ELECTRONICS

WORLD

+ WIRELESS WORID

NOVEMBER 1989 £1.95

DESIGN
Single chip
voice recorder
SOFTWARE
Orcad SDT and Spice.age reviewed

SClienas
Laser radar probes the aimosphere

Linsley Hood ont the evolving audio amplifier

$\left.d^{2}\right] \mid \mathbb{F}=A$

LOGIC AVAI YSER LAA800
Thuriby

The new logic analysers from THURLBY offer performance far beyond their price; systems start from under £1K!

- 32 or 48 data channels, 8 K deep
- 100 MHz asynchronous operation
- 5 ns glitch capture capability
- Multi-level trigger sequencing
- Non-volatile data and set-up memories
- Disassembler options for popular μ Ps Through the use of the latest technologies these LAs match or exceed
the specifications of instruments costing many thousands of pounds. Yet a complete 32 channel system in:luding combination data pod costs only $\mathbf{£ 9 9 7}$ plus vat.

The special high-resolution screen provides soft-key access to a vast array of features including: free-format state listings, powerful search \& compare, context-sensitive help, serial interface, printer output, and much more.

Contact Thurlby now for full technical details.

Thurlby

Thurlby-Thandar Ltd. Glebe Road, Hunlingdon, Cambs. PEI 870 DX
Telex: 32250 Fax: $(0480) 450409$ Telephone: $(0480) 63570$ or 412451

CONTENTS

A frequency doubled l'As; laser prohes the upper reaches of the atmosphere with the optical equivalent of radar. These new instruments are revealing secrets ahout high altitude haze laners, significant contributors to the greenhouse effect. Page IOS7.

MINIATURE HF AERIAI 1109
Imagine a broadhand HF receising and transmitting aerial small enough to stand on a window sill set with a performance comparable to a standard dipole
REVIEW - SPICE.A(jE 1113
As an amalogete circuit simulator, the Pe hatsed package can be used as a serious design tool. It can also prowide a useful :caching aid for and logue cirenit techniques.

SOLID STATE AUDIO POWER

 1042John Linsley Hood traces the evolution of the transistor power amplifiers from 1956 to the present day. His account gives invaluable insight into power amp design.

REGULARS

COMMENT10)35
High tech junkies. Leeathing US chip bow Jerry Sanderssays that the Japanese ate behating like a bunch ofcrack dealers
RESEARCH NOTES 10.37Is hydrogen a hot superconductor". Micron motors. $8 \mathrm{k} \mathrm{V}^{\prime}$transistors. the biological effect of power lines and atcanine byte
UPI)ATE 1050Intel's latest controller rums ofomips. And other newsfrom around the industry
PIONEERS 1075Lee de Forest made "a strange device like an incandes-cent lamp" although his hows told him that he would"never make a telephone engineer
BOOK REVIEWS 11177
APPLICATIONS 1078Power Hall devices. filter design the ears wat, powerfactor problems.

IETTERS
1083
Who goes to university. Wien oncillators, units, scratthed dioders. cold fusion. and nomemse
NEW PR(OI)UCTS (LLASSIFIEI) 1095
The monthly round-up of new products at-at-gtance
CIRCUITIDEAS1098
Constant EAF motor controller, unipolar to hipolarconverter, touch semsitise sunthesi/er, triangular tosine comverter, hattery saver and more
RF CONNE("TIONS1119
The lated development in RF derign propagationreseareh and broadeat news. Written by Pat Itawker

In next month's issue. Vogager's astonishing pictures of Neptune and its slushy moon Triton mesmerised scientists the world over. The mission has been a triumph of technology. Research Notes writer John Wilson gives his own account of how it was done. We also look inside modern communications satellites.

```
        CONSULTING EDITOR
        Philip Darrington EDITOR Frank Ogden
EDITOR - INDUSTRY INSIGHT
    Geoffrey Shorier, B.Sc.
        0/-661 8639
        DEPUTY EDITOR
        Martin Eccles
                Mar-601 8038
        illustration
            Roger Goodman
                01-661 8690
        DESIGN & PRODUCTION
            Alan Kerr
            01-6618676
ADVERTISEMENT MANAGER
        Paul Kitchen
        01-6613130
CLASSIFIED SALES EXECUTIVE
        Christopher Tero
        01-601 8640
ADVERTISING PRODUCTION
                Una Russ
            01-661 8649
        PUBLISHER
        Susan Downey
        01-661 8452
        FACSIMILE
        01-661 }893
```

REED BUSINESS PUBLISHING GROUP

High tech junkies

"The Japarese semiconductor manufacturernare behaving like a hunch of crack dealers". Not our word but those of outspoken AMI) boss, derys Sanders. chairman of a billion dollar US chip compans

Ite made the allalogy in discussing the West increasing dependence on Japancese commodity semiconductor parts such is d-ramsind eproms. He reckons that the Japanese ambition is to hook the West : dominam computer companies by feeding them cheap memory parts. destroy the indigenounchip industries through selective dumping. jack the price on chips from the remaining Iapane se sources and thus render US and European equipment producers meompertite. The end objective is tok ill the Wests eguipment induter through finameial warfare

Naturatly the United States wor tallow this to happen. It has already ated in the defence of its commercial egtapment maker and the asonciated semienductor infrastructure by creating joint ventures such as IS Memories and Sematech. The US has always sateguarded the military infrastructure through the long established VASIC programme, It has yet to use its final defensive weapon, trade regulations along the lines of those emplosed in the anto inamatry but it won thesitate if the day shouild come

The dyamic US reaction thatery real Japane er threat is in complete contrant to the Europeall response

Essentially, there isnt one
 is actually eode for "Lets waise the anti-trust lans and allow the curomultationala tocoalence however they wish. Bigger in more secure enen though the exern-consumer has less choice."
And that's what has happened to our very own Plessecy company. a victim of a cosytelecomins and defence duopoly. Sicmens and (iEC
Gne may argue that Siemens hatsome daim tocomodity semiconductor manufacture It makes rams but. on the world axale, it might as well not bother. GIECdidn't. The British company has never looked beyond upporting in lucrative defence and telecomms interents. The threats from Japan neverentered the calculations.
Here lies the great danger The US will fight 1 igorous battle against the Jabanese. The Rising Sunknows this and will elect totackle the Americans as part of a second front. Japan will content itself initially with culyjugation of European equipment makers. The remonal of the sibrant Plesery Semiconductor operation into the dead hand of Siemen and (il: (will make the proces a little easier.

The UK's national position is even worse, Immos has been allowed to pass into Italian ownershipand Plessey is being fitted for a atraight-jacker. We no longer have an independent semiconductor industry

Should Sander: worst predictions come truc, the UK'sequipment indurery will hate toturn to the Koreans for salsation lien if the man has spoken a toade of rubbish. the reduction instatun of the UK: semiconductor mandature to a screwdriver operation will dolitle to foster at technolog, basedelectronico industry in this con.ntry.

Frank ()gden

From £534*

(We are assuming that you already have an $\mathrm{IBM}^{\text {TM }}$ or compatible)
Thurlby's DS-PC Link package connects a Thurlby Digital Storage Adaptor to an IBM compatible, creating a flexible digital storage oscilloscope of great sophistication with a performance of instruments costing up to ten times as much!

The DS-PC Link comprises disk-based software and an interface cable to link the DSA and PC. It provides a fast, high resolution colour (or monochrome) waveform display, a full set of DSO facilities and special PC features, including disk-based storage, intelligent cursor control and hard copy output.

OSA524	Two channel adaptor 20MS/s	$£ 585$
OSA511	Two channel adaptor 10MS/s	$£ 395^{*}$
DS-PC Link	Interface Package	$£ 139^{*}$

Prices exclude VAT
Thurlby Electronics manufactures and distributes a wide range of electronic test equipment. Send now for the full data.

Thurlby

Burrel Road, St. Ives, Huntington, Cambs PE17 4LE Fax: 048064832 Tel: 048063570

Hydrogen: the hottest superconductor?

My comments in previous issues about the increasingly unpractical nature of some of the new high temperature superconductors seems to have been borne out by some intriguing research at the Carnegie Institution Geophysical Laboratory in Washington DC and at the University of California at Berkeley. This time the material under investigation was not some esoteric ratre earth/copper oxide complex but the simplest material of all - hydrogen. Normally of course hydrogen, with each atom consisting of only a single proton and single electron, exists as a nonconducting gas. When cooled to around $-253^{\circ} \mathrm{C}$ it turss into a clear liquid. excellent for propelling space shuttles but, like its gaseous counterpart, also a good electrical insulator. Even solid hydrogen, formed when the liquid variety is further cooled to $-259^{\circ} \mathrm{C}$. is non-conducting, though physicists have long speculated that it might become conductive under extreme pressure.

The basis for this prediction is the fact that all other elements with a single electron in the valence orbital are in fact metals and all conduct electricity. So could it be that under certain conditions hydrogen too would exhibit metallic properties? Unfortunately, no-one has been able to squeeze it hard enough Forget your garage air-line: calculations suggest that hydrogen needs about two million atmospheres before there's the remotest possibility of its turning into a metal.

That sort of pressure - roughly the same as that found in the centre of the Earth - has now become possible thanks to a device called a diamond anvil cell in which the solid hydrogen can be squeezed in a tiny cavity between the faces of two carefully-machined diamonds. Because the diamonds are only 0.5 nm across and their cavities even smaller, it's now possible to create the sort of pressures at which hydrogen would become metallic. Better still, because of the transparency of diamond it should be possible actually to see such a change.

In a paper in Science (Vol. 244, page 1462). H.K. Mao and R.J. Henly describe an experiment in which they found tentative evidence of transformation to the metallic state. At between two and three million atmospheres pressure the clear ice-like solid hydrogen gradually became more opaque
until it looked increasingly like a metal This colour change is significant because the opacity of familiar metals is due to an electronic configuration that is also responsible for conduction. As to whether the hydrogen in this experiment actually did become electrically conducting wasn't verified, and until someone devises some Avo probes that will penetrate diamond and survive a few million atmospheres pressure. it won't be easy
Theorists at Berkeley fave. nevertheless, gone yet another step further and predicted that if the pressure is increased to about four million atmospheres. then hydrogen will become not just conducting but superconducting. In their latest paper (Nature Vol. 340 No 6232) T.W. Barbee III. A. Garcia and M.L. Cohen calculate the atomic structure which they expect hydrogen to
adopt at four million atmospheres They go on to compute that such a structure would superconduct with a transition temperature of $-40^{\circ} \mathrm{C}$. easily the highest of any known substance

Verifying this prediction worlt of course be any easier than verifying the metallic properties of hydrogen. Nevertheless the models employed by Barbee et al have already successfully predicted the behaviour of silicon under extremely high pressures. so it's more than just sophisticated guesswork

As to the practical value of superconducting hydrogen. my initial remarks are undoubtedly fair comment. Nevertheless. hydrogen is a much simpler material than other high temperature superconductors and one that should appeal strongly to theoreticians anxious to unravel the complexities of why materials superconduct at all

Long-life micro-motors

Tiny electric motors, developed at the University of Utah's Centre for Engineering Design, could one day be used for grinding cholesterol off the insides of furred-up arteries. The devices, called wobble motors, have a diameter of less than half a millimetre and consist of a hair-like rod inside a casing. The name derives from the fact that the armature wobbles slightly as it rolls around inside the casing; this is said to remove the need for lubrication. The units operate up to 120000 RPM.
The wobble motor, pictured here by a 10 cent coin, avoids the need for complex components by using electrostatic forces instead of conventional electromagnetic principles. Torque is reported to be high enough to operate tiny saws, knives and other tools. Dr Stephen C.

Jacobsen, director of the Centre, says that they've already made a successful micro-drill with a 0.05 mm diameter bit.

Micro-motors are not new in concept; several US and Japanese researchers have in fact already made them smaller still. What's special about the Utah devices is that they're claimed to be the first units to operate for sustained periods without wearing out.

As well as the possibility of unblocking diseased arteries, Jacobsen foresees his motors being used in scientific instruments, robots, artificial limbs and virtually anywhere where electricity needs transducing into motion. In addition to motors, he's also working on microscopic actuators, sensors and other electromechanical components.

MAKING ELECTRONICS C.A.D. AFFORDABLE

TIUYFPG

PCB CAD, FOR THE PC/XT/AT

Are you still using tapes and a light box?
Have you been putting off buying PCB CAD software?
Have you access to an IBM PC/XT/AT or clone?
Would you like to be able to produce PCB layouts up to $17^{\prime \prime}$ square? With up to 8 track layers and 2 silk screen layers?
Plus drill template and solder resist?
With up to eight different track widths anywhere in the range 002 to . 531 "?
With up to 16 different pad sizes from the same range?
With pad shapes including round, oval, square, with or without hole and edge connector fingers?
With up to 1500 IC's per board, from up to 100 different outlines?
With auto repeat on tracks or other features - ideal for memory planes?
That can be used for surface mount components? With the ability to locate components and pads on grid or to $002^{\prime \prime}$ resolution?
With an optional auto via facility for multilayer boards? With the ability to create and save your own symbols? That can be used with either cursor keys or mouse? That is as good at circuit diagrams as it is at PCB's? Which outputs to dot matrix printer, pen-plotter or photo-plotter (via bureaux)?
Where you can learn how to use it in around an hour?

SMITH CHART PROGRAM
ZWHTCH
Circuit analvis sy computer hyilys:

For IBM, PC/XT/AT and clones inc. Amstrad 1512 and 1640 and BBC B, B+ and Master.

Z-MATCH - Takes the drudgery out of R.F. matching problems. Includes many more features than the standard Smith Chart
Provides solutions to problems such as TRANSMISSION LINE MATCHING for AERIALS and RF AMPLIFIERS with TRANSMISSION LINE, TRANSFORMER and STUB MATCHING methods usin COAXIAL LINES
MICROSTRIP, STRIPLINi i and WAVEGUIDES.
The program takes account of TRANSMISSION LINE LOSS, DIELECTRIC CONSTANT, VELOCITY FACTOR and FREQUENCY
Z-MATCH is supplied with a COMPREHENSIVE USER MANUAL which contains a range of WORKED EXAMPLES
£130 ex VAT for PC/XT/AT etc. £65.00 ex VAT for BBC B, B+ and Master

For IBM PC/XT/AT and clones inc. Amstrad 1512
1640, R.M. NIMBUS, and BBC B, B+ , and Master

"ANALYSER II" - Analyses complex circuits for GAIN, PHASE, INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY over a very wide frequency range.

Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS, WIDE BAND AMPLIFIERS TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV I.F. and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS etc

STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop"
Can save days breadboarding and thousands of pounds worth of equipment.
£195 ex VAT for PC/XT/AT etc. £130 ex VAT for BBC, B, B+ and Master

All major credit cards accepted
\because RITE OR PHONE FOR FULL DETAILS:- REF WW

Harding Way, St Ives, Huntingdon Cambs, PE17 4WR Tel: St lves (0480) 61778 (4 lines)
We provide full after-sales support with free telephone 'hotline help' service. Software updates are free within 6 months of purchase date

Radar atmosphere probe

At Capel Dewi, five miles from Aberystwyth, is an impressive antenna farm consisting of 64 vertically-orientated Yagis. It's not as you might imagine, a system for communicating with extraterrestrial intelligence, but the first phase of a new SERC facility known as the Mesospheric. Stratospheric and Tropospheric Radar (MST).

When the complete system comes into operation later this year there will be a further 336 four-element Yagis, all linked by a complex network of power dividers and variable phasing arrangements designed to swing the beam up to 12° from the vertical.

At present, the existing 64-element array, powered by two of the planned five 25 kW transmitters, can probe the atmosphere up to about 16 km . Returning echoes are received on a special high-performance computer-controlled receiver which estimates upper almosphere wind velocities from Doppler shifts. When the complete system is up and running. this data will be available from regions of the atmosphere up to 85 km high.

The radar system. which operates at a
frequency of 46.5 MHz . can detect not just wind speed. but everylhing from small-scale atmospheric phenomena such as turbulence, right up to weather fronts and the jet stream. All this information is vital for the aviation industry, both for hazard avoidance and for route planning to reduce fuel consumption.

Professor Lance Thomas of the University College of Wales, Aberystwyth and Dr Tony Hall and Dr David Llewellyn-Jones of the Rutherford Appleton Laboratory say (SERC Bulletin Vol. 4 No 2) that the new facility is expected to yield valuable research information, particularly when its results are compared with data from lidar atmospheric probes operated by UCW's physics department. Already the new radar has attracted considerable interest from abroad, notably Japan.

SERC's giant VHF radar array, which
will probe the Earth's middle
atmosphere. Each Yagi stands 5 m high.

Health plug: biological effects of power lines

Of all the tantalizing questions that obstinately refuse to go away, the effect of ELF electric and magnetic fields on health is perhaps the most persistent. It s been debated on and off ever since the 1960)s. always with inconclusive results. Pylons, like toxic waste, are highly susceptible to the Nimby ("Not in my back yard") principle, but are highly resistant to any attempts to prove them dangerous.

As previously reported in these pages (February 1988, page 173). one of the biggest epidemiological studies, the New York State Power Lines Project, concluded in July 1989 that the health risk to people living under cables was either small or non-existent. Yet the study did ack nowledge the existence of clusters of excess leukaemia cases in a few places only.

Common sense would of course tend to rebut any suggestion that 50 or 60 Hz fields carry a health risk. In the first place, the amount of energy entering the body is substantially less than that
which flows around naturally in nerve and muscles. In the second place there has been no widespread rise in disease since the introduction of electricity for domestic and industrial purposes. Yet laboratory studies have demonstrated changes in the genetic chemical DNA and in the ways other chemicals flow across cell membranes. Unfortunately such studies haven't always produced consistent results, nor is it easy to extrapolate from cell cultures to people.

Almost as if to keep the proverbial pot boiling, the US Office of Technology Assessment (OTA) has now released a study commissioned from CarnegieMellon University showing that if overhead power lines are harmful, then domestic wiring and appliances are infinitely worse. This study (Nair, Morgan and Florig - Biological Effects of Power Frequency Electric and Magnetic Fields - OTA) suggests that home is where most exposure occurs. This is partly because of the proximity of domestic wiring and partly a consequ-
ence of the time spent near it. So it seems as if any effects of pylons and overhead cables are probably more a result of their architectural impact than their associated electrical and magnetic fields. But where does the OTA study leave the overall question of ELF fields and health?

As before, there doesn't seem to be much real progress. Overall, says the report, the evidence now available is too weak to allow firm conclusions either way. It does, though, call for further detailed studies into the type of exposure. Could it be, for example, that infrequent explosure to high fields for a short time is more significant than longterm exposure to lower fields? Only animal tests and more epidemiological studies will tell.

Hedging its bets, the OTA study suggests one practical approach that would be to adopt a "prudent avoidance strategy". Translating into English, I think that means don't sit near cables unless it costs money to sit elsewhere.

Research at Philips

Always a good read is the annual review of Philips Research Laboratories (formerly the Mullard Research I aboratories) in Redhill. The most recent (1988) edition contains among other things a fascinating study into the practical limits of infra-red as a means of data communication between computer peripherals. Did you know, for example, that the worst source of interference is the modern Rf-Iriven fluorescent lamp which radiates modulated IR up to frequencies of several hunded kHz?' Philips complains that a hazard to the growth of IR equipment is in fiet a lack of international standards controlling the radiation of spurious infra-red.

Another paper in the same Annual Review describes the development of a 3 kV bipolar photo-transistor - not as you might imagine a laboratory curiosity but a device that could make easy the stabilization of CRT electrode voltages or the driving of electrostatic loudspeakers. Figure I illustrates the structure of the transistor which features a
ring emitter for high light sensitivity and several concentric p-doped structures called Kanos rings. These caln casily be created using planar technigues and, as well as increasing the photosensitivity of the transistor. also glard against breakdown. Typical devices have BV of $3 k V$ and $3 V_{\text {etm of }}+k V$

One of the first practical uses of these photo-transistors has been in an amplifier designed by Philips (eentral Research Laboratories at İindhoven in Ilolland. Figare 2 shows the essential elements of ath all-solid state driver circuit for electrostatic loudspeakers. Using a push-pull configuration with four photo-transistors in cach half working as opto-couplers, the amplifier can easily deliver 20 watts outut at a voltage swing of $8 k \backslash$! This performance could have been achieved with fewer devices, but eight are used to guard against unequal voltage distribution. Clearly the davs are long gone when you could safely stick your fingers inside solid-state equipment!

Fig. 1 (above): cross-section of annular 3 kV bipolar photo-transistor.

Fig. 2 (below): opto-coupled driver for

Canine byte?

At the time of writing. Britain's controversial experiment with electronic tagging of remand prisoners is somewhat in the doldrums. But in a less sophisticated and less publicized way, a new method is being tested of keeping tags, not on people but on dogs.

Earlier this year the Battersea Dogs Home conducted successful experiments in implanting coded chips under the skin of several dogs in its care. Now following veterinary tests, the Home is to implant all of the 10000 to 15000 stray pooches that pass through its doors each year. The idea is to identify each dog uniquely and so be able to keep a check on its subsequent progress. Although the Dogs' Home is extremely fastidious in selecting good homes for its inmates, it has had no means up till now of telling, for example, whether a dog was on its first or second visit.
The implant devices are cylindrical in shape, just over 1 cm long and 2 mm in diameter. Manufactured by Animalcare Ltd, they're read off by a scanner that displays a ten-character alphanumeric code. It is claimed that 34×10^{9} unique and unalterable codes are available. more than enough to cope with Britain`s

estimated quarter of a million stray dogs.

Clearly there's a significant lobby among animal lovers who'd like to see this sort of electronic tagging used as an obligatory means of registering and identifying all dogs, as is the case with guard dogs in the Irish Republic. I must admit though, bearing in mind the latest experiments to taig remand prisoners, that such technology might well find a use for species other than canines - both sides of the border.

Research Notes are by John Wilson of the BBC World Service science unit.

Affordable, stand alone, PCB fault-

 diagnosis equipment.

A 280 logic trace sequence

- 24 and 40 pin Variants.

Providing a host of features for rapidly testing digital IC's in circuit.

- Save and Compare

Data from a known good PCB
can be saved enabling a
suspect board to be compared in minutes without circuit documentation.

- Automatic Circuit

Compensation. An IC is tested
in the way it is connected. No need to program each test.

Phone for your free data and information pack now!

- SearchMode To identify unmarked IC's and give an equivalent for replacement. - Manufacturing Defects Analysis, Rapid access to circuit information to locate production faults. - Out of Circuit Testing. ZIF sockets make the units ideal for goods inward inspection and checking a device is functional before soldering.

SOLID-STATE AUDIOPOWER

Valve audio amplifiers generally require an output coupling transformer to match the output impedance to that of the loudspeaker load. If a good performance is sought, this component will be expensive and bulky. The savings in cost and bulk which are possible and the improvement in performance, especially at the extreme ends of the audio spectrum, by avoiding the need for this component have remained one of the major benefits of "solid-state" circuitry.

Early transistor audio amplifiers

Understandably, early designs in this field owed a lot to previous valve amplifier practice. with transformer interstage coupling being used to allow a push-pull output configuration. However, the real break-through in this field came with the introduction. in 1956. of the "quasi-complementary" output stage due to H.C. Lin', of which the basic circuit layout is shown in Fig. 1.

At the time, the most easily obtained transistors were germanium diffusedjunction p-n-p devices, although some germanium n-p-n transistors were becoming available in low-power versions. The attractive feature of Lin's design was that the circuit provided a push-pull output without the need for a coupling transformer, and with a pair of output transistors which were both of the same type. In addition, it only required one low-powern-p-n device.

The performance of this circuit was excellent by contemporary transistor audio-amplifier standards, in that it had a $30 \mathrm{~Hz}-15 \mathrm{kHz}$ bandwidth and a full-output-power THD figure of less than 1% at 1 kHz , which decreased somewhat with decreasing output power. However. germanium transistors have too high a temperature coefficient of leakage current for them to be suitable for domestic use, where thermal runaway could never be completely ruled out.

Sadly, the relative excellence of the

John Linsley Hood traces the evolution of transistor audio power amplifiers from 1956 to the present day. Designs produced up to 1975, covered in this first part, reached a high standard, but still contained residual design mistakes

Lin circuit, which was designed around germanium transistors, gave misleading encouragement to other engineers, on a world-wide basis, who translated the design into silicon-transistor-based versions when, during the early 1960s, n-p-n silicon planar power transistors became available.

The inherent snag in this approach is that the base voltage/collector current characteristics of germanium and silicon transistors are different, with that of the silicon device being much more abrupt, as shown in Fig. 2.

Moreover, since the permissible thermal dissipations of the output devices were then fairly limited - by comparison with valves - it was necessary to operate the output stages at a fairly low quiescent current, in class AB , or even (with zero quiescent current) in class B. High (notional) levels of negative feedback were then used to lessen the residual distortion which this incurred.

This design philosophy had the unfortunate effect of maximizing the performance penalties, in that the high levels of NFB inevitably contributed to poor overall loop-stability margins while, at the "crossover" point. the effective gain of the output devices was low or even zero, so that the NFB was ineffective in reducing the distortion at the very point where it would have been useful.

Also, because of the basic asymmetry of the "quasi-complementary" output stage, as shown in Fig. 3, not only was the residual inherent distortion large, but it tended to increase as the output power level was reduced, as shown in Fig. 4.

This meant that a manufacturer's specification which claimed, for example. "better than 0.05% THD at full output power" might be quite irrelevant to the user, who might have to put up with ten times this amount of distortion at his normal listening levels.

Moreover, the residual distortion, especially at low powers, was rich in dissonant harmonics, which were alien to the normal experience of the human

Fig. 1. Original quasi-complementary transistor power amplifier by H.C. Lin. from 1956.

Fig. 2. Comparison of silicon and germanium base-voltage/collectorcurrent curves at $25^{\circ} \mathrm{C}$.
ear. In addition, the reduced gain at the point at which the signal waveform crossed the zero axis tended to suppress low-level signal components and give the amplifier a "thin" sound, lacking in "warmth" and "richness".

It was hardly surprising, therefore, that these early silicon-transistor quasicomplementary "high-fidelity" designs won few friends among their users. Mose regrettably in the long term. this unfortunate and temporary lapse of design standards has led to two breakaway movements among the 'hi-fi' community: the "all specifications are meaningless, so only believe your ears" fraternity, and the "hack to valves" brigade.

Improved output-stage configurations

There were, in the 1960s, three practicable options for improving the performance of audio-output stages: to use fully complementary output devices, which were just becoming commercially available; to use the output devices in class A; or to modify the quasicomplementary arrangement so that it gate greater symmetry in the two halves.

The first of these approaches was adopted. soon after suitable devices became available, by Locanthi ${ }^{-}$and Balley ${ }^{3}$. The output stages of a 30 W per channel design due to Bailey are shown in Fig. 5.

There are two difficulties inherent in this approach, of which the first is that the $p-n-p$ output devices were, at that time - and to some extent even today -

Fig. 3. Asymmetry of silicon quasi-complementary pair. Small diagram shous crossover characteristic when pair optimally biased.

Fig. 4. Asymmetry of early silicon quasi-complementary amplifiers shown in Fig. 3 gave rise to increasing crossover distortion at low power levels, in contrast with the behaviour of a good-quality valve amplifier.

rather more fragile than their nominal n-p-n equivalents, which prompted Bailey to evolve an effective overload protection circuit, also shown in the diagram.

The second problem is that, because of the different majority carriers in the two transistor forms, $p-n-p$ devices tend to have a lower HF transition frequency than equivalent n-p-n ones. The difference in the transition frequencies of the "complementary" output transistors leads to asymmetry of the output stage at higher audio frequencies. with a consequent worsening of crossover and other distortion characteristics.

At that time my own preference. provided that the power requirement was relatively modest, was for the use of class A operation, and a circuit for a loW power amplifier using this philosophy ${ }^{4}$ is shown in Fig. 6. This is not a push-pull system, and is therefore intrinsically free from crossover problems. This particular circuit can be visualized either as a simple transistor gain slage with an active collector load. or as an emitter follower with an active emitter load. A difficulty in the use of this layout is that it has a low overall efficiency and is not easily extended in power without the use of a bridge configuration

The third approach is exemplified by a neat circuit adaptation due to Shaws, in which an added diode is used to lessen the differences between the up-

per and lower halves of the output pair as shown in Fig. 7(a). Because the output transistors can then be of identical type (and F_{1}), the worsening of THD with increase in frequency can be lessened.

Baxandall, following an analysis of this problem ${ }^{6}$, suggested an elegant circuit improvement, shown in Fig. 7(b), which almost completely eliminates the dissimilarity between the upper and lower halves of the output stage, and allows a low-distortion design to be made with identical output transistor lypes.
For a subsequent higher-power amplifier design, I followed in the

Fig. 6. Author's 196910 W class A amplifier. Since the operation is not push-pull, there is no crossover distortion.
footsteps of Shaw and Baxandall, with the circuit layout shown in Fig. 7(c), in which I had added a small capacitor to the resistor/diode network to simulate the effect of the output transistor base/ emitter capacitance.

An alternative arrangement, introduced commercially by the Acoustical Manufacturing Co. ${ }^{8}$ in their Quad 303 power amplifier. employed a pair of quasi-complementary triplets, of the type shown in Fig. 8. This generates a

Fig. 7. Shaw's improved quasicomplementary design from 1969, which used a diode to improve synmetry, is seen at (a). At (b), Baxandall's variation further improves symmetry, and (c) shows author's use of small capacitor to simulate effect of base/emitter capacitance.
high internal loop gain within each of the compound output emitter-follower groups, which helps to minimize the asymmetry of the output stage "halves" and the residual crossover distortion which this asymmetry introduces.

Other layouts have been proposed to improve symmetry in such quasicomplementary pairs, such as that due to Visch ${ }^{9}$ and Stevens ${ }^{(1)}$, but contemporary high-quality design appears to be exclusively committed to symmetrical layout employing using complementary transistors, which use either the output transistor configuration shown in Fig. 5. or that of a symmetrical compound emitter follower of the type shown in Fig. 9. This has the advantage that the base/emitter junctions of the output devices, which will get hot, are not included in that part of the circuit which determines their forward bias, which offers better output-stage quiescent current stability.

All of these class $A B$ circuit layouts require that the quiescent current in the output stage remains close to some optimum value if the target performance of the design is to be achieved, in spite of changes in the temperature and age of the components. This has been the subject of considerable circuit development. of which some radical approaches are discussed later.

With an eye on their use as output devices. several manufacturers have introduced low-cost, high-specification. monolithic, Darlington-connected output transistors, having the internal structure shown in Fig. 10. However. because the driver transistor is on the same chip as the output device and is heated by it, the use of such output transistors makes output-stage quiescent-current stability more difficult to achieve.

Direct-coupled layouts

All of the earlier "transformerless" transistor power amplifier layouts were designed to operate between the 0 V rail and some single positive (or negative) supply line, with a DC blocking capacitor to the loudspeaker, using a layout similar to that shown in Fig. 6. This

Fig. 8. Quad 303 quasi-complementary triplets.

Fig. 9. Symmetrical compound emitterfollower. Bias is less temperaturedependent.

Fig. 10. Internal structure of n-p-n Darlington transistor.

Fig. II. Use of'symmetrical supplies avoids need for blocking capacitor.
meant that the loudspeaker unit was protected from damage in the event of a semiconductor failure, but involved the use of a large-value coupling capacitor if an extended low-frequency response was sought.

However, designers became increasingly convinced that there were advantages in sound quality to be obtained by the use of the so-called direct-coupled layout, of the type shown in Fig. 11, in which the amplifier operated between a pair of symmetrical (\pm) supply lines, so that there was no longer a need for the output capacitor. This layout added the problems of LS protection - most easily provided by a simple output fuse - and the stability of the nominally 0 V output potential.

Various input circuit layouts have been proposed ${ }^{3.11}$ to ensure that no residual DC appeared at the loudspeak-

Fig. 12. Long-tailed-pair input circuit ensures that no DC is present at output.
er output terminals, but the simplest and most direct solution to this problem is the use of an input long-tailed pair of the kind shown in Fig. 12.

Provided that the emitter currents of both devices are the same, and that they have similar values of current gain, the output offset will be close to zero if the base circuit resistances for both transistors are the same. A high-impedance tail load is desirable to ensure the integrity of signal transfer between the two input halves

Gain stage circuit designs

The gain stages hetween the signalinput point and the output devices are normally operated in class A and are configured to provide as wide a bandwidth. as high a gain and as low a phase shift as practicable
To simplify loop-stability problems.

Fig. 1.3. Current mirror presents high dynamic-impedance load.

Fig. 14. Current-mirror shifted to second stage. as used in ICs by National Semiconductor and by Hitachi in an audio power amplifier.
the gain block is nomally restricted to two stages and, to get as high a gain as possible, the collector load for the second stage has as high a dynamic impedance as practicable. This is often a "bootstrapped" load resistor, as employed in the designs of Figs 5 and 6. However. in more recent circuits. a constant-current source load is normally used. since this gives rather belter distortion characteristics, especially at LF. though the possible total output voltage swing may be rather less.

The load for this input stage may just be a single resistor. in the first collector circuit as shown in Fig. 12 although. following the practice in IC op-amps. it is more common to use a current mirror in this position, as shown in Fig. 13.

An interesting development of this idea is to move the current mirror to the position of load for the second gain stage. as show schematically in Fig. 14. This is an idea which appears to be due to National Semiconductor and is employed in several of its IC op-amp designs. such as the LHOO61. This has been adapted, more recently, to an amplifer circuit by Hitachi. ${ }^{12}$.

Loop stability and transient intermodulation distortion

If negative feedback is applied around a circuit enclosing a two-stage gain block as well as an output emitter-follower system. it is probable that the total phase shift within the loop will be 180° at some frequency at which the gain is unity, and the amplifier will oscillate.

It is essential, therefore, to ensure stability by causing the open-loop gain to fall as the frequency approaches the upper (or lower) 180° phase-shift points. With most direct-coupled circuits. the LF loop phase shift will not exceed a sate value; stability problems are therefore confined to the HF end of the pass-band.

It was, and is, customary to achieve HF loop stabilization by imposing a single-pole dominamt-lag characteristic on the system by connecting a small capacitor between base and collector of the second gain stage (C_{2} in Figs. 12, 13 and 14), since this arrangement gives the best THD performance at high frequencies. However, this approach leads to the problem that it imposes a finite speed of response on the second gain stage while C_{2} charges or discharges through its associated base and collectorcircuits.

If a composite signal including a step waveform is then applied to the input device, it is possible for the input stage to be driven into overload because no

Fig. 15. Effect of slew-rate limiting.

Fig. 16. Input RC filter restricts rate of input voltage change to that of rest of circuitry.

Fig. 17. Preferred position for HF loop compersation capacitor.
compensating feedback signal has yet had time to alrive from the subsequent amplifying stages. This can lead to a complete loss of signal during the period in which the second gain slage is paralysed, and caused Otala ${ }^{1.3} 10$ apply the term "transient intermodulation distortion" to the perceived acoustic effect.

A simpler description suggested by Jung ${ }^{14}$ is "slewing-induced distortion" (or slew-rate limiting) and this defect in the amplifier performance is clearly visible on an oscilloscope display, with an appropriate composite input signal, as shown in Fig. 15.
This defect is, however, not an inevitable consequence of dominam-lag compensation. since there are ways of avoiding $\mathrm{it}^{1^{15}}$. Of these the simplest is just to introduce an RC low-pass network at the beginning of the amplifier to restrict the rate of change of input signal voltage as shown in Fig. 16.
A better alternative is to include the whole of the gain stages within the bandwidth-limiting system, as used, for

example, by Bailey and as illustrated in Fig. 17. Placing C_{2} in this position avoids the possibility of input-device overload as a consequence of the sluggishness of response of later stages.

Othersnags

A typical amplifier might. therefore. have the kind of circuit shown in Fig. 18 (resistors R_{a} and R_{1} anvoid "latch-up")

EVOLUTIONARY AUDIO

Some temperature compensation for the output tratnsistor forward bias can be obtained from a suitalle degree of thermal contact between the output devices and Tr_{4}.

The stray capacitances associated with the collector circuit of Tr_{7} will impose a maximum slewing rate on a positive-going voltage excursion. The collector current of Tr_{7} must therefore be adequate to keep this slewing rate sufficiently high. With this point in mind. several designers, such as

Bongiorno ${ }^{16.17}$ and Borbely ${ }^{15}$. have offered fully symmetrical amplifier circuits of the form shown in Fig. 19, so that the maximum prateticable rate of change of signal voltage at the gainstage output is not limited by the final driver-stage constant-current source load.

However, it is more difficult to maintain al stable value of output-stage quiescent current with this type of circuit layout, and this has discouraged its more widespread adoption.
Fig. 19. Driver stage by Bongiorno, which does not suffer from limitation of Fig. 18 circuit.

Fig. 18. Typical fully complementary audio power amplifier, incorporating the features discussed. Slew rate is limited by Tr_{7} collector current.

References

1. I.in. H.C., Electromics, September 1956. pp. 173-75
2. Locanthi, B.N.. J. Audior Iing. Soc., Juls 1907. pp.2以)-294
3. Bailey. A.R., Wireless Word, May 1968. p. 94-9s.
C. Linsley Hood, J.L. Wireless World. April 1961. pp. 148-153
4. Shaw, I.MI. Wireless World, June 1969. pp. $205-266$.
5. Baxandall. P.J. Wireless World. September 196\%. pp. $416-417$
6. I.mery llood. J.l... Iti-ti Nems and Record Revien: Nowember 1972, pp.21202123
7. Acoustical Manufatturing (o. Itd, Wireles. World, April 196x. p. 67.
8. Visch. N. M. . Wircless World. April 1975. p. 160.

1II. Stevens. (B.A., Hi-Fi Nens and Record Revien, lichruary 1971. pr. 252-253.
11. Limsey Hood. J.I... Studio Sound. April $1975 . \mathrm{pp} 2 \mathrm{2}-2 \mathrm{~s}$.
12. Hitachi Ltd. Power Mosfert Application Book (1981). pp. 1111115
13. Otala. M.. I Audior Eng. Socc., No 6. 1972. pp. 396 - -399 .
14. Jung. W.G.. Mi-fi Nems and Recored Review, November 1977.pp.115-123.
15. I.msley Hood, J.L.. Hi-Fi Nens and Record Revien, January 197s. pp.81-83.
16. Bongiorno, I. Aublio, February 1974. pr. $47-51$
17. Bongiomo. J.. Poputar Electronics. September 1974. pp. 33-34.
18. Borbely, E. Audior Amatour. February 1984. pp.13-24.

GREEMWOOD ELECTROMICS
Portman Road, Reading, Berks. RG3 1ME Tel. Reading (0734) 595843

66mips controller

Intel's latest 32 -hit micro will execute an average of two instructions for every cycle of its 33 MHz , an integer performance of 66 mmips .

The 80960-CA is aimed squarely at the embedded control market, although the device architecture strongly resembles a risc-based general purpose microprocessor. However, unlike the 860 device launched earlier in the year, there are no floating-point architectural features. To compensate, it can execute up to three non-conflicting integer instructions simultaneously. This makes it particularly suited to real-time task handling. It can achieve a complete context-switch on interrupt in less than 800 ns .

The new device maintains complete soft ware compatability with the 16 MHz $960-\mathrm{KA}$ version amounced last year. However, because the CA version runs at twice the speed and can execute many of its instructions in parallel, Intel says that the new processor can run applications some five times faster without any code changes in the software.

The device incorporates separate IK caches for data and program looping while register scoreboarding permits parallel instruction execution.

Memory handling is of particular interest. The CPU can be programmed to recognize up to 16 key memory seg-
ments in the address space. Each can be made to associate the number of wait states required for access and data transfer. Even the bus protocol can automatically adapt itself to the type of memory attached to the sector. This allows widely differing types of memory to be attached directly to the main processor without extra hardware
The other big player in the 32 -bit embedded control market, Hitachi, has opted for cisc type architecture by offering enormous numbers of generalpurpose registers as an alternative to cached parallel operation. Hitachi says that the H 16 series, which can include familar items such as I/O peripherals, counter/timers and A-to-D on chip, is optimized for control applications written in high-level languages.

Intel has an optimizing C compiler available for the 960 series.

The 960-CA fits Intel's view of the up-market microprocessor business in that applications divide into three specific areas: micro engined minicomputers (860) general business machines (the cos-based 486 chips) and real-time embedded control (960). Although the instruction sets are incompatible between devices, each has been optimized for its area of service. Furthermore, the Intel CHMOS $1 \mu \mathrm{~m}$ process used across the board is generally considered to

bestow excellent performance
The company says that around half the 32 -bit embedded processor market goes into disk drive products, the rest going into laser printers. communications and military usage. It expects 32 -bit volumes to increase from 1.5 million units currently to 21 M by 1993.

Upwards but onwards?

Technicians inspect Marcopolo I, the satellite carrying BSB's television transmitter before its successful launch at the end of last August. This has been the only fruitful aspect of the BSB venture to date. The company looks as though it will have to ditch plans to offer its subscribers a flate plate aerial system for use with the satellite. More seriously ITT Semiconductors, supplier of the mac decoder chipset needed for BSB, have yet to deliver devices in any quantity to the set manufacturers.

