

TAYLOR RF/VIDEO MEASUREMENT INSTRUMENTS

MEASUREMENTS MADE EASY

$\begin{aligned} & \text { UNAOHM EP741FMS } \\ & \text { FIELD STRENGTH METER/SPECTRUM ANALYZER } \end{aligned}$	
Frequency Range:	38.9 M 1 lz io 860 MHz . continuously adjustable
Frequency Reading	TV Bands - 4 digit counter with $100 \mathrm{~K} 11_{2}$ resolution FM Band - 5 digit counter with 10 KHz resolution Reading Accuracy: reference Xtal +/-1 digit
Function: TV Monitor	NORMAL: picture only ZOOM 2 to 1 horizontal magnification of picture
1'anorama:	Panoramic display of the frequency spectrum within the selected bind and of tuning marker.
T'anorama Expansion	Adjustable expansion of a porion of the spectrum around the tuned frequency.
Aralogue Measurement:	20 to 40 dB . Static measurement of received signal. Scale calibrated in dBuV (at top of picture tube) to rms value of signal level.
IDC/AC Vollmeter:	5 to 50v.
Measurement Range:	20 to 130 dBu in ten 10 dB attenuation steps for all bands. 60 to 130 dBuV in nine 10 dB steps for J.F.
Aeasurement Indication:	ANALOGUE: brighness seripe against calibrated scale superimposed on picture tube. The stripe length is proportional to the sync peak of the video signal
Video Outpu:	BNC connecior
DC Output	+12V/5/mA maximum. Power supply source for boosters and conve
TV Receiver:	Tunes in and displays CCIR system I TV signals. Other standards upon reque
Additional Features:	(1) Video input 75@. (2) 12 V input for external car battery. (3) Output connector for stereo earphones.
PRICE:	£1344.00) nerl, excluding V.A.T. and Carriage

UNAOHM EP742 FIELD STRENGTH METER/SPECTRUM ANALYZER	
Specification as EP741 + Synthesized Tuning 99 channels. Programme Storage. (EP8I 5 Satellite Converter can be added as illustrated) PRICE $\quad \mathbf{1 4 9 8 . 0 0}$ netr, excluding V.A.T. and Carriage	
UNAOHM EP815 T.V.SATELLITE CONVERTER	
Frequency Range of Input Signal:	950 MHz o 01750 MHz . Frequency is continuously adjustable ihrough control.
Frequ	neeter of the associated fie
Input Signal L.evel:	From 20 to 100 dBuV in two ranges -20 oto 70 and 70 to 10
Parm	Avaliable al BNC input connectors as follows: 15 V DCCO. 5 A intemal or 25 V DC maximum external.
Salus Indic	Continuity. overload and shor circuit conditions of power circuit are all shown by LED lights
nodulation:	FM for PAL and SECAM coding. Switching to MAC system is provided together with room for an optional MAC deconder.
Audio Sulcarrier: PRICE:	5.5 Milz to 7.5 MIIz continuously adjustable. Provision for an automatic frequency control. $£ 536.20$

UNAOHM EH 1000
TELETEXT AND VIDEO ANALYZER
Function: Eye Parterm: display of RF and video-frequency teletext signals by means of eye patierm diagrams both in linear representation and hissajous figures (0 and X). selection: display of video signals and line by line selection. Measurement of modulation depth. Teletext: monitoring of ieletext pages.
Frequency Range: 45 io 860 MHz . Frequency synthesis. 99 channel recall facility. 50 KH 1 z resolution, 30 channel digital memory. Level: 40 to 12 OdBuV ; atrenuator

continuously adjustable Indication of the mine | continuously adjustable. Indication of the minimum level for a correct operation of |
| :--- |
| the instruments |
| Impedance 75Ω | Alinimum Voltage: $1 V_{\text {Pp }}$. Impedance: 75Ω or $10 \mathrm{~K} \Omega$ in case of a through-signal.

Connector type: BNC Connector type: BNC

Voltage: $1 \mathrm{~V}_{\mathrm{Pp}} / 5 \Omega$

Voltage: $1 \mathrm{Vpp} / 75 \Omega$. Measurement: \wedge perture of eye pattern: linear or Lissajous figures. selectable. Indication: directly on the picture tube. A calibrated scale shows percentage of eye pattern aperure. Error: the insmumient introduces an error clocs: tess than or equal to 25 ns. Line selector: Selection of any $T V$ JV line between the 2nd and the 625 th scanning cycle by means of a 3 digit thumbwheel swiich.
IERTICAL CHANNEL Sensitivity: 0.5 to $2 \mathrm{Vpp} / \mathrm{cm}$. Frequency Response: DC to 10MHz. Rise time: pre \& overshool less than or equal to 2%. Input Coupling: AC Intur Impedance: $75 \Omega / 5$ op F.
 BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND. OL8 1EE TEL: 061-652-3221 TELEX: 66991। FAX: 0616261736
price:

AUGUST 1989 VOLUME 95 NUMBER 1642

754
Sound in the picture. The NICAM system of stereo sound for TV explained

761Saws and superhets. Surface acoustic wave filters can bring dual-conversion performance to single conversion UHF receiver designs.

772

Review - Cad on the Beeb. The $B B C$ computer refuses to lie down and die. We present reviews of three cad packages

Pioneers: Sir Charles Tilston Bright. At the tender age of 24 , Bright engineered the first transatlantic signalling cable

814

Single-bit oversampling A-toD) converter. Set at the heart of a battery powered telemetry transmitter, the converter provides more than 70 dB signal to noise ratio

822

Review - Pads Superstation.
We review a PC-based cad suite for drawing, schematic capture and PCB layout.

829

Phasor transforms.
Eliminating the time element in sinusoidal circuit analysis by phasor transform simplifies calculations.

779
Microwave engineering - the future. Hugh McPherson of Heriot Watt University speculates about tomorrow's microwave scene.

Microwave television. Local microwave broadcast services - like those in use in the USA since the late 1950 s - could soon be appearing in the UK

784 Flat-plate satellite tv antenna. Will this new development allow the cheapest satellite-TV antennas?

787 Designing patch antennas. Tim Forrester presents a designer's guide to MMIC-compatible antennas.

Waves apart. Advances in design techniques mean that you can now have a high-performance, multi-function spectrum analyser at a more realistic price

792

Fresnel antenna. The idea of the Fresnel microwave antenna has been around for many years but it didn't seem to work in practice. Fichard Lambley reports that Mawzones has come up with a solution

794

Op-amps from GaAs technology. Microwave
techniques are applied to make 10 GHz op-amps and 500 MHz -clocking switched-capacitor filters.

797

MMIC-compatible antennas. Pogress in antennas for coupling to millimetre-wave ICs is surveyed ty Alan Sangster.

800

Near-millimetre-wave techniques. An instrument capable of observing at frequencies from 100 to 900 GHz - the James Clerk Maxwell telescope - has revolutionised our understanding of the universe

REGULARS

747 Comment. Making sense of the world.
749 Research notes. Plasma power generators. Venus' ionosphere and the cold fusion damp squib.
758 On the House: The electronics indusiry and Parliament.
764 Circuit ideas: Pulse-width modulator and other designs
766 Update: News from around the industry. 808 Astra gets another 16 channels.
775 New products classified: The monthly at-d-glance components round-up.
806 Letters. Faster than light Weinstock and balls in this month's mail bag.
817 Book reviews.
819 Applications summary: A new radio chip, analogue/digital divider and Token bus interface
826 Analogue action: new architecture for op-amps.
833 RF connections: UHF direct frequency synthesis, Wavell and EMC.
836 Classified: Joh opportunities for electronics engineers.

> To all our readers in the United States - should you require further information about locations where you may conveniently find copies of Electronics \& Wireless World please call the distributors, Worldwide Media Service Inc., toll free, on 1-800-345-6478.

Sound and vibration research is the suljject of Research Profile, page 768.

Sattlite tv received on a simple, efficient and cheap flat-plate antenna - page 784.

Pioncer Venus Orbiter was designed to let us see under the planet's could cover - Research Notes, page 749.

next issue

In next month's issue. PC based systems. The September issue of Electronics \& Wireless World details how the IBM PC has escaped into the world of instrumentation and process control. As the machines now cost less than the most basic industrial rack computers, they threaten to take over the industrial and scientific scene.

[^0]CONSULTINCEDITOR
［＇iilip／Marringlon Franh（ogden
EI）ITCOR－INI）SIRYINSI（illT
Cowfrev Shorter，B．Sc （1）－60／\＄6．34
DEPUTYEITMOR
Martin Eicks （1）－66／ 86.38
（COMMUNICATIONSEDITOR Richard Lambley （1）－66／30．34
II．UUSTRNTION Roger（iondlanan （1）－66／K690）
DESI（iN \＆PROD）U（＂IION Alen Kerr （1）－66／8676
ADVERTISEMENTMANA（II：R l＇aul Kitcho＇n 0／－601．31．30
SENIGR ADVERTISEMEN＇I EXECUTIV：
Resdney Wersalle？
（1）－60／ $80+10$
（｀．ASSHFIED）SALESEXE（＇I＇IVI （ hrisoopher Tere） （1）／－6（0）303．3
AI）VERTISIN（；PR（）I）U（TII ）N
（lna Russ
（1／－60／Sot
PUBI．ISHIER
Susan／）om？ （1）－60／8゙よう？
FACSIMILE
（1）－60）8リリア

RI：I：I）
BUSINIESS
publisitinc；

Making sense of the world

Most elect ronics developments are evolutionary and have little overall significance on their own．But there are 1 wo are as of emerging technology which will affect our quality of life profoundly．
Neural networks and digital signal processing either separately or taken together promise far greater change than was brought about by the coming of the microprocessor．The micro simply added more functions to essentially familiar objects，creating digital petrol pumps，pocket calculators，highly intelligent washing machines and the like．But the newer technology promises machines which speak and understand my language or yours，that can synthesize a worldly way of thinking，that can directly influence the world about us．

Lotus makes fine sports cars．They are fast，but suffer from a high internal noise level due largely to the use of lightweight composite body shells．Certain combinations of road surface，speed and engine revs can create unpleasant resonances which affect driver and passenger comfort．Lotus called in TI which co－operated with the car firm to design an adaptive sound feedback system based on the semiconductor company＇s best selling 321120 DSP chip．The system listens to the vehicle noise and then works out the sort of row it should create inside the car to cancel the unwanted row from outside and elsewhere．It kills the noise dead．It simply requires four strategically placed microphones，$\$ 50$ of silicon arranged as a frequency and time adaptive filter，with the filter＇s audio output played through the car＇s own audio system．

GCHQ routinely monitors cable and satellite overseas telephone traffic using facilities at Cheltenham and Morwenstow on the north coast of Cornwall．It has automated the process．Banks of digital signal processors，programmed to respond to keywords of the sort expected in＂sensitive＂conversations，listen for their cue to turn on a tape recorder．The processors respond effectively to a variety of languages and accents．They are forever vigilant and never get bored．

Masses of DSP applications between these two extremes are already in existence． The world of test and measurement uses the technology as routinely as the Government．It has transformed spectrum analyser design to the point where it is not possible to conceive of a design without one．DSP can be used to recognize a voice，a thumb－print or a signature on a piece of paper．It simply demands the right signal and the right programming．
Electronic neural networks make use of massively parallel processors which link together according to the needs of，and stimuli from the outside world．This technology and the closely－related science of artificial intelligence have only just started down the development path and there are few useful things which they can do as yet．But that will change，everywhere．

Mimicking our own thought processes，their essence is to be able to do the sort of things which conventional computers can now do，but without the unnatural language of conventional computer programming．Machines are already in existence which will accept dictation．Robotics is looking to AI for a generation of obedient．amiable and tireless automata to staff our factories and offices．Before AI the willing robot was a pipedream．It is now becoming a reality．

It seems arguable that DSP and AI will make the world a better place．This new handful of sand will certainly make it a different one．

M H D - new hopes for clean power?

Magnetohydrodynamics - mercifully shortened to MIII) - could well emerge as the Cinderella of the energy seene. at least if theress a positive outcome to at new research project being undertaken at 3 NF - Metals Technology of Wantage in Oxfordshire. MIII) generates electricity by the direct interaction of fastflowing ionized gases with a magnetic field, thus bypassing the need for steam boilers and turbines. Also, because of the high temperature at which MIII) generators operate thermodyamic efficiency can be much greater
What happens essentially is that coal is burnt in the usual waty, except that the temperature is a lot higher and that a seed material (usually potassium carbonate) is added to ionize the gases. When the resulting plasma flows betwen the poles of magnet, it generates electricity in much the same way as any other generator. The difference is that whilst an ordinary generator relies on rotating copper wires, an MHID generafor uses gases at sonic velocities.
The generator itself can come in a variety of different forms, but at its simplest is a channel in which the plasma encounters the all-important magnetic field. With a field of around 0 testa amel a gas velocity of around $6010 \mathrm{~m} /$ s, output power density from collector electrodes can be as high as 24 MW per cubic metre of reactor space

The benefits of an MIII) generator are clearly considerable in theory: no moving mechanical parts, simple design. extremely compact and relatively efficient. The only reasons it hasn't replaced existing steam turbines are the formidable problems of designing a practical reactor. Experiments carried out twenty years ago by the CEB(Bl3 ran
into problems because of repeated component failure. Eksewhere difficulties have arisen from corrosion or from problems of operating at the necessarily high temperatures of around $25000^{\circ} \mathrm{C}$ Yet in spite of those difficulties, a number of reasonably successful pilot plants have operated in Japan, Australia, the LSSR, USA and ltals

In all these systems. houever. the magnets have placed a fundamental limit on efficiency. To create a fied ans high as fit theyve all used electromagnets which inevitably consume a significant proportion of the electricity that's generated. What IBNF Metals Technology is now doing is rescarching the design of permanemt magnets that woukdeliminate this problem.

It if succeds then MHI) generators are likely to have a practical future, not as stand-alone units. but as boltom devices to conventional power stations. The main reason for this is that the exhaust gases of an MIII) generator are still hot enough to boil water for driving a conventional steam turbine
But there's a second reason why it's considered a good idea to add MHID to conventional power stations: the elimination of pollution. The seeding process in which chemicals are added to make hot gases conduct electricity also necessitates a recovery system for those chemicals. Such a recovery swstem would simultancously remove sulphurous materiats from the coal and thus helptocliminate acid rain
All that seems necessary to get MIID off the ground is - as BNF has rightly identified - a detalited look at some of the basie ingredients like permanent magnets. . . and of course some fairly heftyl)(to AC inverters!

Lossless wave propagation

Photon torpedoes may not forever remain the preserve of Captain Kirk et al. aboard the Starship Enterprise. The notion of bundles of energy travelling through space without dissipation has recently taken a step towards reality as a result of work being undertaken at Houston University and at the Lawrence Livermore National Laboratory. Richard Ziolkowsky and his coworkers report (Phys. Rev. Lett. 9.1.89) that they have created ultrasonic pulses that can travel several metres in water without dispersing.

These acoustic energy-directed pulse trains (Adepts). which are thought likely to have their counterparts in electromagnetic radiation, are yet another hint that wave behaviour isn't only limited to what can be deduced from the laws of diffraction, refraction and reflection. Yet it is from these laws that the existence of Adepts was first hinted at. Ziolkowsky says that mathematical expressions describing the propagation of waves do actually allow for nondispersive transmission of energy.

His latest work, supported interestingly enough by the Strategic Defence Initiative, uses an array of underwater piezo-electric transducers designed to produce a pencil-thin beam of radiated energy. But unlike even the finest laser beams. Adepts do not spread outwards at all, at least not within the range so far achieved. Thereafter they rapidly lose coherence and dissipate.

Although a few metres in water may seem undramatic, the eventual applications of transmitting energy uithout loss could be revolutionary.

. . .And for the record books

Journalists (mea culpa) can so easily get hooked on the numbers game. . . "95-year-old twice-married grandmother of 20 wins 26 mile marathon in $2 \mathrm{hr} 30 \mathrm{~min}{ }^{-1}$ and so forth. There are occasions. however. when it's worth at least taking note of some of the more significant milestones in modern electronics. especially for those of us who can rementber marvelling at the prodigious speed of a 741 op-amp.
P.C. Chao et al. (Electronics Lethers Vol. 25 N (8) describe the successful
development of a high electron mobility transistor (HEMT) with a noise figure of 3 dB and a gain of 5.1 dB at $9 \nmid \mathrm{GHz}$. The team. from General Electric and Cornell University, claim that this device, with a gate width of $0.1 \mu \mathrm{~m}$, is the first ever low-noise transistor that would be practical for use in W-band receivers.

In the same issue of Electronics Letters, a West German team from Siemens and the Ruhr University at Bochum describe what they claim is the fastest
silicon static divider IC capable of working on a standard 5 V power rail. It's a four-stage 16:I divider with an integral $50 \Omega 2$ output buffer stage and operates at up to 15 GHz .
Faster (25 GHz) dividers have been made. but they either need higher voltage supplies or require the use of III-V semiconductors or exotic fabrication technologies. Achieving 15 GHz with a (more-or-less) bog-standard silicon technology seems impressive enough to me !

RF EQUIPMENT

LOW NOISE GASFET PREAMPLIFERS

Aligned to your specified frequency in the range $30-1000 \mathrm{MHz}$. Masthead or local use.
TYPE 9006. NF 0.6 dB . Gain $10-40 \mathrm{~dB}$ variable. In the range $30-250 \mathrm{MHz}$
.578
TYPE 9006FM. As above. Band II $88-108 \mathrm{MHz}$ 578 TYPE 9002. Two stage Gasfet preamplifier. NF 0.7 dB . Gain 25 dB adjustable. High Q filter. Tuned to your specified channels in bands IV or V £102
TYPE 9004. UHF two stage Gasfet preamplifier. NF 0.7dB. Gain 25 dB adjustable. High Q filter. Aligned to your specified frequency in the range $250-1000 \mathrm{MHz}$
£102
TYPE 9035. Mains power supply for above amplifiers $£ 39$
TYPE 9010. Masthead weatherproof unit for above amplifiers...... 112

TYPE 9006

TYPE 9002

WIDEBAND AMPLIFIERS
Monolithic microwave integrated circuits in a fully packaged microstrip module format. Full-wave shottky diode protected inputs. Temperature compensated bias circuitry. Voltage regulated local or remote operation.
TYPE 9007. 1-900MHz. NF 2.3dB at 500MHz. Gain 20dB.......... £150 TYPE 9008 Gasfet. $100 \mathrm{MHz}-2 \mathrm{GHz}$. NF 2.5 dB at 1 GHz . Gain 10 dB . Power output $+18 \mathrm{dBm}, 65 \mathrm{~mW}$
£150
TYPE 9009 Gasfet. $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 3.8 dB at 1 GHz . Gain 20 dB . Power output $+20 \mathrm{dBm}, 100 \mathrm{~mW}$.. TYPE 9253. $40-860 \mathrm{MHz}$. NF 6dB. Gain 30dB. Voltage output $100 \mathrm{mV}, 100 \mathrm{dBuV},-10 \mathrm{dBm}$

TYPE 9252
PHASE LOCKED LOOP FREQUENCY CONVERTERS
TYPE 9113 Transmitting. Converts your specified input channels in the range $20-1000 \mathrm{MHz}$ to your specified output channels in the range $20-1000 \mathrm{MHz}$. 1 mV input, 10 mW output (+10 dBm). AGC controlled. Gain 60 dB adjustable -30 dB . Will drive transmitting amplifiers directly £356
TYPE 9114 Receiving. Low noise Gasfet front-end. NF 0.7dB. Gain 25 dB variable.
£356

TMOS WIDEBAND LINEAR POWER AMPLIFIERS
TYPE 9246. 1 watt output $100 \mathrm{KHz} \cdot 175 \mathrm{MHz} 13 \mathrm{~dB}$ gain £108

TYPE 9247. 4 watts output 1.50 MHz 13 dB gain
TYPE 9271 £108 TYPE £108 TYPE 9176. 4 watts output 1.50 MHz 26 dB gain £254 TYPE 9177. 4 watts output $20-200 \mathrm{MHz} 26 \mathrm{~dB}$ gain £254 TYPE 9173. 20 watts output $1-50 \mathrm{MHz} 10 \mathrm{~dB}$ gain £308 TYPE 9174. 20 watts output $20-200 \mathrm{MHz} 10 \mathrm{~dB}$ gain $£ 308$ TYPE 9271. 40 watts output $1-50 \mathrm{MHz} 10 \mathrm{~dB}$ gain 5616 TYPE 9172. 40 watts output $20-200 \mathrm{MHz} 10 \mathrm{~dB}$ gain TYPE 9235. Mains power supply unit for above amplifiers $£ 164$

PHASE LOCKED SIGNAL SOURCES
Very high stability phase-locked oscillators operating directly on the signal frequency using a low frequency reference crystal. Phase noise is typically equal to or better than synthesized signal generators. Output will drive the Types 9247 and 9051 wideband inear power amplifiers and the Types 9252 and 9105 tuned power amplifiers.
TYPE 8034. Frequency as specified in the range $20-250 \mathrm{MHz}$, Output 10 mW
£120
TYPE 8036. Frequency as specified in the range $250-1000 \mathrm{MHz}$ Ouput 10 mW .
£170
TYPE 9182. FM or FSK modulation. $20-1000 \mathrm{MHz}$. Output 10 mW
£248

FM/FSK RECEIVERS

TYPE 9300 FSK data receiver single channel up to $200 \mathrm{MHz} \ldots \ldots 248$ TYPE 9301 FSK data receiver single channel $200-1000 \mathrm{MHz}$.....£398 TYPE 9302 FM receiver single channel up to 100 MHz £248 TYPE 9303 FM receiver single channel $100-1000 \mathrm{MHz}$.............. $£ 398$

FM TRANSMITTERS $88-108 \mathrm{MHz}$. 50 watts RF output
TYPE 9086. 24 V + DC supply
$£ 945$
TYPE 9087. Includes integral mains power supply $\mathbf{£ 1 , 1 1 0}$
TYPE 9182FM exciter $\pm 75 \mathrm{KHz}$ deviation. Output 10 mW $\mathbf{\Sigma 2 4 8}$

TYPE 9263

TYPE 9259

TELEVISION LINEAR POWER AMPLIFIERS
Tuned to your specified channels in bands IV or V. $24 \mathrm{~V}+$ DC supply. TYPE 9261. 100 mV input, 10 mW output..................................... 218 TYPE 9252. 10 mW input, 500 mW output....................................... 254 TYPE 9259. 500 mW input, 3 watts output $£ 290$ TYPE 9262500 mW input, 10 watts output..................................... $£ 530$ TYPE 9263. 2-3 watts input, 15 watts output $\mathbb{4 0 0}$ TYPE 926610 watts input, 50 watts output 1,585
See below for Television Amplifiers in bands I \& III.

TYPE 9105

TYPE 9158/9235

TMOS RF LINEAR POWER AMPLIFIERS
Tuned to your specified frequency in the range $20-250 \mathrm{MHz}$, or your specified channels in bands I or III. $24 \mathrm{~V}+$ DC supply.
TYPE 9105. 10mW input, 1 watt output... $\mathbf{£ 2 3 0}$

TYPE 9106500 mW input, 10 watts output $£ 284$
TYPE 9155. 1 watt input, 30 watts output ..
TYPE 9158.5 watts input, 70 watts output $£ 448$

COMPLETE TELEVISION RETRANSMISSION SYSTEMS
AVAILABLE
All prices exclude $p \& p$ and VAT.

Ahtoughmost of un are alwiare that stars fwinkle hecaluse of semperature－ inslaced turbulence in the atmonphere were perhaps kes familiar with the ionospheric irregularities that call canase twinkling at raclio wivelengths．It hapo pens essentiatly when vartiations in the solar wind interate with the Earth magnetic fichd and it affects radion trans－ missons passing through the ionos－ phere

It $:$ not just our larth．however，that has at winkling ionosphere：the effect has been ohserved on signals from keep space probes such as Voyager－2（Re－ seareh Notes．July ．page（ot8）as they ve passed close to Jupiter．Silturn innd Uramus．I Eith of these giant platmets has a trong magnetic fick which interacts with solat radiation to create its own ionospleres．

But until recemtly mosone knew whether l＇ents．our neatest platmet．had a magnctic fick srong enough to sup－ port an ionomphere．Now．to jublge from at reanalysis of datal from the Pioneer Venus Orhiter spatecraft（Science Verms Vol．1．5Nos）．Venus does indeedhate an ionosphere．William I．Sjogren． Richard Wood al．from the det Prop－ ubson L aboratory．Pasadenat．Were mapping the V＇enusian granitational fichd hy mearsuring Ioppler bhifts on radios signals from the spaceraft when they observed irregularities combeding with peaks in the solatr wind．But the irregularitien werent alwass present． nor could the be attributed to instru－
ment madfunction or direct interference from the Sun．

1：entually the tearn showed that the noise signals accurred onls when the spacecraft was on the side of Venus facing the Sun and thenonl！when it was orbiting low emongh for it sigals to pass through the Venusian monosphere The reason why the solar wind plas a part is that the matgetic fied is tow weak to hold it at hat and present it catsing the variatons in the onompheric －lectron density that in turn are re－ sponsible for the＇twinkles

Another panct with a weak magnetic fied that may have at twinkling ionos－ phere is Mars．Sadly．though，since the ，komise of the Russian Phobos probes We are unlikely to fand ant direct evi－ dence at keast not till the next spatcecraft－the［ 15 Mars Ohserter－ hどacout in that direction in I9リス。

Technology
 transfer

Ihone of us whon spent our sounger dits sticking transferson model Spitfire will probably warm lo an idead developed by Bell Communications．Resčarch in Red Banh．New lersey．For all practical purpose it $\stackrel{a}{ }$ allat totranster ultrathin gallium arsenide devices on to silicon substrate，thas obviating the problems of co－falhrication．

The new techniguce called epitavial liftoff．imole first convtracting al gat－
lime arsente device such as at thin film laser an a conventional 10.5 mim thick subveratc．I3ut the cheser bit lies in fïst （lepositing a cober－molecole－thicklayer of aluminium alrsenide between the sub－ －trate and the actise coomponents．F̈̈ntl－ If a latere of mechathically－supportise wax is added to protert the desice

As it hands this looks much like atms other gatlium arsenide chip：more than リゾ，substrate．The actise components anc：the allominiunt alsconde are all contained in the top 1.0101 mm ．a tin！ patt of a standard device，It this bulky subatrate that places conntratiotson con－ ventional（biads lechnology．heing a poor thermad condector and having different lattice constand from those of silicon．
 Rechmology lato．I chatury 10x＇）in－ wolte danking the completed wafer． with its extral liter．into a bath of
 through this aluminiom ansenide layer． liberating the actie componconts in much the same wat as a dip in water liberattes a paint tramskir．Once freed． the thin－bater baser（or whaterer）catn then be deponited on ansthing from

A，a notel way of producing hybrid chips．this ipproach offer considerable powsibilitics．It almo means that éven if the new suhstratce is nothing more than at good heat－sink．the performane of
 full be improsed．

Fusion: a damp squib

My prediction that the bright star of cold fusion would rapidly fade (Research Notes. July page 5 ftl) is not, an might be imagined, a source of smug satisfaction. Who in their right mind coukl be pleased when the scientific communits indulges in an undignified seramble leading mainly to public ridicule and a considerable waste of resources: To recap on this saga could Well add to the ridicule, though it's certainly a valuable insight into the pressures facing rexarch scientists.
()n Mard 23. Wwo chemists. Martin Fleischmann from Southampton and Stanley Pons from (tah, amounced at at press conference that theved discovered how to make deuterium atoms fuse together in an electrochemical cell at relatively how temperatures. In making this clam they were effectively proposing a route to limitlens encrey at virtaally zero cost. The presomes to publish - and hence claim proprictary rights - were enomons. enpecially in view of the parallel work being undertaken just along the road at Brigham Young University by Steven Jones and his colleatgers

Vature due topublish papers by both groups simultancously. decided not to publish that of Ifeischmam and Pons becaluse refereen had called for additional information whieh the athors had been unathe to prowide in the time arailable Joners paper didappear (.Nature Vol. 338. No (2IS), though not without considerable editorial comment. John Maddox. Nature's editor. pointed out the valnerability of the scientific communitys reputation when two research teams make astounding clatims for an experiment using heary water when nether has undertaken even a simple control experiment with plain II, ()

Despite cautious reservations from nearly all the world's responsible labs. it seemed as if everyone from North Korean universities to North Surrey housewives had jumped on the fusion handWagon. Palladium futures soared. Yet in spite of the inathility of prestigious organizations like Harwed and (allech to delect any evidence of cold fusion. the subject refused to go away. Fowschmann hats continucd to argue his case. notably at the (1S Electrochemical Soxiety. white other seientists have equally vehemently pointed out what the regard as gaping holes in his experimental procedures.
Were this a seene from some Brian

Rix farce. wéd all he expecting a new charater by now be emerge from the closet. True to its dramatic potential the fusion farce has presemeded us with just such a charateder in the shape of dounle Nobel prizewinner (and vitamin proponent) I inus Pauting - now a sprighty sis. In a letter to Nature (Vol. 3.39 No $623(1)$ Patuling argues that the exces heat observed by Fteischmann at al. could be the consequence of a chemical reaction in which an mintable compound. palladium deuteride. decomposerspontanconsty to its elements.

Cold fusion may well have died the death. and with it the hopes of those who might have made a fast buck. But will there be ally real lowers? And, as Philip (amphell asks in Phasis Work
(Vol. I2 No 5). catl there be ansthing wrong with science as as spectator sport solong is spectators are not put at risk? Even if they do turn out to be wrong. men like Martin Feiselmann could weil carn their place in history ly setting other minds racing productiocly. John Maddex ohserves. for example that the fusion rush is already kaching us that metal hydriden are an even more in teresting fied of researeh that had presionsly been thought.

One is still entited howeser. 10) ash why certain unproven concepts attract public attention white others. such as halt-hearing motors. don't. The answer must regretably lic in the answer to one simple and unscientific question: will it makemone:

Cod piece

1 have freguently observed in these colums how far electronic measuring instruments have come since the first Avo appeared on the market. But if a digital Aids meter is still a few years off. the same is not true for an invention from the Department of Materials Science and Engine erng at Nagasaki University. There they ve developed a sensor tikely to form the hasis of every dapanese housewife's drean - a device that measures directly the freshness of raw fish!

Fish freshness fatcor. K (say that without yourdentures) is defined by the percentage of two chemicals. inosine and hypoxanthine present in the raw fish. Hitherto that has only been measurable by destructive testing (i.e. cooking) - not very popular in oriental cuisine. What the Nagasaki engineers have done is to develop an electronic sensor that measures, not inosine or hypoxanthine but a smetly gas. trimethylamine. which is also given off
in progressively greater quamtity as fish becomestime-expired.

The sensor. (Platimum Mctuls Review, 1989. Vol. 33 No 1) was developed initiatly using stannic oxide doped with gold, paltadium or ruthenium. When coated on to an alumina tube heated from a coil inside, this device will respond to a trimethylamine concentrattion of 30(p.p.m. at a temperature of $555^{\circ} \mathrm{C}$. Other sensors. equally sensitive. have been developed using zinc. lungsten or titanium oxides with small additions of ruthenium.

When practical sensors were built and tested on attual fish, the dapanese researehers found that the readings could be calibrated and reliably compared to the so-called K values determined by chemicat amalysis. it looks therefore as if it wont be long before we ll be able to challenge the "caught vesterdaly, guv" clam with the same digital precision we use to turn out a perfect cod mornay.

Research Notes are by Johm Wikson of the BBC Wiond Service sescence mait.

Put our test set to the test. Can you find anything it can't test?

Stabilock 4031: Portable Communication Test Set

In the time It takes to read this, the Stabilock 4031 could test any of the devices picfured above - with one minor exception Quite a performance given the dramatic evolutior in radiocommunications techniques and standards
To meet the challenge, we packed more than 25 years of experience into a single, highly versatile unit. You won't need an operating manual to use it: time-saving features incıude automatic measurement functions and brilliant graphics, with both numeric display and simulated analogue meters.
The Stabilock 4031 comes with all test devices integrated, while its modular design and flexible software system can adapt to all testing demands, both present and future. The exceptions are hardly worth mentioning.

Born to set tomorrow's standards in measurement reliability.

Schlumberger Instruments

Fig. I. Groups of 32 successive audio samples are treated as separate blocks and coded into one of five ranges, depending on the amplitude of the largest satmple in the block.

Fig. 2 (right). Coding of companded sound signals.

The use of $32 h 1 t z$ sampling with a coding accuracy of $1+$ bits per sample (i.e. "linear" coding) would imply a transimission data rate (including parity hits for error detection) approaching 1 Mbit/s for stereo. This rate is too high to be casily accommodated (in the form of a digitally modulated subcarrier) within the sMiltz channels of System 1 . bearing in mind the need to ensure that the introduction of any new signals must not catuse interference to pictures or sound on existing receivers, on either co- or adjacent channels. Nearinstantameous digital companding enables the number of bits per sample to he reduced from $1+$ to 10 . with virtually no perceptible degradation in sound quality. The minimum bit rate for two sound channels is reduced to about 6tllkhits. 10 which must be added the owerheads needed for reliable transmission. such as framing words, parity hits and control information associated with the companding process. In its terrestrial application for dual-chamnel sound. the end result is a 728kbit/s data signal.

Near-instantaneous companding

With analogue companding systems (which generally have the objective of improving the signal-to-nome ratiol. accurate matching of the expander characteristic in the decoder to that of the compressor in the coder is important in order to minimize audible "pumping' effects. I lowever in a digital companding system (which has the objective of reducing the data rate), hecause all
operations are performed in the digital domain. the coder and decoder can be matched precisely, avoiding any mistracking.

The companding techniefue adopted for both terrestrial television sound and for MAC/packet satellite transmission is that of near-instantaneous companding. based on the NICAM-3 system developed by the BBC in the 1970s. Essentially, sound signalls coded initialIy with a resolution of $1+$ bits per sample are reduced to 10 bits per sample. However. for fow-level signals. the receiver is able to re-create the original 1t-bit samples. There is a loss of initial resolution only on high-implitude signals. (NIC‘AM technigues could. in theors . be used to reduce the number of bits from any given initial resolution: but throughout this article NICAM' refers to the $1+-10-10$ bit companding system specified in the NIC $A M 728$ and MA(/packet standards.)

Companding is achieved by grouping successive audionamples (in iwos conplement form) intoblocks of 32 samples (i.e. a duration of 1 ms) and finding the largest sample in the block. The amplitude of this sample is then used to determine the way in which the entire block of 32 samples is treated. There are five coding ranges (Fig. 1 \% range 1 represents a block where the largest sample falls between maximum amplitude and half maximum amplitude: range 2 from half (t) quarter maximum amplitude. and so on. Range 5 represents onesixtcenth maximum amplitude down to silence. The coding range for each 32-
sample block is signalled by a three-bit scale factor word.

For a block of samples representing signals in the largest amplitude range (coding range 1). the four least significant bits of each sample are discarded. In the case of blocks falling in the second coding range. the next-to-most significant bit of each sample is discarded. along with the three least significant bits. (The most significant bit is always retained to indicate positive or negative signal excursions.) However. because the 32 -sample block is labelked as falling within coding range? the decoder can re-constitute the missing next-to-most significant bit. since this always has the same value as the most significant bit (Fig.2).

The effective resolution of the decoded signal for samples in range 2 is. therefore, 11 bits. In the third range the two least significant and two next-10most significant bits are discarded prior to transmission. but the latter two bits are restored in the receiver (since they are identical to the most significant bit). The effective resolution is 12 bits. Simitarly. lower amplitude signals in the fourth and fifith ranges are recovered in the decoder to 13 -hit and It-bit resoluton respectively.

The companding process relies on the fact that the high-level signal itself panks: programme-modulated noise. Prior to compression. pre-emphasis to CCITI Recommendation J. 17 is applied. either by using an analogue preemphasis network (Fig.3) hefore digital conversion. or by using digital filters

NICAM is an acronym for Nearinstantaneously companded audio multiplex, and is essentially a digital bit-rate reduction system designed specifically for high-quality sound. 'Companding' simply refers to a compression process applied to the audio signal prior to transmission, followed by an equal and opposite expansion process in the receiver. NICAM was devised by the BBC in the late 1970s with the aim of conveying sound programmes on digital circuits designed for telephony.

In the early 1980s there was considerable interest both in the UK and in Europe in the possibility of adding dual-channel sound to the existing terrestrial services, either for multi-language sound or for stereo. Various analogue schemes were considered, but it became clear that a digital system would offer considerably improved quality in terms of signal-to-noise ratio, lower distortion, and complete absence of crosstalk between channels. The BBC carried out intensive development work and field tests of a prop-
osed new digital system, joined in the latter stages by the IBA (much of whose resources had been devoted to development of the MAC/packet specification for DBS).

This led to a joint BBC/IBA/BREMA specification of NICAM 728 (728 refers to the digital bit-rate of $728 \mathrm{kbit} / \mathrm{s}$). This system is now approved by the Department of Trade and Industry as the UK standard for twochannel digital sound with television on the terrestrial networks. Although it was originally designed for UK System I, it has attracted considerable interest overseas. Extensive tests have proved the ruggedness and compatibility of the system, which makes use of an additional low-level digitally modulated carrier. The European Broadcasting Union has recommended that those members wishing to introduce digital multi-channel television sound transmission should base their choice on NICAM 728, and the system is being considered as a possible international standard by the International Radio Consultative Committee (CCIR).
with the digital signals. A corresponding de-emphasis network is used in the receiver decoder following the expansion process. This reduces significantly the audibility of programme modulated noise arising from the companding process.

Frame structure

For terrestrial transmission, the transmitted serial datal stream is partitioned into 728-bit frames. transmitted continuously every Ims: the overall bit-rate of $728 \mathrm{kbit} / \mathrm{s}$ is made up as follows:

X-bit frame alignment word Sikbits 5 bits for controlinformation $5 \mathrm{kbit} / \mathrm{s}$ I | bitsfor `additional data’ \quad llkbit/s 704 bits for sound and parity $70+\mathrm{kbit} / \mathrm{s}$ total: 723kbit/s

This multiplex is used to modulate an additional low-level carrier (at 6.552 MHz above the vision carrier for System 1) which is added to the conventional broadeanst signal.

The 7()4-bit sound/data block consists of ot ll-bit sound samples (a single parity bit is added to each sample to protect the six most significant bits). made up of a coding block for each of the two sound channels. In the case of stereo sound, the 32 samples for each of the A and B channels within each sound/data block are interleaved (oddnumbered samples convey the A chatnnel. see Fig. fl. If used for two independent mono sound channels, alternate frames convey data frome each of the two audio channels. Alternatively, the sys-

Table 1: application of the 704-bit sound/data blocks of NICAM 728 to provide either stereo sound, mono sound, transparent data, or a combination of mono sound and data.

| Application
 control bits | Contents of 704-bit
 sound/data block |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}^{\circ}$ | |

${ }^{-} \mathrm{C}_{3}=1$ provides for signalling additional sound or data coding options. When $\mathrm{C}_{3}=1$, decoders not equipped for these additional options should provide no sound output
ble applications have been defined: stereo sound, two independent mono sound signals, mono sound and separate 352kbit/s data channel, and a single $70+k b i t / \mathrm{s}$ transparent data channel (see Table 1). In the case of IBA transmissions, these bits will uswally be set to 0. since for the time being it is planned to use NICAM 728 mainly for stereo sound. If it is required at any time to change the application, the forthooming new application is signalled to the decoder by a change in the control bits on Frame 1 of the lasi 16 -frame sequence of the current application.

The fifth control bit (the reserve sound switching flag. (f_{4}) lets the receiver/decoder know whether the conventional analogue FM subcarrier is carrying the same progratmene sound as the digital signal. When the FM signal is not carrying the same information as the digital stereo (or primary digital monos) sound signal. C_{4} should be set to 0 . (Should there be two separate digital mono sound chands rather than stereo. C_{+}would relate to the content of the mono sound channel transmitted in odd-numbered frames). A use of this control bit can be to prevent a receiver switching to different FM sound should there be a "drop-out' in reception of the digital signal. However, this control bit should not be relied on for the automa-

Fig.3. CCITT,J- 17 pre-emphasis is applied prior to the companding process.
tem call provide a single mono sound chamel and a separate data chamnel, or can be devoted entirely to data transmission.

In each frame, the first eight bits comprise a frame-alignment word (01001110) for receiver/decoder synchronization.

The first of the five control information bits (the frame flag bit (C_{1}) is set to 1 for eight successive frames, and to (1) for the next eight frames. The first frame (Frame 1) is defined as the first of the eight frames in which $C_{11}=1$; the last frame (Frame 16) of the seguence is the last of the eight frames in which $C_{11}=0$. This 16 -frame sequence is used to synchronize changes in the type of information being carried in the data channel.

The next three bits (the application control bits C_{1}, C_{2} and $\left(C_{3}\right)$ indticate the type of information being carried by the current 704-bit data bleck. Four possi-
tic selection of television programme sound in the receiver: the broadcasters recommend that receivers should be switchable manually to select either FM or digital sound.

Use of the 11 bits of additional data (i.e. an llkbit/s data signal) has not yet been defined

Bit interleaving is applied to the 704bit sound/data frame in order to minimize the effect of multiple bit-errors. This results in adjacent bits in the transmitted serial data stream being separated by a 16 -bit interval. so that provided an error burst spans 15 or fewer bits it will be spread as single bit-errors in the sound samples after de-interleaving in the decoder. Any errors affecting the six most significant bits of any sound sample will be detected by the parity check and concealed. Errors in the least significant bits will not be detected but, should they occur, will probably not be subjectively annoying to listeners. The decision to apply partity checking and error concealment to six MSB3s was made after conducting listening tests during the development of the MAC/packet system. If more bits are protected. there is a greater chance of an undetectable multiple error: however, if fewer bits are protected.then the effects of unconcealed errors in the least-significant bits become more disturbing.

Scale factor information

The decoder needs to know the appropriate hree-bit scale factor word used for each 32 -bit sound-coding block. This information is conveyed without the use of dedicated bits by using at technique known as signalling-in-parity

Two sound coding blocks are contained within each frame so that, for each frame. six scale factor bits must be transmitted. The principle of operation is to take a group of nine samples within a coding block. and to signal one bit of the scale-factor by allocating either even or odd parity to each sample of the group of nine. If it is required to signal a scale factor bit of 0, then the group of nine bits is allocated even parity; odd parity is used in order to signal 1. This form of signalling is effective because. under normal reception conditions, it is most unlikely that there will be several errors within each group of nine. The receiver checks each sample for parity in the normal waly, and compares the results with the transmitted parity bits for each group of nine samples.

