

Low temperature

 GaAs
IBM PC:

Communications Hard disks Interconnect

s Training

 e-art technology

Telecommunicatior

from fundamentals to state-0f-ti

Lab-Yolt offers a comprehensive range of telecommunications training equipment that covers basic electronics, analogue and digital communications circuits and systers, fibre optics, and microwave and radar technologies.

Our equipment is:

- modular and easy to upgrade
- industry relevant
- engineered for educational purposes.

Lab-Volt closely relates its telecommunications training equipment to operational systems found in industry, with educational enhancements such as fault insertion switches in many of the modules, labelled and easily-accessible test points, short-circuit protection, silk-screened component identification, and fu I signal compatibility for system-level modules. We supply student and instructor man uals that are writeen specifically for the equipment; they srovide practical hands-on technical training with step-by-step exercises, labo-atory experiments, and troubleshooting activities.

For more information about our telecommunications training equipment, please contact:

Lab-Volt (U.K.) Ltd.
4A Harding Way
Industrial Estate
St. Ives
Cambridgeshire
PE17 4WR
Telephone: 0480300695

ELECTRONICS \& WIRELESS WORLD

Quadrat House The Quadrant
Quadrat Lure SM 2 Sss sutton sure ol-(x) 3128 Thephonte ot R

January 26, 1989

AN OPEN LETTER FROM THE EDITOR

the January issue of Electronics \& Wireless World, my first as In the January magazine, I wrote of changes in our magazine. The are starting to happen.
intend that Electronics \& Wireless World will cater fully for intend that Electronics engineering by regularly reporting on the new methods of design software and the working industrial computer systems hand reviews of engineering environment. We also have in by considering the PC for software. We have madace applications.

- technology and research

I also plan increased coverage of technolount of wafer scale
science. We bring you the definitive founding father, Ivor catt.
Integration written by elude an alternative view of ama science.
incluedamental rethink of plasma science.
in the past for the broader
our readers have always looked to us in journals. We won't view denied to controlled circulonilosophy adds up to disappoint the
Our bimonthly Industry Insight supplements which focus on both our bimoned industry sectors have met with enthet areas of estabindustry and readers. We now intenderage on an alternate, strategic development with in depth the personnel demands of bimonthly basis. We will series of regular employment features. new business through a ser We have reported on the electronics indus with the fullest forward to combining our besting world. acknowledgement of the changing world
yours sincerely

Frank Ogden
Editor

COVER
This month's feature on data communications begins on page 247 .

MAXWELL'S EQUATIONS AND THE CROSSED FIELD ANTENNA 216
Reversing the form of Maxwell's equations has led to the realisation and development of a compact. efficient aerial system particularly suited to HF operation. Maurice Hatell et al.

PIONEERS

220

Harny Nyyuist and Hendrik Bode achieved far more than their epic on amplifier stability. They worked through a classical period encompassing networks and their synthesis for telecomms design. II'A Atherton

INDUSTRIAL IMAGING ON A PC 228
The hasic elements for designing an intelligent imaging system have been around since the early Seventies. The addition of an 1BM PC' or clone makes the technology widely available. NickHewitson

COLD ELECTRONICS 232
Cooling electronic components ohviously improves noise performance, particularly in (ials-hased technology. Liquid belium temperatures also produce a decrease in device output resistance and possible modification to the mutual conductance. IF Gregg and II Morris

MICROCONTROLLER

 PROGRAM DEVELOPMENT ON A PC 238The Forth language has heen combined with a PC based compiler to produce a rapid development environment for a wide range
of microcontrollers. The new way of working clains a four times improvement in productivity.
Cl. Stephens

PUTTING AX25 TO WORK 242

The concept of an automatic adaptive network with minimal spectrum requirement looks attractive for both military and commercial applications.

DATACOMMS - NEW USERS START HERE

247

Plugging a computer into a telephone socket provides access to a subculture of great diversity. Tony Dennis

LOCAL AREA NETWORK TECHNOLOGIES 250

We provide a summary of local area network technologies currently heing taken on board the OSI standardisation bandwagon. Andrew Hardie

WAFER-SCALE COMPUTING THE KERNEL LOGIC MACHINE 254
A new form of computer architecture which promises a revolution in data processing. livor Calt

Pure audio design, purist components. John Linsley-Hood

DATA ACQUISITION USING THE IBM PC 266

The price of BBM clones has fallen to a level which allows the entire machine to be treated as a system component.

SHANNON, CODING AND SPREAD SPECTRUM 274

Second part of this short series on advanced communications. L. CWalters

RDS DECODER 284

The first practical receiver design for radiotext broadcasts. Simon J Parnall

HARD DISK DEVELOPMENTS 288
PC makers are engaged in a quiet revolution to strengthen a traditionally weak link in the system. Manek Dubash

MICROWAVE DISTRIBUTION SYSTEMS 294

Low-cost millimetre wave technology. J NSlater

THE DESPERATE RACE FOR PEOPLE 305

It pavs emplovers to consider workforce retraining: it pays employees to reconsider their existing career path.

Dom Pancucci
$\frac{\text { ON THE HOUSE }}{310}$

Round-up of Parliamentany news affecting the electronics industry Chris Pounder

Index to Volume 94

Comment

CONSULTING EDITOR
 Philip Darrington
 EDITOR Frank Ogden

EDITOR - INDUSTRY INSICHT
Geoffrey Shorter, B.Sc. 01.6618639

DEPUTY EDITOR
Martin Eccles 01.6618638

COMMUNICATIONS EDITOR
Richard Lambley 01.6613039

ILLUSTRATION
Roger Goodman $01-6618690$
DESIGN \& PRODUCTION Alan Kerr 01-661 8676
ADVERTISEMENT MANAGER Paul Kitchen $01-6613130$
SENIOR ADVERTISEMENT EXECUTIVE
James Sherrington $01-6618640$
CLASSIFIED SALES EXECUTIVE
Christopher Tero 01.6613033

ADVERTISING PRODUCTION Brian Bannister $01-6618648$
MARKETING EXECUTIVE Rob Ferguson 01.6618679 PUBLISHER Susan Downey 01.6618452

REED
BUSINESS
PUBLISHING

A cordless euphoria

The current euphoria over CT'2 cordless telephones and telepoints (where these phones may he used to make to make calls away from one's home hase) indicates that a revolution in personal
communications is just around the corner. There is a danger, however, that the revolution may not turn out as the marketeers are predicting, leaving the marketplace (and the airwaves) in a state of confusion.

Telepoints are to he estahlished as rapidly as possihle, before a common air interface (CAI) is established and agreed. Initially, handsets will employ proprietary communications protocols and will work with only a single operator's hase station network. Thus these early purchasers may find their CT'2 phones are incompatible - read useless - if in future they change allegiance to another operator's network of telepoints.
It is assumed (but nowhere promised) that the cost of phoning from a telepoint will be little more than a normal payphone call. though how such charges will fund the cost of providing the base stations is not stated. Telepoint users with CT2 handsets will not be ahle receive incoming calls and the initial provision of telepoints will not meet user expectations. leading to frustration all round.
The target end-user price for a home system is $£ 200-300$, which means that manufacture may well be shifted to the Far East on cost grounds: indeed talks, are alreade in progress. Costing the same as a video recorder, this price will look pretty poor value to private customers. On the other hand businessmen always rate convenience over price: they will continue to huy poserphones. which are already on sale at prices scarcelv more than this.

On all counts, the vision of a CT'2 and telepoint revolution starts to cloud. Even for cordless telephones for the home, the cost of CT 2 is too high (compared with existing offerings), and the specifications do not match the proposed pan-European digital CT"3 cordless telephone.

Meanwhile. cellular radio manufacturers are not going to allow a potential market to slip through their fingers. They will exploit the shortcomings of the telepoint concept and target a new bottom edge 'market with cheaper phones. The only problem is that this will put even more pressure on the spectrum available to cellphone users, which is already operating at capacity in metropolitan areas. Final score: Users 0. Industry ().

[^0]
RESEARCH NOTES

Chip repair by laser

The use of a 20 W argon ion taser to repair a fully packaged e-mos prototype chip is reported by a team at C'niversity College London and at King's College London Electronics Letters Vol. 24 No 24). Prior to this work such experiments have only been undertaken on partially fabricated circuits at strategic points during manufacture.
The chip to be repaired in this instance was an application-specific VLSI prototype that contained a superfluous aluminium link. This link, the result of a design error, prevented the operation of the chip's clock and hence made it impossible to troubleshoot the remainder of the circuit. Normally it would have heen necessary to fabricate a new chip before proceeding with the functional checking procedure, so each error discovered would have meant a re-design.

To remove the spurious aluminium link the protective plastic packaging was first removed using an unfocussed laser beam of around 2 mm diameter, with the chip immersed in 981% sulphuric acid. In the presence of the laser beam. the acid slowly etched away the plastic, exposing the active surface of the chip. Then the chip was removed from the acid and the laser focussed through a microscope objective lens to produce a $10 \mu \mathrm{~m}$ spot of bluegreen light on the aluminium link to be removed.

In the presence of this high-intensity laser
illumination the aluminium loses its protective layer and reacts readily with oxygen in the silicon dioxide of the chip's surface. The London group found moreover that the reaction automatically stops when all the aluminium has been oxidized.

When the chip had been washed and examined. micro-cracks were found across the width of the oxide left behind by the aluminuum. As yet it's not known whether it's these cracks or the oxidation per se that leads to the electrical open circuiting of the
link. Either way an effective open circuit had been achieved and the chips clock mechanism made to function.

Research is now in progress to optimize the process and to develop a complementany technique for depositing links where theyve inadvertently heen omitted during the design stage. When both techniques have been perfected they should find wide application, not only in prototyping, hut in deliberate procedures such as gate array interconnection or the development of wafer-scale ics.

Aluminium link before (left) and after (right) laser treatment: note the oxidation and

micro-cracking.

Safer in-circuit IC testing

In establishing the validity or safety of test procedures it is often necessary to stress components in ways that would not be encountered during normal operation. This is especially true when components are tested in situ on a printed circuit board. By means of a so-called 'bed of nails' springloaded multi-contact test probe it is easy to test a digital IC in every possible input and output configuration. The only problem is that an applied logic level which is safe for

the device under test may be damaging to another chip connected to it elsewhere on the board.

In the absence of manufacturers' data on the effects of backdriving, as it is called, ICL have sponsored a number of different studies on a variety of IC families, mostly TTL. Their latest one |/CL Technical Journal vol. 6 No $2 \mid$, undertaken jointly with Loughborough University of Technology, investigated the effects of backdriving surface-mounted high-speed devices. Accelerated life tests were conducted on 74LS245, 74F245, and 74AS245 chips (bi-directional transceivers from low power Schottky, fast TTL and advanced Schot tky families respectively).

The principal aim of the study was to discover if permanent damage was likely to be caused by localized heating when a logic ' 0 ' or logic ' 1 ' level was fed back into the output pins of a particular chip. Obviously in certain configurations the heat generated is likely to be intense, especially as in the cases illustrated on the left.

The localized temperatures of the critical junctions were measured in an ingenious
way making use of closely associated diodes. Although these diodes are primarily designed to prevent reverse bias or device saturation they make ideal temperature sensors because their forward voltage is linearly proportional to junction temperature.

Obviously, in the case of the configuration shown here, it is not possible to apply a continuous backdrive without burning out the lower transistor. The tests therefore employed 4.5 V pulses of 20 ms spaced by 2 s , i.e. a $100 ; 1$ duty cycle.

95 devices were subject to 25 such pulses and later compared to 95 control devices in a 2000 hour accelerated life test at $125^{\circ} \mathrm{C}$.

The failure rate in the backdriven group was shown, if anything, to be marginally lower than in the non-backdriven group. ICL conclude therefore that even small surfacemounted TTL packages can be safely tested in-circuit as long as the mark/space ratio of the testing pulses is kept at a suitable value around 100:1. Of the three logic families they found that the fast (74 F 245) devices heated up most and hence took longer to cool after a test pulse.

Left: normally low output driven high; right, normally high output driven low.

R.I.P. fifth and sixth forces

Evidence has previously been presented in these pages (June, 1988) for the existence of the so-called fifth and sixth forces in Nature. Hitherto every interaction had been ascribed to one of four well known forces: the electromagnetic force, the weak nuclear force, the strong nuclear force and gravity.
Belief in the existence of further elusive natural forces emerged when certain experiments showed what appeared to be anomalies in highly sensitive measurements of gravity. In 1986, Ephraim Fischbach of Purdue University analysed some old experimental results and concluded that there must be a fifth force, intermediate in nature and operating over a range of between 10 and 1000 metres. Such a force appeared in the the calculations as a sort of negative form of gravity.

Later experiments down a drill hole in Greenland pack ice, up a TV tower in North Carolina and down a mine in Australia seemed to add weight to the evidence for a fifth force and also suggest the existence of a sixth force. This latter appeared to boost gravitational attraction by up to 4% over a range of 500 to 1700 metres.
Now it seems that the fifth and sixth force theories are being debunked by some of the very scientists who invented them. In a new analysis presented to a meeting of the American Geophysical Union, a team from the Los Alamos Laboratory, the Scripps Institute of Oceanography and AT\&T Bell Laboratories in New Jersey claim that the Greenland experiment was flawed because it failed to take into account variations in the density of the rock beneath the ice. They add that, in their opinion, there is still no convincing evidence for any more than four natural forces.

AT\&T workers now plan to repeat some of the gravity measurements within the homogeneous environment of the sea, which should circumvent the present objections and settle once and for all the question of whether or not there are more than four forces in Nature. If there are, then it will change our understanding of what went on in those first few microseconds of time in which all the processes of physics emerged from a single primaeval force. If, on the other hand, the fifth and sixth forces don't exist, then physicists will have a much harder time in their search for a grand unified theory, a mathematical process that will elegantly link together everything from the behaviour of an electron to the immensity of gravitational attraction across whole galaxies.

Sun on the boil

Solar activity is likely to reach an all-time high sometime late this year. According to Kenneth schatten, a research astrophysicist at the NASA Goddard Space Flight Centre. solar cycle No 22 will probably he the must active in terms of sunspots and flares since the time of Galileo nearly fol years ago.

Schatten and his co-workers who we been monitoring the latest of the 11-year cycles of solar activity, say that since it hegan in September 1986 this cycle has so far exceeded cyce 19, the must active previously: recorded.
Although sunspots and flares are only ohservable using special viewing devices (1)ON'T use a telescone even with a dark filter - it probably won't be opaque to harmiul UV), they can nevertheless have a dramatic effect on satellites, on HF communications andeven on the weather.
Most radio enthusiasts are all too familiar with the ways in which enhanced solar activity can lemporarily destroy the ability of the ionosphere to refract IIF signals. The result can often be a complete radion blackout for several hours or days at a time. Even at lilf. line-of-sight transmissions may he
affected by the considerable increase in solar noise emission at these frequencies.
Enhanced solar activity may be a nuisance for radio enthusiasts but it can be of critical importance to the operators of militan suncillance satellites. Such satellites, which operate in the lowest possible orbits in order to set a clear view of the Earth's surface, are peculiarly vulnerable to the effects of the Sun's radiation on the atmosphere. When this exceeds its baseline value. it causes the atmosphere to expand and hence extend to a greater height above the ground As a result. a salellite that was previously orbiting in a gooc vacuum is now subject to a dangerous amo_nt of atmosphere drag that could cause it to re-enter. Satellite operators. when they can. therefore have to boost their craft into a higher orbit until such time as the Sun's activity subsides. Wuring solar cycle ? 2 it was unexpected flares that caused Skylah to re-enter the atmosphere prematurdy wer Western Australia.)
For mosit of us, however. falling satellites are likely to present no great hazard. The most we re likely to see on a dark night is a more than usually spectacular aurora.

Good vibrations

Anti-sound is now a recognised technique for creatinga hit of hush in certain industrial enviromments. The idea is to pick up the sound emutted by a piece of machinen:, invert the phase and then use a loudspeaker (o) create an equal and opposite sound. If the compressions and rarefactions in the air cancel each other out, then theoretically at least there should be silence.
The fact that anti-sound techniques get more efficient as the frequency is lowered has led the Japanese Kajima Corporation to develop a system to counteract some of the world's most powerful infra-sonic whrations, namely earthquakes.

Kajima's anti-quake system works on much the same principle as anti-sound. The only real difference is the output device is not some mega-loudspeaker but a system of massive weights on wheels, rumning on tracks along the top of a building. These weights. of a ton or more, can be moved back and forth rapidly by hydraulic actuators driven by computers linked to wibration sensors elsenthere in the huilding. The idea is that, if an earthquake should set the huilding wohbling. the sensors will pick up the mortion and instruct the system to set the huge roof-top weights vibrating in the oppesite phase.
The company, which plans to install an anti-quake system in an ll-storey huilding in Thesyo early this year claims that it should reduce the severity of a magnitude-f earthquake by up to 75%. Similar reductions are

also expected in movements induced by the bufketingeffects of high winds.

In answer to the obvious question of what happens if the system gets out of control. Kajma admit that a small error of system tim ng could indeed turn a minor quake into a major disaster by amplifying the vibrations! For that reason they ve built into the software a fal-safe program that will kill the posere if things get out of hand.

Researeh Votes is written by John litlson of the BBC Whord senverssience unit.

High temperature IR optics

By reducing the bulk resistivity of germanium used in the manufacture of infra red optical systems. the temperature at which the optics may be successfully used has been extended to the 50 to $100^{\circ} \mathrm{C}$ range.

According to the manufacturer Pilkington normal germanium becomes IR opaque at
elevated temperatures because, being a semiconductor, the number of free carriers increases rapidly with temperature. The electrons banging about the lattice interfere with transmission. Introducing a dopant to the germanium reduces the resistivity: sweeping up the free carriers.

Transatlantic optical cable

The world's first transatlantic optical fibre cable, capable of carrying 40000 simultaneous telephone conversations has now been placed in service.

The result of a joint venture between BT, AT\&T and France Telecomm, the TAT-8 cable will transmit data, voice and video.

The main cable consists of six strands of fibre; two pairs carry the traffic with the third pair provided for back-up. It uses repeaters placed at 55 km intervals along the ocean floor. The cable is actually buried one metre under the sea bed at depths of up to

3200 ft. It relies purely on its steel armour at greater depths: it will resist biting sharks at depths down to 8500 th helow sea level.

There are many interesting facts and figures associated with the cable. Each fibre pair has a data rate of $28(0 \mathrm{Mbit} / \mathrm{s}$. The power line to the 120 repeaters runs at 15 kV with a corresponding line current of 1.6 A , the operating wavelength is $1.3 \mu \mathrm{~m}$ and the branching unit for the England/France junction is located some 400 km from the European coast in 7000 ft of water. The British branch comes ashore at Widemouth Bay. North Cornwall (pictured in EsWIIT: April 1988. p. 406).

Millimetric transistor

An HEMT device specified for use up to 60 CHz is now offered by Toshiba. Designed for satellite communications systems. the JS8903-AS high electron mobility CaAsfet has a gate length of $0.25 \mu \mathrm{~m}$ and a gate width reduced from 100 to $120 \mu \mathrm{~m}$. The effect is to reduce capacitance and increase inductance making the device easier to match at high frequencies. The transistor returns a claimed noise performance of 1.2 dB at 18 CHz with an associated gain of 8.5 dB .

An HEMT is a lattice matched heterojunction formed between CaAs and AlCaAs semiconductors. Electrons move from the donor AlCaAs forming a thin two-dimensional
electron gas at the heterojunction interface The spatial separation of the conduction electrons from their parent donor impurities produces their high mobility. Normally a thin layer of AlCa as adjacent to the heterojunction interface is left undoped to separate further the ionized centres.

VLSI chip plant

NEC plans to spend $\$ 282$ million on a new 4 Mbyte dram wafer fab in Higashi, Hiroshima. The plant is designed to turn round 300006 in wafers per month with submicron process geometry. 1Mbyte static rams will also feature in the product portfolio. It expects first production in 1990

Balloon amateur fined £2500

A radio amateur who worked for the Ministry of Defence admitted breaking into police frequencies and helping another radio ham interfere with United States Navy signals.

Michael Holland, of Pollards Hill North, Norbury, was also said at Croydon Magistrates' Court to have attached a radio transmitter to a balloon.

Holland, a 24-year old electronics engineer, pleaded guilty to seven charges under the Wireless Telegraphy Act.

Mr Jonathan Davies, prosecuting, said that Holland, who had worked for a weapons research establishment, was the subject of a massive investigation mounted by the police and the MoD which had cost $£ 48000$.

He had used frequencies of an extremely sensitive nature, including some that were not published. He had frequencies for many police stations. He had also failed to give and acknowledge a call sign. and had not logged his conversations.

Holland also admitted attaching a transmitter to a helium balloon, obtaining and giving information, and aiding and abetting a member of his radio group to interfere with United States Navy signals.

Many of the frequencies had now had to be changed, said the prosecution. When spoken to in the course of the investigation, Holland said "I have tuned around".

Miss Debra Cold, defending, said that Holland did have a licence for using his radio equipment. He was an amateur radio enthusiast. in fact his social life revolved around short wave radio.
"He had no ulterior motives, and failed to see the harm his actions could have caused", she said.

He started off keeping to all the rules, but became lax as time went by. He was in a group of about five people who communicated with each other through the airwaves.

They did not use a call sign amongst themselves, which they should have done, and they failed to log conversations.

Regarding the balloon attached to the, transmitter, this was for "meteorological research." This idea was to monitor atmospheric temperature changes for the group's own interest.

The information received and given was purely of social interest. They did listen to police calls and discussed them amongst themselves.

Maxwell's equations and the Crossed-field Antenna

Reversing the form of Maxwell's equations has led to the realisation and development of a revolutionary new antenna system.

F.M. KABBARY, M.C. HATELY and B.G. STEWART

AIl electrical and communications engineers are in some way acquainted with Heaviside's differential form of the third and fourth Maxwell equations. viz

$$
\begin{align*}
& \nabla \times \mathbf{E}=-\mathbf{B}^{\prime} \tag{1}\\
& \nabla \times \mathbf{H}=\mathbf{J}+\mathbf{D}^{\prime}
\end{align*}
$$

(2)

In these equations ' is the derivative with respect to time, E represents the electric field strength. H magnetic field strength, J current density, B magnetic flux density $=\mu \mathrm{H}$, and \mathbf{D} electric displacement $=\boldsymbol{\epsilon E .} \mathbf{D}^{\prime}$ is called the displacement current. Equation (1) is Faraday's Law, while equation (2) is credited to Maxwell for adding D' to Ampere's Law. $\nabla \times \mathbf{H}=\mathbf{J}$, to maintain charge consenation or charge continuity and thus obtain J $+D^{\prime}$ as the true or total current ${ }^{1}$.

Unfortunately, the understanding of these equations still poses many conceptual difficulties for many people which inevitably lead to shortcomings in the basic understanding of their engineering applications. One reason for this lack of insight is perhaps the inability to appreciate the physical meaning of the vector operations curl, div and grad. Many texts and research papers often detail the mathematical intricacies of these vector operations but few describe in simple practical terms their physical interpretation ${ }^{2}$.

In addition to the above, it is often not realised that contained in equations (1) and (2) is the following extremely valuable information: (a) a time-vanying magnetic field creates an electric field (or back EMF) and. importantly, (b) a current or a time-vanying electric field or both will create a magnetic field.

The essence of Maxwell's equations, conveyed through points (a) and (b). is that fundamentally they are reaction or field-

REVERSING THE MAXWELL EQUATIONS

The principle of Faraday's Law. equation (1) as detailed by most texthooks, is that an electric field can be related to the rate of change of a magnetic field. This electromagnetic feature can be expressed in a more elegant and informative way by reversing equation (1) to give

$$
\mathbf{B}^{\prime} \equiv-\nabla \times \mathbf{E}
$$

Fig.1. Circular capacitor plates showing the surrounding magnetic fields when applied with a sinusoidal voltage V.
production equations. The physical, mathematical and eng.neering importance of the field-production sature may be more readily: relayed and understood if the forms of equations (1) and (2) are reversed(

$\mathbf{B}^{\prime}=-\nabla \times \mathbf{E}$

$\mathbf{J}^{\prime}+\mathbf{D}^{\prime} \geqslant \nabla \times \mathbf{H}$
The reversal leads not only to a greater understanding of Maxwell's equations (which is hidden in the non-reversed form) but to a greater appreciation of the nature of time-vanying electromagnetics and their associated engineering applications.

One significant engineering application, only fully realised through the reversed form of Maxvell's 4th equation, has been the recent development of revolutionany antenna systems called crossed-field-anntennas ${ }^{3}$ (CFA) which synthesize directly the Poynting vector $\mathbf{S}=\mathbf{E} \times \mathbf{H}$ from separately stimulated \mathbf{E} and \mathbf{H} fields. A fundamental feature of these antennas is that the physical size of the structure is small and also independent of the radiated wavelength, a truly remarkable concept in relation to present antenna theory and design techniques.
which is interpreted as a time varying magnetic flux, \mathbf{B}^{\prime}, creating an electric field \mathbf{E} such that the negative of the curl of the induced \mathbf{E} field distribution is equal to the source B'. The directive arrow is present in the relationship to indicate that the left-hand-side causes or creates the right-handside. The negative sign is the manifestation of Lenz's law. In fact the application of the reversed form of Faraday's law is fully deployed in transformer theory. where a timevarying magnetic flux creates, i.e. induces, a back EMF. Note that the \mathbf{E} field in the reversed form of Faraday's Law is the induced \mathbf{E} field from B' and is not in any way related to the independent electric field created from free charge through Causs's Law.
Consider now equation (2). In magnetostatics. it has always been accepted that current produces a magnetic field through the phenomenon called Ampere's Law. To get across the importance of this statement in a more meaningful physical and mathematical form, Ampere's Law should be expressed as
$\mathbf{J}=\nabla \times \mathbf{H}$
i.e. J creates a magnetic field \mathbf{H}, such that
the curl of H is equal to the source J . It is also known (though often ignored) that a magnetic field may be related to either a current as above, or a time-varying electric field ${ }^{1}$. The latter source of magnetic field is sometimes referred to as the Maxwell Law' and may be expressed in the more informative reversed formas
$\mathbf{D}^{\prime} \triangleq \nabla \times \mathbf{H}$
i.e. displacement current D^{\prime} (a time-varying D field) creates a magnetic field \mathbf{H} such that the curl of the \mathbf{H} field distribution is equal to the source D'. We see now the importance of reversing equation (2) to give equation (4). i.e. $\mathrm{J}+\mathbf{D}^{\prime} \rightleftharpoons \nabla \times \mathbf{H}$ which should now be interpreted as J or D^{\prime} or both can create a magnetic field \mathbf{H} such that the curl of the \mathbf{H} field distribution is equal to the source $\mathbf{J}+$ $\mathbf{D}^{\mathbf{D}}$. The plus sign can, and should, be interpreted as analogous to the digital-logic OR symbol.

Unfortunately, many people fail to realise that an \mathbf{H} field may at any time be the combination of two separately induced fields from independent types of sources, i.e. charge motion and displacement current.

THE MAGNETIC FIELD ASSOCIATED WITH A SIMPLE CAPACITOR

To illustrate the importance of the reversed form of Maxwell's 4th equation and, in particular, the feature of D^{\prime} creating an independent magnetic field from J. consider the practical illustration of circular capacitor plates. Consider circular capacitor plates (Fig. 1) with an applied sinusoidal voltage V. Free charges flowing into and out of the capacitor, and also within the capacitor plates themselves. are a source of \mathbf{J}. Also. due to the build up of free charge in the capacitor. \mathbf{E} lines and therefore \mathbf{D} lines exist hetween the capacitor plates. The waveforms of V. J and D are shown in Fig.2 Note that D follows V, while J is 90° phase-advanced from V. As the \mathbf{D} lines vany in strength due to sinusoidal charge variation on the plates, D^{\prime} will create a sinusoidal magnetic field through $\mathbf{D}^{\prime} \Rightarrow \nabla \times \mathbf{H}_{13}$. Since $\boldsymbol{H}_{1,}$, is in time-phase with D^{\prime} then \mathbf{H}_{10}, is 90° phaseadvanced from D. Also. since J flowing into and out of the plates is sinusoidal then $\mathbf{J} \rightleftharpoons$ $\nabla \times H_{1}$ produces a sinusoidal magnetic field H_{3} which is in-phase with J . It is easy to show that in the vicinity surrounding the capacitor gap the magnetic field lines from \mathbf{J} into and out of the plates and the magnetic field lines from D^{\prime} will be concentric circles surrounding the gap and in-phase.

Now: J flowing within the plates themselves will create a magnetic field \mathbf{H}_{p}. Applying the rules of Biot-Savart to the geometry of the plates, many components of magnetic field produced from individual J contributions within the plates will cancel. resulting in reduced-strength circular field lines surrounding the plates. We should expect the created field \mathbf{H}_{5}, to be in phase with \mathbf{H}_{5}, but taking into account the geometry and the current motion within the plates. then \mathbf{H}_{p} is directed in the opposite direction to \mathbf{H}_{3}. This is equivalent to a 180° phase change between \mathbf{H}_{1}, and \mathbf{H}_{3}. The waveforms

Fig.2. The waveforms of V, D, J and $H_{J} H_{D^{\prime}}$, and H_{p}.

Fig.3. Experimental set-up to measure the magnetic field surrounding "large circular capacitor plates.
of $\mathbf{H}_{5} . \mathbf{H}_{5}$, and \mathbf{H}_{p}, surrounding the capacitor gap are given in Fig.2.
A simple experiment may be carried out to verify that \boldsymbol{H}_{1}, does exist surrounding circular capacitor plates. The main equipment required is an RF signal source capable of supplying a frequency range of $10 \mathrm{MHz-104}$ MHIz with an output voltage up to 20 l ' and an output current up to 3 A . and secondly a triggered, dual-heam oscilloscope.

EXPERIMENTAL SET UP

As shown in Fig. 3, two circular, flat-plate conductors (made from wire mesh) of radius 25 cm were positioned as a capacitor with an air gap of approximately 20 cm . The capacitor was placed on top of a large conducting ground sheet. The top plate was then connected to a signal coax. cable terminated by two 100Ω resistors paralleled between the live inner-core and the outer sheath. The entire volume surrounding the capacitor gap was then Faraday shielded using a second large conducting sheet such that no H_{3} contributions from the connecting coax. cable could extend into the region around the capacitor gap. The Faraday shield is also connected to the outer-sheath of the coax. The magnetic fields within and surrounding the capacitor were measured using a circular, halanced. Faraday-screened coax. loop of radius 6 cm (Fig. 4), which was connected and matched to one of the inputs of the oscilloscope, thus eliminating standing wave problems on the leads. To provide a reference phase signal for the measured

Fig.4. Balanced Faraday screened loop.
magnetic fields from the Faraday loop, a small resistor, 4.7!2, was placed in the live coax. lead at the signal source, and the voltage monitored across the resistor using the second input to the osciloscope. This signal also gives phase information of H_{3}.

Results. A pk-pk voltage of 151 was chosen, at a frequency of $40 \mathrm{MHz}(\lambda=7.5 \mathrm{~m})$. The voltage across the plates was approximately 8V. Positioning the Faraday loop in the middle betwreen the plates, the measured voltage and phase from the loop as a function of distance r from the centre of the plates is shown in Fig.5. Referenced to \mathbf{H}_{3} (taking into account path length, etc.) then between the plates \mathbf{H}_{p} is strongest even though mutual effects will always exist between the loop and the plates. Moving outwards, \mathbf{H}_{p} decreases and \mathbf{H}_{1}, takes over, hence the 180 phase change. The cross-over takes place near the edge of the plates. Outside the capacitor plates the magnetic field is therefore due mainly to D^{\prime} between the plates.

Fig.6. The "barrel-shaped" crossed-field-antenna (CFA).

This simple experiment provides proof not only that the Maxwell law $\mathbf{D}^{\prime} \Rightarrow \nabla \times \mathbf{H}_{10}$, is functioning between the capacitor plates, but that \mathbf{D}^{\prime} is an additional and significant source of magnetic field surrounding circular capacitor plates at high frequency. Though some textbooks comment on the existence of \mathbf{D}^{\prime} within capacitor plates, the authors fail to realise that it creates its own magnetic field which can extend well outside the capacitor plates.

CROSSED-FIELD-ANTENNAS

From the experimental verification of \mathbf{D}^{\prime} within large circular capacitor plates, producing a surrounding magnetic field distribution, a revolutionary engineering design of antennas has now been developed in which the Poynting vector $\mathbf{S}=\mathbf{E} \times H$ is directly synthesized by separate \mathbf{E} and \mathbf{H} field stimulus within a very small volume. These antennas are called crossed-field antennas (CFAs). Success with the CFA systems can be said to be a direct consequence of the perception of reversing in particular the 4th Maxwell equation to gain a full understanding of the physical reaction or field production nature. A brief description of the operation of one particular CFA design, the "barrel-shaped CFA". (Fig.6) is
given below (see also photograph Fig. 7).
"Large" circular capacitor plates when supplied with high voltage will produce strong circular magnetic fields around the plates through $\mathbf{D}^{\prime} \geqslant \nabla \mathbf{X} \mathbf{H}$. In the antenna these capacitor plates are referred to as the D-plates. Two large cylindrical plates of short length but the same radius as the capacitor plates are positioned one above and one below the D-plates. When the cylinders are driven by an RF power source they produce high-frequency \mathbf{E} lines (due to voltage difference) between the plates. These cylindrical plates are therefore called the E-plates. (Note that they are analogous to the arms of a dipole antenna but much smaller in length than in any practical dipole. sometimes $<\mathrm{N} / 200$.) The power from the transmitter is split roughly in half between the E-plates and the D-plates. Through suitable design considerations and delay arrangements between the \mathbf{E} and \mathbf{D} plate voltages. a toroidal volume surrounding the \mathbf{D}-plates is crossed-stressed with in-phase \mathbf{E} and \mathbf{H} field components such that
$\mathbf{E} / / \mathbf{H}$ matches space impedance. Radiation is then produced through $\mathbf{S}=\mathbf{E} \mathbf{X} \mathbf{H}$ and power flows out to space as vertically polarized radio waves of intense power density.

The important features of these antennas are (i) that they are extremely small. excel-

Fig.7. A practical barrel-shaped CFA. The length of this particular structure is 70 cm .
lent receivers, powerful. efficient radiators, and (ii) that their physical size is independent of the radiated wavelength - an unprecedented concept in antenna theory and design. All texthooks on antenna theory suggest that radiation is initiated solely by conduction current flow I. In the CFA, the radiation is not produced from fields related to \mathbf{J} but from space electric fields created from voltage build up. In addition. though the CFA is small, it is not restricted to the limitations of narrow bandwidth. a critical feature of ali other inductively or capacitively shortened antennas; the measured operating bandwidth on transmitting and receiving in most CFA systems is greater than 30%. In fact there also appears to be no restriction in the physical size of CFAs and they can be made as small as desired.

References

1. R.P. Feynman. R.B. Leighton and M. Sands. The Feynman Lectures on Physics Vol II. AddisonWesley: 1964. ppl8-1 to 18-4.
2. "Joules W'att". "All about curls and divs" Electronic and Wireless World. July 1987. p809.
3. M.C. Hately \& F.M. Kabbary "Twin-Feeder Crossed-Field-Antenna Systems". UK patent application 8802204 February 1988.
4. G.B. Walker. "The axioms underlying Maxwell's electromagnet ic equations".Am.J. Phys. 53. 1985.

COMPONEDEX COMMUNICATIONS TEST EQUIPMENT

Easy to operate - Yet easy to afford

A high contrast, 840 character LCD, permanent user status messages and qwerty keyboard contribute to the user friendliness of the Fakerscope 3000. It includes 10 non-volatile set up files, is fully compatible with asynchronous, synchronous and bit synchronous systems and can monitor at up to 72 kbps for synchronous protocols. Each instrument supports SNA and X. 25 decoding a: levels 2 and 3. The Fakerscope 3000 can be supplied with up to 64 kbyte of capture RAM and costs from $£ 1495.00$.

Menu driven and easy to operate, the Miniscope includes 8 kbye of capture FAM and a 32 character LCD for data display. Data on Tx and Rx is shown in its correct relationship and the control characters displayed as symbols. The Miniscope is powered by re-chargeable batteries, includes a mains adaptor and costs only $£ 295.00$

CABLEFAKER-LINE POWERED RS 232 BREAKOUT Box

Featuring a custom LCD which uses easily recogisable mnemonics for the signal states, the Cablefaker offers a complete RS 232 breakout and patch facility, yet costs only $\mathbf{£ 7 4 . 9 5}$.

Easily operated by soft keys, with user prompts displayed on an 80 character CD, the Fakerscope includes an RS 232 breakout box, plus a data monitor and message generator. The message generator can output both canned and preprogrammed data, while output flow control can be Xon/Xoff or level control Each Fakerscope 500 includes 8 ktyte of capture RAM. Data can be reviewed on the LCD or a separate terminal and is displayed in ASC 11 , HEX or baudot. The Fakerscope 500 costs only $\mathbf{£ 4 9 5 . 0 0}$

The Fakerscope 2500 has asynchronous and bisynchronous message generator and capture facilities of up to 72 kbps . It is compatible with HDLC and SDLC formats, is fitted with a qwerty keyboard and will decode at levels 2 and 3, for both X. 25 and SNA. In addition, it includes 8 kbyte of non-volatile capture RAM, a buffer search and trigger facility and a bit error rate tester. It costs only f 98700

Please send me more information about:Fakerscope 3000Fakerscope 2500
\qquad Fakerscope 500Miniscope
\square Cablefaker
Or for immediate attention ring 0908322177

Componedex Lid
21 Alston Drive
Bradwell Abbey
Milton Keynes
MK13 9HA

Componedex Ltd
21 Alston Drive Bradwell Abbey Milton Keynes MK13 9HA

Tel: 0908322177
Tlx: 827570 COMPON G Fax: 0908320350

COMPONEDEX

PIONEERS

27. Harry Nyquist (1889-1976) and Hendrik Bode (1905-1982):
from networks and noise to NASA.

The names of Nyquist and Bode go together like peaches and cream and are often paired in textbooks dealing with the theory of stability in linear networks. Unlike some other paired names (such as Thevenin and Norton. for example, who lived in different continents and at different times) Nyquist and Bode knew each other and worked in the same company laboratories on the same types of problem.

The laboratories were those of Bell Telephone in America and the pair's best known contributions. on amplifier stabilization. were the mathematical completion of the breakthrough begun in 1927 by their colleague Harry Black with his invention of the negative-feedback amplifier. described last month.

But both Nyquist and Bode did far more than their epic work on stability criteria and the mathematical design of feedback anplifiers. They worked through a period which might well be regarded as the classical period of network analysis and synthesis in telecommunications design and they worked with other giants of the period: Ceorge Camphell. John Carson, R. V. L., Hartley, E. H. Colpitts. Claude Shannon, and many more.

HARRY NYQUIST

Harry Nyquist was born at Nilsby in Sweden. a hundred years ago on 7 Fehruary: 1889: his family name was originally Nykvist. When he died in 1976. at the age of 87 . he was survived in Sweden by two sisters and a brother, the brother still living at Nilsby.

Emigration to the United States beckoned and at the age of eighteen he settled in Minnesota, west of the Great lakes, where he worked for a time as a school teacher. He entered university education late. graduating from the University of North Dakota at the age of 26 with a degree in electrical engineering. He followed that with a Master's degree the next year and transferred to Yale University, where he received his Ph.I). in 1917.

The American Telegraph \& Telephone Co. (AT\&T) offered him a position at their Engineering Headquarters in 1917. some seven or eight years hefore the Bell Telephone labs were formed. There he stayed until his transfer to Bell Labs in 1934.
In all. he spent 37 years in the Bell System until his retirement in 1954 and received 138 American patents, averaging nearly one every three months and gaining a reputation for providing inventions almost to order. "Harry. why don't you invent this?" his colleagues are said to have asked when they faced a problem. whereupon Nyquist lat
least according to legend) would do just that over the next few days, weeks or months. At least one former Bell colleague has suggested that those 138 patents only "suggest his contributions to the field of communications."

Those contributions include the first quantitative description of thermal (Johnson) noise. signal-transmission studies which helped lay the foundations for information theory and data communications, the invention of vestigial-sidehand transmission and the famous Nyquist stability criterion, which has been used outside electronics as well as within it - to describe the way in which someone drives a car, for example.

Nyquist's first major contribution to transmission techniques was a series of theoretical studies of the behaviour of analogue and digital signals in transmission systems, heginning in 1924. This appears to have been part of a whole series of work at AT\&T which stemmed from the 1915 invention of the wave filter by Ceoorge Camphell. Camphell's filter gave an inexpensive method of separating signals of different frequencies on a wire line to allow dual use for telegraph and telephone communications.
Digital signals were used in telegraph systems and, in the 1920)s AT\&T did considerable work on developing start-stop teletypewriters, multiplex telegraphs and carrier telegraph systems. Previously, in telegraphy, distortion measurements had been very elementany but. with this new and more critical work, distortion began to acquire greater importance. Nyquist and others carried out theoretical studies and laboratory: experiments and designed distortionmeasuring instruments for use by maintenance engineers. Nyquist also provided definitions for three types of distortion.
4kT. It was also in 1928 that the Phusical Review published, on consecutive pages. papers by John B. Johnson and Nyquist on thermal or Johnson noise. Noise has been described as "the ubiquitous. unwanted. insistent. unwelcome gate-crasher" of electronic systems'. Walter Schottky of the Cerman Siemens and Halske firm published the classic paper on noise in 1918, suggesting tevo fundamental types of noise which he named thermal and shot noise. Of the two Schot thy suggested that shot noise would he the more troublesome.

In 1925. Johnson published an important paper on noise. Studying his dala later, he discovered evidence of a type of noise which was proportional to the amplification of the values and which masked the shot noise. This was the experimental discovery of thermal noise, now also known as Johnson noise.
made in 1926. subsequent experimental work led to Johnson's 1928 paper. Meanwhile Nyquist. working alongside Johnson. analysed thermal noise mathematically using thermodynamic principles and produced the famous formula of 4 kT watts per unit of bandwidth, where k is Boltzmann's constant and T is the absolute temperature. Years later, Johnson himself described Nyquist's work as "based essentially on the thermodynamics of a telephone line. and covering almost all one needs to know about thermal noise ${ }^{-3 ;}$. The next major contributions did not come until the 1941s (S. O. Rice).
Stability criteria. Nyquist and Bode are however, best known for their work on stahility criteria. I larry Black's 1927 invention of the negative-feedhack amplifier solved the enormous problem of how to reduce the distortion within an amplifier almost to the point of elimination. As we saw last month. Black more or less ignored stability and assumed the amplifiers would not oscillate or "sing".
Black's success raised other problems for. despite his desires, the amplifiers did have a tendency to hecome unstable and oscillate. As mathematical physicists, Nyquist and Bode were two of the men chiefly responsible for the derivation of the mathematical theory that enabled the systematic design of stahle feedhack amplifiers to take place. This success took time; for some years. whilst the potential was recognised, a really good design proved very hard to achieve. A few even regarded it as verging on being a pipe dream. hence the comment that Black's invention

Harry Nyquist.

"had all the initial impact of a blow with a wet noodle.

Nyquist's Criterion (or the Nyquist Diagram) showed what conditions were needed if feedback amplifiers were to be prevented from oscillating once the feedhack loop was closed: in other words, it provided a means of evaluating the stahility of feedback amplifiers. That was published in 1932. What it did not tell circuit designers, however, was how to achieve it. This problem was tackled by many people, but Hendrik Bode's book "Network Analysis and Feedhack Amplifier Design". published in New York in 1945. provided the classic solution to the problem. As a result of the work of these three men in particular fand that of many others) the valve amplifier (and subsequently the transistor amplifier) when properly designed became "a high-precision instrument" as one volume of a history of the Bell System has proudly expressed it

HENDRIK WADE BODE

Bode was horn in Madison. Wisconsin. on Christmas Eve 1905. Presumably he suffered the usual childhood problem of dual purpose Christmas and birthday presents.

After schooling in Iltinois and Arizona he attended Ohio State l'niversity and graduated with a degree in 1924 and a Masters degree in 1926, whereupon he joined the vear-old Bell laboratories. He was soon at work on the design of electrical filters, but in 1929 he transferied to the Mathematical Research Group where he specialized in electrical network theory and its application to the problems of long-distance communications. Twenty-three vears later he hecame I) irector of Mathematical Research. subsequently becoming Director of the Physical sciences and. in 1958, a vice president of Bell Laths overseeing militany systems engineering. On the way he received al l h. I). from Columbia Liniversity in 1935.
bode's contribution to leedhack-amplifier design began, according to his own recollections. with a study of equalizing circuits whose function was to provide automatic

Hendrik Bode.

Harry Nyquist (right) discussing the travelling wave tube with its inventor Rudolf Kompfner (centre) and John R. Pierce. Picture from AT\&T Bell Laboratories.
compensat.on for temperature and other variations in transmission lines. The big problem came when the equalizers had to be inserted into the feedback loop without catusing instahility. "In desperation." Bode recalled. "I hegan modifying the amplifier proper rather than trying to tinker further with my equalizer. . . . Finally: after I had in effect redesigned the complete feedhack loop. I found I could obtain a solution ${ }^{1 \times}$. The idea of the mathematical physicist whose hook hecame a standard reference on electronic network analysis modestly expressing his own electronic design work as "tinkering" has a certain appeal.

It is also an example of Bode's apparent belief that "specialists" should not restrict themselves to a narron specialism. "Dig deep for good answers" may have heen a bell Laths monto hut there was also a strong belief in the need for the horizontal flow of information within a project through all stages of development, design, manufacture and installation. This information flow requires feedback, of course, and one woonders (o) what extent these pioneers 0° the mathematical understanding of feedback applied their knowiedge to optimizing the human side of project management.

Because of the continuing nered to make improvements in equinment the flow of informatior down through the lifetime of a project or system was also recognised as important. "Continuity in time." Bode wrote in 1971. "from project to project, building on the experience and techniques and skills acquired in the development of the precedins technology, is as vital as collaboration hori\%ontally between development and manufacturing engineers." Both, he added. were used in meeting Bell System ohjectives.

I uring World War II. Bode applied electronics (in place of or in conjunction with mechanics) to the problems of anti-aircraft gunfire control. This resulted in a model T- 1.5 gun director which. though it appeared superior to existing equipment in trials, was not placed in production. Later Bode and 1 : A. MacNair directed research and development of anti-aircraft missiles. In 1446 Bode received a l'residential Certificate of Berit for his wart ime contributions.

In Fehruañ 1945 Bode was one of five men asked to form a team to study the possibilities for a guided missile capable of
shonting down future aircraft flying at heights and speeds heyond the capabilities of conventional gunfire. In just five months. the group produced a report which was later to be regarded as a classic for its thoroughness and insight. The project itself developed into a major defence contract and estahlished a working partnership with the Douslas Aircraft Company (later MclonnellI ouglas) which lasted 30 years. The missile was the famous Nike missile, named after a mythological Creek winged goddess of vic tory The first test firing at an aircraft was in 1951 when a token flash detonation. represent ng the warhead, exploded only 16 feet from the bomber. In another test. the missile "drilled through the entire length of the aircraft"
Bode completed his career with Bell as special adviser and member of the Board of Belleomm. a company formed by lell as a small part of the NASA effort for "landing a man on the Moon and returning him safely to Earth," as l'resident Kennedy expressed it in 196i. Then in October 196it. aged 6l. Hendrik Bode retired irom Bell Labs atter 41 years senvice to take up a second career as the Professor of Systems Engineering at llantard University. There he directed gradate research and taught a course on the planning and implementation of engineering and development programmes. He f nally retired. for the second time, as professor emeritus in 1974.

IIONOURS

As wath most pioneers of their calibre, both Noquist and Bode deserved and received honours. Nyquist was awarded medals by the Frankilin Institute and the Institute of Radio Engineers. Bode the Edison Medal of the IFEF. Niguist died in Texas aged 87 . on 4 April 1976 , five years after his wife Antonia. He was survived by a son. two daughters and sevengrandchildren. Bode died at his home in Cambridge. Massachusetts, on 21 June 198^{2}, aged 76 and was sunved hy his wife. Barhara, and two daughters.

References

1. I'. C. Mabon. - Mission Communsatoms., Bel| Teleprone lathorateries. 1995.
2. J. B. Johnson. WEEE Spectram. Wol. K. no 2 .徏- 得, Fichruary 1971

The DowtyLineUp

A range of Thermal Linescan Recorders from $8 \frac{1}{2}$ inches to $191 / 2$ inches
Dowty Thermal Linescan Recorders are rugged, reliable and fume free. All recorders incorporate a full width thermal print head - ranging from $81 / 2$ inches to $191 / 2$ inches - enabling high definition grey scale recording on paper or film for applications as diverse as military sonar and medical imaging.

Recorders
A range of 12 inch single and dual channel analogue or digital instruments with variable sweep and delay times, triggers and input levels. This popular Series can be bench mounted or 19 inch rack mounted in any orientation.

195 Series Thermaline Wide Print Recorder Produces a linescan image $191 / 2$ inches wide with a high resolution of 200 pixels to the inch.

Interfaces available or planned include digital TLL, IEEE 488, RS422/232, and analogue, with single or mult-input channels. Customised in:erfaces can be produced for special applications.

Details of our full range of Thermal Linescan Recorders will be sent on reques

Dowty Maritime Systems Ltd WAVERLEY DIVISION

Thermaline Video Graphic Recorder
Produces a hard copy image $81 / 2$ inches wide from a video signal at the touch of a button thanks to a built-in freeze frame facility. All common video formats can be accommodated. A high speed linescan version of this recorder is also available.

They keep going when the going gets tough

8051 Project....?

From simple minimum chip solutions through to complex turnkey multiprocessor systems, Cavendish Automation has the hardware and tools to allow you or us to design rapid and professional implementations.

Off-the-shelf hardware includes numerous DACs, ADCs, bus-drivers and decoders. and many other forms of analogue and digital I/O cards, together with power supplies, backplanes, card cages and equipment cases.

Software development couldn't be easier Our 7034 card's text editor enables software development for the 8051/2 in etther assembler or MCS-52 BASIC Programs are simply blown into EPROM or EEPROM on the card ttself When writing in assembler. both source and/or assembled code may be saved in this

For further information contact

Cavendish Automation

Cavendish Automation Limited Oak Park. Bartord Road
St Neots. Huntıngdon. Cambs PE 19 2SJ
Telephone 0480-219457
FAX 0480-215300 TELEX 32681 CAVCOMG

European flat-screen tv nearing production

MARTIN ECCLES

Colour liquid-crystal TV's that are much flatter, thinner and more robust than CRT based sets should be in production this year. General Electric is already producing flat screens for cockpit applications but Philips and Japanese companies including Matsushita. Toshiba and Sharp are working on liquid cy's tal display's for domestic TV'

The only non-Japanese company competing for the flat-screen TV market is Philips. Together with Warner. Philips is already producing small liquid-crystal screens for seat-back entertainment experiments in planes and by the end of this year the

Two criticisms of this prototype display are its dullness and its diagonal lines. In practice, dullness is certainly not a problem and the diagonal lines disappear at about 1 m .
company hopes to be manufacturing 6 in flat-screen televisions for domestic use.
In display terms, domestic TV is one of the most stringent applications. Television pictures contain fast moving images and TV displays require high resolution. high contrast and high brightness. To obtain fast switching of all picture elements, especially those at the centre of the display, the Philips liquid-cn'stal display uses an "active matrix": there is one transistor switching each picture element.
Suhjectively, the picture from the prototype display compares with that obtained from a good domestic video recorder. One of the main problems with liquid-cristal th displays has been response speed; on the selected programme material that we viewed, some of which contained fastmoving images, there was no detectable image blurring at all. Viewing the display close up, the most noticeable effect is diagonal striping caused by the one-and-a-half dot staggering of the RGB elements, These diagonals disappear at about 1 m though.
Unlike front-lit liquid-crystal displays the back-lit active matrix appears at least as hright as a CRT. In fact within reason its

Colour pixels in the prototype display, and probably in the final product. are stag. gered by one-and-a-half dots to give a better picture. The polarizer absorbs about 50\% of light and there are other losses, hence the need for backlighting.

accoumt backlighting requirements, but the current fin active-matrix takes about 10W as opposed to ahoul 6W for the same size CRT.

Cornection of the matrix is currently much more difficult than plugging in a CRT: each line and row in the matrix needs a driver and a connection. Future displays will have multiplexers and drivers built in but until then, connecting the flexible PCB material leading from the matrix edges must be quite a lahour-intensive task.

Although there is no theoretical limit to the display size, there are currently technological limits. According to Dr Alan Knapp, leader of Philips Information Display Group at Redhill. there is no particular
continued on page 226

UpDATE

At one of Britain's largest univer sity physics depart ments - Cambridge - major research work is carried out at three locations. These include the Mullard Radio Astronomy Observatory and the Microelectronics Research Laboratory, but the most significant site for electronics engineers is
probably the Cavendish laboratory, having been established more than a century ago under the direction of professors Maxwell. Rayleigh. Thomson, Rutherford and Bragg.
In this month's research profile, which is devoted to the more electronics-oriented aspects of Caven.
dish Laboratory's work. it is interesting to note that 'cold electronics' are as evident at Cambridge as they are at Oxford (see our Research Profile of las monih and Dr Gregg's article in this issue)

MARIINECCLES

$460-490 \mathrm{GHz}$ radio-astronomical receiver (above) being assembled and tested. When completed it will be installed in the 15 m diameter James Clerk Maxwell telescope on top of the 4260 m high Mauna Kea. Hawaii. The framework on the right houses the actual detector elements, as well as the local oscillator and associated microwave electronics and the If stages. Control electronics, the microprocessor, and the synthesiser generating the reference frequency for the phase-lock system are housed in the left-hand rack.
Both the framework and rack are mounted in the telescope receiver cabin, and move about with the dish. The receiver system will be used to make observations of starforming regions with very-high frequency resolution (e.g. 1 part in 10^{6}.
Clouds of gas and dust which are collapsing under the lorce of gravity to form new stars, contain small amounts of trace gases such as CO and isolated carbon atoms. These emit radiation at certain well-defined frequencies. By comparing the frequency of the radiation we observe with that expected we can tell how fast the gas clouds are moving away from or towards us. Thus we can study the kinematics of the gas clouds and learn more about the star formation process.
Dr Rachel Padman

Electron energy-loss spectroscopy Surface physics is a sub-discipline of solid state physics and is concerned with effects which occur at solid surfaces (below) All of the interesting gas/solid, liquid/solid chemical reactions necessarily occur at a surface - a seemingly obvious statement, but the abillity to do proper studies of surface phenomena has only been posslble since the late 1960s and is still a rapldly growing area of fundamental technological interesL
In order to prepare atomically clean surfaces, ally experiments must be performed inside an ultra-high vacuum chamber (pressure 1 mP) so that background gases do not contaminate the surface being studied. Cavendish's Surface Physics Group is particularly interested in studying the absorption of monolayer films of simple molecules $(0, C O)$ on a surface and studying their interaction with the surface.
Eventual understanding of the mechanisms of molecular-surface interactions will help in improving catalysts, in understanding oxidation processes and in the fabrication of semiconductor devices (VLSI technoogy involves growing layers of material on a substrate surface by the reaction of gases at the surface)
Erik Jensen

Close up of the $460-490 \mathrm{GHz}$ receiver. The gold coloured vacuum vessel (above) houses two InSt homodyne detectors for two polarizations of the incoming signal. They are cooled to 0.2 K above absolute zero using liquid-hellum refrigerant.
Although the detectors themselves are mounted in a waveguide (about 0.5 mm diameter) most of the signal processing at the observing frequency is done using quasi-optical components. The signal propagates as a nearly parallel beam, and is collimated and focussed using optical components such as mirrors and lenses.
The local oscillator Just seen underneath the plate supporting the vacuum vessel) consists of a Gunn-diode oscillator for 115 GHz or 123 GHz , which is then frequency quadrupled and radiated from a small horn. This is focussed by a lens and mirror, and a small amount of power is injected into the path by a 20% reflection off the 98%-transmitting mylar beam-splitter and combiner.

The plane input mirror is used to align the direction of the beam into the receiver with that arriving from the telescope. An image of the window in the side of the Dewar vessel can just be seen.

VG Scientific H8501 scanning transmission electron microscope. Specimens are mounted within the ultra.high vacuum stainless-steel column to the right of the control console (right). A coherent electron ray, the electrical equilvaient of a laser beam, can be focussed onto a spot only half a millionth of a nillimetre in diameter.
Transmitted electrons can be used to make atomic resolution images displayed on the two CRTs on the console. Electron energy loss spectroscooy, stable to

Superconducting receivers. The Radio Astronomy group at the Cavendish Laboratory is developing. in collaboration with the Materials Science Department, superconducting receivers for use on the James Clerk Maxwell Telescope in Hawaii (right).
Shown above is a prototype 100 GHz seceiver. The receiver is based on an extraordinary device that consists of two superconducting niobium films separated by a dielectric layer only a few tens of angstroms thick.
Photon assisted tunnelling of quasiparticles - entties which are very similar to electrons - across the barrier allows the detection of millimetre and submillimetre-wave radiation with a sensitivity approaching the quantum $1 l m i t$.
When used as a mixer, the device displays a number of curious quantum phenomena including classically forbidden conversion gain and quantum resctances. Dr S. Withington

within 0.5 V in 100 kV can be used to identify the atomic species of the thousand or so atoms ifllaminated by the beam. X-ay signals are also available.
The apparatus can also be used to manulacture extremely snall structures - nanolithography. With this technique, it is possible to condense the words in all the books ever published in Britain into less than one square metre. One day, the technique may be used to create super-small electronic chips.
DrJ. Rocenburg

Mullard Radio Astronomy Observatory is a research facility cperated by the Radlo Astronomy group of Cavendist Laboratory. The principal instrument at the observatory is an eight-element, 5 km -ong microwave interferometer. This instrument is useo for studying the nature of dstant radio galaxies and the physics of the early universe.
The photograph on the right is an internal view of one of the very low-noise microwave receivers used on the 5 km interferometer. To achieve the required sensitivity, high-electron-mobilty transistors are cooled to a physical temperature of $-260^{\circ} \mathrm{C}$ by means of closed-cyclehellum refrigerators.
It is necessary to illuminate the transistors, by means of optical fbres, to prevent the semiconductor being frozen into an insulating state. DrS. Withington

UpDATE

continued from page 223

problem to be overcome before the fin screen goes into production - it is just a question of getting all the processes right to give the necessary yield. "Display' sizes will go up," says Knapp, "but only gradually:"

Earlier thin-film transistors used to switch liquid-crystal picture elements in this way were leaky and required an extra capacitor across the liquid-crystal display.

Beyond CT-2

Quite apart from C'I'2, another LIIF personal communication sy'stem is heing proposed in government circles. Known as Short Range Radio (SRR) it is envisaged that handsets should be made to a pan-European system. using much of the digital technology of C"l". For a modest licence fee anyone would be able to communicate with anyone else over short distances: users would just key in the number of the person they wished to communicate with and would be connected automaticatly if the wanted set was within range and switched on. The systen is intended to combine the accessibility of citizen's hand radio with selective calling and privacy of conversation.

T'he L'K Department of Trade and Industry has indicated that it hopes to introduce SRik in 1992. but will allow hand-portable sets only - not the mobiles or hase stations described in the CEPT proposals. This is fascinating, since it would appear to limit the use of SIRR to extremely short ranges. Certainly, for husinessmen SRR would make a nice on-site paging system while enthusiasts might find it excellent for hikers' groups and marshals at sports events. Beyond this it seems fit for very little.

Although the specification provides for

IBM small, fast

In a paper presented to the International Electron Device meeting at San Francisco. a group of IBM scientists have published results on engineering IC test samples which demonstrate a clock rate of $30 \mathrm{Cil} \%$.

Built using an experimental cmos process with $0.25 \mu \mathrm{~m}$ geometry it holds out the prospect of producing commercial 256 Mbit drams or processor chips with a million gates. This compares with a current tally of around 100000 .

The test chips were made in bulk silicon technology and advanced processing - some elements have a thickness of just 20 atom layers in places.

Silicon potato chips

You can now put electronic tomatoes, sugar beet and potatoes on your shopping list although they are unlikely to catch on as a high tech gourmet delight. They cost more than their weight in Beluga caviar - around £2000 each.

Designed by the Scottish Centre of Agricultural Engineering. the skins of these artificial vegetables have a texture and density similar to the real thing but exhibit pie\%o-electric effect. When the skin's output signal is coupled into a small internal trans-

conmunity repeaters these will not he permitted in Britain. Taken together with the ban on base stations and mobiles this will reduce the utility of SRR to virtually nil.

In the Covernment's original proposals for Open Channel radio, it was specifically stated that these frequencies would provide ideal low cost communication for small husinesses, veterinany surgeons, farmers and the like. This dream was not realised, yet SRIR could provide precisely this kind of facility. At least one industry source lays the insistence for a minimal SRR system at the door of the vested financial interests of the private mohile lobby.
milter, it becomes possible to analyse scientifically the brutality of the mechanical handling involved in gathering the crop. (Source: Daily Telegraph)

MCA on a chip

Helping along the new accord between IBM and clonemakers producing machines with the $1 B M$ proprietary micro channel architecture, the Californian chip design company PLX Technology has produced an MCA bus interface chip.

The MCA1200 24-pin device built from CMOS PLA provides all the protocol logic. drivers and input buffers needed to perform the micro channel interface function. It replaces up to 15 discrete logic packages which are normally required for the interface task.

Floppy control

Intel has brought out a single-chip floppy drive controller which is said to integrate all the system level functions.

The 8? 077 . which supports 2.5 in drives of up to 4 Mbyte capacity. includes an analogue phase locked loop, data separator, a fifo for data transfer and support for the perpendicular recording mode which will feature in the next generation of drives.

MAKING ELECTRONICS C.A.D. AFFORDABLE

TIUYFP

Are you still using tapes and a light box?
Have you been putting off buying PCB CAD software?
Have you access to an IBM PC/XT/AT or clone inc Amstrad 1640 \& 1512 or Archimedes with P.C. Emulator?
Would you like to be able to produce PCB layouts up to $17^{\prime \prime}$ square?
With up to 8 track layers and 2 silk screen layers?
Plus drill template and solder resist?
With up to eight different track widths anywhere in the range . 002 to 531"?
With up to 16 different pad sizes from the same range?
With pad shapes including round, oval, square, with or without hole and edge connector fingers?
With up to 1500 IC's per board, from up to 100 different outlines?
With auto repeat on tracks or other features - ideal for memory planes? That can be used for surface mount components?
With the ability to locate components and pads on grid or to .002" resolution?
With an optional auto via facilify for multilayer boards?
With the ability to create and save your own symbols?
That can be used with either cursor keys or mouse?
That is as good at circuit diagrams as it is at PCB's?
That outputs to Dot Matrix Printer, or, with extra drivers can drive a pen plotter or photoplotter.
Where you can learn how to use it in around an hour?

Output on dot matrix printer reduced from 2:1

- That only costs $£ 275.00$ + VAT.

SMITH CHART PROGRAM
 ZWITCH

CIRCUIT ANALYSIS BY COMPUTER ATH Yei

For IBM, PC/XT/AT and clones inc. Amstrad 1512 and 1640 and $B B C B, B+$ and Master.

Z-MATCH - Takes the drudgery out of R.F. matching problems. Includes many more features than the standard Smith Chart.
Provides solutions to problems such as TRANSMISSION LINE MATCHING for AERIALS and RF AMPLIFIERS with TRANSMISSION LINE, TRANSFORMER and STUB MATCHING methods using COAXIAL LINES MICROSTRIP, STRIPLINE and WAVEGUIDES
The program takes account of TRANSMISSION LINE LOSS. DIELECTRIC CONSTANT, VELOCITY FACTOR and FREQUENCY
Z-MATCH is supplied with a COMPREHENSIVE USER MANUAL which contains a range of WORKED EXAMPLES
£130 for PC/XT/AT etc.
$£ 65.00$ for BBC B, B+ and Master

For IBM PC/XT/AT and clones inc. Amstrad 1512 1640. R.M. NIMBUS, and BBC B, B+, and Master.

"ANALYSER II" - Analyses complex circuits for GAIN, PHASE, INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY over a very wide f́requency range

Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS OVER NETWORKS, WIDE BAND AMPLIFIERS, TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV I.F. and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS etc

STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop"
Can save days breadboarding and thousands of pounds worth of equipment.
£195 for PC/XT/AT etc. £130 for BBC, B, B + and Master

All prices Ex-VAT
WRITE OR PHONE FOR FULL DETAILS:- REF WW

Harding Way. St Ives. Huntingdon Cambs, PE17 4WR Tel: St Ives (0480) 61778
We provide full after-sales support with free telephone hotline help' service
Software updates are free within 6 months of purchase date.

The basic elements for solid-state image acquisition have been available commercially since the mid 1970s. The charge-coupled device (CCD) was invented by Fairchild Semiconductor Corporation and was quickly taken up in the consumer market, where the first major application was the autofocus systems for 35 mm SLR cameras. This was achieved by a line-scan array (a single line of photosites or pixels) of a lew hundred pixels in length. used to work out the distance to the ohject and focus the camera. Iater, a much higher growth in the consumer market came with the advent of the video camcorder, which is made up of an area array (a matrix of rows and columns of pixels) which gives a TV picture in real time. An important application is office equipment, where CCDs are used in fax machines. photocopiers and today in document scanners for PCs.

