## ELECTRONICS \& WIRDLESS WORLD

SEPTEMBER $1989 £ 1.95$

Experts speak prolog

## The risc business

Broadcast quality AM demodulator

IN DEPTH PC based systems



[^0] ENTERI ON REPLYCARD

## SEPTEMBER 1989 VOLUME 95

Who needs electronic circuit analysis? "Digital circuits are only overdriven analogue ones." Adrian Espin discusses computer-aided modelling.

## 858

AM synchronous demodulator. Synchronous demodulation can improve signal to noise ratios and reduce distortion in AM signal detection

## 866

The risc business.
Conventional micros are more complex than they need to be for most jobs. We examine the alternative.

## 879

Experts speak Prolog. The
artificial intelligence language
Prolog gives computers a touch of humanity.

## 912 Gauss for concern. The

 confusion overelectromagnetic units started with Faraday and Ampère. It has remained a mess ever since.

920
Sound in the picture. The concluding part of Paul Gardiner's article on NICAM TV stereo sound looks at the transmitting end of the system.

Analogue Action. IGHz opamps. high power op-amps and high speed power mosfets.

927 The what and how of CRCs. Cyclic redundancy checks are an extension of parity bit error detection into copy protection and program errors.

## 869

## PC controlled

 instrumentation. Business computers provide a virtual front panel for instruments without knobs.
## IN DEPTH

## PC-based systems

884SCSI and desktop computing. The small computer system interface, originally designec for intelligent dishs, now finds itself in external peripherals.

RS-232 for instrument control. and cheaper: instruments can use the standard PC serial port.

## 892

NPL's ultrasound beam calibrator. An application story with a happy ending features a PC at the heart.

898 Inside the IBM PC. Technical applications of the PC require users to have some knowled ge of the internal workings.

## REGULARS

843 Comment. A nation of hairdressers.
845 Research Notes. Diamond transistors, cosmic illiteracy and bloodless surgery.
854 Applications. Class D stereo amplifier, FM stereo decoder with a linear, blending multiplexer and inductors for DC-io-DC conversion.
856 Research profile. The Welding Institute. The UK's leader in microchip bonding and packaging techniques.
862 Update. News from around the industry.
871 New products classified. The monthly att-a-glance round-up.

874 Letters. Microwave mirrors in the sky, cross field antemnas, ball bearing motors, photo zeners. circuit symbols and mosfet audio are anong the topics you have written about.
903 On the House. Our round-up of parliamentary affairs as they affect the elect ronics industry.
906 Pioneers. Joseph Henry. an actor turned engineer and scientist, gave his name to both the unit of inductance and an American town.
916 Broadcasting and RF Connections. Our regular column concerned with RF engineering and the broadcast world.
932 Classified.

Readers in the USA facing difficulties in obtaining this magazine are invited to call Worldwide Media Services Inc. toll free on (800) 345-6478.


In the early days, technology limited the power of medical ultrasound beams but now there is a growing need for controls on beam power. Two companies and the NPL each describe their part in the design of a PC-based ultrasound calibrator, page 892.

## next issue

## ELECTRONICS WORLD

+ WIRELESS WORID
octosin rimasivo
MWI Wr mell
 amiasonymiles:

Limbluing and ilve itmospiliera

## CAE mevirews

for alro 19:


In next month's issue. Notice the difference? We hope so. Our name changes to Electronics World + Wireless World, only the fourth tifle change in our 76 year history. We feel that the new name reflects our empathy with the rapidly changing electronics industry. But rest assured. We retain completely our commitment to represent the widest range of reader interest from mainstream technology to fringe science. We underline this commitment by publishing an exclusive feature on electronic surveillance delivered from the horse's mouth. In the October issue.

# TAYLOR RF/video measurement instruments 

## MEASUREMENTS MADE EASY



| UNAOHM EP741FMS FIELD STRENGTH M |  |
| :---: | :---: |
| Frequency Range: |  |
| Frequency Readins |  |
| ${ }_{\text {Furscion }}^{\text {FV Monior }}$ | NORMAL: $\quad$picture only <br> 2101 horizontal magnification of picture <br> ZOOM |
|  | Panoramic display of the frequency spectrum within the selected biand and of Uning marker |
| , | Adjusable expansion of a porion of the spec |
| A nalogue | 20 to 400B, Static measuremen of received signal. Scale calibrated in dBuV (at op of picture tube) or mas |
| ter: | sov. |
| $\left\lvert\, \begin{aligned} & \text { Measurement } \\ & \text { Range: } \end{aligned}\right.$ | 20 to 130 dBuV in ten 100 B attenuation steps for all bands. 60 to 130 dBuV in nine 10 dB steps for $1 . \mathrm{F}$. |
| Measurement Indication: | ANALOGUE: brighness sripe against calilitrated ceale superimposed on |
| Video Outpu: | bNC connecior. IVPp maximum on $75 \Omega$ |
| dco | +12V/SOmA maximum. Power supply source |
| TV Receiere: |  |
| Additional Feaures |  |
| Price: | £1344.00 nell excluding V.A.T. and Cariage |


| UNAOHM EP742 <br> FIELD STRENGTH METER/SPECTRUM ANALYZER |  |
| :---: | :---: |
| Specification as EP741 + Synthesized Tuning 99 channels, Programme Storage. (EPB15 Satellite Converter can be added as illustrated) |  |
| UNAOHM EP815 <br> T.V. SATELLITE CONVERTER |  |
| Frequency Range of Inpuu Signal: | 950 MHz to 1750 MHz . Frequency is continuously adju control. |
| Frequency Reading: | Throughout the frequency meler of the asscialed field strength meter. |
| Input Signal Level: | m 20 to 100dBuV in two ranges -20 1070 and 70 10 10 |
| Power So | Available al BNC input connectors as follows: 15 V DC 0.5 A internal or 25 V DC maximum extemal. |
| us Indication: | Continuity, overload and short circuit conditions of power circuit are all shown by LED lights |
| modulation: | FM for PAL and SECAM coding. Switching to MAC system is provided logether with room for an optional MAC decoder. |
| Audio Subcarrier: PRICE: | 5.5 MHz to 7.5 MHz continuously adjustable. Provision for an automatic frequency control, $£ 536.20$ |



TAYLOR BROS (OLDHAM) LTD.

## UNAOHM EH 1000

TELETEXT AND VIDEO ANALYZER
Function:
RF Input:

| Video Frequency |
| :--- |
| Input: |
| Teletext Input: |
| Teletex: Clock |
| lnput: |
| Oscilloscope: |

eye Pattern: display of RF and video-frequency teleext signals by means of eye jattern diagrams both in linear representation and lissajous figures ( 0 and X ). Lin ielection: display of video signals and line by line selection. Measurement of nodulation depih. Teletext: monitoring of teleetext pages.
Fiequency Range: 4510860 MHz . Frequency synthesis. 99 channel recall facility,
j0KHz resolution, 30 channel digital memory $j 0 \mathrm{KHz}$ resolution, 30 channel digital memory. Level: 40 to 120 dBuV ; attenuator continuously adjustable. Indicatoon of the minimum level for a correct operation of he instruments. Impedance: $75 \Omega$ Connector type: BNC

Piinimum Voltage: $1 V \mathrm{Vpp}$. Impedance: $75 \Omega$ or $10 \mathrm{~K} \Omega$ in case of a through-signal.
Connector type: BNC
Yoltage: $1 \mathrm{~V}_{\mathrm{pp}} / 75 \Omega$.
Soltage: $\mathrm{V} \mathrm{Vp} / \mathrm{F} 5 \Omega$. Measurement: Apernure of eye patterm; Linear or Lissajous Figures, selectable. Indication: directly on the picture tube. A calibrated scale s.ows percentage of eye pattern apernure. Errort the inssument introduces an error
of less than or equal to $5 \%$ with vidco input and $20 \%$ with RF input un of less than or equal to $5 \%$ with video input and $20 \%$ with RF input Jiter on regen' 2 dd and the 62 Sth scanning cycle by means of a 3 digit humbwheel switch.
VERTICAL CHANNEL: Sensitivity: 0.5 to 2 V pp/cm. Frequency Response: DC to 10M11z. Rise time: pre \& overshool tess than or equal to $2 \%$. Inpur Coupling: AC lirput 1 mpedance: $75 \Omega / 50$ pF
TME BASE: $S$ weep TME BASE: Sweep R Range: 20 to 10 ms ( $1.1 / 2$ frames); 32; $64 / 192 \mathrm{us}(1 / 2 ; 1 ; 3$ lines ) Lenearity: $+/-3 \%$. Horizontal Width: 10 divisions; $x 5$ magnification
PRICE:

（O）NSUM．TIN（iE：UTTOR<br>Ihilip Marringom ［：I）IT（）R<br>Fronh（）yden<br>ED）T－OR－INI）USIRYINSI（IIT<br>Coroffres Shorter．B．Si $01966 / 8634$<br>DEPUTY［：J）ITOR Marion Eiches （1／－б6／\＄6．38<br>（（）MML＇NICAITONSED）IT（）J<br>Richurd lamhle？ （1）－601 ．30．30<br>［LILUSTRATION<br>Roger Cioodeman <br>1）IESl（iN \＆PR（）I）UC＂ICN Alan Kerr （1）－060／8670<br>ADVERTISEMEN＇IMANACER I＇aul Kiullo＇n （1／－601．31．30<br>（I．ASSIFII：SAIES I：XE（ UUIVE （hrivopher Terer （1）－（6）／\＆6t（<br>AI）VERTISIN（i PR（）I）U（＂IION （／nar Ruい $19.06180+4$<br>PUBI＿ISIIER<br>Suadm／）owntr （1）／－001845？<br>FACSIMIL．I 0／06／ふり，34

REED
BUSINESS
IUUBLISH IING；

[^1]
## A nation of hairdressers

The survey on popular scientific understanding published recently in Nature should be cause for concern．In a random sample of 2000 Britons aged 18 and over，around a third believed that the Sun revolves around the Earth； 46 per cent didn＂t link DNA to genetic study；fewer than a third knew that table salt wasn＇t calcium carbonate；only 31 per cent could state that electrons were smaller than atoms： under half of the sample could state definitely that the earliest humans weren＇t around at the time of the dinosaurs and incredibly，given the recent level of public debate，almost half the sample thought that nuclear power stations caused acid rain．
Few people would have cast the former Secretary of State for the Environment． the Rt Hon．Nicholas Ridley，in the role of Jolly Green Giant．However，in the light of the survey＂s findings，his vituperous outburst on the nation＇s Greens－＂a bunch of politico lefties manipulating public opinion for their own ends＂－deserves consideration．The macrobiotic，coarse－wove underlay to the centre stage of British politics exhibits some comprehensively stupid ideas laced with a small thread of immense value to us all．Unfortunately，we appear to be too ignorant to recognize the difference and，for this，the blame must be laid at the door of the outgoing Secretary of State for Education，the Rt Hon．Kenneth Baker．

Consider something else．According to the Association of Graduate Recruiters． one in thirteen job vacancies for new graduates won＇t be filled．The universities can＇t meet the employers＇demand for all sorts of reasons，some of them good ones．

It is more than a question of cash．Some centres of higher education have up to 30 per cent of their course vacancies unfilled and，even more regrettably，the vacancies occur mostly in the science and engineering departments．

Education ministers can＇t hide behind the demographic changes：these can be predicted with a degree of certainty．Although the numbers are falling，there are currently 3844900 children in primary education，of whom，statistically，some 4（O）（）O）will be suitable for university education．This compares with at total university output of $160(1)(\mathcal{O})$ for 1989 （source：AGR）．Given that the primary roll which produced this output was substantially higher than today＇s，the facts suggest a criminal wastage of talent and a blighting of young lives．
The Government would argue that all is changing with the introduction of the much－vaunted National Curriculum with its emphasis on maths，English and science．One hopes that this is so；but the same disenchanted，occasionally ignorant teachers who made the old system tick along will have to make it work．

The universities have continually made an eloquent case for a sustained level of resources and status．The time is surely right to elevate the rest of the education system．Society should be ready to accord all teachers the status（and money）due to the guardians of knowledge．However，teachers，in return．should be ready to demonstrate that they are fit to hold this great responsibility by the sort of tests which are applied to other professional people

Primary school teachers represent the difference between mass enlightenment and a nation of hairdressers．


# First parallel processor in space 

The tramsuter, one of Britains many chever ideas that may not remain British, is being used in what's believed to be the first attempt at parallel procensing in spate. Smith Associates undertook a feasibitity stady on behalf of the European Space Agency (ESA) which negotiated the efoonnotramsputer project with the University of Surres. ESA now plans to launch the experiment via Ariane this atutumn.

What's interesting is that this highly advanced research will be carricd on a cheap $£ 250000$ atellite. UOSAT-IE Cheap, in this instance, is not meant as a pejorative expression since Dr Martin Sweeting and his team at Cuildford are already world-famous for their succession of highly succestul sacecraft. Iwo of which are currently in orbit. These missions have performed a variety of different functions including educational demonstrations. (CD) camera survess. ionompheric and magnetospheric monitoring.

Becanse of the succern of the LO OSAT programme and becaluse of the potential attraction of yate rexarch at low cost. mumerous firms and organizations have continued to proside financial hacking and technical rewources

This autumns launch involses a total of seven patoads: $S P($ OT-2. the primars paybod. U(OSAT-1) U(OSAT-1: and four AMSAT-NA MicroSats. IOSATI) and U(OSAl-I: will take oner the mission onjectiven of 'OSAT-( which
 and I: hase hat to be smaller than WOSAF-( to fit the I $u$ upuan rochet: butaconding w Martin Sweeting. mans of the mechanical and electrical ubuswtems of U(OSAT-( Were simply taken apart and re-assumbled like Meccano. to mathe the new satelliter!

On board UOSAT-I will he (Co imaging whem carrsing on the work of carlier UOSATS. Therell also be an array of adaanced solar cells made from gallium arnenide indium phosphide and siticon. These will be mounted in various experimental coners on reduce degradation and improwe efficient

The tramputer experiment is perhaps the most interesting however. Three Inmos transputers will be used in a baricty of moder, varsing from consentionat high-spect paralled procesinge to monitoring one another and watcting for erratic hehaviour arising from radiation-induced Single Events Upern (SIEUs). Results from this suds wifl be

of special value in desising highperformane data handling ५bicms for futuresateltions

U(OSAT I) will abo monitor Sl: (b. using conmic particle detectors. and will carry an advanced store-and-formard communications tramsponder
1)uring its fearibility studič. Smith Associate discosered that tramputer are inherently about the ee times more radiation-resistant than comentional microprocesoors, eypecially int terms of -hard" (i.e permanent) fatures. A, firr SEUS, the very architecture of parallet processing eystems should help to enwure that massive yystem crasher due to the corruption of a fen hit of data become thinge of the past.

Once again, all being well. it seems that the UJOSAT team han found a winning formula that should help to disabuse perople of the notion that tow cost equals "shoddy". As Sweeting ohernes. the reatity is that ratio amateur hate once again demonstrated their ability to rexponc: imagimativels to hort-notice lameh opportunities and tor continue the all-mportant tramser of information between the amateur and profersional engineering communitics Longman it continus.

COSITID (leftand LOSITE: from the engineering drawings.

Belon: the earlier I/OSAT-2. during its. linal greparations for launch.


## V-525 Cursor measurement <br> 50 MH real time oscilloscope



## NEW

- 2 Channel
- CRT Readout of Key Parameters
- Cursor Measurement of $\Delta \mathrm{V}, \Delta \mathrm{t}$ and $1 / \Delta t$
- $1 \mathrm{mV} /$ div Sensitivity
- Max Sweep 20ns/div
- Alternate Magnification
- DC Offset Function
- Signal Delay Line and TV Sync.

Expect more from Hitachi
(6)

HITACHI
In a word, reliability
13 Garrick Industrial Centre, Irving Way, London NW9 6AQ Telephone: 01-202 4311. Telex: 27449 ENTER 40 ON REPLY CARD

## TDS9090 Problem Solver...

This computer card from Triangle Digital Services Ltd is for building in to products. Put software for the application into PROM and it starts to run as soon as power is applied. Some existing uses are:

* Water Control
* Conveyor Weighers
- PABX telephone exchange
* Diesel engine testing
$\star$ Mass Spectrometry
$\star$ Intelligent Keyboard
* Tide measurement
* Crane control
* Paging systems
$\star$ Sports timer
* Colour analysis
$\star$ Public address switching
$\star$ Data Buffering
* Agricultural machinery
* Machine-tool control
$\star$ Remote robot handling
* Heart rate data collection
* Hand-held data input
* Geological instrumentation
$\star$ Electron microscopes
* Security validation
* Surveying instrument
* Swimming pool control
$\star$ Effluent monitoring
$\star$ Bar code readers
* Further education projects

Many of these use the low power of the TDS9090, its direct connection to matrix keyboards, and ouput via character or graphic Liquid Crystal Displays.

## Control Computer

The TDS9090 is a powerful control computer based on the high level language Forth. Although small, it is packed with important features which make it easy to use in solving your control problems.
The computer uses the HD63A03Y microprocessor and has on card 16 K bytes of Forth as well as full symbolic assembler. You write programs in high level lanugage. Mix it with assembler if required. There is 30 K of data RAM and 16 K for your program (TDS9092 has 8 K and 30 K respectively).

The board has 35 parallel I/Os and two RS232 serial ports. A 256 bytes EEPROM keeps data while the card is not working. Additional features include the Watchdog Timer, Time-of-day Clock and Multitasking. The single power supply draws 15 mA , with only 3 mA in a low power operational mode.

The TDS9090 measures just $100 \times 72 \mathrm{~mm}$. One version has a DIN connector making it a shortened Eurocard. The other has pin headers for connection by ribbon cable, or use it as a component inserted on a larger board.

## Development System Requirements

TDS9090-IBMSOFT gives you a development environment on an IBM-PC or clone. It stores your source code on disk, although your program is still compiled and debugged on-line in the TDS9090. Your Forth is written with any standard word-processor.
When the program is written you'll need a prom programmer. Either buy the TDS961 card and attach it to the TDS9090, or transport the finished code to your existing programmer in the non-volatile RAM supplied with the TDS9090.
The software support disk also has a library of sub-programs in Forth and assembler which help in your TDS9090 applications. For instance interrupt driven serial I/O, paged memory for data collection, clock support, graphics LCD drivers, inverse trigonometry, frequency measurement, solid-state speech and interrupt driven stepper motor control.
Triangle Digital Services Ltd, 100a Wood Street, London E17 3HX. Tel: 01-520 0442. Fax: 01-509 3263.

## R.I.P. cold fusion

Scarcely three months after the scientific community and indeed the world at large had been rocked by the claims of Fleischmann and Pons there came what most observers had been expecting - the effective death knell of cold fusion

After spending $£ 320$ ()0) ( and using $£ 4$ million worth of equipment, the UKAEA Harwell Laboratory finally decided to put an end to the search for limitless energy from a test tube. Dr Ron Bullough FRS, chief scientist of the AEA, said, "The potential benefit and scientific interest in cold fusion, together with the Government's need for information and advice meant that the subject had to be investigated. However, results to date have been disappointing and we can no longer justify devoting further resources in this area." So although Fleischmann and Pons are still struggling on, most other cold fusion research has been abandoned.

My justification for resurrecting this corpse is not the fusion debate itself, but what has now been revealed of the experiments undertaken at Harwell. This research, it emerges, continued unabated for three months, throughout weekends and public holidays, with a team of six electrochemists and four nuclear physicists often working 80hour weeks. The programme is believed to have been the most comprehensive mounted anywhere in the world, with 30 "fusion" cells under observation at a time.

Many of the experiments were designed to detect emissions of neutrons and gamma rays, typical of known fusion reactions, from a variety of electrochemical "cold fusion" cells. When it became apparent that these emissions were not in the range of hundreds of events per second, more sensitive detector systems were used, capable of seeing as few as 0.01 neutrons per second.
Considerable care was taken to eliminate the effects of cosmic rays and other background sources such as electronic noise. Background signals from unpowered cells were compared with those observed from powered cells. Computer-controlled data logging eliminated human errors and by these methods any long term background variations were eliminated. Multiple banks of gamma and neutron detectors were used to identify spurious events due to electronic malfunction in any individual detector

Dozens of cells were examined varying the size. geometry and metallurgical properties of the electrode systems in a systematic way. In many others electrode materials were changed to include palladium, gold. titanium and uranium/cerium compounds. The chemical constitution of electrolytic solutions was changed to observe the effects of using heavy water and light water mixtures; various salts of lithium, sodium and palladium; and different "cocktails" of deuterated acids. The use of controls (e.g. using light water in place of heavy water) further reduced the possibility of signals being mistaken for genuine fusion events.

As well as altering the size, shape and thickness of electrodes, the research team fabricated others from palladium that had eight different metallurgical histonies. Electrodes were made from wires, rods, tubes, foils and granules and were used in a number of different geometries. Cells were subjected to a regime of varying current densities, cycling currents and to steep rises in current following various periods at low current densities.

In none of these experiments was there statistically significant evidence of a fusion reaction taking place under electrochemical conditions. Need we say more?

## Infra-red waveguide forbloodless surgery

ERA Technology, in conjunction with the technology transfer organization Cogent, has developed a novel hollow glass waveguide for directing infra-red energy from $\mathrm{CO}_{2}$ lasers. Several prototypes based on a non-toxic oxide glass have recently been fabricated at ERA's laboratories in Leatherhead and are currently being evaluated for surgical applications.

Carbon dioxide lasers, operating at mid-infra-red wavelengths of around $10 \mu \mathrm{~m}$ are particularly useful for tissue cutting and cauterizing; they permit virtually bloodless surgery and thus reduce the immediate trauma and aftereffects for the patient.

For a $\mathrm{CO}_{2}$ laser to be used to the maximum effect, its energy needs to be transferred from the rather bulky laser itself to the precise point at which it's needed. The only problem is that radiation as long as $10 \mu \mathrm{~m}$ cannot be transmitted along conventional optical fibres because of the extremely high attenuation due to molecular vibration or rotation.

ERA Technology has therefore adopted a different technique, replacing optical fibres with hollow glass optical waveguides. The air-cored waveguide, with an internal diameter of 1 mm , uses a glass cladding whose optical properties have been tuned to ensure maximum internal reflection (i.e. minimum attenuation) of a wavelength near $10.6 \mu \mathrm{~m}$. Laboratory prototypes transmit about $80 \%$ of the incident energy through a straight waveguide one metre long, but this reduces to $40 \%$ when the waveguide is bent to a 50 cm radius. It's

not marvellous compared to the performance of optical fibres at shorter wavelengths, but it should permit a whole new degree of freedom for surgeons using $\mathrm{CO}_{2}$ lasers. What's more, ERA Technology and Cogent are already predicting considerably improved performance when the waveguide is manufactured using precision machine-drawn fibres. They are at present looking for suitable partners to develop the technology further.

Ultimately the development of disposable high-efficiency optical waveguides should make possible a whole range of virtually non-invasive surgical procedures. ERA believes that there is now a very real prospect that major heart surgery such as coronary bypass operations could be conducted on an out-patient basis. All a surgeon would need to do would be to feed the waveguide and an optical fibre viewing device into a major blood vessel through a small hole in the skin, and then direct it to the site of action. The rest could be done with little more than a screen, a mouse and a button marked 'zap'!

## RESEARCH NOTES

## Diamond chips will soon be forever

Looking down Group IV of the Periodic Table of the elements. many of us must have wondered at some time or other why germanium and silicon make useful semiconductors. but why no carbon chips have yet existed - except perhaps. at the local take-away. The reason. of course. is that virtually all practical active devices are made from crystalline materials that share the same crystal lattice structure as silicon. In the case of carbon, that - unfortunately - means diamond.

Some time ago. Michael Geis of MIT's Lincoln Labs in Lexington showed that is was possible to fabricate active devices from diamond, hut not on any useful scale. Problem one was the difficulty of doping diamond with the necessary Group 111 or $V$ elements: problem two was the need for natural high quality gems. Water-scale integration. had it been possible, would have needed the Koh-i-Noor!
The attraction of diamond chips is not just the intellectual satisfaction of plugging a gap in the Periodic Table; diamond has the highest breakdown voltage, highest saturated electron velocity, lowest dielectric constant and highest thermal conductivity of all known semiconductor materials. Taken together those qualities are a recipe for high-speed, high frequency, high power, high temperature and high radiation resistance. This last quality has led to various Star Wars projects spending a total of $\$ 13 \mathrm{M}$ on diamond research.

Obviousty the important step forward will be the successful production of synthetic diamond monocrystals that can be deposited on a silicon substrate. The two problems to be overcome are the incompatibility of the two atomic lattices and the tendency for vapourphase carbon to deposit itself as graphite rather than diamond.
Here in Britain. Pilkington Electrooptic Materials (PEO) has combined high-energy plasmas and chemical vapour deposition (CVD) 10 coal a variety of surfaces with polycrystalline diamond. Hydrogen int roduced into the vapour phase effectively mops up any graphite that might otherwise be formed. This process, though not designed to create a large monocrystal. does make materials ideally suited for insulators, heat-sinks and optical components. Wayne Rabalais and Yeshayahu Lifshitz of the University of Housion and Sorq Nuclear Research Centre in Israel report (Phys. Rev.


Letters vol. 62 p. 1290) a waly of extending that process to create a diamond monocrystal that fits perfectly on to a silicon substrate. Their approach is to combine CVD with an ion accelerator to punch carbon atoms into the substrate. This appears to overcome the incompatibility between the respective tattice dimensions and ensures that the diamond crystal stays firmly in place.

Elsewhere, other workers are trying different approaches such as searching for substrate materials that are a better match to the natural dimensions of the diamond lattice. Substances like lithium fluoride look promising contenders; but
because of their relatively low melting point they defeat some of the advantages of using diamond.

Obviously all this work will add to the little that's currently known about diamond crystals and will undoubtedly lead to better method of fabrication. It will also. we may hope, provide material with which to study appropriate doping techniques - especially difficult with diamond. Then, and only then, will we have chips capable of operating at $60\left(0^{\circ} \mathrm{C}\right.$ in the core of a nuclear reactor or on board a radiation-hard spy satellite. Diamonds may be hard to win but the prizes are truly glittering

## Are you cosmically illiterate?

A nationwide survey has recently revealed that many American adults suffer from cosmic illiteracy. For example, $45 \%$ are unaware that the Sun is a star. Only $37 \%$ believe that the Sun has a finite life and only $24 \%$ know that the Universe is expanding

Professor Alan Lightman of the Massachusetts Institute of Technology who co-authored the study is not too surprised by some of the findings, except the belief, held by $25 \%$ of respondents, that the Sun is a planet. More pleasing is the finding that $62 \%$ of the great American public believes that the Universe is full of planets like our own on which life could have developed.

One curiosity with which Gabileo
would have feit some sympathy is the finding that astronomical knowledge bears an inverse relationship to church attendance! This appears especially true in areas of cosmology such as the expansion of the Universe. But even allowing for factors like religion, age, sex and education, Lightman found a marked preference for belief in a Universe that is static and unchanging

Change. he believes, is psychologically hard to cope with - even if it's on a time-scale of ten billion years!

- See also Comment, page 843.

Research Notes are by John Wilson of the BBC World Service science unit.


ENTER 39 ON REPIS CARD

## TELECOMMUNICATION TRAINING EQUIPMENT

Full range of Training Equipment including:

- ANALOGUE \& DIGITAL COMMUNICATION CIRCUIT \& SYSTEIVS
- FIBRE OPTICS
- MICROWAVE
- TELEPHONY
- RADAR NEW


## For more information contact:

LAB-VOLT (UK) LTD.
4A Harding Way,
St. Ives Industrial Estate
Huntingdon,
Cambridgeshire
PE17 4WR
Tel: (0480) 300695. Fax: 0430 61654

# Who needs electronic circuit analysis? 



This article gives an insight in to what facilities are available from analogue cad simulation systems for circuit design. It also highlights an apparent deficiency in the education system governing many of our major colleges and universities regarding electronics circuit design using discrete components and suggests that the use of analogue circuit simulation on low-cost microcomputers can aid the teaching of the subject.

Around a year ago I was invited to
give a short talk to a group of university and college lecturers about Number One Systems` range of electronics cad programs. I leapt at the chance of addressing these revered gentlemen, because over the years I was becoming more and more convinced that they were failing to educate our young hopefuls in the ways of the real electronics world. I must admit that I was also convinced that greater use of our range of software in colleges and universities would ease these problems!

## Educating engineers

Perhaps I should explain how I came to my unfortunate conclusions. My company is an electronics design consultancy which originally specialised in analogue circuit design. Over recent years we have branched out into microprocessor and computer control and we now also produce computer-controlled machine-vision systems for inspection and measurement applications. We have also had considerable success in developing a niche market in affordable
computer-aided dexign software
As a small but expanding company. finding additional, versatile highquality statf hats alvials beern a problem. We have heen interviewing engineers for design and consultancy work over recent years and. to our dismay only around five percent of graduate electronics engineers who get as far as the interview are capable of "analysing" a single-tramsistor audio amplifier stage. We are therefore left with the conclusion that colleges and universities have almost completely failed to educate "electronics engineers" with the batsic understanding required to design circuits down to discrete-component level. Indeed. when talking to the prediously mentioned group of lecturers and confronting them with the exercise described lochow, it became apparent that by no means all of them were capahle of performing the same task

At the risk of git ing awat one of our standard interview tests, the diagram in Fig. 1 shows the circuit presented to interviewees with the request that they should talk about it for as long as they cull, giving as much information ans they call.

Fortunately, most applicants recognized that it is an amplifier of some sort. About $50 \%$ of applicants suggested that it may be a relatively low-frequeney $A C$ amplifier. Only $30 \%$ were capable of estimating the i) ( voltage at the emitter of the transistor. Only $20 \%$ mamaged to calculate the collector voltage without being reminded that $I_{6}=I_{6}+I_{11}$ : About $20 \%$ got warm on the input impedance realising that the transistor hat an effeet but being quite incapable of estimating it. About $10 \%$ could provide a figure for output impedance and, amazingly, less than $10 \%$ offered, without any prompting, any kind of gain figure for what must be one of the simplest of circuits. Only the same $10 \%$ were capable of modifying the gain to $\mathrm{X} t$ without upsetting the D( conditions and only the same $10 \%$ had a glimmer of understanding of the relevance of $r_{c}$ and the hybricl-piecyuivalent circuit.

It is only fair to point out that a good proportion of applicants were able to work out the gain of simple operational amplifier circuits and indeed did much better when grilled on digital systems. microprocessors and software engineering.

What this points to is that the bulk of our current educational establishments are producing engineers who can design using building block but cannot design the hlocks used.

This is surely equivalent to an architect who can only draw street plans or a master builder who can only build prefabs!


Fig. I. Simple amplifier circuit presented tointerviewees


Fig. 2. ('ircuit of Fig. I with I)C conditions

The reasum behind this is almost certainly that the syllabus setters or heads of department in our colleges and universities believe that it is easier to teach digital and microprocessor design and programming languages and that the nitty gritty of analogue circuit design using discrete components is unimportant in the modern workl.

This could not be further from the truth. The whole purpose of our modern digital systems is to make our word casier to live in and our world is an analogue one. In the majority of cases. where computer systems interface with the real world it is via an anatoguc interface

Apparatus to measure temperature. presure acceleration, and many other (puantities all rely upon analogue interfaces. Radio, television, tape recorders. patient-monitoring systems and the like all have heavy analogue content and many of them rely heavily on discrete components in the ir manufacture. SureIy, it is essential to ensure that our engineers of the future underntand the basice of discrete component derigns.

It must also be remembered that digital circuits are only analogue circuits that hate heen over-driven. With a good understanding of discrete analogue circuit design you are well placed to design ui analyse individual logic
elemeats and. arguahly more important analogue/digital interface circuits.

The beauty of our simple interview test circuit is that if you understand it then you are in a position to work out for yourself the operation of, and even design. many other analogue circuits and logic elements.

## Circuit simulation

Let's take another look at the circuit. In Fig. 2. I have added the bias voltages and currents.

The art of good circuit design, both analogue and digital, is made much easier if you remember the words "If you can't work it out. make it negligible". A good circuit will always be designed on this basis, so that changes in performance of the circuit due to normal spreads in component parameters such as gain and $F_{1}$ in bipolar transistors will have minimal effect on final circuit performance. This will also be the case for the I)( conditions or bias point. The upproach taken to analyse this circuit could be as follows.

We know that the maximum possible collector current (if the transistor were a short circuit from emitter to collector) would be $10 \mathrm{~V} /(2 \mathrm{k}+1 \mathrm{k}) \sim 3.3 \mathrm{~mA}$. As the gain of the transistor used is quoted as 100 minimum, we know that if the transistor were not saturated, the highest the base current could be is 3.3 mA / $100 \sim 33 \mu \mathrm{~A}$. This can be regarded as negligible compared to the 1 mA flowing down the base bias chain and we can therefore also assume that the base voltage is about 3 V . With this knowledge, we know that, as it is a sition transistor. the emitter voltage is approximately 0.7 V below the base. giving us an emitter voltage of around 2.3V. We therefore have an emitter current of $2.3 \mathrm{~mA}(2.3 \mathrm{~V} / 1 \mathrm{k} \Omega)$. The majority of this comes directly from the collector of the transistor if the base current is as low as we have assumed and therefore the collector current is also approximately 2.3 mA . The voltage across the collector load resistor is therefore $4.6 \mathrm{~V}(2.3 \mathrm{~mA} \times 2 \mathrm{k} \Omega)$ and the voltage across the transistor (collector/ emitter) is 3.IV. The transistor gain figure tells us that the base current is only a maximum of $23 \mu \mathrm{~A}$ and therefore our original assumptions were correct. (had our calculations shown that the transistor had been saturated, $\mathrm{V}_{\mathrm{cc}} \sim$ 1) 2 V or less, than the assumptions would not have been correct and we would have to re-analyse the circuit.

Bui'ding the circuit and carrying out a few tests with a voltmeter would quickly confirm the DC conditions. Note that.

## COMPUTER AIDED DESICN

on high-impedance circuits, care should be taken to minimise the loading effect of the test instrument.

Let's now get down to the interesting bits of the circuit - what it was designed for-the AC parameters, i.e.gain, input impedance andoutput impedance.
In this circuit we can say very simply that if the capacitors can be regarded as AC short circuits. and ignoring secondorder effects. then the gain will be approximately $R_{1} / R_{1}$ or $2 k \Omega / 1 \Omega=$ ? (strictly -2 as the stage is an inverter). This becomes obvious. as we hate already established that the emitter woltage follows the base voltage and that the collector current is virtually the satme as the emitter current. It follows then that the gatin is approximately the ration of these two resistors.
Analysis of the circuit for gain using a circuit simulator confirms this. To produce the results shown in Fig. 3 on an IBM P(` or clone takes less than a couple of minutes. including entering the circuit - far quicker than building up the circuit. connecting the necessary test equipment and then carrying out the measurements.

To be able to carry out this analysis, the circuit must first be entered into the simulator in the form of what is called at "nodal comectivity list" or "nedist". The netlist for this circuit is shown in Fig. 4.

Only two applicants that we have ever interviewed were capable of est imating the gain from a circuit where the emitter of the transistor is completely decoupled to ground, as shown in Fig. 5. In this case. the voltage gain is still given by the collector resistance divided by the emitter resistance, but the effect of the internal emitter resistance $r$. now takes over. since our original gain equation ( $\mathrm{K}_{1} / \mathrm{R}_{1}$ ) should really have been $\left.\left(R_{1} / R_{1}\right)+r_{c}\right): r_{6}$ is obviously no longer insignificant compared with the external emitter resistance as in Fig. I because the extermal emitter resistance has effectively been short circuited by $C_{4}$. The internal emitter resistance $\mathrm{r}_{\mathrm{c}}$ is dependent upon the emitter current of the transistor and (unknown to most applicants) is predictable and is approx imately equal to $25 / I_{0}$ ohms ( 1 expressed in mA). If the transistor is rumning at I mA . then the internal emiter resist ance will be approximately 25 ohms. In our case, the emitter current is reduced to approximately 0.5 mA and therefore $\mathrm{r}_{\mathrm{c}}$ is about 50 ohms and, with a collector load of $5(0)$ ohms. we get a ratio of $R_{1} / r_{\text {. }}$ and therefore voltage gain of 10 . It should be noted that, at high currents. the internal bulk resistance of the emit ter region of the transistor can start to


Fig. 3. Result of analysing Fig. I circuit for gain and phase
become significamt and that accuracy in voltage-gatn predictions using this technique will decrease. The same circuit analysed using Amalyser 11 gives the results predicted.

## Input impedance

It should be noted when designing circuits of this form that, if very high voltage galins are amed for secondorder effects will decrease accuracy and the overall gain attainable. For instance, one important piffall to watch out for is the dramatic decrease in input impedance of an amplifier stage if the emitter of the transistor is de-coupled. This can be checked very quickly using a simulator. Analyser"s results for the above circuit show that the input impedance drops to $1.149 \mathrm{k} \Omega$, compared wh 2. 1 hok $\Omega$ for the circuit of Fig . I. This would have been even lower if the circuit had been run at the original current of 2.3 mA .

Fortunately, the input impedance of such a stage is also calculable. In the circuit shown, at low frequencies, the input in parallel with the combined resistance of the base-bias chain. In the circuit of Fig. 5 , with $r_{c}$ at approximate-
ly $50 \Omega$ and a transistor gain of around 106, the input impedance of the transistor can be predicted as approximately $5 \mathrm{k} \Omega$.
The $5 k \Omega$ in parallel with $7 k \Omega$ and $3 k \Omega$ gives a combined input resistance of $1.47 \mathrm{k} \Omega$. which agrees quite closely with the value $1.49 \mathrm{k} \Omega$ predicted using Analyser II. However, it is worth mentioning that very few development laboratories have the facilities to measure accurately the impedances presented by active device networks and it is obviously much quicker and normally cheaper. to use a simulator to prediet these impedances before bread-boarding such circuits.
The input impedance also greatly reduces at high frequencies due to the effect of the emitter/base capracitance. and also due to the collector/hase capacitance of the transistor-especially if the voltage gain of the stage is high (Miller effect). The output impedance of the circuit at low and medium frequencies is almost completely due to the collector bad resistor, as the output impedance of the transistor is normally veryhigh

The reality that output impedance is
often much higher than expected and that input impedance is often much lower than expected is the downfall of many analogue designs. The use of a simulator can give almost instantaneous predictions of the input and output impedances, greatly easing the cheeking and fine tuning of designs for multistage and complex systems well before getting the soldering iron and test equipment out. In the classrom, the use of a circuit simulator will enable the students to experiment with circuit parameters and observe the results far more quickly than hardware experiments can be carried out.

The diagram in Fig. 6 shows a TV IF amplifier, before the days of acoustic wave filters. and its resultant analysis. which took only 30 seconds on an IBM $\mathrm{PC} / \mathrm{AT}$ clone rumning at 12 MHz .

There is a large selection of circuit simulators asailable running on a wide varicty of computing equipment - from the Sinclair Spectrum through PCs and chones right up to main-frames. Prices start from as low as £2() and go up into the tens of thousands of pounds. They cover an enormous range of simulation applications from I)( through to microwaves and may include analysis of noise performance, thermal effects, distortion. transient response and other parameters.

Complex logic simulators exist which are capable of predicting the shortest of glitches caused by rate conditions in the most complex of circuits. The majority of large-scale integrated circuits are checked completely using circuit simulators and the ir test programs automatically created, well hefore masks are made or diffusion processes started.

| $\mathrm{C}_{1}$ | capacitor | 1 | 2 | 10 u |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}_{2}$ | capacitor | 3 | 5 | 10 u |
| $\mathbf{R}_{\mathbf{1}}$ | resistor | 6 | 2 | 7 k |
| $\mathbf{R}_{\mathbf{2}}$ | resistor | 2 | 0 | 3 k |
| $\mathbf{R}_{3}$ | resistor | 3 | 6 | 2 k |
| $\mathbf{R}_{4}$ | resistor | 4 | 0 | 1 k |
| $\mathrm{QA}_{1}$ | ZTX239 | 2 | 3 | 4 |
| $\mathrm{C}_{3}$ | capacitor | 6 | 0 | 1 m |
| $\mathbf{P}$ | ports | 1 | 5 | 0 |

Fig. A. . Netlist of simple amplifier.


## Fig. 5. Modified simple amplifier with decoupled emitter.

Some simulators work directly from the cad circuit diagram or schematic especially useful for very large simulations. (Others use a netlist editor similar to a basic word processor and require the netlist and processing instructions to be satved as a file for batch processing. This is ideal for processing large simulations overnight but not if you wish to check out a simple circuit quickly. Others. like Analyser II. pronicle a mentu-driven enviroment. allowing you to create and modify netliss, lib-

Fig. 6. TV amplifier and results obtained by inalyser II.

rary components and frepuency sweep instructions interactivels.

As with on many thing youget what you pay for. It is tery casy to pay for more facilites than youned. The range of components covered and the vimulation facilities offered by one program may only be a small fraction of thowe covereal by another. The component libary facilitios, if ans. maty be too limited for your requirements, or maly not be easily extendable to include the device, which sou wish to use. The uner interfate may be ideal for some applications but not for yours. The suppert and help gwen by the supplier is athes wery important: ome suppliers chatece up to 20\% of the purchase price of a piece of software per annum for telephone upport and updates. while others will gue you suppert at no charge for sears. expecially if the are hoping that you will bus other product from their range!

## College cad

The use of allalogue circuit simulatorn is now becoming common in industry hut is. as get. less common in training courses for our future engineers. There are colleges which have pent smatl fortumes on cad which would make enginere in many small firms green with envy, but the software bought call be socomplex that it has no place in the chassoom. where students hate perhaps only an hour or two a week to become familiar with it.

The use of eirenit simulation catn greatly ease and sped up the dexign process and the education process. It altows simple and complex idean to be evaluated with the minimum of fues and expense often in much greater detail than can be achieved using hreadboards and test equipment. Ans company which could use it and ignores it in risking losing out to it competitors. Any clectronich college which ignores it is only doing half a joh. Ans chectronich college that doen not gise an understanding of circuit derign dewn to componem kede is producing master che fo who can only re-heat $T$ diname


## APPLICATIONS SUMMARY

## Inductor induction

Accompanying data on new low-input voltage DC-to-DC converters from Maxim is a note for UK designers on availability of inductors specified in the data sheet.
By its existence, the note hints that designers working from Maxim data sheets have had problems when using inductors other than those specified. The note reports that common problems with using incorrect coils are excessive resistance and inadequate presaturation current handling


Inductors specified in the data sheet for the MAX6 44 series DC-to-DC converters (and no doubt many specified in earlier data sheets) are made by Caddell-Burns and cannot be obtained in the UK; suitable equivalents from Dale ACl in Berkhamstead and Bonex in Slough, however can.
Also in the note is a brief discussion on efficiency loss through poor Schottky diode choice. In the data sheet, there are no applications circuits other than the two shown here, but there are sufficient design equations. The 644 series will start up from a 1.15 V supply and will operate from an even lower voltage
Maxim, 2IC Horseshoe Park, Pang. bourne, Reading, Berkshire RG8 7JW. Tel. 073573863.

## Switching audio power amplifier with low distortion

For a class-D power amplifier, this one from Motorola's AN1042 application note has quite low distortion, ranging from $0.08 \%$ at 10 Hz to $0.31 \%$ at 10 kHz with a $\pm 30 \mathrm{~V}$ output into $8 \Omega$. Although low, these distortion figures are still higher than the better analogue counterparts; in terms of efficiency though, this switching design is significantly better, as you would expect, with a figure of $92 \%$ at 72 W .
Detailed design information is given in the note, including a potted history of
class $D$ audio amplification. There is also a discussion of supply-bus runaway on the drive-circuit lines, and a novel solution for it (the right-hand drive circuit on the diagram).

Other relevant specifications are $0.24 \%$ intermodulation, 100 dB signal-to-noise ratio, 0 to 20 kHz power bandwidth and a damping factor of 80 .

Motorola, Macro Marketing, Burnham Lane, Slough SLI 6LN. Tel. 0628 604422.


## Improved FM stereo under adverse conditions

Data on two new stereo decoders giving better reception under adverse reception conditions has arrived from Sprague. One of these decoders. the ULN3800A, handles FMX transmissions for "almost noise-free" stereo reception in weak signal areas. But for UK readers, this device is only of technical interest since as yet there are no fast plans to introduce FMX transmissions for VHF broadcasts in the UK.

Of more immediate commercial interest in the UK is the second device. the ULN3827, which is designed to improve weak-signal reception on normal stereo transmissions. It is a blending stereo decoder IC that varies the stereo/mono mixture depending on signal strength, in order to reduce noise at the expense of image width.

Most benefit from a blending stereo decoder will be obtained in automotive receivers since signal-strength and multi-path effects vary continuously

Two main improvements of the 3827 are a dual-bandwidth PLL and a Walsh-
function carrier regenerator. Under noisy conditions. the dual-handwidth PLL switches to a very narrow bandwidth to ensure optimal phase stability. Noise-actuated blending adjusts stereo separation as a function of signal-tonoise ratio to reduce background noise at low signal levels and eliminate prob-


lems associated with stereo/mono switching.

Both the 19 kHz reference and the 38 kHz carrier are free from third and fifth harmonics, which improves adjacent-channel rejection and Radio Data System rejection as well as signal-
to-noise ratio. Third-harmonic distortion of the 3827 is $0.1 \%$.

Full details on the 3827 decoder, the FMX decoder and FMX encoding are included in various application notes and data sheets from Spraque. An over-
balanced mixer, a multi-voltage regulator, a dual-conversion radio i.c. and the FM noise blanker mentioned in RF Connections on page 918 - is given in Ed Baker's Technical Newsletter, 23 June 1989.


Sprague Electric, Balfour House, Churchfield Road. Walton-on-Thames. Surrey KTI2 2TY. Tel. 0932253355.

## RESEARCH PROFILE

## Research profile the Welding Institute

Welding might seem an unlikely subject for an electronics magazine. In general it is, but the Welding Institute's Microjoining Division is an exception.

Microjoining at the Welding Institute in Cam bridge includes methods used in the fabrication and assembly of microelectronic circuits, and extends to cover the joining of sheet and wire components up to 1 mm thick. Materials in volved are often exotic, and range beyond metals to ceramics, glasses and plastics. Among the diverse processes available are laser and arc welding. diffusion and electrostatic bonding, resistance, friction and ultrasonic welding. braz ing and soldering.