LOW-COST STAR-QUALITY AUTOROUTER

From JAV Electronics - PROTEL TRAXSTAR, a grid-based, costed maze autorouter with full rip-up and re-route capability. A low cost, powerful option to the established Protel Autotrax, it works on any PC-XT/AT or PS/2 or 386 or compatible MS DOS 640 K hardware with support for Hercules, CGA, EGA, VGA Monitors and MS Mouse. With fast operation, high professional quality and excellent technical support, Traxstar incorporates user-definable cost structure allowing separate cost structuring for route, rip-up and smoothing passes. Contact me for full technical information. reader enquiry no. 118

NEW GENERATION DATA LOGGING

A new hand-held intelligent Data Logger form Rustrak Recorders, the RUSTRAK RANGER, has 8 storage channels for a wide range of sensors, AC/DC, or digital (pulse) signal combinations, plus 4 channels for programmable mathematical functions using values derived from signal input. Measurement of Real Power for mains monitoring is now made possible and rates such as wind speed, flow etc can be calculated for scientificlenvironmental data collection. Other features include interchangeable data packs with automatic memory writing allowing data collection to be prolonged indefinitely. Full spec. from me. Reader enquiry no. 119

HIGH STABILITY AT LOW COST

Where time and temperature stability combined with low component cost contribution to the final equipment are rated paramount, VISHAY-MANN have designed a new range of Small Precision Wirewound Resistors for industrial and commercial applications. Designated AX100, AX150. AX205 and AX210, with electrical properties of TCRs $10 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ to $3 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$; stability of 0.005% per year; resistance range from $S R$ to 1.3 megohm; size range from 8 mm x 4 mm for $\mathrm{AX1} 00$ to $12.7 \mathrm{~mm} \times 6.5 \mathrm{~mm}$ for AX 210 . For further details of these high precision, low cost resistors contact me

Reader enquiry no. 120

MAN/MACHINE COMPATIBILITY

Available now from Perdix Components, the DENSITRON TOUCH TERMINAL is a uniquely flexible and intelligent solution to the interface between man and machine. The D.T.T. contains an infra-red touch sensitive A.C. plasma display onto which may be configured 130 different keyboard layouts. It also features a 286 processor with 128 K
 of user RAM together with 82786 graphic display processor. Communication to the host is via a RS232 or RS485 serial port and a standard keyboard can be connected to the terminal. I can let you have full details.
Reader enquiry no. 121

TOROIDS - A PRACTICAL PROPOSITION

ALMAG have taken the long recognised theoretical advantages of the toroid and have made them a practical proposition. Their Toroidal Output Inductors have now been expanded to no less than 146 types in close steps from 0.3 to 14 amps and in two ranges. WS Commercial Range has $20-70 \mathrm{kHz}+$, switching frequencies and low cost. WH High Performance Range gives higher inductance, switching frequencies to $100 \mathrm{kHz}+$ with lower core losses. Smaller diameter (21 mm), lower currents (0.3 amps), low flux-leakage, soft saturation and $-2: 1$ inductance swing are common to both. Full specifications from me.
 Reader enquiry no. 122

SELF LATCHING ELECTRICAL CONNECTORS

By using a unique automatic locking system, the range of Coaxial, Triaxial and Multiway Swiss Precision Push-Pull Connectors from W.W.FISCHER Ltd provide positive and precise coupling. The patented metal semicircular polarization system also eliminates all
possibility of contact damage. Hermetically sealed and tested to 10^{*} Torr, pressure to 8 atmospheres, I.P. 68 rated connectors are available ex-stock. High voltage up to 55 KVDC . Also the range available in stainless steel. Other series include TV Triaxial/Video, Plastic Multiway and Nin Camac. Details of the full range from me.
Reader enquiry no 123

PROBLEM SOLVER

a computer card form Triangle Digital Services intended for building into your products. By putting software for the application into PROM the TDSY(1)0 Contol Computer starts to run as soon as power is applied. Attach 64 keyboard, LCD and $1^{2} \mathrm{C}$ bus peripherals, There are on card EEPROMi, 2 serial ports, 35 parallel input-outputs. 30K bytes, RAM, 16K dictionary RAM/PROM, 256 bytes EEPROM, 16K, Forth and smaller size $-100 \mathrm{~mm} \times 72 \mathrm{~mm}$. But there is much more to TDS $9(9)$) than that, so ask me for the whole story.
Reader enquiry no. 124

HIGH LIGHT - LOW POWER

To achieve high light emission from low input. Selectronic's LOW CURRENT LED DISPLA Y'S utilise GaAsP LED chips on transparent GaP substrate. Character herghts $0.3^{\prime \prime}-0.8^{\prime \prime}$ with consistent illumination between displays. categorised for intensisty, pin configuration is as standard LED. 7 segment and universal +-1 , typical consumption is 3MW/SEG at 2 MA drive. Depending on display size viewing is from 2-7 meires with excellent character appearance. making it particularly suitable for instrumentation, P.O.S. and meters. PCB or socket mounting. IC compatible. TLl 30 OUCD/SEG at 2 MA . Full information from me. Reader enqury no. 125

FLEXIBLE CONNECTORS FOR PCB HEADERS

All requirements for direcsindirect insertable flexible connection to PCB headers are met by Assmann Electronics' MULTIFLEX Insulation Displacement Connectors. The flat cable system uses UL94 approved moulding material to 224 standards and contact is made by displacing the insulation with Beryllium Copper Forked Contacts onto the conductor, giving a gas-tight joint. Mostly ex-stock, UK made and competitively priced. Other Assmann specialities: sockets, header latched and low profile, transition plugs, dip plugs with/without strain relief and cable harness. Ask me for full details.
Reader enquiry no. 126

INNOVATIVE SURFACE MOUNTS PRODUCTS.

Distributed Micro Technology have unique solutions to current connector and PLCC socket problems with (A) MICROMODUL Surface Mount Connectors which integrate with conventional through hole or card edge connectors. $4-20$ poles, 1.27 mm contact distance and available loose or in tubes, they are suitable for auto insertion and custom made complete assemblies are offered. (B) a surface mount low profile version of conventional PLCC sockets. Visible internal solder tails give access for repair/inspection etc., centre pad vacuum placement, mounting pattern as mating chip, $20,28,32,44,52,68,84$ positions. More from me.
Reader enquiry no. 127

FIBRE OPTIC TERMINATIONS

OPTALL Fibre Optic Connectors from Radiall Microwave Components offer complete and rapid termination systems coupled with ease of assembly; the ir F-SMA FAST 905906 Series, using crimp and cleave techniques, alkws assembly in about $1^{\prime} 30^{\prime \prime}$. The range is wide, running into 9 basic types and many sub-versions, including. High Performance 'Optaball' System. The F709 Series is ST compatible and the MP Series is designed for polarization maintaining fibre. Comprehensive termination tooling kits are available and most items are ex-stock or via distribution. Detailed literature available from me.
Reader enquiry no. 128

RETAINING THE RIGHT CONTACTS

Eliminating the need for batteries to be soldered directly to the PCB, The principle benefit of the SPEARETTE Battery Holder is good. highly reliable contact together with high retention force under the most arduous conditions. Moulded in high strength acetal resin for AfA, AA, $1 / 2 \mathrm{AA}$ AND $2 / 3 \mathrm{AA}$ type batteries, the holder is soldered directly into the board and additional retention can be obtained by using hollow rivets or screws. Suggested as typical applications are computer back-up memory, communications equipment and the like. Ask me for full details.
Reader enquiry no 129

Apollo workstation is cheapest yet

A Unix-based workstation at a price comparable with a top-of the range PC: that's the appeal of the new Apollo DN2500 series. The new machine combines a 68030 processor, a 25 MHz floating-point processor and integrated networking to make a workstation suit-

able for applications in CAD, computer-integrated manufacturing and desk-top publishing. Both types of Unix will run on the 2500, which can be linked both to further Apollo workstations and to systems from other manufacturers via industry standard links. Peripherals can be connected via a built-in SCSI bus. The machine can run without its own disks on a network, or with up to 1.2 Gby te of mass storage with one expansion. Its relatively low price, $£ 3400$, is made possible by the use of a single mother-board with multiple asics. Over 2000 applications are available to users of the Apollo family, which extends from the new 3.5 Mips machine to a 100 Mips -plus personal supercomputer. Apollo Computer, which since May 1989 has been a subsidiary of Hewlett Packard, is at Bramley Road, Bletchley, Milton Keynes MKI IPT; tel. (09) 8 -366188.

High-voltage thermopile

Researchers at Cardiff University have invented a semiconductor process which can integrate a large number of thermocouples on to a single chip delivering 2.5 V .

Conventional thermopiles of the sort which powered the Voyager spacecraft use numbers of discrete semiconductor thermocouples to develop relatively low voltages. High voltage thermopiles depend on brittle wire-like structures. The Cardiff researchers have developed a technique using ion implantation allied to other conventional semiconductor fabrication techniques. Each chip measures $0.5 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ and delivers $2 \mu \mathrm{~W}$ of power.

Playing the Unix game

What are the chances of the average PC user foresaking MS-DOS and becoming a Unix fan?

Not much you might say, or might have said until now, for things are changing fast. Atari is just one of a number of companies offering the enticing prospect of high resolution (OK, relatively high resolution) graphics workstations for under £2000.

Best known in this country as the maker of the games-orientated ST range, Atari has other reputations eisewhere. In West Gernany, for example, the ST is better known and respected as a business rather than a games machine. The company's own exhibition there in August was nearly as big as a mainstream PC exhibition here.

It was at this show that Atari launched its new TT Unix box. Based on the Motorola 68030 processor, with 2Mbytes of memory and a 60Mbyte hard disk, it features graphics that are claimed to be about the same quality as VGA on a PC.

The price is the thing which will attract many. This is expected to be around $£ 1900$ when it appears here. Keen types can lash out DM5700 in Germany from October.
Atari is not alone in lookingat this market. Several Japanese companies are also announcing low-cost Unix systems. Takaoka will have a noncolour graphics machine out for around $£ 1600$ soon, though I don't suppose the UK will be the earliest market served.

UK games players will also be interested in the other major announcement from Atari, the upgraded STE. The two main enhancements are an uprated 512 colours displayed, from a palette of 4096 , and stereo sound production to a claimed CD quality. Together with a maximum of 4 Mbytes of memory (is this a games machine?) it provides a dramatic enhancement to graphics representations.

Reworked Amstrad?

It will be interesting to see if the low
prices of the new Unix boxes affects the future of low cost box importer Amstrad. In the short term, the company is trying to get over its hardware problems (see last month) with the expected launch of new 286 and 386 -based machines.

These should be more than simple reworking of the 2286 and 2386 machines which had the disk problems. As is the way with numbering systems, the new machines will be known as the 1286 and 1386. Amstrad is also said to have a new PC-compatible system in the style of the dear old PCW on the stocks.

Talking of disk drives, Apple has gone along with market pressure at last and made a 1.44 Mbyte floppy standard equipment in the Macintosh SE. Existing users can upgrade their machines for the sum of $£ 425$ for all the necessary bits. The move will allow Mac users to read from or write to double density MSDOS or OS/ 2 disks as well. Martin Banks

8151 Project $=.=?$

From simple minimum chip solutions through to complex turnkey multiprocessor systems, Cavendish Automation has the hardware and tools to allow you or us to design rapid and professionall implementations.

For further information contact

Cavendish Automation

Cavendish Automation Limited Oak Park, Barford Road
St. Neots. Huntingdon. Cambs PE19 2SJ
Telephone 0480-219457
FAX. 0480-215300 TELEX 32681 CAVCOMG

USE PC COMPILERS FOR AN SBC

For really fast development of stand alone systems, use a Lancer ot Hunter target board with Hexatron's PromDOS. This emulates DOS and BIOS calls, gives you silicon discs and even allows you to run non-ROMable compiled code in a ROM environment. Too good to be true? Call us now for a free demonstration. STOP PRESS: We now have a four port multi-standard serial expansion card for the Lancer and Hunter - ring us for details.

THE SDS LANCER

An 8088/V20 target board on a double Eurocard with two serial ports, four parallel ports, six counter-timers, four 32 pin memory sockets, battery backup, RTC, watchdog timer, optional 8087, optional mains psu and case.

THE SDS HUNTER

An 80188 target board with 256k bytes EPROM, 256k bytes battery backed RAM, 256k bytes D-RAM, two serial ports, three counter-timers, RTC, watchdog timer, optional mains power supply and case.

Sherwood Data Systems Ltd

Unit 6, York Way, Cressex Estate, High Wycombe. Tel: 0494464264

New offshore regulations after Piper

The Department of Energy proposes new regulations for communication systems, following the Piper Alpha disaster.

DEn want VHF radios to be fitted as standard to survival craft. At the moment there is a choice between two way 2182 kHz or VHF channel 16 . totally waterproof radios; but DEn feel that marine VHF radios are likely to prove more effective in an emergency.

In the future, portable VHF radios, or other devices not dependent on vulnerable power supplies, are to back-

ID by neural network

This work on face recognition is an extension of work already done on handwriting recognition.

The spotty area on the screen represents the link between the botrom' laver of 128 -hy- 128 neurons and the next layer. It shows the weighting between the botom neuron layer (input) and the hidden middle layer.

Sponsorship for the neural network aspect of the work is provided by Plessey. Martin Emerson of Southampton University has managed to get his system to recognize that the two images seen here are different.
up the fixed platform public address (PA) system for emergency purposes.

PA systems are to be supported by visual indication of platform status. DEn feels that safety would be enhanced if there were greater standardisation of alarm signals between different installations.
Lord Cutlen's inquiry heard that, during the Piper disaster, there were no alarms or emergency announcements giving instructions to personnel on the installation. Survivors used their own initiative.

Gigabit optical chips

IBM researchers have demonstrated a pair of optical data transfer chips which can exchange data at $10^{4} \mathrm{bit} / \mathrm{s}$. The receiver, like the multiple laser transmitter chip, has its output fibres directly coupled to the chip surface. IBM has integrated more than 8000 transistors in the receiver, a 50 -fold increase on existing opto-electronic parts. Both devices use GaAs as the substrate material.
The picture shows a portion of the receiver chip. The four large ovals are optical fibres sliced at an angle which allows the light signals to be aimed at the photo-detectors directly beneath them. The detector amplifiers occupy the space in front of the fibres.

Integrated engineering degrees

The go-ahead has been given for six pilot schemes for a new integrated engineering degree programme in a joint initiative by the Engineering Council and the DTI.

The new courses are designed to emphasise the interdisciplinary nature of engineering; to make the career more accessible and to allow for wider choice in eventual job opportunities. Contracting universities include Durham, Southampton, Portsmouth Poly, Nottingham and Sheffield.

Big bi-cmos

A IMbit static ram made with bi-cmos process has become a commercial reality says its creator, Toshiba. The result, it says. is a chip which can access any location in 8ns.

The combination of bipolar and cmos technology within big static rams has proved elusive until now. The complexity of the processing has always been associated with poor yields. Toshiba appears to have cracked the problem with a combination of $0.8 \mu \mathrm{~m}$ geometry, very low bit line swings and a new but unspecific ECL/cmos level converter.

Mixed up asic projection

The mixed analogue/digital asic market in Europe had an estimated value of $\$ 361$ million in 1988 and is expected to grow at a compound rate of 35 per cent reaching $\$ 1600$ million in 1993 according to figures contained in the latest Dataquest survey.

It states that West Germany is considered to have the largest market followed by the UK and Ireland. The UK and France lead West Germany in digital asic by contrast.

Lowest noise op-amp

Texas Instruments claims to make the world's quietest op-amp. The TLC220I, intended for amplifying high impedance sensors and transducers. exhibits a noise current of $0.6 \mathrm{fA} / \mathrm{Hz}$ with an associated noise voltage of $8 \mathrm{n} V / \mathrm{V} \mathrm{Hz}$.

Put our test set to the test. Can you find anything it can't test?

Stabilock 4031: Portable Communication Test Set
In the time it takes to read this, the Stabilock 4031 could test any of the devices pictured above - with one miror exception. Quite a performance given the dramatic evolution in radiocommunications techniques and standards
To meet the challenge, we packed more thar, 25 years of experience into a single. highly versatile unit. You won't need an operating manual to use it: tıme-saving features include automatic measurement functons and brilliant graphics, with both numeric display and simulated analogue meters
The Stabi ock 4031 comes with all test Cevices integrated, while its modular design and flexible software system can adap. to all testing demands. both present and future. The exceptions are hardly worth mentionirg

Born to set tomorrow's standards in measurement reliability.

Schlumberger Instruments

Instruments Division
Schiumberger instruments 20 North Avenue
Burlington MA 01803 USA
Tel (617) 2292548
Fax (617) 2294885

Schlumberger instruments victoria Road Farnborough Hampshire GU14 7PW England -el (0252) 544433 Fax (0252) 543854

Schlumberger Technologies GmbH nstruments Division
ingolstadter Surare 67a D 8000 Munich si6 Germany Tel (089) 318890
Fax (08§) 31883160

Schlumberger Instruments 50 avenue Jean Jaures BP 62006 92542 Montrouge France Tel (1) 47466700
Fax (1) 47466727

Panasonic VP-5610P

- the little 'scope that goes a long way

Mobility: Measures about $7 y_{2}^{\prime \prime} \times 4^{\prime \prime} \times 14^{\prime \prime}$ and welighs in at only 11 lb . Operates from line voltages in range 90 to 250 V a.c. without switching Optional d.c. operation from 11 to 28 V .

Autoranging: Eliminates need for resetting sweep range and sensitivity for each measurement. Quick and easy to use in the field.

Dighal ellsplay: Main parameters alisplayed on CRT.

The VP-5610P gives you many of the most valued features of a bench 'scope. With three Independent channels and six traces. microprocessor control, digital readout, a.c. or d.c. operation and optional GP-IB interface it goes a long way to meeting your most exciting lab needs and is perfect for trouble shooting out in the field. It handles duai X-Y operations and offers solid state switching that's vitually impervlous to moisture and contact nolse. It's competitively priced too.

Just how many features can you pack into a 100 MHz scope of this size? To help you find out we would be happy to send you a six page colour leaflet or arrange a demonstration without oblligation.

...from

©io Farnell
 International

ENTERS 30 ON REPLY CARD

LIGHT IN THE SKY

Georgia Tech's high powered lasers are finding use in optical radar to reveal secrets of the upper atmosphere. Georgia Tech's James Kloepel reports.

Apencil beam of green laser light shoots skyward from an open hatch in the roof of a research building. It races through the troposphere five, ten miles. The beam slips past piled cumulonimbus storm clouds and surges upwards into the stratosphere. Fifteen, twenty miles through the bone chilling thin air. Thirty, forty, fifty miles. The beam grows fainter but continues its upwards flight, punching through levels of the Earth's atmosphere like a bullet slicing through the layers of an onion.

As the light beam courses through the atmosphere, some of the photons bounce off air molecules, water vapour, and specks of dust. Plunging back 10 Earth, these photons are collected and analysed. for now they hold important clues about the composition and behaviour of Earth's upper atmosphere.

The laser beam is part of a light detection and ranging (lidar) experiment being conducted at the Georgia Institute of Technology in Atlanta, Georgia. Like radar, lidars operate by - emitting a signal and recording the resulting backscatter. Unlike radar, lidars use an intense pulse of laser light instead of radio waves.

Much more economical and reliable than sounding rockets or weather balloons - the traditional tools for studying the atmosphere - lidars can measure wind velocities, detect tenuous dust layers, determine cloud characteristics, and collect the climatological data necessary for generating more accurate weather forecasts.

Portable lidar

When lidars were first pointed at the sky back in the early 1960s, Georgia Tech researcher Gerry Grams was a graduate student at the Massachusetts Institute of Technology in Cambridge, Massachusetts. Recognizing the vast poten-

tial offered by this unique measurement tool, Grams started using lidar to study stratospheric aerosols for his doctoral thesis.
"In those days, we used a ruby laser as the light source," says Grams. "The laser required enormous amounts of energy to operate, terribly inefficient when compared to modern lasers. The power supply, filled with banks of huge capacitors, was as large as two men and weighed nearly 400 pounds."

Not only was the laser inefficient and cumbersome to operate, but data acquisition and analysis were also tedious and time-consuming. Because mini-
computers had not yet been developed, Grams was forced to record and interpret his data by hand.

Advances in computer technology and laser instrumentation over the last 25 years has enabled development of a portable, computer-controlled lidar system, a joint project with the University of Washington in Seattle, Washington. The ruby laser and massive power supply belong to a previous era. In their place is a much smaller but more efficient frequency-doubled YAG laser. Data is now collected, analysed, and displayed by a menu-driven minicomputer automatically.

The powerful lasers used in lidar can blind instantly at many miles. Extraordinary precautions have to be taken to ensure that nothing gets into the beam.

EYE SAFE LASERS

In the hands of a skilled ophthalmologist, low-power lasers can repair damaged vision, but the powerful lasers commonly employed in lidars can blind - up to many miles away. Scientists and technicians working near the laser must wear safety glasses, for slivers of the beam might scatter off the optics and ricochet dangerously about the room.

For lidars, this means that extraordinary precautions must be taken to keep people out of the laser beam. The main danger is to pilots and passengers on aircraft. Most lidars incorporate bore-sighted radars as well as rooftop spotters, who constantly scan the sky and shut the system down when an approaching aircraft is sighted.

But in many circumstances, such a lidar is impractical: the military test environment with aircraft and personnel at close range, constantly moving about or an autonomous lidar, continuously monitoring cloud ceiling at an airport. Lidar requires a guarantee that nothing will ever enter the beam. Either that or the development of an eye-safe lidar with good sensitivity.

To be eye-safe, a lidar must avoid wavelengths where the lens of the human eye can focus light onto the retina, for it is this concentration of the light which causes damage. This means going to either shorter wavelengths (ultraviolet) or Ionger (infrared).

Georgia Tech researchers Ed Patterson and colleagues Gary Gimmestad and Dave Roberts have been developing such a system.

At the heart of the team's recently completed prototype is a methane-filled gas cell. Through an effect known as stimulated Raman scattering, the laser output is shifted to a longer wavelength. Photons in the laser beam bounce off the methane molecules, losing a small amount of their energy. The lower energy means lower frequency and therefore a longer wavelength.

The methane cell shifts the basic neodymium. YAG laser (whose output at 1.06 $\mu \mathrm{m}$ would be extremely dangerous to the eye) to $1.54 \mu \mathrm{~m}$ - totally eye-safe. "Other gases with different 'Raman Scattering' effects could be used to make the laser safe," says Patterson, "but the beam must also fall within one of the atmosphere's transparent 'windows' or it would be uselessly absorbed. Methane meets both critiera."

It is a fortunate coincidence that $1.54 \mu \mathrm{~m}$ also turns out to be the wavelength of choice for transmitting over long distances using fibre optics. The special optics and detector Tech's system required were conveniently found within industry. This novel lidar has been field-tested and proven eye-safe. "You could stare directly into the beam and not hurt your eyes," says Patterson.
"The system is very easy to set up and use," says Grams. "In a truck-mounted configuration. the lidar can be operational within an hour or two of arrival at a remote observing site."

Mysterious arctic haze layer

Grams recently modified the portable lidar system for operation in an aircraft. He and his colleagues will use the instrument to investigate the height and concentration of a mysterious arctic haze layer that forms each year during the arctic spring.

Not only is the composition of the layer currently unknown, its origin also remains a mystery: the individual dust particles may have drifted for thousands of miles before becoming trapped in the arctic sky. To learn more. the US National Oceanographic and Atmospheric Administration (NOAA) initiated the Aretic Gas and Aerosol Sampling Program. Participating scientists will explore the height, thickness, and chemical composition of the mysterious layer:
The group expects lidar to detect the exact location of the haze layer, which is not discernible with the naked eye. The system can look up or down to identify the middle of the dust layer and inform the pilot where best to fly. Other onboard instrumentation. including gas and particle samplers, will then be used to identify chemically the material forming the layer and determine its concentration and other physical characteristics.

Monitoring subvisual cirrus

Used on the ground, the portable lidar can monitor the presence of subvisual cirrus. Invisible to the eye, these clouds trap infrared radiation, making a significant contribution to the greenhouse effect with its attendant effect on the Earth's climate.
"Some researchers believe there may be enough subvisual cirrus floating around that the long-term radiation balance of the Earth cannot be properly calculated," says Grams. "We need to determine the extent of these clouds on a global scale, and what cumulative effect they have on the earth's radiation balance."

Subvisual cirrus can also seriously affect the performance of infrared sensors used to detect approaching missiles or hostile aircraft. "Although the clouds usually form a layer only a few hundred feet thick, they often extend laterally for many miles. These clouds absorb infrared radiation so effectively in the horizontal direction, a pilot relying on

Typical lidar bloch diagram. Aircraft mounted versions extend the scope of upper atmosphere research. NASA plans a satellite inounted Doppler lidar for wind speed measurement.
his sensors might not detect a threat until it is too late. And because the clouds are invisible from above or below. a pilot never knows when he might be approaching such a layer" says Gerry Grams.
To generate necessary guidelines for pilots. models must be developed that accurately predict the conditions in which troublesome clouds form. Lidar systems could prove valuable in exploring these and other important models.
For example, last summer while Grams and graduate student Eric Schmidt were taking measurements of subvisual cirrus over Wright Patterson Air Force Base in Dayton, Ohio. Yellowstone National Park was a raging inferno. Trace after trace of the researchers data showed not only the soughtafter clouds, but also distinct layers of high-altitude smoke drifting from the distant fires.
They expect the wealth of smoke data to test and validate existing models concerning the long-range transport of particles. In addition to the obvious climatological applications, such models are also used to predict how fallout from nuclear tests or accidents may be dispersed around the globe. The importance of such models is self evident.

Improved weather forecasting

Meteorologistscan predict the weather for up to five days with reasonable accuracy. To generate long-range forecasts, however much more data on global wind protiles is needed
"Because much of the Earth's surface is covered by oceans. such data is not always available," says Ed Patterson, a senior research scientist at Georgia Tech. "Except for a few islands and scattered ships, we receive very little input on the direction or force of winds blowing over the oceans."

To fill this gap, the US National Aeronautics and Space Administration (NASA) envisages the placing of a powerful Doppler lidar in orbit by the mid 199()s. Called the Laser Atmospheric Wind Sounder (LAWS), the satellite will probe Earth's atmosphere. measuring global wind profiles from the ground up. While technology exists to build and orbit the sounder, certain criteria still need to be established.

Like ground-based lidars, LAWS will operate by measuring aerosol backscatter," says Patterson. "Since much of the LAWS data will be taken over remote regions that are generally free of smog and other aerosols. there is some concern over how much backscatter the instrument is likely to see."

Given information on existing lidar capabilities and anticipated levels of backscalter. NASA will determine appropriate LAWS design parameters. More accurate long-range weather forecasts may be a satellite-launch away.

Lidars generally appear to be faster, cheaper, and more dependable than sounding rockets or weather balloons.

CONOUERING NEW HEIGHTS

Yes its $\mathbf{2 5 M H z}$ for $£ 299$

Crotech instruments Limitited

2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ CIRCLE NO. 135 ON REPLY CARD Telephone: (0480) 301818

COMMERCIAL QUALITY SCANNING RECEIVER

The IC-R7000, advanced lechnology, continous coverage communications, eceiver has 99 programmable memorles covering allcraft, marine, FM broadcast Amateur adio, television and weather satellite bands Foi simplified operation and quick tuning the IC. R7000 features direct keyboard entry Precise frequencies can be selected by pushing the digit keys in sequence of the frequency or by tuining the maintuning knob FM wide FMnaitow'AMuppet and lower SSB modes with 6 tuning speeds $01,10,5,10,125$ and 25 kHz A sophisticated scanning system provides instant access to the most used trequencies By depressing the Auto- M switch the IC-R7000 automatically memor ises frequencies that are in use whilst it is in the scan mode, this alliows you to ecall frequencres that were in use Readout is clearly shown on a dual-colou fluorescent display Options include the RC-12 infio-red iemote contiolle, vorce synthesizer and HP. 1 headphones

\odot

? NIcom (UK) Ltd. Tel: 0227 363859. Telex: 965179 ICOM G N.B. Authorised Welsh distribution by:
M.R.S. Communications Ltd. Cardiff. Tel: 0222224167.

Please send information on Icom products \& my nearest leom dealer. |Name/address/postcode:
\qquad
Way, North Feltham Trading Estate,
Feltham, Middlesex TW140RX
Tel: 01-844 1811
RTT
RRDIO TELEPHONY TEST SYSTEMS
CIRCLE NO. 112 ON REPLY (ARD)
$01 \cdot 5 \mathrm{MHz}-2 \mathrm{GHz}$
QAUTOMATIC FREQUENCY OPERATION -IEEEBUSINTERFACE
OHIGH ACCURACY
OHIGH DYNAMIC RANGE

ONE OF A NEW RANGE OF TEST

 EQUIPMENT FROM THE R.F. COMMUNICATIONS SPECIALISTS SIMPLY - ACCURATE TESTINGR.T.T. Systems Ltd. Enterprise House, Central

[^0] CIRCIE NO. IOB ON REPLY CARD

Better devices for power rail monitoring

With increasing interaction between microcomputers and analogue systems, the power supplies of both must be monitored to prevent the possibility of erroneous data being processed by the microcomputer.

About five years ago, Texas Instruments introduced two devices to monitor the standard digital and analogue voltage rails. These were the TL7705A, a digital 5 V monitor, and the TL7702A positive and negative analogue rail monitor. They soon became virtually standard parts in the hardware designer's tool-kit to monitor power supply integrity and act to protect the microprocessor or computer and memory if power supply problems were detected.

The TL7705A has a preset threshold on the sense input, enabling it to monitor 5 V supplies directly and provide voltage power-up and drop-out system resets for a microprocessor or computer. The TL7702A is able to sense either the positive or negative analogue rails, but two are required together with a TL7705A to provide full power supply monitoring for a mixed microcomputer and analogue system.

Many of today's developments in electronics involve creating a single device to do the job previously done by two or more. In keeping with this trend, Texas Instruments has recently intro-

Fig. I. Multiple power rail monitor based on Texas Instruments'
TL7770-05.
duced a new device, the TL7770-05, which does all that can be done with one TL7705A and two TL7702A. In addition it provides dual over-voltage sensing and dual SCR gate drives for crowbar protection. Furthermore, the chip's defined state of operations begins at just 1 V , and so it can provide an early system reset signal during power-up!

Fig. 1 shows the block diagram of a typical microprocessor application using a TL7770-05, providing both over and under-voltage protection on the 5 V primary supply and undervoltage protection on the $\pm 15 \mathrm{~V}$ peripheral supplies. This device certainly simplifies the hardware design in a monitored power supply and its additional features will enhance the protection offered. The cost of the part is about $£ 0.92$ per piece for 100 -up quantities, which is very good value for money considering it is replacing several devices and offering more features.

Big is essential

Plant costs for semiconductor manufacture are becoming increasingly more expensive as the technology advances, with typical replacement cost estimates being in the region of $£ 100 \mathrm{M}$. To remain competitive, major semiconductor manufacturers must renew their process plant approximately every five years to keep up with technological developments. Rather like the changes we saw

in the motor industry some ten years ago, it seems that with such high capital costs, only companies with sufficiently high business turnover will survive; that is, big appears to be essential.
One recent example of the consolidation that is going on in the semiconductor industry is the expansion of Harris Semiconductor, one of four major sectors within the Harris Corporation, through the acquisition of GE Semiconductor, RCA Solid State and Intersil. The new, much bigger, Harris Semiconductor claims to unite and strengthen four broad-based semiconductor suppliers and intends to market products under the brand names of Harris, RCA, GE and Intersil. The company also claims to be the sixth largest US merchant producer of semiconductors, with one of the broadest and most varied product lines.

Current-sensing transistors

Among the stable of products now under the umbrella of Harris Semiconductors are the relatively new currentsensing insulated-gate power BJTs (IGBTs) developed by GE Semiconductor. The device is essentially a mosgated power-switching device combining the best features of power mosfets and power BJTs, with integral currentsensing.

It displays the extremely high input impedance typical of a mosfet, with low on-state conduction losses typical of a bipolar junction transistor. In performance, the device appears to be like a power mosfet, except for the onresistance, which is about 10 times lower. Unlike the conventional power mosfet, its on-resistance varies very little over the usable temperature range.

Three current-sensing IGBTs are offered by Harris, types GS1510, GS1525 and GS1550. They have been designed for high-voltage switching applications up to 5 kHz where low conduction losses are essential, as in AC and DC motor controllers, power supphies and drivers for solenoids, relays and contactors. All three devices can switch loads of up to 500 V , the maximum current handling being the last two digits on the part number; ie the GS 1550 is a $50 \mathrm{~A}, 500 \mathrm{~V}$ device. Costs are around $£ 2.78, £ 8.10$ and $£ 28$ per

Fig. 2. Using a pilot resistor for overcurrent protection.
piece for the GS1510, GS1525 and GS1550 respectively.
Fig. 2 shows a typical IGBT switching circuit with over-current protection. A scaled-down copy of the collector current flows out of the P terminal. With a resistor inserted between the P and EK terminals the $\mathrm{V}_{\text {PEK }}$ voltage is proportional to the collector/load current and may be used to provide current limiting.

Further developments from Harris Semiconductor likely to result in useful power devices in the not too distant future are mos-controlled thyristors (MCT), which will behave like thyristors that can be turned both on and off with a mosfet type of input impedance; and power mosfets which can be turned on with 5 V input signal levels, rather than the higher values that are needed for today's mosfets (typically 8 V).

Analogue at ECCTD '89

The European Conference on Circuit Theory and Design (ECCTD) for 1989 was held at the University of Sussex from September 5-8. Over 140 papers were presented, written by some 295 international researchers. The IEE which organized the conference, has published the papers in a single softcover book (IEE conference publication number 308 . ISBN 0852963831).

Most of the papers are non-analogue in content but several of the others caught my eye, and here I give you a thumbnail sketch of some of them.

Identification of small-transistor models

(Vidkjaer, pp99-103). This paper deals with the difficult area of trying to identify an apropriate small-signal model for a particular transistor and how to extract small-signal parameters from measurements intended primarily for high-frequency applications. The author outlines a systematic procedure which is intended to keep the effort to an acceptable level. All the expepimental work is based on S-parameter measurements.

This paper is not for the timid highfrequency analogue designer. However, a useful technique for identification of small-signal transistor models is presented with test examples.

A novel, fast, high-resolution ADCstructure (F. Viehbock, H. Furst. $\mathrm{pp} 214-217$). The fastest way of converting an analogue signal into digital form is with a string of comparators, each set up with an input reference voltage differing by a voltage equivalent to one

LSB from its nearest neighbour. This is called a flash converter, for obvious reasons, and the conversion time is controlled mainly by the switching time of just one comparator. The problem with the flash converter is that it requires so many comparators: for n-bits the number needed is $2^{\prime \prime} \cdot 1$.

The A-to-D converter presented in this paper is not as fast as a full flash converter, but it uses many fewer components and the performance, it is claimed, rivals other converter architectures in terms of speed and complexity. Figure 4 shows the basic block structure of the new converter. The analogue input is fed to a set of window amplifiers, each amplifying only a dedicated portion of the input range. Only one of the window amplifiers will be activated by the input, and the output of that amplifier is then fed to a flash converter. The window amplifier is designed so that the output will be zero if the input voltage is just in the bottom of a particular window, and equal to the full-house reference voltage if at the top.

Using four window amplifiers, together with an eight-bit flash converter, ten bits are achieved. To make an eight-bit flash converter into a 10 -bit flash converter would require an additional 768 comparators $\left(2^{10}-2^{8}\right)$. The authors openly discuss some of the problems with the architecture and propose improvements. It will be interesting to see whether any new converters based on this architecture appear from the semiconductor manufacturers in the next year or so.

FIRST QUALITY SECOND USER EQUIPMENT

Carston ell Carstonh Carstonsell Carstonbury

CIRCIE NO. 139 ON REPI Y CARD

TELECOMMUNICATION TRAINING EQUIPMENT

Full range of Training Equipment including:

- ANALOGUE \& DIGITAL COMMUNICATION

CIRCUIT \& SYSTEMS

- FIBRE OPTICS
- MICROWAVE
- TELEPHONY
- RADAR NEW

For more information contact:
LAB-VOLT (UK) LTD.
4A Harding Way,
St. Ives Industrial Estate
Huntingdon,
Cambridgeshire
PE17 4WR
Tel: (0480) 300695. Fax: 048061654

SOTTWARE

Drawing with

 Orcad SDTPutting a computer behind the drawing board allows the designer to work faster and with less chance of silly errors. Brian Frost puts this popular cad package to the test.

Orcad SDT is one of the newer generation of circuitdrawing programs that position themselves beiween simple drawing packages that manipulate lines and geometrical shapes and the fully integrated suites of software found in workstations. It does not provide new feaures, but it does provide wellbehaved design assistance at a fraction of the cost of a workstation. There is now a huge library of component shapes in existence.

Schematic capture uses the computer to ease the repetitive tasks. leaving you to make the appropriate connections between the component parts that you have chosen. These parts are held within a component library, from which they are fetched by name to the screen, complete with their correct pin numbers and signal names. This immediately avoids the common mistake of making pin-numbering errors when copying a logic part from data book to circuit diagram.

With this component on the screen. it can be dragged around, fixed where desired, have wires added to it or be
rotated. Circuit modifications are therefore quickly made and can be printed as many times as required in various drawing sizes
As an example of this process, consider the diagram shown in Fig. 1. This was created using Orcad SDT and shows a simple crystal oscillator. Out of interest. 1 timed how long it took me to draw this identical circuit on paper using a ruler but no drawing ink or text stencils. Using this 'conventional' technique it took me 6 min 30 s to complete the drawing, including the unused logic pins. 1 then entered it on the computer. taking 1 min 30s. Both tasks include the time involved in consulting the data book for information.

As well as the time saving, there is much more flexibility in the computerbased version: before adding more circuitry, the circuit block shown can be dragged across the screen to create the space required in a few seconds. More time-saving is obtained by allowing the computer automatically to annotate the circuit with component reference numbers. This takes only a few seconds and replaces a laborious manual operation and limits errors

Hardware requirements

Although the resolution of the CGA standard is adequate for represent－ ing circuitry on screen，text such as pin numbering is poorly repre－ sented，with obvious gaps between the 200 horizontal lines．VGA shows little granularity on sloping lines． Alternatively，EGA shows only slight granularity．

The most basic PC－XT is quite capable of performing all of the tasks listed here．The PC－AT shows a speed improvement of some 4．6 times in the calculation of netlists． with the newer 80386 machines calculating up to 10 times faster．

The appearance of the finished diagram will depend upon choice of printer or plotter．The low cost of 24－pin dot－matrix printers offer an acceptable compromise．Laser printed output provides quality con－ sistent with photography．

Increasing productivity

One of the greatest increase in produc－ tivit comen from the fied that most derigners hase farourite circuit con－ figurations which hatse been optimied hexperience．Dexigning in this modu－ lat wall athow unch function blocks to be fetched from presioush drawn cir－
enitry and flaced into the preeent dexign without ans modifieations other than the recomection of the interfacing vig－ nals and power supplien．Even the re－ amnotation of the old components is automatic
（）t cource．real circuit diagrams are much more complex thatm that of lig． 1 and are unatlls too large to fit in the yate voman．This is a common objec－ tion rained agatinst cadt that at hand－ drawn circuit on（bit）an Alf heet can show all the vignal flow and circuit －imultancously wherea smaller prints camnes．Although this appeare to be a drawback．it is not a limitation of the computer．vince the drawing＂sheet is untally larger than the sereen dieplas． and ean he theoretically limithen

I he limitation－if one がいい－is that of bramberring such a barge seet to paper where only a suitably si／d ploter can produce targe vingle sheets．Alter－ mativels a a kerge diagram in oplit up into a number of smatler（c．g．At），i心 Weets．with the appopriate signak in－ terconnecting them．Partitioned with a bit of plaming．this method prosides room（o）add extra ciscuitry with canc and permits the calls export of such circmit module on to future drawing that reguire vimilar circuitry．At－bicd hectsare ideal for mannaks．

Fig．a Oread stime sal ingsare well illuserated with this simple crostal oscilhator，which took 61／2min to draw bs hand with a ruler，and I I／amin using Oread．

Fig．．．Massivedrawings are handled b！ partitioning in Orcad．This top－level screen shows multiple sheeds comnected together in a similar way to components． with signals pasing to and from that shect being amalogrous to pins．

SOFTWARE

Fig. 3 . Actual circuitry for the 'connectors and hus decoding' pancl. for example, in Fig. 2 are detailed separately to avoid cluttering the main worksheet.

Once the circuit is drawn, the computer call start work. With one simple command, the entire circuit diagram of many sheets can be annotated with ancending component references with no intervention from you at all. With another simple command, a complete parts list is generated from these references, which shows all parts, their references and names. Another command produces a "wiring list', or netlist, which describes every part on the diagram. with all its connections to other parts. This information can be accepted in a variety of PCB latyout systems. so that connected components can be positioned where required and connections on the final PC 13 will follow the original circuit.

The drawn circuit may be smutated - a technique particularly valuable for logic circuitry. This involves creating a hypothetical stimutus-signal file for the circuit's inputs and then running the simulation to provide the computers prediction of the resulting output or component node signals. This can be done before or during the existence of a wired prototype.

Running the drawing program (Drati) puts you into graphics mode within its graphics editor. A mouse or
cursor keys moves a graphics pointer around the screen and selected keyboard character keys initiate drawing actions: pressing the return key brings up a menu showing the options. The progran can be menu-driven with the monse selecting from this menu, but faster uperation can be obtained by typing the first letter of the operation on the keyboard. For example, the string Pabinstructs the system to "pm wirl B3 (a)." and the start of a wire appearsat the cursor.

This wire stays with the cursor you as you move it vertically or horizontally: if you move diagonally, a ol-degree corner is inserted. At any time a click of the left mouse button fremes the last corner, allowing you tor route a wire across a stheet. through available gaps. with no further commands. The last mouse (lick or a press on the (for end) key terminates the wire at the current position.

The Oread SDT sereen is really a 'window' in the workshect on which you are drawing. with this limitation made acceptable by an ato-scrolling action which eauses the screen to follow the cursor across the drawing if it reaches any of the screen boundaries. It is unnecessary to use separate keys to
mose around the sheet, as is the case with many competing schematic capture packages. At any time, you can zoom in or out at will to see more detail or more diagram. As you zoomout, text detail is progressively lost. allowing you to identify part shapes and position the cursor. As you \%omin, the maximum possible detail and text that the graphies hardware allows are written atl eath zoom level.

To fetch any component. you type " (forget) together with the name of the component in the library: on hitting 'return instead of the component name, a list of tibrary filenames appears in a menu. Some 10-12 files are supplied with the package. covering over lowo total library parts. Using the mouse, it is casy to scroll through the avaitable library parts.