The applications described require very little image processing of the viden information coming from the charge-coupled device and therefore use low-cost equipment. The other field in which cols found early application was the industrial/professional market. where they became a small part of major systems in equipment such as telecine, cheque readers and even satellites. Here. there is a requirement for very highlevel processing of the video image coming from the charge coupled device. However. the systems themselves are highly expensive pieces of equipment and so the cost of this processing power did not inhibit sales.
(CCDs have heen used in industrial inspection for some time, but the slow adoption of solid-state imasing has been due to the high cost of processing the videostream.

HARIM:IRE:

The hardware reyuired for an industrial (C゚り) imaging system consists of the image acquisition front end, made up of a (CD) camera and the driser electronics. and an intelligent hoard including a microcontroller or a computer.

CCI cameras used two kinds of technology: an area-scan system to give a live TV picture: or a line-scan CCO) array where the picture is made up by integrating the video against time.

Ilistorically, systems have been made in the main with area-scan (CCl) cameras. There is a misconception that, because you can display the information readily on a TV-type monitor and this information can be readily understood hy the human eve and brain it is therefore easier to process in an electronic system. The main fallacy with this argument concerns the amount of information presented. For example. 1024 by lo'24

INDUSTRIAL IMAGING

An industrial, vision-based inspection system, using a PC or equivalent

NICK HEWITSON

area picture would give you a million hits of information. If this were updated at a viden frame rate of 50 frames per second. the downstream processing would have to handle 25 million hits of information (due to standard video beins interline transfer) a second. This amount of information is obvioush beyond the capabilities of anything het superomputers. The other major problem with using an area-scan camera is that. if the object is moving, the laws of probathility state that the object will not be moving at the video frame sate. This mean that the information in the top right-hand corner of the picture is out of sync., relative to the position of the ohiect. with the information at the bottom left-hand comer of the picture. This sives the effect known as smearios and is a major drawhack where dimensional analysis of ohject is required. lf the object to be viewed is stationary relative to the camera on if the system works on a step and repeat hasis, then an area camera is the only possible option.

The problem of smearing can be onereome hy using strobe lights or a mechanical shutter arrangement. Which also has the effect of allowing time for the information to be processed during the period in which the (CD) camera is not collecting information.

The most elegant solution is to use a line-scan array. In this method, a single line of pixels clocks out its information, which is fed to a trame store. The picture is then buift up against time as the object mones under the canera or the camera moves over the ohject. In added advantage of line-scan is that resolution can be much higher than that of area-scan techmiques.

With current technology a 1024 by 1024 pixel-area chip is the best that can be economically manufactured. However, linescan arrays of six thousand pixels in length
are commercially availahle from companies such as Fairchild Weston in California. By selecting enough clock periods, a picture made up of six thousand pixels read six thousand times can easily be built up, siven sufficient computer memory. Because the amount of information processing needed at one time is much smaller. much less computing power can be used (the processor can be worting on one line as the next line is collected). It is also very easy to vary the clock speed on a line-scan ((1) array and to tailor this to the speed of mowement of the object to be viewed. This overomes the prohlems of smearing described earlier and. although it is harder to visualize the information from a line-scan CCD), as far as the computer is concerned it is much casier to process this information than from an areascan camera (see Fig. 1).

Another major component of any electrooptical inspection system is the lighting and optics. This is the ared in which most mistakes are made when systems are designed. The key requirements are to get an even field of light across the object. since the processing electronics are not able to differentiate between effects caused by unevenness of the light source and those due to the shape of the object. To owerome the problems of lens distortion the system must allow for programming to onercome these anomaties.

The system described in this article uses an 113 I PC-compatible plug-in hoard manufactured by sentel Messtechnik in Cermany for the processing of the video stream from the CCO camera. In line-scan applications the analogue video signal produced by the camera is converted by a controller board into a standard video signall. This signal and some other digital signals are fed into the plug-in board (CCLDM inputs via a number

Left is a plot of light intensity against $x y$ axis of image scanned against time. It is possible to measure edges to accuracy of 0.1 through Fairchild Weston CCD camera and processed by CCUM board. Image on display screen is letter 'P' transfer. Middle picture is computer screen showing 8 -bit numbers for each pixel built up
pixel (one micron). Computer screen in right-hand picture shows analogue information from line-scan camera. Intensity of light across P shown by cursor on computer monitor.
of cahles. where the analoguc video signal is initially digitized to an 8 -hit resolution. resulting in 256 grey lexels (see Fig.2). The sere-level value of each pixel is located at a certain address in the image memony of the hoard. which can be directly aceessed by the use of the P' hus. The hoard has a colour look-up tahle which allows false colours to he allocated to the various half-tone levels. which can he programmed by the user as required. This means that the image output can be manipukated by either reverse-video imasing, emphasizing a certain half tone or image area. false-colour representation on hinary representation. if required. Individual hatf-tone levels in this colour look-up table can be masked or labelled. allowing co-ordinate systems, crosswires, image windows or graphics to be integrated. . I monitor mayalso he attached.

The board includes 256 bibutes of onhoard ram, for the stomage of the video image, as standard. By using other ram modukes, the image memony may be expanded to 1 megabyte. which is sufficient for complete images of a maximum of 512 by 512 pixels each. A memory of this size cannot be simultaneously handled under the NS DOS operating ststem, so the image memong of the čc’. hats heen divided into a number of segments or windows. each of 32 k hytes. through which the image memory can he viewed. Access to the entire image memory is provided hy mosing this window, allowing operations to be handled in real time. Several ccloM boards can smultaneously operate in a single $P C$ by programming the respective purts to activate the memory of each board.

PROCRAMMING

lrogramming the CCld lakes place via resgisters, hut the image memory can al whe
drectly accessed. For this purpose, a structure of type "row" is defined. Which contains for evere image line the address of the first pixel in this line in the image memory and the respective page number The CClMM board is rormally programmed via a software lihrary, which is included in the cost of the board. This litrary uses a highlevel language and an easy-to-use software interface, allowing the user to operate the CCl $!$ ats reguired in the specific application. 'The design of the CCOM allows user programming to customize the system to various needs: a total of 10 resisters are avalable to the user, sorted according to the suhjects with indications heing inc!uded as to whether the register is read or written on.

The universal counters of the CCl'M allow special applications and can be used. for example, to display simultaneously several camera images onto the monitor. Another example is, when operating a line-scan camera, (wo of the registers are used in conjunction with the line-scan controller hoard to detect an edge or the width of an object via the hardware. Other registers available on the CCUM board control the A-(o-I) converter. the status register which gives information on the current status of the hoard, the camera modes register. which selects which camera is bein§ used in multiple camera applications and the image memory segment register, which allows the user to state the image window he would like to access. The aim of the hardware for the CCOM brard is to give a cost-effective flexible interface with the IBM PC'AT standard bus.

SOFTWARE

Any shstem which includes a complex camera-interface board should tee assisted by
hardware-orientated hasic soltware products. I'rogrammes of this type allow the programmer to use the CCCl'l as a black box $\{0$ solve his specific problem, without the necessity of detailed hardware knowledfe. although he mast have a flexible software interface so that long training periods to learn a new programmang languape or the re-writing of already existing software is unnceessan: 'The hasic soflware
 written in Microsoft Cl and is also avaidable as the serurce code which allows the user a very flexthle software interface. Programme written in Microsoft C Microsoft Pascal. Fortran, (1) name just a few. can he linked with the CCDjM.LII3 without any difficulty. Variols other software products are hased on Mic-osoft standard and will thus he compatihes. Apart from the C'Cl'M.LIIS a number of geometrical measurement. edge-detection and outline-recognition pactages are availathe as standard with this board. These are also created using Microsoft compolers and are :hus suited for adaption. lixample prograrns are analahle from optimum Vision ('Tel (17.3064016).

L'sing CCOM, an IBM P PC/AT compatible, a Fairchild Weston CCD) camera and relevant application software. an industrial inspection system can he created for less than £10.onol. This system works in real time. giving high-resolution industrial imaging with both static and fairly high-speed mosing ohiects. For example, there are applications where people wish to study the surface of roads and rail tracks. while moving at up to lot) kilometres per hour, using ("Cl) line-scan technology. Such a cost-effective system hrings the world of industrial vision out if the realms of high cost and into the reach of small innovative companies and engineering groups.

The system s supplied with everything you need including:

- Interface card - takes a 'short slot' in the PC and provides link in/out and control lines.
- Cable - inks the interface card to the Transputer Module.
- Transputer Module - complete T414 based subsystem, supplied in its own sturdy case.
- Power supply - independant power to transputer if required.
- Development Software - folding editor, OCCAM compiler, downloader, terminal emulator and utilities, hosted on the PC
Example programs - no less than 28 fully worked examples.
- On Screen Tutorials - learn how to use the system 'on-screen'
- Hardware Manual - full circuit diagrams, timing diagrams and circuit descriptions.
- TDS User Guide - self contained tutorial guide to using the development software.
- TDS User Manual - the reference manual for the development software.
- Introduction to OCCAM - a complete self-teach course in OCCAM.
- OCCAM Programming Manual - the definitive guide to OCCAM.
- T414 Engineering Data - full specifications for the Transputer.
- C012 Engineering Data - full specifications for the Link Adapter.
The Transputer Module houses a 15 MHz T 414 with 256 K RAM and is external to the PC, so that the hardware is fully accessable. The module includes a wealth of test points, 14 status LEDs, 16 I/O lines, EVENT input, independant power supply, prototyping area and four 15 way D connectors, which allow access to the $10 \mathrm{M} \mathrm{bits} / \mathrm{sec}$ links and control signals.

Full hardware and software support is provided for multi-transputer applications. Simply plug additional Transputer Modules into the spare link connectors using the cables supplied. In this way networks of any configuration using any number of transputers may be realised! Each module can run one or more concurrent processes and has access to its own local $1 / 4 \mathrm{Mb}$ RAM and l/0 system.

The I/O connector links directly to our Applications Board, which enables the Transputer to control DC motor speed, temperature, analog input/output, and much more!

TकाRTABOUT pUliz.

cessor in the world using concurrent processing.

How can I give a whole class hands-on experience of the transputer with a budget of just a few thousand pounds?

If you are equipped with IBM compatible PCs with 640 K RAM and access to a hard disk, then the answer is to use the Flight Electronics Ltd Transputer Training System.

Sounds interesting - how many workstations will that give me?

As many as you have PCs. The development software is hosted on the PC and may be run on all the PCs in your department, provided that you have bought a site licence. The development software does not require a transputer to be present.

What happens when I want to run a program on a transputer?
Simply take the program via a network or a floppy disk, to one of the PCs fitted with the Transputer Training Hardware. The program can then be downloaded and run on the transputer board which is mounted in its own case outside of the PC.

Alternatively, fit each PC with the low cost interface card, then plug the available transputer boards into the PCs as required. Its as easy as plugging in an RS232 lead. there is no need to switch off the computer

What language does the system use?
OCCAM 1 , through the 'TDS' environmen* with folding editor

Isn't that a bit old hat?

Experts agree that OCCAM 1 is quicker to learn than OCCAM 2, and enables students to rapidly grasp all of the essential principles of parallel processing and its
implementation on the Inmos transputer
OCCAM 1 is a subset of OCCAM 2 so students who choose to study OCCAM further will not have to re-learn the language

Of course, OCCAM 2 requires a transputer board to be fitted to each PC workstation, making a class set prohibitively expensive

Surely the whole point is to connect transputers together?
Parallel programs can be run and tested on one transputer, the internal architecture of the transputer looks after the time slicing between processes. The same program may then be re-configured to run on more than one transputer. Each transputer board has four 15 way 'D' connectors which carry the 'links' and bus signals. Using simple ribbon cables, the boards can be connected together to form systems with any number of transputers and with any topology

Thats OK for the software, but I need to teach real time control.

No problem. Each transputer board is fitted with three eight bit ports, one is dedicated to a row of on-board LEDs and the other two are accessible via a 40 way header which also carries the EVENT input and +5 V .

We can supply an Applications Board which has interactive closed loop DC motor and temperature control systems which provide 'instant' applications for parallel control algorithms. The Applications Board also provides other facilities including A/D and D/A conversion.

If you already have peripheral units based on the 4 mm standard then the ports can be brought out on 4 mm sockets using the
optional adapter
If you wish to experiment with custom built I/O circuits then use our Universal Interface Breadboard that plugs straight into the I/O connector

Most transputer systems are pretty sparse on hardware data aren't they?

Not this one. The hardware manual gives complete circuit diagrams and a chapter is devoted to explaining the function of each chip. 15 test points and 6 LED indicators are mourted on the board to allow easy access to the most important signals.

All very well, but surely it will take months for me to write a course to go with the system?

No. A full 'ready to use' self teach course plus two screen based futorials and a wealith of example programs are included with the package

Do you offer training so that I can learn about the system quickly?

Yes. A three day intensive hands-on course is available in Southampton, and you can save $£ 200$ if you order the course with the system.

Can I see the system before I decide to buy?
Yes, we will be pleased to demonstrate the system anywhere in the UK. Under some circumstances we can also lend you a system for 30 days for you to evaluate in your own time.

To place your order, or for further information, call our sales department on 0703227721

FLIGHT ELECTRONICS LTD.

Flight House, Ascupart St, Southampton, SO1 ILU. Telex: 477389 FLIGHT G Fax: 0703330039

Cold electronics

Now that small 10 K refrigerators are readily available, research into how cooled semiconductors operate is more than just a passing interest.

J.F. GREGG and I. D. MORRIS

Solid state physicists researching into the magnetic properties of materials use liquid helium, ${ }^{4} \mathrm{He}$, as a standard laboratory refrigerant for obtaining the low temperatures which are frequently necessary for investigating the physics of magnetic systems. Liquid helium boils at 4.2 kelvin (about $-269^{\circ} \mathrm{C}$). Some idea of the relative "coldness" of this liquid may be gained from Fig. 1, which shows various temperatures on the absolute (kelvin) temperature scale.

Low-temperature physics research fre quently encounters technical problems which are solved by recourse to "cold" electronic instrumentation which itself operates at liquid helium temperatures. In this article we discuss the advantages of cooling electronic circuits and describe some of the possible applications of "cold" electronics to physics research and to other wider fields.
Descriptions of cryogenic (from the Greek "kryos" meaning "frost") circuits and the

operation of semiconductor devices at low temperatures have been outlined in the technical literature since about 1964. However, the advantages of cold electronics have become rather more marked and its applications have proliferated with the recent advent of gallium arsenide (GaAs) devices. For reasons which we shall discuss below, the physics of this material makes it very suitable for low temperat ure working.

In the low-temperature laboratory environment there are two main incentives for cooling electronics. The first arises from the requirement with some physics instrumentation this it should be sited close to the sample of material under investigation. In practice, given the difficulty of maintaining large temperature differences over short distances, this often means that the instrumentation must be held at the same temperature as the sample. For example, in the case of self-oscillating magnetic resonance spectrometers such as those popularized by F. N. H. Robinson of this laboratory, the resonant circuit and the oscillator must be within a fraction of a wavelength of one a nother: at UHF and low microwave frequencies, this corresponds to a maximum separation of a few centimetres. Proximity of instrumentation to the experiment has the additional advantage that it minimizes the opportunities for stray pickup and RF interference.
The second and rather more important benefit which arises from cryogenic electronics derives from the physics of electrical noise and fluctuations. Broadly speaking, noise is any signal which is unwanted by the observer. Leaving aside electrical interference from such sources as domestic fridges or local radio stations which must be eliminated by careful design and electrical screening, and ignoring the frying, crackling and popping types of electrical noise which are characteristic of faulty components, there are three kinds of fundamental electronic noise which are describable in terms of basic physical processes. These are respectively known as Johnson noise, shot noise and llicker noise. Fig. 2.
Noise spectra of two different types of GaAs mesfet measured at room tempera. ture, 77 K and 4.2 K . Diagram (a) is for an NE720 from NEC, while Figure (b) shows the data for an AT8110 marketed by Avantek. The 77 K and 4.2 K results coincide so closely in places that only the 77 K points are marked. This strongly suggests that, despite the fact that the devices are in different refrigerants, the effective electron temperatures in their respective channels are very similar.

Fig. 2. There are three principal types of noise in electronics - Johnson noise. shot noise and flicker noise.
Johnson noise is associated with the resistive part of impedances and it arises from the same kind of thermal fluctuations as given rise to black-body radiation from, for example, the hot filament of a light bulb. Consequently, the frequency spectrum of this kind of noise is completely determined by thermodynamics and at all frequencies of interest in electronics, the noise is "white", i.e. the amount of noise power per unit bandwidth is a constant as in curve (a). The mean square Johnson noise voltage per unit bandwidth which appears across a resistor of value R which has temperature T is given by

$$
v_{n}{ }^{2}=4 k_{B} R T
$$

where k_{B} is Boltzmann's constant ($1.38 \times 10^{-23} \mathrm{~J} / \mathrm{deg} \mathrm{C}$).

Shot noise arises in circuits which contain a potential barrier such as that associated with a p-n junction in a bipolar transistor or with the gate-channel interface in a fet. The current is composed of those charge carriers which have enough thermal energy to surmount the potential barrier and it thus varies in a way that mirrors the thermal

fluctuations in the spatial and energy distributions of the charge carriers. Simple mathematical treatment suggests that shot noise is also white and that the mean square noise current per unit bandwidth associated with a current of mean value l is given by

$$
\mathrm{i}_{\mathrm{n}}{ }^{2}=2 \mathrm{e}
$$

where e is the electronic charge $\left(1.60 \times 10{ }^{19} \mathrm{C}\right)$.
Flicker noise is characterised by the fact that the noise power increases at the lower frequencies as in curve (b): in the textbook case, the power spectrum is inversely proportional to the frequency and flicker noise is sometimes nick-
named "1/f noise". The processes which cause it are not well understood and are difficult to model mathematically, but it is thought to derive in many cases from device surface effects and microscopic details of the device structure over which the manufacturer has limited control. This has the consequence that., unlike Jchnson and shot noise, two individual devices which are nominally identical may exhibit quite different degrees of flicker noise. The frequency below which flicker noise becomes comparable with the white noise present depends strongly on the type of device.

In bipolar transistors under optimum conditions this "elbow" frequency curve (c) may be of order 1 Hz whereas in some point-contact microwave devices it may be as high as several hundred megahertz. As shown on page 232, the GaAs mesfet noise spectra which we measured had flicker noise elbows at frequencies of order a few megahertz ard the flicker noise component reduced quite spectacularly on cooling.

For more detailed information on this subject the reader is referred to "Noise and fluctuations in electronic devices and circuits" by F. N. H. Robinson, Oxford University Press, 1974.

Lossy passive components (like resistors) will exhihit Johnson noise coloured with a certain amount of flicker noise, the latter dominating at ven low frequencies. Johnson noise power has a linear temperature dependence, so, for example, if a resistor is cooled to half its temperature, its noise power is halved. One of the advantages of cooling to liquid helium temperatures is immediately clear - a resistor operating at 4.2 kelvin delivers roughly 100 times less noise power than at room temperature (300K). Of course, the low-frequency noise character will still be dominated by the flicker noise, but this too may reduce with cooling, albeit in a rather less predictable way.

However, the major sources o* noise in most circuits are the active devices and the mechanisms which cause this noise are a bit more complex. For example, in a FET, there will be a Johnson noise component from the channel, shot noise originating from the gate leakage current, flicker noise from the contact metallization strips and carrier recombination fluctuations in the bulk semiconductor. to name hut a few. Fortunately: one or two of these noise sources usually dominate and, in general, the noise performance of semiconductor devices improves at low temperatures. We should stress at this juncture that this improvement is only significant for large temperature drops such as may he ohtained using liquid nitrogen (77 kelvin) or liquid helium.

As you can see from Fig. 1, the sort of atmospheric temperature fluctuations which one experiences in the course of a year represent very small percentage temperature changes on the absolute (kelwin) temperature scale, so that, for example. immersing the front end of a radio receiver in iced water would afford a harely percentible improvement in its noise performance (since the absolute temperature change is

Fig. 3. Electrical conduction in an n-type semiconductor occurs by virtue of electrons which derive from the so-called donor states which are just below the bottom of the conduction band. These donor slates are formed by contaminating the semiconductor with a small number of impurity atoms which have more valence electrons than the atoms of the host semic onductor.

Provided that the impurity atoms are sufficiently dilute, their average separation is such that their wavefunctions do not overlap and their electrons are effec. tively localized. However, if the semiconductor is at a temperature comparable with the energy separation, in kelvin, of the donor levels from the conduction band edge, some of these donor electrons are thermally excited into the conduction band (a) where they are free to
mave around and so conduct electric current If the semiconductor is cooled to a temperature much lower than the ionization energy in kelvin of impurities. then the electrons all return to the donor levels and the material becomes an insulator, as shown in diagram (b).
Diagrams (a) and (b) show electron population of the donor levels and va lerce and conduction bands for an n. type semiconductor at room and low temperature respectively. The dotted line shows the percentage of states at a particular energy which are occupied by electrons. This line becomes much squarer as temperature is lowered and there is less thermal fluctuation to kich electrons in to higher energy states. Consequently, electrons flop into their lowest available states (the donor levels) leaving the conduction band empty.

(a)

only a factor of order 273/300), and might well have rather more spectacular and undesirable electrical consequences!
The main problem encountered in designing cryogenic circuits is that manufacturers don't build their devices for low temperature operation and one relies for suitable active components on the lucky accident that the materials and device structures which have been developed to meet some specialized room temperature needs just happen also to function at low temperatures. Most semiconductors just don't work when cold because the electrical carriers in the conduction band "freeze" out when the material is cooled. Fig. 3, leaving the material looking like a perfect insulator. Silicon is a case in point, and at liquid helium temperatures there is insufficent thermal energy to ionize electrons from the donor impurities into the conduction band

There are three major factors determining how a particular semiconductor device will
behave at low temperatures. The first is the method by which the charge carriers in the semiconductor are produced. and therefore the concentration of carriers at any particular temperature. The other factors are the mobility of the generated carriers as a function of temperature and the carrier lifetime.

The nature of the packaging of the device and the connections between the device and the outside world may also affect the performance quite considerably. Unfortunately. a particular construction technique which is ideal for room temperature operation may prove to be the opposite at liquid helium temperatures. For example. ceramic packaging is robust. reliable and inexpensive to manufacture. However, the thermal conductivity of such packages can reduce by an order of magnitude or more on cooling from room temperature to 10 kelvin. with the result that the semiconductor temperature is considerably higher than that of the

LOGIC ANALYSERS

TA3000 from 93745 TA2500 24595

- Up 10,12 channels. 100 MHz Timing: 20 MHz State. - State/timing Cross triggering and Correation. - RS232, IEEE-488 and Centronics iniertaces. - Multilievel conditional triggering.

TA. $2000 £ 2495$ TA1000 £1595

- 32 chamnels. 100 MHz sampling rate.
- 5 ns glitich caplure. Glitch triggering.
- 4 level sequencer with eveni count and delay.
- RS232, IEEE-488 and Centronics interaces.

Options from $£ 195$
Disassemblers for 68000, 8086/88, 80186/188, 80286, 280, 8085, 6502, 6800, 6809, 64180, 8031/51, 8048/49. 63/68XX, RS232, IEEE-488.
PC Data rransler solware.

A spectrum analyser displaying the noise spectrum (between 20 kHz and 350 MHz) of a UHF amplifier constructed using GaAs mesfets. In the first photograph, the amplifier is operating at ambient temperature, while in the second it has been cooled by immersion in liquid nitrogen.

Cold front end of a Robinson magnetic resonance spectrometer constructed using three mesfets and chip-packaged metal-film resistors and capacitors. These are mounted on the circular printed circuit board which is visible to the right of the photograph. The sample under investigation is inside the NMR coil on the left of the picture. This coil, together with its air spaced tuning capacitor form the tank circuit of the Robinson oscillator whose RF amplitude is monitored by ambient temperature electronics. The spectrometer fits inside a cryostat of diameter 3.5 cms which sits between the polefaces of an iron-cored electromagnet capable of delivering magnetic fields between zero and 1.2 Tesla with a homogeneity of 1 part in 10^{4} over a volume of 1 cubic centimetre. When the oscillator frequency coincides with the precession frequency (Larmor frequency) of the magnetic spin species under study, the spins absorb energy and the RF amplitude of the oscillator decreases. Our thanks to James Lord for allowing us to photograph his spectro. meter.
surrounding liquid. The differential contraction rates of ceramic package and device may also cause problems and adversely affect device reliability.

The free carriers necessary for the operation of a semiconductor can be generated by a combination of three mechanisms; field effect. thermal ionization and impact ionization. Germanium and silicon bipolar devices rely on thermal ionization of carriers from donor and acceptor levels separated from the conduction or valence bands by energies of a few hundred kelvins. They are therefore very susceptible to carrier freezeout and cannot be used much below room temperature.

Some materials have been produced with very high doping levels which cause an impurity band to be formed just below the conduction band edge so that carriers are still available at low temperatures. However. these materials are in general too heavily doped for normal device use. Some Si and Ge mosfet devices with heavily doped channels do still operate at cryogenic temperatures, as the large field gradients in the gate/channel region are able to produce a conducting inversion layer due to field effect - just like enhancement mode devices at room temperature. These devices operate well at 4.2 kelvin, their performance aided by reduced noise figure and increased carrier mobility.

In most n-type III-V compounds the impurity levels for the popular dopants lie very close to the conduction band edge and, due to the very low effective mass of electrons in these materials, an impurity band can be formed at even quite moderate concentrations of donors (for example, ahout 10^{21} to 10^{22} per m^{3} in GaAs). It has been shown that for n-type GaAs, the impurity band for certain types of dopant will start to overlap the conduction hand edge at concentrations of about 6×10^{22} per m^{3}. Hence, n -type GaAs, InSb, InP and lnAs devices are not suscept ible to carrier freeze-out, and operat ing concentrations of carriers are still available at 1 kelvin and colder (p -type III-V materials do not show this effect in general. and behave in a way similar to Si and Ge devices.) This means that n-channel III-V devices should be usable at very low temperatures. At present, only GaAs devices are commercially available.
Once it has been established that the semiconductor material will have a sufficiently large concentration of carriers available at the temperature of interest, other factors must he considered. These mainly concern the mobility and lifetime of the carriers. The mobility of electrons in n-type InSb is relatively temperature independent. and at 4.2 kelvin is about $10^{5} \mathrm{~cm}^{2} V^{-1} \mathrm{~s}^{-1}$ (for comparison, in n -type Ge al room temperature it is $3 \times 10^{2} \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$).
Mobility in n -type GaAs has a strong temperature dependence: it is about $8 \times$ $10^{2} \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ at room temperature, rising to a maximum of $2 \times 10^{4} \mathrm{~cm}^{-1} \mathrm{~s}^{-1}$ at 100 K , and then falling rapidly to $100 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ at 3 K . Thus, InSb devices would have an edge over GaAs for use at cryogenic temperatures from the point of view of consistency of device characteristics. Moreover, given the peak in the temperature dependence of carrier mobility in CaAs, operation of CaAs
devices at 77 K would be preferahle to using them at 4 K . In fact. as is discussed later, it is probable that the active regions of devices such as GaAs mesfets do not get colder than about 50 K even when the package is immersed in liquid helium.
Devices fabricated from InP are also very attractive. This material offers a mobility which is by a factor of ten greater than that of GaAs. Once again, these devices are not yet available in any form apparently owing to difficulty in obtaining material which is of sufficient quality to serve as the semiinsulating hase for the devices. and to the problem of making ohmic contacts onto the material. Moreover, methods of making Schottky barriers to the material (a critical consideration for high-frequency devices such as mesiets) have yet to be perfected. However. assuming that these problems can be overcome, InAs and InP devices promise even better cryogenic operation than GaAs.
The higher mobility of electrons in GaAs and other III-V devices at low temperature comes from the reduced thermal scattering of the carriers. This improvement occurs mainly in cooling to liquid nitrogen temperatures: scattering at lower temperatures is dominated by impurity scattering. This nonthermal scattering can be reduced hy removing the impurities (i.e. the donors resnonsible for the carriers!). Clever design of the device can separate the carriers from their donors, so that the carriers operate in regions of pure semiconductor, where mobility can be much improved. These devices (hemts or high electron-mobility transistors) have been developed for use at room temperature. but promise to be even more attract ive as cryogenic devices.

One other consideration which is of importance to microwave GaAs devices is the high-field behaviour of the carrier velocity.

Fig. 4. Drain current versus gate voltage characteristics of a AT8110 mesfet for different values of drain voltage and different temperatures. Note how the mutual conductance of the device improves with cooling.

Most short-gate GaAs mesfets operate with a considerable proportion of the channel in the velocity saturated regime. Any increase in the saturation velocity of the carriers will not have a direct effect on the device performance. but the nature of the relaxation of carriers to that equilibrium high field velocity is important. If the relaxation is reduced. carriers in the very short channel will -overshoot' their equilibrium velocity. shortening their transit times. and producing a much improved high-speed performance of the device. Hence, a long majority carrier lifetime in the channel is very desirable. Hence, increased carrier lifetimes from cooling provides more performance improvement.
The minority carrier recombination time in III-V materials is strongly affected by lowering the temperature. There can be a reduction of a factor of $100(\mathrm{InSb}, \mathrm{n}$-type. room temperature to 4.2 K) in recombination rate for minority carriers, but the rate for majority carriers varies less; in some materials it may even increse slightly. Hence, again. the properties of minority carrier devices such as bipolar transistors will he strongly affected by cooling, but this variation will not appreciably alter the characteristics of majority carrier devices such as iets.

From the foregoing discussion it would seem that GaAs fets should be ideal candidates for cryogenic operation (providing that the channel is n -doped. to provide the all important impurity band for the carriers). These devices are available commercially, in the form of mesfets designed for CHz frequency operation. They are not cheap (about $£ 10$ to $£ 20$ per copy), but we have shown that the right brands do operate very presentably down to the lowest temperatures available, with significantly lower noise than at room temperature. However, there are a number of catches.
Firstly, these devices are optimized for operation in the gigahertz frequency regime, and their performance at frequencies of a few megahertz and below is dogged by large amounts of flicker noise. Particularly in circuit applications (such as Robinson

NQR spectrometers) where the signals take the form of small variations of a large amplitude RF carrier. device nonlinearities mix this lor-frequency noise with the RF signal and it is this which sets the ultimate limit to the noise performance of high level circuitry.

Secondly, the effect of cooling the device. while somet imes increasing the mutual conductance (compare the room temperature and 4 K curves in Fig. 4), also has the effect of reducing the effective output impedance of the device which, in simple terms, may be thought of as the resistance which shunts
the ideal current generator in the fet output equivalent circuit. The consequence is that. despite any increase in the mutual conductance, the maximum available gain of the device is almost always reduced on cooling. and this in turn tends to moderate the improsement in the noise figure.
The change in the device characteristics also changes the small-signal scattering parameters of the mesfets. but we have found it well worthwhile to evaluate low temperature s-parameters for the various device types which we have studied. The low temperature characteristics and hence s-

Fig. 5. Comparison of the characteristics at 4.2 K of three individual devices of the same type (NE720) for two different values of gate bias. The dotted, dashed and full lines respectively represent the three devices.

Fig. 6. Characteristics of a AT8110 at room temperature (full line), 77 K (dashes) and 4.2 K (dots). Note the remarkable agreement between the two sets of low temperature curves which suggests that even when the device is immersed in liquid helium, the effective channel temperature is probably of order 80 K or above.
parameters are highly reproducible between individual devices of the same type and such variations as do occur may be accurately predicted from room temperature measurements of $I_{p, s}$ and l_{p}. for the particular devices. Fig. 5.

The final eatch concerns the power dissipation of GaAs mesfets. A typical specimen may require $\varsigma_{1}, \sim 10 \mathrm{~mA}$ at $\mathrm{V}_{1}, \sim 3 \mathrm{~S}^{2}$ to operate satisfactorily and this corresponds to a power dissipation of 30 ml : At room temperature this figure is tolerable, but at $4.2 \mathrm{~K}^{\mathrm{K}}$ it is sufficient to evaporate liquid helium at a rate of about 30 cm ' of liquid per hour. Given that a typical experiment would use a cryostat of a few litres capacity and that more than one mesfet would typically be used. this feature can set a decisive upper limit to the duration of an experiment. In addition. this power dissipation. coupled with the indifferent thermal conductivity of the ceramic package when cold. implies that the fet channel operates at a temperature of around 80 K even when used in liquid helium. This is corroborated by the ohsenation that the device characteristics and noise measurements taken at 76 K agree closely with the corresponding data measured at 4K. Fig. 6. This higher temperature operation of the fet is however not wholly undesirable since, as mentioned above. Cals offers optimum performance under these warmer conditions.

On applying power to a mesfet the thermal time constants are of the order of microseconds or less, and we have used this to effect a dramatic reduction in overall power dissipation into the refrigerant in some pulsed experiments in which the electronics need only be switched on when signal is present.

The photograph gives some indication of the kind of noise performance improvement which may be achieved hy cooling a GaAs mesfet UHF amplifier in liquid nitrogen. The circuit was constructed on a double sided printed circuit hoard using surface mounted (metal film) resistors and capacitors. A similar construction style is evident in the cold front end of a Robinson magnetic resonance spectrometer for use between 30 and 300 MHz . The unit shown comprises a $P C B$ with active devices, the coil containing the samplel and the tuning capacitor. and the whole assembly fits inside a crostat of 3.5 cm diameter which in turn is inserted hetween the polefaces of a 1.2 Tesla ironcored electromagnet.

In conclusion, we feel that the advantages of "cold" electronics, which have senved us so usefully in the furtherance of fundamental physics research, will come to be more broadly recognised. particularly when alternative methods of generating low temperatures become more widely available.

Already, this is hecoming more realistic with the advent of small closed-cycle refrigerators capable of providing "temperatures of around 10 K from a 13 A mains plug".

The authorsare with Clarendon Lahoratonat oxtord.

O라물 Q

UK Distributor for the complete ILP Audio Range

- Bipolar Modules

15 watts to 180 watts

- Mosfet Modules

60 watts to 180 watts

- Power Supplies
- Pre-amplifier Modules
- 100 volt line Transformers
- Power Slave Amplifiers

UK Distributor for Toroidal Transformers

Standard range available from stock 15VA to 625VA

- Design and manufacture up to 3KVA with fast prototype service

Write or phone for prices and data.

Jaytee Electronic Services
143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL. Telephone: (0227) 375254 Fax: 0227365104

RELIABLE POWER CONVERSION
FOR ALL MARINE, INDUSTRIAL AND MOBILE APPLICATIONS

High Quality - Low Cost

Atlas Inverters
The Atlas range of maintenance free inverters provide exceptionally high efficiency at ratings up to 3000VA (peak power 6000VA) and full protection against the rigours of everyday use. An optional Automatic Economy Switch switches the inverter on and off according to load demand

Skylla Battery Chargers
Our five Skylla fully automatic chargers use the VDL-system patented by Victron-Energie which charges 50\% faster than most other types of unit With charging currents up to 75A, the Skylla range charges both sealed and vented batteries fully up to 100% and adjusts automatically to float charge, ensuring the longest possible battery life. Also ideal for winter maintenance of marine
 batteries.
Ask about the Atlas Combi combined inverter and fully automatic 25A charger. Ideal for small vessels, service vans mobile homes etc.

Microcontroller program development on a PC

chipFORTH is a high level language for microcontroller program development. It combines the FORTH language with a PC based compiler and an interactive development environment. This allows the design, test and documentation of code in about one quarter of the time taken by other high level languages or one tenth that of assembler.

C. L. STEPHENS

As more functions are integrated on to the chip of a microprocessor the cost and engineering advantages of selecting the right micro for the joh over "using the one we always used" become significant. This can only be done cost-effectively if the engineer can isolate himself from the machine code details of the new processor hy using a high level language and, at the same time. keep the cost of his development tools low.

With the aid of a grant from the lepartment of Trade and Industry's "Support for Innovation" scheme. Computer Solutions has developed a new way of working called chipFORTII which provides interactive development on the smallest eight bit microprocessors and microcontrollers without the need for an In Circuit Emulator (ICE). The hardware required for development (a PC and sometimes a low cost rom emulator) is independent of the project's target micro leaving the engineer free to choose the best micro for the joh without having to budget for a new ICE.

Microprocessors are hecoming highly integrated and sophisticated. They regularly include 16 -hit operations. 64K address space. on-chip ram ranging between 128 and 512 bytes, and up to 16 K bytes of on-chip rom, timers, a serial port extra $1 /(0$ lines and AD) converters. The applications themselves are also becoming more complicated, and it is becoming common to find an on-chip rom with l6K bytes of applications code. Users now favour high level programming languages. chipFORTH is based on FORTH and is ideally suited for I/O-intensive operations such as control. instrumentation and communications.

TIIE ENVIRONMENT

The development language requires an IBMPC or compatible to act as the development system. A serial line connects the PC to the serial port of the single-chip micro. The code is compiled on the PC and passed down the serial line to the target system for storage. Interactive high-level dehugging facilities are provided which require less than 256

chipFORTH development environment

Software breakdown of a chipFORTH system

bytes of epron space on the target system. The P° appears to the engineer to be a V^{\prime}) ${ }^{\prime}$ and keyboard attached to a full disc development system running on the CPU of the target.

Of course, this is not the real case. The P'C is performing the compiling and interpreting functions but all time and $1 / 0$ critical actions are occurring on the target board. With this configuration it is possible to use high level commands to execute individual high-level or assembler modules. change variables and access $1 / 0$. New definitions for modules) are added incrementally by the chipFORTH compiler. New high level code can either he loaded in from disc or quickly produced on-line at a keyboard.

Any target system serial output is displayed on the PC screen, while the keyhoard can be used to provide test input to the target board. When more complex protocols (such
as computer-to-computer links) are required, the software can be enhanced to carry out these tests. because all of the PC/target software is written in FORTH.
Alternatively. in the event that the application board does not provide a serial port then another hardware aid (called comRO).M. cost $£ 195$) is available. This device provides a processor-independent serial link to any computer hoard via an eprom socket.

TIIE CONSTRAINTS

Inevitably there are time critical parts of a program which cannot tolerate any overhead. To cope with this chipFORTH includes a full assembler for creating machine code (as opposed to high level) modules. These modules can be executed and tested using the same interactive facilities that are used in the testing of modules written in high level code. The package also contains sample
application programs which show the engineer how to drive chip-specific hardware such as $1 / 0$ ports, high-speed interrupts. ADD converters and pulse width modulated output. These provide valuable models on which ot her programs can be based.

Rom and ram locations are not restricted. For example, when testing hardware for the first time development can take place using only on-chip ram. To demonstrate further this flexibility it is worth noting that on the 8051 it is possible to operate either in single-chip mode or with any combination of separate or overlapping 64 K program and data areas

DEVEIOPMENT HARDWARE REQUIREMENTS

The majority of applications require only a PC. but some also need a low-cost ($£ 200$) rom emulator. This is needed when the target board cannot be partially populated with ram. or when it has separate date and code spaces or when the micro is being used in single chip mode
chipFORTH is available for the following generic family ranges: the Intel 8096 and 8051 series (including the 8031 and other derivatives such as Philips 80552). the Motorola $68 \mathrm{HCl1}$ and $6801 / 6803$ as well as the Hitachi 6301 family. It has also been implemented on the Motorola 6809. Intel 8080 and Zilog 280 . while a version running on the Hitachi 64180 (also the Zilog Z180) includes the ability to use its memory man-
agement system to develop programs as large as 512 Kbyles .

USING chipFORTH - A PRACTICAL EXAMPLE

The Problem. A device is to be designed that will read an A / D converter attached to a thermocouple, linearize the value and generate an analogue output that corresponds to the temperature in degrees Celsius. In addition flexible facilities to calibrate the system and to compare the temperature to upper and lower alarm limits generating relay outputs are required. This unit is to go into high volume production with a number of different options being supported.
The Hardware. The 8031 chip was selected as it is low cost and has sulficient on chip ram for the designs requirements. In on-chip uart will be used to link to a hand held progranmer for calibration and test purposes and one of the on-chip timers will be used to generate baud rates while the other functions as a general millisecond timer for the application. The on chip eprom version of the processor is too expensive for production purposes and while the volume is expected to be high this will he made up of a number of thermocouple types resulting in different versions which makes a masked rom version uneconomical. Because of these considerations the program will be held in low cost off-chip eprom. The product requires that calibration data be held in the
system even when power is lost and this is done using an eprom. The A/D resolution required is better than can be obtained on chip with any of the single chip microprocessors currently available. An A/D convertor will be memory mapped into address COOO hex for the converter and C 002 for the control and status register. A D/A converter is memory mapped to address C004.

THE DEVELOPMENT ENVIRONMENT

Rather than use an expensive In Circuit Emulator (ICE typical price £3000) we use a low cost rom emulator (fast ROM which costs £195). This can be filled with code in less than one second and so no perceptible break in the interactive environment is noticed. A serial link is available for the PC to communicate with the hoard and so the standard chipFORTH configuration will operate without any mocifications.

COMPONENT TESTS

The first thing 10 do when the application hoard is developed is to set about testing the hardware. The basic computer side of the systern is s.mple (chip. eprom, crystal and RS232 connector) so after performing initial continuity and safety checks the next step is o try executing a program on the system. As :his system uses a standard chipFORTH configuration it is straightfonvard to plug the errom into the socket and use this as the

WHEL VAIUIE COINTS

- ANALOGUE AND DIGITAL OPERATION.
- 500 MV SENSITIVITY.
- $20 \mathrm{MS} / \mathrm{s}$ SAMPLE RATE PER CHANNEL.
- 4K RECORD LENGTH PER CHANNEL.
- 3 YEAR WARRANTY.

COUNT ON TEKTRONIX

For further information
call Tekconnect free on 0800525504.

Tekronix LK Ltd, Fourth Avenue,
Glooe Papl, Marlow, Bucks. SL7 1 YD.
Prices subjec: to cha ge without notice.
system test environment rather than write special machine code routines. This is especially true if we are only just starting to learn how to use a new processor.
$\mathrm{C}>\mathrm{CF}$
ok COMPILER LOAD
ok CPC'LOAD EML (Loads typical chip-
okIIEXRT
ok.R
(Load chipFORTH)
loads the cross compiler) FORTH set of words. EMU loads the resulting code into the fastROM emulator)
(Sets base and communications towards the target board) (Requests current CPU register contents)
$\mathrm{A}=\mathrm{E}^{\prime} 3 \mathrm{SP}=\mathrm{FFR}=0104 \mathrm{~S}=\mathrm{EFF}(0 \mathrm{U}=\mathrm{EFF} 4$

This is simply used to contirm communications and in the event that the stack pointers have not been set up correctly will provide diagnostic details. During the application development the content of registers is rarely needed: otherwise, why use a high level language?

What this has done is to test all the following:
i The emulator is connected correctly
ii The serial link between the PC and Applications cards is working
iii The chip and its internal ram are working.
ok $12+. \underline{3}$
This puts values 1 and '2 on to the chipFORTH stack in the 8031's on-chip memory. commands that the values be added logether $(+)$ and then prints the total on the PC (.). which results in the 3 . This has now checked out the ram, stack settings and basic micro and chipFORTH functionality.
okco(!) (a. displays on the PC the contents of the A/D status register from the $8031)$
a is a chipFORTH word that reads a value from a memon'location.
ok 1 C(10)!
(! is a chipFORTH word that stores a value (1) into a location - the control register - this is assumed to perform a conversion).
okC000@. 3 B (so we have requested a conversion, assumed that the manual input time will be enough for it to have been completed and then read back a value)

Now we can change the voltage on the A / D and see what the value is by repeating the last two steps. A more useful thing to do is to write in a program to do this:

: ADD 1 COO2 ! BEGIN C002 (a UNTIL. CoOO (il

starts a definition - ADD is its name. We initiate a conversion and then wait in the BEGIN UNTII. structure until its status is non-zero, indicating completion, at which point we read the converter and leave its value on the stack for later use. Now we can build a second word for testing or to aid in calibration:

: ?A/D BEGIN AD) . CR 400 MS AGAIN:

This loops printing the contents of the A/D) on a new line (CR) every 400 (hex) milliseconds (MS); we could have gone into

chipFORTH allows the development of code on single chip computers.

decimal mode but 400 hex is close enough to one second for our purpose. This word will not get used for anything other than tests but a minor variant of A / D will clearly be of use in the application.

Now let us test the D/A just to check that we have wired up the high and low hytes the right way round!
$\begin{array}{ll}\text { ok0C004! } & \text { (checkvolts) } \\ \text { ok FFFFC004! } & \text { (checkvolts) } \\ \text { okFFC004! } & \text { (checkvolts) }\end{array}$
Sowe can now write

:D/AC004!:

and use the input to provide test data for the output:

: TEST BECIN ADD D/A AGAIN;

Clearly we can now go on to check each of the relay outputs in the same way and also the eeprom.

WRITING TIIE APPLICATION

The application can now be written, probably using some of the words developed during the tests. For this project the top level program is

: GOBEGINAID NORMALISE :LIMITS D/AACAIN:

We already have an A/D and D/A word. the normalization will depend on the type of thermocouple in use and may include switching in cold junction drift compensation. The word ?LIMITS will check whether the temperature is above the high or below the low limit (set up elsewhere), setting the relay outputs if necessary. Each word can be tested in isolation on the target system as was done for A / D before soak testing of the application takes place. The application is now running from a rom socket with onchip ram used for variable and stack so it is only necessary to reorganize startup code to begin executing the word CO on power up and to burn a rom.

The example is a greatly simplified description of a recent application programmed in chipFORTH. In reality the normalization includes complex zero adjustments. converter gain changes, filtering and relay dead-handing. The resulting product is the Protech Sapphire Signal Processing Unit shown. Using another 8031-based hand held controller also programmed in chipFORTH. it is possible to perform either complex factory calibration procedures or on-site adjustments of the Sapphire unit with prompting from the micro to ensure operational simplicity. The flexibility of the high level chipFORTH code proved especially valuable when it was decided to modify and extend the calibration to take advantage of more effective procedures.

Putting AX25 to work

While the idea of sending data over radio is not new, the concept of an automatic adaptive network with minimal spectrum requirement looks particularly attractive for both military and commercial applications.

TThe transmission of digital data over a radio link is not a new idea. Commercial exploitation of packet radio or AXe5 has many new facets. Nuch of the experimental work on the protocol and transmission techniques has been carried out hy radio amateurs, who in many cases are professional engineers. We present the latest developments.

Packet radio originated in the l'SA and is based upon the well known X25 protocol. This derivation has hecome known as 1×25 (Amateur 825). The use of the word amateur should not be taken to mean that the AX25 protocol is in anyway "amateurish": it has been developed he well respected professional sottware engineers who just happen to be amateurs. An American amateur, Eric Scace takes most of the credit for writing the original CCITT X25 proteon and is now a leading light in $\mathrm{A} \times 25$.

THE UKAX 25 PACKET NETWORK

Until appoximately 1985, the terms "packet radio" and "AX25" were largely unknown in the l'K. but following several techonical articles outlining the uses and benefits of 1 $\times 2.5$, combined with the arailahility of reasonably priced equipment, interest grew.

The AX25 packet network provides user: with a unique set of henefits. the mosit important of which is error free exchange of datanser flar radio.

The error free nature hinges on the initiating station getting an acknowledgement hack irom the distant station, and the error checking hits contained in each packet. The error checking is accomplished hy the sending station calculating a certain number hased upon the data being sent and at simple algorithm. This number is transmi'ted along with the data.

At the receiving end the number is recalculated using the same algorithm hased upon the data received and if this number is the same as the number contained in the receised packet of data. then an acknowledgement is sent to the originatingstation.
If the data has hecome corrupted. the received calculated number will not match the number contained in the packet. The receiving station will then transmit a reject message to the sending station causing the sender to retransmit that packet.

Due to the frequency time sharing nature of $A X 25$, it is possible for several data links to operate on the same frequency without causing each other unduc interference. This happens because each station automatically checks the frequency for other traffic before transmitting. therehy reducing the possihility of collisions. Simple low poser FM transceivers are quite adequate for any

Packet radio on VHF: station B acts as an unattended relay point, making communication possible between A and C.
potential user to access the network. providing the set's bandwidth will pass 1200 baud data.

Other benefits include the ability to send and receive electronic mail from other users and the ability to address the whole packet community (in effect a computer circular letter): AX25 networks can handle traffic from BBSs similar to telephone bulletin boards.

There are four essential pieces of equipment required for the use of AX 25 :

1. A suitable transceiver.
2. A Terminal Node Controller, abbreviated to'TNC.
3. A display terminal or VDU.

Item I provides the means of taking data transmissions off air. The frequencies presently in use on the amateur AX25 network are $50.67 \mathrm{MHz}, 70.4875 \mathrm{MHz} .144 .650 \mathrm{MHz}$ and 432.675 MHz . There is also a fair amount of international AX25 traffic centred on 14.1 MHz operating at 300 baud. This article is only concerned with the VHF network.

These frequencies all operate at a modest speed of 1200 baud. It is hoped that a network running at 9600 baud will be operat ional on 1299 MHz in the very near future.

Item 2, the TNC. operates on the demodulated data. and handles all the AX25 protocol requirements of the radio link and passes the dala to item 3 . Usually, in amateur circles. the TNC feeds a VDU or home computer. The essential difference between AX25 and other digital communica-
tion systems over radio (such as RTTY or AMTOR etc), is the ability of each TNC to act as a simple "digipeater". This means that every user on the network has the means of relaying other users' traffic on the frequency to the next more distant station down the chain.
This digipeating occurs in the "background" of the TNC; it doesn't corrupt any traffic the host user may himself he passing. The only effect is a reduction of the throughput rate for his own data.

An example of digipeating is outlined in Fig. 1. Station A wants to exchange data with station C. but due to the distance involved or some obstruction such as the hill, station A cannot directly communicate with station. He therefore instructs his TNC to connect to station C via station B. Hence station B is used as a digipeater

While station B is heing used as a digipeater it simply listens for any packets addressed to it. If it should receive a packet whose header contains its callsign. it then checks to see if it is intended for itself or is to be re-transmitted to the next station listed in the header.
For operation as an unattended fixed link. station A would have a list of routes programmed into the terminal enabling it to communicate with the desired distant station. Station B could be a very basic digipeater consisting of just a radio and TNC. It is possible, in theory at least, to digipeat through up to eight separate digipeaters, the
figure of 8 being defined by the protocol
As there are no acknowledgements between adjacent digipeaters that the message has been successfully received, it is likely that at some point in the chain the message would hecome lost due to interference or a collision of packets caused by two or more transmitters operating at once. The initiating station would therefore have to try several times before getting a successful acknowledgement back from the distant receivingstation.

In having to re-transmit the packet, the data ihroughput and consequently overall haud rate is dramatically reduced compared to a simple digipeating system.

In the early days of packet this simple digipeater worked fairly well, with many stations leaving their equipment turned on 24 hours a day to provide a digipeater network. Due to the rapidly increasing popularity of packet radio, it soon became unpractical to digipeat through more than two or three stations. This was due to the frequency becoming overloaded through sheervolume of traffic. A more sophisticated network had to he devised to handle the increased traffic flow.

An answer to the problem was provided by an American software house called Software 2000. It produced a program, held in eprom. which was compatible with the most popular types of TNC. It called this piece of software NETLIOM

There are at the time of writing several

More complex packet networks are possible through the use of automatic message routeing.
other programs which offer similar facilities to NETROM; some of these other programs offer extra commands for the end user.

Instead of relying upon a digipeating network operating upon a single frequency, it enables cross links from one frequency to another. and to have inter-node acknowledgements. Referring to Fig.2. this means that the initiating station A has only to receive an acknowledgement from local node B. Local node B then takes over responsibility for getting the message passed successiulty to the next node in the chain en route to the final destination. Local node B would usually pass the data via RS2 3 : to another node physically co-sited but on a different frequency. This leaves the network input frequency clear for incoming traffic. Node c would usually operate at a higher data rate and form part of the backbone of the network. Packet node I) would receive the data off the backbone network and acknowledge successful receipt to node C. before passing the data to node E via a local RS:32 link. Node E would then downlink to the destination station F using a different frequency.

A feature of the network software is its ability to route the message automatically to the next node on a different frequency. It
also maintains a list of other active nodes on the network and a record of which node is next in the chain en route to a more distant node. Using the auto routeing ability of the network, it is possible for a station to uplink to a local node, then connect to distant node before downlinking to the required distant station. All the routeing between nodes on various frequencies and bands is taken care of automatically.

As the routeing table is periodically updated by the program, it automatically incorporates new nodes and hypasses any nodes which are no longer active. For the UK network to communicate with other countries some network nodes have an IIF port connected to a suitable radio for use on frequencies below 30 MH 1 z .

Another more innovative method of providing worldwide linking is via satellite. At present the University of Surrey is running a data communications experiment (known as the DCE), which involves the use of an orbiting satellite that has in effect a special type of TNC. This satellite can store up to 9ttk of data which can upload from the Surrey earth station and then down load at some distant earth station. Obviously this system cannot work in real time. but still provides a useful means of passing traffic.

APPLICATIONS

A packet radio network can be used in any situation where data has to he passed errorfree between two points. An example might be the directing of an ambulance to the scene of an emergency, where any mistake in the passing of the exact location could waste valuable minutes. Some motoring organizations are already using a form of packet radio to pass information to their mobiles.

The IS military have been quick to exploit the tactical advantages of a packet network. The adaptive nature of such a radio network allows for an individual station to go off air yet the system still remains functional. Also the relatively short duration of the data transmissions makes interception and jamming more difficult.

It also has other advantages over an open loop data transmission system. Some public utilities, such as the water authorities. have many fixed data links operating in the l'IIF band. If a packet type network were to be used, then it becomes possible to accommodate a larger data flow on each frequency in use, thereby releasing frequencies for other uses. The only penalty is the initial cost. It requires transceivers. TNCsand interfaces at each site.

RF MODULES AND SYSTEMS

LOW NOISE GASFET PREAMPLIFIERS

Aligned to your specified trequency in the range $30-1000 \mathrm{MHz}$. Masthead or ocal use
TYPE 9006 NF 0.6 dB . Gain $10-40 \mathrm{~dB}$ variable. In the range $30-250 \mathrm{MHz}$
$£ 78+£ 3 \mathrm{p} \& \mathrm{p}$
TYPE 9006FM As above. Band II $88-108 \mathrm{MHz}$
£78+ $£ 3 \mathrm{p} \& \mathrm{p}$ TYPE 9002 Two stage Gasiet preamplifier. NF 0.7 dB . Gain 25 dB adjustable. High Q filter. Tuned to your specified channels in bands IV or V $£ 102+£ 3$ p\&p TYPE 9004 UHF two stage Gasfet preamplifier NF 0.7 dB Gain 25dB adjustable. High Q Filter. Aligned to your specified f́requency in the range $250-1000 \mathrm{MHz}$
TYPE 9035 Mains power supply for above amplifiers TYPE 9010 Masthead weatherproof unit for above amplifiers

20 23 pap
$\varepsilon 30+\varepsilon 4 p \& p$

PHASE LOCKED LOOP FREQUENCY CONVERTERS
TYPE 9113 Transmitting. Converts your specilied input channels in the range $20-1000 \mathrm{MHz}$ to your specified output channels in the range $20-1000 \mathrm{MHz} .1 \mathrm{mV}$ input, 10 mW output (+10 dBm). AGC controlled. Gain 60 dB adjustable -30 dB Will drive transmitting amplifiers directly $\quad £ 356+£ 6 \mathrm{p} \& \mathrm{p}$ TYPE 9114 Receiving. Low noise Gastet front-end. NF 0.7 dB . Gain 25 dB variable
£356 + \& 6 p\&
PHASE LOCKED SIGNAL SOURCES
TYPE 8034 Frequency as specified in the range $20-250 \mathrm{MHz}$. Output 10 mW
£ $120+£ 3 \mathrm{p} \& \mathrm{p}$ TYPE 8036 Frequency as specified in the range $250-1000 \mathrm{MHz}$. Outpu 10 mW
$\varepsilon 170+£ 3 p \& p$
TYPE 9182 FM or FSK modulation. 20-1000MHz. Output 10 mW
$£ 248+£ 3 p \& p$
Please add 15\% VAT on total
Full technical specifications available on request

M TRANSMITTERS

$88-108 \mathrm{MHz} .50$ watts RF output
TYPE 908624 V + DC supply
TYPE 9087 Includes integral mains power supply TYPE 9182 FM Exciter $\pm 75 \mathrm{KHz}$ deviation. Output 10 mW

TELEVISION LINEAR POWER AMPLIFIERS
Tuned to your specified channels in bands IV or V. $24 \mathrm{~V}+$ DC supply.
TYPE 9261100 mV input. 10 mW output TYPE 925210 mW input. 500 mW output
TYPE 9259500 mW input, 3 watts output
TYPE 9263 2-3 watts input. 15 watts output
See below for Television Amplifiers in bands I \& II
TMOS RF LINEAR POWER AMPLIFIERS
Tuned to your specified frequency in the range $20-250 \mathrm{MHz}$. or your specified channels in bands I or III. $24 \mathrm{~V}+\mathrm{DC}$ supply
TYPE 910510 mW input. 1 watt output
£230 $+\mathcal{E} 10$ p\&
TYPE 9106500 mW input. 10 watts output $\quad £ 284+£ 12 \mathrm{p} \mathrm{\& p}$
TYPE 91551 watt input, 30 watts output
TYPE 91585 watts input. 70 watts output
327 : 12 p \&

TMOS WIDEBAND LINEAR POWER AMPLIFIERS TYPE 92461 watt output $100 \mathrm{KHz}-175 \mathrm{MHz} 13 \mathrm{~dB}$ gain TYPE 92474 watts output $1-50 \mathrm{MHz}$ 13dB gain TYPE 90514 watts output $20-200 \mathrm{MHz} 13 \mathrm{~dB}$ gain TYPE 91764 watts output $1-50 \mathrm{MHz} 26 \mathrm{~dB}$ gain TYPE 91774 watts output $20-200 \mathrm{MHz} 26 \mathrm{~dB}$ gain TYPE 917320 watts output 1.50 MHz 10 dB gain TYPE 917420 watts output $20-200 \mathrm{MHz} 10 \mathrm{~dB}$ gain TYPE 927140 watts output 1.50 MHz 10dB gain TYPE 917240 watts output $20-200 \mathrm{MHz} 10 \mathrm{~dB}$ gain TYPE 9235 M watts output $20-200 \mathrm{MHz} 10 \mathrm{~dB}$ gain £108+ $£ 4 \mathrm{p} \& \mathrm{p}$ ¢108 $\mathrm{c} 4 \mathrm{p} \& \mathrm{p}$ £108 + £4 p\& £254 + £6 p\&p £254 + £ 6 p\& $308+£ 20$ p\& £308 + £20 p\& £616+£20 p\&p £616 + £20 p\&p iers $164+$ \&12 p\&p

RESEARCH COMMUNICATIONS LTD

Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG. Tel: 0303 893631. Fax: 0303893838

CONQUERING NEW HEIGHTS

PROFESSIONAL QUALITY PATCHING AND SWITCHING EQUIPMENT

FOR DIGITAL AND ANALOGUE SYSTEMS.

"NORMAL THROUGH" PATCHING AND SWITCHING EQUIPMENT FOR THE FOLLOWING INTERFACE TYPES: V11, V24, V35, X21, X27, G703, RS232, RS422, RS449 VF AND COAXIAL. NATO, MIL STANDARD AND BABT APPROVED SYSTEMS. DISTRIBUTED MATRIX SYSTEMS FOR UP TO 4000 USER PORTS.

FULL CATALOGUES AVAILABLE ON REQUEST.
THE SWITCHING SPECIALISTS. . . .

FESHON SYSTEMS

PINDEN, DARTFORD, KENT DA2 8DX.
TEL: 04-147 8111 (SIX LINES) FAX: 04-147 8142 TELEX: 96395 (FESHON G)

COMMERCIAL QUALITY SCANNING RECEIVER

The IC.R7000, odvanced technology, continous coveroge communications recervel has 99 programmable memories covering anciaft, marine FM broadcast. Amateur radio, television and weather satellite bands Foi simplified operation and quick funing the IC-R7000 features direct keyboard entiy Precise fiequencies can be selected by pushing the digit keys in sequence of the fiequency or by tuining the main tuning knob FM wide'FM natiow AM upper and lower SSB modes with 6 luning speeds $01,10,5,10,125$ and 25 kHz A sophisticated scanning system piovides instant access to the most used frequencies By depiessing the Auto M switch the IC.R7000 automatically memor ises tiequencies that are in use whilst it is in the scan mode, this allows you to ecall fequencies that weie in use Readout is clearly shown on a dual-colou tluorescent display Options include the RC 12 infio-red remote controlle, vorce synthesizer and HP I headphones
 Icom (UK) Ltd. Tel. 0227363859 Telex. 965179 ICOM G N.B. Authorised Welsh distribution by: M.R.S. Communications Ltd. Cordiff Tel- 0222224167 Please send information on Icom products \& my nearest lcom dealer. Name/address/postcode:
\qquad
Status: ... Tel:
Post to:Icom (UǨ) LTi. Dept. WW, FR̈EEPOST, Herne Bay, KentCT6 8BR

INTELLIGENT MEASUREMENT AND CONTROL

* MCS. 52 basic with full floating point and trig functions
* Four 12 bit A to D converter
* One 12 bit D to A converter
* Battery backed real time clock
* 32K Battery backed RAM
$\star 16 \mathrm{~K}$ Eprom and on board Eprom programmer
* Six by eight bit digital ports
* RS232 and networked RS485 interface
* Serial printer port
* Direct drive to a LCD/Vacuum fluorescent display and user defined keypad or VDU
* Automatically calibrates to any dumb terminal

WARWICK INDUSTRIAL ELECTRONICS LTD

UNIT 19, RIGBY CLOSE, HEATHCOTE INDUSTRIAL ESTATE, WARWICK CV34 6TH雾 NATIONAL (0926) 334311 - NORTH WEST (056 587) 3540

The popular image of computer datacomms stems from films like Wargames depicting seventeen year old hackers blithely accessing Pentagon computers and accidentally starting World War III. Tre reality is much less romantic. Nevertheless, if the Pentagon was foolish enough to atlach its computer systems to the other end of a telephone line then an ordinary PC plus a nodem is all that the hacker would need to breakin.

Recent technological changes have made it ar easier for the average Harry Hacker to get started in datacomms. For example, telephone handsets are no longer hard wired in o junction boxes. British Telecom now installs its standard square junction boxes in oo which the public can plug not only plones but modems too. Armed with no more than a modem, a micro, suitable communications software and a list of illicit teiephone numbers anyone can get arrested fo- looking into Prince Philip's private electronic mailbox!

Not all on-line systems are private - there are in fact services which actually welcome aciess from the general public. The best krown of these are electronic mail (often abbreviated to email) services, such as Telecom Gold, along with information services suach as Prestel. Email services are growing
more sophisticated and can now be used for sending faxes as well as telexes. Prestel is slightly uriusual in that it
provides information not in a plain test format but in the form of pages which carry colour and graphics - although only of a very basic level. Strictly speaking Prestel comes under the category of a videotext service and as such requires special software. More of this later.

Information is also widely held in on-line databases, examples of which are Fintel (financial information) and Profile (which

> Plugging a computer into a telephone socket provides access to computer subculture of great diversity. Examination of the digital flora and fauna will even turn up a few useful species.

Abstract

carries the text of newspapers and other learned journals). However, amateurs weren't slow to get in on the act, and soon were using their own micros to act as 'hosts' for public messages. Such a service is now described as a bulletin board although most boards now carry out a range of services including distributing free or 'public domain' software. Boards have now evolved way teyond simplemessaging systems.

BAUD RATE

In order to go 'on-line', however, a modem is a must. A modem is the physical device that has the job of taking digital output from a computer and transforming it into audio tones which travel easily down standard telep one lines. All that is happening is that the signal is modulated and then demodulated by a compatible device at the receiving end. [Hence the name is an abbreviation of MOdulator/DEModulatorl. In the early days the method of operation employed by modems was known as Frequency Shift Keying (FSK) whereby each modulation represented one bit of data. With this type of modem its speed was expressed in numbers of modulations (measured by baud rate). Hence a 300 baud modem roughly translated into 300 bits per second (b / s).

The next move was to play games with the available bandwidth of the telephone line. When BT engineers were designing what eventually became Prestel, they came up with a modem which could receive at 1200 baud to give something approximating to an acceptable screen refresh time (ie $1200 \mathrm{~b} / \mathrm{s}$). This didn't leave much room for sending any information back but they just managed to squeeze 75 baud out of the remaining bandwidth. In fact 75 baud was fast enough for keying in at the speed of a competent typist. Thus the split baud rate 1200/75 modem was born.
As always a race to improve modems

Indepth - Datacomms

developed and speed was the obvious target. An ordinary telephone line had sufficient bandwidth to cope with two 600 baud channels - one for receiving and one for sending. The next solution was to make each modulation carry two bits of information instead of one. This became known as DPSK (Differential phase shift keying). Likewise $2400 \mathrm{~b} / \mathrm{s}$ modems are still using 600 baud but getting four bits with QAM (quadrature amplitude modulation). Further improvements followed with more bits being squashed into each modulation. It is currently possible to purchase modems which will carry 14400 bits per second in both directions. Hence high speed modems are designated in ternis of their bits per second rate while low speed modems are still measured by baud rate. Sadly this distinction has resulted in a great deal of confusion.