Connections to small bond pads
Continuing integrated circuit development. and the introduction of high-frequency microwave devices ( $>10 \mathrm{GHz}$ ) have led to demands for connections to closely spaced bond pads as small as $12.5 \mu \mathrm{~m}$ diameter

Work is underway to develop ultrasonic, thermosonic, thermocompression wedge/wedge bonding techniques to enable them to be used on pads of this size. The existing lower limit on wire diameter for this programme is $7 \mu \mathrm{~m}$, with gold and aluminium wires being studied. Shown here is a $7 \mu \mathrm{~m}$ diameter gold wire thermocompression wedge bond.


## Al 1\% Si ribbon

Ribbon bonding is a technique which has poten tial for interconnection of high lead count. small pad size ( $<50 \mu \mathrm{~m}$ ) devices, especially for small batch production. Shown here are $30 \times 12 \mu \mathrm{~m}$ ribbon bonds to aluminium (with $1 \%$ silicon) copper tracks on PCB. The technique can combine the flexibility of wire bonding with the electrical characteristics and fine feature sizes of lead frames. There are potential benefits for the interconnection of high lead count. smal feature size VLSI devices and for the intra- and inter-connection of high-speed, high-frequency microwave type devices.


## Quality control for wire bonding

All wire bonds have to meet stringent quality requirements, and the small size of components and the increased speed of automated equipment place increasing demands on quality control systems. In-process monitoring of wire bonding parameters is being pursued using a high-speed transient recorder, laser interferometer (shown), and other transducers and analysis software. These measure vibration amplitude, load, wire deformation, driving current and voltage to monitor ball and wedge bonding operations. The object of this work is the development of an in-process multiparameter monitoring system for use with production equipment.


Large area die bonding
Several methods of attaching large area ( $10 \times 10 \mathrm{~mm}$ ) circuit dice to a range of substrates are under investigation, including adhesive and thermoplastic bonding. AuSi eutectic bonding. soft soldering and glass bonding (silver glass). Joint quality is being assessed using microfocus X -ray, infrared thermography and high•frequency ultrasonics, and performance tests including thermal shock, thermal cycling and mechanical testing are scheduled. This photograph shows a high frequency ultrasonic image of an epoxy die-attach joint, illustrating a large number of voids.

## Tape-automated bonding

For the interconnection of high-performance, high-pin-count packages, tape-automated bonding, TAB, offers a higher density of interconnect with improved performance characteristics over wire-bonding techniques
interconnection techniques chosen for inner and outer lead bonding depend on a number of factors such as speed and reliability of produc tion, reworkability etc. For inner-lead bonding the available techniques include solder reflow thermocompression, ultrasonic and thermo sonic bonding (for solid-phase bonds)

For outer lead bonding, where the predomi nant method of forming a joint is through reflow of solder, the other techniques available include vapour phase, infra-red, hot bar, thermocompression. laser, resistance and ultrasonic bonding.

All these techniques are currently under study at the Institute. Shown here is a high lead count TAB leadframe which is being used for the outer lead bonding trials.

## Laser reflow soldering

Laser melting of pre-placed soldering pastes or pads is an alternative to the 'whole-board' soldering methods in common production use. Laser soldering may be advantageous where circuits are complex, sensitive to the thermal cycles of the wave and vapour phase process, or where dismounting and re-attachment of circuits is required.

A range of equipment is being used for this project. including a silk-screen printer for de positing solder paste and pulsed and con tinuous wave Nd-YAG and $\mathrm{CO}_{2}$ lasers, work manipulation tables and a four-way beam sput. ter and optical fibre delivery system for multi track Nd.YAG operations. Both plastic and cera mic substrates and a wide range of solder pastes and preforms are being studied

## Plastics packaging

Continuing increase in silicon chip size and reduction in package thicknesses have caused problems with transfer injection moulding and liquid encapsulation due to stresses being im posed on the device and interconnection sys. tem by contact with the organic encapsulants.

The development of thermoplastic lidded enclosures where there is no contact with the chip or interconnect system could result in an improvement in device reliability and the costeffectiveness of the packaging system especial ly for asic type devices.

Shown here is a thermoplastic lid which has been joined onto a fine-line glass-epoxy PCB.


And more...
In addition to the research topics mentioned here, the microjoining section carries out large numbers of confidential projects for industrial sponsors or groups of sponsors. These projects cover an even wider range of topics than the basic research programme, making use of the extensive range of microjoining equipment available in the section and the facilities in other areas of the Inslitute.

# AMsynchronous demodulator 

## Used with an existing short-wave AM receiver, this demodulator by Trevor Brook of Surrey Electronics provides SSB, ISB, envelope, DSB and quadrature detection to reduce the effects of poor $\mathrm{S}: \mathrm{N}$ ratios

Synchronous detection of AM signals has long been known to provide several benefits but. although the technique has been applied to the demodulation of vestigial sideband television for many years, practical systems for radio reception have often proved disappointing. Several of the problems for synchronous radio reception, particularly in the case of short wave, arise from the need to cater for very poor signal-tonoise or interference ratios.

## Requirements for regenerated carrier

To avoid the generation of objectionable heterodynes, the phase-lock loop used to produce the synchronous carrier for demodulation must maintain lock down to negative signal-to-noise ratios and not suffer phase modulation in the presence of the following:

- reduced carrier operation, as proposed for future HF broadcasting:
- fading of signal and sidebands:
- selective fading of carrier and sidebands:
- reception of transmissions using either type of dynamic carrier control - increasing or decreasing with audio level:


## and

- interfering signals of any description and any strength more than about 30 Hz from the wanted carrier.
Conversely, the koop may need to follow phase modulation accurately on the received signal in the presence of various phase-modulated radio data systems on LF and MF broadcasts: spurious hum, synthesizer noise or poor frequency stability on transmissions: and spurious phase modulation by the wantedaudio.


Synchronous demodulators are beginning to be included in a number of commercial receiver designs. An example is this general-coverage $\mathbf{A M / F M}$ model by Sony (type ICF200ID): its synchronous demodulator can be switched in to give reduced distortion and fading on AM transmissions, and to enable the user to listen to whichever sideband is less subject to whistles and interference. Another broadcast receiver fifted with a synchronous demodulator (though a much more elaborate one) is the Liniplex monitoring receiver made by the British company Phase Track (tel. 07.34752666 ).

These latter characteristics are technically equivalent to unfiltered, exaltedcarrier, or 'synchrodyne" reception. where the received signal is limited to provide a carrier which is itself used directly for synchronous demodulation. Finally, if the transmission ceases, the loop should remain very close to its last frequency for an indefinite period and
milli-seconds of the signal reappearing.

Where there is selective fading. or where single sideband reception is selected, the need for the demodulating carrier to be accurately in phase with the received carrier can be abandoned. since watnted sideband energy exists both in phase and in quadrature with any demodulating carrier. It would be undesirable to attempt to follow the rapid polarity inversion of a carrier which has experienced a selective fade, so the flywheeling action of frequency lock only is required.

## Subjective audio level

Apart from the gross distortion which arises in an envelope detector during a selective fade of the carrier. which is overcome by synchronous detection. there is also an objectionable surging in audio level caused by the receiver automatic gain control system unnecessarily increasing the gain. This effect can be ameliorated by an audio gain-control system which senses the peak level of the selected audio output and reduces the gain appropriately.

## Circuit and operation

Intermediate frequency of 455 kHz enters via the input control, $\mathrm{R}_{1}$, which allows the gain to be set to suit the level coming from the receiver so that a $100 \%$, modulated signal with full carrier does not quite activate the audio limiter. Transistor $\mathrm{Tr}_{1}$ provides buffering and amplification. all output tuned circuit rejecting harmonics of 455 kHz . The SO41P high-performance limiter possesses low AM-to-PM conversion and good limiting action down to very low imput levels, its squared output feeding the balataced modulator formed by

$\mathrm{IC}_{7(1)}$ and $\mathrm{IC}_{313}$. A preset, $\mathrm{R}_{25}$, allows offsets to be cancelled so that the regenerated carrier is accurately in phase.

The op-amp $1 C_{3 C}$, with $1 C_{7 A}$ and $1 C_{713}$, forms the main loop filter which can be switched between three different bandwidth characteristics. "Wide" allows the loop to lock quickly over a range of $\pm 6 \mathrm{kHz}$ and can be used for general tuning around. "Medium" restricts the rapid locking range to $\pm 1 \mathrm{kHz}$, which is about as narrow as one can go when receiving PM data systems carried on certain broadcast stations: France 162 kHz , East Germany 177 kHz , UK 198 kHz . West Germany 1017 kHz . Whatever kind of demodulator is used. the presence of such phase modulation on an AM signal does unavoidably lead to some further degradation of reception in the presence of selective fading or co-channel interference. "Narrow" brings the bandwidth down to $\pm 30 \mathrm{~Hz}$, which is low enough to avoid disruption by audio components and still allow some margin for drift and microphony of the receiver local oscillator. This position gives a flywheeling effect. so that the regenerated carrier will not attempt to follow the rapid phase changes and polarity inversions of a signal suffering selective fading or cancellation fading, where two stations are nearly on the same frequency.

The "Window" selector switch restricts the voltage swing fed to the varicap. $\mathrm{D}_{4}$, and thus prevents the loop being captured by signals away from the desired frequency set by the centre frequency control. This facility means that the receiver IF filters can be exploited to the maximum advantage, in addition to the sideband selection on the unit. For instance, the receiver IF filter could be positioned entirely over one sideband of an AM signal. the appropriate sideband selected on the unit and centre frequency offset to where the carrier now lies. The window facility allows the loop to hold lock tenaciously even when the wanted carrier is down the slope of the IF filter or buried beneath noise and interference. In the absence of any steady carrier within 30 Hz . the loop will generate a carrier stable enough to permit reception of CW. FSK or suppressed-carrier SSB signals.

The output from the loop amplifier is fed to the varicap, $D_{4}$, which controls the frequency of the Colpitts oscillator formed by $\mathrm{Tr}_{4}$ at 1820 kHz . Transistor $\mathrm{Tr}_{5}$ is a high slew-rate amplifier feeding the divide-by-four circuit, $1 C_{6}$, which produces in-phase and quadrature feeds of both polarities at 455 kHz to drive the
balanced modulator and demodulators.
From ${ }^{\prime} \mathrm{r}_{1}$, the 455 kHz IF passes through an emitter-follower buffer, $\mathrm{Tr}_{2}$, and then to the in-phase demodulator. $1 C_{2 A, B}$ and $I C_{315}$. the quadrature demodulator, $\mathrm{IC}_{2(0,1)}$ and $\mathrm{IC}_{513}$ and the low-distortion envelope detector. $\mathrm{Tr}_{3}$ driving $D_{1}$ with constant current. Opamp IC ${ }_{3 A}$ amplifies the output from the envelope detector, while $\mathrm{IC}_{4 B}$ and $\mathrm{IC}_{5 A}$ respectively invert and reduce the amplitude of the in-phase and quadrature demodulator outputs and provide drive for the broadband audio phase-shift networks. The outputs from these networks are summed by $\mathrm{IC}_{51}$, for USB and differenced by $1 C_{5 c}$ for LSB.

Switch $\mathrm{S}_{1}$ selects the outputs desired. Op-amps $\mathrm{IC}_{4 \mathrm{C}, \mathrm{D}}$ form a full-wave peak rectifier which senses the peak audio output level beyond a threshold of $+0.5 \mathrm{~dB} \mu$. giving a small guard band beyond the $0 \mathrm{~dB} \mu$ output for a fullcarrier, $100 \%$ modulated signal. The output is amplified by $I C_{4 A}$, which drives the storage capacitors through $\mathrm{R}_{81}$. chosen to give an attack time of a few milliseconds. The double timeconstant arrangement allows a short burst of audio beyond the threshold to reduce the gain for only a short time. while longer-lasting high levels will cause a slower release time. These characteristics avoid impulsive interference or programme material causing unpleasant pumping effects. The DC output from the time constants is fed to $\mathrm{Tr}_{1}$. where it controls the 455 kHz inputamplifier gain.

The unit requires a positive supply between 10 V and 16 V at 50 mA and $\mathrm{IC}_{8}$ generates an internal 5 V regulated line: a suitable supply can often be obtained from the associated receiver. Audio outputs may be fed into any stereo system, or just the left output used with a mono amplifier or fed back into the receiver's own amplifier and loudspeaker.

## Audio outputs

"Envelope" can be convenient for general tuning, to exploit the receiver filters fully when a signal is suffering interference, before going into a synchronous mode. "DSB" gives reduced distortion on heavily modulated and on over-modulated signals arising from selective fading of the carrier. Next come "LSB" and "USB", which provides good results where one sideband of the signal is suffering interference and for the proposed future broadcasts at HF using single-sideband with reduced carrier. "ISB/Stereo spread" gives LSB on the left and USB on the
right, which gives interesting effects on fading signals and when the two sidebands are suffering different interference. An unexpected observation has been that propagation effects cause distant lightning static at LF and MF to sound quite different in the two sidebands. Finally, "Quadrature" gives a null on the audio from the strongest station on the channel, thus improving the audibility of any background station. This position can also be used to receive narrow-band frequency modulation, or any other phase modulation.

Lower noise levels occur in the DSB synchronous mode. since noise in quadrature is rejected, while the noise spectrum extends up to half the IF bandwidth. With an envelope detector, noise at one edge of the IF passband demodulates against noise at the other edge, thus producing audio noise extending up to the full IF bandwidth and no rejection of noise in quadrature occurs. The envelope detector and synchronous modes all yield total harmonic distortion below $-44 \mathrm{~dB}(0.6 \%)$ at $100 \%$ modulation at any frequency and the response is $20 \mathrm{~Hz}-7 \mathrm{kHz} \pm 0.5 \mathrm{~dB}$.

## References

1. Wright. D.T., 'L.F. Radio-data: Specification of BBC phase-modulated transmissions on long wave', BBC Research Department. RD1984/19. December 198t.
2. Macario. R.C.V.. Craine. J.F. and Walters. D.S.. A practical receiver design for SSB. ISB and AM medium-frequency broadcasts: EBU Technical Review, 145. ppl101-108. June 1974
3. Eckersley, P.P.. 'Asymmetric-sideband broadcasting, Proc. Insl. Radio Engineers. 1938. 26 ploti.
4. Tucker. D.G.. The history of the homodyne and synchrodyne", J. Brit. Inst. Radio Engincers, 1954. 14. pl 43
5. Macario. R.C.V. Heng. Y-C. Dargahi. A.. Implications of the proposal to employ SSB with partially suppressed carrier for HF sound broadcast transmissions', IEE COnference Publication. HF Communication Systems and Techniques" London 1982
6. CCIR doce no. $10 / 106$ to $10 / 155$. Decisions of the Interim Meeting of CCIR Study Group 10 on subjects related to HF planning, EBU doc. G'T/RI 164. 30) October 1980
7. Thiessen. P.. 'Assessment of the deterioration in quality of single-sideband transmissions caused by frequency error and harmonic distortion. EBU Technical Review. 140. August 1973. p3.
8. Langecker, K.. and Tropper, H.. 'A design for a receiver for amplitudemodulated. single and double sideband broadcasting', EBU Reriew. No, 139. June 1973. ppl16-123.

## THE COMPLETE DESIGN SERVICE

- CAD Analogue and digital design, simulations and PCB artwork produced for new or old circuits.
- CUSTOM SILICON capability. PALS, Gate Arrays, ASCI's designed and supplied.
- ON BOARD MICROPROCESSOR hardware and software to provide local "intelligence" can also be provided.


## We specialise in small low cost projects.

## To find out how we can help you phone Chris Barnett on (0604) 713681

Natel Electronics, 1 Beechcroft Gardens, Northampton NN3 2JP

ENTER 18 ON REPLY CARD

## PINEAPPLE SOFTWARE PCB and CIRCUIT DESIGN CAD SYSTEMS

Pineapple Software don't offer all the computer aided design systems currently available, but we do market a range of systems which we have tested and consider to be the best value for money over the low to medium price range. We also offer a high degree of after sales service including artwork facilities if required.

PCB DESIGN and CIRCUIT DRAWING SYSTEMS
At the lower end of this range of software are our popular BBC computer products, PCB and $P C B / A R$ are two $P C B$ design packages to run on a standard unexpanded $B B C$ micro, $P C B$ is a manual track routing package at only $£ 85.00$, and $\operatorname{PCB} /$ AR is a full autorouting system at $£ 185.00$. We also offer DIAGRAM II, a very powerful schematic drawing package for the BBC at only $£ 55.00$.
For PC compatibles we suggest EASY-PC which is a combined PCB and schematic
drawing package with mary advanced features and really good value at $£ 270.00$.
Top of the range Is PCB TURBO V2 This package combines a schematic drawing system with a PCB range designer which includes a fully interactive autorouter.
Other features include:

1. Board size up to $32^{\prime \prime} \times 32^{\prime \prime}$ with up to six layers.
2. Board size up to $32 " \times 32^{\prime \prime}$ with up to six layers.
3. Pop-up menu driven with help screens available at all stages
4. Pop-up menu driven with help scree
5. Up to nine user-definable text sizes.
6. Up to nine user-definable text sizes.
7. Extensive library of components and symbols supplied.
8. Extensive library of components and symbols supplied.
9. Output to pen plotter, photo-plotter, dot-matrix printer, or file
10. Input via mouse, trackerball, digitiser, or ke yboard.
11. Minımum step size $.001^{\prime \prime}$, minimum track width $.003^{\prime \prime}$

These are just a few of the powerful features of this package which must be considered excellent value for money at $£ 695.00$. A free demo disc is available for PCB TURBO V2.

|  | PRICE LIST |  |  |
| :--- | :--- | :--- | ---: |
| PCB for BBC | 85.00 | ECA-2 | 675.00 |
| PCB/AR for BBC | 185.00 | Spice. Age | from 70.00 |
| DIAGRAM Ifor BBC | 5.00 | LCA-1 | 350.00 |
| MITEYSPICE for BBC | 119.00 | Roland Plotters |  |
| EASY.PC | 270.00 | DXY 1100 | 625.00 |
| PCB TURBO V2 | 695.00 | DXY 1200 | 865.00 |
| DATACAP | 25.00 | DXY 1300 | 1025.00 |
| Marconi RB2 Trackerball | from 45.00 | Elonex range of computers | 'phone |

Please add $15 \%$ VAT to all prices

New! New! New SERIAL DATA PROBLEMS? New! New! New! A brand new program for IBM's and :ompatibles allows complete monitoring of two way data flow down any RS232 serial data Ine. DATACAP will capture and store data from 110 to 9600 BAUD and display it on screen or print it in such a way that its direction as well as its position in the datastream, is indicated. Applications include diagnosis of both hardware and software faults, and investigation of any problems encountered with handshaking protocols. It is also real as a teachnng aid to demonstrate the ways in which computers communicate. CIRCUIT ANALYSIS SYSTEMS
A recent introduction into our rarge is a budget priced package called SPICE AGE. This is available in four modules starting at $£ 70.00$ and comprises module 1 for frequency response analysis, module 2 for D.C. analysis, module 3 for transients and module 4 for Fourier analysis. The program runs under the GEM environment and is amazingly quick and easy to use. It is supplied with a large library of ready to use components.
use. It is supplied with a large library of ready to use components.
For logic circuits we have LCA-1 a logic analyser program priced at $£ 350.00$. This allows any type of logic circuit to be analyser. TTL and CMOS devices may be mixed and allowances are made for fan outs and min. max delays etc. In graphics mode the program will make your PC look just like a 22 channel logic analyser. HARDWARE - COMPUTERS AND PLOTTERS
As well as supplying CAD software we can also supply the necessary hardware for those starting from scratch. We supply the full range of Roland plotters at very competitive prices, and we also supply the full range of the excellent Elonex computers. Discounts are available for those purchasing complete packages. A typical package might consist of the following:

1. PCB TURBO V2
2. Roland DXY 1100 plotter
3. Elonex PC 286 M with 20 Mb hard disc 1.2 Mb floppy 640 kram .

EGAVGA monitor. mouse GEM etc.
Package price - $£ 2.495 .00$
Please write or 'phone for more details about any of the above software. Trade enquiries welcome.

Please address
Pineapple Software, Dept EE, 39 Brownlea Gardens,
all enquiries to:
Seven Kings, Ilford, Essex IG3 9NL.
Tel: 01-599 1476
回

## Electron tennis and semiconductors

When a voltage is applied across a double-barrier semiconductor device, the resulting current is not ohmic and exhibits some remarkable effects
M. Henini el al. . in an article in J. Phys:Condens Matter vol. 1. 30253030; 1989. reported in Nature vol. 339. 581; 1989. describe their work in which a gallium arsenide device is provided with two narrow aluminium gallium arsenide barriers. through which electrons tunnel under the influence of an applied voltage.

In the current/voltage plots for two different barrier spacings of 60 nm and 120 nm . the current increases in steps. those at low voltage being negative-going. The differential con-
time, transmission thereby increasing

Since it will only interfere with itself constructively if its phase changes by a multiple of $2 \pi$ radians during the round trip, and since its wavelength and therefore phase depend on, among other parameters, its energy derived from the applied voltage, as the applied voltage varies so does the transmission.

But that is not all. The di/dV plots show that the rapid variations are amplitude-modulated by slower changes. These are the result of electrons with a voltage of more than about 0.5 V possessing more energy than the right-hand barrier height. Although, as a particle, the electron would promplly fly straight over it

and away. as a wave it sets up another set of resonances within the barrier. Since the barrier width is a great deal less than that of the well in which the first interaction took place. and since the voltage spacing of the peaks in $\mathrm{dl} / \mathrm{dV}$ is inversely proportional to the width, the resulting oscillations are more widely spaced.
As regards application of the effect, the negative differential resistance and resonant tunnelling effects of the type shown in the graphs lend themselves to such devices as microwave oscillators and rapid switches. There is also talk of a three-terminal device to act as an And gate, with the voltage of the three areas being varied to enhance or destroy the current-carrying properties of the device. One such device would replace several other components.

## DBS for Poles?

Political changes in the communist world are occurring at a rate that would scarcely have seemed possible a year ago; and one of the latest lies behind a request by Poland to join the Eutelsat organization. As with most of the rest of eastern Europe, Poland's telecommunications and broadcasting policies have until now been guided more by Soviet influence.
Eutelsat, a body representing 26 European member states, operates four Eutelsat 1 satellites for communications within Europe, including telephony, television, radio and business services. Next year it will introduce a second series of satellites which, among other possibilities, will offer multi-channel DBS TV reception on small dishes.

## Views wanted

More complex methods of managing and allocating the radio spectrum must soon be introduced, or the UK could run out of space by the turn of the century.

According to a report published by the DTI, civil spectrum in the range $470-3400 \mathrm{MHz}$ is already fully allocated and is virtually all used - mostly in a satisfactory way. But because of international commitments and the large assignment to television broadcasting, the scope for making major alterations is limited. So finding space for new services such as advanced personal communicators, public telephones on airliners and digital sound broadcasting from satellites will mean moving many existing fixed link services to higher frequencies or to alternative means of communication.

The DTI's Radiocommunications Division could also play a part, says the report, by tightening up its administrative procedure, improving the accuracy of its records and pressing for higher efficiency in the use of the spectrum.

A feature of the report is a set of annexes which set out in tables and charts, and some detail, the present UK civil frequency allocations, together with a good deal of supplementary information on topics such as the industrial applications of RF equipment,

## NICAM stereo from Thames

Independent Television's first test of true stereo programme sound took place on July 10, with a recorded opera relay from the Royal Opera House. Covent Garden, one of a number of special programmes to mark Thames Television's 21st birthday (see also NICAM digital stereo, page 920).
Sound from the production, the first two acts of The Marriage of Figaro, was balanced by Ron Ferris, Thames's head of sound. It was replayed from an analogue Dolby A recording on a C format VTR and fed by wires run along a corridor to the sound-in-syncs equipment which feeds the transmission network. "It took a lot of hard work by a lot of people". said Ferris

Stereo sound was heard only by NICAM-eguipped viewers in the London area; although Yorkshire Television's transmitters are also radiating NICAM tests. the necessary programme links were not in place. Other ITV
viewers heard a mono reduction of the sound

A few spits and crackles marred the transmission, which was made using Thames's Mark I sound-in-sync equipment. Because of the complex fourlevel digital coding needed to cram the digital signal into its narrow timewindow in the vision waveform. the equipment sometimes randomly changed the flags which denote stereo or dual-language mode, causing a momentary loss of signal at the receiver. This could happen in response to a minor sync disturbance. According to Ron Ferris, some manufacturers' TV sets respond to this condition more gracefully than others.

However, by July 11, when Thames transmitted the concluding acts of the work. Mark II SIS equipment had been installed and the problem seemed to have been largely solved.

Thames hopes eventually to achieve
an all-digital audio chain. Its present Panasonic MII cartridge video machines will be returned to Japan to be replaced by models with digital audio. This will enable broadcasters to keep their sound in the digital domain all the way from the studio or outsidebroadcast site to the viewer's home.

## Olympus TV/ comms satellite on its way

Ariane 3 lifted off successfully with the Olympus 1 communications satellite on July 11

One of Olympus's functions will be a direct satellite TV service by the BBC for northern Europe and by RAI for the Italian audience. During off-peak hours, the northern beam service will be carrying out distance learning experiments

Olympus will also be used for business applications involving small Earth stations.

## on UK civil spectrum review


and an extensive list of possible future demands on the part of the spectrum under review. There is also a useful glossary and a list of abbreviations some of them otherwise obscure.

Among the principal findings of the review are the following -

- Frequency planning should maintain a long-term perspective. Civil and military apportionments should be aligned where possible.
- In accommodating new services,

Findings of the civil spectrum review will be the basis of Britain's preparations for the next ITU allocation conference, possibly in 1992. A further spectrum review would then be needed in the mid-1990s (ITU picture).
priority should be given to applications such as mobile radio which cannot reasonably use higher frequencies.

- A review of the needs of the emergency services is required. This should take
into account the harmonization of their requirements with commercial standards and specifications; greater sharing of resources between police, fire and ambulance services and with other users, on a pre-emptive basis; better co-operation between the Home Office and the DTI in matters of planning, monitoring and sharing.
- The requirements of broadcasting ancillary services (such as outside broadcast links) should be re-examined to take account of the needs of new broadcasters; demand for spectrum will be especially high in the London area. Sharing with Defence users might be possible. Fixed broadcast links in the 1500 MHz band should be moved to above 3400 MHz , releasing space for transportable links.
- Technical evaluations should be conducted of the possibilities of increased sharing between different services, both between civil users and between civil and defence users. Sharing could be on a geographical, time or common-carrier basis.
Copies of the 105 -page document, "Report of the Civil Spectrum Review Committee, Stage 1: $470-3400 \mathrm{MHz}^{\prime \prime}$, are obtainable from the DTI (24-hour ordering service on 01-215 2072) and comments on it should be submitted by the end of August.


## Cellular for the 1990s

Three further cellular radiotelephone networks could be operating in Britain by 1992-1993. if the industry responds to a call from Lord Young. the Secretary of State for Trade and Industry.

Frequencies for the systems will be in the $1.7-2.3 \mathrm{GHz}$ region. much higher than the 900 MHz channels used by the existing cellular networks.

One operator. said Lord Young. will be Mercury or its parent Cable and Wireless. Although Mercury operates a fixed telecommunications service, it has been excluded from the existing highly lucrative cellular market. Other prospective operators of the new network (s) will be identified by the end of this year.
The new systems. described as personal communications networks (PCNs), will allow users to make twoway telephone calls using a large number of small radio cells. These will be based on one of two technologies already under development - either the pan-European digital cellular system (GSM) or the digital European cordless telephone (DECT). Applicants for the
licences, who must lodge their submissions with the DTI by September 14. can base their proposals on either or both systems.

One company which has already announced plans for PCNs is Racal which, though ineligible to operate a $1.7-2.3 \mathrm{GHz}$ network. could run one on 900 MHz in tandem with its $9(0) \mathrm{MHz}$ GSM system now being planned. Racal intends to integrate its PCN with GSM by basing the PCN on a simplified version of its GSM handset.

With the lightweight handset, costing $£ 150$-200, users could receive or make local calls (costing 8p-12.5p per minute. with a monthly charge of $£ 12.50$ ); or they could stot the handset into a car adapter which would provide the additional power output and signal processing necessary for access to GSM. The handset would provide a talk-time of 90 minutes on a single battery charge and would allow hand-off between microcells. Conversely. GSM users could take advantage of the PCN microcells to make cheap local calls.

One of the main omissions from the


## Racal's Orbitel GSM demonstrator.

handset is the digital egualizer, which must - among other duties - cope with the worst-case Doppler shift when a $400 \mathrm{~km} / \mathrm{h}$ high-speed train roars past a cell-site. PCN users would be restricted to a maximum speed of $40 \mathrm{~km} / \mathrm{h}$.

Racal's plans include a large number of microcells, some 7000 of them each 2 km across, covering all centres of population from modest-sized towns upward. Racal envisages reassigning the existing TACS channels to PCNs while maintaining its present analogue cellular service in the ETACS channels during its declining years.

Racal believes it could have a PCN in operation quickly because it already has distribution networks in place.

## A case of sour Apples!

That well-known creature from another package similar to one it already pro- there is nothing to report on dear old planet, Apple Computer, has realised duces for the PC (called Grandview). IBM, and this isn't it. Anyone wanting that there is a world out there, and that More II, however, makes use of the to be first on the block with the latest it won't go away. So it is opening Mac's capabilities by adding presenta- gizmo now has the chance, for Big Blue diplomatic relations with the natives. tion graphics as a feature-arguably one Apple has always been isolationist by of the world's less useful applications. nature, which is sad. The Mac is arguably a much better computer than some I could mention but it has always been the future. Uncle Sir Clive Sinclair is out there on the periphery of every-day life.

Now bending new product, in this case a 250 opted for a closer relationship with Second) graphics computer than emueveryone else and produced a range of lates an IBM PC/AT and costs around communications products that help us- $£ 2000$. Don't hold your breath - it won't ers link the Mac to PCs. In particutar, be available for a year. The industry the idea seems to be to provide ways of cynics have already dubbed the project linking the Mac into PC network sys- "PC5".

This is because Apple has at last something of a flavour of the month. recognized that the big personal compu-Companies such as Philips, Computafax ter market, and the largest quantities of and comms specialist, Hayes, are all in brass margarets, are to be had in the on the act now and it is a growing corporate business - and that means market. A proper fax machine I can accepting the reality of IBM.

It also means the appearance of more understand, but for the life of me I can't 'corporate-oriented applications soft- ly when compared to 'proper' comms ware for the Mac. Symantec, for exam- systems such as Telecom Gold.
ple, has produced More II, an outliner Lastly, it will be a rare month when
has come out with an upgrade board for the Model 70 PS/2 machine that uses the latest Intel 486 processor.

This was announced last month, but (naturally) won't be available for a while yet - after all, Intel won't have it in volume production until the end of the year. The add-in should make the Model 70 go quite fast, however.

And by that time there might be a reasonable number of $O S / 2$ applications which make proper use of Presentation Manager. That will make the new machine look pretty, but won't actually improve it a great deal.

The reason, of course, is that the OS/2 operating system will still strap the 486 processor down as a pretend 286. The real advantage won't appear until the 386 -version of the operating system appears in 19XX (fill in your guess for the great sweepstake).


Leading instruments and meters, manufactured, serviced, and represented by Levell-Eurocoin
Black Star ||Thurlby HAMEE

QuAntity discounts avallable


A DIVIIION OF EUROCOIN LTD levell electronics fortune House Moxonst Barnet Herts EN5 550 Fax: 014497217 Telex 266016


$$
\text { rex } 200010
$$

ENTER 24 ON REPLY CARD

## FFT <br> ANALYSIS SEMINARS

## LEARN HOW TO EXPLOIT THE FREQUENCY DOMAIN IN JUST ONE DAY

Insight into benefits- Hands-on tutoring
- Applications based
- No confusing maths
- Local and convenient
- Small groups

Max number per seminar is 10

- $100 \%$ practical


## COST ONLY

£150+VAT
including lunch and course materials

Ideal for applications engineers of all disciplines who are unsure of the very considerable benefits of using FFT Analysis Techniques in all manner of applications.

L.APLACE INSTRUMENTS LTD PO BO× 14, BRAMHALL, STOCKPORT SK7 2QS.
8061-4409579


# THE RISC BUSINESS 

# Risc microprocessors, built for speed rather than complexity, are not just a passing fad. Rupert Baines shows how they achieve their astonishing performance. 

Ithink it was Mae West who said that the simplest things in life were the best. Admittedly she was talking about really simple things, like men and diamonds, but it's a belief that suddenly seems very relevant to computing. I"m talking about high-tech high-fashion: reduced instruction set computers, or rise devices as they're known. Risc is arousing interest because the resulting chips are very, very fast indeed.

Conventional processors such as the 68000 or the 80386 are complex instruction set computers (cise devices). They gain their power from a rich architecture with a large number of addressing modes and plenty of versatile instructions (perhaps as many as 20 distinct modes and 300 different opcodes). These allow a programmer working directly in machine code a lot of flexibility in choosing precisely the neatest instruction (though unfortunately compilers are rarely as clever, tending to use standard codes throughout).

Cisc processors have a microcoded instruction set. A machine code instruction is not directly executed, but is decoded and used as an entry into a subroutine stored in the processor's internal rom. This sub-program is written in microcode, a very low level language hidden away privately inside the chip, which reduces the machine code instructions down to the fine level of detail needed by the internal hardware of the CPU (enabling registers, switching signals. controlling gates etc.). The more involved an instruction becomes, the more decoding, processing and analysis are required, and the longer it will take to execute. This is the major problem with cisc devices. Their vast instruction set doesn't come for free: every additional op-code needs to be checked for, each new instruction needs a little bit more logic, and it all slows things down. Even the simplest instructions suffer, because the decod-


Motorola's MC88100 risc microprocessor: running at 20MHz, it can execute 17 million instructions per second.
ing process still has the complex task of deciding that they are simple instructions.
The whole point of rise is that this process is unnecessary. The essence of the idea is this: very few of the available instructions are actually used. If the processor were designed to run only these instructions we would lose virtually nothing in terms of power or efficiency. However, because we now have fewer instructions we can design our processor to suit them. making decoding very simple and very fast. In fact, the op-codes are hard-wired to control the rise processor's innards directly, which
gets rid of an entire layer of logic (the microcode and its control circuitry) and all its associated delays.

Stripping out seven-eighths of the instruction set is one part of the design process. The flexibility of the remaining instructions is pared down too, for the same reasons: complex options are not needed or used but their existence ruins the performance of the options that are.

Addressing modes are reduced in number too. Most conventional processors allow instructions to have different lengths, depending upon the number and type of operands. This imposes a significant overhead in decoding
("Should I fetch the next op-code?"", "Is this a short or a long jump?". (etc). Because every byte needs to be fully deciphered before chip knows what to do with its successor, this slows everything down. One way to avoid making these decisions is to give all instructions a fixed length and a fixed structure.

For example, every op-code could be 32 bits long. with a one-byte instruction field, a one-byte target register and a 16-bit data field (having a large word length helps!). Some operations (e.g. Complement Registers) would not need to use the data field at all. while others might have fetch it in two gulps (e.g. Long Jump). Since all instructions have the same format they can be treated identically. so the fetch cycle can be simplified and a whole section of control logic eliminated - taking with it another set of delays. This system is used in all rise devices. in one form or another. There is a further bonus: everything will always be neatly aligned on 32-bit boundaries, which makes pipelining much casier and gives more scope for increasing the chip's performance.

## A good analogy of risc in the racing car - strip down to the essentials, pare off everyounce...

Another design ideathatt all rise chips share is that of a load/store architecture. The only instructions that can access main memory are those that load a register or store a register, which restricts all the arithmetic and logical operations to being register-to-register only. The advantage of this is, als always, speed: the on-chip registers are made out of very fast logic and can be accessed casily, while the system's main memory even with a cache is much slower and access to it is more complex. Consequently only the simplest had and save instructions are needed.

## Compiling for speed

A good amalogy of risc is the racing car strip it down to the essentials, pare off every ounce and design everything for raw speed. But a powerful engine requires exceptional fuel (Formula One cars don't run on four-star) - for risc. tightly written code from a powerful optimising compiler.

The importance of the compiler cannot be over-stressed. The two are often

Just three or so years ago, risc was very much a low-key idea. No-one in the mainstream of processor design was selling or designing any devices based on this philosophy. A few academics were discussing the implications and some small companies were quietly developing products, but risc was an idea whose time had not yet come. That has now all changed: processors are coming thick and fast from a variety of manufacturers, small start-ups as well industry giants, with amazing performance claims and tumbling prices.

The whole story started in 1976, with a team of IBM engineers who were developing the 801 minicomputer. Before launching in on the design they did some research on how efficiently existing computers worked; and they came up with some surprising results. Regardless of their instruction set, most computers spent the vast majority of their time executing only small proportion of the available op-codes. In fact more than $80 \%$ of the processor's time was spent executing the very simplest instructions load from memory, copy register, add immediate etc. Even more intriguingly, the team found that same $80: 20$ ratio in a different context. Three-quarters of the design effort and circuit complexity had gone into implementing just one quarter of the
instruction set. Unfortunately that was the quarter embodying the most complex and least used op-codes!

The lessons were obvious, and so the IBM engineers designed their risc processor's instruction set. Apparently the prototype ran at an impressive 10Mips ( 10 million instructions per second). I have heard that IBM became so frightened at the damage this achievement might do to other sales that it promptly killed the project! Whatever the truth of this story, even without being released the 801 started something big. Ten years later, the design philosophy that it inspired lives on at the heart of all the reduced instruction set computers now being produced.

The next developments in the risc story were at Stanford University in 1980, where a student project developed two new chips. The second of these (imaginatively named Risc 2), with an 8 MHz clock, could run integer $C$ programs faster than a 12 MHz 68000 . It says a lot of about the power of the idea that a student research project could so trounce a state-of-the-art processor. This research was sponsored by Sun Microsystems, and in 1983 development work was started on what became the Sparc micro. processor, the first risc chip to make it to the market-place.

## ENHANCING PERFORMANCE

Since risc chip designers do not have to worry about compatibility with earlier products (a major headache for the team working on the 83086) or about providing sophisticated instructions, they can concentrate on optimising the device's performance for those few codes that do exist. With fewer codes, there can be more flexibility in how they are organized to give the best results, there is more silicon area to play with and more design time to implement other performance-enhancing features. None of the manufacturers has missed these opportunities.
The idea of pipelining is that the processor shouldn't have to wait for the next instruction and is kept working as fast as the silicon will allow. It's hard work to implement on a conventional cisc processor because
developed together, working as a partnership to get the best out of a chip. A compiler will drastically alter how a program is implemented to wring the maximum advantage from the processor's clever hardware: instructions will be rearranged to make optimum use of the pipeline and avoid bubbles or breaks. registers will be reassigned to benefit from the scorehoard and routines will be merged or split to suit the requirements of the cathe memory. (Some of these techniques are men-
instructions can be of different lengths and it takes complex logic to handle this. Risc processors with their fixed-size instructions make the most of it. The idea is simple: instructions are stacked up inside the processor in a queue. While one is being executed its successor is being decoded; as soon as the ALU is free the next instruction and is ready and waiting.

A difficulty comes with jumps and branches: you cannot decode the instruction because you won't know where it is until the actual jump has been evaluated. This takes some time. It is also wasteful because the instructions in the pipe will need to be thrown out (this is called a "bubble"). There are vays round it though; for example. Acorn's ingenious conditional op-codes.

Table 1: speed ratings of some modern microprocessors, both cisc and risc.

|  | Clock <br> (MHz) | Dhrystones <br> (integer) | Whetstones VAX <br> (double <br> precision) |
| :--- | :--- | :--- | :--- | :--- |
| Mips |  |  |  |

tioned in the panel "Enhancing performance"). MIPS Lid estimates that optimisation doubles the speed of execution, turning $10 \mathrm{Mips}(10$ million instructions per second) into 20Mips.

For historical reasons. most of the

(b)

| OP code Dest S1  S2 <br> 31 14 9   |
| :--- |
| (c) |
| Code Index Dest Offset  <br> 31 24 19 15  |

Fig. I. Some examples of how a hypothetical risc processor's instructions might be arranged. All instructions fit into one word and conform to the same format.
(a) an immediate load $-\boldsymbol{R}_{n}=$ \#data. Usually lobit data is all that is required. A Load High instruction would allow 32 bits to be loaded in two goes.
(b) this arrangement allows a general register-to-register operation, with one destination and two source registers specified in the instruction. (c) different addressing modes all fit the same format: this allows register indirect access with an offset word.


Fig. 2. The Sparc processor has 192 registers. arranged as a succession of partially-overlapping windows. By merely shifting window, a new procedure can be started instantly. It can access the calling parameters (through the out/in shared registers), use local variables (R8-R15) or pass parameters to a subsidiary procedure (out/in registers R 16-R23). This fast and elegant method of implementing procedures makes languages like $C$ and Unix very efficient.
experience with optimising compilers is in Fortratr, so this is the language that offers the best performance at the moment. However, the popularity of $C$ and Unix has ensured these are well supported too (indeed the Sun Sparc processor has been explicitly designed to run procedural languages like C very efficiently)
Even without the need for optimisation it would be difficult to program a risc chip at the machine code level: the few instructions that exist are not very powerful and so an incredible number of very simple operations is necessary to achieve anything worthwhile. Compilers are there to protect the programme from the harsh reality of an instruction set - it makes no difference to the user what op-codes exist in the CPU, since the high-level language is compiled down regardless. The system program can happily use the simpler risc codes to construct any more complex functions when (if) they're needed. This substitution does mean that there is a slight size/speed trade off, with cisc-coded programs being somewhat shorter than the risc equivalent. With memory capacities on the increase, this is usually less important than the gain in speed. For example, a Pascal program which compiled to 700 lines of 68020 code produced about 1000 lines of instructions for the AMD 29000 - a $40 \%$ size penalty. However, since the risc device handles each instruction six times faster than the Motorola part, the eventual speed gain was still an impressive 4 : 1 .

Be warned - the trade-off between code size and speed is different for each chip and each program. Very rarely is it tidy or easy to calculate. This is why raw Mips ratings are such an unsatisfactory way of comparing the performances of different chips.

## Lower costs, higher tech

Manufacturers have other reasons for pursuing risc ideas. Processors following this philosophy can be simpler than their cisc competitors, which means that they need less silicon. If a chip doubles in complexity then it takes four times as much design time and effort to develop. and that is very expensive. But with a simple architecture, you can make more chips simply because you can fit them on to the water

Yield (the percentage of working devices) will increase too. Contamination by a single speck of dust is enough to make a chip useless: by having more. smaller chips on the water you can significantly increase the chances that some of them will survive to be sold.

Scoreboarding is a technique developed for supercomputers like the Cray but now being applied to the latest risc chips (e.g. the 88100 and the 80860 )

If a register is in use it is "tagged" on a scoreboard. The processor then goes on to start the next instruction, while still executing the earlier one. If the new code doesn't involve a tagged register then it can be completed concurrently with all the other operations. This means that several things can be happening simultaneously, stopping only when the result of a calculation is needed (i.e. the new instruction wants to access a register which has been tagged). It's particularly useful when accessing exter nal memory (which is slow); the rest of CPU can still be working away. Otherwise the system would need very fast memory if it weren't.to suffer crippling delays (who wants to have a fast processor and then run it with wait states?).

Finally, because risc processors are smaller than their cisc cousins, they can take advantage of new process technology sooner

These very important considerations for the processor manufacturer also benefit the customer: the easier a chip is to make, the lower are the producer's overheads. And that means cheaper chips for us. Already prices are tumbling: MIPS now offers its R3000 at less than $\$ 200$ - which may sound a lot until you realise that it comes to les than $\$ 10$ per Mips! (For comparison, the 25 MHz 68030 comes in at about $\$ 64$ per Mips).

## Here to stay

Last year people were still debating whether risc was a nine days wonder or a technology that was here to stay. Others were arguing about the eventual winner of a risc/cisc war and which was the better approach. The arrival of chips like the R3000) and the entry of industry giants such as Intel with its hugely powerful 80860 have silenced all the squabbling

It is obvious that not only is risc here and here to stay. it is going to become the dominant design philosophy. Manufacturers will still develop cisc chips. to retain the compatibility market (Intel has just released the complex 80486. a trimph of baroque architecture. and is probably now working on an 80586; the release of Motorola's 68040 is imminent) but their heart isn"t in it any more. If there ever was a battle of the designs, then risc has very definitely won. The next battle is the bloodthirsty one to decide which of the manufacturers will survive


Four generations of devices in the development of electronic instrumentation have existed over the last thirty vears. The "classical" form of instrument. with its pointer and rotary knobs, was soon followed by the second generation: instruments with digital displays. albeit still operated by knobs or pushbuttons.

The third generation - fully digital devices, whose functions were controlled by microcomputer - came with the introduction of microprocessors. Users continued to operate these by traditional front-panel controls and were provided with additional information by leds beside the controls; complicated systems would have CRT screens and a large number of control buttons. Furthermore, these devices could usually be assigned parameters from a computer through the IEC bus (IEC 625 or IEEE 488), although possibly not covering all the functions set up on the front panel itself.

Electronic instruments of the fourth generation are represented by computer-dependent test instruments (CDTIs). They no longer have dedicated operater controls, but are controlled, using a screen and keyboard, by a computer via an external or internal bus.

Improved computer control and reduced operator and display requirements make these devices particularly suitable for automated test sequences.

## PCs control instruments for simplicity and reliability

Demands for user-friendliness and increased reliability in measurements have led to the development of PC-based instruments. Klaus Metzger and Johannes P. Schwemmer of Siemens explain the philosophy.


Moreover, they can, by using the appropriate software, provide simpler and more unified interactive control by the operator.

## New operator philosophy

Operator input to computer systems has undergone a rapid change in the last few years, from using commands which were difficult to grasp, through plainEnglish commands, to icon-based systems, which help to confer transparency on the system and allow the user to concentrate on the task in hand

Measurement technology can profit in two ways from developments in and experience of personal computers. On one hand, the task of measurement is simplified by the user's new ability to operate instruments using PC software based on icons (Apple Macintosh, the Smalltalk language or the GEM graphics system). On the other hand. PC software has a familiar appearance to those who are already acquainted with such systems and helps to overcome any anxiety at working with instruments which do not have physical operator controls.

