1450SA Factory assembled Audlophile unit 188.94
"ChiARA" headphone amplifier.

Highest quality, purpose designed, 'single ended' class ' A headphone amplifier for 'stand alone' use or to supplement those any power amplifiers that do not have a headphone facility. Easy Andante' Ultra High Ouality power supply Andante Ultra High Quality power supply
requency response, low-distortion and 'mux features the wide associates with designs from the renowned John Linsley Hood, volume and balance controls are Alps "Blue Velvet" components. very easy to buid, or available factory assembled, the kit has very detailed instructions, and comes with Hart audiograde silver solder. A valuable personal listening option and an attractive and harmonious addition to any hifi system.
K2100 Compiete Standard Kit $\Sigma 112.50$ $\AA 115.46$ A2100SA 'Series Audiophile', Factory Assembled 115.46 CM2100 Construction Manual
"Andante" Linear Technology
The HART "Andante" series power supplies are specially designed for exacting audio use requiring absolute minimum noise, low hum field and total freedom from mechanical noise.
Utilising linear technology throughout tor smoothness and musicality makes it the perfect partner for the above units, or any equipment requiring fully stabilised $\$ 15 \mathrm{v}$ supplies
$5 v$ for relays etc. K 3565 is identical in appeapance and a single $\pm 15 \mathrm{v}$. Both are in cases to match our 'Chiara' Headphone Amplifier and our K1450 "Shunt Feedback" Pickup preamp. K3565 Power Supply for K1450 or K2100 £94.75 A3550 Factory Assembled Full Supply. \&147.25

SPEAKER DESIGN SOFTWARE.

VISATON "Speaker Pro 6 " is a complete speaker design program or use on IBM machines. Covers cabinet and crossover design and五 professional speaker builder or serious audiophile. 0303 Speaker Pro 6. 3.5"Disk 45.51
c9.28 0309 Demo Version with Database

SPEAKER DAMPING MATERIALS
Polyester Wool and Pure Lambs Wool both have optimal damping properties and are pleasant to handle. Standard 125 g bag is 070 Polyester Wool 1259 5069 Pure Lambs Woal. 125
$£ 3.20$
$£ 6.73$

A full revised kit ROARING SUBWOOFER. design and imaginative the 30 mm Russel Bredon (1)w reb.97). The latest design will use the 30 mm maximum cone displacement of the 10 VISATON GF250 Driver to give even better pertormance at slightly reduced cos Featuring a rubber suspended fibreglass cone, extended po phen vented magnet. Kapicn carner and dual 40 hm .

SPECIAL OFFER!. SOLENOID CONTROLLED
FRONT LOAD CASSETTE DECK SFL800
High quality (0.08% W\&F) cassette mechanism with capability of using standard or downstream monitor R/P head. Offers all standard faciltios under remote, logic or software control. The control requirements are so simple that for many applications not requirements are also simple with 12 v solenoids and 12 v speed controlled Motor, total power requirement being under 300 mA . Logic control and wring circurs are included free with each deck.
SFL800 Deck with Standard stereo head SFL800D Fitted witn Hign Qualiy Downstream monitor head. $£ 44.90$ (The Head alone is normally over £601)

HART TECHNICAL BOOKSHELF
Try us for:- Bigger Range of Books, Better Prices

- AUdIO ELECTRONICS John Linsley Houd
 "THE ART OF LINEAR ELECTRONICS"
 £18.99*

 John Linsiey Hood 1994£16.95
"THE ART OF ELECIA …...................
$£ 35.00$
"DIGITAL AUDIO ANO CGMPACT DISC TECHNOLOG
3rd.Edn. 0-240 513975
£19.95
"INTRODUCING DIGIIAL AUDIO CD, DAT AND SAMPLING"
ISEN 1870775228 87.9
"ACTIVE FILTER COOKBOOK" Don Lancaster $£ 19.95$
"THE ART OF SCLDERING" 0-85935-324-3. 0"
"TOWERS' INTEHNATIONAL TRANSISTOR SELECTOR"
$0.572-01062-1$
"AUDIO" F.A.Wison. BP111
$\AA 19.95$
"HOW TO USE OSCILLOSCOPES \& OTHER TEST EQUIPMENT
R.A.Penfold. BP267 …5
R.A.Pentold. BP267
"THE HART PRINTED CIRCUIT BOARD CONSTRUCTION GUIUE."
"A SIMPLE CLASS A AMPLIFIER"
J.L.Linsley Hooo MI t E Igo9. FLH12
"CLASS-A POWER" Single Ended 15 W Amp.
J.L.Linsiéy Hood M.I.E.E. 1996. RLH13 ©2.50

LOUDSPEAKEHS, THE WHY AND HOW OF GOUD REPRODUCTION. G BingS 1949 "THE LUUDSPEAKER UESIGN COOKBOUK" Vance Dickason. (bin Edn)
ELECTROSTATIC LOUUSPEAKER DESIGN AND
£23.95*
CONSTRUCTION Rondid Wagner BKT6
$£ 15.95$ THE ELECTROSTATIC LOUUSPEAKER DESIGN COOKBOOK Roger P.Sanders. 1995 "BULLOCK ON BOXES" Bullock \& White $£ 10.9$ "AN INTRODUCTION TO LOUUSPEAKERS \& ENCLOSURE DESIGN" V. Capel. BP256 $\Sigma 3.9$ "LGUDSPEAKERS FOR MUSICIANS" BP297
"THEORY \& DESIGN OF LOUUSPEAKER ENCLOSURES" J.E.Benson
"OUICK \& EASY THANSMISSION LINE SPEAKER DESIGN" Larry D.Sharp
"THE COUPLED CAVITY HANBOOK" David Purton $£ 4.90$ "VISA ION. HOME RII FI CAIALOGUE." Full Specifications and Thiele Small Data on ali Orive Units
"VISATON. CAR HI FI CATALOGUE." In car guide £3.50 "VISATON. CABINET PROHOSALS" BOok 2. In GERMAN $£ 6.50$ "SPEAKER PRO 6." VISATON Cabinet Design Sottware $£ 45.51$ "SPEAKER PRO 6." Demo Version with drive unit database $£ 9.28$
"VALVE AMPLIFIERS" Morgan Jones. 1995/6 $£ 24.50$ THE VTL BOOK David Manley 1994. BKVT1 17.95 MULLARD TUBE CIRCUITS FOR AUDIO AMPLIFIERS BKAA27
"THE WILLIAMSON AMPLIFIER." 0-9624-1918-4 86.95 AN APPROACH 10 AUDIO FREQUENCY AMPLIFIER DESIGN. GEC 1957
AUDIO ANIHOLOGIES, articles from Audio Engineering. Six volumes covering the days wher, audio was young and valves were kingl. BKAA3/1 to 6.

All $\Sigma 12.95$ each "THE RADIOTRON DESIGNERS HANDBOOK" (CD) ... £49.00 "PRINCIPLES OF ELECTHON TUBES" H.D.Reich PH.D. £25.95 "POWER AMP PROJECTS" Anthology. 1970-1989....... $£ 15.50$ "WORLD TUBE DIRECTORY" 1996-7 Sourcebook of valve related products ...
Fuller descriptions of the contents of all our books is given in our full Fuller descriptions of the contents of all our books is given in our ful
catalogue، price $£ 4.50$
Postage on all books, unless starred, is only £2 per book maximum $£ 4.50$ for any number, any sizel. Starred items are heavy books costing $£ 3.50$ to send.
Don't forget No waiting at HART!. All listed books are normally in stock!. Just ring with your Credit Card Number for instant despatch!.

POSTAGE on UK Orders up to $£ 20$ is $\mathbf{£ 2}$. Over $£ 20$ is $£ 4.50$.
OVERSEAS Please Enquire
OVERSEAS Please Enquir
Fuller Details of ALL kits
Fuller Details of ALL
List, FREE on request

Sond for Your FREE copy of our LISTS

24 Hr ORDERLINE 01691652894 Fax. 01691662864

All Prices include UK/EC VAT.

Adaptive

An illustration of the usefulness of the application notes on this month's cover CD - the article presented here runs through the basics of choosing designing and applying adaptive digital filters.

Although well-known and widely used, adaptive filtering applications are not easily understood, and their principles are not easily simplified.
Currently, adaptive filtering is applied in such diverse fields as communications, radar, sonar, seismology, and biomedical engineering. These various applications are very different in nature, but one common feature can be noted: an input vector and a desired response are used to compute an estimation error, which is used, in turn, to control the values of a set of adjustable filter coefficients.
The adjustable coefficients may take the form of tap weights, reflection coefficients, or rotation parameters, depending on the filter structure employed.
Despite the diversity and complexity, a simple classification of adaptive filtering does emerge and practical applications can be demonstrated. This article begins by describing four basic classes of adaptive filtering applications and follows with sections that detail various fundamentals, techniques, and algorithms of several selected adaptive applications, Table 1.

Classifying adaptive filtering

Applications. Various applications of adaptive filtering differ in the manner in which the desired response is extracted. In this context, we may distinguish four basic classes of adaptive filtering applications, Figs 1 to 4.

- Identification
- Inverse modelling
- Prediction
- Interference cancelling

The functions of the four basic classes of adaptive filtering applications follow.

Identification, Fig. 1. The notion of a mathematical model is fundamental to sciences and engineering. In the class of applications dealing with identification, an adaptive filter is used to provide a linear model that represents the best fit to an unknown plant.
The plant and the adaptive filter are driven by the same input. The plant output supplies the desired response for the adaptive filter.
If the plant is dynamic in nature, the model will be time varying.

Inverse modelling, Fig. 2. In this second class of applications, the adaptive filter provides an inverse model repre-

Figs 1-4. The four basic classes of adaptive filtering. In these diagrams, u is input applied to the adaptive filter, y is output of the adaptive filter, d is desired response and e is $d-y$, which is the estimation error.

Fig. 3. Prediction.

Table 1. Adaptive filtering applications.

\author{

Adaptive filtering class	Application Identification
	System identification Layered Earth modelling
Inverse modelling	Predictive deconvolution
Adaptive equalisation	
Prediction	Anear predictive coding
	Adaptive differential pcm Auto-regressive spectrum analysis Interference cancelling Signal detection Adaptive noise cancelling Echo cancellation
	Radar polarimetry Adaptive beam forming

}
senting the best fit to an unknown noisy plant. Ideally, the inverse model has a transfer function equal to the reciprocal of the plant's transfer function.

Fig. 5. Simplified model for the speech production process in block form.

Depending on the application of interest, the adaptive filter output or the estimation error may service as the system output. In the first case, the system operates as a predictor; in the latter case, it operates as a prediction error filter.

Interference cancelling, Fig. 4. In this final class of applications, the adaptive filter is used to cancel unknown inter-

(b) Receiver
ference contained in a primary signal, with the cancellation being optimised in some sense.
The primary signal serves as the desired response for the adaptive filter. A reference signal is employed as the input to the adaptive filter. The reference signal is derived from a sensor or set of sensors located in relation to the sensor(s) supplying the primary signal in such a way that the infor-mation-bearing signal component is weak or essentially undetectable

Prediction

The coders used for the digital representation of speech signals fall into two broad classes: source coders and waveform coders. Source coders are model dependent. This means that they use a priori knowledge about how the speech signal is generated at the source.
Source coders for speech are generally referred to as vocoders. Vocoders can operate at low coding rates; however, they provide a synthetic quality, with the speech signal having lost substantial naturalness.
Waveform coders, on the other hand, strive for facsimile reproduction of the speech waveform. In principle, these coders are signal independent. They may be designed to provide telephone-toll quality for speech at relatively high coding rates.
In the context of speech, linear predictive coding, or lpc, strives to produce digitised voice data al low bit rates (2.4 to $4.8 \mathrm{kbit} / \mathrm{s})$ with two important motivations in mind:

- The use of linear predictive coding permits the transmission of digitised voice over a narrow-band channel.
- The realisation of a low bit rate makes the encryption of voice signals easier and more reliable than would otherwise be the case.

Figure 5 shows a simplified block diagram of the classical model for the speech production process. In this particular example, the sound-generating mechanism is linearly separable from the intelligence-modulating, vocal-tract filter. The precise form of the excitation depends on whether the speech sound is voiced or unvoiced.
Voiced speech sound is generated from quasi-periodic, vocal-cord sound. In the speech model, the impulse-train generator produces a sequence of impulses, which are spaced by a fundamental period equal to the pitch period. In turn, this signal excites a linear filter whose impulse response equals the vocal-cord sound pulse.
An unvoiced speech sound is generated from random sound produced by turbulent air flow. In this case the excitation consists simply of a white noise source. The probability distribution of the noise samples does not appear to be critical.
Figure 6 shows the block diagram of an linear predictive coding vocoder, comprising a transmitter and a receiver. The transmitter first applies a window to the input speech signal. It does this to identify a block of speech samples for processing.
The window used is short enough for the vocal-tract shape to be nearly stationary. As a result, the parameters of the speech-production model may be treated as essentially constant for the duration of the window.
Next, the transmitter analyses the input speech signal in an adaptive manner - block by block - by performing a linear prediction and pitch detection. Finally, it codes the parameters made up of the set of predictor coefficients, the pitch period, the gain parameter, and the voiced-unvoiced parameter, for transmission over the channel.
The receiver performs the inverse operations by first decoding the incoming parameters. In particular, it computes

Fig. 7. Baseband data transmission system without equalisation, summarised in block form.
nal by utilising the model of Fig. 5.

Adaptive equalisation

During the past three decades, considerable effort has been devoted to the study of data-transmission systems that use the available channel bandwidth efficiently. The objective here is to design the system to accommodate the highest possible rate of data transmission, subject to a specified reliability that is usually measured in terms of the error rate or average probability of symbol error.
The transmission of digital data through a linear communication channel is limited by two factors. One is intersymbol interference, the other additive thermal noise.

Intersymbol interference. Also known as ISI, this is caused by dispersion in the transmit filter, the transmission medium, and the receive filter.

Additive thermal noise. Generated by the receiver at its front end. For bandwidth-limited channels, intersymbol interference seems to be the chief determining factor in the design of high-data-rate transmission systems.
Figure 7 shows the equivalent baseband model of a binary pulse-amplitude modulation, or PAM, system. The signal applied to the input of the transmitter part of the system consists of a binary data sequence, in which the binary symbol consists of 1 or 0 . This sequence is applied to a pulse generator, the output of which is filtered first in the transmitter, then by the medium, and finally in the receiver.
Let $u(k)$ denote the sampled output of the receive filter in Fig. 7; the sampling is performed in synchronism with the pulse generator in the transmitter. This output is compared to a threshold by means of a decision device. If the threshold is exceeded, the receiver makes a decision in favour of symbol 1. Otherwise, it decides in favour of symbol 0 .

On a physical channel there is always intersymbol interference. To overcome intersymbol interference, control of the time-sampled function is required. In principle, if the characteristics of the transmission medium are known precisely, then it is virtually always possible to design a pair of transmit and receive filters that will make the effect of intersymbol interference arbitrarily small.
For adequately reducing the intersymbol interference, an adaptive equaliser will provide precise control over the time response of the channel.
An adaptive filtering algorithm requires knowledge of the desired response to form the error signal needed for the adaptive process to function. In theory, the transmitted sequence is the desired response for adaptive equalisation.
In practice, however, with the adaptive equaliser located in the receiver, the equaliser is physically separated from the origin of its ideal desired response.
There are two methods in which a replica of the desired
(a)

response may be generated locally in the receiver. First is the training method, second the decision-directed method.

Training method. In this method, a replica of the desired response is stored in the receiver. Naturally, the generator of this stored reference must be electronically synchronised with the known transmitted sequence.
Decision-directed method. Under normal operating conditions, a good replica of the transmitted sequence is being

Continued on page 244

CD-ROM - free with this month's issue

Zilog Technical Library

Information representing one company's complete set of data and applications book, brought to you by leading UK Zilog distributor and design house, Gothic Crellon.

The CD ROM given away free with this issue* is the complete Zilog Technical Library CD-ROM from Gothic Crellon. It contains not only data on the company's microcontrollers, digital signal processors and communications controllers, but also a host of application notes relating to all three product areas. These notes includes a caller ID system complete with software listings, a discussion of how to use a microcontroller as an $I^{2} \mathrm{C}$ bus master and a highperformance PC COM port design. Development tools for the various product areas are also listed, together with a number of demonstrations.

Getting started

The files on this CD-ROM are presented in the familiar Adobe PDF format. You can view the files using one of the following options:

- If you already have Adobe Acrobat and the Adobe Type Manager installed on your system:

Open the 'StartCDR.pdf' file directly from the CD-ROM by double clicking on it. Alternatively, launch your installed Acrobat Reader application, open the 'StartCDR.pdf' using the OPEN command under the FILE menu

- If you don't have Acrobat Reader already installed on your system, please consult the appropriate 'Read_Me' file for your operating system for instructions on how to install Adobe Acrobat reader. The Read_Me files are located in the 'ACROREAD' directory of the Zilog 8_bit CD-ROM.
- For quick installation of the Adobe Acrobat reader, we have provided the file paths to reader installation applications below:

Windows 32-bit:
$\mathrm{d}: \ 8 \mathrm{BIT}$ MCU $\backslash A C R O R E A D \backslash W I N \backslash R E A D E R \backslash 32 B I T \backslash S E T$ UP.EXE

Windows 16-bit:
$\mathrm{d}: \backslash 8 \mathrm{BIT}$ _MCU\ACROREAD $\backslash W I N \backslash R E A D E R \backslash 16 B I T \backslash S E T$ UP.EXE

Macintosh:
8BIT_MCU\ACROREAD\MAC\Reader\Reader\Install Acrobat Reader 3.0

Unix:
$\mathrm{d}: \ 8 \mathrm{BIT}$ _MCU\ACROREAD $\backslash U N I X \backslash R E A D E R \backslash I N S T A L L$
*UK readers only

System requirements

Windows platforms:

- 386, 486 or Pentium-based personal computer
- Microsoft Windows 3.1, Windows 95 or Windows NT 3.5 or later
- 8MB Application RAM, 4MB hard disk space and CD-ROM drive

Macintosh platforms:
-68020-68040 or Power Macintosh with Apple System 7.0 or later

- 8 MB Application RAM, 4 MB hard disk space and CD-ROM drive

UNIX versions:

- Sun OS, Solaris, HP-UX, IBM AIX
- X-Windows
- CD-ROM DRIVE

Software requirements

Windows:

- Adobe Acrobat Reader 3.0
- Adobe Type Manager 3.x or later

Macintosh:

- Adobe Acrobat Reader 2.x or later
- Adobe Type Manager 3.6 or later

Unix:

- Adobe Acrobat Reader $2 . x$ or later

Being based

 on the widely used Adobe Acrobat file reader, Zilog's data and applications suite has been developed to run smoothely on a number of platforms, including Unix and the MAC.

Stereo audio monitor

Abstract

When making audio recordings, it is useful to have an at-a-glance overview of the phase and amplitude relationships between the two stereo channels - particularly if there is a chance that the two channels will be combined to produce mono. Robert Kesler's Dotscope provides that information, together with a direct mono compatibility indication.

Visual stereo monitors are used in sound recording and broadcast studios to monitor the phase and amplitude relationship of the two audio channels of a stereo signal.
These features are not revealed by simply listening in stereo. If the stereo channels were opposite in phase to each other, the program could still sound acceptable in stereo. But if the same two channels were combined and listened to in mono, the signals would cancel each other out.
A simple visual stereo program monitor can be set up using an oscilloscope in X-Y mode. The sum of the left and the right channels is fed to the Y vertical inout and their difference feeds the X input. In this way, a mono signal appears as a vertical line while a signal on the right or left-hand channel only appears as a line tilted right or left by 45°. Two anti-phase inputs produce a horizontal line.
Note that the effect produced by feeding the X and Y chhannels with the sum and difference signals could be reproduced by tilting the oscilloscope by 45°, and feeding the right and the left channels to the X and Y inputs, as in Fig. 1. Using sum and difference signals simply provides a more elegant solution that tilting the display.
Of course a usable instrument for this purpose should have a gain control to allow it to cover the dynamics of the programs. It also needs an automatic illumination suppressor, to avoid burning out the phosphor layer in the centre of the screen when there is no input signal.
A pure sinusoidal input of slightly different phase on both channels produces a narrow ellipse. This

Only the right channel is present

Left and the right channels identical in intensity and phase

Only the left cannel is present

Left and right channels are identical in intensity, but of opposite phase

Examples of Dotscope displays with various input signals.

AUDIO DESIGN

Fig. 1. Tilting an oscilloscope like this has the same effect as leaving it upright and feeding the and Y channels with left+right and left-right signals.

Fig. 2. A good stereo signal looks like a loosely wound clew of thread. A mostly anti-phase signal on the other hand - i.e. one that is not stereo compatible - looks similar except that it is wide and flat.

Fig. 3. Representation of a clean, slightly out of phase signal as it would appear on a conventional oscilloscope, left, and on the Dotscope, right. Note the stereo/mono bar graph at the bottom of the dotscope display indication mono compatibility.

ellipse becomes circular if the phase difference is 90°. A complex signal from more than one sound source is represented by an irregular clew, Fig. 2.
For a good stereo signal, the squiggles of the clew are roughly contained within an ellipse. This elipse has its longer axis pointing in the direction of the signal source. A flat shape, pointing left-to-right means that the two channels are out of phase. This is what the sound engineer wants to avoid most.

The Dotscope alternative

In the monitor described here, a led-matrix display replaces the crt. The matrix was chosen because it was cheaper, but it later turned out to offer other advantages.
Surprisingly, the low resolution makes interpreting the display easier. The chunky picture shows the overall quality of the signal, without the clutter of unnecessary detail. For a sound engineer, speed of information assimilation is important since there are many other things to take into acount like the performers and peak-meters.
Due to the fact that the displayed picture is basically symmetrical, the lower part of the led matrix has been omitted. Doing this halves the number of needed without sacrificing resolution, simplifying the design and reducing costs.
A second indicator is incorporated into the design. This indicator monitors the average phase difference between the channels and displays it on a multi-colour bi-directional led bargraph (see panel).
If the stereo is mono compatible, the green half of the bar graph shows the degree of compatibility. The left-hand half of the indicator is red to draw the operator's attention if the signal is out of phase.

System elements

Four LM3914 bar graph drivers are used in the instrument. With a little overstatement, this IC could be called a decoded analogue-to-digital converter. Basically it is made up of ten comparators, driving ten open-collector outputs. The ten comparators are tied to ten, twenty, or whatever, percent of the reference voltage connected between the R_{HI} on pin 6 and R_{LO} on pin 4
There is an in-built programmable reference generator. Its output, $\mathrm{REF}_{\text {OUT }}$ on pin 7, is not used here, but the same pin is used to program the output current limiter.
Pin 9, the mode input, is used to choose between the bar mode and dot mode. In this design, all four LM3914s are used in dot mode. As a result, the mode pins must be left floating.
Finally, note that the first led output has a considerable leakage current in dot mode - up to 0.45 mA - so these outputs are equipped with bleeding resistors.

Input amplifiers. Simple amplifiers with electronic symmetry are adequate for such monitoring. Frequency bandwidth of the instrument is set relatively narrow; this monitor concentrates on the middle frequencies, which are the most relevant for the stereo perception.

Summing amplifiers. On the output of $I C_{2 \mathrm{~A}}$ there is a signal proportional to the difference between the right and the left inputs, while the $I C_{2 B}$ output delivers the difference between the left and the right inputs. This is actually, the same signal but in opposite phase. Op-amp $I C_{3 \mathrm{~A}}$ produces the sum of the same signals.

Automatic gain control. The automatic gain control used is simple, yet it ensures that the picture fills the whole display

Bidirectional bar graph features low current drain

Sometimes it is necessary to display the results of a measurement showing the value in two opposite directions, in the same way that a centre-zero meter does.
Two of circuits shown here are designed for this purpose. They not only provide bidirectionality, but also a ten-fold reduction in current consumption. When all leds are switched on, the conventional 3914 bar graph draws ten times the current needed by one led since the diodes are parallel connected. These new configurations have the diodes series connectedso current demand is reduced to that needed by one led. The trade off, of course, is that the supply voltage needs to be raised high enough to be able to turn on all the series leds.
The basic circuit is shown in Fig. A. By leaving the mode pin floating, the LM3914 is configured in dotmode, that is, only one of the open collector outputs is active, at any time. However, in contrast with the usual circuit, not all the leds' anodes are connected to the supply line. The leds are connected in series, in one or two groups between output associated with the centre, origin and the output or outputs associated with the end or ends of the bar graph. The intermediate taps are connected to the other outputs. In this way, all the leds between the active output and the supply line light, creating a bar above or below the point of origin.
The centre point of the bar-graph, the origin, need not be in the actual centre. It may in fact be associated with any output pin, depending on what you need. The bargraph can be made symmetrical, asymmetrical, or simply a low current but otherwise conventional oneway bar graph. For the latter, connect the supply to the led 1 output, and all the cathodes pointing to the same output.
If, on the other hand, you connect the supply next to the led-10 output, the bar will shrink instead of grow with increasing input voltage.
For the circuitry for reference voltage and input voltage scaling and shifting, refer to the manufacturer's data sheets and application notes.