Clever technology is no good just on its own. The user must have some hope of being able to connect the modem to another bought from a different manufacturer. Naturally in Europe a body was formed to draw up relevant specifications and this is known as the CCITT (International Telegraph and Telephone Consultative Committee). Thus 300 baud became the CCITT's V21 standard and 1200/75 baud modems conformed to V23. Over in North America, modem manufacturers were following rival standards set by the Bell telephone company. Fortunately the Americans have subsequently decided to fall into line and now follow CCITT standards for $2400 \mathrm{~b} / \mathrm{s}$ and above. Luckily the Bell and CCITT for 1200 b/s are virtually identical too!

MODEMS

Obviously modems can be equipped with all kinds of bells and whistles so it would be best to out line some of their more useful features here. To save the user from having to plug a handset into the back of the modem and physically dial a number, most modems will now do the dialling automatically - hence they are 'autodial'. For those who want to set up their own remotely accessible system. a modem can be made to automatically answer incoming calls. This is called 'autoanswering'. Then rather than requiring the user to physically open up the modem's casing and mess around with jumpers and dip switches, manufacturers found life was much easier if the moden altered its own configuration through software commands. The company which set the standard in this area was Hayes Microcomputer Products based in Norcross, Georgia. The Hayes command set (which starts with the letters AT standing for attention) has now become a de facto standard and virtually all modems sold in this country for dial-up use are referred to as Hayes compatible.
The only other feature of a modem possibly worth worrying about is error correction. This has become almost indispensable with the rise of data throughput speeds Error correction deals with the problems

	BOARD	STDCODE	NUMBER	AREA
1	PSYCHOBABBLE	0534	52086	CH
2	JETSET	0481	712597	CH
3	MASTER CONTROL	0534	58929	CH
4	HAWKS CASTLE	0344	411621	E
5	ICHTHUS	0734	484847	E
6	THE VILLAGE	01	4642516	L
7	DATA CONNEXION	01	4785464	L
8	SWl0 WAREHOUSE	01	3765349	L
9	BODY MATTERS	01	6037581	L
10	CHARITY HOUSE	01	6737294	L
11	CRYSTAL TOWER	01	8862813	L
12	CO-OP BOARD	01	3166488	L
13	PARADIGM OPUS	01	2518255	L
14	TBBS ROVEREED	01	5424967	L
15	PD SIG B	01	8642633	L
16	DEC CATT HOUSE	01	2003033	L
17	CENTRAL OPUS	021	7111451	M
18	ACADEMICS	021	70596:7	M
19	TUG II	021	4441484	M
20	STARGATE OPUS	0476	74616	M
21	MACTEL HQ	0602	817696	M
22	C-4-CHRIST	0926	28294	M
23	WELLAND VALLEY	0858	66594	M
24	THE GAS LAMP	0706	358331	M
25	ACCESS FIDO	0905	52536	M
26	MACTEL GREENBOX	0602	455444	M
27	POACHER OPUS	0476	62450	M
28	COREY TOWN OPUS	0536	205113	M
29	NEPTUNE BBS	0274	573481	NE
30	LEEDS UNIVERSITY	0532	445276	NE
31	DEEP THOUGHT	0247	270199	NI
32	MCIS	061	7737739	NW
33	ULTIMATE SOURCE	061	6789580	NW
34	TEE PEE OPUS	061	4946938	NW
35	ARGUS PROJECT	091	4900327	NW
36	WEST END	041	3371519	S
37	JOCKS AWAY!	031	2255368	S
38	OPUS CLYDE	041	8807863	S
39	MACTEL PHEONIX	0473	610139	SE
40	AIRTEL	0342	717800	SE
41	SENTINEL	0628	781429	SE
42	GOSPORT APRICOT BBS	0705	524805	SE
43	BOB'S BIZARRE	0394	279644	SE
44	DATASOFT	0460	54615	SE
45	EXCHANGE TBBS	0767	50511	SE
46	STAINES	0784	65794	SE
47	SOFTNET B	0895	420164	SE
48	TRINITY 1	0392	410210	SW
49	WORLD OF CRYPTON	0458	47608	SW
50	ABSOLUTE ACCESS	0425	471370	SW
$\mathrm{CH}=$ Channel Islands - $\mathrm{E}=$ East of England - L=London - M=Midlands $N E=$ North East - NW=North West - NI=Northen Ireland - S=Scotland SE=South East - SW=South West:				

caused by line noise 'corrupting' data is it is being transmitted. The usual method is to check blocks of data and ask the originating modem to resend any which have become corrupted. The MNP series of protocols invented by Microcom are rapidly establishing themselves as an industry standard but watch out also for the CCITT's V42 standard which includes both MNP and a rival protocol-I.AP-M.
The easiest way to go on-line with a micro is to run a program which allows it to pretend to be a popular terminal such as a DEC VT52. This is known as terminal emulation. But what is the point of using a micro as a "dumb' terminal when it is quite capable of handling more intelligent tasks such as file transter? It didn't take long for budding hackers to write their own communications software and in the process int roduced a file transier protocol known as Xmodem. The attraction of Xmodem is that it permits file transier between totally incompatible systems even if the actual file contains machine code!
The good news is twofold. Firstly suitable
communications software exists for virtually every kind of microcomputer in existence: even the Sinclair ZX-81! Secondly such programs can be obtained for little or no cost. The authors of many terminal programs have placed their work in the public domain' which means anyone can distribute it as long as no charge is made. There is a second category known as 'shareware' Shareware originated in the USA where the idea is that the program can be freely copied. If, however, the user feels the program is worth something then the idea is to send off a registration fee to obtain a manual plus future program upgrades, etc.

Shareware is especially popular in the world of IBM PCs and compatibles. There are a number of extremely good comms packages available as shareware. Good examples are Procomm and PC-Talk. This kind of progran is available from commercial companies like Shareware Marketing or from the PC Users' Group. In general, the user groups associated with individuat machines or operating systems will be an excellent source of software. Commercially produced packages

Indepth - Datacomms

such as PMS' Dialup ($£ 50$) and Softklone's Mirror II are recommended (£70).

There are a number of features which make for an ideal comms package. The first is a viewdata capability which provides access to Prestel and its section specifically aimed at computer users - Micronet. Sadly software of US origin often lacks viewdata compatibility as the system isn't widely used over there. Incidentally French software will be compatible with Teletel, which is similar to, but still incompatible with, Prestel. Those which can boast viewdata emulation also need to have a 'Mailbox' editor. This feature enables text messages to be prepared off-line for subsequent transmission to Prestel's electronic mail system, Mailbox.
Apart from Prestel emulation, a communications package should also include support for text based systems. This is quite simple and basically involves emulating a standard TTY (teletype) terminal. Some programs just support DEC VT52 emulation which for all intents and purposes is the same. Originally it was necessary to instruct comms software to recognise a particular kind of modem. Nowadays virtually all modems will recognise Hayes commands so there is no need. As a by-product of this, most packages contain a dialling directory.

The next feature to look for in a comms package is support for what are known as "auto-logins.' It is general practice with on-line systems that before providing anyone with access, a recognised user name or identity number along with a password has to be suplied by the caller. This process is known as logging on. As these have to be keyed in exactly, it soon becomes a boring. repetitive process. Thus most packages allow the user to store identity numbers and passwords against an entry in the dialling directory for a specific service. As soon as the software detects that a connection has beenmade, this \log-on string is then uploaded automatically.

The drawback with low-cost modems is that they tend to be difficult to operate. making life difficult for the beginner. For example, ex-GPO modems have been on sale for as little as $£ 30$. On the other hand, they were built like tanks and about as easy to handle. The next cheapest option is called an 'acoustic coupler'. These tend to suffer from data corruption caused by line noise more than the directly connected type of modem. Single standard modems start at around $£ 70$ but the best advice is to consider one which supports both V21 and V23. An example would be the Pace Linnet for around $£ 130$. Those with enough money should consider Amstrad MC2400 which for $£ 199$ plus VAT provides four speeds including $2400 \mathrm{~b} / \mathrm{s}$. There is another good way of obtaining a modem cheaply. Paying Micronet's annual subscription of $£ 79.95$ brings with it a free GEC Datachat (123 only) modem.

CABLE TANGLE

One of the greatest datacomms dangers
comes from attempting to use a cable not specifically designed for modem connections. [Not for nothing did Spitting Image come out with the RS232 cable song!!. The required interface between the computer and the modem is always a serial port conforming to the RS232C or RS423 standards. This is frequently used for printers but the pin connections are not the same. For a modem configuration, pins 2 and 3 must not be cross connected. The best advice is therefore to obtain the cable from whoever supplied the modem, or buy a card modem which fits inside the computer's casing and therefore needs no cable.

Occasionally there are problems when trying to use a modem on a switchboard extension line. The normal method of signalling a number to the telephone exchange is called pulse dialling. This system has been supplanted by the more efficient DTMF tone dialling method as used by PABXs. However, not all modems support tone as well as pulse dialling s_{0} it is a point worth checking. Luckily, domestic subscribers who happen to be connected to System X exchanges can use tone dialling from the comfort of their homes.

Armed with comms software and a working modem. the next move is to find a system on which to test them. With Prestel it is quite simple. Dial 618 (or 01618 1111). Then use fourteen number $4 s$ when asked for an identity number and password. This will provide access to some demonstration pages supplied by Micronet. There are ways of doing something similar with Telecom Cold. It is at this point that some knowledge of modem speeds/standards becomes important. On-line senvices will have a number of ports supporting all the popular communications speeds. However, the telephone number may vary according to supported speed. Hence Telecom Gold's 301 baud $/ 21$ port is 015833000 whereas for V2'3 it is 015831275.

Certain systems are sensitive to data protocol settings a really annoying trait. Put simply some still use a "parity" bit whereas others have ceased this outdated practice. Thus for Prestel and Telecom Cold, users should select (with an option buried somewhere in the comms program) even parity along with seven data bits when calling these systems. For bulletin boards, however. select eight data bits along with no parity. It should be easy to tell if the setting is wrong. The screen will fill with a jumble of characters with the result that only the occasional word will he legible.

BULLETIN BOARIS

The best means of learning ahout datacoms is to call a bullet in board. The majority make no charge for accessing the service. The cost of the telephone call is the only expense. A firm word of warning here. Bulletin buards are addictive. It is very easy to forget the time and stay connected for half an hour at a time. The result is a quarterly bill of around $£ 460$.
which is not uncommon. Software which displays the time spent on the current call is soon appreciated too! Another wise move is to call local boards.
To go with this article is a list of boards supplied by Stephen Adams. He is the sysop (system operator) for the Sinclair London board. Stephen has broken down his list by geographical areas so that all readers should be able to find a board moderately close to where they live. Not all boards operate 24 hours a day like those included here, some are only run in the evenings and at weekends. Most boards can now support a range of data speeds but those which support 1200/75 only are almost undoubtedly viewdata only. Virtually every bulletin board (or BBS for short) carries a list of other systems which the caller can download. The UK is blessed with a substantial number - Stephen Adams' list is condensed from approximately 400 boards. Those unable to access his board [01 2493238 | can write to him at the address given below for a list.
To generalise somewhat, most bulletin boards tend to have one theme. This might be a type of micro - Sinclair, Acorn. Amstrad, etc - or it could be an operating system. CP/M, for example, is still relatively popular. Boards frequently offer sections for special interest groups such as radio amateurs or even hackers. Then there are boards which have been effectively turned into adventure games. Into this category rell the wonderfully named Mega Anchovy but sadly this type of board is somewhat ephemeral.

Out of all the on-line electronic mail senvices. Telecom Gold is by far the most popular. It carries a host of individually tailored senices: MicroLink is aimed at computer users. Other electronic mail providers include One to One, and Mercury. Another email service worth a mention is CIX (Compulink Information exchange) which is virtually a commercial bulletin board senvice but features 'conferences' on topics of virtually every hue and shade.
Experience has shown that most enquiring minds want to try their hand at hacking. Hugo Cornwall's Hackers' Handbook is required reading. It mentions such obscurities as PSS and JANET. These are data networks which can be accessed from an ordinary telephone line. Packet SwitchStream (PSS) is BT's public data network. It connects to all the major on-line database and electronic mail suppliers. It is necessary to have a password known as a NUI (network user identity) to use PSS. This can nearly always be obtained from the information provider and is much cheaper than joining individually. The Joint Academic Network (IANET) is intended as a network for universities to share computer resources. Students have a habit of using it for other purposes, however.
Useful address:
List of BBS - Stephen Adams. 1 Leeswin Road. London N16 7NL.

In depth - Datacomms

Local area network technologies

Abstract

We provide a summary of local area network technologies currently being incorporated into standards, particularly the Government Open Systems Interconnection Profile (GOSIP). Proprietary technologies outside the OSI standardisation sphere are not included; their importance will decline over the coming years as European procurement initiatives push the market down the OSI route.

ANDREW HARDIE

At the moment you cannot buy a lan system (i.e. hardware and software) that fully implements an OSI functional profile but you can buy the lower-level technology on which such future lan systems will be based. This article considers the only hardware of that available technology and makes no attempt to cover the large and complex subject of the software.

The physical transmission medium used in lans is either copper-based, using twisted pair or coaxial cable, or optical fibre based. Some individual lan technologies can support more than one type of media, usually depending on different speed options.

Two different data transmission techniyues are used on the physical media: baseband and broadband. Baseband is the familiar voltage level signalling technique like TTL levels or RS-2.32 in which each bit value is signalled by a particular voltage level (or current in the case of a 20 mA loop). Broadband employs the use of radio frequency modems to encode the bit values as frequen-
cies. Use of multiple frequencies allows different signals to be multiplexed down a single cable.

TOPOLOGY

Topology refers to the way in which the transmission media are interconnected to form a complete system. There are three main types of network topology: star, bus and ring. In the star configuration, every node on the system has an individual connection to a central point where the routing is controlled. The obvious example of this is a telephone exchange. Star topology has not proved popular in lans.
In the bus configuration, every node on the system is connected via a tap of some sort to a single network cable. Obviously, this introduces the problem of deciding when each node should send or receive, this being the task of the access protocol which usually operates on the hasis of time division - i.e. only one node sends at a time. determined by the protocol. Only a broadband system can
support more than one node sending at a time by virtue of its frequency subdivision of the media bandwidth.

In a ring configuration, every node is connected to its two neighbours, usually on a one-way hasis, i.e. it receives only from its neighbour on one side and transmits only to its neighbour on the other side, and so on until a complete ring is formed. Thus a message from one node to the adjacent node from which it receives must pass round almost the entire ring to reach its destination, passing through every node on its journey. Again, deciding which node speaks when (in originating a message, not in passing one on) is on the basis of time division.

ACCESS METHOI)

The three access methods in widespread use. out of those currently defined are CSMACD. Token Ring and Token Bus. These three, together with the much less popular Slotted Ring, are defined in the fundamental 880 ?

OPEN LEARNING TECHNICIANS \& ENGINEERS

Electricity and Electronics
Digital, Microprocessors, 8 Bit/16 Bit
Electric Power Machines \qquad
Controls, Synchros, Servos
Hydraulics, Pneumatics
Instrumentation and Process Control
Refrigeration, Air Conditioning, Heating
Telecommunications, Telephony, Radar
Mechanical Power Training
Robotics
Fault Diagnosis, Troubleshooting
Audio Visuals

SOLUTIONS!
 Lob-Kolt ${ }^{\oplus}$ (U.K.) Ltd.

4A Harding Way, St Ives, Huntingdon, Cambs. PE17 4WR
Tel: 0480300695 Fax: 048061654
ENTER6ONREPI.Y CARI)

In depth - Datacomms

series of international standards that form the physical layer standards upon which the OSI functional profiles rest.

CSMACI) stands for Carrier Sense, Multiple Access/Collision Detect and has to be the worst mouthful of an acronym around: why didn't they call it CaSMACol)? At least you can say that! It is used in topologies such as Ethernet. It is hased on the principle that each node with a message to send listens to the hus, waits for any messages in progress to finish. waits a short period, sends its message and listens while doing so to detect any collision caused by another node doing the same. If a collision is detected the node waits a further short. hut random, period and tries again. The snag with this technique is that when the bus starts to get busy the collision rate rises and the throughput fails, both at an alarming rate.

Token Ring uses an electronic equivalent of the old railway token concept to determine which train has permission to use a length of single track. It is more complicated in that there are multiple levels of priority and other features but, essentially. a node with a message to send waits for an electronic token to arrive. accepts it. inserts its message into it and sends it on. Each message contains the address of the node for which it is intended and each node checks all incoming traffic for tokens, messages for passing on and messages intended for it. Tokens are passed on unless needed for outgoing messages as are messages for other nodes. Only messages for that particular node are copied to the host attached to that node: they are then sent on round the ring. marked to indicate their acceptance so providing the sending node with an acknowledgment.

Token Bus uses tokens in a similar way to a token ring hut with those changes caused by the different underlying topology. Effectively. a logical ring is created on a physical hus with each node able to send directly to the intended recipient without the data passing through all the intenvening nodes. The nodes' sequence is determined by a numbering scheme instead of a physical ring connection.

EMERCING TECLINOLOCIES

Although opticalfibres are heing included in the standards for CSMNCI) and Token Bus. they are really just physical layer replacements an alternative to copper-based connections. Only one standardised network technology is specifically for optical fibres. FID) (Fibrel Distributed D)ata Interface).

This takes the form of a dual ring capable of up to 1000 nodes and a maximum data rate of $100 \mathrm{Mhit} / \mathrm{s}$. It doesn't yet form part of the OSI family and the few implementations that exist are large and expensive. If the cost comes down enough it could become the dominant high speed IAN technology. In enhanced FDIDI 11, ahle to carn digitised. live speech is on the way: ing that on Ethernet!

The big sleeper - 1 SIDN , the Integrated Services Digital Network, is nothing less than the ultimate replacement of the world analogue telephone system, the largest manmade network in existence. It is an all-digital system offering $64 \mathrm{kbit} / \mathrm{s}$ point-to-point data transfer channels which can be used for speech. data, high-speed fax, slow-scan video or anything else that can be carried over a $64 \mathrm{kbit/s}$ "hit pipe". Standardisation is we.l under way and products are starting to emerge following pressure by the European Commission to keep things moving. When operating it will, essentially, provide a gigantic star topology network operating on a local, metropolitan, national and international scale.

At the lan level, the new generation of Integrated Services I'BXs will route connections within a site and route data for remote destinations over the extermal public ISINN. The day' of a digital telephone on your desk with a 64 kbit s port on the hack offering you high speed $X .25$ links to anywhere on the network must appeal to all those who have used slow speed PADs. Provided that the standardisation problems of configuring $0 \leq 1$ lans over an ISIDN can be solved and existing huilding telephone wiring can be used (much claimed, hut not yet conclusively proved the ability to install a lan in a building without special wiring and the potential for instant wide area connectivity may be enough to offset the relatively low data transfer rate (compared to other lan lechnologies).

Ironically, the one lan technology you might encounter most often in the future, because it will he in your home. may he one you have probably never heard of. HES, the I lome Electronics System, was regarded as a hit of a joke by some members of the standardisation community when it first surfaced about three years ago. It has come a long way since then and the sheer versatility offered by the overall system is impressive. Are you ready: It will work over a twisted pair, coaxial cable optical fibres, power lines, air borne infra-red and radio links.

It is intended to carry everything from slow speed lighting control, security. white goods (the gadgets in your kitchen) and brown goods the gadgets in even other rooml. through telephone, voice, hi-fi grade audio switching, and high speed data, to ISDN. fax and video routing. It will link many types of medium in a single installation through gateways and universal interfaces on the attached devices, makins them independent of the transmission medium.

Network addressing could he a key issue though, tostop your TV'remote control from inadvertently defrosting next door's freezer! If the low-level stuff is put into silicon chips and the far-East manufacturers start using them then it could all happen.

CONNECTORS USEI INLANS

For the copper-based technologies the connectors used with twisted pairs are the 15 way I)-type, the MIC Medium Interface

The table below shows which lan technology uses which connector.

Technology AccessCSMAACD Tap		Media Connector	
CSMACDCSMACD	Bus	Coax	N type ("thick" Ethernet)
	Bus	Coax	BNC ("thin" Ethernet)
	Bus	TP	8.pole modular
	Bus	Coax	F.type (broadband)
	Bus	Fibre	FSMA
Token Bus	Bus	TP	8-pole modular jack
	Bus	Coax	BNC
	Bus	Coax	F-type
	Bus	Fibre	Duplex
Token Ring	Ring	TP	4 pole MIC
Slotted Ring	Ring	TP	15 pole D.type
$\begin{aligned} & \text { ISDN } \\ & \text { ISDN } \end{aligned}$	Basic	TP	8-pole modular jack
	Primary	TP	8-pole modular jack
FDDI	Ring	Fibre	Duplex
(T P = $\mathrm{T}_{\text {wist }}$	d Pair)		

Connector and the eight-way modular jack (like the L'S telephone connedtor, hut eight pole). For coaxial cable, many familiar connectors are used like BNC. N. F and some perhaps less familiar types like TNC and twinax. Optical fibres use either FSMA. the fibre version of the widespread SMA miniature RF coaxial connector. and Duplex. a special twin fibre connector developed for FDIDI.

SALE

We also have a range of semiconductor, switches, potentiometers, linear dots, IC sockets and much more.

We also buy component and computer stocks.
For full list send 50p and addressed envelope.
Write to:
COMPUTER PLUS
8 Acres, Great Totham Road, Wickham Bishops, Witham, Essex CM8 3NP
Telephone: (0621) 892049
ENTER 42 ON REPLYCARI)

SPICE• AGE Non-Linear Analogue Circuit Simulator £245 complete

Those Engineers have a reputation for supplying the best value-lor-money in microcom-puter-based circuit simulation softwere. Just look at what the new fully-integrated SPICE Advanced Graphics Environment (AGE) package offers in ease-of-use. periormance and facilities:
SPICE AGE performs four fypes of analysis simply. speedily, and accurately

- Module 1 - Frequency response Module 3-Transient analysis
- Module 2-DC quiescent analysis Module 4 - Fourier analysis

Frequency response of a low pass filter circuit

2 DC Quiescent analysis
SPICE AGE analyses DC voltages in any network and is useful. for example, for setting transistor bias. Non-linear components such as transistors and diodes are catered for. (The disk library of network models contains many commoniy-used components - see below). This type of analysis is ídeal for conlirming bias conditions and establishing clipping margin prior to performing a transient analysis Tabular results are given lor each node the reference node is user-selectable

Impulse response of low pass filter (transient analysis)

4 Fourier analyses
SPICE•AGE performs Fourier Irans forms on transient analysis deta This allows users to examine transient analy sis wavelorms for the most prevalent fre quency components (amplitude s plotted against (frequency). Functions as a simple spectrum analyser for snapshot of tran sients Automatically interpolates from transient analysis data and handles up to 512 data values. Allows examination o wavetorm through different windows Powertul analytical function is extremely easy to use.

1 Frequency response
SPICE•AGE provldes a clever hidden benefit. It first solves for circuil quiescence and only when the operating point is established does it release the correct small-signal results. This essential con cept is featured in all Those Engineers soltware. Numerical and graphical (log \& (in) impedance, gain and phase resulis can be generated. A probe node leature allows the output nodes to be changed Output may be either dB or volts: the zero dB reference can be defined in six differ ent ways.

DC conditions within model of 741 circuit

3 Translent analysis
The transient response arising from a wide range of inpurs can be examined. iypes of of excitation are offered (impulse sine wave. step, triangle, ramp, square and pulse train): the parameters of each are user-definable. Reactive components may be pre-charged to steady-state condition. Up to 13 voltage generators and current generators may be connected Sweep time is adjustable. Up to 4 probe nodes are allowed, and simultaneous plots permit easy comparison of results

If your work involves designing, developing or verifying analogue or digital circuits, you will wonder how you ever managed without Those Engineers circuit Simulation Software.
A good range of properly supported and proven programs is available and our expert staff are at your service

The Kernel Logic Machine

Cost-effective array of a million computers is ideally suited to Europe's air traffic control problem, weather forecasting, and a host of hitherto impossible tasks
\section*{IVOR CATT}

0ccasionally, a number of technical advances come together to give a quantum leap forward. This occurred recently as a result of three factors - the increased density of components on an integrated circuit, the successful fabrication of fault-tolerant complete integrated circuit wafers at Anamartic Ltd, and a new approach to structuring these wafers called the Kernel Logic Invention. The result is that the latent, explosive power of semiconductor technolo. gy can be unleashed - one million compluters working together in an array to solve large, complex problems at high speed.

INTROIUCING KEIRNEL LOCIC

An improved approach to wafer-scale integration became possible back in 1972 because chips of reasonable yield contained. or would soon contain, as many as 10.000 components. Using an external piece of special test circuitry composed of 100 TTL . packages, a single row (spiral) of perfect chips could be 'grown' into an imperfect wafer each time power was switched on to the machine (see panel). Burroughs Corp. (now Unisys) at Cumbernauld built threeinch working wafers which demonstrated the feasibility of the spiral approach. The same successful team of engineers later moved to Sinclair Research Ltd (renamed Anamartic), where in 1985 they successfully manufactured the first pre-production working wafers intended for the market. A four-inch wafer full of 16 Khit drams used the spiral algorithm to interconnect the good memony, bypassing the bad, to a total of 0.5 Mbyte on the wafer. However, hecause of the slump in the ram market at the time, this product was never brought to market. In 1989. Anamartic will market a solid-state dise made up of a pack of six-inch wafers containing IMbit drams to a total of about 20 Mbyte per wafer. Its size could be something like a six-inch cube.

In 1987. 15 years atter the spiral algorithm was patented. the number of components in a chip of reasonable yield had risen to one million, an increase of one hundred times heyond the vintage of that invention. The Kernel Logic patent exploits the fact that much more "fault tolerance" capability can be designed into today's dense chip.
To understand kernel logic, think in terms of the faults in a wafer. One model

HISTORY OFWAFER SCALE INTEGRATION

The first attempt to achieve WSI was at Texas Instruments in the USA in the 1960's. A wafer was made with an array of ordinary, identical chips with conventional bonding pads. These chips were then probed in the usual way, and a record of which were good and which were faulty was fed into a large computer. The computer designed a unique final layer of metallization which would interconnect the good chips on that particular wafer and avoid the bad. The major problem with this approach, and the reason why it failed, was that it was necessary to assume that this last layer of metallization would have 100% yield.

The other famous debacle in WSI was at Trilogy. Amdahl, the father of the IBM 360 series of computers, left IBM and succeeded in taking a share of their massive market with his company Amdahl Corp. He then ventured out to beat IBM's fastest computers for speed by cramming an IBM look-alike machine into five wafers, where signal lines and therefore signal delays would be less. Amdahl raised $\$ 250$ millions on Wall Street in the biggest start-up in history. His wafers used a conventional approach to fault toler. ance. A wafer was very complex, and had over one thousand wires bonded to it. The failure of his WSI and of his company in the early 1980's was the second major blow to the credibility of WSI. It is doubtful if the assertion in the Butcher article (see bibliography) that Trilogy made working wafers is true.

Other companies have approached the use of wafers in ways which would lead to their supplying only a niche market. Wafers have been used as a substitute for the PCB, with flipchips bonded onto them. Laser mending of faults has also been tried, but such expensive doctoring of wafers falls outside the mainstream of attempts to exploit the wafer for its potential low cost and high reliability. The Butcher article discusses other WSI projects at length.
suggests that tiny faults exist at random points across the water, so that if a wafer with 250 faults is cut up into 500 chips. half of them will contain a fault and so be scrapped. Now consider a tiny section at the south-west corner of each chip. which I call the kernel. If this kernel is small enough. its yield will be very large. It is easy to calculate

* I'K Patent 1:38R59. descrihed in Hirdess liorld. July $1981 .{ }^{25}$
the size of kernel required so that 80%, say. of the wafers manufactured will have a perfect kernel in the corner of every chip on the water. The other 201% of manufactured wafers - those with chips containing one or more faulty kernels - are scrapped.

When power is switched on to the wafer, the kernel logic spontaneously puts its chip through a test routine, and decides whether the chip it controls is perfect. If it isn't then the kernel logic cuts off communication with the outside, and the bautty chip disappears from the system.

Chips adjudged by their several kernets to be perfect are allowed to intercommunicate. Thare is then a simple procedure whereby control circuitry outside the wafer is informed as to which chips are perfect and which chips have been removed from the two-dimensional array. Pertect chips are instructed to link up into an array structured according to the needs of the external control circuitry: (Workers in artificial intelligence would restructure the machine to match the structure of their data).

Communication into and out of the wafer is be means of signal lines at both ends of eveñ column and also of every row of chips. The structure lends itseli naturally to expansion into a Cartesian array of interlinked wafers, resulting in an array of 1000 hy 1000 processing nodes. each with its own microprocessor and 1 Mbit ram, at a cost of the order of one pound per processing node.

ADICITALAN:ILOCNE OF REALITY

The first signs of the new concept appeared in my own writing 20 years ago (New Scientist, 6 March 1969), later developed in "Computer Worship" (Pitman. 197.3, page 128) in which 1 discuss situation analysis. and 'situation manipulation'. A clearer. more developed outline was published in this journal in my January 1984 article 'Advance into the past', (see 'The Nub of Computation, page 59). (The way in which an array processor composed of kernel logic nodes would tackle problems is more clearly stated in 1984 because at that point the appropriate hardware possibility existed. whereas it did not a decade earlier.) Dore recently, in the television series "The Mind Machine" on BBC 2 in September last year. the concept is clearty stated, userully validating the approach.

In a kernel logic parallel processing array for air traffic control over Europe new data would update the array in a ripple-through manner every second. Aircraft collision avoidance will. .
Parallel work in cognitive science has been done by Kenneth Craik and Phil Johnson-Laird, see bibliography.
The idea that I have nurtured is that future events should be predicted by speeding up the system clock and projecting a data cube' into the future. We do not have predictive algorithms. Rather, in the case of airline collision avoidance, for instance. we lift the current data state in our data cube into a second array. running at a faster clock rate. Two aircraft projected into the future leach occupying a larger and larger volume of space into the future to cover all possibili(ies) then collide. and the collision of the two over-size aircraft is reported back to the current data cube, pointing to a potential hazard in the near future. This forward projection is soon erased. to be replaced hy a more recent valid current data cube, which in its turn will be accelerated into the future in search of possible hazards. This approach probably has a different conceptual hase from the more conventional approach of calculating all kinds of possible hazards, and it seems to be more comprehensive and easier to effect. (This second data cube could conveniently reside in higher pages in the same 1 Mhit ram as the original data cube.

KERNEL LOGIC ARRAY PROCESSOR HARDWARE

To configure good chips (processors) in a wafer. the external controller can send in an instruction with a physical chip address. The address has two fields, an easting and a northing. This class of instruction has its address decremented each time it passes through a chip so that the address becomes 0000 when it reaches its destination. A chip that is seven chips in and 13 up has a physical address 1307 .

The interrogated chip then sends a reply.

be achieved by transferring current data to an identical machine in the higher pages of the 1 Mbit rams which will in effect be accelerated into the future by increas. ing the clock rate.
that it is good or faulty, rippling outwarces, so that one or more replies are received by the external controller via a path of good cioips. The controller then studies the pattern of good and bad chips and instructs most of the good ones on how to link together to make a perfect two-dimensional array.

The architectural constrants of this fault tolerance lead to the extremely powerful array processor machine described here. The standard kernel logic array processor contains a two-dimensional array of 1000 by 1000 processing nodes. Since each individual wafer contains an array of perhaps only 30 hy 30 processing nodes, we have to use 1000 wafers in order to give the one million processing nodes in the stardard machine. It is therefore necessary to interconnect the rows and ccolumns of an array of 30 by 30 wafers to give one million nodes interconnected in a two-dimensional array.

Four wires are stitch bonded down each column of chips (= nodes) on each wafer.

These wires give lower resistance and faster links than is possible with the standard aluminium metallization on a chip. This means that a wafer will contain a set of about 100 vertical wires stitch bonded from top to bottom of the wafer. Each wire is connected to a pad on each chip that it passes over. These wires are then extended across to the two adjacent wafers, the wafer above and the wafer below. Each group of four wires comprises a ground line, a power line, a clock line and a data line. The transmission line represented by the pair of wires. ground and elock, is capable of delivering a 100 MHz clock: rate. Also, serial data can be clocked into each node at a $100 \mathrm{Mbit} / \mathrm{s}$ rate. Such data includes "global" instructions, broadcast to every processing node in parallel.

In practice, the number of wires will probably be reduced to three, and ' 0 V ' will be delivered instead through the wafer substrate. Various other deviations are possible in practice. For instance, to improve fault tolerance. the columns of stitch-bonded wires will probably he at an angle of 45° to the rows and columns of chips (nodes). Another possible variation will be for one set of four stitch-bonded wires to serve two columns of chips (processing nodes) rather than one. but discussion of such deviations hereobscures the grand design.

Each chip (= node) will have the ability to communicate 100 Mbit serial data locally to its four neighbouring chips to the north. east. south and west. This will be via conventional aluminium surface metallization. In the case of chips on the border of a wafer however. local east-west inter-chip data lines will be bonding wires connecting the data lines from the right-hand edge of edge chips to the left-hand edge of chips in the next wafer to the right. Similarly, local north-south between-wafer inter-chip data lines will be bonding wires connecting the data lines from the bottom chips of one wafer to the top chips of the next wafer below. In addition to these. the columns of global stitch-bonded wires down a wafer will be extended between wafers, right down through the column of 30 wafers. So a single global wire will have 1000 stitch bonds, and traverse the full height of the 1000 -wafer machine. That is, it will traverse 30 wafers.
Each node comprises a processor, something like a serial 650%, and one megabit of ram. It also contains four serial output ports and four serial input ports, enabling local data transfer with adjacent nodes to the north, east, south and west. Each local inter-chip link can support data transfer at a serial hit-rate of $100 \mathrm{Mbit} / \mathrm{s}$. (The result looks much like a two-dimensional array of trans-pute-s interconnected through their serial ports.) The normal operating mode will be for all processing nodes to simultaneously carry out a series of instructions (a program) globally broadcast to all nodes down the vertical stitch-bonded wires. However, the global array controller will sometimes hand control to an individual processing node. whereupon a processor will implement a subroutine stored in its own ram.

The instruction set will include typical classes of microprocessor instructions. with some additions, as follows. First, there will

Connections between adjacent processing nodes have to be extended between wafers, as shown. In practice wafers may need to be arranged as an hexagonal or triangular array rather than a rectangular array.
be configuration instructions, which deal with the configuration of a perfect array of processing nodes by bypassing the faulty nodes. There will be local intercommuniction instructions, when each node will transfer data to its neighbour to the east, and so on. In many cases, a flag in a node will determine whether that node will carry out a particular global instruction. There will be a new class of conditional (jump or branch) instructions, when a processing node decides whether it will become autonomous for a short time, obeying a subroutine in its own Mbit ram instead of obeying instructions coming down the global stitch-bonded lines.
Practical considerations will have a strong influence on the choice of ram and processor. Since the development time for a state-of-the-art ram is four years, it is necessary. to benefit from the latest increases of ram bit density, to base the kernel logic design on the leading ram manufacturers' process, whether it be $1 \mathrm{Mbit}, 4 \mathrm{Mhit}$, or whatever, even though the ideal memory size at a processing node is somewhat less, perhaps only 100 kbit . We then aim to take advantage of developments in microprocessor hardware and software and try to get the ram manulacturer to agree to mix a modified state-of-the-art processor into the ram water.

STITCH-BONDED CLOCKAND POWER WIRES

Conventional chips use narrow lines of aluminium metallization on their surface to deliver power and clocks to every part of the circuit.
Anamartic retained this approach in their successful water-scale engineering using my spiral approach. However, the resistance of such interconnections, already a minor embarrassment in a large. high power chip, became crippling in the case of a wafer, with its longer distances and greater total power (i.e. current). However, the problem is not severe if, like Anamartic's. the wafer merely houses dynamic ram. At any one time in an Anamartic wafer, only one ram on the wafer is being read and only two more are being refreshed. The rest of the water consumes little power. Our situation is different. because we have processing nodes active at the same time throughout the waier. Limitation on power delivered would mean linitation in the speed of those processors. which is unacceptable. Processing nodes must all be capable of operating at maximum speed all of the time.
Fortunately, stitch bonding technology is
A 'chip' or processor node is linked to the outside world in three ways: softwareselectable links to adjacent good chips. conventional metallized power and clock lines not shown, and stitch-bonded 0.13 mm wires to enhance power and clock by reducing resistance and increasing speed.

ideal for the purpose. At a cost which is only a fraction of the cost of the processed wafer. parallel columns of aluminium wires can be stitched across the water, reducing the effective resistance of the aluminium track beneath. The yield on such stitch bonding is very high. and faults, on the rare occasions when they do occur are to a harmless open circuit to the bonding pad the aluminium
beneath covering for the break) rather than to a short. These wires can be either 0.12 or 0.25 mm in diameter, giving the kind of low resistance needed hoth for power lines and for high-speed clock lines. Further, the characteristic impedance of the transmission line made un of the pair of lines (clock and 0 V) that delivers the clock is reasonable and convenient to drive.

CAN YOU PROGRAMME IT?

The kernel logic machine comprises a twodimensional array of 1000 by 1000 processors, each with its local 1 Mbit ram. The processor will be something like a 6502 microprocessor. In normal operation, program instructions will be broadcast in parallel from an outside controller to all one million processing nodes, which will obey the instructions in parallel, but operate on different, local data. (This is SIMD - single instruction, multiple data.) The instruction set will include the groups of instructions contained in a 6502 or 280 , with some additional groups.
One small group of instructions will control the configuration of the perfect 1000 by 1000 array from a larger, imperfect array. This (re) configuration will take place every time the machine is switched on, and gives it a fault-tolerant, self-repair capability.

Another small group of instructions will cause local inter-node communication of data in parallel. For instance, one instruction would cause every node to exchange a particular word of data with the node immediately to the north. This local, ripplethrough, intercommunication will be fast. but it will take 20 cycles for a word to traverse 20 processing nodes. (It will be used for the zoom facility mentioned elsewhere.) A 20-bit delay is of course less significant when working serially.
lt is possible for the external controller to relinquish control of one group of nodes. or even of all processing nodes, so that each node can carry out a subroutine stored in its own lMbit ram. (At any time, the central controler can regain control of all processing nodes. I Generally, when this occurs, the external controller would divide up the one million nodes into no more than four or five groups, and each group will act in concert. The notion of a million processing nodes all implementing different programmes at the same time is unthinkable, not because of technical limitations, but because of the impossibility of assembling enough humans (programmers) for enough time to dream up all the different activities for so many computers. Of necessity, groups of processors will act in concert, obeying the same series of programming code, though not necessarily applying it to the same data. When the first kernel logic machine has been delivered and become operational, a significant fraction of all the processors in operation in the world will reside in that one kernel logic machine. It follows that they must operate in groups. and not as individuals.

On initial memory load from the external controller. each 1 Mbit memory is loaded with a number of flags. These can be employed later by the global program to define which sectors should. for the next period of time, run under global control, and which under their own local routines. The "flag" in each memory might be merely the address or 'grid reference' for that processor.

Recapture of control by global instructions could be effected by the equivalent of the Z80 DMA, or less preferably by interrupt. Using DMA. local control is relinquished when the marker (flag) in local memory is

Potential targets need not be thresholded in a kernel logic machine because it will not be overloaded when the number of targets tracked reaches 100 - the overload point for today's early warning systems.
found. calling for a return to global control.
Programming the kernel logic machine is straightfonward because its structure mirrors the structure of the problems to be solved by the machine - weather forecasting, air traffic control, and so forth.

APPLICATIONS OF THE KERNEL LOGIC MACHINE

For the last 20 years I have suggested that something on the lines of the Kernel Logic Machine is ideally suited to a large range of important applications. At last the technology has arrived and made it possible to construct the machine we always wanted. It will lead to enormous cost savings and speed improvements in many applications covered by the general descriptors finite and linear element analysis, finite difference methods and computational fluid dynamics (CFD). In "Supercomputers and the need for speed". New Scientist. 12 Nov 88, page 50, Dr Edwin Galea, research fellow at Thames Polytechnic, says
"The flow of air, water, burning gases, the Earth's atmosphere. ocean currents and molten metals provide scope for the partnership of computational fluid dynamics and supercomputers.

Only supercomputers can provide the speed and memory required to perform the detailed calculations for the complex geometries ana flows encountered in the design of aeroplanes, automobiles and ships.
manufacturers are already approaching the limits of the capabilities of single processors..

Only parallel processing - the concurrent use of more than one processor to carry out a single job - offers the prospect of meeting these requirements.

Galea talks in terms of a partnership of a supercomputer with CFD software. The software causes the single-processor (von Neumann) computer to behave like an array processor, but at a heavy cost in loss of speed.
As Galea says, the physical processes involved in flow behaviour occur on a very tiny scale, so CFD divides the flow region into thousands of small computational cells and solves the governing equations in each cell. Generally, applications involve perhaps one million cells. A conventional, singleprocessor computer is caused by software to compute the next change in each cell one at a time, so that its speed is reduced by a factor of one million - hence the need to start off with a very fast computer. Even then, this
massive drop in speed is unacceptable, and the application demands parallel processing, when duplicate hardware is devoted to each cell. The kernel logic machine provides this multiplicity of hardware.
Galea's article estimates the total sales of supercomputers so far to be $\$ 1000$ million, and says the market is growing. Most supercomputer applications, and the applications which are expensive in computer run time, are CFD. The kernel logic machine will cause an acceleration in the growth of the supercomputer market, because applications which were too slow and expensive to run on a Cray machine or on the small-scale array of a dap or perhaps 100 transputers, will be successfully attempted on a million processor kernel logic machine. This is a ven attractive market; the development of computer graphics for a space adventure movie; a task taking one hour on a kernel logic machine which previously absorbed the run time of a $\$ 5$ million Cray machine for months. Another lucrative application is whole-world modelling in real time for the purpose of weather forecasting. This is only practicable on a kernel logic machine.

Applications for the kernel logic machine include airborne early warning systems, air traffic control Europe. in which one machine in London is linked to a second machine in Milan and a third in Barcelona, etc.. TV image enhancement. TV compression for satellite transmission, aerodynamic design of motor cars, aircraft and spacecraft. study of airflow through gas turbine engines, weather simulation and forecasting, prospecting for oil and gas hy analysing rock structures.

AIRBORNE EARLY WARNING AND AIR TRAFFIC CONTROL

In modern warfare, enemy aircraft attack by approaching very low and at high speed. so that they appear over the horizon only a short time before they reach their target. The defensive response to this is to have an aircraft flying high up so that it can look over the horizon with its radar, and give early warning of attack. The radar continually scans a cone of space stretching in front of it. starting at top left and ending at bottom right. In each complete scan, it transmits a series of pulses, one in each direction ahead of it. A single scan creates one picture "frame", but the reflections from "targets". or enemy aircraft. are weak. By repeated scanning, it builds up a picture of what is in the space. This picture is developed by a process of repeated addition of frames
known as "burn-through". This process relies on the fact that the noise is random and averages out. whereas the target recurs in successive frames. and grows out of the noise.
'the scanning of the space is similar to the scanning of a TV camera. except that at every point in the raster there is a further, depth scan in the third dimension. If a pulse from the transmitter is reflected from a more distant target, the reflection arrives back later. and thus its distance can be determined. A Nimrod or AWACS radar aircraft groans under the weight and volume of the digital signal processing hardware needed. plus the massive power supplies needed to generate the DC power to drive the hardware, plus the generators needed to generate the electric power, plus the fuel needed to supply the generators. plus the cooling equipment needed to cool the hardware.

The conventional approach is for the aircraft's digital signal processing to look for over-large signals being received by the radar dish among the random noise. These larger signals might be reflections of the aircraft's own output bouncing back off the target. However, they might just be noise. The procedure is to sum up repeating larger signals from one region of space. and at some point make the decision that this must represent a target. This target is then tracked through the region of space being monitored. The practical problem is that each target which has been identified and is being tracked consumes more time in the central von Neumann computer, and the total system overloads and fails if more than a handful of targets are detected. We have to ask the enemy to limit the number of aircraft they use in their initial surprise attack.
By contrast, the kernel logic machine commits one processor in its array to one element in the raster of space. Within that processing node, the first page in its 1 Mbit memory is committed to the cube of space nearest to the aircraft. Further pages in memory are committed to further cubes of space. all of them in the same direction from the radar aircraft, but at different distances. This way. space is divided into one thousand million data cubes in a 1000 by 1000 by 1000 array. although in fact the array only contains one million processing nodes. The third dimension is accommodated by stacking up through pages in ram. The disadvantage is that there is only one set of inter-node communication links, not one set per page of ram, so there is a resulting drop in local inter-node communication data rate proportional to the number of segments ("pages") used in a ram.) Possible targets need not be thresholded into definite or downgraded to random noise in the kernel logic machine, because such a powerful machine will not be overloaded if the number of targets tracked exceeds 100 - the point at which today's early warning tracking systems overload.

Parallel processing in an array makes implementation of the tracking software much more straightionward and fast. Each detected target is a sort of amoeba which moves through the array, carrying its amplitude. velocity and probability with it, to be
reinforced from that region of space: or alternatively to diminish down towards zero each time the radar scanner picks up no reflection. Uncertainty over the latest direction and velocity of an amoeba-like possible target results in the amoeba growing into a larger probability volume. However, at the same time, failure of the target (signal) to rise above noise during the last scan (last frame) leads to a reduction of its probability weighting at all points within its amoebae.
Air traffic control Europe would use essentially the same machine, with minor enhancements. Europe will be divided into 1000 by 1000 squares, each of one mile square. However, since this is inadequate for the London airspace, an enlarged model of

For air traffic control Europe Kernel Array

 Processor commits one processor to the airspace above each one square mile of earth, one page of ram per 10,000 feet of height. Higher pages are committed to an enlarged data cube.30 miles square around London will be housed in the upper reaches of 1 Mbit rams of the array processor. This model will use the full 1000 by 1000 array, and so provide a high precision array of 30 by 30 nodes for each square mile. In an ordered manner similar to the action of the zoom lens in a camera, the local London micro-model and the Europe macro-model will update each other once per second. During this update. the new data will ripple through the array in parallel in an ordered manner.
The reporting of position and speed by a commercial aircraft will result in the collapse down to point size (a single processing node) of a tracking aircraft which, because of increasing uncertainty resulting from lack of recent position reporting or recent definite radar detection, had developed into a large amoebae.
Aircraft collision avoidance will be achieved by causing the current data cube contained in the kernel logic machine. that is the most recent record of location and

velocity of all aircratt. to be transtered to an identical machine fin the higher pages of the 1 Mhit rams) which will he accelerated into the future hy (in effect) increasing clock rate. Potential hazards between a pair of aircraft will then be flagged up because of actual collision between two of the growing (future tense) amoehae in this accelerated machine, one represent ing each aircraft that is at risk.

TVIMAGE COMPRESSI()N

The cost of transmission of TV signals by satellite can be high. Wee may he ahle to justify investment at source and at destination in order to reduce the data flow needed to send one TV channel. If we use the standard kernel logic machine, each TV frame is loaded into the 1000 by 1000 processor array in parallel down 1000 columns. Since a TV frame has far less than 1000 by 1000 pixels, we would need only one quarter of our standard machine, costing well below $\$ 1$ million. Also, since the power of the machine is still far greater than is needed for the purpose. we will probably make each processing node time share hetween four or eight pixels. thus reducing the cost of the machine from $\$ 3$ million for the standard array to $\$ 200,000$ or so. There are 1000 input channels in parallel. each channel having a serial input rate of $100 \mathrm{Mhit} / \mathrm{s}$. This gives a total input data rate of $100,000 \mathrm{Mhit} / \mathrm{s}$; well above the bit rate of a sequence of rasters of TV pixels. The compressed result is outputted down the columns. exiting from the array at the hottom. The compression will involve comparison of the new frame with previous frames, and the most recent 20 frames will he stored in the array. It is possible that the compressed output will travel in parallel down the columns of processors. and then finally exit to the right along the hottom (extra) row of processing nodes, which will have a bit rate capability of $1000 \mathrm{Mbit} / \mathrm{s}$

TV IMACE ENIANCEMENT

If as seems likely, a reasonable performance TV data compression machine will only cost $\$ 200.0(1)$ or so by reducing the number of processing nodes and making the survivors time share between four or eight pixels, then the same machine will be attractive for TV image enhancement. We can envisage all sorts of modifications to the video tape being programmed in via such a machine. We could correct for errors in shooting, and also programme in the background to a scene being shot in much more sophisticated wats. developing forward from the blue background.

ANALYSIS OF MEIOICAL SCAN IMACES

X-ray and ultrasound scanning machines are expensive, and so sophisticated processing of the resulting images may be justified. Furth er. it is likely that if we add more image processing power using the kernel logic array. we will he able to tolerate lower quality in the scanning hardware, and thereforelower price

There is only one proven method for generating a perfect array of chips out of an undiced wafer that contains faulty chips among the perfect ones. My approach is to develop a one-dimensional array (spiral) of good chips, adding further chips on to the far end, but all testing being under control of external test circuitry at the beginning. nearend of the array. Each prospective addition al chip is put through its paces by instruc tions travelling down the developing array through the chips already passed as good and already included in the array. If the next chip is adjudged faulty, it is disconnected and another chip adjacent to the penultimate one is tested out instead
In my approach, the distinction between faults in manufacture and faults developing in service is blurred. On switch off, the array connections are destroyed - all links having been volatile - and the array is reconstructed from scratch each time the machine is powered up.

The chip does not test itself. The problem that a mad chip might demonstrate its madness by reporting that it is sane is evaded by having the main testing hardware outside the wafer. But all the same, the fact that powerful test-dedicated circuitry and also chip interconnection logic will consum me only a tiny portion of today's chip's real estate is exploited.

I steal up on wafer-scale integration in a somewhat crabwise fashion. If (as is clear)
we should start off with all chips, good and bad. cheaply interconnected during chip manufacture, and then open and close these connections by volatile information as a cheap way to exclude faulty hardware, it becomes inevitable that the major unit will be of maximum size - i.e. a complete wafer.

If I ask a mad man (mad chip) whether he is mad, then surely his answer is useless? The flaw in that remark is that I could ask not the whole chip, but only a small portion of that chip. Now today, it is possible for a portion of the chip to reply to such a question, yet that portion to be so tiny that the possibility of its being faulty can be. for practical purposes, ruled out

There are three weaknesses in the spiral pproach. It is a one.dimensional array so access is limited to one entry point. This is particularly limiting if the array contains many processors, each one needing continual input of raw data and also needing to deliver the results of its data processing.

The second and third weaknesses result from the high resistance of the aluminium lines across the surface of the wafer. This limits the amount of current and therefore power that can be delivered to the wafer. And secondly it limits the clock speed to 30 MHz . Both of these are more damaging for an array processor than for an Anamartic wafer which is quietly storing data in ram. All three weaknesses are overcome in the kernel logic machine.

AEROI)YNAMIC DESIGN

A recent article by Dr E. Calea (see hibliography) discusses the pressing need for array processors in aterodynamic design and the ideal machine is clearly the standard kernel logic array processor with one million processing nodes. Galea show's that wind tunnel testing is unsatisfactory for car design because the ground beneath the car 'mones' introducing major errors in the results. This is one of many reasons why supercomputers are gaining favour in such applications

WEATIIER SIMUIATION ANI) FORECASTING

The kernel tosic array Processor will commit one processing node to each square mile of area. This is a good example of finite element analysis, where pressure. temperature. etc in one square will affect adjacent squares. and the array processor will have the power to let these effects ripple through the array. Weather forecasting will radically improve as a result of the greater fand also more appropriate, hecause distributed.l processing power.

A network of kernel logic array processors will make possible. and highly profitable, the real-time monitoring of weather throughout the globe giving highly accurate forecast ing through the absence of the edge prohlem.

[^1]B BLIOGRAPHY AND REFERENCES

Adyance into the past by I. Catt. Wireless World, Jan 1984 p. 59
Brighter prospects for wafer-scale integra. fion by R. Dettmer, Electronics \& Power. April 1986, p.283-8.
Catt Spiral patents: UK 1377859, filed 3 Aug 1972. US 3913072. Germany 2339089. -apan 1188600.
Catt Spiral picture Electronics \& Wireless World, June 1988. p. 592.
Dinosaur among the data? I. Catt, New Scientist, 6 Mar 1969, p.501/2.
Kernel Logic international patent application PCT/GB88/0057 filed 15 July 1988
Mental Models, by P. Johnson-Laird, CUP
Sinclair and the Sunrise Technology by I. Adamson and R Kennedy. Penguin, 1986 p.50-55.

Supercomputers and the need for speed, E Galea, New Scientist, 12 Nov 1988. p. 50.
The Decline of Uncle Clive by I. Adamson and R. Kennedy. New Scientist, 12 June 1986. p.33.6.

The Nature of Explanation, by Kenneth Craik. CUP, 1943.
Wafer scale integration: a fault-tolerant procedure, by R. C. Aubusson and I. Catt. IEEE Journal of Solid-State Circuits, vol. SC-13 June 1978.
Warer scale integration, by I. Catt. Wireless World, vol. July 1981, p.37/8.
Wafer scale integration by \mathcal{B} Butcher and K K Johnstone. Proc.IEE vol. 135 part E Nov 1988 p. 281.

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE
 YOU NAMEIT! WE MAKEIT!

OUR RANGE INCLUDES:

Microphone transformers (all types), Microphone Splitter/ Combiner transformers, Input and Output transformers. Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to B.T. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimental transformers, Ulitra low frequency transformers, Ultra linear and other transformers for Valve Amplifiers up to 500 watts. Inductive Loop transformers. Smoothing Chokes, Filter, Inductors, Amplifiers to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers. Speaker matching transformers (all powers), Column Loud-speakers transformers up to 300 watts or more.

We can design for RECORDING QUALITY, STUDIO QUAUTY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIG-LLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS.
Many standard types are in stock and normal despatch times are short and sensible.
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, EEC, USA, MIDDLE EAST, etc.
Send "or our questionnaire which, when completed, enables us to post quotations by return.

SOWTAR TRANSFORMERS

Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941). Reg. No. England 303990

The Boat Yard, Culingham Road, Ipswich IP1 2EG.
Suffolk. PO Box 36,
Ipswich IP1 2EL, England.
Phone: 0473 52794 \& 0473 219390 - Telex: 987703G
FNTER $40 N$ REPLY CARD

(E) EPROM PROGRAMMER

AT LAST! Over 50 Generic Device Types.

at a price to suit any budget!

THE MODEL 18 PROM PROGRAMMER

Still only
E189.95

* Types include 27C . .parts: EEPROMs now programmed!
- Supports our new EPROM Emulator.
+ VAT
* Two independent Communications Protocols built in. Use with any host computer with RS232 port and Terminal Emulator. our PROMDRIVER Advanced Features User Interface Package available for all
* Fast interactive algorithms aulomatically selected as appropriate
- Upgradable for future types.
- Designed, manufactured and supported in the UK
* Comprehensive User Manual.
* n.b. Devices other than $24 / 28$ pin require low cost socket adapter.

Write or telephone for further details:
ELECTRONICS, UNIT 2, PARK ROAD CENTRE,
MALMESBURY, WILTS SN16 OBX. Tel: 0666825146

A NEW SERIES OF QUALITY

Series includes an AUTORANGE and two HEAVY-DUTY DIGITAL models plus a POCKET SIZE and a SOLID-STATE ANALOGUE model.

For details of these and our full range contact
Electronics Limited Heron House. 109 Wembley Hill Road. Wembley. Middx. HA9 8.AG England

Telephone 019024321(3 lines) Fax:01-9025984 Telex:923985

Class A/AB mosfet power amplifier

A discussion of the effects on performance of capacitors and transistors, and a practical design to illustrate some solutions

J.L. LINSLEYHOOD)

The design of audio amplifiers, like that of any other equipment for use in the sound reproduction chain. sufters from the difficulty that. since its purpose is to produce a response from a human sensory organ. the quality of the final result cannot be determined. with absolute confidence. from engineering measurements alone. nor can anyone he certain that the stage has heen reached at which no further worthwhile improvements could be made.

Many attempts have been made to relate engineering specifications to perceived sound quadity. but these have been complicated by the fact that the ear. like any other sensony organ, varies from person to person. and from time to time. It is also a very poor instrument for assessing sound quality and its memory of sound characteristics is even worse. Nevertheless, in spite of its apparent insensitivity to some quite major defects in the reproduction of the audiochain - such as significant amounts of second harmonic distortion - it can be exceedingly perceptive of some others, especially if trained to listen for them.

TIIE EMERCENCE OF TIIE SUBJECTIVISTS

It is a matter of historical obsenation, and some considerable regret, that circuit design engineers have. in their enthusiasm to exploit new technology, allowed now and unsuspected forms of signal distortion to occur because of their reliance on test procedures such as measurements of total harmonic distortion at full output power. which had not shown anything amiss.

This discrepancy between relatively poor obsenved sound quality and high claimed performance specification was noted by the lay users of the equipment and tended to undermine their confidence in the validity of engineering specifications as a whole, rather than causing them to demand that fuller. and more searching. test measurements should be made.
lt also led to the growth of the opinion that specifications. on their own. were meaningless as a measure of performance. and to the emergence of a minor host of self-appointed pundits. logether with a number of magazines dedicated to their
views, who claimed particular skills in assessing the quality of equipment, by listening to its performance on a suitable range of sound recurdings.

This ahandonment of instrumental tests in favour of 'subjective' judgments has led to the proliferation of claims, some of which are exceedingly unlikely on any engineering basis. about the henefits of a host of add-on bits and pieces. and has now led also to the evolution of design procedures based on ideas which are supposed to be good for sound quality, without reference to any instrumental test results.

Since whether or not these design techniques do indeed lead to better sound quality is often judged by the same people who proposed these ideas. this approach tends to be self reinforcing and self sustaining and renders their proponents impervious to any arguments based on physics or engineering principles.

A recent article by Self ${ }^{i}$ provided a salutany reminder that it is impossible to make progress in any form of technical deveropment without performance standards which are both measurable and veritiable. against which the effect of design changes can be seen, and against which the validity of design theories or calculations can be tested.

In general. I agree entireiy with Selfs views. though I entertain a few resentations which I made in a subsequent letter." These arise because I am well aware of the mistakes which have been made in the past. when circuit designers have offered designs which were clearly less good than they should have been - in respect of residual crossover distortion artefacts; or because of pronenes.s 10 slew-rate limiting: or hecause of inadequate loop-stability margins when used with akward ISS loads: or because of poor transient response under reactive load conditions; or because of output device protection systems which caused premature "clippinge on L.S systems which had a low impedance at some part of their frequency response: and so on and on - and I lack adequate confidence that contemporary test procedures will reveal all of the faults which may remain.

In particular, Ifeel that while a great deal of work has heen done in reducing the
magnitude of steady-state non-linearities. not enough attention has been paid to circuit behaviour under discontinuous or transtent signals. where prominent intermodulation effects may arise. Measurable malfunctions may therefore still lurk in this area.

This concentration on steady-state harmonic distortion figures is probably due, for commercial reasons, to the excessive importance which the layman attaches to the number of zeros hehind the decimal point in the quoted $\mathrm{TII} I$) figure as a criterion of quality

Steady-state measurements maỵalso tend to minimize the result of sudden changes in signal level upon components which are sensitive to thermal or voltage-dependent effects. such as capacitors and semiconductor devices. and \mid do not think that we are adecuately knowledgeable to be confident that no audibly untoward effects whatever will nocur as a consequence of these known shortcomings - particularly when these phenomena can be quite clearly seen with other plysical test procedures.

CAPACITORS

Capacitors are the most complex of all the "passive" components, in respect of their underlying physical hehaviour, and differ considerably from the notional pure capacitance which one might depict with the synobol shown in Fig. 1(a). Abroad distinction can be drawn between "polar" (i.e.. 'electrolytic'), and 'non-polar' (i.e.. film. mica or ceramic dielectric) types, in terms of the effective equivalent circuit introduced by the component hut, in general. this will be more nearly that of Fig. 1(h).

In this. C' is the effective capacitance of the un I, which will be somewhat dependent on frequency. temperature, and operating voltage. In series with this element of capacitance is a resistance. R_{k}, representing the dielectric-loss factor, which is strongly dependent on temperature and operating freyuency, and in parallel with C° is the leakage resistance k_{1} - also veny temperature dependent.

In all capacitors, there will be a series element of resistance, $R_{\text {, }}$, and a series inductance, L, simply due to the mechanical

Fig.l. At (a) is a "pure" capacitance, which is more nearly represented by the equivalent circuit at (b). The diode in (c) represents the unidirectional conductive path in an electrolytic capacitor, while (d) shows a generator and resistor to indicate the stored charge and dielectric hysteresis exhibited by film dielectrics.
construction of the component, with a small amount of inherent distributed parasitic capacitance. C_{c}, which can probably be ignored except at radio frequencies.
Electrolytic types. In these there will also be a unidirectional conductive path, D , in series with a further non-linear resistance R_{d} as shown in Fig I (c), which comes into effect if the polarity is reversed, but can also have an effect under zero polarizing voltage conditions when these have persisted for some time. due to the gradual deterioration of the electrolytically formed dielectric layer.
The action of the polarizing voltage has a complex electrochemical/ionic effect and, if reversed polarity conditions are allowed to arise, modifications to the nature of the dielectric layer can permanently affect the other characteristics of the component.

As regards the common electrolytic capacitor types. the tantalum-bead types are more compact for a given capacitance value. have a lower series inductance and a higher reverse breakdown voltage ($2-3 \mathrm{~V}$ vs. about 0.5 - IV for aluminium types) and a dielectric layer which is more resistant to deterioration during zero polarizing voltage conditions. On the other hand, the equivalent series resistance (ESR) is significantly greater and even more non-linear than that
of equivalent aluminium types. Tantalum head capacitors are only available in relatively low working voltage forms.
Non-polar film dielectric capacitors. Although these avoid some of the undesirable characteristics of the electrolytic types. they can suffer to a much greater extent from dielectric hysteresis and other stored charge effects of the 'electret' type, represented in Fig. 1(d) by the generator E_{e}, and the series capacitor C_{e}.

The possibility of building into the dielectric layer a semi-permanent polarization, usually by heating the material above its first-order transition temperature and then allowing it to cool while exposed to an electric field, has been known and exploited in 'electret' microphone diaphragms for some years, but it can also arise in normal use with suitable materials. In general, the proneness of a dielectric material to this effect is dependent on its molecular structure and upon its crystallinity, physical hardness and rigidity.

Of the commonly used film dielectrics. those such as poystyrene, polycarbonate or polysulphone, from which thin films are made by band casting from a solution, are both limp and amorphous and are therefore less likely to retain molecular-scale electromechanical distortions than the more rigid and highly crystalline types of film such as those based on polypropylene or polyesters which are manufactured by biaxially stretching a thicker extruded sheet.
However, the molecular (polar) asymmet$r y$ of the solution-cast materials is typically greater, with the exception of polystyrene. than that of polypropylene. say. which makes a clear preference difficult.

A desirable quality in these components is that they should he compact, and offer a high capacitance/volume ratio. Unfortunately, since both the dielectric constant of the material and the dielectric loss factor are dependent on the asymmetry of the polar groups within the molecule, it is implicit that the desirable qualities of low dielectric loss and high capacitance values cannot be obtained in physically small components.

Stacked tilm/foil capacitors. where the conductor/dielectric combination is assembled like a pack of cards, offer a lower series inductance (L_{s}) than spiral wound forms. In all of these types, film/ioil components offer hoth a lower series resistance, $\left(R_{s}\right)$, and a higher leakage resistance. $\left(R_{1}\right)$. than the metallized-film types, but are physically more bulky.
Ceramic dielectric capacitors. Certain piezo-electric ceramic materials, such as titanium dioxide barium titanate, and barium titanate zirconate, offer dielectric constants in the range $80-50.000$, which permits the construction of very small, high-capacitance and low-ESR components. However. the frequency and temperature dependence of capacitance and dielectricloss values of these capacitors can be very high, which limits their use to RF applications where the overriding consideration is for a low ESR.
Other types. Both mica and air dielectric components are free of most of the problems
noted above. but are only available in small capacitance values. Waxed-paper dielectric components are now. thankfully, seldom found.

TRANSISTORS

Transistors are the other main source of non-ideal behaviour in electronic circuitry, in that they are strongly temperature. current, voltage, and frequency dependent in nearly all of their characteristics. Bipolar (NPN/PNP) junction devices are bad in all these respects, though manufacturing techniques have lessened the effects of some of these and circuit layouts have been evolved to reduce the influence of others.

A major residual problem with bipolar junction devices is that of hole storage which prevents a clean current switch-off following a high-current pulse. This can be minimized by ensuring that the device is never driven into saturation, but holestorage effects are always present. These defects are at their worst in power-output stages because of the high peak currents involved and it is in this position that fets and mosiets offer their greatest advantages.