The concepts of this kind of advanced instrumentation system are similar to those of many Macintosh and GEM programs in that all the important control and display functions are presented simultaneously and alongside each other, providing an overview of the proceedings: less commonly used functions are easily accessible from a menu. Functions are selected directly from icons, using a mouse or graphics tablet. Even complex relationships can clearly be seen; functions not being used are visible, but labelled as disabled. Window techniques allow the user to divide the screen as he likes.

These developments mean that the time is past when it was necessary to have multiple nesting of menu trees, which were so difficult to trace through in the case of complex devices that

Fig. 1 (left). All the important control and display functions are presented to the user simultaneously, alongside each other. Along the lower margin, the instruments which are connected are shown as icons and can be selected by mouse.
Fig. 2 (above, right). If the range of functions a vailable on an instrument is so large that they cannot all be displayed, a selection box appears showing. for example. the choice of ranges on a multimeter. The box disappears after the mouse has made its choice.
manufacturers provided abbreviated commands for frequently used paths. inevitably making the over-all structure appear even more confusing.


Fig.3. The trend towards icons at the expense of menus is seen in the chart. compiled by Prime Data. The top chart is the current position, while customers' preferences are seen below.

Neither is it necessary to hunt for the constantly changing legend on soft keys that were all too soft. By simple clicking with a mouse against an icon or a box representing a function, action or parameter, the software is asked to think. If the users intention is unambiguous, the computer will react immediately: otherwise, a small box appears to show the alternatives, whereupon a further click makes a selection (Fig.2).

The keyboard is only needed for typing in exact numeric values or names: for example, of a file in which the measurement parameters are to be stored. Using a mouse also has the advantage that the operator's eyes remain on the screen, since all controls are accessible from it.

## Icons on the increase

This approach, using icons, possesses considerable advantages over a menubased method of working, as users of CDTI in the USA have already recognised.

At present, around $80 \%$ of this equipment is still using menus. A survey by Prime Data has shown that CDTI users would like simpler methods of control and the use of artificial intelligence, which is indicated by nearly half the users, shows the direction in which future instrumentation should go. It is possible that those users who intend to continue with menus are not yet familiar with icons; it is necessary to work with icons before it becomes possible to reach a judgement between the two methods of control.

This article is based on "Simpler, more rapid and more reliable measurement using PC-based instruments", published in Energy and Automation, vol.X, April 1988, the journal of the Energy and Automation Group of Siemens $A G$.

## AcTIVE

## ASIC

C-mos standard cells. High-performance c-mos standard cell asic devices with onboard analogue functions provide an average cell propagation delay of 14 ns / gate. The EBB/AT AV family consists of four types of cells: unit cell, i/o cell, rom/ram/PLA cells. and analogue cells. The analogue function options available with EBB/AT include operational amplifies, comparators, transmission-type analogue switches, amplifiers, comparators, transmission-type analogue switches, fixed on-resistance-type analogue switches, digital-to-analogue converters, and analogue-10-digital converters. Fujitsu Microelectronics, 0628 76100

A-to-D and D-to-A converters
6-bit analogue-to-digital converters. The AD9006 and the AD9016 6-bit analogue-todigital converters encode at $500 \mathrm{Msample} / \mathrm{s}$. The AD9016 combines the performance and features of the A09006 withan integra output data multiplexer. to switch the output word to two 6 -bit data banks, each of which includes a Data Ready signal and overllow bit. These two new devices also exhibit signal-to noise ratio of 39 dB at 200 MHz Analog Devices, 0932253320.

Sampling 12-bit ADC. The AD167812-bit sampling anaiogue to digital converter uses recursive subranging to deliver a $5 \mu$ s total conversion time for a 200 kilosamples per second throughput rate. A sample/hold amplifier, $A D C$, reference, clock and processor interface are combined on the single BIMOS chip. AC specifications includ a 72 dB minimum signal to -noise and distortion ratlon ( $\mathrm{S} / \mathrm{N}+\mathrm{D}$ ) - 80 dB maximum (intermodulation distortion). Analog Devices, 0932253320

14 bit converters. The ADC. 914 is a highspeed A-to-D converter which accomplishes a 14 -bit conversion in $2.4 \mu \mathrm{~s}$, whilst dissipating only 925 mW . The conversion process is based on a digitally corrected subranging architecture. The ADS. 924 combines a high-speed 14 -bit converter and a fast sample-and-hold amplifier. Datel, 0256 469085

## General microprocessors

Single-board microcomputer. The Gespak GESBDS-6 multi-user computer system has nearly 512 K of rom-resident software and allows two users to program directly in C or 68000 assembly language under its OS. 9 real-time operating system. I
is self-contained and needs no additional hardware, such as external disc drives, for operation. It provides users with an on board, battery mantained 128 K non-volatile c.mos ram disc for storing source and object files and it can be expanded as the user's needs change. Altek Microcomponents 06285582637.

## Risc processor. The UT1750AR from United

 Technologies is a monolilthic, c-mos 32 -bit microprocessor that supports the complete MIL.STD-1750A instruction set architecture (ISA) Underlying the MIL-STD-1750A support s a high-performance reduced instruction set computer (RISC) that provides the MIL STD-1750A emulatıon capability. Microlog. 0486229551
## Interfaces

Industrial control card. This multi-function industrial control card is said to work in any BM compatible PC/XT or AT system. The four-layer PCB includes eight opto-isolated outputs with 100 mA Darlington drivers, eigh opto-isolated inputs, SPST reed relay outputs, TL i/o lines, 12 -bit analogue jinputs and 12 -bit analogue output. The opto isolators provide protection to the PC, up to 2500 V AC and allow a data thr oughput of 10 kHz . Fairchild, 0421216527.

Linear integrated circuits High-speed op-amp. OP-260 is a dual. high-speed operational amplifier that uses cur rent feedback to provide wideband operation regardless of gain. It combines a band width of 40 MHz at a voltage gain of 10 with a slew rate of $550 \mathrm{~V} / \mu \mathrm{s}$ and needs only 4.5 mA supply per amplifier. Bourns Electronic. 0276692392

## Accurate operational amplifier. The

 AD707 operational amplifier is clairied to feature the lowest ever offset-voltage in a DC precision op-amp, together with the highest open-loop gain and stability over all working emperature ranges. The offset voltage of ess than $15 \mu v$ is the best available in a bipolar op-amp, while the maximum inpu oflset current is 1.0 nA . The top-grade 883 B version is the first monolithic bipolar device of this type to offer a maximum offset voltage drift of $0.1 \mu V$ per degree Celsius. Analog Devices, 0932253320 .Memory chips
Videod-ram. The $\mu$ PD 422741 Mbit dual port graphics bufter represents the largest video d-ram to be nade by NEC The device has a ram port for the input or output of a $256 \mathrm{~K} \times 4$ biṭ memory cell and a se $\cdot$ ial port

which can output a $512 \times 4$ bit data egister at a clock rate of 33 MHz 2001 Electronic Components, 0438742001

## Radiation-hard static rams. Two low operating power, $16 \mathrm{~K} \times 1$ static rams

 leature operating power of 30 mW maximum ( 1 MHz ) and a worst case access timie of 70 ns . MA9167 is manufactured on silicon-on sapphire. Current performance figures are: total dose - parametrics guaranteed to 300 KRad (Si): transient (upset) - a $\approx 10$ errors/bitday (geostationary orbit); and neutrons $\rightarrow 10^{15} \mathrm{~N} / \mathrm{cm}$. For systems tha require less performance, but the same low require less perfermance, but the samoperating power. Marconi offers the operating power. Marconi offers the MA9067. Marconi Electronic Devicus, 0522 500500.

128 K eprom. The fujitsu MB71C46 $16 \mathrm{~K} x$ 8bit high speed Bi-CMOS prom offers three state outputs, high programmability, single voltage operation and typical access times of 30 ns . Maximum access times are quoted at 35 and 45 ns for the MB71C46-35 and MB71C46-45, respectively. The memary fabricated with all logic set to zero. Logic fabricated with all logic set to zero. Logic 'ones' can be programmed using the diffused eutectic aluminlum process. Pronto

## Oscillators

Crystals. Professional-grade crystals and oscillators from Euroquartz cover frequencies from 40 to $200 \mathrm{kHz}, 100$ to $300 \mathrm{kHz}, 250$ to 800 kHz , and 800 kHz to 25 MHz in fundamental mode. Extended ranges from 25 to 180 MHz (seventh overtone) and 180 to 280 MHz 2 (ninth overtone) are also available. Cryst:al cut variations include $+5^{\circ} \mathrm{CX}$-cut, DT-cut.C cut, and AT-cut depending on frequency range Euroquartz, 046076477
5.50 MHz crystal oscillators. Vectron series $\mathrm{CO}-253$ temper ature-compensated crystal oscillators are compact umts offering a wide variety of temperature range-/ frequency stability options from $\pm 2 \times 10$
over $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ to $\pm 1 \times 10^{-5}$ over $855^{\circ} \mathrm{C}$ over $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ to $\pm 1 \times 10^{-5}$ over $855^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Available at any specified frequency in the 5 MHz to 50 MHz yange, they
provide $\mathrm{HCMOS} / T \mathrm{~L}$ compatible output provide HCMOS/TTL compatible output from supplies of 12.24 V and 5 V , with a single 5 V supply optional, in a 24 -pin dual-in-line package Lyons Instruments, 0992467161
Task-oriented processors
Real-time controller. RTC31 uses an 8031 processor and is intended for OEM use. The
entire module is $3.5 \mathrm{in} \times 3.5 \mathrm{in}$. It has provision for 64 Kbyte of memory using ram/eprom, 12 bits of TIL paralleli/o and one serial port, which supports both RS232 and RS485, and the entire board runs from a single power supply. In RS485 mode, this controller can be connected in a network MC-net control networking software. J. B Designs, 0285658122.

Encryption processor. The DVS 200 is a VLSI chip which implements a time-division multiplexing (TDM) encryption algorithm and can be used to protect vulnerable speech communications channels. This device features high security by the use of a complex on-chip key generator and an algorithm that checks the "randomness" o the encrypted output. This device can be used to encrypt data streams of up to $4.8 \mathrm{kbit} \cdot \mathrm{sec}$. Marconi Electronic Devices 0522500500.

VGA-compatible controller. The UM587 is a single chip, high integration, high resolution graphics controller for use in IBM PS/2 model 30 -compatible systems as well as PC/AT and PC/XT - compatible systems. It provides graphics of $800 \times 600$ elements It provides graphics of $800 \times 600$ elements
with 16 colours and is fully compatible with with 16 colours and is fully compatible wit
IBM VGA, EGA. CGA, MDA and Hercules IBM VGA, EGA, CGA, MDA and Hercules
graphics plus IBM BIOS. Manhattan Skylin 062875851

DC motor controller. The National Semiconductors LM628/9 precision motor controller simplifies the control of DC and brushless motors by performing real-time brushless motors by performing real-time
computational tasks. A closed loop servo computational tasks. A closed loop servo
can be built using only a DC motor, an optica incremental encoder, a D-to-A converter and a power amplifier. Thame Components. 0844214561

## Television chips

Video dot clock RF Monolithic's HC1198 video dot clock generator offers less than 5Jps jitter over any $15 \mu$ s period. Running at 357 MHz with a basic tolerance of $\pm 0.025 \%$. it is amed at manufacturers of high resolution imaging and graphics equipment such as that used in cad and meteorologica applications. This high degree of accuracy derives from the use of saw (surfaceacoustic wave) technology. The clock's difterential output stage is ECL compatible 1.e. matched to a $100 \mathrm{k} \Omega$ load, Quantelec, 0993776488

## PASSIVE EQUIPMENT

## Connectors and cabling

Patch cords. The Pro patch cord range of high-performance patch cords is designerd for use in broadcast and professional audio and video applications. The range features corrosion-proof nickel-plated plugs whict: ensure quiet contact with the jacks and reduce contact resistance. Pro patch cords can be supplied in Longirame (1/4in) and Bantam sizes, in both dual and sngle configurations. ADC Europe. 0734441955

Angled display sockets. Vertisockets Can be made to bring a display (led.
incandescent, etc) to a precise angle and height, so the display can be seen from any window in the system chassis. The angle can be in the vertical or horizontal plane. The $0.025 \mathrm{in}(0.64 \mathrm{~mm})$ square pins mount securely into PCB holes prior to soldering Aries Electronics, 0908260007.

High-density connector. The 3629 connector is derived form the Din 41612 (Eurocard) range of connectors. It is used for interconnection of printed boards requining large number of $1 / 0$ s, having four rows of contacts from 120 to 684 contact arrangemen:s and a pitch of 2.54 mm . The male receptacle used on backplanes is available in press-fit with provision for wire wrapping or rear plug-up. Souriau (UK), 0628524981 .

## Circuit protection

Gas tube arresters. The SR series of gas tube arresters offiers faster response times than conventional arresters to protect
communications equipment trom electrical surges. The arresters respond as soon as the surge begins, rapidly reaching a constant discharge rate, which they maintain even if the current continues to rise. Protectors are available for ICs in networked computers and terminals, for equipment that uses AC power, for coaxial cable transmission systems, for PBXs and for telephones and terminal equipment. ECC Electronics, 0628810727

## Displays

LCD module. Led-backlit alphanumeric LCD modules offer a significant increase in operational life compared with traditional electroluminescent types. The units combine dot-matrix LCDs with low-power c-mos circuitry and include on-board character generators. Options include a choice of viewing angles and led backlighting choice of green. red or amber. Anders Electronics. 01.3887171

Back-lit LCDs. A range of dot-matrix LCD modules which possess led backlighting is made by Stanley. Current consumption is 160 mA for a 16 -led module upto 380 mA for a 38 -chip unit. Luminous intensities in col/m ar 42 (red), 39 (orange). 39 or 80 (yellow) and 27 (green). Rom and ram character
generation and microprocessor bus interface are provided. STC Mercator. 0493 844911

## Filters

interference filters. Two choke-based
filters with integral BS4491/IEC320 applicance inlets are available. The range


Hewlett-Packard's 500MHz digitizing oscilloscope. 54503A
offers improved attenuation over standard choke filters and is supplied in IA, 3A, 6A. and lOA ratings with a choice of 2.8 series tabs/solder tags or 6.3 series tabs. A. F Bulgin, 01-594 5588

## Hardware

Pin-grid-array heatsinks. Three heat sinks by Thermalloy for cooling PGAs are avallable Where the air flow is directed straight on to the pins, the heat transfer coefficient achieved is up to $20 \%$ greater than with extruded heat sinks of similar area. The 2328, 2329 and 2334 series are designed for use with 121, 196 and 441 PGA packages. Suvicon, 021-6436999

## Instruments

High-resolution chart recorder. The MT 95000 chart recorder possesses a resolution of 300 d.p.i. on the amplitude axis and more than 300 d.p.i. on the time axis, permitting even minute waveform changes to be interpreted. The recorder also features a real-time frequency response of 20 kHz . All. electronic and operating without pens, styli or other moving parts, the MT-95000 records 8,12 or 16 separate of overlapping channels, printing the waveform data and the chart grid simultaneously. Astro-Med, 0628 668836.

Multimeters. The 200 series of professional digital multimeters features a self-setting fuse for protecting the electronics and the user, the 223 also incorporating an audible bargraph. The instruments neasure alternating and direct voltage and current and resistance. Beckman Industrial, 021-643 8899

Light meter. The HD 8366 is a digital IIght meter used for measuring lighting levels outside and inside buildings. HD 8366 uses a sllicon sensor, with no memory, and the spectral response has been adapted to that of the human eye by means of a filter fitted onto the sensor, with an integral error of less than 4\%. The linearity of the sensor is better than $\pm 1.4 \%$ in the field from 100.000 to 200.00 lux. Delta Ohm, 0903214335

## Storage-oscilloscope battery pack. A

 rechargeable battery pack which gives independence from mains power supplies is made by Gould for its 400 digital storage oscilloscope. The pack is 1.5 in deep and fits underneath the instrument. providing up to iwo hours of continuous operation. Gould Eletronics, 01.5001000Digitizing oscilloscope. The H-P 54503A digitizing oscilloscope offers a 500 MHz bandwidth and four channels. Features include autoscale, for single key-stroke set up, 16 automatic pulse-parameter measurements and an HP-IB (IEEE-488) interface. Hewlett-Packard, 073477828

Compact recorder. The TK0401 dual-deck voice-logging recorder offers up to four channels of simultaneous recording on a
standard compact cassette tape, and provides 12 -hour continuous recording capability in a low-cost desk or rack mountable format. Recording may be continuous or triggered by voice operation and sequencing of the two tape decks means that the second standby deck is
automatically activated on completion of the first tape or in the event of a malfunction, and rapid access to recordings is ensured by a time/date log combined with a high speed time/date log combined with a high speed search and re
0734782158

## Literature

Single-board PC STEbus. A new six-page brochure details the features and benefits of the first fully compatible single-board PC for the STEbus. The Celeste PC card is based on the V 20 processor running at 8 MHz which gives it a performance three times that of a standard IBM PC (Norton SI = 3.1). Control Universal, 0223244447.

Displacement drying. A flyer from IC describes the single-solvent displacement drying system from ICl . Arklone A-MD Typical drying applications for the new solvent are printed circuit boards after through hote plating, plastics after plating glass lenses aiter aqueous cleaning and assemblies after aqueous cleaning. ICI Chlor Chemicals, 0928513065.

Instrument rental. 'The complete guide to instrument rental, 1989* covers a total package of electronic instruments and computer systems available under a variety of rental and leasing schemes. The new catalogue contains details of computers development systems and marine instrumentation as well as test and measurement equip ment. I. R. Group, 0753580000 .

Proximity-switch data. MTE Ltd has published a 40 -page manual providing technical specifications and extensive application data for their Turck range of inductive, capacitive and intrinsically safe proximity switches. MTE. 0702421124.

## Materials

Synthetic diamond. Pilkington can now produce true diamond at low pressure and modest temperatures by combining high energy plasmas and chemical-vapour deposition and can coat small surface directly and produce self-supporting films. Application is in electrical components such as insulators and heat sinks as well as windows with special relation to $X$-rays electron beams and particle beams. Pilkington Electro-optic Materials, 0389 Pilkingt
59021 .

## Printers and controllers

Thermal graphics printer, a 42 -colum fixed-head thermal printer, the GPP-42 offers selectable international character sets and graphics capability. As well as printing in blue or black characters on white, the

GPP. 42 features a software selectable reverse-out printing mode which can be invaked line by-line. Datel, 0256469085

## Production equipment

Dry film laminators. Hot-roll laminator manufactured by Western Magnum are designed to laminate dry film photoresist to inner layers, multilayer boards, double-sided plated through hole boards, chemical milling parts and other specialized substrate materials. Sizes range from 12 to 24 inches Temperature controllers maintain constant temperatures across the full roll width, while air pressure cylinders provide the necessary panel-wide contact pressure. Astro Technology. 0489577233.

Plug-in module cases. Cadlow have introduced plug.in module cases, whose base incorporates an 11 pin relay-style plug. the snap-on ABS cover having internal slots for PCBs and a recess on the top for flush.fitting label. An internal metallic coating against RFI is also available Overall dimensions are $76 \times 38 \mathrm{~mm}$ in two heights: 71 and 120 mm . Cadlow. 073263266

Monitoring for PCM reflow. The PCB reflow tracker system by Datapaq measures the effectiveness of reflow soldering, helping to minimize IC overheating and dry joints The system monitors critical temperatures using a thermally protected Flatpaq 'tracker module which follows a PCB through the reflow process. Connected to the PCB via thermocouples and short PTFE or fibre-glass wires, the tracker unit measures and records temperatures at specific points,
downloading the information to the system's computer for interrogation and analysis. Dage (G.B.), 0296393200.

Aqueous cleaner. An aqueous cleaning system with the capability to efficiently clean and dry densely packed printed circuit boards is less than half the price of an equivalent traditional solvent cleaner, with none of the associated environmental problems. Poly.Clean is compatible with in-line processing systems or can operate in a stand-alone mode. Using water as the cleaning fluid enables the use of a more aggressive flux in the soldering process. The system is $131 / 2 \mathrm{ft}$ long with a 20 in wide conveyor. Hollis (Europe), 0634716733.

## Power supplies

Power-factor correction IC. The Micro Linear ML4812 is a power-factor correction circuit designed specifically for use in DC power supplies for computer systems. It will supply up to $30 \%$ more power froma standard wall outlet. Ambar Cascom, 0296 434141

Power supply. The S25D series are 25W, triple-output, switched-mode power supplies, usable anywhere in the world without modification. They operate within specification over a mains input range of 90 V to 270 V AC. They are totally enclosed in
moulded, rugged polycarbonate cases, work without derating from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ and they contain built in RFI suppression filters to meet VDEO871 level B. Standard output configurations are +5 V with $\pm 12 \mathrm{~V} .+5$ with $\pm 15 \mathrm{~V}$, and $\pm 5 \mathrm{~V}$ with +12 V , but other voltage combinations can be provided if required. All outputs are short-circuit protected and the main +5 V has overvoltage crowbar protection as standard. Gresham Powerdyne, 0722413080.

Power modules. A series of high-power, fast turn-off modules in two package sizes offers thyristor-thyristor, thryristor diode, diode diode and diode configurations. The thyristor-thyristor and thyristor-diode modules are available in a variety of circuit configurations. The INT. A-PAK series is rated from 200 to 1200 V at 70 to 150A with urn-off time ( $\mathrm{t}_{\mathrm{q}}$ ) of 12 to $25 \mu \mathrm{~s}$ the MAGN.A PAK series is rated from 200 to 1200 V at 180 to 200 A with $t_{\mathrm{a}}$ of 18 to $23 \mu \mathrm{~s}$. Diode diode and single diode versions are also available in various configurations. International Rectifier, 0883713215

Voltage converter. MAX681 from Maxim is a c-mos dual charge-pump voltage converte that provides a +10 V output from a 5 V input voltage. The device provides both a positive step-up charge pump to develop +10 V and an inverting charge pump for a -10 V output It has charge pump capacitors internal to the package, operating with input voltages from 2.0 V to 6.0 V to supply simultaneous outputs of $+2 \times \mathrm{V}$ and $-2 \times \mathrm{V}_{\text {. }}$ Kudos Electronics, 0734351010 .

## Radio communications

Rotary joints. Spinner GmbH rotary joints are used wherever it is necessary to transfer RF energy from a static system to a rotating antenna. They are available as single or multi-channel joints, with connections of one or more coaxial channels. Joints are available for nearly every waveguide size and frequency, with slip rings supplied for the transfer of low-frequency signals. All signals are transferred without any change of phase and amplitude. Hayden Laboratories, 0753 888447.

## Mass storage

Magnetic disk controller. Samples of AMD's Am 95C95 disk controller are now available. It features a data transfer rate or up to 32 -megabits per second (NRZ) and on-chip functions Include buffer management Reed-Solomon error detection and correction, a sophisticated sequencer engine, and a writable control store block that allows the chip to interface to a variety of standard interfaces, including ESDI and the ST506. AMD (UK), 0483740 440.

Tapeless audio. ESTA products use nonvolatile eprommemory as a sound storage medium. They can be used for speech, sound effects and music and, as there are no moving parts, they provide reliable sound with no regular maintenance. There is a choice of bandwidth or quality up to 12 kHz . and storage capacity is up to 168 minutes at the lowest 4 kHz quality. Electrosonic, 01 8541414

Tape autolocator. Studer Revox announce the availability of the Revox Autolocator for the C270. V274 and C278 range of professional tape machines. All 'C'range versions accept the autolocator via the RS232 port, allowing remote control of all tape deck functions: Z-Loc, A-Loc, loop. programmable rollback ( 0.59 s), locate and search, with channels 1 to 8 individually preselected 'ready'. Additionally, the autolocator has the facility to store 18 locator addresses. F. W. O. Bauch, 01-953 0091.

## Software

Optical storage data bridge. Bypass is a software utility that provides data connectivity between hardware platforms via erasable optical discs. Working in tandem with Alphatronixs Inspire erasable optical storage system, users may read and write data between DEC VAX workstations and personal computers by means of an optical disc. Decade Computer, 063538008.

## Put our test set to the test. Can you find anything it can't test?




## Stabilock 4031: Portable Communication Test Set

In the time it takes to read this, the Stabilock 4031 could test any of the devices pictured above - with one minor exception Quite a performance given the dramatic evolutior in radiocommunications technıques and standards.
To meet the challenge, we packed more than 25 years of experience into a single, highly versatile unit. You won't need an operating manual to use it: tıme-saving features include automatic measurement functions and brilliant graphics, with both numeric d:splay and simulated analogue meters
The Stabilock 4031 comes with all test devices integrated, while its modular design and flexible software system can adapt to all testing demands, both present and future. The exceptions are rardly worth mentioning

Born to set tomorrow's standards in measurement reliability.

## Schlumberger Instruments

Instruments Division
Schlumberger instruments
20 North Avenue
Burlington MA 01803 USA
Tel (617) 2292548
Fax (617) 2294885

## Weinstock

Thank you for giving me the opportunity to amber the questions raised in Mir Catt: lefter (Aagust).

Mystatement that (iEChas proved agood investment for its sharehoklers is proved when we look at the purchase price of the shares ten yearsago and the price thevean be sold for now.

With regard to the smaller companies taken into the ( BE (. Group. since these mergers and take-overs were carriedout with the approval of the majority of the shareholdersand. in most cases, the executives, we must assume that they felt the companiescould not continue satisfactorily without such actions.

The rest of Mr caltosletter dees not refertomine
T. Jeffrey Burton
T.J.B. Ansociates

Tunbridge Wells

## Kent

## Ball-bearing motor

Concerning Stephan Marinows ball bearing motor in the April. 1984 issuc. IF. Donachice is ont the right lines in his letter in the June issuc, but fails to hit the nail on the head. His idea of a delay between heating and expansion is spurious.

In an idealised ball race in motion, any point on the surface of one of the balls is in contact with the rings for zerotime and hence experiences deroelectrical heating. This is not true of the great-circle are of contact of the moving ball. Hence, all the relevant heating has occurred around the small are immediately in front of the point of contact ( $p$ ) which itself is heated by thermal conduction only. The expansioncamsed by thisheating has two effects: firstly, a force (f) perpendicular tothe tangent at p is created (i.e. along a radius of the race) - -0 much Stephan Marinovgot right: secondly. the hall is deformed in shown with the bulge mainly in front of the point of contace. This shifts the point of contact with respect toits position on a cold ball outwards (stressing the metal and producing f) and forwards. Hence, f is not along a radius of the ball and soexertsa torque on it and it dutifully rotates. Sof does. infact do work. making this just another heat engine. I camot comment on Mr Marinos sababrific

experiments but would be surprised if his results prove to be repeatable
I'. Alitchell
Southend I lospital
Essex

I would like to thank Dr Marinow (EW'W. April 19SO) for introducing me to the hall bearing motor. Ilowever, it was not clear from the article whether he undervands the nature of the motor he is championing. For example he speaks of the "buge" moving from one race to the other (top left p .357 ) but 1 doubt if this is so. Consider Figg. 1. This represents astalled condition and nomstler how much current passes through the contact planes AB. (O) it sunlikely to become unbalanced. (iive it a nudge, however, and the loall no longer oceupies the balanced condition and rotates a little. therebs re-arranging the points of contact ans in Fig.2. Current flow through these new points creates hulger growing out of the sides of the old hulges and pressure builds up at the new pressure perints. This time the contact plames AB, (D) arre not at right angles sto the hut and to each otherand the pressures can now show themselser. This translates an the side of one bulge pusthing the side of the other bulge that it s incontact with around the perimeter of the race

The "energy from nothing" claim (bottom left p. 357 ) got m attention, but I donot see what the problem is. The thermat energiesstored within the motor will show up on the calorimeter test but what will not shos up is the potential energy stored at the contact planes. In the balanced condition these planes are under compression and this qualifies ans potential energy. It will not be released until the motor is made fo turn and this is where the
"nergy from nothing" comes from. It was there all the time but was invisible to the testing method! I have built a couple ot these over the last wech but unfortunately deadlines preclade a full atssersment: however they didwork. Efficiency is low, probably around the l0"., Dr Narimos clams. There is a huge thermal problem-10". efficiency demands the generation of approximately 7.5h W of heat withina lh.p. hall hearing motor and providing it doesn't melt it should at least solve a fer heating problems. It is a lot of heat toget rid of and might prove hard tosurmount. The highcurrent low-voltage tramsormer make the motor much larger and heavier tham is useful. The poorself startingean be arobeded.

The motor provides the hasis for a cheap, small, light power unit caprable of powers out of all proportionto it くi/e, but only if it can be develoged and the arranged in a more useful format fowercome the criticisms. levelledat it.
B. (i. (are

Levion
London Eis


## Microwave television distribution

Your correspondent Mrlewis (Ictters. Junc 1989), writing about microwatce television distribution, referred to the Touche Ross Report for the 1)TI. Ile described us as concluding that. in the UK. the 2.5 (ill/hand was atready fully loaded and stated that. Without
further investigation, we ruled this out for further investigation for the use of microwate distribution of chomestic services. He went on to argue that troporphericscatter applications. in the 2.5 (illaband were making had use of the spectrum.

We were puzzled hy this as our report is in the public demain. having been published in October l988byHMSO. Our terms of reference didnot include astudy of the optimal use of the 2.5 (illzhand but instead required a technical and commercial evaluation of the attractionsof MVISS in this and other bands. We therefore provided a full investigation of MVOS : 2 2.5(iHzbut did not make any comment whatsoever on the loading of thisor any other hand. Mr I.ewis may be confusing the Touche Ross report with a consultation paper issued recently by the D"TI which dismisses the scope of MVI)S in this band.

Your correspondents, commentson the troposcatter systemsseem, on the face of it. (t) he valid. However. decisions about optimal use of the ypectrum cannot properly be tahen until we move lowards at ystem where assignments are charged at their opportunity cout.
L.I).(. Rees Touche Ross Management Comsultants. London. E:C+

## Crossed-field antenna

For once I am on the side of the unconventional. The design of antenna proposed by Kabarry et alin the March. 1989 issue contlicts with the technology of the 20th century but it does not appear toconflict with theory: Maxwell's equations for a plane wave sate that if there exist oscillating fields of E and B (or H) then a plane wave will propagate. (The weakness of this form of the statement is that it ignores boundary conditions and the fact that the wave launched from an antenna is initially circular rather tham plane hut this does not seem tochange things to a major extent.) The second piece of basic theory is that if there exist fields $E$ and $H$ then there is a power flow $I: \times I I$. whether or not the fields are oncillatory or plane. I didnot
sudy the $E$ d W＇W＇article hecause
I had alreaty beenaware of the scheme for a year and hat checkedthe ituthor＇s calculation of the e＇quatorial magnetic field． both within andoutside the E： plates：and the atothors had also shown hou this fiedd could bi－ measured with a screened pich－ up coil．Instead of an
intemperate attack．a
yuantitative analysis of the effert of current in the feed wire would hatce beem more hedplut than a casual comment by William（i Chambersatheut what might happen．

Qualitatisely is serms toble that the onl reanon for mahing a revonathtantemalarge（e．g．We half－wase dipole）is that the E： and lifieldechose to the conductor are in quatrature and the phane of the contributions from sarious parts will difter at a distant point．dependingon the distance tratelled．sothat a component appears in which the twofieddatre in phase．This fictor isevident in the directional pattern in the radiation from long non－ resonant wire（e．g．one himbot： rhombicentemat）．If there isal defect in the present proposal it should beevposed analsticatll． a that one could enonder whether it could he ore cerome There is onothing hasically imposible ahout an antenna umaller than a wascength in dimension．prosided that it is nots resollatit．
I）．A．Bell
Bいいいた！
North llambervide

## Light current

 on an electronic circuit which

 reference．The interesting phemomenom Pobservedwa that when light was done on the seners the woltage relerence was reduced $\begin{gathered}\text { an } \\ \text { low as } \\ \text { 47 } \\ \text { ．}\end{gathered}$ depending on the intensits of the light．The phenomenom har no ill effectson the applicatoon at hand because the printed－coreut board is herused in an opratper plastic mould，but I would be ver interested in hearing whether this effect or similar eflects hatse exerberon observed by ant of bour other reader．
Josephaleclean
Ther Benning I reland（imhl｜ Wexford Ireland

## Circuit symbols

Wert it a little lateronthe dat tor Mr．MćLoughlan（．Ma！．リダせ）（6 beat the l3SI with the ＂rectangulat revistor＂？ 13.3930 －（itaide lor graphical wimbols．．．
 exenthem wa inconformit：with many IEC wombor，The BSI mat hate thrown ciation tot the wind 23 searsalgobut it cam batll！he accosed at has ingempored its
 corcuit diagrams in this｜ournal and mans othersdemombate every month

It waprestmad！on the interest ol a＂trus imternatonal Janguage＂｜hat ISSI abd II：（＂ いmbobslleremade tocon＇orm and d an net beliene that the ＂wegly rebator＂was in comomon
 ないりが

I（木）nothate ally combection ＂th the BSI．but I wars mader the impresion that circuit $\quad$ ！mbols and indeed all other utand red ＂ere the result whe dediberationont commatteren experienced people from：he mdustriesconcerned．We hatse ath heard about calmels and committer but wh！心it that the「rectamgulat mestator ramen such ire＂．Lat nomuch more dillicult to appreciate tsoblomectualition
 F－bentodats the sectangle is どaler todrall usiny the arerage compute dram Ing progratm whichw，I underitand，one ot theroiginal ellontatoratchoice all those years ago．All the ＂mtelligent！choner＂？ ＂ere，after all．the worh ol the valle commollec．

The use ol differemt cirat －mbols depernd かっalatgé
 －froms doing worh lor（＇K gorermoment agenciosand contmental Europer min！ひど（ble we and htome doing worh for the しSA and Japan use another． Beingeontormat is nece warils a hat thins．I hope that the pupil at Jaberdasher Ashés School conlorm to the hasic ruk and Fonglivhgrammarand to at ditmernt cet ot ruk hope we all contorm toblbe reled ant speed timit when we driveonthe puhlic rabk．In Iツツ？ we vall modoubt hate to contorman mand difterent Nall Theremost he more ompotitnt
 W！gol reviver
I．P．Beい


（a）

（b）

（c）

## Temperature compensation of base／emitter junction

As is well known，the $V_{i n}$ of a transistor varies with temperature．Frequently．a diode or transistor is put in the hias chain as shown in Fig．3a． This does not give good compensation；indeed．it can be shown that
$\Delta V_{11}=\frac{\Delta_{\mid m \cdot 1} \times R_{2}}{R_{1}+R_{2}}+\left(\Delta V_{|x| 1}-\Delta V_{1 m: 2}\right.$ which．even it the base／emitter junctionsare matched．reduces （1）

$$
\Delta V_{11}=\frac{-\Delta V_{\left|x_{1}\right|} \times R_{2}}{R_{1}+R_{2}}
$$

The circuit of Fig．3b．gives better compensation：

$$
\begin{aligned}
& V_{11}=\frac{R_{2} V_{1}}{R_{1}+R_{2}}+V_{121}-V_{1 m 2} \\
& \Delta V_{61}=\Delta V_{i m i l}-\Delta V_{i n: 2}
\end{aligned}
$$

～ 11 for matched junctions．
If $T_{1}$ is replaced by the complementary pair is in Fig． 3 e the current in Tracan be made équal to that in Tr，by means of $\mathrm{R}_{7}$ ，giving even betler compensition．
J．Ľ．Kennaugh
Callington
Cormuall

## Alpha－torque force

I read Protesoor（irancatas article in the June issule with great interest．（）ther reatern interested in underwater ares mats lihe folooh out an article whichappearedsereratucars ago in the Amateur Scientist section of Sikontific Ammernan． The athore proposed that the majorits of the entergy releatsed Wherla high－toltage capacitor ＂andischarged was disupated in internal and circuit res．stancen rather than in the are．They set about trying（oincrease the resistance of the are and hit upor the ideat of triking the are underwater．The authors moted the comsiderable pressures generatted hy the are a d din once experiment ia parh wastired near the sede of a metal tank which＂arresting on a sted die． resulting in a piece of the sile ot the tanh herng punchedout it high ypeed．

N！prototypewater－atigun． butt out of funh componemts． Wall hat the cedang witha 2．5． challer．I am waitunglor alarger catracter tobedelisered tor the Dh HIcrion smonn hounge vewmathet Suttork

Peter（irancalla，in his June article Nohat Forque tores． descolhes some impresule high－ current and shent－time phenomena mathemblenot conductong materials．Ifowerer． he attemptotoexplatin them whely intermaffores hemeen currents，gmoring hoth electrontaic tores and the
 electomatgneticindaction（）n thahasi he argue that the I orensforce lam hetween current elements is seriousl detectse．It a meall toomuch to crede that this deficiency catl

agreement between the complicated behaviour calculatted for particles in highenergy accelerators and the detailed experimental measurements of that behaviour.

Many people assume that. because in electrostatics there can be no charge inside the body of a conductor, therecan be none in the body of aconductor carrying a steady current. If this were true it would be a tricky matter to determine the specific resistance of a metal by measuring the resistance of a long wire of known crosssection. since the current would be concentrated by the pinch effect towards the axis of the wire. Initially this will tend to happen, hut as a result an excess electronic charge builds up near the axis (compare with the Hall effect). In equilibrium this produces a radial repulsion of the conduction electrons which on average balances the pinch effect.

In the cup of mercury the electron currents are diffuse when they leave the ring electrode and have a spread of radial components, but become much more concentrated and almost purely axial just above the rod electrode. The pinch effect is therefore greatest in this region, and falls off progressively as axial positions are takencloser to the free mercury surface. Thus if the resulting forces on the electrons are somehow transmitted to the mercury atoms they will tend to produce just the sort of mercury flow Graneaudescribes. His argument to the contrary neglects the effect of the axial gradients. How the transmission is effected is much more likely to find an adequate explanation in the theory of solid-state physics, which successfully accounts for some very complex phenomena. than in a revamping of the ideas of Ampere. to whom these phenomena were unk nown.

In Ciraneau’sexperimentson exploding wires and on water guns the forces between the 'quasi-equilibrium’ currents may not be the controlling factors. Instead the critical stresses could be generated during and soon after the initial current buildup. when the inductive effects which he ignores are important. His anti-relativity stance simply antagonises those who might otherwise be seeking to provide a satisfactory theoretical account
of an intriguing and techonologically promising set of phenomenat.
C.F. Coleman

Grove
Oxfordshire

## PC graphics

I would like to point out that. of the relatively few typographical errors in the above article in the June issue. three might prove important for anyone trying to use the data. These are:

1. Table 1: for al= 07 h the memory start address should read Boon:0MOM. not 130) $0: 8$ (\%)
2. Table 3: the second row of data reads the whole palette, not a repeat of the line above
3. One line of code in the

Hercules loading routine reads:
DB (1 curs_mode It should read

DW 0 curs mode In general. I would point out that the practice of moving characters to the line below when listing code makes the code totally unworkable if entered that way. White readers familiar with writing assembler code will sort it out, it is a had practice and not scen in any other journal ! have ever read.
Keith Wood
West Derby
Liverpool

## CODAS and PCS

We were very pleased to see the review of COD)AS and PCS in the July issue of E/lectronicy and Wireless Wiorld.

There are one or two factual points that I feelought to be pointed out to your readers.
a) Both COD)AS and PCS will operate automatically on at wide range of graphics adapters. There is nosuch thing as (iCA displaty (your inset).
b) There is a substantial discount formulticomputer sites involved in trainingor education, eg. an eight-computer licence with eight manuals for ( ()I)AS in available for £4.50 (please see our price list).
There are a number of points in the review with which I could take issue. I will just describe one or two which I feel are particularly important.

The sentence on page 724. "It
also outputs the Nyguist plot..." could mislead readers into thinking that Nyquist plots are the only form of frequency response representation. In fact there are six different frequency response views including Bode. Nichols and Inverse Nyquist.

A number of kev features of ()DAS were simply not reported. Nomention was made for example of the digitizing cursor, the availability of a gencrator (calculator) for synethesising complex wavetorms and the ability to handle systems with pure time delay in all three domains.
J. W. Golten

Cheadle llulme
Cheshire

## Merchant Navy College, Greenhithe

May I, through the columns of your journal, inform your readership of the impending closure of the Colleger, and advise past students among your readersas towhat they should do should they need to refer to the academic records.

My department, the Department of Electronic Itngineering. canle here when the present buildings opened in 1975. with a number of staff from theold Norwood lechnical College (now South London College). Although, initially, we were primarily concerned with the training of radionfficers. the decline of the merchant navy led us to diversify tomore general electronic engincering and recently we have been the biggest single IBTECHNC in Electronics and communication Engineering. certainly in the south east a and probathly in the country as a whole. While most of our ex-studentsobtained employment as technician engineers in shoreside industries. we maintained our share of the much diminished employment market for MN radioofficers.

Despite our success and a twoyear battle. we will definitely be closed by our authority the ILEA, it the end of this academic year. Ourstudents who are currently part-way through their course will be dispersing toother colleges throughout the coundry.

After July foth 1989. past-
students who require references or need to consult their records. including those associated with [3TEC. should address their enguiries to South London College, Knight's Hill. London. SE27. telephone number (11-670 +488 . to which all records have beentransferred.
R.(i. Douglits

Vice-Principal
Head of Department of Electronic Engineering Merchant Navy College Gireenhithe
Kent

## Capital appreciation

I have been a regular or frequent reader of Wireless Worldfor is good number of years. For most of those years the magazine has beena bastion of correct practice in so far as abbreviations are concerned. However. over the last few monthe the pages have begun to he littered with such things as upper-case $A\left({ }^{\circ}, ~ D C^{\circ}\right.$. IC, RMS, THI), RI: AM, IM T「「L etc.

Itrust that this will be but a temporary aberration and that you quickly act tocorrect these errors.

I:lectronicsand Wireless World will again become the reference against which lesser magazines may be compared. I).M. Bridgen

Racal-Tacticom
Reading
Berks
W'ithtechmical expressions and quantities. we use the following ruks. If the acrontm can he spoken (or read) as a complete word. then weprint the acronym or abbreviation in fower calse, so that the reader does not stumble across unnecessarly capitals. However. if the abbreviation camnot be read an a word, nothat the reader has tospellout the letters for himself as be reads it. thenweprint the abbreviation in upper case to emphasise the difference.

From a technical point of view. I consider the mix of fowercase and upper cance to be insignificant. except where chectrical quantities are used. Thus, kilohertz will always be printedan kHz . c'c.

If we obtain feedback suggesting that we should move entirely tolower-case abhreviation. then rest ansumed we shall do so. -Ed.

## Radio Mirror

Although I have been logging the atmospheric electric field for many years, intermittent inteference hegan to show up on electrometer recordings of the nat ural electric field earlier this year. Normally the electric field shows a very regular diurnal profile except during thundery weather. magneticstorms and solar flares.

The interference took the form of a positive transient of over l(K)V (Fig. 1 ) impressed on a normal antenna background field of between 5 and 1.5 V lasting from 5 torn) minutes on weekdays between 9a.m. and $5 \mathrm{p} . \mathrm{m}$. This office hours' pattern immediately suggested an artificial origin, which was confirmed when it was found that audio and datamodulation could be extracted from the electrometer signal. The origin appeared to be high-powered microwave transmissions penetrating the ionosphere over the recording station en route to geostationary communications satellites from one of the three large satellite uplink stations in the Malvern/(heltenham/ Hereford region.

The fact that a microwave beameffectively cooks the ionosphere where it penetrates is proved by the very large iomization soltage appearingon aground electrometer antenna. This is higher that that callused by normalD, EorFlayer ionization, which is already used as a natural radio mirtor since it follows daily and sumspot cycles. The suggestion that the zone of intense ionization callused by a micronave beam has a possible use appears to be new, and seems (0) have never been tested, so what are the chancesot success?

Experience over many years hats shown that even slight ionization anomalles can refract or reflect short radio waves. Television reception is frequently disrupted when a summeranticyclone settleson the British Isles, since it acts a natural waveguide to bring distant tustations on the same channel to our derials. Meteor trails ate as verygood evaneseent reflectors. Troposphericscatter systems have been used for many years to take advantage of slight ionization anomalies to give over-the-horizon
communication from fixed, highpower base stations.


The extent of the ionospheric 'hotspot' calused by a microwave beam may have passed unnoticed for several reasons. The main problem is that the lower ionosphere is inaccessible to a areraft and balloons, and can only be probed by sounding rocketsand remote sensing. The atmosphere at the leveslof interest is still toodense for satellites, soobservations made from higher orbits above the hotspot may well show nothing unusual, although al highresolution far-infrared cean might show ionospheric excitation over high-power broadcast transmitters. This means that, unlessequpment is specifically deployed lo look for a hotspot, its discovery remainsa matter of chance, as was the case with my own observations using special electrometers.

It should not be difficult to arrange trials to see whe ther the hotspot from a test beam can be seen by millimetre radar or highresolution ionosonde and whether a microwale link betweentwostations can be set up by aligning the antennason the invisible hotspot user at verticalpower beam. Successful trials will open the wat toa practical method of extending the range of mierowalle and other line-of-sight communication systems, as well as providing a nowel means of remote surveillance oll sensitive uplinks.
Tony Hopwood
Upton-on-Severn
Worcestershire

## Mosfet audio output

With respect to the letter of Douglas Self in the May 1980 inste of $\mathscr{F} W \mathrm{~W}$. I believe that there are widely accepted measurements and devign insues

Wther than l'HI) and gress feedback levels.

A published BIBC study quoted in W'W about ten years agos showed the correlation between perceived reproductorn yuality and a number of objective and repeatable measurements. Three measurements were listed: THI). IMI), and al peeudorandom digital noise correlation test. THID was the leasmeffective predictor of audible quality. IMII was better, and the BBC preudo-random noise test wa, the best. heing (as I remember) about l(M)times as effective as THI) measurements

While the BBC method has not been widely used in the USA, IMI) measurements are well known and well quantified worldwide.
loopgatin is an important problem in any feedback amplifier. Many common highfeedbach power-amplifier designs hate inadequate loop gain at hogh frequencies, along with forward inherent distortion which increases with frequeney.

The (in) famous TII) is simply a visible resule of forward amplification decreasing to the point that an internal stage thecomes very nontinear. This behaviour can be provoked by very $\mathrm{amall}^{\text {high-frequency }}$ components, especially past 10k $1 / 7$, since many amplifien have toolittle high-frequenev gain and heavy frequency compensation.