Fig. B. Modified bidirectional bar graph. The zero led is always lit. For a symmetrical display omit led +5 and short the connections.

Fig. D. Shrinking bar graph with tenfold reduction in led current. The length of the bar reduces with increasing input voltage. Again, the supply voltage must be high enough to turn on all leds.

Power supply needs no comment except that newcomers to the three-terminal regulators shold note that if the device is more than a couple of inches away from the transformer, extra ceramic 0.1 mF input capacitors should be added near to the input pins.

At the top of this diagram are the sum and difference stages and their associated comparators. Note the reference input feeding the comparator non-inverting inputs. Below is the illumination control and stereo-mono compatibility logic array, together with its input conditioning.

over an input range of about 32 dB . It drives the reference voltage of all three dot-matrix-driver analogue-to-digital converters. so that the reference voltage promptly follows any increase of the highest of input of the same converters. It also assures that recovery follows slowly.
This technique is very efficient and easier to implement then synchronously controlling two or three voltage-controlled amplifiers.

Limiter amplifiers. For each channel, an amplifier and two

A part of the reference voltage is added to both inputs. This results in the the first led output of both ICs being driven when the input signal is zero. These two outputs are connected in parallel drive the central, zero column.
The other outputs are driven one at a time, as the input voltage changes. Note that only one column is driven at any one time.
The vertical a-to-d converter is configured similarly, but it drives the rows via inverting transistors. As the picture is symmetrical around the central point, only half of the picture is displayed, i.e. the components that would be needed to convert and display the rows below the zero line are omitted.
Similarly, as noted for the columns, only one row is driven at any one time. But I should emphasize here that no row is driven during the negative half periods. In other words, for almost half of the time no led is lit at all.

Dot-matrix display. The dot matrix display is composed of ten lines by nineteen columns of yellow leds. They should be narrow angle types, and of same intensity class.
All the anodes within a row and the cathodes within a column are tied together. The columns are driven directly by the two LM3914s, while the rows via inverting transistors.
A single led at the crossing of the driven row and of the driven column is lit at any one time. The illumination control circuit determines the current.

Illumination control. As noted above, only one led is lit at any one time and almost half of the time no led is lit at all. This would cause an apparent loss in light intensity. To compensate, the leds must be driven with higher currents than allowed in continuos operation. But under very low, or no input condition,
when only a few leds share the current, the current must be reduced to a safe level.
The number of active columns and rows is monitored by the GAL inputs 1 to 6 . The GAL in tum controls the current source made up of $T r_{111}$ and $T r_{112}$. This current source determines the current of the led-matrix display, List 1.

Stereo/mono compatibility bar graph. The remaining part of the GAL converts the phase difference of the two channels into a voltage, which drives the bi-directional multicolour bar graph. It displays a right-bound green bar to indicate mono-compatible stereo. Two yellow center leds are always lit. When one or both channels missing, below the threshold, or totally different, these are the only leds lit on the graph. Finally, the bar graph displays a left-bound, red bar for anti-phase channels.

Implementing the design

Resistors throughout should be 2% tolerance or better. I suggest a sandwich construction: one pcb with the leds, and the other one carrying the rest of the components, except the power supply.
In my design, the 3 mm leds are placed at 0.15 -inch pitch, so the display board is about 85 by 80 mm . Using surface-mount resistors, diodes and transistors, the main pcb need not be bigger than the display board. The two boards are linked via a 40-pin connector.
I placed a sheet of smoked acrylic glass in front of the sandwich and sprayed the pcb black before soldering the leds in place. The whole construction without the power supply is only about 30 mm deep, so it may be mounted alongside the VU or peak meters or in a small stand-alone box, including the power supply.

```
List 1. These are the equations needed to program the GAL.
>
>PINS /* in sequential order: pin 1 to pin 20 */
>S5, S2, D5, D2, D-2, D-5, RLO, RHI, LLO, GND,
>LHI, Q2, Q2A, Q1, Q1A, HELP1, LUM2, HELP2, LUM5, VCC
>
>EQUATIONS
>
>Q1 = /RLO */RHI * LLO * LHI
> + RLO * RHI * /LLO * /LHI
>
>Q1A = Q1 /* parallel output for more drive */
>
>Q2 = /RLO * /RHI * /LLO * /LHI
> + RLO * RHI * LLO * LHI
>Q2A = Q2 /* parallel output for more drive */
>/* Open collector output simulation using two (not quite) buried nodes:
>HELP1 and HELP2 */
>
>HELP1 = D5 * S5 * D-5
>HELP2 = D2 * S2 * D5 * S5 * D-2 * D-5
>
>/* The following equations use the product-term enabled tri-stating
ability
>of the 16V8 GAL */
>/* The output values of LUM2 and LUM5 are constants (GND), the output
>driver being enabled */
>/* only if the term in parentheses is true */
>
>IF (/HELP1) LUM5 = GND
>/* OPEN-COLLECTOR simulation using product term HELP1 */
>IF (/HELP2) LUM2 = GND
>/* OPEN-COLLECTOR simulation using product term HELP2 */
>
```


Want one?

As is the case with all circuits published in Electronics World, you are welcome you to duplicate this design for any purpose that does not involve profit making - whether directly or indirectly. Depending on demand, pcbs and specific parts for this design may be available from the author. Please email the author at cardware@eunet.yu or kesler@eunet.yu or fax on +381 21612 335. If neither of these options is open to you, send an sae to the editorial offices (i.e. the Quadrant House address at the front of the magazine) marking Dotscope clearly on your envelope. Product developers wishing to exploit the design must contact the author, Robert Kesler.

M\&B RADIO (LEEDS)
 THE NORTH'S LEADING USED TEST EQUIPMENT DEALER

ALL PRICES PLUS VAT AND CARRIAGE • ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY
86 Bishopsgate Street, Leeds LSI 4BB
Tel: (0113) 2435649 Fax: (0II3) 242688 I

CIRCLE NO. 125 ON REPLY CARD

HATELY ANTENNA TECHNOLOGY

1 Kenfield Place, ABERDEEN AB15 7UW Scotland, U.K. Tel/Fax: +44 (0)1224316004

CROSSED FIELD ANTENNAS

Following nine years of consolidation since the first public disclosure of the invention of the Crossed Field Antenna (using Poynting Vector Synthesis) in this journal (EW Mar 1989 Vol 95 pp216-218), we are pleased to announce more progress has been made. Our paper given at the IBC '97 in Amsterdam in September re-states the working principles of the GP CFA and gives many technical results taken on the several working broadcast antennas on MW ref "Extremely Small High Power MW Broadcasting Antennas" IEE Conf. Vol 447 pp421-426 by Kabbary, Khattab, \& Hately

The widespread disbelief which has followed our work has made it difficult to publish subsequently, yet we are not disheartened. In fact the silence from other workers has enabled us to enhance our priority by further tests, and file further patent applications. The newer antenna forms are the electrical duals of the original
"out-of-phase volts on plates" construction namely "out-of-phase currents on conductors", i.e. Delay-Line Radiators, and Twin Wire loops. The EMDR are wide both in adjustment band and instantaneous bandwidth: operating efficiently down to $\geq 10 \%$ lambda. The CFL with a full phasing unit works well down to a diameter of 1% of lambda.
Monoband Crossed Field Loops have their (fixed) phase circuit in-built within the lofted mounting for the loop, and are fed by a single 50 ohm coaxial cable. The typical SWR bandwidth ≤ 1.5 to 1 is 4% centre-frequency. Like all CFA's the newer forms are beneficial in possessing zero induction field, and therefore minimise EMC problems in microphone \& telecommunications circuits nearby.
We welcome commercial enquiries concerning requirements for radio (sending and receiving) where site dimensions, vehicle size, environmental problems, etc. are crucial. Already established companies may license from ourselves. HF versions are available for the amateur bands so tests may be economically arranged to check possibilities for LW, MW or HF. Our associate company in Egypt can construct and install CFA's of any type for broadcasting all powers up to 100 kW or more; write to the above address.

Amateur Band 100 W devices with rapid delivery include:-
CFL 1 all frequencies HF 1.8 to 30 MHz 660 mm diam $£ 250 \mathrm{inc}$. VAT \& Post CFL 14 monoband " 20 Metres" 2% BW 300 mm diam $£ 44$ inc. VAT \& Post CFL 3.6 monoband " 80 metres" 5% BW 660 mm diam $£ 75$ inc. VAT \& Post
Proprietor: Maurice C Hately, M Sc FIEE Chartered Electrical Engineer (GM3HAT)

GANG PROGRAM YOUR MICROS!

$800+$ Devices $60+$ Vendors

PRODUCTION PRODUCT SUPPORT SET PROGRAMMING FOR R\&D

For sheer versatility it is difficult to beat the $\mathbf{L 9 0 0 0}$ for gang programming a mixture of eproms, flash and microcontrollers in packaging from DIL to SOIC.

- Modules with DIL, PLCC, TSOP and SOIC sockets eliminate costly but fragile socket adapters fitted to DIL sockets.
- 15 function keys reduce most operations to one keystroke.
- Separate operating systems for R\&D and production.
- Even supports latest 3 V devices in TSOP and PLCC.
- Can also program up to 8 devices for 16 and 32 bit sets.
- Centronics as well as RS232 port for fast data transfer.
- Tested and approved by Intel Corporation, Texas Instruments and Signetics.

The $\mathbf{L 9 0 0 0}$ has two module bays so identical modules can be fitted to double production or two different modules can be fitted for versatility. For example, a PL300 could be fitted for 24/28/32 pin DIL eproms/flash and a PL652 for SOIC PICs.

Some of our popular modules are shown opposite. Most cost about $\boldsymbol{£ 8 5}$ per socket.

A full device list is available on the internet.

EPROMS 8r FLASH

24/28/32 pin eproms/flash
32 pin eproms/flash
40 pin eproms 27C1024-4096
44 pin flash
48 pin flash
8 pin serial eeproms

MICRO FAMILY

87C51/2/3 \& 89C51/52
87C748/50/51/52
PIC16C5X 16C71/84 17C4X
PIC16C6X/16C7X 28/40 pin
68HC705C8/9(A)
68HC705B16
68HC711E9/E20/E32
Z86E02/3/4/6/8
Z86E30
ST62E/T10/15/20/25

DIL or TSOP
PLCC
DIL or PLCC
SOIC
TSOP
DIL

Hi-spec low cost portables. Universals with gang option.

Lloyd Research Ltd., 7 \& 7A Brook Lane, Warsash, Southampton SO31 9FH Tel: $\quad+44(0) 1489574040$ +44 (0) 1489885515 +44 (0) 1489885853 Internet: http://www.lloydres.co.uk Email: progs@lloydres.co.uk

Colour Brochures 1998 Catalogue available NOW OFFICIAL DISTRIBUTORS FOR LEADING EDGE TECHNOLOGY PIC DEVELOPMENT TOOLS AND PROGRAMMERS

CHIP DRIVE - PROFESSIONAL
Smart Card Programming System
Intelligent programmer for Smart Cards using the International Standard $\mathrm{T}=0$ or $\mathrm{T}=1$ protocols also Memory and Secure Memory using $\mathrm{I}^{2} \mathrm{C}, 2$ wire \& 3-wire interfaces

Supplied with software to read and write to most popular secure smart cards , inc GSM, PAY PHONE and ACCESS CONTROL cards.

CALL FOR FULL SPEC + CATALOGUE
$\mathrm{T}=0$ or $\mathrm{T}=1$ @ 3.579 MHz RS232@9600-11500bps
Internal Supply / Ni-MH
Size: $100 \times 70 \times 80 \mathrm{~mm}$ Weight 660 Gram

CE compliant

GSM SIM CARD EDITOR / PROGRAMMER
Complete system to read and write to all USER and SERVICE PROVIDER areas of GSM SIM

DIL or PLCC
DIL
DIL
DIL or SOIC DIL or PLCC PLCC PLCC
DIL
DIL or PLCC
DIL or SOIC

> CARDS. Available NOW

$$
179.95 \text { + VAT }
$$

SMART CARD EVALUATION SYSTEM

Smart Card Reader/ Writer (Programming Interface) Smart Card Interrogation System, to identify the com mands accepted by any valid Smart Card and log them to disk for evaluation.
Will allow the user to "re send " known commands and monitor the result

- Passive interface to allow the user to monitor the data flow between Card and host system.
244 page Hard Back reference book, covering all aspects of Smart Card design and programming.
Sample program to read memory type Phone cards
- Data on NEW Visa Smart Cards.

Sample Smart Cards, Electronic Purse, Credit / Debit card, ID Card
£169.99 + VAT
Other systems available for specific projects , credit / debit, access control, GSM etc etc AS SUPPLIED TO POLICE , GOV't \& GSM Operators

ELECTRONICS

 WORLDREADER
INFORMATION SERVICE

For more information about any of the products or services in this issue of ELECTRONICS WORLD, simply ring the relavant enquiry number.
Enquiry numbers may be found at the bottom of each individual advertisement.

101	102	103	104	105	106	107	108	109
110	111	112	113	114	115	116	117	118
119	120	121	122	123	124	125	126	127
128	129	130	131	132	133	134	135	136
137	138	139	140	141	142	143	144	145
146	147	148	149	150	151	152	153	154
155	156	157	158	159	160	161	162	163
164	165	166	167	168	169	170	171	172
173	174	175	176	177	178	179	180	181

| Name |
| :--- | :--- |
| Job title |
| Company Address |

Subscribe today!

Guarantee your own personal copy each month

Save on a 2 year subscription

ELECTRONICS
WORLD
weorperanmo wimiss wollu

Newsagent order form

Pass this order form to your newsagent to ensure you don't miss the next issue of $E W$.

To.
(name of Newsagent)
Please reserve me the April issue of Electronics World and continue to order every month's issue until further notice

Name. \qquad
\qquad
\qquad
\qquad
\qquad

Thank you

Subsaribe today!

Guarantee your own personal copy each month

Save on a 2 year subscription ELECTRONICS
WORLD
imconpoeatime winiss woll

∞
 π
 m

ELECTRONICS
 WORLD
 imeorroantme momuse weat

SUBSCRIPTION CARD

Signature
Name
Job Title
Address
Tel: ___ Postcode \quad Country $\quad \square$

SUBSCRIPTION RATES		Post to: ELECTRONICS WORLD
UK 1 year	£34	P.O. Box 302
UK 2 years	£54	Haywards Heath
Student rate(proof require	£21.30	West Sussex RH16 3DH UK
Airmail		
Europe 1 year	£49	CREDIT CARD HOTLINE
Europe 2 years	£78	Tel: +44 01444445566
Rest of the world 1 year	£59	Fax: +4401444 445447
Rest of the world 2 years	£94	
Surace mail 1 year	£39	receive direct marketing-promotion from other companies \square

> Peltier-effect devices represent a rival solid-state method for cooling small items. Richard Lines discusses how they work and explains how to apply them. His design is illustrated by a design example for cooling a ccd.

Due to Peltier effect, electrons crossing the dissimilar-metal junction energy change in energy level, producing or removing heat depending on the direction of current flow. With dissimilar metals, the effect is negligibly small, but when applied to a special semiconductor junction, Peltier effect becomes a useful means of extracting heat.

Thermoelectric coolers are convenient solid-state devices capable of pumping heat up a thermal gradient. They are very useful for cooling small items like charge-coupled device sensors, photodiodes and semiconductor lasers.
The principle of operation is closely related to the Seebeck effect, where a temperature difference between two junctions generates an emf. This effect was described in relation the thermocouple in my previous article.
The Peltier effect involves passing a current through a junction which produces a heating or cooling effect at the junction depending on the direction of the current.
The basic principle is outlined in Fig. 1. This illustrates electrons flowing from left to right across a metal junction. The solid state properties of the metal dictate the average energy of the conduction electrons $-E_{1}$ for metal 1 and E_{2} for metal 2. Thus the electrons in metal 1 will bring energy up to the junction at a rate of,

$$
E_{i n}=n_{1} E_{1} v_{1}
$$

and similarly energy will be carried away from the junction,

$$
E_{\text {out }}=n_{2} E_{2} v_{2}
$$

and the difference between these two terms is the energy taken from or given to the atoms in the lattice. Since the current must remain the same over the junction you can say that,

$$
I=n_{1} \times v_{1} \times q=n_{2} \times v_{2} \times q
$$

where q is the electronic charge, and I is the current.
Net heat flow from the junction is,

$$
E_{\text {out }}-E_{\text {in }}=\frac{1}{q}\left(E_{2}-E_{1}\right)
$$

So the heat removed by a Peltier device is directly proportional to the current and the difference in energy carried by the conduction electrons.
The Peltier effect is due to the bulk properties of the two metals; in effect the heat capacity of the conduction electrons changes on crossing the junction. With normal metals, say copper/iron, the Peltier effect is very small and
difficult to measure. In practice the normal ohmic heating effect is much larger. However, in semiconductors the effect is exaggerated and can be exploited as a useful method for cooling
A thermoelectric cooler consists of an array of $\mathrm{p}-\mathrm{n}$ junctions wired in series between two thermally conductive ceramic plates. The p-n junctions are so wired that heat is absorbed on one plate, transferred through the semiconductor junctions, and leaves the device via the other plate; the device is a heat pump.
Heat is absorbed at the reverse biased junctions and emitted at the forward biased ones. A semiconductor material with a low bandgap is required - usually bismuth telluride - so that enough minority carriers can be generated at the operating temperature.
As the device is reversible it can also be used for heating, allowing an item to be maintained at constant temperature for ambient variations above or below the set point. For the sake of a consistent nomenclature, I will refer to the thermoelectric cooler surface connected to the controlled item as the cold plate and the surface connected to the heat sink as the hot plate, regardless of whether the thermoelectric cooler is cooling or heating the item.
The two main thermal parameters of interest for any thermoelectric cooler are the maximum temperature that can be maintained across the device and the amount of heat that can be pumped. The maximum temperature differential is quoted for no external heat load on the cold plate i.e. nothing being cooled.
Under these conditions all the electrical power input to the thermoelectric cooler is being used to overcome its internal reverse heat leak and heat input by radiation and convection through the area of the cold plate. This is the least efficient situation since virtually by definition the thermoelectric cooler is doing no useful work.
The maximum temperature differential figure $\Delta T_{\text {max }}$ is usually quoted for a given hot plate temperature in both a vacuum and dry nitrogen; running in a vacuum eliminates heat input by convection and allows slightly colder temperatures to be achieved. For the singlestage thermoelectric cooler as illustrated in Fig. 2 the numbers would be typically 60 and
$70^{\circ} \mathrm{C}$ for use in nitrogen and in vacuo respectively.
For applications needing a larger temperature drop, there are multistage devices available looking like small pyramids; the hot plate for the top layer is the cold plate for the layer underneath. A law of diminishing returns sets in; a three-stage device might have a maximum differential of $100^{\circ} \mathrm{C}$ but a six stage device may only manage $130^{\circ} \mathrm{C}$.

How much heat?

The second parameter is the heat that can be input to the cold plate to reduce the temperature differential to zero, known as $Q_{\text {max }}$. Under these conditions all the electrical power is being used simply to prevent the cold plate getting warmer than the hot plate.
Since the cold plate temperature is the same as the surroundings there is no heat input due to convection or radiation and the thermoelectric cooler will be working efficiently. The maximum heat input scales with the area of the cold plate and is typically $2-3 \mathrm{~W} / \mathrm{cm}^{2}$. There are tiny devices consisting of a single pn junction which will pull only a few hundred milliwatts, up to larger $6 \mathrm{~cm}^{2}$ units rated at 100 W .

Specifying a thermoelectric cooler

In order to select a suitable thermoelectric cooler it is necessary to determine how much heat is to be transferred over the required temperature difference. Two things really need to be known from the start. One is the cold plate temperature, which is decided by the application. The second is the method for getting the heat away from the hot plate, since this will define the hot plate temperature and thus the temperature drop across the thermoelectric cooler.
The second point usually boils down to the choice between a heat sink and a water loop. The water loop is more effective since the hot plate needs to be only a fraction of a degree warmer than the water even for quite modest flow rates to enable the heat to be disposed of.
A heat sink has to run warmer than the surrounding air to function, so the thermoelectric cooler has to work harder to achieve the same cold plate temperature. However the heat sink is more practicable in portable applications.

An example

As an example, consider a charge-coupled device image sensor to be cooled to $-20^{\circ} \mathrm{C}$ (253K) from room temperature with a heat sink, Fig. 3. For room temperature, assume $20^{\circ} \mathrm{C}$.
The heat sink is to run $10^{\circ} \mathrm{C}$ warmer than the surrounding air, so the temperature drop across the thermoelectric cooler will be $50^{\circ} \mathrm{C}$. The ccd has case dimensions 20 by 15 by 5 mm and exactly fits on the cold plate. It has 20 pins, all of which are connected to circuitry at room temperature by copper wires 0.25 mm diameter and 100 mm long.

Both ccd and thermoelectric cooler assembly are contained in dry nitrogen. Further, the ccd runs from a 10 V supply with a current
consumption of 5 mA .
You are now in a position to estimate the total heat input to the cold plate. There are several terms involved. First is the active heat generated by the ccd due to its power consumption. In this case $P_{\text {active }}$ is simply the voltagexcurrent product, or 10 V by $5 \mathrm{~mA}=50 \mathrm{~mW}$.
As an aside, the temperature difference between the actual silicon slice and the cold plate is assumed to be zero. This means that that the thermal resistance, junction to case, is assumed very low. Usually, this is true, but there may be applications where the device dissipation changes in use, causing uncontrollable temperature changes in the silicon.
Remember that the sensor usually has to go outside the chip package! There are some photodiodes and ccds available which include a thermistor sensor bonded internally to the silicon chip to get around this problem.
There are now the passive components to be considered. These are the radiation, convection and conduction terms. You will need to know the exposed surface area of the ccd.
area $=20 \times 15=300 \mathrm{~mm}^{2}$ (front face)
$+20 \times 5 \times 2=200 \mathrm{~mm}^{2}$ (sides)
$+15 \times 5 \times 2=150 \mathrm{~mm}^{2}$ (ends)
Total exposed area, A is $650 \mathrm{~mm}^{2}$.
Radiation. The exposed surface area is treated as a black body which will absorb radiation emanating from the surroundings at room temperature. This term is calculated using the Stefan/Boltzmann radiation law;

$$
P_{\text {rad }}=A \sigma\left(T_{\text {hot }}^{4}-T_{\text {cold }}^{4}\right)
$$

where A is the area already calculated, $T_{\text {hot }}$ is the background temperature assumed as 293 K and $T_{\text {cold }}$ is the ccd temperature at 253 K . Symbol ρ is Stefan's constant, which is,

$5.67 \times 10-8 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}^{4}$.

Absorbed radiation is found to be 0.12 W . This is a worst case result since the surface will not behave perfectly as a black body, but it is obviously better to overestimate the heat absorbed.

Convection. Unless the unit is operated in a vacuum there will be circulating air currents inside the assembly ${ }^{\prime}$ The convection component is given by,
$P_{\text {conv }}=A \mathrm{~h}\left(T_{\text {hot }}-T_{\text {cold }}\right)$
where A is the exposed area, h is the convection coefficient is $21.7 \mathrm{~W} / \mathrm{m}^{2} \rho^{\circ} \mathrm{C}$. Temperatures $T_{\text {hot }}$ and $T_{\text {cold }}$ can be either ${ }^{\circ} \mathrm{C}$ or K . The convection term is found to be 560 mW .
Convection is often the largest contribution. It can be removed by operation in a vacuum; this also solves the problem of frosting up as the assembly is cooled past the dew point.

Conduction. The connecting wires to the ccd and temperature sensor form a heat leak which must be accounted for. Any retaining structure

Fig. 2. When used for cooling, a Peltier device produces heat that usually needs to be removed via a heat sink.