For those groups in which the majority of samples have odd rather than even parity, the scale-factor bit signalled by

Fig.t. Structure of a 728-bit frame containing (above) stereo Sound and (below) a single mono sound signal (before interleaving).
the group is taken to be a 1. Error concealment can then be applied to any samples in the group as necessary Signalling in parity is very robust. since at least four samples in a group must be in error before a wrong decision on scale factor can be taken by the decoder.

The scale factor bits also provide a further form of protection against errors. In addition to signalling one of the five coding ranges, seven protection ranges are signatled (Table 2). These allow the receiver to make certain deductions about the most-significant bits of the incoming samples of the group. For example, in protection range 6 , the six MSBs should all be the same (Fig.2). This makes it possible to identify errors in the MSBs even if the parity check indicates that all is well (as a result of multiple bit-errors). Majority logic can then be used to correct these errors.

To retain compatibility with NICAM in its application with the MAC/packet system. There is no protection range 8 . Scale factor (000 indicates protection range 7 (as does (101), but in the MAC packet svstem is used to manage receiver buffer storage of the data packets which make up the sound channel.

Table 2: coding and protection ranges associ ated with each three-bit scale•factor word. The five coding ranges indicate the degree of compression to which each block of samples has been subjected for the near instantaneous companding process.

Coding	Protection	Scale factor value		
ranges	ranges	\mathbf{R}_{2}	\mathbf{R}_{1}	\mathbf{R}_{0}
Ist range	1strange	1	1	1
2nd range	2nd range	1	1	0
3rdrange	3rdrange	1	0	1
4thrange	4thrange	0	1	1
5th range	5thrange	1	0	0
5th range	6thrange	0	1	0
5th range	7thrange	0	0	1
5th range	7th range	0	0	0

Pictured on page 75-1: the IBA 's transmitting station at Emley Moor in Yorkshire, which, together with the London station at Crystal Palace, will launch a stereo sound service on ITV and Channel Four Television. Dependent reiays will also carry the NICAM 728 signal.

To be continued.

Figuring out the trade in electronics

Sensitivity towards large negative trade figures in electronics and information technology also surfaced when Alan Clarke, Minister of State at the Department of Trade and Industry. confirmed the figure of $£ 2.3$ billion as the UK's trade deficit in high-technology for the year ending September 1988.

However, the ensuing exchange produced a veritable smokescreen of seemingly contradictory figures from the Minister, who asserted three propositions with respect to the deficit: (i) "France. Italy and Germany are all in deficit in sums vastly greater than ours": (ii) the UK's exports in IT and electronics "are worth fll billion and the deficit accounts for less than 5% of the total": and (iii) "the Community has a deficit of $£ 7$ billion". All of this left observers consulting their Japanese catculators wondering how 5% of $£ 11$ billion makes $£ 2.3$ billion: and how. if four of the Community's major trading partners have large deficits, its total
trade deficit can be only $\mathfrak{7} 7$ billion.
By way of explanation. the Government argues that it is wiser not to spend too much time on a single isolated number such as international trade in electronies (since this gives a wholly miskeading picture): far better is the considaration of the economy ats a whole. For example, a single investment such as Fujitsu's II component plant in County Durham will, when in full production. simultaneously reduce imports and improve exports, so altering the figures completely.

Unfortunately, this holistic argument has one major political drawback: is camot be used in reverse. If the economy as a whole is in trouble, it will be very difficult to pinpoint one single feature (for example the UK's formidable record in the export of instrumental control systems) and then claim that single example as evidence of improvement in the overall conomic outlook.

They're leaving school

The number of science graduates who re-enter or leave the profession is an important measure of the quality of skilled teachers who can teach electronics in schools. Although the figures show that most returning scientists are women in the 30-40 age bracket (returning after child rearing), the overall loss in science graduates is severe and progressive. For example, 2110 maths and science teachers left the profession in 1984, and by 1986 that number was 2590; by comparison in 1986 re-entrant graduates totalled 850.

These figures have been seized upon by Opposition MPs. Jack Straw, Education shadow minister, stated that shortfall in maths teachers atone by 1995 could be 12 ()O), whilst Simon Hughes. the Democrats' Education spokesman,
accused the Government of recoiling from the 20% science content of the national curriculum only because it knew that 20% could not be detivered. According to Hughes, the decision to opt for a 12.5% science content arose directly from the shortage of teachers and equipment.

Challenged to disavow the figures. Kenneth Baker. Secretary of State for Education, said that he "hoped and believed" that the combined effects of all government proposals "will lead to adequate staffing in those subjects in the 199()s." Such statements will only reinforce those in the electronics industry who are worried that there is too much dependence on hopes and beliefs" to solve the ever-widening high technology skills crisis.

The missing Link

Severad Labour MPs have suddenly become interested in LINK, a joint publicprivate red programme announced two years ago and supported with $£ 210$ million of public money. According to Government figures. more than -40 companies and over 20 science-based organsisations have already indicated that they wish to be involved". So far. It Link schemes have been announced and a breakdown of Link projects shows many (e.g. molecular electronics. advanced semiconductors. optoelectronics) that have implications for the electronics of the 21st century

Labour interest in the topic is twofold. Firstly, only $£ 70$ million has been spent and Labour identifies this an evidence of a lack of commitment in Government towards ride. However. the Government hats a well-established defence to this allegation. saying that it will commit public money to rded projects only if private sources meet 50% of the costs, that such an red project is not near-market, and that there should be a reasonable prosper of a tangible product at the end of the project which can be successfully developed. If these criteria cannot be met, the Government has always argued, why should the projed be supported in the first place?

The second reason is politically fiar more important. According to Alice Mahon. L:abour MP for Halifax. in 1987 "the PM boasted that $\mathrm{f}^{2} 10$ million would be spent on the Link scheme". By blaming the Prime Minister, Labour hopes to pin any red policy failures on the leader of ciovernment, not some junior Minister who can be sacked when the going gets tough.

Rescued by drink?

Robert Banks. Conservative MP for the Yorkshire town of Harrogate. has discovered the stark reality surrounding the UK:s trade with Japan. He was told that, against the background of a crude trading deficit of some $£ 4.8$ biltion last year. the UK's top ten imports included computers, fax machines, printers, disk units and photocopier parts. making half the list electronic components or electronic equipment. By contrast, the UK's top ten exports to lapan included paints, blended whisky, malt whisky, antibiotics. antiques and postal packages. Nothing in the top ten was remotely high-tech in nature. Perhaps the Government hopes that when the Japanese drink too much whisky. they will be incapable of exporting!

काOUPEA

262,143 MORE COLOURS THAN THE MODEL 'T'

LOGIC ANALYSERS

TA3000 from $£ 3745$ TA2500 £4595

- Up to 112 channels. 100 MHz Timing: 20 MHz Stae.
- Staie/Timing Cross triggering and Correiation.
- RS232. IEEE-488 and Centronics interfaces.
- Multilevel conditional triggering.

Options from $£ 195$
Disassemblers for 68000, 8086/88, 80186/188, 80286, Z80, 8085, 6502, 6800, 68C9, 64180, 8031/51, 804E/49, 63/68XX, RS232, IEEE-488.
PC Data ranster sotware.

Saws and superhets

Surface acoustic wave filters can confer dual-conversion performance on single-conversion UHF receivers, claims Peter Johnson of Quantelec

тhe problems involved in designing a conventional radio receiver are twofold: the receiver must amplify a signal from a level of approximately one manowatt to several watts (that is around 95dB gatin) with a good signal-to-noise ratlo, and it must reject all signals but the desired one from a spectrum of RF transmissions ranging from lookilz to tens of gigahertz. Over the vears. this problem has been tackled using homodyne. TRF (tuned radio) frequency) receivers. superheterodyne and a number of other configurations with varying degrees of success. Apart from a recent revival of the homodyne principle in digitally-synthesized domestic receivers. the "superhet" has eclipsed all other designs

Figure 1 shows the general fayout of a single-conversion superhet receiver for a fixed signal channel with a carrier frequency of $2(0) \mathrm{M} \| \mathrm{Iz}$. The basic principle is 10 convert any incoming signal’s carrier to a fixed intermediate freyucorcy (IF). The incoming signal is mixed with a locial oscillator (L.()) sinewate of 190 MH iz. producing an input to the II stage of I MIIz. the frequency 10 which this stage is tunced. Unfortunately, with all practical designs of antalogue mixer. there will also be a spectral eomponent at 199 MIIz and another at 399 Mllz . The problem of removing these unwanted components is not as difficult as at first appears. since the LO contribution is of constant amplitude and will be removed by the demodulator. 399 MItz is sutficienty far removed from the $200 \mathrm{MII} \%$ carrier to be easy to filter out by the IF amplifier.stuncd circuits.

A more serious problem is the possibility of receiving a spurious signal at 198MIIz, the image channel. which also produces an output of 1 MHIz at the $\|$ imput. This component must be removed before the mixer by a preselector (al narrow band-piss filter). Since the image channel at $198 \mathrm{MH} / \mathrm{z}$ must be attenuated by at least oodll compared

Fig. I. Single-stage superbeterodyne IM receiver block diagram.
with the desired 200Mllz signal. a very sharply-tuned preselector filter would be needed.
()ne solution is to use a much higher intermediate frequency. In the abowe example, it an IF of $20 \mathrm{Mil} / \mathrm{z}$ is used. the image frequency would be shifted to 160 MHz and the preselector design is simple. Ilowever. now the IF amplifier is tricky to design and necessitates the use of crystal filters to achieve the required combination of gain and statbility.

Dual-conversion superhets

The traditional approach here is to build a dual-conversion receiver. In this. the front end uses a high IF. but does not contribute significantly the

Fig. 2. Selective null response of sall compled-resonator.

90 -odd dB of overall gain: unity-gain tuncd circuits are quite éasily implemented. A second superhet receiver then converts this high If to something more manageable, usually the $+55 \mathrm{kl} / \mathrm{z}$ used in commercial AM radios, where the necessary gain is achieved.

If the receiver in question must be continuously tunable over a frequency banci, the dual-conversion design using a variable-frequency front-end filter is unan oidable. despite its principal drawback of using two complete sets of receiver components. Mally receivers. however are only required to tune to a few fixed channels, and can employ a series of switched, fixed-frequency preselector circuits: the problem then reverts to that of finding a set of filters of sufficiently high Q -factor to reject the image freguency from the channel information.

Saw filters

Saw filters are integrated passive devices with band-pass filter characteristics , ind consist of a quartz. synthetic ceramic. (e.g. lithium niobiate or tantalater or other piezoelectric material as substrate. screen-printed with a bayer of metal. Photo-etching tectniques are used to produce a pattern of fine. interlinking finger-like electrodes (called interdgetal tansducers) which ate ans electrical input and output transducers when electrian energy is applied to the device
The input transducer emits mechanical (or acoubtic) surface wates which

FILTERS

produce electrical energy in the output transducer, which can be "tapped off" at many points. making saw transwersal filters and tapped delay lines possible.

The centre freguency. bandwidth curve and group delay are determined by the configuration of the interdigital transducers and a wide range of characteristics can be achieved by varying their arrangement.
Salw filters exhibit a high O-factor. but the tuning is still not sharp enough for the type of application described athove, i.e. that of separating a 198 MHz signal from a 2000 MHz one. A much sharper cutoff of out-of-hand signals can be achieved by arranging several stages of filter on the same substrate. each stage coupled to the next by the acoustic wave itself. This so-called coupled-resonator design can give an out-of-band rejection of 6 ()dB and al 0 factor of several thousand. Conventional filter response shapes such as Chehyshev and Butterworth can be readily synthesized and the device can be massproduced at relatively low cost. Figure 2 shows the frequency response of a typical coupled-resonator filter.

More important for a superhet design. it is possible to include a deep noteh in the response at the image frequency (selective null placement). For example, saw coupled-resonator filters (CRFs) have been made with centre frequencies from 90 MHz to 800MHz with a null response at the centre frequency minus 910 kHz . enabling the designer to use a singleconversion receiver which will reject the image frequency of a standard 45.5 kHz IF. At higher IFs (10.7 MHz is widely used), image rejection can be arranged for carrier freguencies of up to 1.6 (illz.

Fig. 3. ARC-182 Guard receiver, using saw CRF image-rejection circuit.

Guard receiver

As an example of a single-conversion receiver using a CRF image-rejection circuit, the US Navys RF Monolithics ARC-182 is a transceiver which continuously monitors the two military emergency frequencies of 121.5 MHz and $2+3 \mathrm{MHz}$. A block diagram is shown in Fig. 3
Switch $S_{\text {, a }}$ low-loss GaAs fet switch. selects one of two amterna inputs and couples the RF signall to S_{2}, which is a combination band switch and AGC attenuator. It is implemented with pin diodes and is in a low insertion-loss state for the selected channel at low signat levels and exhibits high insertion loss when a large RF signal is present. The unused channel is in the high-loss state. The front ends consist of two low-loss satw balldpass CRF's, with centre frequencies of 121.50 MH Iz and 243.00 MHz and deep selective notehes at the image channel frequencies for a 455 kHz IF (i.e. at 121.059 MHz and 242.090 MHz). separated by a low-noise GaAs fet RF amplifier. The filters achieve an image channel rejection of better than 80dB.

The local oscillators are erystal based and generate 121.014 .5 MH ta for the 121.5 MHzchannel and 242.545 MHz (using a 121.2725 MHz doubler) for the 243 MHz channel. These frequencies are combined in the mixer to produce the 45 kHz IF , together with easily-filtered 121 . 14.5 and 224.545 MHz components for the 121.5 MHz channel and corresponding signals for the 24.3 .00 MHz receiver.

The IF signal is amplified by a JFET preamp and then filtered by a highselectivity ceramic filter: the IF bandwidth is a minimum of 28 kHz . Approximately 90dB of IF gain is supplied by the IF amplificr/detector IC: this chip, a Plessey SL6700A, also provides IF: ACiC and delayed-AGC functions. The detected audio signal is coupled to noise-squelch circuitry to generate a squelch output for control of the audio. There are two audio outputs. all unfiltered detected audio and a 3 kHz handlimitedoutput.

The ARC-I82 Guard Receiver achieves a lodB $\mathrm{S}+\mathrm{N} / \mathrm{N}$ sensitivity of -110.5 d 3 m . coupled with a dynamic range of over 12()$d 3$. for a power consumption of around $I W$. The unit is now standard equipment in USN patrol aircraft.

Using multi-stage selective-null coupled resonator saw filters, a single conversion superhet receiver can be built with a very large difference between If and carrier frequency: in the above example, the carrier-to-If ratio is 534:1, compared with 10:1 for a donestic VHF receiver or 3.5:1 for a mediumwave AM radio. Obviously, it is necessary to know the exact value of the image frequency. which implies a receiver with a number of fixed channels rather than a continuously-tuned set. The salw filters are sufficiently low in cost to make the use of a number of fixed channels a viable option, and are available in most standard UHF/VHF channel frequencies. For other frequencies. custom designs are feasible. since the design process is well-established and involves mainly changes to the metallization pattern printed onto the substrate.

IBM-PC I/0 Cards

There has never been a better time to

start using your IBM compatible PC for data accuisition
and control
The new selection from Fairchild offers an exceptionally wide range so you can get nearer than ever to your precise requirements

wide range

- over 60 models
- high quality
software support in 7 programming languages

IBM-PC/XT/AT compatible

Call us today on 0421216527 for a free full colour product selector chart

Fairchild

[^1] Tel:042121 6527 Fox:042121 6583

BOARDMAKER - the price performance leader
If you ate looking for the solution to pour PCB layout and schematic drawang problems BOARDMAKER has all the answers. Onc integraled package provides a powerful. full-fealured, layout and schemstic editor that lets you design and documeat your PCB layouts, all at a down-to-earth price.
Some of BOARDMAKER's power kealures

- Easy to learn and use
- Full WYSIWYG display
- Lllira-fasl zoom pan and re-draw
- Ialeractive placemena and rovting
- Auto via hole placement
- Auto linc optimisation
- Handles multi layer boards - 10 available
layers including silk screen idents
- Comprehensive surface mount support
- Screen drivers for CGA, EGA and VGA
cisplays
- Extensive uscr deflinable symbol and Layout macro facilities
- Sensible user interface - use a mousc of
leys to access the menus
- Manual includes a user guide and fulif command teference
Standard outputs included in the
package
- Dot matrix printer - 9 and 24 pira Epson of
compalible
- Laser printer - HP Laserjet II emulation
- Penplor - HPGL or DMPL ploceer support
- Pholoplas Gerther formal
- NC drill Excellon fermal

Tsien provide a full after sales suppori and software updatceservice.

BOARDMAKER costs only $£ 195$ + VAT

Write or phone today for your FREE demonstration disc Curporalc. education and dealers ring for details

Tsien (UK) Lid, C'ambridge Research Labovateries, I8IA Huntingdon Road. Cambridge CB3 UDJ Tcl. 0223277771 (4 lines) Far. $022327 \mathrm{~m}+\mathrm{H}$

ENTEF: 21 ON REPLY CARI)

R.S.T. LANGREX R.S.I. SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.
Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers.
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD

1 Mayo Road, Croydon, Surrey CR0 2QP.
Tel: 01-684 1166
Telex: 946708
Fax: 01-684 3056

Two-channel PWM with gap synchronization

Although not as power efficient in AM systems as PPM, pulse-width modulation offers self-clocked demultiplexing at the receiver and easy data recovery using a simple low-pass filter.

Overall system efficiency is enhanced if there is no need to output power when transmitting a synchronization pulse; this is the principle of the two-channel modulator/multiplexer shown here.
A square-wave clock driving a modulo-3 counter results in two channel-select wave-forms for analogue switches $S_{2.3}$ so the input channels are sampled at $1 / 3$ the clock frequency. Resetting of the sawtooth generator is also provided by the input clock: comparing the sawtooth's positive-going ramp with a variable analogue input gives the desired PWM output.
The 1:2 mark-to-space ratio of the counter results in a multiplexed output sequence of channel 1 , channel 2 , sync., gap, channell, etc.

A demultiplexer for the PWM signal is also shown. Once again, a modulo-3 counter addresses c-mos analogue switches which route the serial pulsed input waveform to suitable filters at the appropriate times, thereby separating the two channels.

Resetting of the counter, caused by the gap in the pulse train, is done by retriggerable monostable device IC_{3}. output Q_{2} remains low for slightly Ionger than one clock period when this device is triggered. A positive-going reset pulse is produced when a gap occurs.

Component values shown are for system clock of approximately 600 MHz . N.E. Evans, University of Ulster

Fast DC-coupled trigger

This broadband trigger is immune to DC offset and base-line wandering. It permits high-quality performance over a wide range of input signals applied to the ICL7650 amplifier. IC, through the charge-storage network $\mathrm{R}_{1}, \mathrm{R}_{2} \mathrm{D}_{1}, \mathrm{D}_{2}$ and C

Dioctes D_{1} and D_{2} quickly charge capacitor C to the input voltage. Output of IC, is then compared with the original signal at IC2. Here hysteresis is set by two p-channel field-effect transistors. $\mathrm{Tr}_{1,2}$, wired as cliodes in the $I C_{2}$ positive feedback loop: R_{3}. Tr_{1}, and Tr_{2} ensure that the level of hysteresis in matinained for any DC offeet at the input. Resistor R_{1} provides a zerolevel for input signals whose amplitude is smaller than one diode drop and R_{2} protects the input signal source.

In the circuit as shown, the output of IC_{2}, a chopper-stabilized operational amplifier, is fed back to the internal ascillator which helps square the output pulses. That is, the output at pin 10 is directed to the oscillator's input at pin

Ramp generator with wide frequency range

Only two integrated circuits and a few passive components are used in this ramp generator for a signal with adjustable level and frequency.

Negative current through R_{l} produces the ramp's positive slope and causes the output of op-amp $1 C_{1}$ to increase linearly toward +15 V . Because the amplifier's output becomes the comparator's $\left(\mathrm{IC}_{2}\right)$ negative input.

13 and an new output taken from pin 12 which is the amplifiers's clock output. Because the oscillator has a divide-bytwo counter the output will be one-half the input frequency.

The trigger has a reliable triggering level and responds fast, its speed being limited only by the time constant $\left(R_{1), 112}+R_{2}\right)(C$ and can be adjusted to meet the requirements of practically any biomedicalapplication.
Kamil Kraus.
Czechoslovakia
the comparator"s output transistor switches on when the negative-input voltage exceeds the positive-input voltage.
Switch voltage of the comparator is determined by the $\mathrm{R}_{2} \mathrm{R}_{3}$ divider. Switching IC_{2} 's output transistor on forces the junction of R_{2} and R_{3} to 10 V (value on negative input of IC_{1}). Current from R_{2} decreases the discharge time of C_{1} and allows IC_{1} 's ounput to fall rapidly toward -15 V . The comparator remains on until its negative-input voltage drops below (OV.
Output frequency can be expressed as

$$
T_{1} X \frac{1}{\left(V_{O N}-V_{O F F}\right) / 15}
$$

where $\quad T_{1}=R_{1} \cdot C_{1} ; V_{O N}=30$

$$
\left(\frac{\mathrm{R}_{3}}{\mathrm{R}_{2}+\mathrm{R}_{3}}\right)-15 \mathrm{~V}: \mathrm{V}_{\mathrm{OF}}=0 \mathrm{~V}
$$

Thus R_{2} and R_{3} provide adjustments for variations in both output frequency and peak-to-peak value of output voltage, then R_{1} and C_{1} for variation of output frequency only. This circuit works well in output frequency range from approx. 0.1 Hz to over 100 kHz .

Michele Frantisek
Barvicova
Czechoslovakia

Extending random number sequences

In this method of gencrating longer pseudo-random-number sequences from smaller ones, it is assumed that sequentially stored samples of a PRN sequence in a memory when read out randomlygive another sequence.
In the circuit shown, samples corresponding to a 4 Kpoint PRN secquence are stored in eprom and addressed by a 12hit counter. For larger sequencers.

the most significant hit of the counter (134h bit onwards) are Exor-ed with the corresponding least significant bits and given as the address to the rom. This way the 4 K PRN data is read out in mary combinations and output as a different sequence for each possible combination of the most significant bits of the counter: as at result the sequence length is increased. This circuit has a maximum sequence length of 2^{24} clock. A. Dhurkadas

Natal Physical \& Oceanographic
laboratory
Cochin
India

Complex microcontroller

Motorola has released details of its new 32-bit 68300 microcontroller family, the first device of which will be the 68332 The chip consisis of five modules, a CPU (compatible with the 68020 MPU), a timer-processor unit a queued serial communications module (QSM), a 1.5 kbyte ram module and a system integration module, all communicating via an internal 16 -bit hus. A version with a som module is to follow. The TPU contains its own independent microcoded processor complete with ALU and is capable of operating almosi independently from the CPU once intialized. It can execute several standard timing functions on up to 16 channels simultaneously. The OSM contains a synchronous and an asynchronous serial port plus a queue to reduce CP U interrupt rates. The 68332, designed in conjunction with General Motors/Hughes Electronics subsidiary Delco Electronics for automotive uses. is suitable for
many embedded controller applications, though some analvsts have suggested that it may be a little ahead of its time. Manufactured in $1 \mu \mathrm{mc}$ c-mos, the 132-pin plastic leaded chip carrier device will cost between $\$ 25$ and $\$ 50$ in volume.

Flash eproms

Intel has extended its range of 12 V flash eproms with 512 K and IMbit devices with a read access time of 120 ns . The $28 F 512$ and $28 F 010$ are arranged as $6+K \times 8$ and $128 K \times 8$ respectively and can be bulk-erased in under one second. Programming can be executed in less than is for the 512 K device, less than 2 s for the 1 M version. Applications in clude data acquisition in portable equipment and code storage in embedded sysrems which may require periodic updating in the field

Qualified rental

Microlease has become the first UK equipment rental company to qualify under the BS 5750 pt2/BS 5781 approvals standard. Under the terms of the accreditation, all equipment supplied by the company has been calibrated to BS 5781 with traceability to national standards

BS 5750 allows accredited com-
panies to deliver components, equipment and services without infringing client assessed quality programmes. All the major hire organizations currently offer NAMAS calibration by special request; Microlease now offers QA equipment as a matter of course.

Brian Lecomber's Pitts special is sponsored by Microlease

New IT investment

The DTI and the Science Research Council are to organize a $£ 22$ million investment programme for information lechnology. Lord Young said that a total of $£ 15$ million would be put into opto-electronics with the balance going to the laformation Engineering Advanced Technology Programme (IEATP)

Spending in opro-electronics will focus on research into the integration of opto-electronic devices and lechniques within systems. Specifically, it will concentrate on optical communications systems and subsystems together with optical information processing

Slowing electronics

The world electronics market will increase by 3.3% in the current year compared with 9% growth in 1988, says the latest edition of the Elsevier yearbook of world electronics. It predicts that future growth will stabilize in the region of 4%

Prospects are brighter for optical discs. The research analysts Frost \& Sullivan say that the European market for the technology will be worth some $\$ 900 \mathrm{~m}$ by 1993. Source: Optical memory market in Western Europe.

Dominant Unix

Mr Sal Garcia. chief executive of the US CAE house VIEWlogic claims "Unix will emerge in the next year to become the dominant PC platform". Speaking at the launch of the company's Workview Series II workstation sofiwate. he supported his statemen by saving that "dos with its 640 K limit represents a major deficiency allowing Unix to come into the market.
"Every day that goes by, OS/2 is losing ground. There is already a large number of technical applications designed to run on Unix and it is starting to pick up a few business applications", he said. He added that IBM itself had earmarked electronics design as a computing growth area based on Aix. the HBM-DEC version of Unix.

VIEWlogic's latest CAE software release, aimed firmly at customers who spend more than $\$ 1$ million on CAE makes use of the Unix X-windows interface and the VHSIC hardware description language. It employs open architecture meeting the EDIF standard in contrast to the Daisy/Mentor/ Valid approach to CAE

USE PC COMPILERS FOR AN SBC

For really fast development of stand alone systems, use a Lancer or Hunter target board with Hexatron's PromDOS. This emulates DOS and BIOS calls, gives you silicon discs and even allows you to run non-ROMable compiled code in a ROM environment. Too good to be true? Call us now for a free demonstration. STOP PRESS: We now have a four port multi-standard serial expansion card for the Lancer and Hunter - ring us for details

THE SDS LANCER

An 8088/v20 target board on a double Eurocard with two serial ports, four parallel ports, six counter-timers, four 32 pin memory sockets, battery backup, RTC, watchdog timer, optional 8087, optional mains psu and case.

THE SDS HUNTER

An 80188 target board with 256 k bytes EPROM, 256k bytes battery backed RAM, 256k bytes D-RAM, two serial ports, three counter-timers, RTC, watchdog timer, optional mains power supply and case

Sherwood Data Systems Ltd

Unit 6, York Way, Cressex Estate, High Wycombe. Tel: 0494464264

TELECOMMUNICATION TRAINING EQUIPMENT

Full range of Training Equipment including:

- ANALOGUE \& DIGITAL COMMUNICATION CIRCUIT \& SYSTEMS
- FIBRE OPTICS
- MICROWAVE
- TELEPHONY
- RADAR - NEW

For more information contact:
LAB-VOLT (UK) LTD.
Lab-Nolt ${ }^{\circ}$
4A Harding Way,
St. Ives Industrial Estate
Huntingdon,
Cambridgeshire
PE17 4WR
Tel: (0480) 300695. Fax: 048061654

Research profile Southampton University

MARTIN ECCLES

When photographer Ted Wright and I visited Southampton, we expected to cover the whole University in a day; but our look around the Institute of Sound and Vibration Research took up all of our allocated time. At some time in the future we hope to return to see the rest of the Universitv.

To find out the effects of, say, waves constantly beating against an oil-rig. detailed analyses of flow structures must be made.

This holographic crystal (bismuth silicon oxide) is part of a particle-image velocimetry analyser that measures speeds of particles in flow fields using high-speed photography. It is particularly useful for varying• flow fields (turbulence).

The autocorrelation required for the measurement process can be performed by a computer but this optical system, in which a convex lens performs spatial Fourier transforms, does the job twenty times faster.

The system is an optical implementation of the Wiener-Khin-Chin theorem.

4
Measuring out-of-plane motion in loudspeak. ers by laser interferometry is not new. This set-up is not to test the loudspeaker: it is an experiment to investigate enhancements to the measurement technique. Researchers at Southampton have developed new optical and electronic methods for reducing the problems caused by speckling of the laser beam on the reflective surface.

Laser vibrometers relying on the observation of Doppler shift to detect movement need optical heterodyning with a frequency. shifted reference beam if information about the direction of motion is to be obtained. This set-up is part of an experiment involving a new technique that provides directional in.

formation using only one laser beam and without a separate frequency shifter.

To obtain frequency shifting, a pseudoheterodyning scheme is used. A sinusoidal signal at 1.05 MHz drives a laser diode to provide optical phase modulation without the linearity problems associated with normal
ramped-phased modulation. This technique gives a frequency shift capable of large vibration measurements of the order of $10^{-1} \mathrm{~ms}^{1}$.

Vibrometers benefiting from this research are insensitive to external vibrations. lightweight. inexpensive and robust.

High fuel bills are causing aircraft companies to consider replacing jet engine planes with more efficient propeller-driven versions. One of the main problems with propeller-driven planes is the irritating cabin noise that they produce.
Digital signal processing combined with audio techniques can significantly reduce cabin noise not only in aircraft but in cars, lorries, buses, etc. Sound cancellation is only suitable for frequencies up to a few hundred hertz. but it is low.frequency noise that is most difficult to remove by conventional sound-damping methods. The objects you can see here hanging from the ceiling are microphones that feed adaptable-coefficient digital filters. Outputs from the digital proces. sor feed the sound cancellation loudspeakers positioned around the room.
It is difficult to quantify briefly the results obtainable. but improvements from relatively simple sound-cancellation systems fitted in cars have been capable of reducing noise by more than 10 dB . Perhaps in the future sound cancellation will be extended to reduce noise where it really hurts - in the houses situated under the flight paths of internally-quiet aircraft!

Inside this reverberation room with asymmetrical walls and ceiling is a horn. also with asymmetrical walls, that is subjecting an 'unspecified component' to 140 dB of sound pressure at a range of frequencies. To see how the component reacts to high-intensity noise, it is fitted with 131 three-element strain gauges connected to computers and pen recorders.

In this experiment, readings from the test are being compared with results from a finite-element analysis program. According to researcher Tony Rogerson, the experiment is being done out of curiosity as much as anything. Soon. the horn will receive further padding in an attempt to take the level up to 165 dB . Tony intimated that he is not absolute. ly certain what will happen at that level since it will be the first time that they have attempted 165 dB with this set up and such a large sample!

The horn - driven by chopped compressed air - is normally used by ISVR Consultancy Services to test aerospace parts; recently it has been vibrating electronics equipment housings that are to form part of a satellite for example.

Part of ISVR's consultancy work currently involves looking into new loudspeaker designs for a Japanese company wanting to break into the audio market with an innova. tive product.

In this room. one of the smaller anechoic chambers at the Institute, researcher Andrew McKenzie is listening to loudspeakers with conical reflectors. His work involves deter. mining whether it is possible to achieve sound directionality without the undesirable associated effect of coloured off-axis response.

Conical sound reflectors have long been

World's fastest d-ram?

1BM claims to have produced a I Mbit d-ram which can access any bit in just 22 ns . This is about iwice the speed of the best currently available I Mbit products. The part has been produced at the company's Kyoto centre using what was claimed to be a standard d-ram production line.

IBM has employed a double polysilicon. double-layer metal c -mos process in the manufacture for the best combination of speed and density. It dissipates 500 mW maximum on continuous cycling.

New, high-speed microprocessors are the driving force behind fast d-ram development. Slower generations of memory parts have forced system designers to use wait states where the processor rividdles its thumbs waiting for memory to catch up, or to use complex and expensive cacheing systems where fast static ram provides a buffer 10 slower memory

- Hitachi says that the first two members of its 4 Mbit d-ram family are now in mass production in speed ranges down to 80ns

Fax on the move

A fax modem system which will tolerate drop-outs lasting up to two minutes virtually guarantees that fax links can be reliably set up with mobile users.

The device. manufactured by the UK company Intertec of Wimborne, Dorset, converts Group 3 fax signals into a handshaking protocol similar to the wire-based X. 25 system. In the event of dropouts, fading or interference, the system retransmits lost packets until acknowledgement of their safe receipt is obtained by the receiving station. This provides virtually 100% assurance of successful transmission.
The built-in fax interface stores up to 10 pages of data for onward transmission on the radio link and provides buffers for received documents for downloading to the receiving fax machine. There is a guaranteed call-and-answerback protocol before any transmission takes place. The MR826 modem also has a built-in selective calling and addressing facility.

Go-faster stripes

Not so long ago I heard again that well-known kids' song. 'My Dad's Bigger Than Your Dad, which includes several verses with similar 'mine versus yours' content. Now the PC business is adding another verse my PC's faster than your PC.

Not only does every company in the business (and some that aren 1) now produce a PC based on Imel's 80386. 32-hit processor, but some are starting to jump up and down claiming to have the fastest versions, machines that use the latest 33 MHz incarnation of the processor.

Compaq is the most recent combatant in this game of go-faster striped, machismo-laden, real-man machines. having just launched a 33 MHz version of the Deskpro.

It does beg an interesting and important question. of course: is such speed either warranted or sensible? Let's face it, most 386 -based machines are still running MS-DOS in single-tasking mode. In this context there comes a point where the advantages of speed stop being relevant. For the majority of users of 33 MHz boxes there will be no real gain, except to the ego.

In fact, there could be several
disadvantages. There are already indications that some DOS applications have a habit of falling over if raced too fast. Add-in boards can suffer the same fate as well.

The simple fact is, until a suitable operating system is alive, well and living in the hearts and minds of everyone, these go-faster systems have little real value to anyone except the manufacturers' bank managers.

And on the subject of operating systems, the main contender for working with 386 boxes is still Microsoft's (and IBM`s) OS/2. But even the availability (just about) of this system is no great help for users of these raunchy machines. Again, the reason is simple. While MS-DOS straps them down to being go-faster 8086 processors, OS/2 straps them down to being go-faster 80286 processors. Not too much of an advantage, really.

In many ways, it would be sensible to wait until the 386 -specific version of $\mathrm{OS} / 2$ appears, towards the back end of next year before parting with good money on a $33 \mathrm{MHz}, 386$ machine.

Real muscle

It would, of course, be a poor month without some news of IBM, and Big Blue has not let us down. Two new machines have been announced, one using the cut-down version of the 386 processor, known as the 386SX, and the other a 386 -based portable.

The new boxes are additions to HBM's PS/2 line. with the SXpowered machine coming in as the Model 55 SX . just above the 286 powered Model 50, and the 386 machine appearing as the company's latest attempt at producing a portable computer that someone wants to buy.
The PS/2 Model P70 has an impressive specification, coming with 60Mbyte hard disk minimum, 4 Mbyte of memory and a 10 -inch gas plasina display, as well as all the other bits you'd expect in a PS/2 machine.

It also has an impressive weight. it tips the scales at the best part of 10 kg , which is no mean feat for a machine designated as a portable. Then again, as 386 -based boxes seemed destined to be bought by "real men", the biceps brigade will probably take to the machine with alacrity

MAKING ELECTRONICS C.A.D. AFFORDABLE

TINT-PB

Are you still using tapes and a light box?
Have you been putting off buying PCB CAD software?
Have you access to an IBM PC/XT/AT or clone inc Amstrad 1640 \& 1512 or Archimedes with P.C. Emulator?
Would you like to be able to produce PCB layouts up to 17" square? With up to 8 track layers and 2 silk screen layers?
Plus drill template and solder resist?
With up to eight different track widths anywhere in the range . 002 to 531 "?
With up to 16 different pad sizes from the same range?
With pad shapes including round, oval, square, with or without hole and edge connector fingers?
With up to 1500 IC's per board, from up to 100 different outlines?
With auto repeat on tracks or other features - ideal for memory planes?
That can be used for surface mount components?
With the ability to locate components and pads on grid or to .002" resolution?
With an optional auto via facility for multilayer boards?
With the ability to create and save your own symbols?
That can be used with either cursor keys or mouse?
That is as good at circuit diagrams as it is at PCB's?
Which with EASY-PLOT and EASY-GERB can output to pen-plotter or photo-plotter (via bureaux)
Where you can learn how to use it in around an hour?

THAT ONLY COSTS £95 + VAT (TINY-PC), $£ 275+$ VAT (EASY-PC)

SMITH CHART PROGRAM - 2 IM IGi

CIRCUIT ANALYSIS BY COMPUTER MNAMED

For IBM, PC/XT/AT and clones inc. Amstrad 1512 and 1640 and BBC B, B+ and Master.

Z-MATCH - Takes the drudgery out of R.F. matching problems. Includes many more features than the standard Smith Chart.
Provides solutions to problems such as TRANSMISSION LINE MATCHING for AERIALS and RF AMPLIFIERS with TRANSMISSION LINE, TRANSFORMER and STUB MATCHING methods using COAXIAL LINES MICROSTRIP, STRIPLINE and WAVEGUIDES The program takes account of TRANSMISSION LINE LOSS, DIELECTRIC CONSTANT, VELOCITY FACTOR and FREQUENCY.
Z-MATCH is supplied with a COMPREHENSIVE USER MANUAL which contains a range of WORKED EXAMPLES
$£ 130$ for PC/XT/AT etc.
£65.00 for BBC B, B + and Master

For IBM PC/XT/AT and clones inc. Amstrad 1512. 1640, R.M. NIMBUS, and BBC B, B+, and Master.

"ANALYSER II" - Analyses complex circuits for GAIN, PHASE, INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY over a very wide frequency range.

Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS, WIDE BAND AMPLIFIERS TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV I.F and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS etc.

STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop"
Can save days breadboarding and thousands of pounds worth of equipment
£195 for PC/XT/AT etc.
£130 for BBC, B, B+ and Master

Harding Way. St Ives, Huntingdon Cambs, PE17 4WR Tel: St Ives (0480) 61778 (4 lines)
We provide full after-sales support with free telephone 'hotline help' service.
Software updates are free within 6 months of purchase date.

Cad on the Beeb

PCs are now used for most industrial cad applications but there are still many areas - particularly in education and r\&d - where, as Martin Eccles reports, cad on the BBC microcomputer is still an attractive alternative.

You would not expect to see a BBC Microcomputer performing serious computeraided design in a large electronics manufacturing company; but in many smaller companies, universities and r\&d departments, where economy outweighs the need for a powerful industry-standard computer, there are still quite a few Model Bs and the like in use.
For designing the odd circuit or PCB , the BBC computer has one major advantage over the PC: it is relatively cheap, considering that it has highresolution colour graphics. No doubt in departments on low budgets, just the fact that a BBC computer is there and an IBM PC is not will determine which cad software is viable.

The software discussed here-namely Markie's elliptic-filter design package. Miteyspice, Diagram and PCB - takes you through all the cad steps from implementing an idea to making PCB artwork, all on a 32 K byte computer.

Elliptic filter design

David Markie, who already sells a linear circuit analysis program for $A C$. has just completed a suite of routines for designing elliptical filters.

Low-pass, high-pass, band-pass and band-stop functions with variations for unterminated situations are all covered in the suite, which is based on the work of Amsutz, Daniels, Saal and Zverev. The programs are essentially for designing passive inductor/capacitor filters but the results for pole-zero locations and pass-band/stop-band specifications are equally applicable to other implementations including active and digital filters.

Initially, these programs will only be available for the BBC Model B computer but, if there is sufficient interest. David intends to adapt them for other computers. Their price will be $£ 25$.

Circuit simulation

For more general circuit simulation there is Miteyspice from Those Engineers. You may have heard of Microspice; more likely you will have heard of the Fortran Spice program on which the much more compact Microspice is based. Miteyspice is an enhanced version of Microspice, its main difference being that it can produce a graphical display as well as the numerical values output by its earlier counterpart.

One module in David Markie's elliptical-filter design program gives actual values for a singly-terminated filter as shown. It goes on to list normalized values and pole-zero locations. David is currently working on routines that output values for MFIO switched capacitor filters.

Unlike its precessor, Miteyspice has graphical output.

Miteyspice for the Model B performs DC, small-signal AC and noise analyses for up to 25 nodes, while the Archimedes version runs much faster with a 20()-node ceiling. You can use simple 'ideal" components or model devices including transistors, op-amps and transformers.

At its simplest, the software can be used to look at static operating points of nodes in a circuit and at the other extreme it can sweep selected component values or a range of input frequencies; with a user-written 'EXEC' file it can even do both together. Noise analysis may be used with either AC or DC sweep analyses to calculate total output noise and referred input noise at each step. A breakdown of noise sources in the circuit can also be selected to show the contribution of each to the total.

Prices of Miteyspice are the same for both the Model B and Archimedes computers at $£ 119$ excluding VAT and educational departments can buy a multi-user licence at $£ 238$.

Making a drawing

There have been a number of drawing packages for the BBC computer and although most of them are fun to use. there is only one that I have ever found to actually save time when drawing circuits - Diagram from Pineapple.

Rather than using zooming and pan-

Artworks from Diagram, above, and PCB, right. The manual PCB layout has one or two blemishes, some of which could be ironed out with a bit of juggling.
ning to increase the amount of detail that a drawing can have. Diagram uses the CRT screen as a window on to a drawing with a fixed resolution. Because of this, and because of the way that the drawing is constructed in memory as pixel blocks, the drawing's size is limited only by disk capacity.

Diagram can be used to draw anything (in monochrome) but since it gives you the facility to define characters such as transistors and capacitors so that they can be inserted on the diagram with a couple of key-presses, it is particularly suited to circuit diagram draughting.

Connecting components is simple too: the cursor keys trace horizontal and vertical lines. There are also rubber-band and pixel-drawing facilities, but once you start using these the time taken to make a drawing goes up.

Even though scrolling of the window is quite quick, finding particular areas on a large diagram can be timeconsuming; so any point on the diagram can be given an index name that puts the window over the area with a few keystrokes. You can save and copy areas of the diagram too.