There is a number of specific points in the circuit requiring. special attention from the devigner: the stage where frequency compensation is applied. the output drivers, and the output are the most critical. If any of these can be forced :o operate with low forward gain. the result will be distertion uncorrectable by feedback. A
properly designed clans A 3 stage must run with buthoutput devices in a fairly high transconductance region to avoid this problem.
With some fairly painful mathemattics and using detailed transistor models, one can determine that high-frequency distortion products will be primary visible result of low loop gain. Many repeatable listener studies hate shown that highorder (especially odd) harmonics. and almost ant intermedulation products, are offensive to the listener

Theree distortion preducts are not prowoked by a simple sinewave input. Standard intermodulationtest begin to prowohe them by adding a lowamplitude, high-frequency component. The predictable white norise of a peeude-random digital noise generator effectively produces a continuous version of the attack of a cymbal or other percussive musical instrument.
As a firm believer in engineering, I would like to encourage repeatable, concrete measurements toguide rexcearch and development of audio equipment. The measurements and specifications used to develop this equipment should be ones carefully chosen to match the user: the person who buys and listens to the
equipment.
(ienff Steckel
Neuton
Massachusett
USA

## Combined memory

At present, we are well supplied with rams and roms ans separate chips, but not combined rom/ ramechips. F'or example, in a small computer $\operatorname{yys}$ tem 32 K of program space may be adequate and a combined chip say. 16K rom and 16 K "scram". could be very useful. Make the pinout cqual to current 32 K static rams. and the rom an eprom and presto!

Put the scrambelow the eprom in address order, so the "sixers can have their page ll in ram and the vector addresses in rom all in the same chip.
Alan W. Ruscoc
Enfield
Midellesex

## COMMERCIAL QUALITY SCANNING RECEIVER



The IC.R7000, advanced lechnology, continous coverage communicalions receiver has 99 . programmable memories covering aircraft, marine, FM broadcast, Amateur radia, television and weather satellite bands. For simplified operation and quick luning the IC.R7000 features direci keybaard entry. Precise frequencies can be selected by pushing the digit keys in sequence of the frequency or by furning the mant luning knob. FM wide/FM narrow/AM upper and lower SSB modes with bluning speeds: $0.1,1.0,5,10,12.5$ and 25 kHz . A sophisficaled scanning system provides instant access to the most used frequencies. By depressing the Auto-M swith the IC. R7000 automatically memorises frequencies that are in use whilst in the scan mode, this allows you to recall frequencies that wert in use Readou is clearly shown on a dual-colour fluorescent display Options include the

0RC. 12 infra-red remole controller, voice synthesizer and $H^{\mathrm{D}}$. 1 headphones


Icom (UK) Ltd. Tel: 0227 363859. Telex: 965179 ICOM G N.B. Authorised Welsh distribution by
M.R.S. Communications Lid. Cardiff. Tel: 0222224167.

Please send information on Icom products \& my nearesilcom dealer. Name/address/postcode:
 EPROM programmer.

- Supports over 230 devices from 26 major manufacturers.
- Programs EPROMS in 24 to 32 pin DIPs including megabit parts.
- Context sensitive help menus and 'on screen instructions in colour.
- Ten powerful editor functions.


## Stag Microsystems

Limited
Martinfield
Welwyn Garden City Herts AL7 1JT United Kingdom
METEX \& TEST LABINSTRUMENTS roury tran Frices:


## ALL WITH CONTIMUITY TEST I $\star$ With Capacitance + With Hie O With Freq.)

 PRO SERIES METEX31/ \& 4 412 DIGIT
All With Case. 20A AC/DC 17mm Display ( 3800 12mm| 380032 Range $0.5 \%\left({ }^{+}\right)$
361030 Range $0.3 \%$ ( + )
363030 Range $0.3 \%\left(+{ }^{(*)}\right.$
36508 as 3650 with Bargran 46308 4'/2 Digit 30 Range Data Hold 0 05\% ( $\cdot$.
4650 as 4630 Plus Range Freg.3/2DIGIT 12 mm DISPLAYS
$£ 19.43$ 2318823 Range 10ADC ( ${ }^{*}$ ) $£ 22.78$ 233531 Ran 104 ACIDC $£ 338.86232532$ Range 10 A AC/DC ( + *) $£ 29.40$ $£ 46.90 \quad 235532$ Range 10A AC/DC ( $* *$ ) $£ 33.50$ E550.90 236538 Range 10A AC/DC ( $* *$ ) $£ 57.60$ Plus Logic Probe £69.68

Also Metex M80 21 mm Oisplay ¢72.36 $33 / 4$ Digit Autorange. Datahold ( ${ }^{\circ}$ ) 159.92

## TEST INSTRUMENTS

Status :
Post to:lcom (UK) LTd. Dept. WW, FREEPOST, Herne Bay, KeniCT68BR ENTER 15 ON REPIS CARD

## STRATIOS

£249 + VAT E289 VAT and P\&P incl.

High tech no longer means high cost. From the world's leading manufacturer comes the most powerful PC based

- Full range of device/data integrity checks.
Dedicated interface halfcard gives fastest data down load
- Hardware fully protected.
- UK designed and manufactured. 1 year no-quibble guarantee
(0707) 332148

> 3000 LCR AC Bridge
> M3002A AC Millivolt Meter 1MHZ 2020500 KHZ Function Generator 4162 AD 150 MHZ Fr Gen. Plus 6 Digit Counter
> $2603 A 01$ MHZ Af Gen. plus 6 Digit
> Counter
> TE200 150 MHZ Rt Gen
> (350 MHZ Harmonic)
£93.80 TE220 1 MHZ Audio Generator £80.40 3300 Aulorange Digital Cap. Meter £85.76 6100 Signal Tracer/Injector C154.00 5250150 MHZ 7 Digit Frequency £154.00 Counter
OST5M 5

OST5M 5 MHZ Bench Scope $£ 159.00 \quad 2430 / 24 \mathrm{~V} 0 / 3 \mathrm{~A}$ Variable PSU £80.00 $\quad 1544 / 15 \mathrm{~V} 0 / 4 \mathrm{~A}$ Variable PSU
¢87.00
C64.00
$\$ 52.30$
£64.50
264.50
$£ 144.00$

ᄃ50.65
$£ 63.65$
$£ 36.05$

## "POCKET" TEST INSTRUMENTS

ENTEIR 32 ON REPPIY CARD


[^2]
# Logic programming and artificial intelligence 

> Computers have the ability to do numerical calculations, but logic programming gives them problem-solving methods as well. As Michael Covington shows, this makes it easier to program computers to make decisions about practical problems.

1ogic programs are usually writ ten in spectial languages such as Prolog. Turbo Prolog and Trilogy. hut there are logic programming subroutine packages in Lisp and even C. Special computers are not reguired: most logic programming software runs on the 13 BM PC or Mactintosh.

A logic program consists of facts and rules. A fate is a piece of information. For example, in Prolog, the statement

## in(ely, cambridgeshire).

might express the fact that lity is in Cambridgeshire. To the computer, of course, in, coly and cambridgeshire are just strings of characters, but their arrangement is what's important
A rute allows one fiat to be deduced from another. For example.

```
in(x,england) :-
```

in(X, cambridgeshire).
says, "For any $X . X$ is in England if $X$ is in (ambridgeshire". The symbol ":-" means "if". and variables hegin with capitalletters.
Figure 1 shows some facts and rules ahout English geography. The fate are like entries in a database, and Prolog retrieves them by pattern-matching. For instance, the guery
?- in(banbury,oxfordshire).
is answered "yes" becanse there is a fate that matchesit.
Prolog can alsor fill in values for variables. The yuery

```
/* Fact 1 */ in(ely, cambridgeshire).
/* Fact 2 */ in(cambridge,cambridgeshire).
/* Fact 3 */ in(banbury,oxfordsh-re).
/* Fact 4 */ in(oxford,oxfordshire).
/* Fact 5 */ in(covington,huntingdonshire).
/* Rule 1 */ in(x,england) :- intx, cambridgeshire).
/* Rule 2 */ in(x,england) :- in: X,oxfordshire).
/* Rule 3 */ in(X,england) :- inix,huntingdonshire).
```

Fïg. I. These rules and lacts define the predicate "un", which encodes some knowledge about English geography.
?- in(X, cambridgeshire).
calls up all the valuen of $X$ that match entries in the database (Fig.2).

Prolog rules are procedures: they work by transforming one guery into another. Ruke 1 in Fig. 1. " $X$ is in England if X is in Cambridgeshire". is reatly the procedure "Toprove that $X$ is in England. prove that $X$ is in (ambridgeshire". Whengiven the yuery

> ?- in(ely, england).

- that is. ". I: It in England?" - the computer uses that rule totransiorm the query into


## ?- in(ely,cambridgeshire).

This in turn matches a fact in the datahane and so the computer answer: "y心"
If there is more tham one solution. Prolog backtracks. This makers it quite unlike conventional programming languages. in which the flow of control proceeds inexorathy forward and can-
not reverse Whenever a query matches more than one fact or rule, the computer tries the first one and keeps a record of the next. It can then retreat to this untried alternative if necessary

To nee hou this works, consider the knowledge base in lig. I and the yuery
?- in(banbury, england).

The query matches Rule I. Rule 2. and Rule 3 in each case giving $X$ the value "ely". The computer trien Rule 1, creating the new query

## ?- in(banbury, cambridgeshire).

which fails - it does not match any fact or any rule. So the computer backtracks and tries Rule 2 imstad. This time the new query is

## ?- in(banbury, oxfordshire).

which succeds. so the answer to the origimal query is "yes." Figure 3 shows the whole process in tree-like form. If there hatd been untried alternatiter at
several levels. the computer could have backtracked through all of them.

## Computational power

Because rules are procedures, they can express all kinds of computations, not just simple relations between named objects. For example, here is a pair of rules to compute factoriats

```
factorisl(0,1).
factorial(X,FX) :-
    x>0
    Y is X-1.
    factorial(Y,FY),
    FX is X*FY
```

That is: "The factorial of 0 is 1 . To find the factorial of any number X greater than 0. find the factorial of $X-1$ and multiply it by $\mathrm{X}^{\prime \prime}$. The procedure calls itself recursively to perform as many multiplications as necessary.

Prolog has no boop statements: all repetition is expressed as recursion. This is not as inefficient ats it sounds. because an optimizing compiler can transform a properly constructed recursive procedure into a loop in machine language. This combines the clear logic of recursion with the efficiency of loops.

Many data structures are available. including character strings, numbers and Lisp-like lists such as [a.b.c]. Further. programs can modify themselves: a program can construct anew fact or ruke ats it runs, then add that fact or rule to itself. This means you can use Prolog to write programs that "learn" or that help users buikd their own knowledge bases Further, several Prolog compilers are accompanied by toolkits for quersing files created by dBase or other database software.

## Expert systems

Logic programming makes it possible to build expert systems - programs that give advice about real-world situations. An expert system is more powerful than a reference book (even an on-line computerized reference book) because it

## Prolog is quite

 malike conventional programming languages, in which the flow of control proceeds inexorably forward and cannot reverse...```
?- in(ely,england).
yes
?- in(madrid,england).
no
?- in(X,cambridgeshire).
x = ely
X = cambridge
```

Fig.2. Prolog can either answer queries, 'yes' or 'no', or fill in values of variables.
applies its knowledge to your particular case, but it is less powerful than a human expert because it has only a limited amount of knowledge and a limitedability touse it.

Expert systems are good for diagnosing fauts in machines, atutomated share trading, selecting products from a wide range, and similar tasks where the computer must not only store data but also reason ahout it. For example, the Richmond Supply Company, a large distributor in Georgia, USA. uses expert systems to select paints from a huge catalogue. The expert system helps inexperienced salesmen give good recommendations.

Best of all, the expert system never forgets a possibility. Fven the best human expert would sometimes forget to consider some of the paints. Not so the computer. That is why computers are ideal for sorting through vast numbers of possible choices.
Figure 4 shows part of an expert system written in Prolog that diagnoses why a car won't start. Prolog is casier to read than conventional programming tanguages: a human motor mechanic. even if not trained in Prolog, can look at these rules and judge whether they are correct. By contrast, imagine how they woukl fook if strung together with pointersinC or Pascal.
Crucially, expert systems atre not based on decision trees or floweharts at keast, they need not be and in Prologe they usuallyarent
The rules are just put into the computer. one by one, and the computer automatically searches through them in a logical sequence. This means that addlitionall rules can be added latter without restructuring the ones already present.
Nor do the rules have to pick out a unique diagnosis. If two diagnoses can-

Fig.3. In Prolog, backtracking is automatic - whenever a line of reasoning fails, the computer fooks for an untried alternative and goes back to it.


Fig. t. Part of a hypothetical expert system to diagnose why a car won't start.

```
defect_may_be(fuel_pump) :-
```

defect_may_be(fuel_pump) :-
chec\overline{k(fuel_in_carburettor,no).}
chec\overline{k(fuel_in_carburettor,no).}
defect_may_be(battery) :-
defect_may_be(battery) :-
check(starter_rotates_engine,no).
check(starter_rotates_engine,no).
defect_may_be(distributor) :-
defect_may_be(distributor) :-
check(starter_rotates_engine,yes),
check(starter_rotates_engine,yes),
check(fuel_in_carburettor,yes).

```
    check(fuel_in_carburettor,yes).
```


## Logic programming on your computer: a selection of suppliers

## Prolog

Applied Logic Sysiems, P.O. Box 90, University Station, Syracuse N. Y. 13210, USA ALS Prolog: threaded-code compiler for IBM PC and Macintosh; native-code compiler for Sun and 80386 .

Arity Corporation, 29 Domino Drive, Concord, Massachusetts 01742, USA. Fullfeatured Prolog compilers for IBM PC family (DOS and OS/2)
Austin Code Works, 11100 Leafwood Lane. Austin. Texas 78750, USA. Low-cost source code for a Prolog interpreter written in C.
B/M, Kwikstraat 4, B-3078 Evberg, Belgium. BIM-Prolog compiler for Sun and VAX. Fast execution.
Borland International, 1800 Green Hills Road. Scotts Valley. California 95066, USA. Turbo Prolog for IBM PC (a nonstandard, fast-executing Prolog-like language).
Creative Sofi, Turnstrasse 10, D-8510 Fürth, West Germany CIM-Prolog for IBM PC, Inmos Transputer, Apollo, and Sun. Standard language with object-oriented extensions and concurrency.
IBM Corporation (worldwide). VM/Prolog for IBM mainframes. Non-standard syntax;
not be distinguished with available information. Prolog can report them both as possibilities.

## Natural language

Logic programming is also a gool way to approach natural language processing (NLP) - the programming of computers 10 understand human languages. Of course NLP hasi't been perfected. but the technology is already good enough to give useful results. The key is to narrow down what the user can talk about. Todays computers cannot understand Shakespeare, but they can understand weather forecasts or database queries expressed in English.

There are several reasons why logic programming is good for NLP. First, logic programming languages are designed to represent human knowledge. Thus they provide something to translate the English into. It is much easier to translate English into Prolog than into Fortran.

Second. logic programming languages provide good ways to represent sentence structure. The tree diagram in Fig. 5 can be expressed in Prolog as
functionally equivalent to standard language.
InterFace Computer, Garmischer Strasse 4, D-8000 Munich 2, West Germany. IF/Prolog compiler for MC68000, NSC32000, VAX, interpreter and intermediate code compiler for all UNIX machines.
Logic Programming Associates, Studio 4, Royal Victoria Patriotic Building, Trinity Road, London SW18 3SX; 01-871 2016. LPA Prolog for the IBM PC and LPA MacProlog for the Macintosh. Strong on graphics.

Logicware Intermational, 2065 Dundas Street East. Suite 204, Missisauga. Ontario L4X IM2, MRPROLOG, standard language on widest range of machines: IBM mainframe (TSO, VM). VAX, Sun, Apollo. other workstations. IBM PC. Atari ST. Macintosh. Goodtutorial.

Quintec Systems, Wadham Court. Edgeway Road, Oxford OX3 0HD; 0865-791565. Quintec-Prolog for Sun and 80386; high performance.

Quintus Computer Systems, 1310 Villa Street, Mountain View, California 941 )41. Quintus Prolog for VAX. Sun, and many other workstations (not PC or Macintosh).

There is no datal structure like this in conventional languages
And perhaps most importantly, natural langlage processing requires the ability to backitrack. Consider the semtence "I saw the man with the telescope". This could mean either "I saw the man who had the telescope" or "I used the telescope to see the man". A computer analysing such a sentence might have to try one interpretation and then reverse and try the other. Backtracking is built into logic programming languages but not conventional languages.

## Prolog, Lisp, or C?

There is a widespread misconception that Prolog and similar languages are slow, and that serious applications

> The expertsystem never forgets a possibility...