I laving fetehed a parto only its outline appears on the screen at the cursor position and without any text such as pin numbers or names; this shell moves with the cursor until the use of p (for place) drops it. This causes the component to be fixed at that position and to bedrawn with full pin and text details on the sereen. The component outline remains at the cursor, lo allow copies of it to be dropped where required with
repeated peommands．
Parts are shown in the ir usual electric－ al symbols with many parts offered in a choice of styles．for example the Amer－ ican and European styles for an elec－ trolytic capacitor．Most parts have only one function in their package，and these are drawn as simple rectangles with pin numbers and names around the edge． Parts that have several identical func－ tions within the same package，such as a 74100 quad nand gate，are drawn using the conventional nand－gate symbol，and pin numbers are those of the first device of the four within the package，i．e． inputs on 1.2 output on 3．This allows the four gates in one package to be used anywhere and to be shown as conven－ tional logie symbols without having to draw wires back to one dil device pack－ age each time a gate is used．

Many gates can be displayed using their DeMorgan equivalent，for exam－ ple an or gate with inverting inputs instead of a nand gate．The general convention is that logic parts do not show their power pins：these are auto－ matically connected together without needing to be wired further，to enhance the readability of the circuit．

With parts placed on the sheet，they are now electrically connected together using either wires or buses．A bus is shown as a wide wire，which expands into one or more of its component wires anywhere along its route．Buses are good valuc in logic diagrams，particular－ ly in memory and processor circuity． since they may he manipulated just like a wire despite representing hundreds of connections．
For annotating the wires at the ends of buses，a repeat facility allows the last text or lathel to be repeated with a defined position and numeric incre－ ment．For example，placing the label A0）as the first connection of an address hus allows you to press K repeatedly thereafler，generating a new label ad－ vanced by one number and stepping downwards on the sereen to create the list A $10, \mathrm{~A}, ~$ A2,$~ \mathrm{~A} 3 \ldots$ ．．etc．

Block command allow everything within a defined boxed area to bee either deleted，moved or dragged to allow parts of the diagram to be entered within available space or to create space for additional circuitry．This is so fast that the drawing can be tidied as yougo． so that connections do not have to be redrawn later．Parts may also be reposi－ tioned，rotated or mirrored．

While each sheet is a disk file in its own right，a block of circuitry within one sheet may be written to a file to be subsequently read back into another drawing．This allows the user to gener－
ate a new diagram either by building it ＇from the ground up＇using individual components out of the libary or by using blocks of circuitry already in exist－ ence．

The user can select the size of work－ sheet for the diagram by selecting the American designation A．B．（．，1），in theory allowing as much space as is necessary for the required components． While the software is quite capable of handling very large drawings，the prob－ lem comes during printing where，un－ less you have a large plotter，you cannot print your single sheet（although a large drawing can be broken into a number of sheets to be fixed together）．A conve－ nient solution is to break your drawing up into circuit modules and use the capability of Orcad to handle a hierar－ chy of diagrams．

The top sheet of such a hierarchy is shown in Fig．2．This shows how the separate drawing sheets can be placed within another sheet and shown as a component with connection names that represent the signals passing to and from that sheet．as with component pins．At the top left you will see a box labelled＂Connectors and bus decoding＇． The circuitry for this sheet is shown in Fig． 3 but on this top sheet，only the signals that enter or leave it are shown． The hierarchy system can also be used to create additional information about a diagram，for example a timing diagram can be appended to a logic circuit by using a sheed box named mancimatikan

Since（）read SDT expands any one circuit sheet to include other sheets referenced within it，all of its utility operations operate on the entire draw－ ing，irrespective of the number of sheets involved．The result is that working on at 25 －sheet drawing is little different from working with only one sheet．

Since circuit drawing and modifica－ tions can involve significant repetition． the software implements a text matro capability．Becaluse all recorded cursor movements are made relative，this allows a manual editing operation on the first of several parts，ending it with the eursor ready at the same starting point on the next part to edit．

Producing results

Having created your circuit diagram． copies can be printed or plotted and a number of utilities is supplied to suppor the circunt diagram and attendant docu－ mentation．The axanda utility will move throughout all the sheets that make up your diagram and add compo－ nent references in ascending order There is one disadvantage with this：if you add a couple of new components to
the drawing after having annotated it． there seems to be no way of using avvorall again to add these as sequen－ tial component references without the risk of changing the existing numbering．
Producing a parts list is cans．The Paralst utility scans the drawing sheets and produces a list of each component type，with quantity used．name and reference．A cross－reference pro－ gram（ Rosskl I produces a list of compo－ nents against sheets and their inverse． This is useful for locating a componemt within a drawing of many sheets be－ caluse，although there is a find command to search for text whilst editing．it only operates within one worksheet and can－ not operate globally．

The utility \downarrow い us is used to produce a list of parts and interconnection data that call be imported into other cad systems prior to PCD3 tayout．This also checks all the intercomections on your diagram，issuing warnings about such things as unconneeted wires，buses or components．

A utility called ort electricall rules check－use information about each pin of a part to verify that connections to it conform to the electrical conditions allowed for that pir．For example，two pins connected together，where both of these pins are defined as output pins within the library data，would generate a warning message when rumning aks Note though，that if you choome to ignore these warnings．（Orad assumes that you have a good reasom．

Component library

Oread SDT has an extensive librars and，in the latest releases，has a library parts editor bab but that can quickly create new parts instead of using the original．slower，text－hased proces．
All components are hedd in library files in a compided format that enathes fast retrieval but with utilities supplied which allow translation to and from ordinary ascii text fites．For example a amos tige device is contained within the library fillermosula．

Reference

 Wireless W＇orld．Mats，Jリッリ．

Orcad SDT is distributed in the UK by ARS Microsystems Ltd，Doman Rd，Camberley． Surrey GU15 3DF．Telephone 0276685005. The cost is $£ 595$＋vat，with a demonstration disk available on request．

PROTEL PCB CAD SYSTEMS

Professional high quality PCB CAD SYSTEMS at a Price you can afford.

PROTEL AUTOTRAX* is an affordable, precision design tool that improves productivity for occasional and expert users alike. It streamlines the PCB layout processes while providing powerful interactive design automation, and generates professionally accurate PCB artwork.

PROTEL TRAXSTAR* is a grid based, costed maze autorouter with full rip-up and re-route capability. The router incorporates a user-definable cost structure and allows separate cost structures for the route, rip-up and smoothing passes. Works with Protel Autotrax files.

RANGE NOW INCLUDES

COSTED RIP-UP AND RE-ROUTER

PROTEL SCHEMATIC* streamlines drafting operations, improving productivity, design practice and documentation. It forms the front end of a powerful PCB CAD system when used together with Autotrax.
PROTEL EASYTRAX* low cost entry level easy to use precision tool that generates professionally accurate PCB artwork, with support for a wide range of displays, photoplotters, pen plotters, laser and dot matrix printers all as standard. NOT EXPENSIVE OPTIONS.
PROTEL TRAXVIEW* is a new utility program for viewing and editing Gerber files.
-Evaluation Disks Available on request.
J.A.V. Electronics Limited, Unit 12a Heaton Street, Denton, Manchester, M34 3RG

Tel : $0613207210 \quad$ Fax : 0613350119
The UK Distributor fo the PROTEL CAD Software. Main Dealers for ROLAND Plotters. Dealers for Sage, Brother, OKI, Amstrad \& Epson,

PINEAPPLE SOFTWARE

New New New SERIAL DATA PROBLEMS? New New New A brand new program for IBM"'s and compatibles allows complete monitoring of two way data flow
down any RS232 serial data line. DATACAP will capture and store data from 110109600 BAUD and display it on screen or print it in such a way that it $\$$ direction as well as it's position in the data stream, is indicated
Applications include diagnosis of both hardware and sottware faults, and investigation ot any problems encountered with handshaking protocols It is also ideal as a leaching aid to demonstrate the ways in which computers communicate.

DATACAP 525.00 p \& p free

BBC PCB Software

PCB is a powertul Rom based printed circult board design programs sutable for all BBC computers A second eprom is optionally avalable to add a powertul auto track routing facility to the program. This utilses a tats-nest inpul routine and allows any component the ber hering to respecify component interconnections. The full autoroute facilites are avallable even on a standard unexpanded model " B "
'PCB auto route is remarkable. No similar software comes near the price.' ACORN USER Aug 88. PCB manual track routing $£ 85.00$

PCB auto-routing $£ 185.00$
PCB plotter driver $£ 35.00$
P\&P free

IBM PCB Software

 package Up to 8 board layers plus upper and lower silk screens Board size up to $1 /{ }^{\prime \prime} \times 1 /$ Poweriul
zoom and pan features Sutable for IBM PC/XT/AT \& compatibles with 512 k Rarm $-£ 98.00 \mathrm{P}$ \& P free

MARCONI TRACKERBALLS

We now have an adapter av
replace the Archimedes mouse
Bare Trackerball (No software) $£ \mathbf{4 5 . 0 0}$
Adapters to drive BBC Mouse software $£ 8.00$
Archimedes Adapter $£ 19.95$
IBM model (serial interface) $\mathbf{8 9 9 . 6 0}$

MITEYSPICE, SPICE.AGE and ECA-2

and Spice Age and ECA.2 for the IBM and compatitles
Spice Age is a new product for the IBM range which provides tacilities for transient and Fourier analysis as well as DC and freq response pertormance
Miteyspice (For BBC and Archimedes) $£ 119.00$
Miteyspice (For BBC and Archimedes) $£ 119.00$
Spice.Age (IBM PC/XT/AT 512k Ram) from $£ 70.00$
Spice.Age (IBM PCCXT/AT 512k Ram)
ECA-2 (IBM PC/XT/AT 256k Ram) 5675.00
ECA- 2 (IBM PC/XT/AT 256 k Ram) $£ 675.00$
LCA-1 (Logic Analyser for IBM's) $£ 450.00$

EPROM PROGRAMMER
100 (E)EPROM and MICRO-CONTROLLER types..

. what more could you ask!
THE MODEL 18 PROM PROGRAMMER

- All 1 Mbit EPROMS, Greenwich Instruments Emulators.

27C parts and EEPROMs now programmable!

- Upgradable for future types.
- Designed, manulactured and supported by MOP in England Comprehensive User Manual
- Supports our new EPFOM Emulator as 2716 to 27512 EPROM - Mains powered unit external to your computer, without speed penalty - Fast interactive algorithms automatically selected as appropriate
- Two independent communications protocols built in. Use with
any host computer with RS232 port and Uerminal emulaior.
MS-DOS and PC-DOS computers. NEW FAST COMMs - 1 Mbit PROMs programmed in about $2^{1 / 2}$ mins.
- Quick Pulse programming now avalable for sutable EPROMS - e.g. 2764s in 10 secs! - Limitad version also avallable for CP/M computers.

Hundreds of satisfied customers. As supplied to: BT Mercury, UKAEA, Brtish Aerospace, Thorn EMI. Mitel, Cosworth Engineering, British Gas, Kodak, Lucas. Ferrant, Smiths Industries. Telecom Tectnology and major Universities and Colleges of Further Education Please enquire about our other products.
EPROM EMULATOR CROSS ASSEMBLERS
EPROM ERASER BIPOLAR PROM PROGRAMMER
PALPROGRAMMER GANGEPROM PROGRAMMER
EPLDPROGRAMMER EPROM\&PALDESIGN \& PROG
Telephone ACCESS orders welcome.
 WILTSHIRE, ENGLAND SN16 0BX.

Who's who in risc

The technical and business desktop computer world is ready to believe in Unix V rather than OS/2. The chip makers are lined up on the starting grid, Unix risc engines revving. By Rupert Baines.

conventional wisdom has it that therees only room for two processor families in the market-place. When manufacturers launched the first 16-bit devices only Intel's 8086 and Motorola's 68000 made it to security and volume sales. The rival processors from Zilog. Texas Instruments. Fairchild and National Semiconductor all lost out, and those companies have never managed to re-enter that market. It's possible that the risc marketplace will be less bloodthirsty, but it's unlikely - and none of the manufacturers are prepared to risk being the ones left behind. As a result, all of them are spending fortunes on advertising to convince people that theirs is the best device available (the fastest. the cheapest, the most useful or whatever). Of course, theres no infallible way of predicting the future, but it is possible to make some guesses about the state of the market to come.

Both Intel and Motorola are big enough and rich enough to win through: Intel's 80860 is also a staggeringly good device that's incredibly faster than anything else around. The built-in graphics support has helped it gain its first design win in a flight simulator application the combination of fast numbercrunching and built-in graphics makes this an obvious choice for any application involving animation or pictures.

Motorola have the marketing clout to make sure that their 88000 product succeeds. It doesn't have an obvious niche to grab, unlike the 80860 , so it will be fighting it out with the rest of the devices in the processing mainstream with the rest.

The R3000 and the spare are interesting because they are "open architecture' devices (see panel) and are being manufactured by a number of sources.

ADVANTAGES OF AN OPEN MIND

The sparc and R3000 risc processors are intriguingly different from the other devices. The companies that designed them - MIPS and SUN respectively - are not chip manufacturers: instead they've allowed a number of different companies to produce and sell the chips under licence. They are planning on making their money from the royalty feeds and spin-off business (for instance, associated compilers) rather than from the chips themselves.

These open-architecture chips are being produced by different manufactures, each of which are able to exploit their particular specializations to enhance the design. For example, the sparc processor is available in forms, ranging from the low-power c-mos offerings of LSI Logic and Fujitsu to the very fast, very power-hungry ecl model made by Bipolar Integrated Technology.

There is also a much more interesting benefit since the manufacturer has the net-list of the device it can easily be modified or customized. Essentially, customers can therefore treat risc chips as the basis for their own personalized processor design.

A company like LSI Logic may be heralding a new trend by offering customers the opportunity of starting with a sparc processor and customizing it. The original design could be then modified or altered to suit the particular specifications of an application.

Alternatively, the entire processor could be used as the core of an asic design, with extra logic, memory and specialist digital or analogue I/O all included in the same piece of silicen. This is an incredibly flexible approach that adds a new meaning to the phrase 'single-chip solution'. (Intriguingly LSI are the only company who are licensed to produce both of the MIPS R3000 and the sparc processors)

The other large semiconductor manufac turer in the risc game is AMD with their 29000. This is definitely targetting the control market, with its fast response times and task-switching. It wouldn't be surprising to see it cropping up on a lot of embedded real-time systems. Its first major desien win has been from Apple; the chip will be used as a co processor to speed up the QuickDraw graphics routine in the next generation of Macintosh computers.
Fisally, there's Acorn; the British conten der in the risc wars. This was one of the first risc chips on the market and has perhaps the highest total sales volume, purely because of its use in Acorn's Archimedes home compu ter. This is its only known application; the chip is available though I haven't heard of any other users. The neat features of the architecture (the test op-codes) would make this chip well suited to embedded control where a fast response is essential.

INTEL 80860

TThis chip. announced in March, has transformed the risc scene. Until then performances were measured in Mips and tens of Mips; a rating of 20 million instructions in a second was as impressive as it sounds. But the 80860 has smashed all previous speed ratings and blown everything else out of the water. It can turn in speeds of up to 150 Mips . more than seven times as fast as its nearest competitor! Hyperbole just doesn't do justice to this processor.

The device gets its speed from brilliant design in three different areas. To start with, there's a lot of parallelism inside the chip, with a great deal of activity going on at once; secondly there are the hugely wide data buses capable of carrying four 32-bit registers and two instructions simultaneously. The onchip bus bandwidth is more that Ghyte/s! Finally there is the incredible system clock frequency of 40 MHz .
Rise simplifies the design of a proces-

sor. Some manufacturers have taken advantage of this to make smaller. cheaper chips that need fewer transistors and are easier to make (e.g. the ARM, with only 25000 transistors). Intel has gone the other way with the 80860), a huge device with more than a million transistors (the same number as its new 80486 cise device). Since the processor core has been simplified there is plenty of room for other parts that would normally be external components. For instance, there are two large cache memories which take up 40% of the silicon area. There just would be no space for them on a conventional cise device.

Part of the reasen for the processor:s stupendous speed is that it runs at an extremely high clock rate: the lath sample device runs at an incredible 50 M 1 Iz and the first production units stroll in at an impressive 33 MH Iz. All rise devices aim for one instruction per clock cycle. but even without any special features the 860 would be at the front of the field purely by virtue of this. The faster the clock ticks, the more instructions can be forced through the chip. Until now 25 MHz has been the maximum, the speed of the very latest chips (including the $M 881(0)$ and the $8(1386)$ so the new device has already benefited from a 100% speed gain. A system clock of 50 MHz allows only $2(0 \mathrm{~ns}$ for tach cycle. which leaves no room for the slightest skew or drift in co-ordinating the separate parts of the processor.

But the fast clock speed is only part of the story, since even a 25 MHz version of the 80800 would turn in a frightening 75 Mips , which is still triple the speed of a M88100 running off the same clock! The rest of the speed gain comes from the way that the chip has been designed

Intel's 80860 derives its blazing speed from its wide buses, huge cache memory stores, an abundance of pipelines and al Iot of concurrency.
to support al vast degree of concurrency. with many different things happening at once. There are three distinct processors that can work independently: the integer rise core processor, a powerful floating point coprocessor and (an unusual addition) a dedicated graphica processor.
The core processor has its own 6.t-bitwide code bus. which meams that two instructions are fetched from the internal code cache at a time. These are fed into the processor's own pipeline, which is four stages deep with hardware interlocks and delayed branch instructions to reduce the effects of bubbles. The combination of cache, pipeline and double fetch helps make things move quickly! In common with most rise devices, the 860 has a load/store architecture and so all instructions use operands held in the register files (32 registers, each 32 bits wide). The core processor also connects to the data bus which is a phenomenal 128 bits wide - enough to transfer four registers at once.

The floating point unit has three separate parts: its own processor. an adder and a multiplier. The control unit also hals 32 registers, which call be trated as 32. 6t or 128 bits wide depending on the needs of the application. Both the adder and the multiplier have their own three-stage pipeline (for single or double precision operands) and they can run in parallel. The floating point processor has its own separate of bit instruction bus to receive its 21 unique instructions

The quoted figure of 150 Mips at

50M1tz requi:es the processor to run three instructions per cycle. This happens with one integer and two floating point operations heing executed at once so it isn"t typical for most applications. For this mode to be sustained the adder will be working on data supplied by the multiplier. At one moment the multiplier generates a term for the next calculation while the adder is completing the current sum - two floatingpoint instructions at once. Since the core unit will be running its own code too. that gives the total of three Obviously this rate isnot sustainable for ever: but it does allow for some very useful and very powerful techniques. For example the core could be handling a loop counter while the floating unit does itsoperation, thus:

$$
A=\left(13^{*} C\right)+D, \quad I N C \text { i in one cycle }
$$

This kind of loop is typical of the number-crunching tasks for which the device is intended (e.g. graphics calculations, FFTs, cad etc.). The 33 MHz device will complete a 1024 -point FFT in just 2ms, quicker than some DSP chips!

The third eoprocessor on the chip is an unexpected one, a dedicated graphics controller. It's intended to help designers of workstations and so on. The chip uses 64-bit logic to handle graphics applications in 3D-like colour, with intensity shading, hidden surface removal and flood-fill - all from hardware. This unit has 10 special instructions and its own pipeline. Inevitably this tor works concurrently with the other sections of the chip! It's rated at drawing and shading 50000 triangles a second, which is probably enough for most of us.

MIPS R3000

T-his processor seems to suffer from an undeservedly low profile. Until Intel dropped its 80860) bombshell, it was the fastest device on the market by a clear margin. It was designed by MIPS of California, which can legitimately claim to have started the commercial rise market. Its earlier product, the R2000, was the first rise chip when it was released in 1985. and MIPS is still the only pure risc company, with no other products or interests. The R 3000 is the only second generation processor thus far: it is also the only chip to have demonstrated true scalability (reducing the design from $2 \mu \mathrm{~m}$ to $1.2 \mu \mathrm{~m}$ to quadruple the speed).

The processor is a 32 -bit device, with an on-chip memory management unit which catl address t(ibyte of main memory, a cache controller and a
"seamless" interface to the R3010 floating point coprocessor. Like Motorola M8800) it has a Harvard architecture, with separate data and address buses for code and data memory spaces (i.e. four external in total). The chip has 32 registers, 30 of which are true generalpurpose types. Register R0 is hardwired to hold zero (useful for quickly clearing registers or for comparisons) and R3I is dedicated for use as a link pointer for procedure calls.

In combination with the R3010, the R3000 gives an inpressive 7Mflops (million floating-point operations per second) for single-precision floatingpoint calculations. With the use of a suitable optimizing compiler both chips can run simultaneously, without having to wait for each other; the seamless interface means that the two can swap data without interrupting their other processing tasks. almost as if the two were on the same piece of silicon.

MIPS places great emphasis on the importance of the compiler to the ultimate performance of the processor and the system. For a risc chip to get the
most from its hardware it is essential that the compiler is designed hand in glove with the processor. Experience shows that as much as a $3 \times$ performance gain is realised in a risc system if the compilers are well designed.

Indeed, MIPS involved the operating system programmers in the design process. Consequently the R3000 is well suited to running C (and, in turn, Unix). The company also claims that this work avoids the usual speed/size trade-off that makes risc programs longer than an equivalent piece of code for a cisc processor.

Compilers are available for
Fortran 77, Ada, Pascal.
PL/1, Cobol (golly,
does anyone still
use it?)
and of course
C. There is also a full version of Unix and a real time operating system. This is easily the widest range of software support for any risc chip.

The R3000 is a very fast chip (topped only by the i860), with a well-designed architecture and an excellent software

environment. With four years of sales, the device has a mature user base and a good deal of third-party equipment and support.

ACORN ARM

O^{\prime}ne of the interesting things about risc is that the designs haven't come from the semiconductor manufacturers but from computer companies (Sun, Hewlett Packard, IBM etc.) and now the British company Acorn has joined in . This device is the British hopeful of the risc world. Designed by Acorn (of BBC Micro fame) for the Archimedes computer it has been available as a component for two years.

The chip has a very simple straightforward design. It is a 32 -bit machine, integer only, with a load/store architecture. The register file has 27 registers: 15 are general-purpose and can be used by the program freely, the others are dedicated to particular system functions (status register, interrupt control etc.). It does illustrate the risc philosophy that such a powerful CPU can be so simple - it's a tiny chip with only 25000 transistors (about 10% of the number in a 68020 and a lot less than the 1.2 million of an 80486!). It is manufactured in a conservative $3 \mu \mathrm{~m}$ c-mos technology which, while reliable and cheap, is not very fast. The device was designed by Acorn in Cambridge and is manufactured by VLSI technology of Arizona.

The design does have one twist in it. Every instruction contains a four-bit test field: only if the test is true is that instruction executed. This is a very
elegant idea, which makes programs much more efficient. According to Acorn the majority of jumps are skip types (i.e. if condition, then miss next instruction). There are 16 possible tests, including overflow, equal, not equal, greater than and negative. Obviously this reduces the number of jumps necessary in the program, which makes the pipeline more efficient by reducing the number of bubbles.

There is a four-chip set available: the VL86C010 is the processor, there's a memory-management and cache control unit (VL86C110), a dedicated graphics controller (which includes timing generation, a colour look-up table and three video DACs) and a digital i/o device with timers and the like. The four of these can be put together to make a complete system: just add memory and a program to build your own computer. There is no hardware support for floating point operations.

On a 10 MHz clock, the processor gives about 6Mips - which isn't as impressive as it was three years ago. Despite the head start of being early to market, the chip does not seem to be a success. Few companies want to use it. It would be nice if it were to succeed, but given Acorn's marketing I don't hold out much hope.

The tatest news is that Acorn has designed a new version. The VL86C020

Sparc

The spare chip (short for Scalable Processor ARChitecture) was designed for Sun Microsystems by Dr David Patterson, who headed the research team at Stanford University that developed the philosophy. The chip was one of the first risc processors to be released and is fairly conventional in its design, but with a neat twist that makes it extremely well suited to running C and Unix.

It is a 32 -bit device, with 50 integeronly instructions, operating in a single clock cycle on the internal registers (as usual this chip has a load/store architecture) and large pipelines on the external buses.

The device has a separate numeric floating-point coprocessor. The CPU extracts any floating-point instructions from its instruction stream and puts them into a separate quete to be executed by the coprocessor. It is possible to have several FPUs linked and running concurrently if necessary

It's slightly surprising that this is an integer-based device, in view of Suns strength in the engineering and workstation markets. Apparently the designers decided to aim for simplicity and stability in their first device. But the next version will be more powerful and will include its own floating point unit. Weitek, the company which specializes in making very high performance coprocessors for other manufacturers CPUs, has just announced the release of an add-on for the Spare. Not only will this improve its performance, but such third-party support is a clear sign of the chip's credibility and success.

The architecture of the Spare chip has been very cleverly designed to run procedural tasks (like C. Unix or Pascal) efficiently. It has an unusually large number of registers - 192 (in most risc devices. 32 has been adopted as the optimum number) - which are arranged as a succession of partially overlapping 24 -register windows (page 868). Each window contains eight 'in". eight "local" and eight 'out' registers. which overlap slightly: the 'out locations of one window are shared with the 'in’ registers of its successor, and so on. This allows functions to work very quickly indeed.

Merely by switching from window n to window $n+1$ a new procedure is started, possessing its own local variables (R8-R15), taking parameters and returning values with its calling function (through the out-in registers $\mathrm{R}(1)$-R7) and able to pass parameters to its own
subroutines through R16-R23. The call is quick because parameters need never be physically moved: merely by being kept in the appropriate register they will automatically be passed on. Compare this with the huge amount of Pushing and Popping of parameters and data that would be needed in using a chip with a smaller number of registers.

Unix is simply a large C program (according to Kernighan and Ritchie, of the $2000(0)$-odd lines of code only the bottom soo were written in machine code). Indeed, a C system is predominantly a (program: most of the language consists of function calls accessing ready-written C procedures tha: have been compiled and stored in the library. This is implemented through a great number of function call and return stages which impose a large overhead packing and umpacking data, saving and restoring registers. sending parameters. returning values and so on.
Looking through the object code produced by a C compiler could be a revealing experience. If calling a proce-
dure and passing parameters can be made even a little more efficient, the net speed gains will be dramatic. I have heard that this chip has run real world C programs up to five times faster than its rated speed would suggest. Of course this type of claim is difficult to verify. since so much depends on the particular program and the quality of the compiler's optimization. However I would not be surprised if there were some hard truth behind the hype.
"Scalable" in the chip's name refers to an intriguing feature, that it is possible to reduce the chip's size (i.e. to adopt narrower line widths) with little effort or change. This definitely is not the case for cisc devices. The advantage is that it extends the life of the architecture, by making it easy to transfer it to newer, faster technologies.

The Sparc is now well supported in the market: Fujitsu manufactures a 10 Mips version in $1.5 \mu \mathrm{~m}$ c-mos; Cypress, using its own c-mos process, claims 20Mips: and Bipolar, using ECL clocks in at an impressive 50 Mips .

Motorola 88100

Of all processor manufacturers. Motorola has the most to lose from these new developments. Its processor family, the $68 \times(1)$ series, has always been successful in the high end of the market, being used in work-stations and super-micros.

However these processor-intensive markets are precisely the area where powerful risc processors are set to make their biggest impact. It isn "t surprising

Small in Size,
Big on Features, Bargraph DMM's from SOAR.

SOAR 3230

SOAR's newest range of feakure packed analog Bargraph DMM's offer exceptional performance which is backed up with enhanced accuracy and custom LSI circu . technology.

The 3200 series comes with a standard 3 year guarantee and all models have an adaptor mode which enables Plug-in use of Soar's optional series 9300 adaptors for extended measurement capabilities of AC/DC current,
capacitance, temperature and transistor checks.

SOAR Digital Multimeters provide a wide range of capabilities, covering general purpose applications in research and development ${ }_{\text {, }}$ production line service and maintenance use. The 3200 series up to the high accuracy $4 \frac{1}{2}$ digit DMM's is complemented with some economic model's which include hand held as well as bench-type multimeters.
 soleU.K. distributors:
 INTERNATIONAL
TELEPHONE: (0455) 283486. FAX: (0455) 283912. TELEX: 342523 SOLEX.
Solex International, 95 Main Street, Broughton Astley, Leics. LE9 6RE.

Look at these features:

AIthough for a long time he did not have a full understanding of how it worked, Lee de Forest invented the triode, or audion as he called it. For nearly half a century it, and its descendants, dominated electronics. De Forest was also one of the earliest inventors of electronic circuits. Justifiably he could clain, therefore, to be one of the founders of electronics. Over 300 patents were filed in his name and many have regarded him as the last of the great individual inventors: but his own hope of a Nobel Prize was never fulfilled.

The name de Forest was of Huguenot origin. Lee's father, Henry Swift de Forest, was a Congregational minister and principal of a school for negroes in Talladega, Alabama. It was there that Lee grew up, having been born in Iowa at Council Bluffs on August 26, 1873. His mother, Aına Margaret Robbins

Look here, de Forest - you'll never make a telephone engineer...

was the daughter of a Congregational minister.

A wealthy ancestor's endowment of a scholarship at Yale University enabled de Forest to study for a bachelor's degree in mechanical engineering and he was awarded this in 1896. He followed it with a Ph. D. in 1899 for a study of the reflection of electromagnetic (Hertzian) waves from the ends of parallel wires. possibly the first Ph.D. thesis in America on a topic closely related to radio telegraphy.

By the age of 16, de Forest had announced his intention of becoming an inventor. This ambition had not dimmed by the time he left university and he determined to win fame and fortune as an inventor, with Nikola Tesla as his idol. He has also been quoted as saying that Marconi and Edison were his inspiration.
On leaving Yale, de Forest joined Western Electric in Chicago at $\$ 8$ a week. But because he was never enthusiastic about working for others it was not long before his interest in radiotelegraphy ted himi to seek to challenge Marconi, who by then was famous. De Forest wanted his own radio system, independent of Marconi's patents, and his own company. In fact he was to found several companies over the years but he lacked the business skills which

PIONEERS

Lee de Forest (1873-1961):
last of the great inventors?

W.A.ATHERTON

would have enabled any to survive
At Western Electric his tinkering with radio brought no official acclaim. One day, according to his diary, he was told, "Look here, de Forest. You'll never make a telephone engineer. As far as I"m concerned you can go to hell. in your own way. Do as you damn please."2 He took the words literally and worked full time on his own system for the remainder of his fairly short time with the company.

His next employer had buitt a radiotelegraph receiver which de Forest dismissed as a "non-receiver set" ${ }^{2}$.

In business

With an acquaintance, Smythe, who was also helping to finance him. de Forest filed for a patent in 190 for a new radio detector which he called a
"responder" and which he hoped would evade Marconi's patents. He then started his first company, bringing in another acquaintance, Freeman. Publicity was gained for their new system, which had a reported range of four miles. Then in 1901 there came the chance to demonstrate his system against Marconi who had contracted to provide ship-to-shore reporting of the America's Cup Yacht races. De Forest's triat has been described as a failure ${ }^{2}$ During the races he is said to have tossed Freeman's transmitter overboard!
Technically the detector remained de

Above: Lee de Forest (Ieft) in England

 with John Logie Baird, the pioneer of mechanically-scanned television. This photograph was taken in October 1933.Forest's big problem. Financially he moved on to bigger things. In 1902 a Wall Street financier helped him start the American de Forest Wireless Telegraph Company, capitalized at $\$ 3 \mathrm{M}$ Smythe and Freeman were left behind.

Early success was achieved with orders from the Army and the Navy and for a radio link between Costa Rica and Panama. But the company's grandiose plans led to its downfall. An American network was envisaged; over 90) stations were erected and others planned, but many never sent a message. Shareholders closed the operation in 1907 and sold its assets. De Forest was forced to resign, taking his patents with him. Amongst other things they covered the, as yet unused, triode.

A strange device like an incandescent lamp...

Immediately the De Forest Radio Telephone Company was formed, with a capital of $\$ 20000000$. Again the Navy bought some equipment, with mixed success. Stock sales staved off bankruptcy and de Forest's talent as a showman maintained publicity. Broadcasts from the Eiffel Tower in 1908 and the first opera broadcast (starring Caruso) in January 1910 kept public awareness alive. Despite making some excellent equipment (the US Navy was its best customer), the company became bankrupt in 1911.
In May 1912. de Forest and his associates were charged with fraud over some of the methods used to promote the company. De Forest was exonerated but two of his colleagues were jailed. The significance of the new technology was not widely understood and the words of the government prosecutor have often been quoted, accusing the defendants of selling stock "in a company incorporated for $\$ 20000000$. whose only assets were de Forest's patents chiefly directed to a strange device like an incandescent lamp which he called an Audion and which device had proven worthless". That worthless device was the triode.

Towards the triode

The story of the invention of the triode is confused. De Forest's early attempts to design a new detector were frustrated by court cases for infringement of others" patents, e.g. those of Reginald Fessenden. Eventually he returned to
an observation he had made in 1900 that a gas flame dimmed when sparks were generated by his induction coil. This suggested that a gas flame could be used as a radio wave detector. In fact he found that the effect was caused by sound waves from the spark, not radio waves.

Despite that, he maintained a "firm conviction that in the heated gases surrounding incandescent electrodes there must nevertheless exist a response, in some electrical form, to high-frequency electrical oscillations. ${ }^{" 1}$ This conviction led to experiments with electrodes in the flame of a Bunsen burner, and with gas inside a glass bulb ionized by a potential between a cathode and an anode. In this way de Forest started to experiment with thermionic diodes, invented by J.A. Fleming in 1904.

De Forest apparently regarded the ionized gas inside the valve as essential. He wanted an incoming signal to trigger the gas from one conducting state to another, in a manner parallel to that achieved in the popular coherer whose resistance changed dramatically in the presence of electromagnetic waves. It was a long time before he accepted the true explanation of how a vacuum diode worked, based on O.W. Richardson's 1903 explanation of thermionic emission.

So in seeking to cause the trigger effect he wanted in the gas inside the diode, de Forest introduced a third electrode to which he applied the input signal. Although none of the many permutations of shape and size for the third electrode produced a very good detector, he found that the best was an open grid of fine wire. Hence the invention of what we know as the triode. De Forest used the term audion for both diodes and triodes.

Patent battles

Experts seem to differ as to whether de Forest actually began with Fleming's diode and then used the gas flame experiments to try to fight off the accusation of infringing Fleming's patent, or whether de Forest's account is the truth. De Forest was always sensitive to the possibility of a suit for infringement of Fleming's patent, which was owned by the Marconi Company. When the suit did come, Marconi won. Some accept de Forest's explanations of how he made his invention as being the way it was, others see them virtually as disinformation designed to protect himself against this possible suit.

The triode was invented in 19016 and a patent filed in January 1907. De Forest

Lee de Forest, the American inventor whose amplifying device made the transatlantic telephone a practical possibility.
seems to have regarded it as a finished product and did not seek further improvements. He turned his attentions to radio telephony. For years the triode was simply another radio detector. sometimes better, sometimes worse than the more popular crystal or electrolytic detectors.
What transformed the triode into the basis of electronics were the improvements made by industrial laboratories following the discovery of how to use it to amplify and oscillate. These circuit inventions were made independently by several people in 1912 and 1913, de Forest being one of them. The arrival of the amplifier was of great significance to the telephone companies as well as the those involved in radio telegraphy. AT\&T bought the repeater rights to the triode for $\$ 50(0) 0$ in 1913 and later the radio rights as well.

Lee de Forest: one of the last great individual inventors.

The value of the triode as an oscillator was that it could be used to generate continuous electromagnetic waves for radio transmitters. Four men contested the patent rights to the invention, with de Forest eventually winning the legal battles. The longest patent litigation in American radio history was that between de Forest and Edwin Armstrong ${ }^{3}$ over the invention of the feedback or regenerative circuit. When Armstrong won the first round in 1917, de Forest sold his patents and any future valve inventions he might make to AT\&T for $\$ 250(0)(0)$. From then on he seemed to lose interest in radio, turning instead to talking pictures. The final legal judgement however went to de Forest, with engineers generally feeling that Armstrong had been let down.

Success

Once the triode had found important uses as an amplifier and oscillator, industrial scientists were quick to understand its mode of operation. De Forest's gas was evacuated to produce a highvacuum device and a filament life of 1000 hours was achieved in 1913. Oxide-coated filaments increased emission and more new circuits were invented such as the push-pull amplifier (E.H. Colpitts, 1912) and the Colpitts and Hartley oscillators. The First World War provided further stimulus for improvements and use. A somewhat similar path was followed in Europe where Robert von Lieben patented first a diode (1906) and then a triode (1910).

In 1911, when de Forest's company was in severe financial difficulty, he took a job with the Federal Telegraph Company in Palo Alto, California. Califormia then became his home.

Above all, de Forest was a prolific inventor, not a businessman nor a scientist. Amongst his other patented inventions were a high-frequency surgical cautery device, several types of microphones and loudspeakers, and stereoscopic and large-picture television. Naturally he received many medals and decorations but the decision not to award him the Nobel Prize is said to have left him heartbroken ${ }^{4}$. He seems to have had the knack of inspiring intense loyalty in some people, but antipathy in others.

For the last two years of his life illness kept him bedridden, almost totally incapacitated, and financially drained. He died on June 30, 1961, at his home in Hollywood, California, in his 88th year and just four years after his last patent was issued. His fourth wife, Marie, survived him. He was one of the last great individual inventors.

References

1. R.A. Chipman, Scientific American, Vol. 212.92-100. March 1965.
2. W.R. Maclaurin. Invention and Inncivation in the Radio Indusiry, Macmillan, New York 1949.
3. W.A. Atherton, Pioneers - Edwin Howard Armstrong, Electronics \& Wireless World November 1987 . page 1111.
4. H. Gernshack, Radio Electronics. Vol. 22. Sept 1961, p. 33

Next in this series: Grace Hopper pioneer of computer languages and software.

Tony Atherton is a Principal Lecturer at the IBA Harman Engineering Training College, Seaton. Devon.

My Life with the Printed Circuit, by Paul Eisler, edited with notes by Mari Williams. Dr Eisler's name is hardly a household one, even among engineers, though it certainly deserves to be. For it was he who invented and patented the printed circuit; and indeed in this book he claims to have conceived the integrated circuit too. Yet little thanks did he get for hisidea. When he demonstrated a complete radio set built on a PCB to the production director of the Plessey Company in 1936, the invention was rejected. Apparently Plessey thought it cheaper and more flexible to use girls to wire up its radio sets-a monumentally crass decision in the same league as that of the record company which rejected the Beatles, and one which Plessey deserves to have its nose rubbed in at frequent intervals. But other bodies showed equal thoughtlessness and lack of vision, perhaps the worst being the Government's National Research and Development Corporation. The NRDC more or less gave away Dr Eisler's rights because it did not wish to see UK infringers prosecuted. Even so, Dr Eisler seems surprisingly lacking in bitterness towards his adopted country.

His story is an interesting one. It begins in pre-war Austria, where he was bom and attended university; he left because, with a name like his, there was no prospect of employment anywhere in the Nazi sphere of influence. After a bizarre period spent in what is now Yugoslavia, installing radio receivers in express trains (the then equivalent of in-flight entertainment) as an agent of the HMV company, he eventually obtained a job in London as resident technical wizard for the Odeon cinema chain - only to be deprived of it when he was interned by an ungrateful country as a potential Nazi agent.

After struggling on with his printed circuits, which he saw as his personal contribution to military electronics in the fight against Nazi Germany, he progressed to an assortment of other inventions, with varying degrees of success. Packaged foods with built-in heating elements, for the diner in a hurry, may have failed to make the grade (the photographs include a curious picture of a dummy packet of fish-fingers with heating tape folded between the portions), but electric wallpaper for space heating in buildings did much better. It would have been still more of a success but for an unexpected national windfall of cheap natural gas from the North Sea, which suddenly made electric heating unattractive.

It is too late to make amends to Dr Eisler for the uphill battles he faced in obtaining his dozens of patents and defending them against the depredations of artful financiers and the unhelpfulness of apathetic bureaucrats. But perhaps we owe it to him to read his book, and to resolve to show just a little foresight should we ever find ourselves in the same position as that man as Plessey.

Associated University Presses (25 Sicilian Avenue, London WC1A 2QH), 170 pages, hard covers, £13.95, ISBN 0-934223-04-1

MMIC - Monolithic microwave integrated circuits by Yasuo Mitsui (Mitsubishi Electric Corporation). This volume is one of a series of reviews (their subject areas are electronics, computers and conmunications, manufacturing technology, new materials, and biotechnology) which seek to overcome the language barrier by presenting an accessible English-language account of some aspect of modern Japanese technology. The author presents a survey of MMIC technology (eight Japanese companies, he says, are active in this field) covering manufacturing processes, circuit design and prospects for the future. His text is extensively illustrated with photographs and diagrams, and there is a 148 -item reference list at the end. Gordon and Breach Science Publishers, P.O. Box
197, London WC2E 9PX; Harwood Academic Publishers, P.O. Box 786, Cooper Station, New York NY 10276; 127 pages approx. A5, soft covers, $\$ 47$, ISBN 2-881242863. This book is also available through the Science and Arts Society, a book club specialising in high-level reference works, at the reduced price of $\$ 34$; details from Harwood Academic Publishers.

Lithography in Microelectronics, edited by T.M. Makhviladze: Proceedings of the Institute of General Physics, Academy of Sciences of the USSR, Volume 8. This volume contains English-language versions of 11 specialist papers describing Soviet progress in fabricating sub-micron structures. Titles include "Simulation of latent image formation in electron lithography", "Mechanism of nonlinear change in characteristics of positive photoresists upon laser exposure", "X-ray lithography with synchrotron radiation", "Titanium disilicide films for metallization of VLSI circuit connections" and
"Theoretical and experimental study of the Josephson Effect in submicron SN-N-NS structures". Published in the US by Nova Science Publishers Inc., 283 Commack Road Snite 300, Commack, New York 11725, 207 pages, hard covers, $\$ 75$, ISBN 0-941743-306. This material first appeared in Russian in 1987.