One limitation of Diagram is that it can accommodate only 1024 different 8 -by-8-pixel blocks. I have never reached the block limit even when drawing things other than circuits but if you are thinking of becoming an artist, buy a box of crayons instead. Diagram outputs scaled drawings to a dot-matrix printer with graphics mode and although the detail is adequate to convey all the necessary information, the presentation might be a limitation in some applications. The package costs around $£ 155$ excluding VAT.

Producing PCB artwork

When someone told me that PCB artwork could be produced on a BBC computer with a dot-matrix printer I did not believe it. Since then I have made at least 50 boards using Pineapple's PCB program and I could not go back to producing artworks manually.

The PCB program can handle double-sided boards up to 8 -by-5.6in with tracks between pins, and it can produce I:I and 2:1 artworks. Although the package is designed for placing components on a 0.1 in grid, it is possible to place pads on a 0.025 in grid with some limitations; line drawing steps are 0.025 in .

Recently, an autorouteing option for PCB has become available. It did not take me long to get used to using PCB but the autorouteing extension asks me whether it should choose north, south east or west biasing and whether or not I want it to route tracks in order of slope. When I give it random answers it does not make a very good job of the routeing.
Biasing and sloping are explained in the manual but I doubt whether I shall ever have the time to train myself to use them. But I would certainly make the effort if I produced boards on a regular basis. Although the autorouteing program would not let me out of it once I had entered it. it did at least do its best when I gave it a random input.

Using the basic PCB package, placing components like 4()-pin ICs and large pads on to the layout takes only a few key-strokes and you can equally easily insert text on the layout. Deleting tracks is as simple as laying them, which is important if you make as many mod-

ifications as I do. With a little planning you can produce artwork for a fairly dense PCB; the main factors that prevent you from producing a very dense PCB are that you cannot pass tracks between pads that aren't on the main 0 . lin grid and you cannot pass tracks at right angles between four pads.

Originally, PCB was designed for producing artwork on a dot-matrix printer with high-resolution graphics mode. but there is now an optional plotteroutput routine. The main PCB routine is $£ 85$ and the auto-routeing extension costs $£ 185$, both excluding VAT.

Addresses

Markie Enterprises, fol Park Drive. Sunningdale. Ascot, Berkshire SL50BE
Those Engineers, loba Fortune Green Road. London NW6 1DS, tel. $111-4352771$.
Pineapple Software, 39 Brownlea Gardens. Seven Kings. Ilford. Essex IG3 9NL tel. $01-5991476$.

8051 Project....?

From simple minimum chip solutions through to complex turnkey multiprocessor systems, Cavendish Automation has the hardware and tools to allow you or us to design rapid and professional implementations.

Damanonos

Off-the-shelf hardware includes numerous DACs, ADCs, bus-drivers and decoders, and many other forms of analogue and digital I/O cards, together with power supplies, backplanes, card cages and equipment cases

Software development couldn't be easier. Our 7034 card's text editor enables software development for the $8051 / 2$ in either assembler or MCS-52 BASIC. Programs are simply blown into EPROM or EEPROM on the card itself. When writing in assembler. both source and/or assembled code may be saved in this way.

For further information contact

Cavendish Automation

Cavendish Automation Limited Oak Park, Barford Road.
St. Neots, Huntingdon, Cambs PE19 2SJ.
Telephone: 0480-219457
FAX: 0480-215300 TELEX: 32681 CAVCOMG

AcTIVE

A-to-D and D-to-A converters

 12bit 1MHz A-to-D converter. Two low cost. 12 -bit, sampling $A \cdot$-to-D converters are capable of digitizing sinusoidal input signals at up to 1 MHz sampling rate ADS 105 and ADS-106 combine a high-speed sample-and hold amplifier and a 12 -bit flash-derived A.to-D to overcome layout problems Datel. 0256469085.Low power triple DAC. The HD49304 triple video c-mos D-to-A converter from Hitachi contains three independent 8 -bit converter with a typical maximum conversion rate of 50 MHz and a maxımum differential linearity error of $\pm 0.2 \% \mathrm{FS}$. Features include a power dissipation of 300 mW (typical) and a $42 \cdot$ pin shrink-dip package Hitachu Europe. 0923 246488

8 -bit video A-to-D converter. The Plessey 8-bıt A-to-D converter (SP94308) is designed for use with NTSC or PAL. A IV video signal is $A C$-coupled to the device input. where it is DC clamped, amplified and fed through a buffer which drives the A-to-D converter input capacitance. Also within the SP94308 is an internal clock amplifier and driver RR Electronics, 0234270272

Active hybrid circuits
ECL oscillators. A range of ECL-compatible oscillators offers a choice of positive or negative supply operation The oscillators are available with or without built-In pulldown esistors, and also offer a choice of single or complementary outputs They are available for frequencies up to 160 MHz Magna Frequency Management. 0223892015

Development and

evaluation

Mac II-based development board. A

Macintosh il-based development system board for Integrated Device Technology's DT79R3000 risc processor is now available. The NuBus card, the IDTRS201 with the 3000 microprocessor. plugs directly into the Mac II. The card is offered with base-leve software, optional R3000 support software and optional Macintosh design support software. Micro Call. 0844215405

General microprocessors
T425 transputer. The IMS T425 is a pin compatible upgrade for the IMS T414 32-bit transputer which offers additional features. including faster serial links and new pin functions. It offers an additional set of instructions, including 2-D block move and breakpointıng. There are two new pin functions: a refresh pending pin used for holding a DMA request whilst refresh occu and an event waiting pin which allows the user to control external logic. INMOS internatıonal. 0454616616.

Risc processor. Acorn's VL 86C020 is a 20 MHz , third-generation risc processor with a 4 Kbyte on-chip data and instruction cache It is compatible with the earlier VL86COIO; its 64 -way set-associative cache allows a threefold increase over the 010. The 020 works with standard 80ns DRAMs without wait states. VLSI Technology. 0908667595.

Interfaces

Logic analyser card for PCs. From Flight
Electronics is a PC expansion card which transforms an IBM PC (or compatible) into low-cost logic analyser. The CLK-2450 system comprises the PC control card, solt ware disc, three data input pods with signal line chips and a target-IC test clip. The analyser has 24 channels and is capable of sample rates of up to 50 MHz . Flıght Electronics. 0703227721

RS-232 driver/receivers. Two dual RS-232 driver/receiver chups reduce the size of charge-pump capacitors. LT 1180 is a dual 5 VRS -232 driver/receiver with a shutdown feature that puts the driver and receiver outputs in a high-impedance state, allowing

RS-232 line sharing. LT1 181 is supplied without the shutdown feature. Linear Technology (UK). 0932765688

IEEE-488 bus controller. The Prism 2020 can store up to eight bus control programs battery-backed non-volatile memory and can control two IEEE- 488 bus systems Control programs are generated on a microcomputer and down-loaded va the RS-232 port. STC Instrument Services, 0279 641641

Linear integrated circuits BiFET op-amps. The TL050 and TL030 families are BiFET single. dual and quad operational amplifiers from Texas
instruments, which possess maximum offse voltages down to 800 microvolts (compared to the 6 mV of the TL071A) Minimum slew rate of the TL051/A is $15 \mathrm{~V} / \mu \mathrm{s}$ The TL030 family forma low-offset alternative to the TL060 series, needing a supply current of $025 n A$ to 1 mA Hawke Components. 01-979 7799

Precision op-amp. LT1012A is a universal precision operational amplifier wit'ר an offse voltage of 25 microvolts maximurr and a drift over temperature of $06 \mu \mathrm{~V} / /^{\circ} \mathrm{C}$ maximum. Maximum supply current is
$500 \mu \mathrm{~A}$, and bias and offset current are bo $500 \mu \mathrm{~A}$, and bias and offset current are both
100 pA maximum. All versions of tre LT 1012 will operate on $\pm 12 \mathrm{~V}$ supply ralls -inear Technology (UK). 0932765688 Technology (UK). 0932765688

Fast low-power buffer. Elantec's EL2001 monolithic 60 MHz buffer has a slew rate of $1000 \mathrm{~V} / \mathrm{ms}$ and a quescent current of 1 mA . It will boost the output of ordinary amplifiers up to 100 mA Microelectronics Technology 084468781

Memory chips

Static rams. A range of fast. static rams for use in graphics and digital signal processing Micron Technology SRAMs are avallable in various size/speed combinations. including $256 \mathrm{~K} \times 1$ down to 25 ns and 16 or 64 K down to 15 ns The SRAMs are fabricated in ac-mos double-metal process Abacus Electronics. 063536222.

Ram/rom PC disc card. The PCL. 790 range of $P C$ ram and rom disc-emulator cards is designed as a replacement for mechanical disc drives. The PCL- 790 disc card is a fully soft ware-compatible. solid-state emulator of PC floppy discs On-board firmware emulates a standard disc control card and allows power-on auto-booting as well as read/write modes of operation. Integrated Measurement Systems. 0703711143

Optical devices

Photodetectors. Now avalable fr.mm Centronic is a comprehensive range of photodetectors for visible. UV and IR radiation detection and measurement for military. space or commercial use Although the standard range is extensive, the company will manufacture virtually any shape or size of silicon photodetector Centronic. 068942121

Photodiodes. The C30644 and C30645 avalanche photodiodes series APIIs from RCA offer fast response and good quantum efficiency in the spectral range between about 1000 and 1600 nm They ar optımized for use in optical-fibre communication systems at 1300 and 1550 nm Pacer Components. 0491873077.

Standard logic circuits 12-bit A-to-D converter. The AD7870 converter is less than half the cost of earlier 12 -bit designs and does not need a separate T/H amplifier or reference. It combines a $2 \mu s$ T/H amplifier, a $3 V$ buried Zener reference, clock and bus-interface logic on one BIMOS chip Analog Devices, 3932 253320

EMC feedthrough filters by Tesch

PASSIVE EQUIPMENT

Passive components
Film capacitors. Aerovox's SuperMet flund filled film capacitors have a design life of 60000 hours at full rating The metal-car unts are protected against can explosion by a pressure-sensitive internal circult breather and the sealed case contains a corona suppressing inert fluid AVX, 0252333851

DC cooling fans. The range of Papst Multifan DC equipment-cooling fans offers adjustable noise level, low EMI and RFI and extreme tolerance of power sufply variation 47 cubic feet per minute. Dialogue Distribution. 0276682001

Chip electrolytics. Aluminum electrolytic capacitors from Nippon Chemi Con are designed to withstand cleaning by immersion, vapour or ultrasonics in Freon TE or TES for up to five minutes. Capacitance ranges from 1 to 68μ to a to erance at
$\pm 20 \%$ at voltages from 6.3 V to 50 V EEC $\pm 20 \%$ at voltages from 6.3 V to 50 V EEC Electronics. 0628810727

Ceramic capacitors. The RPL range of ceramic leaded capacitors from aiyo Yuden are available with a choice of temperature characteristics and offer capacitance values from 100 to 17000 pF . They are rated at 50 V DC and withstand 125 V DC ECC Electronics 0628810727

Surface-mount Zeners. BZX \& 4C surface mounting Zeרer diodes by Mistial are ho..sed in industry-siandard SOT-23 pankages w'th tin-plated terminals. The devices exhibit breakdown voltages from 5.2 to 289 V and maximum power dissipation of 350 mW
Surtech Inte'connection. 025651221

Miniature tantalums. The Kemet series of resin-dipped solid tantalum capacitors is avallable to IECQ300201/USOO3
requirements in an extended range of $0 . \%$ to $220 \mu \mathrm{~F}$, at 20% tolerance, from 5.6 V to 50 V Unitel. 0438312393

Precision film resistors. The GC65 metal
film resistor, with a maximum body lengtา of

10 mm and diameter of 2.5 mm . has a resistance range of IM! to 1 GII Tolerances are aval able down to 01% with TCRs of 100ppm/C Welwyn Electronics. 0670 822181

Connectors and cabling
Marine connector. The MK22 range of circular marine connectors features an extra-long coupling nut to permit easy coupling and uncoupling The knurled surface allows connection and disconnection to be carried out even with a gloved hand Gold-plated copper alloy is used for the contacts; working voltages a
from 500 V to 28 kV at -55 to 125 C AB Connectors (Northampton). 0604712000

Ribbon cable. Flat. acketed cable type FBLDT is constructed from 28AWG $(7 \times 0127 \mathrm{~mm})$ tinned-copper conductors with exiruded PVC insulation With a putch o 127 mm , the cable is suitable for $1 D C$ termination Hayden Laboratories, 0753 88844

Power filters. The Littelfuse Tracor range of power line filters is designed to protect equipment against mans transients The range includes plastic-cased devices for with 250 V AC or DC at 06 A to 30A. Highland with 250 VAC or DC at 0 6A
Electronics. 0444645021

Displays

Hexadecimal displays. Hewlett-Packard HIL-311A4x 7 dot-marnxnexadecimal displays include an IC to implement all decoder. driver and memory functions required to accept. store and display 4-b binary data. off-loading display managemen lasks from the host processor. The binary data is displayed as the characters 0.9. AJermyn Distribution, 0732450144

LCD driver. The Teledyne Semiconducto TSC828 flexible, multı-digit LCD driver can be connected directly to the TSC827 A-toconverter and simultaneously displays the converter and simultaneously displays the
A-to-D conversion result and high/low set-
point values. Annunciator inputs, alarm logic outputs, a buzzer driver and all display decoder/drivers are included. Trident Microsystems, 0737765900.

Filters

Digitally programmable anti-alias filters. Frequency Devices Series 848P8E are digitally programmable, low-pass, active filters intended for anti-alias applications They are tunable over a $256: 1$ frequency range and provide an $80 \mathrm{~dB} / 0.03 \mathrm{~dB}$ shape factor of 1.77 , an 82 dB stop-band floor and a 2.pole monotonic roll-off. Lyons instruments, 0992467161

EMC feedthrough filters. The four ranges of Tesch panel-mounting, feedthrough RFI filters handle currents from 60 mA to 15 A . Two of these A11X17 and A14X11, are primarily low voltage types for telecomms applications up to 35 GHz ; the other two, designated $\mathrm{Al} 4 \times 21$ and $\mathrm{A} 14 \times 22$, are mostly rated for mains use. Schaffner (EMC), 0734 697179.

Instrumentation

Smart oscilloscope. Philips' PM3070 Smart series oscilloscope is a 100 MHz delayed-timebase instrument with automatic Cursor-controlled measurement and an illuminated liquid crystal display for readout of status and settings. Accelerating voltage is 16 kV and an "autoset" facility selects the channel, sensitivity, timebase and triggering for any signal. IR Group, 0753580000 .

Track-current meter. This is an instrument for the measurement of current flowing in printed-board tracks, which do not need to be broken. Two probes inject a secondary direct current along the track, thereby causing a change in the potential gradient which is measured and used to calculate the original current. The result is displayed digitally. Laplace Instruments, 0614409579

Voltage and current calibrator. Mode

 521 from Electronic Development Corporation is a microprocessor-based. IEEE-488(GP-|B)-controlled, voltage and Current DC Calibrator It features current mode outputs from 10 nA to 110 mA with compliance of $100 \mathrm{~V} D \mathrm{D}$, and voltage outputs from 100 nV to 100 VDC and optional to 1100 VDC Compliance current is 100 niA The one-year voltage accuracy is $\pm 0.002 \%$ of setting. Lyons Instruments, 0992467161Temperature measurement An optical. fibre temperature measurement and control system by Acculiber has a response time claimed to be 1000 times faster than an equivalent thermocouple system, with resolution of $0.01^{\circ} \mathrm{C}$. The system is immune to EMI or RFI and can use contact or non-contact sensors. System configurations available include single and multi-channel versions with bidirectional RS-232 interfaces. Megatech, 0705472868
Portable DSO. The Tektronix 2211 portable oscilloscope offers both analogue and digita capability, with screen cursors. CRT readout and a hard-copy serial interface. It also provides 50 MHz bandwidth, a 20 M sample/s sampling rate, 8 .bit vertical resolutionand 4 K record length. Tektronix UK, 062846000
40 MHz oscilloscope. The Trio Kenwood CS5135 two channel, four trace oscilloscope has delayed timebase and allows examination of complex video signals using a clamp function. For complex signals. trigger holdooft is made variable. Thuriby Electronics, 048063570.
IGHz programmable attenuator. In the $d B$ 125 attenuator, a total of 125 dB may be switched in 1 dB steps using a combination ol 1.2,4,8,10 and 20dB stages. High-frequency relays direct the signal either to a pad or straight through. Accuracy at 500 MHz is better than 0.1 dB and input/output impedances are 50 ohms. VSWR is 1.15:1 Quartzlock. 080426282.

Power supplies

Switched-mode regulator. The SPG dual output switched. mode regulator from Schrott has a temperature controlled current-limitation circuit which adjusts the maximum output current as a function of the ambient temperature. The unit is compatible with VME. Multibus II and STE systems and provides 110 W at $50^{\circ} \mathrm{C}$, with a soft-start feature. Schroff UK, 044240471
$D C / D C$ converters. The $A A$ series of $D C / D C$ converters are now available in triple output versions. They operate from 28 V or 48 V inputs and are available with isolated output combinations of $5 \mathrm{~V}, \pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$. They can be paralleled to provide more current. The modules produce a maximum power output of 25 W at up to 80% efficiency. Astec Europe, 0384440044.

Power supply designers' kit. BICC-Citec's helo kit is a means of enabling designers to produce a regulated power supply. The kit includes all the components necessary to includes all the components necessary produce the power supply: a PCB , the
regulator, input and output capacitors, regulator, input and output capacitors, inductor, a mosfet, schottky diode and hea sinks. It also includes a PC-compatible fioppy-disc guide. BICC-CITEC, 0793611666

DC/DC converter. A 15 W converter, known as Model $12 \mathrm{S5} .300 \times \mathrm{C}$. will accept any input voltage from 9 V to 29 VDC and provides an output of 5 V at 3 A (Dower digital circuit comoonents. There is a minimum of eight hours short circuit protection using pulse-by. pulse monitoring. The unit shuts down if the temperature exceeds specified limits. Calex Electronics, 0525373178.

200 W switching PSU. Astec's AS200 PSU, which operates from inputs of 80.135 V AC or 180.270 V AC. provides outputs of $5 \mathrm{~V}, 12 \mathrm{~V}$. 24 V or $-5 \mathrm{~V} /-12 \mathrm{~V}$. All outputs are overload protected and the unit is approved to international safety and RFI standards. Powerline Electronics, 0734868567.

Production test equipment
PCB fault diagnosis. Designed to test digital devices with up to 40 pins, including surface-mount packages, the DDS. 40 is a stand-alone system with a host of features for rapidly testing digital ICs in circuit. TL.
c-mos, LSI, static and dynamic memory and interface devices are among the test programs in the system library. ABI Electronics, 0226350145.

Radio communications

 productsLow-noise microwave amplifiers. Two narrow-band, low-noise amplifiers from KDI Triangle, the AN-72-1 and AN-72-5, provide a minimum gain of 10 dB over the range 7.25 t 775 GHz . Noise figure is better than 1.4 dB at $25^{\circ} \mathrm{C}$ Maximum input VSWR is $1.25: 1$ and output VSWR 2:1 for the AN-72-1, which give a power output figure of 3 dBm for 1 dBm a power output figure of SaBm for 0227 630000 .
11.14GHz orthomode transducers. ERA's range of OMTs enables a satellite antenna to operate with both vertical and horizontal polarization channels, either dual-recelve or transmit-receive. Up to $\% 0 \mathrm{~dB}$ isolation between channels ensures interference•free operation and insertion ioss is only 0.15 dB . Other bands are in the $3-40 \mathrm{GHz}$ range. ERA Technology, 0372374151

EMC receiver. The Schwarzbeck FMLK 1518 C is a precision radio receiver suitable for measuring levels of RF interference as laid down in CISPR, VDE and other standards Tunable manually or digitally from 9 kHz to 30 MH 2 , the receiver will perform peak and quasi-peak level detection as well as average quasel. A direct output for a pen recorder is fitted. Schaffner EMC. 0734697179.

Switches and relays

High speed video switch. The HI. 222 monolithic dual SPST switch has a bandwidth
fover 200 MH 2 with an on impedance of $35!1$ and switching speeds of 100 ns . Its true T-switch design provides high.frequency off solation and crosstalk protection. Harris Semiconductor, 0276685911 .

Transducers and sensors

Digital input devices. A low-cost digital contacting encoder - the DP16 - is suitable or applications where microprocessors are built into equipment, such as compact disc machines, cameras, test and measuring instruments and cars. It has 360° continuous rotation. BICC.CITECLtd, 0793611666
Six photo-electric sensors. The MTE RK10 ange of modular photoheads has been extended to include solid-state output for load switching up to 75 V AC/DC. Light-on/ dark-on mode selection is also provided, plus an optional timing facility. Thirteen types are now available to cover retro, object-sensing and through-beam applications up to 12 m . MTE, 0702421124

COMPUTER

Computer board level products
Single-board computer for VME bus. The HK68/V2E 32-bit single-board computer HK68 2 E 32 -bit single-board compute from Heurikon is based on the Motoroa 68020 CPU . It features 4 or 16 Mbyte of on board DRAM, up to 2Mbyte of eprom, and an extensive range of $1 / 0$ and interprocessor communications lacilities. Software support includes $V \times$ Works from Wind River System, a real-time Unix-compatible operating system. GMT Electronic Systems, 0372373603.

Data communications products
RS-232 to RS-422/485 converter. This is a general-purpose serial communications converter which provides signal conversion and transmitter controls to enable equipment with an RS. 422 or RS- 485 standard communications interface to be connected to RS-232 ports. Klippon, 0732 460066.

Mass storage devices
Rewriteable optical disc system. The rack-mount Ricoh RO-5030 can store more than 650 Mbyte of data cn an optical disc. Measuring only $53 / 4 \times 8 \times 31 / 4$ inches, it features an ISO-approved standard $51 / 4$ inch
rewriteable optical-disc cartridge. Data Peripherals (UK), 078557050.

Programming hardware

Universal device programmer. The Stag System 3000 is capable of programming the whole spectrum of devices using manufacturers' approved algorithms and proven pin-driver technology on a single universal station. It incorporates comprehensive diagnostics. IR Group, 0753 580000

PC based eprom programmer. STRATOS is a programmer designed for use with any is a programmer designed parusle), and catering for all the most common eprom Catering or all the most common eprom
device types. Stag Electronic Designs, 0707 device ty
332148.

Software

Electronics design package. EE Designer IIIE is a new version of the EE Designer PC-based CAE package which incorporates a number of totally new features, including thermal analysis and an additional logic simulator. The thermal analysis feature in EE Designer IIIE calculates component and junction temperatures as well as a board surface-temperature gradient. Betronex UK 092069131

Temperature map of a PCB, produced by EE Designer III E software

Wpugiey WबCH

A glance at the future of microwave engineering • MVDS - multi-television takes the air • lowest manufacturing costs for a new type of flat-plate antenna? - designer's guide ior microstrip patch antennas • advances in microwave spectrum analysis - report on a new Fresnel microwave antenna • progress survey - antennas combined with mmics - 10 GHz GaAs op-amps made with microwave technology - James Clerk Maxwell telescope (above): a refined example of near-millimetre-wave engincering

UNBEATABLE PRICES

GREAT OFFERS ON TRIED AND TESTED USED EQUIPMENT

In terms of market areas for microwate technology, four main categories may be identified, as shown in the diagram. Traditionally, the microwave industry has always been driven by the demands of the military sector, which has constantly provided designers with the challenge of achieving higher frequencies. higher power levels, wider bandwidths. lower noise and more compact hardware normally with cost as a secondary consideration.
In recent years. the driving foree behind most activity in the military microwave field has been the everincreasing capability of digital signal processing, and this is expected to continte in the future. As processing capacity continues to expand, more and more complex systems become feasible. Since this is not ustally accompanied by a corresponding growth in the space available to house the equpment. miniaturization of the microwave circuitry becomes a crucial factor.

A good example of this increasing complexity and demand for miniaturization may be found in airborne radar where the goal is the development of an all solid-state, multi-mode pulsedDoppler system employing ant active phase-scanned flat aperture array antenna. To meet the expected demand for large volumes of transmit/receive modules for such systems. GaAs technology has had to advance toward the point of monolithic integration.

This is now leading to a new generation of digital hardware, which will allow even faster processors to be built. and will consequently pace even greater demands on the microwave and other high speed analogue parts of the system. In radar, this new technology will open the door to further advances such as conformal antenna arrays and digital beam-forming, increasing further the need for high levels of integration.

Advances in signad processing techniques will also cause attention to become much more sharply focused on the speetral purity of the microwate and RIF signals generated and handled by such systems. The two most critical items in this respect are the microwatve signal source and the amalogue-to-digital converter, where present technology often harely meets the needs even of current systems. It seems likely that further advances will depend very much on the appearance of derices employing new physical principles: for example, hightemperature superconductivity may bring sources of very much lower phase noise than we hase at present. and some

Microwave engineering the future

Hugh McPherson of Heriot-Watt University briefly reviews the current state of the microwave industry and speculates about the future.

device using quantum effects maty eventually be discovered for digital conversion, avoiding the need to carry out the process purely by circuit technigues.

Device technology

Much current activity is centred on research into transistors capable of operating al millimetre and submillimetre wavelengths. Devices under investigation at present include the high alectron mobility transistor (IIEMI'). the permeable base transistor (P13T). the beterojunction bipolar transistor (HIST) and others. It is impossible to say which device will come out on top. but IIEMTS are receiving the most publicity and there are deviees available. When the most suitable technology has been establistied, and has matured to the point of monolithic integration. the electronically scanned. multiheam, millimetre phased-anraty amenna

[^2]may become a reality. enabling a completely new range of systems to emerge.

Although great strides will undoubtedly continue to be made in solidstate device technology, the microwave tube seems likely to remain in existence for a sery long time to come.

Commercial applications

So far we have been essentially concerned with defence applications of microwave technology. Recent restrictions on defence budgets together with peate intiatives have suggested that there is likely to be a levelling-off. if not an actual decrease in this area of application in the future Many microwave companies, especially those invotved in MMICs, are therefore anxiously seeking outlets for their capabilities in areas other than defence. In the consumer field, the size of the market is calusing serows consideration to be given to products such as millimetre wave wehicle radars and electronically beamsterable flat antennas for DBS

One other potentially large market has not yet been exploited to any significant extent. This is the industrial sector. where microwaves could offer solutions to a wide range of measurement, monitoring. sensing, and heating problems. Millimetre-wave systems could be especially ureful in many of these applicat tions, having the advantages over optical methods of being able to operate in more hostile enviromments, and allowing Doppler information to be easily extracted.

Microwave television

The idea that a large number (greater than 12) television chamods can be tramsmitted directly to homes using frequencies higher than those currently in use in the UlIF tele ision banc! is not a new one. Mierowave television systems have existed in the USA since the tate 1950 .

Initially the service in the USA was restricted to one channel operating at 2. I all/. This was called the Instructional Television Fixed Service or ITFS: it was used on university campuses to provide additional lecture material during the day and entertainment at might. and in city areas to relay educational programmes to focal schools.

In the late 1970s. many of these systems incorporated tramsinssion of a satedite channel: •lome Box Office used the system for distribution during the evenings when educational progfammes were not being transmitted. From these beginnings the Muttichannel Microwate Distribution Systems in the USA and Camada, amthorized in fest. calle into being.

The transmitler for an MVOS system (Fig. I) ohtains its programming from a source which in this example is a satellite receiver. Signals from the programmes source are fed to a modulator which processers the ハ'pk-pk video and boms? audio signals into al PAL signal output at
all intermediate frequency which is normally in the VHF hand used by cahle systems. Fach channel to be transmitted uses a separate up-converter and amplifier. This is necessary becaluse intermodulation between the individual programme channels would mean that very high power amplifiers operating at considerable back-off would be needed if all the chamels were fed through one amplifier and up-converter.

Programme channels are then combined at the microwave frequency for transmission from a single antennal. The combining technique uses frequencyselective filtering. This method. although more expensive than couplers. has an overall loss for, saly. a 12 channel system of typically less than 2dB3 compared to 12 dB for a network of 3 dB couplers.

Most of the transmitter power is therefore available at the transmitting antenna - an important cost and performance consideration. A typical station broadanting mine chamnels and giving combined effective isotropic radiated power (EIRP) in excess of 1 kW will cost approximately $£ 20$ (O)O per chamel and would cover a radius of approximately 30 km .

At the receiving household (Fig. 2) a simple antenna and low-noise upconverter costing approximately $£ 50$ is all that is needed: the AM signal can be down-converted into existing television sets. If the programmes are encrypted. a standard cable-system setotop box can be used.

Microwave TV in the UK

A lobby for a system of microwave television in the Lik wats started in l986 by a number of cable franchise hoders and applicants. They saw the technology as a means of financing the expansion of cable networks by having a revenue-carning service up and running carly in the life of the system.

As a result of this lobby the British (iovernment commissioned the consultants Touche Rons to investigate the possibility of providing an MMIDS (or Microwave Video Distribution Service. MVIDS, as it has now been rechristened) in the UK. From the Touche Ross report the Govermment formulated ideas which are incorporated in the White Paper "Broadeasting in the 9()," currenty before Parliament. The cable companites wish to have MIVDS distribution lechnology avaitable to them is now reflected in the White Paper. which diseussen franchising local delivery services which are "echnology neuraliafter 199).

Be "technology neutral' the Govern-
ment means that a company franchised to deliver local television and telecommunications services will be able to use a mix of cable. microwave and any other authorized means of delivery available. rather than being restricted to the use of cable as is now the case.
The British Government through the Touche Ross report, has considered three possible frequency bands for MVIS. These are 2.5 GHz . using amplitude modulation. 12 GHz using AM or FM and 40 GHz using FM.

For an illustration, consider the performance of some practical systems:

Band	Mode	Power	Range
2.5 GHz	AM	20 W	30 km
12 GHz	AM	2 W	2 km
12 GHz	FM	2 W	25 km
40 GHz	FM	0.1 W	2 km

Tests carried out by Marconi at 2.5 GHz and 12 GHz suggest that these figures present a reasonable picture of the situation. However, the 40 GHz predictions are based on the 29 GHz trials conducted by British Telecom at Saxmundham.
Typical transmitter and receiver parameters are listed in Table 1. The carrier-to-noise (C / N) values stated are those which achieve a video signal-tonoise tatio of 40 dB weighted corresponding to a picture quality of 4.5 on the CCIR five-point scale. For simplicity. it is issumed here that this grade 4.5 picture should be available over the entire path with light rain ($2.5 \mathrm{~mm} /$ hour)
between transmitter and receiver. and that the picture should remain with C / N above threshold during heavy rain. This is taken to be $25 \mathrm{~mm} /$ hour over 1 km of the path. with $2.5 \mathrm{~mm} /$ hour over the remainder.
Table 1: MVDS link parameters

	$\begin{aligned} & 2.5 \mathrm{GHz} \\ & \mathrm{AM} \end{aligned}$	${ }_{\mathrm{FM}}^{12 \mathrm{GHz}}$	$\begin{aligned} & 38 \mathrm{GHz} \\ & \mathrm{FM} \end{aligned}$
Power at Tx amtenna. dBW	+9	0	-10
Tx antenna gain, dBi	15	15	15
Rxantenna gain dBi	20	27	27
Rx noise figura (dB)	3	2	12
Rx bandwidth (MHz)	5.5	33	33
Operating C / N at $R x$ (dB)	43	16	16
Carrier/intermod (dB)	53	26	26
Resulting permissible path loss (dB)	135	153	133
Path length (km)	30	25	2

Although MVDS on 2.5 GHz hats been rejected for the UK. such systems will soon be operating in I reland and are altready in use in the USA and Canadat

In Ireland it is planned to provide a nationwide service of 11 channels using the frequency hand $2.5-2.65 \mathrm{GHz}$. This is possible by spacing each channel of 8 MHz bandwidth at 16 MHz , and reusing frequencies on an 11 -channel. 16 MHz grid with 8 MHz offset. With verical and horizontal polarizations. this gives four alternative frequency plans (Tatble 2)

MVDS at 2.5 GHz

Figures 3 and 4 show the basic equipment used in a 2.5 GHz MVDS system. Programmes are obtained either locally
or from satellite and fed to a PAL modalator in the same way as an existing UHF broadcast transmitter operates. The IF signat at VHF $(100 \mathrm{MHz})$ is up-converted to the microwave band. amplified to a suitable power and fed to

Fig. 8. Transmitting station of a satellitefed multi-channel microwave video distribution system.

Fig.2. Multi-channel video distrihution system.

lisylHiII MICROWAVE TECHNOLOGY

Table 2: Ireland's MVDS frequency plan

Channel number	Vision carrier $(M H z)$	Sound carriier $(M H z)$	
1	A	2501.25	2507.25
2	B	2509.25	2515.25
3	A	2517.25	2523.25
$\overline{222}$	B	$\overline{2669.25}$	$\overline{2675.25}$

an omni-directional or cardioidpatterned antenna to provide the required coverage.

In Ireland the systems are expected to be encrypted so that revenue can be collected from the users, atthough it is likely that a minimum package of five or six channels (comprising the four UK networks plus a new privately-owned Irish chamel) will be provided at low cost to the household. Premium satellite chamnels would be charged at higher rates.

MVDS at $12.1-12.5 \mathrm{GHz}$
In the UK the Home Office has recently announced that only two frequency hands are now under consideration for MVDS: $12(\mathrm{GHz}$ and +10 GHz . A recent DTI statement called for interested organizations to make submissions on the viability of these two bands.

The reason for the interest and uncertainty over the 12GHz band is that currently this band is allocated to direct broadcasts by satellite (DBS). If part of the band were to be committed to MVDS then it would not be used for D BS in the future.

The main attraction of 12GIIz is that the low-cost receiver technology developed for DBS is fully compatible with an MV1)S delivery service. Furthermore, the advances towards highdefinition television (HDTV) using the MAC system demonstrated at IBC at Brighton in 1988 are continuing to be developed through the Europeanfunded Eureka programme, and are compatible with this method of programme delivery.

There appears to be a good technical case for allowing MVDS a chance to prove itself and this could be done immediately by establishing some largescate systemitrials in this band. Since the technology for 12 GHz MVDS is identical to that of a satellite TV system (but with the signal being broadcast terrestially) the transmitter equipment coukd be based on that used to transmit signals to the satellite (Fig.5). It would cost approximately $£ 25$ (100 (per channel, including the cost of combining.

A typical 12GHz single-channel transmitter comprises an FM modulator and double up-converter giving an output of between 1 and 10 watts depend-

Fig. 3. Complete microwave video distribution system.
ing on the power requirements of the system. Shown in Fig. 6 is a multichannel network used to combine the signals on to a single ommidirectional antenna.

MVDS at 40 GHz

Millimetric MVDS has been on trial by British Telecomis Rescarch I aboratories. The advantages of a millimetric systemare

- the availability of spectrum means that at least 30 channels are achievable. with no disruption to ptanned services:
- this frequency may suit cable system operators who will need to use MiVDS largely as an extension of their systems into the fringe areas of a town orcity. or small market towns which are uneconomic to cable. This atso overcomes the objections made against MVISS that. once in use, it will discourage the cable franchise holder from installing a cable system.

However, the limitations of millimetric systems should not be overlooked.

1. Range is short, 3 kim at best.
2. Technology is currently expensive. It is not certain when the technology will mature enough to make the domestic RF components available cheaply to the consumer, although one UK research organization has made optimistic statements made in this respect.
3. Penctration within a given coverage
area will be less than that of the lower frequencyoptions.
Equipment for millimetric systems using FM would be much the same an that for 12Gllz systems. Apart from the domestic low-noise converter, the lowcost indoor satellite receiver units now on sale in the high street could be used. Several manufacturing organizations are fully confident that a focillz lownoise converter can be produced at a similar price to 12 GHz I) 3 S LNCs.

What next?

With a DBS system already established in the UK. local delivery systems including cable and MVDS will have to offer more to the customer than satellite alone can provide. These services must therefore include local low-budget programming and minority interest programming on subscription.

The choice in the UK is between 12GHz with available DI3S technology and tonger range but with a limited frequency allocation, and fllcilz. The latter, however, is. as yet unproven and will possibly be more expensive and with a shorter range. It hats. however. potentially a larger frequency allocation.

The success of locall radio shoukld be a good indication that many people prefer to listen to local-interest programmes. news and current affairs. If economic programming can be established and market demand is sufficient to drive down the cost of equipment. local television will find a place.

A VERY AFFORDABLE PCB CAD SYSTEM

Professional high quality PCB CAD SYSTEM at a Price you can afford.

The complete package consisting of Protel Autotrax PCB Autorouting Software, Protel Schematic Design Software, Amstrad PC2086 30Mb Hard Disk with a 14" High Resolution VGA Monitor and a Roland DXY 1200 Electrostatic Paper Hold A3 Flat Bed Plotter, inlcuding a set of Plotter Pens and Cables in the package price of £3485.00*. For an additional £350.00* the package would include an Amstrad 228640 Mb Hard Drive with a $14^{\prime \prime}$ High Resolution VGA Monitor (in place of the 2086 Computer). Software available Ex-stock from only £245.00*.

lithlitill MICROWAVE TECHNOLOGY

Flat plate satellite antenna

The simplest form of satellite antenna system is a concave reflector, a dish, with a smatl horn aterial. the feed hom. located at the reflector's focus If such a system is properly designed and constructed, about 50% of the intercepted signat energy is delivered to the receiver. The intercepted energy is equal to the area of the aperture of the reflector muthiptied by the signal strength at the aperture of the reflector.

Slightly higher efficiencies can be obtained by shaping the reflecting surface so that the feed hom can be offset from the line-of-sight to the satellite and still be at the focus. Efficiency is increased mainly because the feed horn and its support no longer cast a shadow on the dish
For both the axial and offset feed horn positions. the concave surface

Anthony E. Sale describes a multiple flat plate reflector design suitable for
microwave television reception

View of the flat plate anten ia. Outer plates can be set back in increments of half a wavelength, to reduce the physical depth of the reflector.

Signals from Radio-Télé Luxembourg and SAT-I, received from Astratand Eutelsat I-FI by the flat-plate antemna.
must be figured to a high degree of accuracy: ± 0.5 mm is often quoted. This atcuracy must be maintained under wind loading. and the feed horn position must be held precisely

To receive signals from different satedlites, the complete reflector and feed horn must be rotated. Becatuse of the large aperture the beam angle is small - 2° is sypical. This means that any positioning system must hate a repeatability of less than half a degree and be sufficiently robust to withstand wind.

Antenna swstems for multi-satelite reception are therefore expensive. rather unreliable unless heavily engineered, difficult to install, and very bulkyandobtrusive.

There is however an alternative apprateh. This reflector design described here allows cheap and easy production through greatly reduced tolerance requirements, caster selection of different satellites by moving the feed horn while keeping the multiple plate reflector fixed, and a far less obtrusive installation by sirtue of the lesser depth of its reflecting surface. These improvements are acheved without loss in efficiency by constructing the reflecting surface from a number of flat plates.

The design relies on the focusing effect of the diffraction pattern resulting from reflecting a plane wave from a flat surface which is a small number of wavelengths across. This diffraction pattern is the same as that obtained by illuminating a slit by a plane wave and observing the field strength at different positions on the far side of the slit. The field intensits patterns differ according to the slit width, the distance and the wavelength (see panel). The far field, at distances greater than $2 a^{2 /} / \lambda$. approximates to the (sin x)/x curve Towards the end of the collimated region at a distance of $a^{2}(2 \lambda)$. the intensity of the axis is greater than the intensity without

Fig. I. Intensityat l'is obtained by integrating the vector contributions fromeach point in the slit.

Reflections from a flat plate

This analysis deals with reflections from a flat plate illuminated by a distant radiating source. Since the source distance is very large compared to the plate dimensions, the illumination can be considered as a plane wave of uniform phase across the wave front

A flat square plate can first be analysed by considering only two dimensions, i.e. treating the plate as a reflecting strip of infinite length and of width equal to that of the plate. This is mathematically precisely the same as an infinite slit in an infinite conducting plane. illuminated from behind. This well-known problem was first investigated and solved by Fresnel using Huygens' principle, which treats a wavefront as an infinite number of radiating sources, each with a $(1+\cos \alpha)$ intensity distribution.
If the z axis is normal to the centre of the slit of width a, and x is the distance off of the z axis to the point P (Fig.1), then the resultant intensity at P is obtained by integrating the vector contributions from each point in the slit. This involves the Fresnel integrals whose values are tabulated in terms of a normalized parameter, v. These values can also be presented graphically as Cornu's spiral, shown in Fig.2. The parameter v is evaluated as

$$
\begin{equation*}
v=x \sqrt{2 /(z \times \lambda)} \tag{1}
\end{equation*}
$$

when λ is the wavelength of the illuminating radiation, and is marked on the Cornu spiral. This normalized form of the spiral makes the distance between the two infinity points equal to the free-field intensity, i.e. without the slit present. If just one edge of the slit is considered, with the other edge moved to infinity, then for different distances for the point P off the z axis, the resultant intensity is obtained from the Cornu spiral as the distance from one infinity point to the v point in the spiral corresponding to (1).
the slit. Close to the stit at at $1 /(30 \lambda)$. the intensty approximates to a rectangular function equal to the incident plane wave intensits:

In the flat plate design. the width of the flat plates and the focal length. i.e.

Fig.2. Fresnel integrals plotted as Cornu's spiral.

For a given distance on the z axis, this looks like Fig.3. If both sides of the slit are now included, then for a given point P two values of v are required - one relative to each side of the slit. The resultant intensity is then the distance between these two v positions on the spiral. This is obviously at a maximum for both v values equal to 1.25 and this corresponds to P being on the z axis and ata distance

$$
z=a \times a /(2 \times \lambda \times v \times v)
$$

from the slit. The intensity at this point is nearly 3 dB greater than the intensity without the slit. If circular symmetry is used this also corresponds to the focusing effect, due to diffraction, of the first Fresnel zone.

The shape of the variation in intensity as P moves off the axis is also important since this determines the aperture of the receiving horn aerial. This is shown in Fig. 4 for various distances away from a slit. Close to the slit at about 5λ, the intensity is nearly rectangular and matches the slit dimensions. In the Fresnel focused region, the curve has a pronounced central hump, with most of the energy being within 70\% of the slit width. At distances greater than the Rayleigh limit, $2 \mathbf{a} \times \mathbf{a} / \lambda$, the curve approximates to $\sin (\mathrm{x}) / \mathrm{x}$.