Dry Nitrogen enclosure

Fig. 3. Using a Peltier-effect device to cool a ccd.
used to hold the ccd in place will also need to be considered.
Allowing three sensor wires, there will be 23 copper wires going to the ccd assembly. The equation describing heat flow for conduction is,

$$
P_{c o n d}=\frac{k a}{l}\left(T_{h o t}-T_{c o l d}\right)
$$

where k is the thermal conductivity of copper is $386 \mathrm{~W} / \mathrm{m} /{ }^{\circ} \mathrm{C}, a$ is the area and l is the wire length, at 10 cm . In this case, area a is 23 times the cross sectional area of a 0.25 mm diameter wire.
Putting in the numbers shows that the conduction heat component will be 175 mW . Note that using wire of twice the diameter will increase this heat leak by a factor of four.
Thus the total heat entering the cold plate will be $P_{\text {active }}+P_{\text {rad }}+P_{\text {conv }}+P_{\text {cond }}$ giving a grand total of 0.905 W . This number should be treated as an approximation as all the terms have considerable errors. The active load could be in error by a factor of two either way since IC power consumptions are not that well defined as a rule. For the radiation term the emissivity has been assumed to be unity; the convection depends to some extent on the shape, angle and state of the surfaces.

Selecting a cooler from the range

Knowing the heat input, you are now in a position to consult the manufacturers' data sheets and choose a suitable thermoelectric
cooler.
The information is normally presented graphically by a set of curves. These relate the current flowing through the thermoelectric cooler and the heat input with the temperature differential produced.
Figure 4 shows a typical set of curves. It so happens that the shape is very much the same for all single-stage thermoelectric coolers so the one set can be used for many devices simply by normalising the axes to suit.
The y axis is the temperature drop produced typically normalised to $60^{\circ} \mathrm{C}$, so the $50^{\circ} \mathrm{C}$ needed in our application will be represented as a horizontal line at 0.83 .
The x axis is the thermoelectric cooler current normalised to $I_{\text {max }}$. The relevance of $I_{\text {max }}$ is that above this current the cooling effect actually falls off. Peltier cooling increases linearly with current but unwanted ohmic heating increases as the square of the current; at $I_{\text {max }}$, the ohmic heating becomes greater than the Peltier cooling.
In Fig. 4, the curves of the temperature/current characteristic for heat loads are normalised to $Q_{\text {max }}$. The outermost curve is with no heat load so at $I_{\text {max }}$ the temperature drop will be $\Delta T_{\text {max }}$. This is the top right point on the graph.
The curves are then shown in steps of 0.2 for $Q^{\prime} Q_{\text {max }}$. A finer spacing would have been better but Lotus 1-2-3 only plots six curves at a time. The situation with the heat input $Q=Q_{\text {max }}$ is represented at the bottom right corner where at $I_{\text {max }}$ the cooling effect has been reduced to zero by the heat load.
For copyright reasons, these curves are not prepared from any one manufacturer's data. Rather they are plotted from a simple formula developed by looking at the performance of several single stage thermoelectric coolers from various manufacturers;

$$
\frac{\Delta T}{\Delta T_{\max }}=2 \frac{I}{I_{\max }}-\left(\frac{I}{I_{\max }}\right)^{2}-\frac{Q}{Q_{\max }}
$$

As far as I know, this equation is not a recog-
nised one, but it does have some basis in reality. The first two terms on the right hand side represent Peltier cooling and ohmic heating respectively. When differentiated with respect to current, these reduce to zero at $I_{\text {max }}$.
The heat loading term goes inversely as the temperature drop as would be expected from the conduction and convection terms. Errors due to other terms are ignored.
The optimum thermoelectric cooler performance is obtained on the line marked 'optimum'; this line has a 1:1 slope for normalised temperature versus current.
For the example used here, $T / T_{\text {max }}$ is 0.83 so $I / I_{\text {max }}$ becomes 0.83 . The ratio $Q / Q_{\text {max }}$ is found by interpolating between the curves and is seen to be 0.14 . The required value of $Q_{\text {max }}$ is now available as 0.905 W heat input divided by 0.14 , which is 6.4 W .
Now you have enough information to refer to the manufacturer's literature and select a thermoelectric cooler having a $\Delta T_{\text {max }}$ of $60^{\circ} \mathrm{C}$ or more and a $Q_{\max }$ of 6.4 W , or slightly greater.
For example, the Marlow Industries MI 1061 has the following characteristics.

$\Delta T_{\text {max }}$	$64^{\circ} \mathrm{C}$ in dry nitrogen
$Q_{\max }$	6.4 W
$I_{\max }$	5.3 A at approximately 1.9 V
Cold plate	$13 \times 15 \mathrm{~mm}^{2}$

When these numbers are normalised and plotted on the curves, the following are derived,

$$
\begin{array}{ll}
\Delta T / \Delta T_{\max } & 0.78 \\
Q / Q_{\max } & 0.14 \\
& 0.72
\end{array}
$$

This is a point just above the optimum line giving the $50^{\circ} \mathrm{C}$ drop for a thermoelectric cooler current of 3.8 A . As a matter of interest the Marlow data sheet predicts a current of 3.7A to the accuracy to which the charts can be read.
I should point out that this thermoelectric cooler has a cold plate smaller than the ccd quoted; this will mean there is some exposed area at the back of the ccd which will behave

Fig. 4. Typical normalised Peltier device performance curves. Note that at $I_{\max }$ ohmic heating becomes greater than Peltier cooling.
as an extra heat leak. It may be necessary to go back and recalculate the heat input after the thermoelectric cooler has been chosen.
If there is any doubt as to whether a thermoelectric cooler will deliver the expected performance then it is essential to consult the manufacturer's data. This is especially true of the multistage units.
If you are working to a tight budget that allows you to buy only one thermoelectric cooler, it is worth getting one that can pump more heat into than is really needed in case your heat input estimate on the cold plate is too optimistic.
The M1 1023 has $Q_{\text {max }}$ of 9.2 W , and would allow for a margin of safety.

Choosing a heat sink

Possibly the most common reason for disappointing performance with a thermoelectric cooler is inadequate provision for removing heat from the hot plate.
Manufacturers usually quote the thermoelectric cooler parameters with a hot plate temperature of 25 to $30^{\circ} \mathrm{C}$ and anomalies can be expected if this temperature is wildly different.
A more insidious effect is the possibility of thermal runaway if the heat sink is too small. The thermoelectric cooler becomes less efficient as the temperature differential increases; this leads to a warming of the heat sink making matters worse.
There comes a point where the hot plate warms up at a faster rate than the cold plate is cooled; increasing the thermoelectric cooler current now causes a warming of the cold plate. This results in a phase reversal in the control loop and the system locks up at full current. In this state the only option is to switch off and wait for things to cool down.
This effect is separate from the effect of running the thermoelectric cooler above $I_{\text {max }}$ and can occur long before this current if the heat sink specification is seriously deficient.
Heat emerging from the hot plate is the sum of the dc power in and the heat entering the cold plate. To a first approximation, the thermoelectric cooler behaves as a resistor given by the volts at $I_{\max }$ which for the MI 1061 will be 0.36Ω.
This value is not perfectly constant for all conditions; the resistance appears somewhat higher for low values of $Q / Q_{\text {max }}$. But the difference can be ignored if an oversized heatsink is fitted. Thus the expected heat output in the example is,

$0.905 \mathrm{~W}+3.8 \mathrm{~A}^{2} \times 0.36 \Omega=6.1 \mathrm{~W}$

Knowing this number, the remainder of the problem is solved using normal heat sink design procedures. From the original problem details, the air temperature is $20^{\circ} \mathrm{C}$ and the heat sink $30^{\circ} \mathrm{C}$ so the maximum thermal resistance that can be accepted is $30-20^{\circ} \mathrm{C}$, i.e. $10^{\circ} \mathrm{C}$, divided by 6.1 W . A heat sink capable of dissipating $1.5^{\circ} \mathrm{C} / \mathrm{W}$ or more would be a good choice.

What about water?

As this is going to be quite a large heat sink, it may be worth considering a water loop. If the loop is using tap water at $15^{\circ} \mathrm{C}$ and you allow $2^{\circ} \mathrm{C}$ due to the thermal resistance from the hot plate to the water, the thermoelectric cooler now has to produce a ΔT of $37^{\circ} \mathrm{C}$.
Going back to the curves, you will find that the thermoelectric cooler current falls to 3 A and the total heat to be disposed of is 4.2 W . Remembering the heat capacity of water is 4.2 joules/cc/ ${ }^{\circ} \mathrm{C}$ this is a flow rate of only lec per second if the water is assumed to heat up by $I^{\circ} \mathrm{C}$ in crossing the hot plate.

Electronic considerations

Thermoelectric coolers of the same outside dimensions and thermal properties can be made from many small p-n junctions in series, or just a few large ones. Devices in the latter category are cheaper to make and, in my experience, slightly more robust.
However, the resulting resistance can be very low - less than an ohm as in this example. This can make designing the driving electronics less straightforward - especially if a power-efficient design is required. Simple linear circuits tend to dissipate a lot of power. Switch-mode designs naturally give much better results. Remember that
with very low resistance units the effects of long cable runs can seriously increase the overall power consumption.
The M1 1013 happens to be especially convenient, with its specification of 8.5 V at an $I_{\text {max }}$ of 1 A , but is quite expensive at around $£ 60$ in one-off quantities. It is also a bit small for this example. It is a single stage device with a $Q_{\max }$ of 4.8 W and $\Delta T_{\max }$ of $61^{\circ} \mathrm{C}$.

If the thermoelectric cooler is used in a situation, where it can be required to heat or cool, then bear in mind that the devices are actually much more effective at heating than cooling.
This has implications for the gain settings in the control electronics. The servo gain can be expected to be much higher with the device heating - so beware of servo oscillations.

Mounting a Peltier device

Thermoelectric coolers are brittle, fragile and expensive. The heat sink should be milled flat and the thermoelectric cooler held down with the minimum of compression.

Even though they are reversible, devices are always mounted with the wires on the hot plate to prevent a significant heat leak. They should never be subjected to tension or shear forces, or exposed to temperatures much above $100^{\circ} \mathrm{C}$ since the p-n junctions are sol-
dered together with special low melting point solder.

If heat is removed using a water loop then some consideration should be given to protecting the thermoelectric cooler in the event of a leak or pump failure. Farnell and RS stock some useful bimetallic cutouts which are suitable if size is not a problem.
Some devices have both plates metallised with copper enabling the unit to be soldered down. This enables a very good thermal contact to be made and has the extra advantage that no supporting structure is required thus minimising heat leaks to the cold plate. Needless to say use of the manufacturer's special solder is mandatory. Heat conductive glue (RS 850-984) is an option.
Understandably, you may be reluctant to solder together an expensive thermoelectric cooler and ccd until the system is proven. It is usually possible to devise some means of compressing the ccd - or whatever device to thermoelectric cooler and its heat sink. Inevitably though, the device used to compress the components adds to the heat input to the cold face.
If the system can be made to work in this state then results are always slightly better when the supports are removed and the components glued or soldered together.

GENUINE Government Surplus Oscilloscopes					
GOULD OS1100A DC-30MHz twin trace with Delay Timebase ONLY $£ 95$ plus VAT ($£ 111.63$ incl VAT) collected ${ }^{*}$	HAMEG HM1005 DC-100MHz three trace with delay timebase. ONLY £275 plus VAT (£323.13 incl VAT) collected*	TEK 465B DC-100MHz twin trace with delay timebase. ONLY £295 plus VAT (£346.63 incl VAT) collected*	IWATSU SS-5711 DC-100MHz four trace with delay timebase. ONLY £345 plus VAT ($\mathbf{£} 405.38$ incl VAT) collected ${ }^{\star}$	TEK 475 DC-200MHz twin trace with delay timebase. ONLY £395 plus VAT (£464.13 incl VAT) collected*	TEK 2445A DC-150MHz four trace with delay timebase. ONLY £1250 plus VAT ($£ 1468.75$ incl VAT) collected*

* Delivery and insurance $£ 9.95$ to UK mainland addresses

GENUINE Government Surplus Hewlett Packard 8640A Signal Generators at a "Never Better" price of ONLY £450 plus VAT (£528.75 incl VAT) collected (delivery and insurance $£ 14.75$ to UK mainland addresses. Frequency coverage to 512 MHz . AM/FM modulation. Super-Stable HP design

$30 \mathrm{~V}, 5 \mathrm{~A}$ bench power supply with dual displays -25% discount

For a limited period, Vann Draper is offering over 25% discount on the 305 LDD - a bench power supply featuring digital display of both voltage and current. Normally, the 305 retails at $£ 186.82$ including VAT but it is available to Electronics World readers filling in the adjacent coupon at the 25% discount price of $£ 139-$ fully inclusive of VAT and delivery.
Infinitely variable between 0 and 30 V - with coarse and fine controls - and adjustable between 0 and 5A, the 305 LDD has a ripple figure of typically 10 mV . Its load regulation is also excellent, at typically $\pm 0.2 \%$.
Accuracy of the supply's dual 3.5 -digit liquid crystal displays is 0.1 decimal digit. The output can handle a continuous short-circuit, overloading at $5.5 \mathrm{~A} \pm 0.5 \mathrm{~A}$. When the overload circuit is activated, it causes both audible and visual alarms, resettable via a push-button on the front panel.
Dimensions of the 305 LDD are 310 by 260 by 120 mm and its weight is 5.5 kg . Housed in a light-grey steel enclosure, the unit is built to comply with UL, CSA and TUV safety standards.
Please address orders and all correspondence relating to this offer to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE I 8 2PL, telephone on 0116 2771400, or tax 0116 2773945.

Please send me...... 305 LDD(s) at the fully inclusive special offer price of $£ 139$

Name
Company (if any)
Address

Phone number/fax
Total amount \qquad
Make cheques payable to Vann Draper Electronics Ltd, or, please debit my Master, Visa or Access card:

Card type (Access/Visa)
Card No
Expiry date

Please mail this coupon to Vann Draper Electronics, together with payment. Alternatively fax credit card details with order on 01162773945 or telephone on 01162771400.
Address orders and all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE 18 2PL.
*Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fox to Vann Draper Electronics

> New processors are on the horizon. Cyril Bateman tells you where to search if you want to know whether they will be worth the wait, and he relays news on hardware bugs, Microsoft problems and circuit CAD software - in particular filter design tools.

Intel has released a fix for both Classic and MMX processors to overcome the 'FOOF' bug, reported last month on CNET. This bug allows malicious code to stall or freeze up the computer, which cannot then respond to a CTRL-ALT-DELETE, or any other command. The only remedy is to switch off then reboot, which can result in lost disk clusters. Both Pentium and MMX Overdrive

processors are also affected, but not the $\mathbf{i 4 8 6}$, Pentium Pro or Pentium II.

Since code that prompts this bug does not exist in commercial software, Intel's report claims that users of commercial software cannot be affected. ${ }^{1}$ The company has now renamed this bug 'Invalid operation with Locked CMP X CHG 8 B instruction'. Full details of the problem, together with a software work-around to restore normal error handling of this instruction, are on its overview and technical description web pages, Fig. 1.
According to News.Com, the German magazine C't reports a further freeze-up bug affecting certain Cyrix 6×86 processors. ${ }^{2}$ This problem, which has been acknowledged by Cyrix, results in a freeze up if a series of legal instructions are issued in an illegal sequence. Since compilers should not allow such illegal sequences, this is considered to be a minor problem, and should not affect end users.

New processors: but are they better?

As Intel's plans for Pentium I/ processor speed increases are unveiled, criticism of minimal performance gains from the present 'slot l' versions emerge. An article on News.Com entitled "Pentium II: Dynamo or dud", presents critiques for both present and planned processor releases. ${ }^{3}$

By autumn 1998, processors on the current slot-1 motherboards using the 'LX' chipset are expected to run at $450 \mathrm{MHz} .{ }^{4}$ A version of the chipset without internal cache is planned for lower-cost systems.

The new slot-2 motherboard system will be aimed at

Where to surf

1 Intel Corporation
2 Cyrix chip hit by bug, too
3 Pentium II: Dynamo or dud?
4 Intel to Rev Pentium II Speeds
5 Microsoft under the gun
6 Nader calls MS "uniquely ruthless"
7 Bashing Windows
8 Sirius CD-ROM Collection
9 Icesoft I.C. Data library
10 National Semiconductors
11 Burr-Brown Corporation
12 GangGang Australian Shareware
13 QikDrawCad
14 MetaCrawler Search Engine
http://support.intel.com/support/processors/pentium
http://www.news.com/News/Item/0,4,16347,00.html
http://www.news.com/News/Item/0,25,16543,00.html
http://www.techweb.com/wire/news/1997/11/1114pentium.html
http://www.news.com/News/ltem/0,4,15416,00.html
http://www.news.com/News/ltem/0,4,16378,00.html
http://www.wcmh.com/lantimes/97/97nov/711b001b.html
http://www.tds-net.com/main/us/sirius.htm
http://www.semi.com.tw
http://www.national.com
http://www.burr-brown,com
http://www.ganggang.com.au
http://www.qikdraw.sa.com.au
http://www.metacrawler.com

Fig. 2. More and even faster Intel processors will soon arrive. Read these forecasts before committing yourself to a new system.
workstation applications. Based on the BX chipset and running a 100 MHz system bus, its processors, with perhaps 1 Mbyte of cache, will run initially at 400 MHz .
Both 'LX' and 'BX' chipsets support the new advanced graphics port, or AGP, providing vastly improved graphics capability, Fig. 2.
The combined effects of increased performance and demand for sub $\$ 1000$ desktop machines has resulted in Toshiba's decision to phase out its Infinia range and quit the consumer desktop machine market. The company will now concentrate on its Equium business desktop range. The Infinia inventory will be sold off, so watch out for bargains.

Microsoft under pressure

External pressures on Microsoft have increased. Reported by News.Com ${ }^{5}$, Ralph Nader has targeted Microsoft in an attempt to curb what he says are Microsoft's abusive business practices. Meanwhile IBM, Lotus, Oracle and Sun have united to produce an alternative to the 'Windows' interface, Fig. 3.
In an eight-page report on News.Com, ${ }^{6}$ Nader is quoted as accusing Microsoft of being "uniquely ruthless". Nader rose to fame by attacking the poor safety record of American cars in the seventies. His involvement may well trigger an escalation of evidence needed to support claims against Microsoft's supposed undue marketing pressures and Internet Explorer licensing.
The IBM, Lotus, Oracle and Sun consortium ${ }^{7}$ plans to produce a standard network computing desktop interface to be called 'Webtop'. It promises to let developers create applications to run on any Sun Java-based network computing device, including network computers, networked pcs and palmtops.
The specification will be licensed to developers and Oracle has stated that it will give it away for free. No delivery date is announced and details are scant as yet.

Circuit discoveries

I mentioned last month that a wealth of component data and circuit application notes can be found on Internet. While many of these articles can be downloaded as PDF files, Sirius ${ }^{8}$ now supplies these on cd-rom, which many

Fig. 3. National consumer groups join in the Microsoft bashing affray. Ralph Nader, the famed consumer campaigner from the seventies,
takes on
Microsoft.

Fig. 4. Basic third-order building block for a superb linear phase, anti-alias audio filter. Two blocks cascaded provide sharp cut-off, yet are flat within 0.2 dB to 20 kHz .

Fig. 5.
Application design support for Sallen-andKey filter design. Optimise your filters against component sensitivity and op-amp bandwidth.

Fig. 6. Sallen-and-Key or multiple feedback filter design software facilitates 'what-if?' explorations. Simply respond to the prompts in the upper screen, immediately find component values below.

Fig. 7. Dedicated for use with the 'UAF42' package; simply respond to the prompts. Push <F2> for an instant performance plot, <F3> to see required parts list.

Fig. 8. This well organised shareware repository specialises in Australian software. It provides links to many 2D specialist drawing packages.

users prefer. Sirius is part of TDS-NET, which I reported as a vast source of on-line datasheets and application notes in August 1997.
This cd-rom collection now hosts data on some 200000 integrated circuits and discrete devices. It also includes more than 235000 pages of information from 38 manufacturers world-wide. Four cds each containing 600 Mbyte of technical information make up the set. This collection is updated each two months.
Another extremely large data source, Icesoft can be found at the semi.com.tw Web site, based in Taiwan. ${ }^{9}$ This site provides links directly to the original maker's site so that you can download data or application notes. It requires you to pre-register on-line. You are then supplied with your password by e-mail. Mine arrived almost instantly by the way.
Since this site permits data searching by description, part number, classification or function, you need not know the manufacturers name, or the device's part number. Using this resource, I was able to identify and download six application notes needed for this column in just over a quarter of an hour.

Designing active filters

Designing active filters can require repetitive iterations of relatively awkward simultaneous equations. Traditional Spice-based simulators are of little help for switching filter designs and can be slow when designing continuous mode filters. Fortunately, application notes and dedicated software for designing such filters can be quickly downloaded.
One good overview of filter design, called "A basic introduction to filters - active, passive and switchedcapacitor", can be found in application note 779 from National Semiconductor. ${ }^{10}$ This 22 pages of advice can be downloaded as AN-779.PDF.
While switched capacitor filters can be extremely useful, a major draw back may be the level of noise breakthrough at the switching frequency. This can be reduced by adding passive or active time continuous filters, or it can be avoided completely by performing filtering using only time-continuous techniques.
Unfortunately, designing active time continuous filters requires analysis then choice of the appropriate circuit configuration and filter function. One particularly elegant technique, especially for use as an anti-aliasing filter, uses immittance conversion. This technique results in devices called generalised immittance converters or GICs.
The GIC method offers superior noise gain characteristics, and can be designed to ensure minimal amplitude and phase deviations over the desired frequency band. This method is frequently used as an anti-alias filter in high quality compact disc audio players.
For a good description with a design method for this technique, download application note AB-026A from Burr Brown. ${ }^{11}$ This details a worked example of a third order linear phase filter, easily cascaded, to provide an excellent sixth-order linear-phase response, Fig. 4.

Sallen and Key filters

Perhaps your needs are more modest and can be satisfied using the traditional Sallen and Key configuration. Two National Semiconductor application notes detail design techniques to overcome two sources of performance degradation found using Sallen-Key designs. ${ }^{10}$ These sources are sensitivity to component parasitic elements and
the finite gain bandwidth of the op-amps used. Application note OA-27, "Low-Sensitivity Lowpass Filter Design", outlines techniques for minimising the filter's sensitivity to component tolerances - especially with time and temperature changes. The companion application note OA-21. "Component Pre-Distortion for Sallen-Key Filters", deals with component changes needed to compensate for the op amps finite bandwidth. Both voltage and current feedback amplifier systems are supported, Fig. 5.

Simulation and design software

I mentioned earlier that continuous time filter design could be time consuming. Can this process be simplified using software?
One easy solution for both Sallen and Key and the quite similar multiple-feedback filters may be found using a piece of software called FilterPro. This can be downloaded from Burr-Brown. ${ }^{11}$ Supported by application note AB-034B, this dos-based program allows very quick and easy "what-if?" variations to be evaluated, and simulated results can be plotted on screen or via a printer, Fig. 6.
Burr-Brown produces an integrated circuit, comprising four op amps together with the precision on-chip capacitors and matched resistors needed to build statevariable filters. This device is called the UAF42. ${ }^{11}$ The company's Filter42 software, supported by application note $\mathrm{AB}-025 \mathrm{C}$, automates the design task.

The UAF42 provides three filter sub-circuits together with a fourth uncommitted precision op amp. Using this dos software. combinations of these sub-circuits can be used to quickly design low-pass, high-pass, band-pass and notch filten. Using "what-if?" variations, filter configurations, can be quickly simulated and the results viewed on screen, Fig. 7
Both filter software packages are contained within the downloaded file FILTER.EXE and accommodate Butterworth, Bessel and Chebyshev filter responses.

Towards a better searching

Many sites collate data for circuit simulation packages. But computer-aided drafting software, now almost mandatory for all designers, is less well serviced. One Australian site offers a large number of shareware packages originated by Australian writers, so is doubly different, making the Ganggang ${ }^{12}$ site one to visit. Their download link to QikDrawCad ${ }^{13}$ is worthy of evaluation. Fig. 8.
One search engine not previously visited is MetaCrawler. ${ }^{14}$ This tool is highly commended in a CNET search engine evaluation. Perhaps I should explain that metacrawler simultaneously passes your request to several major search engines, collates these results, discards redundant or broken links, before presenting your results. Advanced searching allows you to control the number and presentation of search results it presents.

HOW DOES YOUR EQUIPMENT MEASURE UP? ??? AT STEWART OF READING THERE'S ALWAYS SCOPE FOR IMPROVEMENT!

Solartron 7151 dum $6 \times$ digit teee catio SOLARTRON 7150 DWM 6\% digit IEEE E300 True RMS

STEWART of READING

110 WYKEHAM ROAD, READING, BERKS. RG6 IPL
 Telephone: (0118) 9268041. Fax: (0118) 9351696 Callers Welcome 9 am- 5.30 pm Monday to Friday (other times by arrangement) NEVER USED!! LMITED STOCK!!!