The moslet is a particularly attractive device to use in this application in that, since the conduction mechanism is that of an electrostatically induced charge laver in a relatively lightly doped substrate, it does not promote hole-storage effects. It also has a better HF response. which facilitates the design of stable negative-feedback systems. and their greater independence of gain on output current improves circuit linearity. When optimally biassed, their quiescent characteristics can also be less temperaturesensitive.

Power mosiets are available in several forms. as shown in Fig. 2, of which the two most common are ' U ' and ' T ', named atter the shape of the active region or the nature of the current flow, and shown in 2(b) and 2(c).

Various manufacturers have introduced their own versions of these topologies. to optimize advantages or lessen disadvanlages but in general the 'V' or 'U' mos types are faster, but less rugged and less well suited to complementary polarity than the " T " mos forms. They all suffer from a high gate source capacitance, particularly in the higher current versions where multiple parallel channels are employed to lower the impedance of the conduct ing path, and this factor must be born in mind in designs employing them.

They are also prone to gate/source breakdown - causing device failure - if the permitted gate/source potential is exceeded. and this also must he guarded against in the design. This problen exists because. unlike small-signal (RF) mosfets, or -mos logic elements, protective zener diodes cannot be incorporated within the diffusion structure without introducing the possibility of thyristoraction.
The remaining design problem is that, because of their excellent HF response. it is possible that RF oscillation may occur. in the tens or hundreds of MHz range, due to the unwise layout of external connecting wiring. Some care should be taken to avoid
parallel paths for gate and source or drain leads. and gate stopper resistors should be employed where necessary, especially in the output stages. These should not be too large hecause of the presence of the fairly substantial gate source capacitance. which can be at least lnF. in the case of power devices

ANALL-MOSFET AUDIO
 POWERAMPLIFIER

With the various design considerations discussed above in mind. and since small-signal U-mos transistors are now available in both P - and N - channel versions at a reasonable price. it seemed to be an interesting exercise to design an audio power amplifier using only mosfets. The objects of the circuit design were to limit the need for capacitors in the signal path, and to adjust the circuit component values so that the capacitor/s in the negative leedback path. where their imperiections could have a direct influence on the pertormance of the circuit, could be of a non-polar type.

My original intention was to use mosfets throughout. but these are more expensive than bipolar devices. In places, such as in the constant current sources, where there was little or no signal voltage and no particular advantage seemed to he offered by the use of a mosiet transistor. I have therefore opted for the less expensive bipolar component

The final circuit layout chosen for the amplifier is shown in Fig. 3 and is of fairly conventional form. A pair of P-channel mostets. ($\mathrm{Tr}_{3} / \mathrm{Tr}_{4}$). is arranged as an input long-tailed pair. ied from a constant-current source. ($\mathrm{Tr}_{1} / \mathrm{Tr}_{2}$), driving a single N channel, small-signal U-mostet gain stage

(a) V-MOS

(b) U-MOS

(c) T-MOS (or D-MOS)

\longrightarrow	Metallising
\longrightarrow	Silica
\longrightarrow	Polysilicon conductor
\longrightarrow	Direction of current flow

Fig.2. Three forms of the power mosfet.
(Tr_{7}). Since it was intended that the output stages of the amplifier should operate largely in class A. in which the residual harmonic distortion of the circuit would be very low. it was not thought necessary to use a 'current mirror" as the load for $\mathrm{Tr}_{3} / \mathrm{Tr}_{4}$. This use of a current mirror is a conventional technique for increasing hoth circuit gain and availahle negative feedback for a given overall loop gain as a means for cleaning up a less-good performance.
Again, since the output impedance of both Tr_{6} and Tr_{7} is very high, and is largely independent of operating voltage within the range employed, I did not consider it necessary to 'bootstran' these devices to improve their linearity or to lessen the dependence of
gate-drain capacitance upon gate-drain potential.

There is always a temptation for circuit designers to "lily-gild". hut experience suggests that more elaborate circuit structures aimed at further reducing already-low 'THI) values also make the problems of loop stability more complex. and may impair the overall transient performance.
In the design of Fig. 3, the \%obel" network $\mathrm{C}_{12} / \mathrm{R}_{1,3}$. logether with the small capacitor. C_{101}, is all that is needed to provide an adequate gain and phase margin in the feedback loop; C_{10} is employed in a position which greatly lessens the tendency to slewrate limiting, in comparison with the more conventional and less satisfactory technique

Fig.3. Final circuit of the mosfet power amplifier

in which C_{11} would be connected between drain and gate of Tr_{7} to provide a dominant lag' form of HF compensation. This latter approach gives better THI) figures at the upper end of the frequency passband, but impairs 'slew-rate' characteristics and transient hehaviour.
As I have already said I do not feel that there is any particular virtue in striving for ultra-low THI) figures - certainly not below the 0.01% level - at the expense of circuit complexity and cost, or with the possible penalty of impaired or more complex transient response. The design shown, though relatively simple in layout, has an excellent performance in respect of hoth THD, better than 0.01% at all power levels, within the frequency range $20-5 \mathrm{kliz}$, and less, than $0.0 .3 \%$ up to 20 klz) and step-function response which is quite free of ringing and overshoots.
Layout, and power supply. Circuit designers tend to assume that power supply lines will he pure IC, of a known and stable value and devoid of signal residues or mains frequency ripple, and tend to ignore the ill effects which might arise if this is not the case. While there are well known circuit technigues which improve the degree of supplyline signal rejection, it is more elegant to remove this problem at source by using properly stabilized IC supplies. With modern devices this approach offers no problems and any well designed supply circuitny will suffice.
I would also recommend that both the small-signal and the power output parts of
the circuit are fed from separate supplies, to lessen the need for a very low source resistance from them. With the circuit shown. there will be no significant penalty in channel separation from operating both channels from the same low-power and high-power supply lines.
With conventional circuit-design procedures, it is quite easy to design stabilized power supplies with an output impedance which is only a small fraction of an ohm. To the 'subjective-sound' fraternity - among whose current fads is the employment of entirely independent power supplies for each channel, with massive and costly reservoir capacitors (but only in a crude rectifier/ capacitor system), and filing cabinet sized mains transformers - 1 would observe that. to obtain a supply line impedance of 0.1 ohms at 5 Iz would require a reservoir capacitor of 0.3 F . Four of these would not appear to be a cost-effective (or space saving) alternative to a stabilized P'SU.

In the case of the feedhack-path DCblocking capacitor, C_{8}, I would prefer that this should be of polycarbonate dielectric type and, if this is of spiral-wound rather than of stacked-foil type, it should itself be bypassed by a smaller stacked-foil component to lessen the impedance of this path.
Operation mode. I noted above that this design was intended to operate 'largely in class- A^{\prime}. My experience and observation over a number of years suggests that the bulk of domestic listening, even with relatively inefficient loudspeaker units, is at peak output power levels in the range $0.1-3$ watts.

For a nominal speaker impedance of 8Ω, this could be met with an output stage quiescent current of 0.4 ampères/channel. set by R_{20}. On higher output-power demands. the circuit slides quite gracefully into class-AB operation.

Those quoted in Fig. 3 will allow a maximum output level of about $35-40$ watts/ channel. with a static thermal dissipation for each output device of some 14 watts, for which adequate heat sinking ($3^{\circ} \mathrm{C} /$ watt for each device) should be provided. For higher power class-A operation, a higher quiescent current should be chosen, with more massive output device and power supply heatsinking. Beyond l_{4} values of 1 A , it would probably be helpful to parallel the output devices, together with their associated emitter and gate-stopper resistors.
Overload protection. I would prefer this to be provided by a simple re-entrant style of current limit in the power supply itself, which could be comhined with some electronic sensing circuitry to shut down the PSU in the event of an unacceptably large DC offset appearing at the output terminals. The Hitachi output mosfets appear to be sufficiently rugged for simple gate-protection zener diodes to prevent device breakdown.

References

1. Self, D.R.G., Electronics and Wireless World. July. 1988. pp692-696.
2. Linsley Hood, J.L.. Eleģtronics and Wireless Horld, Letters, September 1988. pp860-861 Hart Electronic kits Ltd., of Penylan Mill. Oswestry, Shropshire. SY10 9AF. can supply all the components needed for this design.

Communications test equipment

Farnell Instruments Limited manufacture a wide range of test and measuring instruments for use with mobile radios, pocket pagers and other communications equipment. Instruments include synthesized signal generators, transmitter test sets, communications test sets, power meters, automatic modulation meters, frequency meters, etc.

Field portable units, bench or rack mounting models and complete systems are available. The latter are for manual use or microcomputer control via GPIB bus. Various software packages for standard measurement routines and sell-test diagnostics are available. These allow non-technical staff to test complex communications equipment.
Designed and manufactured in Britain, a short form listing of Farnell communications test equipment follows. Further information is available on request.

DESCRIPTION

100 kHz to 520 MHz portable synthesized signal generator 10 MHz to 520 MHz portable synthesized signal generator 10kHz to 1 GHz portable synthesized signal generator 10 MHz to 520 MHz synthesized signal generator 10 Hz to 1 GHz synthesized signal generator 10 Hz to 2 GHz synthesized signal generator 1.5 MHz to 520 MHz linear amplifier 10 MHz to 520 MHz transmitter test set 1.5 MHz to 1 GHz portable transmitter test set 100 kHz to 520 MHz communications test set Spectrum Analyser 300 kHz to 1 GHz

MODEL DESCRIPTION
SGIB-B GPIB (IEEE488) Interface bus for SSG520/TIS520 combination
SWIB GPIB (IEEE488) 32 shannel switching unit
F952 Power supply programming module for use with SWIB
OB1 GPIB (IEEE488) interface - non dedicated
OB2 GPIB (IEEE488) interace with AD converter and digital panel meter non dedicated
Autoranging r.f. millivoltmeter 10 kHz to $1 \mathrm{Ghz}+$
Automatic modulation meter 1.5 MHz to 2 GHz
Directional r.f. power meter 25 MHz to 1 GHz
RF power meter
Digital frequency meter 20 Hz to 600 MHz

DATA ACQUISITION USING THE IBM PC

Abstract

This article discusses how the IBM PC XT or PC AT can be used for data acquisition; no consideration is given to the source of data and throughout the discussion an 8-bit A/D convertor (ADC) is assumed to provide the digital data. The article covers all aspects of the transfer of data from ADC to, in the first instance, computer memory and subsequently, for logging purposes, to an ASCII file.

The PC XT and PC AT huses are widely used and have achieved industry-wide acceptance. The PC XI' hus is an 8 -hit data hus implemented in a 63-pin edge connector. The PC AT bus adds 16 -hit data operation. via a second. 36 -pin, edge connector, and also includes additional interrupt lines and IDMA channels. One feature to appreciate about the buses a consequence of the operation of the Intel 8086 and 808836 microprocessors, is the way in which they treat I/O (Input/Output) and memory devices as distinct devices: memory and $\mathrm{I} /()$ devices can occupy the same address space without any contention. The potential conflict is avoided by having separate read and write lines for the two types of devices. Most add-on cards for PCs are I/O-mapped hut it is possible to memory-map add-on cards provided the card's memory is mapped ahove the host's memory.

The main hus signals - full details are given in the IBM or equivalent technical reference - are outlined belon: the details given apply to the PC AT hus hut the only signals that are not common to the PC XT bus are the eight additional data lines and some of the interrupt lines. Each signal is specified as an 1 . 0 or $1 /(0$ signal to indicate an Input. Output or Input/(Output signal. The construct $\{0 . . n \mid$ indicates an $n+1$ wide signal hus.

- $\mathrm{SA}(0 . .191$ ($1 /(0)$ - address lines for memon and $\mathrm{I} /(0$ devices. The 20 address lines can access up to 1 Mhyte of address space. Note that I/() address space only extends to 64 K .
- CI.K (0) System Clock. Frequency is dependent on computer. The frequency of this signal should not he considered definitive as the signal is really intended for synchronising purposes.
- RESET DRV' (0) - used to reset external logic during power-up time. This is an active high signal.
- SD$)\left[0 . .15 \mid(1 / 0)-\right.$ system data lines. Sl_{0}, is the least significant.
- $\operatorname{IR} Q_{3}-\operatorname{IR} Q_{7}, \quad \operatorname{IR} Q_{4}-\operatorname{IR} Q_{12}, ~ \operatorname{IR} Q_{16}, \quad 15$ (1) interrupt request lines. They are prioritised. with the highest priority signal first. in the following order: 9.10,11,12,14,15.3.4.5.6.7. To generate an interrupt, the IRQ line is raised from low to high. The line must be reset when the interrupt is senviced.
- IOR (I/()) - instructs an I/O device that the microprocessor is ready to accept its data: i.e. the device must drive the data lines. Active low.
- IOW (I/O) - instructs an I/() device to read data off the data bus. Active low.

- SMEMR/SMEMW - equivalent of IOR/IOW for memory devices. Active low.
- AEN - isolates the processor and other devices from the bus - also known as the I/O channel - and passes control to the DMA controller. Active high.

> HARDWARE IDESIGN OF INTERFACE CIRCUITRY

As with any bus, the interface circuitry always depends on the particular application; there is no unique way of interfacing to the bus. However there are two main factors that have to be considered in all circumstances:
a) Loading - each bus output can only drive up to two LS TTL loads. It is therefore advisable to buffer all inputs to the $1 / F$ (interface) card. This also serves to protect the host in the event of a fault on the $1 / F$ card. In addition, some bus inputs have certain current-sinking thresholds which have to be observed. It is always advisable to refer to the Technical Reference of the particular computer you are using.
2. Contention - certain input lines are shared by many boards - data lines being the most obvious example - and the designer
must ensure that not more than one bus component activates these lines at any one time. Also. certain lines must not be activated for longer than a pre-determined period and these criteria have to be rigidly observed.

In our example, the I/F card is I/O-mapped as the ADC is a single address device. Because the ADC produces an 8 -bit data output, and to ensure that the card can be used on a PC XT or a PC AT computer, 8-bit data operation is employed. Also there is an I/O address space - 300 to 31 F Hex especially reserved for prototype cards and our I/F card is mapped into this space.

The interface circuitn is shown in Fig. 1. The circuit includes an ADC and a D/A convertor (I)AC). A brief description of the circuit is given below.
$\mathrm{IC}_{1.23}$ serve to huffer the system address and data lines. $1 C_{4}$ is an address decoder. and its output, 1O-DEC, signals an I/O operation at an address hetween 300 Hex and 31 F Hex. IO-DEC is used, via IDBE, to enable IC 3 and this ensures that $I C_{3}$ is only enabled when the card is addressed; this prevents contention with other cards on the bus. IC_{5} is used to subdivide the address range 300 to 30 F into eight 2 -byte segments to provide separate enables for the ADC. DAC and any other device on the card.

IC	IC	+5V pins	GND pins
1	LS244	20	1, 10, 19
2	LS244	20	1, 10, 19
3	LS245	20	10
4	LS138	16	8
5	LS138	16	8
6	LS374	20	10
7	LS00	14	7
8	LS374	20	10
9	LS32	14	7

Fig. 1. Interface circuitry for an I/O-mapped eight-bit device. Asterisks indicate activelow signals.

The output of the ADC is latched into IC_{n} by the End-Of-Convert (EOC) signal available from some ADCs: if this signal is not available then the sample clock can be suitably delayed to provide such a signal. $I C_{n}$ is mapped al address 300 Hex. The EOC. or a similar. signal will be used to signal to the host. either directly or indirectly, that data is available - this is discussed below.

The DAC which is included for the sake of completeness, is mapped at the address 302 Hex The DAC is not discussed further in this article and exact details of its operation cycle are left to the prospective user.

The signal ENI is used to enable a device mapped at address 304 Hex: the use of this signal is discussed in the next section.

Fig.2. Polling provides an attractively simple method of signalling to the host that data is available.

SIGNALLING TECHNIQUES

There are two main methods of signalling to the host that data is available:
a) Polling.
b) Interrupts.

Polling is a simple concept to understand and it is illustrated graphically below in Fig.2.

In our example. the EOC signal sets a status register (which can be a D-type ilip-flop) to indicate that a sample is present. The progran loop running on the host includes a routine which reads the status of the register. If this status register is set -i.e. a data sample is present - then the routine callson acquisition routine to read and store the data sample.
The main advantage of using polling simplicity - is thus immediately apparent: programs can be written in a high level language and are easy to write and debug. The main disadvantage of using nolling is that the host is not directly informed of the presence of data: if the host has to perform a lengthy task in its loop. then data can be easily lost. However when the tasks in the loop are short, polling is a highly convenient. and also a very fast. method of getting the data into computer memory.

The hardware and soitware to support polling are not discussed here as elements in the discussion of interrupts more than adequately cover these aspects.

Interrupts, as the name suggests. involve directly signalling to the host that a neripheral - ADC in this case - requires servicing. Hardware interrupts in the IBM PC XT and PC AT are initially handled by the interrupt controller chips - Intel 8259As. The PC AT has two of these chips and the PC $X T$ has one. The interrupt controller translates the hardware interrupt into, effectively, an INT n instruction. where n is the interrupt number associated with the hardware
interrupt. The processor then responds by invoking a special subroutine - an interrupt service routine. The address of this service routine is stored in computer memory and is known as the interrupt vector address. As it is required to invoke the user's service routine when the interrupt is detected, the vector address has to be altered to point to the user's own routine. This is known as redirecting the interrupt and will be discussed later.

Clearly, as in the case of polling. a scheme using interrupts requires supporting hardware and software. Before discussing these aspects, it is worth outlining the advantages and disadvantages of using interrupts.
The advantages are:
a) Accuracy - response of the host occurs
immediatelyafter the event.
b) Versatility - the host can service a number of peripheral devices because, unlike polling. it does not have to constantly interrogate each peripheral. Furthermore. the host can undertake lengthy tasks. especially if they are not time critical. without jeopardising peripheral servicing.

The disadvantages are:

a) Increased complexity - programs using interrupts are more difficult to write - and debug.
b) Servicing overheads - responding to an interrupt has an inherent time overhead. It is instructive to examine exactly what this entails. When the host detects an interrupt, it completes its current instruction. saves its status registers and instruction pointer on the stack. calls the appropriate service routine - which must ensure that all the general-purnose registers are saved on entry and restored on exit, and finally restores its status registers and instruction pointer when the interrupt has been serviced. There is a thus a minimum amount of time that must be expended in servicing any interrupt. These considerations ultimately limit the rate at which interrupts can be generated and faithfully serviced - in our case. it limits the acquisition rate.

It is not possible to exactly determine the maximum throughput of a program using interrupts as it depends on processor clock speed, processor type. complexity of service routine and bus performance. However a hall-park figure can be obtained by counting the total number of clock cycles in the interrupt service routine instructions. adding to this total the number of interrupt entry cycles (number of cycles required by the INT instruction) and then multiplying the total number of cycles by the time-percycle. It is then usual to allow a 20 per cent margin to allow for bus limitations.

Fig.3. Circuit for generating a hardware

HANI)LIN(INTERRRUPTS

A circuit for generating a hardware interrupt is shown in Fig. 3. The interrupt is generated on IRQ:- lowest priority interrupt. The EOC signal sets the interrupt and the IR Q_{-}Enable signal is used to reset it. MRQ, Enahle acts as an interrupt enahle/disable when it is set low/high; the interrupt is reset hy disabling and then enabling it. IRQ-Enable is activated hy writing to the LSB at I/O) address 304 llex (i.e. the ENl signal is used to enable the latch C_{1}). Note also that RESET I)RV' resets the interrupt during computer power-up.

The software routine to support the use of interrupts is generally written in assembly language, although some high-level language compilers can support interrupt routines - e.g. Microsoft Č-compiler Ver. 5.1. The code for supporting IR(), is shown in Listing l. It assumes a working knowledge of 8086 assembly language programming. the Microsoft macro-assembler and los 2llex-type interrupts, and an appreciation of some of the features of interrupt controllers. The code can be divided into two logical sections: a section dealing with the housekeeping lasks - these tasks involve in the first instance, preparing the system to handle the interrupt and, ultimately, restoring the system parameters to their original state before the program is exited - and a section

LISTING 2

Listing 2 this short routine stores the acquired data in a file.

LISTING 1

Listing l: code for supporting IRQ_{7}, in 8086 assembly language.

This single－Eurocard＇s got almost everything you need to develop and implement a simple control system，with expansion potential over the popular STEbus．On－board is a powerful 8 －bit microcomputer with on－chip BASIC interpreter． memory sockets．I／O and EPROM programming facilities．All you need to start developing a target system is a working knowledge of BASIC and a VDU．Here＇s what you get：

」 $8052 \mu \mathrm{C}$ WITH 8 K BASIC，256BYTES RAM UART，THREE COUNTER－TIMERS，INTERRUPTS
 」 FOUR 28－PIN MEMORY SOCKETS
 ］TWO RS232C CHANNELS
 \lrcorner EPROM PROGRAMMER
 」 STEBUS SYSTГM EXPANSION INTERFACE

The BASIC is designed for process control applications：entering a program into RAM．debugging．testing and blowing into EPROM can be achieved in minutes．The complete board costs just $£ 212$ ！Phone for a catalogue detailing this board， $50+$ STEbus expansion options．and other 8052 board variants：

Arcom Control Systems Ltd Unit 8 Clifton Road．Cambridge CBI 4WH Tel：（0223）411200： Fax：（0223） 410457 Tlx： 94016424 ARCS G：Easylink： 19014905 ENTER 57 （ON REI＇I．Y（＇AlR）
dealing with the interrupt senvice routine－which is the procedure int＿service．

The initial housekeeping tasks are：
a）Redirecting the $I R Q_{\text {；}}$ ，vector to point to the int＿senvice routine－i．e．modify the interrupt vector address associated with $\operatorname{IR} Q_{7}$ to point to the int＿senvice routine．This is achieved by reading and storing the original vector address．The original segment and offset addresses are stored in old＿＿segment and old＿offset respectively．
b）Enabling the interrupt controller to respond to the $I R Q_{\text {；}}$ interrupt．The master controller，which handles $I R Q_{11}$ to $I R Q_{i}$ ． is $1 /(0$－mapped at address $20-3 \mathrm{~F}$ ．The contents of the register at address 21 lex determine which of the interrupts is enabled． The contents of this register are modified to ensure that the controller responds to IRQ_{i} ．
c）Enabling the hardware which actually generates the interrupt．This is achieved in our example by writing（）to $\mathrm{I} /()$ address 304 Hex ．

To restore the system parameters，the above steps are reversed：the I／F card hardware is disabled from generating the interrupt．the interrupt controller is disabled from responding to $\operatorname{IRQ} Q_{7}$ and the original vector address is restored．

INTERRUPT SEIRVICE ROUTINE

The main tasks in the service rout ine are：
a）Reset the hardware generating the interrupt－by writing 1 to 304 Hex ．
b）Read the next sample and store it．The data is stored in a memony area with the start address＇acquired＿data＇：the variable＇index＇is used to scan this memory area．The size of the memory area is set at 2000 bytes hut this parameter can he easily changed．
c）Clear the interrupt controller．This is necessary as it allows the controller to respond to subsequent interrupts．The controller is cleared by writing an End－Of－Interrupt－EOI－ code to its control register．Note also that the processor is prevented from responding to further interrupts－via the CLD instruction－before the controller is cleared：this is to prevent the processor responding to another interrupt hefore the senvice routine is existed．
d）Enable the hardware interrupt．

FILE STORACE OF ACQUIRED DATA

Listing＇ 2 is a short routine which stores the data．in computer memory，into a file．Ine v．amber of bytes is indicated by index． Before the data is stored，an End－Of－File（EOF）code is tagged onto the data．This EOF code can be any byte which is not generated by the ADC．It is intended that this section of code is inserted before the＇exit＇label in listing 1 and the two data declarations are inserted in the main data segment．It is left to the user to determine the EOF code．as it depends on the range of codes produced by the ADC．

APPLICATIONS SUMMARY

Dual-conversion f.m. receiver

Two applications for the MC3363 narrow band $1 H F F M$ receiver are presented in the device data sheet. This one is a 49 MHz synthesized receiver which. together with the MC145166/7 frequency synthesizer. does all the work from r.f. input to demodulated output with just two i.cs. Motorola, Macro Marketing. Burnham Lane. Slough. Berk shire SLI 6L.N. 062864422.

Intelligent modem

Primarily, the FK429 1200-haud modem is intended for Band III trunked radio systems. but it also has more general-purpose applications.
Publication D/429/2 from Consumer Microcircuits describes how the full-duplex device operates in sufficient detail to allow design of hoth Band III and general-purpose radio or line-data modems. Consumer Microcircuits. Wheaton Road Industrial Estate East. Witham. Esser CM837D.

APPLICATIONS SUMMARY

Designing for low input-bias current

In bipolar analogue systems, input bias current can be reduced by lowering collector current. but in terms of noise. slew rate and bandwidth. low collector currents can have adverse effects.

Darlington input configurations. as shown. solve some problems but cause others: voltage gain suffers. and so does oftset voltage. Application note 3 from Micro Linear. Design Techniques, for Low Input Bias Current'. describes these solutions in a little more detail, and it discusses input bias current cancellation. Vicro limear. Ambar Cascom Lid. Rabans Close. Aylestory: Buchinghamshire HP193RS. 02964.34141

Electronic lock

It is possible to select any one of $3^{10}-2$ security codes on the TEA5500 coded locking circuit. and each combination is directly selectable in hardware. despite the fact that
$s=$ the sign bit $i=$ an integer bit or a sign extension bit
siiiiiii fffffffffffffff
siiiilii fffffffffffffff = the binary point $f=a \operatorname{fractional~bit~}$

47
Two 24-bit mixed numbers 3231 0

Signed integer port
Unsigned fractional part

One of the unusual features of the 56000 DSP chip is that its one-chip multiplier directly supports fractional data formats. and it indirectly supports integer data formats. Motorola note APR3/I) describes how it does this, and presents well documented
routines for mixed and real-number addition and subtraction, signed multiplication and signed division. Motorola. Macro-Marketing Burnham Lane. Slough, Berkshire SLI 6LN. 062864422
the device has only ten code-select input pins. Such a large number of combinations is possible through the use of three logic states on the code-select pins - logic high. logic low and open circuit.
These two diagrams, from the device data sheet, show how the 5500 acts either as a code sender or receiver.

In coding mode. the coder completes three coding runs then stops automatically after every power up. In decoding mode, the data input is temporarily closed and one of the outputs is activated when the code is recognized. Philips Componenis, Mullard House, Torrington Place. London WC 7 HD. 015806633

TAYLOR RF/VIDEO MEASUREMENT INSTRUMENTS

MEASUREMENTS MADE EASY

UNAOHM EP741FMS
FIELD STRENGTH METER/SPECTRUM ANALYZER

Frequency Range:

Frequency Reading:

Function: TV Monitor

Panorama:
Panorama Expansion:
Analogue
Measurement:
DC/AC Voitmete
Measurement Range:
Measurement
Indication:
Video Output:
DC Output: TV Receiver:

Additional Features:
Price:

Continuously adjustable via a geared-down vernier as follows

IF

Band I $\quad 48.9 \mathrm{MHz}$ to 106 MHz
FM Band 88 to 108 MHz
Band III 106 to 290MHz
Band H 290 to 460 MHz
290 to $460 \mathrm{MHz}^{2}$
TV Bands -4 digit counter with 100 KHz resolution
FM Band -5 digit counter with 10 KHz resolution
Reading Accuracy: reference Xtal $+/-1$ digit
NORMAL: picture only
ZOOM : 2 to 1 horizontal magnification of picture
r : picture + line sync pulse (with chromaburst if TV signa
panoramic display of the frequency spectrum within the selected band and of tuning marker.
Adjustable expansion of a portion of the spectrum anound the tuned frequency.
20 to 40 dB . Static measurement of received signal. Scale calibrated in dBuV (at top of picture tube) to rms value of signal level 5 to 50V
20 to 130 d 3 uV in ten 10 dB attenuation steps for all bands: -60 to 130dBuV in nine 10d日 steps for IF.
ANALOGUE: brightness stripe against calibrated scale superimposed on picture tube. The stripe length is proportiona to the sync peak of the video signal.
BNC connector. 1 Vpp max on 75 ohm
$+12 \mathrm{~V} / 50 \mathrm{~mA}$ max. Power supply source for boosters \& converter tunes in and displays CCIR system 1 TV signals. Other standards upon request
[1] Video input 75 Ohm. [2] 12V input for external car battery (3) Output eonnector for stereo earphones.
e1344.00 exc. VAT and Carriage

UNADHM FSM5987 T.V. FIELD STRENGTH METER

INPUT

Sensitivity: from 20dBuV to $110 \mathrm{dBuV}[-40 \mathrm{dBmV}$ to 50 dBmV or 10 uV to 0.3 V in eight 10 dB steps.
Reading:
Breading proportional to peak value for video signals; procortional to mean value for AM or FM sound signals. For both signals scale calibrated to rms value and expressed indBuV. Two more scales are available: volt from 0 to 50 , and ohm from 0 to 2000 ohm . Battery status is also provided
Accuracy: Impedance:
+/- 3oB for bands I \& III +/-. 6dB for bands H \& IVN FREQUENCY
Range:
46 to 860 MHz as follows:
Band
) 46 to 106 MHz III 106 to 206 MHz H 206 to 460 MHz IVN 460 to 860 MHz
Peading:
4 digit LCD readout. 100 KHz resolution
Prics: £378.00 exc. VAT and Carriage

TAYLOR BROS (OLDHAM) LTD.
BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND.
TEL: 061-652 3221 TELEX: 6699I1 FAX: 061-626 1736

UNAOHM EH 1000 TELETEXT AND VIDEO ANALYZER

Function:

RF Input:

Video Frequency Input:
Teletext Input:
Teletent Clock Input:

Oscilloscope:

Eye Patterre display of RF and video-frequency teletext signals by means of eve pattern diagrams both in linear representation and lissajous figures $[\mathrm{O}$ and X]. Line selection: display of video signals and line by line selection. Measurement of modulation depth. Teletext: monitoring of teletext pages.
Freq. Renge: 45 to 860 MHz . Frequency synthesis, 99 channe recall facility, 50 KHz resolution, 30 channel digital memory, Level: 40 to 120 cBuV ; attenuator continuously adjustable. Indication of the minimum level for a correct operation of the instrument. Impedance: 75 ohm. Connector type: BNC. Minimum Voltage: 1 Vpp . Impedance: 75 ohm or 10 K ohm in case of a through-signal. Connector type: BNC.
Voltage: 1Vop/75 ohm.
Voltage: $1 \mathrm{Vpp} / 75 \mathrm{ohm}$. Measurement: Aperture of eye pattern: linear or Lissajous figures, selectable. Indication: directly on the picture tube. A calibrated scale shows percentage of eye pattern aperture. Error: the instrument introduces an error of $\leqslant 5 \%$ with video input and 20% with RF input. Jitter on regen'd clock: $\leqslant 25 \mathrm{~ns}$ Line selectar: Selection of any TV line between the 2nd and the 625 th scanning cycle by means of a 3 digit thumbwheel switch. VERTICAL CHANNEL: Sensitivity: 0.5 to $2 \mathrm{Vpp} / \mathrm{cm}$. Frequency Response: DC to 10 MHz . Rise time: pre \& overshoot $\leqslant 2 \%$. Input Coupling: AC Input Impedance: $75 \mathrm{ohm} / 50 \mathrm{pF}$.
Coupling: AC. Input Impedance: $750 \mathrm{hm} / 50 \mathrm{pF}$. S . TINE BASE: Sweep Range: 20 to 10 ms [$1,1 / 2$ frames]; 32 :
$64 / 192 \mathrm{Lus}(1 / 2 ; 1 ; 3$ lines] Linearity: $+/-3 \%$. Horizontal Width: 10 divisions; $\times 5$ magnification.
Price:

In part 2 of this short series on advanced communications techniques, the author examines the system known as direct sequence spread spectrum.

L.C. WALTERS

In last month's article, we saw that it is always possible in theory to effect. for a given communication performance, a linear exchange of bandwidth for signal-to-noise ratio. I also showed that for input signal-to-noise ratios less than a threshold level, $r_{\text {t }}$ say (I suggested $r_{t}=1 / 4$ or -6 dB as a practical criterion), this linear exchange is close to the maximum attainable: but that for higher signal/noise ratios a logarithmic exchange could be envisaged. I discussed a somewhat simplistic model to demonstrate how the linear exchange might be implemented, but pointed out that this model was of little practical use in general.

We now consider more realistic implementations. In all cases I shall implicitly assume a radio communication system, though most of the properties discussed could apply to carrier-borne or base-band line communications and sometimes also to other systems such as radar or sonar.

REDUNDANCY

All bandwidth expansion involves redundancy in some sense. That is to say the bandwidth is expanded by sending more "data" than is required for the desired information transfer. However, while for error correction/detection the transmitted data and the information are closely functionally related, this is not necessarily the case when one seeks only a linear exchange of bandwidth for signal-to-noise ratio.
It is possible to expand the bandwidth of a signal in a variety of ways. For example, one may intermittently change the carrier frequency. This results in a so-called frequency-hopping system (briefly discussed last month) for which the "instantaneous" bandwidth is much less than the total bandwith used. This technique is well known: its major properties are fairly obvious and so is the general nature of its implementation.
even though the details of such implementation may involve some subtlety. For these reasons I shall not discuss it further here except to comment that in general terms it should theoretically permit the previously described linear exchange in respect of jamming provided that the jammer is unable to anticipate the movement of the carrier. It does not, however (contrary to some assertions), readily provide low detectability; and indeed it is often easier to detect the presence of frequency-hopping transmissions (and even to locate their source) than to detect many conventional signals. On the other hand, in the absence of information encryption, it is appreciably more difficult to intercept and extract the information from frequency-hopped transmissions.
Bandwidth may also be expanded by decreasing the duty-cycle: that is to say, by transmitting discontinuously. For example. a binary communication signal could be transmitted in short pulses (or bursts of
such pulses) with substantial intervals (perhaps irregular) between them. Such systems are sometimes called time-hopping systems. and again the signals are fairly readily detectable though less so than frequency hoppers) but can permit the linear exchange provided the jammer is unable to predict future patterns in the time domain.
The third type of spreading is direct sequence spread spectrum (DSSS) which is the chief topic of this article.

DSSS

Conventional radio systems employ a single frequency carrier: or in other words, a very narrow-band carrier on to which the information is impressed. Thus, a characteristic of such systems is that the information handwidth is ven' much greater than that of the unmodulated carrier. Consequently, the total handwidth occupied is determined primarily by the information handwidth. though it will also depend to some extent on the type of modulation employed.

In contrast. USSS systems employ a carrier whose handwidth is much greater than that of the information to be conveyed. (It is arguable that the same applies to other handwidth expansion techniques such as frequency hopping, but there is a very real sense in which it is a more fundamental feature of DSSS.

There are many ways in which a widehand carrier can be generated, but hy far the most common and convenient is to phasemodulate a conventional narrow-hand (i.e. sinusoidal) carrier with a wide-hand signal. Almost always, the latter is a binary for quaternany) signal. usually derived using some sort of logic clock. It can be represented (in the binary case) as a sequence of Is and - 1 s for (Is), i.e. as a binary code or a combination of such codes.

As for other spectrum-spreading lechniques. for success in countering hamming (or. for $15 S S$, in achieving low detectability) it is highly desirable (though, in the janmings case, often less essential than is sometimes thought) that the jammer or interceptor is unable to predict the wide-hand carrier wave-form. For this reason, the codes chosen are almost always some form of pseudo-random sequence. Ideally they would he derived from a truly random source such as thermal noise, hut since their use demands the availability of replicas at the receivers, pseudo-noise two-levei codes are much more convenient. When used for ISSS they are termed "spreading codes

Since we are here concerned only with principles. I shall henceforth restrict discussion to implementations which employ as a carrier a sinusoid which is phase-shift keyed (i.e. phase reversed) by a binary pseudorandom sequence. 'The possibility of extension to more complicated constructions such as quadri-phase modulation is fairly apparent but implementations can involve some quite complex features.)

BINARYCODE

The choice of binary code is of considerable importance in DSSS systems, primarily because of the reception techniques normally
employed. In general, one seeks good autocorrelation properties. That is, that the result of multiplying the code (represented as 1 s and -1 s) by a delayed version of itself. and then adding linearly a predetermined number of successive resulting binary digits should be of very small magnitude for all delays other than zero (where, of course, the sum will equal the number of digits summed). Ilere we need consider delays only in terms of whole numbers of code bits or clock periods. (For DSSS systems these periods are often called "chips".) This restriction simplifies the reasoning and the description and does not in any significant manner invalidate conclusions, even for delays involving fractions of chips.

The general question of code generation and determination of auto-correlation and cross-correlation properties is highly complicated and involves advanced mathematics of some profundity. It is still the subject of much research by mathematicians. For the present we shall merely note that one type of code which is quite popular in many applications is that known as a maximum length or m -sequence. Although such sequences have some drawhacks. their autu-correlation properties (when the summation is over the whole code length) are excellent. For the purposes of this article we shall henceforth assume the use of an m-sequence as a spreading code, though many practical systems use rather different codes

M-SEQUENCES

If a clocked hinary shift register has its input provided by a logical combination of the contents of its last and some intermediate stages it is called a feedhack shift register. If it has n stages, then during any clock for chip) period it will contain n binary digits. (the "fill"). which may be deemed to represent an n-bit binary number. Since there are wo possible values for each bit, there are ?" possible fills for the register. Ilowever. if the feedhack logic is linear. (e.g. obtained using only exclusive-or gates) then one of these fills (such as "all (o") will he self-generating and will result in a completely static or unchanging fill. Consequently, only $2^{\prime \prime}-1$ hinary fills are possible if a dynamic situation is to be achieved.

In general. such a register will produce a limited number of fills formings a sub-set of the whole set: hut it is possible to select the intermediate stages and the feedback losic in such a way that every one of the possible fills occurs at some time: and since the feedhack is assumed linear. the whole sequence must then repeat. As a result. such a sequence (taken, for example as the succession of bits from the last stage or from the feedhack logic) is a maximum length or m -sequence. and for an n-stage register is $2^{\prime \prime}-1$ chips long.

In general there is more than one combination of feedhack stages and logic which will achieve this for any given n. giving rise to more than one m-sequence of a given length. For these, although the fill cycles through all possible values but one, the order in which it does so differs for the different m-sequences. Note that one of the fills will be the "all ones" set of n Is and that

At the recent Gibraltar inquest, a technical witness, Dr Michael Scott, suggested that it was technically impossible for the IRA members to have detonated a bomb in the supposed target area from the point at which they were shot His argument appeared to be tha: using a nominally powered radio (sited where the shootings occurred) normal speech was not intelligible at the supposed tarset site because of inadequate signal strensth, i.e. inadequate signal/noise ratio.

The absurdity of such an assertion is obvious from Shannon's equation, $C=\operatorname{Mog}_{2}(1+S / \mathcal{N})$ - see page 48. January issue. Typical VHF FM speech reception will fail at a signal-to-noise ratio of the order of 6 dB to 8 dB . But to operate a switch one needs only to receive one binary digit (bit) of information and it would not be unreasonable to assume that one might be prepared to transmit for say one second to achieve this. Thus the information rate involved could well be of the order of one bit per second. According to Shannon, and assuming the 25 kHz bandwidth typical of many vhf transmitters and receivers, such capacity corresponds to a signal-to-noise ratio of -45 dB .

Even assuming an inefficient implementation operating at as much as 14 dB below this performance, (i.e. at -31 dB), "successful" operation could be achieved at a signal-tonoise ratio some 30 dB below, (i.e. 1000 tines less than) the level at which speech would fail and far below the measurement capability of any conventional equipment.
the next digit fed hack from the feed-hack logic must he a zero, If it were not, then the fill would not change on that or any succeeding clock cycle, and so we would have a static situation instead of a dynamic onel. More over, each fill can occur only once in an m -sequence cycle so any m-sequence of length 2"-1 chips will contain no sequence of 1 : Ionger than n and only one sequence of exactly n 1s. When n is ven' smalt. the number of possible m -sequences is also very small, but as n (and hence the sequence lengeth) increases it becomes possible to generate more and more different m sequences from a given length of register. Thus for $\mathrm{n}=5$ there are just is different sequences of length 31 chips. For $n=7$ there are 18 sequences of length 127 ; for $n=11$ there are 176 of length 2047: and for $n=19$ there are 27594 of length 524287 . It should he noted that it is quite easy to generate m -sequences of enormous length. Thus, a 64-stage register. even if clocked every microsecond. could be connected to produce an m -sequence which would not repeat for nearly 6000001 years!

Nl m-sequences have the property that their autocorrelation function, computed over one complete cycle of $2^{\prime \prime}-1$ chips is -1 for all (integral chip) delays other than zero (or a multiple of the sequence length) where, of course it is $2^{\prime \prime}-1$. Clearly, homever, this admirable property can hardly be exploited for sery long codes. For example. the $n=64$ case cited above would involve a delay of $600(0) 0$ years hefore one could even transmit the complete code. let alone perform

Fig. 1. Correlation process. Waveform(e) is the product of (a) and (d).
correlations; and not even our most maligned communication services would contemplate that!

Shift registers were originally used (and still are) to generate suitable spreading code sequences, but the ubiquitous microprocessor is resulting in increasing use of code generation by software, at least for the lower clock rates.

CARRIER BANDWIDTH

If a sine wave of frequency f_{0} is phase switched by a binary sequence with a clock (i.e. chip) period τ. then the resulting broad band "carrier" waveform will have a power spectrum of the form

$$
G(f)=P\left|\sin \pi\left(f-f_{0}\right) \tau / \pi\left(f-f_{0}\right) \tau\right|^{2}
$$

where P is a factor defining the total power. This spectrum has its energy primarily concentrated in the range $f_{01}-1 / \tau$ to $f_{0}+1 / \tau$. (Over 90% of the energy lies in this range.) In other words we may assess the RF carrier bandwidth as $2 / \tau$.

For simplicity we shall assume that all the information to be conveyed is expressed in binary form as a sequence of $1 s$ and -1 s. However. since for DSSS the information bandwidth is much less than the carrier bandwidth, each information bit has a duration which is many times that of a spreading code chip, i.e many clock periods. It is usually desirable and convenient to ensure that each information hit is an integral number of chips long and starts and finishes on a clock edge. However. this is not essential. It is also usually (though not always) desirable and convenient to employ the same type of modulation for information as for generation of the wide-band carrier. In the case of phase reversal modulation (PSK). this is equivalent to modulating the original sinusoid with the algebraic product of the spreading code and the information sequence, each expressed as 1 s and -1 s . Alternatively, it is equivalent to modulation of the sinusoid by the output of an exclusive-or gate fed by the spreading code and the information both expressed in terms of 1 and 0 . This is perhaps the simplest type of information modulation and will be assumed in the following paragraphs though other techniques have also been employed in practice.

DETECTION OF SIGNAL

Almost all DSSS systems rely heavily on correlation processes for detection and reception of signal. Correlation is discussed briefly below, but may be shown to be equivalent to true matched filtering. Indeed, some DSSS systems actually employ socalled matched filters for this purpose but they are usually not true matched filters in so far as they respond to an appropriate input paltern whenever it occurs. In contrast, a true matched filter will respond to this pattern only if it also occurs at a precisely defined epoch.

CORRELATION

The finite period auto-correlation function $R_{T}(\tau)$ of a waveform $F(t)$ is defined as the average value over the period (" P) of the product of $\mathrm{F}(\mathrm{t})$ and a delayed version of itself. $\mathrm{F}(\mathrm{t}-\tau)$ where τ is the delay. Thus

$$
R_{T}(\tau)=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} \begin{aligned}
& F(t) F(t-\tau) d t
\end{aligned}
$$

In general, it will be a function of the "starting point" I_{0}. However, in some circumstances it may be independent of t_{11}. and one such case arises when $F(t)$ is an m squence, T^{\prime} is the sequence duration or repetition period, and τ is an integral multiple of the chip period. As indicated in the section on m-sequences, we then have (for sequences taking the values +1 and -1):
$R_{\tau}(\tau)=-1 \tau \neq m T$ where m is an integer $R_{\tau}\left(\mathrm{m}^{\prime}\right)=2^{n}-1$
In general, of course the product of a waveform with a delayed (or non-delayed) version of itself will be a third waveform whose statistics differ from those of the original. If the two waveforms are noise-like or randomized, then the product will also be noise-like and even after low-pass filtering (equivalent to the integration process of equation 19) the output will remain noiselike even for $\mathrm{T}=0$. In other words, if $\mathrm{N}(\mathrm{t})$ is a noise waveform.

$$
\mathrm{N}^{3}(\mathrm{t})=\mathrm{DC}+\mathrm{AC}(\text { ("self-noise") }
$$

If. however. $\mathrm{N}(\mathrm{t})$ is a binary sequence $|\mathrm{N}(\mathrm{t})=\mathrm{C}(\mathrm{t})|$ taking only values +1 and -1 , then

$\mathrm{N}^{2}(\mathrm{t})=\mathrm{C}^{2}(\mathrm{t})=+\mathrm{l}=\mathrm{DC}$ only

Thus $R_{T}(0)$ is pure $D C$ for a binary waveform but $R_{7}(T)$ is primarily a non-DC function for $T \neq 0$.
The correlation process is illustrated in Fig. 1 in which time is represented on the horizontal axis. Waveform (a) represents a binary reference waveform, $\mathrm{C}(\mathrm{t})$. Waveform (b) is the same waveform in perfect synchronism with (a) corresponding to $\tau=0$, i.e. it is also $\mathrm{C}(\mathrm{t})$. Waveform (c) is their product $\mathrm{C}^{2}(1)=1$, i.e. pure DC .

Waveform (b) is said to correlate perfectly with (a). Note that if either (a) or (b). but not both, is inverted. the product becomes -1 , i.e. DC of opposite polarity. This is an important property. Waveform (d) is the reference waveform (a) but shifted in time to give $\mathrm{C}(1+\tau)$ and waveform (e) is the product of (a) and (d) which has only a small DC component and some AC components containing quite high frequencies. In this case. the correlation (at the shift τ) is said to be small. (Note that it is irrelevant whether one considers delayed or advanced waveforms since, reverting to equation (19), the integrand $F(t) F(t-\tau)$ is identical to $F_{1}(t) F_{1}(t+t)$ where $F_{1}(t)$ has been written for $F(t-\tau)$. If $F(t)$ is such that $R_{7}\left(T^{\circ}\right)$ is independent of the "start" time t_{11}. then from equation (19) there is no difference between that equation and the similar equation using F_{1}.)
lf we now imagine that (a) is a transmitted waveform but that binary information is impressed by reversing its polarity if the information bit is a -1 , and if. at the receiver, we produce the synchronous waveform (b) but with no such reversals, then the product of the two will alternate between +1 (positive DC) and -1 (negative $D C$) in precise agreement with the information bit stream.

If the input waveform is translated to radio frequencies by a linear modulation process. the same principles will apply. although depending on the modulation/ correlation implementations some further demodulation may be required.

FUNDAMENTAL FEATURES

We may summarize the essence of an archetypal DSSS system as follows, with $\mathrm{C}(\mathrm{t})$ (taking values +1 and -1) representing the
binan' spreading code and l(t) (also taking the values +1 and -11 representing the hinary information sequence.
At the transmitter. the transmitter signal is given by
$I(t) \times C(t) \times \sin \omega t=\cos (\omega t-(\pi / 2) \times](t) \times C(t) \mid$ (info) (W'B carrier) [W'ideband (WB) PSK|

Figures 2 and 3 show a transmitter and receiver according to the above functions. As indicated by the dotted lines, it is often (but by no means alway's) possible or convenient to use, in the transmitter. a sinusoidal initial carrier (sinwt) whose frequency is related to the spreading logic clock rate. For example. the clock could be derived by counting down from the frequency $\omega / 2 \pi$.)

We now have the problem of generating C(t) at the receiver and getting it in synchronism with the received signal. We also have the problem of providing a narrow band local oscillator, sineot. in phase synchronism with the output from the despreader. These (wo functions are here considered separately because they are often performed separately. though conceptually they might be combined and in some cases have been. Here, as elsewhere, I shall merely indicate a possible technique for solving each problem. You should not infer that they are the only possible techniques or even necessarily the hest for any particular inplementation. They are however. well-tried techniques in common use.

COIEACQUISITION

It is clear that if the spreading code $C(t)$ is defined in terms of a particular algorithm or of a particular set of shift register feedhack connections and combining logic. then C(t) can he reproduced at the receiver. It is also apparent that provided this receiver code is in perfect synchronism with the received signal. the system will work well regardless of the auto-correlation properties of the code. Wie here ignore some subtleties related to intelligent jamming.) However. in general the receiver code will not be synchronized with the incoming signal ab initio and it is in the process of ohtaining such synchronism (or "code acyuisition") that the auto-correlation properties are particularly significant.

Note that the accuracy required for synchronism is within a small fraction of a chip period. so that for typical clock rates of say 10 MI Z this implies accuracy of the order of 10 nanoseconds. For immediate purposes we shall consider a base-band system only and ignore complications due to translations to higher frequencies.

In principle, of course, one could envisage a huge bank of correlators, each fed by the received signal and by a delayed version ot the locally-generated code. the delays being slightly different for each correlator. If there were sufficient correlators to cover all conceivable code phases (within the acceptable small fraction of a chip error). then the correlator giving the largest low freguency output power within the information handwidth would be that for which the local code

Fig. 2. Transmitter essentials in a typical direct sequence spread system.

Fig. 3. Basic receiver for a DS spread system.
and the received signal were most nearly synchronized.
In practice. the cost and complexity of such a system would normally be prohibitive. though some systems do incorporate partial parallelism of this sort. Consequently. code acquisition is normally attained by means of a serial search procedure.

In passing, it is important tor realize that IOSSS sustems are expected to work at very low signal-to-noise ratios (i.e. much less than unity or (odB) so that the idea of detecting the received signal directly and extracting the modulation fincluding the spreading code) is a mere pipe-dream. Indeed, it is only hy the correlation process that the signal can be extracted.

The idea of sequential searching immediately imposes constraints. Since the synchronizing prection required is within a small part of a chip period, the search must either be quantized into similarly small steps of local code delay or must progress continuously at a correspondingly low rate. In the quantized case. the search must be halted after each step for a sufficient time (the integration period T') to allow adequate assessment of the degree of correlation; and the more powerful the system di.e. the lower the signal/noise ratio to be handled), the longer this time must he. In the continuous case, the "sweep" must be sufficiently slow that it does not, over the correlation or integration time T, result in a relative displacement or drift of more than the permissible fraction of a chip period. Thus the search is slow, and in the absence of any
other timing information must be expected sometimes to need to proceed through almest the entire length of the code.

For long codes, the corresponding time to acquire code lock can be prohibitively long: times of hours, days, months, years, centuries or millenia can easily emerge from the relevant arithmetic and indeed many practical systems do allow minutes or even. in excentional cases. a small number of hours (0) attain lock. Nevertheless. for most purposes. it is necessan to acquire lock in a time much less than an hour and often much less thari a minute.
A.s a result. various subterfuges are employed to achieve more acceptable synchronization times. Most of these result in some theoretical degradation of performance, but two are especially simple to appreciate and are of some importance in practice.

Firstly, if both transmitter and receiver contain very high precision (e.s. atomic) clocks and have previously been synchronized. for example by the use of transfer stardards. then the only timing error hetween the received and local codes at the rectiver will be due to propagation delay fand equipment delays which can be measured and allowed for). If this propagation delay is also accurately known then no code acquisition system is required in theong. However. even if it is not known precisely. for "adiosystems it will not normally exceed a few milliseconds; and if the approximate separation of transmitter and receiver is known. the actual uncertainty in delay may be much less. Only a very limited search is

Fig. 4. Signal acquisition in a DS spread system.

Fig. 5. Code lock loop. This generates three versions of the local code, slightly shifted in time or phase.
sufficient for code lock in such cases. Secondly. systems such as the US GPS (Navstar) satellite system can also provide highly accurate time references to both transmitter and receiver, thus reducing the need for atomic clocks. Navstar itself employs DSSS as an interference-resistant means of communicating its information.

If no high precision timing is available. then one may employ short codes so that the amout of searching required is limited to this shorter code length. However, short codes have some potential disadvantages in respect of hoth intelligent jamming and low detectability: and so they are often combined with long codes in such a way that the short code is used primarily to achieve code lock which is then "transferred" to the long code. a relatively simple process since the two codes can be driven by the same clock. The chief weakness of such schemes in respect of jamming is then restricted to the initial code acquisition period and is usually far less serious than is sometimes believed. Nevertheless, all schemes to expedite code acquisi-
tion introduce some potential degradation of overall performance, though its exploitation by a jammer may be much less easy than a superficial examination would suggest.
We shall henceforth ignore these complications and merely consider how one might implement an acquisition system involving sequential search. and for simplicity we shall assume that the local code is advanced in steps of some suitably small fraction of a chip period. At each code phase position the code phase is held for the selected integration (or correlation) period. here assumed to be the m -sequence repetition period (T). and the correlation factor is evaluated essentially by assessing the bandwidth of the resulting output. For example. if the correlation is performed at base-band. then, when synchronized. the output will be dominated by a large narrow-band component centred on zero frequency, i.e. a low frequency component.
If. on the other hand. correlation is performed at IF or at RF then the synchronized output will he dominated by a narrow-
band component centred on that IF or RF. Unless the received and local codes are in synchronism or very close to it, the output will be like wide-band noise of low power density so that if it is followed by a narrowband filter and rectifier (or low-pass filter in the base-band case) the output will be small. Hence we may terminate the search when such output attains an adequate magnitude. This also gives rise to a scheme for maintaining code synchronism when once achieved. The circuit which performs this function is called the code lock loop and is sometimes switched into the system only when synchronism has been detected. Figure 4 depicts a signal acquisition system.

CODE LOCK LOOP

There are many variants on the basic theme for code lock loops but we shall here describe only one of them, commonly known as the "early-late gate" or "delay lock" loop. In this, three slightly time or phase shifted versions of the local code are produced. the phase shift or relative delay being the same between successive pairs. If the codes, in order of increasing delay, are designated $\mathrm{C}_{\mathrm{E}}, \mathrm{C}_{\mathrm{P}}$, and $C_{1 .}$ (for early, prompt and late) and if each is ied to a correlator for which the other input is the received signal, then when C_{p} is in synchronism with the received signal, the "prompt" channel will have maximum despread output (used for information extraction) while the "early" and "late" channeis will both have despread outputs of magnitude rather smaller than the prompt channel but virtually equal to each other. Thus the difference between these two outputs will be nominally zero. But it the codes $\mathrm{C}_{\mathrm{E}}, \mathrm{C}_{P}$ and C_{L} "drift" with respect to the incoming signal then one of them will be nearer synchronism than the other and its output witl therefore be greater. The difference between the two outputs will then he nonzero and. in the base-band case. the polarity of this (DC) difference will depend on which is the larger and hence on the "direction" of the drift. It can therefore be used to control the phase of the local code (usually by controlling the clock frequency) so as to maintain synchronism in the prompt channel.

Figure 5 shows a code lock loop based on these principles but does not explicitly show the circuit (outlined in Fig. 4) for detecting synchronism in the prompt channel and switching in the loop itself.

In passing. it may be noted that the code lock loop does not have to be switched in after synchronism despite the advantages of so doing. If it is left permanently in circuit it can actually acquire lock prior to maintaining it.

SIGNAL EXTRACTION

In the implementation of Fig. 4. once code synchronism is achieved the output from the central prompt channel will be a narrowband (i.e. sinusoidal) carrier, phase-reversal modulated by the information waveform $I(1)$. This output is represented by I(t)sinwt.

To extract $1(t)$ we must employ a coherent demodulation technique which requires generation of a reference signal $\sin (\omega)$ as
indicated in Fig. 3. This is achieved by feeding the signal output into a square-law device: and hecause l(t) is a hinary waveform and $l^{-}(t)=1$, its output will he

$I^{2}(t) \sin ^{2} \omega t=1 / 2-1 / 3 \cos ^{2} 2 \omega t$

If a narrow band filter. centred on ω / π is now applied, a relatively pure signal of the form $\cos 2 \omega t$ is available which can be further fed into a frequency halving circuit to produce \pm sinwt. (Small phase errors arising from the filtering etc. can be measured and allowed for.)
Figure 6 shows a signal extraction system based on this principle. Note the inherent uncertainty arising from frequency halving. That is to say' we produce either $+\sin \omega t$ or -sinet hut we do not know which. Thus use of this output for coherent demodulation produceseitherl(t) or -l(t).

Various techniques can he used to resolve the ambuiguity. For example, a predetermined code sequence can be incorporated within the information sequence $1(t)$. If this appears inverted at the receiver output then that output can be inverted to correct the "polarity". This approach demands reasonahly stable propagation delay between transmitter and receiver. and so a rather more popular technique is to employ differential encoding of the information delay between transmitter and receiver, and so a rather more popular technique is to employ differential encoding of the information. In one implementation of this, the phase of the carrier is reversed whenever the data bit is +1 . The information is then extracted by comparing the received bit phase or polarity with that of its immediate predecessor. Thus, even if the reference sine wave in the receiver is inverted, the information will still be correctly received apart from one or two hits at the heginning of reception. Allowance can easily be made for this.

Differential encoding tends to double error rates because if one hit is incorrectly decoded the following one will probably he also. In other words errors will tend to occur in pairs. However, if the error rate is sufficiently low (and after despreading it should be). differential encoding is a very useful technique.

EFFECT OF NOISE ANI JAMMINC

For simplicity and ease of unders:anding we have so far considered noise-fret signals at the receiver. Since a major aim of IOSSS is to counter high levels of interference we shall conclude with a brief discussion of what happens when the signal is deeply immersed in noise of some sort. We must note, however, that all the processes described above. with the exception of the code-lock detection and coherent detection regeneration circuitn. are linear, so that noise and interference can be viewed as entirely linearly additive features. (This also applies if, as is usual, the received frequencies are heterodyned down to some lower intermediate frequency.)

Referring to Fig. 3, if the input signal contains additive noise or jamming which is uncorrelated with the signal, that component will also, in the correlator, be multiplied by the local code co(t). If the noise bandwidth is wide. this will make it even

Fig. 6. Carrier regeneration: signal extraction system based on a narrow-band filter.
wider. If it s small (e.g. a sinusoid), it will he spread to give the same sort of spectrum as the original DSSS signal. On the other hand, all the energy in the true DSSS signal will have heen translated into the narrow handwidth of the information. The ensuing filter will therefore pass almost all the signal energy but reject all hut a small fraction of the noise energy. Of this smal! amount. on average half will be "in phase" with sinot and half in quadrature, and this last half will be further rejected after coherent demodulation and filtering. Hence noise and interference rejection of a high order is achieved.
The first. and major, noise reduction also applies to the signal used for regeneration of the carrier sinct (Fig. 5). To reduce noise further in this circuit. a very narrow hand filter at the double frequency may be employed since this filter does not even have to accommodate the information bandwidth. In practice one might use a fairly narrowhand filter followed by an injection-locked oscillator to achieve the desired very narrow hand filtering. This oscillator could he at the double frequency or at the desired output frequency $\omega / 2 \pi$, thus performing filtering and frequency halving simultaneously.
Note the importance of performing correlation before coherent demodulation. If one were to attempt the two processes in reverse order, the nonlinear "ssuare-law" device would result in the translation of a substantial amount of noise from the entire RF handwidth into the narrow bandwidth of the filter whose output is used to determine the required phase of the local oscillator. In consequence. this oscillator would be subject to much greater phase jitter, resulting in degraded performance.
Most of the description ahove is related to analogue implementations. This is yuite deliberate since in many instances these are the only feasible techniques at the present state of technology. However. in many other instances a primarily digital implementation is possible. In fact, implementation is heavily constrained hy system parameters and current technology, so it is not useful in an article of this kind to pursue the matter further. Suffice it to say that entirely digital implementations would in many cases demand extremely high clock rates.
Before concluding, I should mention one other property of spread-spectrum which I have so far ignored. If the chip period is fairly small compared with likely differential propagation delays, then I)SSS provides significant protection against multi-path propagation and fading. The inherent redundancy
would in any case give some protection of this type; hut if the receiver locks on to the shortest delay path signal (which can be arranged by choice of code search "direction") then other replicas. delayed by more than say a half-chip period. will be rejected in the same way as other interference. Indeed, with further complexity it is possible to conceive receiving systems with parallel reception which accept several differentlydelayed versions of the signal, to correct for the delays (which are easily assessed from the relative code delays in the various channels) and then to combine the outputs coherently (with appropriate weighting for signal-to-noise-ratio) to provide maximum use of all the received energy. One such system was in fact implemented in the late 195:)s ${ }^{3}$, hut whether the complexity is just j fied by the performance gain is a matter of debate.

Finally, I should mention the possibility of systems in which many transmissions exist simultaneoush within the same fwidel bandwidth. Since all but the signal to which the receiver is locked can be considered as interference and will therefore be rejected. such "multiplexing" is possible and does not demand any sort of "co-operation" between the transmitters in respect of timing (ct. time division multiplexing. TIDM) or frequency allocation (cf. frequency division multiplexing, FDM). It therefore offers attractive features for some applications. However. to ensure that each receiver locks on io its intended signal, it is necessary that each transmitter has its own distinctive spreading code. This gives rise to the description "code division multiplex" or CLDM for such schemes.
When Cl)M is employed, it is essential that there is little risk of the receiver locking on to the "wrong" code, even if the signal level associated with that conde is much greater than that of the desired signal. To ensure this. the cross-correlation properties of the set of codes employed is of great importance; and again, highly advanced mathematics is involved in deriving such sets. Again, also, this continues to provide an area of research for mathematicians. In a future article I shall mention a type of CDM system which received much attention in the 196is and early 19:1)s.

[^2]
Circuit deas

Eprom copier

Both 2746 and 27128 eproms can be copied quickly and easily using only a handful of standard i.cs.

Two 393 counters are cloched by a 555 timer that can be set for two different timings - fast for erase checking/verifying and slow (10 to 50 ms set by the potentiometer) for programming. All reading and programming is done while the clock is high, leaving the low period for address and data changes.

Sequencing of the check, program and verify phases is controlled by address lines $A_{14.15}$, which are the two most significant outputs of the counter. When both lines are low, i.e. on the first time through the count. pins one and ten of IC_{9} and A_{14} provide signals for disabling the buffer and setting the 555 to its fast mode. Comparator IC_{8} compares output of the copy with the disabled master; if they are not the same.
output of IC_{8} goes high, taking the D input of ${ }^{1} \mathrm{C}_{10}$ high to stop the count and light the error led. If all locations are FF, the count continues until A_{14} goes high.
During the programming cycle, IC_{9} pins one and ten together with A_{14} enable the master rom, enable the buffer and select the slow clock. When A_{14} is high and A_{15} is low, programming pulses from the 555 pass to the rom via IC_{9}, pin 5 and IC_{5}, pin 6 .

Verification is achieved in the same way as blank checking but with the master enabled.
To change from 2764 to 27128. clock input to IC_{4} is taken from A_{6} rather than A_{7} and A_{7} and A_{13} are swapped. A facility for overriding the erase-checking phase is included for occasions when an attempt at programming a rom was unsuccessful and a second cycle is needed. An oscilloscope is needed to set the programming pulses.

D. Pinch and J. Wike

South Wales Radiotherapy and Oncology Service. Velindre Hospital Cardiff

Z80 accelerator

In Z 80 systems with no dynamic ram, the processor wastes time producing refresh cycles. This is also true for systems using a separate dynamic-ram cont roller.

Provided that the processor is running at 4 MHz or slower a cycle can be gained by applying an 8 MHz clock during refresh. This accelerator, which gives speed gains of up to 25%, requires the use of an $8 \mathrm{MHz} \mathrm{Z80}$ but all other existing components remain the same.

Note that the two seemingly redundant Or gates are to introduce delays. A two-to-oneline data selector is unsuitable for this application.
N.W. Wright

Bandley Chipware
Appleby, Cumbria

Circuit ideas

Accurate lamp timer

Mains-derived pulses determine delays of hence the second triac. Exercise great care between 0 to 49.5 s in this accurate lamp timer. Two ten-way switches set the time a fine control for $0-4.5 \mathrm{~s}$ and a coarse control for 0-45s. Manual start and start and stop buttons tuns the lamp on and off.
In my prototype, the opto-coupled triac North Yorkshire

Economical 16bit converter

Two eight-bit data converters and a switchable-gain amplifier could be used to make an economical 16bit a-to-d converter suitable for audio use.

Input is buffered, sampled, then fed to a differential amplifier with programmable gain. During the first clock cycle, gain of this amplifier is one so the original signal is converted directly to digital form and stored to the latch as the eight most-significant conversionbits.
These bits feed a d-to-a converter, output

of which is compared with the sampled original signal in the second clock cycle. After being amplified by 255 , the difference signal is fed to the d-to-a converter to produce the eight least-significant bits.

For an a-to-d converter with 10μ s conversion time and a d-to-a converter with $1 \mu \mathrm{~s}$ settling time, a sampling frequency of,

$$
F_{s}=\frac{1}{(12+12) \mu \mathrm{s}} \approx 40 \mathrm{kHz}
$$

is fast enough for audio purposes.
For the programmable amplifier, input buffer and sampler, 1 suggest an NE5534. Data conversion could be carried out by a ZN427 and ZN428.