For a plate width of 20 cm and $\lambda=2.64 \mathrm{~cm}$, maximum focusing occurs at 50 cm , but is in fact only slightly less at 40 and 70 cm .

Shapes of the diffraction patterns can be investigated with a computer program performing the integration. The inner loop calculates the phase and amplitude at P for each element in the slit aperture. The cosine and sine resolved amplitudes are then summed to give the resultant phase and amplitude at P. Two outer loops then vary the P offset from the z axis and the distance from P to the slit.
the distance from the plate to the feed horn, are chosen so that the diffraction effect causes a maximum signal to be delivered to the feed horn. The feed horn aperture must be large enough to capture all the energy in the diffraction

Fig..3. Resultant intensity, obtained from the Cornu spiral.

LHHIHIII MICROWAVE TECHNOLOGY

The reflector consists of a matrix of flat meta plates (picture, page 784), each angled to reflect the signal which it intercepts into the feed horn at the focus. It may be made shallower by setting plates back by a half-wavelength, about half an inch, whenever possible. This is known as zoning.
Signals from the Astra satellite are on frequencies in the region of 11.5 GHz , corresponding to a wavelength of about 2.6 cm . Since the penetration depth of such high frequencies is very small in aluminium, quite thin foil can be used as the reflecting surface. Aluminium kitcien foil is completely adequate: it can be glued is squares of hardboard or plywood for support. The leed horn should have an aperture roughly equal to the size of a plate and a flare angle such that it "sees" the whole set of plates
Because the satellite signal is weak, it is no practicable to use it for aligning the reflecting plates directly. An alternative, optical method is to place the multi-plate reflector at one end of a long. darkened room and to hang a small spherical reflector (such as a Christmas tree glass ball or a well-polished soup spoon) at its intended focus. Using a distant point-source of light positioned such that the sphere's shadow falls on the central plate. adjust each plate in turn so that its image appears, evenly illuminated, in the sphere.

However, if a sensitive swept frequency display is available, it is possible to align the plates against a signal from one of the high power satellites. With a horn aperture of 15 cm and a flare angle of 60 . a direct signal can just be seen from Astra. It is also possible to see the reflected signal from a single plate 20 cm square

pattern. In practice. ath aperture widh approximately equal to the width of a plate is adeytate

The photograph of the mattiple plate antennat system shows how some plates are se back, away from the feed horn. to reduee the depth of the aderial aswas from the supporting structure. The reflecting surface is mounted rigidly against a suitable vertical surface such as the wall of a building. In the northern hemisphere, this wall should face the south. since this is where most of the satellites are stuated in the sky. The feed hom is them moved across the from of the multiple plate arial in order to receice signals from different satellites An important chamateristic of this re flector is that it maintains its efficienes for wide angles $\left(\pm 31^{\circ}\right)$ off the normal to the reflector. This contrasts sharply with at normal. fully figured parabola. whone efficiency falls off quite rapilly an the feed horn is mosed away from the design position. This improved off-axis performance results from two factors: firstly the flat plates themselves catuse degradation only in proportion to the ir projected area, i.e. as the cosine of the angle off the nomat: secondly, the setting back of plates gives a flatter reflecting surface which catses far lese variation in phase for off-axis working.

Tos receive different satellites. the

Fig.t. Variation in intensity as Pames oft the avis: in the Fresinefforeused region (centre), most of the energy is within 70% of the slit width.

Danger from sunlight

The flat plate antenna is a very good optical reflector, by virtue of its design. When mounted outdoors it focuses the Sun's rays and produces a very hot spot at its focus. Do not allow pets or children to get near the focus. Once the reflector is in position it should be covered in opaque plastics sheet or painted with a suitable non-reflecting paint.
feed horn has to mose in front of the multiple flat plate reflecting surface. Is path mast patso through the images of the satellites. tracing a reflection of the geostationary orbit path. One simple wal of constraining the horn tomote on this image path is to suspend it on a singte cord passing over pulteys mounted one at eidh top corner of the reflector, with a compression strut piroted at the botom centre of the reflector. By chone of the exat positions of the pulleys the length of the cord and the length of the strut. the horn movement cill be made to math the image pathelosely.

A reflecting surface of to phates. cath 2tom sopatre appears to perform as well ats a good quallity flem dish. With 25 plates. cach ? (kem suares it is about the same ats a I. 2m dish. In both cases. the multiple plate acrial was working at 30° offeet in the vertical plane and showed
 nomal in the herizontal plane

The athlow has filled ann application for a petrent ont he flat plate unternula design (A)

Further reading
Diltaction theory and antennas. By R. II.
 Radionanc propagation amdantemas. In John
 Antennas. Krams. Me(iram-Hill. I950

Athough the phenomenon of microstrip radiation has always been present in consentional microstrip transmission line design it was long atcopted as almost an unavoidable lose in the system.

Most rachation from a microstrip line ocens where there is a discontinuity in the line, that is to saly a mismatch of one sort or another. By enhancing this radiation it is possible to denign a compact acrial with reasonable efficiency and a low physical profile.

Although this technigue is suitable mainly for frequencies above 1 (illa, it can be used down to 200Milz or even lower: however. the surface area tends then tobecome unwieldy

A patch acrial can take many forms. from a simple rectangle (Fig.1) (o) a complex multi-patch arral (Fig.2). The more complex the aeriat, the greater the design problems: but it is relatively simple to design a single patch ateriat Which will have a predictable performance.

To mass-produce a simple patch acriat is relatively simple once the design hats been proved: however. there are pitfatls which catn catuse problems even withat simple single-patch design.

Problems with patches
Perhaps the casiest method of analysing the simple patch antemat of lig. 1 is to consider it as either a radiating slot or cavity. To analyse a patch aterial thomoughly involves using a full modat expansion techonigue. which can handle athy arbitrary shape of patch aterial. This technigue involves sery difficult theory and extremely complex calculations. For this reason this artick is concerned only with the design of simple patch aterials.

The type of dielectric uned has a dramatic effect on the siac and radiation properties of any patch aerial. Therefore the consistency of any dielectric materiat is of eriticat importance in any design which is going to be duplicated.

Nho the actuat choice of diefectric material will be compromise. since the reguirements conflict (Table 1). I-or

Designing patch antennas

Tim Forrester presents a

 designer's guide to one of the basic types of MMIC-compatible antenna.

Fig. 1. Simple patch antenna. Note that patches do not have to be rectangular.

Fig. 2. Complex patch array.

Table 1. Substrate choice for patch arrays.

Requirement	Dielectric constant	Substrate thickness
Low feed radiation	high	thin
Low surface waves	low	thin
Good tolerance control	low	thin
Low mutual coupling	low	thin
Low array losses	high	thin
Wide bandwidth	low	thick

example. a thick material of low relative permittivity gives a wider bandwidth but :l lower efficiency: a thin highdielectric material will produce a more efficient patch. but a narrower bandwidth.

Another important point to be considered is the method of feeding the patch. Since a microstrip transmission line radiates when the signal encounters a mismatch. if a particular radiation pattern is required then radiation from the feed line must be minimized.

The simplest solution is to feed the patch from behind, as shown in Fig. 3.

The feeder transmission line could be conventional coaxial feeder. or in the form of a microstrip transmission line. There are other methods of feeding a patch from the rear besides making a direct electrical connection. such as having a small iris in the back plane to permit the patch to couple to the feeder network.

With all compact antennas. overall bandwidth is inevitably reduced. A typical single patch aerial is likely to have a bandwidth of only $1-3 \%$ at locillz (even less at lower frequencies). compared with 15% for a free space dipole. However there are techniques to broaden the frequency response, at the cost of increased complexity - which may in itself lead to other problems.

A factor limiting the patch bandwidth is the frequency range over which the feed impedance is within defined limits. One method of increasing the effective bandwidth is to use a technique known as feed inductance compensation. Since the patch is fed from the rear, there is a certain antount of unwanted inductance between the patch and the end of the coaxial feeder. By simply incorporating a series capacitor this unwanted inductance can be tuned out, soincreasing the bandwidth. Figure 4 shows the most common method. Alternatively, by using a dielectric material with low permittivity. bandwidth can be increased at the cost of making the patch larger. Feed inductance compensation can also be used simultaneously to further widen the bandwidth.

Fig..3. Microstrip antenna fed by coaxial transmission line.

A more complex method of increasing overall bandwidth is to use a mumber of patches. each resonant at a slightly different frequency and parasitically coupled to the next adjacent patch (Fig.5). A further benefit of this technique is increased acrial gain: the drawback is that the design is more much involved.

As the complexity of a patch aterial array increases, losses inevitably increase. Unfortunately there comes a point where little or no advantage is gained by increasing the size of the array. If has been shown that the approximate maximum gain from a complex patch array is in the region of 35d13, with an acrial efficiency of 10% when operating at about 10GiHz. This low efficiency is due almost entirely to resistive line losses, which can be reduced by using a low-loss feed network.

Fig.4. Compensating for feed inductance. The value of $(\mathrm{C}$ must be chosen for resonance with the intrinsic lead inductance.

Fig. 5 (lefl). Multiple patch, parasitical! coupled.

Fig.6. Some practical microstrip antenna conliggurations.

This inherent loss in the aerial system also means that the overall noise figure of a receising system is degraded. It is difficult to guantify the degradation because the loss is dispersed throughout the receive aerial svstem - unlike a conventional system where an aerial has a known gain. followed by a certain feeder loss into a receiver of known overall noise figure.

Design of a rectangular patch

For a given frequency there is a family of paten sizes which will be resomant at that frequency. There is, however. an optimum size which will exhibit at good radiation pattern and reasonable efficiency. The actual size of the pateh will depend on a number of factors, such as the relative permittivity of the dielectric and its thiekness. the shape of the patch (usuadly round or rectangular). and the overall bandwidth required.

The reguired bandwidth largely determines the thicknes of the dielectric. but because the dielectric is usuatly asailable only in certain thicknesses. then the width of the patch may have to be varied from the optimum if a particular bandwidth is reguired.
There are other much more complex array shapes besides the ones mentioned above. eath with its own properties and benefits (Fig.6). For case of design and construction a rectangular patch is used in this example. The formulate used to calculate the patch dimensions will give a good first order aproximation. but if a more exact freguency is required with a particular bandwidth this method may not prose accurate enough. It is possible either to trim the patch acrial with a sharp knife on to the desired freguency. or else to use a set of formulac with built in correction factors to calculate the thenertical size more atecuratels.

Further reading

This article has barely scratched the surface of patch aerial design: it has glossed wer many wher interesting aspects of these novel derials, such circular polarization and phased steerable arravs. The following list is just a selection of the literature avalable:

Miconstrip Antennas by I. I. Bahl and P. Bhartia. ISBN: (1)-8ツ(0)-(1)

Mierostrip Antennas. Design Reguations. IEEEAP-S International Symposimm Digest Junc 1979, page 122 to 125. Theory and applications of broadband microstripantennas. oth European Microwave conference. September 1976. pages 275 to 279 .

DESIGN EQUATIONS

To design a patch of a given frequency, it is first necessary to choose a suitable dielectric substrate material. bearing in mind that any choice is likely to be a compromise of efficiency, banduidth or patch size etc. If there is it minimum bandwidth requirement, the thick ness of the dielectric substrate can be determined from the following formula:

$$
t=\frac{B W}{\left.12 \times \times F_{0}\right)^{2}}
$$

where $F_{\text {, }}$ is the centre frequency in GHz, BW is the bandwidth in MHz and t is the minimum substrate thickness in inches.

Choose a dielectric thickness which is suitable and readily available. This usually means alumina $\left(\varepsilon_{r}=9.8\right)$. duroid $\left(\varepsilon_{r}=2.32\right)$. low-loss foam ($\varepsilon_{1}=1 .(14)$, or some sort of glass fibre. whose permittivity could range anywhere from 2 to 5 . Low-loss foam can be purchased from wallpaper stores under the brand name "Rosslite". Unfortunately its dimensional stability leaves a little to be desired. but at $5 p$
permittivity of the dielectric.
Line extension is

$$
\frac{31}{h}=\left(1.412 \frac{\left(\varepsilon_{\mathrm{s}}+0.3\right)(\mathrm{W} / \mathrm{h}+11.2 h 4)}{\left(\varepsilon_{\mathrm{c}}-0.25 \kappa\right)(\mathrm{W} / \mathrm{h}+01.8)}\right.
$$

This proeedure provides a method of predicting patch resonant frequencies to within 10% or so. If the pateh has been designed to the optimum size and based on one of the three common dielectric substrates, then the leed impedance at the edge of the patch will be very close to one of the following figures.
For dielectrics of relative permittivity of 2.5 or less. the feed impedance will be in the reginen of 240 - 260)s. For a high relative permittivity material, such as alumina, the feed impedance will be much higher. in the regeon of 550 as . Exact values cath be calculated from the formulae shown below, but the impedances mentioned above are adequatte forexperimental purposes.
self conductance.

$$
\begin{array}{r}
G_{11}=\sqrt{\frac{k}{\mu}} \cdot \frac{1}{\pi} \int_{11}^{\pi} \sin \left(\pi \cdot W \frac{\cos \theta}{\lambda}\right)^{2} J_{11}\left(x \cdot 2 \cdot \pi \frac{\sin \theta}{\lambda}\right) \cdot \cos \left(1.2 \cdot \pi \frac{\operatorname{con} \theta}{\lambda}\right) \\
C_{12}=\sqrt{\frac{k}{\mu}} \cdot \frac{1}{\pi} \int_{11}^{\pi} \sin \left(\pi \cdot W \cdot \frac{\cos \theta}{\lambda}\right) \frac{\sin (\theta)^{i}}{\cos (\theta)} \cdot J_{11}\left(x \cdot 2 \cdot \pi \frac{\sin \theta}{\lambda}\right) \cdot \cos \left(1,2 \cdot \pi \frac{\operatorname{con} \theta}{\lambda}\right)
\end{array}
$$

per square foot it is very cheap! Glass-fibre PCB material can be used at the lower frequencies; it helps eonsiderably if its relative permittivity is accurately known.

Having chosen a suitable dielectric substrate of a certain thickness, we can determine the optimum patch width. By using a patch of a calculated optimum size on a standard substrate, it is possible to make certain assumptions as to the feed impedance at the edge of the patch. and so where the 5051 feed point will be within the area of the patch. To calculate the optimum patch size, use the following formula:

$$
W=\frac{c}{2 f_{1}}\left(\frac{\varepsilon_{1}+1}{2}\right)^{\prime} \because
$$

where W is the width of the patch (cm) , ε_{r} is the relative permittivity of the dielectric substrate. c is the velocity of light $\left(3 \times 10^{x} \mathrm{~m} / \mathrm{s}\right)$ and $f_{\text {, }}$ is the desired resonant frequency (CH / z).

Length of the patch in centimetres is given by

$$
\frac{c}{2 f_{\mathrm{r}} \sqrt{E_{\mathrm{c}}}}-211
$$

where ε_{0} is the effective permittivity (see formula below) and I is the line extension caused by fringing (sec formula below).

Effective permittivity of the dieleetric ε_{c} is given by

$$
\frac{\varepsilon_{1}+1}{2}+\frac{\varepsilon_{r}-1}{2}\left(1+\frac{12 h}{W}\right)^{-1 / 2}
$$

where h is the thick ness of dielectric. W is the width of the track (patch) and ε_{r} is the relative

Then.

$$
Z_{-11}=\frac{1}{2\left(C_{11}+C_{12}\right)}
$$

Having determined the impedance at the edge of the patch, it is now taisly cary to design an impedance-matehing quarter-watve tansformer to feed the edge directly. or alternatively to determine the 5082 leed point within the areal of the patch.

To determine the impedance of a quarterwave matching transformer, use the simple formula:

$$
Z_{t}=\sqrt{Z_{i n} \times 50}
$$

where Z_{t} is the impedance of the quarterwatve transformer and Z_{11} is the edge input impedance of the patch.

To determine where the 5ust feed point is within a pattch. use

$$
I=\frac{\operatorname{acon}\left(\sqrt{\frac{511}{1 /+m}}\right)}{\beta}
$$

Where I is the distance in wavelengths from the edge of the patch and β is defined an $2 \pi V_{F_{r}}$,
Care must be taken to eosure that the patch is made as close to size as possible, and that the dielectric used is of a known relative permittivity, wherwise inevitably the patch will not perform as expected.

A good method of prototyping these patch acrials is to use sticky-backed copper tape (available from RS (omponents), which can be trimmed easily on the dielectric subsate until the desired parameters are achieved.

Waves apart

Andrew Standen discusses Anritsu's advances in RF and microwave spectrum analysis.

Microwave spectrum analysers are indispensable in the research and development. design. manufacturing, installation and maintenance of RF and ultra-high-speed logic systems. But while high-specification, multi-function spectrum analysers have been too expensive. cheaper types have often lacked performance. Obviously, there is a demand for general purpose with a high technical specification and numerous functions at a molest cost.

If you want to provide a measuring instrument which can be operated by a wide range of users, then these criteria can be summarized ans follows:

1. Achieving fundamental performance requirements.
2. Ensuring that the instrument is casy to use and understand.
3. Ensuring applicability to automatic measuring systems.
4. Compactness and low cost.

The key to meeting all these requirements is the development of high-grade micowate devices and components. such ats filters, attenuators, mixers. oscillators. etc. . and of the technology to use these components. However, if you were to develop the highest possible grade components and implement these in our design. then this would conflict with point 4 .
In a normal RI spectrum analyser using the fundamental frequency component only of the local oscitator signall, the first IF is generally chosen to be higher that the input tuning range to prevent any direct feed of the input signal through the If filter without being transformed by the IF stage.

Let us assume we are designing a spectrum analyser with an input tuning range of 0 Hz to 2 Cilz , and an If at 2.56 illz (good practice, since this is

Fig. I. Block diagram of a spectrum analyser.

outside the input frequency range). From the tuning equation.

$$
F_{\| I}=F_{l u c, 1 \mid} \pm F_{\text {input }}
$$

the local signal can be swept from O.5(iHz to $2.5(\mathrm{BHz}$ or $2.5(\mathrm{BHz}$ to 4.5 (iHz to produce an IF signal for any input signal. In the first case we would need to produce an osciltator capable of sweeping over a relative frequency range of five times: whereas in the second, the retative frequency sweep is less than an octave. Obviousty. it is much casier to produce an oscillator with a narrower sweep range: so, for our simple example. we would choose the local sweep range of 2.50 B az to 4.5cillz. However, we have one bast problem to contend with - that is. 10 ensure compateness and low cost, analogue hardware should be eliminated from the analyser as far as possible. This has the added advantage that digital techniques lend themselves much more casily to athtomatic control, through a GiPlB interface, for example

Basic principles

A block diagram of a typical modern microwave spectrum analyser, the Anritsu MS710C, is shown in Fig. 1.

The RF front-end section is today almost invariably based on the superheterodyne principle, as used in AM broadeast receivers.

Again there would be the problem of image responses: but because we now effectively have a multiplicity of local signats owing to the harmonics. there would be more of them. There is an additional problem. too, of an input signal mixing with other harmonics to produce more than one response on the CRT (or more than one response at the (IF) as the local signal sweeps. These are termed multiple responses. So, one or two signals present at the input could produce a forest of responses on the CRT and make it difficult to distinguish the real signals.

Techniques were developed in the past todeal with this, typically involving adjusting the local oscillator sweep range by twice the intermediate frequency.

Where this happens the real signals remain in the same position on the CRT whereas the image and multiple responses move. Although measurements can be performed like this, the method is quite tedious and time consuming if there are many signals.

Toimprove the operation, a tracking preselector call be used. The entire family of MS710 spectrum analysers employs this technicgue, using a YIG

Fig.2. Performance of Yll; tumed filter. This varriably-tumed balldpass filter provides image rejection.
(strium iron garnet) tuned filter. This is a variable-tuncd [31PI having a bandwidth of tens of MHIz (Figs. 2). The tuning freguency is combolled in in always to correspond to the input signal frequenter. It serves. therefore as a presclector to sliminate mutiphe and image signals and ohviates the need for signal identification tedhniques. It also prevents the lecal signal from bleeding through to the input (the preselector in ahwaysoff-tuned trom the local signal by F_{11}) and IF fecd-through.

Two signats at the input pateed in freywery b 2×1, will produce a similat response at the IF. Using our example again. an input signal at I Cillz will produce the same If rexponse as as signal at oribla and they would appear superimposed on the CRI. We term these signals image revponses. We obercome this problem in RF spectrum analsern by including an image rejection lowparstilter before the RI stage.

Howerer. image rejection is obviously not practical for microwate spectrom analysis where we could typically be measuring signals up to zilcilli and beyond. It is powible to devign and implement wide-hand swept ascillators from. sits. 2 for 2leill\%: but this is exporive.

A sechnique called harmonic mixing is vers often used through considerations of manufacturing cost. With thi technigue, down-conversion of an input vignal is performed in the mixer by using harmonics of the local asciltator signal. Thus by selecting various harmonics it is possible to use a signal ascillator to deter high frequency microwase ig-
mals. The tuning equation can now be representedthus.

$$
F_{\text {mpuI }}=n F_{\mid \text {nex:|l| }} \pm I_{11}
$$

Wheren is the harmonie number.
Another feature of hamonic miving is that the conversion foss of the mixer is greater for higher harmonies. Figure 3 shows the basic circuit for the harmonic mixer used in the MS710. Conversion foss is a aried by aldjusting the bias across the diode; for the first and third harmonics it is minimized by adjusting the bias to evoro. The conversion efficiency can be improved stighty by inserting resonance circuits at the imput and output of the mixer circuit, tuned to the intermediate freyuency.

Ideally. localoscilfator controt should be performed by a simplified synthesizer technigue to hold down conts while consuring satisfactory performance. A diagran of the bead oscittator control circuit is shown in Fig. 4 .

The basic difference between this and a full unthesizer focal oscilator is that the signal sources f_{1} and f_{2} (independent guart crystat oscillators) would be phase-locked to a common reference ascillator and f_{3} would be a kow frequenC) symbesizer employing the same reference. However, as it stands, it is possible to achieve a frequency acouracy of better than 5p.p.m.
()f course. it is important to generate aceurate sweeps as well and this is performed slighty differents depend. ing on the sweep width. For wide spans. the sheep is generated by adding a (l-to-a whage signat to the PlI. compensation soltage while in open-loop contiguration. F"or natron yans, where accuracs is more significamt this is done in closed $\begin{aligned} \text {-hoop mode } \\ \text {. }\end{aligned}$

Low frequencies

Often we are not interested just in measurements on the RI carrier but atho in the low frequency information or

Fig..3. Harmonic miser: downcomersion of the imput signal is achieved by the use of harmonics of the local oscillator signal.

Fig.t. Local oscillator section of Amritsu's. Vis7lOC microwave spectrom amaInser.
baseband signat. It is cumberame and costly to we amother low trequency analiser for the me meaturements and some of today microwate analyser atso hate the capability of meataring to adudio frequencies. This is implemented cither by using the same RI- जage an for microwate meatarements, of by an independent tow-frepuenes superheterndyme tage switched to the common If sceation to improve the low-frequenes performance.

In military applications such as guided weapors. the signal frequencier used are well in excess of the consentional microwanc range (over low (ihla). Homener, these signal call be measured by using an external mixer and higher harmonics of the focal vignal to
 alt example of an analsaer with there capratilities: it has a frequenes range of

Quite a conmon fiature todas in kn frequency analysers is a tracking generator. This isal wept signal wource which provider a signal to which the amatyer attomatically tuncs. In this way. The Hace can perform stimulus/reponce meararementuondericen buch an filter. attenuators. etc. components which are uned in the banchand and If stager of microwanc aburce and transmitter. Not at common is this abilit! in microWancepectrum amalsis, where applicatome often demand characterizations of linear derices used at lower frequene? いagus.

Androw Stumden is an RF and microWence pronluct consinner with Amrisu Europelide

Fresnel antenna

Richard Lambley reports on a novel microwave antenna

More details of Manvzones Lids Fresnel antenna for microwave frequencies (May issue page 469) emerged at a demonstration staged at the DTI's Baldock satellite receiving station, where the company has carried out much of its development work.

According to Mike Wright of Mawzones, flat Fresnel microwave antemas have been re-invented at frequent intervals during this century; but until now they have failed to take account of a large but undisclosed fiddle-factor in Fresmel's calculations. with disappointing results. Getting this right involves some serious maths. as recent papers on the subject testify.

Two versions of the Matwzones antenna were demonstrated: a transmissive type, with its concentric silver rings screen-printed on a flexible plastics sheet; and a reflective type. made of a sheet material similar to the corrugated plastics sandwich used for estate agents* placards, with the ring pattern on one side and a metallized backing on the reverse. The rings are egg-shaped since in this way the Fresnel antenna can be made to cope with offset teeds or offaxis beams. Both types gave excellent reception of the Astra satellite on
Left: signal focusing by reflective zone plate.

HGHz using a surface area of well under a square metre and the reflective version (which gave more output) could receive weaker satellites. Mawzones has a computer program which can plot appropriate patterns for satellites at various elevations. for mounting on walls or roofs at a variety of angles. For DBS reception in northern Europe, the alignment tolerance is broad enough for the same pattern to be used at sites anywhere within a 300 -mile radius.

For domestic use transmissive amtennas could be made in the form of window blinds. which would be rolled up when not in use. Or they could be integrated with a skylight window, with the microwave feed attached to a strut on the inside. Development work is now concentrated on reducing the effective focal length of the ring pattern. 10 reduce the length of the strut and so improve its domestic acceptability. Antennas for mounting on exterior watls and roofs can be painted to blend them with their surroundings.

The patterns ate screen-printed for Mawzones by Graphic Art. a Cambridge company which speciatizes in membrane keyboards.

Electrical continuity of the rings is not necessary. so it would be possible to produce very large reflective antennas for the lower microwave bands in a form resembling floor-tiles. which could simply be laid out on the ground. A feed horn would be suspended above them on struts. For the same reason. Fresnel antemas would be highly tolerant of surface damage

A cheap satellite antenna of this kind could prove an attractive proposition to developing countries, which cannot easily afford the high cost of large. steerable dishes. But the Mawzones antema could also form the basis of a bargain-price terrestrial communications network. One possibility mentioned by the company is to use a commercially-available PC expansion card (costing about $\mathfrak{f} 30(0)$ which is designed for backing up hard discs on to cheap video cassemes. This could be used to convent a data-stream into a pseudo-video signal which could be transmitted and received economically using off-the-shelf microwave hardware. Not the PTT-approved way of doing things. perhaps. but it would undoubtedly be cost-effective

> Manzones Lid. o Hodwell, Ashwell. Baldock Hertfordshire SG75QG. 1el. 0162-7+2854.
> Information about the Videntras dana formathing card is available from Durk Suar Informadion Svstems on 0206-57822 or from Alpha Microsstrems on (0753-82/422?

Further information from:

LEE ELECTRONICS LTD

400 Edgware Road, London W2.
Retail Enquiries: 01-723 5521
Trade Enquiries: 01-450 9755
Fax: 01-450 6826
Telex: 298765 UNIQUE

STANDARD AK700E SCANNING RECEIVER

The AX700E has been designed as a professional quality scanning receiver covering most of the well used spectrum.

1 The only scanner with a full panoramic display.
2. Covers $50-905 \mathrm{MHz}$.
3. Features a spectral display covering $100 \mathrm{KHz}, 250 \mathrm{KHz}$ and 1 MHz bandwidths.
4. Receives AM, FM and NBFM.
5. Scans in 5/10/12.5/20/ 25 MHz
6. $1 / 5 \mathrm{KHz}$ up/down facility.
7. 12 V DC or $110 / 220 / 240$ with AC adaptor.
8. 100 User programmable memories.

COMMERCIAL QUALITY SCANNING RECEIVER

The IC.R7000, advanced technology, continaus coverage cammunications eceiver has 99 programmoble memories covering allciaft, marine FA. broadcast Amateut radio, television and weather satellite bands For simplified operation and quick luming the IC.R7000 featuies direct keyboard entry Piecise frequencies can be selected by pushing the dign keys in sequence of the fiequency or by tuinning the man luning knob $F M$ wide $F M$ naliow $A M$ upper and lowe, $S S B$ modes with 6 luning speeds $01105,10,125$ and 25 kHz A sophisticated scanning system provides instant access to the most used frequencies By depiessing the Aulo M switch the IC. R7000 automatically memorises fiequencies that are in use whilst it sin the scan mode, this allows you to recall trequencres that were in use Readout
sclearly shown on a dual-coloui fluorescent display Optiens include the

Icom (UK) Lid. Tel. 0227363859 Telex 965179 ICOM G N.B. Authorised Welsh distribution by M.R.S. Communications Ltd. Cardiff Tel: 0222224167

Please send information on Icom products \& my nearest lcom dealer. Name/address/postcode:

Status: Tel:
Post to:Icom (UK) Lid. DepI. WW, FREZEPOSTI,Herne Bay, Kent CT688R

SMALL SELECTION ONLY LISTED EXPORT TRADE AND QUANTITY DISCOUNTS RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Cossor Oscilloscopes CDU150(CT531/3) $£ 150$ only. Solid state general purpose bandwidth CC to 35 MHZ at $5 \mathrm{MV} / \mathrm{Cm}$ - Dual Channel - delayed time base - illumınated graticule - Beam finder - Calibrator - power 200V - 250 volts AC protection cover containing polarized viewer and camera adaptor plate - probe (1) - mains lead Tested in fair condition with operating instructions. FEW AVAILABLE - NO PROTECTIVE COVER BUT MAINS LEAD + 1 PROBE - $£ 125$ -TESTED - Manual $£ 15$ e»tra
Tektronix 475 - 200Mc/s Oscilloscopes - tested from £500 less attachments to £750 as new c/w manual. probes etc
Telequipment D755-50Mc/s Oscilloscopes - Tested d/w 2 Probes - §250 Manualis5 extra
Marconi TF2002AS - AM \mp M Signal Generator $-10 \mathrm{Kc/s}$ to $72 \mathrm{Mc} / \mathrm{s}-£ 85$. Tested probekıt-£15extra-Manual£10extra
Marconi TF2002日 - AM-FM Signal Generator - $10 \mathrm{Kc} / \mathrm{s}-88 \mathrm{Mc} / \mathrm{s}$. - $£ 100$ Tested to £150 as new - Probektt £15 extra - Manual $£ 10$ extra.
Marconi TF2008 - AM-FM Signal Generator - Also Sweeper-10Kc/s-510Mc/s from £450 Tested to $£ 550$ as new with manual - Probe kit in wooden carrying box - £50 extra

Don 10 Telephone Cable - ' 2 mile canvas contaners or wooden drum new from £20
Army Whip Aerials screw type F sections and bases large qty available P.O R Test Equipment we hold a large stock of modern and old equipment - RF and AF Signal Generators - Spectrum Analysers - Counters - Power Supplies - Scopes -Chart Recorders all speeds single to multipen - XY Plotters A4-A3.
Racal Modern Encryption Equipment - Racal Modern Morse Readers and Senders - Clark Air Operated Heavy Duty Masts - P.O.R.
All tems are bought direct from H M Government being surplus equipment: price is ex-works. S.A E for enquiries. Phone for appointment for demonstration of any items. also availability or price change V.A.T and carriage extra.

JOHNS RADIO, WHITEHALL WORKS, 84 WHITEHALL ROAD EAST, BIRKENSHAW, BRADFORD BD11 2ER. TEL NO. (0274) 684007. FAX: 651160
WANTED: REDUMDANT TEST EQUIPMENT - VAVES - PLUES - SACXTS - SYNCHROS ETC. RECEIVING AND TRANSMITIING EQUIPMENT - GENERAL EECTRONIC EQUIPMENT

Op-amps from GaAs technology

> Microwave technology can be applied to make 10 GHz op-amps and high-precision switched-capacitor filters capable of operating at 500 MHz . Chris Toumazou, David Haigh and Larry Larson report.

Iinterest in gallium arsenide (GaAs) for high speed analogue applications arises mainly from the higher electron mobility and peak velocity of GatAs compared to silicon'. These applications may be divided into higher frepuency microwave circuits and lower frequency highprecision sampled data circuits using switched capacitor techniques.

GaAs hats not quite lived up to its carly expectations because of processing and material problems. hut we are now secing a successful and rapidly growing use of GaAs mesfet technology in the area of sampled data analogue signal processing circuits. One major application has been amalogue-todigital conversion. Despite being one of the most demanding areas of allatogue integrated circuit design. R-bit ato-d converters ${ }^{2}$ with sample rates as high as I GHz have been successially implemented in GaAs.

High-freguency switched-capacitor (SC) filters form a related GaAs technology application. Avatiable e-mos technology switches at up to 30 MHz The higher electron peak velocity of GaAs has pushed switching frequencies to 250 MHz and even 500 MHz is now being realized". (aaAs SC tilters and a-10-d converters will allow higher levels of system integration. optimization of system performance and a greater degree of flexibility

The problem

Measured characteristic curves for a metal semiconductor fets (mesfets) produced by a typical GaAs process with a gate length of $1 \mu \mathrm{~m}$ (Fig. 1) exhibit typical fet-type characteristics. Such curves indicate a gain figure for a single device of the order of 20 . much less than for other technologies such as c-mos and bipolar. The op-amp is a central component in all sampled data analogue circuits. GaAs technology poses a number of difficulties for the amplifier designer the lach of a p-chamnel device (due to the low hole mobility of GaAs). a general lack of enhancement mode devices are (depletion mode devices are easier to manufacture) and low device gain. Design techniques must be developed to overcome the drawbacks.

A solution

A typical architecture for a Gat As opamp, ats with c-mos and bipolar. Consists of a differential input stage with current source loads. To achieve high a gain, the

Fig. 7. At $500 \mathrm{M} / \mathrm{Hz}$. this GaAsswitchedcapacitor tilter is significantly faster than any of its predecessors.
current source must have a high impedance. Figure 2a shows a high impedance current source for GaAs mesfet devices which exhibit "early saturation". Simply, this means that a device saturates for a value of $V_{\text {d }}$ which is less than that normally required. In Fig. 2a, Tr_{5} a is chosen to be much wider than Tr_{4}. This gives Tr_{5} a negative V_{g}, which is equal to the $\mathrm{V}_{\text {d }}$ of Tr_{4}, and is sufficient to keep Tr_{4} saturated assuming that early saturation exists. However, many processes (e.g. that of Fig.I) do not exhibit any or sufficient early saturation behaviour and, even for those that do. the device width required in Fig. 2a may be unat tractively high.

The alternative double level shifting technique, which solves this problem, is shown in Fig.2b. An auxiliary bias chain comprising Tr_{7} and Tr_{8} has been introduced. Now the level shifting source follower Tr_{p}. with its negative V_{g}. assists Tr_{5} in keeping Tr_{4} saturated. Device Tr_{7} similarly helps to maintain Tr_{5} in saturation and also helps keep the drain-source voltage of Tr_{8} relatively constant in order to maintain adequate source follower performance. The circuit in Fig. 2b realizes a high impedance cascode current source without any reliance on carly saturation of devices.

Another useful technique for amplifier design is illustrated in Fig.2c, which shows a differential input stage with the addition ${ }^{7}$ of a voltage follower A. In the absence of the voltage follower, the gain of such a stage using typical Gats mesfet devices is of the order of only 5 . The effect of the voltage follower is to eliminate gain limitation arsing from Tr_{1} and Tr_{2} and hence allow much higher gain. This is at the cost of increased sensitivity of gain versus device gate width.

10GHz op-amp

In the circuit diagran of the amplifier ${ }^{*}$ (Fig.3), mesfets Tr_{1} and Tr_{2} form the differential imput pair with a calsoded tail current source comprising $\mathrm{Tr}_{7, \ldots}$. A high impedance current source load for the drain of Tr_{2} is realized by means of $\operatorname{Tr}_{4, \ldots}$. Mesfets Tr_{3} and Tr_{4} perform two functions simultancously. Firstly, they form part of the double level-shifting bias circuitry (as in Fig.2b) used to maintain Tr_{4} in saturation. Secondly. they implement the voltage follower A in Fig. 2c. Mesfets Tr_{4} - Tr_{12} and diodes $D_{1}-D_{3}$ form a level-shifting stage. which feeds an output source follower. $\operatorname{Tr}_{1,3}-\mathrm{Tr}_{16}$.

The amplifier was implemented in a $0.2 \mu \mathrm{~m}$ gate length GaAs process. Measured frequency response is shown in Fig.ta. The step in the gain characteris-
tic at about 100 kHz is due to the freguency-dependent nature of the mesfet's output conductance due to dispersion effects*. but the normal operating region of the amplifier is above this point. The amplifier exhibits

* Relatively slowly varying charge in trapped by the surface states between the gatce and drain of the mesfet and at the interface between the channel and the substrate.
a unity-gain bandwidth of locilzz. Figure th shows input and output waveforms of the amplifier in an inverting unity gain configuration at a frequency of IGllz.

The demand for future systems with higher operating frequencies creates a need for rapid evolution. Recent development work exploits the high speed capability of (iaAs more fully: features

Fig. I. Curves for a I $\mu \mathrm{m}$-gate mesfet exhibit typical fet-type characteristics

Fig. 3. Gaft fet gate lengths of $0.2 \mu \mathrm{~m}$ are used in this IOCHzop-amp.

Fig. 2. High-impedance current source suitable for Gais devices with "early saturation" (a) and a double le velsiaifting technique for devices without carly saturation (b). In (c) is another useful op-amp design technique which solves the problem of low gain in a differential input stage using a voltage follower.

Fig.5. A higher performance op-amp than that of Fig. 3 has recently been developed. Its boftom section is a dual transconductance driverand its top section is a very high-impedance current mirror.

Fig.6. Gain and phase response of the amplifier of Fig. 5.

Fig. 4. Measured frequency response (a) of the IOGHz op-amp of Fig. 3 and its unity-gain input/output wa veforms at IGHz(b).
obtained include higher gain, higher phase margin (increased stability) and fister settling time.
One such amplifier" is shown in Fig. 5 It consists of two similar subcircuits placed one above the other. The bottom half contains the amplifier input terminat and is a dual transeonductance driver providing output currents at the drains of Tr_{2} and Tr_{11}. The main driver transistors Tr_{1} and $\operatorname{Tr}_{1_{2}}$ each have noo cascode transistors and therefore the output impedances are very high. The cascode transistors are biased by an extension of the double level-shifting technique illustrated in Fig. 2b. The upper part of the circuit features different connections to Tr_{4} and Tr_{r} so that it functions as a very high impedance current mirror. The effect of these blocks is to give the amplifier a push-pull capability at the output node. allowing double the transconductance and output current capability for a given chip area and power consumption. Figure 6 shows the gain and phase responses of this amplifier. simulated using parameters for a modest $1 \mu \mathrm{~m}$ gate width process. Key performance parameters for a $1 \mathrm{pF}^{F}$ load capacitance are as follows:

Parameter	Value
Gain (dB)	62
GB Product (GHz)	35
Phase margin	65°
Min. settling time (ps)	450

This design is a useful building block for high-speed systems. Such systems are currently being integrated and an example of a 500 MHz clocking GaAs switched-capacitor filter chip using the amplifier of Fig. 5 is shown in Fig. 7. The application of such design techniques to more advanced GaAs processes with gate widths less than $1 \mu \mathrm{~m}$ should produce truly outstanding performance.
(ians technologies are maturing rapidly: much higher levels of integra-
tion will soon be possible. In the development of circuit technigues. emphasis has been plated upon the reduction of chip area and power consumption. From the simulation results for integrated (BaAs high-precision filters, we expect circuit switching frequencies ans high as $5(\mu) \mathrm{MH} \mathrm{Iz}$. Recent amplifier developments have resulted in further reductions in settling time, approaching 20 ops for a $1 \mu \mathrm{~m}$ Gial As technology ${ }^{111.11}$. This is an encouraging step towards the eventual development of 1 (iHz clocking switched-capacitor systems.
(hris Toumazon is a lecturer at the Department of Electrical Enginecring. Imperial College. Lomdon: David I Haigh is alecturer an the Deparment of Eilectronic and Electrical Einginecring. Uniwersity College. London: and Larry Larson is GuAs Devices and Circuits Department Head. Hughes Research Laboratories, Malibu, California, USA.

Rederences
1.P.E. Allen and C.M. Breevoort, An anat logue circuit perspective of (iats technotogy Proc: IGR7 IEEE: ISCAS (Philadelphia), Ma! 1987.
2. I.. LE. Larson, High speed analogue to digital conversion with (jaAs technology: Prospects. trends and obsader. Proce 1988IIEELE ISCAS (llelsinki). Iune loxs.
3. S. Masuda er al. CMOS sampled differential push-pull catsonke operational amplifier. Proc. gest IERE ISCAS (Montreal). Man loxR. pp.1211-1214.
4. E.L. Larson. K. W. Mardinand (i.C. Femes. (iads switched capacitor circuits for high yperd signal processing, IEIEE J. Solid State' 'ircuins. S(-22.pp.971-981, December 1987.
5. S.I. Harrola. I. A.W. Vance and D).(i. Haigh. Second-order switched-capacitor handpass filter implemented in (isas.s. Electronics Lerfer Vol. 21 No 11. pp. 494-4)
(6. D). (B. Haigh, (C. Noumal/ou. S.I. IIarrold. J.I. Sewell and K. Steptoce Design and optimization of a (aass switched capacitor filter. IEEE 1089 International Symposium on (ircuits and Systems. Portland. Oregon. USA. Junc 1989.
7. K.W. Martin. (Gain Enhancement Terbuiy fe for Dilferemtiall Pairs. Electronion Levers. February 12, 1987. Vol.23, Not.
8. L. Li. Larson ar al. A llicilly operational amplifier in (iads MESFEI technology. Digest (usy IEEEE Int. Solicl Statc (ircuits Conference. pp.72-73. Fehruary. IONG
9. (C. Toumakat and D) (i. Itaigh. Design of a high-gain, single-stage operational amplifier tor (Ganswitehed-atpacitor filters. Electronics Lemers. Vol.23. Nolt, pp 752-754, 1987.
10. (C. Toumazou and I).(i. Haigh. Some designs and a charatererisation method for GaAnoperational amplifiers for switched capracitor applications. Electronics Lerners. Vol.2t. Nols. September 1. 1988. pipl171-1172.
11. I). (i. Itaigh and (\% Toumazou, Fastsettling high gain (ialds operational amplifiers for switched capacitor applications, Electronics leffers. Vol.25. No 11, M191989.