DMS 3850A Digital Storage/DMM

Handheld LCO display 2 Channel 50MS/S. Auto Range. 4 digit OMWC Capacitance/Frequency Counter. Battery Opration or externas 7.5-9VDC ie. AC Adaptor (Not suppliees). RS232 Comes in Black Carrying Pouch complete with 2 scope probes; DMM leacs; manual. New Boxed For Only £400

DTS 40 Digital Storage
Dual Trace 40 MHZ . $20 \mathrm{MS} / 5$ Storage. Cursors + On Screen Readout. Sweep Delay; Interface etc. etc. Supplied Unused in original box complete with 2 Probes \& Manual.

$$
\text { Amazing Value at } £ 400
$$

DTA 20/40/60 Dual Trace with At Magnification; TV Trig etc. etc. Lots of Speciication DTAZO Dual Trace 20MHZ: f225 DTA40 Dual Trace 4OMHZ - 12KV EHT: £300 DTA60 Dual Trace 60MHZ - 12KVB EHT: E375 All unused \& boxed supplied with 2 probes \& Manuad

DTV 1003 Channel 100MHZ Sweep Delay etc: $£ 425$ DTV 603 Channel 60 MHz Sweep Delay etc: £375 DTV 20 Dual Trace 20 MHZ: £200 All unused, boxed with 2 probes \& manual

NEW AND HARDLY USED

PANASONIC VP8177A FMIAM SIGNAL GENERATOR $100 \mathrm{KHz}-100 \mathrm{MHz}$; FM $0-100 \mathrm{KHz}$; Output $\cdot 19 \mathrm{~dB} \cdot 99 \mathrm{~dB}$ AM $0-60 \%$; 32 Preset Memory; Digtal Display Frequency \& Output. Panasonic vp7 637 stepo sigma Un-used $£ 750$ Generates Broadcast FM-RDSIARI. Preset memory: GPIB Used $£ 400 \quad$ Un-used $£ 700$

KENWOOD FLI 80A WOWFLUT TER METER $0.003 \%-10 \%$; Freq $3 \mathrm{KHz} / 3.15 \mathrm{KHz}$ RMS/AVERAGE PEAK: Werghted Filters; Digtal
Display of rom; 4 digit Freq Display of rpm; 4 digit Freq
Counter ($0.01 \mathrm{KHz}-9.999 \mathrm{KHz}$ Counter $(0.01 \mathrm{KHz}-9.99)$
$0.01 \mathrm{KHz}-55 \mathrm{KHz})$ Used $£ 400$ Un-used $£ 500$

POWER SUPPLY MOdel HSP3010 0-30Volts: 0-10 Amps Curent $\begin{array}{ll}\text { Used } £ 160 & \text { Limiting. } 2 \text { Meters. } \\ \text { Un-used } £ 200\end{array}$

6000wILL GVT427 DUAL GOOOWHIL GVTLE27 DUAL
CHANNEL AC MILLVOLTMETER ChanNel 10 y 300 V in 12 Ranges Frequency $10 \mathrm{~Hz}-1 \mathrm{MHz}$

GOOOWILL GAG-808G AUD:O GOOOWIL GAG-8O8GG AUD:0
GEMERATOR STre Square 10 Hz -1MHz $\boldsymbol{T} 5$ Rarges 0 IF Low Dstrion 5 Steps Ouvput Attenuitor Un-used E80 G000w W GFC 8010 FREQUENCY
COUNTER Range $1 \mathrm{~Hz}-120 \mathrm{MHz} 8$ COUNTER Range 1Hz-120MHz 8
Digit Display 15mv RmS Sensit wity

Un-used E7 ANALOSUE MUTIIMETER MOdel HC260TR ACDC Voits; $D C$
Current 10 mmps; 17 Ranges, Continuly Buzer; Trans stor Tester Current $10 \mathrm{Amps} ; 17$ Ranges, Continuty Buzzer; Trans stor Tester Stereo audio balance to unbalunceo conyertor le For Car Rado Setricing

Used Equipment - GUARANTEED. Manuals supplied
This is a VERY SMAL SAMPIE OF STOCK SAE or Tefephone for lists. Please check availabithty before ordering. CARRIAGE all units £16. VAT to be added to Total of Goods and Carriage.

Adaptive filters explained Continued from page 222

produced at the output of the decision device in the receiver. Accordingly, if this output was the correct transmitted sequence, it may be used as the desired response for the purpose of adaptive equalisation. Such a method of learning is said to be 'decision directed' because the receiver attempts to learn by employing its own decisions.
A final comment pertaining to performance evaluation: A popular experimental technique for assessing the performance of a data transmission system involves the use of an eye pattern. This pattern is obtained by applying the received wave to the vertical deflection plates of an oscilloscope, and a saw-tooth wave at the transmitted symbol rate to the horizontal deflection plates.
The resulting display is called an eye pattern because of its resemblance to the human eye for binary data. Thus, in a system using adaptive equalisation, the equaliser attempts to correct for intersymbol interference in the system and thereby open the eye pattern as far as possible.

Adaptive differential pcm

In pulse-code modulation, or pcm, which is the standard technique for waveform coding, three basic operations are performed on the speech signal. These are sampling, quantisation and coding.
The operations of sampling and quantisation are designed to preserve the shape of the speech signal. As for coding, it is merely a method of translating the discrete sequence of sample values into a more appropriate form of signal representation.
The rationale for sampling follows from a basic property of all speech signals - they are band limited. This means that a speech signal can be sampled in time at a finite rate in accordance with the sampling theorem. For example, commercial telephone networks designed to transmit speech signals occupy a bandwidth from 200 to 3200 Hz .
To satisfy the sampling theorem, a conservative sampling rate of 8 kHz is commonly used in practice.
In pcm, as used in telephony, the speech signal is sampled at the rate of 8 kHz , nonlinearly quantised, and the coded into eight-bit words, as in Fig. 8a). The result is a good signal-toquantisation noise ratio over a wide dynamic range of input signal levels. This method requires a bit rate of $64 \mathrm{kbit} / \mathrm{s}$.

Differential pulse-code modulation. Abbreviated to dpcm, this is another example of waveform coding. It involves the use of a predictor as shown in Fig. 8b).
The predictor is designed to exploit the correlation that exists between adjacent samples of the speech signal in order to realise a reduction in the number of bits required for the transmission of each sample of the speech signal. It does this while maintaining a prescribed quality of performance. This is achieved by quantising and then coding the prediction error that results from the subtraction of the predictor output from the input.
If the prediction is optimised, the variance of the prediction error will be significantly smaller than that of the input signal, so a quantiser with a given number of levels can be adjusted to produce a quantising error with a smaller variance than would be possible if the input signal were quantised directly as in a standard pcm system.
Likewise, for a quantising error of prescribed variance, dpcm requires a smaller number of quantising levels than pcm . Differential pcm uses a fixed quantiser and a fixed predictor. A further reduction in the transmission rate can be achieved by using an adaptive quantiser together with an adaptive predictor of sufficiently high order.

Adaptive differential pcm, or adpcm, can digitise speech with toll quality (eight-bit pcm) at $32 \mathrm{kbit} / \mathrm{s}$, Fig. 8 c).

Adaptive noise cancelling

As the name implies, adaptive noise cancelling relies on the use of noise cancelling by subtracting noise from a received signal, an operation controlled in an adaptive manner for the purpose of improved signal-to-noise ratio.
Ordinarily, it is inadvisable to subtract noise from a received signal because such an operation could produce disastrous results by causing an increase in the average power of the output noise. However, when proper provisions are made, and filtering and subtraction are controlled by an adaptive process, it is possible to achieve a superior system performance compared to direct filtering of the received signal.
Basically, an adaptive noise canceller is a dual-input, closed-loop adaptive control system as illustrated in Figs 9 and 1 . The two inputs of the system are derived from a pair of sensors - a primary sensor and a reference sensor.
The primary sensor receives an information-bearing signal $s(n)$ corrupted by additive noise $v_{0}(n)$. The signal and the noise are not correlated with each other. The reference sensor receives a noise $v_{1}(n)$ that is not correlated with the signal $s(n)$ but correlated with the noise $v_{0}(n)$ in the primary sensor output in an unknown way:

$$
\begin{aligned}
& E\left[s(n), v_{1}(n-k)\right]=0, \text { for all } k \text { and } \\
& E\left[v_{0}(n) v_{1}(n-k)\right]=p(k)
\end{aligned}
$$

where, as before, the signals are real valued and $p(k)$ is an unknown cross-correlation for lag k.
The reference signal $v_{1}(n)$ is processed by an adaptive filter to produce the output signal $y(n)$. Filter output is subtracted from the primary signal $d(n)$, serving as the desired response for the adaptive filter. The error signal is defined by:

$$
e(n)=d(n)-y(n)
$$

The error signal is used, in turn, to adjust the tap weights of the adaptive filter, and the control loop around the operations of filtering and subtraction is thereby closed.
Note that the information bearing signal $s(n)$ is indeed part of the error signal $e(n)$. Now, the adaptive filter attempts to minimise the mean-square value (average power) of the error signal $e(n)$. The information bearing signal $s(n)$ is essentially unaffected by the adaptive noise canceller.
Hence minimising the mean-square value of the error signal $e(n)$ is equivalent to minimising the mean-square value of
the output noise $v_{0}(n)-v(n)$. With the signal $s(n)$ remaining essentially constant, it follows that the minimisation of the mean-square value of the error signal is indeed the same as the maximisation of the output signal to noise ratio of the system.
The effective use of adaptive noise cancelling therefore requires that the reference sensor be placed in the noise field of the primary sensor with two specific objectives in mind.
One objective is that the information-bearing signal component of the primary sensor output is undetectable in the reference sensor output. The other is that the reference sensor output is highly correlated with the noise component of the primary sensor output. Moreover, the adaptation of the adjustable filter coefficients must be near optimum.

Noise-cancelling applications

Consider the two useful applications of the adaptive noise cancelling operation that follow.

Cancelling 60 Hz interference in ecg. In electrocardiography, commonly used to monitor heart patients, an electrical discharge radiates energy through a human tissue. The resulting output is received by an electrode.
The electrode is usually positioned such that the received energy is maximised. Typically, however, the electrical discharge involves very low potentials. Hence extra must be exercised in minimising signal degradation due to external interference.
By far the strongest form of interference is that of a 60 Hz periodic waveform picked up by the receiving electrode from nearby electrical equipment. Figure 10 shows a block diagram of the adaptive noise canceller used to reduce the harmonics.

Reducing acoustic noise in speech. At a noisy site, such as the cockpit of a military aircraft, voice communication is effected by the presence of acoustic noise. This is particularly serious when linear predictive coding is used for the digital representation of voice signals at low-bit rates.
The noise corrupted speech is used as the primary signal. To provide the reference signal, a reference microphone is placed in a location where there is sufficient isolation from the source of speech.

Echo cancellation

Almost all conversations are conducted in the presence of echoes. An echo may not be distinct. depending on the time delay involved. If the delay between the speech and the echo is short, the echo is not noticeable but perceived as a form of spectral distortion or reverberation. If. on the other hand, the delay exceeds a few tens of milliseconds. the echo is distinctly noticeable.
To see how echoes occur, consider a long-distance telephone circuit depicted in Fig. 11. Every telephone is connected to a central office by a two-wire line called the "customer loop.' The two-wire line serves the need for communications in either direction. However, for circuits longer than 35 miles, a separate path is necessary for each direction of transmission.
Accordingly, there must be provision for connecting the two-wire circuit to the four-wire circuit. This connection is accomplished by means of a hybrid transformer, commonly referred to as a hybrid.
Basically, a hybrid is a bridge circuit with three ports. If the bridge is not perfectly balanced, the 'in' port becomes coupled to the 'out port, giving rise to an echo, Fig. 12.
Basically, the principle of echo cancellation is to synthesise a replica of the echo and subtract it from the returned signal. Fig. 13, for only one direction of transmission.
The adaptive canceller is placed in the four-wire path near

the origin of the echo. The synthetic echo is generated by passing the speech signal from speaker A through an adaptive filter that ideally matches the transfer function of the echo path.
Passing through the hybrid, the reference signal results in the echo signal. This echo, together with a near-end talker signal x, constitutes the desired response for the adaptive canceller. Synthetic echo is subtracted from the desired response to yield the canceller error signal.
In any event, the error signal is used to control the adjustments made in the coefficiencies of the adaptive filter. For

Fig. 14. Block diagram of adaptive transversal filter.

Fig. 16. Details of the adaptive weight-control mechanism.

the adaptive echo cancellation circuit to operate satisfactorily, the impulse response of the adaptive filter should have a length greater than the longest echo path that needs to be accommodated.

Least-mean square algorithm

The well-known least-mean-square, or 1 ms , algorithm is an important member of the family of stochastic gradient-based algorithms.
A significant feature of this algorithm is its simplicity. It does not require measurements of the pertinent correlation functions, nor does it require matrix inversion. Indeed, it is the simplicity of the lms algorithm that has made it the standard against which other adaptive filtering algorithms are benchmarked.
The operation of the Ims algorithm is descriptive of a feedback control system. Basically, it consists of a combination of two basic processes. One is an adaptive process, which involves the automatic adjustment of a set of tap weights. The other is a filtering process, which involves: (a) forming the inner product of a set of tap inputs and the corresponding set of tap weights emerging from the adaptive process to produce an estimate of a desired response, and (b) generating an estimation error by comparing this estimate with the actual value of the desired response. In tum, the estimation error is used to actuate the adaptive process, thereby closing the feedback loop.
Correspondingly, it is possible to identify two basic components in the structural constitution of the lms algorithm, Fig. 14.
First you have a transversal filter, around which the Ims algorithm is built. This component is responsible for performing the filtering process. Second, there is a mechanism for performing the adaptive control process on the tap weights of the transversal filter.
Details of the transversal filter component are presented in Fig. 15. The tap inputs from the elements of the M-by-l tap input vector $u(n)$, where $M-1$ is the number of delay elements.
Figure 16 presents details of the adaptive weight-control mechanism. Specifically, a scaled version of the inner product of the estimation error and the tap input is computed. The result obtained defines the correction applied to the tap weight. The scaling factor used in this computation is called the adaptation constant or step size parameter.
The tap-weight vector computed by the 1 ms algorithm executes a random motion around the minimum point of the error performance surface. This random motion gives rise to two forms of convergence behaviour for the 1 ms algorithm convergence in the mean, and convergence in the mean square.
It is important to realise, though, that the 'mis-adjustments' are under the designer's control. In particular, the feedback loop acting around the tap weights behaves like a low-pass filter, with an average time constant that is inversely proportional to the step size parameter u.
Hence, by assigning a small value to u, the adaptive process is made to progress slowly, and the effects of gradient noise on the tap weights are largely filtered out. This, in turn, has the effect of reducing the mis-adjustments.

Designers interested in Zilog's dsp, comms and miocrocontroller solutions, contact Gothic Crellon at 3 The Business Centre, Molly Millars Lane, Wokingham, Berkshire RG41 2EY, tel. 0118978 8878, fax 01189776095.

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

ACTIVE

A-to-d and d-to-a converters

12-bit, 5 MHz sampling a-to-d. ADS803 from Burr-Brown is a 12 -bit converter offering a 69 dB s:n ratio and 82 dB to beyond the Nyquist frequency, sampling at 5 MHz . It has an internal reference and may be programmed for 2 V pk-pk input for best spurious-free dynamic range or 5 V pk-pk for lowest referred noise of 0.09 Isb rms, or any range between. An over-range flag for high input can be used to reduce the front-end gain to compensate. Digital error correction reduces differential linearity error to a typical ± 0.25 lsb.
Burr-Brown International. Tel., 01923 233837; fax, 01923233979.
Enquiry no 501
Delta-sigma a-to-d. Crystal Semiconductor's CS5529 16-bit, delta-sigma analogue-to-digital converter allows a reduction in size over types of converter using other echniques. This is a low-power device using a single 5 V , or $\pm 2.5 \mathrm{~V}$, rail, includes a digital filter and self and system calibration, the converter being controllable from a 3 V system. A 6-bit latch output allows control of switches and other devices and there is an SPI and Microwire three-wire interface for programming
bipolar/unipolar working, calibration and output word rate. Sequoia Technology Ltd. Tel., 0118 9258000; fax 01189258020.
Enquiry no 502

Digital signal

processors

Digital potentiometers. Replacing four mechanical slider potentiometers, Xicor's X9408 chip contains four non-volatile digital potentiometers, each having 64 settings, the X9418 version being a dual, 64 -setting type. Noise figure for both is $-140 \mathrm{~dB} / \mathrm{Hz}$, standby current $1 \mu \mathrm{~A}$. Sixteen eight-bi registers that hold the wiper positions in eeprom may also be used to store other data. Settings are carried out by means of a 400 kHz , two-wire interface and the devices may be programmed to return to previous settings at switch-on or to go to a preset starting point. End-to-end resistance is $10 \mathrm{k} \Omega$, each resistor in the array having a value of 158.5Ω. Xicor Ltd. Tel., 01993 700544; fax, 01993700533.

Enquiry no 503

Memory chips

Industrial serial eeprom. Microchip's 24 AAXX family of $1.8 \mathrm{~V} \mathrm{I}^{2} \mathrm{C}$ serial eeproms operate in the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range and are available in densities of 128 b to 16 Kb . Standby and active currents are 500 nA and $500 \mu \mathrm{~A}$, write speed $1-10 \mathrm{~ms}$, maximum clock frequency 400 kHz and a claimed one million erase/write cycles. There is hardware write protection and, barring accidents, the ability to retain data for 200 years. Arizona Microchip Technology Ltd. Tel., 0118 92155858; fax, 01189215835. Enquiry no 504

Microprocessors and controllers

otp controllers. Two

microcontrollers in the Temic C51 range work at 40 MHz at 5 V or 16 MHz at 3 V . TSC87C51/52 are compatible with existing C51s, these two offering 4 K and 8 K of eprom, being compatible with mask rom products. Temic has a factory programming service and the devices are provided with programming tools compatible with the Intel Quick-pulse algorithm. IEC Micromark Electronics Ltd. Tel., 0162876176 ; fax, 01628783799. Enquiry no 505

32-bit risc starter. NEC has a starter kit to introduce the V850 32-bit risc controllers. The EB-V853 is said to contain everything needed to allow people to start application development and testing the performance of the V853, which NEC says is one of the most flexible in the range. There is a compact cpu board with sram to hold the user's program, rom with a debugger monitor, a flash rom self-writing circuit, an RS232 port, connections to all cpu signals, a display and an 8 -bit input port with dil switch to simulate input signals. The V853 has an 8 -bit d-to-a converter accessible from the cpu board, five 16-bit counter/timers, an interrupt controller and a two-channel pulse-width modulator. Software provided includes a C compiler with C source debugger and demo program. NEC Electronics (UK) Ltd. Tel., 01908 691133; fax, 01908670290.
Enquiry no 506
C161 plus Newly introduced in the Siemens C161 range of 8-bit microcontroliers is the C161R1, which comes with a two-channel, multiplexed $\mathrm{I}^{2} \mathrm{C}$ bus and SPI interfaces, a usart, an 8-bit, 4-channel analogue-to-digital converter, timers and a real-time clock, which allows the device to be 'waken up' from standby. There are also 3 Kbyte of ram. At 16 MHz , execution time for a
command is around 125 ns . Siemens plc. Tel., 0990 550500; fax, 01344 396721.

Enquiry no 507
Motors and drivers
Variable-speed control ics. GEC Plessey offers two integrated circuits for variable-speed control of motors in 'white goods' and in general-purpose inverters. SA828 is a three-phase pwm generator for low-cost, efficient ac induction motor drives, the SA838 being a single-phase version, which is also used in uninterruptible supplies. The 828 switches at 24 kHz to give ultrasonic power switch operation and two standard waveforms, sine and sine + third harmonic, are available, the latter being a method of increasing motor power. No intervention by a microprocessor is needed unless frequency or waveform need to be changed. An evaluation board is provided. Gothic Crellon Ltd. Tel., 01734788878 ; fax, 01734776095. Enquiry no 508

PASSIVE

Passive components

Miniature Schottkys. Zetex ZHCS500 is an SOT-23 0.5A (6.75A pulsed) Schottky diode having a forward voltage of 550 mV . Reverse recovery takes 10 ns when switched from 500 mA to -500 mA and power dissipation is 330 mW at $25^{\circ} \mathrm{C}$ ambient. Zetex plc. Tel., 0161-622 4444; fax, 0161-622 4469
Enquiry no 509
Power Schottkys. Ixys has a new range of power Schottky diodes rated from 10A to 320A at 100 V in TO-220, SOT-227B and TO-247 packages. Guard rings permit a high $d v / d t$ and
junction temperature may be $175^{\circ} \mathrm{C}$ with guaranteed avalanche ratings. Applications lie in low-voltage rectification in smps and as free-wheel diodes in low-voltage converters. GD Rectifiers Ltd. Tel., 01444 243452; fax, 01444879722. Enquiry no 510

Snap-in electrolytics. Nover's LS snap-in electrolytics combine a ripple rating of up to 4.8 A and a rated life of 2000 h at $85^{\circ} \mathrm{C}$ in a $22-35 \mathrm{~mm}$ diameter snap-in case. Values are in the $47 \mu \mathrm{~F}-22000 \mu \mathrm{~F}$ range at $\pm 20 \%$ tolerance and at voltages between 16 V and 400 V ; leakage current is under 0.01CV. Anglia. Tel., 0.1945 474747; fax, 01945474849. Enquiry no 511

PCMCIA transformers. Transformers by Pulse, said to be the smallest available, are designed for Type 2 PCMCIA cards and are mounted in the middle of a card by pick and place equipment. Each transformer in the range will carry out transmit and receive functions and matches

Terminal blocks. High-current terminal blocks in the Phoenix Contact MKDSP10 range carry 57 A at 690 V . Pitch is 0.4 in and each position has two pins to increase mechanical stability and enhance the current capacity. Two and three pole versions are available and interlock to allow the construction of larger blocks. They accommodate solid wire of 0.5 mm to $1.6 \mathrm{sq} . \mathrm{mm}$. and multi-stranded wire to 10 sq. mm , versions also being able to take 2.3 mm test probes. Onboard Electronics Ltd. Tel., 01256 818222; fax, 01256840610. Enquiry no 512

transceiver chips made by the leading companies. Silicon Concepts Lid. Tel., 01428 751617; fax, 01428 751603.

Enquiry no 513

Audio products

Stereo, 115 dB a-to-d. For
professional use, AKM's AK5392
128 -times oversampling
analogue-to-digital converter uses the company's dual-bit technique to retain the low distortion of single-bit devices but with a wider dynamic range. AK5392 resets itself when power is applied and phase detection of the clock ensures correct synchronisation, which is useful when several devices run together in slave mode. Sampling rate is 54 kHz and $\operatorname{sinad} 100 \mathrm{~dB}$ (s:n 115 dB). Dynamic range is 115 dB , and stopband attenuation 110 dB . Asahi Kasei Microsystems Lid. Tel., 01923 226988; fax, 01923226933.
Enquiry no 514

Navigation systems

GPS development. GEC
Plessey has a development system for the hardware and software of a 12 -channel Global Positioning System receiver. GPS Architect consists of a GPS receiver board using the GEC Plessey GP2000 chipset, the GP2010 rf section, a DW9255 saw filter, the GP2021
12-channel correlator and an ARM60-B 32-bit risc processor. There is enough rom and ram to avoid memory shortage during development and three serial ports are provided for connecting to a pc to assist with software downloading, differential GPS correction data input and display. An active antenna is provided, as are power supply and cables. The C source code may be embedded in a receiver. Even having acquired 12 channels, half the processing power is unused to allow the equipment to be combined with comms systems. Gothic Crellon Ltd. Tel., 01734 788878; fax, 01734776095.
Enquiry no 515

Connectors and cabling

Parallel interface cables. GTK has a range of high-speed, bidirectional parallel interface cables for connection to IEEE 1284 pCs and peripherals. They use 25W D-type, 35W Centronics and 36W mini Centronics connectors and are made in lengths from 1.5 m to 10 m .
Temperature rating of the double-shielded cables is $-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ and they withstand 500 V rms for a minute. Current rating is 1 A . GTK (UK) Ltd. Tel., 01344 304123; fax, 01344301414.

Enquiry no 516
Fine-pltch connectors. From Flint comes a range of 0.5 mm pitch connectors in 130 combinations of ways, heights and configurations. JAE WR connectors are available in 30-120 circuits and may be stacked to give paraliel board-to-board spacing from 4 mm to 9 mm . They are made in right-angled and vertical styles and a 'floating' type takes up misalignments of up to 0.25 mm in X and Y planes. Current handling is 0.5 A (0.3 A for the floating type), minimum insulation resistance $100 \mathrm{M} \Omega$ and dielectric voltage up to 500 V ac. Contact resistance is $50 \mathrm{~m} \Omega$. Flint Distribution. Tel., 01530 510333; fax, 01530 510275.