Guide to Commercial Telecommunications

 Services by Jeffrey Hsu. User's introduction to electronic banking, e-mail, teleconferencing and on-line databases: author describes what's on offer and how to gain access to it, with sample on-screen dialogues for many systems. A mong the hundreds of sources mentioned in the book most of them American-are many in the scientific and technical field, including the Institution of Electrical Engineers' Inspec system, described here as "one of the most comprehensive sources on computers, electronics, information systems and technology, and physics". Prentice Hall, 397 pages, sofi covers, $£ 26.05$, ISBN 0-13-368879-8.
Filter design the

easy way

In Application Note 27A from Linear Technology, the emphasis is on simplifying filter design procedure. It discusses two methods of designing bandpass filters from switched-capacitor building blacks - one using traditional nonidentical sections and the second involving identical sections.
Design tables are included, one of which Linear Technology claims enables anyone to design Butterworth bandpass filters.
One of three design examples in the note is this eighth-order bandpass filter for 10.2 kHz . Linear Technology, Microcall, Thames Park Road, Thame, Oxfordshire OX93XD. Tel. 0844261939.

Fault finding with an ammeter

A current meter sensitive enough to measure the resistance of a PCB track is an invaluable fault-finding aid. For example, finding a short-circuited decoupling capacitor on a dense logic board is very time consuming by conventional methods, but with a sensitive current meter finding even a partially-shorted capacitor should take no longer than a few seconds - without track cutting.

This application relating to the TL101 A ammeter is outlined in a note from Transducer Laboratories. Among other uses suggested for the meter are cable-length determination and cable voltage-drop measurement. Transducer Laboratories, Guildford Road, Farnham, Surrey GU9 9P2. Tel. 0252 733732.

Power Hall device simplifies brushless motors

Design of small brushless motors is simplified by the availability of power Hall-effect ICs. Sprague's UGN5275/7 latching Hall-effect sensors can sink 300 mA continuously and besides power-output transistors include a Hall voltage generator, an op-amp, a Schmitt trigger, and a voltage regulator. As a result, little more than one IC is required for commutation.

This circuit is the only one in the device data sheet, but guidelines for application are given. Sprague Semiconductors, Bulfour House, Churfield Road, Walton-on-Thames, Surrey KTl2 2TD. Tel. 0932253355

UNCORRECTED SUPPLY

2NVivision for lime Current
sov/diviston for une Votage

Line Current is drawn during a short portion of the cycle in a conventional electronic power supply. (Power Factor = .7)

WITH ML4812 POWER FACTOR CORRECTION

2avivieion for Line Currem
sovisivision for Line Volteqe

Line Current is sinusoidal in a supply with Micro Linear's ML4812 Power Factor Correction. (Power Factor = .99)

Power-factor problems in switch-mode PSUs

Most switch-mode power supplies have a poor power factor, and as a result draw inordinately high peak currents from the mains supply. In addition. harmonics produced by the current pulses develop substantial amounts of power-line noise and distortion, and since producing the harmonics takes
power. efficiency of the supply is reduced.

These effects and a solution in the form of a new power-supply IC are discussed in an application note from Ambar Cascom. The chip - the M1.4812 - controls a current-mode boost regulator that preregulates input
voltage for a conventional pulse-widthmodulated converter. A power factor better than 0.99 is achievatble says Ambar. Ambur (ascom, Rubuns Close. Alleshury. Buckinghamshire HPIG 3RS. Tel O2Yn+3+141.

Fax facts for modem designers

Communication standards are fine for users but they call caluse problems for designers. For those of you considering new fax implementations. RCS Microsystems has produced an information sheet listing and outlining the relevant standards.

Addressess of standard sources are given. Wgether with a list of fax modem products and application notes. Rochwell. RCS Mierowstems, It1 Uxhridge' Roud. Hampton Hill. Middleser TW'I2 1BL. Tel. 01-9742204.
Data on this error-detecting fax modem forms part of a designer's information pack. Rockwell 's R96EFX is a 9600 hit/s modem IC that conforms to CCITT recommendations V.29, V.27ter, V. 21 Ch.2, T.3 and T.t: it covers the binary signalling requirements of T. .3) too. Also in the designer's pack is datat on other fax modem products and the information sheet mentioned here.

Polymeric sensor cable

David R. Fox of Focas Ltd describes a piezoelectric cable which could form the basis of a wide range of novel sensor devices.

In the September 1988 issue of Electronics \& Wireless World. Peter Johnson introduced a piezoelectric cable manufactured from conventional piezoceramic materials such as lead zirconate titanate. The article guite correctly pointed out that a thick piezo-polymer was highly desirable from the senitivity point of view, but was difficult to manafacture because of a stretching stage necessary to render the polymer piezoelectric. However, a thick piezopolymer has been available for several years under the name Vibetek-2 () and is manufactured by a continuous process. resulting in a cost-effective solution to many electromechanical sensor problems.
The material used is polvvinylidene fluoride, or $\mathrm{P}^{\prime} \mathrm{AlF}^{5}$, and is manufactured ans at comtinuous wire, with all outside diameter of 1.5 mm and an atctive polymer thickness of 0.5 mm (Fig. 1). It is mechamicatly flexible and can be wound around a mandrel als small ans 5 mm diameter, so that a wide variety of sensor shapes and sizes may be constructed from a continuous length Vibetek-20 hats a high piczoelectric activity and the coaxial geometry realts in a high capacitance per unit length as well as offering a measure of selfshiedding which is a particularly valuable feature when dealing with very small signals.

Piezoelectricity

The phenomenon of piezoetectricity occurs hecause of a special arrangement of atoms in the erystal structure of the material. These do not generally occur spontancously (crystalline quartz is a well-known exception) and certain operations are necessary in order to render materials piezoclectric. For polymers these operations may include stretehing the material by about four times at a suitable temperature and the application of a high electric fied. PVdF hats

Table 1: Mechanical and electrical properties of piezoelectric coaxial cables

Property	Vibetek 20	PLT5A	Unit
Tensile strength Density	220	75	MPa
Specific acoustic impedance	2323	7750	$\mathrm{~kg} / \mathrm{m}^{3}$
Relative permittivity 1kHz	12	33	MRayl
Cable capacitance Piezoelectric coefficient, $23^{\circ} \mathrm{C}$,	600	1700	-
longitudnal hydrostatic	280	130	2.1

been identified as the polymer which offers the highest pie\%o-ativit! when these operations have been performed.

It is the stretching atage which maker continuous production of thick piezoelectric polymer difficult. Thin piezoclectric P\dF films ($7-+1 / \mu \mathrm{m})$ hanc been alatilathe since som after the discovery of the piezoelectric effect in the matcrial

Manutacture of Vibetek-20 with its 50010 m wall thickners, however, is performed in three stages: an extrusion

Fig. I Dimensions of the Vibetek-20 cable. Stress (for example, a mechanical stress in the so-called I-direction, along the cable) results in a charge or electric hield in the radial direction, the 3 . direction.
stage, astretching and poling hage and ath electroding stage, all of which are continuous. By these means, a continuous pieqoelectric comaxial cable can he manufactured in lengthe of 0.5 km or more.

Properties

Pieroclectric materials are amisotropic and are characteried by tensor quantities: hut from the point of view of the sensor designer, and for the special case of a coaxial cable geometry, simplifications can be emploved. Figure I show a diagram of the cable with various directions labelled. The application of a stress in a given direction results in a charge or electric fied being developed in the radial or 3 -direction since this is defined by the electrode geometry. The mechanical input can be along the cable defined as the 1 -direction: or radially or hydrostatically, which means atl directions at once. Trable 1 show the tongitudinal and hydrostatic voltage coefficients. together with wme other important parameters.

Table ! indicates that this piezolecetric cable is sery flexible and has a low demity. Its low acoustic impedance allows a better match to water, which is of expecial benefit in acoustic sensor design. Atthough the PVIF material has a much lower permittivity than the ceramic, a high device capacitance can be achieved becatuse the coaxial geometry of Vibetek results in a cable capacitance of ownpl per metre. Two signifiant differences between this. cable and conentional ceramics are the high pieroelectric coefficients, and the extremely high tensile strength of the base polymer used in vibetek-20, In particular. the cable can be stretehed to a much greater extent than would be possible for eeramies. Thus at one extreme wery high sensitivity devices such as hydrophones can be designed. and all the other extreme very high voltage generation is possible.

Applications

The mechanical fexibility of this cable. its high pie\%o voltage coefficiont and its. awailability in long lengths offer sensor designers a greater freedom in the development of novel devices.

Tiso broad application areas are acoustics and impact sensing. and in acoustics the material lends itself to the underwater domain hecatuse it offers a lery good match to the water.

A length of V'ibetek-? 10 can be plated in the seal and will operate as a hydrophone. receiving any acoustic signals present. Howerer, an increased acomstic sensitivity can be achieved by winding the piceo cable in a helix and potting the structure in a suitable elastomer. It is now possible to mannfacture extended atoustic sensors greater than one metre in length and with sensitivities exceeding those of conventional ceramic-based devices. A bonts is the fict that the device is extremely shockresistant. Frecpucne responses flat to within ldl3 up to 5kll/ or more are achievable.

In impact sensing, piczoelectric materials can be used on vehicle bumpers. on atutomatic doors on missiles and on pressure mats. to name only a few applications. Figure 2 shows the signat generated by the impate of at ollg sted ball dropped from 20em on to a plague of matcrial contatining a spiral of S'ibetek-20. No amplification has been used: the cable was connected directly to the oscilloscope (input impedance $\mathrm{M}(\Omega)$. Hitting the same plague with a hammer results in signats of several hundred volts. whilst experiments involving a $11.5 k g$ mass striking Vibetek20 at $50(0) \mathrm{m} / \mathrm{s}$ show that the material catn generatc boltages in excess of 1500 V . However. e心err finger pressure can generate usable signals, as a simple calcutation shows.

Assume that we apply a force expuivalent lo, sat, a zong weight over a length of about 200 of the cable. This is an atreat of approximately $f 0^{-t}$ mand the pressure experienced by the cable is therefore about zokP'i.

Although the pressure is not applied hydrostatically. We will take that piesococfficient as an approximation. Multiplying this coefficient by 0.5 mm . the thickines of the piesoclectric latyer in the cable, result in a figure of $65 \mu \mathrm{~V} / \mathrm{Pa}$. Using the applied pressure we have obtatimed. We arrive at an output voltage of $1.3 V$. In fact, the situation is a little more complicated: the rest of the Vibetek-20 cable over which no pressure is applied ate ats a potential divider: the output calculated is a no-load out-

Fig.2. Voltage output from the PVdF cable on the impact of a sted ball.
put: and no account has been taken of thecircuit time-comstant.

The cable is almost totally capacitive. with a value of about $600 \mathrm{pF} / \mathrm{m}$ (Table 1). There is a resistive component hecause the material is piczoclectric. but this can be ignored in simple circuit antalysis. A sensor is therefore modelled as a voltage source in series with a capacitance ats shown in Fig. 3a. It is stear from this diagram that the input

Fig.3. Sensor model (at) and a possible preaniplifier design (b).

impedance of the preamplifier has a direct bearing on the frequency response of the system, since the circuit acts as a high pass filter with a corner freguency determined by the $R($ combination.

Seen in this way. it isevident that preamplifier design must go hand-in-hand with the mechanical sensor design. Thus if it is recquired to sense a signal whose lowest frequency is 1 . 0 t a and the sensor length is 1.0 m , at preamplifier with an imput impedance of greater than 270Ms2 will be required. (On the other hand. if only signals athove lokllz are of interest. the input impedance need be only 27 k s.
figure 3h shows a tested cirenit which has an input impedance of athout soms 2 . It is necessary to include a parallel bleed resistance toprovide a D (path to earth when employing operational amplifiers in the non-inverting mode with capacitice sources. If large voltages are expected, as may be the cance under high impact conditions, it is wise to include some hatek-to-hack diodes to protect the input of the preamplifier.

Sensor design

Sensor design using V'ibetek-20 requires a different approach to that employed for coonventional piczoceramics. The sensor can be modelled as a voltage source in series with a capacitor which represents the region of the mechanical imput, and a further parallel capacitor which represents the remaining unstressed sensor cable As a result. frequency-independent whage division occurs and the signal appearing att the end of the semsor cable is attenaated. Thas, in most cases it is important to apply the mechanical input over the whole length of the cable.

The type of bonding or potting material used with the sensor cable is important. Piezo-ceramics are so dense and rigid that the bonding or potting materials have very little effect on the overall response to mechanical inputs. But with

JVdre it is possible to tailor the response by choosing more or less rigid materials in which to embed the cable. For example. the sted ball test deScribed carrier generates a vignal of about 50 V peak with a rise-time of about Ims when the sensor cable is embedded in a soft material such as silicone rubber. The same test on a playue made from a rigid epoxy results in a peatk signat of 7 V , but with the rise-time decreatsed to $125 \mu \mathrm{~s}$.

Other major applications inclade vibration monitors, intruder atarms and musical instrument pickups. The material has heen used in mon-destructive resting, in a breathing monitor and as a -bump derector in the fruit and vegetathe packaging industry

The self-shiedding properties of the cable result in a system resistant to electromagnetic interference.

[^1]TAYDOR RF/VIDEO MEASUREMENT INSTRUMENTS MEASUREMENTS MADE EASY

TAYLOR BROS (OLDHAM) LTD.
BISLEY STREET WORKS, LEE STREET,
OLDHAM, ENGLAND. OL8 IEE
TEL: 061-652-3221 TELEX: 669911 FAX: 0616261736

UNAOHM EP741FMS
FIELD STRENGTH METER/SPECTRUM ANALYZER

Frequency Range:	389 MHz to 860MH2. continuously adjustable via a geared-down vernier
Frequency Reading:	TV Bands - 4 digit counter with 100 KHz resolution FM Band - 5 digit counler with 10 KHz resolution Reading Accuracy, reference Xtal $* / .1$ digit
Function: TV Monitor	NORMAL. picture only ZOOM 2 to 1 torizontal nagnification ol picture
	\square picture \& line sync pulse (with chromaburst if TV signal is coded

Panorama: Panoramic display of the frequency spectrum within the selected band and of luning marker
Panorama Expansion Adjustable expansion of a portion ol the spectrum around the funed trequency
Analogue $\quad 20104008$ Static measurement ol received signal. Scale calibrated in dBuV (a 100 on picher Measurement: tube) to prms value of slgnal !evel.
OC/AC Voltmeter: $\quad 51050 \mathrm{~V}$
Measurement $\quad 2010$ 1300BuV in ten 10dB altenuation steps lor all bands. 60101300 BuV In nine 100 B Range:

Measurement Indication:
Video Dutput: steps 10 I.f

BNC conneclor. IVpp maximum on 75s
OC Output: $\quad 12 \mathrm{~V} / 50 \mathrm{~mA}$ maximum. Power supply source for boosters and converters
TV Receiver: Tunes in and displays CCIR systemI TV signals. Other standards upon reques!
Additlonat (1) Video inout 75Ω (2) 12 V input for external car battery. (3) Dufput connector lor stereo
Features:
PRICE: $\quad £ 1344.00$ nett. excluding V.A.T. and Carriage
UNAOHM EP742
FIELD STRENGTH METER/SPECTRUM ANALYZER
Specticalion as EP741 + Syrthesized Tuning 99 channels. Programme Storage
(EP815 Satellite Converer can be added as illustraled)

PRICE: $\quad 1498.00$ nett, excluding V.A.T. and Carriage

UNAOHM EP815

T.V. SATELLITE CONVERTER

Frequency Riange of 950 MHz to 1750 MHz Frequency is continuously adjustzble through a geared-down control Input Signal:
Frequency Reading: Throughout the lrequency meter of the associated field strength meter
Input Signal Level: \quad From 20 to 100 dBuV in two ranges -201070 and 70 to 100.
Power Source: \quad Available at BNC input connectors as tollows 15 V DC. 6.5 A internai or 25 V DC maximum external
Salus Indication: Continuity. overload and short circuit conditions of power circuit are all shown by LeD lighls
Demodulation: \quad FM tor PAL and SECAM coding. Switching to MAC system is provided logether with room for an
Audio Subcarrier: $\quad 5.5 \mathrm{MHz}$ to 7.5 MHz continuously adjustable. Provision lor an automatic frequency control
PRICE: $£ 536.20$ nett, excluding V.A.T. and Carriage

UNAOHM EP760
COLOUR TV FIELD STRENGTH METER
INPUT
Sensitivity:
Readout:
fREQUENCY
Range:
$20: 0130 \mathrm{dBuV}$ in ten $10-\mathrm{dB}$ steps for TV and FM bands. 60 to 130 dBuV in eight
10-d8 steps for I.f. Digital: input signal level provided directly in $0 B$.

Selection
389 MHz 10 860 MHz
.99 channel Irequency synthesis with in bands I-III-IVN - 30 program storage capabilities. manual luning with sharp-tune control.

Readout: Two LCD displays; the firsi for channel or progeam: Ihe latter for frequency in MHz
SPECTRUM ANALYSIS
Frequency Range: with 100 KHz resolution for TV bands and 10 KHz for FM

Marker:
Video Filter: In addition to localing frequencies, they are used to define frequency intervals
A swichable video hilier is provided to improve measurement accuracy in
SYNC PULSE DISPLAY
Display .

AUOIO

Mono: TV and FM audio can be heard through a loudspeaker. 0.5 W maximum power
Slere:- TV and FM audio can be heard through a parr of earpieces (2 equal to or higher
VIOED
External video
input output:
RGB output:
Teletex decoder:

Approx IVpp on 75Ω. positive polarity Pin pair $19-20$ ol SCART
Appror IVpp on 75a Pins 7-11-15 ol SCART
All feetext pages broadcas! can be recalled by means of the front keyboard of the

Who goes to university？

Your Septembereditorial．＂A nation of hairdressers＂，contains an estimate of the number of children who should statistically be suitable for university education，anestimate which is consistent with the criterion of an IO of around 120 or above（on the usual assumption of a gatussian distribution with a standard deviation of 15% ）

I do not disagree w ith this although the callase of IO is controversial，as to the relative importance of environment and genetics，there doesexist a stable statistical distribution．But when I first looked at university numbers（in the 1951 k ）I assumed that only half those gualified would wish fog go to university The proportion is no doubt greater now，but motivation is vital forsuccess．
I once tried to find a correlation between A－level qualifications on entry and class of degree achieved in a university department（of electronic engineering）and eoncluded that there were only two safe deductions：that nostudent contering with less than three（s） would be likely to achieve first－ class honours and that none with at least one A would be likel！to fail．Even these weak
correlations are expressed in the form＂would be likely（o＂ because human behaviour can be affected by so many things，e．g． health．environment or personal relationships，that it is impossible to prediet it precisely one says that a young person ＂show＇s promise＂but it remains to be seen whether the promise will be fulfilled
（）n the National Curriculum one already hearscries of＂Ifom can we fit it all in？＂while politicians add to the pressure by urging the extended teaching ot more than one foreign language． I amone of the gencration wha went through what were then catled grammar schools．We had slightly more clans hours per week（including Saturday mornings）and much more homework than is usual in comprehensive schools．At what age should one be taught that achievement comes through work？

Youmayget a protest from hairdressers！Seriouly though． I have suggested elsewhere＊that the least able cannot expect to find emplosment in personal services because the customer would not accept heing served by such a person．They cannot become road－sweepers because roads are now swept by machine． sothere are few opportunities for the uneducated．

I）．A．Bcll
Beverley
North Humberside
＊Employment in the Age of Drastic Change，Abacus Press． 1984．

Wien oscillator amplitude

Recently，I needed towhtain a low－distortion．fult－wave－ rectified sine wate of accurately controlled amplitude at a frecquency of about 50 Hz ．I use an op－amp Wienoncillator a precision full－wase rectifier and an amplifier to compare the
average value withal（ reference voltage．This produces an amplitude error voltage which controk the oscillator output by varying the bianon afet in the oncillator gann－setting network The problem is：how long dees the oscillator tahe to reach a gisenamplitude？

In the cirenit thown，it would beeasy toadjust resistors R_{1} and R_{2} sot that with S elosed． oncillations doubled in amplitude every second and with S open． halved in amplitude cvery second．II，at some time，the instantaneous amplitude were IV and S were to be opened，the amplitude would decay to $/ \mathrm{mV}$ after l（），If the suiteh were then closed，the amplitude would rise to IV after afurther llo．If． however．Shat been open for If hoursinste：ad of lla，one would
not expect to have foclose it for 2thours to get bateh tolv，so how long would it tahe＂？

My circuit always seemsto take the same time to reache given amplitude ，but I see noway of calculation what the time should be．Deesanvone have any icleas：

It would be bert torassume ideal noisy compollents but w ignore witch－on transients in the op－amp tocatculate a probable times．Switch－on surges would then serse toreduce this time which conld be used as an upper limit．
Peterl：Vaughan
I yntorn
North Devon

Cad，units and scratched diodes

I contirely agree with almost eversthing that Adrian Eypn salysin his Septemberartich ＂Whoneeds electronic circuit anatsui！＂．The inabilits of graduates owallase a simple circuit ．anotnew：I met thisaver twenty sears ago．Admitteds． this was in recruiting engineer for the consumer products industry，a sector comsidered beneath the dignity of many of the better graduates in this country．hut not in most others！ Theonly point of contention is that using cad to anat yse sueha simple circuit ought tohe equisalent tousing at calculator wadd 1 and l：adevelopment engincer cantht pertorm propertv if helpless withour constant machine support．Mams of the inest design ideasarrive at bath－tume or olother equally private oceasions and cante better nurtured or rejected it ons has decibel．log．and trig．tablen （20r3ligures）in one゙ head

Apart from the ratherower－ dramatictitle of（oolin Whites article on units in September，it is a vers helpful piece．It should be noted，hewever，that while the timber industry invented the 3／kem unit，it waslorestalled m the pagesol Wireles Worlat bs Frece（irikl（or was it Diallist？）． whoproposed a unit of
 that the velocity of light on weator would he exactly I（iBt．．In Mr Whitěsterminology I 134 would be Inamaisyl．

Mr MacLean｀p－n diode؛ （Septemberletters）are
inlerently semsitive to light，but the manufacturersusually take care topresent sufficient light reathing the junction to catuse problems－except in photodiodes，of course！Earls diodes had only ancexternal coat of paint and much trouble was callesed by pin holesor seratches． E：ither Mr Mclecan has fatult diodesor hisapplicatom is abourmally semsitise in some ＂ay．
J．M．Wondgate
Rayleigh
Itsicy

Units

Colin White，mhis September article＂Flectromagnetic unas m cham＂．certainls justlles has title hut offeranoexplicit criticosm of the S anits，merels referring to them noncommitall as＂our present Sl sytem There are twooblectomstothis いytem．

The first 心 that an attempt to make a current measurement． Uning only the equation
 difliculties．This is partly becallse atl currents flow in closed loops and in this simple non－sectorial
 of han the contributions to the foree from the return sectionsot each loop are to be calculated． and partly because although currentseonsist of charges in motion the lact that the electrostatcesores between those charges must be subtracted ofl isnotexplicitly stated． However beth thesedificulios can be overcome；it was the development at the carrent balance as the primary device for providing at sandard current that prompted the choice of current as the banicelectrical untt．

Floesecond．mare tundamental objection was thated in mbetter ol September IgRx．The Sl whtem incorporate a dimensional distinetion betweent：and l）（and hetween I3 and If｜not found an the carlier いbtems．adistinction which is unphyseal．It arme hecalue in the development of the（iorgi units（precursorsut the Sl units） certaincequations from the old electrostatic syblem which were tithenower unchanged included suppressed dimensional factors oneffect introducing atwo－ter shtem of electrical chargerand
associated field vectors, with E and P indifferent tiers. It was then found that the form of the cquation linking E. I), and P which is derived from (iauss: theorem could be simplified by assimilating the dimensions of I) to these of P . This
"simplification" led directly to the rash of different dimensions afflicting the electromagnetic field vectors in the SI system. which needlessly complicates conversions between the old and the new units.

C.F. Coleman

Brove
Oxfordshire

Open letter to the recording industry

In the 1970s, great advances in high-ficlelity sound equipment took place. There was also an appatling standard of pressing quality on most records, albums in particular. We saw the recording industry have its hnuckles severely rapped, which brought about a considerable improvement in quality in an attemptosave the industrys profits in the face of the increasing popularity ol the tape cassette.

Are we now to repeat the fiasco with compact disce? There has again been a buge leap forward in sound reproduction. (I) players costing. on average. around $\ddagger 250$, with features such as multi-oversampling and bit multiplication. We are promised loddil or more of signal-to-noise ratio. -95 dB harmonic distortion, zerocrostalk, wow and flutter and hum, and superb frequency response.

Why then is it that, after paying for the latest digital (1) player. we find that not one (I) in the chartseven nearly approaches the performance of even a standard player'? I have found that the typical signal-tonoise on many chart (${ }^{(1)}$) is a little over 60dB (about the same as a good vinyl record). In addition, some have levels of $5(1)$ lz hum, again typically -60)d3. that should have been hanished from all recordings, yearsago. The hest (I) I could find (Paul Mc('artney. Flowers in the I)irt) prowides a mere 75 dl 3 signal-to-noise ratio - some

25 dB short of the promised magic l(K)dB.

The current state of (I) recording quality makes complete nonsense of the latest state-of-the-art technology fitted tocurrent (CD players. CDs are not particularly cheap and I believe the public are being totally misled by the promised improved quality when the quality of recordings is so poor. You people in the recording industry must put some of those huge profits back into refurbishing your recording equipment toa standard to at least match today shi-fi systems.
L.es Sage

Sage Audio Electronics
Bingley
Yorks

R.I.P. cold fusion?

"Need we say more"? (E\&WH Research notes. p. 8 47.
September 1989). If the
UKAEA at Harwell spend £320 MO and conclude that cold fusion is dead, then the judicial authority of British Science has put on its black cap and death must follow - that is the way of Nature-at least in the UK.

The August ll insue of the local newspaper tells us in Southampton that cold fusion has the "US seal of approval" because a Salt Lake City panel in Utah have "released $\$ 4.5$ million to set up a national institute to investigate the claims of Professor Fleischmann of Southampton University". This follows the report in the
Financial Times some week. before, advising that (ieneral Electric of USA is now taking an active role in cold-fusion research initiated by the Utah experiment of Fleischmann and Pons.

The layman might wonder how llarwell's failure todetect enough neutron emission leads (w) the no-fusion-in-Utah conclusion when Harwell scientists firmly believe that fusion is occurring in the sun. bearing in mind that experiments in South Dakota have failed to detect enough neutrino emission. No ne utrinos should surely mean no solar fusion. unless we live by double standards.

In science, we have a tendency to believe what we want to
helieve, especially if we have some special knowledge and it saves us the trouble of learning something new. I am no exception and, if only because my theoretical research assures me that there are no neutrons in the deuteron, I can accept "cold fusion" with none"utrons; see ny paper "The Theoretical Nature of Neutron and Deuteron" in Iladronic Journal, vol. 9. pp. 12901-1306. 1986.

The Harwell experiments summarized in the $E \& W W$
Research Note were so numerous that they led to the "Need we say more"." question. But more must be satid: a computer result is as good as the skill and imagination of the programmer and his knowledge of how the computer can be made to work and soit is with experiments. If the computer is atn analogue computer
containing no "neutron" features and the programmer assumes it to be digital and neutron orientated. the programmer is hardly likely to succeed.

The Harwell scientists are not reckoning with the possibility that entry of a deuteron from a light-atom environment intoal heasy-atom environment involves a vacuum energy fluctuation of several MeV . enough to trigger the fusion reaction, without needing or producing neutrons. The deuteron has a graviton field and palladium has a supergraviton field. There is a phonon resonance condition which is particularly sustained. in advance of the transition from graviton to supergraviton, which caluses the energy fluctuation when a deuteron plus one palladium atom has a combined mass which sums to that of one graviton plus one supergraviton. Another incoming deuteron has to meet up with this short-lived resonant deuteron state for fusion tooccur.

Supergraviton resorance on itsowncan, incidentally, explain "warm superconductivity" when a perowskite molecular group. such as $\mathrm{La}_{2} \mathrm{CuO}_{4}$ or $\mathrm{Y}_{2} \mathrm{CuO}_{4}$. has a mass that matches a rear multiple of the supergraviton mass (102 atomic mass units). This superconductivity feature is described in a published UK Patent Application

No 2.210.870A. dated 12
October 1987, where it is also shown that the lower graviton state resonates with 6.6 atomic mass units. The cold-fusion resonance occurs because 102 plus 6.6 is very nearly equal to 2 . the atomic mass of the deuteron plus 106.4. the atomic mass of palladium.
H. Aspden

Department of Electrical Engineering
University of Southampton

Cold nuclear fusion

I read with interest, hut no surprise, that the I larwell team had failed to find any evidence of room temperature fusion. We know already that cold fusion can take place (see Cold Nuclear Fusion. Johann Rafelskiand Steven F.. Jones. Scienific American. July 1987) though it works better at an optimum temperature of $9 \%^{\circ} \mathrm{C}$. It is not unreasonable to suppose that an improvement on this will eventually be found.

We shouk not forget that the method being pursued by Harwell and sister institutions is at least fo yearsold in concept. and that an conormous organization siphoning off billions of public money is built on it. The careers of tensof thousands of scientists and of top administrators with considerable political influence are at stake. If this attempt at room temperature fusion had proved a sucess then at the veryleast, we would have heard nothing about it. We can only wat tosee what reports are issued by other less interested organizations. and urge that original thinking and research continue in spite of the risk of overt or covert opposition.
Keith Wood
West Derby
Liverpool

de Sitter stars and the ether

If a distant binary star system is rotating in a plane which includes the Earth, then astronomers should see the image of the stars oscillating back and forth with an amplitude equal to the subtended star system diameter. but only if the velocity of light
were constant in all reference frames. W. de Sitter' pointed out in 1913 that if this were not so. for distant binaries of moderate angular velocity. light from the receding member of the binary would be slower by $2 v$ than the faster component from the approaching member and ultimately the "fast" light would overtake the "slow" light and get to Earth before it: thus an earlier event at the star would register at Earth after a later one (Fig.1). Since binary stars were known and such phantom appearances and disappearances had never been reported, this was taken as proof of the constancy of the velocity of light. It has remained a major proof as it does not depend on the interpretation of terrestrial experiments such as Michelson-Morely and any theory of light and ether would have to address it ${ }^{2}$.
J.G. Fox ${ }^{3}$ remarked that the Universe contains large quantities of material capable of scattering light and that light from a de Sitter star would be intercepted on its way to Earth, preventing the de Sitter effect from occuring. Clouds of small particles permeate space and form a "screen" on which the oscillation of the distant binary is relayed at constant light velocity: light received at Earth would have been forward-scattered from an intervening dust cloud.
Thus, though the effect is unlikely to be ohserved at optical frequencies, the Rayleigh Law fourth power gain at 21 cm over $5(1) \mathrm{nm}$ would predict some 10^{23} times less scattering at radio frequencies than in the visible. Radio waves might get through unaffected ${ }^{4}$

In neither paper did de Sitter give a formal solution for his star: Relativity was in full swing, the effect had not been seen. The system has to be solved parametrically. Considering one half of the binary for simplicity (Fig.2), it can be seen that for uniform angular velocity ω in a circle of radius r the displacement yof the star is
$r \sin \omega t$,
and the arrival time at Earth t_{c} of light leaving at t, is

$$
\frac{D+\left(r \cos \omega t_{s}\right.}{c+r w \sin \omega t_{5}}
$$

Fig. 1

Fig. 2

Fig. 3
where 1) is the distance of the system. A graph of y versus t. gives the situation at the Earth. A terrestrial observer will see an array of periodically spaced phantom starimages, like ducks in a shooting gallery, proceeding across the aperture of his telescope. appearing at one end from nowhere and disappearing suddenly at the other (Fig.3).
The behaviour of the phantoms can be exactly described ${ }^{7}$. their lateral velocity being

$$
\begin{equation*}
U=\frac{V v^{2}}{c v-D w v-V^{2}} \tag{3}
\end{equation*}
$$

Under certain circumstances they move fasterthanc. ($v=c+$ $\left.r \omega \sin \omega t_{,}: V=r \omega \cos \omega t_{\text {, }}\right)$.

The number of phantoms in the field and the source enery enhancement is given by

$$
N=\frac{4 r \omega^{2} D}{\pi\left(c^{2}-r^{2} \omega^{2}\right)} \pm 1
$$

and there are two types. fast and slow

For weak radiosignals radiotelescope interferometers are often used and high resolution is obtained by having very long baselines. Such a system, at low resolution, might ${ }^{5}$ display the de Sitter pharitoms as a periodic signall, a pulse, as the moving phantom array came in and out of phase with the antenna elements whose sampling phasor pattern defined the focus of the interferometer. A small rotating binary would seem as large as its binary radius. N times more intense. and pulsing. Focused off-centre, the pulse will be a doublet or pair: there should also be a pseudoDoppler shift in the apparent wavelength dispersion versus displacement. long waves arriving later. This type of low-

resolution behaviour may be of interest in connection with pulsar and other variable sources.

With regard to higherresolution telescopes it is of interest that the lateral phantom velocities can be greater than c since this is a situation pertaining in the recently discovered fine structure of quasar sources. Radio signal density maps of some quasars obtained with long baseline interferometers have shown discrete objects, now called superluminaries, which are roughly equidistantly spaced and move across the long axis of the quasar field at speeds which can be in excess of c . The object NG('6251 showson a VI.A radiomapat $1+10 \mathrm{MH}$ Izas a long thin stripe of small spherical point sources. doubled up at intervals which are roughly the samen. It is likely that these elements are in motion across the field from other studies of similar systems ${ }^{7}$

Are these de Sitter phantoms? If the ether exists then the effect should oceur and should be sought at long wavelengths. Recent cosmological discoveries may have revealed it already.
ChrisC. Bushy
I.V. Research.

Ivy House.
Mallwyd. Powys SY: 209 HJ .
Cecilia J. Busby
Kings College
Cambridge C1321.5

References

1. W. de Sitter. Proc. Amst Acad. Sci. Vol. 15 No 1297. 1913.
2. P.G. Bergman. Introduction to the theory of Relativity.
Dover Publ. New York 1976 3. J.(i. Fox. Am. J. Phys. Vol. . 30 No. 297. 1962.
3. H.C. van der llulst. Light scattering by small particles.
Dover Publ. New York. I981
4. E.C. Jordan and K. Balmain.

Electromagnetic wavesand radiating systems. Prentice Hall. Engleword Cliffs, New Jersey, 1968. Ch. 12
6. M.J. Reesetall.. Re'v. Mod.

Phys. Vol. 56No255. 198t.
7. I).H. Hough and A.C.S.

Redhead, Astrophys. J. Vol. 321 L-11. 1987.
We will provide our derivation of the phantom equations for anyone interested.

LETTERS

Feedback and fets

Having just read Ivor Brown's letter in the July 1989 issue, I feel that the matter of slew-rate limiting needs a little more ventilation. I quite agree that in the amplifier system he describes, the slew-rate of the carly stages has a marked effect on the distortion produced. However, to bring this about, he has had to assume a dead-band effect in the output stage: in other words, for small signals there is no output at all, as in a Class-B stage with zero yuiescent current. Since much of the design work done on amplifiers in the last thirty years has been aimed at eliminating such gross crossoter discontinuities. I must admit that 1 am inclined to view the demonstration as tending towards the not very usefial

The sharp spikes seen on the distortion residual of every under-biased Class-B amplifier are a demonstration of this effect. Improwing the slew-rate of the early stages will make these spikes more narrow, but will not reduce their amplitude and this would be considered a fatulty or maladjusted amplifier rather than one under-designed for slewing. Increasing the yucseent current reduces the height of the spikes until they merge into the main body of the distortion products, and in fact this is the only reliable waty of setting yutescent current. With it correctly set, a well-designed output stage will have only very small slope changes around the crossover point, and the early stages are not called upon to make particularly rapid adjustments foservo-out these errors. Clearly, with poor design slew-rate could he a problem. but then socould almost everything.

Toturn tothe bipolar/hybrid output stige, the driver transistors doindeedoperate in Class AB, but I doubt if these relativelv fast '105 devices have a badeffect on the crossover behaviour: all that can be said is that the stage as a whole is remarkably linear without any overall feedback. My own view is that the poor matching of the not-so-very-complementary mosfets around the crossover region is probably the cause of what crossover perturbations can be seen. I have tried Class- A drivers with AB hipolar output devices and there seemed to be no benefit to be had.

I-inally, it might be valuable if all of us provided more measurements in articles anc letters, as otherwise comparison and reasoned discussion are very difficult. In particular. designs are often labelled "low feedback" or "lashings of feedback" without specifying how nuch. While measuring open-loop gain is not always casy, the results should be highly informative, and perhaps Mr Brown will reveal the results for his design in his fortheoming article.
Douglas Self
Forest Gate
I_ondon, E15

Motion through the ether

It should be obvious that even if E.W. Silvertooth (May, 1989) and those of similar thinking are on to something. most of Relativity is not on its way to the scrap heap, and time spent on its study is not all wasted. For an analogy, consider the designing of some large civil engineering project. Pretty certainly, when it is put up all verticals will be checked with spirit levels or plumb lines (or some high-tech equivalent). But hangon, this planet is a spheroid, so the verticals will not be quite parallel. Is spherical geometry used, then, to design the thing? I doubt it. Goodold Euclidian is much easier to manage, and any correctionscan be calculated simply at the end.

With an absolute reference frame you must account the rotation of the planet, its motion around the Sun, the Solar
System going round the Galaxy... Or you could do the donkey-work assuming a relative reference frame and at the end look up some standard tables to see what toadd and decide whether it is significant. The figure of $378 \mathrm{~km} / \mathrm{s}$ give? in "Motion through the ether" is about $5 / 40$ the of 1% of the $3(0)$ ($1 \times 1 \mathrm{~km} / \mathrm{s}$ it is worked from. The reason that I put the fraction in that form is because it compares readily with the roughly $3 / 40$ ths of 1% by which the rounded 3010 (MO)km/s varies from true c. It should be noted that these fractions are not cumulative with eachother, hut one will be witnin the other.

To explain certain aspects of the Big Bang, some physicists have depicted for us an ether where particlescome into
existence from "nothing". These "virtual" particles appear in pairs of matter and antimated, and annihilated again almost instantly. Annihilations create energy but "appearances" absorbit, and charges always balance, so normally there is nothing to see. But come extend this idea a little. If you introduce a bias somewhere thern some pair-halves will be absorbed leaving their partners loose What are these todo? Annihilate with the partners of ot ters. which in their turn... In fact the hias will propagate. If large amounts of energy can be shared out, then the propagation will appear and behave as a wave, but set things up right and you will catch particles. Sounds familiar And it doesn't need excusing as just an intellectual "tool"

To be appreciated here is that any particles detected will have actually originated just in front of the detector. Similarly, particles coming off the source will be absorbed almost immediately. Energy passing from source to detector will be literally relayed by default. The speed at which it happens will depend on the speed at which the virtual particles appear or can be stimulated to appear. Maxwell, I think, had something to say about how electric and magnetic waves have to interact. Onlv a certain critical speed, which we now know by the letter cot course, will do. If the above is what is actually going on when an electromagnetic wave propages then a number of things follow One is that no matter how fast original particlescomes olf a source the resultant wave will propagate at the speed of light, c. as we know it. Imagine ohat you and two colleagues are in a large hall. The one furthest away from vousneezes violently. Now anybody with half a bit of knowledge about such things knows that the air in his breathing passages will he moving at supersonic speed. So what difference will the direction in which he is facing make to the time lag between your other colleague hearing the sneceze and your hearing it? Given that the other colleague is not tooclose to the sneezer, none of course. The actual air motion will be dissipated in the immediate vicinity of the sneezer, and thereafter the shock wave will propagate at the prevailing speed of sound. Another thing that follows is there is actually no
entity that can be called a photon. Set upaline of dominoes, then push one to topple the others. What thing off your finger reached the last in the line"? Could you weigh it?

Of course, few things can make an alternative more unattractive than something generally accepted that seems to work. Particularly when the alternative clearly cannot be too alternative. Relativity gets most effects near enough right, so much of an alternative scheme can look like an exercise in changing labels. The grip of Relativity is such that if an experiment should produce a result at variance with it then the experiment is immediately the suspect party.
G.M. Whiston

Bartley Green
Birmingham

ELF reception

It was interesting to read recent articles on non-parabolic satellite antennas. Readersmay like to know of a novel experimental rig being used by a friend of mine - an RI engineer with a consuming interest in ornamentalgardens.
He has on his estate (he worked for a few weeks as an accountant before turning to engineering) about 350 garden gnomes in a variety of colours. each fitted with a small mattching woolly hat sporting a large metal bell. With the aid of a theodolite and a long piece of 28s.W.g constantan wire he has been able to adjust the position of each gnome by upto $\pm \lambda / 2$ to constructively combine the diffracted reflections from the bells at a focus in the funnel of an old galvanized watering can hanging from the potting shed inside which he is able to put his feet up in front of the television without fear of interruption from his wife
Reception of Astra is excellent and he is now retuning the gnomes to be ready for transmissions from ()lympus. though he suffered a setback when six of the elements were unexpectedly pulled into the lake by a largegoldfish and disappeared. He reports that the tolling of ghostly bells can be faintly heard when the water is choppy.
Bob McCiregor Hitchin. Hertfordshire
Ifas he thought of selling the idea to BSB'"-ed.