Since the first use of gatlium arsenide (Gats) in active microwave devices more than two decades ago, virtuatly all major microwave companies have been directing effort towards the realization of monolithic microwase integrated circuits (MMIC).

This technology has evolved along both digital and analogue routes. Digital MMICs are fulfilling signalprocessing roles such as anatogue-todigital conversion, signal weighting and multiplexing, white analoguc MMICs handle receiver and transmitter functions.

MMIC's are fabricated by optical photolithography and contact printing rechniques on (ians wafers. which are typicatly $3-4 \mathrm{~cm}$ in diameter and of the order of 0.1 mm thick. One side of the wafer is totally metallized to form a ground plane, while the other side supports microstrip circuit elements such ats inductive hoops. bocking capacitors, transmission line stubs and passive and active devices (Fig.1).

As MMIC technology has advanced. so its potential applications have grown. One of the most significant is in phasedarray radars. A phased-array antenna system. using integrated circuit technolagy to provide the transmit/receite functions at each element of the array. could have a significantly lower cost-per-element. Depending on complexity. phased-array elements can cost hetween $£ 500$ and $£ 5000$ each. Since a typical array may contain between $10 \% 0$ and 100 orow elements. the benefits are potentially vers considerable, and coukd lead to the long-sought goal of economical phased-array radar systems.

Part of the key to realizing an efficient and economical phased array with MMIC-fed antenna elements is 10 choose a radiator which is microstripcompatible. Two tepes of elemental radiator mee this basic requirement: the slot and the patch. Some typical radiator geometries are presented in Fig.2. In Fig.2a, for example, a rectangular shot (usually $\lambda / 2$ long) hats been etched into the ground plame below the microstrip feed line from the actise circuitry. For the line and slot orienta-

Fig. I. Outline of a monolithic microwave integrated circuit (MMIC).

MMIC-
 compatible antennas

> MMICs have now reached a maturity roughly equivalent to that of silicon in the early 1970s. Alan Sangster surveys progress in the antenna technology associated with them.

lithllill MICROWAVE TECHNOLOGY

Fig. 2. Some MMIC-compatib/e

antennas.

(a) Microstrip-fed slot radiator.

(b) Microstrip-fed cavity-backed slot

 radiator.(c) Conventional patch antenna.
(d) Short-circuited patch antenna.
(e) Slot-fed patch antenna.
(f) Edge slot-fed patch antenna.

Fïg.3. MMIC array antenna.
tions shown, the magnetic field of the microstrip quasi-TEM mode excites the slot and results in radiation above and below the ground plane. This bidirectional radiation feature is. however, not very useful in an antenna: and the arrangement lacks RF isolation between the radiator and the active circuitry. The cavity-backed slot antenna (Fig.2b) can eradicate most of these problems, but is harder to manufacture.

The simple patch anterna arrangement (Fig.2c) is relatively easy to fabricate. If the patch length is of the order of $\lambda / 2$ in the direction shown, the radiated fields from the transverse edges of the patch add in a direction normal to the surface of the patch. Unfortunately, this simple geometry also suffers from insufficient isolation between the radiator and the active circuitry. The λ / t patch radiator of Fig.2d, which is shorted using via holes along one transverse edge, provides a useful size reduction in the patch, but isolation is little better.

Two schemes which provide effective isolation yet do not add significantly to the fabrication process are shown in Fig.2e, 2f. A further advantage of these schemes is that the antema substrate need not be GaAs, and consequently bandwidth improvements can be realized by using thicker substrates with lower relative permittivities. Isolated patch excitation can also he secured by means of probe coupling between the microstrip feed line and the patch. However, the probe coupling mechanism is less compatible with the MMIC geometry and poses constructional problems. It is also pertinent to note here that slots and patches need not be rectangular.

How a phatsed array could be implemented is shown in Fig.3, using the element of Fig.2f. It can be seen that this antema element can be stacked readily to create a planar array. However, while MMIC technology married to microstrip radiator technology appears to lend itself to active-array development. many practical problems remain to be solved. In particular, these arrays are very sensitive to material and mechanical tolerances. Furthermore. they continue to present design problems due to the fact that the effects of mutual coupling or RF interference between elements, particularly with patch radiators, remain difficult to predict.
Dr Alan J. Sangster is Reader in Microwave Electronics in the department of electrical and electronics engineering at Heriot-Watt University, Edinburgh.

ANY MAKE CF RADIO TELEPHONE SYSTEM

RETROFIT

 $\frac{\text { STATE-OF- }}{\text { THE-ART }} 0$ ㄷ SIGNALLING
SELCALL, CTCSS \& AUTO IDENT

 via MICROPHONE REPLACEMENT
Low price desk top controllers,

ANI display units with hard copy printouts.

Private Moblle Radio Ltd., Industrial Estate,
Gwaelod-y-Garth,
Cardift, CF4 EJN, U.K.
0222810999
 Making Radlo Work - Your Way

The TIM 680M0 has been specifically designed for use in engineering education and training. This rugged, British made target board offers the following features :-

- Motorola 68000-16bitc.p.u.
- 8 MHz System Clock
- 682.30 PI/T, providing 2×8 bit //O ports and Timer/ Counter Functions terminating in 0.1 "PCB pins
- 68681 Duart. providing dual RS232 interfaces
- Upio6 +k RAMand
- Upro64k EPROMspace
- Optional IBM* PCC Cross Assembler/TextEdioor
- Powerful on-board Software Svstem including Debuger with Single Step Trace and Register Display
- Optional Keypad/Display
- Supplied with User and Technical Manuals
- Comprehensive self-paced training manuals available
- Optiona/ Microprocessor Applications card and Power Supply/Storage Case available

For full details please contact LI today:

y

LJ Technical Systems Ltd.
Francis Way, Bowthorpe Industrial Estate, Norwich.NR5 9JA. England. Tel: (0603) 748001. Fax: (0603) 746340.

Near-millimetrewave techniques

Fig. I. The James Clerk Maxwell Telescope. This instrument is capable of observing at frequencies ranging from 100GiHz to 900GiHz. The 15 m telescope is Ioused in a temperature controlled muilding which is 90ft high and looft in diameter.

> Access to the near-millimetre-wave region has revolutionized our understanding of the universe by letting us see things never seen before - Stafford Withington.

By receiving and analysing the line radiation associated with moleculat and atomic transitions, and the continuum radiation associated with lowenergy particle collisions. a wide variety of cold ($1 \mathrm{~K}-1000 \mathrm{~K}$), and therefore optically dark, astronomical phenomena can be studied. For example. near-millimetre-wave observations have revealed the existence of vast interstellar clouds of complex molecules, the most massive objects known in our galaxy. It has also heen discovered that certain young stellar objects adiate huge oppositely directed jets of particulate materiat: these collimated outflows attest the existence of int ricate star-forming structures. The cosmic background radiation. whose form was estahlished when the universe was only minutes old. can be detected and antilysed to give information about the creation and nature of galaxies. This cursory list could be extended for pages

It has only been possible to view the universe at near-millimetre wavelengiths $\left(100 \mathrm{GHz}_{-1} 10000 \mathrm{GHz}\right)$ by constructing a new generation of radio telescopes. Foremost amongst these is the James Clerk Maxwell Telescope (Fig. 1), sited on the $1+000 \mathrm{ft}$ mountain

Matua Kea in Hawaii. Submillimetrewave telescopes have to be operated at high altitude because short-wavelength radiation is strongly absorbed by atmospheric watter vapour - the atmosphere above Mauna Kea is one of the driest and cleanest in the world. The performance of a radio telescope is. to a large extent. determined by the diameter and the surface accuracy, measured in watvelengths. of the main reflector; a telescope with large smooth surface has high spatial resolution and high sensitivity. The antema of the James Clerk Maxwell Telescope is 15 m in diameter. and it is parabolic to within 0.035 mm . This remarkable degree of conformity allows the telescope to operate at frequencies as high as 900 GHz with good efficiency. At this frequency, the telescope has an angular resolution of just a few arc seconds.

Conceptually. and to some extent practically. the biggest technical challenges face t by radio astronomers have been, and will continue to be. in the area of very low-noise near-millimetrewave receiver development. The fundamental problem is that it is extremely difficult to interpolate between those concepts and techniques that are applicable at radio wavelengths and those that are applicable at optical wavelengths. For example. consider power detection. At radio wavelengths. the standard method for detecting power is to apply the incoming signal to a device whose resistance is nonlinear. The oscillatory potential across the devices induces a direct current which is proportional to the amount of power absorbed. Clearly. the phenomenon of power detection is classically understood in terms of the degree of curvature of the stationary amplitude response. It should be noted in passing that according to this description a classical detector can. in principle, be made arbitrarily sensitive by making the detector clement increasingly nonlinear.

At optical wavelengths, the devices used as delectors - photoconductors and photodiodes - are all conceptually hased on the photoelectric effect. the ejection of electrons from hound states by energetic photons. Thus the language of power detection at optical wavelengths is far removed from that of power detection at radio wavelengths. At sub-millimetre wavelongths. Wis dichotomy must disappear and the language of power detection must be intermediate between the classical and quantumextremes.

Heterodyning

A heterodyne receiver down-converts a band of radio frequencies to a band of more manageable intermediate frequencies. Spectral information and phase are conserved during this process and therefore narrow. high-frequency spectral lines can be analysed through relatively low-frequency signal processing. The configuration of a heterodyne. as distinct from a bolometric. near-millimetre-wave radio-astronomy receiver is shown in Fig.2. The main antenna and subreflector of the radio telescope focus the electromagnetic energy into a roughly collimated beam which is only a few tens of millimetres in diameter. This extremely weak beam is

Fig.3. A collection of receiver componevts. Top left is a wire polarizing grid for $350(\mathrm{HHz}$. Bottom left is a byperbolic ITTE lens for $3 \mathbf{5 0}(\mathrm{CHz}$. The assembly in the centre is a $3.30-360 \mathrm{GHz}$ solid-state local oscillator source. This assembly consists of working from left to right: a 90GHz Gumn oscillator, a ferrite isoliator. al directional compler. and attenaator. and a frequency quadrupler. The unit to the left of the 20p coin is a cryogenically-coolable fGHz HEMT amplifier. Bottom right are three millimetre-wavehorns.

Fig.4. A 230-270GHy dual-polarization cryogenically-cooled Schothy-diode receiver mounted in the receiver cabin of The James Clerk Mawell Tehescope. The signal beam enters the receiver through the aperture above the middle plate.

Fig.5. A $46(0)-490(\mathrm{CHz}$ dual-polarization cryogenically-cooled Insh receiver.
superposed on a relatively high-level local-oscillator signal in a diplexer, the combined power being then converted from free-space propagation into waveguide propagation hy a small. contagated horn. Once the power is in the waveguide. which typically measures $0.8 \times 0.4 \mathrm{~mm}$, it passes through various impedance-matching structures before being applied to a mixer element of only a tew femtolarads $\left(10^{-15} \mathrm{~F}\right)$ capacilance. Finally, the microwave signal emerging from the mixer is amplified, in a cryogenic HEMT (high electronmobility transistor) amplifier similar to the one shown in Fig. 3 , and then processed in an autocorrelation spectrometer. The physical complexity of very lownoise near-millimetre-wate receivers is greatly increased by the need to cryogenicatly cool the mixer element and the first few stages of IF amplification. Semiconductor mixers only require cooling to a physical temperature of around 20k, whereas superconducting mixers require cooling to 4 K : in both cases closed-cycle helium refrigerators are now being used. A complete 230$270 \mathrm{GH} /$ Schottky-diode millimetrewave receiver is shown mounted in the receiver cab in of the lames Clerk Maxwell Telescope in Fig.4. A 460490 GHz lnSb (indium-antimony) receiver is shown in Fig. 5.

Local oscillators

The construction of powerful, tunable, and reliable near-millimetre-wave local-oscillator sources is a major problem. For many years. retlex klystrons were used at the longer wavelengths. but these devices are expensive and short-lived. High-frequency backwardwave oscillators. also known as carctnotrons, are an alternative but are mechanically cumbersome. and reguire high-voltage power supplies. The current solution is to combine an InP (indium phosphide) Gunn oscillator. operating in the frequency range 50 120 GHz . with a GaAs varactor-diode frequency multiplier. This type of solidstate source is compact. reliable, and capable of being phase locked to a low-frequency synthesizer. Typically. I mW of power can be generated at 350 GHz . $1000 \mu \mathrm{~W}$ at 5010 GHz . and $30 \mu \mathrm{~W}$ at 700 GHz . These power levels are sufficient for driving Schonky-diode mixers at frequencies of up to 500 GHz . and superconducting mixers at frequencies of up to 1 THz ($11^{12} \mathrm{~Hz}$). A clumsy but effective solution to driving Schottk-diode mixers at frequencies above 500 GHz is to use a molecular laser.
A vartety of new oscillators may hecome available as a consequence of

the rapid advances of Ill- V semiconductor heterojunction technology. The resonant tunnelling diode is a device which essentially consists of a stack of closely coupled potential wells, the width of each of which is so small that only electrons having particular energies can exist within the wells. As the direct voltage across the stack is varied. the allowed energy levels are aligned and misaligned and when they are aligned, electrons can tunnel through the structure. The resulting negative differential resistance on the DC current-voltage curve can be used to make high-frequency oscillators.

Mixing

A whole range of fundamentally different types of nonlinear device can be used as near-millimetre-wave mixers. two of the most popular being the Schottky-barrier diode and the superconducting quasiparticle tunnel junction.

A Schottky-barrier diode consists of a metallic layer deposited on a lightly doped semiconductor, which is epitaxially grown on a heavily doped conducting substrate. The epitaxial layer is conductive except in the vicinity of the metal, where an insulating depletion zone is formed. Electrons can cross the depletion layer either by thermal excitation or by tunnelling; the former mechanism dominates at room temperatures. and the latter at cryogenic temperatures. At frequencies below 500 GHz , it is physically possible to mount a Schottky-barrier diode in a fundamental-mode wateguide structure, where the diode, which is only a few microns in diameter, is contacted by a small wire which bridges the waveguide. A tiny corrugated horn is used to couple the incident electromagnetic energy from the principal Gaussian mode to the waveguide mode; a selection of horns is shown in Fig.3. At frequencies above 500 GHz , it becomes exceptionally difficult to machine suitably small waveguide components, and therefore open monopole structures are often used. Cryogenically cooled Schottky mixers achieve noise temperatures of around 100 K at $100 \mathrm{GHz}, 1000 \mathrm{~K}$ at 500 GHz , and a few thousand degrees at ITHz

The superconducting quasiparticle mixer is an extraordinary device consisting of two superconducting films separated by a dielectric layer only a few nanometres thick. The energy levels of the device are such that when the bias voltage increases beyond some threshold, usually a few millivolts, en-

Fig. 6. The hysteretic DC currentvoltage curve of two superconducting tunnel junctions in series. A IDC supercurrent flows at zero bias voltage due to the tunnelling of electron pairs.

Fig. 7. The I)C current-voltage curve of ad superconducting tunnel junction with various amounts of $100(\mathrm{iHz}$ radiation applied. Each step is a photon energy wide.
tities very similar to electrons. called quasiparticles, can tunnel across the structure, causing a discontinuous increase in current: at higher bias voltages the current increases linearly. Figure 6 shows the DC current-voltage curve of a niobium-aluminium oxide-niobium junction. The characteristic is hysteretic, and has a direct supercurrent due to an additional process which involves the tunnelling of electron pairs: this process can also be used for mixing, but it is noisy. Figure 7 shows that, when highfrequency radiation is applied, a series of steps is induced. Each of these steps is a photon energy wide, and indeed they occur as a result of photon-assisted tunnelling of guasiparticles across the barrier. The device can be used as an extremely low-noise mixer.

It turns out that, at low frequencies where the photon energy is less than the voltage width of the nonlinearity, the mixer behaves classically, whereas at high frequencies. where the photon energy is greater that the voltage width of the nonlinearity, the device behaves quantum mechanically. The smooth transition rom classical to quantum behaviour has some remarkable consequences, including the onset of quantum-limited noise temperature (nteaning that the sensitivity is limited by the Heisenberg uncertainty principle) and classically forbidden conversion gain. Quantum reactances also appear due to the sloshing backward and forward of quasiparticles between states on opposite sides of the barrier which are not exactly matched in energ). To date, superconducting quasiparticle mixers achieve noise temperatures ranging from 50 K at 100 CHz to $4(0) \mathrm{K}$ at tu())GHz. The upper frequency of operation is likely to pushed into the far infrared within the next few years.

Quasioptics

The loss inherent in fundamental-mode waveguide structures at near-millimetre wavelengths has forced the development of quasioptical components for edergy transportation, filtering, beam combining, and switching. Such components are catled quasioptical because the input and output beams do not strictly behave according to geometrical optics. Once again, we encounter the situation where the relevant concepts are neither purely radio nor optical, but at curious blend of the two. At optical frequencies, typical beam-forming components are many thousands of wavelengths in diameter, but at frequencies from 100 GHz to $1000 \mathrm{GH} \%$ typical components are only a few tens of wavelengths in diameter, and as a consequence diffraction becomes im-

|iHHHIII MICROWAVE TECHNOLOGY

portant. Fortunately, one does not have to solve complicated diffraction problems every time one wants to design a receiver. Instead a very elegant scheme called Gaussian optics can be used in a very straightorward manner. The name Gaussian optics comes from the fact that a propagating, expanding, circularly-symmetric beam is considered to be a sum of beams, each one of which has an transverse amplitude distribution whose envelope is a Gaussian function. Figure 8 shows the quasioptical subassembly of a $330-360 \mathrm{GH}$ iz, dualpolarization, cryogenically-cooled Schottky-diode receiver. Focusing is achieved with off-axis ellipsoidal mirrors and PTFE lenses, beam splitting and filtering is achieved with very fine wire grids and meshes, and switching is achieved with chopper wheels. The diplexer is a polarizing interferometer. Antisymmetric movement of the two corner cube reflectors changes the differential path length between the split beams. and symmetric movement changes the absolute path length. The former is used to tune the interferometer, and the latter is used to remove the effects of standing waves.

A new discipline

The near-millimetre-wave region of the electromagnetic spectrum contains a wealth of information about the nature of the universe. It is remarkable that by passively observing a distant object it is possible to measure in great detail its physical, kinematic and chemical structure. To gain access to the near-millimetre-wave region of the spectrum it has been necessary for scientists to enhance existing physical concepts and to develop fundamentally new engineering techniques. It is now clear. that this work will form the foundation of a new engincering discipline. For example, a number of university research groups are already beginning to develop near-millimetre-wave integrated circuits in the form of imaging microchips. These and related imovations are going to have a profound impact, not only on radio astronomy. but also on space communications. high-energy plasma physics, atmospheric physics, medical physics, and many other branches of science and engineering.

The James Clerk Maxwell Telescope is principally financed by the United Kingdom Science and Engineering Research Council, and managed by The Royal Observatory, Edinburgh. The Dutch and Canadians also make substantial financial and scientific contribu-

Fig.8. The quasioptical subassembly of a 3.30-360GHz crygenically-cooled Schottky-diode receiver. This photograph was taken while the cryogenics were being tested. The vacuum vessel at the top of the frame houses the loutemperafure mixers and amplifiers. The unit on the middle platform is the polarizing interferometer. A number of focusing mirrors can just be seen bencath the middle platform.
tions. The systems shown in this article are the collaborative work of many individuals. The institutions involved include: the Physics Department of Cambridge University, the Metallurgy Department of Cambridge University.
the Receiver Group of The Rutherford Appleton Laboratory, the Physics Department of Queen Mary College, London, and Millitech Corporation.

Stafford Withingtom is with the Cavendish Laboratory, Cambridge

rra victron

 RELIABLE POWER

 RELIABLE POWER CONVERSION

 CONVERSION}

FOR ALL MARINE, INDUSTRIAL AND MOBILE APPLICATIONS

High Quality - Low Cost

Skylla Battery Chargers
Our five Skylla fully automatic chargers use the VDL-system patented by Victron-Energie which charges 50% faster than most other types of unit. With charging currents up to 75A, the Skylla range charges both sealed and vented batteries fully up to 100% and adjusts automatically to float charge, ensuring the longest possible battery life. Also ideal for winter maintenance of marine
 batteries.
Ask about the Atlas Combi combined inverter and fully automatic 25A charger. Ideal for small vessels, service vans mobile homes etc

VICTRON UPS RANGE - 150VA TO OVER 100KVA
victron uk Itd
Jacknell Rd Hinckley Leicestershire LE10 3BZ
Tel: 0455618666 Fax: 0455611446 Telex: 342458 VICTR G

For Bench Power

think Thurlby

Thurlby's reputation for bench power supplies is second to none.

The Thurlby PL series has re-defined the standard for bench PSU's. Today it is still the only range to offer all of the features that have established it as a best selle; Features such as dual $33 / 4$ digit meters for each output, current limit preview, remote sense, and current meter damping.
The range is vast and includes singles, twins, triples, quad-mode duals (with true parallel and series tracking modes), and IEEE-488 programmable models.

Contact Thurlby now for the full details of all bench PSU's.

Thurlby
 ELECTRONICS LIMITED

Burrel Road, St. Ives, Huntingdon, Cambs PE 17 4LE Fax: 048064832 Tel: 048063570

Faster than light?

Pappas'sletter (April. 1989). p. 414) does nothing to clarify the alleged faster-than-light experiment, apart from a trivial point about the transformer. Instead it just adds more to the fog, while failing to refute our criticisms (Letters, March 1989)

We could spend years going into more and more arcane explanations and refutations, hut this would be pointless (the Catt Anomaly saga shows this). The problems for Pappas and Obolensky is straight-forward: I and several others have given explanations for their results in terms of tried and tested physics. so it is up to them to show that none of these explanations are plausible. Occam’s Razor places the burden of proof on them, not us.

As an absolute minimum. Pappas and Obolensky must show that the initiating event (the closing of the reliay) occurs it their $t=0$ (the point at which the oscilloscope traces first start to change), and not several nanoseconds earlier, as the rest of us contend. As their experiment contains no direct record of the relay closing. I don't sce how this can be claimed.
Tim Bierman
Hendon
London NW4

Cross-field antenna

I am af raid that the

- unprecedented concept in antenna theory is simply a Wrong concept. Figure I showing H_{p} and H_{1} opposed is incorrect. In fact. H_{1}, will grow linearly out to the edge of the plates and then fall as $1 / \mathrm{r}$ (neglecting edge effects and assuming the dimensions of the plates are much less than λ). The experiment shonw in lig. 3 tests a different situation. The
authors have forgotten the strong field across the gap which results in a field similar to that in the accompanying sketch.
Measuring the vertical
component of EH along section
AA will give a result similar to lig. 5.

Anv book on antenna theory which discusses horn antennas will descrithe the radiation as produced by the distribution of E and H in the aperture. For wire antennas it is useful to use the current element approach. Both approaches are based on Maxwells equations; it is a question of which approach is most convenient for a particular antenna.
Brian Farrelly
Kolstibotn
Landas
Norway

Weinstock

What evidence does Mr Burton (Feedhack. June, 1989) have to support his statement that GEC is the most profitable
engineering group in the U.K."? In fact. its performance is the worst in its sector. What
evidence does he have to support his statement that many smaller companies taken into the GEC group would have disappeared but for (iEC."?

What evidence had he to support his statement that -GEC... has proved to be a good investment for its shareholders."? I understood that the major shareholders. concerned at the continuing relative decline of Gil:C. are seeking tooust Weinstock.

In her book The Baroque Arsenal. (Deutsch 1982), Mary Kaldor discusses the effect of dinosaurs like (iECO on p. 167:
"They absorb expenditure that might otherwise be spent on investment or consumption in civilian

industry. And they ahsorh skilled people - designers. scientists, engineers - who might otherwise be thinking up the innovations needed to better the future .. warped concepts of technical advance trick le down and distort the application of new technologies, further stunting their development.

Nor is economic decline offset by some definable addition to military power The growing cost of the modern weapons system is mattched by diminishing effectiveness..
GEC is the ultimate, effete cost-plus dinosaur. I do not know about Siemens, and sol do not know whether the present merger will enable a larger dinosaur to be as Kaldor puts it.
-...carried along in an autistic momentum whose only limit is the size of the (European) defence budget."

I have been writing about my concern over the state of GEC for nearly a decade. to MPs, the Secretary of State for Defence. the Mol), and others. My efforts culminated in a farcical threehour meeting in Whitehall. where I confronted four of the senjor MoD officials who were assiduously pouring billions of taxpayers money down the drain.

The Mol) is now refusing to tell a Commons Select
Committee how many of its staff have left the Mol and followed the slush fund into employment in "defence" contractor companies.
IvorCatt
St Albans
Reference. Wirdess World
November 1980, p. 57

Audio - the last word

I have read with interest the debate over the past months on the objective and subjective assessment of audio amplifier quality

My own research over the years has revealed a number of startling facts about the nature of the amplifier. verified by rigorous listening tests.

To quantify the results of these tests. I hatve developed a number of orthogonal parameters which may be used to compare amplifiers precisely, without bias. These parameters are as follows.
Karmic impact, K. This describes the height of spiritual

enlightenment achieved by the listening experience. For a given section of music which, for the purpose of amplifier quantification must be played only on natural acoustic instruments. preferably made of wood. it is dependent only on the amplifier and speaker and associated speaker and mains cables
Tonalcorrection, T. This normalizes the listening experience for the presence of tonal components. It is well known in acoustics that the subjective impression of sound is strongly affected by the presence of tonal components.
Visual impression, V. This
normalizes the listening experience for the visual environment. i.e. the room size and decor. the amplifier and speaker size, shape and colour My listening tests were carried out in a room without windows. painted pink with ablue filtered light. ()ther colours in the optical spectrum interfere with the listeners' ohjectivity and came make him/her restless and angry.

These three parameters provide an all-encompassing and scientifically based determination of the performance of any amplifier. An overall figure of merit is $\mathrm{F}: \mathrm{OM}=\mathrm{K} . \mathrm{V} . \mathrm{T}$. Listening tests carried out on a wide variety of amplifiers revealed the following facts.

- Any performance is strongly dependent on the frequency of the mains. Furthermore. unregulated power supplies give a more natural sound than
regulated supplies.
- Capacitors have no effect on the sound. It is well known that these are perfectly linear
- Wirewound resistors produce a nasal sound. ats opposed to carbon resistors which produce a warm fuzzy sound.
- Large amounts of negative feedback produce large amounts of negative Karma.
－Most music contaims
Significant tomal componemes．
－Many ampsare ugly，reducing
V．This is mainly due to the si／e
of the cabinet
－Allativecomponentsare
nomlincar．
Thene diseoweries lead meto search for the ultimate design for an amplification usatem which would be free from their limitations．We camot domuch about the musical content but． alter much research．I devetoped what l call the Passive Amplifier． which is completels free from the other defeets disonered

The transformer in necesmars Wreduce the large whtage V^{\prime} ． down to a level sultable for the yeater and toreduce the impedance of $\mathrm{R}_{\text {，}}$ and R ，seen by the lead．
thope this mats be of interest tosour readers
Mark Poleti
Auckland
New Zealiand

Ball－bearing motor

I warceading with some interest the article entitled The
intriguting ball－bearing motor in the A pril 1989 issue of
A：lectronicsamd Wireden Wordd． Accorting tothe author．the motor vialates the principle of the conservation of energy in its． operation．Ilebase has reisoning on the principle of the operation ol the motor，andon the catorimetric measurements I fowever，I detect al flaw in his reanoming in his intergretation of the calorimetric measurements． assuming that the were done with suificiont aceuracs．
In the intial stagesol the me：asurements．a stationary motor was placed in the calorimeter，and its＂resistance＂ was meanured．Ileremin a possible flaw in his reaboning：it is possible that the energy fed intothe system could hase gone into distorting the outer race． anded by the hall＂bulge．If that is the case then there is no energy violation，hecaluse in the second part of the calorimetric measurements，the energy which had gone intodistorting the rate was low uned formate the motor．That is to sily，the intial ＂resistance＂which he me：asured was not simply the electrical resistance，but instead part of the energy had gone into distorting the outer race
Kiah Yep \％ee
Stochton
California
USA

I posted ms letter about Marinos ${ }^{\text {B }}$ ball－hearing motor （ 1 etter．Junce 1989 ）heforel noticed the date on the coner．so 1 comsider myselt autahly April－ fonled．

The trouble is，the artacle was no more implatasible thatm most of the other fringe stience sou puhlish．ehoughis inould have twiged from the box alxut the episede with the car batteries． Abo．I wissure lidseen womething similaron Tomenrenis Wiorld：mathe they were in on the joher．
That leases me with only one yluestion：it was apool wisnit ii？
Fim Bierman
llenden
I．orndon

Having lead the article by D， Marinos．appropriately in the April isule of E＇U＇W＇，J thought bou mat be interested in the results I ohtained using parts． from a small burned－oul induction motof to make aball－ bearing motor．

The ball races used were＂tin diameterandeontained six balls I passed current into the outer race of one bearing along the Whalt which I soldered to the inner race to reduce whage drop and out of the outer race of the otherbearing．With 21IA flowing the shatt roteted at
 2． \mathbb{N}^{\prime} ： 1 ith 25A．the peed increased to ？ 0 orrlph but the voltage drop stale more or less constant．Spratying the racer with oil catused the speed to rise to

I then loaded the staft with at fan which the original motor
 about 1 ＇W^{\prime} ．Asummethe orginal motor to hata an efficiency of 710\％，the tan would hase consumed about lisw．The Marinow motor，with 25A． rotated the fan at 650RPM withat voltage dropof I．9ソ＇Since the power consumed by the fan hatere is proprortornat to the cube of the RPM，the tan dissipetted about（1．I．WW．Theowerall electromechanical efficiener of my Marinos motorwas thes about $11.3^{\prime \prime \prime}$ ．which is comparable with a vewoomen stamengine．which enfowed considerable commercial success．I）r Marmos woukl．of contse，insist that the（1．1．3W＇is freepower

A fatr inthereason bar uperation is concerned．I think 1）r Marimos has put formarda credible theors：at leans more credible than any fän devise usingelectomagnetic foresemal finger－からintingl：ming rules lloweros．Iamatalow understand how the expanding hathean doany work if．as he states．the direction of motion and the direction of mettonater at right angles．If one powtates al small time delat between the productionol heat and the uteel expanding，then the expansion of the ball race wiflake pater just hehind the point of contact．ance motion incrtablished，sothat at toryue will be produced and work donce．lloweder．I hate never encounteredsuch adeias and would he surprised if this were the case．

1 mus（lisigree with D） Marinot that the ball－bearide motor has＂on back tension． becalus there are no magner Just as there is a tariation in the contact potential herween tha dissimikar metals with． temperatture（tued in thermocouples）．wo therein．t potential gradient ewtablished in a single piecent metal is the result of a temperature gradient （Thomson effect）．A，there is at massive temperature gradient within the ball and the race 1 their pornt of contact．Herewill alsebecomsiderable potential gradient giving abach R．M！ analogountothat produced by a contentional electric motor．
fwould be unwilting fodmoms as ins alded the law of eomservation of encrey which hasserted as well in the pat when derisung phosicall formulate i．nd would therefore suggest that all error in me：asurement is respomsible for the startling resulsobtatined by Dr Marinos scalormetry 1 am aware that doubt hatse arivern recents incertain partick phesiesexperiments：whether
 now know

Mals－4uggestlat someonco ＂ithaccestoaball－inearing mahing mathine meght produce hearingsin insar or anotherlon
 Iry a metal evhibiting larece
magnconstrictise collticionts．｜or evample cobatt since it is posible that thiseflect is rexpoosible for changing the hapeot the batls in such a was als tom．untain motion．
Peterv．Vamban
lynton
DCいい

Circuit Symbols

 beat the BSI with the ＂rectangular resistor＂．B3．3030 －Cimele for graphical sumbols． ＂as first introduced in $19(x)$ and
 matny HEC 9 moloh．The BSI may hate thrown catution tothe wind 2．3 cears ago hut it can hardls he atcused of han ing imposed its will on acomedindustry as the circuit diagrams in this foumal and mant others demonstrate どいく！month

It waspresumatry in the interest of a＂truly international language＂that BSI and IEC smboh were made toconform and I do not beliese that the ＂wiggla resistor＇was incommon ose in continentall Europe prior （1）ほたか。

I donot have ant connection ＂ith the BS I，but I wis underthe impression that circuil symbls． and andeed allother vtandards were the result of the dediberationsof committecsof experienced people from the indastrierseroncerned．W＇e hate ath heard about camels and committcoshut why ist that the ＂rectangular resistor raises atch ire？｜sitsom meh more ditficult to appreciate itsohmic guatition rather than thome ol a wigde？ I：ventodily the rectangle is casierlodran using the acrage computer draw ing program whichwas．I underwand．one ol the original eriteria for inschose all theme learsago．All the
＂intedigently chosen＂stmbots ＂ere alter all the work of the sallue commitle

The use of diflerent circuit －mbols depend wat large evtent upon the market plate Firms doing work for（1k goseroment agencies and continentall arope maly useone set and those doning work for the ［SA and Jipran use another． Being contormint in necessarily ： had thing．I hope that the pupits at Hatherdasher Ashe s．School conform to the basie rulen of t．nglish grammarr ind to： different ex of rule bor lirench．I hope we all enntorm to the relenant speed limit when we drise on the public roads．In｜oハリ ＂E shall no doubt hatsero conform in mant diflerent was． There must be more important battle $\begin{gathered}\text { of fight than that of the }\end{gathered}$ ＂Wiggls revilor
L．P．Best
Heet
Alderahot
Hampshire

Astra doubles up

By the early 1990s, Europe will have over 140 satellite TV stations.

Undaunted by a certain coolness in the viewing publices response to satellite television. the Luxembourg company Société Européenne des Sittellites is pressing ahead with a second Astra spacecraft. The new spacecratit will be latunched as carly as next atumon. despite the prospect of a barge excess of television channel capacity in Europecs skies.

SES is to take over an existing satellite. Satcom K3, logether with its Ariane tanch stot in October 10\%日. Taking the new name of Astra 113. this will occupy approximately the same orbitat station as the existing Astral IA (am imaginary box sokm wide), bringing viewers the possibility of a further th television channels without the need to reposition their dishes or modify their receivers.

Astra ib is a (il:5001) spacecraft. an improsed and stighty more powerful version of the GEbolo type chosen for Astra 1A. The cratt, which is now at an advanced stage of preparation for launch. needing only to be modified for the Astra channels, was one of several take-over possibilities considered by SES (another was a surplus Canadian Anik C . still unused and looking for a buyer): it meant an carlier launch date than would hate been possible with a bespoke satellite, yet had the attraction of full compatibility with Astras ground-station command system at Betzdorf. With its 6ow rwis (as against +5 W for Astra (A). Astra 1 B will give a stighty stronger signal and a harger footprint over liurope. though viewers will be unlikely to notice the difference - they need not even be aware that a second satellite is in operattion. It will, however, give SES additional room for manoevere in the event of transponder failures.

Who will occupy the extra tramsponders. and who will be watching the programmes, is rather less clear. By early June. Astra IA still had foul vacant channels, though according to Marcus Bicknell of SES, five German I clients were negotiating for them. A further 15 or 16 options had been taken on Astra 113, among them an Italian soft-porn channel, though not all were likely to mature. However, he said, a
glut of tramponders woukd exist in Europe in a couple of years time, with some $1+0$ chamnels available: $" A$ bot of bood will be le in the satellite provision industry wer the next four years. There will be a lot of hardware up there doing nothing". Among these $1+0$ channels will be those on two recent (ierman craft - the Copermicus satellite successfully launched on 6 June and the replatement for the first TV-sat. Whose solar pancls failed toopen.

The Astra IB television satellite. now under construction, will bring an everai 16 chamnels to dish owners.

According to Astrais marketing folk, the systems big attraction to viewers and advertisers is the "critical mass" of its programme package, made possible by Astras chose chamel packing and its placing in the blaty fixed satcellite service hand - provision exists for up to tis chammels. should the as vel undiscussed Astra 1 (become a reality. In the 12(ible broadast band, each countrys allocation is limited to just five chamnels

Tackling the question of the number of dishes actually in the hands of the public. Bicknell satid. "Sl:S refutes entirely that dish sales are disappointing. dish sales have made a bery, very healthy start". Quoting a Financial Times survey which revealed that 93000 had been installed by the end of Astras first four months. he argued that take-up was lwice as fast as that of colour television sets or video recorders in their early days. Ilowever, acynic might observe that colour TVis and V'Rs initially cost more than twice what is
now being anked for an Astra receiner. and that these had to make their entrance without the bencfit of wall-to-wall publicity in News Intermational's stable of mass-circulation newspapers. Depite all this. News Internationalls own Sky Television. whose four Renglishlamguage channels make it Astras biggest programme provider. was recently forced to cut its dish sales forecasts for the first sear by atmost half. from 2 N 1 to I.15M, and privately, seemed to have halved the estimate yet again.
(af the 93 OOO dishes. only 601000 represent special Astra units, the rest having been installed carlier for other satellites. However, since, als Bicknell put it. 75\% of consumer electronic goods are sold in the final part of the year. there is still plenty of opportunity for making up lost time.

A further factor in Astras favour is the postponement of BSB's programme launch until the spring of next year. BSB's problems are more in its techology than in programming or marketing. Amone them is the Squarial flat pane antennat. which at the time of going to press had still failed to find a manufacturer and had forced the abandonment of a costly nationwide adtertising campaign on the theme "It"s smart to be syuare"

According to David Eglise, the companys technical director, there are actually two Squarials. One is a threepart injection-moulded design, potentially cheap to manufacture but difficult to do so to the fine tolerances necessary at 12 GHz . In the other design, which is basically metallic. the problems are transferred from moulding to assembly. BSB was unwilling to give E\&WW more technical detail until a maker had been signed up.

Despite this hitch. BSI3:s satellite launch on August 10 goes ahead as phanned. Ilowever programmes will hegin this sear on only one channel, as a showease for television dealers. The full service, when its starts, will now consist of five channets (the IBA having awarded BSB the remaining (wo), all transmitted using the D-MAC/packets standard. and with the capability for wide-sereen pictures right from the start

Over at SLSS. Astra has been fairly free of technical problems - though there was an awkward moment recently when the satellite suffered an Earthlock fault and flipped its footprint around to point at Greendand for a short time. However, the spacecratt's reserves of hydrazine propellant have been holding up well and its lifetime is now putata 12.4 vears rather than 10. .
what more could you ask!
THE MODEL 18 PROM PROGRAMMER

- All 1 Mbit EPROMS, Greenwich Instruments Emulators.

27C parts and EEPROMS now programmable!

- Upgradable for future iypes

Still only

- Upgradable for future types
- Comprehensive User Manual.
supported by MOP in England
32 and 40 pin devices require low cost socket adapter £189.95 VAT
- Supports our new EPROM Emulator as 2716 to 27512 EPROM
- Mains powered unit external to your computer, without speed penalty
- Fast interactive algorithms automatically selected as appropriate
- Two independent communications protocols built in. Use with
any hostcompulerwh h3232 port and lerminal emulato
es User Interface Package available for all MS-DOS and PC-DOS computers. NEW FAST COMMs - 1 Mbit PROMs programmed
- Mick Pulse program
- Limited version also available for CP/M computers

Hundreds of satısfied customers. As supplied to: BT Mercury. UKAEA. British Aerospace Thorn EMI, Mitel, Cosworth Engineering, Britssti Gas, Kodak, Lucas. Ferranti, Smith Industries, Telecom Technology and major Universities and Colleges of Further Education.
Please enquire about our other products
EPROM EMULATOR
EPROM ERASER PALPROGRAMMER CROSS ASSEMBLERS

If you have any dilliculty in obtaining unusual PROMS or
other programmable devices, we will iry to hiep. We also
Telephone ACCESS orders welcome
Phone for free information pack and price lis1 - 0666825116 LECTRONICS, UNIT 2, PARK ROAD CENTRE, MALMESEURY WILTSHIRE, ENGIAND SN $160 B X$.

ENTER 35 (ON REPI.Y CARI)

w

CONNECTORS AND CABLES
CABLE ASSEMBLIES AND TEST LEADS MADE TO ORDER

Coaxial or Multiway. RF, video, audio and data Double braid and tough PTFE coaxial cables

ALSO R.F. ACCESSORIES
FILTERS, ATTENUATORS, COUPLERS ETC.

Customers already include several universities and polytechnics, government departments, broadcasters and BT - Celinet.

WAVEBAND ELECTRONICS

3 Lon Howell, Denbigh, Clwyd LL16 4AN.
Tel: 0745712777

ENTER ? O ON REPI.Y CARD

HDTV ${ }_{\text {nitenalonal }} 89$

The First Annual Conference on High Definition Television

18-19 September 1989 London Tara

As well as an Introduction to HDTV, the conference will cover Standards Delivery Media, Programming, Non-Broadcast Applications, Production Medical, Military and other applications, the impact on electronics companies as well as the broader business considerations. Includes a display of HDTV

18 September

Pre-conference Workshops These will provide a detailed introduction and summary of the technology, the standards issue, the technical and political difficulties in agreeing a worldwide standard and the relative merits of cable, satellite or terrestrial delivery systems. HDTV production will be examined in detail with an overview of the non-broadcast applications.

19 September

The Conference will include the following topics
The European Eureka Project
HDTV - The Japanese mission
The US role in HDTV
Production using HDTV - movies, television programmes and advertising
Electronic cinema
Non-broadcast Applications: Education, Publishing,
Documentation, Arctiving, Medical, Military.

Send now for full details

Meckler/HDTV Newsletter
Grosvenor Gardens House, Grosvenor Gardens. London SW IW OBS Tet: 01-9319985 Fax: 01-9318908

PIONEERS

Sir Charles Tilston Bright (1832-1888) "The great feat of the century".

W.A.ATHERTON

What the Chanmel Tunnee is today, in some ways the Atantic telegraph cable was in the middle of the last century: a visionary engineering enterprise and a link between nations. Samuel Morse called it "the great feat of the century". Once the telegraph traffic started to flow. what some had opposed as undesirable became essential and more Atantic cables were soon required. At least 17 were latd before the end of the century

Charles Tilston Bright was Engineer-in-Chief of the Atlantic Telegraph Company, a position he occupied at the age of 24 . Imagine a $2 t$-year-old being appointed chicf engineer of the Channel Tunnel! Though largety forgotten now he wats a famous figure in his day. He was knighted for his achievements at the age of 26 , the youngest knight for generations.