Logic tester

Power consumption of this tester is about 10 mA . Potentiometers allow the thresholds to be set to suit a variety of logic technologies.
Igor Sinoucic
Split, Yugoslavia

NEXT MONTH

Decoding satellite TV transmissions

When the film companies demanded a foolproof system of programme encryption from Rupert Murdoch's Sky Channel with a $£ 25$ million forfeit as the price for breaking the code, they put every self respecting hacker under starter's orders. Reach for the sky with Electronics \& Wireless World.

A designer's guide to RS232

Spitting Image knew what it was doing when it wrote the RS232 song in praise of the total confusion surrounding the subject. If you don't find the subject a system designer's joke read the article and gain confidence to laugh with all the rest of them.

The enigmatic ball bearing

Would you believe that ball bearings can be made to rotate by passing a large current between the inner and outer sections of the ball race? We didn't either until Bulgarian dissident Dr Stefan Marinov demonstrated the effect. It wasn't a marginal one either. Whatever its origin, it possessed enough speed and torque to remove the skin from the editor's thumb.

Object oriented programming

Conventional programming languages provide an applications framework which accepts data into the holes within the frame. Customising the application depends on filling the holes in a specific way. OOPs integrates the supporting structure into the data to form a series of communicating objects which combine to form the application.

KBFS-1 THE BEST THERE IS?
 A very high bandwidth video framestore

* 35 MHz sample rate. 14.5 MHz bandwidth. Real time capture and display. 8 bit greyscale
* User definable image size: 2048×625; $1300 \times 1024 ; 1024 \times 875$ etc
* Asynchronous input and output data rates allows slow scan inputs with video outputs
\star Arithmetic and logical functions between live and stored image.
* Input and output lookup tables
* Pseudo colour outputs.
* Proven fast DR11W interfaces to Unibus, Q-bus, VME etc.
* Cameras, Monitors and printers available.
* British designed and built.
* Custom versions available

Please contact either Dave Griggs or Dan Ogilvie at:

OGGITRONICS LTD

Poole House, 37 High Street, Maldon, Essex, England CM9 7PF.
Telephone: (0621) 50378 or 54993
ENTER 40 (ON REIPLY CARI)

TEST SUITE

Automate any process quickly and easily using TEST SUITE. This new program generation environment uses Microsoff Windows to give the programmer the best possible tools for producing test software. The suite allows the basic program structure to be generated from simple mene selections, then the details are filled in by learning operations either from current interactions with the IEEE 488 bus or from device windows. A complete program can be produced very quickly

REAL TIME VIDEO PROCESSORS
$\star 800$ pixel $\times 576$ line image capture and processing -7 MHz bandwidth.
\star Real time recursive or incremental averaging and subtraction over 256 frames.

* Real time histogram equalisation and image normalising
\star Arithmetic and logical functions between live and stored processed or unprocessed images.
\star 16-bit processing store - no truncation or rounding errors.
\star Separate buffer store for display and transparent computer interfacing
\star British designed and built. Full technical support.
\star Custom versions available.
Please contact either Dave Griggs or Dan Ogilvie at:

OGGITRONICS LTD

Poole House, 37 High Street, Maldon, Essex, England CM9 7PF.
Telephone: (0621) 50378 or 54993

ENTER 39 ON REPI.Y (ARD

Decoding RDS

Following his examination of the RDS signal in last month's article, the author goes on to describe a practical implementation of the non-executive functions

SIMON J. PARNALL

Autotuning is obviously the single most important benefit that listeners will be able to derive from RI)S. The ability to drive from A to B without having to re-tune, without even being aware that the set is re-tuning for you, is a highly significant gain for the motorist.

Aware of this fact, car radio manufacturers are actively developing the L.SI necessan to pack the autotuning features into the standard IDIN/ISO case. An RLOS decoder interfaces with, and controls, the synthesized tuner in such a set. It may well be that the only RIOS display feature incorporated in such a set is the l'S (programme senvice) name.

In this article I should like to ignore the car radio market and describe instead the type of decoder which might well be built into a hi-fi tuner, concentrating on the display aspects of RIDS. The design I shall describe could. of course, be used in the car but does not have any of the executive functions that an RDS car receiver would have. Its only interface with a receiver unless nower is derived from the latter. need be a feed of stereo multiplex. derived after the IF stage and before the stereo decoder.

IISPIAYFEATURES

In deciding upon the RIOS features to support in this design it was necessary to eliminate any feature that required the unit to interface with the tuning control system of the set. simply because a generalized design could not be produced which would interface with a wide range of commercial receivers.

Instead, reatures which may be displayed have been selected, the only possible exception being the provision of uncommitted open-drain outputs for the TP and TA flags. These could be used for executive control (e.g. raising the volume, stopping a cassette) but are intended to be used for external lamps or leds.

The RDS features supported are as follows:
PS programmeservice name
PTYं programmetype
RT radiotext
CT clock time (date not supported)
Tp travel programme
TA travelannouncement
Having decided on the above features, the choice of a suitable display had to be made. A

dot matrix LCD module offering lower-case letters was selected. Lower case letters are particularly important when displaying the PS names of BBC local radio stations because the names are often condensed by omitting vowels, and legibility decreases. dramatically if upper-case letters are used to display the result.

The EBU has defined the meanings of the PTY (programme type) codes. These may be expressed in as few as eight characters, but 16 characters provide room to express the codes without any unfortunate abbreviations, "Serious Classics" for example. However, radiotext requires up to 64 characters. A display offering this amount of space would be large and costly, therefore I decided to use a smaller display and introduce a scrolling action, bringing the radiotext message. character by character, through the available window at a readable rate.

Three basic display modes were chosen, all fitting on to a 16 -character display module: Mode (0) (PS and time): Mode 1 (programme type): and Mode 2 (scrolling radiotext).

Radiotext messages are formatted by the BBC as two lines of 3^{2} characters. 64 in total. Text is often centred on these two lines by the introduction of leading and trailing spaces. It was important that the text should look sensible on the scrolling 16 character display: therefore it was decided that the unit should condense multiple spaces, reducing such intervals to one to aid intelligibility.

Clock time information, although transmitted every minute (only by the BBC at present in the (UK), may not be accurately decoded every time. The decoder must therefore maintain its own internal clock and lock this to CT intormation when decoded.

RISS DEVICES

Hybrid devices incorporating the $57 \mathrm{kH} \%$ bandpass filter, synchronous demodulator. bi-phase symbol decoder and differential decoder are now available to OEM's. One such device. made by Blaupunkt Cimbll of West Germany. is used in this design. It Recovery of the raw data is dealt with by a hybrid module (left); implementing an RDS receiver is largely a matter of software. In a commercial receiver, the same micro. computer could control the synthesizer.

Fig. 7 (right). Circuit diagram of the complete unit. Suitable LCDs are Sharp LM16155 and Hitachi LMO20L or LM087LN; this last includes a LED back light. Specialized components and completed modules are available - for details, see text footnotes.

Fig.8. Spectrum of the multiplex signal.

Fig.9. Decoding RDS groups: this one is type 2A.
requires only a few external components, including a 4.332 MHz cn'stal for the phaselocked loop - this frequency being 76 times that of the RDS subcarrier.

Using the hybrid bit-decoder it was possible to consider building a decoder processing board the same size as that of the display module itself $(90 \times 36 \mathrm{~mm})$. To achieve this aim it would be necessary to build the group decoding and display control functions into a fairly small area. The decision was made to use a single-chip microcomputer with onchip ram and rom. The 68701 from Motorola offered a simple display interface, an on-chip timer, 128 bytes of ram and 2 Kbytes of rom. It is a version of the mask-programmable 6801. Several speeds are available but the cheapest, the IMHIz device, may only be clocked at up to $4 \mathrm{M11z}$. A faster device would enable the hyhrid's crystal to be shared but the relative costs negate this advantage. Thus the slowest device is used, with a separate crystal.

The most important question of all was: would the 68701 be capable of performing the decoding matrix calculation and syndrome evaluation in less than ons bit period $(842 \mu s)$? This is an essential requirement if the unit is to synchronize to an RIDS signal as rapidly as possible. After much work the maximum bit service time was reduced to $820 \mu \mathrm{~s}$. This may seem to leave very little time for the processor's other activities. Indeed during synchronization this is so, but in normal operation the syndrome calculation need only be made once every block, 26 bits. The only activity at other bit periods is to transfer the received bit into a buffer; this takes $60 \mu \mathrm{~s}$, including all interrupt senvice
latency. Thus in overall terms only 11% of processor time is spent at the bit-senice level, leaving 89% for group processing and display control.

HARDWARE

The circuit diagram of the unit is shown in Fig. 7 . It centres on three main components: the MC68701 single-chip microcomputer, the liquid-crystal display module and the RIDS decoder (IC_{3}). Two power-supply voltages are used. 8 V for analogue circuitry and 51 for digital devices. The two rails are derived from a common supply and separately regulated by $\mathbb{I C}_{4.5}$. The use of a low drop-out regulator for the 8 V rail enables the unit to operate from a supply of as little as 8.6 V . If [)$_{2}$, the supply reversal protection diode, is included this figure will rise to 9.2 V . Maximum supply voltage is determined by the specification and dissipation of the two regulators.

The microcomputer operates in Mode 5. In this mode the device supports on-chip ram and rom, but decodes 256 bytes of address space off-chip. This is known as the expanded non-multiplexed mode. Mode selection is made by setting the voltages present on $P^{\prime} 20, P^{2} 1$ and $P^{2} 2$, upon reset. In this application these are permanently fixed. since Port 2 is unused. Port 4 echoes the lower eight bits of the internat address lines, and $\overline{105}$ marks accesses to the 256 byte external space. Since we reguire only two byte of external space for the control status and data registers of the display modules. only P40, the least significant bit of Port 4. is used. Port 3 extends the internal data bus off-chip.

The microcomputer is reset by Tr_{1} and its associated timing components. The reset pin of the processor is used to supply power: the on-chip eprom during operation. To ensure that the supply voltage of this pin is within tolerances, R_{1}, the supply resistor. must be of a low value. The 47 18 resistor specified meets this condition.

DISPIAY

At least three physically and electrically equivalent LCD modules may be used in this particular unit. One of the Hitachi devices specified has the added benefit of a led backlight facility. If this device is used the backlight power may be disconnected (to reduce power consumption) by removing Lk_{l}. Viewing angle is optimized as usual by R_{6}.

INTERRUPTS

Two external interrupt mechanisms are provided on the MC687(0): a maskable. level sensitive interrupt (Jr(a) and a non-maskable, edge-triggered interrupt (xmi). The RDS hybrid bit-decoder produces a 50% duty cycle bit-rate clock with a rising edge at the centre of each bit cell. Use of the ing pin would have necessitated an external flip-flop circuit to prevent multiple triggers at each clock period. The win pin required only one inverter, and the availability of a spare NOR gate from the display interface permitted the incorporation of a switching facility, controlled from Port l. This is used to enable/ disable wnitriggers.

Individual bits of Port 1 may be assigned as either inputs or outputs. Bit 0 is the RI)S bit-stream input. Bit 1 is an output, used to disable wa triggers. Bits '2 and 3 are used, as inputs, to set the display' mode. A single-pole changeover push-button is connected to these lines as shown in the circuit diagram. Bit 4, an input, selects an automatic display feature when grounded, and Bit 5, also assigned as an input, is currently unused. Bits 6 and $\overline{7}$, outputs, drive Tr_{2} and Tr_{3} to indicate TP (traffic programme) and TiA (traffic announcement) respectively.

SIGNAL INPUT

The unit requires a feed of stereo multiplex. This is the signal presented to the stereo decoder within a receiver. It contains baseband audio, pilot-tone, stereo-subcarrier. and now RIIS.

Some receivers incorporate a low-pass filter to remove signal components above $53 k B z$. Ideally the signal should be extracted before the filter.

Any DC component in the input signal is removed by C_{4} before this is presented to the load, \mathbb{R}_{7}. Transistor Tr_{4} gives a gain of about 14 dB . Potentiometer R_{7} should be adjusted to obtain an overall multiplex envelope of IV pk-pk at the collector of this transistor, measured at TP_{1}. This corresponds to the peak deviation of $\pm 75 \mathrm{kHz}$ specified for FM broadcasting in Europe.

Modulation	Deviation (kHz)	Voltage (pk•pk)
Maximum	75	1.0 V
Pilot-tone	6.075	81 mV
RDS	2.0 (no mod.)	27 mV
RDS (Radio 3)	1.2 (no mod.)	16 mV
RDS (min.)	1.0 (nomod.)	13 mV

This adjustment is most easily made by setting pilot tone level to 81 mV ．as shown in the above table．Pilot tone is of constant amplitude，and easily recognised on an oscilloscope．I recommend Radio＇3 as a source for making this adjustment．The wide dynamic range in classical music offers periods of near－silence when pilot tone dominates the audio signal．
When the input level is correctly set the hit－decoder should have no difficulty with RIDS signals at the minimum level specified hy the EBU（an injection of I． 0 kHz ）．

SOFTWARE

The software is divided into three parts，each operating at a distinct＇priority＇．These priorities are，respectively．interrupt，fork and loop．
The interrupt handler is invoked by each falling clock edge．As mentioned previously the length of time taken for the consequent senvicing may he as little as firt $\mu \mathrm{s}$ ，or as much as 820 ps ．Variations in interrupt senvice time are a function of the degree of comple－ tion of the accumulated block and group． Maximal time is taken when the received bit results in completion of a block and comple－ tion of a group．This happens when succes－ sive blocks yield syndromes $\mathrm{A}, \mathrm{B}, \mathrm{CC}^{\prime}$ ．and 1）．The interrupt handler signals this event by selting a flag，indicating that the group huffer contains the four consecutive group data words．This is known as the fork flag．
The loop code checks the state of the fork flag whenever it waits for completion of display activity or for the timer．If set，the fork flag indicates that the processor should service a received group．This is performed hy the fork code and must be accomplished within 22 ms （one hlock period），as at the end of this period a new Block 1 would be expected to ovenirite that held within the huffer．

The fork service code inspects Block 2 of the group to determine which group type is presented．Our decoder responds to a subset of the possible group types，using those which carry the major features supported． Other groups are ignored．Types 0A and 0B have already been described and shown （Fig．4，5）．The other supported types are shown in Fig．9，10， 11.
A software handler for each of the sup－ ported group types uses the group data huffer to undate the internal database for the PS．PTY．TP．TA．RT and CT features． Additionally，when received，the TP and TA bits are written directly to the relevant physical lines（Port 1）．ensuring that these lines reflect a change in state as quickly as possible．
The loon code，as its name suggests． repeats continually until it is interrupted．or voluntarily passes control to the fork code． As such it may be described as a hackground task．The loop operates on a 0.05 s cycle． waiting for the internal timer to indicate the elapse of this period before repeating．A count of 0.05 s cycles is maintained in the variable тиксом：Tiwenty＂ticks＂constitute one second．When tifulist reaches 21，the count is reset to zero and the hours，minutes and second rariables maintained in memory are accordingly increased．Thus the unit is

Fig．10．Type 4A group．

Fig．11．Type 15B group．

not reliant upon the minute－by－minute re ception of type 4 A groups for accurate timekeeping，but has its own＂flywheel＂． maintaining an accuracy of about ± 10 s per day．When successfully decoded，a type 4A group updates the time variables and resets тוксомя to zero，synchronazing internal timekeeping and preventing double incre－ ments．

IIISPLAYMOIE

At the start of each loop cycle the displav mode control hutton is sampled．de－bounced （using a parity test）and compared with the last value read．A positive edge calls for the display mode to be incremented．

The display mode is held in memory as two nibles：

お Moはだ いだい

W，Mrne：is the actual display mode（i，e．（1）， 1 or 2）．Ife il represents the number of 0.1 s intervals left in this display mode，and is set to 15 eveny time the display mode is in－ creased．If whome were 1 and necow were 6 （1）．fis remaining in Mode 1），then after a button press bayome would become＂2 and 1）．ciy 15 （1．5s remaining in Mode 2）．（on subsequent cycles at 0.1 intervals when tuchen＇st is even，the decir value is de－ cremented．When this reaches zero 19.901 m itself is reset to zero．This facility holds each higher display mode for 1.5 s before return－ ing to the basic mode．If the button is pressed again during this period the next display mode is engaged and so on．This mechanism could support as many as 16 modes，but at present only three are used．

The display cycle rate is halved when Mode 2 （radiotext display）is selected．resulting in a $51 \mathrm{i} \%$ character rate－about right for scrolled text．As mentioned tarlier，multiple spaces are condensed to one for intelligibil－ ity，rendering the complete time to display a message as a variable．As each character is written becar is held at 15 ．holding the timeout period（now double because of the reduced rate）until the last character is written．

If the automatic display option is selected． by holding P14 to ground，the display mode is automatically incremented at 20s nast each minute．or whenever lif：ir reaches 1 ． Normally the display will show PS and time： at＇20s past the minute＇s edge PTY will he shown．and 1. ＇s later the radiotext message will scroll across the display．Three seconds after completion the displaywill return to P＇S and time．

SYNCIIRONIZATIONCONTROL．

One important aspect of the operation of this device is the use of a confidence count to munitor hlock synchronization．The unit does not make use of the hit－slip detection and correction system described earlier he－ cause of the complexity and increase in memory requirements．Instead．a confi－ dence count monitors the number of valid and invalid syndromes detected．The first valid syndrome detected sets the count to 42： subsequent valid results increment this number by 4 ．to a maximum of 60 ．An invalid syndrome decrements the count by 1．Re－ synchronization（i．e．a bit－hy－hit syndrome check）is performed when the figure drops below 41．When the figure drops below 10， the input signal is assumed to have dis－ appeared，and the RISS programme－related features stored in memory are re－initialized tos their default state．

The author would like to thank the BBC＇s Drector of Engineering for his permission to publish thisarticle．
Specialized components and completed modules are available for the decoder design．For details． send a stamped，addressed envelope（or two IRC＇s） to the EdEWII editorial office，marking your conering envelope＂RI）S＂．A copy of the author＇s object code for the 68701 is available from the same source，as a Motorola S－format hex listing．

Simon Parnall is a senior design engineer with the BBC，which the joined after graduatong from Imperial Codlege，London，in 198t．He has been intolved with RISS since 1986．mainly in design． ing the BBC＇s implementation of the system，and has written much of the software for the central RDS computerat Broadeasting Houst．

Astorage sub-system traditionally meant Winchesters. Magnetically-coated hard disks are still the first choice of the vast majority of systems builders although other technologies are catching up. In particular. optical technology could become the developer's preference of the 1990s. Naturally, hard disk manufacturers disagree but there is a considerable body of disinterested opinion which concurs.
A look at the development of hard disk sub-systems over the lifetime of the PC standard suggests there is still plenty of life left in magnetic storage. When IBM's PC/XT erupted onto the computing scene five or six years ago, its full height. 10 Mb Winchester had an access time of around 80 ms . Phenomenal though it seemed at the time. probably few imagined how quickly that 10 Mb could be gobbled up and how slow such a device would seem when servicing today's enormous applications. At the high end of today's market, you subsequently find hard disks with capacities of up to 330 Mb . and average track-to-track access times of well under 20 ms .

Although access time is a common rule of thumb method for assessing hard disk performance. it is not the only one nor is it necessarily the most meaningful. It only describes how quickly the read/write heads move on average from one track to the next. The data transfer rate is often more helpful when evaluating disk sub-system performance as a whole. as it takes into account the design of the controller and the drive's electronics.

Controllers convert the operating system's instructions into specific head movements and have a strong influence on end users' perception of computer performance. For example, many of today's highperformance controllers include large quantities of cache memory that boosts the disk's performance out of recognition. One 80386based PC controller has an integral hardware cache of 3MB that, when tested, returns track-to-track access times of half a millisecond and data transfer rates of tens of megabytes per second. The consequence for the user is almost instant response - as long as the data required is already in the cache.

Controllers also determine the number of sectors per track that can be supported. and the type of drive. Here too developments have overtaken expections with the PC industry spawning a wider range of formats and of drive types than was at first envisaged. This development has had serious repercussions for the type of interface employed to integrate computer and hard disk systems.

THE INTERFACE

Between the computer and hard disk subsystem of most PCs can be found the ST506 interface, which Seagate derived in 1980 from its floppy disk controller. In a modified form, it became the IEEE 412 specification and was used first in the PC/XT. The technol ogy in the ST506 reflects the state of hard disk technology at the time. For instance. manufacturing accuracy of contemporary hard disks was relatively low. Flying heights of hard disk read/write heads were over 12

HARD DISK DEVELOPNENTS

MANEK DUBASH

microns, motor speed variations were high at between one and four percent. and stepper motors - used to position the heads above the tracks - were relatively inaccurate.

The ST506 was designed with the relatively low data densities that flow from such technological constraints.

The drawbacks are not contined to relatively poor performance. The original designs didn't include checking and error correction, which meant that error rates had to be kept to an absolute minimum.

More prevalent these days is the Enhanced Small Device Interface (ESDI) which is
becoming a stamp of respectability for PCs at the mid to high end of the power spectrum. It was created by a consortium of 22 manufacturers out of a desire for better hard disk performance. It followed improvements in the manufacturing tolerances of the drives themselves. Particular improvements include tighter motor speed tolerances - commonly around one percent; flying heights of 10 microns or less; and more coercive media - now 600-700 oersted as against 300-350 oersted in 1980. ESDI also supports formats of up to 34 sectors per track and a maximum formatted capacity of 340 Mb . The upshot is

The ESDI standard puts a degree of intelligence into the disk interface. This leaves the system host CPU free to get on with other jobs

that the interface can offer double the data throughput of ST506, up to its maximum of $10 \mathrm{Mbit} / \mathrm{s}$.
And finally, due to the proximity of the data recovery circuitry to the read/write head, mounted within the drive 'tself. ESDll is less prone to externally-generated errors. while at the same time being more faulttolerant due to more sophisticated error correction.

ESDI. like other computing standards. has been implemented by various manufacturers in ways that suit them. Western Digital's ESDI copies the drive tables off the disk into shadow ram. where they can be altered to cater for new types of drive as they emerge. WD also builds drive tables into its controllers rom hios and adds value by including utilities such as a formatting program.

Part of ESDI's higher performance stems from its ability to delegate. Lnlike the ST506, it possesses some independence from the main system. This permits a limited degree of multi-tasking. so that the host can carry on processing while the controller is accessing the disk. Another advantage stems from its so-called common command set,
one it shares with the more powerful standard SCSI (Small Computer System Interface). With a single command, the host computer can initiate formatting, leaving the controller to deal with the technicalities
the number of sectors, tracks and so on. The host can be oblivious to the drive's physical nature.

Miniscribe, a leading hard disk maker. anticipates that the standard interface for the more powerful PCs of the future will be SCSI. which can also handle data transfer rates of up to $10 \mathrm{Mbit} / \mathrm{s}$. Like ESDI, it is media independent but it also allows up to seven devices to be daisychained off the back of any single SCSI control device. Huge amounts of data then hecome accessible to a single PC through the SCSI conduit.
SCSI's flexibility results from its data transfer method. It talks not in terms of heads and cylinders but in blocks of data. These could originate from any storage device. whether optical, tape or even those as yet unthought of. It delivers its best performance when mounted with blocks of data. Miniscribe predicts that SCSI will eventually supplant the ST506 altogether.

On top of improvements in controller technology, refinements in media technology - the magnetic film itself - mean that more data can now be packed into a smaller area of the disk. One consequence is the widespread adoption of Run Length Limited (RLL) encoding, patented, and introduced in 1986. by IBM. Standard controllers use a data storage method known as Modified Frequency Modulation (MFM). But by packing 50 percent more data per unit area RLLL controllers can turn a 20 Mbyte drive into a 30 Mhyte drive. RLL is more prevalent on 200Mbyte drives and upward hut is infiltrating the lower, commodity end of the market as costs fall.

In recent months controller manufacturer. Perstor, has launched a further enhancement called Advanced RLL (ARLLL). Perstor's claims for ARLL include an expansion of hard disk capacity by at least 80 percent.

A BETTER FILM

There is a trade-off against greater capacity:

Vertical recording places the domains in the vertical direction increasing data packing density substantially. This technology promises to extend the usefulness of conventional magnetic media
Erasable optical discs
simply swapping a standard controller for an RLL. equivalent is likely to produce unpredictable results. While a modern, highquality platter can provide a reliable basis for a high-density storage device with a high data throughput, not every disk is capable of storing data reliably at such densities. RLL controllers require a high coercivity of 600)700 oersted. motor tolerances of less than one percent and a highly accurate head positioning mechanism. Not all drives are capable of meeting such standards. One RIL user I know found this out the hard way.

The quality of the hard disk platter is crucial. Modern manufacturing methods mean fewer and smaller suriace imperfec tions. With a flatter platter, readwrite heads car fly closer to its surface, with distances between the two components of between eight and 12 microns being typical.

Tolerances of this magnitude have been compared to flying a Boeing 747 at one inch above the ground: a human hair is four times as thick.

Rotating at $3600 \mathrm{rev} / \mathrm{min}$, the platter's ferric oxide coating is being driven to ever higher packing densities. The lower the alt:tude at which the read/write head flies. the more tightly defined the domain from which data is read. That enables manulacturers to reduce the distance between each data fragment as well as between each track.
Higher densities can be attained through thinner but more coercive coatings. Ferric oxide coatings as thin as 30 millionths of an inch have served up to now but the material is reaching the limits of its performance. The response has been to abandon iron and coat the disk with a film of magnetic cobalt 1.5 millionths of an inch thick. The aluminium blanks are plated with nickel, polished and then either sputtered or plated with cobalt. Protection is provided by a finishing layer of carbon.

Being thinner, the magnetic field is more concentrated. making it better suited to low-flying, narrow-gapped heads. Not only is cobalt harder and more wear-resistant than ferric oxide but it has a higher coercivity enahling it to carry a stronger magnetic field. As an added bonus, thin film cobalt reduces the number of defects caused by to air bubbles and impurities. leading to fewer bad sectors and adding further to capacity.

Read/write heads have changed to neet the demands. Conventional heads are built up of ferrite wound with a coil of wire. To reduce their size instead of physically winding wire round the head, the spiral winding is laid down in a series of etched depositions -thin film-on a block of titanium carbide.
Thin film heads are less susceptible to external electro-magnetic noise but are twice as expensive to make. Despite their improved performance, such heads are found mainly in high capacity drives. typically of 100 mbytes or more. The major thin film head manufacturer is IBM.

But the next five years could see 170Mhyte or larger drives in ordinary personal computers as more applications involve networking.

THE 'ALADDINS' CAVE OF ELECTRONIC \& COMPUTER EQUIPMENT

COLOUR MONITORS

20 " \& 22" AV Specials
aporiaraions Unis hheve sanadadd composist wideo inpus whit in

FLOPPY DRIVE SCOOP
Drives from Only £39.95

 dISK DRIVE ACCESSORIES

8" DISK DRIVES

COMPUTER SYSTEMS

PRINTERS

POWER SUPPLIES

 $£ 185.00$ $£ 225.00$ (E) E E

When orderily please specily fr2z2 of CENTRONCC intent

> Ulitra Fast 240 cps NEWBURY DAT NDR 8840 High Speed Printers Only £449!!

 whed

 27×25

Special Offer EXPERIMENTORS PSU	$\begin{gathered} \text { ONLY } \\ £ 16.95 \text { (C) } \end{gathered}$
Made to the highest spec for BT $+5 v 23+8.12 v 12 .+24 v$ sund Ideal for school labs etc. Ounnty dits Fully tesed wht dala RFE. Re	floating at 50ma lable. m Equipment

The AMAZING TELEBOX Converts your monitorinto al

	$\begin{aligned} & \text { TV SOUND } \\ & \text { \& VIDEO } \\ & \text { TUNER } \\ & \text { ONLY } \\ & \text { £29.95 } \\ & \hline \end{aligned}$

 TELEBOX RGB lor wew with analogue RGB mpanar

MODEMS

> SPECIAL PURCHASE V22 12OO LPU MODEMS ONLY E149 II

MASTEA SVSTEMS Yye 21212 ntcioporoces Sils BT approved modem enploys all he aless
 sanng you 75 or or yourt phone bils and dwe connerice and you heose suctis to our

LunT En Only £149 (0)

CONCORD V22 1200 baud as new $£ 330.00$ (E) CONCORD V22 1200-2400 BiS 8399.00 (E DATEL 4800 /RACAL MPS 4800 EXBT
modem for 4800 baud syric use. \quad E295.00 (E) DATEL 2412 2780/3780 4 wire modem unin
EX BT fully tested. MODEM $20-175-1200$ BAUD for use with
PRESTEL
E4C PRESTEL etc EXBT fully tested. $\quad £ 49.00$ (E) with RS232 I/O Brand New E49.00 (E)
RS232 DATA CABLES RS 232 OATA CABLES 16 fl long 25
As above buck Brand New Only 29.95 (A)

RECHARGEABLE BATTERIES

Mantename
 NICKEL CADMAM ${ }^{\text {RIFE }}$

BRAND NEW 85 Mb
DISk Drives ONLY $£ 399$

COOLING FANS

SPECIAL INTEREST

Please call

 wave 50 Hz ouplum achine or febm din lead roler ITR75

 tandara Mu R140 NTSC TV

MAIL ORDER \& OFFICES LONDON SHOP

Active

A-to-D and D-to-A converters 8-bit A/D converters. Two c-mos 8 -bit serial / 0 A-to D converters feature a $6 \mu \mathrm{~s}$ conversion rate - including sample-and hold. acquisition - that allows digitization of a OV to 5 V sine wave at 40 kHz with better than 45 dB signal/noise. Micro Linear Corporation 4084335200

The IDT5MB38 is a high-speed. c-mos, triple 8-bit, video D-to-A module that can be used in place of the TDC1318 or BTI 09. Th ID 75 MB 38 oflers the benefits of high speed with low power, running at 125 MHz . It
features an on-board voltage reference. features an on-board voltage refe
Microlog Limited 0486229551

Active hybrid circuits BICMOS channel-less arrays. AMCC Q6000B and Q14000B BICMOS logic arrays inchannel-less architecture, with 5760 and 3400 equivalent 2 -input Nand gates respectively. The architecture uses macro
cells rather than rows of transistors, as in the cells rather than rows of transistors, as in the
sea-of gates. Applied Microcircuits sea.of gates. Applied Microcircuits Corporation 0256468186

Crystal osciflator. The QC6112 quartz rystal oscillator has an operational Irequency range from 200 kHz to 16 MHz , accurate to within 100 ppm of the nominal requency. It is c - mos compatible. Salford Electrical Instruments Limited 070667501

Data communications products

Optical-fibre transceiver. NEOLINK 1312 has been designed specifically for libr distributed data-interlace (FDDI) applications. It is a transceiver which operates with an optical-fibre cable having $62.5 \mu \mathrm{~m}$ core diameter and $125 \mu \mathrm{~m}$ outer diameter, conforming to the physical layer of the FDDI specitication. NEC Electronics (UK) Limited 0908691133

Synch/asynch conversion. A one-chip solution to the problem of synchronous-toasynchronous data conversion comes irom Micronas. The MAS 7838 consists of two separate data channels which can be used for both async-to-synch and synch-to-asynch
conversion. Data rates up to $64 \mathrm{Kbits} / \mathrm{s}$ are supported. The asynchronous character engths can be from 8 to !! bits including start, stop and parity bits. Micro Call Ltd 084 4215405

Discrete active devices

Depletion mode mosfets. Sliconix has introduced a family of high-voltage depletion-mode mos transistors. They have he normally-on swithing aspects of a F-et and the speed and perlormance characteristics of a mostet. The mosfet offers the high speed of a mas device and an on-resistance as low 0n! Siliconix Ltd 0635 30905

RF mos power transistors. Power mosfets or HF, VHF and UHF transmitters have output powers ranging from 2.010300 W Additions in the near future will extend the range to UHF and add features such as wider bandwidth and higher gain. Philips
Components 3140757189

Linear integrated circuits

Half. bridge driver in surface mount. Halfbridge driver integrated circuit, Type si99500Y. contains a complementary pair of 50 V .0311 on-resistance MOSPOWER transistors connected in a half-bridge configuration. Siliconfx Limited. 063530905

Quad switched-capacitor filter. The TCI 064 is a quad clock-tunable, switched. capacitor filter that can be used to molement up to 8 th order Cauer Butterworth, Bessel, Chebyshev and other fifters. The noise, speed and offset performance of the new device compares avourably with discrete fast-op-amp RC active filter realization. Linear Technology UK) Limited 0932765688

Single rail op-amp. The ALD $1701 \mathrm{c} \cdot \mathrm{mes}$ perational amplifier can operate from single-sided voltage rails ranging from 2 12 V . Slew rate is $0 . \mathrm{N} / \mu \mathrm{s}$. and the usefu bandwidth is 700 kHz . No frequency compensation is required. Steatite
Microelectronics Litd 0216436333

Voltage regulator. The STA 2931 is a 5 V positive-voltage regulator in T 0.92 plastic package. It has a low quiescent current

(typically 0.4mA at 10 mA output), and maintains regulation with input-output Semiconductors. 0932336116

Optical Devices

GaAs chip set for optical-fibr ransmission. A set of GaAs ICs that provides atransmit/receive interlacefor optical-fibre communications at data rates of 2.4 Gbits/ second. The set consists of a multiplexer and a laser diode driver for the data transmission functions and five devices that provide signal conditioning and demultfiplexing at the ceiver end of the fibre. Micro Call Ltd 084 4215405

Multichip led device. A multichip light emitting diode packing designed for use with the EAO Series 11 Series 19 and Series 99 illuminated pushbutton switches. The use of several chips on a single substrate produces a very wide angle of illumina on. Highland Electronics (Distribution) Ltd 079926699

Pin photodetectors. UV.enhanced pin photodetectors are now ava lable with active areas from $19.5 \mathrm{~mm}^{2}$ up to $900 \mathrm{~mm}^{2}$, and with a choice of packages. Absolute responsivity is typically 0.16 A W at 250 nm and $0.65 \mathrm{~A} / \mathrm{W}$ at 950 nm . Spectral coverage
is $190 \cdot 1100 \mathrm{~nm}$. Hero Electronics Limited 0525405015

Programmable logic arrays
Programmable logic. The GAL6001 programmable logic device utilizes high performance $E^{2} C N O S$ in achieve a maximum clock-to-output delay time of 15 nanoseconds, a 25 ns maximum setup time and a 30 ns maximum propagation delay time. The use of Lattice E^{2} cell technology also provides reconfigurable logic and reprogrammable cells. Silic on Concepts Limited 04287761

Power semiconductors

 Avalanche transistor. The ZTX4 15 is for use in laser-diode driving and fast. high voltage/high-current pulse generation. Avalanche transistors are characterized by a negative resistance region in their V. breakdown curve, which allows them toprovide a guaranteed 60 A 20 ms capability provide a guaranteed 60A 20 ms capability
Plessey Semiconductors 07933625 l

Hall-effect power IC. A custom integrated circuit merges Hall-effect sensing with the control circuitry. protective functions and high-current output drivers to power a new series of brushless d.c. fan motors. Sprague Semiconductors 44932253355

PASSIVE EQUIPMENT

Passive components

Filters. A new series of T-circuit filters is rated at up to $530 \mathrm{VDC} / 375 \mathrm{VAC}, 400 \mathrm{~Hz}$ within the temperature rang $-5^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Of hermeticatly sealed coaxial construction the filters are specified ove the frequency rage 30 kHz to 1 GHz and have BS9121. F0011 approval. Beck Electronics Limited0493856282

Flat electrolytics. The FLK series of flat aluminimum electrolytic capacitors from ECC Electronics features a maximum operating temperature of $105^{\circ} \mathrm{C}$ and high capacitance values $-22,000 \mu \mathrm{~F}$ for 10 VDC capacitors and $390 \mu \mathrm{~F}$ for 250 VDCC types. Capacitors in the range feature ripple currents as high as 4A. ECC Electronics (UK) Ltd049436113

Low profile electrolytics. LPR capacitors are designed to provide 'snap in Insertion to PCB power supplies. The series is designed for use in applications that repuire a high CV from the smallest possible size. The capacitars operate over the temperatur range of -40 to 85 deg C. AVX Limited 0252 333851

Miniature feed-through capacitors. The Stettner 2700 series of minialure feed through capacitors features a voltage rating of 160 VDC and capacitance values ranging from 15 pF to 5600 pF . The devices ofter low series inductance values and leature series resonant frequencies of over 200 MHz Steatite Insulation Lid 0216436888

SM metallized-film capacitors. Multilaye surface-mountable film capacitors (Surfilm Type ST) are avaulable in capacitance values from $0.01 \mu f$ to 2.2μ in $\pm 5 \%, \pm 10 \%$ and $\pm 20 \%$ toleranc

Connectors and cabling Phase-adjustable sma connectors. This connector is a combination of connector an and trimming to be performed during and after installation Available tuo models
 0.085 in cable, these coaxial pinase shifters permit repeatedly accurate, continuous phase adjustments. March Misrowave Lid 037644277

Displays

Colour filter windows. NFI hes introduced integral colour-coordinated filter window designed for varıous led, plasmia and CRT alphanumeric displays. A number of windows of difterent colours can be included within a single membrane assembly. N. F.I. Group Ltd 0983526535

Dual-colour led lamps. Model LL232EG uses a GaASP-on-Gap orange die and Gap on-Gap green die to produce luminous intensities of 5.0 mcd from a 20 mA drive current. The led dies are matched ior white diftused $\mathrm{T} .13 / 4$ package. Each lamp can be lit independently to produce a can be it independenly
mixture of the two colours. Kentec Limited 0732456188

Fluorescent displays. Azure displays are constructed using either 14 segment or $5 x$ 7 dot matrix characters which produce
excellent readability and offer a viewing excellent readability and offer a viewing
angle of 130°. Characters can be arranged angle of 130°. Characters can be arranged ina single or multi-line format and up to 15 mm in height. The Azure displays are provided in a base blue/green colour

Membrane with leds. A range of membrane switch panels leatures surface-nounted. light-emitting diodes implanted within the membrane sandwich layers. The resulting panels are much cheaper than systems using PCB-based membranes. Diamond H PCB-based membranes. Diamond
Controls Limited $060345291 / 9$

Instrumentation

2 Gsamples/s oscilloscope. The HP54114A accessory for the HP541110 digituzung oscilloscope. increases the maximum sampling rate of the oscilloscope from one to two gigasamples per second. The additional sampling speed has increased the single shot bandwidth of the 54 I I 10
from 250 MHz to 500 MHz ensuring that glitches as narrow as 500 picosecond can be glitches as narrow as 500 picosecond can be
captured. Bandwidth filters provide 6,7 and 8 captured. Bandwidth filters provide 6.7 and 089572020

20 MHz oscilloscopes. Two 20 MHz oscilloscopes incorporate many features normally found only on instruments with bandwidths up to 50 MHz at $£ 295$ for the 0×722 and $£ 335$ for the 0×725. Features include an X/Y mode and variable hold-off Both instruments are also fitted with curve tracers. ITT Instruments 0753824131

Acoustic-intensity vector analyser. VC. 4100 offers a versatile methad of determınation of a noise source in factory areas or auditoria. The system allows the plotting of the flow or distribution of energy in an area or from a machine. Hakuto International (UK) L to 0992769090

Data comms analyser. Model TE803 is a data communications analyser, which carries out error performance measurements from $50 \mathrm{bit} / \mathrm{s}$ to $2 \mathrm{Mbit} / \mathrm{s}$. The instrument stores and dates faults. The

III 20MHz ascilloscope

TE803 embodies V24. V35. X24 V11 and $64 \mathrm{Kbit/s}$ G703integrate dinterflaces together with V24,$~ V 28$ interfaces for remote control and printer Tekelec Cominunications Lid 073471020
Multimeter. The Fluke 80 serves multimeter measures frequency. duty cycle. capacitance and provides min-max-average recording in addition to the more common DMM functions Next Generatio

Instrumentation tape recorder. The SCR 8100 is an $8 \cdot$ channel digitd instrumentation recording unit The system incorporates up to eight signal-conditioning amplitiers which can be selected from a range of 12 plug-in modules which include a high-gain DC amplitier a transient capture module thermocouple amplifier. a varialile attenuator and a high-Impedance adapto Earth Data Limited 0703869922

Rack mounting LCR bridge. The 6458 offers 01 me measurement accuracy of LC $14 \mathrm{~Hz} \& 10 \mathrm{~Hz}$ It is intended for remote operation and has full talk liaison facilities via both IEE-488 and RS232 interfaces, a functions are also controllable from the panel Standard features include four terminal measurements and 2VDC bias for electrolytic capacitors Prism Electronics 048062225

Scalar/spectrum analyser system. The provides a broad range of transmission reflection and distortion measurement capabilities for general purpose componem sub systern and systems testing Capabilities include a 124 dB dynamic range with fast continuous sweep and an average displayed noise of - 134 dBm As part of th $71100 \times \mathrm{L}$ extends from 100 Hz to 29 GHz options extend this capabuty to 22 or 265 options extend this capability to 22 or 265
GHz . with or without preselection Hewlett Packard Ltd 089572020

Printers and controllers

Electrostatic plotter. The Hewlett-Packarid capable of producing an AO-sized plot seconds using the Integraph drawing package It has the feature ol being able produce a solid fill area de the same speed the rest of the plot Protek 012456844

Graphic plotter. The Plotmate XY 500 graphic plotter runs at $30 \mathrm{~cm} / \mathrm{s}$ and has automatic selection of 10 pens provided as standard It has full implementation of HP-GL with features such as Bezier curve fitting ard complex polygon fills The XY-500 retains all
the compatibility with BBC graphic the compatibility with BBC graphic

Production equipment

Bench top soldering, The Modusol bench top sol dering machine has been designed to provide fast and efficient PCB soldering for boards up to $200 \times 255 \mathrm{~mm}$ in size It can be with a cycle duration of approximately 90
seconds it can process hundreds of board in a few hours Capa Lid 0202304551

Monolithic pin driver. The EL202l is a - 0 unclude all the functions inecessaryto drive programmed voltages into diflucult loads Primarily. it has d programmatile slew rate from near zero up to 250 volts. per microsecond 1

Surface-mount assembly tool. Bench-top dispensing unit applies exdct amounts of dispensing unit applies exdct amounts of
solder paste and adhesives for attaching solder paste and adhesives for attaching
surface-mounted devices Inc.-rporated in surface-mounted devices inc-rporated the unit is an adjustable vacuum pickup
pencil for easy handing of components Fluid deposit size is controlled by selecting air pressure pulse time and dispensing tip

Power supplies

DC-DC PSU modules. With a footprint of only $43 \times 105 \mathrm{~mm}$ the DCV501. DCV1 20 . and DCV1501 will deliver 05 W at 12 W and 45 W at 5 V 12 V and 15 V respectively, from nominal supply of 5 V Maxmum current for all models is 100 mA The modules are flow solderable and can operate over a temperature range from

DC-to-DC converter. The LT1026 is a DC DC converter for a 4 volt to 10 volt inpui and up to +18 volt and 20 milliampere output The LT1026 converts a single-input supply to a dual output of higher voltage The device uses bipolar switched capacitor Linear Technology (UK) Limited 0932 765688

DC/DC converters. Medsuring only 2×2 15 W '20W DC/DC converters has a power density of up to converters has a power features 21 inpui covering a wide voltage range from 9.18 VDC , to 3672 VDC with three tamilies of single dudl a nd triple outpu hree tamilies of single duat c nd triple output voltage contigurations $15 / 20 \mathrm{~W}$ Am

Dip miniature DC/DC converters. Powe industries Serles offers single or dual 5.9
and 15 V outputs at 036 W from 51224 and 48 V inputs There are over 100 models of non-regulated and regulated converters including special LAN converters Ericsson
Components AB 0203553647 Components AB 0203553647
OEM power supplies. The "RL. 300" gives 200W models The air-coolec units also offer our outputs (with voltage adjustment on each). and a choice of 115 ard 220 V inputs Coutant Electronics 027163781

Switches and relays

All-position mercury-wetted switch. C P Clare AM AD wetted ength and contains a symmetrical 1 form A contact rating and a 2000 VOC breakdown contact rating and a 2000 VDC breakdown voltage All these parameters are avallable in a range of 35 to 60 At or NIC
International 01012233311

COMPUTER

General microprocessors
80306SX chip set. An 80386SX
compatio e chip set enables manutacturer nine devices plus microprocessors and drams Tre G. 2 chip set supports the curien 80386 SX processing speeds at 16 megaheriz with no-w dit states In addition the chp set contans a full har Jware Exten ded Memory System (IMS) 40 capacity andfeatures PAGE Mode interleaving and Shadow ram for fast
memory access G 2 Ltd 0344426544

Enhanced controller chip. An enhanced features an enlarged rom area and a 32 bit timer reg ster Designated 83C154 the controller permits clock speeds of up to 16 MHz Pom capacity is 16 kbytes and the new part is pin- and functionally combatible with the existing device Matra Harris With the existing device Maird
Semicon Juctor Ltd 0344485757

Multiple CPU OS-9/68000 V2.2. For low cost vine OS 9 multiproces',or systens 68000 or 68010 CPU 512 Kbytes dua ported diam. two serial ports and 128 Kbytes erom area Bicc-Vero Electr Jnics Ldd0703 266300

Interfaces

Analogle interface chip. The TLC 32040 CN/FN (dual in line surface mount) and TLC feature Lincmos stilicon-gatr proces technolcgy Both interface , hips are complets A $10-$ D and D to-A input/oltput Electron cs 0223213333

High nose-immunity serial interface. The SL80. is a serial communication controller offering aight RS-485 ports on a single-he:ght Eurocard for the Sirbus, for use in serial data transmission over distances up to serial data transmission over distances up to
2 kmi in noisy enviranments The boar d is capable of full duplex operction at asynchronous speeds to $3 \varepsilon 400$ bau 1 and at synchronous speeds to 1 M bit/s DS² Design Limited 014821773

Interface for STEbus. The SPB22 interface standadized dietal! 0 of sthous computer systems and the range of Opto 22 digital signal conditioning racks [igitall Ous taken direct from the STEbus computer bcard with a 50 wdw ithbon cable connection tc the
SPB?2 interface and this cunverts the standardizedSTEbus formatt to the ()pto 22 scheme Arcom Control Sy, tems Lid10223 411200

PC into system controller. The 70 m 18 is an expen ave RS232 IFEF 488 converter whichenables a PC to becrme an IEEE 488 controllor without sacrificing any PC siots The converter is a length of Cable with
enlarged 25 way D conner :or shrowd housing the intertace Dryden Brown Limited 0703229041

Visionimaging systems. A high-resolution agor
hking Farchld CCDechno canera by IBMXT AT compatible inter-ace bo rrds and soff war by Sentel Messte hnik GmBH The Sentel CCU-M interface boards can - ontrol camerd, Optımum Vision 973064916

Memory chips

256 K eeprom. The Samsung 256 K c mos eeprom (KM28C256) is designed for applica- ons up to 10,000 Nrite cyc es pel byte and over 10 years of data retertion tume lo a power fast write cycle times and enhanced write protection Dram Electronic Lid 0614290626
C-mos eeprom family. A family of c. mos
$824 k \times 8.32 k \cdot 8.128 k \times 864 k$ $8 k \times 16$ and $16 k \times 16$ feature access times of 55.70 or 90 ns The se devices utilize ternal error correction- Emm Dense Pac LId0682 72134

Cheap flash from Amega. 48F512 and $48 F 010$ flash eepronis made by Seeq are size programmer boar dithat fits into a singl expansion slot on any IBM PC/XT AT The unit also has a ribbon cable connected to a 40 pin ZIF DIP socket and MS'DOS compatrble softwdre A

Programmable memory

 Reprogrammable memory offers epromo eeprom performance dt a simildr cost to sram The PEROM requires only 5 volts arid tour seconds Ambar Cascom offer a 256 KPEROM the AT29C256 in \& 28 pin dual-ın line package Ambar Cascom Ltd 0296 434141

Programming hardware

Programmer up-grade. An upgraded module for the PP39 portable progran programmers supports bipolar compatible eproms in 0 3in wide packages and the newer "Skınny DIP' 0 3ın wide package Stage Elec tronic Designs Limited 0707 332148

Software

Asic design software. MHS has launched a design soft ware package which ofters four high level user intertaces forits own ASIC processes The tour input options are state diagrams. Boolean equations truth tables and MicroInstructions Matra Harri Semiconductor Lid0344 485757

C Language debug for 280. XRAY d C language orientated debug for the $Z 80$ microprocessor is now avdilable for the
$Z 80$ Initially. it is hosted on IBM PC for compatible) running MSDOS, but other ho will be released soon The XRAY debugger simulates a target environment for program
execution and testing Microtec Research execution and testing
Limited 02565755 1

LabView Version 2.0. LabVIEW is an icon hased graphical programming system tha simpliftes engmeering and scientific programning on the Apple Macintosh SE and Macintosh Il personal computers Version 20 now has a graphical language compiler diagram rubberbanding. complet clipboard cut and-paste capabilities. multiple object selection and other enhancements Amplicon Electronics Limnted 0273608331

Lotus Measure is a soff ware package that collects data from instruments and down oads directly onto a 12 -3 worksheet for andysis storage and displdy It automatically
collects ddta in real ime from wide range collects ddta in real time from a wide range
of instruments directly into 123 workshee of instruments directly into 123 workshe
cells Amplicon Electronics Limited 0273 608331

OS-9 development on IBM PC. PCBridge which allows the user to develop OS 9 dp plications on IBM PCs XTs or ATs (or compatibles) PCBridge resides on the PC host system with a special utility package host system with a special utility packag
resident on the OS 9 target system Microwave Systerns (UK) Limited 0489 886699

Pascal compiler for Transputer. Hawke Components announces a Pascal compile on a single IMS T414 and IMS T800 Transputer or used in conjunction with the Toolset (IMS D705) to programinetworks of Toolsef (IMS D75) to prograninetworks of
Transputers ISM 0712 runs undep LOD on a Transputer add-in card for the IBM PCAT allowing programs written in Pascal to be ported to the Transputers Hawke ported to the Transputers Hawke
Components Distribution 019797799

MICROWAVE DISTRIBUTION SYSTEMS

Local distribution of broadcast signals by microwave is the subject of much conjecture. Jim Slater of the IBA peers into the near future

J. N. SLATER

0ne example of a microwave distribution system that has been the subject of many reports in the technical press anticipates the use of a low-power microwave transmitter mounted on a lamp post at the end of the street to carry one or more channels of video to receiving dishes mounted on the roofs of the houses in that street. Athough this might be possible, we shall see that this scenario is rather too simplistic to be practicable in many cases. but it does at least serve to illustrate the hasic principles of MVDS systems.
The popular theory which, as we shall see later is quite wrong, says that. because microwaves only travel by line of sight, the signals will be restricted to within a short distance of the transmitter, providing a truly local senvice without any chance of interference to viewers in nearby communities. Thus, the same frequencies can be used in adjacent areas, giving rise to the possibility of almost unlimited numbers of local stations. Since the frequencies used are in the microwave hands of 2 CHz and above, there should be no trouble in finding a few hundred megahertz to carry dozens of different television channels, and there should also be plenty of room for the widerbandwidth, higher-definition television channels of the future.

This type of system, which would appear to provide broadcasters with everything they have ever wanted. also has great appeal to the operators of cabled distribution networks. It is well known that the most difficult and expensive part of a cabled distribution network is the so-called last mile".

The costs of digging up the road and making individual connections to all the houses in a street are colossal in a country like this where we insist on cables being huried. Imagine, then. a cable system which terminates at the local MUDS lamp-post: the multiplicity of cable channels could then be transmitted by microwave from the lamppost, to be received on small dishes provided hy the cable operator.
MVDS is sometimes called 'wireless cable'. and is commonly said that it will prove the
saviour of the cable television industry. Although I would not like to decry that view. I think that there is far more to the subject than is usually envisaged. The same technology that allows signals originating from a cabled distribution network to be radiated from a lamp-post at the end of the street could also provide many different neighbourhood radio and television broadcast stations,offering a choice of programmes previously undreamed of except on the major cable networks of the United States.

Covernments and broadcasters are constantly being bombarded with requests for more truly local broadcasting. This demand for community or neighbourhood broadcasting has so far proved difficult to satisfy even in radio broadcasting. and seems totally impossible for television where we already have over 3500 transmitters sharing just forty-four channels in the relatively tiny slice of the UIIF spectrum that has been allocated for broadcasting.

As with so many new developments, this one started in the United States, and since 1974 something like 200 MI)S (Multipoint Distribution Service) transmitters have been built.

MIIS - MULTIPOINT DISTRIBUTION SERVICES

It is important to note that these MDS transmitters are not multichannel. and are effectively low-power television transmitters which operate in the microwave bands. The Federal Communications Commission has defined MISS as "A conmon-carrier service intended to provide one-way radio transmission (usually in an omnidirectional pattern)

[^3]of subscriber supplied information from a stationary transmitter to multiple receiving facilities at fixed points designated by the subscriber".*
The FCC allocated only two channels to provide services throughout the whole of the United States, and only one channel was allocated to any licensee in any given metropolitan area. the service originally being called a Metropolitan Distribution Service. The channel allocations for MDS are
Channel $1 \quad 2150-2156 \mathrm{MHz} \quad 6 \mathrm{MHz}$ wide Channel $2 \quad 2156-2162 \mathrm{MHz} \quad 6 \mathrm{MHz}$ wide Channel $2 \mathrm{~A} \quad 2156-2160 \mathrm{MHz} \quad 4 \mathrm{MHz}$ wide The second channel can only be used at its full 6 MHz bandwidth in some areas of the USA. other areas being restricted to 4 MHz .
The FCC originally expected MDS senvices to be used for the transmission of high-speed computer data, facsimile, and message transmissions as well as for television. and although all these uses have occurred. it is the transmission of television programmes. generally for payment, which has put MDS on the map. This ties in well with what has been found in a different field, that of Specialised Satellite Services. A similarly wide range of senvice applications was foreseen by the British Government when it advertised six new licences for SSS earlier this year, but once agrin the vast majority of applicants wanted to use the satellites primarily for some form of video distribution.

During the late 1970s. MDS proved a great success in the United State. first of all being used to carry recently released films to hotels and apartment blocks, and later to senve individual homes. Several large towns in the USA had a single-channel MIS senvice and millions of households could receive a senvice of this type by the early 1980)s. There were some financial problems caused when pirate down-convertor units came on to the market at low cost. depriving the MDS operators of much revenue, but it was the steady growth of multi-channel cable systems in the USA that really caused a significant drop in the number of subscribers to MIDS services in the early 1980s. Viewers

[^4]

Fig.1. The basic MVDS transmitting system.

Fig.3. MVDS receiving aerials for 2.5 GHz .

Fig.2. MVDS receiving equipment.

Fig.4. FM 10-channel MVDS plan with lattice arrangement.
who had previously been happy to pay for an extra programme service via MDS frequently decided to change over to cable services which could give them far larger numbers of programmes to choose from at little extra cost.

These problems for the MDS operators led to the FCC being lobbied for more channels so that multichannel services could be introduced, the aim being to enable the MDS industry to provide real competition for the cable operators.

MMDS - MULTI-CHANNEL MICROWAVE DISTRIBUTION SERVICE

By June of 1983 the FCC allocated twelve, 6 MHz -wide channels at just above 2.5 CHz , slightly higher frequencies than those used for the existing MDS services. This then allowed multichannel microwave distribution systems to be set up, and almost 17,000 applications for licences were received by the FCC. This caused many problems and delays and it was not until 1987 that some of the major conurbations in the USA could actually make use of MMDS services. The first company to get into multichannel microwave distribution with full FCC approval was Microband in New York. and its system is designed to compete head-on with the cable
companies, offering similar numbers of channels at less cost.

The American MMDS transmitting stations, some of which consist of little more than a microwave module mounted on a lamp-post, radiate standard NTSC amplitude-modulated. vestigial-sideband television signals in standard 6 MHz bandwidth channels. The transmissions are normally divided into 'high-power', which means from 10 to 100 walts, and can provide a service area of up to about 35 km radius. and 'low-power', from one to ten watts which might typically cover a radius of three to four kilometres.

The normal technique, especially for the higher-power systems. is to use an individual solid-state transmitter for each programme channel, and then to combine the 2.5 GHz outputs before feeding the combined signal to one or two broadband transmitting antennas. See Fig. 1.

Each transmitter is modulated using a separate AM modulator, rather like those used for standard cable systems, accepting composite video and audio at its input, and giving a combined audio and video output signal. On the high-power systems. it is usually possible to adjust the modulation depth of the video, and the deviation of the
audio, and metering and carrier-level adjustments are also sometimes included. Since the equipment is. in many cases. intended to work at the end of a cable system, and since historically MMDS and cable systems have been seen as complementary, the output frequencies of the modulators are usually chosen to be at standard cable television frequencies, usually in Bands 1 or III. The channel frequency is usually generated by a crystal oscillator forming part of the modulator, although it is obviously possible to use a synthesized oscillator if it is felt that there might be a need to change frequencies.

The output signal from each modulator is then fed 10 an up-convertor, which is phased-locked to the master oscillator, and then to a 2.5 GHz amplifier stage before being fed to the combining unit. The upconvertor frequently consists of a balanceddiote mixer with a passive output filter and a high-stability local oscillator.
An incidental advantage of using the standard cable channel frequencies before up-conversion is that, when the signals are down-converted in the viewers home, they will automatically be on the normal cable channel frequencies, which can simplify matters for the cable operator, who can use his normal cable receivers without modifica-
tion. This compatibility can also help the operator who wishes to change over from an MMDS system to a cable system after an initial period of using MMDS before his cable system is fully developed and installed. This technique of using MMDS to provide 'wireless-cable' senvices to customers more quickly than could be achieved by laying cables, is often known as cable pullthrough', and is being considered by several UK companies as a temporary measure.
Low-power MMDS installations generally have a simpler arrangement of equipment, since it is now possible to buy a single. low-cost solid-state common up-convertor and power amplifier, which can feed the transmitting aerial directly.

Transmitting aerials for MMDS can be either dishes of around 50 cm diameter or slot aerials or dipoles. Gains of around $16-18 \mathrm{~dB}$ are common. In American MDS systems, much use is made of slot arrays with either omnidirectional or cardioid horizontal radiation patterns. Gains of around $10-13 \mathrm{~dB}$ are common for the omnidirectional arrays, with perhaps another 3 dB being available from the cardioid designs. Remember, though, that the American MDS systems are rather like straight transmitting stations aiming to cover as large an area as possible, whereas some MVDS stations will be intending to cover relatively compact communities which will allow for the use of higher-gain directional aerials.

RECEIVING EQUIPMENT

Low-cost receiving equipment for the 2.5 $\mathrm{GH} z$ MVDS transmissions is readily available in the United States, and generally consists of the dish, a low-noise block convertor preceded by a 2.5 CHz band-pass filter, and a set-top box or 'indoor unit'. This provides the power supply for the convertor and allows for channel selection and for the connection of the MVDS signals to the receiver as well as those from the normal VHF or UHF antennas. The indoor unit will also contain the circuitry required to descramble the pictures in systems where some form of scrambling is used. See Fig. 2.

Fifty-centimetre dishes are reasonably easy to mount and, with a beamwidth of around fifteen degrees, their installation should not pose many problems. In the United States, modified versions of perforated dish aerials are also used, as well as designs which are Yagi based. See Fig. 3.

SIGNAL STRENGTH REQUIREMENTS

In UHF terrestrial broadcasting transmission, we usually calculate the field strength required to provide pictures with a particular signal-to-noise ratio with a given type of receiving aerial, but when using microwaves it has become traditional to use link-budget calculations, since these work well when considering the point-to-point links which microwaves have usually been used to pro-

The path loss can be obtained from the formula
path loss $(\mathrm{dB})=103.3+20 \log \mathrm{D}$, where D is the length of the path in miles. Assume a path length of 10 miles,

$$
\begin{aligned}
\text { then path loss } & =103.3+20 \log 10 \\
& =103.3+20 \\
& =123.3 \mathrm{~dB}
\end{aligned}
$$

A typical 50 cm receiving dish might have a gain of 15 dB , and we shall assume that the noise figure of the receiver is 3 dB .
To find the random noise floor, use the equation
vide. For this reason, then, link-budget calculations are usually used for MMDS services, although we must of course remember that other factors as well as the strength of the signal will have to be considered, including the need for protection against possible co-channel interference from other nearby transmitters using the same frequency. Microwave signal strengths will also vary with weather conditions and, since the signals travel virtually by line-ofsight, there may be many unserved locations within any nominally served area; ghosting may also cause problems in some areas. The
noise $=$ Boltzmann's Constant $+10 \log$ bandwidth $+10 \log$ temperature in K .
Boltzmann's Constant $=$ $-228.6 \mathrm{dBW} / \mathrm{Hz}$ K i.e. $10 \log$ 1.38×10^{23}
therefore,

$$
\begin{aligned}
\text { noise }= & -228.6+10 \log \\
& 5.5 \times 10^{6}+10 \log \\
& 290(\mathrm{ambient} \\
& \text { temp } \left.=17^{\circ} \mathrm{C}\right) \\
= & -228.6+67.4+ \\
= & 24.6 \\
= & -136.6 \mathrm{dBW}
\end{aligned}
$$

The signal-to-noise ratio is then $21-123.3+15-3+136.6$ $=46.3 \mathrm{~dB}$
said that a national microwave transmission system could be providing services as early as 1991 if the British Government so decided.
Without giving any more than a cursony look at the possibility of introducing more up-to-date television systems such as MAC, the authors of the report make their calculations of the required spectrum space on the asumption that the 'obvious standard' to use is amplitude-modulated PAL system 1 with a bandwidth of 8 MHz .

On this basis they calculate that about 400 MHz would be required for a 12 -channel nationwide service, and that a 30 -channel system would take up about 1 GHz . It was not part of the Touche Ross brief to see whether spectrum space could be made available, but this would obviously be vitally important in determining whether a practical senvice could be established. The report looked at three possibilities for microwave broadcasting frequency bands: their so-called lowfrequency band between 1000 and 6000 MHz , the "medium-frequency" band from 6 to 20 GHz and the 'high-frequency' band from 20 to 70 CHz .

```
1GHz to 6GHz - mature technology. Inexperisive
    equipment.
6GHz to 20GHz - technology still developing
20GHz to 80GHz - technology immature, some years
        before domestıc equipment could be
        made available
```

These divisions seemed rather strange to those of us who know a little about propagation conditions in the various bands, but it turned out that the authors had chosen this division because it made sense in terms of equipment costings. Because MVDS and medium-power C-band satellite reception equipment is readily available in some parts of the world at reasonable cost, the report considered that if MVDS were to be allocated a band somewhere within the range of 1 to 4 CHz there would be an excellent chance of a mass market developing very quickly.
2.5 CHz MVDS equipment is to he used in Ireland in the very near future, and so it might appear that 2.5 GHz would be the ideal band for our use. Unfortunately for the backers of that scenario, until very recently there seemed very little chance of the UK frequency allocation being granted around this part of the spectrum, since it is currently very well used. The UK broadcasters are now using around 12 channels for ENG; vision links in the 2.5 CHz area, and sound and vision links also make daily use of frequencies around 1.5 GHz and 5.5 GHz and 7 CHz , so broadcasters are not going to be lobbying heavily for these frequencies to be used for MVDS!
The IBA Engineering Division has recently taken an interest in MVDS at 12 GHz , and their engineers believe that it would make a great deal of sense to use the 12 GHz band for MVDS purposes. since this could allow the millions of viewers who, they hope, will be buying satellite receiving equipment to use the same equipment for MVDS - a truly low-cost solution!
If this idea were to be adopted, frequencies in the DBS Band 11.7 to 12.5 GHz might well be available for MVDS use. When the WARC plan for satellite broadcasting was drawn up
in 1977 it was by no means certain that receiver manufacturers would be able to build receivers capable of covering the whole of the broadcast band, since low-noise GaAs fet amplifiers were still in the research laboratories and it was felt that the only way to obtain sufficient gain would be to restrict the bandwidth. For this reason the five channels for each individual country in Europe are all positioned in just one half of the band. The UK was allocated five channels in the lower part of the band, which means that there is a strong possibility that the upper part of the band could be used for MVDS without causing interference to other satellite operators. since the MVDS signals would be radiated from relatively low transmitting masts with aerials designed to concentrate the energy in the terrestrial service area. In other words, it is most unlikely that anyone with a dish pointing up in the air at a satellite would pick up interference from an MVDS transmitter. In addition. in the years since 1977 satellite receiver technology has progressed faster than originally anticipated, and modern GaAS fet amplifiers now comfortably cover the whole of the 11.712.5 GHz band which makes the idea of a dual-purpose satellite/MVDS receiver operating at 12 GHz a practical proposition. Figure 4 shows how this frequency sharing could work.