OSCILLOSCOPES

 PHILIPS PM 325675 MHZ ruggedised portable PHILIPS PM 3267 100MH2 dual trace oscillosco TEKTRONIX 2213 A 60 MHz dual-rrace GOULD OS 3300 B 50 MHz dual-trace dual-timebase (Fasil turnover cio o'scopes. please 'phone for up-date)

MAARCONI:INSTRUMENTS

TF1 152A.1 RF power meter 0.25 W
TF $1245 / 1246$ Q-Meter and 0 oscillator
TF2015/2171 UHF AMFM signal generator wilh synchroniser
TF 2162 MF attenualor 0.11 tdb in 0.1 db steps TF2300A as above with deviation 101 TF2356 level oscillator 20 MHz TF2501 power meter 0.3 W isd DC. 1 GHz TF2600 millivoltmeter AF $1 \mathrm{mv}-300 \mathrm{~V}$ isd TF2600B video voltmeter tmV .300 V fc TF2604 elecironic multi-meter
TF2807A PCM multiplex lester
2828 A2829 digital simulator/analyser
TF2908 blanking 8 sync mixe
6460 RF power meter
$6460 / 6420$ power meter/microwave head
TF893A audo power meter 1 mW . 10 W Iso TK2374 zero-10ss probe
TF2304 automatic modulalion meter 2092 C noise receiver, many titers available 2091/2092A noise gen/recelver 8 filters 6600A 16646 sweeper 8 - 124 GH
2018 synthesized signal generator $80 \mathrm{kHz}-520 \mathrm{MHz}$ 6056 B signa source $2-4 \mathrm{GHz}$
TF2011 FM signal generator $130-180 \mathrm{MHz}$ TF2012 FM signal generator $400-520 \mathrm{MHz}$ 2438 (303J) 520 MHz univer sal counter timet TF2303 modulation meter
2019 synthesized signal generator 0.08 - 1040 MHz TF2700 RCL component bridge TF2163S UHF attenuator 0-142db TF2905/8 sine squared pulse and bar generator TF 2370 spectrum analyser 110 MHz

TEST \& MEASUREMENT EQUIPMENT

AVOB151 LCR universal bridge
STOLTZ A.G. prom programmer
RACAL 9C832 2 tone signal source Maestro RACAL 9084104 MHz synthesII2ed sig. gann GPIB WAYNE KERR B642 Auto Balance bridge
VALAADIT inventers 24 V DC-230V AC from
RIK ADENKI 3 pen chant recorder
SCHLUMBERGER SRTG-GA63 selective call test sel TEKTRONIX 7012M2 AD converter plug-11
TEK 2901 time-mark pen \qquad
TEXSCAN WB7130-950 sweep generator TEXSCAN 9900300 Mhz sweepertdisplay PHILIPS PM2554 AF milli-volt meter
PHILIPS PM5324 RF generator 0. -1. PHILIPS PM 8043 YYTPlotter A4
PHILIIPS PM8220 slingle pen chant recorde
E.N 1.503 L amplifer 40 db .510 MHz .
FLUKE 5 toob instrument callorator

FLUKE 5 tooB instrument calbrator
FLUKE
FLUKE Dinary programmabie power supply
GEN RAD 1607 I ranster function bridge
IWATZU SM2 100 dual-channel audio spectrum analyser KEITHLEY 175 dignal multi-meter
TEKTRONIX S48A PAL TV wavelorm montor
TEKTRONIX SG503 sisnal generatorfTM501 írame
TEKTRONIX 496 P t KHZ IZ-1800MH2 spectrum analyse
with tracking generator and counter
WAYNE <ERR 4210 RCL component br dge GPIB

> WANTED: Top quality high-end tes: equipment for stock or wwill sell on commission Please call poot of Fax ist.any cuanity Signal generators. spectum analysers etc urgenily requifed for walling customers.

ALL OUR EQUIPMENT IS SOLD IN EXCELLENT, FULLY FUNCTIONAL CONDITION ANO GUARANTEEO FOR 90 OAYS. MAIL OROERS ANO EXPORT ENOURIES WELCOMEM. PLEASE AVAILABLE EX-STOCK AS AT COPY DATE. GOOD OUALITY TEST EOUIPMENT ALWAYS WANTEO FOR STOCK. PRICES OUOTED ARE SUBJECT TO AODITIONAL VAT

1122A power unit for fet probes 16028 transistor fixure 529A Logic modutator 10529A 10526T Logic froubleshoote 382A(P) P-band attenuator 0.50db 6516 A power suppties 0.3 KV 6 mA $7046 \mathrm{~B}(07) 2$ 2 pen XY ploter high-speed B018A(01) senal data generator 5011 T logic troubleshooting kit complete 00FL mV-meter
165A function $1 \mathrm{MHz}-50 \mathrm{MHz}$
335A848:A RF power meler \& head.
3581A AF wave analyse
3575 A gain/phase meter $1 \mathrm{~Hz} \cdot 13 \mathrm{Mhz}$
432A478A microwave RF power meter
85538110 MHz spectrum analyser plug-in
7563 A log voltmeter/amolitier
7563A log volm meleramplier
3582A dual-channel audio spectrum analyse
5505A laser interferometer
5423 A structural dynamics analyse
8405A vector voltmeter
8556AN001 L.F spectrum analyser plug-in
8565A 40 GHz spectrum analyser
8640B/001 phase-locked signal generator

ADDITIONAL EX-STOCK T \& M KI

(Claude Lyons) 0-270V. 20A 1100.
GOULD DSA600 digital synihesizer analyser
PM5534 standard TV pattern generator. NTSC
PM6302 RCL component bridge
PM2t20 universal switches for sysi 21^{1}
PM5580 IF modulators. Systems B. G \& M
PM5597 TV VHF modulators Rack of 5 . System 'G
FLUKE 8060A dignal multi-meter
ELECTROVISUALS TV wavelorm montor and $\mathbb{2} 25$ EV40 PHIIPS PM5190 S SWOF III videoskop c/w sideband adaptor PHILIPS PM8235 multi-poini pen recorder
TEXSCAN AL61 $4 \cdot 1000 \mathrm{MHz}$ spectrum analyser, battery WAVETEK 2000 sweep generator 0.1400 MHz
WAVETEK 157 synthesizer $100 \mathrm{uHz} \cdot 1 \mathrm{MHz}$

V-525 Guinsor measurement
 50 Mir real time oscill oscope

- 2 Channel
- CRT Readout of Key Parameters
- Cursor Measurement of $\Delta \mathrm{V}, \Delta \mathrm{t}$ and $1 / \Delta t$
- $1 \mathrm{mV} / \mathrm{div}$ Sensitivity
- Max Sweep 20ns/div
- Alternate Magnification
- DC Offset Function
- Signal Delay Line and TV Sync.

Expect more from Hitachi

HITACHI
In a word, reliability
13 Garrick Industrial Centre, Irving Way, London NW9 6AQ Telephone: 01-202 4311. Telex: 27449 Circieno. IGI on reply card

THE COMPLETE DESIGN SERVICE

- CAD Analogue and digital design, simulations and PCB artwork produced for new or old circuits.
- CUSTOM SILICON capability. PALS, Gate Arrays, ASCI's designed and supplied.
- ON BOARD MICROPROCESSOR hardware and software to provide local "intelligence" can also be provided.

We specialise in small low cost projects. To find out how we can help you phone Chris Barnett on (0604) 713681

NATEL
 ELECTRONICS

Natel Electronics, 1 Beechcroft Gardens, Northampton NN3 2JP

Contriving parallel/I/0 on the IBM PG

Mike Hale describes a method of providing a generalpurpose TTL interface via the parallel printer port while maintaining access to a printer on the same port

Uunlike many personal computers before it. the standard $113 M 1$ PC is not equipped with any obvious unallocated general puppose input/output ports. Peripheral equipment. which may only need a few The signals 10 comtrol, must generally be connected toan additional I/() card.

But a parablel printer port is instatled as part of the base level PC pecification on most machines, prowiding a standard harduare interface from the smallen 8oss-bathed lap-top to the latest solisto machines

The parallel printer interface used on the IBM PC $\mathrm{XT}^{\prime} \triangle T$ sets the standard which all "compatible" manufacturer have to follow. Signals are TTL-Fen presented on a 25 pin D-type socket. Apart from this unfortunate choice of connector. it is directly compatille with the "Centronies" handard printer interface.

IBMA: dexign. detailed in the Fechnical Reference Manual for the P(/AT uses standard I.STCI devices. Fig. I shows a typical P(-compatible interface design. PC compatibles may not use I.STTL, but the interfaces io the $P($ hus. and 25 way connector, will present smimar signals.

To the PC hus, the printer interface appears as three paratlel ports mapped in I/() space (Addresses shown in Fig. 1 are for L.PTI:).
Port $\mathbf{3 7 8}{ }_{16}$: this is the data output port. Bits $10-7$ from the bus are latched and appear on the 25 way-connector, pins 2-9. The port can be read, hut the three-state outputs from the latch are permanently enabled. so the port cannot be used hidirectionally. A series resistor and capacitor to ground onseach of these lines is provided to reduce crostalk in the printer interface cable.

Port 379 ${ }_{16}$: this is the status input port Not all eight bits are used. The bit allocatoon and corresponding pin num-
berson the connectorate

Bit	Function	
$D_{0}-D_{2}$	Notused	
D_{3}	$\overline{\text { ERROR }}$	pin 15
D_{4}	$\overline{S L C T}$ (on•line)	pin 17
D_{5}	$P E$	pin 12
D_{6}	$A C K$	pin 10
D_{7}	Busy	pin 11

Bit 7 is inverted from the connector 10 the bus. Bit 6 can double as an external

Port $37 \lambda_{16}$: This port provides the output control signals. Again not all the bits are used.

Bit	Function	
D_{0}	STROBE D_{1}	AUTOFDXT (enable auto-line feed)
D_{2}	INIT D_{3}	SLCTIN (printer enable) interrupt (IRQ)

Bits 1. . I and 3 are inverted an they appear on the comnector. (Only the brombsignal has an output filter. Again. like the data port the outputs can be read back. The inversion of signals is comectedona read to the bus

PCPRINTER PORT CONNECTIONS

Pin	Direction	"Centronics"	Signal
1	Out	STROEE	Acknowledge
2.9	Out	Data bits 0.7	
10	In	ACK	
11	m	BUSY	
12	In	PE	Out of paper Printer selected Auto line-feed Error or off-line Reset (to printer)
13	ln	SLCT	
14	Out	AUTOFDXT	
15	ln	ERROK	
16	Out	INTIT	
17	Out	SLCTIN	
18.			
25	-	Common ground	

STROEE: negative going pulse, clocks data into printer. Negative-going edge initiates data transfer. Data should be stable on both edges.
Data bits 0.7: full byte-wide parallel data path.
$\overline{A C K}$: negative-going pulse indicates that the printer has received strobed data. Pulse width is usually in the order of $10 \mu \mathrm{~s}$.

Busy is asserted (high) during data transfer and will remain high when the printer is off-line. It is possible to use this signal as a handshake with polled printer driver software and to ignore acknowledge.
PE: a high indicates paper not detected; $\overline{\text { ERFOR }}$ is usually asserted at the same time.
scct: active high indicates printer is present.
May be just a resistor to the printer +5 V power supply.
AUTO FD XT: active low. When asserted the printer will automatically do a line feed following a carriage return.
ERROR: the printer is in an error state if this signal is low. Taking the printer off line manually will also activate ERROR.
SLCT IN: input, active low, selects the printer. When high, data transfer will not take place. Some printers can be set to force the signal active internally.
WIT: the printer is reset if this line is taken low. The printer is initialized on a cold boot of MS-DOS (ctrl+alt + delete). The Bios will also initialize the printer by sending a software reset escape code. This is valid for Epson and IBM-compatible printers.

Fig. I. L.PT(n): interface to PC bus and 25-way connector.
to the port inputs. On each LPT(n): port found, this wiring can then be tested for. If the search software finds this combination on one port only, the port address has been located. One can see that with a little software ingenuity. the printer port could make guite a usable TTL I/O port

Expansion

The limited number of inputs can be expanded using muttiplexers. For example, with the addition of a single TTL 157 device, eight input and eight output bits can be provided. Fig. 2 shows one connection method. The altofdext signal switches the 157 to select one of two sets of four inputs. These inputs appear in the upper four bits of the status port. The following software procedure (below) reads a byte for this hardware configuration. The XOR 88 H instruction at the end corrects the sense of bits 3 and 7 which are inverted due to the inversion from the connector to the bus of the busy signat.
Signals from the port which would change rapidly in use with the printer are filtered (in the PC) to improve the line driving characteristics. The strobe line is one of these. This must be taken

In total, twelve output and five input TTL lines available. MS-DOS call support up to three of these ports. The allocation of LPT(n): to any particular hardware port is a function of the Bios. For the PC/AT the base address of LPT1: is 378_{16}. Some documentation I have seen shows L.PT1: to be $3 \mathrm{BC}_{16}$ although I have never encountered this in practice. Port addresses (in hexadecimal notation) are usually

	DATA	STATUS	CONTROL
LPT1:	378	379	$37 A$
LPT2:	278	279	$27 A$
LPT3:	$3 B C$	$3 B D$	$3 B E$

If only one LPT(n): port is installed it is fairly simple to search all three possible addresses in software to find it Since the data port at the base address is a read/write port, the simplest way of searching for the presence of hardware is to read and write complementary bit patterns to each of the possible data port addresses, checking that the write, and subsequent read. data bytes match.
If more than one port is installed, the software may require a dialogue with the user, to determine the correct port. An alternative is to wire. on the additional device, some of the outputs back

Listing 1: Software to switch LPT1 for parallel I/O use.
; Select phantom $1 / 0$
SLPHTM PROC NEAR
MOV DX, O378H
MOV AL, PHDAT
OUT DX,AL
INC DX
INC DX
IN AL, DX
MOV CTLST,AL
; Get current state
;Save it
MOV AL, O0000110B; Pattern to select phantom 1/0
OUT DX,AL ;DO selection
RET
SLPTHM ENDP
; Deselect the phantom $1 / 0$ and select the printer
; SLPRN PROC NEAR
MOV DX,0387H ;LPT data port address
MOV AL, PHDAT ;Get last data output to phantom
OUT DX,AL iset it up on LPT output
INC DX
INC DX ;DX points to control port
MOV AL, 00000100B ; Deselect bit pattern
OUT DX,AL ;DO deselection
MOV AL,CTLST ;Get control state
OUT DX,AL ;Restore printer control
RET
SLPRN ENDP
PHDAT DBO :Copy of phantom output latch
CTLST DBO ;Control register state

Fig. 2. Expanding inputs with a 1.57 device.
into account when writing interface software, particularly if long cables are to be used. In the above subroutine. comments show where it may be necessary to insert delays to allow time for signals to settle.

In practice, if the cable length is kept to at few inches and pull-ups used on all inputs. operation without delays is possible. If the software is to be used across a range of machines. then a subroutine call or macro which executes a series of dummy instructions could be placed at the delay points in the code. If the number of iterations of the delay loop is determined by a variable. set when the program is initialized, then performance can be either fine-tuned by hand or set following a processor speedcalculation.

Immunity from crosstalk can be improved by using twisted pairs instead of the more convenient ribbon cables. Adding capacitors in the order of InF to those lines which are not filtered will improve noise immunity. This may prove essential on some fast machines if the lines are used as clocks. Finally, the use of high-speed $\mathrm{c}-\mathrm{mos}$ devices in place of TIL will give a further improvement.

The simple circuit in Fig. 2 is practical only if a printer on this port is not required, or used so infrequently that changing cables is acceptable.

One of the lines to the printer. suls. is used ats a deviee select. When this line is high the printer will not respond to data. By using it. the printer signals call be switched away from the printer to a "phantom" peripheral when the printer is de-selected by the computer.

Figure 3 shows a circuit to provide eight input/output lines with seven controt signals maintaining a printer connection.

Some printers can be set to ignore the sict in signal and be permanently online. This difficulty can be circumvented by gating the पirobs signal with uct in. to force it high when the printer is de-selected by the computer. Both methods are used in Figure 3.

Buffer IC ${ }_{1}$ isolates the printer cable load from the "phantom circuit": its outputs are three-state, high impedance when the printer is de-selected. It is not essential

IC2 switches four of the status port lines to the printer when selected or to the "nibble mux" (IC_{5}) when not.
IC_{3} is another quad two-input multiplexer, to switch the output printer control signals used by the phantom circuit. When the printer is selected, the strobir and altorid xt signals are switched to the output connector. In addition the clock to $I C_{4}$ is held low. maintaining the data in the latch. and worm is held low: sictin is regenerated using a multiplexer in IC_{3} to isolate it from the printer cable.

Latch IC 4 is used to hod the phantom output control signals when the printer is selected. Using a transparent latch in place of a D-type helps increase software speed. When sictin and strobs are high, the outputs from the printer port appear directly on the eight-bit phantom outputs. These bits call then be toggled by software as fast as if they were a direct parallel port from the PC bus.

IC C_{5} is a nibble multiplexer to expand four of the five inputs available on the LPT $\Gamma(n)$: interface to eight. The athord xt line is used to select the upper or lower four of eight inputs.

Buffer IC_{0} provides eight outputs directly from the LPT output data. The
three-state outputs are controlled by one bit from the "phantom" control lateh. The data presented on the buffer outputs can be clocked using the satme signal which controls the input nibble multiplexer.

The circuit can be used to emulate typical microprocessor control signals. Peripheral chips designed to interface diectly to microprocessors could be connected in many cases without any additional control logic.

Control software

It is possible to use the eight $1 /()$ lines and drive the printer and phantom 1/() alternately as if they were connected to separate ports. The only guaranteed un-crashable way of doing this is to write your own printer driver. Having said that. I have found that provided the output control port is restored to the same state as it was before the phantom port was accessed. the Bios printer routines are unaffected.

If complex printer drivers such as background spoolers are installed. it may be possible by careful control of the imerrupts to use both printer and phantom device simultaneously.

Driving the output (phantom) control port is straightforward. First save the contents of the printer control lateh. then set up the new phantom output state on the printer data port. A single write to the printer status port (with the

Fig. 3. Eight-bit bidirectional interface with control signals.

appropriate bit pattern) can de-select the printer and set the "phantom output" latch transparent. The printer data port can now be driven directly. When the printer is required, hold the current "phantom" latch data on the printer data port and restore the printer control port to its previous state.

Reading a byte from the phantom input is not quite as simple. The input port has to be selected by writing an appropriate bit pattern to the printer control port, after its current state has been saved. If the srrobe line is set low when the printer is de-selected, ideally the "phantom output" latch would be undisturbed. However, since in the normal state strobe is high, it is possible that should the multiplexer control signal switch the multiplexer before strobe becomes low, a glitch will appear on the clock to the ltch. Setting the latch inputs (via the printer data port) the same as the current latch state ensures that the latched data outputs will not change should this occur. Conversely, if the strobe signal changes before the multiplexer control signal, the strobe to the printer may momentarily be active. causing a random character to be printed. This is less likely, since the strobe signal is delayed slightly by the RC combination in the $\operatorname{LPT}(\mathrm{n})$ interface.

The safest method for both selection and de-selection is therefore to keep strobt high, maintaining a copy of the "phantom" latch data on the printer data port outputs until the multiplexer outputs can be guaranteed to be stable: strobe can then be taken low, freezing the "phantom" latch outputs.

Once selected, the procedure RDBYTE can be used to copy a byte from the phantom input port. If a single bit test is required, the routine can be simplified to read only the group of four bits containing the bit in question. The code extract (above, right) shows selection and de-selection for the circuit in Fig. 3.
The routines will not cause problems with the Bios printer routines if the printer control port is in an idle state when the SLPHTM procedure is called. This will be the case if the printer is driven by the application program via MS-DOS, or the Bios.

Before leaving phantom I/O and selecting the printer, the variable PHDAT must be updated with the current state of the "phantom" output latch.

Using a circuit such as this, I have developed an interface to the video frame store designed by Don Clarke. published in Electronics \& Wireless

Listing 2: Data input routine. Data bytes are returned to register AH as two nibbles.

```
; Read two "nibbles" from LPT1: port and return a byte
; Call: none Ret: byte in AH
RDBYTE PROC NEAR
    MOV DX,037AH ; Control port address
    IN AL,DX ;Read control register state
    MOV CH,AL ;Save register state
    MOV AL,00000111B ; ALTO FD XT=LOW, no interrupts
    OUT DX,AL ;Select lower byte
    DEC DX ;Point to input port
    MOV CL,4 ;C set for shift 4X
; (Insert optional delay here)
    IN AL,DX ;Read lower four bits
    SRL CL,AL ;Shift to lower position in AL
    MOV AH,AL ; and save in AH
    INC DX ;back to control port
    MOV AL,00000101B ;AUTO FD XT = high
    OUT AL,DX ;Select upper four bits
    DEC DX ;DX back to input port
; (Insert optional delay here)
    IN AL,DX ;Read upper four bits
    AND OFOH ;Mask lower bits
    OR AH,AL ;Combine previous read, lower bits
    XOR AH,88H ;Correct bit inversions
    MOV AL,CL ;Get old control register state
    INC DX ;DX points to control register
    OUT AL,DX ;Control register restored
    RET ;Ret: byte in AH
RDBYTE ENDP
```

<end of listing 2>

World in 1987. The software, written in a combination of Forth and machine code, is able to send a 64 K byte image to the frame store in less than 1.5 seconds and read it back in less than 2. (The PC used was a PC/AT-compatible Dell 200). In the slower, input direction, data transfer is still faster than 256 K bit/s.

Figure 4 shows a far simpler interface for an A-to-D converter, using a serial A-to-D chip, an ADC0831 by National Semiconductor, and a single 157 device. The ADC0831 is controlled by two signals, clock and chip select. Data is clocked out of the ADCO831 chip on the negative-going edge while chip select is low. The data out signal is the only
output. The output format is a start bit (low) on the first clock followed by eight data bits, MSB first.

The 157 is used to switch an LPT(n): input line to the printer when sict in is low and the converter when high. Chip select and clock are derived from two bits of the LPT(n): data port. Provided strobe remains high, activity on this port is ignored by the printer. The converter input can be expanded to eight by adding an analogue multiplexer, such as a 4051 , with the selection address derived from further LPT(n): data bits.

Possible applications are endless; and once the control software technique is mastered, the LPT(n): ports are as usable as a dedicated parallel I/O port.

Fig. 4. Simple A-to-D converter.

PROBLEM SOLVER...

This computer card is for building into your products. Put software for the application into PROM and it starts to run as soon as power is applied. Some existing uses:
*Water control
Conveyor weighers
PABX telephone exchange Diesel engine testing

Agricultural machinery Machine-tool control Remote robot handling * Heart rate data collection 1 off $£ 194.95$ including mantial and non-volatile RAM
Triangle Digital Services Ltd 100a Wood Street, London E17 3HX
Telephone 01-520 0442 Telex 262284 (quote M0775) Fax 01-509 3263 CIRCLE NO. 167 ON REPIYCARD

SMC

South Midlands Communications

RADIO

transceevers/Recevers

SMC the leading European specialist in general
radio communications have developed modular systems for rapid delivery, particularly useful for emergencies, disasters, polfitical unrest and aid concerns. This can consist of rugged, simp frequency range of $1.5-30 \mathrm{MHz}$ used with eith one of the SMC basic wide band antemnas, or more efficient, the multi spot frequency antennas complete with transportable masts More powerful and complex transceivers are also available.
Where monitoring or reception is required then either the FRG8800 HF receiver with VHF optlon or the FRG9600 VHF, UHF all mode scanning. receiver are available with proven quality.

ANTENNAS

The TWB2530 and TEB3 are just two samples of the large range HF, VHF and UHF antennas designed for users with very different requirements showing the breadth of out capability. The rugged transportable TWB2530 is a full self-contaned extremely lightweight, yet tough enough to withstand rough handling
and quick assembly in adverse terrain
The TEB series of spot frequency HF beam antennas give excellent forward gain, Pugged
construction for long life, at a cost effective construction for long life, at a cost effective price.
If you require further information on the 300 various support mounts, HF, VHF or UHF antennas, simply call for our new shortform catalogue.
pplied with the most efficient antennas and desirable accessories.

[^2] Tel: (0703) 255111. Telex: 477351 SMCOMM G. Fax: 0703263507

Those Engineers Lid

The UK's leading suppliers of circuit simulation software

Product	Functionality	M/c		Recommendation	Price
ECA 2	Analogue circ it simulatct. Allows effects of different compe-nents to be investugated - more effectively than by bench testing Very high spectication program includes Monte Carlo \& Worst Case tolerancing Fouriar analysis of translents. Non-inear components characterised by breakpoints or polynomial functions	PC XT AT 386 256k RAM Mac	$\begin{aligned} & \text { O/S } \\ & \text { DOS } \\ & 2.0 \\ & \text { or } \\ & \text { later } \end{aligned}$	Believed to be the most powertul PC. based analogue circult simulator available. Regularly upgraded. Interfaces to many schematic drawing packages.	£675 Ispecial terms for education - ash for ECA.2S)
Plot. D	HP \& Mouston plotier drver for ECA. 2 high quality output	$\begin{aligned} & \text { As } \\ & \text { ECA } \end{aligned}$	As ECA	Lets ECA. 2 produce your brochure curves before you have even built the circuit.	550
LCA-1	Logic Circuit Analyser: a new sister program to ECA.2. Produces logic analyser-style output traces (up 1068 stgnal traces) and incorporates delay and nestable macros.	$\begin{aligned} & \text { AS } \\ & \text { ECA } \end{aligned}$	As ECA	This new program from Ihose Engineers will encourage thorough investigation of problem areas in circults. True cost saver	§350
MTEY SPICE	Analogue circuit simidator incorporates ion-linear quiescent handling and small-crcuit $A C$ analysis. Full Ebers-Mell brpolar transistor representation. new transformer model anc graphics display - up :o 26 parameters.	BBC.B Arch. ime. des lext spec.	DFS ADFS Na - tive OS	Established teaching slandard: Mitey Spice on Archumedes 15 startling. 200 + node capactity. almost int stant calculation: imt mediate development of complex circuits.	5119 (special terms for education; - please askus)
SPICE AGE	Analogue circuit simulator in GEM environment. Avarable in modular form coverirg 1-Frequency response 2-DC quescent analysis 3-Transient analysis 4-Founter analy sis	PC XT AT 386 512k RAM mouse des'ble	$\begin{array}{\|l} \text { DOS } \\ 2.0 \\ \text { or } \\ \text { tater } \end{array}$	Licensed GEM sup. plied at no extra cost. Module I Additional modules Full progran? Multi-user Pro version	$\begin{aligned} & £ 70 \\ & £ 70 \\ & £ 245 \\ & \text { Please ash us } \end{aligned}$
MIMA NET	Smali-signal analogue circuit analysis with schematic entry of circuits \& extensive tutput op. tions includng synthes s of transfer function polymorwal. Smith chatt. Bode, etc. Butteworth and Chebychev filter design incorporated.	$\begin{array}{\|l\|} \hline \text { HP } \\ 200 \\ 300 \\ 400 \\ \text { series } \\ \text { w/s } \end{array}$	Basic 2. 3 or 4	Outstanding program for RF designers or control engineers who need to trim transfier functions. Program is quite exceptionat for itsease of use	£850
Progrem A	Systems design aid analysis prog. ram with numenc entry of transter furctions or drect link 10 MIMA NET Multiple irouts. noise refection modelling and graphical outputs are provided.	As MIMA NET	As MIMA NET	Use Program A with MIMA.NET to develod your PLL \&ilters. and so on	5850
CODAS	Single-mput control spstem simb: lator represents ncn-linearitues and transport delays. Transient response. root locus. Nyquist. Nichols and Bode plots avaliable.	$\begin{aligned} & \text { aBC } \\ & \text { Ach1 } \\ & \text { PC } \\ & \text { XTAT } \end{aligned}$	$\begin{array}{\|l} \hline \text { DFS } \\ \text { emul } \\ \text { DOS } \\ 20 \\ \text { or } \\ \text { later } \end{array}$	Ideal for control en. gineers. Very illumnating program for teaching control theory.	$\$ 220$ to $£ 350$ (ash for detaris)
PCBAR	Auto routing printed curcurl board drawing program output to a plotter (driver extras or to Epson FX compatible printer very easy to use	$\begin{aligned} & \text { B8C } \\ & \text { Archı } \end{aligned}$	DFS ADFS emul	ideal for pratotyping. hobbyists. and teaching Excellent quality prints (double size) fron dot matrox printer.	$\begin{array}{ll} £ 85 & \text { (manual) } \\ \text { £185 } & \text { (auto } \\ \text { route) } \end{array}$
VUTRAX S\&A	A multi-sheet schematic drawing system with special leatures tor drawing validation. Niay be used tor entry of circults into ECA. 2 and LCA. 1 .	$\left\|\begin{array}{l\|} \hline P C \\ \text { XT AT } \\ 64014 \\ 8087 / \\ 80287 \end{array}\right\|$	$\begin{array}{\|l} \text { DOS } \\ 2.0 \\ \text { or } \\ \text { later } \end{array}$	A very powerful schematic circur: drawing program with extensive features much favoured by prolessional users.	£499

Those Engheers have been providing chicuit designers with micro-based simulation and $D C b$ layout software since 1983 We now have a broad rane of packages covering tnany applications and running on machines from the BBC Micra to 386 based PCs. The chances atre it you want computer based analysis soffware or a layout systenk, we
have a cost-effective CAD pachage to smit your needs when you telephone Those Engurers. you will be speanng have a cost-effective CAD pachage to smity your needs When you telephone those Engneers. you will be speakng sales. Access payment accepted - pleasp add VAT to above prices

LOW NOISE GASFET PREAMPLIFERS

Aligned to your specified frequency in the range $30-1000 \mathrm{MHz}$. Masthead or local use.
TYPE 9006. NF 0.6 dB . Gain $10-40 \mathrm{~dB}$ variable. In the range $30-250 \mathrm{MHz}$ L78
TYPE 9006FM. As above. Band II $88-108 \mathrm{MHz}$............................. $£ 78$
TYPE 9002. Two stage Gasfet preamplifier. NF 0.7dB. Gain 25dB adjustable. High Q filter. Tuned to your specified channels in bands
IV or V
£102
TYPE 9004. UHF two stage Gasfet preamplifier. NF 0.7dB. Gain
$25 d B$ adjustable. High Q filter. Aligned to your specified frequency in
the range $250-1000 \mathrm{MHz}$
$\Sigma 102$
TYPE 9035. Mains power supply for above amplifiers
£39
TYPE 9010. Masthead weatherproof unit for above amplifiers...... £12

TYPE 9006

TYPE 9002

WIDEBAND AMPLIFIERS

Monolithic microwave integrated circuits in a fully packaged microstrip module format. Full-wave shottky diode protected inputs. Temperature compensated bias circuitry. Voltage regulated local or remote operation.
TYPE 9007. 1-900MHz. NF 2.3dB at 500MHz. Gain 20dB......... $£ 150$ TYPE 9008 Gasfet. $100 \mathrm{MHz}-2 \mathrm{GHz}$. NF 2.5 dB at 1 GHz . Gain 10 dB . Power output $+18 \mathrm{dBm}, 65 \mathrm{~mW}$ £150 TYPE 9009 Gasfet. $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 3.8 dB at 1 GHz . Gain 20 dB .
 TYPE 9253. $40-860 \mathrm{MHz}$. NF 6 dB . Gain 30dB. Voltage output $100 \mathrm{mV}, 100 \mathrm{dBuV},-10 \mathrm{dBm}$

TYPE 9252

PHASE LOCKED LOOP FREQUENCY CONVERTERS
TYPE 9113 Transmitting. Converts your specified input channels in the range $20-1000 \mathrm{MHz}$ to your specified output channels in the range $20-1000 \mathrm{MHz}$. 1 mV input, 10 mW output (+10 dBm). AGC controlled. Gain 60 dB adjustable -30 dB . Will drive transmitting amplifiers directly £356
TYPE 9114 Receiving. Low noise Gasfet front-end. NF 0.7dB. Gain 25 dB variable. £356

TMOS WIDEBAND LINEAR POWER AMPLIFIERS TYPE 9246. 1 watt output $100 \mathrm{KHz}-175 \mathrm{MHz} 13 \mathrm{~dB}$ gain £108

TYPE 9176

TYPE 9247.4 watts output $1-50 \mathrm{MHz} 13 \mathrm{~dB}$ gain
TYPE 9176.4 watts output $1-50 \mathrm{MHz} 26 \mathrm{~dB}$ gain TYPE 9177.4 watts output $20-200 \mathrm{MHz} 26 \mathrm{~dB}$ gain TYPE 9173. 20 watts output $1-50 \mathrm{MHz} 10 \mathrm{~dB}$ gain TYPE 9174.20 watts output $20-200 \mathrm{MHz} 10 \mathrm{~dB}$ gain TYPE 9271.40 watts output $1-50 \mathrm{MHz} 10 \mathrm{~dB}$ gain TYPE 9172. 40 watls output $20-200 \mathrm{MHz} 10 \mathrm{~dB}$ gain TYPE 9235. Mains power supply unit for above amplifiers

PHASE LOCKED SIGNAL SOURCES
Very high stability phase-locked oscillators operating directly on the signal frequency using a low frequency reference crystal. Phase noise is typically equal to or better than synthesized signal generators. Output will drive the Types 9247 and 9051 wideband linear power amplifiers and the Types 9252 and 9105 tuned power amplifiers.
TYPE 8034. Frequency as specified in the range $20-250 \mathrm{MHz}$. Output 10 mW . 120
TYPE 8036. Frequency as specified in the range $250-1000 \mathrm{MHz}$ Ouput 10 mW . £170
TYPE 9182. FM or FSK modulation. $20-1000 \mathrm{MHz}$. Output 10 mW
£248

UHF LINEAR POWER AMPLIFIERS

Tuned to your specified frequency in the range of $250-470 \mathrm{MHz}$. $24 \mathrm{~V} .+$ DC supply
TYPE 9123250 mW input, 5 watts output......................................289
TYPE 9124 2-3 watts input, 25 watts output.
£335

FM TRANSMITTERS $88-108 \mathrm{MHz} .50$ watts RF output
TYPE $9086.24 \mathrm{~V}+$ DC supply
ᄃ945
TYPE 9087. Includes integral mains power supply £1,110
TYPE 9182FM exciter $\pm 75 \mathrm{KHz}$ deviation. Output 10 mW $£ 248$

TYPE 9263

TYPE 9259

TELEVISION LINEAR POWER AMPLIFIERS
Tuned to your specified channels in bands IV or $V .24 \mathrm{~V}+\mathrm{DC}$ supply. TYPE 9261. 100 mV input, 10 mW output................................. $£ 218$
TYPE 9252. 10 mW input, 500 mW output................................ $£ 254$
TYPE 9259. 500mW input, 3 watts output...................................... $£ 290$
TYPE 9262500 mW input, 10 watts output....................................... 530
TYPE 9263. 2-3 watts input, 15 watts output $£ 400$
TYPE 926610 watts input, 50 watts output $£ 1,585$
See below for Television Amplifiers in bands I \& III.

TYPE 9105

TYPE 9158/9235

TMOS RF LINEAR POWER AMPLIFIERS
Tuned to your specified frequency in the range $20-250 \mathrm{MHz}$, or your specified channels in bands I or III. $24 \mathrm{~V}+$ DC supply.
TYPE 9105. 10 mW input, 1 watt output.
£230
TYPE 9106500 mW input, 10 watts output $£ 284$
TYPE 9155.1 watt input, 30 watts output.
TYPE 9158. 5 watts input, 70 watts output.
£448

COMPLETE TELEVISION RETRANSMISSION SYSTEMS AVAILABLE
All prices exclude p\&p and VAT.

RESEARCH COMMUNICATIONS LTD
Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG. Tel: 0303893631 . Fax: 0303893838

ACTIVE

A-to-D and D-to.A converters Sample-and-hold amplifier. The ADI154 16-bit linear sample-and-hold amplifier gives $\pm 0.00076 \%$ maximum gain non-Inearity and an acquisition tume of $35 \mu \mathrm{~s}$ it allows conversion of analogue-Input signal bandwidths up to 32 kHz at 16 -bit accuracy and up to 128 kHz at 14 -bt accuracy Analog Devices, 0932253320

High-speed c.mos A.to-D convertor. The Precision Monolithics ADC. 912 is the industry's first low-noise, precision. 12-bi high-speed, c -mos analogue-to digital converter It has a low-noise comparator that results in operation quieter than one. sixth of lower sideband Conversion tume is $12 \mu \mathrm{~s}$ and access time is 90 ns Bourns Electronics. 0276692392

10 MHz 12 -bit sampling $A \cdot$-to $\cdot D$ converter. The ADS-130 hybrid device features a minimum throughput of 10 MHz and Converts signals up to the Nyquist frequency It incorporates an internal sample-and-hold amplifier with a maximum slew rate of $250 \mathrm{~V} / \mathrm{\mu}$ and acquisition time of 50 ns maximum Aperture uncertanty is 7ps Datel. 0256469085

Display A-to-D converters. The Teledyne Semiconductor TSC822/TSC823 are analogue-to-digital converters incorporating LCD display drivers They are for the low power hand held meter market and lowvoltage battery operation The TSC822 has 3999 counts maximum resolution, while the TSC823 provides 1999 counts maximum Trident Microsystems, 0737765900

Development and evaluation

ADC evaluation. A sampling $A \cdot 10 \cdot D$ converter board from Datel simplities evaluation of the company's $10 \mathrm{bit}, 18 \mathrm{MHz}$ ADS-311 converter The ADC-B311E is a Eurocard-size A-to-D converter board which incorporates the ADS-311 sampling A-to-D converter it features a guaranteed sampl ng rate of 18 MHz and a signal-to-noise ratio of 53 dB at 5 MHz Datel UK, 0256469085

DSP. Ultra Digital Systems has launched a DSP target and prototyping board. based on the TMS320E15 The Eurocard device is designed to run the whole range of DSP programs, and also provides a prototyping area The processor is the eprom version of board has fast A-to-D and D-to-A converters analogue and digital I/O lines and provision for input and output filters Ultra Digital for input and output filter
Systems, 0517089465.

Discrete active devices

Microwave fets. A family of high-powe microwave GaAs tets by NEC has been
developed for satellite communications systems, car telephone and similar applications The NE 345 L family delivers up to 20 W of output power at 23 GHz Two devices. NE345L-10B and NE345L-20B, are rated for power output of $40 \mathrm{dBM}(10 \mathrm{~W})$ and $43 \mathrm{dBm}(20 \mathrm{~W})$ respectively NEC Electronics (UK). 090869133

High-mu triode. The Siemens RS 3061 high-mu triode is rated at 100 kW for continuous working and 200 kW for pulse operation Output power is twice that of the
proven RS 3021/27/41 series of valves. which have ratings ranging fror 10 kW to 1000 kW for pulse operation The amplification factor is 100 Siemens, 0932 752323

Interfaces

PC development tools. The PROTO-1 is a PC/AT bus prototyping board, which includes all the interlace logic necessary to implement port-mapped cards A selectable base address is provided. together with buffered data and address. with access to certan control lines EXT 1 allows cards to be connected to the PC while remaining
accessible Blue Chip Technolozy. 0244 520222
Frame grabber. The IMAGEWISE/PC real time video digitizer and display board can digitize any NTSC PAL. or Secam video rrame to a resolution of 256×255 with 256 grey levels The board provides composite video output and digitized pictures can also digitized picture grabbed or sotware generated can be applied as a raption or generated can be applied as a ription \& Technology 0285651822

Linear integrated circuits

Operational amplifier. The OP-17 lowperformance of chopper-stabilized perrormance of chopper-stabilized
amplifters without their problems of nois limited common-mode input voltage range. and the need tor external storage capacitors Offset voltage is $10 \mu \mathrm{~V}$ maximumat foom temperature and $20 \mu \mathrm{~V}$ maximum over th full military temperature range Ofiset voltage drift is $01 \mu \mathrm{~V} / \mathrm{C}$ maximum. RR Electronics 0234270272

Memory chips

8 Mbit static ram module. The MS81000RKX 8-megabit module. based on eight $128 \mathrm{k} \times 8$ surface-mount packages offers a choice of access times from 70 to and standby power consumption is typically 66 mW for the standard module or $80 \mu \mathrm{~W}$ for the low.power device Hybrid 1991258 0690

Opto electronic devices

Phototransistor. The TDET800 range of phototransistor detectors from three five sensitivities from 05 to 15 mA minımum ligh Current for illumination levels if $5 \mathrm{~mW} / \mathrm{cm}$ ' $\pm 20 \mathrm{deg}$ Abacus Electronics 1663536222

Optical distribution unit. The L 3250 multiion unit inco-porates a power supply unit and up to ten communication cards for data and optical connection Led status indicators display the type of interface in operation and the status interfaces are supported Belling Lee Intec. 013670080

Opto isolated RS232. Maximum MAX250/ 251 form a RS-232 dual transmitter/receive pair When combined with four 4 N 26 optocouplers, four capacitors a diode and a small pot core transtormer it develops a
complete 192 kbaud dual isolated RS- 232 complete 192 kbaud dual isolated
transceiver When higher speed transceiver When higher speed
optocouplers are used such as the 6N136, a 90 kb aud rate can be achieved Kudos Thame. 0734351010

Oscillators and crystals

Surface-mount crystal. With a maximum height of 3 mm and a width of 8 mm the MC1000X microprocessor crystal is available in a frequency pange of 8 to 60 tolerance of $\pm 50 \mathrm{ppm}$ at 25 C and a temperature olerance of ± 50 ppm over -10 to +60 C Typical Q Factor is 100,000 Total Frequency Control 0903745513

Passive Equipment

Connectors and cabling

Adapter sockets. Sockets which accept devices on a 0 in (1016 mm) pitch can be used on buards with dip hole, on a 0 In $(762 \mathrm{~mm})$ pitch using the Aries adapter socket The sockets are avaliable in sises from 10 to 22 pins Aries Electronics (Europe), ©908 260007

Optical. Fibre underwater cable. This cable has seen designed to meet the special requrrements for operation in tidal flafs and Coastal waters Hayden Labcratories, 0753 888447

Mass termination Belden cable. Belden unshielded MASS-TER cable ofters bo:h round and flat cable under one jacket it combines the ease of termination of War Iwist flat cable with the flexibility and ar-flow enhancements of round cable MASS-IER PVC jacketted in a round construction of pre-insulated twisted pairs, with 2 in flat terminating sections spaced at 20 m intervals 'Nadsworth Electronics, 019.41

Displays

LCD graphics modules. The Epson EG compact atternatives to LCDs and CRTs the portrayal of graphics. The EG series uses the portrayal of graphics. The EG series uses
ether Super TN technology or Epson's black either Super TN technology or Epson shite NTN technology The complete on-white NTN technology The compinte
range incorporates the Epson E1 330 LCD controller Selected models use chip on flex' technology, where each LCD driwer is mounted directly onto a flexible PCB Hawk Components Distribution, 019797797

Colour monitor. The 14 in autotracking colour monitor (FA3415ATKE)from Mitsubishi automaticallv scans all hor zonta frequencies between 15.7 and 355 kHz and all vertical frequencies between 50 arid 87 Hz and is compatible with IBM PC/AT, XT and ECA PGC MCGA HGA Electronie: 0234270272

LCD flow status indicator. A solid-s ate LCD flow status indicator by Racal Microelectronic Systems, the FSI. is a 15 V . dye-phase-change LCD device, housed in a In square plastic casing the face is is red or black LCD showing a horizontal or vertica strip. whese orrentation is switchable according to whether or not current 1 ., flowing Racal
0734782158

LCD controller/driver. The Sanyo L¿7985 is a single-chip LCD controllpr/driver
incorporating a character generator and user-definable character ram It is pin compatitle with the HD447:30 and sLpports multiple-line and multiple-column displays. multiple-ine and multiple-column dicalays. driver Techmost Electronics. 0279652444

Filters

FIR filters. L64260 and L64261
programmable high-speed finite impulse response filter devices are capable o processing at data rates up to $40 \mathrm{MH} \cdot$ ' with full 16 -bit data and coetficients Each device consists inf four 16 bit multiplier
accumulator elements, eac' having tour data and four coefficient registers Operand for each element can be register or off-chip selected. Separate input buses supp y data and coefficients for each of the four elementc LSI Logic Europe. $03444 \hat{2} 6544$

Instrumentation

Pressure meter. The model $9431 / 2$ - - liglt pressure meter is supplied either cornplete the basic meter for use with a user-supplied the basic meter for use with a user-Supplied
pressure transducer Analogue input pressure transducer Analogue input
characteristics include common-made rejection of 80 dB maximum: input veltage o -10 to -15 V . and bias currerit of 10 nA Amplicon Liveline. 0273570220
Dual channel data analyser. The Microlog 6220 by Palomar is the first portable data
analyser to teature dual-channel operation The instrument is designed for recording and nalysing data from transducers used contrast LCD panel and the dual-channel facility allows the operator to observe $x-y$ orbit measurements Endevco UK. 0763 261311

Digital oscilloscope. The VP. 5742A from Panasonic offers high-speed sampling at 100 MHz and 8.bit resolution It can be used as a dual-trace 100 MHz oschloscope but, as a DSO. it operates from DC to 35 MHz and offers two modes repetitive - where high. speed signals are reconstituted from memory for high-accuracy presentation, and roll for measuring low-speed signals in International. 093761961

Frequency counter. The GRC-8130G is microprocessor controlled frequency counter which offers a frequency range from DC to 13 GHz Two channels are provided to cover the range Resolution remains hugh at both high and low frequencies A sell diagnostic routine maintains reliability Fligh Electronics. 0703227721

Mains monitor. The ONEGraph mans monitor prints out normal-mode and common-mode noise voltage graphs It also prints out complete AC voltage disturbance information, including time of day, duration and a graph showing the degree of voltage deviation from the nominal There is a choic of 8 .hour or 6 -day time scales with noise ranges 0 to 6000 V . ONEAC 023534721

Oscilloscopes. Two low-cost dual-channel oscilloscopes are intended for education anc servicing The PM 3208 is a 20 MHz model whilst the PM3209 has a bandwidth of 40 MHz and offers delayed tımebase facility A variable hold-off is provided, as is an $x \cdot y$ mode For high-accuracy measurements. the output of channel A can be connected to a requency counter or similar equipment Philips Scientitic, 0223358866

Stereo test set The Dorrough model 1200 stereo signal test set includes a parr of oudness monitors, each of which indicates both peak and average levels on a singl display Measurement range is $96 \mathrm{~dB}(-76$ to +201 The meters indicate level, balance crosstalk and signal-to-noise ratio over the entire range of a system, from noise floor to clipping Plasmec Systems. 0252721236

Energy analyser. EIcomponent's MICROVIF MkI 2 is designed to analyse single and 3 -phase low voltage (500 V) systems and ncludes a 9.page enhanced LCD display and an integral printer to provide hard copy readout of voltage. current power tactor, average power. kW. kWh. kVArh, kVAr and operating period RS Components, 0536 201234

Scalar network analyser. The ZAM 52 pertorms direct measurements on VSWR. range of 96 dB and 25 GHz and 71 dB at 18 GHz It has a resolution of 0001 dB and a measurement uncertainty of 02 dB Rohde \& Schwarz UK 025281137

Literature

Optoelectronics and power semiconductors. The Optek catalogue provides data on a range of power-switching ransistors, fast and extra•fast•recovery ectifiers and LVA zener diodes. most o which are packaged for surface-mount applications Other devices are optically coupled T05 isolators and tour-channellow input current optocouplers MCP Electronics. 0734772345

Relay manual. The relay manual from Schrack contains almost 90 pages of information about their complete range of reldys. sockets, timers and I/O modules In addition to the technical and physical data given, the manual contains application notes elay definitions, a glossary and a guide

Production equipment
Room ionization. A retro-fittable room onization system, the NiStat, reduces the problem of electrostatic discharge in sensitive work areas. By flooding the area with sequentially balanced quantities of ions. the system provides a balanced ionized atmosphere. Dage (GB). 0296393200

Soldering iron thermometer. This indicates soldering bit temperatures on a clear 125 mm liquid-crystal display. The thermometer indicates temperatures up to $500^{\circ} \mathrm{C}$ with a resolution and accuracy of $1^{\circ} \mathrm{C}$ ETI. 0903202151

Flux controller. A programmable flux controller for wave-soldering machines, the series 4500 from Electronics Controls Design, features a low-solids sensor designed to cope with close tolerances between the specific gravity of flux and thunners, and is accurate to ± 0.001. Low detection limit is 0.75 and high detection limit is greater than 1.00 Hollis Europe. 0634716733

Cable cutter. Bench-mounted cable cutter the model HCl , has two hardened too steel guillotine-style blades which shear most wires and cables up to 25.5 mm in diameter, dependent on construction, and solid copper conductors up to 4AWG may be easily cut. A protective guard slide is provided Rush Wire Strippers, 026451347

Dip-soldering unit Soldermatic has introduced a unit for use in soldering ceramic lead frames and other electronic, electrical or small mechanical components. The unit consists of a rectangular steel bench with. inset, a stanless-steel fluxer and a rectangular solder pot, with a motor and impeller system, which produces a flowing solder wave. Soldermatic Equipment, ol 6890574

Power supplies

DC.DC converters. With a minimum efficiency of 75\%, the TM series of converters from Computer Products Power Conversion maintains full output power to an ambient temperature of $70^{\circ} \mathrm{C}$ and units operate from a 24 VDC or 48 VDC line with $2 \cdot 1$ input voltage range. Load stabilization is 1% and line regulation 05% Computer Products Power Conversion. 0234273838.

Bench power supplies. Units from Flight Electronics offer fully floating outputs and all models have push-button mode selection The units have meters, led or LCD displays. Outputs are 0.18 V at up to $30 \mathrm{~A}, 0.30 \mathrm{~V}$ at up to 10 A and 0.60 V at up to 3 A :multiple units are avalable. Flight Electronics, 0703 22721

Switching regulators. The $3 T$ series of DC-DC switching regulators provides up to 360 watts of regulated DC power for less than $\{50$. Operating from a $D C$ input of between 10 and 60 V . these modules have an adjustable output from 45 to 30 V at up to 20A Negative outputs of up to 5 A are also catered for Line and load regulation is less than 1%. ripple and noise typically 150 mV pk-pk XP. 0734572611

40W SMPS. The ZPS.4040V switched mode power supply is a 40 W iriple.output unit suitable for small systems It has approvals to international safety and emission standards of VDE 0806. VDE 0871/B and IEC 380 The unit provides outputs of 5 OV 25 A as well as +120 V .2 .02 A and -12.0 V . 0.10A. Zenith Electronics (Ireland). 0306 76730

Production test equipment
Wafer measurement system. The ADE wafer measurement system offers an increase in resolution down to 10 nm and a repeatability of 15 nm , enabling the model 8300 Microscan to be used to check wafers ranging from 3 in to 150 mm for up to 21 sort parameters. It directly supports the proposed SEMI flatness decision tree specifications. Intertrade Scientific Ltd. 0908676633.

Programmers

Emulation and programming for 8752. The 8052 family MICE25/8052 in-circuit emulator from ARS Microsystems offers
programming and verification on microcontrollers including the Intel 87C252 87C51FA $87 \mathrm{C} 52.8751,8744$ and AMD 8753 H and 9761 H at a speed of 16 MHz in emulation. Also supported are device selection checking, memory read/search programmıng/verification tests and memory checksum ARS, 0276685005.

Logic programmer for PLDs. The mode 860 will program, without an adaptor, the majority of the standard PLDs from the major manufacturers, in 20, 24, 28 and 40-pın dip packages. Socket modules are available to program 20,28,32,44, and 68-pın PLCC devices Microtel Systems. 0784439881

Switches and relays

Solid-state relays. Dual solid-state relays are avallable in both 25A and 40A versions and use inverse-parallel SCR output design
with integral dv/dt snubber Eircuitry to provide protection aganst false triggering 20 A quad SSRs incorporate four independent $A C$ triac relaysin a single panel-mount package Crydom UK. 0883 717250.

Miniature lockswitch. Atmo-position, keyoperated switch projecting less than 30 mm behind an equpment panel, the series SRL lockswitch is available in two styles - single pole with 90° indexing and double pole with 60° indexing. The contact rating of the 5 witc module is 5 A at 115 V AC or 3 A at 50 V DC Lorlin Electronics, 0903725121

Transducers and sensors

Strain gauge conditioner. Analog Devices has introduced the 5 B38 strain gauge conditioner with all the functions ieeded to excite a 3001! to 10,000 11 gauge and produced a filtered, -5 to +5 V output at

10kHz bandwidth. Typical input and output offsets are $1 \mu \mathrm{~V}$ and $40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ respectively with gan drift of $\pm 25 \mathrm{ppm} / \mathrm{C}$ of reading Analog Devices, 0732253320

Pressure sensor. The model 84 stanless steel pressure sensor developed by IC Sensors is offered in gauge and sealed-gauge ranges from 0.5 and 0.300 ps and absolute ranges from 0.5 to 0.50 psi , with an accuracy of $\pm 05 \%$. Eurosensor, 01-405 6060.

Vision systems

Integrated vision system. In the Hebe integrated vision system IVS-20, all the vision capture. imaging analysis and data processing functions are carried out by the single unit. no PC or host computer or separate power supplies are needed. It has four video inputs and two framestores which are software selectable Heber Data Systems, 0453886647

COMPUTER

Computer board-level products
Memory upgrade for PS/2. Designed for the complete range of IBM PS/2 systems and compatibles, memory upgrade boards and expansion cards from Datrontech contain l or 2Mbyte of memory, comprising 80 or 100 ns ram devices. The products are compat ible with IBM PS/2 model 30/286. 502, 60, 70 and 80. Datrontech, 0252 723430

Mass storage devices

Solid-state mass storage. The NEC μ PD4 2601 Silicon File Memory, is a true "semiconductor disk" replacement for relatively slow and vulnerable magnetıc disk drives This 1 Mb it c-mos device combines the low power consumption of a static ram with the large capacity and packing density of a dynamic ram In normal mode (RFSH high), the μ PD4260l is driven in the same way as a standard d-ram. The row and column access times are specified as 600 and 100 ns , respectively 2001 Electronic Components, 0483742001

Optical drives. The Pıoneer DD-S5001 worm (write once, read multiple) optical disk drive provides 650 Mbyte per removable cartridge of long.term storage for computer cartidge ong. The drive operates under DOS 3.3 and higher versions. PC/LAN, Novell NetWare, 10 Net and 3Com3 + network NetWare, 1 Net and 3Com3 + network
operatıng systems are supported. The DD.

S5001 is equipped with a SCSI interface as standard, optionally with a IBM-specializeJ SCSI HTEC. 0703581555

Software

Design and engineering. PADS-Designer/ Engineer suites of software, cescribed in a brochure from Microtel Systems, offers a complete solution to the majority of cad engineering needs or, in the case of PADS. Designer, a low-cost, high-performance PCB layout system. the full PADS environment includes PADS-Engineer. PADS-Designer PADS-Route, PADS-CAE. PALS.Superouter, PADS.Plot, PADS-Drill, PADS-Conv and PADS-DXF.Microtel Systems. 0784439881

Transmission line calculator. The TLC allows digital designers to diszlay the effects of network loading and printing. circuit board routeing It calculates and displays the effects of transmission.line phienomena on digital signals Designers can find the effects of incident and reflected signals, talse clocks and degraded signals. ARS Microsystems, 0276685005

Mathcad. MathCAD version 2.5, for IBM PCs and compatibles, features three-dimensional plots, output to PostScript printers, including the Apple LaserWriter. and importing of HPGL files from other graphics and cad packages. It alse incorporates block cut-and. paste of multiple regions, improved accuracy of numeric so.utions and matinx sort functions. Adept Scientific, 0462480055

OS/2 for data acquisition. Wokingham UK OS/2 software support is avalable for the DT2901 and DT2905 simultaneous analogue input and analogue output data-acquisition boards for IBM PS/ 2 computers Labtech Notebook (for scientific data acquisition) and LT/Control (for industrial process control) deliver control and analysis functions, a convenient menu-driven interface, and complete control of all DT2901 and DT2905 runctions Data Translation, 0734793838

PCB design. PADS-Bronze, PADS-Silver and PADS Gold ranges of PC.based CAE/CAD systems incorporate version 3.12 of the PADS design software. PADS. Bronze is an entry-level package that enables the user to design PCBs with up to 30 layers and 400 4-pin ICs. Silver offers all Bronze features and front-end logic capture Gold provides a complete package for PCB design. including 100% routeing. whilst the user is performing other design tasks Export Software, 0242 222307

Cad tools. Silicon Builder is an asic design optimization system that works at the chip level to automatically produce physical block layouts. It contans datapath and block compilers. Used with LSI Logic s slicon integrator toolset. Design Builder implements asic designs. offering chip partitioning and die size estimation; synthesis of finite state and register transier machines; and automatic memory cell compilation LSI Logic, 0344426544.

Leading instruments and meters, manufactured, serviced, and represented by Levell-Eurocoin
Black象Star ||Thurlby HAMEI:
QUANTITY DISCOUNTS avallable
 levellelectronics fortune House Moxon St Barnet Hertsens 5SD Fax 014497217 Telex 256016

CIRCIE NO. 106 ON REPI Y CARD

WANTED

J \& M Computers specialize in all redundant Electronic Equipment, working or not, i.e.

Computer equipment and peripherals
Components (resistors to I.C's)
Test equipment
Modems
Printer circuit cards
Redundant stocks
End of job lots
Cable
Factory clearances
If you have redundant equipment now or in the future, would you contact us. We woud be pleased to price and collect it at our own expense.

J. \& M. Computers

> Eight Acres, Maldon Road, Wickham Bishops, Witham, Essex.
> Telephone: Maldon (0621) 892701 Fax: (0621) 891414

CIRCLE NO. 134 ON REPLY CARD

Constant-EMF cassette motor controller

Recently the capstan motor of my hi-fi cassette player started to produce unacceptable wow and flutter. Since the player is no longer made, and parts are not available, I first dosed the brushes with cleaning fluid in an unsuccessful attempt to cure the problem. Replacing the unit's rather crude motor regulator with the one shown however did restore correct operation.

Constant EMF is provided by the circuit. Since back EMF of a motor is directly related to shaft speed, constant EMF implies constant rotation speed.

Resistor R must have the same value as the DC resistance of the motor, which must be measured with the motor stationary. My unit measured $22 \Omega 2$ and when running at correct speed, the motor takes about 50 mA , dropping 1.1V across its DC resistance and producing 4.4 V as back EMF. Terminal voltage is 5.5 V .

Voltage dropped across the $22 \Omega 2$ resistor is the same as that across the motor's coil. Owing to the virtual earth at the

op-amp's input, the same voltage is dropped across R_{A}. Current through the resistor flows through R_{B} which has the same value as R_{A}, so the voltage at the bottom of R_{13} must be the same as the voltage applied to the motor. Since this voltage can be controlled by the

10 -turn potentiometer, there is direct control of motor EMF regardless, within reason, of torque required to pull the tape.
D.J. Greaves

St. John's College
Cambridge

Unipolar-to-bipolar pulse converter

Usually, pulse generators produce unipolar pulses of either positive or negative polarity but it is sometimes useful to have alternate positive and negativegoing pulses. Such pulses are needed. for example, when driving a liquidcrystal display.
This circuit converts a unipolar pulse train into a symmetrical bipolar train. Input pulses determine the pulse width and repetition frequency. They trigger an edge-triggered bistable I(whose two outputs feed separate AND gates. The other AND gate inputs are fed by the input pulse train. As a result, alternate unipolar pulses are produced for feeding the op-amp.
K.N. Rauniar

Umist
Manchester

Tuneable loudness control

In Liao"s circuit in the June issue there were two small errors in the equations. Corrected, the equations read.
$\mathrm{A}=\left(\mathrm{R}_{1} / 2\right) \mathrm{R}_{2}-1 / 4 \pi^{2} \mathrm{f}^{2} \mathrm{C}_{1} \mathrm{C}_{2}$ $\mathrm{V}_{\mathrm{t}} / \mathrm{V}_{1}=20 \log \left[\mathrm{nR} \mathrm{R}_{1}\left(\mathrm{~A}^{2}+\mathrm{B}^{2}\right)^{12} /\left(\mathrm{C}^{2}+\mathrm{D}^{2}\right)^{1^{2}}\right]$

Touch-sensitive synthesizer

In a touch sensitive synthesizer, amplitude of the envelope is proportional to how hard the key is pressed. In this circuit this quantity can be represented as a digital quantity or an analogue one applied to point A.

A c-mos-compatible input pulse is required to trigger the unit and its length determines the sustain time. Four potentiometers set attack, decay, sustain, and release levels; using component values shown, maximum output is +5 V
Edward Barrow
Powys
Wales

Triangle-to-sine
 wave converter

Having no reactive components, this simple and inexpensive triangle-tosinewave converter is frequencyindependent. With source and gate tied together, low-power mosfets have hoth a smooth characteristic and the proper nonlinearity for the feedback path of the op-anp.

Triangular waveforms are composed of odd multiples of fundamental sinusoidat frequencies. A low-pass filter removes the higher-order components to yield sinusoidal waveform at the fundamental frequency, but if constant output amplitude and phase relationships over a wide frequency range are required, the filter must be returned for optimum response each time the input frequency is changed.

An unconventional solution to this problem uses an op-amp with mosfets in its feedback path. Feedback is usually via a diode, but the op-amp accentuates the diode's breakpoints and produces an undesirable linear output.

While several types of fets are acceptable, a P-channel BSS 110 works well in this circuit. Two parallel connected fets with opposite polarity in the feedback path of $I C_{1}$ promote shaping on both the positive and negative portions of the input waveform.
Note that only one fet at a time is forward biased; the reverse-biased fet behaves like a large resistance in paraIlel with it.
Input current $V_{I N} / R_{\text {I }}$ is adjusted to allow a level of current that pushes the fets just into their nonlinear knee.
Because V_{0} equals $V_{\text {Ds }}$, output response is determined by the active fet's VA characteristic. To achieve a sinusoidal output, the amplitude of the input voltage waveform must be adjusted to provide the proper amount of drive to the wave-shaper circuit.
Accuracy is determined by the adjustment of R_{1} and the symmetry of the imput waveform about 0 V . Average error of output signal, compared with

Sampling audio mixer

This circuit uses a different approach to mixing audio signals. Instead of taking the usual continuous sum of all the signals. it samples each signal at approximately 40 kHz in a sequential order. The bontus of this is a better signal-tonoise ratio since only one of the mixing resistors is switched on at any one time.

Because it is not a continuous sum, the volume of each input can be set with greater independence of the other two imputs. Each counter output runs at about 40 kHz .

When mixed, the signats feed a second-order low-pass filter with a 3 dB point of approximtely 10 kHz to titter out the sampling frequency. The system can be expanded for up to ten inputs by moving the reset input to the next unused output of the decade counter. The clock shoukd run at $\mathrm{N} \times 40 \mathrm{kHz}$ where N is the number of channels to be mixed.

Darren Yates
 French's Forest
 New South Wales

Symmetrical power amplifier

I have built and tested several versions of a symmetrical power amplifier; one is included above. bridge rectifier. $\left(I_{4} \simeq 17 \mathrm{~mA}\right.$ at 6 V Cross-over voltage is controlled by supply) the emitter-base turn on of the feedback sensors. $\mathrm{Tr}_{3.4}$. The buffer provides adequate linearity for very fow supply voltages of 2.5 V and drives a 3Ω speaker or filament lamp. For higher supply voltages the quiescent current in the output pair rises rapidly so cross-over
voltage is reduced further by higi curWithout the diode bridge connected the "buffer" gives slightly greater than unity voltage gain because of the $100 \mathrm{k} \Omega$ lever to the feedback sensor node
P.J. Ratcliffe

Stevenage
Hertfordshire

Precise minute counter

When timing a precise number of mi- able, one which goes high for the dura nutes. the required count is set up on tion of the count (output A) and one complemented-output BCB thumb- which goes high at the end of the count wheel switches. Two outputs are avail- (output B).

Push switches start and reset the count. SA Young Bradford

Binary switch encoder

In my application, data from this binary push-button encoder was latched by other circuits but you could add an independent latch controlled either by the falling edge at pin 3 of the 4011 or the rising edge at pin 1 .
F. Miners

University of Exeter

THE ORIGINAL SURPLUS WONDERLAND!

THIS MONTH'S SPECIAL!

Very Hgh resolution, fully cased 14° green or amber screen atest tochnolocy at the vary lowost prcal Fully compatble and plug compatible with all BM PCs and clones fitted with a High es Hercules or equivalent cardl Enables supert graphics and resolution, al at a give away price. Has many extra leatures inctuding aux +5 \& 12vDC outputs to powar at least 2 disk dives. your PC power supply is getting hotl Supplied BRAND NEW

Amber 579 Green me-...... 69 (E)

COMPUTER SYSTEMS

TATUNG PC2000. Big brother of the famous Ensteln. The TPC2000 Protessional 3 plece system comprises: Ouallty high resoluton Grean 12 monA. CPU and all conrol ctayboard and pilnth untt containing Z80A CPU and all control circults. PLUS 2 integral TEAC 5.2580 track double stded disk dilves. Generous Seral and parallel outputs, full expansion port, 64 K ram and eand Barc. Brand naw and complo 1 and Basic. Brand naw and covered by our famous 90 day guarantee and backup. Norma price of this undis over $£ 1400$ Our price ... only 8299 (E)
PC-AT 296 CLONE Lowest ever priced 8 mhz PC-AT clone complete with a 20 mlz hard drive, a $5.25^{\circ} 360 \mathrm{k}$ foppy, 640 K of RAM plus Hercules card compatability. The keyboard Is NCR with 85 koys in an attractive beige, grey and cream firish to match the computer. The moritor is very high resolution 14 non-glare, with your cholce of amber or green screen. A very

Our price

SPECIAL PURCHASE
 V22 1200 baud modems

We got a tremendous buy on further siocks of this popula moster Sysiems $2 / 12$ microproces sor controlled V22 full duplex 1200 baud modem - we can now bring them to you at hat' lest V22 high speed data comm, which at 120 cps , can save you phone bill and connect time by a staggening 75% I Ultra silm 45 mm high . Full featured with LED status Indicators and remole error dagnosilcs. Sync or Async use; speech or data switching; bultt In 240 v mains supply and 2 wre connection to BT. Urits are in used but good condition. Fully fested prior despatch, with data and a full 90 day guarantee. What more can you ask for and at this pricell

ONLY $\mathbf{8 6 9}$ (D)
Write to us today and get your name on our malling Ilst for our FREE elght weekdy bargedn flyer The Thiplay Nrws with thousands of unadvertseed special offers

MONITORS

COLOUR MONTTORS
onitors. Features inctude Pl tube, housed in a beautlul teak style case and guaranfeed 80 column resolution, leatures which are only nor nially seen on colour monltors cosyng 3 times our pricel n is absolutery ready to connect to a host of compuler or videl outputs. Marnfacturers fully tested surplus, sold in ittte or hardly used conditlon with 90 day full RTB guaramtee. Decce 80 \& speaker. tdeal for use with video reconder or our Telebox ST or any other audlo visual use. Only $\mathbf{E 9 9 . 0 0}$ (E) HHDEFNTION COLOUR MONTTORS
Brand new Centronic 14* monitor for IBM PC and compatbles at a lower than ever pricel Completely CGA equivalent. Hi-res Itsubushi 0.42 dot pitch giving 669×507 pixels. Big 28 Mhz 90 day guarantee. Only E149 (E)

$$
20^{\prime \prime}, 22^{\prime \prime} \text { and } 26^{\prime \prime} \text { AV SPECIALS }
$$

Superbly made UK manufacture. PL all solld state colour moritors, complete with composite vioo \& sound inputs. Attrac Ive teak style case. Perfect for Schoors, Shops, Disco, Clubs. In EXCELLENT Iltile used condition with full 90 day guarantee 20"...£155 22"....£170 26"...£185 (F)

MONOCHROME MONTTORS

Wang green screen 12° chassis monitor with composite video nput. Adustable for tht. Requires 12 vdc. Brand now and boxed in perfect conditon. 5° black \& white compact chassis measuring only $11.6 \mathrm{H} \times 12 \mathrm{~W} \times 22 \mathrm{D}$. teal tor CCTV or compuler ing only $11.6 \mathrm{H} \times 12 \mathrm{~W} \times 22 \mathrm{D}$. Heal for CCTV or computer syncs. Needs 12 vdc at only 0.8 a . Some units may have minor syreen Heerlishes. Fully tested with 30 day guaramtee and full screen blemishes.
data.
E.00(C) data. Fully cesed as above In attractive moulded desk standing sWVA. Dim $12 \times 14.5 \times 26 \mathrm{~cm}$.
JVC 751 ultra
E39.00 (C $\times 14 \times 18 \mathrm{~cm}$. Simple DIY data Included to convert to composite video input .Full data BRAND NEW 20° Bleck Full data. BRAND NEW Aztek, Cotron \& Natlonal (B) solld state, fully cased moritors ideal for all types of AV or CCTV applications. Standard composita video inputs with Integra audlo armp and speaker. Sold in good used condition - fully lested wth 90 day cuarantee

FLOPPY DISK DRIVES BARGAINS GALORE!

NEW 51/4 Inch from $£ 9.95$!

Massive purchases of standard $5 \mathrm{~V} \mathrm{a}^{*}$ drives enables us to present prime product at Industry beating low pricesi All untts (unless stated) are removed from otten brand new equipment and are tally tested, alligned and shipped to you with a 90 day guarantee and operate from $+5 \&+12 \mathrm{vdc}$, are of standard size and accept the standard 34 way connector.
SHUGART SA4OS. BRAND NEW
TANDON TMH00-2A IBM compalble DS
TANDON TM101-4 80 Track DS
CANON, TEC etc. DS hall height. State 40 or 807
oo be by Canor. Brand or a and dive. Slandard size belleved rack SS Canon. Brand new and packaged - milt condtionl 40 Or...Oniy from $+5 \&+12$ voc with standard power connec£19.95 or 2 for E34.50(B) CHOOSE YOUR 8 INCHI Shugart 8008807 SS refurbished \& tested
Shugert 851 double sided relutitished \& tested witublath Me8804-63 double stided switchable hard or soft sectors- BRAND NEW

SPECIAL OFFERS!
Duad $8^{\prime \prime}$ difves with 2 megab whth bullt In power supplyl Only E499.00 (F) deal as exterior dives
End of line purchase scoopl Brand new NEC D2243 8* 85 megabyte of hard disk storagel Full CPU control and Industry standard SMD Interface. Ulira HI spoed transfer and accass time leaves the good old ST506 Interface standing. In mint condition

MAINS SUPPRESSORS \& FILTERS

The "Filtan from Crotan ls a Brish made tigh current
spike suppressor and RF iller in one, capable of handing up to ampsi The attractive case has an Integral 13 amp sockel plug (to BS 1363A standard) to go to the mains socket. There is aninternal fuse pius one In the plug. Two LED indicators, one for power on and the otherilgits if the Internal fuse falls. Jims; 6^{*} $\times 3^{\prime} \times 2^{\prime \prime}$. Brand new. Normal distilbutor's price is $£ 65.001$ Our price onlyE15.95 eech or 2 for E29.95 (B) Belling-Lee type $\mathbf{L} 127$ malns RFI filters rated at 250 volts 3 amps maximum. Comes complete with a bullt in mains cable (Engllsh coding), and a three pin miniature non-reversible sockot and a mating plug, to go to the equlpment. Ideal for those c3. 95 eech or 3 for $£ 10$ (A)

COOLING FANS

3 Inch $\mathbf{A C}$ ecify 110 or $\mathbf{2 4 0}$ volta for AC tans.
3 inch AC. $1122^{\prime \prime}$ thick
$31 / 2$ Inch AC ETRI slimilne.Only $1^{\prime \prime}$ thick \& 8.50 (B)
AC ElRI slimulno.On'y thick. 1101240 v 1 Vg thick. $9.95(\mathrm{~B}$
AC 110240 V TVE thick $\quad \mathbf{E 1 0 . 9 5 (\mathrm { B }}$
4 Inch
10 Inch
62 mm
02 mm
4 Inch
4 Inch
Round. $31 / 2$ thlck. Rotron 110 V
DC 1* thick. No. 812 for 6/12v. 814 24v
DC 12v. 19 mm thick.
ع 9.95 (B)
$\mathrm{E} 9.95(\mathrm{~B})$
$\mathrm{E} 10.95(\mathrm{~B})$
$E 75.95(\mathrm{~A})$
$£ 10.95(\mathrm{~A})$
£12.50 B
E14.50(B)

RECHARGEABLE BATTERIES

LEAD ACID

Mainternance free meeled bong lite. Type A300.
12 volt 12 volts 3 amphours
E13.95(A)
6 volt 6 volts3 amp/hours
$\begin{array}{ll}6.0-8 \text { vol te Centre lapped } 1.8 \mathrm{amp} \text { hours } & \text { E } 5.95(\mathrm{~A} \\ 12 \text { volt } & 12 \text { volis } 24 \text { amp hours. A200. RFE. } \\ & \end{array}$
SPECAAL OFFERI
100 emp/hours it 6 voll! Brand new Chloride Powersale
3VB11. Leakproot with additional snap-on securty lid. Perfect for uninternuptable power supplles, portable power sour
caravans etc. Normally costs $\mathbb{E} 801$ NICKEL CADMIUM
Cuallity 12 v 4 ah cell pack. Originally made for the Tectiricololo
video company. Contal ns 10 GE top quality D ricad cells In a
smart robust case with a DC output connect or. Ideal for portable
Equipment. Brandnew.
Ex-equipment NICAD cells by GE. Removed from equipmen
and in good, used condition: D size 4 ah \quad for $E 5(B$

SPECIAL INTERES

6 for $\mathrm{Es}(\mathrm{B}$

R

cludes Redac real trme colour drafting PCB layout system. In DEC VAX11/750 inc. 2 Meg Ram DZ and full documentation in brand new conditioni
Lerge Celcomp plotter
Tektronix PME520 Wavelorm Monlto
1.5kw 115 V 60 hz power source.

VG Electronles 1033 Te real tme for
Tektronica R140 NTSC TV test signal standard
Tektronica R140 NISC TV tess signal standand
DEC LS11/02 CPU board
DEC LS11/02 CPU board

Made for the US mulltary to the highest possible spec, these units were orginally designed as a highly rugged portable point to
point distance measuring set. Inbuilt in the unit is a tull duplex speech lince measuring set. inbuilt in the unit is a fill use as a data link. Many leatures Indude 50 km polnt to point range, approx 10.5 GH operation for max mecurty, low power consumption (typ. 2 amps at 12 vdc), and small prysical size 14 w 15h x 13d including bult in dish, fully portabie weatherproof case. Suppiled in used but tested condition complete with inructions and accessortes

Only E 295 per pair (E)
 Optional 12 v integral nicad pack

(3 hours approximate duration).......... $\mathbf{\Sigma 2 2}$
Limited quantity - don't miss out this time!!!

POWER SUPPLIES

A. PSUs 220-240vac input and are BRAND NEW unlesa stated. Mnny typee renging from $3 y$ to 10 Byte BD301 5voc @1.6a. 12vod @1.5a.Perfect for disk drives; whth Motex sockets. Very attractvely cased.Illum. sw. E19.50(B) Greendale 19ABOE 60 watts switch mode. $+5 \mathrm{v} @ 6 \mathrm{a}, 112 \mathrm{v}$ @ 1a $115 \mathrm{v} @ 1 \mathrm{a}$. RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. E24.95(C)
Conver AC130. 130 wall ht-arade VDE Conver AC130. 130 wall hl -grade VDE spec. Switch mode. +5 v
@ $15 \mathrm{a},-5 \mathrm{v} @ 1 \mathrm{a} . \pm 12 \mathrm{v} @ 6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{~cm}$. Bowert 13000.Switch modo.ldeal for drives \& system + 5v@ $6 \mathrm{a} .+12 \mathrm{v} @ 2.5 \mathrm{a} .-12 \mathrm{v} @ 0.5 \mathrm{a},-5 \mathrm{v} @ 0.5 \mathrm{a}$. $£ 29.95(\mathrm{~B})$ Femel GO45S. As above but 24v © 5 a E85.00(C)

IBM KEYBOARD DEAL

A replacement or backup keyboard, switchable for IBN PC PC-XT or PC-AT. LED's for Caps, Scroll 8 Num Locks. Standard 85 keyboard layout. Made by NCR for the Engllsh \& US markets. Absolutely standard. Brand new \& boxed with manual and key template for user stogans on the function keys. Attractive beige,grey and cream firish, with the usual retractable legs standard 5 pin DN plug A beautiful clean plece of manutac turers surpus. What a doall
BRAND NEW AND BOXED ONLY.....
I49 (B)

BRAND NEW AND BOXED ONLY

THE AMAZING TELEBOX!

Converts your colour monitor Into a
QUALTY COLOUR TVII

neterore
 V SOUND $\&$ VIDEO TUNER!

Brand new Hgh quality, fully cased, 7 channel UHF PAL TV tuner system. Unilt slmply connects to your IV aerial socket and colour video monitor tuming same into a fabulous colour TV. Dont worty your monltor does' nt have sound, the TELEBOX even has an inegral audio amp for dilving a speaker plus an auxillary output
for Headphones or Hil F system etc. Many other feahures: LED Status Indicator. Smart moutded case, Malns powered, Built to
Sil BS salety specs. Many other uses for MV sound or video elc. Supplied BRAND NEW with full 1 year guarantee.
Telebox ST for composite video input monilors.........E29.95(B) Telebox STL as ST but with Integral speaker...........E34.95(B)
Telebox RGB for analogue RGB monltors..............E50.95(B) NOT sultable for IBM or Clone type collour monttors.

BRAND NEW PRINTERS

Epson MX-60 FTT One of the most populay primers around

Bi-drectlonal printing with full loglc seekling. 9×9 dot matrix for enlarged,botd, condensed etc. Standard paralellintertace. Brand label removed from fromt. Handes tractor, fantold and Individual

Hazeltine Eeprint small desktop. $\mathrm{f}_{00} \mathrm{cps}$ with RS232 and standard paralie. Full pin addressable and 6 user selectable Conts. Up to 9.5° paper. Shoet 8 tractor loed. E149.00(E) tinuous use - real workhorses in any environment. Fast 150 cps whth 4 fonts and chotce of interfaces.
150-SN up to 9.5° paper.
ع155.000
Specity whether serial or paraliet required
CALL FOR THE MANY OTHERS IN STOCK INCLUDING DAISY WHEELS.

LARGE QUANTITES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE - CALL NOWI

DISFLM!
-Electronics-

[^3]Voice recording and playback has become an increasingly commonplace feature of electronic systems such as telephone-answering machines, domestic 'talking message pads". security and entry-phone systems, advertising and educational toys. All have one thing in common - the need to record a relatively short spoken messages. store it and play it back when required.
()lder systems based on miniature tape recorders are being supplanted by all-electronic systems where the speech is converted to digital signals, stored in solid-state memory, then played back through a D-to-A converter and loudspeaker. Now all the required functions have been incorporated into a single chip which can be used in either simple devices or in extensive microprocessor systems. The Texas Instruments TMS3 477 is such a device

Any voice can be recorded - there is no need for advanced synthetic speech and system development is rapid, since hardware and software requirements are low.

Requirements

Three fundamental criteria have been met. Firstly, the system should provide good quality reproduction, preferably with facilities to choose a sampling rate - and therefore yuality - appropriate to the application. TI hased it devices on contimuously variable slope delta modulation (CVSD) techniques, combined with the ability to select $16 \mathrm{kHz}, 32 \mathrm{kHz}$ or $64 \mathrm{k} \| \mathrm{z}$ clocks.

Secondly, performance-versus-cost considerations demand a speaker output froma lob-bit D-to-A converter with a typical $6+\mathrm{kllz}$ over-sampling clock and the device needs some means of suppressing the resultant over-sampling carricr noise.

Finally, consideration must be given to the way in which such a device connects with the memory [Cs - stan-

> The speech chip incorporates a llexible bus for microprocessor interface but it can be used without a micro providing up to two minutes of recorded speech.

Silicon voice recorder

> Cheap LSI, low cost d-ram and not much else can replace a tape recorder in applications requiring less than two minutes of spoken speech. Phillipe Clement of Tl explains.

dard d-rams for maximum costeffectiveness - which will store the digitally-encoded message. The best method is a direct pin-to-pin connection, enhanced in this case by incorporating memory refresh counters on the chip.

Operation

In its simplest form, the recorder consists of a TMS 3477 chip, microphone. speatker, keypad and d-ram. Four basic commands from the keypad mimic fundamental tape-recorder functions of record, playback, pause, and stop. Furthermore, because all the required commands, processing algorithms and memory-handling facilities are already

DESIGN

on chip. there is no need for masking, which makes for rapid product development without the constraints of volume production

When REC is activated, the encoded bit stream is stored in internal d-rams via the data pin. Andogue signals come in through the mic pin. At each sampling period, the imput is compared with the 10-bit D-to-A ourput level which, in turn, is produced by an estimate integrator and syllabic integrator, based on data from the previous sampling period.

Comparator output data are directed to external d-rams. Because there is a refresh counter on-chip, no external parts are required to send the data stream to external TMS4164. TMS4256 or TMS4C1024 d-rams. (The type of memory is selected using the modeselection pins).

Each recorded bit is andressed by the TMS3477 address counter and when the recording ends - either because the stop command has been sent or because end-of-memory has been detected - the corresponding stop address is latched into the stop-address register.

To play the recording back. pr_{B} is se 1 and the TMS3477 starts reading from the lowest address. It stops when it reaches either the stop address or d-ram end-of-memory address.

The encoded bit stream from memory is passed through the 10-bit D-to-A and out through the spkr pin 3. High quality is achieved by adapting the step voltage waveform using a $6+\mathrm{kHz}$ (typical) oversampling clock. and passs works during both recording and playback. Operation restarts when the relevant command is issued. Operation recommences at the memory address stored at pause. The sup command, on the other hand. resets all other functions to begin a new recording or to playback from the stant.

There are some useful variations on this basic operating procedure. First. it is possible to store two different recordings in external memory with fixed or variable lengths to allow, for example. ann answering machine to be provided with a short recorded message and longer recording of incoming calls.
A cyclical recording mode can be set

The analogue signals into and out of the processor chip require filtering with conventional low pass circuits to remove alias responses.
to make sure the latert speech data are alway recorded in external d-ram. There is also a speech monitor facility which plays back the encoded data in real time whilst recording.

Devigners can change the yped of the data sampling clock to provide the best trade-off hetween storage capacity and recording guality. The built-in oscillator can be varied between 250k/l/ and thakh/ ($16+k H_{1}$ is the lower limit for the TMS 3477 A) and should be finetumed using a variable resotance. Data sampling frequency is determined by the osciltather freguency and the hase data sampling clock

$$
F_{10}=\left(F_{(\infty,} \times F_{112}\right) / 320
$$

$\mathrm{F}_{\text {b10 }}$ is pin-selectable an 16,32 or 6.tkll/, hence the most fathful recording is achievable at $492 \times 6+320$. or 98.4kH\%. Yet at 6tkHz, Iwo IMbit d-ram will only holda 32 message

A data-compression node has also been included when the contents of the (1)-bit 1)-t()-A register are left-shifted by (wo bits. providing an cight-hit com-
pressed value. It is not recommended to use this mode during recording - the facility is intended for emphasizing umall hignals during playback.

Implementation

Sutable external voice memories are TMSH16t, TMSt256 or TMSHCIO24: a maximum of (wo devicen can be included. For phatase velection, a toggle switch is used. PlII (up) connects CAS 1 signal to $I C^{\circ}$, and \mathbb{C}_{4} whith in the domn poxition ($\mathrm{P}\|\|$). (AS I signal is connected to IC 1 and IC_{3}. When the one-phrathe/one d-rom contiguration is selected by the mode-seleat key, DSW? (1) witch is turned off, allowing selection of phrase 1 or phrase 2 by means of the toggle swith. With one-phrase/two d-ram selected, the loggle switch must be cel to PHI (down) to lurn the I)SW? (I) witch.

Keyboard

The TMS 3477 is designed for simple kesboard interlacing through direct connections 10 pins 8. 9.10 and 11 . Each command is tramferred by switching the relevant pin to a low sable level for allant 32 ,
More complev interfacing to a microprocesoor is posible through these pins when the (PU interface mode is selected by programming pin APS at power-on. Pins x and 9 are then amigned as command ports, with command patterm tramferred to the IMS3477 by meatm of a high-level wrobe on pinlll.

	TERMINAL INPUT		COMMAND
PIN8 (CPO)	PIN9 (CPI)	PIN 10 (STB)	
LOW	LOW	Highlevel strobe	PAUSE
HIGH	LOW		PLAYBACK
LOW	HIGH		RECORD
HIGH	HIGH		

The ba signal anailahle from pin 11 is, active when a low lewe is present and signifien that the TMS 3477 is recording. playing back or in a paused state. The microproceswor hould be in a wait stalle at this time resuming operation only when the sum command is issued.

The (P P interface mode allow complex 'tape recorder applications to be built up. including multiprocessor architectures.

continued from page 1072

that the company has released its own entry into the rise wars, in the shape of the M8800n) series. The M8810n CPU and 88200 wathe and memory controller make up a very powerful chip set. which should do well in the battle for the market place.

Most risc processor designers have taken steps to improve the amount of data that they can get in or out of the chip at a time, since this is a major botteneck for processing speed. In the 88IOO they have gone to great lengths by using a full Harvard architecture, where data memory and program memory have their own address and data buses making four separate buses in all. Each has its own pipe-line and a large, fact eache memory which operates concurrently with the other three. This design allows the chip to have a lot of information being shifted toand front main memory at a time.
Inside the processor the design again encourages concurrency: there is an

ro rest of system

In Mtotorola's M880000 risc family, the 88100 (TPL talks to the rest of the world through the P-Bus Harvard architecture.

On-chip floating processor (which operates simultaneously with the main
integer processor) and there are three separate data buses inside the chip for datal flowing from two source registers and into one target register). There are 32 reg isters (as in the R3000 R0) is hard-wired to (1) which employ sophisticated scoreboarding techniques. to allow several operations to go on at once; under ideal circumstances the CPU could be holding as many as 11 different instructions, all at various stages of execution and accessing different registers.

This all adds up, so that a M 88100 running at 20 MHz delivers a reasonable 17Mips or 7Mflops. Whilst it isn't the single fastest or most powerful rise device. it does respectably well against some stiff competition and offers some veryelegant features With the technological and marketing might of Motorolat behind it this chip isn't going to fail but just how well it will do is an open question.

- See also Two approaches to rise: MC88IOOU.EWW. July 1988 ppos37-6+2.

AMD 29000

TThe Am290() is a conventional rise design that turns in a respectable 17Mips. Like the others, it is at 32-hit machine with a load/store architecture. with on-chip pipeline and cache. It has a modified version of the Harvard architecture, which uses three buses to communicate with the outside world (bidirectional data, incoming instructions and a shared outgoing address hus). The address bus is pipelined and so data and program can be accessed simultaneously. This arrangement supposedly alleviates the von Neumann botleneck without the complexity of a large pin count or the expense of a full four-bus Harvard architecture. It is an integer-only device - its associatted floating-point coprocessor is the Am29027

Internally, the 29000 is slightly unusual in having a very large number of useful registers. The designer has a tricky decision to make in how many to include: if there are lots, then the processor will be more flexible and will need fewer memory accesses. ()n the other hand there will be a bigger decoding overhead (which introduces delays) increased fan-out on all the internall
gates and more circuitry to implement the registers. Some research seems to show that about 28 registers is the optimum and most designers seem to agree (Intel, MIPS and Motorola all have 32 registers and Acorn has 27). AMI) has decided power and flexibility outweigh the other factors - it has included a whopping 192 registers. Any of these can be used for arithmetic or ogical operations, or as a data pointer. They are organised into 12 pages of 16 . to support task-swapping and procedurat calls. In contrast to the spare these pages are totally separate (nonoverlapping). For fast applications (multi-tasking, real time control ete.) it is possible to switch to a new page, with fresh registers and new pointers, in only 17 cycles - about olofns.

The 29000 can address gigabytes of virtual memory per process, with up to 256 processes available (this is another feature to help multi-tasking applications). This is helped by having al lookaside buffer to translate virtual to physical addresses. There is an on-chip cache, but with only $6 t$ words it is unusually small.

This is currently the only rise chip that
has a full development support system. There's a source level dehugger (for AMD's (compiler), a target resident monitor, in-circuit emulators and an architectural simulator.
For any serious user this is a vital set of tools and it is perhaps the biggest plus that this chip has to offer.

Performance is an acceptable 12 VAX Mips (reputable manufacturers normalize their chip's speed ratings by giving them in terms of equivalent VAX 11/780 instructions). AMD promises to have a 50 Mips version next year and expect the price to fall to under $\$ 1 / \mathrm{Mips}$. The number of registers (with fast pageswapping), the ability to have several processes running and the support makes this chip better suited to highend embedded control applications than the number crunching tasks that are usually considered rise's domain. AMD cites applications such as laser printer controls, ISDN switching nodes and robot controllers.

- See also Second-generation Risc processor, the AMD approach, EWW July 1988. рр 689-691.

ANNOUNCING THE FIRST FULLY FEATURED SIGNAL ACQUISITION AND FFT ANALYSER PACKAGE FOR UNDER $£ 1,000$ INCLUDES ALL THE BITS (2 X 14 ACTUALLY) THAT THE OTHERS LEAVE OUT

- Runs with your PC or Macintosh
- Complete two channel system, synchronous 100 KHz sampling \& 40 KHz spectrum
- 14 bit ade!! 85 dB dynomic range.
- Anli olios fillers
- Frequency and lime domoin zoom
- FFI up to 16384 lines, with or without weighting, log or linear scaling, exp or lineor overaging.
- Smart, fully fealured Irigger enables transient analysis, lime averaging etc.
- Hard copy output with full annotation and custom legends.
- Archive results, either manually or outomatically

1 Laplace Instruments Ltd

PO Box 14. Bromhall, Slockport SK7 2OS. Tel: 0614409579

Complete syslem, including stand alone signal caplure unit, application software, manuals and cables for only $£ 960$.
This is the best value for money, professional system in the UK.

Seind off for your FREE demonsiration disc using the forim below, or ring 0614409579

Please send by relurn

Informotion on PC.Aqquisition. \perp Free Demo disk. \quad Deloils of FF troining courses.
\perp Complete system (Enclose cheque for $\$ 960+$ VAT 10 Loploce Instruments Lid).
"Deioils of your computer: II Mocintosh. Model:
. IBM sompotible PC or AT. Moke \& model:
Nome
Telephone No
Oryonisation: Address: \qquad Post code
Post lo: Loplace Instruments LId, PO Boe 14, Bromholl, Slockport SK7 205

©R RAEDEK ELECTRONICS

BANNERLY ROAD, GARRETTS GREEN, BIRMINGHAM B33 OSL, ENGLAND
Tel 021-784 8655
Fax 021-789 7128
Telex No 333500 CROSAL G

SMAII SEIECTION ONLY LISTED EXPORT TRADE AND QUANTITY DISCOUNTS RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Cossor Oscilloscopes CDU150(CT531/3) £150 only. Solid state general purpose bandwidth DC to 35 MHZ at $5 \mathrm{MV} / \mathrm{Cm}$ - Dual Channel - delayed time base - illuminated graticule - Beam finder - Calibrator - power 200 V - 250 volts AC protection cover containing polarized viewer and camera adaptor plate - probe (1) - mains lead. Tested in fair condition with operating instructions. FEW AVAILABLE - NO PROTECTIVE COVER BUT MAINS LEAD + 1 PROBE - £ 125 -TESTED-Manual 1515 extra.
Tektronix 475 - 200Mc/s Oscilloscopes - tested from £400 less attachments to £750 as new c/w manual, probes etc.
Telequipment D755-50Mc/s Oscilloscopes - Tested c/w 2 Probes - £250. Manual $£ 5$ extra.
Marconi TF2002AS - AM-FM Signal Generator $-10 \mathrm{Kc} / \mathrm{s}$ to $72 \mathrm{Mc} / \mathrm{s}-£ 85$. Tested probe kit Manual $£ 10$ extra.
Marconi TF2002B - AM-FM Signal Generator - $10 \mathrm{Kc} / \mathrm{s}-88 \mathrm{Mc} / \mathrm{s}$. $-£ 100$ Tested to $£ 150$ as new + Probe kit - Manual $£ 10$ extra.
Marconi TF2008 - AM-FM Signal Generator - Also Sweeper - $10 \mathrm{Kc} / \mathrm{s}-510 \mathrm{Mc} / \mathrm{s}$ from $£ 350$ Tested to $£ 500$ as new with manual - Probe kit in wooden carrying box $-£ 50$ extra. (Few available with small faults $£ 300$)
Don 10 Telephone Cable - $1 / 2$ mile canvas containers or wooden drum new from £20.
Army Whip Aerials screw type F sections and bases large qty available P.O.R
Test Equipment we hold a large stock of modern and old equipment - RF and AF Signal Generators - Spectrum Analysers - Counters - Power Supplies - Scopes - Chart Recorders all speeds single to multipen - XY Plotters A4-A3.

Racal Modern Encryption Equipment - Racal Modern Morse Readers and Senders - Clark Air Operated Heavy Duty Masts - P.O.R.
All items are bought direct from H M Government being surplus equipment; price is ex-works. S.A.E. for enquiries. Phone for appointment for demonstration of any items, also availability or price change V.A.T. and carriage extra.

JOHNS RADIO, WHITEHALL WORK\&,

84 WHITEHALL ROAD EAST, BIRKENSHAW, BRADFORD BD11 2ER. TEL NO. (0274) 684007. FAY: 651160
 ETC. REEEIVING AND TRANSMITIING EQUIPMENT - EERERL HECTMRNIC EQUIPMENT

R.S.T. LANGREX R.s.I. SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.
Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers. Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD

1 Mayo Road, Croydon, Surrey CR0 2QP. Tel: 01-684 1166
Telex: 946708
Fax: 01-684 3056

CIRCLE NO. 149 ON REPLY CARD

REPRINTS

IF YOU ARE INTERESTED IN A PARTICULAR ARTICLE SPECIAL FEATURE OR ADVERTISEMENT IN OUR JOURNAL WHY NOT TAKE ADVANTAGE OF OUR REPRINT SERVICE.
REPRINTS CAN BE OBTAINED AT A REASONABLE COST, TO YOUR OWN INDIVIDUAL SPECIFICATIONS PROVIDING AN ATTRACTIVE AND VALUABLE ADDITION TO YOUR OWN PROMOTIONAL MATERIAL.

FOR EXAMPLE, A TWO PAGE ARTICLE CAN BE REPRODUCED AS A FOUR PAGE FOLDER WITH ADDITIONAL WORDING ON THE FRONT PAGE AS AN INTRODUCTION.

The cross-field antenna in practice

Can the CFA really work? Bypassing the complex theory of the controversial March article*, C. Bryan Wells has produced practical versions which suggest that it does.

Mainly because James Clerk Maxwell is my scientist hero of days gone by I carefully read the March article and became almost hooked when I came across the words quoted there from the final paragraph. For some time I had been thinking along the lines that an anterna is really a coupling device coupling electromagnetic energy to space - and that there ought to be ways of achieving this process as alternatives to monopoles, dipoles and loops. Was this one of those appealing concepts with seemingly great initial promise whose claimed potential is never realized in practice? Indeed. could it possibly be a hoax?

There seemed to be only one thing to do - to see if the cross-field antenna (CFA) could be made to work. The first step was to extract as much information as possible from the diagrams and photograph on page 218 by scaling to the one dimension quoted - 70 cm overall height (see Fig.1). The following dimensions are estimates: E. cylinder height: D plate overall diameters, and the dianmeter of the feeder access holes in the D plates (because of the obscuring effect of the eight supporting and insulating rings in the middle of the "barrel").

I started by making a halfsize version, winding atuminium foil around powdered milk drums and cutting off the tin plate ends to form the D plates and then

Balanced feeders
Dimensions in mm
forming seven annular support members from polystyrene packing material. The 50% power split and phasing were arranged as in Fig.2. Perched on an easterly-facing window ledge this unit yeilded a number of successful contacts with British, Irish and European stations on 7MHz. at loow

Since then ! have engineered a second half-size version, this time using coffee tins. and a further version properly fabricated from aluminium to the dimensions in Fig. I. This full size CFA

[^4]

Fig. I. Barrel shaped cross-
field antenna. Dimensions are estimated by the author from the photograph and Fig. 1 of the article by Kabbary, Hately and Stewart (March issue).

Fig.2. Feed arrangements, showing a quadrature feed for the E and I plates. In practice, a balanced L.network was used togive a 90 shift while eliminating the need for a second quarterwave phasing section.
shows considerable promise. At night the results are almost as good as both my double zepp and an 82m circumference vertical loop, both at about 10 m . The full-size CFA is mounted against the peak of the roof space in the house at about 8 m above ground.

Precautions

I have taken precautions such as carthing other anternas, in case coupling to them was responsible for the results achieved. and checking that the feeders were not doing most of the radiating with an efficient antenna matching unit it is possible to make any piece of conducting material into some kind of RF radiator

These checks were threefold. First I removed the quarter-wave lines and directly fed the device through 45 cm lengths of 30002 ribbon with a balanced L-network phasing circuit interposed between the feeder and matching unit on one side and the CFA then mounted about 30 cm above the matching unit. This arrangement worked satisfactorily if slightly down. Next I reintroduced the quarter feeders and moved the CFA to the peak of the roof space. I reasoned that if the feeders were doing most of the work, elevating the CFA so that the feeders had a 6 m vertical run should bring about a very significant improvement. This did not occur. The reception improvement was just noticeable by ear.

The third check was to compare 300 s feeder radiation with a double zepp as load. at 80 W . with that of both the CFA feeders taken separately, each taking approximately 50 W . The detector was a 6 V flashlamp bulb to which was connected 25 cm of 300$) \Omega$ ribbon, shorted at the open end. This cheek showed that radiation from the CFA feeders was much less than that from the double zepp feeders or from a well matched twin-lead dipole. To detect the CFA feeder radiation it was necessary to clip the 25 cm of detector ribbon to the CFA feeder. There was no bulb glow with a 12 mm separation.
To check radiation from the CFA itself I used a 240 V neon bulb, again with 25 cm of shorted $30(0) \mathrm{S} 2$ ribbon attached. This insensitive probe was incapable of detecting feeder radiation. but showed a distinct glow when positioned within $8-10 \mathrm{~cm}$ of the CFA excited with $100 \mathrm{~W}(2 \times 50 \mathrm{~W})$.

It is still possible that all the CFA does is to provide a useful metallic radiator "tuned" by the antenna matching unit. However, in a great deal of experience with extended coils. loaded

Theimportant features of these antennas are (i) that they are extremely small, excellent receivers, powerful, efficient radiators and (ii) that their physical size is independent of the radiated wavelength - an unprecedented concept in antenna theory and design.*
whips, helicals ete. . I have not been able to produce results which compare with those I have obtained with the CFA. It is also possible that I have not achieved the optimum in phasing. power split and matching.

I cannot claim that the CFA is as efficient as a full-size wire dipole although it is only very slightly down on a 40 m twin lead dipole, also up in the roof space, which I have used as a reference.

How does it work?

If I have come to believe that the CFA concept has some real merit. I ought to be able to put together a practical explanation of how it works. without recourse to rigorous mathematical analysis. I start with two simple propositions:

- An antenna is a means of coupling electromagnetic energy to space and usually comprises widely distributed inductance and capacitance. Most, but not all. antenna ideas involve resonant half-wave elements in some way.
- Half-wave resonance can be produced in very small antenna designs (small compared to a wavelength) usually by using lumped constant inductors and or capacitors.

If the CFA concept is in fact a new and reasonably effective way of achieving "space coupling" then it might be considered as a "lumped constant" ver-
sion of a device analogous to our normally understoodantennas.

The power carried by an electromagnetic wave is proportional to the product of the electric field E and the magnetic field M. If some way can be found of augmenting either E or H then this will result in a greater overall field intensity.

In the original CFA article it is emphasized, and the authors claim to have demonstrated, that "the H field may at any time be the combination of two separately induced fields from independent types of sources, i.e. charge motion and capacitor displacement current".

If the "displacement current field" in a normal system has been under-used or not really used at all until now, then the CFA is a means of exploiting it and thereby augmenting $\mathrm{E} \times \mathrm{H}$.

The device is relatively small and so its coupling to space in comparison to a normal, well distributed, antenna is less efficient; but the higher field intensity compensates to some degree. Just to what degree compensation can be achieved is, 1 suppose, the underlying purpose of the experiments.

The CFA in action

Perhaps the most important problem is the question of the required phase relattionships between the 50% power split to D plates and Ecylinders. After trying 180° (on 7.065 MHz.), with an extra electrical half wave to one of the elements. I found greater success in terms of transmit reports and reception with a 90°. quarter-wavelength addition. I eventually replaced this additional quarter-wave line with a balanced L. network at one side of the origin of the two power-splitting quarter-wave lines. with no apparent change in performance. Using a twin variable capacitor in this network gave the possibility of fine adjustment. As previously stated, this arrangement follows the preferred amateur radio method of splitting power between two phased verticals and achieving quadrature phasing. (The network values were calculated after naking approximate measurements of plate and cylinder impedance using a noise bridge).

It seems that, whatever phasing method is used, it becomes difficult to maintain the $50-50$ power split between plates and cylinders. RF voltage measurements are extremely difficult to make with balanced lines for this purpose. However, splitting the power in co-ax. and then feeding the quarterwave lines through baluns with RF

voltmeters placed immediately before the baluns can also be misleading. Any slight difference in the standing wave on the quarter-wave feeders in the unmatched, or poorly matched system, shows up as RF voltage differences, which may, or may not mean an asymmetric power distribution; the only answer so far to these problems is as shown in the attached diagram. Split the power in co-ax. between two matching units, feed the quarter-wave lines through baluns, tune both matching units for best reception and finally trim for a flat line to the transceiver. Do not worry too much about the accuracy of the power split or the exact phasing relationship.
Using two matching units has also facilitated excursions onto the 80 m and 20 m amateur bands. This has raised another puzzle: whereas on 40 m the results from the CFA come close to the normal wire antennas at distance of 500 miles plus, particularly in darkness hours with the possibility of lower angle propagation, the experience on 20 m does not show anything like such
dramatic improvement. However, on 80 the CFA results are always close to the wire antennas and during darkness pretty nearly equal. The only explanation that I can produce for this experience is the question of compromise. The CEA is obviously a compact antenna, with the associated limitations. Most, if not all, amateur radio antennas on both 40 and 80 are compromises so far as height is concerned. In the tradeoff between the compact CFA and the "low-height relatively low-frequency" wire antennas the CFA does not fare too badly. At 20 m , where many amateurs can erect beams and dipoles at a height of half a wavelength, the CFA suffers in comparison. 1 have to add the note here that band conditions on 20 m , 15 m and 10 m have been relatively poor with a lot of short-term variation during the experimental period and that has made comparison difficult. 1 must mention that the experiments on 20 m and 80 m have been made with the feed arrangements as shown for 40 m and all band change adjustments being made with the matching units.

It has occurred to us that the employment of delay lines especially designed for that purpose might be another approach to phasing experiments, if they can be obtained at reasonable cost, although having to provide separate lines of this kind for all nine amateur HF bands does seem a little bit uneconomic.

So far as the CFA's element spacing and phasing arrangements are concerned it is difficult to find any critical adjustment points that affect receiving performance. This leads me to suspect that the feed and phasing arrangements 1 have used are not ideal.

The CFA shares a roof space with a UHF television antenna, also vertically polarized, and an outdoor television antenna is only about 1 m above it. So far no television interference has been apparent. This seems to confirm one of the qualities claimed for the CFA, that it does not easily couple to conventional antennas in its vicinity

Earthing the main antennas gives an improvement, small but detectable by ear, in reception using the CFA

20 MHz FOR E288?

and we'll give you a $31 / 2$ digit multimeter as part of a very special offer from Electronics \& Wireless World

20MHz dual channel operation

- Trigger hold-off facilities

O $1 \mathrm{mV} / \mathrm{div}$ Y1 and Y2 sensitivity

- $100 \mathrm{~ns} / \mathrm{div}$ to $2 \mathrm{~s} /$ div sweep rate

Risetime less than 17.5 ns
$8 \mathrm{~cm} \times 10 \mathrm{~cm}$ display area

- Display accuracy better than $\pm 3 \%$
- 1 kHz internal calibratorX / Y operation using Y channelsSpecial video signal trigger modes
Two $\times 10$ probe kits
- Three year guarantee

The OS-7020 oscilloscope comes from the electronics giant Goldstar, a world class manufacturer of both professional and consumer electronics.

Contact Electronics World for overseas delivery charges

We have assured ourselves at Electronics \& Wireless World that this oscilloscope has an exceptionally high build quality and meets completely its stringent technical specification. Our judgement is backed with a three year guarantee. At £288 (inclusive of delivery \& packaging but exclusive of VAT) the instrument is
an absolute bargain. The inclusion of a high quality $31 / 2$ digit multimeter in the price makes this a very special offer.

To place your order. please send in a cheque for 5331.20 (which includes VAT) to the address shown on the coupon. Alternatively complete the coupon with your credit card details or phone in your credit or charge card order on 01.6613130 (24 hours).

Analogue emulation with Spice.age

Stephen Franks reviews Spice.age, an easy-to-use PC-compatible circuit analysis package for design and education

Spice.age is an analogue circuit simulator and consists of four modules: for frequency response, IDC quiescent analysis. transient analysis and Fourier analysis. While the user need only buy those modules that are of interest. they form a scamless program when used logether

The software is intended for teaching in university or technical college: it is ideal for use as part of a course in electronics. It can also be used by circuit designers to check designs before reaching for the soldering iron. althougl it is a little slow for the more complex circuits.

The software runs under Digital Research's CEM - a graphical "front-end" designed to do all the hard work involved in driving the screen and printer. and accepting commands from the user. This has the advantage that anyone familiar with GEM will be immediately

Fig. 1. A simple passise band-pass filter circuil. as entered into Spice.age.
comfortable with the package, and provides the confidence that, as new printers and plotters become available, drivers will be written to allow them to be used.

Installation

Installation is a three-stage process: registration. GEM installation and Spice age installation. This entire process is clearly described in the manual. and takes very little time.

Registration involves embedding the name of the user into the software; until this is done, the software cannot be used. The name typed in must agree with that given to the manufacturer, who provides three numeric keys which must also be typed in. If the numeric keys match the name, the software is unlocked, and installation can proceed.

This is one of the better copy protection scoemes available. since it allows the software to be copied to make back-ups but allows immediate identification of piratecopies.

Once registration is complete. GEM must be installed - that is, assuming that the user does not already have a copy. The documentation for this part of the process is much less comprehensive; the full GEM documentation is not included, and although on-screen help is provided, it is not always clear what to donext. For anyone reasonably familiar wath installing software. however. this section will not present any probiems.

Finally, Spice.age itself is installed. using the self-install program provided. which does all the work of creating sub-directories and copying the files into the right places.

Fig. 2. Phase and gain response curves for the same circuit.

Entering the circuit

The circuit is entered by assigning numbers to each node in the circuit, and typing in a list of components with the nodes to which they connect. A very helpful feature is the ability to assign "help" text to items in the library of components. When a library item is specified, the help text appears at the bottom, giving the nodes that need to be connected, along with other useful information.

Although there are 'imits to both the number of nodes and the number of components, these are high enough nci to restrict normal use.

Circuits can be stored on disk, and entire circuits can be stored as a single library item, to be built in to more complex circuits later. The basic components available include the normal resistors and capacitors and a diode (modelled on the exponential diode equation well-known to all students). There are also components such as a square-law conductor and a voltagecontrolled current source, intended for use in modelling more complex devices. The library items provided with the software include a general-purpose transistor (in both $p-n-p$ and $n-p-n$ form), a 741 op -amp, a $1: 2$ transformer. and a field-effect transistor. Also provided are a couple of c-mos logic elements.

Circuit analysis

The frequency analysis module produces the usual gain and phase-response curves. To produce accurate curves, the
circuit is first analysed for quiescent (DC) conditions before calculating the small-signal results. Strangely, the DC conditions cannot be viewed unless the second module is purchased; surely these two modules could be combined? The small-signal analysis assumes that all signals are reasonably small, and quite happily indicates 100 V output signal from a 10 V power supply. It is of course normal practice to assume that signals are reasonably small, but it is especially easy to forget this when all the calculations are done for you. The graphs produced are self-scaling, and each axis can be log or linear, with the dB reference, if used, defined in any of
six different ways. The result is a cleanlooking graph, which is delightfully easy to produce.

As described earlier, the quiescent conditions of the circuit are analysed. A table shows the voltage at every node in the circuit.

Transient analysis produces an oscilloscope-like graph showing the response of the circuit to a variety of stimuli: impulse, sine, step, triangle, ramp, square and pulse train. It is possible to pre-charge reactive components to quiescent conditions, and to have more than one voltage (or current) generator. The stimulus always starts at time 0, but the graph can start at any time before or after this. Up to four nodes in the circuit can be shown on the same graph.

Fourier analysis is performed on the data generated by the last transient analysis, which is a little confusing at first. However, once grasped it is easy to set up and use and, like the other modules, produces clear, uncluttered text-book graphs.

Using the software

Spice. age was written by a senior lecturer at a technical college - and it shows! It is easy to see many different ways that Spice.age could be used to teach: apart from allowing students to test their designs, it could be used to demonstrate modelling of semiconductors (the library contains the Moll-Ebers model), and it is possible to set up excellent examples of the effects of selecting the wrong samples for Fourier transforms. For more advanced students, it could also be used to teach computer modell-

Fig. 5. Fourier transform of the transient response.
ing: for example . it can be made to show the effect of selecting unsuitable sampling rates.

Although the software does function very well, there are a few aspects that could be improved. There is no provision for examining the effects of component tolerances: such a provision would make the software able to cope with even more teaching situations. The only other problem with the package is the speed of calculation. On a fast machine (a $20 \mathrm{MH} 2 \mathrm{Z}(1386$ with coprocessor), it is possible to change some aspect of the circuit and re-analyse to see the result. On slower machines the time taken to amalyse a moderately complex circuit (such as ath active filter) is a disincentive to experiment. While there is a minimum amount of arithmetic implicit in the nature of the software, it may be possible to improve the speed by careful optimization and if so this would be time well spent.

The software is very robust: it is not possible toselect an option that does not make sense and the software coped perfectly with everything thrown at it. Standard of finish was considerably hetter thatn a lot of educational software: unlike those provided in much software (including much more expensive packages), the error messatges were sensible. and gave sufficient information to put right whatever was wrong.

There has been great attention to detail in the design of the software. mainly spent on making it as easy to use as possible. For example, when entering the value of components, almost any form is accepted: $1 \mathrm{~K} 2,1200,1.2 \mathrm{~K}$. 1.2E3 are all accepted as the same

Fig. 4. The transient response of the circuit to a I 1 impulse. Note the peak in excess of 175 k V - try seeing that on an oscilloscope?
value. This care has been extended to all parts of the software, making it very flexible while still reasonably easy to use.

Printing and plotting

The output side of the software is a little peculiar. Normal practice with GEMbased software is to have a "Print" option in the "File" pull-down menu. this often asks for further information before slarting to print. Once the information is gathered, an application will normally atutomatically run GEM's output program. which handles the output and returns to the original application.

Spice age on the other hand. requires the user to do atl this manually. The "Presentation" pull-down menu contains a "metafile" option, which may be either selected or deselected. While it is selected, a copy of every graph generated will be sent to disk as a filc, the user being prompted for a name every time. Once all output is generated, the user must quit Spiceage, start the output program. and give it the names s) of the files to print. To continue with Spice.age, Output must be terminated, and Spice age started up again.

This is rather tedious and not at all intuitive, which is what the GEM environment is all about. It requires the user to handle the temporary files used. to delete them after use, and to ensure that they are not overwritten until printed out. This is especially unsuited to a teaching situation, where it is likely that several students will use the machine in succession

GEM ensures that all output devices are used to their best resolution, completely independently of the screen. Drivers are supplied with the software for all popular dot-matrix printers (but no plotters) and further drivers for both primters and plotters are available for $£ 15$ each. Currently all output is menochrome, although colour may be supported in future releases.

Final output is identical to the screen. but at the best resolution of the printer There is no facility to add titles or other ammotatoons, but all relevant information is automatically included.

Fig. 3. Impedance versus frequency for the same filter.

Support

A help-line number is operational from 2.00 pm to 4.00 pm . Since the software has not generated any genuine problems, questions had to be devised to assess the service. The responses were uniformly good: simple questions were answered immediately, and one more complex query was referred to the author of the software. In this case, a return call was promptly made with the answer.

It is common to underestimate the importance of a service such as this, but a good help-line can save a great deal of time. This service appears perfectly adequate. even to the extent of trying to anticipate problems, and giving helpful information regarding a minor bug in the GEM environment; it would appear that when installing GEM on a duatfloppy computer. a "disk full" message can be generated. The cure is simple enough, but given that educational establishments are likely to have such machines, it would be even more helpful to include a note with the sofiware, describing the bug together with the cure!

Manual

The manual manages to be simultaneously very good and very bad. For those meeting the software for the first time, the manual provides a clear introduction, including taking the user through a few examples provided on disk. Once the basics are learned, however. the manual is much less useful: despite an apparently comprehensive index, it proved very difficult to find information as the need arose. It is in single-sided A4 format, which makes providing copies for the students easy and the licensing arrangements allow for limited copying. This is a very sensible move, as it keeps the cost of the software low (at least for muti-user sites).

This piece of software does just what it sets out to do: that is, to provide an aid to teaching electronics. It relies heavily on the lecturer to build it into any given course. but can be used at many different levels. The ease of use of the software is such that it should not distract from what is being learned. It contains many idiosyncrasies, but these are balanced by many minor but useful
features that make it, overall, a very worth-while teaching aid.

Price is $£ 70$ per module, or $£ 245$ for all four modules. For educational establishments, an eight-user licence is available for $£ 499$, and provides eight user disks, one master manual and permission to make eight copies of the manual. Further copies are then $£ 35$ each, which includes the user disk and permission to make a further copy of the manual. Ready-made manuals are available for $£ 15$; but a site may not have more manuals than the number of licensed users.

SPICEAGE

Those Engineers Ltd
106a Fortune Green Road
West Hampstead
London NW6 1DA
01.4352771

SPICE•AGE Non-Linear Analogue Circuit Simulator £245 complete
 or $£ 70$ per Module

Those Engineers have a reputation for supplying the best value-for-money in microcom-puter-based circuit simulation software. Just look at what the new fully-integrated SPICE Advanced Graphics Environment (AGE) package offers in ease-ol-use, performance, and facilities
SPICE AGE performs four types of analysis simply, speedily, and accurately:

- Module 1 - Frequency response Module 3-Transient analysis
- Module 2-DC quiescent analysis Module 4 - Fourier analysis

Frequency response of a low pass filter circult

2 DC Quiescent analysis
SPICE*AGE analyses DC voltages in any network and is useful, for example, for setting transistor bias. Non-linear components such as transistors and diodes are catered for. (The disk library of network models contains many commonly-used components - see below). This type of analysis is ideal for confirming bias conditions and establishing clipping margin prior to performing a translent analysis. Tabular results are given for each node: the reference node is user-selectable.

1 Frequencyresponse

SPICE AGE provides a clever hidden benetit. It first solves for circuit quiescence and only when the operating point is established does it release the correct small-signal results. This essential concept is featured in all Those Engineers? soltware. Numerical and graphical ($\log \&$ lin) Impedance, gain and phase results lin) Impedance, gain and phase results can be generated. A 'probe node' feature
allows the output nodes to be changed. allows the output nodes to be changed. dB reference can be defined in six different ways.

DC conditions within model of 741 circuil

NEW: HANNING WINDOW: RESULTS LOGFILES

Impulse response of low pass filter (translent analysis)

4 Fourier analyses

SPICE AGE pertorms Fourier transforms on transient analysis data. This allows users to examine transient analysis wavelorms for the most prevalent trequency components (amplitude is plotted against frequency). Functions as a simple spectrum analyser for snapshot of transients. Automatically interpolates from transient analysis data and handles up to 512 data values. Allows examination of wavelorm ithrough different windows. Powerful analytical function is extremely easy to use.

3 Transient analysis
The transient response arising from a wide range of inputs can be examined. 7 types of of excitation are offered (impulse. sine wave, step, triangle, ramp, square, and pulse train): the parameters of each are user-definable. Reactive components may be pre-charged to steady-state condition. Up to 13 voltage generators and current generators may be connected. Sweep time is adjustable. Up to 4 probe nodes are allowed, and simultaneous plots permit easy comparison of results.

Spectrum of rectangular pulse train (Fourier analysis)

If your work involves designing, developing or verifying analogue or digital circuits, you will wonder how you ever managed without Those Engineers circuit Simulation Software

A good range of properly supported and proven programs is available and our expert staff are at your service.

Telephone: Charles Clarke on 01-435 2771 for a demonstration disk.

BOARDMAKER - the price performance leader

If you are leoking for the solution to your PCB layout and schematic drawing problems. BOARDMAKER has th the answers. One integrated package provides a powerful full-fealured, layoul and schematic editor that lets you design and document your PCB layouts, all at a down-to-earth price
Sume of BOARDMAKER's power fealures

- Easy to lcarn and usc
- Fuilwysiwyg display
- Ulera-fast zoom, pan and re-draw
- Interactive placement and routing
- Auto via hole placermen
- Auto line oprimisaliun
- Handles multi layer beards - 10 available layers including silk screen idents
- Comprehensive surface mouni support
- Screen drivers fur CGA, EGA and VGA displays
Exucnsive user definable symbol and
layout macro facilities
- Scasible uscr interface - use a mousce or
keys to access the menus
Manual includes a user guide and full command reference
Standard outputs included in the package
- Dol malrix primer - 9 and 24 pin Epsom or
compatible
Lasces priner - HP Lascrici 11 emulation
- Penpler - HPCiL or DMPL ploter suppor
- Photoplest - Gier her formal

Tsien provide a full after sales support and soltware update scrvice Requitcs an IBM PC/XT/AT or 100% compatite inc. Amsirad 1512 \& 114 BOARDMAKER costs only $£ 195$ + VAT

Write or phone soday for your FREE demonstration disc Corpmrate. education and dealers - ring for details

CIRCLE NO. 159 ON REPLY CARD

R.F.
ACCESSORIES

FILTERS, ATTENUATORS, COUPLERS ETC.
CONNECTORS
AND CABLES
CABLE ASSEMBLIES AND TEST LEADS MADE TO ORDER

Coaxial or Multiway. RF, video, audio and data
Double braid and tough PTFE coaxial cables.
Customers already include several universities and polytechnics, government departments, broadcasters and BT - Cellnet.

WAVEBAND ELECTRONICS

3 Lon Howell, Denbigh, Clwyd LL16 4AN.
Tel: 0745712777

Our very simple offer to craftsmen

- Antex TCS 240 V 50 W and TCS $24 \vee 50$ W.
- Temperature Controlled Solder ing Irons for electronic and electrical applications - especially field maintenance and repair.
- Temperature range 200° to
450° C. Analogue proportional control $\pm 1 \%$. Max. temperature achieved within 60 seconds
PLUS
- Antex M-12W; CS-17W; and XS-25W. Available in 240 or 24 volt.

Tools specially designed for fine precision soldering Ideal for all electronics craftsmen and hobbyists.
For full information on the comprehensive Antex range of soldering irons, power supply units and accessories, please clip the coupon.

Electronics

[^5]Devon PL19 8DE. Tel: 0822613565 . Fax: 0822617598 . Telex: 9312110595 AE G. Please send me full detals of the full range of Antex soldering products.

Name
Address

CIRCLE NO. 148 ON REPL Y CARD
With 48 years' experience in the design and manufacture of several hundred thousand transtormers we can supply:
AUDIO FREQUENGY TBANSFORMERS OF EVERY TYPE
YOU NAMEIT! WE MAKEIT!
OUR RANGE INCLUDES:
Microphone transformers (all types). Microphone Splitter/Combiner transformers. Input and Output transformers. Direct Injection transformers for Guilars. Multi-Secondary output transformers. Bridging transformers. Line transformers. Line transformers to B. T. Isolating Test Specification. Tapped impedance matching transformers. Gramophone Pickup transformers. Audio Mixing Desk transformers (all types). Miniature transformers. Microminiature transformers for PCB mounting. Experimental transformers. Ulira low frequency transformers. Ulira linear and other transformers for Valve Amplifiers up to 500 watts. Inductive Loop transformers. Smoothing Chokes. Filter, Inductors, Amplifiers to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers. Speaker matching transformers (all powers), Column Loud-speaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY, OUR PRICES ARE HICHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible.
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS HI-FI ENTHUSIASTS, BAND GROUPS AND PUBLIC ADDRESS FIRMS Export is a speciality and we have overseas clients in the COMMONWEALTH, EEC, USA, MIDDLE EAST, etc.
Send for our questionnaire which, when completed, enables us to post quotations by return.

SOWTER

TRANSFORMERS
PO Box 36, Ipswich IP1 2EL, England. Phone: 0473252794 \& 0473219390 Telex: 987703G Fax: 0473236188

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.
 R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG.

5 mins. from Tally Ho Corner

Telephone:
 01-445 2713/0749

CIRCIE NO. IU9 ON REPLYCARD

Toroidal Transformers

As manufacturers we are able to offer a range of quality toroidal and laminated transformers angory comememeperas

Toroidal Price List

Quantity prices Exclude VAT \& carriage

va	Mail Order	1-5	6.	16	25	50 .	100
15	9.72	8.75	6.42	6.08	5.49	5.10	4.86
50	10.3	9.27	6.80	6.44	5.82	5.41	5.15
50	10.96	9.86	7.23	6.85	6.19	5.75	5.48
60	11.28	10.15	7.44	7.05	6.37	5.92	5.64
80	11.88	10.69	7.84	7.42	6.71	6.24	5.94
100	12.88	11.59	8.50	8.05	7.28	6.76	6.44
120	13.28	11.95	8.76	8.30	7.50	6.97	6.64
150	14.88	13.39	9.82	9.30	8.41	7.81	7.44
160	15.46	13.91	10.20	9.66	8.73	8.12	7.73
225	18.22	16.40	12.03	11.39	10.29	9.57	9.11
300	20.18	18.16	13.32	12.61	11.40	10.59	10.09
400	26.52	23.87	17.50	16.57	14.98	13.92	13.26
500	26.88	24.19	17.74	16.80	15.19	14.11	13.44
625	30.06	27.05	19.84	18.79	16.98	15.78	15.03
750	38.42	34.58	25.36	24.01	21.71	20.17	19.21
800	43.96	39.56	29.01	27.48	24.84	23.08	21.98
1000	53.54	48.19	35.34	33.46	30.25	28.11	26.77
1200	59.08	53.17	38.99	36.92	33.38	31.02	29.54
1500	68.82	61.94	45.42	43.01	38.88	36.13	34.41
2000	84.12	75.71	55.52	52.58	47.53	44.16	42.06
2500	109.96	98.96	72.57	68.72	62.13	57.73	54.98

These prices are for single primary with two equal secondarie with 8 colour coded fly leads.
Available from stock in the following voltages: 6-0-6, 9-0-9, 12-0-12, 15-0-15,
$18-0-18,22-0-22,25-0-25,30-0-30,35-0-35,40-0-40,45-0-45,50-0-50,110,220,240$. Primary 240 volt.

Air Link Transformers
Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts Tel: 0279724425 Fax: 0279724379

Heating the sky mirrors

The letter from Tony Hopwood ("Radio) Mirror" $I: \& W W$. September 1989. page 877) shows how ionospheric hot spots can be produced by highpower terrestrial transmitters. His observations appear to be novel in recording the presence of hot spots due to microwave satellite up-link transmitters. However, ionospheric heating and its potential use for extended-range VIIf scatter communications and longrange "monitoring" has been recognized and investigated for well over a decade. Under the heading "Artificial radio aurora" in WW. February 1975. page 86 . I wrote:
"In his 1966 inaugural address as president of the IEE. J.A. Ratcliffe noted that when the long-wave broadcasting station at Droitwich is switched on the temperature of the electrons at a height of about 1001 km increased by about $45^{\circ} \mathrm{C}$. This technique of using radio transmitters to heat up the electrons in the ionosphere is heing investigated in the United States and the USSR as a means of producing artificial radio aurorat to permit scalter communication on frequencies up to UHF over distances of some hundreds of miles. Details of this work. on behalf of the US Department of Defense. have recently been given in two American amateur journals with a view to further participation by a mateurs. Much of the hasic research has been done by the Institute for Telecommunications Sciences (ITS) and the Stanford Research Institute and has already shown that this propagation mode could be of interest to amateurs. For example, on May 11. 1972. K7PXI in Phoenix was heard via ARA in Socorro. New Mexico, In these tests, very high-power HF transmissions (typically about 5 MHz) are heamed upwards with an ERP of the order of 5 megawatts, raising the temperature of the electron gas. forcing it to expand along the magnetic field and so permitting scattering from the fieldaligned irregularities.
-The tests have shown that the effect on forward-scatter signals is almost coincident with the switching on and off of the 'heater' transmitter both in the F-layer and the E-layer. High-power transmitters suitahle for this work currently exist at Platteville. Colorado and at Arecibo. Puerto Rico and also in the USSR at Gorki. "

Since then it has also been shown that it is possible to generate ELF waves in an artificially-heated ionosphere by the non-linear "mixing" process that was recognized in the 1931)s as the Luxembourg Effect.

A paper by Min-Chang Lee and J.A. Fejer of the University of California. ("Theory of short-scale field-aligned density striations due to ionospheric
heating." Rudio Science vol. 13, no. 5. 1978), noting that powerful radio transmissions from the ground produce a variety of modification effects in the ionosphere in addition to simple heating by ohmic dissipation reported: "One of the unexpected effects of ionospheric heating experiments was the generation of short-scale field-aligned striations."