Commercial telegraphy began in a small waty in 18.39 and in the next decade became well established in developed nations. In 1850 England and France were linked by the first submarine telegraph. laid by the brothers Jacob and John Wathins Brett. It soon failed, but on November 13 the next year another cable linked Dover and Calais and saw successful service for 24 years. Demand soon justified other crosi-chamnel links.

After the success of the Channel cables, other short and shallow stretches of sea were crossed. but not always at the first attempt and with the loss of much expensive telegraph cable. Londons Thameside spawned a new industry of cable manufacture.

To cross the Atlantic

Meanwhile, a British engineer had held a conversation with an American businessman. The engineer was Frederick Gisborne, who was then constructing a telegraph line from New York to Newfoundland and which was
to include a cable across the Gulf of St Lawrence. The businessman was (yrus W. Fichd.

Gisthorne, whoneded fresh financial backing for the Newfoundland project. suggested the idea of continuting the line from Newfoundland across the Atlantic (o) England: an Atantic cable. I ieutenant Matthew Matury a US Navy oceanographer, assured field that there was a route across the ocean bed where a cable might he laid. With Field's financial and managerial help the New York to Newfoundland telegraph was completed and the cable laid across the Gulf of St Lawrence. For this. IField had to travel to Britain to obtain cable and ships. John Brett. who had lated the Channel cable, became his supporter and adviser

The idea of an Atlantic cable caught Fields imagination and for the next I2 years he was to be the driving force behind this daring adventure. He enthused leading scientists and engineers (some like Thomson, later Lord Kelvin, taking no paty). A seven-core cable using 20 000 miles of copper wire was constructed. paying out machinery de-
signed, two batteships borrowed, and Charles Bright selected ats chief engineer. Within four years of fields and Gistorne's first conversation, telegraph messages were exchanged between Britain and America. Though success was short-lived becaluse the cable soon fatled, they had proved their point. Field had shown the political and commercial potential of the cable and Bright had shown it was technically possible.

The druggist's son

Charles Tilston Bright was the third son of Brailsford and Emma Charlote Bright. Tilston was his mother's maiden name. His father is described by the Dictionary of National Biography ats a "druggist". He was born in Wanstead. London, on June 8. 1832. kess than a year after faraday's discovery of clectromagnetic induction and in the same year that Morse had his first thoughts about electric telegraphy.

Though tater he was to mix with university professors of world renown there was to be no university education for Bright. At the age of 15 he went

Below: first verse of a poem marking the success of the 1858 cable, from The British Workman (reference 1). That success was, alas, short-lived.

> Two mighty lands have shaken hands Across the deep wide sea; The world looks forward with new hope Of better times to be; For, from our rocky headlands, Unto the distant West, Have sped the messages of love From kind Old England's breast.

Straight from the Merchant Taylors ${ }^{\circ}$ School into the employment of the Electric Telegraph Company, the company formed to exploit the Cooke and Wheatstone patents. Ile had joined the oldest telegraph company in existence: it had been formed just two years carlier.

After about five years he moved to the rival Magnetic Telegraph Company. His brother I:dward, also an engineer. became manager. In this post. Bright helped to wire up Britain. laying an extensive network of land-based telegraph lines, with thousands of miles of underground wires between major centres including London. Manchester and Liverpool. After becoming Engineer-in-Chief of the company he got his first taste of submarine telegraply, laying a six-wire cable between Portpatrick in Scothand and Donaghadee in Ireland. Under the Bright brothers, the Magnetic Company prospered.

This cable between Britain and Ireland came after earlier failures. The water was deeper and the currents faster than in previous operations. Bright took charge of the cable-laying machinery. The whole cable was manhandled out of the hold of a steamer, over a pulley, round a drum which measured the speed, and then several times round a brake drum before passing into the sea. It was laid on May 22. 1853, and had a tong and successfut life. Bright stayed with the Magnetic Company as chief engineer until 1860 and served a further ten years as consultant.

Patents

During his time with the company he received a number of patents concerned with improving telegraph equipment. Two are particularly noteworthy. One awarded in 1855 suggested replacing visual indications at the detector with acoustic ones using two bells, which became known as Bright's Bells. One had a high tone. the other a low one. and they were used on the West Indies network. The other, carlier, patent was awarded jointly to the brothers in 1852 and contains what seems to be the first suggestion of a resistance box for giving a variety of fixed resistance values. This patent covered 24 distinet inventions and marked the arrival of the brothers. and especially Charles, as important figures in telegraph engincering.

A first attempt

With Bright having linked Ireland to Great Britain, and Gisborne and Field having tied Newfoundland to the American mainland. it was natural that all

should consider the Athantic.
loield was unable to raise the necessary capital in Americal and so. with Samuel Morse assisting. he sailed for Britain. On September 29, 1856. John Brett. Charles Bright and Cyrus Field pledged themselves to form a telegraph company to operate a telegraph between Ireland and Newfoundland. The company was registered on October 211 . Many famous names were associated with it including William Thomson (Kelvirs). Isambard Kingdom Brunel and Samuel Morse. The required tijnance of $£ 350(000)$ was raised in a fortnight. Bright became chief engineer. and his colleague from earlier ventures. E.O. Whitehouse was appointed the company"s "electrician".

Field"s "dynamic energy" pushed the project ahead at breakneck speed. Bright objected to the size of the single conductor and wanted it increased. but was overruled. He also wanted the two ships involved to start laying by splicing the cable in mid-ocean and then sail for opposite shores, but was again over-
ruled. Kelvin wanted to wait for the completion of the Great Eastern, which was to be the biggest ship in the world. and he found variations in the quality of the copper core. Field again ignored the Harnings: he had ships on loan from the respective navies and wanted to lay the cable in mid-summer when the weather could be expected to behave.

The cable was loaded into the USS Niagara and H.M.S Agamemmon and the shore end landed at Valentia in Ireland on August 5, 1857. When laying began the cable broke after only five miles. When it broke again after 380 miles the end was lost and the attempt abandoned. The cable was stored for the winter while additional lengths were manufactured ready for a fresh attempt.

As Bright put it, "It has been proved meyond a doubt that no obstacle exists to prevent our ultimate success: and I see clearly how every difficulty which has presented itself in this voyage can be effectually dealt with in the next". He was a little optimistic.

The original backers put up more

Paying-out machinery for Bright's transatlantic cable of 1858. After only a month, the cable failed.
cash. the two navies agreed further support of ships and men, and the paying out machinery was redesigned. The following summer the fleet reassembled and sailed for mid-Atlantic. Bright's plan now being adopted. The two lengths were spliced and cable laying begain again; but again the cable broke after 160 miles and the ships returned to base independently.

Another try

Disappointment brought disagreement The board chairman recommended abandonment of the project and some members agreed with him. Some resigned. But Field pushed on and won the day. The fleet put to sea again on July 17. The cable was spliced in midocean on July 29 and without further ado it was laid successfully. both ships reaching shore on August 5. During the subsequent celebrations the roof of the New York City Hall was set on fire by fireworks.

Signalling through the cable was never easy and after only one month and 732 messages the insulation failed. Probably several factors were involved. including Whitehouse's use of too high a voltage. But to have achieved any success at all on such a venture when practice was so primitive was remarkable in itself. Though the success was short lived. Bright as chief engineer and Field as chief proponent had proved that telegraphic communication could be achieved across the Atlantic.

Financial backing for a third attempt proved much harder to find. After other
expensive submarine cable also failed a British Board of Trade inquiry was set up to look into the technology and methods used. Bright was amongst those consulted. It reported its findings in 1861 and many improvenconts resulted. Inevitably a new attempt was made, with Bright as consultant to the project. In 1865 the Great Eastern laid cable all the way from Ireland to within 600) miles of Newfoundland before it broke. The next year complete success was achieved with yet another new cable and the 1865 cable was grappled. spliced and also completed.

Five years before the 1866 success. Bright had resigned from the Magnetic Telegraph Company to go into business as an independent consultant in partnership with Latimer Clark, another famous engineer of the time. They experimented with the insulation of wires and are remembered for "Bright and Clark"s compound", a bituminous sealant used with later cables.

Bright was consultant to many telegraph companies needing major submarine cables including the AngloIndian. the Anglo-Mediterrancan, the British-Indian Extension, and the China Submarine Telegraph Company. It was he who broke the jinx of failure in the deep waters of the Mediterrancan Also he was instrumental in setting up the British Association committee on electrical standards, on which he served with other distinguished scientists and engineers such as Maxwell and Wheatstone. It was this committee which established electrical units such as the ohm and the farad

Into Parliament

For three years from 1865 Bright pursued a completely different career, as the Liberal Member of Parliament for Greenwich. Late in his life he was involved in an unsuccessful mining venture in Serbia.

He received honours, maturally. As well as the knighthood from the British government, the French granted Bright membership of the Légion d'Honneur. He was a member of the Society of Telegraph Engineers (later the Institution of Electrical Engineers) from its inception and was its president for the year 1886/87

It was soon after his presidency that Bright died. suddenly, on May 3, 1888 of heart disease at his brother's home in Kent. He was buried in Chiswick churchyard. Though a marble bust was made of him. his lasting memorial is the fact that he was engineer-in-chief of the first tramsatlantic telegraph cable. He linked the New World with the Old. -

Further reading

1. (. Bright. Suhmarine Telegraphs. Their listory. Construction and Working. Conshy. Lockwood and Son, 1898.
2. Dictionary of National Biography
3. V.T. Coates and B. Finn."A Retrospective Technology Assessment: Suhmarine Tele graphy, The Transatlantic C"able of 1866 ." San Francisoo Press. 1979.

Next in this series of pioncers of electrical -ommumication: Joseph Henry.

Fong Atherton is uuthor of "From
Compass to Computer: A History of
Cony Atherton is author of "From
Compass to Computer: A History of Electrical and Electronic Enginecring". Macmillan Press. 198t.

SkillsTraining Agency

 TRAINING

 TRAINING}

HNC in Microprocessor Systems

A one year full time course, commencing on 4th September 1989, is offered by Milton Keynes Skillcentre.

The course includes 20 weeks work placement in Industry.

This is a Training Agency funded equal opportunity course and training allowances will be paid.

Please telephone 0908 67000। for an application form or write to:

Milton Keynes Skillcentre Chesney Wold Bleak Hall Milton Keynes MK6 ILX

ENTER 13 (ON REIPIY CARD

M \& B RADIO (LEEDS)
 THE NORTH'S LEADING USED TEST-EQUIPMENT DEALER

test equipment
Bradley 156 Oscilloscope Calbrator
Bradley 192 Oscilloscope Cabr Bradiey 171 - 171 B Meter Calibrator Radiometer SMGI Stereo Generator Wandel Goltermann SP60 Level Gen Hathield Psophometer Type 1000
RS Fiuze 470 850MHy RS Huze 470850 MHz F Field Strengith
RS Huze 44210 MHz F Field Sirenolt Gen Rad 13908 Random Noise Genera Gen Rad 1517A Capacilance Brdge Radtord LDO2. DMS Audio Te si Sel Marconi TF 2000 OSG ATT
HP 202C Oscillator
Ractord DMS3
Marconi IF 2331 Distonion Mete!
Marcon IF2120 Wavelorm Generato
Marconi IF $1313 \mathrm{~A} \quad 1 \%$ LCR Bridge
Marconi IF 1313 A $\%$ LCRB Bridge
Marconi TF 2700 in silu Bridge
Marconi TF 2700 LCR Bridge
A.m Inst 401 LCR Bridge 402 Radiometer MM2 LCR Bridge
Gen Rad 138320 Hz 20 MHz Rancom Noise
HP4 15E SWR Mete
HP5300B Counter
HP53008 Counter
HP654A Test Oscillato
HP651A Audio Oscillator
HP3465A Digual Volimete
HP3465A Digital Volimeter
HP5381A 80MHZ Freq Counter
HP5045A Digital IC Tester HP3761A 3760A 3722A Error Detector
HP7035B XY Plotter
HP461 Amplifier IKes 150 Mhz
HP3200B VHF Oscillato
HP8330A Radiant Flux Meter
Farnell SG1B interlace New
Farnell SG1B interiace Ne
Racal IEE Counter Intertace 9932
HP3495A Scannet
HP5253B Counter
HP250B RX Meter
lektronx M M
85618562

KELECTRONIC COMPONENTS LTD.

* All items guaranteed to manufacturers spec.
* Many other items available.
'Exclusive of V.A.T. and post and package'

74LS00	0.15	008	24576 MHz Crystal	075	0.55
74LS32	0.15	0.08	4 Meg Crystal	045	0.26
74LS125	$\bigcirc 15$	0.11	6 Meg Crystal	045	026
74LS241	030	018	8 Meg	045	026
74LS244	0.30	018	1488	025	016
74LS245	030	019	1489	025	016
74LS373	030	018	2732A	2.50	230
74HCOO	014	009	2764A	220	180
74HC02	014	0.08	27C64-20	250	180
$74 \mathrm{HC147}$	0.25	0.14	27128A-25	2.80	230
$74 \mathrm{HC153}$	024	012	27256-25	2.80	250
74HC194	0.25	015	27C256-25	290	2.30
74HCT04	016	013	27C512-25	5.20	460
74 HCT 32	016	008	8259AC-2	160	120
74HCT74	0.16	012	8255-5	190	130
74HCT123	0.23	016	82 C 55	150	1.10
74HCT138	023	016	8085	160	100
74HCT373	035	028	6522P	2.50	1.65
$74 \mathrm{HCT374}$	0.35	028	Z80ACPU	100	0.65
74HCT574	0.40	032	Z80AP 10	100	0.65
74HCT643	0.42	0.30	Z80ACTC	1.00	0.65
All memory prices are fluctuating daily, please phone to confirm prices.					
178 Brighton Road, Purley, Surrey CR2 4HA Tel: 01-668 7522. Fax: 01-668 4190					

ENTER 19 ON REPI.Y (CARI)

> The UK's leading suppliers of circuit simulation software

DELTA A-TO-D

Single-bit, oversampling A-to-D converter

Erik Margan developed this simple converter for a batterypowered telemetry transmitter, which needed a signal-tonoise ratio of more than 70 dB over a 5 kHz bandwidth

Delta A-to-D conversion technique is probably familiar to readers of this journal: most recently, it was described in a Circuit Idea by D.J. Greaves'. This type of conversion is attractively simple, needing only a comparator, a D-type flipflop, a sampling clock and a !ow-pass filter in the feedback loop (see Fig. 1(a)). In contrast to the more commonly used converters which attempt to sample the input signal as accurately as possible at each sample, delta converters make use of the oversampling technique, allowing the error to be arbitrarily large at each sample and reducing the error by averaging the samples at the output. The bit stream which is produced by clocking the flipflop is integrated by the low-pass filter and fed back as error signal for the comparator.

This configuration has a few drawbacks, the most serious being the degraded signal-to-noise ratio with frequency, which follows the inverse characteristic of the feedback filter. The cause of this degradation lies in the progressively smaller error correction in the feedback loop which, in turn. causes slew-rate limiting and thus smaller undistorted output amplitudes at higher frequencies (Fig. 1(b)).

Improvings:n ratio

A rearrangement of the feedback configuration leads to another type of the delta converter, known in theory as the sigma-delta converter, but rarely used (Fig. 2(a)). Such a circuit has been recently described in an excellent article by R.W. Adams². The difference is that
the input signal is first summed with the output of the flip-flop and then the sum is filtered and compared to a DC reference. The consequence of this change is that the overload level is now flat with frequency (in the band of interest).
while the noise spectrum rises with frequency, producing about the same s:n ratio (Fig. 2(b)).
This does not seem to be an improvement. but putting the filter after the summing stage gives us another degree

Fig. 1 The Delta-type converter circuit at (a) compares the input signal with the filtered output big stream. When following high-amplitude signals of frequency greater than the filter cut-off, the converter runs into slew-rate limiting. degrading the S / N ratio, as seenat (b).

Fig. 2. The Sigma-Delta converter at (a) compares the filtered input and output signal sum to a IDC reference. This eliminates the slew-rate limiting; the output level is not affected by the filter frequency response. only the noise following the inverse of the filter response shape, als in (b).

of freedom. We note that the frequences response is now flat. regardless of the filter response shape. while only the noise spectrom follows the incerse of the filter shape. From this we conclude that by making a suitable choice of filter. we ean eoncentrate most of the noise outside the band of interest and filter it out after the conversion has been performed.
In this way. the san ratio can be greaty improved, but this is not an casy task. There are several points to take intoaccount simultaneously:

- selecting optimum fitter configuration to achieverequired noise shaping:
- reducing the influence of the choice of sampling clock frequency on the noise spectrum:
- maintaining the stathility of the closed feedback loop in the broad range of sampling clock freyuencies: and
- optimising the idling pattern of the converter for low distortion (the guantisation process shoukd introduce noise only. independenty of the signal level or slope).

Each of these requirements introduces some restriction in other areas, so the system must be treated as a whole. The first two points restrict the choice of filter configuration to those with zeros and poles. implying a pronounced attenuation well above the band of interest. Circuit complexity imposes another restriction and the last two requirements. are best served if we implement some kind of slew-rate control.

Fïg. 3. The proposed circuit diagram of the Sigma-Delta type. lising the programmabie c-mos op-amps and comparator (MC' 14.573 and Mc I 1575) allows us to control the stability of the feedhack toop through controlling the hias and the slew-rate (a nom-linear mechanism!) of the last two filter sections.

Adamss states in his article that single-bit converters are difficult to stitbilize and for that and other reasons he opted for a four-hit configuration. Using a similar fifter configuration. but with four zeros and four poles. I cance to the conelusion that the required feedback stability can be achieved through slew-rate control of filter amplifiers

Design

The whole circuit is shown in Fig. 3. The programmable operational amplifiers A1. A2. A5 and A6are contalined in an M('It57.3. while A.3. At ind the compdrator (CMP) are contained in an M(OIt575. The D)-type flip-flop (F/F) is one hatf of a $7+1$ Col 7 . The signal first passes through the input anti-aliasing filler (A6 - a third-order Bessel type was found to be enough) and proceeds to the inverting integrator $A /$ where to input and output are summed at the virtual-earth point. This climinaten a separate summing stage. The resistor in aremes with the integrating capacitor sets the transfer-function zerolocation, and is selected so as not to satturate the comparators input even under the lowest sampling frequency and largest signal level. The other three zeros are
miacke equal to the first through the use of non-interting integrators (A2, A3, A-) for the remaining filter sections. with equas R(constants defining the pole position. A further control of the filter is a a ailable through the bias control of the programmable operational amplifiers that also influences the slew rate of the signal at the comparator input. Slew-rate limiting is implemented only in the last two filter stages and is adjusted for low distortion and a sable feedtack foop at the lowest sampling freyuency

As stated before, the filter is the key to the circuit. We hate atready stated the main requirements, but now is the time to justify the filter choice given in Feg. 3. First, as the filter is used inside the feedtack loop, at leat one of its stages should be configured and an integrator to ensure the stability of the loop D(level and to make it equal to the reference. This, in turn, ensures equal ponitive and negative dippinglevels and maximise the signal dynamic range. Next, the loop must have a flat frequeney response to well above the desired bandwidh to make the nonise spectrum flat inside this band, thus achieving constant sin ratio. To concentrate the notise wh the upper freguency band, the foop gain must be intentionally fowered in this region. This attenuation reduces the loop error correction and being sandomly distributed. the resulting error appears as high-frequency noise.

One can hardly resist a temptation to make this attentation as derep and as 7arrow as possible and this, as correctly
assumed. improves the in-band noise reduction. The price to pay, however, is that the loop seff-oscillating freguency becomes better defined, making it harder for the loop to rebalance the changes introduced by the input signal. The consequence is that some kind of "bit hysteresis" results. producing a very distorted signal. In fact, looking more closely at how a "bit" is defined. we can see that the loop rebalances to the new signal level by changing the phase (and frequency) of the selfosciltating waveform: thus, for a

Fig. t. The analysis of the filter continuous-time toop frequency response. Etiminating the comparator and the llip-llop and closing the fifter feedback loop results in these response curves. Finite open-foop bandwidth of the filter op-amps modifies the response around $\mathrm{I} M \mathrm{~Hz}$. When discrete time steps are introduced in the loop (by putting back the comparator and the lip-llop) most of the error will be produced in the response trough ($100-500 \mathrm{~K} \mathrm{~Hz}$).
smooth bit-to-bit tramsition. a low-O notch is necessary.

As can be seen from Fig. 4. the transition from a flat response to attenuation is not smooth. The pronounced resonance peak results from the four poles of the filter being present inside the feedback loop. This peak gives a very high loop gain and reduces the noise in this hand to a very low level, but this is not its main function: it is needed mainly for the high phatse jump produced at the resonance, which provides all effective boundary that prevemts the loop self-oscillations from breaking into the desired signal-frequency band.

Fillatly, the filter zeros determine the frequency response at the highest frequencies. but it is altered somewhat by the limited op-amp bandwidth (the small second peak).

Now, this continuous-time loopanalysis result is not greatly affected by the introduction of discrete time steps (the sampling clock frequency) if the steps are small enough (less than $2 \mu s$). As the feedback factor is lowest in the response trough ($100-500 \mathrm{kHz}$) most of the noise will be concentrated in that

Fig. 5. The flip-flop output with no input signal. Sampling frequency $5 \mathrm{M} / \mathrm{Hz}$. The output changes state randomly between discrete widths, the steps being determined by the sampling frequency. Recorded with 50% pretrigger.
band. The self-oscillating fregueney is not fixed. hut varies from about 120 to +70 kHz and the period is incremented or decremented in discrete time steps ("phase noise"). the width of the step being determined by the sampling clock frequency (Fig. 5).

The effect of slew-rate limiting is not made ohvious from Fig. + . To understand it, we must visualise the time pattern of the signal at the comparators input. The switching of the flip-flop output is transferred through the filter by the transter-function zeros. appropriately altenuated. This is the fastest part of the waveform and slew-rate limiting will modify its slope. This slowerslope introduces a delay proportional to the error produced at the current sample, the slower part of the waveform. which is due to error integration. being passed unaffected. Bear in mind that the output bit stream is undergoing constant integration, so with no input signal the average width of the high logic state equals the average width of the low logic state. If the error at the current sample is large, it will be compensated to a large extent immediately with the next opposite state width. to which the delay introdaced by the slew rate limit will contribute. In this way, we have gained a fast bit-to-bit error correction, transferring the noise spectrum to higher frequencies. Fast error correction contributes also the loop stathility at higherfrequencies.

To evaluate the s:n performance and the noise spectrum shaping effect. the output bit stream was sent to two filters: a single pole 1 kl la filter. used to evaluate the noise shaping and a 7 -pole, 5 kHz Bessel filter. used to evaluate the s:n ratio and signal distortion in the 5 kHz bandwidth. The Bessel-type filter wals used to preserve the shape of the input impulse waveform that my application required, but for other purposes a 5 th-
order Butterworth or Chebychev filter type would give much lower novise in the 5-15kllz band.

The outputs from the filters were recorded and transferred to an IBM PC AT machine for further analysis. The Ikliz filter output is shown in Fig. 6 representing the first 500 samples of a f(1)6-byte seguence. Such a long record was needed to enhance the resolution of the spectrum at lower frequencies (as the spectrum low-frequency limit is defined by the length of the time window). The sequence was broken into 512 -byte packets. Hanning-windowed. FFTed. and put together again to produce the 256-point intensity spectrum displayed in Fig. 7. The smooth line above the spectrum shows the maximum noise level estimation. corrected by the inverse of the 1 kHz filter response.
The s:n ratio achieved inside the required 5 kHz bandwidth can be judged from Fig. 8. where a 20 mV p-p sine wave was presented at the converter input and the output signal from the 5 kHz 7 -pole filter was recorded. Sampling frequency was sMllz. Here we catl see that the noise peak-to-peak level is about 1 mV . If we consider the fact that the system supply voltage is 6 V

Fig. 6. Passing the output bit stream through the 1 kHz single-pole fifter to evaluate noise performance. The randomness of the "hit" pattern is clearty displayed. Worst case condition 501k Hz sampling frequency.

Fig. 7. Nioise spectrum estimattion and the resulting spectrum of the signal from Fig. 6. The effect of concentrating the noise outside the required signal frequency band (5 kHz) is evident.

Fig. 8. A $20 m V_{p-p}$. 120 Hz signal was presented to the converter and the output bit stream fed to the 7 -pole, 5 kHz Bessel filter produced this figure. Sampling frequency was 5 MHz . Noise level is about $\mathrm{ImV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$. Compared to the maxinum undistorted signal level of $5 V_{p-p}$ gives 74 dB s:n ratio.

Fig. 9. Output bit stream filtered by the 7-pole, 5 KHz Bessel filter, with converter input tied to the DC voltage reference. The influence of the sampling frequency to output noise is shown.
(Ivo 3 V lithium cells) and if we assume maximum undistorted output of $5 \mathrm{~V} \mathrm{p}-\mathrm{p}$. we arrive at the peak-to-peak voltage ratio of 50% : 1 or 74 dB . If we take into account that the noise peak-to-average ratio is much greater than the sine-wave peak-to-average ratio. we can add some $4-6 \mathrm{~dB}$. arriving at nearly 80 dB .

Further improvement in s:n performance can be achieved either by raising the supply voltage, and thus maximum input and output signal levels. or by increasing the sampling clock frequency. Unfortumately, if you insist on battery supply, this results in either prohibitive power drain. or space and weight. However, even if you renounce the battery supply you are faced with the 18 V supply limit of the 4013 c -mos flip-flop used in place of the 74 HC74. A CA3080 transconductance amplifier can be used instead of the feedback summing resistor, as well as in the place of MC14573. and a PMI's CMP-01 in the place of the MC14575 comparator stage. thus arriving at about $25 \mathrm{~V} \mathrm{p}-\mathrm{p}$ signal swing and resulting in more than 86 dB dynamic range. On the other hand. there is little bencfit if the sampling frequency is raised bevond 5 MHz . since the noise at the input of the
comparator and the tilter-stage amplifiers determinate the final result. A hetter approach is to improve resolution by using more comparators (a flash converter) and digital filtering as in Adams article ${ }^{2}$

Finally, in Fig. 9. we can compare the effect of changing the sampling frequency on the noise. A 3:1 improvement is achieved by raising the sampling frequency from 500 kHz to 1 MHz and a further $2: 1$ improvement results from increasing it to 5 MHz .

A single-bit converter with flat overload level and nearly flat noise spectrum more than 70 dB below overload in the 5 kHz handwidth is. as has been shown. realisable and stable and the possibitity exists of varying the sampling clock frequency in one decade-wide range. With a 1 MHz sampling frequency. the s:n ratio is roughly the same as in the standard 12-hit. successive-approximation A-to-D converter system with 15 kHz sampling frequency. If there is a need to convert the received data back to analogue form. a simple analogue filter will do the job. If a digital format is needed, the received bit stream can easily digitally be filtered and resampled with the required resolution at a lower rate. single-bit filtering being much simpler than 12 -bit. and will easily run in real time in most cases.

The author feels greatly indebted so the excellent article by R.W. Adams as it triggered my curiosity and offered a good guideline to this successful design.

Referemces

1. Compact digital echo unit. D.I. Greaves. EWW December. 1986, Circuit ideas. p. 4-45
2. Design and implementation of an audio 18 -bit analog-to-digital converter using oversampling techniques. R.W. Adams Journal of the Audio Engineering Sociely, vol. 3t. no. 3. March 1986. p. 153-106

Erik Margan works on muclear magneiic resonance, liquid crussals and electrooptics at the lozef Stefan Institute in Ljubljana, Yugoslavia

Useful Network Theorems, fifih edition, by Dr Harry E. Stockman. Comprehensive collection of theorems. with historical notes on their origin, applications and a set of worked problems. The theorems. some of which are contributed by the author. include those dealing with the periodic steady state and those for transient analysis. Appendices provide guidance on methods of calculation. tabular information. definitions and short biographical notes on people who have made notable contributions to network analysis. The book is in typescript form with diagrams drawn and annotated by hand: on occasion. this makes it difficult to read. since the printing quality is also rather poor. Sercolab. Box 767. E. Dennis MA. 02641 . USA. 160 pages, soft covers. $\$ 11.50$.

Advanced BASIC scientific subroutines, by B. V. Cordingley and D.J. Chamund. Extensite collections of mathematical and statistical subroutines. written in a structured form of Basic which should run without significant modification on 1 BM PCs and various other computers. Subject groupings include the generation of random numbers; probability. density and distribution functions; analysis of variance; matrix operations: interpolation; numerical analysis (Chebyshev polynomials and Fourier series): calculus; solution of equations. and complex numbers. The routines are liberally commented. Macmillan Education. soft covers. 178 pages, $\mathbf{£ 9 . 5 0}$. The software is also available from the publishers on a disk suitable for the IBM PC.

Taming Technology: how to manage a development project by Geoff Vincent (senior consultant with PA Technology). Concise. readable. practical guide to improving one's competitive position. for both engineers and managers. Sections cover the development cycle, from concept to product launch: projects and the project leader: the need to plan, and the improved planning methods made possible by the microcomputer: creating an elfective organization: and estimating cost and time. The author states persuasively the case for a scientific approach to project management as distinct from simply playing it by ear. Kogan Page, in association with the British Institute of Management. 173 pages, hard covers. £14.95.

Electronics Sourcebook for technicians and engineers. edited by Milton Kinuman and Arthur H. Seidman. Generously-filled crib (it's nearly 45 mm thick) for technicians and students. describing the properties and uses of electronic components. circuit elements and instruments of all kinds. Entries include a little theory, a lot of useful advice and. where approptiate. a scattering of worked examples. This edition is a condensed. soft cover version of the same publisher"s Handbook of Electronics Engineering Technicians. McGraw-Hill, £19.95.

Toroidal \& E.I.

 Transformers

Now you can measure the current in that track -- Down to 1 mA - Up to 1 amp - Independently of track width etc.

LAPLACE INSTRUMENTS LIMITED

Laplace Instruments Limited
PO Box 14, Bramhall, Stockport SK7 2QS Telephove: 0614409579

ENTER HON REPMIS ('ARI)
IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG.
5 mins. from Tally Ho Corner

Telephone:
 01 -445 2713/0749

ENTER 5 ON REPPLY CARI)
 products. Put software for the application into PROM and it starts to run as soon as power is applied. Some existing uses:

* Water control
* Conveyor weighers
* PABX telephone exchange
* Diesel engine testing

Agricultural machinery Machine-tool control Remote robot handling Heart rate data collection

1 off \{194.95 including mantial and non-volatile RAMI
Triangle Digital Services Ltd 100a Wood Street, London E17 3HX

Analogue/digital divider

Circuits for digitally-programmable gain control are quite common now but this one is different in that it accepts serial digital infut.
Serial-input d-to-a converters like the PMI DAC-814.3 shown here are particularly useful in multi-converter applications where access speed is not of primary importance. They have cascading outputs and so one address-decoder line can control any number of converters. Another advantage of serial control is that many converters can be fed by only three lines, namely for the serial data. clock and load signals.

As with any such serial system though. there are two disadvantages that affect access speed. Firstly. serial data takes longer to transmit than parallel data and secondly. to access any
device in a cascaded serial chain you need to re-send data to all the devices: to update one eight-bit converter in a four-converter chain. for example, you have to send out a 32 bit serial word.

The $81+3$ is a 12 bit $c-m o s$ d-to-a converter designed specifically for serial-data multiple-converter applications. Its data sheet shows how devices are strung together. how they are interfaced to microprocessors. and how the analogue side operates.

In multiply mode. the 8143 s transter function is

$$
V_{0}=-V_{1 m}\left(\frac{A_{1}}{2^{\prime}}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\ldots \frac{A_{1}}{2^{12}}\right)
$$

where A, assumes a value of one for an on bit andzerofor an off bit

When the d-to-a converter is placed in the feedback loop of an op-amp, its transfer function is modified to become

$$
V_{0}=\left(\frac{-V_{11}}{\frac{A_{1}}{2^{\prime}}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\ldots \frac{A_{12}}{2^{12}}}\right)
$$

This transter function is the division of an analogue word at the reference input by a digital word. When all bits are off. the amplifier output goes to the rails since gatin. at divide-by-zero, is intinity When the least-significant bit is one. gain is 4096 and when all bits are one gain is one
PMII, 90 Park Street. Camberley. Surrey GU153NY:0276692392.

Block diagram: DA(- 814.3

D) (' -814.3 micro intereace

AM/FM radio chip-set with high selectivity and sensitivity

A new chip-set from Philips is designed for high-fidelity AM/FM tuners and radios.

Keyed AGC for the RI preamplifier. determined by narrowband and wideband AGC components, is provided by TDA 15747° integrated FM tuner. The tuner also contains a linear IF buffer amplifier to compensate for insertion loss of the IF filters. improving the signat-to-noise ratio.

At the heart of the chip-set is the TIDA1596T IF amplifier/demodulator. which not only provides IF limiting and demodulation but also static and dynamic mute control of the audio signal levels. Further, this mute control provides a buffered control voltage for the stereo blend control in the TDA 598 ST stereo decoder and narrowhand AGC in the TDA 574 T FM front-end.

If the RF imput signal is distorted by external interference. fading or multipath signal reflections, the dynamic mute system reacts rapidly to maintain an undistorted audio output from the chip-set for as long as possible. Effects of external interference are, therefore substantially damped.
Mute control circuitry sees the audio signal level not only as a function of the If signal level but also of the signal de-tuning and noise and distortion content of the audio signal. These parameters control the tap position of an
electronic potentiometer in the mute attenuator via a diode network, so that the FM chip-set reacts quickly to changes in the IF signal or interference levels.
The time constant with which the mute control responds to amplitude variations in the If signal level is determined by an external capacitor and ar externally-applied voltage to provide either equal attack and decay times or fast attack but slow decay time.

Demodulation of the FM IF signal using a quadrature demodulator normally results in a total harmonic distortion of 0.6% (a single tuned circuit with a $($-factor of 20). The total harmonic distortion is reduced still further by a built-in THIS compensation circuit to less than 0.3%. The THI) compensation circuit has a frequency response characteristic which is cqual and opposite to that of the quadrature demodulator tuned circuit. Addition of both frequency response characteristics results in the minimum total harmonic distortion.
To provide aceurate stop detection for synthesizer search tuning and scanning control, the TIDA 596 gi has two open-collector outputs from a stop detector. The two reference signals for the stop detector are the ID(component from the yuadrature demodulator and the If: level detector output. These two

signalls are fed to comparators and logic gates to provide a basie search threshold of $\pm 18 \mathrm{kHz}$.

A second level-dependent search threshold is available by shifting the level detector offset during the seareh time.

In combined $\mathrm{AM} / \mathrm{FM}$ receiters, the TDA 1596 V also provides stop detection for AM signals. In this case, the AM II signal is fed to the limiter-amplifier input. a second tuned circuit (tuned to the AM IF frequeney) is connected in series with FM IF tuned circuit of the

Philips Electronic Components Enquiry Handling Unit New Road Mitcham Surrey CR4 4XY

quadrature demodulator and the mode switch is set to the FM-off position. This books the FM signal path and the distortion detector is disatbled. but all the remaining functions of the T1)A596T are still operational to generate stop detection outputs for A.M signals.

The TDAl5yst time-multiple stereo decoder is matched to its signal source (the TII) A 1596T"'s multiplex output) by selection of an external resistor. Audio gain is determined by the feedback resistors for the output amplifier. The TDA 15987 left and right channel output signals are typically (1.75V RMS.

Stereo blend. usime the control voltage from the TDA A596T. depends on the If signallevel as well as the interference and noise content of the multiplex signal. The starting level and the shope of this automatic changeover from steree to mono depend on external resistors.

The TI) AlOT2AT AM receiver circuit includes all the functions necessary
for AM reception. The oscillator. especially designed for diode-tuning. contains internal amplitude control to provide a constant oscillator output voltage of 1.31 mV over the frequency range fromoloto tomatz.

In addition to the functions provided by the TDAlO72AT, the TDA1572T AM receiver provides an amplitudecontrolled IF output for AM stereo operation. The low ascillater phase noise of hoth the TIDAl(172AT and TIDA 572 I ensures that they are wellsuited for AM stereo reception. External components needed for the complete chip-set are reduced to those necessary for frequency selection and time constant definition

Token-bus controller interface

There is an application note written specifically for designers of oxOKObased systems interested in networking to token bus. Produced by Motorola. the note details hardware requirements and performance considerations for interfacing the Mcorszat token-bus controller to the osollo. Motorola. Macro Markering. Burnham Lane, Slough.

Pads Superstation

An automated PCB design package, generating and routeing the board from data derived from the circuit diagram

With this package, the level of sophistication increases and approaches probably about the most complex a PC would comfortably handle. Automation is the name of the game here, with the ability to generate and route the PCB automatically from information derived from the schematic drawing. This is known as logic capture". generally more at home on mainframe and fast workstations that the PC.
PADS Superstation came as an evaluation package. comprising PADSCAE (for schematic drawing/logic capture) and PADS/PCB (for PCB generation). A further package. PADS Superrouter is available but was not supplied - this adds the ability to guarantee 100% routeing on a board, although this will tie up the PC for. typically. 18-20 hours.
Installation of both programs was via a custom-install program, with the software supplied on 1.2 Mbyte AT-style discs. A comprehensive overview manual guides you through the procedure. Requirements are any of the PC XT/AT/386 range with 7 Mbyte of free hard-disc space. An EGA/VGA colourgraphics card is essential. Due to the complexity of the package. you really need a 386 or very fast 286 PC for best results.
The evaluation version of PADS CAE is apparently derived from the normal software but with reduced facilities - for instance, you cannot save newly created parts or print any output. Nor is it possible to transfer the information generated from the schematic to the PADS-PCB software. However. a number of evaluation files are provided and used in conjunction with the tutorial/guide enable you to get a goodidea of the facilities available.

The tutorials for both PADS-CAE and PADS-PCB are comprehensive but not easy to comprehend - they are written for a USA audience and could
do with changes to suit the UK. The style is sometimes patronising and in places the instructions are incorrect or confusing. with a lack of explanation of terms or reasons for taking a particular action. This caused some problems with the review, and for anyone who has not used logic-capture software before, will distinctly detract from the package evaIuation.

PADS-CAE. Taking PADS-CAE first, entry to the program is via a graphical menu, using the mouse to select the desired package from those installed. A batch file then calls the relevant software

The maximum sheet size for a PADSCAE schematic is $60 \times 6(0) \mathrm{in}-$ you can use any size below this and have as many sheets as are necessary to hold the complete circuit. Placing parts is relatively simple, using menus located to the left of the entry screen. Parts are taken from the library by typing their name, after which is the identifying description it will be known by throughout the rest of the process - an example might be $\mathrm{K} 1 /$ /W Itook $5 \%^{\circ}$

The software tries to automate as much of the process of design as possible. One major example is the assignment or entry or Reference Designations used by the database for keeping track of parts, for example, RI/CI/LI etc. On most logic-capture systems. this is a manual process. with the operator needing to enter these at the keyboard. and keep track of them across the various sheets of the drawing. PADSCAE does this automatically at the time you place the part on the drawing - the first resistor you enter becomes R1, or in the example above, 'RI $1 / 4 \mathrm{~W}$ 100k $5 \%{ }^{\circ}$. Similarly, gate and pin assignments are totally automatic. Parts can be moved, deleted, rotated, duplicated and have their identities changed (RI to R20, for instance) at will. There are also facilities for creating multiple parts such
as decoupling capacitors without the need for entering each one individually.
Once all parts are on the schematic. you add the conductors using similar editing facilities to EASY-PC. While you do this, each conductor is assigned a signal name in the database using the format \$\$nn - you can view this att any time using the F8 Identify key. If preferred, you can change the automatic assignment to one of your own choice. If you inadvertently identify two with the same name, both conductors appear in red on the display, indicating an error condition. otherwise conductors appear in white. There is also a facility to start and stop conductors on other conduc tors using Tic Dots, and to carry conductors across several sheets of the schematic. At all times, error checking shows whether you have left conductors unconnected.

Bus lines for power. ground and other major connections are drawn separately, being assigned part names in the database such as VCC or (GND). If you need to. blocks of the schematic can be moved or copied around the drawing or to other sheets.
Since PADS-CAE holds all the in formation on the sheets in memory, you can obtain instant reports at any time on the state of your drawing. The reports facility, directed to any matrix printer include Signals, Buses, Parts, Decals and even the Library. Although not available in the evaluation, the full version allows you to plot the schematic to suitable plotters

Once the schematic is generated and saved, the next stage prepares the data for forwarding to the PADS-PCB package. The first stage is creation of a database for the PCB software using a process called Initial Forward Annotation. This stage is usually fairly complex in most CAE systems, involving batch ing all sheets of the design together then checking across the sheets for
errors and their subsequent correction. PADS-CAE generates the forward Annotation file immediately. since the error checking has already been carried out and the remainder of the informattion is in memory, even across multiple sheets. The output format can be in either PADS-PCB format, or FUTURE NET for other board-design systems using this format.

The required netlist is generated from an archive file of the drawing. After doing this. PADS-CAE's unique ability comes into play, allowing the user to assign track widths to conductors for use by the PCB package. The list of connections is presented on the screen.
create, althoagh you catmot satve them in the evaluation. A 'part' consists of a Decal (the graphical display ou see on the sereent and the Part Type Description. used to combine the decall and electrical information into a single entity.

This part of the packige seems to work very well. I found the mouse interface rouch easier to use thatn that of EASY-PC, with equally fast screen updates and a logical structure to operations. It would have helped considerably if some form of output facility for the drawings were available: perhaps a limited number of plots rather that none at all. Also. I would like to have

Working with P:IDS ("Personal A momated Design System").
from where you can select specific track widths for comductors. You can default all widthe (sty to 12 mils). then alter ans other you wish, such an making $V_{c c}$ sil mils. ()nce this stage is finished, your schematic generation is complete and you are ready 10 move the information over to the P(Byencrating package.

Ho be of any use. a logic-capture program must be able totake care of the incvitable changes to shematics. known as Eingincering (hange ()rders. PADS-(AE has full E(©) features using a batch file process with little input needed from the operator it can also perform Backward Annotation. whereby changes made at the PCB design stage, for instance pin swapping. call be fed back to the C AE progratio to correct the schematic

The Parts library supplied with PADS-(AF contains around 30)(ocomponcols. New parts are quite easy lo
seen support offered for diraft matrix or laser printer output of drawings.