THE, POTENTIAL FOR IMPROVEI) PICTURES FROM MVDS

All existing and planned MVI)S systems use ordinary NTSC or PAL amplitudemodulated, vestigial-sidehand transmissions, using the same standards as are used on terrestrial UHF and VHF systems. If the 12 CHz system suggestion were to be taken up, however, as well as the advantages that I have indicated, there would be the potential for the adoption of a better, more modern broadcasting system that has already been adopted for direct broadcasting from satellite - the MAC system, using frequency modulation.
LK DBS Characteristics
Multiplexed Analogue Components - MAC
frequency modulation-24dB less power needed for the same s:n. compared with AM
27 MHz -wide tr equency channels
multi-channel digital sound/data system
built-in conditional-access/encryption
built-in future enhancements/wide screen/EDTV
Comparison of S / N ratios for AM and FM MIIS signals
For a video S / N ratio of 45 dB (weighted luminance) in each case

AM VSB 5.5MHz bandwidth

$\mathrm{C} / \mathrm{N}+$ peak sync. carrier/noise in $5.5 \mathrm{MHz}+$ 46 dB

Carrier to noise density $+46+10 \log 15.5 \times$ $\left.10^{6}\right)=112.9 \mathrm{dBHz}$

FM 27 MHz bandwidth

$\mathrm{C} / \mathrm{N}+$ carrier/noise in $27 \mathrm{MHz}=44-30=$ ldB
Carrier to noise density $=14+10 \log (27 \times$ $\left.10^{5}\right)=88.3 \mathrm{dBHz}$
Therefore difference in carrier power $=$

$112.9-88.3=24.6 \mathrm{~dB}$

An FM MVISS system of the type being descrihed would also gain from having the advantage that the co-channel protection ratio would be around 30 dB . rather than the 45 dB which is needed for the AM-l'SB senvices, and this would mean that transmitters using the same frequencies could be more closely spaced, allowing better coverage with a given number of channels. FM systems are also less sensitive to interference from transmitters on adjacent channels. which again allows us to re-use frequency channels more often.

Terrestrial AM UHF transmissions use polarization discrimination at transmitting and receiving aerials to achieve better use of the band, and it should similarly prove possible to use polarization at 126 Hz on our MVUS systems.

By siting the various MVI)S transmitters at appropriate distances apart and using a combination of different groups of frequencies polarization discrimination and caretully-shaped transmitting aerial radiation patterns. IBA engineers believe that a nationwide senvice of ten new television channels could he provided within a bandwidth of 400 MHz , or this could be increased to twelve channels if 480 MHz could be found.
As Fig. 4 shows, it has been assumed that four separate groups of ten frequencies would be used over and over again in a carefully laid out lattice pattern of transmitter areas. This is something of an oversimplification, because the topography of the land is tremendously varied, so that real-life senvice areas will be far from circular in many cases. We also have the problem that 12 CHz signals are deeply attenuated hy anything that obstructs their path, including both buildings and trees. This means that in any nominally served built-up area there will be many potential viewers who will have difficulty in receiving a clear line-ofsight transmission, and it is this so-called "urhan clutter that may make life difficult. Even with 2.5CHz systems, clutter is known to bring problems, and these will be accentuatedat 12 CHz .

One advantage of 12 CHz systems is that fairly high gains can be achieved with small parabolic receiving aerials, which allows us to think realistically of viewers being able to use saucer-sized dishes on poles above their houses, this periscope-like antenna arrangement enabling viewers to see above the rooftop clutter to the local transmitter. A corresponding disadvantage of this idea is that it may conflict with planning regulations.

TIIE MAC SYSTEM FOR MVISS

I mentioned earlier that it would make sense to use MAC for MVI)S hecause viewers will already be equipped with MAC satellite receivers, or that is BSB's earnest hope! Using MAC would also bring to MVDS all the advantages and enhancements that MAC is bringing to satellite senvices, so providing better quality pictures with the option of wide-screen viewing and higher definition in the tuture.

If MVIDS services use MAC they willl be able to compete effectively against satellite and cable senvices which will soon be offering the higher definition wide screen pictures that will become the norm in the next few years. An MVIDS system using PAL with AM-l'SB would be condemned to obsolescence from the day of its opening. and would he a retrograde step as far as the develonment of the radio and television industry in this country is concerned. The recent report of the Home Affairs Committee recognised this, and recommended to Government that it should consider the development of MVOS in the 120 CHz band as part of an integrated programme distribution service.

IIGCHERAND IICHER?

The parameters of what BT regards as a typical M13VIS system are shown below.

15-20 channels
100 m Il transmitter power per channel
FM - deviation 16MHz
PAL system (could support MAC)
Transmit antenna gain 15dB
Receive antenna gain 27 dB
Receive bandwidth 30 MHz
Threshold carrier-to-noise ratio 14 dB
Unfaded carrier-to-noise ratio 22 dB
Videos/N 52dB
Picture quality - hetter than COIR grade 4 (grod)

There are, however. currently two major snags with 30 CHz . The millimetric wave
amplifiers needed are currently high-cost items used for professional communication purnoses and costing many thousands of pounds. IBT engineers are confident. however. that this snag will shortly be overcome. since the latest generation of monolithic microwave integrated circuits (MMICs) has now started to become available in production quantities. and they believe that within five years GaAs MMIC's will be available at prices to suit consumer equipment.

The other snag with using 30 CHz in rather more fundamental. Since the signals behave somewhat like rays of light. any obstruction such as a tree or a tall building will kill the signal virtually completely, and it is predicted that as many as 30% of the viewers in a nominally served area would remain without satisfactory signals. Work is in progress to see just how bad this effect would be. and whether it will be possible to use tiny fill-in transmitters to cover these gaps.

For some years now communications have been possible at even higher frequencies, although once again only using very expensive professional equipment and some MVDS protagonists have suggested that within a few years it will be possible to manufacture domestic equipment which will permit the use of frequencies around 60 HCz . As one goes higher in frequency it is generally easier to obtain a wider chunk of spectrum for your senice. so that it is anticipated that many tens of channels could be provided in this area. Against this, howev-
er, go the inevitable laws of propagation. with all the difficulties of providing a service to a high percentage of the customers in a huilt-up or tree-lined environment.

INTERACTIJE MVISS?

Although it is generally accepted that MVIJS systems are essentially one-way. 1 would like to speculate on the possibility of households having their own miniature microwave transmitters which could squirt signals back to the MVIDS transmission point, which must obviously be within line of sight. I have been looking at the simple microwave burglar alarms that are now on the market for just a few pounds.

These consist of a solid-state microwave oscillator mounted in a cheap metal horn which radiates signals at around 10 CHz . They are currently very crude devices, hut are cheap and effective. and I reckon that with just a little bit of research effort a device suitahle for allowing domestic users to talk hack to their MVDS Iransmission points could he developed. I would not, however, like to solve the potential interference problems that a street of terraced houses each transmitting its own microwave signals could cause!

Broadcasters and cable protagonists have been living through interesting times this last year or so. and you may remember that to cause somehody to live in interesting times was an old Chinese curse: things haven't heen so different for those with an interest in the future of broadcasting!

The Archer 780 8BC

The SDS ARCHER - The $Z 80$ based single board computer chosen by professionals and OEM users.
\star Top quality board with 4 parallel and 2 serial ports. counter-timers, power-fail interrupt, watchdog timer, EPROM \& battery backed RAM.

* OPTIONS: on board power supply, smart case, ROMable BASIC, Debug Monitor, wide range of I/O \& memory extension cards.
enter 48 on reply card

The Bowman 68000 sBC

The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.
\star Extended double Eurocard with 2 parallel \& 2 serial ports, battery backed CMOS RAM, EPROM, 2 countertimers, watchdog timer, powerfail interrupt, $\&$ an optional zero wait state half megabyte D-RAM.

* Extended width versions with on board power supply and case.
ENTER 53ON REPLYCARD

Sherwood Data dystems Ltd

Unit 6, York Way, Cressex Industrial Estate, High Wycombe, Bucks HP12 3PY. Tel: (0494) 464264

Faster than light?

The following is an edited version of some of the correspondence we have received as a consequence of the article by Oholenshy and Pappas in our December issue. Regrettably. there is insufficient space to reproduce allof it in full.

Coulomb action

What is so fascinating is that the test configuration has the ability to overcome the familiar problem of the relativist who insists that there must be a way of synchronizing clocks at the test locations before the flight time of a signal can be measured between those locations.

The remarkable fact is that the onset of the precursor signal sets the clock running at the receiving location and the subsequent arrival of the dominant electromagnetic pulse gives the second time check, the time difference in relation to the length of transmission line being such that superluminal speeds are recorded. This result clearly shows that the precursor signal travels very much faster than light speed.

The telegraph equation concerns the travel of an electrical signal along a transmission line that is essentially resistive and capacitive. No inductance is assumed. When a slep signal is applied at one end there is a definite delay before any measurable signal arrives. Then there is progressive signal build-up. Obviously, one cannot just measure the speed of propagation by initiating the time measure from the moment the build-up is seen. If that is all that is measured in the Obolensky test it cannot be trusted as an indication of superluminal signal speed.

The point is that the dominant electromagnetic signal arrives after the onset of the precursor signal and we know the dominant signal has travelled at light speed as determined by the inductive restraints.

The precursor signal has travelled in a way governed by
non-electromagnetic action.
Nothing in our text books establishes that the signal speed is limited by light speed. It is inferred. because we suppose that charge does not travel faster than light speed, but we know that the charges carrving current in wires do not travel at anything like the speed of light. yet their electromagnetic action causes current to exhibit that speed of light. There are two actions in the field set up by the electric charge: one is the action at the electromagnetic wave velocity and the other is the direct Coulomb action. The latter is assumed by many to be subject to the same propagation delay via what are known as retarded potential effects. but there are those who question the theory.
(If) the Coulomb action does propagate at faster-than-light speed, the Obolensky effect is justified because it is a weak signal that could arise from direct electrostatic induction progressively propagated along the transmission line with no speed of light limitation.
H. Aspden

Visiting Senior Research Fellow
Dept of Electrical Engineering
University of Southampton

Switches, sparks and arcs

I am troubled that having observed my Causality Triangle Experiment employing switchclosing wave structure, our "joint" paper advanced your unsupported opinion that the observed effects were due 10 switch-open wave structure. Oscillographic evidence shows why the observed effects are due only to switch closing. The oscillograph correlates the instantaneous current and causative voltage measurements to eliminate conjecture about switch-opening inductive flashhack.

The spark modes involving inductive flash-back have been investigated with a view to writing a paper in support of Webber's "two-fluid" electric current. Both positive-going "huge spikes" and negative-going cohe-
rent surges can be shown to coexist in a unique energy resonance. This impulse cohering energy resonance appears to reduce total entropy. It may also model natural lightning, since the current surges appear to display lightning's 50 microsecond spark structure!

To introduce this contactopening spark/arc mode into my Causality Triangle Experiment requires eliminating the two 68000 ohm current limiting resistors. They are simply replaced with an inductor having the same DC resistance. I made a 115000 ohm inductor by winding 10 miles of \#42g magnet wire on a slandard 3 in spool. This 10 miles of ordered space is simply added to the wire connecting the opposed reflectors. It is noteworthy that this added line impedance has only a negligible effect on the so-called "huge spikes" of current. In addition, this arrangement becomes so sensitive to stray $A C$ fields that no external battery is required to effectively replicate the superluminal causality effects that I demonstrated publicly in 1982.

In addition to clarifying the difference between contact sparking and contact arcing, this modality provides an easily measured example of negentropy as well as clear evidence that causality links are connected by instantaneous action-at-adistance. spin angular momentum change.

I have completed numerous experiments and emploved entirely different modalities; in every case, the superluminal cause or pilot wave is seen to precede the material effect by one piradian. This demonstrates the "last shall be first". limereversed sequence, widely reported in optical phaseconjugate resonance. The consistent observation of "two-fluid" spin current components demonstrates the existence of spin waves. The magnetizing reclor, which globally connects cause and effect independently of time, can be sludied by simply correlating the instantaneous cause and effect currents, in both the real and complex domains.
I have established that differential current measurement can isolate the evanescent
common-mode subluminal current signals. By also modifying the relay magnetizing method and grounding both refleclors, artefacts introduced by stray magnetic and ΛC field gradients can be eliminaled. The apparent anisotropy. with respect to charge polarity and direction, can be largely removed without changing the observed superluminal signals.
Alexis Cuy Obolensky
President Bromion Inc.
NY, USA

Catastrophe and creation

Ludvik Kostros article in the March issue reported that "it (the ether) not only conditions the behaviour of inert masses, but is also conditioned, as regards its state. by them".

Einslein was clearly talking about action, and thus about the energetic states of mass and space which I see as capacitive and inductive energy stores respectively, representing order and chaos: then let us accept that order must embody a plan and that mass is a plan of ordered Limiting Sub Masses within a random field of LSMs.

For Einstein's statement to be fulfilled, there must be an iterative equation between the energetic states of mass and space, i.e between mv (momentum) and $1 / 2 m v^{2}$ (kinetic energy). from which we may deduce that $v=2$, the combined approach velocity of the two energies during the interaction in which space "winds up" mass and vice versa. The v^{2} of $K E$ is due to the planar full frontal which mass provides to the energy during the interaction.
Now, $v=2$ whether the interaction is vast and cosmological or tiny and local: if mass is fixed relative to the viewer the energy appears to move at twice the speed of light because the viewer is linked to the mass: this might be likened to the speed of the current outside the wire as it is guided by the wire. To under stand this. one much invoke Catastrophe Theory and say that, with adequate excitation, bonds can be broken and the plan destroyed: we are talking about the
plan of the electron which jumps out of the wire as a cloud of LSMs, commencing the act of radiation through the field while leaving an instantaneous hole. Catastrophe is an instantaneous change from order to chaos because there is no half-way state, but a domino catastrophe might take time because of propagation delay.

In Obolensky's experiments. it seems to me that what the sensor coils are detecting is the inverse of calastrophe (i.e. creation) when the electrons reform in the holes in the wire: this action occurs at all points along the wire more or less simultaneous$l y$, hence the enormous spikes. The length of wire does not add distance to the path.
JamesA. MacHarg
Wooler
Northumberland

Difference or absolute?

The article contains several clues to its own downfall . . . Consider the case where the transmission line length is 56 ft and the antenna base line (capacitor plate spacing) is 10 ft . The common value of c is about lft per nanosecond.

The circuit is broken at one of the mercury vapour relays and the charge starts to build up on the capacitor plates. This sends out a wavefront through air in all directions at veny close to $c .56 \mathrm{~ns}$ later, much spread out. this reaches the points where the screens of the coaxial cables enter the oscilloscope: these inputs are only a few inches apart and about equal distances from the relay that opened, so a smal! signal starts to build up on both traces simultaneously. This signal builds up slowly as it is joined by other bits of the wavefront which intercepted the coaxial screen further away from the oscilloscope and then came in at a speed rather less than c.

Meanwhile. the main highlevel signals from the pick-up coils are coming down the inside of the coaxial cable at about two thirds of c (as is usual for coax.). The cable nearest the relay which
onened delivers its signal 84 ns after opening (56 ft at $2 / 3 \mathrm{c}$). The other cable delivers its signal 10 or llns later than this. as expected through having to travel an extra loft between the capacitor plates. through air.

The resull is exaclly as ohserved. without the need for any faster-than-light travel: a gently rising signal on both traces starting 56 ns after the start, followed by a large pulse on one trace 28 ns later, and a large pulse on the other trace $10-11$ ns later. The only observation which holds any water is the transmission between the capacitor plates at exactly the speed expected: the speed of light in air. What the authors call transmission at twice the speed of light is due to the difference between the transmission through air (at c) and the transmission through coaxial cable (at $2 / 3 \mathrm{c}$).
Tim Bierman
Hendon
l.ondon NWI 14

The writer of the following leller made roughly the same points as the above, but presented these calculations.

Time taken to travel a distance equal to the coaxial line length but in air

$$
\mathbf{t}_{\mathrm{a}}=1 / \mathbf{c}
$$

For the example of 74.5 ft for $1(=22.708 \mathrm{~m})$.

$$
\mathrm{t}_{\mathrm{a}}=75.692 \mathrm{~ns}
$$

Time taken to travel a distance of 74.5 ft in a coaxial line with a relative permeability of 2.2
$\mathrm{t}_{\mathrm{c}}=112.269 \mathrm{~ns}$
Difterence in arrival times at the oscilloscope
$112.269-75.692 \mathrm{~ns}$
$=36.5773 \mathrm{~ns}$

If the calculations are made for the other line lengths quoted in the article it works out just as well.

By applying the same calculations to the experiment where the extra line length is added. an extra insight into the results is obtained.
Propagation lime for short
length of $74.5 \mathrm{ft}(22.708 \mathrm{~m})$
in air $\quad 75.692 \mathrm{~ns}$
incoaxial cable $\quad 112.269 \mathrm{~ns}$
difference $\quad 36.577 \mathrm{~ns}$
Propagation time of one metre longer cable (23.708m)

inair	79.027 ns
incoaxial cable	117.215 ns
difference	38.188 ns

difference 38.188 ns
Apparent extra time to travel 1 metre

38.188-36.577ns $=1.61 \mathrm{lns}$

Apparent speed of light (distance/time)

$$
\begin{aligned}
& 1 \mathrm{~m} / 1.61 \mathrm{~ns} \\
= & 6.21^{*} 10^{\circ} \mathrm{m} / \mathrm{s}
\end{aligned}
$$

This result is the same as that in the article and is brought about by the manipulation of mathematical quantities which are DIFFERENCES and not ABSOLUTE values. If the authors had considered the arrival times with the initiation of the relay as the reference. then it should have been apparent that the event followed the initiation at the speed of light.
Neville Carrick
Andover
Hampshire

Leakage

For many years research has been undertaken to study the coupling between braided coaxial cables. For the last few years 1 have become involved in the research program and the article seemed to highlight a few effects which have heen ohserved in cable coupling experiments.

If two braided coaxial cables are set up in a parallel configuration and one of the cables is connected to a signal generator. a small amount of signal will leak out of the cable due to the braided nature of the cable. The fields from the leaked signal will propagate in free space which the other cable will pick up. Could it not be this leaked signal which the other cable is picking up? We have found that if the cables are far enough away from each other and any surface. the velocity of the wave will be that in a freespace condition ($3 \times 10^{8} \mathrm{~m} / \mathrm{s}$).

The environment is very important on the propagation characteristics of any signal' existing between the two cables. We have found that if you bring two braided cables near to the ground then the velocity of the wave existing between the two cables reduces. This might explain why the 'fast signal' reduces when the cables are brought near an object or ground. Any changes to the environment will cause a change to the propagating wave.

The level of "leaked signal" is dependent on the transfer impedance $\left(Z_{1}\right)$ of the braid. so is the level of the quick signal changed by using a different type of cable i.e. a coax. which has an outer conductor which is solid?

I throw these observations into the pot.
Julian M. Tealhy
University of York
What travels faster than the speed of light in coaxial cables? Radio-waves in air. of course. At the closing of a relay there will be a large RF pulse which can be expected to leak to the coaxial lines down their length. The earliest event seen on the scope is thus due to leakage closest to the scope. The effect of the slower propagation velocity in the cables (1 calculate $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$) disperses the pulse in time. Had the cables been laid on the ground then this unfortunate hreak-through might have been greatly reduced.
C. G. Flewellen

Institute of Oceanographic
Sciences
Godalming
Surrey

Unbalanced currents

Might one suggest that the authors repeat the experiment using open-wired balanced line. or using a halanced-to-unbalanced transiormer at the launch end? Many an amateur operator can tell tales of 'hot gear with unbalanced currents travelling on the screen of a coaxial cable - caus-
ing feeder radiation, if the sparks weren't enough!

The coil used at the launch end will include such an unbalanced current. travelling at a velocity close to C (in free space. the line supported above ground, somewhat similar to a Cobau line ${ }^{1}$ with a severely mismatched launcher). The TEM wave in the coax., however, will travel at a substantially lower velocity, due to the dielectric material in the transmission line. Taking a velocity factor of 0.75 for the coax., the time delay will be approximately $1.57 \mu \mathrm{~s} / \mathrm{m}$, with some phase shift due to the reactive nature of this signal's coupling to the ascilloscope input. The stretching of the pulse into a ramp as displayed on the oscilloscope can also be postulated as due to the capacitative nature of the coax. cable.

As to the anisotropy of the velocities with regard to direction. I'll leave that to A.E. Einstein et. al for the explanation!
Dave Ilicks ColZ
Aldershot
Hampshire

References

1. Cobau. Procedimss or the IRE: :39. $619-62)^{-4}(51)$
Gohatu, Jommal of Applicel Masics. $21,1114-1128(19501)$

Common-mode

One very basic aspect of the experiment which is not mentioned at all in the article. and which the experimenters perhaps nesglected to take into account, is the huge commonmode voltage change which oecurs at the same time that the mysterious low-level signals are heingsenerated.

At the moment that a relate is energized. the voltage of the small section of antenna wire through the current probe next (0) the relay changes by 250 : This change is capacitively coupled to the current prote and travels as a common-mode sigsnal along the associated transmission line. The outer conduc-
tor acts as signal path. and the return path is diffusely spread in the space around it, approximately as in a surface-wave transmission line. (See e.g. G. Goubau, "Designings SurfaceWave "Transmission Dines", Elec' tronics, vol. 27. 1p. 180-184. April 1954). The dielectric medium is primarily air, and hence the sisnal travels at a velocity of about $3001100 \mathrm{~km} / \mathrm{s}$. It arrives at the outer case of the oscilloscope in some way. Through minimal asymmetries in the oscilloscope construction or mismatches in component properties. this common-mode signal of perhaps several bundred volts can easily cause effects corresponding to an apparent differential signal of several mA . Since the potential of the oscilloscope as a whole with respect to the space around it is being changed, it is no surprise that the apparent signal appears on both input terminals. The described effect corresponds to a common-mode rejection ratio of ahout 80 dl3 - a figure of which no oscilloseope manufacturer needs to he ashamed.

The velocity of ahout twice the normal speed of light, which the authors deduce for the lowamplitude signal along the transmission line, also has an alternative explanation hased on the common-mode hypothesis. Pappas and Oholensky determine this velocity from the difference in arrival times of the low-level signal and the first high-level spike. In my hypothesis. Pappas and Oholensk! determine this velocity from the difference in arrival times of the low-level signal and the first high-level spike. In ny hypothesis, the lowlevel signal travels at about . $30010101 \mathrm{~km} / \mathrm{s}(0.3 \mathrm{~m} / \mathrm{ns})$ on the outside of the coax. cable as described above. The high-level spike is the real signal senerated by the current probe, which propasates as a differential-mode signal hetween the inner and outer conductors of the transmission line at a veolcity of about $2(0)(0) 00 \mathrm{~km} / \mathrm{s}(0.2 \mathrm{~m} / \mathrm{ns})$. the velocity $C l$ as reported in the article.

If the length of the transmission line in meters is set to la.
then the travelling time of the low-level signal is $(1 . / 0.3) \mathrm{ns}$ and the travelling time of the ligh level signal is $(1 . / 0.2) \mathrm{ns}$. The time difference is therefore ($1 / 2$ 0.6) ns. And the "velocity" of the low-level signal (distance divided by time difference, as defined by the authors) is $\mathrm{I} /(\mathrm{L} / 0.6) \mathrm{m} / \mathrm{ns}$, or $0.6 \mathrm{~m} / \mathrm{ns}$ or apparently fice the speed of light in a vacuum.

The hase wire also may be seen as a surface-wave transmission line with a diffuse return path consisting of the ground and the space between the capacitor plates. It is not unreasomatele to suppose that the parameters of this "relumpath" will play a role in the measured velocity. Changes in temperature and/or humidity of the air as well is the distance and orientation with respect to the ground change these parameters to some extent. and may therefore account for the minimal velocity changes.

I can think of several experi ments to provide evidence for or against my altermative theory. If Pappas and Oholenstiy are interested. I would be happy to discuss such experiments with them.
F. Heutink

Eindhoven
The Netherlands

When one of the two relays is excited with $12 V A C$ at $\overline{6} 0 \mathrm{~Hz}$ and the other non-excited rely is closed, the (primary) hase wire induces AC signals in the (secondary) coils feeding the (wo coaxial lines. These equal AC signals feed into the oscilloscope via its plates and. hy some internal rectification, charge up the entire ClRT (i.e. gun, grid. deflector plates etc.) uniformly. Such a uniform charge would not be revealed on any beam trace.

Forset, for the moment any signal coming into the oscilloscope via the two coaxial cathles. When the non-excited relay is open. this uniform charge on the scope starts to decay after a pause of I / C seconds. (I being the length of either coax and C the speed of light), As this charge decays. its plates lose their potentid relative to its entirety. so that after a patsie of I / C
seconds the trace of either cable becomes increasingly negative and wisible. I take it that the brightness of the trace is enhanced electronically when a signal is present.

What all of the above means is this. What the authors believe is an instantaneous signal entering the oscilloscope is simply a signal learing it; not instantaneously. but after a delay time of $I J C$ seconds. During this delay time the trace remains unenhanced, so invisible.

Now that we have dealt with this (previously-induced) signal leaving the oscilloscone, let us deal with the signals enterings it when the above relay is operated as ahove. The reason for dealing with these outgoing and incoming signals separately is hecause they owerlap (time-wise) hence the trace is composite. |

We repeat the above sequence for the incomings signal to the oscilloscope. When one of the (worelays is excited with 12 VAC at folly and the other nonexcited relay is closed, pulses of IC from the 250 O IC hatten charge the large capacitor plates.

Now forget. for the moment. any signal coming from the surreptitiously-charged oscilloscope plates and travelling along the (wo coaxial cables. The DC charge on the large capacitor plates hessins to flow along the coaxial cables, taking $1 / / C$ seconds to reach the oscilloscope. After the above I/C second pause, the trace on the oscilloscope starts to rise and steadily increases in positive direction. When the non-excited relay is opened. a mighty surge occurs as the large capacitor plates discharge, setting up oscillations. This causes the massive spike on

Feedback

the trace.
Now (still considering only one of those double beams on the oscilloscope) we combine those outgoing and ingoing signals which are travelling along the coax. line we are considering. When we do this combining for either line. we shall obtain a curve with a flattened part near the supposed beginning of the trace (referred by the authors as the origin).

To sum up, then, we can say that signals along coaxial cables hehave as we would expect them to do.
A. H. Winterflood
I.ondon. N 10

Strays

Typically, for polythene or PTFE insulated lines. the velocity is only ahout two thirds that of light. Thus for, example, it would take 150 ns rather than 100 ns for a signal to traverse 30 m (100ft approx) of normal 50 ohm coax. cable. a difference of 50 ns . If you do these calculations for the various cable lengths mentioned. the time difference obtained is very close to the 'time lapse' values given in Table 1.

Next, it should be realised that, when an oscilloscope is triggered from the signal that is being displayed, the resultant trace contains absolutely no information about the time the signal originated or when it arrived at the input socket.

Thirdly. coax. cables are not

perfect: signals can leak in or out of them.

Finally, circuit strays are often very important, particularly when one is trying to measure signals of a few tens of millivolts in the presence of an unscreened circuit switching two or three hundred volts. For example, it would take only -80 dB of stray coupling to produce a 25 mV signal at the oscilloscope.

Figure 1 is an equivalent circuit showing one of the coaxial lines together with what I think are the important strays. For convenience it is the one going to the end of the base wire with the energized relay. This can be simplified into Fig. 2 where v_{i} is the voltage induced in the current transformer and C_{6} is the total effective stray capacitance from the end of the coaxial line to the equivalent earthed voltage source v_{c} that would produce the same effect as the base wire and its various strays.

Although the actual waveform of v_{i} may be found a little difficult to visualize. it should be quite apparent that rapid changes equal to half the supply
voltage will occur. These couple via C_{c} to a 'wire over a plane' air-insulated transmission line formed by the outer of the coaxial line and the earth, and propagate towards the oscilloscope at a velocity close to that of c . Some of the energy in this wave will leak into the coaxial line and travel down it at about 0.66 c .

Suppose the transit time for the 'wire over a plane' line is T. Then the transit time for the coaxial line will be about 1.5 T . Suppose also, for the moment. that C_{e} is large and that v_{e} is a fast voltage step starting at $t=0$. For time $t<T$ nothing will be seen at the oscilloscope. At $t=T$ the wave will arrive at the oscilloscope and with it the signal that leaked into the very last bit of the coaxial cable. As I increases the signal that leaked into earlier bits of the cable will also arrive at the oscilloscope adding to the existing signal until at $t=1.5 \mathrm{~T}$ all the cable will be contributing to the signal. Thus, assuming that the oscilloscope triggers as soon as the signal becomes non zero. the signal will appear to ramp linearly from zero over a

period of $0.5 T$ and then remain constant. Of course C_{e} is not large and v_{6} is not a simple voltage step, so the signal seen will not be a simple ranip but must always start as one. Further. at $t=1.5 \mathrm{~T}$ the signal from the current transformer will reach the end of the coaxial line and add its (large) contribution to the signal seen at the oscilloscope.

Judging from the photograph, for most of their length the two coaxial cables are separated by a distance no greater than their height above the ground. Thus a similar but somewhat smaller leakage will occur into the second cable giving rise to a ramp type signal on the other channel of the oscilloscope. As the distances from the energized relay to the cables as they approach the oscilloscope are virtually identical. the 'ramps will start together. Closer to the base wire the distances to the two cables are by no means identical so the later parts of the 'ramp' waveforms will diverge.

The impulses from the relay also propagate along the base wire to the other current transformer and are coupled by its C_{e} into a 'wire over a plane transmission line formed by the second coaxial line. A similar leakage effect then occurs with this one but this time the second cable has the greater 'ramp' signal. Reflections back and forth along the base wire will produce further sets of 'ramps' of various polarity and amplitude with a periodicity dependent on the length of the hase wire. The summation of all these signals is what is seen on the oscilloscope. The first three waveform pictures in their article show this effect quite well.
P.F. Gascoyne

Wantage
Oxfordshire

MOBILE RADIO TEST SETS

SCHLUMBERGER 4021 'Stabllock transceive test sets, comprises AM/FM/PM signal gen, mod generator. AF mV-meter, distortion meter $£ 1950$

MARCONI INSTRUMENTS

TF1152A/1 RF power meter © 0.25 W 250 MHz
TF 1245/1246 Q-Meter and oscillator TF2015/2171 UHF AM/FM signal generator with syichroniser
TF 2162 MF attenuator $0-111 \mathrm{db}$ in 0.1 db steps
TF2 TF2001 AF signal source/monitored attenuato TF2300 modulation meter AM/FM to 1 GHZ TF23000 modulation meter as above TF2356 level oscillator 20MHz
TF2501 power meter 0.3 W Isd DC- 1 GHz TF2600 millivolimeter AF 1 mV -300V isd TF26008 video voltmeter 1 mV -300V isd TF2604 electronic multi-meter
TF2807A PCM muttiplex tester
2828 A 2829 digital simulator/ranalyser 2833 digital in-line monitor
TF2908 blanking \& sy
6450 RF power meter
6460 RF power mete
645016420 power meter/microwave head TF995BH5 AM FM signal generalor $0.2-220 \mathrm{MHz}$ TF2213A XY cr display
TF2015 AM/FM sig. gen. $10-520 \mathrm{MHz}$ 500 W 50 hm RF load with power meter 2092C noise receiver, many fitters available $2031 / 2092 \mathrm{~A}$ noise gen/receiver $\&$ fiters TF2370 110 MHz spectrum analyser TF2100 audio oscillator
TF 10668 AM/FM sig. gen. $10-470 \mathrm{MHz}$
 8938 AF power meter
2019 A synthesized signal generator $80 \mathrm{kHz}-1040 \mathrm{MHz}$ 2018 synthesized signal generator $80 \mathrm{kHz}-520 \mathrm{NHz}$ 6056 B signal source $2-4 \mathrm{GHz}$ TF $1313 A .0 .1 \%$ universal LCR bridge TF2011 FM signal generator $130-180 \mathrm{MH}$ TF2012 FM signal generator $100-520 \mathrm{MHz}$

HEWLETT PACKARD

10Khz-350MHz Spectrum Analyser. Type 8557A $10 \mathrm{Khz}-350 \mathrm{Mhz}$ in 182 T nainrame. Plog-In perieci. Cr a bitile
JUST $£ 1.500$
OW

TEST \& MEASUREMENT EQUIPMENT

AVOB151 LCR universal bridge AVO RM $160 / 3$ megohmmeter
LYONS PG73N Bipolar pulse generator DRANETZ 305 digital phase-meter $2 \mathrm{~Hz}-700 \mathrm{KHz}$ PHILIPS PM5590 TV IF Modulator PHILLPS PM5597 VHF TV Modulators PHILIPS PM1 $15901 \mathrm{mHz}-2 \mathrm{mHz}$ synth. function gen PHILIPSPM8235 multipoint pec recorder RACAL 9911120 MHz counters in carrning case RACAL 9911 120MHz counters in carrying cases RACAL 9083 2-tone signal source RACAL 9084104 MHz synthesized sig. gen. GPIB WAVETEK 1503 sweeper $450-950 \mathrm{MHz}$ WAYNE KERR 8642 Auto Balance bridge VAL RADIO inverters $24 \mathrm{~V} D \mathrm{C}-230 \mathrm{~V}$ AC from RHODE \& SCHWARZ 1 kW 50 ohm load. N-types BRUEL 8 KJAER 4428 noise dose-meter RIKADENKI 3 pen chart recorder \qquad TEKTRONIX OS245PU oscilloscope system, Brand new TEKTRONIX OS245PU oscilloscope system, Brand new TEKTRONIX 465 100MHz OSCCIlOscope TEKTRONIX 7D12M/2 AD converter plug-in TEK 2901 time-mark gen $£ 250$. TEKTRONIX 178 IC fixture C250. Ug-in
 sampling plug-in $£ 600$ TEXSCAN WB7130.950 sweep generator TEXSCAN 9900300 Mhz sweeperidisplay PHILIPS PM2554 AF milli-volt meters PHILIPS PM 5324 RF

ALL OUR EQUIPMENT IS SOLD IN EXCELLENT, FULLY FUNCTIONAL CONDITIIN AND GUARANTEED FOR GO DAYS. MAIL OROERS ANO EXPORT ENQUIIRES WELCOMED. PLEASE TELEPHONE FOR CARRIAGE DUDTE. ALL INSTRUMENTS ARE AVAILABLE EX-STOCK AS AT COPY DATE. GOOD OUALITY TEST EZUUIPMENT SUB.JCT TO ADDITINAL VAT STOCK. PRICES OUOTED

1122A power unu for let probes 11602 B transistor fixture 80078 pulse generator 8733 A pin modulator 529A Logic comparator 10529A 10526 T Logic troubleshooler 331A distortion meler
$5300 \mathrm{e} / 5305 \mathrm{~B} 1300 \mathrm{MHz} 8$ digit counter
3400A millivolimeter
$382 \mathrm{~A}\left({ }^{\circ}\right) \mathrm{P}$-band allenuator 0.50 db
4204A decade audio oscillator
$43188 \mathrm{C} / 478 \mathrm{~A}$ microwave power meters from
6516 A power supplues 0.3 KV 6 mA
7046B(07) 2-pen XY plother high-speed
$8018 \mathrm{~A}(01)$ seral dala generator
5011 T logic troubleshooling kil complete
400 FL mV -meter
3438A digital multimeter HPIB
8165 A Iunction $1 \mathrm{MHz}-50 \mathrm{MHz}$
S44A (opto58. 0.5 1300 MHz) trach
8565 22 2 GHz spectrum analyser
435A:3481A RF power meter \& head
(Other heads available)
3581 A AF wave analyser
2871 © thermal graphics printer
8620 C Sweeper mainframe \& plug-in $0.01-2.4 \mathrm{GHz}$
HP85s:2B/8556A spectrum analyser plug-ins
HP3575A Gain/phase meter $1 \mathrm{~Hz}-13 \mathrm{MHz}$
HP40ciEL AC Volimeter
HP754.3A Log Voltmeter/Amplifier
HP86*0A.002 Signal generalor 0.5
ADDITIONAL EX-STOCK T \& M KIT
PHILIPS PM8043 XYT Plotter A4
$\begin{array}{lll}\text { PHILIPS PM3256 oscilloscope } 75 \mathrm{MHz} \text { portable (LP £1.875) } & \text { §750 } \\ \text { P750 }\end{array}$ PHILIPS PM667 High-res' 120 MHz counter (LP 〔582) PHILIPS PM8220 single pen chart recorder
ROHOE \& SCHWARZ SMS synthesized sig
\qquad
IFR (Field Tech) Spectrum analyser A. 7550 with tracking generator
and reseive options (LP $[7 \mathrm{~K}$) LEADER signal generator LSG216 $0.1-30 \mathrm{MHz}$ \& 75.115 MHz AMIFM
FLUKE 37 digital multi-meter
RUEL \& KJAER 3347 Real time $1 / 3$ Oclave analyser (2130 requency analyser +4710 display unit)
EKT ЭONIX D701/DF1 logic
VARIA.CS (Claude Lyons) 0.270 V . 20 A £ 100 15A $£ 758 \mathrm{~A}$
GOULD DSA600 digital synthesizer analyse

ENTER 25 ON REPLYCARD

ENTER 47 ON REPLYY CAIRI

low-cost PC based logic analysis -from Thurlby

Thurlby Electronics Ltd New Road, Si. Ives, Cambs. PE17 4BG Tel: (0480) 63570

Now you can use your IBM-PC or compatible computer as the basis of a sophisticated logic analyser system.

LA-PC Link is an interface package which links your computer with the low-cost Thurlby LA-160 logic analyser to provide facilities normally associated with only the most expensive analysers.

- Sophisticated data state listings

Up to 32 words per screen in multiple data formats
Scrolling by line, page or word, plus random page access
Rapid screen compare facility. Full repetitive word search

- High resolution timing diagrams

Sixteen channels of 64,256 or 1024 samples per screen Instantaneous pan and zoom. Moveable channel positions Dual cursors with automatic time difference measurement - 16 or 32 channels, clock rates to 20 MHz

Operates with all versions of the LA-160 with or without LE-32 - Comprehensive data annotation

Each data and control input can be allocated a user-defined label Data files are date/time stamped and can be fully annotated - Full disk storage facilities

Data files can be saved to disk and recalled for comparison Data includes the analyser's set-up conditions and all annotation. - Versatile printing facilities

State listings and timing diagrams with annotation can be printed

- Colour or mono display: keyboard or mouse control

Colour, monochrome or text-only modes suit any display adaptor Parts of the programme can be controlled by a mouse if required. - Terminal mode for uP disassemblers

Acts as a terminal for use with Thurlby uP disassembler ROMs
If you already have an LA- 160 logic analyser the LA-PC Link interface package costs just $£ 125$. If you don't, an LA- 160 with LA.PC Link costs from 5520

Oasis Instruments

OASIS VIRTUAL INSTRUMENT SYSTEM

For fast delivery, phone your order on 0603747887 . Technical queries answered and requests for further information on this number.

NEW VERSION - NEW INTERFACES - HIGH SPEED OPTION
The OASIS Virtual Instrument System (VIS) emulates conventional OSCILLOSCOPE, CHART RECORDER, PROCESS MONITOR, MULTI-CHANNEL DVM, XY PLOTTER and DATA LOGGER in one easy to use package. Also Spectrum analysis

HARDWARE

VIS includes a precision 16 channel A-D converter, with programmable ranges and read rates of $50 \mathrm{k} \mathrm{R} / \mathrm{s}$ at $8 \mathrm{bit}, 25 \mathrm{k}$ at 12 bit (100 k and 60 k with high speod option). This simply installed unit has proven long term stability and reliability.

SOFTWARE

The Menu-driven acquisition, analysis and display programs combine
on-screen set up of measurement parameters, SPREADSHEET data
manipulation and a range of display formats, with ZOOM and ON-SCREEN MEASUREMENTS.
Total data mobility from measured information to memory, disk, screen and HARDCOPY output, including screen dumps.
The OASIS VIS carries full documentation to allow the beginner or professional programmer to create new interface applications or personalised instrument emulations.

PRICE

The price of the complete system is less than any one of the instruments it replaces. Prices exclude VAT, P\&P (£8). High speed option add £160.
The Virtual Instrument System is supplied complete - no further components are required - just plug in to your laboratory computer.
Digital to Analogue and industrial interface options - POA

PC-XT/AT - £499, Nimbus - £499, BBC/Master - £399, New Archimedes Version - £499

Adesperate race for people

DOM PANCUCCI

People are the key to success in information technology. All the hardware arailable cannot compensate for a lack of skilled engineers to develop systems that meet the precise needs of the user.

Information itself is the cornerstone of successful business; training the right numher of professionals to make a structured use of IT is an industrial responsibility.

The problem is that industry as a whole has not fully assumed its role as prime IT trainer. A traditional over-reliance on recruitment of graduates and poaching from rivals has left many companies without the drive to train within the ranks. And it is mid-career training which will be an essential part of industry's attempts to ensure enough skilled IT people come through.

Government statistics show the IT skills situation is already desperate. Around 30000 unfilled vacancies exist at any one time. compounded by a reluctance among technology graduates to enter industry. Falling numbers of young people into the 1990)s, the rapid pace of technological development and demands from an increasing range of companies for IT recruits are all factors adding to the problem.

Last December the House of Commons Trade and Industry Committee released its first report on information technology. Although the published findings contained only two paragraphs on the training issue.
the committee's position was clear. "The best solution to the worsening IT skills shorlage is increased in-senice training, says the report. "Companies need to invest more in training. Time and again our witnesses referred to the need for professional management retraining on a sustained basis.
The committee heard testimony that the UK's training record is inferior to its international rivals. The present training gap is blamed on cutbacks during the recession earlier this decade and high staff turnover deterring investment. But LK companies still fall helow the minimum level of spending on training. "Best practice is for four to five per cent of payroll costs being spent on growing management competence while the UK average is only one per cent." says the report.
Evidence was provided by the Secretary of State for Industry that companies are now putting more cash into training, but the committee wants more proof that the "revolution in attitude" has taken place.
Two recommendations were made by the committee about IT training:
that Covernment compile and publish comparative figures and trends in the UK and competing countries for expenditure (in terms of hoth money and time) by industry in training both in IT skills and in management generally:

- that investment in training should be disclosed in companyaccounts.
The report was broadly welcomed by both trade bodies and companies. such as the Electronic Engineering Association and Hewlett Packard. But one of the committee's witnesses complained that the training recommendations did not go far enough. "We would have liked to have seen the disclosure of training costs recommended to a standard formula: say, training as a percentage of turnover," said Tim Wehb, national officer for the Manufacturing. Science and Finance U'nien. "It would also have been helpful for more to have been said about employee rights to re-training, as a part of the contract of employment.
Wehb and MSF have campaigned for over a year to get companies to sign a model agreement which guarantees in-senvice training, so far without much success. Other unions have tried less publicly than MSF to get ink on similar agreements, with similar results.
Reluctance by companies to pledge them selves to training, betrays a common fear over commitment to an investment always seen as disposable in hard times. The spread of IT throughout the economy could change this. Sectors such as retailing and financial senices are pitching for IT and communications specialists with competitive salaries. Companies will be forced into training just to sunvive.

Responsive, not reactive

Companies often fail to plan for manpower needs during technology cycles and so suffer a skills crisis, according to a leading training company.
"Lots of companies are not geared to forward planning and then technology moves faster than the minds of people planners", said Howard Wright. general manager of BOC Training Services in west London. "When a company buys a system. say an IBM or Amdahl hox, it should last about five years. During that time future training should be planned, but often the technology is here before we know it and training becomes reactive.

BOC can train between 1500 and 2000 people a year, with extra provision on a client's site. Communications, networks and data processing are all areas covered in the courses. Particular emphasis is given to local area networks. operating systems, struc-
tured programming methodology and systems analysis. This indicates where future skill demands will lie.
Evidence that IT has spread throughout the economy is contained in BOC's client base. One hundred people at Trent Water Board were trained in AS. an uncommon computer language. British Gas in Croydon ran two computer groups. mixing experienced staff with graduates through BOC.
Rothmans. Sainshury's and Eagle Star go to BOC , alongside high-tech companies such as Apricot and Ferranti.

Most of the people tutored by BOC are experienced technical staff who need to be reskilled to meet the fresh IT demands on their employers. Wright believes that encouraging signs are coming through that industry and commerce are grooming personnel specialists to plan IT training more coherently

ICL Training's ClassNet networked classrooms, provide an ideal learning environ ment for students - demonstrations by the lecturer appear simultaneously on the screen on the student's terminal. There is a strong emphasis on hands-on training.

RE RAEDEK ELECTRONICS

BANNERLY ROAD, GARRETTS GREEN, BIRMINGHAM B33 OSL, ENGLAND

A.f. Power Transistors

MOTOROLA GENERAL ELECTRIC • R.C.A. • JOHNSON

 THOMSON - CSF • REGENCY • WILSON • T.R.W. - MSC • ACRIAN TOSHIBA • NEC • MITSUBISHI PHILIPS • AMPEREX
R.f/h.f. Induction Heating
 Equipment and Mncillary Spares

NEW AND SECONDHAND GENERATORS • RF CERAMIC CAPACITORS
SOLID STATE CONV • WORK COILS • H.F. TRANSFORMERS CARBON FREE HOSE • WATER FLOW SWITCHES • CARBON RESISTORS OSCILLATOR VALVES
WHEN ENQUIRING PLEASE STATE WHICH PRODUCT IS OF INTEREST.

ELECTRONIC JOYSTICK CONTROLS

Our wide range of Joysticks, backed by 25 years' experience, volume production and a proven reliability allows us to offer versions for almost any application. Delivery of standard samples or small quantities is just a few days and large scheduled orders can be phased in within a week or two. No exorbitant low volume surcharges, no 8-12 week lead time just what you want when you want it - at very competitive prices.

POTENTIOMETER	1. 2 or 3 AXGS
CONTACTLESS	PWM Solenoid Drivers
MICROSWITCH	Specials
HEAVY DUTY	1 PC to 10,000 per annum

Write or phone for details to

FLIGHT LINK CONTROL

Unit 12, The Maltings, Turk Street, Alton, Hants GU34 1DL.
Tel: (0420) $87241 / 4$. Fax: 10420) 84203.
Telex: 858628 TELBURG

SMALL SELECTION ONLY LISTED RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Latest bulk Government release - Cossor Oscilloscope

 CDU150(CT531/3) $£ 150$ only. Solid state general purpose bandwidth DC to 35 MHZ at $5 \mathrm{MV} / \mathrm{Cm}$ - Dual Channel - High brightness display ($8-10 \mathrm{~cm}$) full delayed time base with gated mode - risetime 10NS illuminated graticule - Beam finder Calibrator 1 KHZ squarewave power $100-120 \mathrm{~V} 200 \mathrm{~V}-250$ volts AC - size W 26CM - 14CM deep - WT 12.5 KG - carrying handle, colour blue, protection cover front containing polarized viewer and camera adaptor plate - probe (1) - mains lead. Tested in fair condition with operating instractions - £150.00.Racal RA17L Communications Receivers. $500 \mathrm{KC} / \mathrm{S}$ to $30 \mathrm{MC} / \mathrm{S}$ in 30 bands $1 \mathrm{MC} / \mathrm{S}$ wide from $£ 175$. All recejvers are air tested and calibrated in our workshop supplied with dust cover operation instructions circuit in tak used conditton - Racal Ancillary Units for all receivers mostly always in stock - Don 10 Telephone Cable $1 / 2$ mile canvas containers or wooden drum new from £20 - Army Whip Aerials screw type F sections and bases large qty available now P.O.R. - Test Equipment we hold a large stock of modern and old equipment. RF and AF Signal Generators - Spectrum Analysers - Counters - Power Supplies - Oscilloscopes Chart Recorders all speeds single to multipen - XY Plotters A4 A3 - Racal Modern Encryption Equipment - Racal Modern Morse Readers and Senders - Clark Air Operated Heavy Duty Masts P.O.R. All items are bought direct from H M Governmen being surplus equipment price is ex-works. S.A.E. for enquiries. Phone for appointment for demonstration of any items, also availability or price change V.A.T. and carriage extra

> EXPORI TRADE AND QUANTITY DISCOUNTS JOHNS RADIO, WHITEHALL WORKS,
> 84 WHITEMALL RDAD EAST, BIRLENSHAW, BRADFORD, BD11 2ER TEL NO. (O274) G84007.

WANTED: REDNNLANT TEST EQUIPMENT - VALVES - PLUCS - SOCXETS, SYNCHROS ETC. RECEIVING AND TRANSMITIINS EQUIPMENT

MEMORIES

EPROM - SRAM - DRAM - EEPROM - 2716-2732-2764-27128 27256-27512-4116-4164-41256-2114-6116-6264-CMOS AND LOW POWER

MICROPROCESSORS

NEC - INTEL • MOTOROLA • AMD
8085-68000 - 280A - 80186-8086

Lowest prices worldwide for memories, digital, linear IC's Send for complete components catalogue UK - £1.50. Export - £2.50

CONNECTORS AND CABLES
CABLE ASSEMBLIES AND TEST LEADS MADE TO ORDER

Coaxial or multiway. RF, video, audio and data

RF test leads using high quality coaxial, double braid and tough PTFE cables available

Price guide: BNC 1.0 m lead only £3.50. Using high quality RG58, £6.20 using double braid PFTE

Customers already include several universities and polytechnics, government departments, broadcasters and cellnet.

WAVEBAND ELECTRONICS

3 Lon Howell, Denbigh, Clwyd LL16 4AN.
Tel: 0745712777.
ENTER 38 (ON REIPL,Y CARI)

Semiconductors

 0.75
0.65
0.45
0.45
0.95
0.95
0.95
1.50
1.25
1.25
0.90
1.50
1.65
0.35
0.65
0.39
0.20
0.22
0.27
0.22
0.38
0.26
0.34
0.29
0.29
0.29
0.29
0.35
0.28
0.11
0.11
0.16
0.14
0.40
0.20
0.15
0.30
0.35
0.28
 $\begin{array}{ll} & \\ \text { BF259 } & 0.28 \\ \text { BF271 } & 0.28 \\ \text { BF271 } & 0.26 \\ \text { BF273 } & 0.18 \\ \text { BF335 } & 0.35 \\ \text { BF336 } & 0.34 \\ \text { BF337 } & 0.29 \\ \text { BF338 } & 0.32 \\ \text { BF355 } & 0.37 \\ \text { BF362 } & 0.38 \\ \text { BF363 } & 0.65 \\ \text { BF371 } & 0.25 \\ \text { BF394 } & 0.19 \\ \text { BF422 } & 0.32 \\ \text { BF423 } & 0.25 \\ \text { BF457 } & 0.32 \\ \text { BF458 } & 0.36 \\ \text { BFF67 } & 0.68 \\ \text { BF493 } & 0.35 \\ \text { B49995 } & 0.23 \\ \text { B44997 } & 0.25 \\ \text { BR39 } & 0.23 \\ \text { BFR40 } & 0.23 \\ \text { BFRB1 } & 0.25 \\ \text { BFR88 } & 0.30 \\ \text { BRRP0 } & 1.50 \\ \text { BFR91 } & 1.75 \\ \text { BFF42 } & 0.35 \\ \text { BFF43 } & 0.35 \\ \text { BFW10 } & 0.55 \\ \text { BFW11 } & 0.75 \\ \text { BFW16A } & 1.15 \\ \text { BFW61 } & 0.60 \\ \text { BFW92 } & 0.85 \\ \text { BFX29 } & 0.30 \\ \text { BFX84 } & 0.26 \\ \text { BFY85 } & 0.32 \\ \text { BFF86 } & 0.25 \\ \text { BFY18 } & 1.35\end{array}$

Integrated Circuits

ANIO3	2.50	AN7145M	3.95	LA4102	1.50
ANI24	2.50	AN7150	2.95	[A4140	2.95
AN214	2.50	AN7151	2.50	[4.4031P	1.95
AN2140	2.50	BA521	1.50	La4400	3.50
AN236	1.95	(Al352E	1.75	LA4420	3.50
AN239	2.50	CA3086	0.46	[A4422	1.50
AN240P	2.80	(A3) 123 E	1.95	LA4430	2.50
AN247	2.50	(A313EM	2.50	(A446]	3.95
AN260	2.95	(A31405	2.50	(C7120	3.25
AN262	1.95	CA3140T	1.15	LC7130	3.50
AN264	2.50	ETT6016	2.50	(C7131	5.50
AN271	3.50	HAll3/	1.95	LC7137	5.50
AN301	2.95	HAl 156 W	1.50	LM323K	4.95
AN303	3.50	HA 1306	1.50	LM324N	0.45
AN313	2.95	HA1322	1.95	LM380N	1.50
AN315	2.95	HA1339A	2.95	Lm380NB	2.95
AN316	3.95	HAl360W	2.75	LM383T	2.95
AN331	3.95	HAIAOS	1.95	LM390N	3.50
AN342	2.95	HAISS 1	2.95	LM101]	3.15
AN362l	2.50	LAl201	0.95	M5155	2.95
AN612	2.15	(A1230	1.95	MS15131	2.30
AN6362	3.95	(A3201	0.95	M515211	1.50
AN7140	3.50	(A4IO)	0.95	M83705	1.50

M83756	2.50
MC1307P	1.00
MC1310P	1.95
MC1327	1.70
MC13270	0.95
MC1351P	1.75
MC1352P	1.00
M(1357	2.35
M 1338	1.58
M(1496	1.75
MC1723	0.50
M 33357	2.75
MC3401L	2.50
M 14106	2.95
MC14518CP	1.50
M ${ }^{\text {23 }}$ 2318	1.75
Ml2328	2.50
ML239	2.95
MSM5807	8.75
SAA500A	3.50
SAA1025	7.25
SAA1251	4.95
SAA5010	5.35
SAAS020	5.75
5AB3210	3.50
SASS60S	1.75
SAS570s	1.75
SAS580	2.85

SAS590	2.75
519018	7.95
\$19178	6.65
\$ 51310	1.80
St1327	1.10
\$t13270	1.10
SN7414	1.50
SN7421	0.85
SN76110N	0.89
SN76115N	1.25
SN76131N	1.30
SN762260N	N 2.95
SN76227N	1.05
SN76228N	2.95
SN76533N	1.65
SN76650N	1.15
SN76660N	0.90
STKO11	7.95
STK014	7.95
STK015	5.95
STKOIB	7.95
STK025	11.95
STK032	7.95
STK078	11.95
STK085	8.95
STKA15	7.95
5TK435	7.95

STK437	7.95	TA7609P	3.95	TBA5500	1.95
STK439	7.95	TA7617AP	2.95	TBA560	1.45
STK461	11.50	TA7629	2.50	TBAS600	1.45
STK463	11.50	-tanjilia	3.50	tBA570	1.00
STK0015	7.95	TAA32ta	3.50	TBA65IR	2.50
STK0029	7.95	TAABSUA	1.95	TBA673	1.95
STK0039	7.95	TAAS54B	0.95	TBA750	1.95
TA7061AP	1.50	TAA570	1.95	TBA7500	2.65
TA7072	2.65	TAA621	3.95	TBA800	0.89
TA7073	3.50	tang3es	2.95	tbablioas	1.65
TA7108P	1.50	TAA661B	1.95	TBABIOP	1.65
TA7120p	1.65	TAA 700	1.70	TBAB2OM	0.75
TA7129P	2.50	taA93a	3.95	TBA8200	1.45
TA7130P	1.50	tealzoas	B/C	TBA890	2.50
TA7137P	1.00		1.00	TBA920	1.65
TA7146P	1.50	SASBET/U		T6A950/2x	1.50
TA7176AP	2.95	TBA393	1.50	tBay90	1.49
TA7193P	3.95	tBA396	0.75	TBA9900	1.49
TA7203	2.95	tbasacin	2.55	TCA270	2.50
TA7204P	2.15	tBA4BCO	1.95	TCA27050	2.50
TA7205AP	1.15	tbasic	2.50	TCA650	2.50
TA7208	1.95	tBasico	2.50	TCA760	2.50
TA7222AP	1.80	tBA52C	1.10	TCA800	6.95
TA7227P	4.25	tBA5200	1.10	TCA830S	1.95
TA7228P	1.95	tBAS3C	1.10	TCA900	2.50
TA7310P	1.80	TBAS3CO	1.10	TCA940	1.65
TA7314P	2.95	TBAS40	1.25	TDA440	2.20
TA7321P	2.25	tbasarm	1.35		

TDA1001	2.95
TDAl003A	3.95
TDA IOOSA	2.50
TDAIOIO	2.15
TDA1005	2.25
TDA1035	2.50
TDA1037	1.95
TDA1044	2.15
TDA1170	1.95
TDA1180	2.15
TDA12700	3.95
TDA1327	1.70
TDA2002	0.95
TDA2003	1.95
tDA2010	1.95
TDA2020	2.95
tdaz 2030	2.80
TDA2140	3.95
TDA2150	2.50
TDA2151	1.95
TDA2160	2.50
TDA2S24	1.95
TDA2530	1.95
TDA2532	1.95
TDA2540	1.95
TDA2541	2.15
TDA2560	1.15

[^5]${ }^{\text {R20088 }}$

TIP125	0.65
T10142	1.75
TIP 146	2.15
TIP161	2.95
TIP2955	0.80
TIP3055	0.55
T1591	0.20
TVios	1.50
tvios/2	1.50
2RFO112	16.50
2N1100	6.50
2N1308	1.35
2N1711	0.30
2N2219	0.28
2N2626	0.55
2N2905	0.40
2N3053	0.40
2N3054	0.59
2N3055	0.52
2N3702	0.12
2N3703	0.12
2N3704	0.12
2N3705	0.20
2N3706	0.12
2N3708	0.12
2N3733	9.50
2N3773	2.75
2N3792	1.35
2N4280	3.50
2N4427	1.95
2N4444	1.15
2N5294	0.42
2N5296	0.48
2NS298	0.60
2NS485	0.45
2NS496	0.95
2NS641	16.50
2N5643	16.50
254329	0.95

TDA2581	2.95
TDA2582	2.95
TDA2593	2.95
TDA2600	6.50
TDA2610	2.50
TDA2611A	1.95
TDA2040	3.50
TDA2655	4.50
TDA2680A	2.75
TDA2690	2.45
tDa3310	2.95
tda 3510	3.50
TDA3560	3.95
TDA4050	2.95
TDA4600	2.50
TDA9S03	3.15
TEA 1009	1.35
UP(41 C	350
UPC 560 H	2.95
UPC575C2	1.50
UPCIOOIH	1.95
UPC 1020H	2.95
UPC 1024H	1.50
UPC 1025H	1.95
UPC 1028H	1.95
UPC 1032H	0.95
UPC 1158 H	0.75

industrial and	Please odd £ ${ }^{\text {3 }}$	1074H	45.00	D9 110GH	45.00	D14 2006M	75.00	F21. I30GR	75.00	M17 151GVR	175.00 55	M28 131 G	45.00 4500	M 31325 GH	35.00
special quality	additional carriage	30780	95.00	D10210GH	45.00	D16 100GH97	65.00	F31 1210	75.00	M21 11W	55.00	M31 182GV	45.00	M38 100W	59.00
CATHODE RAY TUBES	per tube	CME822W	7.00	010.2306M	45.00	DH391	55.00	LF708	75.00	M23.112GV	45.00	M31 184W	55.00	M40120W	59.00
	${ }^{1}(\mathrm{P}) \quad 29.50$		9.50	D13 61164	59.00	ECR35	39.50	M7 12	19.50	M24.121GH	55.00	M31 190GR	45.00	SE5FP3	45.00

FEB/MAR'89

A selection from our stock of branded valves

1.95

Alvey management criticised - again

The Public Accounts Committee, a parliamentary watchdog made up of back-bench MPs which monitors how well Government spends the taxpayers' money, has heavily criticised the management of the Alvey Programme. In a report published in December the Committee says* that effectiveness of the Alvey Programme may have been hindered by an initial lack of technical and clerical support staff, and that the absence of information as to actual costs of projects until the fourth year of the Programme made sound financial planning impossible. In addition, the Committee pointed to an unsatisfactory "hands-off" management style.

The first (and last!) Alvey Programme was established in 1983 with three primary objectives: to rectify a serious and deteriorating balance of trade in IT products (then a deficit of $£ 836$ million), to improve collaboration between academic institutions and industry, and to target r\&d spending into areas where a return in investment in r\&d was likely. To realise these objectives. the Government were to supply $£ 200$ million and industry a further $£ 150$ million.

"Nearly 50% of the Alvey contribution came from just five firms."

According to the Report, the only objective actually realised was the bringing together of academia and industry. This was despite "severe delays" resulting from the Alvey Directorate's narrow view that its role was to concentrate on contractual relationships between participants. In short. the Committee complained that too little was done by the Directorate, to assist potential collaborators in exploring possible research topics before the contractual stage.
As a result, the Report states that Alvey became dominated by the large electronics firms who regularly contract with Government (i.e. those companies that were in a position to be in the know'). Thus, the top five participating firms in the Programme
accounted for nearly 50% of the total of the 428 'participations', and the small firms. who were expected to exploit quickly the results of the research (and to justify Alvey in an economic series), were absent from many projects.
The Committee was not convinced that the other objectives of the Programme were met. It withheld judgement on the technical merits of the research, and its subsequent exploitation, until the Covernment's final report on Alvey due in 1990, (although readers will be aware of Rob Morland's optimistic report in January's issue of Electronics \& Wireless World), while in an appendix, the Committee noted that the latest trade figures put the current IT trade
deficit at $£ 942$ millions.
In conclusion, the carefully phrased Report highlights several shortcomings of the management of the Alvey Programme. It also recognises that new ground had to be broken, and that some of the errors made were the cost of climbing up the inevitable learning curve. However, the Committee leaves the impression that if these lessons are not applied to ESPRIT and other EEC collaborative projects, the next report will not be so measured or restrained.

* 51 st Report from the Committee of Public Accounts. The Alvey Programme of Advanced Information Technology. HC 477. £5.I0. published by HMSO.

Moulded-on plug-no shocks, no surprises

Impoverished readers of Electronics and Wireless World have no fear; Eric Forth, Minister of State responsible for technology and consumer affairs, has decided not to force industry to fit moulded-on plugs on the electronics equipment or domestic appliances you buy.
The issue arose on the floor of the House before Christmas, when concerned MPs suggested that the time was right for the UK to fall in with the rest of Europe and ensure that all electronic and domestic equipment was sold with moulded-on plugs. This would help the old and disabled, who have difficulties in fitting plugs, to use their electrical appliances in a safe manner. Safety was very important. MPs added, because the UK is one of the few countries that allows an unqualified electrician to practice.

The Minister dismissed such concerns. The Government was against compulsion and regulation in principle, and felt that making moulded-on plugs compulsory would "give rise to problems, perhaps among people on low incomes". In addition, the Minister pointed out, between 5% and 10% of the population still use round pin plugs and the proposed change would discriminate against them.
In fact, the Minister's argument makes
the safety argument more pressing. People on low income are likely to purchase second hand equipment and moulded plugs should begin to identify outdated equipment; if 5% to 10% of the population do have the old round pin plugs, Government statistics show that between 3 to 6 million people use wiring daily that is at least 25 years old.

City technology colleges

City Technology Colleges (CTCs), one of the Government's brightest hopes in the educational field, are in trouble. Despite the technological bias in their curriculum, and their popularity with parents, CTCs have failed to succeed in the way the Government had originally hoped. The reason is simple; CTCs are proving deeply unpopular with local education authorities of all political persuasions, with the result that private sponsors are wary of making donations.

Supporters of CTCs point to the fact that much private money (over $£ 31$ million pledged so far) is already involved, and that any public funding (currently about $£ 86$ million) is additional money that the Government has found for the CTC initiative. Consequently, the Government argues that the financial impact of CTCs on education authorities is minimal, that private sponsorship brings in new money, that CTCs improve parental choice, and that the institution itself should help alleviate future technological skill shortages. Given all these advantages, the Government naturally thinks that it is on to a winner.

However CTCs are independent of education authorities. Thus, in an era of falling school rolls, where rationalising of schools and facilities is inevitable, the establishment by Government of an extra school in a locality can fundamentally affect an authority's long-term educational strategy. In addition, a CTC offering improved salaries and conditions, pupils selected for their commitment, supportive parents and modern equipment, will attract the scarce skilled technical teachers away from the authority. In short, many authorities believe that the CTCs exacerbate existing problems, and in one case, a conservative authority (Trafford near Manchester), used these arguments to refuse to convert an old grammar school into a CTC.

Several opposition MPs have been quick to speak of bias. Max Madden, a Labour Bradford MP, contrasted the Government's intention to spend $£ 8$ million on a selective CTC in Bradford, with the cutting of $£ 200,000$ from the budget of Bradiord's Technical College by the controversial Conservative Council. Paddy Ashdown. for the Democrats, has complained that the limit of $£ 16$ million spent by the Government on three CTCs compares badly with the total $£ 6.8$ million available to all 845 schools in the same catchment areas as the CTCs.

As a result, CTC sponsoring has become a political act. Many private sponsors are worried that good intentions could easily be misunderstood by the local community. Several large companies, for example IBM, BP and ICI, have preferred to keep their hands in their pockets, and work instead through existing education authorities.

Technical training - who pays

Producing trained electronics engineers is expensive and the employer should foot a large part of the bill. That, coupled with the instinct to minimise the burden on the taxpayer, is the essence of Government policy towards technical training. As a result of recent statements, the Parliamentary pace has increased and the issue of "who pays' has become part of a much wider political debate.