```
sentence(noun_phrase(determiner(the),
    noun(dog)),
    verb_phrase(verb(chases),
        noun_phrase(determiner(the),
        noun(cat))))
```

This Prolog implementation sets the standards that others follow.
SD-SCICON, AI Business Centre. Penbroke House. Pembroke Broadway, Camberles. Surrey GU15 3XD: 0276-686200. SD-Prolog for IBM PC. licensed from Quintec.

## Other languages

Complete Logic Systems, 741 Blueridge Avenue. North Vancouver. B.C.. Canada V7R 215. Trilogy for IBM PC.

Inference Engine Technologies, 1430 Massachusetts Avenue, Suite 306-I. Cambridge. Massachusetts 02138. USA. Sierra OPS5 for IBM PC.
Production Systems Technologies, 5001 Baum Boulevard, Pittsburgh. Pennsylvania 15213. OPS83. a language derived from OPS5 but more versatile, for IBM PC (DOS and OS/2), 80386 (UNIX), Apollo, AT\&T. VAX, Sun and other workstations.

## Custom programming

Al Associales, 445 Crestwood Drive. Athens. Georgia 306015 USA. Expert systems for industry. Developed the Hill Systems paint selector illustrated overleaf.


Fig.5. Structure of an English sentence. easily representable in Prolog.
should be re-coded in Lisp or $C$ for speed.

This may have been good advice five years ago: Prologs available then were experimental and were not designed for speed. The quality of Prolog implementations has risen dramatically in the past few years. Nowadays, any program that really needs the features of Prolog will run faster in Prolog than in Pascal or C. The same goes for other logic programming languages.

The hard parts of logic programming are searching, backtracking, and matching. Good Prolog compilers implement these in hand-optimized assembly language, using techniques that would not be obvious to a beginner. Anyone who sets out to do logic programming in C is claiming that he can implement the
essential parts of Prolog better than an experienced Prologimplementor.

A colleague of mine once tested a mediocre Prolog interpreter against a good Pascal compiler. implementing the same list processing algorithm with both. He expected Pascal to win hands down, but Prolog was actually 14 times faster - and todays Prologs are faster than that.
Lisp is an intermediate case - it has the same data structuring power as Prolog. but searching, backtracking. and matching are not buitt in. They are relatively easy to implement as Lisp subroutines. but Lisp seldom has any performance advantagesover Prolog.

## Interpret or compile?

Implementing Prolog poses some prohlems that were not solved well until very recently. A Prolog program caln examine and modify itself as it runs. Because of this, Prolog was originally implemented as an interpreter - a program that reads the Prolog code, holds it in memory, and works through it executing queries. This process is not particularly fast.
Programs run much faster if they can be compiled - translated into the processor's native binary code so that. at execution time, the computer need not concern itself with the original programming language. Butacompiled program cannot examine or modify itself. because the originat code is no longer there. This poses a dilemma for implementors of Prolog. Three main solutions have appeared

The Turbo Prolog solution is to simply discard the features of the language that slow it down. Turbo Prolog programs run very fast but they can't modify themselves. Turbo Prolog also uses data type declarations to speed programs up even further, at the cost of some versiatility.
The second solution. used by Quintus Prolog, Arity Prolog and many others, is to include a Prolog interpreter in every compited program. The parts of the program that need to be modified at run time are run by the interpreter: everything else is run in compiled form. This is a good compromise, but it requires the programmer to divide the program into compiled and interpreted portions. The modifiable parts aren'I fast, and the fast parts aren't modifiable

The third solution, adopted by ALS Prolog. is to compile Prolog into threaded code - a special style of machine language consisting atmost entirely of procedure calls - from which the original Prolog can be reconstructed whenever needed. This makes prog-


Logic programming helps a decoramors merchant select paints from a huge catalogue (photo: Hill Systems).

> He expected Pascal to win hands down, but Prolog was actually 14 times faster...

rams fully modifiathle and at the same time allows them to run with compiled speed.

## Other logic languages

Prolog is not the only logic programming language. Trilogy. billed as a "muti-paradigm" logic language allows the programmer to use Prologlike. Lisp-like and Pascal-like styes in the same program. This makes it possible to combine logic programming with
other techniques without having to recast the other algorithms into Prolog form. A Trilogy compiler is available for the IBM PC and performs well.

OPS5 and its derivatives are "forwarded-chaining" logic programming languages, in contrast to Prolog and Trilogy, which are "hackwardchaining." That is, in Prolog, execution starts with a query to be answered ("Can you deduce this?"), whereas in OPS5, execution starts with basic facts ("What can you deduce from this?"). But OPS5 is not indispensable for forward chaining: Prolog call also chain forward in a suitably designed program.

## Recommended reading

W.F. Clocksin and C.S. Mellish. Programming in Prolog. Third edition. Berlin: Springer-Verlag. I987. (Originally published 1981, this classic textbook defined the "Edinburgh dialect" of Prolog. on which most implementations are based. )
M.A. Covington. D. Nute, and A.N. Vellino. Prolog Programming in Depth. (ilenvicw, Illinois: Scott. Foresman. 1988 (Comprehensive textbook for beginners: especially strong on practical programming and the expression of algorithms in Prolog.)

Peter Jackson. Introduction to Expert Systems. Wokingham: Addison-Wesley. I986.
M1.R. (ienesereth, and N.J. Nilsson. L ogical Foundations of Artificial Intelligence. Los Altos. Califormia: Kaufmann. 1987. (Mathematical logic as the basis of machine reasoning.)
I)r Michuel A. Covingtom is al the University of Georgia al Athens. Georgia, in the USA.

This expert system, written in Turbo I'rolog, features casy-to-use menus. Similar systems are being developed for other applications.


## Toroidal \& E.I.

## Transformers

As manufacturers we are able to offer a range of quality toroidal and laminated transformers at highly competitive prices.

## Toroidal Mail Order Price List

 prices inclusive of VAT \& Postage$15 \mathrm{va} 9.12,30 \mathrm{va} 9.48,50 \mathrm{va} 10.16,80 \mathrm{va} 11.02,120 \mathrm{va}$
$12.23,160 \mathrm{va} 14.44,225 \mathrm{va} 16.37,300 \mathrm{va} 18.05,500 \mathrm{va}$
26.46 , $625 \mathrm{va} 30.66,750 \mathrm{va} 34.14,1000 \mathrm{va} 49.40$ Also available 1k2, 1k5, 2k, 2k5, 3k. Prices on request.
Available from stock in the following voltages: 6-0-6, 9-0-9, 12-0-12, 15-0-15, 18-0-18, 22-0-22, 25-0-25, $30-0-30,35-0-35,40-0-40,45-0-45,50-0-50,110,220$, 240. Primary 240 volt.

Quantity prices and delivery on request


Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts. Tel: 0279724425

## ENTER 34 ON REPLY CARD

## SMALL SELECTION ONLY LISTED EXPORT TRADE AND QUANTITY DISCOUNTS

RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK
Cossor Oscilloscopes CDU150(CT531/3) £150 orily Solid state general purpose band width DC to 35 MHZ at $5 \mathrm{MV} / \mathrm{Cm}$ - Dual Channel - delayed time base - illuminated graticule - Beam finder - Calibrator - power $200 \mathrm{~V}-250$ volts AC protection cover containing polarized viewer and camera adaptor plate - probe (1) - mains lead. Tested in fair condition with operating instructions. FEW AVAILABLE - NO PROTECTIVE COVERBUT MAINS LEAD + 1 PROBE - £125 -TESTED-Manual $£ 15$ extra.
Tektronix 475 - $200 \mathrm{Mc} / \mathrm{s}$ Oscilloscopes - tested from $£ 500$ less allachments 10 £750 as new c/w manual. probes etc.
Telequipment D755-50Mc/s Oscilloscopes - Tested c/w 2 Probes - £250 Manual 55 extra.
Marconi TF2002AS - AM-FM Signal Generator - $10 \mathrm{Kc} / \mathrm{s}$ to $72 \mathrm{Mc} / \mathrm{s}-£ 85$. Tested probekit- $£ 15$ extra-Manual $£ 10$ extra
Marconi TF2002B - AM-FM Signal Generator $-10 \mathrm{Kc} / \mathrm{s}-88 \mathrm{Mc} / \mathrm{s}$. $-£ 100$ Tested to £150 as new - Probe kit £15 extra-Manual £10 extra
Marconi TF2008 - AM-FM Signal Generator - Also Sweeper - $10 \mathrm{Kc} / \mathrm{s}-510 \mathrm{Mc} / \mathrm{s}-$ from £450 Tested to $£ 550$ as new with manual - Probe kit in wooden carrying box - 550 extra

Don 10 Telephone Cable - $1 / 2$ mile canvas containers or wooden drum new from £20.
Army Whip Aerials screw type $F$ sections and bases large gty available P.O.R
Test Equipment we hold a large stock of modern and old equipment - RF and AF Signal Generators - Spectrum Analysers - Counters - Power Supplies - Scopes - Chart Recorders all speeds single to multipen - XY Plotters A4-A3.

Racal Modern Encryption Equipment - Racal Modern Morse Readers and Senders - Clark Air Operated Heavy Duty Masts - P.O.R.
All items are bought direct from H M Government being surplus equipment; price is ex-works. S.A.E. for enquiries. Phone for appointment for demonstration of any items, also availability or price change V.A.T. and carriage extra.

> JOHNS RADIO, WHITEHAIL WORKS, 84 WHITEHALL ROAD EAST, BIRKENSHAW, BRADFORD BD11 2ER. TEL NO. (0274) 684007. FAX: 651160

WANTED: REDUNDANT TEST EQUIPMENT - VAIVES - PLUGS - SOCMETS - SYNChROS ETC. RECEIVING AND TRANSMIITING EqUIPMENT - GENERAL ELECTRONIC EQUIPMENT


## The Next Generation

The D2000 system has been specifically designed to provide a modular, microprocessor technology training resource. that can be used for both traditional classroom based instruction and open-access learning.
This comprehensive system provides a range of both 8 and 16 -bit microprocessor boards together with an applications card, keypad/display and powerful Cross Assembler software for use with IBM PC* microcomputers

A range of open-access style curriculum packages are available, covering both microprocessor applications and troubleshooting for the 6502, Z80 and 68000 micro boards.

For full details please contact LJ today.


## LJ Technical Systems Ltd.

Francis Way, Bowthorpe Industrial Estate, Norwich.NR5 9JA. England.
Tel: (0603) 748001. Fax: (0603) 746340.

## lill|dulil PC-BASED SYSTEMS

# SCSI-Small Computer System Interface 

# Gerry Humphrey of Rodime describes the development and implementation of SCSI, with particular reference to system integration 

The Small Computer System Interface (SCSI. pronounced "Scuzzy") is a standard interface bus. through which computers may communicate with intelligent peripheral devices such as disk drives (hard and floppy). tape drives. printers. plotters. scanmers. optical disks and others.

The S('Sl bus is extremely versatile. being optimized for use with peripheral devices and offers many advantages in terms of performance and ease of use. As it has been endorsed by so many major computer and peripheral manufacturers. high-volume production has made SCSI peripherals highty competitive on cost. This article will show how system manufacturers. peripherat mannfacturers and system integrators use $S$ CSl technology to provide flexible. high-performance machines - particutarly significant with the demand for advanced equipment which can easily be modified and upgraded. Since the specification for SCSI-2 is not yet complete, and to avoid unnecessary confusion. Technical details and references are limited to SCSI-I only

## History

To give the complete history for SCSI would be like discussing the motor-car "from the wheel to the present day". Although the world of computer hardware is a relatively new one, so many advances and developments have been made in such an incredibly short time that to trace the roots of any specific area of current technology would take us outside the bounds of this article.
IBM started the ball rolling in the


#### Abstract

Definition: The present American National Standards Institute (ANSI) specification which defines the standard for the SCSI bus runs to more than 200 pages. If a short explanation had to be given as to what this specification actually defined, it would probably go as follows. "This standard specifies the mechanical, electrical, and functional requirements for a small computer input/ output bus interface, and command sets for intelligent peripheral device types, particularly storage devices, commonly used with small computers."


1961 sand 1971 s with the creation of $\mathrm{i} / \mathrm{o}$ channel architecture, which enabled intelligent peripherals to communicate with multiple hosts across a single bus. Shugart recognised the advantages of this interfacing concept and improved on it to make the SASI bus (Shugart Associates Standard Interface). This was widely accepted throughout the industry as the "latest" in interface technology. quickly becoming a defactorstandard.

The need to have a precisely defined (official) standard soon became clear. so to this end, the American National Standards Institute (ANSI) committec X3「リ.2 accepted the SASI bus concept as the basis for a standard. The commentter, which included representatives from interested manuficturers. were given the task of providing the specifications governing all aspects of the SC'SI interface. The natme "S( $\$ 1$ " wals carefully chosen to be free from any reference to commercial organisations.

Originally, one of the main reasons for SC'SI was to provide true compatibil-
ity between storage deviees from different manufacturers (mainly disk (Irives). With disk-drive technology developing at a remarkable rate, it became difficult to maintain a standard system configuration. As improvements in media. data heads and engineering design were made it became possible to get more data read/write heads and data tracks into the same (and even less) physical space. with a resultant increase in disk capacity and difficulty in maintaining compatibility with standard controllers.

As many mandacturers were working individually, the market wats offered a tremendous range of advanced equipment with widely varying disk parameters (eylinders, heads and sectors/ (rack). For the system integrator, this meant that each model of disk drive reguired a separate device driver and second-sourcing became a problem.
Development of relatively inexpensive VI_SI device controllers. capable of being integrated into the disk-drive edectronics, meant that these problems could be resolved within the disk drive itself (sec Figs 1 and 2). S(Sl allows much greater flexibility and case of integration. since it perceives any SCSI device as a series of contiguous logical blocks (for example: 0-40 (h) for a 20 Mbyte disk drive having 512 bytel sector). and not as a number of heads and cylinders. This makes the system independent of device type and provides the system integrator with greater choice of storage devices.

The software and hardware structure of the interface meant that it became a natural option for other types of
peripherats. making the SCSI bus an extremely powerful and versatile communicattiontool.

## SCSI vST506

Moving from the device-level interface offered in STSok disk drives to the system-level interface of SCSI disk drives offers severad advantiges. The most immediate benefit when using disks with embedded $S(S)$ is that no additional comtroller is reguired, as in the case of the STSok interface. The device-level control is built into the drive electronics. Fo interface it to a spatem, all that is required is a SCSt host adapter.

Figures I and ? illustrate the manner in which the two typer of drives maty be integrated into a svatem. With the STSuk intertace we have the ponsibility of expanding the system with the addition of another six SC'SI device which may be the same or of different tepes. all of which should take up onlyone shot on the Ar hus, since they may be able to comene to the same host addater.

The SCSl disk drive is an intelligent peripheral. capable of correcting croors and handling media defeets in a manner which is transparem to the system. In terms of system sped an areage access time of 1 gim (fast by disk-drive standards) is extremely slow: SC S $\$ 1$ disk drives which support disconnect reconnect prowide multi-tanking operating systems with a greatly improned data throughput rate since they allow other disks to be accessed whilst they perform atseck operation to a requevted bock. If arbitration is supported by all devices on the S ' Sl bus. sytems maly be connected together via their Scsi ports to allow the disk drive (and all other deviees on the bus) to be "shared". The benctits to be gatined bi this approach are significaut.

The maximum transfer rate of an STEOK disk drive is SMhit/s. Typically, a SCSl disk drive may have a maximum transter rate of up to $1.5 \mathrm{Mbyte} / \mathrm{s}$, hut a drive that use a cache memory seheme may be able to transfer data at a much greater "hurst" rate: figurenof HAhytes (for synchronous trathefer only) are mot ancommon. Also. cache-memory butfering allows the drive to be formatted at 1:1 interleales, as the transter will take place from cache memory to host: thus, the drive will alwat perform at the optimum transfer rate for the system.

Since SC'SI uses hogical block addressing, the only difference (geometrically sparking) between dish drise from different mandefoturers is the total


Fig. 1. Typical arrangement for a system baing im STFIng interface disk drive.


Fig.2. Typical arrangement for as sistem using at © C $\$$ inferface disk drive.
number of logical blocks which may be adedeesed. The transation between logical block and eylinder/headd'sector is laken care of by the drive - processor: so. fow , are other functions such as write precompensation, reduced write currem per eylinder, data encoding and decoding (2. 7 run-length-limited code is typically used) and flaw mapping.
firmon the physial proint of tiew, there are no spectial mounting, power or enbironmental requirements for a S(S) drive, when compared to its Stsik connterpart: the specifications are generalle the same.

## General features

One of the purposes of SC Sl is tomote the "intelligence" of peripheral operations and from the (PD itself out to the peripherad devices. The wstem itself becomes a SoSl device being what is referred to ats an "initiator": that is, the device responsible for orginating an operation. A peripherat is normally a "target", the device which performs the operation. Some peripherals may. on certain occasions, act ansan intiator: a tape streamer (for example) which supports the (op command may direct a target (a hard dask. say) to readd data which the streamer will then itself write to tape.
Figures 3. 4 and 5 illustrate vome

Fig. 3


Fig. 4


Fig. 5


Fing..3. \& and 5. Confĭguratiom.s for devices on a SC CI bus. Fig. 3 shows a single invitiator and single farget. Figg. ta single invitiator and multiple targets and Fig. 5 multiple initiators and multiple targets.


Fig.6. An example of command inter-leaving.
possible configurations for devices on a SCSI bus. From these drawings. it mat appear that there is a possibility of a conflict of operations wecurring. With several devices using the bus to perform different functions. it is necessar! (1) have a scheme whereby each device is assigned a unique identification and a protocol is used to establish the way in which the bus is shared. This is done be giving each device a "SCSI address": any number from 11 to 7 . This may be defined by a link, a switch, or other means and will be "read" and remembered by the device when power is applied. No devices cim have the same address.

That takes care of the problem of derice identification. The yuestion of protocol is addresod by a scheme called "arbitration". In a confguration containing more than one intiator, or in a multi-tasking emsironment. Where more than one device mat reguite access to the bus smultaneously. cach device will monitor the status of the bus and when it is free. will vie for use of it. This is achieved by catch device flagging its own SCSI address and anserting the b3 is signal. checking the data bus to ne if there are any devices with higher priority. Priority is determined by SCS address: the higher the addrens number. the greater the priority. Intiators ate generally given the highest priority (7).

In a multatasking enviromment. the power of SCSt becomes obvious. One of the major benefits is a feature referred to as disconnect/recomenect. which is the ability of a SCSI device to disconned itself. freeing the bus, whilst performing a slow operation (al seck for example) and then to arbitrate for the bus when the operation is complete. This capability is built into the SC SI device and reguires no support from the operatingsystem.

Figure 6 illustrates the way in which multiple operations may "interleaved" on the bus. enabling the system to use other SCSI devicen whilst watiting for completion of an operation in one par-


Fig. 7. Peripherals with device-level interfances in operation on SCSI, using a bridge controller. (ip to cisht peripheralls can be attached to each bridge controller.
licular device. Even in a highperformanee hard disk an average atccers time of 2 tme is still a relatively long time when measured in (PU mathene cycles. The capability to interlease opcrations means that the bus mat be utilised to a very high degree of efficiency. geatly improving the system: $\mathrm{i} / \mathrm{o}$ throughput

## Implementation

Some computer manufacturers, such ats Apple and Sun Microsystems. hate already reatised the benefits of using SCSI hy building-in a SCSI port. In the world of PC-AT machines, the integration of SCSI peripherals. although not as simple as "plug-and-play". is relativeIy straightornard. A SCSil adtapter containing the necessary hardware and firmware for interfacing the P( $-A T$ hus to the SCSL hus must be pluged into
one of the stots in the sustem bus. effectively creating a SCSI port and making the system another device on the SCSI bus. There is a wide range of commercially available SCSi host adapters on the market. Two methods of implementing SCSI in peripheral devicesexist.

Embedded SCSI. With VISI. SCSI chip-sets are now available that allow the SCSI controller to be designed directly into the peripherals: interface circuitry. which means that no other hardware is required for connecting the device 10 the bus. With massprodaction. His method of using peripheral devices with SCSI is both cost-effective and more reliable (the old argument of "the simpler. the better" holds true). Also. embedded S(SS means that compatibility between the SCS controller and the peripheral device is "huilt-in" by the manufacturer.

SCSI bridge controllers. It is possible to use peripherals with traditional devicelevel interfaces on a SCSI bus by using a bridge controller (see Fig. 7), which was a method adopted by many peripheral manufacturers in the carly stages of the SCSI market prior to the wide availat hility of SC'SI chips a a a way of offering SCSI devices to their customers.

Bridge controllers are still arailable. and allow the system integrator to use tandard device-level interface peripheralsona SCSI hus. This method may permit the use of logical unit addressing: that is the capability of having more than one device attached to callo controlker. With eight S(SI addressers available and each address athowing up to eight logical units to be attached. it is possible to have up to ot devices sharing a SCSI bus. Figure 7 illustrates how the two methods may be employed on the same SC SI hus

Soltware requirements. In the case of hard disks. no special software is reguired when operating a system with D()S 3.3 or higher. Partitioning may be carried out in the normal fashion using mosh. and each partition may be system formattedas reguired. With inosta it is possible to use the disk as one complete partition. without the historical .32Mhyte restriction imposed by IBM.

When using other SC'SI device types. and or different operating systems. it maty be necessary to use a special instalation routine (supplied by the manufacturer) and possibly a device driver. Alternatively. the necessary driver code may be contained in firm-
ware on the addapter card. in the form of a system-accessible rom module which will "hook" itself into the system as required by interepting interrapt wétors.

There is no shortage of wats to install SCSI devices in PC-A'I machines. In gencral. manufacturers of both addapters and peripherals supply utility software that atlows a user to configure his device to suit his shatemis neded. There are also some commerciall avaitathe utilities that will provide the uner with a complete disk-management package
Peripherats which require speciat software for installation and/or operation in the AT environment will. ats a matter of course, have it "hundfed". Along with your SCSI peripheral. your supplier shoukd provide you with ins. necessary software and at user mamual (which vou should read in full!).
When it is necesars tooltain peccific details for integrating SCOS devices into a system. the user hould never heritate to call upon his deater for support (make them carn their profits!) and. it not satisfied. contat the distributor or even the manufacturer. It is in the interest of everyone involed in supplying the products to make sure it fits the eustomers" needs.
A word of catution is refeatat here Amongst the ams of SCSI wats the facility to prowide derice independence and much-simplified second-sourcing. Some mannacturer have chosen not to pass on this bencfit to their customers. The features that make SCSI so wersatike and powertul mat also be emplosed by manufacturers of whiems and adapters to prevent customers from upgrading their system using a third-part? SCSI device, so foreing them to buy the peripherals from the original source at a higher cost and withlesschoice
A simple method that may be employed is the use of the $S(S I$ wotir) command that calls upol the target to return certain device-specific parameters such as the mamufacturere hame and product identifieation. It is a simple process to exclude any devicer that do not match up with a table of accepted devices during the installation procedure However. more subter and astute means man be emphosed that would make it difficult for ansone (even for someone with indepth S(SI knowledge) to use a SCSI peripheral from anothersource

It would be advisable to check with the supplier if ans of these sthemes are imple-
mented, if one is considerang using devices fromanmber of sources.

## SCSI specification

SCSl is implemented on a 50 -wall bus which has multiple independent imterchangeable slots. As derices of different typer may be connected to the has in dais-chain fashion, it is clear that at common code of practice must be observed for details such as the phesicat interface (signals, drivers, bus timing. connectors. cables and impedance matching) and the soltwate interfate

The ANSI specification (ar presiousIs mentioned) is extremely long and

Table I. Single-ended driver-receiver pin assignments.

| StGMAL | PMN | GMD RETURN PW | SGGMAL MAME |
| :---: | :---: | :---: | :---: |
| - D8(0) | 2 | 1. |  |
|  |  |  |  |
| - D8(2) | ${ }^{6}$ | 5 |  |
| $\begin{aligned} & \mathrm{OS}(3) \\ & \hline \mathrm{DEB(4)} \end{aligned}$ | - ${ }^{8}$ | $!$ | OATA Bus |
| - Des $^{\text {c }}$ | 12 | 11 |  |
| De(6) | 14 | 13 | - - |
| - Dem | 16 |  |  |
| Def | 18 | 17 | data bus parity |
| GROUND | 20 | 19 |  |
| GROUNO | 22 | 21 |  |
| GROUND | 24 | 23 |  |
| TERMPW | 26 | ${ }^{25}$ (PPEM) | terminator powea |
| GROUND | ${ }^{28}$ | 27 |  |
| GROUND | 30 | 29 |  |
| ${ }^{-1.0 T M}$ | 32 | ${ }^{31}$ - | ATTENTON |
| SPARE | 34 | $3_{35}{ }^{-}$ |  |
| - BSY | 36 | 35 | Busy |
| - ACK | 38 | 37 | ACKNOWLEDGE |
| - AST | 40 | 39 | AESET |
| - MsG | 42 | 41 | message |
| - SEL | 44 | 43 | SELECT |
| -cos | - 46 | 45 | -controldata |
| - REO | 48 | 47 | REQUEST |
| vo | so | 49 | Wคutroutput |




Fig.8. Both ends of the 5ll-way SCN calle mast be terminated. This is the terminator power comnection.

Fig. 9. The four hus phases.

complex. To gice a brief summary we must divide it into its two main areas: phesical and logical. This will athow us to give a description of the fundamental requirement that must he observed for SCSL contormance

Physical. SCSI device are danschained together using a common 50 way cable. Both ends of the cable must be terminated (see Fig. 8). All vgnals are common between all SCS devices. There are two driver/receiner combinations availathe: single-ended drivers and receiters. which allow a maximum cable length of six metres: and differential drivers and receivers, which allow cable kengths up to a maximum of 25 metres. The twa kinds maty not be mixed on the same hus.

Ingeneral most devices andable use the single-ended driser weciser option: Tathe 1 gites the pin-issignments for this arrangement.

The SC'Sl bun compriser dight data lanes. one data parits dine a termmator power line and nine control tines. The data tines are used for the tramser of datd. command. status and message information, whike the nine controt lines provide the necessary seyuencing and hatad-shaking information for the transferofinformation.

Logical. The SCSl bus can be in any one of four phases at any given time: bus frece arhitration. selection or information tramser. Figure 9 ) illustrater the Wey in which the bus may mote through the phase sequence Arhitration is optional. though mow devicu now suppert this scheme

The wat in which the control vignats are abserteddeamerted and the timing insohed are critical for correct operation. A typical sequence is given in Fig. 111.

Bas free. All command seepuencers begin with this phase. The bus free phase indicates that no intiator or target is currently using the bus. and that it is a a alable for subsequent users.
Arhitration phase. The initiator trics to gain control of the hus by asserting 131 bith it a own bus deviee lif on the data bus: then after a minimum of 2.2 $\mu s$ examining the data bus to see if there is a device with higher priority ( 7 is higheat). If unsuccersfit. the intitator will releance bus). If the initiator wins arbitration, it will ansert st 1 and proceed 10 selection (or reselection).

## lilludalil PC-BASED SYSTEMS

Selection. The initiator will assert its own II) and that of the reguired target on the data bus, then release buss. The target will recognise that it has been selected when it (letects that st I and its ID) are true and that busy and t/oare false. The target will then asserl buss, which will allow the initiator to release sit. and enter the command phase

Command. The transfer of information will be from initiator to target. The target will assert (\%) and deassert 1 orand mse , then move into the reo/ack handshake procedure: the target will assert REO, the initiator will then drive the data lines to their desired values and then assert ark. The target may read the data bus and then release RIO. When reos becomes false, the intitator may then change the data and deassert Á.

The target will continue requesting command data using this procedure. The number of bytes to be sent is encoded in the first byte of command information.

Data in/out. The target will assert or deassert $1 / 0$ according to whether the ramster is data in or datal out, then deassert (\%) and asse and use the reod ark handshake procedure to read or write data as required.

Status. This phase is used to allow the target to request that statems information be transferred to the Initiator. It is adheved by asserting $1 / 0$ and 6 and deasserting mst; during the reog/ack handshake of this phase.
Message. Message in allows the target 10 request that message information be sent to the initiator. The target will assert mse; $/ 0$ and $6 / 1$ during the RIO/ ack handshake for the required number of bytes. The message out phase allows the target to reguest that message information be transferred to the target. The target will deasset t/o and assert (\%) and mssi during the hand shake procedure. Tible 2 provides reference between phases. signals the devices.


Fig. 10. Typical sergence of signal assertion and de-assertion.

## The first oyte of every SCSI command is the Oparation Code. <br> The remaining bytes provide the parameters for the command.

|  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | GROUP CODE |  |  | COMmAND COOE |  |  |  |  |
| 1 | logical unit no. |  |  | logical block anoress (msb) |  |  |  |  |
| 2 | LOGICAL BLOCK ADORESS |  |  |  |  |  |  |  |
| 3 | LOAKCAL BLOCK AODRESS (LSE) |  |  |  |  |  |  |  |
| 4 | transfer lemgth |  |  |  |  |  |  |  |
| 5 | CONTAOL EYTE |  |  |  |  |  |  |  |



Fig. Il. Command descriptor block. allowing the transfer of up to 256 blocks for one command.


Intmator. If finis signa is oniven it shal be daiven omy ay the

WMener. This sighai whl ge driven ay the one scsi device which
alt. all SCSI Devices mach abe aroithatwg will drive this sigenal
none. thus siguat wil not de daiven by any SCSI device
Scsilo. EACH AABITPATMGG SCSL DE VCE WIL DAIVE ITS OWN UMIOUE SCSIIO

Table 2. Reference between bus phases. signals and peripherals.

## Commands

To make a target perform an operation, an initiator must successfully arbitrate for use of the bus, select the appropriate devide and transfer the command to be execuited. The SCSI command set is a precisely defined suite of high-level instructions that effectively "cloak" the internal workings of SCSI peripherals. All SCSI devices must support certain mandatory commands: most will also support many of the optional commands available.

Figure 11 shows the structure of a command descriptor block. This is a obyte (iroup 1 command, which allows the transter of up to 256 blocks of data for one command. There are eight groups of commands available which provide for extra addressing, larger data transfers and speciad commands for manufacturers" use. Group I commands. for example, support extended addressing ( 32 bits) and provide two bytes for the transter length, allowing up to 6.5 .535 blocks of datia to be transferred for one comimand.
Although users can realise some of the benefits of the performance and versatility of the Small Computer Systems Interface fodaty, operating systems and applications do not yet provide direct support. When this happens, and when SCSI-2 (or greater) is implemented, we will be moving into a new generation of i/omanagement.

A key objective of the SCSI-2 specification is to move device-dependent intelligence out to the SCSI-2 devices. With the option of a data bus 32-bits wide. and commands such as "Search Data" (for a specified data pattern). "Copy \& Verify" and command gueuing receiving wide support, and many more enhancements and improvements ower SCSl-1. it is clear that extremely powerful file managerient operations may be carried out at device level.

Meanwhile, the advantages of SCSt-1 are there for the using, and a greall deal of SCSI-ready peripherals are available on the open market.


## lill|delial PC-BASED SYSTEMS

## REAS-232 for     <br> $\rightarrow 118,57 E \cdot 6,059.99 E \div 8$ <br> ynl? ${ }^{\circ}$ <br> $118.57 \mathrm{E} \cdot 0,-59.59 \mathrm{c} \cdot 0$ <br> -118 57 <br> 118.57E•8, $059.995 \cdot 0$ <br> 342L? <br> $118.625 \cdot 6, \cdot 66.695 \cdot 0$ <br> Nal? <br> +188 738-8, wa.cere 8



In the "interact window", the selection of functions and values is made by pull-down menus, and when applicable, editable fields. When the Enter key is pressed, the command and values are sent to the instrument. This type of user interface all but eliminates the need to type in command strings, although they can still be entered at any time on the command line.

> Philips now offers a low cost multimeter with RS-232 porting. Together with a comprehensive PCbased software driver, the combination competes directly with GPIB instruments.

Robert Gibson

The basic function of an RS-232 instrument comms program is to provide a means of establishing communications with an instrument, send a series of commands, retrieve and display the responses, and allow for the recording/ printing of those responses. This article identifies common instrument communication problems which must be considered. Further, it describes possible enhancements to the communications link.

## Establishing communications

To establish communications between a PC and an instrument (connected by the proper cable), both must be set for the same data rate, parity, and number of data bits. Rather than require the user to determine the current settings on the instrument and set the PC's to match, a program should automatically find and match the instrument's settings.
To do this, one needs an instrument command which will always elicit the
instrument's "prompt". The program then sends this command to the instrument and examines the response for the prompt. If the correct response is not received. the program alters the communication parameters and repeats the command. This "send command examine response sequence" indicates that communication is established. Such a routine eliminates a major portion of the setup problems people encounter with a serial link, and in a minimum amount of time.

## Dialogue

Communication between the PC and the instrument is at twowal process. a diatogue. For cach command string sent to the instrument. the program needs to receive a responce that indicates completion of the command. This dialogue allows the program to establish synchroniattion with commands and responsen required for command error reporting. testing response data. and preventing the command overrun possible in some instruments. Most instruments return a prompt for just this purpose: i.e. to notify some external device that the last command is completed. The program will watit for this notice of completion before transmitting further commands.

If an instrument does not hate a prompt to return. the program needs to force one of itsown. The program could accomplish this by issuing a command that elicits a unique and predictable response from the instrument, such its its firmware wersion. or some other constant value. This command can then tre issued routinely atter eath "real" command. and the returned string then used as the command completion prompr

## Special characters

For a terminat, it makes no difference whether a tine is terminated by a ( CR , (carriage return) dif: (line feed) or a LIFe(CR). Nor does a terminal care if the instrument is inconsistent with the order of these terminators an is sometimes the case. If the program is expeeted to sate data to at fille. aend it to a printer. or control where the data is displayed on the screen, the program must recognize either order ass the termination of a returned string, and then strip the terminators from the data ats it is received.

In a like vein, if a terminal receiver "12.3.13S.4" (where ass, is a backspace chanacter), it will dimplay "I24". (iiven this same character string. a $P^{\prime}\left({ }^{\prime}\right.$ will primt "123.happy face 4 ". The program must examine the input string for hatespaces and bells. When a backspace
character is encountered. it must delete it. and alson the character that precedes it. When a bell character is found. it should delete the character and beep once. The program should allow the other control characters to be displayed just as the P'C presents them, but should transate the charaicters to a pair of characters if they are to be passed to a printer.

For example, the PC will display a Control-X as an up arrow, but rather than sending the non-printable Control$X$ character to a printer, the program can send " $X$ " instead. While treatment of other control characters for the $P($ displats might be similarth translated. doing so may complicate the editing of cominand strings heyond it worth.

## Command errors

Mont imtruments report command efom upon receipt. The erfor seporting man be made by the inclusion of an error message, or error code before the "command completion" prompt. (Or. the indication of an error may be made by changing the completion prompt itself. In some cases the user must issue a command to read a command error buffer in order to determine whether there wis an error upon completion of a command. In any exent, the program need to routinely check for command acceptance. and issue a warning to the user if an error in detected.

## Command sequencing

As described to this point. the I'(' is essentially operating as a terminal emulator (since its extra intelligence is tramspatrent to the user), allowing the user to enter a command and receive the response for display. primting, and/or recording. ()n receipt of the command completion prompt. the sendmecene process is allowed to continue. Fhe program is now reads to read a sequence of commands from a recorded text file, rather than from the keyboard. The instrument $P^{\circ}$ operational proces is the same as described for keybard entre: one command is isuled and completed at at time but in this canc. executing the sequence of command has been athomated.

## User interface

The Fluke terminal used the a ('R al.F', string termination to ceroll the 2t-line screen. The $P\left(\begin{array}{c}\text { allows for one non- }\end{array}\right.$ scrolling tine at the bottom of the sereen so that programmers eall give the operatos some idea of program status. or options, and still seroll the sereen. Whils one mon-scrolling line is better than none it is insufficient an an effec-
tive user interface, and hardly meets the expectations of the typical PC user. While the implementation of screen layout is up to the designer. menu bars at the top of the screen als well as pult-down and pop-up menus, all requise that the program controk where the data is displayed. If the program is to make the data appear to scroll in a portion of the display, then the last $X$ lines of data will need to be kept in memory

There are some advantages in this "manual scrolling" of the display. For instance the program will hold a history of the last seecral commands issued. and responses returned, in this buffer It a a simple matter to allow the user to mowe within the buffer and reisule. or edit and reissue a previous command This spe of feature eliminater the need for the user to rekey the command, or a similar command.

If the sumber of command lines held ire memory is increased, the user can be gwen access to more than the basic 25 limes availathe for a P' screen display. If the program is made to fletg those lines of data in memory that were besued as commands. it caln casity create a "sequence of commands" file that can be reisuled to the instrument att some later time. With the command lines flagged. it beaomes a simple matter for the program to determine which lines constitute data only. and then write this data to a file that can he pased to a preadheet program.

## Applications

A multi-function instrument, such an a digital multimeter. when coupled to a command seytuencer solfware package. can be ued in a wide variety of terting and monitoring situations. Such applicartions might include control of a test station in a manufaturing environment. accumulating pass/fat data at a receiving inspection station. monitoring a test setup for any out-of-limits conditions. or possibly datal logeing.
1)atabase or spreadsheet software can aloo enhance the use of the incoming inspection stations that use the command sequencer/maltimeter setup to dheck components and assemblien for electrical parameters. Here the command sequencer can control the mutimeter and write collected parameter vallues to a file that can be accessed by the datahase or spreadsheet software The atumated inspection station can be useful, not only in determining the pass or fail status of inspected componemts, but with the use of the data handling software. can be used to spot fitiluretrends.

# NPL'S ultrasound beam calibrator 

> Calibrating the beam of ultrasound used in medical diagnosis calls for advanced hardware and software design techniques that could be applied in other fields of measurement

R.C. PRESTON, D. WILLIAMS AND R.M. RODRIGUEZ

Since the 1960, when pioneers such as lan Donald (Fig. I) showed that useful medical diagnostic information could be ohtained by sending pulses of ultrasound into a patient and detecting the echoes from tissue structures. diagnostic ultrasound has become a widespread clinical tool with obstetric examination being the major application (Fig. 2). Despite developments over the vears the concept of ultrasonic imaging has not changed: an ultrasonic beam consisting of a stream of pulses at
megahertz frequencies scans a slice of the patient and the echo information is used to build up a 1 wo-dimemsional picture of the tissue.

The direction of launch of a pulse from the ultrasonic transdtacer (which generates and receives the ultrasound) and the time of flight before return of

Fig. I. The late Professor Ian Donald. one of the pioneers of medical ultra sound. (Photo by courtesy of J.E.E. Fleming).
the echolocates a feature in the image. the strength of the echodetermining the brightness of that feature in the image. Originally. mechanical movement of the transducer scamed the beam, but attomatic mechanical and electronic scanning has now reached levels of great complexity and ingenuity. Leneararray, phased-array and mechanically scanined sector scanners are just some of the systems in common use. Nowadays. the change between the received and transmitted frequency of a pulse caused


## MAKING ELECTRONICS C.A.D. AFFORDABLE

## TILTY-PB

## PCB CAD, FOR THE PC/XT/AT

CASY-PB
Are you still using tapes and a light box?
Have you been putting off buying PCB CAD software?
Have you access to an IBM PC/XT/AT or clone inc Amstrad 1640 \& 1512 or Archimedes with P.C. Emulator?
Would you like to be able to produce PCB layouts up to $17^{\prime \prime}$ square?
With up to 8 track layers and 2 silk screen layers?
Plus drill template and solder resist?
With up to eight different track widths anywhere in the range 002 to 531 "?
With up to 16 different pad sizes from the same range?
With pad shapes including round, oval, square, with or without hole and edge connector fingers?
With up to 1500 IC's per board, from up to 100 different outlines?
With auto repeat on tracks or other features - ideal for memory planes?
That can be used for surface mount components?
With the ability to locate components and pads on grid or to .002" resolution?
With an optional auto via facility for multilayer boards?
With the ability to create and save your own symbols?
That can be used with either cursor keys or mouse?
That is as good at circuit diagrams as it is at PCB's?
Which with EASY-PLOT and EASY-GERB can output to pen-plotter or photo-plotter (via bureaux)
Where you can learn how to use it in around an hour?


- THAT ONLY COSTS £95+VAT (TINY-PC), $£ 275+$ VAT (EASY-PC)


## SMITH CHART PROGRAM <br> 2MITOH

CIRCUIT ANALYSIS BY COMPUTER THWGEi]

For IBM, PC/XT/AT and clones inc. Amstrad 1512 and 1640 and BBC B, B+ and Master.


Z-MATCH - Takes the drudgery out of R.F. matching problems. Includes many more features than the standard Smith Chart.
Provides solutions to problems such as TRANSMISSION LINE MATCHING for AERIALS and RF AMPLIFIERS with TRANSMISSION LINE, TRANSFORMER and STUB MATCHING methods using COAXIAL LINES MICROSTRIP, STRIPLINE and WAVEGUIDES The program takes account of TRANSMISSION LINE LOSS. DIELECTRIC CONSTANT, VELOCITY FACTOR and FREQUENCY
Z-MATCH is supplied with a COMPREHENSIVE USER
MANUAL which contains a range of WORKED
EXAMPLES
£130 for PC/XT/AT etc.
£65.00 for BBC B, B + and Master

For IBM PC/XT/AT and clones inc. Amstrad 1512, 1640, R.M. NIMBUS, and BBC B, B+, and Master.

"ANALYSER II" - Analyses complex circuits for GAIN, PHASE, INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY over a very wide frequency range

Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS, WIDE BAND AMPLIFIERS, TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV I.F. and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS etc

STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop"
Can save days breadboarding and thousands of pounds worth of equipment.
£195 for PC/XT/AT etc.
$£ 130$ for BBC, B B + and Master

All prices Ex-VAT
WRITE OR PHONE FOR FULL DETAILS:- REF WW

Harding Way. St Ives. Huntingdon Cambs, PE17 4WR Tel: St lves (0480) 61778 ( 4 lines)
We provide full after-sales support with free telephone
'hotline help' service
Software updates are free within 6 months of purchase date.
by the Doppler effect can abo be used to add information about blood flow. often in the form of colour-coded images.

## Safety

From the early days, there has been a need to measure the acoustic output of medical ultrasonic éguipment. to give information on the performance of the system and also for safety reasons. Performance information cain be obtained from measurements of the beam shape. since this is related to depth resolution: for information. sound travels through tissue or water at a speed of approximately 1.5 mm per microsecond. Ahhough ultrasound has always been considered less of a hazard than X-rays as a diagnostic tool. there has always been concern for vafety. After all. the technigue relice on acoutic energy being delisered to the patient and sirtually all this energe is athorbed in the tissue. Heating of the tisste is one concern, and another is that the acoustic pressure gencrated by the equipment are extremely high: lypically hetween 5 and 70 atmospheres peak presure in the microncoond pulses.

## Hydrophone

The National Phsical Laborators recognised the need for reliable methods of measurement on mediad uttrasonic equipment. Over the past ten years it has collatorated with indutry to develop new measuring devices and has led the establishment of international Mandards for equipment catihration. Measurements worlwide are now bathed on the use of very small hydrophones which probe the beam radtiated by the uttrasonic transducer into a watler-filled test tank. A special type of high-quatity hydrophone has been developed with (il: ©-Marconi Research Centre which uses a piezoelectrie plastic film called potwinytidene fluoride, a small region of which, ly pically less that Imm diameter, is made semsitioe to the whtrasound.

This type of nensor is now widely used for taborators measurements, hut it wats soon realised at NP' that the problems of interpreting the hydrophone signats and the time-consuming nature of the measurements made them unsuitable for wider applications in industry and in the medical physics departments of most hospitals. It was seen that a complete and purpose-designed measurment system wats needed and. in response. the NPI developed the ultriasound beam calibrator.


#### Abstract

Rapid digitisation and presentation of data in a manner similar to that described in this article for the NPL ultrasound beam calibrator is a common problem in many fields of measurement science. Although the beam calibrator utilizes an acoustic sensor with 21 elements, many other multelement sensors could be interfaced to the analogue multiplexer. For instance, an array of optical diodes for detection of pulsed light beams could provide the basic signal input. Obviously, there would be minor differences in the control of the acquisition process and different requirements for presentation and analysis of the signals, but the concept would be very similar.


## System operation

The calibrator is hased again on the use of a membranc hydrophone. but this time the device has 21 separate sensmg elements arranged in a line. The elements are 0.4 Am diameter with 0.6 . 6 mom spacing between centres and each is connected via a multiplexer and amplifier tor a flash analogue-to-digital converter. The E(Cl. output of the A-to-l) conterter is first stored in E: © memory and then rapidly downloaded into TTi memors for subsequent aceen by al $P^{\prime}$. which contons the whole ustem. The information su stored represents the acoustic pulse waveform at cach chement. The process is hown schematically in Fig. 3. though it should be recognised that the technical problems of acequiring data at rates of up to 6omblz from eath acoustic pulse, and responding th the next pulse within about I2ll $\mu$ s. are quite formidable. To achere these rates. certain compromises had to be accepted, such as limiting the number of byter per acpuisition to 12sor 256.

For modern ultrasomic sammers, it is impertant to be able to synchronize the acquisition process to a particular pulse in the sequence generated by the scanner. Versatile control of the multiplexer and also of the assignment of the memory hecations for incoming waveforms. was chealy essential and a dedicated microprocessor was installed to handle the data-acquisition process and to receive control information and return data to the host $P(C$. It is atso impertant 10 display the wateform and the beam profile instamtaneously so that the operator call position the transducer for maximum signal. Hence. the software control and display reguirements were stringent

The culmination of this development
programme is a unique measurement system (Fig. 4) which provides for the first time a method of determining the acoustic output of medical diagnostic ultrasonic equipment in a cost-effective manner. Following the acquisition of data. rapid analysis can be undertaken to give a set of results for immediate assessment or for production of a hard copy record. The interpretation of the datai according to accepted international standards is assured be the sofiware. which is an important consideration when comparing results from different sources or ohtainedat different times.

## Signal acquisition

The scammer head of the ultrasonic equipment being evaluated is clamped above the tank such that its ultrasoundemitting face is just below the surface of the distilled water filling the tank. The hythophone assembly sits in the water directly below the uttrasound samber head under test. where the twenty-one dements receice the acoustic energy as presume variations. Contained within the hedrophone assembly, andsealedto operate under water. is a horseshoeshaped printed-circuit board containing swent-one buffer amplifiers and a muttiplever, as hown in Fig. 5.

Each hydrophone element has is wwn fixedgain. dual-fet high inputimpedance amplifier with a signal bandwidth of approximately boinils. To averid possible overheating of the amplifiers. the housing is filled with transformer oil to prow ide ghod therman contact

Fïg. 3. Methed of operation of the beam calibrator. A $2 /$-clement hydrophone probes the ultrasisund field, the resulting signal being digitized and processed by computer for display and annalysis.

to the case and the very effective heatsink provided by 20 litres of distilled water beyond!

Rather than providing twenty-one direct connections to the digitizing unit. the amplifier outputs are multiplexed and matched to a single 5012 impedance screened cable which connects to a 5 . 1 se line receiver. But why multiplex the analogue outputs over the comparatively short lead connecting to the digitizing unit? Primarily the reason is to avoid the cross-talk and pick-up between channels that would inevitably result from twenty-one separate cables. however well screened. The analogue signals are transmitted in sequence with a different hydrophone element being monitored for successive ultrasound burst outputs. The process is illustrated by the block diagram at Fig. 6 .

At the digitizing unit. the analogue signal path is provided with a switched gain stage of 60 dB in 1 dB steps. a demultiplexer and amplifiers to normalize the signals from each hydrophone

Fig. 5. Membrane hydrophone, with 21 piezoelectric sensing elements.


used in its major application - obstetric


Figg, 4. The calibrator in use.

Fig. 6. Block diagram of the complete system.


chamel. Normalization is necessary. since the sensitivity of each element on the polyvinylidene fluoride (PVDF) hydrophone varies by about $10 \%$. The elements are piezo-electric and produce an electrical charge for an applied acoustic pressure. the output being measured as a voltage which will change as the element loading capacitance changes due to electrode lead capacitance, wiring and amplifier inputcapacitance variations.
As only one high-speed (and expensive) analogue-to-digital converter is used. a further multiplexer stage is required. This is followed by an output amplifier which also provides frequency response shaping to compensate for the increase in hydrophone sensitivity with increasing frequency. The result is ill acoustic pressure response which is that to within $\pm 1$ dl3 over the frequency range of 0.5 to $20 \mathrm{M1Hz}$, as shown in Fig.

Fig. 8. Timing diagram.


Fig. 7. A typical frequency-response plot from the calibrator, hased on product of measured response of amplifier and predicted response of hydrophone.
7. Measurements made by the National Physical Laboratory over a period of a year have shown the system sensitivity to be stable within to $5 \%$ or better quite an achievement considering the many areas of potential drift.

## Analogue-to-digitial conversion

The analogue-to-digital converter is a TRW (of Guildford) 1025 8-bit flash converter operating at a rate of up to 60 MH Iz Sample sizes of 128 or 256 bytes can be selected, which means that for the first burst of ultrasound received. that many samples will be taken for the first monitored hydrophonce element. the process being repeated until all the celements have been sampled. A complete set of samples will thus be 21 (elements) $\times 128$ or 256 (samples) and will take $21 \times$ the ultrasound burst repetition period to complete. Syncheronisation to the ultrasound bursts is either by a direct trigger connection from the ultrasound equipment or via a pickup sensor mounted close to the scammer head.

Data at this rate is too fast for most families of memory, however. and certainly too fast to be presented directly to the system computer. Each block of 128 or 256 samples of the converter output is stored in fast ECCI ram before being transferred to an area within an 8k block of slower TTI. ram in the remaining period between ultrasound bursts. During this period, hardware peak detectors sain the data for the maximum and minimum signals received, which
represent the peak-positive and peaknegative acoustic pressures and are used in the subsequent data anlaysis and to assist in aligning the hydrophone to the scanner head under tesi.

## Timing and control

Timing is clearly critical to the whole process of signal acepuisition and conversion. As well as controlling the timing of the multiplexers. the data acquisition needs to be synchromized to the bursts of ultrasound produced by the scanner under test and the resulting digital data needs to be transferred to the system computer. Fig. 8 summarizes the timing sequences.

In use. the operator will adjust a trigger-delay control, as a delayed timbase oscilloscope would be adjusted. to allow for the propagation time of the ultrasound signal through water to the hydrophone. Other timings are controlled by a Motorola 68008 microprocessor, which also manages the interface to the system computer. typicallyan Intel sorsionased PC-AT.

The Motorola 68008 . with its IOMAHz clock, is housed in the digitization unit and is supported by two 10 MH Iz 68230 parallel port/timer devices. It initiates all data-acquisition sequences, allocates memory for data storage and grants access to the system computer on a priority-interrupt basis. Highest interrupt priority is to the acopuisition and safe storage of data, the next level being for the PC-AT requiring access to the data. If access is denied. the PC-AT must wait and try again later. Communications and data transfer to the computer are via one of the 68230 parallel ports comnected back-to-back to an lntel 8255 port and a speciat II3M-compatible interface card occupyuingone batek-plane slot.

## Software

The functions of this software include management of PC/AT facilities such as displays, disks, printers: transfer of data and information between the user and the calibrator instrument: the processing of raw acoustic pressure response data to determine a number of acoustic parameters to international measurement standards: presentation of those parameters as sercen graphs, printout summaries, plots, allowing changes to be mate in the calibrator set up: and fite storage of raw data for deferred analysis, averaging and/or corrections.

This software is written in polyFORTII, a professional multitasking version of the high-level programming language FORTH which has been em-
ployed for mant years in control and instrument applications. It rum under MSIDOS, to provide access to the bat rious $P^{\prime}\left({ }^{\prime}\right.$ renourcen, but includer its own editor, assembler. compiler. and interpreter. As these took are written also in FORTH, their santax, commands and structures atre all the same and athow ant competent programmer to extend the operating vystem to fit his requirements.
polyFORTII for the P( $/$ /AT-MSI)OS normally runs in a otK memory segment. Where an application requiren large amounts of datia and code. vuch as in the ultrasound beam calibator. four techniques are used. Firstly, data arrass and tables required at all times can be hedd in MSI)(OS memory outside the program:s 64 K memory segment. Using MSI)(OS function till, the programmer has control of where data is located.

Secondly, program code can be organised such that there is alwaysa resident "kernel" containing freguently used routines. and a number of "oterlan" brought in and out of the program space when the infrequently used routines contained in them are needed.

FORTH was originally invented by Charles Moore in 1973 when he was developing computer programs to control radio telescopes and their instruments. Its unique combination of highly interactive environment and efficient execution makes it ideal for R \& D applications where the engineer's goals may be constantly chang. ing. Subsequent developments of the language have made interactive multitasking systems available for most CPUs from VAXs to single-chip microprocessors.

Data and oberlay code call also be held in virtual memory polyF()RTll includer a set of words specifically designed for this purposes which une the disk ats a large virtual-memory space (rgamised in MSI)(OS files. Up to eight filercan be open for accessat any time.

Finally. data and code can also be organiced in a number of otk complete polyororth shell system, all linked together by the round-robin IFORTH multitask scheduler.

In the heam calibrator software we use the first three, and there is no need for multiple she lls.

Communiataion between the PC and
the owow (PU take place through ant 8255 prgrammable peripheral interface in a ypecifically designed card, and ITI, memory in the calibrator hardware shared with the P(/MSD)OS otlok space. This is sormallylocated after the first 512K. wo any contentions with $P C$ internal memory can be atoided by swatching off this banh

A simple protocol is used to carry out exehanges. All responses from the calibrator generate an interrupt in the $P($ : this interrupt can be configured in the 8255 PPI card to avoid clasher with exiving $P($ interupts. In the default configuration. this wector is mumber 13 or tren. When an atcees to shared mumory is denied by the calibrator. the 825 PPlard generates another configurable interrupt.

Functions in the software are presented to the user by simple menus and one-keystrokeselections.

The bealn calibrator is the outcome of combined work by the NPL (I)r R.C. Prestom), Frazer-Nash Electronics Lat (David Williams) and Computer Solutions L_td (R.M. Rodrigue二)

## USE PC COMPILERS FOR AN SBC

For really fast development of stand alone systems, use a Lancer or Hunter target board with Hexatron's PromDOS. This emulates DOS and BIOS calls, gives you silicon discs and even allows you to run non-ROMable compiled code in a ROM environment. Too good to be true? Call us now for a free demonstration. STOP PRESS: We now have a four port multi-standard serial expansion card for the Lancer and Hunter - ring us for details.

## THE SDS LANCER

An 8088N20 target board on a double Eurocard with two serial ports, four parallel ports, six counter-timers, four 32 pin memory sockets, battery backup. RTC, watchdog timer, optional 8087, optional mains psu and case.

## THE SDS HUNTER



An 80188 target board with 256 k bytes EPROM, 256k bytes battery backed RAM, 256k bytes D-RAM, two serial ports, three counter-timers, RTC, watchdog timer, optional mains power supply and case.

## Sherwood Data Systems Ltd

Unit 6, York Way, Cressex Estate, High Wycombe. Tel: 0494464264

# INSIDE THE IBMPC 

# Technical applications of the PC require users to have some knowledge of the internal workings. Roy Levell describes the hardware. 

The range of technical applications of the IBM PC has grown enormously. Plug-in cards are now availatle which turn the PC into a comprehensive laboratory instrumentation-system, a cad workstation, a digital storage oscilloscope, an in-ci cuit emutmexfor a range of microprocessors and a host system for software devetopment of transputers and rise computers. The PC has become a powerful industrial development tool.

The feature of the IBMPE which contributes most to its versatility is the expansion bus. It allows the computer to be tailored to individual requirements and permits improvemens to be made as technology advances avoiding rapid obsolescence.

## Hardware outline

On the basic PC system board can be found the processor and its support chips, the system rom and up to 640 K byte of ram. One of the expansion slots is normally fitted with a disk drive card and another is oecupied by a display adaptor.

On the origimata t, the 8088 CP wired in thaximum mode, so that coprocessory can be used with it. In this mode, the EPU-statmesignals are de-
 the memory Meconvor sug Ibsand interrupt-ackoon est sumat.

To reduce pin-hut requirements, the lower eight bits of the address bus areinternilly multiplexed by the 8088 with the eight-bit data bus. The address bus must therdfore be de-multiplexed and latched ¢utside, the chip to provide separate address and datá buses for memoryandexpansion.
Anternal interrupts are provided on the CPU to notify divide errors on the DIV and IDIV instructions, to provide single-step facilities when the trap flag is set in the status register and to provide
software interrupt facilities with the INTn ( $\mathrm{n}<256$ ) and INTO instructions. Software interrupts can be used to call operating system services from set within an application program and to The 8087 can be used with both 8088 check hardware interrupt service proce and 80S6 CPUs. It identifies the CPU dures.

Both maskable and non-maskable external interrupt lines are provided on the CPL. One use of the NMI is to informbith CPU of parity errors in the d-ram ah 8259 programmable interrupt controller is used to epand the maskable interrupt, providing eight vectored priority interrupt requests. These in-used by the time , kylooards serial communications, oisks and


Integer arithmetic operations are provided by the 8088 CPU. Multiply and divide instructions can deal with both $\delta$-on and $10-01$, sighed and unsigned imtegers. making the 8088 EPU useful for real-time data handling.

However, arithmetic operations on real numbers and floating-point numbers require software routines which use manyEPU instructions. They there fore take much longer to calculate than integers, and use more memory, Common functions of real variables require still more CPL instructions and take even longer to calculate

## Numeric coprocessor

 The 8087 numeric coplocessor optional fitting on most machines, is designed to speed up the calculation of real and floating-point numbers, logarithms, square roots and many trigonometrical functions by more than $\mathbf{j}^{0}$ times. It is particularly important for engineering and scientific applications and for complex real-timeprocessingThe 8087 shares the multiplexed address and data bus of the 8088 CPU. It also uses the status and queueing signals, the clock and the reset. When operating together the two processors
appear to the programmer as one single machine with additional data types, more registers and a larger instruction set. from the CPU's response when reset at start-up.
Bolh processors monitor the incoming instructions. All 8087 instructions are processor control Esc type (escape to external device). They are recognized by the 8087 , which requests control of the bus if data transfers are required. The 8088 grants control. The 8087 then executes the instruction and outputs a busr signal while doing so. The 8088 monitors this and executes a WAIT instruction.
When the $8087^{\prime}$ has finished the data transfer operation it cancels the busy rignt and frees the bus. It also informs the 8088 on the request line when it has finished an instruction.
Both processors control their own instruction queues and the 8087 coordmates its activities by means of the queue statussignats.

If any of the six'types of "exception" error occur, a flag is set in its status register. An interrupt request bit is also set if the corresponding mask bit is set in the control register In this way the programmer may Ether use the inbuilt delatil handling of each type of exception ar provide his own in ant memtup routme. The IBM PC uses the 8087 interrupt request to force an 8088 mi.
Memory organization
Perhaps thy grtatest deficiency of PC
architecture is its lack of linear address
space. Just one megabyte of memory is
directly addressable by the 8088 CP .
20 address pins being provided on the
ship. The memory can be thought of as
being 16 blocks of 64 Kbyte each. The
top four are used for roms. The adjacent

PC-BASED SYSTEMS ■lilldal

two blocks are used for video display ralli.

The 2(0)thit physical addresses are formed by adding I6 times the segment register contents to the offee register contents. The example below combines the code segment register. ('S, with the instruction pointer. IP. to form the absolute memory address of an instruction in hexadecimal:

CS: IPEAON: $3100=$ ED $10100_{10}$

## Roms

On the IBM original. six sockets are provided on the system board for 8K static roms. The socket spanning the address range FEOOH-FPFFF ${ }_{10}$ contains the system bios firmware. Rom Cassette Basic. if fitted. occupies the 32Kbyte space from Fo(0) (10 FDDFFF,

Rom chip selection uses a nand gate and a three-line to eight-line decoder to decode the upper address lines.

The bios rom contans firmware that initializes the system and tests the CPU, the keyboard, the floppy disk interface and the memory att start-up. It also contains the fundamental aceess procedures for the system services: keyboard. printer interface serial communications links. disk interface and time-ofday clock. The bios also includes disk boot procedures which read the operating system (MS-I)()S) from the system disk intoram and then transfers control toit.

Memory addressing for the dyamic ram is complex. The ninth chip of each bank holds a parity bit for cach byte of memory. Parity hits are generated when bytes are written into the d-ram. They are checked again when they are read.

The $7+28(1)$ nine-bit parity checker gates the bits of a memory byte with its corresponding parity bit and generates both odd and even parity signals. The even parity output forms the parity bit of the selected byte during the write cycle. If the parity is not odd during the read eycle a non-maskable interrupt displays an error message on the sereen.

## Direct memory access

Direct memory access can be used for the high-speed transfer of blocks of data from input channets to memory. from memory to output channels and between different areas of memory.

The 8237 DMA controller asks the CPU for permission to take control of the system address and data buses to carry out the datatransfers. When given permission, the DMAC suspends CPU operation by forcing the 828t clock generator to change the state of the eru RI AI) line.

Four separate DMA chamols are availathe on the 8237 : cach has a $6+1$ address and word count capability. (hamnel () is used for (d-ram refresh. The DMA request and acknowledge signals for chamols ! . 2 and 3 are available on the expansion bus sockets. IDMA channel 2 is used for floppy disk data transfers.

The DMA channels are set up by sose CPU software on reset. by loading and sequencing the DMA control registers. These are located at (0)(-)-()) $\mathrm{F}_{10}$ in the $\mathrm{i} / \mathrm{o}$ address map.
DMA call be initiated by external hardware via the DRQ In lines: action is determined by hardware wiring and by the settings of the control registers. Memory-to-memory DDMA transfers are not used.

The IDMA controller is limited to an address range of $6+\mathrm{K}$. A four-bit hardware DMA page register is provided for each of the four DMA chamnels. It enables DMA transfers to span the CPU's BMbyte address range. The DMA page registers are located at (1)80-0) 83 In in the i/oaddress map.

## Programmable interval timer

The system clock is divided down to drive the 8253 programmable interval timers with a 1.1931817 MHz clock signal. The counters are then set separately to produce the following signals:

Timer 0. mode 3: time-of-day interrupt.approximatelyevery 55 ms .

Timer 1. mode 2: dynamic-ram refresh signall. every $1.5 \mu \mathrm{~s}$.

Timer 2 mode 3 produces a square wave for speaker beeping.

The control and status registers for the PlT are located at ()(1)-()+3, $3_{16}$ in the i/o address map.

## Peripheral interface

The PPI chip on the system board has three eight-bit i/o ports. A. B and C. Port $C$ is split into two four-bit parts. The chip interfaces directly to the system data bus and is situated at $\mathrm{i} / \mathrm{o}$ address (160)-0)6. $3_{16}$.

Port A is configured as an input port and is used to read out the keyboard scan code byte in parallel from the serial imput shift register. The system configuration dip switches are also connected to an input port. They are read at start-up to determine the equipment fitted.

Port $B$ is configured as an output port and its individual bits are used for control purposes:

PPBO controls PIT counter 2. producing square waves for the speaker. Pl31 sends programed data waveforms to
the speaker. Pl32 emables Port C lower half to read configuration dip switch Swz. PlBt enables and disables ram parity checking. PB5 enables Port C. upper half, to read $\mathrm{i} / \mathrm{o}$ channel status lines. PB6 controls the keyboard clock line. PB7 controls Port A. switching between the keyboard and dip switeh.

The PIT and PPI control registers can be accessed directly to generate somols. No rom bios or Dos routines are provided for this purpose.

## I/O address map

The sose CPU has separate memory and i/oaddress maps. Both use the same lines for address selection but additional i/o read and write control lines are provided by the 8288 bus controller.

The programmable CPU support chips. timer and peripheral interface chips have their control and status registers located at specific $i / o$ addresses. The control registers are loaded by the CPU at start-up to define the hardware behaviour. They provide dynamic information about events occurring in the hardware. They are consulted following interrupts to identify their cause and to decide the course of action to be taken.

## Keyboard processing

The keyboard contains an 8048 eight-bit microcomputer which scans they keyboard matrix and forms a unique scan code for each key pressed. It generates a different scan code when a key is released.

Single key-presses generate codes in the range $01_{16}$ to $53_{16}$. Key releases generate the same codes but set the cighth bit: the range is therefore $81_{\text {in }}$ to D) $3_{16}$.

When the sols has a scan code byte ready for transmission to the PC. it allows a clock signal from the system board to interrupt itsoperation and thus transfer the byte serially, one bit at a time, into a shift register on the system board. When all eight hits have been transferred, a counter on the system board generates a hardware interrupt request ( 1 RO, ) to inform the solss that a keyboard byte is ready for collection. The (PU responds by executing the keyboardinterrupt routine.

This interrupt routine clears the interrupt, reads the cight bit scan code through Port A of the 8255 PPI . converts it to an eight bit ASCII code and stores both the scan code and the ASCII code in a 32byte circular input buffer held in low memory. This routine also interprets the keyboard input data. tak-

Contimued on page 90?


Further information from:
LEE ELECTRONICS LTD
400 Edgware Road, London W2.
Retail Enquiries: 01-723 5521
Trade Enquiries: 01-450 9755
Fax: 01-450 6826
Telex: 298765 UNIQUE

## STANDARD AX700E SCANNING RECEIVER

The AX700E has been designed as a professional quality scanning receiver covering most of the well used spectrum.

1 The only scanner with a full panoramic display.
2. Covers $50-905 \mathrm{MHz}$.
3. Features a spectral display covering $100 \mathrm{KHz}, 250 \mathrm{KHz}$ and 1 MHz bandwidths.
4. Receives AM, FM and NBFM.
5. Scans in 5/10/12.5/20/ 25 MHz .
6. $1 / 5 \mathrm{KHz}$ up/down facility.
7. 12 V DC or $110 / 220 / 240$ with AC adaptor.
8. 100 User programmable memories.

# ARE SOFTWARE REVIEWS BIASED? WHY NOT FIND OUT FOR YOURSELF 

Electronics \& Wireless World is looking for people who are prepared to undertake software and hardware reviews on a freelance basis. We're not interested word processors, spreadsheets and database. Our readers can get that sort of information from a million different places. We want to examine industrial and technical products aimed at the professional market. For instance PCB CAD, modelling, circuit analysis, board level products, etc.

Like you, we want to see unbiased reviews in our pages so you will have to show us your credentials. You will also need access to testbed equipment suitable for the task. Naturally you must be able to communicate the results of your work in jargon free English. In return, we will give you money. Not a lot but some. The fame and glory comes free.

If any of this appeals, then I would like to discuss the possibilities with you. Please contact Frank Ogden, Editor, on 01-661 3128. I shall then be able to give you an unbiased assessment of your potential as an E\&WW reviewer.

## IIM:HIII PC-BASED SYSTEMS

ing into account the keyboard status bits. Specific key codes catuse it to set or clear these bits

The data held in the kevboard buffer is examined and acted on by the main keyboard services routine invoked by software interrupt 16 m.

## System variables

The bottom IKhyte of memory (ono(o)$0(03 \mathrm{FF})$ is ram which holds the interrupt vectors. Eiach vector requires two bytes to specify the value of the code segment register and two more bytes to provide the offset start address of the relevant interrupt routine.

Interrupt routines maty be invoked by hardware IRQ or by software INTin instructions. Up to 2.56 software interrupts are possible (O)-IFF). The bios routines use low memory (olofoor( 04 Fl in for their variables. MS-I)()S and Basic use (0) 0 (0)-(0) FFF for their variables and othersystem software can use the space above that. High-kevel
languages and applications software cian use the remaining blocks of ram.

## Expansion bus

Ihe original P' has five expansion bus sockets. The expansion hus uses a double-sided edge connector with 31 contacts on eateh side. One side contains the whole of the system address (20) and data bus ( 8 ) lines; the other is mainly power lines ( 8 ) and control lines (six IRO, three IRRO, four DA(K, four R/W and six otners).

## Floppy disk interface

The heare of a disk drive adapter is the 827コ floppy disk controller. This device can handle up to four drives. It incorporates DMA read/write control logic for tramsferring data both ways between the system memory and the disks. Dita transters can atso be achieved by ore hardware interrupts to the ( $P$ PU. The use of DMA or interrupt-based data
transfers can be selected in software through the F ) ( control interface loc゙ated at 3F:3-3F7inthe i/oaddressmap.

## Serial communications

The bios rom contains the firmwatice for servicing ports. Control and status registers for the primary port are located at $\mathrm{i} / \mathrm{o}$ addresses $3 \mathrm{~F} \mathrm{~S}-3 \mathrm{FF}^{\circ}$ and for the secondary port at 2F8-2FF

Asynchronous serial communications adapters can use alnost any uart chip. hat the batel sing usart is representalive. It contans a transmit buffer, which is loaded with data in parallel by the CPU ind clocked serially from the line and unloaded in parallel to the Cl'U

An interrupt announces transmitter bufferempty, receive buffer full, parity, overrun and framing errors. Fang bits set in the status word identify the caluse.

The device eontrol registers permit the datta rate, the number of sop bits atad the use of a parity bit to be specificd.

## 81551 Project-=-.?



From simple minimum chip solutions through to complex turnkey multiprocessor systems, Cavendish Automation has the hardware and tools to allow you or us to design rapid and professional implementations.

Off-the-shelf hardware includes numerous DACs, ADCs, bus-drivers and decoders. and many other forms of analogue and digital I/O cards, together with power supplies, backplanes, card cages and equipment cases

Sofiware development couldn't be easier Our 7034 card's text editor enables software development for the 8051/2 in either assembler or MCS-52 BASIC Programs are simply blown into EPROM or EEPROM on the card itself When writing in assembler. both source and/or assembled code may be saved in this way


For further information contact

## Cavendish Automation

# On the straight and narrow? 

Autoguide" is the commercial name for a system of electronics produced by Plessey. which transmits travel directions to drivers of cars fitted with the correct receivers. The system is being introduced first in london during the carly 1990 , and if commercially successful, to other major cities in the UK.
Suppose, however, the system incorporated the means to identify vehicles in a way similar to the automatic vehicle number plate readers tested by the Police in the early 1980s"? Given this fact, could Autoguide become a device capable of being used by a future autharitarian government for mass surveillance".

The two L.ondon Labour Ml's who raised this issue added colour to the parliamentary discussions by giving personat stories about being subject to state surveillance. Joan Ruddock told MP's that the Security Services often trated

her car when she was a senior officer in CND; Jeremy Corbyn explained how the registration number of his vehicle was placed in the Stolen and Suspect Vehicle Index of the Police National Computer (when the car was neither stolen nor suspect) during the 1984
miners strike
These recent experiences meant that the MPs closely examined the meaning of a clanse in the Roall Traffic (Driver Licensing and Information Systems) Bil which states that "no information may be furnished to the Secretary of State... in a way that would enable individual owners or drivers of motor vehicles to be identified". Explaining the wording. Mr. Bottomley, the Minister in charge of the Bill in the Commons.s. stated that the chatue meant that Autoguide data which identified individuals could be withbeld from the Minister

However, alert MP's noted that the word 'the' was not ' $a$ '. Thus the MP's maintained that other Secretaries of State could obtain information about individuals from Autoguide for a varicty of other purposes: all unrelated to roads, traffic, and tramsport

## Waxing lyrical about AWACS

In 1986. the Government abandoned the largest and most complex avionic, system ever ordered for the RAF Known ans the Nimrod airborne early warning system. it was replaced by a billion-dollar-plus contract with Boeing for the tried and tested Airborne Warning and Control System (AWACS), As the cancellation caused immense political controversy. the Govermment sweetened the pill by negotiating terms with Boeing that meant that in excess of \$1.5(; worth of high technology contracts would be placed in the UK by Bocing by an "offset agrement"
Since then the Defence Committee an all-party group of MP's who monitor the work of the Ministry of Defence. has been considering whether the agreement has worked as planned. Their recent report vindicated the cancellation of Nimrod, and conchuded that "at present. Bocing appear broadly on course to fulfil their offset obligation by 1995"

The Committere noted that the offer programme was unlikely to compensate the UK in full for the loss of $£ 375$ millions worth of airborme radar technology and avionics expertise caused through cancellation. Ilowever, they were keen to ensure, that to qualify for

the offee agreement. any work placed in the UK by l3ocing must be "of a similar technological standard to that contained in the AW ACS purchatse". Io ensure that "the UK defence industry is stimulated into developing and exploiting itstechnological capabilities

Noting that some $\$ 1.30$; worth of contracts had yet to be placed by Bocing by 1995 (and this figure is inflationlinked), the Committee stressed that early figures about the offsem agrement had to be treated with utmost catution. Consequently, it told the Ministry of Defence to obtain accurate figures con-
cerning the agreement, produce some progress reports to the ( ommittee, and begin to monitor Bocing more chosely IFinally, the commitlee said that it would "continue to monitor the programme and report to the House as necessary": a threat of parliamentary action if the situationdeteriorates.

[^3]
# Dead end for car radio thieves 

Stolen car radios could become a thing of the past because there is nothing left to steal. This is the promise of a new digital radio chip set developed by ITT Semiconductors.
The only part accessible to thieves will be the dashboard control panel useless by itself.

Three 44-pin chips on a loard just $80 \mathrm{~mm} \times 30 \mathrm{~mm}$ integrate all the RF and audio processing stages of a full-feature AM-FM radio. Cat makers can install this module in the engine compartment together with the vehicle's other electronics.

The devices require few external components: little more than a pair of miniature low-pass filters. In a radical break with conventional receiver design, the RF chip. RFPI200, uses it "zero-IF" conversion principle: this makes it possible to eliminate most tuned circuits. so making the circuit much more suitable for integration.

Up to now. says ITT, zero-IF conversion has been an unfulfilled wish of audio engineers because of error compensation problems (in-phase/ quadrature symmetry correction. for example). These have become soluble only with the aid of digital strategies.

## Digitized IF

On the FM side, an oscillator running at about twice the tuned frequency is divided by two so as to produce two signals in accurate quadrature for a pair of mixers. The actual IF is about 10 kHz . The AM oscillator system is somewhat more complex, but it enables an input frequency range of $3: 1$ to be covered without the need for an extensive tuned preselector.

Because of the low IF, the received signal can be digitized at an early stage. reducing analogue processing to a minimum. FM demodulation and stereo decoding are carried out digitally in the ACDPIIOO chip. which also contains the frequency synthesizer, digital-toanalogue converters and electronic volume control. The same DSP hardware can decode US-style AM stereo transmissions and can even create a dynamic noise reduction system.

The technique used for FM demodwation is the so-called Cordic (coordinate rotation digital computer) algorithom first used by ITT for colour decoding in Secam television sets. A further advantage of digital demodulation is that the Radio Data System (RDS) information
now being transmitted by most European broadcasters can be extracted digitally at the same time for feeding to the synthesizer to help control the set. The processing can be added to the duties of the UDPCLOOO e-mos microcomputer which completes the chip-set.
Several variants of the system are
possible including a cut-down version with an external FM front end, and an enlarged version withan additional processor providing features such as a seven-band graphic equalizer. Further information: ITT Rosemoumt House, Rosemount Averue, West Byfleet, Surrey KTI46NP?


New consumer integrated circuits from ITT Semiconductors include the digital radio chip set outlined below and a multi-MAC decoder chip for satellite television, a part of the Digit 2000 range (see July issue, page 7.36). This TV chip not only decodes D2-MAC/pachet but ID-MAC and C-MAC too. The company already has decoders for D2-MAC and for D-MAC: a demonstration in July showed the D-MAC device successfully decoding a wide-screen I)-MAC satellite test transmission laid on by the IBA in the 16:9 aspect ratio chosen for HIDTV.
Below: ITT's three-chip car radio set makes extensive use of DSP.


## SPICE•AGE Non-Linear Analogue Circuit Simulator £245 complete

Those Engineers have a reputation for supplying the best value-for-money in microcom puter-based circuit simulation soltware. Just look at what the new fully-integrated SPICE Advanced Graphics Environment (AGE) package oflers in ease-ol-use. perlormance. and facilities:
SPICE $\bullet$ AGE performs four types of analysis simply. speedily, and accurately Module 1 - Frequency response Module 3-Translent analysis

- Module 2 - DC quiescent analysis Module 4 - Fourier analysis


Frequency response of a low pass filler circuit

2 DC Quiescent analysis
SPICE•AGE analyses DC voltages in any network and is useful. for example, for sètling transistor bias Non-linear componenis such as transistors and diodes are catered for. (The disk library of network models contains many commonly-used components - see below). This type of analysis is ideal for confirming bias conditions and establishing clipping margin prior to performing a transient analysis. Tabular results are given for each node: the reference node is user-selectable


Impulse response of low pass filter (transient analysis)

## 4 Fourler analyses

SPICE•AGE performs Fourier transforms on transient analysis data. This allows users to examine transient analy. sis wavelorms for the most prevalent frequency components (amplitude is plotted against frequency). Functions as a simple spectrum analyser for s.napshot of transients Automatically interpolates from transient analysis data and handles up to 512 data values. Allows examination of waveform through different windows Powerlul analytical function is extremely easy to use.

1 Frequencyresponse
SPICE AGE provides a clever hidden benelit. It lirst solves for circuit quiescence and only when the operating peint is established does it release the correct small-signal results. This essential con cept is featured in all Those Engineers* soltware. Numerical and graphical $\log \&$ lin) impedance. gain and phase results can be generated. A probe node leature allows the output nodes to be changed Output may be either dB or volts, the zero d8 relerence can be delined in six different ways.


DC conditions within model of 741 circult

3 Transient analysis
The transient response arising from a wide range of inputs can be examined. 7 types of of excitation are offered (impulse. sine wave. step. triangle, ramp, square and pulse train): the parameters of each are user-definable. Reactive componenls may be pre-charged to steady-state condition. Up to 13 voltage generators and current generators may be connected. Sweep time is adjustable. Up to 4 probe nodes are allowed. and simultaneous plots permit easy comparison of results.


Spectrum of rectangular pulse train (Fourier analysis)

If your work involves designing, developing or verifying analogue or digital circuits, you will wonder how you ever managed without Those Engineers circuit Simulation Software.
A good range of properly supported and proven programs is available and our expert staff are at your service.

Mnose
Fngineecrs litd
 Telephone: 01.435271 • Fax: 01-435 3757


Thurlby's reputation for bench power supplies is second to none.

The Thurlby PL series has re-defined the standard for bench PSU's. Today it is still the only range to offer all of the features that have established it as a best seller. Features such as dual $33 / 4$ digit meters for each output, current limit preview, remote sense, and current meter damping.
The range is vast and includes singles, twins, triples, quad-mode duals (with true parallel and series tracking modes), and IEEE-488 programmable models.


Contact Thurlby now for the full details of all bench PSU's.

## Thurlby <br> ELECTRONICS LIMITED

Burrel Road, St. Ives, Huntingdon, Cambs PE 17 4LE Fax: 048064832 Tel: 048063570

# PIONEERS 

Joseph Henry (1797-1875): actor turned engineer and scientist

Too dull to make a silversmith: that was the verdict supposedly given on the young loseph Henry. Henry had been aprenticed at the age of 14 to a watchmaker and silversmith: and though it never enthalled him, the two years of training came in useful later when he started to make his own scientificequipment.

From humble beginnings Joseph Henry hecame the leading figure in American science and a benevolent figure, too. He refused to patent his work, preferring that it the availahle for the benefit of all. In his late forties, with his scientific reputation impregnable. he became the first Secretary (i.e. chief administrator) of the new Smithsoniam Institution in Washington, D(C. There he used his influence to consolidate in America the professional approach to scientific research.

But it is not however for Henrys administrative abilities that we remember him. The unit of inductance now bears his name: but also mamed after him was a town. Port Herry. He made large contributions to electromagnetic science and engincering: the joint discovery of electromagnetic induction and self-induction. the manufacture of industrial electromagnetios, and the construction of what might the called the first electric bell, hated by some as the first electromagnetic telegraph.

## Early days

Henry's grandparents, Ilendries and Alexanders. had emigrated from Scotland and arrived at New York (then a small city of 30 (1)O people) on Jume 16. 1775. Dis paternal grandfather was proud of having seen honnic Prince Charlic ride into Cilasgow during the Jacobite rebellion of 1745. Despite his love for his old country he nevertheless changed the family name from Hendrie to Henry. a change for which Joseph Henry was hater toexpress some regret.

There is some doutt as to the date of


Joseph Henry: this photograph was taken about 1875, when he was about 78 (Institution of Electrical Enginears).

Henry"s birth, usually given as Decemher 17, 1797. The records of the Presbyterian church, a church Ifenry adhered to for life. give December 9 . according his bographer Coulson'. But Coulson also records that Henry"s cousin, quoting a life insurance policy. was adamant that it was December 1794.

Whatever the date, he was born into an impowerished family with ath ailing father. At seven he was sent from Albany in New York State, the fambly home. to stay with relatives at Calway. some 36 miles away, whilst his mother nursed his father. He stayed about seven years. completed his elementary education and hegan work in the village shop.

One day, according to the story, his pet rabbit escaped and Henry followed it under the floor of the village church. climbed through some loose floorboards and discovered the village library. There his eyes were opened to a world of hooks far be yond anything his small scheol or home had offered. After returning several times in this unconventional manner he was at last discovered and granted access in the normal mantiner.

Following his father's death. he set tled in Albany and started his uninspired apprenticeship as a silversmith. In his leisure time he developed a love for the theatre. This blossomed into a carcer decision and he turned to acting. writing and producing plays for an active amateur group. The stage was to be his world, until a minor illness changed that.

His mothersupplementedter income by taking in boarders. During his sickness one of them lent Joseph an introductory book on science with the rather datunting title "Lectures on Experimental Philosophy. Astronomy and Chemistry". This hook inspired him. It became al gift and he kept it for years. As a direct result of reading it he renounced the stage and turned to science. The man we have to thank for lending that book on science chanced to have an appropriate name - Robert Boyle!

The parallel with Michacl Faraday is straking. Faraday too was from a poor family: and it was while he was apprenticed to a bookbinder that he chanced to read an introductory book on chemistry which set him on his path to scientific fame

Ilenry, realising that his fong-passed elementary education was inadequate for the carreer he had chosen. now enrolled for night classes in geometry. mechanics and English grammar at the respected Albany Academy. Aged 21.

[^4]he was much okler than the norm. Soon his grammar was goodenough ou ernable him to give private tuition and then to gatio a school teachers post - the only jobthe ever applied for. The money paid for furtherstudy at the Academ!.

Before long the was asmoing lecturers and preparing himself for a career in medicine. He became librarian of the Aban! Institute and gave his first scientific paper in 182t. His studies continued and he undertook sursey work. most importantly as sursesor on a proiect to comstruct a new road from the Hudson Riser to Lake Erie. This outdoor project was completed so well that friends tricd, unsuccersfully, to get him an appointment as a civit engincer. His survesing for New York State was the only work that eser paid him enough to save money.

In the spring of 1 szo he was offered thee positions: supervisor for the construction of a camal in Ohio. manager of a mine in Mexico. or Profesonr of Mathematics and Natural Philosophy at the Ahany Academy. the leaching position. for that was what it wiss, worm. But it was a chaserunthing.

## Science and engineering

A1 2x. Joseph Hemry had at last chosen his career having rejected the village shop, siluersmithing. the stage, medicinc and civil engincering in fabour of taching.

Nfersecing a demonstration of (oersted s discosery of the effect of a corrent on a magnetic needte. Ilenry furned to chetromagnetism. But ats a teacher. rather than a research scientiot. Henry had to confine his rescarch work laredy to the period of the summer vacation and fimances were mostly from his own pocket.

His first significant. indeed major. contribution was the vast improsement he made weceromagnev (which had been insented by William Sturgeon in England). Ifent was fascinated. Ile soon improved the design by adding more furns of wire and insulating the wire rather than the iron core around which it was wrapped. as Stureeon had done. For a bime before shellac was used, obtaining copper wire and insulating it was one of the repeated. boring problems he had to contend with. At one time his wifers white silk pelticoat Wats shredded to provide the strips of sitk heneeded.

Ilis first magnet, in 1827 , lifed if pounds and then 28 pounds compared to Sturgeon's nine pounds. Oner the next lew years he investigated the hest and teas expensine ways of making his batleries an wetl angetting better mutti-
coil magnets. In this work he looked at parallel and series conncetions and touched on what we would catl impe(tance matching. I Ee came to an empirical understanding of ()hmis L aw before he had heard of ( )hm and used his own terminology: "intensit!" for whatge and "quantit" for current. FWe ferms Were adopted by some other and surbicedfor about 30 years

Soon he was asked to make the first industrial clectromagnet. for the Pentield bron Works. The site was later remamed Port flenrs in hom homour. Yake Universits ordered a magne in ESil. a monster weighing neady of pounds and which could lift at ton.

## The first telegraph?

It was whibt he was taching at Albans that Ilenry made what some hate called the firs electromagnetic telegraph and othersthe first electricherl.

Forr a demonstration of the electromagne he vorung nearly a mile of wire around the classroome more than conough to impress any clason hoys. At one cond was a vmatl electromagen which. "hen energized. repulaed it pi-
sebf-mdertion. Some evidence suggess He found thin in ISさり: Farada! announced the effere in 18.3t.

## Princeton

Henry succescivere of course recognised and in Nosember 18.32 he be catme the new Professor of Natural Philosophy at the College of New Jerses , now better known as Princelon University. (One of those who recommended himesimply said. "He has no cyual"
 aminang the discharge from aleden Jar capacitor. By vtudying the wis in Which the diacharge magnetiod seed necdles within wire coils, he correctly deduced them to le ondillators. He then tectered on the brink of one of the greatevisientific dixooseries.

Ha observed that a single spark. about an inch long. in an upper room. catued ancedle loh he magnetied inside a cioled cirexit in the cellar. a perpendicular distance of 30 fect. Ile wrote that he was "disposed to adopt the hypothesis of an electrical plentam. and from the foregoing experiment it would


Henry's reciprocating electromagnetic machine. Iuly 18.31. As the electromagnet rocked. contant was made first with one cell and then the other. calusing at reversall of the polarity of the chectromagnet and perpetuationg the rocking.
voted permatment magenet ot that it struck a 4 mall hell. Sofar als I am aware. there was no suggestion of signatling messages.

Herry vgreatest scientific dincoweries were those of electromagnetic induction and self-induction. both also discowered by Michated Faraldas. Faraday is credited $x$ ith priority for induction and Henst for self-induction. Henrs in lact learned of Faraday work after he had disconered electromagnetic induction himself. hut before he had pubtished anything. When the self-effacing Ifenry did eventually puhlish in 18.32 the final paragraph reveated his discowery of
appear that the transier of a single spark is sufficient 1 d disturb perceptibls the electricit! of vate throughout at least a


The elfect. he vald. Wa allowt comparable "with that of at fint and vect in the abse of tight". A, ()liver longe later commented. "(omparable it is indeed. for we now hom it to be the self semme process".

By 185I Henry could assert that the effect are "heing propagated wate faskion" and "to a surprising distance". ()ne of his students recorded in lstat that -parks produced from "the Electrical Machine in the (ollege llatl" affected the surrounding electricit! "though the whote village".

Other experiments contirm that Henry wa gencrating. propagating and delecting electromagnetic waver and was exolsing a quatitatice theory of the ether. Maxwell $\mathrm{l}_{\text {atter theors of elector }}$
magnetism began with Faradays ideas, but it could equally have begun with Henrys.

Recognition of Henrys achievements suffered hecause he was initially slow to publish his work. Later in his career when he published more quickly he used a joumal respected in America but then less well known in Europe. Consequently Europeans were slow to learn of his discoveries. However, when the henry was suggested as the unit of inductance at the International Congress of Electricians in 1893. it was proposed by a Frenchman and seconded by a Britor.

Electromagnetism, in its widest sense, was not Henry's only interest. At various time he studied astronomy. geophysics, meteorology, anthropology and ethnology. And at the Smithsonian the proved to be an able administrator.

## Joseph Henry: he teetered on the brink of one of the greatest discoveries...

His marriage, to his cousin Harriet, was long and happy and their declining years were enhanced by the care of their three daughters, the only survivors of six children

After almost 50 years of near-perfect health. Henrys final illness made itself known in December 1877. His doctor gave himsix months and he died on May 13. 1878. Friends raised and invested $\$ 40$ (1)0, the income going first to Henry and then his surviving dependants with the capital eventually passing to the National Academy. With such terms, even Henry could not reject it.

When Henry had tried to settle his account with his doctor he was told. "There are no debts for the dean of American science". The old man was moved. "I have always found the world full of kindness to me". he said, "and now here it is again."

## References

1. T. Coulson. "Joseph Henry. His Life and Work." Princeton Universiby Press. 1950. 2. Dictionary of Scientific Biography.

Next in this series of electrical pioneers will be Leen Thérenin.

Tony Arherron is a Principal Lecturer al the IBA Harman Engineering Training College. Semon, Devon.

## Monostable circuit with sinusoidal output

Often a requirement of signal generators for development laboratory use is for a single-cycle sinusoidal waveform output. There are several excellent commercial instruments capable of generating such a waveform but they tend 10 be expensive especially for a "onc off" requirement. Shown here is at simple way of obtaining up to $360^{\circ}$ of sinewave in response io a TTI compatible trigger input.

One half of a 4538 dual monostable IC. wired to trigger on the rising edge of its input, is used to derive a $1 \mu \mathrm{~s}$ reset pulse for the 7 N 435 mati-function data converter. This monostable can be omitted provided a sutable negativegoing pulse is available.

The data converter is configured. using its control logic pins, to count up and stop at full scale, thus providing a ramp output of 2.5 V amplitude and holding this level until receipt of the next reset pulse. Rise-time of the ramp is set by the value of the RC component values of the $Z N 435: C_{1}$ is chosen to suit
and adjustment cant be made using looks potentiometer. The ramp is taken to the positive input of operational amplifier. Amplitude is adjusted. using a $20 k \Omega$ potentioncter. to give 7.2V. This amplified wavetorm is taken to the $\times 1$ input of an AD6.39 universal trigonometric function generator IC whose output is $50^{\circ}$ of sinewave per IV input. You can sees that a 7.2V input will result in one complete $361^{\circ}$ of output.

Note that the operating characteristics of the operational amplifier determine the integrity of the output waveform to quite sonte degree, and so it is advisable to choose a device with low drift. offset and temperature coefficient. Atso a small feedbach capacitor may be desirable to filter out any digital noise from the ZN 435.

Photograph shows typical waveforms: lop trace, the ramp: and below that. the resulting cycle of sinewave T. G. Barnell I ondonEl


## 12-bit analogue-to-digital converter

This simple design is based on a bidirectional ramp counter type of converter and is useful for designs where cost is more important than the stunning results of ready-made packages.

Starting from the front end, the analogue signal comes into the noninverting input of the op-imp. Assume that input stands at IV IDC. At powerup, the $0.01 \mu \mathrm{~F}$ capacitor allows a pulse through to the I OAD point on each of the three counters, loading oot into each. This is transferred to the outputs of the counters and thence through a resistor network acting as a d-to-a converter, converting the counter value back to a voltage. Initially, with the
counter at oonor, this voltage is cero. Which is fed into the inverting input of the op-amp: thus its output is high. which tells the counters to count up.

The three counters are connected so that they eount synchronousty in either direction to reduce any large errors while counting. Hence the countern count up (at a ratce of about $+\mathrm{M} \mid \mathrm{Hz}$ ) until such a point arises that the voltage from the resistor network is slightly above the input volage. This catuses the op-ampto golow. and start the counter counting down again. until it goes below the input voltage and the counter counts up again. and soon.

This smatl ripple is an error of one in
(H) (1) which is quite small and with not be too verious. Only hatf of the +(1) 1 is used in the spuare wase clock: you might like to uee the other half an an added hutfer on the clock output or as a Schmitt trigger on the output of the op-imp.

The most critical part of the design is the resistor network. I suggest you use $1 \%$ tolerance resistors of small minipots and measure accurately their vallees. Which must be in the R-2R ration for it towork correctly, l.ayout is critical only in the clock because of the low value capacitor: keep thone leads as short as powsible.
Darren Yates
Irench's Forest. New South Wales


## ECL-to-TTL converter

To remove the need for a dual supply rail, ECl and TTI. devices are often driven from the same 5 V rail. Where this is the case, it is possible to make a 10K and look-compatible converter with just two transistors.

The Or/Nor gate drives a differential amplifier which provides TTL voltage levels att its output. We have used the circuit at 50 Mllz with no problems although the output should be buffered (c.g. witha $7+1 \mathrm{~F}+4$ ) when driving a long connection or a calpacitive load at high frequencies. It should work with most
smaill-signal $p$-n-p tramsistors and most ECL gates having complementary outputs. When using the complementary outputs of a bistable ic. however, we found that the deviee mishehaved. so this should be avoided.

This eircuit is far cheaper than an equivalent IC (e.g. Brooktree Bt5011 at about $\mathrm{E}_{\mathrm{I}}$ ) when you only need to convert one or two signals.
P.N. Zaruckiand IDr.J.K. Hulbert Electronic Equipments I.d
 Birmingham


## Charger for four dry cells

Benctin of this relatisely simple circuit are that it catl recharge four RG (AA)
 can be accommodated by reducing the value of the IW resistors.
birect-curtent charging of dry cells can callue leakage and explosion due to weam huidd-up. This circuit, which relies on a 50 "." dut! eycle square wave. calues onk stight cell warming over the 12-hour charge. and has not been the catuse of any laakage or exptosions. Charging oceurs during one hatf of the spuare-wate cycte and discharging ocour during the other. This improse charge retention.

Part of the cell woltage is Fed hack 10 the op-impisinverting input. When this tevel reache about $1.6{ }^{\prime}$. the op-amp sutput goes bow and sutput of the second gate connected to it follows it.

Battery woltage drops a litte until the op-amp output returm high, gating the clock back on and again recharging the cell. This produces a flickering effeer
when the eeth hase reathed the sed woltage for both leds.

When moedl is commeted the red led is constanth on. When a cell is charging correctly, the green led fashers and
when the cell is charged. both green and red keds flants: if the keds flash immediately on combection of the cell, the cell is fatulty.
Darren Yater

## Simple but accurate thermometer

Normally, using semiconductors as sensing elements to measure tempera- either ture has the drawback that accuracy is part of a thermostat - is $20 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. The limited by op-amp offset.

In this circuit. offset problems are greater. greatly reduced since the nine silicon Salvador Espin Carreras diodes exhibit a similar characteristic to Balearic Island the transistor $\mathrm{p}-\mathrm{n}$ junction.

Spain


## R.s. LANGREX R.s. SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.
Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers. Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

## LANGREX SUPPLIES LTD

1 Mayo Road, Croydon, Surrey CR0 2QP.
Tel: 01-684 1166
Telex: 946708
Fax: 01-684 3056

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

## R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG.
5 mins. from Tally Ho Corner

## Telephone:

01-445 2713/0749

| HEWLETT PACKARD OSCILLOSCOPE TYPE 1740A |  |
| :---: | :---: |
| CILIOSCOPES |  |
|  |  $\vdots$ |
|  | B4 vhor fummen! it ! |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  | 8, PAR |
|  | 1295 |
|  |  |
|  |  |
|  |  |
|  | 11 |
|  |  |
|  | 53350 300 ed |
|  |  |
| This is a very small sample of stoch SAE or tetephone for LIST of OVER 700 ITEMS Please chech avalability before ordering CARRIAGE all units £:6 VAT to be added to total ol goods and carriage |  |
| STEWART OF READING ${ }^{\text {Tel: } 073468041}$ <br> Fax: 0734351696 110 WYKEHAM ROAD, READING, BERKS RG6 IPL <br> VISA <br> Callers welcome 9am to 5 30pm MON-FRI (UNTIL 8pm THURS) |  |

ENTER 44 ON REPI.Y ('ARD


# Electromagnetic units in chaos 

## Colin White dissipates the confusion that started with Faraday and Ampère and grew ever worse

While discussing the propagation of microwave signals through gyromagnetic media with a group of posigraduate students. I made in unfortunate faux pas. I happened tomention that the gyromagnetic ratio has a value of 2.8 Mliz per ocrsted. "Per what?" they cried. Yet again. engaging mouth before brain. I suggested we had a formm at a later date to discuss electromagnetic units. The lively, albeit sometimes heated, discussions that ensued with my colleagues instigated my own reserarch in an attempt to bring some order to the apparent chaos. The product of my endeavoursare presented in this article.

The importance of this subject becomes apparent when one has to work with EM theory in a practical sense: putting real numbers into well established equations to obtain measurable quantities. We are presently educating a generation of students unfamiliar with older systems of units, although $90 \%$ of scientific library books and acatemic papers they refer to still use the c.g.s. system or some other non-Sl system. The complexities of EM theory are such that conversions between c.g.s. and SI units do not merely involve changes in the exponent of the number and, in some cases, a deep understanding of EM theory is required before conversion is attempted.

There are two major reasons why EM units cause such confusion: one historical, the other contemporary. Firstly. Coulomb in the ISth century independently taid down the laws of electrostatic and magnetostatic theory and it took almost lof years before Faraday and Ampere saw the relationship between the two. This delay allowed two separate and distinct systems of units to be well developed before the need for a
more unified system arose. Secondly. within narrow fields of EM theors. systems of units are "invented" to simplify specific applications of well estabtished equations. This could explain why. in a recent American joursal. magnetic induction was measured in kilolines per square inch!

## The origins

In 1785 Coulomb published a paper describing the laws of electric and magnetic altaaction and repulsion. The secret of his work was the invention of a simple but successful torsion batance which the used with great experimental skill. measuring forces equivatent to $10^{5} \mathrm{~g}$.
Coulomb's Law is of the form

$$
\begin{equation*}
F=C_{c} \frac{\varphi_{1} \varphi_{2}}{r^{2}} \tag{1}
\end{equation*}
$$

Where $F$ is the force between two point changes $\varphi_{1}$ and $\varphi_{2}$ spaced a distance $r$ apart. $C_{c}$ is the constant of proportionality. Now Amperés Law can be writtenas

$$
\begin{equation*}
\frac{\mathrm{dF}}{\mathrm{dz}}=\frac{2 \mathrm{C}_{m} \mathrm{I}_{1} \mathrm{I}_{2}}{\mathrm{r}} \tag{2}
\end{equation*}
$$

Where $\mathrm{dF} / \mathrm{d} z$ is the magnitude of the force per unit kength between two paratled wires separated by a distance r and carrying current $I_{1}$ and $I_{2}$. $C_{m}$ is another constant of proportionality.

Assuming a consistent set of units for equations (1) and (2) and I given by dep/dt, it can be seen that the ratio of Ca/C 10 has the dimensions of (speed) ${ }^{2}$ and. experimentally, this ratio has been proved to be numerically equat to the (speed of light) ${ }^{-}$in free space.

$$
\begin{equation*}
\frac{\mathrm{C}_{c}}{\mathrm{Cm}}=\mathrm{c}^{2} . \tag{3}
\end{equation*}
$$

> ". . .in a recent American journal, magnetic induction was measured in kilolines per square inch!’"

However we juggle the values of C: and $C_{m}$. equation (3) must always hold for free space. No experiment has yet been devised by which the dimensions of $\mathrm{C}_{\mathrm{c}}$ or $\mathrm{C}_{\mathrm{m}}$ can be obtained as independent physical entities. It is therefore logical that either the unit of charge. or the unit of current must be specified as a fundamental unit together with the units of mass, Rength and time. Historically, however. C $C_{6}$ and $C_{m}$ have been chosen as independent. dimensionless. absolute units.

## Electrostatic and electromagnetic systems

Both the electrostatic and electromagnetic systems were based on the c.g.s. system of units and, although they used the proportionality constants of equations (1) and (2) as absolute units. theywere popular well into the 1941).

The electrostatic units used Coulombs Law as a fundamental result and hence $C_{6}$ was chosen to be dimensionless and numericatly equal to unity. $C_{m}$ was taken ats $1 /{ }^{2}$ (and took on the appropriate dimensions) and equations. (1) and (2) became

$$
\begin{equation*}
\mathrm{F}=\frac{\mathrm{y}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}} \quad \frac{\mathrm{dF}}{\mathrm{dz}}=\frac{21_{1} 1_{2}}{\mathrm{c}^{2} \mathrm{r}} \tag{t}
\end{equation*}
$$

The unit of charge in this system does not regure definition and takes on the dimensions（mass）${ }^{\prime 2}$ ，（lengh $)^{22}$ ． $(\text { time })^{-1}$ ．

The resulting unit of charge became known as the＇franklin＇or simply 1 c．s．u：in fact there was a penchant for referring to all the units in the system as e．s．us．As ever．this would not have created any problems for experienced scientist，hut students must have found the system most confusing．

Sometime later，the e．s．u．took on names such as statcoutomb，statamp． statvolt．statfarad and statohm－all derived from the standard equations in c．ges and using $C_{0}=1$ and $C_{m}=1 / \mathrm{c}^{2} \mathrm{~s}^{2}$ $\mathrm{cm}^{-2}$ ．The essu．magnetic units were derived through Faraday＂s Law $\Gamma \times E=$ －a B／at．As an alternative there was the electromagnetic system．Here $\mathrm{C}_{\mathrm{m}}=1$ and（ca beame $1 / \mathbf{c}^{2}$ ．Hence equations （1）and（2）became

$$
\begin{equation*}
\mathrm{F}=\frac{\mathrm{c}^{2} \mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}} \quad \frac{\mathrm{dr}}{\mathrm{dz}}=\frac{2 I_{1} I_{2}}{\mathrm{r}} \tag{5}
\end{equation*}
$$

The abhreviation e．m．u．was used for most of these units，athough again the names were later changed to abam－ peres．abcoulombs，abfarads ete．By comparing（t）with（5）．we see im－ mediately one important conversion factor： 1 statamp $=3 \times 10^{14}$ ahamps．

## The Gaussian system

Historically，c．s．u．was used for elec－ trostatic problems and e．m．u．for mag－ netostatic problems．It seems natural that a hybrid system using essu．for electrical quantities and e．m．u．for magnetic guantities should develop． This became known as the（baussian system．The point of contad between the two systems was the current density． I，such that

$$
\begin{equation*}
J_{\mathrm{c} \cdot \mathrm{mu}}=\frac{\mathrm{J}_{\mathrm{c}} \mathrm{c} \mid \mathrm{u}}{\mathrm{c}} \tag{6}
\end{equation*}
$$

Incidentally．just to confuse the issue． eguation（3）did not hold．Maxwell： equations were written in the form

The fied vectors were related by

$$
\mathrm{D}=\mathrm{E}+4 \pi \mathrm{P} \quad \mathrm{H}=\mathrm{B}-4 \pi \mathrm{M} .
$$

Also

$$
\begin{gathered}
\mathrm{I}=\epsilon \mathrm{L} . \mathrm{B}=\mu \mathrm{H} . \mathrm{J}=\mathrm{r} \mathrm{E} \cdot \mathrm{P}=\chi_{\cdot} \mathrm{I}: \\
M=\chi_{m} I \mathrm{I}
\end{gathered}
$$

| Quantity | MKSA | Gaussian |
| :---: | :---: | :---: |
| Capacitance | c | $4 \pi \epsilon_{0} C$ |
| Charge | ， | $\left(4 \pi \varepsilon_{0}\right)^{1 / 2}{ }^{\text {a }}$ |
| Charge density | pr．（rs．A） | $\left(4 \pi \epsilon_{0}\right)^{12} p_{0}(r, \lambda)$ |
| Conductivity | It | $4 \pi 0_{0} 0^{15}$ |
| Current | 1 | $\left(4 \pi \epsilon_{0}\right)^{1)^{2}}$ |
| Current density | J．（K） | $\left(4 \pi \epsilon_{0}\right)^{1 / 2} \mathrm{~J},(\mathrm{~K})$ |
| Dielectric constant | ${ }_{\mathrm{F}}$ 。 |  |
| Dipole moment（electric） | p | $\left(4 \pi \epsilon_{0}\right)^{1 / 2} \mathrm{p}$ |
| Dipole moment（magnetic） | m | $\left(4 \pi / \mu_{0}\right)^{1 / 2} \mathrm{~m}$ |
| Displacement | D | $\left(\epsilon_{0} / 4 \pi\right)^{1 / 2} \mathrm{D}$ |
| Electric field | E | $\left(4 T \epsilon_{0}\right)^{12} E$ |
| Inductance | 1 | $\left(4 \pi \epsilon_{0}\right)^{1} L$ |
| Magnetic field | H | $\left(4 \mu_{0}\right)^{1 / 2} \mathrm{H}$ |
| Magnetic flux | 小 | $\left(\mu_{0} / 4 \pi\right)^{1 / 2} \phi$ |
| Magnetic induction | B | $\left(\mu_{0} / 4 \pi\right)^{1 / 2} \mathrm{~B}$ |
| Magnetization | M | $\left(4 \pi / \mu_{0}\right)^{1 / 2} \mathrm{M}$ |
| Permeability | $\mu$ | （1）$\kappa_{m} \mu_{0}$ ，then <br> （2）$\kappa_{m} \rightarrow \mu$ |
| Permeability（relative） | $\kappa_{\text {m }}$ |  |
| Permittivity | ${ }^{\text {f }}$ | （1） $\mathrm{K}_{\mathrm{o}} \epsilon_{0}$ then <br> （2）$\kappa, \rightarrow \epsilon$ |
| Polarization | P | （4 ato $_{0}{ }^{1 / 2} \mathrm{P}$ |
| Resistance | $R$ | $(4-t,)^{1} R$ |
| Resistivity | $p$ | （4 $\pi=0)^{1}$ |
| Scalar potential | 中 | $\left(4 \pi \epsilon_{0}\right)^{1 / 2}{ }^{\text {d }}$ |
| Speed of light | $\left(\mu_{0} \epsilon_{0}\right)^{1 / 2}$ |  |
| Susceptibility | $x \in$（ x m） | $4 \lambda^{\text {ene．}}$（ $\mathrm{xm}_{\text {m }}$ ） |
| Vector potential | A | $\left(\mu_{0} / 4 \pi\right)^{12} \mathrm{~A}$ |

Although in a vacum．of course． 1 ）$=\mathbf{I}$ and $B=I I$
It is interesting that I，D，B ，H，Pand $M$ all had the same dimensions． although some were given different unit names．The magnetic unit for B was the gatuss and for H and M ．the oersted． Two worls of warning here．Firclly，the conversion factors for H and M from the Gaussian system to the SI system （ampere／meire）are different（see fable 2）．Secondly，it is madness to name a unit after anyone whose name begins with O！（no disrespect intended）．I shudder to imagine how mant times answers have been in error by afactor of 10 and possibty the units changed to that of electron charge ee（the abbreviation for oersted being（Oe）．

There are two further variants on the Gaussian system．The＇modified＇（Gaus－ sian system measures charge in stat－ coulombe and current in ahamps：other－ wise the system is identical．This is easily incorporated within the equations hy replacing alt the current terms bye times the term．Only one of Maxwells： equations is changed．Amperecis aw in now writter as

$$
\begin{equation*}
\operatorname{curl} H=4 \pi l+\frac{1 a D}{c a l} \tag{10}
\end{equation*}
$$

The Heaviside－Lorente shatem is simply a rationalized（atussian system． In this．all the $(4 \pi)$ appearmg in the equations．are made equal to unity．so $\operatorname{div} \mathrm{D}=\mathrm{p}$ and

$$
\text { curl } H=J+\frac{1 \Delta \|}{c a t}
$$

Our present Sl system is rationalized． which is finc for equation manipulation but dangerous when results are ex－ pected from the equations．If a particu－ lar author does not explicitly state the unit system，it in wise to look at the form of sonte familiar equations and hence deduce the intended units．

## The SI system

The Systeme International d＇Unites for electromagnetism is the rationalized MKSA system，which is hased on four arhitrarily chosen and defined quanti－ ties－the metre，kitogram，second and ampere．Of course $\mu_{1}$ and $\epsilon_{0}$ now have both values（other than unity）and dimensions．

$$
\mu_{0}=4 \pi \times 10^{-7} \text { henrys/m }
$$

（exact by defintition）

$$
\boldsymbol{\epsilon}_{1 .}=8.85+19 \times 10^{-12} \text { farad. } / \mathrm{m}
$$

（experimentally measured quantity） and equation（3）is obeyed．

There are nomally two typer of prob－ Jem associated with unit conversion． The first，and most complex．is the transformation of expressions given in one system of units to another system． The second is in converting mumerical values of physical quantities from one system toanother．

## Converting the form of expressions

Table I provides a means of conserting from the Gaussian system to the St system，and vice versa．Conversion toor from the other systems previously men－ toned is a trivial exercise and has been explatined in the preceding sections．To perform the contersion，one replaces the symbel in the columal labelled by the system in which the fermula is written by the symbol or combination lived for the other system．Mechanical quantities （length，mass time，force，work，ener－ gy．poneretc．）remain unchanged．

As an example．Fet us tramsform the Gamsian expression of Maxwellisequa－ tion

$$
\operatorname{curll}=\frac{4 \pi J}{c}+\frac{\operatorname{lin})}{c \cdot a}
$$

From Table 1．we ohtain

$$
\begin{aligned}
& \operatorname{Curl}\left|+\pi \mu_{01}\right|^{\prime}=H=\frac{4 \pi\left|+\pi \epsilon_{01}\right|^{\prime} \geq}{\left(\mu_{10}, \epsilon_{0}\right)^{-1 / 2}} . J \\
& \left.+\frac{1}{\left(\mu_{c} \epsilon_{0}\right)^{-1 / 2}} \cdot \frac{\partial}{i t}\left|\epsilon_{1} / 4 \pi\right|^{\prime}=1\right) .
\end{aligned}
$$

which reduces to the familiar St form of Maxuellsequation

$$
\operatorname{curl} \mathrm{H}=\mathrm{J}+\frac{\partial \mathrm{I})}{\partial t}
$$

Tiable 2 includes most of the common quantities which maty require conversion. The MKSA and Caussian columms. represent equal amounts of each quantiIy, so a magnetic field of 0.25 ()e $\equiv$ $0.25 / 4 \pi \times 10^{-3} \mathrm{~A} / \mathrm{m}=20 \mathrm{~A} / \mathrm{m}$ 。

## But beware!

As with all rules there are the exceptions. mainly due to the possibilities for baziness inherent in the Gaussian system.

Firstly. when converting the form of a Galussian equation for a wave in " vacumm, since D$)=\mathrm{E}$ and $\mathrm{B}=\mathrm{H}$, the symbols tend to be used interchangeably. The problem arises since the conversion factors for $D$ and $E$. and $B$ and 11 are different

## "...the characteristic impedance of free space is equal to 1 asylohm.

Secondly, when considering fields within a magnetized medium. in the Gatussian system, the equation

$$
\begin{equation*}
B=H+4 \pi M \tag{11}
\end{equation*}
$$

holds. Athough H and M were meat sured in oersteds and 13 in gauss. dimensionatly the equation wats correct. Using Table I to convert thisto Sl we obtain

$$
\begin{equation*}
B=\mu_{1,}(H+M) \tag{12}
\end{equation*}
$$

where B is measured in teslas. H and M in amperes/metre. In many recenty published and well respected text books using SI units. I have seen M measured in teslas. This is cether a total error and the author meant ampere/metre or, as is more often the case, (12) has been written in the form

$$
\begin{equation*}
\mathrm{B}=\mu_{0}, \mathrm{I}+\mathrm{M} \tag{13}
\end{equation*}
$$

Although (1.3) is strictly in error, (neither conforming to SI nor BS 1991 standards) its use is to some extent understandable, since both B and M are measurable. H, on the other hand, can only be calculated.

Let us return to that first fateful statement - ". . the gyromagnetic ratio has a value of 1 . in Ml izper oersted." We now know of course that I meant to say 28 (illztesla (using Table 2). The defining relation comes from the expression for the resonatht frequency in a gyromagnetic material (e.g. ferrite), universallygiven by

$$
\omega=\gamma \|
$$

Where $\omega$ is the radial frequency of

TABLE 2 Used to convert actual numerical values.

| Quantity | MKSA | Gaussian |
| :---: | :---: | :---: |
| Length | 1 metre (m) | $10^{2}$ centimetres (cm) |
| Mass | 1 kilogram | $10^{3} \mathrm{grams}$ |
| Time | 1 second | 1 second |
| Force | 1 newton | $10^{5}$ dynes |
| Work, energy | 1 joule | $10^{7}$ ergs |
| Power | 1 watt | $10^{7} \mathrm{ergs} / \mathrm{second}$ |
| Capacitance (C) | 1 farad | $9 \times 10^{11}$ statfarads |
| Charge (q) | 1 coulomb | $3 \times 10^{9}$ statcoulombs |
| Charge density (1) | 1 coulomb/m ${ }^{3}$ | $3 \times 10^{3}$ statcoulomb/ $\mathrm{cm}^{3}$ |
| Conductivity (ir) | 1 (ohm-m) ${ }^{1}$ | $9 \times 10^{9}(\text { statohm }-\mathrm{cm})^{-1}$ |
| Current (I) | 1 ampere | $\begin{aligned} & 3 \times 10^{9} \text { statamperes } \\ & =10^{1} \text { abamperes } \end{aligned}$ |
| Current density (J) | 1 ampere/m $\mathrm{m}^{2}$ | $3 \times 10^{5}$ statampere $/ \mathrm{cm}^{2}$ |
| Displacement (D) | 1 coulomb/m ${ }^{2}$ | $12 \pi \times 10^{5}$ statvolt $/ \mathrm{cm}$ |
| Electric field (E) | 1 volt/m | $1 / 3 \times 10^{4}$ statuolt/ cm |
| Inductance (L) | 1 henry | $1 / 9 \times 10^{11}$ stathenrys |
| Magnetic field (H) | 1 ampere/m | $4 \pi \times 10^{-3}$ oersted |
| Magnetic flux ( $\Phi$ ) | 1 weber | $10^{8}$ maxwells |
| Magnetic induction (B) | 1 weber/ $\mathrm{m}^{2}=1$ tesla | $10^{4}$ gauss |
| Magnetization (M) | 1 ampere/m | $10^{-3}$ oersted |
| Polarization ( $\overline{\text { P }}$ ) | 1 coulomb/ $\mathrm{m}^{2}$ | $3 \times 10^{5}$ statvolt $/ \mathrm{cm}$ |
| Potential (\$) | 1 volt | $1 / 300$ statvolt |
| Resistance (R) | 1 ohm | 1/9 $\times 10^{11}$ statohms |

resonance. $H$ is the applied fied, and $\gamma$ is the dreaded gyromagnetic ratio. Already we see the units are not consistent. In fact. II is usually applied by ant external magnet so we ought to specify (14) in terms of the measurable quantity, flux density:

$$
\begin{equation*}
\omega=\frac{\gamma \mid 3}{\mu_{0}} . \tag{15}
\end{equation*}
$$

Furthermore, $w$ is specified as frequency rather than angular frequency. Eyuation (14) shoukl be quoted as

$$
\begin{equation*}
\mathrm{f}=\frac{\gamma}{2 \pi \mu_{\mathrm{o}}}, \mathrm{~B} \tag{16}
\end{equation*}
$$

It is $\gamma / 2 \pi \mu_{0}$, which is strictly the gyromagnetic ratio and specified an 28 (Ghz/ testa. I have yet to see (16) written correctly in any of the literature.

## And finally...

There is no doubt that the system of electromagnetic units has been. and to some extent still is a mess.
In an effort to put things in perspective I will briefly describe two systems of units used by practitioners from other fields of knowledge. Firstly, a system regularly used by Quantum Mechanies. The system is based on the MKSA
> "There is no doubt that the system of electromagnetic units has been, and to some extent still is, a mess.
system of SI with the exception of the unit of length. This is given a variety of names (including none at all) and is equal to $2.99792458 \times 10^{\circ}$ metres. Let us call this unit of length the asyl. The velocity of light then equals 1 asyl/s. Both $\mu_{1}$, and $\epsilon_{1}$, can legitimately be made equal to 1 (unlike the Gaussian system which cheats! ), the phase constant of a wave in free space is simply equal to the radial frequency $\omega$, (from $\beta=\omega \vee \mu_{0} \epsilon_{0}$ ) and the characteristic impedance of free space. given by the expression

$$
Z_{0}=\sqrt{\frac{\bar{\mu}_{4}}{\epsilon_{0}}} \text { is equal to l asyl ohm!... }
$$

## (think about it).

The other system of units is often used by timber merchants. Forced with the necessity of "going metric", yet still dealing with customers reared on yards. feet and inches, and unwilling to change the habit of a lifetime. they compromised and invented the metric foot! This is precisely 0.3 m or, very nearly I foot... hut not guite. So if you happen to be in a timber merchants and order an 6 foot length of wood, you are absolutely guaranted to receive at least 1.8 m , or just a touch under $5 \mathrm{ft} \mathrm{|\mid} \mathrm{in}$. we vegot problems!

## References

1. R.K. Wangsaness. Electromagnestic Fields. 2nd. ed.. Ch.23. Wiles. 1986.
2. A. I. Baden Fibler. Units of Magnetisation. HE: PRO(.. vol. I29. pt. A No 3. p. 203. May. 1982.
3. I.. J. (iataletto. Standardized use of Sl Magnetic Units. IERE: Trans. MAC-IO. pp. 1134-1135.1974.
4. J. A. Stratton, Filectromannetic Theory, McGraw-ltill. $19+1$.
5. P. Silvester, "Modern I:lectromagnetic Ficlds". Prentice-Hall. 190

## THE ORIGINAL SURPLUS WONDERLAND!

## SPECIAL PURCHASE <br> V22 1200 baud modems

We got a tremendous buy on futher stocks of tils popula 1200 baud modem - we can now bring them to you at haty lee edverteed pricel Fully BT epprowed unit, provides standard v22 High speed data comm, which at 120 cps can save you phone bill and connect tme by a staggening $75 \%$ Ultra sim 45 $\mathrm{mm} h i g h$. Full teatured whth LED status Indicators and remote error dagnostics. Sync or Async use; speech or data swiching builh in 240v mains supply and 2 wre connection to BT. Units are in used but good condition. Fully tested prior despatch, with data and a full 90 day guarantee. What more can you ask for
and at thls pricell
ONLY C 69 (D) and al this proell

## MONITORS

## COLOUR MONITORS

Decca $16^{\prime \prime} 80$ serles budgat range colour monitors. Features

FLOPPY DISK DRIVES
 colour moritiors costing 3 times our pricel in/s absolutity ready
 luly fested sumplus, sold

## Decca 80 R <br> Interface elc Decca 80 C

Decca 80 COMPO 75 ohm composite video Inout with integral audio amp ${ }^{8}$ speaker. Ideal for use with vid
Telebox ST, of any other audio visual use.

Any type only $\mathbf{8 9 9 . 0 0}$ (E)
HI-DEFINITION COLOUR MONITORS
Brand new Centronic 14" monlor for BM PC and compatble at a lower than ever pricel Complelely CGA equlvalent. He-res
Mitsubushl 0.42 dot pitch giving $669 \times 507$ pixels. Big 28 Mhr bandwith. A super monitorin attractive stylemols. Big 28 Mhz 90 day guarantee. Only E149 (E)
$20^{\prime \prime}, 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS
Superby made UK manufacture. PIL all sold state colour montors, complete with composite video \& sound inputs. Attract-

WRITE FOR OUR EIGHT WEEKLY BARGAIN SHEET \& GET ON OUR MAILING LIST FREE!

Very high resolution, fully cased, $14^{\prime \prime}$ green or amber screen montor with ron-glare screen \& swiveliti base. The very batoest technology at the very low est pricel fully compatible PC type input to plug direct to HEFCULES carc outputs, enabling supert graphics and resolution at give away pricesll the many
faatures include aux +5 \& 12v DC output's to power at least 2 disk drivers or other equipment. Supplied BRAND NEW \& Boxed. Amber screen

BARGAINS GALORE!

## NEW $51 / 4$ inch from $£ 29.95$

 Masslve purchases of stanclard $51 /{ }^{\text {a }}$ drves enabies us to unioss stafec) Ere removed from often brand new equipment and are futy lested, allgned and shlpped to you with aguaramee and operate from $+58+2$ 2voc, ere of stand and accept the standard 34 way connector. 3HUGAT SA TANDON TMTOO-2A IBM compatble DS

CANON, TEC etc. DS hall helght. State 40 or 801 AC FD. 55 F. 40 -80 DS hall helgm. BRAND NEW 509.00 (B
$31 / 2$ INCH BRAND NEW AT $£ 19.95$ !!
 Nob by Canon. Brand new and packagod. mim condillonl 40 tor....Ony.
..... E19.95 or 2 for $£ 3,50, \mathrm{~B})$ CHOOSE YOUR 8 INCH Shuger $800 \% 501$ SS refurbished 8 tested Shugert 851 double sided refirbished 8 lested Hhmbish Mzaet Selors brand new

## SPECIAL OFFERS!!

ANPSU. 220-240vac input and are BRAND NEW unloas Bron hperanging wom 3v to IOrv away in stock Bye Bos01 5vdc @1.6a. 12vodc © 1.5a. Perlect for disk drives,
ath bult in po
Only $£ 499.00$ (F
End of ilne purchase scoopl Brand new NEC $022468^{\circ} 85$ megabyte of hard disk sloragel Full CPU control and Industy standard SMD Imenace. Ultra til speed transler and access time

Pleese epecity 110 or 240 volte for AC fans

## THIS MONTH'S SPECIAL!

## E29.95 (B

C20.95 (B
E30.95(B)
875.00 B
$8125.00(\mathrm{E})$ ع195.00(E)
ع250.00(E)
eaves the good old ST506 Intertace standing. In mirt condition

COOLING FANS
£399(E)

## anter.


$k$ standing Fully cased as above in attractive moulded desk standing
swivel. Dim $12 \times 14.5 \times 26 \mathrm{~cm}$.
c30.001C JVC 751 ultra compact chassis monitor for 12 vdc 0.7 a . Dim 11 video input. Full data. BRAND NEW $20^{-}$Bleck \& white monltors by Aztek. Cotron \& Natlonal. Al 20 Bieck \& white monitors by Aztek. Cotron a National. Al applications. Standard composite video liputs with Integral 6 volte audio amp and speaker. Sold in good used conditlon- hilly tested with 90 day guarantee.

## IBM KEYBOARD DEAL

A replacamen or backup keyboard for HBM PC. PC-XT PC.AT, allin onel It has a swich on the rear to convert betwen modelsI LED Indicators for Caps, Scroil \& Num Locks. Standard 10 functionkers plus 56 on the maln bank and 19 on the keypad, 85 in all. Made by NCP for the Engllsh 8 US markets. Absolutely standard. Brand new \& boxed with manual and key template lor user slogans on the function keys. Attractive belge,grey and cream flinish, with the usual retractable legs undemeath. generous length of curly cord, terminating in the standard 5 pin a doal
BRAND NEW AND BOXED ONLY...
E59 (B)

## COMPUTER SYSTEMS

TATUNG PC2000. Big brother of the famous Einstetn. The
TPC2000 Prolessional 3 plece system comprises: Oually high IPC2000 Prolessional 3 plece system comprises: Cuallty high pllmh unit contalning Z80A CPU and ali controt circults. PL US 2 infegral TEAC 5.2580 track double sided disk drlves. Generous other leatures indude dual $8^{\circ}$ IBM format disk drtve support. Serlal and paralled outputs, full expansion port, 64K ram and neady to run sottware. Supplied complete with CPM, Wordstar and Basic. Brand new and covered by our famous 90 day guarantoe and backup. Normal price of this unt is over $£$
Our Price ...only........ 299 (E)

3 Inch
$31 / 2$ Inch
4 inch
4 inch
4 linch
10 linch 62 mm 92 mm
41 nch
44 inch

## ONLY £69.00 EACH (E)

AC. $112^{\circ}$ thick AC $110240 \mathrm{~V} 1 \mathrm{lv} 2^{\circ}$ thick AC $11 / 2$ " $^{\text {thlok }}$
Round $31 / 2$ thick. Rotron 110 v DC 1 theck. No. 812 for 6/12v. 81424 v . DC 12v. 19 mm theck.
RECHARGEABLE BATTERIES

## LEAD ACID Maintenance free seaied long itfe, all type A300.

Molto
12 volts 3 amphours
$6-0.6$ volt
12 volt
Cantre tapoed 1.8 amp hours
12 volts 24 amip hours. A200. RFE
SPECIAL OFFER!
100 emphourn 16 tht
3VE11. Leakprool with adotitonal snap-con securlyy lio. Perifect or unimerytiable po wer supopies, portabie power source

NICKEL CADMIUM
ideo comparty Coptalns 10 GE top qually D Technicololor mart robust case wth a DC cutput connector theal cells in quipment. Brandnew.
E equipment NICAD cells by GE Removed $\quad$ E19.95(B)
and In good, used condilion: D size 4ah
c size 4ah
size 7ah
SPECIAL INTERISST
4 for $C 5(B)$
6 for $E 8(B)$
6 for Es(B)
$\qquad$
\& $8.50(\mathrm{~B})$

| \& $8.50(8)$ |
| :--- |
| 9.95 |

Recat-Redec real tme colour dralting PCB layout system. In cludes furniture and huge monior. Compele ready to got E3950 DEC V nexil/750inc.
arge Calcomp plotter
ektronis RMS20 Wavel orm Monllor 1.5kw 115 v 60 hz power souroe
ad time freq res analyser Tektrontes R140 NTSC TV test Brigge arnonice RI 4 NTSC TV test signal standard DECLS11/02 CPU board

Converts your colour monitor into a QUALITY COLOUR TV!!

Tilisoriz
V SOUND
$\&$ VIDEO
TUNER!

Brand new high qually, fully cased, 7 channel UHF PAL TV Iuner system. Unit simply connects to your TV aerlal socket and colour indeo mondtor turning same imto a fabulous colour TV. Dont worty I your monitor does th have sound, the TELEBOX even has an
integrad audio amp for dilving a speaker plus an auxillary outoul Integra audio amp for diving a speaker pius an auxillary outpul
for Headphones or Hi F system eic. Many other leatures: LED Status Indicator, Smant moulded case, Mains powered, Bullt to BS salety specs. Many other uses for TV sound or video eic. Suppried BRAND NEW with full 1 year guarantee
Teteson ST tor composite video Inpul monitors........ $\quad \mathbf{C 2} 9.95(\mathrm{~B})$ Teleoon RGB for analogue RGB monitors...

ع34.95(B)
$\mathrm{C} 59.85(\mathrm{~B})$


#### Abstract

NOT sultable for IBM done type colour monitors.

\section*{BRAND NEW PRINTERS}

Epson MX-80 FTT One of the most popular printers aroundi Bi-drectional printing with full logic seeking. $9 \times 9$ dot matrix for label removed from from. Handes tractor, fanfoid and Individual paper. OK with IBM PC and most others. A tremendous buyl

E 129.00 ( Z Hezeltine Exprint small deskiop. 100 cps with RS232 and tandard parallet. Full pln addressabie and 6 user selectable lonts. Up to $9.5^{\prime}$ paper. Sheet 8 tractor leed. E149.00(E) Centronics 50 senes. Aw ays known tor (heir rellabily in conwith 4 use - real workhorses In any environment. Fast 150 ops 50 SN us and chotce of mertaces. 150-SN up to $9.5^{\circ}$ paper... 150-SW up to $14.5^{\circ}$ paper. E155.00(E)


Specity whether sental or parallel required.
CALL FOR THE MANY OTHERS IN STOCK INCLUDING DAISY WHEELS.


णேடி
-Electronics-


> ALL ENOUIRIES 01-679-4414 Fex-01-679-1927 Tolex 894502

## Broadcast satellite links improved

Recent developments in ()B satellite links include the adoption by BBC Radio of the DSI/OPSK system for its new Ol3 links: work by the IBA to reduce the falure threshold of digital sound-in-syncs to enable a link system to take advantage of the improved video performance of its FM enhanced threshold-extension system: and trials by the (ierman P'ost Office Reseatch Institute (1)|BP/F-TC) showing that multiplexed $6+$ Kbits data channels caln be carried on 1)SI satellite channels with bit error ratesbetter than I in 10'

DSI is part of the digital satellite radio broadeasting system developed a few years ago in (iermany to permit 16 high-quality digital stereo chamels to be carried on a DBS satellite tramsponder. Originally it was intended for use on the ill-fated German TV-Sat that failedon launch in late 1987

At Kingswood W'arren, BBCC engineers. with the co-operation of the F:BU, IRT and TIDF, carried out comparisons between the MVS620/FM transmission system (the first system to be proposed as a potential 1:BU' standard for such applications) and the DSI/QPSK system. 'This led the BBC' to choose the latter system for its new radio OB links with modems conforming to the American IBS/SMS SCP( (single carrier per chamnel) modems. For DSI, a Rohde \& Schwarz audio codec samples the programme signal at $32 k 12$ to 16 -bit accuracy and then compresses it to lt bits. a scale fater being added to idemify the degree of compression of each group of of samples. This results in a loz $12+k b i /$ data signal

Block diagram of a satellite link suitable for carrying digital audio signals.

The modulator adds $1: 2$ forward error correction to produce a $2048 \mathrm{kbit} / \mathrm{s}$ data signal. The Hughes QPSK modem modulates this signal on to a $70 \mathrm{MI} \%$ carrier. The 2048kbit/s signal is sometimes termed DS2. The channel arrangement for ElBU-leased transponders may be changed to permit each transponder to carry two television signals (video and sound) plas one digital stereo radio channel using IDSI/OPSK although the final configuration has not yet been decided.

The very strong error correction applied to digital sound radio (DSR) transmissions has been shown by $\mathrm{FF} / \mathrm{l}$ (EBU Review - Technicul, IEbruary 1989) to be well suited to data transmission of 22 (plas three) multiplexed 6+khit/s data channels over a single DSI stereo chamel. The scale factor generation sub-system and the error concealment in the DSR multiplexer must be disabled when transmitting data: however, special hardware for the $1 * T / 2$ experiments was restricted to a seriat/ paralled converter with delay compensaltion at the sending end. and a buit to convert the data bursts at the receiver output to a continuous data stream. With the BCII code used. a bit-error ratio of about $10^{-7}$ can be achieved wh a carrier-to-noise ratio ( ${ }^{\circ} \mathrm{NR}$ ) of 10 dl 3 meansured in a bandwidth of 27 MH . The receiving amtenna dish can be as smalla 2 m in diameter.

Since 1987. ITN has been making use of the $13 \Lambda$-developed enhanced threshold-extension system suitable for viden signals and using a line-store "predictor" (now being manufactured under licence by Multipoint Communications as the Mlf(O) in conjunction with an analogue sound subcarrier. Athough this system has prowed very
attractive the presence of a largeamplitude sound subcarrier inevitably catuses some (slight) degradation to the vision threshold. The IBA hats therefore been investigating alternative systems.

To improve the audio SNR all low (NR, it is desirable to use the digital sound-in-synce (SIS) system. The probtem then is to guarantee a safe fade margin when using SIS for low-power operathons. IBA investigations reported recently at the ILEE by Briatm Beedh show that. under normal circumstances, using a limiter discriminator demodulator. SIS failure occurs at about |ldl3 ('NR. which would be unacceptable for low-power SN(; links. The failure point can be reduced to 7 dB by (a) reducing the amplitude of the SIS waveform from 700 mV (1) 300 mV mk pk: (b) using an enhanced threshotd extension demodulator at the receive terminal: and (c) fitting an improved syne detector to the SIS decoder. The reduction to 300 mV does not matarially affect performance of receivers not eguipped with enhanced threshold detectors (i.e. fallure at about 11 dll ( NR ).

Brian Beech pointed out that it would be theoretically possible to reduce the SIS failure point to ddB (5dB has been demonstrated) by reducing the SIS amplitude to 100 mV pk-pk. but this would reguire a total redesign of the SIS decoders. IBA are therefore proposing $100 \mathrm{~m} V^{\prime}$ SIS as a standard for low-power satellite transmission.

Broadeasting is wrimen by Pal llawker.


## European SNG: costly for TV, cheap for radio

An IEIE colloquium "()utside Broadcast \& Satellites" underlined the regulattory difficulties and "extraordinarily high costs" that need to be overcome if full advantage is ever to be taken in Europe of the potential adiantages of satellite news gathering ( $\$ N(i)$ for television. But it became clear that the present problems are primarily manmade rather than imposed by the state of the technology. Fortunately they apply to a far lesser extent to the introduction by BBC Radion of its new mobile satellite link which can transmit digital stereo signals (DS-1 coding) from remote vites to Broadeasting House. London via the EBO-feased tramsponder on Eutelsat 1-F2. This equipment includes a 3010W Ku-band up-link tramsmitter and 1.9 -metre dish supplied by Advent Communications I.td.

The BBC Radio ()B © cyuipment can be damported by air or road in the "flyaway" mode packed in portable cases. but is normatly tramported and operated inside the OB vehick which has been fitted with two simple stabilizers. The unit was first used operationalIy from Stroud. (iloucestershire on Junc $f$ and from (ilyndebourne on June 15. and is being used this summer for the Radio I Roadshow programmes fixe davs a week from a sariet! of British coastal resorts.

The key to the viathility of sate llite (OB links for relatively kow-hudget radio. while prowing so cosily for television news gathering is clearly the use of the B13C"s awn min recive-terminal, the use of all IEBUU-leased transponder rather than beokings on the matin communications satellites of the international telecommuntications carriers. and the ability to apply for site clearance (freguency co-ordination) for she duted programmers well in advance.

None of these condition applice 10 the ITN SNG operations. ITN pioneered in Europe the use of satellite links when. on September 25, 1978, a news bulletin was transmitted from IBC78 at Wembley using the IBAS tramsportable satellite terminal. In 1085 it acepuired a (il: (-McMichate "Newshawk" flyawatorminal

At the IIE colloyuium. Mike Newston and Trewor Das iew emphasiaded that the ITN's experience had been generalIy disappointing awing to the difficulty of obtaining rapid appootal of vites on


BBC Radio's new tramsportahle satellite dish makes it possible to relay events in stereo from sites far from the L $\boldsymbol{k}$ 's main telecommunications trunks, where stereo links are not easily oltainable. Signals are downlinked to Broadeasting House.
enable its terminal to be used at major hard-news locations which could not be foreseen in advance and the extremely high conts incurred in using the space segment and in receiving signals through the large 139 Earth stations remote from London. (ints are also purbed up by the insistence by 13T and European P'IT「 administrations that one of the or own engineers shomald always be at the uplink terminal.

Sitellite news gathering is alan proving difficult to "sell" to newsrooms. It is enpopular with television reporters. partly beatuse the high cost mean that space bookings are often limited to 15 minutes. making it imposible to send back 10 London a preliminar! report-

Trevor Davies noted that although the hasie weight of the Newhawk terminal is ronghly 3nokg. the addition of communications and baseband expipment. emergeney generators and a spare high-power-amplifier (IIPA) brings the weight to ahout Istokg which. in the flyaway mode, hats to be carricd in about is boxes. This load has frepuently been flown as exces baggage or by cargo, the main difficult! being transpont from the airport tosite

Mike Newston (ITN) ywertioned Whether, with the development of detachathe petal-type and folding anternnas. the time hats come to think kern of unge the smaltest possible dish antenna and rather more of larger (erected on site) antennas that wouda permit the use of much lower-power up-link tramsmitters. These might be operated, if ont for a short time. from batteries. John

Rogers (Multipoint ( (ommunications) noted that wold-state amplifier were still limited to about 10 -2 11 watts output. raguiring the use of at leant a 4.5 m dish

But the meeting emphasiaed that the major drawback for hard-news SN(; is the delay involved in obtaining freguenev co-ordination charance for a site when a major newsstory breaks without warning. Ron Bedford (D)TI) stensed that the DTI is continuing its efforts to speed up the process of site clearance. Fut pointed out that Europe is very different from the USA where the FCC administrates the entire country. DTI has heen unable topersuade neighbouring countries such as France. Belgium and Holland to agree to a single clearing centre working to pre-algred rules: the Ministry of Defence and the ( 'ivil Aviabon Authority are also involved. DTl is currently introducing a new at-hour. seven-days-a-weck facility for intitating clearance procedures, "hut there are limits to what we can do.

Mike Nemson said that broadeaster woukd be willing to accept and athere to operational restrictions on the use of up-link terminals it this meant that xearance could be achieved in the couple of hours it takes a tramportable up-linh to get to the site. He added: "Unkes the log-jam breaks. expansion (of SN(i) wont take place. News is about now and is gewerned by speed. Site clearamee needs to be done within the time it takes to get on site. Are we tring to protect ourvelow from interference to terestrial servicen that doent in practice ocem?

## Improving MF and LF AM receivers

Although few would disagree with the view that. for domestic listening, VHF/ FM stereo broadcasting is superior to AM on medium- and long-waves in terms of fidelity. dynamic range and relative freedom from interference. there still remain a number of practical advantages that seem certain to ensure that the MF and LF bands will continue to be used for broadcasting well into the 21 st century. Indeed it could be argued that, were it not for the overcrowding of these bands in Europe, the consequently limited 9 kHz channels and the excessive night-time sky-wave interference. AM broadcasting could still provide a most useful and convenient service. particularly for reception on portable and car-radio receivers - if only there were hetter AM receivers.

Since the introduction of FM broadcasting, the emphasis in most AM designs has been on low cost rather than good RF performance. On the whole, current models compare poorly with those of the 1930s which were usually considerably more expensive in "real money" terms. Probably the single most significant improvement, which came in the immediate post-war period, has been the use of built-in ferrite rod antennas which are significantly less vulnerable to the electric near-field component of domestic appliance interference and offer the capability of nulling out day time co-channel interference, especially if made rotatable and not mounted too close to metalwork. But in terms of pre-mixer selectivity to reduce "image" reception and other spurious responses due to harmonic mixing, variable IF selectivity rather than a fixed ( -6 dB ) bandwidth often under 3 kHz , and case of station selection. "progress" has tended to be backwards. I recall building in the 1950) a very simple MF tuner with regenerative RF amplifier and infinite-impedance detector that gave reasonable quality on local signals yet was capable of receiving foreign stations quite well. It is often forgotten that in Europe 'straight' (i.e. not superhet) designs remained widely used for broadcast receivers until about 1936-37, with positive feedback (reaction') providing a simple, low-cost form of variable selectivity sometimes enhanced by bandpass tuned circuits.


Fig. 7. IBlock diagram of Sprague"s UL.N 3845 noise blanker IC.

The 1930s also saw rapid progress in the design of high-performance HF communications receivers. Several different forms of noise limiters were developed for use on AM signals, which were affected by ignition interference in the days before the introduction of television led to the compulsory fitting of car ignition suppressors. Such circuits as the Dickert. Bacon, Lamb noisesilencing circuits operated either by shorting transient noise-pulses to carth or by opening an electronic switch in series with the audiosignal when a noise pulse was detected.

Such arrangements were reasonably effective, particularly above 20 MHz where ignition interference was most pronounced. They largely overcame the fundamental problem that noise pulses are stretched in time when passing through highly selective resonant circuits in RF or IF stages and thus tend to be effective only when applied before the noise impulse has been lengthened in this way. Such circuits have seldom, if ever, been used in normal broadcast
receivers - though this could now change, particularly for car radios.

Sprague in the USA has recently developed a monolithic IC noiseblanker device type ULN $38+5$ (described by Oliver L. Richards in RF Design. February 1989). This is primarily intended for use in AM entertainment receivers, including monoo or AMstered car radios where ferrite-rod antennas are not used. The device is however. applicable to any receiver with an RF or IF bandwidth that is substantially wider than the audio bandwidth. The basic operation is similar to that of the Lamb noise-silencer (OST . February 1936) and puts the electronic switch ahead of most of the gain and selectivity to overcome much of the stretching and ACC blanking prohlems. The IC incorporates a noise pulse detector. RF gate and dual audio gate making it suitable for use in AM-stereo recejvers. The input stage is the open base of a differential amplifier and can be connected to an RF or early IF stage of the receiver.

[^5]

## OSCILLOSCOPES

Telequipment D755 Dual Beam 50MHz £275．00
＋VAT
Carriage $£ 8.75$
$5 \mathrm{mv} / \mathrm{div} /$ sensitivity．Sweep 2s to $100 \mathrm{~ns} / \mathrm{div}$ Delayed timebase $8 \times 10$ div crt

TEKTRONIX 475200 MHz Dual Beam £599．00
＋VAT
Carriage £8．75
$2 \mathrm{miv} / \mathrm{div} 1 \mathrm{n} / \mathrm{sec}$ Sweep rate，delayed sweep． Trigger view $8 \times 10 \mathrm{~cm}$ display．

All items checked／tested with 30 days warranty．All in good clean condition．
M and B RADIO
86 BISHOPSGATE STREET，LEED LS1 4BB Telephone： $0532435649 \cdot$ Fax： 0532426881

78270

## COMPUTER APPRECIATION

The Penny Theatre，30／31 Northgate，Canterbury，Kent CT1 1BL Telephone：（0227） 470512

[^6]
## SMC

South Midlands Communications

## RADIO RECEIVERS AND TRANSCEIVERS RECEIVERS

SMC the leating European s．Jecialist in general
ratio communications have developed modula systems for rapid delivery．particularly useful
for emergencies，disasters，political uniest and id concerns This can consist of rugged，simple ouse， HF transceivers ie the FT8OC with a requency range of 1530 MHz used with ether more efficient，the inulti spor frequency

有 also aval dble
Where monitoring ar recept on is tequired then er：her the FRG8800 HF recerver with VHF option or the FRG 9600 VHF ，UHF all mode scanning sensitivity and reliability，at ealistic prices


## ANTENNAS

The TWB2530 and TEB3 are fust two samples of the large range HF ．$V H F$ ond $\cup H F$ antennas designed for users with very different equirements shoving the breadith of Calpability The rugged transportable TWB2530
 is a full self contained extrenely lightweight， ang The TEB series of spor frequency HF beam a htennas give excellent forward gain，ruggen
construction for long life，at a cost effective price
If you requre furth er informition on the 300
yarious support mounts．HF VHF or UHF various support msunts．HF VHF or UHF calalogue Eoth can be supplied with tee most efficient antennas and desirable accessories

SMC LTD，SM HOUSE，SCHOOL CLOSE，CHANDLERS FORD INDUSTRIAL ESTATE，EASTLEIGH，HANTS SO5 3BY． Tel：（0703）255111．Telex： 477351 SMCOMM G．Fax： 0703263507

# NICAM DIGITAL STEREO 

> This month a digital sound service is launched on two of Britain's television networks. Paul Gardiner concludes his description of the signal and outlines the IBA's implementation of it.

The 728 k bit/s digital multiplex is conveyed on a digitally modulated carrier. spaced 6.552 MHz (for UK System I) above the vision carrier (Fig.5). This is additional to the conventional analogue FM carrier at 5.9996 MHz . The FM sound carrier power is nominally $10 \%$ of peak vision power. while the digitally modulated carrier is just $1 \%$ of peak vision power. The level of the digitally modulated carrier was set at a sufficiently high level to ensure rugged reception: at the same time it is at a sufficiently low level to avoid interference to pictures or sound on existing receivers. The frequency of the digital carrier was chosen so as to avoid interference both to (or from) the analogue mono FM carrier. and to (or from) signals on the upper adjacent channel. The spacing of 6.552 MHz is numerically equal to nine times the bit rate of $728 \mathrm{kbit} / \mathrm{s}$.

Prior to modulation, the bit-stream is scrambled to ensure that the transmitted signal appears as noise-like as possible. irrespective of content. so as to reduce further the likelihood of interference to the analogue FM or picture signals. This is achieved synchronously with the frame structure by the modulo-two addition of a pseudorandom sequence. The frame aligment word is not scrambled. since this is needed to synchronize the pseudorandom sequence generator used for descrambling in the receiver. The gencrator is re-initialized on the first scrambled bit of each frame.

The method of modulation that is applied is known as differentiallyencoded quadrature phase shift keying (DQPSK). also referred to as fourphase differentially encoded phase shift keying (4-phase DPSK. Table 3). This

| Table 3:DOPSK modulation scheme. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Input bit-pair |  |  |  |  |
| $A_{n}$ | $B_{n}$ | Carrier phase change |  |  |
| 0 | 0 | $0^{\circ}$ |  |  |
| 0 | 1 | $-90^{\circ}$ (i.e. no change) |  |  |
| 1 | 0 | $-270^{\circ}$ |  |  |
| 1 | 1 | $-180^{\circ}$ |  |  |

makes veryefficient use of the transmission bandwidth, while allowing reliable reception with a simple demodulator. The overall handwidth is about 700 kHz (see Fig.6). The same data spectrum shaping is applied both at the transmitter and the receiver, giving 100\% cosine
roll-off (in the case of System I) for the overall data-channel spectrum.
DOPSK is a four-state phase modulation system in which each phase change conveys $t$ wo bits (Fig.7). The four reststates are $90^{\circ}$ apart: phase changes are caused from input bit-pairs as shown in Table 4. The imput data stream at the modulator is differentially encoded by first forming bit-pairs by a serial-to-two-bit-parallet converter. The entire process of differential encoding. datasignal spectrum shaping and modulation at the transmitter is illustrated in Fig.8.

## NICAMIN BRITAIN

In the UK, the BBC has annouced plans to introduce NICAM digital stereo from seven main transmitters (and their relays) reaching $70 \%$ of the population in autumn 1991. The IBA began trade test transmissions from the Crystal Palace and Emley Moor main transmitters in March 1989 in order to gain some operational experience prior to the launch of a full service, and to give dealers the opportunity to demonstrate receivers. A preliminary service in London and a major part of Yorkshire is due to start in September, and is hoped to include up to two hours of stereo programming per day on both ITV and Channel 4. The service will be extended to other areas from April 1990, reaching 75\% of the UK by end of 1990 (areas shaded red, right). Complete national coverage is dependent upon progress of subsequent phases of the IBA's current re-engineering programme, but could be achieved by about the mid-1990s.

On the Independent Television networks, initially it is normally intended to use the additional dual-channel facility to provide stereo sound, rather than additional separate mono sound channels. The existing analogue mono sound will continue to be
transmitted, but will be derived at the transmitter from the incoming digital stereo signals. It is planned to equip the entire distribution network (both ITV and Channel 4) with dual-channel sound-in-sync equipment, dispensing with the existing separate analogue sound circuits on ITV.



Fig.5. Frequency spectrum occupied by the NICAM 728 digital sound signal in relation to the picture signal (UK SVstem I). Verticalasis is not to scale.

## Satellite broadcasting: MAC/packet

The broadcast terrestrial television signal consists of a frequency multiplex of vision carrier. colour subcarrier. FM carrier and digital carrier. For satellite broadcasting (or, indeed. for cable dis-
tribution), the MAC/packet format comprises a time-division multiplex. Digital data in duobinary form is inserted into intervals between picture lines: in the case of D-MAC/packet at the rate of $20.25 \mathrm{Mbit} / \mathrm{s}$, and for D2MAC/packet al 10.125Mbit/s (Fig.9). The useful data conveyed is structured

The present mono sound-in-sync equipment for distribution of the fourth channel will also be replaced by dual-channel equipment. The IBA expects the national dual-channel sound networking arrangements to be in place in early 1990.

Meanwhile, transmissions in the European 12 GHz direct broadcast satellite (DBS) band will also benefit from the use of digital techniques for the sound, using the MAC/ packet system (MAC refers to the multiplexed analogue component vision format which is accompanied by a highcapacity digital packet multiplex for sound and data). The first UK DBS test transmissions are due to begin this autumn, using the D-MAC/packet transmission system, with NICAM coding for the sound. Although the structure of the digital multiplex for MAC/packet transmission is very different to that of dual-channel terrestrial NICAM 728, the method of companding for the digital bit-rate reduction of individual sound channels is identical. Instead of just two sound channels, however, D-MAC/packet has sufficient data capacity to allow as many as eight high-quality sound channels in NICAM format to accompany the pictures.

Table 4: provisional dates for VICAM digital stereo transmission from IBA transmitters (ITV and Chanmal 4/S4C). The service will also become available at the same time from each of the main stations' dependent relays.

| Transmitting station | Programme company | Transmission capability | Service date |
| :---: | :---: | :---: | :---: |
| Crystal Palace | Thames/LWT | March 1989 | September 1989 |
| Emley Moor | Forkshire | March 1989 | September 1989 |
| Wenvoe | fTV Wales | March 1990 | April 1990 |
| Winter | Iranada | April 1990 | May 1990 |
| Mendip | ITV | April 1990 | May 1990 |
| Caradon Hill | TSW | May 1990 | June 1990 |
| Black Hill | STV | May 1990 | June 1990 |
| Durris | Grampian | June 1990 | July 1990 |
| Divis | Ulster | July 1990 | August 1990 |
| Sandy Heath | Anglia | July 1990 | August 1990 |
| Caldbeck | Border | August 1990 | September 1990 |
| Pontop Pike | Tyne Tees | September 19:0 | October 1990 |
| Rowridge' | TVS |  | Autumn 1990 |
| Dover* | TVS |  | Autumn 1990 |
| Sutton |  |  |  |
| Coldfield | Central | October 1990 | November 1990 |
| Bilsdale | Tyne Tees | November 1990 | December 1990 |
| Belmont ${ }^{\text {a }}$ | YTV |  | Autumn 1990 |

*These stations are being modified for dual-channel sound and there is some flexibility in timescales fothe engineering work.

data capacity of MAC/packet could be increased by a factor of about six.

The packet multiplex can be used to convey either medium-quality $(7 \mathrm{kHz}$ bandwidth 'commentary' sound using 16 kHz sampling) or high-quality ( 15 kHz bandwidth, 32 kHz sampling) using either 14 -bit linear or 14 -to- 10 bit NICAM coding. In each case, there is the option of one of two levels of error protection. In the case of NICAM, the sound companding process is identical to that of terrestrial NICAM 728. However, a three-bit scale factor value of 000 is used to identify periods of low-level sound ( $1 / 64$ th maximum amplitude or less) with a duration of at least 8 ms . This allows for the management of the receiver buffer storage to obtain a smooth, regular output of sound samples since, unlike the continuous transmission of NICAM 728. packets related to a particular service are not transmitted continuously. As I have already mentioned, it is for the reason of this use of scale factor 000 ) that there is no eighth protection range in NICAM 728; both 001 and 000 are valid conditions in the seventh protection range to allow for the possibility of the transfer of sound between NICAM 728 and MAC/packet in digital form.

The 704 bits of data for a high-quality stereo sound coding block (using firstlevel protection) are identical to that of

Fig.8. Bloch diagram showing the processes ofdifferential encoding, datasignal shaping and modulation at the transmitter (NICAM 728).

NICAM 728 and can simply be accommodated within a single packet. as shown in Fig.11. However, the first 16 bits of the 90 -byte datal area of the packet are not used. The use of a single parity bit to protect the six mostsignificant bits of each sample, and signalling-in-parity of the scale factor information are identical to that of NICAM 728.
The MAC/packet specification also allows for an alternative higher level of protection for the sound. although it is not planned to use this for UK DBS. since for first-level NICAM a basic receiver will have an FM threshold for vision and a digital sound threshold (hit-error rate of 1 in $100^{3}$ ) both in the region of $10-1 \mid \mathrm{dB}$ (Fig.12). A more sophisticated receiver using Viterbi techniques could allow sound decoding at lower carrier-10-noise ratios of 8 9 dB .
'Second level' protection is achieved by applying a standard Hamming (11.6) code to each sample. The use of tive protection bits instead of a single parity bit enables the correction of one single error (and the detection of two errors)
in the six most-significant bits of each sample. As with first-level protection (and NICAM 728) the scale factor is signalled in parity. The penalty for the greater degree of protection is that a higher bit-rate is required. A single 704 -bit stereo sound block would occupy a 120 -byte coding block instead of a 90 -byte coding block. The 120-byte coding blocks would be inserted in to the packet stream by placing three successive coding blocks in four successive packets.

The flexibility of the packet multiplex does result in some extra complexity compared to NICAM 728; for example, there is an additional overhead in the form of sound control packets which contain 'interpretation blocks', sent between one and three times per second to ensure that the receiver has knowledge of the coding format of the sound channel.

## UHF transmission

The addition of the 6.552 MHz digital carrier does, in general, require some modifications to be made to existing main transmitting stations, particularly in modulation and IF processing. Many transmitters use separate high-power klystron amplifiers for the conventional FM sound signal. These operate with relatively high efficiency and narrow bandwidths. The amplification of a


Fig. 9 (above). Structure of a 625-line Wac packet frame. showing the time-division relationship beturen digital data fat the rate of 20. 25, /hit/s for I)- WA() and the vision signal. The data is structured in the form of packets (of 751 hits).



Fig. 10. Structure of a single 751 -hit packet: each consers a useful data area of 720 hits.

Fig. II (left). Insertion of a 720-hit .VIC AM (lïrst-level protection) coding block into the 9(1)-byte data area of a single M:AC packet. The first 16 hits are unallocated: the remaining 70t hits of'somnd/data arre indentical to those of N/C AM/ 728.
second, digital. sound carrier requires more linear operation with a wieler bandwidth, as well as IF precorrection of intermodulation prodaces. Other tramsmitlers use common amplifiers for sound and wion signak: the inclusion of a third carrier will necossitate modification or replacement of existing circults.

Further modification mat be reyuired to the sumd $\begin{gathered}\text { sion } \\ \text { combining }\end{gathered}$ units. The IBA incurrents modernising many of the cart ITV' main transmitter installations. and the new replatement equipment is yecified to deall with the NIC $A M$ 728 carrier. Howeder, modifications are being carried out to existing fourth-chanmed trammitters to enable them alkotoprovide NIC AM digitalvero.

With relay stations the situation is more straightorward, since the inputchamel sighak are connerted first to an intermediate frequene and then to the new output channel without demodulation, in broadbathed form. In generall. satisfatory performance is obtained without adjustment elen for chains of several relapoperating in tandem. Ans limitations will be due to the comulative effects of intermodulation products calusing visible patterning on the pictures. rather than ally degradation of the digital wound.

Much of Furope uer tele ision Sis-
tems 13 and (i, rather than Sistem 1 (ased br the (JK and Itite). Sivtem I3
 to-channel spacing. compared lo 8M1l/3
 72xhbith blatal signal in the narrower chammed a calrier at Sxsmbla abouc anson is used instead of 6.5semaly. A change of data-haping fittering at the

 to present interference to the upper anlatent bibun chamen. In pratioce. reception of NIC MM 728 has been found to be extremels ruged. Sound failure accurs only under bors poor picture conditions. in the calse of both Weak-vignal reception and in stuations affected by multipath distortion.
Whether broadeas from satellite using the MAC/packet sustem, or terrentrialls using NIC AM 728. NIC'AM insel to become the new standard for highquality eckevision sound broadeasting. NICAM offers the domestic sewer the benefits of stereo. Wgether with a subjectite sound quality that compares bery Cavourably with the (ompact Dise.

[^7]

Fig. 12. Satellite reception quality of at D-MAC/packet signal usinga conventional decoder illustrating the relative performance of vision and somend using first-level protection NIC : $1,1 /$. . More sophisticated decoding techniques. allow a 2 dlB improvement in somend tecoding.

# 1GHz gain-bandwidth op-amp 

Last month I described a new breed of low cost, current-mode architecture opamps, with very wide bandwidth and high slew-rate. These devices owe their conception to semiconductor process developments that have created fast vertical p-n-p devices, giving IC' designers the freedom to develop truly complementary BJT amplifiers

Elantec, whose products are aimed at the transmission, reception, processing. measurement and display of high speed analogue and digital signals, was the first company to market the currentmode type of op-amp. The complementary BJT process relies on the ability to create vertical, rather than lateral p -n-p devices, to match the performance of vertical $n-p$-n transistors. Elantec achieves this using the technique of dielectric isolation (D) , illustrated in Fig. I. Some advantages of this process are high speed $n-p-n$ and $p-n-p$ transistors having sustainable high voltages. low capacitance, a virtual absence of parasitic transistors, high electrical isolation and no latch-up, high temperature operation and good radiation resistance.
A new op-amp launched by Elantec. the EL2038, performs very impressively: it features a l Giltz gain-bandwidh product with a slew-rate of $1000 \mathrm{~V} / \mathrm{\mu s}$. giving a full output power capability of about 16 MHz !
The op-amp is built using Elanteces dielectric isolation process. It costs about $£ 2.93$ per piece for quantities of 100 up. It is not a current-feedhack architecture op-amp, but is almost conventional in structure, as can be seen from the simplified diagram, Fig. 2.
The circuit is symmetrical about a line drawn straight through the amplifier from input to output, with a full complementary structure. The conventional fong-tail pair input stage is there, with output collectors feeding common-base transistors, in what is referred to as a folded-cascode configuration. The advantage of this arrangement for highspeed work is that there is only one truly high-impedance node in the circuit and hence the amplifier is easily stabilized with a single on-chip capacitor, resulting in a dominant-pole open-loop characteristic. The output is a high input impedance. super voltage-follower.


Fig. I. Elantec's complementary diffinsion isolation (I)I) process gives the company's new op-ampan exceptional gain-bandw idth product.
very similar to the output stage used by PMI and Analog Devices in their new breed of current-mode op-amps. OP260 and ADstt, which 1 mentioned last month. It is capable of swinging $\pm 11 \mathrm{~V}$ at the output with typicatly $\pm 50 \mathrm{~mA}$ maximum output current.

Unfortunately. as must inevitably be the case for high-speed B.JT amplifiers. the transistors atre operated at relatively high bias current levels to provide adequate transistor high-frequency performance: this means that the input bias current to the op-amp is some $5 \mu \mathrm{~A}$. Further consequences arising from the relatively high collector currents are
that the input impedance of the amplifier is around loks and, since $r_{1}$ is inversely proportional to collector current, the low-freguency open-loop voltage gain is only a little over solil3 (10 ${ }^{+}$).

## "Fastest power mosfets"

Direct Energy Incorporated (DED) of Colorado is a relatively new company. founded in 1987. Its speciality is the design and manufacture of high-speed. high-power. high-frequency electronic


Fig. 2. Simplified diagram of Elantec's EL.2038 IGHz op-amp, based on the III process shown in Fig. I.
components and systems. In its literature DEI makes the bold claim that it makes the "best fast power mosfer in the world"

From their inception. power mos devices held great promise becaluse of their potentialspeedand its advantages. Switching speed in atypical silicon cell is around 20) prs, but conventional mosiets. have required significantly hetter packaging to improve their speed performance

DEI adopted a new approach to mosfet design. Beginning with the silicon parameters. it optimized the die to obtain best performance in relation to the high speed and high power goals. Then DEA's designers tackled the packaging, attempting to reduce the overall package inductance to a minimum: they were able to reduce this to less that one nanohenry. The next problem, as with all power devices. was how to dissipate heal when cycling power at high frequencies. This they achieved by minimizing the number of thermal batriers from silicon to heat-sink. selecting an insulating ceramic subatrate (BeO) with good thermal properties on which to allach the die

DEI markets three series of power mostets. The DE-150 devices feature rise-times of 3os. $2 k W$ average power (D) (). 72 A peak current and 7 (1) W power dissipation: they are denigned for operation at multi-megahertz PRF's. Then IDE-275 devices also have a 3 . rise-time, but with higher power ratings. The most powerful device, the DE-375X4. can handle 3okW average power at Holla peak current and can dissipate soow. It has a rise-time of some 7 ns . These figures are very impressive indeed. Costs range from $£ 130$ per piece for the DE-150 to E301t per piece for the I) tics).

## High power op-amps and power boosting

With the increasing complexity of elec tronic systems, it is always worth considering using a single-chip or singlepackaged device. rather than a discrete cereuit. The man reasons are reliability ease of manufacture and small sies.

However. ready built single-chip or single-packaged devices to suit high power applications are not always anallathe

Apex Microtechnology Corporation of 'lucson. Arizona, entered the opamp market seven years ago to provide a very broad range of op-amps from low-power. how-speed parts to high power and high speed. It has recently introduced two new power ap-anp products.
The PAOH is a power op-amp that cirn dissipate 200 watts internally and provide an output voltage swing of $\pm 1010 \mathrm{~V}$ and a peak output current of 2013! It also has a slew-rate capability of $5(1 \mathrm{~V} / \mu \mathrm{s}$ and a I) C open-loop voltage gatin of 1010d3. Quite a formidable beast, currently priced at around \&itl per piece for Jorl-up.

The PB50 is not a full op-amp but is intended to be used to power-hoost a conventional ap-amp to provide up to 2A continuous ouput current and $\pm 10$ ov output voltage ,wing. Priced at around $\mathfrak{E t 2}$ per piece for loct-up. it represents good value for mones.

Both devices ate built around high voltage mosfets together with BITS A diagram of the PAOt is shown in Fig. 3.

EQUIVALENT SCHEMATIC


Fig. 3. Equivalent diagram of a fast power op-amp by Apex $\mu$ tech.

The circuat is yuite conventionall. the high power features coming from the high voltage mosfets. The device comes in a proprictary 12-pin power dia package: the additional pins provide the user with some interesting features. Total yuiescent bias current is about 70 ma . but this catl be reduced to only 3 ma (referred to as the sleep mode) if the internal reference that provides the long-tial current is shorted by connecting pins 9 and 12. The two sets of power pine make another useful feature. With
 supply. the output tramsistors cam be driven close to saturation, allowing the amplifier to operate very efficiondy at high current levels. Compensation is added externally, as is output current limiting, the latter being via the currentrobbing current limit $n-p-1 n$ and $p-n-p$ transistors linking the gates of the output mosfets. A small series resistor. $R$. is added between pins 11 and 10 . the output and negative feedback connections taken from pin 10 . The output current limit. (in amperes) is simply given by $0.7 / \mathrm{R}$. where R is in ohms

Applications suggested for the PAOt extend from sonar transducer drivers through linear and rotary motor drives to audio at up to 40 watts. The manufacturer yuotes total harmonic distortion figures below (1).01"。 for a power sutput of 20 ow ower the entire atudio r.mge!


Fig. 4. Suggested application for Apex $\mu t e c h ' s$ I'B50 power booster is in this inverting composite amplifier.

The PBSO power booster is a singleended input inserting amplifier. designed to be nested within the feedhack loop of an op-amp (Fig. f). Cascäding two amplifiers within a single negative feedback loop has many adantages but requires carefal consideration. To achieve a stathe design, the towest value of booster gain should be chosen so that the bandwidth of the hooster is much greater than the drivers: then the driver's bandwidth is dominant. determining the bandwidth of the composite amplifier. Compensation capacitors ate then selected to minimize the loop phase-shift "The slew rate of the composite amplifier is equal to the slew rate of the driver op-amp multiptied by the gatin of the booster. with a maximum value equal to the booster slew rate of $50 \mathrm{~V} / \mathrm{\mu}$. minimum.

[^8]
## KESTREL ELECTRONIC COMPONENTS LTD.

* All items guaranteed to manufacturers spec.
* Many other items available.
'Exclusive of V.A.T. and post and package
$1+100+$
74LS00
74LS32
74LS125
74LS241
74LS24
74LS245
74LS373
74 HCO
74 HCO 2
74 HC 147
74 HC 153
74HC194
7: HCTO4
74 HCT 32
74 HCT 74
74HCT123
74 HCT 138
74 HCT373
74 HCT374
74HCT574
74HCT643

| 0.15 | 0.08 | 2.4576 MHz Crystal | 0.75 | 0.55 |
| :--- | :--- | :--- | :--- | :--- |
| 0.15 | 0.08 | 4 Meg Crystal | 0.45 | 0.26 |
| 0.15 | 0.11 | 6 Meg Crystal | 0.45 | 0.26 |
| 0.30 | 0.18 | 8 Meg | 0.45 | 0.26 |
| 0.30 | 0.18 | 1488 | 0.25 | 0.16 |
| 0.30 | 0.19 | 1489 | 0.25 | 0.16 |
| 0.30 | 0.18 | $2732 A$ | 2.50 | 2.30 |
| 0.14 | 0.09 | $2764 A$ | 2.20 | 1.80 |
| 0.14 | 0.08 | 27 C64-20 | 2.50 | 1.80 |
| 0.25 | 0.14 | $27128 A-25$ | 2.80 | 2.30 |
| 0.24 | 0.12 | $27256-25$ | 2.80 | 2.50 |
| 0.25 | 0.15 | $27 C 256-25$ | 2.90 | 2.30 |
| 0.16 | 0.13 | 27 C512-25 | 5.20 | 4.60 |
| 0.16 | 0.08 | $8259 A C-2$ | 1.60 | 1.20 |
| 0.16 | 0.12 | $8255-5$ | 1.90 | 1.30 |
| 0.23 | 0.16 | $82 C 55$ | 1.50 | 1.10 |
| 0.23 | 0.16 | 8085 | 1.60 | 1.00 |
| 0.35 | 0.28 | $6522 P$ | 2.50 | 1.65 |
| 0.35 | 0.28 | Z80ACPU | 1.00 | 0.65 |
| 0.40 | 0.32 | Z80AP10 | 1.00 | 0.65 |
| 0.42 | 0.30 | Z80ACTC | 1.00 | 0.65 |

All memory prices are fluctuating daily, please phone to

## confirm prices

178 Brighton Road, Purley, Surrey CR2 4HA Tel: 01-668 7522. Fax: 01-668 4190

## ENTER 35 ON REPLYCARD

With 48 years' experience in the design and manufacture of several hundred thousand transtormers we can supply:

## CUDIO Fill UUEMY TRASFORMEAS OF EVEBY TMPE

YOU NAMEIT! WE MAKEIT!
OUR RANGE INCLUDES
Microphone transformers (all types). Microphone Spliter/Combiner transformers. Input and Output transformers. Direct Injection transformers for Guitars. Multi-Secondary output transformers. Bridging transformers. Line transformers. Line transformers to B. T. Isolating Test Specification. Tapped impedance matching transformers. Gramophone Pickup transformers. Audio Mixing Desk transformers (all types). Miniature transformers. Microminiature transformers for PCB mounting. Experimental transformers. Ultra low frequency transformers. Ulira linear and other transformers for Valve Amplifiers up to 500 watts. Inductive Loop transformers. Smoothing Chokes. Filter, Inductors, Amplifiers to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers. Speaker matching transtormers (all powers), Column Loud-speaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P. A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible.
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas cllents in the COMMONWEALTH, EEC, USA, MIDDLE EAST, etc.

Send for our questionnaire which, when completed, enables us to post quotations by return

S
OWTER
transformers
PO Box 36, Ipswich IP1 2EL, England. Phone: 0473252794 \& 0473219390 Telex: 987703G Fax: 0473236188


ENTER 9 ON REPL Y CARD

## M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST-EQUIPMENT DEALER

TEST EQUIPMENT
Bradey 56 Oscillostope Calibrator
Bradey 171.1718 Mcter Ca
Radiomelet SMGi Stereo Genciator
Wandel Gollermann SP60 Level G
RS Huze $470 \cdot 850 \mathrm{MHz}$ Field Strengtt RS Huze 44.210 MHz Field Sirength Gen Rad 1390 B Random Noisc Gene
Gen Rad $1617 \Lambda$ Capacitance Bridge Gen Rad 1900 15218 Wave Analyse Radtord LDO2. DMS Audio Tesi Sel Marcom TF 2000 OSG

## Radlord DMS3

Marconi TF2331 Distortion Meler
Marconi TF2120 Wavelorm Genetato
Marconitf 1313A $1 \%$ LCABrida

Marconi TF 2700 in situ Bridge
Marconi TF2700 LCR Bridge
Radiometer MMZ LCR Bridge

## Gen Rad $138 ; 20 \mathrm{~Hz}$

## HP5300B Counter

hP654A Test Oscillator
HP3465A Digital Volmete
HP3403 True RMS Voltmeter
HP5389A 80MHz Freq Counter
HP5045A Dighal IC Teste
HP3761A 3760A 3722A Entor Detecto
HP70358 XY Piotter
MP461 Amplifier IKcs 150 Mh g
${ }^{14} \mathrm{P} 3200 \mathrm{~B}$ VHF Oscillato
HP8330A Radiant Fiux Mele
Farnell SG1B interlace Now
HP141A Storage Frame Racal IEE Counter Interlace 9932
HP3495A Scannet
tiP52538 Counter Unit 500MMz
MP2508 RX Mefer
8561/8562
RS Process Controller Tyoe PUC


## ALL PRICES PLUS VAT AND CARRIAGE

 86 Bishopgate Street, Leeds LS1 4BB. Tel: 0532435649 . Fax: (0532) 426881
# THE WHAT AND HOW OFCRCs 

# Cyclic redundancy checks are widely used to finger-print data, for determining its validity later on. Graham Stephens explains how they work. 

The use of eyclic redundancy checks (CRCs) is widespread in disk drive controllers and data communications protocols, and CRC's have been used to guard against deliberate program errors. Their manipulation is also one of the more elementary methods of copy protection on disks.

Those wishing to understand and use these ideas more fully may have been attracted by phrases such as "completely error-free". but discouraged by concepts such as "polynomial". Some may already use peripheral devices, from IC'sto"errorprotected" modems, which incorporate CRC techniques. but find such devices to be unsatistactory or inadequate in certain applications. For example, many allsinging and dancing protocol controllers will not perform ( ' RCs when in asynchronous mode. or are inflexible as 10 what characters and sequences are and are not included in the CRC calculations. (This can tead to difficulties in tramsparency. encryption and compression.) Others may wish to use two different CRCs at the same time.

## Limitations

It is important to understand the limitations of C'RCs and therefore their subsequent applications. They do not. in their own right, correct errors. The correction process is one of error detection followed by the re-transmission of the affected block of data. Also. the technique cannot possibly detect all errors. "Error-free" is an absolute term. and should therefore be qualified by "almost" or "virtually". Those who yualify in the other diection ("completely", "totally". $100 \%$, etc.) are either deliberately misleading or lamentably naile! It must also be remembered that any technigue depends upon its inherent characteristics, which may be weakened by a poor implementation.


Fig. I. Simple error detection can be achieved by a l)-type flip-flop, to provide' \& one-bit delay, and an exchusive-Or gate.

## Error detection

An error is quite simply the inversion of a bit, i.e. a one has become azero, or a zere has become a one. A single error is therefore very easy to detect by counting the number of ones or zeros in the data block. Merely knowing whether this total number is odd or even is sufficient to detect one error. This odd or even nature may be determined by the status of the remainder following a division by two. (The quotient in discarded.)

In hardware terms this may be accomplished. among other watys, with a I - type flip-flop to provide a one-bit delay and an exclusive-Or gate (Fig. I) and with presed/ clear being used (o) set the initial status. The check-bit present in this register at the
end of the serial data is appended to the data block. At the receiving end. this process is repeated to generate a local check-bit which is compared with the received check-bit. If they are different. then an error has occurred. If they are the same then no error has been detected, but this does not necessarily mean that no error has occurred. For example, if (wo bits are transposed or the number of errors is even then no error would be indicated.

Rather than just one cleck-bit per block, it is common to have one check-bit per character. In asbochronous format data this is kmomn as the parity bit, and as the vertical redundancy check (VRC) in blocked syochronous data

The protection afforded by parity is poor - especially in view of its high overhead. The performance of parity may be improved by pertorming a check in the herizontal disection. This is effectively the exclusive-()r of each data byte. and is known as the longitudinal redundancy check or LRRC. This is also an example of the well-known datacommes charaterestic of increasing the complexity of the termnology in the hope of improving performance!

An I.R( may also be accomplished by the standard datacomms building block of saft registers and exclusive-()r gattes (Fig.2). In this example. the thift register performs the eight-hit separation for the bit-by-bit exclusive-()r, i.c. bit-by-hit every eighth hit. The receiver pertorms in a similar manner. but clocks around the I.R(' as well so that the checksums are effectively subtrateded (in modulo-2) to give all zeros on no detected error. Obviousl! kery many errors can still slip through undetected. hut its performance Is significantly better than VRC/parity alone
The generation and comparison of checkbits and bytes shown so far maty be consi-