PADS-P(CIB. Moving on to the PADSPC`l3 package. one of the first things that intrigued me wats whether it conld gencrase a $P^{\prime}\left({ }^{\circ} B\right.$ in the same manner as EASY- PC does, that is by hand drawing. The answer is yes. and PADS-PC'B describes this as "designing-on-the-fly" The process is more complicated than simple hand drawing. since you have to tell the software about eatel part you wish to place on the board hefore mosing on to the layout stage. I lowever, it is readly designed ats an automatted package and should be treated as such.

The working sereen is consistent with that of the schematic entry and takes litte getting used to. The largest board size is $32.7 \times 32.7 \mathrm{in}$ or anything smatier. with up to 30 layers. The latter are represented on screen in different colours, user-definable from the standard

16 E(iA colours via a set-up menu together withother parameters.

Since you cannot import any files directly from the (AI: package in the evaluation. a number of example files are provided to allow use. This could be regarded as a negative point - it does not allow you to try out the package on boards of your own design in typical situations and see how it copes with problems that may be specific to your proxlucts. Also. I suppose onc could argue that the supplied files are designed to show the package in af favourable light.

The first step in designing a P $P^{\prime} 13$ from the database generated by the CAE package is placement of the components. This is slightly different from the way you design a manual board. which is usually done in seguences of placing some components, routeing them. placing more and so on, That way, bou contimually see how much space is available for tracks.

With PADS/PCl3, bringing the CAE generated file into memory, via the Job In command. displays the board outline (already defined in the sample file) plas all the components grouped together around the periphery of the board. Many of these lie on top of each other. but all have every one of their logical connections shown as grey lines. At this stage all the components except the IC, ate "glued" to the board and will have to be unglued later before placing.

There are two ways of placing components - interactive and auto. With interactive placing. you tell the system to place the ICs on a predefined matrix. then rotale and move them with the mounce in conjunction with the Net Length feature. The latter tells you how long the total connection lengths (or Nets) ares. and with the Length Minimisation option allows the program to reblace net kengths atotomatically by rexordering the nodes in each net. With this done you can mowe ICs and other components around with the mouse. As fou doso. the logical connections move with it. Netting you get some idea of the best placement for individual parts so thatt. for instance, ICs with many connections lie next to éachother. If neecessary, syy with SMD designs. you catl nove components to the other side of the hoard.

The process continues with minimising $V_{\text {w }}$ and (iND) comnection lengths. and placing the discrete components such as decoupling capacitors next to ICs. If youi need to. components such ats reaistors can be stood on end and/or rotated at anytime

With automatic placement. you take a slightly different approach. Since this process attempts to place every component on the board in a suitable place on the matrix with as short connecting lengths as possible, you first have to glue down those components with fixed positions (such as connectors. switches. etc.) in the right place. Having done this and made sure everything else is unglued, selecting Autoplace starts the atutomatic placement routine, initially for the ICs. The sample file is supposed to be placed within a minute, according to the guide. but actually took about 20 seconds. so the timings are probably based on something like an 8 MHz AT rather than a 386 .

This first run will not necessarily be perfect and other options help you improve on this. They mainly concern SWAP operations, such as interchanging IC pairs, gates and pins until no further improvement in connection length results. Any changes are saved and can be used by the CAF program to update the original schematic.

With the ICs placed, the placing of the decoupling capacitors follows. then the discrete components.

The final stage, and the most complex for the program (and the user) is the physical routeing of the tracks on the PCB. Again, there are two ways to accomplish this - interactive and automatic. It is unlikely that any cad program will ever succeed in automatically routeing 100% of connections on every board it encounters. so the interactive routeing option is always required.

In manual routeing, the display shows the PCB with its placed components and their logical connections. To assist identification, the component outlines are yellow, pads are green and the logical connections are purple. Once you select a logical connection with the mouse, it changes to red for a short distance at the starting pin, then to white until it reaches the destination pin. At all times, a yellow information display area shows data about the connection. For instance.

DATA6

U3.5
U7.9
Width 25
tells you that the signal path currently selected is DATAO. connecting pin 5 of IC_{3} to pin 9 of IC_{7} with a width of 0.025 in .

Moving the mouse in combination with various function keys then lets you route the physical connection. changing layers with automatic via insertion if

needed. Nomatter where you are in the route, the uncompleted part is always shown in white. and you cannot complete the route to the wrong pin. As you might expect, you can unroute connections if needed.

With autorouteing. PADS-PCB does most of the routeing work for you. The evaluation package contains PADSROUTE, which use three separate routers. Two are specialised. for memory and power bus connections, while the third is a ten-pass general-purpose router for all otherconnections.

The power and ground bus router is heuristic. that is it works to a predetermined pattern, in much the same way that a human tries to lay out a similar bus manually. The memory router (for memory chips) works in the same way: The Maze router (general-purpose) handles the remaining connections on up to two lavers at a time, needing multiple passes if there are more layers.

When you select Autoroute, there is a large number of options in a menu list that require setting before you go alnead. The manual is quite explicit as to those to select, hut very vague as to why you select certain of them. Since the options are not always self-explanatory. I was left wondering at times what the program was actually doing.

Using all three of the routers on one of the supplied example files. the software routed $26+$ connections out of a total of 271 , or around 97%. in about four minutes. The routeing is shown on screen as it takes place a fascinating process, with the logical connections being replaced by routes as each is made, The program alsogives a running diata display on the state of the passes and success/failure at all times. You can
also choose to route specific nets (connections with the same signal name). or specific connections if required. Any connections not made when the automatic routeing has finished need to be made manually.

PADS-PCB includes a CHECK option. used to make sure your design does not violate spacing rules (defined in the SETUP menu), and is accurate to 0.0005in. This includes tracks colliding with text as well as direct short circuits.
Having used the PADS-CAE/PCB programs on and off for several weeks. I still have mixed feelings about them. They appear to do an excellent job on the supplied files. and all indications are from the specifications that the package does the work it was designed for. But I would still have liked to have run a known circuit schematic through the whole process and seen what came out the otherend. It would atho have helped if more explanation of terms and actions had beengiven in the manual at certain points.

This sort of highly automated cad program certainly has a future on the PC now that a high tegree of processing power is available for a reasonable price. No longer will a small company need tospend many tens of thousands of pounds for a dedicated workstation when designing PCBS - software like this and the not-so-humble PC will see tothat.

Tony Bailey

PADS Superstation

Microtel Systems Lid.

Glanty llouse.
The Glanty.
Itgham.
Surrey TW209AH
1784.3世ss1/35364

PCBTUBOVL STRAITOS

£249＋VAT £289 VAT and P\＆P incl．

High tech no longer means hign cost．From the world＇s leading manufacturer＝omes the most powerful PC based EPROM programmer．
－Supports over 230 devices from 26 major manufacturers．
－Programs EFROMS in 24 to 32 pin DIPs including megabit parts
－Context sensitive help menus and＇on screen instructions in colour．
－Ten powerful editor functions．

VISA

（0707） 332148
Stag Microsysterns
Limited
Martinfield
Welwyn Garden City Herts AL7 1JT
United Kingdom
－Full range of device／data integrity checks
－Dedicated interface halfcard gives fastest data down load．
－Hardware fully protected．
－UK designed and manufactured． 1 year no－quibble guarantee
－Fon IB．M－comprulible MT．AT
－Medximiam larvon size 32゙メ32
－ficia shppont
－ip or clanees
－Minimum step size 0．001
－cirts corpiria

INSTAGRAPHIC PRODUCTS LIMITED

ENTER 47 ON REPLY CARD

COMPUTER APPRECIATION，

The Penny Theatre，30／31 Northgate，Canterbury，Kent CT1 1BL Tel：（0227） 470512.
TRIUMPH ADLER／ROYAL OFFICE MASTER 2000 DAISY WHEEL PRINTERS． 20 cPS ．FULL IBM AND DIABLO 630 COMPATIBILITY，CENTRONICS INTERFACE．Features include underscore，bold subscripts，superscripts underline elc 132 column：micro propontional spacing．Complete with typewheel and ribbon．manufactured to highest standards in West Germany by Europe
typewriter manufacturer and offered elsewhere at over $£ 350.00$ Ex－demonstration condition PANASONIC Model JU－363 31／2＂floppy disc arives Double Sided Double $£ 69.50$（carr．［6．50） PANASONIC Modet JU－363 $31 / 2{ }^{2}$ tloppy disc drives．Dnuble SIded Double Ciensity 80 track 1
megabyte capacity unformatted Latest low component $1 / 3$ height design．SHUGART compatible megaface using 34 way IDC connector Will interface to just about anything BRAND NEW．（We can ofle at least 20% discount for quantifies of 10 plus）．Current model．Ex－demonstration condition
PLESSEY Model T24 V22／V22 bls 2400 Baud MODEM．Including free software disc（carr．© $\mathbf{~} 4.00$ ） MATMOS PC．Compact．automatlc modem leaturing the latest technology and the highest possible dat ate over the ordinary phone system Offers，Doth V22 and V22 bis compatikility． $\mathbf{1 2 0 0 / 2 4 0 0}$ Baud auto call and auto answer duplex operation allowing simultaneous transmission anc reception of dala at auto call and auto answer duplex operation allowing sumultaneous transmission ana reception or dala a
2400 Baud in both directorns ovet a single phone line．compact size $\left(9 \quad 19 \quad 2^{1 / 2}\right)$ ． BT approved and sulable for new PRESTEL V22bis service \quad E59．50（carr．©5．00） DUPLEX Model 100 green screen 12 high resolution montior with composite vided input Fully cased．
£29．50（cart．$£ 7.00$ ） FUJITSU Model M2230AS $5 \frac{1}{4}$ WINCHESTER disc drive． 6.66 mbyte capacily unformatted，16／32 sectors． 320 cylinders With ST506 interface BRAND NEW $£ 47.50$（carr．$£ 5.00$ ） DRIVETEC Model 320 high capacliy $5^{1 / 4}$ disc drives． 3.3 moyte capacity drive－same manulacture and same series as KODAK 6.6 mbyte drive 180 rack Nofurtherimio al present BFAND NEW

〔15．00（carr．£5．00）
HEWLETT PACKARD Model 5045A digital IC tester with CONTREL Model H3IO automatic handler With IEEE interface and print oul of test results elther passifall or full diagnostic including pin voltages a point of lanure With full complement pin driver cards and complete with substantral inbrary of magnetic Cs which are sorted into 2 bins Price includes a second HPSO45A（Delieved fully operatonal）for IT PERFECTOR TELEX MACHINE．With 32k memory．Screen with slow scrolling eic \quad 〔 150.00 HEWLETT PACKARD MODEL 5501 A LASER TRANSDUCER．With plezoeleciric funing for precise control of wavelengit in measuring applications
VICKERS INSTRUMENTS MODEL M17 METALLURGICAL MICROSCOPE with binocular
precise
［250．00 micrographic head and all eyepleces With 4 Micioplan objectives \＆Nomarskl interlerence contrast
KRATOS MS 30 DOUBLE BEAM MASS SPECTROMETER Approxmalely 8 ysars oid with negative ion capablity and last atom bombardment（FABI With gas and durect introduction sample probes and with gas chromatograph inlee sysiem．Ourpur specra are avanable directly va a a graphics printer and twO TEKTRONIX 4014 terminals．analyses output．The various sections of the was decommissioned PO SPECTRA PHYSICS MODEL 1644 WATT ARGON ION LASER with MODEL 265 POWER SUPPLY and transformer for 3 phase supply．Sultable for research applications or a liyht show 〔1950．00 SPECTRA PHYSICS MODEL 164A 30mW HELIUM NEON LASER with power supply．A powerfu Helfum Neon laser ideally suted for holography
LUMONICS SYSTEM 2000 RUBY LASER with Q－swith and temperature controlled KDP frequency doubler 0.3 Joule per pulse 6 pmm ．Sultable for holography A low power the Ne laser for mirror alignmen
$\$ 3500.00$ Please note：VAT \＆carriage（also＊VAT）must be added to all prices．＊VISA and ACCESS orders

With 48 years experience in the design and manufacture of several hundred thousanc transtormers we can supply： aUDIO FHEUENGY TBAYSFOMERS OF dusiY TYP： YOUNAMEIT！WEMAKEIT！

OUR RANGE NCLUDES

Mophone trans ormers（all typest．Microphone Splitter／Combiner transfor－ me＇s．Input and Cutput transformers．Direct Injection transformers for Guitars Muti－Secondary cutput transformers．Bridging transformers．Line transformers Line transformers 20 B．T．Isolating Test Specification．Tapped impedence match－ ingtransformers．Gramop none Pickup transformers．Audio Mixing Desk transfor－ rrers（all types）．Viniaturs transiormers．Microminiature transformers for PCB rcunting．Experimental ransforme－s．Ulira low frequency transformers．Ultra linear and other transformars for \％alve Amplifiers up to 500 watts．Inductive Loop transformers．Srreothing Chokes．Fitter，Inductors，Amplifiers to 100 volt line transformers（from a few watts up to 1,000 watts）， 100 volt line transformers to speakers．Speak3＊matc ing transformers（all powers），Column Loud－speaker trensformers up to 300 wetts or rore．
We can design for BECORDIVG QUALITY，STUDIO QUALITY，HI－FI QUALITY OR P．A．QUALITY．OJR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE －RANSFORMERS．Many standard types are in stock and normal dispatch Itmes are short ant senstole．

OUR CLIENS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES，NIXINE DESK MANUFACTURERS，RECORDING STUDIOS －- FI ENTHUSASTS，BAND GROUPS AND PUBLIC ADDRESS FIRMS Eyport is a specality and we have overseas clients in the COMMONWEALTH， EEC，USA，MIDDLE EA 3 T，etc

Send for our questionnaire which，when completed，enables us to post quotations by re um．

CWTER
TZANSFORMERS
PC Box 36，lpswich IP1 2EL，England． Phone： 0473252794 \＆ 0473219390 － Telex：987703G Fax： 0473236188

NEW ARCHITECTURE OP-AMPS

High speed current-feedback op-amps were first described in the research journals about five years ago. Over the past year or so, a new style op-amp has emerged - with several analogue semiconductor manufacturers now producing standard parts. Though each has its own approach, the basic architectures are remarkably similar. Elantek was first with the EL2()20 and EL2022. followed by Comlinear Corporation's CLC400) and CLC401. More recently the competition for specific sectors of the high speed op-amp market has been hotting up with devices such as the dual op-amp OP-260 from Precision Monolithic Inc. and the AD844 from Analog Devices, both released earlier this year.

Why now?

Way back in the early days of production op-amps such as Fairchild's 709, the structure was based on a standard BJT architecture with a long-tail pair (LTP) input stage driving resistive collector loads, feeding perhaps a second LTP for additional open-loop gain. followed by a DC level-shifting stage and output buffer/power amplifier. About the time of these first monolithic op-amps the analogue circuit designer's cry was first heard. "My oscillator won't but my amplifier will!"
Then came the breakthrough of the internally-compensated op-amp, such as the 741, with active loads replacing the resistive collector loads of earlier designs.
And then we all became familiar with the two fundamental limitations of this op-amp architecture. The first is that the gain-bandwidth product is constant, resulting in a direct trade-off between closed-loop gain and closed-loop bandwidth. Secondly, the slew-rate of these op-amps is not particularly high, often being limited by the same internal compensation capacitor that makes the opamp such a stable and well behaved device. Slew-rates are typically 0.5 to 10 $\mathrm{V} / \mathrm{\mu s}$. We are so used to these limitations that we are almost inclined to believe that they are fundamental laws of physics and not a result of a particular op-amp architecture.

Incremental changes have been made in op-amps designs over the years to
improve particular parameters, such as input-referred offset voltage, power supply rejection ratio and so forth, but these changes have been made without altering the basic architecture.

Introduction of fets within op-amps has resulted in lower power consumption, with reduction of input bias currents by up to three orders of magnitude in some cases, and a consequential increase of input impedance by the same order. However, fets brought no major changes of architecture.

In the latter half of the 197(s, about the only brave new architecture op-amp was National Semiconductor’s LM390) Norton op-amp. However, despite a radical design concept and its promise of versatility, it did not change the face of analogue design and it has not displaced the conventional architecture op-ampat all.
So why after such a long time are we seeing major changes in the basic architecture of the op-amp? Silicon n-pn BJTs are faster by virtue of their higher electron mobility and so a highperformance BJT monolithic process has always been predominantly $n-p-n$ with $p-n-p$ realized as lateral rather than vertical devices. These p-n-p devices have a very poor β and high-frequency performance. This has cramped analogue designers' style into nonsymmetrical circuits with the signal path handled mainly by $n-p-n$ transistors. But recent technological advances en-
able high quality vertical $p-n-p s$ to be fabricated and so the designer is free to use almost as many $\mathrm{p}-\mathrm{n}-\mathrm{ps}$ as $\mathrm{n}-\mathrm{p}-\mathrm{ns}$ in the signal path without degrading performance. With this new-found freedom, circuits with a radically new topology can be fabricated. The classical op-amp architecture can be dropped and new approaches taken up.

Current-feedback op-amps

Figure 1 shows the basic structure of the current-feedback of the op-amp, as presented by Derek Bowers of PMI at the IEEEs Bipolar Circuits and Technology Meeting held in Minneapolis last October. The now common currentmirror symbol has been used to simplify the diagram, the driven side of the mirror indicated by the arrow. Though each semiconductor manufacturer has individual refinements, all have adopted a very similar architecture.

Resistor R_{2}, connecting the inverting input to output, closes the feedback loop. The input voltage buffer Tr_{1} to Tr_{+} forces the inverting input node voltage to equal the non-inverting potential. Imbalance in the collector currents of Tr_{3} and Tr_{4} is summed at the voltage gain node z. Transistors Tr_{5} to Tr_{s} form an output voltage buffer to produce a low impedance at the output node. With an additional resistor R_{1} between the inverting terminal and earth, the overall closed-loop voltage gain of the amplifier is $\left(1+R_{2} R_{1}\right)$, which is exactly

Fig. I. Basic current-feedback architecture.
what would be obtained for a conventional op-amp.

The main difference in the new architecture is that the time-constant of the system is predominantly set by the product of resistor R_{2} and the 2 node capacitance of C_{7}. The z-node is the only high impedance internal node in the amplifier. With this structure the gain-bandwidth trade-off of the conventional op-amp does not occur: instead. the bandwidth remains virtually constant.

Also the slew-rate of the amplifier is very high. In conventional op-amps the slew-rate is generally determined by the ratio of long-tail current to compensation capacitor, which is difficult to increase above a few tens of volts per microsecond. But the new architecture does not suffer from this limitation. Current available to charge the capacitor C, is always proportional to the input error current, the slew-rate limitations associated with conventional opamps just do not occur. In practice, rise and fall times are almost independent of signal level, and the input current will eventually cause the mirrors to saturate. The effective ($\left.\mathrm{d} / \mathrm{V}_{\mathrm{cour}} / \mathrm{dt}\right)_{\text {max }}$ is as high as $20(0) \mathrm{V} / \mathrm{ms}$ in the case of the AD 844. some $500-1000 \mathrm{~V} / \mu \mathrm{s}$ in PMI's dual opamp OP-260, $700 \mathrm{~V} / \mu \mathrm{s}$ in Comlinear's CLC400 series and around 50 K$) \mathrm{V} / \mu \mathrm{s}$ in the Elantek EL_()20 and 2022 devices.

Applications

Clearly, wide bandwidth and high slewrate are achievable at low cost with these new op-amps, though the applications engineer is advised to read the manufacturers" notes very carefully. There are subtle points to consider when using these devices, such as gainpeaking effects in non-inverting applications due to stray input capacitance at the inverting input node.

A particularly elegant use of the current-feedback op-amp is in automatic gain control (AGC) applications. One of the shortcomings of voltagemode op-amps in AGC amplifiers is that the bandwidth varies with closedloop gain. The constant bandwidth feature of the current-feedback architecture overcomes this problem completely. Figure 2 shows the circuit of an AGC amplifier using two halves of the dual OP-260 from PMI. Amplifier $\mathbf{A}_{1: a}$ is used as the gain stage with \mathbf{A}_{16} set up as a positive precision rectifier. Opamp A_{2} is an integrator: this feeds an n-channel j-fet which is used as a

Fig. 2. PMI's OP-260 eliminates the problem of variable bandwidth in : (GC amplifiers using voltage-feedback op-amps (Precision Monolithic Inc.).

Fig. 3. Pulse response of the AGC amplifier of Fig. 2: (a) low-level input signal (b) large signal. (Precision Monolithic Inc.)
voltage-controlled resistor to set the gain of $A_{\text {ta }}$. The $604 \mathrm{k} \Omega$ resistor pulls a constant current from the inverting input of A_{2}. If the average amplified signal output falls below $15 / 6(1) 4 \mathrm{k}=$ 25 mA , then the gate drive to the j -fet will reduce R_{th} of the j -fet, with the result that the gain setting of $A_{1,4}$ rises to compensate, hence the ACiC action. Figure 3 shows the pulse response of the amplifier for inputs of $10(0) \mathrm{mV}$ (at a) and IV (at b, upper trace). The output responses are the lower traces, which show virtually identical rise and fall characteristics. In fact, the loop maintains a constant peak output amplitude
for a square wave input signal range of $\pm 20 \mathrm{mV}$ pk-pk to $\pm 6.0 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$.
As yet the DC performance of the new architecture op-amp is not as good as the conventional op-amp. Figures for CMRR. PSRR are as yet well down. But, if it is wide bandwidth together with very good large-signal fast response you need, at low cost. then take a look at this new stable.

P-n-p pair with 3\% matching

Drawing on the technology that has enabled devices like the current feedback op-amps to be developed. PMI is offering the MAT-(1)3, a dual p-n-p matched pair with excellent parametric matching and high frequency performance.

Its low noise charracteristics ($\mathrm{InV} / \mathrm{V}$ Hz maximum at 1 kHz), broad bandwidth $(190 \mathrm{MHz}$ typical at 10 mA collector current), and low offset voltage $(\pm 10(0) \mathrm{mV})$ make the MAT- 113 an excellent choice for demanding low-noise and high-speed preamplifier applications. Tight current gain matching (3% maximum mismatch) and high current gain (100 minimum) over a wide range of collector current make the device ideal for current-mirror source applicattions. With a low value of bulk resistance (typically (1).38), it is well suited to applications requiring very accurate logarithmic conformance.

Analogue Action is compiled by Dr John Lidgey of Oxford Polytechnic

ADVANCED ACTIVE AERIAL

The aerial consists of an outdoor head unit with a control and power unit and offers exceptional intermodulation performances: SOIP +90 dBm , TOIP +55 dBm . For the first time this permits full use of an active system around the If and mf broadcast bands where products found are only those radiated from transmitter sites.

- General purpose professional reception 4 kHz 30 MHz .
- -10 dB gain, field strength in volts/metre to 50 Ohms.
- Preselector and attenuators allow full dynamic range to be realised on practical receivers and spectrum analysers.
- Noise -150 dBm in 1 Hz . Clipping 16 volts/metre. Also 50 volts/metre version.

SURREY ELECTRONICS LTD.,

The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG.
Tel: 0483275997 - Fax: 0483276477

A NTRIM
 RANSFORMERS LTD

UNIT 3A/9, 25 RANDALSTOWN ROAD, ANTRIM, CO ANTRIM, N. IRELAND.
Telephone: (08494) 66734. Telex: 74667 Fax: (08494) 68745
Manufacturers and designers of high quality toroidal transformers to specifications VDE 0550, BS415 Class 2 and IEC65 Class 2.

Prices quoted are lots of 100 (VAT not included). Prices firm to October '89.

15VA - £4.70
30VA - £5.18
50VA - $£ 5.52$
80VA - £6.00
120VA - £6.70
625VA - £13.80

100VA - £6.56

Prices quoted are for primary voltage 110, 120, 220, 230, 240.

For additional primaries please add 4% to price for the following:
120/120, 220/240, 110/110, 115/115, 110-120/110/120.

AGENTS WANTED - ALL COUNTRIES

 ENTER 28 ON REPLYCARD
SMC

South Midlands Communications

RADIO TRANSCEIVERS

RECEIVERS

SMC the leading European specialist in general radio communications have developed modula systems for rapid delivery, panticularly useful
for emergencies, disasters, political for emergencies, disasters, polifical unrest and to use. HF transceivers i.e. the FT80C with a frequency range of $1.5 \cdot 30 \mathrm{MHz}$ used with either one of the SMC basic wide band antennas, or more efficient, the multi spot frequency
antennas complete with transportable masts.
More powerful and complex transceivers are
also available
Where monitoring or reception is required then either the FRG8800 HF receiver with VHF option or the FRG9600 VHF, UHF all mode scanning receiver are available with proven quality. sensitivity and reliability, at realistic prices

ANTENNAS

The TWB2530 and TEB3 are just two samples of the large range HF, VHF and UHF antennas
available from SMC. Both have been specifically designed for users with very different
requirements showing the breadth of ou capability. The rugged transportable TWB2530 is a full self-contained extremely lightweight. yet tough enough to withstand rough handling and quick assembly in adverse terrain.
The TEB series of spot frequency HF beam antennas give excellent forward gain, rugged construction for long life, at a cost effectiv price.
If you require further information on the 300 various support mounts, HF, VHF or UHF antennas, simply call for our new shortform catalogue.
me supplied with the most efficient
antennas and desirable accessories.
SMC LTD, SM HOUSE, SCHOOL CLOSE, CHANDLERS FORD INDUSTRIAL ESTATE, EASTLEIGH, HANTS SO5 3BY Tel: (0703) 255111. Telex: 477351 SMCOMM G. Fax: 0703263507

PHASOR TRANSFORMS

Joules Watt explains how eliminating the time element in sinusoidal circuit analysis by means of phasor transforms yields an enormous simplification.

YCl again. the carly development of what many of us take to be a rebatively mokern technigue reminds us that there is mothing much new under the sum
()n this occanson. I am talking about the use of phasor diagrams in electronic circuit theory. The story began with the efforts made by Ileaviside, Stemmetz and Kennelly to understand and characterize reactance and impedance In his 1887 paper. Heaviside talks about "admittance" and appropriately uses his operator "p" (for d / dt). interpreted for sintusoidal (lriving signals. Steinmety and Kemolly offered phasor diagrams. in their $1893 / 94$ papers. although they called them vectors. For our present purposes. my carlicr discussion about complex quantities sets the seene ${ }^{t}$. but you could take a further look att the theory of them if you feet a bit rusty
()f course. phasors appeat on the page anderected lime segments, similar to

Fig. I. I directed line. drawn from the origin on the complex phane. represents at phasor. This geometrical picture shows immediately the meaning of the angle and magnitude. The real and imaginary components also appear maturally as projected line segments along the axes. The smaller phasor V_{2} o is said to lag the larger. Vi. by do radians.
vectors but they represent an amplitude and phase plot of a time-varying sinusoidal quantity: see Fig. I. Vectors. on the other hand. represent directed space-varying quantitios. In some discussions you might come across phasorverors. where spatially distributed vecfor fields also oscillate in time with amplitude and phase variations.

Since phasors describe sinusoidally varying quantities. their relesance to radio-clectronic engincering theory is obvious. (of all the "signals" we use " the sine Wave wins hands down. Such signald form smple steady-state models of circuit action, inchading the casy introdaction of something known as the impedance concept. At first sight you might consider sinc wates rather boring from an information point of view and therefore not very relevant to most problems. In practice they are relevant because at we hate seen, by Fourier analysis" all periodic waweforms contain a fundamental sinusoidal component. together with all the appropriatc simusoidal hammonics.

Transforms

But hereby hangs a tale. You can look upon phatsors as a particularly simple cxample of a whole range of mathemattical techniques based on integral mansforms. The most obvious one that comes to mind involves fourice agam: Fourier transforms correlate nonperiodic functions ins, say, the time domain to a corresponding distribution in the freyuency domain. You will find other Fourior patirs that associate: for example space distributions transform (1) angular ones. Other transforms inclade Laphace, Hankel ($: W$ W, May 1989. p.458). Mellin and ceven more exotictypes.

Often. you will come across phasors dincussed directly without reference bor transforms. Newertheless. they possess
similar propertics inthat time functions. in the form of lincar differential equatoons with constant cocfficicols, transform to algehraic equation in the freaucocy domain. The useful results arise because by employing a simpleInarmonic forcing function you obtain at straghtorward particular integral of the differential éguation. In solving such differential equations. the natural response turns up. of course: this is the eomplementary function solution of the bomogenous éguation (that is. the differential équation équated to zero mstad of the forcing function). You will find that the nattual responses in all nctworks containing resistance dic out ats time passes. Responsers in high- () circuits might take a comsiderable time (odic. but exentuallyeren in these only thesteady-statereponse remains.

Writing down the equation

An cxample always helps to darify the stuation. Consider the circuit in Figs. 2. Ihate chonen atwo-loop LC (R network. excited by a simmodidf gencrator. v. One or tion questions arise with this kind of circuit: for instance. you might want to know what value s_{0} or i_{1} takes. A utandard procedure intoles using Kirchhoff": voltage lau round cath

$=\hat{v}_{5} \cos \left(\omega^{*} \cdot \varphi\right)$
Fig.2. The typical I. ('R network shown. has an imput B_{i} I have chosen two possible 'outputs'. i_{1} and i_{i}. Setting up the loop currents i_{i} and i, makes the circuit suitable for amalysis by Kirchhoffrs voltage haw. lou can sece that i_{i} $=\boldsymbol{i}_{3}$ 。

PHASOR TRANSFORMS

loop, or mesh, after choosing relevant loop currents. I have labelled these currents i_{a} and i_{1} in Fig. 2.

This mesh analysis yields simultaneous equations that you have to solve. Only two equations arise in this simple problem. but that is bad enough when you consider they will be differential equations. First, go round loop (a).
$\mathrm{i}_{\mathrm{i}} \mathrm{R}_{1}+\frac{1}{C} \int \mathrm{i}_{\mathrm{i}} \mathrm{dt}-\frac{1}{C} \int \mathrm{i}_{1} \mathrm{dt}=\mathrm{v}$,
Now loop (b).
$-\frac{1}{C} \int i_{3} d t+R_{2} i_{1}+I \cdot \frac{d i}{d t}+\frac{1}{C} \int i_{1} d t=0$.
These are integro-differential equations. Your next move is to differentiate right through with respect to the time in each case, which eliminates the integrals.

$$
\mathrm{R}_{1} \frac{\mathrm{di}_{i_{i d}}}{\mathrm{dt}}+\frac{\mathrm{i}_{i \mathrm{i}}}{\mathrm{C}}+\frac{\mathrm{i}_{\mathrm{b}}}{\mathrm{C}}+\frac{\mathrm{d} \mathrm{v}_{\mathrm{s}}}{\mathrm{dt}}
$$

and

$$
-\frac{i_{a}}{C}+\mathrm{R}_{2} \frac{\mathrm{di}_{\mathrm{b}}}{\mathrm{dt}}+\mathrm{L} \frac{\mathrm{~d}^{2} \mathrm{i}_{\mathrm{b}}}{\mathrm{dt}^{2}}+\frac{\mathrm{i}_{\mathrm{b}}}{\mathrm{C}}=0 .
$$

Now you have to solve these simultaneously with the known forcing function v, in place. A direct approach to this means struggling with $\mathrm{di}_{\mathrm{i}} / \mathrm{dt}$ and interpreting the integrating process.

At this point. some people try an "operator" method. (by writing $\mathrm{d} / \mathrm{dt}=$ D) and $\int \ldots \mathrm{dt}=1 / \mathrm{D}$) and you will find some simplification accrues by using this traditional method ${ }^{7}$.

Enter the transform

All LCR combinations form linear circuit networks whose natural responses to a transient input at some instant turn out to be exponential functions in every case. What you find looks like Ae ${ }^{\text {i }}$. with A representing some kind of signal
amplitude and staking on varrous forms: real, imaginary or complex. according to the circuit. The interesting thing about exponential functions arises from the fact that they reproduce themselves when differentiated or integrated.

In the sinusoidal steady-state, or phasor approach. we choose an imaginary power in the exponential so that the driving function becomes the real part of Ae ${ }^{\text {run }}$. In other words, we chooses $=$ $j \omega$. which we assume to have begun indefinitely in the past and to go on indefinitely into the future. You might think this a bit artificial. but the implication is "you are in the middle of a long period - a sufficiently long time to disregard any transients". This means that no awkward initial or boundary conditions remain to bother us and explains the other title. "steady-state allalysis". we give to this approach.

Complex exponential functions possess another interesting property which I have often used in my discussions. This arises from the mention of Euler's identity.

$$
\mathrm{e}^{|\omega|}=\cos \omega \mathrm{t}+\mathrm{j} \sin \omega \mathrm{t} .
$$

By taking the real part of this you see immediately that

$$
\operatorname{Re}\left(e^{|\omega|}\right)=\cos \omega t .
$$

Fig.3. In (a), the 'unit phasor' has a length equal to 1 and rotates anticlockwise at an angular rate ω. The amplitude of the phasor in (b) corresponds to a voltage with peak value F_{s}. The presence of a phase angle ϕ advances the phasor relative to direction ω t. By removing the dependence on ωt, in ofher words, by taking the reference direction along the real axis, a fixed phasor I', represents the amplitude and phase angle, as shown in (c).

Write the complex conjugate of eiwt and its Euler expansion.

$$
\mathrm{e}^{-|\omega|}=c \cos \omega t-j \sin \omega t .
$$

Thus, by adding the two, youget.

$$
\cos \omega \mathrm{t}=\frac{\mathrm{e}^{\mathrm{I} \mid \omega \mathrm{I}}+\mathrm{e}^{-\mid \omega \mathrm{t}}}{2} .
$$

Subtracting them would give you the imaginary part, namely jsinct. This shows that you can write sinusoidal forcing functions as complex exponentials. After working the problem with these exponentials, you then take the real, or "cos" bit, or the imaginary, or "sin" part as the solution.

The expression e ${ }^{\text {rot }}$ has a magnitude equal to unity all the time. You can see this by taking the magnitude of its Euler expansion.

$$
\begin{gathered}
\left|\mathrm{e}^{\mathrm{i} \omega t}\right|=|\cos \omega t+j \sin \omega t| \\
=V \sin ^{2} \omega t+\cos ^{2} \omega t=V 1=1
\end{gathered}
$$

As the time ticks away in the exponent. this unit length. looked on as a phasor. spins anticlockwise with angular velocity ω : Figure 3 (a) illustrates this. If there is an amplitude \hat{V} sand a phase angle ϕ in the forcing function, that is, $v_{s}=\hat{V}_{n} \cos (\omega t+\phi)$, then this caluses no trouble as Euler's identity now appears as

$$
\begin{aligned}
& \hat{V}_{, ~} \mathrm{e}^{1(\omega t+\phi)}=\mathrm{V}_{2} \mathrm{e}^{i \phi)^{i \omega t}} \\
& =\hat{V}_{,}(\cos (\omega t+\phi)+j \sin (\omega t+\phi))
\end{aligned}
$$

This shows that the anticlockwise rotating unit phasor is multiplied in length by \hat{V}, and has d radians added to its angle. as in Fig. 3(b). Finally, by convention. we stop the rotation of the phasor by removing the factor $e^{\text {towt }}$ from further consideration until the end of the problem. We do this by taking a "snapshot" at $\mathrm{t}=0$ so that $\mathrm{e}^{\text {leot }}=1$. You cam mop up the e ed into the amplitude \hat{V}, to form at

(C)
complex amplitude V. This we usually call the phasor; in other words, we apply the term after removing the time rotation part. as in Fig. 3 (c).

$$
V_{V}=\hat{V}_{c} e^{l d d}
$$

Such functions of the independent variable at the input mean that the dependent variables, or outputs, follow the same form. Therefore, if you take v_{0} as the output, then you can write $v_{0}=$ $\operatorname{Re}\left(V_{\text {, }}{ }^{|c o l|}\right)$. Also all the other values of voltage and current will have a similar form. so that for example i_{1} will equal $\operatorname{Re}\left(\mathbf{I}_{\mathbf{t}}{ }^{100 t}\right)$. These are the phasor transforms. Notice we have made the complex amplitudes \mathbf{V}_{0}, I_{1} independent of time but they are functions of frequency.
If you return to the differential equation I used in the example earlier. you will see how the phasor transform yields a huge simplification. Before proceeding, remember that only the real part of the phasor expression has physical relevance. But if. further, you remember the properties of the complex conjugate. then obtaiting the real part turns out to be simple. Any complex number a has a real part given by

$$
\operatorname{Re}(x)=\frac{z+z^{*}}{2}
$$

where the asterisk denotes the conjugate: sec Fig. 4.
a simpler version of which we have alreally used to obtain the cosine
Now insert the phasor expressions intothe first differential equation.

Fig.5. C sing a transform method follow. a procedure. The direction goes from the time domain into the frequency domain. Solving the algebraic equations there is relatively simple. Finally, an inverse transform yields the time solutions.

Fig.t. The complex number a has a conjugate a * represented geometrically as a reflection in the real axis. If you take the sum of $\%$ and 2^{*} you will alwals get at real number result.

Then carry out the differentiations becallse, as mentioned. the $I(\omega)$. V (ω) have no dependence on the time. so

$$
\begin{aligned}
& \frac{\mathrm{l}}{\mathrm{~d}}\left(\mathrm{I}_{\mathrm{a}} \mathrm{e}^{[10 \mathrm{l} \mathrm{t}}\right)=\mathrm{i} \omega \mathrm{I}_{\mathrm{a}} \mathrm{a}^{\mathrm{I}(\omega)} . \\
& \text { d } \\
& \text { inother words. } \frac{d t}{d t}=i \omega \text {. }
\end{aligned}
$$

After collecting terms and cancelling the ?. you shouldend up with

We have to struggle on a litle further. but with the pleasure of knowing that in all future problems. you will be able to write down the final phasor equation straightaway. You only have to go through the above tortusus route once tosee the method.

Notice that the only way the equattions caln equall zero for all times reguires each coefficient of the exponential factors separately to equal zero. The

And similarly with the seconderquation.

other way you can state this is to say that $\mathrm{e}^{1 \text { cot }}$ and $\mathrm{e}^{-1 \text { Lew }}$ are linedrly independem. and again because of this the coefficients must be zero. Mathematically. the complex conjugate terms contain all the information which the other terms contain. so we only need one set of coefficients. This means that, after doviding through by jw.
and.

$$
-\frac{1}{j \omega C} \mathbf{I}_{a 1}+R_{Z}+j \omega L_{-}+\frac{1}{j \omega C} \mathbf{I}_{\mathrm{b}}=0
$$

... which you recognise as the finall result.

Note the $i_{,}(t)$. $i_{1}(t)$ transform into $I_{: ~}:(\omega), I_{1},(\omega)$ and so on. Also $d / d t=j \omega$. This means that by looking at the equatoons. youcould have written down the results immediately and thus abtained the algebraic phasor cquations from the differential time equations in onestep.

You can now draw up a short table of phasortranforms.

$$
\begin{gathered}
\varphi[v]=V \\
\varphi[a v]=a V \\
\left.\varphi \left\lvert\, \frac{d^{\prime \prime} v}{d t^{\prime \prime}}\right.\right]=(j(\omega))^{\prime \prime} v \\
\varphi \mid \cos \left(\omega t+d \mid=c^{\prime \prime \prime}\right. \\
\varphi\left|v_{1}+v_{2}\right|=\varphi\left[v_{1}\right]+\varphi\left[v_{2}\right]=v_{1} v_{2}
\end{gathered}
$$

This fast relation works because of the linearity of the equations. The whole procedure cycles in a loop. which you
will find characteristic of transform methods. Sce Fig. 5.

The solution always appears as a sinusoid, because we applied a simusoidal excitation, or forcing function. This always means you can write solutions in the form.

$$
v_{0}=\dot{V}_{0} \cos (\omega t+\phi)
$$

The phasor transform appears from the earlier definition as.

$$
\begin{aligned}
v_{0} & =\operatorname{Re}\left(V_{0} e^{\mid \omega t}\right) \\
\therefore \hat{V}_{1} \cos (\omega t+\phi) & \left.=\operatorname{Re}\left(V_{0}\right)^{(\omega \omega t}\right)
\end{aligned}
$$

so that by using Euler's identity and the conjugate.

which, together with the linear independence of $e^{i \omega t}$ and $e^{-i \omega t}$. means we endup with

$$
\hat{V}_{0} e^{(\phi)}=V_{0}
$$

as I have already pointed out.
This yields the transform pair

$$
\begin{aligned}
& v_{0}=\operatorname{Re}\left(\boldsymbol{V}_{0} \mathrm{e}^{\text {row }}\right) \\
& V_{0}=\hat{V}_{c} \mathrm{e}^{\mathrm{e}}{ }^{\text {d }}
\end{aligned}
$$

These tell you how to get v_{0} from a known $V_{6,}$ and how to get V_{0} from a knowledge of v_{0}. Finally. you can consider $V_{0}=\varphi\left[x_{0} \mid\right.$ as the phasor transform of v_{0} and $v_{0}=\varphi^{-1}\left[V_{0}\right]$ as the inverse phasor transform of $\mathrm{V}_{\mathbf{\prime}}$.

Impedance

The great value of this transform method lies in the ability to bypass the time equations completely. The linearity of the situation means you can write down mesh and nodal equations directly in the phasor frequency domain form.
Because $v_{1}=1 \frac{d i_{1}}{d t} \cdot i_{1}=C \frac{d v_{1}}{d t} \quad$ and $v_{1}=R i_{1}$ transform directly into.

$$
\mathbf{V}_{\mathbf{I}}=j \omega L I_{\mathbf{I}}, \mathbf{I}_{\mathbf{r}}=j \omega C \mathbf{V}_{\mathbf{r}} \text { and } \mathbf{V}_{r}=R I_{r}
$$

you can take the quotient. V divided hy I and thereby obtain the familiar impedance relationship $\boldsymbol{Z}=\mathbf{V} / \mathbf{I}$. Notice that the impedance. as the quotient of two complex numbers, itself consists of a complex number. The quotient of a voltage with a current has the dimension of ohms. of course.