Enquiry no 517
D-type subminiatures. Subminiature D connectors by ITT Cannon are available with combinations of pin types, being modular in form. Options include variations in current capacity up to 40A, 50Ω or 75Ω coaxial, high voltages and optical fibre, all with choice of crimp or solder connection and straight or right-angle pins. There are various materials and finishes for the shells and the connectors meet NASA, ESA and medical equipment requirements for outgassing and residual magnetism. PEI-Genesis UK Tel., 01797 322003; fax, 01797 321589.

Enquiry no 518

Parallel-to-SCSI connector. TransIT is a parallet-port-to-SCSI interface for connecting portable SCSI equipment such as removable hard disks, cd-roms and scanners to a notebook or pc parallel port. Data transfer is at the rate of $900 \mathrm{~KB} / \mathrm{s}$ with a burst rate of $1.5 \mathrm{MB} / \mathrm{s}$. Power is by SCSI Term Power and up to seven SCSI devices may be daisy-chained. Drivers for dos, Windows and OS/2 are included. Shuttle Technology Ltd. Tel., 0118 9770441; fax, 01189771709.
Enquiry no 519

Displays

Wide-angle lcd. NEC's
NL6448AC33-24 is a 10.4 in flat-panel lod that has a viewing angle of 80° from normal in any direction, that is 160° overall; in this region, there is no preferred viewing angle. It is a 640 by

480 pixel screen and a built-in digital interface to give 262000 colours. The display is nearly three time as bright as a typical pc panel, luminance being $190 \mathrm{~cd} / \mathrm{m}^{2}$ and contrast ratio 150:1. Sunrise Electronics Ltd. Tel., 01908 263999; fax, 01908263003. Enquiry no 520

Display driver kits. Flat-panel display driver kits from Anders allow users to run any ttt or stn graphics display in minutes, using a Goldstar panel or any other. Kits include everything needed to drive the display: driver, interconnection, controller board and bios and any cables needed, the kit being configured for the specified panel. A family of controller cards in the kit are for ISA, VESA and PCI buses, which covers every current type of panel. Both low-voltage differential signalling and Panelink cards are available to allow a high-resolution display to be driven remotely. Anders Electronics plc. Tel., 0171 3887171; fax, 0171 3872951.

Enquiry no 521
100-led bargraphs. New led bargraph displays by Lumex contain 101 or 103 led chips in a 106 mm -long package, providing a fast display comparable in accuracy with slow analogue meters. The chips are mounted on 1 mm centres and overall height is 5.99 mm . Colours are red, green and yellow in combination and lenses and drivers can be specified. Lumex Opto/Components Inc. Tel., 001847 359-2970; fax, 001847 359-8904.
Enquiry no 522
Thin ttt monitor. GTT produces the GTM-121 thin-film transistor liquid-crystal monitor, which is a 12.1 in active-matrix type having a resolution of 800 by 600 and giving 262144 colours; the range of sizes is now complete at 9.4 in to 15.1 in . A full range of controls are incorporated and a non-volatile memory stores size and set-up functions. As an option, a resistive touch facility may be added. Craft Data Ltd. Tel., 01494 778235; fax, 01494773645.
Enquiry no 523

Bench multimeter. Thurlby Thandar's Model 1604 benchtop multimeter is an auto-ranging instrument with a large, bright display. Scale length is 40000 and it offers true rms
measurement in the audio band, a basic accuracy to within 0.08% and resolutions of $10 \mu \mathrm{~V}, 10 \mathrm{~m} \Omega$ and $0.1 \mu \mathrm{~A}$. Functions include relative measurement, max/min storage and a function to allow readings to be held on display each time a new test point is probed. Frequency up to 40 kHz may be measured to within 0.1 Hz and there is an isolated RS-232 interface to a pc; data logging software is available. Thuriby Thandar Instruments Ltd. Tel. 01480412451 ; fax, 01480 450409.

Enquiry no 524

Hardware

Thin fan. Sanyo Denki's San Ace 140L long-lived cooling fan has been slimmed down from its earlier 51 mm and is now 38 mm thick, being 140 mm square. It will, it is said, live for 100000 h at $60^{\circ} \mathrm{C}$ and is made for use on $12 \mathrm{~V}, 24 \mathrm{~V}$ and 48 V supplies in $1900 \mathrm{rev} / \mathrm{min}$ or $2600 \mathrm{rev} / \mathrm{min}$ versions. Maximum air flow from the faster versions is $4.5 \mathrm{~m} 3 / \mathrm{min}$. EAO-Highland Electronics Ltd. Tel., 01444 236000; fax, 01444236641.
Enquiry no 525
Racks. Vero's Network Support Rack is a floor-standing enclosure designed to hold several computers in tower or desk-top cases, monitors, keyboards and an uninterruptible power supply; it also contains a fire protection system. Cable management, power distribution, thermal management and filtering are all catered for. The rack can hold a 500 kg load, comes in heights of 37 U and 42 U and in widths of 600 mm and depths of 600 or 800 , being compatible with 19 in and ETSI racking in combination. High-quality locks are used and, optionally, powered locks operated by keypad. Vero Electronics Ltd. Tel., 01703 266300; fax, 01703265126.
Enquiry no 526

Test and measurement

Digital pressure measurement.
Digital manometers by Yokogawa, the
MT120/110, use a silicon-resonant sensing technique to achieve an accuracy within $\pm 0.02 \%$. In addition to the facilities found in the MT110, the MT120 also has a digital multimeter to measure 1.5 V dc and $4-20 \mathrm{~mA}$, a 24 V dc power supply for transmitters and sensors and percentage error display for automated field calibration. Both measure gauge pressure to 3000 kPa , absolute and differential pressure down to 1 kPa in gases and liquids. A 1024-point memory is incorporated for data and calibration storage. Martron Instruments Ltd. Tel., 01494 459200; fax, 01494535002.
Enquiry no 527
Torque/angle measurement. From Schatz GmbH comes the Blue Box, a portable torque and torque/angle measuring instrument designed to work with Autocode transducers, which automatically transmit their vital statistics to the instrument, including range, model, serial number, calibration details and date of calibration. Measurement is in the $1 \mathrm{Nm}-10000 \mathrm{Nm}$ range and all the

Optical encoder output. Control

 Transducers has a range of small, add-on pcbs tocomplement its family of optical encoders, conferring the facility to use a standard encoder with a range of output features for which a special board often must be made. Output features available from eight types of board include a line driver, quadrature decoding, clock and direction of motion converter, the ability to work from $7-32 \mathrm{~V}$ rails and several others. The boards are very small and are mounted in layers to give a compact assembly. Control Transducers. Tel., 01234 217704; fax, 01234217083. Enquiry no 528
above information is supplied to the Blue Box with no intervention on the part of the user. Until, that is, an inappropriate transducer is connected, when a warning is given. Results are printed or passed by way of an RS232 interface to a pc. The instrument may also be operated as a slave from the pc. Scientific Electro Systems Ltd. Tel., 01702 335174; fax, 01702 431105.

Enquiry no 529

Literature

PCI/ISA cards. Signal acquisition and signal generator cards for PCl and ISA bus are available from LeCroy for use with pcs and are described in a new short catalogue. There are 14 cards with up to 16 Mbyte of acquisition memory, transferring data to pc dram at $100 \mathrm{Mbyte} / \mathrm{s}, 8$-bit cards sampling at $500 \mathrm{Msample} / \mathrm{s}$ with 2Mbyte of memory and 12 -bit cards sampling at up to $100 \mathrm{Msample/s}$. LeCroy Ltd. Tel., 01189 344882; fax 01189348900.

Enquiry no 530

Materials

Death to solder balls. Carapace EMP 110 LGXM is liquid photoimageable soldermask that eliminates solder balls forming during the reflow process, by which time it is too late to do much about it. Cara... combines a light colour mask with a matt finish to make a solder mask to resist ball adherence, thereby increasing the chances of obtaining high yields in ball-grid array device mounting. The roughness of the surface and the lower absorption of thermal energy in the light colour are responsible for the mask's performance. Electra Polymers and Chemicals Ltd. Tel., 01732 811118; fax, 01732811119
Enquiry no 531
Cleaner. EnSolv spray cleaner is a non-flammable, fast-drying type with low surface tension for good penetration. It was developed for use as an aircraft cleaner and is very

suitable for use with electrical components and as either immersion or spot cleaning for populated boards. It is an economical, 'green', low toxicity replacement for 1.1.1. trichlorethane and HCFC141b. Croftshaw Solvents Ltd. Tel., 0181 508 5564; fax, 01815085559.

Enquiry no 532

Printers and controllers

Thermal printer. Offering an improvement in speed, noise (55dB) and reliability over types using impact printing, Panasonic's EPL1901S2 thermal printer is meant for use in hand-held terminals, point-of-sale and other ticket-printing applications; it is 82.6 by 41 by 15.8 mm in size and weighs 60 g . If needed to replace an impact printer, there is a mounting plate for the purpose. Printing speed is 6.8 lines $/ \mathrm{s}$ and resolution $12 \mathrm{dots} / \mathrm{mm}$ and paper widths up to 58 mm .
Panasonic UK Ltd. Tel., 01344 853157; fax, 01344853081

Enquiry no 533

Production equipment

Bare board tester. Polar Instruments has the CITS500
controlled-impedance test system for use in pcb production. It will verify both single-ended trace impedance and the differential impedance of balanced traces, simply and with none of the setting up needed with conventional time-domain reflectometry. The system is controlled by Windows-based software to measure the reflection of fast pulses, in which the user selects the appropriate test file, positions the probes on being prompted and clicks the mouse or footswitch, a series of tests progressing automatically to give a graphical view of the characteristic impedance against a pass profile. Results are also present in opto-isolated rear-panel signals for use by a factory's data-logging system and may be printed. Many
accessories are supplied in the package or are optional. Polar Instruments Lid. Tel., 01481 53081; fax, 0148152476. Enquiry no 534

Board inspection. Electronic assemblies are simpler to inspect using the Alpha 3Di twin-camera system. The two cameras give vertical and angled views of the subject, the angled one providing dual magnification, controlled by a foot switch, and 360° rotation. Variable halogen illumination is applied via an optical-fibre cable and the $X-Y$ table has an anti-static mat and wrist strap connection is provided. Video appears on the rear of the 250 mm PAL monitor, with output for video printer or built-in computer for storage of screen images in .BMP files. Alpha Metals. Tel., 0181 6656666; fax, 0181 6654734.

Enquiry no 535

125mA charge pump. Maxim's MAX1680/1 are high-frequency charge pump voltage converters supplying up to 125 mA when doubling or inverting inputs of $2-5.5 \mathrm{~V}$ and meant to supply analogue measurement and amplifier circuits. Both need only two ceramic capacitors, total board area needed being 0.06 sq .in. The 1681 operating frequency is selectable at 500 kHz and 1 MHz , while the 1680 choice is 125 kHz or 250 kHz . Output resistance of both types is 3.5Ω. Maxim Integrated Products UK Ltd. Tel., 01734303388 ; fax, 01734305511. Enquiry no 536

Power supplies

Pos/neg 3.5A regulator. MSK 5200 3.5A voltage regulators are a series of 350 mV dropout, fixed-voltage devices that combine positive and negative outputs in one package. Output combinations are based on $3.3 \mathrm{~V}, 5 \mathrm{~V}$, $5.2 \mathrm{~V}, 10 \mathrm{~V}$ and 12 V positive and 5 V , $5.2 \mathrm{~V}, 10 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V negative, all outputs being internally trimmed to within $\pm 1 \%$. Internal short-circuit and thermal protection are provided and an electrically isolated case is used. Ashwell Electronics Lid. Tel., 01438 364194; fax, 01438313461.
Enquiry no 537
600 W module. Intended for use in racks, file servers and base station transmitters, Coutant Lambda's PD600 single-output ac/dc power supply module includes EN55022 level B filtering, power factor correction, monitoring and signal-generation as standard. To form a complete power source, only a pcb, heat sink and output connector are needed, the whole being able to fit into a 3U rack or 1U tray. In the event of another power supply failing, the PD600 will operate as the main supply. Regulation and stabilisation are both 0.5%, ripple 200 mV maximum, inrush current 25A and typical input current 3-4.2A depending on input voltage. Coutant Lambda Ltd. Tel., 01271 865656; fax, 01271 864894.

Enquiry no 538

A.c. supplies. Chroma 6400 a.c. power supplies are programmable in frequency from 45 Hz to 500 Hz , the range consisting of five models for 375VA to 3000VA output power at voltages from $0-150 \mathrm{~V}$ to $0-300 \mathrm{~V}$. Distortion is under 0.3% and the pic provides a power factor of 0.98 . Programming is by way of GPIB, RS232C and analogue interfaces and there is protection against the natural hazards of power supplies, including a fan. Glassman Europe Ltd. Tel., 01256883007 ; fax, 01256883017.

Enquiry no 539

1.25 V adjustable regulator.

Semtech's SC431 is an adjustable
shunt regulator and is a direct

Please quote "Electronics World" when seeking further information

replacement for the other 431s, having an operating current range of $100 \mu \mathrm{~A}-150 \mathrm{~mA}$ and adjustable output voltage of $1.24-20 \mathrm{~V}$ and $2.5-37 \mathrm{~V}$ by means of two external resistors. Output impedance is 0.25Ω and the very sharp turn-on characteristic is like that of a zener diode. Voltage tolerances of the device is $0.5 \%, 1 \%$ and 2% and there is a choice of four packages. Semtech Lid. Tel., 01592 773520; fax, 01592774781.
Enquiry no 540

Protection devices

Battery protection. PolySwitch LR4 resettable fuses by Raychem provide protection against current overload in

Mass storage
 systems

Rewritable optical disk drive.
Panasonic has launched a portable version of its PD drive, the 650Mbyte rewritable optical disk and cd-rom drive. LF1500EPB is meant for removable secondary data storage and cd drive for the notebook market; since it uses the standard 25 -way parallel printer port, it is also suited to shared use for multiple office pcs. It will be compatible with Panasonic's DVD-ram drives shortly to be introduced, which will read and write to existing PD disks.
Software is supplied. Controls on the unit allow its use as an audio player. Panasonic Industrial (Europe) Ltd. Tel., 01344853827 fax, 01344853313.
Enquiry no 541
battery packs, being a third the size, Three times faster acting and having half the resistance of earlier PolySwitch devices, and are of a new design to satisty the requirements of oems using AAA cells. Hold current ratings are up to 7.3A in the LR4 family and maximum operating voltage $15-20 \mathrm{~V} \mathrm{dc}$, with a maximum interrupt current of 100A. Also introduced are TAC devices for AAA NiCd cells, having a new cap design for use on batteries with or without buttons. There are three devices: the 1.7A TAC170-09, the 1A 100-09 and the 2.1A 210. Raychem Ltd. Tel. 01973 572692; fax, 01973572209. Enquiry no 541

Solderable voltage suppressors. Harris's new ML and MLE leadless, multi-layer transient suppressors are made using a termination process that enables the devices to meet solderability needs of conventional surface-mounting processes and testing. The new process allows nickel plating of only the end terminations while retaining the 50% to 70\% fillet height needed for gold testing. They replace larger zener diodes and the leadless construction eliminates the normal lead parasitics to allow the suppression of very fast transients, complying with IEC 1000-4-2, MIL-STD-883C and others. Resistance when on is $1-10 \Omega$. Harris Semiconductor UK. Tel., 01276 686886; fax, 01276682323. Enquiry no 542
Switches and relays
Miniature relay. G5V-2, a miniature signal relay by Omron has

double-throw, double-pole contacts handling $1 \mu \mathrm{~A}-2 \mathrm{~A}$ and up to 125 V ac or dc. Two models are available: the -2 low-sensitivity version handling up to 60 W with a 500 mW coil rating for operating voltages from 4.5 V dc to 24 V dc or 580 mW at 48 V dc. The G5V-2H1 type switches 24 W with a coil rated at 150 mW from 4.5 V to 12 V $\mathrm{dc}, 200 \mathrm{~mW}$ at 24 V and 300 mW at 48V. Packages are sealed and measure 11.5 mm high by 20.5 mm by 10.1 mm . Onboard Electronics Ltd Tel., 01256818222 ; fax, 01256 840610.

Enquiry no 543
Rt relays. Teledyne's RF3XX series bypass relays, which operate in the band $0-3 \mathrm{GHz}$, are provided with an internal bypass link to avoid the need for a bypass link on the board. An external link is unavoidably longer involves the use of differing materials in the path and several direction changes for the signal - a bad idea at 3GHz. The relays provide the bypass in normally open and normally closed versions. Repeatability is $\pm 0.1 \mathrm{~dB}$. Package is TO-5, with a ground pin Enquiry no 545

Television components
Digital satellite interface.A network interface module is announced by GEC Plessey, forming a reference design for the front end of a set-top box for digital satellite television reception. It complies with the dvd standard, accepting $950-2150 \mathrm{MHz}$ L-band in and producing MPEG2 transport stream out, no alignmen being necessary. In five ics, the L-band input is converted to a 485 MHz if, which is I/Q processed

Computer

 board-level productsDual Pentium motherboard. Soyo has a motherboard for dual Pentium systems up to 333 MHz which uses the latest high-speed graphics interface, the Accelerated Graphics Port, and the intelligent i/o bus. The SY-6KD is based on the 82440LX chipset and is in the standard ATX form and, in addition to the AGP, has flive PCl and two ISA expansion buses. There are four 168 -pin dimm sockets for up to 1Gbyte of dram. An AMI PCVI bios supports multiple boot from IDE, SCSI, cd-rom or floppy disk and an optiona Lan-Desk Client Manager is also available for networking. Soyo UK Lid. Tel., 0181 4819720; fax, 01814819725. Enquiry no 544
down-converted to give I and Q channels at 40 MHz bandwidth. Each channel is then passed to an a-to-d converter and to a qspkfiec decoder to produce the MPEG data.
Microphony is reduced by the use of printed inductors. Visual Basic evaluation software is provided and generic C coding for production. An evaluation kit is available. Gothic Crellon Ltd. Tel., 01734 788878; fax 01734776095.

Enquiry no 546

Transducers and sensors

Fibre sensors. Matsushita's UZF range of fibre sensors is increased by three specialist types with long-range sensing amplifiers and a large array of heads. They use the UZFRE21 diffuse reflective head with a 0.8 mm diameter sleeve on an M3 screw thread, giving a maximum range of 13 mm and the facility to detect a standard target of 0.01 mm diameter. The UZFRH7 has a stainless steel armoured sleeve and optical-fibre cable operating at temperatures between $-60^{\circ} \mathrm{C}$ and $350^{\circ} \mathrm{C}$, sensing at a range of 88 mm . Lastly, the UZFRL4 is a fixed-focus type to detect any object, regardless of colour or surface condition, at a range of $4.5-8 \mathrm{~mm}$. Matsushita Automation Controls Ltd. Tel., 01908 231555; fax, 01908231599.

Enquiry no 547
Light-dependent resistors. Invac cadmium sulphide Idrs come in miniature open-frame and enclosed versions and have a response matched to that of the human eye at 560 nm to make them suitable for lighting control. VAC54 is of the miniature type with epoxy coating and operating from $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ at up to

150 V dc. Minimum dark resistance is $20 \mathrm{M} \Omega, 105 \mathrm{k} \Omega$ at 10 lux; rise and decay times are 20 ms and 30 ms . Anglia. Tel., 01945 474747; fax, 01945474849.

Enquiry no 548

COMPUTER

Data acquisition

PClbus cards. United Electronics PowerDAQ data acquisition cards are said to be the first to fully utilise the PCI bus, thereby removing bottlenecks inherent in the ISA bus. The cards are based on a 24 -bit Motorola DSP56301 running at 66 MHz and having an on-chip PCI interface; the dsp processor connects via a high-speed internal data bus to the system logic, which is in a fpga. Amplicon Liveline Ltd. Tel., 0800525 335 (free); fax, 01273570215. Enquiry no 549

Programming hardware

Production programmer. Stag has a new version of the P803 programmer for use in production, this one using two, eight-socket plug-in modules to increase its flexibility. It will now gang-program between eight and
sixteen 3 V or 5 V devices simultaneously. For stand-alone or remote working, the P803 has an embedded processor for rapid programming; sixteen 28 FO 0 flash chips can be processed in six seconds. Ram is 4 Mbyte as supplied and may be expanded to 16 Mbyte using standard simms. The device library can be updated and is in non-volatile memory. There are visual and audible alarms to indicate completion; software for operation and data comms is available for all types of computer. Stag Programmers Lid. Tel., 01707 332148; fax, 01707 371503.

Enquiry no 550

Software

Neural networks. Neuropredictor by SignalBox is particularly good at pattern recognition and prediction and is an advance in that it cost less than earlier examples of this type of software and uses rather less expensive hardware than of yore, running under Windows on an ordinary pc. This network is based on radial basis function architecture, in which locally tuned, overlapping receptive fields allow training of one part of the net without having another part regress. In this way, learning is easier, ability to find patterns and
trends, even in the presence of noisy data, is enhanced and training is faster. So much faster, in fact, that the software can be run on an unmodified pc to give answers to 'what if?' input. SignalBox Ltd. Tel., 01709 898989; fax, 01709897787.
Enquiry no 551
Improved LabWindows. National Instruments has improved the virtual instrument development software LabWindows/CVI in version 5.0. In the new version, an Instrument Driver Wizard generates VXI plug\& play instrument drivers automatically, these drivers reducing test times by over 50% and keeping track of the virtual instrument settings to reduce traffic on the bus. A Channel Wizard interactively defines input transducers, handling conversion and scaling. Among other enhancements is the multithreading facility, which enables data to be acquired or other continuous operations to be performed separately, apart from other tasks the processor is carrying out; full priority is afforded the acquisition board in this way and no data is lost. National Instruments UK. Tel., 01635 572400; fax, 01635 524395.

Enquiry no 552

ADVERTISE FREE OF CHARGE

Subscribers* to Electronics World can advertise their electronic and electrical equipment completely free of charge

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words. Remember to include your telephone number as one word. You must include your latest mailing label with your form. * This free offer applies to private subscribers only. Your ad will be placed in the first available issue. This offer applies to private sales of electrical and electronic equipment only.

Trade advertisers - call Joannah Cox on 0181-652 3620
All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

Please send your completed forms to:
Free Classified Offer: Electronics World, L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

What are the best shapes and materials for woofer enclosures? John Watkinson relays his view of the best options.

As the wavelength of sound at low frequencies is long compared to the dimensions of a typical loudspeaker drive unit, an unbaffled driver is ineffective as air simply flows from one side of the diaphragm to the other as it moves. The solution is to enclose one side of the diaphragm so that this cancellation cannot occur.
A sealed enclosure is the only one which allows an accurate phase response. The sealed enclosure is sometimes referred to as an infinite baffle, but this is quite incorrect. Fig. 1a) shows that radiation from a driver in a true infinite

baffle is into an acoustic half-space, whereas from a sealed box 1b) it is omnidirectional into a whole sphere. The acoustic impedance experienced by the driver, and hence its output, is quite different.
The sealed enclosure acts as an air-spring in parallel with the stiffness of the driver's own suspension. This raises the fundamental resonance of the system, raising the lowest reproducible frequency.
Resonant frequency can be reduced by increasing the diaphragm mass, but this results in an inefficient unit. Another approach is to make the stiffness of the drive unit very low so that the air-spring dominates. This results in the so-called acoustic suspension loudspeaker.

Air-spring drawbacks

Acoustic suspension was claimed to be more linear than the spider of the drive unit, but this is not so.
Figure 1c) shows that an air spring is non-linear because the pressure increase is greater for a given inward movement than the pressure drop for the same outward movement. This is great for truck suspensions, but causes distortion in loudspeakers.
The resonant frequency can be lowered by addition of a critical amount of a material such as wool inside the enclosure. The wool must be teased out so that it fills the entire volume.
Wool's specific heat is much greater than that of the air and so the temperature of the air cannot change with pressure. The stiffness of the air-spring is reduced and the fundamental resonance goes down.
If the resonance is still too high, then it can be artificially lowered using signal processing techniques which are readily incorporated into an active speaker.
The surface area of an enclosure is an order of magnitude greater than that of the diaphragm and so the enclosure can radiate very effectively if it is not correctly designed. The goal is to prevent vibration of the enclosure walls and this can be done by stiffness, mass or damping or a combination of these.