```
10000000
\({ }^{C 5} 16 \quad 010000000\)
10100000
01010000
LSB 00101000
first 00010100
10001010
11000101
11100010
01110001
\(78 \quad 10111000\)
11011100
11101110
11190111
01111011
\(10111101=\) = 10 (checksum)
01011110
00101111
00010191
BD \(\quad 000011011\)
00000101 00000011
00000001
00000000 = no error
C5 Ex-or \(78=\mathrm{BD}\)
\(B D E x-o r B D=00\)
```

Fig. 2. Improving the performance of a parit! chech: a longitudinal redundancy check, effectively the evehusive-Or of cach data byte.
dered to be part of a more complex and generalized scheme. Its principle is one of dividing the block of data by a constant. discarding the quotient and adding the remainder to the data so that the whole block is now exactly divisible by the constant. At the receiving end. the equivalent process results in no remainder if noerrors have occurred.

This division process is hased upon modulo-2 arithmetic. and an example of the method is shown in Fig. 3. The block of datia is "multiplied" first by the number of places in the divisor. less one to make room for the addition of the remainder. Division results in a quotient and, upon running out of dividend to bring down, a remainder. The remainder is added to the datia block. At the receiver, the whole kot is divided and should result in no remainder (allzeros) on nodetectederror.

Most descriptions of this process talk in terms of polynomials. Data to be transmitted (the dividend) is regarded as being a polynomiat expression which is divided by another polynomial (the divisor) to give two further polynomials - the quotient


Hig.3. Division process used for generating and comparing check bits and bytes.
and the remainder or residue. In the example of Fig.3, the divisor is 101011 . In polynomial descriptive terms this is equivalent to
(1) $x^{5}+(0) x^{4}+(1) x^{3}+(0) x^{2}+(1) x^{1}+(1) x^{11}$ or. more commonly.

$$
x^{5}+x^{3}+x+1
$$

It is also apparent from Fig. 3 that the whole process is essentially one of shift-

## It is important to anderstand the limitatioms of CRCs...

ing. aligning and exclusive-(or. This is relatively simple to implement in both hardware and software. and Fig. 4 shows the same data to be transmitted being processed by an equivalent mutiplier/ livider constructed from shift registers andexclusive-()r gates.

All the registers are initially cleared. and the data is transmitted to line while
the registers are cycling around. Contents of these registers are clocked out at the end of the datta. Note that the $x^{\prime \prime}$ column is the serial quotient.

The receiver goes through the same procedure and chocks around the remainder ass well. Register contents at this point should be all ceros in this example if no error has beendetected.

## Order of transmission

Before any further design is possible. there must be a general agreement on this bit sequence for serial transmission. Whilst this may not appear important in byte-based protucols where each byte is synchronized within its "window", experience dictates otherwise.

Most data communications protocols tramsmit eath charater's $\operatorname{ISB}$ (right-most bit) first, and this arrangement is supported by the wide range of peripheral components available. However. (RCs are generally tramsmitted MSB (e.g. $x^{15}$ ) first and would therefore require rotation before transmission through such devices. Since the whole process is one of shifting
and rotating, it is simple enough to reverse the direction so that the CRC MSB , highest power) is right-most during accumblat tion.

## Practical guidance

The divisor polynomial conversion to shift registeriexclusive-()r equivalent with the remainder's highest power out first may be performed as follows:

1. write polynomial in asending power of $x$, remembering that 1 is really $x^{\prime \prime}$ :
2. convert to hinary form where each polynomial equals I and no term equals zero. Bracket the highest (right-most) term.

Now, either

- design the equivalent hardware using shift registers and exclusive-()rs, where the bracketed term becomes the feedback (guotient) to the lowest (leftmont) term and the other exclusise-()r inputs. All other " 1 " terms are register stages fed hy exclusive-Oroutputs.
or
... Anexample of the well-known datacommos characteristico of increcising llue (r)mplexily (of lie l(rnminologyinthe hopeos improving performance...
- convert to hexadecimal for use in an equivalent soltware routine. The L.SB is the one just hefore the hracketed term. and unused termsare zeros.

In most instances it is not necessary to generate and check CRC: "on the fly" during actual transfer, and it is generally quite adecpuate to run the complete data Hock through the appropriate ('RC routines just prior to tramsmission or following complete reception. This is. of course incescapable if a "reverse" (RC is used as this must be sent before the data. having been calculated in the reverse direction.

A simple and reasomaty fast software routine which emulates the hardware equivalent is shown in Fig.s. Although it is specifically for the 65012. it is cansty changed to wit other microprocesoors. If time is not of the essence then a higherlevel tanguage may be applicable
For those who wish to explore CRC: further, the example in Fig. 6 should be uneful for dehugging purposes. CRCs of


## Symbols:

2010 CRC1 0080 DATA 0083 POLYLS 0084 POLYMS 0081 REMLS 0082 REMMS
Mo error(s) detected
6290 bytes free

Fig. 5 (right). Simple soft ware routine in 6.502 assembly language for generating ( $\boldsymbol{R C}$ 's.

Table 1. Some practical CRC schemes.

| Polynomial | Hex (ms/ls) | Type |
| :--- | :--- | :--- |
| $x^{16}+x^{12}+x^{5}+1$ | 8408 | CRC-CCITT (e.g. V.41, $x .25$ etc.) |
| $x^{16}+x^{15}+x^{2}+1$ | A001 | CRC-16 (e.g.IBM 3270.3780 etc.) |
| $x^{12}+x^{11}+x^{3}+x^{2}+x+1$ | OF01 | CRC-12 |
| $x^{8}+1$ | 0080 | LRC-8 |
| $x+1$ | 0001 | Parity (pre-set 0 or 1 for even or odd) |

Where a reverse CRC is required, write out the binary equivalent of the forward polynomial and then reverse the order.
$x^{16}+x^{12}+x^{5}+x^{0}$

10001000000100001 10000100000010001<br>Remember to reverse all shifts, rotates etc.

16 bits or fewer which are commonly used are shown in Table 1. Some varieties of CRC are also known as block check characters ( $\mathrm{BC}{ }^{\circ}$ ) or frame check sequences (FCS).

Note that the CCITl' CRC may be used in different ways. Some applications (disk. V.tl ete.) preset the registers to all zeros, transmit the remainder unchanged and look for all zeros as no detected error. Other applications (HDLC. X. 25 ete.) pre-kodd all ones, invert the remainder prior to transmission and then require the constant FOBS 10 (MS L.S. or $x^{11} x^{15}$ ) as indicating no detected errors. The principle is exactly the sime though. The designer should aldo be aware of some protocols which do not include certain control characters or sequences in the (RCaccumulation.

## Levels of protection

As I have mentioned, it is not possible to detect all errors. and therefore "errorfree" is not reallistic. Also the CRC technique itself has some peculiarities. Nevertheless the protection afforded by CRCs is impressive, considering its simple implementation and low overhead. The detection rate diminishes with increasing block size since there is greater opportunity for dividend errors which still result in exact divisibility. (A sliding saale of block size is often employed to improve detection and. indirectly. datia throughput in high errorrate enviromments.)

In general. CRC’ usually detect all odd numbers of errors (so does parity!). error bursts not exceeding the (RR('length and a large percentage of other patterns of errors. As errors may oceur in various ways and for various reasons (although rarely at "random") in a data communications enviromment. they may have different effects. It is therefore only possible to generalize on the frequency of undetected errors and to note that for a block size of 2610 bits the possibility of an undetected error is between $0.01012 \%$ and $0.0017 \%$ depending upon the simulation. Note also that there is a possibility of (1).(6)15\% that the 16 -hit CRC could be changed into another which could be correct for an

1234 gives the same remainder as rem $=$ 1234. datal $=\mathrm{ABCD}$.
5. Pseado-random pattern generators and simple scramblers may also be used with the general ('RC'model as decribed here if the hardware is re-drawn or the polynomial multiplied tolose any negative powers.

## Don't be frightened...

No-one should be frightened of CRCs, but they must not have powers attributed to

Fig.6. Gencrating CCITT-CRCS.
erroneous data block. Then there is the possibility that the request for retransmission could be erroneous..

## Further observations

Although some of the following is obvious after a moment's thought. it may nevertheless suggest further study.

1. If the eight-bit byte is the same as the lower eight-bit remainder (remis) then the upper eight-hit rematnder (remms) is (0) and remb becomes the previous remms.

2 (from 1). If the data string is the same as the remainder, then the new remainder is o(MO). That's how it works. of course, but consider the implications!
3. If the remainder is 0 )ofo and the data is $80_{10}$ then the remainder beeomes the polynomial.
4. If the old remainder and data are interchanged, the new remainders are the same: for example, rem $=\mathrm{ABCD}$ data $=$
Polynomial $=x^{16}+x^{12}+x^{5}+1$ (CCITT-CRC)
Polynomial $=x^{16}+x^{12}+x^{5}+1$ (CCITT-CRC)
$x^{0} \quad x^{5} \quad x^{12} \quad x^{16}$
$x^{0} \quad x^{5} \quad x^{12} \quad x^{16}$
$1000010000001000(1)=8408{ }_{16}$
$1000010000001000(1)=8408{ }_{16}$

them that they do not deserve. The general techniques described here are versatile. with applications beyond error detection. They are simple to implement in both hardware and software, and this choice depends upon the application and the best method of implementation. It is important to note that error control is rather like encryption in that it should be performed within the source and destination equipment and not left to some intermediate device or process.
(iralumin M. Sterphens is with ()atex Lhd.

## RF EQUIPMENT

## LOW NOISE GASFET PREAMPLIFERS

Aligned to your specified frequency in the range $30-1000 \mathrm{MHz}$. Masthead or local use
TYPE 9006. NF 0.6 dB . Gain $10-40 \mathrm{~dB}$ variable. In the range $30-250 \mathrm{MHz}$
£78
TYPE 9006FM. As above. Band II $88-108 \mathrm{MHz}$
. 78
TYPE 9002. Two stage Gasfet preamplifier. NF 0.7dB. Gain 25dB adjustable. High Q filter. Tuned to your specified channels in bands IV or V
£102
TYPE 9004. UHF two stage Gasfet preamplifier. NF 0.7dB. Gain 25dB adjustable. High Q filter. Aligned to your specified frequency in the range $250-1000 \mathrm{MHz}$
£102
TYPE 9035. Mains power supply for above amplifiers . 139 TYPE 9010. Masthead weatherproof unit for above amplifiers......£12


TYPE 9006


TYPE 9002

## WIDEBAND AMPLIFIERS

Monolithic microwave integrated circuits in a fully packaged microstrip module format. Full-wave shottky diode protected inputs. Temperature compensated bias circuitry. Voltage regulated local or remote operation
TYPE 9007. $1-900 \mathrm{MHz}$. NF 2.3dB at 500 MHz . Gain 20dB ....... $£ 150$ TYPE 9008 Gasfet. $100 \mathrm{MHz}-2 \mathrm{GHz}$. NF 2.5 dB at 1 GHz . Gain 10 dB
 TYPE 9009 Gasfet. $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 3.8 dB at 1 GHz . Gain 20 dB .
 TYPE 9253. $40-860 \mathrm{MHz}$. NF 6dB. Gain 30dB. Voliage output $100 \mathrm{mV}, 100 \mathrm{dBuV},-10 \mathrm{dBm}$


TYPE 9113
TYPE 9252
PHASE LOCKED LOOP FREQUENCY CONVERTERS
TYPE 9113 Transmitting. Converts your specified input channels in the range $20-1000 \mathrm{MHz}$ to your specified output channels in the range $20-1000 \mathrm{MHz}$. 1 mV input. 10 mW output $(+10 \mathrm{dBm})$. AGC controlled. Gain 60 dB adjustable -30 dB . Will drive transmitting amplifiers directly 25 dB variable
£356

TMOS WIDEBAND LINEAR POWER AMPLIFIERS
TYPE 9246.1 watt output 100 KHz 175MHz 13 dB gain


TYPE 9176


TYPE 9271

TYPE 9247. 4 watts output $1-50 \mathrm{MHz} 13 \mathrm{~dB}$ gain TYPE 9051.4 watts output $20-200 \mathrm{MHz} 13 \mathrm{~dB}$ gain TYPE 9176.4 watts output $1-50 \mathrm{MHz} 26 \mathrm{~dB}$ gain TYPE 9177. 4 watts output $20-200 \mathrm{MHz} 26 \mathrm{~dB}$ gain TYPE 9173. 20 watts output $1-50 \mathrm{MHz} 10 \mathrm{~dB}$ gain


TYPE 9105


TYPE 9259

TELEVISION LINEAR POWER AMPLIFIERS
Tuned to your specified channels in bands IV or V. $24 \mathrm{~V}+\mathrm{DC}$ supply. TYPE 9261.100 mV input, 10 mW output.
£218
TYPE 9252.10 mW input, 500 mW output.
ᄃ254
TYPE 9259. 500 mW input. 3 watts output.
£290
TYPE 9262500 mW input, 10 watts output ......................
TYPE 9263. 2-3 watts input, 15 watts output
TYPE 926610 watts input, 50 watts output ............................. $£ 1,585$
See below for Television Amplifiers in bands I \& III.


TYPE 9158/9235

## TMOS RF LINEAR POWER AMPLIFIERS

Tuned to your specified frequency in the range $20-250 \mathrm{MHz}$. or your specified channels in bands I or III. $24 \mathrm{~V}+$ DC supply.
TYPE 9105. 10mW input, 1 watt output....................................... £230
TYPE 9106500 mW input. 10 watts output............................... 284
TYPE 9155. 1 watt input, 30 watts output .......................................... $£ 327$
TYPE 9158. 5 watts input. 70 watts output ............................................ $\mathbf{~} 448$

COMPLETE TELEVISION RETRANSMISSION SYSTEMS
AVAILABLE
All prices exclude p\&p and VAT

Advertisements accepted up to 12 noon 29th August for October issue.

DISPLAYED APPOINTMENTS VACANT: \&27 per single col. centimetre (min. 3 cm ). IINE ADVERTISEMENTS (run on): $£ 6.00$ per line, minimum $£ 48$ (prepayable) (Please add on $15 \%$ V.A.T' for prepaid advertisements).
BOX NUMBERS: $£ 15.00$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, 'The Quadrant. Sutton. Surrey SM2 5AS). PHONE: CHRISTOPHER TERO on 01-661 8640 (Direct Line). Cheques and Postal Orders payable to REED BUSINESS PUBIJISHING and crossed.

## RF PROJECT ENGINEER

NAD Electronics Ltd., the world-renowned producer of specialist hi-fi products is looking for an RF Project Engineer to take over the design of its range of state-of-the-art FM tuners.
You will be working on the design and development of FM and AM radio and TV tuners and all their associated circuitry. This will include front-end, FM demodulator, stereo decoder and frequency synthesiser design together with microprocessor control of the whole system.
Experience in RF design, up to at least 100 MHz , is essential as is some experience with broadcast FM systems. Familiarity with microprocessor systems would also be useful. There will be ample opportunity to branch out into the other areas of electronics design offered by our wide range of products.
The candidate should be qualified to degree level and have three to four years' relevant experience. He/she should be self-motivated and able to work with the minimum of supervision
A salary in excess of $£ 20,000$ is on offer to the candidate who has the right combination of experience, abilities and potential.

Please send CV to: Chris Evans,
NAD Chief Engineer, NAD Electronics Ltd., Adastra House, 401-405 Nether Street. London N3 1OG or telephone 01-349 4034 for further information

## AMANUENSIS

## HARDWARE/SOFTWARE ENGINEERS

We have a large number of local and notionol clients requiring the following skills at all levels MARDWARI: Contact David Dormany of the affice SOFTWARR: Contoct Anno Andrew of the oftice or (0536) 7911 al (home) Operating Systems Unix, VMS, MS DOS angueges (Modulo 2. Pastal fortran Applications Oracle, DBoselll-, CAD/CAM Assemblers $680 \times 0,80 \times 86,8085,280$, Comms WANS LANS, Telecoms Comms WANS, LANS, Telecoms any combinatian o
Microprocessors $68 \times \times$ seres tin paracular 6809) Design of onalogue or diatol
Rudio Dota commulications
( $A D$ ond multis single loyer pcb design
Image anolysis and video A D conversion
Networkin
and PC
Computer systems and peripheral maintenance Project Development Managemen Sales/Marketing Applicotions Engineers/Field