Impedance applies while in the frequency domain. If you try to talk about it in the time domain. you will be discussing something that has no meaning. Straightaway. you see that the familiar impedance relationship for an inductor.

$$
Z_{L_{L}}=\frac{V_{L}}{I_{L}}=j \omega L
$$

has only a positive imaginary part whose magnitude ustally carries the name inductive reactance, X_{1}. For a given inductor. the reactance varies directly with the frequency. Similarly, a capacitor has an impedance

$$
Z_{C}=\frac{V_{C}}{I_{C}}=\frac{I}{j \omega C}=-\frac{j}{\omega C}
$$

again yielding an imaginary quantity. negative this time, with a magnitude called the capacitive reactance. X_{6}. Notice the well known result that capacitive reactance varies inversely with the frequency.

The impedance of a resistor equals its ordinary resistance

$$
Z_{K}=\frac{V_{K}}{I_{K}}=\mathrm{R}
$$

and. being a real quantity, it shows a zero phase angle must exist between phasors V_{k} and I_{k}, together with no variation in R with frequency.

In a general way, the impedance and phasors enable you to write down the phase angles in the inductive and capacitive cases.

$$
\frac{\mathbf{V}_{\mathbf{L}}}{\mathrm{I}_{\mathrm{L}}}=j \omega \mathrm{~L}=\omega \mathrm{L} / 90^{\circ}
$$

This tells us that an inductor has the positive reactance I mentioned, whose ohms lead resistive ohms by 90°. as it were. It also tells us - and some people get confused at this point - that the current through the inductor must lag the voltage across it by 90°. You can see this byoting that $I_{\text {L }}$ in the denominator of $Z_{1,}$ requires -9$)^{\circ}$ relationship to V_{1} in the numerator. to yield a resultant $+9)^{\circ}$ for the quotient. In other words.
$\frac{V_{1}}{I_{1}}=\frac{\hat{V}_{1} \angle 0^{\circ}}{\hat{i}_{1} \angle-90^{\circ}}=\frac{\hat{V}_{1} \angle 0^{\circ}+90^{\circ}}{\hat{i}_{1}}=x_{1} \angle+90^{\circ}$ In a similar way, hut with everything reversed (the "dual"), you call determine the phasor results for capacitors.

If you take the reciprocals of all the impedance relationships. you end up with admittances. You have probably come across the terms conductance and susceptance for the real and imaginary parts of these.

Network immittances and functions

People talk about impedances and admittances in the same breath. The term immitance soon became estahlished in engineering circles to mean the quotient of phasors V and I taken either way up. (Although W. H. Chen offers the alternative alpedance in place of immittance.)

If you consider one of the quotients V_{i} with I_{i} at the input terminals of a
network or system, then you ohtain the driving point immittance. If taken at the output, then you end up with the output impedance (or admittance). A touch more subtle perhaps: if you form these quotients by taking a phasor voltage or current or voltage from another part. then youget a transfer immittance.
In this latter case, you might have noticed the possibility of dividing one phasor voltage by another. (or a current by a current). You obtain a ratio now. which cannot be an immittance of course, but such ratios exist and possess important meanings. The voltage ratio gives the voltage gain (or loss) between the two sections. The ratio of currents yields the current gain (or loss). Engineers call these ratios the transfer functions of the system. Clearly. since immittances must be functions of ω (or $j \omega$). so must transfer functions.

These concepts nicely overlap with my carlier discussion on transfer resistances and so on, as applied to amplifiers". Generalising to include impedances would broaden that discussion to include complex numbers, with their phase and amplitude responses as function of frequency. You would find the present material relevant.

This brings me back to our unsolved pair of equations, which still need interpreting in the light of what I have just said. The phasor transform greatly simplified the approach, hut what do we do with it next? First solve the equations for either I_{a} or I_{b} employing any ordinary method. I will use Cramers rule with determinants ${ }^{\prime \prime \prime}$. For I_{a},

$$
\begin{aligned}
& I_{3}=\frac{\left|\begin{array}{lc}
V, & -\frac{1}{j \omega C} \\
1 & R_{2}+j \omega L+\frac{1}{j \omega C}
\end{array}\right|}{\left|\begin{array}{cc}
R_{1}+\frac{1}{j \omega C} & -\frac{1}{j \omega C} \\
-\frac{1}{j \omega C} & R_{2}+j \omega L+\frac{1}{j \omega C}
\end{array}\right|} \\
& V_{1}\left(R_{2}+R_{1 \omega 1}+\frac{1}{\left.1 \omega C^{C}\right)}\right.
\end{aligned}
$$

Immediately, you get the driving point admittance \bar{l}_{a} / \mathbb{Z}, for our example network.

On the other hand, hy finding I_{b}, in a similar way and by noting that the product $\mathrm{I}_{\mathrm{b}} \mathrm{R}_{2}$ gives the output voltage Vo, you obtain the voltage transter function.
$H(j(\omega))=\frac{V_{n}}{V_{V}}=\frac{R_{:}}{j \omega\left(R_{1},\left|R+|\omega|+\frac{1}{j+1 C_{0}}\right)+\left(R_{0}+\mid(n|.|)\right.\right.}$

You may enjoy ohtaining this result as allexercise.
$H(j \omega)$ gives you voltage "gain" information as you process the sinusoidal imput signat through your network. Plotting $|\mathbf{H}(j \omega)|$ as a function of frequency yieks the amplitude response. Similarly plotting $\mathbf{H}(\mathrm{j} \omega)$ gives the phase response of the network.

I hope you see how economical in time and effort the use of phasor transforms have made calculations of impedances and responses of LCR linear networks. when they are driven by sinusoidal test signals. But, you may ask. what about the transient response we have neglected? Also, does the use of linear amplifiers - in other words, controlled sources - in the network modify the results? They do and, as for transient response, the departure from simple sinusoidal driving signals to abrupt switching types certainly complicates the issue. But simitar transform methods enable these to handled algebraically too. I add the comment that we might find time for a discussion of these andother points on another occasion.

Keferences

1. Oliver Heaviside. "On Resistance and Conductance Operators". Phil. Mag. p.479. Dec. 1887
2. C. P. Steinmetz. "Reactance". Proc. AIEE. p. 640 . Nov. 1894
3. A. E. kennely. "Impedance". Proc. AIEE p. 175 . Fall 1893
+. Joules Watt. "j". Electronics and Wireless World, September 1987.
4. G. Stephenson. "Mathematical Methods for Science Students Chap. 7. Longmans. 1969.

6 Joules Watt. "A Series of Remarks on Fourier". Electronics and Wireless World. p. 10016 . October 1987
7. G. Stephenson. Chap. 21 Ioc. sit.
8. W. H. Chen, "I inear Network Design and Sunthesis". p. 17. McGraw Hill. 1964.
9. Joules Watt, "Voltage or Current?" Elec. ronics and Wireless World. p.477, May 1987.

UHF direct frequency synthesizer

RF Commentary (E\&WW Aprit 1989. p .423) outlined recent work by the American company Digital RF Solutions on direct digital synthesis (DDS) for use in HF/VHF equipment. Work on DDS in the UK by Di Peter Saul and others at Plessey Research. Caswell, has included the development of the SP2(0)1 DIDS 4(0-pin IC package first announced in 1987. This directly generates the code reguired for an output sinewave anywhere within the range 54 kHz to 100 MHz with a clock frequency to over 350 MHz .
More recently, Peter Saul and David Taylor have described a new 2 GHz clock direct frequency synthesizer in which the two integral d-to-a converters each have a faster operating specification than any currently available, with devices tested to above 2.5 GHz clock rate. The device, intended primarily for radar and electronic warfare applications. generates square, triangle and sinewave outputs over the range 1 Hz to 500 MHz with an accumulator length of 31 bits and a nominal clock frequency of $21474836+8 \mathrm{~Hz}$ with 1 Hz frequency increments. In a paper presented at the recent international conference on fre-
quency control and synthesis, the authors claim this as a new class of UHF frequency synt hesizer of unprecedented performance:
"The simplicity of operation, coupled with the complete absence of any setting-up or alignment procedures. makes this class of device very attractive. In some applications, the extreme speed of operation can make possible products which cannot be realised in any other way. Particular examples of this are in fast-hopping signal generation for EW and radar. Also, the device can provide almost all of the functions for a multimode signal generator operating over the 1 Hz to 500 MHz range."
Close-to-carrier noise is predicted as $-135 \mathrm{dBc} / \sqrt{ } \mathrm{Hz}$ at 10 kHz , with maximum spur levels of -65 dBc at 30 MHz , -58 dBc at 50 MHz and -30 dBc at the 500 MHz output.
First samples of the DFS have recently been evaluated with a 1.5 GHz clock and are fully functional with the exception of the sinewave outputs. The project has been partially funded under the Alvey programme.

Block diagram of the new Plessey Research 0-500MHz direct digital
frequency generator with clock rate up to 2.5 GHz .

Wavell wins through (just)

For years, most progress in telecommunications has been hailed as stemming from the marriage of communications and computer technology. But marriages are not always successful or smooth-running and this seems to have been the experience of the British Army. It has previously been reported r"Ptarmigan at last", EdWW July 1985 page 75 and "Packets on the move" July 1987. page 755) that the development and introduction of the British Armys first battefied C^{3}) (Command. Control. Communications and Information) system has taken well over 20 years Even now the complete system - Plarmigan distributed battlefield trunk network: Treffid, the radio-relay sector; and the Wavell automatic data processing system - is recognized. although now at last in service, as requiring further improvement in hardware, software and managerial structures.

Wavell was mitially deployed in 1985 but it was not until the 1988 evercise Summer Sales that the Army began to have any real confidence in the system. As Major C.L.G. Wright (I. Roval Signals Instiution. Winter 1988) has
admitted: "Unfortunately Wavell has had a chequered history ranging from unreliable hardware to untrustworthy software. These problems were severe enough to erode staff confidence in it 10 the extent that the whole project was in danger of heing cancelled.

During 1985-86, the system continued to be plagued with problems: lack of spares to repair the data processors (Plessey MDP100()); software "bugs" resulting in totatling mechanisms corrupting the database; and unreliable interprocessor commmunications, floppy dise drives and bubble memory units. System availability during exercises often proved to be less than 50%. The considerable problems of managing the system with Army rather than civilian specialists are now seen to have been underestimated.

Extensive modifications and improvements have been undertaken by Plessey. the prime contractor, mosily during 1987. including "massive

> Wavell automatic data processing system forming part of the British Army's C ${ }^{3}$ I battlefield system.

surgery" 10 the hardware
Wavell is intended to provide commanders and staff officers with a battlefield computer system to automate state boards. collate and process information and intelligence. with the ability to pass messages and orders as data over the packet-switched network (PSN) of the Ptarmigan system.
Major Wright stresses that: "The fundamental lesson that was leamed with Wavell and indeed with Ptamigan is that complex, dynamic ADP systems are bound to fail (not necessarily completely) on first fielding. The very nature of these svstems would indicate that they are unlikely to work first time and this failure does not just occur initially, but every time the system is increased in size. These size-related system faut ts are unlikely to be found in the factory test bed no matter how rigorous the quality-assurance procedures.. A sensible precaution should be to expect failure and have an agency available which is capalle of identifying exactly what went wrong and then be capable of providing a palliative measure to circumvent the error. This will reguire a system support organization which will have as an integral part of its framework. hardware and soltware spe cialists... The Ptamigan-Wavell System Support Team now provides this essential support for Wavell, hut initially it also required further contractor support when Wavell was deployed on exercises.. The final lesson is that the $\mathrm{C}^{3} \mathrm{l}$ system will not necessarily save manpower... it needs an operational manager responsible for the currency of the critical information. a svstem mana ger responsible for the availahility of the network. and probably a communica tions manager responsible for the interface with the various bearer systems.

In July 1985. I reported the belief of some senior officers of a developing "crisis in software" in the British Army This foresaw the possibility of entire area networks such as Ptarmigan Wavell failing at critical moments due to lack of skilled soft ware support.

The chequered history of Wavell tends to support this view while at the same time highlighting also the hardware problems. Could it be that, 45 years on. the lessons of the disasters of Arnhem ("Markel Garden") have been forgotten? A simple. limited capacity link that works is better than a sophisticated automatic data processing system that fails at a critical time. And what are the prospects for such complex systems as the American SDI ("Star Wars") for which no realistic full-scale trials will ever be possible?

EMC directive "deeply disappointing"

Although the DTI continued to express reservations and, together with Ireland, abstained from voting when on May 3. the EMC directive of the European Community was finally submitted to the Internal Market Council (IMC), the text was agreed unanimously with no contrary votes. The final version of the text of this important directive has been modified in various, mostly minor, ways since the original proposal of November 11, 1987. By the time these notes appear, it may have been published in the official journal of the European Communities, and will take effect from January 1, 1992 (or January 1, 1993 in areas where there may still be no appropriate national standards).

Some of the recent modifications are regarded as "helpful" by the DTI but it still considers that: "In view of the extensive and, at times, promising lobbying campaign mounted by the UK over the last six months in particular, the eventual outcome of the Directive is deeply disappointing"

One of the main worries of the DTI appears to be in respect of the possible impact of this all-embracing EMC directive on telecommunications terminals. including subscribers’ apparatus. The DTI believes there is no validity for treating most telecommunications equipment with a more onerous specification than information technology apparatus. This may perhaps be why British Telecom reacted strongly when last year I revealed that while considerable improvements had been effected over the past three or four years, many of the recent "electronic" telephones and associated units continued to suffer from relatively poor immunity to local RF fields, and BT endeavoured to conceal such information from would-he users.
A very important aspect of the directive about which there has been some confusion is that it has now been confirmed that the Directive does apply to specific items of an existing product design which are sold after January 1,

1992 (or 1993 in the absence of national standards), as well as to any brand-new apparatus marketed for the first time after the directive comes into force.

This summer. the DTI will issue a consultative document outlining the ways in which the EMC directive will be implemented in the UK and DTI's thinking on many of the important issues that have been identified. Views and comments will be welcome. although it is now too late to change the text of the directive. In addition, a booklet in the DTI's "Standards and the Single Market" series is being prepared. Other publications in this series include "Standard: Action Plan for Business" and "The New Approach to Technical Harmonisation and Standards" providing introductions to this area of EC policy

[^3]| 1740A | |
| :---: | :---: |
| | ratol |
| | |
| | |
| | |
| | |
| |

 |
| | |
| | |
| | nita yooes sua atur |
| | |
| | |
| | |
| | |
| | |
| | 3950
 3350
 00 ea

 10 |
| | |
| This is a very small sample of stock SAE or telephone for LIST of OVER 7OO ITEMS Please check avallability beforeordering CARRIAGE all units $£ 16$ VAT to be added to tota of goods and curriage | |
| STEWART OF READING Tel: 073468041 110 WYKEHAM ROAD, READING, BERKS RG6 1PL
 Callers welcome 9 am to 5.30 pm . MON-FRI. (UNTIL 8 pm . THURS) | |

ENTEIR 39 ON REPLY CARI)

> Advertisements accepted up to 12 noon 24th July for Sept issue.

TECHNICIANS MADLEY SATELUTE EARTH STATION HEREFORDSHIRE

British Telecom are seeking suitably qualified technicians for work in a variety of different skill areas at their major satellite earth station in Herefordshire.

Technicians are required for the following areas.

Maintenance of Analogue/Digital/RF equipment to component level.
Installation and testing of associated satellite communication systems.
Maintenance and operation of microprocessor controlled switching equipment.
Installation and maintenance of power and environmental control services.
You should be able to demonstrate a practical ability in one of these areas and have a formal BTEC qualification or equivalent.
Applications are invited from suitable qualified people up to the age of 55 years.
Salaries for technician grade start at $£ 9231$ rising to £10068.
Excellent benefits include generous holiday entitlement, pension scheme, non-contributory sick pay.
Please telephone or write for an application form to David Butler, Training Manager,
Madley Satellite Earth Station, Madley, Hereford, HR2 9NH. (0981 250 001)

PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

SENIOR/PRINCIPAL TECHNICAL OFFICER

Department of Electrical \& Communication Engineering
The post requires expertise and experience on the maintenance and repair of a wide range of modern electronic. communication and computer equipment, and the ability to train local technical staff to a high level.
Salary per annum: Senıor Technıcal Office K19,295 - K21.420; Principal Technical Officer K22.645 (level of appointment will depend upon qualifications and experience).
Initial contract perdiod is normally for three years but shorter periods can be negotiated. Other benefits include a gratuity of 24% taxed at 2%, support for approved research, appointment and repatriation fares, leave fares for staff member and family after 18 months of service, settling in and settling-out allowances, six weeks paid leave per year, education fares and assistance towards school fees; free housing, salary protectioni plan and medical benefit schemes are available. Staff members are also permitted to earn from consultancy up to 50% of earnings annually.
Detailed applications (two copies) with curriculum vitae and the names and addresses of three referees including telephone number and indication of earliest availability to take up appointment should be sent to The Registrar. Papua New Guınea Unıversity of Technology. Private Mail Bag, Lae, Papua New Guinea by 4 August 1989. Applicants resident in the UK should also New Guinea by 4 August 1989. Applicants resident to Appointments (36571), Association of Commonwealth Send one copy to Appointments (36571), ASsociation of Commonweaith Universities, 36 Gordon Squ
information may be obtained.

WEST YORKSHIRE HIGHWAYS ENGINEERING AND TECHNICAL SERVICES
HETS is committed to providing a highly professional cost-effective service to the District Councils of West Yorkshire and to other client organisations.

MOBILE RADIO SECTION

PRINCIPAL TECHNICIAN UH2028 (1)

Scale 5/6 £9474 - 111475 (Pay Award Pending)
A Radio Technician is required for the installation and maintenance of mobile radios and base equipment throughout West Yorkshire.

Based in Leeds, the successful candidate should ideally hold a technical qualification in radio engineering or in an associated subject and have worked in a similar environment for a minimum of 3 years. The successful candidate will also be expected to diagnose and repair basic computer hardware faults.

This post carres essential car user status and the successful candidate must hold a current driving licence. Mr T Endersby will answer queries on Leeds 462802.

Applications forms and Job Descriptions may be obtained from the Personnel Officer, Highways, Engineering \& Technical Services, Selectapost 6 Dudley House, 133 Albion Street, Leeds LS2 8JX.
Telephone Leeds 462608 or 463239.
CLOSING DATE: 14 August 1989
HETS IS AN EQUAL OPPORTUNITIES EMPLOYER

BROADCAST AND ELECTRONIC ENGINEERS

Ref: 4689
Required for work in the Broadcast Engineering and Production Departments of the SSVC which provides Radio. Television and Training for the British Forces and their dependants in the UK and abroad.
Candidates (preferably 23-45) should be educated to HND standard in electronic and electrical engineering and have work experience in broadcast or related industries. Initiative, self-motivation and a sense of adventure are also required.
The work, often overseas, includes the operation, maintenance and installation of the full range of professional radio and television studio equipment. Transmitters in the range of MF to SHF are also operated. The salary and allowances are tax free when an overseas service, plus other fringe benefits.
There are prospects for promotion to higher grades. good opportunities for training and also transfer to other departments of the SSVC
For an application form please contact:- Mrs. Anna Sive, Assistant Personnel Manager

Tel: 024074461 Ext 407

A WORLD OF OPPORTUNITYFOR RADIOOFFICERS

We offer a secure and rewarding shore－based career in the forefont of modern telecommunicalions technology．Thity weeks special training Iplus 6 weeks for non－ypists）will prepare you to undetake a wide range of specialist duties as a RADIO OFFICER covering the complete communication spectrum from DC to light．

To quality you need to hold or hope to attain
an MRGC or BTEC HNC in a Telecommunications subject with the ability to read morse at 20 wpm ． City and Guilds 7777 at advanced level incorporcting morse transcription skills，would be advantageous
Anyone without the above qualifications who has 2 years radio operating experience will also be considered．

Age－preferably under 45 years

We offer you：

Comprehensive Training，Good Caree Prospects，Opportunities for transters within UK and Overseas；Genercus Leave Allowances and a Non－ contributory Pension Scheme，iob Security，Altractive Salaries－and much more
Salcory（Reviewed Annually）－As a Radio Otficer after traning
£ 11.568 rising to § 17.057 pa in 5
annual increments．（includes shilf
and weekend workng allowance） CIVIL SERVICE IS AN EQUAL OPPORTUNITY EMPLOYER For more information and application form write or telephone

THE RECRUITMENT OFFICE，CCHO，ROOM A／10： PRIORS ROAD，CHELTENHAM，GLOS GL52 5A PRIORS ROAD，CHELTENHAM，C
OR TELEPHONE（0242）232912／3

ST．LOYE＇S COLLEGE FOR TRAINING THE DISABLED FOR
COMMERCE AND INDUSTRY

ELECTRONICS SERVICING INSTRUCTOR

The College requires immediately a practising Electronics Service Engineer with broad traming and recent field and／or workshop experience of micro computers．to mstruct on a highly skilled City and Guilds 224 course of training The successtul candidate will be required primarily to give practical bench training in fault diagnosis techniques and must be familar with micro test equipment leg．logic analysers）Previous mstructor experience destrable but not essential Salary $£ 10,363$ to $£ 11.469$ ，currently under review
Letters of application．together with a curriculum vitae and names and addresses of two referees，should be submitted to The Deptuy Principal， St Loye＇s College．Topsham Road． Exeter，Devon，EX2 6EP．
St Loye＇s College is an Equal Opportunities Employer

司司司司司司司司司 EleCTRONIC ENGINEERS
Make your next career move a milestone not a millstone． Irrespective of your career objectives－financial or geographical－let Cadmus put direction into your search． If you are a Qualified Service， Sales．Design，Production，Test or Quality Engineer，send your C．V．to the address below or telephone Norwich 761220 for an informal chat．

PERSONNEL LIMITED
reepost．Sack vilie Place
44．48 Magdalen Street
Norwich NR3｜BR

CLIVEDEN

Technical
Recruliment

Quality Assistant

 N Hants Radar Company require experienced standards an asset Good prospectsUp to $£ 10.000$
Bench Engineer Cellular Telephone Company needs experienced RF person for component level reparr ONC minimum Qualification．Up to $£ 10,500$ Installation Service Engineers Berks Experrenced people for Mobile Communications Company．Good prospects with local company

Production Test Engineer Leading antennae compary Neg Salary
Bucks experienced person with componem： level test and repair knowledge Gond
prospects．
Field Service Engineer Surrey Well known broadcast company＇ 3 years relevantilied Good salary packane qualited Good salary package To £16，000＋Car
Field Service Engineers 216．000＋Car Field Service Engineers people required to work for airline comms company VDU s．Printers and Processors knowledge an advantaje Good Package．To 13.000 ．Car

Roger Howard，C．Eny．M I．E E．，M．IE R E CLIVEDEN TECHMICAL RECRUITMENT 92 The Broadway．Bratknell．Berks RG12 1AR Tel： 0344489489 （ 24 hour）

RF DES ENGS

Extremely Competitive Salaries

Circuit and System design using leading edge radio architectures．
If you would like to hear about outstanding UK and European opportunities to work in satcoms，C＇I radar． mobile radio and personal comms，call Ingineur on：
0926817612
INGINEUR LTI）（Agy）． Pendicke Street，
Southam，
Warks CV33 0PN
InGInEUR
ENGINEER •IN \bullet EUROPE

maxon
 mobile．radio

Maxan Eurape Ltd is an exciting growth company in the expanding raaio communications market．Represented by a netwark of dealers and distributors throughout Europe，the Company has cansistently increased its market share of portable and mobile radia equipment for the ast five years．
To help ta continue this planned expansion we require to expand ou existing European development team．
RF Development Engineers with experience of circuit design for mobile and handneld radio transceivers operating at frequencies up to 1 GHz ，surface mount technology，frequency synthesis techniques and CEPT specifications for land mobile radio． Cellular Radio Test Ergineer with experience of mobile and handheld cellular radios．
Customer Service Engineers with experience of fault finding and re，pairing mobile radio transceivers．These posittons will include a significant amount of cl－stomer liaison and travel both in the UK and Europe．
Senior Mechanical Design Engineer with experience of plastic and metal mouldings ficr volume production，design of sub－ assemblies，PCB integ；ation and the control of drawings for production．
In return for you＇efforts the Company offers a competitive salary． bonus system，non－contributory pension，health and life insurance scheme and BUPA membership．
As we are an international Company there may be the need for occasional travel to our facilities in the USA and Korea．
Please write with CV and salary expectations（quoting reference 905）to：

> Maxon Europe Ltd, Watford Business Park, Greenhill Crescent, Watford, Herts. WD1 8XJ.

HAVING DIFFICULTY OBTAINING AN OBSOLETE VALVE/MAGNETRON/KLYSTRON? (or transistor, I.c., CRT, trav wave tube etc)

* RARE \& OBSOLETE TYPES A SPECIALITY!
* ALL POPULAR TYPES STOCKED AT COMPETTIUE PRICES
* SPECIAL PRICES FOR WHOLESALE QUANTITIES
* OFFICIAL OROERS FROM GVT DEPTS, MLLTARY, PLCs, OVERSEAS ETC. WELCOME
* PHONE/FAXTELEX FOR UP TO DATE PRICES ON YOUR REQUREMENTS

Visa - Barclaycard - Access accepted

BILLINGTON VALVES
Good quality - Low price - Rarities a speciality
39 Highlands Road, Horsham, Sussex, RH13 5LS, UK. Phone: 0403 210729. Fax: 0403 40214. Telex: 87271
Office hours Mon-Fri 9am-5.30pm. Callers welcome by appointment only

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND

 ELECTRONIC COMPONENTS FOR DISPOSALSEMICONDUCTORS. all types. INTEGRATED CIRCUITS. TRANSISTORS, DIODES RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F. W/W. etc. CAPACITORS, SILVER MICA, POLYSTYRENE. C280. C296. DISC CERAMICS. PLATE CERAMICS, etc ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE. SCREWS, NUTS. CHOKES. TRANSFORMERS, EIC. ALL AT KNOCKOUT PRICES Come and pay us a visit ALADDIN'S CAVE
TELEPHONE: 445 0749/445 2713
R. HENSON LTD

21 Lodge Lane, North Finchley. London N12.
(5 minutes from Tally Ho Corner)

SERVICES

B-Sweep

- 50 Hz to 20 KHz - Up to lv rms output - AC to DC converter - Full listing details Full listing details for your own easy modifications £115 includes: 40/80 51/4"disc
VAT \& P \& P

Micro-controlled frequency sweep generator with response plottong, all from one compact unit plugged into your BBC B, B+ or Master

MELFORD DESIGNS LTD
Bucknalls Drive, Bricket Wood, St. Albans. Herts. AL2 3XJ Telephone: Garston (0923) 672008 Fax: 0923679184

PCB ASSEMBLY \& OPTO TERMINATION

Small batch production, fast turnround. Orwell Electronics, Lynton House, Flowton, Ipswich, Suffolk IP8 4LG. \% 047333595

TURN YOUR SURPLUS
ICs transistors etc into cash. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance Contact:
COLES. HARDING \& CO 103 South Brink, Wisbech, Cambs. Tel: L945 584188 Fax: 0945588844 * ESTABLISHED OVER 15 YEARS * 69

SALE OSCILLOSCOPES GENERAL TEST EQUIPMENT

Tektronix 475200 MHz dual time base ᄃ599
Telequipment D755 (Nato version of D75) £275
Philips PM 321835 MHz dual T/base £325
Marconi TF2914 insertion signal analyser $£ 750$

> SPECIAL OFFER MARCON TF2603 RF MILIVOLTMETER TO $1.5 G H z ~ 1 M V-3 V$ FSD (C/W PROBE) £99 EACH

Tektronix 1481 waveform monitor, multi display 15 line VTR £1,499 Marconi TF2002AS Gig Gen AM/FM 10MHz-72MHz £125
Marconi TF2008 Gig Gen AM/FM $10 \mathrm{MHz}-520 \mathrm{MHz}$ £575
Spectra Physics laser model 125 (inc 261 exciter) £2,850 Scientifica + Cook Laser (Argon) handheld unit! £175 Racal Dana 9915M UHF frequency meter

Large stocks of Audio \& Video Test Equipment, Cameras, Recorders, Monitors also, Optical Equipment - Lenses. Prisms, Mirrors etc. Many other scopes, Sig Gens etc. Phone or fax for latest stock list.

ANCHOR SURPLUS LTD
 CATTLE MARKET ROAD NOTTINGHAM
 Contact: Rob Taylor Telephone: 0602864041 Fax: 0602864667

ALL PRICES + CARRIAGE AND VAT @ 15\%

MENTION ELECTRONICS AND WIRELESS WORLD WHEN ORDERING A FREE PROBE SET (ONE X1 AND X10 TO 100 MHz)

80C552 SINGLE BOARD COMPUTER
 A complete development system
 This uses the latest Philips CMOS Microcontroller with the following features 32K RAM - 32K Eprom - buttered bus
 Protected power supply for easser prototyping prionitsed 15 source interrupt handler $\begin{array}{ll}\text { Protected analogue inputs }-8 \text {, hannel } 10 \text { bit ADC } & 12 \mathrm{MHz} 8051 \text { cpu core with powerdown } \\ 2 \text { pulse width modulated outputs }-3 \times 8 \text { bit } 10 \text { ports } & \text { on board led array for indication purposes }\end{array}$ full duplex uart RS232C has stuit down capability
 ALSO AVAILABLE A FREE PC MOSTED CROSS ASSEMBLER AND POWERFUL DEEUG MONT
 For further details contact
 BOBCAT LTD. Arboretum Telephone: 036984371

GOLLEDGE

ELECTRONICS
QUARTZ CRYSTALS OSCILLA TORS AND FILTERS of all types. Large stocks of standard items. SpeLarge stocks of standard items. Specials supplied to order. Personal and export orders welcomed - SAE for lists please. OEM support thru: design advice, prototype quantities, production schedules. Golledge Electronics. Merriott, Somerset TA16 5NS. Tel: ()460 73718.

ARTICLES WANTED

REQUIRED

Sealed I.F. module for
Dynatron Radiogram. Model LS 250 date about 1969.

Telephone lan: 01-659 1664

WANTEI): VALVES TRANSISTORS l.C's (especially types KT66, K'T88 PX4, PX25). Also plugs, sockets and complete factory clearance. If possible, send written list for offer by return. Billington Valves, phone: 0403 210729. Fax: 0403 40214. See adjoining advert.

SATELLITE TV BOOKS

THE womld of satelute TV
over 200 pages on everythng you need to know about

HARRISON ELECTRONICS

31/2"720K DISK DRIVE AT $£ 39.50$ + VAT

Japanese-made (Y-E data) high reliability, modern, low component chassis drives. Surface mount design. These drives are exequipment in immaculate 'as new' condition, boxed, and carry a full 6
 months (money-back-if-not-satisfied) guarantee. 80 track double sided 1 M . Byte (unformatted). $£ 39.50$ each (carr £3), $£ 35$ for ten or more, fifly or more POA.
Racal V22 1200 Baud Modem
Micro controlled, BT approved modem very high quality. Auto answer 1200, 600, 300 Baud. Cased, uncased card or 7 cards in rack. Cased $£ 55$. Uncased $£ 24.95 .7$ in rack $£ 195$ (carriage: $1 £ 3.50 ; 15 £ 20$)

Epson 12" TTL Mono Monitors (Green)
High resolution, IBM. Hercules compatible, TTL

Victor 286 Speedpack

Speed up board for IBM PC's and XT's. Replaces 8088 processor with full 80286 giving up to seven times speed increase. Few only $£ 99.50$ (carr $£ 3$).

Triumph-Adler Royal Daisy Wheel Printers

(few left only)
$20 \mathrm{cps}, 132$ column, variable pitch, all the features you would expect from a quality printer. Six month guarantee, ribbon and typewheel included, £99.50 each (carriage $£ 6.50$) + VAT. NB: RS 232 printers only left. HURRY! STOCKS COMING TO AN END!
VAT must be added to all prices.

Hitachi Colour Monitors

$20^{\prime \prime} 64 \mathrm{KHz}$ Ultra High Res CAD $£ 595$ (carriage $£ 30$).
$20 " 48-51 \mathrm{KHz}$ Ultra High Res CAD $\$ 495$ (carriage £30). 14 " 30.4 KHz PGA 149 (carriage $£ 10$), $12^{\prime \prime}$ CGA will convert to EGA £ 119.50 (carriage $£ 6.50$) 12" CGA £ 19.50 (carriage £6.50)

Modems (all BT approved)

Transdata 307 Acoustic Couplers. 300 baud, fits all phones Power Supplies $£ 9.95$ (carriage £3)
Farnell N300 R113U cased, 300 watt PSU, +5 V at $40 \mathrm{~A},+12 \mathrm{~V}$ at $5 \mathrm{~A},-12 \mathrm{~V}$ at $5 \mathrm{~A},+24 \mathrm{~V}$ at $5 \mathrm{~A},-5 \mathrm{~V}$ at 1 A , current model (list price £244). $£ 49$ (carriage £4) Farnell N180P134U 180 watt switch mode PSU. +5V 20 A. $+24 V 5 A,+24 V 2 A,-5 V 1 A$.

Keyboards

STC Wordprocessor keyboard. Top quality German
 All goods new and guaranteed three months unless stated.
Winchester Drives
CDC Wren 51/:" 80 MByte, $£ 345$. CDC Wren 51/4" 35 MByte £149. Rodime 51/4" 36 MByte \& 119.

Sound and Lighting Equipment

EDC radio mics., complete broadcast quality kit including microphone, receiver and case £295 (accessories and spares available). 1 K watt PA speaker rig £795. Pair Altec 15" dual concentrics $\mathbf{£ 3 2 5}$. BBC studio monitor speakers (LS5/1 or LS5/2) pair $£ 110$. Mini PA speakers pair $£ 30$. Foldback wedges £39 each. Revox A77 Mk4 £275. Revox A77 Mk4 varispeed $£ 325$. H + H TPA 100 (170 watt) $£ 95$ each. Digital echo unit $£ 85$ Spring reverb $£ 25$. Selection of lanterns etc, please call. All equipment is second user. Delivery POA.

Floppy Disc Drives

Shugart SA455 half height $51 / 4^{\prime \prime} 40$ track double sided $£ 34.50$ (carr £3). Panasonic JU465-5 half-height $51 / 4^{\prime \prime} 80$ track double sided $\{34.50$ (carr £3).
Visa \& Access accepted 24 hour phone service Matmos Ltd, Unit 11, Lindfield Enterprise Park, Lewes Road, Lindfield RH16 2LX. Tel: 0444 2091/3830.

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 836-839

PAGE
Airlink Transformers 818
Ambar Cascom 828
Antrim Transformers 828
Audio Electronics...................... 748
Carston Electronics................... 746
Cavendish Automation............ 774
Colomor Electronics................. 835
Communique UK79.3
Computer Appreciation 825
Fairchild.................................... 763
Farnell InstrumentsOBC
Field Electric............................. 809
ICOM (UK) Limited 793
I R Group 778

PAGE
Instagraphic 825
Integrex 759
J A V Electronics...................... 783
Johns Radio 793
Kestrel Electronic Components
.813
L.J Technical Systems 799

Lab-Volt (UK) 767
Langrex Supplies 763
Laplace Instruments................ 818
M \& B Radio (Leeds) 813
M Q P' Electronics...................... 809
Matmos..................................... 840PAGE
Meckler. 809
Number One Systems 771
Pineapple Software 774
Private Mobile Radio 799
R Henson 818
Research Communications. 750
Schlumberger-Solatron 753
Sherwood Data Systems 767
Skill Training Agency 813Solex International ... Loose InsertSouth Midlands
Communications

\qquadPAGE
Sowter Transformers 825
Stag Electronic Design 825
Stewart of Reading 835
Strumech Engineering 799
Surrey Electronics 828
Taylor Bros. (Oldham IFC
Taylor Bros. (Oldham IBC
Thandar Electronics 760
Those Engineers 813
Thurlby Electronics 805
Triangle IDigital Services 818
Tsien (UK) 763
Victron (UK) 805
Waveband Electronics 809

[^4]
PERFORMANCE

WALLMOUNT DOUBLE SIDEBAND
TELEVISION MODULATOR
PRICES FROM ONLY $£ 109.76$ (excluding VAT \& carriage)

Prices
CCIR/5-1 I Modulator $£ 109.76$
CCIR/5-2 2 Modulators $£ 167.99$
CCIR/5-3 3 Modulators $£ 237.59$
CCIR/5-4 4 Modulators $£ 307.19$
CCIR/5-5 5 Modulators £376.79

CCIR/3 SPECIFICATION	
Power requirement Video Ir.put Audio Input FM Sourid Sub-Carrier Modulation If Vision IF Sound Sound Pre-Emphasis Ripple or IF Saw Filter Output (any charnel 47.860 MHz) Vision to Sound Power Ratio Intermodulation Spurious Harmonic Output	-240 V 8 Watt (available other voltages) - IV Pk.Pk 75 Ohm - . 8 V 600 Ohm - 6 MHz (available 5.5 MHz) - Negative $-38.9 \mathrm{MHz}$ -32.9 MHz (avallable 33.4 MHz) - 50us $-.6 \mathrm{~dB}$ $-+6 \mathrm{dBraV}(2 \mathrm{mV}) 75 \mathrm{Ohm}$ - 10 to 1 - Equal or less than 60 dB $-40 \mathrm{~dB}(80 \mathrm{~dB}$ if fitted with TCFL filter or combined via TCFL4 Combiner/Leveller
CCIR/3.1	- Specification as above but output level 60 dBmV 1000 mV Intermodulation 54 dB
Other Options Avaluble	- 1.F. Loop/Stereo Sound/Higher Power Output
Aternative Applications	- CCTV Surveillance up to 100 TV channels down one coax, telemetry camera contiol signals. transmitted in the same coax in the reverse direction
802 DEMODULATOR SPECIFICATION	
Frequency Rarge A.FC. Control Video Output Audio Output Audıo Monitor Output	- $45 \cdot 290 \mathrm{MHz} .470 \cdot 860 \mathrm{MHz}$ $-+/-1.8 \mathrm{MHz}$ - IV 75 Ohm -.75 V 600 Ohm unbalanced - 4 Ohms le by intermal preset for PAL System I or BG
Options	- Channel selection via remote switching. Crystal Controlled Tuner. Stereo Sound.
CCIR/5 MODULATOR SPECIFICATION	
Power Requirement Video Input Audio Input Vision to Sound Power Ratio Output Modulation Audio Sub-Càmer Frequency Stability Intermodulat:on Sound Pre-Enphasis Double Sideband Mcdulator (unwa Combiner/Levelle:)	$-240 \mathrm{~V}$ - IV Pk.Pk 75 Ohms - IV rms 30K Ohms Adjustable 4 to 1.2 - 10 to 1 -6 dBmV (2 mV) $470-860 \mathrm{MHz}_{2}$ - Negative -6 MHz or 5.5 MHz - 25 Deg temperature change 150 KHz - less than 60dB - 50us anted sideband can be suppressed using TCFL4
CHANNEL COMBINER/FILTER/LEVELLER to combine outputs of modulators	
TCFL2 2 Channel Filter/C TCFL4 4Channel Filer/ TSKO Enables up to $4 \times$	Combuner/Leveller. Insertion loss 3.5dB Combiner/Leveller. Insertion loss 3.5dB TCFL4 or TCFL2 to be combined

[^5]
Communications test equipment

Farnell Instruments Limited manufacture a wide range of test and measuring instruments for use with mobile radios, pocket pagers and other communications equipment. Instruments include synthesized signal generators, transmitter test sets, communications test sets, power meters, automatic modulation meters, frequency meters, etc.

Field portable units, bench or rack mounting models and complete systems are available. The latter are for manual use or microcomputer control via GPIB bus. Various software packages for standard measurement routines and self-test diagnostics are available. These allow non-technical staff to test complex communications equipment.

Designed and manufactured in Britain, a short form listing of Farnell communications test equipment follows. Further information is available on request.
model PSG520H PSG520 PSG1000
SSG520
SSG1000
SSG2000
LA520
TTS520
PTS1000
CTS520
352 C

DESCRIPTION
100 kHz to 520 MHz portable synthesized signal generator 10 MHz to 520 MHz portable synthesized signal generator 10 kHz to 1 GHz portable synthesized signal generator 10 MHz to 520 MHz synthesized signal generator 10 Hz to 1 GHz synthesized signal generator 10 Hz to 2 GHz synthesized signal generator 1.5 MHz to 520 MHz linear amplifier 10 MHz to 520 MHz transmitter test set 1.5 MHz to 1 GHz portable transmitter test set 100 kHz to 520 MHz communications test set Spectrum Analyser 300 kHz to 1 GHz

MODEL
SWIB
F952
0B1
$0 B 2$
TM8
AMM (B)
TM10
2081
FM600(B)

UESCRIPTION
GPIB (IEEE488) Interiace bus for SSG520/TTS520 combination GPIB (IEEE488) 32 channel switching unit Power supply programming module for use with SWIB GPIB (IEEE488) interface - non dedicated GPIB (IEEE488) interace with AD converter and digital panel meter non dedicated
Autoranging r.f. millivoltmeter 10 kHz to $1 \mathrm{Ghz}+$
Automatic modulation meter 1.5 MHz to 2 GHz
Directional rif. power meter 25 MHz to 1 GHz
RF power meter
Digital frequency meter 20 Hz 10600 MHz

Finnell

[^0]: CARSTON ELECTRONICS LIMITED 2-6 Queens Road Teddington Middlesex TWII OLR • Tel: 01-943 4477 Fax: 01-977 9232 Telex: 938120

[^1]: Foirchild LId Eastpoint Burgoyne Road Thornhill Southampton 502 6PB

[^2]: Main market areas for microwave technolog..

[^3]: RF Connections is compiled by Pat Hawker.

[^4]: OVERSEAS ADVERTISEMENT AGENTS
 France and Belgium: Pierre Mussard. 18-20 Place de la Madelaıne. Paris 75008.
 United States of America: Jay Feinman. Reed Business Ltd., 205 East 42nd Street. New York. NY 10017 - Telephone (212) 8672080 - Telex 23827.
 for the proprietors, Reed Business Publishing Lid, (Quadrant House. The (Quadrant. Sutton. Surrey SM2 5AS. © Reed Business Publishing 1.td 1989 . Electrumis and Wirdess World cal) be obtained
 Wireless World $\$ 5.951745131$

[^5]: TAYLOR BROS (OLDHAM) LTD. BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND.
 TEL: 061 -652 3221 TELEX: 669911
 FAX: 061-626 1736