A loudspeaker can easily be tested for enclosure colouration. You simply rap the panel with your knuckles in various places. On a well designed unit the only evidence of the blow should be a painful hand. Unfortunately too many loudspeakers emit a lot of sound due to structural resonances and flexing.

Many are not stiff enough

Many traditional loudspeakers have really quite poor structural stiffness. The flat wooden panel is the weakest method of resisting pressure known. Figure 2a) shows that flat panels bend readily under internal pressure because a large deflection causes only a small change of length.
A spherical or cylindrical shape cannot flex because wall deflection can only occur with a serious change in wall length. Aerosols and airliners also adopt this solution.
At one time enthusiasts used concrete drain pipes as

Fig. 2. In a), leftmost, the flat panel is weak because considerable deflection causes small change of length. Diagram b) outlines an enclosure made from curved panels while c) shows a flatpanelled enclosure braced with stays.

enclosures with considerable success - although the result was hardly portable. Single or compound curvature construction is always stiffer than flat panels, as you will notice from the shapes of car bodies. Useful loudspeaker enclosures can be made by joining spherical or curved sections as in Fig. 2b).
Flat panels are often used for economy or ease of home construction. Better results can be obtained by suitable bracing. Figure 2c) shows the use of stays, a technique used to brace the flat areas of locomotive boilers in the firebox area. In loudspeaker, stays can be 10 mm dowel.
Domestic builders can easily incorporate dowel stays as they can be glued into through-drilled holes and cut off flush. The dowels have a secondary purpose of preventing the acoustic wadding from sagging.

The size v performance conflict

The conflict between size and performance can be reduced by using suitable materials and design.

If the internal volume of a loudspeaker can be increased, the fundamental resonance will go down in frequency. This can be done without making the outside dimension larger, but by making the walls thinner.
Thin-wall woofer design is still relatively new, but allows huge leaps in performance with respect to size. Curved shapes get their stiffness through converting flexing into length changes and these can only be resisted in a thin wall by using a material with low modulus of elasticity.
Metal is a natural choice here, allowing a structure both stiffer and lighter than wood, and with a wider range of shapes available. Pressed steel has many advantages as it is strong and cheap, although the tooling costs put it out of the reach of the home builder.
Where moderate quantities are required, glass-fibre has much to recommend it because it can easily be fabricated with compound curvature and an excellent finish.

BROADCAST MONITOR RECEIVER 2 $150 \mathrm{kHz}-30 \mathrm{MHz}$

We have taken the synthesised all mode FRG8800 communications receiver and made over 30 modifications to provide a receiver for rebroadcast purposes or checking transmitter performance as well as being suited to communications use and news gathering from international short wave stations.
The modifications include four additional circuit boards providing *Rechargeable memory and clock back-up *Balanced Audio line output *Reduced AM distortion *Buffered IF output for monitoring transmitted modulation envelope on an oscilloscope "Mains safety improvements.
The receiver is available in free standing or rack mounting form and all the original microprocessor features are retained. The new AM system achieves exceptionally low distortion: THD, 200Hz-6kHz at 90% modulation $-44 \mathrm{~dB}, 0.6 \%$ (originally -20dB, 10\%).
*Advanced Active Aerial $\mathbf{4 k H z}-30 \mathrm{MHz}$ *PPM10 In-vision PPM and chart recorder "Twin Twin PPM Rack and Box Units "Stabilizer frequency shifters for howl reduction "10 Outlet Distribution Amplifier 4 "Stereo Variable Emphasis Limiter 3 "PPM5 hybrid, PPM9 microprocessor and PPMs IEC/DIN -50/+6dB drives and movements.

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh
Surrey GU6 7BG
Telephone: 01483275997 Fax: 276477

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

HP New Colour Spectrum Analysers
HP141T+ $8552 \mathrm{BIF}+8553 \mathrm{~B}$ RF- $1 \mathrm{KHz}-110 \mathrm{MC} / \mathrm{s}-\mathrm{£} 700$.
HP141T +8552 IF +8554 B RF $-100 \mathrm{KHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 900$
HP141T+ 8552 IF +8556 A RF $-20 \mathrm{~Hz}-300 \mathrm{KHz}-£ 700$.
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{~B}$ IF $+8555 \mathrm{~A} \quad 10 \mathrm{MC} / \mathrm{S}-18 \mathrm{GHzS}-£ 1200$.
HP8443A Tracking Generator Counter $100 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-£ 200$.
HP8445B Tracking Preselector DC to $18 \mathrm{GHz}-£ 250$.
HP8444A Tracking Generator $\cdot 5-1300 \mathrm{Mc} / \mathrm{s}-£ 700$.
HP8444A OPT 059 Tracking Generator $\cdot 5-1500 \mathrm{Mc} / \mathrm{s}-£ 950$.
HP35601A Spectrum Anz Interface - $£ 500$.
HP4953A Protocol Anz - $£ 400$.
HP8970A Noise Figure Meter $+346 B$ Noise Head $-£ 3.5 \mathrm{~K}$.
HP8755A Scalar Network Anz PI - £250 + MF 180C - £200 Heads 11664 Extra.
HP8756A Scalar Network Anz - $£ 1000$ Heads 11664 Extra,
HP8757A Scalar Network Anz - £2500 Heads 11664 Extra.
HP8903A Audio Anz - $£ 1500$.
HP8656A 100 KHz - $900 \mathrm{Mc} / \mathrm{s}$, S/G AM-FM - $£ 1450$
HP8158B Optical Attenuator OPT $002+001$ 1300-1550NM - £600
HP3709B Constellation ANZ £2k.
HP11715A AM-FM Test Source - $£ 750$.
INTELCO 220 Single Mode Optical Attenuator 1532NM - $£ 300$.
FARNELL TVS7OMKII PU $0-70 \mathrm{~V} 10 \mathrm{amps}-£ 150$.
FARNELL PSG $520 \mathrm{~S} / \mathrm{G} 10 \mathrm{MC} / \mathrm{s}$ AM-FM' $£ 150$.
TEK 475 Oscilloscopes $200 \mathrm{Mc} / \mathrm{s}-£ 350.475 \mathrm{~A} 250 \mathrm{Mc} / \mathrm{s}-£ 400$.
MARCONI 6500 Network Scaler Anz - $£ 750$. Heads available to 40 GHz .
HP3580A $5 \mathrm{~Hz}-50 \mathrm{KHZ}$ ANZ - $£ 750-£ 1000$.
HP3582A . 02 Hz to 25.6 KHz - £2k.
TEK 7L5 + L3 - Opt 25 Tracking Gen - £900.
TEK 7L12-100 KHz-1800 MC/s - $£ 1000$.
TEK 7L18-1.5-60GHzs - $£ 1500$.
Mixers are available for the above ANZ's to 60 GHz
HP8673D Signal Generator $.05-26.5 \mathrm{GHz}$ _ $£ 15 \mathrm{~K}$.
Systron Donner 1618B Microwave AM FM Synthesizer 50MC/s 2-18GHzs.
R\&S SWP Sweep Generator Synthesizer AM FM 4-2500Mc/s - 11 k .
ADRET 3310A FX Synthesizer $300 \mathrm{~Hz}-60 \mathrm{Mc} / \mathrm{s}-£ 600$.
HP5316B Universal Counter A A B
HP461A-465A-467A Ampliers.
HP81519A Optical Receiver DC- $400 \mathrm{Mc} / \mathrm{s}$. $550-950 \mathrm{NM} £ 400$.
HP Plotters 7470A-7475A. Up to $£ 250$.
HP3730A+3737A Down Convertor Oscillator 3.5-6.5GHz.
HP Microwave Amps 491-492-493-494-495-1 GHz-12.4GHz - £250.
HP105B Quartz Oscillator + HP5087A Dis Amp $£ 500$.
HP6034A System Power Supply 0-60V 0-10A-200W - $£ 500$.
HP6131C Digital Voltage Source $+-100 \mathrm{~V} / \% \mathrm{Amp}$.
HP3779A Primary Muttiplex Analyser - $£ 200$.
HP3779C Primary Multiplex Analyser - $£ 300$.
HP1631D Logic Analyser - $£ 500$.
HP5316A Universal Counter A+B.
HP5335A Universal Counter A $+B+C$.
HP8901A Modulation Meter AM-FM - $£ 1.5 \mathrm{k}$.
Marconi TF2337 Zero Loss Probe - $£ 200$.
Marconi TF2305 Modulation Meter $-£ 1.5 \mathrm{k}$
Marconi TF2305 Modulation Meter - $£ 1.5 \mathrm{~K}$.
Racal/Dana 2101 Microwave Counter - $10 \mathrm{~Hz}-20 \mathrm{GHz}$ - $£ 2 \mathrm{k}$.
Racal/Dana 1250-1261 Universal Switch Controller $+200 \mathrm{Mc} / \mathrm{s}$ PI Cards.
Racal/Dana 9303 True RMS Levelmeter+Head - $£ 450$. IFFE - $£ 500$.
TEKA6902A also A6902B Isolator - $£ 300$ - $£ 400$.
TEK FG5010 Programmable Function Generator 20Mc/s - $£ 600$.
TEK2465A $350 \mathrm{Mc} / \mathrm{s}$ Oscilloscope $-£ 2.5 \mathrm{k}+$ probes $-£ 150$ each,
TEK CT- 5 High Current Transformer Probe - £250.
TEK J16 Digital Photometer + J6523-2 Luminance Probe - $£ 300$.
HP 745A+746A AC Calibrator - $£ 600$.
HP54200A Digitizing Oscilloscope - $£ 500$.
HP11729C Carrier Noise Test Set .01-18GHz - LEF - $£ 2000$.
Marconi TF2008 - AM-FM signal generator - also sweeper - $10 \mathrm{KC} / \mathrm{s}-510 \mathrm{MC} / \mathrm{s}$ - from
$£ 250$ - tested to $£ 400$ as new with manual - probe kit in wooden carrying box.
HP Frequency comb generator type $8406-£ 400$.
HP Sweep Oscillators type 8690 A \& B + plug-ins from $20 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$ HP Network Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 500-£ 1000$ HP Amplifier type 8447A-1-400MC/s $£ 200$ - HP8447A Dual - $£ 300$.
HP Frequency Counter type $5340 \mathrm{~A}-18 \mathrm{GHz} £ 1000$ - rear output $£ 800$
HP $8410-A-B-C$ Network Analyzer $110 \mathrm{MC} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other
units and displays used in this set-up - 8411a-8412-8413-8414-8418-8740-
8741-8742-8743-8746-8650. From £1000.
Racal/Dana 9301 A-9302 RF Millivoltmeter - $1.5-2 \mathrm{GHz}$ - $£ 250-£ 400$.
Racal/Dana Modulation Meter type $9009-9008-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}$ - $£ 150 / £ 250$
Raca/V ana Modulation Meter tyye 9009-9.
Marconi RCL Bridge type TF2700- $£ 150$.
Marconi/Saunders Signal Sources type - 6058B-6070A - 6055A - 6059A - 6057A -
Marconi/Saunders
$6056-£ 250-\mathrm{E} 350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz
Marconi microwave 6600 A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or 6651 PI Marconi microwave 6600 PI sweep osc., mainirame.
Tektronix Plug-Ins 7A13-7A14-7A18 - 7A24 - 7A26 - 7A11 - 7M11 - 7S11 - 7D10-7S12-S1-S2-S6-S52 -PG506-SC504-SG502-SG503-SG504-DC503DC508 - DD501 - WR501 - DM501A - FG501A - TG501 - PG502
Gould J3B test oscillator + manual $-£ 150$.
Gould J3B test oscilator + manual - K_{150}. -TM506-7904A -7834-7623-7633-7844-7854-7104.
Marconi 6155 A Signal Source -1 to 2 GHz -LED readout - $£ 400$.
Marconi $6155 A$ Signal Source -1 to 2 GHz - LED readout $-£ 400$.
Barr \& Stroud Variable fiter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{Kc} / \mathrm{s}+$ high pass + low pass - $£ 150$.
Barr \& Stroud Variable fiter EF3 0.1 Hz - $100 \mathrm{KC/s}+$ high
Farnell power unit H60/50- $£ 400$ tested. $\mathrm{H} 60 / 25$ - $£ 250$.
Farnell power unit $160 / 50$ - $£ 40$ tested.
Racal/Dana 9300 RMS voltmeter - $£ 250$.
HP 8750 A storage normalizer $-£ 400$ with lead + S. A or N, A interface.
HP 8750A storage normalizer - $£ 400$ with lead + S.A or N, A interface.
Tektronix $7 S 14-7 T 11-7 S 11-7 S 12-S 1-S 2-S 39-S 47-S 51-S 52-S 53-7 M 11$.
Marconi mod meters type TF2304- 1250 .
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - $£ 1 \mathrm{k}$.
Farnell electronic load type RB1030-35- $£ 350$.
Racal/Dana counters-9904-9905-9906-9915-9916-9917-9921-50Mc/s -
HP48154 - $100-£ 450$ - all fitted with $F X$ standards.
HP180TR HP182T mainfrane meter c/w probe - $£ 500-\mathrm{£} 600$.
Marconi 6700 A sweep oscillator +18 GHz .
Macconi/Dana VLF freepuency standard equz Pl's available.
tracer receiver type 900A + difference
meter type $527 \mathrm{E}+$ rubidium standard type 9475 - $£ 2750$.

HP432A - 435A or B-436A - power meters + powerheads to 60 GHz .
HP8614A signal generator $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour $£ 400$.
HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour $£ 400$.
HP 3336A or B syn level generator - $£ 500-£ 600$.
HP 3586 B or C selective level meter $-£ 750-£ 1000$
HP 8683 B S/G microwave $2.3-13 \mathrm{GHz}$ - opt $001-003-£ 2.5 \mathrm{k}$
HP 8660 O syn S/G. AM $+\mathrm{FM}+10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Ma} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-$
HP 8660 Q syn S / G. AM +F.
$1 \mathrm{MC/s}$ to $2600-£ 3.5 \mathrm{k}$.
HP 8640B S/G AM-FM $512 \mathrm{Mc} / \mathrm{s}$ or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or $003-£ 800-£ 1250$.
HP 86222BX Sweep PI $-01-2.4 \mathrm{GHz}+$ ATT - $£ 1400-£ 1750$.
HP 86290A Sweep PI - $2-18 G H z-£ 1000-$ HP 86290 E $£ 1250$
HP 86 Series PI's in stock - splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-£ 250-£ 1 \mathrm{k}$.
HP 8620C Mainframe - £250. IEEE - $£ 500$.
HP 8615A Programmable signal source - $1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}-$ opt $002-£ 1 \mathrm{k}$.
HP 8601A Sweep generator $.1-110 \mathrm{Mc} / \mathrm{s}-£ 300$.
HP 853A MF ANZ - 11 k .
HP 8349A Microwave Amp 2-20GHz Solid state - $£ 1500$.
HP 1980B Oscilloscope measurement system - $£ 300$.
HP 3455/3456A Digital voltmeter - $£ 400$.
HP 5370A Universal time interval counter - $£ 1 \mathrm{k}$.
HP 5335 A Universal counter $-200 \mathrm{Mc} / \mathrm{s}-£ 500$.
HP 5328A Universal counter $-500 \mathrm{Mc} / \mathrm{s}-£ 250$.
HP 6034 A System power supply $-0-60 \mathrm{~V}-0-10 \mathrm{amps}-£ 500$.
HP $3717 \mathrm{~A} 70 \mathrm{Mc} / \mathrm{s}$ modulator - demodulator $-£ 400$.
HP 3710A-3715A-3716A-3702B-3703B-3705A-3711A-3791B-3712A-
HP 3793 - $3715 A-3716 A-37028-3703 B-3705 A-3711 A-3791 B-3712 A-$
3793 B microwave link analyser - P.O.R
HP 3552A Transmission test set -
HP 3763A Emor detector - $£ 500$.
HP 3763A Error detector $-\varsigma 500$.
HP 3764A Digital transmission analyser - $£ 600$.
HP 3770A Amp delay distortion analyser $-£ 400-+3770 \mathrm{~B}-£ 400$.
HP 3780A Pattern generator detector - $£ 400$.
HP 3781A Pattern generator - $£ 400$.
HP 3782A Error detector - $£ 400$.
Tektronix 577 Curve tracer + adaptors - $£ 900$.
Tektronix 1502/1503 TDR cable test set - $£ 400$
Racal 1991-1992-1998-1300 Mc/s counters - $£ 400-£ 900$.
Fluke $80 \mathrm{~K}-40$ High voltage probe in case - BN - $£ 50-£ 75$. EIP 545 microwave 18 GHz counter - $£ 1200$.
Fluke 510A AC ref standard - 400 Hz - £200.
Fluke 355A DC voltage standard - $£ 300$.
Wiltron 610D Sweep Generator +6124 C PI $-4-8 \mathrm{GHz}-£ 400$,
Wiltron 610 D Sweep Generator $+61084 \mathrm{D} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{MC} / \mathrm{s}-£ 500$.
HP 8699B Sweep PI YIG oscillator .01 - 4 GHz - $£ 300.8690 \mathrm{~B}$ MF - $£ 250$. Both $£ 500$.
Dummy Loads \& power att up to 2.5 kilowatts FX up to 18 GHz - microwave parts new and ex equipt - relays - attenuators - switches - waveguides - Yigs - SMA -
APC7 plugs - adaptors.
B8K Items in stock - ask for list
W\&G Items in stock - ask for list
Power Supplies Heavy duty + bench in stock - Farnell - HP - Weir - Thurlby - Racal etc.
Ask for list. Large quantity in stock, all types.
Marconi 2955 Radio test set + calibration. £2000.
Marconi $2955+2958$ Tacs radio test set + calibration. £2250.
Marconi TF2015 S/G 10Mc/s-520Mc/s AM. FM. £150.
Marconi TF2016A S/G $10 \mathrm{Kg} / \mathrm{s}-120 \mathrm{Mc} / \mathrm{s}$. AM.FM. $£ 150$.
Marconi TF2171 or 2173 Digital syncronizer for 2015/2016. £100.
Marconi TF2017 S/G .01-1024Mc/s.AM.FM. High grade. £1500.
Marconi TF2018 S/G 80Kc/s-520Mc/s. AM. FM. £800.
Marconi TF2018A S/G 80Kc/s-520Mc/s. AM. FM. £1000.
Marconi TF2019 S/G 80Kc/s-1040Mc/s. AM. FM. £1250. Marconi TF2019A S/G $80 \mathrm{Kc} / \mathrm{s}-1040 \mathrm{Mc} / \mathrm{s}$. AM. FM. $£ 1500$. Marconi TF2022E S/G $10 \mathrm{Kc} / \mathrm{s}-1.01 \mathrm{GHzs}$. AM. FM. $£ 1500$, Marconi TF2022E As above but as new + Cal cert $£ 1800$, Marconi TF2022E As above but as new + Cai cert. $£ 1800$.
Marconi TF6311 Microwave Sweep S/G $10 \mathrm{Mc} / \mathrm{s}-20 \mathrm{GHz} \mathrm{c} / \mathrm{w}$ TF6500 amplitude Anz. plus heads $10 \mathrm{Kc} / \mathrm{s}-40 \mathrm{GHz}$. $£ 4 \mathrm{~K}$ - $£ 5 \mathrm{~K}$.
Farnell S/G ESG1000 $10 \mathrm{~Hz}-1000 \mathrm{M} / \mathrm{s}$ s. AM. FM. $£ 1200$.
Farnell S/G PSG1000 $10 \mathrm{~Hz}-1000 \mathrm{Mc} / \mathrm{s}$. AM. FM. $£ 1300$.
Farnell S/G PSG1000 10Hz-1000MC/s. AM. FM. $£ 13$
IFR 1200 S Communications radio test set. $£ 2500$.
TF2370 Spectrum Anz's $30 \mathrm{~Hz}-110 \mathrm{Mc} / \mathrm{s}$. Large aty in stock to clear as received from Gov-all sold as is from pile complete or add $£ 100$ for testing.
Callers preferred - Pick your own from over sixty units.
A. Early Model - Grey - Rear horizontal alloy cooling fins - $£ 200$.
B. Late Model - Grey - Vertical alloy cooling fins - $£ 300$.
C. Late Model - Brown - Vertical alloy cooling fins - $£ 500$.

Marconi TK2373 Extender to 1.25 GHz - $£ 400$. Brown colour - $£ 500$.
H.P. 3325A Synthesized function generator - $£ 1000-£ 1500$.
H.P. 3325B Synthesized function generator - $£ 2500$.
H.P. 8505 A Vector voltmeter - late colour - $£ 400$
H.P. 8508A Vector voltmeter - $£ 2500$.
H.P. 8505A Network Anz $500 \mathrm{KHz}-1.3 \mathrm{GHz}$ - $£ 1750$.
H.P. $8505 \mathrm{~A}+8502 \mathrm{~A}$ or 8503 A test sets $-£ 2000 / £ 2250$.
H.P. $8505 A+8502 \mathrm{~A}$ or $8503 \mathrm{~A}+8501$ A normalizer $-£ 2500$.
H.P. 8557A $.01 \mathrm{Mc} / \mathrm{s}-350 \mathrm{Mc} / \mathrm{s}-8558 \mathrm{~B} \quad 0.1-1500 \mathrm{MC} / \mathrm{s}-8559 \mathrm{~A} .01-21 \mathrm{GHz}+\mathrm{MF} 853 \mathrm{~A}$ or 182 T or $180 \mathrm{C}-\mathrm{D}-\mathrm{T}$ £500-£3000.
Tektronix 492 Spectrum Anz-OPT $3-50 \mathrm{Kc} / \mathrm{s}-21 \mathrm{GHz}$ - $£ 3500$
Tektronix - HP Oscilloscopes - $100 \mathrm{Mc} / \mathrm{s}$-465-465B-1740-1741 etc - $£ 300$
Phillips $321750 \mathrm{Mc} / \mathrm{s}$ oscilloscopes - $£ 250$.
Phillips $3296350 \mathrm{Mc} / \mathrm{s}$ IR remote control oscilloscope - $£ 1400$.
Hitachi VC6041 Digital storage oscilloscope $-100 \mathrm{Mc} / \mathrm{s}-£ 800$.
Tektronix 2430 A Digital storage oscilloscope $-100 \mathrm{Mc} / \mathrm{s}-£ 2000$.
Tektronix 2440 Digital storage oscilloscope $-400 \mathrm{Mc} / \mathrm{s}-£ 2400$.
Tektronix 2245 A Oscilloscope $-100 \mathrm{Mc} / \mathrm{s}-£ 1000$.
Tektronix 2445 + DMM - 250 Mc/s - $£ 1750$.
Tektronix $2445 \mathrm{~A}-150 \mathrm{Mc} / \mathrm{s}-4 \mathrm{CH}-£ 1500$
Schafiner NSG 200E Mainframe - NSG203A low volt var simulator - NSG222A.
Interface simulator - NSG223 Interface generator - NSG224 Interface simulator - NSG226 Data line simulator - all six items at $£ 1500$.
Schaffiner NSG200E Mainframe - NSG203E low volt var simulator - NSG222A Interface simulator - all three items - $£ 1000$.
ano carriage extra. Items markeo testeo have 30 oay warrantr. wanteo: test equipment-valves-plugs ano sockets-syncros-transmiting ano receiving equipment etc.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No: (01274) 684007. Fax: 651160

Design Competition Winner

One of six winners of the TRAC design competition, Mike Button, has devised a new solution to ssb modulation and demodulation that is only practicable using the TRAC concept.

A new demodulator for single sideband

TWhe arrival of the TRAC devices on the electronics market has led to the possibility of solutions which have hitherto been only possible by either complex pcb with many op amps and passive components or by expensive digital signal processors.
As a radio amateur I have been intrigued by the possibility of obtaining single sideband modulation or demodulation without recourse to expensive filters. The 'third method' of obtaining the sum and difference frequency components of two signals at low intermediate frequencies is now a low cost possibility.

Behind ssb

If two sinusoidal signals of different frequencies are multiplied together it can be shown that the

More winners

These are the remaining five winners of the TRAC design competition. Each will receive a TRAC development kit worth $£ 600$.
$\mathbf{4 0 0 H z}$ three-phase exciter. Ben Sullivan's exciter is primarily for aircraft equipment testing. Its three-phase oscillator can lock to an external signal and has an out-of-lock indicator.

Amplitude modulator. Designed by Franck Bigrat, this modulator is implemented from the mathematical formula for an AM signal.

Digitally controlled audio preamplifier. Andrew Wilkes' amplifier uses one TRAC IC to produce a four input-source stereo preamp with tape deck support and a 4-bit, i.e. 16 log step, volume control.

Power meter. Charles Bacon's design is a meter for measuring power dissipation in a transistor. It makes use of TRAC's log, addition and antilog abilities to calculate power dissipated in real time, by multiplying observed current with voltage.