This was obvious from the debales surrounding the Queen's Speech, when Gordon Brown, a nember of the shadow cabinet, referred to an "investment gap" in training and R\&D. He said that if the UK spent the same percentage of national income as did the French, it would have spent $£ 4000$ more per worker on training and research. In Germany that sum would have been $£ 6000$; in Italy $£ 7000$, and in Japan the figure would be an additional $£ 20000$ per worker. Brown said that the "gap" has put UK high-technology industries at a serious disadvantage, and that "we end the 1980's with a training and skills position that is wel] below our competitors."

Concern at the skills shortage is not limited to one side of the House. In the debates, Kenneth Warren (the conservative MP who is also chair of the Select (all party) Committee investigating the information technology industry), noted that a CBl sur. vey in 1987 shows 15\% of firms experiencing a shortage of skilled staff and, despite the obvious financial incentives, one quarter of engineering courses are not taken up. By 1992, Warren remarked, the Japanese will have seven times as many qualified engineering graduates as the UK.

The Government's policy derives from its primary concern that re-training should maximise the number of jobs. Chancellor Nigel Lawson said in Washington in 1984
that Western Economies "should not be seduced by the wonders of high tech", as most of the jobs of the future will be "so much low-tech and no-tech" (i.e. lahourintensive services). Thus industry, the Govermment argues, has an important role in providing the basic training (schools, YTS etc.), and this leaves employers working within a free market environment to make business decisions to determine the advanced training needs of their staff. This policy objective allowed the Government to tell MPs that "it is primarily the responsibility of employers to meet their skill needs"

An exchange between two MPs from the high-tech town of Bristol. Dawn Primarolo (Lab) and Robert Haywood (Con), brought the different views into sharp focus. Primarolo commented that in Bristol there is a shortage of highly trained staff, and complained that the Government's training program tells people "how to clean and empty shelves", and not much else. Haywood, by contrast, defended the Government position, saying that it was the responsibility of management to train more and that "industry has the profits necessary to afford such training"

Thus technical training is part of the free market approach. The opposition parties say that this is nonsense, and public support for technical training is a worthy investment in the future wealth of the nation. In reply, the Government maintains that it has created the climate in which business can succeed and part of the price of that success is planning for the future market place. This in turn means private investment to train their staff in the skills for the future. Roughly translated; the employers get the bill.

Notes on the House is written by Chris Pounder.

Civil Servants and tape recorders

Nigel Lawson's problems with faulty tape recorders and a dozen journalists misreporting statements which were not 'misspoken' have worried MPs. They are concerned, as always, about whether

Of course he knows how to use it he had lessons from Nixon.

Civil Sewants are being properly trained, anxious that such things should not happen again.

So questions on seemingly trivial issues were thick on the ground. Do Civil Servants recognise when tape recorders need servicing? Are training schemes available to assist Treasury Officials press the correct buttons? Who makes these unreliable machines? How many times have these machines failed to work before, or have tapes been lost?

As is the tradition with written questions, they must be factually answered. Even though there "are no records on the performance of tape recorders at briefings of journalists in 11 Downing Street", perhaps the answer lies in following the Government's market philosophy - the poorer hacks rely on public provision while lobby correspondents are advised to bring their own.

01－205 9558 Technonatic Lid 01－205 9558

BBC Computer \＆Econet Referral Centre

AMB15 BBC MASTER E346（8）
AMco6 Turbo（65C－02）Expansion Module－ 999 （d）

BBC MASTEA COMPACT
tBC Masie＇Oust Cover
［4．75（d）
SYST packet ol ten 35 DS discs with cach Compact
SYSIEM 1 128 K Single 640 K Dive and Dundica sollware 5385 （a）
SYSIEM 2 Syslem i with a 12 Hi Res ACB Monior［469（a）
Second Dive Kif $£ 9 \mathrm{cc}_{\text {（c）}} \mathrm{E}$ ：iension Cable lor ent 525 dive $£ 12.50$（d）
ew 3 OUser Guide［ 10 （d）
770 OF S Viewsheel User Guide โ10（d）
ADFS AOM（lor 8 with 1770 OFS 8 B Plus） 826 （d）
1205 मOM［15（d）
ACORN 2802 2nd Plocessots โ329（a）
MUL TIFORM 280 2na Processor $₹ 289$（b）
ACOPN 6502 2nd Processor $£ 173$（b）
ACORN IEEE Inlertace $\Upsilon 269$（a） โ229（a）
META version III－The only package available in the micro market that will assemble 27 different processors at the price olfered．Supplied on two 16 K roms and iwo discs and fully compatible with all BBC models Please phone for comprehensive leallet £145（b）

We slock the fult range of ACORN hardware and firmware and a very wore range of othe
peripherals for the BBC For detalled specifications and pricing please send lor our leafler

PRINTERS \＆PLOTTERS

EPSON	
EPSON LX86	£189（8）
Optional Tractor Feed LX80／86	E20（c）
Sheet Feeder LX80，86	f49（c）
FX800	C319（a）
Fx1000	［449（a）
EX800	¢409（a）
LQ800（80 col）	［439（a）
LQ1000	［589（a）
TAXAN	
KP815（160 cos）	［249（a）
KP915（180 cps）	［369（a）
JUKI	
6100 （Dassy Wheel）	c259（a）
NATIONAL PANASONIC KXP1080（ 80 col ）	c149（a）

Star nlio（Parallel Interface）	5209 （4）
STAR NL10（Serial Interlace）．	1279 （＊）
STAR Power Type	［229（＊）
BROTHER HR2O	［329（a）
COLOUR PRINTERS	
Dotprint Plus NLO Rom lor Epson versions for FX，RX，MX	
and GLP（88C only）．	£28（d）
PLOTTERS	
Hitachi 672	［459（a）
Graphics Workstation （A3 Plotter）	［599（a）

PRINTER ACCESSORIES

We hold a wide range of printer attachments（sheet feeders tractor feeds eic） in slock．Serial，parallel，IEEE and other interfaces also available．Ribbons available for all above ploiters．Pens with a variety of tips and colours also available．Please phone for details and prices
Plain Fanfold Paper with extra fine pertoration（Clean Edge）：
2000 sheets $95^{\circ} \times 11^{\circ}$ \＆ 13 （b） 2000 sheets $14.5^{\circ} \times 11^{\circ}$ 〔 18.50 （b）
Labels per 1000 s Single Row $3^{\prime} \times 17 / 16^{\circ}$ 〔5．25（d）Triple Row $2.7 / 16^{\circ} \times 17 / 16^{\circ}$ £5．00（d）

MODEMS

All modems carry a full BT approval
MIRACLE TECHNOLOGY wS Range
WS4000 V21／23（Hayes Compatible Intelligent，Auso Dial／Auto Answer）E149（b） WS3000 V21／23 Professional As WS4000 and with BELL standards and battery back up or memory
essional As WS300 V21／23

WS3000 V22 bis Professional As V22 and
2400 baud lull duplex
£595（a）
WS3022 V22 Protessional As WS3000 bu with only $1200 / 1200$
£350（a）
WS3024 V22 Protessional AS W 3000 but
with only 2400／2400
［450（b）
WS2000 V21／N23 Manual Modem \quad I95（b）
DATA Cable for WS series／PC or XT ．．．． 10 （d）
atatalk Comms Package
If purchased with any of the above
PACE Nightingale Modem V21／V23 Manual

OHer limited to current stocks
SOFTY II
This low cost inlelligent eorom programmer can orogram 2716.2516
 Solill 10 toulines Can be used as an emulator casselle intertace

£ 195.00 （b） | Acaplor | |
| :--- | :--- |
| 2564 | lor |
| 195.00 （b） | |
| 2764 | |

PLEASE WRITE OR TELEPHONE FOR CURRENT PRICES

AT256 3 PORT SWITCHOVER SERIAL INTERFACE 3 mpulit oulput or inpout 3 oulpur
manual channel selection oulput baud rales．independently selectable 7 bve8 bit，odd everino party Marowate or sotware handshake 256 K butlet mains
powered PB BuFFER
internar buterfor mosi Epso printers Eas
supphed

PB128 I28к
［99（c）

TS400 400K 640K
DISC DRIVES

PS400 400K 640 K wilh integral masns power supply
5.25 Dual Drives $40 / 80$ switchable

PD800 $800 \mathrm{~K} / 1280 \mathrm{~K}$ with integral mains power supply
35＂
S351 SS D
S351 Single $400 \mathrm{~K} / 640 \mathrm{~K}$
位
PD352 Dual 800K 1280 K with integral mains power supply
PD853 Combo Dual $5.25^{*} / 35^{\prime \prime}$ drive with p $5+1$
ع187（b）

3M FLOPPY DISCS

Industry Standard lioppy discs with a lletime guarantee．Discs in packs of 10

FLOPPICLENE DRIVEHEAD CLEANING KIT

FLOPPICLENE Disc Head Cleanıng Kit with 28 disposable cleanıng discs
ensures continued optimum performance of the drives $5^{\prime} 4 £ 12.50$（d）
DRIVE ACCESSORIES
Single Disc Cable I6（d）
Dual Disc Cable 58.50 （d）
10 Disc Librany Case $£ 1.80$（d）
$30-5^{12}$ Disc Storage Box \＆ 6 （c）
50 －5＇／2 Disc Lockable Bor $£ 9.00$（c）
100 －5／2 Disc Lockable Box I13（c）

MONITORS

RGB 1

RGE 14	
1431 Std Res	¢179（a）
1451 Med Res	¢225（a）
1441 HiRes	［365（a）
MICROVITEC 14 RGB／PALAUdio	
1431AP Std Res	¢199（a）
1451AP Sid Res	¢259（a）
All above monitors avalable in plasic metal case．	
TAXAN SUPERVISION II	
12 －Hi Res with amber／green options．	
IBM compatible	£279（a）
Taxan Supervision III	§319（a）
MITSUBISHI	
XC1404 14 Med Res RGB．IBM 8 BBC	
compatible	C219（a）

UVERASERS

UVIT Eraser with oult－in limer and mains indicator Buill－in safely inlerlock to avoid accidental exposure canarmuluv rays
can nandie up to 5 eproms alalime with an averag erasing time of aboul 20 mins $\$ 59+\boldsymbol{\$} \mathbf{~ p \& p}$ ． For as above but withoul the mmer $£ 47+\Sigma 2 \rho 8 p$ For Industral Users we offer UV 1408 UV141 era sers winh handing capacity of 12 eproms UVI 41 has V140 69 VV141 CO5 UV140 69 ．UV141 185 ，p\＆p $\sum 2.50$
\quad Serial Test Cable
Serial Cable 5 witchable at both ends
allowing pin ophons to be re－rouled or
linked al ether end－making it possible
to produce almost any cable
contiguralion on site
Avallable as M / M or $M / F \quad \$ 24.75$（d）

Serial Mini Patch Box
Allows an easy method io
recontigure pin funcions
witnoul rewring the cable
assay Jumpers can be used
and reused

Serial Mini Tes Monntors RS232C and CCITT V24 Transmissions
ndicating status with dua Colour LEDs on 7 most Significant lines Connects in
Line
C22．50（d）

EXT SERIALPARALLEL CONVERTERS

Serial powerea conveners

Serial to Parallel
Parallelto Serial
Bidirectional Converter
§48（c）
\＆ 105 （b）

RIBBON CABLE gre，melre：			
10－my	\＄0p	34．an，	160p
16．way	500．	40．as，	1800
20 m ${ }^{\text {a }}$	85D	$50 \cdot \mathrm{a}$ ，	2000
26．＊a，	1200	6x．ay	280 p

DIL HEADERS		
	Solder	IDC
14 pin	40 p	100p
16 Din	50 p	110p
18 pin	60p	－
20 pin	75p	－
24 pm	100p	150p
28 pin	160p	200p
40 pin	200p	225p

ATTENTION All prices in this double pege change without notice． ALI PRICES EXCLUDE VAT Proase add carriege 500 unless indicated as follows： （a）$£ 8$（b）$£ 2.50$（c）$£ 1.50$（d） $£ 1.00$

RADIO COMMUNICATIONS

Cellular growth problems

The extremely rapid expansion of UK cellular radio since the introduction of the Cellnet and Vodafone services in 1984, brought about in part by aggressive and sometimes misleading marketing by the competing retailers, has resulted in a substantial volume of complaints from users that they are not receiving the quality of service they had been led to expect. According to a survey by the Cellular Phone Users' Association. a pressure group campaigning for improved service and lower charges, problems can be experienced on up to 75% of calls, increasing costs to users by hundreds of thousands of pounds a year.

Both Cellnet and Vodafone are seeking to improve their services by setting up additional base stations, particularly in urban areas, and by providing extra channels to overcome congestion. I note, for example, that Vodafone has recently installed base-station antennas on the roof of the IBA building in Knightshridge. Cellnet has some 400 active cells with a scheduled 50% annual increase. Nevertheless, the Users' Association helieves that with increasing congestion the quality of service is likely to get worse before it improves.

For at least two years, business users have been complaining of what they regard as excessive costs involving the initial equipment, installation charges. standing charges and connection fees, in addition to the charges for both completed calls and the calls wasted when contact is lost.

Eavesdroppers

A few users of UIIF/NHF mobile radiophones, both network and cellular, have become concerned at the growing availability of "scanning receivers". some covering frequencies up to over $1000 \mathrm{MH} \%$, that make it possible for "radio freaks" to intercept private calls. In South London. in a series of prosecutions, a group of five enthusiasts have been fined over $£ 7000$, plus £10000-worth of equipment forfeited, for breaches of the Wire-
less Telegraphy Acts.
According to a report in New Statesman and Society "The case against the South London five began late in 1987 when radio monitors working for the I)Tl overheard group members exchanging details of 'interesting' frequencies by radio. For ten months thereafter, relays of IOTI inspectors monitored and transcribed every word the five and their friends spoke on the air. . Twenty officials had spied on the five and their friends, sometimes rising before $5 \mathrm{a} . \mathrm{m}$. to do so. Finally, in July 1988, 25 police and DTI officers arrested the five in a co-ordinated series of heavyhanded raids." It appears that in this case. the over-zealous enthusiasts were monitoring the mobile networks of Guvernment agencies, including MI-5, and were initially suspected of being "spies" or subversives.
In this connection, one cannot help feeling that few of the halfmillion users of "cordless" telephones are made aware of the risk of their calls being overheard by local radio listeners not only those with receivers covering 1.6 to $1.8 \mathrm{MH} \%$ but also. due to "image" reception, on ordinary broadcast sets.

European EMC Directive

The DTTl continues to express reservations about the draft of the proposed European Community Directive on Electromagnetic Compatibility (E.MC) and has been lobbying for further changes after the UK abstained from voting last October on the Directive as presented at the Internal Market Council meeting. On present timescales the Directive is due to come into force on 1 January 199'2, with a transitional period in the event of noncompletion of the necessary standards at the date of its implementation but with a deadline limited to 31 IDecember 1992.

A point of some interest to the radio communications industry and to radio amateurs in particular is the interpretation of the latest form of Article 2, Paragraph 3 and Article 10 Paragraph 5: Radio Equipment.

Article 2 Paragraph 1 states that the EC Directive will apply
"to apparatus liable to cause electromagnetic disturbance or "', performance of which is liable to be affected by such disturh-ance"- a comprehensive description covering virtually all radio and electronic equipment. Paragraph 3, however, states: "Radio equipment used by radio amateurs within the meaning of Article 1 , definition 53 , of the Radio Regulations in the International Telecommunications Convention, is excluded from the scope of this Directive, unless the apparatus is available commercially.

This would seem to have the intention of excluding all homebuilt amateur transmitters, but apparently this is not the interpretation put on it by the [)Tl. They interpret it to imply that the Directive will apply "to all transmitters and receivers placed on the market and brought into senvice, including commercially available amateur apparatus. The only exception to this coverage is home-built amateur apparatus (though our interpretation is that the component part of the kit-built equipment would need to comply if on offer commercially). In addition most transmitters, but not receivers, will need (1) be typetested by an independent accredited test-house. Only amateur transmitter apparatus which is commercially available will fall outside this requirement.

I hesitate to interpret the I)TI's "interpretation" but, on the face of it, the notes provided by J.F.C. Ketchell of [)TI's Radio Investigation Service suggest that virtually any home-huilt transmitter would need to be submitted for type-testing by an accredited test-house. This would inevitably be a costly process that would make it uneconomic to design and build a one-off experimental transmitter. This, surely, is not the intention of the ECD Directive.

- The 8th International Zurich Symposium \& Technical Exhibition on EMC is being held at Zurich, March 7 to 9. With three parallel streams the preliminary programme lists no less than 120 papers, two tutorial lectures ton March 6) and six Oper Meetings of URSI Commission E (also on March 6).

Morse at sea

The decision of the International Maritime Organization to endorse the recommendations of WARC-Mob 87 ("Radio Communications", E\&UTI, January 1988, page 93) and formally to mandate the push-button satel lite Clobal Maritime Distress and Safety System (CMDSS), gradually phasing out the handmorse distress senice has been widely hailed as marking the beginning of the end of manual morse for maritime communications. Over the past few years. BTI have been closing most of their $500 \mathrm{kH} / \mathrm{z}$ coast stations, some after almost 80 years of senice.

Even the Royal Navy, in which. since the adoption of RTTY, morse has cont inued to be used as the main fallback procedure for IIF communications. has been publicizing its "lowspeed diversity modem" developed during the 1980 s at the Admiralty Research Establishment at Portsdown in conjunction with Redifon. According to an article "Farewell to Morse. . .?" in ITTE Spotlight. June 1988, published hy Defence Technology Enterprises Ltd, the technology of this patented modem is available for licensing throughl)TE.

This system is designed to achieve reliable HF communications under adverse propagation conditions and in the presence of co-channel interference, using seven-unit ASCII code with low data rates, frequency and time diversity in conjunction with an intelligent detection and decoding algorithm. The system was described at the $1985^{\circ} \mathrm{HF}$ Communication Systems and Techniques" conference (IEE Conference Publication No 245 "Comparison of 10 hps modem with man-read morse"). But the parallel signals occupy a full $3 \mathrm{kll} \%$ bandwidth compared with a few tens of hertz for manual morse at an equivalent transmission speed. The objective is to eliminate the need to train morse operators, accepting increased complexity.

Radio Communications is written by Pat Hawker.

Component Source

USA Mil Spec

Transformers, Power Supplies, Fans Connectors, Capacitors,
Semiconductors
UK Mil Spec
RF Power, JANTX, Diodes, Resistors, Lamps, Crystals, Electron Tubes, Relays, Circuit Breakers, Fuses.

COMPONENT SOURCE - THE ONE STOP SOURCE FOR ALL MIL SPEC ELECTRONICS

5 Brougham Road, Worthing,
West Sussex BN11 2NP.
Telephone
National - Worthing (0903) 208560
International - 44903208560
Telex: 878500 Source G. Fax: (0903) 211705

ENTER 37 ON HEPLY CARD

R.S.I. LANGREX R.S.I. SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.
Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers.
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.
LANGREX SUPPLIES LTD
1 Mayo Road, Croydon, Surrey CR0 2QP. Tel: 01-684 1166
Telex: 946708
Fax: 01-684 3056

ADVANCED ACTIVE AERIAL

The aerial consists of an outdoor head unit with a control and power unit and offers exceptional intermodulation performances: SOIP +90 dBm , TOIP +55 dBm . For the first time this permits full use of an active system around the If and mf broadcast bands where products found are only those radiated from transmitter sites

- General purpose professional reception 4 kHz 30 MHz .
- -10 dB gain, field strength in volts/metre to 50 Ohms
- Preselector and attenuators allow full dynamic range to be realised on practical receivers and spectrum analysers.
- Noise -150 dBm in 1 Hz . Clipping 16 volts/metre. Also 50 volts/metre version.

SURREY ELECTRONICS LTD.,
 The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG.
 Tel: 0483275997

ENTER 14 ON REPLY CARD

DWIEE PRIOEESSING

PLUG-IN CARD FOR IBM PC (OR AMSTRADS)

* Capture pictures from video camera or VTR
* Comprehensive image processing software
* Measurement
* Histogram.
* Contrast stretching
* Add/subtract pictures
* Save pictures to disk.
* Simultaneous storage of five pictures.
* Picture resolution 256×256
* 64 grey levels per pixel.
* PLUG-IN CARD A.ND SOFTWARE $£ 850.00$ + VAT

For full specification consult the MAGE PROCESSING SPECIALISTS

ELTIME VISION SYSTEMS
1014 HALL ROAD, HEYBRIDGE, MALDON, ESSEX CM9 7LA. Telephone: 062159500 Telex: 995548

RADIO BROADCAST

Synchronizing the digits

Russian broadcast engineers are calling for co-ordinated efforts by broadcasting organizations and equipment manufacturers in many countries to establish a unified reference synchronizing signal for use in future digital television studio complexes. V.A. Khleborodow (Gosteleradio) in a paper "Signals for centralized synchronization in digital television" (OIRT's Radio and Television 1988/4) points out that following the adoption of CCIR Recommendation 601 as a universal component-digital standard and the introduction of digital videotape recorders using this 12:4:4 standard, broadcasters are now approaching the stage where digital television complexes are being planned.
Already, a variety of synchronizing signals have been used or proposed but Khleborodov argues that the choice of a unified reference signal should be made on the basis of broad-based and comprehensive technical and economic research.
The SMPTE experimental digital studio assembled in San Francisco in 1981 was synchronized by means of conventional "analogue" signals but S.MPTE has since proposed a universal "component reference signal (CRS)" suitable not only for digital but also for analoguecomponent working, with one luminance and two chromintance signals. This is seen by Khleborodov as "not without shortcomings".
Analogue synchronizing signals were used in the first operational digital television studio. initially located in Rennes. France, and since relocated in Paris. For the experimental ITVA digital studio at Thames Television, a $4: 2: 2$ video signal is fed directly to the video sources or to a special SPG which can be locked to the $4: 2: 2$ signals. Khleborodov considers that this method would be uneconomical for major studio complexes partly because of the expensive transmission links that would be needed to transmit a full 4:3:2 digital stream over the distances involved.
The Russians have proposed to CCIR (Doc. 11 (USSR) CCIR. June. 1987) a "centralized digital
synchronizing (CDS)" signal based on a 3.375 MHz clock signal although needing two variants, one for $625 / 50$ and the other for $525 / 60$ systems. This is based on the premise that the clock frequency should be lower than the 27 MHz clock frequency of the parallel video interfaces in order to facilitate distribution; it should also occupy the greater part of the line period to provide high phase stability of the generated clock frequencies of 6.75 , 13.5, 27 and 243 MHz . The applicability of the signal in analogue TV complexes hinges on the need to limit its bandwidth to 5 or 6 MHz . It is claimed that an important advantage of the CDS signal for the timing of video sources is the simple realization of digital delay circuits in the decoder or coder: one IC with 64 K memory can provide a delay of almost one field period.

It is admitted that a possible drawback is the need for two variants for $625 / 50$ and $525 / 60$ systems with consequent small differences between the respective coders and decoders, hut it is pointed out that this does not rule out the possible use of a rather different concept based on a 2.25 MHz clock which would overcome this problem.

MASCAM digital audio

Television Broadcast (April 1988. Edllw: page 409) drew attention to a digital stereo sound-insync system for broadcast television proposed by Russian engineers at the A.S. Popov research institute. This system reduced high-quality digital audio channels to 192kbit/s by making use of the Zwicker critical bands of hearing described in "Das Ohr als Nachrichtenempfänger" (The ear as a receiver of information) by E. Zwicker and R. Feldtkeller, published by S. Hirzel-Verlag (Stuttgart, 1967). Zwicker showed that there exist 24 audio sub-hands within which the most powerful component conceals (masks) adjacent, less powerful components, including noise, making them imperceptible to the ear.
These Zwicker critical bands also form the hasis of MASCAM (Masking-pattern adapted suhband coding and multiplexing)
developed at the Cerman broadcast research institute. IRT, and used in conjunction with the OFDM transmission system developed by CCETT (France) for the European Broadcast Union's demonstration of adranced digital techniques for UHF satellite sound broadcasting, at the WARC-ORB88 Conference in Geneva last September.

MASCAM reduces a highquality audio channel. sampled at 32 kHz , to $112 \mathrm{kbit} / \mathrm{s}$ plus an additional $24 \mathrm{kbit} / \mathrm{s}$ for the transmission of the associated scale factors. Each complete stereo channel. including errorprotection bits. is assembled as a $256 \mathrm{kbit} / \mathrm{s}$ multiplexed digital stream. In practice a number of such stereo channels would be further multiplexed for the CCETT digital modulation system for transmission via a satellite operating in the 1 to 3 CHz range.

RDS pros and cons

The BBC will shortly extend the services provided by the VHF/FM RDS system to include an experimental traffic information service based on five local stations: Bedfordshire; Kent; WM (West Midlands); GLR (Greater London Radio); and Essex Radio. If the trials prove successful the system will be adopted throughout the BBC local radio network. Any car radio equipped with an RDS decoder, with its "traffic button" activated, will automatically retune to receive any traffic announcements made on the local stations regardless of which BBC FM station is being listened to (see also page 284).

However, it was evident at a recent IEE colloqium "The RDS system - its implementation and use" that it is likely to be many years before the full potential of the RDS system is taken up by listeners other than those with top-of-the-range car radios. BBC speakers stressed that they would like to see RDS decoders incorporated in most types of domestic and portable receivers. initially in high-quality tuners. Undoubtedly a major problem for battery powered portable receivers would be the extra power consumption of integrated decoders. amounting to some 25 to 35 m i continuously throughout the period that RDS is in use.

Similarly, although RDS has been adopted by 24 of the 46 existing ILR companies and has already been implemented on 36 transmitters, there are still no dynamic data links between the studios and the encoders at the transmitter sites. This limits the service to Pl (programme identification). PS (programme senvice name) AF (alternative frequency lists) and, shortly ON (other network). It would also be possible to transmit CT (clock time) but the motor industry is opposed to implementation on the grounds that most cars are already equipped with a clock. The 1BA is anxious that the motor industry should voluntarily specify R[DS radios as standard equipment.

Theo Kamalski of Philips at Eindhoven considered RUS from the viewpoint of the receiver manufacturers. While he stressed that "RIJS has the potential to become very successful" he drew attention to several problems arising from the EBU specification, which he urged should be amended in some respects. The main practical problem is the occasional switching of receivers to an unwanted transmission due to multiple use of frequencies by broadcasters and inadequate specification for adjacent programmes. He noted there have also been some startup problems due to incompletely equipped networks. incomplete AF lists and wrong PI codes. He considers that the highest priority should be given to the problem of adjacent programme specification which the car-radio maker cannot be expected to solve alone.

RDS was introduced by TDF throughout France in the autumn of 1987 including a radiopaging facility "Operateur" with a capacity for 300000 subscribers. Some 300 encoders were delivered by the Swedish firm Teli Scandinavian. The pager provides selective calling and displays the telephone number to be called. In practice there is the problem that paging subscribers expect the system to work regardless of location and tend not to recognise that the lowlevel of RIDS data modulation presents severe reception problems inside modern buildings.

Radio Broadcast is written hy Pat Hawker.

LOW COST PCB LAYOUT Only SOFTWARE Only £247.50 $£ 247.50$

EASYTRAX is Powerful Affordable Easy to use software for laying out single and multi layer circuit boards.

Complete with Printer Output including HP Laser plus a range of plotters including Photo plotter, also includes a large component Library. Works on most MsDos Computers and supports a wide range of Monitors.
J.A.V. ELECTRONICS LTD, Unit 12A. Heaton Street, Denton, Manchester M34 3RG. Tel: (061-320) 7210. Fax: 061-3350119.
UK Distributor for PROTEL. Advance System Centre for AMSTRAD. Main dealer for ROLAND also dealer for Brother, Oki Microline \& Epson.

Plus VAT
ENTER 7 ON IREPLY CARD

Edicron, having over 30 years experience of supplying electronic components and exporting to some 40 countries worldwide, offers:

- High quality products
- The best prices
- Rapid delivery
- Technical back-up
- Comprehensive stocks - No minimum quantities

To find out more about what Edicron can offer you - or for details of any of the products shown below - phone, fax, telex or write to us today. Redundant stocks also purchased.

9, Bethune Road, London NW10 6NJ Tel: 019612020
Telex: 265531 EDICRN G Fax: 019612285 GRP 3

Telephone 01-520 0442 Telex 262284 (quote MO775) Fax 01-509 3263 ENTER 67 ON REPLYCARD

A powerful control computer based on the new Hitachi 6303 Y and high level language Forth. $100 \mathrm{~mm} \times 72 \mathrm{~mm}$. 30K bytes RAM. 16K dictionary RAM PROM. 256 butes EEPROM. 16K Forth. You can attach 64 key kevboard. LCD and IC bus peripherals. Built in are interrupts. multitasking. time of day clock. watchdog timer. full screen editor and symbolic assembler: 32 parallel and two serial ports. Single power supply and low power 3mA operational mode.
1 off $£ 194.95$ including mancial and non-volatile RAM. Vses
Triangle Digital Services Ltd 100a Wood Street, London E17 3HX

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST-EQUIPMENT DEALER

SPECTRUM ANALYSERS
 1P8559A $10 \mathrm{MH} / 210$ 2† GHI HP8558B . 1 10 1500 MHZ 182 Frame $£ 7000$

 HP85588 1 10 1500 MHz 181 T Frame_ $£ 3250$ HP3582A Dual Channel Dynamic Sinal Analyser 02 HZ to 25.5 KHz H15420A Digital Signal Analyse Bird 6254 0. 100 MW 500 MHz Power Meler Phillps PME 324 AM FM 110 MHz Phulips PM1649 PSU 0-150V 7 amp HP654A Test OscillatorHP651 Audio Oscillator HP651 Audic Oscalla10r
HP3465A Digntal Voltmete HP3465A Digital Voatmeler
HP5363A Time interval Piobe HP3403C True RMS Volumer MP5011T Logic Troubleshooting Kir HP400EL Voltmeter
hP5381A 8OMHZ Frea Counter HP9690A Sweep Oscillator 8691 B 1.2 GHz 8692 A 2.6-5.6GHz 8697A 26-40GHz Marconi TF2501 Power Meter 3 wam

SPECIAL OFFER ITEMS
Ex-Ministry RF Dummy Loads 0-250MMz 0 : 0300 Bradley Electronic Muthmeters AC/OC Measurement to 1200 V Res Range RF to 12 GHz with probes Brandenburg PSU 0-2.5KV 5MA HP5 32 Freq Meter 26 to 40 GHz
HPR382A Vatiatle ATT 26 to 40 GHz 50 DB MPR AP22A Crysial Detector HP423A Crystal Detector toMHz 124 GHz HP33301 Programmable atl 52DB DC to 18 GMz Brand New
40 GHz 20 DB Couplers AUDTO EQUIPMENT Quad 50D Audio Amps 50 watts - 2 Studer B62 Stereo Tape Recorders Spendor BC3 Speakers

APPOINTMENTS

Advertisements accepted up to 12 noon 24th February for April issue.

DISPLAYED APPOINTMENTS VACANT: $£ 27$ per single col centimetre (min .3 cm). LINE ADVEIRTISEMENTS (run on): $£ 6.00$ per line, minimum $£ 48$ (prepayable). (Please add on 15% V.A.T. for prepaid advertisements).
BOX NUMBERS: $£ 15.00$ extra. (Replies should be addressed to the Box Number in the advertisement, c o Quadrant House, The Quadrant, Sutton. Surrey SM2 5AS). PHONE: CHRISTOPHER TERO on 01-661 3033 (I)irect I, ine).
Cheques and Postal Orders payable to REED BUSINESS PUBLISHING and crossed

Test Engineers

Racal Defence Radar \& Displays Limited is at the forefront of defence electronics. and requires highcalibre test engineers to maintain its market position imto the 19901's The main site is located at Chessington. Surrev, whinin easy reach of London and the southern home counties.

As a member of our production test team. you will gain a broad knowledge of our existing product and help tolaunch a new range of products, whilst working with the most sophisticated "state-of-the-art" lest equipment. Your work will involve the diagnosis of complex fatuts to component level. and at the higher levels you will be involved in raising software programmes and overseeing projects from the development laboratories into production.

You should have a working h nowledge of analogue and digital circuitry, with software knowledge an
advantage Applications from candidates with experience of the lesting and diagnostics of complex electronic systems. or a relevant Forces bachground will he particularty welcome.

Trainces without experience, but qualified to a minimum of Technician Certificate in Electronics. or Radar Maintenance Certificate will also be considered.

We offer an excellent benefits package, including 5 weeks holiday. contributory Pension and Life Assurance Scheme, subsidised Restaurant and Sports and Social Cluh.

Interested? Please write to Mary Mackay. Personnel Officer, at the address below, giving career history and eurrent salary, or phone for an application form. Racal Defence Radar \& Displays I.td, 9 Davis Road. Chessington, Surrey KT9 1TB. Telephone: 01-3975281 Ext. 2418.

[^6]ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LIMITED
THE MALTINGS, BURWELL. CAMBRIDGE, CB5 OHB.

NATO

headouarters Allied forces central europe Candidates are sought for the civilian post of:

PRINCIPAL TECHNICIAN

(Mobile Calibration) Nato Grade B-6 at HQ. AFCENT, Brunssum, The Netherlands

The successful candidate will have
An MTS/Fachoberschule/A2/HNC/ONC-diploma, or equivalent.
Thorough theoretical knowledge of electronics, including transistors, solid state device digital theory and data techniques.
At least three years' practical experience in major maintenance, repair, overhaul, modification and calibration of electronic and electrical precision measuring instruments.
Proficiency in: - using general and standard test equipment.
supervising and direction of technical staff. experience in training staff.
The incumbent must be prepared to travel and be away from base up to 80% of the working time.
Applicants who meet these requirements are invited to request an application form and further information from the

Civilian Personnel Section,

Headquarters AFCENT, Post Box 270, 6440 AG Brunssum, The Netherlands.
The completed application (with CV) must reach the Civilian Personnel Section no: later than 6 April 1989.
Candidates may be expected to undergo a written test and interview.

Service Engineer

£13,000-£16,000
Aged 26-40

A large international organisation is expanding its equipment support activity and requires an additional Service Engineer to work with a wide variety of microprocessor-controlled electromechanical equipment.
Applicants should be qualified to TEC or ONC/HNC standard in a mechanical or production related subject and should have at least 5 years' servicing experience on precision electromechanical equipment. Familiarity with electronics would be a distinct advantage. The post is London-based (Holborn) but there will be the possibility of occasional overseas travel.
Conditions of employment are excellent and include a noncontributory pension scheme, free life assurance and staff restaurant. Salary will be determined by qualifications and experience.
Applicants should write with full cv to: M.H. Boorman, 17 Charterhouse Street, London ECIN 6RA.

Electronics workshop technieian (Grade '5) requared an Deparment of I'sychology, Conversty of Readmg.

CLIVEDEN

Technical
Recruitment

TEST ENGINEER

Faull find cellular telephones using Fauir ind cellular telephones SERVICE ENGINEER
Fault linding and repair of hi-tech and RF equipment Three years experience including SMT work c£13K RF ENGINEER Varied locations Detailed design and development o telephony. telecoms and radar telephony
systems
£13-17K
TEST METHODS ENGINEER
Hants, Berks \& Surrey
Design and development of all T.E including ATE. Writing functional test programs and lest schedules \quad 12-16K TEST ENGINEERS
Test and fault ind microprocesso
based PCB s and assemblies for
 years experience SENIOR/SERVICE ENGINEERS

Hundreds of other Electronic vacancies
Roger Howard, C.Eng. M.I.E.E. M.I.E.R CLIVEDEN TECHNCAL RECRUITMENT 92 The Broadway, Bracknell. Berks RG12 1AR (et: 0344489489 (24 hour)
lo design and comatruct as mul ran of speceralsed equipment. The Departmental roseareb and lacab on activities depend heavels an the un of emmputers. The ideal candidate will have had al recognosed apprenticeshap and at least 2 yearson varted experomence in electronacs Knowledge of BBC and IBM mocr computers would be an advantage
 Application forn avalathle from th Personnel oflice "miversity of Readmg. Whiteknights. I'(30 ox 217 Reading, R(its 2AHI, telephone 1073. 318751 . Phease quote Ref 'T 11 A .

A CAREER IN HI-FI ENGINEERING?

NAD Electronics Lid, the world-renowned producer of specialist hi-fi products is re-organising and expanding its Engineering Department As a result a number of new posis are being offered

RF Project Engineer

You will be working on the design and development of state-of-the-art FM and $A M$ radio and TV tuners and all their associated circuitry This wil include FM demodulator, stereo decoder and f́requency synthesiser design logether with microprocessar control of the whole system
Experience in RF cesign, up to at least 100 MHz . is essential and some experience in FM systems would be preferred Famitarity with microprocessor systems would also be useful
The candidate should be cualified to degree level and have three to four years relevant experience $\mathrm{He} / \mathrm{she}$ should be selt-motivated and able to work with the minumum of supervision
A salary in excess of $£ 20,000$ is on offer to the candidate who has the right combination of experience. abilities and potential

Senior Technician - Product Evaluation and Quality Control

You will be testing and evaluatıng sample products from our factories around the world This will involve operational. mechanical, electronic and listening tests on a variety of hi-fi products maintan NAD s reputation for Quality
A broad experience of $\mathrm{HI}-\mathrm{F}_{1}$ products and their operation is essential Experience in product service would be very valuable
Some electronics qualificasion (e g. ONC. HNC. TEC. HTEC) would be prelerred, but experience, enthusiasm and the "knack" to find the bugs that everyone else has m ssed are much more important Salary is likety to be in the range of $£ 12,000-£ 15000$, but there can be some flexibility for an exceptional candidate
Further new posts may be created in the near luture Anyone with a background in any aspeci of electronic engineering and who may be interested in working with our engineering team is invited to get in touch.
NAD
Please send CV to:
Chris Evans
Chief Enginee
NAD Electronics Ltd. Adastra House 401.405 Nether Street London N3 1QG or telephone 01-349-4034 for further information.

Wanted urgently Practical people for the Third World.

Many people want to help the Third World. But relatively few can offer the kind of help wanted most: the handing on of skills and professions which lead to self-reliance.
You could make this priceless contribution by working with VSO.
Current requests include:

Electronics	\square	Ultra-sound Technician	\square
Instructors	\square	Refrigeration/	
Studio			
Electronic	\square	Radiol TVEngineers	\square
Engineer	\square	Electrical Engineers Hospital Electronics	\square
for instruction//			
installation			

For more details, please complete and return to: Enquiries Unit, VSO, 317 Putney Bridge Road, London, SW15 2PN. Tel. 01-780 1331.

Conditionsof work: • Paybasedon local rates • Posts are for a minimum of 2 years - You should be without dependants - Many employers will grant leave of absence.
I'm interested. I have the following training/ experience:
 Address

Helping the Third World help itself. 32p S.A.E. appreciated.

Charity no. 313757.

THE SERVICES SOUND AND VISION CORPORATION is a large, well-established organisation with a heavy involvement in the electronic engineering industry. We are currently seeking applicants with at least two years' detailed practical experience in the repair and servicing of AVA, video or television equipment and have vacancies in the following areas:
OMAN - AVA TECHNICIAN (Mobile)
WILTSHIREIDORSET - VIDEO TECHNICIAN (Mobile)
NORTH YORKSHIRE - VIDEO TECHNICIAN/ENGINEER

(Mobile or Static)
BUCKINGHAMSHIRE - TELEVISION TECHNICIAN
(CHALFONT GROVE) - VIDEO ENGINEERITECHNICIAN

Corporation vehicle provided for posts with mobile duties.
For an application form and further details, please contact: Mrs. Anna Sive, Assistant Personnel Manager The Services Sound \& Vision Corporation PO Box 903, Gerrards Cross, Bucks SL9 8TN Telephone: 02407-4461 Extension 221

RIVERSIDE HEALTH AUTHORITY
 Charing Cross Hospital (Fulham) ELECTRONICS TECHNICIAN (MPT IV)

For the Communication Aids Centre in the Speech Therapy Department at Charing Cross Hospital.
The work includes the maintenance and development of communication aids. Suitable applicant will have practical skills in electronics and home computing experience would be an asset. An ONC or equivalent qualification is essential.
Salary: £8,030-£9.992 per annum inc. London Weighting. We have excellent leisure facilities, creche and subsidised canteen. For further information please contact the Communication Aids Centre on 01 -846 1057/8

For applicant's pack phone $01-4005550$
(24 hour answering service)
Closing date: 6th March, 1989.
When replying to classified advertisement readers are
recommended to take steps to protect their interest before sending money.

HAVING DIFFIGULTY OBTAINING AN OBSOLETE VALVE/TRANSISTOR/IC?

(or magnetron, Klystron, CRT, trav wave tube etc)
We specialise in obsolete types and stock all popular types at competitive prices! All good quality brands. guaranteed by us. Special prices for orders over $£ 50$. Official orders from gut depts. military. PLCs, overseas etc welcome

PHONE/FAX/TELEX FOR UP TO DATE PRICES ON YOUR REQUIREMENTS
Visa-Barclaycard telephone orders welcome

WE WISH TO PURCHASE VALVES (esp EL34 KT66 KT88 PX4 PX25) TRANSISTORS, I.Cs, PLUGS, SOCKETS, CONNECTORS

It possible send written list for offer by return
m BILLINGTON VALVES
Good quality - Low price - Rarities a speciality 39 Highlands Road, Sussex, RH13 5LS, UK. Callers welcome but by appointment only. Phone:0403 210729. Fax: 0403 40214. Telex: 87271 Office hours Mon-Fri 9am-5.30pm (+24 hr answerphone)

TO MANUFACTURERS, WHOLESALERS. BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS. all types. INTEGRATED CIRCUITS TRANSISTORS. DIODES RECTIFIERS. THYRISTORS etc RESISTORS. C F. M F.W W. etc. CAPACITORS. SILVER MICA. POLYSTYRENE. C280. C296 DISC CERAMICS. PLATE CERAMICS etC ELECTROLYTIC CONDENSERS. SPEAKERS, CONNECTING WIPE CABLES SCREENED WIRE SCREWS NUTS. CHOKES. TRANSFORMERS. etc ALL AT KNOCKOUT PRICES

Come and pay us a visit ALADDIN S CAVE
TELEPHONE: 445 0749/445 2713 R HENSON LTD
21 Lodge Lane. North Finchley. London N12. (5 munutes from Tally Hu Cornet)

B-Sweep

- 50 Hz to 20 KHz
- Up to lv rms output AC to DC converter Full listing details for eas modificatinns your own £115 includes: 40/80 51/4' disc VAT \& P \& P

Micro-controlled frequency sweep generator with response plotting, all from one compact unit plugged into your BBC B, B+ or Master

G.W.M. RADIO LTD

40/42 Porlland Road, Worthing. Sussex Tel: 090334897
Marcont equipment TF 2300 B modulation meter am/im 4.1200 mhz - 1000 mhz §175 TF $1064 \mathrm{am} / \mathrm{fm}$ signal generator $68-185 \mathrm{mhz}$ plus signal generator 68-185mhz plus and TF 2171 sig gen and synchronizer $10-520 \mathrm{mhz}$ amifm solid synchronizer 10-520mnz ammim solid sig gen and synchronizer 10 mhz io sig gen and synchronizer 120 mhz
120 mhz am/m solid state $£ 575$ Racal 850 Calibrators suitable for selting up 850 Calibrators suitable for setting up
radio telephone equipment $£ 28$ All prices include P\&P and VAT Ex.Govi receivers and AVO meters in stock. Many bargans for callers

GOLLEDGE
ELECTRONICS

QUARTK CRYSTALS OSCILIA TORS ANI) FILTEERS of all type: Large stocks of standard items. Spe cials suppleed to order l'ersomal and export orders welcomed - AAE for list: please. (OEM support thru: design advice prototype yluantıies, produc tion schedules: Golledge Electronics Marriett sumersut TA 50 NS T. 046073718

> Please mention Electronics \& Wireless World when replying to adverts

TEST EQUIPMENT

 FOR SALEcontact
COOKE INTERNATIONAL
Unit 4, Fordingbridge Site, Main Road, Barnham, Bognor Regis,
West Sussex PO22 0EB Tel: 0243545111
Fax: 0243542457
Wide range of items available Send for lists

ARTICLES WANTED

WANTED

Test equipment, receivers, valves transmitters, components, cable and electronic scrap and quantity

Prompt service and cash M \& B RADIO
86 Bishopgate Street, Leeds LS1 4BB. Tel: 0532435649 Fax: 0532426881

STEWART OF READING
10 WYKEHAM ROAD
READING RG6 1 PL
TEL. 073468041
FAX: 0734351696
TOP PRICES PAID FOR ALL
TYPES OF SURPLUS TEST
EQUIPMENT, COMPUTER
EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

MICROWAVE COUNTERS IMMACULATE CONDITION!
TURN YOUR SURPLUS
ICs transistors etc into cash. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance Contact.
COLES, HARDING \& CO 103 South Brink, Wisbech, Cambs. Tel: 0945584188 Fax: 0945588844

IP Model sab ion stability crystal oven and 110 GHz extended
trequency coverage options Cormplete with Ireauency coverage options Complete wim ful handbook serisitivity -30 aB burgain o
$£ 2950$ olsa $\mathrm{HP} \quad 5342 \mathrm{~A} \quad 10 \mathrm{~Hz} 18 \mathrm{CHz}$ mincroprocessor controlled £245) useable to $\mathbf{4 G H z}$) List price $£ 920$ Bargan \{.495 Supert portoble unt only 1 yeur ald P Model Microwave Power Me'er $£ 15$

CYBERSCAN INTERNATIONAL © 01.866 3300, FAX: 01-429 0950 3 Eastcole View, Pinner, Middlesex HAS IAT.
'I.A'IINUM, (i)l, S, Sll, VER SClRAP. Melted assaycd and pand for within 2 if hours relay cuntacts, thermo couples, crucibles. Also pronted crruit boards. pluss. connecturs, palladrum. rhodium. tantalum and rutheninm. We hatve the terchnologe to do the diflicult refining fols that othere can't handle Totally free sampling service. Send samples or parcels (Reggd pust) or contact brie Flenderson. 0773370141 Stenteck Refineries UK' Litd Peasehill Industrial Entate. Rupley Derbyshare I)E5 :3J(No quantity too argeorsmall. 495

CAI.VES TRANSISTORS I.Cs WANLFD atso (sockots, plugs. con nectors, actory clearance ete. Valve
 chally wanted. Billagtom Valves se aloove.

SUlSNTAN'TLAI, SUM OFFFEREL) for following WWll Britısh militars rados installaton manual:- W.(i) Code No 42:37: Wireless statuon No

 tlumber Mk :3A. Aprol 144.4 i $/ 2 \mathrm{~A}$ reference number unknown). I'lease | referemere number unknown). Pease |
| :--- |
| tel (058086:366evenıngs. |

FOR MORE INFORMATION CALL: CHRIS TERO ON 661-3033

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Electronics \& Wireless World" Classified Adventisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £6 PER LINE. Average six words per line. Minimum $£ 48$ (prepayable)
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus $£ 15$
- Cheques, etc., payable to "Reed Business Publishing" and cross "\& Co." 15\% VAT to be added.

NAME

ADDRESS

ELECTRONICS \& WIRELESS WORLD Index to Volume 94 (1988)

Abbreviations: AS, Applications Summary; CI, Circuit Ideas; II, Industry Insight

A and mu-law companding with digital signal processors (AS), June 544
ACTS satellite, Dec. 1205
Advanced f.s.k. modem i.c., Feb. 199
Advanced television systems, see H.d.tv
Aeronautical satcoms, Apr. 353, Aug. 780
Aether theory, see Perpetual motion
Air navigation, see Coniometer in. .
A.l.us, see More efficient a.l.us (Cl)

Alvey's final phase, summary (II), Dec. 1237
Amateur radio licence, DTI's officialese, Dec. 1248
Ampex's D2 video recorders, May 437; comment Apr. 323
Amplifier. 200 W Class D (AS), Jan. 73
Amplifier, Broadhand instrumentation, Sep. 937
Amplifier, programmable, wide dynamic range (CI), Feb. 129

Amplifier, simple remote-controlled (Cl), July 649
Amplifiers, High-speed (AS). Dec. 1167
Amplitude from phase, see Phase from amplitude
A.m. broadcasting, What price? Mar. 296
A.m. broadcast radio, see also Quality in.
A.m. stereo, July 728, Sep. 936; letters Feb. 134, Apr. 415, Oct. 984
Analogue circuits for automotive uses, Sep. 915 Analogue delay using 12 -bit a-to-d (Cl), July 648 Analogue i/o for P'C compatibles (AS), May 456
Analogue-to-digital converters, Interfacing (AS), Jan. 73
Antenna. Biggest in the universe, Mar. 270 Antenna, broadband fan dipole for h.f.. July 726 Antenna, combiner for cars, Feb. 204 Antenna, flat plate for d.b.s.. May 513
Antenna radials, buried or elevated? Aug. 832
APL, International programming language, Feb. 136
Applications-specific integrated circuits, Feb. 198 Applications summary, Jan. 72; Feb. 113; Mar 288; May 455; June 543; July 663; Sep. 871 ; Oct. 959; Nov. 1105 ; Dec. 1167
Ariane-4 rocket, July 698
Arithmetic logic units, see More efficient a.l.us Armstrong. E.H. (Pioneers), letter Jan. 28
Artificial intelligence in silicon, May 469
Asic design centre, Motorola, Oct. 990
Asics, Feb. 198; see also Industry insight, June 585
Asics. VMEbus interface (II). Aug. 808
ASSERT competition, Mar.219,247: Apr. 364;
June 573; July 702; Sep. 918
Astra, Multi-MAC for May 504
Astra's PAL signals, Dec. 1205
Astra uplink, Apr. 354
Atomic fission, see Electromagnetically induced.
Atoms in a benzene molecule, photograph, Oct. 971
Atom-sized holes never forget, Dec. 1242
Audio engineering, see Science v. subjectivism.
Audio noise reducer, $20 \mathrm{~dB}(\mathrm{Cl})$. Nov. 1073
Audio oscillators using c-mos inverters. Feb. 187 Australian outhack radio by satellite, Nov. 1142
Autocorrelation, see linear systems and random inputs
Aulomatic line matching using resistive couplers (CI), May 448

Automotive serial bus, Bosch (II), Aug. 816
Automotive uses. Analogue circuits for, Sep. 915
Autorepeat with delay, One-gate (CI), May 449
Bach, IBM's Choral program. Dec. 1241
Balun, Isolating wideband, Aug. 767
Band 3 trunked radio goes live. Jan. 71
Bardeen, John, Mar. 273
BasicCAN (II), Aug, 818
Battery advance for cordless communication (II). Apr. 397

Battery discharge manager, NiCd, see What shall we do about.
Battery failure, nickel-cadmium (letter), Dec. 1188
BBC, digital sound for Hong Kong relay, Feb. 181
BBC External Senices, change of name,
Nov. 1142
BBC frequency changes, see Frequency changes
BBC h.f. radio, Jan. 90 , July 728 ; letter, Jan. 28
BBC-tv, New teletext computer, Jan. 32
BBC portable radio project, June 610
BBC World Service, sibilant distortion, (letter). Jan. 28
BBC World Service, Tech Talk programme, May 445
Benzene molecule, photograph, Oct. 971
Beverage, Harold H., biography, July 728
Biological effects of radiation, Feb. 173, July 729, Oct. 1037
Biosensors for diagnosis, Dec. 1186
Bit-slice, see Microcoding and bit-slice techniques
Black broadcasting, Feb. 206
Blood pressure sensor (AS), Feb. 113
Blowing a network (II), Apr. 399
Blumlein, A.D., Feb. 184
BNC connector, naming, (letters) Aug. 860
Bog standard (Research Notes), Sep. 930
Books, Jan. 8, 12; Feb. 110, 198; Mar. 255, 284.
303; Apr. 360; May 443, 485; June 550;
July 671; Aug. 750, 772; Sep. 869; Nov. 1056: Dec. 1172
Boot, Dr Harry, May 486
Boron nitride semiconductors, see Semiconductors
Bowers, John (obit.), Mar. 308
Brain, see Word-processing in the brain
Brattain, Walter (obit.), Jan. 97. 98; Pioneers, Mar. 273
Bridgewater, T.H., 80th birthday. Oct. 1035
British Electronics Week preview, May 514
Broadband instrumentation amplifier, Sep. 937
Broadcast radio, Quality in a.m., Feb. 188
Broadcast radio, h.f. audiences, Nov. 1142
Broadcasting, IEE summer school, July 646
Broadcasting satellites, see d.b.s.
Broadcasting, see Radio Broadcast; Television
Broadcast: and IBC 1988
Broadcasting, see also Single-sideband on h.f.but when?
Broadcasting, Whither UK radio? Apr. 415
Brown, George H. (obit.). Apr. 415
Bruch, Walter (Pioneers). Nov. 1101
Bubbles, see Spotting faulty memories, Feb. 172 Building for the future (comment), Nov. 1051
Building with atoms, May 452
Bus, evolving peripheral bus scene (II), Aug. 809 Bus, Fieldbus, the field narrows (II), Aug. 814 Bus proposals, War and Piece (II), Aug. 811
Bus, Single concept unifies three system buses
(II), Aug. 820

Bus systems (II). Aug. 793
Buswars, cartoon (II), Aug. 811
Butterworth filters, see Filter design
C, see Input/output handling using C
C, see Interfacing and signal processing with C
Cable ti, licence to lose money? Sep. 932
Cable tv expands slowly, Nov. 1140
Cad/cam. job opportunities in, Jan. 99
Cadmium-mercury telluride transistors, Feb. 173 Calculus of Indications, see Aug. 769
Camera, c.c.d. studio camera. Dec. 1178; see also Multi-standardh.d.tv
CAN (II), Aug. 818,819
Cancer, Silent keys and, July 729
Candle flame, weightless, May 453

Can hardware prices continue to fall? (II), Dec. 1214
Capacitors, thermal shock in surface-mounting (AS), Feb. 114
Car antenna, combiner, Feb. 204
Car theft protection system, see State machines and reliability
Catt's anomaly (letters) Jan. 29, Feb. 134,
Mar. 245, Aug. 756, Oct. 983, Dec. 1188
Cavity magnetron, May 486
C.c.d. position sensor, Feb. 208

CD factory in a record shop, Apr. 417
CD life span, Sep. 936
CD-rom, see Music database on CD-rom
CD sound effects library, May 505
CD test record, EBU, Sep. 936
CeBIT 88, June 569
Ceefax, New computer for BBC-tv. Jan. 32
Cellular radio, pan-European demonstrator,
Sep. 919
Cellular radio's next phase (II), Apr. 380
Ceramic transformers. Aug. 752
Chebyshev filter, see Filter design
Chip-kit, Low-cost teaching package, May 435
Choral, expert system, Dec. 1241
Chu. Dr Paul, see Wu, Chu and superconductors
Circuit ideas, Jan. 63; Feb. 128; Mar. 240; Apr.
344; May 448; June 553; July 647; Aug. 767;
Sep. 864; Oct. 970; Nov. 1071; Dec. 1195
City fibre network, BT, Apr. 361
Clandestine radio, Feb. 206
Clarke, Arthur C. at 70, Mar. 307
Class D power amplifier, 200W (AS), Jan. 73
Closing the loop, Jan. 44
C-mos speech encryption (AS), Dec. 1167
Coaxial cable, see Piezoelectric coaxial cable
Collins, Arthur (obit), Apr. 415
Colour encoding, constant-luminance, May 513
Comment, Jan. 3; Feb. 107; Mar. 219; Apr. 323,
379; May 427; June 531, 587; July 635; Aug.
739, 795; Sep. 843; Oct. 947, 1003; Nov. 1051;
Dec. 1155
Communications, see Industry Insight, Apr. 377
Communications barometer (II), Apr. 404
Companding (AS), see A and mu-law.
Competition, see ASSERT
Competitiveness of UK industry (II), Dec. 1211
Component or composite (comment). Apr. 323
Components, The future of leaded, Jan. 68
Component video for film storage, Feb. 203
Computable numbers, On, see Turing
Computer reliability (in offices), AS, Dec. 1168
Computer viruses, Vaccination against, May 522
Computers, language and logic, letter, Now. 1069
Conferences and exhibitions, see Events
Confessions of a frustrated inventor, Mar. 276:
letters, June 539, Oct. 984, Dec. 1188
Conquest of thought (letter) Feb. 135
Conquest of truth, Jan. 48
Constant-current stepping-motor drive (AS),
Sep. 871
Constant luminance colour to encoding, May 513
Contact lubrication (AS), July 664
Controller, Bosch automotive bus (II), Aug. 816
Control systems, PC-based, Mar. 231
Convolution-time-domain signal processing.
Feb. 109; Mar. 302; letter June 539
Cordless future, A (cordless telephones),
Dec. 1198, 1212
Cordless telephone receiver (AS). June 543
Cordless telephones, see also Cellular radio's next phase
Corrections: Moving coil head amplifiers,
Feb. 133: Enhancing IBM PCs, Feb. 136;
Programming p.1.ds. May 503; Introduction to
d.s.p. Oct. 956; Piezoelectric coaxial cable

Oct. 956; crossover filter (CI), Nov. 1071
Correlation, see New technique in o.t.d.r.; see also Linear systems and random inputs
Cosmic time, Experiments with, Mar. 270
Cost-effective instrumentation control (II), Dec. 1232
Coupling coefficient (letters) Jan. 28, Feb. 134, May 458
Cross-correlation, see Linear systems and random inputs
Crossover filter (Cl), July 650, correction Nov. 1071
Crossover network, three-way, (Cl) Jan. 63; letter, July 681
Cryptography, "British intelligence in the Second World War". May 518
Cryptography, see also C-mos speech encryption (AS)
Cnyptology developments, Nov. 1135
Cn'stal oscillator circuits (AS), July 664
Crystal oscillator, Sensor (CI), Jan. 66
CT-2, CT-3 telephones, see Cordless.
Current-conveyor sine-wave oscillators, Mar. 282
Current-sensing, see Designing and using slotted cores. .
Current source and sink, Power (CI), Mar. 240
Current transfer decay in optical couplers (AS), Nov. 1105
Custom silicon, see June Industry Insight, 585
Custom silicon, The 1990 approach to (II). June 588
Cut-out for a.c. supplies at waveform peak (CI), Aug. 768
Data acquisition for processor interfacing (AS), May 455
Data communications, helicopter interference, Apr. 354
Data communication techniques (II), Apr. 388
Data Encryption Standard, Nov. 1135
Data relay satellite, Aug. 779
Data satcoms, Aeronautical, Apr. 353
Data storage, see Seven-per-cent rule
Datatrak, see L.f. navigation revival
D.b.s., Astra and TDF-1. Oct. 968
D.b.s., BSB's uplink station, Feb. 181
D.b.s., D-MAC decoder chips, May 504
D.b.s., IBA test transmissions, Dec. 1207
D.b.s. in Japan, Dec. 1205
D.b.s., new front-end transistors for ${ }^{\text {Nov. }} 1140$
D.b.s. receiver, Alba/STS, Dec. 1205
D.b.s., Scrambling for UK service, Dec. 1207
D.b.s., steerable flat plate antenna, May 513

DECT, Dec. 1199
Defence mechanisms (comment), June 531, letter Aug. 755
Delay using 12 -bit a-to-d converter, Analogue (CI), July 648

Demonstrating spectra and radiation. Oct. 1025
Dentist, identifying rotten teeth. Sep. 930
Dependent source theorem, Sep. 900
DES, see Data Encryption Standard: Cryptography
Designing a high-speed modem, Apr 325. May 482
Designing and using slotted cores for current sensing (AS), Nov. 1105
Designing 68030 into VME (II), Aug. 804
Digital array processor, parallel computing, June 626
Digital audio, four-bit, Sep. 932
Digital audio, Russian, Oct. 1035, Now. 1142
Digital circuit design, see Aug. 769
Digital-delay echo (Cl), Nov. 1072
Digitally-controlled high-Q notch filter with memory (Cl), Dec. 1196
Digital multimeter. Self-calibrating, May 439
Digital opto-coupling for analogue signals (AS), June 543
Digital paper, optical storage technology, June 626
Digital routing networks in broadcasting, Dec. 1248
Digital scope for $£ 400$? (II), Dec. 1220
Digital signal cleaner (CI), Mar. 241
Digital signal processing, Introduction to, Aug. 741
Digital signal processors, see also A and mu-Jaw companding (AS)
Digital sine wave synthesis (AS), Nov. 1106
Digital sound hroadcasting, July 728, Dec. 1178, 1246
Digital stereo, MSC, Feb. 206
Digital storage oscilloscope with $100 \mathrm{Msample} / \mathrm{s}$.

Apr. 366: with up to 10 Gsample s, Dec. 1189 on a PC expansion card, Dec. 1194, 1218; for £400? (II), Dec. 1220
Digital tendency indicator (CI), July 648
Digital-to-analogue conversion step removal (CI), May 448
Digital volume control (Cl), Mar. 241
Digitally-multiplexed telemetry link (CI), June 553
Dimensional approach to a unified theory. Sep. 882: letters, Nov, 1069
Disabled, IEE prize for helping, Feb. 209
Discs, denser, Mar. 270
Distribution, Increasing role in $t \& m$ (II), Feb. 171
Distributor's role, Asics (II), June 600
D-MAC decoder chips, May 504
D.m.m., Will your DMM cost as much to keep as it does to buy? (II), Feb. 148
Doherty at u.h.f. (modulation method), Jan. 90
Droitwich frequency changes, see Frequency changes
D.s.p., Introduction to, Aug. 741
D.s.p., Log-linear conversion routines (AS). Jan. 74
D.s.p. sine wave synthesis (AS), Nov. 1106

DTI officialese, Dec. 1248
Dual-channel television sound, see Nicam
Dual-port memory (CI), May 449
Dual-wavelength time-domain reflectometer (II). Dec. 1238
EARN, European Academic Research Network, Oct. 1031
E-beam technology (II), June 590
Echo, digital-delay (CI), Nov. 1072
Education (comment), see Words and pictures
Education, Engineering Council's proposals rejected by IEE, June 627
Education, OU's "Space at work" video for schools, Feb. 181
Education, see Lego Logo
Education, see Lost in thought
Education, see Open letter to a school leaver
Einstein and the ether, Mar. 238
Electricity supply, domestic hot water, Oct. 993
Electroluminescent panels (AS), Mar. 290
Electromagnetic theory (Ivor Catt's tutorial software), Oct. 998
Electromagnetically induced atomic fission, Jan. 15; letters, Mar. 243. Apr. 332, June 542, July 681, Oct. 982
Electromagnetism, disc and video casette, May 460
Electromagnetic waves, see also Radiant century
Electronic call switches (letter) Jan. 28
Electronic message handling (II), Apr. 386
Elements, new transuranic species, June 622
E.I.f. submarine communications, Sep. 934

Elliptic filter design, May 444
E.m.c. and heart pacemakers, Jan. 71
E.m.c., DTI radio lab's annual report. Feb. 203 E.m.c., letter Jan. 28
E.m.c., test centres, Jan. 40. Sep. 934
E.m.c., Tighter regulations, Mar. 306, May 518
E.m.c., Universities EMC group, Jan. 92, Feb. 204
E.m.c., vehicles, June 620
E.m.i., IEE report on, Mar. 308
E.m.i. suppression (AS), Sep. 871

Employment, Open letter to a school leaver (letter), Apr. 331
Engineering workstations (II). Dec. 1222
Engineers and management (comment). May 427
Enhanced instruction-set processor, Nov. 1111
Enhanced logic probe (CI), Oct. 970
Enhanced pulse measurement using VXI-based instruments (II), Dec. 1234
Enhancing IBM PCs, XTs and clones (correction), Feb. 136
Environmental test summaries, IEC, Apr. 418
Eprom board. VMEbus, (CI). Feb. 129
Equivalence principle, June 623
Erasable CD, June 620
Ether, Einstein and the, Mar. 238
Eureka 95 -a world standard? Sep. 845; see also IBC 1988
Even more switched-on Bach, Dec. 1241
Events. Mar. 236; Sep. 854, 881, 889, 918
Evolving peripheral bus scene (II). Aug. 809
Expert index searcher, May 522
Expert system for harmonizing chorale melodies, Dec. 1241
Faraday, Michael, Aug. 825
Fast, flexible digital storage oscilloscope,
Dec. 1189
Fast Fourier transforms of sampled waveforms,

Nov. 1122
Fast Fourier techniques, see Spectrum analyser using.
Fast logic probe, Sep. 867
Fast risc processor, see Risc
Fax transmission in PC background mode, Apr. 361
Fear of flying (prototype chip design), (II) June 605
Feedback, Jan. 28; Feb. 134; Mar. 243; Apr. 331: May 457; June 539; July 681; Aug. 755:
Sep. 860; Oct. 982; Nov. 1067; Dec. 1188
Feedback (article by Joules Watt), May 476
Ferranti sells semiconductor business. Feb. 209
Fets, see Voltage controlled resistors (AS).
Nov. 1105
FFT, see Fast Fourier transform
Fibre blowing (II), Apr. 399
Fieldbus, the field narrows (II), Aug. 814
Fifth force - the evidence grows. Nov. 1137
Fifty years of computer science (Turing). letter. Apr. 334
Film storage, see Component video for. . .
Filter, Crossover (CI), July 650. correction Nov. 1071
Filter design. Butterworth low-pass filiers with equalization, Oct. 997
Filter design, Elliptic, May 444
Filter design using a microcomputer. July 652
Filter, see also Digitally-controlled high-Q notch filter (CI)
Filtering, see Kalman filtering
Filtering, see Mains supply problems (AS) and Computer reliability (AS)
Filter, programmable bandpass (AS), Mar. 288
Filter, Stop-band pilot (CI), Jan. 65
Filter tuning, Sensitivity-based. May 429
Finding linear network instability (AS), June 544
First VXI products emerge (II). Feb. 139. Dec. 1225
Fission, Electromagnetically induced atomic. Jan. 15
Flame, weightless, May 453
Flammable liquids, handling. Feb. 173
Flat-Earthers in US schools. Aug. 753
Flow-charts, letters, Apr. 331, May 460, June 541. Nov. 1068
F.m. broadcasting, letter Sep. 860

FM quadrature i.c. works as a p.l.I. detector (CI). Sep. 866
FMX taking off in the USA? May 520
Frequency addition/subtraction made simple (CI). Nov. 1072
Frequency changes (Droitwich), letters, May 457, June 541
Frequency measurement, Apr. 335; (Cl) Apr. 345
Frequency synthesizer with analogue phase detector (AS), Mar. 289
Fuel cells, see Metha nol fuel cells
Futurebus, see IEEE 896
Future for UK Electronics? (II), Dec. 1211
Future of Futurebus (II), Aug. 795
Future satellites, see Intelsat's.
GaAs i.cs, resistors for, Feb. 173
GaAs front end transistor for d.b.s. reception Nov. 1140
GaAs-silicon hybrid chip, Oct. 994
GaAs space switch, June 570, 583
Gallium arsenide on silicon (II), June 609
Games computers play (comment), Dec. 1155
Gamma rays and v.l.f. propagation, May 452
Gas flow measurement by ultrasonics. see Aug. 775
Cate array design. In-house (II), June 608
Gate array, Plessey ultra-high speed, Mar. 307
GCHQ secure processor, Oct. 1031
GEC-Plessey Telecoms, Feb. 183
Geostationary orbit, full up? May 488
Geostationary orbits, 25 years of, Nov. 1126
Getting to grips with Asics (II), June 597
Glasses improve your hearing, letter, Jan. 29
Glitch filter, digital signal cleaner (CI), Mar. 241
Glossary, see Radio engineering terms in satellite links
Goniometer in electronic air navigation. Mar, 220
Government data network, Aug. 773
GPIB, see IEEE 488
GPS receiver, July 697
CSM, see Pan-European cellular demonstration. Sep. 919
Gyroscopes, see Relativity. Einstein and the ether
Hall-effect sensors, see Designing and using
slotted cores.
Hardware prices, can they continue to fall? (11)

Dec. 1214
Harmonics and intermodulation in the long tailed pair, Feb. 190
HARP camera tube, Nov. 1140
H.d.tv, Mar. 226, 294, July 724, Sep. 845; Dec. 1175
H.d.tv camera, see Multi-standard.
H.d.tv, HARP camera tube, Nov. 1140
H.d.tv, Prospects and politics, July 711 H.d.tv studio. July 710
H.d.tv will he price-sensitive, Nov. 1140

Helicopter interference to datacomms, Apr. 354
H.f. amplifiers, see Inductive peaking circuits
H.f., beefing up. July 728
H.f. developments (IEE conference report), July 644
H.f. ground-wave radars, Ocl. 1033
H.f.. new Voice of America, BBC transmitters, Oct. 1033
H.f. receiver front ends, Mar. 296
H.f. revival, Apr. 414
H.f. role changes, July 726
H.f. s.s.b. - but when? Dec. 1246

Hearing aids, Speech transposer for, Feb. 174
Hertz, Heinrich, Jan. 34, Nov. 1061
High-definition television, see H.d.tv
High-Q notch filter with memory (Cl), see Digitally controlled.
High-quality digital volume control (CI), Mar. 240
High-speed amplifiers (AS), Dec. 1167
High-temperature semiconductors, see Semiconductors
Holes of atomic dimensions, Dec. 1242
IBC 1988 Dec. 1175
IEE prize for helping disabled, Feb. 209
IEEE microprocessor standards committee projects (II). Aug. 805
IEEE488 control using an IBM-compatible PC (II), Feb. 154

IEEE488-to-Z80 interface, Sep. 852
IEEE896 bus. What is the (II), Aug. 800
IEEE896, The future of Futurebus (II), Aug. 795
Ignition, Multiple spark, May 434
Image movement in stereophonic sound systems, May 491
Image recognition, Liquid-crystal light modulator (AS), Mar. 291)
Improved limit detector (CI), Dec. 1195
Improving stereophonic image sharpness, Jan 18, May 491
Indicator, Digital tendency (Cl), July 648
Inductance synthesis (CI), Aug. 767
Inductive peaking circuits, May 471
Inductor, see Reversing a "constant" current in an...
Inductors, see Designing and using slotted cares.
Industry review 1988 (II), Dec. 1209
Inflammable, see Flammable liquids
Injection-synchronized oscillators, May 520
Inmarsat, Jan. 97, Apr. 354, 400, Nov. 1095, 1128
Innovation for irrigation (comment), Jan. 3
Input/output handling using C, Mar. 258
Input/output for PC compatibles, Analogue (AS), May 456
Insat-IC, Jan. 57
Intelsat's future satellites, Jan 23
Interference, see E.m.i
International Broadcasting Convention, see IBC 1988
Institute of Broadcast Sound, May 520
Instrumentation. Industry Insight, Feb. 137, Dec. 1209
Instrumentation amplifier, Broadband. Sep. 937
Instrumentation amplifiers? - see Single op-amps or. .
Instrumentation. VXI bus and its impact (II). Feh. 140
Instrument control systems, PC-based. Mar. 231
Instrument, Rapid repair and recalibration, Apr. 348
Integrated circuits. Will future i.cs be metal? (II), June 603
Integrated tendency, CAT (II). Feb. 161
Integrating space and ground navaids, July 697
Intelligent power devices, Aug. 782
Intelsat's future satellites, Jan. 23
Intelsal traffic hand-over, Dec. 1205
Interface asics, VMEbus (II). Aug. 808
Interfacing and signal processing in C, 0ct. 948
Interfacing a-to-d converters (AS), Jan. 73
Interference, helicopter blades, Apr. 354
Interference, reducing s.h.f. . ., Dec. 1248
Intermodulation in the long-tailed pair, Feb. 190

International programming language, APL, Feb 136
Interrupt generation (CI), Aug. 767
Introduction tod.s.p., Aug. 741 ; correction Oct. 956
Inventor, see Confessions of a frustrated inventor
Inventors, see Variations on a theme of patents
/o handling using C, Mar. 258
Irrigation, see Innovation for.
ISDN, see Industry Insight, Apr. 377
ISDN, see also Telephone and terminal i.cs
ISDN, Toward, (II) Apr. 382. Aug. 774, Sep. 908
Isolating wideband balun (CI), Aug. 767
ITT satellite chips for BSB, Aug. 778
JET, Joint European Torus, July 730
Kalman filtering - noise-corrurted signal
processing. Nov. 1083
Kao. Charles K., Apr. 395, 406
Keyboard design, Sep. 910
Killer bees have had their chips, Oct. 994
Lans, see Industry Insight, Apri] 377
Laser-beam chopper, Nov. 1109
Laser considerations (AS), Oct. 960
Laser frequency multiplication, Apr. 347
Laser links between satellites, Mar. 280
laser smps uses fast switch. Oct. 1008 (II)
Laser soldering, June 626
Lasers, blue, Oct. 994
L.c.d., see Liquid crystal

Leaching on s.m.cs, solder problems (AS), Nov. 1105
Leaded components, The future of, Jan. 68 Leetronex '88, July 661
Lego Logo, Nov. 1085
Letters to the editor, see Feedback
Level, see Tiltmeter, Mar. 264
L.f. navigation revival, Sep. 897

Light, squeezed, Oct. 993
Light modulator in image recognition, Liquid crystal, (AS), Mar. 290
Light, see Thirty six nanoseconds faster than.
Lightning strikes, Oct. 1037
Limit detector, Improved (CI), Dec. 1195
Linear array design manual (AS), Mar. 288
Linear network analysis with a PC, see Finding linear network instability
Linear systems and random inputs, Apr. 356
Line matching using resistive couplers (CI). May 448
Link budgets, Radio frequency, Jan. 10
Linn Smart Computing, see Rekursiv chip
Liquid crystal, Cheap displays on the way. May 453
Liquid-crystal light modulator in image recosnition (ÅS), Mar. 290
Liquid level, see Tank-level limit monitor for battery operation
Log-linear conversion routines for d.s.p. (AS) Jan. 74
Logic analyser speeds development, STEbus (II), Aug. 806
Logic analyser, VMEbus (II), Aug. 812
Logic design, see State machines and reliability
Logic probe, Sep. 867, (Cl) Oct. 970
Logo. see Lego Logo
ong-tailed pair, harmonics and intermodulation, Feb. 190
Long-term R\&D - who cares? (comment) Oct. 947 assy ells for pie tea, Jan. 37; letters. May 457, July 684
Loudspeaker colour, May 453
Loudspeaker protection (CI), Mar. 242
Low-frequency signal, interrupt generation (CI). Aug. 767
Lubrication, contact, July 664
M^{3} VDS, Dec. 1249
MAC. and Astra, May 504
Magnetic heading sensor, Oct. 1023
Magneto-optical storage. June 626
Magnetostriction. New buzz for, Dec. 1241
Magnetron. Cavity, May 487
Magnets (Joules Watt), Nov. 1087
Mains control interface, Proportional (CI), Mar. 241
Mains supply problems (AS), Oct. 960, Dec. 1168
Making waves ("Joules Watt"), July 699
Marecs comsat. Apr. 353
Market trends. Test and measurement (II), Feb. 150
Marx generator, see Aug. 748
Mast collapse, US, Sep. 932
Mast hazards, Dec. 1246
Matching networks, see Lossy ells for pie tea
Maxwell, James Clerk. Oct. 1040
MC88100 risc, July 637

Mealy and Moore models, see State machines explained
Measuring by ultrasound, Aug. 775
Measuring 100 million degrees, July 730
Mechanical laser-beam chopper, Nov. 1109
Medical effects of power lines, see Biologica effects of radiation
Memories - dothey radiate? Dec. 1242
Memories, experimental ferroelectric. Sep. 929
Memories, faulty, Using bubbles to spot, Feb. 172
Memory, Dual-port (CI), May 449
Memory shortage, May 521
Mercury level, see Tiltmeter, Mar. 264
Mercury's Earth station, May 488
Message handling, see Electronic message handling
Meteor-scatter propagation trials, Nov. 1135
Meteor-scatter, Short-range, Mar. 306
Methanol fuel cells, July 730
Micro channel: see PC bus performance
Microcoding and bit-slice techniques. Jan. 59, Mar. 266, May 467
Microcomputer as transient analyser, Nov. 1076
Microcontroller development system. Soft, Mar. 268
Microprocessor, IEEE standards committee projects (II), Aug. 805
Microprocessor, see also Rekursiv chip
Microprocessor, Viper, RSRE (II), Dec. 1209, 1211, 1226
Microprocessors, V-series, Mar. 256
Microscope. see Scanning tunnelling microscope
Microwave dish, UK's highest, letter, Jan. 28
Microwave propagation, Oct. 1037, Nov. 1142
Microwave testing complex, HP and Ferranti, Nov. 1116
Millimetre-wave satcoms, Personal, Mar. 279
Millimetre-wave television broadcasting, Dec. 1249
Miniature broadcast receiver, Sony, June 615
Minimal but fast SCSI control using a p.l.d. (AS), Oct. 959
MNP Class 6 protocol, Apr. 362
Mobile data communications, Apr. 400. Nov. 1117
Mobile radio, Sep. 897,919
Mobile radio planning bureau, see Network planning senvice
Mobite radio, see A PLL for 900 MHz , Dec. 1156
Mobile radio, see also Stretching the spectrum
Mobile radio spectrum. Jan. 93, Apr. 414
Mobiles win v.h.f. argument, July 726
Modem, see Designing a high-speed modem
Modemi.c., Advanced f.s.k., Feb. 199
Modem routines (AS), Feb. 113
Modular network analyser, July 706
Molecular Beam Epitaxy Centre, Apr. 411
Molecular wire, Aug. 753
Molecule, benzene, photograph, Oct . 97
Mood indigo, loudspeaker colour, May 452
More efficient a.l.us (CI), Oct. 970
Mosmarx voltage multiplier, Aug. 748
Motors, Reversible proportional control for small d.c. (CI), Jan. 66

Moving coil head amplifiers (Self), correction, Feb. 133; letters, Feb. 135, Apr. 333. June 541 , Aug. 755. Oct. 983
MPT1327 for Europe, Aug. 773
MSC digital stereo at $256 \mathrm{kbit} / \mathrm{s}$, Feb. 206
Multibus, the standard standard (II), Aug. 797
Multimeters, Multi-function (Fluke), Dec. 1160
Multiple-output power supplies, Mar. 234, (letter) May 457
Multiple-spark ignition, May 434
Multiplexing, see Sequency-division multiplex
Multi-processor parallel computing, June 626
Multiprocessor systems, Jan. 42; Feb. 176; June 534; July 703; Sep. 875; Nov. 1052; Dec. 1190 Multi-standard h.d.tv camera, July 708
Music database on CD-rom, July 688
Music, expert system for harmonizing chorale melodies, Dec. 1241
Music recognition, Optical, Nov. 1137
National Radio Science Colloquium, Oct. 1037
Naval radar, early (letter) Jan. 28
Navigation. see also Goniometer in electronic air navigation
Navigation aids, see Integrating space and ground navaids
Navigation revival, L.f., Sep. 897
Network analyser, modular, July 706
Networking for the nineties (II), Apr. 382
Networking, small-area (AS), Sep, 872
Network management through quality analysis, Apr. 342

Network planning service, Jan. 87
Network response, see Phase from amplitude and Amplitude from phase
Neural networks, Sep. 929
Neural simulation, letter, Apr 331
New products, Jan. 78; Feb. 162, 193; Mar. 297; Apr. 370; May 506; June 577; July 713; Aug. 786, Sep. 920; Oct. 971; Nov. 1129
New technique in o.t.d.r., May 496, June 557
Nicam digital sound for television, Jan. 92, June 618
Nickel-cadmium battery failure, letter, Dec. 1188
Nickel-cadmium batteries, see What shall we do about.
Nickel-cobalt battery, see battery advance.
Noise-corrupted signal processing, see Kalman filtering
Noise reducer. 20 dB (CI), Nov. 1073
Notes for potential authors, see Writing for E\&WW
Novel p.l.d. programming sequence generator (CI), Sep. 865

Novel power supply needs sponsorship, Sep. 885
Nubus: see PC bus performance, Sep. 856
Numerically-controlled oscillators (AS), Jan. 72
Obituary: Ernst Ruska, Aug. 784; Harvey Schwartz, Sep. 918
Object-oriented programming, see Enhancedinstruction set processor
Obolensky circuit, see Thirty six nanoseconds faster than light
Observer in science, The, Apr. 340; letters June 540 , Aug. 755
Off-delay timer without auxiliary supply (CI), Apr. 344
Office computers, reliability (AS), Dec. 1168
Ohm, Georg Simon, Dec. 1202
On computable numbers, see Turing
Op-amps or instrumentation amplifiers? Feb. 123; letters Apr. 333
Open letter to a school leaver (letter), Apr. 331
Open Systems Interconnection, see OSI
Operating systems, see OS-9. .
Optical cabling, see Progress in,
Optical catastrophe, fibre failure, Apr. 411
Optical couplers, see Current transfer decay in. (AS)
Optical disc drive technology, New, June 569
Optical disc, erasable, June 620
Optical fibre, BT's city fibre network, Apr. 361
Optical fibres into homes, Jan. 92
Optical fibre: prognosis and economic impact (II). Apr. 395
Optical music recognition, Nov. 1137
Optical plastics, Apr. 362
Optical position sensor, June 627
Optical shaft encoder with five-second resolution (AS), Sep. 872
Optical space-Earth link, Dec. 1205
Optical storage media, new, June 626
Optical switch matrix, experimental, Ericsson, July 673
Optical time-domain reflectometry, see New technique in. . .; and Dual wavelength time domain reflectometer
Opto-coupled link, see Two-way opto-coupled link
Opto-coupling, see Digital opto-coupling for analogue signals
Oscar-Ill, July 698
Oscillator. Sensor crystal oscillator (CI), Jan. 66
Oscillator design, 4CHz synthesized, Mar. 251
Oscillators, current-conveyor sine-wave, Mar. 282
Oscillators, injection-synchronized, May 520
Oscillators, see also Crystal oscillator circuits
(AS): Sinewave oscillators using c-mos inverters; Remotely controlled RC oscillators
Oscillators, Microwave crystal, Apr. 410
Oscillators, Numerically-controlled (AS), Jan. 72
Oscilloscope architecture (II), Feb. 156
Oscilloscope, see also Digital storage oscillosope
OSl, see Easier access to international networks, Oct. 1030
OS-9: winning the real-time race? (II), Dec. 1216
O.t.d.r., see New technique in. . .; and Dual wavelength time-domain reflectometer
Outside broadcast vehicle trends, July 724
Overload cut-out for a.c. supplies at waveform peak (CI), Aug. 768
Packaging (semiconductor assemhly), see Secure packaging at home
Pan-European cellular demonstration, Sep. 919
Paper batteries, Apr. 410
Parallel computing, digital array processor, June 626

Particle accelerator, Los Alamos. Sep. 930
Patents, see Variations on a theme of patents
Payphone monopoly abol ished, July 674
PC-based instrument control systems, Mar. 231
PC-based test equipment (II), Feb. 153
PC bus performance: Nubus vs microchannel: Sep. 856
PC compatibles, Analogue i/o for (AS). May 456
PC, Custom i.c. design with a (II). June 607
PC dso eases smps manufacture (iI), Dec. 1218 ; see also Digital storage oscilloscope
PCs as low-cost tools. see Cost-effective instrumentation.
Peak-detecting data acquisition for processor interfacing (AS), May 455
Peltier effect, see Thermoelectric temperature controller
Peripheral bus scene (II), Aug. 809
Peripheral sharing (CI), Jan. 64
Perpetual motion,letter, Oct. 984
Personal millimetre-wave satcoms, Mar. 279
Phase from amplitude, June 547, July 721
Phase-locked loop, see p.I.I.
Phase shifter for single sideband (CI), July 647
Philip Smith's chart, see Smith Chart
Phobos, Tracking, Nov. 1128
Phonezones, see Cordless.
Pi, value of, Oct. 994
Picor, What happened to, June 620
Piezoelectric coaxial cable. Sep. 905 ; correction Oct. 956
Piezoelectric polymers, Feb. 172
Pilot filter, stop-band (CI), Jan. 65
Pioneer 10 spacecraft, Oct. 993
Pioneers: Armstrong (letter) Jan 28; Zworykin (letter) Jan. 29; Hertz, Jan. 34 ; Blumlein, Feb. 184; Shockley, Bardeen and Brattain, Mar. 273; Kao, Apr. 406; Randall and Boot, May 486: Siemens brothers, June 574; Strowger, July 677; Faraday, Aug. 825; Reeves, Sep. 873; Maxwell, Oct. 1040; Bruch, Nov. 1101; Ohm, Dec. 1202
Pirates, catching (letter) Jan. 30
Plastic chips are here, Dec. 1241
P.I.ds, see Programming p.I.ds
P.I.ds, see also Using programmable logic
P.I.d. programming sequence generator (CI), Sep. 865
P.I.I. detector (CI), Sep. 866

PLL for 900 MHz , A, Dec. 1156
Position sensor, c.c.d., Feb. 208
Potential, defining the unit of, Aug. 753
Power amplifier, 200W Class D, Jan. 73
Power current source and sink (CI), Mar. 240
Power devices, intelligent. Aug. 782
Power line disturbances (AS), Feb. 114
Power lines, Medical effects of, see Biological effects.
Power supplies, see Industry Insight, Oct. 1001
Power supplies, see also Multiple-output.
Power supplies, present and future, Oct. 1004
Power supply needs sponsorship. Sep. 885
Power supply, 600 W uninterruptible, Jan. 50
Power supply, see Mains supply problems (AS) and Computer reliability (AS)
Power without wires, Apr. 414
Poynting the way, Feb. 115 : letter, July 682
Predicting the unpredictable (comment), Sep. 843
Pressure sensor, Blood pressure (AS) Feb. 113
Prime numbers, record-breaking. July 730
Printer simulator (Cl), Mar. 242
Programmable amplifier with wide dynamic range (CI), Feb. 129

Progrmmable bandpass filter (AS), Mar. 288
Programmable logic devices, see also P.I.ds
Programmable pulse generator (Cl), Jan. 65
Programming p.l.ds, Jan. 4, Feb. 132, (correction) May 503
Progress in optical cabling (II), Apr. 392
Propagation, sporadic E, Oct. 1037
Proportional control for small d.c. motors, Reversible, (CI), Jan. 66
Proportional mains control interface (CI), Mar 241
Psychokinesis, Dec. 1242
Pulse generator, programmable (Cl), Jan. 65
Pulse measurement (VXI), see Enhanced pulse measurement.
Pulse train generator (CI), Sep. 864
QNBFAM for v.h.f. mobiles, Oct. 1037
Quality in a.m. broadcast radio, Feb. 188; letters Apr. 331, May 457
Radar, early naval (letter) Jan. 28

Radar, h.f. Oct. 1033, 1037
Radials, see Antenna
Radiant century, A. (Heinrich Hertz), Nov. 1061
Radiation hazards, Apr. 415. July 729, Dec. 1246
Radiation, see also Demonstrating spectra and radiation
Radioactivity levels in food and water, Apr. 417 Radio, see also Quality in a.m. broadcast radio Radio astronomers, frequency sharing. Oct. 1037
Radio audiences on h.f., Nov. 1142
Radio broadcast, Jan. 90; Feb. 206; Mar. 296; Apr
415; May 520; 'une 620; July 728; Aug. 882;
Sep. 936; Oct. 1033; Nov. 1142 ; Dec. 1246
Radio broadcasting, Digital, July 728, Dec. 1178
Radiocommunication through rock (letters), Jan. 30, May 458, Nov. 1067
Radio communications, Jan. 93; Feeb. 204; Mar 306; Apr. 414; May 518; July 726; Aug. 827; Sep 934; Oct. 1037; Nov. 1135; Dec. 1248
Radio data system, see RDS
Radio engineering terms in satellite links. Apr. 354, May 489, June 584, July 698
Radio frequency co-channel interference and modelling at 1-30CHz, Dec. 1248
Radio frequency heating, power supplies for (II), Oct. 1013
Radio frequency link budgets, Jan. 10
Radio hearing aids, Speech transposer for, Feb. 174
Radio Show, back after 22 years, Apr. 417
Radio Society of Great Britain, see RSGB
Radiotelescope baseline in space, Aug. 779
Ramp generator, Precision digital (CI), July 647
Randall. Sir John, May 486
Random inputs, see linear systems and.
RDS. see also $B B C$ portable receiver project
RDS in France, Nov. 1142
RDS, What is happening to RDS? Nov. 1096
Real thoughts on the imaginary axis, letter Oct. 982
Real-time operating systems, see OS-9: winning the real-time race?
Receiver, see also BBC portable receiver project
Receiver, see Cordless telephone receiver (AS)
Receiver front ends, H.f.. Mar. 296
Recordings restored, Feb. 206
Reducing s.h.f. interference, Dec. 1248
Reeves, Alec H., Sep. 873
Regulator, step-up switching. Sep. 891
Regulator, Switching, low drop-out voltage (AS) Jan. 74
Rekursiv chip. May 469, Nov. 1111
Relativity and engineering, letters. Mar. 243. May 459, June 542. July 682, Oct. 985, Nov. 1070
Relativity and gravitation, conference for opponents of Einstein. Mar. 308
Relativity, Einstein and the ether. Mar. 238; letters May 459, July 682, Aug. 756, Oct. 985. Nov. 1070
Relativity. Einstein rules OK (Research Notes) June 623
Relativity - joke or swindle? Feb. 126: letters, July 682, Oct. 985
Relativity, see also Thirty-six nanoseconds faster than light. Dec. 1162
Relational analysis, letter Aug. 755
Reliability, office computers, Dec. 1168
Remote-controlled amplifier. Simple (CI), July 649
Remotely-controlled RC oscillators, Oct. 987. Nov. 1064
Repair and recalibration, instruments, Apr. 348
Research and development (comment), see Long term R\&D.
Research notes, Jan. 74; Feb. 172; March 268; Apr 410; May 452; June 622; Aug. 752; Sep. 929; Oct. 993; Nov. 1137: Dec. 1241
Resistors, surface-mounting (AS). Feb. 114
Resonant converters (AS), Oct. 960
Reversible proportional control for small d.c. motors (CI), Jan. 66
Reversing a "constant" current in an inductor, June 571
R.f. heating, Advances in solid-state power supplies for, Oct. 1013
R.f.i. test centre, see E.m.c
R.f.i. see also Rusty bolts exonerated
R.f. power generator, 100W (Cl), Dec. 1195
R.f. testing, microwave, Nov. 1116

RCB to composite monochrome video converter (CI), Feb. 130

Risc processor, see also MC681000; Second generation risc processor
Risc processor (Am29000), May 503, July 689

Risc processors (HP, Tektronix), June 627
Risc tutorial (AS), May 455
Robots (Research Notes), Jan. 76
Rosen. Dr Harold, Nov. 1126
Rotor blade interference, Apr. 354
Routeing network in broadcasting, digital, Dec. 1248
RSCB 75th anniversary, Sep. 934
Rupert and his PALs (comment), Aug. 739; letter Oct. 982
Rural radio projects, Aug. 827
Russian super television, June 622
Rusty bolts exonerated, Nov. 1138
Safety-critical computing, see Viper
Satcoms on the move, Nov. 1095
Satellites, see also Laser links between satellites
Satellite navigation trials, Jan. 58
Satellites, see Intelsat's future.
Satellite systems, Jan. 57; Feb. 181; Mar. 279; Apr 353; May 489; June 583; July 697; Aug. 779; Sep. 903 ; Oct. 967 ; Nov. 1127; Dec. 1205
Satellite tv, ITT chips for BSB, Aug. 778
Satnav, Jan. 97; see also Integrating space and ground navaids
School leaver. Open letter to a, Apr. 331. Sep. 860 Scanning tunnelling microscope, May 452, Oct. 971
Science v. subjectivism in audio engineering, July 692; letters, Sep. 860, Nov. 1067, Dec. 1189
SCSI, see Minimal but fast SCSI control using a p.l.d. (AS)

Second-generation risc processor (AMD), July 689 Secure packaging at home (II), Dec. 1224
Selectivity, see Quality in a.m. broadcast radio Self-calibrating digital multimeter, May 439 Self-repairing computer for space, Jan. 31 Semiconductor assembly, Dec. 1224
Semiconductors, Cadmium mercury telluride, Feb. 172
Semiconductors, GaAs-silicon bybrid chip, Oct. 994
Semiconductors, High-temperature, Mar. 269, June 622, Nov. 1137
Semiconductors, polyacetylene. Dec. 1241
Semi-custom linear array design manual (AS), Mar. 288
Seminars and training courses, Sep. 889
Sensitivity-based filter tuning, May 429
Sensor crystal oscillator (CI), Jan. 66
Sensor for blood pressure (AS), Feb. 113
Sensors, see also Biosensors for diagnosis
Sequency-division multiplex, July 659
SES, see Astra
Seven-per-cent rule, The, Apr. 350; letters, June 540 , July 683
Shaft encoder with five-second resolution, optical, (AS), Sep. 872
Shockley, William, Mar. 273
Short-range meteor-scatter, Mar. 306
Sibilant distortion (letter) Jan. 28
Sidebands, by "Mixer", Oct. 1029, Nov. 1086
Siemens brothers, June 574
Signal cleaner, digital (CI), Mar. 241
Signal processing, see Convolution; Kalman filtering; Introduction to digital signal processing; and D.s.p.
Silicon carbide, see Semiconductors, High temperature
Sine-wave oscillators, Current-conveyor, Mar. 282
Sinewave oscillators using c-mos inverters, Feb. 187; letter, July 683
Sine wave synthesis, Digital (AS), Nov. 1106
Single concept unifies three system buses (II), Aug. 820
Single op-amps or instrumentation amplifiers? Feb. 123: letters, Apr. 333, June 539
Single-sideband on h.f. - but when? Dec. 1246
Single sideband, Phase shifter for (CI), July 647
Slotted cores (AS), see Designing and using.
Small-area networking (AS), Sep. 872
Smith chart. Aug. 759, Sep. 887; letter, Nov. 1069; obit (P.H. Smith), Apr. 441
Soft microcontroller development system, Mar. 268
Solar cycle, Aug. 832
Solar power systems in spacecraft. Oct. 967
Solar radio, Unesco project setback, Sep. 936
Solar-terrestrial monitoring, Oct. 1037
Soldering, laser, June 626
Solid-state broadcast transmitters, Apr. 409
Sound effects library, CD, May 505
Sound-in-sync, stereo, Apr. 409
Source theorem, dependent. Sep. 900

Space at work (OU video lecture), see Education.
Space-Earth optical link, Dec. 1205
Space invaders (satellite environmental hazards). Oct. 967
Spectra and radiation, see Demonstrating.
Spectrum analyser using fast Fourier techniques, Dec. 1169
Speech encryption, see C-mos speech encryption (AS)
Speech therapy, Electronic, Sep. 929
Speech transposer for radio hearing aids, Feb. 174
Sporadic E., Oct. 1037
Squeezed light, Oct. 993
S.s.b., see Single sideband

Standards, IEEE microprocessor committee projects (II), Aug. 805
Standing waves, see V.s.w.r. enigma
State machines and reliability, Nov. 1108
State machines explained (AS), July 663
STEbus logic analyser speeds development (II), Aug. 806
STEbus looks to the global market (II), Dec. 1228
Stepping-motor drive, constant-current (AS), Sep. 871
Step-up switching regulator, Sep. 891
Stereophonic image sharpness, Improving, Jan. 18, May 491
Stereo, see alsn A.m. stereo; FMX taking off in USA?
Stereo sound for television, Aug. 830; see also Nicam
Stereo sound-in-sync, Apr. 409
Stretching the spectrum, June 613
String, cosmic, Aug. 752
Strowger, Almon B., Pioneers, July 677
Stop-band pilot filter, Jan. 65
Subjectivism in audio engineering, see Sciencev. subjectivism. .
Superconducting dipoles, Sep. 934
Superconductive j-fets. Sep. 850
Superconductivity, Mar. 269, July 752
Superconductor sandwich (new materials), Nov. 1138
Superconductors, discovery of, see Wu, Chu and superconductors
Superconductors, Government backing for research, Apr. 418
Superconductors, Nobel prizewinners, Jan. 97
Superconductors, Terabit transmission lines, Jan 71
Submarine e.l.f. communications, Sep. 934
Surface mounted components, solder problems (AS), Nov. 1105
Surface-mounting resistors, capacitors (AS), Feb. 114
Swanare Railway telecomms, July 673
Switching regulator, step-up, Sep. 891
Switching regulator with low drop-out voltage (AS), Jan. 74
Switch-mode power supplies, see Resonant converters (AS); and Industry Insight, October 1001
System integration achievements and opportunities (II), Dec. 1230
TACS in Japan, Jan. 71
Talking books for the blind, repairers wanted, Apr. 417
Tank-level limit monitor for battery operation (AS), May 456
Taxis, mobile datacomms for London, Nov. 1117
Teaching package, Chip-kit, May 435
Tech Talk on BBC, May 445
Teeth, see Dentist
Telecom pockethook (Philips), July 673
Telecom ' 87 report, Jan. 70
Telecomms topics, Jan. 70; Feb. 183; Mar. 291; Apr. 361; May 463; June 569; July 673; Aug. 773; Sep. 908; Oct. 1031; Nov. 1117
Telemetry, see Digitally multiplexed. . . (CI)
Telephone and terminal i.cs (AS), July 663
Telephony, Stop-band pilot filter (CI), Jan. 65
Telepoint takeoff. Dec. 1212; see also Cordless.
Teletext, New teletext computer for BBC-tv, Jan. 32
Teletext written off in USA? Mar. 294
Television, see also H.d.tv
Television broadcast, Jan. 92; Feb. 203; Mar. 294; Apr. 409; May 513; June 618; July 724; Aug. 830; Sep. 932; Oct. 1035: Nov. 1140 ; Dec. 1249
Television camera, c.c.d. studio, Dec. 1178 ; see also Multi-standard h.d.tv camera
Television, mechanical (letter), Feb. 134
Television, millimetre-wave distribution, Dec.

1249
Television viewing habits, Nov. 1140
Temperature controller, see Therno-electric. .
Temperature, see Measuring 100 million degrees
Tendency indicator, Digital (CI). July' 648
Test and measurement market trends (II), Feb. 150
Test equipment. PC-based (II), Feb. 153
Thermal shock in surface-mounting capacitors (AS), Feb. 114
Thermionic displays, Oct. 1035
Thermo-electric temperature controller, July 687
Third World and technology, see Irrigation and innovation
Thirty six nanoseconds faster than light, Dec. 1162
Thoughts for the future (comment), Mar. 219
Tiltmeter Mar. 264
Time-domain signal processing, see Convolution
Time, Experiments with cosmic, Mar. 270
Timer, Off-delay, without auxiliary supply (Cl), Apr. 344
Tone decoder with noise-chatter immunity (CI), Nov. 1071
Toward ISDN, see ISDN
Transducers, ERA survey, June 627; see also Sensors
Transformers, ceramic, August 752
Transformers, low flammability, Jan. 71
Transient analyser, see Microcomputer as.
Transmission lines, see Poynting the way; and V.s.w.r. enisma, The

Transmitter efficiency, television, Dec. 1249
Transmitters, powerful solid-state, Apr. 409
Transputer, Self-repairing computer for space, Jan. 31
Transputer, miscellaneous news items, Jan. 98, May 521
Transuranic elements, artificial, June 622
Trunked radio goes live. Band 3, Jan. 71
Truth, The conquest of, Jan. 48
Turing (letters) Apr. 334, Oct. 982
Two approaches to risc, July 637, 689
Two-way opto-coupled link, Oct. 96.3
Ultrasound, Measuring by, Aug. 775
Underground communciations, see Radio communication through rock
Unified theory, a dimensional approach to a. Sep 882
Uninterruptible power supply, 600 watt, Jan. 50
Uninterruptible power supply (II), Oct. 1011
Upgrading from 68000 to $68020 / 68881$, July 665
U.p.s., see Uninterruptible.

Uranium, US battle tanks built of. . ., July 730
URSI, National Radio Science Colloquium, Oct. 1037
Using programmable logic, June 563
Van de Graaff generator, see Particle accelerator
Variations on a theme of patents, Mar. 263; letters July 684, Oct. 983, 985
Vehicle e.m.c., June 620
Vehicle tracking, Sep. 897
Video real-time computers, Sony, Dec. 1177
Video converter, RGB to composite monochrome (CI), Feb. 130

Video recorder, domestic, HD-MAC, Dec. 1176
Video recorders, Ampex D2, May 437; comment, Apr. 323
Videotape format rivalries, Oct. 1035
Viper microprocessor (II), Dec. 1209, 1211, 1227
Viruses, computer, May 522
Vision aid, Space-age. Sep. 929
V.I.f. propagation, May 452
V.l.s.i. process summary, Alvey (II), Dec. 1237

VMEbus eprom board (Cl). Feb. 129
VMEbus interface asics (II), Aug. 808
VMEbus logic analyser (II), Aug 812
VME, Designing 68030 into VME (II), Aug. 804
Voice of America, new transmitters, Oct. 1033
Volt, defining the, Aug. 753
Voltage-controlled resistors (AS), Nov. 1105
V.s.w.r. enigma, The, Dec. 1185

VXI-based instruments, see also Enhanced pulse measurement.
VXIbus, an emerging industry standard (II), Feb. 144
VXI bus and its impact on instrumentation (II), Feb. 140
VXI, First products emerge (il), Feb. 139, Dec 1225
Voltage multiplier, Mosmarx, Aug. 748
Volume control, High quality digital (Cl), Mar 240
V. 42 protocol finalized, Julv 674

Wagner, Debussy and electromagnetism (letters) July 681, Sep. 862, Dec. 1188
Walsh functions, see Sequency-division mult iplex War and piece, bus proposals (II), Aug. 811
WARC-Mob, '87, Jan. 93
Waveform distortion by switch-mode power supplies, How to combat. Oct. 1016
Wave motion, see Making waves
Waves in an elastic medium, letter July 684
Weather satellites, Europe's new, Jan. 58
Weightless candle-flame, May 453
What is the IEEE 896 bus? Aug. 800
What shall we do about those batteries? Oct. 978
Wiener-Khintchine theorem, Apr. 356
Will your DMM cost more to keep than it does to buy (II), Feb. 148
Wires plus switches equal digital circuits, Aug.

769; letters, Nov. 1069
Word-processing in the brain, June 623, letter Oct. 963
Words and pictures (comment), Feb. 107; letter Apr. 334
Workstations, Engineering (II), Dec. 1222
World-scale mobile data communications (II), Apr. 400
Writing for E\&WW: notes for potential authors, July 696
Wu, Chu and superconductors, Dec. 1165
X-ray flash photography, Oct. 993
X-ray lithography for semiconductors, Nov. 1138
$\mathrm{X}-400$, see Electronic message handling
Year of the viper, The (II), Dec. 1226; see also Dec. 1209
280 bootstrapping and communications interface
(Cl), Apr, 344

100 W 4.5 MHz r.f. power generastor (CI). Dec. 1195
29000 , see Second-generation risc processor
36 nanoseconds, see Thirty six nanoseconds faster than light
4 CHz synthesized local oscillator design, Mar. 251
5 V rail for telephone circuits (CI), Jan. 64
600 W uninterruptible power supply, Jan. 50
68000 , see also Upgrading from 68000 to 68020 d 68881
68030 , see Designing 68030 into VME.
7\%6. rule. see Seven-per-cent rule, The
8048 switch-reading and interrupt tips (Cl), Mar 241
88100 risc processor, see MC88100 risc

Authors

Aaltonen, Sakuri, Nov. 1069
Abbott, N, P., Jan 28
Abuelma'atti, M، T., Feb. 190, Mar 282
Adams, Carl D., Jan. 15, June 542 Agada, J., July 649
Ambrose, Ray, Mar. 234, Aug. 782
Andrews, Peregrine, July 647
Anyanwu, C., July 649
Aspden, H., Apr. 332, May 459, Oct. 985, Nov. 1069
Atherton, W. A., Jan. 34; Feb. 184; Mar. 273; Apr. 406; May 486; June 574; July 677; Aug. 825; Sep. 873; Oct. 1040; Nov. 1101; Dec. 1202
Baines, Rupert, Nov. 1111
Bandar, M., Oct. 1018
Bardos, Peter, Oct. 1004
Barratt, M. J.. Dec. 1195
Barnett, T. G., July 648
Beck, R. A., Jan. 66, Oct. 963
Bennett, Allen, Apr. 334
Bennett, Paul, Dec. 1195
Benton, lan, Mar. 241
Benton, Neil, Apr. 345
Bergman, G.D., Aug. 767
Biggs, K. J., May 448
Birkett, A. G., June 544, Nov. 1072
Bishop, Ken, Oct. 1011
Bleeker, J. J., July 683
Boag, Thomas R.. July 681, Dec. 1188
Boeke, W., June 539
Braithwaite, Ian, Mar. 251
Bryant, James M., Apr. 333
Buchan, P. B., Dec. 1185
Burgess, C., Apr. 366
Burton, Peter, Aug. 814
Cain, Sue, Mar. 234, Aug. 782
Carstedt-Duke, Tom, June 608
Cathode Ray, May 457
Catt, Nor, Jan. 48, Apr. 350, May 460 June 539, Aug. 756
Celano. D., June 541
Chaffey, N. J., Sep. 891
Chadney, Feb. 134
Chalmers, David A., Nov. 1069
Chamberlain, A. J., Sep. 864
Charlesworth, J. R., July 647
Chatterjee, S. K., Sep. 882
Chell, D. L., Dec. 1189
Chenhall, Hal, May 439
Christieson, M. L., Jan. 10, Sep. 866 Clements, Alan. June 534, July 703, Sep. 875, Nov. 1052, Dec. 1155, 1190
Clifford, F. G., Jan. 28, Nov. 1067
Coates, Bob, July 665
Coleman, C. F., Mar. 243, June 540, July 681, 683, Aug. 756, Sep. 862 , Oct. 982 (twice), Nov. 1068, 1069
Collins, Richard. Aug. 755
Cooke, John, Apr. 344
Craig, Glyn S., Sep. 860
Crampton, F. J. P., Nov. 1068
Crofts. Milton, May 429
Damljanovic, Dragoljub, Feb. 187
Davie, O. H., Jan. 28
Davies. Colin, Aug. 804
Davies, R. E., Apr. 333
DesJardin, Larn', Feb. 144
Diggins, J.E., July 684
Donaldson, P.E.K., Feb, 134, May

458, Aug. 748, Oct. 978
Doraiswamy, T. S., Apr. 344
Dubery, Bob, Apr. 388
Edeko, F. O., Jan. 18, May 491
Edmonds, A. N., Jan. 59, Mar. 266, May 467
Egerton, McKenny W., Jan. 63, Aug. 767, Nov. 1071
Eggleton, R. J., May 449
Emmerson, Andrew, Sep. 860
Errington, John, Mar. 242
Essen, L., Feb. 126, May 459
Fahme, Kerim, Feb. 134
Field, J.C. G., Mar. 243
Fisher, H. L., Apr. 334
Foster, Graham, Jan. 68
Frizell, Charles, Jan. 50
Frost, B. J., Sep. 867, Oct. 970
Fursey, Roy, Sep. 860
Gane, D., Jan. 30
Gare, Chris, June 588
Gee, David, Dec. 1220
Gehring, K. A., Dec. 1165
Ceorge, R. E., Jan. 29
Georgeoura, S. E., Nov. 1122
Gleave, Mick, June 541
Goodman, Phil, June 600
Cosling, William, Apr. 380
Grant, G. M. R., Mar. 220
Green, T., June 539
Greenhill, Alistair, Mar. 258
Gregg. J. F., Nov. 1073
Greiderer, Reinhard, Dec. 1156
Griffiths, D., June 571
Hampton, S. J., Sep. 860
Hankey, D., Mar. 243
Harverson, Peter, Dec. 1222
Haslam, David F., Oct. 983
Hawker, Pat, see Radio Broadcast, Television Broadcast and Radio Communications
Healey, Frank, Feb. 154
Healey, Martin, Dec. 1214
Heath, J. R., July 683
Herder, Nanno, Sep. 937
Herdman, Bill, Sep. 862
Hobden, Mervyn K., Mar 244
Hobson, L., Oct. 1013
Horn, Stephen, Jan. 99
Howarth, John, Sep. 861
Howson, D., Mar. 240
Humood, N. A., Mar. 282
Hutchings, Howard, Jan. 44, Feb.
109, Mar. 302, Apr. 356, Oct. 948
Ion-Constantin, Tesu, Apr. 331
Irmer, Heimbert-Ulrich, Dec. 1156 Ivall, Tom, Feb. 134, Apr. 331, 340 , May 459, Aug. 755, Sep. 845; and Satellite Systems
Jervis, Barrie W., May 429
Johnson, Peter, 905
Jones, Alan, J., Mar. 241
Jones, Alex, May 459, July 684
Jones, David, July 637
Jones, D. S., Oct. 982
Kahn, Leonard R., Oct. 984
Kao, Charles, Apr. 395
Kearsley-Brown, R., Feb 188
Kellett, Neil, June 563
Khalili, Davood, May 448
Kimmit, Jonathan, June 597
Kirk, Kevin J., Apr. 325, May 483
Kitchin, Duncan, Aug. 755

Klahn, Lou, Feb. 140
Klemmer, Wolfram, July 708
Kostro, Ludvik, Mar. 238
Kraus, Kamil, May 444, Oct. 997
Krings, Gert, Dec. 1156
Labib, G. A. M. Jan. 42; Feb. 176
Laka, Jovan, Jan. 65
Lakshminarayanan, V., Jan. 4, Feb.
132, Sep. 865, Nov. 1071
Lambley, Richard, Sep. 897, Dec. 1198
Langton, Charles H., Apr. 347, July 659
Lattanzi, Virgilio, Jan. 65
Leach, Tony, Feb. 150, Dec. 1232
Lewis, Geoff, Mar. 226
Lidgey, John, Feb. 123, Oct. 1008, June 539
Linsley Hood, J. L., Apr. 331, May 457, Sep. 860, Dec. 1188
Lipschutz, Heinz, Mar. 276, Oct. 984
Long, D. J. Jan. 28
Lord, Harold, May 458
Marks, Bev, Nov. 1097
Matthews, John, Dec. 1188
Medes, A., Apr. 331, Aug. 769, Nov. 1068
Meehan, Pat, Dec. 1169
Mercy, D. V., June 547, July 72.
Maloney, Sean, Aug. 797
Martin, D. J. R., Jan. 30
Matthews, John, Mar. 245
McGregor, R., May 458
Milne, David, June 604
Millar, J., July 648
Morant, Adrian J., see Telecomms Topics
Morland, Rohert J., June 587
Murugesan, S., Mar. 241, Nov. 1072
Nalty, Graham, Apr. 333, Aug. 755
New, Mike, Feb. 153
Newton, Steve, May 496, June 557
Nicholson, Peter, Dec. 1231
Niewiadomski, S., July 652
Nowlin, William, Sep. 856
Obolensky, Alexis Guy, Dec. 1162
O'Dell, T. H., Jan. 66, Aug. 767
O'Keeffe, Peter, June 605
Oxner, Ed, Sep. 850
Page, R. A., Apr. 335
Pappas, P. T., Dec. 1162
Pedder Don, Oct. 1016
Perkins, C. I., May 460
Perkins, Dennis G., Oct. 983
Perkins, T. A., Sep. 891
Petrovic, Tomislav, July 648
Pollard ${ }^{5}$ Brian J., July 682
Pratt, J. G. D., June 541
Price, Henry, Jan. 28
Price, Steve, Nov. 1067
Prondzynski, Paulo R., Mar. 241
Qureshi, Umar, Feb. 148
Raman, Ajoy, Oct. 1023
Randall, B. A., Jan. 64
Rao, K. Radhakrishna, Oct. 1023
Ratcliffe, P. J., Aug. 768, Oct. 984
Nov. 1070, Dec. 1188
Redding, R. J., Mar. 263; Aug. 775
Refsum, A., Mar. 264
Reidy, John, Dec. 1169
Robinson, Alan, Oct. 983
Rock, Ian, Mar. 256
Ruskin, Claire, June 597, 598

Sage, Les, Feb. 134
Segaran, T.. Jan. 64
Self. Douglas, Apr. 333, June 541 July 692, Oct. 983
Sewards, Alan, Aug. 741
Shah, Rocco, Sep. 915
Sharp, R. J. Jan. 29
Shichijo, Hisashi, June 609
Shipton, Harold W., July 684, Oct. 985
Shorey, S. J., Sep. 861
Short. George, July 644
Sibley, C. Bruce, Apr. 332
Sibley, Graham, Feb. 171
Silvertooth, E. W., June 542
Singer, Joshua, Feb. 134
Smith, D. J.. Jan. 28
Smith, K. L., Nov. 1061
Sokol, B. J., Feb. 174
Stamps, Steve, Mar. 231
Staric, Peter, May 471
Steven G. F., Nov. 1083
Stevens, Jeremy, Nov. 1108
Stewart, R. G., Aug. 811
Stockman, Harry E., Sep. 900
Stubbings, Feb. 156
Taylor, Brian, May 434
Taylor, Mike, Oct. 1003
Taylor, M. R., July 682
Tchamov, Nikolay T., Dec. 1196
Tedenstig, Ove, June 542
Thompson, P. T., Jan. 23
Tilsley, J. R., May 457
Timmins, Alan, Dec. 1228
Tompkins, Andrew, Aug. 820
Tonge, G. J., July 710
Tseung, Alfred, Apr. 397
Turmaine, Brad. Aug. 795
Turner, G. R., June 540
Turner, Peter, July 687, Oct. 1025
Tushingham, Simon, Jan. 29
van de Gevel, Marcel, Oct. 970
van der Walle J. F., Nov. 1076
van der Wurf, P., July 682
Vaughan, Peter F., Sep. 862
Vellacott, T. J., Sep. 852
Velmans, Max, Feb. 174
Vincent, Geoff, Dec. 1212
Walker, Richard, May 449
Watson, Alan, Nov. 1070
Watson, Peter, Dec. 1216
Watt, Joules, Jan. 37; Feb. 115. 134;
May 476; July 699; Aug. 759; Sep.
887; Nov. 1087
Weatherill, Michael, May 458
Wells, J. N., Mar. 242
West, Ralph, May 457
Whatcott, Brian, July 683
Wilding, Alex, Jan. 29, Feb. 134
Williams, A. J. P., Oct. 987, Nov 1064
Williamson. Reg, Sep. 861, Nov 1067
Wilmshurst. Tim, Feb. 129
Wilson. John S., see Research Notes
Wilson, Peter, July 711
Windram, M. D., July 710
Winter, Anthony, Aug. 806
Wooten, Keith, Feb. 130
Wright, Jeff, Sep. 910
Yau, H. W., July 683

TRIUMPH ADLER ROYAL Daisy Wheel Printers

Our purchase of nearly 2000 T/A Royal Office Master Printers direct from West Germany enables us to offe them at enormous savings! Features include:
$\star 20 \mathrm{cps}$ operation

* Full DIABLO 630 and IBM compatibility
* CENTRONICS compatible parallel interface
- 132 column with variable pitch capability including micro proportional spacing
\star Subscripts, superscripts, bold type. underline etc.
* Manufactured to highest standards (rigid steel chassis etc) in West Germany by Europe's largest typewriter manufacturer

Power Supply aztec 65 W

Switch mode p.s.u. +5 V at 8 amp . +12 V at $3 \mathrm{amp} .-12 \mathrm{~V}$ at 1 amp .

$\star 6$ month full guarantee

 \star Ribbon \& ty pewheel included

Monitor Duplex 12 " green screen high resolution composite video input, suits IBM, BBC etc.

STOP PRESS

Hitachi CD Rom drive, 550 Megabyte, with IBM PC cont. card and cable, $£ 199$
Hitachi very high res, professional colour monitors Selection from 12 to 20 inch. Details, price, on application.

Modem

Plessey 2400 Baud V22/V22 bits. Compact 1200/2400 baud featuring auto-call, auto-answer and auto-bit rate recognition. With manual and connection details for high speed Prestel for BBC, including software for IBM PC. Originally priced over $£ 700$
£ 119.50 or $£ 99.50$ for 5 or more (carriage £3.50)
N.E.C. Colour Monitor

High resolution 12"colour display model JC-1203. Fully IBM compatible and compatible with almost any computers. Modern style case. Packed with all connectors and manual

Keyboard

High quality sculptured keyboard. 133 key.

Cases

Cases for 3 " drives.
Single $£ 2.99$, double $£ 3.99$ (carriage $£ 1.00$)

Used Equipment
 Computer

Amstrad 6128 Monochrome
Tape Recorder
£150.00 (carriage £5.00)
Teac A3300S Reel-to-Reel Tape Recorder
Virtually unused professional model. Up to $10.5^{\prime \prime}$ NAB spools With separate noise reduction unit.

Studio Monitors

PatrBBC Model LS5/1
Large, high quality speakers comprising $15^{\prime \prime}$ bass unit plus

Patrattec 15" 400W dual concentric.monitors in cabinets.
Superb $£ 450.00$
Power Amplifier Dreadnought 500
Stereo 19 " rack studio quality amp. 500 watt RMS. $£ 350.00$

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 318-321

	PAGE		PACE
Antex Electronics Lid	303	Farnell Instruments L	265
Arcom Control Systems	270	Feshon Systems...	6
Armon Electronics	260	Flight.	306
Audio Electronics	306	Flight Electronic	0'231
Cahners Exhibitions Loose Insert		Henrys 251	
Cavendish Automation Ltd 222 I P Croup			
Componedex I.td ..	. 219	I R Group 215	
Componedex Ltd	251	IR Group	
Component Source	315		
Crotech Instruments Lidd 245			
Dataman Designs.	OBC	J \& M Computers 253JAV Electronics 217Jay Tee Electronics Litd 2337Johns Radio....................... 307	
Design Consultancy	. 304		
Display Electronics Lid	. 291		
Dowty Maratime	222		
E.A. Sowter	260	Lab-Volt (UK) Ltd.... Covers III IV Lab-Volt (UK) Ltd................... 251	
Edicron	317		
Eltime Ltd	315	Langrex Supplies Lid.......	

[^7]
R.F. EQUIPMENT MANUFACTURERS

PERFORMANCE \& QUALITY

 VESTIGIAL §IDEBAND TELEVISION MODULATOR PRICES FROM £214.13 (excluding VAT \& carriage) Prices CCIR/3 £214.13 CCIR/3-1 £273.6719" RACK MOUNT VHFIUHF TELEVISION DEMODULATOR PRICE AT CNLY £198.45 (excluding VAT \& carriage)

WALLMOUNT DOUBLE SIDEBAND TELEVISION MODULATOR
PRICES FROM ONLY £109.76 (excluding VAT \& carriage)

Prices
CCIR/5-1 1 Modulator $\$ 109.76$ CCIR'5-2 2 Modulators $£ 167.99$ CCIR'5-3 3 Modulators $£ 237.59$ CCIR/5-4 4 Modulators $£ 307.19$ CCIR/5-5 5 Modulators £376.79

TAYLOR BROS (OLDHAM) LTD. BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND.
TEL: 061-652 3221 TELEX: 669911
FAX: 061-626 1736

S3 is an Electronic Engineer's Tool-kit. Since 1978, Softy 1 and Softy 2 have been used to develop millions of pounds' worth of new products. S3 is Softy 3.
S3 could be the only programmer you will ever need. S3 could also be the only development system you will ever need. S3 is a set-oftools for designing, modifying and manu facturing products which contain Micro processors, EPROMS, EEPROMS, RAMS, EPLDS - programmable memory and logic of all kinds.
That is what you do for a living isn't it? Or did they send you this magazine by mistake instead of Practical Beekeeping?

"I think I have all the tools I need"

Engineers have discovered lately that they are more productive in a windowing, multitasking computer environment. The PC workstation is now fashionable. Coffee-stained notebooks, boxes of tangled wire and two-legged-transistors are going out-of-style. Today you can sit down at a computer keyboard and tackle everything from design to documentation. At a keystroke you can re-assemble your source-file, download to your memory-emulator and run your program. The

"Unbelievably good, obviously designed by working engineers for working engineers"

prototype of your new product will work exactly like the real thing, except that you can set breakpoints, examine variables and stack, debug the code and so forth. Logic Analysers, Storage Scopes, lots of instruments these days have RS232 or IEEE interfaces, and can be controlled in another task-window, to provide insight into what's going on. S3 fits in well, needing only a single RS232 port for complete remote control. In short, if you value your time, isn't it time you bought yourself some proper equipment?
"I wonder - would I use it much?"
S3 is a small computer which uses PROMS for storage like other computers use disks. A PROM in the front panel socket can be loaded as a working program or as data. S3 can make this datamemory externally available, taking the place of any 25 or $\mathbf{2 7}$ series PROM in your prototype. If the Flying Write Lead is connected to the microprocessor's write-line, it can emulate RAM too, by providing the WRITE input missing from PROMS. This is a real advantage over simple ROM-emulators, because variables and stack can be inspected and the target system can feedback data. Memory is permanent, in effect,

"I wouldn't dream of parting with it"

because in standby mode only a tenth of a milliamp is drawn from the battery. S3 is ready for work next morning or next month - even if you're not.

£495 buys S 3, a programmer with knobs on

S3
DISPLAY . £495
DISPLAY: ${ }^{80}$ character Liquid Crystal Display.
KEYBOARD: 45 "real click key" - metal-domes with buttons. PROGRAMS: $28 / 24$ pin $25 / 27$ series (E)EPROMS to 512 k PROGRAM RAM: 8 k bytes - proes (E) EPROMS to 512 k EMULATION RAM: 64k bytes of 100 ms static CMOS RAM. INTERFACE: Bi-directional remote control by serial RS232 $300,600,1200,2400,4800$ or 9600 baud DB25 socker with CTS/DTR handshake. (Actually, S3 will recetve files at $9600, \mathrm{~N}, 8,1$ at full speed without handshake).

WORKLOAD: With mains-supply connected you program continuously. A fully charged battery will do several days' work e.g.
EDIT for 45 hours.
EMULATE for 6 hours.
PROGRAM 1000 fast or 100 slow PROMS
or RETAIN program \& data for several weeks
CHARGING: 3 hrs on BOOST or 14 hrs on TRICKLE. Charging ends when battery-temperature rises $5^{\circ} \mathrm{C}$ INCLUDES: Mains-Charger, ROM Emulato Lead and Help ROM.
S3 Editor/Assembler . $£ 195$
Runs on IBM type PC/AT. Development Environment i.e. TwoWindow Editor. Very Fast Macro-A ssembler, Linker, Loader, S3 Remote-Control Serial Interface. AVAlLABLE IN UK ONLY. Choose your micro from the following list:
1802 1805 TMS370
TMS320C15 TMS320C17 TMS32020
$\begin{array}{llll}\mathrm{FB} / 3870 & \text { COP400 COP440 TMS320C25 } \\ 64180\end{array}$ $\begin{array}{llll}64180 & 65 \mathrm{CO2} & 6502 & 65 \mathrm{C} 812 \\ 65 \mathrm{C} 816 & 6800 & 6801 & 6504\end{array}$ ${ }_{6802}^{65 C 816}$
6805
688000
uPD 7500 B
uPD
8039
8039
8080
8080
80188
80188
TS94110
S3 Developer's Package
TMS32010
TMS320C25
HMCS400
$65 C 812$
6301
6804
$68 \mathrm{HC11}$
uPD7500A
uPD7810
8048
8031
8088
TMS9995

Inside Developer's Package £ 195 Inside information for engineers wishing to change S3 and develop their own applications. Environment as abo
bler, S3 BIOS calls and Circuit-Diagram.
EPROMS 32 or 40 pins. . $\mathbf{~} 75$ each Two modules cover 1 meg and 2 meg 8 \& 16 bit EPROMS.
8748/8749
. 125
XICOR 2212
£45
EPLDS £295 Handles Erasable Programmable Logic Devices. Works with PLPL and other manufacturer's design software (mostly free on request) to provide complete development package. Receives, translates, creates and transmits JEDEC files. Loads, bums and copies:
22V10, 16R4, 16R6, 16R8, 16L8, 20G 10, EP300, EP310, EP 320, EP600, EP900, EP910, 18CV8, 50C $30,50 \mathrm{C} 31,50 \mathrm{C} 32$. Texas. etc. 90 from MMI, Atmel, Cypress, Altera. Gould, Intel,

Quotations in italics are typical unsolicited customers' comments

28 days money-refund trial period Guarantee - both parts \& labour 3 yrs on S3, 1 yr on other hardware UK customers please add VAT
PROM makers supply free data-sheets which set-out the way to program their devices. You can check voltages and signals with an oscilloscope. Speed comparisons - theirs, not ours prove S 3 to be faster. 14 secs to Program an Intel 27C256, 3 secs to Load or Verify. Compare features, price, performance, decide which Prommer you like best and send the other one back.

"What are the odds I will like it?"

Better than 100 to I. We know that because our products have a 28 day money-back trial-period and we get less than 1 in 100 back.
> "Best bit of kit we've bought this year"

 Lombard House, Cornwall Rd,

 DORCHESTER, Dorset DTI IRX EnglandPhone 030568066
Telex 418442 DATAMN G
Fax 030564997
Modem.......... 0305251786
V21, V22, V23, V22bis N 8124 hr

[^0]: Elatromus \& Wircless World is publinhed monthly

 mit Kiryless Wrorld. (Quadrant House. The Quadram sut Buantso l'uhhishme Led. Editorial \& Advertising offices: E:HW Quadrant House. The (Vuadramt. Autlom Nurres SM2 SAS Tellephones: Fiditortill 11 - 661 :3614. Adser

 $01-661$ N97R or 01.661 R9M6 3 3 In haud. 7 data hats evern parto. onestop-btt. Send ctrl-(l, then EWW to-tart. NNNN tosugn off Newstrade - Cuadrant lublishong Services No (11-661 :3240 Subscription rates: I vear inormal rate)

 rant Sabecription Service ()akfield House, Perrymount Road Hewnardulleath Susex R1116:30H Telephone 0444 \$ $\$ 121:$ Please motify : change of addremen [$\$$ A: $\$ 11600$ armal Read lousinest Publishimg IfSA) Suhscriptoons (Office, 20)5 E 42nd sitret, NY' 10117 Overseas advertis. ing agents: France and Belgium: Pierre Mussard. I 8 -20 ing agents: France and Belgium: Plerre Mussard. IX-20
 "lace dee la Madeleme, Parrs $\overline{5} 500 \mathrm{x}$ United States of Place fe la Madeleme. Parrs 75010 (nited states of East \& Ind Street. Neu York. N) 10017 Telephone 12121 $867-20 \mathrm{~m} 1)$ Telex $23 \mathrm{~S}_{2} \mathrm{Z}$ ['SA mailing agents: Mercurv Aurfreught Inturnatumal Ifd, Inc. IOth) Englehard Ave, Arenel N. 107001 End clase pmatige pad at Rahuay NJ Postmester - send addreas to the above
 ORered Bummen Publahomg Ited 1984 1ssiN 0266-3244

[^1]: Lor Catt's Kernel Consultants, PO Box 99. St. Albans, is currently seeking $\dot{5} 5$ million financial backing to huild the prototope kernel logic machine.

[^2]: In the next article the author will consider errm-correction and detection systems.

 ## Relerence

 3. A Communication Technique for Multipath Channells. R. Price and P'R. (ireen. Proc. IRI:, March l.9.8.
[^3]: MVDS Microwave Video Distribution System
 MDS Multipoint Distribution System
 MDS Metropolitan Distribution System
 MMDS Multipoint Microwave Distribution System
 MMDS Muitichannel Microwave Uistribution System
 MMDS Multichannel Multipoint Distribution System
 M^{3} VDS Millimetre wave Multichannel Multipoint Video Distribution Service

[^4]: *F.C. C. Rules d Regulations Part 21. Subpart (i.

[^5]: $\begin{array}{ll}\text { 2SA715 } & 0.5 \\ \text { 2SC495 } & 0.8\end{array}$
 $\begin{array}{ll}25(495 & 0.80 \\ 25 C 496 & 0.80\end{array}$
 25C784
 25C785
 $25 C 789$
 $25(789$
 $25(9310$
 0.80
 ${ }_{3} 5 \times 88$

[^6]: Whth the most successful companies and consultancies - both large and small - throughout the UK: Offering first class salary/benefit packages - several include company car - plus excellent career advancement opportunitles.
 Interest and experience in any of these fields:
 DIGITAL SIGNAL PROCESSING; ADVANCED PROCESSOR ARCHITECTURES; IMAGE ANALYSIS; GRAPHICS / SPEECH PROCESSIMG; LASER / FIBRE OPTICS; PARALIEL PROCESSORS: REAL-TIME COMTROL/C³ SYSTEMS; RADAR; SONAR; COMMUNICATIONS; OSI / X4OO NETWORKS: AI E IKB SYSTEMS; ANALOGUIE E DIGITAL VLSI / ASIC DESIGN; SIMLHATION; MILUMETRIC SYSTEMS; SOFTWARE - C, PASCAL, ADA, OCCAM, 68000 ASM, MODULA. UNIX / VMS; CAD TOOLS.
 ECM offers confidential and professional guidance: we will listen to your requirements and identify opportunities to suit your plans.
 Phone now for your FREE CASSETTE "'Jobsearch Technology" and hear how ECM can help you to develop your career.
 Call ECM on 0638742244 - until 8.00 p.m. most evenings - or send your cv by FAX (0638 743066) or mail to:

[^7]: OVERSEAS ADVERTISEMENT AGENTS
 France and Belgium: Pierre Mussard. 18-20 Place de la Madelaıne. Parıs 75008.
 Unitod States of America: Jay Feinman, Reed Business Lid.. 205 East 42nd Street. New York. NY 10017 - Telephone (212) 867 2080-Telex 23827.
 Printed in Great Britain by E.T. Heron (Print) Lid. Crittall Factory. Braintree Road. Witham. Essex CM8 3QO, and typeset by Graphac Typesetting, 181191 Garth Road. Morden. Surrev SM4 41.1. for the proprietors, Reed Business Publishing Ltd, Quadrant House. The Quadrant, Sutton. Surrey SM2 5AS. © Reed Business Publishing Lid 1989 , Electronics and Wireless World can be obtained from the following: AUSTRALIA and NEW ZEALAND; Gordon \& Gotch Lid, INDIA: A. H. Wheeler \& Co. CANADA: The Wm Dawson Subscription Service Lid. Grordon \& Gotch Ltd. SOUTH AFRICA: Central News Agency Lid; William Dawson \& Sons (S.A.) Ltd UNiTED STATES: Worldwide Media Services Inc., I15 East 23 rd Street, NEW YORK, N.I. 10010. USA. Electronic \&