```
Service or Tes!
```

AMANUENSIS RECRUITMENT 20 NEWMARKET ROAD CAMBRIDGE CB5 8DT \% 0223354978

## SALES PERSON

Sales peison wanted, preferably with technical background or understanding of communication systems to sell communication products to both the commercial and government secto The applicant must have sales experience in landmobile radio communication products artion of the time will be spent on travelling Salary plus commission and comoany car Realistic earning potential up to $£ 2$
Mrs C. Webster, Communique UK Lid Communications House. Purley Avenue. Communications House. PB
London NW2 1SB

Wanted urgently Practical people for the Third World.
Many people want to help the Third World. But relatively few can offer the kind of help wanted most: the handing on of skills and professions which lead to self-reliance.
You could make this priceless contribution by working with VSO.
Current requests include:


For more details, please complete and return to: Enquiries Unit, VSO, 317 Putney Bridge Road, London, SW15 2PN. Tel. 01-780 1331.
Conditions of work: $\bullet$ Paybased onlocal rates $\bullet$ Posts are for a minimum of 2 years - You should be without dependants • Many employers will grant leave of absence.


Helping the Third World help itself.
rsp exmp upprociand
Charly no. 313757.

## ELECTRONICS TRAINER

## at Camden ITEC

Camden ltec is one of 175 training schemes in Information Technology for young people aged between 16 and 18. It has European links especially with Denmark. We are looking for someone who has practical experience of Digital. Analog, and mechanical systems to work in our hardware department.

Applicants should preterably have an ONC/HNC or City and Guilds full technical certificate in electronics

Hours 9.00am to 5.00 pm five days a week. Holidays 6 weeks per year Salary on scale £10,162-£14,344
Further information from Ross on 01-485 3324. Send C.V. to Camden Itec, 7 Leighton Place, London NW5 2QL.

## CAPITAL RADIE゚9:56isi

## CAPITAL RADIO ENGINEERING DEPARTMENT

## MAINTENANCE ENGINEER

Capital Radio"s Engineering Department has a vacancy for a suitably qualified maintenance engineer. Applicants should have a good working knowiedge of microp-rocessor-based systems, particularly when applied to machine control in a broadcast environment. A working knowledge of the C programming language would be an advantage. In addition, applicants should have had previous experience of broadcast systems or be able to demonstrate an understanding of the operations of the components of a broadcast chain.
Applicants should be in possession of a full current UK driving licence and may be expected to work on a shift rota which includes weekends. Starting salary will be not less than $£ 14,766$ for a suitably qualified candidate
Applications, in writing, should be addressed to Sue Davies, Head of Personnel, Capital Radio plc., Euston Tower, London NW1 3DR and should arrive not later than 4th September, 1989.

ST. LOYE'S COLLEGE FOR TRAINING THE DISABLED FOR COMMERCE AND INDUSTRY

## ELECTRONICS SERVICING INSTRUCTOR

The College requires imniediately a practising Electronics Service Engineer with broad training and recent field and/or workshop experience of micro computers. to instruct on a highly skilled City and Guilds 224 course of training The successful candidate will be required primarily to give practical bench training in lault diagnosis techniques and must be familar with micro test equipment leg. logic analysers) Previous instructor experience desirable but not essential Salary $£ 10.363$ to $£ 11.469$. currently under review

Letters of application, together with a curriculum vitae and names and addresses of two referees should be submitted to The Deptuy Principal. St. Loye's College. Topsham Road. Exeter, Devon, EX2 6EP.
St Loye's College is an Equal Oppartunities Employe

## RF <br> DES ENGS

Extremely Competitive Salaries

Circuit and System design using leading edge radio architectures.

If you would like to hear about outstanding UK and European opportunities to work in satcoms, C'I radar, mobile radio and personal comms, call Ingineur on:
0926817612
INGINEUR LTD (Agy), Pendicke Street,
Southam,
Warks CV33 0PN
Ingine UR
ENGINEER • IN • EUROPE

## PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY SENIOR/PRINCIPAL TECHNICAL OFFICER

Department of Electricel © Communication Engineering

Salary per annum: Senior Tecnnical Oftice K19295-k21 420 Principal Tec'nncal Otticer K22 645 (level of appointment will depend upon qualifications and experience Intial contract perdod is normally for three years but shorter periods can be negntiated Othe nonwits include a gratuity of $24^{\circ}$, taxed at 2 o support tor approved research appointment and
toua* inct retting-out allowances six weeks pard leave per year education tares and assistance row ints school lees free housing salary protectiont plan and medical beneht schemes are ivalable Stalf members are also permitted to earn from consultancy up to $50^{\circ}$ t ol earnings zunually
Det uled
Det iled applications (two copies) with curriculum vitae and the names and adidresses of three should be including telephone number and indication of earliest avalability to take up appointmen Lae Papua New Guinea by 4 August 1989 Appicants resident in the UK should also send one copy to Appointments ( 36571 ), Association ol Commonwealth Unversities 36 Gmdon Square

Sammy's
SAMUELSON FILM SERVICE LONDON LTD

## Senior Service Engineer

required to work within our Samcinevision Hire Department. We are a major supplier to the motion picture film industry of video, sound and film editing equipment. The successful candidate should ideally have experience of servicing video equipment, basic computer hardware
and be educated to HND standard in electronic and electrical engineering.
The work also involves some R\&D
Please send CV to Steve Gampbell, 21 Derby Road, Metropolitan Centre, Greenford, Middx U86 8UJ Closing date: 18th September. 1989

## FOR MORE INFORMATION <br> Call: <br> CHRIS TERO <br> ON <br> 661-3033

## TECHNICAL AUTHORSHIP

There is a constant demand for technical authors throughout industry If you have a technical background. a qualification in echnical authorship can open up a prospect of a new and rewarding career. For detals of a comprehensive Open Learnıng Course, leading to recognised qualifications in this field. send for free information pack to TUTORTEX SERVICES WW4 Freepost ULVERSTON
Cumbria LA12 7BR
Telephone: 022956333

## COURSES

## IBA <br> TRAINING

## Short Course Programme

All dates are star: dates All fees exclusive of VAT
Communications

- Introduction to X25 Protocol- 2 days, 18 Sept, 6365 Digital Communications 1 - 1 week, 27 Nov, 1650 - Digital Communications 2 - 2 weeks, 27 Nov, 11200

Television
Video Distortion Measurements - If days, 18 Oct,28 Nov, E255
Television Principles - 1 week, 4 Sept, 6 Nov, 1650 TV Principles \& Measurements - 2 weeks, 4 Sept, 6 Nov, f1200

## Transmission

-TV Signals \& Measurements (Video \& RF) - 3 weeks, 6 Nov, f1800
Radio \& TV Transmission - 2 weeks, 25 Sept, 11200
Radio Transmission (MF \& VHF) - 2 weeks, 4 Sept, 23 Oct,
11 Dec, 11200
Satellite Television
Introduction to Satellite TV \& MAC systems
20 min video (non-Technical) 148
DID2 MAC- Packet, Distance Learning \& 23 min video, 1522
Engineering Publications Service
For details call S:uart Webber on 0297-22051
Harman Engineering Training College (ww2)
Fore St Seaton Devon EX12 2NS Fax 0297-24419

## TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

## LARGE QUANTITIES OF RADIO, TV AND

 ELECTRONIC COMPONENTS FOR DISPOSALSEMICONDUCTORS, all types. INTEGRATED CIRCUITS. TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc RESISTORS. C/F, M/F. W/W. eIC CAPACITORS. SILVER MICA. POLYSTYRENE. C280. C296. DISC CERAMICS, PLATE CERAMICS, etc ELECTROLYTIC CONDENSERS. SPEAKERS. CONNECTING WIRE. CABLES. SCREENED WIRE. SCREWS. NUTS. CHOKES. TRANSFORMERS, etc ALL AT KNOCKOUT PRICES Come and pay us a visit ALADDIN S CAVE
TELEPHONE: 445 0749/445 2713

> R. HENSON LTD

21 Lodge Lane, North Finchley, London N12.

## MANUFACTURERS SURPLUS STOCKS

Electronic Components, Test Gear, Radiotelephones, Computers, Photographic and Video Equipment. All at knockout prices. Export and Trade Enquiries Welcomed. Catalogues available from B. Bamber Electronics,

5 Station Road, Littleport, Cambs CB6 1 OE Telephone: Ely (0353) 860185

## HAVING DIFFICULTY OBTAINING AN OBSOLETE

 VALVE/MAGNETRON/KLYSTRON?(or transistor, I.c., CRT, trav wave tube etc)

* RARE \& OBSOLETE TYPES A SPECIALITY!
- ALL POPULAR TYPES STOCKED AT COMPEITITYE PRICES
- SPECIAL PRICES FOR WHOLESALE QUANTIIES
* OFFICIAL DRDERS FROM GVT DEPTS, MILTIARY, PLCs, OVERSEAS ETC. WELCOME
* PHONE/FAXTELEX FOR UP TO DATE PRICES ON YOUR REQUIREMENTS

Visa - Barclaycard - Access accepted
BILLINGTON VALVES
Good quality - Low price - Rarities a speciality
39 Highlands Road, Horsham, Sussex, RH13 5LS, UK. Phone: 0403 210729. Fax: 0403 40214. Telex: 87271 Office hours Mon-Fri 9am-5.30pm. Callers welcome by appointment only


## UNIQUE HIGH SPEED COMPUTER CONTROL SYSTEM

Are You Efficient? Do You Progress Jobs?
Do You Carry Stock? Do You Have Answers for your Customers at your Fingertips?
We can offer you a totally tailored computer package which will revolutionise your business.
For information and prices, contact Martin at:

## Dardsoft

25 The Auto Centre, Erica Road, Milton Keynes.
Tel: (0908) 310226

## SUMMER SALE

OSCILLOSCOPES \& GENERAL TEST EOUIPMENT All items supplied in tested and working condition. Calibration verified at no extra cost

TEK 475200 MHz - D. Beam - DT. Base

Philips PM3218 35MHz E325 Philips PM321750MHz £325
Cossor CDU150 35MHz £149
SE LABS SMIII 18 MHz £145