Two tone oscillator. This entry is a circuit is for linearity testing of wireless transmitters, for example at hf. Designed by lan March, it uses TRAC's log function as limiter.
result of the multiplication is given by the following,

$$
\begin{align*}
& A \sin x B \sin y=A B \frac{\cos (x-y)+\cos (x+y)}{2} \tag{1}\\
& A \cos x B \cos y=A B \frac{\cos (x-y)-\cos (x+y)}{2} \tag{2}\\
& A \sin x B \cos y=A B \frac{\sin (x-y)+\sin (x+y)}{2} \tag{3}
\end{align*}
$$

These equations show that the result of the multiplication comprises of two new frequency components, one the sum and the other the difference of the two frequencies.
Each of these three equations represents the mathematics for an amplitude-modulated signal when a perfect balanced modulator is used to mix a low audio frequency with a high frequency. In practice, no mixer can be made perfect. Consequently, there will always be a component of the high frequency in the equation.
Assuming the higher frequency to be y and K to be the leakage factor of the mixer then an ampli-tude-modulated signal will comprise of the following components,

$$
\mathrm{K} \sin y A B \frac{\sin (x-y)+\sin (x+y)}{2}
$$

An amplitude-modulated signal comprises upper and lower sidebands plus some component of the modulating frequency. Because each of the sidebands contains all the intelligence of the modulating frequency it was soon realised by both professionals and the amateur radio fraternity that the bandwidth of the modulated signal could be reduced to less than half if only one sideband was transmitted. Reducing the bandwidth meant that allotted radio frequency bands could be used more efficiently - i.e. more channels in a given radio band.
Currently, most ssb radio transmitters and receivers use one of two methods to to remove the unwanted components produced by the mixers. A good example of a direct-conversion receiver is presented in the February issue of Electronics

ANALOGUE DESIGN

Four TRAC devices are used in the design, each having 20 functional blocks, giving a total of 80 functional blocks. The number of function blocks used is 40. The number of unused blocks is 5 , giving 35 unusable blocks. These are pin functions of TRAC device 1.

Pin	Connection	Description	Pin function
1	INPUT	Sinusoidal input to be demodulated (Sig)	Asin x
2	INPUT	Sin wave input local oscillator (LO)	Bsiny
3	Link to 15	Signal	Asin x
4	NIP	Local oscillator	Bsiny
5	AUX		
6	AUX		
7	DIF	Signal differentiated to give 90° phase shift	$d / d x(A \sin x)=K A \cos x$
8	DIF	LO differentiated to give 90° phase shift	$d / d y(B \sin y)=L B \cos y$
9	AUX		
10	AUX		
11	AMP	Gain adjust to give phase shifted signal the same amplitude as unshifted signal	$A \cos x$
12	AMP	Gain adjust to give phase shifted signal the same amplitude as unshifted signal	Bcosy
13, 14	-		
15	Link from 3	Sig	
$\begin{aligned} & 16 \\ & 17-24 \end{aligned}$	Link to 68	Sig inverted	-Asin x
Pin functions of TRAC device 2.			
Pin	Connection	Description	Function on pin
23	Link from 15	Signal	$A \sin x$
24	INPUT	Input dc bias	E
25	ADD	Addition of bias to signal (inverted)	$-(E+A \sin x)$
26	NIP	DC bias	E
27	LOG	Positive log of signal plus bias	$\{+\log \}(E+A \sin x)$
28	LOG	Inverted log of dc bias	\{-log\}(E)
29	ADD	Log of signal plus bias divided by dc bias	$\{-\log \}(1+A / E \sin x)$
30	NEG	Positive log of dc bias	\{+log\}(E)
31	Link from 4	Local oscillator	$B \sin y$
32	Link from 26	DC bias	E
33	ADD	Adds dc bias to local oscillator (inverted)	$-(E+B \sin y)$
34		-	
35	LOG	Positive log of local oscillator plus bias	$\{+\log \}(E+B$ sin $y)$
36	Link from 28	Inverted log of dc bias	\{-log\}(E)
37	ADD	Log of LO plus bias divided by dc bias	\{ $-\log \}(1+B / E s i n y)$
38	Link from 29	Log of signal plus bias divided by dc bias	$\{+\log \}(1+A / E \sin x)$
39	ADD	Sum and negate log outputs, ie multiply	$\begin{aligned} & \{+\log \}((1+A / E \sin x) . \\ & (1+B / E \sin y)) \\ & =\{-\log \}(1+A / E \sin x+B / E \sin y+ \\ & A B / E / E \sin x \cdot \sin y) \end{aligned}$
40	Link from 30	Positive log of dc bias	\{+log\}(E)
41	ADD	Multiply result by E (negated)	$\begin{aligned} & \{-\log \}((E+A \sin x+B \sin y+ \\ & A B / E \sin x \sin y) \end{aligned}$
42	Link from 32	DC bias	E
43	ANT	Antilog of multiplication	$\begin{aligned} & E+A \sin x+B \sin y+ \\ & A B / E \sin x \cdot \sin y \end{aligned}$
44	NEG	Negated dc bias	-E

World. This method relies on the inherent low-pass filtering of an audio amplifier.
Another method, preferred because of its greater sensitivity and frequency selection is the use of intermediate frequency, or frequencies, employing high gain amplifiers with very close tolerance filters to remove the unwanted components.
The 'Third Method' of modulating and demodulating ssb signals has been known since the beginning of the century, but up to now the other two methods have been cheaper or easier to implement.
You can see that by adding or subtracting the result of equations 1 and 2 above, then either the frequency sum component or the frequency difference component can be isolated. In this way, an audio signal can be retrieved from a ssb signal by 'mixing' the ssb signal with a frequency equal to the original modulating frequency. Alternatively, an ssb signal can be produced from an audio frequency mixed with the required radio frequency.

TRAC calculations

Constraints. The TRAC device provides an inversion for both the log and antilog functions - i.e. a negative output is obtained for a positive input, and that both functions give a ' 0 V ' output for a ' 0 V ' input. This caused me to revise my understanding of elementary mathematics, which led me to believe that the log of zero was minus infinity and the antilog of zero was one.
Furthermore, if a number is divided by itself, as in $\log x-\log x=0$ the result-

Displays of the ssb
modulator/demodulator produced by the TRAC simulator, inputs on the left, outputs on the right. Pin 1 is the higher frequency curve on the left and pin 2 is the lower. On the right, pin 83 is the lower frequency and pin 87 the higher.

ing antilog should be 1 . This infers that the zero level input to the \log and antilog functions represents a unity-level signal. After delving further into the misty past of my OLevel mathematics, I realised that if you scaled the inputs and outputs to meet the available logarithmic range, any multiply or divide calculation is possible.
Once I understood that a ' 0 V ' input is the low end of the logarithmic dynamic range and that a ' 1.4 V ' was the high end then all was clear. Investigations using the simulator gave a dynamic range for the log/antilog function of 87 dB .
The fact that the log/antilog functions were inverting also produced wrong results, until I realised that if a multiplication was required to a negative log output then the multiplicand had to be subtracted, rather than added. Conversely division needs an addition.
Also, the log and antilog functions needed the input to be wholly negative or wholly positive to obtain a correct multiplication or division.

Defining the inputs. Let the two input signals be,

$$
\begin{align*}
& A \cdot \sin x \tag{4}\\
& B \cdot \sin y \tag{5}
\end{align*}
$$

The input to the log function must be wholly negative or positive and a dc bias voltage is necessary to lift the ac inputs above 0 V . Let E be the dc bias voltage.

Functions. To obtain the necessary cosine function, as required by equation 2 , the two ac input signals need to be differentiated. i.e. $\cos x=\mathrm{d} / \mathrm{d} x(\sin x)$.

$$
\begin{align*}
& A \cos x \tag{6}\\
& B \cos y \tag{7}
\end{align*}
$$

Each of the four TRAC devices needed to

 implement the ssb modulator and demodulator. Numbering on the pins indicates which device is which.There are now available the necessary functions to calculate the sum and difference components of the two inputs. To ensure that the inputs to the \log functions never go below the zero level, a dc bias must be added to the inputs prior to performing a \log function. Adding bias voltage E to equations 6 and 7 gives,

$E+A \sin x$
 $E+B \sin y$

where E must be greater than the larger of A or B.

To keep the signals within the dynamic range of the TRAC, these signals have to be divided by E prior to multiplication.

$$
\begin{align*}
& 1+\frac{A}{E} \sin x \tag{10}\\
& 1+\frac{B}{E} \sin y \tag{11}
\end{align*}
$$

Multiplying equations 10 and 11 gives,

$$
\begin{equation*}
1+\frac{A}{E} \sin x+\frac{B}{E} \sin y+A B \frac{\sin x \sin y}{E^{2}} \tag{12}
\end{equation*}
$$

Pin functions of TRAC device 3.

Pin	Connection	Description	Pin function
45	Link from 11	Signal	$A \cos x$
46	Link from 42	DC bias	E
47	ADD	Addition of bias to signal (inverted)	$-(E+A \cos x)$
48 (L+Acosx)			
49	LOG	Positive \log of signal plus bias	$\{+\log \}(E+A \cos x)$
50	Link from36	Inverted log of dc bias	$\{-\log \}(E)$
51	ADD	Log of signal plus bias divided by dc bias	$\{-\log \}(1+A / E \cos x)$
52 ADD			
53	Link from 4	Local oscillator	Bcosy
54	Link from 46	DC bias	
55	ADD	Add dc bias to local oscillator (inverted)	$-(E+B \cos y)$
56 ADD - (E+Bcosy)			
57	LOG	Positive \log of local oscillator plus bias	$\{+\log \}(E+B \cos y)$
58	Link from 50	Inverted \log of dc bias	$\{-\log \}(E)$
59	ADD	Log of LO plus bias divided by dc bias	$\{+\log \}(1+B / E \cos y)$
60	Link from 51	Log of signal plus bias divided by dc bias	$\{+\log \}(1+A / E \cos x)$
61	ADD	Sum and negate log outputs, ie multiply	$\begin{aligned} & \{-\log \}((1+A / E \cos x) \\ & (1+B / E \cdot \cos y)) \\ & =\{-\log \}(1+A / E \cos x+ \\ & B / E \cdot \cos y+A B / E / E \cdot \cos x \cdot \cos y) \end{aligned}$
62	Link from 40	Positive log of dc bias	$\{+\log \}(E)$
63	ADD	Multiply result by E (negated)	$\begin{aligned} & \{+\log \}((E+A \cos x+B \cos y+ \\ & A . B / E \cos x \cdot \cos y) \end{aligned}$
65	ANT	Antilog of multiplication	$-(E+A \cos x+B \cos y+$ A. $B / E \cos x \cdot \cos y)$

More on TRAC

These comments have been added by David Winch of Fast Analog Solutions to help you get to grips with Mike's design more easily.

Using TRAC's LOG and ANT functions

to multiply. In theory, you can multiply by adding logs and then taking the antilog. This is also true with TRAC, with provisos.
The transfer function of the LOG cell is,
$V_{\text {out }}=0.07474375\left(\log _{10}\left(V_{\text {in }}\right)+10\right)$
Here the logarithm base is shown as 10 , but any other base is applicable, if you adjust the constants.

For the ANT cell, the transfer function is,
$V_{\text {out }}=10^{\left(V_{\text {in }} / 0.07474375\right)-10}$
Again, any \log base is applicable. The ADD cell is self explanatory. The operational limit of the LOG cell is $\left|V_{\text {in }}\right|<1.4 \mathrm{~V}$ while that of the ANT cell is $0.1 \mathrm{~V}<\mathrm{I} \mathrm{V}_{\text {in }} \mathrm{K}<0.8 \mathrm{~V}$. Equally importantly, the operational limit of the ADD cell is $\left|V_{\text {out }}\right|<1.4 \mathrm{~V}$.
For inputs from 0.1 V to 1.0 V , most usable logs are in the range 0.6 V to 0.75 V , so adding two together would take the signal outside the operational limit of the ANT function. This can be corrected by 'dividing by one', i.e. subtracting the \log of 1.0 V .
However, if the two $\mathrm{V}_{\text {in }}$ signals exceed about 0.25 V , their logs will exceed 0.7 V and so their sum will be outside the operational limit of the ADD function. To remove this possibility, the 'dividing by one' must be done before the ADD.
When multiplying more than two inputs together, this 'dividing by one' must be performed after all but the final input.

Using the LOG and ANT functions to multiply, divide and raise to powers. Some people have told us they have experienced difficulties using TRAC to multiply and divide by adding and subtracting logarithms. Let me try to make things clearer.
If you have used logs to base ten, or natural logs, to multiply numbers you may not have realised how much of a fortunate coincidence it is that the log of 1 to any base is zero. If this doesn't make sense, let me put it another way. What would you expect the answer to be if you multiplied 0.5 volts by 0.4 volts? Did you say 0.2 volts? Now, what should the answer be if you multiply 500 mV by 400 mV ? Should it be 200 000 mV or $\mu \mathrm{V}$?
Now do you start to see what happens when we multiply quantities rather than numbers? It depends on what you decide 'one' is!

Deciding what 'one' is means working relative to a fixed point. When multiplying numbers we work relative to 1 , so using their logs we work relative to 0 . So effectively we do nothing, or more probably we don't even realise we are doing nothing.
So what's different with TRAC? Well nothing actually. Using the TRAC LOG
cell, the \log of 1 V is approximately 750 mV , and the \log function has a gain of approximately 75 mV per decade, or approximately 23 mV per octave.
The log function is not to any particular base. It just obeys the rule that multiplying the input by a constant changes the output by a constant amount, no matter what the original input. The TRAC antilog cell follows the inverse of the same curve.

Studying these implementations should help you grasp the idea of TRAC's log function not being to any particular base - if you haven't already of course. From the top, they are a generic multiplier, a generic divider, an alternate 'multiply-and-divide' and 'raise-to-a-positive-power' circuits respectively. Note that the generic divider overflows into the third TRAC chip by one element.

So the \log of 0.5 V is approximately 727 mV and the \log of 0.4 V is approximately 720 mV . The sum of these is 1447 mV but the antilog of 1447 mV would never get to the 2000 megavolts indicated by the mathematics. We have not worked relative to what 'one' is. If 1 V is 'one' then we need to calculate,
$\{(\log (0.5 \mathrm{~V})-\log (1 \mathrm{~V})\}+$
$\{\log (0.4 \mathrm{~V})-\log (1 \mathrm{~V})\}+\log (1 \mathrm{~V})$
Putting in quantities we get,
$\{727 \mathrm{mV}-750 \mathrm{mV}\}_{+}$
$\{720 \mathrm{mV}-750 \mathrm{mV})+750 \mathrm{mV}$
Or in other words,
$-23 m V-30 m V+750 m V=697 \mathrm{mV}$
and the antilog of 697 mV is 0.2 V .
And if you think about it, this is what
you do with numbers. Only that you work relative to log of 'one' is zero.
How does this apply to practical TRAC designs? Well, if you are multiplying you would need to subtract the \log of 1 V from each multiplicand and then add it back in once at the end. Practically you would just not subtract from the last multiplicand.
When dividing, you would need to subtract from every term and put it back in once at the end as well, but in this case you would practically add the log of 1 V to every divisor but not the numerator at the beginning.
Raising to a power be it positive of negative, greater or less than unity, the same applies. Subtract the log of 1 V , do the processing and add the log back in once again.
A further practical problem is raised by the ADD cell of the TRAC. Its output

Multiplying by E gives,

$$
\begin{equation*}
E+A \sin x+B \sin y+A B \frac{\sin x \sin y}{E} \tag{13}
\end{equation*}
$$

Subtracting equations 4 and 5 from above gives,

$$
\begin{equation*}
E+A B \frac{\sin x \sin y}{E} \tag{14}
\end{equation*}
$$

Subtracting E and expanding gives,

$$
\begin{equation*}
\frac{A B}{2 E}(\cos (x-y)+\cos (x+y)) \tag{15}
\end{equation*}
$$

Performing the same functions on equations 6 and 7 gives,

$$
\begin{equation*}
\frac{A B}{2 E}(\cos (x-y)-\cos (x+y)) \tag{16}
\end{equation*}
$$

Adding or subtracting equations 15 and 16 gives,

$$
\begin{equation*}
\frac{A B}{E} \cos (x-y) \tag{17}
\end{equation*}
$$

Thus the sum or difference frequency components are thus obtained.

In summary

Note that the differentiation function is used to obtain a $\pi / 4$ phase shift (\sin to \cos function) and the amplitude of this function's output is frequency sensitive. The signal to be demodulated must, therefore, not vary in frequency by a significant amount or the amplitude of the cosine function will vary causing distortion on the output.
At the final 470 kHz intermediate frequency of most receivers, this should not be a problem as the audio signal in the range 300 Hz to 3.4 kHz gives only a 0.7% deviation.

Provision of an ssb modulator using this method is not possible because the frequency deviation - and hence the amplitude deviation - of the $\pi / 4$ phase-shifted output of an audio signal is too large.
Another look at the theory shows that if an audio signal $A \sin x$ is mixed with another con-
stant frequency of $B \sin y$ and $B \cos y$ the resulting functions will be,

$$
\begin{aligned}
& A \sin x B \sin y=A B \frac{\cos (x-y)+\cos (x+y)}{2} \\
& A \sin x B \cos y=A B \frac{\sin (x-y)+\sin (x+y)}{2}
\end{aligned}
$$

By filtering out the sum or difference component of the two equations, the sine and cosine functions of the audio frequency are

Pin functions of TRAC device 4.

88
saturates at approximately 1.4 volts. So you need to be careful exactly where in the design you subtract the \log of 1 V .
In multiplication, subtraction needs to happen before the log of the next multiplicand is added; in division, addition needs to happen after the log of the next divisor has been subtracted; and the same general principles apply to raising to a power.
If you think back to when you used a slide-rule, you'll remember that the easiest calculations were the ones with alternate multiplication and division. The same is true using TRAC. If you alternately subtract and add logs, and if there is one more multiplicand than divisor, the need to 'divide by one' is removed and the ADD function never saturates.
The simple TRAC designs shown here should clarify the situation even further.
available. Provided the frequency offset provided by the frequency y is taken into account then the functions thus obtained can be used as inputs to the TRAC functions given by this design.
Investigation of the data sheets show that the available bandwidth for low level signals is 4 MHz . It should, therefore, be possible to perform a direct conversion on the 160 m amateur band (1.8 MHz) and possibly on 80 metres $(3.5 \mathrm{MHz})$.

Pin	Connection	Description	Function
67	Link from 43	Result of 'sin' multiplication	$E+A \sin x+B \sin y$
			$+A B / E \sin x \cdot \sin y)$
68	Link from 17	Sig inverted	$-A \sin x$
69	ADD	Subtract Sig from result	$-(E+B \sin y+A B / E \sin x \cdot \sin y$
70	Link from 31	Local osc	$B \sin y$
71	ADD	Subtract local osc from result	$-(E+A B / E \sin x \cdot \sin y)$
72	Link from 44	Negative dc bias	-E
73	ADD	Subtract dc bias from result. Sum of sum and difference frequencies obtained.	$A B / E \sin x \cdot \sin y$ $=A B / E(\cos (x-y)+\cos (x+y))$
74			
75	Link from 65	Result of cosine multiplication	$\begin{aligned} & E+A \cos x+B \cos y+ \\ & A B / E \cos x \cdot \cos y \end{aligned}$
76	Link from 13	Cosine of Sig inverted	-Acos x
77	ADD	Subtract cosine of Sig from result	$-(E+B \cos y+A B / E \cos x \cdot \cos y)$
78	Link from 53	Cosine of local oscillator	$B \cos y$
79	ADD	Subtract cosine of local oscillator from result	$-(E+A B / E \cos x \cdot \cos y)$
80	Link from 72	Negative dc bias	- E
81	ADD	Subtract dc bias from result	$A B / E \cos x \cdot \cos y$
		The difference of the sum \& difference frequencies obtained.	$=A B / E(\cos (x-y)-\cos (x+y))$
82	Link from 73	The sum of the	$A B / E(\cos (x-y)+\cos (x+y))$
83	ADD	sum \& difference frequencies. Add the sum and difference to obtain the difference component of the signal and LO - the required result.	$A B / E \cos (x-y)$
84	NIP		
85	Link from 81	Difference of sum and difference frequencies	$A B / E(\cos (x-y)-\cos (x+y))$
86	NEG	Invert	$-A B / E(\cos (x-y)-\cos (x+y))$
87	ADD	Subtract the sum and difference to obtain the sum component of the signal and LO - the required result.	$A B / E \cos (x+y)$

OPERATING \& SERVICE MANUALS

VISITUS ON

 Web: http://www.cooke-infom

Cooke International

Unit Four, Fordingbridge Site, Barnham,
Bognor Regis, West Sussex, PO22 OHD, U.K
Tel: (+44)01243545111/2 Fax: (+44)01243542457 Web: http://www.cooke-int.com

E-mail: info@cooke-int.com

Cooke International

Unit Four, Fordingbridge Site, Barnham, Bognor Regis, West Sussex, PO22 OHD, U.K. Tel: (+44)01243545111/2 Fax: (+44)01243542457 Web: http://www.cooke-int.com E-mail: info@cooke-int.com

CIRCLE NO. 136 ON REPLY CARD

ADVERTISERS' INDEX
Anchor Supplies211-237
B. Bamber Electronics 253
Chelmer Valve Company 205
CMS 192
Colomor Electronics 209
Crownhill 232
Dataman OBC
Display Electronics 238
Equinox Technology IBC
Field Electric 209
Hart Electronics 220
Hately Antenna Technology 231
Hitex (UK) Ltd 207
Johns Radio 254
JPG Electronics 260
Labcenter Electronics 178
Lloyd Research 232
M\&B Radio 205 \& 231
Milford Instruments 213
Number One Systems 213
Olson Electronics 180
Pico Technology 207
PS Consultants 185
Quickroute Systems IFC
Radio Tech 231
RD Research 183
Seetrax 205
Stewart of Reading 243
Surrey Electronics 253
Telford Electronics 233
Telnet 201
Those Engineers 219
Tie Pie 193
Wood \& Douglas 209

CLASSIFIED

ARTICLES FOR SALE

RF DESIGN SERVICES

All aspects of RF hardware development considered from concept to production.
WATERBEACH ELECTRONICS
TEL: 01223862550
FAX: 01223440853

SALE - INDUSTRIAL ELECTRONICS

Test equipnent Transducers, Valves Comectors Compulers. Analysers. Components. Caures. Melers. Drinters. Dummaze ilems. HP Racal. IBM 'elc Near ©outhampton. $12 \cdot 13$ December Technisal and Scientific Supplies Tel:01703 801870 F3x:O1703 807070 e-mil: RJF Oompusenecom

AUDIO \& RF DESIGN - DC to 3GHz
- Stereo Coders \& processors
- RF Amplifiers \& Transmitters
- Wireless Control Systems
- 2.4 GHz Audo \& VideoLinks
- Aerial combining Systems
So whatever your need call us!
LIBRA SOLutiOnS
Tel. O181-428 2776
mnoareglobalnet.co.uk

RF \& Data/Comms Test Equipment (Ex Govt).

 - HP, Tektronix. Phillps. Gould, etc. - Scopes (20 MHz -20GHz DSO). Analysers. Sig Generators, and other items. Manuals, As New.Cash Offers Invited for URGENI Sale For Full Details call victor on: Tal: 01189626866 Mabile: 0802884155

ELECTRONIC DESIGN - ANALOGUE AND DIGITAL. P \& P ELECTRONICS. TEL: 0192-4 402931 .

SWIRES RESEARCH SA\$7 spectrum analyser. portable. $5-910 \mathrm{MHz}$. Icather' case, charger. As
new condition. $£ 550$. Tel: 01327358008 .

MARCONI 2380/2.38. SPECTRUM ANALYSER 100 Hz to +2 ZGHz . Internal T.G. 3 Hz RBW. markers, memory GPIB. reeently calibrated:
[5.500. Tel: $0181-4216606$.

SWITCHING PSU REQUIRED? Surf: www.directou.memail.com Loads'a bargains.

POWER SUPPLY DESIGN
Switched Mode PSU
Power Factor Correction Linear PSU
Lomond Electronic Services
Tel/Fax: 01243842520
eugen_kus@cix.co.uk

ADVERTISERS PLEASE NOTE For all your future enquiries on advertising rates Please contact Joannah Cox on

ARTICLES WANTED

V/AVIDS. ©te, W/E NIIDDD
 Most types considered but especially KT88, PX4/PX25, KT66, KT77, EL34, EL37, ECC83. Valves must be UK manufacture to achieve top prices. Also various valve-era equipment e.g. Garrard 301.
 COURTEOUS, PROFESSIONAL SERVICE
 Ask for a free copy of our wanted List.
 BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ Tel: 01403784961 Fax: 01403783519
 VIIITORS PLEASE PHONE FOR APPOINTMENT.