Since we may safely assume the interest of military and sigint organizations in the practical applications of artificial radio aurora (ARA) it is not surprising that little has been published on the final outcome of the American experiments.

Much nearer to Earth, the possibility that large aircraft can, in specific atmospheric conditions, produce temperature inversions in the troposphere capable of sustaining VHF/UHF communications over ranges of about 450 km has been attracting the attention of Australian radio amateurs. In 1985. stations in Melbourne and Sydney investigating communication by weak forward scatter were surprised occasionally to hear relatively strong signals from lan Cowan. VKIBG near Canberra, roughly midway between them. Observations showed that the signals, lasting from just a few minutes to tens of minutes. coincided with the flight of large aircraft between Melbourne and Sydney.

Some of the Australians believe this can be entirely explained as a form of bistatic radar with signals scattered from the metal surfaces of the aircraft. But others are convinced that in some circunstances the large amount of heat discharged from the engines produces a temporary temperature inversion, with the geometric shape of its wake resembling at two-dimensional copy of an inversion produced in nature.
Brian Measures, GOHKR believes that this form of aircraft-enhanced propagation is due to aircraft exhaust trails (condensation trails or contrails): "In the tropical stratosphere, where the lowest temperatures are to be found. persistent contrails are formed by the aircraft exhaust gases. These gases contain sublimation nuclei, so causing supersaturation with respect to ice with radio signals possibly bouncing off the resultant ice particles formed in the contrail." This would account for the varying length of the openings depending on the creation of contrails in lowlevel or high-level saturation conditions with contrails either a short plume or of a long persistent nature. It would be interesting to know if such conditions show up on Australian radars or if there is allways a Doppler shift of the order to be expected if the scattering is entirely from the aircraft surfaces.

An example from the American experiments in the early 1971s showing F-region scatter reception of signals on 20.5 MHz over an Arkansas/California path at time when this was above the MUF. Signal enhancement appears about 20 seconds after the "heater" on 5.2 MHz is turned on, with the signal again fading into noise some 20 seconds after the high-power transmitter is turned off. (Scattering characteristics of artificial radio aurora, by Victor Frank, WB6KAP, Ham Radio, November 1974).

RF CONNECTIONS

The problems with HF packet

The teleprimer began to replace morse for line communications during the 1920s: and attempts were soon being made, for example at the US Navy Research Laboratories. to adapt the machine for use on radio circuits. Difficulties were quickly revealed and it was another 20 years before radioteleprinters could be used by navies on an operational basis over HF circuits. and then only with difficulty. HF signals vary in strength by $20-40 \mathrm{~dB}$. sometimes by 80 dB ; multipath propagation can result in time differences of from I to 3 milliseconds; clear channels are frequently not available. Unprotected HF circuits using teleprinters have typical character error rates, evell on good paths. of $1: 10^{2}$ compared with the $1: 10^{6}$ often demanded for digital data

All radio teleprimters are based on the Murray five-unit baudor code. CCIR Recommendation 476 established the Dutch TOR (Teleprinter-over-Radio) protocol-a single-channel synchronous system using a seven-unit errordetecting code with a modulation rate of 100 baud and a througliput of 50 baud if no repeats are requested, reducing in practice to perhaps $20-30$ baud in poor but usable path conditions
CCIR476 provides the same 32 character set (capital letters only) as the No 2 Baudot code plus six special signals. A small number of character errors may be printed; but a notable feature of SITOR and other members of the TOR family, including the amateur radio AMTOR established in the tate 1970s by Peter Martinez. G3PLX, is its very
acceptable performance on weak signals in poor radio conditions, often approaching the best that can be achieved on hand-sent morse by experienced operators. It can be received in a bandwidth of about 300 Hz .
However, the fixed-rate transmission, with a maximum efficiency of 50% and the possibility of some uncorrected errors, makes it less than ideal for modern digital systems linking computers for which the standard ASCII code with its 128 character set (plus error detection) is needed. The emergence of "packet" systems for telecommunication circuits soon led to experiments to determine their possible application to single-channel HF/VHF/UHF radio.
Information is sent in packets of varying length, typically un to about 60

Antenna computers vindicated

It has sometimes been suggested that antenna engineering can be divided into two different eras - before and after computers. Nevertheless much of the work now carried out with the aid of computers is based on earlier work when only human intelligence and painstaking mathematical analyses were the order of the day. And it is only recently that there has been less need to remind ourselves that with computers as well as humans "garbage in results in garbage out"

Much of the current attraction of computers in antenna engineering stems directly from the development a decade ago of the Numerical Electio-

Fig. 1. Effect of reflector-to-radiator spacing according to Lawson (solid line), Mininec (rings), Viezhicke (plus signs, +) and Pozar (crosses, x).
magnetic Code (NEC) with software based on the sophisticated mathematical "method of moments" procedure originally formulated, although not as a computer program, by R.P. Hartington in 1968. It is already clear that NEC has opened a new era in antenna analysis and design that is quickly overtaking the costly, time-consuming and not always reliable use of model antenna ranges, permitting the paper design of practical antenna systems, determining and modifying the directivity, gain, input impedance and radiation patterns.

The original NEC software required the use of a mainframe computer and was thus of limited appeal to field engineers. However, about 1982 the US Naval Postgraduate School in California wrote a simpler Mininec program for use with readily available personal computers. This team, and others including D.M. Pozar, have since further developed and amended such software which covers "thin-wire" antennas where only axially-directed currents flow on the conductors

Dr Brian Austin (University of Liverpool) has recently pointed out ("Validation of microcomputer antenna codes", IEE Conference Publication No 301 ICAP89) that validation of Mininec and similar software is vital if any degree ot confidence is to be generated in this form of computer modelling procedure This can be done either by experimental validation using full-scale or carefullycontrolled scale-model measurements
or by comparing computer-generated results with published literature not based on computer codes
Dr Austin has adopted both methods. although he has concentrated on comparing computer and non-computer analyses of a series of basic antennas including inductively-loaded short monopoles, capacitive end-loaded wires. simple forms of the Yagi-Uda antenna with wire elements, linear travelling-wave antennas, the corner reflector and also the interaction of antennas with metal supporting masts. His general conclusion is that "Mininec can be used with confidence to model a variety of antenna configurations, given

Fig.2. Input impedance of the Yagi-Uda array, by Lawson (solid line), Mininec (dots and dashes) and Pozar (broken line).
characters at a time, with a selection of signalling rates up to 9600 baud or more. A number of stations can theoretically use a single channel in timemultiplex. The receiver will not accept for display any packet in which even a single error is detected. The penalty is that many more repeats are likely to be demanded than with TOR unless the path is of a quality most unusual for HF and by no means always available on VHF or UHF

Although significant numbers of radio amateurs. and an increasing number of protessional users. are now using the AX. 25 packet protocol on HF, there is a growing body of opinion that radical changes will be needed if the system is to be widely used on HF. Douglas Lockhart. VE7APU a pioneer of packet
radio in 1978, has written: "When I developed it, it was intended for VHF/ UHF/microwave. It is being used on HF but requires a 99.9% reliability of the bits getting through to be useful. because you have to have a whole set of bits coming through in order to receive them perfectly,"

Paul Rinaldo, W + RI, editor of $Q S T$. believes the time has come for a re-think of the AX 25 protocol, taking into account multipath. intersymbol distortion, group delay, interference error bursts, excessive retries, etc.

Admittedly, ASCII codes overcome problems caused by the corruption of machine characters (carriage returns. line feed etc.) experienced with fiveunit teletype codes. The Admiralty Research Establishment has successfully
developed a special slow-speed modem using ASCII with frequency and time diversity combined with an intelligent detection and decoding algorithm. This is claimed to provide reliable HF communication under conditions that would previously have required a fall-back 10 morse. It uses ten 100 -haud tones in a 3 kHz band to provide a data rate of just $10 \mathrm{bi} / \mathrm{sec}$ ond. But such a modem is a long way from the type of HF packet networks now coming into use on a variety of protessional and military networks as well as by radio amateurs. For amateurs at least. AMTOR with baudot teleprinter code rather than packet with ASCII seems the logical choice for HF for those no longer sat isfied with morse.

RIF Connections are by Pat Hawker
its constraints in terms of the number of wires and segments available"

One aspect of his investigation of Yagi antennas should be of particular interest, to both professionals and radio amateurs. For many years one of the standard references used when building high-gain. long-boom VHF/UHF Yagi arrays has been a 20 -page, 1976 publication of the US Deparment of Commerce and National Bureau of Standards (NBS Technical Note 688, "Yagi Antenna Design" by Peter P. Viezbicke). based on experimental measurements made on a 400 MHz antenna while optimizing designs. Viezbicke attempted to show (a) the effect of

Fig.3. Front-to-back radio of the YagiUda array: Lawson (solid line), Mininec (broken line) and Pozar (dots and dashes).
radiator spacing on the gain of a dipole; (b) the effect of different equal-length directors, their spacing and number on realizable gain; (c) the effect of different diameters and lengths of directors on realizable gain; (d) the effect of the size of a supporting boom on the optimum kength of parasitic elements; (e) the effect of spacing and stacking of antennas on gain; and (f) measured radiation patterns of different Yagi configurations.

This monumental work has deservedly influenced antenna design during the past decade and has much improved the results achieved with such long-boom. multi-element antennas. But 1 recall that after I had published a short summary of the NBS study. Les Moxon. G6XN and formerly of Admiralty Research, although reluctant to criticize another author's work, was moved to suggest that "Peter Viezbicke has failed to ask himself the two basic questions that should always be considered when presenting such findings: (1) do the results make sense?; and (2) are they consistent with previous work, and if not, why not?"

He was particularly concerned about two of the basic findings derived from the 400 MHz antennas: "For a dipole with simple single-rod-type reflector. Viezbicke puts the optimum gain as only 2.6 dBd (i.e. 4.7 dBi) with an increase of an extra 0.75 dB to 3.35 dBd with a considerably more elaborate trigonal reflector. Then with the addition
of just one director (using the trigonal reflector), wham, the gain shoots up to 7.1 dBd . The third element thus appears to be capable of providing an extra 3.75 dB of forward gain"

Les Moxon pointed out that if Viezbicke's findings could be substantiated they would provide an overwhelmingly strong argument in favour of using three-element rather than two-element HF Yagi arrays. He added however: "Real life just isn't like this. Curves in the ARRL Antenna Book and elsewhere based on the classic 1937 paper hy Dr George Brown show gains in excess of 5 dBd for a dipole plus reflector, and I have repeated the calculations myself many times. obtaining figures in the region of 5.2 to 5.4 dBd depending on the particular source of data on mutual impedance". In practical designs. he suggested. it seems possible to achieve about $5 \mathrm{dBd}(7.1 \mathrm{dBi})$ forward gain from just two elements but only roughly 6 dBd from three elements.

In his ICAP paper, Dr Austin compares his computer results using Mininec and Pozar computer codes with Peter Viezbicke's data and also with that of J.L. Lawson ("Yagi Antenna Design", ARRL, 1986). Figure 1 shows the effect of reflector-10-radiator spacing on array gain and underlines how closely the computer results agree with classic theory yet differ significantly from those obtained by Viezbicke on the antenna range. A startling validation of microcomputer antenna codes!

Helix antennas for user-friendly FM

For much of the past decade the BBC has been seeking to increase the use by listeners of its VIIF/FM services by making reception easier with userfriendly FM sets. Indeed, the introduction of RDS is one aspect of this policy. although imposing a significant cost penalty on listeners. Some years ago the BBC tried, with little noticeable success, to increase the popularity of FM listening by designing and offering to industry a portable receiver with pushbutton tuning and an active ferrite-rod antenna* (with pre-amplifier) in place of the awkward, and sometimes dangerous. telescopic rod. This design had little impact on an industry in which British production had sunk almost out of sight.

With the proposed ending of duplication of programmes on VHF and medium- and long-wave stations, the BBC has been renewing its efforts by taking another look at user-friendly antennas for portable FM receivers. Using a large TEM cell of the type now used for checking the immunity of receivers to local RF fields. BBC Research has assessed the characteristics and practicality of five different types of antennas suitable for use with portable FM receivers.
R.D.C. Thoday (IEE Conference Publication No 301 (ICAP89). Part 1. pages 502-6) compares the characteristics of (1) the quarter-wave whip. (2),

Characteristics of antennas for portable FM receivers

Notes

. Short whip about 260 mm long. Q may be larger than necessary, makıng trackıng diffıcult sensitivity at band edges. resonance.
the short whip. (3) the ferrite antenna, (4) the frame antenna, and (5) the normal-mode helix antenna. His results are summarized in the table. He concludes that the helix is "a very strong contender as the ideal antenna for the portable receiver".

He shows that reasonably good re-

Experimental normal-mode helix antenna for portable VHF/FM receivers (BBC Research).
ception can be achieved in a domestic environment using a compact helix which can be compact, robust and does not need to be accurately tuned. While the quarter-wave whip provides the most sensitive antenna for this application. the convenience of the helix, particularly in its more flexible forms, makes

| | Quarter-wave
 whip | Short
 whip | Ferrite | Frame 2 | Helix |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

. Sensitivity depends on cırcuit Q. governed by skın effect and tuning capacitor losses. With single-turn, thick-conductor loop.
3. Without tuning, a helix resonated to the centre of Band II will show a further 10 dB loss of

Variation of bandwidth with tuned frequency for a helical antenna, above its natural
it more suitable. The addition of metal foil to form a ground plane on the inside walls of the receiver cabinet is recommended, to improve the performance of both the whip or helix antenna.

The short normal-mode helix, comprising roughly a half-wavelength of wire wound on a suitable former and resonating as a quarter-wave antenna, is widely used for hand-held transceivers. in amateur practice often termed the "rubber duck" antenna.

BBC Research has also investigated the attenuation of VHF signals within a domestic (building) environment relative to the RF field at the standard height of 10 metres outside the building. It was found that the building loss is of the order of 13.6 dB with a standard deviation of 7.5 dB for vertically polarized Band II signals and 16.7 dB (standard deviation 6.7 dB) for horizontally polarized signals.

[^6]

CIRCIE NO. 144 ON REPLY CARD

THERE IS SOMETHING IN

THIS FOR EVERYBODY

CIRCIENO. 117 ONREPIY (ARI)

COMPUTER APPRECIATION,

The Penny Theatre, 30/31 Northgate, Canterbury, Kent, CT1 1BL. Te : (0227) 470512

HEWLETT PACKARD MODEL 5501A LASER TRANSDUCER. With Piezoelectric turing for precise control oi wavelength in measuring applications. With var ous mirrors and arcessories $£ 250.00$
KRATOS MS30 DOUBLE BEAM MASS SPECTROMETER. Approximately 8 years old with negative ion : apability \& fast atom bombardment (FAB) With gas \& direct introduction sample frobes \& with gas chromatograph inlet system Output spectra are avallable directly yla a HEWLETT PACKARD storage display \& a UV RECORDER A on-Ine DATA GENERAL DS60 omputer system, which includes a graphics printer \& iwa TEKTRONIX 4014 terminas analyses output The various sections of the instrument may be avallable spparately A new high flux magnet was fitted shortily before the instrument was decommissioned P.O.A
SPECTRA PHYSICS MODEL 164A 30mW HELIUM NEON LASER with power supply. A powerful Helum Neon laser ideally suited for holography $£ 350.00$.
LUMONICS SYSTEM 2000 RUBY LASER with Q swith. temperature controlled $K D^{2}$ frequency doubler outpu monitor 03 Joule per pulse Q-switched output 6 ppm Suttable lor holagraphy i ivolving moving objects A low power He/He laser to murror alignment and all manuals are included Current new price of equivalent model exceeds $£ 1500000 £ 3500.00$
ITT PERFECTOR TELEX MACHINE. With 32 k memory screen with slow scrolling keyboard etc together with operators and service manuals $£ 99.50$.
BIOMATION Model 810D LGGIC ANALYSER. Combines with any oscilloscope to provide 8 channel logic analys ${ }^{2}$ Size and colour to match Tektronix 400 series portables $£ 75.00$.
DIGITAL Q.BUS, box. power supply, and $8 \times$ dual slot backplane, all brand new. Needs easy modification (14 wirewrap connections) to update. $£ 75.00$.
TEKTRONIX Model 4051 intelligent graphics display with BASIC in ROM and RCA tape cartridge drive Good tub? and uspful for mantenance purposes $£ 99.50$.

COMPUTER APPRECIATION IS FOR SALE

The successful business established in 1973 is for sale due to the present proprietor moving overseas. The stock in hand, trading name \& knowhow are all available for a lot less than you'd imagine.

VIDEO ENGINEER/TECHNICIAN (MOBLLE)

Ref: 82/89
We have an immediate vacancy for a qualified Video Engineer/ Technician to work in the Portsmouth and West Sussex areas. Experience must include maintenance and repair of high band U-matics, TBCs, Vision and Sound Mixers, three tube colour cameras and CCUs.

The salary package includes the provision of a company vehicle and an excellent pension and life assurance scheme
For further information and an application form please contact: Mrs. A.R. Sive, Assistant Personnel Manager Telephone: 024074461 Ext: 407

The Services Sound and Vision Corporation. Chalfont Grove. Narcot Lane, Chalfont Si Peter. Gerrards Cross. Bucks SL9 8TN

This company has two vacancies for people to train as Location Engineers working on Broadcast and Corporate programmes. Successful applicants would be joining one of the countries foremost suppliers of location video crews. Once trained they can look forward to interesting work which includes travel both in the U.K. and abroad.
Applicants should have City \& Guilds Part's I, II and III in course 224 or equivalent. A clean driving licence and preferably some practical experience of domestic $\mathrm{VHS} /$ Beta machines and televisions.
Please supply contact telephone number with application in writing to:-

David Bevan General Manager
Crystal Film \& Video Limited
50 Church Road London NW10 9PY

WANTED
 ENGINEERING STAFF

Communique a go－ahead company involved in the design，development and production of VHF／UHF communications equipment and accessories are looking for engineers for the following jobs：－

1．TRAINEE SERVICE ENGINEER：

The applicant should either have practical knowledge in RF communications or have qualifications in the field of electronics with／without practical knowledge．
Salary Neg．depending on experience．

2．SERVICE ENGINEER：

The applicant should have at least 2 years experience in the service of VHF／UHF communications equipment down to component level．The successful applicant will be servicing land mobile，marine and amateur radio products．
Salary：£13，000－£15，000．
3．ANALOG RF DESIGN／DEVELOPMENT ENGINEER：
The applicant should have experience in RF product design with an understanding of mechanical assembly．
Salary：According to experience．
C．V．＇s for the attention of Mr．Farr
Communique（UK）Limited，
Communications House，
Purley Avenue，
London NW2 1SB．

Tel：01－450 9755.
Fax：01－450 6826

TO ADVERTISE YOUR VACANCIES PLEASE CALL CHRIS TERO ON 01－661 8640

CAPTTAL RADTE958：8

CAPITAL RADIO ENGINEERING DEPARTMENT

MAINTENANCE ENGINEER

Capital Radio＇s Engineering Department has a vacancy for a suitably qualified maintenance engineer．Applicants should have a good working knowledge of microp－ rocessor－based systems，particularly when applied to machine control in a broadcast environment．A working knowledge of the C programming language would be an advantage．In addition，applicants should have had previous experience of broadcast systems or be ade to demonstrate an understanding of the operations of the components of a broadcast chain．
Applicants should be in possession of a full current UK driving licence and may be expected to work on a shift rota which includes weekends．Starting salary will be not less than $£ 14,766$ for a suitably qualified candidate．
Applications，in writing，should be addressed to Sue Davies，Head of Personnel，Capital Radio plc．，Euston Tower，London NW／3DR and should arrive not later than 4th September， 1989.

RF
 DES
 ENGS

Extremely Competitive Salaries

Circuit and System design using leading edge radio architectures
If you would like to hear about outstanding UK and European opportunities to work in satcoms，C I radar． mobile radio and personal comms，call lngineur on
0926817612
INGINEUR LTD（Agy）， Pendicke Street．
Southam．
Warks CVi3：3 OPN

InGInEUB

ENGINEER • IN • EUROPE

림ำ司司司司司司 ELECTRONIC ENGINEERS
Make your next career move a milestone not a millstone．
Irrespective of your career objectives－financial or geographical－let Cadmus put direction into your search
If you are a Qualified Service． Sales，Design，Production．Test or Quality Engineer，send your C．V．to the address below or relephone Norwich 761220 for an informal chat

PERSONNEL LIMITED
Freepost Sackuile Place
44．48 Magdalen Stree
Norwich NR 3 I BR
司司司司司司司司

TRAINING
 Short Course Programme

All dates are start dates All fees exclusive of VAT
Communications
Introduction to $\times 25$ Protocol－ 2 days， 18 Sept， 6365 Digital Communications 1．I week， 27 Nov， 1650 Digital Communications 2－2 weeks， 27 Nov， 11200
Television
Video Distortion Measurements－ $1 /$ days， 18 Oct， 28 Nov， ¢255
Television Principles－ 1 week， 4 Sept， 6 Nov，$£ 650$
TV Principles \＆Measurements－ 2 weeks， 4 Sept， 6 Nov，
f1200
Transmission
－TV Signals \＆Measurements（Video \＆RF）－ 3 weeks， 6 Nov， 1800
Radio 8 TV Transmission－ 2 weeks， 25 Sept， 11200 Radio Transmission（MF \＆VHF）－ 2 weeks， 4 Sept， 23 Oct， 11 Dec，$£ 1200$
\square Satellite Television
－Introduction to Satellite TV 8 MAC systems 20 min video（non－Technical） 148 DID2 MAC－Packet，Cistance Learning \＆ 23 min video，$f 522$Engineering Publications Service

[^7]
CLASSIFIED

(Please add on 15% V.A.T for prepaid advertisemenis)
BOX NUMBERS: $£ 15.00$ extra. (Replies should be addressed to the box number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
Cheques and Postal Orders payable to REED BUSINESS PUBLISHING GROUP LTD and crossed

ARTICLES FOR SALE

SUMMER SALE

OSCILLOSCOPES \& GENERAL TEST EOUIPMENT All items supplied in tested and working condition. Calibration verified at no extra cost.

TEK 475 200MHz - D. Beam - DT. Base
$£ 485$
TEK 475 A 250 MHz
Phone for details
TEK 7603 ch 7A16, 7A18. 7A26, 7B53A p/ins HP 1222 A i 5 MHz Dual Beam
$E 999$
Gould OS1 $100-$ SI 30 MHz Dual Beam
Philips PM3218 35MHz
Philips PM321750MHz
Cossor CDU150 35MHz
SE LABS SMI 1118 MHz

SPECIAL

MARCONITF2015 SIGNAL GENERATORS
10Mhz - 520Mhz AM-FM
£300
Also
Telequipment CTI 7 curve tracer - mint
£350
Marconi TF2008 Sig Gen's 10 Mhz - 510 Mhz AM-FM Marconi TF2002ASSig Gen's 10Khz - 72Mhz AM-FM

E400
Marconi TF 2603 RF Millivolt 10 1.5Ghz
Accessory kits available.
Racal Dana 9915 M TXO 8 digit DFM 510 MHz LED
£225
Advance DMM3 Mains/Batt Digital Multimeters
incl. case/probes
E45
Megger Insulation testers $250 \mathrm{v}, 500 \mathrm{v}, ~ V 8,9 \mathrm{~A}$ E35-E50

MANY, MANY more items in stock and arriving daily at our three acre depot in Nottingham. We are open to callers 9am - 6pm weekdays - 8am - 4pm Saturday PLENTY OF FREE PARKING.

Anchor Surplus Ltd., The Cattle Market Dept., off London Road, Nottingham NG2 3GY Telephone (0602) 864041 or Fax (0602) 864667 Rob Taylor (Technical Manager) ALL PRICES EXCLUDE VAT \& CARRIAGE

HAVING DIFFICULTY OBTAINING AN OBSOLETE VALVE/MACNETRON/KLYSTRON?

 (or transistor, I.c., CRT, trav wave tube etc)* RARE \& OBSOLETE TYPES A SPECIALITY!
* all popular types stocked at competitive prices
* SPECIAL PRICES FOR WHOLESALE QUANTITIES
* OFFICIAL ORDEPS FROM GVT DEPTS, MILITARY, PLCs, OVERSEAS ETC. WELCOME
* PHONE/FAXIELEX FOR UP TO DATE PRICES ON YOUR REQUIREmENTS Visa - Barclaycard - Access accepted

Good quality - Low price - Rarities a speciality
39 Highlands Road, Horsham, Sussex, RH13 5LS, UK Phone: 0403 210729. Fax: 0403 40214. Telex: 87271
Office hours Mon-Fri 9am-5.30pm. Callers welcome by appointment only

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.
 LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES RECTIFIERS, THYRISTORS, elC. RESISTORS, C/F. M/F, W/W, etc. CAPACITORS. SILVER MICA. POLYSTYRENE, C280. C296, DISC CERAMICS, PLATE CERAMICS etC ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc. ALL AT KNOCKOUT PRICES Come and pay us a visit ALADDIN S CAVE.

TELEPHONE: 445 0749/445 2713

R. HENSON LTD.

21 Lodge Lane, North Finchley, London N12 $(5$ menutes from Tally Ho Corner)

VSA
 Cooke International

DO YOU WANT SCOPES, GENERATORS, POWER SUPPLIES, POWER METERS, DVM'S, OSCILLATORS, ATTENUATORS, TEST EQUIPMENT

Contact: Cooke International, Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex PO22 0EB. Tel: 0243545111 . Fax: 0243542457 Wide range of items available. Send for lists.

> MANUFACTURERS SURPLUS STOCKS
> Electronic Components, Test Gear, Radiotelephones, Computers, Photographic and Video Equipment. All at knockout prices Export and Trade Enquiries Welcomed.

> Catalogues available from
> B. Bamber Electronics.

> 5 Station Road, Littleport, Cambs CB6 10E
> Telephone: Ely [0353)860185

8048/41 Cross-Assembler for MSDOS Computers

- Suitable for all IBM PC/XT/ATs or Clones
- Completely compatible with the Intel 8048 Assembler
- Comes complete wioth a 40 page User Manual and Mnemonic Card
- Supplied with either 5.25 or 3.5 inch disc - please state which.

XA-48 Assembler source code for all members of the $8048 / 41$ family:
$\begin{array}{lllllll}8048 & 8748 & 8035 & 8049 & 8749 & 8039\end{array}$ $\begin{array}{llllll}8050 & 8750 & 8040 & 8020 & 8021 & 8022\end{array}$ $\begin{array}{llllll}8041 & 8741 & 8041 \mathrm{~A} & 8741 \mathrm{~A} & 8042 & 8742\end{array}$

The XA. 48 Cross-Assembler is available from: MAPLE Technology Ltd. Park Road Centre, Malmesbury, Witis SN16 oBY Telephone: (0666) 825141

> Only £49.80 + VAT (including postage)

OUARTZ ('RYSTALS OSCLILA TORS AND FIITERS of all typos large stocks of standard items. Spe cials supplied to order P'ersonal and export orders welcomed - SAE for list please. OLM support thru: design advice prototype quantities, produc tion schedules Golledge Electronies. Merriott. Somerset T'A16 5NS. T'el: 146073718.

 whip base feeder (4.5 m) proweser VAT \& carriage. (iencroun discounta 201+ Bunty Communications. (ireenvich. Iondor $11-10126137$

G.W.M. RADIO LTD. 40/42 PORTLAND ROAD, WORTHING. Tel: 090334897

 citse centie s, weqp ser onds urfusen $£ 70$ ur Matirn
ischation transtomers 230240 v two secondities
 oqumed olfirs becondith ind insto teirphone

SATELLITE TV BOOKS

world satelite almamac
THE wotid of sarture Jy
harrison electronics

> TO ADVERTISE IN THE CLASSIFIED SECTION PLEASE CONTACT CHRIS TERO ON: 01-661 8640

UNIQUE HIGH SPEED COMPUTER CONTROL SYSTEM

Are You Efficient? Do You Progress Jobs?
Do You Carry Stock? Do You Have Answers for your Customers at your Fingertips?
We can offer you a totally tailored computer package which will revolutionise your business.
For information and prices, contact Martin at

Dardsoft

25 The Auto Centre, Erica Road, Milton Keynes. Tel: (0908) 310226

ARTICLESWANTED

WANTED
Test equipment. receivers, valves transmitters, componerts, cable and electronic scrap and quantity

Prompi service and cash M \& B RADIO 86 Bishopgate Street, Leeds LS1 4BB. Tel: 0532435649 Fax: 0532426881

STEWART OF READING 110 WYKEHAM ROAD
READING RG6 1PL
TEL: 073468041.
FAX: 0734351696
TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

WANTEI): VALVES TRANSISTORS I.C's uespecially types K'T66. KT88 PX4, "X25). Also plugs, sockets and complete factory cleatrance. If possible. send written list for offer by return. Billington Valves, phone: 040:3 210729 . Fax: 040340214 . See adpoimung idvert

WANTED
Receivers. Transmutters. Test Equpment, Components. Cable and Electronic Scrap Boxes, PCB's. Plugs ard Sockets. Computers. Edge TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EOUIPMENT. A. R. Sinclair, Electronics Stockholders, 2 Normans Lane, Rabley Heath, Welvyn. Herts AL6 9TO
relephone: 0438812193
 Fax 0438812387

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and Wants
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Electronics \& Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £6 PER LINE. Average six words per line. Minimum $£ 48$ (prepayable)
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus £15
- Cheques, elc., payable to "Reed Business Publishing" and cross "\& Co." 15\% VAT to be added.

NAME

ADDRESS

720K 3.5 WCH DRIVES $\mathbf{~ 5 3 9 . 5 0}+$ VAT

Excellent Japanese made high reliability ow component, cast chassis drive
Surface mount design. These drives have been removed from almost new systems being upgraded. They are in as new condition, are boxed and carry a full six month (money back) guarantee. 80 track double sided 1 M byte (unformatted)
£39.50 each (carr. £3) £35 ten or more. Quantities of 25 or more POA Cradle to fit drive in a $5.25^{\prime \prime}$ slot eg IBM pC $£ 4.99$ (carr. £1.00; or free with drive) Power and data connectors to suit £0.99p (carr. free) Box ten 3.5 discs $£ 9.95$ (carr. £1.50)

BONDWELL 286 AT COMPUTER

Fully IBM compatible AT machine with 80286 running at 10 MHz
Complete with ONE MEGABYE of RAM. 101 Key keyboard. 1.2 M byte
$5.25^{\prime \prime}$ floppy drive. Hercules video card, centronics and serial ports quality construction by famous name. Small footprint slze case with power supply all assembled and tested. Lowest ever price in the UK
©475.00 (carr. §15)

EPSON $12^{\prime \prime}$ TL MONO MONITOR (GREEN)

High resolution. IBM and Hercules compatible. TTL. Supplied complete with leads for direct connection to above or any other PC. £48.50 (carr. £5.50)

RACAL V22 MODEM MPS1222

Microprocessor based modem providing ful duplex communication at 1200, 600 and 300 baud to the CCITT V22 standard. Features include: "Can be used on standard "phone line (PSTN) and private circuit (PC) Auto answer but needs
telephone to dial ${ }^{*} 1200.600$ and 300 baud 'Very
high quality construction "BT approved 'Self and loop tests (V54)
-Comprehensive manual included. Uncased card with front panel £24.95 seven cards in rack £ 195 (carr. one £3.50; seven £15)

HARD DISC DRIVES

CDC Wren 80 M byte ST 50632 ms MFM $£ 349.00$ (carr. £5)
Rodime 26 M byte ST 506 MFM $£ 99.50$ (carr. £4)
CDC Wren 35 M byte non standard NRZ interface £69.00 (carr. £3.50)

5.25 FLOPPY DISC DRIVES

Shugart SA455 5.25" (360K IBM) 40 track double-sided $\mathbf{~} 34.95$ (carr. £3.50) Panasonic 5.25" (720K IBM) 80 track double-sided £34.95 (carr. £3.50) Bondwell $5.25^{\prime \prime} 1.2 \mathrm{M}$ byte IBM AT style drive $£ 49.95$ (carr. £3.50)

POWER SUPPLY

Farnell N180 cased 180 Watt PSU +5 V at $20 \mathrm{~A},+12 \mathrm{~V}$ at $2 \mathrm{~A} .-12 \mathrm{~V}$ at 2 A +24 V at 5 A and -5 v at 1 A . $£ 26.95$ (carr. §3)

DAISYWHEEL PRINTERS

Olivetti: 25 CPS. daisv printers complete WITH DUAL BIN
SHEETFEEDERS and RS232 interface. Emulates IBM, Qume and Olivetti Supplied with ribbon and typewheel. $£ 175.00$ (carr. $£ 10.00$)
Triumph Adler Royal: 20CPS. 132 column, variable pitch, all the leatures that you would expect from a quality printer. Six month guarantee, ribbon and typewheel included. RS232 interface only. £99.50 (Carr £6.50) HURRY STOCKS COMING TO AN END

FACIT ULTRA FAST DOT MATRIX PRINTERS

Prints at up to a maximum of 500 CPS. Made to a very high standard for continuous use. Compact slimline desktop model (only 26 inches wide). Ideal for Universities, large mailing lists, central printer in department or any other serious application $£ 349.00$ (carr. £25).

HITACHI COLOUR MONITORS

CM1473ME $14^{\prime \prime}$ MULTISYNC suits all standards. Latest technology high spec. monitor $£ 325$ (carr £12.50)
CM1474" as above but fixed on the VGA standard frequency $£ 275$ (carr £10)
VGA card provides standard plus super high resolution mode $£ 129.50$ (carr £3)
CM1457AE $14^{\prime \prime}$ PGA, 30.48 KHz . Can be converted to VGA $£ 149.00$ (carr ع6.50)
Circuit for DIY conversion provided.
CM1255DE $12^{\prime \prime}$ suit Olivetti or convert to EGA? £85.00 (carr. £5)

TRANSDATA Model 307 ACOUSTIC MODEM

V24 interface, 300 Baud, originate mode, etc. Fits modern or old style phones £9.95 (carr. £3.00)

STC SCRIBE KEYBOARDS

Keyboards as supplied with Scribe wordprocessors. These are serial units but no data is available. $£ 5.95$ (carr £3)

SOUND EQUIPMENT all second-hand

STUDIO LOUDSPEAKERS

EX-BBC 5-2 15" bass plus 2 HF units $£ 99.50$ pair (carr. £30)
EX-BBC LS3-1 as above but in smaller cabinets $\mathbf{£ 8 9 . 5 0}$ pair (carr. $£ 20$) EX-BBC LS3-4 compact corner cabinet with one $8^{\prime \prime}$ bass plus HF $£ 79.50$ (carr. £17.50)
EX-BBC RA8-1 mini monitor approx $14^{\prime \prime}$ high smart teak cabinets $8^{\prime \prime}$ bass plus HF £49.50 (carr. £10)

EDC RADIO MICS

Cygnus hand held system complete with mic., receiver, case and cables £199 (carr. §4)

VAT and carriage must be added to all items
Everything new unless stated otherwise

Visa \& Access
accepted 24 hour
phone service
matmos
Matmos Ltd. Unit 11, The Enterprise Park, Lewes Road, Lindfield, West Sussex RH16 2LX
Telephone: (04447) 2091 or 3830 Fax: (04447) 4258

NDIXTOMDURHISEIS

Appointments Vacant Advertisements appear on pages

PAGE	PAGE
AB1 Electronics 1041	J \& M Computers 1097
Airlink Transformers 1118	Johns Radio 1108
Antex Electronics................. 1117	L. J Technical Systems 1087
Audio Electronics 1036	Lab-Volt (UK)1063/OBC
Betronix UK 1108	Langrex Supplies 1108
Carston Electronics............... 1063	Laplace Instruments 1107
Cavendish Automation 1053	Levell Electronics 1097
Colbys Column 1051	M \& B Radio (Leeds) 1123
Computer Appreciation 1123	M Q P Electronics................ 1068
Crotech Instruments............. 1060	Matmos.............................. 1128
Display Electronics 1102	Natel Electronics 1088
Electrovalue 1123	National Instruments 1034
Farnell International........... 1056	Number One Systems 1038
Greenwood Electronics 1049	Pineapple Soft ware 1068
Hitachi Denshi (UK)............ 1088	R Henson 1118
I R Group 1074	Raedek Electronics Co 1107
ICOM UK 1060	Ralfe Electronics 1087
J A V Electronics................. 1068	Research Communications 1094

PAGE
RTT Systems 1060
Schlumberger Instruments ... 1055
Sherwood Data Systems 1053
Solex International 1073
South Midlands Communications 1093
Sowter Transformers 1118
Stewart of Reading.................. 1118
Strumech Engineering 1123
Taylor Bros. (Oldham) ... 1082/IBC
Thandar Electronics 1097
Those Engineers............ 1093/1116
Thurlby Electronics 1036/IFC
Triangle Digital Services....... 1093
Tsien 1117
Waveband Electronics 1117

A V Electronics

OVERSEAS ADVERTISEMENT AGENTS
France and Belgium: Pierre Mussard, 18-20 Place de ła Madelaine. Paris 75008
United States of America: Jay Fenman. Reed Business Lid. 205 East 42nd Street. New York. NY 10017 -Telephone (212) 8672080 - Telex 23827
 for the proprietors. Reed Business Publishing Lid. Quadrant Ilouse. The Quadrant. Sutton. Surrev SM2 SAS © Reed Businesp Publishing Ltd 1989 . Electromiss amb Whirpss World can be oltained
 Wireleses World \$5.45174\%131.

Telecommunications Training from fundamentals to state-of-the-art technology

Lab-Volt offers a comprehensive range of telecommunications training ecuipment that zovers basic electronics, analogue and digital communications circuits and systems, fiore optics, and microwave and radar technjlogies.

Our equipment s:

- modular and easy to upgrade
- industry relevant
- engineered for educational purposes.

Lab-Volt closely relates its telecomnunications training equipment to operational svstems found in industry, with educational enhancements such as fault insertion switches in many of the modules, labelled and easily-accessible tes: psints, shortcircuit protection, silk-screened corrpo ent identification, and full signal compatibility for system-level modules. We susply student and ins:ructor manuals that are written specifically for the equipment; they provide practical hands-on technical training with step-by-step exercises, laboratory experiments, and troubleshooting activities.

TAYLOR

R.F. EQUIPMENT MANUFACTURERS

PERFORMANCE

 \& QUALITY19" RACK MOUNT CRYSTAL CONTROLLED VESTIGIAL SIDEBAND TELEVISION MODULATOR

19" RACK MOUNT VHFIUHF TELEVISION DEMODULATOR PRICE AT ONLY $£ 198.45$ (excluding VAT \& carriage)

WALLMOUNT DOUBLE SIDEBAND
TELEVISION MODULATOR
PRICES FROM ONLY $£ 109.76$ (excluding VAT \& carriage)

Prices

CCIR/3 SPECIFICATION	
Power requirement	- 240V 8 Watt (available other voltages)
Video Input	- IV Pk.Pk 75 Ohm
Audio Input	- 8V 600 Ohm
FM Scund Sub-Carrie:	-6 MHz (available 5.5MHz)
Modulation	- Negative
IF Vision	$-38.9 \mathrm{MHz}$
IF Sound	- 32.9 MHz (available 33.4 MHz)
Sound Pre-Emphasis	- 50us
Ripple on IF Saw Filter	$-.6 \mathrm{~dB}$
Output (any channel $47-860 \mathrm{MHz}$)	$-+6 \mathrm{dBmV}(2 \mathrm{mV}) 75 \mathrm{Ohm}$
Vision 10 Sound Power Ratio	- 10 to 1 l
Intermodulation	- Equal or less than 60dB
Spurious Harmonic Output	- -40 dB (80 dB if fitted with TCFLl filter or combined via TCFL4 Combiner/Leveller
CCIR/3.1	- Specification as above but output level 60 dBmV 1000 mV Intermodulation 54 dB
Other Options Avalable	- 1.F. Loop/Stereo Sound/Higher Power Output
Alternatuve Applications	- CCTV Surveillance up to 100 TV channels down one coax, telemetry camera control signals, transmitted in the same coax in the reverse direction
802 DEMODULATOR SPECIFICATION	
Frequency Range A.FC. Control	$-45-290 \mathrm{MHz}^{2}, 470-860 \mathrm{MHz}$
Video Output	- IV 75 Ohm
Audio Output	- 75 V 600 Ohm unbalanced
Audio Monito: Output	-4 Ohms
Tunable by internal preset Available for PAL System I or BG	

	CHANNEL COMBINER/FILTER/LEVELLER to combine outputs of modulators
TCFL2	2 Channel Filter/Combiner/Leveller. Insertion loss 3.5dB
TCFL4	4 Channel Fitter/Combiner/Leveller. Insertion loss 3.5dB
TSKO	Enables up to $4 \times$ TCFL4 or TCFL2 to be combined.

TAYLOR BROS (OLDHAM) LTD BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND.

[^0]: Status: .. Tel:

[^1]: l'ibereh is a registered trademark of Focas lid, Uhit t. (homel Mamor lndustrial Extate, Sisinden. Wiltshire SN?

[^2]: SMC LTD, SM HOUSE, SCHOOL CLOSE, CHANDLERS FORD INDUSTRIAL ESTATE, EASTLEIGH, HANTS SO5 3BY

[^3]:

[^4]: *F. .1. Kabbary, M. C. Hately and B. (i. Sewurl, Marwell's equetions and the cross-field armenna. Electronics \& Wireless World March 1989. page's 216-218. For a rebultul, see also 1 © IUCrs. July. pagen82.

[^5]: Antex (Electronics) Limited, 2 Westbridge Industrial Estate, Tavistock,

[^6]: *See Band II ferrite aerial unit. by R.D.C. Thoday. Wireless World September 1977. 47-48.

[^7]: For details call Stuart Webber on 0297．2205
 Harman Engineerirg Training College（WW2）
 Fore St Seaton Devon EX12 2NS Fax 0297－24419