```
                        SPECIAL
MARCONI TF 2008 SIGNAL GENERATORS \(10 \mathrm{KHz}-510 \mathrm{KHz} \cdot\) AM-FM SWEEP £400
Wooden Box' of accessories also available at \(£ 40\) Also
Telequipment CTI7 curve tracer - mint
£350
Marconi TF2015 Sig Gen's 10 Mnz - 520Mnz AM-FM
Marconi TF2002AS Sig Gen's IOKhz - 72Mhz AM-FM
Marconi TF 2603 RF Millivolt 10 1.5Ghz
Accessory kits available
```

Racal Dana 9915 M TXO 8 digit DFM 510 MHz LED
Advance DMM3 Mains/Batt Digital Multimeters
incl. case/probes
£45
Megger Insulation testers $250 \mathrm{v}, 500 \mathrm{~V}, \mathrm{~V} 8,9 \mathrm{~A}$ £35-£50
MANY, MANY more items in stock and arriving daily at our three acre depot in Nottingham. We are open to callers 9am - 6pm weekdays 8am - 4pm Saturday
Rob Taylor (Technical Manager) Anchor Surplus Ltd., The Cattle Market Dept., off London Road, Nottingham NG2 3GY Telephone (0602) 864041 or Fax (0602) 864667


## TEST EQUIPMENT FOR SALE

contact
COOKE INTERNATIONAL
Unit 4, Fordingbridge Site,
Main Road, Barnham, Bognor
Regis, West Sussex PO22 0EB Tel: 024354111 Fax: 0243542457
Wide range of ttems available Send for lists

## ARTICLES WANTED

## WANTED

Receivers. Transmiters, Test Equipment, Components, Cable and Electronic Scrap Boxes. PCB's, Piugs and Sockets, Computers. Edge

TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT. A. R. Sinclair, Electronics Stockholders, 2 Normans Lane,

Rabley Heath, Welwyn, Herts AL6 9TO
Telephone: 0438812193 Mobile F 0860214302 Fax 0438812387

## STEWART OF READING

110 WYKEHAM ROAD.
READING RG6 1PL.
TEL:0734 68041. FAX: 0734351696
TOP PRICES PAID FOR ALL
TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

## WANTED

Test equipment, receivers. valves transmitters. components, cable and electronic scrap and quantity Prompt service and cash. M \& B RADIO 86 Bishopgate Street Leeds LS1 4BB. Tel: 0532435649 Fax:0532 42688

## PCB's DESIGNED AND DRAFIED

CADimanual designs undertaken for single/double sided boards from initıal idea to prototype. Testing and production service if required. Ouality product to meet your deadline needs. Ouality in design and rapid service guaranteed.
PCB DESIGN AND DRAFTING SERVICES
$01-316$ 957 day 01-552 2346 eve

# Techmoldey GRADUATE <br> OPPORTUNITIES IN TECHNOLOGY FOR GRADUATES \& UNDERGRADUATES <br> <br> What Do Undergraduates <br> <br> What Do Undergraduates and and <br> <br> Graduates Think of Your Company's Image? 

 <br> <br> Graduates Think of Your Company's Image?}

Whatever your graduate requirement, be it 50 of next years graduates or a single technology graduate with up to two years experience . . . look no further.
Britain's biggest, most colourful graduate magazine has 25,143 entirely requested copies covering EVERY UK higher educational campus and a further 10,077 individually mailed copies to professional graduates with up to two years sčience-based experience.
Technology Graduate has an image-building package for your all-important corporate profile.
For full details of rates and dates call Paul, Miles or Mike on 01-661 3112/3406

## CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Electronics \& Wireless World" Classified Adventisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate $£ 6$ PER LINE. Average six words per line. Minimum $£ 48$ (prepayable)
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus $£ 15$.
- Cheques, etc., payable to "Reed Business Publishing" and cross "\& Co." $15 \%$ VAT to be added.

NAME
ADDRESS
$\qquad$

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

## TROK 3.5 INCH DRIVES E9.50 + Vat

Japanese made (YE-DATA) high
reliability, modern, Iow component
count, cast chassis drive. Surface
mount design. These drives have been
removed from almost new systems
being upgraded. They are in perfect
condition, are boxed and carry a full six
month (money back if not satisfied) guarantee. 80 track double sided 1 M byte (unformatted). $\mathbf{E 3 9 . 5 0}$ each (Carriage §3) $\mathbf{£ 3 5}$ ten or more. Quantities of 25 or more POA.

## RACAL V22 MODEM MPS1222

Microprocessor based modem providing full duplex communication at 1200,600 and 300 baud to the CCITT V22 standard. Features include: Can be used on standard telephone line (PSTN) and
private circuit (PC) \& Auto answer but needs
telephone to dial 1200.600 and 300 baud Very high quality
construction * BT. Approved * Self tests and loop tests (V54)

* Comprehensive manual included. Cased £55.00 Uncased card £24.95 Seven Cards in rack $£ 195$ (Carr, one £3.50; seven £15.)


## EPSON 12" TL MONO MONITORS (GREEN)

High resolution, IBM and Hercules compatible. TTL £48.50 (Carr. £5.50)

## HARD DISC DRIVES

CDC Wren 80 M byte ST $50632 \mathrm{~ms} \mathbf{£ 3 4 9 . 0 0}$ (Carr. £5)
CDC Wren 35 M byte $£ 129.50$ (Carr £5)


## FLOPPY DISC DRIVES

Shugart SA455 5.25" (360K IBM) 40 track double sided $\mathbf{£ 3 4 . 9 5}$ (Carr. £3.50) Panasonic 5.25" (720K IBM) 80 track double sided $\mathbf{2 4 . 9 5}$ (Carr. £3.50) Y-E Data 3.5" (720K IBM) £39.50 as above.

## DISC DRIVE CASES

Quality case for up to four $5.25^{\prime \prime}$ disc drives complete with switch mode power supply providing +5 V and +12 volts $\mathbf{\$ 1 9 . 9 5}$ (Carr. £3.50)

## POWER SUPPLIES

Farnell N300 R113U cased 300 Watt PSU +5 V at $40 \mathrm{~A},+12 \mathrm{~V}$ at $5 \mathrm{~A},-12 \mathrm{~V}$ at $5 \mathrm{~A}_{1}+24 \mathrm{~V}$ at $5 \mathrm{~A}_{1}-5 \mathrm{~V}$ at 1 A (List price $£ 244$ ) £49.50 (Carr. £4) Farnell N180 cased 180 Watt PSU +5 V at $20 \mathrm{~A},+12 \mathrm{~V}$ at $2 \mathrm{~A},-12 \mathrm{~V}$ at 2 A , +24 V al 5 A and -5 V at 1A. £26.95 (Carr. £3)

Visa 8 Access
accepted 24 hour
phone service

## DAIS YWHEEL PRINTERS

Olivetti: 25 CPS. daisy printers complete WITH DUAL BIN
SHEETFEEDERS and RS232 interface. Emulates IBM. Qume and Olivetti. Ribbons available. E175.00 (Carr. £6.50
Triumph Adler Royal: 20CPS 132 column, variable pitch, all the features that you would expect froim a quality printer. Six month guarantee, ribbon and typewheel included. RS232 interface only $\mathbf{£ 9 9 . 5 0}$ (Carr. £6.50) HURRY STOCKS COMING TO AN END

## FACIT ULTRA FAST DOT MATRIX PRINTERS

Prints at up to a maximum of 500 CPS . Made to a very high standard for continuous use. Compact slimline desktop model (only 26 inches wide) [349 (Carr. £25)

## HITACHI COLOUR MONITORS

CM1457AE $14^{\prime \prime} \mathrm{PGA}, 30.48 \mathrm{KHz}$. Can be converted to VGA for approx. $\sum 75.00$ to provide high quality maximum 640 by 480 . $\mathbf{1 4 9 . 0 0}$ (Carr. £6.50)
CM1588 15" very high resolution but no details hence $\mathbf{\Sigma 1 5 9 . 0 0}$ (Cart £6.50)
CM2073A 20 " ultra high resolution two models $64 \mathrm{KHz} \mathbf{£ 5 9 5 . 0 0}$ or 51 KHz £495.00 (Carr. £30)
CM1255DE $12^{\prime \prime} 24 \mathrm{KHz}$ suit Olivettit or convert to EGA? £85.00 (Carr 55)

TRANSDATA Model 307 ACOUSTIC MODEM
V24 interface, 300 Baud. originate mode, etc. Fits modern or old style phones $£ 9.95$ (Carr. £3.00)

## STC SCRIBE KEYBOARDS

Keyboards as supplied with Scribe wordprocessors. These are serial units but no data is available. $\mathbf{£ 5 . 9 5 \text { (Carr. £3) } { } ^ { 2 } \text { ) } { } ^ { 2 } \text { . }}$
SOUND EQUIPMENT all second-hand

## ST•'DIO LOUDSPEAKERS

EX BBC LS5-1 or 5-2 15" bass plus 2 HF units $\mathbf{£ 9 9 . 5 0}$ pair (Carr. £30) ALTEC 400 watt $15^{\prime \prime}$ Dual Concentrics. Suit large studio or small Hall very high quality $\mathbf{£ 2 4 9 . 9 5}$ (Carr. £50)

## EDC RADIO MICS

Cygnus hand held system complete with mic, receiver, case and cables. £199.00 (Carr. £4)

## PA LOUDSPEAKERS

Good selection of equipment including 1 K WATT SYSTEM £495.00 stage wedges mini speakers, 200 Watt system, Horns all at very low prices to clear warehouse space. Please ring for details.
VAT and Carriage must be added to all items.
Everything new unless slated otherwise
Matmos Lid. Electronics, UnIt 11, Lindfield Enterprise Park, Lewes Road,
Lindfield, Wesi Sussex RH16 2LX
Telephone: (04447) 2091 or 3830 Fax: (04447) 4258

## THIT: TO ADUERTISERS

## Appointments Vacant Advertisements appear on pages 932-935

| PAGE | PAGE | PAGE |
| :---: | :---: | :---: |
| AEL Communications ............ 849 | Johns Radio ........................... 883 | Rohde \& Schwarz .................. 889 |
| Airlink Transformers ............ 883 | Kestral Electronic |  |
| Audio Electronics .................. 878 | Components ..................... 926 | Sherwood Data Systems .......... 897 |
| Carston Electronics............... IFC | LJ Technical Systems ............ 883 | Solex International .............Insert |
| Cavendish Automation ........... 902 | Lab-Volt (UK) ............... 849/OBC | South Midlands |
| Communique UK .................. 901 | Langrex Supplies ................... 911 | Communications ................ 919 |
| Computer Appreciation .......... 919 | Laplace Instruments............... 865 | Sowter Transformers ............. 926 |
| Display Electronics ................ 915 | Levell Electronics .................. 865 | Stag Microsystems ................ 878 |
| Field Electric .......................... 926 | M \& B Radio (Leeds) .........919/926 | Stewart of Reading................. 911 |
| Henrys Audio Electronics 844 | Natel Electronics ................... 861 | Taylor Bros (Oldham) ..... 842/IBC |
| Henrys Audio Electronics ........ 844 <br> Hitachi Denshi(UK) 846 | Number One Systems ............. 893 | Thandar Electronics ............. 865 |
| Hitachi Denshı (UK).............. 84 | Pineapple Software ................ 861 | Those Engineers.................... 905 |
| Ian P Kinlock ........................ 911 | R Henson .............................. 911 | Thurlby Electronics .............. 905 |
| ICOM (UK)........................... 878 | Research Communications ..... 931 | Triangle Digital Services........ 846 |

[^9] SA4 4LL. For the proprietors. Reed Business Publishing Led. Quadrant Ilouse. The Quadrant. Suton. Surrey SM2 5AS. OReed Business Publishing 1.Ad 1989 . Ehectrons and Wirdhss Worf/ can be
 Electronis \& Wireless Wurld $\$ 5.951745131$

## TAYLOR

## R.F. EQUIPMENT MANUFACTURERS

PERFORMANCE


## Prices

CCIR/5-1 1 Modulator $£ 109.76$
CCIR/5-2 2 Modulators $£ 167.99$
CCIR/5-3 3 Modulators $£ 237.59$
CCIR/5-4 4 Modulators $£ 307.19$
CCIR/5-5 5 Modulators $£ 376.79$

## Telecommunications Trajning from fundamentals to state-of-the-art technology

Lab-Volt offers a comprehensive range of telecommunications training equipment that covers basic electronics, analogue and digital communications circuits and systems, fibre optics, and microwave and radar technologies.

Our equipment is:

- modular and easy to upgrade
- industry relevant
- engineered for educationaL_purposes.

Lab-Volt closely relates its telecommunications training equipment to operational systems found in industry, with educational enhancements such as fault insertion switches in many of the modules, labelled and easily-accessible test points, shortcircuit protection, silk-screenedcomponent identification, and full signal compatibility for system-level modules. We supply student and instructor manuals that are written specifically for the equipment; they provide practical hands-on technical training with step-by-step exercises, laboratory experiments, and troubleshooting activities.


For more information about our telecommunications training equipment, please contact:


Lab-Volt (U.K.) Ltd.
4A Harding Way

- under development

Industrial Estate
St. Ives
Cambridgeshire
PE17 4WR
Or Call: 0480300695


[^0]:    CARSTON ELECTRONICS LIMITED 2-6 Queens Road Teddington - Middlesex TWII OLR Tel: 01-943 4477 Fax: 01-9779232 Telex: 938120

[^1]:    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    

[^2]:    ENTERI7 ON REIPI. CARD

[^3]:     Theral Reposta - Ihe Wortingen the AWAS
    

    Noter on the Honse are by chris Peounder

[^4]:    *Sec Pioncers. Electromics \& Wireless World Augus 198x. p.825-826.

[^5]:    RF Connections is written by Pat Hawker.

[^6]:    HEWLETT PACKARD MODEL 5501A LASTER TRANSDUCER．With plezoelectric tuning \％or precise control
     and all eyepieces With 4 Microplan objectives \＆Nomarski interference contrast．virible illuminator etc An

    KRATOS MS30 DOUBLE BEAM MASS SPECTROMETER APproximately 8 years ofd $w$ th nc yative ion capablity
     on line DATA GENERAL OS60 computer system which includes a graphics printet \＆two TEKTRONIX 4014
    terminals analyses outpul The various sections of the instrument may be avalable separat ly A new tugh llux
    magnet was lithed shorlly betore the instrument was oncomm ssioned

    SPECTRA PHYSICS MODEL 164 4 WATT ARGON ION LASER with MODEL 265 POWER SUPPLY and SPECTRA PHYSICS MODEL 164 A 30 mW HELIUM NEON LASER with power supply A powerful Helium Neon
    
    LUMONICS SYSTEM 2000 RUBY LASER with Q switch temperature controlled KDP trequ ncy doublh ，output power Hetve laser for mirror alignment and all manuals are uncluded Current new price of equivalent model
    HEWLETT PACKARO Model SO45A digital IC lester with CONTREL Model H3t0 avomatic handier．With With tull complement of pin dirver catds 8 complete with substantal ibriary of mag card tes＇pr pgrams tor 74 series
    TTL 8 other ICs CONTREL handler allows fully automatic testing of 1 Cs wh ch are sorted into 2 bins Price includes aecond HP5045A toelleved fully operationaly for maninenance back up very useful tor te ycung chips orignall cost over $£ 600000$
    ther with
    $[99.50$
    IT PERFECTOR TELEX MAC
    GIOMATION Model 810D LOGIC ANALYSER．COmbines with any oscilloscope to provide B channel log $C$
    DIGITAL Q－BUS，box，power supply，and 8 ．dual slot backplane．all brand new Needs easy modification
    （ 14 wirewrap connections）to update．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 75.00$
    TEKTRONIX Model 4051 intelligerl graphics display with BASIC in ROM and RRCA t spe antr dge drive Good
    TRIUMPH ADLER ROYAL OHICE Master 2000 DAISY WHEEL PRINTERS． 20 cps ．FIII IBM \＆DIABLO 630 COMPATIELLITY．EENTRONICS NTEAFACE．Fearure
    
    PLESSEY Model T24 V22V22 bis 2400 Baud MODEM．Including free software disc for tBM or MATMOS PC Compact automatic moocerm leaturing the latest technology 8 the highest possible dana fate over the ordinaty operalion on both ordinary phone（PSTN）\＆privale circuit（PC）auto call and auto al Sw p duplex operation allowing simulaneous transmission \＆reception sitale tor new PRESTEL VZ2bis serv ce

    Please note：＊VAT \＆carriage（also ．VAT）must be added to all prices． ＊Guarantees vary from item to item，please enquire before purchase，＊A full stock list with many other items and special offers is available on request．

[^7]:    
     me bidhorm

[^8]:    Analogue Action is compiled by Dr Johm lidge'y of the Schood of lingincering. ()aford l'olytechnic.

[^9]:    OVERSEAS ADVERTISEMENT AGENTS
    France and Belgium; Pierre Mussard. 18-20 Place de la Madelaine. Paris 75008
    United States of America: Jay Feinman. Heed Business Lid. 205 East 42nd Street. New York. NY 10017 - Telephone (212) 8672080 - Telex 23827.