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.
Langrex Supplies Limited 1 Mayo Road, Croydon Surrey CRO 2QP
TEL: 0181-684 1166
FAX: 0181-684 3056

WANTED - Old cipher equipment and "spy radio sets". OZ8RO Ray Ottersad Hosterkobvej 10 DK- 3460 Birkerod Denmark. Fax: +45 44681514.

WANTED - W.W.II. German and S.O.E. clandestine sets. receivers. Also incomplete sets. 0Z8RO Rag Otterstad Hosterkobucj 10 DK-3460
Birkerod Denmarh. Fax: $++45+4681514$

WANTED: PRE-WAR TV: Offered: Network Analyser HP8505A. Jac Janssen. Hogeham 117D. NL.S1041D Dongen Netherlands. Fax: +3113 4624684. Thank:

RECRUITMENT

..is a growing company with a reputation to do the impossible! We design and develop new products for a host of multinational companies, using new technologies and processes. We offer a competitive advantage to our customers - and an exciting and challenging career for you!

WE ARE LOOKING FOR:
(outstanding individuals)
Embedded Software Engineers*
Hardware Design Engineers*
Design Technicians (new graduates considered)

THE RIGHT CANDIDATES MUST HAVE:

- Good degree in Electronic Engineering (min. HND in case of Technician). - High professional and quality standards.
- Excellent problem-solving and lateral-thinking abilities
- The ability to work in a team and manage their own projects.

IN RETURN WE CAN OFFER YOU:
I. An excellent salary
2. International travel *
3. Healthcare membership
4. An incentive Scheme.

NEXT STEPS

Fax. email or post your CV to Jenny Greenfield (Project Development Manager). Innovision R\&T Ltd.. Exa House,Alexandra Court. Wokingham, Berks RG40 2SJ. (M4 - Junction 10)
Tel: 0118979 2000. Fax: 01189791500
Email: jenny@innovision-group.com.

PLEASE MENTION
 ELECTRONICS WORLD WHEN REPLYING TO ADVERTISEMENTS

DIGITAL SIGNAL PROCESSING ENGINEER

South East

To $£ \mathbf{3 7 , 0 0 0}+$ Bonus
Join Europe's largest mobile phone manufacturer. They are leading the field in GSM technology and breaking new ground in third generation systems. Last year their global sales exceeded $£ 4$ billion and they employ more than 30,000 people world-wide. Due to the success of their current product lines they require software and DSP specialists at all levels up to principal. You will be degree qualified with good C and assembler skills with implementation experience in a real-time embedded environment. Algorithm development experience and software integration skills would be beneficial in your application as would a sound understanding of hardware, RF, speech coding and mobile communications. This is an opportunity to work at the forefront of DSP development for cutting edge mobile communications applications. Contact Tony Walker for this and other DSP opportunities.

C \& ASSEMBLER STRUCT. METHODS

West of England

$£ 20,000$ To $£ \mathbf{3 2 , 0 0 0}+$ Benefits + Relocation
My client is looking for a team of software and firmware engineers with good C / Assembler software development skills ideally with H 8 or 68 xxx development experience. The software will be developed using Yourdon methodology with ful training being given to any engineer without a background in structured methods. There are a number of roles available from junior engineer to senior development The company is the world leader in the field of computer peripherals and operates a very flexible policy of full flexi-time, casual dress and promotion from within. The company is based at a purpose built location designed to make life as easy as possible for developers on site. Contact Toby Walker for more information.

SOFTWARE ENGINEERS

West of England / M4

$\mathbf{£ 2 0 , 0 0 0}$ to $\mathbf{£ 3 3 , 0 0 0}$
My client is an international communications consultancy specialising in the provision of innovative software products and professional consulting services to network operators and equipment suppliers. My clients' products are renowned for their functionality, flexibility and scalability. Due to rapid expansion their requirements are many and spread across a range of disciplines centred around the mobile communications industry, including:

* C, Unix, Motif
* Mobile Comms / GSM
* Network Management / IN / SNMP
* Oracle Database
* Signalling System No. 7 (C7)
* Radio Network Planning / Frequency Planning Software
* Fraud Management Systems

If you have software experience in some of these fields, are looking for a highly rewarding career and are able to learn quickly in a highly dynamic environment then you can join the cutting edge of mobile comms consultancy. Contact Toby Walker for more information.

MORE THAN JUST A PCB LAYOUT ENGINEER

Bedfordshire

$\mathbf{£ 2 0 , 0 0 0} \mathbf{- £ 2 5 , 0 0 0}$
The multi-national company that designs the technology behind some of the biggest names in mobile communications is undergoing phenomenal growth and is looking for the most highly motivated, practical and methodical PCB layout engineer to help complete their new Systems Team. If you are from a background which has given you a broad, yet detailed knowledge of communications technology, maybe as a test engineer, or as an apprentice and are looking to broaden your horizons and stretch your skills, then you must send your CV to Max Pritchard now. Experience of PADS would be useful, but is not essential.

GET INTO MOBILE COMMUNICATIONS

To £ $\mathbf{3 7 , 0 0 0}$

Join the successful and expanding development arm of possibly the best known mobile communications company in Europe. They have over 75,000 employees world-wide and have activities in more
than 100 countries. This site specialises in the development of cutting edge mobile communications products. which include Digital Cellular (GSM), Personal Communications (PCM), Personal Communications Systems (PCS), RLL and Satellite Communications. Due to continued investment in R\&D they currently require software engineers at all levels up to Principal Engineer. Communicaitons experience is not essential, but is highly desirable. Essential skills are C software development in a real-time environment and an understanding of structured methods. Desirable skills include the following:

* Mobile Communications
* Case Tools
* GSM / UNITS / DECT / CT2
* DSP

In return for this expertise you will receive excellent renumeration, ongoing training to maintain your skills at the cutting edge of the industry and the benefits of working in a development environment with a high degree of involvement. autonomy and support. Contact Toby Walker.

C/C++SOFTWARE COMMS PROTOCOLS

Northern Home Counties

To $£ 35,000+$ Relocation \& Training
You can join the cutting edge of datacomms development, located at the purpose built European development centre of this top five globally rated network development corporation, working on the next generation of products for the global market. Their software teams are expanding rapidly, generating opportunities at all levels for talented engineers with any of these skills:

* C / C++ / Unix
* Telecomms Protocols
* Real Time Systems
* ISDN / DASS / DPNSS
* Real-time Systems
* Switching Systems \& Call Control
* VxWorks

This role offers outstanding training, both on site and at other development sites world-wide. The working environment is friendly, enthusiastic and informal, aimed at giving you the most challenging and productive atmosphere possible. To make the move even easier they offer full relocation, an excellent benefits package and 25 days annual leave. Call me, Toby Walker, for more details.

DIGITAL HARDWARE LEADER

Cambridge

To $£ 40,000$
Leading consultancy specialising in test instrumentation for wireless telecoms and ditigal video is seeking a degree qualified team leader with 5 years' experience in micrprocessor design and FPGA design using VHDL. Preferably from a small company background, with experience in working alone, or as a part of a small elite teams, you should ideally have DVB, MPEG or Digital video experience and familiarity with Galileo or Xilinx tools. This company's turnover increased by 300% last year. If you want to be part of this dynamically successful team, Call Max Pritchard now.

SENIOR CONSULTANT COMMUNCATIONS SYSTEMS

Bristol

$\mathbf{£ 4 0 , 0 0 0}$ + Benefits
This company is an international telecommunications company providing innovative software products and professional consulting services to network operators and equipment suppliers. They have offices in the UK and USA and are equipped to support customers worldwide. The teams consist of highly skilled and experienced telecommunications professionals with an unmatched record of success in designing and implementing wireless networks. A Senior Consultant is required to join the Communications Systems team. You will have 5 or more years experience in RF network design (GSM, CDMA, or TDMA) as well as experience with RF planning tools. Specifically your work may have included network optimisation and preparation of RFP's and RFQ's for Network Operators. This is an excellent career opportunity for an experienced telecommunications specialist to realise his potential within a recognised and successful company. Call Nick Dixon.

Stowe Castle Business Park, Buckingham, MK18 5AB

STOP PRESS
 DIGITAL ASIC DESIGNERS

Middlesex

$\mathbf{£ 3 3 , 0 0 0 +}$
Multi-national company with more that twenty years of development experience in advanced telecoms products has an immediate requirement for an ASIC designer with 3-5 years' experience to join their rapidly growing hardware team. With skills in ASIC and FPGA design using VHDL and synthesis techniques, you can earn an excellent salary with a range of benefits. A background in telecoms with some knowledge of RF techniques and issues will be highly sought after. Contact Max Pritchard for more information.

HANDSET SPECIALIST

M4 Corridor

To $£ 40,000$ + Benefits
This widely acknowleged and recognised telecommunications specialist supports the global telecommunications industry with innovative products and services. A Handset Specialist is required. With an experience of over 5 years you will have a thorough knowledge of GSM / CDMA network design and have experience with either GSM / CDMA or handset manufacture in the area of GSM / CDMA handset testing for feature set functionality and performance testing. Although based in Bristol the position will require you to spend time in the field. You will therefore by required to be able to start quickly and work independently almost immediately. In return you will achieve an exciting career opportunity whilst receiving an excellent salary plus pension, annual bonus and share option, medical insurance and where appropriate relocation. Call Nick Dixon.

ELECTRO-MECHANICAL DEVELOPMENT ENGINEER

Berks

c£ $\mathbf{3 0 , 0 0 0}$
With at least five years experience including EMC shielding and LCD technologies. You will provide innovative solutions to design and manufacturing issues in diverse technical areas. You will have a working knowledge of high volume, manufacturing and assembly techniques, be self motivated and able to develop relationships with sub contractors and suppliers. In return, you will receive a competitive salary and excellent benefits package from this world leading electrical and communications company. Contact Alan Jupp.

MOBILE PHONE DESIGN/TEST ENGINEERS

M3/M4 Corridor

To $\mathbf{£ 4 0 , 0 0 0}$
Join the company that made communications mobile. If you have experience in GSM, CDMA, PCN or satellite hand-portable projects, in any area, from test and verification, to handset hardware design, the European leader in the industry is now looking for you. Vigorous expansion and exciting new products require new teams to stamp their mark on the last product developments. Send your CV's to Max Pritchard now.

PRODUCTION ENGINEER (ELECTRONIC)

Herts

£Negotiable
Highly successful manufacturer of electromechanical defence equipment require a production engineer. HNC / Degree qualified in Electronic Engineering, with an understanding of the latest PCB manufacturing techniques. You will be able to lead by example undertaking assembly/test work to solve problems, provide on line support to production and review and improve on the electrical and electronic aspects of the manufacturing process. Contact Alan Jupp.

RF TEST TECHNICIAN

Buckinghamshire

To $£ \mathbf{£ 5} \mathbf{0} \mathbf{0 0 0}$
This company is a well respected RF products and systems manufacturer. They require an RF Test Technician to optimise and test the company's Mast Head Amplifiers. This will mean ensuring the receiving and transmitting frequencies conform to required customer specification (1 to 2 Ghz). You will need to be aware of the individual and team production targets as defined in the production plan and to consistency meet those targets. Part of your work will be to carry out the practical diagnosis following specific diagnostic practice in a logicial and competent manner to ensure swift resolution. To do this you will need to recognise the importance of consistent quality in all aspects of the job. You will work as a member of the procuction team ensuring sound communication within the department and flag up problems which might affect the team's overall performance. If you have the ability, experience (network analysers) and drive for this demanding role, call Nick Dixon.

ANALOG IC DESIGN ENGINEER

Southampton
To $\mathbf{£ 3 5 , 0 0 0}$
This company is a fab-less semiconductor company and respected design consultancy. Due to expanding growth and opportunities within the semiconductor division, they are looking for an engineer with good experience of CMOS full custom IC design. You will have more than 3 years' experience in a variety of IC design, mature customer contact whilst maintaining good selfmotivation. BiCMOS skills would be useful, but not essential. You can grow with this company whilst benefiting for an excellent salary package, relocation, healthcare and a pleasant science park location in a flexible small company culture. Be part of an exciting future, call Nick Dixon today.

PROJECT ENGINEER

Middlesex

To $£ \mathbf{~ 3 0 , 0 0 0}$
With a degree in mechanical or electronic engineering and five years minimum experience in aerospace or control engineering you will have good communications and management skills combined with a broad knowledge of engineering. By managing resources assigned to individual projects you will provide successful completion of programmes ensuring compliance with all technical and regulatory requirements. An excellent benefits package is on offer with this well respected multi-national company. Contact Alan Jupp.

HIGH SPEED DIGITAL DESIGN

M3/M4
To $£ \mathbf{~} \mathbf{3 5 , 0 0 0}$
Join the UK company that is revolutionising the worldwide data warehousing market. Focused on providing massively parallel, high-speed relational database server systems to blue-chip organisations, this company provides a blend of hardware, software tackle the problems that many large organisations have with their data handling. They are now looking for a design engineer familiar with the problems associated with building very high density, high speed multi-processor boards for use in their systems. You need to be degree qualified with at least one year's industrial experience in high-speed digital design, CICS and RICS processor, PLD and FPGA devices and a knowledge of design for EMC compliance. Experience with Mentor Graphics tools would be advantageous for you to highlight in your application. If you are successful, a post with strong financial rewards and excellent bonuses can by yours. Contact Max Pritchard today for more information.

T \& M EQUIPMENT

ANRITSU ML93A optical power meter
(MA96A 0.75-1.8uM)
(MA96A 0.75-1.8uM)
150Mbit/sec
£500
ADVANTEST TR9407 fft spectrum analyser to 1 MHz
BRADLEY 192 oscilloscope calibrator
HP182T/8559A 21 GHz spectrum analyser
HP3582A dual channel fft analyser
HP54620A 15 channel $500 \mathrm{MS} / \mathrm{sec}$ logic analyser HP83475A lightwave communications analyser HP83572A sweeper plug-in (for 8350B) covering $26.5-40 \mathrm{GHz}$
HP8557A182T 350 MHz
IFR A-7550 1GHz portable spectrum analyser IFR A. 80002.6 GHz portable spectrum analyser MARCONI 2019 synthesized signal generator 80 kHz -1040M Hz
MARCONI $2380 / 2382$ high specification, 400 MHz spectrum analyser
MARCONI 2610 true rms voltmeter
FARNELL AP70-30 power supply 0-70V 0-30A 500W PHILIPS PM5193 synthesized function generator PHILIPS PM8272 2 -pen recorder
SCHLUMBERGER 70818.5 digit precision voltmeterf 1500 SCHLUMBERGER 1254 frequency responce analyser TEKTRONIX 'scope calibrator TM504/SG503/PG506/TG501 TEKTRONIX 492AP 21GHz spectrum analyser WILTRON 560A scalar analyser

ralfe electronics

36 Eastcote Lane • South Harrow • Middx HA2 8DB • England TEL $(+44) 0181-4223593$. FAX $(+44)$ 0181-423 4009

DISTRIBUZIONE E ASSISTENZA, ITALY: TLC RADIO, ROMA (06) 87190254

640B serial data generator

11581A attenuator set
3336A synthesizer/level generator 3235A switch/test unit 3325A synthesized function generator/01/02 $33320 \mathrm{G} / 33322 \mathrm{G}$ programmable attenuators 4 GHz with driver 11713 A
As above but 18 GHz set 35650A mainframe E3615A bench power supply $37724 \mathrm{~A} / 04$ digital hierarchy test set 37900 D sital hier 108 signaling 4140 BA pmeter, DC voltage source 4275A multi-frequency lor meter 4948A (/04) in-service TIM set 4093 B protocol tester base (РТ 300) 545100 A 1 GHz digitizing oscilloscope, now inc $2 \times 1 \mathrm{GHz}$ active probes 54620A logic analyser
6633A systems power supply
8018A serial data generator 8082 A pulse generator 250 MHz 8111A pulse generator 20 MHz 83411C lightwave receiver $1300 / 1550 \mathrm{~nm}$ 83440 C lightwave detector $20 \mathrm{GHz} 1300 / 1550 \mathrm{~nm}$ 8350 B with 83592 A 10MHz-20GHz sweep generator $86222 \mathrm{~A} 8620 \mathrm{C} 10 \mathrm{MHz}-2.4 \mathrm{GHz}$ sweep generator 87510 A gain-phase analyser $100 \mathrm{kHz}-300 \mathrm{MHz}$ 8901 B modulation analyser
J2215A FDDI portable multimode test set J 2304 internet advisor with ethernet interface
$£ 500$
£350
£2000
$\mathbf{f} 1000$ £1500
£1000
$£ 1500$
£2000
$£ 9500$
$£ 5500$
$£ 4000$
$£ 3000$
f500
£3500
£1500
f1500
f 1200
£600
£600
$£ 1000$
£ 1000
$£ 2000$
£ 1250
$£ 1750$
£2000
£2000
£ call
£ 1500
$£ 6500$
$£ 6500$
$£ 4500$
$£ 4500$
$£ 1500$
$£ 1500$
$£ 2500$

FOR EXCLUSIVE ACCESS TO OUR COMPLETE STOCK INVENTORY AND SPECIAL BARGAIN DISPOSAL DEALS PLEASE CHECK OUR WEBSITE http://www.ralfe-electronics.co.uk

ELECTRONIC UPDATE

Contact Joannah Cox on 0181-652 3620

Comprehensive new LCD brochure

The widest range of colour LCDs. LCD monitors and plug and play kits available in the UK. all in one easy to use brochure. is now available FREE

It includes products ranging from $2.9^{\prime \prime}$ monitors to $16.1^{\prime \prime}$ colour LCD screens. mono/colour STN TFTs and touch screen technology from the worlds leading manufacturers.

Phone Trident today
for your free copy.
Tel:: 01737765900
Fax: 01737771908

CIRCIE NO. 139 ON REPLY CARD

NEW Feedback T\&M Catalogue

The latest edition of the Feedback Test \& Measurement cata logue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a complete workstation, or a solution to a particular Test \& Measure ment need the NEW Feedback catalogue will sove your prob lems, send for a copy NOW!

CIRCLE NO. 141 ON REPLY CARD

A regular advertising feature enabling readers to obtain more information on companies' products or services.

New 1998 Instrumentation Catalogue

Send for your free copy of the new 1998 Instrumentation Catalogue from National Instruments. Featuring more than 600 hardware and software products for virtual instrumentation including new solutions for data acquisition and visualisation, MMI/SCADA and computer based image capture and analysis. Not merely a catalogue, it includes many useful tutorials, product line overviews and helpful selection guides making it invaluable for any engineer or scientist. CIRCLE NO. $1+0$ Call National Instruments for your FREE copy on: 01635523545

NEW JENSEN TOOLS

 CATALOGUEColourful new Cataiogue, hot off the press from Jensen Tools, presents unique new tool kits for service/support of
communications equipment. Also latest test equipment from many major manufacturers. Includes hard-to-find tools, PC/LAN diagnostics, bench acccessories, static control, technical manuals and more.

Ring 0800833246 or Fax 01604785573 for a free copy. Jensen Tools, 10-12 Ravens Way, Northampton NN3 9UD
CIRCLE NO. 1+2 ON REPLY CARD

- Supports Atmel FLASH $89 \mathrm{C}+89 \mathrm{~S}$, Generic 87CS1/52/FA/FB/FC microcontroller derivatives
- FLASH \& E2 libraries also available as chargeable update -305:2K Stariter System For C51 Project Devefopment..in a FLASH Includes: Programmer, Evaluation module and PK51-2K

A $£ 199.00$ Order Code: AT-89C-2K-ST

In-Sy $=$ tem

Programming (ISP)
"Now you can program the 8051 - the $A V R^{T M}$ wheut removing the device from the jocket!

द. Suppors intmel 905 (AVR) RISC mictocontroller family - Support Parallel Programming mode in ZIF socket

- Supports In-System Programnting via ribbon cable (provided)
- Equinox FAST ISP Programming Algorithm
- All on-chip facilities supported e g. RC OsC.

SYSTEM CONTENTS

- Professional Device Programmer • Power Supply
- Atmel AVR ${ }^{\text {TM }}$ Assembler - ISP Ribbon Cable
- AVRTM Basic Lite Compiler (NEW) (to target)
- Atmel Databook on CD ROM
- Serial Cable (to host PC)

Write in BASIC, Run in a FLASH
 - Compiled BASIC generates tight AVR ${ }^{\text {TM }}$ machine code
 a A : 1 BE GE

- Not a Run-Time Interpreter; NO code overhead!
- Target speeds comparable with assembler
- Breaks the cost barrier for small projects

AVRTM BASIC LITE only supports the AT90S1200 (512 words code) * 8 K version also available

From Only £24.95! • Ideal for educational, hobbyist and professional use
∇ Programmer Interface Software for Windows ${ }^{\text {TM }}$

- Keil 8051 C compiler, Assembler, Simulator (2K code), Windows ${ }^{\text {TM }}$ IDE
$\Delta 199,00$ Order Code: PK51-2K

895 Socket Stealer Module

Simply plug this into your existing 8051 or AVR ${ }^{\text {TM }}$ socket for INSTANT In-System Programming NO Target System
redesign required.

645.00 Order Code: $55-895-$ DIL40 A

The Embedded Solutions Company

PROVIDIVGTII: soluilins to YOUR ROBHIHS

Tel: +44 (0) 1204529000

Fax: +44 (0) 1204535555
For product information visit our web site at: www.equinox-tech.com
E-mail: sales@equinox-tech.com 3 Atlas House, St Georges Square, Bolton, BL1 2HB UK

[^2]

Dataman 54

[Anailusis]

* Programs 8 and 16-bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 Microcontrollers and more.
D. EPROM emulation as standard!
D. Rechargeable battery power for total portability.
D. All-in price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual.
© Supplied fully charged and ready to use.

S4 Gilla Modoule

[Analugib]

4. Programs wide range of 20 and 24 pin logic devices from the major GAL vendors.
5. Supports JEDEC files from all popular compilers.

* Plugs straight into your parallel port of PC or laptop.
- Programs and verifies at $2,2.7,3,3.3$ and 5 V
* True no-adaptor programming right up to 48-pin DIL devices.
- Free universal 44-pin PLCC adaptor.
* Built-in world standard PSU - for goanywhere programming.
2 Package adaptors for TSOP, PSOP, QFP, SOIC and PLCC.
* Optional EPROM emulator.

Slpiplos

[Analusi5]

. 3 year parts and labour guarantee.

* Windows/DOS software included.
* Free software updates via BBS/Internet.
- Free technical support for life.
- Next day delivery - always in stock.

2. Dedicated UK supplier, established 1978.

 |f

Secure for own use without delay. Order via credit card hotline - phone today, use tomorrow. Alternatively, request more detailed information on these and other market-leading programming solutions.

[^0]: Electronics World is published monthly. By post, current issue £2.35, back issues (if available $£ 2.50$. Orders, payments and general correspondence to L333, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 SAS. Tlx:892984 REED BP G. Cheques should be made poyable to Reed Business Information Ltd
 Newstrade: Distributed by Markefforce (UK) Ltd, 247 Tottenham Court Road London WIP OAU 0171 261-5108.
 Subscriptions: Quadrant Subscription Services, Oakfield House Perrymount Rood, Haywards Heath, Sussex RHI6 3DH. Telephone 01444445566 . Please notity change of oddress.
 Subscription rates 1 yeor UK $£ 34.002$ yeors $£ 54.003$ yeors £68.00. Europe/Eu 1 yeor $£ 49.002$ years $£ 78.003$ years $£ 98.00$ ROW 1 yeor $£ 59.002$ years $£ 94.003$ years $£ 119$

 Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of Americo: Ray Barnes, Reed Business Publishing Lid, 475 Park Avenue South, 2nd FI New York, NY 10016 Tel; (212) 6798888 Fox; (212) 6799455
 USA mailing agents: Mercury Airfeight International Lid Inc, 10(b) Englehard Ave, Avenel N 07001 . Periodicles Postage Paid at Rahway NJ Postmaster. Send address changes to above.
 Printed by BPCC Mogozines (Carlisle) Ltd, Newtown Troding Estate Carlisle. Cumbrio, CA2 7NR
 Typeset by Marlin Imaging 2-4 Powerscroft Rood, Sidcup, Kent DAt 4 SDT,

[^1]: Hitex (UK) Ltd.
 E5
 University of Warwick Science Park, Coventry, CV4 7EZ
 Tel: 01203692066 Fax: 01203692131
 Email:sales@hitex.co.uk Compuserve: 100646,1526

[^2]:

